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No other single partial differential equation is encountered in so
Functional Analvsis,

Springer (1971) _. many different situations and exihibits such depth and variety. One
runs into the Laplate eguation in many branches of applied physics:
Electrostatics, stationary heat flow etc. Directly or indirectly
the Dirichlet problem has influenced many branches of Analysis:
Integral equations, special functions, Caleculus of variaticns etc.

In §1, Dynkin's formula 1s proved and scme applications are
given. In §2, the Dirichlet problem is introduced. §3 deals with
the Kelvin transformation. Some applications are found in the
exercises and in Chapter 6. In §4 we prove the Fatou limit theorem
and derive the existence of the Hilbert transform. §5, dealing

with spherical harmonics can be considersd an application of the
Poisson integral formula. The original idez was to give applications

in representation theory but we content ourselves with a reference.

Notation
In this Chapter Xt will denote the d-dimentional Brownian
motion as introduced in Chapter 2. If D is an open set the exit

time T from D is the stopping time

T

inf(t: t=>0, xtan}

= 1f there is no such t.
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=exit time

is valig need not concern
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from D, Ea[TI <= for all a. (2) is valid'with u replaced by

un and letting n tend to infinity we get

Theorem 2. Let D be relatively compact open. If u is
continuous on D, Au exists, is continuous and bounded in D
then for all a€D

T

(3 EaEu(xT)] ~ufa) = %EBIJDAu(XE)ds]

where T=exit time from D.

Some conseguences.

A function 1w 1s called harmonic in an open set U if u
is c2 in U0 and Au=0 in U, Let us show that a locally
integrable function u 1s harmonic (in U) iff it has the mean

value property:
S({a,r)

where Sfa,ri is the surface of the ball B(a,r} of radius
and centre a completely contained in U and pa(db) is the
uniform distribution on S{a,r). Let u be harmonic in U and
B{a,r) a ball completely contained in U. If T denotes the exit
time from B(a,r), we know from Chapter 2 that relative to Pa'xT
is wnivormly distributed on S(a,r) and Ea{T] <wm, {4) is thus

& consequence of (3). Conversely suppose u is locally integrable
and has the mean value property. If further u is cz, Au  must
be zero; because if ﬂu(ae) >0 for some ags in B(aU,r) for

small r, Au>0 and for T=exit time from B(ao,r) we get a
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contradiction usi
ing (3). Finally we claim that a locally integrahl
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have shown tha u is [
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The mearn velue
Property is very useful
- We have the foll
owing

corollaries:

Liouville's Theorem.

A non- i i
n-negative harmonic function on Rd

is constant.

Indeed let a e i The mea va Irapert
0 b any poin in R n lue =] P Y

implies that the v
olume average of
U over any ball B{a
R) is
DI
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(aD). From the figure it is clear that

u{a) = volume ave
rage af u
over Bla,,R-lagl)

< volume B(0,R)
volume B(aU'R_Iaol) U(O):

T i
etting R tend to infinity we fing

u(a) <u{0). For a more

general statement see Exercise 4

is an i
Y radial (i.e. depending only on distance

P*u, define

Harpnack's Theorem. Let Uy, be harmenic and increase in a

Then u:=l%F|un is harmonic in D unless

connected open set D.

it is identically infinite.

instead of u we may assume

Indeed by considering u_-u, n

u,z 0. u satisfies the mean value property. If u(aoJ < w u is
integrable in any ball E(ao,r) completely contained in D. But
then the mean value property would imply that u is harmonic and

hence finite in such a ball. By connectedness for any a in D

there 1s a finite chain of intersecting balls, the first containing

ag and the last containing a.
Exercise 5 gives an example of a non-harmonic function having
the one-circle mean value property. See also Exercise 7.

An immediate conseguence of (3) is: If u is continuous on
§ and harmonic in 2 bounded open set D then
a€b.

(5) ufal = Ea[u(xT) 1,

where T=exit time Erom D. Since XTE 30 the boundary of

we obtain

The maximum principle. If u is harmonic in a bounded open

get [ and ceontinuous on D

(6) Ju(a}l < sup lu(b) I, a €.D,

bESD

Let ue work out another consequence of {5). Direct calculation

shows that for 43, ula) = |a|_d+2 is harmonic in the complement

D the domain bounded by two concentric

of {0}. Take in (5} for

spheres: D= (a:r < |a| <R}. Since leI iz either R or r and

Pa[]XT|mR]=1—Pa[|xT|=r1 we get for d»3, r<lal <R




~d+2 _ p—a+2

) P lI%,l =r] = lal , a>3
o TR

where T=exit time from D. When d=2, ula) =loglal

in the complement of {0}. By the same argument as above

@) P ll%; | =r} = 199 R-loglal
logR~logr

The event (IXTI =r) occurs Lff at the time T of exit from

the shell (r<|x| <R) +the Brownian path findts itself on the

Sphere S(0,r) = (x: x| =1r). Letting R tend to infinity we find

from (7) and (8) that for lal > r

1 if d=2
(2) Pult, < =] = {rd—2|&]2—d

if d> 3

where Tr is the hitting time to S5(c,r):

3
1]

. infi{t: +> D,I}Ctl=r)

o

]

if there is no such t.

The above results imply that the d-dimensional Brownian motion
is "recurrent" if d<2 and "transient” if d>3; if d=>2

Pa[TD <®]=0 for all a whera T

0 is the hitting time to zero:
Ty=inf(t: £>0, X _=0).

£ See Bxercises 2 and 3.

Exercises to section 1

1. Let T=exit time frem the ball B(au,r). Show that

I 2
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Let u ke harmonic on R&
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Show that if £=a+ih
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Re e =g hycos 2y then q

property" i.o

is a root o =
£ JU(zJ =1 and u{x,y) =
has the "one circle mean value

. for ea =
ch ZO— {Xo,yo}

uf{z.} =
0
jS(zU,I)U(Z)G(dZ)

where §(z ]
( 0,1} i85 the circle of radivs 1 centre

harmonic unless *p- 9 is ant

E=a+ib=g,

Hint. That u has the one circle mean value property follows
from the definitlon. Since u 1is independent of x it cannot be
harmonic unless it 1s a constant. That JU(E) =1 has infinitely

many roots follows from Exercise 6 below.

6. Let f be entire and 1£(2)| SEAIZI for all large enough |z|

for some constant A. If £ has only finitely many zeroes then

£(z) =P[z)e“z for some e« and polynomial P. In particular,

f entire, 1E(2) | geAlzl, f bounded on the real axis implies
f(z) ~a=0 has infinitely many roots for every complex a for

which the equaticn has at least one root.

Hint. If f has only finitely many zeroes we can write

f(z)==p(z)eG(z) where G is entire and p is a polynomial.

If G=u+iv the conditions on £ imply u{z) <a|z] for ail

large |zl|. By Exercise 4 u is linear and this implies

G(z) =az. If £ is bounded on the real axis, p must reduce

to a constant and ¢ must be purely imaginary, i.e. f(z)==Aeiaz,
« real. But then f never vanishes. For any a, We can apply
the above reasoning to f(z) — & to conclude that if £{z)-a=10
has one solution it has infinitely many. Since JD{O) =1 and
IJD(x)I <1 for x real we conclude Ju(x)= 1 has infinitely
many roots.

Theorem 1, §2 is needed for Exercise 7 below.

7. Let D be a bounded domain in n§d for which every point of

ab  is regular. If u 1is continuous on D, for each XED there

is a ball (depending on x), B(x,r} such that u(x)= I u{z)aidz)
S{x,r)

then u is harmonic in D,




Hint. et v be harmonic with boundary wvalues ulaD.

Then v is econtinuous on Dy w=u-v is continuous on D

and vanishes on 9D. Since for each x there is a ball such
that the mean value cver it of w 15 equal to w{x) w cannot

attain its maximum or minimum inside D. 7This implies w=0.

§2. Dirichlet Problem

Given a domain D and a continuous function £ on the
boundary 8D, the Dirichlet prohlem consists in finding a function
u which is continuous on D and harmonic in D such that u=f
¢n 3D. If D is bounded, we know from the maximum principle
that there can be at most ong such harmonic function. In other
words if D 1is becunded the solution of the Dirichlet problem is
unigue, if it exists.

The Dirichlet problem as stated above does not always have
a solution. Weshall socon give mecessary and sufficient conditions
for a solution to exist. These conditions involve individual points
in the boundary 3D. Roughly speaking the complement of D should
not bhe too small in any neighbourhood of any point of 3D.

Let T denote the exit time from © (this is the same as

saying T is the hitting time to the complement of D}:
T = inf (t: t>0,XtIID)

the infimum gver an empty set is always by definition =. T is

a Markov time. From the zero-one law in Chapter 2, for any a,

Pa(T=D) =1 or 0.

Dafinition. A point a€ 3D is called reqular for D® =

complement of D if P (r=0}=1. oOtherwise it is called irre-

gular.
Starting at a regular point the Browinian path hits the

complement immediately. In this sense the complement of D is

not too thin at any regular point. We have

Theorem 1. TLet D bhe a bounded open set. The Dirichlet
problem is solvable for D for all continuous f on aD iff
every point of 3D is regular.

For the proof we need

Proposition 2. TLet D be an open set and T=exit time

from D. TFor each &3>0 the function

P (T >t)

is upper semi-continuous aon Rﬁ.

Proof. Tt is easy to show that the stopping times s-FT(Bs)

decrease to T as s decreases to zero. Thus

PJTgt)zimfPJs+Tw5)2ﬂ
s5>0
The function Pa(54-T(Gs) 2t} = E_(P, (T>t-s)) 1is continuous
8
on Rd for each s>0, because Pa(sztﬂs} is bounded and

measurable in a.

S R
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Prpoof of Theorem 1. Suppose every point in 3D is regular

and £ any conrtinuous function on 8D. Let

ufa) = E (£{Xp)), a€D,

where T = exit time from D. Clearly u=f on 3k. If a€D,
B{a,r}) a ball contained in D and 5 =exit time from B(a,r)

then T:=S-+T(BS) and using strong Markov property
uf{a) = E_(u(X4)}.

Since XS is uniformly distributed on 3B{az,r) relative to Pa
u has the mean value property in D. To check continuity of u
at a point a, € 3D we need only show that for a close enough
to 4,1%n 1s close to a_ or just that X is close to a
with large Pauprobabiiity. Now given £ >0,
(1) B_( sup ’XS"3|2 € ) is uniformly small
b<s<t

provided t is small enough (Exercise 1). For this t, by
Proposition 2, Pa(Tz t} is small when a is5 closzse to a,-
By (1) the P -probability that T<t and [Xp-alze€ is small.
Thus XT 1s close to a (with large Pa—probability) if a is
close to a,-

Conversely suppose that the Dirichlet problem is solvable
for D for all continuous boundary data. Let a, €ab and f
be any non-negative continuous function on 3D which vanishes
exactly at ao. By assumption there is a continnous function

"u on D which is harmonic in D and whose restriction to 3D

is f. From (5) §1 we have

(2) wla) = B (£(Xg)), a€D.

o]

Taking a=a in (2} we conclude P, (T=0) =1.
0 .
In view of the above theorem it is natural to seek conditions

for reqularity of boundary points. But first a few remarks.

Remarks. In the first part of the proof of the ﬁbove thecrem
we have infact shown: for any open set D and any bounded continuous’
function £ on 3D the function u defined on D by u{a) =
Ea(f(xT); T<w) is harmonic in D and continuous at every regular
point in 3D. Of course uf{a)=£f(a) if a€ 3D is regular. Our
second remark is that regularity is a local property:

A point a€3D is regular for D% iff it is regular for
(Dnu)® where U is any open neighbourhcoed of a. Indeed if a

is irregular the Brownian path starting at a remains in D for

& short length of time so that it remains in DnpU for a short

length of time. And conversely. Exercise 4 claims that the set of
regular peints is a non-empty Gﬁnsubset of 3D.

The following is a nice geometrical condition guaranteeing

regularity. It is called the. Poincare cone condition.

Proposition 3. Let D be open and a€ 3D. If there is a

cone with vertex a contained in DS then a is regular.

Proof. If Bla,r} is the ball with ecentre a

and radius r and T=exit time from B(a,r}

Pa(X(T:) EDcl1s(a,r)) = the uniform measure
of Dcl1sta,r)3 the uniform measure of the part of S(a,r)

in the cone; and this measure is indpendent of r. HNow T= the




exit time from B, clearly cannot exeed T_ on the set X(T,) € p°.
Thusg Pa(T STI) is bounded below by a fixed constankt. Letting T
tend to zero we see that Pa(‘l‘:(]] >0, Q.e.d.

The above cone condition shows that if the boundary of an
open set D is piecewise smooth then every point of 30 is
regular. In particular the Dirichlet problem is solvable for open
sets with piecewise smooth boundaries.

The union of two open sets with regular boundaries neaed not
have regular boundary: It is easy to find finite number of balls
whose union is the unit ball punctured at the origin. However
every open set is easily seen to be an increasing union of open
sets with plecewise smooth boundaries.

Bec§use the Dirichlet problem is not always solvable, Wiener
formulated the socalled modified Dirichlet problem: Given a bounded
open set D and a continuous function £ on 3D find a functiom

u which harmonic in D and

lim u(x) = f£(b)
nN3sx~b

for every bE 3D that is regular for p®

We have seen (Remark after the proof of Theorem 1Y that such
a function always exists. Wiener established the existence of a
solution by a limit procedure: He wrote the open set as the
increasing union of open sets with smooth boundaries and showed
that solutions for these open sets converged to a solution for
the unicn. The problem of unigueness seems to have defeated Wiener.
The maximum principle cannot be applied and a much more delicate
technique is needed. 0.D. Rellog gstablished unigueness for a=2

and G. Evans for dz 3. We shall return to this in Chapter 5.

4.15

Examples

1. Poisson integral formula. Direct calculation shows that 1

defined by

(3) u(b) = P_(b,2) E(z)p, (42}

JS {a.r}

solves the Dirichlet problem for the ball Bia,r) with boundary
data a continuonus function I on G(a,¥). Here the Poisson
kernel Pr(b,z) is

2 2
(4) P (b, z) . (42X |b=al , as2
r —a 2
|b=-el
and pr(dz) ig the uniform distribution on s{a,r}. See Exerclse 6
for a verification. The maximum principle of course implies that

a function u which is continuous on B(a,r} and harmonic in its

" interior is given by (3).

The formula (3} is very useful. As an illustration let us

show that u is positive and harmonic in open ball B{0,1} iff

(5) u(b) = JP(b,z)m(&z), bl <1

for a unigue paositive bounded meagure m oO 5(0,1), here

pib,z} is glven by. {4) with r=1 and a=0. Indeed for t<1,
the mean value property applied to B{(0,t) shows that u(z)pt(dz)
are uniformly bounded measures on the closed ball BEd,1). pt(dz)
being the uniform measure on s(0,t). Let .m denote any weak

1imit. Apply the formula (3) for B{0,t) and let & tend to 1

to get the above representation {5) . For uniqueness see Exercise 12.

For other applications on the formula see Exercises g8 and 11.




Poisson formula for the half-space. If £ is bounded and cnontinuous

a }

an R™

d+1
a+1 Z
(6) alx,t) =T (=)n j
2 !

t
e £ly)dy

(lx—y|2+t2) 2

is harmonic in the half space {{x,t): x¢€ Rd,t> 9) continuous on

its closure and equals £ on its boundary. The constant in (6) is
chesen so that u=1 when =1. The verificatjion is similar to
that in Exercise 6. For & "derivation™ of the formula (6) see
Excercise 7.

If we replace f{z)p{dz} and f(y)dy bym(dz) where m is a
positive in (3) and (6} the resulting functions are harmonic in |
the ball and half space respectively unless they are identically
infinite. This is easy to see. Harnack's theorem in §1 shows that
if D is a connected open set and f is non-negative measurable
cn 3D then wu defined in D by ula) =B [£(X,): T<e] is
harmonic in D provided it is finite at one point; T is as usual
the exit time from BD.

For any constant ¢, ct+u(x,t) with u defined by (6) is
harmonic in the half space ({x,t): x€ Rd, t>0) and assumes the
same boundary values as u, namely £. However the only bounded
solution is given by (6); we shall see this in Corollary 3 §3.

Granting this consider the following application: For all g€ Rd

Rd+1

the function exp(-jalt+ig-x) is harmonic on and in

particular on the half space ((x,t): t>0} with boundary values

elﬂ‘x; here @*x denotes inner product. We must have
_gd+1
2 iary
. __ _.'_‘Qﬂ t e
exp(~lalt + fagex) = I'( ] I J d a+1dY
B 2,,2.73
{(is—y [ “+t7)

Taking x =0 we see that the probability measures

_d+1 ' _d+1
Fotay) =1 2 [ Eheayi?eel) 2 ay

on Rd form a semigroup (under convolution). These are the socalled

symmetric Cauchy distributions on Rd. We also see that the Fourier

transform of F, is e el gee p.p- 69-72 Feller {3].

As another application let Zk be an infinite sequence of

complex numbers with ImZk=#D. Assume that lim %{= %, exists

. 1 1
and Imzo#ﬂ. Let S be the set of functions oan R ,S=(—£:z-k—,x—_12;,kg_1).
We claim that the linear span of 5 is dense (with regard to uni-
form norm) in the space of all complex continuous functions on R1

which vanish at «. To show this let m be any real bounded measure

for which
Jﬁéif) =40 k>1.
k
The function F(2) = Jﬂég%l is holomorphic on Im({Z)} > 0. (Aésuming
Imz, >0 otherwise look at Ek)' F(%) = 0 for an infinite set of

values 2 with limit point, namely the set {Zk,zo}. It follows

that F=0. Taking real parts,

t
—s——m{dy} = 0, t>0.
J(x--y)2+t2

This implies m=0. Indeed if f is continuous and bounded,

using Pubini

Jm(dy)J————Ei——Ef(x)dx'x 0, +>0.
{x-y} "+t

As t tends to zero the inner integral tends to wf{y) proving

that Jf(y)m(dy)=0 i.e. m=0.




: ‘ . 1
2. Cecordinate maps on Rd are clearly harmonic. In R the

only harmonic functions are linear. The real part of any holomerfic

function on R2 is harmonic, so is the logarithm of its modulus

provided it does not vanish. In general solutions of the Dirichlet
problem are given in series usiny the method of separation of

variables as the following example illustrates.

3. The function explt|n|y)sinnx is harmonic on

-1 i
md o= (x,y: verdT, yer.
d-1 5
Here n = (n1""'nd—1)’ X = (x1,...,xd_1), sin ax= q'SLnnixi,lnl =
Zn?.
i

Superpositiofi of such functicns solves the Dirichlet problem

for the cube. Thus
u{x,y) = E(Ané‘nly + Bneny)an sin nx

is harmonic in the domain {(x,y): C <Ky <y o<y <1} and assumes
the value 0 on the boundary except on the side {y=0) where
it assumes the value h(x); An’Bn are found from: An-+Bn =

=0 and a are the Fourier coefficients of h:
n
hix} = E a sin nx.

4. A very trivial example of an irrsgular boundary point is

ohtained when we remove zero from the plane. A more serious example

3 L . :
is the following: Let D =B{0,1)~{®: XER ,x130,x2—x3ﬂ0) i.e.

D is the domain obtained by removiang the non-negative x,-axis
from the unit ball in R see figure. We claim that
0 (in fact every point WVUN)-U§K1<” 1

is irregular for p¢. Indeed writing the

4.19

j-dimensional Brownian motion X{(t) = 1X1(t);xz(t),x3(t)),P0(xtg ®y -
axis for some t} = P(O'D)((tht),XS(t)) =l(\{],D) for some t) =0
since (Xz(t),x3(t)) is the Z—dimensional Brownian motion and by
Exercise 2, section 1, it never hits any point. '
The same example works in any dimension d» 3. The case d=2
is very different and much harder. Here is an example.
From the opnre unit desc in the plane we will remove
small discs along the x-axis so that for the
resulting open set 0 becomes irregular.
To see how this can be done note that the
probability of hitting, starting at &, a disc Bfa,r}(r < laf)
before exiting from the unit disc is, since B{a,|a|+ 1) contains

the unit disge), less or equal to the probability, starting at 0,

. of hitting B{a,r) before exiting from B{a,|a| + 7). This last

is by (8} section 1,

log{l1+[al) - logja]
log(1+tal} - log x

Let a_ be a.. seguence a ¥0,r_<a so that sa [l+1]2n<_1.+_a£
n 4 n ‘'"n n Y. a -r, rh'

Let D=B(0,1)~ { EB(an,rn) U {p})}. From the above we see

):Pu[hitti.ng B(an,rn) before exiting from B(0,1)] <=.
n .

That is, with Po—probability 1 the Brownian path hits only finitely
many Ba,.r ) before hitting {(x:1x| =1}). This clearly‘means that
0 is irregular for p=.

The above is aolso an example of ar irregular point whose
"harmonic measure has infinite energy". We shall return to this

in Chapter 7.




Exercises to §2.

-1 - tends uniformly to zero &S
1. Show that tPa( sup |xE al>g€ )
(<3<t
t tends to zero.

= Now consider
. {%_=-al> e)=P,{ sup |XS|_>;E.).
? (uigft s 9 pgsst
the fourth momeft™ of K-

Hint.

2 Let D be open and T=exit time from D. For every compact

KeD, limsup Pa(Tg £} =0.
-0 aeK_

Hint. Let €= distance of K to the boundary of "D in

Exercise 1.

3 Let D and T be as in Exercise 2. Show that for each bounded
' ] : is a
Borel measurable f on D and t> 0, Ea(f(xt). t < T}

continuous function of a in D.

Hint. Tms+T(es) on the set T>s. SO for all s<t
: = e _{B, (£(X y: t-s <T): 5 <¥]
Ea(f(xt). t<T) a{ X £-5
= i : - - [E., {(f(X,_.)it=s<T): T<s]
= Ea[Exs(f{Xt_s). t=5 <'T) ] a[ X, t-3

d
The first term is continuous on R and the last term tends

uniformly to zero on compact subsets of D from Exerclse 2.

4 Let D be an open set. Show that the set of regular points

in 3D is a nonempty Gd-subset.

Ly -1 t of
Hint. The set | (a:za € 3D, ?a(T <H) » 1 n) is the set o

regular points. wach set of the intersection is open in 3D by

Proposition 2. To establish nonemptiness we may assume D is
bounded. Let T, 5 be the exit times from D and D respectively

and a€bD. T<§ and S(Bs)=0 if 5<= so0 that every point Xg

is regular for D, Pa-almost surely.

5. Let D[ be any open set and aOE 80 be irregular. Then a,

is 1in boundary of a connected compenent of D.

Hint. Starting at 3, the continuous Brownian path is in D

for a short length of time.

6. Verify that the Poisson integral formula does indeed solve

the Dirichlet problem for the ball.

a+2 is harmonic

in b except at z. By differentiation (zi—bi)[h—zl-d is

Hint. Assume a=0. Peor fixed z, |b-z[

harmonic except at z. Multiply by Zzi and add: Qizlai(zﬁﬂ)lb—zfd

is harmonic except at z. Now subtract |b-z | ~3F2

(|z|2-|b|2)|z—bl"d is harmonic except at =z. Thus u defined

o see that

by {3) is cerfainly harmonic in B({(8,r}. Improving the continuity
oaf u on the closgd ball the only non-routine verification is
that u=1 4if £=1. This is verified by noting that u is
then rotation invariant and that a function which is harmenic in

a neighbourhood of 0 and which depends only on diséance is a
constant: Au = i‘;+¥-§-‘5 if wuf{a) = u(l.al),lal=r.

ay ¥

7. Let D be the half spece {{(a,b): aer?!, bso) and

T=gxit time from D. Show that the distribution of XT relative

,8/2

to P, , has density [(d/2)b (ta-x|2+b?) ~9/2,
r




Hint. Write the d-dimensional Brownian meotion as [Xt,Yt)
where xt is {d-1)-dimensional and Yt 1-dimensional. The exit

time T from the half space is simply inf(t: t=>0, Yt==0).

Relative to the processes (X.),{¥.) are independent.

Fla,b)
In Chapter 2 §2 the destribution of T has been found using

the first passage time relation. Thus the variable (XT,YT) has,

relative to P(a b}’ the (d-1)-dimensional density
L}
2
@ 2 b 2 -y~ /2t
-a 1 1 . ¥
J 1 5 exp (% QJ ):EEJD (t3/2 ts/z)a dydt
0(211t)2_‘1 !

5 b |x—a[2+x2
Integrate by parts the integral JO exp | 5t }éy to
see taht the required density is equal to

a+2

@ 2,.2
- - +b
b{(2q) ‘VZJ t 2 exp(-1X2LED )¢
G
which is easily evaluated.
8. (Harnack's inegualities) Let u be positive and harmonic

in Blo,y) Then for |a] <y

2_...2 22
A2 =12 50 <ula) 575"2_1_£|_du{0) ;
(y+lal} (y-l1al}

Hint. Use the Poisson integral formula.

9. {Generalised Harnack inequality}. Let D be connected and
open and K a compact subset of B. There exists a number M
depending only on K and D such that for all positive harmonic

Eunctions u on D

Hint. Use Exercise 7 above and cdver K- suitably by balls.

10. ILet u, be positjive harmonic functions in a connected open
set D. If for some X, eDb liulun(x0}= 0  then u, ~ cenverges

to zero uniformly on compact subsets of D.

Hint. Use Exercise 9.

11. sShow that a harmonic function is real analyticz

Hint. Use Poisson integral formula.

12. If for a signed measure m on 5(0,1)
vib) = fp(b,z)m(d?,) =0 Ib} <1

then m=0. P(b,2z) is defined by (4) with a=0 and r=1.

Hint. Tf £ is continuous on 5(0,1) and ufa) = Pﬂa,af(ﬂp(dﬂ
p=uniform measure on 5{0,1) then limu(ra)= f{a) boundedly
R ro1
for all aeS{0,1). Now use Fubini, dominated convergence and

pla,rz} =P[ra,z} to get

Jf fa)m(da) = lim Jf(z)p(d:)v(yz} = 0.
¥l

13. Let u be harmonic in the ball B{0,1}. u 41is the difference

of two non-negative harmonic functions v and w in B{O,1) 4iff

supf!u(z)lpr(dz) <@
r«<i

pr(dz) =uniform distribution on S{0,r).




Hint. Let m be the weak limit of Iu(z)lpr(dz) as r
tends to 1, there can only be one by Exercize 12. Pr(b,z)

tends uniformly to P(b,z) as r tends to 1. Use this to

show that

P{k,=im(dz).

Iu(b)lfj (0. 1)
5(0,

14. Let D be an open set. A uniformly bounded family of

harmonic functions on D is equicontinuous on every compact
subset K i.e. given €>0 there exists a ¢ >0 such that

lu(a) —uf{b) ] <€ for all a,b€K,ia-bl<é.

Hint. Use the Poisson integral formula and the boundedness

of the family to see that the family must bo locally equicontinuous.

§3. The Kelvin transformation

Let B{a,p) be the ball with centre = and radius p.

d

For x¢IR —-a the point x* defined by

is called the inverse of x =zrelative to pB(a,p) =S(a.p)-

x* lies on the line joining %
a and x and ;x*—a| .|x—a|==pz.

The map x4x is a homomorphism

on IRd—a onto :IRd—a. If £

and g are related by

g(x) = £(x*) elementary calculations show that

2
8g(x) =—4(A8) (x¥) + 28 (2-a) £ 25 (x4 (e.mal)
r r 3 %5 i
where r=la-x|. Thus if d=2 harmonicity of £ in a neigh-
bourhood of x* implies that of g in a neighbourhood of x.
d=-2
For d»2 this is false. However, the function Ea:ig is
r
harmonic in a neighbourhood of x 1f £ is harmonic in a neigh-
d-2
bourhood of =x*. The map E-»Ea:ig is called the Kelvin trans-
r

formation relative to S(a,p). The factor p&_z

ensures that
f=g on S{a,p). This transformation is very useful in conside-
rations of the Dirichlet problem for unbounded domalns. The

following result is an example of its application. See alsc

Exercise 4.

Theorem 1. A positive function u on the half space

D= ((xl,...,xd): X3 >0) is harmonic iff
. _ 1
(1) . H(K) = Axd+xdjmm(dz)

for a unigque positive measure m on @D and a non-negative

constant A.

Proof. It is simple to see that u defined by (1} is
harmonic if it is finite at one point. Let a= (0,0,...,0,-2)
and consider inversion relative to 3B(a,2). Let b={0,0,...,0,-1).
From the figure it is clear that the half space D is mapped onto

the interior of the ball B(b,1), with centre L and radius 1.




4.27
4.26 %
x
o And
The point a gaes into Sy B i dds st L st g
the "point at infinity” ) lx*-b12 = 1x*-al? + |b-al? - 2 (x*-a,b-a)
- : ’
while the rest of 3B(b,1} ;
is mapped onto 3B. The ! = lx*-al? +1 ——B~3(x—a.b~»a)
. o ; ix-al
Kelvin transformation gives :
: - 2 2

us a positive harmenic function | = |x*-al® +1-kix*-al (xd+2}
h in the ball Bi{b,1).

s 2 2
it ' giving 1= |x*~h|® = 5x_l|x*-al®. Thus
From (5) §2 there is a unique positive measure v, o0 5(b,1) ) q

ww—L—Elz-aldu(dz)

whose Poisson integral eguals h. Letting C=\:1(a) and
*3
1x—z|

V= \J1 —cﬁa (ﬁa =point mass at a) we c¢an write )

12 2 1 | which is of the form claimed. The unigueness follows from
hix) = 1ERL ey (1w 1xb1 )J‘———M—d\)(dz) . )
1x-al bx-z| : Proposition 2 below. Q.e.d.

The map X-x*=a+ 4 2(x—a) takes the measure Vv into a ;
jx-a) 4 . '
measure H on 3D. Since (x*)*=x and hix) = ]x—ald_ZU(x ! : Proposition 2. Let m be a signed measure on Rd such
we gat that
2 20 4 Z
u(x*)=‘i—§x—blzc+1-ix—blzj B3 ald“(dZ) (2) ____1_&ﬁ|m|(dx} <o
4lx-al Alx-al® ? |x-z*] ‘ (1+1x12) 2
or that E 7 : i
where |m| is the total variation measure of m. Then
2 2 d ! a+1
1= lx*-bi2. , 1-lx*-bl J’lx*—al ‘ 1 [z
alix) = C+ —=———q(dz}. : 3 vix,t} = — = en
' 4Ix*-—al2 dlx*-al2 IX*—Z*Id : (3) o, t) ct a+3 (dx), ¢ ﬂd+1
; Cx-y2+e?) 2 2

Using the definition of x¥*,

is harmonic in the half space (({x,t): xead, t»0) and m

2 16 16 _ 32 o
lx*—Z*I2= Hxk-a}—(z*—a) |“ = 5t 5 3 - (%@, z-a) : is the weak limit of v(x,t)dx i.e.
lx-al lz—al |®-al®lz-a]
- 18 ix-a)-(z-all = 16 ix-zi®. o (4 1ime{x)v(x,t)dx = jf(x)m(dx) .
Ix-at’lz-al® Ix-al®lz-al s £0

for every continuous function £ with compact support.

S




Broof. Note that the Poisson integral P{t,x,f[} of £
i.e. the expression given by (6} of §2 converges o f boundedly,
and for x far from the support of £, easy estimate on the
denominator shows that P(t,x,f} is comparable to tlx[_d-1.
The integral on the lefi side of (4} is by Fubini jm(dx)?(t,x,f)
Because of {2) and dominated convergence the limit in (4) can be
taken inside. Q.e.d.

v is called the Poisson integral of m and denoted

P(t,x,m).

Corollary 3. Let v be bounded and harmonic in the half
space {({x,t): XE€ Rd,t>-0). Then there is a unigue measure M
satisfying (2) such that v 1is given by {3). In particular if

v is bounded and limvi{x,t)=0 for almost all =x then v = 0.
t-+0

Proof. Suppose |v]ls<1. Then 1-v is positive and harmonic
in the half space so by Theorem 1 there is a unigue positive

measure n such that
1-v(x,t) = At +P(t,x,n)

Since 1=v is bounded and n positive, A must be zero. Alsa
1=P(t,x,dy}); dy denotes Lebesque measure on Rd. Since ‘the

Poisson integral of n is finite, n satisfies {(3); so does
ofcourse dy. v 1is the Poisson integral of dy-n. The rest

follows from Proposition 2.

We leave it to the reader to derive the Poisson inkegral
formula for a ball using the Kelvin transformation and the Poisson

integral formula for a half space (Exercise 7, section 2).

Exercises to §3

1. Show that inversion takes spheres intc spheres, hyper-
planes being spheres of infinite radius. gpecifically show that

inversion in Si{a,p) takes the sphere 5{Q,r) into the sphere
2 g-a rpz

with centre a+p
IQ-—alz—r2 IIQ—aIZ-r

and radius
2

2. Show that two spheres one contained in the other can
be transformed by inversion into concentric spheres. Specifically

let S{a,r)eS5(8,1). If @=aa where a 1is a root of

«?lal? + (r2-1at?-1e+1 = 0,
then inversion in 5(Q,p), p>0 takes S(a,r) and §(0,1) into

concentric shperes with centre

3. Show that inversion takes a line into a line iff the

line passes through the centre of inversion.

4. Let D= (x:lx|>1). If u is harmonic in D, continuocus

on D and limu(x)=a then
MW

Ixl%=1 3
ulx} = J—w«—u(z)c(dz) +a[1-—-—-»~_~:—],|x| > 1
Ix--z]d led 2

where d=uniform distribution on S(0,1}.
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Hint. Use Kelvin transformation relative to S5(0,1) to get : Theorem 1. ‘With the above notation and u{x,t) = P(t,x,m)
i ig harmonic in the unit ball punctured at G, o )
= fonction o v ( Dm{x) <liminf u(x,t} < limsupu{x,t} <Dm(x).
satisfying limlxld-zh(x) =a. For each G<T <1, h is harmonlc ' to0 D
x~0 . ‘
in the shell ({&r:r< |x1 <1) and continucus on its closure. Now in particular for almost all x, lim u(t,x) exists and egquals
! £-0 )
use {7}, (B) of §1 and the Poisson integral formula of Example 1, ! Dm () .
§2 to see that :
1-1x1° d .
hix) = a[lx‘—ﬁ-i'z_.‘] +[ b:4 dh(Z)U(dZ) , 0< lxl <1. s : Proof. Let x€R be Fixed. If F(r) =m(B(x,r)) we can
ezl f write
Transform back to arrive at the formula for u. |
t
afx,t) = _
( r } C] deF(r}

[0,=) 2,2y

which when integrated by parts yields

ulx,t} = (d+'l)cJ —_—E"  _e(r)a
§4. poundary limit theorems of Fatou ‘ ' o, d-;B (r)dr
i i o+t
Let m be a positive measure on Rd satisfying (2) of §3. { )
Then P(t,x,m), the Poisson integral af m, defined by (3) of ; a1
a s 5 (2) - (c‘i-H)cJ ﬂgl__gr_ﬁdﬁ{dmcr oy
§3 is harmonic in the upper half space ({x,L):xER . £>0). : - (0,5 ¥ ( - _%__ A _d%}!
+t
pefine the upper and lower derivatives of m at = by ! ' Y ) {(yS+HE7)
for an arbitrary but fixed s> 0. The last integral tends to
= . m(B(x,.r}) C
Dm{x) = iim sxgp I8 (x, )| } zero ad t tends to zero because r\, d 1F(Y)dY is finite as
r- .
is seen from u(x,1) < « And
.. .m{B(x,r))
?ﬂl(x) = 1lim lnfm"‘ a1 i, '
x- 0 Hm c{d) —tL-""—dY=c(cl+1)r Y _a
t-0 0 2 2‘?'5"3_ 0 E o
{y™+t%) (YZ-HJ z

where |B{x,r}] denotes the volume of the ball Bix,r} with

The common value of the upper and

centre x and radias . ; where o= surface area of the unit sphere in Rd. Thus from (2)

lower derivatives (when they are equel) 1is dencted by Dm(x]). ; for all >0
It is known Dm(x) exists for almost all ¥, relative to .
limsup u(x,t) < F . d
d P ' < sup F{¥}
Lebesgque measure on r®. TFor a proof see Theorem 8,6 pP.P- 154 of P B, m__d

Rudin [5}. The following result is known as the "radial limit theorem”

of Fatou.




Since [B(X,y)| = céd, we have proved the last part of {1].
The first part is similar.

We can strengthen the above theorem to include non~tangential
limits: Let K>0 be given. If (x,t)~ {z,0) subject only to
the condition that Ix-zl <Kt then for almost all =, limu(x,t)

eXists and eguals Dm(z). In the figure one sees the restriction

imposed on the mode of

convergence of (x,t) to . (x,t)

(z,0) and the reason is

now clear For the name "non— (z,0)
tangential limit".
To prove the non-tangential limit result let m=m_ +m,

where m and m. are the absolutely continuous and the singular
a
parts of m. If Pm is the Poisson integral of m Pm==Pma~+Pm5.

Consider first Pms' Because

(IZ“Y|2+t2)%5 (Ix—y!2+t2)!’ + |x-z|

if |x-z| <Kt

d+1 _d;1 [ _— g+1
2 2 2,.2 X
-y | “+t xwy | “+t7) <11+ ]
(tz-y] } (1 ¥l L (]x—y12+t2)%
d+1
5[1-+i£%§l] .(1+K}d+1 = M say

and we get (Pms) {x,t) SM(PmS) {z,t). Dms(z) =0 for almost all =z.
Therefore (1) impiies that the non-tangential limit {(Pm_) (x,t)
exists and equals zero for almost all =z.

Now consider Pma. If f denotes the density of B« f
_is locally integrable. It is known that (see Theorem 8.8. p.p.

158 of Rudin {5]) for almost all =z

i 1 -~ = 0.
{(3) ii?TﬁTETETTJB(ZrI)If(Y) £(z) ldy

Points for which {3} holds are called Lebesque points for £.

If z; is a Lebesque point for £ and we define the measure

a by
a(dy) = LEly)-f(zy)[dy
Da(zu) exists and egquals 0. As in the case of Pms, we have

(Pa} (x,t) < M(Pa) (z,t)

for any (x,t), (z,t) satisfying |x~z] < Kt. One concludes

from (1) that
lim({Pa} {x,t) = 0, asz (xX,t) = (zo,o) and Ix——zol < Kt,

i.e. that lim(Pma)(x,t) exists and equals f(zD} if (x4
tends to (zo,o) subject only to the condition Ix—zoi < Kt.

This proves

Theorem 2. (Non-tangential limit theorem of Fatou). Let

u be the Poisson integral of m. For almost all 2, the following

statement holds: if (x,t} tends to (z,0) subject only to the

condition |{x-z| ¢Kt where X is some positive number (which
may depend on z) limu{x,t) exists and equals Dm{z).

The above non-tangential result together with a Kelvin trans-
formation can he uset to get corresponding noa-~tangential limit
theorems for harmonic functions in a ball. We leave the details

to the reader.
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An Application. Let p2z 1 and £ ELp(—unw); for each

£e>0 let

1 f(t)
(4) H (x,f) = —[ ——dt.
E T Ix—tlgs){t

We will show below that

(5) Hi{x,f} = liﬂlHE(x,f)
g+ 0

exists almost everywhere. H{x,f) is called the Hilbert transform

of f and written

H{x,£) = %J g,

For an account of the importance of Hilbert transform in Fourier
series refer to Chapter 4 of Garsia [(4]. We may assume that f£>0.

The Poilsson integral

_ [ E(t}-
{6) ulx,yl = ;II;:;TEf;Edt

is harmonic in the upper half plane (y>0) and tends as y-0

to f£{x) at every Lebesque point x of f. The function

7 vixy) = 3 f(t)(—"t'%?ﬂt
e e

is called the conjugate Poisson integral of £; the nomenclature

is justified because u+iv is the analytic (in the half plane)
functicn
EJ Mdt, z = x+1iy, y>0.

T z—-t
—m

x-t

(x-t) 2ry )
However, it is bounded and is in 19 for all g=>1. The integral

The conjugate Poisson kernel is not integrable.

5|

S

in {7} thus makes sense for all £ ELP, p> 1. Since

I 1 s—5—dt = J __iﬁ:gl_idt=:0
lx=t] >y {x-t) { (x-£) “+y") Ix-t] < y{x—t) “+y

we sasily see that

1 . b
[H (%, £)=v{x,y}| 5—-] 1£(1)-£(x) dt
¥ ' x-tl >y lcmt§ | {x-t) 4y 2]
+lj 1£(t)-£ (x) (—Z"El —ae
-t gy {x-t) “+y

glJ' LE(E)-E (1) |———dit.
T (x=-t) “+y

We have shown that the right side tends as y -0 to zero provided
x is a Lebesgue point for £. Thus for almost all X,

|Hy(x,f)—v(x,y)|f+0 as y-=0. Hence we need only show that

limv(x,y} exists for almost all x. The function e_(“+iv)

y-+0

is analytic in the upper half plane and hounded by 1 since u3z 0.

It follows that lime~ (UFiv)
y-—’O

and imaginary parts of e

exists almost everywhere (the real

-(utiv) . o bounded harmonic functions

in the upper half plane, see Exercise 1. Since limuf{x,y) exists
v -0
and is finite almost everywhere one deduces that lime
y-0
exists almost everywhere. Since for each x, v(x,y) is continuous

ivix,y)

in vy, limvix,y) exists almost everywhere. [See Exercise 1].
y-0
This establishes the existence of the Hilbert transform. If p>1,

the Hilbert transform H maps L? onto LP is continucus and
H2 =-I (I=identity) and for p=2 it is an"lsometry. These
non-trivial results follow from maximal inegualities. For real

variables proofs see Chapter 4 oy Garsia [4].




Exercises to §4

1. Let u{x,t} be bounded and harmonic in the half space
{{x,t): xERd,t>U). Then ¢(x}'= limu{x,t) exists almost

t-0
everywhers and u is the Poisson integral of g.

Hint. By Corollary 3 §3, u is the Poisson integral of a
= limu(x,t) exists
measure m. By Theorem 1 of section 4 g(x) ti L {x,
almost everywhere., Now use last part of Proposition 2 §3 and

bounded convergence.

2. Let wulx,t) be harmonic in the half space. u is the
Poisson integral of a function £ e1f, 1 <p<= 1ff SgPlIuLftHIP<Mr

i 1 of a finite
[ denoting tP-norm. u is the Poisson integra

signed measure iff supl| u(.,E)l] 4 <=.
[

Hint. By the mean value property Julx, £}l pg the volume

average of Iu(y,s)]P on the ball of radiugt t and centre {x,t).

o . b
Therefore (see figure) ]u(x,t)ipg const JD dsJRdlu(y,s)l dy <

const t—d. Hence for each t>0, u{x,t+s)

is bounded and harmonic on the half space {x,t)
({x,s):8>0). By Exercise 1 t
: s
ulx, t+s) = c[ d+iu(y,5}dy.
(1x-y12+s?) 2

imi £ the maésures
IE Supilu(-,s)ll1 <w let m be a weak limit o

5 - ] o
u(x,s)dx (as s tends to zero). If p>1 and 5:p§|u(,s)|lp<

let f be a weak 1limit of u{-,s) as s tends to zero. Note

: q
taht the Poisson kernel is continucus, vanishes at = and EL

for ali g>1.

3. Let =~ =<i<p<o and f be real and continuous on
the cpen interval (i,u). If lhnelf(X) exists so does
X = A
lim f(x) exist as a finite limit.

X -+ A

85. Spherical harmonics

To a function on the circle corresponds its Fourier series.

The functions elne are the restrictions to the unit circle of

2" whose real and imaginary parts are homogeneous harmonic poly~
nomials. Any homogeneous polynomial of degree n  in Kyreoaaiy

is called a n'th solid harmonic of order n in d-dimensions.
Its restriction to the unit sphere is called a n'th surface or

spherical harmonic of order n. For example a constant is a solid

harmonic of order @, raixi {ai constant} is the most general
solid harmonic of order 1, Zaijxixj with Xaii==ﬂ is the most
general solid harmenic or arder 2. and so on. In this sectian

we shall breifly look at some properties of surface harmonics
and expand a funection in terms of surface harmonics analogous

to Fourier expansion on the gircle.

Qur starting is the Poisson Kernel for the unit ball:

(1) Pix.2z) = (1~|x|2)|x—z|'d, 1%f <1,|2| = 1.
Writing =I§I.z = inner product of TgT and =z, and Y= |x(,
P(x,z) takes the form

(2) (1my?) -2y + 2792




If |2BY"Y2| <1, we can expand the function in (2) as a power
series in (Zuy-—yz). It is however more useful to write this
a power series in y. This involves rearrangement of terms,
which is justifiable if the series is absolutely convergent.
Absolutely convergence is clearly guaranteed if 2|pyi +|Y2| <1
which {lyl <1} is valid if Iyl <V3-1.

Thus if Yy <¥Z-1, we can expand the function in (2}, as
a power series in 7Y {(2p~y} and rearrange the series as a power

series in Y. It is clear that the coefficient of v oisa

polynomial in ® of degree exactly n:

2 @
1= = n -
(3) s = .‘:Pn(U)Y s Iy <VZ-1, Inl <1
(1-2py+y~) 0

Pn are called Gegenbauer or hyperspherical polynomials.

Let us emphasize taht the series in (3) converges uniformly
in p for Jul =<t if we replace each coefficient of the poly-
nomial Pn by its absolutely value. This fact easily justifies
term by term differentiation relative to u.

Thus writing: p = [

.2
() iiad b S B nPn(p)., Lz [ <%.Iz| =1

Ix~zld
We shall soon show taht the above is valid for |[xl|l<1. TFor

fixed z,lz|l = i, the left side in (4} is harmonic for |[xl| <1.
Since Poois a polynomial IxtnPn(u) is infinitely diffenrentiable
except perhaps at X =0. Term by term differentiation is justified
(A(lenPn(u} = len—z{(1—u2)P;iu) - (d—1)uP5(u)-*n(n+d-21Pn(H)

except perhaps at x=0).

We get

=

Tallxi®e u) =0, Ixl <3, x+o0.

1}

Ix[nPn(u) is homogeneous of degree n, A(lenPn(u)) is
homogeneous of degree n-2 (n>2; PD(u) =1, lePl{u) is
easily seen to be a polynomial of degree 1 and hence harmonic) .
Such a sum cannot be identically zero unless each term is Zero
(because for TﬁT and z £ixed it becomes a power series in
r=|xl|). Thus for each n, lenPn(p) is harmonic for Ix]<%
except perhaps at 0; since it is continuous at 0 it must be
harmonic at 0 at well. Since it is homogeneous of order n

it must be a homogenecus polynomial of degree n. See Exercise

1 and 2. Thus we have shown

Bl For each ze3B(0,1), |x1npn(1§_!.z) is a solid

harmonic of order n and for each z¢ aB{0,1},

P ot{x,2) {ix] = 1) 4is a spherical harmomic of order

n.

¢learly implies (s3nce the space of solid harmonics or order

n is finite dimensional):
Ffor each finite measure p on JB(0,1)
n x
1" (2w taz)

is a solid harmonic of order n and
[e g utazr, g = 1
a spherical harmonic of order n.

If u is continuous cn the closed unit ball and harmonic




inside

1-ix1?

ulx) = J =Xy (2) p (dz)
Ixl=1]x-2]|
p being the uniform distribution om x| = 1. Using {4)
= 1

X <

(5} u{x) = ﬁlxln[Pn(m-Z)u(Z)p(dz)r lxl <3

the n'th term is a solid harmonic or order a. In particular,
if u is a solid harmonic of order n equation (3} expresses
a homogeneous functicn of ovder n as a sum, for |x| <%q of
homogenecus fonctions of order ,1,2, etc. We conclude that

all terms except the n'th must vanish. We have thus shown

Ej If H is a solid harmonic of order n then

e = jx1®[ 2 (ELz)E(z)paz)
ixp=1"

X
6) 0 = P (——.z)H{z)p(dz), m+n.
( Jsz|=? bl

The second identity in (6) is identical to saying that a
spherical harmonic of order n is orthogonal {relative to P)
to Pm(g-z) {regarded as a functlon of 2} for each |g] =1
and m#$n while the first identity says taht if Sn is a

surface harfitnic of order n

= 1.
7 s_(x) = Jiz|z1pn(x-z)5n(z)p(dzlr 1%

The set of all solid harmonics of order n 1is finite
dimensional. The first formula in (6) shows that the solid

harmonics

1x17B b5y 2

gpan this space as z wvaries on 8B{(0,7). Thus we have shown

[B} There is a finite subset Fc3B(0,1) such that
every surface harmonic S8, of order n can be

written

S {x) = Z ¢ P (x+2), Ixl =1
n 2Ep 2 0

where ¢, are constants.

We have shown in [}, that a surface harmonic of order n
is orthogonal to Pm(x,z) for each %] =1 and m=*n. This

together with [B} gives us

Two surface harmonics of distinct degrees are
aorthogonal (with respect to p).

Let Sn 5

be a total orthonormal set of n'th spherical
r

harmonics {i.e., Sn j are orthonormal relative to p and

L3
span the space of all n-spherical harmonics). For each £,
lgt = 1, Pn(g-n) is as a function of n a spherical harmonic

of order n. We can therefore write

Pn(ﬁ-n} = §aj(£)5n.j(n}.

The coefficients aj(g) are given by

aj(E) = IPH(E'H)Sn'j(n)P(dn)-

(7) implies that aj(E) =8 j(EJ. Thus we have proved
r

[3 {(Addition theorem). .Let 5, 4 be a total orthonaormal
[

set of spherical harmonics of order n. Then
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. =P snt, LEL = Inl = 1.
(8) T5;,5 (88,300 = PhiEe
Putting £ =n in (8) we get
(5. (ENZ =P (1),
{9) F (5,5 n

Integrating with respect to ¢ and remenbering that

[(sn'jtenzc(ds) =1 we get

G P_(1) = dimension of the space of spherical harmonics
. n

of order n.

P (1) can easily be calculated as follows. Writing
n

= n
(1—2ur+r2) 2= SQn(u)r

we get

d

(1-r2) (1-2uz+r®) 2 =0g ) + 1oy ) + grn(Qn(u)-Qn_z(u})

— - 2 P
so that P_{x) =Q (1) Qn_z(u) fog nxda Qn(1) is the

2, 2 .
coefficient of " in ({1-2r+r®) °, i.e.

(1-"% = ze_(m?,
{vi k-1 d therefore
giving Q (1) =(""_ ') an
+d=1 n+d-3
Pn(ﬂz(nn }_(n—Z) nz2
?1(1) = d
P (1) = 1.

o]

Thus we have shown

. The space of spherical harmenics of order n has

dimension
n+d-1 n+d-3
(I n—a )¢ (n>2).

(8) and (39) imply, using Schwar's inequality,

[P (E-n} ] < len'j(E)SHrj(n)l

1A

2.5 iy
(x5, yENT tzs, D7 =P (1)
proving that

(10) P (e}l <2 (1) -1<ts<t.

Combining {10) and the value of P (1) found in B we
see that the series in (4) is uniformly convergent on compact
subsets of the open bail B(D,1). It therefore represents a
harmonic function in B(0,1). Thus (4) is wvalid for |Ix| <i
(harmonic functions are analytic!).

One easily deduces from the above taht if u is harmonic

in the ball B({0,R) and continuous on its closure then for

Il <R
= n Pn(”

(11) uix) = ¥ "‘r'l L8 .(I—zT)J §, 4 (zhu(Rz)p (dz}
0 R 1 r3 {lz|=1) ]

(use (B) and YGl). This is the expansion of u in harmonics

analogous to the Fourier expansion in 2 dimensions.




As a simple application we have

Theorem 1. ("Licuville's Theorem"). Let u be harmonic

N
on Rd and suppose that for some N, u(x) < |x]| for all large

Ixl. Ther u is a polynomial of degree at most N.

Pronf. In {11) the coefficient

1
L 5. . Rz)pldz)
n, 3 R“J1z|=1 n, (@0 (REIR S

does not depend on R. Indeed writing rx (r<R) instead of

®x in (11}, with ixl = 1, multiplying by Sn,j and integrating

we get

n
J u(rx)s_ . (x)pldx) = E—J S5 .(z)u{Rz)p(dz}
1x1=1 e3 lz1=1

rD n,]
as asserted. Let n>N and b_ .= sup IS .(x}]. We get
;] 1x =1 n,J
n
J1x|=1(b“'jtsn'j{X))u(rx)p(dX) = bn'jutﬂ)ian’jr . !
Since b 5 (x) »0 and u(rx)c:rN i
n,j "n.j - - ! ;
n N
Bn, 2 (012, 37 <P, 5T
since an'j(x)?(dx} = 0 (because I :TSn’j(x)a(dx) =

the value at 0 of a homogeneous polynomial of degree n).

THis inequality for all large r implies an:=0 for all n>N.

Q.e.d.

That Pn has degree n implies an interesting result on

harmonic functions with pelynomial values on 3B(0,1). Singe
Pn has degree n for each n, we can write tn as 4 linear

combination of polynomials P, 0<kgn, l.e. we can write

n
n _ ,
t7 = I akPk‘t)
0
implying
n o _ d
{(12) (x-¥) = I a P (x-y),x,yER".
k<n
For x| = 1, Pk(x-y) (as a function of x on 5(0,1)} is a
spherical harmonic of order k for each y with |yl = t.
Equation (12} says that for each 'y with Iyl =1 (and hence

for any yE Rd} the homogenecus polynomial Q(x)==(x-y)n

agreas with 2 harmonic polynomial of degree at most n on the

surface of the unit ball. It can be shown (see Exercise 3} that

every homogeneous polynomial of degree n is a linear combination
d

of polynomials of the form Q(x) =(x-y)n As Yy ranges over R™.

We have thus shown

E] To every polynomial of degree n corresponds a unique
harmonic pelynomial of degree at mest n which agrees

with the given polynomial on S5(D,1).

See Exercise 4 for the so-called Funk-Hecke formula. In
the Exercises some properties of Pn as well as an application

is given.

Example. When d=2 from G there are only 2 linearly

independent solid harmonics of degree n namély the real and

imaginary parts of =",
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Exercises to §5.
1. If u is bounded and harmonic in the ball B{(0,7)
punctured at 0, it can be difined to be harmonic at 0 as

well,

Hint. Let r <1 be fixed. For s<|xl| <7

ui{x) = Ex{u(xTr): Tr<T5]+Ex[u(xT5): 'I‘s<'1‘g

whare T, and T,  are the hitting times to B(0,s} and
3B(0,r) Tespectively. As s tends to zero the second term

tends to zero.

2. Let u be homogeneous of degree n. IEf u is e

in a neighbourhood of 0 then u is a polynomial of degree n.

Hint. g%i is homogeneous of degree n-t and is cn-1

1
in a neighbourhcod of 0. Use induction.

i. (Using induction) show that every homogenecus polynomial
of degree m in (x1,...,xd) is a linear combination of poly-

nomilas of the form ({g-n})m as £ wvaries in ﬂfd.

Hint. Induction will be on the number of variables. 5o
assume the result true for all homogeneous polynomials of arbitrary

degree in d-1 variables. It is clearly sufficient to show the
iy ig-1 _a
result for any polynomial of the form %y ....xd_l Xy with
i
i1 +...-+1d‘=m. By induction assumption Xy ...xdi11 is a

linear combination of expressions of the form ((x-g))m_ld,

E ranging over 21 or £ ranging over RY with Ed==0.

Thus it suffices to show the result for each polynomial of the

R T
form  ((x+£))% xg, ivj=m, £4=0. If n_=£, kcd-1 and

g =2ys (w7n) = (x+E) +ax;. We have

{(x=£} +a x )™

Xa =§3(?)(Kr E)m-1 i i

kad.

If the a's are distinct the Vandermonde determinant

m

1 ... Dp eevvans a
m

1 Bob] sreens S

is not zero (see Bourbaki, N {2] Chapter III p.p. 99%) and

therefore each (T)(x-&)m_txé is a linear combination of

((x+£) +a,x )™= (xem)™,

k*a
4. (Funk-Hecke formula). Let Sn be a spherical harmonic

of order n and £ continuous on [~-1,1)]. Show that

Jf((E'ﬂ))Sn(n)p(dn) = As (£}

for some constant A,

Hint, Let m be the measure on [-1,1] induced by the
1
map n-gen,nES{0,1). From E:l.f P (R)P (t)m(dt) =0 if
=1
n*m. Since t" is a linear combinaticn of PK,k<:n (PK(t)}

is total in L%(dm). If f € L2 (dm)
£= 1 2.
a B (L ~sense)

i.e. £(E=n) = IaKPK(E-n}. Now use (7} and
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4
|
cief ) Ixl = r and g(x}) on |[x] = R. Consider formally the series
5. Show that Pn satisly
i n -n—d+2 X
I Ila, I2]" +b, Ixi 15, -—
(1—1;2)9;1' (t) + (1~d) £ B! (£} + n(n+d-2)P {E) = D. ; n=1i +0 irm 1.0 Tl
R | where for each n S, form a complete set of orthonormal
n X i .
Hint. Use that |[xI Pn(T§T'Y) is harmonic. ) . Lent
I spherical hermonics of degree n. Compuie the "Fourier coefficients"

i i P ma : a
Remark. The differential equation satisfied by Py ¥ | i and by . by

1 n

be written

d=-1 a-3 . a, rM+p, OO f(rx)s; ,{x}pldx}

—_ - i,n i,n flx|=1
2,72 _
Sr-t%) 2 P11+ nintd-2) (1-t%) £ By = 0. L
~n=d+
a, R'+b R ® = J g(Rx}si n(K)P(dH)
{xl=1 ’
This has the familar Strum-Liouville form and it is general

knowledge (one can verify this directly, see for instance where p is the uniform distribution on the unit sphere
Birkhoff [1] Chapter X) that Pn must Egaorthogonal on [~1,1] | (x: Ix| = 1). It is simple to show that the series
relative to the weight function [1—t2) z . If m 1is the i

probabiltity measure given by the map y-x'y of 5{0,1) onto : vixg) = ¥ |x|Psx ai,nsi,n(Tir)

ny1 i
1-1,11, we also know that P = are OEEEDQOnal relative to m.

2) ] being chosen to converges uniformly on compact subsets of (x: I%xl <R), and
This implies m has density c(l-t , ©
make the integral 1é_%n&eed one sees inductively that . hi) - = |x|"n“d+2; . n(lig}

! : >‘| 3 r ’
J tndm=cJ t1-t?) ° tlar. n> :

-1 -1 '

converges uniformly on compact subsets of x| > r.

6 Show that every function u which is harmonic in a shell 9 Y P r. Thus

. ) v(x} +h{x) 1s harmonic in (r<|Ix|l<R). SInce &, ,n=0,1,2,.
{x: r<|x| <R} can be written u=v+W where v 1is harmonie : ; in

- : form a complete set in L°(dp) the difference u-h can only

in {x: |®¥| <R} and w ig harmonic in {(x: |x| >r).
. assume constant values on Ix{ = r and Ix|l =R

and the most

] e, X general such function is
Hint. Using Kelvin transformation we see that | ¢ Si,nﬁ?T L »
. X a- og Ixl, d=2
is harmonic except at the origin, where Si.n is a spherical —dta
a+hb ixl y d> 3.

harmonic of order n. For the exercise it is clearly enocugh : >

: i Thus u has the expansion
to assume that u is continuous in the closed shell (otherwise

u(x}) =a+hb logix| + 7 (Iai n|X|n+b. 21 M5 X 4.2

i o6
just lock at smaller shells) with boundary values f{x} on n>1 i ' i,n i,n'ixl

u(x) = ¥ (Za

I ~-n—d+2 ®
+b. , S
o' s |2 bl alxl )Sl.nflxll’ d>3

i,n ,
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