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CHAPTER 6

Green functions

Introducktion
Consider a domain G and the inhomogeneous equation Au = i,

called the Poisson gguation. The solution is not unigque without

further conditions: if u 1is a solution, so is u+ w for any
harmonic function w. If G is bounded and we impose the "bound-
ary condition" that wu vanish on the boundary, the maximom prin-
ciple guarantees that there can be at most one solution. In simple
terms, Green function for G is the "inverse of & together with
this boundary condition™. In order to better understand what
follows, recall the definition and propertiss of Green functions
for ardinary differential operators (see e.g. pp. 39 - 47 of
Birkhoff [1]).
We will see that knowing the Green function for a domain
is equivalent (theoretically) to solving the Dirichlet problem.
In § 1 we shall define Green functions and point out some of
their most important properties. § 2 and § 3 are devoted to a
discussion of Green functions for unbounded open sets in R2.
§ 4 contains some examples and in § 5 an expression for the
Green function in terms of relative transition densities is

given.




§ 1. Green functions for hounded open sets.

Let D be a bounded open set and K(x} bhe defined as in
(3) § 3 Chapter 5. By Theorem 3, § 3 Chapter 5, for any c'-function

f with compact support

(1) F(x) = JK(x—y)f(y)dy
is a solution of the Poisson equation.
(2} AF = —Adf

where A are constants defined in (5) § 3 Chapter 5. This

d
solution, however, does not satisfy our "boundary condition®

of tending to zero at the boundary. In order to secure this, we
solve the Dirichlet problem with boundary values F and subtract

it from F; namely, if we define
{3) u{x) = F{x) -Ex[F(XT)i

where T = exit time from D, then u satisfies Au = —Adf
in D and u(k} tends to zero as b tends to any regular point
in &D. From what we have seen in Chapters 4 and 5 one can not

expect more. Equation (3) can be rewritten

(4} ' u(x) = JGD(x,y)f(y)dY
where
(5) 6, (x,y) = K{x-y) ~E (KX -y) ],

T = exit time from D.

Caution. The right side of (5) does not make sense if e.qg.
% = y € 3P0 and regular for b°.However for each X, K(x-.) and

Ex[K(XT—-)l are both superharmonic on Ifi and hence locally

integrable, Therefore, even if the right side of (5) does not
make sense for some x and y, for each fixed == the right
side of {4) makes sense for every bounded Borel measurable £
with compact support. Note however, that for each x¢ D, the
right side of (5) is well defined for all yE:md; indead for
y €D, BX{K{XT—y}] iz ¢learly finite, and for any VY,

E [K{Xp-y)] 2 Kix-y}.

Proposition 1. For each x €D, E, [K{X,-¥y}] = Kix,-vy)}
0 ®g T 0

for almost all y €D, To show this, let xDE Dn bhe open with

b and UDn = pD. Let Tn = gxit time from Dn' Then

Dn = Dn+1

Px [Tn+T] =1, where T = exit time from [I. The functions s
o]

defined by
(6) s (y) = E_ [K(%, -y)1, yem?

n ®g T "

a
are superharmonic on IRd and decrease (bescause B, [K(XT -yl =
: nt+1

E [BE (K{ ~y))] = E, [K(X, -y)j). TIf
Xy XTn XTn+§ = x0 Tn
{7} s{y} = 1lim sn(y)

and £ 1is bounded Borel with compact support

]

J(s{y)f(y)dy lim an(y)f(y)dy

n

#

lim B, [JK(XT ~y) £{y)dy]}
n 0 n
(Fubini's theorem is applicable)

EXOIJK(XT—y)f(y)dy]

{since [K{z-y}f{y)dy is continucus
on R~ by Exercise 2 § 3 Chapter 5}

It

.Jf(y)EXU[K(XT-y)]dy




proving that s{y) = EXO[K(XT"Y)] for almost all y. HNow yd€&D
implies yiiﬁn implies sn(y) = K(xo-y] for all =n, i.e.
slyl = Ki{xy-y), y&€D. Thus K{xp-y) = EKG[K(XT—}')] for
almost all y not in 9, as claimed.

This shows that as far as (4) is concerned, for each XED
we can safely redefine GD(x,y) = (0 for all y €D and we can

state: For any c'-function with compact support {support not

necessarily in D) the function u defined in B by

wix) =[Gy Etyay,  xeD

satisfies An = -Adf in D and
[s!
1im uf{xy = 0, b £ 2D, b regular for D~ .
x-b

GD(x,y) defined orn Dx%xD by (5) is called the Green

function for the bounded ovpen set D and we define for convenience
GD = {0 outside D=x*D.
The following is a short list of properties of GD:

Property 1. GD{.,.) is excessive in D in each variable
when the other is fixed. GD(xD,-)-K{xD —+«) 1s harmonic in D
for each Xy € D; GD(-,xD) —K{xo =~ +) is harmonic in D for each

xDE .

Property 2. Zet D be connected open. For each y €D and
be b
lim sup GD(x,y) =0
D3x-+b

iff b 1is regular for D.

Progf. B, [K(X,-y)] 4is by Proposition 4, § 1 Chapter 5,
superharmonic on nfi {in particular lower semi-continuous),
2 K(--y} and eguals K(b-y) for each b€ 3D that is regular.
In the other directicon we can show the following:

Let h be positive superharmonic in an open set D and.

b€an. If 1lim hi{x) = 0 +then b is regular for n°.
R3x-h
Indeed, assuming b is not regular, we can find t>0 small

enough so that Pb(T>t} >0 where T is the exit time from D.

Consider the process h(xt)1 If s<t, on the set t<7T,

t<T"
&= s+T(Bs). By Markov property
Epln(x )1, ol = Eb{Exs (X _ 2T o)t 5<T].

h>0 is superharmonic en P, i.e. h 1is excessive on D, i.e.
for each a€D and each r>4a, EJhHH:HT];th For

s<T, XSED. We get
E, h(X ) : t<T] = E [h(X]): s<T].

As s ¢+ 0, Xs+h and h(XS) +0 (no loss of generality in assuming

h  is bounded) giving
Eb[h(xt): t<T] = 0.

This is a contradiction and b therefore must be regular,
A function h is a barrier at x €380 if h is defined,
positive and superharmonic on VNB for some neighbourhcod ¥
of 2 and iim h{y) = 0. Since reqularity is a local propercty,
. VND3y-+x y
we have in fact shown above that for any open set D, beg3D is

reqgular iff there is a barrier at b. (If b is regular for D,

V a bounded neighhourhood of h, b is regular for VvAD.




If S 4is the exit time from VND, Ex(S) 1s positive super-

harmonic on VAD and tends to zerc as x-bh.}

Property 3. If UcV are bounded open, then GU £ GV'
Indeed, the first exit time from U is less or equal to the
first exit time from V and (4) § 1 Chapter 5, applies. {In
case d < 2, we add & constant to K to make it excessive

in a ball vontaining the closure of V.}

Property 4. If D is bounded open and Dn are open and

D
{x,y) EDxD, This is clear from (5} since the exit times from

increase to D, then G_. (x,y) increases to GD(x,y) for all
It

Dn inerease to the exit time from BD.

Property 5. Let D be bounded open and yUE p. If v 1is
nDn*negative.superharmonic on D and is the sum cf K(-—yo)
and a superharmonic function, then v(x) gGD (x,yo) for all =xeD.
Indeed, let B3 x be an open set whose closure is contained in

D and let 5 be the exit time from B. Writing v = K(-—y0)~+u.

thenon-negativity of v implies
Ex[K(XS-yO) tufXx;}] z 0.

i.e. {u being superharmonic) that u{x) z E _[u(Xg)] 2 ~E, [K(X;-v4)].

Therefore v(x) K(X*YD) -Ex[K(xswyo)], which implies, by letting

B increase to D, that vi{x} » Glx,¥,)-
Property 6. Let D be bounded open. Gp is symmetric on

DxD:

(8) GD(x,y) = GD(y,x) (x,y) € DxD.

More generally,

{9y . E [K{X,y}] = B K(Xpmx) 1,  (x,y) € w22l

Proof. Denote the let side of (%) hy u{x,y}) so that the

right side is ul(y,x). Fix x,€D . ulxg,-) and u(.,x are

D)
both superharmonic on Rd and harmonic in D. ¥If G is an

open set with GcD and S = exit time from G
ulxy,y) = E!y{u{xo.xs}]5Ey[K(xﬂ—X5)] , YEG

because u(xo,z) fli(xu-z} for all z. ZLetting G increase

to D, we obtain by bounded convergence
uly,y) < EY[K(XO-XT)]= uly,xq), YED.

Since xoe D is arbitrary this last inequality implies (9} for
all (x,y) €D X D.

We now show that (9) holds for all (x,y) e R%xr%. py
Proposition 1, u(xo,y) = K(xn—y) >u(y,x0) for almost all v ¢D.
We have just shown that u(xo,y) = u(y,xo) for y€D. Thus
u(xﬂ,y)§u(y.xe) for almost all y and by superharmonicity for

all y:

&

u(xo,y};u(y,xo), YER", %, €D.

0

If x¢D or =x€3jD and is regular, u(x,y) = K(x-y) =uly,x}.
Thus for all y and all x, except perhaps for x€ 30 and

irregulay

uix,y) 2uly.x), YERd' X€3D, % not irregular.




We shall presently show that the set of irregular points in
30 has lLebesgue measure zero. Since for any y.ul-,y) and
u{y,+) are both superharmonic the last inequality holding off
the set of irregular points in 9D implies ulx,y} zuly,x) for
all x. Thus ulx,y) zu(y,x} for all (x,y) which is (9).

It remains to show that the set of irregular points in
3D has Lebesgue measure zero. It 1s enocugh to show this assuming
that D is connected. Indeed every irregular point is an
irregular boundary point.of a connected component of D (see
Exercise 5 § 2, Chapter 4} and there ar only countably man¥

connected components. If XOEI)
hly) =K(xg-y) -EXD[K(XT—Y)]
is suéerharmnnic and strictly positive in D. For bg 3D

lim sup hiy} =0 iff b is regular
D3y-+h

as we saw in Property 2. But from Proposition 1 for almost all

b€ 3D

—h} = -b)] < lim inf E_ [K({X.-y)]
K (x,-b} Exo[K(xT ) 2 SEUIE By Xp

by lower semi continuity. Thus for almast all b€ aD
lim sup hy) = 0.
Day-b

Thus (9} is completely established.

Property 7. Let D be bounded, V open cb, UsD~V

and 8 = exit time from U. Then for all x€eV, Yy€U

(10) GD(x'y) ,—.Ey[GD(XS,X):.‘?p(T].

In particular if x€V and DIy¢V

GD(x,y) 2 sup GD(x,z).
zZEDNav

Indeed, for x€V and ye&uU, K{x~y) = EY[K(XS—X)].

Gplx,y) = Kix-y) ‘EYIK(XT-—X)]

]

EY{I((XS -x) - EXS [K {(Rq ~x) l: 8 <1}

Ey[GD(XS,)-:) : 8 <],

If U= DV, for § <T, XS EDN3V and the last inequality
claimed above follows.

Now let us briefly see how the knowledge of the Green
function fer P (a bounded open set) allows us to solve,
theoretically, the generalized Dirichlet problem.

Because any function in C(3D) can be approximated uniformly
on 3D by a ¢ -function with compact support, it is sufficient
to know the solution of the generalized Dirichlet problem with

cm—boundary values. For a ¢ -function f with compact support
a(x) = £(x) -;—d j SpvIatidy,  xeo,

is the soluticn of the generalized Dirichlet problem with boundary

function £. If furthermore 3D 1is smooth by an application of

Green's identity (recall GD[x,-) = _Adﬁx'5§ the unit mass at x)
u(x)=mﬁt faDDnGd(x,y)f(y)U(dy). xXED,

where o 1is the area measure on 39 and Dn the normal deriva-

tive.




Unbounded gpen sets.

We have now seen that the Green function for a bounded open
set is related to the Dirichlet problem and the Poisson equation.
The uniqueness of solutions in these considerations was a

consequence of the maximum principles. In the formulation and

deduction of maximum principles for bounded open sets the compactness

of D was a key factor. For an unbounded open set D, compactness

of D requires the addition of the point at infinity. If the

its role has

is an unbounded open set in mﬁ

point at infinity is considered an element of 9D,

to be investigated. If D and

3D is compact, Proposition 2 below shows that an arbitrary positive
harmonic function in D has a limit at infinity and in particular

is bounded at infinity, provided dp 3. This is false when

d=2 as shown by the example D = (x: %€ m2,|x|>1) and

u{x) = log|x|, xgD. Proposition 3 below, on the other hand,

shows that for an arbltrary open set Dciﬁz and any harmonie

function in D which is bounded and continuous on D the formula

ui(x) = Ex[u(xT)], x €D, T = exit time from D

holds; in particular u harmonic in [, bounded and continuous

on D, u=0 on 3D imply u=0. Such a conclusion is invalid

in dz3 dimensions if D is unbounded as shown by the example

D= m:xEmﬁlM>ﬂ and u(x}=1-K(x), xE€D. Thus in considerations

of the Dirichlet problem for unbounded open sets the dimension

plays an important role.

Proposition 2. Let u be positive and harmonic in
D= {x:x€R%, IxI>1). If d»3, 1lim u(x) exists. If D=2,
= Yo
u{x} = ¢ loglxl| +h{x), ez,

where h is positive harmonic in D and im h(x) exists.
M

further, if d=2 and u is positive superharmonic in D and

1im u{x} = 0, then us=4{.

Koo

Proof. The Kelvin transformation relative to S5(0,1) =aB{0,1)

gives a function which 1s positive and harmonic in the ball B(G,1)
§ 3,

Chapter 5) and note that Kelvin transformation is idempotent.

punctured at 0. Use a result of Bocher (Proposition 4,

Recall also that a positive superharmonic function vanishing at

a point vanishes in its connected component.

Let l:H:IR2 be open. If u is continuous

and bounded on D and harmonic in D, then ul(x) = Exiu(xT)],

x€D, where T = exit time from D. 1In d> 3 dimensions the
same conclusion cbtains, provided we assume, in additicn, that
u(x) tends to zero as DI X~ w.

Proof. Recall that P (T<w} =1 or =0 on IR?', by
Thecrem 5, § 1, Chapter 5, and in the latter case every hounded

{indeed positive} harmonic function on D is a constant. Put

D =

n DN {x: Ixl<n}.

u is harmonic on the bounded copen set Dn and continuous on

Dn. Sa

ulx) = Ex[u(XTn)]. xEﬁn, T, =exit time from D_
If x€B, xEEn from and after scme n. Clearly T, =R AT,
where R is the exit time from the disc Bn==(x:lxl<n). on




the set Tn <7, Rn <. PX(RH¢M) =1, PX(T-<w) =1, u bounded
imply by letting n-o in
u(x) = Ex[u(xTn}]= E [u(Xp): T='Tn]4-Ex[u(XTn)=Rn <T]

that

u(x} Ex[u(xT}], x €D.

That proves the Proposition.

Let us return to the discusslon of the Green functions for
unbounded open sets. One would like that the Green function for
an unbounded open set satisfy as many of the Properties 1 - 7 as
possible. Property 4 or 5 can be used for this purpese. We shail
use Property 4. Let D be open and Dn an inecreasing sequence
of bounded open sets with union D. By Property 3, 1lim GD
exists for all (x,y) €D xD. HNow if Dn increase to D aﬁd
A is a bounded open subset of D, Dnr1A ingreases to A. By
Property 3 and 4

D nNa=

lim G, > lim GD > GA
n n

showing that the limit . 1im GD is independent of the exhausting
n
sequence {Dn}. In dz3 dimensjons K20 and a glance at (5}

shows that for (x,y) €D=xD

(1) G, (x,y) = lim GDn(x,y)

K{x~y}-—EX[K(xT~y]]

1

where T = exit time from [ (when T ™, K(XT-y) = 0 by

definition). The situation when d=2 is more compliecated. In
this case, as the following Proposition shows, lim GDn(x,yicm
off the diagonal of DxD 4iff it is finite at one point. When

this limit is finite we will say that D has a Green function

and

Gﬂxdimiumsntmyh (x,y¥) ED%D

n
will be its Green function. Whenever we write GD we assume that
D is Greenian i.e. that D has a Green function. By Property 6

GD is symmetric on DxD.

2

Proposition 4. Let D be open cBR and Dn be bounded

open and increase to D, If Tn = exit time from b,
six,y) = lim B [K{X; ~¥)] ®,YED
n

is either =- = obor is separately harmonic in D.

Proof. Suppose first that D is connected. Since S{e,s)
is independent of the exhausting sequence {Dn}, we may assume
that Dn are connected and increase tc D, For each m,
EX[K(Kany}] is separately harmonic in the connected set Dm’
for all nzm. BAnd they decrease. The limit is either s-= or
is separately harmonic in Dm and m is arbitrary.

Now suppose D 1is not connected. If x and y belong
to different components of D, they belong to different components
of Dn say An, Bn for large n. K{.-y} 1is then harmonic in

A and continuous on in so that
EX[K(XT -y} ] = Ki{x-y} for all large n
n

i.e. s(x,y) = K{x-y). The case X,y in the same component is

to be treated.




If D is not connected, the closure of any component of
D can not be RZ. So suppose D itself is connected and D + &
Let z&D and K,y ED1, say where Dn increase to D. Clearly
there is a positive number a such that Iz—‘g’I-Iy—Ejl_1 za
as £ waries on ann, uniformly in n. Hence

{12} EX[K(XTn-y)] - Ex[K(xTH_Z)] zlog a

tniformly in n. Since K({z-+) is harmonic in Dn and continucus.

on its closure the second term in (12} is just X(z-x}. Thus
EK[K(XT -Y¥)] are bounded below by a harmoni¢ function in D.
n

s{=,*) is therefore separately harmonic in D.

Properties. The function GD defined on DxD by
GD(x,y) = limGD (%.v) ., ®,y €D,
n

where Dn is any sequence of bounded open sets increasing to D
clearly satisfies Properties i, 3, 4, 5, 6 and 7. That it also
satisfies Property 2 is shown as follows:

Let a€ 3D be regular, X, €D. We must show that GD(xD,y)
tends to zero as y~a. Let V be a ball centre xU, with
closure contained in D and U = DN (x:1x-al <r). For small r,

U will not intersect V. From (10}
Gp (x4.¥} = EY[GD(KS,ED):S<T], YEU,

where § = exit time from U. GD(xD,-) is continuous on aVcD.
By the second statement of Property 7, for all yitv,
Gplxy¥) = i;RIGD(XO'Z) =M, say. Therefore Gpixg.y} =
2
MPY[S <T], for y€u. If 5, = exit time from the ball

(x:fx=a| <r), then & = §,AT and Py[S-cT] = Py[51 <T]. It is

thus enough to show that Py(s1 £T) tends to zero as y-+a. But

this is simple. Indeed, given ¢ s 0, for small t,

r
Py{s1 gt) <e for a1l y¢g B(a,i)..
aAnd
B[S P[5 +P [teT].
(815712 Pyl s €] +R [t ™)
As y-aa, Py[téT] tends to zero because a is regular-

Thus in Properties 1 through 7, D can be any open set

having a Green function.

As to the Poisson equation, let D be . open and unbounded
q]Rd, dz3, and f be c¢' on IR‘:-l with compact support.
Then there is one and only one c2—function u defined on D
such that au = —Adf in D, u(x) tends to zero as x tends
te any reguiar peint in 3D and u(x) tends to zero as x

tends to infinity. And this function u is given by
a(x} = J GD(x,y)f(y)dy, X € D.
D

The uniqueness claim above follews from Theorem 3, § 5, Chapter 5.

The discussion of the Poisson equation for unbounded open
subsets (having Green functions) of ®2 seems a little more
involved. If Dclmz has a Green function and £ is c¢' on Eﬁ
with compact support, it is possible to show the following: There
is orne and only ane bounded czufunction u defined on D such

that Au = —Adf in D and u(x) tends to zerc x tends to any

regular point in aD. And this function u is given by
w = [ eyyfiviay,  xeo.
n)

We shall discuss this in § 3.




The following is a characterization of Green sets. See

also Theorem 5, § 1, Chapter 5.

Proposition 5. An open set 51:]R2 is Greenian iff there

exists a non-constant excessive function on f.

Proof. If 1 is Greenian, f£or any xDE Q, Gg(xo") is
non~congtant exc¢essive on . Conversely suppose h is a non-
constant excessive function on R. By considering B if necessary,
we may assume that the Riesz measure m of h 1s not zero. Let
D be a relatively compact open subset of R. By Theorem 5, § 3,

Chapter 5

{13} J K(x-y)m{dy) +g(D,x) = hix), xX€EQ
B

q
Agq

If T = exit time from P, we get from (13) (recall g{D,~) is

superharmonic in @)
(14) Aldfn{xcxwy) - B, [K(X-y) VIm(dy) <h () ~Ey [ (X ] shix).
As D increases to I, the integrand in (14) increases to Gg:
(15) - Ald j G (%, yIm{dy) <h(x) .

f

For any %, with h(xu) <@ , sgince m%0, (15} shows that

GQ(XO,'J <o m-almost everywhere. Thus 8§ is Greenian by Proposition 4

Let Q@ be a Greenian open set in = (if d»>3, ¢this

simply means an open subset). GQ{"'} is separately excessive

in Q. It follows that for any measure n

{16) Gnm(x) = JGﬂ(x,y)m(dy)

is excessive in 0. If £ is connected Gnm is either super—

harmonic or is == in Q. An easy consequence of Proposition 4 is:

1 .
+—G.m 1is m.
Ad I

{17) The Riesz measure aof

Indeed suppose ®€ ¢~  and has compact support in fl. On the support
cf g, Gﬂ(x,-) and K(x-+) are both integrable. Also Gn(x,y) =
E(x-y} ~s(x,y), where s(-,+) is separately harmonic in 2, by

Proposition 4.

{18) I(Ggm)Aw Jm(dx)!K(x—y)Aw(y)dy-Jm(dx)Js(x,y)Aw(y)dy

Jm(dx) Jx {(x-y}Ap(y)dy = —AdJm(x)m {dx)

because Js(x,y)ﬂm{y)dy = 0. (18) implies (17}.
Suppose now h is excessive in 2 and has Riesz measure m.
As we saw in Proposition 5, (15) 1s valid. From {17) h==3LGpm~+u.
q @

where o <u is harmonic in Q. We have thus

Theorem 6. (F. Riesz). Let { be a Greemian open subset

of Eft- If h is excessive in R and has Riesz measure m

o1
{19) h = AdGnm'é-u

where ( <u is harmonic in @ and, Gnm is defined by (16]).

Xelvin transformation and Green functions.

Consider inverslon relative to the sphere of radius p
2 x

2
lx|
Let D be open c:mgx{o} and D1 1ts image undex inversion.

centre 0: 5(0,p) = 3B{0,p). If x%0, its inverse x*=




If £ is c2 on D1 and g its Kelvin transform:
d-2
gx) = g (x*),

%1972
then

d+2

(ag) {x} = F—(af) (x*) .
EXId+2

This (fogether with the approximation of superharmonic functions
by smooth ones, § 1, Chapter 5) shows that Kelvin transformation

breserves superharmonicity. Let xU.ED. The function

d-2
u{x) = 2—————6

* Lk
p. {*g.x*)
1
Izt

is positive superharmonic on D. Since Gni(xa:y)-K(xa—y}

is harmonic for yE€ D1, its Kelvin transform is harmonic in D:

d-2
u{x) - E—————K(xa—x*}
d-2
Txf 2
is harmonic in D. The relation ng-—x*l = ——J%T—fo—~x0|
ix x
0
shows that
d-2 I:rcold_2
u{x) --P___x (xa‘——'x*) +— K (xo-x) r dz13
| ld—z pd—z
u(x) = *
ulx) - K(x$-x*) + K(x,-x) + loglxy|Ix| - log p?, d=2
d-2
Thus the function —JL—E:Eu(x) which is positive and superharmonic
lxa1

in D is the sum of DK(xo-x) and a superharmonic function. By

Property 5 one concludes that

{d-2)
JL__E:EQ(X) 2 Gplxg,x).
Ixg1

The Kelvin transformation being idempotent

2(a-2}

G, (%, ,x) = - —G,, (x¥,x*)
D0 %13 2% (9-2°D; 70

a!

Green functions and holomorphic transformations.

If w(x) = u(x) +iv({x) is a holomorphic map on an open
set D onto open set D1, £ is c2 in DT and g(x) = £ (w(x))
then

6g (%) = |grad u(x) {2 (4Z) (w(x})

as 1s seen by using Cauchy-Riemann aquations. This, as in the
case of the Kelvin transformation, shows that whenever s is super-

harmonic on D1, the composed function hi(x) = s{wi{x)) is super-

harmonic¢ on D. D1 has a Green function thus implies that D
has a Green function by Proposition 5. Suppose then that D1 has

d Green functioa. For any zg ED

a(z} = GD1(w{zD), wi{z})
is non-negative superharmonic on D. Since
GD1(w(zo),x)ﬂ'log!w(zO)-—xf

is harmonic on D s0 is

‘I'
b{z) = a(z) +1oq!w(20'} -w(z}|

on D. We have

w(zUJ-—w(zJ
a(z) = b{z) - Llog

z -3, +K{zﬂ-z).

wizgi —w(z)

R being holomorphic on D, its logarithm is subharmonic
in DB. The positive superharmonic function a is thus the sum

of a superharmonic function and K(zu-—z). By Property 5,

afz) zGD(zG,z). in particular, if w is simple, i.e. 1~1

homomorphic on D onto D1

GD1(w(zD),w(zn = Gplzgez),

i.e. green function is a 1-1 conformal ipvariant.




ExXercises to § 1.

1. Let D be a bounded open set and T = exit time from D. Then

Lix,y) = Ex[K(XT-y)T

is lower semi continuous on JRdx md.

2, Let D be hounded open in JRd, u positive harmonic in
D and 2, € 9D regular. Assume that u(z)_sO(K(z-zol)'FO(‘l)

and limu(z}) =0 for all z5 % b€ 3D regular. Then u= 0.
z2-h

Hint. ILet x5 ED. By (9), EXD[K(XT~20)] = K{zU—xDJ. Let

Enc:D increase ta D and Tn = exit time from Dn'

K(xo—zu) = EXU[K(xTn-zD)] > ExD[K(XT—zD)] = K(x -z ). Since

- - functions are bounded
K{XTn zD) tends to K(XT zo) and all the

below, »K(XT _ZO) thus converges in L1 {relativ to Pxo) to
K(XT-zﬂ). In particular K(xTn—zo) and hence alsg u(xTn) isg
uniformly integrable. Now u(xn) = EXO[U(XTH)] and xTn tends

to XT' Now use Lemma 2, § 5, Chapter 5.
Remark. The example: D = unit disc in IR2 punctured at the
origin, u = K shows that the rastriction in Exercise 2, that

Z3 €30 be regular is not redundant.

3. Let D be an unbounded open set in IRd. Suppose u is

bounded harmonic in D and lim uix) =0 for every beE 3D +that
Dax-b

is regular. If D= 2, u=0. If d>3 and further u tends

to zero at infinity then u=g0.

4. et D be Greenian and s superharmonic in D. Suppose

" the Reisz measure of § is finite. Then

s (x} = jG(x,me(dy)-hh, h  harmonic in b.

Hint. G{x,.) behaves like K(x-+} near x. and G(xX,«) ig
bounded off any neighbourhood of *(Property 7). Thus JG(x,y)m(dyl

can not he identically infinite in any connected component of D,

§ 2. Unbounded open subsets of :mz.

We have defined the Green function for unbounded open

subgsets of m2

as a limit of Green functions for hounded open
sets. Bven in very simple cases it is difficult to apply this
definition to fingd Green functians. By far the most powerful method
is to find a "mapping function" to map & given domain D onta
another domain D1 whose Green function is known. This will then
allow us to find the Green function for b,

In this and the next section we shall investigate the

extent to which "formula® (5), §1 holds; it does not hold in

general. For example, if p = {x: x| > 1)
GD(x.y) = Exflogle—yI] —loglz-yl + log|x|

T = exit time from D, as is seen by taking B, = (x:1<|x] <n)
and using (9), § 1, Chapter 4. We shall find a necessary and
sufficlant condition for formula (5) to holg but first some
propositions. The discussion will also throw some light on the
role of the point at infinity.

Until further notice, 0 will denote a Greenian open set,

i.e. an open set having a Green function. Given D, let

Dn = Bn;1D where Bn is the disc of radius n, centre
U:Bn = (x:|%j <n). T, = exit time from D, and T = exit
time from D. Pyt
) s, {%,y} = E_[K{X. -y)] %,y € B

ni¥ey % o T¥! i, 34 .

n




2 .
Sp (x,*) are superharmonic on iz harmonic in Dn and decrease.

Let
(2) s(x,y) = lim Sn(x,y).
Since sn(x,y) £ Ki{x~y), s{x,y) £ K(x~-y). So s{X,¥} <= unless

X=y. s(%¥) may apriori be == . s isg symmetric because 5,
are (Property 6, Section 1).

Suppose x, €D, yOED. D being Greenian s(xo,yo}> —w,

0
From an n on IXT —YUI 1s clearly bounded away from zero
n
{since XT € E}Dn) and K(XT -yo) is then bounded above. Fatou's
n n ’
Lerma is applicable:

—m<5(x0,y0)

A

E_ [limsupK( -y-}1]
%y %r Yo

= ExO[K(xT—yD)].

K(XT-YD} being bounded ahove, EXD[!((XT-yO)] makes sense and
from the last inequality we conclude that E!x IiK(XTuyO) []< ™,
o .
By exercise 8, § 1, Chapter 5, E, [K {X;~¥}] is finite for
a

all y. For any y

(3) By KO —y)] = EXD[K+{XT—y) 2T =]

- E:xo[f-:' (Xp=y): T =11+ ExéK(xrn—y) :T <1,

P [T <7T] tends to zero. On the set T <T, I|X-: | =n and
Ky 0 n Tn
IXT ~Yi/n tends boundedly to 1. Putting ¥Y=¥, 1in (3) and

n

taking limits shows (since _ExD[lK(XT—yo) |} <«w apd 5(Xyrygl> -=)
that 1lim {log n)l’x (Tn <T} exists and is finite. From (3),
0

n—x
letting n- , for any y

(T, <7

sixy,y) = Exu[K+(XT-y}] "By 1K (ypy) 1 -Lim (logn) B,

0

The left side of the last equality can at worst he - while
the right side at worst +e, One concludes that s(mn:D Yl e
for all y and EXG[IK(XT—y) 1] <= for all y. s is symmetric.
So s(x,y) »-« for all X, provided vyep,

Let £ be arbitrary and Yq €D. From the last paragraph
s E,yo) > =®. As before (since IXT ~yDI is bounded away from
zZero etc.), E g{ IK(XT—YO) [} <=, 11;: logn PE (Tn <T) exists and
is finite and EE[K(XT—--)] is superharmonic. In their turn the
last two facts imply, as before that, s{f,y})>-w for all y

and

s{E,y) = EE[K(XT_Y” -1lim (logn) PE{Tn-:T).

Let us collect all the above 1in

Eroposition 1. With ahove notation Ex[K(XT—-y)] is

SuUperharmonic in y for every xEIRZ. And

2

s{x,y) B IR(X~¥)] “ap{x), x,yem
(4)

= 11 2
aD(x) = l;m {log n) Px[Tn<T], x € IR".

Remarks. From {4}, for each X, 5{x,+) 1ig superharmonic
and by Symmetry, s{*,*) ig Separately superharmonic. It ig also

edsy to see that

(s) A BRG] = B UKy 1 +ay 0, xy e w2
n

Il -

Since s({-,¢} ig separately harmonic in D, {(4) allows that 2n

is positive and harmonic in D,
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Corollary 2. Tor all Xx€ IR2 and b€ 3D
: _ _ 2
{6) lim inf EXIK(XT-y)] = E, [K{Xp-b)], =xemR".

D3y »b

If hesD 4is regular, the liminf in (6) can be replaced by a

limit. If béD or b€ aD regular

{1 ExIK(XT—b)] = K(x-b) +aD{x}, X ER".

when a

D is defined in (4).

M. If beg3Dd is irregular {6) follows from Exefcise 9,
§ 1, Chapter 5. Now suppose be 3D is regular. By lower simi-
continuity, the left side in (6) is at last equal to the right
side. s;j_nce s{x,y) <K(x~y)}, we obtain by {4)
limsup[& K(Xu-yi] g K{x-b) +a,(x)
Dy -+b
and the right side of the above inequality 1s just Ex[K(xT—b)],
as is seen by using (4) and recalling that s(x,b) = K{x-b) if
be D is regular. (7) follows from (4). Q.e.d.
Clearly Corollary 2 above says nothing if xgD or
X € 3D is regular. It is not difficult to show that ap is non-
negative harmonic in D and

lim aD(x) =0
DIX+b

if beaD is regular.

Theorem 3. Let m be a probability measure on IRZ such

that

(8) s{x) = JK(x—y) m(dy)

is superharmoaic. Then Ex[s_(XT)]<m for all =x and

(9) B ls(X)] < s(x) +ay(x),  xem2.

If m does not charge D or the set of irregular points in

a0 then equality obtains in (9}.

Broof. We claim that
{10} JEX[K_(XT—Y)]m(dy)<=, x € R,
which of course implies that E [s™ (X )l<w= . For any g

K™ (Rpmyg) K7 (2{% -~y ) +R A2 (y=yg))

<log 4+ K (Xpmyy) + K {y-yq) -
Since Ex[K(XT—-)] and Ji{{wz) m{dz} are superharmonic °

EXII(_(XT—yO)}<m and JI{_(yG—z)m(dz)<w

for ail ¥q (Exercise 8, § 1, Chapter 5). (10} is thus estahlished
and because of (10) use of Fubini is permitted below. Using (4)

and that s{x,y) <K(x-y) we obtain

E s (Xp) 1 = JEXIK(XT—y} 1 wm(dy)

1A

JK(r-y) m(dy) +aD(x) = 5(x) + aD(x} '

Similarly for the last statement use (7). Q.e.d.




Examples.

In very simple cases (7} can be used to find a If D

o-
is the complement of the closed unit disc and b = 0, we get at

once from (7) aD(x) = loglxl for ixl>1. If D 4is the upper

half plane, XT lies on the real axis. For any b of the form

L= (0,-n}) and z yeal, clearly i2~bl z n. It follows that
EX[K(KT-‘h}] = log%. Using (7) and letting an-+= , we get

ap{x) £0, i.e. a =0. consider again the strip (¢<Imz<1)
For z€3dD, |z-nlzn-1 so that for x€D, Ex[K(xT"nnélOanT‘l

Use {7) and let n=-= to get ap=0. Similar arguments can be

used to show that ay = 0 for a wedge, a quadrant etc. One may

suspect that simple connectivity of a Green domain D is sufficient

t0 guarentee that ay=0. This will turn out to be correct.

Again in some simple cases {7) can be used to compute the

harmonic measure at x, i.e. the distribution of X relative

T

to P,. As an example, consider D = the upper half plane. Penote

the points on the plane by (x,y) If b>0, the pont {a,-b}¢D.

From (7}

[r0atzra) 2 40?12, ) (@) = Loglix-a) 2+ (y4m) 2]

where ) {dz) = P(x'y) (}(T €dz})., Differentiate both sides

P
(x,y
relative to b:

b + b
— 8 p (dz} = ——— ¥ 2
J{z—a}z +pe  *eY) (x~a) % & (y+b) 2

oa

Multiply both sides by et and integrate relative to da £rom

—=m 0 =,

- A 1 -
e lalby x,q) & = glaxg=lal{y+h)

A :
where P(x v) (a) = JelazP ) (dz). ZInversion shows that
r

(x,y

P(x,y) (gz) has density

f—

_

I (x—z)z-kyz-

We have thus found the Poisson kernel for the half plane

((%,y):y>0) (See § 2, Chapter 4.)

As another example, consider the strip ((x,y): D<x<1}) = D.
Fix (x%,y) ED. P(x,y) (XTEdz) lives on the lines x=0 and
x=1. Denote these parts by QO and Q.I respectively. If a>1,

the point (a,b) € D. From (7)
Jlog[a2+ (b—z)z}Qo (az) + Jlog[ (a-1)2 + (b—z)zm1 (dz)
= log[ (x-a) > + (y-b) %].

As befoure, differentiating relative to a then multiplying both

sides by eiab and integrating relative to db from -w= to ®:

A A
0, (@) _'_elulQ1 (@) = E|ﬂ|xeiuy

A .
where Qj (@)} = elasz {(dz), j = 0,1. )
Also the point {-a,b) §D if a>a0. Repetition of the

above leads to

. -latl ~lolx i
Qg (a) +e” %0, () = o H ¥ Y-

We must thus have
- _ A .
Elal[.l_e ZIGI]Q1 (@) = eluy[elalx_e—lulx]

which expands into
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A =
Q.' (a} = Xelay{e——(2n+1—x) Ial_e-—(?.n-i-‘l-l-x) ](xl}_
o
Q,(dz) thus has density

(2n+1—x)2+{y—z)2 (2n+1+x)2(y—2J2

1 “’{ 2n+t-x 2n+14x }
]

and Qo(dz) has density

i ‘E{ 2n+x _ 2a+2-x }
T Uenenr 24 (y-2) 2 (2n+2-x) 24 (y-2) 2

The above can be interpreted in the "image method". See Remark

after Example 2, Section 4.

Exercises to § 2.

1. Show that

1im aD(x} = 0. 1f begaD is reqular
D3x - b

Hint., Iet yDED. Then
G (x,¥p! = K(x~y,) ~ E, [K Eomygh] +ag(x).
As x —h, 1imGD(x,yD) = 0. Thus as D3Ix-+b
lim sup an {x) + 1im inf (K{x-—yo) - EX[R(XT—yD) 1} <.

If m= K(i}—yﬂ}, K(-—yolvm is bounded and continuous on 3D.
S0
lim sup Ex[K(XT—yD) 1= lixm_'sgp Ex[K(XT—yU)vm]

X=+b

= K(b—yo)vm = K(b-yu).

2. show that aD(x) < leg |xl +0(1)
Hint. Let y €D. Then
Gy lx,yg) = K-yg) - EX[K(KT—YUJ ] -i-aD(x)

is bounded off any neighbourhood of ¥g- Also since le-yDI
is bounded away from zero, EX[K(XTwyU)] is bounded above.

Finally a being harmonic in D 1s bounded in a neighbourhood

D
of YG'
ap(x)
J. Show that limsup W = 1 unless ap= 0.

X

Hint. ap is harmonic in D and bounded in D,. {(by the above

Exercise). Hence

aD(x} = EanD(xTn): T, <T]
apix),
Therefore aD(x) < (‘ su_p E&_ﬂ)uﬂgn Px [Tn<T]
®xl=n
an(x}
i.e. aD(x) < (l‘i,ﬁ_s,uf m) aD(x).




§3. Unbounded open subsets of R2 {continued)

Let D be an open set haveing a Green function. Retaining

the notion of §2, we have the following expression for GD

(N Gpfxsy) = Kix=y) ~E [K(X; -y)] +ag(x), x,y €D.

Thus G, is given by (5}, §1, iff ap = 0.

Iroposition 1. For any probability measure m on IR sa-
tisfying
[2) Jlog('!-!—jy”rn(dy) <m
we have

lim sup{ Jloglxﬂylm(dy) wlog[xl} = 0.

X+

Prqu. If £(x}) 4is the function in the brackets in {3}
(4) f(%) = J log [ 1-xy |mi{dy)}, X %0

and the right side of (4) is subharmonic on 312, under (2).

{Indeed, log|1-xy| is subharmonic in =x because 1-yx is ana-
Lytic in x. If IXl gn, log|1-xy| is bounded above by the m—
integrable function n log{1+ I¥ 1}, Fatou and Fubini are therefore
applicable.) The 1limsup in (3} is thus the value of this sub-

harmonic function at 0, namely 0. 0.E.D.

Remark. Note that (2) is necessary and sufficient that

Jlog Px—y |m{dy)

be subharmonic on IRZ.
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The following theorem gives necessary and sufficient condi-
tions that ap = 0, i.e. (5), §1, be valid.

Theorem 2. Let D be Greenian. Then

(5) a&x}=lmstMXJh X ED.
DIy 4+
Proof. From the above remark and Proposition 1, for any
x €D,

(6) iim sup{l{(x—y) -Ex[K(XT-y)]} = 0.

y-lm
if aD{x) = {, we see from (1) that

0 <lim EmpGD(x,y} = 1im sup {K(x~y) —EX(X(XT -ylls@o.
_DBY—’ED Day»m

The last inequality follows from (6} .

¥Now suppose aD(x) >0. If y¢bD, by {(7), §2, the guantity
in brackets of (6} is just waD(x). Also {6), §2, says that for
any b€ 8D, Ex[K(XT—b)] is a limit point of EX{K{XT—-y)] as
D3y tends to b. Thus the limsup in (6) can be taken as Y
tendg to infinity in D. Taking limsup in {1) gives us (5)}.

Q. E. D.

The following proposition gives a simple geometrical condi-
tion for regularity and can also be proved using the fact that
the Brownian path winds around its starting point infinitely often.

See H.P.McKean, Jr.[4].

Proposition 3. Let D be an open set. If beE3D is con—
e e
tained in a continuum completely contained in the complement of

D, then b is regular.




Proof. Let t:rEF‘:ZI.’R2 ~D be a continuum. If r is small,

FNix: |xbl>r) # @. Let D, be the open set
D1 = (x: |x~b| <) ~T.

D_l is bounded @pen, D.I >Dn {x: |lx-bl <), b EdD and 3D1 is
connected, D, is simply connected because 3o, is connected. By
the Riemann mapping theorem there is a 1-1 holomorphic map £ de-
Fined on D1 such that f(D1) is the open unit disc. It is
easily seen that as x €D, tends to any point in 3D1, 1E{x) 1
tends to 1. The function hix} = 1- |£{x})| is thus a barrier

at all points of 8Dq. Every point in 8Dy, in particular ' b,

is thus regular for D?. Since b E3D and b, 20N {x: [x-bl| <r},
b is regular for (Dn (x: |x-bl| <r)F and hence for DS That proves

the proposition,

Remark. Let D be an unbounded Green domain. Assume 0¢D

and consider the map x = %. I D, 1is the image of D under

s 11
this map, 0€3D, and GD1(x,y) = GD(E’ﬁ)' D;;TmGn(x,y) =0 is
equivalent to lim GD (x,¥}) = 0, 1i.e. that (Property 2, §1} 0
. Dq3y~0 1
1s reqular for the complement of D,- Proposition 3 thus implies:

D is an unbounded domain such that IRZ\ D has an unbounded com-

ponent then ap = 0. In particular, if D={=IR2 is simply connected,

then ay = 0.

The case of D with compact complement

Wnen the complement of D 15 compact, a, can be expressed

in & nice way as follows. From (4}, §2, and the symmetry of s

(7) a0 = {B, Ikt -y1] 42y =B KOy 01, wyeRl,

Let H be a disc containing the complement of D and let

5 = hitting time to B. Then
(8) EyEK(XT—x] = Ey[EXS[i((XT-x})].

For a sequence Y. tending to infinity, the probability measures

P [X5 g£dz] converge to a probability measure y, say, on 3B,
n

Since E_EK(XT-x)] is continuous on 4B, as Yn tends to in-

finity, the left side of (8) tends to

(9) JEZ[K(XT-X)]u(dz) = JK(z—x)m(dz)
where
{10} m{dz) = IPy[XT Edz]u(dy}.

1t follows that the term in brackets in (7) converges as jy_ - wj;

_ n
[27¥q1

and, because log_Ty——T tends to zero uniformly for = € 4D, this
n

limit is simply

(11 lim [aplyy) - logiy I} = v, say.
Y

Thus we obtain from (7)

(12} ap(x) = T—[K(x—z)m(dz}, x € B2,

where m is a probability measure on 3D as is clear from {10}

Aemark. Given a compact set C, the Robin problem is to
find a measure m on C whose logarithmle potential, i.e. JKP—ZL
is constant on €~ (irreqular points}. If C = the complement of
D, we see from (12) that m solves the Robin problem for C.

The third term in (12), being superharmonic an ]Rz, is bounded

below on compact sets. ap, iz thus bounded on compact sets. It

BRI



is also clear from (12) that
(13) Lim(apy(x) - logixl) = y.
X

¥ is called the Robin constant for D.

Poisson Equation

If D is Greenian and f 1is c1 on R2 with bounded sup-
port,
ulx) = IGD(x.y)f{y)dy, X €D,
is obviously c2 on b and satisfies Au = -2rf. This is so be-—

cause Gp~-K is harmonic in D. Let us show that u is bounded
in D and wu{x) tends to zero as x = b € 3D regular. This we
do by réducing to the case where dD is compact as follows: Let
L €3D be regular and ¥y ED. Let A be a compact subset of 3D,
containing b such that ch;[xT € Al>0. If B is a disc con—
taining A and W =DUB®, then W’ is compact, b €3W, andis
regular for {BI1D)%(E nwW)° and regularity is a local property. In
particular, by Theorem §, §1, Chapter 5, W 1s Greenian. Since

WD, G,>G

W D-
Thus it is sufficient to show the following: Let £ be
bounded measurable with hounded support and D Greenian with DY

compact. Then

(1) ulx) = [oy(xyhEyIay

is bound in » and u(x) - 0 as x + b € 3D regular. If Fly)} =

JK(y—z)f(z)dz, u of (i4) has the form

(15) u(x) = F{x} -E [F(Xq)] +ap (x) -Uf(y)dy‘)-

F is continuous on 1R2 so ¥ is bounded and continuous on 3D.

Therefore the second term in (15) tends to F(b) as x - be ap
reguiar. Aand aD(x) tends to zero as x -+ b (Exercise 1, §2).
Finally, since T(x) = log(x)-df(y)éy)-+0(1), boundedness

of u is clear from (13}.

Exercises to §3

1. Let D have a Green function. For any hounded subset

A of D and any ¢ »8, show that

sup GD(x,y) <=,
where the sup is over alt x €A and y €D such that |xwyl >E.

Hint. Reduce to the case where D° is compact.

2. In the notation of §2, show that PX[Tn <T] tends +o
sezro uniformly on compact subsets of :mz.

Remark. If we reduce to the case where DY is compact, this
is clear from (13) and the expression of ap given in (4), §2.

But show this directly.

-3. In the notation of §2, show that sntu,-) decreases uni-
formly on bounded subsets of IRZx B; to s(*,*}.
Hint. TFor n<m,

sy (xey} = s (%,y) +E [G, (X ,y): T <Ti.
m n

Note that GD £G Now use Exercises 1 and 2 above.

m

o




Remark. fThis Provides another prrof that s(+,:) ig sepa-—

rately superharmonie and lower semi-continuous in both variables.

§4. Examples

- 1
Example 1. m does not have a Green function but any open

1
set DecIR', whose complement is not empty, has a Green function.

In fact ufx) = lx|

IRT ~{0}.

1s positive and harmonic in the open set

The Green function for a finite open interval ({a,h) ig

(1) G(x,y) = -lx=y +1atb) (x+y} ~ 2 (xy+ab)
b-a

and of a half-line (a,=} is
(2) Glx,¥) = ~ix-y| - 2a + {34y} .

Indeed (by looking at the harmonic funetion with boundary

b

value = 1 at a, apd = g at b} it is seen that P (X, =a) =hx
—-a

Thus the Greep function of {a,b) isg

Glx,y) = ~Ix~-y| tE X -yl ]

= —|x-y| + (y~a)Px(XT =a) + (b"y}Px(XT =h)
which is the expression given in (1). Letting b - = ip (1), one
gets the Green function for {a,=).

{2) resembles (1), §3, with an(x} = x-a which ig positive

harmenic in {a,=), T¢ follows that formula {(5), §1, holas for an

unbounded open set in r! iff it has no unbounded components,

i.e. iff it is the disjoint union of bounded open intervals,

Example 2. The Green function of the ball D = B(0,r) in

:md With centre 0 and radius ¢ is

2 —
_ r- ~xy|, d=2
Gy (x,) 1Gg|r(x_y) %l 1yl <z, '
{3} d-2
1 3 !
G_(x,y} = - - p -z 423
D ey 1872 11T ey @

where y = the conjugate of y and y* the inverse of y rela-
2
tive to 8B(0,r): y* = —£—§y.
Iyl
To show {3) we evaluate EX[K(XT"Y)], T =exit time from D.

For =z €3B{0,r)

le-y*[ _ £
lz—y | iyl ~

S0 Ki¥p-y) = l°g|§|'+K(XT -y*¥) if d=2 and K{p-y) =

~£g%§§K(XT -y*} if dz 3. K{+-y*) is continuous on B and

Iyl
harmonic in D giving

; _ - L —y % =2,
EylKiXy —¥)] = logpop +K{x-y*), d=2

E [K(Xq~y)]

Remark. The method in Example 2 is sometimes referred to as
the "ﬁethod of images" due to Lord Kelvin. In this method cne tries
to guess, ujsing the geometry of the domain, at a suitable "distri-
bution of cﬁargea" outside the domain whose potential on the boundary
equals that of a peint charge inside the domain; this means that we

try to guess at a function which is harmonic in D and whose values

are equal to K{x-.} on 3D. TIts applicability is limited; non-



theless it is very ingeneous. When it is applicable, it allows us
to find the Green function almost without computation. Let us give

a few examples to make the idez a little clearer.

Examgle 3. The Green function of the half space D = (x: x =

(x1,...,xd) ,xd>0) is

(4) Gplx,y) = Kix-y) - Ki{x-y*},

where y* is the image of y in the plane ' ab: If y= (y,.---;yd), .

y* = (Y1:---;yd_1- _Yd)-

Clearly, for z€aD, |[y-zl = |y*~z| ¥

so that K{XT—y) = K{Xp~y*), where v
T = exit time from b. K(« -y*) is
harmonic in D and continuous on B. 1If dz3, £further K{z-y*)

tends to zero as 2z -+ =. We must have
{5} Ki{x-y*) = Ex[K(XT -y}l

giving (4) for dz3. When d=2, K(*-y*} is not bounded and we
cannot at once claim (5}. The results in §3, however, guarantees

that (4) and (5) obtain for d=2 as well.

Example 4. Let us use the method of images to find the Green
function of a guadrant. For simplicity we take the case d=2; the

method is almost exactly the same for d>3. Let D denote the

quadrant D
D= (2z: Rez>0, Imz>0). B .
( ) v, ¥
We know from §3 that (5), §1) is valid in
this case, and the problem is to find EK[K(}QI,—y)]. T T

i
_ |
If y, (=y) 4is the image of y in Yy © | Yy
{Imz =0}, Y, the image of ¥, in (Rez=0) ]I

and Yy the image of Y, in (Imz=0), then

Klz-y,} ~K{z-y,) +K(z—y3) = K{z-y}

for all =z €2D as is easily seen. See Figure. From §3
foilows

E [K(Xp-¥)] = Klx-y,) -~ Klx-y,} +Kix~y,).
Since Yy, = ;', Y5 = ¥ Y3 = Y. we find that the Green func-

tion of 0 is

xz_-z
ing —--—--Y-*-z = -
X -y

The above argument exd#ends to any wedge with an angle - 2u/n. :
For Y ED (see Figure), let ¥y
be the image of y in L1' Yoy
the image of ¥4 in the 1line Lz,
Y3 the image of ¥ in the L.I,
eto. The Green function of D

is then

K(x-y)} -K(x-—y.') +K(x—y2) —K{x——y3) +eatc,

The sum has only n terms.

Example 6. The method of images can be used to find the Green
function of the region between two parallel hyperplanes. One needs
an Infinite series of reflectlons and has o watch out when summing

the resulting series. The Green function of the strip D = (0<Imz <)

can be computed to be

Ef {K(x-y—-2nin} - K{x-v+2nin)}

(6) _mm .
_ X-y+2nin
- _{:ﬂlog | Xx-y=2ninl °




In Courant-Hilbert [2, p. 378] the Green function of a rec-
tangular paralleliped is computed using the image method and is

given by an infinite series which has to be grouped correctly for

convergence.

Let us give one last example of the image method,

Example 6. Let D be the spherical shell

D= {x: r<lIx| <R)

R d
in m©, dz3. Let y=yDED and define Yoo n=1,2,..

inductively as follows: ¥y is the image of Yq in the sphere

{(x: lx]l =R}, i.e. ¥q = y¥ = RZ—JLE
in th 'yl
n e sphere (x: \xl= ), ¥3 is the image of ¥y in the

. Yy is the image of ¥4
sphe;e {x: Ixl= R) etc. Similarly define Yo n=1,2,...
as follows: ¥_q is the image of Yg in (x: Ixl=1), Yoz the

image of Yo in (x: |xX|l =R} etec. If a = %, it is seen that

_ _~2n
Yap = a Ty, n = 0,t1,%2,,..

_ -2n * Rzg

Y2n+1_a ¥, YT = | 121 n=0,%1,%2,... .

Y
And the Green function of D is

T -n(a-2) rRI2® n(a-2

Ta K{x~ R al ] -

L Yon! =7 TF2 1 KlxYoneq) -

The series above converges uniformly and absolutely in D. See

also the Remark after Example 8.

Example 7. For plane regions conformal maps provide a very
powerful methed of determining Green functions. The Riemann mapping
theorem in theory permits us to write down the Green function of

any simply connected domain with at least two boundary points.

i+iz
2+1i

The function w{z) = maps the upper haif plane (Imz>0)
1-7 conformally onto the unit disc. By Example 2, the freen function

of the upper half plane is

(7) loglz—:% . Imx> 0, Imy> 0.
The function w(z) = e” maps the strip (0<Imz<7®) 1-1 con-

formally onto the upper half plane. From (7) the Green functicn

of the strip (0 <Imz <w} is

XYy _ 4
8 1°g|ex-y L
L] =1

We leave it as an exercise to show that the expressions in (6}
and (8) represent the =zame function; consult Konrad Knopp, Prcblem
Book, vol. 11, Dover (1952}, Exercise 1la, p 82, if needed.

Again the function w{z] = e’ maps the strip (0 <Im =z« 27)
conformally onto the plane cut aleong the positive real axis. Using

{8), the Green function of the plane =lit along the positive real

axis is found to be

1og | ¥E]
vz - vyl

Tn the following example we use the method of separation of

variables.

Example 8. Let us compute the Green function for the zircular

ring

D = (x: xEIRZ, a<ixl|l <b).

The geometry of D suggests use of polar coordinates. In polar

coordinates the Laplacian has the form

2
9 P 2

+ =
BYz

1
+ ~z

Y 382

=< [—=

3
3y




leads us to the equations

1 A
£+ 4 A L
?f +Y2f 0

2
Q_S.=Ag

2 r
dé

where 1 ig a constant. Since g must be periodip with period zv
the possible values of ) {the elgenvalues) are

and the Corresponding independent solutions are, for n# g, einﬂ

and g~ind .

Now, let us attempt to solve the Poisson equation

2 2

37u ., 1 3u 1 3%
—yto =41 g _ "f(‘f
aYz Y Iy Y2 382

in D with boundary condition ufa,8) = u(b,8} = g

u(y,a) = Zunfﬂeine

Eily,0) = an(?()eina
We arrive at
2
1 n
10 o i S B
(10) un+'\run qun £ .

The unique solution of (1p) satisfying u fa} = u_ (b)

is given py

b
u,(s) = fagnty,lefn(T)dy

where if g + 0

b n__ n n azn
cn(sn 57) {y F)'

f11) 9o (v,s) =

2n 2n
n_a b
cpfs™ -2y By

=1

u

A
s

A
A

with et = 2n(b2“—a2“} and

n
b X
h log;lcga ' agyss
(12) p{v,s} =
0 5 b
h log;loga—,, 5 ZY<b
. -1 _ =3
with cU = log T

2r
Using fn(Y) = f%J ] inef(y,a)da, we get an expression for u
0

b T

{(13) u(s,8) = %IJ dy qun(Y,S)ein(B_mvf(y,m)
md g 0 .

ydrydy being the area element in polar coordinates, we obtain

from (13) a tentative expression for the Green function for bD:

(14) [, (yosyetn(®=e

where x = (v,8} and ¥ = (8,9} and g, are defined in (11) ang

¢+ (14} is in Fact

{12). Since_ 9, = I_n

{15) gqlyes) +2§QD(Y,5) cosn{B~p),

We have yet to show that (15) in fact represents GD.It can
be verified that E|gn-gn+1} converges uniformly in &5Y, s<h.
By Theorem (2,6), P.é'Lf A.Zygmind [31, (15) represents a contimous function
of (%X,¥} 4if B + p. oOn the other hand, if Y ¥ 5 (i.e. =l % 1yl},
Egn(y,s) is dohinated by a gegmetric s5eries (gn(Y,s} is less or
equal to a constant limes (%) for vy ss) and so {15} represents
a continuous function of (x,¥) if x| % lyl. Together these imply

that (15} represents a continuous function of (x,y} outside of the

diagonal (x=y),




b .
b
It can be checked that f gn(v,s}dy = 0(—%}. Using this and
a n

denoting the continuous function given in (15} By F(x,¥}) we see
that for a c'-function h of the form hiy,8} = f(y)eine the fune-:
tion .
utr.9) = [ Feyniyray
D
h
= ei“BJ g (v,s)E{=)sds

a

satisfies Au = -2qp and u  vanishes on 3p. We must have u(x) =

IDGD(x,y)h{Y}dy. It follows that F(x,y) = GyiX,y) for almost a1y

Y and by continuity p = GD.
We have shown that {15) Iepresents the Green function for the

circular ring (x: a«<|x| <b}.

Remark. (wsing Example 8 and inversion, one can determine the

Green function feor the region between twa circles, one completely

contained in the other; this is the shaded region in the figure he-

e

low. See Exercise 2, Ve

§3, Chapter 4. //

,

~
\‘ /
-

The method of separation ;f—;ériables can be used whenever we
have a preduct domain. For a more detailed account of this method
consult any elementary book on partial differential equations;

See Courant=Hilbert [2] for a complex function method of de~

termining the Green function of a circular ring.

§5. The Green function and relative transition.

d be open and T = exit time from W. ‘The tela-

Let WeR

tive transiticon measure OQ(t,x,A) is

{1 Ql{t,x,n) = P_[X €A, £<TI], A Borel.

it is clear that Q(t,x,*} is absolutely continuous relative to

Lebesgue measure. We shall find nice densities for 0 and relate

these to the Green function of W, pi{t,x,y) will denote the

Gauss kernel:

. z
- -yl
plt,x,y) = (27t) mqam(wﬁ%f—h £>0.

We start with

For all x and t>0,

Proposition 1.

(2) Px('rmt) =0,

On the set T > s, T = 5+T(BSL

Proof. BSuppose {2) is false.

: i i =+t=-5): 5] >0.
By Markov property we obtain for each 0D<s<t, EXU%%(T t=5): T»s]

and ?X(K1 €+) are clearly eguivalent so

The measures P {X_€ )

s s . e
that EX[PX1(T1=t“S)] >0, for s<t. This is impossible becaus

E [PX (TE€+)} 1is a finite measure. Q. E. D.
*
1

By the first time relation ((8), §2, Chapter 2)

(3} P (X, €A} = Q(t,x,A) ¥+ J P (X __€A) P [TEds, X E€db).
[0,t]xaw

If gi{t,x,y) denotes any density of Q{t,x,-}, from (3) for al-

most all vy,

4) plt,x,¥) = alt,x,y) +E [p{t-T,Xp,y): T<tl.




In the las t i =
( expectatlcm, UEiIlg (2) we ha ep. ¥
) ve r 1 aced (T < t) b
t). Now p(~,-,. -
rtan) is lOWEI.‘ semi continuaus ’ bEi]‘lg the in

Creasing 1
g limit of tontinuous functions

(2mt) =%/ 2exP( - &y_f&_a)
2t

F P X t is non-
i 1lm Iywl -
or flxed t i n-negat ve a oSt evea hEI‘e (being a de
=] n
far all t> D, X, Y ER

Now P is c in (D,m) L - R . SJ.I]CE‘. XTE aw for each

Xr we find frop {4)
(t

Xey) is e¢® ip {t,v) 3if v¢oaw

Using th i |
e Semigroup Property of plt,,-) g
' e see from (4)
P{trxry)=]
alt-e,x.z)p(e,z,v)q
¥l z+E‘x[p(t—T,XI.:Y): T<t¢],

Comparlng the above with (4) r

(s qut—e x,2)p(
13, £,2,¥)dz = = D
qlt,x,y) PRI, Xy tr e g,

In particyiar

{6) Iim qit-e,x, =z Z = t,x

{ )p d

r r {E: z d
: :YJ q( 15, ¥), t>ﬂ, XY ER
By Markov t |
Propert i T
D ¥ Qi P X,0) 15 a semigroup of meastir
es. n terms

of densitiag
th :
15 means: for sach x and t,s5>0 ¢
N or almost al]
(7) y
t+ =
af S,X,y) = jq(t,x,z}q(s,z,y}dz.

But becayge
of (6), it ig 4
mmediately seen +h,
at {7} holds g
L2205 for all vy,
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{7) can be rewritten

g (t+s,x,y) = E fa(s,X ,y): t<T]

is continuous in =x for xXEW

which shows that gq(®,x,y)
dfz. Now refer to Exercise 3, §2,

{glu,-,) gsple, -, ) g (2ra)”
Chapter 4). TUsing this and Proposition 1 we see further (since
XtEW far £ <T) that

(8} for all ==,y g{'x,y) 1is continuwous in {0,=).

g

Now we shall relate these relative transition densities

as follows. We assume from now on

to the Green function of W
d>»3 is similar

that d=2. As the reader will see, the case
and simpler.
¢! on r? with compact support, Dn =

Let 0sf be

apd T = exit time from D . If us= JK("“Y)f(Y)dy,

W Nni(o < [xl <n)
-27f by Theorem 3, §3, Chapter 5.

then u is c2 on R2 and u =

By Dynkin's formula, Theorem 2, §1, Chapter 4,

Tn
(4} u(x) = Ex[u{xT q +nEK[J f(xt)dt].
n 0
Suppose now that W has a Green function. Let n tend to infi-’

aity in (9). With the notation of §2,

T
JK(XrY)f(y)dy = nExUDf(xt)dt] +Js(x,y)f(y)dy

{10)
2 1s bounded below on

bhecause s(x,+) being superharmonic on R
compact sets. Deduction of (10) from (9) is thus justifiéd. {10}
is equivalent to
{11} K(x-y) = n] gqlt,x,ylét + s(x,v)
0
write for

for almost all y. To show that (11) holds for all vy,
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a

E > 0‘ J q(t x
0 $Xeytdt  din the form r‘-{(t"frxry)dt and use (5)
E H

(12
) IK{x-z)P(Brzry)dz = ”rq(t,X,y)dt
£

2
+ IOEx[p(s,Xr:y)]ds + jS(x,z)P(E'z'y)dz

for al =]
== g2il Y.
sge what happens as E tends ta Zeraq n
1 T r We ead

B
roposition 2. For a constant A

(13) J1P(5
g SrEYlds < AK(z-y)  if  |z-y| <§.

If m 1ls a f t a2 ur on R for Wthh
inite m as =3

(14}
u{y} = JK{Y"Z)m(dz)

is superharmonic, then

(15}
1i
54?IU(Z)P(5'Z'Y)dZ = uly).

We Postpone
t
he proof and go ahead with our discussi
on.

Since (S -4 byl 0 th set 5>0 Y=zl >
B r ,y) is bou ded n e { | | % W
r )l a

see from {13) that J1
E
o w[P(8:Xp,¥)] ds <= provided l’..‘J‘:[IK(J';I,—y)]]<‘._‘=

that is provided Ex[K(XT -y}l <
Ex[K(XT"”

because by Proposition 1, §2
r

is superharmon
ic and hence b
Y Exercise 8 §1
+31, Chapter 5,

= [ {X, - ) <o <, e
X Y 1
E K by for all Y- Thus if s(x rY } the middgl

term o e}
ri n r
ht side of ( 2} tends to Zero as E t d
n the 1 =} S to zero.

Now use Prp .
position 2 togethe
r with Propositio
n i, §2r to sho
W

that (11} is v
alid for ali
=2 alf ¥ such that sg(x
1Y) €m, If o=

s(x,y) { <K(x
= =¥)), (11) is triv
ial. Since s(x
¥} = = only if

X=¥Y, w
e See from {11) that v defined by

( a) = ‘
( IY) !’
Vix q(t,x,y)dt, X/ YER 2

b

is symmetric in (x,¥). As is clear from (11}, for x,y €W,

v 1is its Green functieon.

proof of Proposition 2-

To prove {13) we must show Uz—yl2=r)

1
Alog%-— J %exp(-%)dt;ﬂ, rzh

and changing variables, it is needed to show

pr calling % = 5

’ s
1 1
(17 Alogs Joﬁexp( ﬁ}dt; a, s>2.

Differentiation of the above expression relative to & leads to

a/s — (1/7s) exp { - 1/28)

which is certainly non-negative provided A-1/m20. S0 the left
side of (17) is increaging in s. If we choose Az1 s0 that the

ieft side of (17) is non-negative at s= 2, it will remain so for

all sz2. For such A then (13} is gstablished.

Te prove (15), note first that

(18) u(z)pie,z,yidz tends to uly)

Biy,1)
as & tends to zero where Bly,1) is, as usual, the ball of ra-
dius 1 and centre ¥. This is so because u being locally in-

tegrable, the existence of the integral {18) is clear. Using super-
harmonicity of u and integrating relative to polar co-ordinates

shows that the integral in (18) cannot exceed uly) because the

integral of ple,z,¥y} over Bly,.1) is at most one. On the other
hand, lower -semi-continuity of u and the fact that the integral of

ple,z,¥) over Bly.1} tends to 1 as ¢ tends to zero show

that (18) is wvalid. Now

jm{ax)j K (x-2) | (e, 2,¥)dz-

[y-z1z1

A

(19) j pie,z,y) lulz) ldz
fy-zlz1




Ef lz-yi 21
2fr then ple,z,y) < 2p(1,2,y) for all ¢»o0
. So

the inner inte
gral on the ri
ght side of (19) i
5 dominated b
¥

{20) ZIIK
(a=z)1p(1,z,0 =
-0)dz I1 + IZ say, a=H=y.

where I 1 1 g
1 e ) ( r ) el 2
s the int ral ver B{a,l and I over itis com-

plement. Clearly

{21}
I, < [IK{h)Idb = 0(1).
Ibi<1
The estimate (r i
ecall a=x-y) logla-zl < log(1+lal
o 5 al) +log(1+|zl)
{22)

12 £ 0O(1) +1log{?+ Ix-yl).

Now we can sh
ow that the right side of (1%} tends to =z
eroc as e

tends to zero
- Indeed, the inner integral on tha rlght side of
{ 9) tends to =z f Ve, ¥ ause e inte-
arg or e ry X { flxed) becau th
grand does so fo i—‘ 1 Y S 0~
r all 2 ¥ and is bounded b the {vaiﬂu 1 i
Y

tegrable) i
ntegrand on the left side of (20} Forth
- er, the inner

integral on th i
e e right side {1%) is, as a .function of x, b
1 +I2 which is m-integrable as seen by th I
d o - & estimates (21)
- 1
all that (2), §3 must be valid if u is to b
0 be super-

harmonic.
Q. E. D.

Symmetry of g
In Chapt
pter 7 wea shall be using that g is symmetric i

) c in

e shall now prove thig fact. Put for o0 "
(23) =

R, (x,y) = J o 0t
0 alt,x,y)dt

50 that R is
0 symmetric. By the semigroup property of q
L]

{24)
R, = R_+ =
0 = Rg *OoRRy = R, +aRgR ,

where RaRG(x’Y) ]Ra(x,z)RD{z,y)dz and similar meaning is
given to RpR,. The resolvent equation (24) reveals a nice uni-
£ and g .are non-naegative measurable

city property of Rp? If

and o >0,

f+a%f=g+u%g

(25)

implies RDf = Ryg and hence f=g at every point at which

RDf <w, To see this, just operate by Ru both sides of (25} and
use (24).

A
Now it 15 easy to prove the symmetry of d. put gle.x.¥} =
as in {23) replacing g by a. The

A .
%,y shows that g also has the semi-
A

i,.e. that BU=RU,

A
glt,y,x) and define R,

validity of (7) for all

group property. uUsing (24) and symmetry of Rg.

< By - B, +ufgh
Ra-¥aRGRu =Ry =Ry = R, ¥ "%
which by the uniclty cshown above leads to
A
(26) Rﬂ(x,y) = Ra{x,y) = Ra(y,x)

at every point at which RO(x,y) <=, i.e. for every Xx.¥ with
x#y. For X=Y (26) bheing trivial, an appeal to the unigueness
d a glance at {8) gives us the symmetry of

of Laplace transform an

q:
g
(27) q(t.xry) = q(tr}’ax]l >0, x,yER .
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§1. Some potential Theoretic principles

Let s be excessive in a Green domain W, with Green

function G.
(1 hix) = HmE_ [s({X;)}]
pw ¥ T

D relatively compacit open in W

5 T = exit time from D.

B is locally integrable and satisfies the mean value property and




