Staff member? Login here

Robotic Engineering (Including Year Abroad)

Course overview

(BEng) Bachelor of Engineering
Robotic Engineering (Including Year Abroad)
Current
University of Essex
University of Essex
Computer Science and Electronic Engineering (School of)
Colchester Campus
Honours Degree
Full-time
BENGH616
http://www.essex.ac.uk/students/exams-and-coursework/ppg/ug/default.aspx
15/04/2017

A-levels: BBB, including Mathematics
Please note we are unable to accept A-level Use of Mathematics in place of A-level Mathematics
GCSE: Science C/4

IB: 30 points, including Higher Level Mathematics grade 5 and Standard Level Science or IB Middle Years Science grade 4. We are also happy to consider a combination of separate IB Diploma Programmes at both Higher and Standard Level.

Exact offer levels will vary depending on the range of subjects being taken at higher and standard level, and the course applied for. Please contact the Undergraduate Admissions Office for more information.

BTEC Extended Diploma: DDM, including Merit in Further Mathematics for Engineering Technicians

English language requirements for applicants whose first language is not English: IELTS 6.0 overall. Different requirements apply for second year entry, and specified component grades are also required for applicants who require a Tier 4 visa to study in the UK.

Other English language qualifications may be acceptable so please contact us for further details. If we accept the English component of an international qualification then it will be included in the information given about the academic levels listed above. Please note that date restrictions may apply to some English language qualifications

If you are an international student requiring a Tier 4 visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Additional Notes

If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College here.

External Examiners

Dr Robert John Watson
University of Bath
Senior Lecturer

External Examiners provide an independent overview of our courses, offering their expertise and help towards our continual improvement of course content, teaching, learning, and assessment. External Examiners are normally academics from other higher education institutions, but may be from the industry, business or the profession as appropriate for the course. They comment on how well courses align with national standards, and on how well the teaching, learning and assessment methods allow students to develop and demonstrate the relevant knowledge and skills needed to achieve their awards. External Examiners who are responsible for awards are key members of Boards of Examiners. These boards make decisions about student progression within their course and about whether students can receive their final award.

eNROL, the module enrolment system, is now open until Monday 21 October 2019 8:59AM, for students wishing to make changes to their module options.

Key

Core You must take this module You must pass this module. No failure can be permitted.
Core with Options You can choose which module to study
Compulsory You must take this module There may be limited opportunities to continue on the course/be eligible for the degree if you fail.
Compulsory with Options You can choose which module to study
Optional You can choose which module to study

Year 2 - 2020/21

Component Number Module Code Module Title Status Credits
01 CE203-5-AU Application Programming Core 15
02 CE204-5-SP Data Structures and Algorithms Core 15
03 CE213-5-AU Artificial Intelligence Core 15
04 CE215-5-SP Robotics Core 15
05 CE262-5-AU Engineering Mathematics Core 15
06 CE293-5-FY or CE299-5-FY Core with Options 15
07 CE269-5-SP Control theory and practice Core 15
08 Option from list Core with Options 15

Year Abroad/Placement - 2021/22

Component Number Module Code Module Title Status Credits
01 AW600-6-FY Compulsory 60

Year 3 - 2022/23

Component Number Module Code Module Title Status Credits
01 CE301-6-FY Individual Capstone Project Challenge Core 45
02 CE315-6-SP Mobile Robotics Core 15
03 CE316-6-SP Computer Vision Core 15
04 Option from list Core with Options 15
05 Option(s) from list Core with Options 30

Exit awards

A module is given one of the following statuses: 'core' – meaning it must be taken and passed; 'compulsory' – meaning it must be taken; or 'optional' – meaning that students can choose the module from a designated list. The rules of assessment may allow for limited condonement of fails in 'compulsory' or 'optional' modules, but 'core' modules cannot be failed. The status of the module may be different in any exit awards which are available for the course. Exam Boards will consider students' eligibility for an exit award if they fail the main award or do not complete their studies.

Programme aims

The aims of the BEng Robotic Engineering are:

1. to equip students with the knowledge and skills that are currently in high demand in the robotics and related industries

2. to provide students with a foundation for further study and research

3. to enable students to acquire a broad understanding of robotic engineering, whilst providing opportunities for them to develop expertise within particular areas of specialisation

4. to develop the students' ability to make an effective contribution to team-based activity

5. to encourage students to adopt an investigative approach and develop autonomous study skills in order to ensure their continuing professional development

6. to provide students with an understanding of the industrial context and an appreciation of a range of external factors that affect the work of the professional robotics engineer.



Learning outcomes and learning, teaching and assessment methods

On successful completion of the programme a graduate should demonstrate knowledge and skills as follows:

A: Knowledge and understanding

A1 Knowledge and understanding of scientific principles and methodology necessary to underpin their education in their engineering discipline, to enable appreciation of its scientific and engineering context, and to support their understanding of relevant historical, current and future developments and technologies.
A2 Knowledge and understanding of mathematical and statistical methods necessary to underpin their education in their engineering discipline and to enable them to apply mathematical and statistical methods, tools and notations proficiently in the analysis and solution of engineering problems.
A3 Knowledge and understanding and computer and electronic systems as applied to robotics.
A4 Demonstrate knowledge and understanding of studying this subject in another culture
Learning Methods: Lectures are the principal method of delivery for the concepts and principles involved in the majority of the learning outcomes.

Students are also directed to reading from textbooks, academic papers and material available on-line.

Understanding is reinforced by means of exercise classes, discussion groups, laboratories, assignments and project work.

Specialist knowledge is further developed during supervision of the final year individual project.

Assessment Methods: Achievement of knowledge outcomes is assessed primarily through unseen closed-book examinations, and also through marked coursework.

An assessment of the understanding of underlying concepts and principles forms part of the overall assessment of the final year individual project report and oral presentation.


B: Intellectual and cognitive skills

B1 Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline.
B2 Understanding of engineering principles and the ability to apply them to analyse key engineering processes.
B3 Understand and evaluate business, customer and user needs, including considerations such as the wider engineering context, public perception and aesthetics.
B4 Investigate and define the problem, identifying any constraints including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards.
B5 Work with information that may be incomplete or uncertain and quantify the effect of this on the design.
B6 Apply advanced problem-solving skills, technical knowledge and understanding, to establish rigorous and creative solutions that are fit for purpose for all aspects of the problem including production, operation, maintenance and disposal.
B7 Apply engineering design principles to the design and operation of robotic systems.
Learning Methods: The basis for intellectual skills is provided in lectures, and they are developed by means of recommended reading, guided and self directed study, assignments and project work.
Assessment Methods: Achievement of intellectual skills is assessed primarily through unseen closed-book examinations, and also through marked assignments and project work.

C: Practical skills

C1 Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques.
C2 Ability to apply quantitative and computational methods in order to solve engineering problems and to implement appropriate action.
C3 Understanding of, and the ability to apply, an integrated or systems approach to solving engineering problems.
C4 Plan and manage the design process, including cost drivers, and evaluate outcomes.
C5 Understanding of contexts in which engineering knowledge can be applied (eg operations and management, application and development of technology, etc).
C6 Knowledge of characteristics of particular materials, equipment, processes, or products.
C7 Ability to apply relevant practical and laboratory skills.
C8 Ability to design, construct and analyse robotic systems.
C9 Students will be able to apply the necessary organisational and cultural skills for living and working abroad
Learning Methods: Practical skills are developed in exercise classes, laboratory classes, assignments and project work.

Assessment Methods: Achievement of practical skills is assessed through marked coursework, project reports, oral presentations and demonstrations of completed systems.

D: Key skills

D1 Communicate their work to technical and non-technical audiences.
D2 Understanding of the need for a high level of professional and ethical conduct in engineering and a knowledge of professional codes of conduct.
D3 Knowledge and understanding of the commercial, economic and social context of engineering processes.
D4 Knowledge and understanding of management techniques, including project management, that may be used to achieve engineering objectives.
D5 Understanding of the requirement for engineering activities to promote sustainable development and ability to apply quantitative techniques where appropriate.
D6 Awareness of relevant legal requirements governing engineering activities, including personnel, health and safety, contracts, intellectual property rights, product safety and liability issues.
D7 Knowledge and understanding of risk issues, including health and safety, environmental and commercial risk, and of risk assessment and risk management techniques.
D8 Understanding of the use of technical literature and other information sources.
D9 Knowledge of relevant legal and contractual issues.
D10 Understanding of appropriate codes of practice and industry standards.
D11 Awareness of quality issues and their application to continuous improvement.
D12 Ability to work with technical uncertainty.
D13 Understanding of, and the ability to work in, different roles within an engineering team.
Learning Methods: Students learn key skills in research, problem solving, communication and team project work in the first year project module, and thereafter the development of key skills forms an integral part of their overall learning activity.

Assessment Methods: Assessment of the key skills is intrinsic to subject based assessment.
The assessment of project work includes specific allocations of credit for project management and the quality of presentations.
An individual's contribution to team projects is determined by means of a submission containing reflective and self-assessment components.
The assessment of the final year individual project report includes specific allocation of credit for the quality, extent and relevance of a bibliography, including internet sources.


Note

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements, industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.

Should you have any questions about programme specifications, please contact Course Records, Quality and Academic Development; email: crt@essex.ac.uk.