

AMS Tutorials (2.3)

(Auditory Modelling System)

Ray Meddis
Lowel P. O'Mard

Centre for the Neural Basis of Hearing
Department of Psychology
University of Essex
Colchester
Essex, UK
CO4 3SQ

12/11/2003 1 AMSTutorials.doc

1 First steps with Auditory Modelling system (AMS)
This tutorial describes AMS and how to use it. It is divided into two sections:

• a formal description of AMS (sections to)
• worked examples using auditory models(sections to)

The tutorial assumes that

• AMS has already been installed.
• You currently have a folder at the top level C:\DSAM containing all relevant

folders and resources.
If you have located the DSAM folder elsewhere, you will need to take care when
interpreting path names in what follows.

The tutorial materials are all found in C:\DSAM\AMS\tutorials. Copy this folder to
your normal workspace. Do not work inside the DSAM workspace.

You may find it helpful to create a shortcut to AMS.exe and place it on your desktop.
You will find it in C:\DSAM\AMS. The phrase 'launch AMS' can then be interpreted
as 'double click on the AMS shortcut'.

1.1 Getting started
Launch AMS by double-clicking on the desktop icon 'Shortcut to AMS.exe'.

The program should now display a window with a blue title bar containing pull-down
menus and a 'GO' button. We call this window the 'AMS window'. You can resize the
AMS window by dragging on the corners in the usual way. The current simulation is
named in the title bar of the AMS window.

Do not click on 'GO'. If you do, AMS will run the program that was most recently
loaded (or a default program set by the installer). This could give you a long wait or
other complications.

1.1.1 Load the model
• In the AMS window, select the 'File' pull-down menu and select 'Load script

file (*.sim)'
• Navigate to the Tutorial folder. (You should have your own copy in your

workspace).
• In the Autocorrelation folder, select the acf.sim file and click on 'Open'.

AMS will now load the acf.sim file. Nothing will happen until you click on GO.

This operation should be trouble free if you have been given the correct files.
However, if there are problems (such as missing files or incorrectly prepared .par
files), these will be reported immediately in the AMS window.

1.1.2 Go!
• Click on 'GO'

12/11/2003 2 AMSTutorials.doc

Your screen should fill with display windows showing the results of the various
stages of the model computations. A detailed description of these will be given in
section 5.

Your screen should look something like this.

igure 1. Sample screen display for acf.sim

1.1.3 Stop!
king too long, select the AMS window and type CTRL/c. It might

 this does not work, kill the program by invoking the windows 'Task Manager' and

 the program locks up (nobody is perfect!), you should use the Task Manager to kill

1.1.4 Quit.
ow is open but the program is not running, you can quit the program

1.1.5 Re-launching AMS
ould start with the model most-recently loaded.

1.2 Trouble shooting.
tage. If there are problems at this stage, repeat the

F

If a program is ta
work! PCs are getting better at interrupting programs but are still not perfect.

If
'ending' the AMS process. You can find the Task Manager by right-clicking on the
taskbar (normally the bar at the bottom of the screen).

If
it.

If the AMS wind
using the File menu; select File->Quit from the AMS window.

When you next launch AMS, it sh
This assumes that you quit your last session in an orderly way (by selecting 'Quit'
from the File menu.

Nothing should go wrong at this s
whole installation process from the beginning.

12/11/2003 3 AMSTutorials.doc

If that does not work, email lowel@essex.ac.uk or email rmeddis@essex.ac.uk.

1.2.1 Simple things that can go wrong.
on file from the one expected. To

• .par file has some comments that do not have comment marks (#). If these are

• Case sensitivity sometimes arises, for example with stimulus file names.

• A file required by AMS might be in use by another application. Close the

2 About AMS

2.1 A shared resource
 may well be appropriate here. The DSAM

ll part

2.2 Organic nature
sly and consists of a fixed library of tried and tested

re

n

• AMS may be looking at a different simulati
be absolutely sure, load the file explicitly using File->Load Script file (*.sim).
This is particularly a problem if you have been using .spf files. These can look
very similar to the corresponding .sim file. If you change a .sim file and it has
no effect, this probably means that you are running the .spf file!

missing, AMS will try to read the comments and become confused.

Mostly, however, AMS is not case sensitive.

application or otherwise release the file.

A note on the philosophy of AMS
(Development System for Auditory Modelling) and the AMS application are a
of an auditory community-wide project. While it is hosted by the CNBH (Centre for
Neural Basis of Hearing), DSAM has been designed as a platform for common use.
Anyone can contribute modules to the core routine library as long as they are willing
to adopt the conventions of DSAM code. A software tool is available that generates
the basic code for routines. A separate tutorial will soon be available for users who
wish to incorporate C-code routines into the DSAM system. Alternatively, users can
make suggestions for modules that might be included or directions that might be
explored. Indeed, active users have suggested all of the modules presently in use.

DSAM is growing continuou
routines with a minority of routines that are still in development. Some routines a
very stable, a minority are still being debated and moulded to suit the needs of users.
At any given time, both a stable and a BETA version of the system are available. The
stable is relatively problem free and is supported by the manual. The beta version
includes the latest improvements and extensions with no guarantee that they have
been thoroughly tested; BETA versions will have undergone functional testing,
however it is never possible to know the behaviour of the system in every foreig
situation.

12/11/2003 4 AMSTutorials.doc

This software is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

Please bear the above in mind. We are not a commercial concern, though effort is
made to present as professional a package as possible. This software is a shared effort.
If you are having difficulty, get in touch and we shall try to help. If you have a
comment or suggestion, let us have it. If we can use it, we shall.

Documentation is a nightmare for us. Not only is it time-consuming to produce, it is
also rapidly out-dated by the continual developments that are taking place. The
authors are also scientists and science has first priority, so the documentation is
always lagging behind. The very best way to find out about DSAM and to learn its
subtle ways is to visit Essex University and spend a day or two with us. You will be
made very welcome. This is how most serious users got started.

2.3 Levels of user
Low level. Originally, all users were C-savvy programmers who borrowed or
cannibalised C-code from the core-routines library.

High level. For some purposes, complete models have been prepared for end-users
who did not wish to become involved in the detailed process of constructing models.
Discuss your requirements with us, if you fall into this category.

Flexible modellers. Currently, our emphasis is on providing a system that allows users
to build up models from fixed but flexible building blocks. This is AMS (the Auditory
Modelling System). The rest of this document is aimed at flexible modellers. . Many
different models can be produced. The flexible modeller can combine an AMS model
with MATLAB or UNIX programming.

2.4 Free to University users
University researchers engaged on purely scientific studies can download and use this
software freely. They are also welcome to consult the authors for help when required.

The software is not free to commercial users or users engaged on commercial
contracts. We expect such users to contact us to discuss their requirements and any
applicable charges.

3 Understanding AMS files (.sim, .par and .spf)
AMS is an application that allows the user to build auditory models using a simple
scripting language. The script that defines a model is contained in a text file called a
simulation file or a '.sim' file. The simulation file specifies a list of modules and
specifies the order in which they are to be run.

Each module name may be accompanied by the name of a parameter or '.par' file.
Parameter files are text files that specify the value of the parameters used in the
accompanying module. If no parameter file is specified, AMS will supply default

12/11/2003 5 AMSTutorials.doc

parameters. Parameters can also be set and changed while AMS is running.
Parameter files merely specify the parameter values at start-up.

Parameter and simulation files are created and modified using the text editor of your
choice.

There is another kind of file called a 'simulation parameter file (or '.spf' file). AMS
itself normally creates this file. It is a text file that can be edited in a text editor. It is
a complete description of a simulation in a single file. It incorporates both simulation
and parameter file specifications.

Examples of many simulation and parameter files can be found in the folders that
accompany these tutorial notes.

3.1.1 Overview and example of .sim and .par files
Here is a simple but complete and viable simulation file. It requests AMS to generate
a click and show it in a display window.

generateClick.sim
begin {
Stimulus generation
 Stim_Click < stimClick1.par
 Display_Signal
 }

The important part lies between the left and right curly brackets. It consists of the
names of two process modules; Stim_Click and Display_Signal. A parameter file is
specified for the click generation module; stimClick1.par.

Stim_Click < stimClick1.par

TIME 0.001 Time for the delta-function click (s).
AMPLITUDE 40 Amplitude (uPa).
DURATION 0.01 Duration (s).
DT 1e-05 Sampling interval, dt (s).

This parameter file requests a 40 µPa click after 1 msec in a total stimulus whose
duration is 10 msec. The sample rate of the model is 100 kHz and the width of the
click is a single sample (10 µsec).

3.2 The .sim file

3.2.1 Simulation file structure
This section gives a formal statement of the structure of a simulation file. You can
skip this on first reading but it may prove useful later as a source of reference.

The simulation file is made up of a series of separate lines:
• Continuation across successive lines is not permitted.
• Blank lines are ignored.

12/11/2003 6 AMSTutorials.doc

• Lines in the file beginning with a '#' symbol are ignored by DSAM. These lines
are used for comments.

• Anything occurring after the final curly bracket is ignored.

3.2.2 Header.
Scripts can begin with optional header information consisting of two parameters. The
parameter name is the first item on each (optional) line, for example:

Diag_mode on Diagnostics mode - \off\ or \on\
Par_file_path_mode relative Parameter file path mode -
\relative\ or \absolute\

Diagnostics mode: on/off. . This instructs AMS whether or not to show run-time
diagnostics in the AMS window. There are two possible values: 'off' and 'on'. This
default setting is 'off'.

Parameter file path mode: relative/absolute. Parameter file paths are either relative to
the folder containing the .sim file location or absolute. The default setting is 'relative'.

If a line is not added for either parameter, then the respective default settings will be
used.

3.2.3 Process statements.
All process statements must lie inside the curly brackets of a begin { } sequence.
Everything after the curly brackets is ignored.

Each line within the curly brackets must obey the following syntax

<switch> <label%> process name <path indicators> <parameter file name>

3.2.3.1 Switch.
An '@' can be used to switch off a module. This module can be enabled at run time, if
required, using the edit\ simulation parameters window. To enable the module, open
this window and find the module name in the list. It should have a'@' character
beside it. Remove the '@' sign by double-clicking on the module name. It may be
necessary to single click first (to open the parameter window) and then double click
on the module name, this is a bug in the system.)

3.2.3.2 Labels
Labels are useful when a line will be referenced from elsewhere; for example in a path
indicator or from a MATLAB program.

• Labels are optional.
• All labels consist of an ASCII string terminated with a '%'.
• The string may not contain a space.

12/11/2003 7 AMSTutorials.doc

3.2.3.3 Process names.
A list of process names can be found in the manual (help files) accessed from the
AMS window: Help-> DSAM Help->Process modules reference library.

A process can, itself be a simulation (Util_SimScript). If this happens, the named
simulation file is run at this point.

3.2.3.4 Path indicators
These define the source of the input to the process and the destination of the output.

The syntax of a path indicator is:
 (input list -> output list)

• Path indicators follow immediately after the process name
• Path indicators are optional. If none is given, defaults are used

o The default input to a process comes from the preceding process.
o The output goes by default to the following process.

• The input list and the output list consist exclusively of labels defined
elsewhere in the script. The % label indicator is omitted inside a list.

• If a line contains a path indicator, it must also have a label

For example:
acc% accumulate (a, b -> c, d)

This shows that the accumulate process will take its input from the two processes
labelled a and b. The output will go to processes labelled c and d. The output will not
go to the following process.

3.2.3.5 Parameter file names
These are preceded by a '<' character. Parameter files are optional. If they are not
present, AMS supplies default parameters. The default parameters can be found in the
manual (help files).

• The parameter file name is, in fact, the address of the parameter file.

• If the Parameter file path mode is set to 'absolute', this will be taken to
represent the full file path.

• If the Parameter file path mode is set to 'relative', this will be taken to

represent the file path starting with the location of the simulation file.

3.2.4 Repeat loops
A repeat loop can be placed anywhere within a begin {...} group.

repeat N {

12/11/2003 8 AMSTutorials.doc

 }

A group of process statements inside the curly brackets of a repeat loop will be
computed N times, where N must be a positive integer.

Some process modules accumulate results (for example, ANA-histogram) inside a
repeat loop unless actively reset. To reset a module use the reset command. For
example

repeat 20 {

...
reset myHist
myHist% Ana_Histogram <myHistogram.par
 }

3.2.5 Editing .sim files
Changes can be made to .sim and .par files using a text editor. When a change is
made (and the new text saved), it is necessary to reload the files into AMS because
AMS cannot see that you have edited the files.

• Reload using the AMS window File menu 'File->Reload simulation file'.

3.3 Parameter files
The .par files contain parameters that are used by their calling process.

Each process requires its own unique set of parameters. A list of parameters can be
found in the manual (help files) associated with its respective process. A list of
process names and their parameters can be found in the manual (help files) in Help\
DSAM Help\ Process modules reference library.

Parameter files are optional. If no file is specified, the default parameters will be
used. If a parameter file contains less than the full set of parameters, the missing
parameters will be assigned default values. The values associated with the parameters
in the manual are the default values.

A parameter file consists of a list of parameter name\value pairs; one pair per line.

• The parameter name is the first item on each line
• The parameter value is the second item on each line
• All subsequent material on the line will be ignored.
• Blank lines are ignored.
• All characters following the comment character '#' character will be

ignored.

3.3.1 Changing parameters
Permanent changes. Change parameters by editing .par files using a text editor.
When a change is made (and the new text saved), it is necessary to reload the files
into AMS because AMS cannot see that you have edited the files.

12/11/2003 9 AMSTutorials.doc

• Reload using the AMS window File menu 'File->Reload simulation file'.

Temporary changes. Parameters can also be changed temporarily while AMS is open
by using the parameter windows.

• Select 'Edit->Simulation parameters' from the AMS pull-down menus. This
will open another window listing all the processes. Select a process by
clicking on its name.

• When the parameter window for a given process is open, you can select and
change any visible parameter. These changes will remain in force until the
end of the session when they will be forgotten unless they are saved in a .spf
file.

• It is not necessary to close the parameter window before running the program
again. Just click on 'GO'.

• Parameters affecting displays can be changed in the same way. However, they
can also be changed by right-clicking on the display and selecting
'preferences'. If you change the parameters in this way, you must close the
parameter window before attempting any other action. The display will be
changed without the need to rerun the program

3.4 .spf files
A simulation parameter file (.spf file) describes the complete model and all its
parameters in a single file.

Its advantages include

• Compact and easily transportable.
• Gives a complete specification of the model including the process sequence

and all parameters.
• It shows full process names including its label.

Its disadvantages include

• It is not easy to add new process modules to a model described by a .spf file.

3.4.1 Creating .spf files
• Run AMS
• Load the model of choice using the .sim file
• Select the option 'Save simulation pars' from the AMS window File menu.
• Name it. The file name must have the file extension '.spf'.
• Save it.

The .spf file is a text file that can be inspected using any text editor.

AMS is able to run the model using this file alone. To run a model using a .spf file,
use the 'File' pull-down menu on the AMS window and select 'Load parameter file'.
In some circumstances, this is the preferred mode of operation (only one file needed).
It is particularly useful when you wish to share a model with a colleague who has no
desire to manage or to delve into a whole collection of separate files.

12/11/2003 10 AMSTutorials.doc

After making temporary changes to parameters using the parameter windows in AMS,
you may wish to preserve the changes. The best way is to immediately save the
simulation parameters as an .spf file with its own name. You still have the original
parameters in the .sim and .par files. These are unaffected by saving an .spf file.

Warning! If you save an .spf file, AMS will assume that this is now your current file
and will store this assumption when you quit. When launching AMS at a later date,
the system will automatically load the last file in use. If you saved a .spf file, AMS
will automatically reload the .spf file. If you really want the original .sim file, you
must reload it explicitly. This can be a trap for the unwary. If you find that changes
to your .par files are not having any effect, this may be because the system is reading
your most recent .spf file.

3.4.2 Example of simulation specification file
This ,spf file is based on the example given in 3.1.1.

 ##--------------- Simulation script ----------------------##
 DIAG_MODE ON Diagnostics operation mode
 PAR_FILE_PATH_MODE "RELATIVE" Parameter file path mode

 begin {
 Stim_Click < stimClick1.par
 Display_Signal
 }

 ##----- Stim_Click.0 (stimClick1.par) -----##
 TIME.Stim_Click.0 0.001 Time for the delta-function click
 AMPLITUDE.Stim_Click.0 40 Amplitude (uPa).
 DURATION.Stim_Click.0 0.01 Duration (s).
 DT.Stim_Click.0 1e-005 Sampling interval, dt (s).

 ##----- Display_Signal.1 (not_set) -----##
 MAGNIFICATION.Display_Signal.1 1 Signal magnification.
 NORMALISATION.Display_Signal.1 "MIDDLE"
 CHANNEL_STEP.Display_Signal.1 1 Channel stepping mode.
 NUMGREYSCALES.Display_Signal.1 10 Number of grey scales.
 X_RESOLUTION.Display_Signal.1 0.01 Resolution of X scale
 WIDTH.Display_Signal.1 -1 Displayed signal width
 Y_AXIS_TITLE.Display_Signal.1 "" Y-axis title.
 Y_AXIS_MODE.Display_Signal.1 "CHANNEL" Y-axis mode
 AUTO_SCALING.Display_Signal.1 ON Automatic scaling ('on' or 'off').
 AUTO_Y_SCALE.Display_Signal.1 ON Automatic y-axis scale
 MAXY.Display_Signal.1 0 Maximum Y value
 MINY.Display_Signal.1 0 Minimum Y Value
 Y_NUMBER_FORMAT.Display_Signal.1 "y" Y axis scale number
 Y_DEC_PLACES.Display_Signal.1 0 Y axis scale decimal places.
 Y_TICKS.Display_Signal.1 15 Y axis tick marks.
 Y_INSET_SCALE.Display_Signal.1 ON Y inset scale mode
 X_AXIS_TITLE.Display_Signal.1 "" X axis title.
 AUTO_X_SCALE.Display_Signal.1 ON Autoscale option for x-axis
 X_NUMBER_FORMAT.Display_Signal.1 "xe-3" X axis scale number
 X_DEC_PLACES.Display_Signal.1 0 X axis scale decimal places.
 X_TICKS.Display_Signal.1 6 X axis tick marks.
 X_OFFSET.Display_Signal.1 0 X offset for display in zoom mode
 X_EXTENT.Display_Signal.1 -1 X extent for display in zoom mode
 WIN_TITLE.Display_Signal.1 "Display_Signal.1" Display window title.
 MODE.Display_Signal.1 "LINE" Display mode
 SUMMARYDISPLAY.Display_Signal.1 OFF Summary display mode
 FRAMEDELAY.Display_Signal.1 0 Delay between display frames (s)
 TOPMARGIN.Display_Signal.1 5 Top margin for display
 WIN_HEIGHT.Display_Signal.1 500 Display frame height
 WIN_WIDTH.Display_Signal.1 440 Display frame width (pixel units).
 WIN_X_POS.Display_Signal.1 0 Display frame X position
 WIN_Y_POS.Display_Signal.1 0 Display frame Y position

<<>> Simulation parameter file divider.

12/11/2003 11 AMSTutorials.doc

 DIAG_MODE.ams.0 "OFF" Diagnostics mode specifier
 SIM_FILE.ams.0 "C:\Program Files\DSAM\AMS\resDvlpt\tutorials
\generateStimulus\generateClick.sim" Simulation file.
 SEGMENT_MODE.ams.0 ON Segmented or frame-base processing
 # Sub-parameter list:
 FILELOCKING_MODE.ams.0 OFF File locking mode ('on' or 'off').
 NUM_RUNS.ams.0 1 Number of repeat runs

3.5 Running a simulation
The files described above are located in a folder
'Tutorials\GenerateStimulus'

You can run this program in the following way

1. Launch AMS. The AMS window will appear on the screen.
2. Select from the pulldown menus- File -> Load script file (*.sim)...
3. Open file 'generateClick.sim'
4. Click on 'GO'
5. You should then see the display screen below.

You can change the parameters while AMS is running. In the followiing example we
shall change the time of occurrence of the click from 1 to 5 msec.

1. Select from the pulldown menus- File -> edit\ simulation parameters. You should
see a display like this

12/11/2003 12 AMSTutorials.doc

2. Click on the process Stim_Click. This should produce a display like this

3. Change the click time (TIME) from .001 to .005.

1. Click on 'GO' in the AMS window. The click in the display should move to
the later time.

12/11/2003 13 AMSTutorials.doc

4 Using AMS with MATLAB
***** new section on runDSAMsim*********

Use the folder MATLABrunDSAMsim for the programs and models described below.

A special MATLAB call (RunDSAMSim) allows you to control AMS from
MATLAB.

This function is stored in c:\dsam\matlab. If you want to use it you should include
this folder in your MATLAB list of paths using ‘setpath’.

The help file for runDSAM sim is as follows

>> help RunDSAMSim

 RunDSAMSim:

 [data, info] = RunDSAMSim(<sim file>, [<parameter settings>, [<diag. mode>,...
 [<signal>, [<signal info.>]]]])

 <sim file> Simulation file name (string).
 <parameter settings> Parameter '<name> <value> ...' pairs (string).
 <diag. mode> Diagnostic mode 'screen', 'off' or '<file name>'.
 <signal> Data signal ([chan, samples] real matrix).
 <signal info.> Signal information (structure).

Example
The simplest way of running an AMS file is to set the MATLAB path to the folder
containing the .sim file and then call RunDSAMSim

>> cd myFolder
>> [data, info] = RunDSAMSim('mySimFile.sim');

MATLAB will then run the AMS model specified in my ‘simFile.sim’. The result of
the AMS run is stored in ‘data’ and details of the model are stored in the cell array
‘info’. The result of the AMS run is the state of the model after the execution of the
final module. Typically this will be a two-dimensional matrix of BF against time but
other possibilities exist.

Notes

1. You can specify either a .sim file or a .spf file
2. Any calls in the .sim file to Display_Signal will be ignored. RunDSAMSim

uses a special form of AMS called ‘ams_ng’. ‘ng’ stands for ‘no graphics’.
3. It is not necessary to write any data to file using the ‘dataFile_out’ module.

However, if you do write to files, these will be available for reading as soon as
computation is complete. A routine to help read files into MATLAB is
described below.

Trouble shooting

1. Does your current directory contain the .sim file you are referring to?

12/11/2003 14 AMSTutorials.doc

2. Does your .sim file work independently of MATLAB? To check this, load up
AMS and call the .sim file directly. If it does not work with AMS, it will not
work with MATLAB!

3. Is c:\dsam\matlab on your MATLAB filepath?
4. Was RunDSMSim properly installed? ‘C:\DSAM\Matlab’ should contain a

file called ‘RunDSAMSim.dll’.
5. Was ‘ams_ng.exe’ installed as an executable file? It should be found in

c:\dsam\ams .

4.1 Example Program
The following example shows how MATLAB can pass a signal directly to AMS, run
a model and collect the results directly without writing any data to file.

The sim file is

gammatoneDemo.sim

diag_mode on

begin {

stimulus will be supplied by MATLAB calling program

Outer-/middler-ear filter model.
 Filt_MultiBPass < filtMultiBandpassGP.par

#convert to stapes velocity
 Util_mathOp < mathOpStapes.par

Basilar membrane filter model.
gammaT% BM_gammaT < BM_gammatone.par

Result will be collected directly by the MATLAB calling program

 }

This model applies a bandpass filter (to simulate the onuter-middle ear), a scalar (to
convert the pressure to stapes velocity and a set of gammatone filters.

The MATLAB program prepares the stimulus, passes it to AMS using the
runDSAMsim function and then collects the output in the info.data vector.

function matlabDemoRunDSAMsim
% matlabDemo is a skeleton script for running a modle using AMS_ng

% Set the directory to the location of the .sim file
% If the file is not in the current directory, specify the full file path
simFilePath= 'gammatoneDemo.sim';

% Specify any parameters to be changed.
% This is a single continuous string of pairs of parameters:
% <name> <value> <name> <value> etc.
% To find the correct form of each parameter name, create a .spf file from
% the .sim file
lowestBF=1000; % Hz
highestBF=1500; % Hz
numChannels= 2; % #

pars=[...

12/11/2003 15 AMSTutorials.doc

 ' MIN_CF.BM_gammaT.gammaT ' num2str(lowestBF) ...
 ' MAX_CF.BM_gammaT.gammaT ' num2str(highestBF) ...
 ' CHANNELS.BM_gammaT.gammaT ' num2str(numChannels) ...
];

% Specify diagnostic mode
diagMode='ON';

% Create the input signal
frequency=1000; % Hz
duration= 0.1; % s
sampleRate=100000; % Hz
dt=1/sampleRate;
t=dt:dt:duration; % NB first time is dt (not 0).
signal= sin(2*pi*frequency*t);

plot(t, signal)

% Store details for AMS
info.dt=dt;
info.length=length(signal)

% Now run AMS
[data info]=runDSAMsim (simFilePath, pars, 'ON', signal, info);

info
plot(t, data)

The program is mainly self explanatory but some points are worth noting.

1. runDSAMsim allows you to change individual parameters in the model. The
changes are coded into a string consisting of successive pair of strings
separated by spaces. Each pair consists of the name of the parameter to be
changes and the new value. The name can be found by inspecting the
corresponding .spf file for the model.

2. The name can change between sessions if the .sim file is altered. To prevent
this, make sure that a module has a label if it is intended to change one of its
parameters. In the example, the module BM_gammaT contains parameters to
be changed. For this reason a label gammaT% is given to the module. The
parameter names are have the affix gammaT% and the name will not change
even if new modules are added at a later date.

3. Take care to use the correct and full name of the variables and have spaces
between each string. The following layout is useful for keeping track of what
is happening, especially if there are many parameters to be changed.

pars=[...
 ' MIN_CF.BM_gammaT.gammaT ' num2str(lowestBF) ...
 ' MAX_CF.BM_gammaT.gammaT ' num2str(highestBF) ...
 ' CHANNELS.BM_gammaT.gammaT ' num2str(numChannels) ...
];

4. The signal is a one dimensional vector of values for a mono signal. AMS

needs to know the length of the vector and dt, the time interval between
samples. This information is placed in info;

info.dt=dt;
info.length=length(signal)

5. All of this information is used in the runDSAMsim call. The string ‘ON’

specifies that the model is run in diagnostic mode (recommended).

[data info]=runDSAMsim (simFilePath, pars, 'ON', signal, info);

12/11/2003 16 AMSTutorials.doc

6. The output from the model is stored in data. The sampling interval is returned
in info.dt. info.labels gives the channel centre frequencies.

[data info]=runDSAMsim (simFilePath, pars, 'ON', signal, info);

The output from the program consists of two superimposed waveforms; one large and
one small (the output from the two filters).

4.2 Reading .dat files
The .sim file can request files to be written using dataFile_Out. If you intend to read
these into MATLAB, they should be specified as text files with names ***.dat.

readDatFile is a routine that can be used to read most text files generated by AMS. A
copy of this program is given in the folder.

[results, column1Values, columnHeadingsValues, errorMsg]=readDatFile(datFileName)

The routine reads a .dat file and decomposes it into

Results the values in the body of the matrix
Column1Values the values in column (normally time)
columnHeadingValues the values in the first row of the .dat file (normally channel best

frequencies)
errorMsg empty or bad news

12/11/2003 17 AMSTutorials.doc

5 File input/output in AMS
AMS uses the processes DataFile_In and DataFile_Out to handles files.

5.1 File types
The file types that can be used are identified by their file extension

• .DAT ASCII files produced by and readable by a text editor. Values are
successive values of a waveform. For binaural signals, pairs of values are
used.

• .WAV signal files using the .wav format and having values between +1 and –
1. MATLAB is a useful source of .wav files

• .AIF signal files using the AIFF format. These files preserve the absolute
value of the signal. Unfortunately, MATLAB does not create or read this type
of file. (A ReadAIFF.m MATLAB is part of the AMS installation. It can be
found in the C:\DSAM\AMS\Matlab directory with its supporting files. The
directory can be added to your matlab path.)

• .raw binary files.

5.2 Parameters
The parameter files for DataFile_In and DataFile_Out have the same format. There
are nine parameters. Not all are required all of the time. For example, when using
DataFile_Out it is possible to omit the parameter file altogether (if you are happy
with the default file name output.dat)

FILENAME Make sure that the filename extension is included. This must

be one of the above types. (default 'output.dat'). AMS assumes
that the file to be read is in the same folder as the .sim (or .spf)
file. If it is somewhere else, the full filepath must be specified.

GAIN This gain will be applied to the values read in; (default 0).

Setting the gain can be tricky and is described in more detail
below.

STARTTIME To ignore the initial part of the signal, use this parameter to

specify how much to ignore; (default 0).

DURATION Specifies how much of the signal is to be used. A value of –1

indicates that the signal is to be used to its end; (default –1).
DURATION has a special meaning in SEGMENT mode
(section 5.4 below).

SAMPLERATE If the file contains its own sample rate (e.g. .wav and .aif), this

parameter is ignored. For .dat and .raw, this value should be set;
(default 8000).

CHANNELS Distinguishes monaural (value 1) from binaural (value 2). This

parameter is ignored when using .wav and .aif files; (default 1).

12/11/2003 18 AMSTutorials.doc

WORDSIZE Number of words to be used for each point in the waveform;

(default 2). Used only for binary files.

ENDIAN_MODE Values are BIG, BIG_UNSIGNED, LITTLE,

LITTLE_UNSIGNED and DEFAULT. This parameter is used
when transferring files from computers with different operating
systems (e.g. Mac to IBM PC). If a file cannot be read using the
default, try all the others in turn and hope for the best!

NORM_MODE Applies a correction factor. Used only for binary files.

AMS output files can be used for reinput to AMS. If the aim is to stage the AMS
analysis by producing an output file to be used for restarting the process at a later
date, a .aif file type should be used as this preserves all aspects of the signal used by
AMS.

5.3 File input
Any of the above file types can be used for reading in a new signal that has been
produced using other software such as audio capture software or user programs.

5.3.1 Text or ASCII files

When signals at input using text or ASCII files, you should observe the following
rules:

• It must have the file extension ‘.dat’
• Make sure that this is a genuine text file (not a word-processed file)
• The signal values are a column of figures one value wide.
• SAMPLERATE must be set in the .par file (AMS cannot guess this)
• Specify DURATION (AMS will not work this out for you)

5.3.2 Gain setting
This can be a major headache for beginners, so listen up.

AMS assumes that all stimulus input files are given in micro Pascals (µPa). If they
are not in this form, then the GAIN parameter can be used to set matters aright. Most
auditory filter systems are nonlinear in nature and the nonlinearity is applied
differently at different levels. It is important that the level of the signal is specified
correctly.

5.3.3 Gain setting for WAV files
WAV is a common file format use by much audio capture software. All .wav files are
compressed to have values within the limits of +1 to –1. A .wav file contains no

12/11/2003 19 AMSTutorials.doc

information as to the original amplitude of the signal. The user must specify a GAIN
function that will restore a signal to its original intensity. After restoration, the
waveform will be specified in µPa. Choosing an appropriate GAIN function can be
tricky.

When AMS reads a .wav file, it reads the values as if they were between +0.5 and -0.5
µPa . There are complex historical reasons for this. If you forget this (and think that
the AMS sees the input as between +/- 1 µPa) your level will be reduced by 6 dB.

To specify the GAIN you need to specify the peak amplitude in µPa. If you do not
know the peak value, you cannot specify the GAIN. If you do, we can attempt the
necessary calculations. Table 1 may be helpful.

peak level
dB

Peak
mPa

AMS
GAIN

0 28 35
20 283 55
40 2828 75
60 28284 95
80 282843 115

100 2828427 135

Table 1 GAIN to be applied to a .wav file to achieve specified peak amplitudes. This table
assumes that the peak value in the .wav file is +1. Note that the peak value dB will normally be
greater than the rms value in dB SPL.

As a rule of thumb, speech-level sounds should have a gain of around 95 dB to
achieve an rms level between 50 and 60 dB SPL.

If you are creating your own .wav files using MATLAB, make sure that the data are
normalized before using the wavwrite function.

Example 1
Our first example is very simple but illustrates the principles.

Create a .wav file using a pure tone (sinusoid). The wav file will have a peak value of
1. We wish to convert this to a pure tone stimulus at 0 dB SPL.

Solution: A 0 dB pure tone has an rms of 20 microPascals and a peak value of
approximately 28 microPascals (you just have to know that). To convert our .wav file
peak of +1 to 28 we need to apply a scalar of 28. This is equivalent to a gain of

20*log10(28/0.5) = 35 dB.

Remember that AMS sees the .wav file as numbers in the range +0.5 to -0.5 (see
above).

Set the GAIN parameter in the DataFile_In process to 35.

Example 2
Well, actually, I wanted 56 dB SPL.

12/11/2003 20 AMSTutorials.doc

Solution: add 56 to 35 to get the desired GAIN of 91 dB.

Example 3
I don't care about the peak value. I want to set an overall rms value for my wav file
(dBrmsDesired).

Solution: Measure the rms value of the .wav file (dBrmsMyFile).

Remember that AMS sees the .wav file as numbers in the range +0.5 to -0.5 (see
above).

Your required GAIN is

 GAIN= dBrmsDesired – dBrmsMyFile

Example 4
How do I get AMS to measure my rms value? Not all .wav files are properly
normalized – especially those created by user programs in MATLAB(!).

Use the module Ana_Intensity. Create a .sim file like this:

intensity.sim

begin {
 DataFile_In < fileIn.par
 DisplaySignal
 Ana_Intensity
 DataFile_Out
 }

and a .par file (called fileIn.par) like this

DataFile_In < fileIn.par

FILENAME myfile.wav

This program will display the whole wav file and compute its level (rms, re 0 dB
SPL).

The level will appear in a file called ‘output.dat’ in the current directory. Both the left
and right channels are assessed. Only one value is given for monaural signals.

Time (s) 0 1
0.00000e+000 -39.3021 -39.3021

In this case the signal would require a GAIN of 39.3 dB to restore it to a 0 dB SPL
signal and a GAIN of 89.3 to restore it to a 50 dB SPL signal.

This useful little program can be found in the Tutorials\MeasureIntensity folder.

12/11/2003 21 AMSTutorials.doc

5.4 File use in SEGMENT mode
In SEGMENT mode AMS analyses equal-length sections of the input file one at a
time. The parameter DURATION specifies the length of each segment. The analysis
is repeated for each segment of the input file. When a dataFile_Out module is
encountered, the current signal is appended to the output file.

SEGMENT MODE and NUM_RUNS are specified at run time using the AMS
window pull-down menus Edit\Main parameters and the General and Specific tabs
respectively.

If NUM_RUNS is set to -1, AMS will compute the number of segments for you and
reset NUM_RUNS to the appropriate value when you click on ‘GO’.

Example
Compute the rms level of the signal over 5 msec segments for the first 5 segments
using the intensity.sim program given in section 5.3.2 above.

Load intensity.sim
Set DURATION to .005
Set SEGMENT mode ON
Set NUM_RUNS to 5
GO

AMS now computes the intensity of the first five 5-ms segments of the signal. The
output file looks like this

Time (s) 0 1
0.00000e+000 -52.0259 -52.0259
1.00000e+000 -36.2996 -36.2996
2.00000e+000 -52.0259 -52.0259
3.00000e+000 -36.2996 -36.2996
4.00000e+000 -52.0259 -52.0259

12/11/2003 22 AMSTutorials.doc

6 Gammatone filterbank
This model can be found in the folder Tutorials\AuditoryPeriphery. The original
version of this folder can be found in DSAM\AMS\ Tutorials\AuditoryPeriphery. If
you have not already done so, copy this folder into your regular workspace. Please do
not work in the AMS workspace.

Launch AMS and load 'filterbankGammatone.sim'. Hit 'GO'. You should see the
displays shown in Figure 2

Figure 2 Output from filterbankGammatone.sim.

The stimulus display shows a 50-msec, 40-dB SPL, 1-kHz signal, shaped by a 2.5-
msec raised cosine onset and offset ramp. The basilar membrane window shows the
response of a gammatone filterbank consisting of 30 filters with BFs between 100 and
10000 Hz equally spaced on a ERB scale. The bandwidths of the filters are based on a
proposal by Moore and Glasberg (??).

6.1 Simulation file.

filterbankGammatone.sim

begin {

generate stimulus
 stim_pureTone_2 < stimTone.par

Ramps
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displaySignal.par

Outer-/middler-ear filter model.
 Filt_MultiBPass < filtMultiBandpassGP.par

12/11/2003 23 AMSTutorials.doc

#convert to stapes velocity
 Util_mathOp < mathOPstapes.par

Basilar membrane filter model.
 BM_gammaT < BM_gammatone.par
 Display_Signal < displayBM.par
 DataFile_out

 }

The sequence of operations in the simulation file is

• Generation of the stimulus (stim_pureTone_2)
• Application of onset and offset ramps (Trans_Gate).
• Outer\middle ear is simulated using two parallel bandpass filters

(Filt_MultiBPass) and a scalar (Util_mathOp)
• Computation of the gammatone filterbank (BM_gamma_T)
• Writing the result to a file (DataFile_out).

A more detailed account of each stage is given along with the individual parameter
files below.

6.2 processes and parameters

6.2.1 Stimulus generation
The parameter file stimTone.par reads as follows:

stim_pureTone_2 < stimTone.par

frequency 1000 #Hz
intensity 40 #dB SPL
duration .05 #seconds
dt .00001 #100 kHz
begin_silence .025 #seconds
end_silence .025 #seconds

The first line is a comment. It is good practice to paste the calling line from the .sim
file as the first line of the parameter file. This shows the name of the .par file in a
printout and offers a reminder of the name of the calling process. This practice can be
a great help to a third party advising on any problems you may be experiencing.

DURATION is the duration of the pure tone. Silences are additional to the tone. The
total duration is 0.1 s.

DT sets the sample rate for the whole model, including all succeeding processes. DT
will be checked by AMS to make sure that it is small enough to satisfy the
requirements of all filters that appear later in the simulation script.

6.2.2 Ramp on/off
Two parameter files; one for ramping up and one for ramping down.

12/11/2003 24 AMSTutorials.doc

Trans_Gate < rampUp.par

OP_MODE RAMP
POS_MODE RELATIVE
DURATION 2.5E-3

Trans_Gate < rampDown.par

OP_MODE DAMP
POS_MODE RELATIVE
DURATION 2.5E-3

TRANS_GATE is a process that transforms the stimulus by applying a gating
function. It takes a number of parameters but only three key parameters are shown
here. The other parameters are supplied by default.

OP_MODE specifies whether the ramp is up (RAMP) or down (DAMP).

POS_MODE specifies whether the ramp is applied at the beginning of the signal

(ABSOLUTE) or at the onset of the tone (RELATIVE).

DURATION specifies the length of the ramp.

Tip: Ramps must be included when using internally generated signals (except clicks).
A warning will be issued if no ramps are set.

6.2.3 Display signal

Display_Signal < displaySignal.par

WIN_TITLE stimulus

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 0
WIN_Y_POS 0

Y_AXIS_MODE LINEAR
Y_AXIS_TITLE "signal (µPa)"

Display_signal is a very complex function that takes many parameters. Only a few
are required for this display, however.

WIN_TITLE allows the user to specify text in the (blue) band at the top of the
display. If the text requires spaces, it should be given inside double quotes.

WIN_HEIGHT, WIN_WIDTH are specifications in pixel units of the height and
width of the display windows.

WIN_X_POS, WIN_Y_POS specify the location (in pixel units) of the top left hand
corner of the display relative to the screen. (0, 0) specifies the top left of the screen.

12/11/2003 25 AMSTutorials.doc

In general, the location and size of the display will vary with different screen sizes
and different resolutions.

Y_AXIS_MODE defines the meaning of the numbers alongside the y_axis.

CHANNEL defines the numbers as representing the best frequency (BF) of the
individual channels. LINEAR defines the numbers as representing the
numerical value of the function, as in a normal graph. The signal has only one
channel, so LINEAR is the appropriate choice.

Y_AXIS_TITLE specifies the text to be written alongside the y axis. The

X_AXIS_TITLE is not given because the default value for this is 'time', and
that is appropriate for this display.

6.2.4 Outer/middle ear filter
The outer and middle ear attenuate high and low frequency sounds. Here we have
chosen to simulate a guinea pig outer/middle ear function using two parallel bandpass
filter following Sumner et al. (2003)1.

Filt_MultiBPass < filtMultiBandpassGP.par

NUM_FILTERS 2

CASCADE 0:2
ATTENUATION 0:0
LOWER_FREQ 0:4000
UPPER_FREQ 0:25000

CASCADE 1:3
ATTENUATION 1:0
LOWER_FREQ 1:700
UPPER_FREQ 1:30000

The parameter NUM_FILTERS specifies the number of filters. Each filter must be
fully described in terms of its parameters. The notation i:param specifies the
parameter for the ith filter. Filter numbers are sequenced 0,1.. N-1.

Each filter is composed of a cascade of first-order filters where the 3-dB down points
of the first-order filters are specified by the parameters LOW_FREQ and
UPPER_FREQ. The parameter CASCADE specifies the number of cascaded filters.

A cascade of 3 filters, for example, is similar to but not the same thing as a third order
filter. A filter consisting of a cascade of three first-order filters has high and low
frequency skirts with the same slope as a third order filter but the upper and lower cut-
offs will be narrower than those specified in the parameters. In this case the
LOW_FREQ and UPPER_FREQ parameters specify the 9-dB down points of the
filter.

1 In fact, Sumner recommends a cascade of two filters but parallel filters appear to give a better fit to
the animal data.

12/11/2003 26 AMSTutorials.doc

ATTENUATION is the reduction in level between the input and output at BF. It is
specified in dB.

6.2.5 Conversion to stapes velocity

AMS uses realistic physical units whenever possible. The input signal is in micro
Pascals. The next stage requires that the pressure representation be changed to stapes
velocity. The outer/middle ear is linear in operation. Therefore, this can be achieved
by applying a scalar using Util_Mathop. The scalar used is 1.4e-10 following the
suggestion of Sumner et al (2003).

Util_mathOp < mathOPstapes.par
OPERATOR SCALE
OPERAND 1.4E-10

6.2.6 Gammatone filter
The BM_gammaT process computes the gammatone filter output at a number of
different BFs. It is a process with many parameters. A small number of key
parameters are shown in the parameter file.

BM_gammaT < BM_gammatone.par

CHANNELS 20
MIN_CF 100
MAX_CF 10000
CASCADE 4
CF_MODE HUMAN
B_MODE ERB

CHANNELS specifies the number of channels to be used. CHANNELS must be a
positive integer greater than 1 (see 8.1.2.1 below for example of single channel
operation).

MIN_CF and MAX_CF specify the range of CFs to be used.

CASCADE indicates the number of cascaded first-order gammatone filters that are
used to make a single filter. The greater the cascade value, the steeper the slope of the
filter skirts.

CF_MODE refers to the method of spacing the channel CFs. When set to 'HUMAN,
the BFs are equally spaced on a Greenwood scale based on the dimensions of the
human basilar membrane.

B_MODE specifies the method for computing bandwidths. ERB is based on the
formula suggested by Moore and Glasberg
If a single filter is required, set the CF_MODE to 'single' and use the parameter
SINGLE_CF to set its CF.

12/11/2003 27 AMSTutorials.doc

6.2.7 BM display

Display_Signal < displayBM.par

WIN_TITLE "basilar membrane"

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 300
WIN_Y_POS 0

Y_AXIS_MODE CHANNEL
Y_AXIS_TITLE "channel BF (Hz)"

Only new parameters will be explained here. For an explanation of other parameters,
see 6.2.3.

Y_AXIS_MODE is set to 'CHANNEL' to request that channel CFs be identified along
the y-axis. A scale is shown in the bottom left-hand corner of the display to help
interpret the positive and negative deflections of the individual functions. This scale
can be small and may be necessary to maximise the display to read this clearly.

6.2.8 File output
The process DataFile_Out automatically writes the result to a file called, by default,
'output.dat'.

In this case, the output file consists of a matrix with 30 columns (1 for each channel)
and 10000 rows (1 for each time sample). In addition, the first column indicates the
time of each row and the first row indicates the CF of each channel.

Tabs separate the columns. This makes the files suitable for reading directly into
Excel and other spreadsheets.

Tip: If you want to give your output file a different name, use a parameter file with a
single parameter:

 FILENAME myfileName.dat

It is important to use .dat as the file ending if you want to look at the file in a text
editor.

6.3 Things to do

6.3.1 Switch off diagnostics
When you are happy that the model is running satisfactorily, switch off the
diagnostics by adding a line to the top of the .sim file.

Diag_mode off Diagnostics mode ("off" or "on").

12/11/2003 28 AMSTutorials.doc

6.3.2 Change the BF range
• Run the filterbankGammatone model
• Select Edit\ Simulation parameters.. from the AMS window pull down menus
• Click once on BM_gammaT.6 in the Simulation Parameters window.
• Change MIN_CF and MAX_CF to new values (say 500 and 3000)
• Click on GO (no need to close the parameter window).

7 Nonlinear filterbank
This model can be found in the folder Tutorials\AuditoryPeriphery. The original
version of this folder can be found in DSAM\AMS\|Tutorials\AuditoryPeriphery. If
you have not already done so, copy this folder into your regular workspace. Please do
not work in the AMS workspace.

Gammatone filters are linear in the sense that their properties do not change with
signal level. However, the auditory periphery is known to be nonlinear. As the signal
level increases, the bandwidth of the filter increases and the frequency that elicits the
biggest response (the best frequency, or BF) shifts. To meet the requirements of
nonlinearity we need a nonlinear filterbank. The method adopted here is the dual
resonance nonlinear (DRNL) filter, described in detail elsewhere: Meddis et al, (2001)
and Lopez-Poveda and Meddis R (2001a).

The .sim file below contains a new model that is exactly the same as that given in
filterbankGammatone.sim above except for two changes.

• The line

@ BM_gammaT < BM_gammatone.par

now contains a '@' character. This disables the BM_gammaT process but
leaves it in the model so that it can be enabled at run time. This will allow
comparisons to be made with the nonlinear filterbank.

• A new basilar process has been introduced to implement the nonlinear filters

 BM_DRNL < BM_drnlGP.par

7.1 Simulation file

filterbankDRNL.sim

begin {

generate stimulus
 stim_pureTone_2 < stimTone.par

Ramps
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displaySignal.par

Outer-/middler-ear filter model.

12/11/2003 29 AMSTutorials.doc

 Filt_MultiBPass < filtMultiBandpassGP.par

#convert to stapes velocity
 Util_mathOp < mathOpStapes.par

Basilar membrane filter model.
@ BM_gammaT < BM_gammatone.par
 BM_DRNL < BM_drnlGP.par
 Display_Signal < displayBM.par
 DataFile_out

 }

7.2 DRNL parameter file
The parameter file for the DRNL filter is complex but necessarily so. Normally, this
need not concern most users because standard sets of parameters are becoming
available for animal and human applications. Default parameters will also be useful
while setting up models. This means that you can omit the parameter file altogether.
However, you will normally need to use a tailored .par file for publishable studies.

The .par file shown below is based on the filterbank proposed for the guinea pig by
Sumner et al. (2003). The parameters are based directly on table I in that paper.
Their table is reproduced below the .par file for comparison purposes.

The nonlinear system consists of two separate pathways, a linear and a nonlinear
pathway. Parameters are given separately for each pathway and tagged as NL or
NONLIN for the nonlinear path and LIN or LINEAR for the linear path.

Many key parameters vary as a function of CF. By default these parameters are
specified as a logarithmic function of CF

log(param)= p(0) + p(1)log(CF)

For example, in the case of the bandwidths of the filters in the nonlinear path, p(0)
and p(1) are set to 0.8 and 0.58 using

NONLINBWIDTH_PARAMETER 0:0.8
NONLINBWIDTH_PARAMETER 1:0.58

At 1 kHz, the nonlinear bandwidth can be computed:

NLBW= 10^ (0.8 + 0.58 log10(1000)) = 347 Hz

With nonlinear filters, the distinction between BF (best frequency) and CF (centre
frequency) becomes important. We try to use the term CF to refer to a parameter of a
component filter while BF refers to the frequency that yields the greatest response at
the output of the system as a whole. For example, BF changes with level (it is an
emergent property) while CF (the description of a passive component) does not
change. Notice that, in the DRNL model, the CF of the nonlinear path is not normally
the same as that for the linear path.

12/11/2003 30 AMSTutorials.doc

When computing model parameters, CF is normally taken to be the CF of the filters in
the nonlinear path. CF_MODE controls the spacing of the CFs. When it is set to
'GUINEA_PIG', the CFs are equally spaced along a Greenwood (1990) scale whose
parameters are based on guinea pig measurements.

BM_DRNL < BMdrnlGP.par

nonlinear path
NL_GT_CASCADE 3 Nonlinear gammatone filter cascade.
NL_LP_CASCADE 4 Nonlinear low-pass filter cascade.

NONLINBWIDTH_PARAMETER 0:0.8
NONLINBWIDTH_PARAMETER 1:0.58

COMPRSCALEA_PARAMETER 0:1.87
COMPRSCALEA_PARAMETER 1:0.45

COMPRSCALEB_PARAMETER 0:-5.65
COMPRSCALEB_PARAMETER 1:0.875

COMP_N_EXPON 0.1 Compression exponent, n (units).
L_GT_CASCADE 3 Linear gammatone filter cascade.
L_LP_CASCADE 4 Linear low-pass filter cascade.

linear path
LINCF_PARAMETER 0:0.339
LINCF_PARAMETER 1:0.895

LINBWIDTH_PARAMETER 0:1.3
LINBWIDTH_PARAMETER 1:0.57

LINSCALEG_PARAMETER 0:5.68
LINSCALEG_PARAMETER 1:-0.97

CF List Parameters:-
DIAG_MODE PARAMETERS
CF_MODE GUINEA_PIG
MIN_CF 300 Minimum centre frequency (Hz).
MAX_CF 15000 Maximum centre frequency (Hz).
CHANNELS 20 No. of centre frequencies.

12/11/2003 31 AMSTutorials.doc

Table 2 Basilar membrane filtering (DRNL) parameters taken from sumner et al () Table I..

Parameters that are fixed across all BFs

Compression exponent, v (dB/dB) 0.1

Gammatone cascade of non-linear path 3

Low-pass filter cascade of non-linear path 4

Center frequency of non-linear path, CFNL Set equal to BF

Low-pass cut off of non-linear path, LPNL, Set equal to BF

Gammatone cascade of linear path 3

Low-pass filter cascade of linear path 4

Low-pass cut-off of linear path, LPlin Set equal to CFlin

Filter-bank coefficients Parameters that vary with BF:
p ()BFmBFp 100 log10)(+=

p0 m

Single filter at 6kHz BF
(in Figure 4B). Filterbank
values shown in brackets.

Bandwidth (Hz) of non-linear path, BWNL (Hz). 0.8 0.58 980 (unchanged)

Compression parameter, a 1.87 0.45 251 (3716)
Compression parameter, b -5.65 0.875 4.52x10-3 (unchanged)
Center Frequency of linear path, CFlin (Hz). 0.339 0.895 2961 (5253)
Bandwidth of linear path, BWlin (Hz). 1.3 0.53 634 (2006)
Linear path gain, Glin. 5.68 -0.97 103 (unchanged)

7.3 Model output
The output should look like Figure 3.

12/11/2003 32 AMSTutorials.doc

Figure 3 DRNL output

7.4 Things to do

7.4.1 Compare the output of the DRNL with the gammatone filter.
1. Select Edit\ Simulation parameters from the AMS window pull-down menus
2. Double click on BM_drnl.7 to disable the nonlinear computations. A '@'

character should appear beside the process name. It may be necessary to
single-click to open the window and then double-click to disable the process.

3. Double-click on BM_gammaT.6, to enable the gammatone filter. The '@'
character should disappear.

4. Make sure that only one of the two filters is enabled and then click on 'GO'.

Differences should be small at low signal levels but greater at high signal levels.

Tip: A problem with this method is that the display is set to autoscale. After running
the program check the inset scale at the bottom left of the display. You may need to
maximize the display to read this well.

8 Auditory nerve
This model can be found in the folder Tutorials\AuditoryPeriphery. The original
version of this folder can be found in DSAM\AMS\Tutorials\AuditoryPeriphery. If you
have not already done so, copy this folder into your regular workspace. Please do not
work in the AMS workspace.

This section extends the model to include a simulation of a stream of spikes in a
single auditory nerve fiber.

12/11/2003 33 AMSTutorials.doc

8.1 Single auditory nerve fiber

8.1.1 Simulation file

auditoryNerve.sim

begin {

generate stimulus
 stim_pureTone_2 < stimTone.par

Ramps
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displaySignal.par

Outer-/middler-ear filter model.
 Filt_MultiBPass < filtMultiBandpassGP.par

#convert to stapes velocity
 Util_mathOp < mathOpStapes.par

Basilar membrane filter model.
 BM_DRNL < BM_drnlGP1.par
 Display_Signal < displayBM.par

IHC receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par
 Display_Signal < displayRP.par

#IHC synaptic response
 IHC_Meddis2000 < IHChsr2000spike.par

apply a refractory period
 AN_SG_Meddis02 < ANrefractory.par
 Display_Signal < displaySynapse.par

 DataFile_Out

}

The first part of the auditoryNerve.sim file is the same as that for the DRNL
filterbank. Only one change has been made; the DRNL filter has been changed to
show only one auditory nerve fiber. This makes the demonstration more like a real
physiological experiment.

The new processes in the .sim file are concerned with the response of the

• Inner hair cell (IHC)
• IHC/auditory nerve (AN) synapse
• Spike activity of the auditory nerve.

The output should look like Figure 4.

12/11/2003 34 AMSTutorials.doc

Figure 4 Auditory nerve model

8.1.2 Processes and parameters

8.1.2.1 Filterbank

BM_DRNL < BMdrnlGP1.par

 (.......as in previous section)

CF_MODE SINGLE
SINGLE_CF 1000

This .par file is the same as BMdrnlGP.par with the number of channels set to single
and its CF specified to be 1000 Hz. Any number of channels could have been used but
a single channel is more appropriate for the examples that follow.

8.1.2.2 Receptor potential

IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par

Sumner, C, Lopez-Poveda, E.A., O'Mard, L.P. and Ray Meddis,
"A revised model of the inner-hair cell and auditory nerve complex"

E_T 0.1 Endocochlear potential, Et (V).
E_K -70.45E-3 Reversal potential, Ek (V).
G0 1.97e-09 Resting conductance, G0 (S).
G_K 1.8e-08 Potassium conductance, Gk (S = Siemens).
RP_CORRECTION 0.04 Reversal potential correction, Rp/(Rt+Rp).
G_MAXC 8e-09 Maximum mechanical conductance, Gmax (S).

12/11/2003 35 AMSTutorials.doc

S0 85e-9 Sensitivity constant, S0 (/m).
U0 7e-9 Offset constant, U0 (m).
S1 5e-7 Sensitivity constant, S1 (/m).
U1 7e-9 Offset constant, U1 (m).
C_TOTAL 6e-12 Total capacitance, C = Ca + Cb (F).
T_C 2.13e-3 Cilia/BM time constant (s).
GAIN_C 16 Cilia/BM coupling gain, C (dB).

This module computes the IHC receptor potential on the basis of BM velocity.

These parameters are based on Sumner et al. (2002a). This parameter file can be
omitted for casual work. The default values will work well for most purposes.
Nevertheless, publishable work should use an explicit parameter file that can be
quickly checked against other published sources.

Tip: Most of these parameters should not need changing. However, GAIN_C may be
usefully changed in some circumstances. It represents the coupling gain between the
basilar membrane and the IHC. Adjusting the gain can be used to adjust the threshold
of the subsequent auditory nerve fiber.

8.1.2.3 Display receptor potential

Display_Signal < displayRP.par

WIN_TITLE "IHC receptor potential"

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 600
WIN_Y_POS 0

Y_AXIS_MODE LINEAR
Y_AXIS_TITLE "receptor potential (mV"
AUTO_Y_SCALE OFF
MINY -60E-3
MAXY -20E-3

The AUTO_Y_SCALE is set to OFF because we know that the receptor potential
only exists within a limited voltage range. Accordingly, MINY and MAXY have
been set to –60 mV and –20 mV respectively.

8.1.2.4 IHC synapse

IHC_Meddis2000 < IHChsr2000spike.par

Sumner, C, Lopez-Poveda, E.A., O'Mard, L.P. and Ray Meddis,
"A revised model of the inner-hair cell and auditory nerve complex
Table II

OP_MODE SPIKE Output mode: 'spike' or probability, 'prob'
DIAG_MODE OFF Diagnostic mode:('off', 'screen' or <file name>).
RAN_SEED 0 Random number seed (0 for different each run).

12/11/2003 36 AMSTutorials.doc

PERM_Z 2e+32 Transmitter release permeability, Z (unitless gain)
REV_POT_ECA 0.066 Calcium reversal potential, E_Ca (Volts).
BETA_CA 400 Calcium Boltzmann function parameter, beta.
GAMMA_CA 130 Calcium Boltzmann function parameter, gamma.
TAU_M 1e-4 Calcium current time constant (s).
TAU_CA 1e-4 Calcium diffusion (accumulation) time constant (s).

REPLENISH_Y 10 Replenishment rate (units per second).
LOSS_L 2580 Loss rate (units per second).
REPROCESS_X 66.3 Reprocessing rate (units per second).
RECOVERY_R 6580 Recovery rate (units per second).

POWER_CA 3 Calcium transmitter release exponent (power).

These parameters used to set fiber type
GMAX_CA 8E-9 Maximum calcium conductance (Siemens).
CONC_THRESH_CA 4.48e-11 Calcium threshold Concentration.
MAX_FREE_POOL_M 10 Max. no. of transmitter packets in free pool
(integer).

A recommended .par file is given even though the default values will give a
reasonable result. When publishing results using a model of this kind it is important
to specify these parameters. The values given here have been taken from Sumner et al
(2002a) table II

OP_MODE is an important parameter. When set to 'SPIKE' the output signifies a
stochastic transmitter release event. The model assumes that a single release event is
enough to generate a post-synaptic spike in the auditory nerve fiber if it is not already
in a refractory state. The output is, therefore, binary. A release event lasts for only one
sample period.

Tip: An alternative is to set the OP_MODE parameter to 'PROB'. In this case the
output is a continuous function between 0 and 1 representing the probability of
observing the onset of a spike during that sample period. This gives a smoother
representation of the IHC response.

8.1.2.5 Auditory nerve refractory effects

AN_SG_Meddis02 < ANrefractory.par

RAN_SEED 0
PULSE_DURATION -1
MAGNITUDE 1
REFRAC_PERIOD 0.75E-3
RECOVERY_TAU .6E-3

This process computes the refractory state of one or more nerve fibres. A release
event triggers an action potential in the AN fiber if it is not in a refractory state. The
process introduces an absolute refractory state for a period of 0.75 msec
(REFRAC_PERIOD) following an action potential. It then enters a relative refractory
state in which the probability of a successful conversion of a release event into an

12/11/2003 37 AMSTutorials.doc

action potential is governed by an exponential recovery process. The time constant of
this process is defined by RECOVERY_TAU.

The output from this process is a stream of pulses whose height and width are defined
by PULSE_MAGNITUDE and PULSE_DURATION respectively. If
PULSE_DURATION is set to –1, the width of the pulse will be set automatically to
DT.

If RAN_SEED is set to a negative integer, the random number process used to make
the stochastic decisions, will be the same on each run. If it is set to zero, it will be
different for each run.

Tip: This process requires an input consisting of a random binary process (transmitter
release events). The IHC synapse process parameter OP_MODE must therefore be
set to deliver SPIKE events. Probabilities are not appropriate as input.

8.2 Generating a post stimulus time histogram (PSTH)
A PSTH can be computed using the REPEAT function. All processes within the
REPEAT curly brackets are repeated a number of times (specified after the REPEAT
command. The number of repeats must be set in the .sim file. It cannot be changed at
run time.

Processes up to the generation of the receptor potential are deterministic. Repeating
these processes would not serve any purpose, as they would give the same result each
time. The REPEAT block, therefore, begins with the IHC synapse, the first stochastic
process.

8.2.1 Simulation file
This .sim file produces a PSTH based on 200 presentations of a pure tone stimulus to
a single auditory nerve fiber. It is the same as the auditoryNerve.sim file except for
two new processes at the end.

ANpsth.sim

begin {

generate stimulus
 stim_pureTone_2 < stimTone.par

Ramps
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displaySignal.par

Outer-/middler-ear filter model.
 Filt_MultiBPass < filtMultiBandpassGP.par

#convert to stapes velocity
 Util_mathOp < mathOPstapes.par

12/11/2003 38 AMSTutorials.doc

Basilar membrane filter model.
 BM_DRNL < BM_drnlGP1.par
 Display_Signal < displayBM.par

IHC receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par
 Display_Signal < displayRP.par

repeat 200 {

#IHC synaptic response
 IHC_Meddis2000 < IHChsr2000spike.par

apply a refractory period
 AN_SG_Meddis02 < ANrefractory.par
 Display_Signal < displaySynapse.par

 Ana_histogram < histogramPSTH.par
 Display_Signal < displayPSTH.par

 }

 DataFile_Out
}

When run, the output should look like Figure 5.

Figure 5 PSTH computed using the auditory nerve model.

8.3 Create a PSTH
The histogram process can be used to bin and count events. It is an accumulating
process. Every time it is activated it adds the new results to the old results.

Ana_histogram < histogram1.par

12/11/2003 39 AMSTutorials.doc

DETECT_MODE SPIKE
BIN_WIDTH 1E-3
THRESHOLD 0.5

Ana_Histogram accumulates results across all the repeat trials.

DETECT_MODE when set to SPIKE an event occurs whenever the input function
rises above the THRESHOLD value. The time of the event is the time of the positive-
going zero-crossing.

BIN_WIDTH defines the width of the bin. If not set, the default is DT and this is
normally too small for most purposes.

THRESHOLD The input from the AN_SG_Meddis02 process is in the form of
narrow pulses with a height of 1 unit. By setting the THRESHOLD to 0.5, all events
will be detected as they pass form zero to one.

8.3.1 Display the PSTH

Display_Signal < displayPSTH.par

WIN_TITLE "AN PSTH"

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 300
WIN_Y_POS 300

Y_AXIS_MODE LINEAR
Y_AXIS_TITLE "spike count"
AUTO_Y_SCALE off
MINY 0
MAXY 200
Y_NUMBER_FORMAT Ye0
Y_TICKS 3

The display has been created using a fixed y-axis with a maximum of 200 (spikes).
This will guarantee that the PSTH will grow (before your very eyes) with each
REPEAT loop.

Y_NUMBER_FORMAT defines the format of the numbers in the y-axis. Ye0 keeps
the numbers simple.

Y_TICKS specifies the number of numbers along the y-scale.

8.3.2 Things to do

Try different signal levels and notice how the PSTH changes.

• Load and run the program
• Edit\simulation parameters

12/11/2003 40 AMSTutorials.doc

• select stim_pureTone_2 and open parameter window
• change INTENSITY
• GO

8.4 Generate a Period histogram

ANpsth.sim can be adapted to produce a period histogram (rather than a PSTH) by
changing the histogram parameter file

 # ANperiodHistogram.sim

begin {

generate stimulus
 stim_pureTone_2 < stimTone.par

Ramps
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displaySignal.par

Outer-/middler-ear filter model.
 Filt_MultiBPass < filtMultiBandpassGP.par

#convert to stapes velocity
 Util_mathOp < mathOPstapes.par

Basilar membrane filter model.
 BM_DRNL < BM_drnlGP1.par
 Display_Signal < displayBM.par

IHC receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par
 Display_Signal < displayRP.par

repeat 200 {

#IHC synaptic response
 IHC_Meddis2000 < IHChsr2000spike.par

apply a refractory period
 AN_SG_Meddis02 < ANrefractory.par
 Display_Signal < displayFiberResponse.par

 Ana_histogram < histogramPH.par
 Display_Signal < displayPH.par

 }
 DataFile_Out

}
The results should look like this

12/11/2003 41 AMSTutorials.doc

Figure 6 Periodhsitogram based on a single auditory nerve fiber, 200 repeats

8.4.1 period histogram
Ana_histogram < histogramPH.par

BIN_WIDTH 50E-6 # 20 bins for 1 kHz period

DETECT_MODE SPIKE
THRESHOLD 0.5

TYPE_MODE PH
PERIOD 0.001
OFFSET 0.0025
OFFSET 0.0025

TYPE_MODE is defined as PH for period histogram (use PSTH for post stimulus
time histogram)

PERIOD specifies the period of the signal. The stimulus is a 1-kHz tone and it period
is 0.001s.

BIN_WIDTH is now 50 microseconds. This will create 20 bins in a single 1 msec
cycle.

OFFSET specifies the duration of the initial section of the stimulus that is to be
ignored (the silent period).

Tip: The binwidth must be carefully calculated to give an exact number of bins

8.4.2 Display period histogram

Display_Signal < displayPH.par

WIN_TITLE "AN period histogram"

12/11/2003 42 AMSTutorials.doc

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 300
WIN_Y_POS 300

Y_AXIS_MODE LINEAR
Y_AXIS_TITLE "spike count"
AUTO_Y_SCALE on

The AUTO_SCALE has been switched on for this example.

8.4.3 Things to do
Try changing the frequency of the stimulus. Note that you will need to change the
period and the binwidth in the histogram module.

12/11/2003 43 AMSTutorials.doc

9 The 'Loudness' model
This model can be found in the folder Tutorials\Loudness. The original version of
this folder can be found in DSAM\AMS\Tutorials\Loudness. If you have not already
done so, copy this folder into your regular workspace. Please do not work in the AMS
workspace.

9.1 General introduction
The model is based on the idea that the loudness of a stimulus might be related to the
sum total of auditory nerve activity in response to that stimulus. The model consists
mainly of a sequence of computations representing different stages in physiological
signal processing between the acoustic stimulus and the auditory nerve (AN)
response. Two types of fibers are represented (LSR, HSR) 2. The model finishes by
summing all AN spike activity (across channels) and applying a 'temporal window
function'. Finally, the model creates an output file, 'output.dat' that contains the output
from the temporal window as a function of time. The research question is whether or
not the output from the model can predict the loudness property of stimuli.

For an approachable overview of the topic of loudness I recommend Plack and
Carlyon (1995). Their coverage suggests lots of experiments that can be tried with the
model.

To run the model, launch 'AMS'. Consult section 2.5 on help with getting started. The
output of the model should look something like this. The temporal sequence of
screens goes from left to right from top to bottom.

The use of the model here is not an endorsement of the theory but an opportunity to
test the theory,

2 While three types are commonly quoted, some research suggest that some animals have only two
distinct types; Relkin,E.M. and Doucet,J.R. (1991). Two makes for an easier model, but the .sim file
could be easily extended to include three if required.

12/11/2003 44 AMSTutorials.doc

9.2 The loudness simulation file
The model is specified by a .sim file (loudness.sim) that should be present in your
tutorials\loudness folder:

Simulation files are discussed in general in section 3.1 above.

#loudness.sim

diag_mode on Diagnostics mode ("off" or "on").

begin {

stimulus generation
 Stim_Harmonic < stimHarmonic.par

apply ramps to signal
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Util_PadSignal < padSignal.par
 Display_Signal < displayStimulus.par

outer/middle ear simulation
 Filt_MultiBPass < filtIIRMoore.par

convert to stapes velocity
 Util_mathOp < mathOPstapes.par

nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

receptor potential
z% IHCRP_Shamma3StateVelIn (->a,b,d) < IHCRP_VelIn_GP.par
a% Display_Signal (z->) < displayRP.par

12/11/2003 45 AMSTutorials.doc

IHC synaptic response and spike generation in three fiber types
LSR
b% IHC_Meddis2000 (z->) < IHC_Meddis2000LSR.par
 An_SG_Binomial < binomialLSR.par
b1% Display_Signal (->x) < displayLSR.par

HSR
d% IHC_Meddis2000 (z->) < IHC_Meddis2000HSR.par
 An_SG_Binomial < binomialHSR.par
d1% Display_Signal (->x) < displayHSR.par

combine LSR, MSR and HSR fiber outputs
x% Util_Accumulate (b1, d1->)

add across channels
 Util_ReduceChannels < reduceChannels.par

apply temporal window
 Filt_MultiBPass < filtMBtemporalWindow.par
 Display_Signal < displaySumAN.par

write results to a data file
 DataFile_out < dataFileOut.par
 }

9.3 Processes and parameter files

9.3.1 Stimulus generation
Stim_Harmonic < stimHarmonic.par

FUND_FREQ 64 Fundamental frequency (Hz).
INTENSITY 60 Intensity (dB SPL).
DURATION 0.2 Duration (s).
DT 2e-05 Sampling interval, dt (s).

LOW_HARMONIC 1 Lowest harmonic number.
HIGH_HARMONIC 20 Highest harmonic number.

PHASE_MODE COSINE

This process generates a harmonic stimulus. The .par file can be used to define

• the fundamental frequency
• the first and last harmonic number
• the intensity and duration of the signal.
• the phase relationships among the harmonics

The process can be used to create even more complex harmonic stimuli. See the
manual.

Signal level is specified as dB SPL per component. The signal is represented as
instantaneous pressure in micro Pascals.

Sample rate. DT, the stimulus sampling interval, is a very important parameter. This
not only defines the sample rate for generating the stimulus but also defines the

12/11/2003 46 AMSTutorials.doc

sample rate for all the model computations. This value must be set with care. A
useful value is 2e-5s (equivalent to 50-kHz sample rate). For definitive computations,
DT should be even shorter.

Large values of DT (lower sampling rates) may give rise to false results. AMS may
even complain if the value is so large as to be predictably problematic. For example
some IIR filters become unstable if the sample rate is too low. On the other hand, very
small values of DT (e.g. 1e-6s) may result in long computation times with very little
improvement in the quality of the result. If two values of dt give almost identical
results, use the larger value and enjoy shorter computation times.

9.3.2 Stimulus ramps
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
See 6.2.2

9.3.3 PadSignal
This process adds silence to the beginning and end of the stimulus. It is important to
do this for the 'Loudness' model because it integrates information over time. This
integration needs a period of silence before and after the end of the stimulus proper to
allow the integrator to stabilise.

Util_PadSignal < padSignal.par

BEGIN_DURATION 0.02 initial silence to be added
END_DURATION 0.02 final silence to be added

9.3.4 Display signal
 Display_Signal < displayStimulus.par

 Display_Signal < displayStimulus.par

See section 6.2.3.

9.3.5 Human outer/middle ear
The outer middle ear (pre-emphasis) filter is a set of four parallel IIR bandpass filters.
The overall effect of the outer/middle ear was calculated by combining the
outer ear transfer function as published in Moore et al. (1997) Fig. 2 with
the middle ear function published as figure 3 of the same paper. The
overall filter was published in Glasberg and Moore (2002).

Filt_MultiBPass < filtIIRMoore.par

NUM_FILTERS 4

CASCADE 0:2
ATTENUATION 0:-12
LOWER_FREQ 0:100
UPPER_FREQ 0:1300

12/11/2003 47 AMSTutorials.doc

CASCADE 1:2
ATTENUATION 1:1.5
LOWER_FREQ 1:350
UPPER_FREQ 1:6500

CASCADE 2:2
ATTENUATION 2:5
LOWER_FREQ 3:1800
UPPER_FREQ 3:5200

CASCADE 3:2
ATTENUATION 3:-11
LOWER_FREQ 3:7500
UPPER_FREQ 3:14000

The parameter NUM_FILTERS specifies the number of filters. Each filter must be
fully described in terms of its parameters. The notation i:param specifies the
parameter for the ith filter. Filter numbers are sequenced 0,1.. N-1.

Each filter is composed of a cascade of first-order filters where the 3-dB down points
of the first-order filters are specified by the parameters LOW_FREQ and
UPPER_FREQ. The parameter CASCADE specifies the number of cascaded filters.

A cascade of 3 filters, for example, is similar to but not the same thing as a third order
filter. A filter consisting of a cascade of three first-order filters has high and low
frequency skirts with the same slope as a third order filter but the upper and lower cut-
offs will be narrower than those specified in the parameters. In this case the
LOW_FREQ and UPPER_FREQ parameters specify the 9-dB down points of the
filter.

ATTENUATION is the reduction in level between the input and output at BF. It is
specified in dB.

The resulting filter is shown in Figure 7.

comparison of FIR (Moore) and IIR filter functions

-20

-15

-10

-5

0

5

10

100 1000 10000 100000

frequency

dB
 o

ut IIR
data

Figure 7 Comparison of multiBandPass approximation with original human data.

12/11/2003 48 AMSTutorials.doc

9.3.6 stapes motion
The next stage requires that we simulate the conversion of the input signal from sound
pressure (µPa) to stapes motion (m/s). This is a linear conversion requiring nothing
more than the application of a scalar.

Util_mathOp < mathOpStapes.par
converts microPascals to stapes velocity (m/s)

OPERATOR SCALE
OPERAND 3E-10

The scalar we have used is 3e-10. This was chosen to give an output of 1e-8 m/s for a
1 kHz signal at 0 dB SPL (Lopez-Poveda and Meddis, 2001).

9.3.7 BM_DRNL < BM_DRNLHuman.par
This process simulates the nonlinear response of the basilar membrane at a number of
points along the length of the cochlea. It accepts stapes motion as input and returns
basilar membrane (BM) velocity at 40 different points with characteristic frequency
(CF) varying between 40 Hz and 10 kHz and spaced according to Greenwood's
function for the distribution of CFs along the BM.

The rationale of the DRNL filter is explained elsewhere, Meddis et al. (2001). The
particular coefficients used for the filters are taken from Lopez-Poveda and Meddis
(2001). These have been optimized for human listeners. Expect these filter
coefficients to change as new data is obtained and better fits are established.

This is a filterbank with many filters. The filter parameters for any given filter depend
on the CF of that filter. They are computed in DSAM using a log regression equations
fit to psycho-acoustic data. The regression equations look like this

log(parameter)= a + b log(CF)

where a and b need to be specified for each parameter. Unless you are specifically
interested in the nuances of DRNL filtering, we advise that these parameters are not
changed. These parameters are liable to change in the light of new data and new
methods of estimating the parameters. If you want the latest set of parameters,
contact Ray Meddis.

However, users may want to specify the number of filters and the range of their CFs.
This can be done at the bottom of the file.

BM_DRNL < BMdrnlGP.par

Parameters are based on
Lopez-Poveda, E.A., and Ray Meddis.
#"A human non-linear cochlear filterbank"
JASA 110, 3107-3118, (2001)

#nonlinear path
NL_GT_CASCADE 3 Nonlinear gammatone filter cascade.

12/11/2003 49 AMSTutorials.doc

NL_LP_CASCADE 3 Nonlinear low-pass filter cascade.

NONLINBWIDTH_PARAMETER 0:-0.032
NONLINBWIDTH_PARAMETER 1:0.774

COMPRSCALEA_PARAMETER 0:1.4
COMPRSCALEA_PARAMETER 1:0.82

COMPRSCALEB_PARAMETER 0:1.62
COMPRSCALEB_PARAMETER 1:-0.82

COMP_N_EXPON 0.25 Compression exponent, n (units).

L_GT_CASCADE 3 Linear gammatone filter cascade.
L_LP_CASCADE 4 Linear low-pass filter cascade.

#linear path
LINCF_PARAMETER 0:-0.068
LINCF_PARAMETER 1:1.02

LINBWIDTH_PARAMETER 0:0.037
LINBWIDTH_PARAMETER 1:0.79

LINSCALEG_PARAMETER 0:4.2
LINSCALEG_PARAMETER 1:-0.48

#BF List Parameters:-
CF_MODE HUMAN
MIN_CF 40 Minimum centre frequency (Hz).
MAX_CF 10000 Maximum centre frequency (Hz).
CHANNELS 10 No. of centre frequencies.

9.3.8 Display BM
see section 6.2.7.

9.3.9 Receptor potential
See section 8.1.2.2 for a general description of this process.

In this example the output of the receptor potential process is used three times; as an
input to the LSR and HSR fiber computations and also to the display process. To
signal this, the three destinations are indicated in the parentheses.

z% IHCRP_Shamma3StateVelIn (->a,b,d) < IHCRP_VelIn_GP.par

9.3.10 Display Receptor potential
See section 8.1.2.3.

9.3.11 IHC synapse; LSR fibers
See section 8.1.2.4 for a general description of this process.

12/11/2003 50 AMSTutorials.doc

In this example the input comes from the receptor potential process labelled z%.

b% IHC_Meddis2000 (z->) < IHC_Meddis2000LSR.par

This process generates a stream of probabilities that reflect the likelihood that an
action potential will occur in an auditory nerve fiber. The parameters that define this
as a low spontaneous rate synapse can be found at the end of the .par file.

IHC_Meddis2000 < IHC_Meddis2000HSR.par

Sumner, et al (2002); Table II

OP_MODE PROB Output mode: 'spike' or probability, 'prob'
DIAG_MODE OFF Diagnostic mode:('off', 'screen' or <file name>).
RAN_SEED 0 Random number seed (0 for different each run).

PERM_Z 2e+32 Transmitter release permeability, Z (unitless gain)
REV_POT_ECA 0.066 Calcium reversal potential, E_Ca (Volts).
BETA_CA 400 Calcium Boltzmann function parameter, beta.
GAMMA_CA 130 Calcium Boltzmann function parameter, gamma.
TAU_M 1e-4 Calcium current time constant (s).
TAU_CA 1e-4 Calcium diffusion (accumulation) time constant (s).

REPLENISH_Y 10 Replenishment rate (units per second).
LOSS_L 2580 Loss rate (units per second).
REPROCESS_X 66.3 Reprocessing rate (units per second).
RECOVERY_R 6580 Recovery rate (units per second).

POWER_CA 3 Calcium transmitter release exponent (power).

These parameters used to set fiber type
based on HSR (1) in Sumner table II
GMAX_CA 8E-9 Maximum calcium conductance (Siemens).
CONC_THRESH_CA 4.48e-11 Calcium threshold Concentration.
MAX_FREE_POOL_M 10 Max. no. of transmitter packets in free pool

9.3.12 Auditory nerve spike generation; LSR fibers
An_SG_Binomial < binomialLSR.par

NUM_FIBRES 36 Number of fibres.
RAN_SEED 0 Random number seed (0 for different seed for
each run).
PULSE_DURATION 2e-05 Pulse duration (s).
MAGNITUDE 1 Pulse magnitude (arbitrary units).
REFRAC_PERIOD 0.00075 Refractory period (s).

This process takes spike probabilities from the synapse process and converts them to
spike activity in a specified number of fibers. Spikes take the form of pulses whose
height and width can be specified as parameters. For this particular example, the
height and duration are arbitrary, so long as both HSR and LSR pulses are the same.
36 LSR fibers are used compared to 64 HSR fibers. This preserves the ratio of
HSR/LSR fibers found in (Relkin, Hear. Res., 1991, 215-222). The output is the sum
of all the pulses.

12/11/2003 51 AMSTutorials.doc

The method for computing the spike events is based on a rapid approximation using
the binomial distribution (see Pearson). Refractory effects are simulated (somewhat
imprecisely) using a formula to be found in Meddis?.

9.3.13 Display spike activity
There are two displays displayHSR.par and displayLSR.par.. Autoscale is switched
off and all three displays are set to have the same y-scale so that comparisons can be
made between displays.

Display_Signal < displayLSR.par

WIN_TITLE "LSR_fibers"

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 0
WIN_Y_POS 300

Y_AXIS_TITLE "channel BF"
Y_AXIS_MODE CHANNEL
AUTO_Y_SCALE OFF
MAXY 10
MINY 0

X_AXIS_TITLE Time_(s)

Note that the output from the display process is directed toward the accumulate
process below labeled x%.

b1% Display_Signal (->x) < displayLSR.par

9.3.14 HSR fibers
HSR
d% IHC_Meddis2000 (z->) < IHC_Meddis2000HSR.par
 An_SG_Binomial < binomialLSR.par
d1% Display_Signal (->x) < displayHSR.par

see LSR fibers above

9.3.15 Util_Accumulate
The two sets of fibers are now combined using this process. Util_Accumulate simply
sums both of the input signals; b1 and d1. The output of this process is a single multi-
channel representation.

x% Util_Accumulate (b1, d1->)

This process needs no parameter file.

12/11/2003 52 AMSTutorials.doc

9.3.16 Util_ReduceChannels < reduceChannels.par
This process adds together the activity in all of the channels, which is across BF
channels.

It can be configured to combine channels together in different ways such as across
two or three equal sets but on this occasion only one grand total is required.

We have a choice of whether to sum the channels or average them. Summing the
channels is more in the spirit of the loudness model. However, averaging has the
advantage of keeping the 'loudness' estimate roughly invariant when the number of
channels is changed. This means that we can turn the auto-scale off in the subsequent
display.

Util_ReduceChannels < reduceChannels.par

MODE AVERAGE Mode - 'average' or simple 'sum'.
NUM_CHANNELS 1 (resulting number of channels)

9.3.17 Filt_MultiBPass < filtMBtemporalWindow.par
 The temporal window is implemented here using a third-order bandpass filter with a
very zero Hz lower cut-off frequency and a 40 Hz upper cutoff frequency. The
parameters have been chosen to make the filter similar in operation to the temporal
widow specified in Plack et al. (?) Here is the impulse response of the filter.

Filt_MultiBPass < filtMBtemporalWindow.par

NUM_FILTERS 1 No. of parallel band pass filters.
CASCADE 0:3
ATTENUATION 0:0
LOWER_FREQ 0:0
UPPER_FREQ 0:40

12/11/2003 53 AMSTutorials.doc

9.3.18 Display_Signal < displaySumAN.par
The autoscale has been set to off. This makes it easier to see changes in "loudness"
when the stimulus is changed.

'linear' has been chosen for the y-axis mode because we want to know the actual level
of the output rather than the channel number.

Display_Signal < displaySumAN.par

WIN_TITLE "sum AN activity: loudness?"

WIN_HEIGHT 300
WIN_WIDTH 300
WIN_X_POS 600
WIN_Y_POS 300

Y_AXIS_TITLE "smoothed summed AN activity"
Y_AXIS_MODE LINEAR
AUTO_Y_SCALE OFF
MAXY 0.5
MINY 0

X_AXIS_TITLE "time (s)"

9.3.19 DataFile_out < dataFileOut.par
The summed auditory nerve activity shown in the display is written to an ASCII .dat
file. The first value in each row is the time.

Time (s) 0
0.00000e+000 0
2.00000e-005 0
4.00000e-005 0
6.00000e-005 0
8.00000e-005 0

 -- --
 -- --

2.80000e-004 0
3.00000e-004 0
3.20000e-004 0
3.40000e-004 0.0859397
3.60000e-004 0.171963
3.80000e-004 0.42995
4.00000e-004 0.602249
4.20000e-004 0.774716
4.40000e-004 0.775472
4.60000e-004 0.77623

The file name is specified as a '.dat' file. this guarantees that the output
will be in printable form.

DataFile_out < dataFileOut.par

FILENAME output.dat

12/11/2003 54 AMSTutorials.doc

9.4 Things to do

9.4.1 Stimulus intensity
Increase the intensity of the sound and monitor the effect on the loudness estimate in
the final display. Does it agree with your intuition?

9.4.2 Effect of phase on loudness
The stimulus is a harmonic complex with each component in cosine phase. Does the
phase affect the loudness estimate? The data that inspired the model came from
Gockel et al. They found that cosine phase stimuli were louder than random phase
stimuli.

10 Autocorrelation
This model can be found in the folder Tutorials\Autocorrelation. The original version
of this folder can be found in DSAM\AMS\Tutorials\Autocorrelation. If you have not
already done so, copy this folder into your regular workspace. Please do not work in
the AMS workspace.

10.1 Model implementation (.sim and .par files)

10.1.1 .sim file

The autocorrelation model is broadly similar to the model presented in the original
JASA articles: Meddis and Hewit (1991 a, b), Meddis and O'Mard(1997)

There is, however, one important difference. It has been updated to include the latest
nonlinear peripheral model and the latest hair cell model from the Essex stable. There
is no reason to persist with the original linear models now that we have useful
nonlinear models.

The model has a number of stages

• Stimulus Input; A harmonic complex.
• Auditory periphery: The output from the periphery is a stream of probabilities

of action potentials in fibers of the AN.
• Autocorrelation. A separate autocorrelation is computed at each stimulus

frequency.
• Summary ACFs are computed by adding vertically all the rows in the ACF

matrix (i.e. across all BF channels).
• Write to file

#ACF.sim

begin {

Stimulus generation
stim% Stim_Harmonic < stimHarmonic.par

12/11/2003 55 AMSTutorials.doc

#apply ramps to signal
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displayStimulus.par

#outer/middle ear simulation
 Filt_MultiBPass < filtMultiBandpass.par

#convert to stapes velocity
 filt_LowPass < filtScaleToStapes.par

#nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

#receptor potential
 Filt_MultiBPass < filtStereocilia.par
 IHCRP_Shamma < IHCreceptorPotential.par
 Display_Signal < displayReceptorPotential.par

HSR
 IHC_Meddis2000 < IHC_Meddis2000HSR.par
 Display_Signal < displayHSR.par

 Ana_Acf < acf.par
 Display_Signal < displayACF.par

 Util_ReduceChannels <reduceChannels.par

#write results to a data file
 DataFile_out < dataFileOut.par
 }

10.1.2 Example
When the model is run, the screen should look something like this.

12/11/2003 56 AMSTutorials.doc

Figure 8 Autocorrelation model

10.1.3 Generate harmonic stimulus
Stim_Harmonic < stimHarmonic.par

LOW_HARMONIC 1 Lowest harmonic number.
HIGH_HARMONIC 20 Highest harmonic number.
PHASE_MODE COSINE

FUND_FREQ 150 Fundamental frequency (Hz).
INTENSITY 60 Intensity (dB SPL).
DURATION 0.1 Duration (s).
DT 2e-05 Sampling interval, dt (s).

Stim_Harmonic is capable of generating a wide range of harmonic stimuli. Here it
creates a harmonic complex. The output is in microPascals.

DT is the sampling period

10.1.4 Auditory periphery
This is described fully in sections 9.3.2 to 9.3.10.

#apply ramps to signal
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displayStimulus.par

#outer/middle ear simulation
 Filt_MultiBPass < filtMultiBandpass.par

#convert to stapes velocity
 filt_LowPass < filtScaleToStapes.par

#nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

#receptor potential
 Filt_MultiBPass < filtStereocilia.par
 IHCRP_Shamma < IHCreceptorPotential.par
 Display_Signal < displayReceptorPotential.par

HSR
 IHC_Meddis2000 < IHC_Meddis2000HSR.par
 Display_Signal < displayHSR.par

10.1.5 Autocorrelation
This module performs a within-channel running autocorrelation function and displays
the final state of the function at the end of the signal.

Ana_Acf < acf.par

TIME_CONST 0.0025 Time constant, tw (s).
MAX_LAG 0.012 Maximum autocorrelation lag, tau (s).

12/11/2003 57 AMSTutorials.doc

TIME_CONST specifies the time constant of the running autocorrelation function.
MAX_LAG specifies the longest period to be computed.

10.1.6 Display_Signal < displayACF.par
We want to see the summary autocorrelation coefficient (SACF) as well as the
individual ACFs. This can be achieved by setting the subsequent display module
parameter 'summary_display' to 'ON'. Note that this is a display facility only. The
SACF is not passed to the next module. The output from Ana_Acf is the matrix of
autocorrelation function (channel x lag).

It is also important to label the x-axis correctly ('Lag') to avoid confusion.

Display_Signal < displayACF.par

Y_AXIS_MODE CHANNEL Y-axis mode ('channel' (No.) or 'scale').
AUTO_Y_SCALE ON Automatic y-axis scale ('on' or 'off').

X_AXIS_TITLE "Lag (s)"

WIN_TITLE Autocorrelation Display window title.
SUMMARYDISPLAY ON Summary display mode ('on' or 'off').

WIN_HEIGHT 300 Display frame height (pixel units).
WIN_WIDTH 300 Display frame width (pixel units).
WIN_X_POS 600 Display frame X position (pixel units).
WIN_Y_POS 300 Display frame Y position (pixel units).

10.1.7 Computing the SACF
This module performs a summation (or averaging) across channels of the signal. The
user specifies how many output signals he wants. If two are selected, the top half of
the signals are combined to produce the first output signal and the bottom half used to
produce the second output signal.

Util_ReduceChannels < reduceChannels.par

MODE AVERAGE Mode - 'average' or 'sum'.
NUM_CHANNELS 1 (resulting number of channels)

10.1.8 Writing the results to file
The result of the preceding module is written to an output file. The default is
'output.dat'.

The output has the following format

Time (s) 0
2.00000e-005 0.000820702
4.00000e-005 0.000817631
6.00000e-005 0.000803369
8.00000e-005 0.000778897
1.00000e-004 0.000745795
1.20000e-004 0.000706055
1.40000e-004 0.000661867
1.60000e-004 0.000615415

12/11/2003 58 AMSTutorials.doc

1.80000e-004 0.000568703

 - - -

11 Binaural pitch extraction
This model can be found in the folder tutorials\binauralPitch. The original version of
this folder can be found in DSAM\AMS\tutorials\ binauralPitch. If you have not
already done so, copy this folder into your regular workspace. Please do not work in
the AMS workspace.

This is a complex example. It is included to show how to handle binaural models. It
also illustrates some fancy connections between modules.

When all harmonics of a fundamental frequency are presented to both ears (a diotic
pitch stimulus), the percept has a pitch at a frequency close to the spacing of the
harmonics. However, a binaural pitch stimulus consisting of a series of consecutive
harmonics organised so that the even numbered harmonics are presented to one ear
and odd numbered harmonics presented to the other ear (a dichotic pitch stimulus)
also produces a pitch percept at the fundamental frequency (Houtsma and Goldstein,
1972). If pitch is processed monaurally, one might argue that the dichotic pitch
stimulus should have a pitch at twice the frequency of the monaural stimulus. The fact
that it does not has been used to argue that pitch is processed centrally, that is after the
combination of left and right ear inputs.

However, this leaves us with two possibilities. The first is that raw stimulus
information is combined and then pitch is extracted. The second is that periodicity
information is extracted separately from each ear and that information is combined
later to give the pitch percept.

We need to decide between two hypotheses:

• Early cross-over hypothesis: Left and right signals are combined before
periodicity processing takes place

• Late cross-over hypothesis: Periodicity is processed separately in each ear and
the results shared

To make specific predictions about the outcome of such experiments, we need to
develop suitable computational models. The models to be described below are
developments of monaural autocorrelation models.

11.1 Model outline
The 'binauralPitch' folder contains two models of binaural pitch extraction 'early-
crossover' and 'late-crossover' (see). Both models work on the basis that all
auditory processes are duplicated on the left and the right sides. There is sharing of
information of the results of these processes between the left and the right systems.
The two models differ in terms of the level at which the information is shared (before
or after periodicity analysis).

Figure 9

12/11/2003 59 AMSTutorials.doc

periphery periphery

ACF ACF

combined
SACF

combined
SACF

periphery periphery

ACF ACF

combined
SACF

combined
SACF

early
crossover

model

late
crossover

model

left right left right

Figure 9 Comparison of the structure of the early-crossover and late-crossover models.

In the early-crossover version, the input from the left and right auditory nerve (AN) is
combined before the autocorrelation analysis is performed.

In the late-crossover version, a separate autocorrelation analysis is performed on the
left and right input from the auditory nerve. The results of these two autocorrelation
analyses are then combined across the left/right divide.

Figure 10 Output from early cross-over model for the diotic pitch stimulus (all harmonics to both
ears (dioticF0100H3_12.wav).

The models are binaural and require a binaural input signal. Signal processing is
separate for the left and right auditory nerves for both early-crossover and late-
crossover models. In the displays, the left and right channels are interleaved so that
corresponding channels can be compared.

12/11/2003 60 AMSTutorials.doc

Both models have the same three processing stages

• periphery (see sections 9.3.2 to 9.3.10)
• autocorrelation
• cross-ear combined summary autocorrelation (SACF)

Processing of binaural signals requires no special programming. DSAM\AMS
automatically detects and processes binaural signals appropriately. For a binaural
signal, each channel occupies two adjacent lines (left and right) in each display.

11.2 Early-crossover model

11.2.1 .sim file
#pitchEarlyCrossover.sim

Simulation accepts a binaural input
combines the AN spike probability input from both ears
performs an acf on the combined input.

begin {

Stimulus generation
 DataFile_In < dataFileIn.par

#apply ramps to signal
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displayStimulus.par

outer/middle ear simulation
 Filt_MultiBPass < filtIIRMoore.par

convert to stapes velocity
 Util_mathOp < mathOPstapes.par

nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par
 Display_Signal < displayReceptorPotential.par

HSR auditory nerve synapse
ihcrp% IHC_Meddis2000 (->swap, acc, dispHR) < IHC_Meddis2000HSR.par
dispHR% Display_Signal (ihcrp->) < displayHSR.par

#create left right mirror image
swap% Util_swapLR (ihcrp->acc)

#average left/right ihc probabilities together
acc% Util_Accumulate (ihcrp, swap->)

#autocorrelate
 Ana_Acf < acf.par
 Display_Signal < displayACFearly.par

#create summary acf by collapsing across channels

12/11/2003 61 AMSTutorials.doc

a% Util_ReduceChannels < UtRedChans.par
 Display_Signal < displayACFearly.par
#write results to a data file
 DataFile_out < dataFileOut.par
 }

11.2.2 Stimulus input
DataFile_In < dataFileIn.par

FILENAME dioticF0100H3_12.wav Stimulus file name.
GAIN 100 Relative signal gain (dB).

The input file is a binaural .wav file. The file must be binaural or an error will be
generated. The binauralPitch folder contains a number of .wav files, both dichotic and
diotic harmonic stimuli. For example, dioticF0100H3_12.wav is a diotic stimulus
with F0=100 Hz and harmonics 3 to 12.

The .wav files were generated using MATLAB programs also given in the
binauralPitch folder; dioticHarmonicStimulus.m and dichoticHarmonicStimulus.m

The GAIN has been set to 100. This yields signal peak of 74 dB SPL. Of course, the
effect of the gain depends upon the values in the .wav file. However, if the peak value
in the .wav file is 1, a GAIN of 100 dB will yield a peak at 74 dB SPL.

11.2.3 The peripheral model
This includes all modules between the outer/middle ear simulation (Filt_MultiBPass)
and the generation of AN spike probabilities (IHC_Meddis2000). See sections 9.3.2 to
9.3.10 for a complete description.

11.2.4 Crossover
#create left right mirror image
swap% Util_swapLR (ihcrp->acc)

#average left/right ihc probabilities together
acc% Util_Accumulate (ihcrp, swap->)

The combination of information of left and right AN activity takes place using the
swap module (Util_swap). This module takes a copy of the binaural AN response and
swaps left with right to create a mirror image. Util_Accumulate then adds the original
AN response to the mirror image to create a binaural combination of the left and right
AN response. This might be represented algebraically,

AN response = [AN_left, AN_right]
swapped response = [AN_right, AN_left]
combination = AN response+ swapped response

=[AN_left +AN_right, AN_right+AN_left]

Note that the left and right are now the same.

12/11/2003 62 AMSTutorials.doc

The Util_Accumulate module adds together two or more inputs. The inputs are
defined in the path indicator (ihcrp, swap->)These indicators refer to row labels (e.g.
ihcrp % and acc%). These labels are then used to define 'connectors' that are shown
in parentheses. For example

• (-> swap, acc) means 'take the output of this module and send it to the two
modules labelled swap% and acc%'.

• (ihcrp, swap->) means
o use as input to this module the output from the modules labelled

ihrcp% and swap%

11.2.5 Autocorrelation and SACF
The process Util_Acf performs the autocorrelation. A separate ACF is computed for
each channel. The left and right channels are interleaved in the display.

The summary ACF is computed using the Util_ReduceChannels module. This adds
across channels to produce a single channel, the SACF.

See section 10.1.5 and 10.1.7 for more information

11.3 Late-crossover model

11.3.1 .sim file
The late-crossover model is similar to the early-crossover model in most respects.
However, the sharing of information between left and right takes place after the
computation of the ACFs.

pitchLateCrossover.sim

simulation accepts a binaural input
computes an acf for each ear independently
and then averages the two acfs.

begin {

Stimulus generation
 DataFile_In < dataFileIn.par

apply ramps to signal
 Trans_Gate < rampUp.par
 Trans_Gate < rampDown.par
 Display_Signal < displayStimulus.par

outer/middle ear simulation
 Filt_MultiBPass < filtIIRMoore.par

convert to stapes velocity
 Util_mathOp < mathOPstapes.par

nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par

12/11/2003 63 AMSTutorials.doc

 Display_Signal < displayReceptorPotential.par
HSR
 IHC_Meddis2000 < IHC_Meddis2000HSR.par
 Display_Signal < displayHSR.par

autocorrelate
 Ana_Acf < acf.par
 Display_Signal < displayACFlate.par

create summary acf
redch% Util_ReduceChannels (->swap, acc) < UtRedChans.par

create left right mirror image
swap% util_swapLR (redch->acc)

add left/right acfs together
acc% Util_Accumulate (redch, swap->)
 Display_Signal < displayACF2.par

#write results to a data file
 DataFile_out < dataFileOut.par
 }

This model is the same as the early crossover model up to the point where the
autocorrelation is performed. In this model the autocorrelation is performed separately
on the left and right channels before the left and right channels are combined.

11.3.2 Example
The two models can now be tested with diotic and dichotic stimuli:
Diotic

• Both left and right channels have 10 harmonics of a 100-Hz fundamental
starting with the 3rd harmonic. (dioticF0100H3_12.wav)

Dichotic
• The left channel consists of 5 odd-numbered harmonics of a 100 Hz

fundamental starting with the 3rd harmonic.
• The right channel consists of 5 even numbered harmonics of a 100 Hz

fundamental starting with the 4th. (dichoticF0100H3_12.wav).

Diotic stimulus. Figure 11 shows the response of the early cross-over model to the
diotic stimulus. The combined SACF shows a substantial peak at a lag of 10 msec.
This pattern would normally be associated with a percept of a 100-Hz pitch

12/11/2003 64 AMSTutorials.doc

Figure 11. Early-crossover model with dichotic stimulus (see text)

Figure 12

Figure 12. Late-crossover model with dichotic stimulus (see text)

 shows the screen display for both the late-crossover model for exactly the
same stimulus. The output is the same as Figure 11. Both early and late crossover
models predict a pitch percept of 100 Hz.

Dichotic stimulus. Figure 13 shows the response of the early cross-over model to the
dichotic stimulus. The combined SACF shows a substantial peak at a lag of 10 msec.

12/11/2003 65 AMSTutorials.doc

This pattern would normally be associated with a percept of a 100-Hz pitch, that is no
change from the diotic condition.

Figure 13. Early-crossover model with dichotic stimulus (F0=100 Hz, harmonics 3-12 alternating
between ears).

Figure 14

Figure 14. Late-crossover model with dichotic stimulus (F0=100 Hz, harmonics 3-12 alternating
between ears).

 shows the late cross-over model's prediction for the diotic stimulus. It is the
same as the early cross-over model. Both models predict that both diotic and dichotic
stimuli will give rise to a 100 Hz pitch percept.

12/11/2003 66 AMSTutorials.doc

11.4 Discussion
Both models (early and late crossover models) predict that both stimuli (dichotic and
diotic) will be perceived as having a 100-Hz pitch. The fact that diotic and dichotic
stimuli both give the same pitch cannot, therefore, be used to support the conclusion
that the pitch detection mechanism occurs after combination of binaural information,
Houtsma and Goldstein (1972).

At first sight the result looks trivial; after all why do we need to explain a null result?
However, close examination of the autocorrelation figures shows that it is more
complex than can be easily intuited. shows that the analysis gives different
summary SACFs for all four conditions. We might expect this because the diotic and
dichotic stimuli are very different. It is not surprising that the early crossover model
gives a similar pitch prediction for both stimuli. This is because the AN effects of the
separated harmonics are brought together before the autocorrelation process.

Figure 15

However, in the late crossover model, one might expect that 200-Hz periodicities
would be more prominent for the dichotic stimulus. This is certainly true for the left
SACF (upper trace, even harmonics) where a clear peak can be seen at 5-msec lag.
However, (and here is the surprise), the lower trace (odd harmonics) shows a dip at 5
msec. When these two traces are combined to give the final pitch percept, the 5-msec
peak and trough cancel leaving the main peak firmly at 10 msec with a resulting
prediction of 100-Hz pitch percept.

12/11/2003 67 AMSTutorials.doc

diotic (same to both ears) dichotic

early

late

Figure 15 Comparison of the autocorrelation functions for diotic and dichotic stimuli presented
to the early and late crossover models.

12/11/2003 68 AMSTutorials.doc

12 Precedence
This model can be found in the folder Tutorials\Precedence. The original version of
this folder can be found in DSAM\AMS\Tutorials\ This model can be found in the
folder Tutorials\Precedence. If you wish to change the program, copy this folder into
your regular workspace. Please, do not make changes in the AMS workspace.

12.1 Model implementation (.sim and .par files)

12.1.1 .sim file
The precedence model is based as closely as possible on the precedence model of
Hartung and Trahiotis (2001). In their model, they show that many effects associated
with the title ‘precedence effect’ can be explained in terms of the activity of the
auditory periphery (i.e. do not require neural processes such as inhibition).

Precedence concerns the phenomenon where the ITD of the first of a pair of binaural
clicks determines the location of the clicks. In other words, the second pair of clicks
is largely ignored. It is taken into account but is given a much lower weighting in the
decision-making process.

This model is slightly different from the published version.. It has been updated to
include the latest nonlinear peripheral model and the latest hair cell model from the
Essex stable. There is no reason to persist with the original linear models now that we
have useful nonlinear models. It does, however, raise the question of whether it still
works with a nonlinear periphery.

There is another, less important difference. Hartung and Trahiotis did not use a
running cross correlation but integrated across the whole 30 msec waveform. This
simplifies the modelling process by avoiding some difficult decisions. In this
implementation, however, we have used a 50-msec stimulus period starting with a 20
msec silence. The result is then integrated with a time constant of 15 msec.

The model has a number of stages

• Stimulus Input; A pair of binaural clicks.
• Auditory periphery: This section uses the same auditory periphery as

described in the Loudness tutorial. The output from the periphery is a stream
of probabilities of action potentials in fibers of the AN.

• Cross-correlation. A separate cross-correlation (CCF) is computed at each
stimulus frequency.

• Summary CCFs are computed by adding vertically all the rows in the CCF
matrix (i.e. across all BF channels).

• Write to file

#precedence.sim

off Diagnostics mode ("off" or "on").
relative Parameter file path mode - \relative\ or \absolute\

12/11/2003 69 AMSTutorials.doc

begin {

Stimulus generation
left clicks
L1% stim_click (->Lacc) <click_L1.par
L2% stim_click (->Lacc) <click_L2.par
Lacc% Util_accumulate (L1, L2->bin)

right clicks
R1% stim_click (->Racc) <click_R1.par
R2% stim_click (->Racc) <click_R2.par
Racc% Util_accumulate (R1, R2->bin)

#combine left and right clicks into binaural stimulus
bin% Util_createBinaural (Lacc, Racc->)

allow screen control of level
 Util_mathOp < mathOpClickLevel.par
 Display_Signal < displayStimulus.par

#outer/middle ear simulation
 Filt_MultiBPass < filtIIRMoore.par

#convert to stapes velocity
 Util_mathOp < mathOpstapes.par

#nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

#receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par
 Display_Signal < displayReceptorPotential.par

HSR spike probability
 IHC_Meddis2000 < IHC_Meddis2000HSR.par
 Display_Signal < displaySpikeProb.par

cross correlate
 Ana_ccf < ccf.par
 Display_Signal < displayCCF.par

#create summary acf
 Util_ReduceChannels < UtRedChans.par
 Display_Signal < displayCCFsummary.par

#write results to a data file
 DataFile_out
 }

12.1.2 Example
When the model is run, the screen should look something like this.

12/11/2003 70 AMSTutorials.doc

Figure 16 Precedence model

12.1.3 Generate click stimuli
We have four clicks; two on the left (L1, L2) and two on the right (R1, R2). We
compute them all separately so that we can have individual control over their timing.
The current set up creates a pair of clicks 2 msec apart with 0-msec ITD. The image
should be central (last display in Fig. 17) .

Each click parameter file looks like this.

stim_click <click_L1.par

TIME 22e-3
AMPLITUDE 1e6
DURATION 50e-3
DT 1e-5

TIME is when the click occurs (after 22 msec).
AMPLITUDE is the peak pressure in microPascals. These clicks are as wide as the
sampling interval (DT). Note that many psychophysical experiments have wider
clicks.
DURATION is the duration of the total stimulus including silence.
DT is the sampling period

First we create the two clicks on the left and then add them together

Lacc% Util_accumulate (L1, L2->bin)

Util_accumulate requires no parameter file. It just adds all its inputs together. The
inputs are specified in the brackets (L1, L2 -> bin) that also specify that the output
goes to the module labelled ‘bin%’.

12/11/2003 71 AMSTutorials.doc

Then we create the two clicks on the right and then add them together

Racc% Util_accumulate (R1, R2->bin)

12.1.4 Create Binaural stimulus

Combine the left and right stimulus into a binaural signal

bin% Util_createBinaural (Lacc, Racc->)

Util_createBinaural requires two inputs labelled Lacc and Racc to form the left and
right components of the binaural signal.

The overall level of the stimuli can be controlled by a scalar applied by mathOp

 Util_mathOp < mathOpClickLevel.par

The scalar is set to 1, so does not influence anything but is there for the user should he
wish to explore very low or high signal levels without having to reset each click level
independently.

12.1.5 Auditory periphery
This is the same as that used in the Loudness model and is described fully in sections
9.3.5 to 9.3.14.

 Filt_MultiBPass < filtIIRMoore.par

#convert to stapes velocity
 Util_mathOp < mathOpstapes.par

#nonlinear DRNL filterbank
 BM_DRNL < BM_DRNLHuman.par
 Display_Signal < displayBM.par

#receptor potential
 IHCRP_Shamma3StateVelIn < IHCRP_VelIn_GP.par
 Display_Signal < displayReceptorPotential.par

HSR spike probability
 IHC_Meddis2000 < IHC_Meddis2000HSR.par
 Display_Signal < displaySpikeProb.par

Note: The BM_DRNLHuman.par file has been adjusted to use the same
range of 14 best frequencies (224.7 to 1690 Hz) as used by Hartung
and Trahiotis.

12.1.6 Cross correlation
This module performs a within-channel running cross correlation function and
displays the final state of the function at the end of the signal.

 Ana_ccf < ccf.par

12/11/2003 72 AMSTutorials.doc

OFFSET 48e-3
TIME_CONST 1e30
MAX_LAG 1.5e-3

OFFSET specifies the time at which the running cross correlation is to be displayed.
The OFFSET must be shorter than the duration of the stimulus. As a rule of thumb,
OFFSET+MAX_LAG <= DURATION.
(DURATION is specified in the click parameter files).

TIME_CONST specifies the time constant of a running cross-correlation function.
Here we have set the time constant to a very large number (1e30). This is effectively
an infinite time constant.

MAX_LAG specifies the longest ITD to be computed (H&T used +/- 1.5 msec).

12.1.7 Display_Signal < displayCCF.par
We want to see the summary cross correlation coefficient (SCCF) as well as the
individual CCFs. This can be achieved by setting the subsequent display module
parameter 'summary_display' to 'ON'. Note that this is a display facility only. The
SACF is not passed to the next module. The output from Ana_ccf is the matrix of
cross correlation functions (channel x lag).

It is also important to label the x-axis correctly ('Lag') to avoid confusion.

Display_Signal < displayCCF.par

Y_AXIS_MODE CHANNEL Y-axis mode ('channel' (No.) or 'scale').

AUTO_Y_SCALE ON Automatic y-axis scale ('on' or 'off').

X_AXIS_TITLE "Lag (s)"

WIN_TITLE cross correlation Display window title.
SUMMARYDISPLAY ON Summary display mode ('on' or 'off').

WIN_HEIGHT 300 Display frame height (pixel units).
WIN_WIDTH 300 Display frame width (pixel units).
WIN_X_POS 300 Display frame X position (pixel units).
WIN_Y_POS 300 Display frame Y position (pixel units).

12.1.8 Computing the SCCF
This module performs a summation (or averaging) across channels of the signal. The
user specifies how many output signals he wants. If two are selected, the top half of
the signals are combined to produce the first output signal and the bottom half used to
produce the second output signal. We want only one.

Util_ReduceChannels < UtRedChans.par

MODE SUM Mode 'average' or simple 'sum'.
NUM_CHANNELS 1 Number of resulting channels.

12/11/2003 73 AMSTutorials.doc

12.1.9 Writing the results to file
The result of the preceding module is written to an output file. The default is
'output.dat'.

The output has the following format

Delay period (s) 0
-1.50000e-003 2.27253e-006
-1.49000e-003 2.39382e-006
-1.48000e-003 2.52502e-006
-1.47000e-003 2.66667e-006
-1.46000e-003 2.8193e-006
-1.45000e-003 2.98337e-006
.............

12.2 Fun things to do

12.2.1 Move to the left using the first click
Advance the time of the first left click (L1) by, say, 300 microSec. The CCF peak
should move to the left.

12.2.2 Move to the left using the second click
Restore the time of the L1 and now advance the time of L2 by the same amount, say,
300 microSec. The peak should move to left of centre but by a smaller margin than
observed when L1 was moved

12.2.3 Do some real modelling
Hartung and Trahiotis (2001) show a number of results using their implementation of
the model (using linear filters and the old 86 hair cell model). You could try to
replicate their results using the lates nonlinear model.

.

12/11/2003 74 AMSTutorials.doc

12/11/2003 75 AMSTutorials.doc

13 Bibliography

Hartung, K. and Trahiotis, C. (2001) “peripheral auditory processing and

investigations of the ‘precedence effect’ which utilize successive transient
stimuli”, J Acoust Soc Am, 110, 1505-1513.

Glasberg, B. R., and Moore, B. C. J. (2002). "A model of loudness
applicable to time-varying sounds," J. Audio Eng. Soc. 50, 331-342.

Moore BCJ, Glasberg BR, Baer T. (1997). “A model for the prediction of thresholds,
loudness, and partial loudness,” J Audio Eng Soc 45 (4): 224-240.

Greenwood Donald D. (1990) "A cochlear frequency-position function for several
species 29 years later", J Acoust Soc Am, 87, 6, Cochlear Mechanics.

Lopez-Poveda E.A., and Meddis R. (2001a). "A human nonlinear cochlear
filterbank," J. Acoust. Soc. Am. 110, 3107-3118.

Meddis, R. and O'Mard, (1997) "A unitary theory of pitch perception,"
Journal of the Acoustical Society of America. 102, 1811-1820.

Meddis, R., O'Mard, L.P., and Lopez-Poveda, E.A. (2001). "A computational
algorithm for computing nonlinear auditory frequency selectivity," J. Acoust.
Soc. Am. 109, 2852-2861.

Moore, B. C. J., Glasberg, B. R., and Baer, T. (1997). "A model for the
prediction of thresholds, loudness and partial loudness," J. Audio Eng.
Soc. 45, 224-240.

Moore, B.C.J. and Glasberg, B.R. (1987) "Formulae describing frequency selectivity
in the perception of loudness, pitch and time," in Frequency Selectivity in
Hearing, edited by B.C.J.Moore (Academic, London)

Plack , C.P. and Carlyon,R.P. (1995) 'Loudness perception and Intensity coding' in
Hearing, ed. B.C.J.Moore (Academic, New York).

Relkin,E.M. and Doucet,J.R. (1991) Hearing Research, 55, 215-222.
Sumner, C., Lopez-Poveda, E.A., O'Mard, L.P. and Meddis, R. (2002). 'Adaptation in

a revised inner-hair cell model,' submitted to Journal of Acoustical Society of
America. (accepted subject to revision).

Sumner, C., O'Mard, L.P., Lopez-Poveda, E.A., and Meddis, R. (2003). 'A non-linear
filter-bank model of the guinea-pig cochlea,', submitted to Journal of
Acoustical Society of America (accepted subject to revision).

Sumner, C.J., O'Mard, L.P., Lopez-Poveda, E.A., and Meddis, R. (2002a). "A revised
model of the inner-hair cell and auditory nerve complex," Journal of the
Acoustical Society of America, 111, 2189-2199.

Houtsma, A.J.M. And Goldstein, J.L. (1972) "The central origin of the pitch of

complex tones: evidence from musical interval recognition,", J Acoust Soc
Am, 51, 520-529

	First steps with Auditory Modelling system (AMS)
	Getting started
	Load the model
	Go!
	Stop!
	Quit.
	Re-launching AMS

	Trouble shooting.
	Simple things that can go wrong.

	About AMS
	A shared resource
	Organic nature
	Levels of user
	Free to University users

	Understanding AMS files (.sim, .par and .spf)
	
	Overview and example of .sim and .par files

	The .sim file
	Simulation file structure
	Header.
	Process statements.
	Switch.
	Labels
	Process names.
	Path indicators
	Parameter file names

	Repeat loops
	Editing .sim files

	Parameter files
	Changing parameters

	.spf files
	Creating .spf files
	Example of simulation specification file

	Running a simulation

	Using AMS with MATLAB
	Example Program
	Reading .dat files

	File input/output in AMS
	File types
	Parameters
	File input
	Text or ASCII files
	Gain setting
	Gain setting for WAV files

	File use in SEGMENT mode

	Gammatone filterbank
	Simulation file.
	processes and parameters
	Stimulus generation
	Ramp on/off
	Display signal
	Outer/middle ear filter
	Conversion to stapes velocity
	Gammatone filter
	BM display
	File output

	Things to do
	Switch off diagnostics
	Change the BF range

	Nonlinear filterbank
	Simulation file
	DRNL parameter file
	Model output
	Things to do
	Compare the output of the DRNL with the gammatone filter.

	Auditory nerve
	Single auditory nerve fiber
	Simulation file
	Processes and parameters
	Filterbank
	Receptor potential
	Display receptor potential
	IHC synapse
	Auditory nerve refractory effects

	Generating a post stimulus time histogram (PSTH)
	Simulation file

	Create a PSTH
	Display the PSTH
	Things to do

	Generate a Period histogram
	period histogram
	Display period histogram
	Things to do

	The 'Loudness' model
	General introduction
	The loudness simulation file
	Processes and parameter files
	Stimulus generation
	Stimulus ramps
	PadSignal
	Display signal
	Human outer/middle ear
	stapes motion
	BM_DRNL< BM_DRNLHuman.par
	Display BM
	Receptor potential
	Display Receptor potential
	IHC synapse; LSR fibers
	Auditory nerve spike generation; LSR fibers
	Display spike activity
	HSR fibers
	Util_Accumulate
	Util_ReduceChannels < reduceChannels.par
	Filt_MultiBPass< filtMBtemporalWindow.par
	Display_Signal< displaySumAN.par
	DataFile_out< dataFileOut.par

	Things to do
	Stimulus intensity
	Effect of phase on loudness

	Autocorrelation
	Model implementation (.sim and .par files)
	.sim file
	Example
	Generate harmonic stimulus
	Auditory periphery
	Autocorrelation
	Display_Signal< displayACF.par
	Computing the SACF
	Writing the results to file

	Binaural pitch extraction
	Model outline
	Early-crossover model
	.sim file
	Stimulus input
	The peripheral model
	Crossover
	Autocorrelation and SACF

	Late-crossover model
	.sim file
	Example

	Discussion

	Precedence
	Model implementation (.sim and .par files)
	.sim file
	Example
	Generate click stimuli
	Create Binaural stimulus
	Auditory periphery
	Cross correlation
	Display_Signal< displayCCF.par
	Computing the SCCF
	Writing the results to file

	Fun things to do
	Move to the left using the first click
	Move to the left using the second click
	Do some real modelling

	Bibliography

