CF969-7-PT-CO:
Big-Data for Computational Finance

The details
2023/24
Computational Finance and Economic Agents (Centre for)
Colchester Campus
Spring Special
Postgraduate: Level 7
Current
Monday 15 January 2024
Friday 28 June 2024
20
17 June 2022

 

Requisites for this module
(none)
(none)
(none)
(none)

 

(none)

Key module for

MSC L14112 Economics with Data Analytics,
MSC N3CL12 Financial Technology (Computer Science)

Module description

The vast proliferation of data and increasing technological complexities continue to transform the way industries operate and compete. Over the last two years, 90 percent of the data in the world has been created as a result of the creation of 2.5 exabytes of data on a daily basis. Commonly referred to as big data, this rapid growth and storage creates opportunities for collection, processing and analysis of structured and unstructured data.

Financial services, in particular, have widely adopted big data analytics to inform better investment decisions with consistent returns. In conjunction with big data, modern optimisation techniques (such as linear programming) are adopted to solve many computational finance problems ranging from asset allocation to risk management, from option pricing to model calibration. The continued adoption of big data will inevitably transform the landscape of financial services.

The module will be a mix of theory and practice with big data cases in finance.
For the theoretical part, the algorithmic and data science theories will be introduced and followed by a thorough introduction of data-driven algorithms for structured and unstructured data. Modern machine learning and data mining algorithms will be introduced with particular case studies on financial industry.

For the pratical part, the big data in finance cases will be introduced together with the study of relevant software tools.

Module aims

The aims of this module are to introduce students to the concept of big data and the rapid growth in online storage. Financial services have widely adopted big data analytics to better inform investment decisions. We adopt big data strategies to solve a number of financial problems.


Module learning outcomes

After completing this module, students will be expected to be able to:

1) Understand the principles of (data-driven) algorithms such as modern machine learning and data mining algorithms
2) Understand the application of (data-driven) algorithms on financial industry
3) Use software tools to build up data-driven algorithms and analyse the huge amount of historical data

Module information

No additional information available.

Learning and teaching methods

No information available.

Bibliography

This module does not appear to have a published bibliography for this year.

Assessment items, weightings and deadlines

Coursework / exam Description Deadline Coursework weighting
Coursework   Successful Completion of Selected Labs    20% 
Coursework   Assignment 1  22/03/2024  40% 
Coursework   Assignment 2  19/04/2024  40% 

Exam format definitions

  • Remote, open book: Your exam will take place remotely via an online learning platform. You may refer to any physical or electronic materials during the exam.
  • In-person, open book: Your exam will take place on campus under invigilation. You may refer to any physical materials such as paper study notes or a textbook during the exam. Electronic devices may not be used in the exam.
  • In-person, open book (restricted): The exam will take place on campus under invigilation. You may refer only to specific physical materials such as a named textbook during the exam. Permitted materials will be specified by your department. Electronic devices may not be used in the exam.
  • In-person, closed book: The exam will take place on campus under invigilation. You may not refer to any physical materials or electronic devices during the exam. There may be times when a paper dictionary, for example, may be permitted in an otherwise closed book exam. Any exceptions will be specified by your department.

Your department will provide further guidance before your exams.

Overall assessment

Coursework Exam
100% 0%

Reassessment

Coursework Exam
100% 0%
Module supervisor and teaching staff
Dr Panagiotis Kanellopoulos, email: panagiotis.kanellopoulos@essex.ac.uk.
Dr Panagiotis Kanellopoulos
School Office, email: csee-schooloffice (non-Essex users should add @essex.ac.uk to create full e-mail address), Telephone 01206 872770

 

Availability
No
No
No

External examiner

Dr Anna Jordanous
University of Kent
Senior Lecturer
Dr Colin Johnson
University of Nottingham
Resources
Available via Moodle
Of 74 hours, 12 (16.2%) hours available to students:
62 hours not recorded due to service coverage or fault;
0 hours not recorded due to opt-out by lecturer(s), module, or event type.

 

Further information

Disclaimer: The University makes every effort to ensure that this information on its Module Directory is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to programmes, modules, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements, industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to modules may for example consist of variations to the content and method of delivery or assessment of modules and other services, to discontinue modules and other services and to merge or combine modules. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications and module directory.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.