(BSc) Bachelor of Science
Computer Science (Including Foundation Year)
Current
University of Essex
University of Essex
Essex Pathways
Colchester Campus
Honours Degree
Full-time
BSC G403
08/05/2024
Details
Professional accreditation
None
Admission criteria
UK and EU applicants:
All applications for degree courses with a foundation year (Year Zero) will be considered individually, whether you
- think you might not have the grades to enter the first year of a degree course;
- have non-traditional qualifications or experience (e.g. you haven’t studied A-levels or a BTEC);
- are returning to university after some time away from education; or
- are looking for more support during the transition into university study.
Standard offer:
Our standard offer is 72 UCAS tariff points from at least two full A-levels, or equivalent.
Examples of the above tariff may include:
- A-levels: DDD
- BTEC Level 3 Extended Diploma: MMP
- T-levels: Pass with E in core
For this course all applicants must also hold GCSE Maths at grade C/4 or above (or equivalent). We may be able to consider a pass in OFQUAL regulated Level 2 Functional Skills Maths where you cannot meet the requirements for Maths at GCSE level. However, you are advised to try to retake GCSE Mathematics if possible as this will better prepare you for university study and future employment.
If you are unsure whether you meet the entry criteria, please get in touch for advice.
Mature applicants and non-traditional academic backgrounds:
We welcome applications from mature students (over 21) and students with non-traditional academic backgrounds (might not have gone on from school to take level 3 qualifications). We will consider your educational and employment history, along with your personal statement and reference, to gain a rounded view of your suitability for the course.
You will still need to meet our GCSE requirements.
International applicants:
Essex Pathways Department is unable to accept applications from international students. Foundation pathways for international students are available at the University of Essex International College and are delivered and awarded by Kaplan, in partnership with the University of Essex. Successful completion will enable you to progress to the relevant degree course at the University of Essex.
IELTS (International English Language Testing System) code
English language requirements for applicants whose first language is not English: IELTS 5.5 overall with a minimum of 5.5 in each component, or specified score in another equivalent test that we accept.
Details of English language requirements, including component scores, and the tests we accept for applicants who require a Student visa (excluding Nationals of Majority English Speaking Countries) can be found here
If we accept the English component of an international qualification it will be included in the academic levels listed above for the relevant countries.
English language shelf-life
Most English language qualifications have a validity period of 5 years. The validity period of Pearson Test of English, TOEFL and CBSE or CISCE English is 2 years.
If you require a Student visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.
Pre-sessional English courses
If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.
Pending English language qualifications
You don’t need to achieve the required level before making your application, but it will be one of the conditions of your offer.
If you cannot find the qualification that you have achieved or are pending, then please email ugquery@essex.ac.uk.
Additional Notes
If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College
Course qualifiers
A course qualifier is a bracketed addition to your course title to denote a specialisation or pathway that you have achieved via the completion of specific modules during your course. The
specific module requirements for each qualifier title are noted below. Eligibility for any selected qualifier will be determined by the department and confirmed by the final year Board of
Examiners. If the required modules are not successfully completed, your course title will remain as described above without any bracketed addition. Selection of a course qualifier is
optional and student can register preferences or opt-out via Online Module Enrolment (eNROL).
None
Rules of assessment
Rules of assessment are the rules, principles and frameworks which the University uses to calculate your course progression and final results.
Additional notes
None
External examiners
Prof Pietro Oliveto
Professor
Southern University of Science and Technology (SUSTech)
External Examiners provide an independent overview of our courses, offering their expertise and help towards our continual improvement of course content, teaching, learning, and assessment.
External Examiners are normally academics from other higher education institutions, but may be from the industry, business or the profession as appropriate for the course.
They comment on how well courses align with national standards, and on how well the teaching, learning and assessment methods allow students to develop and demonstrate the relevant knowledge and skills needed to achieve their awards.
External Examiners who are responsible for awards are key members of Boards of Examiners. These boards make decisions about student progression within their course and about whether students can receive their final award.
Programme aims
To equip students with the knowledge and skills that are currently in high demand in the computing industry and in the wider economy .
To provide students with a foundation for further study and research .
To enable students to acquire a broad understanding of computer science, whilst providing opportunities for them to develop expertise within particular areas of specialisation .
To develop the students' ability to make an effective contribution to team-based activity .
To encourage students to adopt an investigative approach and develop autonomous study skills in order to ensure their continuing professional development .
To provide students with an understanding of the industrial context and an appreciation of a range of external factors that affect the work of the computer professional.
Learning outcomes and learning, teaching and assessment methods
On successful completion of the programme a graduate should demonstrate knowledge and skills as follows:
A: Knowledge and understanding
A1: Apply knowledge of mathematics, statistics, natural science and engineering principles to the solution of complex problems. Some of the knowledge will be at the forefront of the particular subject of study.
A2: Analyse complex problems to reach substantiated conclusions using first principles of mathematics, statistics, natural science and engineering principles.
A3: Select and apply appropriate computational and analytical techniques to modelcomplex problems, recognising the limitations of the techniques employed.
A4: Select and evaluate technical literature and other sources of information to address complex problems
A5: Knowledge and understanding of computer science and software based design. (If studying on the MSci award this knowledge and understanding will be expected to be achieved at advanced level)
Learning methods
Lectures are the principal method of delivery for the concepts and principles involved in achieving the learning outcomes.
Students are also directed to reading from textbooks, academic papers and material available on-line.
Understanding is reinforced by means of exercise classes, discussion groups, laboratories, assignments and project work.
Specialist knowledge is further developed during supervision of the final year individual project.
Lectures and tutor-led seminars
Directed reading
Individual and group tasks
Assessment methods
Achievement of knowledge outcomes is assessed primarily through unseen examinations, and also through marked coursework.
An assessment of the understanding of underlying concepts and principles forms part of the overall assessment of the final year individual project report and oral presentation.
B: Intellectual and cognitive skills
B1: Design solutions for complex problems that meet a combination of societal, user, business and customer needs as appropriate. This will involve consideration of applicable health & safety, diversity, inclusion, cultural, societal, environmental and commercial matters, codes of practice and industry standards.
B2: Apply an integrated or systems approach to the solution of complex problems.
B3: Evaluate the environmental and societal impact of solutions to complex problems and minimise adverse impacts.
B4: Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct.
B5: Use a risk management process to identify, evaluate and mitigate risks (the effects of uncertainty) associated with a particular project or activity.
B6: Apply software engineering principles to the design of computer systems and software.
Learning methods
The basis for intellectual skills is provided in lectures, and they are developed by means of recommended reading, guided and self directed study, assignments and project work.
Assessment methods
Achievement of intellectual skills is assessed primarily through unseen examinations, and also through marked assignments and project work.
C: Practical skills
C1: Adopt a holistic and proportionate approach to the mitigation of security risks.
C2: Adopt an inclusive approach to engineering practice and recognise the responsibilities, benefits and importance of supporting equality, diversity and inclusion.
C3: Use practical laboratory and workshop skills to investigate complex problems.
C4: Select and apply appropriate materials, equipment, engineering technologies and processes, recognising their limitations.
C5: Ability to design, construct and analyse computer systems and software.
Learning methods
Practical skills are developed in exercise classes, laboratory classes, assignments and project work.
Lectures and tutor-led seminars
Directed reading
Individual and group tasks
Assessment methods
Achievement of practical skills is assessed through marked coursework, project reports, oral presentations and demonstrations of completed systems.
D: Key skills
D1: Discuss the role of quality management systems and continuous improvement in the context of complex problems.
D2: Apply knowledge of engineering management principles, commercial context, project and change management, and relevant legal matters including intellectual property rights.
D3: Function effectively as an individual, and as a member or leader of a team.
D4: Communicate effectively on complex engineering matters with technical and non-technical audiences.
D5: Plan and record self-learning and development as the foundation for lifelong learning/CPD.
Learning methods
Students learn key skills in research, problem solving, communication and team project work in the first year project module, and thereafter the development of key skills forms an integral part of their overall learning activity.
Lectures and tutor-led seminars
Directed reading
Individual and group tasks
Assessment methods
Assessment of the key skills is intrinsic to subject based assessment.
The assessment of project work includes specific allocations of credit for project management and the quality of presentations.
An individual's contribution to team projects is determined by means of a submission containing reflective and self-assessment components.
The assessment of the final year individual project report includes specific allocation of credit for the quality, extent and relevance of a bibliography, including internet sources.