Mathematics with Computing (Including Foundation Year)

Staff member? Login here

Academic Year of Entry: 2024/25
Course overview
(BSc) Bachelor of Science
Mathematics with Computing (Including Foundation Year)
University of Essex
University of Essex
Essex Pathways
Colchester Campus
Honours Degree
Mathematics, Statistics and Operational Research


Professional accreditation


Admission criteria

UK and EU applicants:

All applications for degree courses with a foundation year (Year Zero) will be considered individually, whether you

  • think you might not have the grades to enter the first year of a degree course;
  • have non-traditional qualifications or experience (e.g. you haven’t studied A-levels or a BTEC);
  • are returning to university after some time away from education; or
  • are looking for more support during the transition into university study.

Standard offer:

Our standard offer is 72 UCAS tariff points from at least two full A-levels, or equivalent.

Examples of the above tariff may include:

  • A-levels: DDD
  • BTEC Level 3 Extended Diploma: MMP
  • T-levels: Pass with E in core

For this course all applicants must also hold GCSE Maths and Science at grade C/4 or above (or equivalent). We may be able to consider a pass in OFQUAL regulated Level 2 Functional Skills Maths where you cannot meet the requirements for Maths at GCSE level. However, you are advised to try to retake GCSE Mathematics if possible as this will better prepare you for university study and future employment.

If you are unsure whether you meet the entry criteria, please get in touch for advice.

Mature applicants and non-traditional academic backgrounds:

We welcome applications from mature students (over 21) and students with non-traditional academic backgrounds (might not have gone on from school to take level 3 qualifications). We will consider your educational and employment history, along with your personal statement and reference, to gain a rounded view of your suitability for the course.

You will still need to meet our GCSE requirements.

International applicants:

Essex Pathways Department is unable to accept applications from international students. Foundation pathways for international students are available at the University of Essex International College and are delivered and awarded by Kaplan, in partnership with the University of Essex. Successful completion will enable you to progress to the relevant degree course at the University of Essex.

IELTS (International English Language Testing System) code

English language requirements for applicants whose first language is not English: IELTS 5.5 overall with a minimum of 5.5 in each component, or specified score in another equivalent test that we accept.

Details of English language requirements, including component scores, and the tests we accept for applicants who require a Student visa (excluding Nationals of Majority English Speaking Countries) can be found here

If we accept the English component of an international qualification it will be included in the academic levels listed above for the relevant countries.

English language shelf-life

Most English language qualifications have a validity period of 5 years. The validity period of Pearson Test of English, TOEFL and CBSE or CISCE English is 2 years.

If you require a Student visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.

Pre-sessional English courses

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Pending English language qualifications

You don’t need to achieve the required level before making your application, but it will be one of the conditions of your offer.

If you cannot find the qualification that you have achieved or are pending, then please email

Additional Notes

If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College

Course qualifiers

A course qualifier is a bracketed addition to your course title to denote a specialisation or pathway that you have achieved via the completion of specific modules during your course. The specific module requirements for each qualifier title are noted below. Eligibility for any selected qualifier will be determined by the department and confirmed by the final year Board of Examiners. If the required modules are not successfully completed, your course title will remain as described above without any bracketed addition. Selection of a course qualifier is optional and student can register preferences or opt-out via Online Module Enrolment (eNROL).


Rules of assessment

Rules of assessment are the rules, principles and frameworks which the University uses to calculate your course progression and final results.

Additional notes


External examiners

Staff photo
Prof Stephen Langdon


Brunel University London

External Examiners provide an independent overview of our courses, offering their expertise and help towards our continual improvement of course content, teaching, learning, and assessment. External Examiners are normally academics from other higher education institutions, but may be from the industry, business or the profession as appropriate for the course. They comment on how well courses align with national standards, and on how well the teaching, learning and assessment methods allow students to develop and demonstrate the relevant knowledge and skills needed to achieve their awards. External Examiners who are responsible for awards are key members of Boards of Examiners. These boards make decisions about student progression within their course and about whether students can receive their final award.

eNROL, the module enrolment system, is now open until Monday 21 October 2024 8:59AM, for students wishing to make changes to their module options.


Core You must take this module.
You must pass this module. No failure can be permitted.
Core with Options You can choose which module to study.
You must pass this module. No failure can be permitted.
Compulsory You must take this module.
There may be limited opportunities to continue on the course/be eligible for the degree if you fail.
Compulsory with Options You can choose which module to study.
There may be limited opportunities to continue on the course/be eligible for the degree if you fail.
Optional You can choose which module to study.
There may be limited opportunities to continue on the course/be eligible for the degree if you fail.

Year 0 - 2024/25

Component Number Module Code Module Title Status Min Credits Max Credits
01  IA160-3-FY-CO  Computer Programming  Core  30  30 
02  IA193-3-FY-CO  Research and Academic Development Skills  Core  30  30 
03  IA115-3-FY-CO  Mathematical Methods and Statistics  Core  30  30 
04    IA112-3-FY or IA126-3-FY  Core with Options  30  30 

Year 1 - 2025/26

Component Number Module Code Module Title Status Min Credits Max Credits
01  CE151-4-AU-CO  Introduction to Programming  Core  15  15 
02  CE152-4-SP-CO  Object-Oriented Programming  Core  15  15 
03  MA101-4-FY-CO  Calculus  Core  30  30 
04  MA108-4-SP-CO  Statistics I  Core  15  15 
05  MA114-4-AU-CO  Matrices and Complex Numbers  Core  15  15 
06  MA185-4-AU-CO  Mathematical and Computational Modelling  Compulsory  15  15 
07  MA181-4-AU-CO  Discrete Mathematics  Compulsory  15  15 
08  MA199-4-FY-CO  Mathematics Careers and Employability  Compulsory 

Year 2 - 2026/27

Component Number Module Code Module Title Status Min Credits Max Credits
01  CE203-5-AU-CO  Application Programming  Compulsory  15  15 
02  CE204-5-AU-CO  Data Structures and Algorithms  Compulsory  15  15 
03  MA201-5-AU-CO  Linear Algebra  Compulsory  15  15 
04  MA200-5-AU-CO  Statistics II  Compulsory  15  15 
05  MA203-5-AU-CO  Real Analysis  Compulsory  15  15 
06  MA205-5-SP-CO  Optimisation (Linear Programming)  Compulsory  15  15 
07  MA209-5-SP-CO  Numerical Methods  Compulsory  15  15 
08    MA202-5-SP or MA204-5-SP  Compulsory with Options  15  15 
09  MA199-5-FY-CO  Mathematics Careers and Employability  Compulsory 

Year 3 - 2027/28

Component Number Module Code Module Title Status Min Credits Max Credits
01  MA302-6-AU-CO  Complex Variables  Compulsory  15  15 
02    MA829-6-AU or MA830-6-SP  Compulsory with Options  15  15 
03    Computing option(s) from list  Optional  30  30 
04    Mathematics option(s) from list  Optional  60  60 
05  MA199-6-FY-CO  Mathematics Careers and Employability  Compulsory 

Exit awards

A module is given one of the following statuses: 'core' – meaning it must be taken and passed; 'compulsory' – meaning it must be taken; or 'optional' – meaning that students can choose the module from a designated list. The rules of assessment may allow for limited condonement of fails in 'compulsory' or 'optional' modules, but 'core' modules cannot be failed. The status of the module may be different in any exit awards which are available for the course. Exam Boards will consider students' eligibility for an exit award if they fail the main award or do not complete their studies.

Programme aims

  • To equip students with the knowledge and skills that are currently in demand in mathematically oriented employment in business, commerce, industry, government service, the field of education and in the wider economy.
  • To provide students with a foundation for further study and research.
  • To produce graduates who are mathematically literate and capable of appreciating a logical argument.
  • To enable students to acquire a broad understanding of mathematics.
  • To provide teaching which is informed and enhanced by the research activities of its staff.
  • To encourage students to adopt an investigative approach and develop independent study skills in order to ensure their continuing professional development.
  • The programme introduces the students to some of the ideas and underlying theory of computer science, in particular they will learn to program in languages such as JAVA and C++.

  • Learning outcomes and learning, teaching and assessment methods

    On successful completion of the programme a graduate should demonstrate knowledge and skills as follows:

    A: Knowledge and understanding

    A1: Knowledge and understanding of the basic mathematical methods and techniques of linear mathematics, calculus and statistics that underpin the study of more advanced mathematical ideas.

    A2: Knowledge and understanding of some of the ideas and methods used in mathematical proof of results in algebra, analysis, and discrete mathematics and familiarity with some specific examples.

    A3: Knowledge and understanding of the principles of computer programming and computer packages, and experience in their use.

    A4: Knowledge and understanding of the use of mathematics for modelling and as an investigative tool for the solution of practical problems. An appreciation of the importance of assumptions.

    A5: Knowledge of some aspects of computer science and in particular programming additional to those specified in A3 above selected from a range of module

    Learning methods

    Lectures are the principle method of delivery for the concepts and principles involved in A1-A5.

    Students are also directed to reading from textbooks and material available online.

    In some modules, understanding is enhanced through the production of a written report.

    Understanding is reinforced by means of classes (A1-A5), laboratories (A3, A4) and assignments (A1-A5).

    Assessment methods

    Achievement of knowledge outcomes is assessed primarily through unseen closed-book examinations and also, in some modules, through marked coursework, laboratory reports, statistical assignments, project reports and oral examinations.

    Regular problem sheets provide formative assessment in most courses.

    B: Intellectual and cognitive skills

    B1: Identify an appropriate method to solve a specific mathematical or computing problem.

    B2: Analyse a given mathematical problem and select the most appropriate tools for its solution.

    Learning methods

    The basis for intellectual skills is provided in lectures and they are developed by means of recommended reading, guided and independent study, assignments and project work.

    B1 and B2 are developed through exercises supported by classes.

    B1-B2 are all-important aspects of the projects that constitute a part of some modules, and the optional final year project.

    Assessment methods

    Achievement of intellectual skills is assessed primarily through unseen closed-book examinations, and also through marked assignments and project work.

    C: Practical skills

    C1: Use computational tools and packages.

    C2: The ability to apply a rigorous, analytic, highly numerate approach to a problem.

    Learning methods

    The practical skills of mathematics with computing are developed in exercise classes, laboratory classes, assignments and project work.

    C1 is acquired through the learning of at least one programming language and the use of a number of computer packages, as a part of the teaching of modules for which they are relevant.

    C2 is acquired and enhanced throughout the course.

    Assessment methods

    Achievement of practical skills is assessed through marked coursework and project reports and presentations.

    D: Key skills

    D1: Communicate effectively, both mathematical arguments and textual accounts of ideas.

    D2: Use appropriate IT facilities as a tool in the analysis of mathematical problems.

    D3: Use mathematical techniques correctly.

    D4: Analyse complex problems and find effective solutions.

    D5: Organise activity and manage time in the course of study.

    Learning methods

    D1 is practised throughout the course in the construction of solutions to mathematical and computing problems, both for assessment and as exercises, and (in some modules) writing reports and projects.

    D1 and D2 are developed in group and individual project work.

    D2 is also developed through the use of computer packages in a number of modules.

    D3 -D5 are developed in exercises and assignments throughout the degree.

    Assessment methods

    D1 is assessed through examinations, coursework and oral examinations.

    D2 is assessed primarily through coursework.

    Assessment of the key skills D3 - D5 is intrinsic to subject-based assessment.

    The assessment of MA829 and MA830 includes specific allocations of credit for the quality of presentations (D1 and D2).


    The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements, industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications.

    The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.


    If you are thinking of studying at Essex and have questions about the course, please contact Undergraduate Admissions by emailing, or Postgraduate Admissions by emailing

    If you're a current student and have questions about your course or specific modules, please contact your department.

    If you think there might be an error on this page, please contact the Course Records Team by emailing