A preliminary investigation into the aetiology of Meares–Irlen syndrome

B. J. W. Evans1*, A. J. Wilkins2, J. Brown3, A. Busby4, A. Wingfield5, R. Jeanes2 and J. Bald6

1The Institute of Optometry, 56–62 Newington Causeway, London SE1 6DS, UK; 2MRC Applied Psychology Unit, Cambridge, UK; 3Dollond and Aitchison, Leeds, UK; 4Upbury Manor School, Gillingham, UK; 5Dyslexia Institute, Leeds, UK; and 611 Oxford Road, Colchester, Essex, UK

Summary
A recent double-masked placebo-controlled trial has confirmed that some children experience a reduction in symptoms of eyestrain and headache when they read through individually prescribed coloured filters and has shown that this benefit cannot be solely attributed to a placebo effect. People who are helped by coloured filters in this way have been described as having 'Meares–Irlen syndrome'. We investigated the mechanism of this benefit by studying the optometric and visual perceptual characteristics of the children in the double-masked study. This population had normal refractive errors and heterophorias (none of the subjects had strabismus). They demonstrated slightly, but significantly, reduced amplitudes of accommodation and vergence and poor stereo-acuity. However, these factors seemed to be correlates of Meares–Irlen syndrome rather than the underlying cause. Pattern glare, a sensitivity to striped patterns (e.g. lines of text), was prevalent in our sample and was significantly associated with the subjects’ symptoms. The spatial contrast sensitivity function was normal.

Copyright © 1996 The College of Optometrists. Published by Elsevier Science Ltd

Introduction
Meares (1980) and subsequently Irlen (1983, 1991) described a new visual disorder which Irlen (1983) called Scotopic sensitivity syndrome. This term is likely to be etymologically inappropriate and the description Irlen’s syndrome has been used as an alternative (Irlen, 1990; Evans and Drasdo, 1991; Carr, 1993). In view of the description of the condition by Meares before Irlen, the term Meares–Irlen syndrome may be more appropriate. Irlen (1991, p. 50) stated that the condition affects 12% of the general population and 65% of people with dyslexia. Meares–Irlen syndrome has not been clearly defined in the literature, but previous descriptions have all been characterised by symptoms and a benefit from colour (Meares, 1980; Irlen, 1983, 1990, 1991). Irlen (1991, pp. 158–159) claimed that the colour of the required filter is idiosyncratic and often needs to be highly specific. Although the symptoms can be described in general terms as asthenopia (sore, tired eyes; headaches; photophobia) and visual perceptual distortions (illusions of shape, motion and colour), their precise nature does not appear to have been clearly identified using statistical survey techniques (Evans and Drasdo, 1991). Most of these symptoms are non-specific, whereas the alleged benefit from coloured filters in patients without ocular pathology does appear to be specific to Meares–Irlen syndrome (Evans and Drasdo, 1991). Therefore, for the purposes of the present study, Meares–Irlen syndrome is defined as being present when subjects report a sustained benefit from using coloured filters when reading.

A review of the literature (Evans and Drasdo, 1991) showed that Meares–Irlen syndrome lacked a sound theoretical basis and, until recently, the efficacy of the coloured filter therapy had not been demonstrated with a rigorous double-masked placebo-controlled trial. Such a trial became possible with a new instrument: the intuitive colorimeter (Wilkins et al., 1992a). With this apparatus the subject views text which is illuminated by light whose hue,
saturation and luminance can be varied independently throughout a large region of colour space (Wilkins et al., 1992b). It would be predicted that, with this instrument, people with Meares–Irlen syndrome should be able to find a colour that reduces their symptoms (the optimal colour). Irlen’s assertions would also suggest that it should be possible to find a second colour which is very similar to the optimal one but which does not greatly improve their symptoms (the control colour).

During intuitive colorimetry subjects have no reference colours with which to compare the colour of surfaces in the colorimeter. Subjects rapidly adapt to the colour and become unaware of the exact colour that they are viewing so that, if the specifications of the optimal and control colours are translated into coloured lenses, subjects should be unable to remember which corresponded with their choice in the colorimeter. It is this feature that has allowed a double-masked placebo-controlled trial of the therapeutic use of tinted lenses for reading difficulty (Wilkins et al., 1994).

The data from this trial that relate to intuitive colorimetry and symptoms have been reported by Wilkins et al. (1994). The first aim of the present paper is to describe in detail the optometric characteristics of the population in the double-masked trial. These optometric data will be compared with norms, and with recent data from a dyslexic group and control good readers (Evans et al., 1994a, b, 1996), and a control group of poor readers who were asymptomatic and did not report a benefit from coloured filters (Evans et al., 1996). The latter group of control poor readers were matched for age, reading age, and IQ with a subgroup Meares–Irlen syndrome subjects from the present study (Evans et al., 1995). The dyslexic group and control group of good readers of Evans et al. (1994a, b, 1996) were slightly younger than the present group with Meares–Irlen syndrome (mean 10 years; c.f. 12 years), but also had a slightly higher IQ (110; c.f. about 90). The dyslexic and control good readers were selected according to psychometric data, and without regard to their symptoms, nor to their response to coloured filters (Evans et al., 1994a, b, 1996).

The double-masked placebo-controlled trial showed that the benefit from coloured filters in Meares–Irlen syndrome is not solely attributable to a placebo effect. Therefore, other possible explanations for this benefit need to be considered. The second aim of this paper is to investigate potential mechanisms for Meares–Irlen syndrome. Several potential mechanisms were described by Evans and Drasdo (1991), most notably ‘pattern glare’ (Wilkins and Neary, 1991; Wilkins, 1995). Pattern glare has been studied in detail (Wilkins et al., 1984) and describes the symptoms (asthenopia and perceptual distortions) that many people experience on viewing repetitive striped patterns, including text (Wilkins and Nimmo-Smith, 1987). Wilkins (1995) proposed that a cortical hyperexcitability accounted for pattern glare and that filters of specific and idiosyncratic chromaticity could possibly reduce this hyperexcitability, hence alleviating associated symptoms.

Another explanation attributes Meares–Irlen syndrome to the high prevalence of optometric problems, mostly ocular motor (accommodative and binocular) anomalies, that has been found in potential Irlen lens wearers (Scheiman et al., 1990). A subsequent study by Blaskey et al. (1990) found that, in most cases, vision therapy was as effective at reducing the symptoms of Meares–Irlen syndrome as are coloured filters. However, this study only employed small groups: the number of subjects completing the study was 11 wearing Irlen lenses, 8 having vision therapy, and 3 having ‘control’ coloured filters. Further, the groups were not matched for IQ or the type of visual problem, and placebo effects of vision therapy were not addressed.

A third hypothesis that has been proposed to account for Meares–Irlen syndrome relates to a ‘deficit of the transient visual system’ in dyslexia (Lovegrove et al., 1986). Visual processing occurs in parallel, via the transient (magnocellular) and sustained (parvocellular) visual subsystems (Kulikowski and Tolhurst, 1973; Green, 1981). The transient subsystem does not demonstrate chromatic opponency and predominantly responds to rapidly moving or flickering, coarse, peripheral stimuli. The sustained subsystem does demonstrate chromatic opponency and predominantly responds to static or slowly moving, central, fine detailed stimuli. There is considerable psychophysical (Lovegrove et al., 1986) and, controversially (Victor et al., 1993), some electrophysiological evidence (Livingstone et al., 1991) demonstrating a deficit of the transient visual system in the majority of dyslexic children. Several researchers have suggested that the ‘transient deficit’ in dyslexia might account for the benefit from coloured filters (Solman et al., 1991, 1995; Williams et al., 1992; Irlen, 1994; Scheiman, 1994). Evans et al. (1996) showed that the sensory visual correlates of dyslexia (transient deficit) were associated with the ocular motor visual correlates. Surprisingly, low-level transient subsystem function has not been assessed in subjects with Meares–Irlen syndrome.

Methods

The investigations concentrated on near point functions and all visual acuity, binocular vision and psychophysical tests were carried out with any refractive correction that was usually worn at the appropriate distance. All near vision tests were carried out with incandescent lighting to give a light level between 103 and 240 cd m⁻². No ocular pathology was detected by direct ophthalmoscopy. The colour vision test results have been reported elsewhere (Wilkins et al., 1994) and did not reveal an abnormal prevalence of colour vision defects in our sample.

Subjects

Children from four schools and a dyslexia institute who
were either failing in reading or who reported asthenopia or perceptual distortions were tested with coloured overlays. Subjects who reported a benefit from these and continued to use an overlay when reading without prompting for at least three weeks were entered in the double-masked trial (Wilkins et al., 1994). IQ data were only available for a few of the subjects, who participated in the matched-group study described elsewhere (Evans et al., 1995). It is claimed that some people with Meares-Irlen syndrome do not have specific reading difficulties (dyslexia) (Irlen, 1991, p. 50). Therefore, it was not appropriate to use a measure of reading retardation as a selection criterion.

The only optometric reasons for excluding subjects or postponing entry to the study were: (1) decompenated heterophoria (according to conventional clinical criteria; Pickwell, 1989) or (2) blurred vision due to uncorrected refractive or accommodative anomalies. Nine subjects were excluded for these reasons. These exclusion criteria were applied because it was felt that it would be unethical to delay conventional optometric treatment in these cases. There is no agreement on precise criteria for determining whether a heterophoria is decompenated and the study optometrists applied their usual clinical judgement, basing their decisions on factors described in a standard text on binocular vision (Pickwell, 1989) (details are given below in Discussion).

The average age at first appointment was 12 years 2 months (SD 1 y 9 m, range 9 y 9 m to 15 y 5 m). The present paper reports the optometric data that were available for 53 of the 68 children (42 boys and 26 girls) who entered the double-masked study. A recent paper gives a detailed comparison of optometric and psychometric data of 16 of the subjects in the double-masked trial who all came from one school with 25 controls who came from the same school and had the same mean chronological age, reading age and IQ (Evans et al., 1995).

Visual acuities and refraction

Monocular and binocular near presenting visual acuities (VAs) were assessed on an externally illuminated (115 cd·m⁻²) Lighthouse test (Lighthouse Low Vision Products, New York, USA) similar to the log MAR design of Bailey and Lovie (1976). The refractive errors were assessed by distance retinoscopy (Taylor, 1988) and subjective refraction (O’Leary, 1988) using negative cylinder notation. The spherical equivalent refractions (SERs) were calculated by adding one half of the cylindrical component to the spherical component. The mean SER and mean cylindrical correction for each subject were calculated from the data for the right and left eyes (Ray and O’Day, 1985).

Binocular vision and orthoptic tests

Binocular ocular motility (Pickwell, 1989) was used to assess the comitancy and smoothness of the ocular movements. The objective cover/uncover test was carried out at distance and near, and any deviation was estimated by observation to the nearest 1 Δ.

The distance dissociated horizontal deviation was measured with a von Graefe cover/uncover technique (Mallett, 1988). The Maddox wing (IOO Marketing Ltd, London, UK) was used for the near dissociation test (Lyle and Wybar, 1967). The magnitude (not the direction) of any vertical dissociated deviation was recorded. The right eye was covered and uncovered so as to measure the horizontal dissociated deviation five times to obtain a measurement of the mean and of the range of readings. Each result was recorded to the nearest 0.5 Δ. In some subjects the AC/A ratio varies with target distance (Rosenfield and Ciuffreda, 1991), so it was measured at both distance and near. The gradient method (Pickwell, 1989, p. 53) was used employing the dissociation tests described above with −3.00 D lenses at distance and +2.00 D lenses at near.

The associated heterophoria (Pickwell, 1989), when measured on an instrument with a good central fusional lock, is better at predicting whether a heterophoria is symptomatic than measuring the dissociated heterophoria or forced vergence disparity curve (Yeka et al., 1989). The Mallett Fixation Disparity Unit (Mark 2; IOO Marketing Ltd, London, UK) is one of the few fixation disparity instruments with a good foveal lock and was used to measure the horizontal and vertical near associated heterophoria, to the nearest 0.5 Δ (Mallett, 1966).

The near point of convergence was measured with the standard RAF Near Point Rule (Clement Clark International, Harlow, Essex, UK) using the conventional line target (Evans et al., 1992). The rate of movement was approximately 1 Δ/second and the mean of two subjective break and recovery points was obtained. The horizontal vergence reserves were measured with a variable prism stereoscope where binocular rotary prisms were manually adjusted at a rate of approximately 1 Δ/second. The subject viewed a vertical row of five numbers, which subtended 2° vertically at the distance of 30 cm. The print size was equivalent to a decimal acuity of 0.4. Two measurements of the negative (divergent) vergences were taken and then two of the positive (convergent) vergences. Subjective results for the near point of convergence and vergence reserve testing were confirmed by observing the subjects’ eye movements.

The Randot Circles Test (contoured circles on random dot background; Clement Clark International, Harlow, Essex, UK) was used to measure stereo-acuity. Foveal suppression was detected and measured with the Binocular Status (polarised letters) test of the near Mallett Unit (Mallett, 1966). The monocular acuities under haphaloscopic (polarised) conditions were compared with those under monocular conditions (polarisers still in place, but monocularly occluded).
Amplitude of accommodation

The amplitude of accommodation was measured monocularly and binocularly with the RAF rule by the push-up method (Reading, 1988), with any significant refractive error corrected. The target was moved in at approximately 10°/second.

The accommodative error was also recorded, as the theoretical correction to balance the red and green duochrome targets on the near Mallett Unit, when viewed under haploscopic (polared) conditions (Mallett, 1966). The results were inconsistent and illogical, presumably because subjects' preferences for colour were confounding their response and, therefore, the results were not analysed.

Physiological data

Lovegrove et al. (1982) studied the spatial contrast sensitivity function (SCSF) in dyslexia and detected a reduced contrast sensitivity to low, but not to high, spatial frequencies. It was argued that the transient channel was particularly sensitive to low spatial frequencies and this result was thus interpreted as evidence of a 'transient deficit' (Lovegrove et al., 1986). We used the retinitic VCTS Near Vision Test to assess SCSF. Although this test has limitations (Bradley et al., 1991), another study (Evans et al., 1994b) demonstrated that it can be used to effectively replicate the experimental conditions of Lovegrove et al. (1982) within the tolerances established by Martin and Lovegrove (1984). The experimental procedure was as described in Evans et al. (1994b): all three test cards were employed with binocular viewing, without a time limit.

The conventional method of assessing pattern glare is to show subjects an appropriate grating and to quantify any reported anomalous visual effects (illusions) (Wilkins et al., 1984). To control for suggestibility with children, Evans et al. (1994c) used a control target and, based on the recent work of Conlon (1993), a low spatial frequency control was used in the present research. The 'experimental' and 'control' gratings had similar size, space-averaged luminance, and contrast, but at 30 cm had spatial frequencies of 0.2 c/deg, respectively. After subjects with a personal history of epilepsy had been excluded, the subjects' initial responses on viewing a small (9° diameter) experimental grating were recorded. For ethical reasons, any who reported discomfort and had to avert their gaze were excluded from further pattern glare testing and those who spontaneously reported definite perceptual distortions with the gratings were only tested with the smaller stimuli. The remaining subjects were then shown the large (17.6° diameter) experimental grating and their initial responses were recorded. Next the subjects were asked to answer each of the questions in Table 1 in turn, viewing the centre of each grating for approximately 5 seconds for each question. The order of presentation of the gratings was alternated for consecutive questions.

Table 1. Questions asked in the pattern glare testing

<table>
<thead>
<tr>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you see a colour or colours?</td>
</tr>
<tr>
<td>Do the lines appear to bend?</td>
</tr>
<tr>
<td>Do the lines seem to blur?</td>
</tr>
<tr>
<td>Does the pattern flicker?</td>
</tr>
<tr>
<td>Do the lines wobble or shimmer?</td>
</tr>
<tr>
<td>Do parts of the pattern disappear and reappear?</td>
</tr>
<tr>
<td>Do you see any other patterns, shapes, or glare? (please specify)</td>
</tr>
</tbody>
</table>

Cytoarchitectonic cerebro-cortical abnormalities have been found in some cases of dyslexia (Sherman et al., 1989), involving focal cortical dysplasias, in areas including the occipital cortex (Galaburda and Kemper, 1979). Since these subtle lesions have been found almost exclusively in the left hemisphere, the above procedure was repeated using hemi-gratings. Where subjects reported the same illusion with both hemi-field targets they were asked to choose the one with which it was most severe.

Symptomatology

A questionnaire (copies available from the first author) was issued to all subjects to complete with the help of their parents. At the beginning of the eye examination the optometrist collected the questionnaire and checked the answers.

Results

Visual acuities and refraction

Refractive data are given in Table 2. The mean refractive

Table 2. Descriptive statistics for visual acuity (logMAR units) and refractive error (dioptres) for the right eye (RE), left eye (LE) and both eyes (BE) by retinoscopy (ret) and subjective refraction (sub)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>SD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE N vision</td>
<td>52</td>
<td>+0.11</td>
<td>0.21</td>
<td>-0.10</td>
<td>+1.3</td>
</tr>
<tr>
<td>LE N vision</td>
<td>52</td>
<td>+0.11</td>
<td>0.20</td>
<td>-0.10</td>
<td>+1.2</td>
</tr>
<tr>
<td>BE N vision</td>
<td>44</td>
<td>+0.05</td>
<td>0.21</td>
<td>-0.10</td>
<td>+1.2</td>
</tr>
<tr>
<td>RE ret sph</td>
<td>48</td>
<td>+0.74</td>
<td>1.00</td>
<td>-1.75</td>
<td>+5.25</td>
</tr>
<tr>
<td>RE ret cyl</td>
<td>48</td>
<td>-0.43</td>
<td>1.10</td>
<td>-5.75</td>
<td>0</td>
</tr>
<tr>
<td>RE ret SER</td>
<td>48</td>
<td>+0.53</td>
<td>1.00</td>
<td>-1.89</td>
<td>+3.00</td>
</tr>
<tr>
<td>LE ret sph</td>
<td>48</td>
<td>+0.67</td>
<td>0.94</td>
<td>-1.75</td>
<td>+5.00</td>
</tr>
<tr>
<td>LE ret cyl</td>
<td>48</td>
<td>-0.55</td>
<td>0.96</td>
<td>-5.5</td>
<td>0</td>
</tr>
<tr>
<td>LE ret SER</td>
<td>48</td>
<td>+0.48</td>
<td>0.73</td>
<td>-1.75</td>
<td>+2.25</td>
</tr>
<tr>
<td>RE sub sph</td>
<td>53</td>
<td>+0.59</td>
<td>1.20</td>
<td>-2.75</td>
<td>+7.00</td>
</tr>
<tr>
<td>RE sub cyl</td>
<td>53</td>
<td>-0.76</td>
<td>1.42</td>
<td>-6.00</td>
<td>0</td>
</tr>
<tr>
<td>RE sub SER</td>
<td>53</td>
<td>+0.39</td>
<td>0.92</td>
<td>-2.75</td>
<td>+4.00</td>
</tr>
<tr>
<td>LE sub sph</td>
<td>53</td>
<td>+0.35</td>
<td>0.71</td>
<td>-1.50</td>
<td>+4.25</td>
</tr>
<tr>
<td>LE sub cyl</td>
<td>53</td>
<td>-0.56</td>
<td>0.97</td>
<td>-4.75</td>
<td>0</td>
</tr>
<tr>
<td>LE sub SER</td>
<td>53</td>
<td>+0.19</td>
<td>0.63</td>
<td>-1.63</td>
<td>+2.75</td>
</tr>
</tbody>
</table>

sph, sphere; cyl, cylinder; SER, spherical equivalent refraction; SD, standard deviation.
error was the low hyperopia that is typical of this age group (Borish, 1975) and the prevalence of myopia (15%), hyperopia over 1.25 D (3.8%) and astigmatism over 0.75 D (4.4%) were similar to age-matched norms cited by Borish (1975) (12.5, 6.2 and 5.5%, respectively). Interestingly, the mean subjective SERs were significantly dissimilar for the right and left eyes (paired t-test, $P = 0.036$). This result was not found in a previous study with either dyslexic or control children (paired t-test, $P > 0.20$) (Evans et al., 1994b).

Binocular vision and orthoptic tests

Ocular motility testing detected one case of incomitant ocular movements (out of 51 records available). The ocular movements were described as ‘jerky’ (c.f. ‘smooth’) in 11 cases. Other researchers have detected saccade and smooth pursuit eye movements to be a correlate of reading difficulties (Black et al., 1984; Eden et al., 1994; Evans et al., 1994b). This may be because of motor incoordination (Shapira et al., 1980) which is often associated with attention deficit disorder (Heilman et al., 1991), which in turn has a high co-morbidity with reading difficulties (Weinberg and McLean, 1986; Richards, 1994).

Cover test results were available for 50 subjects, none of whom had a strabismus or vertical heterophoria at either distance or near. Only one subject had a horizontal heterophoria at distance (6 Δ esophoria) and six subjects manifested a heterophoria at near (mean and median zero, range 2 Δ esophoria to 3 Δ esophoria).

Out of the 51 available data sets, 38 manifested a horizontal dissociated heterophoria at distance. The mean result was 0.87 Δ esophoria (SD 2.7 Δ, range 3 Δ esophoria to 13 Δ esophoria). Out of 53 subjects tested, 43 had a deviation with the near horizontal dissociation test, and the mean result was 1.1 Δ esophoria (SD 3.4 Δ, range 9 Δ esophoria to 8.4 Δ esophoria). The mean spread (variability) of the result was 1.5 Δ, with a standard deviation of 1.3 Δ and a range of 0–4 Δ. The mean near vertical dissociated heterophoria was 0.3 Δ (SD 0.6 Δ, range 0–3 Δ).

The mean distance AC/A ratio was 1.6 Δ/D (SD 1.0) and the mean near AC/A ratio was 2.6 Δ/D (SD 1.7). We know of no norms for this result in our age group, although the results were lower than the description of the normal range of 4–6 Δ/D given by Pickwell (1989, p. 52). A t-test showed that the near results were significantly greater than the distance result ($P < 0.005$). The significance of this finding is reduced by the fact that different test methods were used for distance and near, but it may suggest that the present population has an unusual effect of proximal vergence on the gradient AC/A ratio.

The associated heterophoria results are summarised in **Table 3**. These data will not be compared with norms since they were key factors that were used in the selection criteria for the study.

A ‘ceiling effect’ was evident with the near point of convergence (NPC) data and the median near point of convergence was 6.25 cm (range 4.5–22.5 cm). In the present sample the prevalence of an NPC more remote than 10 cm (14%) was similar to norms given by Pickwell and Stephens (1975) (12%, $n = 200$).

Measurements of vergence reserves are strongly influenced by test conditions, particularly in children with reading difficulties (Eames, 1934; Stein et al., 1988), so that clinical norms may be inappropriate. Therefore, the vergence reserves of the experimental group were compared with those, measured with a similar technique, of the control group (Evans et al., 1994a) described above. The divergent and convergent vergence reserves of the experimental group were very much below those of the control group (**Table 4**). This is particularly significant in view of the fact that subjects with a decompensated heterophoria were excluded from the present study.

Simons (1981) obtained norms for the Randot Contoured Circles Stereotest from 8 normal adults and 35 young children (mean age 5 years). It is probably inappropriate to quote his mean results since his data suggest a ‘ceiling effect’. Simons (1981) did give median values on a graph and this is redrawn in **Figure 1**. The mean age of the population in the present study has been marked on **Figure 1** and interpolated to give an expected median stereo-acuity of 31”. The median stereo-acuity of our sample (50") was thus below that which would be expected from the age of the subjects.

Data on foveal suppression were available for 38 subjects, 17 of whom had some degree of foveal suppression. The suppressed eye was the right in 9 cases, the left in 4 cases, and both eyes in 4 cases. The median foveal suppression was 0 and the range was 0 to > 20°. No norms or relevant comparative data are available.

Table 3. Descriptive statistics for associated heterophoria (in Δ)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance horizontal associated heterophoria</td>
<td>0.32 eso</td>
<td>0.68</td>
<td>1 eso to 2 eso</td>
</tr>
<tr>
<td>Distance vertical associated heterophoria</td>
<td>0.09</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>Near horizontal associated heterophoria</td>
<td>0.23 eso</td>
<td>0.84</td>
<td>3 eso to 2 eso</td>
</tr>
<tr>
<td>Near vertical associated heterophoria</td>
<td>0.09</td>
<td>0.25</td>
<td>1</td>
</tr>
</tbody>
</table>

SD, standard deviation.
Table 4. Descriptive and comparative statistics for vergence reserves (in Δ)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divergent blur</td>
<td>Experimental</td>
<td>28</td>
<td>9.5</td>
<td>3.8</td>
<td>0.0058</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>19</td>
<td>14.2</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Divergent break</td>
<td>Experimental</td>
<td>50</td>
<td>12.7</td>
<td>4.2</td>
<td>0.0031</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>43</td>
<td>16.1</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Divergent break-recovery</td>
<td>Experimental</td>
<td>36</td>
<td>2.6</td>
<td>1.2</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>43</td>
<td>4.5</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Convergent blur</td>
<td>Experimental</td>
<td>24</td>
<td>8.6</td>
<td>6.3</td>
<td>0.0024</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>16</td>
<td>16.7</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>Convergent break</td>
<td>Experimental</td>
<td>50</td>
<td>12.0</td>
<td>6.9</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>43</td>
<td>19.0</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Convergent break-recovery</td>
<td>Experimental</td>
<td>36</td>
<td>3.4</td>
<td>3.1</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>43</td>
<td>6.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Amplitude break</td>
<td>Experimental</td>
<td>50</td>
<td>24.5</td>
<td>8.7</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>43</td>
<td>35.1</td>
<td>10.7</td>
<td></td>
</tr>
</tbody>
</table>

The P values in the right hand column were calculated using the unpaired t-test.

Figure 1. Graph of stereo-acuity (seconds of arc) versus age (years) for the Randot Circles Stereo-acuity test based on the data in Figure 4 of Simons (1981). For further details see text.

Tests of accommodation

The data for the amplitudes of accommodation are shown in Table 5. Applying the Hofstetter formulae (Reading, 1988) to the children in the present study, the minimum expected amplitude is 12 Δ and the anticipated mean amplitude is 15 Δ. The results in Table 5 therefore indicate unusually low amplitudes of accommodation.

Psychophysical data

The data for the spatial contrast sensitivity function were available for 68 subjects and are shown (Figure 2) with comparable results from a dyslexic and a control group of good readers (Evans, 1994b). The previous research showed the dyslexic group in Figure 2 to have significantly worse contrast sensitivity than the control group at low and intermediate spatial frequencies, but not at higher spatial frequencies. In contrast, analysis of variance reveals that the experimental group in the present study were not significantly different from the controls in the previous study at any spatial frequency.

Pattern glare

Of the 44 subjects tested, 32 spontaneously reported anomalous visual effects on viewing the experimental grating. It is instructive that two of the subjects reported seeing a diamond shape, which Wilkins et al. (1984) attributed to a cortical mechanism. Six of the subjects reported significant illusions on viewing the small grating and were tested only with this size: all the others were tested with the large grating. The subjects reported significantly more perceptual distortions with the experimental grating than with the control (Mann–Whitney U-test, \(P < 0.0001 \)). The pattern glare of the present population was compared with that of a control group (Evans et al., 1995) who were asymptomatic and did not benefit from coloured filters. Compared with this control group, the 44 children in the present study reported significantly more pattern glare on viewing the experimental grating (Mann–Whitney U test, \(P < 0.01 \)), but an insignificantly different amount on viewing the control grating (Mann–Whitney U test, \(P > 0.4 \)).

The number of anomalous visual effects that subjects reported with the right hemi-field grating was not significantly different from those with the left hemi-field grating (Wilcoxon signed rank test, \(P > 0.7 \)).

Figure 2. Graphs of the mean log contrast sensitivity at five spatial frequencies of the experimental (E) group in the present study and the dyslexic (D) and control (C) groups in a previous study (Evans et al., 1994b). The error bars show the standard error of the mean.
Symptomatology

In interpreting results from the symptom questionnaire it is important to note that some of the subjects were pre-selected to be those who reported eye strain and headaches. The key results from the symptom and history questionnaire are summarised in Table 6.

Six subjects reported taking medications for asthma, hay fever or other allergies, one for migraine medication (Sanomigran, active ingredient pizotifen); and one for epilepsy (Tegretol; active ingredient carbamazepine). Twenty-two of the respondents reported details of allergies, including hay fever and asthma.

The mean estimated number of headaches per year was 46. Of all the respondents, 53% experienced more than one headache a month. 20% more than one a week, and 10% more than two a week. 42% of subjects said that their headaches were severe enough to make them take time off school or be put to bed. Of 41 respondents, 39% described their headache as unilateral. Thirty-one subjects attempted to describe their head pain and 29% of these said the pain was pulsatile. 32% of respondents said that their head pain lasted for more than two hours. Most of the concomitant symptoms accompanying headaches were suggestive of migraine and there was an average of 4.1 concomitant symptoms per respondent (45 respondents). Nine subjects (21% of respondents) said that they experienced some of the concomitant symptoms as a warning before the headache.

Discussion

Adequacy of selection criteria

Because there is little other than anecdotal evidence to

<table>
<thead>
<tr>
<th>No.</th>
<th>Summary of question/data analysed</th>
<th>Count</th>
<th>% Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Have you had an eye examination with an optometrist (optician)?</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Were you given glasses at your last eye examination?</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Has the child ever had a turning eye, eye operation, eye exercises or patching?</td>
<td>51</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Was the birth premature/overdue or complicated or were there any severe illnesses/operations in the first year?</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Has your child ever suffered from epilepsy, or any fits or convulsions?</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Is your child in good physical condition and healthy?</td>
<td>51</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>Is your child taking any medication?</td>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Is the distance vision normally clear?</td>
<td>49</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>Does distance vision ever blur?</td>
<td>49</td>
<td>74</td>
</tr>
<tr>
<td>10</td>
<td>Are reading and writing in a book normally clear?</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Do words in a book ever jump around?</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>Do words in a book ever go smaller/bigger?</td>
<td>49</td>
<td>41</td>
</tr>
<tr>
<td>14</td>
<td>Do words in a book ever fade or disappear?</td>
<td>49</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>Do words in a book ever get faint colours around them?</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>16</td>
<td>Do you ever experience double vision (see two things when there is only one)?</td>
<td>49</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>Have you or anyone else ever noted the following with respect to your child?</td>
<td>48</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>Holding reading or materials unusually close or far away?</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>Closing or covering one eye?</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>20</td>
<td>Frequent eye rubbing?</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>Excessive blinking?</td>
<td>51</td>
<td>41</td>
</tr>
<tr>
<td>22</td>
<td>Tilting head when reading or writing?</td>
<td>50</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>Moves head when reading?</td>
<td>49</td>
<td>83</td>
</tr>
<tr>
<td>24</td>
<td>Uses finger as marker?</td>
<td>49</td>
<td>86</td>
</tr>
<tr>
<td>25</td>
<td>Confuses letters or words?</td>
<td>49</td>
<td>63</td>
</tr>
<tr>
<td>26</td>
<td>Reverses letters or words?</td>
<td>51</td>
<td>90</td>
</tr>
<tr>
<td>27</td>
<td>Reads slowly?</td>
<td>48</td>
<td>71</td>
</tr>
<tr>
<td>28</td>
<td>Tires easily/short attention span?</td>
<td>50</td>
<td>76</td>
</tr>
<tr>
<td>29</td>
<td>Light sensitive?</td>
<td>47</td>
<td>68</td>
</tr>
<tr>
<td>30</td>
<td>Did parents or any other children in the family have learning problems?</td>
<td>51</td>
<td>45</td>
</tr>
<tr>
<td>31</td>
<td>Did parents or any other children in the family have a turning eye, patching or eye exercises?</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>32</td>
<td>Did parents or any of the other children in the family ever have migraine headaches?</td>
<td>51</td>
<td>57</td>
</tr>
<tr>
<td>33</td>
<td>Are the parents or any of the other children in the family colour-blind?</td>
<td>49</td>
<td>20</td>
</tr>
<tr>
<td>34</td>
<td>Did any relatives have epilepsy?</td>
<td>48</td>
<td>8</td>
</tr>
</tbody>
</table>

'Count' refers to the number of respondents and '% Yes' gives the percentages of respondents who ticked the 'yes' box.
describe the characteristics of Meares–Irlen syndrome, the
double-masked trial studied a heterogeneous group of
children whose only universal feature was reports of a
sustained benefit from a coloured overlay. This self-selection
was supported by a statistically significant reduction in
symptoms with the optimal tinted glasses relative to the
control tints (Wilkins et al., 1994).
Subjects with a heterophoria which, according to con-
tventional criteria, would be unequivocally described as
decompensated, were excluded from the study. These criteria
were, in order of importance, associated heterophoria (on
the Mallett Unit), speed of recovery on cover test, and
ability to meet Sheard’s and Percival’s criteria (Pickwell,
1989). Subjects with an associated heterophoria were only
included if their cover test results were normal and Sheard’s
or Percival’s criteria were met. Only two subjects mani-
fested a vertical associated heterophoria of more than 0.5 Δ
(but 1 Δ) and both were orthophoric by cover testing. Only
three subjects had an amplitude of accommodation less than
6 Δ and none of these had a significant refractive error or
heterophoria. Two had normal near visual acuities and the
other had a binocular near visual acuity of equivalent to N8.

Aetiology of Meares–Irlen syndrome

Accommodative and binocular anomalies. Our data con-
firm earlier observations that subtle binocular and accommodative
dysfunctions are a feature of Meares–Irlen syndrome (Blaskey et al.,
1990; Scheiman et al., 1990). Our sample had no strabismus and normal heterophorias, yet we found reduced vergence and accommodative amplitudes, as in a previous study of dyslexia (Evans et al., 1994a). Although Evans et al. (1994a) found stereo-acuity to be normal in a
dyslexic population, the present study confirmed some previous claims (Evans and Drasdo, 1991) that stereo-acuity is
subnormal in Meares–Irlen syndrome. We agree with
other workers that it is good clinical practice to treat any
clinically significant ocular motor (binocular and accommodative)
anomalies before considering a tinted lens treatment (Blaskey et al., 1990; Scheiman et al., 1990). However, we believe, for reasons given below, that many cases of
Meares–Irlen syndrome still benefit from coloured filters
even after any ocular motor anomalies have been corrected.

Despite the exclusion of subjects who were judged to
require treatment for binocular or accommodative anomalies, those who completed the double-masked trial nevertheless
benefited from coloured filters. The criteria that were used
for deciding whether to treat ocular motor anomalies were
conservative and some practitioners might have adopted
more liberal criteria and prescribed vision training for
subjects whom we included in the study. Therefore, we
carried out the following further analyses to investigate
whether the benefit from coloured filters was likely to be
linked to the subjects’ performance at tests of binocular
vision and accommodation.

Blue wavelengths have a shorter focal length than red
wavelengths. Many of our subjects had a slightly reduced
amplitude of accommodation, so it could be argued that
their optimal coloured glasses (active lenses) should be
bluer than their control lenses. We calculated the hue angle
(h_m) of active and control lenses (for whatever reason,
there were no purple lenses). The mean hue angles were
very similar (243.2° for experimental and 243.7° for control),
suggesting that an accommodative mechanism is
unlikely. Nevertheless, it would be advisable for future
research to look at other measures of accommodation, such
as accommodative facility and accommodative lag.

It is possible that there was a tendency for our subjects
to choose a colour which would modify their accom-
modation so as to reduce any heterophoria through the
accommodation–convergence link. However, the correlation
between the hue angle difference (between active and control
lenses) and heterophoria (dissociated at near) was low
(r_s = 0.146; P = 0.44) suggesting that the difference in
colour between the active and control lenses was not associ-
ated with the type and magnitude of heterophoria. The correlation between heterophoria and degree of symptomatic
benefit from the active coloured filter (relative to the
control) was also insignificant (r_s < −0.25; P > 0.20).

There is some experimental support (Sheedy and Saladin,
1978, 1983) for Sheard’s (1930) assertion that symptoms
occur when the vergence reserves opposing a heterophoria
are inadequate. More recent research showed that the
associated heterophoria, when measured on an instrument
with a good focalvealock, is an effective method of detecting
symptomatic heterophoria (Jenkins et al., 1989; Yeka
et al., 1989). We calculated the difference between the near
horizontal heterophoria and the opposing vergence reserves
(Sheard’s value). Sheard’s value and the near associated
horizontal heterophoria (signed or absolute) were not
significantly correlated (r_s < 0.10; n = 44), suggesting
that subjects with symptomatic heterophorias had been
successfully excluded. This conclusion was supported by
investigating the correlation between the individual symptoms
in Table 6 (numbered 10–16; 17–29) and both Sheard’s
value and the near horizontal associated heterophoria (signed
or absolute). Using an appropriate level of significance for
this number of variables (P < 0.025), no significant
relationships were found.

Finally, Irlen (1991, pp. 158–159) claims and our
double-masked trial (Wilkins et al., 1994) confirms that, at
least in some cases, the required tint needs to be chosen
with a high degree of specificity. We know of no ocular
motor explanation which could account for this.

Pattern glare. Pattern glare has also been proposed as a
potential mechanism for Meares–Irlen syndrome (Wilkins,
1995). Our subjects did report significantly more anomalous
visual effects on viewing a grating that should cause pattern
glare (experimental grating) than on viewing a control
grating. This association with pattern glare was not found in poor readers who did not have Meares–Irlen syndrome (Evans et al., 1995).

The typical symptoms of pattern glare (Wilkins and Nimmo-Smith, 1984) are very similar to those of Meares–Irlen syndrome (Evans and Drasdo, 1991; Wilkins, 1995). Accordingly, we investigated the relationship between symptoms (10–16 and 17–29 in Table 6) and pattern glare. The amount of pattern glare with the experimental grating was significantly ($P < 0.025$) associated with ‘light sensitivity’ (no. 29 in Table 6) ($P = 0.018$) and with words in a book ‘jumping around’ (no. 12 in Table 6) ($P = 0.0017$). There were no significant associations between any of the symptoms and pattern glare from the control grating.

In view of the similarity of some of their symptoms, we investigated the relationship between pattern glare and binocular anomalies. Increasing near associated exophoria was moderately correlated with pattern glare from the experimental grating (corrected $r = -0.281$; $P = 0.096$), but not with the control grating. The correlation between Sheard’s value and pattern glare was moderate for the experimental grating (corrected $r = -0.262$; $P = 0.085$), and high for the control grating (corrected $r = -0.43$; $P = 0.0056$). The latter correlation is unexpected and warrants further investigation.

The ‘transient deficit hypothesis’. The low spatial frequency spatial contrast sensitivity deficit that has been used to identify the transient deficit in dyslexia was not present in our sample of children with Meares–Irlen syndrome. This is surprising, since the Meares–Irlen syndrome subjects exhibited the motor optometric correlates of dyslexia and Evans et al. (1996) showed that the dyslexic subjects with weakest binocular function tend to be those with weakest transient function (as indicated by flicker threshold). Evans et al. (1995) also found 20 Hz flicker perception to be normal in a small group of subjects with Meares–Irlen syndrome. However, we feel that it may be premature to conclude that children with Meares–Irlen syndrome do not manifest a ‘transient visual system deficit’. The perceptual tests we employed were designed for use in the classroom and are psychophysically primitive. We feel that more detailed analysis of visual processing in Meares–Irlen syndrome is required before a firm conclusion can be drawn.

Conclusions

Our data suggest that pattern glare is most likely to be at least part of the mechanism of Meares–Irlen syndrome. Binocular and accommodative anomalies seem to be often associated with Meares–Irlen syndrome and it is good clinical practice to treat any clinically significant conventional optometric anomalies as a first priority. Only if symptoms remain should the effect of coloured filters be investigated. Our data suggest that these ocular motor anomalies are most likely to be a correlate of Meares–Irlen syndrome, rather than the sole underlying cause. It has been suggested that both conditions share a common aetiology. The hypothesis that this common aetiology may be a deficit of the transient visual system is parsimonious, but is not supported by our preliminary data.

Acknowledgements

The goodwill of the children and of their parents, teachers and schools is gratefully acknowledged. We are particularly grateful to the following teachers and head teachers: P. Hawkey, R. Bather, I Glidodd and C. Waugh. We are also indebted to K. C. Holland and E. Pimm for advice. We thank CIBA Vision and Vistech Consultants for donating equipment. The work was funded by the Medical Research Council, Cerium Optical Products, Dollond and Aitchison and the Paul Hamlyn Trust.

References

Wilkins, A. J., Nimmo-Smith, I., Tait, A., McManus, C., Della Sala, S., Tilley, A., Arnold, K., Barrie, M. and

