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Appendix 1. computational details. 

A. Middle-ear filtering 
Two parallel linear band-pass Butterworth filters were used to model the response of 
the guinea pig middle ear. One filter is second order with an upper cut-off of 25kHz 
and a lower- cut-off of 4kHz. The other filter is second order with upper- and lower- 
cut-offs of 30kHz and 700Hz. Both have unity gain in the passband. The input to the 
filter is sound pressure (µPa). The output, x(t), is scaled by a factor of 1.4e-10 so that 
it reflects measured stapes velocities in ms-1.  
 
The human middle ear was simulated using four parallel second-order bandpass 
filters. The gain and cut-off characteristics are given in Table 1. The stapes scalar was 
3e-10 m/s/µPa. 
 
order gain lower cut-off upper cut-off 
2 -12 100 1300 
2 1.5 350 6500 
2 5 1800 5200 
2 -11 7500 9900 
Table 1 Parameters for parallel filters simulating the human middle ear response. 



 

B. Mechanical filtering: DRNL filter 
The filtering of the BM is modeled with a ‘Dual-Resonance-Non-Linear’ (DRNL) 
filter architecture that has been described and evaluated more fully elsewhere (Meddis 
et. al., 2001; Lopez-Poveda and Meddis, 2001; Sumner et al., 2003b). The input is 
stapes velocity. The DRNL filter consists of two parallel pathways, one linear and the 
other non-linear, whose outputs are summed to produce an output, v(t) representing 
the velocity of the cochlear partition (m/s). 
 
The nonlinear pathway consists of three identical first-order gammatone filters; a 
compression function followed by three more identical gammatone filters and then by 
three first-order Butterworth low passes filters. The compression in the non-linear 
pathway is described by: 
 
  v[t] = SIGN(x[t]) × MIN(a|x[t]|, b|x[t]|ν) 
 
 where a, b and v are parameters determining the exact behaviour. The compression 
exponent, v, was 0.1 for guinea pig and 0.25 for human. 
 
The linear path consists of a gain function followed by a cascade of three identical 
gammatone filters followed by a cascade of four Butterworth low pass filters.  For 
both paths the cut-off frequency of the lowpass filters was set to the CF of the 
corresponding gammatone filters.   
 
The CF of the nonlinear path gammatone filters (CFNl) is set to the desired BF of the 
filter as a whole, i.e. as a function of its location along the cochlear partition.  The 
other parameters of the system are set relative to CFNl using the formula: 
 

log(parameter)= p0 + m log(CFNl) 
 
Table 1 shows the parameters p0 and m values required to compute the parameters a, 
b, the bandwidths of both pathways (BWlin and BWNL), the gain of the linear filter 
(Glin), and the centre frequency of the linear filter (CFlin). 
 

Guinea pig human DRNL filter parameters that vary with BF:( )BFmpBFp 100 log10)( +=  p0 m p0 m 
Bandwidth of non-linear path, BWNL (Hz). 0.8 0.58  0.1 0.783 
Compression parameter, a 1.87 0.45 1.47 0.82 
Compression parameter, b -5.65 0.875 -2.674 0.358 
Center Frequency of linear path, CFlin (Hz). 0.339 0.895 0.5 0.844 
Bandwidth of linear path,  BWlin (Hz). 1.3 0.53  0.097 1.185 
Linear path gain, Glin. 5.68 -0.97 1.438 -0.18 

Table 2.  Coefficients  for computing parameters of the DRNL filters as a function of CFNL. 

 

C. IHC receptor potential 
Both guinea pig and human models used the same hair cell parameters (Sumner et al.. 
2002, 2003a, 2003b). The displacement of the IHC cilia, u(t), as a function of BM 
velocity, v(t), is given by 



τ c
du(t)

dt
+ u(t) = τ cCciliav(t) 

where Ccilia is a gain factor and τc is a time constant. The cilia displacement causes a 
change in the in the apical conductance G(u). The total apical conductance is given 
by:  
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where Gcilia
max is the transduction conductance with all channels open, and Ga is the 

passive conductance in the apical membrane. s0, u0, s1 and u1 are constants 
determining the exact shape of the non-linearity. The membrane potential of the cell 
body is modeled with a passive electrical circuit analog: 

Cm
dV (t)

dt
+ G(u) V(t) − Et( )+ Gk V (t) − Ek

'( )= 0 

where V(t) is the intracellular hair cell potential; Cm is the cell capacitance; Gk is the 
voltage-invariant basolateral membrane conductance; Et is the endocochlear potential; 
and Ek’=Ek + EtRp/(Rt+Rp) is the reversal potential of the basal current Ek  corrected 
for the resistance (Rt,Rp)of the supporting cells. 



 

Et, endocochlear potential (V) 100e-3 

Ek, potassium reversal potential (V) -70.45e-3 

G0, resting conductance (S= Siemens) 1.974e-9 

Gk, potassium conductance (S) 18e-9 

Ek correction, Rp/(Rt+Rp) 0.04 

Gcilia
max, max. mechanical conductance (S) 8e-9 

s0,  displacement sensitivity (m-1) 85e-9 

u0, displacement offset (m) 7e-9 

s1, displacement sensitivity (m-1) 5e-7 

u1, displacement offset (m) 7e-9 

Cm, total capacitance (F) 15e-12  (6e-12) 

τc   cilia/BM time constant (s). 2.13e-4 (2.13e-3) 

Ccilia, cilia/BM coupling gain (dB) 0 (16) 

Table 3 IHC receptor potential. Values in brackets show original published values. 

 

D. Calcium controlled transmitter release function 
Depolarisation of the IHC membrane leads to an increase in the Calcium current (Ica): 

( )CaICaCa EtVtmGtI
Ca

−= )()()( 3max  

where ECa is the reversal potential for calcium and GCa
max is the calcium conductance 

in the vicinity of the synapse, with all the channels open. mIca(t) is the fraction of 
calcium channels that are open. The steady state value of the latter, mIca,∞, is modeled 
by a Boltzmann function,  
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∞ += tVm CaCaICa
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where βCa and γCa  are constants chosen to reflect published observations of calcium 
currents (see Table II), and mIca(t) is a low pass filtered function of mIca,∞ 
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where τIca is a time constant. 

Calcium concentration [Ca2+](t) is modeled as a first-order low-pass filtered function 
of calcium current, ICa(t):. 
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where τ[Ca] is a time constant. 

The probability of the release of transmitter is proportional to the cube of Ca2+ 
concentration:  

( )0,)][)(]([max)( 3232 zCatCatk thr
++ −=  

where [Ca2+]thr is a threshold constant, z is a scalar for converting calcium 
concentration levels into release rate. 

z, scalar (s*[Ca2+]3)-1) 20e31 

ECa, reversal potential (V) 0.066 

βCa
 400 

γCa
 130 

τm,,  calcium current time constant (s) 1e-4 

τCa, calcium diffusion time constant (s) 1e-4 

GCa
max , max. Ca2+conductance (nS) 8e-9 

[Ca2+]thr (x10-11), threshold Ca2+ conc. 4.48e-11 

Table 4 Parameters for control of calcium levels. 

 

E. Quantal and probabilistic model of synaptic adaptation 
More detailed accounts of this process in a non-stochastic form can be found in 
Meddis (1986, 1988), Meddis et al. (1990) and Hewitt and Meddis (1991). The 
transmitter release rate, k(t), drives a quantal model of synaptic adaptation that 
simulates the functional characteristics of adaptation, which are assumed here to be 
due to pre-synaptic transmitter depletion and is described by the following equations: 
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Individual vesicles of neurotransmitter (probably glutamate), are released from an 
immediate pre-synaptic (q) store into the cleft (c), at a rate, k(t), that is dependent on 
calcium concentration. In the cleft, the transmitter disperses and some is lost from the 
system at a rate l. The remaining transmitter in the cleft is taken back into the cell into 
a reprocessing (w) store at a rate r. Here it is repackaged into vesicles that are 
returned to the immediate store at a rate x. Additionally, q is continuously replenished 



with new transmitter vesicles at a rate, y[M-q(t)] where M represents the maximum 
number of transmitter quanta that can be held in the immediate store (q). 

Neurotransmitter in the immediate store is quantal, and enters and leaves 
stochastically. The stochastic transport of neurotransmitter is described by the 
function N(n,ρ), in which each of n quanta has an equal probability of release, ρdt, in 
a single simulation epoch. In the cleft and reprocessing stores, transmitter is a 
continuous quantity. This means, for instance, that the contents of the reprocessing 
store must be an integer number greater than or equal to one for a transmitter quantum 
to be eligible to re-join the immediate store. The output from the synapse is a stream 
of discrete events indicating vesicle releases, N(q(t),k(t)).  

 
y, replenishment rate (s-1) 10 

l, loss rate (s-1) 2580 

x, reprocessing rate (s-1) 90 (66.3) 

r, recovery rate (s-1) 6580 

M, max. free transmitter quanta 10 

Table 5. IHC transmitter release parameters. Value in brackets is the previously published value. 

Initial values are found as follows: 
c(0)= k(0)*y*m/(y*(l+r)+k(0)*l) 
q(0)= c(0)*(l+r)/k(0) 
w(0)=c(0)*r/x 
 

F. Auditory nerve response 
15 auditory nerve fibers were used.  The number of fibers firing in any given epoch 
was determined using a binomial distribution in association with random numbers.  A 
refractory effect lasting 0.75 msec was applied. The width of each spike was 0.5 msec 
and it height was 9 arbitrary units. 
 

G. Sustained chopper model 
This model is based on MacGregor’s (1987) point neuron model. It consists of two 
stages; input at the dendrites and spike generation at the soma. The dendritic input 
stage applies a first-order low pass filter (3 dB cut-off at 300 Hz) to the train of input 
spikes to produce a representation of input current, I(t) to the soma. 
 
The trans-membrane potential at the soma is represented as a deviation from resting 
potential, Er, and tracked using the equation: 
 
dE(t)/dt= (-E(t) +{[I(t)/G] + Gk(t)/G[Ek-E(t)]}/)τm 
 
where τm is the membrane time constant, Ek is the potassium reversal potential 
(relative to Er) and Gk(t) is the cell potassium conductance: 
 
dGk(t)/dt= [-Gk(t)+(b.s)]/ τGk 



 
where τGk is the potassium time constant, b is the increase in Gk following an action 
potential indicated when s=1. An action potential is initiated when the membrane 
potential exceeds a threshold E(t)>Th0. The threshold was fixed throughout. 
 
 Membrane time constant τm (s) 5e-4 
 Potassium recovery time constant τ(Gk) (s) variable
 Increment in Gk on firing b  0.1 
 Resting threshold Th0 (mV)  1.6 
 Potassium reversal potential Ek (mV) -10 

Table 6. MacGregor point neuron parameters. 
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