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Introduction In these notes I seek to describe the theory of real-valued-measurable cardinals, collecting
together various results which are scattered around the published literature, and including a good deal of
unpublished material.

Almost immediately after Lebesgue introduced his theory of measure and integration, it was established
that (subject to the axiom of choice) not every subset of [0, 1] is Lebesgue measurable. The question naturally
arose, is there any extension of Lebesgue measure to a countably-additive measure defined on P[0,1]? It
was early understood that such an extension cannot be translation-invariant. In the seminal paper ULAM
30, S.Ulam showed that a probability space (X, PX, 1) in which every subset of X is assigned a probability
is either trivial or as complex an object as the set theory of that time could readily envisage. Since then,
measure theorists and others have periodically had occasion to wonder whether non-trivial examples do, or
can, exist (see, for instance, 6M-6N below), and with less regularity, but with impressive frequency, have
turned up some new curiosity concerning them.

The actual definition of ‘real-valued-measurable cardinal’ involves some technical considerations which I
prefer to leave to §1 below; here I will say only that there is a real-valued-measurable cardinal if and only
if there is a non-trivial probability space (X,PX,u). Ulam’s work already showed, in effect (the terms
I use date from later on) that real-valued-measurable cardinals are of two kinds: ‘atomlessly-measurable’
cardinals, less than or equal to the continuum, associated with extensions of Lebesgue measure to PR,
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and ‘two-valued-measurable’ cardinals, much greater than the continuum, associated with ultrafilters closed
under countable intersections.

It was observed by HANF & ScoTT 61 that a two-valued-measurable cardinal has some extraordinary
properties from the point of view of mathematical logic. The mixing of combinatorial and metamathematical
intuitions and techniques which followed was wonderfully fertile (see, for instance, KEISLER & TARSKI 64),
and quickly gave two-valued-measurable cardinals a central place in a rapidly growing theory of ‘large
cardinals’. T do not propose to describe this theory here; there are accounts in DRAKE 74, KANAMORI &
MAGIDOR 78, JECH 78. The relevant measures on a two-valued-measurable cardinal are all purely atomic,
and while some of their properties can be described in the language of measure theory, there is little there
which is connected with the ordinary concerns of measure theorists or probabilists. I wish rather to look at
atomlessly-measurable cardinals, where the deepest concepts of abstract measure theory are both employed
and illuminated. Two-valued-measurable cardinals will never be far away, as the work of R.M.Solovay
and K.Kunen shows (see SOLOVAY 71 and §2 below); indeed their constructions give general methods for
translating ideas about two-valued-measurable cardinals into ideas about atomlessly-measurable cardinals,
and many of the results described in this article were suggested in this way.

Recently, the spectacular near-resolution by GITIK & SHELAH 89 of the problem of determining the
measure algebra of an atomlessly-measurable cardinal has given new ways of applying Solovay’s concept of
‘random real forcing’, and opens up yet another channel through which ideas developed in other contexts
may be applied to the theory of atomlessly-measurable cardinals.

It is fair to say that most of the questions in measure theory depending on the existence of real-valued-
measurable cardinals are peripheral. (I do not say this of questions in set theory depending on the existence
of, or on supposing the consistency of the existence of, two-valued-measurable cardinals.) However, an
atomlessly-measurable cardinal, if one can exist (and there is a problem here; see 1Ee below), necessarily
has a structure which makes it as remarkable as anything in measure theory. My aim here is to describe this
structure. The investigation will take us into a fascinating blend of measure theory, infinitary combinatorics
and metamathematics, drawing on deep ideas from all three.

Out of personal taste and prejudice I will play down the metamathematical aspects, seeking wherever
possible to find ‘conventional’ expressions of the ideas involved. However, deep results from measure theory
and set theory are going to be central to my arguments, and many concepts from various branches of
mathematics will be called on at some point; so I have written an Appendix to give definitions, statements
of theorems I use, and proofs or references. As fundamental references I will take JECH 78 and KUNEN
80 for set theory, ENGELKING 89 for general topology, and my own books FREMLIN 74 and FREMLIN 84
for measure theory and miscellaneous material; I will try to indicate any divergences from these texts in
notation.

I have been interested in real-valued-measurable cardinals since 1965, as nearly as I can remember, and
cannot trust my memory to give a full list of those from whom I have learnt about them. But I recall that
it was W.A.J.Luxemburg who gave a seminar more or less on the subject of 6N, and A.R.D.Mathias who
showed me the paper KEISLER & TARSKI 64, the combination being the basis of my first work in this area.
My interest was maintained by correspondence with Solovay and conversations with R.G.Haydon in the
early seventies. Rather later I learnt of the work of K.Prikry, who introduced me to more of Solovay’s ideas.
The actual stimulus for writing these notes came from receiving a preprint of GITIK & SHELAH 89 from
M.Gitik and from visiting Madison, where Kunen showed me some of his unpublished work. Most recently I
have had valuable discussions with Gitik and with S.Shelah. So, pausing for a moment to apologise to those
I have missed, I should like to thank all those I have named, for leading me into this garden of delights.

Version of 11.12.91
1. Basic theory

1A The Banach-Ulam problem Can we describe all measure spaces of the form (X, PX, i) in terms
enabling us to decide whether p can be an extension of Lebesgue measure?

There certainly exist measure spaces (X, PX, u), constructed as follows. Let X be any set, f : X — [0, 00|
any function, and Z any o-ideal of subsets of X. Write



pA=> flx)if A€,

T€A
=xif Ae PX\T.

Then p : PX — [0,00] is countably additive. For the purposes of these notes, I will call a measure space
(X,PX,p) trivial if it can be obtained by this construction. What I will call the ‘Banach-Ulam problem’
therefore becomes: is there a non-trivial measure space (X, PX, p1)?

I include the o-ideal Z here for the sake of completeness. However, it is clear that a semi-finite trivial
measure space (in particular, a trivial probability space) (X, PX, u) must be defined by the function f(z) =
p{x} alone, and that in this case we may take 7 = PX, uA =3 _, f(x) for every A C X.

1B First reduction Suppose now that there is some non-trivial measure space (X, PX, u). Write

f(@) = pfa} if p{a} < oo,
=0if p{z} = o0,

and let Z be the o-ideal of subsets of X generated by {A : uA < co}. Let u/ be the measure defined from f
and Z by the method of 1A. Then u’A < pA for every A C X. By hypothesis, p/ # p; let A C X be such
that p’A < pA. Surely A € Z; let (A,,)nen be an increasing sequence of sets such that pA, < oo for every
n € Nand |J,cy An = A. Now there must be some n € N such that p'A,, < pA,. Set p" = p[A, — p'TA,.
Then (A,,PA,, ") is a measure space, with 0 < p”A,, < oo and p”’{z} = 0 for every x € A,. Setting
= (u'A,)" ", we obtain a probability space (A, PA,, ) in which singleton sets are negligible.

Accordingly we can say that there is a positive answer to the Banach-Ulam problem iff there is a proba-
bility space (X, PX,u) in which pu{z} = 0 for every x € X.

1C Notation For the next step it will be convenient to introduce some phrases which will dominate
these notes. Recall that a measure v is x-additive if v(|J€) exists = ), VE whenever £ is a disjoint
family of v-measurable sets and #(€) < k, and that a filter F is xk-complete if (|.A € F whenever A C F
and 0 < #(A) < k. (See A1B, A2C below.) Now:

(a) A cardinal x is real-valued-measurable if there is a x-additive probability v with domain P« which
is zero on singleton sets; in this context I will call such a v a witnessing probability on k.

(b) A cardinal k is two-valued-measurable (often called just ‘measurable’) if there is a non-principal
k-complete ultrafilter on x.

(c) A cardinal k is atomlessly-measurable if there is an atomless xk-additive probability v with domain
Pk.

1D Ulam’s Theorem (a) Let (X,PX, 1) be a probability space, with ideal NV, of negligible sets. Then
either it is trivial, and add(u) = add(N,,) = oo, or add(p) = add(N,,) is a real-valued-measurable cardinal.

(b) A cardinal is real-valued-measurable iff it is either atomlessly-measurable or two-valued-measurable.

(c) An atomlessly-measurable cardinal is weakly inaccessible and not greater than c.

(d) A two-valued-measurable cardinal is strongly inaccessible.

(e) There is an extension of Lebesgue measure to a measure defined on every subset of R iff there is an
atomlessly-measurable cardinal.

proof (a) As remarked in A2Cd, add(p) = add(N,). If (X,%, u) is trivial, then pX = 37 _\ p{z} and
add(p) = co. Otherwise, set H = {z : p{x} = 0}; then pH > 0 so k = add(N,) < #(X). There must be
a disjoint family (E¢)ec, in N, such that E' = J,_, B¢ ¢ N,. Define f : E — & by setting f(z) = £ if
x € Fe. Write

vo = (u[E)f

(A2Db), so that vy is a k-additive measure on &, zero on singletons, and vox = pE €]0,00[. Set v =
(uE)~'vp; then v witnesses that s is real-valued-measurable.

(b)(i) If  is atomlessly-measurable, of course it is real-valued-measurable. If k is two-valued-measurable,
with witnessing filter F, then we can set

VA=1Y Ac F,vA=0Y A€ Pr\F



and v will witness that x is real-valued-measurable.
(ii) Now suppose that & is real-valued-measurable, with witnessing probability v. (a) If (k, Pk, v) has
an atom A C k, set
F={F:FCk, A\FeN,}.
Then F is a k-complete ultrafilter on &, so & is two-valued-measurable. (3) Otherwise, (k, Pk, V) is atomless,
and v witnesses that x is atomlessly-measurable.

(c) Let k be a real-valued-measurable cardinal, with witnessing probability v.
(i) » <add(N,) < k, because v is k-additive and £ = |JN,. So k = add(N,) is regular (AlAc).
(ii) ? Now suppose, if possible, that £ = AT for a cardinal A < k. For each £ < &, let f¢ : & — X be an
injective function. For n < k, a < A set

Aﬁa:{§:ﬂ<f</€7 fg(n):a}
For any fixed n <k,
V(Ua<)\Ana) = I/{E m<E< ,{} =1,
and v is A*-additive, so there must be a 3, < A such that vAy s, > 0. Set

Bg={n:n <k, B, =p}
for B < A. Then V(U5<A Bg) = vk = 1, so there is a § < A such that ¥vBg > 0; in particular, Bg is

uncountable. But now observe that if n € Bg then vA,3 > 0, and that (A, 3),<x is disjoint, because every
fe is injective. So we have

1=vk> Zn<nl/A775 > ZT[GB[j vA,z = o0,

which is absurd. X

(iii) Thus « is weakly inaccessible. The argument so far assumes only that « is real-valued-measurable.
But if in fact k is atomlessly-measurable, then (k, Pk, ) may be taken to be atomless, in which case there
is a function f : k — [0, 1] which is inverse-measure-preserving for v and Lebesgue measure on [0, 1] (A2Kc).
Now vf~1 is a k-additive measure on [0, 1] which is zero on singletons. Accordingly x < #([0,1]) = ¢.

(d) Now let k be a two-valued-measurable cardinal with witnessing ultrafilter F. By (b) and (c-1) above,
k is an uncountable regular cardinal. ? Suppose, if possible, that x < 2* for some cardinal A < k. Let
f kK — PA be any injection. For a@ < A write

Ao ={8:{ <k, ae f(O}
Set
B={a:a<\ A, € F}.
Then k \ Ay € F for o € A\ B. Because F is k-complete,
A=Nwep4a NNaen\p(r\ Aa) € F.

Now if £ € A, o < A then o € f(§) iff o € B; ie., f(§) = B for every £ € A. But of course A is not a
singleton (because F is non-principal), so f cannot be injective. X
Thus « is strongly inaccessible.

(e) This is now easy. (i) If k is an atomlessly-measurable cardinal, with witnessing probability v, let
f & — [0,1] be inverse-measure-preserving for v and Lebesgue measure on [0, 1], as in (c-iii) above. Define
i : PR — [0, 00] by writing
pA =3 o, vf HA+n] V ACR;
then u is a countably-additive (in fact, k-additive) extension of Lebesgue measure to PR. (ii) If p is a
countably-additive extension of Lebesgue measure to PR, then x = add(u[[0, 1]) is real-valued-measurable,

by (a) above; but as k < ¢, k cannot be two-valued-measurable, by (d), and (b) tells us that  is actually
atomlessly-measurable.

1E Remarks (a) The theorem above is taken virtually directly from Uram 30. Evidently (c¢)-(d) show
that the division of real-valued-measurable cardinals into atomlessly-measurable cardinals and two-valued-



measurable cardinals is exclusive; this is ‘Ulam’s Dichotomy’. In §2 below we shall see an extraordinary
reunification of these two phenomena at a higher level.

Readers may recognise the family (A,a)a<x,n<r+ Of part (c-ii) of the proof above as an ‘Ulam matrix’; this
concept has many other applications (see ERDOS HAINAL MATE & RADO 84) and is one of the principal
contributions of the Banach-Ulam problem to mathematics.

(b) It is worth noting explicitly that Ulam’s Dichotomy is sharp. If  is a real-valued-measurable cardinal,
with witnessing probability v, then either (k, Pk, v) is atomless and & is atomlessly-measurable, or it is purely
atomic and k is two-valued-measurable. For in (b-ii-«) of the proof above we saw that if (k, Pk, v) is not
atomless then k is two-valued-measurable. While if (k, Pk, V) is not purely atomic, there is an A € Pr\ N,
such that (4,PA,v[A) is atomless; if we set v'B = v(B N A)/vA for every B C k, then v' will witness
that k is atomlessly-measurable. And, as already remarked, no cardinal can be simultaneously atomlessly-
measurable and two-valued-measurable.

(c) The phrase ‘two-valued-measurable’ is used just because there is a natural correspondence between
wi-complete filters and complete measures taking exactly the values 0 and 1, as described in the formulae
of part (b) of the proof above. We shall find that this language enables us to unify certain arguments, as
in 1G below. Of course there is not much measure theory to be found in a {0, 1}-valued measure, and the
qualities of two-valued-measurable cardinals and atomlessly-measurable cardinals are rather different. At
the right metamathematical level, they come together again, as the work of Solovay and Kunen shows; one
of the purposes of these notes is to try to describe the combinatorial foundations of this reunification.

(d) Note that Ulam’s theorem, while a large step forward, does not give us a working description of all
measure spaces (X,PX,u), even if we think we understand real-valued-measurable cardinals. Rather, it
gives lower bounds to the possible complexity of a non-trivial (X, PX, u). I will return to this question later
(3L-3M, §8).

(e) Because it is relatively consistent with ZFC to suppose that there are no weakly inaccessible cardinals,
it is relatively consistent to suppose that every measure space (X,PX,u) is trivial in the sense of 1A. It
remains open, in a sense, whether it is relatively consistent with ZFC to suppose that there is a real-
valued-measurable cardinal, and therefore a non-trivial measure space (X, PX,u). However, very much
stronger assertions have been explored systematically in the last two decades, without so far leading to
any contradiction; and at present almost no-one is seriously searching for a proof in ZFC that real-valued-
measurable cardinals don’t exist. The rest of these notes will tacitly assume that it is consistent to suppose
that there is at least one real-valued-measurable cardinal. Those unhappy with such an assumption may
however prefer to regard them as preliminary investigations which might eventually lead to a proof by
contradiction that there are no real-valued-measurable cardinals. I assure you that such a proof would make
you famous enough to justify any effort you put into learning this material.

1F Definition Let x be a regular uncountable cardinal.

(a) An ideal T of Pk is normal if it is proper, includes k (or I could say, contains every subset of x of
cardinal less than k), and whenever S € Pk \Z and f : S — k is regressive (that is, f(§) < & for every
non-zero & € S), then there is a £ < x such that f~1[{¢}] ¢ Z.

(b) A filter F on x is normal if its dual ideal {x \ F': F' € F} is normal.
(c) A measure v on & is normal if the ideal N, is normal.

Remarks The definition of ‘normal’ given here is adapted to the needs of the next theorem, but is not quite
standard. For the usual definition, and elementary properties of these ideals and filters, see A1E below. It is
worth noting immediately that the intersection of any non-empty family of normal ideals or filters is again
a normal ideal or filter.

1G Theorem (a) Let k be an atomlessly-measurable cardinal. Then there is a Maharam homogeneous
normal atomless k-additive probability with domain Pk.

(b) Let k be a two-valued-measurable cardinal. Then there is a normal x-complete non-principal ultra-
filter on k.



6

proof In case (a), start from an atomless k-additive probability v with domain Pk. In case (b), start from
a k-complete non-principal ultrafilter F on k, and construct v from F by setting vA=1if Ae F,vA=0
if A€ Pr\F. Then in both cases v is a k-additive probability with domain Pk which is zero on singletons.

Let F be the set of all functions f : k — & such that vf=1[¢] = 0 for every ( < k. Then there is an
fo € F such that

v{€: f(§) < fol§)} =0V feF.

P Note first that if f, g € F then f A g € F, where (f A ¢)(§) = min(f(£),g(§)) for every £ € k. 2 If there
is no suitable fo € F, then we may define inductively a decreasing family (go)a<w, in F, as follows. Set
go(§) = & for every £ < k; then gg € F because v is k-additive and zero on singletons. Given g, € F', take
gh, € F such that vE, > 0, where E, = {€: g/, (§) < 9a(§)}, and set go+1 = ga A gl Given (g9s3)s<a, where
« is a non-zero countable limit ordinal, set

9a(§) = minﬁ<agﬁ(§) V € < K;
then g, € F' because

v 1) = v(Upea 95 () =0V ( < 5.
Now consider the family (Ey)a<w,.- By A2Mb, there is a £ < k such that
A={a:¢{€E,}
is infinite. But if (a(n))nen is any strictly increasing sequence in A,

9a(n) (&) > o(n) (§) = Jam)+1(€) = Jam+1)(§)

for every n € N, and (gqa(n)(§))nen is a strictly decreasing sequence of ordinals, which is impossible. X Q

Now set vy = vf; 1 We see that 1 is a k-additive probability defined on Pk, because v is. Because
fo € F,vo{€} <vfy '€+ 1] =0 for every ¢ < k, and vy is zero on singletons.

The next step is to show that v is normal. B Take S € Pr \ N,,, and a regressive function f : S — k.
Extend f to a function g : Kk — Kk by setting g(§) = £ for £ € £\ S. Consider f; = go fo. Then
i€ s f1(6) < fo(&)) > vfr IS\ {0} = vo(S\ {0}) > 0, s0o fi ¢ F and there is a ¢ < # such that
vf'[¢] > 0; because v is s-additive, there is a ¢ < ¢ such that 0 < vf; '[{¢}] = vof [{¢}], because
FHHEN C THE U £y {EY]). As S and f are arbitrary, v is normal. @

By A2Hh, there is an E C & such that vpF > 0 and vo[F is Maharam homogeneous. Set 1A =
vo(A N E)/iyE for every A C k; then it is easy to check that v, is a Maharam homogeneous normal
k-additive probability on «.

Now let us re-examine the two cases (a), (b). In case (a), k < ¢ so by 1D and 1Eb v; must be atomless,
and satisfies the requirements of (a). In case (b), v takes only the values 0 and 1, so vy also takes only these
values, and P\ N,, is an ultrafilter; an elementary check will confirm that it is x-complete and normal and
non-principal, as demanded by (b).

1H Remarks (a) This theorem is due in the first place to KEISLER & TARSKI 64, who proved it for
two-valued-measurable cardinals; the adaptation to atomlessly-measurable cardinals is due independently
to Solovay (SOLOVAY 71), R.Jensen and myself. Part of the proof reappears in 2G; an extension of the
theorem, due to Solovay, is in 9B.

(b) The original impulse behind this theorem was the question: can the first (weakly) inaccessible cardinal
be real-valued-measurable? The answer is spectacularly negative; I give some of the theorems describing
how enormously complicated real-valued-measurable cardinals have to be in §4 below.

(c) It will be convenient to use the phrase normal witnessing probability, in such contexts as ‘Let x
be a real-valued-measurable cardinal, with normal witnessing probability v’, to mean a normal x-additive
probability with domain Px which is zero on singletons, as in 1Ga.

(d) For a proper discussion of the combinatorial properties of real-valued-measurable cardinals, se §5
below. It is however worth remarking now that if v is a normal witnessing probability on x and f : Kk — Kk
is any function, then there is a countable set D C k such that v{£: & <k, f(§) <&, f(§) ¢ D} =0. P Set
D = {¢: vf~1[{¢}] > 0}; then D is countable. Set S = {£: f(&) <&, f(£) ¢ D}. Then f|S is regressive,
and (f1S)"[{¢}] € N, for every ¢ < k, so S € N, as claimed. Q
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(e) Theorem 1Ga speaks of ‘Maharam homogeneous’ normal witnessing probabilities. These are homoge-
neous in the sense that they have homogeneous measure algebras. But it should be noted that in other senses
they are about as inhomogeneous as can be imagined. If v is a normal probability on &, and f : K — k is any
function, set A ={&: f(§) <&}, B={¢: f(§) =&}, C={¢: f(&) > &}. Then there is a countable D such
that v(A\ f~1[D]) = 0 ((d) above). On the other hand, looking at f[C], we have a function g : f[C] — &
given by g(n) = min f~[{n}] for n € f[C]; now g is regressive and injective, so we must have v f[C] = 0.

Thus our arbitrary f corresponds to a trisection of » into a negligible piece A\ f~![D], a piece CU f~1[D]
which is mapped onto a negligible piece, and a piece on which f is the identity. So if we ask, for instance,
that f~![E] should be negligible for every E € N, or that vf[E] should be equal to vE for every E, we
must have f(£) = & for almost every £. Accordingly none of the many automorphisms of Px /N, other than
the identity, can be represented by functions from & to itself, and if A, B are disjoint non-negligible sets
then (A,v[A) and (B,v[B) cannot be isomorphic as measure spaces.

(f) It has been recognised since SOLOVAY 71 that many of the properties of real-valued-measurable
cardinals depend not on their measures but on the presence of suitably saturated ideals. It would be possible
to begin this work with a study of such ideals, later specializing to real-valued-measurable cardinals. However
the general theory remains largely dependent on the special case for its inspiration, so I prefer to relegate it
to §9 below.

1I Rvm filters and ideals (a) If k is a real-valued-measurable cardinal, consider
W={W:W C k, vW =1 for every normal witnessing probability v on x}.

This is an intersection of normal filters, so is a normal filter on x; I will call it the rvm filter of . Similarly,
its dual ideal

J = (1N, : v is a normal witnessing probability on r}

is the rvm ideal of k.

(b) It is perhaps worth noting an elementary fact. If k is real-valued-measurable and Z € Pk \ J, then
there is a Maharam homogeneous normal witnessing probability v on & such that ¥Z = 1. (See the end
of the proof of 1G.) In particular, if x is two-valued-measurable and Z € Pk \ J then there is a normal
ultrafilter F on k containing Z.

*1J I give here a well-known theorem concerning two-valued-measurable cardinals because it throws light
on similar results in §4 below, and it is instructive to contrast the techniques of proof.

Lemma Let k be a two-valued-measurable cardinal with normal ultrafilter F. Suppose that we have a set
F € F and for each a € F' an n-place relation C,, on «. Then there is an n-place relation C on k such that

{a:aeF, C,=Cla}eF.

proof For ny,... ,n, < k write
Cn,.osnn) <= {a:Co(n...,nn)} €F.

Now set

EMmy,...,nn) ={a:ae€F, Can,... ,n0)}if C(n1,... ,1n),
={a:a€F, -Cym,...,nn)}F i =C(n1,...,00).
so that E(ny,... ,n,) € F. For § < &k set
Hg = (WEW, - 0n) s e < B} € T
Then
H={a:a€ Fisalimit ordinal, « € Hz V 3 < a} € F,
because F is normal (cf. A1E(c-iv)) (cf. A1E(c-iv)). But now Cla = C,, for every a € H.



*1K Lemma Let ¢ be a I13 formula in the third-order language L3 of A4K below. Let  be a two-valued-
measurable cardinal with normal ultrafilter F. Suppose that Fy € F and that for each a € Fy we are given
third-order relations Ag,1,... , Aq on a. For ¢ <1 let A; be the third-order relation on x defined by writing

Ai(Dl,... 7Dr,7717... ,ns)
— {a:n<aV j<s Aw(Dila,...,Dila,m,... ,ns5)} €F

for any strings D1, ..., D, of relations on x and 71,... ,ns of members of k. If Cq,... ,C}y are relations on
kand &1,...,&n < K, then

(’%;Ah"' aAl;Cla"' 70743;517"' 7£m) ':¢
<= {oz:oz<l£, (OZ;AQ17~-' yAu Cilay .. Crlas &y, ... afm) héb} S

proof Induce on the length of ¢.
(a) If ¢ is of the form S(Ry,...,x,) or R(xy,...,x,) we have just to observe that
Ai(Ojlv' - ’Sjn) = {a: Aai(le fo, ... 7£jn)} eF,

Ci(gju"' ’gjn) Aand {a : (Cira)(fjn--- 7§jn)} eF.

(b) If ¢ is of one of the forms =, ¥ A x, ¥ V x, ... the inductive step is easy (using the fact that F is
an ultrafilter for the case —)).

(¢) Suppose ¢ is of the form V.S. Set
F={a:(a;Au1,. - Aat; C1la, ... ,Crla; &1, ..., €m) E @}

(i) If F' € F take any relation C' on « of the same number of places as the variable S. For each oo € F
we have

(Oé;Aal,.-. 7AOzl;Cer‘7~" 7Cr0‘7"' 7Ckr04§§17~-- agm) ':wv

where C'[« is interpolated into the string Cy[a, ... ,Cila in such a way as to assign it to the variable S in
1. By the inductive hypothesis,

(FL;.Al,... ,Al;Cl,... 70,... ,Ck;fl,... 7§m)':1b,
so, as C is arbitrary,
(H;Alv-" 7-’41;017'" 7Ck;§1a"' 7§m) ’:QS

(ii) If F ¢ F then for each a € k \ F choose a relation B, on «, of the same number of places as 5,
such that

(k5 Aa1y - s Aa; Crlay ...y Bay oo, Crlas &1y oo Em) E .

Let B be the relation on « derived from (Ba)aex\r as in 1J, so that
E={a:ack\F,By,=Bla} e F.

Then

(; Aats - 5 Aa; Cila, ..o Bla, ..o Crlas &1, &m) F ),
for every a € F, so

(ks A1y JARCL o0 By Cri &y oo em) F ),
by the inductive hypothesis, and
(k; A1, oo A C, o Crs&ay e Em) EYSY.
This deals with the inductive step to ¢ = VS.

(d) If ¢ is of the form Vx4 the same procedure works. For the case F' € F we copy (c-1) but with a new
ordinal ¢ interpolated into the string &1, ... ,&,, rather than a new relation B interpolated into the string
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Cy,...,Cy. For the case F' ¢ F we take a witnessing family (Co)aer\r in place of (Ba)aer\r, and note
that because F is normal and « +— (, is regressive, there is a { < x such that £ = {a : {, = (} € F, so
that (k; A1,..., A;5C1 .0, Cri&r, oo, Ce  Em) F .

(e) If ¢ is of the form IS it is logically equivalent to —=V.S—) so (b)-(c) deal with it. Similarly, (b) and
(d) deal with the case Jx1p.

*1L Theorem If k is a two-valued-measurable cardinal, it is TI3-indescribable, and its IT3-filter is included
in its rvm filter.

proof Let ¢ be a formula of the language £3 (A4K) of the form VR ...VR;1, where 9 is a 13 formula in
L3 in which the only third-order variables are in the list Rq,... ,R;, and let F be a normal ultrafilter on k.
Let C1,...,Ck, &1, ... ,&n be such that

(k;;C1y ..., Crs&1,y oo em) F 0.
Set
F={a:a<k, (a;;C1,... ,&n) E o}
? If FF ¢ F then for « € k \ F let Ay, ..., Ay be third-order relations on « such that

(a;Aalw" aAal;Cla"' 70143;511"' 7£m) E "w'
For each ¢ < let A; be the third-order relation on x given by saying that

Ai(D17"' 7DT77717"' 7778)
= {an<aV j<s Aw(Dila,...,Dila,m,... ,ns)} €F

for all second-order relations D1, ..., D, on x and ordinals 7,... ,ns < k. It follows from Lemma 1K that

(K;Alv"' 7-/47’;017"' aCk;é.lv"' 7£m) hﬂ/’)

and

(K;;Clw" ack;gla"' 7£m)':_‘¢7

which is absurd. X
Thus F € F. But sets of the form of F' form a base for the IT3-filter of &, so every set in that filter belongs
to F; as F was arbitrary, the II3-filter of  is included in its rvm filter.

Remark This is due to HANF & ScOTT 61. See also DRAKE 74, §9.3, JECH 78, p. 385, Lemma 32.2 and
KANAMORI & MAGIDOR 78, §1.4.

1M Ergodic theory Going a little deeper into the question considered in 1He above, we have the
following, largely due to ZAKRZEWSKI 91.

Proposition Let (X, PX, 1) be a probability space.
(a) Let G be the group of measure-preserving bijections of X. Then there is a partition K of X into finite
sets such that G is precisely the set of bijections g : X — X such that u(|J{K : K € K, g[K] # K}) =0.
(b) Let G* be the group of bijections g : X — X such that NV, = {g7'[4] : A € N,,}. Then there is a
partition £ of X into countable sets such that G* is precisely the set of bijections g : X — X such that
WL L e £, g[L] # L}) = 0.

proof (a)(i) Let us note first that if H C G is a countable subgroup, F C X is any set, and f: F — X is
an injection such that f(z) € Orby(x) = {h(z) : h € H} for every x € E, then pf[E] = pE. P Let (hp)nen
run over H. For each n € N set

E,={x:x2€E, f(x) = hp(z), f(x) # hi(z) ¥V i <n}.
Then pf[En] = phy[E,] = pE, for each n, so puf[E]l = cyuf[En] =D, cniBn = pE. Q

(ii) It follows that if H C G is a countable subgroup then E = {z : Orby(z) is infinite} is negligible.
P Of course h(z) € E for h € H, x € E. Next, E (if it is not empty) has a partition (E,)nen such that
for each x € FE, n € N the intersection F,, N Orby(z) consists of a single point. Now for any m, n € N we
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have a bijection f : E,, — E,, defined by saying that f(z) is the unique member of Orbg(z) N E,; by (i),
wky, = pE,. As puF is certainly finite, it must be 0. Q

(iii) For any € > 0 there is a finite set F' C G such that pu{z : g(z) ¢ {f(z) : f € F}} < e for every
g € G. P? Otherwise we can choose (gn)nen in G inductively so that pFE, > € for every n € N, where
E, ={x:gn(x) # gi(z) V i < n} for each n. Let H be the subgroup of G generated by (g, )nen; then H is
countable. Set £ = [, .y U;>,, Ei; then uF > € and Orby (z) is infinite for every x € E, contradicting (ii)
just above. XQ

(iv) So there is a countable subgroup H of G such that u{z : g(x) ¢ Orbg(z)} = 0 for every g € G. By
(ii) again, F' = {x : Orby(z) is infinite} is negligible. Set K = {Orby(z) : v € X \ F}U{{z} : © € F}; then
KC is a partition of X into finite sets. Let (h,)nen run over H.

(v) Let g : X — X be a bijection and set A = J{K : K € K, g[K] # K}.

If pA =0, then g(z) € Orby(x) for every z € X \ A. So pg[E] = pE for every E C X \ A, by (i). As
glA] = A e N, pg[E] = pE for every E C X, ie., g € G.

If g€ G set D= {x:g(x) ¢ Orby(z)}; then uD = 0, by the choice of H. Set C'= F U,y h[D]; then
pC =0. If K € K and g[K| # K then K C C; thus A € NV, and K is the required partition.

(b)(i) If H C G* is a subgroup of cardinal at most wy, E C X is any set, and g : E — X is an injection
such that g(z) € Orby(z) for every x € E, then E € N, iff g[E] € N,;; the argument is the same as for (a-i)
above, but now using the fact that u is wo-additive (1D).

(ii) Next, if H C G* is a subgroup of cardinal at most wy, then {z : Orbg(z) is uncountable} is negligible;
the argument is the same as for (a-ii) above.

(iii) There is a countable subgroup H of G* such that

pfz : g(x) ¢ Orby(z)} =0

for every g € G*. P? If not, we can choose (g¢)e<w, in G* inductively so that puEe > 0 for every &,
where Ee = {z : g¢(z) # gy(x) V n < &}. Let H be the subgroup of G* generated by {ge¢ : £ < w1}, and
set E' = (Neey, Uyse Eni then (because p is wo-additive) pE > limsupe_,, pEe¢ > 0, while Orby(z) is
unocuntable for every € E, which is impossible. XQ

(iv) Now take £ to be the set of orbits of H. Let g : X — X be a bijection and set A = |J{L : L €
£, gL # L}.

If A e N,, then g(x) € Orby(z) for every 2 € X \ A, while also g[A] = A; it follows that g € G* as in
(a-v) above.

If g € G*, set D = {x: g(zx) ¢ Orby(2)} € Ny, C = Upcy MDJ; then A C C € N,,. Thus £ witnesses
the truth of (b).

Remark Compare 9E. In this proposition I have tried to give a succinct but adequate description of
the structure involved. Many corollaries can be drawn concerning both G and G* and the corresponding
subgroups of Aut(PX/N,,); see ZAKRZEWSKI 91.

Version of 10.12.91

2. Solovay’s Theorems

As remarked in 1Ee, there cannot be a proof in ZFC that real-valued-measurable cardinals exist. It
remains just conceivable that there is a proof that two-valued-measurable cardinals or atomlessly-measurable
cardinals do not exist. However, if one of these gives a difficulty, so does the other; this is the main result
of SOLOVAY 71, covered in 2A-2D. The method of proof in 2C is important because it provides a technique
- to date the only technique known - for proving the relative consistency of further propositions with the
existence of an atomlessly-measurable cardinal, as in 2I. I therefore spell out some of the properties of the
construction relevant to questions considered later in this paper (2H, 2J, 2K).

This material belongs to the ‘metamathematical’ part of the subject, and as I said in the Introduction
I seek to avoid reliance on such methods; only the second half of §4 and a few paragraphs elsewhere will
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depend on them in a formal sense. Historically, however, these ideas have been dominant in the development
of the subject, and they remain an invaluable guide.

2A Forcing I try to follow KUNEN 80 for the theory and notation of forcing. In particular, a p.o.set is
a triple (P, <, 1p) such that

p<pVpeP,
if p<qgand q<rthenp<r,

IpePand p<lp V pe P

and ‘p < ¢’ means that p is a stronger condition than q. Two elements p, g of P are incompatible if there
is no r € P such that r < p and r < ¢. A set A C P is an antichain (‘down-antichain’ in FREMLIN 84) if
p and ¢ are incompatible for all distinct p, ¢ € A. A set D C P is dense (‘coinitial’ in FREMLIN 84) if for
any p € P there is a ¢ € D such that ¢ < p.

If P is any p.o.set, it has a natural topology (the ‘down-topology’ of FREMLIN 84) generated by sets of the
form {q : ¢ < p} as p runs through P. Let 2 be the algebra of regular open sets for this topology (FREMLIN
84, §12). For p € P write p* for the corresponding member of 2, viz.

int{q: ¢ <p} ={q: every r < q is compatible with p}.
The map p — p* : P — 2\ {0} is a dense embedding in the sense of KUNEN 80.

2B Random real p.o.sets A random real p.o.set is a p.o.set P such that there is a functional
P —]0,1] such that (i) pllp = 1 (ii) if p € P and A is a maximal antichain in {¢ : ¢ < p}, then
BP = D g 110

It is fairly easy to see that P is a random real p.o.set in this sense iff the regular open algebra of P is a
measurable algebra in the sense of A2Fc. Consequently forcing with any random real p.o.set corresponds
to forcing with a measurable algebra, which by Maharam’s theorem (A2I) is reducible to some assembly of
forcings with the standard homogeneous measure algebras based on powers of {0,1} (A2G).

The idea of this definition is to unify the two examples with which we shall be concerned: (i) P = A\ {0},
where 2 is a non-zero measurable algebra; (ii) P = X\ NV, where (X, X, 1) is a probability space. But it is
also worth noting that if P is a random real p.o.set and Q is a dense subset of P containing 1p, then Q is a
random real p.o.set.

2C Theorem If k is a real-valued-measurable cardinal and P is a random real p.o.set then

lFp & is real-valued-measurable.

proof Let 2 be the regular open algebra of P; fix on a i such that (2, i) is a probability algebra, and let
v be a witnessing probability on k. For each P-name o for a subset of x let (ag(0))e<, be the family in 2
defined by the formula

ag(o) = sup{p* : plFp € € 0}.
Define u, € L () by writing

S, o dit = [ plag(o) N a) w(de)

for every a € 2; this is well-defined because the functional
a— [ jilag(0) N a) v(de)

is additive and dominated by i (A2Fg). Observe that if o, 0’ are both names for subsets of k and p Ikp 0 = o’
then p* Nag(o) = p* Nag(o’) for every £ < k, so that uy X x(p*) = usr X x(p*). We therefore have a P-name
v for a function from Pk to [0, 1] such that, for any rational numbers s, ¢,

plrp 8 < (o) <Tiff sx(p*) < uo x x(p*) < tx(p*).

(The point is that if p IFp o = ¢/, then uy, X x(p*) = uer x x(p*) so plbp ¥(c) = v(0”).)
Now we have to check the properties of . §
(i) If o1, 02 and o are P-names for subsets of x and IFp 01 Noy =0, 01 Uoe = ¢ then
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ag(o1) Nag(oz) =0 V £ <k,

ag(0) = ag(o1) Uag(og) ¥V € < k.
So if a € A,
alanag(o)) = plaNag(or)) + iwlaNag(oz)) ¥ € <k,

fa Uy Al = fa Uy, dfi + fa Uy, A
Accordingly
Ug = Ug, + Ug,
in L*°(2), and
IFp (o) = D(01) + P(02).
Thus
IFp U is finitely additive.
(ii) If ¢ < k and o is a P-name for {¢} then a¢(o) = 0 for every £ # ¢ so [ jiag(o) v(d€) =0 and u, =0
and IFp (o) = 0.
(iii) Similarly, uz = x(1) so IFp #(&) = 1.
(iv) If A < k and (04 )a<x is a family of P-names for subsets of x with
Fp Upes 0a = K, aaﬂogzé] YV a# S,
then a¢(0q) Nag(og) = 0 whenever € < k, & < § < A, and supa<rae(0n) = 1 in 2 for every £ < k. So
pa =3, \ilag(oa) Na) V E< N ac,

and (because v is k-additive and A\ < k)

jia =3,y [ iag(0a) Na)v(dé) V¥ a € 2.

Accordingly >, 3 us, = x(1) in L*(A). Now if p € P, ¢ < 1 there must be a non-zero a C p* and
B(0), ..., B(n) <A, to,...,tn > 0such that 3, ¢; >t and t;x(a) < Uy, for each i <n. Thereisap; € P
such that pj C a, and

p1 ke D(oge)) >

for every i < n, so that

p1 lFp Za<)\ v(0a) > L.
As p and t are arbitrary,

<

IFp Y ger V(o) > 1.
As (04)a< is arbitrary,
IFp v is R-additive.
Thus 7 witnesses that
lFp & is real-valued-measurable.
Remark This is due to Solovay and Kunen (SOLOVAY 71, Theorem 7.) For a version of the proof which
incorporates the relevant part of the Radon-Nikodym theorem, see JECH 78, p. 423, Lemma 34.6.

2D Theorem If x is an uncountable cardinal and Z is a proper k-saturated x-additive ideal of Pk
containing singletons, then

L(Z) E GCH + & is two-valued-measurable.

proof SoLovAy 71, Theorem 6, or JECH 78, p. 416, Theorem 82a.

2E Corollary The following are equiconsistent:
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(a) ‘ZFC + there is a two-valued-measurable cardinal’;

(b) ‘ZFC + there is an atomlessly-measurable cardinal’;

(c) ‘ZFC + there is a real-valued-measurable cardinal’;

(d) ‘ZFC + ¢ is atomlessly-measurable’;

(e) ‘ZFC 4+ GCH + there is a two-valued-measurable cardinal’.

proof For (a)=(d), use 2C with P = 2, \ {0}, where 2, is the measure algebra of {0,1}* with its usual
measure. (d)=-(b)=-(c) and (e)=-(a) are trivial. (c)=-(e) is covered by 2D.

2F Definition If X and Y are sets and 7 is an ideal of subsets of X then I write Trz(X;Y") for
sup{#(F): F CYX {z: f(z) # g(x)} € T whenever f, g € F and f # g}.

2G Lemma Let (X, PX,v) be a probability space and Y any set. Then Try,, (X;Y) is attained, in the
sense that there is a set G C YX such that #(G) = Trp, (X;Y) and {z : x € X, g(z) # ¢'(z)} € N, for all
distinct g, ¢’ € G.

proof It is enough to consider the case in which Y = X is a cardinal, and the case of finite X is elementary,
so I suppose from now on that A > w. Set 8 = Trp,, (X; A).

(a) If H C \¥ is such that
F={f:feX {z:f(x)<h(x)} €N, V he H} #0,
then there is an fy € F such that
{z: f(x) < fo(x)} €N, for every f € F.

P? Ifnot, choose a family (f¢)e<w, in F inductively, as follows. fj is to be any member of F'. Given f, there
isan f € F such that {z : f(z) < fe(z)} ¢ Ny set fey1(x) = min(f(z), fe(z)) for every x; then fei; € F.
Given that f, € F for every n < &, where £ < w; is a non-zero limit ordinal, set f¢(x) = min,<¢ f,(x) for
each x; then for any h € H we shall have

{z: fe(z) < h(a)} = Uycelz: fy(z) < h(x)} € Ny,

so fe € F and the induction continues.
Now consider

Ee ={z: fer1(z) < fe(x)} €e PX\N,
for £ < w;. By A2Mb there is an € X such that
A={¢:x € E;}
is infinite. But if ({(n))nen is any strictly increasing sequence in A, (fe(n)(%))nen is a strictly decreasing
sequence of ordinals, which is impossible. XQ
(b) We may therefore choose a family (g¢)e<q in A¥ as follows. Given (g,),<¢, set
Fe={f:fe  {z:f(x) <gy(x)} €N, ¥V <&}

If Fe =0, set a = & and stop. If Fr # () choose g¢ € F¢ such that {z : f(z) < ge(z)} € N, for every f € Fg,

and continue. Note that for n < w, g,(x) = n for v-almost every z € X (this is a simple induction on n),
so that o > w.

(c) Because g¢ € Fe, {x : g¢(z) = gy(x)} € N, whenever < & < o, so #(a) < 6. On the other hand,
suppose that F C A\¥ is such that {z : f(z) = f'(z)} € N, for all distinct f, f’ € F. For each f € F, set

Gg=min{{: <o, f & Fe);

this must be defined because F, = 0. Also Fy = A¥ and Fe = ﬂn<€ F, if £ < a is a non-zero limit ordinal,
SO C} must be a successor ordinal; let (; be its predecessor. We have f € F¢, and

{z: f(z) <gep(x)} €Ny, { s f(2) < g, (@)} €N,
so that

Ep ={z: f(z) = g¢; ()} & No.
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If f, f" are distinct members of F' and (y = (s, then Ef N Eyp € N,. So
{f:feF =0
must be countable for every ¢ < «, and #(F) < max(w, #(«)) = #(«). As F is arbitrary, 0 < #(«).
(d) Accordingly we may take G = {g¢ : £ < a}.
Remark Compare 1G.

2H Proposition Suppose that & is a two-valued-measurable cardinal and that A > x. Let (2, @)
be the measure algebra of {0,1}* with its usual measure, and set P = 2, \ {0}. Let v be a {0, 1}-valued
r-additive measure with domain Pk, zero on singletons. Write N for the ideal of Lebesgue negligible subsets
of R.

(a) Set ¢ = Try, (k; A). Construct the P-name & for a measure on « as in 2C. Then

lFp 7 is Maharam homogeneous with Maharam type (.
(b) Set v = A“, the cardinal power. Then
IFp cov(R,N) = ¢ = a.
proof (a)(i) By 2G, there is a family (ga)a<¢ in A” such that {£ : go

Fix a stochastically independent family (e,)n<x in Ay with e, =
a P-name for a subset of x such that

—~

§) =g3(§)} € N, whenever o < 3 < (.
for every 7. For each a < ( let o, be

N|—=

g, (¢) IFp £€on, 1\ ega(e) IFp £¢ o,

Then
e 7(Npey 0a) = 277D

for every non-empty finite I C {. So

IFp (0a), <¢ 1s stochastically independent
and

lFp for every A € P&\ Nj the Maharam type of #[A is at least (.
(ii) Suppose that p € P and that (04)a<p is a family of P-names for subsets of x such that p IFp
U(oaog) > 3e >0 for all @ < 8 < 6. Then, writing F for the filter {4 : vA =1},
lime 7 fix(p N (ag(0a)Dag(og))) > 3efiap ¥V ae < 5 < 0,

defining a¢ (o) as in 2C, but regarding them as members of P itself. Take a metrically dense subset D of 2
of cardinal \; take dne € D with fiy(daeDag(04)) < efinp for all £ < k, a < 6; then

lime 7 fix(p N (daeDNdpe)) >0V a < < 6.
Consequently ((dog)e<w)a<o witness that 8 < Trp, (k; D) = Tra, (k; A) = ¢. This shows that
lFp the metric density of Pk/N; is at most C;
but as remarked in A2Hi, this is just
IFp the Maharam type of  is at most C.

(b) (i) We have
|Hp> C S a
because #(P) = a = #(P)* (see A2Hb) and P is ccc; see JECH 78, Lemma 19.4.
(ii) We need to know the following fact: if § < « and (I¢)¢<p is any family in [A\]S%, there is a K € [A\]*
such that K N I¢ is finite for every £ < 6. P If 6 < X this is trivial. If § > A, let 8 be the least cardinal
such that 3% > 6; then ¢ < 8 <A < 6 and 3% > max(f8,sup,.37*), so cf(3) = w. Let (B,)nen be a strictly

increasing sequence of infinite cardinals with supremum 3. For each n € N let ¢y, : [n X 5,]<Y — Bni1 \ On
be an injective function, and for x : N — J set
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Ky ={én(zN(nxB,)) :neNYCBCA,

identifying = with a subset of N x #. Then each K, is infinite and K, N K, is finite whenever z # y.
Consequently, for any & < 6,

{z: K, NI isinfinite} ={z:3 I € I]¥, I C K,}

has cardinal at most ¢. Because 8 > max(c, ), there is some z such that K, N I is finite for every &, and
this will serve for K. Q

(iii) The argument of Theorem 3 of MILLER 82 now shows that
IFp cov(R,N) > d.
Because cov(R,N) < ¢, we're done.

Remark The result (b) is well known if A = A; see for instance KUNEN 84, 3.14 and 3.19. For A* > A it
is less familiar.

Maharam’s theorem (A2I) tells us that any random real forcing must correspond to some forcing of
the type described in this proposition. Consequently any atomlessly-measurable cardinal constructed by
Solovay’s method from a {0, 1}-valued measure must have a homogeneous measure algebra.

2I Corollary The following are equiconsistent:

(a) ‘ZFC + there is a two-valued-measurable cardinal’;

(b) ‘ZFC + there is an atomlessly-measurable cardinal x, with witnessing probability v, such that the
Maharam type of v is ¢ = 2%;

(¢) “ZFC + there is an atomlessly-measurable cardinal s, with witnessing probability v, such that the
Maharam type of v is £(+), while ¢ = 2F = g(tw+1),

proof For (b)=-(a) and (c¢)=(a) we have 2D-2E. For (a)=-(b), apply 2H, starting from a two-valued-mea-
surable cardinal k, and using A = 2". For (a)=(c), 2E(a)=-(e) tells us that we may assume GCH and take
a two-valued-measurable cardinal x with witnessing probability v. If we now take A = k(). we shall have
Try, (k;A) = A. P Take F C A\* such that {¢€ : (&) = g(&)} € N, for all distinct f, g € F. For each
neNset F, ={f:f€F vf [kt >0} Then F =,y Fn. If f, g are distinct members of F),, then
(s x&E) £ gn (v x 6F™) and #(P(k x kF)) = gEHD < X So #(F,) < X for every n and
#(F) < X. This shows that Try, (k; A) < A; but the reverse inequality is trivial. Q
Also A < 2\ < 2* = (@t 50 applying 2H we get

IFp the Maharam type of 7 is &(T¢),
IFp ¢ = kT,
But because #(P)* = g+t
Ibp 27 < gt
so we have the (relative) consistency of (c).

2J Proposition Let k be a real-valued-measurable cardinal with rvm ideal J, and let P be a random
real p.o.set.
(a) If v is a witnessing probability on x and o the corresponding P-name as in 2C, then
(i) for any B C &,

IFp 7B = (vB)".
(ii) IFp N is the ideal of P& generated by N,,.
(iii) If v is normal, then

IFp 7 is normal.

(b) If ¥ is a P-name for a witnessing probability on k, then there is a witnessing probability v; on x such
that

N,, ={B:BCk&, IFp vB =0}.



16

If moreover IFp © is normal, then v; is normal. §
(c) IFp the rvim ideal of % is the ideal of P# generated by J.

proof Take 2 and & as in 2C.
a)(i) If B C k then a¢(B) =1if £ € B, 0if £ ¢ B; so [ ji(ae(B))v(d€) = fia.vB for every a € 2 and

) 3 o MG H
Ikp oB = (vB)V.

(ii) Let o be a P-name such that IFp 7o = 0. Let (ag(0))¢<, be the corresponding family in 2. Then

fi(ae(o))v(d€) =0, so B = {¢ : fi(ag(c)) > 0} € N,,. Now IFp o C B € N,,.

3 3

(iii) Suppose that v is normal. Let (0¢)e<, be a family of P-names for v-negligible subsets of x and
let o be a P-name such that

Fpo={n:3 {£<n,neoe}

For each £ < k we have a Be € N, such that IFp o C Bg; set B={n:3 & <n,n € Be}. Because v is
normal, B € N, and IFp 7B = 0. But also if n < &, p € P and p IFp 1 € o, then there are p <pand £ <n
such that p’ IFp € o¢, so that n € B¢ and € B. Thus IFp 0 C B and IFp 7o = 0.

(b) For each B C k we have a unique up € L*(2l) representing vB in the sense that for any rational
numbers s, t and any p € P,

plrp 3 <UB <i < sx(p*) <up x x(p") < tx(p*).
Set
B = f updf.
Then the same computations as in 2C, taken in reverse, show that v; is a xk-additive probability, zero on

singletons; while 11 B = 0 iff ug = 0 iff IFp 2B = 0.
If IFp © is normal, then take any family (Bg)e<, in N, and set B ={n:3 £ <n, n € Be}. Then

b B={n:3 {<n ne Bk
so IFp vB =0 and v1B = 0. Thus v, is normal.

(c)() If B € J and v is a P-name for a normal witnessing probability on «, then take 14 as in (b); we
must have ;B =0so lFp vB = 0.

(ii) If o is a P-name for a member of the rvim filter of x in VF, let (a¢(0))e<, be the corresponding
family in 2, and set B = {¢ : ag(0) # 0}. Then IFp ¢ C B. If v is any normal witnessing probability on
k and 7 the corresponding P-name, then IFp 7o = 0, so as in (a)(ii) above we must have vB = 0. As v is
arbitrary, B € J and IFp 0 C B € J.

2K Theorem If « is a two-valued-measurable cardinal and F is a normal ultrafilter on k, then
L(F) E & is two-valued-measurable and F N L(F) is the rvm filter of &.
proof KUNEN 70, §6, or JECH 78, Theorem 76, p. 373.

2L Corollary The following are equiconsistent:

(a) ‘ZFC + there is a two-valued-measurable cardinal’;

(b) ‘ZFC + there is a two-valued-measurable cardinal in which the rvm filter is an ultrafilter’;

(c) ‘ZFC + there is an atomlessly-measurable cardinal in which the rvm ideal is the ideal of negligible
sets for a normal witnessing probability’.

proof (a)=(b) is covered by 2K. For (b)=-(c), start with a two-valued-measurable cardinal in which the rvm
filter is an ultrafilter, and use 2C with P = 21, \ {0}, as in 2E. Then the rvm ideal of x in V¥ is generated
by J, the rvm ideal of k in V', by 2Jc. But if 7 is the P-name for a witnessing probability on k derived from
the {0, 1}-valued probability v associated with 7, then the null ideal of 7 in V¥ is also generated by J, by
2J(a-ii); and therefore coincides with the rvim ideal, as required.

Finally, (c)=(a) is covered by 2D-2E above.

Version of 22.11.91
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3. The Gitik-Shelah theorem

I come now to the most striking development in the theory of real-valued-measurable cardinals since the
work of Solovay and Kunen in the late sixties. Recall that Maharam’s theorem (A2I) gives us a complete
description of all probability algebras, and that consequently almost the first question to ask of any prob-
ability space is what its measure algebra is. In particular, we ask this of (k,Pk,v) when k is real-valued-
measurable and v is a k-additive probability on k. If k is two-valued-measurable, (k, Pk, v) is purely atomic
and there is nothing of interest to say about its measure algebra. But if x is atomlessly-measurable, there
is a great deal more to it. The Gitik-Shelah theorem (3F-3G) tells us that in this case Pr/N,, is at least
of the order of complexity achieved if v is constructed from a k-complete ultrafilter with Solovay’s random
reals.

This chapter is devoted to a proof of this theorem. The original paper GITIK & SHELAH 89 relied heavily
on generic-ultrapower techniques, as does its supplement GITIK & SHELAH P91. Here I give what amounts
to a translation of their arguments into measure theory. I do not give quite the shortest proof, as many
of the intermediate steps seem to be of sufficient interest to be given as separate lemmas in rather greater
generality than is needed immediately. A slightly more condensed version may be found in KAMBURELIS
N89, from which some of the ideas below are derived.

3A Theorem Suppose that (Y,PY,v) is a probability space and that (X,%,%, u) is a quasi-Radon
probability space with the topological weight of (X, ¥) strictly less than the additivity of v. Let f : X XY —
R be any bounded function; then

/( / f(a,y)wldy)) pldz) < / (/f(x,y>u<da:>>u<dy>,

writing T for the upper integral, as in A2E.

proof Adding a constant function to f if necessary, we need consider only the case of non-negative f. Set
A =w(X) < add(v); let (G¢)e<n enumerate a base for T. Fix e > 0. Foreach y € Y, let by, : X — R be a
lower semi-continuous function such that f(z,y) < hy(x) for every x € X and
fh dm<e+ffmy )p(dx)
(A2Je). For each I C A, set
fi(z,y) =sup{s:3 €I, x€Ge hy(z') >s V 2’ € Ge}.

Then fr is expressible as supgc; seq+ SX(Ge X Bes), writing QT for the set of non-negative rational numbers
and x (G x B) for the characteristic function of G x B C X xY, and taking Bes = {y : hy(2') > s V 2’ € G¢}.
So fr is (1 x v)-measurable for all countable I, and for such I we shall have

I [ fi(a, y)p(da) = [ [ f1(@,y)v(dy)p(dz),
by Fubini’s theorem. Next,
SUPre[A]<w fr(z,y) = hy(z)
for all z € X, y € Y, because each h, is lower semi-continuous, so that
supsepy<e [ fr(z,y)p(de) = [ hy(z)p(de
for each y € Y (A2Jf). Because A < add(u), it follows that
suprepg<e [ J fr(z v)u = [ [hy(= v(dy)
(A2Cf). On the other hand, if we write
z) = [ fi(z,y)v(dy)

for each z € X, I C )\, then (at least for finite I) g; is also lower semi-continuous, so g = SUpPre(n<e 91 18
lower semi-continuous, and [ g(z)u(dz) = suprey<w [ gr(z)p(dz). Also

z) = [ hy(x)v(dy) > [ f(a,y)v(dy)
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for every z € X, the equality in this formula again depending on A2Cf. So we have

[ [ s umtaputan < [ gantan)

- sup/ H(2)u(dx)

I€[A]

sup //f[l‘y (dy)p(dx)
- / / f1(@,y)(de)v(dy)
_ / / By (@) (d)w (dy)

< e+//f(x,y)u(dw)V(dy)-

Remark For the case X = {0,1}*, this is due to Kunen. Readers uninterested in general quasi-Radon
measure spaces should imagine X here and in 3B to be a subset of {0,1}* with the subspace measure.
See also 6A below for a similar result, and 6J for an elementary corollary.

As € is arbitrary, we have the result.

3B Corollary Let k be a real-valued-measurable cardinal, with witnessing probability v, and (X, %, X, 1)
a quasi-Radon probability space with w(X,%) < k.
(a) If C C X X K then

JrCl{a}u(dz) < [ wC{ENw(dE).
(b) If AC X and #(A) < k, then there is a B C A such that #(B) < k and pu*B = pu*A.
(c) If (Ce)e<r is a family in PX \ NV, such that #(U¢_, C¢) < &, then there are distinct &, n <  such
that 11*(Ce N Cy) > 0
(d) If we have a family (h¢)e<, of functions such that each dom(he) is a non-negligible subset of X and
#(Ue<, he) < (identifying each he with its graph), then there are distinct £, n < s such that

p{z : x € dom(he) Ndom(hy,), he(x) = hy(x)} > 0.

proof (a) Apply 3A to xC: X x k — R.
(b) ? Suppose, if possible, otherwise. Then surely #(A) = k; let f: kK — A be a bijection. Set
C={(fm),8) :n<E<r}C X Xk
Ifx € A,
Cla}l =v{¢: @) <€ <k} =1,
so [vC[{x}|u(dr) = p*A. T € < &,
CTH{EH = {fm):n<&} <pA
so [ p*C7H{&}v(d€) < p*A. But this contradicts (a). X
(c) Let 7 be the probability on k x x defined by writing
VA = qu[{ﬁ}] v(d) V ACk X k.
Then v is k-additive. Set

C ={(z,(&n)) : & n are distinct members of k, z € Ce N Cy}
C X x (kX K).

Set
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E={z:ze X, v{{:2€Ce} =0}
Because # (U, C¢) < &,
v{{: ENCe # 0} =0,
and there is a £ < k with C¢ N E = 0; thus p*(X\E) > 0. Now if z € X \ E then
P& m) : (@, (&m) € Ch = (A€ w € Ce})* > 0.

So we have

0< / H(En) - (@ (E.m) € C} plda)
< / o {a: (x, (€m) € CYad(E,m)),

by 3A, and there must be distinct £, n < & such that p*{z : (z,(§,n)) € C} > 0, as required.

(d) Set Y =, ran(he). Give X x Y the measure fi and topology T’ defined as follows. The domain

of ji is to be the family ¥ of subsets H of X x Y for which there are E, E' € ¥ with u(E’\E) = 0 and
ExY CHCE xY;and for such H, iH is to be uE = pE’. The topology ¥’ is to be just the family
{GxY :Geg%}. Itis easy to check that (X x Y, %', %, i) is a quasi-Radon probability space of weight less
than k, and that g*he = p*(dom(he)) > 0 for each € < k. So (c) gives the result.

Remark I have taken the idea of 3Bc from KAMBURELIS N&9.

3C Lemma Suppose that A, ¢, § are cardinals, with § < A < ¢f({), and that S is a stationary subset of (.
Let (I,)acs be a family in [A]=°. Then there is a set M C X such that cf(#(M)) < dand {a:a € S, I, C M}
is stationary in (.

proof For M C A, set Syy = {a:a €S, I, C M}. Let M C X be a set of minimal cardinality such that
S is stationary in (. Set § = #(M). ? If cf(f) > 0, enumerate M as (vye)e<g. For each a € Sy, set
Ba = sup{{ : ve € I, }; because #(I,) < § <cf(f), B < 6. Because 8 < A <cf((), there is a § < 6 such
that S’ = {a : @ € Sy, Ba = B} is stationary in ¢. Consider M’ = {v¢ : £ < }; then #(M') < #(M) but
Sy 2 S’ so is stationary in (, contrary to the choice of M. X

Thus M and S = S); will serve.

3D Definition Let x be a cardinal. Write Tr(x) for
sup{#(F) : F C k", #(f Ng) < & for all distinct f, g € F}.
Thus Tr(x) = Trp. <« (k; %) in the notation of 2F.
3E Lemma (a) For any infinite cardinal &,
kT < Tr(k) < 2°.
(b) For any infinite cardinal &,
max(Tr(k), sups.,, 2%) > min(2%, x(F<)).
(c) If s is such that 20 < & for every & < &, then Tr(x) = 2~.

proof (a) We can build inductively a family (fo)a<.+ in &7, as follows. Given (fq)a<p, where 3 < k¥, let
0 : B — Kk be any injection. Now choose f3 : kK — K so that

F5(6) # fa(€) whenever a < 3 and 6(a) < €.
This will mean that if o < g, then
{&: fa(€) = f5(&)} S 0(c)

has cardinal less than . So at the end of the induction, F' = {f, : a < x™} will witness that Tr(x) > &*.
On the other hand, Tr(x) < #(k") = 2".

(b) ? If not, then take A = max(Tr(k),sups., 2°) < min(2%, k(+*)). For each £ < k take an injective
function ¢¢ : P — A. Because A < 2%, we have an injective function h : AT — Pk. For a < AT set
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9a (&) = ¢e(h(a) NE) for every € < k; then (ga)a<a+ is a family in A* such that #(go N gs) < k whenever
a # S.

Apply 3C with § = k, ( = A1, I, = ga[k] to see that there is a set M C X with cf(#(M)) < k and
S ={a:a< A, gu[s] € M} stationary in A*. Because A < x(t%), we must have #(M) < k. If f: M — &
is any injection, (fga)acs Will witness that Tr(k) > #(S) = AT; which is impossible. X

(c) For each & < k, let ¢¢ : P& — & be injective. For A C &, define f4 € k" by writing

fa(€) = de(ANE) V €<k
Then F = {fs : A C k} witnesses that Tr(x) > 2~.

3F The Gitik-Shelah Theorem Let x be an atomlessly-measurable cardinal, with witnessing proba-
bility ». Then the Maharam type of (xk, Pk, v) is at least min(x(t<),2%).

proof ? Suppose, if possible, otherwise.

(a) Let A C k be such that vA > 0 and (4, PA,v[A) is Maharam homogeneous, of Maharam type A
say; surely A is not greater than the Maharam type of (k,Pk,v), so we have A < 2" and A < k(T Also
A > w, because v is atomless.

Set

nB=wA)"'w(ANB) V B C k;
then (k, Pk, 1) is Maharam homogeneous, with Maharam type .

(b) We shall need some fairly elaborate notation. Let uy be the usual Radon probability on {0, 1}*
(A2G), X, its domain, and Ay = ¥, /N,,, its measure algebra. For M C A let mp : {0,1}* — {0,1}M
be the canonical restriction map, and pps the usual Radon probability on {0, 1}M , so that m, is inverse-
measure-preserving for iy and pr; write $%, for the Baire o-algebra of {0, 1},

Now let us return to the argument. We are supposing that 2, = 2 = Px/N,,, the measure algebra of
(k,Pr,v1). Let ¢ : Ay — A be a measure- preserving isomorphism and f : k — {0,1}* a corresponding
inverse-measure -preserving function, so that

FYUEP =¢(E*)eA Y E Xy
(A2Jd).

(c) From here on we are going to need a split argument, depending on whether or not A < Tr(x). Because
large parts of the two arguments are the same, I take them together; but readers may prefer to follow through
case 1 completely before returning to examine the modifications necessary in case 2.

case 1 Suppose that A < Tr(x). Set ¢ = max(xk*,A"); then ¢ < Tr(k) is a successor cardinal so there
is a family (gqa)a<c of functions from & to & such that #(g, Ngg) < x whenever o < 5 < ¢. Set S = (\ %, so
that S is a stationary set in (. We know that x < ¢; let h: kK — {0,1}* be an injection. Set § = w, (* = &,
so that we have g, : & — min(¢*, ) for each o € S, and h : * — {0,1}9.

case 2 Suppose that A > Tr(x). Set ¢ = AT < k(+%). Then Tr(x) < ¢ < min(2", k(t*)) so there must
be a cardinal § < & such that 2° > ¢, by 3Eb. Set ¢* = ¢ and let h: ¢* — {0,1}% be an injection. Because
k< Tr(k) < XA < kE9) cf(A) > wi. By Shelah’s lemma A1F-G, we can find a stationary set S C ¢ and a
family (ga)aes of functions from k to ¢ = ¢* such that (i) go[x] € a for each a € S (ii) #(ga Ngs) < &
for distinct o, B € S (iii) if 6 is a limit ordinal less than k, and «, 8 € S are such that g.(6) = gg(6), then

Ja W =4p W

(d) Now we have a section in which the two arguments run together, if we keep hold of the notations
introduced in (c). For each a € S consider hg, : & — {0,1}°. For ¢ < § set

Uaw = {€: £ <k, (hga(§))(v) =1},
and choose H,, € X% such that ¢~1(Us,) = Hg, € . Define g, : {0,1}* — {0,1}° by setting
(ga(2))(t) =1 if z € H,,, = 0 otherwise.
Then
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{€:€ <k, Gaf (&) # hgal&)} = (J{E: @af(©)) (1) # (hga(€)) (1)}

<0

= U UaLAfil[HaL} S N’/l

1<é
because § < k = add(N,,). Set Vo, = {€: o f(€) = hga(€)}, so that 11V, =1, for each a € S.

(e) Because every H,, is a Baire set, there is for each o € S a set I, C X such that #(I,) < § and
Hoo =7 m, [Hal]] V 0 < 6.
By Lemma 3C there is an M C X such that
Si={a:aeS 1, C M}

is stationary in ¢ and cf(#(M)) < §; because A < £(7%) and cf(k) > 8, #(M) < k. Write far = marf, s0
that far : & — {0,1}M is inverse-measure -preserving for vy and p;.

(f) For each a € Sy, there is a 0, < k such that u%,(far[VaN6a]) = 1. P Apply 3Bb to fas[Va] C {0, 1},
There must be a set B C far[Vy] such that #(B) < k and p},;B = ph;(fam[Va]); because k is regular, there
is a 0, < k such that B C fu[V, N6,]. On the other hand, because f)s is inverse-measure -preserving,

iy (fulVal) Z2mVa =1. Q
Evidently we may take it that every 6, is a non-zero limit ordinal.

(g) Because ¢ = cf(¢) > &, there is a § < k such that
So={a:aeb,0,=0}
is stationary in (. At this point the two cases diverge briefly.
case 1 For o € S, ¢,[0] is bounded in k; let 0" < k be such that
Ss={a:a €Sy, gu[0] CO'}
is stationary in (; write Y = ¢’.
case 2 For a € Sy, ¢, (0) < a; by the pressing-down lemma there is a 6/ < ¢ such that
S3 = {a oA SQ, ga(B) = 9’}

is stationary in (. Then g, [0 = g[8 for all o, § € S3; take Y to be the common value of g,[6] for o € Ss.

(h) Thus in both cases we have Y C (*, #(Y) < x and g,[0] C Y for all a € S5. For each o € S3, set
Qa = fM[Va 09] = fM[Va ﬂeaL

so that pi,Qn = 1. Now I, C M, so we can express j, as g.ma, where g% : {0,1} — {0,1}° is Baire
measurable in each coordinate. If y € Q,, take & € V, N6 such that fy;(£) = y; then

96(y) = 95 f(§) = o f(§) = hga(§) € AY].

Thus g% Qs C furlf] x h[Y] for every a € Ss, and we may apply Corollary 3Bd to X = {0, 1}M, p = s
and the family (g% [Qq)acs’, where S’ C S3 is a set of cardinal x, to see that there are distinct «, 8 € S3
such that 3 {y 1y € Qa N Qp, 95(y) = g5(y)} > 0. Now, however, consider

E={y:ye{0, 1M g:(y) = g5(»)}.

Then E =(),_s E,, where

1<9
E ={y:y {0, 1}", g2()(1) = g5(y) (1)} € T},

for + < 4. Because § < k,
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vifal Bl = ni([) ol [E)

1<9

= inf n(() i)

I€[o]<w
= inf E,
Iel[?]@ MM(Q )
> uyE > 0.

Consequently

0 < v fy/ B
=uv{:gammf(€) = gsmm f(§)}
=vi{€: gaf(§) = gsf(&)}
=vi{€:£€VaNVs, Guf(§) = gsf(€)}
=vi{ : hga(§) = hgs(§)}
=v1{€: 9a(§) = 9s()}

(because h is injective). But this is absurd, because in (d) above (whether in case 1 or in case 2) we chose
Ja 9 in such a way that {£ : go(§) = gg(&)} would be bounded in x. X This contradiction completes the
proof.

3G Theorem Let (X,PX, ) be an atomless probability space. Write k = add(u). Then the Maharam
type of (X,PX, ) is at least min(x(+*) 2%), and in particular is greater than x.

proof As in the proof of 1Da above, there is a disjoint family (E¢)¢<, in N, such that E'= {J,_, B¢ ¢ N,.
Let f : E — & be the corresponding function, and set v = (uE)"Y((u[E)f~!). Then v is a witnessing
probability on x. Now observe that if 2, 9 are the measure algebras of (X, PX, ) and (s, Pk, V) respectively,
the map

Av e (fHA]) B >

is an injective order-continuous Boolean homomorphism from B to the principal ideal of 2 generated by
E*. Its range therefore has Maharam type equal to that of B; it follows easily that the Maharam type of
is at least that of B (A2Hc-d), and must be at least min(2%, x(**)), by Theorem 3F.

3H Corollary Let (X,PX,v) be an atomless probability space, and x = add(v). Let (Z,%,%, 1) be a
Radon probability space of Maharam type A < min(2%, x(+*)) (e.g., Z = {0,1}*). Then there is an inverse-
measure -preserving function f: X — Z.

proof By 3G, the Maharam type of (C,PC,v[C) is at least A\ whenever C' C X and uC > 0; that is,
7(A[c) > X whenever ¢ is a non-zero element of the measure algebra 2 of (X,PX,v) and 2A[c is the
principal ideal of 2( generated by ¢. Now it follows by A2Ib that there is a measure-preserving homomorphism
¢ : /N, — 2, which by A2Jd corresponds to an inverse-measure -preserving f : X — Z.

3I Corollary If x is an atomlessly-measurable cardinal, and (Z, ) is a Radon probability space of
Maharam type at most min(2", n(“’)), then there is an extension of u to a k-additive measure defined on

PZ.

proof Let v be a witnessing probability on «; by 3H, there is an inverse-measure -preserving function
f:X — Z;now vf~! extends pu to PZ.

3J Corollary If « is an atomlessly-measurable cardinal, with witnessing probability v, and 2% < &%),
then (k, Pk, v) is Maharam homogeneous, with Maharam type 2.

proof If C € Px\N,, then the Maharam type of v[C is at least 2%, by 3F-3G; but also it cannot be greater
than #(PC) = 2~.
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3K Remarks The original theorem of GITIK & SHELAH 89 was that the Maharam type A of (k, Pk, v) is
at least k™ for any atomlessly-measurable cardinal x and witnessing probability v. Elementary modifications
of their arguments showed that it is at least min(Tr(x), x(+)) (case 1 of 3F above). The extra ideas in case
2 of 3F come from GITIK & SHELAH P91.

If there can be measurable cardinals at all, it is consistent to suppose that A = x(T%) < 2% (2Ie above).
So there is no obvious sharpening of the result to look for. But it may be that a more delicate combinatorial
analysis would give a closer description of A, and, in particular, determine whether (k,Px,v) is always
Maharam homogeneous. See also 7Qb, for a scrap of further information, and P2, for a discussion of the
outstanding questions.

For more in the direction of 3I, see 8A.

3L Proposition Let « be an atomlessly-measurable cardinal.

(a) The following are equivalent: (i) every witnessing probability v on x is Maharam homogeneous; (ii)
if 11 and 1o are witnessing probabilities on x they have the same Maharam type.

(b) The following are equivalent: (i) every normal witnessing probability v on  is Maharam homogeneous;
(ii) if v; and v are normal witnessing probabilities on x they have the same Maharam type.

proof (a)(i)=(ii) Suppose that every witnessing probability on x is Maharam homogeneous, and let vy,
V9 be two such probabilities. Then v = %(1/1 + v2) is another, so is Maharam homogeneous; now A2Y tells
us that vy, v5 and v all have the same Maharam type.

(ii)=(i) ? Suppose, if possible, that (ii) is true and (i) is false. Let v be a witnessing probability on
# which is not Maharam homogeneous. Then there is an F € Px \ N, such that v[E has strictly smaller
Maharam type than v. But now if we set 1A = v(AN E)/vE for every A C k, we obtain a witnessing
probability v with the same Maharam type as v[E, and different from that of v; contradicting (ii). X

(b) Argue as for (a); we need note only that if v and v are normal so is v = (v, + 15) (because

N, =N,, NN,,), and if v is normal and v, is constructed as in (ii)=-(i) above then v is normal (because

N, ={A:ANnEeN,}).

3M Proposition Let £ be an atomlessly-measurable cardinal.

(a) If v is a Maharam homogeneous witnessing probability on £ with Maharam type A, then there is a
Maharam homogeneous normal witnessing probability v; on x with Maharam type A\; < A.

(b) If v and v’ are Maharam homogeneous witnessing probabilities on £ with Maharam types A, X', then
there is a Maharam homogeneous witnessing probability v” on & with Maharam type A"’ > Trpr, (k5 \).

proof (a) Construct an essentially minimal fy : K — & as in the proof of 1G, and set vy = vf] 1. Then
1 is a normal witnessing probability on x, as observed in 1G; moreover, f; is inverse-measure -preserving
for v and vy so induces an embedding of the measure algebra Ay = Pr/N,, in A = Pr/N,. Accordingly
7(p), the Maharam type of vg, is at most 7(2) = XA (A2Hd). I do not know whether vq itself must be
Maharam homogeneous, but there is surely an E € Pk \ N,, such that vy[E is Maharam homogeneous, and
now setting 1A = vo(AN E)/vgFE for A C k we obtain a Maharam homogeneous normal vy of Maharam
type less than or equal to .

(b) Let vy be the x-additive probability on x x & given by
nC = [V'CHEHv(dE) ¥V C C ki x k.

Set @ = Trpr, (k; \'). By 2G there is a family F C X" such that #(F) = 6 and {£ : f(&) = g(¢)} € N, for
all distinct f, g € F. Let (E¢)ecx be a v'-stochastically independent family of subsets of x of v'-measure
%. For each f € F set

Cr={(&n):{<kK neEEy}
Then for any non-empty finite subset I of F', v'((;cr Efe)) = 2-#) for v-almost every &, so that
Vl(nfel Of) =27#D),

Thus (C})rer is stochastically independent for vy, and the Maharam type of v1[C' is at least #(F) = 0
whenever 11C > 0. Once again, take 1oC = v1(C N D)/v1 D for some D for which v4[D is Maharam
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homogeneous, to obtain a Maharam homogeneous k-additive probability o of Maharam type at least 6.
Finally, of course, 15 can be copied onto a probability " on k, as asked for.

Remark Evidently the arguments for (b) have extensions to the case in which we have two real-valued-
measurable cardinals x, k' with witnessing probabilities v, v'.

Version of 16.5.91

4. The enormity of real-valued-measurable cardinals.

Under this title I collect together results of the form ‘if x is real-valued-measurable, there are many com-
plex cardinals below it’. Ulam’s theorem that a real-valued-measurable cardinal must be weakly inaccessible
(1Dc-d) is the first step: if s is real-valued-measurable, there are x cardinals below it. But enormously
more can be said. To develop these ideas, we need labels for some of the intermediate stages. first ‘weakly
Mahlo” and ‘greatly Mahlo’ cardinals (4A), and then ‘weakly IT}-indescribable’ cardinals (A4C, 4D). Up to
the weakly ITi-indescribable cardinals, we can use ordinary infinitary combinatorics (4A-4L); but thereafter
we shall need the apparatus of (elementary) model theory from §A4 and forcing from §2. The culminating
result is Theorem 4P: if x is real-valued-measurable, there are many weakly I13-indescribable cardinals below
it. The proof of this theorem includes essentially everything required to prove another remarkable fact: if
K is atomlessly-measurable, and I any structure of cardinal less than x, then the first- and second-order
properties of I are unaffected by random real forcing (Corollary 40a). The same arguments provide a gen-
eral method for proving results of the form ‘if x is real-valued-measurable, there are many « < x such that
a E ¢ when we have found a proof that k E ¢ for every real-valued-measurable cardinal £ (40b).

4A Definitions (a) A cardinal « is a weakly Mahlo cardinal if it is weakly inaccessible and the set of
weakly inaccessible cardinals below & is stationary in .

(b) If A is any set of ordinals, write Mh(A) for
{€: & <sup A4, cf(§) > w, ANE is stationary in £}.

Following BAUMGARTNER TAYLOR & WAGON 77, I will call Mh Mahlo’s operation.
(This is close to the operation H of LEVY 71, and in a sense dual to the ‘Mahlo operation’ M of KEISLER
& TARSKI 64.)

(¢) A cardinal « is greatly Mabhlo if it is uncountable and regular and there is a normal filter F on &
such that Mh(A) € F for every A € F.

In this case (because the intersection of any non-empty family of normal filters is a normal filter) there
is a minimal normal filter W on & which is closed under Mh; I will call W the greatly Mabhlo filter of .

4B Theorem If « is greatly Mahlo, it is weakly Mahlo and the set of weakly Mahlo cardinals below &
belongs to the greatly Mahlo filter of k.

proof This is essentially elementary. Let x be a greatly Mahlo cardinal and W its greatly Mahlo filter. For
each 7 < K, let W, be the set of ordinals less than s with cofinality at least n. Then W, 1, D Mh(W,)) for
every 1, so (because W is k-complete) W, € W for every n < k. Because W is normal,

W={{w<f<k EeW, V<&t

belongs to W; but W is just the set of regular uncountable cardinals below x. This forces x to be a weakly
inaccessible cardinal. Next, consider the set W' of weakly inaccessible cardinals below x; W' O WNMh(W),
so W’ € W and must be stationary in x; thus k is weakly Mahlo. Finally, W” = W/NMh(W’) is the set of
weakly Mahlo cardinals below «, and again belongs to W.

Remark The alternation of diagonal intersection and the Mahlo operation Mh can be used to describe
an indefinitely complex hierarchy of cardinals; near the bottom, the ‘(a + 1)-Mahlo cardinals’ are those in
which the smaller a-Mahlo cardinals form a stationary set, taking the weakly inaccessible cardinals to be the
‘0-Mahlo’ cardinals. The ‘greatly Mahlo’ cardinals form a natural staging post well along this progression.

4C Lemma Let x be a regular uncountable cardinal. Then x is greatly Mahlo iff whenever < is a
well-ordering of k and (S¢)c¢<x is a family of subsets of k such that
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Se D {¢:¢ <k, £ € Mh(S,,) whenever n < { and 1 < ¢}
for every ¢ < &, then every S¢ is stationary in .

proof (a) If x is greatly Mahlo, it carries a normal ultrafilter F which is closed under Mahlo’s operation;
now an easy induction on the <-position of ¢ shows that under the conditions described every S¢ must
belong to F, so is stationary.

(b) Now suppose that x is not greatly Mahlo. Recall that if NS, is the ideal of non-stationary subsets
of k and 2 is the quotient algebra Pk/NS,, then any subset of 2 of cardinal x or less has a greatest
lower bound in . (See 1Fd-e.) Observe also that we have an operation M : 2 — 2 defined by writing
M(A*) = (Mh(A))* for every A C k; the point being that if A, A" are subsets of x and ANC = A'NC for
a closed unbounded subset C of k, then Mh(A) N C" = Mh(A’) N C’, where C’ is the set of accumulation
points of C' in k.

We may therefore define a family (a4 )q<.+ in 2 by setting

a():].,

aq =infgeq M(ag) if 0 < a < k™.
A simple induction shows that M (as) C aq C ag whenever 8 < a < k7. 2If no a, is zero, consider
F={A:ACk, 3 a<rkt such that a, C A* € A}.

Then it is easy to check that F is a normal filter on k which is closed under Mahlo’s operation; which is
supposed to be impossible. X

There must therefore be a v < k™ such that a, = 0; we may suppose that v > k. Let h: v+ 1 — & be
any bijection, and < the well-ordering on x corresponding to that of v + 1, as transferred to x by h. If we
now define (S¢)¢<, by the formula

Se ={¢: ¢ <k, £ € Mh(S,) whenever n < £ and 7 < (},
we find that a, = S,;(a) for every a <+, so that S,‘Iw) =0, i.e., Sy(y) is stationary. Thus <, (S¢)¢<x Witness
that the condition fails.

Remark This is due to BAUMGARTNER TAYLOR & WAGON 77 (p. 212).

4D Definitions Let x be a regular infinite cardinal.

(a) Write Regr(k) for the set of regressive functions from k to itself. For F' C Regr(k), write Up for the
set of uniform ultrafilters F on x such that lim,_ » f(«) exists for every f € F, that is to say, every f € F
is constant on some member of F.

(b) A set A C & is II}-fully stationary in « if for every F € [Regr(x)]=" there is an F € Uy such that
A € F; that is, there is a uniform ultrafilter F on k such that A € F and lim,_, 7 f(«) exists for every
fekF.

(c) From A4H below we see that x is weakly IIi-indescribable iff s is II}-fully stationary in itself, and
that in this case its IT}-filter is precisely the set

W={W:W Cr, WnNA#{ for every ITi-fully stationary A C x}
= {W : k\ W is not IT}-fully stationary}
={W:3 F € [Regr(r)]=F, sk \W ¢ FV FeUp}
={W:3 F € [Regr(r)|<", W € [ | Ur}.
Down to 4K below I will use this characterization as if it were the definition of ‘weakly I1}-indescribable’
and ‘ITi-filter’. Of course this is an inefficient procedure in some ways, and many readers will prefer the
original proofs of 4F, 4G and 4I as given in LEVY 71 and BAUMGARTNER TAYLOR & WAGON 77, while

4K is covered by 4P. I take the trouble to spell out the combinatorial arguments because I believe that this
alternative route can provide different insights into the relationships between the various concepts here.
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4E Lemma Let £ be an infinite cardinal and (C¢)e<, a family of subsets of .

(a) If C¢ N ¢ is cofinal with £ for every ¢ < k, there is an F' € [Regr(x)]=% such that limg_,»Ce = {n :
{¢ :n € Ce} € F}is cofinal with & for every F € Up.

(b) If C¢ N & is relatively closed in £ for every & < k, there is an F' € [Regr(x)]=" such that lim¢_, 7 C¢ is
closed in & for every F € Up.

(¢) If ¢ < k and C¢N( is cofinal with ¢ for every € < k, there is an F' € [Regr(x)]=" such that (Nlim¢_, » C¢
is cofinal with ¢ for every F € Up.

proof (a) For «, £ < & set
fa(§) =min(CeNg\ @) if CeNE\ a0,
= 0 otherwise.
Set F' = {fa :a <k} € [Regr(x)]=". If F € Up, then

Yo = hmf—)]-' foz (5)

is defined and belongs to C' U {0}, where C' = lim¢_, 7 C¢.
Because each Ce N¢ is cofinal with &, we have o < f(§) whenever £ > «, so that a <y, for every a < &,
and C must be unbounded in «, as required.

(b) For o, £ < K set

fa(§) =sup(anC;) if o <&,
= 0 otherwise.
Set F = {f,: a < k} € [Regr(k)]=". Let F € Up and consider C' = lim¢_, z C¢. Suppose that v € £\ C is a

non-zero limit ordinal. Set § = lim¢_ 7 f,(§) < k. Since f,(§) € (CeN~y)U{0} whenever v < ¢, 6 € CU{0};
but also 6 <y and v ¢ C,s0d <. Now if § < 8 <,

{€:82Ce} 2{: 6>, [,(§ =6} eF,
so 8 ¢ C. Thus C does not meet ]9, ~]. Because v was arbitrary, this shows that C' is closed.

(¢) Take F, F and C as in (a). This time we see that o < v, < ¢ whenever a < ¢, so that C' N ¢ must
be cofinal with ¢. (If { =1 then we have 0 € C¢ for every £ so that 0 € C.)

4F Theorem Let k be a weakly ITi-indescribable cardinal, with II}-filter WW. Then W is normal and
Mh(A) € W for every stationary A C k.

proof For F C Regr(k), write W for ((Up, where Up is defined as in 4Da. Then 4Dc shows that
W = U{Wr : F € [Regr(r)]="}.

(a) Suppose that (We)e<, is any family in W, and that W is its diagonal intersection. Then W € W.
P For each £ < k let F(€) € [Regr(x)]=* be such that We € Wpg(¢). Define g € Regr(x) by setting

9(§) =min{n : £ ¢ Wyt if £ € w\ W,
—0ifeeW.
Set G = {gt U, F(§) € [Regr(x)]=*, and consider Wg. If F € Ug, set v = lim,_r g(a) < k. Then
F € Up(y), so W, € F and
W2{g:£eW,, g9(§) =1} e F.
As F is arbitrary, W € Wg CW. Q

(b) Because £\ ¢ € Wy C W for every ¢ < &, it follows that x is uncountable and regular and that W is
normal.

(c) Now let A C k be stationary. Then Mh(A) € W. P Define (C¢)c<, as follows. For £ € x \ Mh(A),
cf(§) > w let C¢ C &\ A be a relatively closed cofinal subset of &; for £ € Mh(A), set C¢ = &; for £ < &,
cf(€) = w let C¢ be a relatively closed cofinal subset of € consisting solely of successor ordinals; for £ < &,
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cf(¢) = 1 let C¢ be the singleton set consisting of the predecessor of &; finally, set Cy = (). By 4Ea-b, there
is a set I € [Regr(k)]=" such that lim¢_, 7 C¢ is a closed unbounded set in x for every F € Up. Take any
F € Up, and let C be limg_,z C¢, C’ the set of non-zero limit ordinals in C. Thus C' and C’ are closed
unbounded sets in &, and must belong to W, by (b). Also, C' meets A; take a € C' N A. Then

Mh(A) D {¢:£>a+1,acCe} € F,
as F is arbitrary, Mh(A) € Wr C W, as required. Q

4G Corollary A weakly IT}-indescribable cardinal is greatly Mahlo, and its IT}-filter includes its greatly
Mahlo filter.

proof I remarked in (b) of the proof of 4F that £ must be uncountable and regular; now we need only place
4F and 4Ac together.

4H Lemma Let x be a weakly IT}-indescribable cardinal. Suppose that for each ¢ < k we have a
well-ordering <¢ of &, regarded as a subset of & x & Then there is a set F € [Regr(x)]<" such that
lim¢. 7 <¢ € Kk X Kk is a well-ordering on « for every F € Up.

proof Let C be the set of infinite cardinals less than «, so that C is a closed unbounded set in x (note that
from 4G we know that x is a limit cardinal). For ¢ < € C let ge¢ : ¢ — £ be such that gec(n) < gec(n')
whenever 7, 7 < ¢ and n <¢ 7’; such a function exists because the order type of ({,<¢| ¢) is less than
#(¢)T and therefore less than &. For &, n, ¢ < k set

fen(§) = gecn) ifn < (< £ e,
= 0 otherwise;
f(&) =sup(CNE)if £ er\C,
= 0 otherwise.
Write F' = {f} U {fe, : m, ¢ < K} € [Regr(r)]=".
Now suppose that F € Ug. Then C € F (because f~![{y}] \ C is bounded above in x for every 7). Set

< =lim¢_ 7 <¢. To see that < is a total ordering of £ we need note only that for distinct 7, 7/, n” <  the
set

{&:n=<em,
n=<en orn e,
n Aen orn' e,
n=<en’orn Len'orn L'}
belongs to F. To see that < is a well-ordering of &, take any ( < x and consider h : { — x defined by setting
h(n) = lime_.7 fey (€)
for n < (; then

h(n) = lime_ 7 gec(n)
because {£: ( < £ € C} € F. But now, if n, n’ < ¢ and n < 7/, the set

{€:¢<€€C h(n) =gecn), h(n') = gec(n'), n <e '}
={&: h(n) = gec(n) < gec(n) = h(n')}

belongs to F, so h(n) < h(n'). This means that x| ¢ is a well-ordering for every { < . Because cf(k) > w,
it follows that < is a well-ordering of &.

41 Theorem If x is weakly IIi-indescribable, it is greatly Mahlo and the set of greatly Mahlo cardinals
below # belongs to the II}-filter W of k.

proof I have already remarked (4G) that x is greatly Mahlo; moreover, the set of weakly inaccessible
cardinals less than k belongs to its greatly Mahlo filter (4B) and therefore to W (4G).
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? Suppose, if possible, that the set B of greatly Mahlo cardinals less than x does not belong to W. Let
D be the set of weakly inaccessible cardinals belonging to x \ B, so that D is IT}-fully stationary in &.

By Lemma 4C, we may choose for each § € D a well-ordering <5 of § and a family (Ss¢)c<s of subsets of
0 such that

Ssc 2{€: € <, £ € Mh(Ss,) whenever n < £ and 1 <5 ¢}

for every ¢ < J, but not every Ss¢ is stationary in §. Take a closed unbounded set C5 C ¢ and an
h(6) < ¢ such that Sjp(5 N Cs = 0. Next, for ¢ < € D and £ € 6\ S5 choose g(d,¢, &) < & such that
9(0,¢,&) <5 ¢ and & & Mh(S5,(5.¢.,¢)); if cf(§) > w, choose a relatively closed unbounded set Csce C & such
that C’gqg n 5579(5’(75) = 0.
Fill in these definitions by setting
Co=0a,<a=<lq, h(a) =0, g(a,C,§) =0, Ca(ﬁ = f, SOtC =0

if a, (, £ < k and we do not have ( < a € D, £ € a\ Sac, cf(§) > w.
By 4E and 4H there is an F' € [Regr(x)]=" such that whenever F € Ug
lim,_. C, is a closed unbounded set in x,
lim, .7 < is a well-ordering of k,
limq—, 7Cqce is cofinal with &,
lim,_ 7 (Cuce U {&}) is closed in &
for all ¢, £ < k. We may suppose also that h € F and that fce € F for all (, £ < k, where fee(a) = g(a, ()
for a, ¢, £ < k.
Because D is supposed to be ITi-fully stationary, there is an F € U such that D € F. Set

C =lim,_rCy, x=limy_7 <o, €=Ilim,_rh(a),

C(g = lima_)]: Ca(ﬁ; ’y(C,f) = lima_)]: fo(a)’

Sg = limaH}- Sa(

for ¢, € < k. Then < is a well-ordering of x and (S¢)¢<x is a family of subsets of .
Suppose that { < k, that £ € k\ S¢ and that cf(§) > w. Set n =v((,§). Then

E={6:0€D, (<6 E€6\ S5, 9(6,6,8) =n}

belongs to F. If § € E then Csce N Ssy = 0; it follows that Cee N'S,) = 0. So & ¢ Mh(S,;). Also < & and
1 < ¢ because ¢(d,(, &) < & and ¢(9,(, &) <5 ¢ for every 6 € E. But this means that

Se 2{¢: ¢ <k, £ € Mh(S,)) whenever nn < &, n < (},

for every ¢ < k.
On the other hand, examine C' and S.. C' is a closed unbounded set in k. Also

{a:h(a) =€} € F,
S0
Se =lim,_ 7 Soe = limy_, 7 S%h(a),
and
CNSe=lima_rCo NSy pia) =0

Thus Se is not stationary. From 4C we conclude that x cannot be greatly Mahlo. But we know very well
that it is. X
So B € W, as claimed.

Remark This theorem is given in BAUMGARTNER TAYLOR & WAGON 77; the treatment here is taken from
FREMLIN & KUNEN N87.

Version of 10.12.91

4J Lemma Let k be a real-valued-measurable cardinal, with normal witnessing probability v. Suppose
that for each { < k we are given a cofinal relatively closed subset C¢ of . Then
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C={ara<kv{€:aeclC}=1}
is a closed unbounded set in k.

proof For a, £ < k set

fa(€) =min(Ce \ o) if o <&,

= 0 otherwise.

Then f, is regressive, so there is a (, < x such that vf,1[(,] = 1; that is,

v{€:Cena\a#0} =1

Set C" ={B:8< K, (o <PV a< B} Then C’is a closed unbounded set in x. But if 5 € C’, then for
every a < (3 the set

{:Cenp\a#0}

has measure 1, so

E={{:<&<k,Cenp\a#0V a<f}

has measure 1, because v is k-additive. But of course 3 € C¢ for every £ € E, because each C¢ is closed in
. Accordingly 8 € C and we have C' C C.

This means that C' is unbounded. But if 3 is any cluster point of C' in k, the same arguments show that
B € C, so that C' is closed.

4K Theorem Let k be a real-valued-measurable cardinal, with rvm filter W, rvm ideal 7. Then
(a) & is greatly Mahlo and its greatly Mahlo filter is included in W;

(b) the set of weakly II}-indescribable cardinals below x belongs to W;

(¢c)if ZC kand Z ¢ J, then

{\: X < kis a cardinal and Z N X is I1}-fully stationary in A} € W.

proof (a) Let v be a normal witnessing probability on «, and set
F,={A: ACk, vA=1};
F, is a normal filter on k. Let D be the set of ordinals less than x with uncountable cofinality.

(i) Wehave D € F,,. P For £ € k\(DU{0}), let (f,,(§))nen run over a cofinal subset of &; for £ € DU{0},
set fn(§) = 0 for every n € N. Because every f¢ is regressive and F, is normal and w;-complete, there is a
¢ < wsuch that F =, oy fr'l¢l € Foibutnow DO F\ ((+1) e F,. Q

(ii) Next, Mh(A) € F, for every stationary A C k. P For £ € D\Mh(A), let C¢ be a relatively closed
and unbounded subset of £ such that Ce N A = (). For £ € DNMh(A), take C¢ = £. 4J tells us that

C={a:{{:aeC}eF}

is a closed unbounded set in k. So there is an « € ANC. But now F = {{ : o € C¢} € F, and
Mh(A) D FNDeF,. Q

(iii) Thus F, is closed under Mh. Because v is arbitrary, W is closed under Mh, and k is greatly
Mahlo, with its greatly Mahlo filter included in W.

(b)-(c) Of course (b) is a consequence of (c¢) (taking Z = k) so I prove (c). I begin with the harder case,
in which & is atomlessly-measurable.

(i) Take a normal witnessing probability 1 on & such that 11 Z = 1, and let H be the set of £ < &
such that either £ is not a weakly IIi-indescribable cardinal or ¢ is weakly IIj-indescribable but Z N ¢ is
not ITi-fully stationary in &. ? Suppose, if possible, that H ¢ J. Let v be a normal witnessing probability
on k such that voH = 1. Let Hy be the set of regular infinite cardinals belonging to H; then voHy = 1
(using part (a)). For each £ € Hy, let (fey)n<e be a family of regressive functions from £ to itself such that
there is no uniform ultrafilter F on § containing Z N ¢ for which limg . 7 fe, (@) exists for every n < €. For
n < &€ k\ Hy,set fe,(a) =0 for every a < &.
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(ii) Let v be the probability on k x x defined by the formula
vC = fy2{§ (a,€) € Crry(da) ¥V C C K X K.
Let 2(v) = P(k x k)/N, be the corresponding measure algebra. For 1, 8 < k write
Cp =A{(a,§) : max(n, o) <& <k, fen(a) = B}
If n < K, then (Cy5)s<s is disjoint, so
D,={p:8<k,vCys >0}
is countable. But also

V(U,BGD,, Cnﬂ) =1

P For fixed n, o the map § — fep(a) : K — « is regressive, therefore vo-essentially countably valued (1Hd),
therefore vg-essentially bounded below o whenever cf(a) > w, that is, for v;-almost all a, by (a-i) above.
Because vy is normal, there is a ¢ < & such that, for vi-almost all «, fe, (o) < ¢ for vp-almost all &; that is,
V(Ue<per Cnp) = 0. Now the result follows, with D, C ¢, because v is r-additive. Q

(iii) Let X be the subalgebra of P(x X k) generated by
{Cpim, B <k} U{Ve: ¢ <k},
where Ve = Z x (k\ ¢); note that vV, =1 for each { < k. Let X, be the subalgebra of P(k x k) generated
by
Yo U {m;y [me[E]] : E € %o},

writing ma(a, &) = €. Let B be the order-closed subalgebra of 2(v) generated by {E* : E € ¥;}. Then
7(B) < k. Let By be
{b:beWB, 3 F C ksuch that b= (k x F)*}.

Then By is an order-closed subalgebra of ‘B. Because 79 is inverse-measure-preserving for v and v», we have
a measure-preserving Boolean homomorphism ¢g : B9 — A(v2) = Pr/N,, defined by writing

¢o((r x F)*) = F*
whenever F' C k and (k X F)* € B.
By the Gitik-Shelah theorem (3F), every non-zero principal ideal of 2((v2) has T-weight greater than k.

So there is a measure-preserving homomorphism ¢ : B — (1) extending ¢ (A2Ib). For each ) < & choose
a function h,, : kK — D, such that

{€:hy(€) =B} =o(Crp) V B € Dy;

this is possible because (Cy5) gep, and (¢(Cy5))sep, are partitions of unity in B, A(v2) respectively. Now if

& € Hy, there can be no uniform ultrafilter on ¢ containing ZN¢ and all the sets {a : a < &, fey (o) = hy(§)}
as 1) runs over £. So there must be a (¢ < £ and a finite I¢ C (¢ such that

Vaeé&nNZ\ ¢ 3 ne I such that fe,(a) # hy(€).

(iv) Because vy is normal, there are ¢ < &, I € [5]<“ such that vo(H;) > 0, where
Hy ={{:{ € Hoy, ¢c=( e =1}

Now h,(§) € D, for every & < k, n € I, and every D, is countable, so there is a g : I — & such that
vo(Hz) > 0, where

Hy ={{: &€ Hy, hy(§) =g(n) V nel}

But now observe that if £ € Hy and o € £ N Z \ ¢ then there is an n € I such that fe,;(a) # g(n), ie.,
(o, €) ¢ E*, where

E*={(a,§): (<a < aeZ, fegla) =g(n) ¥V nel}e
Thus Hy N me[E*] = (). However,
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H3 =H; N infnel¢(c1;7g(n))

< & Q 170(77)

=o({(& ) : fen(a) =g(n) V nel})
= ¢(E")*

C ¢(my *[mo[E*]]")

= ¢o(my ' [m2[E*]]")

= my[E*]*

because E* € $g so 7, *[mo[E*]] € £ and 7, Hma[E*]]* € By.
Of course this is impossible. X
This proves (b)-(c) in the case of atomlessly-measurable k.

(v) Now let us turn to the case of a two-valued-measurable cardinal x. Let F;, F5 be normal ultrafilters
on k, with Z € Fy, and vy, v, the associated {0, 1}-valued probabilities. Follow the ideas of (b), but noting
that there are dramatic simplifications; for instance, v is also two-valued, and each D, is a singleton. All
the discussion of B, By collapses because 2(v) and A(v;) are both of the form {0,1}. So ¢ and ¢ are both
the trivial homomorphism, and there is no call for any measure theory at this point; the functions h, are
all constant. The last string of inequalities also boils down to saying that vo Ho = vE* = 1 and that this is
impossible.

This completes the proof.

4L Remarks (a) This (in the atomlessly-measurable case) is due to Kunen (see 4P, A4L below).

(b) Note that a real-valued-measurable cardinal x need not itself be weakly IIi-indescribable. For (if
there can be real-valued-measurable cardinals at all) ¢ can be real-valued-measurable (2Ed). But ¢ is never
weakly ITi-indescribable (A4Db).

(c) Tt is worth pausing over 4Ka, as some elementary corollaries will be used repeatedly below. For
instance, if v is a normal witnessing probability on x, and 6 < &, then v{{ : { < &, cf(§) > 0} = 1. (This is
because the set W of weakly inaccessible cardinals below x belongs to the greatly Mahlo filter of x (4B), so
vW =1 (4Ka) and v(W \ ) = 1, while cf(¢) > 0 for every £ € W\ 0.) Similarly trivial applications occur
frequently.

4M Lemma Let s be a real-valued-measurable cardinal with normal witnessing probability v. Let 2
be the measure algebra Pr /N, and P the p.o.set 2\ {0}; for a € Px \ N, write a* for the corresponding
element of P.

(a) Suppose that (€,)a<y is a family of ordinals such that &, < « for v-almost every a@ < k. Then we
have a P-name § for a member of k defined by saying that

a* kp € = Ciff &, = ¢ for v-almost every a € a
whenever ¢ < k, a € Pr\ N,.

(b) Suppose that n € N and that for v-almost every a < k we are given an n-place relation C,, on «.
Then we have a P-name C for an n-place relation on x defined by saying that

a® lkp C(Cry ..., Cp) iff ColCy, ..., ¢p) for v-almost every a € a

whenever (1,...,(, <k and a € PH\N
(c) Conversely, given any P-names 5 and C for a member of k and a relation on , we can find corresponding
families (€ )a<r, (Ca)a<r for which the formulae of (a) and (b) will be valid.
(d) Now suppose that we have a formula ¢ of the second-order language £ of §A4, and families (Co1)a<s,
o ACokYa<ry (Ealda<ns - » (Eam)a<s Of relations and ordinals matching the free variables of ¢; suppose

that for each j we have {,; < a for v-almost all .. Let Chy...,Ch, 51, . ,ém be the corresponding P-names.
Then for any a € Px\ N, 8 <k,

a® ”_]P’ (37017 ,Ck?;élw" agm) ’:(ﬁ
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if and only if
(min(e, 8); Caty- -« Cak;€als- -+ s Eam) E ¢ for v-almost every a < k.

proof (a) The point is that o +— &, is essentially regressive and v is normal. So given a € Pk \ N, we shall
be able to find ¢ < k such that b = {a: a € a, &, = (} ¢ N,; and now our formula tells us that b* IFp £ = C.
This means that we have a name £ such that

k3 ek €=,
so that £ is indeed a name for a member of .
(b) is elementary.

(c) Because P is ccc and N, is a o-ideal, every maximal antichain in P corresponds to a partition of x
into non-negligible sets; consequently every P-name 5 for a member of k corresponds to a family (€,)a<k
which takes only countably many values, so that &, < « for almost every a.

As in (a)-(b), the corresponding result for relations is really simpler than the result for points. Given the
name C for an n-place relation, then for each (i,... ,(, < & choose a((1,...,(,) C & such that

a(Cry- - G) ke C (-, Cn),
(K\a(Cly... )t ke =C(Cy - v, Cn);

and for o < K write
Co(C1y... ) for ‘a € a(Cy...,Cn)
It is easy to check that (Cy)a<x nOw represents C.
(d) Induce on the length of ¢.
(i) If ¢ is of the form Ry(z1,...,z,) and we are given Cy, &q; for a < k, j < n then note first that
a*lkp & < B

if and only if

£aj < min(a, B) for almost every « € a.

Next,

a* IFeC(&1, -, 6n)
<= whenever b C a, (1,...,(, < K, b° Il—péi:@- Vi<n
then b* IFp C(Cis- .., Cn)
<= whenever bC a, (1,... ,(n < kK, & =G YV a€bi<n
then C,((1, ..., () for almost every o € b

<= Cq(&a1,- .- ,&an) for almost every a € a.

(ii) If ¢ is of the form 1 A x or ¢ V x the inductive step to ¢ is elementary. If ¢ is of the form — we
need the translation

a* lkp (301, . ém) E &
= b IWp (3;Cy,... ,Em) E ¥ for every b € Pa\ N,
— v{a:a€a, (min(a,B);Coty. .. yam) E} =0
<— (min(a, 8);Cai,--- ,€am) F ¢ for almost all « € a.

(iii) If ¢ is of the form 35S and
a® ”_]P’ (67 017 v agm) = ¢7
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then there must be a P-name C' such that
a* ke (B;Ch, ..., Oyt ) E .
Let (Cq)a<x be a corresponding family of relations. Then by the inductive hypothesis
(min(e, 8); Coty -+ s Cay- v Eam) E VY
for almost every « € a, so that
(min(a, 8); Caty .- s €am) E @
for almost every « € a.
(iv) If ¢ is of the form IS¢ and a € Px \ N, is such that
(min(e, 8); Caty .- s €am) E @

for almost every « € a, then we can find relations C, such that
(min(a76); Coda DR 7Ca, e agam) F 7/1

for almost every a € a. By the inductive hypothesis, taking C' from (CaYa<k as usual, we have
a® ”_]P’ (57017 aCa"' 7£m) ':w’ a® ”_]P’ (B7cla 75777,) E (b

(v) (iii)-(iv) together deal with the inductive step to 3Svy. If ¢ is of the form VS it is logically
equivalent to =3S5—) so that (ii)-(iv) cover it. Finally, if ¢ is of the form Jyi or Yy the same ideas suffice.

4N Proposition Let k£ be an atomlessly-measurable cardinal, with rvm filter W and rvm ideal 7, and
A > x another cardinal. Let 2, be the measure algebra of {0,1}* and let Py be the p.o.set 2, \ {0}. Let ¢
be a formula of the second-order language L of §A4 and C4,... , C) relations on s, &1, ... ,&,, ordinals less
than k. Let 8 < k. Then the following are equivalent:

(1) |F]P7>\ (B;th cee 7£m) F 9,

(i) {0 : 0 < A, (min(a, B);Cr, ... Em) F 6} € W

(iii) {a: a <&, (min(a, B); C1,... ,&n) F o} ¢ J.
proof Set A = {«: (min(a, 8); C1,...) E ¢}.

(i)=(ii) Assume (i). Let v be a Maharam homogeneous normal witnessing probability on &; let 6 be the
Maharam type of v. We know by the Gitik-Shelah theorem (3F) that 6 > k. Set A = Pr/N,, P =2A\ {0};
then 2l is isomorphic to the measure algebra of {0,1}?, so Theorem A4I tells us that

p (8;C4,...) E 6.

Now observe that each P-name Cj, &; can be identified with the P-names C;, éj derived from families
(Coi)a<ns (Eaj)a<n, setting Co; = Cy, €qj = §; for every a. So Lemma 4Md tells us that

(min(a, 8) : C4,...)E @
for v-almost every o < k, that is, that vA = 1. As v is arbitrary, A € W.
(ii)=(iii) is trivial.
(iii)=(i) I reverse the argument of (i) =-(ii). Let v be a Maharam homogeneous normal witnessing

probability on  such that vA = 1; let § > k be the Maharam type of v, and P = (Px/N,) \ {0} the
corresponding p.o.set. This time 4Md tells us that

e (3;Ch,. ) E @
and A4l that

ke, (8;C1,...) E ¢,
as required.

40 Corollary (a) Let x be an atomlessly-measurable cardinal and I a set of cardinal less than . Let ¢
be a formula of the second-order language £, and C1,... ,C} relations on I, &1,... , &, members of I. Then
for any random real p.o.set P,
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(I;Clv'“ ,Em) F ¢ — H_IP (j;éla"' agm) ':¢)
(b) Let Cy, ... ,C, berelations and &1, . . . , &, ordinals, all with definitions which are absolute for random

real forcing. Let ¢ be a second-order formula such that

ZFC F ‘for every atomlessly-measurable cardinal x > max &,
i<m

(k;C1ye o O3 &r,y .o Em) E Q.
Then for every atomlessly-measurable cardinal £ > max;<m &,
{a:a <k, (;Ch,... ,&m) F ¢}
belongs to the rvm filter of .

proof (a) Of course we may take it that I = 3 is an ordinal less than . Also, as remarked in 2B, it is
enough to consider the case in which P =Py = 2, \ {0} for some cardinal A, taking 2 to be the measure
algebra of {0,1}* as usual.

Set # = max(\, k1) and let Py = Ay \ {0} be the corresponding p.o.set. Then

(B;Ch,...) E ¢ =k, (3;Ch,...)E &
by 4N. But now note that
IFp & is real-valued-measurable
(2C), so we can repeat the argument in V¥ to see that
e (B;C1,y...) F ¢ <= 1IFp (IFp, (B;C1,...) F @).
The iteration P« Py = Py x Py is isomorphic to Py (KUNEN 84, 3.13), so we have
p (8;C1,...) E ¢ <= lrp, (5;C1,...) E ¢ < (B;C4,...) F 6.

(b) Let v be a normal witnessing probability on x and P the p.o.set (Px/N,)\ {0}. Then
lFp & is real-valued-measurable
by 2C, and also of course
IFp ¢ > & > max;<m, éi,
so, repeating the ZFC proof of (k;...) F ¢ in VT,
e (B C1,y... ,Em) E 6.
But now, by 4Md,
Ha:a <k, (;C1,... . &m) F o} =1
As v is arbitrary, we have the result.

Remark Part (a) means that almost any fact about random real forcing is likely to have implications in
the presence of an atomlessly-measurable cardinal.

Part (b) is a kind of reflection principle, corresponding to the theorem of Hanf and Scott (A4L) for two-
valued-measurable cardinals. The requirements ‘ZFC I ...  and ‘with definitions absolute for random real
forcing’ are more restrictive than is absolutely necessary, but we do have to take care, when applying this
method, that whatever argument we have used to prove that (x;...) F ¢ will survive the move to V.

Version of 10.12.91

4P Theorem Let x be a real-valued-measurable cardinal with rvm filter ¥V and rvm ideal 7. Then for
every Z € Pr\ J,

{a: a < Kk, Z N a belongs to the I3-ideal of o}

belongs to J. In particular, setting Z = &, the set of weakly I12-indescribable cardinals less than x belongs
to W.
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proof For two-valued-measurable cardinals this (and much more) is essentially covered by A4L; so henceforth
I shall assume that r is atomlessly-measurable. I will as usual write 2; for the measure algebra of {0,1}/,
P; for the p.o.set A \ {0}, for any set I. Write

H={a:0<a<k, ZNabelongs to the I2-ideal of a}.

? Suppose, if possible, that H ¢ J. For each a € H we have a formula ¢, of the language £ of §A4,
integers ko, mq > 0, relations Cyi, ... ,Cqk, on o, and ordinals &4, , ... ,€am, < a such that

(OZ;Cal,... 7§ama) E (bou

(B;Caty- -y €amy, ) F @o for every 5 < a.

Because there are only countably many formulae in £, there must be ¢, k, m such that Hy ¢ J, where
Hy ={a:«a € H, ¢po = ¢, ko = k, myq = m}. Let vo be a Maharam homogeneous normal witnessing
probability on & such that voH; = 1. Let P be the p.o.set (Pr/N,,) \ {0}. Let C1,...,Ck, &1,... ,&m be
the P-names for relations and ordinals corresponding to the families (Cui)a<r, (€aj)a<x @s in Lemma 4M.
Then we have

H_IP (R7Ch )fm) F ¢

by 4Md. But now observe that the Maharam type A of v5 is greater than x, by the Gitik-Shelah theorem
again (3F). If we identify P with Py, we see that there is a set I C A, of cardinal at most &, such that all the
P-names C4, . .. ,ém can be represented by P;-names. Let J be a subset of A, including I, such that J\ T
and A\ J both have cardinal A\. Now we can regard P = P as an iteration Py * Py, ; (see KUNEN 84, 3.13),
so that we have

Fe, (Fpy, (RiC1y. .. ém) E 6).
But from the standpoint of VE7, Cy,... &, are fixed relations and ordinals. Also we have
IFp, K is real-valued-measurable
(Theorem 2C) and
lFp, Z is not in the rvm ideal of &
by 2Jc. So we may use Proposition 4N in VF7 to see that
Fp, 3 BeZ, (B;Ch,... .6m) E o
Now there is a Pj-name ﬂ for a member of Z such that
Fe, (3;C1,... &m) E 6.

Let K C J be a countable set such that the Pj-name ﬂ can be represented by a Px-name. Regarding P
as an iteration Prux * P\ (quk) and P as an iteration Prux * Py (juk), and observing that J \ (I U K') and
A\ (I U K) both have cardinal A > k, we can use A4l in VFIUK to see that

ke (B;C1,- .. 1 ém) E 6.
Now there must be ¢ € Z and a € Px \ N,, such that a® IFp B= ¢, so that
a* IFp (G Ch, . ) E 6
But now 4Md tells us that

(C;Cala-“ 7£O¢m) F ¢

for vo-almost every a € a. In particular, there is an o € a N Hy such that « > ¢ and (¢;Cq1,...) E ¢; but
¢ = ¢q; so this contradicts the choice of Cpy,... and ¢,. X

4Q Proposition Suppose that x, k' are two atomlessly-measurable cardinals with x < «’. Then & is
weakly II2-indescribable, and its II3-filter is included in its rvm filter.

proof Let v be a Maharam homogeneous normal witnessing probability on x; let P = (Px/N,) \ {0} be the
corresponding p.o.set.
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Suppose that ¢ is a formula of the language £ of §A4 and that Cy,... ,Cy are relations on «, &1,... ,&n
are ordinals less than « such that

(k;C1,ye o O3 €1, Em) E 0.
By 40a, because there is an atomlessly-measurable cardinal greater than k,
IFp (%;Ch,...) E 6.
So 4Md tells us that
(;Ch,...)E @
for v-almost every o < k. Because v is arbitrary,
A={a:a <k, (C,...)F ¢}
belongs to the rvm filter of k. As ¢, C4,... ,&,, are arbitrary, we have the result.
4R Proposition Let x be a real-valued-measurable cardinal and A any larger cardinal. Let 2 be the
measure algebra of {0,1}* and P the p.o.set 2, \ {0}. Then
lFp % is weakly IT2-indescribable and
the rvm filter of % includes the IT3-filter of k.
proof We can use the same ideas as in the last three results. Let ¢ be a formula of the language £, and let
Ciy...,Ck, &1, ..., &m, 0 be Py-names such that
e (R;Cy,...) E &,

Fpo={a:a<k, (;Ci,...) 7o}

Then there is a set I C X such that A\ I has cardinal A and ¢ and every C;, éj can be represented by a
P;-name, taking P; to be the p.o.set associated with the measure algebra of {0,1} as usual. Now we have

IFp, K is real-valued-measurable
(2C) and
ke, (Fpy, (R:C1,...) F @),

ke, (Fey, 0 ={a:a<i, (C,...) # ¢}).
In V7 all of o, C’l, ... are definite sets, so we can apply 4N to see that
IFp, o belongs to the rvm ideal of &.
But now 2Jc tells us that
IFp, (II—pA\I o belongs to the rvm ideal of /2;),
taking the liberty of using the same symbol £ for the new name for x. Thus
IFp o belongs to the rvm ideal of .
As ¢, C1,... are arbitrary we have the result.
Remark This result shows that if an atomlessly-measurable cardinal & is constructed by the method of 2C,
then
% is weakly IT}-indescribable
— K<¢
<= & is weakly II3-indescribable
and the rvm filter of x includes the T2-filter of .

See 6J and P3 below.
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4S The next proposition depends on results from §6 below; but it seems natural to place it here, as it
again refers to a type of indescribability.

Proposition Let k be an atomlessly-measurable cardinal with normal witnessing probability v. Let ¢ be a
¥} formula in the language £ of §A4, C1,. .. ,Cy relations on k and &, ... , &, ordinals less than x. Set

A={a:a<k, (;C1,... ,Cr;&1,... ,&m) E &}
If A is not in the rvim ideal of x then there is a B C k such that 6 C B, vB =1 and
(B;C1,...,&m) F @.
proof (a) By 4N, vA = 1. Of course, we may suppose that {; < § for every j. Next, we may take it that
¢ is of the form
JRk41 .- IRk V11T Tmas - - . VEmg2s—13Tma2s¥

where 1 has no quantifiers, since ¢ is surely logically equivalent to such a formula. For every a € A we have

relations D1, ... , Dar and functions hai : @ — @, has : @® — ... , has : @° — a such that
(O‘;Clv'-' 7CkaDala-" aDaragla'-' 7£m7n17ha1(n1)7"' 77783ho¢s(7’13-" 7779)) hl/)
for all 1,... ,1s < a. For each 7 = (m1,... ,1;) € U <, w7 set

M) =A{¢: v{a: haj(n) =&} > 0}
then M(7}) is countable. For I € [k]<“ let K(I) be the smallest subset of x such that I C K(I) and
M (i) € K(I) whenever 77 € |J;, K(I)?. Then K(I) is countable.

(b) Let (Z,7) be the hyperstonian space of (k, Pk,v), and for a C k let a* be the corresponding open-
and-closed subset of Z, so that a — a* is a Boolean homomorphism and 7a* = va for every a C k. For
1<s, M€ K set

Q) = {{or: haj() = £} : £ € M()},
so that 7(Z \ U Q(7})) = 0. Set
F)=WU{Z\UQ®@) :n € U;c, K1)’} €N

for each I € [k]<¥.

By Proposition 6E, there is a set By C « such that 8 C By, vBy = 1 and J{f(I) : I € [Bo|<¥} # Z.
Take z € Z\|U{f(I) : I € [Bo]<*“} and set B =J{K(I): I € [Bo]<“}.

If j < s, we may define h; : B/ — B as follows. For each 7j € B there is an I € [By]<* such that
71 € K(I)? (because the function I — K (I) is increasing), and now z € |JQ(7), so there is a (unique) £ such
that z € {a : hq;(7) = &}*. We have £ € M(77) C K(I) C B; take this £ for h;(7).

Next, define relations D1, ..., D, on x by writing

Di(m,...,mm) <= z€{a:Dor1(m,... ,mn)}*

Then an easy induction on the length of x shows that whenever x is a formula of £ without quantifiers, and
N,-..,Ns € B,

(B,Cl, aokala"' 7D7’;£17"' 7§man17h1(n1)a"' ahs(n17"' ans)) j:X

at least when z € b(x,n1,... ,7s)*, where b(x,m1, ... ,7s) is the set of those o < k such that
(;C1,y... ,Cly Doty oo s Doryni s hat1(m), oo 3 0sy Pas (M1, -+ 5 ms)) E X
In particular, this is true when x = ¢. But of course z € Z = b(¢),n1,... ,ns)* for all n1,... ,ns < K, SO

(37017 7CkuD17"‘ 7D’r’;§17"‘ 7§m7n17h1(771)7"’ 7hs(7717--- 7775)) 'Zw
for all n1,...,ns € B, and
(B;C1y... ,Criayeen ,€m) F 0,

as required.
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4T Corollary Let s be an atomlessly-measurable cardinal. Let ¢ be a I} formula of the language £, and
&1, ..., &n ordinals less than k. If (k; <; &1, ... ,&m) E ¢ then there is an a < k such that (a; <;&1,... ,&m) F

0.
proof 7 Suppose, if possible, otherwise. Applying 4S to (a X} formula logically equivalent to) —¢, with 3
greater than any ;, we obtain a B C k such that § C B, #(B) = « and

(B7<1£17 7£m) F _‘¢'
But (B; <;&1,...,&n) is isomorphic to (k; <;&1,...,&mn), so this is impossible. X

Remark 4N-4T are due to Kunen. Most of the ideas are in KUNEN N70.

Version of 18.9.92

5. Combinatorial implications

I turn now to some of the combinatorial consequences of supposing that there is an atomlessly-measurable
cardinal. I begin with technical but very useful results on set- valued functions defined on [k]<“ (5A-5B),
with fairly straightforward corollaries (5C-5D), and Prikry’s theorem on cardinal powers when ¢ is atomlessly
-measurable (5E). 5F deals with x-Aronszajn trees. The rest of the section is devoted to theorems of Kunen
concerning ultrafilters on N (5G), algebras generated by rectangles (5H-5J) with corollaries on families in
PN and NV (5K-5L), &, (5N) and a partition relation (50-5P).

5A Lemma Let (X, PX, 1) be a probability space and Y a set of cardinal less than the additivity of .
Let 0 be any cardinal and f : X — [Y]<? a function.

(a) There is an M € [Y]<% such that u{z : f(z) C M} > 0.

(b) If cf(f) > w then there is an M € [Y]<Y such that u{z: f(z) C M} = 1.
proof (a) If § > #(Y) this is trivial; suppose that § < #(Y) < add(p). Because [Y]<? =], _,[Y]=%, there
is an a < 0 such that uXo > 0, where Xg = {2 : #(f(z)) < a}. If @ < w then #([Y]*) < max(w, #(Y)) <
add(p) so there is an M € [Y]* such that p{z : f(z) = M} > 0. If & > w, then for each x € X let
(he(z))e<q Tun over a set including f(z). For each £ < «,

Ye = {y: puhg '[{y}] > 0}

is countable, and because #(Y) < add(p), ,uhgl[Y \Ye] =0. Set M =, Ye € [Y]S® C [Y]<?. Because
a < add(w),

pla s f(@) © M} > pu(Xo \ Ugeg he 'V \ Ye)) > 0,
as required.
(b) If cf(#) > w, we can take « such that uXo =1, so that pu{x : f(x) C M} =1.

5B Theorem Let k be a real-valued-measurable cardinal and v a normal witnessing probability on k.
Let < & be a cardinal of uncountable cofinality, and f : [k]<“ — [k]<% any function. Then there are C' C x
and f* : [C]<¥ — [k]<Y such that vC' =1 and f(I) Ny C f*(I Nn) whenever I € [C]<* and 1 < k.

proof (a) I show by induction on n € N that if g : []S" — [£]<? is a function then there are A C &,
g* : [A]<% — [K]<? such that vA = 1 and g(I) Ny C g*(I Nn) for every I € [A]<“, n < k. P (i) Ifn=0
this is trivial; take A = &, g*(0) = g(0). (ii) For the inductive step to n + 1, given g : [x]<"*! — [k]<?, then
for each & < k define g¢ : [k]=" — [K]<? by setting g¢(J) = g(J U {¢}) for every J € [k]<". Set

D ={¢:& <r, cf(§) > 0};
then vD =1 (4Lc). For £ € D, J € [k]=" set (j¢ = sup(§Nge(J)) < €. Then for each J € [k]=" the function
& — (¢ is regressive, so there is a ¢ < & such that (j¢ < (7} for almost every £ < k. Now by 5Ab we see
that there is an h(J) € [(3]<? such that £ N ge(J) C h(J) for almost all £&. By the inductive hypothesis,
there are B C k, h* : [B]=" — [k]<% such that vB = 1 and h(J) Nn C h*(J Nn) for every J € [B]=" and
n < k.
Try setting
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= {€:€Nge(J) C h(J)} for J € [5]="
A=Bn{¢:£€ A,V Je[g="},

g*(I) = g(I) if I € [A]"*Y, g*(I) = g(I) UR*(I) if T € [A]="
Then vA; is always 1, by the choice of h(J), so vA = 1, by AlE(c-iv); while g*(I) € [k]<? for every
I € [A]="FL If < & then of course g(0) Ny C g* (0 Nn) for every n < k. If I € [A]S"F1\ {0} and 5 < &,
set € =maxI, J=T\{{};then € A;. If n > & then g(I)Nn C g(I) Cg*(I) =g*(INn). If n <& then

g)Nn=g:(J)NENNCRIJI)Nn C A (JNn)=h"INn) Cg*(INn).
Thus the induction continues.

(b) Now applying (a) to f[[k]=" we obtain sets C,, C &, functions f* : [C,,]S" — [x]<? such that vC,, = 1
and f(I) Ny C fi(I Nn) whenever I € [C,]=" and 1 < k. Set C = [, oy Crn and f(I) = Uis g fi ()
for each I € [C]<¢“. Then vC = 1. If I € [C]<¥ and 1 < K, set n = #(I); then I € [C,]" so f(I)Nn C
fx(Inn) C f*(INn), as required.

5C Corollary Let k be a real-valued-measurable cardinal and v a normal witnessing probability on x.
Let 8 < k be a cardinal of uncountable cofinality.

(a) If Y is a set of cardinal less than x and f : [k]<% — [Y]<? is a function, then there are sets C' C &,
M C Y such that vC =1, #(M) < 6 and f(I) C M for every I € [C]<¥

(b) If Y is any set and g : K — [Y]<Y any function there are sets C C x, M € [Y]<? such that vC =1
and g(§) Ng(n) € M for all distinct &, n € C.

(c) If f : [k]<“ — &k is a function such that f(I) < min [ for every non-empty finite I C k not containing
0, then there are sets C;, M C « such that vC' =1, M is countable and f(I) € M for every I € [C]<¥

proof (a) We may suppose that Y is actually a subset of k. In this case, by 5B, we have a set Cy C x and
a function f* : [Co]<¥ — [k]<? such that f(I)Nn C f*(INn) for all I € [Cy]<* and n < k. Let v < & be
such that Y Cyand set M =Y N f*(@)N~, C =Cy\ . Then #(M) < 8 and vC =1 and if I € [C]<¥
then f(I) = f(HNyCYNf*Invy) =M.

(b) As above, we may suppose that ., g(§) C x. Set f(I) = U 9(€) € [k]<Y for I € [k]<¥; take
Co C K, f* 1 [Co]<¥ — [K]<? from 5B, and set M =Y N f*(0). Write

Cr={€:{ <k, gln) CEV n< &},
so that C is a closed unbounded set and vC = 1, where C'= Cy N Cy. If £, n € C and & < 7, then

9(&) Ngn) Snngn) =nnf({n}) € f{ntnn) = 0),
so g(&§) Ng(n) € M, as required.

(c) By 5B we have f* : [k]<¥ — [k]=¥, C C k such that vC = 1 and {f(I)} Nn € f*(I N'n) whenever
I € [C]<% and n < k. We may suppose that 0 ¢ C. If I € [C]<% and I # () set n = minI; then
FIHe{f(DynnC f*(Inn) = f*®). So if we take M = f*(0) U {f(P)} we have the result.

5D Corollary Let s be a real-valued-measurable cardinal.
(a) Suppose that Y is a set of cardinal less than k and 6 is a cardinal less than x of uncountable cofinality.
Then
(i)  is a precaliber of the Boolean algebra PY/[Y]<¢
(ii) {\: A < K is a precaliber of PY/[ 1<%} belongs to the rvm filter of &;
(iii) the Souslin number of PY/[YV]<? is less than &;
(iv) Trpyy<e (Y; Z) < k whenever #(Z) < k (definition: 2F).
(b) If 5 is a cardinal less than &, and h : [k]<“ — [k]=% is a function, there is a set A C & such that
#(A) = k and h(I) C A for every I € [A]<¥
(¢) In particular, there is no Jénsson algebra on K.
(d) If f: [K]<¥ — wy is any function there are C' € [k]", ( < wy such that f(I) # ¢ for every I € [C]<%

proof (a) Write 2 = PY/[Y]<¢
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(1) Let (ag)e<s be a family in 2\ {0}. For { < r choose A¢ C Y such that A7 = ag. For I € []¢
set f(I) = (eer Ae if the intersection has cardinal less than 6, () otherwise. By 5Ca there is a C € [x]"
such that M = U{f(I) : I € [C]<¥} has cardinal less than . Now there is a y € ¥ \ M such that
D ={{:£€C,y € A} has cardinal «, and we must have #((ec; A¢) > 0 for every I € [D]*, so that
(ag)eep is centered in 2A.

(ii) Let W be the set of cardinals less than x which are not precalibers of 2. For each o € W
choose a family (aag)ece in A\ {0} with no centered family of cardinal «, and for £ < a € W choose
Aae C Y such that A%y = aae. For I € [K]<¥ set f(I) = Neerng Aag if #(I) > 2 and max] = a € W
and #((ee Ina) Aag < 0, () otherwise. ? If W is not in the rvm ideal of k, let v be a normal witnessing
probability on s with ¥W = 1. By 5Ca there is a C' C & such that vC =1 and M = J{f(1) : I € [C]<¥}
has cardinal less than 6. Let & € C N W be such that #(C Na) = a and cf(a) > #(Y) (using 4Lc). For
each £ € CNa thereis ay € Ay \ M, so there is a y € Y such that D = {{ : £ < o, y € Ane} has cardinal
a. But now (aae¢)eep is centered, contrary to the choice of (aag)eco. X

Thus W belongs to the rvm ideal of x, and

V ={a:a<kis acardinal} \ W
belongs to the rvm filter of k. But every member of V' is a precaliber of 2.
(iii) If « is any infinite cardinal which is a precaliber of 2, then the Souslin number of 2 is at most «.
(iv) Try1<e (Y5 2) < S(P(Y x Z)/[Y x Z]<9).

(b)-(¢) For I € [x]<% let g(I) be the smallest set such that I C g(I) and h(J) C g(I) for every
J € [g(I)]<¥. Then #(g(I)) < ¢ for every I and g(I) C g(I') whenever I C I’ € [k]<¥.

Applying 5Ca with Y = §% = 0 and f(I) = g(I) N6, we see that there are sets C' C k, M C 6 such that
#(C) =k, #(M) <6 and g(I) N C M for every I € [C]<¥. Set

A=U{g(): T €[C]=} C k.

Then C C A, so #(A) =k, and ANG C M, so A # k. Finally, {g(I) : I € [C]<*} is upwards-directed, so if
J € [A]<¥ there is an I € [C]<% such that J C g(I), in which case h(J) C g(I) C A.

(d) In fact there are C € [k]", { < w; such that f(I) < ¢ for every I € [C]<v.

Remarks (a) The ideas here go back to Lemma 14 of SOLOVAY 71 and Lemma 5 of KUNEN N70. 5D(a-ii)
is a strengthening of Theorem 2d of PRIKRY 75. 5Dc is due to Shelah. 5Dd corresponds to formula (7) of
§53 in ERDOS HAJNAL MATE & RADO 84, p. 330.

(b) The results above will more often than not be used with successor cardinals 6, so that [Y]<¢ = [Y]=°
for some infinite cardinal § < k. Of course 5B-5C also give information about functions f : [k]<¥ — Y,
taking = wy and replacing f by I — {f(I)} : [k]<% — [YV]=¥.

(c) For possible strengthenings of 5Ab, 5Ca and 5Da see P9 below.

5E Theorem If ¢ is atomlessly-measurable, then 2* < ¢ for every cardinal \ < ¢.
proof The proof is by induction on A. It starts with the trivial case A\ < w.

(a) For the inductive step to A, where w < A < ¢, consider first the case cf(A\) > w. For each £ < A, let
f¢ : P€ — ¢ be an injective function. For each A C A, there must be a y4 < ¢ such that 6¢(ANE) < 4 for
every £ < A, because cf(c) = ¢ > A.

? Suppose, if possible, that 2* > ¢. Then there must be a v < ¢ such that A = {A: A C X\, y4 =7} has
cardinal greater than ¢. Let h: ¢ — A be injective, and define f : [¢]> — A by setting

f(a, 8}) = min{¢ : h(a) N # h(B) NE}
whenever a, § < ¢ are distinct. By Corollary 5Ca, with § = wy, Y = A, there is a set C C ¢ such that
#(C) = ¢ and M = f[[C]?] is countable. Because cf(\) > w, ( = supM < A. But now we see that
h(a) N ¢ # h(B) N ¢ whenever a, 8 are distinct members of C. So 0¢(h(a) N () # O (h(5) N () for all distinct
a, f € C. But h(a) € A whenever o < ¢, s0 f¢(h(a) N¢) < 7 for every a € C; which is impossible, because

#(C) > #(v). X
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So in this case 2* < c.

(b) Now if we have w = cf(X) < A < ¢, then there is an increasing sequence (A, )nen of cardinals cofinal
with A, so that 2% < #([T,cy PAn) < #(c) = ¢. So in this case also the induction proceeds.

Remark This is due to PRIKRY 75. See also 7Q) below.
5F Proposition If x is a real-valued-measurable cardinal, then there is no k-Aronszajn tree.

proof Let T be a tree of height x in which every level has cardinal strictly less than x. Then #(T') = k.
Let v be a k-additive probability with domain PT which is zero on singletons. For each t € T write T®*)
for the set of elements of 1" comparable with ¢, and for £ < & let T¢ be the set of elements of T of rank
€ Set S={t:vT®} >0. Ifs<teSthen T DO TW sos e S for each £ < K, we have #(T;) < &
and T = Ut€T£ T®, so SNTe # 0; and v(T® NT®) = 0 if s, ¢ are distinct members of T¢, so S N T; is
countable. Thus S is a tree of height x in which every level is countable. Because cf(x) > wy there must be
an s € S such that S¢) = SN T is a branch of length x. Thus T is not a x-Aronszajn tree.

Remarks (a) This is due to SILVER 70, Theorem 1.16.
(b) It is also the case that
{A: XA <k is a cardinal and there is a A-Aronszajn tree}

belongs to the rvm ideal of k. This may be deduced from the result above using 40b (because it is easy to
check that there is a second-order formula ¢ such that, for cardinals A, (\; <;) E ¢ iff there is a A-Aronszajn
tree), or from 4Kb, because if \ is weakly ITi-indescribable there is no A-Aronszajn tree (FREMLIN & KUNEN
N87, 2N; compare KEISLER & TARSKI 64, 4.31).

5G Proposition If there is an atomlessly-measurable cardinal, there is no rapid p-point ultrafilter on N.

proof Let x be an atomlessly-measurable cardinal, with witnessing probability v.
? Suppose, if possible, that F is a rapid p-point ultrafilter on N. Let (Cin)k nen be a stochastically

independent double sequence of subsets of k with vCy,, = % for all k, n. Set

Cy = lim Cg, C K,

n—F
A ={(€n) : £ € Cr&§ € Cppn or { ¢ Cr& € ¢ Crn}
CrkxN

for each £ € N. Then, for k € N, £ < &,

{n:(n)e A} ={n:£€Cr} e Fif & € Cy,
={n:{¢ Crn} € Fif§ ¢ Ch.
Because F is a p-point ultrafilter, there is a set A C k x N such that
{n:(&n)eA}er,

{n:(&n) e A\ A} is finite

forall ke N, £ < k.
Now observe that if we write

Bkn:{€:§<’%7 (57”)6141 v i<k}7
then lim,, oo ¥(D N Bg,) = 27%vD for every k € N, D C x. P Induce on k. For k = 0, this is trivial. For
the inductive step to k + 1,
Bii1,n ={§: € € Byn, £ € Cx = § € Cip}
= (B}m NCy N C}m) U ((B}m \ Ck) \ C]m)

Now if we write j, for the subalgebra of Pk generated by {C;; : i < k, j € N}, we see that for any E C &,
sequence (Dp)nen in Ay we have
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lim, oo ¥(EN D, N Ciy) = % lim,, oo ¥(E N Dy,,)

whenever the right-hand-side is defined, just because the C,, are stochastically independent of each other

and the D,, and all have measure 3. (See A2N.) It follows that if we write 2}, for the subalgebra of Pr

generated by A, U{C; : ¢ <k} U{D} then

limy, 00 ¥(Dy, N Cp) = % lim,, 00 ¥(Dy,)
for every sequence (D), )nen in 2}, for which the right-hand limit exists. Applying this with D,, = By,,NDNC}
and with D,, = By, N D\ Cx we get, for any D C &,

lim v(Bgy1, N D) = lim v(Bg, NDNC, N Chyp)

n—oo

+ lim v(Bg, N D\ Cy)
— lim I/((Bkn nD \ Ck) N Ckn)

1 1
= 5 lim I/(BknﬂDﬁCk)'f-i lim V(BknﬁD\Ck)

n—oo

1 1
=5 ﬁnlV(thﬁl))::QQ_kVI)::Z_k_lyll

n—oo

as required. @ In particular, lim,,_,oc By, = 27F for every k € N.
If we now set

Bn ={¢: (§,n) € A},
the set
{n:neN, e B,\ B}
is finite for every £ < k, k € N, and consequently
limy, oo ¥(By \ Bin) =0 V k €N,
so that
lim, ,o VB, = 0.

Because F is rapid, there is an F' € F such that ) ., vB, < oo. There is therefore some § < s such
that ' ={n:n e F,{ € B,} is finite. Bt ' ={n:neF, ({,n)cAteF. X

Remark This is due to Kunen; compare JECH 78, §38.

5H Proposition Let (X, u) and (Y,v) be probability spaces and H a Hilbert space. Suppose that
T Uy : X — Hand y— v, : Y — H are bounded H-scalarly measurable functions. Then

I [ (ualvy)pldz)v(dy) = [ [ (ualvy)v(dy)p(d)
(and both repeated integrals exist).

proof (a) Let £ be the set of closed separable linear subspaces of H. For each E € &, let Pg be the
orthogonal projection onto E. Observe that (because E is separable) the map x — Pg(u,) : X — E will be
measurable in the sense of A2Ae for the second-countable norm topology on E, for every E € £.

(b) There is an E € & such that
Pg(uz) = Prp(uy) p-a.e. ()

whenever E C F € £. P? For suppose, if possible, otherwise. Then we can choose inductively an increasing
family (F¢)e<,, in £ such that

plx : P, (ug) # Pp.(ug)} >0V § <wi,

E:. = Un< ¢ E, whenever ¢ is a non-zero countable limit ordinal.

(The set of 2 for which Pg,, (u.) # Pg, (u.) is measurable because E¢ and E¢, are separable, as remarked
above.) Now there must be a rational 6 > 0 such that
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A={¢: & <wi, pUe > 6}
is infinite, where
Us = {@ : 1Pieys (1) — Pay (un)]] = 6
for each £ < wy. But in this case there must be an € X such that
Al={¢: €A xelUs}
is infinite (A2Mb). Let ¢ be any cluster point of A’ in w;. Then
Pp, (ug) = limgr¢ Pr (us),
which is impossible. XQ
(c) Applying (b) to both (uz)zex and (vy)yecy, we see that there is an E € £ such that
Pg(uy) = Pr(ug) p-ae.(x), Pe(vy) = Pr(vy) v-a.e.(y)
whenever £ C F' € £. Now observe that if y € Y there is an F' € £ such that £ C F' and v, € F. So

[wtv,ntd) = [ (ol Pt )t
= [rtulouts)
~ [Petun)loyntas)
~ [ (Potun)|Peto,)utda).

This is true for every y. So

[ [(ualvy)u(dz)v(dy) = [ [(Pr(uq)|Pe(vy))p(da)v(dy).

Similarly

[ [ (ualvy)v(dy)p(de) = [ [(Pg(us)|Pe(vy))v(dy)p(dz).

But also, because ¢ — Pg(u,) and y — Pg(v,) are measurable maps to the second-countable space E, and
(u,v) = (ulv) : E x E — R is continuous, (z,y) — (Pg(us)|Pr(vy)) is measurable for the product measure
u X v, and

I [ (Pe(us)|Pe(v,)p(d)v(dy) = [ [(Pe(us)|Pe(v,))v(dy)p(de)
by Fubini’s theorem. Putting these together, we have the result.
5I Corollary Let (X, 1), (Y,v) and (Z, %, 0) be probability spaces. Let z — A, : X — ¥ and y — B, :
Y — ¥ be functions such that
z—o(A;NC),y—o(B,NC)
are measurable for every C' € ¥. Then

[ Jo(4en B)u(de)v(dy) = [ [ o(As 0 By)w(dy)u(dz).

proof Apply 5H with H = L?(0), u, = x(Az)* (the equivalence class in L? of the characteristic function of
Am)v Uy = X(By).'

5J Theorem Let x be a real-valued-measurable cardinal. For cardinals A < k let X, be the smallest
subalgebra of P(A x \) containing all sets of the form F x F, where E, FF C A, and closed under unions of
fewer than A of its members. Set Dy = {(n,{) : 7 < { < A} € AxA. Then {\: A < k is a cardinal, Dy € ¥}
belongs to the rvm ideal of k, and D, ¢ X.

proof The following notation will be useful: If § is a cardinal and Z is a set, a #-subalgebra of PZ will be
a subalgebra ¥ of PZ such that (J.A € ¥ whenever A C ¥ and #(A) < 6.
Set
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A={N: XA <kisacardinal, Dy € ¥,}.

(a) ? Suppose, if possible, that A is not in the rvim ideal of k. Let v be a normal witnessing probability
on k such that vA = 1. Set
Set

Ay ={X: X € A, Xis uncountable and regular};

then vA; =vA =1, by 4Ka.

For cardinals A, @ let ¥ 9 be the smallest §-subalgebra of P(A x A) containing all rectangles E x F' for
E, F C X If A € Ay it is regular, so Xy = (Jy., Yo, and there is an infinite § < A such that Dy € Eyg.
Because v is normal, there is a 6 < x such that vA> = 1 where

A2:{>\Z>\€A1, D, 62)\9}.

(b) For each A € A, there is a family (Ej¢)e<q of subsets of A such that Dy belongs to the smallest
f-subalgebra 33 of P(A x A) which contains Ey¢ x E\, for all £, n < 6. (For the union of all such subalgebras
3% is a f-subalgebra of P(A x A) and must be ¥yg.) Set X = {0,1}% and define f, : A — X by setting

() (&) =1if n € By, 0 otherwise.

Let X be the smallest f-subalgebra of P(X x X) containing all the open-and-closed sets. Then every member
of X3 is of the form

{(777<) : (f)\(n)7f)\(C)) € R}

for some R € ¥ (because sets of this form comprise a #-subalgebra of P(A X \) containing all the sets
E\¢ x Ey,); in particular, there is a set Ry € ¥ such that

Dy ={(1,¢): (fx(n), fr(C)) € Rx}.

(c) Let T be the smallest #T-subalgebra of P(x x X x X) containing all sets of the form B x U x V,
where B C x and U, V C X. Then
{(Aaxay) tAE A2a (xay) € RA}

belongs to T. P Define H., inductively, for ordinals v < 6%, by taking
Ho to be the family of open-and-closed subsets of X x X,
if v < 67 is an even ordinal then
H’y+1 = {U€<9H§ : Hg S H’Y VE< 9},
if v < 0% is an odd ordinal then
Hyp1 ={(X xX)\H:HeH,};

if v < 0T is a non-zero limit ordinal then

Hy =Us, Hs.
Every H, is closed under finite unions and intersections, and H, € H,+2 N H43, so H, is a subalgebra of
P(X x X) for limit ordinals 7, and Hy+ = X.

Next, an easy induction on y shows that if He € H., for every { < & then {(§,z,y) : (z,y) € He} € T.
The induction starts with the observation that any open-and-closed set H C X x X is a finite union of
rectangles, so that B x H € T for every B C k. Now Hg has cardinal 0, so if He € Hy for every £ < k we
get

{(&2,9): (@,y) € He} = Upep (€ He = H} x HET.
For the inductive step to v+ 1, where v is even, we have a family (H¢)¢<, such that each H is expressible
as U, <o Hep with every He, € H,; now
{(ﬁ,x,y) : ((E,y) € Hﬁ} = Un<9{(£vm7y) : (x,y) € H§?7} eT,

using the inductive hypothesis and the fact that T is a f-subalgebra. Similarly, the inductive step to v+ 1,
where v is odd, needs only the fact that T is closed under complements. Finally, for the inductive step to a
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limit v < 67, we have a family (Hg)e<n € Hy = Us., Hs. Set Hse = He if He € My, () otherwise; then
(& 29) : (2,y) € He} = Us (& 2,9) = (2,y) € Hye} €T,
using the inductive hypothesis and the fact that T is a #T-subalgebra.
Observing that Ry € 3 = Hy+ for every A € Ay, we have the result. Q
(d) Define two probabilities ¢, ¥ on P(k x X x X) by setting
o) = [ [r{X: X € Az, A > max(n.¢), (A f(1). £2(C)) € Ww(dn)v(d),

W) = [ [rix: X € Ag, A>max(n,€), (A, fa(n). £(C)) € Ww(dC)v(dn)
for all W C k x X x X. Then both ¢ and v are k-additive, and ¢(k x X x X) =¢(k x X x X) =1. Set
S={S:5CrxXxX, o(S) =99}
Then S is closed under monotonic and disjoint unions of length less than x, and also under complements.

(e) The key to the proof is the following fact: If B C k and U, V C X then BxU xV € §. P
Substituting in the formulae above, we get

$(BxUxV)= [ [v(U,NV)wr(dnv(d]),

V(B XxUxV)= [ [v(U,nVe)u(dC)v(dn),
where

Uy={A: e BnAy,n<A faln) €U},

VC:{A:A€A23C<>U f)x(()ev}
for i, ¢ < k. Now the result is immediate from 51. Q
(f) It follows that T C S. P Define S, inductively, for ordinals v < 677, as follows. Take Sy to be the
subalgebra of P(k x X x X) generated by {BxU xV : BCx, U C X,V C X}. Then each member of Sy

is a finite disjoint union of cuboids B x U x V, which by (e) above all belong to S, and Sp € S. Given S,
for an even ordinal -, set

Syi1 = {Uecq Se 1 <07, (Se)e<q is an increasing family in S, };
for odd ordinals v set
Sit1={(rkx X xX)\S:5€8,};
for non-zero limit ordinals v set

Sy =Us<, Ss-

Of course every S, is included in S, because 07 < k. Next, every S, is closed under finite unions and
intersections, so S, is a subalgebra of P(k x X x X) for every limit ordinal v; and finally Sp++ is a
subalgebra of P(x x X x X)) such that | J._, S¢ € Sp++ whenever o < 0% and (Sg)¢<q is an increasing family
in Sp++. Inducing on a we see that |J;_, S¢ € Sp++ whenever a < 6" and (Sg)e<q is any family in Sp++;
so that Sg++ is a T -subalgebra of P(k x X x X), and

T C Sp++ C S,
as required. Q
(g) Putting (c) and (f) together,
W = {()‘7$7y) A€ A27 (xay) S RA}
belongs to S, and ¢(W*) = «(W™*). But if we set out to compute these numbers we have
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{A: A€ Az, A >max(n, ), (A, fa(n), () € W7}
=v{A: A€ Az, A >max(n, (), (fa(n), A(C)) € Ra}
=v{A: A€ Az, A >max(n,(), (n,¢) € Dy}
=1if n <, = 0 otherwise.
So p(W*) =0 and ¢(W*) = vA, = 1; which is impossible. X
(h) This contradiction shows that A belongs to the rvm ideal of k, which is the first part of the theorem.
But the second part now follows. ? For if D, € ¥,; then (in the notation of (a)) there is a § < k such that

D,eXp;nowas Dy =D, N(AxA) and yg={EN(AXA): E € X,p} for every A < k, we get Dy € Xy,
whenever 6 < \ < k, which cannot be so. X Thus D, ¢ ¥, and we are done.

5K Corollary Let k be a real-valued-measurable cardinal. Then there is a cardinal A < x such that
there is no family (a,),<x in PN for which a, \ a¢ is finite for n < ¢, infinite for n > ¢.

proof For if X is an uncountable cardinal and (a,),<x is such a family, set B,, = {n : n € a,} C A for each
n € N. Then, in the notation of 5J,

Dx = Unen Nmzn (A X Bim) U (AN Bi) X X)) € Xy
So we need only to take an uncountable A < x such that Dy ¢ X, as provided in abundance by 5J.

5L Remarks (a) 5J-5K are due to Kunen. A version of his original proof (adapted to 5K) is given in
FREMLIN & KUNEN 91. Seeking a non-forcing alternative he and I independently (late 1989) devised forms
of the argument above. I do not know whether 5H was known earlier.

(b) Note that the cardinal A of 5K also has the property that there can be no family (f¢)e< in N¥ such
that {n : f,(n) < fe(n)} is finite whenever £ < n < A, infinite when & > n; apply 5K with a¢ = {(n,¢) : i <
fe(n)} €N x N for each € < A\. See FREMLIN & KUNEN 91.

Evidently there are many further results along these lines concerning increasing families in ordered topo-
logical spaces of small weight when the ordering has a simple relation to the topology.

(¢) In the same way, again taking A from 5K, there is no p(\)-point ultrafilter on N.

Version of 18.9.92

5M Proposition Let x be a real-valued-measurable cardinal with normal witnessing probability v, and
X any set. Let (f¢)e<, be any family in X* such that for every countable I C x there is a g € X! such that
v{€: fell = g} > 0. Then there is an h € X" such that v{ : { <k, fe[§ = h[E} > 0.

proof (a) Set
Go = U{XT: T € [k]=*}.
For g € Go, set E(g) = {&: fe D g}; write
G={g:9€ Gy vE(g) >0}

(b) There is a g € G such that for every < & there is an x € X such that E(g) \ E(gU {(n,z)}) € N,.

P? If not, choose (In)a<w;, (Ha)a<w, as follows. Start with Iy = (). Given that I,, is countable, set
H,={g9:9€G, dom(g) = I,}.
Then H, is non-empty, by the hypothesis of the lemma, and countable, because E(g)NE(g") = () for distinct
g, g € H,. Now there must be a countable set I,.1 2 I, such that
V g€ H, 3 n€ I,q1 such that E(g) \ E(gU{(n,z)}) ¢ N, for every z € X.

For limit ordinals o < wq set I, = Uﬁ<a Is.
For each o < wy, take g, € H,. By A2Mc there is a { < k such that D = {a : { € E(g4)} is uncountable.
Now for each « € D there is some 7, € I,11 such that

Fo = E(9a) \ E(ga U{(Nas fc(na))}) & N
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However, if 3 € D and 8 > «, then gglla+1 € g3lls C fc, so FgNF, = 0. Thus (F,)aep is an uncountable
disjoint family of non-negligible sets, which is impossible. XQ

(c) Now for any n <  choose h(n) € X such that F,, = E(g) \ E(gU{(n,h(n))}) € N,. Then we have
F={¢:3n<&eF,}eN,
because v is normal. Set E = E(g) \ F; then vE > 0 and f¢[{ = h[& for every £ € E.

5N Theorem Suppose that ¢ is atomlessly-measurable. Then <. is true, that is, there is a family
(Ag)e<. such that {€: ANE = A¢} is stationary in ¢ for every A C c.

proof (a) Let v be a normal witnessing probability on ¢. Let (p¢)e<c , (I¢)¢<c be enumerations of J{{0, 1} :
I € [c]=*}, [c]S* respectively. Define inductively a family (fe¢)¢<. as follows. Given (f,),<¢, let F¢ be the
set of those functions f : & — {0,1} such that

(i) fIn # f, for every non-zero limit ordinal n < ¢,

(i) for every n < & there is a { < & such that f[1I, = p.
Now if F¢ # 0 take fe € F¢; otherwise take f¢ to be any function from & to {0,1}. Set A¢ = fgl[{l}] for
each £ < c.

(b) If A C ¢ is any set, then there is a non-zero limit { < ¢ such that AN¢ = A.. P? Suppose, if
possible, otherwise. Set g(§) =1 for £ € A, 0 for £ € ¢\ A. Let C be the set of non-zero limit ordinals £ < ¢
such that for every n < £ there is a ( < § such that g[1, N{ = p¢. Then C is a closed unbounded set in ¢,
and g[§ € F¢ for every £ € C, so fe € Fy for every £ € C.

For any set J = {&,n} € [C]?, set h(J) = min{C : fe(¢) # f,(¢)}; then h(J) < minJ because if n < &
then fe[n # f,. By 5Cc above there are D C C, M C ¢ such that vD = 1, M is countable and h(J) € M
for all J € [D]?. Let n < ¢ be such that M = I,; set B = {¢: M U{n} C ¢ € D}, so that vB = 1. Then
for every £ € B we shall have a ((§) < & such that p.) = fe[M. But if £, £ are distinct members of B
we must have h({£,&'}) € M so felM # fer|M; thus € — ((€) : B — & is an injective regressive function,
which is impossible. XQ

(c) Of course the family (A¢)¢<. constructed in (a) is not necessarily a true {-sequence as called for in
the statement of the theorem. But if we set A; = {n:2n € A¢} for each £, we obtain such a sequence (see
DEVLIN 84, Ex. III.3A).

Remark 5M-5N are due to Kunen. Of course {, is true for every two-valued-measurable cardinal x, by
the same argument. See also 9N.

50 Theorem Let s be a real-valued-measurable cardinal. Then
(a) k — (k,7)? for every ordinal v < wy;
(b) the set

{a:a <k, a — (a,7)? for every countable ordinal v}
belongs to the rvm filter of .
Notation See A1S for the definition of ‘a — («a, 8)2".

proof (a) Let v be a countable ordinal and S C [k]? any set. Suppose that there is no set B C & of order
type & such that [B]> NS = 0; I seek a set C of order type 7 such that [C]? C S. For each £ < k set
Se={n:&{<n<k, {{n} €S} Fix a normal witnessing probability v on k.

(i) If E C & then v(E N S¢) > 0 for v-almost every £ € E. PP Set
B ={¢:¢€ B v(ENS:) =0},
A={{:E<k, EEENS, Y nelNE}
then vA =1 (because v is normal), and also [ANE']?NS=0,s0 v(ANE')=0and vE' =0. Q

(ii) For each n > 1 define a k-additive probability v, on k™ by setting
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for every V C k™. Observe that if V C £t then
V1V = [vp{t : £t € VIv(de),
ertlng EA(é-la oo agn) = (57517 cee 7571)

(iii) (The key) If D, F C k and n > 1 and
Vn1(Se M \ Upep Sn}) =0 V £ € F,

then for v-almost every & € F
yn(S? \U{Sy :neD, e S,}) =0.
P? If not, there is a § > 0 such that vFE > 0, where
E={{:§e F,v,(Sg\U{S) :ne D, e Sy}) >d}

Choose a sequence (§;);en as follows. Start with any §, € E such that v(E N Se,) > 0; such exists by (i)
above. Given &, ..., & € F such that v(EN ﬂigk Se;) > 0, then

Vn+1(Ui§k SZH \ UneD S:;L—H) =0,
so for v-almost all £
vn(U{SE, 1@ <k, £ € Se, ) \ULS) ime D, £ € Sp}) = 0.
Now for v-almost all £ € ;<. S¢,,
vn(Ui<r Se, \U{S) :me D, £ € Sy}) =0,
and for v-almost all § € E'N [, S¢, we have
vn (5S¢ \ U<y SE) = 0.
We can therefore find a &1 € E'N ()<, S, such that
v(Se,., NEN ﬂigk Se,) >0,

vn (5S¢, \Ui<k Sg,) 20

(using (i) again). Continue.
But we now have a disjoint sequence (S, | \U,;<y S, )ien of subsets of £ all of measure at least §, which
is impossible. XQ

(iv) If n > 1 and V' C k™ is v,,-negligible, then there is a set A C & such that vA = 1 and (&1,...,&,) ¢
V whenever &;,...,&, € Aand & < ... < &,. P Induce on n. For n =1 we may take A =k \ V. For the
inductive step to n + 1 > 2, set

E={:v,{t: &t eV} >0},

so that vE = 0. For each € € k\ E, set Ve = {t : {°t € V'}; then v, Ve = 0 so by the inductive hypothesis
there is a set A¢ C k such that vA¢ = 1 and no strictly increasing sequence in A¢ can belong to Ve. Set

A={€:6cn\B Eed, ¥ net\E).
Then vA = 1 and no strictly increasing family in A can belong to V. Q
(v) For each I € [k]<% set
Ry =6NNeer Se, By ={§: € € Ry, v(Rr N S¢) =0},
so that ¥R} = 0, by (i) once again. Set
A={E:{ <k, EE RV T €E]™

then vA =1 (see A1E(c-iv)). And an easy induction on sup I shows that vR; > 0 whenever I € [A]<“ and
Ry # 0.
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(vi) Choose (A¢)ccw:s (De)ecw, as follows. Ay = A, as defined in (v) just above. Given A¢, (Dy)n<c
such that vA; = 1 and each D, is a countable subset of a¢ = min A, set D¢ =, . Dy, and for I € [D{]<
set Fer = Ac N Ry. Let De C A¢ be a countable set such that

Un(Ueer,np, S¢) = sup{va(Ugep S¢) : D € Fer is countable}
for every I € [D;]<“, n > 1. Then we shall have
va(S¢ \Upepenre, O5) =0
whenever n > 1, I € [D¢]<% and £ € F¢;. Consequently, by (iii) above, if I € [D{]<“ and n > 1, then
I/n(Sg \ U{Sg :n€DeNFker, €€ Sn}) =0
for almost every ¢ € F,;. Using (iv) we can now find a set Ac11 € Ac such that

n<¢

Z/AC+1 = 17
D( g min A<+1,

I/,L(Sg \ U{S:]L :n€DeNFer, £ € Sﬁ}) =0
whenever I € [D{]<%, n > 1, § € Fer N Acqa,

(51,... 7571) ¢S&\U{S:7LT]EFCIQDC, fOESn}

whenever I € [D{]<%, n > 1 and &, ... ,&, is a strictly increasing family in A¢i1, with § € Fer.

This deals with D¢, A¢y1. For non-zero countable limit ordinals ¢ set A¢c =, . Ay

(vii) On completing the induction set D* = {J,_,, D¢; observe that D¢ = D* Naci1 \ a¢ and that
D*\ a¢ C A¢ for each ¢. Now suppose that J € [D*]<% is such that [J]* C S. Then for any ( < w; there
is an 7 € D¢ such that [J U {n}]?> C S. P Of course we may suppose that J N D¢ = (). Moreover, because
JC A vRy > 0;s0if JC DIC/ then vFey > 0 so there is an n € Fry with ©S,, > 0 and there must be
an n' € D¢ N Fery, in which case [J U {n'}]? € S. We may therefore suppose that J \ a¢ = J \ ac41 has
at least two members. Set I = J N ¢ and enumerate J \ I in ascending order as (§;)i<n, where n > 1 and
& € Acya for each i. Now &y € Fyr and

(E1yenn0&n) & SENULSE i m € Fer N D, € € Sy}

But as certainly (1,...,&,) € S, there must be some n € F¢r N D¢ such that (§o, ... ,§,)€ S); and this
means that [J U {n}]> C S, as required. Q

(viii) Now, at last, turn to look at v. Enumerate it as ((,)nen (the case of finite v is trivial). Choose
(€n)nen inductively so that &, € D¢, and [{& : i < n}]? C S for each n. Set C = {£, : n € N}; then
[C]? C S and the order type of C is 7.

As S and «y are arbitrary, this proves (a).

(b) This now follows. The statement
‘a— (7)Y vy <wy’
can readily be expressed in the form
(o< =w1) F ¢
where ¢ is a II3 formula. So 40b gives the result.

5P Remarks This is due to Kunen; I heard of it first from S.Todorcevic.

For two-valued-measurable cardinals enormously more can be said. In fact, if k is two-valued-measurable,
then k — (k,x)? and {a : a < k, a — (a,a)?} belongs to the rvm filter of &; this is because, for a > w,
a — (a,a)? iff a is a strongly inaccessible weakly ITi-indescribable cardinal (ERDOS HAINAL MATE &
RADO, 30.3).

I do not know whether (b) above can be strengthened by describing more exactly those a@ < k for which
a — (a,7)? for every v < w;.
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Version of 14.10.04

6. Measure-theoretic implications.

In this section I discuss the consequences in measure theory of supposing that there is a real-valued-
measurable cardinal. Naturally many of these involve the supposed cardinal and its witnessing measure,
and they are most interesting if the cardinal is atomlessly-measurable. A theorem which would be here if it
had not already been needed is 3A. I start with a similar result on reversing the order of integration (6A).
An elaboration of the same techniques gives some results analogous to those of 5A-5B, but for set-valued
functions whose values are small in a different sense (6D-6E). In 6B-6C I look at covering numbers for null
ideals, and in 6F-6G I look at small non-negligible sets; the latter analysis leads to a version of Shipman’s
theorem on changing the order of integration in a multiply-repeated integral (6I) and to a stronger result
on repeated integrals of functions with measurable sections (6K). A deeper look at covering numbers gives
a description of weakly IT}-indescribable atomlessly-measurable cardinals (6L). I conclude with descriptions
of the way in which real-valued-measurable cardinals appear in the theories of metric measure spaces and
vector lattices (6M-6N).

6A Theorem Let k be a real-valued-measurable cardinal and v a normal witnessing probability on x;
let (X, ) be a Radon probability space and f: X x k — R a bounded function. Then

/"/fxg (d€)) () L//fx£cM)M®

proof 7 Suppose, if possible, otherwise. Adding a constant function to f, if necessary, we may suppose that
f(x, &) >0 for all z, £.

(a) We are supposing that there is a p-integrable function g : X — R such that 0 < g(z) < [ f(z, &)v(df)
for every z € X and

J 9@ nlde) > [ [ £, Onde)r(ds).
Let Fy,..., F, be disjoint non-empty measurable subsets of X such that

S icn tinnFi > [ [ fla,&)p(dz)v(dé),
writing ¢; = inf, e, g(z) for each i < n. Then

JI@Ondr) = e, [ J (@, Onlde) ¥ & <k,
so there must be some 7 < n such that
Lk > [ [, f(@,©ulda)v(ds).
Set Y = F;, i = (uF;) " 'ul[F;, t = t;; then (Y, 1) is a Radon probability space and
S/ f fly, Onldy)v(ds) <t,

t < ff(y,f)u(d{“) for every y € Y.

(b) For each £ < k choose a fi-measurable function he : ¥ — R such that f(y, &) < he(y) for everyy € Y
and [ he(y)i(dy) = [f(y,€)a(dy). By A2Kb, applied to the family of sets of the form {y : he(y) > s} for
E<k and rational s, there is a function ¢ : {0,1}" — Y such that [ heg(v)ps(dv) exists and is equal to
[ he(y)iu(dy) for every € < k, taking p,; to be the usual measure on {0,1}". So setting f1(v,€&) = f(¢(v),§)
for v E {O 1}%, & < k we have
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//fl(v,f),uﬁ(dv)y(dg) < //hg¢(v),u,{(dv)y(d§)
- [ [ rtwitaiae
= [ [rgitanmac <

t< [ 16w)ovtd) = [ hiw

¢) We may choose for each £ < k a Baire measurable function h : {0,1}" — R such that f1(v,§) < h.(v
Wi hoose for each & Bai ble function A : {0, 1}* — R such that f; (v, &) < )
for each v € {0,1}" and

while

for every v € {0,1}".

[ hp(0)n(dv) = [ f1(0,€) (o)

(A2Gf). Now there is a countable set I¢ C r such that h factors through {0, 1}, that is, he(v) = hi(v')
whenever v[I; = v'| L.

By 5Cb, there are I' C &, v < & such that vI' = 1 and Iz NI, C v whenever &, 7 are distinct members of
I'. Set v = minT.

(d) Set
Fl(8) = [ he(w™u Y, (du')
for u € {0,1}7, &€ < k. Then, applying Fubini’s theorem to {0,1}* 2 {0,1}" x {0,1}*\?, we have
ffluf,uvdu fh’ ) (dv)
for every &, so that
J [ 1 € (dupw(dg) = [ [ (v, ©)pe(dv)p(de) <t

and
fffl u, §)v(d€) py (du) <
by Theorem 3A. Accordingly there is a u € {0,1}7 such that
J i, &u(de) < t.

(e) For each £ € I take u; € {0, 1}%\7 such that he(u™ug) < fi(u,§). Let w € {0, 1}" be such that
wly =u, wlle = (U ug)[le V £ €T}
such a w exists because if {, n € I" and £ < n then I NI, C 7. Now
F1(,€) < () = B (u™ug) < f{(1,€) for every € € T,
S0
[ Fu(w, )w(de) < [ F(u )w(de) <

contradicting the last sentence of (b) above. X
This completes the proof.

Remark This result was inspired by Lemma 5 of KUNEN N70; compare 6E below.

6B Proposition Let x be an atomlessly-measurable cardinal. If (X, p) is any Radon measure space with
puX >0, then cov(X,N,) > &
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proof By A2Pb, it is enough to show that cov({0,1}", N, ) > k, where p, is the usual measure on {0, 1}".
Fix on an atomless x-additive probability v with domain Px. By 3H, there is an inverse-measure -preserving
function f : K — {0,1}". Now if A is any cover of {0,1}" by u,.-negligible sets, {f~![A] : A € A} is a cover
of k by v-negligible sets, so must have cardinal at least x, and #(A) > &, as required.

6C Corollary If x is an atomlessly-measurable cardinal and A < « is a cardinal of uncountable cardinality,
then A is a precaliber of every probability algebra.

proof If A\ < k this is a corollary of 6B and A2Ua. If A = k, we can use 6A and A2Ub. For let (X, %, %, 1)
be a Radon probability space and (Eg¢)¢<, an increasing family in A, with union E € . Set
C={(z,8): (<K, x€E} CX XK.
Then
JrClHaYu(de) = uB, [ wCH{€}]v(de) =0,

so 6A, applied to the characteristic function of C, tells us that uFE = 0; now A2Ub tells us that k is a
precaliber of the measure algebra of X. But as every probability algebra is (isomorphic to) the measure
algebra of some Radon probability space (A2La), we have the result.

6D Lemma Let x be a real-valued-measurable cardinal and v a normal witnessing probability on k.
If (X, p) is any quasi-Radon probability space of weight! strictly less than x, and f : [k]<* — N, is any
function, then

ngn,uV:l Ule[v]<u f(l) € ./V.u.

proof Let F be the filter {A: A C k, vA =1}

(a) I show by induction on n € N that if g : [5]="

E(g) = mv.g}‘ UIE[V]Sn f(I) € Np-

P (i) For n = 0 this is trivial; E(g) = g(0) € N,,. (ii) For the inductive step to n+1, given g : [£]=" T — N,,,
then for each £ < k define g¢ : [K]<" — N, by setting g¢(I) = g(IU{¢}) for each I € [k]=". By the inductive
hypothesis, E(ge) € N,,. Set

— N, is any function, then

={(z,€): 2 € E(ge)} C X X K.
Then
JwrCT {ENw(de) = [ 1 E(ge)v(dg) =0,
so by 3A
JvCHa}u(da) =0

and puD = 0, where D = {g(0)} U{z : vC[{z}] > 0}.
Take any € X \ D and set W =k \ C[{z}] € F. For each £ € W, x ¢ E(g¢), so there is a Ve € F such
that vV = 1 and x ¢ g¢(I) for every I € [Vg]=". Set

V={¢:£eW, eV, VneWné}.

Then V € F. If I € [V]="F! either I = () and = ¢ g(I), or there is a least element ¢ of I; in the latter
case, E € Wso J =T\ {¢} CV;and x ¢ ge(J) = g(I). Sox ¢ U{g(I) : I € [V]="+1}. As z is arbitrary,
E(g) € D € N,, and the induction proceceds. Q

(b) Now consider
G = Uyen BT € N

If 2 € X\G then for each n € Nthereisa V,, € Fsuch that z ¢ U{f(I) : I € [Va]="}. Set V =,en Vo € F;
then z ¢ J{f(I) : I € [V]<¥}. As z is arbitrary,

n the published version ‘Maharam type’ was given instead of ‘weight’. I do not know if the result is true with this
hypothesis.
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E(f)CGeN,,
as required.
Remark This is Lemma 2 of KUNEN N70.

6E Proposition Let x be a real-valued-measurable cardinal with a normal witnessing probability v. If
(X, p) is a Radon probability space, f : [k]<“ — N, is a function and 3 < &, then there is a V' C k such
that 3 CV and vV =1and J{f(I): [ € [V]*¥} # X.

proof (a) Consider first the case (X,u) = ({0,1}", uy), where p,, is the usual measure on {0,1}". For
any L C k let uy, be the usual measure on {0,1}Y, and 7, : {0,1}* — {0,1}¥ the canonical map. Write
F={V:V Ck, vV =1}

(i) For each I € [k]<“, there is a countable set g(I) C x such that pg(p)(7gr)[f(I)]) = 0 (see A2Gc);
enlarging f(I) if necessary, we may suppose that f(I) = 71';(1]) [mgn[f(1)]]. Set § = max(w,#(3)) and
g(I) = J{gdUK) : K € []<%} for each I € [k]<¥. By 5C there are a set C € F and a function
h: [K]<¥ — [k]=? such that ¢*(I) Ny C h(I N7n) whenever I € [C]<¥ and 1 < k. Set

F={y:8<vy <k hI) Sy V Ienh]~*}U{0}
then I is a closed unbounded set in x, because cf(k) > 6. Let (7,),<x be the increasing enumeration of I';
note that 79 =0 and v; > 3.

(ii) For n < k, set M(n) = & \ v, and L(n) = yy41 \ Vs then iy, can be identified with the product
measure fir,(y) X farn+1)- Choose uy, € {0,1}7, V,, C k inductively, as follows. ug = (). Given u,, then for
each I € [K]<¥ set

fod) = {v 0 € {0,135, ppgpny{w : upvtw € f(I)} > 0},

and

fo(I) = fy (D) if ppe) (£,(1)) =0,
=0

otherwise.

By 6D, we can find for each K € [y,41]<“ a set Eyx C {0,1}( such that pir ;) E,x = 1 and for every
v € E,k there is a set V' € F such that v ¢ f,(K UJ) for any J € [V]<¥. Choose v, € ({Eyx : K €
[Yn+1]<“} (using 6B); for K € [y,41]<¥ choose V; x € F such that v, ¢ f,(K UJ) for any J € [V, x]<“.
Set Vy = (Vo : K € [ryi1] <} € F and w1 = v, € {0,171

At limit ordinals n with 0 <n < &, set uy, = U, ue € {0,1}7.

(iii) Now consider u = u,, € {0,1}" and
V=pBU{{:€€C,{ecV, V<& eF.
If I € [V]<“ then
it s ugw € F(D)} =0

for every nn < k. I Induce on 1. For n = 0 this says just that u, f(I) = 0, which was our hypothesis on f.
For the inductive step to n + 1, we have

s (w ugw € F(1)} =0
by the inductive hypothesis, so Fubini’s theorem tells us that

LAV parmeniw s u™ v w € f(I)} >0} =0,
that is, pup(y) f(I) = 0, so that f,(I) = f}(I). Now setting K = I N yy41, J =1\ v,41 we see that J C V,
(because of course 17 < 7;41, while 3 C 5,11), therefore J C V, x and v, ¢ f,(K U.J) = f;(I); but this says
just that

par(menyiw s ugvpw € f(I)} =0,

that is, that
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,l,LM(n+1){w : Un+;w € f(.[)} = 0,

so that the induction continues.
For the inductive step to a non-zero limit ordinal n < &, there is a non-zero ¢ < 1 such that I Ny, C 7.

Set J=I\p, K=INg. Then JC Csog(l)=g(JUK) C g*(J)and g(I)Nvy, € g*(J)Nv, C h(JNvy,) =
h(J N v¢) € 4¢, by the choice of I'. But this means that
{w:w e {0,1}M©), uzw € f(I)} = {0, 137\ x {w = w € {0, 1}M) upw € f(I)}.
By the inductive hypothesis,
paro)fw s ugw € f(I)} =0,
so that
paiw upw e f(I)} =0

and the induction continues. Q

(iv) But now, given I € [V]<“, there is surely some 1 < & such that g(I) C v, and in this case
s ugw e f(1)} =0
implies that u ¢ f(I).
Thus we have a point u ¢ |J{f(I) : I € [V]<“}, as required.

(b) For the general case, we have a function ¢ : {0,1}* — X such that u.¢~1[f(I)] = 0 for every
I € [k]<%, by A2Kb. Now by (a) there are u € {0,1}*, V C x such that 3 C V, vV =1 and u ¢ ¢~ [f(I)]
for every I € [V]|<“; in which case z = ¢(u) ¢ f(I) for every I € [V]<¥ and |J{f(I): I € [V]<¥} # X.

Remark 6FE is implicit in Lemma 5 of KUNEN N70. The clause ‘3 C V'’ is a refinement of a type in which
I have generally not indulged; but it is useful here for an application in §4 above.

6F Proposition If k is an atomlessly-measurable cardinal and A, 6 are infinite cardinals less than k,
then there is a set A C {0,1}? such that #(A4) = A and no uncountable subset of A is negligible for g, the
usual measure on {0,1}%.

proof Let v be an atomless x-additive probability defined on Px. By 3H there is a function f : k — ({0, 1}9)*
which is inverse-measure-preserving for v and the usual measure of ({0,1}?)*, identified with {0,1}°**. For
& < K, set
Ae = {f(©Om):n<A} S {0,1}°.

? Suppose, if possible, that for every £ < k there is a set Je C X such that #(J¢) = wy but Ee = f(&)[Je]

is pg-negligible. For each ¢ choose a countable set I C 6 such that
Ei={z:z¢€ {0,1}9, 3 2’ € B¢, a1 = 2 I¢}

is po-negligible. By 5Ab, there is a countable I C 6 such that vV =1, where V. ={{ : I C I}. For £ € V
set

Ef ={all:z€ B} C {0,1},

so that urEf = 0, where i is the usual measure on {0,1}!. Fix a sequence (U,,)men running over the
open-and-closed subsets of {0,1}, and for each £ € V, n € N choose an open set Gp¢e C {0,1}! such that
E; C Gre and pr(Gre) <277 For m,n € N set

Dy = {€: € €V, Upy € Gre}.

For each o < A, set fo (&) = f(&)(a)[1 € {0,1} for & < k; then the functions f, are all stochastically
independent. Consequently, there is for each £ < k an a(€) € Jg such that f,(¢) is stochastically independent
from the countable family {D,,, : n,m € N} C Pk. Because A < k and v is k-additive, there is a v < A
such that B = {{ : a(¢) =~} has vB > 0. Take n € N such that v(B) > 27", and examine
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Because f, is independent from all the D,,,, and is inverse-measure -preserving for v and p7, vC = (v x
wr)(C") where

¢ = UmeN(Dnm X Um) C kX {0, 1}1.
But, for each & < &, the vertical section C'[{{}] is just U{Um : § € Dpm} = Gpe, so

(v 5 ) (C) = [ pr(Gue)r(d€) < 27,

Accordingly vC < 27" < vB and there must be a £ € BN V\C. But in this case f,(§)[I € Ef, because
v =a(&) € Je, while f,(§)[I ¢ G,¢, because there is no m such that f,(§)[I € U,, C Gpe; contrary to the
choice of Gpe. X

So take some & < k such that pg(f(€)[J]) > 0 for every uncountable J C X. Evidently f(€) is countable-
to-one, so A¢ must have cardinal A (passing over the trivial case of countable \), and will serve for A.

Remarks (a) The argument above is due to Solovay and Prikry; the form here is lifted from FREMLIN
P89D.

(b) Using A2Ka this result can easily be converted into a formally more general result about Radon
measure spaces of Maharam type less than k.

(c) T do not know whether, under the hypothesis of this proposition, there is always a set A C {0,1}?
with #(A) = k and no uncountable subset of A negligible for pg; see P4d.

6G Corollary Let  be an atomlessly-measurable cardinal. Writing V,,, for the ideal of negligible subsets
of {0,1}9,

(a) non({0,1}¢, N,,,) = w; for w < 6 < &,

(b) non({0,1}?, N,,,) < & for k < 6 < min(2", k(+¥)),

(c) non({0,1}%, N,,,) < 6 for 2% < 0 < k().

proof (a) Immediate from 6F.

(b) If v is any witnessing probability on x then we have an inverse-measure -preserving function f : xk —
{0,1}% (3H); now f[k] witnesses that non({0, 1}, V,,,) < k.

(c) The point is that if cf(#) > w then non(N,,) < max(f,sup,.gnon(N,, )). P Set § = max(6,
Supy<gnon(N,,)). For each ordinal o < 6 choose A, C {0,1}* such that A, ¢ N, and #(A,) =
non(N,,, ). Choose A C {0,1}? such that #(A4) < & and 74[A] 2 A, for each «, taking 7, : {0,1}¢ — {0,1}
to be the canonical map. ? If A € non(N,, ), then there is an H belonging to the Baire o-algebra of {0, 1}?
such that A C H € N, (A2Gc); now, because cf(f) > w, there is an o < 0 such that H is expressible as
m ' [H'], where H' C {0,1}*. In this case H' € N, , so Ay, € H and A ¢ H. X So A witnesses that
non(N,,) <. Q

Now an elementary induction on 6, using (a) when 6 < k, shows that non(N,,,) < 6 whenever w; < 6 <
k()

(See FREMLIN 89, 6.17.)

Version of 18.9.92

6H Lemma Let x be an atomlessly-measurable cardinal, § < x a cardinal, and m > 1 an integer. Set
Z = {0,1}? with its usual measure, and suppose that for i < m, u € Z™\} we are given a negligible set
E(u) C Z. Then there is a t = (t;)i<m € Z™ such that t; ¢ E(t[m\ {i}) for every i < m.

proof For each i < m we can find a set A; C Z of cardinal w;,y1_; such that no uncountable subset of A;
is negligible (6F). Now choose tg, t1 ... ,t;,—1 in such a way that

tj S Aj, tj ¢ E(u) V u e Hi<j{ti} X Hj<i<m Az
for each j < m; this is possible because A; cannot be covered by w,—; or fewer negligible sets, while
#([[j<icm Ai) < wim—; for each j. Now t = (t;)i<;n works.

61 Proposition Let x be an atomlessly-measurable cardinal and m > 1 an integer. Let Xo,... , X1
be Radon probability spaces of Maharam type less than «, and f : J],.,, Xi — R a bounded function.
Suppose that ¢ : m — m is a permutation such that the two repeated integrals



56
I = f( .. (f f(xo, . ,l’m_l)dfﬂm_l) e )dxo,

I'= f( e (f f(x(h cee axm—l)dma(m—l)) s )dxa(O)
both exist. Then [ = I’.

Remark The integrals above may all be taken as existing ‘in the wide sense’, that is, each function being
integrated may fail to be defined on a set of measure zero.

proof (a) To begin with, let us suppose that every X; is {0,1}% for some 6 < s, with its usual measure.
Set Z = ({0,1}?)N; then Z also has a natural measure, identifying Z with {0, 1}9>N.

Define Dy, ... , Dy, as follows. Dy = {0} = Z°. For 0 < j < m, let D; be the set of those (to,... ,tj_1) €
Z7 such that

llmn*)oo %ﬂzign f( .. (f f(t0i7 N ,tj,]_ﬂ‘,.]?j, N ,xm,l)dmm,l) N )d.’IJj
exists and is equal to I, taking ¢; = (¢;;);en for each [ < j. For j < m, u= (u;)1%; € 7™\ get
E(u) == [Z) if (’U,O, ce 7Uj,1) ¢ Dj,

E(u) = {t it e Z7 (’LLO,. . ,Ujfl,t) ¢ .DjJrl}

if (ug,...,uj—1) € D;. Then E(u) is negligible. I» We need consider only the case (ug,...,uj—_1) € Dj.
Express u; as (uy;)ien for each [ < j, and for i € N define h; : {0,1}Y — R by setting

hi(x) = f( .. (f fluos, - o U145, %, Tj41, oo, Te1)dTim—1) ... )dTj41
for each x € {0,1}?. Then, because (ug, ... ,uj_1) € Dj,
limy oo 72537, <, [ hi@)da exists = 1.
Also, because f is bounded, the functions h; are uniformly bounded. By A2X,
lim,, o0 %szgn hi(t:)

exists and is equal to I for almost all t = (t;);eny € Z; that is, (uo,... ,uj—1,t) € Dj4q1 and t ¢ E(u) for
almost allt € Z. Q
Now suppose that t = (t;)j<m = ((tji)ien)j<m € Z™ and that t; ¢ E(t[m\ {j}) for each j < m. Then

(to, . ,tj_l) S Dj
for each j < m, so that t € D,,, and
hmn_,oo %ﬂzzgn f(t()i, e 7tm—1,i) =1.

In the same way, we can find for each u € |J;_,, 7Zm\i} a negligible set E’(u) such that if t € Z™ and
t; ¢ E'(t[m\ {j}) for every j < m then

lim,, o0 %-HZZ'SN f(tOia cee atm—l,i) =1T.
But by Lemma 6H there is a t € Z™ such that ¢; ¢ E(t[m\ {j}) UE'(tIm\ {j}) for every j < m, and now
I= hmnaoo %Hzlfn f(tOiv cee 7tm71,i) = I/a
as required.

(b) For the general case, there are inverse-measure -preserving functions g; : {0,1}¢ — X;, where 6 < x
is the maximum of w and the Maharam types of X; (A2Ka). Applying (a) to F : ({0,1}?)™ — R, where

Fyo,-- sYm-1) = f(90(¥0);--- » gm—1(Ym—1)), we obtain the result.
Remark This comes from Theorem 1 of SHIPMAN 90. Compare ZAKRZEWSKI P91.
6J The following is an elementary corollary of Theorem 3A.

Proposition Let (X,%, %, 1) be a totally finite quasi-Radon measure space and (Y, PY,v) a probability
space; suppose that w(X) < add(v). Let f: X x Y — R be a bounded function such that all the sections
x+— f(x,y): X — R are measurable. Then
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fff x,y)v(dy)p(de) ex1sts—fff x,y)p(dx)v(dy).

proof If 4 X = 0 this is trivial; otherwise, re-scaling p if necessary, we may suppose that uX = 1. By 3A,

T [ 1 yyidyutn) < [ [ mul = [ [ Fagulda)v(dy).

Similarly

[ [(=f@y)wdy)u(de) < [ [(=f(z,y)p(dz)v(dy),
so that

J S Fayv(dy)p(de) = [ [ foy)u(de)v(dy).

Putting these together we have the result.

6K Proposition Let k be an atomlessly-measurable cardinal and (X,%,%, u) and (Y, &, T,r) Radon
probability spaces of weights less than . Let f: X x Y — R be a function such that all its horizontal and
vertical sections

x— flz,y*): X =R, ;y— f(z*,y): Y =R

are measurable. Then
(a) if f is bounded, the repeated integrals

[ [ f,pu(de)v(dy), [ [ f(zy)v(dy)u(d)

exist and are equal;
(b) in any case, there is a function g : X x Y — R, measurable for the (ordinary) product measure pu x v,

such that all the sets {z : g(z,y*) # f(z,y*)}, {y : g(a*,y) # f(z*,y)} are negligible.

proof (a) By 3I there is a k-additive measure 7 on Y, with domain PY, extending v. Now 6J tells us,
among other things, that the function

x> [ flayv(dy) = [ fla,y)o(dy): X - R

is p-measurable. Similarly, y — [ f(z,y)u(dz) is v-measurable. So returning to 6J we get

| [ tewtdzntan = [ [ 1 puania)
- / / F(a, )i (dy)(der) =
[ [ @ uwtannas).

(b) Suppose first that f is bounded. By (a), we can define a measure § on X x Y by saying that

0G = [vGl{a}u(dz) = [ pG~"[{y}]v(dy)

whenever G C X x Y is such that G[{z}] € T for almost every z € X and G~![{y}] € ¥ for almost every
y € Y. This 0 extends the ordinary product measure u X v; writing €2 for the o-algebra of subsets of X x Y
generated by {E x F : E € X, F € T}, the Radon-Nikodym theorem (ROYDEN 63, chap 11, §5) tells us
that there is an Q-measurable function h: X x ¥ — R such that |, o flx,y)0(dzdy) = fG 0(dzdy) for
every G € (.

Let U be a base for the topology ¥, with #(U) < k. For any U € U consider
Vo ={y: [, f@,y)p(dx) > [, bz, y)u(do)}.

The argument of (a) shows that y — [;; f(x,y)p(dz) is measurable, so Vi € T, and



58

/‘/U/Uf(as,y)u(d:v)v(dy) :/ f(z,y)0(dzdy)

UxVy

_ /U o, M )0ddy)
_ /V U /U h(x, y)u(dz)v(dy),

vy [, fla,y)ulde) < [ h(z,y)ude)} = 0.

Because #(U) < k, and no non-negligible measurable set in Y can be covered by fewer than s negligible
sets (6B), we must have

vi{y: [, f(z.y)p(dz) = [ h(z,y)u(dz) ¥ U eU} =1.
But because U is a base for the topology of X, we see that

so vVy = 0. Similarly

v{y : f(x,y) = h(x,y) for p-almost every z} = 1.
But as (again using (a)) the repeated integral [ [|f(z,y) — h(z,y)|pu(dz)v(dy) exists, it must be 0. Thus
{y: f(z,y) = h(x,y) for p-almost every z} = 1.
Similarly,
w{x: f(z,y) = h(x,y) for v-almost every y} = 1.

But now, changing h on a set of the form (F x Y) U (X x F') where uF = vF = 0, we can get a function
g, still (1 X v)-measurable, such that {(z,y) : f(z,y) # g(x,y)} has all its horizontal and vertical sections
negligible.

This deals with bounded f. But for general f we can look at the truncates (x, y) — max(—n, min(n, f(z,y))
for each n to get a sequence (g, )nen of functions which will converge at an adequate number of points to
provide a suitable g.

Remark (a) above arose in the course of correspondence with P.Zakrzewski. I first learnt of strong Fubini
theorems of this type, in the context of random real models, from H.Woodin. See ZAKRZEWSKI P91 for
further results along these lines.

I have given these results in a general form, allowing the spaces involved to have relatively large Maharam
types; but of course they are chiefly interesting in the case in which each factor is [0, 1] with Lebesgue measure.

6L Theorem Let x be an atomlessly-measurable cardinal with normal witnessing probability v. Then
the following are equivalent:
(i) k is weakly IIi-indescribable;
(ii) & is weakly ITi-indescribable and the rvm filter of s includes the ITi-filter of x;
(iii) cov({0,1}",N,, ) > K, where p, is the usual Radon probability on {0, 1}";
(iv) cov(X,N,) > k whenever (X, ;1) is a Radon measure space and pX > 0.

proof (i)=-(iii) Let v be a normal witnessing probability on k. Let (Ay)a<x be a family in NV, . For each
a <k let (Fon)nen be a disjoint sequence of compact subsets of {0,1}" \ A, such that . (U,cy Fon) = 1.
By 3H there is a function h : k — {0,1}* which is inverse-measure -preserving for v and p,. Set H, =
h™ (U, en Fan); then vH, = 1. Let H be the diagonal intersection of (Ha)a <, so that vH = 1. Let (ye)e<s
be the increasing enumeration of H.

For a, £ < Kk set

fa(g) =nifn< 57 h(%) S Fan7
= 0 otherwise.

Then each f, : kK — K is regressive, so there is a uniform ultrafilter 7 on & such that m(a) = lime, 7 fo ()
exists for each o < k. Now observe that for any o < k we have H \ H, C ae+ 1, so that {£ : v¢ ¢ H,} is
bounded above in x and cannot belong to F. Consequently {& : h(7¢) € Fum(a)} € F. But this implies
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at once that (F, ;,(a))a<x has the finite intersection property; because all the I, are compact, there is a

AS ﬂa<,g Fa,m(a)7 and now Yy ¢ Ua<n AO&'
Because (Ay)a<x was arbitrary, cov({0,1}%,N,,.) > .

(iii)=-(iv) This is standard; see A2Pb.

(iv)=-(ii) Let v be any normal witnessing probability on x, and let (Z,7) be the hyperstonian space
of (k, Pr,v); for A C k let A* be the open-and-closed subset of Z corresponding to the image A® of A in
A =Pr/N, (see A2L).

Now let (fa)a<x be a family of regressive functions on x and A C k any set with A > 0. Because v is
normal and f, is regressive, there is for each a < k a countable set D(a) C & such that vf;[D(a)] =1
(1He). For o, 1 < k set Ay, = foit[{n}]; then V(Uyen(a) Aan) = 1 50 U(U,ep(a) 4an) = 1 and E, =
Z\U,<n A%y € No. By hypothesis (iv), A* Z U, ., Ea; take 2 € A\ U, Ea. Then for every a <
there must be a y(a) < s such that z € A7 _ ). But this implies that

{A*} U {AZW(Q) o< K}
is a centered family of open subsets of Z. It follows that {A*} U{A} _ ) : & <k} is centered in 2. What

this means is that if I € [k]<“ then
Vi = AN Naer fa {v(@)}]

does not belong to NV, and therefore is unbounded in . But now of course we can find a uniform ultrafilter
F on k containing every V7, so that A € F, while lim¢_, 7 fo(§) = v(a) for every a < k.

Look back at where A, (fo)a<x came from. Taking A = k to begin with, we see that k is indeed weakly
ITi-indescribable. But also, letting A vary, we see that any such A must be II}-fully stationary, that is,
its complement cannot belong to the ITi-filter W of x; turning this round, we see that vW = 1 for every
W e W, as demanded by (ii).

(ii)=(i) is trivial.
6M I now leave these questions in set theory and logic and turn to two more of the problems in abstract
measure theory to which real-valued-measurable cardinals are relevant.

Theorem Let (X, p) be a metric space.
(a) X is Borel measure-complete iff there is no real-valued-measurable cardinal less than or equal to d(X).
(b) If X is complete (as metric space!) then it is Radon iff there is no real-valued-measurable cardinal
less than or equal to d(X).

proof (a)(i) If k < d(X) is real-valued-measurable, let v be a witnessing probability on x. Let (z¢)e<,. be
a discrete family in X (see A3Fa). Let u be the Borel measure on X such that pE = v{ : z¢ € E} for
every Borel set £ C X. Let G be

{G: G C Xis open, {£: z¢ € G} is finite}.
Then G is an upwards-directed family of open sets in X with union X, so u(JG) = pX =1 > 0 =

supgeg #G, and X is not Borel measure-complete.

(ii) If X is not Borel measure-complete, let p be a totally finite Borel measure on X and G an upwards-
directed family of open subsets of X such that uG* > supgeg pG, writing G* = (JG. Let (U, )nen be a
sequence of discrete families of open sets in X such that |J_ .U, is a base for the topology of X (A3Fb).
For each Borel set £ C X set

neN

mE = p(ENG") —supgeg n(E N G);
then p; is a Borel measure on X and 1 (G*) > 0 = supgeg p1G. For each n € N set
Vo={U:U€U, I GeG, UCG} V)=V
then G* = (J,,cy Vi, so there is an n € N such that p(V,7) > 0. For &€ C V,, set v&€ = p1(|JE); then
(Vn, PVp,v) is a non- trivial measure space, so its additivity x is a real-valued-measurable cardinal (1D).

But of course k < #(V,,) < d(X), because any dense subset of X must meet every non-empty member of
Vn, and V, is disjoint.
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(b) Now (b) follows from (a) by A2Whb.

Remark For an investigation of the exact properties of metric spaces involved in the arguments used here,
see GARDNER & PFEFFER 84.

6N Riesz spaces My own introduction to the Banach-Ulam problem was through the following. (For
definitions see FREMLIN 74. For an account of the elementary theory of Riesz spaces see also LUXEMBURG
& ZAANEN T1.)

Theorem Let F be a Dedekind complete Riesz space (= vector lattice) with a sequentially order-continuous
positive linear functional on E which is not order-continuous. Then there are a real-valued-measurable
cardinal x and an order-bounded disjoint set A C ET, the positive cone of E, of cardinal x.

proof Suppose that f : F — R is a positive linear functional which is sequentially order-continuous but
not order-continuous. Let D C ET be a non-empty, downwards-directed set with infimum 0 such that
infoep f(z) > 0. Let (dn)nen be a decreasing sequence in D such that lim, o f(d,) = infzep f(2); set
d* = inf,end,. Then (because f is sequentially order-continuous) f(d*) = infzep f(d), and if d € D then
fldAd*) =limy, o0 f(dAdy,) = f(d*) (using the distributivity of Riesz spaces; FREMLIN 74, 14D). Let C
be the set

{r:x€E,2>0,3deD,x<d" —(dNd")};

then f(x) = 0 for every z € C, C is upwards-directed, and sup C' = d*. Now let A C C be a maximal set
such that Ay = 0 for all distinct =, y € A, and set e = sup A. Then d* = sup,,cy(d* A ne). Because f
is sequentially order-continuous, there must be some n € N such that f(d* A ne) > 0, and f(e) > 0. For
each B C A set eg =sup B, vB = f(eg). Again because f is sequentially order-continuous, (4, PA,v) is a
non-trivial totally finite measure space and #(A) > add(v), which is a real-valued-measurable cardinal.

Remark This comes from LUXEMBURG 67. Note that if (X, PX,u) is any non-trivial probability space
then we can set F = £°°(X), the Dedekind complete Riesz space of all bounded real-valued functions on
X, and f : EF — R will be a sequentially order-continuous positive linear functional on E which is not
order-continuous.

Version of 16.6.91
Version of 10.12.91
7. Partially ordered sets

I collect here a variety of facts concerning the impact of real-valued-measurable cardinals on partially
ordered sets. In 7A-7D I show that if x is an atomlessly-measurable cardinal there are ccc partially ordered
sets P and () such that P x @ does not satisfy the k-chain condition. A similar method shows that there are
large ‘entangled’ subsets of R (7E-7F). In 7G-7N I discuss the cofinalities of certain partially ordered sets,
in particular, of reduced products of families of cardinals. I end the section with an application of these
ideas to cardinal exponentiation (70-7Q).

7A Definition Let a, b C N. Approximately following TODORCEVIC 86, I write
A(a,b) = min(aAb) if a # b,
=o0 if a =b.
We have the following elementary lemma.

7B Lemma Let n, [ € N and suppose that m > 3(n?0)!. Let (a,;)r<m.i<n be any family in PN, and for
r, s < mset Dp.s = {A(ar,as) : i < n} NN. Then there are w(0),...,u(l),v(0),...,v(l) < m such that
u(r) # v(r) for r <1 and Dy(j) u() N Duk),ek) = O whenever j < k <.

proof (a) Given finite sets X and L with #(X) > 3(#(L))! and any function ¢ : [X]?> — L, there is a
J € [X]? such that ¢ is constant on [J]2. P Induce on #(L). If #(L) < 1 this is trivial. For the inductive
step to #(L) =n+1, take any x € X. Foreach ! € Lset X; = {y:y € X\ {2z}, ¢({z,y}) =}. Then there
must be some [ € L such that #(X;) > 3nl, because (n +1)(3n! — 1) + 1 < 3(n + 1)! < #(X). If there are
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distinct y, 2 € X; such that ¢({y,2}) =, take J = {z,y, 2}. Otherwise, consider ¢[[X;]?: [X;]? — L\ {I}.
By the inductive hypothesis, there is a J € [X;]® such that ¢ is constant on [J]?, and we're done. Q

(b) Now examine the given family (ai)r<mi<n in PN. If L € [N]<“ and m > 3(n#(L))!, there are
distinct 7, s < m such that D,, N L = (. P? Otherwise, we can choose a function ¢ : [m]?> — n x L such
that A(ay;,as;) = j whenever r, s < m are distinct and ¢({r, s}) = (4,7). By (a), there is a J € [m]® such
that ¢ is constant on [J]?; suppose that J = {r,s,t} and ¢({r,s}) = ¢({r,t}) = ¢({s,t}) = (i,5). Now
A(ari,as) = A(api,ae) = Aasi,ar;) = j. But this means that for each pair from a,;, ag;, ay; there is
exactly one member of the pair containing j; which is ridiculous. XQ

(c) Consequently we can choose u(0),v(0),... ,u(l),v(l) inductively so that
U(T) 7& ’U(T), Du(r),v(r) N Us<r Du(s)ﬂ)(s) =0
for every r < [; and these will serve.

7C Lemma Let x be an atomlessly-measurable cardinal and R, S two upwards-ccc partially ordered
sets, both of size strictly less than x. Let A < k be any cardinal. Then there are partially ordered sets P,
Q such that

#(P) < max(w, \), #(Q) < max(w, A),

S(Px R) <wy, S(Q x8) <wy, S(PxQ) > A,
writing S(P x R) for the Souslin number of P x R, as in A1P.

proof (a) Let v be a k-additive extension of the usual measure p on {0, 1} to every subset of {0, 1}V (1De,
A2GDb). Let A C {0,1}" be a set of cardinal A\. For each z € {0,1}" set

P,={I:1¢€[A]<¥, z(A(a,b)) =1 for all distinct a, b € I},

Q. ={I:1¢€[A]~¥, z(A(a,b)) =0 for all distinct a, b € I},

ordering both by C. Then S(P, x @) > A because {({a},{a}) : a € A} is an up-antichain in P, X @,. Also
#(P.) < max(w,A) and #(Q.) < max(w, A).

(b) I shall therefore be done if I can find a z € {0, 1} such that P, x R and @), x S are both upwards-ccc.
In fact I show that P, x R is upwards-ccc for v-almost every z; as the same argument will work for @), x S,
that will be more than enough.

Set

Hy={z:2¢c{0,1}, S(P. x R) > wy}.

For each z € Hy there is a family ((I4(2),70(%)))a<w, enumerating an uncountable up-antichain in P, x R.
There is an n, € N such that B, = {a : #(I4(2)) = n.} is uncountable. Let ((J4(2),8a(2)))a<w, be a
re-enumeration of the up-antichain ((I,(2),74(2)))acp. in P, X R.

(c) ? Suppose now that vHy > 0. In this case there is an n € N such that vH; > 0, where
Hy={z:z€ Hy, n, =n}.

Because A and R both have cardinal less than , we can find for each a@ < w; a finite set J C A and an
s} € R such that vE, > 0, where

E,={z:z€ Hy, Jo(z) = J%, sa(z) = si}.
Enumerate J as (@qi)i<n for each i < n. For a, f < wy set Dog = {A(aai,a8:) : ¢ < n} NN; note that
#(Dap) < n.
(d) Let v > 0 be such that
T={a:a<w,vE, >~}
is uncountable. For each o € T set
Mo = SUp{A(ani, aaj) 1 i < j <n}+1.
Let m be such that
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U={a:aeT, my=m}

is uncountable. Because there are only finitely many possibilities for the family (a,; N m);<, (identifying m
with the set of its predecessors), there is a family (b;);<, in Pm such that

V=Aa:aeU anuNm=0b Vi<n}
is uncountable.

(e) If o, B are distinct members of V, z € E, N Eg, and s}, sg are upwards-compatible in R, there is a
k € Dag such that z(k) = 0. B (J3, s},) = (Ja(2),54(2)) and (Jj, s) are upwards-incompatible in P, x R;
we are supposing that sj, and sj are upwards-compatible in R, so J5 U Jj ¢ P,. In this case, there must be
a, b€ J; U Jj such that 2(A(a,b)) = 0. But J; and Jj do belong to P, so neither can contain both a and
b, and we may take it that a € J; and b € Jj. Thus there must be 4, j < n such that z(A(aai, ag;)) = 0.

? If i # j, then
A(aais aaj) = Abi, bj) = Alaai, agj),
S0
2(A(ai,ap;)) = 2(A@ai, 0aj)) = 1. X
Thus i = j and 2(A(aas, api)) = 0, where A(aqi, agi) € Dag- Q

(f) Let k be so large that (1—27")5"1 < 14: set | = 3(n?k)!. By A2S, there is an uncountable set W C V
such that p*(N,er Ba) > 37 whenever L € [W]'. By A1Q, there is an L € [W]' such that {s}, : « € L} is
bounded above. By 7B, there are «(0),...,a(k),3(0),...,08(k) in L such that a(j) # 5(j) for j < k and
(Da(j),8())i<k is disjoint. Now however observe that if z € (,¢;, Ea and @ < k then s, and sj ;) are
upwards-compatible in R, so there is a j € Dy, g¢;) such that z(j) = 0, by (e) above. Thus (,c; Eo € F
where

F={z:V i<k 3 j€ Duyg)pu) such that z(j) = 0}.
But, because (Dq(4),(:))i<k is disjoint and #(Dq;),5¢)) < n for each 4,

pk = H/J{Z 3 j € Dagi),p), 2(J) = 0}
i<k

<J[a-2m =@ -2k <q/3.
i<k

So 37 < ' (Naer Fo) < 37- X
This contradiction shows that S(P, x R) < w; for v-almost all z, as required.

7D Theorem Let x be an atomlessly-measurable cardinal. Then there are ccc partially ordered sets P,
@ such that S(P x Q) = &.

proof Construct (Pe)ecr, (Qe)e<ns (P)e<n, (Qf)e<n as follows. Given (P)y<¢ and (Qy),<¢, then Py and
Q¢ are to be the finite-support products of these families. Given that Py and @ are ccc and that their
cardinals are at most max(w,#(§)), for £ < &, then P: and Q¢ are to be partially ordered sets of size at
most max(w, #(§)) such that S(Pe x ) < w1, S(Q¢ x QF) < wi, and S(P x Q¢) > #(€); Lemma 7C tells
us that such can be found. The induction continues because at successor stages FP¢ x P¢ and Qe % Qz can
be embedded as cofinal subsets of Pey and QZ 1 respectively, so that PE* 1 and QZ 41 will be ccc if Pg and
QZ are, while for limit ordinals £ > 0, Py = Un <t Py will be cce because all the preceding P are, by the
remarks in A1R.

On completing the induction, set P = P}, @ = @Q%. Observe that the finite-support product R of
(Pe X Q¢)e<r can be embedded as a cofinal subset of P x @, so that S(Px Q) = S(R). Also sup{S([[¢c; P x
Q¢) + J € [K]=¥} = K, because S(P¢ x Q¢) > #(&) for every £ < r, while #([[cc; Pe X Q¢) < & for every
J € [k]<“. Because k is regular, A1R tells us that S(R) = &, so that S(P x Q) = &, as claimed.

Remark Note that (if it is consistent to suppose that there is a two-valued-measurable cardinal) it is

consistent to suppose that there is an atomlessly-measurable cardinal and that Souslin’s hypothesis is true;
see LAVER 87.
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7E Definition Let (X, <) be a totally ordered set. Let <; be the original order < and <_; the reverse
total ordering >. We say that a set A C X is wy-entangled if for any n € N, e € {—1,1}" and every family
(Tei)e<wn i<n of distinct elements of A there are distinct &, 7 < wy such that z¢; <e(i) Tn; for every i < n.

7F Proposition Let x be an atomlessly-measurable cardinal. Then for any A < & there is an wi-entangled
subset of R of cardinal .

proof (a) Let X be {—1,1} with its lexicographic total ordering, so that = < y iff x(A(z,y)) = —1,
y(A(z,y)) = 1, writing A(z,y) = min{m : x(m) # y(m)} (cf. 7TA). Themap z — 3 "z(m): X - R
is strictly increasing, so that any wi-entangled subset of X has an w;-entangled direct image in R, and it
will be enough to find an w;-entangled subset of X of cardinal \.

(b) Set S = U, en{-1.1}", Z = {-1,1}"; let p be the usual measure on Z (as in A2G), and v a
r-additive extension of p to PZ (see 1De, A2Gb). For z € Z define h, : X — X by writing

ho(x)(m) =xz(m) x z(x[m) V meN, z € X;
then h, is a bijection. Observe that if z, y € X and A(x,y) = m then h,(z) <. h,(y) iff z(x[m) = y(m) xe.

(c) Let B C X be any set of cardinal ), and for z € Z write A, = h,[B] € [X]*. T aim to show that A,
is wi-entangled for some, in fact for v-almost every, z € Z.

Let E be {z:z € Z, A, is not wy-entangled}. For each z € F we can find n, € N, e, € {—1,1}"= and a
family (2,¢i)e<w, i<n. Of distinct elements of B such that

VE<n<wr 3i<n, ho(2ae) Loy Pa(Tani)-
Because all the z.¢; are distinct, there will now be a k., € N such that
C, ={&  xueilk, # xagjlk. Vi<j<n}
is uncountable; next, there will be a family (u.;);<n. of distinct elements of {—1,1}*= such that
CL={€:€€C,, xreilk, =uy ¥V i<n,}
is uncountable. Let (y.¢i)e<w, i<n. be a re-enumeration of (.¢i)eecr i<n,, S0 that

(Yzgi)e<w, i<n. is a family of distinct elements of B,
Yzgi sz = Uz for i < Nz, f < w1,
v §< n <wi Ji< nz, hZ(yzéi) ﬁez(i) hz(yzni)'
(d) ? Suppose, if possible, that vE > 0. Then there are n, k € N, e € {—1,1}" and a family (u;);<, in
{—1,1}* such that vF > 0, where
F={z:z€eE,n,=n,k, =k, e, =€, u;; =u; ¥ i<n}.

Note that the u; must all be different. Next, because #(B"™) < k, we can find for each £ < w; a family
(Yei)i<n in B such that vF¢ > 0, where

Fe={z:2€F, ypei=ye; ¥V i <n}.

Thus
Yyeilk = u; for i <n, £ <wi,
and if z € F; N F,,, where £ < n < wy, there must be an ¢ < n such that
hz(Yei) Letiy Pz (Yma)-
(e) Let v > 0 be such that U = {¢ : vF¢ >~} is uncountable. Let [ > 1 be such that (1 —27")! < 1.
By A2S, there is an uncountable V' C U such that
1 (Neer, Fe) > 2+ for every L € [V]!TL.
Let (y;)i<n be a cluster point of ((yei)i<n)ecv in the sense that
VEeN (<w 3 eV \(suchthat ygilk =y Tk ¥V i <n.
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Note that because Fr N F, # () for £, n € V, all the yg;, for £ € V and i < n, are distinct; so that there is a
cofinite W C V such that y¢; # y; for £ € W, i < n.

(f) Choose strictly increasing sequences (r;) en in N, (§;)jen in W such that ro = k and

Ye,ilry = yilry Vi <n,

Ye;ilmjrr Fyilrjp1 Vi<n
for every j € N. For j € N, i < n set
mj; = A(yé_myi),
so that r; < mj; < ;41 and also
mij; = A(y§j+1ia ysz)
Set
Sji = Yilmgi = Ye,ilmji = Ye, . ilmji € S.

Observe that all the sj; are distinct; this is because r; < mj; < rjq for all 4, j, so that s;; # s;i if j # j7,
while 7o = k, so that sj;[k = u; for all 4, j and sj; # sjri if i # 7',

(g)fz€ Z, jeN,i<n then

ha(Yesi) Setiy he(e;ani) = 2(s5i) = yi(myi) x €(i).

So if we set G = ﬂjgl Fy,, then for any z € G we have yg,; = y.¢,q for every j <[, i <mn, so for each j <
there must be an ¢ < n such that

P (Ye;i) Letiy he(Ye i)
that is,
2(sji) # yi(myi) x €(i).
Accordingly G C H, where
H={z:V j <!l 3 i<nsuch that z(s;;) # yi(m;;) x (i) }.
Because all the sj; are distinct, uH = (1 —27")! < %7, so G < %fy. But by the choice of V, u*G > %fy.
X

This contradiction shows that vE = 0. So we can take a z € Z \ E to yield the required entangled set
A, CX.

Remark 7F is due to S.Todoréevi¢; it corresponds to Theorem 2 of TODORCEVIC 85, from which it may
be deduced using Corollary 40a.

Version of 18.9.92

7G k-measure-bounded partially ordered sets (a) Let P be a partially ordered set and k a real-
valued-measurable cardinal. I will say that P is k-measure-bounded (upwards) if for every s-additive
probability 1 on P with domain PP there is a p € P such that pu{p’ : p’ < p} > 0.

(b) Let P and @ be partially ordered sets. I say that a function f : P — @ is an w-Tukey function if
for every ¢ € @Q there is a countable set D C P such that whenever p € P and f(p) < ¢q thereisa d € D
such that p < d.

(For a systematic discussion of this concept see FREMLIN P90.)

7TH Elementary facts Let x be a real-valued-measurable cardinal.

(a) If P and @ are partially ordered sets, f : P — @ is an w-Tukey function, and @ is k-measure-
bounded, then P is k-measure-bounded. ¥ Let p be a x-additive probability with domain PP. Let
v=npuf"t:PQ — [0,1]. Then v is k-additive, so there is a ¢ € Q such that v{¢’ : ¢ < ¢} >0. Let D C P
be a countable set such that whenever f(p) < ¢ there is a d € D such that p < d. Then

0<v{d:¢ <qg=p{p:f(p) <a} <D ycpmip:p <d},
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so there is a d € D such that u{p: p < d} > 0. As pu is arbitrary, P is k-measure-bounded. Q

(b) If P is a partially ordered set and @ C P is cofinal with P, then P is k-measure-bounded iff @ is.
P The identity function from @ to P is w-Tukey, and any function f from P to @ such that f(p) < p for
every p is also w-Tukey. Q

(c) If P is any partially ordered set such that cf(P) < k then P is k-measure-bounded.

(d) Suppose that P is a k-measure-bounded partially ordered set and that p is a k-additive probability
on P with domain PP. (i) If P is upwards-directed then sup,cp pu{p’ : p’ < p} = 1. (ii) If add(P) > w (P
is ‘countably closed’) then there is a p € P such that u{p’ : p’ <p} =1. P (i) For A C P set

vA = pA —sup,cppu{p’ :p €A, p' <p}.
Then v is a x-additive measure on P and v{p’ : p’ < p} = 0 for every p € P. Because P is k-measure-boun-
ded, vP must be 0, that is, sup,cp u{p’ : p’ < p} = 1. (ii) If add(P) > w, take a sequence (p,)nen in P such

that lim, oo p{p’ : p’ < pn} = 1; there is a p € P such that p,, < p for every n, and now u{p’ : p’ <p} =1.
Q

(e) (1) If (Pn)nen is a sequence of upwards-directed x-measure-bounded partially ordered sets then P =

nen Pn is k-measure-bounded. (ii) If (P¢)¢<x is a family of x-measure-bounded partially ordered sets such
that A < x and add(F) > w for every ¢ < &, then P = []._, P is s-measure-bounded. P (i) Let u be a
k-additive probability with domain PP. For each n € N set pu,, = um,, ' : PP, — [0, 1], where 7, : P — P,
is the canonical map. By (d-i) there is a p, € P, such that p,{q:q € P,, ¢ < p,} > 1—2"""2. Now if
we set p = (Pn)nen € P, we see that pu{p’ : p’ < p} > % (ii) Argue as in (i), but taking p. € P¢ such that
pef{g:q <pc} =1, so0that u{p’ : p’ <p} =1, because A < k. Q

(f) If P is a k-measure-bounded partially ordered set, ) is another partially ordered set, and f : P — @ is
an order-preserving surjection, then @ is k-measure-bounded. P Take any g : Q — P such that f(g(q)) = ¢
for every ¢ € Q; then g is w-Tukey. Q

7I Examples (a) NV is k-measure-bounded for any real-valued-measurable cardinal . (Use 7H(e-i).)
(b) wi* is k-measure-bounded for any real-valued-measurable cardinal k. (Use TH(e-ii).)
(c) N/ F is k-measure-bounded for any real-valued-measurable cardinal «, any filter 7 on N. (Use 7Hf.)

(d) If X and 6 are cardinals then [A\]<? is x-measure-bounded for any real-valued-measurable cardinal
k> A P If y is a x-additive probability with domain P[A\]<¢ we may apply 5Aa with X = [\]<¢, Y = A
and f the identity map to find an M € X such that u(PM) > 0. Q

(e) Let & be the family of closed Lebesgue negligible subsets of [0, 1], ordered by C. Then & is not
k-measure-bounded for any atomlessly-measurable cardinal x. I If x is atomlessly-measurable, there is a
k-additive extension p of Lebesgue measure to P[0, 1]. Define f : [0,1] — & by setting f(a) = {a} for every
a €[0,1], and set v = uf~t : PE — [0,1]. Then v{E : E C F} = uF = 0 for every F € £, so v witnesses
that £ is not k-measure-bounded. Q

Remark I include (e) because (as explained in FREMLIN P90) many of the natural partially ordered sets P
of analysis allow w-Tukey functions from £ to P, so cannot be k-measure-bounded.

7J Proposition Suppose that k is a real-valued-measurable cardinal and that P is a k-measure-bounded
partially ordered set.

(a) If (Qe)e<s is an increasing family of subsets of P and @ = Ug<,§ Q¢ is cofinal with P, then there is a
& < K such that Q¢ is cofinal with P.

(b) cf(cf(P)) # k.

proof (a) ? If no Q¢ is cofinal with P, then we may choose a function f : kK — P such that f(§) £ ¢
whenever £ < k, ¢ € Q¢. Let v be a witnessing probability on the real-valued-measurable cardinal , and
set u=vf~t:PP — [0,1]. Then there should be a p € P such that u{p’: p’ < p} > 0. But now there are
a ¢ € @ such that p < ¢ and a £ < « such that ¢ € Q¢, in which case

0<p{p :p <p}<vin:f(n) <q} <v{n:n<E},
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which is impossible. X

(b) Set A = cf(P). ? If cf(\) = K, take a cofinal set @ C P of cardinal A. Then there is an increasing
family (Q¢)e<. of subsets of @, all of cardinal strictly less than A, therefore not cofinal with P, but with
union @, contradicting (a). X

7K Corollaries Let x be a real-valued-measurable cardinal.
(a) If F is any filter on N, then cf(cf(NY/F)) # &; in particular, cf(0) # k.
(b) If A is a cardinal and (0¢)¢c<» is a family of regular cardinals all greater than A and less than &, then

Cf(H§<>\ 9() < K.

(¢) If o and #y are cardinals less than x then ©(a, ) (see A1Jb) is less than x.

(d) If a, B, v and § are cardinals, with 6 > wy, v < 8, a < &, then covgy(a, 8,7,9) (see AlJa) is less
than k.

(e) O(k, k) = k and

{a:a < kis a cardinal, O(a, a) = a}

belongs to the rvm filter of k.
() If K = ¢, A < k and (Pr)c<n is a family of partially ordered sets such that w < add(F;), cf(F;) < K
for every ¢ <A, then cf([],_\ P¢) < .

proof (a) Use 7Ic and 7Jb.

(b) T If K <6 =cf(][],.,0c), then by Allc there is an ultrafilter F on A such that § = cf([[,_, 0c/F),
and by Alld there is a family (67)c<x such that 0; < 6¢ for every ¢ < A and x = cf([[._, 0;/F). But by
TH(d-ii) and 7HE, []._, 0¢/F is r-measure-bounded and its cofinality cannot be «, by 7Jb. X

(c) 7 Suppose, if possible, otherwise. Then for each { <  there must be a family (0¢¢)c<a, of regular
cardinals less than o such that A¢ < 0¢¢ for every ¢ < A¢ and Cf(HC<>\s fcc) > €. Because a < K there is a
cardinal A < k such that

A={{: E <k, Ae = A}
is unbounded in k. Now by 5Ab there is a set M C «, of cardinal at most A, such that
B={(:£€A OceMVY (<A}

is unbounded in . Let (f¢)c<x be any enumeration of M. By (b), there is a cofinal set F' C [[._,, 0¢ with
#(F) < k. Let £ € B be such that £ > #(F). For each f € F' define gy € Hc<>\ O¢c by setting

gf(C) = f((l) whenever 954 = 9(/.
Then {gy : f € F'} is cofinal with []._, f¢c, because if h € [, O¢¢ there is an f € F such that
F(¢) = sup{h({) : ¢ <A, Oec = b}
for every ¢’ < X', and in this case h < g¢. So
#(F) <€ < cf([]ecp Oec) < #(F),
which is absurd. X

(d) This is trivial if any of the cardinals «, 3, « is finite; let us take it that they are all infinite. In this
case covsy(a, 8,7,0) < covsn(a,v,7,w1), and covsy (@, v,v,w1) < O(a,v) < k, by A1K and (c) above.

(e) From (d) we see that
C={a:a<kisacardinal, ©(5,0) <a V < a}

is a closed unbounded set in k, so D belongs to the rvm filter of x, where D is the set of regular cardinals
in C (using a fraction of 4K). But if @ € D, and (0¢)¢<x is a family of regular cardinals with A < 6. < « for
every ( < A, set 8 =sup¢s 93; then

cf([Tecr0c) <O©(8,8) < o
Accordingly ©(a, o) = « for every a € D. In the same way O(k, k) = k.
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(f) By 5E, we have cf(J[., P) < ¢; by TH(d-ii) and 7Jb, cf([]._, F) # &
Remarks Part (f) comes from PRIKRY 75, Theorem 2c. Parts (b)-(d) come from GITIK & SHELAH P91.

7L Cofinalities II: Proposition Suppose that x is an atomlessly-measurable cardinal. Let X be a set
of cardinal at most min (2", x(+*)) and F a filter on X which has a base of cardinal less than » and contains
no countable set. Then cf(NX /F) > k.

proof Let v be a witnessing probability on k. By the Gitik-Shelah theorem (3F-3H), there is a stochastically
independent family (E,,,)zex nen of subsets of x of measure % Define ¢ : K — N¥X by

$(&)(x) =min{n : £ € By} if £ € | J Ean,

neN
= 0 otherwise.

Now let A C F be a base of cardinal < x. For f € NX, A € A set
Wia=1{€:€ <k, 6(E)(@) < f(a) ¥ € A}.
Then
Wi = Teal - 27701 =0
because A is uncountable. If F C N¥ is any set of cardinal less than x, then
{€:3 FeF 68 <r f} =UseracaWra €Ny,

so there is a ¢ <  such that ¢(¢) £5 f for every f € F, and {f* : f € F} is not cofinal with NX /F. As F
is arbitrary, cf(NX /F) > k.

7M Corollary Let x be an atomlessly-measurable cardinal.

(a) cf(N*) > & for every A > w. (For cf(N*) > cf(N«1).)

(b) If A < & is a regular uncountable cardinal, and F = {F : F C A\, #(A\ F) < A} then cf(N*/F) > k.

(c) Suppose that ¢ is atomlessly-measurable. Let X be a set of cardinal less than ¢ and F a filter on X
with a base of cardinal less than ¢, not containing any countable set. Then cf(N*/F) = ¢. (Use 5E to see
that #(N¥) =c.)

Remark 7L-7TM come from JECH & PRIKRY &4.

7N Remark The results TKb-e are interesting; the theory in which they are embedded, partially described
in A1H-A1J, is astonishing. But it may well be that the last word has not been said. From 7Kb we see, for
instance, that if  is real-valued-measurable then cf(] ],y wn) < . But in fact cf(J[, .y wn) < ww, (BURKE
& MAGIDOR 90, Theorem 6.1). We can hope that further inequalities of this type will swallow up 7Kb-e
completely.

70 Lemma Let xk be an atomlessly-measurable cardinal, and 7, § cardinals such that w < v < § < &,
268 =27 for y < 3 < §, but 2% > 27, Then § is regular and 2° = covsy(27, k,67,68) = coven (27, k,61,w;) =
covgp(27,K,07,2).

proof § is regular because 2° is at most the cardinal power (maxg<s 2'8)Cf(5). Of course
covey (27, K, 061, 8) < covsn(27, K, 67, w1) < covsn(27,k,67,2) < #([27]=9) < 29,

For the reverse inequality, let £ C [27]<" be a set of cardinal covgy(27,k,dT, &) such that every member of
[27]=9 is covered by fewer than § members of £. For each ordinal & < § let ¢¢ : P — 27 be an injective
function. For A C § define f4 : § — 27 by

fa(€) =dc(ANE) V £ <.

Choose E4 € & such that f'[Ea] is cofinal with §; such must exist because § is regular and fa[d] can be
covered by fewer than § members of .

7 If 2° > #(€) then there must be an £ € £ and an A C P§ such that #(A) = k and F4 = E for
every A € A. For each pair A, B of distinct members of A set €45 = min(AAB) < 4. By 5B, there is a
set B C A, of cardinal &, such that M = {45 : A, B € B, A # B} is countable. Set { = sup M < §. Next,
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for each A € B, take na > ¢ such that fa(na) € E. Let n < § be such that C = {A4: A € B, na = n} has
cardinal k. Then we have a map

A fa(n) =¢n(ANn):C— E

which is injective, because if A, B are distinct members of C then £4p < ( < 7n,s0 ANn # BNn. So
#(E)>k;but E€ £ C[27]<". X

7P Theorem If k is an atomlessly-measurable cardinal,
{27 1w <y <K}

is finite.
proof ? Suppose, if possible, otherwise.

(a) Define a sequence (v, )nen of cardinals by setting

Yo = W, Yn+1 = min{y : 27 > 2} V¥V n e N,
Then we are supposing that -, < k for every n, so by Lemma 70 every -, is regular and
27+t = covgy (27, /{,’yiﬂ,wl) VneN,
and by Theorem A1K
21 < O(27, Y4 );

also, of course, @(27",7;_1) < 2741 for every n. (For the definition of O(a, ), see A1J-A1K.) Thus
201 = Q(27, 4,k ) for every n.

(b) Now ©(27,v) = O(c,y) whenever n € N and ~ is a regular cardinal with v, < v < . P Induce
on n. For n = 0 we have ¢ = 27, For the inductive step to n + 1, if 7 is regular and 7,41 < v < K, then
¢ > k> 0(v,7) (TKb-c), so

B2+, 7) =6(6(27 7, 1),7)
<0(6(2,7),7)
because v > 7,!,

by the inductive hypothesis

by Lemma A1L
< O(27mH,9)

because 27m+1 > ¢. Q In particular, 27 = ©(c, ;) for every n > 1 (as well as for n = 0).
(c) For each n € N, let v, be the least cardinal such that ©(a,,,~,") > ¢. Then (@, ),en is non-increasing

and a1 < ¢, so there are n > 1, a < ¢ such that a,,, = a for every m > n. Now for m > n we have

¢ < O(a,7;h) < max(a, (sup O(a,~;)))

a'<a
< max(a, ¢f(@) = 2¢f(@)
using A1M. Also we still have a > k> O(,},7,) because ©(a’,v,}) < k for every o’ < k. So
O (e, 7m) = OO, 73),7m) = O(¢,75,) = 27
for every m > n; consequently
27m < 2¥m+1 < 9cf(e)

and cf(a) > 7y, for every m. But this means that
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@(a,'yg) = Supa’<a @(O/vl%jrl) S ¢

for each m, which is absurd. X
This contradiction proves the theorem.

Remark This comes from GITIK & SHELAH P91.

7Q Corollary Let x be an atomlessly-measurable cardinal.

(a) There is a least cardinal v < & such that 27 = 2° for y < § < k.

(b) If v is a witnessing probability on k and A is the Maharam type of (k, Pk, v) then the cardinal power
A7 is 27,

(c) If ¢ < KF%1) then v = w, that is, 20 = ¢ for w < < k.

proof (a) Immediate from 7P.

(b) Let 2 be the measure algebra Px/N,. For { < & let ¢¢ : P€ — P~y be an injective function. For
n<-v, ACk set

dan ={§:n€de(ANE} €.
If A, B C k are distinct then there is a {( < & such that ¢e(ANE) # ¢e(BNE) for ( < & < K, so that
(because v < k) there is an n < 7 such that da, # dp,. Thus 27 < #(A)Y < (A\¥)7 = A7, using A2Hb. On
the other hand, A < 2" and v < K, so A7 < 27,

(c) (i) We need the following elementary fact: if v, 3, § are infinite cardinals, with ¢ regular and cf(«) # 4,
then

coven(a, 3,01,0) < max(a,sup, ., covsn (o, 3,67, 6)).

P Set 6 = max(a,sup, ., covsy(a’, 3,67,8)). For each ¢ < « choose & C [¢]<F such that #(&) =
covsn (#(€), 8,6%,6) and every member of [€]<° can be covered by fewer than § members of &. Set & =
Ug<a € then #(€) < 0. Take any A € []=0. Tf cf(a) > & then A C ¢ for some & < a so A is covered by
fewer than 0 members of & C &. If cf(a) < 6, take a cofinal set C' C « of cardinal less than ¢; then for each
€ € C there is an Ag € [E]<° covering ANE, so A = Ugec Ac € [£]<?% (because § is regular), and A C |JA.
As A is arbitrary, £ witnesses that covsp(a, 8,67,8) < 0, as required. Q

(ii) ? Now suppose that v > w, that is, that 27 > ¢. Let v be the least cardinal such that 27* > ¢. Then
an easy induction on «, using (i) just above, shows that covsy(a, &,7;",v1) < a whenever 1 < a < (7).
In particular, covsy(c, &, 7, ,71) < ¢. But in 70 we saw that covsy(c, 5,7, ,71) = 27. X

Remark The case k = ¢ of (b) is due to PRIKRY 75.

Version of 10.12.91
8. PMEA and NMA

In this section I give a brief description of two axioms, both much stronger than the assertion ‘c is real-
valued-measurable’ but nevertheless apparently consistent, with some of their consequences in set theory
and general topology.

8A Theorem If one of the following statements is true, so are the others:

(i) for every cardinal A, there is a probability space (X,PX, ) of Maharam type at least A, and with
add(p) = ¢

(ii) for every cardinal ), there is a c-additive probability with domain P({0,1}*) which extends the usual
measure jiy of {0,1}*;

(iii) for every Radon measure space (X, T, %, u), there is a c-additive probability with domain PX which
extends p.

proof (a)(i)=-(ii) Assume (i). Let A be any cardinal; of course (ii) is surely true for finite A, so we may take
it that A > w. Let (X, PX, u) be a probability space of Maharam type greater than A and with add(u) = c.
Let E € PX \ N, be such that (E,PE,u[E) is Maharam homogeneous with Maharam type at least A
(A2Hh). Setting p’A = pA/uE for A C E, (E,PE, ') is a Maharam homogeneous probability space of
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Maharam type at least A, and add(y’) > ¢. By A2Ka, there is an inverse-measure -preserving function
f:E—{0,1}* Now v = u/'f~! (A2Db) is a c-additive extension of uy to P({0,1}*).
(b)(ii)=-(iii) Assume (ii). Let (X, %, %, u) be any Radon measure space.
case 1 Suppose that uX = 1 and that g has Maharam type A. Then there is an inverse-measure -
preserving function f : {0,1}* — X (A2Ka). If v is a c-additive extension of uy to P({0,1}*), then vf~!
is a c-additive extension of u to PX.
case 2 In general, there is a partition (X;);c; of X into measurable sets of finite measure such that
pE =% w(ENX;) for any E € ¥ (A2Ja). By case 1, applied to a suitable normalization of ;[ X; (the
case uX; = 0 being trivial), there is an extension of u[X; to a c-additive measure v; with domain PX;, for
each i € I. Now setting vA =3, v;(AN X;) for each A C X, we get a c-additive extension of u to PX.
(c)(iii)=(ii) and (ii)=(i) are trivial.
8B Definition PMEA (the ‘product measure extension axiom’) is the assertion that the statements
(i)-(iil) of 8A are true.

8C Theorem [Kunen] If ‘ZFC + there is a strongly compact cardinal’ is consistent, so is ‘ZFC + PMEA’.
proof See FLEISSNER 84, Theorem 3.4.

8D Proposition Assume PMEA. Then ¢ is atomlessly-measurable.
proof Use 8A(ii), with A = w, and 1D.

8E Lemma Assume PMEA. Let X be a normal topological space and (F;);cr a discrete family of subsets
of X. Suppose that for each z € X we are given a downwards-directed family U, of sets such that #(U,) < ¢
and whenever G C X is open, ¢ € I, and x € F; C G there is a U € U, such that U C G. Then there is a
family (Uy)zex such that U, € U, for every € X and whenever ¢, j € I are distinct, € F; and y € F;
then U, NU, = 0.

proof For each z € {0,1}! let G,, H, be disjoint open sets such that F; C G, whenever z(i) = 1 and
F; C H, whenever z(i) = 0. Let v be a c-additive probability on {0,1}! extending the usual measure on
{0,1}1. Write F = {J,; F5.
For x € F', U € U, write
A(z,U) ={z:2€{0,1}, either 2(i) =1 and U C G, or (i) =0 and U C H.,},

where i is that member of I such that « € F;. For each z € F, {A(z,U) : U € U, } is an upwards-directed
family in P({0,1}!), of cardinal less than ¢, covering {0,1}!. Consequently there is a U, € U, such that
vA(z,U,) > 3 (A2Ce).
If now = € F;, y € F; where i # j, then
v{z:z e A(zx,U,;) N Ay, Uy), 2(i) # z(j)} > 0.
Take any z € A(z,Uz) N A(y, Uy) such that z(¢) # z(j). Then one of Uy, U, is included in G, and the other
in H., so U, NU, = 0, as required.

8F Theorem Assume PMEA. Let X be a normal topological space in which y(z, X) < ¢ for every z € X.
Then X is collectionwise normal.

proof Let (F;);cr be a discrete family of subsets of X. For each 2 € X let U, be a base of neighbourhoods
of x with #(U,) = x(z,X) < ¢. By 8E there is a family (U,).cx such that U, € U, for each x € X and
U, NU, = 0 whenever z, y € X belong to different F;. Set G; = | J{U, : « € F;} for each i € I; then (G;)icr
is a disjoint family of open sets and F; C G; for every i. As (F;);cs is arbitrary, X is collectionwise normal.

8G Corollary Assume PMEA. Then every normal Moore space is metrizable.

proof Moore spaces are first-countable; by 8F, assuming PMEA, normal Moore spaces are collectionwise
normal. By A3D, a collectionwise normal Moore space is metrizable. So we have the result.

Remarks (a) 8G is due to NYIKOs 80; 8F, as stated, is due to JUNNILA 83.

(b) Of course we can do something with the ideas of 8E-8F without the full strength of PMEA. If we
have an extension of the usual measure on {0,1}! to a k-additive measure with domain P({0,1}!), then
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we can make 8E work if #(U,) < k for every z € X. (Compare KULESzA LEVY & NyIKos 91, §4.) Thus
if x is atomlessly-measurable, we shall have every normal Moore space of weight at most min(2”, k(1))
metrizable, using the Gitik-Shelah theorem (3F, 3I).

(c) Under NMA, stronger results my be obtained by putting 8M below together with 8E-8G.

8H Definition NMA (the ‘normal measure axiom’) is the assertion
For every set I there is a c-additive probability v on S = [I|<¢, with domain P.S, such that
(i) v{s:ieseS}=1foreveryiel,
(i) if A C S and vA >0 and f: A — I is such that f(s) € s for every s € A, then there is
an i € I such that v{s:s € A, f(s) =i} > 0.

Remarks (a) If we read the above statement as ‘NMA(I)’, with the set I as a parameter, then we see
that the truth of NMA(I) depends only on #(I), so that if seeking to prove NMA we need consider only
NMA(X) for cardinals A. More importantly, we see that NMA (I) implies NMA(J) for every J C I; for if v is
a probability on [I]<° as above, and we define f : [I|<° — [J]<° by setting f(s) = sNJ for every s € [I|<°,
then vf~! will witness NMA(J). Consequently NMA will be true iff NMA() is true for arbitrarily large
cardinals A; e.g. for all regular A > c.

(b) Observe that the condition (ii) of the statement above can be replaced with

(i) if AC S and f: A — I is such that f(s) € s for every s € A, then there is a countable
D C I such that f(s) € D for v-almost all s € A,

or with
(ii)" if AC S and f: A — I is such that f(s) € s for every s € A, then for every 6 > 0

there is a finite D C I such that v(A\ f~1[D]) <.
81 Theorem If ‘ZFC + there is a supercompact cardinal’ is consistent, so is ‘ZFC + NMA’.
proof PRIKRY 75, FLEISSNER 89.
8J Proposition NMA implies PMEA.

proof Assume NMA. Let A be any cardinal. Let 8 be a regular cardinal greater than the cardinal power
A“. Let v be a probability on [#]<¢ as in 8H. For { < 6 define f¢ : [f]<° — ¢ by setting
Je(s) = otp(s &) ¥ s € []<°.

Then if £ < n < 6 we have f¢(s) < f,(s) whenever £ € s, that is, for v-almost all s.

Let g : ¢ — PN be any injection. For £ < 6, n € N let ag,, be the equivalence class of {s: n € g(fe(s))}
in the measure algebra A of ([]<¢,P([0]<°), v). Then for any £ < n < 0 there must be an n € N such that
Agn F Qpn, 50 #(A)Y >0 > X, Now #(A) < 7(A)¥ (A2Hb), so 7(A) > A.

Thus we have (i) of 8A, and PMEA is true.

Remark This result is due to Kunen; the argument above is taken from FLEISSNER 89.
8K Theorem Assume NMA. Then the singular cardinals hypothesis is true.

proof (a) As noted in AIN, it will be more than enough if I can show that #([A]<®) < X for every regular
cardinal A > ¢. Let v be a measure on S = [A\]<° as described in 8H. For each £ < A choose a set ¢¢ C &,
cofinal with &, of cardinality cf(€).

(b) If ¢ < A there is a ¢’ < A such that

v{s:s€S8, ceups NC'\C#0} =1.

P Set E={s:(+1€se S} then vE = 1. For each s € E, {( < sups so there is an fo(s) € csups such
that ¢ < fo(s); now fo(s) < sups so there is an f(s) € s such that fo(s) < f(s). As remarked in 8H, there
is now a countable D C X such that v{s: s € E, f(s) € D} = 1; as X is regular, there is a ¢’ < A such that
D C ¢'. Then fo(s) € csups N ¢\ ¢ whenever s € E and f(s) € D, so ¢’ serves. Q

(c) So (again because A is regular) there is a family ({¢)e< such that
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V{8 Coups NCer1 \ G # 0} =1 ¥V £ <A,

(¢ = sup, ¢ C, for limit ordinals £ < A.
Set ag = {n:ce N Gyp1 \ G # 0} for each € < A; then #(ag) < #(ce) = cf(€) for each £&. Now

v{s:n € asups}t =V{S: Coups N1 \ G # 0} =1
for each n < A.
(d) Set
A={a:3F E< A cf(§) <¢,aCae}.
Then #(A) < max(\,sups., 2°) = A, by 5E. Also, for any a € 9,
v{s:a C aspst =1;

but if s € S then cf(sup s) < ¢, so we have a € A. Thus A =5 and #(S) < ), as required.

Remark This is Theorem 3(a-b) of PRIKRY 75. Compare the corresponding theorem concerning strongly
compact cardinals (DRAKE 74, Theorem 3.6 and Corollary 3.8, or SOLOVAY 74, Theorem 1).

8L Theorem Suppose that I is a set and that v is a measure on S = [I]<¢ as in 8H. Then
(a) If (A;)icr is any family of subsets of S with vA; =1 for each i € I, then

v{s:se€S,s€eA; Vies=1

(b) If 6 is a cardinal, w < cf(§) < 6 < ¢, and f : S — [I]<? is any function, then there is an M € [I]<¢
such that

v{s:se S, f(siNsC M} =1.
(¢) If @ < ¢ is a cardinal and C C S is cofinal with S then
v{s:s€S5,3 DCC, add(D)>0,UD=s}=1

(Here add(D) is the additivity of the partially ordered set (D, C), as in AlAc.)
(d) If f: [I]<¥ — S is any function then

v{s:seS, f(J)CsV Je[s|<¥}=1.

proof (a) Set
A={s:se€A; Vies}

For each s € S'\ A choose f(s) € s such that s ¢ Ag,). 7 If vA <1 then v(S\ A) > 0 so there is an i € [
such that v{s:s€ S\ A4, f(s) =i} > 0. But now v4; <1—v{s: f(s) =i} < 1. X (Compare AlEa.)

(b) As w < cf(f) < ¢, there is an infinite cardinal 6 < 6 such that vA = 1, where A = {s : s €
S, #(f(s)) <d}. For s € Alet (fe(s))e<s run over f(s)U{0}. Set

M={i:iel, 3 <6, v{s: fe(s) =1} >0}
then #(M) < max(w,d) < 0. Set
B={s:s€A, f(s)yNsZ M}.
For each s € B choose g(s) € f(s)Ns\M. ? If vB > 0 thereis an i € I such that v{s: s € B, g(s) =i} > 0;
but now there is an n < § such that vB; > 0, where
By ={s:s € B, fy(s) =i},

so that ¢+ € M; which is absurd. X
Thus vB =0 and v{s: f(s)Ns C M} =1. (Compare 5A.)

(c) We need consider only the case 0 > w. If #(I) < ¢ the result is trivial (since I € S and v{I} = 1),
so let us take it that #(I) > ¢; for convenience, let us suppose that ¢ C I. For s € S write s* = sU{#(s)};
as #(s) € c C 1, s* € S. For each i € I choose ¢; € C such that i € ¢;, and set
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Ai={s:cf Cse S}
Then vA; = 1, because #(c}) < ¢ = add(v). Set
A={s:seS,scA; Viesk
then vA =1, by (a) above. For s € A set
Ds={c:ceC, c* Cs}.

Then s = |J Ds because i € ¢; € D; for every i € s.
Set

B={s:s€ A, add(D;) < 6}.

For each s € B choose a family D, C D, with #(D.) < 6 and with no upper bound in Dy; set f(s) =
{#(d) : d € D.} C sNc. By (b), there is an M C ¢ such that #(M) < 6% and vB = v By, where

By ={s:se€B, f(s) C M}.

As 0 < ¢ = cf(c), § = sup(M U {6}) < ¢. Now, for s € By, d; = |J D/, has cardinal at most J. So by (b)
again there is an N C [ such that #(N) < §* and vBy = vB; where

By ={s:s€B;,d;sNsC N}.
Let ¢ € C be such that N C ¢. Then E = {s: ¢* C s} has measure 1. But if s € By then D/, has no upper
bound in Dy, while |JD, C N C¢,s0c¢ Dsand ¢* € sand s ¢ E. Thus EN By =0 and vB = vBy = 0.
Accordingly v(A\ B) = 1. But if s € A\ B then Dy C C has add(Dy) > 0 and | Ds = s, so we are done.
(d) Apply (c) with 6 = w,
C={s:f(J)CsV Je[s]|<¥}
then
C2{s:3 DCC,|UD =s,add(D) > w},
so vC =1, as required.

Remark These results may be found, implicitly or explicitly, in FLEISSNER 89.

8M Proposition Assume NMA. Let X be a Hausdorff space such that x(z, X) < ¢ for every z € X and
every closed set of cardinal at most ¢ is normal. Then X is normal.

proof Let E, F be disjoint closed sets in X. For each x € X let U, be a base of neighbourhoods of x of
cardinal less than ¢. Let v be a measure on S = [X]|<¢ as in 8H.

For each s € S, its closure § has cardinal at most ¢, because if x, y are distinct points of § then
{UNs:U €U} and {UNs:U €U,} are distinct members of [Ps]<¢, and #([Ps]<°) < ¢, by 5E. So there
are disjoint relatively open sets Gy, Hs C § such that ENs§ C G, FNs C Hg. For U C X set

AU)={s:UNsC G}, BU)={s:UNsC H,}.
Then for each z € E, y € F there are U, € U,, V,, € U, such that vA(U,) > %, vB(V,) > . But in this
case U, NV, = (0. P? Otherwise, take z € U, N'V,; there is an s such that U, N5 C G, V,N5 C Hy, z € s;
but in this case z € Gs N Hy. XQ

So G=\J{U, : x € E} and H = |J{V,, : y € F} are open sets separating E from F'.

Remark This is due to W.G.Fleissner and I.Juhdsz (see JUHASZ 89). T am grateful to P.J.Nyikos for the
reference.

Version of 27.11.91
8N Theorem Assume NMA. Then any locally compact normal space is collectionwise normal.

proof (a) Let (X, %) be alocally compact normal Hausdorff space; without loss of generality we may suppose
that X N T = 0. Let (F});esr be a discrete family of subsets of X. Let v be a measure on S = [X U Z]<¢ as
in 8H.

For s € S set
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By(s)=XNMU:2€UecsnNI}CX
for each z € X,
Yi(s) = U{B:(s) : x € F; N s}
for each i € I.
(b) Set
Ag={s:s eS8, Ys) ﬁU7é s)=0Viell
then vAg = 1. PP For each x € X choose G, H, € ¥ in buchaway that if z € F; then
FiQngéxgngﬁng\U#iFj;
this is possible because F; ﬂU] 2 F = = () and X is normal. Set
Agz{s:ses,{Gm,X\Hx}gsVxesﬂX};

by 8Ld, vA) = 1. But if s € A and Y;(s) # 0, take x € s N F}; then Y;(s) C G, and Uji Yi(s) € X\ Ha,
s0 Yi(s) MU, Yj(s) = 0. Thus A € Ag and v4p =1. Q

(c) Set

Ay ={s:s €S, (Yi(s))ier is discrete}.
Then A; is cofinal with S. B Take any s € S. Because vAg > 0, there is an s’ € A such that ' D s. Set
H={H:He% #{i: HNY;(s') A 0}) < 1}.

Then |J;.; Yi(s') € UH, because s’ € Ao, so F = J;c; F; N's’ C UH; but F is closed, because (F})e; is
locally finite. Take G € T such that F C G C G C |JH, and set s” = s'U{G} € S. Then s"NF; = s'NF; CG
for each i (this is where I use the requirement ‘X N T = "), so Y;(s”) C Y;(s') N G for every i. Now we see
that H meets at most one Y;(s") for every H € H and also for H = X \ G, so that s” € A;. Q

(d) Set
Az ={s:s €8, (Yi(s))ier is locally finite};
then vA5 = 1. P Set
Ay, ={s:3 D C Ay, add(D) >w, D = s}.

By 8Lc, vA, = 1. T If Ay € As, take s € AL\ Ay. Let x € X be such that {i : UNY;(s) # 0} is infinite for
every neighbourhood U of z. Let K be a compact neighbourhood of z, and J C I a countably infinite set
such that K NY;(s) # () for every i € J. For each i € J there is an 2(i) € F; N s such that K N B, (s) # 0.
Now there is a D C A; such that add(D) > w and s = |J D; so there is a d € D such that z(i) € d for every
i € J. In this case By(;)(d) 2 By (s) for each i, so K N Y( ) # 0 for every i € J. However (Y;(d))ier is
supposed to be discrete, and K is supposed to be compact, so this is impossible. X

Thus AL C Ay and vAy =1, as claimed. Q

(e) Consequently vA; =1, as A = Ay N As.

(f) Let A3 be the set of those s € S for which there is a family (W, )zex in s N % such that z € W, for
every ¢ € sNX and if ¢, j are distinct members of I, z € F; and y € F; then W, N W, = (). Then vA3 = 1.
P For z € X take a compact neighbourhood K, of x. Set

Ab={s:5€85,0es, UNVesVU,Vesn int(K,)esVzxesnNX}.

Then v A5 = 1 by 8Ld.

Take s € A3 N A;. Note that as (Y;(s))ies is disjoint, s N Yi(s) N U, Fj = s N F; for every i € I. For
each v € sNU;c; Fi, set Uy ={U :x € U € sNZ}; for x € X\ (s NU;¢; Fi), set Uy, = {0}. Then U, is
downwards-directed and #(U,) < ¢ for every z. If i € I and x € Y;(s) and G is an open neighbourhood of
Y;(s), then either z ¢ sNF; and ) € Uy, § C G, or x € sNF}; in the latter case, (WU : U € U, } = B,(s) C G;
but as U, is downwards-directed and contains the relatively compact set int(K), there must be a member
of U, included in G.
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We may therefore apply 8E to X, (Y;(s))ier and (Uy)zex to see that there is a family (W,)zex such that
W, € Uy for every z € X and if = € Y;(s), y € Y;(s) with ¢ # j then W, N W, = (. Evidently (W,)zecx
witnesses that s € As.

Thus A5NA; C Az and vA5=1. Q

(g) For each s € Az take a family (W, (s))zex in sN T as in (f). Now, given any z € X,
v{s:zese A3} =1,
so there is a finite set V, of open neighbourhoods of z such that
v{s:zesc Az, Wo(s) € Vo) > 4

(see (ii)” of Remark (b) in 8H). Set V,, = (| V,; then V,, is an open neighbourhood of z for each z € X.
If ¢, j € I are distinct and x € Fj, y € I} then there is an s € Ag such that

Tz €S, yESs Wy(s) € Vg, Wy(s) € V.
Now V, NV, C Wx(s) N Wy(s) = 0. So if we set
H=U{Vi:zeF} Viel,
(H;)icr is a disjoint family of open sets and F; C H,; for each ¢ € I.
(h) As (F});er is arbitrary, X is collectionwise normal, as claimed.
Remark This comes from FLEISSNER 89. Some of the ideas were originally developed in BALOGH 91.

80 Definition Let s be a set of ordinals.
(a) A set C C s is relatively order-closed if it is closed in the intrinsic order topology of s, that is, if

min{{:{€s,n<EVnel’tedl

whenever C’ C C' is non-empty and bounded above in s.

(b) A set A C s is relatively stationary in s if it meets every cofinal set C' C s which is relatively
order-closed in s.

Observe that these definitions correspond to the ordinary notions of ‘closed’” and ‘stationary’ set in the
ordinal otp(s).

8P Theorem Let o be an ordinal and v a measure on S = [|<¢ as in 8H.

(a) If B < « is an ordinal, then otp(s N 3) < otp(s) for v-almost every s € S.

(b) If « is a decomposable ordinal then otp(s) is a decomposable ordinal for v-almost every s € S.

(c) If v is an indecomposable ordinal then otp(s) is an indecomposable ordinal for v-almost every s € S.

(d) #(s) = otp(sN#(«)) for v-almost every s € S. Consequently (i) if « is a cardinal then otp(s) = #(s)
for v-almost every s € S (ii) if « is not a cardinal then otp(s) is not a cardinal, for v-almost every s € S.
(e) If a = AT is a successor cardinal then #(s) = (#(s N A))* for v-almost every s € S.
(f) cf(s) = cf(s Ncf(a)) for v-almost every s € S.
(g) If v is a regular infinite cardinal then #(s) is a regular infinite cardinal for v-almost every s € S.
(h) If « is a weakly inaccessible cardinal then #(s) is a weakly inaccessible cardinal for v-almost every
ses.

(i) If C C « is closed then s N C is relatively order-closed in s for v-almost every s € S.

(j) If C C « is cofinal with o then s N C is cofinal with s for v-almost every s € S.

(k) If A C « is stationary in « then s N A is relatively stationary in s for v-almost every s € S.

(1) If v is a weakly Mahlo cardinal then #(s) is a weakly Mahlo cardinal for v-almost every s € S.

(m) If « is a non-weakly-Mahlo cardinal then #(s) is a non- weakly-Mahlo cardinal for v-almost every
ses.

proof (a) 3 € s for almost all s.

(b) Take 3, v < a such that & = B++. Let h : a\ 8 — = be an order-isomorphism. By 8Ld, with f(J) =
h[J]Uh™[J] for each J € [a]<%, h[s\ 8] = s N~ for almost every s € S. So otp(s\ 3) = otp(sN~) < otp(s)
for almost every s, using (a), and otp(s) is decomposable for almost every s.
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(c) Set A= {s:s €S, otp(s) is decomposable}. For s € A take g(s), h(s) € s and an order-isomorphism
fs:s\g(s) = snh(s). 2 If vA > 0, there are 3, v < a such that vA; > 0, where A1 = {s:s€ A, g(s) =
B, h(s) =~}. So otp(s\ B) = otp(sN~) for every s € A;. Let ¢ : v — (8++) \ 8 be an order-isomorphism.
Then there is an s € A; such that ¢[sN~] =sN(B8+ )\ S (using 8Ld again) and also 3+ v € s, because
B+~ < a. But now

otp(s \ B) > otp(s N (B+7) \ B) = otp(s N ),
which is impossible. X

(d) If @ < wy this is trivial; suppose that « is uncountable.

Set A = {s : #(s) < otp(s N #(a))}. For s € A, take a surjective function f; : s N g(s) — s, where
g(s) € sN#(a). T IfvA > 0, let ¢ < #(«) be such that vA; > 0, where A; = {s: s € A, g(s) = (}. By 8Lb,
with f(s) = fs[sN(], § = max(w, #(¢))" there is a set M C o with #(M) < max(w, #(¢)) and fs[sN¢] C M
for almost every s. But also fs[sN (] = s € M for almost all s € A;. X Thus #(s) > otp(s N #(«a)) for
almost all s.

Let g : @ — #(a) be any bijection. Then g[s] = s N #(a) for v-almost every s € S (using 8Ld with
f(J) =glJJUg ] for J € [a]<®). So #(s) = #(s N #(a)) < otp(s N #(a)) for almost all s.

(e) For A\ < w this is trivial; take A > w. By (a) and (d), #(s) = otp(s) > otp(sNA) > #(sNA) for almost
all s. Set A = {s: #(s) > #(sNA)T}. For s € A take f(s) € s such that #(sN f(s)) > #(sNA)T. T If
vA >0, let ¢ < a be such that ¢ > X and vA; > 0, where 41 = {s:s€ A, f(s) <(}. Let h: { — X be any
bijection. Then s N ¢ = h~1[s N \] for almost all s € A;. But of course if s € A then #(sN¢) > #(sNA).
X So vA =0 and #(s) < #(sN )T for almost all s.

(f) If « is a successor ordinal, or 0, this is trivial; let us take it that cf(a) > w. Let C be a closed cofinal
subset of « of order type cf(«), and let h : cf(a) — C be the increasing enumeration of C'. Then (using 8Ld
again)

B={s:V{<cfla),f€s < sNh(E+1)\h() #0 < {+ 1€ s}
has vB = 1. And cf(s Na) = cf(s Ncf(a)) for every s € B.

(g) For @ = w this is trivial; take oo > w. Set A = {s: cf(s) < #(s)}. For s € A choose f(s) € s such that
cf(s) = otp(s N f(s)). Let ¢ < a be such that f(s) < ¢ for almost all s € A; say A1 ={s:s€ A, f(s) <(}.
For s € Ay let g5 : s N ( — s be a function with range cofinal in s. By 8Lb, there is a M C «, with
#(M) < «, such that g;[sN¢] € M for almost all s € A;. However s N M is not cofinal in s, for almost all
s, because sup M < a. Thus vA; =0 and vA = 0. Finally, cf(s) = cf(#(s)) for almost all s, by (d-i) above;
so cf(#(s)) = #(s) and #(s) is regular, for almost all s.

(h) By (g), #(s) is a regular infinite cardinal for almost all s. Set
A = {s: #(s) is a successor cardinal}.

For s € A choose f(s) € s such that #(s) = #(sN f(s))". T If vA > 0, there is a ¢ < a such that v4; > 0,
where A; = {s:s € A, f(s) = ¢}. Now consider § = #(¢)*. Recall that, as remarked in 8H, we have a
measure v, = v¢~ ! on [§]<°, where ¢(s) = s N ¢ for each s € S, with the same properties as v. So we may
apply (d) to d, v to see that #(sN{) < #(sNd) for almost all s. Also, by (d) as written, #(sNd) < #(s)
for almost all s. So we have #(s N ()" < #(s) for almost all s, and vA; = 0; which is absurd. X

(i) For each ¢ < awset h(¢) =sup(CN¢) € CU{0}. Set A={s:h(¢) €sV ¢ €s};thenvA=1 If
s € A and ¢’ C C' N s is non-empty and bounded above in s, set ( =min{¢: £ €5, <&V ne C’'}. Then
h(¢) € s; but of course h(¢) is also an upper bound for C’; so h(¢) = ¢ and ¢ € C. Thus s N C is relatively
order-closed in s for every s € A.

(j) Let h: @ — a be such that £ < h(§) € C for every £ < a.. Then h[s] C s for almost all s; and C'N s is
cofinal with s whenever h[s] C s.

(k)(1) If cf(or) < w then there is a ¢ < «a such that o\ ¢ € A; now s N A is stationary in s whenever
¢ €s. (ii) If cf(a) > w, set D = {s: sN A is not relatively stationary in s}. For s € D let C be a cofinal
relatively order-closed subset of s disjoint from A; for s € S\ D, set Cs = s. Set
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C={¢:v{s: £ Cs} =1}

Then C is closed and unbounded in . P («) If ¢ < «, then C; € ¢ for almost all s, so there is a countable
set K C «a\ ¢ such that Cs N K # () for almost all s. Because cf(a) > w, we can find an increasing
sequence ((n)nen, starting with (o = ¢, such that Cs N ¢pa1 \ ¢y # O for almost all s, for every n € N. Take
(" = sup,,cy Cn; then ¢* € C, for almost all s, that is, (* € C, and ¢(* > ¢. This shows that C is unbounded
ina. () If ¢ € a\ (CU{0}), then vE > 0, where E = {s: ( ¢ Cs}. For each s € F, thereisa € sN¢
such that Cs N ¢ C B. So there is a § < « such that vE; > 0, where E; = {s: C;N{ C B}. Now CN¢ C g.
This shows that C' is closed in o. Q
Accordingly there is a ( € ANC. But now vD < v{s:( ¢ Cs} =0.

(1) Let A be the set of weakly inaccessible cardinals less than «; then A is stationary in a. For each
A € A, otp(sNA) is a weakly inaccessible cardinal for almost all s, applying (d) and (h) in [\]<°. SovD =1,
where

D = {s:otp(sNA) is weakly inaccessible for every A € s N A}.

On the other hand, we also have s N A relatively stationary in s for almost all s, by (i). Copying these facts
into otp(s) for each s, we see that #(s) is a weakly Mahlo cardinal for almost all s.

(m) Let C be a closed unbounded set in « consisting of ordinals which are not weakly inaccessible
cardinals. For each v € C, otp(sN+y) is not a weakly inaccessible cardinal, for almost all s, by (e) and (f).
So vD =1, where

D = {s: otp(s N~) is not a weakly inaccessible cardinal for every v € s N C'}.

But also C' N s is relatively order-closed and cofinal with s for almost all s, by (i) and (j), so otp(s) is not
a weakly Mahlo cardinal, for almost all s. On the other hand, #(s) = otp(s) for almost all s, so #(s) is
non-weakly-Mahlo for almost all s.

8Q I have given ‘elementary’ proofs of the results in 8P. They are of course just reflection properties, and
all can be reached by means of the following.

Theorem (a) Let I be a set and v a measure on S = [I]<° as in 8H. Let P be the random real p.o.set
PS\N,. Let ¢ be a formula of the second- order language £ of §A4; let C1,... ,Cy be relations on I and
&1,...,&, members of I. Then the following are equivalent:

(1) ke (I;C1, - 6m) F

(ii) {s:5€8, (5;C1,... ,ém) H ¢} €EN,.

(b) Suppose that ¢ is a second-order formula and that « is an ordinal such that IFp (&; <) F ¢ for every

random real p.o.set P. Then for any measure v on S = [o]<° as in 8H, we shall have (otp(s); <) F ¢ for v-
almost every s € S.

proof (a) This is a matter of re-writing the proof of 4M. For instance, the step corresponding to 4Ma
becomes: Suppose that (s)ses is a family in T such that & € s for almost all s € S. Then we have a
P-name & for a member of I given by

plp f = (f iff & = ( for almost every s € p.

(b) This now follows at once, because (otp(s); <) is isomorphic to (s; <).

8R I have concentrated here on properties of well-ordered sets. But 8H-8I allow much more general
contexts. For instance, if I is a simple group, then s will be a simple subgroup of I for almost every
s € [I]<°. As a further example depending on the presence of a measure v (rather than just on the ideal
N,) 1 give the following.

Proposition Assume NMA. Let 2 be a Dedekind o-complete Boolean algebra such that whenever B8 C
is a subalgebra of cardinal less than ¢ there is a functional p : B — [0,1] such that
(i) ub = >, cn mby whenever (b,)nen is a disjoint sequence in B and b € B is the supremum of
{b, :n € N} in ;
(ii) ub > 0 for every b € B\ {0}.
Then 2 is a measurable algebra.
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proof Let v be a measure on [A]<° as in 8H. For each s € [/]<° let B, be the subalgebra of A generated
by s, so that #(B;) < max(w,#(s)) < ¢, and let s : Bs — [0,1] be a functional satisfying (i)-(ii) of the
hypothesis above. For a € 2 set
pa = fus(a)u(ds);
note that a € s C B for almost all s, so that the integral is well-defined. Then we have
(i) whenever (b, )nen is a disjoint sequence in 2 with supremum b € 2, then vE = 1, where

E={s:se[U<",bes, b, €5V neN},
and psb =)y tsby for every s € E, so by B.Levi’s theorem

'L_Lb = ZneN ﬂb“

(ii) If a € A\ {0} then psa > 0 for almost all s so ia > 0.
Now (2, 1) is a measure algebra and 2 is a measurable algebra.

8S Remark For further topological consequences of PMEA and NMA see FLEISSNER HANSELL & JUN-
NILA 82 (with FLEISSNER 79 and FREMLIN HANSELL & JUNNILA 83), JUNNILA 83, BURKE 84, FLEISSNER
848, TALL 84, FLEISSNER 89, KULESzA LEVY & NYIKOS 91.

Version of 10.12.91

9. Quasi-measurable cardinals

Many of the ideas above can be generalized to contexts outside ordinary measure theory. Here I discuss
some of these extensions, concentrating on those which do not involve new concepts. With a few exceptions,
the proofs are straightforward adaptations of arguments above, and I therefore omit many of the details.

9A Lemma Let X be a set, A a cardinal of uncountable cofinality and Z a A-saturated o-ideal of PX.
(a) If £ C PX there is a set &' C & such that #(&') < A and E\ |JE' €7 for every E € £.
(b) If (E¢)e<x is any family in PX \ Z then there is an & € X such that {{ : £ < A\, o € E¢} is infinite.

proof (a) 7 Suppose, if possible, otherwise. Then we can choose inductively a family (F¢)ecy in € such
that Ge = Fe \ U, ¢ Iy ¢ T for every £ < A. But now (Gg)ecn is a disjoint family in PA\ Z, which is
impossible, because Z is supposed to be A-saturated. X

(b) Applying (a) to families of the form
E={E,: B(n) <n <A},
we can build inductively a strictly increasing sequence (3(n))nen in A such that
Ee\Ugmy<n<pms1) En €I V neN, £ € X\ B(n).
Set 5* = suppenf(n) < A, and consider
Gn = g \Up(m)<n<pmir) Bn €T

for each n € N. Because 7 is a o-ideal and Eg- ¢ Z, there is an « € Eg- \ [J,,cy Gn, and now {n : z € E,}
meets G(n + 1) \ B(n) for every n € N, so is infinite.

Remark For a slightly different expression of the same idea, see FREMLIN 87, Lemma 1E.

9B Theorem Suppose that k and A are cardinals, with w < cf(A\) < A < k, and that there is a proper
k-additive A-saturated ideal Z of Pk which contains all singletons. Then

(a) k is weakly inaccessible;

(b) Pk has a A-saturated normal ideal.

proof The argument amounts to extracting the essential ideas from 1D and 1G above.

(a) k = add(Z) is regular. ?If Kk = 0", choose an injective function f¢ : £ — 6 for each £ < k. Set

Ana:{£:n<£<ﬁ> fﬁ(n):a}
for n < K, a < 0. Because 7 is s-additive, there is for each n < x a 3, < 0 such that A, 5 ¢ Z. Set
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Bg ={n:n<x, B =05}
for f < 6. Again because Z is k-additive, there is a § < 0 such that Bz ¢ Z. Now #(Bg) = k > A and
(Ays)neB, is a disjoint family in P \ Z, which is impossible, because Z is A-saturated. X
This shows that « is weakly inaccessible.

(b) Let F be the family of functions f : k — & such that f=*[¢] € Z for every ( < x. Then there is an
fo € F such that {€: & <k, f(§) < fo(§)} €T for every f € F. P?If not, we can find a decreasing family
(ga)a<x in F such that

Eo=1{¢:9011(§) <9a(§)} €T V a <),

just as in 1G; we use the x-additivity of Z to be sure that g,, defined as infg.,gg, belongs to F' for every
non-zero limit ordinal & < A. By Lemma 9Bb there is a £ < s such that A = {a : a < A\, £ € E,} is
infinite. But now we can find a strictly increasing sequence (a(n))nen in A, and (gqo(n)(§))nen will be a
strictly decreasing sequence of ordinals, which is impossible. X Q

Set J = {A: A C &, f;'[A] € I}. Then J is a proper A\-saturated s-additive ideal of Pk because
7 is. J contains all singletons because fy € F. Finally, let f : K — s be any function. Because J is
k-saturated and k is regular, 9Aa tells us that there is an a < k such that f~1[\ o] € J for every ¢ < k.
Set E={¢:a< f(§) <& < k}. Define f; : kK — k by setting

f1(€) = F(fo(§)) if fo(§) € E,
= fo(§) otherwise.

Then f1 € F so

f Bl ={&: f1(8) < fol&)} € T,

and F € J. Because f is arbitrary, J is normal (A1Ed).
Thus J is an ideal of the required kind.

Remarks The results of 9A-9B above are due to SOLOVAY 71.

9C Definition I will call a cardinal x quasi-measurable if it is uncountable and there is a proper
wi-saturated k-additive ideal of Pk containing singletons; such an ideal being a witnessing ideal.

Observe that every real-valued-measurable cardinal is quasi-measurable, and that a quasi-measurable
cardinal k carries a normal wi-saturated ideal.

In the spirit of 1I and 4Ac, we can speak of the qm ideal of a quasi-measurable cardinal k, being the
intersection of all its normal witnessing ideals, and the dual filter, the gqm filter of .

For results involving quasi-measurable cardinals, see FREMLIN 75C, JECH 78, FREMLIN HANSELL &
JUNNILA 83, FREMLIN & JASINSKI 86, FREMLIN 87, KAMBURELIS P89 and GLOWCZYNSKI 91.

9D Theorem If k is a quasi-measurable cardinal, with witnessing ideal Z <1 Pk, then either k < ¢ and
Pr/T is atomless, or k is two-valued-measurable and Pr/Z is purely atomic.

proof (a) If Px/Z has an atom a, take A C k such that A* = a, and see that
{F:FCk,A\FeT}
is a k-complete ultrafilter on k, so that x is two-valued-measurable.

(b) If Px/T is not purely atomic, take A € Px \ Z such that no atom of Px/Z is included in A*. Choose
(A¢)e<w, inductively, as follows. Ay = {A}. Given that A¢ is a disjoint family in PA \ Z, then for each
B € A¢ choose disjoint B’, B” C B such that B’UB"” = B and neither belongs to Z; this is possible because
B* is not an atom in Px/Z. Given (A,),<¢, where { < wy is a non-zero limit ordinal, let A¢ be a maximal
disjoint family in PA \ Z such that for every B € A¢, n < £ there is a C € A, such that B C C. Continue.

? I Neew, UAe # 0, take z € N, UAe and for each { < w; take A¢ € A¢ such that z € A¢. Let
B¢ € Agq1 be whichever of Ay, AY does not contain x. Then (Bg)¢<y, is a disjoint family in Pk \ Z; which
is impossible. X

S0 Ne<cw, UAe = 0, and there is a first { < wy such that D = A\ JAe ¢ Z. Of course  cannot
be a successor, because (J Ay1 = J A, for every . Now E= D N[, A, € Z. On E consider the
equivalence relation ~ given by
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r~y <= V n<§{ 3 Be A, containing both z and y.

Because every A, is countable, and { < wi, there are at most ¢ equivalence classes for ~. Also, every
equivalence class must belong to Z, since otherwise it would have been a candidate for membership of Ag.
So E is covered by at most ¢ members of Z, and x = add(Z) < c.

(c) Because any two-valued-measurable cardinal is greater than c, this completes the proof.

9E Proposition Let X be a set and Z an w;-saturated o-ideal of PX. Let G* be the set of bijections
g:X — X such that Z={A: A C X, g~'[A] € T}. Then there is a partition £ of X into countable sets
such that G* is precisely the set of bijections g : X — X such that |J{L: L € L, g[L] # L} € T.

proof As 1Mb.
Remark See ZAKRZEWSKI 91.
9F Theorem If k is a quasi-measurable cardinal and P is a ccc p.o.set, then IFp £ is quasi-measurable.

proof Let Z be a proper s-additive wi-saturated ideal of Px containing singletons. In V¥, let J be the
ideal of Pk generated by Z, that is, if o is a P-name for a subset of &,

Fp(c€J < 3 AeZ,0CA);

or, plFp o € J iff for every p’ < p there are p” < p’ and A € T such that p” IFp 0 C A. But as P is ccc and
T is a o-ideal,

plkpoe Jiff 3 A€ T such that plkp o C A.
Clearly,
FpoCrTed=>0€].
Because singleton subsets of x all belong to Z, we have
Fp {} e T V E< k.
Now suppose that A < k and that {(6,)a<x is a family of P-names for subsets of x. If
Fpoa €T V a <,
then for each o« < A we can find an A, € 7 such that
Fp 00 C Aq.

But now A = Ua</\ A, € T, because 7 is k-additive, and
“_]P’ Ua<k Oq g Aa
so that IFp (J .z 00 € J. Thus IFp J is i-additive.

Finally, suppose that (04)a<w, is a family of P-names for subsets of x, and that
FpoaNog=0V a#p.
For each £ < k we may write
Ao =sup{p* :plrp € € 0,} €9,

where 2l is the regular open algebra of P. In this case we shall have ane N age = 0 whenever o # 3 and
& < k. Because P is ccc, there is for each £ < k a ¢ < wy such that a,¢ = 0 whenever 7 < o < w;. Because
T is wy-saturated, there is a v < wy such that {€ : y¢ = +'} € T for every v/ > ; because 7 is wo-additive,

A={{:y 27} el
Now aqe =0 forall € K\ A, > . So
bp oo CAET
for every a > . Because (04)a<w, 1S arbitrary,
lFp J is wi-saturated,

as required.
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Remark This is due to Prikry (see SOLOvAY 71, Theorem 8).

9G Proposition The following are equiconsistent:

(a) ‘ZFC + there is a two-valued-measurable cardinal’;

(b) ‘ZFC + there is a quasi-measurable cardinal’;

(c) ‘ZFC + Martin’s Axiom + there is a quasi-measurable cardinal x < ¢’;
(d) ‘ZFC + Martin’s Axiom + ¢ ¢ is quasi-measurable’.

proof (a)=-(c) Start with a two-valued-measurable cardinal k. Let P be a ccc p.o.set such that

‘Hp: = RJF.

Let Q be a P-name for a ccc p.o.set of cardinal kT such that
IFp (IFQ MA)
(KUNEN 80, §VIIL.6). Then P Q is cce so IFp. F is quasi-measurable.

(a)=(d) As above, reading x for k* at each opportunity.
(c)=(b) and (d)=-(b) are trivial, and (b)=-(a) is covered by 2D.

9H Algebras PX/Z The Gitik-Shelah theorem (3F) may be regarded as an attack on the problem:
which measurable algebras 2( are isomorphic to quotient algebras of the form PX/Z where X is a set and
T is a o-ideal of PX? (For if (PX/Z,q) is a probability algebra, then it will be the measure algebra
of (X,PX,u), where pA = fiA* for every A C X.) The Gitik-Shelah theorem tells us that if 2 is an
atomless non-zero measurable algebra isomorphic to PX/Z, then 7(2A) > min(2*, x(**)) for some atomlessly
-measurable cardinal k. The product measure extension axiom (8A-8B) is the assertion that there are such
algebras of arbitrarily large size.

Suppose now we extend the question, and seek to describe the class Quot, of Boolean algebras isomorphic
to algebras of the form PX/Z where 7 is a o-ideal of PX. If PX/Z is non-zero, ccc and atomless then 7 is
wi-saturated and add(Z) is quasi-measurable. In GITIK & SHELAH 89 and GITIK & SHELAH P91 a variety
of special types of algebra are considered; for instance, writing Gy for the regular open algebra of {0,1}*,
then if G\ € Quot,, there is a quasi-measurable cardinal less than A. On the other hand, GEOWCZYNSKI 91
points out that (if there can be measurable cardinals) Quot, can contain countably-generated ccc algebras.
Such algebras are always quotients of the algebra B of Borel subsets of R (FREMLIN 84, 12F). But the
ideals involved in Gléwczynski’s construction are necessarily very irregular, and we may reasonably ask if
any naturally arising ideal Z of B can have B/Z in Quot,. Similarly, we may ask whether the regular open
algebra of a ‘simple’ partially ordered set (P, <) (e.g., one in which P is an analytic set in a Polish space,
and < is an analytic, or Borel, subset of P x P) can belong to Quot,.

I ought perhaps to mention in passing that any Dedekind complete Boolean algebra is isomorphic to a
quotient PX/Z for some set X and some ideal Z; the problems here depend on the insistence on taking
o-ideals.

9I Theorem Let k be a regular uncountable cardinal, F a normal filter on k, Z the dual ideal; suppose
that Z is k*-saturated. Let P be either the p.o.set (Px/Z) \ {0} or the p.o.set Px \ Z. Let ¢ be a formula
of the second-order language £ of §A4 and C4,... ,C} relations on k, &1,... ,&, ordinals less than . Let
B < k. Then the following are equivalent:

(ii) {a: a < Kk, (min(a, B); Cy, ..., &m) E ¢} € F.
In particular, if 8 < k then

proof As in 4M-4N.

9J Theorem Let k be a quasi-measurable cardinal with qm filter W. Then

(i) & is greatly Mahlo;

(ii) Mh(A) € W for every stationary A C k — in particular, W is closed under the operation Mh;
(iil) the set of greatly Mahlo cardinals below x belongs to W.
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proof The arguments of 4J-4Ka cover (i) and (ii). Now let A be the set of greatly Mahlo cardinals below
k. If 7 is any normal witnessing ideal for s, with dual filter F, then P = Px \ Z is ccc; so by 9F

lFp % is qm,
and
IFp & is greatly Mahlo.
Next, it is evident from 4C that there is a second-order formula ¢ such that for any ordinal «
(;<;) E ¢ < ais a greatly Mahlo cardinal.
So 91 tells us that A € F. As Z, F are arbitrary, A € W.

9K Theorem Let k be a quasi-measurable cardinal, with normal witnessing ideal Z and dual filter F;
let § < k be a cardinal of uncountable cofinality. Then for any function f : [x]<¢“ — [k]<? there are C € F,
¥ [C]<¥ — [k]<Y such that f(I)Nn C f*(I Nn) whenever I € [C]<¥ and 7 < k.

proof As in 5A-5B.

9L Corollaries (a) If k is quasi-measurable then there is no Jénsson algebra on k.
(b) If ¢ is quasi-measurable then 2* = ¢ for w < X\ < c.

proof As 5D-5E.

9M Proposition If « is a quasi-measurable cardinal with qm ideal [J, then there is no k-Aronszajn tree,
and moreover A = {6 : 0 < k, there is a #-Aronszajn tree} belongs to J.

proof The arguments of 5F show that there is no k-Aronszajn tree. But it is easy to find a second-order
formula ¢ such that, for any cardinal 8, (0; <;) E ¢ iff there is a 6-Aronszajn tree. So the arguments of 9J
show that A € J.

9N Proposition If ¢ is quasi-measurable, then <. is true.
proof As 5N.
Remark This is due to Kunen.

90 Theorem Let s be a quasi-measurable cardinal.
(a) If F is any filter on N then cf(cf(NY/F)) # .
(b) ©(a,y) < & for all cardinals «, v < k.
(¢) covsn(a, B,7,0) < k whenever a < k, v < f and 0 > wy.
(d) If k < ¢ then {27 : w < < K} is finite.
proof Use the ideas of 7TG-7K and 70-7Q, but replacing ‘k-measure-bounded’ with the property
if Z < PP is an w;-saturated k-additive ideal then there is a p € P such that {p’ : p’ < p} ¢ 7.
9P Remarks 90d is given in GITIK & SHELAH P91.

Many of the results in 9J-90 have generalizations to cardinals x carrying non-trivial x-additive ideals
which are A-saturated for some A < k.

Version of 18.9.92

Appendix: Useful Facts
In this appendix I seek to support the main text by giving definitions and theorems which may not be
universally familiar, with some proofs.
A1l. Combinatorics
I begin with material in (infinitary) combinatorics and set theory.

A1A Partially ordered sets (a) Recall that a partially ordered set is a set P together with a
relation < such that, for p, ¢, r € P,
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p<q& q<r=p<r,
p<q& q<p <= p=gq.

(b) For a partially ordered set P, say that a subset @) of P is cofinal with P if for every p € P there is
a q € @ such that p < q. Now write

cf(P) = min{#(Q) : Q C P is cofinal with P},

the cofinality of P.

If P is totally ordered then P has a well-ordered cofinal subset of order type cf(P), which in this case is
either 0 (if P =) or 1 (if P has a greatest element) or an infinite cardinal which is regular, that is, equal
to its own cofinality. (But the cofinalities of general partially ordered sets need not be regular.)

(c) For a partially ordered set P with no greatest element, write
add(P) = min{#(A) : A C P has no upper bound in P},

the additivity of P. Then add(P) is either 0 (if P = §)) or 2 (if P is not upwards-directed) or a regular infinite
cardinal. In the last case, there is a family (p¢)¢<adqq(p) in P such that pe < p, whenever { < n < add(P)
and {pg : £ < add(P)} has no upper bound in P.

If P has a greatest element I will write add(P) = co.

If x is a cardinal less than or equal to add(P) (allowing k < oo = add(P)) we say that P is k-additive;
that is, P is k-additive iff every subset of P of cardinal less than x has an upper bound in P.

If add(P) # oo then add(P) < cf(P). If P is totally ordered and has no greatest element then add(P) =
cf(P).

A1B Filters and ideals (a) If X is a set and Z is an ideal of subsets of X, we may think of 7 as
partially ordered by C, and discuss its additivity (and cofinality) as in A1A. I allow PX as an (improper)
ideal of itself.

(b) If X is a set, « is a cardinal and F is a filter on X, then F is k-complete if (A € F whenever
AC F and 0 < #(A) < k; that is, iff the dual ideal {X \ F': F' € F} is k-additive.

(c) Let X be a set and F a filter on X. Then F is uniform if X \ A € F whenever A C X and
#(A) < #(X).

(d) Let X and Y be sets, F a filter on X, and f : X — Y a function. I write f[[F]] for the filter
{G:G CY, f71G] € F}, that is, the filter on Y generated by {f[F]: F € F}.

(e) If X is a set and A is any family of sets, I write
non(X, A) =min{#Y): Y C X, YZ AV Aec A},
allowing non(X, A) =0 if X C A € A.

(f) If X is a set, 7 is an ideal of subsets of X, and & is a cardinal, then 7 is k-saturated if there is no
family (A¢)e<r in PX \ Z such that A¢ N A, € T whenever { < n < k; that is, if there is no disjoint family
of size x in (PX/Z)\ {0}. If T is k-additive, then it is k-saturated iff there is no disjoint family of size  in
PX\Z.

A1C Filters on N (a) A p-point filter on N is a uniform filter F on N such that for every sequence
(Fp)nen in F there is an F € F such that F \ F, is finite for every n € N.

(b) A rapid filter on N is a uniform filter F on N such that for every sequence (t,),en of non-negative

real numbers converging to 0 there is an F' € F such that ) _pt, < oo.

(c) A selective ultrafilter on N is a non-principal ultrafilter F on N such that whenever (A, )nen is a
disjoint sequence in PN\ F there is an F' € F such that #(F N A,) <1 for every n € N.

(d) If X is a cardinal, a p(\)-point filter on N is a uniform filter F on N such that whenever A C F and
#(A) < A there is an F' € F such that F\ A is finite for every A € A. (Thus a p-point filter is a p(w;)-point
filter.)
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A1D Cardinals and ordinals (a) Let « be a cardinal. (i) x is weakly inaccessible if it is uncountable
and regular and AT < k for every cardinal A < k. (ii) s is strongly inaccessible if it is uncountable and
regular and 2* < r for every cardinal \ < k.

(b) Let S be any class of ordinals and f an ordinal-valued function defined on S; then f is regressive

if f(&§) < & for every € € S\ {0}.

(c) If ¢ is any ordinal and A C &, then A is stationary in ¢ if AN C # @ for every set C' C ¢ which is
cofinal with £ and closed (for the order-topology of ¢).

(d) An ordinal « is decomposable if there are smaller ordinals 3, v such that « is equal to the ordinal
sum [ + +; that is, if there is an ordinal § < « such that otp(a\ 8) < a. Otherwise « is indecomposable.

A1E Lemma Let k be a regular uncountable cardinal, F a uniform filter on , Z the dual ideal {x\ F :
F e F}.
(a) F and 7 are normal (see 1F) iff for every family (F¢)e<, in F its diagonal intersection

{§:¢<nm ek V<&
belongs to F.
(b) The ‘club filter’ on k, generated by the closed unbounded sets in x, is normal; the ‘non-stationary
ideal’, consisting of the non-stationary subsets of x, is normal.
(¢) If F and Z are normal, then
(i) F is k-complete, 7 is k-additive;
(ii) every closed unbounded subset of « belongs to F;
(iii) if H is a subset of the quotient algebra A = Px/Z and #(H) < k, then sup H and inf H are defined
in 2,
(iv) if (F7)re(x)<w is any family in F, then {£: € <k, £ € F; V I € [{]<“} belongs to F.
) The following are equivalent:
(i) Z is normal and s-saturated in Pk;
(ii) Z is k-additive and for every function f : k — k there is a { < x such that {£: ¢ < f(€) < &} € Z;
(iii) F is k-complete and for every regressive f : k — k there is a ( < x such that f~1[(] € F.

G

proof (a)(i) Suppose that F is normal, and that (F¢)e<, is a family in F with diagonal intersection F. Set
S =k\F,and for { € S take f(§) < & such that £ ¢ Fy(e). Then f is regressive, but f~'[{¢}] Ck\Fe €T
for every £ < k;s0 S €Z and F € F.

(ii) Now suppose that F is closed under diagonal intersections, and that we are given S € Px \ Z and
a regressive function f: S — k. T If A = f1[{&}] € T for every € < K, set F = k\ A¢ € F for each &, and
take F' to be the diagonal intersection of (F¢)e<,, so that F' € F. Then there must be a £ € FN .S\ {0}, so
that f(§) <& and £ € Ap(e) and £ € Fyey and § ¢ F, which is absurd. X

(b) It is easy to check that if (Ce¢)e<, is any family of closed unbounded sets in x, then its diagonal
intersection is closed and also (because & is regular) unbounded. So the club filter is normal and its dual
ideal, the non-stationary ideal, is normal.

(Of course the definition of ‘normal’ ideal in 1F above corresponds to the ‘pushing-down lemma’; see
KUNEN 80, I1.6.15, or JECH 78, Theorem 22.)

(c)(d) If A < k and (Fg)ecy is any family in F, set Fr = k for £ € xk\ A, and consider the diagonal
intersection F' of (F¢)e<y. Then F and F'\ A belong to F; but F'\ A C (,_, F¢. Thus F is x-complete and
7 is k-additive.

(ii) Now take any closed unbounded set C' C k. For each & < & set v = min(C\ ({+1)), Fr = k\ye € F;
let F' be diagonal intersection of (F¢)e<,. Then F € F and F'\ v C C,s0 C € F.

(iii) If H = 0 then inf H = 1. Otherwise, let (ag)¢<, run over H. For each { < k choose A¢ C &
such that A¢ = a¢ in A Let A be the diagonal intersection of (A¢)¢<y, and consider a = A®. Because
AN A CE+1€T, aC ae for each £ < k, and a is a lower bound for H. Now let b be any other lower
bound for H in 2, and take B C « such that B* = b. For each £ < k, we have b C a¢, that is, B\ A¢ € Z;
set Fe =k \ (B\ A¢) € F. Let F be the diagonal intersection of (F¢)e<,, so that F' € F. 7 If there is a
£ € (B\ A)NF, then there must be an n < & such that £ ¢ A,; but now £ € B\ A,;s0{ ¢ F,, and £ ¢ F.
X Thus B\ACk\F €Z,and b Cain . Asb is arbitrary, a = inf H in 2.
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Thus H has an infimum in 2. But applying the argument above to {1\ a : a € H} we see that H also
has a supremum.
(iv) Set B¢ = (;¢[g<w Fr for each £ < x; by (i), B¢ € F. Let C be the closed unbounded set of limit

ordinals less than k; set
F={¢:(ecC EcE, V<&l
Then {£:£€Fy YV I€ (<} D FeF.

(d)(i)=(ii) Of course T is k-additive, by (c-i). Now let f : kK — K be any function. Because Z is
k-saturated, the set A = {a : f~'[{a}] ¢ Z} has cardinal less than x; because s is regular, A is bounded
above in K — say A C ( < k. For a € Aset F,, = r; for a € K\ Aset F,, =\ f~1[{a}]. Then

F={(:¢e€F,Va<¢}

belongs to F. If ¢ < f(§) <& < rthen f(§) ¢ A, 508 ¢ Freyand § ¢ Fithus {§: (< f(§) <&} Cr\F el

(ii)=-(iii) is elementary.

(iii)=(i) Of course Z is k-additive. ZIf it is not k-saturated, choose a disjoint family (A¢)ecy In
Pr\T;set f(n) =& forne Ag\ (§+1), f(n) =0 for n € k\ U (Ae \ (§+1)). Then f is regressive, and
JF71[¢] does not meet A¢ \ (¢ + 1), so does not belong to F, for any ¢ < . X

Now suppose that (F¢)e<, is any family in F. Let F' be its diagonal intersection, and define f : Kk — K
by setting f(&) =0if £ € F, f(§) =min{n:£ ¢ F,} if ¢ € k\ F. Let ( < k be such that f~![¢] € F. Then
F D f7H NN, <¢ Fy € F. This shows that F is normal.

Remark For another version of this material, see BAUMGARTNER TAYLOR & WAGON 82.

A1F Almost-square-sequences I give here one of Shelah’s lemmas (SHELAH #351, Lemma 4.4; BURKE
& MAGIDOR 90, 7.7) in a form appropriate to Theorem 3F.

Lemma Let x, A be infinite cardinals, with x regular and A > &, cf(\) > w;. Then we can find a stationary
set S C AT and a family (C,)qcs of sets such that (i) for each a € S, C,, is a closed unbounded set in « of
order type k (ii) if @, 8 € S and + is a limit point of both C,, and Cg then C, Ny = CsN~.

proof For each v < A" fix an injection f, : v — . Let Sy be the set of ordinals @ < A™ of cofinality x; then
Sp is stationary in AT. For each a € Sy choose an increasing family (N,s)s<x of subsets of A™ such that
() Ny is a cofinal subset of « of cardinal k;
(8) if § < A then

Noz,5+1 = U{f'y[Naé] U f»y_l[é] 1y € Naﬁ} Uﬁaé Ué

(taking the closure N, in the order topology of AT);

(7) if 6 < X is a non-zero limit ordinal then Nus = Uy o5 Nas-
Then #(Nas) < max(k, #(0)) < A for each 6 < A\. Now observe that {0 : 6 < A\, Nas N A = J} is a closed
unbounded set in A, and in particular contains an ordinal of cofinality wy, for every a € Sy. Let 6 < A be
such that cf(d) = w1 and

Slz{a:aESo,Nw;ﬂ)\:é}

is stationary in AT. For a € Sy, set C% = N N 455 then C7 is a closed unbounded set in o and #(C%) < A
so otp(C%) < A. Let ¢ < A be such that

S={a:ae s, otp(Cy) = (}

is stationary in AT. Observe that as cf(C) = cf(a) = k for each a € S, cf(¢) = k.

Take any closed unbounded set C' C ¢ of order type s and for each a € S let C, be the image of C' in C%
under the order-isomorphism between ¢ and C. Then C, will be a closed unbounded subset of o of order
type k.

I claim that if @, 3 € S and +y is a common limit point of Cy, Cg then C, Ny = Cg Ny.

P case 1 Suppose k = w. In this case the only limit point of C, will be « itself, and similarly for g, so
that in this case we have a = 3 and there is nothing more to do.

case 2 Suppose cf(y) = w < k. Then 7 is a limit point of C,, C N, so there is an increasing sequence
in Nus with supremum v; as Nos = s 5 Nas and cf(§) = w, this sequence lies entirely within Nos for
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some &' < 0, and ¥ € Nps € Ny g41. Now, for &' +1 < € < 8, Nygq1 2 f;l[f] U f+[Nagl; consequently
Nos Ny = f7 [Nasg N A] = f71[6]. Similarly, Ngs Ny = f;'[6]. Now
C:Ny=NuysNy= f{l[é]ﬂ'y:Cgﬂv.
Thus C, Ny and Cg Ny must be equal.
case 3 Suppose that cf(y) > w, K > w. Because v = sup(Cy, N7y) = sup(Cg N ~y),
D = {+': 4/ is a limit point of both C, and Cg, 7' <7, cf(y) = w}

is cofinal with v, and Co Ny =,,cp Ca Ny = Cz Ny, using case 2. Q
Thus S, (Cy)aes have the required properties.

A1G Corollary Let s, A be infinite cardinals with « regular and A > &, cf(A\) > wy. Then we can find
a stationary subset S of AT and a family (g )acs of functions from k to A" such that, for all distinct a,
B €8, (i) galr] C a for each o € S (ii) #(g9o N gs) < & for each « (iii) if § < £ is a limit ordinal and a,
B €S and gq(0) = gg(0) then g,[0 = gsl6.

proof Take (C,)qcs from A1F above and let g, be the increasing enumeration of C,.

A1H Products of partially ordered sets (a) Let (P;);cr be a family of partially ordered sets. Then
X =[I;c; Pi is a partially ordered set, if we say that x <y iff 2(i) < y(i) for every i € I.

(b) Now suppose that F is a filter on I. Then we have an equivalence relation =z on X, given by saying
that f =7 gif {i: f(i) = g(i)} € F. I write X/F for the set of equivalence classes under this relation, the
‘reduced product’ of (P;);e; modulo F. Now X/F is again a partially ordered set, writing

fr29 = f<rg = {i: fi) <g(i)} € F.
Observe that if every P; is totally ordered and F is an ultrafilter, then X/F is totally ordered.

(c) For any filter F on I we have
add(X) <supperadd([],cp Pi) = supper miniep add(FP;) < add(X/F),

of(X/F) < minper of([Lep P) < cf(X).

Version of 13.11.91

A1I Scraps of pcf In §7 T need to call on certain results from Shelah’s pcf theory. An admirable
exposition of some of this extraordinary development may be found in BURKE & MAGIDOR 90, from which
most of the ideas here are drawn; but for the reader’s convenience I extract and reproduce the material I
wish to use.

Theorem [Shelah] Let A > 0 be a cardinal and (0¢)¢c<x a family of regular infinite cardinals, all greater
than A. Set X = J[._, 0¢, ordered as in A1H. For any filter 7 on A, let 77 : X — X/F be the canonical
map. For any cardinal J set

$s = {F : F is an ultrafilter on A, cf(X/F) = ¢},

S5 = Ug/zg So';

if §5 # 0, let Gs be the filter () §5. Now

(a) if 5 # 0, then add(X/Gs) > 6 (BURKE & MAGIDOR 90, 1.1);

(b) if F5 # 0 then there is a set F' C X such that #(F) < § and wx[F] is cofinal with X/F for every
F € s (BURKE & MAGIDOR 90, 7.3);

(¢) et(x) # 0 (BURKE & MAGIDOR 90, 7.10);

(d) if F is an ultrafilter on A and & is a regular cardinal with A < x < cf(X/F) then there is a family
(07)c<x of regular cardinals such that A < 6 < ¢ for every ¢ < A and cf(X'/F) = x, where X" =[], _, 6;
(BURKE & MAGIDOR 90, 2.1).

proof The case of finite A is trivial throughout, as then
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cf(X) = maxc< Oc,
s ={F:3 ¢ 0c=06{¢teF}
85 ={7:{¢: 0 =3} € 7},

Gs={G:{C:0, > CGCA}.

So henceforth let us take it that A is infinite.
For any filter F on A, write f <z gif f, g € X and {C: f({) < g(Q)} € F, thatis, if rgf < mrgin X/F.
Write L={C: 0 =A"} C\, M =)\ L.

(a) Set ¢’ = add(X/Gs).

(i) Evidently ¢ is a regular cardinal and §’ > add(X) = minccy 6 > A. If § = AT then of course
&’ > &; so suppose that & > A™. In this case L ¢ F for any F € § (because if L # () then cf([[ ., 0c) = AT),
so M € Gs and ¢’ > mingeps O > AT,

(i) ? If &' < ¢ there is a family (fo)a<s in X such that f, <g, fsz whenever o < § < §’ but there
is no f € X such that f, <g, f for every o < ¢’. Choose (h¢)e<r+ in X inductively, as follows. hy = fo.
Given hg, set

Bea ={¢: ¢ €M, he(C) = falQ)}

for each a < ¢'; let ag < ¢’ be such that fo, Zgs he, so that Beo ¢ G5 when ag < a < 4¢’. Choose F¢ €
such that B¢ o, ¢ F¢. Now, because cf(X/F¢) > 0 > 0, there is an hey1 € X such that f, <z, heyq1 for
every o < 0'; we may take hepq > he.

For non-zero limit ordinals § < A* take he(C) = sup, ¢ hy(C) for every ¢ < \.

Set a = supey+ a¢ < ¢'. Then (Bea)ecr+ is an increasing family in PX. So there must be a £ < AT
such that Be¢q = Beq1,o. But (because a > ag) Beo ¢ Fe, while (by the choice of hey1) Beq1,a € Fe; which
is absurd. X

(b) Asin (a-i) above, we must have § > min¢<y 0 > A, and the case § = A" is again trivial, for if § = AT
we may take F' to be the set of constant functions with values less than A™. So suppose from now on that
§ > AT, so that M € F for every F € 5. Of course §, being the cofinality of a totally ordered set, is regular.

(i) 7 Suppose, if possible, that there is no F of the required type. We can find families (fea)ecr+ a<so
in X and (F¢)ecr+ in §5 such that
(@) fna < fea whenever v < 8, np <& < AT
(B) fra <Fe feo Whenever o <6, n < & < AT
(7) {77, (fea) : @ < 6} is cofinal with X/F¢ for every £ < AT;
(0) if € < AT, < § and cf(a) = AT then

fea(C) = min{supgec fep(() : C is a closed unbounded set in o}

for every ¢ € M;
(€) fea <F. fep whenever € < AT, a0 < 3 < 6.

P Given (fya)n<¢,a<s, there must be an F¢ € §s such that {7z, (fa) : 7 < &, a < d} is not cofinal with
X/ Fe; take (gea)a<s in X such that {7z, (gea) : @ < 6} is cofinal with X/F¢. Choose (fea)a<s inductively
so that

fna <7 feo for every n < &, a < 6;

if @ < d and cf(a) # AT then f,o < feq for every n <&,

Jep <Fe fea for every B < o

if o < 9 then gea < fe av1;

if a < ¢ and cf(a) = AT then f,,0(¢) < fea(¢) whenever n <&, ¢ € L;

if @ < § and cf(a) = AT then

fea(C) = min{supgeo fep(() : C is a closed unbounded set in a}

for every ¢ € M. (At this point observe that there will be a closed unbounded set C C « such that

Jea(C) = supgee fep(C) for every ¢ € M; consequently fep <z, fea for every g € C, and feg <r, fea for
every 3 < a. Also we shall have
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fa(Q) < SuPgec fn8(C) < fea(Q)

for every n < &, ¢ € M.)
It is straightforward to check that this procedure works. Q
(ii) The next step is to find an increasing family (h,),<x+ in X and a strictly increasing family

(7(1))p<ar+ in 6 such that

ferem(€) < hy(C) whenever £ < At, n < AT, ¢ € M (choosing h,));

hy < ferm+1) Whenever £ < AT, 1 < AT (choosing v(n + 1));

¥(n) = sup,, -, 7(n') whenever 7 < A" is a limit ordinal (so 7(0) = 0).
Set h(¢) = sup, < y+ hy(C) for ¢ € M, h(¢) = 0 for ¢ € L, a = sup, .+ 7(1) < 0 (because ¢ = cf(§) > A*);
then cf(a) = AT. Observe that

fea(C) < sup,cx+ feym(C) < R(C)

for every £ < AT, ( € M, by (i-6). So if we set

A ={C: CeM, fea(Q) = h(O)} V £ < AT,

we shall have A, C A¢ whenever n <& < AT, by (i-).
(iii) There must therefore be some £ < A™ such that A¢ = A¢11. Let C C AT be a closed unbounded
set such that

fer1,a(C) = Sup,cc fer1ym(C) V C€M.
For each n € C write 1 for the next member of C greater than n; then

hy <Feir Fer17(m+1) SFepn ferrhmr),

Jea <Fepy fer1,0 = fer100
so there is a (; € M such that
hn(gn) < f§+1,7(n')(<17)7 f&a(gn) < f§+1,7(0)(gn) < hO(Cn) < h(Cn)
Let ¢ € M be such that
BZ{UZHEC’Q;:C}
is cofinal with C'. Then feo(¢) < h(¢) so ¢ ¢ A¢ = Aet1. On the other hand,
fer1,0(Q) = SUPyecc fer1,4m (€) = SUPpen fer1,4)(€) = SUPpep hiy(¢) = R(C)-
So ¢ € Ag¢y1; which is impossible. X
(c)(i) Set A = {6 :3s # 0}, G = Usea G5- Then G is a filter on X so there is an ultrafilter H on A

including G. Now for any § € A, H D Gs, so

cf(X/H) = add(X/H) > add(X/Gs) > 4,
using (a) above. Consequently 0* = cf(X/H) is the greatest element of A.

(ii) For each § € A choose a set Fs € [X]=? such that 7z[Fs] is cofinal with X/F for every F € §s
(using (b) above). Set F' = (Js. F5 and

G={supl:Ie[F]<¥}CX.

Then #(G) < 6*. T claim that G is cofinal with X. PP? Suppose, if possible, otherwise; take h € X such
that h £ g for every g € G. Write

Ay ={¢: () > 9(O)}

for each g € G. Because G is upwards-directed, {A, : ¢ € G} is a filter base, and there is an ultrafilter F
on A containing every A,. Now there is a § € A such that F € §5, so that mz[Fjs] is cofinal with X/F, and
there is an f € Fjs such that h <z f. But in this case A = {{: h({) < f(¢)} and Ay = A\ A both belong
to F. XQ

(iii) Accordingly cf(X) < #(G) < é*. But also of course cf(X/H) < cf(X), so 6* < cf(X) and they
are equal. Now we have H € Fs+ = Fef(x)-
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(d) If k = A" we may take ¢ = AT for every (; if k = cf(X/F) we may take 6 = 0¢; so let us assume
that AT < k < cf(X/F). Of course M € F.
(i) For each ordinal v < & choose a relatively closed cofinal set C, C v with otp(C,) = cf(7). Choose
(fa)a<x as follows. Given (fg)g<a, where a < k, and v < k, define g,y € X by

Gar(Q) = sup{fs(¢) : B € C, Na} + 1 if this is less than 6,
= 0 otherwise.
Now choose f, € X such that
fo <7 fa ¥V B< goy SF fa V 7 <5

this is possible because k < cf(X/F). Observe that if « = 8 + 1 then C, = {8} so that goo = f3 + 1 and

fa €7 fa. Continue.
(ii) Suppose that for each ¢ < A we are given a set S¢ C 0, with #(S¢) < A. Then there is an o < K
such that

v h€H<<)\S<7 iffa S}-hthenfg <ghV B<Ek.
P? If not, then (because « is regular) we can find a family (h¢)e<, in H<<>\ S¢ and a strictly increasing
family (¢(€))e<x in & such that
Toe) <7 he <7 foeqr) for all € <k,

#(§) = sup, ¢ ¢(n) for limit ordinals £ < k.
Set
C={{:{<r, ¢ =£Y,
so that C is a closed unbounded set in x. Let o € C' be such that o = sup(C N «a) and cf(a) = A*. Then
(because AT > wy) C,, N C' is cofinal with a.
For 3 € CNCy, ¢ <X we have #(Cy N B) < 0otp(Cy N B) < 0tp(Co) = AT < ¢, s0
0¢ > supgec,np fe(€) + 1= gpalC)-
Now
980 <F f5 = fep) <F hg <F fos+1) <F fo',
where 4 is the next member of C' N C,, greater than 8. So there is a (3 < A such that
980(Cs) < hp(Cp) < far(Cp)-
Because A < cf(«) there is a ¢ < A such that
B={p:8eCNCq, (g=C}
is cofinal with c. But now observe that if 3, v € B and 3 <~ then 3’ € C, N~ so
hs(€) < f(¢) < gyalC) < hy(Q).
It follows that
AT =#(B) = #({hs(¢) : B € B}) < #(S¢) < A,

which is absurd. XQ

(iii) Consequently E = {mx(fa) : @ < s} has a least upper bound in X/F. P? If not, choose (h¢)er+
inductively, as follows. Because x < §, there is an hg € X such that f, <z hg for every a < k. Given hg¢
such that hi = mz(he) is an upper bound for £, then hf cannot be the least upper bound of E, so there
is an hgq1 € X such that hg , is an upper bound of E strictly less than hg. For non-zero limit ordinals
£ < AT, set

SEC = {hn(o 'n < f} g 0 zeta
for each ¢ < A. By (ii) above, there is an ¢ < & such that
V he H(</\SEC either h <z fo, or fo <Fph V a<k.
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Set

he(C) = min({n : n € Se¢, fae(C) < np U{ho(C)}) € Sec

for each ¢ < A. Then f,, <z he (because fo, () < he(() whenever fo,(¢) < ho(¢)) and he €[], Sec, so
fa <7 he for every av < r and hg is an upper bound for E. Also, if n < ¢, then he(¢) < hy(¢) whenever
fae(€) < hy(C), so he < hy. Continue.

Having got the family (he)eoy+, set

S¢ = Ugcr Sec = {he(C) : € <K} S b
for each { < A. For each a < k, { < A set
9a(¢) =min({n : fa(¢) <n € S} U{ho({)}) € S
Then, by the same arguments as above,
o <Fga<Fhe ¥V a<k, {<AT.

For each @ < k there is a limit ordinal £ < AT such that g,(¢) € Sec for every ¢ < A. Because AT < &

there is a limit ordinal £ < A" such that
A:{a:ga(C)€S§< N <<>\}

is cofinal with «. In particular, there is an o € A such that & > a,. In this case

fag <r fa <F ga <F h§+1 <r hE %.’F hE+1a
so there is a ¢ < A such that

fae (€) < falC) < 9alC) < heyr(C) < he(C).

But now observe that

fae(€) < galC) € S
50 he(€) < ga(C) < he((), which is absurd. X
(iv) Let g € X be such that g* = sup F in X/F and g(¢) > 0 for every ( < . For each ¢ < X set
0 = cf(g(¢)) < 0¢ and choose a cofinal set D: C g(¢) of order type 6. For a < K, ( < X set

ga(g) = min{?? : foz(o <ne€ DC}
if fo(¢) < g(¢), min D¢ otherwise. Then g, <r gg whenever a < § < k. Alsoif h €Y = H<</\ D¢ then
h* < g* so there is an o < k such that h* < f2 < g5. Thus {g5 : @ < k} is cofinal with {h*: h € Y}.

(v) Because each D is order-isomorphic to 6, we can identify ¥ with X = [ean fc, and see
that cf(X/F) is either 1 or k. But of course the former is absurd, because it could be so only if {¢ :
g(¢) is a successor ordinal} € F, and in this case there would have to be an o < & such that g <z f4; but
we saw in (i) above that fo+1 €7 fa-

Accordingly cf(X/F) = k.

(vi) It may be that some of the éC are less than or equal to A\. But taking I = {( : ég < A}, we have
I'¢F. P? If I e F, then for each { € I set S¢ = D, and for ¢ € A\ I set S = {0}. By (ii), there is an
o < k such that

¥ b€ TLear Sc, if fo <z hthen f5 <z h ¥ B < k.

But as fo41 <r g, and I € F, there must be an h € HC</\ S¢ such that f, <z h, and now g <r h because
g* is the least upper bound of E; but h(¢) < g(¢) for every ¢ € I, so this is impossible. XQ
So {¢ : 6¢ ZA AT} € F. But this means that if we set 6f = max(AT,0¢) for every ¢ < A, X' =], 0
then X'/F = X /F so cf(X'/F) = k, as required.
Version of 10.12.91

A1J Shelah covering numbers (a) Let «, 3, 7, 0 be cardinals. Following SHELAH #355 and SHELAH
#4008B, I write

COVSh(Oé, ﬁa v 6)
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for the least cardinal of any family & C [a]<? such that for every A € [a]<7 there is a D € [£]<? with
A C UD. I diverge insignificantly from the Master in writing covgp (e, 3,7,) = oo in the trivial cases in
which there is no such family £.

(b) For infinite cardinals «, v write ©(«,~y) for the maximum of « and the supremum of all cofinalities

cf([Te<n 0c)

for families (f¢)¢<x such that A < v is a cardinal, every 0 is a regular infinite cardinal, and A < §; < « for
every ¢ < A. (This carries some of the same information as the cardinal pp.(a) of SHELAH #400B.)

A1K Theorem For any infinite cardinals «;, -,

COVSh(a7 Y5 Ys wl) S @(Oé, 7)

proof (a) To begin with (down to the end of (f) below) let us suppose that we have a > v = 7 > cf(a) > w.
Take a family £ C [a]S7 such that
(i) £ contains all singleton subsets of «;
(ii) € contains a cofinal subset of «;
(i) I Ee&then {€: £+ 1€ E} €&
(iv) if E € &€ then there is an F € £ such that sup(F N¢) = £ whenever £ € E and w < cf(€) < 7p;
(v)if E € € then {£: & € E, cf(§) >~} €&
(Vi) if £ € € and cf([],cpn) < O(a,7), then {g: g € [[,cpn, g[E] € £} is cofinal with [, cpm;
(vii) #(&) < O(,7).
To see that this can be done, observe that whenever E € [a]<7° thereis an F' € [a]<7° such that sup(FNE) = £
whenever £ € E and w < cf(§) < 7p; thus condition (iv) can be achieved, like conditions (iii) and (v), by
ensuring that € is closed under suitable functions from [a]=70 to itself; while condition (vi) requires that for
each E € £ we have an appropriate family of size at most O(«, ) included in €.
Write J for the o-ideal of Pa generated by &.

(b) ? Suppose now that there is some set in [@]<7 not covered by any sequence from &, that is, not
belonging to J. Then there must be a function f : v9 — « such that f[yo] ¢ J. Accordingly Z = {f~}[E] :
E € J} is a proper o-ideal of P~y. By condition (a-i), Z contains all singletons in P-y.

Let H be the set of all functions h : v9 — a such that f(§) < h(§) for every £ < 79 and hly] € J.
Because € contains a cofinal set C' C « (condition (a-ii)), we can find an h € H; just take h : vg — C such
that f(£) < h(€) for every &.

(c) Because 7 is a proper o-ideal, there cannot be any sequence (hy)nen in H such that {£ : h,q1(§) >
hn(€)} € T for every n € N. Consequently there is an h* € H such that

{€:h(E)>h"()}¢TI V heH.

We know that h*[yo] € J; let (E,)nen be a sequence in € covering h*[yg]. For £ < v write 0 = cf(h*(£)),
so that each ¢ is 0 or 1 or a regular infinite cardinal less than «. Set

I'={&: € <0, (&) = F(O)},
I'={&: & <0, f(§) <h*(§), 0 =1},
In ={€: & <0, w <O <, f(§) <h*(§), h*(§) € En} V neN,
In =H{€: € <0, 7 < b, f(§) <h™(§), h*(§) € En} ¥V neN.

(d) For each n € N set G, = {n:n € E,, cf(n) > v} € & Then cf([[,cq, n) < O(a,7). P Forn € G,
set 0 = cf(n); then 0 is a regular cardinal and #(G,) <70 < 0, < a for each € G,. So
cf(IT,eq, 0) < ©(a,7)
by the definition of O(«, ). If for each n € G,, we choose a cofinal set C,, C 7 of order type 0;7, then

A[Tpeq, M) = cfl,eq, Cn) = il eq, 0) < O(@,7). Q
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Consequently, by (a-vi),
{9:9€],eq, n: 9lGn] € €}
is cofinal with [[, .o 7.

(e) Define h : v9 — « as follows.
(i) If € € I set h(€) = h*(€).
(ii) If € € I’ set h(€) = h*(€) — 1.
(iii) For each n € N take F;, € £ such that n = sup(F,, Nn) whenever n € E,, and w < cf(n) < ~v. If
§€ L \U,cn Im, take h(§) € F,, such that f(£) < h(§) < h*(§).
(iv) For each n € N, n € G, set
f*(n) = sup{f (&) : £ <0, h*(§) =}
Then f*(n) < n, because o < cf(n). By (d), thereis a g, € [[, g, nsuch that g,[G,] € € and f*(n) < gn(n)
for every n € Gy,. So for € € J, \ Jm we may set h(§) = g, (h*(§)) and see that f(&) < h(§) < h*(§),
while h(&) € g,[Gr].
(f) Now we see that

hlvol € B[yl U{n:n+1 € h*vo]} UlUen Fo UlUnen 9nlGn] € 7,
while f(&) < h(€) for every & < 79, so h € H. Consequently

I={¢:h(§) =h" ()} ¢ T.

m<n

But also
fUI S [yl € T,
so I € Z, which is absurd. X

(g) Thus the special case described in (a) is dealt with, and we may return to the general case. I proceed
by induction on « for fixed v > w.
(i) To start the induction, observe that if o < «y then

COVSh(aafY’f%wl) =1< @(a’f}/)

for all ~.

(ii) For the inductive step to o when cf(a) > v, observe that in this case [a]<7 = {J,, ,[a']<7. For
each o/ < a, we can find a family £, C [o/]<7 such that #(&,) = covsn(a’,7,7,w1) and every member of
[@/]<7 can be covered by a sequence from £,/; now (J,/ ., o witnesses that

COVSh(av Y Ys wl) < max(a, sup COVSh(O/a Y Ys wl))
a’'<a
< max(a, sup 6(a’,7)) < 6(a,7)
a’'<a
by the inductive hypothesis.

(iii) For the inductive step to o when cf(a) = w < «, take an increasing sequence (o, )nen in a such
that sup,,cy an, = a. For each n € N choose a set &, C [a,]<7 such that every set in [a,|<7 can be covered
by a sequence from &, and #(&,) = covsn(an,7,7,w1). Set € = J,enén C [a]<7. Then if A € [a]<7, we
can find for each n € N a countable set D,, C &, covering ANay,; set D = J, ey Dn € [E]5¥; then A C JD.
As A is arbitrary, £ witnesses that

COVSh(OZ, Vs wl)

IN A

#(€

ax(w, sup #(&,))
neN

)
(

max(w, sup covsp (amp, v, ¥, w1))
(

neN
< max(w, sup O(ay, 7))
neN

by the inductive hypothesis
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< O(a, 7).

1v) For the inductive step to @ when w < cif(«) < v < «, observe that
iv) For the inducti h f b h
[0]<7 = Us, [a]=°.

For each § < v we have a set & C [a]=? such that #(&5) < covsp(a,d,6%, wi) and every member of [a]=?
can be covered by a sequence from &5. Set £ = Ucf(a) <5<~ €5; then every member of [@]<7 can be covered
by a sequence from &.

For each E € &, choose a family Hp C [E]<7 such that #(Hg)= covsn(#(E),~,~,w1) and every member
of [E]<7 can be covered by a sequence from Hg. Set H = Upce He. If A € [a]<7, there is a countable
set D C & covering A; now for each D € D there is a countable set Gp C Hp covering A N D; so that
g = UD673 Gp is a countable subset of H covering A.

Thus

covsh (@, v, 7, w1) < #(H)
< max(#(&), sup #(HE))

Ee&

/
<max(a, sup covsy(a, 67,61, wy), sup coven(a’,7y,vy,w1))
cf(a)<d<vy a’'<a

<max(a, sup O(a,6"), sup O(a/,7))
cf(a)<d<~y a’'<a

by the inductive hypothesis and parts (a)-(f) above
< O(a, 7).

This completes the proof.

Remark This is taken from SHELAH #355, Theorem 5.4, where a stronger result is proved, giving an exact
description of many of the numbers covsk(a, 8,7, 6) in terms of cofinalities of reduced products [ [, 0¢/F.

A1L Lemma Let o and + be infinite cardinals, with « regular, and suppose that « > ©(~,v). Then
0(0(a,7),7) = 6(a,7).
proof T Suppose, if possible, otherwise. Note that of course o > ~.

(a) There must be a family (f¢)¢<x of infinite regular cardinals such that A < v, A < 8¢ < O(a, y) for every
¢ <A and cf(J]., 0c) > ©(a,7). By Allc, there is an ultrafilter 7 on A such that cf([ . 0c/F) > O(a, 7).
Set L ={C:( <A b <a};then cf([[.cp0c) < O(a,v),s0 L ¢ Fand M = A\ L € F. For each ¢ € M,
we have 0 < ©(a, ), so there must be a family (0¢y),<x. of regular cardinals with \¢ <y, A¢ < 0¢y < @
for every n < A¢ and 0; < cf([], .\, 0cy)- Again by Allc, there is an ultrafilter F¢ on A¢ such that
0. < Cf(Hn<)\< Ocn/F¢). Because A¢ <y < a < 0, Alld tells us that there is a family (67, ),<». of regular
cardinals such that A¢ < 0;, < ¢, for every n and 0, = (I, ¢/ Fe)-

(b) Set
I={(Gm): CeM,n <A,

H={H:HCI, {(:{n:((,n) e H} € F¢} € F},

X =Tlcmer Un
Then H is an ultrafilter on I, and cf(X/H) > cf([[;cpr 0c/F). P Let F C X be a set of cardinal cf(X/H)
such that {f* : f € F} is cofinal with X/H. For each f € X, ( € M let f, € Hn<z\< 0¢ be given
by fe(n) = f(¢,n) for each n < A¢, and let f¢ be the image of f¢ in Hn<)\< 0¢,/F¢. For each ¢ € M
let (uce)e<o, be a strictly increasing cofinal family in Hn<>\< 9’@/]—}. Now, for f € F, take a function
95 € [eenr Oc such that f& < g, for every ¢ € M.
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Ifge ngM ¢, then we can find an h € X such that he = ¢ g(¢) for each ¢ € M. Let f € F be such
that h <3 f. Then {C: g(¢) < gr(Q)} 2{C:ht < fe} € F,s0 g <r gf. Accordingly {gs : f € F'} is cofinal
with [T ¢ 0c/F and cf([[ocps 0c/F) < #(F) = cf(X/H), as claimed. Q

(¢) Thus cf(X/H) > O(a, 7). Set J = {(¢,n) : (¢;n) € I, 0, > ~}. Because 7 is regular, #(J) < #(I) <
7, so cf([ ¢ yesbcy) < ©(a,y), and J ¢ H. It follows that K = I\ J € H. Set M' = {¢: (€ M, {n:
(¢,m) e K} € Fc} € F. Then 6 < O(v,v) < afor ( € M'. So in fact 0 = « for ¢ € M’ and we have

a < O(a,7) < cf([Teepr ) = el s @),

where § = #(M’), while at the same time « is regular.
But if « is regular and 0 < «,

Cf(H<<5 ) = «,
contradicting the last sentence. X

This contradiction completes the proof.

A1M Lemma Let o and v be infinite cardinals. Set 0 = sup,/ ., ©(a/, 7).
(a) If cf(a) > v then O(«,y) = max(a, d).
(b) If cf(a) < 7 then O(a, ) < max(a, 61), where §°1(®) is the cardinal power.

proof Let (6¢)¢<x be a family of regular cardinals with A < §; < « for each ( and X < .
case 1 If o/ = sup,, 0 < a, set

I={C: (<X 0 <a'},

J={C: (<A b =a}.
Then cf(J[ee; 0c) < O(a,7) <6, ef([[ie;0c) < @ < dsocf([[ .y 0c) < d. This completes the proof of (a).
case 2 If sup. ) 0 = o let (ag)e<cr(a) De an increasing family of cardinals with supremum o and with
Q¢ = sup, ¢ o, for limit ordinals § < cf(a). Set
Pe = HC<A,0¢5§94<0¢§+1 O¢
for each £ < cf(a). Then cf(P¢) < § for each < cf(a), so

Cf(H(<)\ 6() = Cf(H§<cf(a) Pf) < 5Cf(a)'
This is enough to deal with (b).
A1N The singular cardinals hypothesis (In this paragraph, all powers will be cardinal exponen-

tiation; A\? will be the cardinal of the set of functions from @ to \.) Recall that the singular cardinals
hypothesis is the statement

whenever \ is an infinite cardinal and 2f(V) < X then Af0) = A+
(JECH 78, §8, p. 61). This is equivalent to
whenever A > ¢ and cf(\) = w then \* = AT
(JECH 78, Theorem 23b, p.63); evidently the second statement is implied by
whenever A > ¢ is a successor cardinal then A\ = A,
and by JECH 78, Lemma 8.1, p. 62, the third assertion is implied by the first, so that any of the three may

be taken as a statement of the singular cardinals hypothesis.

A10 Miscellaneous definitions (a) If X is a set, a Jénsson algebra on X is an algebraic structure
with countably many finitary functions and relations such that the only subalgebra of X of cardinal #(X)
is X itself.

(b) If k is a cardinal, a k-Aronszajn tree is a tree of height x in which every level has cardinal strictly
less than k but there are no branches of length . If x is weakly ITi-indescribable, there are no x-Aronszajn
trees (see FREMLIN & KUNEN N87, 2N).
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A1P Souslin numbers I say that two elements p, ¢ in a partially ordered set P are upwards-
compatible if {p,q} has an upper bound in P, and that a set A C P is an up-antichain if no two
elements of A are upwards-compatible.

For any partially ordered set P, write

S(P) = min{\ : there is no up-antichain in P of cardinal A},

the Souslin number of P. Thus P satisfies the ‘A-chain condition’ iff A > S(P), and is upwards-ccc iff
S(P) < wy. Note that if @ is a cofinal subset of P, then S(Q) = S(P).

Similarly, the Souslin number of a Boolean algebra 2 is the least cardinal A such that there is no
disjoint set of cardinal A in 2\ {0}; that is, the Souslin number of the partially ordered set 2\ {1}: it is
called sat(2() in KOPPELBERG 89, 3.8-3.11.

A1Q Lemma Let R be an upwards-cce partially ordered set and (ry)a<w, any family in R. Then there
is an infinite M C wy such that {r, : & € M} is centered, that is, {r, : @ € L} has an upper bound in R for
every finite L C M.

proof 7 Suppose, if possible, otherwise. For each o < w; let M, be a maximal subset of w;, containing «,
such that {rg: 0 € M,} is centered. Because each M, is finite, there must be an uncountable set W C w;
such that o ¢ My whenever o, § € W and 8 < a. Now, for each a € W, let s, be an upper bound for
{rg : B € M,}. In this case, for o, § € W and 8 < a, 7o < sq but 7, and sg are upwards-incompatible
in R (or we should have been able to add « to Mg). But this means that {s, : & € W} is an uncountable
up-antichain in R. X

A1R Finite-support products If (P:)¢cy is any family of partially ordered sets, then its finite-support
product is the set P of finite functions p such that dom(p) € [I]<“ and p(§) € P for every ¢ € dom(p);
ordered by saying that p < ¢ if dom(p) C dom(gq) and p(§) < ¢(&) for every £ € dom(p).

Now if (P¢)¢er is any family of partially ordered sets with finite-support product P, and

A= sup{S(erJ Pe):J e [I]<¥},

then S(P) = X if X is regular, and A1 otherwise; see COMFORT & NEGREPONTIS 82, Theorem 3.27, where
the corresponding theorem is proved for products of topological spaces.

A1S The arrow relation If a, 8 and « are ordinals, write a — (3,7)? to mean: if S C [a]? is any
set, then either there is a B C « such that otp(B) = 3 and [B]? C S, or there is a C C « such that
otp(C) =~ and [C]> N S = 0. (See ERDOS HAIJNAL MATE & RADO 84, 8.2.) Then we have, among many
other important results,

(i) @ — (o, w + 1)? whenever « is a regular uncountable cardinal (ERDOS HAJNAL MATE & RADO 84,
11.3);

(ii) ¢ 4 (w1,w1)? (ERDOS HAINAL MATE & RADO 84, 19.7);

(iii) if ¢ = wy then ¢ 4 (¢,w + 2)? (ERDOS HAINAL MATE & RADO 84, 11.5);

(iv) if  is a regular uncountable cardinal then k — (k, )2 iff x is weakly II}-indescribable and strongly
inaccessible, that is, ‘weakly compact’ (ERDOS HAINAL MATE & RaDO 84, 30.3 and 32.1).

Version of 10.12.91
A2. Measure theory
My basic texts for this material are FREMLIN 74 and FREMLIN 89.

A2A General measure spaces In these notes a measure space will always be a triple (X, X, 1) where
X is a set, X is a o- algebra of subsets of X, and u: ¥ — [0, 00] is a countably- additive functional.
Let (X, X, 1) be a measure space.

(a) If BC X, I write
pw*B=min{uFE: BCFE € X}.

(b) If A is any subset of X, I write u[A for the measure on A defined by writing
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dom(u[A)={ANE:FEecX},
(u[A)(B) = p*(B) V B € dom(u[A).
Now u[A is the subspace measure on A.

(c) An atom for p is a set E € ¥ such that uF > 0 and if F € &, F' C E then one of pF, u(E\F) is

Zero.

(d) I write NV, for the o-ideal of PX consisting of p-negligible sets, that is,
Ny ={B:ECX, y*E =0},

(e) If (Y, G) is a topological space, a function f : X — Y is measurable if f~}[H] € X for every H € &.
A2B Taxonomy of measure spaces (see FREMLIN 74). Let (X, X, 1) be a measure space.

(a) (X,X%, ) is a probability space if 41X = 1 (and in this case I call ;4 a probability); it is totally
finite if ©X is finite; it is o-finite if there is a sequence (E,, ) en of measurable sets of finite measure covering
X.

(b) (X,3, n) is semi-finite if
uwE =sup{uF :F CE, FeX uF < oo}

for every E € 3 that is, if whenever £ € ¥ and pF = oo then there is an F' € ¥ such that FF C E and
0 < uF < co. Any o-finite measure space — a fortiori, any probability space — is semi-finite.

(c) (X,X, ) is locally determined if it is semi-finite and for every A € PX \ X there is an F € 3 such
that uF' < oo and FNA ¢ .

(d) (X,%, ) is decomposable (or ‘strictly localizable’) if there is a partition (X;);c; of X such that (i)
Y={E:ECX, EnX;eX Viel} (i ukF =) ., m(ENX;) for every E € ¥ (iii) uX; < oo for every
i € I. In this case (X, X, ) is locally determined. (See FREMLIN 74, 64G.)

(e) (X,%, ) is atomless if there are no atoms for p.
(f) (X,%, p) is complete if NV, C ¥. Any measure space of the form (X, PX, u) is surely complete.

(g) (X,%, ) is purely atomic if every non-negligible measurable set includes an atom for y; that is,
there is no E € ¥\ NV, such that u[E is atomless.

A2C Additivity Let (X, %, ) be a measure space.

(a) If x is a cardinal, then p is k-additive if p({UJc_, E¢) exists and is equal to 3 ., uE¢ for every
disjoint family (E¢)e<x in ¥ indexed by a cardinal A < k.

(b) T write add(u), the additivity of p, for the least cardinal &, if there is one, such that u is not
r-additive; if p is k-additive for every cardinal x, I write add(u) = oo.

(c) We always have add(u) < add(N,,), defining add(N,,) as in A1A-B.
(d) If (X, 3, ) is complete and locally determined, then add(u) = add(N,) (see FREMLIN 84, A6O).
(e) If A C X is upwards-directed and #(A) < add(x) then p(|JA) = sup 4c 4 nA.

(f) If (X, 3, ) is a totally finite measure space and F' is a uniformly bounded non-empty upwards-directed
family of measurable functions from X to R, of cardinal less than add(u), and if fo(z) = sup;cp f() for
each r € X, then

[ fodp=supscp [ fdp.
(Use (e).)

A2D Functions between measure spaces (a) If (X, %, ) and (Y, T, v) are measure spaces, a function
f: X — Y is inverse-measure -preserving if f~1[F] € X and pf~![F] = vF for every F € T.
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(b) Let (X,X, ) be a measure space, Y any set and f : X — Y any function. I write uf~! for the
measure on Y defined by writing

(nf=)(F) = u(fHED)
for all those F' C Y for which the right-hand-side is well defined, that is, for which f~![F] € X.
Observe that if v = pf~! then

N, ={F:FCY, [~ [F] e N,},
v is complete if u is, v is a probability iff u is, add(v) > add(u) and add(N,) > add(N,,).
p s, p y iff o is, u f

A2E Upper and lower integrals Let (X, 3, 1) be any measure space and f : X — R any function.
Then its upper integral is

Tf(:c) wu(dz) = inf{f g(z) p(dx) : g : X — R is integrable, g(z) > f(z) a.e. z € X},

taking inf ) = oo, inf R = —oo, and its lower integral is
JF@) pldz) = = [ (= f(2)) plda).

A2F Measure algebras (a) A measure algebra is a pair (2, i) where 2 is a Dedekind o-complete
Boolean algebra and fi : 2 — [0,00] is a functional such that (i) ga = 0 iff @ = 0 (i) A(sup,eyan) =
> nen Ban whenever (an)nen is a disjoint sequence in 2. It is a probability algebra if moreover il = 1.

(b) If (A, ) is a measure algebra with il < oo, it has a natural metric p given by setting

pla,b) = i(aAb) for all a, b € A.

(c) A measurable algebra is a Boolean algebra 2 for which there is a fi making (2, ) a measure
algebra in the sense of (a) above and moreover with il < co. (See FREMLIN 89, 2.1.)

(d) Let (X,X%,u) be a measure space. Its measure algebra is the quotient Boolean algebra 21 =
Y/¥ NNy, endowed with the induced functional i defined by saying that pE*® = pE for every E € X.

(e) If (X,%,u) and (Y, T,v) are measure spaces and f : X — Y is inverse-measure -preserving, then
we have a corresponding measure-preserving homomorphism ¢ : T/N,, — X/N,, given by writing ¢(F*) =
f7L[F)* for every F € T (FREMLIN 89, 2.16).

(f) Let A be any Boolean algebra. Then 2 is isomorphic to the algebra of open-and-closed sets in its
Stone space Z (FREMLIN 74, 41D). T write L () for the Banach algebra of continuous real-valued functions
on the compact Hausdorff space Z (FREMLIN 74, §43). In this context, given a € 2, I write x(a) € L ()
for the characteristic function of the open-and-closed subset of Z corresponding to a.

(g) Let (2, 1) be a measure algebra. Then we have a unique continuous linear functional [ dj : L () —
R such that [ x(a)di = fia for every a € A (FREMLIN 74, §52). If v : 2 — R is a finitely-additive functional
with 0 < va < fia for every a € 2, there is a unique u € L>°(2l) such that fa udip = [ux x(a)dp = va for
every a € 2; this is a form of the Radon-Nikodym theorem (FREMLIN 74, 63J).

A2G The measure of {0,1}! Let I be any set.
(a) Write C for the family of ‘cylinder sets’ of the form
C={z:2e{0,1}, 2]J =2z}
for some finite J C I, z € {0,1}”. In this case write ¢o(C) = 2~#(/). Define ¢ : P({0,1}) — [0,1] by
$(A) = inf{3 ey @0(Cn) : (Cn)nen € CY, A C Upery Cn'}

for every A C {0,1}!. The usual measure of {0,1} is the measure defined by Carathéodory’s method
from the outer measure ¢. For the rest of this paragraph, I will denote it by p; and its domain by ;.

(b) ({0, 1}, uy) is isomorphic, as measure space, to ([0, 1], 1), where py, is Lebesgue measure on [0, 1].

(c) Let E be any set in 3. (i) There are sets E’, E” belonging to the Baire o-algebra of {0,1}! with
E'CECE"and uiE' = ptE = prE”. (ii) E is expressible in the form HAN where H belongs to the
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Baire o-algebra of {0,1}/ and N € N,,. (iii) For every ¢ > 0 there is an open-and-closed set H C {0, 1}/
such that u;(EAH) <.

(d) If (X,X, 1) is any complete probability space, then any measure-preserving homomorphism ¢ from
the measure algebra 2; of {0,1}! to the measure algebra 2 of (X,X,u) can be induced by an inverse-
measure -preserving function f : X — {0,1}!, in the manner of A2Fe; see FREMLIN 89, 2.21 and 4.12, and
A2Jd below.

(e) If J C I, K=1\J then {0,1} can be identified with {0,1}/ x {0,1}¥. Under this identification
we have a form of Fubini’s theorem: if f : {0,1}/ — R is u;-integrable, then [ f(y,2)ux(dz) exists for
pr-almost all y, and [ [ f(y,2)uk(dz)py(dy) exists and is equal to [ f(z)ur(dz). (SCHWARTZ 73, pp.
73-74.)

(f) If I is infinite, then the measure algebra 2; of {0,1}! is homogeneous as Boolean algebra, that is, is
isomorphic to all its non-zero principal ideals (FREMLIN 89, 3.6 and 3.7b, or otherwise).

(g) If f:{0,1}! — R is ¥;-measurable there are functions f’, f”, both measurable with respect to the
Baire o-algebra of {0, 1}, such that f'(z) < f(z) < f”(z) for every x € {0, 1} and pu;{z : f'(z) # f"(z)} =
0. (Use (c).)

A2H Maharam types Let 2 be a Boolean algebra.

(a) Write 7(2() for the least cardinal of any subset A of 2 which ‘completely generates’ 2 in the sense
that the smallest order-closed (that is, closed-under-suprema or ‘complete’) subalgebra of 2 including A is
2 itself. (See KOPPELBERG 89, 13.11).

(b) If 2 is ccc then #(2A) is less than or equal to the cardinal power 7(2)¥. (FREMLIN 89, 6.2b.)

(c) If a € A then 7(~A[a) < 7(A), where 2A[a is the principal ideal of 2 generated by a (KOPPELBERG 89,
13.12).

(d) If & is a measurable algebra (A2Fc) and B C 2 is an order-closed subalgebra then 7(B) < 7(2)
(FREMLIN 89, 6.3b).

(e) 2 is -homogeneous if 7(A[a) = 7(A) for every a € A\ {0}.
(f) There is a partition of 1 in 2, {a;);cr say, such that 2[a; is 7-homogeneous for every i € I.

(g) If A is the measure algebra of a measure space (X, %, u) then 7(2) is the Maharam type of p (or
of (X,%,n)). If A is 7-homogeneous I say that u, or (X, 3, ), is Maharam homogeneous.

(h) For any decomposable measure space (X,X,u), there is a partition (X;);e; of X such that (i)
Y={E:FecX, EnX;cX Viel} (ii) p£ = ., u(ENX;) for every E € ¥ (iii) p[X; is Maharam
homogeneous and totally finite for every ¢ € I.

(i) If (A, 1) is a probability algebra, then either 2 and 7(2l) are both finite, or 7(2) is precisely the
topological density of 20 when 2( is given the metric p of A2Fb; this is because a topologically closed
subalgebra of 2l is order-closed, so a set A C 2 completely generates A iff the subalgebra of 2 generated by
A is topologically dense in 2 (FREMLIN 89, 2.20).

A21 Maharam’s Theorem (a) If (2, i) is a 7-homogeneous probability algebra, with 7(2() = &, then
it is isomorphic, as measure algebra, to the measure algebra 2,; of {0,1}* (FREMLIN 89, 3.8).

(b) If (A, @) and (B, 7) are probability algebras, and 7(A) < min{7(B[b) : b € B\ {0}}, then there
is a measure-preserving Boolean homomorphism from 2 to 8 (FREMLIN 89, 3.13a, corrected to read ‘if
7(A) <k and 7(C) < K,...").

(c) If (A, 1) is a probability algebra and 7(2) = k, then it is isomorphic, as measure algebra, to an
order-closed subalgebra of 2.

A2J Topological measure spaces (a) A quasi-Radon measure space is a quadruple (X, %, %, 1)
such that (i) (X,X%,u) is a complete locally determined measure space (ii) ¥ is a topology on X and
T C ¥ (iil) if G is any upwards-directed family in ¥ then p(lJG) = supgeg uG (iv) for every E € X,
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uE = sup{pF : F C E, F is closed} (v) whenever E € ¥ and pE > 0 there is an open set G such that
uG < oo and pu(E N G) > 0. For the general theory of quasi-Radon measure spaces, see FREMLIN 74,
FREMLIN N82D and FREMLIN 84. In particular, note that any quasi-Radon measure space is decomposable

(FREMLIN 74, 72B) and that any subspace of a quasi-Radon measure space is a quasi-Radon measure space
(FREMLIN 84, A7Da).

(b) A Radon measure space is a quadruple (X, %, %, ) such that (i) (X,X, u) is a complete locally
determined measure space (ii) ¥ is a Hausdorff topology on X and ¥ C ¥ (iii) uE =sup{F : F C E, F is
compact} for every E € ¥ (iv) every point of X belongs to some open set of finite measure.

(¢) Every Radon measure space is a quasi-Radon measure space (FREMLIN 74, 73B). The usual measure
on {0,1} (A2G above) is always a Radon measure (see the references in FREMLIN 89, 1.16). If (X, T, %, )
is a Radon measure space and E € X, then (E,3[E, X NPE, u[E) is a Radon measure space.

(d) Suppose that (X,%,%, 1) is a Radon measure space, with measure algebra (2, ), and that (Y,T,v)
is a complete measure space with measure algebra (8, 7). Suppose that uX = vY < co and that ¢ : A — B
is a measure-preserving homomorphism. Then there is an inverse-measure -preserving function f:Y — X
such that f~1[E]* = ¢(E*) in B for every E € ¥. (See FREMLIN 89, 4.12-4.13.)

(e) If (X,%,%, ) is a totally finite quasi-Radon measure space and f : X — R is a bounded function
then

Tf dp = inf{f hdu:h: X — R is lower semi-continuous and f(z) < h(z) V z € X}.
(Use (a-iv). See SCHWARTZ 73, p. 43.)

(f) If (X,%,%, 1) is a totally finite quasi-Radon measure space and F is a uniformly bounded non-empty
upwards-directed family of lower semi-continuous functions from X to R, and if fo(z) = sup;cp f(z) for
each z € X, then

[ fodp=supscp [ fdp.
(Use (a-iii). See SCHWARTZ 73, p.42.)

A2K Corollary (a) If (X, 1) is a Maharam homogeneous probability space of Maharam type A > w, and
(Y,v) is a Radon probability space of Maharam type not greater than A, then there is an inverse-measure -
preserving function f: X — Y.

(b) If (X,%,3, 1) is a Radon probability space, £ C X is a collection of measurable sets, 3, is the o-
subalgebra of ¥ generated by &£, and A\ > max(w,#(€)) is a cardinal, there is a function g : {0,1}* — X
such that pyg~![F] is defined and equal to uE for every E € £, where i is the usual measure of {0, 1}*.

(c) If (X, ) is a complete atomless probability space, there is a function f : X — [0, 1] which is inverse-
measure -preserving for x4 and Lebesgue measure on [0, 1].

proof (a) Let 2 be the measure algebra of (X, ) and B the measure algebra of (Y, ). By A2Ib there is a
measure-preserving homomorphism ¢ : B — 2(, which by A2Jd is induced by an inverse-measure -preserving
f: X =Y.

(b) Let x be the greater of A and the Maharam type of (X, u). Then there is an inverse-measure -
preserving f : {0,1}* — X, by (a). For each E € & there are Baire sets Gg, Hg C {0,1}" such that
Grg C g7 '[E] € Hg and pu.Hg = pE = u.Gg. Now there is a countable set Iz C x such that both
Gg and Hp factor through the canonical map w7, : {0,1}* — {0,1}!2; that is, Ggp = 7TI_EI[7T]E [GE]l],
and similarly for Hg. Let I C k be a set of cardinal A including Ip for every F € £. Let z be any
point of {0,1}*\ and set h(z) = (z,2) for each z € {0,1}, identifying {0,1}* with {0,1} x {0,1}"\].
If E € & then n7[Gg] € h=[f'[E]] C 7;[Hg] so urh Y [fY[E]] = G = uHp = pE. So if we set
g=fh:{0,1} — X we shall have u;g~'[E] = uFE for every E € &, and therefore for every E € ¥y. But
of course ({0,1}, ur) = ({0,1}*, i), so this proves the result.

(c) Argue as in (a), or as in FREMLIN 84, A6Ib.

A2L Hyperstonian spaces (a) If (X, X, ) is a totally finite measure space, its hyperstonian space
is the Radon measure space (Z,6,T,v), where (Z, &) is the Stone space of the measure algebra (2, i) of
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(X,X, 1), and v is the unique Radon measure on Z such that vE* = pE for every E € ¥, where I write E*
for the open-and-closed subset of Z corresponding to the image E* of E in 2. (See FREMLIN 89, 2.13-2.14.)
In this case, (2, ) is isomorphic, as measure algebra, to the measure algebra of (Z,T,v) (FREMLIN 89,
2.13).

(b) If (X,%,%, ) is a compact Radon measure space and (Z,8,T,v) is its hyperstonian space, then
there is a unique continuous function f : Z — X such that v(E*Af~1[E]) = 0 for every E € . This f is of
course inverse-measure -preserving; it is the canonical map from Z to X. (See FREMLIN 89, 2.17-2.18.)

(c) If (X,X%, ) is any totally finite measure space and (Z, &, T, v) is hyperstonian space, then for every
F €T, € > 0 there is a compact open set W C F such that vW > vF — e (FREMLIN 89, 2.14).

Version of 18.9.92

A2M Lemma Let (X, X, 1) be a probability space.

(a) Let (E,)nen be a family in X such that inf,cypuFE, = § > 0. Then there is an € X such that
{n:neN, x € E,} is infinite.

(b) Let (Ea)a<w, be a family in ¥\ AV,. Then there is an € X such that {a : @ < wi, 2 € E,} is
infinite.

proof (a) Set F, = ,,>,, Em for n € N; then (F,),en is a decreasing sequence and pF, > 6 > 0 for every
n € N. So (,en Fn # 0; take any x € [,y Frn; this z must belong to infinitely many of the E,,.

(b) There is a § > 0 such that A = {a : a < wy, pE, > 0} is infinite. Now apply (a) to (Eqn))nen for
any strictly increasing sequence (a(n))nen in A.

Remark For related results see 9A and A2U; also KANAMORI & MAGIDOR 78, p. 166, and FREMLIN 87,
1E.

A2N Lemma Let (X,X, ) be a probability space and T a subalgebra of ¥. Suppose that (Cp,)nen
is a sequence of members of ¥ which are stochastically independent of each other and of Ty, that is,
WENNer Ci) = pE;e; nC; for every E € To, I € N. If now f is a p-integrable real-valued function on
X and (E,)nen is any sequence in Ty,

on(f) =[5 no £ = 1Cn. [ F—0
as m — 00.
proof Consider first the case f = xF where F' = EN(),c; C; for some E € To, I € [N]<; this is trivial.
It follows that lim, e ¢n(f) = 0 whenever f = xF for some set F' in the subalgebra T; of ¥ generated
by To U{C, : n € N}. Also, of course, |¢,(f) — ¢n(g)| < 2[|f — g| for all n € N, integrable f and g,
0 lim, o0 ¢ (f) will be 0 for every T-measurable integrable function f, where T is the o-subalgebra of 3
generated by Ty. Finally, for a general p-integrable f, the Radon-Nikodym theorem (ROYDEN 63, chap. 11,

§5) tells us that there is a T-measurable g such that [, f = [}. g for every F' € T, so that ¢, (f) = ¢n(g) — 0
as n — 00.

A20 Definition Let (X, ) be a measure space and F, F two real linear spaces in duality. Say that a
function  — u, : X — F is F-scalarly measurable if z — (f|u,) : X — R is measurable for every f € F.

A2P(a) Let X be a set and A any family of sets. Write

cov(X, A) = min{#(B) : BC A, X € JB}if X € JA

= oo otherwise.

(b) For a Radon measure space (X, %, %, ), we have cov(X,N,) = 0 iff X = 0 and cov(X,N,) = 1 iff
X # 0 and pX = 0. In any other case, consider the least cardinal k for which there is an F € ¥ with
0< puE < oo and (E,XNPE,u[E) is Maharam homogeneous of Maharam type «; then

cov(X,N,,) = cov({0,1}*,N,,.),

where p,; is the usual Radon measure on {0,1}*. (See FREMLIN 89, 6.14c and 6.15c.) If we write
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8 = cov({0, 117 N,..)

for infinite cardinals k, then §, < d) whenever w < A < x (FREMLIN 89, 6.17(d-i), so there is a least kg
such that 6, = d,, = d say for every kK > kg, and this § is precisely the least value of cov(X,N,,) for any
non-trivial Radon measure space (X, ). Moreover, if §,, < A < k then 0y = 0, (FREMLIN 89, 6.17(d-ii)); it
follows that if §, > s then § > k and if §,. > k then § > k.

A2Q Liftings Let (X, X, ) be a measure space, with measure algebra 2.
(a) A lifting of (X, X, i) is a Boolean homomorphism 6 : 2 — ¥ such that (fa)* = a for every a € 2.

(b) The Lifting Theorem If (X, X, 1) is complete and decomposable it has a lifting (FREMLIN 89, 4.4,
or IoNESCU TULCEA & TONESCU TULCEA 69, chap. IV, Theorem 3).

(c) If (X,X%,p) is a complete probability space, ¥y C ¥ is a o-subalgebra and 2y = {E* : E € ¥y} is
the corresponding order-closed subalgebra of A = X/N,, then any lifting 6y : A9 — Xy extends to a lifting
0 : A — X (follow the standard proof of the lifting theorem as given in FREMLIN 89 or IONESCU TULCEA
& TONESCU TULCEA 69).

(d) If (X,%, u) is a complete probability space and 6 : 2 — ¥ is any lifting, then |J
every A C 2. (IoNnescu TuLciEA & IoNESscu TULCEA 69, §V.3.)

wcaf(a) € ¥ for

A2R Lemma Let (X,3, ) be a probability space, A a cardinal of uncountable cofinality, (E¢)ecn a
family of measurable non-negligible sets in X, and 1 <[ € N. Then there is a set W C A, of cardinal A,
such that (., Ee # 0 for every L € [W]".

proof See ARGYROS & KALAMIDAS 82, or COMFORT & NEGREPONTIS 82, Theorem 6.15, or FREMLIN 88,
Proposition 7, where various stronger results are proved.

Remark For the following results, we need only the case X = {0,1}!, which is usefully simpler than the
general case.

A2S Lemma Let (X,X, 1) be a probability space, and Xy a o-subalgebra of X; set pg = p[Xo and let
1 be the outer measure on X defined from po. Let 79 be the Maharam type of pg. Suppose that A is a
cardinal with cf(\) > max(w, 79), and (E¢)¢<x a family in 3 with infe\ pFEe = v > 0. Then for any 7' < v,
1 <1 €N there is a W € [A]* such that 16 (Neer Be) =+ for every L € Wt

Remark For this paper we need only the case 7p = w, A = w;.

proof (a) Consider first the special case in which X = {0,1}! for some set I, with x the usual measure on
X, and there is a J C T of cardinal 7y such that 3y = {7;'[F] : F € %}, writing % for the domain of the
usual measure gy on {0,1}7, and 7; : X — {0,1}” for the canonical map.

(i) We may regard X as the product {0,1}7 x {0,1}\. Set § = (y —+')/(1 +1) > 0. For £ < A,
z € {0,131\ set

Be: ={y:y €{0,1}’, (y.2) € E¢}.
Then
[ 11Eeapip s (dz) = pEe > v
by Fubini’s theorem (A2Ge). Set
Ge ={z:2€{0,1}\| u;Ee, exists >~};
then i\ sG¢ exists and is greater than 0. Let He C X be an open-and-closed set such that u(E¢AH,) <
SpnsGe (A2Ge), and set He, = {y : (y,2) € He} for z € {0,1}/\/. Then
J (B2 OHe:)pn g (dz) = p(Be AHe) < Spup G,

so pip\sGg > 0, where

Gi ={z:2€ Gg, pj(Ee,AHe,) < 0}
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Finally, observe that because H¢ is open-and-closed the set of sections He, is finite, and there is an open-
and-closed set Fy C {0,1}” such that ,LLI\JG? > 0, where

Gg:{Z:ZEGé, HgZ:Fg}.

(ii) The number of open-and-closed sets in {0,1}” is at most max(w,#(J)) < cf(\). So there is an
open-and-closed set F' C {0,1}” such that U = {¢ : € < A, Fx = F} has cardinal A\. Next, by A2R above,
there is a W C U such that #(W) = A and (¢, G¢ # () whenever L € (W]l

Take any L € [W]'. There is a 2 € (e, GY. For each £ € L, pyE, exists > v, pj(Ee;AHe;) < § and
He, = Fe=F. So pyF >~ —6 and py(Neep, Bez) = psF' =16 > 9.
Now if F' € $; and 7 '[F'] D Neer Be, we must have F' O (e e, so

w(m s [F']) = poF' >
As F' is arbitrary, pu5((Neey, Ee) = 7, as required.

(b) It follows that if (2, ) is a probability algebra, 2y is a order-closed subalgebra of 2, \ is a cardinal
with cf(X) > max(w, 7(Ap)), (ac)e<r is a family in A with infeoy frag =~ > 0,1 <! € Nand v’ <, then
there is a W € [A]* such that

mln{/ib tbeUp, b2 infgeL a§} >

whenever L € [W]'. PP We can embed 2l as a subalgebra of the measure algebra 2 of {0, 1} for some set
I (A2Ib). If we take a set B C g of cardinal 7(2o) which completely generates 2y, then for each b € B we
can find a set Gy, € X = {0,1}!, belonging to the Baire o-algebra of X, such that b = G§ in 2; now there
is a set J C I, of cardinal at most max(w, #(B)), such that every G} belongs to Xy, if we define 3¢ from J
as in part (a) above.

Set 2y = {G* : G € %y}, so that Ay is a order-closed subalgebra of 2 and Ay C ;. Let 3 be the
algebra of measurable subsets of {0,1}7, and 2l ; the measure algebra of {0,1}”. Then the inverse-measure-
preserving map 7 : X — {0, 1}’ induces an isomorphism ¢ between 2, and 2 ;, taking qﬁ(ﬂ;l[G}') = G" for
every G € ¥ ;. By the lifting theorem (A2Qb) there is a lifting 6; : 2; — 3 ;. So we have a corresponding
Boolean homomorphism 6; : 21 — Y given by setting 61 (a) = 75" [0.7(¢(a))] for each a € A;. As remarked
in A2Qc, there is an extension 6 of #; to a lifting from A to X.

Set E¢ = 6(ag) for each £ < X\. By part (a) above, because cf(A\) > max(w, #(.J)), there is a set W € [A\]*
such that ug(Neer, Ee) > 7' whenever L € [W]!. Now suppose that L € [W]! and that b € 2, b D infeey, ag.
Then 6(b) 2 ey, Ee and 6(b) € Xo, so

fib = (0(b)) > p$(Neer, Be) >
Thus we have the set W we need. Q

(c) We are now ready for the general case of the lemma. Let (2, i) be the measure algebra of (X, 3, i)
and set ™o = {G* : G € Eo}, ag¢ = E¢ for each £ < A. By (b), there is a W € [A]* such that b > +/
whenever L € [W]', b€ g and b D infeey ag. Now if L € [W]' and G € % and G D o), Ee, b= G* € 2o
and b 2 infeey, ag, so that poG = uG = pG* > +'. As G is arbitrary, ug(Necp Be) = 7’5 as L is arbitrary,
we have the required family .

A2T Precalibers If 2 is a Boolean algebra and A is a cardinal, then A is a precaliber of 2 if for every
family (ag)e<r in 2\ {0} there is a set D € [A]* such that {a¢ : £ € D} is centered, that is, infeer ag # 0
for any non-empty finite I C D.

A2U Proposition Let (X,X, 1) be a complete probability space with measure algebra (2, ), and A a
cardinal of uncountable cofinality which is not a precaliber of 2.

(a) There is a family (E¢)e<y in N, such that ., B¢ € X\ N,

(b) If A is regular, there is an increasing family (E¢)e<x in N, such that [J,_\ B¢ € X\ N,

proof Let (a¢)e<r be a family in 2\ {0} with no centered subfamily of cardinal A. Let 6 : A — X be
a lifting (A2Q). If D € [A]* then {a¢ : £ € D} is not centered so there is a finite set I C D such that
Neer O(ag) = O(infeer ag) = 0. Consequently #({{ : x € 0(ag)}) < A for every z € X.
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(a) Choose inductively countable sets C,, C A, for a < A, such that
COt - A \ Uﬁ<a CB’

sup{ae : £ € Co} =sup{ag : £ € A\ U5<a Cs}

for each a < A. Setting s, = fi(sup{a¢ : £ € Cy}) for each o, we see that (s4)a< is decreasing; as cf(A) > w,
there is a v < A such that s, = s, for v < a < . Set

Ho ={0(ag) : € € Ca}
for v < A. Then (N, Ho = 0, because the C, are disjoint. Also u(H, \ Hy) = 0 for every a, because
H =sup{ac : £ € Co} in A So if we set Ee = H, \ He, we have a witness for (a).

(b) Now suppose that A is regular. For each a < A set H), = [U,<¢., 0(a¢); then H, € ¥ (A2Qd).
The family (H/,)a<x is decreasing; because cf(A) > w, there is a v < X such that pH), = pH, whenever
y<a< X TIfxe,.,H, set D={{:x¢cb(ae)}; then D is cofinal with A so (because A is regular)

#(D) = A\, X Thus (,.y Ho = 0. But now (H, \ Hy)a<x is an increasing family in A, with union
H, e X\ N,.

A2V More topological measure spaces Let X be a topological space. A Borel measure on X is
a measure y with domain the algebra B of Borel subsets of X. A Borel measure u on X is 7-additive if
w(UJG) = supgeg nG for every non-empty upwards-directed family G of open sets in X. (If X is regular,
a totally finite Borel measure on X is 7-additive iff its completion is a quasi-Radon measure.) X is Borel
measure-complete if every totally finite Borel measure on X is 7-additive. A Borel measure p on X is
inner regular for the compact sets if pF = sup{uK : K C F is compact} for every F € B. (If X
is Hausdorff and p is a totally finite Borel measure on X, p is inner regular for the compact sets iff its
completion is a Radon measure.) X is Radon if it is Hausdorff and every totally finite Borel measure p on
X is inner regular for the compact sets. Evidently a Radon topological space is Borel measure-complete.
See GARDNER & PFEFFER 84.

A2W Proposition Let X be a complete metric space.
(a) A semi-finite 7-additive Borel measure on X is inner regular for the compact sets.
(b) X is Radon iff it is Borel measure-complete.

proof (a) It will be enough to show that a totally finite 7-additive Borel measure on X is inner regular for
the compact sets. Let u be such a measure. Let £ C X be a Borel set and € > 0.

For each n € N let G,, be the family of open sets of diameter less than or equal to 27"; then |G, = X.
Because 1 is 7-additive there is a finite H,, € G, such that u((JH,) > uX —27"e. Set Ko = [,y U Hn;
then K is closed and totally bounded, therefore compact, and uKg > pX — 2e.

Now Ky is compact and metrizable, so the Borel measure u[Kj is inner regular for the compact sets
(SCHWARTZ 73, p. 117, Proposition 6). Consequently

pE < u(EnN Ky) + 26 < sup{pK : K C FE is compact} + 2e.

As E and € are arbitrary, p is inner regular, as claimed.
(b) follows at once.

A2X Strong Law of Large Numbers We need this classical result in the following form. If (X, %, u)
is a probability space and (h;);en is a uniformly bounded sequence of measurable real-valued functions on
X, then for almost all (¢;);eny € X" we have

limy, oo 72730, (A(t:) — [ hi) = 0.
A proof may be found in SHIRYAEV 84, chap. IV, §3, Theorem 2 (p. 364).
A2Y Lemma If (X,X%, ) is a Maharam homogeneous totally finite measure space and py is another

measure on X with domain ¥ such that y1 £ < pF for every E € ¥ and 1 X > 0, then g and pq have the
same Maharam type.

proof Take E € N,, such that pF is maximal. Then NV,, = {4A: A C X, A\ E € N,}. So the measure
algebra PX/N,,, is isomorphic (as Boolean algebra) to the principal ideal of PX/N,, generated by (X \ E)*;
which has the same Maharam type as the whole algebra PX/N,,.
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A3. General topology
We need only a handful of definitions and a couple of standard theorems.

~A3A If X is any topological space, a regular open set in X is an open subset G of X such that G = int
G. Now the family G of all regular open subsets of X is a Boolean algebra, taking GAH =GNH, GV H =
int GUH,1\G =int (X \G) for G, H € G; G is the regular open algebra of X. (See KOPPELBERG 89,
1.36-1.37.)

A3B If X is any topological space, its Baire o-algebra is the o-algebra of subsets of X generated by
the zero sets, that is, by sets of the form f~[{0}] where f: X — R is continuous. When X = {0,1}* this
is precisely the o-algebra generated by sets of the form {x : x(£) = 1} for &€ < .

A3C Definitions (a) A Moore space is a regular Hausdorff topological space X with a sequence
(Gn)nen of open covers such that for any € X, any neighbourhood U of x there is an n € N such that
U{G:2e€GeG,} CU. (ENGLEKING 89, p. 334.)

(b) An indexed family (F;);c; of subsets of a topological space X is discrete if for every € X there
is an open set containing x which meets F; for at most one i € I. An indexed family (z;);c; of points of
X is discrete if for every z € X there is an open set containing x which contains z; for at most one i.
(ENGELKING 89, p. 16.)

(c) A topological space X is collectionwise normal if for every discrete family (F;);cr of closed sets
in X there is a disjoint family (G;);c; of open sets such that F; C G; for every i € I. (ENGELKING 89, p.
305.)

A3D Proposition A collectionwise normal Moore space is metrizable.
proof ENGELKING 89, Theorem 5.4.1.
A3E Definitions Let X be a topological space.
(a) The density of X, d(X), is the least cardinal of any dense subset of X. (ENGELKING 89, p. 25.)

(b) If z € X then x(x, X) is the least cardinal of any base of neighbourhoods of z in X. (ENGELKING
89, p. 12.)

(c) The weight of X, w(X), is the least cardinal of any base for the topology of X. (ENGLEKING 89, p.
12.)

A3F Proposition Let X be a metrizable topological space.

(a) There is a discrete family (z¢)ecq(x) in X.

(b) There is a base for the topology of X which is expressible as {G,; : n € N, i € I,,} where (G,;)icr,
is discrete for each n € N.

proof (a) is elementary; see ENGELKING 89, 4.1.15. (b) is Theorem 4.4.3 of ENGELKING 89.
Version of 10.12.91

A4. Indescribable cardinals

For the second half of §4 above, we need some ideas from elementary model theory. The point is that
certain results of the form ‘if  is a real-valued-measurable cardinal, there are many o < & such that ®(«)’
can be effectively approached through an analysis of the logical structure of the assertion ‘®(a)’. Here I
describe a second-order language £ which provides a suitable classification of most of the sentences we are
interested in.

A4A The language L Let £ be the primitive second-order language in which there are countable
infinities of first-order variables x, ¥, ... and second-order relational variables R, S, ...; it being understood
that each relational variable S has a determinate number of places, so that an expression ‘V.S’ must be read
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as ‘for every n-place relation S’ for some n, whose value should be evident from the use of S in the rest of
the formula. Atomic formulae of £ are of the form S(y1,...,yn), where S is an n-place relation symbol,
and compound formulae are constructed from these with the ordinary logical connectives A (‘and’), V (‘or’),
= (‘not’), — (‘implies’) etc., and quantifiers V.S, 35, Yy, Jy. We can now define a notion of satisfaction

(A;Cl,... ,C’k;al,... ,am) = (,25
where A is a set, Cq,...,Cy are finitary relations on A, ay,...,a, are points of A, and ¢ is a formula
of £ with k free relational variables (of place-numbers matching the place-numbers of the C;) and m free

first-order variables. See CHANG & KEISLER 73, §1.3, or EBBINGHAUS FLUM & THOMAS 84, §IX.1 for a
proper discussion of ‘satisfaction’; intuitively,

(A4;Cq,... ,Cr;a1,... ,am) E

means that ¢(C1, ... ,Ck,a1,... ,an) is ‘true’ when bound variables in ¢ are taken to run over the members
of A or the relations on A.
There is a problem here; of course the assertion

(A4;Cq,... ,Cr;a1,... ,am) E

depends on an assumed assignment of the relations C; and points a; to the free variables of ¢. For our
purposes here it will possible to adhere to the convention (an impracticable one for any extended work) that

(A;Ch... ,Ck;CL17... 7(lm)':(]5

includes the assertion that the names of the free variables of ¢ are R;, z;, with 1 <7 < kand 1 < j < m;
that each R; has the same number of places as the corresponding C;; and that in the interpretation of ¢ the
relations C; are assigned to the variables R; and the points a; are assigned to the variables x;.

It will be convenient on occasion to write the formulae above without checking on the domains of the
relations C; nor on whether every a; belongs to A. In this case it is to be understood that

(4;C1,... ,Cria1,... ,am)E @
means
ai, ... a;, € Aand (A;C1[A, ... ,CklA;a1,... ,am) F ¢,
where C;[ A is the restriction of the relation C; to A.

A4B I}, formulae Among the formulae of £ we can distinguish the II}, and ¥} formulae, as follows. A
11§ or ¥} formula is one in which all quantifiers are of the form Vy or Jy. A I} 41 formula is one of the form

V51VSy ... VS
where ¢ is ¥).; a ¥}, ; formula is one of the form

38 ...3Sk¢

where ¢ is IT}. (Here I allow, conventionally, k = 0, so that a II}, formula is also X}, and II}, ;.)

Examples It may help readers new to these ideas if I give some examples. I concentrate on the properties
of cardinals and ordinals because that is the context in which we shall be working.

(i) If we say ‘(X, <) is totally ordered’ we are saying just that (X; =, <;) F ¢1, where ¢; is the II} formula
YuVoVw
((RQ(U7 ’U) A R2(Uv U})) - RQ(uv U}))

A ((Ra(u,v) A Ra(v,u) < Ry(u,v))
A (Rz(u,v) V Ra(v,u)).

11 we sa; , <) 1s well-ordered’ we are saying just that =, < 2, where ¢ 1s the ormula
(ii) If y (X, <) i 1l-ordered’ ying j hat (X <) E @ here ¢ i hH%f 1
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vS(3aS(a)) —
3b(S(b) A Ve(S(c) — Ra(b,c)))
A dr.

(iii) If we say (X, <) is well-ordered and its order type is a limit cardinal’, we are saying that (X;=, <
;) E ¢3, where ¢3 is the formula

JGVFVYx3y
(X(G) A G(z,y)
AX(F) = (3zRa(z,y) A (VERy(t, z) — —F(t, 2))))

N 2,

X(F) being an abbreviation for the formula
VuVovw(F (u, v) A F(u,w)) — Ry(v,w).
If we move the quantifier V.S in ¢o up with VF, we get a ¥} formula logically equivalent to ¢3.
A4C Indescribability (a) Let n € N. An ordinal « is weakly II!-indescribable if it is not 0 and

whenever C, ... ,C}, are relations on a, &1,...,&, < a and ¢ is a [T} formula such that
(Oé;Cl,... ack;flv"' 7£m) E Qba
then there is an ordinal 3 < « such that

(B;C1s o, Cri&ase o 6m) F 0.
I will say that « is weakly II3-indescribable if it is weakly II!-indescribable for every n € N.

(b) If « is weakly I1}-indescribable and ¢ is a I} formula, C1, ... ,Cy are relations on «, &1, ... , &, are
ordinals less than «, and

(a;Cla"' ack;gla"' 7§m)':¢7

then we have a non-empty set

A(¢?Olv"' 7Ck:a§15"' agm):{6:ﬂ<aa (ﬁacla aOk;£17"' 7£m)':¢}ga

The intersection of two such sets is another (because ¢ A1 is logically equivalent to a IT} formula whenever
¢ and 1) are), so they generate a filter on «; this is the II.-filter of . The dual ideal is the II}-ideal of «.
In the same way, if « is weakly II2-indescribable then it has a II3-filter, which is just the union of its
I} -filters, and a dual I13-ideal.
It will be convenient to say that if « is an ordinal which is not weakly I1.-indescribable, then its ‘II}-ideal’
is Pa; and similarly that the II2-ideal of « is Pa if « is not weakly IIZ-indescribable.

Remark A subset of o belongs to the ITL-filter on « iff it is I1%-enforceable at « in the terminology of LEVY
71. BAUMGARTNER TAYLOR & WAGON 77 use the phrase ‘ordinal ITi-indescribable’ where I write ‘weakly
II}-indescribable’.

A4D Proposition (a) A weakly ITj-indescribable ordinal € is an uncountable regular cardinal, and every
closed unbounded set in 6 belongs to the ITj-filter of 6.
(b) ¢ is not weakly ITi-indescribable.

proof (a)(i) If « is a successor ordinal then

(;=3a = 1) F Ry(x1,21), (B;=30 = 1) ¥ Ry(x1,21) V B < .
(ii) If & = w then

(a; <;0) F Vy1 3y Ri(y1,92)
but
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(85 <3 0) ¥ Vy13y2 Ri(y1, y2)
for every f < a.

(i) f w < cf(a) < « take € < o and f : &€ — « such that f[¢] is cofinal with «; let F be the
corresponding binary relation, so that F(n, () iff f(n) = (; then
(CY; < Fa é-) F vy(Rl(y7xl) — Jz R2(y7 Z))>
but

(B <, F:§) 7 Vy(Ra(y, 21) — F2 Ra(y, 2)),
for every f < a.
(iv) Thus 6 cannot be either a successor, nor w, nor of cofinality less than 8, and must be an uncountable
regular cardinal.

Let C be any closed unbounded set in §. Write F(&,n) for ‘¢ <n € C’. Then (0; F;0) E Vy3z Ry (y, 2),
and if o < 6 is such that (a; F;0) F Vy3z Ry (y, z) then a € C. So C belongs to the IT}-filter of 6.

(b) Let f: ¢ — Pw be a surjection, and write F(&,n) for ‘n € f(£)’. Let ¢ be the formula
VSIYWVz(R1(2z,21) — (S(2) < Ra(y, 2)))-
Then for a <'c,
(<, Fiw) E ¢

means just that f[a] = Pw, which is true iff @ = ¢. Because ¢ is a IIi formula, ¢ is not weakly IIi-
indescribable.

Remarks (a) In fact, an ordinal « is weakly II}-indescribable iff it is a regular uncountable cardinal, and
in this case its II}-filter is just the filter generated by the closed unbounded sets. See LEVY 71, Theorem 6,
or HANF & ScorT 61.

(b) Of course the argument above shows that 2* is not weakly IT}-indescribable for any cardinal A. More
generally, no cardinal power A\? can be weakly IT}-indescribable if 1 < A < A?.

A4E For the next theorem we need names for some relations on the class On of ordinals. (i) Let
p : On x On — On be the bijection corresponding to the familiar well-ordering of On x On: p(&,n) < p(¢', 1)
iff either max(£,n) < max(¢',n’) or max(¢£,n) = max(¢',n') and € < & or & =& and n < . Let Py be
the corresponding ternary relation on On, so that P(&,n, () iff p(§,n) = ¢. (ii) Let Pa, P; be the ternary
relations on On corresponding to ordinal addition and multiplication. (iii) Let ¢; and ¢ be the projections
of p~1, so that & = p(q1(£), q2(€)) for every € € On. Let P4 be the ternary relation corresponding to the
function (1,€) — ¢2(¢}(€)) : w x On — On.

Theorem For each n > 1 there is a IT} formula ¢ such that whenever ¢ is a I1} formula, Cj, ... ,Cy are
relations on On, &;,...,&, are ordinals, then there is a one-place relation C' on On such that for every
infinite cardinal «

(OZ;Ch... 7Ck?;£1u"' 76771)’:1[) <~ (Q;<7P17P2,P3,P4,C;)':¢.

proof LEvY 71, Theorem 8.

AA4F Theorem Let k be a weakly H}L-indescribable cardinal, where n > 1. Then the H}L-ﬁlter on K is a
normal filter closed under Mahlo’s operation.

proof LEvVY 71, Theorems 9 and 15.

A4G Theorem Let s be a weakly II} ;-indescribable cardinal, where n € N. Then the set of weakly
IT}, -indescribable cardinals less than x belongs to the IT}, | ;-filter on .

proof LEvY 71, Theorem 16b.

A4H Theorem Let x be an infinite cardinal and A a subset of k. Then the following are equivalent:
(a) A does not belong to the ITj-ideal of k (so that, in particular, x is weakly II}-indescribable);
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(b) A is ITi-fully stationary in the sense of 4D.

proof (a)=(b)(i) 7 Suppose, if possible, that (a) is true but (b) is false. Let (f¢)¢<, be a family of
regressive functions on x witnessing not-(b); that is, such that there is no uniform ultrafilter F on &,
containing A, for which lim,_, z fe(c) exists for every £. Because & is regular (A4Da), this means that for
any g € k™ the family

{ANC: ¢ <RI ULfT 9O} - € <}
is not included in any ultrafilter on &, that is, does not have the finite intersection property. So we have
Vger® 3 (<k, Ie€[r]<¥suchthatV ne A\ ¢ 3 £ €I such that g(§) # fe(n). (*)

Evidently (*) can be coded as a II} formula; the details are as follows. Let h : k — [£]<“ be any surjection,
and write E((,n) for ‘¢ <n e A’, H({,v,n,0) for *{ € h(y) and fe(n) # 6. Let ¢ be the formula

VS (VudvS(u,v)) —
323y (R (2, y) —
Jx3dS(x,d) A Re(z, ¢, y, d))
Then (*) says just that
(k; E,H;) E ¢.

Accordingly the set

B={a:a<k, (E H;)FE ¢}
belongs to the II}-filter W of &.

(ii) Let C be the set of non-zero limit ordinals o < & such that hla] = [a]<“. Then C is a closed
unbounded set in k so C' € W, by AdDa. Consequently AN BN C is stationary. But if « € BN C then

Vgea* 3 (<a,le [a]< such that
VneanA\( 3 &el such that g(&) # fe(n).

It will be helpful to put this into a logically equivalent form. For 0 < a < k let g, : Kk — « be given by
setting g (&) = fe(a) for every £ < k. Then for « € BN C we have

Vgea* 3 (<a,Ie€[a]<¥suchthat g,[I#glI VneanA\(.

In particular, there are {, < a and I, € [a|<“ such that g, [I, # galln for every n € N A\ (.. Because
« is a limit ordinal we may take it that I, U go[ls] C (o-

Now AN BN C is stationary, so by the pressing-down lemma there is a { < k such that 41 = {a:a €
ANBNC, {, = (} is stationary; next, go [l C ¢ X ¢ for every a € Ay, so there is a finite function e such
that As = {a: @ € Ay, golln = €} is stationary. Of course I, = dom(e) = I say, for every o € Ay. Now
take a, 0 € Ay such that ¢ < 8 < a. Then 8 € anN A\ (q, 50 g3lla # galln; but on the other hand
gﬂrIoz =e=galla- X

So (a)=(b).

(b)=(a) 7 Suppose, if possible, that (b) is true but that (a) is false; either  is not weakly ITi-inde-
scribable or  \ A belongs to the II}-filter on . In either case there must be a ITj formula ¢ and relations
Cq,...,C, ordinals &1, ... , &, such that

(E;Ch... 7Ck:;£17~'- ,fm) ’:¢, (a;Cl,... 7Ck;§17~~~ ,fm) E[(b VY a € A.
We may suppose that ¢ is of the form

VRk+1 PN RkMEImmHmeJrQ ‘e Elmm+2371me+25w

where 1 has no quantifiers, since ¢ is surely logically equivalent to such a formula. Set A’ = {a : a €
A& < aV j<m} Foraec A, saying that (o;Cy,...,Cx;&1,... ,Em) ¥ ¢ means just that there are
relations Dai, ... , Doy on o and functions fa1 : @ — @, faz : @®> — ..., fas : @° — a such that whenever
M,...,Ns < a then

(OK;C1,... 7CkaDala"' aDOéT;gla"' 7£m77717fa1(771)a"' 7nsvfas(n1a"' 7”8)) F ﬂl/’-
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Choose such Dy, fo; for a € A’. For = (n1,...,n;) € k7, where 1 < j < s, set

gi (@) = faj(m, ... ,n;) if max(m,....,n;) <ae A,
= 0 otherwise.
Set G = {gq:1€Ujcje #'} € [Regr (k)] =~.
Now (b) tells us that there is a uniform ultrafilter F on s, containing A, such that lim,_, 7 g(«) exists
for every g € G. Because F is uniform, A’ € F. Set
hj() = lima—F g7 (@) = lima—7 fa(7)
for j < s, 7 € k7. Fori <r, write D;(7) for ‘{a: D¢i(7) € F}'. Now for any formula x without quantifiers,

and any 7y,...,ns < K, we have

(H;Ola"' 7Ck7D17"' 7DT;£17"' 7£m77717h1(771)7--~ 77737}1’8(771’"' 7773)) ':X
if and only if the set of a < x for which

(04;01,... 7Ckaa17"~ aDar;fla”' 7§m77717f041(771)7~~~ 7fas(7717~-~ 7775)) E X

belongs to F; this is an easy induction on the length of x. In particular, it is valid when x is —). But this
means that

(K’;Clv"' 7CkaD17"' 7DT‘;£17"' 7fm7771,h1(771)7--- 7ns;hs(7717"' 7775)) F _'1;[}
for all 7y,... ,ns, so that Dy,...,D, and hq,... ,hs witness that

(K‘;Ol?"' 7Ck;§17"' af’m) E{¢7

contrary to hypothesis. X
Thus (b)=(a).

Remark This is due to Kunen and J.E.Baumgartner; in the form here it is taken from FREMLIN & KUNEN
N87. The point is that it puts meat onto Theorem A4E by actually exhibiting a universal II} formula ¢. In
§4 above I show how it can be used to investigate weakly II}-indescribable cardinals without further recourse
to the logical characterization. Compare ‘Baumgartner’s principle’ as described in ERDOS HAINAL MATE
& RADO 84, 30.6 and 31.3.

It seems that no corresponding combinatorial characterization of weakly IIi-indescribable cardinals is
known.

A4l Theorem Let x be an infinite cardinal, ¢ a formula of £, C1,...,C relations on k, &1,...,&n
members of k. For each set I let 2; be the measure algebra of {0,1}! and P; the p.o.set ; \ {0}. Now if
I and J are any sets both of cardinal strictly greater than x, and 3 < k,

H_]P’I (B701a 7Ok;€17"‘ >€m) F (b
= H_IP,] (57017 7016;51)"' 75771) ’:Qb

proof I begin with some preliminary remarks. It will be convenient to suppose that I and J are disjoint;
this is legitimate because P; is determined up to isomorphism by the cardinal of I. Recall that if K C I
then we may regard Py as a subset of P, corresponding to the canonical map from {0,1}! to {0,1}¥ and
the induced measure-preserving homomorphism from Ax to 2;; and that we may also think of P; as an
iteration Px *Pp i (KUNEN 84, 3.13), if you will allow me to write P\ - rather than Pi\f( for what is really
a Pr-name.

Now for the main argument, which proceeds by induction on the length of ¢.

(a) If ¢ has no quantifiers the result is trivial, since, for instance,

H_IP’I éi(éjp”' ,éj") < Ci(gjlv-“ 7£jn)7
ke, & < B <= & < B.

(b) Suppose that ¢ is of the form 35S and that
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Fp, (B;...) F ¢.

Then there must be a P;-name R for a relation on 3 such that
ke, (B;... ,R,...)E1.

Because P; is ccc, the P-name R can be described in terms of not more than max(w, x) = x members of
Pr; now there is a K C I of cardinal at most k such that Pk, regarded as a subset of P;, contains all of
these; so that we may think of R as a Pg-name.

Let L € J be a set of the same size as K. Then any bijection between K and L gives rise to an
isomorphism between Px and Pr. Let S be a P-name for a relation on corresponding to R under such
an isomorphism. If we regard P; as the iteration P * P\ g then we have

ey (Fppge (Bs--- R, ) E ).
So

Fp, (Fepp (Bi--o .S, ) E ).

At this point we move to the intermediate model V-, From this standpoint S represents a fixed relation
on 3. Also I'\ K and J \ L both have cardinals greater than k. So we can use the inductive hypothesis to
see that

IFp, (”‘PJ\L (B, ,S,,,.) |:¢)7
that is,

e, (B;...,8,...)E1p.

So S witnesses that

H_IF’,] (ﬂ7)':¢a

and we have

Fe, (G- ) F & = Ire, (B...) F &5
of course the reverse implication is equally valid.

(c) If ¢ is of the form VR we can argue similarly; given

“_]P’I (Bv)'ng

and a Py-name S for a relation on 3, we express S as a Pp-name for some L C J of size at most , copy
this into a Px-name R for K C I, and use the inductive hypothesis on

o (Bso Ry B

in VP7 to see that

e, (B;...,8,...)F,
as required.
(d) If ¢ is of the form Yz or x4 the same arguments apply, taking K and L to be countable if we wish.

A4J Proposition Let n € N and let s be a weakly II.-indescribable cardinal such that the cardinal
power k% is equal to k. Let A > x be any cardinal; let 2, be the measure algebra of {0,1}* and P, the
p.o.set Ay \ {0}. Then

lFp, & is weakly II!-indescribable.

Remark This is due to Kunen. I omit the proof because I shall not rely on it. A sketch of the argument
for the corresponding theorem for Cohen reals may be found in KUNEN 71.

A4K I12-indescribability For the next step we need a higher-order language. Let £3 be the extension of
L in which third-order relational variables R are added, with corresponding atomic formulae R(u1, ... ,u;),
where each u; is either a first-order or second-order variable. In L3, the Hg formulae are those in which all
quantifiers govern first- and second-order variables, and the I13 formulae are those of the form
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VR1...VRy,
where 1 is a I3 formula. Now a non-zero ordinal  is weakly II3-indescribable if whenever ¢ is a II3
formula in L3 with no free third-order variables and C1, ... ,C} are relations, &1, ... , &, are members of K

such that
(K;;Cla"' 7Ck;€17"‘ 7§m) F ¢7

then there is an « < k such that

(a;;C1, ... Crs&ay e ém) E 0.

For such k, the sets

{Oél(O[;;Cl,... 7Ck;€17'~' agm)':(ls}

where ¢, C1,... are such that (k;;C1,...) F ¢ and ¢ is I3, generate the II3-filter on k. Finally, & is
[12-indescribable if it is weakly I13-indescribable and 2* < k for every A < k.

AA4L Now I can state one of the basic results of the theory of large cardinals, due originally to HANF &
ScoTT 61. I omit the proof, as it has appeared more than once in hard covers, but I recommend comparing
it with the arguments given in these notes for the corresponding results for atomlessly-measurable cardinals
(4P et seq.).

Theorem If  is two-valued-measurable, it is I13- indescribable, and its IT3-filter is included in its rvm filter.

proof See DRAKE 74, §9.3, JECH 78, p. 385, Lemma 32.2 or KANAMORI & MAGIDOR 78, §1.4.
Version of 18.9.92

Problems

I collect here some of the questions which arise more or less naturally from the work above and seem to
be open.

P1 Construction of atomlessly-measurable cardinals The most important problem is surely some-
thing like this.

(P1) Let N be a model of ZFC and x € N an atomlessly-measurable cardinal in N. Does it
follow that there are an inner model M C N, containing k, such that & is a two-valued-measurable
cardinal in M, and an M-generic filter G in a random real p.o.set P € M such that G € N and
NNPkrkC MG]?

Put in this form, it is hard to believe in the possibility of an affirmative answer (though note Theorem 2D).
But so long as the question remains open, we have no way of proving consistency results for atomlessly
-measurable cardinals except through Solovay’s construction in Theorem 2C above. This construction is
not wholly inflexible (see, for instance, 2E, 21, 2L, 4Lb). But atomlessly-measurable cardinals built in this
way share a vast number of special properties. Some are known to be possessed by atomlessly-measurable
cardinals in general; many of the results in these notes were suggested by this approach. But others seem
inaccessible to present techniques. By and large, positive answers to the other problems here could be taken
as (weakly) suggesting a positive answer to P1; while negative answers would often imply a negative answer
to P1.

P2 Measure algebras of atomlessly-measurable cardinals The Gitik-Shelah theorem (3F) tells us
that if k is an atomlessly-measurable cardinal and v is a witnessing probability on « then the Maharam type
X of (k, Pk, v) is at least min(2", x(+)); and of course it cannot be greater than 2. So if 2% < x(+*) then
A\ = 2%, We get a scrap more information in 7Q; if 7 is the least cardinal such that 27 = 2° for v < § < &,
then v < k and A7 = 2", so that either 27 = 2 or 27 < A. Of course this still does not specify A completely.
So we may ask

(P2a) Is there a combinatorial characterization of \?

An affirmative answer would have a variety of consequences; not least, that any witnessing probability on
+ would have the same Maharam type — equivalently, that every witnessing probability on x would be
Maharam homogeneous (3L). So a less ambitious question is
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(P2b) If « is an atomlessly-measurable cardinal and v is a witnessing probability on &, must
(k, Pr,v) be Maharam homogeneous?

Conceivably it makes a difference if v is normal; so I add

(P2c) If k is an atomlessly-measurable cardinal and v is a normal witnessing probability on ,
must (k, Pk, ) be Maharam homogeneous?

It may be that a negative answer can be achieved using Solovay’s construction on an appropriately
complex two-valued-measurable cardinal. For in 2H we saw that if x is a two-valued-measurable cardinal
and PP is a random real p.o.set, then the possible Maharam types of (k, Pk, 7) in V¥ are determined by the
cardinals Trz(k; A). So I ask

(P2d) If k is a two-valued-measurable cardinal with two k-additive ultrafilters Fy, Fa and
corresponding maximal ideals Zy, Zy, and if A > & is a cardinal, are Trz, (k; A) and Trz, (k; A)
necessarily equal?

Of course Trr, (k;k) = 2% = Trg,(k; k). Note also that in the langauage of JECH 78, §28, Trz,(k;A) =
#(jx,(N), where jg, : V — V¥ /F,; is the standard elementary embedding.

The construction of 3Mb is relevant to P2a-P2b above. For take v < & such that 27 = 2% for v < § < &
(7P). Then Tr(,)<x (;27) = 2". Assume that 27 < 2". In this case, if v is any Maharam homogeneous normal
witnessing probability on x, with Maharam type A, then (as remarked above) 27 < A, so Try, (k; \) = 2",
and there is a witnessing probability v on x of Maharam type 2*. We may therefore ask

(P2e) If & is an atomlessly-measurable cardinal with witnessing probability v, and 2° < 2% for
every ¢ < k, does it follow that the Maharam type of (k, Pk, v) is 277

As a special case of this we have

(P2f) If ¢ is atomlessly-measurable, with witnessing probability v, does it follow that the
Maharam type of (¢, Pc,v) is 2°7

P3 Indescribability In 4R we saw that if s is an atomlessly-measurable cardinal constructed by Solovay’s
method, then either k is not weakly I}-indescribable, or k is weakly I12-indescribable and its TI3-filter is
included in its rvm filter. We also have a characterization of weak IIi-indescribability in terms of covering
numbers (6L). This begs many questions. For instance:

(P3a) If x is a weakly II}-indescribable atomlessly-measurable cardinal, must it be weakly
I12-indescribable?

(P3b) If « is a weakly IT}-indescribable atomlessly-measurable cardinal, must its IT!-filter be
included in its rvm filter?

(For n =0 and n = 1, yes; see 6L.)

(P3c) If K is an atomlessly-measurable cardinal strictly less than ¢, must it be weakly II}-
indescribable?

P4 The cardinals of analysis A great many cardinals between w; and ¢ have been named and studied
by analysts; see VAUGHAN 90. The existence of an atomlessly-measurable cardinal is known to have a
dramatic effect on the patterns formed by these cardinals. For instance, if x is an atomlessly-measurable
cardinal, then

(i) non(R, N') = wy, where N is the ideal of Lebesgue negligible sets (6Ga); it follows that cov(R, M) =
add(M) = add(N) = p = wy, where M is the ideal of meager subsets of R and p = M,_contered, as in
FREMLIN 84 and DOUWEN 84; see FREMLIN 85 or BARTOSZYNSKI & JUDAH P90.

(ii) b < x, where b = add(NY/F) , writing Fy for the Fréchet filter on N (5Lb).

(iii) cf(0) # K, where 0 = cf(NV) (7Ka).

(iv) cov(R,N) > k (in fact, cov(X,N,) > k for any non-trivial Radon measure space (X, u)) (6B).
Consequently s < non(R, M) < c¢f(M) < cf(N) (FREMLIN 85 or BARTOSZYNSKI & JUDAH P90 again).

Once again, there are obvious gaps. The principal one seems to be
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(P4a) If x is an atomlessly-measurable cardinal, must 9 be less than x?
Concerning covering numbers, we have

(P4b) If there is an atomlessly-measurable cardinal, must cov(R, ') be exactly ¢?
(see 2HDb). Then concerning the numbers non(.,.) we have

(P4c) If & is an atomlessly-measurable cardinal, must non({0,1}* N, ) be w;?

Because we know that non({0,1}%,N,,,) = w for § < k (6G), we can apply results from §4; it is not hard
to construct a X3 formula ¢ such that, for ordinals a > wy, (a;;w,wq) E ¢ iff non({0,1}*,N,,.) = wi. Now
if non({0,1}%,N,,.) > w1, then (k;;w,wi) F —¢ while (o;;w,wq) i —¢ for every o < k, and & is not weakly
II3-indescribable.

An associated question comes from 6F:

(P4d) If k is an atomlessly-measurable cardinal, must there be a set A C R, of cardinal x,
such that no uncountable subset of A is Lebesgue negligible?

Again, we get a positive answer if  is weakly IT3-indescribable, using 6F.
A curious question arises from 3Bb.

(P4e) Let x be an atomlessly-measurable cardinal and A a subset of R. Must there be a set
B C A such that #(B) < x and pj B = p} A, writing p, for Lebesgue measure?
If #(A) < k, yes, by 3Bb; but the general question seems to be open.
A question closely related in form, if not in content, to P4d, is

(P4f) If k is an atomlessly-measurable cardinal, must there be ccc partially ordered sets P and
@ such that S(P x Q) > k?
As before, this corresponds to a X3 formula, so that 7D shows that we shall have an affirmative answer if x
is weakly I1i-indescribable. The same route leads from 7F to

(P4g) If  is an atomlessly-measurable cardinal, must there be an w;-entangled subset of R of
cardinal k?

Returning to named cardinals, let a be the smallest cardinal of any infinite maximal disjoint family in
the algebra PN/[N]<¢; then b < a (DOUWEN 84, Theorem 3.1a); but

(P4h) If & is atomlessly-measurable, must a be less than k7

P5 Cofinalities The remarkable results from Shelah’s pcf theory which give us 7Ka-d leave some natural
questions open. The most important has already been listed as P4a. But it seems that even the following
bold conjecture might be true:

(P5a) Let k be an atomlessly-measurable cardinal. Let (P;)¢<x be a family of partially ordered
sets where A < k and cf(P;) < k and add(P;) > w for every ¢ < A. Does it follow that
Cf(H<<)\ P() < K?
If k = ¢, yes (TKf); if add(P¢) > A for every (, yes. A positive answer to P9b below would settle the general
question. A natural special case of Pba is

(P5b) Let k be an atomlessly-measurable cardinal. Must cf(w}) be less than k7

P6 More measure algebras In paragraph P2 above I listed the known facts concerning the Maharam
types of witnessing probabilities on atomlessly-measurable cardinals. But if we allow ourselves general
probability spaces (X, PX, ) we can expect other phenomena. Indeed, Theorem 8A shows that PMEA
implies that there are probability spaces (X, PX, ) of arbitrarily large Maharam type. Now in this context
the question arises

(P6) Is it consistent to suppose that there is a cardinal Ay such that for every cardinal A > Ag
there is a Maharam homogeneous probability space (X, PX, ) of Maharam type A\?

P7 Qm ideals If a cardinal k is real-valued-measurable, it is of course also quasi-measurable; so we have
both an rvm ideal Jyvm(x) (1I) and a qm ideal Jqm(x) (9C). Evidently Jrvm(k) 2 Jqm(k), and they are
equal if x is two-valued-measurable (9D).

Now suppose that x is two-valued-measurable and that P is a random real p.o.set. If we have a P-name
7 for a normal w;-saturated ideal of Pk, then 7y = {B: B C &, IFp Be I} is a normal wi-saturated ideal



114

of Pk (because P is ccc; compare 2Jb), and therefore is the null ideal of some normal probability v; on k.
Now if 7 is the corresponding P-name for a probability on x, as in 2C, we have IFp N, C 7, by 2J(a-ii). Tt
follows easily that, in V¥, 7 is the null ideal for a measure & on s (in V¥, take a member F of 7 of maximal
71-measure, and set A = (A \ E) for every A).

So in this case we surely have

”_]P’ x7rvm(/v€) - qu(/%)
But the question now arises,

(P7) If k is a real-valued-measurable cardinal, is it necessarily true that Jrvm(k) = Jqm(x)?

P8 Sequential cardinals A question going back to MAZUR 52 is: for which cardinals &, if any, is there
a sequentially continuous function f : {0,1}* — R which is not continuous? Let us call such cardinals
‘sequential’ for the moment. It is easy to see that a real-valued-measurable cardinal is sequential, and it
is known that the first sequential cardinal, if there is one, is quasi-measurable. (See PLEBANEK P91 for a
survey of known results, with references; also FREMLIN 84, 24D-E.) But the following, raised by KEISLER
& TARSKI 64, p. 270, seems still to be open:

(P8) Must the first sequential cardinal, if there is one, be real-valued-measurable?

P9 The measure of s’ Let s be a real-valued-measurable cardinal, and  a normal witnessing probability
on k. For any set I we can form the simple (completed) product probability on !, as described in FREMLIN
84, A6KDb; let us call it v7. What can be said about v?

The most important question seems to concern the covering number cov(x!,N,,) (see A2P). If I is finite,
then there is a k-additive probability with domain P(x!) extending v; (use the construction of part (a-ii)
of the proof of 50; the same idea appears in 2Mb, 4K and 5J), so that cov(x!,N,,) > k. But I ask

(P9a) If  is a real-valued-measurable cardinal, v a normal witnessing probability on x, and
vy the completed product probability on &%, must cov(kN, N,,) be x?

A reason for believing that there may be a positive answer to this question is that if v is constructed from
a normal ultrafilter on a two-valued-measurable cardinal x by the method of 2C, then cov(k!,N,,) = & for
every non-empty set I of cardinal less than k. A reason for taking the problem seriously is that a positive
answer would solve the following problem positively:

(P9b) If k is a real-valued-measurable cardinal and v is a normal witnessing probability on &
and A C Pk \ N, has cardinal less than r, does it follow that there is a countable N C & such
that AN N # () whenever A € A?
(To answer P9b from P9a, consider the family {(x \ A)N : A € A}; if cov(x,V,,) > & this cannot cover
kN.) With a positive answer to P9b we could deal with P5a, or go on to
(P9c) If k is a real-valued-measurable cardinal with normal witnessing probability v, Y a set
of cardinal less than k, Z a o-algebra of subsets of Y and f : Kk — Z a function, must there be a
set M € T such that v{{: f(§) C M} =17
(Set Ay ={¢:y€ f(§}foreachyeY, A=J{A,:y €Y, vA, =0}. If N € [k]=* is such that NN A, # 0
whenever VA, > 0, set M = Uy f(§) € T; then f(§) € M whenever § € )\ A.)
With a positive answer to P9c we could now prove generalisations of 5Ca and 5Da with arbitrary o-ideals
in the place of [Y]<?. Another class of special cases is suggested by 3Bc.

Version of 18.9.92
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Version of 18.9.92
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References in bold type indicate definitions; references in italics indicate passing references.
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T-additive measure (A2V)

additivity of a partially ordered set 7K, A1Ac, A1Ba, A1H, A1l, P/

additivity of an ideal A2Cd, A2Db, P/; see also k-additive ideal (A1Bf)

antichain 2A, A1P

Aronszajn tree see k-Aronszajn tree (A10b)

arrow relation 50, 5P, A1S

atom in a measure space A2Ac, A2Bg

atomless Boolean algebra 9D

atomless measure space A2Be, A2Kc

atomlessly-measurable cardinal 1C

Baire o-algebra A2G, A3B

Banach-Ulam problem 1A, 1B

Baumgartner J.E. A4dH

Borel measure on a topological space A2V

Borel measure-complete topological space 6M, A2V, A2W

cardinal exponentiation 5E, 7P, 7Q, 9L, 90

ccc Boolean algebra A2Hb

cce p.o.set 9F

ccc partially ordered set 7C, 7D, P4

chains in PN 5K

club filter A1E, A4D

cofinal set in a partially ordered set A1Ab

cofinality of a partially ordered set 7H, 7J, 7K, 7L, TM, 7N, 90, A1A (A1Ab), A1Ba, A1H, A1, P4, P5
collectionwise normal topological space 8F, 8N, A3Cc, A3D

compatible elements 2A, A1P

complete filter see k-complete filter (A1Bb)

complete measure space A2Bf, A2Cd, A2Db, A2Gd, A2J, A2Kc, A2Q
complete metric space 6M, A2W

completely generating set in a Boolean algebra A2Ha

consistency of axioms 1E, 2E, 21, 2L, 8C, 8I, 9G

covering number see cov(X, A) (A2Pa), cov(X,N,), covsn(a, 3,7,0) (A1J)
cylinder set A2Ga

decomposable measure space A2Bd, A2Hh, A2Ja
decomposable ordinal 8P, A1Dd

Dedekind o-complete Boolean algebra SR

dense subset of a p.o.set 2A

density of a topological space 6M, A2Hi, A3Ea
diagonal intersection of a family of sets 4B, A1E
diamond see <>,

discrete family of points A3Cb, ASF

discrete family of sets 8E, A3C (A3Cb), A3F
down-topology of a p.o.set 2A

duality between linear spaces A20

elementary embedding P2
entangled set 7TE, 7F

finite-support product of partially-ordered sets A1R
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Fubini’s theorem see repeated integral

fully stationary see ITi-fully stationary (4Db)

GCH 2D, 2E

Gitik M. Intro.

Gitik-Shelah theorem 3F, 9H

greatly Mahlo cardinal 4Ac, 4B, 4C, 4G, 41, 4K, 9J
greatly Mahlo filter 4Ac, 4B, 4G, 4K

Haydon R.G. Intro.

Hilbert space 5H

homogeneous Boolean algebra A2Gf
hyperstonian space A2L (A2La)

ideal of sets A1Ba

image measure A2Db

inaccessible cardinal see weakly inaccessible (A1Da), strongly inaccessible (A1Da)
incompatible elements in a p.o.set 2A

indecomposable ordinal 8P, A1Dd

indescribable cardinal see II"-indescribable, weakly IT7"-indescribable (§A4)
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inner regular measure A2J, A2V, A2W

inverse-measure -preserving function 1J, 3H, A2Da, A2Fe, A2Gd, A2Jd, A2K, A2Lb

Jénsson algebra 5D, 9L, A10a
Jensen R. 1H
Juhasz I. 8M

Kunen K. Intro., 1E, 2C, 3A, 4L, 4T, 5G, 5L, 5N, 5P, 8C, 8J, 9N, A4H, A4J

Lebesgue H. Intro.

Lebesgue measure Intro., 14, 1D, A2Gb, A2Kc, P4

lifting of a measure space A2Q (A2Qa)

Lifting Theorem A2Q

locally compact topological space 8N

locally determined measure space A2B (A2Bc), A2Cd, A2J]
lower integral 64, A2E

lower semi-continuous function A2J

Luxemburg W.A.J. Intro.

Maharam homogeneous measure 1G, 11, 2H, 3J-3M, A2H (A2Hg), A2Ka, A2Y, P2

Maharam type of a measure space 2H, 21, 3F, 3G, 3H, 31, 3J, 3K, 3L, 3M, 6D, 61, 7Q, 8A, A2Hg, A2Ka,
A2Y, P2, P6

Maharam’s Theorem A21

Mahlo cardinal see weakly Mahlo (4Aa), greatly Mahlo (4Ac), a-Mahlo (4B)

Mahlo’s operation 4A (4Ab), 4B, 4F, 9J, A4F

Martin’s Axiom 9G

Mathias A.R.D. Intro.

meager sets in R P

measurable algebra 2B, 8R, A2Fc

measurable cardinal see two-valued-measurable (1Cb)

measurable function A2Ae, A2Gg

measure algebra 6C, A2F (A2Fa), A2G, A2l, A2Jd, A2La, A2Q, P2, P6

measure algebra of a measure space A2Fd, A2La, A2U

measure space A2A

measure-preserving homomorphism A2Fe, A2Gd, A2Ib, A2Jd
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measure-preserving transformation 1J; see also inverse-measure -preserving (A2Da)
metric of a measure algebra A2Fb, A2Hi

metric space 6M, A2W

metrizable space 8G, A3D, A3F

Moore space 8G, A3Ca, A3D

negligible set A2Ad

NMA 8G, 8H, 81, 8J, 8K, 8M, 8N, 8R, 8S
non-stationary ideal A1E

normal filter 1Fb, 1G, 11, 4Ac, 4F, 91, A1E, A4F

normal ideal 1F (1Fa), 9B, 9C, 9K, A1E, P7

normal measure 1Fc, 1G, 8H

normal measure axiom see NMA (8H)

normal topological space 8E, 8F, 8G, 8M, 8N

normal witnessing probability 1H, 11, 2J, 3L, 6A, P2, P7

Nyikos P.J. 8M

order-closed subalgebra of a Boolean algebra A2H, A2Ic
order-continuous linear functional 6N

partially ordered set A1Aa; see also p.o.set (2A)
partition relations see arrow relation (A1S)

pef theory A1l

PMEA 8B, 8C-8G, 8J, 8S, 9H

p.o.set 2A; see also partially ordered set (A1Aa)
precaliber of a Boolean algebra 5D, 6C, A2T, A2U
Prikry K. Intro., 6F, 9F

principal ideal in a Boolean algebra A2Gf, A2Hc
probability A2Ba

probability algebra A2Fa

probability space A2Ba

product measure A2G, P9

product measure extension axiom see PMEA (8B)
product of partially ordered sets 7C, 7D, 7H, 71, TK-7TN, 90, A1H, A1l, A1R , P5
purely atomic Boolean algebra 9D

purely atomic measure space A2Bg

pushing-down lemma A1FE

qm filter 9C, 9J

qm ideal 9C, P7

quasi-Radon measure space 3A, 3B, 6D, A2J (A2Ja), A2V
quasi-measurable cardinal §9 (9C), P7, P8

Radon measure space 3H, 31, 6A, 6B, 6E, 61, 6L, 8A, A2J (A2Jb), A2K, A2L, A2Pb, A2V, P/
Radon topological space 6M, A2V, A2W

Radon-Nikodym theorem 2C, A2Fg

random real p.o.set 2B, 2C, 2J, 40, 8Q, P1, P7

rapid filter 5G, A1Cb

real-valued-measurable cardinal 1C

rectangle algebras 5J

reduced product of partially ordered sets 71, 7K, 7L, 7M, 90, A1H , A1l
regressive function 1Fa, A1Db, A1E

regular cardinal 8P, A1Ab

regular open algebra 24, 2B, 9H, A3A

regular open set A3A

relatively order-closed set 80, 8P
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relatively stationary set 80, 8P

repeated integral 3A, 5H, 51, 6A, 61, 6J, 6K, A2Ge

Riesz space 6N

rvin filter 11, 2K, 2L, 4K, 4N, 4P, 4Q, 4R, 5D, 6L, 7K, A4L, P3
rvim ideal 11, 2J, 2L, 4K, 4N, 4P, 4S, 5F, P7

saturated ideal see k-saturated ideal (A1Bf)
scalarly measurable function 5H, A20
second-order language A4A

selective ultrafilter A1Cc

semi-finite measure space A2B (A2Bb)

sequential cardinal P8

sequentially continuous function P8

sequentially order-continuous functional 6N

Shelah S. Intro., 5D, A1l

Shelah covering number see covgy(a, 58,7,6) (A1J)
simple group 8R

singular cardinals hypothesis 8K, A1N

Solovay R.M. Intro., 1E, 1H, 6F

Solovay’s construction 2C, 2H, 2J, 4R, P1, P2, P3, P7, P9
Souslin number of a partially ordered set 7C, 7D, A1P, A1R, P4; of a Boolean algebra 5D, A1P
Souslin’s hypothesis 7D

stationary set 4A4a, 4F, A1Dc, A1F, A1G

strictly localizable measure space A2Bd

strong law of large numbers A2X

strongly compact cardinal 8C'

strongly inaccessible cardinal 1D, A1Da, A1S
subspace of a measure space A2Ab, A2J
successor cardinal 8P

supercompact cardinal 8

third-order language A4K

Todorcevi¢ S. 5P, TF

topology base A3F

totally finite measure A2Ba

totally ordered set 7F, AlAc

trivial measure space 1A, 1B, 1D

two-valued-measurable cardinal 1Cb, 1D, 1E, 1Gb, 1Ha, 11, 2D, 2E, 2H, 2I, 2K, 2L, 5N, 5P, 9G, A4L,
P1, P7

Ulam S. Intro.

Ulam matrix 1F

Ulam’s Dichotomy 1E

Ulam’s Theorem 1D

uniform filter A1Bc

up-antichain in a partially ordered set A1P

upper integral 34, 64, A2E, A2Je

upwards-ccc partially ordered set A1Q

upwards-compatible elements in a partially ordered set A1P
usual measure on {0,1}' A2G (A2Ga), A2, A2Jc, A2Pb

vector lattice 6N

weakly compact cardinal A1S

weakly II}-indescribable cardinal A4C (A4Ca), A4D

weakly ITi-indescribable cardinal 4Dc, 4F, 4G, 4H, 41, 4K, 4L, 4R, 6L, A10b, A1S, A4C (A4Ca), A4D,
A4H, P3
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weakly II3-indescribable cardinal A4Ca, P/

weakly IT!-indescribable cardinal A4C (A4Ca), A4F, A4G, A4J
weakly I13-indescribable cardinal 4P, 4Q, 4R, A4C (A4Ca), P3
weakly I13-indescribable cardinal A4K, A4L

weakly Mahlo cardinal 4Aa, 4B, 8P

weakly inaccessible cardinal 1D, 4Aa, 8P, 9B, A1Da

weight of a topological space 3A, 3B, 6J, 6K, A3Ec

witnessing ideal 9C

witnessing probability 1C, P2

Woodin H. 6K

Zakrzewski P. 1J, 6K

a P4

Ala A2Hc

add(P) see additivity of a partially ordered set (A1Ac)
add(p) see additivity of a measure (A2Cb)

b P4

¢ =29 1D, 4L, 5E, 5N, 9D, 9L, 9N, 90, A4D
cf(P) see cofinality of a partially ordered set (A1AD)
cov(X,A) A2P (A2Pa), P4

cov(X,N,) 2H, 6B, 6L, A2Pb, A2U, P4
covsh(a, B,7,90) TK, 70, 90, AlJa, A1K

0 7K, P4

0%°(X) 6N

L A4A

L3 AdK

L(7) 2D, 2K

L>(A) 2C, A2Ff, A2Fg

Mh(A) see Mahlo’s operation (4Ab)

N, 2J, A2Ad ; see also cov(X,N,), non(X,N,)
non(X, A) AlBe

non(X,N,) 6G, P4

p P4

p-point filter 5G, A1Ca

p(k)-point filter 5L, A1Cd

Regr(x) 4Da

S(P) see Souslin number (A1P)

sat(2A) see Souslin number (A1P)

Tr(x) 3D, 3E, 3K

Trz(X;Y) 2F, 2G, 2H, 3D, 3M, 5D, P2

Uy 4Da, JE , JH

a-Mahlo cardinal 4B

a— (8,7)? 50, 5P, A1S

O(a,v) 7K, 90, A1Jb, A1K, A1L, A1IM

k-additive ideal 2D, 9B, 9C, 9E, A1B (A1Ba), A1E
k-additive measure 1C, A2Ca; see also additivity of a measure (A2Cb)
k-additive partially ordered set A1Ac

k-Aronszajn tree 5F, 9M, A10b

k~chain condition A1P

k-complete filter 1C, 1G, A1Bb, A1E
k-measure-bounded partially ordered set 7G, TH, 71, 7J
k-saturated ideal 2D, 9A, 9B, 9E, 91, 9P, A1Bf

wf~1 A2Db
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ul[A A2Ab

uw A2Aa

I} -filter 4Dc, 4F, 4G, 41, 6L, A4Cb
1] formula 4T, A4B

ITi-fully stationary 4Db, 4Dc, 4K, A4H
IIi-ideal A4Cb, A4H

IIl-filter A4Cb, A4F, A4G, P3

I} formula A4B, A4E

IT!-ideal A4Cb

[12-filter 4Q, 4R, A4Cb

12 formula 40, 8Q, A4K

I12-ideal 4P, A4Cb

I12-filter A4K, A4L
[13-indescribable cardinal A4K, A4L
o-finite measure space A2Ba, A2Bb
o-ideal 94 , P9

%1 formula 4S, A4B

L formula A4B

T-additive measure A2V, A2W
7-homogeneous Boolean algebra A2He, A2Hf, A2la
7(A) A2H (A2Ha), A2I

x(a) A2Ff

x(z,X) 8F, 8M, A3EDb

w-Tukey function 7G, TH, 71
wi-saturated ideal 9C, 9H

E A4A

{0,1}1 A2G

$e BN, 9N

— see a — (8,7)% (A1S)

[ see subspace measure (A2AD)

Version of 22.5.00
Supplement to ‘Real-valued-measurable cardinals’
D.H.FREMLIN

University of Essex, Colchester, England

This note contains further results on real-valued-measurable cardinals, supplementing my pa-
per ‘Real-valued-measurable cardinals’ (pp. 151-304 in Israel Math. Conference Proc. 6 (1993),
ed. H.Judah), with which it should be read. References of the form ‘7C’, ‘A2J’ are directions
to paragraphs in that paper, and unexplained notation is defined there. References of the form
‘SA2Ac’ are directions to paragraphs below.

Section numbers follow those of ‘Real-valued measurable cardinals’, except that a new section
S6’ (‘Topological implications’) has been added.

Version of 27.10.94
S5. Combinatorial implications

S5A The arguments of 5E may be refined, as follows.
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Theorem Let s be an atomlessly-measurable cardinal, and w < § < X < k. If 20 < /<c5+, then 2} = 29,
proof Induce on \.

(a) For the inductive step to A, where cf(X) > 4, choose an injection ¢ : P{ — ¢ for each £ < A; set
ga§) =0:(ANE for ACA E< A 2 If 22 > 29 let N C 29 be a set of minimal cardinal such that
Ay ={A: AC ), g;'[N] is cofinal with \}

has cardinal greater than 2°. Then cf(\) < cf(#(N)) < A. P (i) Ify < A and N = Ua<ry No then
An = Uqy<, A, (i) If v > X is regular and (Na)a<y is an increasing family with union N, then again
Any =Uper An.- Q

But there is no cardinal « such that © < < kT and § < cf(y) < A, so #(N) < k.

Let h : K — Ay be injective. For a < 8 < k set f({o, 8}) = min{¢ : h(a) N ¢ # h(B) N (}. By 5Ca,
there is a set C' C k such that #(C) = k and M = {f(I) : I € [C]?} is countable, therefore bounded above
in \; set ¢ = sup M, so that h(a) N ¢ # h(B) N ¢ for all distinct «, § € C. Next, there is a £ € A\ ¢ such
that C1 = {a : a € C, gna)(§) € N} has cardinal £. But now a +— gp(a)(§) = O¢(h(aN§)) is an injective
function from C; to M, while #(M) < k = #(C4). X

This deals with the inductive step if cf(\) > ¢.

(b) If cf(X) < 6, then 2* < (sup, ., 27)"™ = 2%, so the induction proceeds.

S5B Proposition Suppose there is an atomlessly-measurable cardinal k. Then there is a family (A, )a<w,
of sets such that
(i) Aq C a for every a < wy;
(ii) if @ < B < w1, then A, A(Ag N ) is finite;
(iii) if C' C wy is uncountable, then

{a: CNA, is infinite}, {a:(CNa)\ A, is infinite}
are both uncountable.

proof (a) Choose a family (e,)a<w, such that (i) each e, is an injective function from « to N (ii) if « < 3
then {€ : £ < o, eq(§) # ep(§)} is finite (SA1A). Let v be an extension of the usual measure p of PN
(corresponding to the usual measure on {0,1}Y) to P(PN). For each a C N set

Ao = e;1a] C a.
Then whenever o < 3 < wy,
Asa DN Aap) CH{E:§ <, €al§) # es()}
is finite. Thus every a C N provides a family satisfying conditions (i) and (ii).

(b) Let S be the set of those a C N for which there is some uncountable set C; C wy such that {« : CoNAgq
is infinite} is countable. ? Suppose, if possible, that ©S > 0. Then there is an ag < w; such that

{a: Cy N Ay is infinite} C g
for v-almost every a € S; set
T={a:a€sS, C,NA, is finite for every a > a}.
For each { <wq,set Te ={a:a €T, { € Cy}; then
0<vS=vT<} 5vI;
for every § < w1, so {€ : Iz > 0} is uncountable and there is a 6 > 0 such that B is uncountable, where
B = {¢: vT¢ > 6}

By S6F (I apologize for the forward reference, but you can easily check that there is no circularity) there is
an infinite D C B such that /‘*(ﬂgeD T¢) > 0. Take a > o such that D C «v. If a € ﬂgeD T¢, then D C C,,
while C, N A, is finite, so D N A, is finite. But

E={a:DnN A, is finite} = {a: aNey[D] is finite}
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is p-measurable and has zero measure, so u*(ﬂgeD T¢) = 0, which is impossible. X Thus vS = 0.

(c) Now consider the set S’ of those a C N for which there is some uncountable set C, such that
{a: (Cana)\ Ay, is infinite} is countable.  Suppose, if possible, that ©S" > 0. Then there is an g < wq
such that

{a: CyNa\ Ag is infinite} C ag

for v-almost every a € S’; set

T={a:a€sS, C,Na\A, is finite for every o > a}.
For each { <wy, set Te ={a:a €T, { € Cy}; then

0<vsS =vT< ZEZ,B vTe
for every 8 < w1, so {{ : ¥T¢ > 0} is uncountable and there is a 6 > 0 such that B is uncountable, where
B ={¢:vTy >4}
By S6F there is an infinite D C B such that /‘*(mgeD Te) > 0. Take o > o such that D C . If
a € ﬂgeD Te, then D C C,, while Cy Nav\ Ay is finite, so D\ Agq is finite. But
E={a:D\ A,, is finite} = {a : e,[D] \ a is finite}

is p-measurable and has zero measure, so u*(ﬂgeD T¢) = 0, which is impossible. X Thus vS" = 0.

(d) There must therefore be an @ C N not belonging to either S or S’, and the corresponding family
(Aaa)a<w, has the required property.

Remark This comes from TODORCEVIC 93, §7.

Version of 22.5.00
S6’. Topological implications

S6’A Proposition Suppose there is an atomlessly-measurable cardinal. Then there is a locally compact
locally countable Hausdorff topology ¥ on w; such that every closed set is either countable or cocountable.

proof (a) Let x be an atomlessly-measurable cardinal, and vy a Maharam homogeneous atomless probability
measure with domain Pk; let A\ be the Maharam type of v. By 3F, A > k > wy. Let g: k — {0,1}* be a
function representing an isomorphism from the measure algebra of the usual measure on X = {0,1}* = X
and the measure algebra of 1y (A2Gd). Let v be the image measure vgg~!, so that v extends the usual
measure on X, and setting E = {z : x € X, z(§) = 1} for £ < A, (E¢)e<n is a stochastically independent
family of sets of measure % such that {Eg' : £ < A} T-generates the measure algebra of v. For I' C A write
Sr for the o-algebra generated by {E¢ : £ € T} U{E : vE = 0}, so that PX = [J{Zp : I € [A\]S¥}. Write
Q for the set of non-zero countable limit ordinals; for o € €, enumerate o as (e4(n))nen. Fix a bijection
¢ : {0,1} — [0,1]N which is an automorphism for the usual measures (FREMLIN PO0*, 344I). For a € Q,
n € N define ¢qp, : X — [0,1] by writing (pan (2))neny = ¢({(z(a + n))nen) for every z € X.

(b) For z € X, £ < wy choose B, () as follows. If £ < w then B, (&) = {£}. Suppose that B;(&) has been
defined for every £ < a, where a € Q. Set Cp(a,n) = By(ea(n)) \ U<, Bz(ea(i)) for each n. Set

By(a+n)={a+n}U{Cu(a,i):i €N, 27"t < ¢,,(x) < 27"}
for each n.

Let T, be the topology on w; generated by {B; (&) : &€ < w1 }U{w1\ Bz () : £ < wi}. Then T, is Hausdorff
and locally countable. B It is Hausdorff because if & < ) then £ € B, (§) and n ¢ B, (£). (The point is that
if «v is a limit ordinal and n € N, then

a+n€B(a+n) C{a+n}Ua.)
It is locally countable because every B, (&) is countable. Q

(c) For a € Q, let ¥, be the topology on « generated by {B,(§) : € < a} U{a\ B(§) : £ < a}. Then
an easy induction shows that C,(5,n) Na and B, (n) Na are open-and-closed in T, for every € O, n € N



126

and 1 € wy, so that T, is the subspace topology on « induced by ¥,. Now B, () is T,o-compact whenever
a€Q,neNand ¢ <a P Induce on a. For a = w, every B,(£) is a singleton, so the induction starts.
If « = f+w, where 8 € Q, and £ < a, either £ < § s0 B, (§) C § is Typ-compact, therefore T,,-compact,
or £ = a+n for some n. In this case, B;(eg(n)) is always T,g-compact and T, g-open, so (Cy(5,1))ien is a
partition of § into ¥,g-compact and T, -open sets, and B, (3 + n) must be T, gy,-compact. If « is a limit
member of 2, then for every £ < « there is a 8 € ) such that £ < 8 < «, and the inductive hypothesis tells
us that By (&) is T,g-compact, therefore T, ,-compact. Thus the induction proceeds. Q
It follows that every B, (&) is T,-compact, so that T, is locally compact, for every z € X.

(d) The essential fact to note about this construction is that {x : £ € By(n)}, {z : £ € Cjs,,} belong to
Yo whenever a € Q, E <wy, n<a, fean and n € N.

(e) ? Suppose, if possible, that for every € X there is a set D, C w; which is T,-closed but neither
countable nor cocountable. For £ < w; set He = {z: &€ D,} C X. Then there is a countable set '« CA
such that He € ¥r,. Note also that, for any § < wy, Un>£ H, = X, so there is a countable A¢ C w; \ € such
that U77€A§ H, is conegligible. Let A be

{a:aeQ, (Tenwi)UA: Ca for every £ < a};

then A is a club set in wy. Take any oo € A. Set I' = U5<a e, so that I'Nw; C a.

Let Y be {y : y € X, Dy N« is cofinal with a}, so that ¥ 2 ,_,, UWEAs H, is conegligible. For every
x € X, D, does not include wy \ @, so there is a least (, > « such that ¢, ¢ D,; let ( € wy \ a be the
least ordinal such that @ = {z : {, = (} is not negligible. Set Y1 = {y : y € Y, {, > (}, so that ¥ is
conegligible. Express ¢ as 3+ n where 3 € €2, n € N. Observe that H¢ is conegligible, so belongs to Xr, for
every £ € B\ o, so He € Er for every £ < .

For z € X, set I, ={m:meN, D, NC,(B,m) # 0}. Observe that

{z:mel,}=U;p{z:£€ D NCu(B,m)} € Erug

for every m € N. If y € Y7, D, N 3 is cofinal with 3, whether or not 3 = «, because D, N « is cofinal with
aand §\ a C D,. Since

sup Gy (8,m) < sup By (es(m)) = es(m) < 8
for every m, I, is infinite, for every y € Y7.
On the other hand, setting F,,, = {z : 27" < ¢g,,(z) < 27"} for m € N, (F;,)men is a stochastically

independent sequence of sets of measure 27"~! all belonging to ¥ (8+w)\ g, Which is independent from Yryg.
Set J, ={m:z € F,,}. Then

G = {z : I, is infinite, I, N J, is finite}

is negligible. P Set hq(z) = I, ha(z) = Jp, h(z) = (I, Jz), so that hy and he are functions from X to PN.
Let p1, po be the Radon measures on PN such that hy and ho are inverse-measure -preserving. Then h; is
inverse-measure -preserving for v[Xryg and g, and ha is inverse-measure -preserving for v[Xgu,)\ s and
L2, SO h is inverse-measure -preserving for v and the product measure py X po on PN x PN. Now the set

{(I,J): T €[N JCN, InN.J is finite}

is a Borel set in PN x PN which has ps-negligible vertical sections, so is pq X po-negligible, and its inverse
image G is v-negligible. Q

There is therefore some y € @ NY; \ G. But in this case ¢ ¢ D,, so By({) N D, is a T,-compact set not
containing . Since

By(C) = {C} U UmeJy Cy(ﬁvm)v

there must be a finite set K C .J, such that B, () N Dy C |U,,cx Cy(B8,m). Since I, is infinite and y ¢ G,
there is an m € I, N J, \ K, and C, (5, m) N D, is not empty; which is impossible. X
This contradiction shows that for at least one x € X, every ¥,-closed set is either countable or cocountable.

Remarks This proposition is based on ideas of J.Moore.
Observe that, for a topology ¥ as described, wy is hereditarily separable. BP? If A C w; is not separable,
of course it is uncountable. For £ < w;, choose a¢, B¢ in A, and countable open sets G¢ C w; inductively,
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as follows. Given (a,)n<e, let B¢ € A be such that 8¢ ¢ {a,, : 7 < £} U (ANE). Let G¢ be a countable open
set containing B¢ and not meeting {a, : n < &} Given (Gp)y<e, take ag € A\ (EUU, < Gy)-

Now consider F' = {a¢ : £ <wi}. Then ag € F and ¢ ¢ F for every {. Since ag, B¢ > § for every &, F
is neither countable nor cocountable, which is impossible. X Q

Version of 21.5.00
S6. Measure-theoretic implications

S6A Proposition Let x be an atomlessly-measurable cardinal and A < x a cardinal. Then there is a
cardinal f < k such that whenever X is a T\ topological space of cardinal at least § and weight at most A
then there is an atomless T-additive Borel probability on X.

proof 7 Suppose, if possible, otherwise.

(a) We are supposing that for each { < « there is a T space X¢, of cardinal at least #({) and of weight
at most A, with no atomless T-additive Borel probability. Note that any 7-additive Borel probability i on
any subspace D of X, gives rise to a T-additive Borel probability fi; on X, writing i1 E = (D N E) for
every Borel set E C X, which would be atomless if i were atomless; so we may take it that #(X) is
precisely #(¢). Let (Uce)e<n run over a base for the topology of X¢. Define fr : X — X = {0,1}* by
writing

fg(ﬂ:)(f) =1lifzx e ch, 0ifz € XC \ UCE'
Note that f, is injective, because X is a T space, so we may enumerate Y = f¢[X¢] as (Yee)e<c.

(b) Let v be a normal witnessing probability on . Define u : P(X X k) — [0, 1] by setting

nE = [ {C+ (yee. C) € E}w(de)

for E C X x k. Then pu is a k-additive probability on X x k. By SA2B below there is a family (u¢)e<, of
Radon probabilities on X such that u(H x A) = [, ucHv(d¢) for every set H in the Baire g-algebra of X
and every A C k.

Let V be the algebra of open-and-closed subsets of X.

(c) For any C C X x &, uC < fuC L{¢}v(d¢). P The set W of sets expressible as a finite disjoint
union of sets V' x A, where V € V and A C &, is a subalgebra of P(X X k), and for every W € W we have

W = [ W {CHI Q).
Now take e > 0. For each ¢ < & choose an open set G¢ 2 C~'[{¢}] such that ucG¢ < pfC~{¢}] + €. Set

E={(y,Q):(<ryeCG}=Uper{ly,Q):y eV C Gl
Then C C E so pC < pE. Because p is k-additive and #(V) < max(\,w) < k, there is a finite 1y C V such
that uW > uFE — €, where
W =Uvey {(®,0) :y €V S Gc}
But W e W, so
uW = [ ncW=H{CHH(AC) < [ peGev(dd).
Putting these together,
pC < [ pcGev(dC) + € < [ peC~ {¢Hw(dS) + 2e.

As € is arbitrary, we have the result. Q
Taking complements, we see now that

nC = [ (ne) O~ {¢Hw(dC)
for every C' C X x k, writing (u¢)«D = sup{ucH : H C D is pc-measurable} for every D C X, ( < k.

(d)MYC_lforualmost every (. P Set C = {(y,¢) : ( < K,y € Y} € X x . Then (yc,¢) € C
whenever £ < ¢ < &, so uC = 1. By (c),
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1=pC < [ pC  {HW(dC) = [ mgYev(do).
Thus pfYe =1 for almost all (. Q
Set Ag = {¢ : ufYe =1}

(e) ¢ is atomless for almost all ¢ € Ag. P Set
B = {¢: ¢ € Ay, p1¢ has an atom},

C={(y,0): ¢ <r yec¥e ucl{y} >0}

If ¢ € B, then (because p¢ is a Radon measure) there is a y € X such that uc{y} > 0; but as u7Ye =1,
y € Y and (y,¢) € C. For each ¢ < k, C~[{C}] is countable, so is expressible as {y¢¢ : £ € I}, where I C
is countable. Let I C x be a countable set such that I C I for almost all ¢ (5Ab). Now v{( :yce € C} =0
for every £ € k\ I, so uC = 0. Consequently, by the last remark of (¢) above,

J (1) CTH{CHw(dC) = 0.
But of course (p¢).C 7 [{¢}] > 0 for every ¢ € B, so vB = 0, as claimed. Q

(f) There must therefore be some ¢ <  such that pc is atomless and pwYe =1.

Write '“/C for the quasi-Radon subspace probability pc[Y: (A2Ja). f{ L. Y. — X, is continuous, so we have
a T-additive Borel probability /i on X defined by saying that if = p;(f¢[E]) for every Borel set E' C X.
Now take ¢ > 0. Because p is atomless, every point of X is contained in an open set of ji¢c-measure at most
e. Because X is compact, we have a finite cover of X by basic cylinder sets of the form U,, = {y : y[I = w},
where I C ) is finite and w € {0,1}!, all of pc-measure at most e. Now f{l[Uw] is a Borel set in X¢ for
every w (examine the original definition of f¢ in (a) above), and ﬂf{l[Uw] = pp(Ye NUy) = pcUu, s0 X¢
has a partition into finitely many Borel sets of [i-measure at most €. As € is arbitrary, j is atomless.

But this contradicts the choice of X:. X

This contradiction completes the proof.

S6B Corollary Let x be an atomlessly-measurable cardinal and A < x a cardinal. Then there is a
cardinal 6 < k such that

(a) whenever X is a regular T topological space of cardinal at least § and weight at most A then there
is an atomless quasi-Radon probability on X;

(b) whenever Z is a compact Hausdorfl space of weight at most A and X C Z has cardinal at least 0,
then there is an atomless Radon probability p on Z such that pu*X = 1.

proof Take 6 from S6A.

(a) There is an atomless 7-additive Borel probability on X, which by SA2A extends to a quasi-Radon
probability on X.

(b) There is an atomless T-additive Borel probability po on X; setting uFE = po(X N E) for Borel sets
E C Z, we get a T-additive Borel probability on Z for which p*X = 1; by SA2A the completion [ of u is
quasi-Radon, and of course fi is atomless and 4*X = 1. Because Z is compact, fi is inner regular for the
compact sets and is therefore a Radon measure.

S6C Corollary Let x be an atomlessly-measurable cardinal. Then there is a 6 < x such that no subset
of R of cardinal # or more can be universally negligible.

proof Apply S6Bb with A = w, X = [a,b], where a < b in R.

S6D Proposition If « is an atomlessly-measurable cardinal and (X, i) is an atomless Radon probability
space of Maharam type at most x, then cf(N,) = cf(N), where N is the Lebesgue null ideal.

proof Use S7B below and 6.14 of FREMLIN 89.

S6E Lemma Let x be an atomlessly-measurable cardinal, and A < k a cardinal of uncountable cofinality.
Let (X, ) be a Radon probability space and (E¢)e<y a family of non-negligible measurable subsets of X.
Then there is an # € X such that #({{:x € E¢}) = A
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proof By 6C, X is a precaliber of the measure algebra 2 of (X, u). For each £ < k, choose a compact
non-negligible Fy C E¢. Then there is a set D € [A]* such that {F¢ : £ € D} is centered. But this means
that {F¢ : £ € D} has the finite intersection property; because the F¢ are compact, there is a point in
Neep Fe, and this will serve for .

S6F Lemma Let s be an atomlessly-measurable cardinal. Let (X, X, 1) be a probability space, and ¥
a o-subalgebra of 3; set pg = p[Xo and let pf be the outer measure on X defined from po. Suppose that
the Maharam type 79 of g is less than k. Let (E¢)ecn be a family in ¥ with infecy pEe = v > 0, where
A > max(w,7o). Then for any 7' < v there is an infinite W C A such that pg(Necy Ee) > 7

Remark Compare A2S.
proof It is enough to consider the case A = max(wq,7y ), so that cf(A) > w and A < k.

(a) Consider first the special case in which X = {0,1}! for some set I, with u the usual measure on X,
and there is a J C I of cardinal 7y such that $g = {n;'[F] : F € £}, writing ¥ for the domain of the
usual measure gy on {0,1}7, and 7; : X — {0,1}” for the canonical map.

We may regard X as the product {0,1}7 x {0,1}\. For ¢ < X, z € {0,1}\ set

EEZ = {y ‘Y € {07 1}Jv (y,Z) € E&}
Then
J 11 Beopip s (dz) = pEe > v
by Fubini’s theorem (A2Ge). Set
Ge ={z:2€{0,1}]\| u;Ee, exists >~};

then pp ;Ge exists and is greater than 0. By S6E, there is a z € {0, 1\ such that U = {¢ : z € G¢} has
cardinal A.

Let (o, 1.y) be the measure algebra of ;. Then the topological density of 2y is at most max(w, 79) < A

(FREMLIN 89, 6.3b). So there is a b € %o such that {{ : £ € U, is(bAEE,) < 6} is infinite for every
0 > 0. Of course jisb > infecy /]JE,EZ > 7. Let ({,)nen be a sequence of distinct elements of U such that

ZnEN [LJ(bAEgnz) <~ —7'. Then
1 (Mpen Benz) = py(infren B¢ ) > figb—= >, cn s O\ EE ) > 7.
Set W =1{¢, :neN} If /€% and 7;'[F'] D Neew e, we must have F O N, . B, -, s0

p(r F]) = s B >
As F' is arbitrary, pug((Neew Ee) = 7', as required.

(b) It follows that if (2, i) is a probability algebra, 2 is an order-closed subalgebra of 2 with 7(y) =
7o < K, A is a cardinal greater than max(w, (o)), (ac)e<x is a family in A with infecy iag = v > 0, and
4" < «, then there is an infinite W C X such that

min{ib: b € Ap, b D infecw ag} > 7.

P We can embed 2 as a subalgebra of the measure algebra 2; of {0,1}! for some set I (A2Ib). If we
take a set B C 2 of cardinal 79 which completely generates 2y, then for each b € B we can find a set
Gy € X = {0,1}}, belonging to the Baire o-algebra of X, such that b = G; in A; now there is a set J C I, of
cardinal at most max(w, 7p), such that every Gy belongs to X, if we define ¥y from J as in part (a) above.

Set Ay = {G* : G € 3y}, so that 2 is an order-closed subalgebra of 2 and 2y C ;. Let X; be the
algebra of measurable subsets of {0,1}7, and 2(; the measure algebra of {0,1}”. Then the inverse-measure-
preserving map 7y : X — {0,1}” induces an isomorphism ¢ between 2; and 2, taking ¢(7;'[G]*) = G* for
every G € ¥ ;. By the lifting theorem (A2Qb) there is a lifting 6; : 2; — X ;. So we have a corresponding
Boolean homomorphism 6 : 2, — ¥y given by setting 6;(a) = 77}1[9J(¢(a))] for each a € A;. As remarked
in A2Qc, there is an extension 6 of #; to a lifting from 2 to 3.

Set E¢ = 0(ag) for each § < A. By part (a) above, there is an infinite set W C A such that uf(Neew Ee) >
7' Now suppose that b € 2o and b 2 infeew ag. Then 0(b) 2 (e, Ee and 0(b) € o, so
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fib = p(0(0)) = 15 (Neew Ee) 27"
Thus we have the set W we need. Q

(c) We are now ready for the general case of the lemma. Let (2, i) be the measure algebra of (X, 3, u)
and set 2o = {G* : G € Yo}, ag = E¢ for each § < A. By (b), there is an infinite W C A such that b > ~'
whenever b € 2y and b D infeew ag. Now if G € g and G 2 ngeW Ee, b=G* €U and b D infeew ag, so
that oG = pG = pG* > +'. As G is arbitrary, ug((Neew Ee) = 7', and we have a suitable set W.

S6G Proposition Let x be an atomlessly-measurable cardinal.

(a) Let X be a Hausdorff space such that x(X) < x. Then any Radon probability measure on X has
Maharam type at most max(w, x(X)).

(b) Let X be a Hausdorff space such that x(z,X) < & for every x € X. Then any Radon probability
measure on X has Maharam type less than k.

proof 7 Suppose, if possible, otherwise. By SA2D, X has a Maharam homogeneous Radon probability
measure g of Maharam type A, where A = max(wy, x(X)%) in (a) and A = x in (b). Let 2 be the
measure algebra of p; then 2 can be expressed as the union of a strictly increasing family (¢)e<x of closed
subalgebras. For each x € X choose a base U, of open neighbourhoods of x with #(U,) = x(z, X). Set

Xe={z:2€X,U* €U for every U € Uy }.
Because cf(A) = A > x(z, X) for every z, [, Xe = X.

By 6C/S6E, sup,, p* X¢ = 1; because cf(\) > w, there is a { < A such that y*X¢ = 1. Now let G' be
any open subset of X. Set

H={H:HCGisopen, H* €U}, Hy=JH.
Then Hy 2 GN X¢. So G\ Hp must be negligible, and
G* = Hj =supycy H® € Ae.
As G is arbitrary, A = 2, which is absurd. X

Remark This is derived from PLEBANEK 95.

Version of 22.5.00
S7'. Topological implications

S7’'A Proposition Suppose there is an atomlessly-measurable cardinal. Then there is a locally compact
locally countable Hausdorff topology ¥ on w; such that every closed set is either countable or cocountable.

proof (a) By , there is an wy-additive measure v on X = {0,1}*? extending the usual measure on X. We
may suppose that v is Maharam homogeneous, with Maharam type A say, and that we have an independent
family (E¢)e< of measurable sets generating the measure algebra of v, starting with Ee = {z : z(§) = 1}
for £ < wy (). For I' C X write Xp for the o-algebra generated by {E¢ : £ € T} U{E : vE = 0}, so that
PX = U{Zr : T € [\]=%). Write Q for the set of non-zero countable limit ordinals; for a € Q, enumerate
a as (eq(n))nen. Fix a bijection ¢ : {0,1} — [0,1]N which is an automorphism for the usual measures
(FREMLIN POO*, 344I). For o € Q, n € N define ¢y, : X — [0, 1] by writing (@an (2))nen = ¢({z(a+n))nen)
for every z € X.

(b) For z € X, € < wy choose B, (€) as follows. If £ < w then B, (£) = {£{}. Suppose that B, () has been
defined for every £ < a, where a € Q. Set Cy(a,n) = By(ea(n)) \ U<, Bz(ea(i)) for each n. Set
Be(a+n)={a+n}UU{Cs(a,i):i e N, 27"t < ¢, (z) < 27"}

for each n.

Let ¥, be the topology on wy generated by {B,(§) : £ < w1} U{wi \ Bx(§) : £ < wy}. Then T, is
Hausdorff, locally countable and locally compact. B It is Hausdorff because if £ < n then £ € B,(£) and
1 ¢ By(€). (The point is that if a is a limit ordinal and n € N, then

a+né€B(a+n) C{a+n}Ua.)
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It is locally countable because every B, (&) is countable. Finally, an induction on £ shows that every B, (&)
is compact, because if, for a € Q, we take T, to be the topology on a generated by {B,(§) : £ <
a} U{a\ B:(€) : € < a}, then every C.(8,n) N« and every B,(n) Na, for f € Q\ a, n € wy \ « are
open-and-closed for T,. Now, given a € , the inductive hypothesis tells us that C,(«, ) is always compact
for 3q, so that By (a + n) is compact for T, o4, and therefore for T,. So ¥, is locally compact. Q

(c) The essential fact to note about this construction is that {z : £ € B,(n)}, {x : £ € Cjs,,} belong to
Yo Whenever a € Q. E <wy, n<a, f€ean and n € N.

? Suppose, if possible, that for every z € X there is a set D, C w; which is ¥,-closed but neither
countable nor cocountable. For § < w; set He = {z: &€ D,} C X. Then there is a countable set e CA
such that He € ¥r,. Note also that, for any < wy, U H, = X, so there is a countable A¢ C w; such

n>¢ =N
that UneAg,n>E H, is conegligible. Let A be

{a:aeQ, (Tenwi)UA: Ca for every € < a};

then A is a club set in w;. Let a be the supremum of a strictly increasing set in A. Set I' = U£<a I¢, so
that TNw; C a.

Let Y be {y : D, N« is cofinal with a}, so that Y is conegligible. For every € X, D, does not
include wy \ a, so there is a least (, > «a such that {, ¢ D,; let { € w1 \ « be the least ordinal such that
Yo ={y:y €Y, {, =} is not negligible. Set Y1 = {y:y €Y, {, > (}, so that Y7 is conegligible. Express
¢ as B +n where § € Q, n € N. Observe that H is conegligible, so belongs to X, for every £ € 8\ a, so
H, € Yr for every £ < 3.

For z € X, set I, = {m:m €N, D, N Cy(B,m) # 0}. Observe that

{z:me L} =Ugplz:£€DNC(B,m)} € Erup

for every m € N. If y € Y3, D, N 3 is cofinal with 3, whether or not 3 = o, because D, N « is cofinal with
aand f\ a C D,. Since

sup Cy(8,m) < By(eg(m)) = eg(m) < 3
for every m, I, is infinite, for every y € Y7.

On the other hand, setting F,, = {x : 27" < ¢g,,(z) < 27"} for m € N, (F,,)men is a stochastically
independent sequence of sets of measure 27 "~! all belonging to Y (8+w)\ g, Which is independent from Yryg.
Set J, ={m:y € F,,}. Then

G ={y: I, is infinite, I,, N J, is finite}

is negligible. (Set hi(y) = I, ha(y) = Jy, h(y) + (Iy, Jy), so that hy and hy are functions from X to PN.
Let @1, po be the Radon measures on PN such that h; and hy are inverse-measure -preserving, and h is
inverse-measure -preserving for the product measure p; X o on PN x PN. Now the set

{(I,J): T €[N, JCN, INJis finite}

is a Borel set in PN x PN which has ps-negligible vertical sections, so is py X ps-negligible, and its inverse
image G is v-negligible.)

There is therefore some y € Y5\ G. But in this case, { ¢ Dy, so By(¢) N D, is a T,-compact set not
containing ¢. Since

By(C) ={C}u UmeJy Cy(ﬁ,m),

there must be a finite set K C J, such that B,(¢) N Dy C U,,cx Cy(B,m). Since I, is infinite and y ¢ G,
there is an m € I, N J, \ K, and Cy (8, m) N D, is not empty; which is impossible. X
This contradiction shows that for at least one x € X, every ¥,-closed set is either countable or cocountable.

Remarks This proposition is based on ideas of J.Moore.

Observe that, for a topology ¥ as described, wy is hereditarily separable. PP? If A C w; is not separable,
of course it is uncountable. For £ < wq, choose ag, B¢ in A, and countable open sets G¢ C w; inductively,
as follows. Given (a,)y<¢, let B¢ € A be such that ¢ ¢ {a, :n <&} U (ANE). Let G¢ be a countable open
set containing (¢ and not meeting {a,, : 7 <&} Given (Gp)y<e, take ag € A\ (U, < Gy).
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Now consider F' = {a¢ : £ <wi}. Then ag € F and ¢ ¢ F for every {. Since ag, B¢ > § for every &, F
is neither countable nor cocountable, which is impossible. X Q
Version of 26.10.94

S7. Partially ordered sets

S7A Cofinalities III: Lemma Let x be a real-valued-measurable cardinal and («;);e; a countable
family of ordinals less than s and of cofinality at least wo. Then there is a set ' C [, a; such that (i) F
is cofinal with [],c; a; (i) if (f¢)e<w, is an increasing family in F then supe_,,, fe € F (iii) #(F) < &.

proof We have cf(]],.; ci) = cf(]],c; cf(ei)) < w, by 7Kb. So we may find a cofinal set Fyy C []
cardinal less than k. Now for 0 < { < ws define F; by saying that

jer i Of

Fey1 = {supgcy, fe i (fe)e<w, is an increasing family in F},

Fe = Un<< F, for non-zero limit ordinals ¢ < ws.

Then #(F¢) < & for every (. PP Induce on {. For the inductive step to ¢ + 1, 2 suppose, if possible, that
#(F¢) < K but #(F¢41) > k. For each h € F¢4q choose an increasing family (fre)e<w, in Fr with supremum
h. The set h[I] of values of h is a countable subset of Y = (J,c; ;. By 5A, taking X = Fey1 and p a
non-trivial k-additive measure on X, there is a set H C F1, of cardinal &, such that M = (J, oy h[I] is
countable. Now, for each h € H, there is a vy(h) < w;y such that whenever i € I and 5 € M then h(i) > 3 iff
Jhymy (i) > B. If g, h € H and i € I and g(i) < h(i), then fy ) (1) < g(i) < frn) (i), because g(i) € M.
Thus h — fp 4 : H — F¢ is injective; but #(Fy) <k = #(H). X

Thus #(Fey1) < K if #(F¢) < k. At limit ordinals ¢ the induction proceeds without difficulty because
cf(k) > ¢. Q

So #(F,,) < k and we may take F' = F,,,.

S7B Theorem Let k be a real-valued-measurable cardinal.
(a) For any cardinal 6, cf([x]<?) < k.
(b) For any cardinal A < k, any 6, cf([\]<?) < .

proof (a)(i) Consider first the case § = w;. Write G for the set of ordinals less than x of cofinality less
than or equal to wy; for § € Gy let 95 : cf(d) — 0 enumerate a cofinal subset of §. Next, write G4 for k\ Gy,
and for every countable set A C Gy let F(A) C [[,c4 @ be a cofinal set, of cardinal less than r, closed
under suprema of increasing families of length wy; such exists by STA above.

(ii) It is worth observing at this point that if (A¢)¢<y, is any family of countable subsets of G,
D = Uecy, A¢s and g € [],ep @, then there is an f € [[,.pa such that f > g and f[Ac € F(A¢) for
every ¢ < wi. P Let (¢(§))¢<w, run over wy taking every value uncountably often. Choose an increasing
family (fe)e<w, in [[4ep @ in such a way that fo = g and fey1[Age) € F(Age)) for every &; this is possible
because ['(A) is cofinal with [],c, o for every A. Set f = sup,.,, fe; this works because every F'(A) is
closed under suprema of increasing families of length w;. Q

(iii) We can now find a family A of countable subsets of x such that
(o) {a} € A for every a < k;
(6) whenever A, A’ € A, { < wy then AUA", ANGa, {$o(§) : a € ANGy, § < min((, cf())} all
belong to A;
(7) whenever A € A, A C G then f[A] € A for every f € F(A);
(6) #(A) < 5.

(iv) 7 Suppose, if possible, that cf([x]<%) > k. Because [k]<% = |J,_,[A]=%, there is a cardinal A < &

such that cf([\]S%) > k. We can therefore choose inductively a family (a¢)¢<, of countable subsets of A
such that

ac € UneAﬂg an

whenever ¢ < k, A € A. By 5A, there is a set W C &, of cardinal k, such that U£€W ag is countable. Let
0 < k be such that W N § is cofinal with § and of order type w;.
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(v) I choose a family (Ag¢)c<w, ken in A as follows. Start by setting Agc = 95[¢] for every ¢ < wy; then
Aoc € A by (ii)(a-B). Given (Ag¢)c<w,, set Ay = Agc N G2 for each ¢ < wi. For a € Dy = Ue_y, Al
set gi(a) = sup(aN W NJ) < a; choose fi € [[,cp, @ such that g < fi and fi,[ A}, € F(A;,) for every (;
this is possible by (ii) above. Set

Ak+1,< = Akg‘ U fk[A;cC] U {wa(§> RS Akg NGy, €< min(C,Cf(a))} cA

for each ¢ < wy, and continue. An easy induction on k shows that (Ax¢)c<w, 1S increasing for every k; also,
every Ayc is a subset of 6.

(vi) Set Vi = U¢—y, Arcs b = U{ag : £ € W NV} then by is countable and there is a 3(k) < wi such
that by = (J{ae : £ € W N Ag gy} Now Upen Ak,8k) i a countable subset of 4, so there is a member v of
W N d greater than its supremum. We have

ay Z Hay : 0 € Ak g}
for every k, so ay € by and v ¢ V4, for each k.

Set V = Upen Vi, 70 = min(W N §\ V). Because Vy = ths[wi] is cofinal with §, V'\ vo # 0; let 71 be its
least member. Then ~; > 9. Suppose 71 € Ay¢. Observe that if & € VN Gy then V N« is cofinal with o
but VN C v, 807 ¢ G1 and 41 € Dy. But now fi(n) € Ag+1,c €V and v < gr(m) < fr(n) < m, so
v1 # min(V \ 7). X

(vii) This contradiction shows that cf([x]=%) < k. Now consider cf([x]=?), where § < & is an infinite
cardinal. Then

coven (K, 07,0, wy) = supy ., covgn (A, 67,07, w1) <k

by 7Kd. (See A1J for the definition of covgy.) So there is a family B C [k]=°, of cardinal at most , such
that every member of [£]=° is covered by a sequence in B. But now there is a family ¢ of countable subsets
of B which is cofinal with [B]<* and of cardinal at most x; setting D = {{JC : C € €}, we have D cofinal
with [5]=% and of cardinal at most x. So cf([k]=%) < k.

Finally, of course, [k]< = [J;_,[K]=?, so cf([k]<?) < sups_q cf([k]=°) < & whenever § < k. For § > k we
have cf([x]<?) = 1, so cf([x]<?) < & for every 6.

(b) If A is cofinal with [k]<¢ then {ANX: A € A} is cofinal with [\]<?, so cf([\]<?) < cf([x]?) < &, by
(a). But by 7Id and 7Jb, cf([\]<?) # k. Thus cf([\]<%) < &, as claimed.

Remark This result is taken from SHELAH #430.

S7C Corollary Let  be a real-valued-measurable cardinal. Let (P;)¢<x be a family of partially ordered
sets such that A < add(F) < cf(F) <k for every ¢ < x. Then cf([[,_, P¢) < .

proof For each { < Alet Q¢ be a cofinal subset of P of cardinal less than x. Set P = ch P, Z = UC</\ Q¢
then #(Z) < k so cf([Z]=*) < k, by STBb. Let A be a cofinal subset of [Z]=* with #(A) < k. For each
A € A choose fa € P such that fa(¢) is an upper bound for A N Py for every (; this is possible because
add(P;) > #(A). Set F ={fa: Aec A}.

If g € P, then there is an h € [[._, Q¢ such that g < h. Now h[)] € [Z]=* so there is an A € A such
that h[A] C A. In this case h < f4. Accordingly F is cofinal with P and cf(P) < #(F) < k, as required.

S7D The techniques of 7C can be adapted to give a further combinatorial result.

Theorem Let x be an atomlessly-measurable cardinal, and A < k an infinite cardinal. Then there is a
function f : [AT]?> — N such that whenever 7 is a disjoint family of finite subsets of AT with #(Z) = AT,
and k € N, there are distinct I, J € Z such that f({{,n}) =k for every £ € I, n € J.

proof (a) For £ < AT let e¢ : £ — X be an injective function. Give N the Radon measure p defined by
saying that uo{n} = 271 for every n € N, and give N* the product measure p. Then p is an atomless
Radon probability measure with Maharam type A, so there is a x-additive measure v, defined on every
subset of N*, extending u (3I).

For w € N, define f,, : [\*]?> — N by setting

fuw({&:m}) = wlen(€))
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whenever £ < n < AT.

(b) 7 Suppose, if possible, that no f,, witnesses the truth of the theorem. Then for every w € N* there
are a k,, € N and a disjoint Z,, C [\T]<% such that #(Z,,) = A" and whenever I, J are distinct members of
T, there are £ € I, n € J such that f,,({£,n}) # kw. Take k € N such that ¥R > 0, where

R={w:weN k, =k}.

For every a < A", w € N* there is an I € Z,, such that I N« = 0; because #([A* \ a]<¥) < &, there is an
I C AT\ asuch that v{w:w e R, I € Z,,} > 0. We may therefore choose (I,)q<r+ inductively so that

& <nwhenever £ € I,,n € Iz and a < f < AT,

vSy >0 for every a < A,
where S, = {w:w € R, I, € T,,}.
Take § > 0, n € N such that #(A4) = AT, where
A={a:a <", #(I,) =n, vS, > 6}
Take | € N such that (1 —2-*+Dn*)l < 15,
(b) By A2S, there is a set B C A, of cardinal AT, such that p*(,c; Sa) = %6 whenever L C B and

#(L) <1+ 1. Take § € B such that BN G is infinite. Now for each n € I, e, : n — X is injective.
Accordingly we can find a set L C BN 3 such that #(L) =1 and

enlla] Ney[lar] =0
whenever «, o are distinct members of L and n, ' € Iz. For a € L set

K, = {en(f) el ne Iﬁ]’%
then (K, )acr is disjoint and #(K,) < n? for every a.
Consider
E={w:weN*Vaec L3(e K, such that w(¢) # k}.
Then

WE = [y (1 - 27 0+0#00) < 15

1
3
On the other hand, if w € SgN(,c Sas Ip € L and I, € T, for every a € L. So for every o € L there are
€ € I, n € Ig such that f,,({&,n}) # kw, that is, w(e,(§)) # k; and we have a ¢ € K, such that w(¢) # k.
Thus

Naerugsy Se € E,
and (by the choice of B) we get

2 . 1
30<m (Naczugsy Sa) < pE < 30

which is absurd. X
(d) Thus there is a w € N* for which f,, is a suitable function.

STE Corollary Let x be an atomlessly-measurable cardinal, and A < x an infinite cardinal. Then there
is a function g : [A\*]?2 — N such that whenever 7 is a disjoint family of finite subsets of AT with #(Z) = AT,
and h : N x N — N is a function, there are distinct I, J € Z such that g({§,n}) = h(FI N E),#(J Nn))
whenever £ € I, n € J and £ <.

proof Take f : [A*]? — N from S7D. Enumerate as (hi)ren the set of all maps from finite products
{0,1}™ x{0,1}™ to N; take the domain of hy, to be {0,1}™* x {0,1}"*. Choose a family (w¢)e<x+ of distinct
elements of {0, 1}". Now, given £ < n < AT, set k= f({&,n}) and try g({&,n}) = hg(we [y, wy [my).

Suppose that T is a disjoint family of finite subsets of AT with cardinal A", and that h : N x N — N is
any function. Let m, n be such that
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J={1:1€Z,#(I)=n, we[m # wy,[m for all distinct &, n € I}
has cardinal A™, and (v;);<, such that
K={I:1T€J,welm=uv; whenever { € I, #(ENI)=1i<n}

has cardinal A*. Take k € N such that mj = m and hy(v;,vj) = h(i, j) for all 4, j < n. (Note that v; # v; if
i # j, because we [m # wy[m if £, n are distinct members of any I € J.) Then there are distinct I, J € K
such that f({¢,n}) =kfor{ eI, ne J. Soif £ €I, ne J, & <n we have

g({fa 77}) = hk(w§ rm,wn fm) = hk(vivvj) = h(’L,j),
where i = #(INE), j = #(J Nn). And this is what we need.

S7TF Corollary If there is an atomlessly-measurable cardinal, there is a ccc Hausdorff abelian topological
group whose square is not ccc.

proof (a) Let ¢ : [w1]?> — N be such that whenever Z is an uncountable disjoint family of finite subsets of
w1, and h: N x N — N is a function, there are distinct I, J € Z such that g({&,n}) = h(#(I NE),#(J Nn))
whenever £ € I, n € J and £ < 7. Set X = w; x {0,1}, and let G be the family of finite subsets of X with
the group operation a + b = aAb. For § < w let Hg be the set of those a € G such that

(8,0), (8,1) ¢ a,
if « < B and g({o, B}) =4 <1 then (o, i) ¢ a,
if < g and g({e, B}) > 2 then («,0) € a iff (o, 1) € a.
Note that Hg is a subgroup of G. Give G the topology generated by the subgroups Hs and their cosets for
B < wi. This is a topological-group topology, and because (;_,, Hp = {0} it is Hausdorff.
(b) It may make the idea behind this definition clearer if I show first that G x G is not ccc. I Consider

We = ({(&,0)} + He) x ({(§, 1)} + He)

for £ < wy.

If&<n<w andae ({(§0)}+He)N({(n,0)}+ Hy), then a+{(£,0)} € He, so0 (§,0) € a and (&,1) ¢ a.
But now (£,0) € a+{(n,0)} and (£,1) ¢ a + {(n,0)}; since a + {(n,0)} € H,, we must have g({¢,n}) = 1.

fé<n<wiandbe ({(§1)}+ He)N({(n, 1)} + Hy), then b+ {(£,1)} € He, so (£,0) ¢ band (£,1) € b.
But now (£,0) ¢ b+ {(n,1)} and (£,1) € b+ {(n,1)}; since b+ {(n,1)} € H,, we must have g({¢,n}) = 0.

Since these cannot happen together, We N W, = () whenever { < 1 < wy, and we have an uncountable
disjoint family of open subsets of G X G. Q

(c) Giscce. P Let (Ug)ecw, be a family of non-empty open subsets of G. For each { < w; take a¢ € U,
I¢ € [w1]=* such that a¢ + Ngep Hp C Ug. Let A C wy be an uncountable set such that (ag)eca, (Ie)eea
are A-systems with roots a, I respectively; set a'5 =a¢ \ a for £ € A. Set

J=TU{(a,0):a€a}U{(a,1): a€a},
Je = (I \I)U{a: (a,0) € ag} U{a: (a,1) € at},
me = #(Je),
and enumerate Jg¢ in ascending order as (a;)i<m,. Define he : me — {0,1,2} by setting
he(i) = 0 if (g, 0) € ag, (e, 1) € ag,

= 1if (agi,0) € ag, (0gi, 1) ¢ ag,

= 2 otherwise.
Let m, h: m — {0, 1,2} be such that

B={¢{:£€ A m¢g=m, he =h}

is uncountable. Because any a < w; can belong to at most three of the Jg, there is an uncountable C C B
such that (i) o < § whenever @ € J and 3 € J¢ for some £ € C (ii) a < [ whenever &, n € C, £ < n,
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a € Je and 8 € J,. Now, by the choice of g, there must be &, n € C such that £ < n and g({ag, 5}) = k(i)
whenever ¢ < m, 8 € J,,.
What this means is that for a € J¢, 8 € J,y,

9({a, 8}) = 0if (o, 0) ¢ az, (a,1) € ag,
= 1if (2, 0) € ag, (a,1) ¢ at,
= 2 otherwise.

Set
b=a¢Ua, = a¢+a, = a, + ag.

I seek to show that b € Ue N Uy; it will be enough if I can show that a; € Hg for every 8 € I¢ and a; € Hg
for every 8 € I,,.

(1) Suppose 8 € I. In this case § € J so § < a whenever either (a, 0) or (a, 1) belongs to asAa, = agUa;];
consequently ag, a; belong to Hg.

(ii) Suppose 8 € I¢ \ I. In this case 3 < a whenever either («,0) or (a, 1) belongs to a;. So a; € Hg.

(iii) Suppose 8 € I, \ I. In this case v < 3 whenever either (c,0) or (o, 1) belongs to a;. In particular,
neither (3,0) nor (8, 1) belongs to az. If @ < 8 and g({e,3}) =i < 1, then either a ¢ Jg, in which case
(a, i) certainly does not belong to a’g, or a € J¢, in which case again («a,1) ¢ a’g. While if o« < 3 and
g({a, B}) > 2, then either a ¢ J¢ and neither (a,0) nor (a, 1) belongs to a;, or a € J¢ and (e, 0) € ag iff
(a,1) € ag. Thus a; € Hg.

Putting these together, we see that all the requirements for b € Us N U, are met, so that Us NU, # 0. As
(Ue)e<w, is arbitrary, G is ccc. Q

Remark S7D-S7F are taken from §2 of TODORCEVIC 93.

Version of 18.9.92
S9. Quasi-measurable cardinals

S9A Theorem Let k be a quasi-measurable cardinal.

(a) cf([x]<?) < k for every cardinal 6.

(b) If A < & then cf([\]<?) < & for every cardinal 6.

(c) If (Pr)c<n is a family of partially ordered sets with A < add(P;) < cf(FP;) < & for every ( < A, then

cf([lecy o) < k.
Version of 2.9.92
Appendix: Useful Facts

SA2. Measure theory

SA2A 7-additive Borel measures Let X be a regular topological space and u a totally finite 7-additive
Borel measure on X. Then the completion fi of y is a quasi-Radon measure on X. P If H C X is open,
then (because X is regular) H = |J G, where G = {G : G C X is open, G C H}. Consequently

pH = supgeg pG = sup{puL : L C H is closed}.

Now let F be the family of closed sets in X and write ¢F = pF for F € F. Then (i) ¢0 =0 (ii) if E, F are
closed subsets of X and £ C F,

oF — ¢pFE = uF — uk
= (X \E)NF)
=sup{u(LNF):LC X\ E is closed}
=sup{¢L : L C F\ E is closed}
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(iii) whenever K C F is non-empty and downwards-directed and (K = 0, then infrcx oK = pX —
supgex (X \ K) = 0 because {X \ K : K € K} is an upwards-directed family of open sets with union X.
By FREMLIN 74, Theorem 72A, there is a complete measure p; on X, extending ¢, which is inner regular
for the closed sets. Now for any Borel set £ C X

wE =sup{pu1 F : F C E is closed}
=sup{¢F : F C E is closed}
=sup{uF : F C E is closed}
< pk;

similarly, p1(X \ E) < u(X \ E); but 11X = ¢X = pX, so in fact u3 E = pE, and py extends p. It follows
at once that p; is actually the completion of p. Now p; = i is 7-additive and inner regular for the closed
sets, therefore quasi-Radon. @Q (Compare GARDNER & PFEFFER 84, .)

SA2B Disintegrations Let (X, %) be a compact Hausdorff space and (Y, T,v) a complete probability
space. Let p be a probability on X x Y such that (i) u(E x F) is defined whenever E € X, the Baire
o-algebra of X, and F' € T (ii) u(X x F) = vF for every F' € T. Then there is a family (u,),cy of Radon
probabilities on X such that [}, pu, Ev(dy) exists and is equal to pu(E x F') whenever E € ¥ and F € T.

proof Write £ for the space of bounded T-measurable functions from Y to R. Because (Y, T, v) is complete,
there is a ‘linear lifting’ p : £> — £ such that

p(f +9) = p(f) + p(g), plaf) = ap(f) for all f, g € L and a € R;

if f =0v-a.e. then p(f) =0;

p(f) = fr-a.e. for every f € L]

if £ 0 then p(f) > 0:

if f is constant then p(f) = f
(IoNEscu TULCEA & IONESCU TULCEA 69, p. 46, Theorem 3, or FREMLIN 89, ). Write C'(X) for the
set of continuous functions g : X — R. For each g € C(X), we have a functional v, : T — [0,1] given
by the formula v, F = [ . g(x)u(dzdy) for every F' € T; now v, is additive and dominated by v, so by
the Radon-Nikodym theorem (FREMLIN 74, 63J) there is a bounded T-measurable function f, : ¥ — R
such that v, F = [, fodv for every F € T. Set fo = p(fy)- If g, h € C(X), then vy1n = vy + vp sO
forn = fg + frnv-ae. and fi., = f; + f;. Similarly, f;,, = af, for every g € C(X), a € R. Also, if g > 0
in C(X), then v, > 0so f; > 0 a.e. and fg’, > 0.

For each y € Y, define ¢, : C(X) — R by setting ¢, (g) = f,(y) for every g € C(X). Then ¢, is a positive
linear functional. Also, writing 1 for the function with constant value 1, ;1 = v so f; = 1 a.e. and f] =1
everywhere; thus ¢,(1) = 1 for every y. By the Riesz representation theorem (FREMLIN 74, 73D) there is
for each y € Y a Radon probability u, on X such that [ gdu, = ¢,(g) for every g € C(X). Consequently,
ifge C(X)and FeT,

[ gduy)v(dy) = [ fr()v(dy) = [, fodv =vF = [, . g(@)u(dzdy).
Consider the set H of functions h : X — [0, 1] such that
[ ([ h@)py(dx))v(dy) = [, . h(@)p(dedy) ¥ F e T.

H contains all continuous functions from X to [0,1] and lim, . h, € H whenever (h,)nen is a pointwise
convergent sequence in H. Consequently H contains the characteristic function of any set F € ¥; that is,

[ 1y Ep(dy) = p(E x F)
for every E € 3, F € T, as required. (Compare IONESCU TULCEA & IONEsCU TULCEA 69, chap. IX.)

SA2C Universally negligible sets If X is a Polish space (that is, a separable metrizable space in which
the topology can be defined by a complete metric) a set A C X is universally negligible if it is negligible
for every Radon measure on X.

Version of 27.10.94
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Appendix: Useful Facts

SA1 Combinatorics

SA1A Lemma There is a family (e,)a<w, such that
(i) for each «, e, is an injective function from « to N;

(i) if @« < B <wi, {€: €< a, eq(&) # ep(§)} is finite.
proof Construct the e, inductively. The inductive hypothesis must include a third condition
(iii) N\ en[c] is infinite for every a.
The induction starts trivially with eg = (. For the inductive step to 3 + 1, take any n € N\ eg[g], and set
ep+1(§) = ep(§) if £ < B, eg1(8) = n.

For the inductive step to a non-zero limit ordinal § < wy, take a strictly increasing sequence (8, )nen
with supremum g, starting with Gy = 0. Observe that, for any n,

An =N\ Uicp 6.(0:] 2 (N\ eg, [Bn]) \ {e5,(€) i <, & < i, €5,(§) # €, (€)}
is infinite. So we can choose a sequence (my)nen of distinct integers such that m,, € A,, for every n. Set
B = {m,, : n € N}; then B is infinite and B Neg,[By] is finite for every n.
Set Crn = {£: € < B, €3, (€) # ep, (§)} for m <n € N. These sets are all finite, so
Cp = EE:H [BU Umgn €8, [Crmn+1]]

is always finite. If £ € Dy, = Bug1 \ (Bn U Cr), then eg, . (&) ¢ U, <n €8 [Bm]- P I m < nand n < Gy,
then either 7 ¢ Cpyni1, so that eg, (n) = eg,., (1) # €g,,,(£), or € Cyypir s0 that eg,, (€) # eg,, ()
because & ¢ egnlﬂ les,. [Crm.nt1]] Q

Set C = U,,enCn \ Bn = B\ Upeny D, and let f: C' — B be an injective function such that B\ f[C] is
infinite. Now define eg :  — N by setting

eg(a) =eg, . () if a € Dy,
= f(a) if a € C.

I check the three requirements of the inductive hypothesis in turn.
(1) Because f and all the eg, are injective and

€Bnt1 [Dn] Neg,, [ﬂm] = €841 [Dn} NB =1

whenever m < n, eg is injective.

(ii) For n € N, set E,, = {£: £ < B, eg, (&) # ep(§)}. Then

E7L+1 g Umgn(Em U C’rn,n-‘rl) U Cn
for each n, so every F, is finite. If a < 3, then there is some n such that o < f3,,, so that
{€:6<a,eal§) £ep(§)} CE,U{E: €< a, ealf) #e5,(8)}

is finite.

(iii) Because 65”1“ [B] € Ch, €g,.,[Dn] N B =0 for every n, so eg[3] does not meet B\ f[C] is N\ eg|f]
is infinite.

Thus the induction continues.

Remark This is due to .

Version of 22.5.00
SA2. Measure theory

SA2A r-additive Borel measures Let X be a regular topological space and p a totally finite 7-additive
Borel measure on X. Then the completion i of p is a quasi-Radon measure on X. I® FREMLIN P00*, 415Cb.

Q
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SA2B Disintegrations Let (X, %) be a compact Hausdorff space and (Y, T,v) a complete probability
space. Let p be a probability on X x Y such that (i) u(E x F) is defined whenever E € ¥, the Baire
o-algebra of X, and F € T (ii) u(X x F) = vF for every F € T. Then there is a family (u,)ycy of Radon
probabilities on X such that [}, pu, Ev(dy) exists and is equal to ju(E x F') whenever E € ¥ and F € T.

proof Write £ for the space of bounded T-measurable functions from Y to R. Because (Y, T, v) is complete,
there is a ‘linear lifting’ p : £L%° — L£°° such that

p(f +9) = p(f) +p(g), plaf) = ap(f) for all f, g € L> and o € R;

if f =0wv-a.e. then p(f) =0;

p(f) = fr-a.e. for every f € L]

if £ > 0 then p(f) > 0;

if f is constant then p(f) = f
(IoNEscU TULCEA & IoNEscU TULCEA 69, p. 46, Theorem 3, or FREMLIN PO0*, §341). Write C(X) for
the set of continuous functions g : X — R. For each g € C(X), we have a functional v, : T — [0, 1] given
by the formula v, F' = [ . g(x)u(dzdy) for every F' € T; now v, is additive and dominated by v, so by
the Radon-Nikodym theorem (FREMLIN 74, 63J) there is a bounded T-measurable function f; : ¥ — R
such that v, F = [, fodv for every F € T. Set fo = p(fy)- If g, h € C(X), then vy1p = vy + vp sO
fo+n = fg + frnv-a.e. and fg+h fo + fh- Slmllarly, fhg = afy for every g € C(X), a € R. Also, if g >0
in C(X), then vy > 0so f; >0 a.e. and f’ > 0.

For each y € Y, define ¢, : C(X) - R by setting ¢, (g) = f,(y) for every g € C(X). Then ¢, is a positive
linear functional. Also, writing 1 for the function with constant value 1, ;1 = v so f1 = 1 a.e. and f; =1
everywhere; thus ¢,(1) = 1 for every y. By the Riesz representation theorem (FREMLIN 74, 73D) there is
for each y € Y a Radon probability u, on X such that [ gdu, = ¢,(g) for every g € C(X). Consequently,
ifge C(X)and F €T,

Jo ([ gduy)v(dy) = [ fo)v(dy) = [, fodv = voF = [ g(@)u(dzdy).
Consider the set H of functions h : X — [0, 1] such that

[ ([ @)y (dx))v(dy) = [, h(z)p(dzdy) ¥ F eT.

H contains all continuous functions from X to [0, 1] and lim,, oo hy, € H whenever (hy)nen is a pointwise
convergent sequence in H. Consequently H contains the characteristic function of any set F € ¥; that is,

J s 1y Euu(dy) = p(E x F)

for every E € X, F € T, as required. (Compare IONESCU TULCEA & IONEScU TULCEA 69, chap. IX, and
FREMLIN POO*, §452.)

SA2C Universally negligible sets If X is a Polish space (that is, a separable metrizable space in which
the topology can be defined by a complete metric) a set A C X is universally negligible if it is negligible
for every Radon measure on X.

SA2D Theorem Let X be a Hausdorff space and suppose that there is a Radon probability measure
pon X with Maharam type £ > w. Then whenever w < A < « there is a Maharam homogeneous Radon
probability measure pu; on X with Maharam type A.

proof
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Index

This is a joint index to both the present supplement and the original ‘Real-valued-measurable cardinals’.
References in bold type indicate definitions; references in #talics indicate passing references.

additivity of a measure 1D, 34, 3G, 3H, 84, A2C (A2Cb), A2Db; see also k-additive measure (A2Ca),
7-additive measure (A2V)

additivity of a partially ordered set 7K, A1Ac, A1Ba, A1H, A1l, P/

additivity of an ideal A2Cd, A2Db, P/; see also k-additive ideal (A1Bf)
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antichain 2A, A1P

Aronszajn tree see k-Aronszajn tree (A1Ob)
arrow relation 50, 5P, A1S

atom in a measure space A2Ac, A2Byg
atomless Boolean algebra 9D

atomless measure space A2Be, A2Kc
atomlessly-measurable cardinal 1C

Baire o-algebra A2G, A3B

Banach-Ulam problem 1A, 1B

Baumgartner J.E. A4H

Borel measure on a topological space A2V

Borel measure-complete topological space 6M, A2V, A2W

cardinal exponentiation 5E, 7P, 7Q, 9L, 90

cce Boolean algebra A2Hb

cce p.o.set 9F

cce partially ordered set 7C, 7D, P4

chains in PN 5K

club filter A1E, A4D

cofinal set in a partially ordered set A1Ab

cofinality of a partially ordered set 7H, 7J, 7K, 7L, 7TM, 7N, 90, A1A (A1Ab ), S6D, S7B, S7C, S9A
(A1Ab), A1Ba, A1H, All, P4, P5

collectionwise normal topological space 8F, 8N, A3Cc, A3D

compatible elements 2A, A1P

complete filter see k-complete filter (A1Bb)

complete measure space A2Bf, A2Cd, A2Db, A2Gd, A2J, A2Kc, A2Q

complete metric space 6M, A2W

completely generating set in a Boolean algebra A2Ha

consistency of axioms 1E, 2E, 21, 2L, 8C, 8I, 9G

covering number see cov(X, A) (A2Pa), cov(X,N,), covsn(a, 3,7,0) (A1)

cylinder set A2Ga

decomposable measure space A2Bd, A2Hh, A2Ja
decomposable ordinal §P, A1Dd

Dedekind o-complete Boolean algebra SR

dense subset of a p.o.set 2A

density of a topological space 6M, A2Hi, A3Ea
diagonal intersection of a family of sets 4B, A1E
diamond see <>,

discrete family of points A3Cb, ASF

discrete family of sets S8E, A3C (A3Cb), A3F
disintegration of a measure SA2B

down-topology of a p.o.set 2A

duality between linear spaces A20

elementary embedding P2
entangled set 7TE, 7F

finite-support product of partially-ordered sets A1R
Fleissner W.G. 8M

forcing 2A

Fubini’s theorem see repeated integral

fully stationary see ITi-fully stationary (4Db)

GCH 2D, 2E
Gitik M. Intro.
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Gitik-Shelah theorem 3F, 9H
greatly Mahlo cardinal 4Ac, 4B, 4C, 4G, 41, 4K, 9J
greatly Mahlo filter 4Ac, 4B, 4G, 4K

Haydon R.G. Intro. hereditarily separable topological space S7T’A
Hilbert space 5H

homogeneous Boolean algebra A2Gf

hyperstonian space A2L (A2La)

ideal of sets A1Ba

image measure A2Db

inaccessible cardinal see weakly inaccessible (A1Da), strongly inaccessible (A1Da)
incompatible elements in a p.o.set 2A

indecomposable ordinal §P, A1Dd

indescribable cardinal see II7"-indescribable, weakly II7"-indescribable (§A4)

inner model 2D, P1

inner regular measure A2J, A2V, A2W

inverse-measure -preserving function 1J, 3H, A2Da, A2Fe, A2Gd, A2Jd, A2K, A2Lb

Joénsson algebra 5D, 9L, A10a
Jensen R. 1H
Juhéasz I. 8M

Kunen K. Intro., 1E, 2C, 3A, 4L, 4T, 5G, 5L, 5N, 5P, 8C, 8J, 9N, A4H, A4J

Lebesgue H. Intro.

Lebesgue measure Intro., 14, 1D, A2Gb, A2Kc, P4

lifting of a measure space A2Q) (A2Qa)

Lifting Theorem A2Q locally compact topological space 8N , ST’A locally countable topological space
STA

locally determined measure space A2B (A2Bc), A2Cd, A2J]

lower integral 64, A2E

lower semi-continuous function A2J

Luxemburg W.A.J. Intro.

Maharam homogeneous measure 1G, 11, 2H, 3J-3M, A2H (A2Hg), A2Ka, A2Y, P2

Maharam type of a measure space 2H, 21, 3F, 3G, 3H, 31, 3J, 3K, 3L, 3M, 6D, 61, 7Q, 8A, A2Hg, A2Ka,
A2Y, P2, P6

Maharam’s Theorem A2I

Mahlo cardinal see weakly Mahlo (4Aa), greatly Mahlo (4Ac), a-Mahlo (4B)

Mahlo’s operation 4A (4Ab), 4B, 4F, 9J, A4F

Martin’s Axiom 9G

Mathias A.R.D. Intro.

meager sets in R P

measurable algebra 2B, 8R, A2Fc

measurable cardinal see two-valued-measurable (1Cb)

measurable function A2Ae, A2Gg

measure algebra 6C, A2F (A2Fa), A2G, A2l, A2Jd, A2La, A2Q, P2, P6

measure algebra of a measure space A2Fd, A2La, A2U

measure space A2A

measure-preserving homomorphism A2Fe, A2Gd, A2Ib, A2Jd

measure-preserving transformation 1J; see also inverse-measure -preserving (A2Da)

metric of a measure algebra A2Fb, A2Hi

metric space 6M, A2W

metrizable space 8G, A3D, A3F

Moore space 8G, A3Ca, A3D

negligible set A2Ad
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NMA 8G, 8H, 8I, 8J, 8K, 8M, 8N, 8R, 8S
non-stationary ideal A1E

normal filter 1Fb, 1G, 11, 4Ac, 4F, 91, A1E, A4F

normal ideal 1F (1Fa), 9B, 9C, 9K, A1E, P7

normal measure 1Fc, 1G, 8H

normal measure axiom see NMA (8H)

normal topological space 8E, 8F, 8G, 8M, 8N

normal witnessing probability 1H, 11, 2J, 3L, 6A, P2, P7
Nyikos P.J. 8M

order-closed subalgebra of a Boolean algebra A2H, A2Ic
order-continuous linear functional 6N

partially ordered set A1Aa; see also p.o.set (2A)
partition relations see arrow relation (A1S)

pcf theory A1l

PMEA 8B, 8C-8G, 8J, 8S, 9H

p.o.set 2A; see also partially ordered set (A1Aa)
precaliber of a Boolean algebra 5D, 6C, A2T, A2U
Prikry K. Intro., 6F, 9F

principal ideal in a Boolean algebra A2Gf, A2Hc
probability A2Ba

probability algebra A2Fa

probability space A2Ba

product measure A2G, P9

product measure extension axiom see PMEA (8B)
product of partially ordered sets 7C, 7D, TH, 7I, TK-7N, 90, A1H, A1l, A1R , P5, S7C, S9A
purely atomic Boolean algebra 9D

purely atomic measure space A2Bg

pushing-down lemma AI1FE

qm filter 9C, 9J

qm ideal 9C, P7

quasi-Radon measure space 3A, 3B, 6D, A2J (A2Ja), A2V , S6B, SA2A
quasi-measurable cardinal §9 (9C), P7, P8

Radon measure space 3H, 31, 6A, 6B, 6E, 61, 6L, 8A, A2J (A2Jb), A2K, A2L, A2Pb, A2V, P/ , S6B,
SA2B

Radon topological space 6M, A2V, A2W

Radon-Nikodym theorem 2C, A2Fg

random real p.o.set 2B, 2C, 2J, 40, 8Q, P1, P7

rapid filter 5G, A1Cb

real-valued-measurable cardinal 1C

rectangle algebras 5J

reduced product of partially ordered sets 71, 7K, 7L, 7M, 90, A1H , A1l

regressive function 1Fa, A1Db, A1E

regular cardinal 8P, A1Ab

regular open algebra 24, 2B, 9H, A3A

regular open set A3A

relatively order-closed set 80, 8P

relatively stationary set 80, 8P

repeated integral 3A, 5H, 51, 6A, 61, 6J, 6K, A2Ge

Riesz space 6N

rvin filter 11, 2K, 21, 4K, 4N, 4P, 4Q, 4R, 5D, 6L, 7K, A4L., P3

rvm ideal 11, 2J, 2L, 4K, 4N, 4P, 4S, 5F, P7

saturated ideal see k-saturated ideal (A1Bf)
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scalarly measurable function 5H, A20
second-order language A4A

selective ultrafilter A1Cc

semi-finite measure space A2B (A2Bb)

sequential cardinal P8

sequentially continuous function P8

sequentially order-continuous functional 6N

Shelah S. Intro., 5D, A1l

Shelah covering number see covgy (v, 3,7,6) (A1J)
simple group 8R

singular cardinals hypothesis 8K, A1N

Solovay R.M. Intro., 1E, 1H, 6F

Solovay’s construction 2C, 2H, 2J, 4R, P1, P2, P3, P7, P9
Souslin number of a partially ordered set 7C, 7D, A1P, A1R, P4; of a Boolean algebra 5D, A1P
Souslin’s hypothesis 7D

stationary set JAa, 4F, A1Dc, AIF, A1G

strictly localizable measure space A2Bd

strong law of large numbers A2X

strongly compact cardinal 8C'

strongly inaccessible cardinal 1D, A1Da, A1S
subspace of a measure space A2Ab, A2J
successor cardinal 8P

supercompact cardinal 8/

third-order language A4K

Todorcevié¢ S. 5P, TF

topological group S7TE

topology base A3F

totally finite measure A2Ba

totally ordered set 7F, AlAc

trivial measure space 1A, 1B, 1D

two-valued-measurable cardinal 1Cb, 1D, 1E, 1Gb, 1Ha, 11, 2D, 2E, 2H, 2I, 2K, 2L, 5N, 5P, 9G, A4L,
P1, P7

Ulam S. Intro.

Ulam matrix 1F

Ulam’s Dichotomy 1E

Ulam’s Theorem 1D

uniform filter A1Bc

universally negligible set S6C, SA2C

up-antichain in a partially ordered set A1P

upper integral 34, 64, A2E, A2Je

upwards-ccc partially ordered set A1Q
upwards-compatible elements in a partially ordered set A1P
usual measure on {0, 1} A2G (A2Ga), A2, A2Jc, A2Pb

vector lattice 6N

weakly compact cardinal A1S

weakly II}-indescribable cardinal A4C (A4Ca), A4D

weakly IIi-indescribable cardinal 4Dc, 4F, 4G, 4H, 41, 4K, 4L, 4R, 6L, A10b, A1S, A4C (A4Ca), A4D,
A4H, P3

weakly II3-indescribable cardinal A4Ca, P/

weakly IT}-indescribable cardinal A4C (A4Ca), A4F, A4G, A4J

weakly I13-indescribable cardinal 4P, 4Q, 4R, A4C (A4Ca), P3

weakly IT3-indescribable cardinal A4K, A4L
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weakly Mahlo cardinal 4Aa, 4B, 8P

weakly inaccessible cardinal 1D, 4Aa, 8P, 9B, A1Da
weight of a topological space 3A, 3B, 6J, 6K, A3Ec
witnessing ideal 9C

witnessing probability 1C, P2

Woodin H. 6K

Zakrzewski P. 1J, 6K

a P4

Afa A2Hc

add(P) see additivity of a partially ordered set (A1Ac)
add(u) see additivity of a measure (A2Cb)

b P4

¢ = 29 1D, 4L, 5E, 5N, 9D, 9L, 9N, 90, A4D

cf(P) see cofinality of a partially ordered set (A1Ab)
cov(X,A) A2P (A2Pa), P4

cov(X,N,) 2H, 6B, 6L, A2Pb, A2U, P4

covsh(a, B,7,0) 7K, 70, 90, A1Ja, A1K

0 7K, P4

(X)) 6N

L A4A

L3 A4K

L(Z) 2D, 2K

L>(2A) 2C, A2Ff, A2Fg

Mh(A) see Mahlo’s operation (4Ab)

N, 2J, A2Ad , S6D; see also cov(X,N,), non(X,N,)
non(X, A) AlBe

non(X,N,) 6G, P4

p P4

p-point filter 5G, A1Ca

p(k)-point filter 5L, A1Cd

Regr(k) 4Da

S(P) see Souslin number (A1P)

sat(2) see Souslin number (A1P)

Tr(k) 3D, 3B, 9K

Trz(X:;Y) 2F, 2G, 2H, 3D, 3M, 5D, P2

Uy 4Da, JE , JH

a-Mahlo cardinal 4B

a— (B8,7)? 50, 5P, A1S

O(a,vy) 7K, 90, A1Jb, A1K, A1L, A1IM

r-additive ideal 2D, 9B, 9C, 9F, A1B (A1Ba), A1E
k-additive measure 1C, A2Ca; see also additivity of a measure (A2Cb)
k-additive partially ordered set A1Ac

k-Aronszajn tree 5F, 9M, A10b

k-chain condition A1P

k-complete filter 1C, 1G, A1Bb, A1E
k-measure-bounded partially ordered set 7G, TH, 71, 7J
k-saturated ideal 2D, 9A, 9B, 9E, 91, 9P, A1Bf

uf~! A2Db

u[A A2Ab

uw* A2Aa

I1}-filter 4Dc, 4F, 4G, 41, 6L, A4Cb

I} formula 4T, A4B
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I} -fully stationary 4Db, 4Dc, 4K, A4H
ITi-ideal A4Cb, A4H

IIl-filter A4Cb, A4F, A4G, P3

I} formula A4B, A4E

II!-ideal A4Cb

[12filter 4Q, 4R, A4Cb

12 formula 40, 8Q, A4K

I12-ideal 4P, A4Cb

I12-filter A4K, A4L

[13-indescribable cardinal A4K, A4L
o-finite measure space A2Ba, A2Bb
o-ideal 94 , P9

%1 formula 4S, A4B

L formula A4B

T-additive measure A2V, A2W, S6A, SA2A
7-homogeneous Boolean algebra A2He, A2Hf, A2la
7(2A) A2H (A2Ha), A21

x(a) A2Ff

x(x, X) 8F, 8M, A3Eb

w-Tukey function 7G, TH, 71
wi-saturated ideal 9C, 9H

E A4A

{0,1} A2G

Oe 5N, 9N

— see a — (8,7)% (A1S)

[ see subspace measure (A2ADb)
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