MA320-6-SP-CO:
Financial Derivatives
2025/26
Mathematics, Statistics and Actuarial Science (School of)
Colchester Campus
Spring
Undergraduate: Level 6
Current
Monday 12 January 2026
Friday 20 March 2026
15
16 May 2024
Requisites for this module
(none)
(none)
(none)
(none)
(none)
BSC N233 Actuarial Science (Including Placement Year),
BSC N233DT Actuarial Science (Including Placement Year),
BSC N323 Actuarial Science,
BSC N323DF Actuarial Science,
BSC N323DT Actuarial Science,
BSC N324 Actuarial Science (Including Year Abroad),
BSC N325 Actuarial Science (Including Foundation Year),
MSCIN399 Actuarial Science and Data Science,
BSC N333 Actuarial Studies,
BSC N333DT Actuarial Studies,
BSC N334 Actuarial Studies (Including Placement Year),
BSC N334DT Actuarial Studies (Including Placement Year),
BSC N335 Actuarial Studies (Including Year Abroad)
This module introduces the basic mathematical techniques underlying the modelling of derivative pricing. Students will acquire skills on the development of pricing and risk management.
An introduction to stochastic methods is presented. Emphasis is placed risk-neutral valuation, the Black-Scholes-Merton model and interest rate models. The module also includes a brief introduction to credit risk.
The aims of this module are:
- to gain insight into the methods used for pricing various financial derivatives and risk management.
- to use finance theories, discrete-time and continuous-time models to price and hedge the most important options, futures and other derivatives.
By the end of the module, students will be expected to:
- Understand the basic properties of Brownian motion, Ito's integral and the role of stochastic differential equations in finance.
- Communicate and illustrate the importance of arbitrage arguments in modern finance.
- Use a binomial model to evaluate derivatives.
- An appreciation of the significance and limitations of the Black-Scholes-Merton model. This includes the construction and application of the Greeks in hedging.
- Understand the main models for interest rates.
- Demonstrate knowledge of simple credit rate models.
This module covers part of the Institute and Faculty of Actuaries CM2 syllabus.
Indicative syllabus
Brownian motion: properties. Ito's integral, Ito's lemma, stochastic differential equation.
Pricing derivatives: arbitrage arguments, complete market, forward contracts, binomial methods, risk-neutral pricing, state-price deflator, Black-Scholes-Merton model, martingales, Garman-Kohlhagen, hedging.
Interest rate derivatives: term structure, one-factor diffusion models, Vasicek and other common models.
Credit risk: credit event, modelling credit risk, Merton model, two state model.
Teaching in the School will be delivered using a range of face to face lectures, classes and lab sessions as appropriate for each module. Modules may also include online only sessions where it is advantageous, for example for pedagogical reasons, to do so.
This module does not appear to have a published bibliography for this year.
Assessment items, weightings and deadlines
Coursework / exam |
Description |
Deadline |
Coursework weighting |
Exam |
Main exam: In-Person, Open Book (Restricted), 120 minutes during Summer (Main Period)
|
Exam |
Reassessment Main exam: In-Person, Open Book (Restricted), 120 minutes during September (Reassessment Period)
|
Exam format definitions
- Remote, open book: Your exam will take place remotely via an online learning platform. You may refer to any physical or electronic materials during the exam.
- In-person, open book: Your exam will take place on campus under invigilation. You may refer to any physical materials such as paper study notes or a textbook during the exam. Electronic devices may not be used in the exam.
- In-person, open book (restricted): The exam will take place on campus under invigilation. You may refer only to specific physical materials such as a named textbook during the exam. Permitted materials will be specified by your department. Electronic devices may not be used in the exam.
- In-person, closed book: The exam will take place on campus under invigilation. You may not refer to any physical materials or electronic devices during the exam. There may be times when a paper dictionary,
for example, may be permitted in an otherwise closed book exam. Any exceptions will be specified by your department.
Your department will provide further guidance before your exams.
Overall assessment
Reassessment
Module supervisor and teaching staff
Dr John O'Hara, email: johara@essex.ac.uk.
Dr John O'Hara
maths@essex.ac.uk
No
No
No
Available via Moodle
Of 42 hours, 38 (90.5%) hours available to students:
4 hours not recorded due to service coverage or fault;
0 hours not recorded due to opt-out by lecturer(s).
Disclaimer: The University makes every effort to ensure that this information on its Module Directory is accurate and up-to-date. Exceptionally it can
be necessary to make changes, for example to programmes, modules, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements,
industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to modules may for example consist
of variations to the content and method of delivery or assessment of modules and other services, to discontinue modules and other services and to merge or combine modules.
The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications and module directory.
The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.