(BEng) Bachelor of Engineering
Electronic Engineering (Including Foundation Year)
Current
University of Essex
University of Essex
Essex Pathways
Colchester Campus
Honours Degree
Full-time
Engineering
BENGH61P
10/05/2023
Details
Professional accreditation
None
Admission criteria
UK and EU applicants:
All applications for degree courses with a foundation year (Year Zero) will be considered individually, whether you
- think you might not have the grades to enter the first year of a degree course;
- have non-traditional qualifications or experience (e.g. you haven’t studied A-levels or a BTEC);
- are returning to university after some time away from education; or
- are looking for more support during the transition into university study.
Standard offer:
Our standard offer is 72 UCAS tariff points from at least two full A-levels, or equivalent.
Examples of the above tariff may include:
- A-levels: DDD
- BTEC Level 3 Extended Diploma: MMP
- T-levels: Pass with E in core
For this course all applicants must also hold GCSE Maths and Science at grade C/4 or above (or equivalent). We may be able to consider a pass in Level 2 Functional Skills Maths where you cannot meet the requirements for Maths at GCSE level. However, you are advised to try to retake GCSE Mathematics if possible as this will better prepare you for university study and future employment.
If you are unsure whether you meet the entry criteria, please get in touch for advice.
Mature applicants and non-traditional academic backgrounds:
We welcome applications from mature students (over 21) and students with non-traditional academic backgrounds (might not have gone on from school to take level 3 qualifications). We will consider your educational and employment history, along with your personal statement and reference, to gain a rounded view of your suitability for the course.
You will still need to meet our GCSE requirements.
International applicants:
Essex Pathways Department is unable to accept applications from international students. Foundation pathways for international students are available at the University of Essex International College and are delivered and awarded by Kaplan, in partnership with the University of Essex. Successful completion will enable you to progress to the relevant degree course at the University of Essex.
IELTS (International English Language Testing System) code
English language requirements for applicants whose first language is not English: IELTS 5.5 overall. Specified component grades are also required for applicants who require a Tier 4 visa to study in the UK.
Other English language qualifications may be acceptable so please contact us for further details. If we accept the English component of an international qualification then it will be included in the information given about the academic levels required. Please note that date restrictions may apply to some English language qualifications
If you are an international student requiring a Tier 4 visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.
If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.
Additional Notes
Our Year 0 courses are only open to UK and EU applicants. If you’re an international student, but do not meet the English language or academic requirements for direct admission to your chosen degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College.
Course qualifiers
None
Rules of assessment
Rules of assessment are the rules, principles and frameworks which the University uses to calculate your course progression and final results.
Additional notes
None
External examiners
Dr Shadan Khan Khattak
Senior Lecturer
Cardiff Metropolitan University
External Examiners provide an independent overview of our courses, offering their expertise and help towards our continual improvement of course content, teaching, learning, and assessment.
External Examiners are normally academics from other higher education institutions, but may be from the industry, business or the profession as appropriate for the course.
They comment on how well courses align with national standards, and on how well the teaching, learning and assessment methods allow students to develop and demonstrate the relevant knowledge and skills needed to achieve their awards.
External Examiners who are responsible for awards are key members of Boards of Examiners. These boards make decisions about student progression within their course and about whether students can receive their final award.
Programme aims
To equip students with the knowledge and skills that are currently in high demand in the electronics and related industries .
To provide students with a foundation for further study and research .
To enable students to acquire a broad understanding of electronic engineering, whilst providing opportunities for them to develop expertise within particular areas of specialisation .
To develop the students' ability to make an effective contribution to team-based activity .
To encourage students to adopt an investigative approach and develop autonomous study skills in order to ensure their continuing professional development .
To provide students with an understanding of the industrial context and an appreciation of a range of external factors that affect the work of the professional electronics engineer.
Learning outcomes and learning, teaching and assessment methods
On successful completion of the programme a graduate should demonstrate knowledge and skills as follows:
A: Knowledge and understanding
A1: Apply knowledge of mathematics, statistics, natural science and engineering principles to the solution of complex problems. Some of the knowledge will be at the forefront of the particular subject of study.
A2: Analyse complex problems to reach substantiated conclusions using first principles of mathematics, statistics, natural science and engineering principles.
A3: Select and apply appropriate computational and analytical techniques to modelcomplex problems, recognising the limitations of the techniques employed.
A4: Select and evaluate technical literature and other sources of information to address complex problems
A5: Knowledge and understanding of electronic circuits and systems.
Learning methods
Lectures are the principal method of delivery for the concepts and principles involved in the majority of the learning outcomes.
Students are also directed to reading from textbooks, academic papers and material available on-line.
Understanding is reinforced by means of exercise classes, discussion groups, laboratories, assignments and project work.
Specialist knowledge is further developed during supervision of the final year individual project.
Assessment methods
Achievement of knowledge outcomes is assessed primarily through unseen examinations, and also through marked coursework.
An assessment of the understanding of underlying concepts and principles forms part of the overall assessment of the final year individual project report and oral presentation.
B: Intellectual and cognitive skills
B1: Design solutions for complex problems that meet a combination of societal, user, business and customer needs as appropriate. This will involve consideration of applicable health & safety, diversity, inclusion, cultural, societal, environmental and commercial matters, codes of practice and industry standards.
B2: Apply an integrated or systems approach to the solution of complex problems.
B3: Evaluate the environmental and societal impact of solutions to complex problems and minimise adverse impacts.
B4: Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct.
B5: Use a risk management process to identify, evaluate and mitigate risks (the effects of uncertainty) associated with a particular project or activity.
B6: Apply engineering design principles to the design of electronic circuits and systems.
Learning methods
The basis for intellectual skills is provided in lectures, and they are developed by means of recommended reading, guided and self directed study, assignments and project work.
Assessment methods
Achievement of intellectual skills is assessed primarily through unseen examinations, and also through marked assignments and project work.
C: Practical skills
C1: Adopt a holistic and proportionate approach to the mitigation of security risks.
C2: Adopt an inclusive approach to engineering practice and recognise the responsibilities, benefits and importance of supporting equality, diversity and inclusion.
C3: Use practical laboratory and workshop skills to investigate complex problems.
C4: Select and apply appropriate materials, equipment, engineering technologies and processes, recognising their limitations.
C5: Ability to design, construct and analyse electronic circuits and systems.
Learning methods
Practical skills are developed in exercise classes, laboratory classes, assignments and project work.
Assessment methods
Achievement of practical skills is assessed through marked coursework, project reports, oral presentations and demonstrations of completed systems.
D: Key skills
D1: Discuss the role of quality management systems and continuous improvement in the context of complex problems.
D2: Apply knowledge of engineering management principles, commercial context, project and change management, and relevant legal matters including intellectual property rights.
D3: Function effectively as an individual, and as a member or leader of a team.
D4: Communicate effectively on complex engineering matters with technical and non-technical audiences.
D5: Plan and record self-learning and development as the foundation for lifelong learning/CPD.
Learning methods
Students learn key skills in research, problem solving, communication and team project work in the first year project module, and thereafter the development of key skills forms an integral part of their overall learning activity.
Assessment methods
Assessment of the key skills is intrinsic to subject based assessment.
The assessment of project work includes specific allocations of credit for project management and the quality of presentations.
An individual's contribution to team projects is determined by means of a submission containing reflective and self-assessment components.
The assessment of the final year individual project report includes specific allocation of credit for the quality, extent and relevance of a bibliography, including internet sources.