CE263-5-SP-CO:
Analogue Circuit Design
2024/25
Computer Science and Electronic Engineering (School of)
Colchester Campus
Spring
Undergraduate: Level 5
Current
Monday 13 January 2025
Friday 21 March 2025
15
27 June 2024
Requisites for this module
(none)
(none)
(none)
(none)
(none)
BENGH610 Electronic Engineering,
BENGH611 Electronic Engineering (Including Year Abroad),
BENGH61P Electronic Engineering (Including Foundation Year),
BENGHP10 Electronic Engineering (Including Placement Year),
MENGH613 Electronic Engineering,
MENGH614 Electronic Engineering (Integrated Masters, Including Placement Year),
BENGH641 Communications Engineering,
BENGHP41 Communications Engineering (Including Foundation Year),
BENGHPK1 Communications Engineering (Including Placement Year),
BENGHQ41 Communications Engineering (Including Year Abroad),
BSC H631 Electronics,
BSC H632 Electronics (Including Year Abroad),
BSC H633 Electronics (Including Placement Year)
The module incorporates two major themes: The first is the circuit orientated theme aiming to engender both an intuitive understanding of simple circuit design and functionality.
The second focuses on the more formal analysis and computer simulation techniques using equivalent circuit transistor models where key skills in numeracy and circuit simulation are developed and then used in the design, simulation and construction of oscillator circuits. The module is supported by laboratory-based assignments that investigate small signal amplifiers, and voltage-controlled oscillator design and applications.
This module aims to develop an in-depth understanding of analogue systems and circuit techniques from a design process perspective.
On completion of this module, students will be expected to be able to:
1. Derive ac-equivalent models from transistor terminal behaviour as an aid to small-signal analysis and as a design aid for small-signal audio amplifiers and linear oscillators.
2. Understand the design process and system requirements and apply these in the design of single-stage transistor amplifiers, basic operational amplifier circuits, and power supplies.
3. Use CAD tools such as MultiSIM to perform circuit-level simulations.
4. Implement, test and evaluate practical design solutions and communicate the methodology, results and conclusions in both written and oral form.
Outline Syllabus
Basic Electronic Circuits:
Power Supplies:
Overview
Half-wave and full wave rectification
Bridge rectifier
Capacitive smoothing filters
Ripple voltage
Zener regulated power supply
Series and shunt regulators
DC to AC power inverters-very important these days
Transistor Bias Circuits:
Choice of DC operating point
Constant current base bias circuit
Effect of temperature and variation with base bias
Voltage-divider bias-Effect of temperature and variation with voltage-divider bias
Collector feedback bias
Effect of temperature and variation with collector feedback bias
Use of nearest preferred values in the design process
Coping with power supply noise
Low-frequency (Audio) Amplifiers:
Single-Stage Transistor Amplifiers:
Bode plots
Simple small-signal model
Common-emitter amplifier
Effect of source and load resistance
Shunt and series feedback
Common-collector (emitter follower) amplifier
Low-frequency amplifier response
Single-stage bootstrap-bias amplifier
Operational Amplifiers Fundamentals:
Differential single-stage amplifier
Operational Amplifier parameters
Differential gain
Common-mode gain
Common-mode rejection ratio (CMRR)
Negative feedback, closed-loop gain and bandwidth
Non-inverting amplifier
Voltage follower
FET input op amps.
Effects of negative feedback on input and output resistances
DC offsets, bias current and offset voltage compensation
Inverting amplifier (virtual-earth amplifier)
Amplitude and slew rate limiting
Open-loop and closed-loop frequency response
Rise time and bandwidth relationship
Compensation capacitor
Operational Amplifier Circuits:
Simple comparator
Comparator with hysteresis, effect of noise
Flash analogue-to-digital converter (ADC)
Summing amplifier, difference amplifier
Instrumentation amplifier
Integrator and differentiator
Example linear low-pass filter using Sallen and Key Topology
Oscillators:
Barkhausen criterion
RC, LC and Wien bridge oscillator configurations
Frequency stability and amplitude stabilization
Crystal Oscillators
Relaxation oscillators (555 timer device)
Voltage-controlled oscillator (VCO) designs and their application in phase locked loops.
Lectures, Classes and Labs
This module does not appear to have any essential texts. To see non - essential items, please refer to the module's
reading list.
Assessment items, weightings and deadlines
Coursework / exam |
Description |
Deadline |
Coursework weighting |
Coursework |
Progress test (In person, MCQ Moodle Test, Closed Book) |
|
25% |
Coursework |
Assignment 1: Amplifier Design (hardware lab experiment) |
14/03/2025 |
37.5% |
Coursework |
Assignment 2: Voltage controlled oscillators and phase locked loop (hardware lab experiment) |
22/04/2025 |
37.5% |
Exam |
Main exam: In-Person, Open Book (Restricted), 120 minutes during Summer (Main Period)
|
Exam |
Reassessment Main exam: In-Person, Open Book (Restricted), 120 minutes during September (Reassessment Period)
|
Exam format definitions
- Remote, open book: Your exam will take place remotely via an online learning platform. You may refer to any physical or electronic materials during the exam.
- In-person, open book: Your exam will take place on campus under invigilation. You may refer to any physical materials such as paper study notes or a textbook during the exam. Electronic devices may not be used in the exam.
- In-person, open book (restricted): The exam will take place on campus under invigilation. You may refer only to specific physical materials such as a named textbook during the exam. Permitted materials will be specified by your department. Electronic devices may not be used in the exam.
- In-person, closed book: The exam will take place on campus under invigilation. You may not refer to any physical materials or electronic devices during the exam. There may be times when a paper dictionary,
for example, may be permitted in an otherwise closed book exam. Any exceptions will be specified by your department.
Your department will provide further guidance before your exams.
Overall assessment
Reassessment
Module supervisor and teaching staff
Prof Stuart Walker, email: stuwal@essex.ac.uk.
Professor Stuart Walker
School Office, email: csee-schooloffice (non-Essex users should add @essex.ac.uk to create full e-mail address), Telephone 01206 872770
Yes
No
No
Dr Shadan Khan Khattak
Cardiff Metropolitan University
Senior Lecturer
Available via Moodle
Of 16 hours, 12 (75%) hours available to students:
4 hours not recorded due to service coverage or fault;
0 hours not recorded due to opt-out by lecturer(s), module, or event type.
Disclaimer: The University makes every effort to ensure that this information on its Module Directory is accurate and up-to-date. Exceptionally it can
be necessary to make changes, for example to programmes, modules, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements,
industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to modules may for example consist
of variations to the content and method of delivery or assessment of modules and other services, to discontinue modules and other services and to merge or combine modules.
The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications and module directory.
The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.