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CHAPTER 7

Introduction .

In this chapter W will be a Greenian open set in ﬂfﬂ,
with Green functien G.

In §1 we shall state and prove some of the main principles
of potential theory. §2 is devoted to the celebrated capacity
theorem scme of whose applications are found in §3. §4 deals
with the balayage procedure. In §5 we give the rudiments of

pirichlet spaces. constraints of resources like time and spac

have forced us +to drop subjets like Additive functionals, Martin

Boundary, Fine topology etc.

§1. Some patential Theoretic Principles

Let s bhe excessive in a Green domain W, with Green

function G-
(1) hix} = 1imE_[s{Xp}] .
W X T

D relatively compact open in W

T = exit time from D-

is locally integrable and satisfies the mean value property and
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ter 6) and from (3), s=p+h with h harmonic and p a potential.

Ge is m (as we saw before Theorem 6, §1, Chap-

from what we said above p =§}-Gm and hence h must be zero
d

and s =p.

We will be needing
(7) GGy} = B[4, ¥): H<R], yED, x €W

where D 1is an open set, H=hitting time to D and R=exit
time from W.

To prove {7) start with the Ffact that G(-,y) is excessive
harmonic except at y. BSo if y is fixed the right side of
(7) cannot become larger as D3y bhecomes smaller. So assune
that D 1s relatively compact in W. For any relatively compact
open A containing D, G(*,y) is harmonic in the open set

a~D and continuous on its cleosure. Therefore for all x A~D

Glx,y) = E [G{Xy,y):H <S] +E _[G(Xg,y):5 <H]

whe?e § = exit time from A. Let A increase to W. Using
{2), because G{:,y) is a potential we obtain (7} for all x¢D.
For x €D, (7) is trivial.

Integrating both sides of (7) withrespect to a measure m

living on D

If Gm=p for a measure m, D open and

m(W<D) =0 then

(&)
p = E_[P(XH): H < R]

H = hitting time to D.
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The last two principles are formulations, for measures,

the "principle of positive maximum® of §3 Chapter 3; and the
at a

last as the reader might have guessed says that "Auz0

The last two principles are inplied by the

maximum of u".
pomination principle of Maria-Frostman. If u 1is exessive,
u > Gm, m-almost everywhere then

m-almost everywhere and

Gm <=
u>Gm everywhere.
Progf. Let p=Gm. The hypothesis imply that we can find
compacts Fn such that uzp on F, and .the measures m]_l=m|:>.~"r1
increase to m. Therefore these is no less of generality in
assuming that m has compact support F, that uz>p on F,
and that p<= m-almost everywhere.
We claim
H=nhitting time to F
(9} p(-) = E [p{Xy):H<R], )
R=exit time from W.
F and

Indeed if D is relatively compact open and contains
= D~F by Lemma 1,85, Chapter 5

Dy
ple) = E [p(Xp) 1, T=exit time from Dy.
gince T=H or T=5, where g =exit time from D
pis) = E_[p(xH):H <5]-FE_[p{XS):S < H]
< E_[p(Xy):H <R] +E [pixghl.
Since p 1s a potential the iast term in the above inequality
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a Borel
et A 1is guasi null if the following holds;:

(10 =
) m(A} =0 for every measure m such that cm 1is

uniformly bounded.

Clearly a Borel set is quasi mull iff every compact subset ig

and & countable union of gquasi null sets is quasi null. We shall
see in §3 that quasi null and polar are the same. In view of the
maximum principle & set A is quasi null iff m{A) =0 for e?ery

mea,
sure m such that Gm<w m-almost everywh
ere.

Let P
be a compact set and H=hitting time to P

A point € i
P ®XEF 1is called reqular (irregular) for F if

P IE=0] = 1 (=0).

Propo i i
position 1. The set oi irregular points in a compact set

F is juasi null.

Proof. dJust as in Proposition 2, §2, Chapter 4 P, [E>t]

is seen ko be upp -
er semi. continuous. The set of iIregulaI points

in F is the union

(11} JixixeF, P.[HB%J?_%}

and each set of the union is compact and consists entirely of

irregular points.
Now suppase A 1is compact and not quasi null.

There then exists a measure W whose potential p=Gm is

m-almost everywhere finite and m(a) > 0. BY restricting m to

a if necessary we may as well suppose that m lives on A.

From (9) (H denotes hitting time to A and R=exit time from W)

JG(x,y)m(dy) =plx) = Ex[p(xﬂ) 1H < 31

= JEXIG(XH,y):H < Rlm{dy}

showing that for m—almost all y in A

(12} G(x,y) -Ex[G(XH,y}:H:»R] = 0.

Just as in the “harrier" argument of Property 2 §1, Chapter 6

one concludes from (i2) that m-almost all y €A are regular
for A.

Finally since each set of the union {11) consists entirely

of irregular points each of these sets and hence the union is
gquasi null. Q.=a.d.

As an application let us take up the matter of representing

measures for D(X) the set of continucus functions on the com-

pact set X which are harmonis in the interior af X. BSuppose

a measure m on 23X represents a point xp € X 1i.e.

Jf(y)m(dy) =f(xD) for all £E D(X). We show that if m has

no mass at KO then m must be the harmonic measure at L

Consider Km(-)=JK(--—y)m(dy). 1f x¢X, K(x-+) is harmonic

in a neighbourhood of X. Hence Km(x)==K(x—xU). so as x§X




tends to a point z € dX, by Fatou, Km(z) SK(Z‘XO)- If m
has no mass at ¥or Em is thus finite m-almost everywhere and
hence cannot charge the set of irregular points in 38X i.e. it
must live on the regular points in 8X. That such a measure is
the harmonic measure has already been shown in §5, Chapter 5.
An example of a harmonic measure with infinite energy (this
notion is introduced later in this section) is given in Example

4, §2, Chapter 4.

Propogition 2. Let Gn be n-almost everywhere finite.

If Gm<Gn then Gm is m-almost everywhere finite.

Proof. Put g=Gn. If the m-measure of the set (g = =)
is not zero, by restriction if necessary let us assume that m
lives on a compact subset F of {g=w). For any open set D

containing F, if p=Gm, from (8)
{13) P(x) = B [p(X):H<Rr] <E [q(X,):H <R]

That the last guantity in (13) tends to zerc as D decreases

te F for any x such that ql(x) <= is shown as follows:

If D is contained in the open set (g>N)

{14) NPX[H'<stEx[q(xH):H<a]Sg(x)

The best guantity in (13) is equal to

JEXIG(XH,y):H < RIn(dy)

which decreases to zer6 as D decreases to F because: The integral
is bounded above by the n-integrable function Gi(x,*), for every

y not im F it decreases to zero by (14), and n does not charge
p. Thus p must be zerc, which can only be true if m(F) =0.

That proves the Proposition.

The Balayage Principle

Let FcW be compact. For any measure m such that p=0Gm
is m-almost everywhere finite, then exists a unique measure 1N,
with support in F such that Gmz=Gn in W, while Gm=Gn

quasi everywhere on F (i.e. except for a quasi nullsubset of TF).

1f H=hitting time to F

gqi{*) = E_[p(XH):H <R]

is excessive in W, harmonic off F, is less or equal to p . and
eguals p at every point which is regular for F. If g, is any
other potential with the properties q; 2P and g =P gquasi every-
where on £ then, q1==q guasi everywhere on F, bhecause by
Praposition 1 the set of irregular pcinﬁs in F is quasi null.
The Domination Principle together with Proposition 2 ahave implies
that g =4q,. Clearly the Riesz measure of g is the required

measure, n  is callied the Balayage of m onto F.

The Bquillibrium Principle

Any compact set ¥ containing at least one regular point

contains the support cf a unigue measure m whose potential




p=6Gm=<1 everywhere in Ww and p=1 guasi everywhere on F.

m is called the equillibrium distribution en F and p its

equillibrium Hotential.

If R=exit time from W and H=hitting time ta F
pi-} = P.'[H<R]

is easily seen to be a potential [if d=2, use t+he fact that

p [Rew]l=1. IL 42 3 use the transcience of the Brownian motion,
c.f. Exercise 3, §1. Chapter 41. p is then the eguillibrium
distribution. The uniqueness follows as before from the domination
principle.

In physics it is known that charges in a charged body redi-
stribute thenselves into an equillibrium state and in this state
(since there is 0o movement of charges} all points of the body
are at the same potential. To find thsi distribution of charges
is the eguillibrium problem. The equillibrium principle agserts
the existence and unigueness of the egquillibrium distribution.

The probahilistic meaning of the gquillibrium distribution
is explained by what is known as Chung's formula which we now
describe. For a compact set F the last exit time Y 1is defined

as follows:

supit:0<t <R, XtEF)

-
f

g if there is no such t

vy is not a stopping time but Y is measurable because

{(y<t) = (E(Bt) >R} where H=hitting time to F and the shift

gperators g are defined in §1, Chapter 2. The last exit time
satisfies t+Y(Bt) =y on the set y>t and the set (0 <Y}

is the same as the set (H<R). For each subset ACT, the
function L(*,R) =P, (XY €n,0<y) is excessive {use Markov Property)
and {being less or equal to the egquillibrium potential of F) 1is
in fact a potential. Also, if A 1is compact, the hitting time

to A 1is less or egual to Y ©n the set (XY €a). This fact
and strong Markov property show that L(+,3) 1is harmonic of£

A i.e. the Riesz measure of L{+,A) is concentrated on A if
n compact. The sum of the potentials L{-,A}) and L{*,F~Ap) is
the hitting potential p of F. Therefore the sum of their Riesz
measures is the Riesz measure of p=the equillibrium measure
of F. In particular m{A,dy)( = Riesz measure of L+, A} <m{dy}
and, because the former 35 concentrated on A We indeed have
miA,dy) 51A(y)m(dy}. We have thus shown that for every compact

subset A of F
L(,a) 5 [8(y) 1, ayImEy)

put the above being an identity when A=F, it must be an jdentity
for all compact (and hence sorel} A contained in T. The proof of

the identity
L{x,dy) = Gix,y)m(dy)

known as Chungs formula, is thus complete.

The Energy Principle

Physically speaking Gm(x} is the potential at X due to




a distribution m of charges i.e. Gm(x) ig& the work needed to
bring a point charge from infinity te x. Thus JGm(x)m(dx) is
the total work need to assemble this distribution of charges; in
other words it is the energy contained in this distribution of

charges.

IZ m and n are (positive] measures their mutual energy

(m,n) is defines by

{(15) (m,n} = jG(x.y)m(dx)n(dy) = (Gm,n}= {Gn,m).

where the symbel {Gm,n) has the obvious meaning that the potential
Gm is integrated relative to n. We will write Hnﬂlz for

{m,m); this quantity is called the energy of m. The energy

principle then states

{(16) If m and n have finite energy

{m,m) + (n,n) > 2{m,n}

with equality only if m=n.
Only strict positivety, symmetry and lower semi-continuity

of G is needed to establich the following useful proposition.

Proposition 3. (Gauss-TFrostman). Let F be a compact
subset of W and f continucus an F. There is a measure m

which minimizes
{17} Q{n) = {Gn,n) -~ 2(f,n)

amcng all positive measures n on F. Gm=f on the support

of m and the set of xEF where CGm{x) <f has n—measure

zero for every n on F of finite energy.

Proof. Since G 1is strictly positive and lower semi-continuous
its minimum on ¥ x F is strictly positive. Therefore {Gn,n)
is of the order of magnitude n(F)2 1if n(F) is large, whereas
{f£,n) is bounded by (supif}) n(F}. Thus inf Q(n} = inf{Q (), n(F}<h)
whare A 15 some large number. The set (n:n{F) <A} 1is compact
in the weak topology on measures on F({C(F) in a Banach- space
and its dual is the set of all signed measures of finite total
variation). G is lower semi-continuous and f is continuous
so 0 is a lower asemi-continuous function ef n and such a
Function attains its minimum on a compact set. Taus there is a
measure m minimizing Q.

Let m' be the restriction of m to the set {x;x€F,cm> f) .
For 0<e<1, m=-em' is a (non-negative} measure on F. Ey
shoice of m, Qm-em') —Q(m} >0 which is easily reduced to
¢2(Gm' ,m') + 25 (£,m*) - 2¢{Gm,m") > 0. Divide by & and let ¢
tend to zero to get {E,m'} - (€m,m'} >0, which cannot be true
unless m' =0, because m' lives on the set (Gm> £). ‘fhus
m-almost everywhere, and hence by lower semi-continuity, on the
suppert of m, Gmg<£. In particular m has finite energy.

Let now the measure n on F have finite energy and n'
its restriction to the set (Cm<f). n' has finite energy. The

inequality @Q{m+en') zq(m) for all €>0, leads as before to

{(Gm-£f,n') 0 which i1s false unless n'=0. 0Q.e.d.




Proof of the Energy Principle

It is enough to prove (16) under the assumption that m,n
live on a compact set F. Let £<Gm be continuous on F. By
Proposition 3, there is a measure b on F such that Gy =Ff

on support u  and
(18) (Ga,n) - 2(£,n) 2 (Gu, ) - 2(£,p) =- (G, pu)

because Gu =f on support p, Gu =f<Gm on support u, implies’

by the domination principle, GU = Gm everywhere. Thus (Gp,u) <

(Gm, 1) = (Gu,m) < (Gm,m}, which by (18) gives (Gn,n) + {Gm,m} > 2(£,n}.

The validity og this for all continuous £<Gm is just (i6).
Thus {16} is established except for showing that in case of
equali?y m must equal n. For this note that a measure having
c'-density with tompact support in W has finite energy. Let b
be a measure with compact support with smooth density £. ‘'then
m+b has finite energy ((m,b} <« becuase Gm is locally inte-
grable}. Applying {16) to m+b and n, and assuming that

equality obtains in (16) for m and n, we get
(b,B) + 2(m.,b) -2(n;b) >0
Replacing b by & b:
e{b,b) +2{m,b} - 2(n,b} » 0
and letting e-+0 we get
JGm(Jd £ (%) dx > JGn (%) £ (x) dx

for all non-negative smooth functions ¥ with compact supports.

This implies Gm >Gn almost everywhere and hence everuwhere.
By symmetry Gm=Gn i.e. m=n. Thus {16) is completely established.
The above proof of the energy principle uses the domination
principle which is very hard to check. Let us now indicate briefly
ancther proof, which uses the result of §5, Chapter 6 hut not the
domination principle. If g 1is the relative transition density
(notation of §5, Chapter 6), Jq(t,-,'} is symmetric and has the
semigroup property. Put for positive measures m and n,
Q(m,t,x}==Jq(trx,y)m(dy) and I{t,m,n) =jq(t,x,y)m(dx)n(dy)_ Using

the above properties of g it is easily checked that
I(t,m,n) = JQ{m.t/JZ,x}Q(n,t/IZ.x)dx

which in turn implies: I(t,m,m) +I(t,n,n} > 2I(t,m,n) i.e. gi{t)

is a definite Kernel for each t by which we mean I{t,u,u) >0

for any signed measure ﬁ. Since G= J git)dt, {16} is immediate.
The second method of proof gives ug many Kernels satisfying

the energy principle. For example J glt,%x,y)L(dt} satisfies the

energy principle for almost any measgre L. It would thus appear

that this prinpciple by itself is tco general. However together

with the minimum principle -~ which is hard to check - it implies

all the other principles. Take for example the dimonation principle.

Suppose m and n have compact support and Gm < Gn on support

m. g=CGnaGn is of the form Gl for some measure 21, (G(m-1),m1)

= {Gm,m) - (€l,m) - (Gm,1} + (G},1) <0 because on support m,

Gm=Gl and Gm>Gl everywhere. By the energy pronciple m=1

and domination follows.

If in {16) we take tn instead of n and let |nll t=! m!

we get the energy inequality




{19y (m,n) < Nl Hall

og which an immediate consequence is
(20) llm+nli < ilmll + [Inll.

Let & denote the set of all measures of finite energy.

+
For My W, EE+, m=m,-m, can be regarded as a signed Hadon measure
i.e. as a linear functional on the continuous functions of compact
supporkts in  W. Gm:=Gm1-—Gm2 makes sense as a n—-integrable

function for every ne€g Now we let £ denote the set of

-

all signed Radon measur = -

o es m=m, -m, with My W, €E,. (19) and
make ¢ a pre-Hilbert space with inner product (m,n)=Jémdn

£ is not pomplete. The completion of § can be identified with

as f di i i
pace of distributions; see §5. HKowever a result of Cartan states

th i
at £, is complete. We will now prove this and indicate twa

consegquences.
Lemma 4. L
Lenmns 1 et {si} be a sequence of excessive functions
and s =1 &
gfsi. Let § deonote the lower semi-continuous regu-—

i
larization of s:

B({x) = 1iminf s(y)
Yy-=x
Then £ is excessive and the set (5 <g) is guasi=-null

Proof. Lek a>0. We shall show that every compact subset

F i :
of the set (s>8+2a) consists entirely of irreqular points.

8y proposition 1, F and hence the set itself will be gquasi-null.

Let zE€F. & peing lower semi-continucus there is a neigh-

bourhuod v of =z such that for all x EV

(21) A(x) > B(z)-a, XEV

Then for all x€VNF and all i
(22) si(X)z‘é(x)+2a>§(z)4a=Asay, XEVNF.

I£ H=hitting time to V0F, from (22) for all x
{23) s, (%) > E Ls; (X)) :H <RI 2 AP, [H<R].

The right side of (23} is independent of i and is lower semi-

continuous. From the definion of &

8(x) zap [H<R] = {8(z) +a)B [H<R], XEW.

The last inequality when X=2 excludes the possibility that =z

is regular for #nr and regularity being a local property, 2

cannot be regular for F.

To show that & s excessive, appeal to Proposition 2,§7,

Chapter 5: If u is8 harmonic in a relatively compast open set Dy

: = ” : .
ceontinuous on D, uss on 3D then u<s; in n for all i.

Since it is continuous in the open set D, u.5§ as well. Q.e.d.

Lemma 5. Let m, be a seguence which is bounded in E+

and p; = Gmy - Then there exists mEE, whose potential P

eguals linlinfpi quasi everywhere.




Procf. By Lemma 4, for each i inf(pj, j=>i) is equal to
a potential q; quasi everywhere. CHL Sy p=1limq, is then
excessive and equals lim inf P; gquasl gverywhere. Let xG‘E W,
D be a relatively compact open set and T=exik time from D.
Now p<liminfp;. So to show that p is a potential we need

only show that

(24) Exa[pi(XT)]

is uniformly small if D is large. If n is the harmonic measure

at x, relative to D i.e. n{dy) =P, [XTEdy] the quantity in
0

(24) is simply indn= (mi,n).mi being bounded, by (19} it is

sufficient to show that the energy of n is small if D is

large. The following shows precisely this:
[eemnan - By (Gg 7)1 £Glig ).
{n,n) 5[G{x0,y)n(dy) = EXU[G(XO.XT)]

and the last guanlity tends to zero as D increases to W because

G(XD") is a potential.

Finally it remains to show that the Riesz measure m of p

is in &

r By Fatou demglim.inffpidm and for each &

i
indm = Jpn:‘im:.L < lim 'inf'[pjdmi = 1im‘in£ (mj ,mi) and (mi.mjl is
uniformily bounded by (19) and the boundedness of m, in g+.

D.e.d.

Theprem 6. £ is complete.

Broof. Let m; €&, be a Cauchy seguence. Chodsing a sub-

sequence if nesessary assume E” mi - mi+1” <=, Put Pi = Gmi'
For mEE,
{25) lei—piﬂ ldn = J(Pi'Pi+1’d“1 + J(pi+1-pi)dn2

= (mi—mi+1,n1) Wy =Ty, T,)

where n, and n, are the restrictions of n to the sets
(pi > p1+1) and (pi_H > pi) respectively. nyy, Ny EE,. and
their energies are dominated by the energy of n. From {19)

and (25)
Ein—piH)dngNInil THm ~m gl <.

In particular: For any ne€ g+, lim Py exists n~almost every-

where and, putting s =1im inf By
(28) limJls—pildn = 0,

But by Lemma 5 there iz meg E+ such that s=Gm, quasi every-
where. (26) then implies (mi,n) tends to {m,n} 1l.e. m; tends
weakly (in the Hilbert space sense) to m. Belng a Cauchy sequence
it tends strongly to m. Q.e.d.

Before proceeding for applications note the following. If
a éequence my EEf, tends weakly to mEEL, then my tends Vangely

to m. Indeed if ¢ is 02 with compact support

(27) -Adjlndmi = {Ap,my) » {Ap,m) =—Adjtﬂdm




because Ag defines a signed measure af inite energy and

[G(-,y)ﬁm(y)dy::—hdw. Also the energies of m, have to be

uniformly bounded and so (G is strictly positive and lower

i i i bounded for each compact
semi-continuou) , mi(F) is uniformly

is thus clear from
set F. vague convergence of m, to m

(27). In particular the set of measures of finite energy living
- In pargicun’ar 2t Df MeasuUies

on a closed set is a closed convex subset of E..

With this preliminary we cab give a geo

metrical meaning

d set.
to belayage: Let m be any element of £, and F a close

i i e n
By elementary Hilbert space theory there is a unigue measur

es
on F - the projection of m on the closed convex set of measur

2 2
of finite energy living en F =~ such that Ilm=-nil<<lim=ull

+ " H
h live on F Take n+ &ty instead of
for all uE 5 whic

and redece to get
2
(28) —2 (men,tp) + 2N 20

i - d
for all such . This can only be true if (m-n,u) <0 an

i £
(taking t=1, =n in (28)) {m-n,n) =0. As in the proof o

i F.
Proposition 3 this implies GmsGn quasi everywhere on

gut then by (m—n,n) =0 we must have Gm =Cn, n-almost every-

i W.
where. By the domination principle Gm>Gn everywhere on

Thus Gm > Gn everywhere on W ané egquality holds quasi every-

where on F i.e. n is the belaye of m.

Similariy the eguillibrium destribution has the following

ilit
interprelation. Let F be a compact set. The set of probability

i subset & .
measures on F of finite energy 1s a closed convex +

re on this set 1lg simply the unigue

-2 .
J. . s
probability measure m on F of minimal energy. |l mil m i

The projection of the zero-measu

the equillibrium distributien for F.

The existence parts of balayage and the equillibrium principles

can be directly deduced from Proposition 3. See Exercise 6 and 7.

Remark. The reader might gquestion the wisdom of Proving a
difficult theorem like the completeness of €, Just to be able
to interpret balayage as a projection. The point is, with this
method a sort of balayage can be worked out even when the domination
principle féila. A case in point in this: The M. Riesz Kernels
lxnyl_d+u satisfy the domination principle only when 0 <a<2.
But for all 0 <a<d, the corresponding €+ is complete. Thus
for 2 <p<d the Hilbert space method gives a solution to balayage
problem whereas other methods fail. We shall discuss these matters

in a latter section.

Exercises to §1

1. Show that the first maximum principle implies the continuity

principle.
Hint. BSee the hint to Exercise 2, §4, Chapter 5.

2. GShow that the second maximum principle implies the first maximum

principle.

Eint. Suppose m has compact support. ¥ Gm<1 on F.

If D is an open set containing ¥ the hitting potential of D

1s egual to 1 on F.



6. From Proposition 3 and the domination principle derive the
Remq;%. That the continuity principle implies the Maria -

balayage principle.
Frostman maximum principle is shown in the test. Thus these prin-

ciples are equivalent.
Hint. Let F be compact and f continuous on F with

-1 , . . i th =£
3. Let g be a potential and A=g  (®}. Show that A is quasi f <CGm There is a measure n oh F such at Gn on suppaori

null n, Gnzf quasi everywhere on F and Gn <Gm everywhere. Let f

increase to Gm.

Hint. If F 4is a compact subset of A, m lives on ¥F

and p=0Cm 1is m-almost everywhere finite then (9) holds so thak 7. Using Proposition 3 and the first maximum principle derive

the Px—probability of the event (H<R) cannot be zern. On the the equillibrium principle.

other hand if gq(x) <=,
Hint. Take f=1 in Proposition 3. For uniqueness we need

Ex[q{XH}:H<Iﬂ <g(x) <= and g=* on ¥F. also the domination principle.

4. Let g and A be as in Exercise 3 above. Then For every

measure n living on A, Gn== np-almost everywhere,

§2. Capacity

Hint. If F is compact <2, n(F) >0, Gn<w=, on F, and Let F be compact cW (our Green domain) and p its
m=nl|F then Gm<=, malmost everywhere. Now use Exercise 3 above. : equillibrium potential:
p(-) = P, [H<R]

5. Show that the set mEEL such that m and ©Gm both are come

pactly supported is dense in E.
where H=hitting time to F and R=exit time from W. The

. . Riesz measure of p is concentrated on 3F because p=1 in
Hint. Let m€&L, have compact support, D relatively com- .
. the interior of F and is obviously harmonic off F. We call
pact open, T=exit time form D. IF p=Gm, then q==E.{p(XT}]
R 2 2 m(F) the (Newtonian) capacity of F:
is Grn for some n. Since q<p, lall“ < |pdn= [gdm < |pdm = Hmli%<=

As D increases to W, the m-integrable functions g decrease
N{F) = m(F) = m(W} = m(3r).

to 0 and are bounded by the m-integrable function p. 8o lnll

is small for large D. m~n is the required signed measure. See

also Lemma 1, §5.



Just as in Measure theory we define the inner and cuter

capacities of our arbitrary subset A of W as follows:
The inner Capacity N,(A) = supN(F)

where the supremum is over all compact subsets F of A.
The outer Capacity N*{A) = inf N,(D)

where the infimum is over all open sets D>A. A set E is

called capacitahble if its inner and outer capacities coincide and

N(E} will denote this commen value and is called its capacity.

Pfogosition 1. Let a and b be Radon measures with poten~

tials uw and v. If u<v then

alW) b (W .

Proof. Let F be any compact subset of W and p its
equillibrium potential and m its equillibrium measure. Then if

F° = interior of F
a(r®) < dea = Iudm < Jvdm = jpdb < b (W)

because p=1 on F° and <1 everywhere. The proposition

follows by letting F increase to W. Q.e.d.
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Observation. The domination principle of §1 and Propositicn

1 above permit us to identify the capacity of a compact set as:
N(F) = supm(F)

where the sup is over all measures m on F whose potential
Gm <1 everywhere. In particular a compact set has capacity zero
Lff it is gquasi null. Now a Borel set is guasi null iff every
compact subset is guasi null. And we obtain:
2 Borel set is guasi null iff iks inner capacity is zero.
That a compact set is capacitable is seen as follows: Let
A be compact and D a relatively compact open set containing a.
Suppose Dn are open ﬁnCD and Dn decreage to A. Denote by

p the relative hitting potential of D:
p(+) = 2 [H<R}, H = hitting time to D.

and let Pn similarly denote the hitting potentials to Dn‘ The
Riesz measure m of p is concentrated on 3D and PL decrease
to the hitting potential g of A at all points of @D (in fact
pn(x) decreases to gi{x} for all x, except when x¢ A is
irregular). If m, = are the Riesz measures of B because p=1

on Dn and m live on ADn,

m (W) = fpdmn = Jpndm-& Jqdm = fpda = a(W)

where a is the Riesz measure of g i.e. the equillibrium destri-
bution for A. On the other hand it is clear from Proposition 1

that mn(w}glﬂ*(Dn). Therefore

(1) N*¥(A) = N(A}) = Ny (A}, A compact.
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Thecrem 2. The outer capacity N* has the feollowing pro-

perties:

i) N*(a) <N*(B) if ACB
ii) N*(An)+N*(A) if An+A strongly i.e. in such a
way that every open set containing A contains
some A
5]
iii} N*{AUB) +N*(ANB) <N*(A) +N*(B). This property

is called strong subadditivity.

1v)  N*{An)+N¥(a) if An+A.

¥) Borel sets (even analytic sets) are capacitable.

Proof. i) and ii) are clear from the difinition. Let us
prove iii). If A and B are compact and H1, H2 the hitting

times to A and B respectively, H1 AH2 is the hitting time

to AUB and H,VH is less or equal to the hitting time H

1772

to AMNB. If gm=exit time from W (recall HH, VH,) the trivial

ineguality
Px[H1 A Hy <R] +Px[H < R] st[H1 < R} +Px[H2 < R]
leads by Proposition 1 to
(2} N{(AUB) +N{(ANB} <N(A) +N(B}.
If DT and D, are open

(3 Ny {Dy UD,) + N, (D; NDy) Ny (D) + N, (Dy)

follows from the definition of WN,, (1) and the elementary topolo-

gical fact that if A and B are compact subsets of D, UD

1 2
and D D, respectively then we can find compact sets A, eD

1 1
and .1\2:92 such that A, UA DA and A, NA,>B. [Write Dy=UA_,

1 2 1 2 1
D2==UBn with A En increasing open and relatively cémpact in

D2 respectively. For some n, AntJBn will contain A and

D1,
Anf1Bn will contain B]. Now the proof of iii) should create

no problems.

To prove iv) we may and do assume that supN*(An)< =, Let
n
a > 0. We shall find ipductively an increasing segquence of open

*
sets Dn::An such that N*(Dn)-<N (An]~ta. Let DT be open,

D.I::JA1 and N*(D1) <N*(A,) +C a/2. Suppose D, b,

~n
been found such that D oA  and Ny (D) <N*(A } + (1-2 Ta.
1

GmCDn have

-n-1

. 1
Let Dn+1 be open with N*(Dn+1) <N*(An+1) + a2 Put
= 1T .
D = Dy UDn4q " Dyyq BBy~ From (3)
1 1
Ny (Bpyq) #Ny(Dpyq D) <M, (D} 4N, (D)
. _ o0 ,=n=1
SN*A) +N* (A L) +a(1-2" 42 3.
. 1 .
Since Dn+1l}Dn:=An we get from the ahove inequality
(4 N, (D_,.) <NKA_ .} +a(1-2""7T)
*'n+1t = n+1

If D=UDn, then D contains A. And N*(D)=supN*{Dn)
because any compact subset of D 1is contained in some Dn'
iv) now follows from (4).

v) is proved by using the famous Capacity Theorem which

follaows:



The Capacity theorem

We need to introduce some terminclogy. Let us denote by N
the topological product of countably many copies of the set of
natural numbers (1,2,3,...) with the discrete tapology. It is

well known that N is homecomorphic to the set of irrationals

in the interval 1[9¢,11 but we do not need this. See Kuralowski [i1.

We need the following facts about M.
iy If §==(n1,n2...) EN then the sets N(n1,..,nk)=

(m; meN, m; =Ny, 1<i<k) form a base of neigh-
bourhoods of n and each of these sets-is open
and closed.

ii} A countable unien of disjoint copies of N is
homeomarphic to N. Denoting the disjoint copies by
{k,N) the map which sends (¥k,n) into the ele-
ment of N with first coordinate k and whose
{(i+1) - st coordinate 1s the i-th coordinate of
n is a homeomorphism of F(k,N} onto N.

iii) Countable product of copies of N (being still a
countable product of the natural numbers)} is homeo-
morphlc to N.

A Hausdorff topological space is called a Polish space if
there is a metric on it - consistent with the given topolagy -
making it complete and separable. A countable product of Polish
spaces is Polish. A Hausdorff topological space is called analytic
if it is the contonuous image of WN. The set of natural numbers
being a Polish space, N and alsoc any ¢losed subset of N is
Polish.

With these preliminasies we have

Lemma 3. A Polish space is analytic. The class of analytic
subsets of an analytis space 1s closed under coutnable unions and
countable intersecticns and contains all Borel sets (i.e. sets

in the o0=-field generated by closed sets.)

Proof. Let (¥,d) be a complete separable metric space.

For each finite set (n1,n2,...,nk) of integers we will £find non-

empty closed balls of diameter f%- in the fellowing way: Let

F1'F2""Fn"" be a cover of Y with closed halls of diameter

€1, in case of finite cover we repeat the last one. If F

ny,ng..np
has b .
een found, we cover Fn1n2..nk by closed balls Fn1n2..nkj
of diameter <—l—, (repeating the last i1f necessary}. F
= k+1 nyeeeny

thus found has the properties:

{3) diamter F <
ny...ny,

If 3=(n1,n2,.4.,nk...)eN we define f(E)=T(Fn1...nk'
This intersection is nonempty and contains exactly one point by

completeness and Hausdorffness. That it is onto follows from (5).

The set N(n,l,...nk) = (q:g = (ql,...qk,...), qimni,.igk) is open
1

in N and £ '(F ) contains N(n;,...n. ). This proves

n,...n
continuity. Thus ; iskthe dontinucus image of N. Thus a continuous
image of a Polish space is analytic.

Let Y be analytic and Ai analytic subsets of Y‘19Ai
will then be a continuous image of disjoint copies of N v;nd union of

countable disjoint copies of N is homeomorphic to N.



To show that A Ay is analytic note first that a ¢losed
subset of an analytic space is analytiec because it is a continuous
images of a closed subset of N and the latter is polish. Now

I1Ai can be identified with a closed subset of the product IIAi,
i i

.} with g =2y for alt i and j.

20 i
And the latter is analytic being the continuous image of the product

namely the set of x::{x1,x

TN  (which is homeomorphic to N).

* We have also shown above that Borel sets are analytic because
a family closed under countable unions and intersections and con-
taining closed sets contains all Borel sets. Q.e.d.

Some more information on analytic spaces is in Exercises.

Let ¥ be an analytic space. By a Choguet capacity on ¥

we shall mean a nonnegative set function C defined on all subsets

I3

Y .such that

1) c(p) sci(B), i1f AcBH
2) C(adtc(a) Lf A_tA.

3} C(A) =lin1C{An) if Al degreases strongly to A

i.e. A==r1An and each open set cantaining A

contains some An.

We have the fundamental

Theorem 4. {Capacity Theorem). Let ¥ be an analytic space

and C a Choguet Capacity on Y. Then for any number a < C(Y)

there is a compact subset ACY such that a<C(A).

Proof. Let # be cvoniinuows on N onto Y. Let vk denote

the set of n€N whose first coordinate <K:

Vg = (EEN,B=(n1,...,),n15K).
Since VK+N as Kte, f(VK)+Y. We can find k1 such that
be the set of neEv, whose second

C(f(Vk1)) >a. Let Vk1j k1

coordinate is less or egual to j. Vk 3 increases to Vk .
1 1

We can find k2 such taht C(f(vk k )} »a. This procedure
172

determines for each J a set Vi k.-
gk

]
Vk1...kj = (n: (n.l,.,nk...) EN, ny Ek.‘,..,njfkj)
such that C(f(vk x J}) »>a. Put
17775
v 9vlc1kj = (@ ny <ky)

That V 1is compact and Vk k strongly decrease to V are
1ok
easily shown. It follows that A=f{v) 1is compact and f(Vk

D
strongly decreases to A. We conclude C(A) >a. Q-e.d.

Exercises to §2.

1. Show that a Ga—subset of a Polish space is Polish.

Hint. as we saw in the proof of Lemmz 3, intersection can
be identified with a closed subset of a product. An open subset

[T} a Polish space is complete with the metric:

1 1
a6y g Fy - Tl Er

where d 1is the metric in the ambient space and F =the comple-

ment of u,

k.

J



2. A topological space is a Lindeldf space if every open cover
has a countable subcover. Show that every analytic space is a

Lindeldf space.

Hint. Continuous image of a Lindeldf space 1 LindelBf.

3. Let A and B be analytic. Show that the Borel fileld in

AxB is the product Borel field.

Hint. AXxB is analytic so is every open subset. An open
set 0 in AXB is a union of open sets of the form UxV where
U 4is open in A and V is open in 3. There is a countable
subcover by Exercise 2 and UxV belongs to the product Borel

field."

Remark. Some result clearly holds for countable product of

analytic spaces.

4, Let A and B be analytic and £f:A-B, Aorel measurable.

Show that graph £ is a measurable subset of AxB.

Hint. The map BxA -2 BxB given by g(b,a,)=(b,£(a)}
is measurable and the inverse image of the diagonal in Bx B
(which is measurable relative to the product Borel field by

Exercise 3} is simply the graph of £f.

5. Show that images and inverse images under Borel maps of

analytic sets are analytic.

7.33

Hint. £:X-Y is Borel, AcY’ éna}ytic, then
£ (4 = n_l(graph £) N (xxA)]
and if AcX is analytic then
£{A) = HY[(graph fyn(ax¥)l}

where Hx and HY are projections onto X and Y.

6. If D 1is an open relatively compact subset of W, the
hitting function u=P.[H<R], H=hitting time to D is neceg-
sarily a potential. For D not relatively compact give examples

where u is harmonic, harmonic + potential or just potential.

7. Let D be any open subset of W and u as in Exercise 6

above. If u is a potential then N{(D} is the total mass of
the Riesz measure of u., If u is not a potential then N(D} ==.

Hint. 'The energy of the equillibrium distribution of every
compact subset of D is bdunded by N(D). 8o, if N{D} <=, by
Lemma 5 §1 u must be a potential. Of course the same holds for

analytic sets.

£§3 applications

our first application of the capacity theorem is to V) of
Theorem 2. i), 1i) and iv) of Theorem 2 say taht N* is a

Chogquet Capacity. We have already shown that for a compact set



N* =N. fThecram 4 then guaranties that all analytic sets are
capacitable.

Out next application is to showing that a Borel set i gquasi
null (definition in §1) iff it is polar. Recall the definition
of a polar set given in §2, Chapter 5: A set is called polar if
it is contained in the set of poles i.e. infinities of a super-—
harmonic function. We need a small proposition in which we prove

more (for future reference} than is immediately needed.

Propesition 1. Let FcW be polar and xUE F. Then there
exists a potential p with finite Riesz measure such that p=~

on F and p(x0)5 1.

zgggg. Suppose first that F is relatively cempact. F
being polar there is a superharmonic function s which is iden-
tically ianfiniticn on F. Let ny be the Riesz measure of s.
If D is relatively compact open neighbourhcad of F then
n1{D) «m, If n==n1lD, the botential g of n and s have
the same Riesz measure on D implying that s=g-+h, with h
harmonic in D. ¢ is then infinite on F.

In the general case F= UF ~with F relatively compact.
If g, are determined as above, for suitable constants age
g= iangn will be a potential with finite Riesz measure which
is infinte on F.

Finally let X, €F and Bn==B(x01/n) be balls with centre

xG and radius 1/n. With Tn==exit time from Bn,

By (1) = E-Lg Ky )]
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are potentials, are finite at X, and equal ¢ off B . In
particular pn_Em on F\Bn. For suitable constants bn'
p= Ebnpn is a potential with finite Riesz measure, p=% on
F  and p(xo} <1. Q.e.d.

Now it is easy to show that a polar Borel set 1A 1is quasi
null. If not, there would exist a measure m on A whose poten-
tial p=@Gm is bounded. Let g ‘be a potential with finite Riesz

measure n such that g=w= on A. We arrive at the contradic-

tion
@ = Jgdm = jpdn‘cm.

In view of the observation made after Proposition 1 §2,
Theorem 4 §2, asserts that a Borel set is guasi null iff it has
capacity zero. Let us now show that a set A of capacity zero

We may assume A 1s relatively compact. Let AcD be a
seqguence of relatively compact open sets, all contained in a
fixed compact set, such that N(D ) <2 ". Now N(D) (c.f.
Exercise 7 §2} is simply the total mass of the Riesz measure m,
of the hitting potential Pn of D ; because the supremum of
the hitting potentials of comapct subsets of Dn is simply the
hitting potential of b "p= £pn is a potential, hecause p=Gm
where m= tm, is a finite measure and al; the m  live on the
compact set in which all the Dn are contained. Clearly on A,
p.=1 for all n. This proves that A is contained in the poles

n
of p. We have proved



Theorem 2. A set is polar iff it has capacity zero iff it
is guasi null. In particular the set of irregular points in a

compact set (being quasi null by Proposition 1,81) is polar

Application in Measure Theory

Using the Capacity theorem we will now show that hitting
time to an analytic set is measurable provided the fields are
complete, Precise formulations will follow.

Let us first discuss some application of the Capacity theo-

rem to Measure theory. Let Y be an analytic space and P a
Borel probability measure on Y i.e. P is a probability measure

defined on all Borel subsets of Y. For an arbitrary subset A

contained in ¥ define
{1) C{A) = inf P(U}

where the infimum is over all open sets containing A. C has
properties 1) and 3) of the definition of Choquet capacity given
before Theorem 4,§2. It alsa has property 2) because P being a
measure ili) of Theorem 2,§2 is clear for apen sets A and B

and hence alsc for arbitrary sets:
{2} C(AUB) +C(ANB} <C(A) +C{B).

The argument leading from iii} of Theorem 2,82 to iv) of Theorem
2,82 als3i applies here. Thus C defined by {1) is a Chogquet

capacity on all subsets of Y.

Now we show that C agrees with P on all Borel sets. To
this end let us show that C is additive on disjoint analytic

setg:
(3) C(AUB) = C{A) +C(B), A,B disjoint analytic.

From {2}, the left side of (3) is less or equal to the right side.
It is sufficient, by Theorem 4, §2 to prove reverse inequality

for disjoint compact sets A and B. This is immediate from the
following three observations: ¢ agrees with P on open sets;

P is additive on disjoint open sets; given any open set U con-

taining the compact set AUB we can find disjoint open neigh-

bourhoods of A and B with union contained in U. "Thus ({3}
is established. Finally let A be any Borel set and B its

complement. € clearly dominates P on Borel sets. The equality
1 = P(A) +P(B) <C(A) +C(B}) = C(¥} =1

shows that € and P agree on Borel sets.

Observe alsc that for an analytic set A, there is an in-
creasing sequence K, of compact subsets of A and a decreasing
éequence Vn of open sets containing A such that C(A) agrees
with bath P(HI&J and P({}Vn). In other words A is measurable"
relative to P.

We collect all this in

Theorem 3. Every Borel measure on an analytic space Y is
regular i.e. the measure of every Borel set is approximable from
within by the measures of compact subsets. Every analytic subset

of Y is universally measurable i.e. measurable relative to every

Borel probability measure on Y.




Now let us lock at hitting times. Fix t>0 and let 2
denote the separable Banach space of continuous functions on

[0,t] into Rd. Y= (0,£]1 x% 1s a Polish space and the map X
a
(s, w)} = wis) ER

is continuous on Y. The inverse image of any analytic subset
of Rd is analytic in ¥: Indeed the graph of X:grX 1is a
closed subset of Y xﬁg, because X 1is continuous. If A is
analytic subset of R&, X"1(A) is simply the Y-projection of
the analytic set {grX} n (¥ x A} . Projection is continuous, and
continuous image of an analytic set (being the image under a

composite map of N) is analytic. The set

{4) {w:w EW, w{s)E A for some 0<s<t)

peing the Z-projection of the set X—1(A) is analytic and there-

Fore universally measurable as a subset of 7% by Theorem 3 [See
also the Exercises to §2].

Now the Borel field of 2 is the Borel field generated by
open balls. By continuity the norm liw—wdl is the suprenum,
over the rationals y in [D,t], of iwly) -wy(y)|. The norm
is thus measurzble relative to Borel fieid 1B generated by the
cooydinate maps: w-w(s), 0<s<t. The Boral sets in 2 are
thus simply the elements of B. The set (4} is thus measurable
relative to every probability measure on IB. The relaticn between
this Borel field B and the stopped Borel field Bt introduced

in §1, Chapter 2 is clear. Now the reader shoulé have no diffi-

culty in

d

Theorem 4. Let A be an analytic subset of - R and H its hit-

ting time
H = inf{s: s3>0, XSEA}.

the infimum ovexr an empty set being defined =. Then the set (H<+t)

is measurable relative to every probability measure on Bt'

Remark. The hitting time to an analytic set can be approximated
by the hitting times to compact subsets. Briefly the details are as
follows. Let P be any probability measure on B = the Borel field
introduced in §1, Chapter 2. Given t»> 0, we can regard P as a
probability measure on the stopped Borel field Bt which can be
identified with the Borel field of Z. Let 1 be the projection of

¥ onto Z:

Mi{s,w) = w.
For any subset Bc¥Y, let

C(B) = P*({[I(B})

where P* is the outer measure correspeonding to P. Since 7 is
continuous, C is seen to be a Choguet capacity on all subsets of

¥ - note that if B decrease strongly to B then H(Bn) decreases
strongly to 1N (B).

Now let A be an analytic subset of Rd and B =X_1

{A). B is
analytic in Y. C(B) is the supremum of C(F) with F compact in
B. In particular, X being continuous:  C(B) =sup C(X—1(K)) K compact

in A.



Calling the set in {4) R({t,A), what has shown is this: For
each t>0, tere is anincreasing sequence Kj(t) of compact sub-
sets of A such that P(R(t,Kj(t))) increases to P(R{t,A)).
Enumerate the non-negative rationals [Yn}. Kn=Kn{Y1) U... UKn{Yn)
gives an increasing seguence of compact subsets of A for which,
for every radonal vy, P(R(Y,Kn)) increases to P(R{y,A)). How
it is easy to show that the hitting times to Kn decrease to the

hitting time to P-almost everywhere.

§4. Balayage.
Physically the problem of balayage is the following: Given a

compact set F and a gpatial distribution of charges m c¢an we
find a distribution of charges n on F such that the potential
on F is unaltered. We have seen in §1 that given a measure m
and a compact set F we can find a measure n with support T
such that the potentials of m and n agree on F except on a
subset of capacity zero (c.f. Theorem 2, §3). The Maria-Frostman
maximum principle of §1 shows that any noa-negative superharmonic
function which dominates the potential of m guasi everywhere on
F {i.e. except for a set of Capacity zero), dominates the poten-
tial of n everywhere. Since the potential of n is also super—
harmonic we can state this as: the potential of n=infimum of all
non-negative superharmonic functions which dominate, guasi every-
where on F, the potential of m.

We now describe the well-known balayage technique. As before

W will denote a Green domain :Rd,d‘.: 2.

For a real valued function £ its lower-semicontinuous

regqularization, denoted %, is defined by
£(x} = Lim inf £(y)
y—x

£ is the largest lower semicontiiuous function less or equal to f.
Let EcW and ¢ a non-negative function on E. The reduit or

reduced function Rﬁ is defined toc be the infimum of all non-nega-

tive hyperharmonic functions (on W} which dominate ¢ on E:

RE = inf{u: u>0 hyperharmonic uzy on E]}.

i A
The lower semicontinuous regularization of Rﬁ, denoted RE is

called the balayage of ¢ relative to E. This is standard nota-

Fa)
tLion. However we will some times write R{E,yp) and R{E,p} respec-

tively for reduit and balayage.
Now we need to generalize Lemma 4, §1 te an arbitrary family

of excessive functions. To this end we need the following Lemma.

Lemma 1. Let (£;,i€I} be a family of extended real valued

functions on W. For JceI  put fJ(x) = inff,(x), x€W. Then there
1€J

i
exlgts a countable subset IDI:I such that %I =
0

(i

I-.

Proof. Replacing fi by arctan fi if needed assume that

fi are uniformly bounded. Let {Uj} be a countable base for the

topology on W. Let ij Uj satisfy

: 1
f_(x.} < inf £ + =
%) XEU, 1073
|



and f, ke such t s
lj hat fij(xj) < fI (xj) + 33" Then

R . 1
inf fi () Sfi.(xj) < inf fI (x) +§.

XEU, 73
3 3 J X E Uj
Let I, he the set (11,12,...]. The last ineguality implies that
for all 3j
inf £; (x} < inf (%) .
XED. 0 xgU. J
] ]
4 A
i.e. that tIDE%I' Q.e.d.

Now the following Theorem is immediate from the above Lemma,

Lemma 4, §1, and Theorem 2, §3:

Theorem 2. Let {si,iEI} be a family of excessive functions

- A .
and s =inf 5. Then & is excessive and the set (§<5) is polar.

From the above Theorem the reduit and balayage differ at most
oh a polar set. And balayage of ¢ is superharmonic.

We can define balayage directly as follows: Suppose FPcE  is
polar, u hyperharmonic and » @ on E~F. Xg € . By Proposition
1, §3, there is a potential p with p(x) 1 and p== on F.
u+ep*> pon E and hence u+Epgﬁ(E,qJ). Letting E tend to

A
ZEro we see u(xﬂl >RI[E,p) (x i.e. u> R{E,p) except perhaps on

D) *
F. F being polar it has measure zero: uzﬁ(E,lD) everywhere. Thus

A
we can also define (since R{E,p)>y on E except for a polar set)

A
(D] R(E,p) = influ:u hyperharmonic, u >y gquasi everywhere

on E}.

When E=W, reduit and balayage will sumply be denoted by

A . E
Rtﬂ and Rr.p respectively. Clearly R{p = R?Ew.

The following remark will be useful in the proof of Lemma 3

below.

A
Remarik. Tor any . Rm(x) > p{x) implies Rlp (x) =Rm(x).
A
This is the same as saying R[p{x) <Rw(x) implies Rw(x) =ug(x).
A
Indead let F= (R@<R‘p). F is polar. Let xUEF. If LD(XO) =w
there is nothing to show. If tp(xo) <=, let p be a potential,
A
P(KD} <1 and p== on F~{xgl. R +ep2w everywhere for any e
A
such that ﬁ X >
w( o) Tepixgl 2®(xy) . Were Rylxg} 2w(xg) we could
A
let & tend to zero to get Rlp(xu) =Rm(xo) i.e. xDltF. We must
A
therefore have Rug(x(l) <lp(x0) . But in this case for suitable e

ﬁm(xu) +Ep(xy) =@lxy) i.e. Rylxg) =elxg).

Lemma 3. Let 02w, increase to ¢. Then
’ R R ﬁ Q
= s = .
(2) sup 0, o' Bp 0 ®

Pronf. Since a countable union of polar sets is polar the
second equality in (2) follows from (1) . Using the second equality
A
i d t i i =
in (2) an he above Remark, Rtp(x[)} <Rw(XU) implies Rw(xo) m(KD)

A
i.e. R (xu) <Lpn(x0) from some n on. Again by the same Remark,
n
this in turn replies that Rw (xD) =:pn(x0) for those n for which
n
ﬁ(p (XD} <<Pn (xo). The first part of 2} thus follows for those x

n A
for which Rlp(x) <R‘p(x) . Tor other x's this is a conseguence of

the secend part of 2}. Q.e.d.



Lemma 4. Let A decrease to A strongly. i.e. each open
set containing A contains som An. I£E p>0 is finite and upper

semi-continuous then

3 1imR(An.m) = R{A,y}.

DPrpof. If s is excessive and >« on A then for any ¢ >0.
S+g>g 1n one open set containing A. 5Such an open set will
contain some An. and for such n, s+ E:-R(An,m) proving that
E*'R{A,w)g.inR(An,w). The reverse inequality being clear (3) follows.
Q.e.d.

The above two Lemmas assert that for at finite upper semi-
continuous ¢, for every =, R{A,w)(x) is a Choquet capacity on

all subsets of our Green domain W.

Theorem 5. Let @3>0 be finite and upper semi-continuous.

Then
(4} R{E,yp) = inf R{D,y)

where the infimimum is over all open sets D containing E, If

E is analytic
(5) R{E,yp)} = sup R{A,yp)

where the supremum is over all compact subsets of E and there

exists an increasing sequence A, of compact subsets of E such

that

(6) ﬁ{E,m) = sgpﬁ(An,w).

Proof. IE s is excessive dominates p on E, then for
every e>0, s+e dominates @ is an open set containing E and
4} follows. 5) is a consequence of the capacity theorem.

To prove (6} note taht the family {ﬁ(A,w), A compact < E}
is fittering to the right i.e. any two members are both deminated

by a third. For any compact set KcW,

(7) sup J ﬁ(A,w}(x)dx = J ﬁ(E,m)(x)dx
campact AcE ‘K X

because the balayage is almost everywhere equal to the reduit and
we are using (5). Now let Kn be compacts increasing to W and
choose compact subsets Anc:E so that the integrals in {7) differ
1 A :
by at most e If Bo=a,u...u Ay sup R(Bn,m) has the same inte-
A
gral as R(E,9} on all compact subsets of W and hence they are

identical. Q.e.d.

Interpretation

For a compact set F, as is clear from (?) a(F,1) is simply
the hitting potential of F. The same holds for an analytic set.
Indeed if H is the hitting time to the analytic set A, using (4),
P.[H <R] fgiA,1), R=exit time from W. The reverse inequality

follows from (GA).



Thinness

A set A is called thin at a point x if x¢A or if x€A

and theres is a potential p on W such that

(8) liminf ply) > p(x)
A~(xl3y-x
Thinness can also be defined as follows: A 1s thin at XER iff

there is a neighbourhood U of x such that for B=AnYy
A
(9} R{B,1) (x) <1.

Indeed if p satisfies (8), we can find a neighbourhood U of x

such that the potential g=plp(x) is larger than or equal to b

in UIWA:fB, where b is a number larger than 1 and gix) =1.

The potentizl h_1q dominated 1 on B and is strictly less than 1

at x. {9) must therefore be true. Conversely suppose {9) holds.

If E=8~{x} then ﬁ(E,1)= ﬁ(B,1). {From (1) it should be clear

that polar sets can be added or subtracted without affecting balayage).

Since x is not in E, we have ﬁ(E.1)(x)==R(E,1)(x). This is

easy to see, v.f. BExercise 3. And the first term is less than 1. Now

use the definition of R(E,1) +to find a potential p, dominating

1 on E such that p(x} <1. This p satisfies (8).
Brobabilistically thinness is explained as follows. Let A be

thin at x €A and p a potential satisfying (8). If a is a number

between the guantities in (B), the open set D = (p>a) contains

A~{x} and x€38D. p is excessive and pi{X) <e. The hitting time

to D, starting at x cannot therefore be zero. Thus the Brownian

path, starting at =x remains in the complement of A for a positive

time. It is clear that D itself ig thin at x.

If F 1is compact, it is clear from (%) that F is thin at a
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point x€F iff x is irregular for F. We know that the set of
irregular points in a compact set is polar (Theorem 2, §3) . More

generally we have

Proposition 6. TFor any set A the set of points xgA at
which A is thin is polar. In particular & set is polar iff it is

thin at each of its points.

Proof. Since a countable union of polar sets is polar, by (9)
we need only show the following: For each a> 0, the set E of
x €3 for which ﬁ(vx,n{x) <1 where V_=B(x,3a)NA, is polar.
The open cover of E consisting of ball of radius a arcund sach
point of E has a countable subcover: There is a countable set
IcE suvch that every yE€E belongs to U,=B(x,a) nA for some
x€I. But if x€I and y EUx then B(y,3a) >B{x,a) sc that by
the definition of E ﬁ(ux,n(y) <1 for all y€U NE. i.e. U _NE

is polar. Thus E is a countabhle union of polar sets.

That a polar set is thin at each of its points is contained in

Proposition 1, §3. Q.e.d.

Exercises to §4

1. Show that R(E,p) is Lebesque measurahle.
2. show that RI(E,wp) is harmonic off E uniess it is identically

infinite.

Hint. If B(a,r) is disjoint from E, T=exit time from

B(a,r} and s is excessive and dominates ¢ on E then E.[S(XT)ﬂP<R]
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does the same. R=exit time from W.

3 R(E w)==a(E,m) off E. If @ is continuous, eguality holds
- v

also in interior of E.

Hint. For the first use the Remark before Lemma 1.
For the second note that balayage is the largest lower semi-con-

tinuous function less or equal to the reduit.
4 If u and v are continuocus and excesslve

R{E,u) + R{E,v) = R(E,utv).

Hint. By 4) may assume ,E=D is open., If H is the hitting
. ise 3
time to D, Ri{D,u) =E.[u(XH) : H<R]. Note that by exerc R

balayage and reduit are the same for open sets.

5. If u be continuous and excessive then
R{AUB,u) +R{ANB,u) <R(A,u) +R{B,u).

This is strong subadditivety.

Hint. By 4) sufficient to show this assuming A and B are

A H2

open. If H1 and H, are hitting times te A and B, H=3H,
= the
is the hitting time to AUB and H1VH2-S is less or egual to
hitting time I to ANB. Sum on the right side is simply
: : . The first term is just R{AUB,u).
E.[u(X;):H <R] +E.[u(Xg):8 <RI
The second term is deminates R(AnNB,u} =E.[u(XI):I-<R] because u

is excessive and T 3>5.

6. E is polar iff R(E,1) =0.

A .
Hint. Suppose R(E,1} =0 and xp¢E. There exists excessive

functions = such that s_(x,.) <2™" and s_>1 on E.
n n'"0 n=

N
7. If E is relatively compact, R(E,p} 1is a potential unless it

is identically infinite.

Hint. If u is excessive, not identically infirnite, dominates
¢ on E, D relatively compact open and centains E then

pl-) =E.[u(XH):H <R] is a potential and equals u on E. R=exit

time from the Green domain W.

8. A is thin at =z €A iff there is a super harmonic function s
such that liminfs(y)>s(x).
AZy » X

Hint. Consider the potential of the restriction of the Riegz

measure of s +to a relatively compact neighbourhood of x.

9. Let A and B be thin at x. Then AUB is thin at x.

§5. A little somthing on Dirichlet Spaces

In the following W is a Green domain in Rd, d>2. A complex
Randon measure m will be said to have finite energy if {m| = total

variation measure of m has finite energy. If m and n are com-




plex Radon measures of finite energy, the expression

(1) (m,n} = [G(x,y)m(dx)ﬁ(dy)

clearly makes Sense; T is the complex conjugate of n. And from

the energy principle Hnﬂ|2= (m,m) is positive unless m=0. The
space g of all complex Radon measures of finite energy is & pre-
Hilbert space with the inner product {1). For each mé&¢g, the func-
tion Gm, which is defined except for a set of capacity zero will
be called the potential of m. Since |Gml < GIml, if h is com-
plex harmonic and {hl g |Gm| then h=0; dindesd if u is the real
part of h, then u<Giml =so that u<0 and for the same reasaon

-1 <0. The name complex potential is thus not unjustified. The

complex potential Gm completely determines m by

(2} IAWGm = —Adjwdm
m is thus

for every c®-complex function @ with compact support.

the Riesz measure of Gm. IF £ and g are complex potentials
with Riesz measures m and n
{3) {(f£,g) = (m,n} = Jfan = Jgdm

i iff the corres-
defines an inner product. (fi) is a Cauchy seguence 1

i the ener of
ponding Riesz measures {mi) is a Cauchy sequence. Now gy

i i its real and
a complex Radon measure is the sum of the energies of i

imaginary parts. It follows that the real and imagipary parts of

(f.) are themselves Cauchy seguences. An argument as in the proof
i

£

of Theorem 6, §1 shows that there is a function £ such that i
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tends to £ in Li)dn) for every n€E. Indeed a candidate for

f can be found as follows: For a  subsequence, we call {1i) . of
(miJ, Eilli+1—li||<m. if uj+ivj=Glj, f=liminfuj+iliminfv.'
is such a function. Obviously any two such functions f can differ
at most on a set of capacity zero, Thus the completion of .the pre-
Hilbert space of complex potentials can be identified with a set

of functions; two of these functions considered the same if they agree

guasi-everywhere. These are the socalled BLD functions.

There is another way of difining the class of BLD functions.
The claim is that the completion of the pre-Hilbert space of all
complex valued ¢ -functions with compact supports in W, provided

with the inner product

(4) (p,y) = J(grad v, grad y)

is simply the class of BLD functions.

Every complex < ~function tp with compact support is a complex
potential whose Riesz measure is (upto a constant) fp. The inner
product in {4} is up to a constant J@Aw a5 1s seen by partial
integration. Thus the inner product in (4) is upto a constant the
inner product of complex potentials given in (3). The dlaim will there-
fore be shown by the following Lemma 1.

Let us collect here a few elementary properties of BLD functicns.
This will be useful in the proof of Lemma 1. All these are immediate
from the definition. l

1. If £ is a BLD function and g a complec potential with

Riesz measure n then f ELT(dn) and the scalar product

(5) (f.q) = Jfﬁﬁ and lJfﬁEIfllfll lnlt, neg.



2. The restriction of the Lebesgue measure to any compact

set being of finite energy gvery BLD function is locally

inteqgrable.
3. if mi EE converges to mEE then Jf&mi converges to

Jfﬁm for every BLD function f£.

Lemma 1. The set of all ¢ -functions with compact supports is

dense in the space of complex petentials.

Proof. Step 1. The set of mEE of compact support is dense
in £ ; the general case follows from the case of positive measures.

For m EE; this is obvious from: J J G(x,y)m{dx)m(dy) increases to
|2 O

(m,m) as the compact set F increases to W.

Step 2. The set of m with compact support and smooth density is
dense in E. BSuppose mEE, has compact suppert and p=Gm.. Let
D‘fwl be ¢ and radial {i.e. depends only on distance) and have
support in B(0,1/1i) = the ball with center zero and radius 1/i, and

Jwi= 1. If p; is the potential of m; =m*g,
(6} p; = Jm(dy)JG(-,z}wfz—y)dz <p

for all large i and tends to p because the inner integral is less
or egual to and tends to G(«,y) on support m as soon as
B{y,1/i} cW for all y in support m (see the discussion on
approximation of super harmonic funciions by smcoth ones in the

beginning of §1, Chapter 3). Now

(7) 0 5 llm-my Il 2_ Jpﬁm-—Z[pidm + [Pidmi < Jpﬁm—-J’pidm

because [pidmi_fypdmi:=indm. Since P; 2P -and tends to p the
last term in (7) tends to zero. Thus my tends tc m in the energy

norm.

Step 3. If the claim in the Lemma were false there would exist a
BLD function £ such that for every ¢ —function ip with compact
support Jfﬁw:=0. By Lemma 1, §3, Chapter 5 there is a (complex)
harmonic function h such that f=h almost everywhere. Now let
n1€€+ have compact support. If W, are as in Step 2, mi-=m*wi
tends to m in E+ and m, tends to m vaguely.

For all large enough i the supports of m, are contained in

a fixed compact subset of W. Also my has smooth density.
{8) IJhdmI:climIJhdmil=11mIdemil=iffdm|

Let D be cpen relatively compact and a€ P, The harmonic
measure at a relative to D has small energy if D is large (see
the proof of Lemma 5,§1). h being harmonpic the first term in (8)
is [h{a)| if wm is the harmonic measure at a relative to D.
And the last term in (8) is small if D is large, Thus h=0.
But then the last term in (8) is zero for all mEE, with compact
support and hence for ali me€g. Thus £=0 gquasi everywhere.
See also Exercise 2. Q.e.d.

Lemma 1 easily implies the following result abcutrcontinuity
properties of BLD functions: If f is BLD and e >0 there is gﬁ

open set of capacity smaller than e such that the restriction of

£ to the ¢omplement of this open set is continuous. This is Exer-

cise 3.
For the next corcllary we need a difinition. A locally integrable

function g in W is said tec have a generalized gradient grad g =
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(q1,...,gd) if for every ¢ —function @ with campact support
{in W)
d9 .
{9) J‘d_xl_ ,l‘gin, 1515(1.

We will say that grad g EL2 if g, EL2 far 1<4i=<d. With this

definition we have

Corollary 2. If f is BLD then the generalized grad £ exists
and lﬁﬂz=hqmdfg.

Conversely if g has a generalized gradient in L2 then there
exists an f 1in BLD and h harmonic such that g=£f+h almost

everywhere.

Proof. By Lemma ? if f is BLD then there exist c¢ -functions
- . I
w; with compact supports such that Il @; - £l tends to zero. In
particular w, is a Cauchy segquence. As we have remarked the
2
{energy) norm liwi-wjll is, upto a constant the L -norm of grad
(m.-cpj). So grad p; converges in LZ (and in particular locally
i
in Li} to say (f1,...,fd). If ¢ is © with compact support
{recall that £ is locally integrable and that p; converges to
1 . 1
f in L (dn} for every n¢€ Epr in particular locally in L)
3y 3 By jf
Jf3x1 = llmjmiax1 = _limJ§§T¢ = ¥
same comclusion holding for other partials. Thus (f1,...,fd} is

the generalized gradient of £.

Conversely suppose g has generalized gradient grad g ="

= (g1,___,gd) ELZ(W). For every o which is 2 with compact

support
{10) Iqﬂm = —I(grad g, grad q)

as is clear from (%). Since grad g is in L2. and the Lz—norm
of grad ¢ is upto a constant the energy norm of Ay, (10) shows
by Lemma 1 that g defines a continuous linear funectional on the
Hilbert space of BLD functions. So there is an § in BLD which
determines the same linear functional as g: JfAm==JgAw for avery
¢ -function ¢ with compact support. ¢ being locally integrable,
g-f is thus almost everywhere egqual to a harmonic function h.

Q.e.d.

Remark. A BLD function £ is absolutely continuous on almost
all lines parallel to the coordinate axes and the gradient in the
usual sende exists almost everywhere. See Exercise 5. In any case
the gradient of the potential of a positive measure m exists almost
everywhere (Exercise 1, §3, Chapter 5) and is locally integrable.
Thus the energy norm of a positive measure is upto a constant the
L2—norm of its gradient. See Exercise 4. The same of course is true
for any meég.

The space of BLD functions has one more important property.

To describe this we need a difinition. A function B on the com-—

plex plane into itself is called a normal contraction if B(0) =0

and

(1 I1B(x) -B(y) 1l < lx—yi, %,y complex.



Theorem 3. HNormal contractions operate on the space of BLD

functions: If £ is BLD so is Bf for any normal contraction B

and WBE|l = HEH.

Proof. A Lipschitz function {i.e. a function £ which satisfies
1£(x) ~ £(y) | <Mlx-yl} 1is absolutely continucus on every line. There-
fore its restriction to any line is differentiable almost everywhere
with a bounded derivative; see Rudin [4] p.p. 165. In particular
if a Lipschitz function £ has compact support, it has a generalized
gradient which is in LZ. If Oslpi are ¢ with small supports
around the origin and [mi=1 then £, =f*p, will be ¢® with
compact support (in W); it converges to f and grad fi==grad f*mi
converges in L2 to grad £. Hence £ is BLD.

Next if @ 1is ¢ with compact support and 3 a normal con-
traction then the support of By is contained in the support o
and, because ¢ is clearly Lipschitz, (t1) shows that By is also
Lipschitz. Also |Bpi{x} - Bply) | < twix} =~ wly}] shows that
|grad Bmlz < |grad mlz. Thus By is BLD and its BLD norm deoes not
exceed the BLD norm of [Recall that the BLD norm of a BLD function
is upto a constant the L2~n0rm of its (generalized)} gradient].

Finally let g be a BLD. Then there is a sequence ¢, af <
functions with compact supperts such that g, tends to g in

Li(dn) for every ne€g, and hence also for all n€g. By (1)

Bgi tends to Bg in L1(dn) for all n€g. And
|JBgan =lim|JBgidn| s limjig; It {inll=1dlg1 lnH

where || || denotes the energy or BLD norm. Sz there is an f g BLD
such that JBg dn = Jf dn for all negg. But then Bg=£% quasi-

everywhere. That proves the Theorem.

Let I denote a class of functions on W having the following
four properties. That the space of BLD functions has these pro-

perties has been established.

1. D is a Hilbert space, with norm |l [l and scalar product
( » ) of locally integrable functions on W.

2, For any compact set F
J £l <A(F) N EN, £f£e,
F

where A(F} is a constant depending conly ocn ¥F. To see
this for BLD consider the Borel function g defined on F
by g=I£I/f if £+ 0 and zero otherwise; g=0 off F.
The scalar product (E,Gg) is then simply the integral of
|f] on F. And the energy norm of g is less or equal
to the energy norm ¢f the indicator of F. This property
for BLD is also an immediate consguence of property 4 below.

3. If K(W) =set of continuous functions with compact support
then X(W) Nl is dense both in T and in K(W). The
density in K({W) is understood as follows: For any £ EX(W)
and any neighbourhcod U of the support of £ and any
a»0 there is a g in K(W) N DD with support in Y satis-
fying suplf-gi<a.

4. ¥For any normal contraction B and fED,BEE€D and

(IBEN < HEIl.

The above four properties characterise the so called Dirichlet
spaces. We now give a rough sketch of the possibilities in the
direction of a Kernel-frees potential theory implicit in the abave
properties. The reader is invited to elaborate on these ideas him-

self.



If €D, £ and I are contractions of each other; soa FED
Suppose now that f satisfies (13). The closed convex set

and WEll=HEIl. z-lz] 4is a normal contraction so fE€ D implies

i .
IThe F = {f+g: g€D, Reqg>0!}

fFED is called a pure potential if there is a non-negative

measure m such that ' contains a vnigue element of least norm, which by (13) must be £.

Since |f| €F and its norm cannot exceed that of f, we must have
(12) {(f,p) = JEdm .’ £=l£l.

If pE€EX(W)NM so is |wl. So there are enough positive
for every @& K(W) nD. The reader is invited to check that in
functions in this intersection. The map @ (f,9) is a positive

the case of BLD functions £ is a pure potential iff f£=CGm almost
linear functional on XK{W})n I by (14), and must be given by a
everywhere. Note that the four properties by themselves do not permit .

. . unigue measure m. Q.e.d.
us to distinguish between functions which are equal almost every-—
where. A purely geometric characterization of a pure potential is

given by the following important proposition.
Corocliary 5. If u and v are pure potentials so is uav.

Proposition 4. f&€ID is a pure potential 1ff
Proof. Since feD implies |fi€D, w=uav==%4[utv- |u-v|] €D

(13) Hg+ £1l > HEN ] The closed convex set F={f:Re{f-w) >0) contains a unique element
say h of least norm. h must be a pure potential hecause for any
whenever g€ and Reg> 0. (313) is equivalent to g with Reg>0,h+g€EF and so |lh+gll > ithil. Clearly uAhE€F

and
{(14) Re{f,g} >0 provided Re g>0

alluabll? =llush 12 + 1t lu=hi 112 - 2 (uth, [u=-h])

< Hushil 2+ lu-n)1® < 2 (uth,u-h) = 4 1h112
Proof. To see {13) and (14) are equivalent take a&.g. in stead
of g in {13) where a>0 and let a tend to zero. If f is a because u being a pure potential, (u,|u~hl| - {u-h}) >0 by (14)

pure potential (14) is a consequence of (12) for geK{(W)nI} and ' and similarly for h. By unigueness uah=h. i.2. h<cu. For

the positivity of m; the general case then follows by continuity. the same reason h<v i.e. hguav=w. Q.e.d.



Each bounded non-negative measurable functien £ with compact
support determines a pure potential Gf (Jjust notation) by the

prescripticon
(GE,v) = Jf%‘r, veED

Indeed by property 2 the map v- Jf? is a continuous linear func-
tional on 1. Thus there are lots of pure potentials.

Our properties by themselves do not distinguish functions which
are equal almost everywhere. In order to get some of the deeper

results of potential theory we will refine this equivalence relation

as follows. Let ns say that a positive measure [ 45 of finite

energy if it determines a pure poteatial, that is, if
(15) ldemisllwII-limll. wEK(W ND

Where Jjim|l is simply the norm of the pure potential m determines.

We write 5+=set of all positive measures of finite energy.

Let feD. ‘Then f is in fact an eguivalence class of func-
tions. We will select a representative (in fact a class of represen-
tatives} Vv ‘with the following porperties
Ve L1 {dm} for every mEe £t whenever o EK{Wl nD
converges in D to £, W converges to v in L-l {dm)
for every mE£ E+

Ciearly any two representatives with the above properties ceincide

quasi everywhere i.e. are equal m-almost everywhere for every

me g, The procedure for such a selection is the following: Let

e and g €DN K (W) such that ﬂmn « f|{ tends to zero and

(16} Z&Iwn—mn+1ll< @,

7.61
Bacause lI(itpn-tpn+1|] Il < Ilton—tan I, from (15) and (16)
(17} i[!mn-wnﬂldm‘:m, mEE;+.

In particular (because | (Re x)+- (Re y)+l < lx-y| etc.) ,_ﬂ%etpn}+.(Re.pn)-
ete. all converge in L1 {dm) and m-almost everywhere for all

meE g Define a representative v of £ by:

4

v = lim inf (Rewn)+ - 1im inf (Remn)- +1i (similarly)

Cleariy vEl’.,1 {dm} for every mE£+. if lpn is a sequence in
DnK{W) converging in I to £ then by (15}, Yo is a cauchy
seguence in L‘I {dm) . Also Ilwn—wnli -+ {, which by {15} and what
we have said above means that ¢n tends to v in L1(dm).

From now on we shall assume that we have made such a selection.
In particular we may assume that every f€D is in ! (dm) for
every m€E+. A simple conseguence of all this is: Let me€Eg,

determine the pure potential Gm {(just notation) then
(18) (Gm,£) = JEdm.,fE]D

and in particular IIGrnIE‘2 =fGrﬂdm (Recall Gm= |Gm]|).

Now we can prove the main principles of potential theory in

our setup. We give two illustrations.

Corollary §. The domination principle is valid in D: Let
m and n be positive measures of finite energy with potentials
u and v. If u<v, m-almost everywhere then the inequality

holds everywhere.



gzggg- By Colollary 5, w=uav is the potential of a measure 1.

By (18)
Humwil® = Judm-dem—Jud}_+delgU

because u=w m-almost everywhere and w < i everywhere. Thus

Ww=u. g.e.d.

Lorollary 7. The equillibrium principle is valid in D: Let
F be acompact set which supports a measure of finite enarqgy. Then
there is a measure m with support F whose potential Gm=1

quasi everywhere on F and Gm<1 everywhere on W.

Proof. The set of probability measures on P with finite
energy is a closed conbex subset of I as is clear from (18).

Let m be the probability measure with minimal energy with corres-
ponding pure potential u.

The restriction of a measure n€ E+ to any set A is itself
in £,: For every vE]DIJvan-_:JIvIdns e D)L Hall < el Iinil.
This and an argument very ;}milar te that of Proposition 3, §1
shows that u= HUH2 m-almost everywhere and u 3 HuH2 quasi~
everywhere on F. ||u||_2 m gives rise to a pure potential v
which is equal to 1 m-almost everywhere and is larger than or equal
to 1 guasi-everywhere on F. By the domination principle it is
sufficient to show that v a1 is a pure potential.

Bz = inf{i,(Rez}+} being a normal contraction, valegD.

The set X={h:h €1, Re h> vatl} is a closed convex set with a

unigque element £ of minimal porm. Corollary 5 easily implies

that f is a pure potential. fal ,Eelongs,to X and being =a
contraction of f its norm cannot exceed that of £. By minimality
f=£fA7. Q.e.d.

The following simple lemma will be found useful.

Lemma B. In a Dirichlet space I the set of pure potentials
is a closed convex set (in particular it is complete). And the

linear span of pure potentials is dense in D.

Proof. The first part is trivial from Proposition 4. For the
second note that by property 2 of the definition of a Dirichlet
space, avery bounded non-negative measurable function h with
compact support determines a pure potential Gh by the prescrip-
tion (f,Gh) =th. Therefore the only element in I orthogonal

to all pure potentials is zero. Q.e.d.

Some knowledge of Fourier transforms will be assumed in the

following example. An excellent reference (also for the terminology

used here) is Chapter 7 of Rudin [53. Thus D=set of ¢ —functions

with compact supports.

Example. Let ¢ be a positive measure on Rd such that

(19) J(|x|2A1)U(dx}<m
and let ¢ be defined by

{20} jla) = 2[[1—cos(a,x)]u(dx), a ER@.



Provide ¥ with the norm

(21) en2 E'F{dy)Jlf(x+y)-f(x)lzdx

It is clear how to define an inner product (£,9) so that HfH2=(f,f).

bencte by I the set of functions £ such that f is the almest
everywhere finite limit ¢f a sequence of functions in 7, the said
sequence beingat the same time a Cauchy seguence in the norm given

by (21). With the understanding that two functions are considered

equal if they are egqual almeost everywhere, I is a Dirichlet

. -1 . )
space provided ¢ is locally integrable, where ¢ is defined

in {20).

Let us first show that (21} defines a finite guality. This is
easy to see derectly but we will use Fourier transforms because
we will need this later. Applying Parseval to the ianer integral

in (21} we can write

2 M
(22) nen? = const.jc(dy}J{f(u)|211—exp 1 (a,x) 1 %da

1

A2
const.[ifl (o) {a)de

where the constant is {2n)—d. Now ¢ is easily seen to be conti-

nuous. The simple inequality i-cosia,x) Slmlztxl2 Al 5Eu|2(lx|2 A1)

shows, using (19), that yla) =D(|alz) @t w=. Since the Fourier

transforms in {22) decrease rapidly at =, (f,g) is well defined.
More generally for fE D, (21) makes sense: Suppose mnﬁ by

converge almost everywhere to f and is a Cauchy sequence in the

norm giv b i
given by (21). Then for every v, Lim (g Goky) - @ (%)) = (ery) =£ (%)

almost all == or by Fubini, this limit relation holds for (dxxo) -
almost all pairs {x,y). Thus because v is a Cauchy sequence,

IHE I} <= and Hf-lpnll tends to zero.

With these simple perliminaries it is easy to show that normal

contractions operate on 1DD: Let femd and T a normal contrac-
tion (see (11)). There is a Cauchy sequence wne m such that
wn tends to f almost everywhere and [mn(x+y)-mn(x)} tends
dx g-almost everywhere to Fix+y) —fix). Since T is continuous
Ty tends to Tf almost everywhere. Choose non-negative aj [
with Ian==1 such that a subsequence of bn=={Tmn)*an tends to
Tf almost everywhere.
fThis can be dome as follows. Let m be a finite measure

eguivalient to Lebesgue measure on Rd. Then Twn tends to Tf£

in m-measure. There are a's in P such that Twn*a is uniformly
close to T®,  sp for suitable a,. by will tend toa TE£ in
m-measure. A subsequence will then tend m—almost everywhere to

7f and m is equivalent to the Lebesgue measure]. bn belongs
to P and by Fubini bn(x+y)-hn(x) tends dxxo0 almost every-—

where to TF (x+y) - TE(x). Also
th Il = HTwnlI and ITwn(x+y)—Tmn(x)| Slmn(x+y}—wn(x)i

The first ineguality is a simple comsguence of Schwarz ineguality
{note that 0 fan and Jan==1) and Fubini, the second is just
(11). Since v is a Cauchy segquence, the second inequality above
implies that ITr.pn(x+y}-Tcpn(x)l2 is uniformly integrable (namely
the integral over sets of small measure in uniformly small) and

so by Exercise 7, §1, Chapter 3, HTwn—TfH tends to zero. But
then Fatou Lemma, together with this last fact and the first of
the above inequalities says that I bnll tends to |ITEIl. And
again by the same Exercise, j|b_ - Tf|l tends to zera. in particular

hn is a Cauchy sequence. So TE €. Ofcourse by (11) and {21),

gl < NEN.



To show that I is a Dirichlet space we need only prove
taht the defining property 2 is valid and that I is complete.
The latter follows from the former because it would imply that
a Cauchy sequence in D converges locally in L.l (Rd} . Let us
prove property 2. Tet AE€DP be such that its Fourier transform
R is strictly positive [If bheD? is real and symmetric i.e.
b{x) =b(-x) and a=Dbh*b then 33 0. If p is the standard
Gauss Kernel, p*a is strictly positive and its Fourier transform
= f,\s agl]. Then for amy £€p, if g is the Fourier transform
of |£l
(23) [i£14 = JgAf (qulzw)%(J‘q;_1lAI2)%

Fl

The last member of (23) is finite because A has compact support
and {;;_1 is locally integrable. And the third member is simply

the norm in 1 of |£l-because (22) is valid for any fELz{Rd}
and from whar we have already shown (z - 2| 1s a normal contrac-

tion} this norm does not exceed the norm of f£. Since A is
strictly positive, property 2 follows from (23). Thus D is a

Dirichlet space.

By (22} the map f_,% is an isometry (upteo a constant which
in our context is unimportantjof £ into Lz(q,) . By the density
of ? in I, this extends to an isometry of 1D into L2 (p) -
To show that it is actwally onto it is sufficient to show that
the image of p  is dense: namaly that the set of /:‘\ with fEgQ
is dense in Lz(lp). If g ELZ(M and Jéff\q,wo for all £€7?,
then if A is as in (23), Iaggqmo for all f£€P. Since agt,f:
is in L1, this ig equivaient by Parseval to J@fmo for all
fed i.e. that ?g'ﬁr,fw—- 0 almost everywhérs. But R> 0 and from
(20), ¢ can only have isolated zeroes and so ¢ must be zero.

A
Thus the map f-f of 7 into Lz(ql) extends

to an isometry - upto a constant — of 1 onto 'Lz(tp). This fact

leads to the following useful description of :

Theorem 9. A locally summable function £ belongs to I
iff there is a qELz(tp) such that for all g€&€0 we have
as

thp=(27r)"djg$. The D-norm of £ is (2p) _° times the Lz(q,)-

norm of g. We are justified in calling g the Fourier transform

of f.

Proof. Note that the theorem implicitly claims that g is

summable for every gELZ(.p) and peP. Let T be the map

inverse to the map @w-0 of U into Lz{q,) . T jis continucus

on Lz(ip) onto M. Let a€?. The map f—-Jf a 4is continuous

on I by property 2. 50 there is an element bELZ(q;) such

that j‘I‘g a= Igﬁw for all gELz(Q,). Wow if €D and g=§&

then Tg=¢ so that Iwa=]$5w for all ¢€0. By Parseval

this is the same as I(B§= (2“)dJ$E¢ for all ¢e€p. As before

4= (Zﬁ)dbw. Because T is 1-1 onto, one part of Theorem 9 follows.
What we have proved above can be restated as: For every aegl ,

and gEL2(¢),gﬁ is summable ({indeed 8 =by for some bEL2 ty)

as we saw above}, the map g—ngS is continuous and JTg a =

(21t)—djgé. S0 if £ satisfies the conditions of the theorem £

must egual Tg. Q.e.d.

Remark. That &=by for some beL?(y), proved above says

in particular that Jlﬁlzw;‘ <«w for each a€pP . This implies



a certain growth restriction on ¢~1 i.e. that it is a tempered
distribution.

A special case. Riesz potentials.

We will describe the situation briefly and invite the reader
to supply the details. For simplicity we will ignore constants
i.e. equations will held upto multiplicative constants.

Let 0<8<2 and o(dy) =yl 9%, The function ¢(a) of

{20) is a constant multiple of [nla. Let T be the correspond-

~d+é intro—

ing Dirichlet space. Consider the Riesz Kernels |x|
duced in the beginning of Chapter 3. Using the representation of
these in terms of the Brownian semi-group it is seen that the

Fourier transform {in the sense of distributions) og le_d+8

is  Ixt70.
The #8-potential Im=1I(0,m) of a positive measure m is

Im=m*lx|ud+a

; its 68-energy norm is (JInxdm)%. A complex Radon
measure m will be said to have finite energy if the corresponding
total variation measure {m| has finite energy. Using the convo-
lution relation between the Riesz Kernels established at the
beginning of Chapter 3, it is seen that the energy norm of m

is the Lz—norm of I(%,m). Because the Fourier transform {in

the distribution sense) of the 6-potential of a finite complex
measure is ﬁ‘nlc:.lmB wea see that a finite complex measure m has

finite energy 1iff I(8|2,m) € L2

f.e. Aff J]Hﬂzml“e«:m which
is identical to fﬁe Lz(w) where P (a}) =|u|B. By Theorem 9,
Im€ ID. And the energy norm ¢f m is the Lz—norm of I(B/2,m)
which by Parseval is Jlﬁlzlulne i.e. the energy norm of m |is
the D-norm of Im. It is a simple step now to remove the
restriction of finiteness of m and we can say: A complex Radon

measure m has finite energy iff its potential iIm belongs te

D.

Now let us describe the pure pqténtials in . Suppeose a
finite positive measure m generates d pure potential £. This
means {(f,A) =J§dm for all AED with { , ) denoting inner
product in I; see (i8). For any ®ET we have [ImB=IIEdm
and, IpéED s0 that JIm¢:=(f,Iw). It is clear from-{22} that
scalar product in D corresponds to scalar product in Lz(wl.
Transfering to Lz(w)—space this egquality reads: if g corresponds
tc £ then JImnp= (£, Iw] = Iglxtpw =Jg£ because ¥ = lc-.lB and
To=1al"%). By Theorem 9 the last integral is just wa. Thus

JImLp=chp for all el i.e. f=Im. We have proved:

£€D is a pure potential iff f=Im for a positive

measure m of finite energy.

By Lemma 8 we have the following corollary:

Corollary 10. The set of positive measures of finite p§-energy
is complete under the energy norm. The minimum of two 8-potentials
is a B-potential.

For different proofs of the first part of Coreollary 10 see
p-p- 80-94 of du Plessis [3] and p.p. B82-90 of Landkof [2] . For

a different proof of the second part see p.p. 129 of Landkof.

Exerclses to B5

1. Show that £,9€BLD and f=g almost everywhere implies

f=g quasi everywhere.



Hint. The set of measure m having density is dense in the
set of all measures of finite energy. So if Jlf-gldnl= 0 for

every m with density the same holds for all m of finite energy.

2. Show that a continuous function equal almost everywhere to a

BLD function is itself BLD.

Hint. Follow the proof of step 3 of Lemma 1.

3. Let f be BLD and € >0. BShow that there is an open set
U of capacity smaller than £ such that f£{F is centinuous

where F=W-0.

Hint. Let a_ be ¢~ with compact supports such that (the
energ§ norm} lla ~£il <n~2. Recall the following: The capacity
of any Borel set is the supremum of the capacities of its compact
sets; the capacity of a compact set = the total mass of its

equillibrium distribution = the energy cf its equillibrium distri-
1

bution. Let A = (Ian—fl >n '}. For any compact subset F of
A, and m=the equillibrium distribution of F

n Im(F) < Ilan—fldm < limlta ~£1l <n” VT
showing that N(An) {= capacity of An) gn_z. off Bk: U A,

n>k
ﬂn converges uniformly to £, N(Bk) is small for large k
and the capacity of a Borel set is the infimum of the capacities

of open sets containing it.

4. show that the gradient of the potential of a positive measure
m exists almost everywhere and is locally summable. The energy
norm of a positive measure is, upto a constant the Lz—norm of the

gradient of its potential.

Hint. That the gradient in the ordinary sense exists almost
everywhere and is locally summable follows from Exercise 1, §3
Chapter 5. Energy ncrm of m is the Lz—norm of the dgeneralized

gradient of its potential.

5. Show that a BLD function £ 1is absolutely continuous on

almost all lines parallel to the coordinate axes.

6. Let WD be as in the Example. Show that if f 1is integrable,
has compact support and |[|fll as defined in {21) is finite then

fem.

Hint. If DO za €0 has small support around O, Jan:=1
then f*an €0, tends to £ almost everywhere and IIf*anH < lifll.

Now use Fatou and Exercise 7, §1, Chapter 3.

7. I1f I 4is as in the Example, fE€D and €D then

p*f € .

Hint. If |Ilg -fll tends to zero so does limn*m'm*flh
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