CE708-7-AU-CO:
Computer Security

The details
2018/19
Computer Science and Electronic Engineering (School of)
Colchester Campus
Autumn
Postgraduate: Level 7
Current
Thursday 04 October 2018
Friday 14 December 2018
15
20 March 2013

 

Requisites for this module
(none)
(none)
(none)
(none)

 

CE823

Key module for

MSC G40012 Advanced Computer Science,
MSC H60112 Computer Networks and Security,
MSCIG402 Computer Science,
MSCII100 Computer Science (Integrated Masters, Including Placement Year)

Module description

Learning Outcomes

This course gives an introduction to computer security and cryptography, and then goes on to consider security as it relates to a single, network connected, computer. Introductory material is independent of any operating system but the consideration of tools will focus on those available for Linux, partly because its open-source nature facilitates this and partly because it is widely used on server systems. The introduction to cryptography will be used to consider its use in encryption and authentication.

On completion of the course, students should be able to:

1. Identify and describe common security vulnerabilities
2. Identify and describe different types of attack on computers
3. Recommend security tools and procedures to protect against specific types of attack
4. Describe the nature of malware, how it may be identified and the attack mitigated
5. Explain the distinction between different types of cryptography and identify common algorithms that are weak and strong
6. Describe the use of cryptography in certification and authentication


Outline Syllabus

Introduction:
-Principles of security and privacy, introduction to the different types of computer attack

-Common security policies, techniques and tools:
-Good administrative procedures for computer systems. Data security (e.g. good backup policy).
-Combating social engineering. Tools for identifying system vulnerabilities. Monitoring for break-ins. Recovering from a break-in.

Overview of Encryption:
-Applications of encryption to computer security. Types of encryption algorithms.
-Examples of encryption algorithms commonly used.

User Authentication:
-Methods of user authentication. One way functions and MD5., Biometric access control (e.g. fingerprint, iris etc.). Other techniques (e.g. smartcard).

Protecting passwords from attack:
-Good and bad passwords. Methods to crack passwords and policies/techniques to reduce the problem.

Malicious software:
-History. Classification. How viruses spread. Identifying malware.
-Antivirus software.

Risk analysis
-Analysis of risk. Steps in risk analysis. Using risk analysis to select new controls.

Module aims

No information available.

Module learning outcomes

No information available.

Module information

STUDENTS SHOULD NOTE THAT THIS MODULE INFORMATION IS SUBJECT TO REVIEW AND CHANGE

Learning and teaching methods

No information available.

Bibliography

This module does not appear to have a published bibliography.

Assessment items, weightings and deadlines

Coursework / exam Description Deadline Coursework weighting
Practical   Assignment 1 - Lab Report    33.33% 
Practical   Assignment 2 - Lab Report    33.34% 
Written Exam  Progress Test    33.33% 
Exam  Main exam: 120 minutes during Early Exams 

Exam format definitions

  • Remote, open book: Your exam will take place remotely via an online learning platform. You may refer to any physical or electronic materials during the exam.
  • In-person, open book: Your exam will take place on campus under invigilation. You may refer to any physical materials such as paper study notes or a textbook during the exam. Electronic devices may not be used in the exam.
  • In-person, open book (restricted): The exam will take place on campus under invigilation. You may refer only to specific physical materials such as a named textbook during the exam. Permitted materials will be specified by your department. Electronic devices may not be used in the exam.
  • In-person, closed book: The exam will take place on campus under invigilation. You may not refer to any physical materials or electronic devices during the exam. There may be times when a paper dictionary, for example, may be permitted in an otherwise closed book exam. Any exceptions will be specified by your department.

Your department will provide further guidance before your exams.

Overall assessment

Coursework Exam
30% 70%

Reassessment

Coursework Exam
0% 0%
Module supervisor and teaching staff
Dr Hossein Anisi, email: m.anisi@essex.ac.uk.
Dr Mohammad Anisi
School Office, email: csee-schooloffice (non-Essex users should add @essex.ac.uk to create full e-mail address), Telephone 01206 872770

 

Availability
Yes
No
No

External examiner

Dr Ning Wang
The University of Surrey
Lecturer in Networks
Prof Raouf Hamzaoui
De Montfort University
Resources
Available via Moodle
Of 32 hours, 21 (65.6%) hours available to students:
11 hours not recorded due to service coverage or fault;
0 hours not recorded due to opt-out by lecturer(s).

 

Further information

Disclaimer: The University makes every effort to ensure that this information on its Module Directory is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to programmes, modules, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements, industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to modules may for example consist of variations to the content and method of delivery or assessment of modules and other services, to discontinue modules and other services and to merge or combine modules. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications and module directory.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.