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Introduction In these notes I seek to describe the theory of real-valued-measurable cardinals, collecting
together various results which are scattered around the published literature, and including a good deal of
unpublished material.

Almost immediately after Lebesgue introduced his theory of measure and integration, it was established
that (subject to the axiom of choice) not every subset of [0, 1] is Lebesgue measurable. The question naturally
arose, is there any extension of Lebesgue measure to a countably-additive measure defined on P[0, 1]? It
was early understood that such an extension cannot be translation-invariant. In the seminal paper Ulam

30, S.Ulam showed that a probability space (X,PX,µ) in which every subset of X is assigned a probability
is either trivial or as complex an object as the set theory of that time could readily envisage. Since then,
measure theorists and others have periodically had occasion to wonder whether non-trivial examples do, or
can, exist (see, for instance, 6M-6N below), and with less regularity, but with impressive frequency, have
turned up some new curiosity concerning them.

The actual definition of ‘real-valued-measurable cardinal’ involves some technical considerations which I
prefer to leave to §1 below; here I will say only that there is a real-valued-measurable cardinal if and only
if there is a non-trivial probability space (X,PX,µ). Ulam’s work already showed, in effect (the terms
I use date from later on) that real-valued-measurable cardinals are of two kinds: ‘atomlessly-measurable’
cardinals, less than or equal to the continuum, associated with extensions of Lebesgue measure to PR,
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and ‘two-valued-measurable’ cardinals, much greater than the continuum, associated with ultrafilters closed
under countable intersections.

It was observed by Hanf & Scott 61 that a two-valued-measurable cardinal has some extraordinary
properties from the point of view of mathematical logic. The mixing of combinatorial and metamathematical
intuitions and techniques which followed was wonderfully fertile (see, for instance, Keisler & Tarski 64),
and quickly gave two-valued-measurable cardinals a central place in a rapidly growing theory of ‘large
cardinals’. I do not propose to describe this theory here; there are accounts in Drake 74, Kanamori &

Magidor 78, Jech 78. The relevant measures on a two-valued-measurable cardinal are all purely atomic,
and while some of their properties can be described in the language of measure theory, there is little there
which is connected with the ordinary concerns of measure theorists or probabilists. I wish rather to look at
atomlessly-measurable cardinals, where the deepest concepts of abstract measure theory are both employed
and illuminated. Two-valued-measurable cardinals will never be far away, as the work of R.M.Solovay
and K.Kunen shows (see Solovay 71 and §2 below); indeed their constructions give general methods for
translating ideas about two-valued-measurable cardinals into ideas about atomlessly-measurable cardinals,
and many of the results described in this article were suggested in this way.

Recently, the spectacular near-resolution by Gitik & Shelah 89 of the problem of determining the
measure algebra of an atomlessly-measurable cardinal has given new ways of applying Solovay’s concept of
‘random real forcing’, and opens up yet another channel through which ideas developed in other contexts
may be applied to the theory of atomlessly-measurable cardinals.

It is fair to say that most of the questions in measure theory depending on the existence of real-valued-
measurable cardinals are peripheral. (I do not say this of questions in set theory depending on the existence
of, or on supposing the consistency of the existence of, two-valued-measurable cardinals.) However, an
atomlessly-measurable cardinal, if one can exist (and there is a problem here; see 1Ee below), necessarily
has a structure which makes it as remarkable as anything in measure theory. My aim here is to describe this
structure. The investigation will take us into a fascinating blend of measure theory, infinitary combinatorics
and metamathematics, drawing on deep ideas from all three.

Out of personal taste and prejudice I will play down the metamathematical aspects, seeking wherever
possible to find ‘conventional’ expressions of the ideas involved. However, deep results from measure theory
and set theory are going to be central to my arguments, and many concepts from various branches of
mathematics will be called on at some point; so I have written an Appendix to give definitions, statements
of theorems I use, and proofs or references. As fundamental references I will take Jech 78 and Kunen

80 for set theory, Engelking 89 for general topology, and my own books Fremlin 74 and Fremlin 84

for measure theory and miscellaneous material; I will try to indicate any divergences from these texts in
notation.

I have been interested in real-valued-measurable cardinals since 1965, as nearly as I can remember, and
cannot trust my memory to give a full list of those from whom I have learnt about them. But I recall that
it was W.A.J.Luxemburg who gave a seminar more or less on the subject of 6N, and A.R.D.Mathias who
showed me the paper Keisler & Tarski 64, the combination being the basis of my first work in this area.
My interest was maintained by correspondence with Solovay and conversations with R.G.Haydon in the
early seventies. Rather later I learnt of the work of K.Prikry, who introduced me to more of Solovay’s ideas.
The actual stimulus for writing these notes came from receiving a preprint of Gitik & Shelah 89 from
M.Gitik and from visiting Madison, where Kunen showed me some of his unpublished work. Most recently I
have had valuable discussions with Gitik and with S.Shelah. So, pausing for a moment to apologise to those
I have missed, I should like to thank all those I have named, for leading me into this garden of delights.

Version of 11.12.91

1. Basic theory

1A The Banach-Ulam problem Can we describe all measure spaces of the form (X,PX,µ) in terms
enabling us to decide whether µ can be an extension of Lebesgue measure?

There certainly exist measure spaces (X,PX,µ), constructed as follows. Let X be any set, f : X → [0,∞[
any function, and I any σ-ideal of subsets of X. Write
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µA =
∑

x∈A

f(x) if A ∈ I,

= ∞ if A ∈ PX \ I.

Then µ : PX → [0,∞] is countably additive. For the purposes of these notes, I will call a measure space
(X,PX,µ) trivial if it can be obtained by this construction. What I will call the ‘Banach-Ulam problem’
therefore becomes: is there a non-trivial measure space (X,PX,µ)?

I include the σ-ideal I here for the sake of completeness. However, it is clear that a semi-finite trivial
measure space (in particular, a trivial probability space) (X,PX,µ) must be defined by the function f(x) =
µ{x} alone, and that in this case we may take I = PX, µA =

∑

x∈A f(x) for every A ⊆ X.

1B First reduction Suppose now that there is some non-trivial measure space (X,PX,µ). Write

f(x) = µ{x} if µ{x} <∞,

= 0 if µ{x} = ∞,

and let I be the σ-ideal of subsets of X generated by {A : µA <∞}. Let µ′ be the measure defined from f
and I by the method of 1A. Then µ′A ≤ µA for every A ⊆ X. By hypothesis, µ′ 6= µ; let A ⊆ X be such
that µ′A < µA. Surely A ∈ I; let 〈An〉n∈N be an increasing sequence of sets such that µAn < ∞ for every
n ∈ N and

⋃

n∈N An = A. Now there must be some n ∈ N such that µ′An < µAn. Set µ′′ = µ⌈An − µ′⌈An.
Then (An,PAn, µ

′′) is a measure space, with 0 < µ′′An < ∞ and µ′′{x} = 0 for every x ∈ An. Setting
µ̂ = (µ′′An)−1µ′′, we obtain a probability space (An,PAn, µ̂) in which singleton sets are negligible.

Accordingly we can say that there is a positive answer to the Banach-Ulam problem iff there is a proba-
bility space (X,PX,µ) in which µ{x} = 0 for every x ∈ X.

1C Notation For the next step it will be convenient to introduce some phrases which will dominate
these notes. Recall that a measure ν is κ-additive if ν(

⋃

E) exists =
∑

E∈E νE whenever E is a disjoint
family of ν-measurable sets and #(E) < κ, and that a filter F is κ-complete if

⋂

A ∈ F whenever A ⊆ F
and 0 < #(A) < κ. (See A1B, A2C below.) Now:

(a) A cardinal κ is real-valued-measurable if there is a κ-additive probability ν with domain Pκ which
is zero on singleton sets; in this context I will call such a ν a witnessing probability on κ.

(b) A cardinal κ is two-valued-measurable (often called just ‘measurable’) if there is a non-principal
κ-complete ultrafilter on κ.

(c) A cardinal κ is atomlessly-measurable if there is an atomless κ-additive probability ν with domain
Pκ.

1D Ulam’s Theorem (a) Let (X,PX,µ) be a probability space, with ideal Nµ of negligible sets. Then
either it is trivial, and add(µ) = add(Nµ) = ∞, or add(µ) = add(Nµ) is a real-valued-measurable cardinal.

(b) A cardinal is real-valued-measurable iff it is either atomlessly-measurable or two-valued-measurable.
(c) An atomlessly-measurable cardinal is weakly inaccessible and not greater than c.
(d) A two-valued-measurable cardinal is strongly inaccessible.
(e) There is an extension of Lebesgue measure to a measure defined on every subset of R iff there is an

atomlessly-measurable cardinal.

proof (a) As remarked in A2Cd, add(µ) = add(Nµ). If (X,Σ, µ) is trivial, then µX =
∑

x∈X µ{x} and
add(µ) = ∞. Otherwise, set H = {x : µ{x} = 0}; then µH > 0 so κ = add(Nµ) ≤ #(X). There must be
a disjoint family 〈Eξ〉ξ<κ in Nµ such that E =

⋃

ξ<κEξ /∈ Nµ. Define f : E → κ by setting f(x) = ξ if
x ∈ Eξ. Write

ν0 = (µ⌈E)f−1

(A2Db), so that ν0 is a κ-additive measure on κ, zero on singletons, and ν0κ = µE ∈ ]0,∞[. Set ν =
(µE)−1ν0; then ν witnesses that κ is real-valued-measurable.

(b)(i) If κ is atomlessly-measurable, of course it is real-valued-measurable. If κ is two-valued-measurable,
with witnessing filter F , then we can set

νA = 1 ∀ A ∈ F , νA = 0 ∀ A ∈ Pκ \ F ,
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and ν will witness that κ is real-valued-measurable.
(ii) Now suppose that κ is real-valued-measurable, with witnessing probability ν. (αα) If (κ,Pκ, ν) has

an atom A ⊆ κ, set

F = {F : F ⊆ κ, A \ F ∈ Nν}.

Then F is a κ-complete ultrafilter on κ, so κ is two-valued-measurable. (ββ) Otherwise, (κ,Pκ, ν) is atomless,
and ν witnesses that κ is atomlessly-measurable.

(c) Let κ be a real-valued-measurable cardinal, with witnessing probability ν.
(i) κ ≤ add(Nν) ≤ κ, because ν is κ-additive and κ =

⋃

Nν . So κ = add(Nν) is regular (A1Ac).
(ii) ??? Now suppose, if possible, that κ = λ+ for a cardinal λ < κ. For each ξ < κ, let fξ : ξ → λ be an

injective function. For η < κ, α < λ set

Aηα = {ξ : η < ξ < κ, fξ(η) = α}.

For any fixed η < κ,

ν(
⋃

α<λAηα) = ν{ξ : η < ξ < κ} = 1,

and ν is λ+-additive, so there must be a βη < λ such that νAη,βη
> 0. Set

Bβ = {η : η < κ, βη = β}

for β < λ. Then ν(
⋃

β<λBβ) = νκ = 1, so there is a β < λ such that νBβ > 0; in particular, Bβ is

uncountable. But now observe that if η ∈ Bβ then νAηβ > 0, and that 〈Aηβ〉η<κ is disjoint, because every
fξ is injective. So we have

1 = νκ ≥
∑

η<κ νAηβ ≥
∑

η∈Bβ
νAηβ = ∞,

which is absurd. XXX
(iii) Thus κ is weakly inaccessible. The argument so far assumes only that κ is real-valued-measurable.

But if in fact κ is atomlessly-measurable, then (κ,Pκ, ν) may be taken to be atomless, in which case there
is a function f : κ→ [0, 1] which is inverse-measure-preserving for ν and Lebesgue measure on [0, 1] (A2Kc).
Now νf−1 is a κ-additive measure on [0, 1] which is zero on singletons. Accordingly κ ≤ #([0, 1]) = c.

(d) Now let κ be a two-valued-measurable cardinal with witnessing ultrafilter F . By (b) and (c-i) above,
κ is an uncountable regular cardinal. ??? Suppose, if possible, that κ ≤ 2λ for some cardinal λ < κ. Let
f : κ→ Pλ be any injection. For α < λ write

Aα = {ξ : ξ < κ, α ∈ f(ξ)}.

Set

B = {α : α < λ, Aα ∈ F}.

Then κ \Aα ∈ F for α ∈ λ \B. Because F is κ-complete,

A =
⋂

α∈B Aα ∩
⋂

α∈λ\B(κ \Aα) ∈ F .

Now if ξ ∈ A, α < λ then α ∈ f(ξ) iff α ∈ B; i.e., f(ξ) = B for every ξ ∈ A. But of course A is not a
singleton (because F is non-principal), so f cannot be injective. XXX

Thus κ is strongly inaccessible.

(e) This is now easy. (i) If κ is an atomlessly-measurable cardinal, with witnessing probability ν, let
f : κ→ [0, 1] be inverse-measure-preserving for ν and Lebesgue measure on [0, 1], as in (c-iii) above. Define
µ : PR → [0,∞] by writing

µA =
∑

n∈Z νf
−1[A+ n] ∀ A ⊆ R;

then µ is a countably-additive (in fact, κ-additive) extension of Lebesgue measure to PR. (ii) If µ is a
countably-additive extension of Lebesgue measure to PR, then κ = add(µ⌈[0, 1]) is real-valued-measurable,
by (a) above; but as κ ≤ c, κ cannot be two-valued-measurable, by (d), and (b) tells us that κ is actually
atomlessly-measurable.

1E Remarks (a) The theorem above is taken virtually directly from Ulam 30. Evidently (c)-(d) show
that the division of real-valued-measurable cardinals into atomlessly-measurable cardinals and two-valued-
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measurable cardinals is exclusive; this is ‘Ulam’s Dichotomy’. In §2 below we shall see an extraordinary
reunification of these two phenomena at a higher level.

Readers may recognise the family 〈Aηα〉α<λ,η<λ+ of part (c-ii) of the proof above as an ‘Ulam matrix’; this
concept has many other applications (see Erdös Hajnal Máté & Rado 84) and is one of the principal
contributions of the Banach-Ulam problem to mathematics.

(b) It is worth noting explicitly that Ulam’s Dichotomy is sharp. If κ is a real-valued-measurable cardinal,
with witnessing probability ν, then either (κ,Pκ, ν) is atomless and κ is atomlessly-measurable, or it is purely
atomic and κ is two-valued-measurable. For in (b-ii-α) of the proof above we saw that if (κ,Pκ, ν) is not
atomless then κ is two-valued-measurable. While if (κ,Pκ, ν) is not purely atomic, there is an A ∈ Pκ \Nν

such that (A,PA, ν⌈A) is atomless; if we set ν ′B = ν(B ∩ A)/νA for every B ⊆ κ, then ν ′ will witness
that κ is atomlessly-measurable. And, as already remarked, no cardinal can be simultaneously atomlessly-
measurable and two-valued-measurable.

(c) The phrase ‘two-valued-measurable’ is used just because there is a natural correspondence between
ω1-complete filters and complete measures taking exactly the values 0 and 1, as described in the formulae
of part (b) of the proof above. We shall find that this language enables us to unify certain arguments, as
in 1G below. Of course there is not much measure theory to be found in a {0, 1}-valued measure, and the
qualities of two-valued-measurable cardinals and atomlessly-measurable cardinals are rather different. At
the right metamathematical level, they come together again, as the work of Solovay and Kunen shows; one
of the purposes of these notes is to try to describe the combinatorial foundations of this reunification.

(d) Note that Ulam’s theorem, while a large step forward, does not give us a working description of all
measure spaces (X,PX,µ), even if we think we understand real-valued-measurable cardinals. Rather, it
gives lower bounds to the possible complexity of a non-trivial (X,PX,µ). I will return to this question later
(3L-3M, §8).

(e) Because it is relatively consistent with ZFC to suppose that there are no weakly inaccessible cardinals,
it is relatively consistent to suppose that every measure space (X,PX,µ) is trivial in the sense of 1A. It
remains open, in a sense, whether it is relatively consistent with ZFC to suppose that there is a real-
valued-measurable cardinal, and therefore a non-trivial measure space (X,PX,µ). However, very much
stronger assertions have been explored systematically in the last two decades, without so far leading to
any contradiction; and at present almost no-one is seriously searching for a proof in ZFC that real-valued-
measurable cardinals don’t exist. The rest of these notes will tacitly assume that it is consistent to suppose
that there is at least one real-valued-measurable cardinal. Those unhappy with such an assumption may
however prefer to regard them as preliminary investigations which might eventually lead to a proof by
contradiction that there are no real-valued-measurable cardinals. I assure you that such a proof would make
you famous enough to justify any effort you put into learning this material.

1F Definition Let κ be a regular uncountable cardinal.

(a) An ideal I of Pκ is normal if it is proper, includes κ (or I could say, contains every subset of κ of
cardinal less than κ), and whenever S ∈ Pκ \ I and f : S → κ is regressive (that is, f(ξ) < ξ for every
non-zero ξ ∈ S), then there is a ξ < κ such that f−1[{ξ}] /∈ I.

(b) A filter F on κ is normal if its dual ideal {κ \ F : F ∈ F} is normal.

(c) A measure ν on κ is normal if the ideal Nν is normal.

Remarks The definition of ‘normal’ given here is adapted to the needs of the next theorem, but is not quite
standard. For the usual definition, and elementary properties of these ideals and filters, see A1E below. It is
worth noting immediately that the intersection of any non-empty family of normal ideals or filters is again
a normal ideal or filter.

1G Theorem (a) Let κ be an atomlessly-measurable cardinal. Then there is a Maharam homogeneous
normal atomless κ-additive probability with domain Pκ.

(b) Let κ be a two-valued-measurable cardinal. Then there is a normal κ-complete non-principal ultra-
filter on κ.
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proof In case (a), start from an atomless κ-additive probability ν with domain Pκ. In case (b), start from
a κ-complete non-principal ultrafilter F on κ, and construct ν from F by setting νA = 1 if A ∈ F , νA = 0
if A ∈ Pκ \F . Then in both cases ν is a κ-additive probability with domain Pκ which is zero on singletons.

Let F be the set of all functions f : κ → κ such that νf−1[ζ] = 0 for every ζ < κ. Then there is an
f0 ∈ F such that

ν{ξ : f(ξ) < f0(ξ)} = 0 ∀ f ∈ F .

PPP Note first that if f , g ∈ F then f ∧ g ∈ F , where (f ∧ g)(ξ) = min(f(ξ), g(ξ)) for every ξ ∈ κ. ??? If there
is no suitable f0 ∈ F , then we may define inductively a decreasing family 〈gα〉α<ω1

in F , as follows. Set
g0(ξ) = ξ for every ξ < κ; then g0 ∈ F because ν is κ-additive and zero on singletons. Given gα ∈ F , take
g′α ∈ F such that νEα > 0, where Eα = {ξ : g′α(ξ) < gα(ξ)}, and set gα+1 = gα ∧ g′α. Given 〈gβ〉β<α, where
α is a non-zero countable limit ordinal, set

gα(ξ) = minβ<αgβ(ξ) ∀ ξ < κ;

then gα ∈ F because

νg−1
α [ζ] = ν(

⋃

β<α g
−1
β [ζ]) = 0 ∀ ζ < κ.

Now consider the family 〈Eα〉α<ω1
. By A2Mb, there is a ξ < κ such that

A = {α : ξ ∈ Eα}

is infinite. But if 〈α(n)〉n∈N is any strictly increasing sequence in A,

gα(n)(ξ) > g′α(n)(ξ) = gα(n)+1(ξ) ≥ gα(n+1)(ξ)

for every n ∈ N, and 〈gα(n)(ξ)〉n∈N is a strictly decreasing sequence of ordinals, which is impossible. XXXQQQ

Now set ν0 = νf−1
0 . We see that ν0 is a κ-additive probability defined on Pκ, because ν is. Because

f0 ∈ F , ν0{ξ} ≤ νf−1
0 [ξ + 1] = 0 for every ξ < κ, and ν0 is zero on singletons.

The next step is to show that ν0 is normal. PPP Take S ∈ Pκ \ Nν0
, and a regressive function f : S → κ.

Extend f to a function g : κ → κ by setting g(ξ) = ξ for ξ ∈ κ \ S. Consider f1 = g ◦ f0. Then
ν{ξ : f1(ξ) < f0(ξ)} ≥ νf−1

0 [S \ {0}] = ν0(S \ {0}) > 0, so f1 /∈ F and there is a ζ < κ such that
νf−1

1 [ζ] > 0; because ν is κ-additive, there is a ξ < ζ such that 0 < νf−1
1 [{ξ}] = ν0f

−1[{ξ}], because
f−1
1 [{ξ}] ⊆ f−1

0 [f−1[{ξ}]] ∪ f−1
0 [{ξ}]. As S and f are arbitrary, ν0 is normal. QQQ

By A2Hh, there is an E ⊆ κ such that ν0E > 0 and ν0⌈E is Maharam homogeneous. Set ν1A =
ν0(A ∩ E)/ν0E for every A ⊆ κ; then it is easy to check that ν1 is a Maharam homogeneous normal
κ-additive probability on κ.

Now let us re-examine the two cases (a), (b). In case (a), κ ≤ c so by 1D and 1Eb ν1 must be atomless,
and satisfies the requirements of (a). In case (b), ν takes only the values 0 and 1, so ν0 also takes only these
values, and Pκ\Nν0

is an ultrafilter; an elementary check will confirm that it is κ-complete and normal and
non-principal, as demanded by (b).

1H Remarks (a) This theorem is due in the first place to Keisler & Tarski 64, who proved it for
two-valued-measurable cardinals; the adaptation to atomlessly-measurable cardinals is due independently
to Solovay (Solovay 71), R.Jensen and myself. Part of the proof reappears in 2G; an extension of the
theorem, due to Solovay, is in 9B.

(b) The original impulse behind this theorem was the question: can the first (weakly) inaccessible cardinal
be real-valued-measurable? The answer is spectacularly negative; I give some of the theorems describing
how enormously complicated real-valued-measurable cardinals have to be in §4 below.

(c) It will be convenient to use the phrase normal witnessing probability, in such contexts as ‘Let κ
be a real-valued-measurable cardinal, with normal witnessing probability ν’, to mean a normal κ-additive
probability with domain Pκ which is zero on singletons, as in 1Ga.

(d) For a proper discussion of the combinatorial properties of real-valued-measurable cardinals, se §5
below. It is however worth remarking now that if ν is a normal witnessing probability on κ and f : κ → κ
is any function, then there is a countable set D ⊆ κ such that ν{ξ : ξ < κ, f(ξ) < ξ, f(ξ) /∈ D} = 0. PPP Set
D = {ζ : νf−1[{ζ}] > 0}; then D is countable. Set S = {ξ : f(ξ) < ξ, f(ξ) /∈ D}. Then f↾S is regressive,
and (f↾S)−1[{ζ}] ∈ Nν for every ζ < κ, so S ∈ Nν , as claimed. QQQ
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(e) Theorem 1Ga speaks of ‘Maharam homogeneous’ normal witnessing probabilities. These are homoge-
neous in the sense that they have homogeneous measure algebras. But it should be noted that in other senses
they are about as inhomogeneous as can be imagined. If ν is a normal probability on κ, and f : κ→ κ is any
function, set A = {ξ : f(ξ) < ξ}, B = {ξ : f(ξ) = ξ}, C = {ξ : f(ξ) > ξ}. Then there is a countable D such
that ν(A \ f−1[D]) = 0 ((d) above). On the other hand, looking at f [C], we have a function g : f [C] → κ
given by g(η) = min f−1[{η}] for η ∈ f [C]; now g is regressive and injective, so we must have νf [C] = 0.

Thus our arbitrary f corresponds to a trisection of κ into a negligible piece A\f−1[D], a piece C∪f−1[D]
which is mapped onto a negligible piece, and a piece on which f is the identity. So if we ask, for instance,
that f−1[E] should be negligible for every E ∈ Nν , or that νf [E] should be equal to νE for every E, we
must have f(ξ) = ξ for almost every ξ. Accordingly none of the many automorphisms of Pκ/Nν , other than
the identity, can be represented by functions from κ to itself, and if A, B are disjoint non-negligible sets
then (A, ν⌈A) and (B, ν⌈B) cannot be isomorphic as measure spaces.

(f) It has been recognised since Solovay 71 that many of the properties of real-valued-measurable
cardinals depend not on their measures but on the presence of suitably saturated ideals. It would be possible
to begin this work with a study of such ideals, later specializing to real-valued-measurable cardinals. However
the general theory remains largely dependent on the special case for its inspiration, so I prefer to relegate it
to §9 below.

1I Rvm filters and ideals (a) If κ is a real-valued-measurable cardinal, consider

W = {W : W ⊆ κ, νW = 1 for every normal witnessing probability ν on κ}.

This is an intersection of normal filters, so is a normal filter on κ; I will call it the rvm filter of κ. Similarly,
its dual ideal

J =
⋂

{Nν : ν is a normal witnessing probability on κ}

is the rvm ideal of κ.

(b) It is perhaps worth noting an elementary fact. If κ is real-valued-measurable and Z ∈ Pκ \ J , then
there is a Maharam homogeneous normal witnessing probability ν on κ such that νZ = 1. (See the end
of the proof of 1G.) In particular, if κ is two-valued-measurable and Z ∈ Pκ \ J then there is a normal
ultrafilter F on κ containing Z.

∗1J I give here a well-known theorem concerning two-valued-measurable cardinals because it throws light
on similar results in §4 below, and it is instructive to contrast the techniques of proof.

Lemma Let κ be a two-valued-measurable cardinal with normal ultrafilter F . Suppose that we have a set
F ∈ F and for each α ∈ F an n-place relation Cα on α. Then there is an n-place relation C on κ such that

{α : α ∈ F, Cα = C↾α} ∈ F .

proof For η1, . . . , ηn < κ write

C(η1, . . . , ηn) ⇐⇒ {α : Cα(η1 . . . , ηn)} ∈ F .

Now set

E(η1, . . . , ηn) = {α : α ∈ F, Cα(η1, . . . , ηn)} if C(η1, . . . , ηn),

= {α : α ∈ F, ¬Cα(η1, . . . , ηn)} if ¬C(η1, . . . , ηn).

so that E(η1, . . . , ηn) ∈ F . For β < κ set

Hβ =
⋂

{E(η1, . . . , ηn) : η1, . . . , ηn < β} ∈ F .

Then

H = {α : α ∈ F is a limit ordinal, α ∈ Hβ ∀ β < α} ∈ F ,

because F is normal (cf. A1E(c-iv)) (cf. A1E(c-iv)). But now C↾α = Cα for every α ∈ H.
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∗1K Lemma Let φ be a Π2
0 formula in the third-order language L3 of A4K below. Let κ be a two-valued-

measurable cardinal with normal ultrafilter F . Suppose that F0 ∈ F and that for each α ∈ F0 we are given
third-order relations Aα1, . . . ,Aαl on α. For i ≤ l let Ai be the third-order relation on κ defined by writing

Ai(D1, . . . ,Dr, η1, . . . , ηs)

⇐⇒ {α : ηj < α ∀ j ≤ s, Aαi(D1↾α, . . . ,Dr↾α, η1, . . . , ηs)} ∈ F

for any strings D1, . . . ,Dr of relations on κ and η1, . . . , ηs of members of κ. If C1, . . . , Ck are relations on
κ and ξ1, . . . , ξm < κ, then

(κ;A1, . . . ,Al;C1, . . . , Ck; ξ1, . . . , ξm) � φ

⇐⇒ {α : α < κ, (α;Aα1, . . . ,Aαl;C1↾α, . . . , Ck↾α; ξ1, . . . , ξm) � φ} ∈ F .

proof Induce on the length of φ.

(a) If φ is of the form S(R1, . . . , xn) or R(x1, . . . , xn) we have just to observe that

Ai(Cj1 , . . . , ξjn
) ⇐⇒ {α : Aαi(Cj1↾α, . . . , ξjn

)} ∈ F ,

Ci(ξj1 , . . . , ξjn
) ⇐⇒ {α : (Ci↾α)(ξj1 , . . . , ξjn

)} ∈ F .

(b) If φ is of one of the forms ¬ψ, ψ ∧ χ, ψ ∨ χ, . . . the inductive step is easy (using the fact that F is
an ultrafilter for the case ¬ψ).

(c) Suppose φ is of the form ∀Sψ. Set

F = {α : (α;Aα1, . . . ,Aαl;C1↾α, . . . , Ck↾α; ξ1, . . . , ξm) � φ}.

(i) If F ∈ F take any relation C on α of the same number of places as the variable S. For each α ∈ F
we have

(α;Aα1, . . . ,Aαl;C1↾α, . . . , C↾α, . . . , Ck↾α; ξ1, . . . , ξm) � ψ,

where C↾α is interpolated into the string C1↾α, . . . , Ck↾α in such a way as to assign it to the variable S in
ψ. By the inductive hypothesis,

(κ;A1, . . . ,Al;C1, . . . , C, . . . , Ck; ξ1, . . . , ξm) � ψ,

so, as C is arbitrary,

(κ;A1, . . . ,Al;C1, . . . , Ck; ξ1, . . . , ξm) � φ.

(ii) If F /∈ F then for each α ∈ κ \ F choose a relation Bα on α, of the same number of places as S,
such that

(κ;Aα1, . . . ,Aαl;C1↾α, . . . , Bα, . . . , Ck↾α; ξ1, . . . , ξm) � ¬ψ.

Let B be the relation on κ derived from 〈Bα〉α∈κ\F as in 1J, so that

E = {α : α ∈ κ \ F, Bα = B↾α} ∈ F .

Then

(α;Aα1, . . . ,Aαl;C1↾α, . . . , B↾α, . . . , Ck↾α; ξ1, . . . , ξm) 6� ψ,

for every α ∈ E, so

(κ;A1, . . . ,Al;C1, . . . , B, . . . , Ck; ξ1, . . . , ξm) 6� ψ,

by the inductive hypothesis, and

(κ;A1, . . . ,Al;C1, . . . , Ck; ξ1, . . . , ξm) 6� ∀Sψ.

This deals with the inductive step to φ = ∀Sψ.

(d) If φ is of the form ∀xψ the same procedure works. For the case F ∈ F we copy (c-i) but with a new
ordinal ζ interpolated into the string ξ1, . . . , ξm rather than a new relation B interpolated into the string
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C1, . . . , Ck. For the case F /∈ F we take a witnessing family 〈ζα〉α∈κ\F in place of 〈Bα〉α∈κ\F , and note
that because F is normal and α 7→ ζα is regressive, there is a ζ < κ such that E = {α : ζα = ζ} ∈ F , so
that (κ;A1, . . . ,Al;C1, . . . , Ck; ξ1, . . . , ζ, . . . , ξm) 6� ψ.

(e) If φ is of the form ∃Sψ it is logically equivalent to ¬∀S¬ψ so (b)-(c) deal with it. Similarly, (b) and
(d) deal with the case ∃xψ.

∗1L Theorem If κ is a two-valued-measurable cardinal, it is Π2
1-indescribable, and its Π2

1-filter is included
in its rvm filter.

proof Let φ be a formula of the language L3 (A4K) of the form ∀R1 . . . ∀Rlψ, where ψ is a Π2
0 formula in

L3 in which the only third-order variables are in the list R1, . . . ,Rl, and let F be a normal ultrafilter on κ.
Let C1, . . . , Ck, ξ1, . . . , ξm be such that

(κ; ;C1, . . . , Ck; ξ1, . . . , ξm) � φ.

Set

F = {α : α < κ, (α; ;C1, . . . , ξm) � φ}.

??? If F /∈ F then for α ∈ κ \ F let Aα1, . . . ,Aαl be third-order relations on α such that

(α;Aα1, . . . ,Aαl;C1, . . . , Ck; ξ1, . . . , ξm) � ¬ψ.

For each i ≤ l let Ai be the third-order relation on κ given by saying that

Ai(D1, . . . ,Dr, η1, . . . , ηs)

⇐⇒ {α : ηj < α ∀ j ≤ s, Aαi(D1↾α, . . . ,Dr↾α, η1, . . . , ηs)} ∈ F

for all second-order relations D1, . . . ,Dr on κ and ordinals η1, . . . , ηs < κ. It follows from Lemma 1K that

(κ;A1, . . . ,Ar;C1, . . . , Ck; ξ1, . . . , ξm) � ¬ψ)

and

(κ; ;C1, . . . , Ck; ξ1, . . . , ξm) � ¬φ,

which is absurd. XXX
Thus F ∈ F . But sets of the form of F form a base for the Π2

1-filter of κ, so every set in that filter belongs
to F ; as F was arbitrary, the Π2

1-filter of κ is included in its rvm filter.

Remark This is due to Hanf & Scott 61. See also Drake 74, §9.3, Jech 78, p. 385, Lemma 32.2 and
Kanamori & Magidor 78, §I.4.

1M Ergodic theory Going a little deeper into the question considered in 1He above, we have the
following, largely due to Zakrzewski 91.

Proposition Let (X,PX,µ) be a probability space.
(a) Let G be the group of measure-preserving bijections of X. Then there is a partition K of X into finite

sets such that G is precisely the set of bijections g : X → X such that µ(
⋃

{K : K ∈ K, g[K] 6= K}) = 0.
(b) Let G∗ be the group of bijections g : X → X such that Nµ = {g−1[A] : A ∈ Nµ}. Then there is a

partition L of X into countable sets such that G∗ is precisely the set of bijections g : X → X such that
µ(

⋃

{L : L ∈ L, g[L] 6= L}) = 0.

proof (a)(i) Let us note first that if H ⊆ G is a countable subgroup, E ⊆ X is any set, and f : E → X is
an injection such that f(x) ∈ OrbH(x) = {h(x) : h ∈ H} for every x ∈ E, then µf [E] = µE. PPP Let 〈hn〉n∈N

run over H. For each n ∈ N set

En = {x : x ∈ E, f(x) = hn(x), f(x) 6= hi(x) ∀ i < n}.

Then µf [En] = µhn[En] = µEn for each n, so µf [E] =
∑

n∈N µf [En] =
∑

n∈N µEn = µE. QQQ

(ii) It follows that if H ⊆ G is a countable subgroup then E = {x : OrbH(x) is infinite} is negligible.
PPP Of course h(x) ∈ E for h ∈ H, x ∈ E. Next, E (if it is not empty) has a partition 〈En〉n∈N such that
for each x ∈ E, n ∈ N the intersection En ∩ OrbH(x) consists of a single point. Now for any m, n ∈ N we
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have a bijection f : Em → En defined by saying that f(x) is the unique member of OrbH(x) ∩ En; by (i),
µEn = µEm. As µE is certainly finite, it must be 0. QQQ

(iii) For any ǫ > 0 there is a finite set F ⊆ G such that µ{x : g(x) /∈ {f(x) : f ∈ F}} ≤ ǫ for every
g ∈ G. PPP??? Otherwise we can choose 〈gn〉n∈N in G inductively so that µEn ≥ ǫ for every n ∈ N, where
En = {x : gn(x) 6= gi(x) ∀ i < n} for each n. Let H be the subgroup of G generated by 〈gn〉n∈N; then H is
countable. Set E =

⋂

n∈N

⋃

i≥nEi; then µE ≥ ǫ and OrbH(x) is infinite for every x ∈ E, contradicting (ii)
just above. XXXQQQ

(iv) So there is a countable subgroup H of G such that µ{x : g(x) /∈ OrbH(x)} = 0 for every g ∈ G. By
(ii) again, F = {x : OrbH(x) is infinite} is negligible. Set K = {OrbH(x) : x ∈ X \F} ∪ {{x} : x ∈ F}; then
K is a partition of X into finite sets. Let 〈hn〉n∈N run over H.

(v) Let g : X → X be a bijection and set A =
⋃

{K : K ∈ K, g[K] 6= K}.
If µA = 0, then g(x) ∈ OrbH(x) for every x ∈ X \ A. So µg[E] = µE for every E ⊆ X \ A, by (i). As

g[A] = A ∈ Nµ, µg[E] = µE for every E ⊆ X, i.e., g ∈ G.
If g ∈ G set D = {x : g(x) /∈ OrbH(x)}; then µD = 0, by the choice of H. Set C = F ∪

⋃

h∈H h[D]; then
µC = 0. If K ∈ K and g[K] 6= K then K ⊆ C; thus A ∈ Nµ, and K is the required partition.

(b)(i) If H ⊆ G∗ is a subgroup of cardinal at most ω1, E ⊆ X is any set, and g : E → X is an injection
such that g(x) ∈ OrbH(x) for every x ∈ E, then E ∈ Nµ iff g[E] ∈ Nµ; the argument is the same as for (a-i)
above, but now using the fact that µ is ω2-additive (1D).

(ii) Next, if H ⊆ G∗ is a subgroup of cardinal at most ω1, then {x : OrbH(x) is uncountable} is negligible;
the argument is the same as for (a-ii) above.

(iii) There is a countable subgroup H of G∗ such that

µ{x : g(x) /∈ OrbH(x)} = 0

for every g ∈ G∗. PPP??? If not, we can choose 〈gξ〉ξ<ω1
in G∗ inductively so that µEξ > 0 for every ξ,

where Eξ = {x : gξ(x) 6= gη(x) ∀ η < ξ}. Let H be the subgroup of G∗ generated by {gξ : ξ < ω1}, and
set E =

⋂

ξ<ω1

⋃

η≥ξ Eη; then (because µ is ω2-additive) µE ≥ lim supξ→ω1
µEξ > 0, while OrbH(x) is

unocuntable for every x ∈ E, which is impossible. XXXQQQ

(iv) Now take L to be the set of orbits of H. Let g : X → X be a bijection and set A =
⋃

{L : L ∈
L, g[L] 6= L}.

If A ∈ Nµ, then g(x) ∈ OrbH(x) for every x ∈ X \ A, while also g[A] = A; it follows that g ∈ G∗ as in
(a-v) above.

If g ∈ G∗, set D = {x : g(x) /∈ OrbH(x)} ∈ Nµ, C =
⋃

h∈H h[D]; then A ⊆ C ∈ Nµ. Thus L witnesses
the truth of (b).

Remark Compare 9E. In this proposition I have tried to give a succinct but adequate description of
the structure involved. Many corollaries can be drawn concerning both G and G∗ and the corresponding
subgroups of Aut(PX/Nµ); see Zakrzewski 91.

Version of 10.12.91

2. Solovay’s Theorems

As remarked in 1Ee, there cannot be a proof in ZFC that real-valued-measurable cardinals exist. It
remains just conceivable that there is a proof that two-valued-measurable cardinals or atomlessly-measurable
cardinals do not exist. However, if one of these gives a difficulty, so does the other; this is the main result
of Solovay 71, covered in 2A-2D. The method of proof in 2C is important because it provides a technique
- to date the only technique known - for proving the relative consistency of further propositions with the
existence of an atomlessly-measurable cardinal, as in 2I. I therefore spell out some of the properties of the
construction relevant to questions considered later in this paper (2H, 2J, 2K).

This material belongs to the ‘metamathematical’ part of the subject, and as I said in the Introduction
I seek to avoid reliance on such methods; only the second half of §4 and a few paragraphs elsewhere will
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depend on them in a formal sense. Historically, however, these ideas have been dominant in the development
of the subject, and they remain an invaluable guide.

2A Forcing I try to follow Kunen 80 for the theory and notation of forcing. In particular, a p.o.set is
a triple (P,≤, 11P) such that

p ≤ p ∀ p ∈ P,

if p ≤ q and q ≤ r then p ≤ r,

11P ∈ P and p ≤ 11P ∀ p ∈ P;

and ‘p ≤ q’ means that p is a stronger condition than q. Two elements p, q of P are incompatible if there
is no r ∈ P such that r ≤ p and r ≤ q. A set A ⊆ P is an antichain (‘down-antichain’ in Fremlin 84) if
p and q are incompatible for all distinct p, q ∈ A. A set D ⊆ P is dense (‘coinitial’ in Fremlin 84) if for
any p ∈ P there is a q ∈ D such that q ≤ p.

If P is any p.o.set, it has a natural topology (the ‘down-topology’ of Fremlin 84) generated by sets of the
form {q : q ≤ p} as p runs through P. Let A be the algebra of regular open sets for this topology (Fremlin

84, §12). For p ∈ P write p∗ for the corresponding member of A, viz.

int{q : q ≤ p} = {q : every r ≤ q is compatible with p}.

The map p 7→ p∗ : P → A \ {0} is a dense embedding in the sense of Kunen 80.

2B Random real p.o.sets A random real p.o.set is a p.o.set P such that there is a functional
µ : P → ]0, 1] such that (i) µ11P = 1 (ii) if p ∈ P and A is a maximal antichain in {q : q ≤ p}, then
µp =

∑

a∈A µa.
It is fairly easy to see that P is a random real p.o.set in this sense iff the regular open algebra of P is a

measurable algebra in the sense of A2Fc. Consequently forcing with any random real p.o.set corresponds
to forcing with a measurable algebra, which by Maharam’s theorem (A2I) is reducible to some assembly of
forcings with the standard homogeneous measure algebras based on powers of {0, 1} (A2G).

The idea of this definition is to unify the two examples with which we shall be concerned: (i) P = A\{0},
where A is a non-zero measurable algebra; (ii) P = Σ \ Nµ, where (X,Σ, µ) is a probability space. But it is
also worth noting that if P is a random real p.o.set and Q is a dense subset of P containing 11P, then Q is a
random real p.o.set.

2C Theorem If κ is a real-valued-measurable cardinal and P is a random real p.o.set then


P κ̌ is real-valued-measurable.

proof Let A be the regular open algebra of P; fix on a µ̄ such that (A, µ̄) is a probability algebra, and let
ν be a witnessing probability on κ. For each P-name σ for a subset of κ let 〈aξ(σ)〉ξ<κ be the family in A

defined by the formula

aξ(σ) = sup{p∗ : p 
P ξ̌ ∈ σ}.

Define uσ ∈ L∞(A) by writing
∫

a
uσ dµ̄ =

∫

µ̄(aξ(σ) ∩ a) ν(dξ)

for every a ∈ A; this is well-defined because the functional

a 7→
∫

µ̄(aξ(σ) ∩ a) ν(dξ)

is additive and dominated by µ̄ (A2Fg). Observe that if σ, σ′ are both names for subsets of κ and p 
P σ = σ′,
then p∗ ∩aξ(σ) = p∗ ∩aξ(σ′) for every ξ < κ, so that uσ ×χ(p∗) = uσ′ ×χ(p∗). We therefore have a P-name
ν̃ for a function from Pκ to [0, 1] such that, for any rational numbers s, t,

p 
P š ≤ ν̃(σ) ≤ ť iff sχ(p∗) ≤ uσ × χ(p∗) ≤ tχ(p∗).

(The point is that if p 
P σ = σ′, then uσ × χ(p∗) = uσ′ × χ(p∗) so p 
P ν̃(σ) = ν̃(σ′).)
Now we have to check the properties of ν̃.

(i) If σ1, σ2 and σ are P-names for subsets of κ and 
P σ1 ∩ σ2 = ∅̌, σ1 ∪ σ2 = σ then
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aξ(σ1) ∩ aξ(σ2) = 0 ∀ ξ < κ,

aξ(σ) = aξ(σ1) ∪ aξ(σ2) ∀ ξ < κ.

So if a ∈ A,

µ̄(a ∩ aξ(σ)) = µ̄(a ∩ aξ(σ1)) + µ̄(a ∩ aξ(σ2)) ∀ ξ < κ,

∫

a
uσ dµ̄ =

∫

a
uσ1

dµ̄+
∫

a
uσ2

dµ̄.

Accordingly

uσ = uσ1
+ uσ2

in L∞(A), and


P ν̃(σ) = ν̃(σ1) + ν̃(σ2).

Thus


P ν̃ is finitely additive.

(ii) If ζ < κ and σ is a P-name for {ζ} then aξ(σ) = 0 for every ξ 6= ζ so
∫

µ̄aξ(σ) ν(dξ) = 0 and uσ = 0
and 
P ν̃(σ) = 0̌.

(iii) Similarly, uκ̌ = χ(1) so 
P ν̃(κ̌) = 1̌.
(iv) If λ < κ and 〈σα〉α<λ is a family of P-names for subsets of κ with


P

⋃

α<λ̌ σα = κ̌, σα ∩ σβ = ∅̌ ∀ α 6= β,

then aξ(σα) ∩ aξ(σβ) = 0 whenever ξ < κ, α < β < λ, and supα<λaξ(σα) = 1 in A for every ξ < κ. So

µ̄a =
∑

α<λ µ̄(aξ(σα) ∩ a) ∀ ξ < λ, a ∈ A,

and (because ν is κ-additive and λ < κ)

µ̄a =
∑

α<λ

∫

µ̄(aξ(σα) ∩ a) ν(dξ) ∀ a ∈ A.

Accordingly
∑

α<λ uσα
= χ(1) in L∞(A). Now if p ∈ P, t < 1 there must be a non-zero a ⊆ p∗ and

β(0), . . . , β(n) < λ, t0, ..., tn > 0 such that
∑

i≤n ti ≥ t and tiχ(a) ≤ uσβ(i)
for each i ≤ n. There is a p1 ∈ P

such that p∗1 ⊆ a, and

p1 
P ν̃(σβ(i)) ≥ ťi

for every i ≤ n, so that

p1 
P

∑

α<λ ν̃(σα) ≥ ť.

As p and t are arbitrary,


P

∑

α<λ ν̃(σα) ≥ 1̌.

As 〈σα〉α<λ is arbitrary,


P ν̃ is κ̌-additive.

Thus ν̃ witnesses that


P κ̌ is real-valued-measurable.

Remark This is due to Solovay and Kunen (Solovay 71, Theorem 7.) For a version of the proof which
incorporates the relevant part of the Radon-Nikodým theorem, see Jech 78, p. 423, Lemma 34.6.

2D Theorem If κ is an uncountable cardinal and I is a proper κ-saturated κ-additive ideal of Pκ
containing singletons, then

L(I) � GCH + κ is two-valued-measurable.

proof Solovay 71, Theorem 6, or Jech 78, p. 416, Theorem 82a.

2E Corollary The following are equiconsistent:
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(a) ‘ZFC + there is a two-valued-measurable cardinal’;
(b) ‘ZFC + there is an atomlessly-measurable cardinal’;
(c) ‘ZFC + there is a real-valued-measurable cardinal’;
(d) ‘ZFC + c is atomlessly-measurable’;
(e) ‘ZFC + GCH + there is a two-valued-measurable cardinal’.

proof For (a)⇒(d), use 2C with P = Aκ \ {0}, where Aκ is the measure algebra of {0, 1}κ with its usual
measure. (d)⇒(b)⇒(c) and (e)⇒(a) are trivial. (c)⇒(e) is covered by 2D.

2F Definition If X and Y are sets and I is an ideal of subsets of X then I write TrI(X;Y ) for

sup{#(F ) : F ⊆ Y X , {x : f(x) 6= g(x)} ∈ I whenever f, g ∈ F and f 6= g}.

2G Lemma Let (X,PX, ν) be a probability space and Y any set. Then TrNν
(X;Y ) is attained, in the

sense that there is a set G ⊆ Y X such that #(G) = TrNν
(X;Y ) and {x : x ∈ X, g(x) 6= g′(x)} ∈ Nν for all

distinct g, g′ ∈ G.

proof It is enough to consider the case in which Y = λ is a cardinal, and the case of finite λ is elementary,
so I suppose from now on that λ ≥ ω. Set θ = TrNν

(X;λ).

(a) If H ⊆ λX is such that

F = {f : f ∈ λX , {x : f(x) ≤ h(x)} ∈ Nν ∀ h ∈ H} 6= ∅,

then there is an f0 ∈ F such that

{x : f(x) < f0(x)} ∈ Nν for every f ∈ F .

PPP??? If not, choose a family 〈fξ〉ξ<ω1
in F inductively, as follows. f0 is to be any member of F . Given fξ, there

is an f ∈ F such that {x : f(x) < fξ(x)} /∈ Nν ; set fξ+1(x) = min(f(x), fξ(x)) for every x; then fξ+1 ∈ F .
Given that fη ∈ F for every η < ξ, where ξ < ω1 is a non-zero limit ordinal, set fξ(x) = minη<ξ fη(x) for
each x; then for any h ∈ H we shall have

{x : fξ(x) ≤ h(x)} =
⋃

η<ξ{x : fη(x) ≤ h(x)} ∈ Nν ,

so fξ ∈ F and the induction continues.
Now consider

Eξ = {x : fξ+1(x) < fξ(x)} ∈ PX \ Nν

for ξ < ω1. By A2Mb there is an x ∈ X such that

A = {ξ : x ∈ Eξ}

is infinite. But if 〈ξ(n)〉n∈N is any strictly increasing sequence in A, 〈fξ(n)(x)〉n∈N is a strictly decreasing
sequence of ordinals, which is impossible. XXXQQQ

(b) We may therefore choose a family 〈gξ〉ξ<α in λX as follows. Given 〈gη〉η<ξ, set

Fξ = {f : f ∈ λX , {x : f(x) ≤ gη(x)} ∈ Nν ∀ η < ξ}.

If Fξ = ∅, set α = ξ and stop. If Fξ 6= ∅ choose gξ ∈ Fξ such that {x : f(x) < gξ(x)} ∈ Nν for every f ∈ Fξ,
and continue. Note that for n < ω, gn(x) = n for ν-almost every x ∈ X (this is a simple induction on n),
so that α ≥ ω.

(c) Because gξ ∈ Fξ, {x : gξ(x) = gη(x)} ∈ Nν whenever η < ξ < α, so #(α) ≤ θ. On the other hand,
suppose that F ⊆ λX is such that {x : f(x) = f ′(x)} ∈ Nν for all distinct f , f ′ ∈ F . For each f ∈ F , set

ζ ′f = min{ξ : ξ ≤ α, f /∈ Fξ};

this must be defined because Fα = ∅. Also F0 = λX and Fξ =
⋂

η<ξ Fη if ξ ≤ α is a non-zero limit ordinal,

so ζ ′f must be a successor ordinal; let ζf be its predecessor. We have f ∈ Fζf
and

{x : f(x) < gζf
(x)} ∈ Nν , {x : f(x) ≤ gζf

(x)} /∈ Nν ,

so that

Ef = {x : f(x) = gζf
(x)} /∈ Nν .
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If f , f ′ are distinct members of F and ζf = ζf ′ , then Ef ∩ Ef ′ ∈ Nν . So

{f : f ∈ F, ζf = ζ}

must be countable for every ζ < α, and #(F ) ≤ max(ω,#(α)) = #(α). As F is arbitrary, θ ≤ #(α).

(d) Accordingly we may take G = {gξ : ξ < α}.

Remark Compare 1G.

2H Proposition Suppose that κ is a two-valued-measurable cardinal and that λ ≥ κ. Let (Aλ, µ̄λ)
be the measure algebra of {0, 1}λ with its usual measure, and set P = Aλ \ {0}. Let ν be a {0, 1}-valued
κ-additive measure with domain Pκ, zero on singletons. Write N for the ideal of Lebesgue negligible subsets
of R.

(a) Set ζ = TrNν
(κ;λ). Construct the P-name ν̃ for a measure on κ as in 2C. Then


P ν̃ is Maharam homogeneous with Maharam type ζ̌.

(b) Set α = λω, the cardinal power. Then


P cov(R,N ) = c = α̌.

proof (a)(i) By 2G, there is a family 〈gα〉α<ζ in λκ such that {ξ : gα(ξ) = gβ(ξ)} ∈ Nν whenever α < β < ζ.
Fix a stochastically independent family 〈eη〉η<λ in Aλ with µ̄λeη = 1

2 for every η. For each α < ζ let σα be
a P-name for a subset of κ such that

egα(ξ) 
P ξ̌ ∈ σα, 1 \ egα(ξ) 
P ξ̌ /∈ σα.

Then


P ν̃(
⋂

α∈I σα) = 2−#(I)

for every non-empty finite I ⊆ ζ. So


P 〈σα〉α<ζ̌ is stochastically independent

and


P for every A ∈ Pκ̌ \ Nν̃ the Maharam type of ν̃⌈A is at least ζ̌.

(ii) Suppose that p ∈ P and that 〈σα〉α<θ is a family of P-names for subsets of κ such that p 
P

ν̃(σα△σβ) ≥ 3ǫ > 0 for all α < β < θ. Then, writing F for the filter {A : νA = 1},

limξ→F µ̄λ(p ∩ (aξ(σα)△aξ(σβ))) ≥ 3ǫµ̄λp ∀ α < β < θ,

defining aξ(σ) as in 2C, but regarding them as members of P itself. Take a metrically dense subset D of Aλ

of cardinal λ; take dαξ ∈ D with µ̄λ(dαξ△aξ(σα)) ≤ ǫµ̄λp for all ξ < κ, α < θ; then

limξ→F µ̄λ(p ∩ (dαξ△dβξ)) > 0 ∀ α < β < θ.

Consequently 〈〈dαξ〉ξ<κ〉α<θ witness that θ ≤ TrNν
(κ;D) = TrNν

(κ;λ) = ζ. This shows that


P the metric density of Pκ̌/Nν̃ is at most ζ̌;

but as remarked in A2Hi, this is just


P the Maharam type of ν̃ is at most ζ̌.

(b)(i) We have


P c ≤ α̌

because #(P) = α = #(P)ω (see A2Hb) and P is ccc; see Jech 78, Lemma 19.4.

(ii) We need to know the following fact: if θ < α and 〈Iξ〉ξ<θ is any family in [λ]≤ω, there is a K ∈ [λ]ω

such that K ∩ Iξ is finite for every ξ < θ. PPP If θ < λ this is trivial. If θ ≥ λ, let β be the least cardinal
such that βω > θ; then c < β ≤ λ ≤ θ and βω > max(β, supγ<β γ

ω), so cf(β) = ω. Let 〈βn〉n∈N be a strictly
increasing sequence of infinite cardinals with supremum β. For each n ∈ N let φn : [n× βn]<ω → βn+1 \ βn

be an injective function, and for x : N → β set
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Kx = {φn(x ∩ (n× βn)) : n ∈ N} ⊆ β ⊆ λ,

identifying x with a subset of N × β. Then each Kx is infinite and Kx ∩ Ky is finite whenever x 6= y.
Consequently, for any ξ < θ,

{x : Kx ∩ Iξ is infinite} = {x : ∃ I ∈ [Iξ]ω, I ⊆ Kx}

has cardinal at most c. Because βω > max(c, θ), there is some x such that Kx ∩ Iξ is finite for every ξ, and
this will serve for K. QQQ

(iii) The argument of Theorem 3 of Miller 82 now shows that


P cov(R,N ) ≥ α̌.

Because cov(R,N ) ≤ c, we’re done.

Remark The result (b) is well known if λω = λ; see for instance Kunen 84, 3.14 and 3.19. For λω > λ it
is less familiar.

Maharam’s theorem (A2I) tells us that any random real forcing must correspond to some forcing of
the type described in this proposition. Consequently any atomlessly-measurable cardinal constructed by
Solovay’s method from a {0, 1}-valued measure must have a homogeneous measure algebra.

2I Corollary The following are equiconsistent:
(a) ‘ZFC + there is a two-valued-measurable cardinal’;
(b) ‘ZFC + there is an atomlessly-measurable cardinal κ, with witnessing probability ν, such that the

Maharam type of ν is c = 2κ’;
(c) ‘ZFC + there is an atomlessly-measurable cardinal κ, with witnessing probability ν, such that the

Maharam type of ν is κ(+ω), while c = 2κ = κ(+ω+1)’.

proof For (b)⇒(a) and (c)⇒(a) we have 2D-2E. For (a)⇒(b), apply 2H, starting from a two-valued-mea-
surable cardinal κ, and using λ = 2κ. For (a)⇒(c), 2E(a)⇒(e) tells us that we may assume GCH and take
a two-valued-measurable cardinal κ with witnessing probability ν. If we now take λ = κ(+ω), we shall have
TrNν

(κ;λ) = λ. PPP Take F ⊆ λκ such that {ξ : f(ξ) = g(ξ)} ∈ Nν for all distinct f , g ∈ F . For each
n ∈ N set Fn = {f : f ∈ F, νf−1[κ(+n)] > 0}. Then F =

⋃

n∈N Fn. If f , g are distinct members of Fn, then

f ∩ (κ × κ(+n)) 6= g ∩ (κ × κ(+n)), and #(P(κ × κ(+n))) = κ(+n+1) ≤ λ. So #(Fn) ≤ λ for every n and
#(F ) ≤ λ. This shows that TrNν

(κ;λ) ≤ λ; but the reverse inequality is trivial. QQQ

Also λ < λω ≤ 2λ = κ(+ω+1); so applying 2H we get


P the Maharam type of ν̃ is κ̌(+ω),


P c = κ̌(+ω+1).

But because #(P)κ = κ(+ω+1),


P 2κ̌ ≤ κ̌(+ω+1),

so we have the (relative) consistency of (c).

2J Proposition Let κ be a real-valued-measurable cardinal with rvm ideal J , and let P be a random
real p.o.set.

(a) If ν is a witnessing probability on κ and ν̃ the corresponding P-name as in 2C, then
(i) for any B ⊆ κ,


P ν̃B̌ = (νB)∨.

(ii) 
P Nν̃ is the ideal of Pκ̌ generated by Ňν .
(iii) If ν is normal, then


P ν̃ is normal.

(b) If ν̇ is a P-name for a witnessing probability on κ, then there is a witnessing probability ν1 on κ such
that

Nν1
= {B : B ⊆ κ, 
P ν̇B̌ = 0̌}.
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If moreover 
P ν̇ is normal, then ν1 is normal.
(c) 
P the rvm ideal of κ̌ is the ideal of Pκ̌ generated by J̌ .

proof Take A and µ̄ as in 2C.

(a)(i) If B ⊆ κ then aξ(B̌) = 1 if ξ ∈ B, 0 if ξ /∈ B; so
∫

a
µ̄(aξ(B̌))ν(dξ) = µ̄a.νB for every a ∈ A and


P ν̃B̌ = (νB)∨.

(ii) Let σ be a P-name such that 
P ν̃σ = 0̌. Let 〈aξ(σ)〉ξ<κ be the corresponding family in A. Then
∫

µ̄(aξ(σ))ν(dξ) = 0, so B = {ξ : µ̄(aξ(σ)) > 0} ∈ Nν . Now 
P σ ⊆ B̌ ∈ Ňν .

(iii) Suppose that ν is normal. Let 〈σξ〉ξ<κ be a family of P-names for ν̃-negligible subsets of κ and
let σ be a P-name such that


P σ = {η : ∃ ξ < η, η ∈ σξ}.

For each ξ < κ we have a Bξ ∈ Nν such that 
P σξ ⊆ B̌ξ; set B = {η : ∃ ξ < η, η ∈ Bξ}. Because ν is

normal, B ∈ Nν , and 
P ν̃B̌ = 0̌. But also if η < κ, p ∈ P and p 
P η ∈ σ, then there are p′ ≤ p and ξ < η
such that p′ 
P η ∈ σξ, so that η ∈ Bξ and η ∈ B. Thus 
P σ ⊆ B̌ and 
P ν̃σ = 0̌.

(b) For each B ⊆ κ we have a unique uB ∈ L∞(A) representing ν̇B̌ in the sense that for any rational
numbers s, t and any p ∈ P,

p 
P š ≤ ν̇B̌ ≤ ť ⇐⇒ sχ(p∗) ≤ uB × χ(p∗) ≤ tχ(p∗).

Set

ν1B =
∫

uBdµ̄.

Then the same computations as in 2C, taken in reverse, show that ν1 is a κ-additive probability, zero on
singletons; while ν1B = 0 iff uB = 0 iff 
P ν̇B̌ = 0̌.

If 
P ν̇ is normal, then take any family 〈Bξ〉ξ<κ in Nν1
and set B = {η : ∃ ξ < η, η ∈ Bξ}. Then


P B̌ = {η : ∃ ξ < η, η ∈ B̌ξ};

so 
P ν̇B̌ = 0̌ and ν1B = 0. Thus ν1 is normal.

(c)(i) If B ∈ J and ν̇ is a P-name for a normal witnessing probability on κ, then take ν1 as in (b); we
must have ν1B = 0 so 
P ν̇B̌ = 0̌.

(ii) If σ is a P-name for a member of the rvm filter of κ in V P, let 〈aξ(σ)〉ξ<κ be the corresponding

family in A, and set B = {ξ : aξ(σ) 6= 0}. Then 
P σ ⊆ B̌. If ν is any normal witnessing probability on
κ and ν̃ the corresponding P-name, then 
P ν̃σ = 0̌, so as in (a)(ii) above we must have νB = 0. As ν is
arbitrary, B ∈ J and 
P σ ⊆ B̌ ∈ J̌ .

2K Theorem If κ is a two-valued-measurable cardinal and F is a normal ultrafilter on κ, then

L(F) � κ is two-valued-measurable and F ∩ L(F) is the rvm filter of κ.

proof Kunen 70, §6, or Jech 78, Theorem 76, p. 373.

2L Corollary The following are equiconsistent:
(a) ‘ZFC + there is a two-valued-measurable cardinal’;
(b) ‘ZFC + there is a two-valued-measurable cardinal in which the rvm filter is an ultrafilter’;
(c) ‘ZFC + there is an atomlessly-measurable cardinal in which the rvm ideal is the ideal of negligible

sets for a normal witnessing probability’.

proof (a)⇒(b) is covered by 2K. For (b)⇒(c), start with a two-valued-measurable cardinal in which the rvm
filter is an ultrafilter, and use 2C with P = Aκ \ {0}, as in 2E. Then the rvm ideal of κ in V P is generated
by J , the rvm ideal of κ in V , by 2Jc. But if ν̃ is the P-name for a witnessing probability on κ derived from
the {0, 1}-valued probability ν associated with J , then the null ideal of ν̃ in V P is also generated by J , by
2J(a-ii); and therefore coincides with the rvm ideal, as required.

Finally, (c)⇒(a) is covered by 2D-2E above.

Version of 22.11.91
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3. The Gitik-Shelah theorem

I come now to the most striking development in the theory of real-valued-measurable cardinals since the
work of Solovay and Kunen in the late sixties. Recall that Maharam’s theorem (A2I) gives us a complete
description of all probability algebras, and that consequently almost the first question to ask of any prob-
ability space is what its measure algebra is. In particular, we ask this of (κ,Pκ, ν) when κ is real-valued-
measurable and ν is a κ-additive probability on κ. If κ is two-valued-measurable, (κ,Pκ, ν) is purely atomic
and there is nothing of interest to say about its measure algebra. But if κ is atomlessly-measurable, there
is a great deal more to it. The Gitik-Shelah theorem (3F-3G) tells us that in this case Pκ/Nν is at least
of the order of complexity achieved if ν is constructed from a κ-complete ultrafilter with Solovay’s random
reals.

This chapter is devoted to a proof of this theorem. The original paper Gitik & Shelah 89 relied heavily
on generic-ultrapower techniques, as does its supplement Gitik & Shelah p91. Here I give what amounts
to a translation of their arguments into measure theory. I do not give quite the shortest proof, as many
of the intermediate steps seem to be of sufficient interest to be given as separate lemmas in rather greater
generality than is needed immediately. A slightly more condensed version may be found in Kamburelis

n89, from which some of the ideas below are derived.

3A Theorem Suppose that (Y,PY, ν) is a probability space and that (X,T,Σ, µ) is a quasi-Radon
probability space with the topological weight of (X,T) strictly less than the additivity of ν. Let f : X×Y →
R be any bounded function; then

∫

(

∫

f(x, y)ν(dy)
)

µ(dx) ≤

∫

(

∫

f(x, y)µ(dx)
)

ν(dy),

writing
∫

for the upper integral, as in A2E.

proof Adding a constant function to f if necessary, we need consider only the case of non-negative f . Set
λ = w(X) < add(ν); let 〈Gξ〉ξ<λ enumerate a base for T. Fix ǫ > 0. For each y ∈ Y , let hy : X → R be a
lower semi-continuous function such that f(x, y) ≤ hy(x) for every x ∈ X and

∫

hy(x)µ(dx) ≤ ǫ+
∫

f(x, y)µ(dx)

(A2Je). For each I ⊆ λ, set

fI(x, y) = sup{s : ∃ ξ ∈ I, x ∈ Gξ, hy(x′) ≥ s ∀ x′ ∈ Gξ}.

Then fI is expressible as supξ∈I,s∈Q+ sχ(Gξ ×Bξs), writing Q+ for the set of non-negative rational numbers
and χ(G×B) for the characteristic function of G×B ⊆ X×Y , and taking Bξs = {y : hy(x′) ≥ s ∀ x′ ∈ Gξ}.
So fI is (µ× ν)-measurable for all countable I, and for such I we shall have

∫ ∫

fI(x, y)µ(dx)ν(dy) =
∫ ∫

fI(x, y)ν(dy)µ(dx),

by Fubini’s theorem. Next,

supI∈[λ]<ω fI(x, y) = hy(x)

for all x ∈ X, y ∈ Y , because each hy is lower semi-continuous, so that

supI∈[λ]<ω

∫

fI(x, y)µ(dx) =
∫

hy(x)µ(dx)

for each y ∈ Y (A2Jf). Because λ < add(µ), it follows that

supI∈[λ]<ω

∫ ∫

fI(x, y)µ(dx)ν(dy) =
∫ ∫

hy(x)µ(dx)ν(dy)

(A2Cf). On the other hand, if we write

gI(x) =
∫

fI(x, y)ν(dy)

for each x ∈ X, I ⊆ λ, then (at least for finite I) gI is also lower semi-continuous, so g = supI∈[λ]<ω gI is

lower semi-continuous, and
∫

g(x)µ(dx) = supI∈[λ]<ω

∫

gI(x)µ(dx). Also

g(x) =
∫

hy(x)ν(dy) ≥
∫

f(x, y)ν(dy)
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for every x ∈ X, the equality in this formula again depending on A2Cf. So we have

∫ ∫

f(x, y)ν(dy)µ(dx) ≤

∫

g(x)µ(dx)

= sup
I∈[λ]<ω

∫

gI(x)µ(dx)

= sup
I∈[λ]<ω

∫ ∫

fI(x, y)ν(dy)µ(dx)

= sup
I∈[λ]<ω

∫ ∫

fI(x, y)µ(dx)ν(dy)

=

∫ ∫

hy(x)µ(dx)ν(dy)

≤ ǫ+

∫ ∫

f(x, y)µ(dx)ν(dy).

As ǫ is arbitrary, we have the result.

Remark For the case X = {0, 1}λ, this is due to Kunen. Readers uninterested in general quasi-Radon
measure spaces should imagine X here and in 3B to be a subset of {0, 1}λ with the subspace measure.

See also 6A below for a similar result, and 6J for an elementary corollary.

3B Corollary Let κ be a real-valued-measurable cardinal, with witnessing probability ν, and (X,T,Σ, µ)
a quasi-Radon probability space with w(X,T) < κ.

(a) If C ⊆ X × κ then
∫

νC[{x}]µ(dx) ≤
∫

µ∗C−1[{ξ}]ν(dξ).

(b) If A ⊆ X and #(A) ≤ κ, then there is a B ⊆ A such that #(B) < κ and µ∗B = µ∗A.
(c) If 〈Cξ〉ξ<κ is a family in PX \ Nµ such that #(

⋃

ξ<κ Cξ) < κ, then there are distinct ξ, η < κ such

that µ∗(Cξ ∩ Cη) > 0.
(d) If we have a family 〈hξ〉ξ<κ of functions such that each dom(hξ) is a non-negligible subset of X and

#(
⋃

ξ<κ hξ) < κ (identifying each hξ with its graph), then there are distinct ξ, η < κ such that

µ∗{x : x ∈ dom(hξ) ∩ dom(hη), hξ(x) = hη(x)} > 0.

proof (a) Apply 3A to χC : X × κ→ R.

(b) ??? Suppose, if possible, otherwise. Then surely #(A) = κ; let f : κ→ A be a bijection. Set

C = {(f(η), ξ) : η ≤ ξ < κ} ⊆ X × κ.

If x ∈ A,

νC[{x}] = ν{ξ : f−1(x) ≤ ξ < κ} = 1,

so
∫

νC[{x}]µ(dx) = µ∗A. If ξ < κ,

µ∗C−1[{ξ}] = µ∗{f(η) : η < ξ} < µ∗A,

so
∫

µ∗C−1[{ξ}]ν(dξ) < µ∗A. But this contradicts (a). XXX

(c) Let ν̃ be the probability on κ× κ defined by writing

ν̃A =
∫

νA[{ξ}] ν(dξ) ∀ A ⊆ κ× κ.

Then ν̃ is κ-additive. Set

C = {(x, (ξ, η)) : ξ, η are distinct members of κ, x ∈ Cξ ∩ Cη}

⊆ X × (κ× κ).

Set
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E = {x : x ∈ X, ν{ξ : x ∈ Cξ} = 0}.

Because #(
⋃

ξ<κ Cξ) < κ,

ν{ξ : E ∩ Cξ 6= ∅} = 0,

and there is a ξ < κ with Cξ ∩ E = ∅; thus µ∗(X\E) > 0. Now if x ∈ X \ E then

ν̃{(ξ, η) : (x, (ξ, η)) ∈ C} = (ν{ξ : x ∈ Cξ})2 > 0.

So we have

0 <

∫

ν̃{(ξ, η) : (x, (ξ, η)) ∈ C}µ(dx)

≤

∫

µ∗{x : (x, (ξ, η)) ∈ C} ν̃(d(ξ, η)),

by 3A, and there must be distinct ξ, η < κ such that µ∗{x : (x, (ξ, η)) ∈ C} > 0, as required.

(d) Set Y =
⋃

ξ<κ ran(hξ). Give X × Y the measure µ̃ and topology T′ defined as follows. The domain

of µ̃ is to be the family Σ̃ of subsets H of X × Y for which there are E, E′ ∈ Σ with µ(E′\E) = 0 and
E × Y ⊆ H ⊆ E′ × Y ; and for such H, µ̃H is to be µE = µE′. The topology T′ is to be just the family
{G× Y : G ∈ T}. It is easy to check that (X × Y,T′, Σ̃, µ̃) is a quasi-Radon probability space of weight less
than κ, and that µ̃∗hξ = µ∗(dom(hξ)) > 0 for each ξ < κ. So (c) gives the result.

Remark I have taken the idea of 3Bc from Kamburelis n89.

3C Lemma Suppose that λ, ζ, δ are cardinals, with δ < λ < cf(ζ), and that S is a stationary subset of ζ.
Let 〈Iα〉α∈S be a family in [λ]≤δ. Then there is a setM ⊆ λ such that cf(#(M)) ≤ δ and {α : α ∈ S, Iα ⊆M}
is stationary in ζ.

proof For M ⊆ λ, set SM = {α : α ∈ S, Iα ⊆ M}. Let M ⊆ λ be a set of minimal cardinality such that
SM is stationary in ζ. Set θ = #(M). ??? If cf(θ) > δ, enumerate M as 〈γξ〉ξ<θ. For each α ∈ SM , set
βα = sup{ξ : γξ ∈ Iα}; because #(Iα) ≤ δ <cf(θ), βα < θ. Because θ ≤ λ <cf(ζ), there is a β < θ such
that S′ = {α : α ∈ SM , βα = β} is stationary in ζ. Consider M ′ = {γξ : ξ ≤ β}; then #(M ′) < #(M) but
SM ′ ⊇ S′ so is stationary in ζ, contrary to the choice of M . XXX

Thus M and S = SM will serve.

3D Definition Let κ be a cardinal. Write Tr(κ) for

sup{#(F ) : F ⊆ κκ, #(f ∩ g) < κ for all distinct f, g ∈ F}.

Thus Tr(κ) = Tr[κ]<κ(κ;κ) in the notation of 2F.

3E Lemma (a) For any infinite cardinal κ,

κ+ ≤ Tr(κ) ≤ 2κ.

(b) For any infinite cardinal κ,

max(Tr(κ), supδ<κ 2δ) ≥ min(2κ, κ(+ω)).

(c) If κ is such that 2δ ≤ κ for every δ < κ, then Tr(κ) = 2κ.

proof (a) We can build inductively a family 〈fα〉α<κ+ in κκ, as follows. Given 〈fα〉α<β , where β < κ+, let
θ : β → κ be any injection. Now choose fβ : κ→ κ so that

fβ(ξ) 6= fα(ξ) whenever α < β and θ(α) ≤ ξ.

This will mean that if α < β, then

{ξ : fα(ξ) = fβ(ξ)} ⊆ θ(α)

has cardinal less than κ. So at the end of the induction, F = {fα : α < κ+} will witness that Tr(κ) ≥ κ+.
On the other hand, Tr(κ) ≤ #(κκ) = 2κ.

(b) ??? If not, then take λ = max(Tr(κ), supδ<κ 2δ) < min(2κ, κ(+ω)). For each ξ < κ take an injective
function φξ : Pξ → λ. Because λ < 2κ, we have an injective function h : λ+ → Pκ. For α < λ+ set
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gα(ξ) = φξ(h(α) ∩ ξ) for every ξ < κ; then 〈gα〉α<λ+ is a family in λκ such that #(gα ∩ gβ) < κ whenever
α 6= β.

Apply 3C with δ = κ, ζ = λ+, Iα = gα[κ] to see that there is a set M ⊆ λ with cf(#(M)) ≤ κ and
S = {α : α < λ+, gα[κ] ⊆M} stationary in λ+. Because λ < κ(+ω), we must have #(M) ≤ κ. If f : M → κ
is any injection, 〈fgα〉α∈S will witness that Tr(κ) ≥ #(S) = λ+; which is impossible. XXX

(c) For each ξ < κ, let φξ : Pξ → κ be injective. For A ⊆ κ, define fA ∈ κκ by writing

fA(ξ) = φξ(A ∩ ξ) ∀ ξ < κ.

Then F = {fA : A ⊆ κ} witnesses that Tr(κ) ≥ 2κ.

3F The Gitik-Shelah Theorem Let κ be an atomlessly-measurable cardinal, with witnessing proba-
bility ν. Then the Maharam type of (κ,Pκ, ν) is at least min(κ(+ω), 2κ).

proof ??? Suppose, if possible, otherwise.

(a) Let A ⊆ κ be such that νA > 0 and (A,PA, ν⌈A) is Maharam homogeneous, of Maharam type λ
say; surely λ is not greater than the Maharam type of (κ,Pκ, ν), so we have λ < 2κ and λ < κ(+ω). Also
λ ≥ ω, because ν is atomless.

Set

ν1B = (νA)−1ν(A ∩B) ∀ B ⊆ κ;

then (κ,Pκ, ν1) is Maharam homogeneous, with Maharam type λ.

(b) We shall need some fairly elaborate notation. Let µλ be the usual Radon probability on {0, 1}λ

(A2G), Σλ its domain, and Aλ = Σλ/Nµλ
its measure algebra. For M ⊆ λ let πM : {0, 1}λ → {0, 1}M

be the canonical restriction map, and µM the usual Radon probability on {0, 1}M , so that πM is inverse-
measure-preserving for µλ and µM ; write Σ∗

M for the Baire σ-algebra of {0, 1}M .
Now let us return to the argument. We are supposing that Aλ

∼= A = Pκ/Nν1
, the measure algebra of

(κ,Pκ, ν1). Let φ : Aλ → A be a measure- preserving isomorphism and f : κ → {0, 1}λ a corresponding
inverse-measure -preserving function, so that

f−1[E]• = φ(E•) ∈ A ∀ E ∈ Σλ

(A2Jd).

(c) From here on we are going to need a split argument, depending on whether or not λ < Tr(κ). Because
large parts of the two arguments are the same, I take them together; but readers may prefer to follow through
case 1 completely before returning to examine the modifications necessary in case 2.

case 1 Suppose that λ < Tr(κ). Set ζ = max(κ+, λ+); then ζ ≤ Tr(κ) is a successor cardinal so there
is a family 〈gα〉α<ζ of functions from κ to κ such that #(gα ∩gβ) < κ whenever α < β < ζ. Set S = ζ \κ, so
that S is a stationary set in ζ. We know that κ ≤ c; let h : κ→ {0, 1}ω be an injection. Set δ = ω, ζ∗ = κ,
so that we have gα : κ→ min(ζ∗, α) for each α ∈ S, and h : ζ∗ → {0, 1}δ.

case 2 Suppose that λ ≥ Tr(κ). Set ζ = λ+ < κ(+ω). Then Tr(κ) < ζ ≤ min(2κ, κ(+ω)) so there must
be a cardinal δ < κ such that 2δ ≥ ζ, by 3Eb. Set ζ∗ = ζ and let h : ζ∗ → {0, 1}δ be an injection. Because
κ < Tr(κ) ≤ λ < κ(+ω), cf(λ) > ω1. By Shelah’s lemma A1F-G, we can find a stationary set S ⊆ ζ and a
family 〈gα〉α∈S of functions from κ to ζ = ζ∗ such that (i) gα[κ] ⊆ α for each α ∈ S (ii) #(gα ∩ gβ) < κ
for distinct α, β ∈ S (iii) if θ is a limit ordinal less than κ, and α, β ∈ S are such that gα(θ) = gβ(θ), then
gα↾θ = gβ↾θ.

(d) Now we have a section in which the two arguments run together, if we keep hold of the notations
introduced in (c). For each α ∈ S consider hgα : κ→ {0, 1}δ. For ι < δ set

Uαι = {ξ : ξ < κ, (hgα(ξ))(ι) = 1},

and choose Hαι ∈ Σ∗
λ such that φ−1(U•

αι) = H•
αι ∈ Aλ. Define g̃α : {0, 1}λ → {0, 1}δ by setting

(g̃α(x))(ι) = 1 if x ∈ Hαι, = 0 otherwise.

Then
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{ξ : ξ < κ, g̃αf(ξ) 6= hgα(ξ)} =
⋃

ι<δ

{ξ : (g̃αf(ξ))(ι) 6= (hgα(ξ))(ι)}

=
⋃

ι<δ

Uαι△f
−1[Hαι] ∈ Nν1

because δ < κ = add(Nν1
). Set Vα = {ξ : g̃αf(ξ) = hgα(ξ)}, so that ν1Vα = 1, for each α ∈ S.

(e) Because every Hαι is a Baire set, there is for each α ∈ S a set Iα ⊆ λ such that #(Iα) ≤ δ and

Hαι = π−1
Iα

[πIα
[Hαι]] ∀ ι < δ.

By Lemma 3C there is an M ⊆ λ such that

S1 = {α : α ∈ S, Iα ⊆M}

is stationary in ζ and cf(#(M)) ≤ δ; because λ < κ(+ω) and cf(κ) > δ, #(M) < κ. Write fM = πMf , so
that fM : κ→ {0, 1}M is inverse-measure -preserving for ν1 and µM .

(f) For each α ∈ S1, there is a θα < κ such that µ∗
M (fM [Vα∩θα]) = 1. PPP Apply 3Bb to fM [Vα] ⊆ {0, 1}M .

There must be a set B ⊆ fM [Vα] such that #(B) < κ and µ∗
MB = µ∗

M (fM [Vα]); because κ is regular, there
is a θα < κ such that B ⊆ fM [Vα ∩ θα]. On the other hand, because fM is inverse-measure -preserving,
µ∗

M (fM [Vα]) ≥ ν1Vα = 1. QQQ

Evidently we may take it that every θα is a non-zero limit ordinal.

(g) Because ζ = cf(ζ) > κ, there is a θ < κ such that

S2 = {α : α ∈ S1, θα = θ}

is stationary in ζ. At this point the two cases diverge briefly.

case 1 For α ∈ S2, gα[θ] is bounded in κ; let θ′ < κ be such that

S3 = {α : α ∈ S2, gα[θ] ⊆ θ′}

is stationary in ζ; write Y = θ′.

case 2 For α ∈ S2, gα(θ) < α; by the pressing-down lemma there is a θ′ < ζ such that

S3 = {α : α ∈ S2, gα(θ) = θ′}

is stationary in ζ. Then gα↾θ = gβ↾θ for all α, β ∈ S3; take Y to be the common value of gα[θ] for α ∈ S3.

(h) Thus in both cases we have Y ⊆ ζ∗, #(Y ) < κ and gα[θ] ⊆ Y for all α ∈ S3. For each α ∈ S3, set

Qα = fM [Vα ∩ θ] = fM [Vα ∩ θα],

so that µ∗
MQα = 1. Now Iα ⊆ M , so we can express g̃α as g∗απM , where g∗α : {0, 1}M → {0, 1}δ is Baire

measurable in each coordinate. If y ∈ Qα, take ξ ∈ Vα ∩ θ such that fM (ξ) = y; then

g∗α(y) = g∗απMf(ξ) = g̃αf(ξ) = hgα(ξ) ∈ h[Y ].

Thus g∗α↾Qα ⊆ fM [θ] × h[Y ] for every α ∈ S3, and we may apply Corollary 3Bd to X = {0, 1}M , µ = µM

and the family 〈g∗α↾Qα〉α∈S′ , where S′ ⊆ S3 is a set of cardinal κ, to see that there are distinct α, β ∈ S3

such that µ∗
M{y : y ∈ Qα ∩Qβ , g

∗
α(y) = g∗β(y)} > 0. Now, however, consider

E = {y : y ∈ {0, 1}M , g∗α(y) = g∗β(y)}.

Then E =
⋂

ι<δ Eι, where

Eι = {y : y ∈ {0, 1}M , g∗α(y)(ι) = g∗β(y)(ι)} ∈ Σ∗
M

for ι < δ. Because δ < κ,
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ν1f
−1
M [E] = ν1(

⋂

ι<δ

f−1
M [Eι])

= inf
I∈[δ]<ω

ν1(
⋂

ι∈I

f−1
M [Eι])

= inf
I∈[δ]<ω

µM (
⋂

ι∈I

Eι)

≥ µ∗
ME > 0.

Consequently

0 < ν1f
−1
M [E]

= ν1{ξ : g∗απMf(ξ) = g∗βπMf(ξ)}

= ν1{ξ : g̃αf(ξ) = g̃βf(ξ)}

= ν1{ξ : ξ ∈ Vα ∩ Vβ , g̃αf(ξ) = g̃βf(ξ)}

= ν1{ξ : hgα(ξ) = hgβ(ξ)}

= ν1{ξ : gα(ξ) = gβ(ξ)}

(because h is injective). But this is absurd, because in (d) above (whether in case 1 or in case 2) we chose
gα, gβ in such a way that {ξ : gα(ξ) = gβ(ξ)} would be bounded in κ. XXX This contradiction completes the
proof.

3G Theorem Let (X,PX,µ) be an atomless probability space. Write κ = add(µ). Then the Maharam
type of (X,PX,µ) is at least min(κ(+ω), 2κ), and in particular is greater than κ.

proof As in the proof of 1Da above, there is a disjoint family 〈Eξ〉ξ<κ in Nµ such that E =
⋃

ξ<κEξ /∈ Nµ.

Let f : E → κ be the corresponding function, and set ν = (µE)−1((µ⌈E)f−1). Then ν is a witnessing
probability on κ. Now observe that if A, B are the measure algebras of (X,PX,µ) and (κ,Pκ, ν) respectively,
the map

A• 7→ (f−1[A])• : B → A

is an injective order-continuous Boolean homomorphism from B to the principal ideal of A generated by
E•. Its range therefore has Maharam type equal to that of B; it follows easily that the Maharam type of A

is at least that of B (A2Hc-d), and must be at least min(2κ, κ(+ω)), by Theorem 3F.

3H Corollary Let (X,PX, ν) be an atomless probability space, and κ = add(ν). Let (Z,T,Σ, µ) be a
Radon probability space of Maharam type λ ≤ min(2κ, κ(+ω)) (e.g., Z = {0, 1}λ). Then there is an inverse-
measure -preserving function f : X → Z.

proof By 3G, the Maharam type of (C,PC, ν⌈C) is at least λ whenever C ⊆ X and µC > 0; that is,
τ(A⌈c) ≥ λ whenever c is a non-zero element of the measure algebra A of (X,PX, ν) and A⌈c is the
principal ideal of A generated by c. Now it follows by A2Ib that there is a measure-preserving homomorphism
φ : Σ/Nµ → A, which by A2Jd corresponds to an inverse-measure -preserving f : X → Z.

3I Corollary If κ is an atomlessly-measurable cardinal, and (Z, µ) is a Radon probability space of
Maharam type at most min(2κ, κ(+ω)), then there is an extension of µ to a κ-additive measure defined on
PZ.

proof Let ν be a witnessing probability on κ; by 3H, there is an inverse-measure -preserving function
f : X → Z; now νf−1 extends µ to PZ.

3J Corollary If κ is an atomlessly-measurable cardinal, with witnessing probability ν, and 2κ < κ(+ω),
then (κ,Pκ, ν) is Maharam homogeneous, with Maharam type 2κ.

proof If C ∈ Pκ\Nν , then the Maharam type of ν⌈C is at least 2κ, by 3F-3G; but also it cannot be greater
than #(PC) = 2κ.
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3K Remarks The original theorem of Gitik & Shelah 89 was that the Maharam type λ of (κ,Pκ, ν) is
at least κ+ for any atomlessly-measurable cardinal κ and witnessing probability ν. Elementary modifications
of their arguments showed that it is at least min(Tr(κ), κ(+ω)) (case 1 of 3F above). The extra ideas in case
2 of 3F come from Gitik & Shelah p91.

If there can be measurable cardinals at all, it is consistent to suppose that λ = κ(+ω) < 2κ (2Ie above).
So there is no obvious sharpening of the result to look for. But it may be that a more delicate combinatorial
analysis would give a closer description of λ, and, in particular, determine whether (κ,Pκ, ν) is always
Maharam homogeneous. See also 7Qb, for a scrap of further information, and P2, for a discussion of the
outstanding questions.

For more in the direction of 3I, see 8A.

3L Proposition Let κ be an atomlessly-measurable cardinal.
(a) The following are equivalent: (i) every witnessing probability ν on κ is Maharam homogeneous; (ii)

if ν1 and ν2 are witnessing probabilities on κ they have the same Maharam type.
(b) The following are equivalent: (i) every normal witnessing probability ν on κ is Maharam homogeneous;

(ii) if ν1 and ν2 are normal witnessing probabilities on κ they have the same Maharam type.

proof (a)(i)⇒(ii) Suppose that every witnessing probability on κ is Maharam homogeneous, and let ν1,
ν2 be two such probabilities. Then ν = 1

2 (ν1 + ν2) is another, so is Maharam homogeneous; now A2Y tells
us that ν1, ν2 and ν all have the same Maharam type.

(ii)⇒(i) ??? Suppose, if possible, that (ii) is true and (i) is false. Let ν be a witnessing probability on
κ which is not Maharam homogeneous. Then there is an E ∈ Pκ \ Nν such that ν⌈E has strictly smaller
Maharam type than ν. But now if we set ν1A = ν(A ∩ E)/νE for every A ⊆ κ, we obtain a witnessing
probability ν1 with the same Maharam type as ν⌈E, and different from that of ν; contradicting (ii).XXX

(b) Argue as for (a); we need note only that if ν1 and ν2 are normal so is ν = 1
2 (ν1 + ν2) (because

Nν = Nν1
∩ Nν2

), and if ν is normal and ν1 is constructed as in (ii)⇒(i) above then ν1 is normal (because
Nν1

= {A : A ∩ E ∈ Nν}).

3M Proposition Let κ be an atomlessly-measurable cardinal.
(a) If ν is a Maharam homogeneous witnessing probability on κ with Maharam type λ, then there is a

Maharam homogeneous normal witnessing probability ν1 on κ with Maharam type λ1 ≤ λ.
(b) If ν and ν ′ are Maharam homogeneous witnessing probabilities on κ with Maharam types λ, λ′, then

there is a Maharam homogeneous witnessing probability ν ′′ on κ with Maharam type λ′′ ≥ TrNν
(κ;λ′).

proof (a) Construct an essentially minimal f0 : κ → κ as in the proof of 1G, and set ν0 = νf−1
0 . Then

ν0 is a normal witnessing probability on κ, as observed in 1G; moreover, f0 is inverse-measure -preserving
for ν and ν0 so induces an embedding of the measure algebra A0 = Pκ/Nν0

in A = Pκ/Nν . Accordingly
τ(A0), the Maharam type of ν0, is at most τ(A) = λ (A2Hd). I do not know whether ν0 itself must be
Maharam homogeneous, but there is surely an E ∈ Pκ \Nν0

such that ν0⌈E is Maharam homogeneous, and
now setting ν1A = ν0(A ∩ E)/ν0E for A ⊆ κ we obtain a Maharam homogeneous normal ν1 of Maharam
type less than or equal to λ.

(b) Let ν1 be the κ-additive probability on κ× κ given by

ν1C =
∫

ν ′C[{ξ}]ν(dξ) ∀ C ⊆ κ× κ.

Set θ = TrNν
(κ;λ′). By 2G there is a family F ⊆ λ′

κ
such that #(F ) = θ and {ξ : f(ξ) = g(ξ)} ∈ Nν for

all distinct f , g ∈ F . Let 〈Eξ〉ξ<λ′ be a ν ′-stochastically independent family of subsets of κ of ν ′-measure
1
2 . For each f ∈ F set

Cf = {(ξ, η) : ξ < κ, η ∈ Ef(ξ)}.

Then for any non-empty finite subset I of F , ν ′(
⋂

f∈I Ef(ξ)) = 2−#(I) for ν-almost every ξ, so that

ν1(
⋂

f∈I Cf ) = 2−#(I).

Thus 〈Cf 〉f∈F is stochastically independent for ν1, and the Maharam type of ν1⌈C is at least #(F ) = θ
whenever ν1C > 0. Once again, take ν2C = ν1(C ∩ D)/ν1D for some D for which ν1⌈D is Maharam
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homogeneous, to obtain a Maharam homogeneous κ-additive probability ν2 of Maharam type at least θ.
Finally, of course, ν2 can be copied onto a probability ν ′′ on κ, as asked for.

Remark Evidently the arguments for (b) have extensions to the case in which we have two real-valued-
measurable cardinals κ, κ′ with witnessing probabilities ν, ν ′.

Version of 16.5.91

4. The enormity of real-valued-measurable cardinals.

Under this title I collect together results of the form ‘if κ is real-valued-measurable, there are many com-
plex cardinals below it’. Ulam’s theorem that a real-valued-measurable cardinal must be weakly inaccessible
(1Dc-d) is the first step: if κ is real-valued-measurable, there are κ cardinals below it. But enormously
more can be said. To develop these ideas, we need labels for some of the intermediate stages. first ‘weakly
Mahlo’ and ‘greatly Mahlo’ cardinals (4A), and then ‘weakly Π1

n-indescribable’ cardinals (A4C, 4D). Up to
the weakly Π1

1-indescribable cardinals, we can use ordinary infinitary combinatorics (4A-4L); but thereafter
we shall need the apparatus of (elementary) model theory from §A4 and forcing from §2. The culminating
result is Theorem 4P: if κ is real-valued-measurable, there are many weakly Π2

0-indescribable cardinals below
it. The proof of this theorem includes essentially everything required to prove another remarkable fact: if
κ is atomlessly-measurable, and I any structure of cardinal less than κ, then the first- and second-order
properties of I are unaffected by random real forcing (Corollary 4Oa). The same arguments provide a gen-
eral method for proving results of the form ‘if κ is real-valued-measurable, there are many α < κ such that
α � φ’ when we have found a proof that κ � φ for every real-valued-measurable cardinal κ (4Ob).

4A Definitions (a) A cardinal κ is a weakly Mahlo cardinal if it is weakly inaccessible and the set of
weakly inaccessible cardinals below κ is stationary in κ.

(b) If A is any set of ordinals, write Mh(A) for

{ξ : ξ < supA, cf(ξ) > ω, A ∩ ξ is stationary in ξ}.

Following Baumgartner Taylor & Wagon 77, I will call Mh Mahlo’s operation.
(This is close to the operation H of Lévy 71, and in a sense dual to the ‘Mahlo operation’ M of Keisler

& Tarski 64.)

(c) A cardinal κ is greatly Mahlo if it is uncountable and regular and there is a normal filter F on κ
such that Mh(A) ∈ F for every A ∈ F .

In this case (because the intersection of any non-empty family of normal filters is a normal filter) there
is a minimal normal filter W on κ which is closed under Mh; I will call W the greatly Mahlo filter of κ.

4B Theorem If κ is greatly Mahlo, it is weakly Mahlo and the set of weakly Mahlo cardinals below κ
belongs to the greatly Mahlo filter of κ.

proof This is essentially elementary. Let κ be a greatly Mahlo cardinal and W its greatly Mahlo filter. For
each η < κ, let Wη be the set of ordinals less than κ with cofinality at least η. Then Wη+1 ⊇ Mh(Wη) for
every η, so (because W is κ-complete) Wη ∈ W for every η < κ. Because W is normal,

W = {ξ : ω < ξ < κ, ξ ∈Wη ∀ η < ξ}

belongs to W; but W is just the set of regular uncountable cardinals below κ. This forces κ to be a weakly
inaccessible cardinal. Next, consider the set W ′ of weakly inaccessible cardinals below κ; W ′ ⊇W∩Mh(W ),
so W ′ ∈ W and must be stationary in κ; thus κ is weakly Mahlo. Finally, W ′′ = W ′∩Mh(W ′) is the set of
weakly Mahlo cardinals below κ, and again belongs to W.

Remark The alternation of diagonal intersection and the Mahlo operation Mh can be used to describe
an indefinitely complex hierarchy of cardinals; near the bottom, the ‘(α + 1)-Mahlo cardinals’ are those in
which the smaller α-Mahlo cardinals form a stationary set, taking the weakly inaccessible cardinals to be the
‘0-Mahlo’ cardinals. The ‘greatly Mahlo’ cardinals form a natural staging post well along this progression.

4C Lemma Let κ be a regular uncountable cardinal. Then κ is greatly Mahlo iff whenever 4 is a
well-ordering of κ and 〈Sζ〉ζ<κ is a family of subsets of κ such that
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Sζ ⊇ {ξ : ξ < κ, ξ ∈ Mh(Sη) whenever η < ξ and η ≺ ζ}

for every ζ < κ, then every Sζ is stationary in κ.

proof (a) If κ is greatly Mahlo, it carries a normal ultrafilter F which is closed under Mahlo’s operation;
now an easy induction on the 4-position of ζ shows that under the conditions described every Sζ must
belong to F , so is stationary.

(b) Now suppose that κ is not greatly Mahlo. Recall that if NSκ is the ideal of non-stationary subsets
of κ and A is the quotient algebra Pκ/NSκ, then any subset of A of cardinal κ or less has a greatest
lower bound in A. (See 1Fd-e.) Observe also that we have an operation M : A → A defined by writing
M(A•) = (Mh(A))• for every A ⊆ κ; the point being that if A, A′ are subsets of κ and A ∩ C = A′ ∩ C for
a closed unbounded subset C of κ, then Mh(A) ∩ C ′ = Mh(A′) ∩ C ′, where C ′ is the set of accumulation
points of C in κ.

We may therefore define a family 〈aα〉α<κ+ in A by setting

a0 = 1,

aα = infβ<αM(aβ) if 0 < α < κ+.

A simple induction shows that M(aα) ⊆ aα ⊆ aβ whenever β ≤ α < κ+. ??? If no aα is zero, consider

F = {A : A ⊆ κ, ∃ α < κ+ such that aα ⊆ A• ∈ A}.

Then it is easy to check that F is a normal filter on κ which is closed under Mahlo’s operation; which is
supposed to be impossible. XXX

There must therefore be a γ < κ+ such that aγ = 0; we may suppose that γ ≥ κ. Let h : γ + 1 → κ be
any bijection, and 4 the well-ordering on κ corresponding to that of γ + 1, as transferred to κ by h. If we
now define 〈Sζ〉ζ<κ by the formula

Sζ = {ξ : ξ < κ, ξ ∈ Mh(Sη) whenever η < ξ and η ≺ ζ},

we find that aα = S•

h(α) for every α ≤ γ, so that S•

h(γ) = 0, i.e., Sh(γ) is stationary. Thus 4, 〈Sζ〉ζ<κ witness

that the condition fails.

Remark This is due to Baumgartner Taylor & Wagon 77 (p. 212).

4D Definitions Let κ be a regular infinite cardinal.

(a) Write Regr(κ) for the set of regressive functions from κ to itself. For F ⊆ Regr(κ), write UF for the
set of uniform ultrafilters F on κ such that limα→F f(α) exists for every f ∈ F , that is to say, every f ∈ F
is constant on some member of F .

(b) A set A ⊆ κ is Π1
1-fully stationary in κ if for every F ∈ [Regr(κ)]≤κ there is an F ∈ UF such that

A ∈ F ; that is, there is a uniform ultrafilter F on κ such that A ∈ F and limα→F f(α) exists for every
f ∈ F .

(c) From A4H below we see that κ is weakly Π1
1-indescribable iff κ is Π1

1-fully stationary in itself, and
that in this case its Π1

1-filter is precisely the set

W = {W : W ⊆ κ, W ∩A 6= ∅ for every Π1
1-fully stationary A ⊆ κ}

= {W : κ \W is not Π1
1-fully stationary}

= {W : ∃ F ∈ [Regr(κ)]≤κ, κ \W /∈ F ∀ F ∈ UF }

= {W : ∃ F ∈ [Regr(κ)]≤κ, W ∈
⋂

UF }.

Down to 4K below I will use this characterization as if it were the definition of ‘weakly Π1
1-indescribable’

and ‘Π1
1-filter’. Of course this is an inefficient procedure in some ways, and many readers will prefer the

original proofs of 4F, 4G and 4I as given in Lévy 71 and Baumgartner Taylor & Wagon 77, while
4K is covered by 4P. I take the trouble to spell out the combinatorial arguments because I believe that this
alternative route can provide different insights into the relationships between the various concepts here.
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4E Lemma Let κ be an infinite cardinal and 〈Cξ〉ξ<κ a family of subsets of κ.
(a) If Cξ ∩ ξ is cofinal with ξ for every ξ < κ, there is an F ∈ [Regr(κ)]≤κ such that limξ→F Cξ = {η :

{ξ : η ∈ Cξ} ∈ F} is cofinal with κ for every F ∈ UF .
(b) If Cξ ∩ ξ is relatively closed in ξ for every ξ < κ, there is an F ∈ [Regr(κ)]≤κ such that limξ→F Cξ is

closed in κ for every F ∈ UF .
(c) If ζ < κ and Cξ∩ζ is cofinal with ζ for every ξ < κ, there is an F ∈ [Regr(κ)]≤κ such that ζ∩limξ→F Cξ

is cofinal with ζ for every F ∈ UF .

proof (a) For α, ξ < κ set

fα(ξ) = min(Cξ ∩ ξ \ α) if Cξ ∩ ξ \ α 6= ∅,

= 0 otherwise.

Set F = {fα : α < κ} ∈ [Regr(κ)]≤κ. If F ∈ UF , then

γα = limξ→F fα(ξ)

is defined and belongs to C ∪ {0}, where C = limξ→F Cξ.
Because each Cξ ∩ ξ is cofinal with ξ, we have α ≤ fα(ξ) whenever ξ > α, so that α ≤ γα for every α < κ,

and C must be unbounded in κ, as required.

(b) For α, ξ < κ set

fα(ξ) = sup(α ∩ Cξ) if α < ξ,

= 0 otherwise.

Set F = {fα : α < κ} ∈ [Regr(κ)]≤κ. Let F ∈ UF and consider C = limξ→F Cξ. Suppose that γ ∈ κ\C is a
non-zero limit ordinal. Set δ = limξ→F fγ(ξ) < κ. Since fγ(ξ) ∈ (Cξ ∩γ)∪{0} whenever γ < ξ, δ ∈ C ∪{0};
but also δ ≤ γ and γ /∈ C, so δ < γ. Now if δ < β < γ,

{ξ : β /∈ Cξ} ⊇ {ξ : ξ > γ, fγ(ξ) = δ} ∈ F ,

so β /∈ C. Thus C does not meet ]δ, γ]. Because γ was arbitrary, this shows that C is closed.

(c) Take F , F and C as in (a). This time we see that α ≤ γα < ζ whenever α < ζ, so that C ∩ ζ must
be cofinal with ζ. (If ζ = 1 then we have 0 ∈ Cξ for every ξ so that 0 ∈ C.)

4F Theorem Let κ be a weakly Π1
1-indescribable cardinal, with Π1

1-filter W. Then W is normal and
Mh(A) ∈ W for every stationary A ⊆ κ.

proof For F ⊆ Regr(κ), write WF for
⋂

UF , where UF is defined as in 4Da. Then 4Dc shows that
W =

⋃

{WF : F ∈ [Regr(κ)]≤κ}.

(a) Suppose that 〈Wξ〉ξ<κ is any family in W, and that W is its diagonal intersection. Then W ∈ W.
PPP For each ξ < κ let F (ξ) ∈ [Regr(κ)]≤κ be such that Wξ ∈ WF (ξ). Define g ∈ Regr(κ) by setting

g(ξ) = min{η : ξ /∈Wη} if ξ ∈ κ \W,

= 0 if ξ ∈W.

Set G = {g} ∪
⋃

ξ<κ F (ξ) ∈ [Regr(κ)]≤κ, and consider WG. If F ∈ UG, set γ = limα→F g(α) < κ. Then
F ∈ UF (γ), so Wγ ∈ F and

W ⊇ {ξ : ξ ∈Wγ , g(ξ) = γ} ∈ F .

As F is arbitrary, W ∈ WG ⊆ W. QQQ

(b) Because κ \ ζ ∈ W∅ ⊆ W for every ζ < κ, it follows that κ is uncountable and regular and that W is
normal.

(c) Now let A ⊆ κ be stationary. Then Mh(A) ∈ W. PPP Define 〈Cξ〉ξ<κ as follows. For ξ ∈ κ \ Mh(A),
cf(ξ) > ω let Cξ ⊆ ξ \ A be a relatively closed cofinal subset of ξ; for ξ ∈ Mh(A), set Cξ = ξ; for ξ < κ,
cf(ξ) = ω let Cξ be a relatively closed cofinal subset of ξ consisting solely of successor ordinals; for ξ < κ,
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cf(ξ) = 1 let Cξ be the singleton set consisting of the predecessor of ξ; finally, set C0 = ∅. By 4Ea-b, there
is a set F ∈ [Regr(κ)]≤κ such that limξ→F Cξ is a closed unbounded set in κ for every F ∈ UF . Take any
F ∈ UF , and let C be limξ→F Cξ, C ′ the set of non-zero limit ordinals in C. Thus C and C ′ are closed
unbounded sets in κ, and must belong to W, by (b). Also, C ′ meets A; take α ∈ C ′ ∩A. Then

Mh(A) ⊇ {ξ : ξ > α+ 1, α ∈ Cξ} ∈ F ;

as F is arbitrary, Mh(A) ∈ WF ⊆ W, as required. QQQ

4G Corollary A weakly Π1
1-indescribable cardinal is greatly Mahlo, and its Π1

1-filter includes its greatly
Mahlo filter.

proof I remarked in (b) of the proof of 4F that κ must be uncountable and regular; now we need only place
4F and 4Ac together.

4H Lemma Let κ be a weakly Π1
1-indescribable cardinal. Suppose that for each ξ < κ we have a

well-ordering 4ξ of ξ, regarded as a subset of ξ × ξ. Then there is a set F ∈ [Regr(κ)]≤κ such that
limξ→F 4ξ ⊆ κ× κ is a well-ordering on κ for every F ∈ UF .

proof Let C be the set of infinite cardinals less than κ, so that C is a closed unbounded set in κ (note that
from 4G we know that κ is a limit cardinal). For ζ < ξ ∈ C let gξζ : ζ → ξ be such that gξζ(η) < gξζ(η′)
whenever η, η′ < ζ and η ≺ξ η

′; such a function exists because the order type of (ζ,4ξ↾ ζ) is less than
#(ζ)+ and therefore less than ξ. For ξ, η, ζ < κ set

fζη(ξ) = gξζ(η) if η < ζ < ξ ∈ C,

= 0 otherwise;

f(ξ) = sup(C ∩ ξ) if ξ ∈ κ \ C,

= 0 otherwise.

Write F = {f} ∪ {fζη : η, ζ < κ} ∈ [Regr(κ)]≤κ.
Now suppose that F ∈ UF . Then C ∈ F (because f−1[{γ}] \ C is bounded above in κ for every γ). Set

4 = limξ→F 4ξ. To see that 4 is a total ordering of κ we need note only that for distinct η, η′, η′′ < κ the
set

{ξ : η 4ξ η,

η 4ξ η
′ or η′ 4ξ η,

η 64ξ η
′ or η′ 64ξ η,

η 4ξ η
′′ or η 64ξ η

′ or η′ 64ξ η
′′}

belongs to F . To see that 4 is a well-ordering of κ, take any ζ < κ and consider h : ζ → κ defined by setting

h(η) = limξ→F fζη(ξ)

for η < ζ; then

h(η) = limξ→F gξζ(η)

because {ξ : ζ < ξ ∈ C} ∈ F . But now, if η, η′ < ζ and η ≺ η′, the set

{ξ : ζ < ξ ∈ C, h(η) = gξζ(η), h(η′) = gξζ(η′), η 4ξ η
′}

= {ξ : h(η) = gξζ(η) < gξζ(η) = h(η′)}

belongs to F , so h(η) < h(η′). This means that 4↾ ζ is a well-ordering for every ζ < κ. Because cf(κ) > ω,
it follows that 4 is a well-ordering of κ.

4I Theorem If κ is weakly Π1
1-indescribable, it is greatly Mahlo and the set of greatly Mahlo cardinals

below κ belongs to the Π1
1-filter W of κ.

proof I have already remarked (4G) that κ is greatly Mahlo; moreover, the set of weakly inaccessible
cardinals less than κ belongs to its greatly Mahlo filter (4B) and therefore to W (4G).
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??? Suppose, if possible, that the set B of greatly Mahlo cardinals less than κ does not belong to W. Let
D be the set of weakly inaccessible cardinals belonging to κ \B, so that D is Π1

1-fully stationary in κ.
By Lemma 4C, we may choose for each δ ∈ D a well-ordering 4δ of δ and a family 〈Sδζ〉ζ<δ of subsets of

δ such that

Sδζ ⊇ {ξ : ξ < α, ξ ∈ Mh(Sδη) whenever η < ξ and η ≺δ ζ}

for every ζ < δ, but not every Sδζ is stationary in δ. Take a closed unbounded set Cδ ⊆ δ and an
h(δ) < δ such that Sδ,h(δ) ∩ Cδ = ∅. Next, for ζ < δ ∈ D and ξ ∈ δ \ Sδζ choose g(δ, ζ, ξ) < ξ such that
g(δ, ζ, ξ) ≺δ ζ and ξ /∈ Mh(Sδ,g(δ,ζ,ξ)); if cf(ξ) > ω, choose a relatively closed unbounded set Cδζξ ⊆ ξ such
that Cδζξ ∩ Sδ,g(δ,ζ,ξ) = ∅.

Fill in these definitions by setting

Cα = α, 4α =≤↾ α, h(α) = 0, g(α, ζ, ξ) = 0, Cαζξ = ξ, Sαζ = ∅

if α, ζ, ξ < κ and we do not have ζ < α ∈ D, ξ ∈ α \ Sαζ , cf(ξ) > ω.

By 4E and 4H there is an F ∈ [Regr(κ)]≤κ such that whenever F ∈ UF

limα→FCα is a closed unbounded set in κ,
limα→F 4α is a well-ordering of κ,
limα→FCαζξ is cofinal with ξ,
limα→F (Cαζξ ∪ {ξ}) is closed in κ

for all ζ, ξ < κ. We may suppose also that h ∈ F and that fζξ ∈ F for all ζ, ξ < κ, where fζξ(α) = g(α, ζ, ξ)
for α, ζ, ξ < κ.

Because D is supposed to be Π1
1-fully stationary, there is an F ∈ UF such that D ∈ F . Set

C = limα→F Cα, 4 = limα→F 4α, ǫ = limα→F h(α),

Cζξ = limα→F Cαζξ, γ(ζ, ξ) = limα→F fζξ(α),

Sζ = limα→F Sαζ

for ζ, ξ < κ. Then 4 is a well-ordering of κ and 〈Sζ〉ζ<κ is a family of subsets of κ.
Suppose that ζ < κ, that ξ ∈ κ \ Sζ and that cf(ξ) > ω. Set η = γ(ζ, ξ). Then

E = {δ : δ ∈ D, ζ < δ, ξ ∈ δ \ Sδζ , g(δ, ζ, ξ) = η}

belongs to F . If δ ∈ E then Cδζξ ∩ Sδη = ∅; it follows that Cζξ ∩ Sη = ∅. So ξ /∈ Mh(Sη). Also η < ξ and
η ≺ ζ because g(δ, ζ, ξ) < ξ and g(δ, ζ, ξ) ≺δ ζ for every δ ∈ E. But this means that

Sζ ⊇ {ξ : ξ < κ, ξ ∈ Mh(Sη) whenever η < ξ, η ≺ ζ},

for every ζ < κ.
On the other hand, examine C and Sǫ. C is a closed unbounded set in κ. Also

{α : h(α) = ǫ} ∈ F ,

so

Sǫ = limα→F Sαǫ = limα→F Sα,h(α),

and

C ∩ Sǫ = limα→F Cα ∩ Sα,h(α) = ∅.

Thus Sǫ is not stationary. From 4C we conclude that κ cannot be greatly Mahlo. But we know very well
that it is. XXX

So B ∈ W, as claimed.

Remark This theorem is given in Baumgartner Taylor & Wagon 77; the treatment here is taken from
Fremlin & Kunen n87.

Version of 10.12.91

4J Lemma Let κ be a real-valued-measurable cardinal, with normal witnessing probability ν. Suppose
that for each ξ < κ we are given a cofinal relatively closed subset Cξ of ξ. Then
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C = {α : α < κ, ν{ξ : α ∈ Cξ} = 1}

is a closed unbounded set in κ.

proof For α, ξ < κ set

fα(ξ) = min(Cξ \ α) if α < ξ,

= 0 otherwise.

Then fα is regressive, so there is a ζα < κ such that νf−1
α [ζα] = 1; that is,

ν{ξ : Cξ ∩ ζα \ α 6= ∅} = 1.

Set C ′ = {β : β < κ, ζα < β ∀ α < β}. Then C ′ is a closed unbounded set in κ. But if β ∈ C ′, then for
every α < β the set

{ξ : Cξ ∩ β \ α 6= ∅}

has measure 1, so

E = {ξ : β < ξ < κ, Cξ ∩ β \ α 6= ∅ ∀ α < β}

has measure 1, because ν is κ-additive. But of course β ∈ Cξ for every ξ ∈ E, because each Cξ is closed in
ξ. Accordingly β ∈ C and we have C ′ ⊆ C.

This means that C is unbounded. But if β is any cluster point of C in κ, the same arguments show that
β ∈ C, so that C is closed.

4K Theorem Let κ be a real-valued-measurable cardinal, with rvm filter W, rvm ideal J . Then
(a) κ is greatly Mahlo and its greatly Mahlo filter is included in W;
(b) the set of weakly Π1

1-indescribable cardinals below κ belongs to W;
(c) if Z ⊆ κ and Z /∈ J , then

{λ : λ < κ is a cardinal and Z ∩ λ is Π1
1-fully stationary in λ} ∈ W.

proof (a) Let ν be a normal witnessing probability on κ, and set

Fν = {A : A ⊆ κ, νA = 1};

Fν is a normal filter on κ. Let D be the set of ordinals less than κ with uncountable cofinality.

(i) We haveD ∈ Fν . PPP For ξ ∈ κ\(D∪{0}), let 〈fn(ξ)〉n∈N run over a cofinal subset of ξ; for ξ ∈ D∪{0},
set fn(ξ) = 0 for every n ∈ N. Because every fξ is regressive and Fν is normal and ω1-complete, there is a
ζ < κ such that F =

⋂

n∈N f
−1
n [ζ] ∈ Fν ; but now D ⊇ F \ (ζ + 1) ∈ Fν . QQQ

(ii) Next, Mh(A) ∈ Fν for every stationary A ⊆ κ. PPP For ξ ∈ D\Mh(A), let Cξ be a relatively closed
and unbounded subset of ξ such that Cξ ∩A = ∅. For ξ ∈ D∩Mh(A), take Cξ = ξ. 4J tells us that

C = {α : {ξ : α ∈ Cξ} ∈ Fν}

is a closed unbounded set in κ. So there is an α ∈ A ∩ C. But now F = {ξ : α ∈ Cξ} ∈ Fν and
Mh(A) ⊇ F ∩D ∈ Fν . QQQ

(iii) Thus Fν is closed under Mh. Because ν is arbitrary, W is closed under Mh, and κ is greatly
Mahlo, with its greatly Mahlo filter included in W.

(b)-(c) Of course (b) is a consequence of (c) (taking Z = κ) so I prove (c). I begin with the harder case,
in which κ is atomlessly-measurable.

(i) Take a normal witnessing probability ν1 on κ such that ν1Z = 1, and let H be the set of ξ < κ
such that either ξ is not a weakly Π1

1-indescribable cardinal or ξ is weakly Π1
1-indescribable but Z ∩ ξ is

not Π1
1-fully stationary in ξ. ??? Suppose, if possible, that H /∈ J . Let ν2 be a normal witnessing probability

on κ such that ν2H = 1. Let H0 be the set of regular infinite cardinals belonging to H; then ν2H0 = 1
(using part (a)). For each ξ ∈ H0, let 〈fξη〉η<ξ be a family of regressive functions from ξ to itself such that
there is no uniform ultrafilter F on ξ containing Z ∩ ξ for which limα→Ffξη(α) exists for every η < ξ. For
η < ξ ∈ κ \H0, set fξη(α) = 0 for every α < ξ.



30

(ii) Let ν be the probability on κ× κ defined by the formula

νC =
∫

ν2{ξ : (α, ξ) ∈ C} ν1(dα) ∀ C ⊆ κ× κ.

Let A(ν) = P(κ× κ)/Nν be the corresponding measure algebra. For η, β < κ write

Cηβ = {(α, ξ) : max(η, α) < ξ < κ, fξη(α) = β}.

If η < κ, then 〈Cηβ〉β<κ is disjoint, so

Dη = {β : β < κ, νCηβ > 0}

is countable. But also

ν(
⋃

β∈Dη
Cηβ) = 1.

PPP For fixed η, α the map ξ 7→ fξη(α) : κ→ α is regressive, therefore ν2-essentially countably valued (1Hd),
therefore ν2-essentially bounded below α whenever cf(α) > ω, that is, for ν1-almost all α, by (a-i) above.
Because ν1 is normal, there is a ζ < κ such that, for ν1-almost all α, fξη(α) < ζ for ν2-almost all ξ; that is,
ν(

⋃

ζ≤β<κ Cηβ) = 0. Now the result follows, with Dη ⊆ ζ, because ν is κ-additive. QQQ

(iii) Let Σ0 be the subalgebra of P(κ× κ) generated by

{Cηβ : η, β < κ} ∪ {Vζ : ζ < κ},

where Vζ = Z × (κ \ ζ); note that νVζ = 1 for each ζ < κ. Let Σ1 be the subalgebra of P(κ× κ) generated
by

Σ0 ∪ {π−1
2 [π2[E]] : E ∈ Σ0},

writing π2(α, ξ) = ξ. Let B be the order-closed subalgebra of A(ν) generated by {E• : E ∈ Σ1}. Then
τ(B) ≤ κ. Let B0 be

{b : b ∈ B, ∃ F ⊆ κ such that b = (κ× F )•}.

Then B0 is an order-closed subalgebra of B. Because π2 is inverse-measure-preserving for ν and ν2, we have
a measure-preserving Boolean homomorphism φ0 : B0 → A(ν2) = Pκ/Nν2

defined by writing

φ0((κ× F )•) = F •

whenever F ⊆ κ and (κ× F )• ∈ B.

By the Gitik-Shelah theorem (3F), every non-zero principal ideal of A(ν2) has τ -weight greater than κ.
So there is a measure-preserving homomorphism φ : B → A(ν2) extending φ0 (A2Ib). For each η < κ choose
a function hη : κ→ Dη such that

{ξ : hη(ξ) = β}• = φ(C•

ηβ) ∀ β ∈ Dη;

this is possible because 〈C•

ηβ〉β∈Dη
and 〈φ(C•

ηβ)〉β∈Dη
are partitions of unity in B, A(ν2) respectively. Now if

ξ ∈ H0, there can be no uniform ultrafilter on ξ containing Z∩ξ and all the sets {α : α < ξ, fξη(α) = hη(ξ)}
as η runs over ξ. So there must be a ζξ < ξ and a finite Iξ ⊆ ζξ such that

∀ α ∈ ξ ∩ Z \ ζξ ∃ η ∈ Iξ such that fξη(α) 6= hη(ξ).

(iv) Because ν2 is normal, there are ζ < κ, I ∈ [κ]<ω such that ν2(H1) > 0, where

H1 = {ξ : ξ ∈ H0, ζξ = ζ, Iξ = I}.

Now hη(ξ) ∈ Dη for every ξ < κ, η ∈ I, and every Dη is countable, so there is a g : I → κ such that
ν2(H2) > 0, where

H2 = {ξ : ξ ∈ H1, hη(ξ) = g(η) ∀ η ∈ I}.

But now observe that if ξ ∈ H2 and α ∈ ξ ∩ Z \ ζ then there is an η ∈ I such that fξη(α) 6= g(η), i.e.,
(α, ξ) /∈ E∗, where

E∗ = {(α, ξ) : ζ ≤ α < ξ, α ∈ Z, fξη(α) = g(η) ∀ η ∈ I} ∈ Σ0.

Thus H2 ∩ π2[E∗] = ∅. However,
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H•

2 = H•

1 ∩ infη∈Iφ(C•

η,g(η))

⊆ φ(
⋂

η∈I

Cη,g(η))
•

= φ({(ξ, α) : fξη(α) = g(η) ∀ η ∈ I}•)

= φ(E∗)•

⊆ φ(π−1
2 [π2[E∗]]•)

= φ0(π−1
2 [π2[E∗]]•)

= π2[E∗]•

because E∗ ∈ Σ0 so π−1
2 [π2[E∗]] ∈ Σ1 and π−1

2 [π2[E∗]]• ∈ B0.
Of course this is impossible. XXX
This proves (b)-(c) in the case of atomlessly-measurable κ.

(v) Now let us turn to the case of a two-valued-measurable cardinal κ. Let F1, F2 be normal ultrafilters
on κ, with Z ∈ F1, and ν1, ν2 the associated {0, 1}-valued probabilities. Follow the ideas of (b), but noting
that there are dramatic simplifications; for instance, ν is also two-valued, and each Dη is a singleton. All
the discussion of B, B0 collapses because A(ν) and A(ν2) are both of the form {0,1}. So φ0 and φ are both
the trivial homomorphism, and there is no call for any measure theory at this point; the functions hη are
all constant. The last string of inequalities also boils down to saying that ν2H2 = νE∗ = 1 and that this is
impossible.

This completes the proof.

4L Remarks (a) This (in the atomlessly-measurable case) is due to Kunen (see 4P, A4L below).

(b) Note that a real-valued-measurable cardinal κ need not itself be weakly Π1
1-indescribable. For (if

there can be real-valued-measurable cardinals at all) c can be real-valued-measurable (2Ed). But c is never
weakly Π1

1-indescribable (A4Db).

(c) It is worth pausing over 4Ka, as some elementary corollaries will be used repeatedly below. For
instance, if ν is a normal witnessing probability on κ, and θ < κ, then ν{ξ : ξ < κ, cf(ξ) ≥ θ} = 1. (This is
because the set W of weakly inaccessible cardinals below κ belongs to the greatly Mahlo filter of κ (4B), so
νW = 1 (4Ka) and ν(W \ θ) = 1, while cf(ξ) ≥ θ for every ξ ∈ W \ θ.) Similarly trivial applications occur
frequently.

4M Lemma Let κ be a real-valued-measurable cardinal with normal witnessing probability ν. Let A

be the measure algebra Pκ/Nν and P the p.o.set A \ {0}; for a ∈ Pκ \ Nν , write a• for the corresponding
element of P.

(a) Suppose that 〈ξα〉α<κ is a family of ordinals such that ξα < α for ν-almost every α < κ. Then we

have a P-name ξ̇ for a member of κ defined by saying that

a• 
P ξ̇ = ζ̌ iff ξα = ζ for ν-almost every α ∈ a

whenever ζ < κ, a ∈ Pκ \ Nν .
(b) Suppose that n ∈ N and that for ν-almost every α < κ we are given an n-place relation Cα on α.

Then we have a P-name Ċ for an n-place relation on κ defined by saying that

a• 
P Ċ(ζ̌1, . . . , ζ̌n) iff Cα(ζ1, . . . , ζn) for ν-almost every α ∈ a

whenever ζ1, . . . , ζn < κ and a ∈ Pκ \ Nν .

(c) Conversely, given any P-names ξ̇ and Ċ for a member of κ and a relation on κ, we can find corresponding
families 〈ξα〉α<κ, 〈Cα〉α<κ for which the formulae of (a) and (b) will be valid.

(d) Now suppose that we have a formula φ of the second-order language L of §A4, and families 〈Cα1〉α<κ,
. . . , 〈Cαk〉α<κ, 〈ξα1〉α<κ, . . . , 〈ξαm〉α<κ of relations and ordinals matching the free variables of φ; suppose

that for each j we have ξαj < α for ν-almost all α. Let Ċ1, . . . , Ċk, ξ̇1, . . . , ξ̇m be the corresponding P-names.
Then for any a ∈ Pκ \ Nν , β ≤ κ,

a• 
P (β̌; Ċ1, . . . , Ċk; ξ̇1, . . . , ξ̇m) � φ
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if and only if

(min(α, β);Cα1, . . . , Cαk; ξα1, . . . , ξαm) � φ for ν-almost every α < κ.

proof (a) The point is that α 7→ ξα is essentially regressive and ν is normal. So given a ∈ Pκ \Nν we shall

be able to find ζ < κ such that b = {α : α ∈ a, ξα = ζ} /∈ Nν ; and now our formula tells us that b• 
P ξ̇ = ζ̌.

This means that we have a name ξ̇ such that


P ∃ ζ ∈ κ̌, ξ̇ = ζ,

so that ξ̇ is indeed a name for a member of κ.

(b) is elementary.

(c) Because P is ccc and Nν is a σ-ideal, every maximal antichain in P corresponds to a partition of κ

into non-negligible sets; consequently every P-name ξ̇ for a member of κ corresponds to a family 〈ξα〉α<κ

which takes only countably many values, so that ξα < α for almost every α.
As in (a)-(b), the corresponding result for relations is really simpler than the result for points. Given the

name Ċ for an n-place relation, then for each ζ1, . . . , ζn < κ choose a(ζ1, . . . , ζn) ⊆ κ such that

a(ζ1, . . . , ζn)• 
P Ċ(ζ̌1, . . . , ζ̌n),

(κ \ a(ζ1, . . . , ζn))• 
P ¬Ċ(ζ̌1, . . . , ζ̌n);

and for α < κ write

Cα(ζ1, . . . , ζn) for ‘α ∈ a(ζ1, . . . , ζn)’.

It is easy to check that 〈Cα〉α<κ now represents Ċ.

(d) Induce on the length of φ.

(i) If φ is of the form R1(x1, . . . , xn) and we are given Cα, ξαj for α < κ, j ≤ n then note first that

a• 
P ξ̇j < β̌

if and only if

ξαj < min(α, β) for almost every α ∈ a.

Next,

a• 
PĊ(ξ̇1, . . . , ξ̇n)

⇐⇒ whenever b ⊆ a, ζ1, . . . , ζn < κ, b• 
P ξ̇i = ζ̌i ∀ i ≤ n

then b• 
P Ċ(ζ̌1, . . . , ζ̌n)

⇐⇒ whenever b ⊆ a, ζ1, . . . , ζn < κ, ξαi = ζi ∀ α ∈ b, i ≤ n

then Cα(ζ1, . . . , ζn) for almost every α ∈ b

⇐⇒ Cα(ξα1, . . . , ξαn) for almost every α ∈ a.

(ii) If φ is of the form ψ ∧ χ or ψ ∨ χ the inductive step to φ is elementary. If φ is of the form ¬ψ we
need the translation

a• 
P (β̌; Ċ1, . . . , ξ̇m) � φ

⇐⇒ b• 6
P (β̌; Ċ1, . . . , ξ̇m) � ψ for every b ∈ Pa \ Nν

⇐⇒ ν{α : α ∈ a, (min(α, β);Cα1, . . . , ξαm) � ψ} = 0

⇐⇒ (min(α, β);Cα1, . . . , ξαm) � φ for almost all α ∈ a.

(iii) If φ is of the form ∃Sψ and

a• 
P (β̌; Ċ1, . . . , ξ̇m) � φ,
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then there must be a P-name Ċ such that

a• 
P (β̌; Ċ1, . . . , Ċ, . . . , ξ̇m) � ψ.

Let 〈Cα〉α<κ be a corresponding family of relations. Then by the inductive hypothesis

(min(α, β);Cα1, . . . , Cα, . . . , ξαm) � ψ

for almost every α ∈ a, so that

(min(α, β);Cα1, . . . , ξαm) � φ

for almost every α ∈ a.

(iv) If φ is of the form ∃Sψ and a ∈ Pκ \ Nν is such that

(min(α, β);Cα1, . . . , ξαm) � φ

for almost every α ∈ a, then we can find relations Cα such that

(min(α, β);Cα1, . . . , Cα, . . . , ξαm) � ψ

for almost every α ∈ a. By the inductive hypothesis, taking Ċ from 〈Cα〉α<κ as usual, we have

a• 
P (β̌; Ċ1, . . . , Ċ, . . . , ξ̇m) � ψ, a• 
P (β̌; Ċ1, . . . , ξ̇m) � φ.

(v) (iii)-(iv) together deal with the inductive step to ∃Sψ. If φ is of the form ∀Sψ it is logically
equivalent to ¬∃S¬ψ so that (ii)-(iv) cover it. Finally, if φ is of the form ∃yψ or ∀yψ the same ideas suffice.

4N Proposition Let κ be an atomlessly-measurable cardinal, with rvm filter W and rvm ideal J , and
λ > κ another cardinal. Let Aλ be the measure algebra of {0, 1}λ and let Pλ be the p.o.set Aλ \ {0}. Let φ
be a formula of the second-order language L of §A4 and C1, . . . , Ck relations on κ, ξ1, . . . , ξm ordinals less
than κ. Let β ≤ κ. Then the following are equivalent:

(i) 
Pλ
(β̌; Č1, . . . , ξ̌m) � φ,

(ii) {α : α < κ, (min(α, β);C1, . . . , ξm) � φ} ∈ W;
(iii) {α : α < κ, (min(α, β);C1, . . . , ξm) � φ} /∈ J .

proof Set A = {α : (min(α, β);C1, . . . ) � φ}.

(i)⇒(ii) Assume (i). Let ν be a Maharam homogeneous normal witnessing probability on κ; let θ be the
Maharam type of ν. We know by the Gitik-Shelah theorem (3F) that θ > κ. Set A = Pκ/Nν , P = A \ {0};
then A is isomorphic to the measure algebra of {0, 1}θ, so Theorem A4I tells us that


P (β̌; Č1, . . . ) � φ.

Now observe that each P-name Či, ξ̌j can be identified with the P-names Ċi, ξ̇j derived from families
〈Cαi〉α<κ, 〈ξαj〉α<κ, setting Cαi = Ci, ξαj = ξj for every α. So Lemma 4Md tells us that

(min(α, β) : C1, . . . ) � φ

for ν-almost every α < κ, that is, that νA = 1. As ν is arbitrary, A ∈ W.

(ii)⇒(iii) is trivial.

(iii)⇒(i) I reverse the argument of (i) ⇒(ii). Let ν be a Maharam homogeneous normal witnessing
probability on κ such that νA = 1; let θ > κ be the Maharam type of ν, and P = (Pκ/Nν) \ {0} the
corresponding p.o.set. This time 4Md tells us that


P (β̌; Č1, . . . ) � φ

and A4I that


Pλ
(β̌; Č1, . . . ) � φ,

as required.

4O Corollary (a) Let κ be an atomlessly-measurable cardinal and I a set of cardinal less than κ. Let φ
be a formula of the second-order language L, and C1, . . . , Ck relations on I, ξ1, . . . , ξm members of I. Then
for any random real p.o.set P,
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(I;C1, . . . , ξm) � φ ⇐⇒ 
P (Ǐ; Č1, . . . , ξ̌m) � φ.

(b) Let C1, . . . , Cn be relations and ξ1, . . . , ξm ordinals, all with definitions which are absolute for random
real forcing. Let φ be a second-order formula such that

ZFC ⊢ ‘for every atomlessly-measurable cardinal κ > max
i≤m

ξi,

(κ;C1, . . . , Ck; ξ1, . . . , ξm) � φ’.

Then for every atomlessly-measurable cardinal κ > maxi≤m ξi,

{α : α < κ, (α;C1, . . . , ξm) � φ}

belongs to the rvm filter of κ.

proof (a) Of course we may take it that I = β is an ordinal less than κ. Also, as remarked in 2B, it is
enough to consider the case in which P = Pλ = Aλ \ {0} for some cardinal λ, taking Aλ to be the measure
algebra of {0, 1}λ as usual.

Set θ = max(λ, κ+) and let Pθ = Aθ \ {0} be the corresponding p.o.set. Then

(β;C1, . . . ) � φ ⇐⇒ 
Pθ
(β̌; Č1, . . . ) � φ

by 4N. But now note that


P κ̌ is real-valued-measurable

(2C), so we can repeat the argument in V P to see that


P (β̌; Č1, . . . ) � φ ⇐⇒ 
P

(


Pθ
(β̌; Č1, . . . ) � φ

)

.

The iteration P ∗ Pθ = Pλ ∗ Pθ is isomorphic to Pθ (Kunen 84, 3.13), so we have


P (β̌; Č1, . . . ) � φ ⇐⇒ 
Pθ
(β̌; Č1, . . . ) � φ ⇐⇒ (β;C1, . . . ) � φ.

(b) Let ν be a normal witnessing probability on κ and P the p.o.set (Pκ/Nν) \ {0}. Then


P κ̌ is real-valued-measurable

by 2C, and also of course


P c ≥ κ̌ > maxi≤m ξ̌i,

so, repeating the ZFC proof of (κ; . . . ) � φ in V P,


P (κ̌; Č1, . . . , ξ̌m) � φ.

But now, by 4Md,

ν{α : α < κ, (α;C1, . . . , ξm) � φ} = 1.

As ν is arbitrary, we have the result.

Remark Part (a) means that almost any fact about random real forcing is likely to have implications in
the presence of an atomlessly-measurable cardinal.

Part (b) is a kind of reflection principle, corresponding to the theorem of Hanf and Scott (A4L) for two-
valued-measurable cardinals. The requirements ‘ZFC ⊢ . . . ’ and ‘with definitions absolute for random real
forcing’ are more restrictive than is absolutely necessary, but we do have to take care, when applying this
method, that whatever argument we have used to prove that (κ; . . . ) � φ will survive the move to V P.

Version of 10.12.91

4P Theorem Let κ be a real-valued-measurable cardinal with rvm filter W and rvm ideal J . Then for
every Z ∈ Pκ \ J ,

{α : α < κ, Z ∩ α belongs to the Π2
0-ideal of α}

belongs to J . In particular, setting Z = κ, the set of weakly Π2
0-indescribable cardinals less than κ belongs

to W.
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proof For two-valued-measurable cardinals this (and much more) is essentially covered by A4L; so henceforth
I shall assume that κ is atomlessly-measurable. I will as usual write AI for the measure algebra of {0, 1}I ,
PI for the p.o.set AI \ {0}, for any set I. Write

H = {α : 0 < α < κ, Z ∩ α belongs to the Π2
0-ideal of α}.

??? Suppose, if possible, that H /∈ J . For each α ∈ H we have a formula φα of the language L of §A4,
integers kα, mα ≥ 0, relations Cα1, . . . , Cαkα

on α, and ordinals ξα1
, . . . , ξαmα

< α such that

(α;Cα1, . . . , ξαmα
) � φα,

(β;Cα1, . . . , ξαmα
) 6� φα for every β < α.

Because there are only countably many formulae in L, there must be φ, k, m such that H1 /∈ J , where
H1 = {α : α ∈ H, φα = φ, kα = k, mα = m}. Let ν2 be a Maharam homogeneous normal witnessing

probability on κ such that ν2H1 = 1. Let P be the p.o.set (Pκ/Nν2
) \ {0}. Let Ċ1, . . . , Ċk, ξ̇1, . . . , ξ̇m be

the P-names for relations and ordinals corresponding to the families 〈Cαi〉α<κ, 〈ξαj〉α<κ as in Lemma 4M.
Then we have


P (κ̌; Ċ1, . . . , ξ̇m) � φ

by 4Md. But now observe that the Maharam type λ of ν2 is greater than κ, by the Gitik-Shelah theorem
again (3F). If we identify P with Pλ, we see that there is a set I ⊆ λ, of cardinal at most κ, such that all the

P-names Ċ1, . . . , ξ̇m can be represented by PI -names. Let J be a subset of λ, including I, such that J \ I
and λ \ J both have cardinal λ. Now we can regard P ∼= Pλ as an iteration PJ ∗Pλ\J (see Kunen 84, 3.13),
so that we have


PJ

(


Pλ\J
(κ̌; Ċ1, . . . , ξ̇m) � φ

)

.

But from the standpoint of V PJ , Ċ1, . . . , ξ̇m are fixed relations and ordinals. Also we have


PJ
κ̌ is real-valued-measurable

(Theorem 2C) and


PJ
Ž is not in the rvm ideal of κ̌

by 2Jc. So we may use Proposition 4N in V PJ to see that


PJ
∃ β ∈ Ž, (β; Ċ1, . . . , ξ̇m) � φ.

Now there is a PJ -name β̇ for a member of Z such that


PJ
(β̇; Ċ1, . . . , ξ̇m) � φ.

Let K ⊆ J be a countable set such that the PJ -name β̇ can be represented by a PK-name. Regarding PJ

as an iteration PI∪K ∗ PJ\(I∪K) and P as an iteration PI∪K ∗ Pλ\(I∪K), and observing that J \ (I ∪K) and

λ \ (I ∪K) both have cardinal λ > κ, we can use A4I in V PI∪K to see that


P (β̇; Ċ1, . . . , ξ̇m) � φ.

Now there must be ζ ∈ Z and a ∈ Pκ \ Nν2
such that a• 
P β̇ = ζ̌, so that

a• 
P (ζ̌; Ċ1, . . . , ξ̇m) � φ.

But now 4Md tells us that

(ζ;Cα1, . . . , ξαm) � φ

for ν2-almost every α ∈ a. In particular, there is an α ∈ a ∩H1 such that α > ζ and (ζ;Cα1, . . . ) � φ; but
φ = φα; so this contradicts the choice of Cα1, . . . and φα. XXX

4Q Proposition Suppose that κ, κ′ are two atomlessly-measurable cardinals with κ < κ′. Then κ is
weakly Π2

0-indescribable, and its Π2
0-filter is included in its rvm filter.

proof Let ν be a Maharam homogeneous normal witnessing probability on κ; let P = (Pκ/Nν) \ {0} be the
corresponding p.o.set.
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Suppose that φ is a formula of the language L of §A4 and that C1, . . . , Ck are relations on κ, ξ1, . . . , ξm
are ordinals less than κ such that

(κ;C1, . . . , Ck; ξ1, . . . , ξm) � φ.

By 4Oa, because there is an atomlessly-measurable cardinal greater than κ,


P (κ̌; Č1, . . . ) � φ.

So 4Md tells us that

(α;C1, . . . ) � φ

for ν-almost every α < κ. Because ν is arbitrary,

A = {α : α < κ, (α;C1, . . . ) � φ}

belongs to the rvm filter of κ. As φ, C1, . . . , ξm are arbitrary, we have the result.

4R Proposition Let κ be a real-valued-measurable cardinal and λ any larger cardinal. Let A be the
measure algebra of {0, 1}λ and P the p.o.set Aλ \ {0}. Then


P κ̌ is weakly Π2
0-indescribable and

the rvm filter of κ̌ includes the Π2
0-filter of κ.

proof We can use the same ideas as in the last three results. Let φ be a formula of the language L, and let
Ċ1, . . . , Ċk, ξ̇1, . . . , ξ̇m, σ be Pλ-names such that


P (κ̌; Ċ1, . . . ) � φ,


P σ = {α : α < κ̌, (α; Ċ1, . . . ) 6� φ}.

Then there is a set I ⊆ λ such that λ \ I has cardinal λ and σ and every Ċi, ξ̇j can be represented by a
PI -name, taking PI to be the p.o.set associated with the measure algebra of {0, 1}I as usual. Now we have


PI
κ̌ is real-valued-measurable

(2C) and


PI

(


Pλ\I
(κ̌; Ċ1, . . . ) � φ

)

,


PI

(


Pλ\I
σ = {α : α < κ̌, (α; Ċ1, . . . ) 6� φ}

)

.

In V PI , all of σ, Ċ1, . . . are definite sets, so we can apply 4N to see that


PI
σ belongs to the rvm ideal of κ̌.

But now 2Jc tells us that


PI

(


Pλ\I
σ belongs to the rvm ideal of κ̌

)

,

taking the liberty of using the same symbol κ̌ for the new name for κ. Thus


P σ belongs to the rvm ideal of κ.

As φ, Ċ1, . . . are arbitrary we have the result.

Remark This result shows that if an atomlessly-measurable cardinal κ is constructed by the method of 2C,
then

κ is weakly Π1
1-indescribable

⇐⇒ κ < c

⇐⇒ κ is weakly Π2
0-indescribable

and the rvm filter of κ includes the Π2
0-filter of κ.

See 6J and P3 below.
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4S The next proposition depends on results from §6 below; but it seems natural to place it here, as it
again refers to a type of indescribability.

Proposition Let κ be an atomlessly-measurable cardinal with normal witnessing probability ν. Let φ be a
Σ1

1 formula in the language L of §A4, C1, . . . , Ck relations on κ and ξ1, . . . , ξm ordinals less than κ. Set

A = {α : α < κ, (α;C1, . . . , Ck; ξ1, . . . , ξm) � φ}.

If A is not in the rvm ideal of κ then there is a B ⊆ κ such that β ⊆ B, νB = 1 and

(B;C1, . . . , ξm) � φ.

proof (a) By 4N, νA = 1. Of course, we may suppose that ξj < β for every j. Next, we may take it that
φ is of the form

∃Rk+1 . . . ∃Rk+r∀xm+1∃xm+2 . . . ∀xm+2s−1∃xm+2sψ

where ψ has no quantifiers, since φ is surely logically equivalent to such a formula. For every α ∈ A we have
relations Dα1, . . . ,Dαr and functions hα1 : α→ α, hα2 : α2 → α, . . . , hαs : αs → α such that

(α;C1, . . . , Ck,Dα1, . . . ,Dαr, ξ1, . . . , ξm, η1, hα1(η1), . . . , ηs, hαs(η1, . . . , ηs)) � ψ

for all η1, . . . , ηs < α. For each η̄ = (η1, . . . , ηj) ∈
⋃

j≤s κ
j set

M(η̄) = {ξ : ν{α : hαj(η̄) = ξ} > 0};

then M(η̄) is countable. For I ∈ [κ]<ω let K(I) be the smallest subset of κ such that I ⊆ K(I) and
M(η̄) ⊆ K(I) whenever η̄ ∈

⋃

j≤sK(I)j . Then K(I) is countable.

(b) Let (Z, ν̃) be the hyperstonian space of (κ,Pκ, ν), and for a ⊆ κ let a∗ be the corresponding open-
and-closed subset of Z, so that a 7→ a∗ is a Boolean homomorphism and ν̃a∗ = νa for every a ⊆ κ. For
j ≤ s, η̄ ∈ κj set

Q(η̄) = {{α : hαj(η̄) = ξ}∗ : ξ ∈M(η̄)},

so that ν̃(Z \
⋃

Q(η̄)) = 0. Set

f(I) =
⋃

{Z \
⋃

Q(η̄) : η ∈
⋃

j≤sK(I)j} ∈ Nν̃

for each I ∈ [κ]<ω.

By Proposition 6E, there is a set B0 ⊆ κ such that β ⊆ B0, νB0 = 1 and
⋃

{f(I) : I ∈ [B0]<ω} 6= Z.
Take z ∈ Z \

⋃

{f(I) : I ∈ [B0]<ω} and set B =
⋃

{K(I) : I ∈ [B0]<ω}.

If j ≤ s, we may define hj : Bj → B as follows. For each η̄ ∈ Bj there is an I ∈ [B0]<ω such that
η̄ ∈ K(I)j (because the function I 7→ K(I) is increasing), and now z ∈

⋃

Q(η̄), so there is a (unique) ξ such
that z ∈ {α : hαj(η̄) = ξ}∗. We have ξ ∈M(η̄) ⊆ K(I) ⊆ B; take this ξ for hj(η̄).

Next, define relations D1, . . . ,Dr on κ by writing

Di(η1, . . . , ηn) ⇐⇒ z ∈ {α : Dα1(η1, . . . , ηn)}∗.

Then an easy induction on the length of χ shows that whenever χ is a formula of L without quantifiers, and
η1, . . . , ηs ∈ B,

(B;C1, . . . , Ck,D1, . . . ,Dr; ξ1, . . . , ξm, η1, h1(η1), . . . , hs(η1, . . . , ηs)) � χ

at least when z ∈ b(χ, η1, . . . , ηs)∗, where b(χ, η1, . . . , ηs) is the set of those α < κ such that

(α;C1, . . . , Ck,Dα1, . . . ,Dαr, η1, hα1(η1), . . . , ηs, hαs(η1, . . . , ηs)) � χ.

In particular, this is true when χ = ψ. But of course z ∈ Z = b(ψ, η1, . . . , ηs)∗ for all η1, . . . , ηs < κ, so

(B;C1, . . . , Ck,D1, . . . ,Dr; ξ1, . . . , ξm, η1, h1(η1), . . . , hs(η1, . . . , ηs)) � ψ

for all η1, . . . , ηs ∈ B, and

(B;C1, . . . , Ck; ξ1, . . . , ξm) � φ,

as required.
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4T Corollary Let κ be an atomlessly-measurable cardinal. Let φ be a Π1
1 formula of the language L, and

ξ1, . . . , ξm ordinals less than κ. If (κ;<; ξ1, . . . , ξm) � φ then there is an α < κ such that (α;<; ξ1, . . . , ξm) �

φ.

proof ??? Suppose, if possible, otherwise. Applying 4S to (a Σ1
1 formula logically equivalent to) ¬φ, with β

greater than any ξj , we obtain a B ⊆ κ such that β ⊆ B, #(B) = κ and

(B;<; ξ1, . . . , ξm) � ¬φ.

But (B;<; ξ1, . . . , ξm) is isomorphic to (κ;<; ξ1, . . . , ξm), so this is impossible. XXX

Remark 4N-4T are due to Kunen. Most of the ideas are in Kunen n70.

Version of 18.9.92

5. Combinatorial implications

I turn now to some of the combinatorial consequences of supposing that there is an atomlessly-measurable
cardinal. I begin with technical but very useful results on set- valued functions defined on [κ]<ω (5A-5B),
with fairly straightforward corollaries (5C-5D), and Prikry’s theorem on cardinal powers when c is atomlessly
-measurable (5E). 5F deals with κ-Aronszajn trees. The rest of the section is devoted to theorems of Kunen
concerning ultrafilters on N (5G), algebras generated by rectangles (5H-5J) with corollaries on families in
PN and NN (5K-5L), ♦c (5N) and a partition relation (5O-5P).

5A Lemma Let (X,PX,µ) be a probability space and Y a set of cardinal less than the additivity of µ.
Let θ be any cardinal and f : X → [Y ]<θ a function.

(a) There is an M ∈ [Y ]<θ such that µ{x : f(x) ⊆M} > 0.
(b) If cf(θ) > ω then there is an M ∈ [Y ]<θ such that µ{x : f(x) ⊆M} = 1.

proof (a) If θ > #(Y ) this is trivial; suppose that θ ≤ #(Y ) < add(µ). Because [Y ]<θ =
⋃

α<θ[Y ]≤α, there
is an α < θ such that µX0 > 0, where X0 = {x : #(f(x)) ≤ α}. If α < ω then #([Y ]α) ≤ max(ω,#(Y )) <
add(µ) so there is an M ∈ [Y ]α such that µ{x : f(x) = M} > 0. If α ≥ ω, then for each x ∈ X0 let
〈hξ(x)〉ξ<α run over a set including f(x). For each ξ < α,

Yξ = {y : µh−1
ξ [{y}] > 0}

is countable, and because #(Y ) < add(µ), µh−1
ξ [Y \ Yξ] = 0. Set M =

⋃

ξ<α Yξ ∈ [Y ]≤α ⊆ [Y ]<θ. Because

α < add(µ),

µ{x : f(x) ⊆M} ≥ µ(X0 \
⋃

ξ<θ h
−1
ξ [Y \ Yξ]) > 0,

as required.

(b) If cf(θ) > ω, we can take α such that µX0 = 1, so that µ{x : f(x) ⊆M} = 1.

5B Theorem Let κ be a real-valued-measurable cardinal and ν a normal witnessing probability on κ.
Let θ < κ be a cardinal of uncountable cofinality, and f : [κ]<ω → [κ]<θ any function. Then there are C ⊆ κ
and f∗ : [C]<ω → [κ]<θ such that νC = 1 and f(I) ∩ η ⊆ f∗(I ∩ η) whenever I ∈ [C]<ω and η < κ.

proof (a) I show by induction on n ∈ N that if g : [κ]≤n → [κ]<θ is a function then there are A ⊆ κ,
g∗ : [A]<ω → [κ]<θ such that νA = 1 and g(I) ∩ η ⊆ g∗(I ∩ η) for every I ∈ [A]<ω, η < κ. PPP (i) If n = 0
this is trivial; take A = κ, g∗(∅) = g(∅). (ii) For the inductive step to n+ 1, given g : [κ]≤n+1 → [κ]<θ, then
for each ξ < κ define gξ : [κ]≤n → [κ]<θ by setting gξ(J) = g(J ∪ {ξ}) for every J ∈ [κ]≤n. Set

D = {ξ : ξ < κ, cf(ξ) ≥ θ};

then νD = 1 (4Lc). For ξ ∈ D, J ∈ [κ]≤n set ζJξ = sup(ξ∩gξ(J)) < ξ. Then for each J ∈ [κ]≤n the function
ξ 7→ ζJξ is regressive, so there is a ζ∗J < κ such that ζJξ < ζ∗J for almost every ξ < κ. Now by 5Ab we see
that there is an h(J) ∈ [ζ∗J ]<θ such that ξ ∩ gξ(J) ⊆ h(J) for almost all ξ. By the inductive hypothesis,
there are B ⊆ κ, h∗ : [B]≤n → [κ]<θ such that νB = 1 and h(J) ∩ η ⊆ h∗(J ∩ η) for every J ∈ [B]≤n and
η < κ.

Try setting
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AJ = {ξ : ξ ∩ gξ(J) ⊆ h(J)} for J ∈ [κ]≤n,

A = B ∩ {ξ : ξ ∈ AJ ∀ J ∈ [ξ]≤n},

g∗(I) = g(I) if I ∈ [A]n+1, g∗(I) = g(I) ∪ h∗(I) if I ∈ [A]≤n.

Then νAJ is always 1, by the choice of h(J), so νA = 1, by A1E(c-iv); while g∗(I) ∈ [κ]<θ for every
I ∈ [A]≤n+1. If η < κ then of course g(∅) ∩ η ⊆ g∗(∅ ∩ η) for every η < κ. If I ∈ [A]≤n+1 \ {∅} and η < κ,
set ξ = max I, J = I \ {ξ}; then ξ ∈ AJ . If η > ξ then g(I) ∩ η ⊆ g(I) ⊆ g∗(I) = g∗(I ∩ η). If η ≤ ξ then

g(I) ∩ η = gξ(J) ∩ ξ ∩ η ⊆ h(J) ∩ η ⊆ h∗(J ∩ η) = h∗(I ∩ η) ⊆ g∗(I ∩ η).

Thus the induction continues.

(b) Now applying (a) to f↾[κ]≤n we obtain sets Cn ⊆ κ, functions f∗n : [Cn]≤n → [κ]<θ such that νCn = 1
and f(I) ∩ η ⊆ f∗n(I ∩ η) whenever I ∈ [Cn]≤n and η < κ. Set C =

⋂

n∈N Cn and f(I) =
⋃

i≥#(I) f
∗
i (I)

for each I ∈ [C]<ω. Then νC = 1. If I ∈ [C]<ω and η < κ, set n = #(I); then I ∈ [Cn]n so f(I) ∩ η ⊆
f∗n(I ∩ η) ⊆ f∗(I ∩ η), as required.

5C Corollary Let κ be a real-valued-measurable cardinal and ν a normal witnessing probability on κ.
Let θ < κ be a cardinal of uncountable cofinality.

(a) If Y is a set of cardinal less than κ and f : [κ]<ω → [Y ]<θ is a function, then there are sets C ⊆ κ,
M ⊆ Y such that νC = 1, #(M) < θ and f(I) ⊆M for every I ∈ [C]<ω.

(b) If Y is any set and g : κ → [Y ]<θ any function there are sets C ⊆ κ, M ∈ [Y ]<θ such that νC = 1
and g(ξ) ∩ g(η) ⊆M for all distinct ξ, η ∈ C.

(c) If f : [κ]<ω → κ is a function such that f(I) < min I for every non-empty finite I ⊆ κ not containing
0, then there are sets C, M ⊆ κ such that νC = 1, M is countable and f(I) ∈M for every I ∈ [C]<ω.

proof (a) We may suppose that Y is actually a subset of κ. In this case, by 5B, we have a set C0 ⊆ κ and
a function f∗ : [C0]<ω → [κ]<θ such that f(I) ∩ η ⊆ f∗(I ∩ η) for all I ∈ [C0]<ω and η < κ. Let γ < κ be
such that Y ⊆ γ and set M = Y ∩ f∗(∅) ∩ γ, C = C0 \ γ. Then #(M) < θ and νC = 1 and if I ∈ [C]<ω

then f(I) = f(I) ∩ γ ⊆ Y ∩ f∗(I ∩ γ) = M .

(b) As above, we may suppose that
⋃

ξ<κ g(ξ) ⊆ κ. Set f(I) =
⋃

ξ∈I g(ξ) ∈ [κ]<θ for I ∈ [κ]<ω; take

C0 ⊆ κ, f∗ : [C0]<ω → [κ]<θ from 5B, and set M = Y ∩ f∗(∅). Write

C1 = {ξ : ξ < κ, g(η) ⊆ ξ ∀ η < ξ},

so that C1 is a closed unbounded set and νC = 1, where C = C0 ∩ C1. If ξ, η ∈ C and ξ < η, then

g(ξ) ∩ g(η) ⊆ η ∩ g(η) = η ∩ f({η}) ⊆ f∗({η} ∩ η) = f∗(∅),

so g(ξ) ∩ g(η) ⊆M , as required.

(c) By 5B we have f∗ : [κ]<ω → [κ]≤ω, C ⊆ κ such that νC = 1 and {f(I)} ∩ η ∈ f∗(I ∩ η) whenever
I ∈ [C]<ω and η < κ. We may suppose that 0 /∈ C. If I ∈ [C]<ω and I 6= ∅ set η = min I; then
f(I) ∈ {f(I)} ∩ η ⊆ f∗(I ∩ η) = f∗(∅). So if we take M = f∗(∅) ∪ {f(∅)} we have the result.

5D Corollary Let κ be a real-valued-measurable cardinal.
(a) Suppose that Y is a set of cardinal less than κ and θ is a cardinal less than κ of uncountable cofinality.

Then
(i) κ is a precaliber of the Boolean algebra PY/[Y ]<θ;
(ii) {λ : λ < κ is a precaliber of PY/[Y ]<θ} belongs to the rvm filter of κ;
(iii) the Souslin number of PY/[Y ]<θ is less than κ;
(iv) Tr[Y ]<θ (Y ;Z) < κ whenever #(Z) < κ (definition: 2F).

(b) If δ is a cardinal less than κ, and h : [κ]<ω → [κ]≤δ is a function, there is a set A ⊂ κ such that
#(A) = κ and h(I) ⊆ A for every I ∈ [A]<ω.

(c) In particular, there is no Jónsson algebra on κ.
(d) If f : [κ]<ω → ω1 is any function there are C ∈ [κ]κ, ζ < ω1 such that f(I) 6= ζ for every I ∈ [C]<ω.

proof (a) Write A = PY/[Y ]<θ.
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(i) Let 〈aξ〉ξ<κ be a family in A \ {0}. For ξ < κ choose Aξ ⊆ Y such that A•

ξ = aξ. For I ∈ [κ]<ω

set f(I) =
⋂

ξ∈I Aξ if the intersection has cardinal less than θ, ∅ otherwise. By 5Ca there is a C ∈ [κ]κ

such that M =
⋃

{f(I) : I ∈ [C]<ω} has cardinal less than θ. Now there is a y ∈ Y \ M such that
D = {ξ : ξ ∈ C, y ∈ Aξ} has cardinal κ, and we must have #(

⋂

ξ∈I Aξ) ≥ θ for every I ∈ [D]<ω, so that

〈aξ〉ξ∈D is centered in A.

(ii) Let W be the set of cardinals less than κ which are not precalibers of A. For each α ∈ W
choose a family 〈aαξ〉ξ<α in A \ {0} with no centered family of cardinal α, and for ξ < α ∈ W choose
Aαξ ⊆ Y such that A•

αξ = aαξ. For I ∈ [κ]<ω set f(I) =
⋂

ξ∈I∩αAαξ if #(I) ≥ 2 and max I = α ∈ W

and #(
⋂

ξ∈I∩α)Aαξ < θ, ∅ otherwise. ??? If W is not in the rvm ideal of κ, let ν be a normal witnessing

probability on κ with νW = 1. By 5Ca there is a C ⊆ κ such that νC = 1 and M =
⋃

{f(I) : I ∈ [C]<ω}
has cardinal less than θ. Let α ∈ C ∩W be such that #(C ∩ α) = α and cf(α) > #(Y ) (using 4Lc). For
each ξ ∈ C ∩ α there is a y ∈ Aαξ \M , so there is a y ∈ Y such that D = {ξ : ξ < α, y ∈ Aαξ} has cardinal
α. But now 〈aαξ〉ξ∈D is centered, contrary to the choice of 〈aαξ〉ξ<α. XXX

Thus W belongs to the rvm ideal of κ, and

V = {α : α < κ is a cardinal} \W

belongs to the rvm filter of κ. But every member of V is a precaliber of A.

(iii) If α is any infinite cardinal which is a precaliber of A, then the Souslin number of A is at most α.

(iv) Tr[Y ]<θ (Y ;Z) ≤ S(P(Y × Z)/[Y × Z]<θ).

(b)-(c) For I ∈ [κ]<ω let g(I) be the smallest set such that I ⊆ g(I) and h(J) ⊆ g(I) for every
J ∈ [g(I)]<ω. Then #(g(I)) ≤ δ for every I and g(I) ⊆ g(I ′) whenever I ⊆ I ′ ∈ [κ]<ω.

Applying 5Ca with Y = δ+ = θ and f(I) = g(I) ∩ θ, we see that there are sets C ⊆ κ, M ⊆ θ such that
#(C) = κ, #(M) ≤ δ and g(I) ∩ θ ⊆M for every I ∈ [C]<ω. Set

A =
⋃

{g(I) : I ∈ [C]<ω} ⊆ κ.

Then C ⊆ A, so #(A) = κ, and A ∩ θ ⊆M , so A 6= κ. Finally, {g(I) : I ∈ [C]<ω} is upwards-directed, so if
J ∈ [A]<ω there is an I ∈ [C]<ω such that J ⊆ g(I), in which case h(J) ⊆ g(I) ⊆ A.

(d) In fact there are C ∈ [κ]κ, ζ < ω1 such that f(I) < ζ for every I ∈ [C]<ω.

Remarks (a) The ideas here go back to Lemma 14 of Solovay 71 and Lemma 5 of Kunen n70. 5D(a-ii)
is a strengthening of Theorem 2d of Prikry 75. 5Dc is due to Shelah. 5Dd corresponds to formula (7) of
§53 in Erdös Hajnal Máté & Rado 84, p. 330.

(b) The results above will more often than not be used with successor cardinals θ, so that [Y ]<θ = [Y ]≤δ

for some infinite cardinal δ < κ. Of course 5B-5C also give information about functions f : [κ]<ω → Y ,
taking θ = ω1 and replacing f by I 7→ {f(I)} : [κ]<ω → [Y ]≤ω.

(c) For possible strengthenings of 5Ab, 5Ca and 5Da see P9 below.

5E Theorem If c is atomlessly-measurable, then 2λ ≤ c for every cardinal λ < c.

proof The proof is by induction on λ. It starts with the trivial case λ ≤ ω.

(a) For the inductive step to λ, where ω < λ < c, consider first the case cf(λ) > ω. For each ξ < λ, let
θξ : Pξ → c be an injective function. For each A ⊆ λ, there must be a γA < c such that θξ(A ∩ ξ) ≤ γA for
every ξ < λ, because cf(c) = c > λ.

??? Suppose, if possible, that 2λ > c. Then there must be a γ < c such that A = {A : A ⊆ λ, γA = γ} has
cardinal greater than c. Let h : c → A be injective, and define f : [c]2 → λ by setting

f({α, β}) = min{ξ : h(α) ∩ ξ 6= h(β) ∩ ξ}

whenever α, β < c are distinct. By Corollary 5Ca, with θ = ω1, Y = λ, there is a set C ⊆ c such that
#(C) = c and M = f [[C]2] is countable. Because cf(λ) > ω, ζ = supM < λ. But now we see that
h(α)∩ ζ 6= h(β)∩ ζ whenever α, β are distinct members of C. So θζ(h(α)∩ ζ) 6= θζ(h(β)∩ ζ) for all distinct
α, β ∈ C. But h(α) ∈ A whenever α < c, so θζ(h(α) ∩ ζ) ≤ γ for every α ∈ C; which is impossible, because
#(C) > #(γ). XXX
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So in this case 2λ ≤ c.

(b) Now if we have ω = cf(λ) < λ < c, then there is an increasing sequence 〈λn〉n∈N of cardinals cofinal
with λ, so that 2λ ≤ #(

∏

n∈N Pλn) ≤ #(cN) = c. So in this case also the induction proceeds.

Remark This is due to Prikry 75. See also 7Q below.

5F Proposition If κ is a real-valued-measurable cardinal, then there is no κ-Aronszajn tree.

proof Let T be a tree of height κ in which every level has cardinal strictly less than κ. Then #(T ) = κ.
Let ν be a κ-additive probability with domain PT which is zero on singletons. For each t ∈ T write T (t)

for the set of elements of T comparable with t, and for ξ < κ let Tξ be the set of elements of T of rank

ξ. Set S = {t : νT (t)} > 0. If s ≤ t ∈ S then T (s) ⊇ T (t) so s ∈ S; for each ξ < κ, we have #(Tξ) < κ

and T =
⋃

t∈Tξ
T (t), so S ∩ Tξ 6= ∅; and ν(T (s) ∩ T (t)) = 0 if s, t are distinct members of Tξ, so S ∩ Tξ is

countable. Thus S is a tree of height κ in which every level is countable. Because cf(κ) > ω1 there must be
an s ∈ S such that S(s) = S ∩ T (s) is a branch of length κ. Thus T is not a κ-Aronszajn tree.

Remarks (a) This is due to Silver 70, Theorem 1.16.

(b) It is also the case that

{λ : λ < κ is a cardinal and there is a λ-Aronszajn tree}

belongs to the rvm ideal of κ. This may be deduced from the result above using 4Ob (because it is easy to
check that there is a second-order formula φ such that, for cardinals λ, (λ;<; ) � φ iff there is a λ-Aronszajn
tree), or from 4Kb, because if λ is weakly Π1

1-indescribable there is no λ-Aronszajn tree (Fremlin & Kunen

n87, 2N; compare Keisler & Tarski 64, 4.31).

5G Proposition If there is an atomlessly-measurable cardinal, there is no rapid p-point ultrafilter on N.

proof Let κ be an atomlessly-measurable cardinal, with witnessing probability ν.
??? Suppose, if possible, that F is a rapid p-point ultrafilter on N. Let 〈Ckn〉k,n∈N be a stochastically

independent double sequence of subsets of κ with νCkn = 1
2 for all k, n. Set

Ck = lim
n→F

Ckn ⊆ κ,

Ak = {(ξ, n) : ξ ∈ Ck & ξ ∈ Ckn or ξ /∈ Ck & ξ /∈ Ckn}

⊆ κ× N

for each k ∈ N. Then, for k ∈ N, ξ < κ,

{n : (ξ, n) ∈ Ak} = {n : ξ ∈ Ckn} ∈ F if ξ ∈ Ck,

= {n : ξ /∈ Ckn} ∈ F if ξ /∈ Ck.

Because F is a p-point ultrafilter, there is a set A ⊆ κ× N such that

{n : (ξ, n) ∈ A} ∈ F ,

{n : (ξ, n) ∈ A \Ak} is finite

for all k ∈ N, ξ < κ.
Now observe that if we write

Bkn = {ξ : ξ < κ, (ξ, n) ∈ Ai ∀ i < k},

then limn→∞ ν(D ∩ Bkn) = 2−kνD for every k ∈ N, D ⊆ κ. PPP Induce on k. For k = 0, this is trivial. For
the inductive step to k + 1,

Bk+1,n = {ξ : ξ ∈ Bkn, ξ ∈ Ck ⇐⇒ ξ ∈ Ckn}

= (Bkn ∩ Ck ∩ Ckn) ∪ ((Bkn \ Ck) \ Ckn).

Now if we write Ak for the subalgebra of Pκ generated by {Cij : i < k, j ∈ N}, we see that for any E ⊆ κ,
sequence 〈Dn〉n∈N in Ak we have
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limn→∞ ν(E ∩Dn ∩ Ckn) = 1
2 limn→∞ ν(E ∩Dn)

whenever the right-hand-side is defined, just because the Ckn are stochastically independent of each other
and the Dn and all have measure 1

2 . (See A2N.) It follows that if we write A′
k for the subalgebra of Pκ

generated by Ak ∪ {Ci : i ≤ k} ∪ {D} then

limn→∞ ν(Dn ∩ Ckn) = 1
2 limn→∞ ν(Dn)

for every sequence 〈Dn〉n∈N in A′
k for which the right-hand limit exists. Applying this withDn = Bkn∩D∩Ck

and with Dn = Bkn ∩D \ Ck we get, for any D ⊆ κ,

lim
n→∞

ν(Bk+1,n ∩D) = lim
n→∞

ν(Bkn ∩D ∩ Ck ∩ Ckn)

+ lim
n→∞

ν(Bkn ∩D \ Ck)

− lim
n→∞

ν((Bkn ∩D \ Ck) ∩ Ckn)

=
1

2
lim

n→∞
ν(Bkn ∩D ∩ Ck) +

1

2
lim

n→∞
ν(Bkn ∩D \ Ck)

=
1

2
lim

n→∞
ν(Bkn ∩D) =

1

2
2−kνD = 2−k−1νD,

as required. QQQ In particular, limn→∞ νBkn = 2−k for every k ∈ N.
If we now set

Bn = {ξ : (ξ, n) ∈ A},

the set

{n : n ∈ N, ξ ∈ Bn \Bkn}

is finite for every ξ < κ, k ∈ N, and consequently

limn→∞ ν(Bn \Bkn) = 0 ∀ k ∈ N,

so that

limn→∞ νBn = 0.

Because F is rapid, there is an F ∈ F such that
∑

n∈F νBn < ∞. There is therefore some ξ < κ such
that F ′ = {n : n ∈ F, ξ ∈ Bn} is finite. But F ′ = {n : n ∈ F, (ξ, n) ∈ A} ∈ F . XXX

Remark This is due to Kunen; compare Jech 78, §38.

5H Proposition Let (X,µ) and (Y, ν) be probability spaces and H a Hilbert space. Suppose that
x 7→ ux : X → H and y 7→ vy : Y → H are bounded H-scalarly measurable functions. Then

∫ ∫

(ux|vy)µ(dx)ν(dy) =
∫ ∫

(ux|vy)ν(dy)µ(dx)

(and both repeated integrals exist).

proof (a) Let E be the set of closed separable linear subspaces of H. For each E ∈ E , let PE be the
orthogonal projection onto E. Observe that (because E is separable) the map x 7→ PE(ux) : X → E will be
measurable in the sense of A2Ae for the second-countable norm topology on E, for every E ∈ E .

(b) There is an E ∈ E such that

PE(ux) = PF (ux) µ-a.e. (x)

whenever E ⊆ F ∈ E . PPP??? For suppose, if possible, otherwise. Then we can choose inductively an increasing
family 〈Eξ〉ξ<ω1

in E such that

µ{x : PEξ+1
(ux) 6= PEξ

(ux)} > 0 ∀ ξ < ω1,

Eξ =
⋃

η<ξ
Eη whenever ξ is a non-zero countable limit ordinal.

(The set of x for which PEξ+1
(ux) 6= PEξ

(ux) is measurable because Eξ and Eξ+1 are separable, as remarked
above.) Now there must be a rational δ > 0 such that
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A = {ξ : ξ < ω1, µUξ ≥ δ}

is infinite, where

Uξ = {x : ‖PEξ+1
(ux) − PEξ

(ux)‖ ≥ δ}

for each ξ < ω1. But in this case there must be an x ∈ X such that

A′ = {ξ : ξ ∈ A, x ∈ Uξ}

is infinite (A2Mb). Let ζ be any cluster point of A′ in ω1. Then

PEζ
(ux) = limξ↑ζ PEξ

(ux),

which is impossible. XXXQQQ

(c) Applying (b) to both 〈ux〉x∈X and 〈vy〉y∈Y , we see that there is an E ∈ E such that

PE(ux) = PF (ux) µ-a.e.(x), PE(vy) = PF (vy) ν-a.e.(y)

whenever E ⊆ F ∈ E . Now observe that if y ∈ Y there is an F ∈ E such that E ⊆ F and vy ∈ F . So

∫

(ux|vy)µ(dx) =

∫

(ux|PF (vy))µ(dx)

=

∫

(PF (ux)|vy)µ(dx)

=

∫

(PE(ux)|vy)µ(dx)

=

∫

(PE(ux)|PE(vy))µ(dx).

This is true for every y. So
∫ ∫

(ux|vy)µ(dx)ν(dy) =
∫ ∫

(PE(ux)|PE(vy))µ(dx)ν(dy).

Similarly
∫ ∫

(ux|vy)ν(dy)µ(dx) =
∫ ∫

(PE(ux)|PE(vy))ν(dy)µ(dx).

But also, because x 7→ PE(ux) and y 7→ PE(vy) are measurable maps to the second-countable space E, and
(u, v) 7→ (u|v) : E ×E → R is continuous, (x, y) 7→ (PE(ux)|PF (vy)) is measurable for the product measure
µ× ν, and

∫ ∫

(PE(ux)|PE(vy))µ(dx)ν(dy) =
∫ ∫

(PE(ux)|PE(vy))ν(dy)µ(dx)

by Fubini’s theorem. Putting these together, we have the result.

5I Corollary Let (X,µ), (Y, ν) and (Z,Σ, σ) be probability spaces. Let x 7→ Ax : X → Σ and y 7→ By :
Y → Σ be functions such that

x 7→ σ(Ax ∩ C), y 7→ σ(By ∩ C)

are measurable for every C ∈ Σ. Then
∫ ∫

σ(Ax ∩By)µ(dx)ν(dy) =
∫ ∫

σ(Ax ∩By)ν(dy)µ(dx).

proof Apply 5H with H = L2(σ), ux = χ(Ax)• (the equivalence class in L2 of the characteristic function of
Ax), vy = χ(By)•.

5J Theorem Let κ be a real-valued-measurable cardinal. For cardinals λ ≤ κ let Σλ be the smallest
subalgebra of P(λ× λ) containing all sets of the form E × F , where E, F ⊆ λ, and closed under unions of
fewer than λ of its members. Set Dλ = {(η, ζ) : η ≤ ζ < λ} ⊆ λ×λ. Then {λ : λ < κ is a cardinal, Dλ ∈ Σλ}
belongs to the rvm ideal of κ, and Dκ /∈ Σκ.

proof The following notation will be useful: If θ is a cardinal and Z is a set, a θ-subalgebra of PZ will be
a subalgebra Σ of PZ such that

⋃

A ∈ Σ whenever A ⊆ Σ and #(A) ≤ θ.
Set
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A = {λ : λ < κ is a cardinal, Dλ ∈ Σλ}.

(a) ??? Suppose, if possible, that A is not in the rvm ideal of κ. Let ν be a normal witnessing probability
on κ such that νA = 1. Set

Set

A1 = {λ : λ ∈ A, λ is uncountable and regular};

then νA1 = νA = 1, by 4Ka.
For cardinals λ, θ let Σλθ be the smallest θ-subalgebra of P(λ × λ) containing all rectangles E × F for

E, F ⊆ λ. If λ ∈ A1 it is regular, so Σλ =
⋃

θ<λ Σλθ, and there is an infinite θ < λ such that Dλ ∈ Σλθ.
Because ν is normal, there is a θ < κ such that νA2 = 1 where

A2 = {λ : λ ∈ A1, Dλ ∈ Σλθ}.

(b) For each λ ∈ A2 there is a family 〈Eλξ〉ξ<θ of subsets of λ such that Dλ belongs to the smallest
θ-subalgebra Σ∗

λ of P(λ×λ) which contains Eλξ×Eλη for all ξ, η < θ. (For the union of all such subalgebras
Σ∗

λ is a θ-subalgebra of P(λ× λ) and must be Σλθ.) Set X = {0, 1}θ and define fλ : λ→ X by setting

fλ(η)(ξ) = 1 if η ∈ Eλξ, 0 otherwise.

Let Σ be the smallest θ-subalgebra of P(X×X) containing all the open-and-closed sets. Then every member
of Σ∗

λ is of the form

{(η, ζ) : (fλ(η), fλ(ζ)) ∈ R}

for some R ∈ Σ (because sets of this form comprise a θ-subalgebra of P(λ × λ) containing all the sets
Eλξ × Eλη); in particular, there is a set Rλ ∈ Σ such that

Dλ = {(η, ζ) : (fλ(η), fλ(ζ)) ∈ Rλ}.

(c) Let T be the smallest θ+-subalgebra of P(κ × X × X) containing all sets of the form B × U × V ,
where B ⊆ κ and U , V ⊆ X. Then

{(λ, x, y) : λ ∈ A2, (x, y) ∈ Rλ}

belongs to T. PPP Define Hγ inductively, for ordinals γ ≤ θ+, by taking
H0 to be the family of open-and-closed subsets of X ×X,
if γ < θ+ is an even ordinal then

Hγ+1 = {
⋃

ξ<θ Hξ : Hξ ∈ Hγ ∀ ξ < θ};

if γ < θ+ is an odd ordinal then

Hγ+1 = {(X ×X) \H : H ∈ Hγ};

if γ ≤ θ+ is a non-zero limit ordinal then

Hγ =
⋃

δ<γ Hδ.

Every Hγ is closed under finite unions and intersections, and Hγ ⊆ Hγ+2 ∩Hγ+3, so Hγ is a subalgebra of
P(X ×X) for limit ordinals γ, and Hθ+ = Σ.

Next, an easy induction on γ shows that if Hξ ∈ Hγ for every ξ < κ then {(ξ, x, y) : (x, y) ∈ Hξ} ∈ T.
The induction starts with the observation that any open-and-closed set H ⊆ X × X is a finite union of
rectangles, so that B ×H ∈ T for every B ⊆ κ. Now H0 has cardinal θ, so if Hξ ∈ H0 for every ξ < κ we
get

{(ξ, x, y) : (x, y) ∈ Hξ} =
⋃

H∈H0
{ξ : Hξ = H} ×H ∈ T.

For the inductive step to γ + 1, where γ is even, we have a family 〈Hξ〉ξ<κ such that each Hξ is expressible
as

⋃

η<θ Hξη with every Hξη ∈ Hγ ; now

{(ξ, x, y) : (x, y) ∈ Hξ} =
⋃

η<θ{(ξ, x, y) : (x, y) ∈ Hξη} ∈ T,

using the inductive hypothesis and the fact that T is a θ-subalgebra. Similarly, the inductive step to γ + 1,
where γ is odd, needs only the fact that T is closed under complements. Finally, for the inductive step to a
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limit γ ≤ θ+, we have a family 〈Hξ〉ξ<κ ∈ Hγ =
⋃

δ<γ Hδ. Set Hδξ = Hξ if Hξ ∈ Hδ, ∅ otherwise; then

{(ξ, x, y) : (x, y) ∈ Hξ} =
⋃

δ<γ{(ξ, x, y) : (x, y) ∈ Hδξ} ∈ T,

using the inductive hypothesis and the fact that T is a θ+-subalgebra.

Observing that Rλ ∈ Σ = Hθ+ for every λ ∈ A2, we have the result. QQQ

(d) Define two probabilities φ, ψ on P(κ×X ×X) by setting

φ(W ) =
∫ ∫

ν{λ : λ ∈ A2, λ > max(η, ζ), (λ, fλ(η), fλ(ζ)) ∈W}ν(dη)ν(dζ),

ψ(W ) =
∫ ∫

ν{λ : λ ∈ A2, λ > max(η, ζ), (λ, fλ(η), fλ(ζ)) ∈W}ν(dζ)ν(dη)

for all W ⊆ κ×X ×X. Then both φ and ψ are κ-additive, and φ(κ×X ×X) = ψ(κ×X ×X) = 1. Set

S = {S : S ⊆ κ×X ×X, φ(S) = ψ(S)}.

Then S is closed under monotonic and disjoint unions of length less than κ, and also under complements.

(e) The key to the proof is the following fact: If B ⊆ κ and U , V ⊆ X then B × U × V ∈ S. PPP
Substituting in the formulae above, we get

φ(B × U × V ) =
∫ ∫

ν(Uη ∩ Vζ)ν(dη)ν(dζ),

ψ(B × U × V ) =
∫ ∫

ν(Uη ∩ Vζ)ν(dζ)ν(dη),

where

Uη = {λ : λ ∈ B ∩A2, η < λ, fλ(η) ∈ U},

Vζ = {λ : λ ∈ A2, ζ < λ, fλ(ζ) ∈ V }

for η, ζ < κ. Now the result is immediate from 5I. QQQ

(f) It follows that T ⊆ S. PPP Define Sγ inductively, for ordinals γ ≤ θ++, as follows. Take S0 to be the
subalgebra of P(κ×X ×X) generated by {B ×U × V : B ⊆ κ, U ⊆ X, V ⊆ X}. Then each member of S0

is a finite disjoint union of cuboids B × U × V , which by (e) above all belong to S, and S0 ⊆ S. Given Sγ ,
for an even ordinal γ, set

Sγ+1 = {
⋃

ξ<α Sξ : α ≤ θ+, 〈Sξ〉ξ<α is an increasing family in Sγ};

for odd ordinals γ set

Sγ+1 = {(κ×X ×X) \ S : S ∈ Sγ};

for non-zero limit ordinals γ set

Sγ =
⋃

δ<γ Sδ.

Of course every Sγ is included in S, because θ+ < κ. Next, every Sγ is closed under finite unions and
intersections, so Sγ is a subalgebra of P(κ × X × X) for every limit ordinal γ; and finally Sθ++ is a
subalgebra of P(κ×X×X) such that

⋃

ξ<α Sξ ∈ Sθ++ whenever α ≤ θ+ and 〈Sξ〉ξ<α is an increasing family

in Sθ++ . Inducing on α we see that
⋃

ξ<α Sξ ∈ Sθ++ whenever α ≤ θ+ and 〈Sξ〉ξ<α is any family in Sθ++ ;

so that Sθ++ is a θ+-subalgebra of P(κ×X ×X), and

T ⊆ Sθ++ ⊆ S,

as required. QQQ

(g) Putting (c) and (f) together,

W ∗ = {(λ, x, y) : λ ∈ A2, (x, y) ∈ Rλ}

belongs to S, and φ(W ∗) = ψ(W ∗). But if we set out to compute these numbers we have
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ν{λ :λ ∈ A2, λ > max(η, ζ), (λ, fλ(η), fλ(ζ)) ∈W ∗}

= ν{λ : λ ∈ A2, λ > max(η, ζ), (fλ(η), fλ(ζ)) ∈ Rλ}

= ν{λ : λ ∈ A2, λ > max(η, ζ), (η, ζ) ∈ Dλ}

= 1 if η ≤ ζ, = 0 otherwise.

So φ(W ∗) = 0 and ψ(W ∗) = νA2 = 1; which is impossible. XXX

(h) This contradiction shows that A belongs to the rvm ideal of κ, which is the first part of the theorem.
But the second part now follows. ??? For if Dκ ∈ Σκ then (in the notation of (a)) there is a θ < κ such that
Dκ ∈ Σκθ; now as Dλ = Dκ ∩ (λ× λ) and Σλθ = {E ∩ (λ× λ) : E ∈ Σκθ} for every λ < κ, we get Dλ ∈ Σλ

whenever θ < λ < κ, which cannot be so. XXX Thus Dκ /∈ Σκ and we are done.

5K Corollary Let κ be a real-valued-measurable cardinal. Then there is a cardinal λ < κ such that
there is no family 〈aη〉η<λ in PN for which aη \ aζ is finite for η ≤ ζ, infinite for η ≥ ζ.

proof For if λ is an uncountable cardinal and 〈aη〉η<λ is such a family, set Bn = {η : n ∈ aη} ⊆ λ for each
n ∈ N. Then, in the notation of 5J,

Dλ =
⋃

n∈N

⋂

m≥n((λ×Bm) ∪ ((λ \Bm) × λ)) ∈ Σλ.

So we need only to take an uncountable λ < κ such that Dλ /∈ Σλ, as provided in abundance by 5J.

5L Remarks (a) 5J-5K are due to Kunen. A version of his original proof (adapted to 5K) is given in
Fremlin & Kunen 91. Seeking a non-forcing alternative he and I independently (late 1989) devised forms
of the argument above. I do not know whether 5H was known earlier.

(b) Note that the cardinal λ of 5K also has the property that there can be no family 〈fξ〉ξ<λ in NN such
that {n : fη(n) < fξ(n)} is finite whenever ξ ≤ η < λ, infinite when ξ > η; apply 5K with aξ = {(n, i) : i ≤
fξ(n)} ⊆ N × N for each ξ < λ. See Fremlin & Kunen 91.

Evidently there are many further results along these lines concerning increasing families in ordered topo-
logical spaces of small weight when the ordering has a simple relation to the topology.

(c) In the same way, again taking λ from 5K, there is no p(λ)-point ultrafilter on N.

Version of 18.9.92

5M Proposition Let κ be a real-valued-measurable cardinal with normal witnessing probability ν, and
X any set. Let 〈fξ〉ξ<κ be any family in Xκ such that for every countable I ⊆ κ there is a g ∈ XI such that
ν{ξ : fξ↾I = g} > 0. Then there is an h ∈ Xκ such that ν{ξ : ξ < κ, fξ↾ξ = h↾ξ} > 0.

proof (a) Set

G0 =
⋃

{XI : I ∈ [κ]≤ω}.

For g ∈ G0, set E(g) = {ξ : fξ ⊇ g}; write

G = {g : g ∈ G0, νE(g) > 0}.

(b) There is a g ∈ G such that for every η < κ there is an x ∈ X such that E(g) \ E(g ∪ {(η, x)}) ∈ Nν .
PPP??? If not, choose 〈Iα〉α<ω1

, 〈Hα〉α<ω1
as follows. Start with I0 = ∅. Given that Iα is countable, set

Hα = {g : g ∈ G, dom(g) = Iα}.

Then Hα is non-empty, by the hypothesis of the lemma, and countable, because E(g)∩E(g′) = ∅ for distinct
g, g′ ∈ Hα. Now there must be a countable set Iα+1 ⊇ Iα such that

∀ g ∈ Hα ∃ η ∈ Iα+1 such that E(g) \ E(g ∪ {(η, x)}) /∈ Nν for every x ∈ X.

For limit ordinals α < ω1 set Iα =
⋃

β<α Iβ .

For each α < ω1, take gα ∈ Hα. By A2Mc there is a ζ < κ such that D = {α : ζ ∈ E(gα)} is uncountable.
Now for each α ∈ D there is some ηα ∈ Iα+1 such that

Fα = E(gα) \ E(gα ∪ {(ηα, fζ(ηα))}) /∈ Nν .
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However, if β ∈ D and β > α, then gβ↾Iα+1 ⊆ gβ↾Iβ ⊆ fζ , so Fβ ∩Fα = ∅. Thus 〈Fα〉α∈D is an uncountable
disjoint family of non-negligible sets, which is impossible. XXXQQQ

(c) Now for any η < κ choose h(η) ∈ X such that Fη = E(g) \ E(g ∪ {(η, h(η))}) ∈ Nν . Then we have

F = {ξ : ∃ η < ξ, ξ ∈ Fη} ∈ Nν ,

because ν is normal. Set E = E(g) \ F ; then νE > 0 and fξ↾ξ = h↾ξ for every ξ ∈ E.

5N Theorem Suppose that c is atomlessly-measurable. Then ♦c is true, that is, there is a family
〈Aξ〉ξ<c such that {ξ : A ∩ ξ = Aξ} is stationary in c for every A ⊆ c.

proof (a) Let ν be a normal witnessing probability on c. Let 〈pξ〉ξ<c , 〈Iξ〉ξ<c be enumerations of
⋃

{{0, 1}I :
I ∈ [c]≤ω}, [c]≤ω respectively. Define inductively a family 〈fξ〉ξ<c as follows. Given 〈fη〉η<ξ, let Fξ be the
set of those functions f : ξ → {0, 1} such that

(i) f↾η 6= fη for every non-zero limit ordinal η < ξ,
(ii) for every η < ξ there is a ζ < ξ such that f↾Iη = pζ .

Now if Fξ 6= ∅ take fξ ∈ Fξ; otherwise take fξ to be any function from ξ to {0, 1}. Set Aξ = f−1
ξ [{1}] for

each ξ < c.

(b) If A ⊆ c is any set, then there is a non-zero limit ξ < c such that A ∩ ξ = Aξ. PPP??? Suppose, if
possible, otherwise. Set g(ξ) = 1 for ξ ∈ A, 0 for ξ ∈ c \A. Let C be the set of non-zero limit ordinals ξ < c

such that for every η < ξ there is a ζ < ξ such that g↾Iη ∩ ξ = pζ . Then C is a closed unbounded set in c,
and g↾ξ ∈ Fξ for every ξ ∈ C, so fξ ∈ Fξ for every ξ ∈ C.

For any set J = {ξ, η} ∈ [C]2, set h(J) = min{ζ : fξ(ζ) 6= fη(ζ)}; then h(J) < min J because if η < ξ
then fξ↾η 6= fη. By 5Cc above there are D ⊆ C, M ⊆ c such that νD = 1, M is countable and h(J) ∈ M
for all J ∈ [D]2. Let η < c be such that M = Iη; set B = {ξ : M ∪ {η} ⊆ ξ ∈ D}, so that νB = 1. Then
for every ξ ∈ B we shall have a ζ(ξ) < ξ such that pζ(ξ) = fξ↾M . But if ξ, ξ′ are distinct members of B
we must have h({ξ, ξ′}) ∈ M so fξ↾M 6= fξ′↾M ; thus ξ 7→ ζ(ξ) : B → κ is an injective regressive function,
which is impossible. XXXQQQ

(c) Of course the family 〈Aξ〉ξ<c constructed in (a) is not necessarily a true ♦-sequence as called for in
the statement of the theorem. But if we set A′

ξ = {η : 2η ∈ Aξ} for each ξ, we obtain such a sequence (see

Devlin 84, Ex. III.3A).

Remark 5M-5N are due to Kunen. Of course ♦κ is true for every two-valued-measurable cardinal κ, by
the same argument. See also 9N.

5O Theorem Let κ be a real-valued-measurable cardinal. Then
(a) κ→ (κ, γ)2 for every ordinal γ < ω1;
(b) the set

{α : α < κ, α→ (α, γ)2 for every countable ordinal γ}

belongs to the rvm filter of κ.

Notation See A1S for the definition of ‘α→ (α, β)2’.

proof (a) Let γ be a countable ordinal and S ⊆ [κ]2 any set. Suppose that there is no set B ⊆ κ of order
type κ such that [B]2 ∩ S = ∅; I seek a set C of order type γ such that [C]2 ⊆ S. For each ξ < κ set
Sξ = {η : ξ < η < κ, {ξ, η} ∈ S}. Fix a normal witnessing probability ν on κ.

(i) If E ⊆ κ then ν(E ∩ Sξ) > 0 for ν-almost every ξ ∈ E. PPP Set

E′ = {ξ : ξ ∈ E, ν(E ∩ Sξ) = 0},

A = {ξ : ξ < κ, ξ /∈ E ∩ Sη ∀ η ∈ ξ ∩ E′};

then νA = 1 (because ν is normal), and also [A ∩ E′]2 ∩ S = ∅, so ν(A ∩ E′) = 0 and νE′ = 0. QQQ

(ii) For each n ≥ 1 define a κ-additive probability νn on κn by setting

νnV =
∫

. . .
∫

χV (ξ1, . . . , ξn)ν(dξn) . . . ν(dξ1)
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for every V ⊆ κn. Observe that if V ⊆ κn+1 then

νn+1V =
∫

νn{t : ξat ∈ V }ν(dξ),

writing ξa(ξ1, . . . , ξn) = (ξ, ξ1, . . . , ξn).

(iii) (The key) If D, F ⊆ κ and n ≥ 1 and

νn+1(Sn+1
ξ \

⋃

η∈D Sn+1
η }) = 0 ∀ ξ ∈ F ,

then for ν-almost every ξ ∈ F

νn(Sn
ξ \

⋃

{Sn
η : η ∈ D, ξ ∈ Sη}) = 0.

PPP??? If not, there is a δ > 0 such that νE > 0, where

E = {ξ : ξ ∈ F, νn(Sn
ξ \

⋃

{Sn
η : η ∈ D, ξ ∈ Sη}) ≥ δ}.

Choose a sequence 〈ξi〉i∈N as follows. Start with any ξ0 ∈ E such that ν(E ∩ Sξ0
) > 0; such exists by (i)

above. Given ξ0, . . . , ξk ∈ F such that ν(E ∩
⋂

i≤k Sξi
) > 0, then

νn+1(
⋃

i≤k S
n+1
ξi

\
⋃

η∈D Sn+1
η ) = 0,

so for ν-almost all ξ

νn(
⋃

{Sn
ξi

: i ≤ k, ξ ∈ Sξi
} \

⋃

{Sn
η : η ∈ D, ξ ∈ Sη}) = 0.

Now for ν-almost all ξ ∈
⋂

i≤k Sξi
,

νn(
⋃

i≤k S
n
ξi
\

⋃

{Sn
η : η ∈ D, ξ ∈ Sη}) = 0,

and for ν-almost all ξ ∈ E ∩
⋂

i≤k Sξi
we have

νn(Sn
ξ \

⋃

i≤k S
n
ξi

) ≥ δ.

We can therefore find a ξk+1 ∈ E ∩
⋂

i≤k Sξi
such that

ν(Sξk+1
∩ E ∩

⋂

i≤k Sξi
) > 0,

νn(Sn
ξk+1

\
⋃

i≤k S
n
ξi

) ≥ δ

(using (i) again). Continue.

But we now have a disjoint sequence 〈Sn
ξk+1

\
⋃

i≤k S
n
ξi
〉i∈N of subsets of κn all of measure at least δ, which

is impossible. XXXQQQ

(iv) If n ≥ 1 and V ⊆ κn is νn-negligible, then there is a set A ⊆ κ such that νA = 1 and (ξ1, . . . , ξn) /∈
V whenever ξ1, . . . , ξn ∈ A and ξ1 < . . . < ξn. PPP Induce on n. For n = 1 we may take A = κ \ V . For the
inductive step to n+ 1 ≥ 2, set

E = {ξ : νn{t : ξat ∈ V } > 0},

so that νE = 0. For each ξ ∈ κ \ E, set Vξ = {t : ξat ∈ V }; then νnVξ = 0 so by the inductive hypothesis
there is a set Aξ ⊆ κ such that νAξ = 1 and no strictly increasing sequence in Aξ can belong to Vξ. Set

A = {ξ : ξ ∈ κ \ E, ξ ∈ Aη ∀ η ∈ ξ \ E}.

Then νA = 1 and no strictly increasing family in A can belong to V . QQQ

(v) For each I ∈ [κ]<ω set

RI = κ ∩
⋂

ξ∈I Sξ, R′
I = {ξ : ξ ∈ RI , ν(RI ∩ Sξ) = 0},

so that νR′
I = 0, by (i) once again. Set

A = {ξ : ξ < κ, ξ /∈ R′
I ∀ I ∈ [ξ]<ω};

then νA = 1 (see A1E(c-iv)). And an easy induction on sup I shows that νRI > 0 whenever I ∈ [A]<ω and
RI 6= ∅.
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(vi) Choose 〈Aζ〉ζ<ω1
, 〈Dζ〉ζ<ω1

as follows. A0 = A, as defined in (v) just above. Given Aζ , 〈Dη〉η<ζ

such that νAζ = 1 and each Dη is a countable subset of αζ = minAζ , set D′
ζ =

⋃

η<ζ Dη and for I ∈ [D′
ζ ]<ω

set FζI = Aζ ∩RI . Let Dζ ⊆ Aζ be a countable set such that

νn(
⋃

ξ∈FζI∩Dζ
Sn

ξ ) = sup{νn(
⋃

ξ∈D Sn
ξ ) : D ⊆ FζI is countable}

for every I ∈ [D′
ζ ]<ω, n ≥ 1. Then we shall have

νn(Sn
ξ \

⋃

η∈Dζ∩FζI
Sn

η ) = 0

whenever n ≥ 1, I ∈ [D′
ζ ]<ω and ξ ∈ FζI . Consequently, by (iii) above, if I ∈ [D′

ζ ]<ω and n ≥ 1, then

νn(Sn
ξ \

⋃

{Sn
η : η ∈ Dζ ∩ FζI , ξ ∈ Sη}) = 0

for almost every ξ ∈ FζI . Using (iv) we can now find a set Aζ+1 ⊆ Aζ such that

νAζ+1 = 1,

Dζ ⊆ minAζ+1,

νn(Sn
ξ \

⋃

{Sn
η : η ∈ Dζ ∩ FζI , ξ ∈ Sη}) = 0

whenever I ∈ [D′
ζ ]<ω, n ≥ 1, ξ ∈ FζI ∩Aζ+1,

(ξ1, . . . , ξn) /∈ Sn
ξ0

\
⋃

{Sn
η : η ∈ FζI ∩Dζ , ξ0 ∈ Sη}

whenever I ∈ [D′
ζ ]<ω, n ≥ 1 and ξ0, . . . , ξn is a strictly increasing family in Aζ+1, with ξ0 ∈ FζI .

This deals with Dζ , Aζ+1. For non-zero countable limit ordinals ζ set Aζ =
⋂

η<ζ Aη.

(vii) On completing the induction set D∗ =
⋃

ζ<ω1
Dζ ; observe that Dζ = D∗ ∩ αζ+1 \ αζ and that

D∗ \ αζ ⊆ Aζ for each ζ. Now suppose that J ∈ [D∗]<ω is such that [J ]2 ⊆ S. Then for any ζ < ω1 there
is an η ∈ Dζ such that [J ∪ {η}]2 ⊆ S. PPP Of course we may suppose that J ∩Dζ = ∅. Moreover, because
J ⊆ A, νRJ > 0; so if J ⊆ D′

ζ′ then νFζ′J > 0 so there is an η ∈ Fζ′J with νSη > 0 and there must be

an η′ ∈ Dζ′ ∩ Fζ′J , in which case [J ∪ {η′}]2 ⊆ S. We may therefore suppose that J \ αζ = J \ αζ+1 has
at least two members. Set I = J ∩ αζ and enumerate J \ I in ascending order as 〈ξi〉i≤n, where n ≥ 1 and
ξi ∈ Aζ+1 for each i. Now ξ0 ∈ FζI and

(ξ1, . . . , ξn) /∈ Sn
ξ0

\
⋃

{Sn
η : η ∈ FζI ∩Dζ , ξ0 ∈ Sη}.

But as certainly (ξ1, . . . , ξn) ∈ Sn
ξ0

, there must be some η ∈ FζI ∩Dζ such that (ξ0, . . . , ξn)∈ Sn
η ; and this

means that [J ∪ {η}]2 ⊆ S, as required. QQQ

(viii) Now, at last, turn to look at γ. Enumerate it as 〈ζn〉n∈N (the case of finite γ is trivial). Choose
〈ξn〉n∈N inductively so that ξn ∈ Dζn

and [{ξi : i ≤ n}]2 ⊆ S for each n. Set C = {ξn : n ∈ N}; then
[C]2 ⊆ S and the order type of C is γ.

As S and γ are arbitrary, this proves (a).

(b) This now follows. The statement

‘α→ (α, γ)2 ∀ γ < ω1’

can readily be expressed in the form

‘(α;<,=;ω1) � φ’,

where φ is a Π1
2 formula. So 4Ob gives the result.

5P Remarks This is due to Kunen; I heard of it first from S.Todorčević.
For two-valued-measurable cardinals enormously more can be said. In fact, if κ is two-valued-measurable,

then κ → (κ, κ)2 and {α : α < κ, α → (α, α)2} belongs to the rvm filter of κ; this is because, for α > ω,
α → (α, α)2 iff α is a strongly inaccessible weakly Π1

1-indescribable cardinal (Erdös Hajnal Máté &

Rado, 30.3).
I do not know whether (b) above can be strengthened by describing more exactly those α < κ for which

α→ (α, γ)2 for every γ < ω1.
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Version of 14.10.04

6. Measure-theoretic implications.

In this section I discuss the consequences in measure theory of supposing that there is a real-valued-
measurable cardinal. Naturally many of these involve the supposed cardinal and its witnessing measure,
and they are most interesting if the cardinal is atomlessly-measurable. A theorem which would be here if it
had not already been needed is 3A. I start with a similar result on reversing the order of integration (6A).
An elaboration of the same techniques gives some results analogous to those of 5A-5B, but for set-valued
functions whose values are small in a different sense (6D-6E). In 6B-6C I look at covering numbers for null
ideals, and in 6F-6G I look at small non-negligible sets; the latter analysis leads to a version of Shipman’s
theorem on changing the order of integration in a multiply-repeated integral (6I) and to a stronger result
on repeated integrals of functions with measurable sections (6K). A deeper look at covering numbers gives
a description of weakly Π1

1-indescribable atomlessly-measurable cardinals (6L). I conclude with descriptions
of the way in which real-valued-measurable cardinals appear in the theories of metric measure spaces and
vector lattices (6M-6N).

6A Theorem Let κ be a real-valued-measurable cardinal and ν a normal witnessing probability on κ;
let (X,µ) be a Radon probability space and f : X × κ→ R a bounded function. Then

∫

(

∫

f(x, ξ)ν(dξ)
)

µ(dx) ≤

∫

(

∫

f(x, ξ)µ(dx)
)

ν(dξ).

proof ??? Suppose, if possible, otherwise. Adding a constant function to f , if necessary, we may suppose that
f(x, ξ) ≥ 0 for all x, ξ.

(a) We are supposing that there is a µ-integrable function g : X → R such that 0 ≤ g(x) ≤
∫

f(x, ξ)ν(dξ)
for every x ∈ X and

∫

g(x)µ(dx) >
∫ ∫

f(x, ξ)µ(dx)ν(dξ).

Let F0, . . . , Fn be disjoint non-empty measurable subsets of X such that
∑

i≤n tiµFi >
∫ ∫

f(x, ξ)µ(dx)ν(dξ),

writing ti = infx∈Fi
g(x) for each i ≤ n. Then

∫

f(x, ξ)µ(dx) ≥
∑

i≤n

∫

Fi
f(x, ξ)µ(dx) ∀ ξ < κ,

so there must be some i ≤ n such that

tiµFi >
∫ ∫

Fi
f(x, ξ)µ(dx)ν(dξ).

Set Y = Fi, µ̃ = (µFi)
−1µ⌈Fi, t = ti; then (Y, µ̃) is a Radon probability space and

∫ ∫

f(y, ξ)µ̃(dy)ν(dξ) < t,

t ≤
∫

f(y, ξ)ν(dξ) for every y ∈ Y .

(b) For each ξ < κ choose a µ̃-measurable function hξ : Y → R such that f(y, ξ) ≤ hξ(y) for every y ∈ Y

and
∫

hξ(y)µ̃(dy) =
∫

f(y, ξ)µ̃(dy). By A2Kb, applied to the family of sets of the form {y : hξ(y) ≥ s} for
ξ < κ and rational s, there is a function φ : {0, 1}κ → Y such that

∫

hξφ(v)µκ(dv) exists and is equal to
∫

hξ(y)µ̃(dy) for every ξ < κ, taking µκ to be the usual measure on {0, 1}κ. So setting f1(v, ξ) = f(φ(v), ξ)
for v ∈ {0, 1}κ, ξ < κ we have
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∫ ∫

f1(v, ξ)µκ(dv)ν(dξ) ≤

∫ ∫

hξφ(v)µκ(dv)ν(dξ)

=

∫ ∫

hξ(y)µ̃(dy)ν(dξ)

=

∫ ∫

f(y, ξ)µ̃(dy)ν(dξ) < t,

while

t ≤

∫

f(φ(v), ξ)ν(dξ) =

∫

f1(v, ξ)ν(dξ)

for every v ∈ {0, 1}κ.

(c) We may choose for each ξ < κ a Baire measurable function h′ξ : {0, 1}κ → R such that f1(v, ξ) ≤ h′ξ(v)

for each v ∈ {0, 1}κ and
∫

h′ξ(v)µκ(dv) =
∫

f1(v, ξ)µκ(dv)

(A2Gf). Now there is a countable set Iξ ⊆ κ such that h′ξ factors through {0, 1}Iξ , that is, h′ξ(v) = h′ξ(v′)

whenever v↾Iξ = v′↾Iξ.
By 5Cb, there are Γ ⊆ κ, γ < κ such that νΓ = 1 and Iξ ∩ Iη ⊆ γ whenever ξ, η are distinct members of

Γ. Set γ = min Γ.

(d) Set

f ′1(u, ξ) =
∫

h′ξ(uau′)µκ\γ(du′)

for u ∈ {0, 1}γ , ξ < κ. Then, applying Fubini’s theorem to {0, 1}κ ∼= {0, 1}γ × {0, 1}κ\γ , we have
∫

f ′1(u, ξ)µγ(du) =
∫

h′ξ(v)µκ(dv)

for every ξ, so that
∫ ∫

f ′1(u, ξ)µγ(du)ν(dξ) =
∫ ∫

f1(v, ξ)µκ(dv)ν(dξ) < t,

and
∫ ∫

f ′1(u, ξ)ν(dξ)µγ(du) < t

by Theorem 3A. Accordingly there is a u ∈ {0, 1}γ such that
∫

f ′1(u, ξ)ν(dξ) < t.

(e) For each ξ ∈ Γ take u′ξ ∈ {0, 1}κ\γ such that h′ξ(uau′ξ) ≤ f ′1(u, ξ). Let w ∈ {0, 1}κ be such that

w↾γ = u, w↾Iξ = (uau′ξ)↾Iξ ∀ ξ ∈ Γ;

such a w exists because if ξ, η ∈ Γ and ξ < η then Iξ ∩ Iη ⊆ γ. Now

f1(w, ξ) ≤ h′ξ(w) = h′ξ(uau′ξ) ≤ f ′1(u, ξ) for every ξ ∈ Γ,

so
∫

f1(w, ξ)ν(dξ) ≤
∫

f ′1(u, ξ)ν(dξ) < t,

contradicting the last sentence of (b) above. XXX
This completes the proof.

Remark This result was inspired by Lemma 5 of Kunen n70; compare 6E below.

6B Proposition Let κ be an atomlessly-measurable cardinal. If (X,µ) is any Radon measure space with
µX > 0, then cov(X,Nµ) ≥ κ.
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proof By A2Pb, it is enough to show that cov({0, 1}κ,Nµκ
) ≥ κ, where µκ is the usual measure on {0, 1}κ.

Fix on an atomless κ-additive probability ν with domain Pκ. By 3H, there is an inverse-measure -preserving
function f : κ→ {0, 1}κ. Now if A is any cover of {0, 1}κ by µκ-negligible sets, {f−1[A] : A ∈ A} is a cover
of κ by ν-negligible sets, so must have cardinal at least κ, and #(A) ≥ κ, as required.

6C Corollary If κ is an atomlessly-measurable cardinal and λ ≤ κ is a cardinal of uncountable cardinality,
then λ is a precaliber of every probability algebra.

proof If λ < κ this is a corollary of 6B and A2Ua. If λ = κ, we can use 6A and A2Ub. For let (X,T,Σ, µ)
be a Radon probability space and 〈Eξ〉ξ<κ an increasing family in Nµ with union E ∈ Σ. Set

C = {(x, ξ) : ξ < κ, x ∈ Eξ} ⊆ X × κ.

Then
∫

νC[{x}]µ(dx) = µE,
∫

µ∗C−1[{ξ}]ν(dξ) = 0,

so 6A, applied to the characteristic function of C, tells us that µE = 0; now A2Ub tells us that κ is a
precaliber of the measure algebra of X. But as every probability algebra is (isomorphic to) the measure
algebra of some Radon probability space (A2La), we have the result.

6D Lemma Let κ be a real-valued-measurable cardinal and ν a normal witnessing probability on κ.
If (X,µ) is any quasi-Radon probability space of weight1 strictly less than κ, and f : [κ]<ω → Nµ is any
function, then

⋂

V ⊆κ,νV =1

⋃

I∈[V ]<ω f(I) ∈ Nµ.

proof Let F be the filter {A : A ⊆ κ, νA = 1}.

(a) I show by induction on n ∈ N that if g : [κ]≤n → Nµ is any function, then

E(g) =
⋂

V ∈F

⋃

I∈[V ]≤n f(I) ∈ Nµ.

PPP(i) For n = 0 this is trivial; E(g) = g(∅) ∈ Nµ. (ii) For the inductive step to n+1, given g : [κ]≤n+1 → Nµ,
then for each ξ < κ define gξ : [κ]≤n → Nµ by setting gξ(I) = g(I∪{ξ}) for each I ∈ [κ]≤n. By the inductive
hypothesis, E(gξ) ∈ Nµ. Set

C = {(x, ξ) : x ∈ E(gξ)} ⊆ X × κ.

Then
∫

µ∗C−1[{ξ}]ν(dξ) =
∫

µ∗E(gξ)ν(dξ) = 0,

so by 3A
∫

νC[{x}]µ(dx) = 0,

and µD = 0, where D = {g(∅)} ∪ {x : νC[{x}] > 0}.
Take any x ∈ X \D and set W = κ \ C[{x}] ∈ F . For each ξ ∈W , x /∈ E(gξ), so there is a Vξ ∈ F such

that νVξ = 1 and x /∈ gξ(I) for every I ∈ [Vξ]≤n. Set

V = {ξ : ξ ∈W, ξ ∈ Vη ∀ η ∈W ∩ ξ}.

Then V ∈ F . If I ∈ [V ]≤n+1, either I = ∅ and x /∈ g(I), or there is a least element ξ of I; in the latter
case, ξ ∈ W so J = I \ {ξ} ⊆ Vξ and x /∈ gξ(J) = g(I). So x /∈

⋃

{g(I) : I ∈ [V ]≤n+1}. As x is arbitrary,
E(g) ⊆ D ∈ Nµ and the induction proceeeds. QQQ

(b) Now consider

G =
⋃

n∈N E(f↾[κ]≤n) ∈ Nµ.

If x ∈ X\G then for each n ∈ N there is a Vn ∈ F such that x /∈
⋃

{f(I) : I ∈ [Vn]≤n}. Set V =
⋂

n∈N Vn ∈ F ;
then x /∈

⋃

{f(I) : I ∈ [V ]<ω}. As x is arbitrary,

1In the published version ‘Maharam type’ was given instead of ‘weight’. I do not know if the result is true with this

hypothesis.
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E(f) ⊆ G ∈ Nµ,

as required.

Remark This is Lemma 2 of Kunen n70.

6E Proposition Let κ be a real-valued-measurable cardinal with a normal witnessing probability ν. If
(X,µ) is a Radon probability space, f : [κ]<ω → Nµ is a function and β < κ, then there is a V ⊆ κ such
that β ⊆ V and νV = 1 and

⋃

{f(I) : I ∈ [V ]<ω} 6= X.

proof (a) Consider first the case (X,µ) = ({0, 1}κ, µκ), where µκ is the usual measure on {0, 1}κ. For
any L ⊆ κ let µL be the usual measure on {0, 1}L, and πL : {0, 1}κ → {0, 1}L the canonical map. Write
F = {V : V ⊆ κ, νV = 1}.

(i) For each I ∈ [κ]<ω, there is a countable set g(I) ⊆ κ such that µg(I)(πg(I)[f(I)]) = 0 (see A2Gc);

enlarging f(I) if necessary, we may suppose that f(I) = π−1
g(I)[πg(I)[f(I)]]. Set θ = max(ω,#(β)) and

g∗(I) =
⋃

{g(I ∪ K) : K ∈ [β]<ω} for each I ∈ [κ]<ω. By 5C there are a set C ∈ F and a function
h : [κ]<ω → [κ]≤θ such that g∗(I) ∩ η ⊆ h(I ∩ η) whenever I ∈ [C]<ω and η < κ. Set

Γ = {γ : β ≤ γ < κ, h(I) ⊆ γ ∀ I ∈ [γ]<ω} ∪ {0};

then Γ is a closed unbounded set in κ, because cf(κ) > θ. Let 〈γη〉η<κ be the increasing enumeration of Γ;
note that γ0 = 0 and γ1 ≥ β.

(ii) For η < κ, set M(η) = κ \ γη and L(η) = γη+1 \ γη; then µM(η) can be identified with the product
measure µL(η) × µM(η+1). Choose uη ∈ {0, 1}γη , Vη ⊆ κ inductively, as follows. u0 = ∅. Given uη, then for
each I ∈ [κ]<ω set

f ′η(I) = {v : v ∈ {0, 1}L(η), µM(η+1){w : ua

η v
aw ∈ f(I)} > 0},

and

fη(I) = f ′η(I) if µL(η)(f
′
η(I)) = 0,

= ∅ otherwise.

By 6D, we can find for each K ∈ [γn+1]<ω a set EηK ⊆ {0, 1}L(η) such that µL(η)EηK = 1 and for every
v ∈ EηK there is a set V ∈ F such that v /∈ fη(K ∪ J) for any J ∈ [V ]<ω. Choose vη ∈

⋂

{EηK : K ∈
[γn+1]<ω} (using 6B); for K ∈ [γn+1]<ω choose VηK ∈ F such that vη /∈ fη(K ∪ J) for any J ∈ [VηK ]<ω.
Set Vη =

⋂

{VηK : K ∈ [γη+1]<ω} ∈ F and uη+1 = ua

η vη ∈ {0, 1}γη+1 .

At limit ordinals η with 0 < η ≤ κ, set uη =
⋃

ξ<η uξ ∈ {0, 1}γη .

(iii) Now consider u = uκ ∈ {0, 1}κ and

V = β ∪ {ξ : ξ ∈ C, ξ ∈ Vη ∀ η < ξ} ∈ F .

If I ∈ [V ]<ω then

µM(η){w : ua

η w ∈ f(I)} = 0

for every η < κ. PPP Induce on η. For η = 0 this says just that µκf(I) = 0, which was our hypothesis on f .
For the inductive step to η + 1, we have

µM(η){w : ua

η w ∈ f(I)} = 0

by the inductive hypothesis, so Fubini’s theorem tells us that

µL(η){v : µM(η+1){w : uavaw ∈ f(I)} > 0} = 0,

that is, µL(η)f
′
η(I) = 0, so that fη(I) = f ′η(I). Now setting K = I ∩ γη+1, J = I \ γη+1 we see that J ⊆ Vη

(because of course η < γη+1, while β ⊆ γη+1), therefore J ⊆ VηK and vη /∈ fη(K ∪ J) = f ′η(I); but this says
just that

µM(η+1){w : ua

η v
a

η w ∈ f(I)} = 0,

that is, that
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µM(η+1){w : u a

η+1 w ∈ f(I)} = 0,

so that the induction continues.

For the inductive step to a non-zero limit ordinal η ≤ κ, there is a non-zero ζ < η such that I ∩ γη ⊆ γζ .
Set J = I \β, K = I ∩β. Then J ⊆ C so g(I) = g(J ∪K) ⊆ g∗(J) and g(I)∩γη ⊆ g∗(J)∩γη ⊆ h(J ∩γη) =
h(J ∩ γζ) ⊆ γζ , by the choice of Γ. But this means that

{w : w ∈ {0, 1}M(ζ), ua

ζ w ∈ f(I)} = {0, 1}γη\γζ × {w : w ∈ {0, 1}M(η), ua

η w ∈ f(I)}.

By the inductive hypothesis,

µM(ζ){w : ua

ζ w ∈ f(I)} = 0,

so that

µM(η){w : ua

η w ∈ f(I)} = 0

and the induction continues. QQQ

(iv) But now, given I ∈ [V ]<ω, there is surely some η < κ such that g(I) ⊆ γη, and in this case

µM(η){w : ua

η w ∈ f(I)} = 0

implies that u /∈ f(I).

Thus we have a point u /∈
⋃

{f(I) : I ∈ [V ]<ω}, as required.

(b) For the general case, we have a function φ : {0, 1}κ → X such that µκφ
−1[f(I)] = 0 for every

I ∈ [κ]<ω, by A2Kb. Now by (a) there are u ∈ {0, 1}κ, V ⊆ κ such that β ⊆ V , νV = 1 and u /∈ φ−1[f(I)]
for every I ∈ [V ]<ω; in which case x = φ(u) /∈ f(I) for every I ∈ [V ]<ω and

⋃

{f(I) : I ∈ [V ]<ω} 6= X.

Remark 6E is implicit in Lemma 5 of Kunen n70. The clause ‘β ⊆ V ’ is a refinement of a type in which
I have generally not indulged; but it is useful here for an application in §4 above.

6F Proposition If κ is an atomlessly-measurable cardinal and λ, θ are infinite cardinals less than κ,
then there is a set A ⊆ {0, 1}θ such that #(A) = λ and no uncountable subset of A is negligible for µθ, the
usual measure on {0, 1}θ.

proof Let ν be an atomless κ-additive probability defined on Pκ. By 3H there is a function f : κ→ ({0, 1}θ)λ

which is inverse-measure-preserving for ν and the usual measure of ({0, 1}θ)λ, identified with {0, 1}θ×λ. For
ξ < κ, set

Aξ = {f(ξ)(η) : η < λ} ⊆ {0, 1}θ.

??? Suppose, if possible, that for every ξ < κ there is a set Jξ ⊆ λ such that #(Jξ) = ω1 but Eξ = f(ξ)[Jξ]
is µθ-negligible. For each ξ choose a countable set Iξ ⊆ θ such that

E′
ξ = {x : x ∈ {0, 1}θ, ∃ x′ ∈ Eξ, x↾Iξ = x′↾Iξ}

is µθ-negligible. By 5Ab, there is a countable I ⊆ θ such that νV = 1, where V = {ξ : Iξ ⊆ I}. For ξ ∈ V
set

E∗
ξ = {x↾I : x ∈ Eξ} ⊆ {0, 1}I ,

so that µIE
∗
ξ = 0, where µI is the usual measure on {0, 1}I . Fix a sequence 〈Um〉m∈N running over the

open-and-closed subsets of {0, 1}I , and for each ξ ∈ V , n ∈ N choose an open set Gnξ ⊆ {0, 1}I such that
E∗

ξ ⊆ Gnξ and µI(Gnξ) ≤ 2−n. For m,n ∈ N set

Dnm = {ξ : ξ ∈ V, Um ⊆ Gnξ}.

For each α < λ, set fα(ξ) = f(ξ)(α)↾I ∈ {0, 1}I for ξ < κ; then the functions fα are all stochastically
independent. Consequently, there is for each ξ < κ an α(ξ) ∈ Jξ such that fα(ξ) is stochastically independent
from the countable family {Dnm : n,m ∈ N} ⊆ Pκ. Because λ < κ and ν is κ-additive, there is a γ < λ
such that B = {ξ : α(ξ) = γ} has νB > 0. Take n ∈ N such that ν(B) > 2−n, and examine

C =
⋃

m∈N(Dnm ∩ f−1
γ [Um]).
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Because fγ is independent from all the Dnm, and is inverse-measure -preserving for ν and µI , νC = (ν ×
µI)(C ′) where

C ′ =
⋃

m∈N(Dnm × Um) ⊆ κ× {0, 1}I .

But, for each ξ < κ, the vertical section C ′[{ξ}] is just
⋃

{Um : ξ ∈ Dnm} = Gnξ, so

(ν × µI)(C ′) =
∫

µI(Gnξ)ν(dξ) ≤ 2−n.

Accordingly νC ≤ 2−n < νB and there must be a ξ ∈ B ∩ V \C. But in this case fγ(ξ)↾I ∈ E∗
ξ , because

γ = α(ξ) ∈ Jξ, while fγ(ξ)↾I /∈ Gnξ, because there is no m such that fγ(ξ)↾I ∈ Um ⊆ Gnξ; contrary to the
choice of Gnξ. XXX

So take some ξ < κ such that µ∗
θ(f(ξ)[J ]) > 0 for every uncountable J ⊆ λ. Evidently f(ξ) is countable-

to-one, so Aξ must have cardinal λ (passing over the trivial case of countable λ), and will serve for A.

Remarks (a) The argument above is due to Solovay and Prikry; the form here is lifted from Fremlin

p89d.

(b) Using A2Ka this result can easily be converted into a formally more general result about Radon
measure spaces of Maharam type less than κ.

(c) I do not know whether, under the hypothesis of this proposition, there is always a set A ⊆ {0, 1}θ

with #(A) = κ and no uncountable subset of A negligible for µθ; see P4d.

6G Corollary Let κ be an atomlessly-measurable cardinal. Writing Nµθ
for the ideal of negligible subsets

of {0, 1}θ,
(a) non({0, 1}θ,Nµθ

) = ω1 for ω ≤ θ < κ,

(b) non({0, 1}θ,Nµθ
) ≤ κ for κ ≤ θ ≤ min(2κ, κ(+ω)),

(c) non({0, 1}θ,Nµθ
) ≤ θ for 2κ ≤ θ < κ(+ω).

proof (a) Immediate from 6F.

(b) If ν is any witnessing probability on κ then we have an inverse-measure -preserving function f : κ→
{0, 1}θ (3H); now f [κ] witnesses that non({0, 1}θ,Nµθ

) ≤ κ.

(c) The point is that if cf(θ) > ω then non(Nµθ
) ≤ max(θ, supα<θ non(Nµα

)). PPP Set δ = max(θ,
supα<θ non(Nµα

)). For each ordinal α < θ choose Aα ⊆ {0, 1}α such that Aα /∈ Nµα
and #(Aα) =

non(Nµα
). Choose A ⊆ {0, 1}θ such that #(A) ≤ δ and πα[A] ⊇ Aα for each α, taking πα : {0, 1}θ → {0, 1}α

to be the canonical map. ??? If A ∈ non(Nµθ
), then there is an H belonging to the Baire σ-algebra of {0, 1}θ

such that A ⊆ H ∈ Nµθ
(A2Gc); now, because cf(θ) > ω, there is an α < θ such that H is expressible as

π−1
α [H ′], where H ′ ⊆ {0, 1}α. In this case H ′ ∈ Nµα

, so Aα 6⊆ H ′ and A 6⊆ H. XXX So A witnesses that
non(Nµθ

) ≤ δ. QQQ
Now an elementary induction on θ, using (a) when θ < κ, shows that non(Nµθ

) ≤ θ whenever ω1 ≤ θ <

κ(+ω).
(See Fremlin 89, 6.17.)

Version of 18.9.92

6H Lemma Let κ be an atomlessly-measurable cardinal, θ < κ a cardinal, and m ≥ 1 an integer. Set
Z = {0, 1}θ with its usual measure, and suppose that for i < m, u ∈ Zm\{i} we are given a negligible set
E(u) ⊆ Z. Then there is a t = 〈ti〉i<m ∈ Zm such that ti /∈ E(t↾m \ {i}) for every i < m.

proof For each i < m we can find a set Ai ⊆ Z of cardinal ωm+1−i such that no uncountable subset of Ai

is negligible (6F). Now choose t0, t1 . . . , tm−1 in such a way that

tj ∈ Aj , tj /∈ E(u) ∀ u ∈
∏

i<j{ti} ×
∏

j<i<mAi

for each j < m; this is possible because Aj cannot be covered by ωm−j or fewer negligible sets, while
#(

∏

j<i<mAi) ≤ ωm−j for each j. Now t = 〈ti〉i<m works.

6I Proposition Let κ be an atomlessly-measurable cardinal and m ≥ 1 an integer. Let X0, . . . ,Xm−1

be Radon probability spaces of Maharam type less than κ, and f :
∏

i<mXi → R a bounded function.
Suppose that σ : m→ m is a permutation such that the two repeated integrals
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I =
∫

(. . . (
∫

f(x0, . . . , xm−1)dxm−1) . . . )dx0,

I ′ =
∫

(. . . (
∫

f(x0, . . . , xm−1)dxσ(m−1)) . . . )dxσ(0)

both exist. Then I = I ′.

Remark The integrals above may all be taken as existing ‘in the wide sense’, that is, each function being
integrated may fail to be defined on a set of measure zero.

proof (a) To begin with, let us suppose that every Xi is {0, 1}θ for some θ < κ, with its usual measure.
Set Z = ({0, 1}θ)N; then Z also has a natural measure, identifying Z with {0, 1}θ×N.

Define D0, . . . ,Dm as follows. D0 = {∅} = Z0. For 0 < j ≤ m, let Dj be the set of those (t0, . . . , tj−1) ∈
Zj such that

limn→∞
1

n+1

∑

i≤n

∫

(. . . (
∫

f(t0i, . . . , tj−1,i, xj , . . . , xm−1)dxm−1) . . . )dxj

exists and is equal to I, taking tl = 〈tli〉i∈N for each l < j. For j < m, u = 〈ul〉l 6=j ∈ Zm\{j} set

E(u) = ∅ if (u0, . . . , uj−1) /∈ Dj ,

E(u) = {t : t ∈ Z, (u0, . . . , uj−1, t) /∈ Dj+1}

if (u0, . . . , uj−1) ∈ Dj . Then E(u) is negligible. PPP We need consider only the case (u0, . . . , uj−1) ∈ Dj .
Express ul as 〈uli〉i∈N for each l < j, and for i ∈ N define hi : {0, 1}θ → R by setting

hi(x) =
∫

(. . . (
∫

f(u0i, . . . , uj−1,i, x, xj+1, . . . , xm−1)dxm−1) . . . )dxj+1

for each x ∈ {0, 1}θ. Then, because (u0, . . . , uj−1) ∈ Dj ,

limn→∞
1

n+1

∑

i≤n

∫

hi(x)dx exists = I.

Also, because f is bounded, the functions hi are uniformly bounded. By A2X,

limn→∞
1

n+1

∑

i≤n hi(ti)

exists and is equal to I for almost all t = 〈ti〉i∈N ∈ Z; that is, (u0, . . . , uj−1, t) ∈ Dj+1 and t /∈ E(u) for
almost all t ∈ Z. QQQ

Now suppose that t = 〈tj〉j<m = 〈〈tji〉i∈N〉j<m ∈ Zm and that tj /∈ E(t↾m \ {j}) for each j < m. Then

(t0, . . . , tj−1) ∈ Dj

for each j ≤ m, so that t ∈ Dm and

limn→∞
1

n+1

∑

i≤n f(t0i, . . . , tm−1,i) = I.

In the same way, we can find for each u ∈
⋃

j<m Zm\{j} a negligible set E′(u) such that if t ∈ Zm and

tj /∈ E′(t↾m \ {j}) for every j < m then

limn→∞
1

n+1

∑

i≤n f(t0i, . . . , tm−1,i) = I ′.

But by Lemma 6H there is a t ∈ Zm such that tj /∈ E(t↾m \ {j})∪E′(t↾m \ {j}) for every j < m, and now

I = limn→∞
1

n+1

∑

i≤n f(t0i, . . . , tm−1,i) = I ′,

as required.

(b) For the general case, there are inverse-measure -preserving functions gi : {0, 1}θ → Xi, where θ < κ
is the maximum of ω and the Maharam types of Xi (A2Ka). Applying (a) to F : ({0, 1}θ)m → R, where
F (y0, . . . , ym−1) = f(g0(y0), . . . , gm−1(ym−1)), we obtain the result.

Remark This comes from Theorem 1 of Shipman 90. Compare Zakrzewski p91.

6J The following is an elementary corollary of Theorem 3A.

Proposition Let (X,T,Σ, µ) be a totally finite quasi-Radon measure space and (Y,PY, ν) a probability
space; suppose that w(X) < add(ν). Let f : X × Y → R be a bounded function such that all the sections
x 7→ f(x, y) : X → R are measurable. Then
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∫ ∫

f(x, y)ν(dy)µ(dx) exists =
∫ ∫

f(x, y)µ(dx)ν(dy).

proof If µX = 0 this is trivial; otherwise, re-scaling µ if necessary, we may suppose that µX = 1. By 3A,
∫ ∫

f(x, y)ν(dy)µ(dx) ≤
∫ ∫

f(x, y)µ(dx)ν(dy) =
∫ ∫

f(x, y)µ(dx)ν(dy).

Similarly
∫ ∫

(−f(x, y))ν(dy)µ(dx) ≤
∫ ∫

(−f(x, y))µ(dx)ν(dy),

so that
∫ ∫

f(x, y)ν(dy)µ(dx) ≥
∫ ∫

f(x, y)µ(dx)ν(dy).

Putting these together we have the result.

6K Proposition Let κ be an atomlessly-measurable cardinal and (X,T,Σ, µ) and (Y,S,T, ν) Radon
probability spaces of weights less than κ. Let f : X × Y → R be a function such that all its horizontal and
vertical sections

x 7→ f(x, y∗) : X → R, , y 7→ f(x∗, y) : Y → R

are measurable. Then

(a) if f is bounded, the repeated integrals
∫ ∫

f(x, y)µ(dx)ν(dy),
∫ ∫

f(x, y)ν(dy)µ(dx)

exist and are equal;

(b) in any case, there is a function g : X ×Y → R, measurable for the (ordinary) product measure µ× ν,
such that all the sets {x : g(x, y∗) 6= f(x, y∗)}, {y : g(x∗, y) 6= f(x∗, y)} are negligible.

proof (a) By 3I there is a κ-additive measure ν̃ on Y , with domain PY , extending ν. Now 6J tells us,
among other things, that the function

x 7→
∫

f(x, y)ν(dy) =
∫

f(x, y)ν̃(dy) : X → R

is µ-measurable. Similarly, y 7→
∫

f(x, y)µ(dx) is ν-measurable. So returning to 6J we get

∫ ∫

f(x, y)µ(dx)ν(dy) =

∫ ∫

f(x, y)µ(dx)ν̃(dy)

=

∫ ∫

f(x, y)ν̃(dy)µ(dx) =

∫ ∫

f(x, y)ν(dy)µ(dx).

(b) Suppose first that f is bounded. By (a), we can define a measure θ on X × Y by saying that

θG =
∫

νG[{x}]µ(dx) =
∫

µG−1[{y}]ν(dy)

whenever G ⊆ X × Y is such that G[{x}] ∈ T for almost every x ∈ X and G−1[{y}] ∈ Σ for almost every
y ∈ Y . This θ extends the ordinary product measure µ× ν; writing Ω for the σ-algebra of subsets of X × Y
generated by {E × F : E ∈ Σ, F ∈ T}, the Radon-Nikodým theorem (Royden 63, chap. 11, §5) tells us
that there is an Ω-measurable function h : X × Y → R such that

∫

G
f(x, y)θ(dxdy) =

∫

G
h(x, y)θ(dxdy) for

every G ∈ Ω.

Let U be a base for the topology T, with #(U) < κ. For any U ∈ U consider

VU = {y :
∫

U
f(x, y)µ(dx) >

∫

U
h(x, y)µ(dx)}.

The argument of (a) shows that y 7→
∫

U
f(x, y)µ(dx) is measurable, so VU ∈ T , and
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∫

VU

∫

U

f(x, y)µ(dx)ν(dy) =

∫

U×VU

f(x, y)θ(dxdy)

=

∫

U×VU

h(x, y)θ(dxdy)

=

∫

VU

∫

U

h(x, y)µ(dx)ν(dy),

so νVU = 0. Similarly

ν{y :
∫

U
f(x, y)µ(dx) <

∫

U
h(x, y)µ(dx)} = 0.

Because #(U) < κ, and no non-negligible measurable set in Y can be covered by fewer than κ negligible
sets (6B), we must have

ν∗{y :
∫

U
f(x, y)µ(dx) =

∫

U
h(x, y)µ(dx) ∀ U ∈ U} = 1.

But because U is a base for the topology of X, we see that

ν∗{y : f(x, y) = h(x, y) for µ-almost every x} = 1.

But as (again using (a)) the repeated integral
∫ ∫

|f(x, y) − h(x, y)|µ(dx)ν(dy) exists, it must be 0. Thus

ν{y : f(x, y) = h(x, y) for µ-almost every x} = 1.

Similarly,

µ{x : f(x, y) = h(x, y) for ν-almost every y} = 1.

But now, changing h on a set of the form (E × Y ) ∪ (X × F ) where µE = νF = 0, we can get a function
g, still (µ × ν)-measurable, such that {(x, y) : f(x, y) 6= g(x, y)} has all its horizontal and vertical sections
negligible.

This deals with bounded f . But for general f we can look at the truncates (x, y) 7→ max(−n,min(n, f(x, y))
for each n to get a sequence 〈gn〉n∈N of functions which will converge at an adequate number of points to
provide a suitable g.

Remark (a) above arose in the course of correspondence with P.Zakrzewski. I first learnt of strong Fubini
theorems of this type, in the context of random real models, from H.Woodin. See Zakrzewski p91 for
further results along these lines.

I have given these results in a general form, allowing the spaces involved to have relatively large Maharam
types; but of course they are chiefly interesting in the case in which each factor is [0, 1] with Lebesgue measure.

6L Theorem Let κ be an atomlessly-measurable cardinal with normal witnessing probability ν. Then
the following are equivalent:

(i) κ is weakly Π1
1-indescribable;

(ii) κ is weakly Π1
1-indescribable and the rvm filter of κ includes the Π1

1-filter of κ;
(iii) cov({0, 1}κ,Nµκ

) > κ, where µκ is the usual Radon probability on {0, 1}κ;
(iv) cov(X,Nµ) > κ whenever (X,µ) is a Radon measure space and µX > 0.

proof (i)⇒(iii) Let ν be a normal witnessing probability on κ. Let 〈Aα〉α<κ be a family in Nµκ
. For each

α < κ let 〈Fαn〉n∈N be a disjoint sequence of compact subsets of {0, 1}κ \ Aα such that µκ(
⋃

n∈N Fαn) = 1.
By 3H there is a function h : κ → {0, 1}κ which is inverse-measure -preserving for ν and µκ. Set Hα =
h−1(

⋃

n∈N Fαn); then νHα = 1. Let H be the diagonal intersection of 〈Hα〉α<κ, so that νH = 1. Let 〈γξ〉ξ<κ

be the increasing enumeration of H.
For α, ξ < κ set

fα(ξ) = n if n < ξ, h(γξ) ∈ Fαn,

= 0 otherwise.

Then each fα : κ→ κ is regressive, so there is a uniform ultrafilter F on κ such that m(α) = limξ→F fα(ξ)
exists for each α < κ. Now observe that for any α < κ we have H \Hα ⊆ α + 1, so that {ξ : γξ /∈ Hα} is
bounded above in κ and cannot belong to F . Consequently {ξ : h(γξ) ∈ Fα,m(α)} ∈ F . But this implies
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at once that 〈Fα,m(α)〉α<κ has the finite intersection property; because all the Fαn are compact, there is a
y ∈

⋂

α<κ Fα,m(α), and now y /∈
⋃

α<κAα.
Because 〈Aα〉α<κ was arbitrary, cov({0, 1}κ,Nµκ

) > κ.

(iii)⇒(iv) This is standard; see A2Pb.

(iv)⇒(ii) Let ν be any normal witnessing probability on κ, and let (Z, ν̃) be the hyperstonian space
of (κ,Pκ, ν); for A ⊆ κ let A∗ be the open-and-closed subset of Z corresponding to the image A• of A in
A = Pκ/Nν (see A2L).

Now let 〈fα〉α<κ be a family of regressive functions on κ and A ⊆ κ any set with νA > 0. Because ν is
normal and fα is regressive, there is for each α < κ a countable set D(α) ⊆ κ such that νf−1

α [D(α)] = 1
(1He). For α, η < κ set Aαη = f−1

α [{η}]; then ν(
⋃

η∈D(α)Aαη) = 1 so ν̃(
⋃

η∈D(α)A
∗
αη) = 1 and Eα =

Z \
⋃

η<κA
∗
αη ∈ Nν̃ . By hypothesis (iv), A∗ 6⊆

⋃

α<κEα; take z ∈ A∗ \
⋃

α<κEα. Then for every α < κ

there must be a γ(α) < κ such that z ∈ A∗
α,γ(α). But this implies that

{A∗} ∪ {A∗
α,γ(α) : α < κ}

is a centered family of open subsets of Z. It follows that {A•} ∪ {A•

α,γ(α) : α < κ} is centered in A. What

this means is that if I ∈ [κ]<ω then

VI = A ∩
⋂

α∈I f
−1
α [{γ(α)}]

does not belong to Nν , and therefore is unbounded in κ. But now of course we can find a uniform ultrafilter
F on κ containing every VI , so that A ∈ F , while limξ→F fα(ξ) = γ(α) for every α < κ.

Look back at where A, 〈fα〉α<κ came from. Taking A = κ to begin with, we see that κ is indeed weakly
Π1

1-indescribable. But also, letting A vary, we see that any such A must be Π1
1-fully stationary, that is,

its complement cannot belong to the Π1
1-filter W of κ; turning this round, we see that νW = 1 for every

W ∈ W, as demanded by (ii).

(ii)⇒(i) is trivial.

6M I now leave these questions in set theory and logic and turn to two more of the problems in abstract
measure theory to which real-valued-measurable cardinals are relevant.

Theorem Let (X, ρ) be a metric space.
(a) X is Borel measure-complete iff there is no real-valued-measurable cardinal less than or equal to d(X).
(b) If X is complete (as metric space!) then it is Radon iff there is no real-valued-measurable cardinal

less than or equal to d(X).

proof (a)(i) If κ ≤ d(X) is real-valued-measurable, let ν be a witnessing probability on κ. Let 〈xξ〉ξ<κ be
a discrete family in X (see A3Fa). Let µ be the Borel measure on X such that µE = ν{ξ : xξ ∈ E} for
every Borel set E ⊆ X. Let G be

{G : G ⊆ Xis open, {ξ : xξ ∈ G} is finite}.

Then G is an upwards-directed family of open sets in X with union X, so µ(
⋃

G) = µX = 1 > 0 =
supG∈G µG, and X is not Borel measure-complete.

(ii) If X is not Borel measure-complete, let µ be a totally finite Borel measure on X and G an upwards-
directed family of open subsets of X such that µG∗ > supG∈G µG, writing G∗ =

⋃

G. Let 〈Un〉n∈N be a
sequence of discrete families of open sets in X such that

⋃

n∈N Un is a base for the topology of X (A3Fb).
For each Borel set E ⊆ X set

µ1E = µ(E ∩G∗) − supG∈G µ(E ∩G);

then µ1 is a Borel measure on X and µ1(G∗) > 0 = supG∈G µ1G. For each n ∈ N set

Vn = {U : U ∈ Un, ∃ G ∈ G, U ⊆ G}, V ∗
n =

⋃

Vn;

then G∗ =
⋃

n∈N V
∗
n , so there is an n ∈ N such that µ1(V ∗

n ) > 0. For E ⊆ Vn, set νE = µ1(
⋃

E); then
(Vn,PVn, ν) is a non- trivial measure space, so its additivity κ is a real-valued-measurable cardinal (1D).
But of course κ ≤ #(Vn) ≤ d(X), because any dense subset of X must meet every non-empty member of
Vn, and Vn is disjoint.
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(b) Now (b) follows from (a) by A2Wb.

Remark For an investigation of the exact properties of metric spaces involved in the arguments used here,
see Gardner & Pfeffer 84.

6N Riesz spaces My own introduction to the Banach-Ulam problem was through the following. (For
definitions see Fremlin 74. For an account of the elementary theory of Riesz spaces see also Luxemburg

& Zaanen 71.)

Theorem Let E be a Dedekind complete Riesz space (= vector lattice) with a sequentially order-continuous
positive linear functional on E which is not order-continuous. Then there are a real-valued-measurable
cardinal κ and an order-bounded disjoint set A ⊆ E+, the positive cone of E, of cardinal κ.

proof Suppose that f : E → R is a positive linear functional which is sequentially order-continuous but
not order-continuous. Let D ⊆ E+ be a non-empty, downwards-directed set with infimum 0 such that
infx∈D f(x) > 0. Let 〈dn〉n∈N be a decreasing sequence in D such that limn→∞ f(dn) = infx∈D f(x); set
d∗ = infn∈N dn. Then (because f is sequentially order-continuous) f(d∗) = infd∈D f(d), and if d ∈ D then
f(d ∧ d∗) = limn→∞ f(d ∧ dn) = f(d∗) (using the distributivity of Riesz spaces; Fremlin 74, 14D). Let C
be the set

{x : x ∈ E, x > 0, ∃ d ∈ D, x ≤ d∗ − (d ∧ d∗)};

then f(x) = 0 for every x ∈ C, C is upwards-directed, and supC = d∗. Now let A ⊆ C be a maximal set
such that x ∧ y = 0 for all distinct x, y ∈ A, and set e = supA. Then d∗ = supn∈N(d∗ ∧ ne). Because f
is sequentially order-continuous, there must be some n ∈ N such that f(d∗ ∧ ne) > 0, and f(e) > 0. For
each B ⊆ A set eB = supB, νB = f(eB). Again because f is sequentially order-continuous, (A,PA, ν) is a
non-trivial totally finite measure space and #(A) ≥ add(ν), which is a real-valued-measurable cardinal.

Remark This comes from Luxemburg 67. Note that if (X,PX,µ) is any non-trivial probability space
then we can set E = ℓ∞(X), the Dedekind complete Riesz space of all bounded real-valued functions on
X, and

∫

: E → R will be a sequentially order-continuous positive linear functional on E which is not
order-continuous.

Version of 16.6.91

Version of 10.12.91

7. Partially ordered sets

I collect here a variety of facts concerning the impact of real-valued-measurable cardinals on partially
ordered sets. In 7A-7D I show that if κ is an atomlessly-measurable cardinal there are ccc partially ordered
sets P and Q such that P ×Q does not satisfy the κ-chain condition. A similar method shows that there are
large ‘entangled’ subsets of R (7E-7F). In 7G-7N I discuss the cofinalities of certain partially ordered sets,
in particular, of reduced products of families of cardinals. I end the section with an application of these
ideas to cardinal exponentiation (7O-7Q).

7A Definition Let a, b ⊆ N. Approximately following Todorčević 86, I write

∆(a, b) = min(a△b) if a 6= b,

= ∞ if a = b.

We have the following elementary lemma.

7B Lemma Let n, l ∈ N and suppose that m ≥ 3(n2l)!. Let 〈ari〉r<m,i<n be any family in PN, and for
r, s < m set Drs = {∆(ari, asi) : i < n} ∩ N. Then there are u(0), . . . , u(l), v(0), . . . , v(l) < m such that
u(r) 6= v(r) for r ≤ l and Du(j),v(j) ∩Du(k),v(k) = ∅ whenever j < k ≤ l.

proof (a) Given finite sets X and L with #(X) ≥ 3(#(L))! and any function φ : [X]2 → L, there is a
J ∈ [X]3 such that φ is constant on [J ]2. PPP Induce on #(L). If #(L) ≤ 1 this is trivial. For the inductive
step to #(L) = n+ 1, take any x ∈ X. For each l ∈ L set Xl = {y : y ∈ X \ {x}, φ({x, y}) = l}. Then there
must be some l ∈ L such that #(Xl) ≥ 3n!, because (n+ 1)(3n! − 1) + 1 < 3(n+ 1)! ≤ #(X). If there are
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distinct y, z ∈ Xl such that φ({y, z}) = l, take J = {x, y, z}. Otherwise, consider φ↾[Xl]
2 : [Xl]

2 → L \ {l}.
By the inductive hypothesis, there is a J ∈ [Xl]

3 such that φ is constant on [J ]2, and we’re done. QQQ

(b) Now examine the given family 〈ari〉r<m,i<n in PN. If L ∈ [N]<ω and m ≥ 3(n#(L))!, there are
distinct r, s < m such that Drs ∩ L = ∅. PPP??? Otherwise, we can choose a function φ : [m]2 → n × L such
that ∆(ari, asi) = j whenever r, s < m are distinct and φ({r, s}) = (i, j). By (a), there is a J ∈ [m]3 such
that φ is constant on [J ]2; suppose that J = {r, s, t} and φ({r, s}) = φ({r, t}) = φ({s, t}) = (i, j). Now
∆(ari, asi) = ∆(ari, ati) = ∆(asi, ati) = j. But this means that for each pair from ari, asi, ati there is
exactly one member of the pair containing j; which is ridiculous. XXXQQQ

(c) Consequently we can choose u(0), v(0), . . . , u(l), v(l) inductively so that

u(r) 6= v(r), Du(r),v(r) ∩
⋃

s<r Du(s),v(s) = ∅

for every r ≤ l; and these will serve.

7C Lemma Let κ be an atomlessly-measurable cardinal and R, S two upwards-ccc partially ordered
sets, both of size strictly less than κ. Let λ < κ be any cardinal. Then there are partially ordered sets P ,
Q such that

#(P ) ≤ max(ω, λ), #(Q) ≤ max(ω, λ),

S(P ×R) ≤ ω1, S(Q× S) ≤ ω1, S(P ×Q) > λ,

writing S(P ×R) for the Souslin number of P ×R, as in A1P.

proof (a) Let ν be a κ-additive extension of the usual measure µ on {0, 1}N to every subset of {0, 1}N (1De,
A2Gb). Let A ⊆ {0, 1}N be a set of cardinal λ. For each z ∈ {0, 1}N set

Pz = {I : I ∈ [A]<ω, z(∆(a, b)) = 1 for all distinct a, b ∈ I},

Qz = {I : I ∈ [A]<ω, z(∆(a, b)) = 0 for all distinct a, b ∈ I},

ordering both by ⊆. Then S(Pz ×Qz) > λ because {({a}, {a}) : a ∈ A} is an up-antichain in Pz ×Qz. Also
#(Pz) ≤ max(ω, λ) and #(Qz) ≤ max(ω, λ).

(b) I shall therefore be done if I can find a z ∈ {0, 1}N such that Pz ×R and Qz ×S are both upwards-ccc.
In fact I show that Pz ×R is upwards-ccc for ν-almost every z; as the same argument will work for Qz × S,
that will be more than enough.

Set

H0 = {z : z ∈ {0, 1}N, S(Pz ×R) > ω1}.

For each z ∈ H0 there is a family 〈(Iα(z), rα(z))〉α<ω1
enumerating an uncountable up-antichain in Pz ×R.

There is an nz ∈ N such that Bz = {α : #(Iα(z)) = nz} is uncountable. Let 〈(Jα(z), sα(z))〉α<ω1
be a

re-enumeration of the up-antichain 〈(Iα(z), rα(z))〉α∈Bz
in Pz ×R.

(c) ??? Suppose now that νH0 > 0. In this case there is an n ∈ N such that νH1 > 0, where

H1 = {z : z ∈ H0, nz = n}.

Because A and R both have cardinal less than κ, we can find for each α < ω1 a finite set J∗
α ⊆ A and an

s∗α ∈ R such that νEα > 0, where

Eα = {z : z ∈ H1, Jα(z) = J∗
α, sα(z) = s∗α}.

Enumerate J∗
α as 〈aαi〉i<n for each i < n. For α, β < ω1 set Dαβ = {∆(aαi, aβi) : i < n} ∩ N; note that

#(Dαβ) ≤ n.

(d) Let γ > 0 be such that

T = {α : α < ω1, νEα ≥ γ}

is uncountable. For each α ∈ T set

mα = sup{∆(aαi, aαj) : i < j < n} + 1.

Let m be such that



62

U = {α : α ∈ T, mα = m}

is uncountable. Because there are only finitely many possibilities for the family 〈aαi ∩m〉i<n (identifying m
with the set of its predecessors), there is a family 〈bi〉i<n in Pm such that

V = {α : α ∈ U, aαi ∩m = bi ∀ i < n}

is uncountable.

(e) If α, β are distinct members of V , z ∈ Eα ∩ Eβ , and s∗α, s∗β are upwards-compatible in R, there is a

k ∈ Dαβ such that z(k) = 0. PPP (J∗
α, s

∗
α) = (Jα(z), sα(z)) and (J∗

β , s
∗
β) are upwards-incompatible in Pz ×R;

we are supposing that s∗α and s∗β are upwards-compatible in R, so J∗
α ∪ J∗

β /∈ Pz. In this case, there must be

a, b ∈ J∗
α ∪ J∗

β such that z(∆(a, b)) = 0. But J∗
α and J∗

β do belong to Pz, so neither can contain both a and

b, and we may take it that a ∈ J∗
α and b ∈ J∗

β . Thus there must be i, j < n such that z(∆(aαi, aβj)) = 0.
??? If i 6= j, then

∆(aαi, aαj) = ∆(bi, bj) = ∆(aαi, aβj),

so

z(∆(aαi, aβj)) = z(∆(aαi, aαj)) = 1. XXX

Thus i = j and z(∆(aαi, aβi)) = 0, where ∆(aαi, aβi) ∈ Dαβ . QQQ

(f) Let k be so large that (1−2−n)k+1 ≤ 1
3γ; set l = 3(n2k)!. By A2S, there is an uncountable set W ⊆ V

such that µ∗(
⋂

α∈LEα) ≥ 2
3γ whenever L ∈ [W ]l. By A1Q, there is an L ∈ [W ]l such that {s∗α : α ∈ L} is

bounded above. By 7B, there are α(0), . . . , α(k), β(0), . . . , β(k) in L such that α(j) 6= β(j) for j ≤ k and
〈Dα(j),β(j)〉j≤k is disjoint. Now however observe that if z ∈

⋂

α∈LEα and i ≤ k then s∗α(i) and s∗β(i) are

upwards-compatible in R, so there is a j ∈ Dα(i),β(i) such that z(j) = 0, by (e) above. Thus
⋂

α∈LEα ⊆ F
where

F = {z : ∀ i ≤ k ∃ j ∈ Dα(i),β(i) such that z(j) = 0}.

But, because 〈Dα(i),β(i)〉i≤k is disjoint and #(Dα(i),β(i)) ≤ n for each i,

µF =
∏

i≤k

µ{z : ∃ j ∈ Dα(i),β(i), z(j) = 0}

≤
∏

i≤k

(1 − 2−n) = (1 − 2−n)k+1 ≤ γ/3.

So 2
3γ ≤ µ∗(

⋂

α∈LEα) ≤ 1
3γ. XXX

This contradiction shows that S(Pz ×R) ≤ ω1 for ν-almost all z, as required.

7D Theorem Let κ be an atomlessly-measurable cardinal. Then there are ccc partially ordered sets P ,
Q such that S(P ×Q) = κ.

proof Construct 〈Pξ〉ξ<κ, 〈Qξ〉ξ<κ, 〈P ∗
ξ 〉ξ≤κ, 〈Q∗

ξ〉ξ≤κ as follows. Given 〈Pη〉η<ξ and 〈Qη〉η<ξ, then P ∗
ξ and

Q∗
ξ are to be the finite-support products of these families. Given that P ∗

ξ and Q∗
ξ are ccc and that their

cardinals are at most max(ω,#(ξ)), for ξ < κ, then Pξ and Qξ are to be partially ordered sets of size at
most max(ω,#(ξ)) such that S(Pξ × P ∗

ξ ) ≤ ω1, S(Qξ ×Q∗
ξ) ≤ ω1, and S(Pξ ×Qξ) > #(ξ); Lemma 7C tells

us that such can be found. The induction continues because at successor stages Pξ × P ∗
ξ and Qξ ×Q∗

ξ can
be embedded as cofinal subsets of P ∗

ξ+1 and Q∗
ξ+1 respectively, so that P ∗

ξ+1 and Q∗
ξ+1 will be ccc if P ∗

ξ and

Q∗
ξ are, while for limit ordinals ξ > 0, P ∗

ξ =
⋃

η<ξ P
∗
η will be ccc because all the preceding P ∗

η are, by the
remarks in A1R.

On completing the induction, set P = P ∗
κ , Q = Q∗

κ. Observe that the finite-support product R of
〈Pξ×Qξ〉ξ<κ can be embedded as a cofinal subset of P ×Q, so that S(P ×Q) = S(R). Also sup{S(

∏

ξ∈J Pξ×

Qξ) : J ∈ [κ]<ω} = κ, because S(Pξ × Qξ) > #(ξ) for every ξ < κ, while #(
∏

ξ∈J Pξ × Qξ) < κ for every

J ∈ [κ]<ω. Because κ is regular, A1R tells us that S(R) = κ, so that S(P ×Q) = κ, as claimed.

Remark Note that (if it is consistent to suppose that there is a two-valued-measurable cardinal) it is
consistent to suppose that there is an atomlessly-measurable cardinal and that Souslin’s hypothesis is true;
see Laver 87.
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7E Definition Let (X,≤) be a totally ordered set. Let ≤1 be the original order ≤ and ≤−1 the reverse
total ordering ≥. We say that a set A ⊆ X is ω1-entangled if for any n ∈ N, ǫ ∈ {−1, 1}n and every family
〈xξi〉ξ<ω1,i<n of distinct elements of A there are distinct ξ, η < ω1 such that xξi ≤ǫ(i) xηi for every i < n.

7F Proposition Let κ be an atomlessly-measurable cardinal. Then for any λ < κ there is an ω1-entangled
subset of R of cardinal λ.

proof (a) Let X be {−1, 1}N with its lexicographic total ordering, so that x < y iff x(∆(x, y)) = −1,
y(∆(x, y)) = 1, writing ∆(x, y) = min{m : x(m) 6= y(m)} (cf. 7A). The map x 7→

∑

m∈N 3−mx(m) : X → R

is strictly increasing, so that any ω1-entangled subset of X has an ω1-entangled direct image in R, and it
will be enough to find an ω1-entangled subset of X of cardinal λ.

(b) Set S =
⋃

n∈N{−1, 1}n, Z = {−1, 1}S ; let µ be the usual measure on Z (as in A2G), and ν a
κ-additive extension of µ to PZ (see 1De, A2Gb). For z ∈ Z define hz : X → X by writing

hz(x)(m) = x(m) × z(x↾m) ∀ m ∈ N, x ∈ X;

then hz is a bijection. Observe that if x, y ∈ X and ∆(x, y) = m then hz(x) <ǫ hz(y) iff z(x↾m) = y(m)× ǫ.

(c) Let B ⊆ X be any set of cardinal λ, and for z ∈ Z write Az = hz[B] ∈ [X]λ. I aim to show that Az

is ω1-entangled for some, in fact for ν-almost every, z ∈ Z.
Let E be {z : z ∈ Z, Az is not ω1-entangled}. For each z ∈ E we can find nz ∈ N, ǫz ∈ {−1, 1}nz and a

family 〈xzξi〉ξ<ω1,i<nz
of distinct elements of B such that

∀ ξ < η < ω1 ∃ i < n, hz(xzξi) 6≤ǫz(i) hz(xzηi).

Because all the xzξi are distinct, there will now be a kz ∈ N such that

Cz = {ξ : xzξi↾kz 6= xzξj↾kz ∀ i < j < nz}

is uncountable; next, there will be a family 〈uzi〉i<nz
of distinct elements of {−1, 1}kz such that

C ′
z = {ξ : ξ ∈ Cz, xzξi↾kz = uzi ∀ i < nz}

is uncountable. Let 〈yzξi〉ξ<ω1,i<nz
be a re-enumeration of 〈xzξi〉ξ∈C′

z,i<nz
, so that

〈yzξi〉ξ<ω1,i<nz
is a family of distinct elements of B,

yzξi↾kz = uzi for i < nz, ξ < ω1,

∀ ξ < η < ω1 ∃ i < nz, hz(yzξi) 6≤ǫz(i) hz(yzηi).

(d) ??? Suppose, if possible, that νE > 0. Then there are n, k ∈ N, ǫ ∈ {−1, 1}n and a family 〈ui〉i<n in
{−1, 1}k such that νF > 0, where

F = {z : z ∈ E, nz = n, kz = k, ǫz = ǫ, uzi = ui ∀ i < n}.

Note that the ui must all be different. Next, because #(Bn) < κ, we can find for each ξ < ω1 a family
〈yξi〉i<n in B such that νFξ > 0, where

Fξ = {z : z ∈ F, yzξi = yξi ∀ i < n}.

Thus

yξi↾k = ui for i < n, ξ < ω1,

and if z ∈ Fξ ∩ Fη, where ξ < η < ω1, there must be an i < n such that

hz(yξi) 6≤ǫ(i) hz(yηi).

(e) Let γ > 0 be such that U = {ξ : νFξ ≥ γ} is uncountable. Let l ≥ 1 be such that (1 − 2−n)l ≤ 1
3γ.

By A2S, there is an uncountable V ⊆ U such that

µ∗(
⋂

ξ∈L Fξ) ≥ 2
3γ for every L ∈ [V ]l+1.

Let 〈yi〉i<n be a cluster point of 〈〈yξi〉i<n〉ξ∈V in the sense that

∀ k ∈ N, ζ < ω1 ∃ ξ ∈ V \ ζ such that yξi↾k = yi↾k ∀ i < n.



64

Note that because Fξ ∩ Fη 6= ∅ for ξ, η ∈ V , all the yξi, for ξ ∈ V and i < n, are distinct; so that there is a
cofinite W ⊆ V such that yξi 6= yi for ξ ∈W , i < n.

(f) Choose strictly increasing sequences 〈rj〉j∈N in N, 〈ξj〉j∈N in W such that r0 = k and

yξji↾rj = yi↾rj ∀ i < n,

yξji↾rj+1 6= yi↾rj+1 ∀ i < n

for every j ∈ N. For j ∈ N, i < n set

mji = ∆(yξji, yi),

so that rj ≤ mji < rj+1 and also

mji = ∆(yξj+1i, yξji).

Set

sji = yi↾mji = yξji↾mji = yξj+1i↾mji ∈ S.

Observe that all the sji are distinct; this is because rj ≤ mji < rj+1 for all i, j, so that sji 6= sj′i′ if j 6= j′,
while r0 = k, so that sji↾k = ui for all i, j and sji 6= sj′i′ if i 6= i′.

(g) If z ∈ Z, j ∈ N, i < n then

hz(yξji) ≤ǫ(i) hz(yξj+1i) ⇐⇒ z(sji) = yi(mji) × ǫ(i).

So if we set G =
⋂

j≤l Fξj
, then for any z ∈ G we have yξji = yzξji for every j ≤ l, i < n, so for each j < l

there must be an i < n such that

hz(yξji) 6≤ǫ(i) hz(yξj+1i),

that is,

z(sji) 6= yi(mji) × ǫ(i).

Accordingly G ⊆ H, where

H = {z : ∀ j < l ∃ i < n such that z(sji) 6= yi(mji) × ǫ(i)}.

Because all the sji are distinct, µH = (1 − 2−n)l ≤ 1
3γ, so µ∗G ≤ 1

3γ. But by the choice of V , µ∗G ≥ 2
3γ.

XXX
This contradiction shows that νE = 0. So we can take a z ∈ Z \ E to yield the required entangled set

Az ⊆ X.

Remark 7F is due to S.Todorčević; it corresponds to Theorem 2 of Todorčević 85, from which it may
be deduced using Corollary 4Oa.

Version of 18.9.92

7G κ-measure-bounded partially ordered sets (a) Let P be a partially ordered set and κ a real-
valued-measurable cardinal. I will say that P is κ-measure-bounded (upwards) if for every κ-additive
probability µ on P with domain PP there is a p ∈ P such that µ{p′ : p′ ≤ p} > 0.

(b) Let P and Q be partially ordered sets. I say that a function f : P → Q is an ω-Tukey function if
for every q ∈ Q there is a countable set D ⊆ P such that whenever p ∈ P and f(p) ≤ q there is a d ∈ D
such that p ≤ d.

(For a systematic discussion of this concept see Fremlin p90.)

7H Elementary facts Let κ be a real-valued-measurable cardinal.

(a) If P and Q are partially ordered sets, f : P → Q is an ω-Tukey function, and Q is κ-measure-
bounded, then P is κ-measure-bounded. PPP Let µ be a κ-additive probability with domain PP . Let
ν = µf−1 : PQ → [0, 1]. Then ν is κ-additive, so there is a q ∈ Q such that ν{q′ : q′ ≤ q} > 0. Let D ⊆ P
be a countable set such that whenever f(p) ≤ q there is a d ∈ D such that p ≤ d. Then

0 < ν{q′ : q′ ≤ q} = µ{p : f(p) ≤ q} ≤
∑

d∈D µ{p : p ≤ d},



65

so there is a d ∈ D such that µ{p : p ≤ d} > 0. As µ is arbitrary, P is κ-measure-bounded. QQQ

(b) If P is a partially ordered set and Q ⊆ P is cofinal with P , then P is κ-measure-bounded iff Q is.
PPP The identity function from Q to P is ω-Tukey, and any function f from P to Q such that f(p) ≤ p for
every p is also ω-Tukey. QQQ

(c) If P is any partially ordered set such that cf(P ) < κ then P is κ-measure-bounded.

(d) Suppose that P is a κ-measure-bounded partially ordered set and that µ is a κ-additive probability
on P with domain PP . (i) If P is upwards-directed then supp∈P µ{p

′ : p′ ≤ p} = 1. (ii) If add(P ) > ω (P
is ‘countably closed’) then there is a p ∈ P such that µ{p′ : p′ ≤ p} = 1. PPP (i) For A ⊆ P set

νA = µA− supp∈P µ{p
′ : p′ ∈ A, p′ ≤ p}.

Then ν is a κ-additive measure on P and ν{p′ : p′ ≤ p} = 0 for every p ∈ P . Because P is κ-measure-boun-
ded, νP must be 0, that is, supp∈P µ{p

′ : p′ ≤ p} = 1. (ii) If add(P ) > ω, take a sequence 〈pn〉n∈N in P such
that limn→∞ µ{p′ : p′ ≤ pn} = 1; there is a p ∈ P such that pn ≤ p for every n, and now µ{p′ : p′ ≤ p} = 1.
QQQ

(e) (i) If 〈Pn〉n∈N is a sequence of upwards-directed κ-measure-bounded partially ordered sets then P =
∏

n∈N Pn is κ-measure-bounded. (ii) If 〈Pζ〉ζ<λ is a family of κ-measure-bounded partially ordered sets such
that λ < κ and add(Pζ) > ω for every ζ < κ, then P =

∏

ζ<λ Pζ is κ-measure-bounded. PPP (i) Let µ be a

κ-additive probability with domain PP . For each n ∈ N set µn = µπ−1
n : PPn → [0, 1], where πn : P → Pn

is the canonical map. By (d-i) there is a pn ∈ Pn such that µn{q : q ∈ Pn, q ≤ pn} ≥ 1 − 2−n−2. Now if
we set p = 〈pn〉n∈N ∈ P , we see that µ{p′ : p′ ≤ p} ≥ 1

2 . (ii) Argue as in (i), but taking pζ ∈ Pζ such that
µζ{q : q ≤ pζ} = 1, so that µ{p′ : p′ ≤ p} = 1, because λ < κ. QQQ

(f) If P is a κ-measure-bounded partially ordered set, Q is another partially ordered set, and f : P → Q is
an order-preserving surjection, then Q is κ-measure-bounded. PPP Take any g : Q→ P such that f(g(q)) = q
for every q ∈ Q; then g is ω-Tukey. QQQ

7I Examples (a) NN is κ-measure-bounded for any real-valued-measurable cardinal κ. (Use 7H(e-i).)

(b) ωω1
1 is κ-measure-bounded for any real-valued-measurable cardinal κ. (Use 7H(e-ii).)

(c) NN/F is κ-measure-bounded for any real-valued-measurable cardinal κ, any filter F on N. (Use 7Hf.)

(d) If λ and θ are cardinals then [λ]<θ is κ-measure-bounded for any real-valued-measurable cardinal
κ > λ. PPP If µ is a κ-additive probability with domain P[λ]<θ we may apply 5Aa with X = [λ]<θ, Y = λ
and f the identity map to find an M ∈ X such that µ(PM) > 0. QQQ

(e) Let E be the family of closed Lebesgue negligible subsets of [0, 1], ordered by ⊆. Then E is not
κ-measure-bounded for any atomlessly-measurable cardinal κ. PPP If κ is atomlessly-measurable, there is a
κ-additive extension µ of Lebesgue measure to P[0, 1]. Define f : [0, 1] → E by setting f(a) = {a} for every
a ∈ [0, 1], and set ν = µf−1 : PE → [0, 1]. Then ν{E : E ⊆ F} = µF = 0 for every F ∈ E , so ν witnesses
that E is not κ-measure-bounded. QQQ

Remark I include (e) because (as explained in Fremlin p90) many of the natural partially ordered sets P
of analysis allow ω-Tukey functions from E to P , so cannot be κ-measure-bounded.

7J Proposition Suppose that κ is a real-valued-measurable cardinal and that P is a κ-measure-bounded
partially ordered set.

(a) If 〈Qξ〉ξ<κ is an increasing family of subsets of P and Q =
⋃

ξ<κQξ is cofinal with P , then there is a
ξ < κ such that Qξ is cofinal with P .

(b) cf(cf(P )) 6= κ.

proof (a) ??? If no Qξ is cofinal with P , then we may choose a function f : κ → P such that f(ξ) 6≤ q
whenever ξ < κ, q ∈ Qξ. Let ν be a witnessing probability on the real-valued-measurable cardinal κ, and
set µ = νf−1 : PP → [0, 1]. Then there should be a p ∈ P such that µ{p′ : p′ ≤ p} > 0. But now there are
a q ∈ Q such that p ≤ q and a ξ < κ such that q ∈ Qξ, in which case

0 < µ{p′ : p′ ≤ p} ≤ ν{η : f(η) ≤ q} ≤ ν{η : η < ξ},
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which is impossible. XXX

(b) Set λ = cf(P ). ??? If cf(λ) = κ, take a cofinal set Q ⊆ P of cardinal λ. Then there is an increasing
family 〈Qξ〉ξ<κ of subsets of Q, all of cardinal strictly less than λ, therefore not cofinal with P , but with
union Q, contradicting (a). XXX

7K Corollaries Let κ be a real-valued-measurable cardinal.
(a) If F is any filter on N, then cf(cf(NN/F)) 6= κ; in particular, cf(d) 6= κ.
(b) If λ is a cardinal and 〈θζ〉ζ<λ is a family of regular cardinals all greater than λ and less than κ, then

cf(
∏

ζ<λ θζ) < κ.

(c) If α and γ are cardinals less than κ then Θ(α, γ) (see A1Jb) is less than κ.
(d) If α, β, γ and δ are cardinals, with δ ≥ ω1, γ ≤ β, α < κ, then covSh(α, β, γ, δ) (see A1Ja) is less

than κ.
(e) Θ(κ, κ) = κ and

{α : α < κ is a cardinal, Θ(α, α) = α}

belongs to the rvm filter of κ.
(f) If κ = c, λ < κ and 〈Pζ〉ζ<λ is a family of partially ordered sets such that ω < add(Pζ), cf(Pζ) < κ

for every ζ < λ, then cf(
∏

ζ<λ Pζ) < κ.

proof (a) Use 7Ic and 7Jb.

(b) ??? If κ ≤ δ = cf(
∏

ζ<λ θζ), then by A1Ic there is an ultrafilter F on λ such that δ = cf(
∏

ζ<λ θζ/F),

and by A1Id there is a family 〈θ′ζ〉ζ<λ such that θ′ζ ≤ θζ for every ζ < λ and κ = cf(
∏

ζ<λ θ
′
ζ/F). But by

7H(d-ii) and 7Hf,
∏

ζ<λ θ
′
ζ/F is κ-measure-bounded and its cofinality cannot be κ, by 7Jb. XXX

(c) ??? Suppose, if possible, otherwise. Then for each ξ < κ there must be a family 〈θξζ〉ζ<λξ
of regular

cardinals less than α such that λξ < θξζ for every ζ < λξ and cf(
∏

ζ<λξ
θξζ) ≥ ξ. Because α < κ there is a

cardinal λ < κ such that

A = {ξ : ξ < κ, λξ = λ}

is unbounded in κ. Now by 5Ab there is a set M ⊆ α, of cardinal at most λ, such that

B = {ξ : ξ ∈ A, θξζ ∈M ∀ ζ < λ}

is unbounded in κ. Let 〈θζ〉ζ<λ′ be any enumeration of M . By (b), there is a cofinal set F ⊆
∏

ζ<λ′ θζ with

#(F ) < κ. Let ξ ∈ B be such that ξ > #(F ). For each f ∈ F define gf ∈
∏

ζ<λ θξζ by setting

gf (ζ) = f(ζ ′) whenever θξζ = θζ′ .

Then {gf : f ∈ F} is cofinal with
∏

ζ<λ θξζ , because if h ∈
∏

ζ<λ θξζ there is an f ∈ F such that

f(ζ ′) ≥ sup{h(ζ) : ζ < λ, θξζ = θζ′}

for every ζ ′ < λ′, and in this case h ≤ gf . So

#(F ) < ξ ≤ cf(
∏

ζ<λ θξζ) ≤ #(F ),

which is absurd. XXX

(d) This is trivial if any of the cardinals α, β, γ is finite; let us take it that they are all infinite. In this
case covSh(α, β, γ, δ) ≤ covSh(α, γ, γ, ω1), and covSh(α, γ, γ, ω1) ≤ Θ(α, γ) < κ, by A1K and (c) above.

(e) From (d) we see that

C = {α : α < κ is a cardinal, Θ(β, β) ≤ α ∀ β < α}

is a closed unbounded set in κ, so D belongs to the rvm filter of κ, where D is the set of regular cardinals
in C (using a fraction of 4K). But if α ∈ D, and 〈θζ〉ζ<λ is a family of regular cardinals with λ < θζ < α for
every ζ < λ, set β = supζ∈I θ

+
ζ ; then

cf(
∏

ζ<λ θζ) ≤ Θ(β, β) ≤ α.

Accordingly Θ(α, α) = α for every α ∈ D. In the same way Θ(κ, κ) = κ.
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(f) By 5E, we have cf(
∏

ζ<λ Pζ) ≤ c; by 7H(d-ii) and 7Jb, cf(
∏

ζ<λ Pζ) 6= κ.

Remarks Part (f) comes from Prikry 75, Theorem 2c. Parts (b)-(d) come from Gitik & Shelah p91.

7L Cofinalities II: Proposition Suppose that κ is an atomlessly-measurable cardinal. Let X be a set
of cardinal at most min(2κ, κ(+ω)) and F a filter on X which has a base of cardinal less than κ and contains
no countable set. Then cf(NX/F) ≥ κ.

proof Let ν be a witnessing probability on κ. By the Gitik-Shelah theorem (3F-3H), there is a stochastically
independent family 〈Exn〉x∈X,n∈N of subsets of κ of measure 1

2 . Define φ : κ→ NX by

φ(ξ)(x) = min{n : ξ ∈ Exn} if ξ ∈
⋃

n∈N

Exn,

= 0 otherwise.

Now let A ⊆ F be a base of cardinal < κ. For f ∈ NX , A ∈ A set

WfA = {ξ : ξ < κ, φ(ξ)(x) ≤ f(x) ∀ x ∈ A}.

Then

νWfA =
∏

x∈A(1 − 2−f(x)−1) = 0

because A is uncountable. If F ⊆ NX is any set of cardinal less than κ, then

{ξ : ∃ f ∈ F, φ(ξ) ≤F f} =
⋃

f∈F,A∈AWfA ∈ Nν ,

so there is a ξ < κ such that φ(ξ) 6≤F f for every f ∈ F , and {f• : f ∈ F} is not cofinal with NX/F . As F
is arbitrary, cf(NX/F) ≥ κ.

7M Corollary Let κ be an atomlessly-measurable cardinal.
(a) cf(Nλ) ≥ κ for every λ > ω. (For cf(Nλ) ≥ cf(Nω1).)
(b) If λ < κ is a regular uncountable cardinal, and F = {F : F ⊆ λ, #(λ \ F ) < λ} then cf(Nλ/F) ≥ κ.
(c) Suppose that c is atomlessly-measurable. Let X be a set of cardinal less than c and F a filter on X

with a base of cardinal less than c, not containing any countable set. Then cf(NX/F) = c. (Use 5E to see
that #(NX) = c.)

Remark 7L-7M come from Jech & Prikry 84.

7N Remark The results 7Kb-e are interesting; the theory in which they are embedded, partially described
in A1H-A1J, is astonishing. But it may well be that the last word has not been said. From 7Kb we see, for
instance, that if κ is real-valued-measurable then cf(

∏

n∈N ωn) < κ. But in fact cf(
∏

n∈N ωn) < ωω4
(Burke

& Magidor 90, Theorem 6.1). We can hope that further inequalities of this type will swallow up 7Kb-e
completely.

7O Lemma Let κ be an atomlessly-measurable cardinal, and γ, δ cardinals such that ω ≤ γ < δ < κ,
2β = 2γ for γ ≤ β < δ, but 2δ > 2γ . Then δ is regular and 2δ = covSh(2γ , κ, δ+, δ) = covSh(2γ , κ, δ+, ω1) =
covSh(2γ , κ, δ+, 2).

proof δ is regular because 2δ is at most the cardinal power (maxβ<δ 2β)cf(δ). Of course

covSh(2γ , κ, δ+, δ) ≤ covSh(2γ , κ, δ+, ω1) ≤ covSh(2γ , κ, δ+, 2) ≤ #([2γ ]≤δ) ≤ 2δ.

For the reverse inequality, let E ⊆ [2γ ]<κ be a set of cardinal covSh(2γ , κ, δ+, δ) such that every member of
[2γ ]≤δ is covered by fewer than δ members of E . For each ordinal ξ < δ let φξ : Pξ → 2γ be an injective
function. For A ⊆ δ define fA : δ → 2γ by

fA(ξ) = φξ(A ∩ ξ) ∀ ξ < δ.

Choose EA ∈ E such that f−1
A [EA] is cofinal with δ; such must exist because δ is regular and fA[δ] can be

covered by fewer than δ members of E .
??? If 2δ > #(E) then there must be an E ∈ E and an A ⊆ Pδ such that #(A) = κ and EA = E for

every A ∈ A. For each pair A, B of distinct members of A set ξAB = min(A△B) < δ. By 5B, there is a
set B ⊆ A, of cardinal κ, such that M = {ξAB : A, B ∈ B, A 6= B} is countable. Set ζ = supM < δ. Next,



68

for each A ∈ B, take ηA > ζ such that fA(ηA) ∈ E. Let η < δ be such that C = {A : A ∈ B, ηA = η} has
cardinal κ. Then we have a map

A 7→ fA(η) = φη(A ∩ η) : C → E

which is injective, because if A, B are distinct members of C then ξAB ≤ ζ < η, so A ∩ η 6= B ∩ η. So
#(E) ≥ κ; but E ∈ E ⊆ [2γ ]<κ. XXX

7P Theorem If κ is an atomlessly-measurable cardinal,

{2γ : ω ≤ γ < κ}

is finite.

proof ??? Suppose, if possible, otherwise.

(a) Define a sequence 〈γn〉n∈N of cardinals by setting

γ0 = ω, γn+1 = min{γ : 2γ > 2γn} ∀ n ∈ N.

Then we are supposing that γn < κ for every n, so by Lemma 7O every γn is regular and

2γn+1 = covSh(2γn , κ, γ+
n+1, ω1) ∀ n ∈ N,

and by Theorem A1K

2γn+1 ≤ Θ(2γn , γ+
n+1);

also, of course, Θ(2γn , γ+
n+1) ≤ 2γn+1 , for every n. (For the definition of Θ(α, β), see A1J-A1K.) Thus

2γn+1 = Θ(2γn , γ+
n+1) for every n.

(b) Now Θ(2γn , γ) = Θ(c, γ) whenever n ∈ N and γ is a regular cardinal with γn < γ < κ. PPP Induce
on n. For n = 0 we have c = 2γ0 . For the inductive step to n + 1, if γ is regular and γn+1 < γ < κ, then
c ≥ κ ≥ Θ(γ, γ) (7Kb-c), so

Θ(2γn+1 , γ) = Θ(Θ(2γn , γ+
n+1), γ)

≤ Θ(Θ(2γn , γ), γ)

because γ ≥ γ+
n+1

= Θ(Θ(c, γ), γ)

by the inductive hypothesis

= Θ(c, γ)

by Lemma A1L

≤ Θ(2γn+1 , γ)

because 2γn+1 ≥ c. QQQ In particular, 2γn = Θ(c, γ+
n ) for every n ≥ 1 (as well as for n = 0).

(c) For each n ∈ N, let αn be the least cardinal such that Θ(αn, γ
+
n ) > c. Then 〈αn〉n∈N is non-increasing

and α1 ≤ c, so there are n ≥ 1, α ≤ c such that αm = α for every m ≥ n. Now for m ≥ n we have

c < Θ(α, γ+
m) ≤ max(α, ( sup

α′<α

Θ(α′, γ+
m))cf(α))

≤ max(α, ccf(α) = 2cf(α),

using A1M. Also we still have α ≥ κ > Θ(γ+
m, γ

+
m) because Θ(α′, γ+

m) < κ for every α′ < κ. So

Θ(α, γ+
m) = Θ(Θ(α, γ+

m), γ+
m) ≥ Θ(c, γ+

m) = 2γm

for every m ≥ n; consequently

2γm < 2γm+1 ≤ 2cf(α)

and cf(α) > γm for every m. But this means that
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Θ(α, γ+
m) = supα′<α Θ(α′, γ+

m) ≤ c

for each m, which is absurd. XXX
This contradiction proves the theorem.

Remark This comes from Gitik & Shelah p91.

7Q Corollary Let κ be an atomlessly-measurable cardinal.
(a) There is a least cardinal γ < κ such that 2γ = 2δ for γ ≤ δ < κ.
(b) If ν is a witnessing probability on κ and λ is the Maharam type of (κ,Pκ, ν) then the cardinal power

λγ is 2κ.
(c) If c < κ(+ω1) then γ = ω, that is, 2δ = c for ω ≤ δ < κ.

proof (a) Immediate from 7P.

(b) Let A be the measure algebra Pκ/Nν . For ξ < κ let φξ : Pξ → Pγ be an injective function. For
η < γ, A ⊆ κ set

dAη = {ξ : η ∈ φξ(A ∩ ξ)}• ∈ A.

If A, B ⊆ κ are distinct then there is a ζ < κ such that φξ(A ∩ ξ) 6= φξ(B ∩ ξ) for ζ ≤ ξ < κ, so that
(because γ < κ) there is an η < γ such that dAη 6= dBη. Thus 2κ ≤ #(A)γ ≤ (λω)γ = λγ , using A2Hb. On
the other hand, λ ≤ 2κ and γ < κ, so λγ ≤ 2κ.

(c)(i) We need the following elementary fact: if α, β, δ are infinite cardinals, with δ regular and cf(α) 6= δ,
then

covSh(α, β, δ+, δ) ≤ max(α, supα′<α covSh(α′, β, δ+, δ)).

PPP Set θ = max(α, supα′<α covSh(α′, β, δ+, δ)). For each ξ < α choose Eξ ⊆ [ξ]<β such that #(Eξ) =
covSh(#(ξ), β, δ+, δ) and every member of [ξ]≤δ can be covered by fewer than δ members of Eξ. Set E =
⋃

ξ<α Eξ; then #(E) ≤ θ. Take any A ∈ [α]≤δ. If cf(α) > δ then A ⊆ ξ for some ξ < α so A is covered by

fewer than δ members of Eξ ⊆ E . If cf(α) < δ, take a cofinal set C ⊆ α of cardinal less than δ; then for each
ξ ∈ C there is an Aξ ∈ [Eξ]<δ covering A∩ ξ, so A =

⋃

ξ∈C Aξ ∈ [E ]<δ (because δ is regular), and A ⊆
⋃

A.

As A is arbitrary, E witnesses that covSh(α, β, δ+, δ) ≤ θ, as required. QQQ

(ii) ??? Now suppose that γ > ω, that is, that 2γ > c. Let γ1 be the least cardinal such that 2γ1 > c. Then
an easy induction on α, using (i) just above, shows that covSh(α, κ, γ+

1 , γ1) ≤ α whenever 1 ≤ α < κ(+γ1).
In particular, covSh(c, κ, γ+

1 , γ1) ≤ c. But in 7O we saw that covSh(c, κ, γ+
1 , γ1) = 2γ1 . XXX

Remark The case κ = c of (b) is due to Prikry 75.

Version of 10.12.91

8. PMEA and NMA

In this section I give a brief description of two axioms, both much stronger than the assertion ‘c is real-
valued-measurable’ but nevertheless apparently consistent, with some of their consequences in set theory
and general topology.

8A Theorem If one of the following statements is true, so are the others:
(i) for every cardinal λ, there is a probability space (X,PX,µ) of Maharam type at least λ, and with

add(µ) = c;
(ii) for every cardinal λ, there is a c-additive probability with domain P({0, 1}λ) which extends the usual

measure µλ of {0, 1}λ;
(iii) for every Radon measure space (X,T,Σ, µ), there is a c-additive probability with domain PX which

extends µ.

proof (a)(i)⇒(ii) Assume (i). Let λ be any cardinal; of course (ii) is surely true for finite λ, so we may take
it that λ ≥ ω. Let (X,PX,µ) be a probability space of Maharam type greater than λ and with add(µ) = c.
Let E ∈ PX \ Nµ be such that (E,PE,µ⌈E) is Maharam homogeneous with Maharam type at least λ
(A2Hh). Setting µ′A = µA/µE for A ⊆ E, (E,PE,µ′) is a Maharam homogeneous probability space of



70

Maharam type at least λ, and add(µ′) ≥ c. By A2Ka, there is an inverse-measure -preserving function
f : E → {0, 1}λ. Now ν = µ′f−1 (A2Db) is a c-additive extension of µλ to P({0, 1}λ).

(b)(ii)⇒(iii) Assume (ii). Let (X,T,Σ, µ) be any Radon measure space.
case 1 Suppose that µX = 1 and that µ has Maharam type λ. Then there is an inverse-measure -

preserving function f : {0, 1}λ → X (A2Ka). If ν is a c-additive extension of µλ to P({0, 1}λ), then νf−1

is a c-additive extension of µ to PX.
case 2 In general, there is a partition 〈Xi〉i∈I of X into measurable sets of finite measure such that

µE =
∑

i∈I µ(E ∩Xi) for any E ∈ Σ (A2Ja). By case 1, applied to a suitable normalization of µ⌈Xi (the
case µXi = 0 being trivial), there is an extension of µ⌈Xi to a c-additive measure νi with domain PXi, for
each i ∈ I. Now setting νA =

∑

i∈I νi(A ∩Xi) for each A ⊆ X, we get a c-additive extension of µ to PX.

(c)(iii)⇒(ii) and (ii)⇒(i) are trivial.

8B Definition PMEA (the ‘product measure extension axiom’) is the assertion that the statements
(i)-(iii) of 8A are true.

8C Theorem [Kunen] If ‘ZFC + there is a strongly compact cardinal’ is consistent, so is ‘ZFC + PMEA’.

proof See Fleissner 84, Theorem 3.4.

8D Proposition Assume PMEA. Then c is atomlessly-measurable.

proof Use 8A(ii), with λ = ω, and 1D.

8E Lemma Assume PMEA. Let X be a normal topological space and 〈Fi〉i∈I a discrete family of subsets
of X. Suppose that for each x ∈ X we are given a downwards-directed family Ux of sets such that #(Ux) < c

and whenever G ⊆ X is open, i ∈ I, and x ∈ Fi ⊆ G there is a U ∈ Ux such that U ⊆ G. Then there is a
family 〈Ux〉x∈X such that Ux ∈ Ux for every x ∈ X and whenever i, j ∈ I are distinct, x ∈ Fi and y ∈ Fj

then Ux ∩ Uy = ∅.

proof For each z ∈ {0, 1}I let Gz, Hz be disjoint open sets such that Fi ⊆ Gz whenever z(i) = 1 and
Fi ⊆ Hz whenever z(i) = 0. Let ν be a c-additive probability on {0, 1}I extending the usual measure on
{0, 1}I . Write F =

⋃

i∈I Fi.
For x ∈ F , U ∈ Ux write

A(x,U) = {z : z ∈ {0, 1}I , either z(i) = 1 and U ⊆ Gz or z(i) = 0 and U ⊆ Hz},

where i is that member of I such that x ∈ Fi. For each x ∈ F , {A(x,U) : U ∈ Ux} is an upwards-directed
family in P({0, 1}I), of cardinal less than c, covering {0, 1}I . Consequently there is a Ux ∈ Ux such that
νA(x,Ux) > 3

4 (A2Ce).
If now x ∈ Fi, y ∈ Fj where i 6= j, then

ν{z : z ∈ A(x,Ux) ∩A(y, Uy), z(i) 6= z(j)} > 0.

Take any z ∈ A(x,Ux)∩A(y, Uy) such that z(i) 6= z(j). Then one of Ux, Uy is included in Gz and the other
in Hz, so Ux ∩ Uy = ∅, as required.

8F Theorem Assume PMEA. Let X be a normal topological space in which χ(x,X) < c for every x ∈ X.
Then X is collectionwise normal.

proof Let 〈Fi〉i∈I be a discrete family of subsets of X. For each x ∈ X let Ux be a base of neighbourhoods
of x with #(Ux) = χ(x,X) < c. By 8E there is a family 〈Ux〉x∈X such that Ux ∈ Ux for each x ∈ X and
Ux ∩Uy = ∅ whenever x, y ∈ X belong to different Fi. Set Gi =

⋃

{Ux : x ∈ Fi} for each i ∈ I; then 〈Gi〉i∈I

is a disjoint family of open sets and Fi ⊆ Gi for every i. As 〈Fi〉i∈I is arbitrary, X is collectionwise normal.

8G Corollary Assume PMEA. Then every normal Moore space is metrizable.

proof Moore spaces are first-countable; by 8F, assuming PMEA, normal Moore spaces are collectionwise
normal. By A3D, a collectionwise normal Moore space is metrizable. So we have the result.

Remarks (a) 8G is due to Nyikos 80; 8F, as stated, is due to Junnila 83.

(b) Of course we can do something with the ideas of 8E-8F without the full strength of PMEA. If we
have an extension of the usual measure on {0, 1}I to a κ-additive measure with domain P({0, 1}I), then
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we can make 8E work if #(Ux) < κ for every x ∈ X. (Compare Kulesza Levy & Nyikos 91, §4.) Thus
if κ is atomlessly-measurable, we shall have every normal Moore space of weight at most min(2κ, κ(+ω))
metrizable, using the Gitik-Shelah theorem (3F, 3I).

(c) Under NMA, stronger results my be obtained by putting 8M below together with 8E-8G.

8H Definition NMA (the ‘normal measure axiom’) is the assertion

For every set I there is a c-additive probability ν on S = [I]<c , with domain PS, such that
(i) ν{s : i ∈ s ∈ S} = 1 for every i ∈ I;
(ii) if A ⊆ S and νA > 0 and f : A→ I is such that f(s) ∈ s for every s ∈ A, then there is

an i ∈ I such that ν{s : s ∈ A, f(s) = i} > 0.

Remarks (a) If we read the above statement as ‘NMA(I)’, with the set I as a parameter, then we see
that the truth of NMA(I) depends only on #(I), so that if seeking to prove NMA we need consider only
NMA(λ) for cardinals λ. More importantly, we see that NMA(I) implies NMA(J) for every J ⊆ I; for if ν is
a probability on [I]<c as above, and we define f : [I]<c → [J ]<c by setting f(s) = s∩J for every s ∈ [I]<c ,
then νf−1 will witness NMA(J). Consequently NMA will be true iff NMA(λ) is true for arbitrarily large
cardinals λ; e.g. for all regular λ ≥ c.

(b) Observe that the condition (ii) of the statement above can be replaced with

(ii)′ if A ⊆ S and f : A→ I is such that f(s) ∈ s for every s ∈ A, then there is a countable
D ⊆ I such that f(s) ∈ D for ν-almost all s ∈ A,

or with

(ii)′′ if A ⊆ S and f : A → I is such that f(s) ∈ s for every s ∈ A, then for every δ > 0
there is a finite D ⊆ I such that ν(A \ f−1[D]) ≤ δ.

8I Theorem If ‘ZFC + there is a supercompact cardinal’ is consistent, so is ‘ZFC + NMA’.

proof Prikry 75, Fleissner 89.

8J Proposition NMA implies PMEA.

proof Assume NMA. Let λ be any cardinal. Let θ be a regular cardinal greater than the cardinal power
λω. Let ν be a probability on [θ]<c as in 8H. For ξ < θ define fξ : [θ]<c → c by setting

fξ(s) = otp(s ∩ ξ) ∀ s ∈ [θ]<c .

Then if ξ < η < θ we have fξ(s) < fη(s) whenever ξ ∈ s, that is, for ν-almost all s.
Let g : c → PN be any injection. For ξ < θ, n ∈ N let aξn be the equivalence class of {s : n ∈ g(fξ(s))}

in the measure algebra A of ([θ]<c ,P([θ]<c ), ν). Then for any ξ < η < θ there must be an n ∈ N such that
aξn 6= aηn, so #(A)ω ≥ θ > λω. Now #(A) ≤ τ(A)ω (A2Hb), so τ(A) > λ.

Thus we have (i) of 8A, and PMEA is true.

Remark This result is due to Kunen; the argument above is taken from Fleissner 89.

8K Theorem Assume NMA. Then the singular cardinals hypothesis is true.

proof (a) As noted in A1N, it will be more than enough if I can show that #([λ]<c ) ≤ λ for every regular
cardinal λ ≥ c. Let ν be a measure on S = [λ]<c as described in 8H. For each ξ < λ choose a set cξ ⊆ ξ,
cofinal with ξ, of cardinality cf(ξ).

(b) If ζ < λ there is a ζ ′ < λ such that

ν{s : s ∈ S, csup s ∩ ζ
′ \ ζ 6= ∅} = 1.

PPP Set E = {s : ζ + 1 ∈ s ∈ S}; then νE = 1. For each s ∈ E, ζ < sup s so there is an f0(s) ∈ csup s such
that ζ ≤ f0(s); now f0(s) < sup s so there is an f(s) ∈ s such that f0(s) < f(s). As remarked in 8H, there
is now a countable D ⊆ λ such that ν{s : s ∈ E, f(s) ∈ D} = 1; as λ is regular, there is a ζ ′ < λ such that
D ⊆ ζ ′. Then f0(s) ∈ csup s ∩ ζ

′ \ ζ whenever s ∈ E and f(s) ∈ D, so ζ ′ serves. QQQ

(c) So (again because λ is regular) there is a family 〈ζξ〉ξ<λ such that
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ν{s : csup s ∩ ζξ+1 \ ζξ 6= ∅} = 1 ∀ ξ < λ,

ζξ = supη<ξ ζη for limit ordinals ξ < λ.

Set aξ = {η : cξ ∩ ζη+1 \ ζη 6= ∅} for each ξ < λ; then #(aξ) ≤ #(cξ) = cf(ξ) for each ξ. Now

ν{s : η ∈ asup s} = ν{s : csup s ∩ ζη+1 \ ζη 6= ∅} = 1

for each η < λ.

(d) Set

A = {a : ∃ ξ < λ, cf(ξ) < c, a ⊆ aξ}.

Then #(A) ≤ max(λ, supδ<c 2δ) = λ, by 5E. Also, for any a ∈ S,

ν{s : a ⊆ asup s} = 1;

but if s ∈ S then cf(sup s) < c, so we have a ∈ A. Thus A = S and #(S) ≤ λ, as required.

Remark This is Theorem 3(a-b) of Prikry 75. Compare the corresponding theorem concerning strongly
compact cardinals (Drake 74, Theorem 3.6 and Corollary 3.8, or Solovay 74, Theorem 1).

8L Theorem Suppose that I is a set and that ν is a measure on S = [I]<c as in 8H. Then
(a) If 〈Ai〉i∈I is any family of subsets of S with νAi = 1 for each i ∈ I, then

ν{s : s ∈ S, s ∈ Ai ∀ i ∈ s} = 1.

(b) If θ is a cardinal, ω < cf(θ) ≤ θ < c, and f : S → [I]<θ is any function, then there is an M ∈ [I]<θ

such that

ν{s : s ∈ S, f(s) ∩ s ⊆M} = 1.

(c) If θ < c is a cardinal and C ⊆ S is cofinal with S then

ν{s : s ∈ S, ∃ D ⊆ C, add(D) > θ,
⋃

D = s} = 1.

(Here add(D) is the additivity of the partially ordered set (D,⊆), as in A1Ac.)
(d) If f : [I]<ω → S is any function then

ν{s : s ∈ S, f(J) ⊆ s ∀ J ∈ [s]<ω} = 1.

proof (a) Set

A = {s : s ∈ Ai ∀ i ∈ s}.

For each s ∈ S \ A choose f(s) ∈ s such that s /∈ Af(s). ??? If νA < 1 then ν(S \ A) > 0 so there is an i ∈ I
such that ν{s : s ∈ S \A, f(s) = i} > 0. But now νAi ≤ 1 − ν{s : f(s) = i} < 1. XXX (Compare A1Ea.)

(b) As ω < cf(θ) < c, there is an infinite cardinal δ < θ such that νA = 1, where A = {s : s ∈
S, #(f(s)) ≤ δ}. For s ∈ A let 〈fξ(s)〉ξ<δ run over f(s) ∪ {0}. Set

M = {i : i ∈ I, ∃ ξ < δ, ν{s : fξ(s) = i} > 0};

then #(M) ≤ max(ω, δ) < θ. Set

B = {s : s ∈ A, f(s) ∩ s 6⊆M}.

For each s ∈ B choose g(s) ∈ f(s)∩s\M . ??? If νB > 0 there is an i ∈ I such that ν{s : s ∈ B, g(s) = i} > 0;
but now there is an η < δ such that νB1 > 0, where

B1 = {s : s ∈ B, fη(s) = i},

so that i ∈M ; which is absurd. XXX
Thus νB = 0 and ν{s : f(s) ∩ s ⊆M} = 1. (Compare 5A.)

(c) We need consider only the case θ > ω. If #(I) < c the result is trivial (since I ∈ S and ν{I} = 1),
so let us take it that #(I) ≥ c; for convenience, let us suppose that c ⊆ I. For s ∈ S write s∗ = s ∪ {#(s)};
as #(s) ∈ c ⊆ I, s∗ ∈ S. For each i ∈ I choose ci ∈ C such that i ∈ ci, and set
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Ai = {s : c∗i ⊆ s ∈ S}.

Then νAi = 1, because #(c∗i ) < c = add(ν). Set

A = {s : s ∈ S, s ∈ Ai ∀ i ∈ s};

then νA = 1, by (a) above. For s ∈ A set

Ds = {c : c ∈ C, c∗ ⊆ s}.

Then s =
⋃

Ds because i ∈ ci ∈ Ds for every i ∈ s.
Set

B = {s : s ∈ A, add(Ds) ≤ θ}.

For each s ∈ B choose a family D′
s ⊆ Ds with #(D′

s) ≤ θ and with no upper bound in Ds; set f(s) =
{#(d) : d ∈ D′

s} ⊆ s ∩ c. By (b), there is an M ⊆ c such that #(M) < θ+ and νB = νB1, where

B1 = {s : s ∈ B, f(s) ⊆M}.

As θ < c = cf(c), δ = sup(M ∪ {θ}) < c. Now, for s ∈ B1, ds =
⋃

D′
s has cardinal at most δ. So by (b)

again there is an N ⊆ I such that #(N) < δ+ and νB2 = νB1 where

B2 = {s : s ∈ B1, ds ∩ s ⊆ N}.

Let c ∈ C be such that N ⊆ c. Then E = {s : c∗ ⊆ s} has measure 1. But if s ∈ B2 then D′
s has no upper

bound in Ds, while
⋃

D′
s ⊆ N ⊆ c, so c /∈ Ds and c∗ 6⊆ s and s /∈ E. Thus E ∩B2 = ∅ and νB = νB2 = 0.

Accordingly ν(A \B) = 1. But if s ∈ A \B then Ds ⊆ C has add(Ds) > θ and
⋃

Ds = s, so we are done.

(d) Apply (c) with θ = ω,

C = {s : f(J) ⊆ s ∀ J ∈ [s]<ω};

then

C ⊇ {s : ∃ D ⊆ C,
⋃

D = s, add(D) ≥ ω},

so νC = 1, as required.

Remark These results may be found, implicitly or explicitly, in Fleissner 89.

8M Proposition Assume NMA. Let X be a Hausdorff space such that χ(x,X) < c for every x ∈ X and
every closed set of cardinal at most c is normal. Then X is normal.

proof Let E, F be disjoint closed sets in X. For each x ∈ X let Ux be a base of neighbourhoods of x of
cardinal less than c. Let ν be a measure on S = [X]<c as in 8H.

For each s ∈ S, its closure s̄ has cardinal at most c, because if x, y are distinct points of s̄ then
{U ∩ s : U ∈ Ux} and {U ∩ s : U ∈ Uy} are distinct members of [Ps]<c , and #([Ps]<c ) ≤ c, by 5E. So there
are disjoint relatively open sets Gs, Hs ⊆ s̄ such that E ∩ s̄ ⊆ Gs, F ∩ s̄ ⊆ Hs. For U ⊆ X set

A(U) = {s : U ∩ s̄ ⊆ Gs}, B(U) = {s : U ∩ s̄ ⊆ Hs}.

Then for each x ∈ E, y ∈ F there are Ux ∈ Ux, Vy ∈ Uy such that νA(Ux) > 1
2 , νB(Vy) > 1

2 . But in this
case Ux ∩Vy = ∅. PPP??? Otherwise, take z ∈ Ux ∩ Vy; there is an s such that Ux ∩ s̄ ⊆ Gs, Vy ∩ s̄ ⊆ Hs, z ∈ s;
but in this case z ∈ Gs ∩Hs. XXXQQQ

So G =
⋃

{Ux : x ∈ E} and H =
⋃

{Vy : y ∈ F} are open sets separating E from F .

Remark This is due to W.G.Fleissner and I.Juhász (see Juhász 89). I am grateful to P.J.Nyikos for the
reference.

Version of 27.11.91

8N Theorem Assume NMA. Then any locally compact normal space is collectionwise normal.

proof (a) Let (X,T) be a locally compact normal Hausdorff space; without loss of generality we may suppose
that X ∩ T = ∅. Let 〈Fi〉i∈I be a discrete family of subsets of X. Let ν be a measure on S = [X ∪ T]<c as
in 8H.

For s ∈ S set
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Bx(s) = X ∩
⋂

{U : x ∈ U ∈ s ∩ T} ⊆ X

for each x ∈ X,

Yi(s) =
⋃

{Bx(s) : x ∈ Fi ∩ s}

for each i ∈ I.

(b) Set

A0 = {s : s ∈ S, Yi(s) ∩
⋃

j 6=i
Yj(s) = ∅ ∀ i ∈ I};

then νA0 = 1. PPP For each x ∈ X choose Gx, Hx ∈ T in such a way that if x ∈ Fi then

Fi ⊆ Gx ⊆ Gx ⊆ Hx ⊆ Hx ⊆ X \
⋃

j 6=i Fj ;

this is possible because F i ∩
⋃

j 6=i Fj = ∅ and X is normal. Set

A′
0 = {s : s ∈ S, {Gx,X \Hx} ⊆ s ∀ x ∈ s ∩X};

by 8Ld, νA′
0 = 1. But if s ∈ A′

0 and Yi(s) 6= ∅, take x ∈ s ∩ Fi; then Yi(s) ⊆ Gx and
⋃

j 6=i Yj(s) ⊆ X \Hx,

so Yi(s) ∩
⋃

j 6=i Yj(s) = ∅. Thus A′
0 ⊆ A0 and νA0 = 1. QQQ

(c) Set

A1 = {s : s ∈ S, 〈Yi(s)〉i∈I is discrete}.

Then A1 is cofinal with S. PPP Take any s ∈ S. Because νA0 > 0, there is an s′ ∈ A0 such that s′ ⊇ s. Set

H = {H : H ∈ T, #({i : H ∩ Yi(s
′) 6= ∅}) ≤ 1}.

Then
⋃

i∈I Yi(s′) ⊆
⋃

H, because s′ ∈ A0, so F =
⋃

i∈I Fi ∩ s′ ⊆
⋃

H; but F is closed, because 〈Fi〉i∈I is

locally finite. Take G ∈ T such that F ⊆ G ⊆ G ⊆
⋃

H, and set s′′ = s′∪{G} ∈ S. Then s′′∩Fi = s′∩Fi ⊆ G
for each i (this is where I use the requirement ‘X ∩ T = ∅’), so Yi(s

′′) ⊆ Yi(s
′) ∩G for every i. Now we see

that H meets at most one Yi(s
′′) for every H ∈ H and also for H = X \G, so that s′′ ∈ A1. QQQ

(d) Set

A2 = {s : s ∈ S, 〈Yi(s)〉i∈I is locally finite};

then νA2 = 1. PPP Set

A′
2 = {s : ∃ D ⊆ A1, add(D) > ω,

⋃

D = s}.

By 8Lc, νA′
2 = 1. ??? If A′

2 6⊆ A2, take s ∈ A′
2 \A2. Let x ∈ X be such that {i : U ∩ Yi(s) 6= ∅} is infinite for

every neighbourhood U of x. Let K be a compact neighbourhood of x, and J ⊆ I a countably infinite set
such that K ∩ Yi(s) 6= ∅ for every i ∈ J . For each i ∈ J there is an x(i) ∈ Fi ∩ s such that K ∩Bx(i)(s) 6= ∅.
Now there is a D ⊆ A1 such that add(D) > ω and s =

⋃

D; so there is a d ∈ D such that x(i) ∈ d for every
i ∈ J . In this case Bx(i)(d) ⊇ Bx(i)(s) for each i, so K ∩ Yi(d) 6= ∅ for every i ∈ J . However 〈Yi(d)〉i∈I is
supposed to be discrete, and K is supposed to be compact, so this is impossible. XXX

Thus A′
2 ⊆ A2 and νA2 = 1, as claimed. QQQ

(e) Consequently νA1 = 1, as A1 = A0 ∩A2.

(f) Let A3 be the set of those s ∈ S for which there is a family 〈Wx〉x∈X in s ∩ T such that x ∈ Wx for
every x ∈ s∩X and if i, j are distinct members of I, x ∈ Fi and y ∈ Fj then Wx ∩Wy = ∅. Then νA3 = 1.
PPP For x ∈ X take a compact neighbourhood Kx of x. Set

A′
3 = {s : s ∈ S, ∅ ∈ s, U ∩ V ∈ s ∀ U, V ∈ s ∩ T, int(Kx) ∈ s ∀ x ∈ s ∩X}.

Then νA′
3 = 1 by 8Ld.

Take s ∈ A′
3 ∩ A1. Note that as 〈Yi(s)〉i∈I is disjoint, s ∩ Yi(s) ∩

⋃

j∈I Fj = s ∩ Fi for every i ∈ I. For

each x ∈ s ∩
⋃

i∈I Fi, set Ux = {U : x ∈ U ∈ s ∩ T}; for x ∈ X \ (s ∩
⋃

i∈I Fi), set Ux = {∅}. Then Ux is
downwards-directed and #(Ux) < c for every x. If i ∈ I and x ∈ Yi(s) and G is an open neighbourhood of
Yi(s), then either x /∈ s∩Fi and ∅ ∈ Ux, ∅ ⊆ G, or x ∈ s∩Fi; in the latter case,

⋂

{U : U ∈ Ux} = Bx(s) ⊆ G;
but as Ux is downwards-directed and contains the relatively compact set int(Kx), there must be a member
of Ux included in G.
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We may therefore apply 8E to X, 〈Yi(s)〉i∈I and 〈Ux〉x∈X to see that there is a family 〈Wx〉x∈X such that
Wx ∈ Ux for every x ∈ X and if x ∈ Yi(s), y ∈ Yj(s) with i 6= j then Wx ∩Wy = ∅. Evidently 〈Wx〉x∈X

witnesses that s ∈ A3.
Thus A′

3 ∩A1 ⊆ A3 and νA3 = 1. QQQ

(g) For each s ∈ A3 take a family 〈Wx(s)〉x∈X in s ∩ T as in (f). Now, given any x ∈ X,

ν{s : x ∈ s ∈ A3} = 1,

so there is a finite set Vx of open neighbourhoods of x such that

ν{s : x ∈ s ∈ A3, Wx(s) ∈ Vx} >
1
2

(see (ii)′′ of Remark (b) in 8H). Set Vx =
⋂

Vx; then Vx is an open neighbourhood of x for each x ∈ X.
If i, j ∈ I are distinct and x ∈ Fi, y ∈ Fj then there is an s ∈ A3 such that

x ∈ s, y ∈ s, Wx(s) ∈ Vx, Wy(s) ∈ Vy.

Now Vx ∩ Vy ⊆Wx(s) ∩Wy(s) = ∅. So if we set

Hi =
⋃

{Vx : x ∈ Fi} ∀ i ∈ I,

〈Hi〉i∈I is a disjoint family of open sets and Fi ⊆ Hi for each i ∈ I.

(h) As 〈Fi〉i∈I is arbitrary, X is collectionwise normal, as claimed.

Remark This comes from Fleissner 89. Some of the ideas were originally developed in Balogh 91.

8O Definition Let s be a set of ordinals.
(a) A set C ⊆ s is relatively order-closed if it is closed in the intrinsic order topology of s, that is, if

min{ξ : ξ ∈ s, η ≤ ξ ∀ η ∈ C ′} ∈ C

whenever C ′ ⊆ C is non-empty and bounded above in s.
(b) A set A ⊆ s is relatively stationary in s if it meets every cofinal set C ⊆ s which is relatively

order-closed in s.
Observe that these definitions correspond to the ordinary notions of ‘closed’ and ‘stationary’ set in the

ordinal otp(s).

8P Theorem Let α be an ordinal and ν a measure on S = [α]<c as in 8H.
(a) If β < α is an ordinal, then otp(s ∩ β) < otp(s) for ν-almost every s ∈ S.
(b) If α is a decomposable ordinal then otp(s) is a decomposable ordinal for ν-almost every s ∈ S.
(c) If α is an indecomposable ordinal then otp(s) is an indecomposable ordinal for ν-almost every s ∈ S.
(d) #(s) = otp(s∩#(α)) for ν-almost every s ∈ S. Consequently (i) if α is a cardinal then otp(s) = #(s)

for ν-almost every s ∈ S (ii) if α is not a cardinal then otp(s) is not a cardinal, for ν-almost every s ∈ S.
(e) If α = λ+ is a successor cardinal then #(s) = (#(s ∩ λ))+ for ν-almost every s ∈ S.
(f) cf(s) = cf(s ∩ cf(α)) for ν-almost every s ∈ S.
(g) If α is a regular infinite cardinal then #(s) is a regular infinite cardinal for ν-almost every s ∈ S.
(h) If α is a weakly inaccessible cardinal then #(s) is a weakly inaccessible cardinal for ν-almost every

s ∈ S.
(i) If C ⊆ α is closed then s ∩ C is relatively order-closed in s for ν-almost every s ∈ S.
(j) If C ⊆ α is cofinal with α then s ∩ C is cofinal with s for ν-almost every s ∈ S.
(k) If A ⊆ α is stationary in α then s ∩A is relatively stationary in s for ν-almost every s ∈ S.
(l) If α is a weakly Mahlo cardinal then #(s) is a weakly Mahlo cardinal for ν-almost every s ∈ S.
(m) If α is a non-weakly-Mahlo cardinal then #(s) is a non- weakly-Mahlo cardinal for ν-almost every

s ∈ S.

proof (a) β ∈ s for almost all s.

(b) Take β, γ < α such that α = β+γ. Let h : α\β → γ be an order-isomorphism. By 8Ld, with f(J) =
h[J ]∪h−1[J ] for each J ∈ [α]<ω, h[s \β] = s∩ γ for almost every s ∈ S. So otp(s \β) = otp(s∩ γ) < otp(s)
for almost every s, using (a), and otp(s) is decomposable for almost every s.
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(c) Set A = {s : s ∈ S, otp(s) is decomposable}. For s ∈ A take g(s), h(s) ∈ s and an order-isomorphism
fs : s \ g(s) → s ∩ h(s). ??? If νA > 0, there are β, γ < α such that νA1 > 0, where A1 = {s : s ∈ A, g(s) =
β, h(s) = γ}. So otp(s \ β) = otp(s∩ γ) for every s ∈ A1. Let φ : γ → (β + γ) \ β be an order-isomorphism.
Then there is an s ∈ A1 such that φ[s ∩ γ] = s ∩ (β + γ) \ β (using 8Ld again) and also β + γ ∈ s, because
β + γ < α. But now

otp(s \ β) > otp(s ∩ (β + γ) \ β) = otp(s ∩ γ),

which is impossible. XXX

(d) If α < ω1 this is trivial; suppose that α is uncountable.
Set A = {s : #(s) < otp(s ∩ #(α))}. For s ∈ A, take a surjective function fs : s ∩ g(s) → s, where

g(s) ∈ s∩#(α). ??? If νA > 0, let ζ < #(α) be such that νA1 > 0, where A1 = {s : s ∈ A, g(s) = ζ}. By 8Lb,
with f(s) = fs[s∩ζ], θ = max(ω,#(ζ))+ there is a set M ⊆ α with #(M) ≤ max(ω,#(ζ)) and fs[s∩ζ] ⊆M
for almost every s. But also fs[s ∩ ζ] = s 6⊆ M for almost all s ∈ A1. XXX Thus #(s) ≥ otp(s ∩ #(α)) for
almost all s.

Let g : α → #(α) be any bijection. Then g[s] = s ∩ #(α) for ν-almost every s ∈ S (using 8Ld with
f(J) = g[J ] ∪ g−1[J ] for J ∈ [α]<ω). So #(s) = #(s ∩ #(α)) ≤ otp(s ∩ #(α)) for almost all s.

(e) For λ < ω this is trivial; take λ ≥ ω. By (a) and (d), #(s) = otp(s) > otp(s∩λ) ≥ #(s∩λ) for almost
all s. Set A = {s : #(s) > #(s ∩ λ)+}. For s ∈ A take f(s) ∈ s such that #(s ∩ f(s)) ≥ #(s ∩ λ)+. ??? If
νA > 0, let ζ < α be such that ζ ≥ λ and νA1 > 0, where A1 = {s : s ∈ A, f(s) ≤ ζ}. Let h : ζ → λ be any
bijection. Then s ∩ ζ = h−1[s ∩ λ] for almost all s ∈ A1. But of course if s ∈ A1 then #(s ∩ ζ) > #(s ∩ λ).
XXX So νA = 0 and #(s) ≤ #(s ∩ λ)+ for almost all s.

(f) If α is a successor ordinal, or 0, this is trivial; let us take it that cf(α) ≥ ω. Let C be a closed cofinal
subset of α of order type cf(α), and let h : cf(α) → C be the increasing enumeration of C. Then (using 8Ld
again)

B = {s : ∀ ξ < cf(α), ξ ∈ s ⇐⇒ s ∩ h(ξ + 1) \ h(ξ) 6= ∅ ⇐⇒ ξ + 1 ∈ s}

has νB = 1. And cf(s ∩ α) = cf(s ∩ cf(α)) for every s ∈ B.

(g) For α = ω this is trivial; take α > ω. Set A = {s : cf(s) < #(s)}. For s ∈ A choose f(s) ∈ s such that
cf(s) = otp(s ∩ f(s)). Let ζ < α be such that f(s) ≤ ζ for almost all s ∈ A; say A1 = {s : s ∈ A, f(s) ≤ ζ}.
For s ∈ A1 let gs : s ∩ ζ → s be a function with range cofinal in s. By 8Lb, there is a M ⊆ α, with
#(M) < α, such that gs[s ∩ ζ] ⊆M for almost all s ∈ A1. However s ∩M is not cofinal in s, for almost all
s, because supM < α. Thus νA1 = 0 and νA = 0. Finally, cf(s) = cf(#(s)) for almost all s, by (d-i) above;
so cf(#(s)) = #(s) and #(s) is regular, for almost all s.

(h) By (g), #(s) is a regular infinite cardinal for almost all s. Set

A = {s : #(s) is a successor cardinal}.

For s ∈ A choose f(s) ∈ s such that #(s) = #(s∩ f(s))+. ??? If νA > 0, there is a ζ < α such that νA1 > 0,
where A1 = {s : s ∈ A, f(s) = ζ}. Now consider δ = #(ζ)+. Recall that, as remarked in 8H, we have a
measure ν1 = νφ−1 on [δ]<c , where φ(s) = s ∩ δ for each s ∈ S, with the same properties as ν. So we may
apply (d) to δ, ν1 to see that #(s ∩ ζ) < #(s ∩ δ) for almost all s. Also, by (d) as written, #(s ∩ δ) < #(s)
for almost all s. So we have #(s ∩ ζ)+ < #(s) for almost all s, and νA1 = 0; which is absurd. XXX

(i) For each ζ < α set h(ζ) = sup(C ∩ ζ) ∈ C ∪ {0}. Set A = {s : h(ζ) ∈ s ∀ ζ ∈ s}; then νA = 1. If
s ∈ A and C ′ ⊆ C ∩ s is non-empty and bounded above in s, set ζ = min{ξ : ξ ∈ s, η ≤ ξ ∀ η ∈ C ′}. Then
h(ζ) ∈ s; but of course h(ζ) is also an upper bound for C ′, so h(ζ) = ζ and ζ ∈ C. Thus s ∩ C is relatively
order-closed in s for every s ∈ A.

(j) Let h : α→ α be such that ξ ≤ h(ξ) ∈ C for every ξ < α. Then h[s] ⊆ s for almost all s; and C ∩ s is
cofinal with s whenever h[s] ⊆ s.

(k)(i) If cf(α) ≤ ω then there is a ζ < α such that α \ ζ ⊆ A; now s ∩ A is stationary in s whenever
ζ ∈ s. (ii) If cf(α) > ω, set D = {s : s ∩ A is not relatively stationary in s}. For s ∈ D let Cs be a cofinal
relatively order-closed subset of s disjoint from A; for s ∈ S \D, set Cs = s. Set
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C = {ξ : ν{s : ξ ∈ Cs} = 1}.

Then C is closed and unbounded in α. PPP (α) If ζ < α, then Cs 6⊆ ζ for almost all s, so there is a countable
set K ⊆ α \ ζ such that Cs ∩ K 6= ∅ for almost all s. Because cf(α) > ω, we can find an increasing
sequence 〈ζn〉n∈N, starting with ζ0 = ζ, such that Cs ∩ ζn+1 \ ζn 6= ∅ for almost all s, for every n ∈ N. Take
ζ∗ = supn∈N ζn; then ζ∗ ∈ Cs for almost all s, that is, ζ∗ ∈ C, and ζ∗ ≥ ζ. This shows that C is unbounded
in α. (β) If ζ ∈ α \ (C ∪ {0}), then νE > 0, where E = {s : ζ /∈ Cs}. For each s ∈ E, there is a β ∈ s ∩ ζ
such that Cs ∩ ζ ⊆ β. So there is a β < α such that νE1 > 0, where E1 = {s : Cs ∩ ζ ⊆ β}. Now C ∩ ζ ⊆ β.
This shows that C is closed in α. QQQ

Accordingly there is a ζ ∈ A ∩ C. But now νD ≤ ν{s : ζ /∈ Cs} = 0.

(l) Let A be the set of weakly inaccessible cardinals less than α; then A is stationary in α. For each
λ ∈ A, otp(s∩λ) is a weakly inaccessible cardinal for almost all s, applying (d) and (h) in [λ]<c . So νD = 1,
where

D = {s : otp(s ∩ λ) is weakly inaccessible for every λ ∈ s ∩A}.

On the other hand, we also have s∩A relatively stationary in s for almost all s, by (i). Copying these facts
into otp(s) for each s, we see that #(s) is a weakly Mahlo cardinal for almost all s.

(m) Let C be a closed unbounded set in α consisting of ordinals which are not weakly inaccessible
cardinals. For each γ ∈ C, otp(s ∩ γ) is not a weakly inaccessible cardinal, for almost all s, by (e) and (f).
So νD = 1, where

D = {s : otp(s ∩ γ) is not a weakly inaccessible cardinal for every γ ∈ s ∩ C}.

But also C ∩ s is relatively order-closed and cofinal with s for almost all s, by (i) and (j), so otp(s) is not
a weakly Mahlo cardinal, for almost all s. On the other hand, #(s) = otp(s) for almost all s, so #(s) is
non-weakly-Mahlo for almost all s.

8Q I have given ‘elementary’ proofs of the results in 8P. They are of course just reflection properties, and
all can be reached by means of the following.

Theorem (a) Let I be a set and ν a measure on S = [I]<c as in 8H. Let P be the random real p.o.set
PS \ Nν . Let φ be a formula of the second- order language L of §A4; let C1, . . . , Ck be relations on I and
ξ1, . . . , ξm members of I. Then the following are equivalent:

(i) 
P (Ǐ; Č1, . . . , ξ̌m) � φ;
(ii) {s : s ∈ S, (s;C1, . . . , ξm) 6� φ} ∈ Nν .

(b) Suppose that φ is a second-order formula and that α is an ordinal such that 
P (α̌;<) � φ for every
random real p.o.set P. Then for any measure ν on S = [α]<c as in 8H, we shall have (otp(s);<) � φ for ν-
almost every s ∈ S.

proof (a) This is a matter of re-writing the proof of 4M. For instance, the step corresponding to 4Ma
becomes: Suppose that 〈ξs〉s∈S is a family in I such that ξs ∈ s for almost all s ∈ S. Then we have a

P-name ξ̇ for a member of I given by

p 
P ξ̇ = ζ̌ iff ξs = ζ for almost every s ∈ p.

(b) This now follows at once, because (otp(s);<) is isomorphic to (s;<).

8R I have concentrated here on properties of well-ordered sets. But 8H-8I allow much more general
contexts. For instance, if I is a simple group, then s will be a simple subgroup of I for almost every
s ∈ [I]<c . As a further example depending on the presence of a measure ν (rather than just on the ideal
Nν) I give the following.

Proposition Assume NMA. Let A be a Dedekind σ-complete Boolean algebra such that whenever B ⊆ A

is a subalgebra of cardinal less than c there is a functional µ : B → [0, 1] such that
(i) µb =

∑

n∈N µbn whenever 〈bn〉n∈N is a disjoint sequence in B and b ∈ B is the supremum of
{bn : n ∈ N} in A;

(ii) µb > 0 for every b ∈ B \ {0}.
Then A is a measurable algebra.
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proof Let ν be a measure on [A]<c as in 8H. For each s ∈ [A]<c let Bs be the subalgebra of A generated
by s, so that #(Bs) ≤ max(ω,#(s)) < c, and let µs : Bs → [0, 1] be a functional satisfying (i)-(ii) of the
hypothesis above. For a ∈ A set

µ̄a =
∫

µs(a)ν(ds);

note that a ∈ s ⊆ Bs for almost all s, so that the integral is well-defined. Then we have
(i) whenever 〈bn〉n∈N is a disjoint sequence in A with supremum b ∈ A, then νE = 1, where

E = {s : s ∈ [A]<c , b ∈ s, bn ∈ s ∀ n ∈ N},

and µsb =
∑

n∈N µsbn for every s ∈ E, so by B.Levi’s theorem

µ̄b =
∑

n∈N µ̄bn.

(ii) If a ∈ A \ {0} then µsa > 0 for almost all s so µ̄a > 0.
Now (A, µ̄) is a measure algebra and A is a measurable algebra.

8S Remark For further topological consequences of PMEA and NMA see Fleissner Hansell & Jun-

nila 82 (with Fleissner 79 and Fremlin Hansell & Junnila 83), Junnila 83, Burke 84, Fleissner

84b, Tall 84, Fleissner 89, Kulesza Levy & Nyikos 91.

Version of 10.12.91

9. Quasi-measurable cardinals

Many of the ideas above can be generalized to contexts outside ordinary measure theory. Here I discuss
some of these extensions, concentrating on those which do not involve new concepts. With a few exceptions,
the proofs are straightforward adaptations of arguments above, and I therefore omit many of the details.

9A Lemma Let X be a set, λ a cardinal of uncountable cofinality and I a λ-saturated σ-ideal of PX.
(a) If E ⊆ PX there is a set E ′ ⊆ E such that #(E ′) < λ and E \

⋃

E ′ ∈ I for every E ∈ E .
(b) If 〈Eξ〉ξ<λ is any family in PX \ I then there is an x ∈ X such that {ξ : ξ < λ, x ∈ Eξ} is infinite.

proof (a) ??? Suppose, if possible, otherwise. Then we can choose inductively a family 〈Fξ〉ξ<λ in E such
that Gξ = Fξ \

⋃

η<ξ Fη /∈ I for every ξ < λ. But now 〈Gξ〉ξ<λ is a disjoint family in Pλ \ I, which is
impossible, because I is supposed to be λ-saturated. XXX

(b) Applying (a) to families of the form

E = {Eη : β(n) ≤ η < λ},

we can build inductively a strictly increasing sequence 〈β(n)〉n∈N in λ such that

Eξ \
⋃

β(n)≤η<β(n+1)Eη ∈ I ∀ n ∈ N, ξ ∈ λ \ β(n).

Set β∗ = supn∈Nβ(n) < λ, and consider

Gn = Eβ∗ \
⋃

β(n)≤η<β(n+1)Eη ∈ I

for each n ∈ N. Because I is a σ-ideal and Eβ∗ /∈ I, there is an x ∈ Eβ∗ \
⋃

n∈N Gn, and now {η : x ∈ Eη}
meets β(n+ 1) \ β(n) for every n ∈ N, so is infinite.

Remark For a slightly different expression of the same idea, see Fremlin 87, Lemma 1E.

9B Theorem Suppose that κ and λ are cardinals, with ω < cf(λ) ≤ λ ≤ κ, and that there is a proper
κ-additive λ-saturated ideal I of Pκ which contains all singletons. Then

(a) κ is weakly inaccessible;
(b) Pκ has a λ-saturated normal ideal.

proof The argument amounts to extracting the essential ideas from 1D and 1G above.

(a) κ = add(I) is regular. ??? If κ = θ+, choose an injective function fξ : ξ → θ for each ξ < κ. Set

Aηα = {ξ : η < ξ < κ, fξ(η) = α}

for η < κ, α < θ. Because I is κ-additive, there is for each η < κ a βη < θ such that Aη,βη
/∈ I. Set
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Bβ = {η : η < κ, βη = β}

for β < θ. Again because I is κ-additive, there is a β < θ such that Bβ /∈ I. Now #(Bβ) = κ ≥ λ and
〈Aηβ〉η∈Bβ

is a disjoint family in Pκ \ I, which is impossible, because I is λ-saturated. XXX
This shows that κ is weakly inaccessible.

(b) Let F be the family of functions f : κ → κ such that f−1[ζ] ∈ I for every ζ < κ. Then there is an
f0 ∈ F such that {ξ : ξ < κ, f(ξ) < f0(ξ)} ∈ I for every f ∈ F . PPP??? If not, we can find a decreasing family
〈gα〉α<λ in F such that

Eα = {ξ : gα+1(ξ) < gα(ξ)} /∈ I ∀ α < λ,

just as in 1G; we use the κ-additivity of I to be sure that gα, defined as infβ<αgβ , belongs to F for every
non-zero limit ordinal α < λ. By Lemma 9Bb there is a ξ < κ such that A = {α : α < λ, ξ ∈ Eα} is
infinite. But now we can find a strictly increasing sequence 〈α(n)〉n∈N in A, and 〈gα(n)(ξ)〉n∈N will be a
strictly decreasing sequence of ordinals, which is impossible. XXXQQQ

Set J = {A : A ⊆ κ, f−1
0 [A] ∈ I}. Then J is a proper λ-saturated κ-additive ideal of Pκ because

I is. J contains all singletons because f0 ∈ F . Finally, let f : κ → κ be any function. Because J is
κ-saturated and κ is regular, 9Aa tells us that there is an α < κ such that f−1[ζ \ α] ∈ J for every ζ < κ.
Set E = {ξ : α ≤ f(ξ) < ξ < κ}. Define f1 : κ→ κ by setting

f1(ξ) = f(f0(ξ)) if f0(ξ) ∈ E,

= f0(ξ) otherwise.

Then f1 ∈ F so

f−1
0 [E] = {ξ : f1(ξ) < f0(ξ)} ∈ I,

and E ∈ J . Because f is arbitrary, J is normal (A1Ed).
Thus J is an ideal of the required kind.

Remarks The results of 9A-9B above are due to Solovay 71.

9C Definition I will call a cardinal κ quasi-measurable if it is uncountable and there is a proper
ω1-saturated κ-additive ideal of Pκ containing singletons; such an ideal being a witnessing ideal.

Observe that every real-valued-measurable cardinal is quasi-measurable, and that a quasi-measurable
cardinal κ carries a normal ω1-saturated ideal.

In the spirit of 1I and 4Ac, we can speak of the qm ideal of a quasi-measurable cardinal κ, being the
intersection of all its normal witnessing ideals, and the dual filter, the qm filter of κ.

For results involving quasi-measurable cardinals, see Fremlin 75c, Jech 78, Fremlin Hansell &

Junnila 83, Fremlin & Jasiński 86, Fremlin 87, Kamburelis p89 and G lówczyński 91.

9D Theorem If κ is a quasi-measurable cardinal, with witnessing ideal I ⊳ Pκ, then either κ ≤ c and
Pκ/I is atomless, or κ is two-valued-measurable and Pκ/I is purely atomic.

proof (a) If Pκ/I has an atom a, take A ⊆ κ such that A• = a, and see that

{F : F ⊆ κ, A \ F ∈ I}

is a κ-complete ultrafilter on κ, so that κ is two-valued-measurable.

(b) If Pκ/I is not purely atomic, take A ∈ Pκ \ I such that no atom of Pκ/I is included in A•. Choose
〈Aξ〉ξ<ω1

inductively, as follows. A0 = {A}. Given that Aξ is a disjoint family in PA \ I, then for each
B ∈ Aξ choose disjoint B′, B′′ ⊆ B such that B′∪B′′ = B and neither belongs to I; this is possible because
B• is not an atom in Pκ/I. Given 〈Aη〉η<ξ, where ξ < ω1 is a non-zero limit ordinal, let Aξ be a maximal
disjoint family in PA \ I such that for every B ∈ Aξ, η < ξ there is a C ∈ Aη such that B ⊆ C. Continue.

??? If
⋂

ξ<ω1

⋃

Aξ 6= ∅, take x ∈
⋂

ξ<ω1

⋃

Aξ and for each ξ < ω1 take Aξ ∈ Aξ such that x ∈ Aξ. Let

Bξ ∈ Aξ+1 be whichever of A′
ξ, A′′

ξ does not contain x. Then 〈Bξ〉ξ<ω1
is a disjoint family in Pκ \ I; which

is impossible. XXX
So

⋂

ξ<ω1

⋃

Aξ = ∅, and there is a first ξ < ω1 such that D = A \
⋃

Aξ /∈ I. Of course ξ cannot

be a successor, because
⋃

Aη+1 =
⋃

Aη for every η. Now E = D ∩
⋂

η<ξ

⋃

Aη /∈ I. On E consider the
equivalence relation ∼ given by
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x ∼ y ⇐⇒ ∀ η < ξ ∃ B ∈ Aη containing both x and y.

Because every Aη is countable, and ξ < ω1, there are at most c equivalence classes for ∼. Also, every
equivalence class must belong to I, since otherwise it would have been a candidate for membership of Aξ.
So E is covered by at most c members of I, and κ = add(I) ≤ c.

(c) Because any two-valued-measurable cardinal is greater than c, this completes the proof.

9E Proposition Let X be a set and I an ω1-saturated σ-ideal of PX. Let G∗ be the set of bijections
g : X → X such that I = {A : A ⊆ X, g−1[A] ∈ I}. Then there is a partition L of X into countable sets
such that G∗ is precisely the set of bijections g : X → X such that

⋃

{L : L ∈ L, g[L] 6= L} ∈ I.

proof As 1Mb.

Remark See Zakrzewski 91.

9F Theorem If κ is a quasi-measurable cardinal and P is a ccc p.o.set, then 
P κ̌ is quasi-measurable.

proof Let I be a proper κ-additive ω1-saturated ideal of Pκ containing singletons. In V P, let J be the
ideal of Pκ generated by I, that is, if σ is a P-name for a subset of κ,


P (σ ∈ J ⇐⇒ ∃ A ∈ Ǐ, σ ⊆ A);

or, p 
P σ ∈ J iff for every p′ ≤ p there are p′′ ≤ p′ and A ∈ I such that p′′ 
P σ ⊆ Ǎ. But as P is ccc and
I is a σ-ideal,

p 
P σ ∈ J iff ∃ A ∈ I such that p 
P σ ⊆ Ǎ.

Clearly,


P σ ⊆ τ ∈ J ⇒ σ ∈ J .

Because singleton subsets of κ all belong to I, we have


P {ξ} ∈ J ∀ ξ < κ̌.

Now suppose that λ < κ and that 〈σα〉α<λ is a family of P-names for subsets of κ. If


P σα ∈ J ∀ α < λ,

then for each α < λ we can find an Aα ∈ I such that


P σα ⊆ Ǎα.

But now A =
⋃

α<λAα ∈ I, because I is κ-additive, and


P

⋃

α<κ̌ σα ⊆ Ǎ,

so that 
P

⋃

α<κ̌ σα ∈ J . Thus 
P J is κ̌-additive.
Finally, suppose that 〈σα〉α<ω1

is a family of P-names for subsets of κ, and that


P σα ∩ σβ = ∅ ∀ α 6= β.

For each ξ < κ we may write

aαξ = sup{p∗ : p 
P ξ̌ ∈ σα} ∈ A,

where A is the regular open algebra of P. In this case we shall have aαξ ∩ aβξ = 0 whenever α 6= β and
ξ < κ. Because P is ccc, there is for each ξ < κ a γξ < ω1 such that aαξ = 0 whenever γξ ≤ α < ω1. Because
I is ω1-saturated, there is a γ < ω1 such that {ξ : γξ = γ′} ∈ I for every γ′ ≥ γ; because I is ω2-additive,

A = {ξ : γξ ≥ γ} ∈ I.

Now aαξ = 0 for all ξ ∈ κ \A, α ≥ γ. So


P σα ⊆ Ǎ ∈ Ǐ

for every α ≥ γ. Because 〈σα〉α<ω1
is arbitrary,


P J is ω̌1-saturated,

as required.
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Remark This is due to Prikry (see Solovay 71, Theorem 8).

9G Proposition The following are equiconsistent:
(a) ‘ZFC + there is a two-valued-measurable cardinal’;
(b) ‘ZFC + there is a quasi-measurable cardinal’;
(c) ‘ZFC + Martin’s Axiom + there is a quasi-measurable cardinal κ < c’;
(d) ‘ZFC + Martin’s Axiom + c c is quasi-measurable’.

proof (a)⇒(c) Start with a two-valued-measurable cardinal κ. Let P be a ccc p.o.set such that


P c = κ̌+.

Let Q̇ be a P-name for a ccc p.o.set of cardinal κ+ such that


P (
Q̇ MA)

(Kunen 80, §VIII.6). Then P ∗ Q̇ is ccc so 
P∗Q̇ κ̌ is quasi-measurable.

(a)⇒(d) As above, reading κ for κ+ at each opportunity.

(c)⇒(b) and (d)⇒(b) are trivial, and (b)⇒(a) is covered by 2D.

9H Algebras PX/I The Gitik-Shelah theorem (3F) may be regarded as an attack on the problem:
which measurable algebras A are isomorphic to quotient algebras of the form PX/I where X is a set and
I is a σ-ideal of PX? (For if (PX/I, µ̄) is a probability algebra, then it will be the measure algebra
of (X,PX,µ), where µA = µ̄A• for every A ⊆ X.) The Gitik-Shelah theorem tells us that if A is an
atomless non-zero measurable algebra isomorphic to PX/I, then τ(A) ≥ min(2κ, κ(+ω)) for some atomlessly
-measurable cardinal κ. The product measure extension axiom (8A-8B) is the assertion that there are such
algebras of arbitrarily large size.

Suppose now we extend the question, and seek to describe the class Quotσ of Boolean algebras isomorphic
to algebras of the form PX/I where I is a σ-ideal of PX. If PX/I is non-zero, ccc and atomless then I is
ω1-saturated and add(I) is quasi-measurable. In Gitik & Shelah 89 and Gitik & Shelah p91 a variety
of special types of algebra are considered; for instance, writing Gλ for the regular open algebra of {0, 1}λ,
then if Gλ ∈ Quotσ, there is a quasi-measurable cardinal less than λ. On the other hand, G lówczyński 91

points out that (if there can be measurable cardinals) Quotσ can contain countably-generated ccc algebras.
Such algebras are always quotients of the algebra B of Borel subsets of R (Fremlin 84, 12F). But the
ideals involved in G lówczyński’s construction are necessarily very irregular, and we may reasonably ask if
any naturally arising ideal I of B can have B/I in Quotσ. Similarly, we may ask whether the regular open
algebra of a ‘simple’ partially ordered set (P,≤) (e.g., one in which P is an analytic set in a Polish space,
and ≤ is an analytic, or Borel, subset of P × P ) can belong to Quotσ.

I ought perhaps to mention in passing that any Dedekind complete Boolean algebra is isomorphic to a
quotient PX/I for some set X and some ideal I; the problems here depend on the insistence on taking
σ-ideals.

9I Theorem Let κ be a regular uncountable cardinal, F a normal filter on κ, I the dual ideal; suppose
that I is κ+-saturated. Let P be either the p.o.set (Pκ/I) \ {0} or the p.o.set Pκ \ I. Let φ be a formula
of the second-order language L of §A4 and C1, . . . , Ck relations on κ, ξ1, . . . , ξm ordinals less than κ. Let
β ≤ κ. Then the following are equivalent:

(i) 
P (β̌; Č1, . . . , ξ̌m) � φ
(ii) {α : α < κ, (min(α, β);C1, . . . , ξm) � φ} ∈ F .

In particular, if β < κ then

(β;C1, . . . , ξm) � φ ⇐⇒ 
P (β̌; Č1, . . . , ξ̌m) � φ.

proof As in 4M-4N.

9J Theorem Let κ be a quasi-measurable cardinal with qm filter W. Then
(i) κ is greatly Mahlo;
(ii) Mh(A) ∈ W for every stationary A ⊆ κ – in particular, W is closed under the operation Mh;
(iii) the set of greatly Mahlo cardinals below κ belongs to W.
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proof The arguments of 4J-4Ka cover (i) and (ii). Now let A be the set of greatly Mahlo cardinals below
κ. If I is any normal witnessing ideal for κ, with dual filter F , then P = Pκ \ I is ccc; so by 9F


P κ̌ is qm,

and


P κ̌ is greatly Mahlo.

Next, it is evident from 4C that there is a second-order formula φ such that for any ordinal α

(α;<; ) � φ ⇐⇒ α is a greatly Mahlo cardinal.

So 9I tells us that A ∈ F . As I, F are arbitrary, A ∈ W.

9K Theorem Let κ be a quasi-measurable cardinal, with normal witnessing ideal I and dual filter F ;
let θ < κ be a cardinal of uncountable cofinality. Then for any function f : [κ]<ω → [κ]<θ there are C ∈ F ,
f∗ : [C]<ω → [κ]<θ such that f(I) ∩ η ⊆ f∗(I ∩ η) whenever I ∈ [C]<ω and η < κ.

proof As in 5A-5B.

9L Corollaries (a) If κ is quasi-measurable then there is no Jónsson algebra on κ.
(b) If c is quasi-measurable then 2λ = c for ω ≤ λ < c.

proof As 5D-5E.

9M Proposition If κ is a quasi-measurable cardinal with qm ideal J , then there is no κ-Aronszajn tree,
and moreover A = {θ : θ < κ, there is a θ-Aronszajn tree} belongs to J .

proof The arguments of 5F show that there is no κ-Aronszajn tree. But it is easy to find a second-order
formula φ such that, for any cardinal θ, (θ;<; ) � φ iff there is a θ-Aronszajn tree. So the arguments of 9J
show that A ∈ J .

9N Proposition If c is quasi-measurable, then ♦c is true.

proof As 5N.

Remark This is due to Kunen.

9O Theorem Let κ be a quasi-measurable cardinal.
(a) If F is any filter on N then cf(cf(NN/F)) 6= κ.
(b) Θ(α, γ) < κ for all cardinals α, γ < κ.
(c) covSh(α, β, γ, δ) < κ whenever α < κ, γ ≤ β and δ ≥ ω1.
(d) If κ ≤ c then {2γ : ω ≤ γ < κ} is finite.

proof Use the ideas of 7G-7K and 7O-7Q, but replacing ‘κ-measure-bounded’ with the property

if I ⊳ PP is an ω1-saturated κ-additive ideal then there is a p ∈ P such that {p′ : p′ ≤ p} /∈ I.

9P Remarks 9Od is given in Gitik & Shelah p91.
Many of the results in 9J-9O have generalizations to cardinals κ carrying non-trivial κ-additive ideals

which are λ-saturated for some λ < κ.

Version of 18.9.92

Appendix: Useful Facts

In this appendix I seek to support the main text by giving definitions and theorems which may not be
universally familiar, with some proofs.

A1. Combinatorics

I begin with material in (infinitary) combinatorics and set theory.

A1A Partially ordered sets (a) Recall that a partially ordered set is a set P together with a
relation ≤ such that, for p, q, r ∈ P ,
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p ≤ q & q ≤ r ⇒ p ≤ r,

p ≤ q & q ≤ p ⇐⇒ p = q.

(b) For a partially ordered set P , say that a subset Q of P is cofinal with P if for every p ∈ P there is
a q ∈ Q such that p ≤ q. Now write

cf(P ) = min{#(Q) : Q ⊆ P is cofinal with P},

the cofinality of P .
If P is totally ordered then P has a well-ordered cofinal subset of order type cf(P ), which in this case is

either 0 (if P = ∅) or 1 (if P has a greatest element) or an infinite cardinal which is regular, that is, equal
to its own cofinality. (But the cofinalities of general partially ordered sets need not be regular.)

(c) For a partially ordered set P with no greatest element, write

add(P ) = min{#(A) : A ⊆ P has no upper bound in P},

the additivity of P . Then add(P ) is either 0 (if P = ∅) or 2 (if P is not upwards-directed) or a regular infinite
cardinal. In the last case, there is a family 〈pξ〉ξ<add(P ) in P such that pξ ≤ pη whenever ξ ≤ η < add(P )
and {pξ : ξ < add(P )} has no upper bound in P .

If P has a greatest element I will write add(P ) = ∞.
If κ is a cardinal less than or equal to add(P ) (allowing κ <∞ = add(P )) we say that P is κ-additive;

that is, P is κ-additive iff every subset of P of cardinal less than κ has an upper bound in P .
If add(P ) 6= ∞ then add(P ) ≤ cf(P ). If P is totally ordered and has no greatest element then add(P ) =

cf(P ).

A1B Filters and ideals (a) If X is a set and I is an ideal of subsets of X, we may think of I as
partially ordered by ⊆, and discuss its additivity (and cofinality) as in A1A. I allow PX as an (improper)
ideal of itself.

(b) If X is a set, κ is a cardinal and F is a filter on X, then F is κ-complete if
⋂

A ∈ F whenever
A ⊆ F and 0 < #(A) < κ; that is, iff the dual ideal {X \ F : F ∈ F} is κ-additive.

(c) Let X be a set and F a filter on X. Then F is uniform if X \ A ∈ F whenever A ⊆ X and
#(A) < #(X).

(d) Let X and Y be sets, F a filter on X, and f : X → Y a function. I write f [[F ]] for the filter
{G : G ⊆ Y, f−1[G] ∈ F}, that is, the filter on Y generated by {f [F ] : F ∈ F}.

(e) If X is a set and A is any family of sets, I write

non(X,A) = min{#(Y ) : Y ⊆ X, Y 6⊆ A ∀ A ∈ A},

allowing non(X,A) = ∞ if X ⊆ A ∈ A.

(f) If X is a set, I is an ideal of subsets of X, and κ is a cardinal, then I is κ-saturated if there is no
family 〈Aξ〉ξ<κ in PX \ I such that Aξ ∩ Aη ∈ I whenever ξ < η < κ; that is, if there is no disjoint family
of size κ in (PX/I) \ {0}. If I is κ-additive, then it is κ-saturated iff there is no disjoint family of size κ in
PX \ I.

A1C Filters on N (a) A p-point filter on N is a uniform filter F on N such that for every sequence
〈Fn〉n∈N in F there is an F ∈ F such that F \ Fn is finite for every n ∈ N.

(b) A rapid filter on N is a uniform filter F on N such that for every sequence 〈tn〉n∈N of non-negative
real numbers converging to 0 there is an F ∈ F such that

∑

n∈F tn <∞.

(c) A selective ultrafilter on N is a non-principal ultrafilter F on N such that whenever 〈An〉n∈N is a
disjoint sequence in PN \ F there is an F ∈ F such that #(F ∩An) ≤ 1 for every n ∈ N.

(d) If λ is a cardinal, a p(λ)-point filter on N is a uniform filter F on N such that whenever A ⊆ F and
#(A) < λ there is an F ∈ F such that F \A is finite for every A ∈ A. (Thus a p-point filter is a p(ω1)-point
filter.)
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A1D Cardinals and ordinals (a) Let κ be a cardinal. (i) κ is weakly inaccessible if it is uncountable
and regular and λ+ < κ for every cardinal λ < κ. (ii) κ is strongly inaccessible if it is uncountable and
regular and 2λ < κ for every cardinal λ < κ.

(b) Let S be any class of ordinals and f an ordinal-valued function defined on S; then f is regressive
if f(ξ) < ξ for every ξ ∈ S \ {0}.

(c) If ξ is any ordinal and A ⊆ ξ, then A is stationary in ξ if A ∩ C 6= ∅ for every set C ⊆ ξ which is
cofinal with ξ and closed (for the order-topology of ξ).

(d) An ordinal α is decomposable if there are smaller ordinals β, γ such that α is equal to the ordinal
sum β + γ; that is, if there is an ordinal β < α such that otp(α \ β) < α. Otherwise α is indecomposable.

A1E Lemma Let κ be a regular uncountable cardinal, F a uniform filter on κ, I the dual ideal {κ \F :
F ∈ F}.

(a) F and I are normal (see 1F) iff for every family 〈Fξ〉ξ<κ in F its diagonal intersection

{ξ : ξ < κ, ξ ∈ Fη ∀ η < ξ}

belongs to F .
(b) The ‘club filter’ on κ, generated by the closed unbounded sets in κ, is normal; the ‘non-stationary

ideal’, consisting of the non-stationary subsets of κ, is normal.
(c) If F and I are normal, then

(i) F is κ-complete, I is κ-additive;
(ii) every closed unbounded subset of κ belongs to F ;
(iii) if H is a subset of the quotient algebra A = Pκ/I and #(H) ≤ κ, then supH and inf H are defined

in A;
(iv) if 〈FI〉I∈[κ]<ω is any family in F , then {ξ : ξ < κ, ξ ∈ FI ∀ I ∈ [ξ]<ω} belongs to F .

(d) The following are equivalent:
(i) I is normal and κ-saturated in Pκ;
(ii) I is κ-additive and for every function f : κ→ κ there is a ζ < κ such that {ξ : ζ ≤ f(ξ) < ξ} ∈ I;
(iii) F is κ-complete and for every regressive f : κ→ κ there is a ζ < κ such that f−1[ζ] ∈ F .

proof (a)(i) Suppose that F is normal, and that 〈Fξ〉ξ<κ is a family in F with diagonal intersection F . Set
S = κ \ F , and for ξ ∈ S take f(ξ) < ξ such that ξ /∈ Ff(ξ). Then f is regressive, but f−1[{ξ}] ⊆ κ \ Fξ ∈ I
for every ξ < κ; so S ∈ I and F ∈ F .

(ii) Now suppose that F is closed under diagonal intersections, and that we are given S ∈ Pκ \ I and
a regressive function f : S → κ. ??? If Aξ = f−1[{ξ}] ∈ I for every ξ < κ, set Fξ = κ\Aξ ∈ F for each ξ, and
take F to be the diagonal intersection of 〈Fξ〉ξ<κ, so that F ∈ F . Then there must be a ξ ∈ F ∩ S \ {0}, so
that f(ξ) < ξ and ξ ∈ Af(ξ) and ξ /∈ Ff(ξ) and ξ /∈ F , which is absurd. XXX

(b) It is easy to check that if 〈Cξ〉ξ<κ is any family of closed unbounded sets in κ, then its diagonal
intersection is closed and also (because κ is regular) unbounded. So the club filter is normal and its dual
ideal, the non-stationary ideal, is normal.

(Of course the definition of ‘normal’ ideal in 1F above corresponds to the ‘pushing-down lemma’; see
Kunen 80, II.6.15, or Jech 78, Theorem 22.)

(c)(i) If λ < κ and 〈Fξ〉ξ<λ is any family in F , set Fξ = κ for ξ ∈ κ \ λ, and consider the diagonal
intersection F of 〈Fξ〉ξ<κ. Then F and F \ λ belong to F ; but F \ λ ⊆

⋂

ξ<λ Fξ. Thus F is κ-complete and
I is κ-additive.

(ii) Now take any closed unbounded set C ⊆ κ. For each ξ < κ set γξ = min(C\(ξ+1)), Fξ = κ\γξ ∈ F ;
let F be diagonal intersection of 〈Fξ〉ξ<κ. Then F ∈ F and F \ γ0 ⊆ C, so C ∈ F .

(iii) If H = ∅ then inf H = 1. Otherwise, let 〈aξ〉ξ<κ run over H. For each ξ < κ choose Aξ ⊆ κ
such that A•

ξ = aξ in A. Let A be the diagonal intersection of 〈Aξ〉ξ<κ, and consider a = A•. Because

A \ Aξ ⊆ ξ + 1 ∈ I, a ⊆ aξ for each ξ < κ, and a is a lower bound for H. Now let b be any other lower
bound for H in A, and take B ⊆ κ such that B• = b. For each ξ < κ, we have b ⊆ aξ, that is, B \ Aξ ∈ I;
set Fξ = κ \ (B \ Aξ) ∈ F . Let F be the diagonal intersection of 〈Fξ〉ξ<κ, so that F ∈ F . ??? If there is a
ξ ∈ (B \ A) ∩ F , then there must be an η < ξ such that ξ /∈ Aη; but now ξ ∈ B \ Aη so ξ /∈ Fη and ξ /∈ F .
XXX Thus B \A ⊆ κ \ F ∈ I, and b ⊆ a in A. As b is arbitrary, a = inf H in A.
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Thus H has an infimum in A. But applying the argument above to {1 \ a : a ∈ H} we see that H also
has a supremum.

(iv) Set Eξ =
⋂

I∈[ξ]<ω FI for each ξ < κ; by (i), Eξ ∈ F . Let C be the closed unbounded set of limit

ordinals less than κ; set

F = {ξ : ξ ∈ C, ξ ∈ Eη ∀ η < ξ}.

Then {ξ : ξ ∈ FI ∀ I ∈ [ξ]<ω} ⊇ F ∈ F .

(d)(i)⇒(ii) Of course I is κ-additive, by (c-i). Now let f : κ → κ be any function. Because I is
κ-saturated, the set A = {α : f−1[{α}] /∈ I} has cardinal less than κ; because κ is regular, A is bounded
above in κ — say A ⊆ ζ < κ. For α ∈ A set Fα = κ; for α ∈ κ \A set Fα = κ \ f−1[{α}]. Then

F = {ξ : ξ ∈ Fα ∀ α < ξ}

belongs to F . If ζ ≤ f(ξ) < ξ < κ then f(ξ) /∈ A, so ξ /∈ Ff(ξ) and ξ /∈ F ; thus {ξ : ζ ≤ f(ξ) < ξ} ⊆ κ\F ∈ I.
(ii)⇒(iii) is elementary.
(iii)⇒(i) Of course I is κ-additive. ??? If it is not κ-saturated, choose a disjoint family 〈Aξ〉ξ<κ in

Pκ \ I; set f(η) = ξ for η ∈ Aξ \ (ξ + 1), f(η) = 0 for η ∈ κ \
⋃

ξ<κ(Aξ \ (ξ + 1)). Then f is regressive, and

f−1[ζ] does not meet Aζ \ (ζ + 1), so does not belong to F , for any ζ < κ. XXX
Now suppose that 〈Fξ〉ξ<κ is any family in F . Let F be its diagonal intersection, and define f : κ → κ

by setting f(ξ) = 0 if ξ ∈ F , f(ξ) = min{η : ξ /∈ Fη} if ξ ∈ κ \ F . Let ζ < κ be such that f−1[ζ] ∈ F . Then
F ⊇ f−1[ζ] ∩

⋂

η<ζ Fη ∈ F . This shows that F is normal.

Remark For another version of this material, see Baumgartner Taylor & Wagon 82.

A1F Almost-square-sequences I give here one of Shelah’s lemmas (Shelah #351, Lemma 4.4; Burke

& Magidor 90, 7.7) in a form appropriate to Theorem 3F.

Lemma Let κ, λ be infinite cardinals, with κ regular and λ > κ, cf(λ) > ω1. Then we can find a stationary
set S ⊆ λ+ and a family 〈Cα〉α∈S of sets such that (i) for each α ∈ S, Cα is a closed unbounded set in α of
order type κ (ii) if α, β ∈ S and γ is a limit point of both Cα and Cβ then Cα ∩ γ = Cβ ∩ γ.

proof For each γ < λ+ fix an injection fγ : γ → λ. Let S0 be the set of ordinals α < λ+ of cofinality κ; then
S0 is stationary in λ+. For each α ∈ S0 choose an increasing family 〈Nαδ〉δ<λ of subsets of λ+ such that

(α) Nα0 is a cofinal subset of α of cardinal κ;
(β) if δ < λ then

Nα,δ+1 =
⋃

{fγ [Nαδ] ∪ f−1
γ [δ] : γ ∈ Nαδ} ∪Nαδ ∪ δ

(taking the closure Nαδ in the order topology of λ+);
(γ) if δ < λ is a non-zero limit ordinal then Nαδ =

⋃

δ′<δ Nαδ′ .
Then #(Nαδ) ≤ max(κ,#(δ)) < λ for each δ < λ. Now observe that {δ : δ < λ, Nαδ ∩ λ = δ} is a closed
unbounded set in λ, and in particular contains an ordinal of cofinality ω1, for every α ∈ S0. Let δ < λ be
such that cf(δ) = ω1 and

S1 = {α : α ∈ S0, Nαδ ∩ λ = δ}

is stationary in λ+. For α ∈ S1, set C∗
α = α ∩Nαδ; then C∗

α is a closed unbounded set in α and #(C∗
α) < λ

so otp(C∗
α) < λ. Let ζ < λ be such that

S = {α : α ∈ S1, otp(C∗
α) = ζ}

is stationary in λ+. Observe that as cf(C∗
α) = cf(α) = κ for each α ∈ S, cf(ζ) = κ.

Take any closed unbounded set C ⊆ ζ of order type κ and for each α ∈ S let Cα be the image of C in C∗
α

under the order-isomorphism between ζ and C∗
α. Then Cα will be a closed unbounded subset of α of order

type κ.
I claim that if α, β ∈ S and γ is a common limit point of Cα, Cβ then Cα ∩ γ = Cβ ∩ γ.
PPP case 1 Suppose κ = ω. In this case the only limit point of Cα will be α itself, and similarly for β, so

that in this case we have α = β and there is nothing more to do.
case 2 Suppose cf(γ) = ω < κ. Then γ is a limit point of Cα ⊆ Nαδ, so there is an increasing sequence

in Nαδ with supremum γ; as Nαδ =
⋃

δ′<δ Nαδ′ and cf(δ) = ω1, this sequence lies entirely within Nαδ′ for
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some δ′ < δ, and γ ∈ Nαδ′ ⊆ Nα,δ′+1. Now, for δ′ + 1 ≤ ξ < δ, Nα,ξ+1 ⊇ f−1
γ [ξ] ∪ fγ [Nαξ]; consequently

Nαδ ∩ γ = f−1
γ [Nαδ ∩ λ] = f−1

γ [δ]. Similarly, Nβδ ∩ γ = f−1
γ [δ]. Now

C∗
α ∩ γ = Nαδ ∩ γ = f−1

γ [δ] ∩ γ = C∗
β ∩ γ.

Thus Cα ∩ γ and Cβ ∩ γ must be equal.
case 3 Suppose that cf(γ) > ω, κ > ω. Because γ = sup(Cα ∩ γ) = sup(Cβ ∩ γ),

D = {γ′ : γ′ is a limit point of both Cα and Cβ , γ
′ < γ, cf(γ′) = ω}

is cofinal with γ, and Cα ∩ γ =
⋃

γ′∈D Cα ∩ γ′ = Cβ ∩ γ, using case 2. QQQ

Thus S, 〈Cα〉α∈S have the required properties.

A1G Corollary Let κ, λ be infinite cardinals with κ regular and λ > κ, cf(λ) > ω1. Then we can find
a stationary subset S of λ+ and a family 〈gα〉α∈S of functions from κ to λ+ such that, for all distinct α,
β ∈ S, (i) gα[κ] ⊆ α for each α ∈ S (ii) #(gα ∩ gβ) < κ for each α (iii) if θ < κ is a limit ordinal and α,
β ∈ S and gα(θ) = gβ(θ) then gα↾θ = gβ↾θ.

proof Take 〈Cα〉α∈S from A1F above and let gα be the increasing enumeration of Cα.

A1H Products of partially ordered sets (a) Let 〈Pi〉i∈I be a family of partially ordered sets. Then
X =

∏

i∈I Pi is a partially ordered set, if we say that x ≤ y iff x(i) ≤ y(i) for every i ∈ I.

(b) Now suppose that F is a filter on I. Then we have an equivalence relation ≡F on X, given by saying
that f ≡F g if {i : f(i) = g(i)} ∈ F . I write X/F for the set of equivalence classes under this relation, the
‘reduced product’ of 〈Pi〉i∈I modulo F . Now X/F is again a partially ordered set, writing

f• ≤ g• ⇐⇒ f ≤F g ⇐⇒ {i : f(i) ≤ g(i)} ∈ F .

Observe that if every Pi is totally ordered and F is an ultrafilter, then X/F is totally ordered.

(c) For any filter F on I we have

add(X) ≤ supF∈F add(
∏

i∈F Pi) = supF∈F mini∈F add(Pi) ≤ add(X/F),

cf(X/F) ≤ minF∈F cf(
∏

i∈F Pi) ≤ cf(X).

Version of 13.11.91

A1I Scraps of pcf In §7 I need to call on certain results from Shelah’s pcf theory. An admirable
exposition of some of this extraordinary development may be found in Burke & Magidor 90, from which
most of the ideas here are drawn; but for the reader’s convenience I extract and reproduce the material I
wish to use.

Theorem [Shelah] Let λ > 0 be a cardinal and 〈θζ〉ζ<λ a family of regular infinite cardinals, all greater
than λ. Set X =

∏

ζ<λ θζ , ordered as in A1H. For any filter F on λ, let πF : X → X/F be the canonical
map. For any cardinal δ set

Fδ = {F : F is an ultrafilter on λ, cf(X/F) = δ},

F∗
δ =

⋃

δ′≥δ Fδ′ ;

if F∗
δ 6= ∅, let Gδ be the filter

⋂

F∗
δ . Now

(a) if F∗
δ 6= ∅, then add(X/Gδ) ≥ δ (Burke & Magidor 90, 1.1);

(b) if Fδ 6= ∅ then there is a set F ⊆ X such that #(F ) ≤ δ and πF [F ] is cofinal with X/F for every
F ∈ Fδ (Burke & Magidor 90, 7.3);

(c) Fcf(X) 6= ∅ (Burke & Magidor 90, 7.10);
(d) if F is an ultrafilter on λ and κ is a regular cardinal with λ < κ ≤ cf(X/F) then there is a family

〈θ′ζ〉ζ<λ of regular cardinals such that λ < θ′ζ ≤ θζ for every ζ < λ and cf(X ′/F) = κ, where X ′ =
∏

ζ<λ θ
′
ζ

(Burke & Magidor 90, 2.1).

proof The case of finite λ is trivial throughout, as then
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cf(X) = maxζ<λ θζ ,

Fδ = {F : ∃ ζ, θζ = δ, {ζ} ∈ F},

F∗
δ = {F : {ζ : θζ ≥ δ} ∈ F},

Gδ = {G : {ζ : θζ ≥ δ} ⊆ G ⊆ λ}.

So henceforth let us take it that λ is infinite.
For any filter F on λ, write f ≤F g if f , g ∈ X and {ζ : f(ζ) ≤ g(ζ)} ∈ F , that is, if πFf ≤ πFg in X/F .

Write L = {ζ : θζ = λ+} ⊆ λ, M = λ \ L.

(a) Set δ′ = add(X/Gδ).
(i) Evidently δ′ is a regular cardinal and δ′ ≥ add(X) = minζ<λ θζ > λ. If δ = λ+ then of course

δ′ ≥ δ; so suppose that δ > λ+. In this case L /∈ F for any F ∈ F∗
δ (because if L 6= ∅ then cf(

∏

ζ∈L θζ) = λ+),

so M ∈ Gδ and δ′ ≥ minζ∈M θζ > λ+.
(ii) ??? If δ′ < δ there is a family 〈fα〉α<δ′ in X such that fα ≤Gδ

fβ whenever α ≤ β < δ′ but there
is no f ∈ X such that fα ≤Gδ

f for every α < δ′. Choose 〈hξ〉ξ<λ+ in X inductively, as follows. h0 = f0.
Given hξ, set

Bξα = {ζ : ζ ∈M, hξ(ζ) ≥ fα(ζ)}

for each α < δ′; let αξ < δ′ be such that fαξ
6≤Gδ

hξ, so that Bξα /∈ Gδ when αξ ≤ α < δ′. Choose Fξ ∈ F∗
δ

such that Bξ,αξ
/∈ Fξ. Now, because cf(X/Fξ) ≥ δ > δ′, there is an hξ+1 ∈ X such that fα ≤Fξ

hξ+1 for
every α < δ′; we may take hξ+1 ≥ hξ.

For non-zero limit ordinals ξ < λ+ take hξ(ζ) = supη<ξ hη(ζ) for every ζ < λ.

Set α = supξ<λ+ αξ < δ′. Then 〈Bξα〉ξ<λ+ is an increasing family in Pλ. So there must be a ξ < λ+

such that Bξα = Bξ+1,α. But (because α ≥ αξ) Bξα /∈ Fξ, while (by the choice of hξ+1) Bξ+1,α ∈ Fξ; which
is absurd. XXX

(b) As in (a-i) above, we must have δ ≥ minζ<λ θζ > λ, and the case δ = λ+ is again trivial, for if δ = λ+

we may take F to be the set of constant functions with values less than λ+. So suppose from now on that
δ > λ+, so that M ∈ F for every F ∈ Fδ. Of course δ, being the cofinality of a totally ordered set, is regular.

(i) ??? Suppose, if possible, that there is no F of the required type. We can find families 〈fξα〉ξ<λ+,α<δ

in X and 〈Fξ〉ξ<λ+ in Fδ such that
(α) fηα ≤ fξα whenever α < δ, η ≤ ξ < λ+;
(β) fηα ≤Fξ

fξ,0 whenever α < δ, η < ξ < λ+;

(γ) {πFξ
(fξα) : α < δ} is cofinal with X/Fξ for every ξ < λ+;

(δ) if ξ < λ+, α < δ and cf(α) = λ+ then

fξα(ζ) = min{supβ∈C fξβ(ζ) : C is a closed unbounded set in α}

for every ζ ∈M ;
(ǫ) fξα ≤Fξ

fξβ whenever ξ < λ+, α ≤ β < δ.
PPP Given 〈fηα〉η<ξ,α<δ, there must be an Fξ ∈ Fδ such that {πFξ

(fηα) : η < ξ, α < δ} is not cofinal with
X/Fξ; take 〈gξα〉α<δ in X such that {πFξ

(gξα) : α < δ} is cofinal with X/Fξ. Choose 〈fξα〉α<δ inductively
so that

fηα ≤Fξ
fξ0 for every η < ξ, α < δ;

if α < δ and cf(α) 6= λ+ then fηα ≤ fξα for every η < ξ,
fξβ ≤Fξ

fξα for every β < α;
if α < δ then gξα ≤ fξ,α+1;
if α < δ and cf(α) = λ+ then fηα(ζ) ≤ fξα(ζ) whenever η < ξ, ζ ∈ L;
if α < δ and cf(α) = λ+ then

fξα(ζ) = min{supβ∈C fξβ(ζ) : C is a closed unbounded set in α}

for every ζ ∈ M . (At this point observe that there will be a closed unbounded set C ⊆ α such that
fξα(ζ) = supβ∈C fξβ(ζ) for every ζ ∈ M ; consequently fξβ ≤Fξ

fξα for every β ∈ C, and fξβ ≤Fξ
fξα for

every β < α. Also we shall have
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fηα(ζ) ≤ supβ∈C fηβ(ζ) ≤ fξα(ζ)

for every η < ξ, ζ ∈M .)
It is straightforward to check that this procedure works. QQQ

(ii) The next step is to find an increasing family 〈hη〉η<λ+ in X and a strictly increasing family
〈γ(η)〉η<λ+ in δ such that

fξ,γ(η)(ζ) < hη(ζ) whenever ξ < λ+, η < λ+, ζ ∈M (choosing hη);

hη ≤Fξ
fξ,γ(η+1) whenever ξ < λ+, η < λ+ (choosing γ(η + 1));

γ(η) = supη′<η γ(η′) whenever η < λ+ is a limit ordinal (so γ(0) = 0).

Set h(ζ) = supη<λ+ hη(ζ) for ζ ∈ M , h(ζ) = 0 for ζ ∈ L, α = supη<λ+ γ(η) < δ (because δ = cf(δ) > λ+);

then cf(α) = λ+. Observe that

fξα(ζ) ≤ supη<λ+ fξ,γ(η)(ζ) ≤ h(ζ)

for every ξ < λ+, ζ ∈M , by (i-δ). So if we set

Aξ = {ζ : ζ ∈M, fξα(ζ) = h(ζ)} ∀ ξ < λ+,

we shall have Aη ⊆ Aξ whenever η ≤ ξ < λ+, by (i-α).
(iii) There must therefore be some ξ < λ+ such that Aξ = Aξ+1. Let C ⊆ λ+ be a closed unbounded

set such that

fξ+1,α(ζ) = supη∈C fξ+1,γ(η)(ζ) ∀ ζ ∈M .

For each η ∈ C write η′ for the next member of C greater than η; then

hη ≤Fξ+1
fξ+1,γ(η+1) ≤Fξ+1

fξ+1,γ(η′),

fξα ≤Fξ+1
fξ+1,0 = fξ+1,γ(0)

so there is a ζη ∈M such that

hη(ζη) ≤ fξ+1,γ(η′)(ζη), fξα(ζη) ≤ fξ+1,γ(0)(ζη) < h0(ζη) ≤ h(ζη).

Let ζ ∈M be such that

B = {η : η ∈ C, ζη = ζ}

is cofinal with C. Then fξα(ζ) < h(ζ) so ζ /∈ Aξ = Aξ+1. On the other hand,

fξ+1,α(ζ) = supη∈C fξ+1,γ(η)(ζ) ≥ supη∈B fξ+1,γ(η′)(ζ) ≥ supη∈B hη(ζ) = h(ζ).

So ζ ∈ Aξ+1; which is impossible. XXX

(c)(i) Set ∆ = {δ : Fδ 6= ∅}, G =
⋃

δ∈∆ Gδ. Then G is a filter on λ so there is an ultrafilter H on λ
including G. Now for any δ ∈ ∆, H ⊇ Gδ, so

cf(X/H) = add(X/H) ≥ add(X/Gδ) ≥ δ,

using (a) above. Consequently δ∗ = cf(X/H) is the greatest element of ∆.
(ii) For each δ ∈ ∆ choose a set Fδ ∈ [X]≤δ such that πF [Fδ] is cofinal with X/F for every F ∈ Fδ

(using (b) above). Set F =
⋃

δ∈∆ Fδ and

G = {sup I : I ∈ [F ]<ω} ⊆ X.

Then #(G) ≤ δ∗. I claim that G is cofinal with X. PPP??? Suppose, if possible, otherwise; take h ∈ X such
that h 6≤ g for every g ∈ G. Write

Ag = {ζ : h(ζ) > g(ζ)}

for each g ∈ G. Because G is upwards-directed, {Ag : g ∈ G} is a filter base, and there is an ultrafilter F
on λ containing every Ag. Now there is a δ ∈ ∆ such that F ∈ Fδ, so that πF [Fδ] is cofinal with X/F , and
there is an f ∈ Fδ such that h ≤F f . But in this case A = {ζ : h(ζ) ≤ f(ζ)} and Af = λ \ A both belong
to F . XXXQQQ

(iii) Accordingly cf(X) ≤ #(G) ≤ δ∗. But also of course cf(X/H) ≤ cf(X), so δ∗ ≤ cf(X) and they
are equal. Now we have H ∈ Fδ∗ = Fcf(X).
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(d) If κ = λ+ we may take θ′ζ = λ+ for every ζ; if κ = cf(X/F) we may take θ′ζ = θζ ; so let us assume

that λ+ < κ < cf(X/F). Of course M ∈ F .
(i) For each ordinal γ < κ choose a relatively closed cofinal set Cγ ⊆ γ with otp(Cγ) = cf(γ). Choose

〈fα〉α<κ as follows. Given 〈fβ〉β<α, where α < κ, and γ < κ, define gαγ ∈ X by

gαγ(ζ) = sup{fβ(ζ) : β ∈ Cγ ∩ α} + 1 if this is less than θζ ,

= 0 otherwise.

Now choose fα ∈ X such that

fβ ≤F fα ∀ β < α, gαγ ≤F fα ∀ γ < κ;

this is possible because κ < cf(X/F). Observe that if α = β + 1 then Cα = {β} so that gαα = fβ + 1 and
fα 6≤F fβ . Continue.

(ii) Suppose that for each ζ < λ we are given a set Sζ ⊆ θζ with #(Sζ) ≤ λ. Then there is an α < κ
such that

∀ h ∈
∏

ζ<λ Sζ , if fα ≤F h then fβ ≤F h ∀ β < κ.

PPP??? If not, then (because κ is regular) we can find a family 〈hξ〉ξ<κ in
∏

ζ<λ Sζ and a strictly increasing

family 〈φ(ξ)〉ξ<κ in κ such that

fφ(ξ) ≤F hξ ≤F fφ(ξ+1) for all ξ < κ,

φ(ξ) = supη<ξ φ(η) for limit ordinals ξ < κ.

Set

C = {ξ : ξ < κ, φ(ξ) = ξ},

so that C is a closed unbounded set in κ. Let α ∈ C be such that α = sup(C ∩ α) and cf(α) = λ+. Then
(because λ+ ≥ ω1) Cα ∩ C is cofinal with α.

For β ∈ C ∩ Cα, ζ < λ we have #(Cα ∩ β) ≤ otp(Cα ∩ β) < otp(Cα) = λ+ ≤ θζ , so

θζ > supξ∈Cα∩β fξ(ζ) + 1 = gβα(ζ).

Now

gβα ≤F fβ = fφ(β) ≤F hβ ≤F fφ(β+1) ≤F fβ′ ,

where β′ is the next member of C ∩ Cα greater than β. So there is a ζβ < λ such that

gβα(ζβ) ≤ hβ(ζβ) ≤ fβ′(ζβ).

Because λ < cf(α) there is a ζ < λ such that

B = {β : β ∈ C ∩ Cα, ζβ = ζ}

is cofinal with α. But now observe that if β, γ ∈ B and β′ < γ then β′ ∈ Cα ∩ γ so

hβ(ζ) ≤ fβ′(ζ) < gγα(ζ) ≤ hγ(ζ).

It follows that

λ+ = #(B) = #({hβ(ζ) : β ∈ B}) ≤ #(Sζ) ≤ λ,

which is absurd. XXXQQQ
(iii) Consequently E = {πF (fα) : α < κ} has a least upper bound in X/F . PPP??? If not, choose 〈hξ〉ξ<λ+

inductively, as follows. Because κ < δ, there is an h0 ∈ X such that fα ≤F h0 for every α < κ. Given hξ

such that h•

ξ = πF (hξ) is an upper bound for E, then h•

ξ cannot be the least upper bound of E, so there
is an hξ+1 ∈ X such that h•

ξ+1 is an upper bound of E strictly less than h•

ξ. For non-zero limit ordinals

ξ < λ+, set

Sξζ = {hη(ζ) : η < ξ} ⊆ θ zeta

for each ζ < λ. By (ii) above, there is an αξ < κ such that

∀ h ∈
∏

ζ<λ Sξζ either h ≤F fαξ
or fα ≤F h ∀ α < κ.
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Set

hξ(ζ) = min({η : η ∈ Sξζ , fαξ
(ζ) ≤ η} ∪ {h0(ζ)}) ∈ Sξζ

for each ζ < λ. Then fαξ
≤F hξ (because fαξ

(ζ) ≤ hξ(ζ) whenever fαξ
(ζ) ≤ h0(ζ)) and hξ ∈

∏

ζ<λ Sξζ , so

fα ≤F hξ for every α < κ and h•

ξ is an upper bound for E. Also, if η < ξ, then hξ(ζ) ≤ hη(ζ) whenever

fαξ
(ζ) ≤ hη(ζ), so hξ ≤F hη. Continue.
Having got the family 〈hξ〉ξ<λ+ , set

Sζ =
⋃

ξ<κ Sξζ = {hξ(ζ) : ξ < κ} ⊆ θζ

for each ζ < λ. For each α < κ, ζ < λ set

gα(ζ) = min({η : fα(ζ) ≤ η ∈ Sζ} ∪ {h0(ζ)}) ∈ Sζ .

Then, by the same arguments as above,

fα ≤F gα ≤F hξ ∀ α < κ, ξ < λ+.

For each α < κ there is a limit ordinal ξ < λ+ such that gα(ζ) ∈ Sξζ for every ζ < λ. Because λ+ < κ
there is a limit ordinal ξ < λ+ such that

A = {α : gα(ζ) ∈ Sξζ ∀ ζ < λ}

is cofinal with κ. In particular, there is an α ∈ A such that α ≥ αξ. In this case

fαξ
≤F fα ≤F gα ≤F hξ+1 ≤F hξ 6≤F hξ+1,

so there is a ζ < λ such that

fαξ
(ζ) ≤ fα(ζ) ≤ gα(ζ) ≤ hξ+1(ζ) < hξ(ζ).

But now observe that

fαξ
(ζ) ≤ gα(ζ) ∈ Sξζ

so hξ(ζ) ≤ gα(ζ) < hξ(ζ), which is absurd. XXX
(iv) Let g ∈ X be such that g• = supE in X/F and g(ζ) > 0 for every ζ < λ. For each ζ < λ set

θ̂ζ = cf(g(ζ)) < θζ and choose a cofinal set Dζ ⊆ g(ζ) of order type θ̂ζ . For α < κ, ζ < λ set

gα(ζ) = min{η : fα(ζ) ≤ η ∈ Dζ}

if fα(ζ) < g(ζ), minDζ otherwise. Then gα ≤F gβ whenever α ≤ β < κ. Also if h ∈ Y =
∏

ζ<λDζ then

h• < g• so there is an α < κ such that h• ≤ f•
α ≤ g•

α. Thus {g•
α : α < κ} is cofinal with {h• : h ∈ Y }.

(v) Because each Dζ is order-isomorphic to θ̂ζ , we can identify Y with X̂ =
∏

ζ<λ θ̂ζ , and see

that cf(X̂/F) is either 1 or κ. But of course the former is absurd, because it could be so only if {ζ :
g(ζ) is a successor ordinal} ∈ F , and in this case there would have to be an α < κ such that g ≤F fα; but
we saw in (i) above that fα+1 6≤F fα.

Accordingly cf(X̂/F) = κ.

(vi) It may be that some of the θ̂ζ are less than or equal to λ. But taking I = {ζ : θ̂ζ ≤ λ}, we have
I /∈ F . PPP??? If I ∈ F , then for each ζ ∈ I set Sζ = Dζ and for ζ ∈ λ \ I set Sζ = {0}. By (ii), there is an
α < κ such that

∀ h ∈
∏

ζ<λ Sζ , if fα ≤F h then fβ ≤F h ∀ β < κ.

But as fα+1 ≤F g, and I ∈ F , there must be an h ∈
∏

ζ<λ Sζ such that fα ≤F h, and now g ≤F h because

g• is the least upper bound of E; but h(ζ) < g(ζ) for every ζ ∈ I, so this is impossible. XXXQQQ

So {ζ : θ̂ζ ≥ λ+} ∈ F . But this means that if we set θ′ζ = max(λ+, θ̂ζ) for every ζ < λ, X ′ =
∏

ζ<λ θ
′
ζ

then X ′/F ∼= X̂/F so cf(X ′/F) = κ, as required.
Version of 10.12.91

A1J Shelah covering numbers (a) Let α, β, γ, δ be cardinals. Following Shelah #355 and Shelah

#400b, I write

covSh(α, β, γ, δ)
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for the least cardinal of any family E ⊆ [α]<β such that for every A ∈ [α]<γ there is a D ∈ [E ]<δ with
A ⊆

⋃

D. I diverge insignificantly from the Master in writing covSh(α, β, γ, δ) = ∞ in the trivial cases in
which there is no such family E .

(b) For infinite cardinals α, γ write Θ(α, γ) for the maximum of α and the supremum of all cofinalities

cf(
∏

ζ<λ θζ)

for families 〈θζ〉ζ<λ such that λ < γ is a cardinal, every θζ is a regular infinite cardinal, and λ < θζ < α for
every ζ < λ. (This carries some of the same information as the cardinal ppκ(α) of Shelah #400b.)

A1K Theorem For any infinite cardinals α, γ,

covSh(α, γ, γ, ω1) ≤ Θ(α, γ).

proof (a) To begin with (down to the end of (f) below) let us suppose that we have α ≥ γ = γ+
0 > cf(α) > ω.

Take a family E ⊆ [α]≤γ0 such that
(i) E contains all singleton subsets of α;
(ii) E contains a cofinal subset of α;
(iii) If E ∈ E then {ξ : ξ + 1 ∈ E} ∈ E ;
(iv) if E ∈ E then there is an F ∈ E such that sup(F ∩ ξ) = ξ whenever ξ ∈ E and ω ≤ cf(ξ) ≤ γ0;
(v) if E ∈ E then {ξ : ξ ∈ E, cf(ξ) ≥ γ} ∈ E ;
(vi) if E ∈ E and cf(

∏

η∈E η) ≤ Θ(α, γ), then {g : g ∈
∏

η∈E η, g[E] ∈ E} is cofinal with
∏

η∈E η;

(vii) #(E) ≤ Θ(α, γ).
To see that this can be done, observe that whenever E ∈ [α]≤γ0 there is an F ∈ [α]≤γ0 such that sup(F∩ξ) = ξ
whenever ξ ∈ E and ω ≤ cf(ξ) ≤ γ0; thus condition (iv) can be achieved, like conditions (iii) and (v), by
ensuring that E is closed under suitable functions from [α]≤γ0 to itself; while condition (vi) requires that for
each E ∈ E we have an appropriate family of size at most Θ(α, γ) included in E .

Write J for the σ-ideal of Pα generated by E .

(b) ??? Suppose now that there is some set in [α]<γ not covered by any sequence from E , that is, not
belonging to J . Then there must be a function f : γ0 → α such that f [γ0] /∈ J . Accordingly I = {f−1[E] :
E ∈ J } is a proper σ-ideal of Pγ0. By condition (a-i), I contains all singletons in Pγ0.

Let H be the set of all functions h : γ0 → α such that f(ξ) ≤ h(ξ) for every ξ < γ0 and h[γ0] ∈ J .
Because E contains a cofinal set C ⊆ α (condition (a-ii)), we can find an h ∈ H; just take h : γ0 → C such
that f(ξ) ≤ h(ξ) for every ξ.

(c) Because I is a proper σ-ideal, there cannot be any sequence 〈hn〉n∈N in H such that {ξ : hn+1(ξ) ≥
hn(ξ)} ∈ I for every n ∈ N. Consequently there is an h∗ ∈ H such that

{ξ : h(ξ) ≥ h∗(ξ)} /∈ I ∀ h ∈ H.

We know that h∗[γ0] ∈ J ; let 〈En〉n∈N be a sequence in E covering h∗[γ0]. For ξ < γ0 write θξ = cf(h∗(ξ)),
so that each θξ is 0 or 1 or a regular infinite cardinal less than α. Set

I = {ξ : ξ < γ0, h
∗(ξ) = f(ξ)},

I ′ = {ξ : ξ < γ0, f(ξ) < h∗(ξ), θξ = 1} ,

In = {ξ : ξ < γ0, ω ≤ θξ ≤ γ, f(ξ) < h∗(ξ), h∗(ξ) ∈ En} ∀ n ∈ N,

Jn = {ξ : ξ < γ0, γ ≤ θξ, f(ξ) < h∗(ξ), h∗(ξ) ∈ En} ∀ n ∈ N.

(d) For each n ∈ N set Gn = {η : η ∈ En, cf(η) ≥ γ} ∈ E . Then cf(
∏

η∈Gn
η) ≤ Θ(α, γ). PPP For η ∈ Gn

set θ′η = cf(η); then θ′η is a regular cardinal and #(Gn) ≤ γ0 < θ′η < α for each η ∈ Gn. So

cf(
∏

η∈Gn
θ′η) ≤ Θ(α, γ)

by the definition of Θ(α, γ). If for each η ∈ Gn we choose a cofinal set Cη ⊆ η of order type θ′η, then

cf(
∏

η∈Gn
η) = cf(

∏

η∈Gn
Cη) = cf(

∏

η∈Gn
θ′η) ≤ Θ(α, γ). QQQ
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Consequently, by (a-vi),

{g : g ∈
∏

η∈Gn
η, g[Gn] ∈ E}

is cofinal with
∏

η∈Gn
η.

(e) Define h : γ0 → α as follows.
(i) If ξ ∈ I set h(ξ) = h∗(ξ).
(ii) If ξ ∈ I ′ set h(ξ) = h∗(ξ) − 1.
(iii) For each n ∈ N take Fn ∈ E such that η = sup(Fn ∩ η) whenever η ∈ En and ω ≤ cf(η) < γ. If

ξ ∈ In \
⋃

m<n Im, take h(ξ) ∈ Fn such that f(ξ) < h(ξ) < h∗(ξ).
(iv) For each n ∈ N, η ∈ Gn set

f∗(η) = sup{f(ξ) : ξ < γ0, h
∗(ξ) = η}.

Then f∗(η) < η, because γ0 < cf(η). By (d), there is a gn ∈
∏

η∈Gn
η such that gn[Gn] ∈ E and f∗(η) < gn(η)

for every η ∈ Gn. So for ξ ∈ Jn \
⋃

m<n Jm we may set h(ξ) = gn(h∗(ξ)) and see that f(ξ) < h(ξ) < h∗(ξ),
while h(ξ) ∈ gn[Gn].

(f) Now we see that

h[γ0] ⊆ h∗[γ0] ∪ {η : η + 1 ∈ h∗[γ0]} ∪
⋃

n∈N Fn ∪
⋃

n∈N gn[Gn] ∈ J ,

while f(ξ) ≤ h(ξ) for every ξ < γ0, so h ∈ H. Consequently

I = {ξ : h(ξ) ≥ h∗(ξ)} /∈ I.

But also

f [I] ⊆ h∗[γ0] ∈ J ,

so I ∈ I, which is absurd. XXX

(g) Thus the special case described in (a) is dealt with, and we may return to the general case. I proceed
by induction on α for fixed γ ≥ ω.

(i) To start the induction, observe that if α < γ then

covSh(α, γ, γ, ω1) = 1 ≤ Θ(α, γ)

for all γ.
(ii) For the inductive step to α when cf(α) ≥ γ, observe that in this case [α]<γ =

⋃

α′<α[α′]<γ . For
each α′ < α, we can find a family Eα′ ⊆ [α′]<γ such that #(Eα′) = covSh(α′, γ, γ, ω1) and every member of
[α′]<γ can be covered by a sequence from Eα′ ; now

⋃

α′<α Eα′ witnesses that

covSh(α, γ, γ, ω1) ≤ max(α, sup
α′<α

covSh(α′, γ, γ, ω1))

≤ max(α, sup
α′<α

Θ(α′, γ)) ≤ Θ(α, γ)

by the inductive hypothesis.
(iii) For the inductive step to α when cf(α) = ω < α, take an increasing sequence 〈αn〉n∈N in α such

that supn∈N αn = α. For each n ∈ N choose a set En ⊆ [αn]<γ such that every set in [αn]<γ can be covered
by a sequence from En and #(En) = covSh(αn, γ, γ, ω1). Set E =

⋃

n∈N En ⊆ [α]<γ . Then if A ∈ [α]<γ , we

can find for each n ∈ N a countable set Dn ⊆ En covering A∩αn; set D =
⋃

n∈N Dn ∈ [E ]≤ω; then A ⊆
⋃

D.
As A is arbitrary, E witnesses that

covSh(α, γ, γ, ω1) ≤ #(E)

≤ max(ω, sup
n∈N

#(En))

= max(ω, sup
n∈N

covSh(αn, γ, γ, ω1))

≤ max(ω, sup
n∈N

Θ(αn, γ))

by the inductive hypothesis
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≤ Θ(α, γ).

(iv) For the inductive step to α when ω < cf(α) < γ < α, observe that

[α]<γ =
⋃

δ<γ [α]≤δ.

For each δ < γ we have a set Eδ ⊆ [α]≤δ such that #(Eδ) ≤ covSh(α, δ+, δ+, ω1) and every member of [α]≤δ

can be covered by a sequence from Eδ. Set E =
⋃

cf(α)≤δ<γ Eδ; then every member of [α]<γ can be covered

by a sequence from E .
For each E ∈ E , choose a family HE ⊆ [E]<γ such that #(HE)= covSh(#(E), γ, γ, ω1) and every member

of [E]<γ can be covered by a sequence from HE . Set H =
⋃

E∈E HE . If A ∈ [α]<γ , there is a countable
set D ⊆ E covering A; now for each D ∈ D there is a countable set GD ⊆ HD covering A ∩ D; so that
G =

⋃

D∈D GD is a countable subset of H covering A.
Thus

covSh(α, γ, γ, ω1) ≤ #(H)

≤ max(#(E), sup
E∈E

#(HE))

≤ max(α, sup
cf(α)≤δ<γ

covSh(α, δ+, δ+, ω1), sup
α′<α

covSh(α′, γ, γ, ω1))

≤ max(α, sup
cf(α)≤δ<γ

Θ(α, δ+), sup
α′<α

Θ(α′, γ))

by the inductive hypothesis and parts (a)-(f) above

≤ Θ(α, γ).

This completes the proof.

Remark This is taken from Shelah #355, Theorem 5.4, where a stronger result is proved, giving an exact
description of many of the numbers covSh(α, β, γ, δ) in terms of cofinalities of reduced products

∏

ζ<λ θζ/F .

A1L Lemma Let α and γ be infinite cardinals, with γ regular, and suppose that α ≥ Θ(γ, γ). Then
Θ(Θ(α, γ), γ) = Θ(α, γ).

proof ??? Suppose, if possible, otherwise. Note that of course α ≥ γ.

(a) There must be a family 〈θζ〉ζ<λ of infinite regular cardinals such that λ < γ, λ < θζ < Θ(α, γ) for every
ζ < λ, and cf(

∏

ζ<λ θζ) > Θ(α, γ). By A1Ic, there is an ultrafilter F on λ such that cf(
∏

ζ<λ θζ/F) > Θ(α, γ).

Set L = {ζ : ζ < λ, θζ < α}; then cf(
∏

ζ∈L θζ) ≤ Θ(α, γ), so L /∈ F and M = λ \ L ∈ F . For each ζ ∈ M ,

we have θζ < Θ(α, γ), so there must be a family 〈θζη〉η<λζ
of regular cardinals with λζ < γ, λζ < θζη < α

for every η < λζ and θζ ≤ cf(
∏

η<λζ
θζη). Again by A1Ic, there is an ultrafilter Fζ on λζ such that

θζ ≤ cf(
∏

η<λζ
θζη/Fζ). Because λζ < γ ≤ α ≤ θζ , A1Id tells us that there is a family 〈θ′ζη〉η<λζ

of regular

cardinals such that λζ < θ′ζη ≤ θζη for every η and θζ = cf(
∏

η<λζ
θ′ζη/Fζ).

(b) Set

I = {(ζ, η) : ζ ∈M, η < λζ},

H = {H : H ⊆ I, {ζ : {η : (ζ, η) ∈ H} ∈ Fζ} ∈ F},

X =
∏

(ζ,η)∈I θ
′
ζη.

Then H is an ultrafilter on I, and cf(X/H) ≥ cf(
∏

ζ∈M θζ/F). PPP Let F ⊆ X be a set of cardinal cf(X/H)

such that {f• : f ∈ F} is cofinal with X/H. For each f ∈ X, ζ ∈ M let fζ ∈
∏

η<λζ
θ′ζ be given

by fζ(η) = f(ζ, η) for each η < λζ , and let f•

ζ be the image of fζ in
∏

η<λζ
θ′ζη/Fζ . For each ζ ∈ M

let 〈uζξ〉ξ<θζ
be a strictly increasing cofinal family in

∏

η<λζ
θ′ζη/Fζ . Now, for f ∈ F , take a function

gf ∈
∏

ζ∈M θζ such that f•

ζ ≤ uζ,gf (ζ) for every ζ ∈M .
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If g ∈
∏

ζ∈M θζ , then we can find an h ∈ X such that h•

ζ = uζ,g(ζ) for each ζ ∈ M . Let f ∈ F be such

that h ≤H f . Then {ζ : g(ζ) ≤ gf (ζ)} ⊇ {ζ : h•

ζ ≤ f•

ζ } ∈ F , so g ≤F gf . Accordingly {gf : f ∈ F} is cofinal

with
∏

ζ∈M θζ/F and cf(
∏

ζ∈M θζ/F) ≤ #(F ) = cf(X/H), as claimed. QQQ

(c) Thus cf(X/H) > Θ(α, γ). Set J = {(ζ, η) : (ζ, η) ∈ I, θ′ζη ≥ γ}. Because γ is regular, #(J) ≤ #(I) <

γ, so cf(
∏

(ζ,η)∈J θ
′
ζη) ≤ Θ(α, γ), and J /∈ H. It follows that K = I \ J ∈ H. Set M ′ = {ζ : ζ ∈ M, {η :

(ζ, η) ∈ K} ∈ Fζ} ∈ F . Then θζ ≤ Θ(γ, γ) ≤ α for ζ ∈M ′. So in fact θζ = α for ζ ∈M ′ and we have

α ≤ Θ(α, γ) < cf(
∏

ζ∈M ′ θζ) = cf(
∏

ζ<δ α),

where δ = #(M ′), while at the same time α is regular.

But if α is regular and δ < α,

cf(
∏

ζ<δ α) = α,

contradicting the last sentence. XXX

This contradiction completes the proof.

A1M Lemma Let α and γ be infinite cardinals. Set δ = supα′<α Θ(α′, γ).

(a) If cf(α) ≥ γ then Θ(α, γ) = max(α, δ).

(b) If cf(α) < γ then Θ(α, γ) ≤ max(α, δcf(α)), where δcf(α) is the cardinal power.

proof Let 〈θζ〉ζ<λ be a family of regular cardinals with λ < θζ < α for each ζ and λ < γ.

case 1 If α′ = supζ<λ θζ < α, set

I = {ζ : ζ < λ, θζ < α′},

J = {ζ : ζ < λ, θζ = α′}.

Then cf(
∏

ζ∈I θζ) ≤ Θ(α′, γ) ≤ δ, cf(
∏

ζ∈J θζ) ≤ α′ ≤ δ so cf(
∏

ζ<λ θζ) ≤ δ. This completes the proof of (a).

case 2 If supζ<λ θζ = α let 〈αξ〉ξ<cf(α) be an increasing family of cardinals with supremum α and with
αξ = supη<ξ αη for limit ordinals ξ < cf(α). Set

Pξ =
∏

ζ<λ,αξ≤θζ<αξ+1
θζ

for each ξ < cf(α). Then cf(Pξ) ≤ δ for each ξ < cf(α), so

cf(
∏

ζ<λ θζ) = cf(
∏

ξ<cf(α) Pξ) ≤ δcf(α).

This is enough to deal with (b).

A1N The singular cardinals hypothesis (In this paragraph, all powers will be cardinal exponen-
tiation; λθ will be the cardinal of the set of functions from θ to λ.) Recall that the singular cardinals
hypothesis is the statement

whenever λ is an infinite cardinal and 2cf(λ) < λ then λcf(λ) = λ+

(Jech 78, §8, p. 61). This is equivalent to

whenever λ > c and cf(λ) = ω then λω = λ+

(Jech 78, Theorem 23b, p.63); evidently the second statement is implied by

whenever λ > c is a successor cardinal then λω = λ,

and by Jech 78, Lemma 8.1, p. 62, the third assertion is implied by the first, so that any of the three may
be taken as a statement of the singular cardinals hypothesis.

A1O Miscellaneous definitions (a) If X is a set, a Jónsson algebra on X is an algebraic structure
with countably many finitary functions and relations such that the only subalgebra of X of cardinal #(X)
is X itself.

(b) If κ is a cardinal, a κ-Aronszajn tree is a tree of height κ in which every level has cardinal strictly
less than κ but there are no branches of length κ. If κ is weakly Π1

1-indescribable, there are no κ-Aronszajn
trees (see Fremlin & Kunen n87, 2N).
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A1P Souslin numbers I say that two elements p, q in a partially ordered set P are upwards-
compatible if {p, q} has an upper bound in P , and that a set A ⊆ P is an up-antichain if no two
elements of A are upwards-compatible.

For any partially ordered set P , write

S(P ) = min{λ : there is no up-antichain in P of cardinal λ},

the Souslin number of P . Thus P satisfies the ‘λ-chain condition’ iff λ ≥ S(P ), and is upwards-ccc iff
S(P ) ≤ ω1. Note that if Q is a cofinal subset of P , then S(Q) = S(P ).

Similarly, the Souslin number of a Boolean algebra A is the least cardinal λ such that there is no
disjoint set of cardinal λ in A \ {0}; that is, the Souslin number of the partially ordered set A \ {1}: it is
called sat(A) in Koppelberg 89, 3.8-3.11.

A1Q Lemma Let R be an upwards-ccc partially ordered set and 〈rα〉α<ω1
any family in R. Then there

is an infinite M ⊆ ω1 such that {rα : α ∈M} is centered, that is, {rα : α ∈ L} has an upper bound in R for
every finite L ⊆M .

proof ??? Suppose, if possible, otherwise. For each α < ω1 let Mα be a maximal subset of ω1, containing α,
such that {rβ : β ∈ Mα} is centered. Because each Mα is finite, there must be an uncountable set W ⊆ ω1

such that α /∈ Mβ whenever α, β ∈ W and β < α. Now, for each α ∈ W , let sα be an upper bound for
{rβ : β ∈ Mα}. In this case, for α, β ∈ W and β < α, rα ≤ sα but rα and sβ are upwards-incompatible
in R (or we should have been able to add α to Mβ). But this means that {sα : α ∈ W} is an uncountable
up-antichain in R. XXX

A1R Finite-support products If 〈Pξ〉ξ∈I is any family of partially ordered sets, then its finite-support
product is the set P of finite functions p such that dom(p) ∈ [I]<ω and p(ξ) ∈ Pξ for every ξ ∈ dom(p);
ordered by saying that p ≤ q if dom(p) ⊆ dom(q) and p(ξ) ≤ q(ξ) for every ξ ∈ dom(p).

Now if 〈Pξ〉ξ∈I is any family of partially ordered sets with finite-support product P , and

λ = sup{S(
∏

ξ∈J Pξ) : J ∈ [I]<ω},

then S(P ) = λ if λ is regular, and λ+ otherwise; see Comfort & Negrepontis 82, Theorem 3.27, where
the corresponding theorem is proved for products of topological spaces.

A1S The arrow relation If α, β and γ are ordinals, write α → (β, γ)2 to mean: if S ⊆ [α]2 is any
set, then either there is a B ⊆ α such that otp(B) = β and [B]2 ⊆ S, or there is a C ⊆ α such that
otp(C) = γ and [C]2 ∩ S = ∅. (See Erdös Hajnal Máté & Rado 84, 8.2.) Then we have, among many
other important results,

(i) α → (α, ω + 1)2 whenever α is a regular uncountable cardinal (Erdös Hajnal Máté & Rado 84,
11.3);

(ii) c 6→ (ω1, ω1)2 (Erdös Hajnal Máté & Rado 84, 19.7);
(iii) if c = ω1 then c 6→ (c, ω + 2)2 (Erdös Hajnal Máté & Rado 84, 11.5);
(iv) if κ is a regular uncountable cardinal then κ → (κ, κ)2 iff κ is weakly Π1

1-indescribable and strongly
inaccessible, that is, ‘weakly compact’ (Erdös Hajnal Máté & Rado 84, 30.3 and 32.1).

Version of 10.12.91

A2. Measure theory

My basic texts for this material are Fremlin 74 and Fremlin 89.

A2A General measure spaces In these notes a measure space will always be a triple (X,Σ, µ) where
X is a set, Σ is a σ- algebra of subsets of X, and µ : Σ → [0,∞] is a countably- additive functional.

Let (X,Σ, µ) be a measure space.

(a) If B ⊆ X, I write

µ∗B = min{µE : B ⊆ E ∈ Σ}.

(b) If A is any subset of X, I write µ⌈A for the measure on A defined by writing
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dom(µ⌈A) = {A ∩ E : E ∈ Σ},

(µ⌈A)(B) = µ∗(B) ∀ B ∈ dom(µ⌈A).

Now µ⌈A is the subspace measure on A.

(c) An atom for µ is a set E ∈ Σ such that µE > 0 and if F ∈ Σ, F ⊆ E then one of µF , µ(E\F ) is
zero.

(d) I write Nµ for the σ-ideal of PX consisting of µ-negligible sets, that is,

Nµ = {E : E ⊆ X, µ∗E = 0}.

(e) If (Y,S) is a topological space, a function f : X → Y is measurable if f−1[H] ∈ Σ for every H ∈ S.

A2B Taxonomy of measure spaces (see Fremlin 74). Let (X,Σ, µ) be a measure space.

(a) (X,Σ, µ) is a probability space if µX = 1 (and in this case I call µ a probability); it is totally
finite if µX is finite; it is σ-finite if there is a sequence 〈En〉n∈N of measurable sets of finite measure covering
X.

(b) (X,Σ, µ) is semi-finite if

µE = sup{µF : F ⊆ E, F ∈ Σ, µF <∞}

for every E ∈ Σ; that is, if whenever E ∈ Σ and µE = ∞ then there is an F ∈ Σ such that F ⊆ E and
0 < µF <∞. Any σ-finite measure space – a fortiori, any probability space – is semi-finite.

(c) (X,Σ, µ) is locally determined if it is semi-finite and for every A ∈ PX \Σ there is an F ∈ Σ such
that µF <∞ and F ∩A /∈ Σ.

(d) (X,Σ, µ) is decomposable (or ‘strictly localizable’) if there is a partition 〈Xi〉i∈I of X such that (i)
Σ = {E : E ⊆ X, E ∩Xi ∈ Σ ∀ i ∈ I} (ii) µE =

∑

i∈I µ(E ∩Xi) for every E ∈ Σ (iii) µXi < ∞ for every
i ∈ I. In this case (X,Σ, µ) is locally determined. (See Fremlin 74, 64G.)

(e) (X,Σ, µ) is atomless if there are no atoms for µ.

(f) (X,Σ, µ) is complete if Nµ ⊆ Σ. Any measure space of the form (X,PX,µ) is surely complete.

(g) (X,Σ, µ) is purely atomic if every non-negligible measurable set includes an atom for µ; that is,
there is no E ∈ Σ \ Nµ such that µ⌈E is atomless.

A2C Additivity Let (X,Σ, µ) be a measure space.

(a) If κ is a cardinal, then µ is κ-additive if µ(
⋃

ξ<λEξ) exists and is equal to
∑

ξ<λ µEξ for every

disjoint family 〈Eξ〉ξ<λ in Σ indexed by a cardinal λ < κ.

(b) I write add(µ), the additivity of µ, for the least cardinal κ, if there is one, such that µ is not
κ-additive; if µ is κ-additive for every cardinal κ, I write add(µ) = ∞.

(c) We always have add(µ) ≤ add(Nµ), defining add(Nµ) as in A1A-B.

(d) If (X,Σ, µ) is complete and locally determined, then add(µ) = add(Nµ) (see Fremlin 84, A6O).

(e) If A ⊆ Σ is upwards-directed and #(A) < add(µ) then µ(
⋃

A) = supA∈A µA.

(f) If (X,Σ, µ) is a totally finite measure space and F is a uniformly bounded non-empty upwards-directed
family of measurable functions from X to R, of cardinal less than add(µ), and if f0(x) = supf∈F f(x) for
each x ∈ X, then

∫

f0 dµ = supf∈F

∫

f dµ.

(Use (e).)

A2D Functions between measure spaces (a) If (X,Σ, µ) and (Y,T, ν) are measure spaces, a function
f : X → Y is inverse-measure -preserving if f−1[F ] ∈ Σ and µf−1[F ] = νF for every F ∈ T.
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(b) Let (X,Σ, µ) be a measure space, Y any set and f : X → Y any function. I write µf−1 for the
measure on Y defined by writing

(µf−1)(F ) = µ(f−1[F ])

for all those F ⊆ Y for which the right-hand-side is well defined, that is, for which f−1[F ] ∈ Σ.
Observe that if ν = µf−1 then

Nν = {F : F ⊆ Y, f−1[F ] ∈ Nµ},

ν is complete if µ is, ν is a probability iff µ is, add(ν) ≥ add(µ) and add(Nν) ≥ add(Nµ).

A2E Upper and lower integrals Let (X,Σ, µ) be any measure space and f : X → R any function.
Then its upper integral is

∫

f(x)µ(dx) = inf{
∫

g(x)µ(dx) : g : X → R is integrable, g(x) ≥ f(x) a.e. x ∈ X},

taking inf ∅ = ∞, inf R = −∞, and its lower integral is
∫

f(x)µ(dx) = −
∫

(−f(x))µ(dx).

A2F Measure algebras (a) A measure algebra is a pair (A, µ̄) where A is a Dedekind σ-complete
Boolean algebra and µ̄ : A → [0,∞] is a functional such that (i) µ̄a = 0 iff a = 0 (ii) µ̄(supn∈N an) =
∑

n∈N µ̄an whenever 〈an〉n∈N is a disjoint sequence in A. It is a probability algebra if moreover µ̄1 = 1.

(b) If (A, µ̄) is a measure algebra with µ̄1 <∞, it has a natural metric ρ given by setting

ρ(a, b) = µ̄(a△b) for all a, b ∈ A.

(c) A measurable algebra is a Boolean algebra A for which there is a µ̄ making (A, µ̄) a measure
algebra in the sense of (a) above and moreover with µ̄1 <∞. (See Fremlin 89, 2.1.)

(d) Let (X,Σ, µ) be a measure space. Its measure algebra is the quotient Boolean algebra A =
Σ/Σ ∩Nµ, endowed with the induced functional µ̄ defined by saying that µ̄E• = µE for every E ∈ Σ.

(e) If (X,Σ, µ) and (Y,T, ν) are measure spaces and f : X → Y is inverse-measure -preserving, then
we have a corresponding measure-preserving homomorphism φ : T/Nν → Σ/Nµ given by writing φ(F •) =
f−1[F ]• for every F ∈ T (Fremlin 89, 2.16).

(f) Let A be any Boolean algebra. Then A is isomorphic to the algebra of open-and-closed sets in its
Stone space Z (Fremlin 74, 41D). I write L∞(A) for the Banach algebra of continuous real-valued functions
on the compact Hausdorff space Z (Fremlin 74, §43). In this context, given a ∈ A, I write χ(a) ∈ L∞(A)
for the characteristic function of the open-and-closed subset of Z corresponding to a.

(g) Let (A, µ̄) be a measure algebra. Then we have a unique continuous linear functional
∫

dµ̄ : L∞(A) →
R such that

∫

χ(a)dµ̄ = µ̄a for every a ∈ A (Fremlin 74, §52). If ν : A → R is a finitely-additive functional
with 0 ≤ νa ≤ µ̄a for every a ∈ A, there is a unique u ∈ L∞(A) such that

∫

a
udµ̄ =

∫

u × χ(a)dµ̄ = νa for
every a ∈ A; this is a form of the Radon-Nikodým theorem (Fremlin 74, 63J).

A2G The measure of {0, 1}I Let I be any set.

(a) Write C for the family of ‘cylinder sets’ of the form

C = {x : x ∈ {0, 1}I , x↾J = z}

for some finite J ⊆ I, z ∈ {0, 1}J . In this case write φ0(C) = 2−#(J). Define φ : P({0, 1}I) → [0, 1] by

φ(A) = inf{
∑

n∈N φ0(Cn) : 〈Cn〉n∈N ∈ CN, A ⊆
⋃

n∈N Cn}

for every A ⊆ {0, 1}I . The usual measure of {0, 1}I is the measure defined by Carathéodory’s method
from the outer measure φ. For the rest of this paragraph, I will denote it by µI and its domain by ΣI .

(b) ({0, 1}N, µN) is isomorphic, as measure space, to ([0, 1], µL), where µL is Lebesgue measure on [0, 1].

(c) Let E be any set in ΣI . (i) There are sets E′, E′′ belonging to the Baire σ-algebra of {0, 1}I with
E′ ⊆ E ⊆ E′′ and µIE

′ = µIE = µIE
′′. (ii) E is expressible in the form H△N where H belongs to the
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Baire σ-algebra of {0, 1}I and N ∈ NµI
. (iii) For every ǫ > 0 there is an open-and-closed set H ⊆ {0, 1}I

such that µI(E△H) ≤ ǫ.

(d) If (X,Σ, µ) is any complete probability space, then any measure-preserving homomorphism ψ from
the measure algebra AI of {0, 1}I to the measure algebra A of (X,Σ, µ) can be induced by an inverse-
measure -preserving function f : X → {0, 1}I , in the manner of A2Fe; see Fremlin 89, 2.21 and 4.12, and
A2Jd below.

(e) If J ⊆ I, K = I \ J then {0, 1}I can be identified with {0, 1}J × {0, 1}K . Under this identification
we have a form of Fubini’s theorem: if f : {0, 1}I → R is µI -integrable, then

∫

f(y, z)µK(dz) exists for
µJ -almost all y, and

∫ ∫

f(y, z)µK(dz)µJ (dy) exists and is equal to
∫

f(x)µI(dx). (Schwartz 73, pp.
73-74.)

(f) If I is infinite, then the measure algebra AI of {0, 1}I is homogeneous as Boolean algebra, that is, is
isomorphic to all its non-zero principal ideals (Fremlin 89, 3.6 and 3.7b, or otherwise).

(g) If f : {0, 1}I → R is ΣI -measurable there are functions f ′, f ′′, both measurable with respect to the
Baire σ-algebra of {0, 1}I , such that f ′(x) ≤ f(x) ≤ f ′′(x) for every x ∈ {0, 1}I and µI{x : f ′(x) 6= f ′′(x)} =
0. (Use (c).)

A2H Maharam types Let A be a Boolean algebra.

(a) Write τ(A) for the least cardinal of any subset A of A which ‘completely generates’ A in the sense
that the smallest order-closed (that is, closed-under-suprema or ‘complete’) subalgebra of A including A is
A itself. (See Koppelberg 89, 13.11).

(b) If A is ccc then #(A) is less than or equal to the cardinal power τ(A)ω. (Fremlin 89, 6.2b.)

(c) If a ∈ A then τ(A⌈a) ≤ τ(A), where A⌈a is the principal ideal of A generated by a (Koppelberg 89,
13.12).

(d) If A is a measurable algebra (A2Fc) and B ⊆ A is an order-closed subalgebra then τ(B) ≤ τ(A)
(Fremlin 89, 6.3b).

(e) A is τ-homogeneous if τ(A⌈a) = τ(A) for every a ∈ A \ {0}.

(f) There is a partition of 1 in A, 〈ai〉i∈I say, such that A⌈ai is τ -homogeneous for every i ∈ I.

(g) If A is the measure algebra of a measure space (X,Σ, µ) then τ(A) is the Maharam type of µ (or
of (X,Σ, µ)). If A is τ -homogeneous I say that µ, or (X,Σ, µ), is Maharam homogeneous.

(h) For any decomposable measure space (X,Σ, µ), there is a partition 〈Xi〉i∈I of X such that (i)
Σ = {E : E ∈ X, E ∩Xi ∈ Σ ∀ i ∈ I} (ii) µE =

∑

i∈I µ(E ∩Xi) for every E ∈ Σ (iii) µ⌈Xi is Maharam
homogeneous and totally finite for every i ∈ I.

(i) If (A, µ̄) is a probability algebra, then either A and τ(A) are both finite, or τ(A) is precisely the
topological density of A when A is given the metric ρ of A2Fb; this is because a topologically closed
subalgebra of A is order-closed, so a set A ⊆ A completely generates A iff the subalgebra of A generated by
A is topologically dense in A (Fremlin 89, 2.20).

A2I Maharam’s Theorem (a) If (A, µ̄) is a τ -homogeneous probability algebra, with τ(A) = κ, then
it is isomorphic, as measure algebra, to the measure algebra Aκ of {0, 1}κ (Fremlin 89, 3.8).

(b) If (A, µ̄) and (B, ν̄) are probability algebras, and τ(A) ≤ min{τ(B⌈b) : b ∈ B \ {0}}, then there
is a measure-preserving Boolean homomorphism from A to B (Fremlin 89, 3.13a, corrected to read ‘if
τ(A) ≤ κ and τ(C) < κ, . . . ’).

(c) If (A, µ̄) is a probability algebra and τ(A) = κ, then it is isomorphic, as measure algebra, to an
order-closed subalgebra of Aκ.

A2J Topological measure spaces (a) A quasi-Radon measure space is a quadruple (X,T,Σ, µ)
such that (i) (X,Σ, µ) is a complete locally determined measure space (ii) T is a topology on X and
T ⊆ Σ (iii) if G is any upwards-directed family in T then µ(

⋃

G) = supG∈G µG (iv) for every E ∈ Σ,
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µE = sup{µF : F ⊆ E, F is closed} (v) whenever E ∈ Σ and µE > 0 there is an open set G such that
µG < ∞ and µ(E ∩ G) > 0. For the general theory of quasi-Radon measure spaces, see Fremlin 74,
Fremlin n82d and Fremlin 84. In particular, note that any quasi-Radon measure space is decomposable
(Fremlin 74, 72B) and that any subspace of a quasi-Radon measure space is a quasi-Radon measure space
(Fremlin 84, A7Da).

(b) A Radon measure space is a quadruple (X,T,Σ, µ) such that (i) (X,Σ, µ) is a complete locally
determined measure space (ii) T is a Hausdorff topology on X and T ⊆ Σ (iii) µE = sup{F : F ⊆ E, F is
compact} for every E ∈ Σ (iv) every point of X belongs to some open set of finite measure.

(c) Every Radon measure space is a quasi-Radon measure space (Fremlin 74, 73B). The usual measure
on {0, 1}I (A2G above) is always a Radon measure (see the references in Fremlin 89, 1.16). If (X,T,Σ, µ)
is a Radon measure space and E ∈ Σ, then (E,T⌈E,Σ ∩ PE,µ⌈E) is a Radon measure space.

(d) Suppose that (X,T,Σ, µ) is a Radon measure space, with measure algebra (A, µ̄), and that (Y,T, ν)
is a complete measure space with measure algebra (B, ν̄). Suppose that µX = νY <∞ and that φ : A → B

is a measure-preserving homomorphism. Then there is an inverse-measure -preserving function f : Y → X
such that f−1[E]• = φ(E•) in B for every E ∈ Σ. (See Fremlin 89, 4.12-4.13.)

(e) If (X,T,Σ, µ) is a totally finite quasi-Radon measure space and f : X → R is a bounded function
then

∫

f dµ = inf{
∫

h dµ : h : X → R is lower semi-continuous and f(x) ≤ h(x) ∀ x ∈ X}.

(Use (a-iv). See Schwartz 73, p. 43.)

(f) If (X,T,Σ, µ) is a totally finite quasi-Radon measure space and F is a uniformly bounded non-empty
upwards-directed family of lower semi-continuous functions from X to R, and if f0(x) = supf∈F f(x) for
each x ∈ X, then

∫

f0 dµ = supf∈F

∫

f dµ.

(Use (a-iii). See Schwartz 73, p.42.)

A2K Corollary (a) If (X,µ) is a Maharam homogeneous probability space of Maharam type λ ≥ ω, and
(Y, ν) is a Radon probability space of Maharam type not greater than λ, then there is an inverse-measure -
preserving function f : X → Y .

(b) If (X,T,Σ, µ) is a Radon probability space, E ⊆ Σ is a collection of measurable sets, Σ0 is the σ-
subalgebra of Σ generated by E , and λ ≥ max(ω,#(E)) is a cardinal, there is a function g : {0, 1}λ → X
such that µλg

−1[E] is defined and equal to µE for every E ∈ E , where µλ is the usual measure of {0, 1}λ.
(c) If (X,µ) is a complete atomless probability space, there is a function f : X → [0, 1] which is inverse-

measure -preserving for µ and Lebesgue measure on [0, 1].

proof (a) Let A be the measure algebra of (X,µ) and B the measure algebra of (Y, ν). By A2Ib there is a
measure-preserving homomorphism φ : B → A, which by A2Jd is induced by an inverse-measure -preserving
f : X → Y .

(b) Let κ be the greater of λ and the Maharam type of (X,µ). Then there is an inverse-measure -
preserving f : {0, 1}κ → X, by (a). For each E ∈ E there are Baire sets GE , HE ⊆ {0, 1}κ such that
GE ⊆ g−1[E] ⊆ HE and µκHE = µE = µκGE . Now there is a countable set IE ⊆ κ such that both
GE and HE factor through the canonical map πIE

: {0, 1}κ → {0, 1}IE ; that is, GE = π−1
IE

[πIE
[GE ]],

and similarly for HE . Let I ⊆ κ be a set of cardinal λ including IE for every E ∈ E . Let z be any
point of {0, 1}κ\I and set h(x) = (x, z) for each x ∈ {0, 1}I , identifying {0, 1}κ with {0, 1}I × {0, 1}κ\I .
If E ∈ E then πI [GE ] ⊆ h−1[f−1[E]] ⊆ πI [HE ] so µIh

−1[f−1[E]] = µκGE = µκHE = µE. So if we set
g = fh : {0, 1}I → X we shall have µIg

−1[E] = µE for every E ∈ E , and therefore for every E ∈ Σ0. But
of course ({0, 1}I , µI) ∼= ({0, 1}λ, µλ), so this proves the result.

(c) Argue as in (a), or as in Fremlin 84, A6Ib.

A2L Hyperstonian spaces (a) If (X,Σ, µ) is a totally finite measure space, its hyperstonian space
is the Radon measure space (Z,S,T, ν), where (Z,S) is the Stone space of the measure algebra (A, µ̄) of
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(X,Σ, µ), and ν is the unique Radon measure on Z such that νE∗ = µE for every E ∈ Σ, where I write E∗

for the open-and-closed subset of Z corresponding to the image E• of E in A. (See Fremlin 89, 2.13-2.14.)
In this case, (A, µ̄) is isomorphic, as measure algebra, to the measure algebra of (Z,T, ν) (Fremlin 89,
2.13).

(b) If (X,T,Σ, µ) is a compact Radon measure space and (Z,S,T, ν) is its hyperstonian space, then
there is a unique continuous function f : Z → X such that ν(E∗△f−1[E]) = 0 for every E ∈ Σ. This f is of
course inverse-measure -preserving; it is the canonical map from Z to X. (See Fremlin 89, 2.17-2.18.)

(c) If (X,Σ, µ) is any totally finite measure space and (Z,S,T, ν) is hyperstonian space, then for every
F ∈ T, ǫ > 0 there is a compact open set W ⊆ F such that νW ≥ νF − ǫ (Fremlin 89, 2.14).

Version of 18.9.92

A2M Lemma Let (X,Σ, µ) be a probability space.
(a) Let 〈En〉n∈N be a family in Σ such that infn∈NµEn = δ > 0. Then there is an x ∈ X such that

{n : n ∈ N, x ∈ En} is infinite.
(b) Let 〈Eα〉α<ω1

be a family in Σ \ Nµ. Then there is an x ∈ X such that {α : α < ω1, x ∈ Eα} is
infinite.

proof (a) Set Fn =
⋃

m≥nEm for n ∈ N; then 〈Fn〉n∈N is a decreasing sequence and µFn ≥ δ > 0 for every

n ∈ N. So
⋂

n∈N Fn 6= ∅; take any x ∈
⋂

n∈N Fn; this x must belong to infinitely many of the En.

(b) There is a δ > 0 such that A = {α : α < ω1, µEα > 0} is infinite. Now apply (a) to 〈Eα(n)〉n∈N for
any strictly increasing sequence 〈α(n)〉n∈N in A.

Remark For related results see 9A and A2U; also Kanamori & Magidor 78, p. 166, and Fremlin 87,
1E.

A2N Lemma Let (X,Σ, µ) be a probability space and T0 a subalgebra of Σ. Suppose that 〈Cn〉n∈N

is a sequence of members of Σ which are stochastically independent of each other and of T0, that is,
µ(E ∩

⋂

i∈I Ci) = µE
∏

i∈I µCi for every E ∈ T0, I ⊆ N. If now f is a µ-integrable real-valued function on
X and 〈En〉n∈N is any sequence in T0,

φn(f) =
∫

En∩Cn
f − µCn.

∫

En
f → 0

as n→ ∞.

proof Consider first the case f = χF where F = E ∩
⋂

i∈I Ci for some E ∈ T0, I ∈ [N]<ω; this is trivial.
It follows that limn→∞ φn(f) = 0 whenever f = χF for some set F in the subalgebra T1 of Σ generated
by T0 ∪ {Cn : n ∈ N}. Also, of course, |φn(f) − φn(g)| ≤ 2

∫

|f − g| for all n ∈ N, integrable f and g,
so limn→∞ φn(f) will be 0 for every T-measurable integrable function f , where T is the σ-subalgebra of Σ
generated by T1. Finally, for a general µ-integrable f , the Radon-Nikodým theorem (Royden 63, chap. 11,
§5) tells us that there is a T-measurable g such that

∫

F
f =

∫

F
g for every F ∈ T, so that φn(f) = φn(g) → 0

as n→ ∞.

A2O Definition Let (X,µ) be a measure space and E, F two real linear spaces in duality. Say that a
function x 7→ ux : X → E is F -scalarly measurable if x 7→ (f |ux) : X → R is measurable for every f ∈ F .

A2P(a) Let X be a set and A any family of sets. Write

cov(X,A) = min{#(B) : B ⊆ A, X ⊆
⋃

B} if X ⊆
⋃

A,

= ∞ otherwise.

(b) For a Radon measure space (X,T,Σ, µ), we have cov(X,Nµ) = 0 iff X = ∅ and cov(X,Nµ) = 1 iff
X 6= ∅ and µX = 0. In any other case, consider the least cardinal κ for which there is an E ∈ Σ with
0 < µE <∞ and (E,Σ ∩ PE,µ⌈E) is Maharam homogeneous of Maharam type κ; then

cov(X,Nµ) = cov({0, 1}κ,Nµκ
),

where µκ is the usual Radon measure on {0, 1}κ. (See Fremlin 89, 6.14c and 6.15c.) If we write
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δκ = cov({0, 1}κ,Nµκ
)

for infinite cardinals κ, then δκ ≤ δλ whenever ω ≤ λ ≤ κ (Fremlin 89, 6.17(d-i), so there is a least κ0

such that δκ = δκ0
= δ say for every κ ≥ κ0, and this δ is precisely the least value of cov(X,Nµ) for any

non-trivial Radon measure space (X,µ). Moreover, if δκ ≤ λ ≤ κ then δλ = δκ (Fremlin 89, 6.17(d-ii)); it
follows that if δκ ≥ κ then δ ≥ κ and if δκ > κ then δ > κ.

A2Q Liftings Let (X,Σ, µ) be a measure space, with measure algebra A.

(a) A lifting of (X,Σ, µ) is a Boolean homomorphism θ : A → Σ such that (θa)• = a for every a ∈ A.

(b) The Lifting Theorem If (X,Σ, µ) is complete and decomposable it has a lifting (Fremlin 89, 4.4,
or Ionescu Tulcea & Ionescu Tulcea 69, chap. IV, Theorem 3).

(c) If (X,Σ, µ) is a complete probability space, Σ0 ⊆ Σ is a σ-subalgebra and A0 = {E• : E ∈ Σ0} is
the corresponding order-closed subalgebra of A = Σ/Nµ, then any lifting θ0 : A0 → Σ0 extends to a lifting
θ : A → Σ (follow the standard proof of the lifting theorem as given in Fremlin 89 or Ionescu Tulcea

& Ionescu Tulcea 69).

(d) If (X,Σ, µ) is a complete probability space and θ : A → Σ is any lifting, then
⋃

a∈A θ(a) ∈ Σ for
every A ⊆ A. (Ionescu Tulcea & Ionescu Tulcea 69, §V.3.)

A2R Lemma Let (X,Σ, µ) be a probability space, λ a cardinal of uncountable cofinality, 〈Eξ〉ξ<λ a
family of measurable non-negligible sets in X, and 1 ≤ l ∈ N. Then there is a set W ⊆ λ, of cardinal λ,
such that

⋂

ξ∈LEξ 6= ∅ for every L ∈ [W ]l.

proof See Argyros & Kalamidas 82, or Comfort & Negrepontis 82, Theorem 6.15, or Fremlin 88,
Proposition 7, where various stronger results are proved.

Remark For the following results, we need only the case X = {0, 1}I , which is usefully simpler than the
general case.

A2S Lemma Let (X,Σ, µ) be a probability space, and Σ0 a σ-subalgebra of Σ; set µ0 = µ↾Σ0 and let
µ∗

0 be the outer measure on X defined from µ0. Let τ0 be the Maharam type of µ0. Suppose that λ is a
cardinal with cf(λ) > max(ω, τ0), and 〈Eξ〉ξ<λ a family in Σ with infξ<λ µEξ = γ > 0. Then for any γ′ < γ,
1 ≤ l ∈ N there is a W ∈ [λ]λ such that µ∗

0(
⋂

ξ∈LEξ) ≥ γ′ for every L ∈ [W ]l.

Remark For this paper we need only the case τ0 = ω, λ = ω1.

proof (a) Consider first the special case in which X = {0, 1}I for some set I, with µ the usual measure on
X, and there is a J ⊆ I of cardinal τ0 such that Σ0 = {π−1

J [F ] : F ∈ ΣJ}, writing ΣJ for the domain of the
usual measure µJ on {0, 1}J , and πJ : X → {0, 1}J for the canonical map.

(i) We may regard X as the product {0, 1}J × {0, 1}I\J . Set δ = (γ − γ′)/(l + 1) > 0. For ξ < λ,
z ∈ {0, 1}I\J set

Eξz = {y : y ∈ {0, 1}J , (y, z) ∈ Eξ}.

Then
∫

µJEξzµI\J(dz) = µEξ ≥ γ

by Fubini’s theorem (A2Ge). Set

Gξ = {z : z ∈ {0, 1}I\J , µJEξz exists ≥ γ};

then µI\JGξ exists and is greater than 0. Let Hξ ⊆ X be an open-and-closed set such that µ(Eξ△Hξ) ≤

δµI\JGξ (A2Gc), and set Hξz = {y : (y, z) ∈ Hξ} for z ∈ {0, 1}I\J . Then
∫

µJ(Eξz△Hξz)µI\J(dz) = µ(Eξ△Hξ) ≤ δµI\JGξ,

so µI\JG
′
ξ > 0, where

G′
ξ = {z : z ∈ Gξ, µJ(Eξz△Hξz) ≤ δ}.
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Finally, observe that because Hξ is open-and-closed the set of sections Hξz is finite, and there is an open-
and-closed set Fξ ⊆ {0, 1}J such that µI\JG

′′
ξ > 0, where

G′′
ξ = {z : z ∈ G′

ξ, Hξz = Fξ}.

(ii) The number of open-and-closed sets in {0, 1}J is at most max(ω,#(J)) < cf(λ). So there is an
open-and-closed set F ⊆ {0, 1}J such that U = {ξ : ξ < λ, Fξ = F} has cardinal λ. Next, by A2R above,
there is a W ⊆ U such that #(W ) = λ and

⋂

ξ∈LG
′′
ξ 6= ∅ whenever L ∈ [W ]l.

Take any L ∈ [W ]l. There is a z ∈
⋂

ξ∈LG
′′
ξ . For each ξ ∈ L, µJEξz exists ≥ γ, µJ(Eξz△Hξz) ≤ δ and

Hξz = Fξ = F . So µJF ≥ γ − δ and µJ(
⋂

ξ∈LEξz) ≥ µJF − lδ ≥ γ′.

Now if F ′ ∈ ΣJ and π−1
J [F ′] ⊇

⋂

ξ∈LEξ, we must have F ′ ⊇
⋂

ξ∈LEξz, so

µ(π−1
J [F ′]) = µJF

′ ≥ γ′.

As F ′ is arbitrary, µ∗
0(

⋂

ξ∈LEξ) ≥ γ, as required.

(b) It follows that if (A, µ̄) is a probability algebra, A0 is a order-closed subalgebra of A, λ is a cardinal
with cf(λ) > max(ω, τ(A0)), 〈aξ〉ξ<λ is a family in A with infξ<λ µ̄aξ = γ > 0, 1 ≤ l ∈ N and γ′ < γ, then
there is a W ∈ [λ]λ such that

min{µ̄b : b ∈ A0, b ⊇ infξ∈L aξ} ≥ γ′

whenever L ∈ [W ]l. PPP We can embed A as a subalgebra of the measure algebra AI of {0, 1}I for some set
I (A2Ib). If we take a set B ⊆ A0 of cardinal τ(A0) which completely generates A0, then for each b ∈ B we
can find a set Gb ⊆ X = {0, 1}I , belonging to the Baire σ-algebra of X, such that b = G•

b in A; now there
is a set J ⊆ I, of cardinal at most max(ω,#(B)), such that every Gb belongs to Σ0, if we define Σ0 from J
as in part (a) above.

Set A1 = {G• : G ∈ Σ0}, so that A1 is a order-closed subalgebra of A and A0 ⊆ A1. Let ΣJ be the
algebra of measurable subsets of {0, 1}J , and AJ the measure algebra of {0, 1}J . Then the inverse-measure-
preserving map πJ : X → {0, 1}J induces an isomorphism φ between A1 and AJ , taking φ(π−1

J [G]•) = G• for
every G ∈ ΣJ . By the lifting theorem (A2Qb) there is a lifting θJ : AJ → ΣJ . So we have a corresponding
Boolean homomorphism θ1 : A1 → Σ0 given by setting θ1(a) = π−1

J [θJ(φ(a))] for each a ∈ A1. As remarked
in A2Qc, there is an extension θ of θ1 to a lifting from A to Σ.

Set Eξ = θ(aξ) for each ξ < λ. By part (a) above, because cf(λ) > max(ω,#(J)), there is a set W ∈ [λ]λ

such that µ∗
0(

⋂

ξ∈LEξ) ≥ γ′ whenever L ∈ [W ]l. Now suppose that L ∈ [W ]l and that b ∈ A0, b ⊇ infξ∈L aξ.

Then θ(b) ⊇
⋂

ξ∈LEξ and θ(b) ∈ Σ0, so

µ̄b = µ(θ(b)) ≥ µ∗
0(

⋂

ξ∈LEξ) ≥ γ′.

Thus we have the set W we need. QQQ

(c) We are now ready for the general case of the lemma. Let (A, µ̄) be the measure algebra of (X,Σ, µ)
and set A0 = {G• : G ∈ Σ0}, aξ = E•

ξ for each ξ < λ. By (b), there is a W ∈ [λ]λ such that µ̄b ≥ γ′

whenever L ∈ [W ]l, b ∈ A0 and b ⊇ infξ∈L aξ. Now if L ∈ [W ]l and G ∈ Σ0 and G ⊇
⋂

ξ∈LEξ, b = G• ∈ A0

and b ⊇ infξ∈L aξ, so that µ0G = µG = µ̄G• ≥ γ′. As G is arbitrary, µ∗
0(

⋂

ξ∈LEξ) ≥ γ′; as L is arbitrary,
we have the required family W .

A2T Precalibers If A is a Boolean algebra and λ is a cardinal, then λ is a precaliber of A if for every
family 〈aξ〉ξ<λ in A \ {0} there is a set D ∈ [λ]λ such that {aξ : ξ ∈ D} is centered, that is, infξ∈I aξ 6= 0
for any non-empty finite I ⊆ D.

A2U Proposition Let (X,Σ, µ) be a complete probability space with measure algebra (A, µ̄), and λ a
cardinal of uncountable cofinality which is not a precaliber of A.

(a) There is a family 〈Eξ〉ξ<λ in Nν such that
⋃

ξ<λEξ ∈ Σ \ Nµ.

(b) If λ is regular, there is an increasing family 〈Eξ〉ξ<λ in Nµ such that
⋃

ξ<λEξ ∈ Σ \ Nµ.

proof Let 〈aξ〉ξ<λ be a family in A \ {0} with no centered subfamily of cardinal λ. Let θ : A → Σ be
a lifting (A2Q). If D ∈ [λ]λ then {aξ : ξ ∈ D} is not centered so there is a finite set I ⊆ D such that
⋂

ξ∈I θ(aξ) = θ(infξ∈I aξ) = ∅. Consequently #({ξ : x ∈ θ(aξ)}) < λ for every x ∈ X.
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(a) Choose inductively countable sets Cα ⊆ λ, for α < λ, such that

Cα ⊆ λ \
⋃

β<α Cβ ,

sup{aξ : ξ ∈ Cα} = sup{aξ : ξ ∈ λ \
⋃

β<α Cβ}

for each α < λ. Setting sα = µ̄(sup{aξ : ξ ∈ Cα}) for each α, we see that 〈sα〉α<λ is decreasing; as cf(λ) > ω,
there is a γ < λ such that sγ = sα for γ ≤ α < λ. Set

Hα =
⋃

{θ(aξ) : ξ ∈ Cα}

for α < λ. Then
⋂

α<λHα = ∅, because the Cα are disjoint. Also µ(Hγ \ Hα) = 0 for every α, because
H•

α = sup{aξ : ξ ∈ Cα} in A. So if we set Eξ = Hγ \Hξ, we have a witness for (a).

(b) Now suppose that λ is regular. For each α < λ set H ′
α =

⋃

α≤ξ<λ θ(aξ); then H ′
α ∈ Σ (A2Qd).

The family 〈H ′
α〉α<λ is decreasing; because cf(λ) > ω, there is a γ < λ such that µH ′

α = µHγ whenever
γ ≤ α < λ. ??? If x ∈

⋂

α<λH
′
α, set D = {ξ : x ∈ θ(aξ)}; then D is cofinal with λ so (because λ is regular)

#(D) = λ. XXX Thus
⋂

α<λHα = ∅. But now 〈Hγ \ Hα〉α<λ is an increasing family in Nµ with union
Hγ ∈ Σ \ Nµ.

A2V More topological measure spaces Let X be a topological space. A Borel measure on X is
a measure µ with domain the algebra B of Borel subsets of X. A Borel measure µ on X is τ-additive if
µ(

⋃

G) = supG∈G µG for every non-empty upwards-directed family G of open sets in X. (If X is regular,
a totally finite Borel measure on X is τ -additive iff its completion is a quasi-Radon measure.) X is Borel
measure-complete if every totally finite Borel measure on X is τ -additive. A Borel measure µ on X is
inner regular for the compact sets if µE = sup{µK : K ⊆ E is compact} for every E ∈ B. (If X
is Hausdorff and µ is a totally finite Borel measure on X, µ is inner regular for the compact sets iff its
completion is a Radon measure.) X is Radon if it is Hausdorff and every totally finite Borel measure µ on
X is inner regular for the compact sets. Evidently a Radon topological space is Borel measure-complete.
See Gardner & Pfeffer 84.

A2W Proposition Let X be a complete metric space.
(a) A semi-finite τ -additive Borel measure on X is inner regular for the compact sets.
(b) X is Radon iff it is Borel measure-complete.

proof (a) It will be enough to show that a totally finite τ -additive Borel measure on X is inner regular for
the compact sets. Let µ be such a measure. Let E ⊆ X be a Borel set and ǫ > 0.

For each n ∈ N let Gn be the family of open sets of diameter less than or equal to 2−n; then
⋃

Gn = X.

Because µ is τ -additive there is a finite Hn ⊆ Gn such that µ(
⋃

Hn) ≥ µX − 2−nǫ. Set K0 =
⋂

n∈N

⋃

Hn;
then K0 is closed and totally bounded, therefore compact, and µK0 ≥ µX − 2ǫ.

Now K0 is compact and metrizable, so the Borel measure µ⌈K0 is inner regular for the compact sets
(Schwartz 73, p. 117, Proposition 6). Consequently

µE ≤ µ(E ∩K0) + 2ǫ ≤ sup{µK : K ⊆ E is compact} + 2ǫ.

As E and ǫ are arbitrary, µ is inner regular, as claimed.

(b) follows at once.

A2X Strong Law of Large Numbers We need this classical result in the following form. If (X,Σ, µ)
is a probability space and 〈hi〉i∈N is a uniformly bounded sequence of measurable real-valued functions on
X, then for almost all 〈ti〉i∈N ∈ XN we have

limn→∞
1

n+1

∑

i≤n(h(ti) −
∫

hi) = 0.

A proof may be found in Shiryaev 84, chap. IV, §3, Theorem 2 (p. 364).

A2Y Lemma If (X,Σ, µ) is a Maharam homogeneous totally finite measure space and µ1 is another
measure on X with domain Σ such that µ1E ≤ µE for every E ∈ Σ and µ1X > 0, then µ and µ1 have the
same Maharam type.

proof Take E ∈ Nµ1
such that µE is maximal. Then Nµ1

= {A : A ⊆ X, A \ E ∈ Nµ}. So the measure
algebra PX/Nµ1

is isomorphic (as Boolean algebra) to the principal ideal of PX/Nµ generated by (X \E)•;
which has the same Maharam type as the whole algebra PX/Nµ.
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Version of 14.11.91

A3. General topology

We need only a handful of definitions and a couple of standard theorems.

A3A If X is any topological space, a regular open set in X is an open subset G of X such that G = int
G. Now the family G of all regular open subsets of X is a Boolean algebra, taking G∧H = G∩H, G∨H =
int G ∪H, 1 \G = int (X \G) for G, H ∈ G; G is the regular open algebra of X. (See Koppelberg 89,
1.36-1.37.)

A3B If X is any topological space, its Baire σ-algebra is the σ-algebra of subsets of X generated by
the zero sets, that is, by sets of the form f−1[{0}] where f : X → R is continuous. When X = {0, 1}λ this
is precisely the σ-algebra generated by sets of the form {x : x(ξ) = 1} for ξ < λ.

A3C Definitions (a) A Moore space is a regular Hausdorff topological space X with a sequence
〈Gn〉n∈N of open covers such that for any x ∈ X, any neighbourhood U of x there is an n ∈ N such that
⋃

{G : x ∈ G ∈ Gn} ⊆ U . (Engleking 89, p. 334.)

(b) An indexed family 〈Fi〉i∈I of subsets of a topological space X is discrete if for every x ∈ X there
is an open set containing x which meets Fi for at most one i ∈ I. An indexed family 〈xi〉i∈I of points of
X is discrete if for every x ∈ X there is an open set containing x which contains xi for at most one i.
(Engelking 89, p. 16.)

(c) A topological space X is collectionwise normal if for every discrete family 〈Fi〉i∈I of closed sets
in X there is a disjoint family 〈Gi〉i∈I of open sets such that Fi ⊆ Gi for every i ∈ I. (Engelking 89, p.
305.)

A3D Proposition A collectionwise normal Moore space is metrizable.

proof Engelking 89, Theorem 5.4.1.

A3E Definitions Let X be a topological space.

(a) The density of X, d(X), is the least cardinal of any dense subset of X. (Engelking 89, p. 25.)

(b) If x ∈ X then χ(x,X) is the least cardinal of any base of neighbourhoods of x in X. (Engelking

89, p. 12.)

(c) The weight of X, w(X), is the least cardinal of any base for the topology of X. (Engleking 89, p.
12.)

A3F Proposition Let X be a metrizable topological space.
(a) There is a discrete family 〈xξ〉ξ<d(X) in X.
(b) There is a base for the topology of X which is expressible as {Gni : n ∈ N, i ∈ In} where 〈Gni〉i∈In

is discrete for each n ∈ N.

proof (a) is elementary; see Engelking 89, 4.1.15. (b) is Theorem 4.4.3 of Engelking 89.

Version of 10.12.91

A4. Indescribable cardinals

For the second half of §4 above, we need some ideas from elementary model theory. The point is that
certain results of the form ‘if κ is a real-valued-measurable cardinal, there are many α < κ such that Φ(α)’
can be effectively approached through an analysis of the logical structure of the assertion ‘Φ(α)’. Here I
describe a second-order language L which provides a suitable classification of most of the sentences we are
interested in.

A4A The language L Let L be the primitive second-order language in which there are countable
infinities of first-order variables x, y, . . . and second-order relational variables R, S, . . . ; it being understood
that each relational variable S has a determinate number of places, so that an expression ‘∀S’ must be read



105

as ‘for every n-place relation S’ for some n, whose value should be evident from the use of S in the rest of
the formula. Atomic formulae of L are of the form S(y1, . . . , yn), where S is an n-place relation symbol,
and compound formulae are constructed from these with the ordinary logical connectives ∧ (‘and’), ∨ (‘or’),
¬ (‘not’), → (‘implies’) etc., and quantifiers ∀S, ∃S, ∀y, ∃y. We can now define a notion of satisfaction

(A;C1, . . . , Ck; a1, . . . , am) � φ

where A is a set, C1, . . . , Ck are finitary relations on A, a1, . . . , am are points of A, and φ is a formula
of L with k free relational variables (of place-numbers matching the place-numbers of the Ci) and m free
first-order variables. See Chang & Keisler 73, §1.3, or Ebbinghaus Flum & Thomas 84, §IX.1 for a
proper discussion of ‘satisfaction’; intuitively,

(A;C1, . . . , Ck; a1, . . . , am) � φ

means that φ(C1, . . . , Ck, a1, . . . , am) is ‘true’ when bound variables in φ are taken to run over the members
of A or the relations on A.

There is a problem here; of course the assertion

(A;C1, . . . , Ck; a1, . . . , am) � φ

depends on an assumed assignment of the relations Ci and points aj to the free variables of φ. For our
purposes here it will possible to adhere to the convention (an impracticable one for any extended work) that

(A;C1, . . . , Ck; a1, . . . , am) � φ

includes the assertion that the names of the free variables of φ are Ri, xj , with 1 ≤ i ≤ k and 1 ≤ j ≤ m;
that each Ri has the same number of places as the corresponding Ci; and that in the interpretation of φ the
relations Ci are assigned to the variables Ri and the points aj are assigned to the variables xj .

It will be convenient on occasion to write the formulae above without checking on the domains of the
relations Ci nor on whether every aj belongs to A. In this case it is to be understood that

(A;C1, . . . , Ck; a1, . . . , am) � φ

means

a1, . . . , am ∈ A and (A;C1↾A, . . . , Ck↾A; a1, . . . , am) � φ,

where Ci↾A is the restriction of the relation Ci to A.

A4B Π1
n formulae Among the formulae of L we can distinguish the Π1

n and Σ1
n formulae, as follows. A

Π1
0 or Σ1

0 formula is one in which all quantifiers are of the form ∀y or ∃y. A Π1
n+1 formula is one of the form

∀S1∀S2 . . . ∀Skφ

where φ is Σ1
n; a Σ1

n+1 formula is one of the form

∃S1 . . . ∃Skφ

where φ is Π1
n. (Here I allow, conventionally, k = 0, so that a Π1

n formula is also Σ1
n+1 and Π1

n+1.)

Examples It may help readers new to these ideas if I give some examples. I concentrate on the properties
of cardinals and ordinals because that is the context in which we shall be working.

(i) If we say ‘(X,≤) is totally ordered’ we are saying just that (X; =,≤; ) � φ1, where φ1 is the Π1
0 formula

∀u∀v∀w
(

(R2(u, v) ∧R2(v, w)) → R2(u,w)
)

∧
(

(R2(u, v) ∧R2(v, u) ↔ R1(u, v)
)

∧
(

R2(u, v) ∨R2(v, u)
)

.

(ii) If we say ‘(X,≤) is well-ordered’ we are saying just that (X; =,≤; ) � φ2, where φ2 is the Π1
1 formula
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∀S(∃aS(a)) →

∃b
(

S(b) ∧ ∀c(S(c) → R2(b, c))
)

∧ φ1.

(iii) If we say ‘(X,≤) is well-ordered and its order type is a limit cardinal’, we are saying that (X; =,≤
; ) � φ3, where φ3 is the formula

∃G∀F∀x∃y
(

χ(G) ∧G(x, y)

∧ χ(F ) → (∃zR2(z, y) ∧ (∀tR2(t, x) → ¬F (t, z)))
)

∧ φ2,

χ(F ) being an abbreviation for the formula

∀u∀v∀w(F (u, v) ∧ F (u,w)) → R1(v, w).

If we move the quantifier ∀S in φ2 up with ∀F , we get a Σ1
2 formula logically equivalent to φ3.

A4C Indescribability (a) Let n ∈ N. An ordinal α is weakly Π1
n-indescribable if it is not 0 and

whenever C1, . . . , Ck are relations on α, ξ1, . . . , ξm < α and φ is a Π1
n formula such that

(α;C1, . . . , Ck; ξ1, . . . , ξm) � φ,

then there is an ordinal β < α such that

(β;C1, . . . , Ck; ξ1, . . . , ξm) � φ.

I will say that α is weakly Π2
0-indescribable if it is weakly Π1

n-indescribable for every n ∈ N.

(b) If α is weakly Π1
n-indescribable and φ is a Π1

n formula, C1, . . . , Ck are relations on α, ξ1, . . . , ξm are
ordinals less than α, and

(α;C1, . . . , Ck; ξ1, . . . , ξm) � φ,

then we have a non-empty set

A(φ,C1, . . . , Ck, ξ1, . . . , ξm) = {β : β < α, (β;C1, . . . , Ck; ξ1, . . . , ξm) � φ} ⊆ α.

The intersection of two such sets is another (because φ∧ψ is logically equivalent to a Π1
n formula whenever

φ and ψ are), so they generate a filter on α; this is the Π1
n-filter of α. The dual ideal is the Π1

n-ideal of α.
In the same way, if α is weakly Π2

0-indescribable then it has a Π2
0-filter, which is just the union of its

Π1
n-filters, and a dual Π2

0-ideal.
It will be convenient to say that if α is an ordinal which is not weakly Π1

n-indescribable, then its ‘Π1
n-ideal’

is Pα; and similarly that the Π2
0-ideal of α is Pα if α is not weakly Π2

0-indescribable.

Remark A subset of α belongs to the Π1
n-filter on α iff it is Π1

n-enforceable at α in the terminology of Lévy

71. Baumgartner Taylor & Wagon 77 use the phrase ‘ordinal Π1
1-indescribable’ where I write ‘weakly

Π1
1-indescribable’.

A4D Proposition (a) A weakly Π1
0-indescribable ordinal θ is an uncountable regular cardinal, and every

closed unbounded set in θ belongs to the Π1
0-filter of θ.

(b) c is not weakly Π1
1-indescribable.

proof (a)(i) If α is a successor ordinal then

(α; =;α− 1) � R1(x1, x1), (β; =;α− 1) 6� R1(x1, x1) ∀ β < α.

(ii) If α = ω then

(α;<; 0) � ∀y1∃y2R1(y1, y2)

but
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(β;<; 0) 6� ∀y1∃y2R1(y1, y2)

for every β < α.

(iii) If ω ≤ cf(α) < α take ξ < α and f : ξ → α such that f [ξ] is cofinal with α; let F be the
corresponding binary relation, so that F (η, ζ) iff f(η) = ζ; then

(α;<,F ; ξ) � ∀y(R1(y, x1) → ∃z R2(y, z)),

but

(β;<,F ; ξ) 6� ∀y(R1(y, x1) → ∃z R2(y, z)),

for every β < α.

(iv) Thus θ cannot be either a successor, nor ω, nor of cofinality less than θ, and must be an uncountable
regular cardinal.

Let C be any closed unbounded set in θ. Write F (ξ, η) for ‘ξ ≤ η ∈ C’. Then (θ;F ; 0) � ∀y∃z R1(y, z),
and if α < θ is such that (α;F ; 0) � ∀y∃z R1(y, z) then α ∈ C. So C belongs to the Π1

0-filter of θ.

(b) Let f : c → Pω be a surjection, and write F (ξ, η) for ‘η ∈ f(ξ)’. Let φ be the formula

∀S∃y∀z(R1(z, x1) → (S(z) ↔ R2(y, z))).

Then for α ≤ c,

(α;<,F ;ω) � φ

means just that f [α] = Pω, which is true iff α = c. Because φ is a Π1
1 formula, c is not weakly Π1

1-
indescribable.

Remarks (a) In fact, an ordinal α is weakly Π1
0-indescribable iff it is a regular uncountable cardinal, and

in this case its Π1
0-filter is just the filter generated by the closed unbounded sets. See Lévy 71, Theorem 6,

or Hanf & Scott 61.

(b) Of course the argument above shows that 2λ is not weakly Π1
1-indescribable for any cardinal λ. More

generally, no cardinal power λθ can be weakly Π1
1-indescribable if 1 < λ < λθ.

A4E For the next theorem we need names for some relations on the class On of ordinals. (i) Let
p : On×On → On be the bijection corresponding to the familiar well-ordering of On×On: p(ξ, η) < p(ξ′, η′)
iff either max(ξ, η) < max(ξ′, η′) or max(ξ, η) = max(ξ′, η′) and ξ < ξ′ or ξ = ξ′ and η < η′. Let P1 be
the corresponding ternary relation on On, so that P (ξ, η, ζ) iff p(ξ, η) = ζ. (ii) Let P2, P3 be the ternary
relations on On corresponding to ordinal addition and multiplication. (iii) Let q1 and q2 be the projections
of p−1, so that ξ = p(q1(ξ), q2(ξ)) for every ξ ∈ On. Let P4 be the ternary relation corresponding to the
function (l, ξ) 7→ q2(ql

1(ξ)) : ω × On → On.

Theorem For each n ≥ 1 there is a Π1
n formula φ such that whenever ψ is a Π1

n formula, C1, . . . , Ck are
relations on On, ξ1, . . . , ξm are ordinals, then there is a one-place relation C on On such that for every
infinite cardinal α

(α;C1, . . . , Ck; ξ1, . . . , ξm) � ψ ⇐⇒ (α;<,P1, P2, P3, P4, C; ) � φ.

proof Lévy 71, Theorem 8.

A4F Theorem Let κ be a weakly Π1
n-indescribable cardinal, where n ≥ 1. Then the Π1

n-filter on κ is a
normal filter closed under Mahlo’s operation.

proof Lévy 71, Theorems 9 and 15.

A4G Theorem Let κ be a weakly Π1
n+1-indescribable cardinal, where n ∈ N. Then the set of weakly

Π1
n-indescribable cardinals less than κ belongs to the Π1

n+1-filter on κ.

proof Lévy 71, Theorem 16b.

A4H Theorem Let κ be an infinite cardinal and A a subset of κ. Then the following are equivalent:
(a) A does not belong to the Π1

1-ideal of κ (so that, in particular, κ is weakly Π1
1-indescribable);
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(b) A is Π1
1-fully stationary in the sense of 4D.

proof (a)⇒(b)(i) ??? Suppose, if possible, that (a) is true but (b) is false. Let 〈fξ〉ξ<κ be a family of
regressive functions on κ witnessing not-(b); that is, such that there is no uniform ultrafilter F on κ,
containing A, for which limα→F fξ(α) exists for every ξ. Because κ is regular (A4Da), this means that for
any g ∈ κκ the family

{A \ ζ : ζ < κ} ∪ {f−1
ξ [{g(ξ)}] : ξ < κ}

is not included in any ultrafilter on κ, that is, does not have the finite intersection property. So we have
∀ g ∈ κκ ∃ ζ < κ, I ∈ [κ]<ω such that ∀ η ∈ A \ ζ ∃ ξ ∈ I such that g(ξ) 6= fξ(η). (*)

Evidently (*) can be coded as a Π1
1 formula; the details are as follows. Let h : κ→ [κ]<ω be any surjection,

and write E(ζ, η) for ‘ζ ≤ η ∈ A’, H(ξ, γ, η, δ) for ‘ξ ∈ h(γ) and fξ(η) 6= δ’. Let φ be the formula

∀S(∀u∃vS(u, v)) →

∃z∃c∀y
(

R1(z, y) →

∃x∃dS(x, d) ∧R2(x, c, y, d)
)

.

Then (*) says just that

(κ;E,H; ) � φ.

Accordingly the set

B = {α : α < κ, (α;E,H; ) � φ}

belongs to the Π1
1-filter W of κ.

(ii) Let C be the set of non-zero limit ordinals α < κ such that h[α] = [α]<ω. Then C is a closed
unbounded set in κ so C ∈ W, by A4Da. Consequently A ∩B ∩ C is stationary. But if α ∈ B ∩ C then

∀ g ∈ αα ∃ ζ < α, I ∈ [α]<ω such that

∀ η ∈ α ∩A \ ζ ∃ ξ ∈ I such that g(ξ) 6= fξ(η).

It will be helpful to put this into a logically equivalent form. For 0 < α < κ let gα : κ → α be given by
setting gα(ξ) = fξ(α) for every ξ < κ. Then for α ∈ B ∩ C we have

∀ g ∈ αα ∃ ζ < α, I ∈ [α]<ω such that gη↾I 6= g↾I ∀ η ∈ α ∩A \ ζ.

In particular, there are ζα < α and Iα ∈ [α]<ω such that gη↾Iα 6= gα↾Iα for every η ∈ α ∩ A \ ζα. Because
α is a limit ordinal we may take it that Iα ∪ gα[Iα] ⊆ ζα.

Now A ∩ B ∩ C is stationary, so by the pressing-down lemma there is a ζ < κ such that A1 = {α : α ∈
A ∩ B ∩ C, ζα = ζ} is stationary; next, gα↾Iα ⊆ ζ × ζ for every α ∈ A1, so there is a finite function e such
that A2 = {α : α ∈ A1, gα↾Iα = e} is stationary. Of course Iα = dom(e) = I say, for every α ∈ A2. Now
take α, β ∈ A2 such that ζ < β < α. Then β ∈ α ∩ A \ ζα, so gβ↾Iα 6= gα↾Iα; but on the other hand
gβ↾Iα = e = gα↾Iα. XXX

So (a)⇒(b).

(b)⇒(a) ??? Suppose, if possible, that (b) is true but that (a) is false; either κ is not weakly Π1
1-inde-

scribable or κ \ A belongs to the Π1
1-filter on κ. In either case there must be a Π1

1 formula φ and relations
C1, . . . , Ck, ordinals ξ1, . . . , ξm such that

(κ;C1, . . . , Ck; ξ1, . . . , ξm) � φ, (α;C1, . . . , Ck; ξ1, . . . , ξm) 6� φ ∀ α ∈ A.

We may suppose that φ is of the form

∀Rk+1 . . . Rk+r∃xm+1∀xm+2 . . . ∃xm+2s−1∀xm+2sψ

where ψ has no quantifiers, since φ is surely logically equivalent to such a formula. Set A′ = {α : α ∈
A, ξj < α ∀ j ≤ m}. For α ∈ A′, saying that (α;C1, . . . , Ck; ξ1, . . . , ξm) 6� φ means just that there are
relations Dα1, . . . ,Dαr on α and functions fα1 : α→ α, fα2 : α2 → α, . . . , fαs : αs → α such that whenever
η1, . . . , ηs < α then

(α;C1, . . . , Ck,Dα1, . . . ,Dαr; ξ1, . . . , ξm, η1, fα1(η1), . . . , ηs, fαs(η1, . . . , ηs)) � ¬ψ.
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Choose such Dαi, fαj for α ∈ A′. For η̄ = (η1, . . . , ηj) ∈ κj , where 1 ≤ j ≤ s, set

gη̄(α) = fαj(η1, . . . , ηj) if max(η1, . . . , ηj) < α ∈ A′,

= 0 otherwise.

Set G = {gη̄ : η̄ ∈
⋃

1≤j≤s κ
j} ∈ [Regr(κ)]≤κ.

Now (b) tells us that there is a uniform ultrafilter F on κ, containing A, such that limα→F g(α) exists
for every g ∈ G. Because F is uniform, A′ ∈ F . Set

hj(η̄) = limα→F gη̄(α) = limα→F fα(η̄)

for j ≤ s, η̄ ∈ κj . For i ≤ r, write Di(η̄) for ‘{α : Dαi(η̄) ∈ F}’. Now for any formula χ without quantifiers,
and any η1, . . . , ηs < κ, we have

(κ;C1, . . . , Ck,D1, . . . ,Dr; ξ1, . . . , ξm, η1, h1(η1), . . . , ηs, hs(η1, . . . , ηs)) � χ

if and only if the set of α < κ for which

(α;C1, . . . , Ck,Dα1, . . . ,Dαr; ξ1, . . . , ξm, η1, fα1(η1), . . . , fαs(η1, . . . , ηs)) � χ

belongs to F ; this is an easy induction on the length of χ. In particular, it is valid when χ is ¬ψ. But this
means that

(κ;C1, . . . , Ck,D1, . . . ,Dr; ξ1, . . . , ξm, η1, h1(η1), . . . , ηs, hs(η1, . . . , ηs)) � ¬ψ

for all η1, . . . , ηs, so that D1, . . . ,Dr and h1, . . . , hs witness that

(κ;C1, . . . , Ck; ξ1, . . . , ξm) 6� φ,

contrary to hypothesis. XXX
Thus (b)⇒(a).

Remark This is due to Kunen and J.E.Baumgartner; in the form here it is taken from Fremlin & Kunen

n87. The point is that it puts meat onto Theorem A4E by actually exhibiting a universal Π1
1 formula φ. In

§4 above I show how it can be used to investigate weakly Π1
1-indescribable cardinals without further recourse

to the logical characterization. Compare ‘Baumgartner’s principle’ as described in Erdös Hajnal Máté

& Rado 84, 30.6 and 31.3.
It seems that no corresponding combinatorial characterization of weakly Π1

2-indescribable cardinals is
known.

A4I Theorem Let κ be an infinite cardinal, φ a formula of L, C1, . . . , Ck relations on κ, ξ1, . . . , ξm
members of κ. For each set I let AI be the measure algebra of {0, 1}I and PI the p.o.set AI \ {0}. Now if
I and J are any sets both of cardinal strictly greater than κ, and β ≤ κ,


PI
(β̌;Č1, . . . , Čk; ξ̌1, . . . , ξ̌m) � φ

⇐⇒ 
PJ
(β̌; Č1, . . . , Čk; ξ̌1, . . . , ξ̌m) � φ.

proof I begin with some preliminary remarks. It will be convenient to suppose that I and J are disjoint;
this is legitimate because PI is determined up to isomorphism by the cardinal of I. Recall that if K ⊆ I
then we may regard PK as a subset of PI , corresponding to the canonical map from {0, 1}I to {0, 1}K and
the induced measure-preserving homomorphism from AK to AI ; and that we may also think of PI as an
iteration PK ∗PI\K (Kunen 84, 3.13), if you will allow me to write PI\K rather than ṖǏ\Ǩ for what is really
a PI -name.

Now for the main argument, which proceeds by induction on the length of φ.

(a) If φ has no quantifiers the result is trivial, since, for instance,


PI
Či(ξ̌j1 , . . . , ξ̌jn

) ⇐⇒ Ci(ξj1 , . . . , ξjn
),


PI
ξ̌j < β̌ ⇐⇒ ξj < β.

(b) Suppose that φ is of the form ∃Sψ and that
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PI
(β̌; . . . ) � φ.

Then there must be a PI -name Ṙ for a relation on β such that


PI
(β̌; . . . , Ṙ, . . . ) � ψ.

Because PI is ccc, the PI -name Ṙ can be described in terms of not more than max(ω, κ) = κ members of
PI ; now there is a K ⊆ I of cardinal at most κ such that PK , regarded as a subset of PI , contains all of
these; so that we may think of Ṙ as a PK-name.

Let L ⊆ J be a set of the same size as K. Then any bijection between K and L gives rise to an
isomorphism between PK and PL. Let Ṡ be a PL-name for a relation on β corresponding to Ṙ under such
an isomorphism. If we regard PI as the iteration PK ∗ PI\K then we have


PK

(


PI\K
(β̌; . . . , Ṙ, . . . ) � ψ

)

.

So


PL

(


PI\K
(β̌; . . . , Ṡ, . . . ) � ψ

)

.

At this point we move to the intermediate model V PL . From this standpoint Ṡ represents a fixed relation
on β. Also I \K and J \ L both have cardinals greater than κ. So we can use the inductive hypothesis to
see that


PL

(


PJ\L
(β̌; . . . , Ṡ, . . . ) � ψ

)

,

that is,


PJ
(β̌; . . . , Ṡ, . . . ) � ψ.

So Ṡ witnesses that


PJ
(β̌; . . . ) � φ,

and we have


PI
(β̌; . . . ) � φ ⇒ 
PJ

(β̌; . . . ) � φ;

of course the reverse implication is equally valid.

(c) If φ is of the form ∀Rψ we can argue similarly; given


PI
(β̌; . . . ) � φ

and a PJ -name Ṡ for a relation on β, we express Ṡ as a PL-name for some L ⊆ J of size at most κ, copy
this into a PK-name Ṙ for K ⊆ I, and use the inductive hypothesis on


PI\K
(β̌; . . . , Ṙ, . . . ) � ψ

in V PJ to see that


PJ
(β̌; . . . , Ṡ, . . . ) � ψ,

as required.

(d) If φ is of the form ∀xψ or ∃xψ the same arguments apply, taking K and L to be countable if we wish.

A4J Proposition Let n ∈ N and let κ be a weakly Π1
n-indescribable cardinal such that the cardinal

power κω is equal to κ. Let λ > κ be any cardinal; let Aλ be the measure algebra of {0, 1}λ and Pλ the
p.o.set Aλ \ {0}. Then


Pλ
κ̌ is weakly Π1

n-indescribable.

Remark This is due to Kunen. I omit the proof because I shall not rely on it. A sketch of the argument
for the corresponding theorem for Cohen reals may be found in Kunen 71.

A4K Π2
1-indescribability For the next step we need a higher-order language. Let L3 be the extension of

L in which third-order relational variables R are added, with corresponding atomic formulae R(u1, . . . , ul),
where each ui is either a first-order or second-order variable. In L3, the Π2

0 formulae are those in which all
quantifiers govern first- and second-order variables, and the Π2

1 formulae are those of the form
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∀R1 . . . ∀Rkψ,

where ψ is a Π2
0 formula. Now a non-zero ordinal κ is weakly Π2

1-indescribable if whenever φ is a Π2
1

formula in L3 with no free third-order variables and C1, . . . , Ck are relations, ξ1, . . . , ξm are members of κ
such that

(κ; ;C1, . . . , Ck; ξ1, . . . , ξm) � φ,

then there is an α < κ such that

(α; ;C1, . . . , Ck; ξ1, . . . , ξm) � φ.

For such κ, the sets

{α : (α; ;C1, . . . , Ck; ξ1, . . . , ξm) � φ}

where φ, C1, . . . are such that (κ; ;C1, . . . ) � φ and φ is Π2
1, generate the Π2

1-filter on κ. Finally, κ is
Π2

1-indescribable if it is weakly Π2
1-indescribable and 2λ < κ for every λ < κ.

A4L Now I can state one of the basic results of the theory of large cardinals, due originally to Hanf &

Scott 61. I omit the proof, as it has appeared more than once in hard covers, but I recommend comparing
it with the arguments given in these notes for the corresponding results for atomlessly-measurable cardinals
(4P et seq.).

Theorem If κ is two-valued-measurable, it is Π2
1- indescribable, and its Π2

1-filter is included in its rvm filter.

proof See Drake 74, §9.3, Jech 78, p. 385, Lemma 32.2 or Kanamori & Magidor 78, §I.4.
Version of 18.9.92

Problems

I collect here some of the questions which arise more or less naturally from the work above and seem to
be open.

P1 Construction of atomlessly-measurable cardinals The most important problem is surely some-
thing like this.

(P1) Let N be a model of ZFC and κ ∈ N an atomlessly-measurable cardinal in N . Does it
follow that there are an inner model M ⊆ N , containing κ, such that κ is a two-valued-measurable
cardinal in M , and an M -generic filter G in a random real p.o.set P ∈ M such that G ∈ N and
N ∩ Pκ ⊆M [G]?

Put in this form, it is hard to believe in the possibility of an affirmative answer (though note Theorem 2D).
But so long as the question remains open, we have no way of proving consistency results for atomlessly
-measurable cardinals except through Solovay’s construction in Theorem 2C above. This construction is
not wholly inflexible (see, for instance, 2E, 2I, 2L, 4Lb). But atomlessly-measurable cardinals built in this
way share a vast number of special properties. Some are known to be possessed by atomlessly-measurable
cardinals in general; many of the results in these notes were suggested by this approach. But others seem
inaccessible to present techniques. By and large, positive answers to the other problems here could be taken
as (weakly) suggesting a positive answer to P1; while negative answers would often imply a negative answer
to P1.

P2 Measure algebras of atomlessly-measurable cardinals The Gitik-Shelah theorem (3F) tells us
that if κ is an atomlessly-measurable cardinal and ν is a witnessing probability on κ then the Maharam type
λ of (κ,Pκ, ν) is at least min(2κ, κ(+ω)); and of course it cannot be greater than 2κ. So if 2κ < κ(+ω) then
λ = 2κ. We get a scrap more information in 7Q; if γ is the least cardinal such that 2γ = 2δ for γ ≤ δ < κ,
then γ < κ and λγ = 2κ, so that either 2γ = 2κ or 2γ < λ. Of course this still does not specify λ completely.
So we may ask

(P2a) Is there a combinatorial characterization of λ?

An affirmative answer would have a variety of consequences; not least, that any witnessing probability on
κ would have the same Maharam type – equivalently, that every witnessing probability on κ would be
Maharam homogeneous (3L). So a less ambitious question is
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(P2b) If κ is an atomlessly-measurable cardinal and ν is a witnessing probability on κ, must
(κ,Pκ, ν) be Maharam homogeneous?

Conceivably it makes a difference if ν is normal; so I add

(P2c) If κ is an atomlessly-measurable cardinal and ν is a normal witnessing probability on κ,
must (κ,Pκ, ν) be Maharam homogeneous?

It may be that a negative answer can be achieved using Solovay’s construction on an appropriately
complex two-valued-measurable cardinal. For in 2H we saw that if κ is a two-valued-measurable cardinal
and P is a random real p.o.set, then the possible Maharam types of (κ,Pκ, ν̃) in V P are determined by the
cardinals TrI(κ;λ). So I ask

(P2d) If κ is a two-valued-measurable cardinal with two κ-additive ultrafilters F1, F2 and
corresponding maximal ideals I1, I2, and if λ ≥ κ is a cardinal, are TrI1

(κ;λ) and TrI2
(κ;λ)

necessarily equal?

Of course TrI1
(κ;κ) = 2κ = TrI2

(κ;κ). Note also that in the langauage of Jech 78, §28, TrIi
(κ;λ) =

#(jFi
(λ)), where jFi

: V → V κ/Fi is the standard elementary embedding.
The construction of 3Mb is relevant to P2a-P2b above. For take γ < κ such that 2γ = 2δ for γ ≤ δ < κ

(7P). Then Tr[κ]<κ(κ; 2γ) = 2κ. Assume that 2γ < 2κ. In this case, if ν is any Maharam homogeneous normal
witnessing probability on κ, with Maharam type λ, then (as remarked above) 2γ < λ, so TrNν

(κ;λ) = 2κ,
and there is a witnessing probability ν1 on κ of Maharam type 2κ. We may therefore ask

(P2e) If κ is an atomlessly-measurable cardinal with witnessing probability ν, and 2δ < 2κ for
every δ < κ, does it follow that the Maharam type of (κ,Pκ, ν) is 2κ?

As a special case of this we have

(P2f) If c is atomlessly-measurable, with witnessing probability ν, does it follow that the
Maharam type of (c,Pc, ν) is 2c ?

P3 Indescribability In 4R we saw that if κ is an atomlessly-measurable cardinal constructed by Solovay’s
method, then either κ is not weakly Π1

1-indescribable, or κ is weakly Π2
0-indescribable and its Π2

0-filter is
included in its rvm filter. We also have a characterization of weak Π1

1-indescribability in terms of covering
numbers (6L). This begs many questions. For instance:

(P3a) If κ is a weakly Π1
1-indescribable atomlessly-measurable cardinal, must it be weakly

Π2
0-indescribable?

(P3b) If κ is a weakly Π1
n-indescribable atomlessly-measurable cardinal, must its Π1

n-filter be
included in its rvm filter?

(For n = 0 and n = 1, yes; see 6L.)

(P3c) If κ is an atomlessly-measurable cardinal strictly less than c, must it be weakly Π1
1-

indescribable?

P4 The cardinals of analysis A great many cardinals between ω1 and c have been named and studied
by analysts; see Vaughan 90. The existence of an atomlessly-measurable cardinal is known to have a
dramatic effect on the patterns formed by these cardinals. For instance, if κ is an atomlessly-measurable
cardinal, then

(i) non(R,N ) = ω1, where N is the ideal of Lebesgue negligible sets (6Ga); it follows that cov(R,M) =
add(M) = add(N ) = p = ω1, where M is the ideal of meager subsets of R and p = mσ-centered, as in
Fremlin 84 and Douwen 84; see Fremlin 85 or Bartoszyński & Judah p90.

(ii) b < κ, where b = add(NN/F0) , writing F0 for the Fréchet filter on N (5Lb).
(iii) cf(d) 6= κ, where d = cf(NN) (7Ka).
(iv) cov(R,N ) ≥ κ (in fact, cov(X,Nµ) ≥ κ for any non-trivial Radon measure space (X,µ)) (6B).

Consequently κ ≤ non(R,M) ≤ cf(M) ≤ cf(N ) (Fremlin 85 or Bartoszyński & Judah p90 again).
Once again, there are obvious gaps. The principal one seems to be
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(P4a) If κ is an atomlessly-measurable cardinal, must d be less than κ?

Concerning covering numbers, we have

(P4b) If there is an atomlessly-measurable cardinal, must cov(R,N ) be exactly c?

(see 2Hb). Then concerning the numbers non(., .) we have

(P4c) If κ is an atomlessly-measurable cardinal, must non({0, 1}κ,Nµκ
) be ω1?

Because we know that non({0, 1}θ,Nµθ
) = ω1 for θ < κ (6G), we can apply results from §4; it is not hard

to construct a Σ1
2 formula φ such that, for ordinals α > ω1, (α; ;ω, ω1) � φ iff non({0, 1}α,Nµα

) = ω1. Now
if non({0, 1}κ,Nµκ

) > ω1, then (κ; ;ω, ω1) � ¬φ while (α; ;ω, ω1) 6� ¬φ for every α < κ, and κ is not weakly
Π1

2-indescribable.
An associated question comes from 6F:

(P4d) If κ is an atomlessly-measurable cardinal, must there be a set A ⊆ R, of cardinal κ,
such that no uncountable subset of A is Lebesgue negligible?

Again, we get a positive answer if κ is weakly Π1
2-indescribable, using 6F.

A curious question arises from 3Bb.

(P4e) Let κ be an atomlessly-measurable cardinal and A a subset of R. Must there be a set
B ⊆ A such that #(B) < κ and µ∗

LB = µ∗
LA, writing µL for Lebesgue measure?

If #(A) ≤ κ, yes, by 3Bb; but the general question seems to be open.
A question closely related in form, if not in content, to P4d, is

(P4f) If κ is an atomlessly-measurable cardinal, must there be ccc partially ordered sets P and
Q such that S(P ×Q) > κ?

As before, this corresponds to a Σ1
2 formula, so that 7D shows that we shall have an affirmative answer if κ

is weakly Π1
2-indescribable. The same route leads from 7F to

(P4g) If κ is an atomlessly-measurable cardinal, must there be an ω1-entangled subset of R of
cardinal κ?

Returning to named cardinals, let a be the smallest cardinal of any infinite maximal disjoint family in
the algebra PN/[N]<ω; then b ≤ a (Douwen 84, Theorem 3.1a); but

(P4h) If κ is atomlessly-measurable, must a be less than κ?

P5 Cofinalities The remarkable results from Shelah’s pcf theory which give us 7Ka-d leave some natural
questions open. The most important has already been listed as P4a. But it seems that even the following
bold conjecture might be true:

(P5a) Let κ be an atomlessly-measurable cardinal. Let 〈Pζ〉ζ<λ be a family of partially ordered
sets where λ < κ and cf(Pζ) < κ and add(Pζ) > ω for every ζ < λ. Does it follow that
cf(

∏

ζ<λ Pζ) < κ?

If κ = c, yes (7Kf); if add(Pζ) > λ for every ζ, yes. A positive answer to P9b below would settle the general
question. A natural special case of P5a is

(P5b) Let κ be an atomlessly-measurable cardinal. Must cf(ωω1
1 ) be less than κ?

P6 More measure algebras In paragraph P2 above I listed the known facts concerning the Maharam
types of witnessing probabilities on atomlessly-measurable cardinals. But if we allow ourselves general
probability spaces (X,PX,µ) we can expect other phenomena. Indeed, Theorem 8A shows that PMEA
implies that there are probability spaces (X,PX,µ) of arbitrarily large Maharam type. Now in this context
the question arises

(P6) Is it consistent to suppose that there is a cardinal λ0 such that for every cardinal λ ≥ λ0

there is a Maharam homogeneous probability space (X,PX,µ) of Maharam type λ?

P7 Qm ideals If a cardinal κ is real-valued-measurable, it is of course also quasi-measurable; so we have
both an rvm ideal Jrvm(κ) (1I) and a qm ideal Jqm(κ) (9C). Evidently Jrvm(κ) ⊇ Jqm(κ), and they are
equal if κ is two-valued-measurable (9D).

Now suppose that κ is two-valued-measurable and that P is a random real p.o.set. If we have a P-name
İ for a normal ω1-saturated ideal of Pκ, then I1 = {B : B ⊆ κ, 
P B̌ ∈ İ} is a normal ω1-saturated ideal
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of Pκ (because P is ccc; compare 2Jb), and therefore is the null ideal of some normal probability ν1 on κ.

Now if ν̃1 is the corresponding P-name for a probability on κ, as in 2C, we have 
P Nν̃1
⊆ İ, by 2J(a-ii). It

follows easily that, in V P, İ is the null ideal for a measure ν̇ on κ (in V P, take a member Ė of İ of maximal

ν̃1-measure, and set ν̇Ȧ = ν̃1(Ȧ \ Ė) for every Ȧ).
So in this case we surely have


P Jrvm(κ̌) = Jqm(κ̌).

But the question now arises,

(P7) If κ is a real-valued-measurable cardinal, is it necessarily true that Jrvm(κ) = Jqm(κ)?

P8 Sequential cardinals A question going back to Mazur 52 is: for which cardinals κ, if any, is there
a sequentially continuous function f : {0, 1}κ → R which is not continuous? Let us call such cardinals
‘sequential’ for the moment. It is easy to see that a real-valued-measurable cardinal is sequential, and it
is known that the first sequential cardinal, if there is one, is quasi-measurable. (See Plebanek p91 for a
survey of known results, with references; also Fremlin 84, 24D-E.) But the following, raised by Keisler

& Tarski 64, p. 270, seems still to be open:

(P8) Must the first sequential cardinal, if there is one, be real-valued-measurable?

P9 The measure of κI Let κ be a real-valued-measurable cardinal, and ν a normal witnessing probability
on κ. For any set I we can form the simple (completed) product probability on κI , as described in Fremlin

84, A6Kb; let us call it νI . What can be said about νI?
The most important question seems to concern the covering number cov(κI ,NνI

) (see A2P). If I is finite,
then there is a κ-additive probability with domain P(κI) extending νI (use the construction of part (a-ii)
of the proof of 5O; the same idea appears in 2Mb, 4K and 5J), so that cov(κI ,NνI

) ≥ κ. But I ask

(P9a) If κ is a real-valued-measurable cardinal, ν a normal witnessing probability on κ, and
νN the completed product probability on κN, must cov(κN,NνN

) be κ?

A reason for believing that there may be a positive answer to this question is that if ν is constructed from
a normal ultrafilter on a two-valued-measurable cardinal κ by the method of 2C, then cov(κI ,NνI

) = κ for
every non-empty set I of cardinal less than κ. A reason for taking the problem seriously is that a positive
answer would solve the following problem positively:

(P9b) If κ is a real-valued-measurable cardinal and ν is a normal witnessing probability on κ
and A ⊆ Pκ \ Nν has cardinal less than κ, does it follow that there is a countable N ⊆ κ such
that A ∩N 6= ∅ whenever A ∈ A?

(To answer P9b from P9a, consider the family {(κ \ A)N : A ∈ A}; if cov(κN,NνN
) ≥ κ this cannot cover

κN.) With a positive answer to P9b we could deal with P5a, or go on to

(P9c) If κ is a real-valued-measurable cardinal with normal witnessing probability ν, Y a set
of cardinal less than κ, I a σ-algebra of subsets of Y and f : κ → I a function, must there be a
set M ∈ I such that ν{ξ : f(ξ) ⊆M} = 1?

(Set Ay = {ξ : y ∈ f(ξ)} for each y ∈ Y , A =
⋃

{Ay : y ∈ Y, νAy = 0}. If N ∈ [κ]≤ω is such that N ∩Ay 6= ∅
whenever νAy > 0, set M =

⋃

ξ∈N f(ξ) ∈ I; then f(ξ) ⊆M whenever ξ ∈ κ \A.)
With a positive answer to P9c we could now prove generalisations of 5Ca and 5Da with arbitrary σ-ideals

in the place of [Y ]<θ. Another class of special cases is suggested by 3Bc.

æ
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Raymond), Univ. Pierre et Marie Curie, Paris, 23 (1983-84) 5.01-5.23. [P4.]
Fremlin D.H. [87] Measure-additive coverings and measurable selectors. Dissertationes Math. 260 (1987).

[9A, 9C, A2M.]
Fremlin D.H. [88] ‘Large correlated families of positive random variables’, Math. Proc. Cambridge Phil.

Soc. 103 (1988) 147-162. [A2R.]
Fremlin D.H. [89] ‘Measure algebras’, pp. 876-980 in Monk 89. [A2F, A2G, A2H, A2I, A2J, A2L, A2P,

A2Q.]
Fremlin D.H. [n82d] ‘Quasi-Radon measure spaces’, Note of 2.6.82. [A2Ja.]
Fremlin D.H. [p89d] ‘On the average of inner and outer measures’, to appear in Fund. Math. [6F.]
Fremlin D.H. [p90] ‘The partially ordered sets of measure theory and Tukey’s ordering,’ to appear in Note

di Matematica. [7G, 7I.]



116

Fremlin D.H., Hansell R.W. & Junnila H.J.K. [83] ‘Borel functions of bounded class’, Trans. Amer.
Math. Soc. 277 (1983) 835-849. [8S, 9C.]
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References in bold type indicate definitions; references in italics indicate passing references.

additivity of a measure 1D, 3A, 3G, 3H, 8A, A2C (A2Cb), A2Db; see also κ-additive measure (A2Ca),
τ -additive measure (A2V)

additivity of a partially ordered set 7K, A1Ac, A1Ba, A1H, A1I, P4

additivity of an ideal A2Cd, A2Db, P4; see also κ-additive ideal (A1Bf)
antichain 2A, A1P
Aronszajn tree see κ-Aronszajn tree (A1Ob)
arrow relation 5O, 5P, A1S
atom in a measure space A2Ac, A2Bg

atomless Boolean algebra 9D

atomless measure space A2Be, A2Kc
atomlessly-measurable cardinal 1C

Baire σ-algebra A2G, A3B
Banach-Ulam problem 1A, 1B
Baumgartner J.E. A4H
Borel measure on a topological space A2V
Borel measure-complete topological space 6M, A2V, A2W

cardinal exponentiation 5E, 7P, 7Q, 9L, 9O
ccc Boolean algebra A2Hb

ccc p.o.set 9F
ccc partially ordered set 7C, 7D, P4
chains in PN 5K
club filter A1E, A4D
cofinal set in a partially ordered set A1Ab
cofinality of a partially ordered set 7H, 7J, 7K, 7L, 7M, 7N, 9O, A1A (A1Ab), A1Ba, A1H, A1I, P4, P5
collectionwise normal topological space 8F, 8N, A3Cc, A3D
compatible elements 2A, A1P
complete filter see κ-complete filter (A1Bb)
complete measure space A2Bf, A2Cd, A2Db, A2Gd, A2J, A2Kc, A2Q
complete metric space 6M, A2W
completely generating set in a Boolean algebra A2Ha
consistency of axioms 1E, 2E, 2I, 2L, 8C, 8I, 9G
covering number see cov(X,A) (A2Pa), cov(X,Nµ), covSh(α, β, γ, δ) (A1J)
cylinder set A2Ga

decomposable measure space A2Bd, A2Hh, A2Ja
decomposable ordinal 8P, A1Dd
Dedekind σ-complete Boolean algebra 8R

dense subset of a p.o.set 2A
density of a topological space 6M, A2Hi, A3Ea
diagonal intersection of a family of sets 4B, A1E
diamond see ♦c

discrete family of points A3Cb, A3F

discrete family of sets 8E, A3C (A3Cb), A3F

down-topology of a p.o.set 2A
duality between linear spaces A2O

elementary embedding P2

entangled set 7E, 7F

finite-support product of partially-ordered sets A1R
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Fleissner W.G. 8M
forcing 2A
Fubini’s theorem see repeated integral
fully stationary see Π1

1-fully stationary (4Db)

GCH 2D, 2E
Gitik M. Intro.
Gitik-Shelah theorem 3F, 9H
greatly Mahlo cardinal 4Ac, 4B, 4C, 4G, 4I, 4K, 9J
greatly Mahlo filter 4Ac, 4B, 4G, 4K

Haydon R.G. Intro.
Hilbert space 5H
homogeneous Boolean algebra A2Gf
hyperstonian space A2L (A2La)

ideal of sets A1Ba
image measure A2Db
inaccessible cardinal see weakly inaccessible (A1Da), strongly inaccessible (A1Da)
incompatible elements in a p.o.set 2A
indecomposable ordinal 8P, A1Dd
indescribable cardinal see Πm

n -indescribable, weakly Πm
n -indescribable (§A4)

inner model 2D, P1
inner regular measure A2J, A2V, A2W
inverse-measure -preserving function 1J, 3H, A2Da, A2Fe, A2Gd, A2Jd, A2K, A2Lb

Jónsson algebra 5D, 9L, A1Oa
Jensen R. 1H
Juhász I. 8M

Kunen K. Intro., 1E, 2C, 3A, 4L, 4T, 5G, 5L, 5N, 5P, 8C, 8J, 9N, A4H, A4J

Lebesgue H. Intro.

Lebesgue measure Intro., 1A, 1D, A2Gb, A2Kc, P4
lifting of a measure space A2Q (A2Qa)
Lifting Theorem A2Q
locally compact topological space 8N
locally determined measure space A2B (A2Bc), A2Cd, A2J
lower integral 6A, A2E
lower semi-continuous function A2J

Luxemburg W.A.J. Intro.

Maharam homogeneous measure 1G, 1I, 2H, 3J-3M, A2H (A2Hg), A2Ka, A2Y, P2
Maharam type of a measure space 2H, 2I, 3F, 3G, 3H, 3I, 3J, 3K, 3L, 3M, 6D, 6I, 7Q, 8A, A2Hg, A2Ka,

A2Y, P2, P6
Maharam’s Theorem A2I
Mahlo cardinal see weakly Mahlo (4Aa), greatly Mahlo (4Ac), α-Mahlo (4B)
Mahlo’s operation 4A (4Ab), 4B, 4F, 9J, A4F
Martin’s Axiom 9G
Mathias A.R.D. Intro.
meager sets in R P4

measurable algebra 2B, 8R, A2Fc
measurable cardinal see two-valued-measurable (1Cb)
measurable function A2Ae, A2Gg
measure algebra 6C, A2F (A2Fa), A2G, A2I, A2Jd, A2La, A2Q, P2, P6
measure algebra of a measure space A2Fd, A2La, A2U

measure space A2A
measure-preserving homomorphism A2Fe, A2Gd, A2Ib, A2Jd
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measure-preserving transformation 1J; see also inverse-measure -preserving (A2Da)
metric of a measure algebra A2Fb, A2Hi
metric space 6M, A2W
metrizable space 8G, A3D, A3F
Moore space 8G, A3Ca, A3D

negligible set A2Ad
NMA 8G, 8H, 8I, 8J, 8K, 8M, 8N, 8R, 8S
non-stationary ideal A1E
normal filter 1Fb, 1G, 1I, 4Ac, 4F, 9I, A1E, A4F
normal ideal 1F (1Fa), 9B, 9C, 9K, A1E, P7

normal measure 1Fc, 1G, 8H
normal measure axiom see NMA (8H)
normal topological space 8E, 8F, 8G, 8M, 8N
normal witnessing probability 1H, 1I, 2J, 3L, 6A, P2, P7

Nyikos P.J. 8M

order-closed subalgebra of a Boolean algebra A2H, A2Ic

order-continuous linear functional 6N

partially ordered set A1Aa; see also p.o.set (2A)
partition relations see arrow relation (A1S)
pcf theory A1I
PMEA 8B, 8C-8G, 8J, 8S, 9H

p.o.set 2A; see also partially ordered set (A1Aa)
precaliber of a Boolean algebra 5D, 6C, A2T, A2U
Prikry K. Intro., 6F, 9F
principal ideal in a Boolean algebra A2Gf, A2Hc
probability A2Ba
probability algebra A2Fa
probability space A2Ba
product measure A2G, P9
product measure extension axiom see PMEA (8B)
product of partially ordered sets 7C, 7D, 7H, 7I, 7K-7N, 9O, A1H, A1I, A1R , P5
purely atomic Boolean algebra 9D
purely atomic measure space A2Bg
pushing-down lemma A1E

qm filter 9C, 9J
qm ideal 9C, P7
quasi-Radon measure space 3A, 3B, 6D, A2J (A2Ja), A2V

quasi-measurable cardinal §9 (9C), P7, P8

Radon measure space 3H, 3I, 6A, 6B, 6E, 6I, 6L, 8A, A2J (A2Jb), A2K, A2L, A2Pb, A2V, P4

Radon topological space 6M, A2V, A2W
Radon-Nikodým theorem 2C, A2Fg
random real p.o.set 2B, 2C, 2J, 4O, 8Q, P1, P7

rapid filter 5G, A1Cb
real-valued-measurable cardinal 1C
rectangle algebras 5J
reduced product of partially ordered sets 7I, 7K, 7L, 7M, 9O, A1H , A1I
regressive function 1Fa, A1Db, A1E
regular cardinal 8P, A1Ab
regular open algebra 2A, 2B, 9H, A3A
regular open set A3A
relatively order-closed set 8O, 8P
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relatively stationary set 8O, 8P
repeated integral 3A, 5H, 5I, 6A, 6I, 6J, 6K, A2Ge
Riesz space 6N
rvm filter 1I, 2K, 2L, 4K, 4N, 4P, 4Q, 4R, 5D, 6L, 7K, A4L, P3
rvm ideal 1I, 2J, 2L, 4K, 4N, 4P, 4S, 5F, P7

saturated ideal see κ-saturated ideal (A1Bf)
scalarly measurable function 5H, A2O
second-order language A4A
selective ultrafilter A1Cc
semi-finite measure space A2B (A2Bb)
sequential cardinal P8
sequentially continuous function P8
sequentially order-continuous functional 6N
Shelah S. Intro., 5D, A1I
Shelah covering number see covSh(α, β, γ, δ) (A1J)
simple group 8R
singular cardinals hypothesis 8K, A1N
Solovay R.M. Intro., 1E, 1H, 6F
Solovay’s construction 2C, 2H, 2J, 4R, P1, P2, P3, P7, P9

Souslin number of a partially ordered set 7C, 7D, A1P, A1R, P4; of a Boolean algebra 5D, A1P
Souslin’s hypothesis 7D
stationary set 4Aa, 4F, A1Dc, A1F, A1G

strictly localizable measure space A2Bd
strong law of large numbers A2X
strongly compact cardinal 8C

strongly inaccessible cardinal 1D, A1Da, A1S

subspace of a measure space A2Ab, A2J
successor cardinal 8P

supercompact cardinal 8I

third-order language A4K
Todorčević S. 5P, 7F
topology base A3F

totally finite measure A2Ba
totally ordered set 7E, A1Ac
trivial measure space 1A, 1B, 1D
two-valued-measurable cardinal 1Cb, 1D, 1E, 1Gb, 1Ha, 1I, 2D, 2E, 2H, 2I, 2K, 2L, 5N, 5P, 9G, A4L,

P1, P7

Ulam S. Intro.
Ulam matrix 1E

Ulam’s Dichotomy 1E
Ulam’s Theorem 1D
uniform filter A1Bc
up-antichain in a partially ordered set A1P
upper integral 3A, 6A, A2E, A2Je
upwards-ccc partially ordered set A1Q
upwards-compatible elements in a partially ordered set A1P
usual measure on {0, 1}I A2G (A2Ga), A2I, A2Jc, A2Pb

vector lattice 6N

weakly compact cardinal A1S

weakly Π1
0-indescribable cardinal A4C (A4Ca), A4D

weakly Π1
1-indescribable cardinal 4Dc, 4F, 4G, 4H, 4I, 4K, 4L, 4R, 6L, A1Ob, A1S, A4C (A4Ca), A4D,

A4H, P3
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weakly Π1
2-indescribable cardinal A4Ca, P4

weakly Π1
n-indescribable cardinal A4C (A4Ca), A4F, A4G, A4J

weakly Π2
0-indescribable cardinal 4P, 4Q, 4R, A4C (A4Ca), P3

weakly Π2
1-indescribable cardinal A4K, A4L

weakly Mahlo cardinal 4Aa, 4B, 8P

weakly inaccessible cardinal 1D, 4Aa, 8P, 9B, A1Da
weight of a topological space 3A, 3B, 6J, 6K, A3Ec
witnessing ideal 9C
witnessing probability 1C, P2
Woodin H. 6K

Zakrzewski P. 1J, 6K

a P4
A⌈a A2Hc
add(P ) see additivity of a partially ordered set (A1Ac)
add(µ) see additivity of a measure (A2Cb)
b P4
c = 2ω 1D, 4L, 5E, 5N, 9D, 9L, 9N, 9O, A4D
cf(P ) see cofinality of a partially ordered set (A1Ab)
cov(X,A) A2P (A2Pa), P4
cov(X,Nµ) 2H, 6B, 6L, A2Pb, A2U, P4
covSh(α, β, γ, δ) 7K, 7O, 9O, A1Ja, A1K
d 7K, P4
ℓ∞(X) 6N
L A4A
L3 A4K
L(I) 2D, 2K
L∞(A) 2C, A2Ff, A2Fg
Mh(A) see Mahlo’s operation (4Ab)
Nµ 2J, A2Ad ; see also cov(X,Nµ), non(X,Nµ)
non(X,A) A1Be
non(X,Nµ) 6G, P4
p P4
p-point filter 5G, A1Ca
p(κ)-point filter 5L, A1Cd
Regr(κ) 4Da
S(P ) see Souslin number (A1P)
sat(A) see Souslin number (A1P)
Tr(κ) 3D, 3E, 3K

TrI(X;Y ) 2F, 2G, 2H, 3D, 3M, 5D, P2
UF 4Da, 4E , 4H

α-Mahlo cardinal 4B

α→ (β, γ)2 5O, 5P, A1S
Θ(α, γ) 7K, 9O, A1Jb, A1K, A1L, A1M
κ-additive ideal 2D, 9B, 9C, 9E, A1B (A1Ba), A1E
κ-additive measure 1C, A2Ca; see also additivity of a measure (A2Cb)
κ-additive partially ordered set A1Ac
κ-Aronszajn tree 5F, 9M, A1Ob
κ-chain condition A1P
κ-complete filter 1C, 1G, A1Bb, A1E
κ-measure-bounded partially ordered set 7G, 7H, 7I, 7J
κ-saturated ideal 2D, 9A, 9B, 9E, 9I, 9P, A1Bf
µf−1 A2Db
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µ⌈A A2Ab
µ∗ A2Aa
Π1

1-filter 4Dc, 4F, 4G, 4I, 6L, A4Cb
Π1

1 formula 4T, A4B
Π1

1-fully stationary 4Db, 4Dc, 4K, A4H
Π1

1-ideal A4Cb, A4H
Π1

n-filter A4Cb, A4F, A4G, P3
Π1

n formula A4B, A4E
Π1

n-ideal A4Cb
Π2

0-filter 4Q, 4R, A4Cb
Π2

0 formula 4O, 8Q, A4K
Π2

0-ideal 4P, A4Cb
Π2

1-filter A4K, A4L
Π2

1-indescribable cardinal A4K, A4L
σ-finite measure space A2Ba, A2Bb
σ-ideal 9A , P9

Σ1
1 formula 4S, A4B

Σ1
n formula A4B

τ -additive measure A2V, A2W
τ -homogeneous Boolean algebra A2He, A2Hf, A2Ia
τ(A) A2H (A2Ha), A2I
χ(a) A2Ff
χ(x,X) 8F, 8M, A3Eb
ω-Tukey function 7G, 7H, 7I

ω1-saturated ideal 9C, 9H

� A4A
{0, 1}I A2G
♦c 5N, 9N
→ see α→ (β, γ)2 (A1S)
⌈ see subspace measure (A2Ab)

Version of 22.5.00

Supplement to ‘Real-valued-measurable cardinals’

D.H.Fremlin

University of Essex, Colchester, England

This note contains further results on real-valued-measurable cardinals, supplementing my pa-
per ‘Real-valued-measurable cardinals’ (pp. 151-304 in Israel Math. Conference Proc. 6 (1993),
ed. H.Judah), with which it should be read. References of the form ‘7C’, ‘A2J’ are directions
to paragraphs in that paper, and unexplained notation is defined there. References of the form
‘SA2Ac’ are directions to paragraphs below.

Section numbers follow those of ‘Real-valued measurable cardinals’, except that a new section
S6′ (‘Topological implications’) has been added.

Version of 27.10.94

S5. Combinatorial implications

S5A The arguments of 5E may be refined, as follows.
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Theorem Let κ be an atomlessly-measurable cardinal, and ω ≤ δ ≤ λ < κ. If 2δ < κδ+

, then 2λ = 2δ.

proof Induce on λ.

(a) For the inductive step to λ, where cf(λ) > δ, choose an injection θξ : Pξ → c for each ξ < λ; set
gA(ξ) = θξ(A ∩ ξ) for A ⊆ λ, ξ < λ. ??? If 2λ > 2δ, let N ⊆ 2δ be a set of minimal cardinal such that

AN = {A : A ⊆ λ, g−1
A [N ] is cofinal with λ}

has cardinal greater than 2δ. Then cf(λ) ≤ cf(#(N)) ≤ λ. PPP (i) If γ < λ and N =
⋃

α<γ Nα then

AN =
⋃

α<γ ANα
. (ii) If γ > λ is regular and 〈Nα〉α<γ is an increasing family with union N , then again

AN =
⋃

α<γ ANα
. QQQ

But there is no cardinal γ such that κ ≤ γ < κ+δ+

and δ < cf(γ) ≤ λ, so #(N) < κ.
Let h : κ → AN be injective. For α < β < κ set f({α, β}) = min{ζ : h(α) ∩ ζ 6= h(β) ∩ ζ}. By 5Ca,

there is a set C ⊆ κ such that #(C) = κ and M = {f(I) : I ∈ [C]2} is countable, therefore bounded above
in λ; set ζ = supM , so that h(α) ∩ ζ 6= h(β) ∩ ζ for all distinct α, β ∈ C. Next, there is a ξ ∈ λ \ ζ such
that C1 = {α : α ∈ C, gh(α)(ξ) ∈ N} has cardinal κ. But now α 7→ gh(α)(ξ) = θξ(h(α ∩ ξ)) is an injective
function from C1 to M , while #(M) < κ = #(C1). XXX

This deals with the inductive step if cf(λ) > δ.

(b) If cf(λ) ≤ δ, then 2λ ≤ (supγ<λ 2γ)cf(λ) = 2δ, so the induction proceeds.

S5B Proposition Suppose there is an atomlessly-measurable cardinal κ. Then there is a family 〈Aα〉α<ω1

of sets such that
(i) Aα ⊆ α for every α < ω1;
(ii) if α ≤ β < ω1, then Aα△(Aβ ∩ α) is finite;
(iii) if C ⊆ ω1 is uncountable, then

{α : C ∩Aα is infinite}, {α : (C ∩ α) \Aα is infinite}

are both uncountable.

proof (a) Choose a family 〈eα〉α<ω1
such that (i) each eα is an injective function from α to N (ii) if α ≤ β

then {ξ : ξ < α, eα(ξ) 6= eβ(ξ)} is finite (SA1A). Let ν be an extension of the usual measure µ of PN

(corresponding to the usual measure on {0, 1}N) to P(PN). For each a ⊆ N set

Aaα = e−1
α [a] ⊆ α.

Then whenever α ≤ β < ω1,

Aaα△(α ∩Aaβ) ⊆ {ξ : ξ < α, eα(ξ) 6= eβ(ξ)}

is finite. Thus every a ⊆ N provides a family satisfying conditions (i) and (ii).

(b) Let S be the set of those a ⊆ N for which there is some uncountable set Ca ⊆ ω1 such that {α : Ca∩Aaα

is infinite} is countable. ??? Suppose, if possible, that νS > 0. Then there is an α0 < ω1 such that

{α : Ca ∩Aaα is infinite} ⊆ α0

for ν-almost every a ∈ S; set

T = {a : a ∈ S, Ca ∩Aα is finite for every α ≥ α0}.

For each ξ < ω1, set Tξ = {a : a ∈ T, ξ ∈ Ca}; then

0 < νS = νT ≤
∑

ξ≥β νTξ

for every β < ω1, so {ξ : νTξ > 0} is uncountable and there is a δ > 0 such that B is uncountable, where

B = {ξ : νTξ ≥ δ}.

By S6F (I apologize for the forward reference, but you can easily check that there is no circularity) there is
an infinite D ⊆ B such that µ∗(

⋂

ξ∈D Tξ) > 0. Take α ≥ α0 such that D ⊆ α. If a ∈
⋂

ξ∈D Tξ, then D ⊆ Ca,
while Ca ∩Aaα is finite, so D ∩Aaα is finite. But

E = {a : D ∩Aaα is finite} = {a : a ∩ eα[D] is finite}
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is µ-measurable and has zero measure, so µ∗(
⋂

ξ∈D Tξ) = 0, which is impossible. XXX Thus νS = 0.

(c) Now consider the set S′ of those a ⊆ N for which there is some uncountable set Ca such that
{α : (Ca ∩α) \Aaα is infinite} is countable. ??? Suppose, if possible, that νS′ > 0. Then there is an α0 < ω1

such that

{α : Ca ∩ α \Aaα is infinite} ⊆ α0

for ν-almost every a ∈ S′; set

T = {a : a ∈ S, Ca ∩ α \Aα is finite for every α ≥ α0}.

For each ξ < ω1, set Tξ = {a : a ∈ T, ξ ∈ Ca}; then

0 < νS′ = νT ≤
∑

ξ≥β νTξ

for every β < ω1, so {ξ : νTξ > 0} is uncountable and there is a δ > 0 such that B is uncountable, where

B = {ξ : νTξ ≥ δ}.

By S6F there is an infinite D ⊆ B such that µ∗(
⋂

ξ∈D Tξ) > 0. Take α ≥ α0 such that D ⊆ α. If

a ∈
⋂

ξ∈D Tξ, then D ⊆ Ca, while Ca ∩ α \Aaα is finite, so D \Aaα is finite. But

E = {a : D \Aaα is finite} = {a : eα[D] \ a is finite}

is µ-measurable and has zero measure, so µ∗(
⋂

ξ∈D Tξ) = 0, which is impossible. XXX Thus νS′ = 0.

(d) There must therefore be an a ⊆ N not belonging to either S or S′, and the corresponding family
〈Aaα〉α<ω1

has the required property.

Remark This comes from Todorčević 93, §7.

Version of 22.5.00

S6′. Topological implications

S6′A Proposition Suppose there is an atomlessly-measurable cardinal. Then there is a locally compact
locally countable Hausdorff topology T on ω1 such that every closed set is either countable or cocountable.

proof (a) Let κ be an atomlessly-measurable cardinal, and ν0 a Maharam homogeneous atomless probability
measure with domain Pκ; let λ be the Maharam type of ν. By 3F, λ > κ > ω1. Let g : κ → {0, 1}λ be a
function representing an isomorphism from the measure algebra of the usual measure on X = {0, 1}λ = X
and the measure algebra of ν0 (A2Gd). Let ν be the image measure ν0g

−1, so that ν extends the usual
measure on X, and setting Eξ = {x : x ∈ X, x(ξ) = 1} for ξ < λ, 〈Eξ〉ξ<λ is a stochastically independent
family of sets of measure 1

2 such that {E•

ξ : ξ < λ} τ -generates the measure algebra of ν. For Γ ⊆ λ write

ΣΓ for the σ-algebra generated by {Eξ : ξ ∈ Γ} ∪ {E : νE = 0}, so that PX =
⋃

{ΣΓ : Γ ∈ [λ]≤ω}. Write
Ω for the set of non-zero countable limit ordinals; for α ∈ Ω, enumerate α as 〈eα(n)〉n∈N. Fix a bijection
φ : {0, 1}N → [0, 1]N which is an automorphism for the usual measures (Fremlin p00*, 344I). For α ∈ Ω,
n ∈ N define φαn : X → [0, 1] by writing 〈φαn(x)〉n∈N = φ(〈x(α+ n)〉n∈N) for every x ∈ X.

(b) For x ∈ X, ξ < ω1 choose Bx(ξ) as follows. If ξ < ω then Bx(ξ) = {ξ}. Suppose that Bx(ξ) has been
defined for every ξ < α, where α ∈ Ω. Set Cx(α, n) = Bx(eα(n)) \

⋃

i<nBx(eα(i)) for each n. Set

Bx(α+ n) = {α+ n} ∪
⋃

{Cx(α, i) : i ∈ N, 2−n−1 ≤ φαi(x) < 2−n}

for each n.
Let Tx be the topology on ω1 generated by {Bx(ξ) : ξ < ω1}∪{ω1\Bx(ξ) : ξ < ω1}. Then Tx is Hausdorff

and locally countable. PPP It is Hausdorff because if ξ < η then ξ ∈ Bx(ξ) and η /∈ Bx(ξ). (The point is that
if α is a limit ordinal and n ∈ N, then

α+ n ∈ Bx(α+ n) ⊆ {α+ n} ∪ α.)

It is locally countable because every Bx(ξ) is countable. QQQ

(c) For α ∈ Ω, let Txα be the topology on α generated by {Bx(ξ) : ξ < α} ∪ {α \ Bx(ξ) : ξ < α}. Then
an easy induction shows that Cx(β, n)∩α and Bx(η)∩α are open-and-closed in Txα for every β ∈ Ω, n ∈ N
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and η ∈ ω1, so that Txα is the subspace topology on α induced by Tx. Now Bx(ξ) is Txα-compact whenever
α ∈ Ω, n ∈ N and ξ < α. PPP Induce on α. For α = ω, every Bx(ξ) is a singleton, so the induction starts.
If α = β + ω, where β ∈ Ω, and ξ < α, either ξ < β so Bx(ξ) ⊆ β is Txβ-compact, therefore Txα-compact,
or ξ = α+ n for some n. In this case, Bx(eβ(n)) is always Txβ-compact and Txβ-open, so 〈Cx(β, i)〉i∈N is a
partition of β into Txβ-compact and Txβ-open sets, and Bx(β + n) must be Tx,β+ω-compact. If α is a limit
member of Ω, then for every ξ < α there is a β ∈ Ω such that ξ < β < α, and the inductive hypothesis tells
us that Bx(ξ) is Txβ-compact, therefore Txα-compact. Thus the induction proceeds. QQQ

It follows that every Bx(ξ) is Tx-compact, so that Tx is locally compact, for every x ∈ X.

(d) The essential fact to note about this construction is that {x : ξ ∈ Bx(η)}, {x : ξ ∈ Cβ,n} belong to
Σα whenever α ∈ Ω, ξ < ω1, η < α, β ∈ α ∩ Ω and n ∈ N.

(e) ??? Suppose, if possible, that for every x ∈ X there is a set Dx ⊆ ω1 which is Tx-closed but neither
countable nor cocountable. For ξ < ω1 set Hξ = {x : ξ ∈ Dx} ⊆ X. Then there is a countable set Γξ ⊆ λ
such that Hξ ∈ ΣΓξ

. Note also that, for any ξ < ω1,
⋃

η>ξ Hη = X, so there is a countable ∆ξ ⊆ ω1 \ ξ such

that
⋃

η∈∆ξ
Hη is conegligible. Let A be

{α : α ∈ Ω, (Γξ ∩ ω1) ∪ ∆ξ ⊆ α for every ξ < α};

then A is a club set in ω1. Take any α ∈ A. Set Γ =
⋃

ξ<α Γξ, so that Γ ∩ ω1 ⊆ α.

Let Y be {y : y ∈ X, Dy ∩ α is cofinal with α}, so that Y ⊇
⋂

ξ<α

⋃

η∈∆ξ
Hη is conegligible. For every

x ∈ X, Dx does not include ω1 \ α, so there is a least ζx ≥ α such that ζx /∈ Dx; let ζ ∈ ω1 \ α be the
least ordinal such that Q = {x : ζx = ζ} is not negligible. Set Y1 = {y : y ∈ Y, ζy ≥ ζ}, so that Y1 is
conegligible. Express ζ as β + n where β ∈ Ω, n ∈ N. Observe that Hξ is conegligible, so belongs to ΣΓ, for
every ξ ∈ β \ α, so Hξ ∈ ΣΓ for every ξ < β.

For x ∈ X, set Ix = {m : m ∈ N, Dx ∩ Cx(β,m) 6= ∅}. Observe that

{x : m ∈ Ix} =
⋃

ξ<β{x : ξ ∈ Dx ∩ Cx(β,m)} ∈ ΣΓ∪β

for every m ∈ N. If y ∈ Y1, Dy ∩ β is cofinal with β, whether or not β = α, because Dy ∩ α is cofinal with
α and β \ α ⊆ Dy. Since

supCy(β,m) ≤ supBy(eβ(m)) = eβ(m) < β

for every m, Iy is infinite, for every y ∈ Y1.
On the other hand, setting Fm = {x : 2−n−1 ≤ φβm(x) < 2−n} for m ∈ N, 〈Fm〉m∈N is a stochastically

independent sequence of sets of measure 2−n−1 all belonging to Σ(β+ω)\β , which is independent from ΣΓ∪β .
Set Jx = {m : x ∈ Fm}. Then

G = {x : Ix is infinite, Ix ∩ Jx is finite}

is negligible. PPP Set h1(x) = Ix, h2(x) = Jx, h(x) = (Ix, Jx), so that h1 and h2 are functions from X to PN.
Let µ1, µ2 be the Radon measures on PN such that h1 and h2 are inverse-measure -preserving. Then h1 is
inverse-measure -preserving for ν↾ΣΓ∪β and µ1, and h2 is inverse-measure -preserving for ν↾Σ(β∪ω)\β and
µ2, so h is inverse-measure -preserving for ν and the product measure µ1 × µ2 on PN × PN. Now the set

{(I, J) : I ∈ [N]ω, J ⊆ N, I ∩ J is finite}

is a Borel set in PN × PN which has µ2-negligible vertical sections, so is µ1 × µ2-negligible, and its inverse
image G is ν-negligible. QQQ

There is therefore some y ∈ Q ∩ Y1 \G. But in this case ζ /∈ Dy, so By(ζ) ∩Dy is a Ty-compact set not
containing ζ. Since

By(ζ) = {ζ} ∪
⋃

m∈Jy
Cy(β,m),

there must be a finite set K ⊆ Jy such that By(ζ) ∩Dy ⊆
⋃

m∈K Cy(β,m). Since Iy is infinite and y /∈ G,
there is an m ∈ Iy ∩ Jy \K, and Cy(β,m) ∩Dy is not empty; which is impossible. XXX

This contradiction shows that for at least one x ∈ X, every Tx-closed set is either countable or cocountable.

Remarks This proposition is based on ideas of J.Moore.
Observe that, for a topology T as described, ω1 is hereditarily separable. PPP??? If A ⊆ ω1 is not separable,

of course it is uncountable. For ξ < ω1, choose αξ, βξ in A, and countable open sets Gξ ⊆ ω1 inductively,
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as follows. Given 〈αη〉η<ξ, let βξ ∈ A be such that βξ /∈ {αη : η < ξ} ∪ (A ∩ ξ). Let Gξ be a countable open
set containing βξ and not meeting {αη : η < ξ}. Given 〈Gη〉η≤ξ, take αξ ∈ A \ (ξ ∪

⋃

η≤ξ Gη).

Now consider F = {αξ : ξ < ω1}. Then αξ ∈ F and βξ /∈ F for every ξ. Since αξ, βξ ≥ ξ for every ξ, F
is neither countable nor cocountable, which is impossible. XXXQQQ

Version of 21.5.00

S6. Measure-theoretic implications

S6A Proposition Let κ be an atomlessly-measurable cardinal and λ < κ a cardinal. Then there is a
cardinal θ < κ such that whenever X is a T0 topological space of cardinal at least θ and weight at most λ
then there is an atomless τ -additive Borel probability on X.

proof ??? Suppose, if possible, otherwise.

(a) We are supposing that for each ζ < κ there is a T0 space Xζ , of cardinal at least #(ζ) and of weight
at most λ, with no atomless τ -additive Borel probability. Note that any τ -additive Borel probability µ̃ on
any subspace D of Xζ gives rise to a τ -additive Borel probability µ̃1 on Xζ , writing µ̃1E = µ̃(D ∩ E) for
every Borel set E ⊆ Xζ , which would be atomless if µ̃ were atomless; so we may take it that #(Xζ) is
precisely #(ζ). Let 〈Uζξ〉ξ<λ run over a base for the topology of Xζ . Define fζ : Xζ → X = {0, 1}λ by
writing

fζ(x)(ξ) = 1 if x ∈ Uζξ, 0 if x ∈ Xζ \ Uζξ.

Note that fζ is injective, because Xζ is a T0 space, so we may enumerate Yζ = fζ [Xζ ] as 〈yζξ〉ξ<ζ .

(b) Let ν be a normal witnessing probability on κ. Define µ : P(X × κ) → [0, 1] by setting

µE =
∫

ν{ζ : (yζξ, ζ) ∈ E}ν(dξ)

for E ⊆ X × κ. Then µ is a κ-additive probability on X × κ. By SA2B below there is a family 〈µζ〉ζ<κ of
Radon probabilities on X such that µ(H × A) =

∫

A
µζHν(dζ) for every set H in the Baire σ-algebra of X

and every A ⊆ κ.
Let V be the algebra of open-and-closed subsets of X.

(c) For any C ⊆ X × κ, µC ≤
∫

µ∗
ζC

−1[{ζ}]ν(dζ). PPP The set W of sets expressible as a finite disjoint

union of sets V ×A, where V ∈ V and A ⊆ κ, is a subalgebra of P(X × κ), and for every W ∈ W we have

µW =
∫

µζW
−1[{ζ}]ν(dζ).

Now take ǫ > 0. For each ζ < κ choose an open set Gζ ⊇ C−1[{ζ}] such that µζGζ ≤ µ∗
ζC

−1[{ζ}] + ǫ. Set

E = {(y, ζ) : ζ < κ, y ∈ Gζ} =
⋃

V ∈V{(y, ζ) : y ∈ V ⊆ Gζ}.

Then C ⊆ E so µC ≤ µE. Because µ is κ-additive and #(V) ≤ max(λ, ω) < κ, there is a finite V0 ⊆ V such
that µW ≥ µE − ǫ, where

W =
⋃

V ∈V0
{(y, ζ) : y ∈ V ⊆ Gζ}.

But W ∈ W, so

µW =
∫

µζW
−1[{ζ}]ν(dζ) ≤

∫

µζGζν(dζ).

Putting these together,

µC ≤
∫

µζGζν(dζ) + ǫ ≤
∫

µ∗
ζC

−1[{ζ}]ν(dζ) + 2ǫ.

As ǫ is arbitrary, we have the result. QQQ
Taking complements, we see now that

µC ≥
∫

(µζ)∗C
−1[{ζ}]ν(dζ)

for every C ⊆ X × κ, writing (µζ)∗D = sup{µζH : H ⊆ D is µζ-measurable} for every D ⊆ X, ζ < κ.

(d) µ∗
ζYζ = 1 for ν-almost every ζ. PPP Set C = {(y, ζ) : ζ < κ, y ∈ Yζ} ⊆ X × κ. Then (yζξ, ζ) ∈ C

whenever ξ < ζ < κ, so µC = 1. By (c),
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1 = µC ≤
∫

µ∗
ζC

−1[{ζ}]ν(dζ) =
∫

µ∗
ζYζν(dζ).

Thus µ∗
ζYζ = 1 for almost all ζ. QQQ

Set A0 = {ζ : µ∗
ζYζ = 1}.

(e) µζ is atomless for almost all ζ ∈ A0. PPP Set

B = {ζ : ζ ∈ A0, µζ has an atom},

C = {(y, ζ) : ζ < κ, y ∈ Yζ , µζ{y} > 0}.

If ζ ∈ B, then (because µζ is a Radon measure) there is a y ∈ X such that µζ{y} > 0; but as µ∗
ζYζ = 1,

y ∈ Yζ and (y, ζ) ∈ C. For each ζ < κ, C−1[{ζ}] is countable, so is expressible as {yζξ : ξ ∈ Iζ}, where Iζ ⊆ ζ
is countable. Let I ⊆ κ be a countable set such that Iζ ⊆ I for almost all ζ (5Ab). Now ν{ζ : yζξ ∈ C} = 0
for every ξ ∈ κ \ I, so µC = 0. Consequently, by the last remark of (c) above,

∫

(µζ)∗C
−1[{ζ}]ν(dζ) = 0.

But of course (µζ)∗C
−1[{ζ}] > 0 for every ζ ∈ B, so νB = 0, as claimed. QQQ

(f) There must therefore be some ζ < κ such that µζ is atomless and µ∗
ζYζ = 1.

Write µ′
ζ for the quasi-Radon subspace probability µζ⌈Yζ (A2Ja). f−1

ζ : Yζ → Xζ is continuous, so we have

a τ -additive Borel probability µ̃ on Xζ defined by saying that µ̃E = µ′
ζ(fζ [E]) for every Borel set E ⊆ Xζ .

Now take ǫ > 0. Because µζ is atomless, every point of X is contained in an open set of µζ-measure at most
ǫ. Because X is compact, we have a finite cover of X by basic cylinder sets of the form Uw = {y : y↾I = w},
where I ⊆ λ is finite and w ∈ {0, 1}I , all of µζ-measure at most ǫ. Now f−1

ζ [Uw] is a Borel set in Xζ for

every w (examine the original definition of fζ in (a) above), and µ̃f−1
ζ [Uw] = µ′

ζ(Yζ ∩ Uw) = µζUw, so Xζ

has a partition into finitely many Borel sets of µ̃-measure at most ǫ. As ǫ is arbitrary, µ̃ is atomless.
But this contradicts the choice of Xζ . XXX
This contradiction completes the proof.

S6B Corollary Let κ be an atomlessly-measurable cardinal and λ < κ a cardinal. Then there is a
cardinal θ < κ such that

(a) whenever X is a regular T0 topological space of cardinal at least θ and weight at most λ then there
is an atomless quasi-Radon probability on X;

(b) whenever Z is a compact Hausdorff space of weight at most λ and X ⊆ Z has cardinal at least θ,
then there is an atomless Radon probability µ on Z such that µ∗X = 1.

proof Take θ from S6A.

(a) There is an atomless τ -additive Borel probability on X, which by SA2A extends to a quasi-Radon
probability on X.

(b) There is an atomless τ -additive Borel probability µ0 on X; setting µE = µ0(X ∩ E) for Borel sets
E ⊆ Z, we get a τ -additive Borel probability on Z for which µ∗X = 1; by SA2A the completion µ̂ of µ is
quasi-Radon, and of course µ̂ is atomless and µ̂∗X = 1. Because Z is compact, µ̂ is inner regular for the
compact sets and is therefore a Radon measure.

S6C Corollary Let κ be an atomlessly-measurable cardinal. Then there is a θ < κ such that no subset
of R of cardinal θ or more can be universally negligible.

proof Apply S6Bb with λ = ω, X = [a, b], where a ≤ b in R.

S6D Proposition If κ is an atomlessly-measurable cardinal and (X,µ) is an atomless Radon probability
space of Maharam type at most κ, then cf(Nµ) = cf(N ), where N is the Lebesgue null ideal.

proof Use S7B below and 6.14 of Fremlin 89.

S6E Lemma Let κ be an atomlessly-measurable cardinal, and λ ≤ κ a cardinal of uncountable cofinality.
Let (X,µ) be a Radon probability space and 〈Eξ〉ξ<λ a family of non-negligible measurable subsets of X.
Then there is an x ∈ X such that #({ξ : x ∈ Eξ}) = λ.
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proof By 6C, λ is a precaliber of the measure algebra A of (X,µ). For each ξ < κ, choose a compact
non-negligible Fξ ⊆ Eξ. Then there is a set D ∈ [λ]λ such that {F •

ξ : ξ ∈ D} is centered. But this means

that {Fξ : ξ ∈ D} has the finite intersection property; because the Fξ are compact, there is a point in
⋂

ξ∈D Fξ, and this will serve for x.

S6F Lemma Let κ be an atomlessly-measurable cardinal. Let (X,Σ, µ) be a probability space, and Σ0

a σ-subalgebra of Σ; set µ0 = µ↾Σ0 and let µ∗
0 be the outer measure on X defined from µ0. Suppose that

the Maharam type τ0 of µ0 is less than κ. Let 〈Eξ〉ξ<λ be a family in Σ with infξ<λ µEξ = γ > 0, where
λ > max(ω, τ0). Then for any γ′ < γ there is an infinite W ⊆ λ such that µ∗

0(
⋂

ξ∈W Eξ) ≥ γ′.

Remark Compare A2S.

proof It is enough to consider the case λ = max(ω1, τ
+
0 ), so that cf(λ) > ω and λ ≤ κ.

(a) Consider first the special case in which X = {0, 1}I for some set I, with µ the usual measure on X,
and there is a J ⊆ I of cardinal τ0 such that Σ0 = {π−1

J [F ] : F ∈ ΣJ}, writing ΣJ for the domain of the
usual measure µJ on {0, 1}J , and πJ : X → {0, 1}J for the canonical map.

We may regard X as the product {0, 1}J × {0, 1}I\J . For ξ < λ, z ∈ {0, 1}I\J set

Eξz = {y : y ∈ {0, 1}J , (y, z) ∈ Eξ}.

Then
∫

µJEξzµI\J(dz) = µEξ ≥ γ

by Fubini’s theorem (A2Ge). Set

Gξ = {z : z ∈ {0, 1}I\J , µJEξz exists ≥ γ};

then µI\JGξ exists and is greater than 0. By S6E, there is a z ∈ {0, 1}I\J such that U = {ξ : z ∈ Gξ} has
cardinal λ.

Let (A0, µ̄J ) be the measure algebra of µJ . Then the topological density of A0 is at most max(ω, τ0) < λ
(Fremlin 89, 6.3b). So there is a b ∈ A0 such that {ξ : ξ ∈ U, µ̄J(b△E•

ξz) ≤ δ} is infinite for every

δ > 0. Of course µ̄Jb ≥ infξ∈U µ̄JE
•

ξz ≥ γ. Let 〈ξn〉n∈N be a sequence of distinct elements of U such that
∑

n∈N µ̄J(b△E•

ξnz) ≤ γ − γ′. Then

µJ(
⋂

n∈N Eξnz) = µ̄J(infn∈N E
•

ξnz) ≥ µ̄Jb−
∑

n∈N µ̄J(b \ E•

ξnz) ≥ γ′.

Set W = {ξn : n ∈ N}. If F ′ ∈ ΣJ and π−1
J [F ′] ⊇

⋂

ξ∈W Eξ, we must have F ′ ⊇
⋂

n∈N Eξnz, so

µ(π−1
J [F ′]) = µJF

′ ≥ γ′.

As F ′ is arbitrary, µ∗
0(

⋂

ξ∈W Eξ) ≥ γ′, as required.

(b) It follows that if (A, µ̄) is a probability algebra, A0 is an order-closed subalgebra of A with τ(A0) =
τ0 < κ, λ is a cardinal greater than max(ω, τ(A0)), 〈aξ〉ξ<λ is a family in A with infξ<λ µ̄aξ = γ > 0, and
γ′ < γ, then there is an infinite W ⊆ λ such that

min{µ̄b : b ∈ A0, b ⊇ infξ∈W aξ} ≥ γ′.

PPP We can embed A as a subalgebra of the measure algebra AI of {0, 1}I for some set I (A2Ib). If we
take a set B ⊆ A0 of cardinal τ0 which completely generates A0, then for each b ∈ B we can find a set
Gb ⊆ X = {0, 1}I , belonging to the Baire σ-algebra of X, such that b = G•

b in A; now there is a set J ⊆ I, of
cardinal at most max(ω, τ0), such that every Gb belongs to Σ0, if we define Σ0 from J as in part (a) above.

Set A1 = {G• : G ∈ Σ0}, so that A1 is an order-closed subalgebra of A and A0 ⊆ A1. Let ΣJ be the
algebra of measurable subsets of {0, 1}J , and AJ the measure algebra of {0, 1}J . Then the inverse-measure-
preserving map πJ : X → {0, 1}J induces an isomorphism φ between A1 and AJ , taking φ(π−1

J [G]•) = G• for
every G ∈ ΣJ . By the lifting theorem (A2Qb) there is a lifting θJ : AJ → ΣJ . So we have a corresponding
Boolean homomorphism θ1 : A1 → Σ0 given by setting θ1(a) = π−1

J [θJ(φ(a))] for each a ∈ A1. As remarked
in A2Qc, there is an extension θ of θ1 to a lifting from A to Σ.

Set Eξ = θ(aξ) for each ξ < λ. By part (a) above, there is an infinite set W ⊆ λ such that µ∗
0(

⋂

ξ∈W Eξ) ≥

γ′. Now suppose that b ∈ A0 and b ⊇ infξ∈W aξ. Then θ(b) ⊇
⋂

ξ∈LEξ and θ(b) ∈ Σ0, so



130

µ̄b = µ(θ(b)) ≥ µ∗
0(

⋂

ξ∈W Eξ) ≥ γ′.

Thus we have the set W we need. QQQ

(c) We are now ready for the general case of the lemma. Let (A, µ̄) be the measure algebra of (X,Σ, µ)
and set A0 = {G• : G ∈ Σ0}, aξ = E•

ξ for each ξ < λ. By (b), there is an infinite W ⊆ λ such that µ̄b ≥ γ′

whenever b ∈ A0 and b ⊇ infξ∈W aξ. Now if G ∈ Σ0 and G ⊇
⋂

ξ∈W Eξ, b = G• ∈ A0 and b ⊇ infξ∈W aξ, so

that µ0G = µG = µ̄G• ≥ γ′. As G is arbitrary, µ∗
0(

⋂

ξ∈W Eξ) ≥ γ′, and we have a suitable set W .

S6G Proposition Let κ be an atomlessly-measurable cardinal.
(a) Let X be a Hausdorff space such that χ(X) < κ. Then any Radon probability measure on X has

Maharam type at most max(ω, χ(X)).
(b) Let X be a Hausdorff space such that χ(x,X) < κ for every x ∈ X. Then any Radon probability

measure on X has Maharam type less than κ.

proof ??? Suppose, if possible, otherwise. By SA2D, X has a Maharam homogeneous Radon probability
measure µ of Maharam type λ, where λ = max(ω1, χ(X)+) in (a) and λ = κ in (b). Let A be the
measure algebra of µ; then A can be expressed as the union of a strictly increasing family 〈Aξ〉ξ<λ of closed
subalgebras. For each x ∈ X choose a base Ux of open neighbourhoods of x with #(Ux) = χ(x,X). Set

Xξ = {x : x ∈ X, U• ∈ Aξ for every U ∈ Ux}.

Because cf(λ) = λ > χ(x,X) for every x,
⋃

ξ<λXξ = X.

By 6C/S6E, supξ<λ µ
∗Xξ = 1; because cf(λ) > ω, there is a ξ < λ such that µ∗Xξ = 1. Now let G be

any open subset of X. Set

H = {H : H ⊆ G is open, H• ∈ Aξ}, H0 =
⋃

H.

Then H0 ⊇ G ∩Xξ. So G \H0 must be negligible, and

G• = H•
0 = supH∈HH

• ∈ Aξ.

As G is arbitrary, A = Aξ, which is absurd. XXX

Remark This is derived from Plebanek 95.

Version of 22.5.00

S7′. Topological implications

S7′A Proposition Suppose there is an atomlessly-measurable cardinal. Then there is a locally compact
locally countable Hausdorff topology T on ω1 such that every closed set is either countable or cocountable.

proof (a) By , there is an ω2-additive measure ν on X = {0, 1}ω1 extending the usual measure on X. We
may suppose that ν is Maharam homogeneous, with Maharam type λ say, and that we have an independent
family 〈Eξ〉ξ<λ of measurable sets generating the measure algebra of ν, starting with Eξ = {x : x(ξ) = 1}
for ξ < ω1 (). For Γ ⊆ λ write ΣΓ for the σ-algebra generated by {Eξ : ξ ∈ Γ} ∪ {E : νE = 0}, so that
PX =

⋃

{ΣΓ : Γ ∈ [λ]≤ω). Write Ω for the set of non-zero countable limit ordinals; for α ∈ Ω, enumerate
α as 〈eα(n)〉n∈N. Fix a bijection φ : {0, 1}N → [0, 1]N which is an automorphism for the usual measures
(Fremlin p00*, 344I). For α ∈ Ω, n ∈ N define φαn : X → [0, 1] by writing 〈φαn(x)〉n∈N = φ(〈x(α+n)〉n∈N)
for every x ∈ X.

(b) For x ∈ X, ξ < ω1 choose Bx(ξ) as follows. If ξ < ω then Bx(ξ) = {ξ}. Suppose that Bx(ξ) has been
defined for every ξ < α, where α ∈ Ω. Set Cx(α, n) = Bx(eα(n)) \

⋃

i<nBx(eα(i)) for each n. Set

Bx(α+ n) = {α+ n} ∪
⋃

{Cx(α, i) : i ∈ N, 2−n−1 ≤ φαi(x) < 2−n}

for each n.
Let Tx be the topology on ω1 generated by {Bx(ξ) : ξ < ω1} ∪ {ω1 \ Bx(ξ) : ξ < ω1}. Then Tx is

Hausdorff, locally countable and locally compact. PPP It is Hausdorff because if ξ < η then ξ ∈ Bx(ξ) and
η /∈ Bx(ξ). (The point is that if α is a limit ordinal and n ∈ N, then

α+ n ∈ Bx(α+ n) ⊆ {α+ n} ∪ α.)
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It is locally countable because every Bx(ξ) is countable. Finally, an induction on ξ shows that every Bx(ξ)
is compact, because if, for α ∈ Ω, we take Txα to be the topology on α generated by {Bx(ξ) : ξ <
α} ∪ {α \ Bx(ξ) : ξ < α}, then every Cx(β, n) ∩ α and every Bx(η) ∩ α, for β ∈ Ω \ α, η ∈ ω1 \ α are
open-and-closed for Tα. Now, given α ∈ Ω, the inductive hypothesis tells us that Cx(α, i) is always compact
for Txα, so that Bx(α+ n) is compact for Tx,α+ω and therefore for Tx. So Tx is locally compact. QQQ

(c) The essential fact to note about this construction is that {x : ξ ∈ Bx(η)}, {x : ξ ∈ Cβ,n} belong to
Σα whenever α ∈ Ω, ξ < ω1, η < α, β ∈ α ∩ Ω and n ∈ N.

??? Suppose, if possible, that for every x ∈ X there is a set Dx ⊆ ω1 which is Tx-closed but neither
countable nor cocountable. For ξ < ω1 set Hξ = {x : ξ ∈ Dx} ⊆ X. Then there is a countable set Γξ ⊆ λ
such that Hξ ∈ ΣΓξ

. Note also that, for any ξ < ω1,
⋃

η>ξ Hη = X, so there is a countable ∆ξ ⊆ ω1 such

that
⋃

η∈∆ξ,η>ξ Hη is conegligible. Let A be

{α : α ∈ Ω, (Γξ ∩ ω1) ∪ ∆ξ ⊆ α for every ξ < α};

then A is a club set in ω1. Let α be the supremum of a strictly increasing set in A. Set Γ =
⋃

ξ<α Γξ, so
that Γ ∩ ω1 ⊆ α.

Let Y be {y : Dy ∩ α is cofinal with α}, so that Y is conegligible. For every x ∈ X, Dx does not
include ω1 \ α, so there is a least ζx ≥ α such that ζx /∈ Dx; let ζ ∈ ω1 \ α be the least ordinal such that
Y2 = {y : y ∈ Y, ζy = ζ} is not negligible. Set Y1 = {y : y ∈ Y, ζy ≥ ζ}, so that Y1 is conegligible. Express
ζ as β + n where β ∈ Ω, n ∈ N. Observe that Hξ is conegligible, so belongs to ΣΓ, for every ξ ∈ β \ α, so
Hξ ∈ ΣΓ for every ξ < β.

For x ∈ X, set Ix = {m : m ∈ N, Dx ∩ Cy(β,m) 6= ∅}. Observe that

{x : m ∈ Ix} =
⋃

ξ<β{x : ξ ∈ Dx ∩ Cx(β,m)} ∈ ΣΓ∪β

for every m ∈ N. If y ∈ Y1, Dy ∩ β is cofinal with β, whether or not β = α, because Dy ∩ α is cofinal with
α and β \ α ⊆ Dy. Since

supCy(β,m) ≤ By(eβ(m)) = eβ(m) < β

for every m, Iy is infinite, for every y ∈ Y1.

On the other hand, setting Fm = {x : 2−n−1 ≤ φβm(x) < 2−n} for m ∈ N, 〈Fm〉m∈N is a stochastically
independent sequence of sets of measure 2−n−1 all belonging to Σ(β+ω)\β , which is independent from ΣΓ∪β .
Set Jy = {m : y ∈ Fm}. Then

G = {y : Iy is infinite, Iy ∩ Jy is finite}

is negligible. (Set h1(y) = Iy, h2(y) = Jy, h(y) + (Iy, Jy), so that h1 and h2 are functions from X to PN.
Let µ1, µ2 be the Radon measures on PN such that h1 and h2 are inverse-measure -preserving, and h is
inverse-measure -preserving for the product measure µ1 × µ2 on PN × PN. Now the set

{(I, J) : I ∈ [N]ω, J ⊆ N, I ∩ J is finite}

is a Borel set in PN × PN which has µ2-negligible vertical sections, so is µ1 × µ2-negligible, and its inverse
image G is ν-negligible.)

There is therefore some y ∈ Y2 \ G. But in this case, ζ /∈ Dy, so By(ζ) ∩ Dy is a Ty-compact set not
containing ζ. Since

By(ζ) = {ζ} ∪
⋃

m∈Jy
Cy(β,m),

there must be a finite set K ⊆ Jy such that By(ζ) ∩Dy ⊆
⋃

m∈K Cy(β,m). Since Iy is infinite and y /∈ G,
there is an m ∈ Iy ∩ Jy \K, and Cy(β,m) ∩Dy is not empty; which is impossible. XXX

This contradiction shows that for at least one x ∈ X, every Tx-closed set is either countable or cocountable.

Remarks This proposition is based on ideas of J.Moore.

Observe that, for a topology T as described, ω1 is hereditarily separable. PPP??? If A ⊆ ω1 is not separable,
of course it is uncountable. For ξ < ω1, choose αξ, βξ in A, and countable open sets Gξ ⊆ ω1 inductively,

as follows. Given 〈αη〉η<ξ, let βξ ∈ A be such that βξ /∈ {αη : η < ξ} ∪ (A ∩ ξ). Let Gξ be a countable open
set containing βξ and not meeting {αη : η < ξ}. Given 〈Gη〉η≤ξ, take αξ ∈ A \ (ξ ∪

⋃

η≤ξ Gη).
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Now consider F = {αξ : ξ < ω1}. Then αξ ∈ F and βξ /∈ F for every ξ. Since αξ, βξ ≥ ξ for every ξ, F
is neither countable nor cocountable, which is impossible. XXXQQQ

Version of 26.10.94

S7. Partially ordered sets

S7A Cofinalities III: Lemma Let κ be a real-valued-measurable cardinal and 〈αi〉i∈I a countable
family of ordinals less than κ and of cofinality at least ω2. Then there is a set F ⊆

∏

i∈I αi such that (i) F
is cofinal with

∏

i∈I αi (ii) if 〈fξ〉ξ<ω1
is an increasing family in F then supξ<ω1

fξ ∈ F (iii) #(F ) < κ.

proof We have cf(
∏

i∈I αi) = cf(
∏

i∈I cf(αi)) < κ, by 7Kb. So we may find a cofinal set F0 ⊆
∏

i∈I αi of
cardinal less than κ. Now for 0 < ζ ≤ ω2 define Fζ by saying that

Fζ+1 = {supξ<ω1
fξ : 〈fξ〉ξ<ω1

is an increasing family in Fζ},

Fζ =
⋃

η<ζ Fη for non-zero limit ordinals ζ ≤ ω2.

Then #(Fζ) < κ for every ζ. PPP Induce on ζ. For the inductive step to ζ + 1, ??? suppose, if possible, that
#(Fζ) < κ but #(Fζ+1) ≥ κ. For each h ∈ Fζ+1 choose an increasing family 〈fhξ〉ξ<ω1

in Fζ with supremum
h. The set h[I] of values of h is a countable subset of Y =

⋃

i∈I αi. By 5A, taking X = Fζ+1 and µ a
non-trivial κ-additive measure on X, there is a set H ⊆ Fζ+1, of cardinal κ, such that M =

⋃

h∈H h[I] is
countable. Now, for each h ∈ H, there is a γ(h) < ω1 such that whenever i ∈ I and β ∈M then h(i) > β iff
fh,γ(h)(i) > β. If g, h ∈ H and i ∈ I and g(i) < h(i), then fg,γ(g)(i) ≤ g(i) < fh,γ(h)(i), because g(i) ∈ M .
Thus h 7→ fh,γ(h) : H → Fζ is injective; but #(Fζ) < κ = #(H). XXX

Thus #(Fζ+1) < κ if #(Fζ) < κ. At limit ordinals ζ the induction proceeds without difficulty because
cf(κ) > ζ. QQQ

So #(Fω2
) < κ and we may take F = Fω2

.

S7B Theorem Let κ be a real-valued-measurable cardinal.

(a) For any cardinal θ, cf([κ]<θ) ≤ κ.

(b) For any cardinal λ < κ, any θ, cf([λ]<θ) < κ.

proof (a)(i) Consider first the case θ = ω1. Write G1 for the set of ordinals less than κ of cofinality less
than or equal to ω1; for δ ∈ G1 let ψδ : cf(δ) → δ enumerate a cofinal subset of δ. Next, write G2 for κ \G1,
and for every countable set A ⊆ G2 let F (A) ⊆

∏

α∈A α be a cofinal set, of cardinal less than κ, closed
under suprema of increasing families of length ω1; such exists by S7A above.

(ii) It is worth observing at this point that if 〈Aζ〉ζ<ω1
is any family of countable subsets of G2,

D =
⋃

ζ<ω1
Aζ , and g ∈

∏

α∈D α, then there is an f ∈
∏

α∈D α such that f ≥ g and f↾Aζ ∈ F (Aζ) for

every ζ < ω1. PPP Let 〈φ(ξ)〉ξ<ω1
run over ω1 taking every value uncountably often. Choose an increasing

family 〈fξ〉ξ<ω1
in

∏

α∈D α in such a way that f0 = g and fξ+1↾Aφ(ξ) ∈ F (Aφ(ξ)) for every ξ; this is possible
because F (A) is cofinal with

∏

α∈A α for every A. Set f = supξ<ω1
fξ; this works because every F (A) is

closed under suprema of increasing families of length ω1. QQQ

(iii) We can now find a family A of countable subsets of κ such that

(α) {α} ∈ A for every α < κ;

(β) whenever A, A′ ∈ A, ζ < ω1 then A ∪ A′, A ∩ G2, {ψα(ξ) : α ∈ A ∩ G1, ξ < min(ζ, cf(α))} all
belong to A;

(γ) whenever A ∈ A, A ⊆ G2 then f [A] ∈ A for every f ∈ F (A);

(δ) #(A) ≤ κ.

(iv) ??? Suppose, if possible, that cf([κ]≤ω) > κ. Because [κ]≤ω =
⋃

λ<κ[λ]≤ω, there is a cardinal λ < κ

such that cf([λ]≤ω) > κ. We can therefore choose inductively a family 〈aξ〉ξ<κ of countable subsets of λ
such that

aξ 6⊆
⋃

η∈A∩ξ aη

whenever ξ < κ, A ∈ A. By 5A, there is a set W ⊆ κ, of cardinal κ, such that
⋃

ξ∈W aξ is countable. Let
δ < κ be such that W ∩ δ is cofinal with δ and of order type ω1.
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(v) I choose a family 〈Akζ〉ζ<ω1,k∈N in A as follows. Start by setting A0ζ = ψδ[ζ] for every ζ < ω1; then
A0ζ ∈ A by (iii)(α-β). Given 〈Akζ〉ζ<ω1

, set A′
kζ = Akζ ∩ G2 for each ζ < ω1. For α ∈ Dk =

⋃

ζ<ω1
A′

kζ ,

set gk(α) = sup(α∩W ∩ δ) < α; choose fk ∈
∏

α∈Dk
α such that gk ≤ fk and fk↾A′

kζ ∈ F (A′
kζ) for every ζ;

this is possible by (ii) above. Set

Ak+1,ζ = Akζ ∪ fk[A′
kζ ] ∪ {ψα(ξ) : α ∈ Akζ ∩G1, ξ < min(ζ, cf(α))} ∈ A

for each ζ < ω1, and continue. An easy induction on k shows that 〈Akζ〉ζ<ω1
is increasing for every k; also,

every Akζ is a subset of δ.

(vi) Set Vk =
⋃

ζ<ω1
Akζ , bk =

⋃

{aξ : ξ ∈W ∩Vk}; then bk is countable and there is a β(k) < ω1 such

that bk =
⋃

{aξ : ξ ∈W ∩Ak,β(k)}. Now
⋃

k∈N Ak,β(k) is a countable subset of δ, so there is a member γ of
W ∩ δ greater than its supremum. We have

aγ 6⊆
⋃

{aη : η ∈ Ak,β(k)}

for every k, so aγ 6⊆ bk and γ /∈ Vk, for each k.
Set V =

⋃

k∈N Vk, γ0 = min(W ∩ δ \ V ). Because V0 = ψδ[ω1] is cofinal with δ, V \ γ0 6= ∅; let γ1 be its
least member. Then γ1 > γ0. Suppose γ1 ∈ Akζ . Observe that if α ∈ V ∩G1 then V ∩ α is cofinal with α;
but V ∩ γ1 ⊆ γ0, so γ1 /∈ G1 and γ1 ∈ Dk. But now fk(γ1) ∈ Ak+1,ζ ⊆ V and γ0 ≤ gk(γ1) ≤ fk(γ1) < γ1, so
γ1 6= min(V \ γ0). XXX

(vii) This contradiction shows that cf([κ]≤ω) ≤ κ. Now consider cf([κ]≤δ), where δ < κ is an infinite
cardinal. Then

covSh(κ, δ+, δ+, ω1) = supλ<κ covSh(λ, δ+, δ+, ω1) ≤ κ

by 7Kd. (See A1J for the definition of covSh.) So there is a family B ⊆ [κ]≤δ, of cardinal at most κ, such
that every member of [κ]≤δ is covered by a sequence in B. But now there is a family C of countable subsets
of B which is cofinal with [B]≤ω and of cardinal at most κ; setting D = {

⋃

C : C ∈ C}, we have D cofinal
with [κ]≤δ and of cardinal at most κ. So cf([κ]≤δ) ≤ κ.

Finally, of course, [κ]<θ =
⋃

δ<θ[κ]≤δ, so cf([κ]<θ) ≤ supδ<θ cf([κ]≤δ) ≤ κ whenever θ ≤ κ. For θ > κ we

have cf([κ]<θ) = 1, so cf([κ]<θ) ≤ κ for every θ.

(b) If A is cofinal with [κ]<θ then {A ∩ λ : A ∈ A} is cofinal with [λ]<θ, so cf([λ]<θ) ≤ cf([κ]θ) ≤ κ, by
(a). But by 7Id and 7Jb, cf([λ]<θ) 6= κ. Thus cf([λ]<θ) < κ, as claimed.

Remark This result is taken from Shelah #430.

S7C Corollary Let κ be a real-valued-measurable cardinal. Let 〈Pζ〉ζ<λ be a family of partially ordered
sets such that λ < add(Pζ) ≤ cf(Pζ) < κ for every ζ < κ. Then cf(

∏

ζ<λ Pζ) < κ.

proof For each ζ < λ letQζ be a cofinal subset of Pζ of cardinal less than κ. Set P =
∏

ζ<κ Pζ , Z =
⋃

ζ<λQζ ;

then #(Z) < κ so cf([Z]≤λ) < κ, by S7Bb. Let A be a cofinal subset of [Z]≤λ with #(A) < κ. For each
A ∈ A choose fA ∈ P such that fA(ζ) is an upper bound for A ∩ Pζ for every ζ; this is possible because
add(Pζ) > #(A). Set F = {fA : A ∈ A}.

If g ∈ P , then there is an h ∈
∏

ζ<λQζ such that g ≤ h. Now h[λ] ∈ [Z]≤λ so there is an A ∈ A such

that h[λ] ⊆ A. In this case h ≤ fA. Accordingly F is cofinal with P and cf(P ) ≤ #(F ) < κ, as required.

S7D The techniques of 7C can be adapted to give a further combinatorial result.

Theorem Let κ be an atomlessly-measurable cardinal, and λ < κ an infinite cardinal. Then there is a
function f : [λ+]2 → N such that whenever I is a disjoint family of finite subsets of λ+ with #(I) = λ+,
and k ∈ N, there are distinct I, J ∈ I such that f({ξ, η}) = k for every ξ ∈ I, η ∈ J .

proof (a) For ξ < λ+ let eξ : ξ → λ be an injective function. Give N the Radon measure µ0 defined by
saying that µ0{n} = 2−n−1 for every n ∈ N, and give Nλ the product measure µ. Then µ is an atomless
Radon probability measure with Maharam type λ, so there is a κ-additive measure ν, defined on every
subset of Nλ, extending µ (3I).

For w ∈ Nλ, define fw : [λ+]2 → N by setting

fw({ξ, η}) = w(eη(ξ))
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whenever ξ < η < λ+.

(b) ??? Suppose, if possible, that no fw witnesses the truth of the theorem. Then for every w ∈ Nλ there
are a kw ∈ N and a disjoint Iw ⊆ [λ+]<ω such that #(Iw) = λ+ and whenever I, J are distinct members of
Iw there are ξ ∈ I, η ∈ J such that fw({ξ, η}) 6= kw. Take k ∈ N such that νR > 0, where

R = {w : w ∈ Nλ, kw = k}.

For every α < λ+, w ∈ Nλ there is an I ∈ Iw such that I ∩ α = ∅; because #([λ+ \ α]<ω) < κ, there is an
I ⊆ λ+ \ α such that ν{w : w ∈ R, I ∈ Iw} > 0. We may therefore choose 〈Iα〉α<λ+ inductively so that

ξ < η whenever ξ ∈ Iα, η ∈ Iβ and α < β < λ+,

νSα >0 for every α < λ,

where Sα = {w : w ∈ R, Iα ∈ Iw}.

Take δ > 0, n ∈ N such that #(A) = λ+, where

A = {α : α < λ+, #(Iα) = n, νSα ≥ δ}.

Take l ∈ N such that (1 − 2−(k+1)n2

)l ≤ 1
3δ.

(b) By A2S, there is a set B ⊆ A, of cardinal λ+, such that µ∗(
⋂

α∈L Sα) ≥ 2
3δ whenever L ⊆ B and

#(L) ≤ l + 1. Take β ∈ B such that B ∩ β is infinite. Now for each η ∈ Iβ , eη : η → λ is injective.
Accordingly we can find a set L ⊆ B ∩ β such that #(L) = l and

eη[Iα] ∩ eη′ [Iα′ ] = ∅

whenever α, α′ are distinct members of L and η, η′ ∈ Iβ . For α ∈ L set

Kα = {eη(ξ) : ξ ∈ Iα, η ∈ Iβ};

then 〈Kα〉α∈L is disjoint and #(Kα) ≤ n2 for every α.
Consider

E = {w : w ∈ Nλ, ∀α ∈ L∃ ζ ∈ Kα such that w(ζ) 6= k}.

Then

µE =
∏

α∈L(1 − 2−(k+1)#(Kα)) ≤
1

3
δ.

On the other hand, if w ∈ Sβ ∩
⋂

α∈L Sα, Iβ ∈ Iw and Iα ∈ Iw for every α ∈ L. So for every α ∈ L there are
ξ ∈ Iα, η ∈ Iβ such that fw({ξ, η}) 6= kw, that is, w(eη(ξ)) 6= k; and we have a ζ ∈ Kα such that w(ζ) 6= k.
Thus

⋂

α∈L∪{β} Sα ⊆ E,

and (by the choice of B) we get

2

3
δ ≤ µ∗(

⋂

α∈L∪{β} Sα) ≤ µE ≤
1

3
δ,

which is absurd. XXX

(d) Thus there is a w ∈ Nλ for which fw is a suitable function.

S7E Corollary Let κ be an atomlessly-measurable cardinal, and λ < κ an infinite cardinal. Then there
is a function g : [λ+]2 → N such that whenever I is a disjoint family of finite subsets of λ+ with #(I) = λ+,
and h : N × N → N is a function, there are distinct I, J ∈ I such that g({ξ, η}) = h(#(I ∩ ξ),#(J ∩ η))
whenever ξ ∈ I, η ∈ J and ξ < η.

proof Take f : [λ+]2 → N from S7D. Enumerate as 〈hk〉k∈N the set of all maps from finite products
{0, 1}m×{0, 1}m to N; take the domain of hk to be {0, 1}mk ×{0, 1}mk . Choose a family 〈wξ〉ξ<λ+ of distinct

elements of {0, 1}N. Now, given ξ < η < λ+, set k = f({ξ, η}) and try g({ξ, η}) = hk(wξ↾mk, wη↾mk).
Suppose that I is a disjoint family of finite subsets of λ+ with cardinal λ+, and that h : N × N → N is

any function. Let m, n be such that
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J = {I : I ∈ I, #(I) = n, wξ↾m 6= wη↾m for all distinct ξ, η ∈ I}

has cardinal λ+, and 〈vi〉i<n such that

K = {I : I ∈ J , wξ↾m = vi whenever ξ ∈ I, #(ξ ∩ I) = i < n}

has cardinal λ+. Take k ∈ N such that mk = m and hk(vi, vj) = h(i, j) for all i, j < n. (Note that vi 6= vj if
i 6= j, because wξ↾m 6= wη↾m if ξ, η are distinct members of any I ∈ J .) Then there are distinct I, J ∈ K
such that f({ξ, η}) = k for ξ ∈ I, η ∈ J . So if ξ ∈ I, η ∈ J , ξ < η we have

g({ξ, η}) = hk(wξ↾m,wη↾m) = hk(vi, vj) = h(i, j),

where i = #(I ∩ ξ), j = #(J ∩ η). And this is what we need.

S7F Corollary If there is an atomlessly-measurable cardinal, there is a ccc Hausdorff abelian topological
group whose square is not ccc.

proof (a) Let g : [ω1]2 → N be such that whenever I is an uncountable disjoint family of finite subsets of
ω1, and h : N×N → N is a function, there are distinct I, J ∈ I such that g({ξ, η}) = h(#(I ∩ ξ),#(J ∩ η))
whenever ξ ∈ I, η ∈ J and ξ < η. Set X = ω1 × {0, 1}, and let G be the family of finite subsets of X with
the group operation a+ b = a△b. For β < ω1 let Hβ be the set of those a ∈ G such that

(β, 0), (β, 1) /∈ a,

if α < β and g({α, β}) = i ≤ 1 then (α, i) /∈ a,

if α < β and g({α, β}) ≥ 2 then (α, 0) ∈ a iff (α, 1) ∈ a.

Note that Hβ is a subgroup of G. Give G the topology generated by the subgroups Hβ and their cosets for
β < ω1. This is a topological-group topology, and because

⋂

β<ω1
Hβ = {∅} it is Hausdorff.

(b) It may make the idea behind this definition clearer if I show first that G×G is not ccc. PPP Consider

Wξ = ({(ξ, 0)} +Hξ) × ({(ξ, 1)} +Hξ)

for ξ < ω1.
If ξ < η < ω1 and a ∈ ({(ξ, 0)}+Hξ)∩ ({(η, 0)}+Hη), then a+{(ξ, 0)} ∈ Hξ, so (ξ, 0) ∈ a and (ξ, 1) /∈ a.

But now (ξ, 0) ∈ a+ {(η, 0)} and (ξ, 1) /∈ a+ {(η, 0)}; since a+ {(η, 0)} ∈ Hη, we must have g({ξ, η}) = 1.
If ξ < η < ω1 and b ∈ ({(ξ, 1)}+Hξ)∩ ({(η, 1)}+Hη), then b+ {(ξ, 1)} ∈ Hξ, so (ξ, 0) /∈ b and (ξ, 1) ∈ b.

But now (ξ, 0) /∈ b+ {(η, 1)} and (ξ, 1) ∈ b+ {(η, 1)}; since b+ {(η, 1)} ∈ Hη, we must have g({ξ, η}) = 0.
Since these cannot happen together, Wξ ∩Wη = ∅ whenever ξ < η < ω1, and we have an uncountable

disjoint family of open subsets of G×G. QQQ

(c) G is ccc. PPP Let 〈Uξ〉ξ<ω1
be a family of non-empty open subsets of G. For each ξ < ω1 take aξ ∈ Uξ,

Iξ ∈ [ω1]<ω such that aξ +
⋂

β∈Iξ
Hβ ⊆ Uξ. Let A ⊆ ω1 be an uncountable set such that 〈aξ〉ξ∈A, 〈Iξ〉ξ∈A

are ∆-systems with roots a, I respectively; set a′ξ = aξ \ a for ξ ∈ A. Set

J = I ∪ {(α, 0) : α ∈ a} ∪ {(α, 1) : α ∈ a},

Jξ = (Iξ \ I) ∪ {α : (α, 0) ∈ a′ξ} ∪ {α : (α, 1) ∈ a′ξ},

mξ = #(Jξ),

and enumerate Jξ in ascending order as 〈αξi〉i<mξ
. Define hξ : mξ → {0, 1, 2} by setting

hξ(i) = 0 if (αξi, 0) /∈ a′ξ, (αξi, 1) ∈ a′ξ,

= 1 if (αξi, 0) ∈ a′ξ, (αξi, 1) /∈ a′ξ,

= 2 otherwise.

Let m, h : m→ {0, 1, 2} be such that

B = {ξ : ξ ∈ A, mξ = m, hξ = h}

is uncountable. Because any α < ω1 can belong to at most three of the Jξ, there is an uncountable C ⊆ B
such that (i) α < β whenever α ∈ J and β ∈ Jξ for some ξ ∈ C (ii) α < β whenever ξ, η ∈ C, ξ < η,
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α ∈ Jξ and β ∈ Jη. Now, by the choice of g, there must be ξ, η ∈ C such that ξ < η and g({αξi, β}) = h(i)
whenever i < m, β ∈ Jη.

What this means is that for α ∈ Jξ, β ∈ Jη,

g({α, β}) = 0 if (α, 0) /∈ a′ξ, (α, 1) ∈ a′ξ,

= 1 if (α, 0) ∈ a′ξ, (α, 1) /∈ a′ξ,

= 2 otherwise.

Set

b = aξ ∪ aη = aξ + a′η = aη + a′ξ.

I seek to show that b ∈ Uξ ∩ Uη; it will be enough if I can show that a′η ∈ Hβ for every β ∈ Iξ and a′ξ ∈ Hβ

for every β ∈ Iη.
(i) Suppose β ∈ I. In this case β ∈ J so β < α whenever either (α, 0) or (α, 1) belongs to aξ△aη = a′ξ∪a

′
η;

consequently a′ξ, a′η belong to Hβ .

(ii) Suppose β ∈ Iξ \ I. In this case β < α whenever either (α, 0) or (α, 1) belongs to a′η. So a′η ∈ Hβ .

(iii) Suppose β ∈ Iη \ I. In this case α < β whenever either (α, 0) or (α, 1) belongs to a′ξ. In particular,

neither (β, 0) nor (β, 1) belongs to a′ξ. If α < β and g({α, β}) = i ≤ 1, then either α /∈ Jξ, in which case

(α, i) certainly does not belong to a′ξ, or α ∈ Jξ, in which case again (α, i) /∈ a′ξ. While if α < β and

g({α, β}) ≥ 2, then either α /∈ Jξ and neither (α, 0) nor (α, 1) belongs to a′ξ, or α ∈ Jξ and (α, 0) ∈ a′ξ iff

(α, 1) ∈ a′ξ. Thus a′ξ ∈ Hβ .

Putting these together, we see that all the requirements for b ∈ Uξ ∩Uη are met, so that Uξ ∩Uη 6= ∅. As
〈Uξ〉ξ<ω1

is arbitrary, G is ccc. QQQ

Remark S7D-S7F are taken from §2 of Todorčević 93.

Version of 18.9.92

S9. Quasi-measurable cardinals

S9A Theorem Let κ be a quasi-measurable cardinal.
(a) cf([κ]<θ) ≤ κ for every cardinal θ.
(b) If λ < κ then cf([λ]<θ) < κ for every cardinal θ.
(c) If 〈Pζ〉ζ<λ is a family of partially ordered sets with λ < add(Pζ) ≤ cf(Pζ) < κ for every ζ < λ, then

cf(
∏

ζ<κ Pζ) < κ.

Version of 2.9.92

Appendix: Useful Facts

SA2. Measure theory

SA2A τ-additive Borel measures Let X be a regular topological space and µ a totally finite τ -additive
Borel measure on X. Then the completion µ̂ of µ is a quasi-Radon measure on X. PPP If H ⊆ X is open,
then (because X is regular) H =

⋃

G, where G = {G : G ⊆ X is open, G ⊆ H}. Consequently

µH = supG∈G µG = sup{µL : L ⊆ H is closed}.

Now let F be the family of closed sets in X and write φF = µF for F ∈ F . Then (i) φ∅ = 0 (ii) if E, F are
closed subsets of X and E ⊆ F ,

φF − φE = µF − µE

= µ((X \ E) ∩ F )

= sup{µ(L ∩ F ) : L ⊆ X \ E is closed}

= sup{φL : L ⊆ F \ E is closed}
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(iii) whenever K ⊆ F is non-empty and downwards-directed and
⋂

K = ∅, then infK∈K φK = µX −
supK∈K µ(X \K) = 0 because {X \K : K ∈ K} is an upwards-directed family of open sets with union X.
By Fremlin 74, Theorem 72A, there is a complete measure µ1 on X, extending φ, which is inner regular
for the closed sets. Now for any Borel set E ⊆ X,

µ1E = sup{µ1F : F ⊆ E is closed}

= sup{φF : F ⊆ E is closed}

= sup{µF : F ⊆ E is closed}

≤ µE;

similarly, µ1(X \ E) ≤ µ(X \ E); but µ1X = φX = µX, so in fact µ1E = µE, and µ1 extends µ. It follows
at once that µ1 is actually the completion of µ. Now µ1 = µ̂ is τ -additive and inner regular for the closed
sets, therefore quasi-Radon. QQQ (Compare Gardner & Pfeffer 84, .)

SA2B Disintegrations Let (X,T) be a compact Hausdorff space and (Y,T, ν) a complete probability
space. Let µ be a probability on X × Y such that (i) µ(E × F ) is defined whenever E ∈ Σ, the Baire
σ-algebra of X, and F ∈ T (ii) µ(X × F ) = νF for every F ∈ T. Then there is a family 〈µy〉y∈Y of Radon
probabilities on X such that

∫

F
µyEν(dy) exists and is equal to µ(E × F ) whenever E ∈ Σ and F ∈ T.

proof Write L∞ for the space of bounded T-measurable functions from Y to R. Because (Y,T, ν) is complete,
there is a ‘linear lifting’ ρ : L∞ → L∞ such that

ρ(f + g) = ρ(f) + ρ(g), ρ(αf) = αρ(f) for all f , g ∈ L∞ and α ∈ R;
if f = 0 ν-a.e. then ρ(f) = 0;
ρ(f) = f ν-a.e. for every f ∈ L∞;
if f ≥ 0 then ρ(f) ≥ 0;
if f is constant then ρ(f) = f

(Ionescu Tulcea & Ionescu Tulcea 69, p. 46, Theorem 3, or Fremlin 89, ). Write C(X) for the
set of continuous functions g : X → R. For each g ∈ C(X), we have a functional νg : T → [0, 1] given
by the formula νgF =

∫

X×F
g(x)µ(dxdy) for every F ∈ T; now νg is additive and dominated by ν, so by

the Radon-Nikodým theorem (Fremlin 74, 63J) there is a bounded T-measurable function fg : Y → R

such that νgF =
∫

F
fgdν for every F ∈ T. Set f ′g = ρ(fg). If g, h ∈ C(X), then νg+h = νg + νh so

fg+h = fg + fh ν-a.e. and f ′g+h = f ′g + f ′h. Similarly, f ′αg = αfg for every g ∈ C(X), α ∈ R. Also, if g ≥ 0

in C(X), then νg ≥ 0 so fg ≥ 0 a.e. and f ′g ≥ 0.

For each y ∈ Y , define φy : C(X) → R by setting φy(g) = f ′g(y) for every g ∈ C(X). Then φy is a positive
linear functional. Also, writing 1 for the function with constant value 1, ν1 = ν so f1 = 1 a.e. and f ′

1
= 1

everywhere; thus φy(1) = 1 for every y. By the Riesz representation theorem (Fremlin 74, 73D) there is
for each y ∈ Y a Radon probability µy on X such that

∫

gdµy = φy(g) for every g ∈ C(X). Consequently,
if g ∈ C(X) and F ∈ T,

∫

F
(
∫

gdµy)ν(dy) =
∫

F
f ′g(y)ν(dy) =

∫

F
fgdν = νgF =

∫

X×F
g(x)µ(dxdy).

Consider the set H of functions h : X → [0, 1] such that
∫

F

(∫

h(x)µy(dx)
)

ν(dy) =
∫

X×F
h(x)µ(dxdy) ∀ F ∈ T.

H contains all continuous functions from X to [0, 1] and limn→∞ hn ∈ H whenever 〈hn〉n∈N is a pointwise
convergent sequence in H. Consequently H contains the characteristic function of any set E ∈ Σ; that is,

∫

F
µyEµ(dy) = µ(E × F )

for every E ∈ Σ, F ∈ T, as required. (Compare Ionescu Tulcea & Ionescu Tulcea 69, chap. IX.)

SA2C Universally negligible sets If X is a Polish space (that is, a separable metrizable space in which
the topology can be defined by a complete metric) a set A ⊆ X is universally negligible if it is negligible
for every Radon measure on X.

Version of 27.10.94
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Appendix: Useful Facts

SA1 Combinatorics

SA1A Lemma There is a family 〈eα〉α<ω1
such that

(i) for each α, eα is an injective function from α to N;

(ii) if α ≤ β < ω1, {ξ : ξ < α, eα(ξ) 6= eβ(ξ)} is finite.

proof Construct the eα inductively. The inductive hypothesis must include a third condition

(iii) N \ eα[α] is infinite for every α.

The induction starts trivially with e0 = ∅. For the inductive step to β + 1, take any n ∈ N \ eβ [β], and set

eβ+1(ξ) = eβ(ξ) if ξ < β, eβ+1(β) = n.

For the inductive step to a non-zero limit ordinal β < ω1, take a strictly increasing sequence 〈βn〉n∈N

with supremum β, starting with β0 = 0. Observe that, for any n,

An = N \
⋃

i≤n eβi
[βi] ⊇ (N \ eβn

[βn]) \ {eβi
(ξ) : i ≤ n, ξ < βi, eβi

(ξ) 6= eβn
(ξ)}

is infinite. So we can choose a sequence 〈mn〉n∈N of distinct integers such that mn ∈ An for every n. Set
B = {mn : n ∈ N}; then B is infinite and B ∩ eβn

[βn] is finite for every n.
Set Cmn = {ξ : ξ < βm, eβm

(ξ) 6= eβn
(ξ)} for m ≤ n ∈ N. These sets are all finite, so

Cn = e−1
βn+1

[B ∪
⋃

m≤n eβm
[Cm,n+1]]

is always finite. If ξ ∈ Dn = βn+1 \ (βn ∪ Cn), then eβn+1
(ξ) /∈

⋃

m≤n eβm
[βm]. PPP If m ≤ n and η < βm,

then either η /∈ Cm,n+1, so that eβm
(η) = eβn+1

(η) 6= eβn+1
(ξ), or η ∈ Cm,n+1 so that eβn+1

(ξ) 6= eβm
(η)

because ξ /∈ e−1
βn+1

[eβm
[Cm,n+1]]. QQQ

Set C =
⋃

n∈N Cn \ βn = β \
⋃

n∈N Dn, and let f : C → B be an injective function such that B \ f [C] is
infinite. Now define eβ : β → N by setting

eβ(α) = eβn+1
(α) if α ∈ Dn,

= f(α) if α ∈ C.

I check the three requirements of the inductive hypothesis in turn.
(i) Because f and all the eβn

are injective and

eβn+1
[Dn] ∩ eβm

[βm] = eβn+1
[Dn] ∩B = ∅

whenever m ≤ n, eβ is injective.
(ii) For n ∈ N, set En = {ξ : ξ < βn, eβn

(ξ) 6= eβ(ξ)}. Then

En+1 ⊆
⋃

m≤n(Em ∪ Cm,n+1) ∪ Cn

for each n, so every En is finite. If α < β, then there is some n such that α ≤ βn, so that

{ξ : ξ < α, eα(ξ) 6= eβ(ξ)} ⊆ En ∪ {ξ : ξ < α, eα(ξ) 6= eβn
(ξ)}

is finite.
(iii) Because e−1

βn+1
[B] ⊆ Cn, eβn+1

[Dn] ∩B = ∅ for every n, so eβ [β] does not meet B \ f [C] is N \ eβ [β]

is infinite.
Thus the induction continues.

Remark This is due to .

Version of 22.5.00

SA2. Measure theory

SA2A τ-additive Borel measures Let X be a regular topological space and µ a totally finite τ -additive
Borel measure on X. Then the completion µ̂ of µ is a quasi-Radon measure on X. PPP Fremlin p00*, 415Cb.
QQQ
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SA2B Disintegrations Let (X,T) be a compact Hausdorff space and (Y,T, ν) a complete probability
space. Let µ be a probability on X × Y such that (i) µ(E × F ) is defined whenever E ∈ Σ, the Baire
σ-algebra of X, and F ∈ T (ii) µ(X × F ) = νF for every F ∈ T. Then there is a family 〈µy〉y∈Y of Radon
probabilities on X such that

∫

F
µyEν(dy) exists and is equal to µ(E × F ) whenever E ∈ Σ and F ∈ T.

proof Write L∞ for the space of bounded T-measurable functions from Y to R. Because (Y,T, ν) is complete,
there is a ‘linear lifting’ ρ : L∞ → L∞ such that

ρ(f + g) = ρ(f) + ρ(g), ρ(αf) = αρ(f) for all f , g ∈ L∞ and α ∈ R;
if f = 0 ν-a.e. then ρ(f) = 0;
ρ(f) = f ν-a.e. for every f ∈ L∞;
if f ≥ 0 then ρ(f) ≥ 0;
if f is constant then ρ(f) = f

(Ionescu Tulcea & Ionescu Tulcea 69, p. 46, Theorem 3, or Fremlin p00*, §341). Write C(X) for
the set of continuous functions g : X → R. For each g ∈ C(X), we have a functional νg : T → [0, 1] given
by the formula νgF =

∫

X×F
g(x)µ(dxdy) for every F ∈ T; now νg is additive and dominated by ν, so by

the Radon-Nikodým theorem (Fremlin 74, 63J) there is a bounded T-measurable function fg : Y → R

such that νgF =
∫

F
fgdν for every F ∈ T. Set f ′g = ρ(fg). If g, h ∈ C(X), then νg+h = νg + νh so

fg+h = fg + fh ν-a.e. and f ′g+h = f ′g + f ′h. Similarly, f ′αg = αfg for every g ∈ C(X), α ∈ R. Also, if g ≥ 0

in C(X), then νg ≥ 0 so fg ≥ 0 a.e. and f ′g ≥ 0.

For each y ∈ Y , define φy : C(X) → R by setting φy(g) = f ′g(y) for every g ∈ C(X). Then φy is a positive
linear functional. Also, writing 1 for the function with constant value 1, ν1 = ν so f1 = 1 a.e. and f ′

1
= 1

everywhere; thus φy(1) = 1 for every y. By the Riesz representation theorem (Fremlin 74, 73D) there is
for each y ∈ Y a Radon probability µy on X such that

∫

gdµy = φy(g) for every g ∈ C(X). Consequently,
if g ∈ C(X) and F ∈ T,

∫

F
(
∫

gdµy)ν(dy) =
∫

F
f ′g(y)ν(dy) =

∫

F
fgdν = νgF =

∫

X×F
g(x)µ(dxdy).

Consider the set H of functions h : X → [0, 1] such that
∫

F

(∫

h(x)µy(dx)
)

ν(dy) =
∫

X×F
h(x)µ(dxdy) ∀ F ∈ T.

H contains all continuous functions from X to [0, 1] and limn→∞ hn ∈ H whenever 〈hn〉n∈N is a pointwise
convergent sequence in H. Consequently H contains the characteristic function of any set E ∈ Σ; that is,

∫

F
µyEµ(dy) = µ(E × F )

for every E ∈ Σ, F ∈ T, as required. (Compare Ionescu Tulcea & Ionescu Tulcea 69, chap. IX, and
Fremlin p00*, §452.)

SA2C Universally negligible sets If X is a Polish space (that is, a separable metrizable space in which
the topology can be defined by a complete metric) a set A ⊆ X is universally negligible if it is negligible
for every Radon measure on X.

SA2D Theorem Let X be a Hausdorff space and suppose that there is a Radon probability measure
µ on X with Maharam type κ ≥ ω. Then whenever ω ≤ λ < κ there is a Maharam homogeneous Radon
probability measure µ1 on X with Maharam type λ.

proof

Version of 22.5.00

Index

This is a joint index to both the present supplement and the original ‘Real-valued-measurable cardinals’.
References in bold type indicate definitions; references in italics indicate passing references.

additivity of a measure 1D, 3A, 3G, 3H, 8A, A2C (A2Cb), A2Db; see also κ-additive measure (A2Ca),
τ -additive measure (A2V)

additivity of a partially ordered set 7K, A1Ac, A1Ba, A1H, A1I, P4

additivity of an ideal A2Cd, A2Db, P4; see also κ-additive ideal (A1Bf)
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antichain 2A, A1P
Aronszajn tree see κ-Aronszajn tree (A1Ob)
arrow relation 5O, 5P, A1S
atom in a measure space A2Ac, A2Bg

atomless Boolean algebra 9D

atomless measure space A2Be, A2Kc
atomlessly-measurable cardinal 1C

Baire σ-algebra A2G, A3B
Banach-Ulam problem 1A, 1B
Baumgartner J.E. A4H
Borel measure on a topological space A2V
Borel measure-complete topological space 6M, A2V, A2W

cardinal exponentiation 5E, 7P, 7Q, 9L, 9O
ccc Boolean algebra A2Hb

ccc p.o.set 9F
ccc partially ordered set 7C, 7D, P4
chains in PN 5K
club filter A1E, A4D
cofinal set in a partially ordered set A1Ab
cofinality of a partially ordered set 7H, 7J, 7K, 7L, 7M, 7N, 9O, A1A (A1Ab ), S6D, S7B, S7C, S9A

(A1Ab), A1Ba, A1H, A1I, P4, P5
collectionwise normal topological space 8F, 8N, A3Cc, A3D
compatible elements 2A, A1P
complete filter see κ-complete filter (A1Bb)
complete measure space A2Bf, A2Cd, A2Db, A2Gd, A2J, A2Kc, A2Q
complete metric space 6M, A2W
completely generating set in a Boolean algebra A2Ha
consistency of axioms 1E, 2E, 2I, 2L, 8C, 8I, 9G
covering number see cov(X,A) (A2Pa), cov(X,Nµ), covSh(α, β, γ, δ) (A1J)
cylinder set A2Ga

decomposable measure space A2Bd, A2Hh, A2Ja
decomposable ordinal 8P, A1Dd
Dedekind σ-complete Boolean algebra 8R

dense subset of a p.o.set 2A
density of a topological space 6M, A2Hi, A3Ea
diagonal intersection of a family of sets 4B, A1E
diamond see ♦c

discrete family of points A3Cb, A3F

discrete family of sets 8E, A3C (A3Cb), A3F

disintegration of a measure SA2B
down-topology of a p.o.set 2A
duality between linear spaces A2O

elementary embedding P2

entangled set 7E, 7F

finite-support product of partially-ordered sets A1R
Fleissner W.G. 8M
forcing 2A
Fubini’s theorem see repeated integral
fully stationary see Π1

1-fully stationary (4Db)

GCH 2D, 2E
Gitik M. Intro.
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Gitik-Shelah theorem 3F, 9H
greatly Mahlo cardinal 4Ac, 4B, 4C, 4G, 4I, 4K, 9J
greatly Mahlo filter 4Ac, 4B, 4G, 4K

Haydon R.G. Intro. hereditarily separable topological space S7’A
Hilbert space 5H
homogeneous Boolean algebra A2Gf
hyperstonian space A2L (A2La)

ideal of sets A1Ba
image measure A2Db
inaccessible cardinal see weakly inaccessible (A1Da), strongly inaccessible (A1Da)
incompatible elements in a p.o.set 2A
indecomposable ordinal 8P, A1Dd
indescribable cardinal see Πm

n -indescribable, weakly Πm
n -indescribable (§A4)

inner model 2D, P1
inner regular measure A2J, A2V, A2W
inverse-measure -preserving function 1J, 3H, A2Da, A2Fe, A2Gd, A2Jd, A2K, A2Lb

Jónsson algebra 5D, 9L, A1Oa
Jensen R. 1H
Juhász I. 8M

Kunen K. Intro., 1E, 2C, 3A, 4L, 4T, 5G, 5L, 5N, 5P, 8C, 8J, 9N, A4H, A4J

Lebesgue H. Intro.

Lebesgue measure Intro., 1A, 1D, A2Gb, A2Kc, P4
lifting of a measure space A2Q (A2Qa)
Lifting Theorem A2Q locally compact topological space 8N , S7’A locally countable topological space

S7’A
locally determined measure space A2B (A2Bc), A2Cd, A2J
lower integral 6A, A2E
lower semi-continuous function A2J

Luxemburg W.A.J. Intro.

Maharam homogeneous measure 1G, 1I, 2H, 3J-3M, A2H (A2Hg), A2Ka, A2Y, P2
Maharam type of a measure space 2H, 2I, 3F, 3G, 3H, 3I, 3J, 3K, 3L, 3M, 6D, 6I, 7Q, 8A, A2Hg, A2Ka,

A2Y, P2, P6
Maharam’s Theorem A2I
Mahlo cardinal see weakly Mahlo (4Aa), greatly Mahlo (4Ac), α-Mahlo (4B)
Mahlo’s operation 4A (4Ab), 4B, 4F, 9J, A4F
Martin’s Axiom 9G
Mathias A.R.D. Intro.
meager sets in R P4

measurable algebra 2B, 8R, A2Fc
measurable cardinal see two-valued-measurable (1Cb)
measurable function A2Ae, A2Gg
measure algebra 6C, A2F (A2Fa), A2G, A2I, A2Jd, A2La, A2Q, P2, P6
measure algebra of a measure space A2Fd, A2La, A2U

measure space A2A
measure-preserving homomorphism A2Fe, A2Gd, A2Ib, A2Jd
measure-preserving transformation 1J; see also inverse-measure -preserving (A2Da)
metric of a measure algebra A2Fb, A2Hi
metric space 6M, A2W
metrizable space 8G, A3D, A3F
Moore space 8G, A3Ca, A3D

negligible set A2Ad
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NMA 8G, 8H, 8I, 8J, 8K, 8M, 8N, 8R, 8S
non-stationary ideal A1E
normal filter 1Fb, 1G, 1I, 4Ac, 4F, 9I, A1E, A4F
normal ideal 1F (1Fa), 9B, 9C, 9K, A1E, P7

normal measure 1Fc, 1G, 8H
normal measure axiom see NMA (8H)
normal topological space 8E, 8F, 8G, 8M, 8N
normal witnessing probability 1H, 1I, 2J, 3L, 6A, P2, P7

Nyikos P.J. 8M

order-closed subalgebra of a Boolean algebra A2H, A2Ic

order-continuous linear functional 6N

partially ordered set A1Aa; see also p.o.set (2A)
partition relations see arrow relation (A1S)
pcf theory A1I
PMEA 8B, 8C-8G, 8J, 8S, 9H

p.o.set 2A; see also partially ordered set (A1Aa)
precaliber of a Boolean algebra 5D, 6C, A2T, A2U
Prikry K. Intro., 6F, 9F
principal ideal in a Boolean algebra A2Gf, A2Hc
probability A2Ba
probability algebra A2Fa
probability space A2Ba
product measure A2G, P9
product measure extension axiom see PMEA (8B)
product of partially ordered sets 7C, 7D, 7H, 7I, 7K-7N, 9O, A1H, A1I, A1R , P5, S7C, S9A
purely atomic Boolean algebra 9D
purely atomic measure space A2Bg
pushing-down lemma A1E

qm filter 9C, 9J
qm ideal 9C, P7
quasi-Radon measure space 3A, 3B, 6D, A2J (A2Ja), A2V , S6B, SA2A
quasi-measurable cardinal §9 (9C), P7, P8

Radon measure space 3H, 3I, 6A, 6B, 6E, 6I, 6L, 8A, A2J (A2Jb), A2K, A2L, A2Pb, A2V, P4 , S6B,
SA2B

Radon topological space 6M, A2V, A2W
Radon-Nikodým theorem 2C, A2Fg
random real p.o.set 2B, 2C, 2J, 4O, 8Q, P1, P7

rapid filter 5G, A1Cb
real-valued-measurable cardinal 1C
rectangle algebras 5J
reduced product of partially ordered sets 7I, 7K, 7L, 7M, 9O, A1H , A1I
regressive function 1Fa, A1Db, A1E
regular cardinal 8P, A1Ab
regular open algebra 2A, 2B, 9H, A3A
regular open set A3A
relatively order-closed set 8O, 8P
relatively stationary set 8O, 8P
repeated integral 3A, 5H, 5I, 6A, 6I, 6J, 6K, A2Ge
Riesz space 6N
rvm filter 1I, 2K, 2L, 4K, 4N, 4P, 4Q, 4R, 5D, 6L, 7K, A4L, P3
rvm ideal 1I, 2J, 2L, 4K, 4N, 4P, 4S, 5F, P7

saturated ideal see κ-saturated ideal (A1Bf)
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scalarly measurable function 5H, A2O
second-order language A4A
selective ultrafilter A1Cc
semi-finite measure space A2B (A2Bb)
sequential cardinal P8
sequentially continuous function P8
sequentially order-continuous functional 6N
Shelah S. Intro., 5D, A1I
Shelah covering number see covSh(α, β, γ, δ) (A1J)
simple group 8R
singular cardinals hypothesis 8K, A1N
Solovay R.M. Intro., 1E, 1H, 6F
Solovay’s construction 2C, 2H, 2J, 4R, P1, P2, P3, P7, P9

Souslin number of a partially ordered set 7C, 7D, A1P, A1R, P4; of a Boolean algebra 5D, A1P
Souslin’s hypothesis 7D
stationary set 4Aa, 4F, A1Dc, A1F, A1G

strictly localizable measure space A2Bd
strong law of large numbers A2X
strongly compact cardinal 8C

strongly inaccessible cardinal 1D, A1Da, A1S

subspace of a measure space A2Ab, A2J
successor cardinal 8P

supercompact cardinal 8I

third-order language A4K
Todorčević S. 5P, 7F
topological group S7E
topology base A3F

totally finite measure A2Ba
totally ordered set 7E, A1Ac
trivial measure space 1A, 1B, 1D
two-valued-measurable cardinal 1Cb, 1D, 1E, 1Gb, 1Ha, 1I, 2D, 2E, 2H, 2I, 2K, 2L, 5N, 5P, 9G, A4L,

P1, P7

Ulam S. Intro.
Ulam matrix 1E

Ulam’s Dichotomy 1E
Ulam’s Theorem 1D
uniform filter A1Bc
universally negligible set S6C, SA2C
up-antichain in a partially ordered set A1P
upper integral 3A, 6A, A2E, A2Je
upwards-ccc partially ordered set A1Q
upwards-compatible elements in a partially ordered set A1P
usual measure on {0, 1}I A2G (A2Ga), A2I, A2Jc, A2Pb

vector lattice 6N

weakly compact cardinal A1S

weakly Π1
0-indescribable cardinal A4C (A4Ca), A4D

weakly Π1
1-indescribable cardinal 4Dc, 4F, 4G, 4H, 4I, 4K, 4L, 4R, 6L, A1Ob, A1S, A4C (A4Ca), A4D,

A4H, P3
weakly Π1

2-indescribable cardinal A4Ca, P4

weakly Π1
n-indescribable cardinal A4C (A4Ca), A4F, A4G, A4J

weakly Π2
0-indescribable cardinal 4P, 4Q, 4R, A4C (A4Ca), P3

weakly Π2
1-indescribable cardinal A4K, A4L
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weakly Mahlo cardinal 4Aa, 4B, 8P

weakly inaccessible cardinal 1D, 4Aa, 8P, 9B, A1Da
weight of a topological space 3A, 3B, 6J, 6K, A3Ec
witnessing ideal 9C
witnessing probability 1C, P2
Woodin H. 6K

Zakrzewski P. 1J, 6K

a P4
A⌈a A2Hc
add(P ) see additivity of a partially ordered set (A1Ac)
add(µ) see additivity of a measure (A2Cb)
b P4
c = 2ω 1D, 4L, 5E, 5N, 9D, 9L, 9N, 9O, A4D
cf(P ) see cofinality of a partially ordered set (A1Ab)
cov(X,A) A2P (A2Pa), P4
cov(X,Nµ) 2H, 6B, 6L, A2Pb, A2U, P4
covSh(α, β, γ, δ) 7K, 7O, 9O, A1Ja, A1K
d 7K, P4
ℓ∞(X) 6N
L A4A
L3 A4K
L(I) 2D, 2K
L∞(A) 2C, A2Ff, A2Fg
Mh(A) see Mahlo’s operation (4Ab)
Nµ 2J, A2Ad , S6D; see also cov(X,Nµ), non(X,Nµ)
non(X,A) A1Be
non(X,Nµ) 6G, P4
p P4
p-point filter 5G, A1Ca
p(κ)-point filter 5L, A1Cd
Regr(κ) 4Da
S(P ) see Souslin number (A1P)
sat(A) see Souslin number (A1P)
Tr(κ) 3D, 3E, 3K

TrI(X;Y ) 2F, 2G, 2H, 3D, 3M, 5D, P2
UF 4Da, 4E , 4H

α-Mahlo cardinal 4B

α→ (β, γ)2 5O, 5P, A1S
Θ(α, γ) 7K, 9O, A1Jb, A1K, A1L, A1M
κ-additive ideal 2D, 9B, 9C, 9E, A1B (A1Ba), A1E
κ-additive measure 1C, A2Ca; see also additivity of a measure (A2Cb)
κ-additive partially ordered set A1Ac
κ-Aronszajn tree 5F, 9M, A1Ob
κ-chain condition A1P
κ-complete filter 1C, 1G, A1Bb, A1E
κ-measure-bounded partially ordered set 7G, 7H, 7I, 7J
κ-saturated ideal 2D, 9A, 9B, 9E, 9I, 9P, A1Bf
µf−1 A2Db
µ⌈A A2Ab
µ∗ A2Aa
Π1

1-filter 4Dc, 4F, 4G, 4I, 6L, A4Cb
Π1

1 formula 4T, A4B
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Π1
1-fully stationary 4Db, 4Dc, 4K, A4H

Π1
1-ideal A4Cb, A4H

Π1
n-filter A4Cb, A4F, A4G, P3

Π1
n formula A4B, A4E

Π1
n-ideal A4Cb

Π2
0-filter 4Q, 4R, A4Cb

Π2
0 formula 4O, 8Q, A4K

Π2
0-ideal 4P, A4Cb

Π2
1-filter A4K, A4L

Π2
1-indescribable cardinal A4K, A4L

σ-finite measure space A2Ba, A2Bb
σ-ideal 9A , P9

Σ1
1 formula 4S, A4B

Σ1
n formula A4B

τ -additive measure A2V, A2W, S6A, SA2A
τ -homogeneous Boolean algebra A2He, A2Hf, A2Ia
τ(A) A2H (A2Ha), A2I
χ(a) A2Ff
χ(x,X) 8F, 8M, A3Eb
ω-Tukey function 7G, 7H, 7I

ω1-saturated ideal 9C, 9H

� A4A
{0, 1}I A2G
♦c 5N, 9N
→ see α→ (β, γ)2 (A1S)
⌈ see subspace measure (A2Ab)
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