CHAPTER 3

Semi groups

Introduction

In this chapter we shall give a brief and elementary
exposition of semi-group theory. Whereas it is not absolutely
egsential to know semi-group theory to read the rest of thisg
book a knowledge of this theory is indispensable 1f one wishes
to proceed to more general Markov processes.

We shall give som examples which throw some light on the
unifying aspect of the subject. And the patient reader may get
an idea of the meaning of boundary conditions in partial differen-
tial equations.

Just to start off the following rough argument tells us
how semi-groups naturaaly enter into considerations of partial
differentialeguations. Suppose we know that for each £ in a
Banach space of continuous funetions on Rd the eguation

ﬁ% = Au, u(l,x) = £(x)

0

where A 1is a differential operator depending only on x has
a unique solutilon. If we put th(x) = u(t,x}, then T, is
necessarily a semi-group. Indeed if wvi{t,x) = Tt+5f(x} =u{t+s,x)

then %g = Av and v{0,x) =Tsf(x). We must thus have, by

uniquenass T, Fix) =T [T £](x).

+
As zaid the above is just a rough argument and is not intended
to give any idea that miracles will follow. However the semi-group

property of the Brownian kernel can already be used to give a

simple proof of the

Reisz composition formula: If 0<g,f,0 +8<d, then

where for 0<f®<d the Riesz kernel I is defined by
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with |xl denoting the norm of x€ &2,

It is simple to show that I *T_ =1 * (constant). The
a g at+g

nontrivial part lies in evaluating the constant. M. Riesz evaluated
it first and a little later J. Deny used Fourier transforms to

give a slightly simpler proof.

Proof of the Reisz composition formula. Writing pi{t,x) =

d
(2ut)—dexp(-é%lx|2) we have for O<a<d

[
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where c =2 °n F(Q%E). Using the semi-~group property of

pi{t,.) we have thus
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A rearrangement of this equality gives us the composition formula.
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As avery special case of the markov property we have

(1) Ea[f(X(t+5))I=Ea[Ext(f(x5))]

for all bounded Borel measurahle functions £ on Rd. Let T

denote the operator
th(a}=Ea[f{Xt)]. t>0.

Equation {1) can then he written

i.e. the operators T, form a semi-group. Written in terms of
measures the above semi-group property is a special case aof the
so=called Chapman-Kolmogorov eguation.

Let B be a Banach space. If u(t), a<t<b is a map on
[a. bl into B we denote by Jbu(t)dt the limit when it exists
of gu{tk) (tk-tk_.l) whare a=t‘;<t1 < i <tn=b and as max
’tk_tk¢1| tends to zero; limit here means strong limit, i.e.
limit in norm. This definition paralles the definition of the
Reiman integral of a function on [a,b]. The integral over an

infinite interval is then defined in the usual way i.e. the

integral over an arbitrary compact interval in the complement

of [a,b] is small provided a ahé b are chosen suitably-
Let us simply write down the properties of integral we will need.
These are all simple to verify.
1. If u{t) is continuous in a compact interval [a,b]
b -
then j u(t)dt exists.
b ‘a b
2. 1l J u{t)dt |l =< J u{t) il dt
a a
{ll x 1} is the norm of the element x€ B}.
3. If L 4s in B*, i.e. L is continuous linear on B
b b
then L{J u{t)dt) = J L(u(t))dt.
a a
Let Tt,tz 6 be a semi-group of linear operators on BH.
We will assume that Tt is strongly continuous:

lim IITtx--Tt xll =0. TU::I:=iﬁentify, for all

tot o
p20- It can be shown that (Exercise 8) a strongly
continucus semi-group T satisfies IITtII <M eEt

uils
Te

XEB and %
for same
we may and

M,B*> (. By considering e ir place of T

t

do assume from now that suptth|I< @
t

Examples.

1. Using the Browian motion semi-group it is simple to derive
several examples of semi-groups. For example let xt be the
one dimentional Browian motion. If f is uniformly continuous

and bounded on {0,=} define
Stf(a} = Eaif(lxtl)]

St is then a semi-group on the Banach space of such functions

and corresponds te the so-called reflected Brownian motion. As

another example let f be continuous on the interval [0,al




with £(0) =f(a}. Extend f to (-a,a) +to be even: f{-x)=£f(x)
and now extend it periodically (with period 2a) to all of R and

then define
H f(a) = E_[f{X.)].

Ht is a semigroup on the Banach space of all those continuous
functions £ on [0,al] such that £(0) = f(a). This is the
semi-group corresponding to the Brownlan motion "reflected at 0,
and at aﬁ.

If f is continuous on (0,») with £(0) =0, we can

axtend £ to an odd function by defining £(-x}) =-£{x). Define

At an such function by

A fla) = B [F(x.}]

where TF is the odd extension of f£. At is then a semi-group
on the Banach space of continuous functions £ on [0,=] such
that f£(0) =0. This is the semigroup that corresponds to "absorb-
ing barrier at 0". Similarly if £ is a function on (0,a) such
that f(0)=£(a) =0. We can extend £ to (-a,a} by setting
f{-x) =-f{x¥). Then extend £ periodically with period 2a. And

define
B E(b) = Eh[F(Xt)]. D<b<a

where ¥ is the periodic function with period 2Za obtained as

above. B is the semigroup that correspends to absorbing barriers

t
at 0 and a.

2. Let H be a separable Hilbert space [en,nE K} a complete

orthonormal system where N denotes either the set of all integers

or the set of non-negative integers. If An, nE N are complex
numbers with non—-negative real parts define
-k E

Z e " (x,e_te

n n
where (%,y) denotes the scalar product in H. As speéial cases
of this one may take the trigonometric system in (-I,d}, the

2

Hermite polynomials in (-=,®) {with the weightfunction e ¥ /4),

the Legendre polynomials in (-1,1) ete.

3. Let H be a separable Hilbert space and A a self-adjoint
operator (bounded or unbounded) with domain D(A) «H., IFf
EA,—w <} <wm is the resolution of identity determined by A the
operators Toebz 0 defined by
_ itk oo
Tt = Je t:'iI'..’A

form a semigroup on H. (If A is bounded T =etA

N }.

4. The Kac's semi-group. Let Xt be the d-dimensional Brownian

motion. K> 0 a bounded measurable function on ). fet B={f:f

uniformly continuous bounded on Rd]. B provided with the uni-

form norm is a Banach space. Define for t>0
t
th(a):=Ea{ftxt)exp(—Jgk(xs)ds)l

Tt is a semi-group on B. It is a little tricky to show that

Tt maps B into B. See Exercise 8 section 2.

Excercises to section 1.

1. Show that Examples 1 are semi~groups and find their "transition

densities".




expf—év2t) where a denotes both  a  and the vector (a;0,0...,0), defines

Hint. Tf th(x) = Jf(y)p(t,x—y)dy where pl(t,z)=

i , ) . .
. \ s a strongly continuous semi-group on the set of bounded uniforml
show that £ even {(cdd) implies T, f is even (odd) and that if ¥ v

f has period a so does T.f for all t>0. With notations continuous functions on  [0,=).

in Examples 1 Stf(x) = Juf(y)q(t,x,y)dy where ; 4. There is a well known procedure to construct new semi-groups

from given ones, the so called subordination procedure. Let P

gi{t,x,¥} = p{t,x~y) +plt.x+y), x>0 .

be a semi-group of probability measures on [0,=): Ft+s= Ft* Foo *

a
H E(x) = f(yth{t,x,y}dy where
t ) IO ¥ ey dencting convolution., Assume that Ft-*ﬁﬂ weakly as t-0.

= If . -
hit,x,y) = Z (pit,x~y-2ka} +plt,x+y-2ka) f Tt 15 a strongly continuous semi group on a Banach space

-

the "subordinated semi-group" defined by

Atf(x) = J fi{ylalt,x,y)dy -
0 8, = JOTS r,(ds)

alt,x,y) = plt,x—y) - plt,xty)}

is also strongly continuous. As a special case let p(t,+) be
a
Btf{x) = Jnf(y)b(t,x,y)dy : ‘ the density of the d-dimensional Brownian semni-group and Ft(ds)
© : the semi-group of [~distributions:
b{t,x,y) = ] (p(t,x-y-2ka) - p(t,x+y-2ka) g
- 5 % ls £
) Ft(ds) =2 2—;%—52 s° ds
2. Let B be the Banach space of continuous functions on [¢,11 ¢ F(El
" .
and let for feB and >0 we obtain the densities
X - : d+t-2
T E) = ol ) T2 pray, e 0. Ed @ _—5—
t r{t) i 2 2
° . ltat w2
i 5 (a) = T K. _gqfa)
= a_ N T () o
Show that Tt+5-TtTS,IITtr TSfH 7 as s~-t>0 but that th 5 5
£f i B as t tends to 0 unless £(0)=¢. I_ (%) —-I (x)
does not tend to n where X, (x) is the modified Hankel function = J -2 Y and
sin(vm)
3. Complete details in the following. Let T, be the d—dlmen51onﬂ 1 is the modified Bessel function
Brownian semi-group i.e. th(a)==Ea[f(Xt)] where X. is the
R N o v+2n
d-dimensionalBrownian motion. If f depends only on distance i.a. I {x) = E_l.H___L___(ﬁ)
v 67 ©(utnsr) 2

E{x} =£()x|}), th also depends only on distance. Therefore the

definition : The dersities 8, were first introduced by Aronszajn and smith

Under the name of Bessel Potentials in connection with differential

B f(a) = E_[£(Ix,. 1]
t a t Problems,




complement of A. If g_=f_ on A and zero elsewhers g, tends

Hint. FPFrom Tables Of Laplace Transforms Reberts and Kaufman n n n

to £ in L by daminated convergence. Therefore Ilf (Pax
Saunders Co. 1966 P gl 0

n

- v+i tends to zero. Finally
Jue-atfy e—-a/tdt - 2(_3) 2 K, s (2a% u’s)

—£|P _g(P
| Jlfn £ dxg[lgn 1P+ 2 Jlfnlp_
Re a>0, Re a>{. n

5, If m is a probability measure on Rﬁl show that m*f(x) =

8. Let Tt’ t>0 be a strongly continuous semi-group on a

Jf(x—y) m{dy) exists in Lp’ 1<pse £for all Borel measurable Banach space B. Show that

fELP and (i ”P denoting norm) Ilm*ﬁlpsllfllp-
_ (a} IITtII is bounded in every compact interval.
Hint. Suppose £3>0. For all gELq ; i 1
(b) Lim lit_1i®= infli 1.
; £+ t
Ig(x)dx{f(x—y)m(dy) = Jm(dy)fqm}f(x-y)&s : at
Thus there exists M and & such that [T Il < Me" ™ t2 0.
< gl _IEl
4 P Hint. {a) Put g{x) =sup Ttx , where K Is compact., Then g
teEK
proving that Jf(x-y)m{dy) ELP. is a lewer semi-continuous semi-norm. Use Baire Category theorem
a to conclude that g(x) <pllxlf for some p. (b) If a is larger
6. Let F,, £t>0 be probability measures on R such that
t - than the inf, choose t, =0 that
F_*F_=F and lim F, *f=£f, pointwise for all bounded ;
t 5 t+s t=0 e
continuous £. 'l’tf = Ft * f then defines a strongly continuous as ”Tt 11%0. rFoy ntD <tc (n+”tﬂ
. (1 0 nt
semi-group on LP(R ) for 1 <sp<= ; ] to
nrontenr,_ o nta 0.
Hint. If g is continuous, has compact support and ||f--g||1:I 0
is small then lITt{f-g)Ilp is small for all t. T,g-g, Now use the fact from (a) that |IT_ 1l is bounded for 0<t<1.
pointwise as €-+0 and IITtQHPg Iigllp. Fatou implies
Lim |7 gt = llgil_. Now use Exercise 7 below.
ts0 © P P
7. Let [ _€L_. Suppose f_~f almost everywhere, f€L
n-p a F : § 2. The infinitesimal generator.
and If |l _-II£lIl . Then £ tends to £ in Lp.
np 13 The semi-group property clearly makes semi-groups of operators
Hint. Let A be the set where ifnl <2|f] and Bn the . hard to come by. One has to replace it by a simpler object. And
—_— n

this is the infinitesimal generator.

Let T, be a strongly continuous semi—group on a Banach




space B. We will assume that [NIT_ Il =¥ for all t.

pefinition. The infinitesimal generator A of Tt is defined
to be the operator whose domain D(A) of definition is the set
of x€RB such that

Ttx-x

D{A) = {x: 1lim — exists)

t=0
and this limit is by definiticon Ax.
TF xED(A) it is easily verified that Tth D(a) for
d -
all t and EETtX"ATt
This suggests that in some sense T, =exp(tA). If A were

x::TtAx.

bounded the right side is meaningful. However this is still true
in a limiting sense. See Exercise 2.
In the investigation of semi-groups a fundamental role is

played by the Resolvent Operator which is defined for A >0 by

o

R x=J e M x dt.
A 0 t

From our condition that HTtH <M for all &AlRy Il <M. An

induction argument shows that

s
R = L mehEp yoae, n»0
X nily t =

50 that ln+1IIR?+1llgbl for n>0. It is very simple to show
that R, satisfies the resclvent equation:

-Rpy+ {(A-y)R.R =10

RA ut {a—p) 2B

The resolvent equaticn shows that the range of RA is independent
ef A. Also R,x =0 for some A implies, using the resolvent

A
equaticn that Rux==0 for all y. and since uRux tends to

x as u tends to infinity, x = 0.
The relation between the infinitesimal generator and the

resolvent operators is contained in the folowing theorem.

Theoram 1. D(A) = RA(B) and A(ka) = ARAx-—x.

Proof. Let u = RAX' Let us show that ug D(A). We have

= ma-hs € -xs
Ttu u = JO_ Tt+sxds JDe Tsxds

@ £
(e’\t—HJEAST xds—J‘e—’\ET x ds.
¢ 5 s

o)
Thus
T u-u
lim-—-—t— = Au- x.
t-+0
Ttu _
Conversly let w€D(A) and x= lim~a7;—5. Since RA is
t-0
a bounded operator and RR commutes with Tt we get
T, R,u-R,u
Rx= tim—Ede A o gy -y
t0 A
from what we just proved, namely that RAuE D(A} and ARhu =
ARku-u' This shows that u=RA(.\u - Au) . C.e.d.

It is useful to note the following facts which are completely

contained in the proof.

1. xu=Au for some A>0 implies u=0.
In other words AI - A, defined an D(A) is 1-1,

I=identity.




2, M -A 1is onto. Indeed for any x¢€B,
u=RAx€D(A) and Au-Au==x.

3. u::gi{AuHAu) i.e. (AI-A}—q exists and equals
R, and we know that HR; < A7 ™M,

4. Two semi-groups with the same infinitesimal gene-
rator are identical. Indeed from 3. the semi-groups

muist have the same resolvent and therefore the

uanigqueness of Laplace transforms implies the

identity of the semi-groups.
5. A 1is a closed operator: D(A) 3un«*u,Aun-oy umply

u€b(A) and Au=y. Indeed if un=R1xn, Aun=

unwxn. Our assumptions say that u, and . conve@

Now recall that R1 is bounded. In particular we

see from the closed theorem that D{A} =B iff A

is bounded.

Theorem 2. L&t B be a Banach space and A a linear operatoxf
defined on a dense subspace of B. A 15 the infinitesimal gene-

rator of a semi—group Tt,IETtH <M 1iff for all A>0, (AI-A)

1 n

exists and %IR?IIS A UM, See

maps D(A) onto E,RA=()\I—A}_
Exercise 6 for a proof.

It is not always easy nor essential to know the precise
domain of generator. It is sufficlent most often to know "enough"

elements of the domain. The examples below will illustrate this.

Exampies.

1. In the Examples 1 of § 1 the semi-groups were constructed
using the Brownian semi-group. It is natural that their generators

should be expressible in terms of the generator of the Brownian

semi-groups plus some conditions at the boundary points. It is
very simple to show (use Taylors expansion) that every czﬂfunction
it  with comapct support belongsdgg the domain of generator of the
Brownian semi-group and Au==§ E;?.

Retain the notation of Examples 1§1.f belongs to the domain
of generator of St iff £ (] -{) {defined on all R1) belongs %o
the domain of generator of the Brownian semi-group. In particular
if f has compact support and f£({l |} is c2 it will belong te
the domain of generator of St. Thus the generator can loosely

be described by % u” with the boundary conditicn u'{0) = 0.

Similar reasoning applies to the other examples.

2. If Tt and St are commuting strongly continucus semi-groups
i.e. T, B_=8.T, for ail O0gs,t,C =T, 8, is also a strongly
cortinuous semi-group. The generator € of Ct has domain

p(c) =D{TINR{sS),T,5 generators of Tt’st respectively. And

for u€EB(TIND(S}
Cu = Tu + 5u.

This simple fact can be used as follows. Let Z{t) = (x(t),y(t)}
dencte the 2-dimensional Brownian motion. Let B =set of bounded
uniformly continuous functions on RZ. Let Tt’ St be the semi-

groups on B:

T, £lx,y) = B [£(x.,y)]

Sy £0uy) = E [flx,yy))

It is easy to show that T, and §, commute. C =T, 8¢ is

simply the 2Z-dimensional Brownian semi-group. Thus u€ c2 with
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compact support impies that u is in the domain of generator of

Ct and

Similarly if u is c2 with compact support in Rﬁ, then

u€D(A), A=generator of d-dimentional Brownian motion semi-

group and Au==% Au, A = Laplacian.

As another example of the same idea consider
32u du

—s = vVe=, u(l,x) =£f(x)
axz ax

3

=

1
2

Q)
2

where v 1s a constant. This is the equation of diffusion in

a rod which moves with velocity v along the x-axis. The semi-
group Stf(a) = f(a-vt) has infinitesimal generator -vé% in
the sense that if u is differentiable and belongs to the domain
then Au==—v§3. s commutes with the

ax t
dz
whose generator is

of generator A of St'

1-dimensional Brownian semi-group T

dxz.

(N1

t
Thusg

T 2
- = _1 _ _{b-a)
w(tra) =TS F (@) =gy | Fbrveenp (L2525 o

o

= 2
= ?_i1ﬂf J'f{h)exp(—_m—‘b”‘z’z“a’ } db

—ca

satisfies the above diffusion equation.

3. Let A be the generator of the Kac's semi-group of Example

4 § 1. Assume K (with the notation of the cited example) € B.

Using the computation of Exercise 8, if v==Guf, then v=Rh(ﬁ¢wL

Therefore Av=oqav-f= aRa (f-Kv} - (£-Kv}= —%A v~ Kv, where A denotes

the generator of the Brownian semi-group.

4. THis example illustrates how sémi—groups help in solving

perturbed eguations. Let T be a strongly continuous semi-

t
group on a Banach space B. Let A denote the generator of
T,. sSuppose £:[0,=) +B is a strongly diffentiable map.

Using routine computation for each X, €D{A} the function

t
y(t) = Ttxo-FIOTt_sf(Sst

satisfies %%(t) = Ay{t) + £(£). Apply this to the d-dimensional

Brownian semi-group: The solution of

Q1

—3—=%Au+g(t,a), lim w(t,a) = £(a)

£ t—+0
is given by (for nice g{t,a)}

t
uf{t,a) = Ea(f(xt)l-FJoEa(g{s,ths))ds

where Xt denotes the d-dimensional Brownian motion.

Exercises to § 2.

1. Let A be a bounded operator on a Banach space.

n

t

Tt=exp(tA) = FAn is then a strongly continuous semi-group

with infinitesimal generator A.

o1 8

2. Bhow that
X
AF (%) =J E£{y) - £{x)]ay,
]

. Find T,_.

f continuous on [0,1] generator a semi-group T, N

. . -tx * -t
Hint. A is bounded. th(x)==e E{x} +t] e y'f(y)dy-
' 0




3. Let St'Tt be commuting strongly continuous semi-groups

(5

sTt=Ttss is assumed) with infinitesimal gererators A and

B. Assume that

Tl <Ml s ll<

for all t, 'Then for X ED{A}ND(B)
I8, %=1 xIl <M?tilax - px |
+ t -
Hint. _ =gl ol - n-1 n-1
n St Tt SE T_f: (SE 'I‘E) (S_15 +...+Tt }
n o n n n n
2
o — - - -
S0 that Hs x T xll < nM IISEx x (TEX x)
o 5] n
becaus Tl 2
a I SE TE“ ”Si_g TJ.EH_{M .
n n n n
Sux—x
Now use 3 tends ta Ax as u tends to Zarog,
. T ~I
4. Let HTtIIgM. Show that St'hx=exp(t i )X converges
strongly to T.x as h-o.
= n
: h t n
Hint. s Il <e —— .
enll S Zhnn: T "1 <m
Th_

St,h is a semi-group with generator n I. From Exercise 3

tends to Ttx (uniformly in compact intervals) for all

St'hx

XED(A)., And D(A) is dense.

5. Let R}\ be the resolvent of Tt' Where i Tt IM< M.

Show that Tt’l(x}=exp(tl(lﬂ;\—l))x tends to Ttx 4s A tends

to infinity.

Hint. Using

Ry i< n
(AR))'If<M, as in Exercise 4, Ith'ngM.Tt'A

is a semi~group with generater .\(AR)\ —-I). For xED(a) ,}\R;\Ax=AA(RAx) =

=J\[J\RAx~x]. And AR, Ax

tends to 'Ax as ) tends to infinity.

Rest as in Excercise 4.

6. Prove Theorem 2 in the following steps.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

1

If R, ={1-a) ', R R, commute. Indeed if

A

X € D(A) (AI—A)RAx=x and (pI-A}) Ruy=y. Operate

on both sides of the first eguality by Hu and

let y=R.%Xx in the second. Subtracting the

A

resulting egquations one obtains (R)\ ~-R +

H

{A~-u) RuRAx=D. D({A) is dense,

Since |l Ryx lI5MJ\“1 ilxH the equality {,\I—A}Rxxnx,
shows that J\R;\x tends to x for all x in
D{a) and hence for all x.

ARAAx = lA(RAX) = A HRJ\ -I]x. So the semi-group

Tt’;\ = exp (tAR,Ax) has porm <M. and

Teon
TS;H commute from Step 1. And lITtlfc-"I‘t'uxustt

II)\RAAxw- ;JRquII . Conclude from Step 2 that

IimT x=T % exists uniformly for t in a
3 o Ced t
compact interwval, Tt is then a strongly coatinuous

semi-group. Letting p tends to infinity we get

2
for all xeb{a) IITt,Ax"TtK <M tl[I\RAAx Ax]| .

Let A be the generator of T,. Use the last

1 t

ineguality in Step 3 to show that’ X £ D{A)
implies x € D(A1) and ﬁ..lx =AX.

Conclude D(A;) =D(A). Indeed if R =(i-a)~",
x= (A—A.i) R}x, %= (A—~A1) Ry x, since by Step 4

A1 =A for ye€D{(A}. By unigueness Ryx = R;x.
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7. IF § is c” on the real line with

compact support in
the open interval (0,=),

=
]

[ £t} TtxthD{A)
G
and

=

Au —[ EY{E) 7, oxdt.
0 t

In particular D_(A) is dense in B  where D1(A)==D(A) and
forky 2, By, (&) ={uzue Dy_q(B), BuegDn(a)) ana D_ (&) = @Dy (A).

8. 5Show that the Kac's semi-group - the semi-group of

Example 4, § 1 maps B into B,

Hint. That Tt is a semi-

Write
R fla) = EE[J:ehatf(xt)dt]
G Ela) = fme"“tma[f(xt)axp(-ftx(x )ds) Tde
a o S
_ t t t
Using 1—vexp{—IDK(xs)ds) =‘[UK(XS)exp(—jSK(xe)da)ds
and Fubiaj ©

o _ t .
Ryf(a) -G f(a) =EE{IDI((Xs)dsjse mtf(xt)exp(—f Kix,)cls
5

(change of variables and usze Markov Property)

Ea[fox(xs)e‘”sv(xsmsj = R [kv]

where v(a)==Guf(a). Now both R f and R, [kv]

are in g,
[zf §>D,lEa(g(xt)) - E

a+h (T ) < e for alz aegd and

t>38 provided h is small enough showing that Rug'EB for

all bounded Borel gl. G,f 1is therefore in m. a8, f converges

group follows from Markow Property.:

mniformly to £ if F£€B. By the Hille~fosida Theorem, Thearem

2, the resolvent GCl determines a semi-group St whose Laplace

transform 4ig G,. Becausa th is continuous in t for EfE€ B,

we must have th==stf.

9. Let RA be operators on a Banach Space B  such that

IIARA|351. Suppose R, =satisfies the resclvent equation and

the range of RX is dense in B. Show that there is a unique

contraction semi-group Tt on B whose resolvent is R

)

0. Let B he a Banach space and A an aperator

with dense domain D(A). a is the infinitesimal generator of

a strongly continuouns semi~group iff there is a AD >0 such that

for a2, Ry = A1-8)""  exists ana | Bi <M =2 ™ for all n.

Hint. Apply the Hille-Yosida Theorem to A-—ADI.

1. Let A denote the generator of the Brownian semi-

group on B=CU (IRd} - =8pace of continuous functions vanishing

at = Let p be a bounded continuous function of IRd.

that pI+A

Show
generates a semi-group on B.

Hint. Let RA dencte the resolvent of the Brownilan kernel,

u-+RA{pu) is an operator on B of norm <71 for 3} > ipll .

S0 5, = (I—RAp)_TRR exists in B for A > lipll

I
and ”SA” f
(A= tiplly=D,

Finally u=53;f solves M -pu-Au=Ff. Now use
Exercise 10 above.




12. Let Byst20, be Probability measures on Amd such
that Py *ps==pt+s and llnlpt 50. Then ¢ defined by
et (a) =jexp (i(u,x})pt(dxﬁ_'ols continuous and satisfies
I {2u) i <4lw(a)].
In partjcular Iy (o) | =D(|q]2}as tal tends to infinity.
Hint. Let m(u}:=[ei(a’x)F(dx} be any characteristic

function. Use the identity (1-a) + (1-b} = (1=a) {1~b) = 1~ah and
ila,
([41—.3 (e ’”IF(dx))zg2[(1—cos(a,x))F(dx)gzn—m{u)l

to show that pla) =] T=@{a]T is sub-additive: pla +B)
2 pla) +p{f). Use this to show that Viyg{al I is sub~additive,

Continuity of ¢ follows from: is the characteristic

L
T+
Function of the probability measure m(dx]=‘[me_tpt(dx)dt.
0

13. ret T, be a convolution semi-group on CU(IRd):th=
Py *f where Py are as in Exercise 12 above. Show that every
c3~functicnwith compact support is in the domain of generator
of Tt

Hint. Retain the notation of Exercise 12 abave. The domain
of generator is precisely the set {m*f; fe CU(IRd)}.

Now use Exercise 12 abave and Fourier transfaorms

For more on convolution semi-groups see Berg and Forst 1]

14. Let Tt be a pasitive semi-group on CU(IRd) with
denerator A. Suppose D{A)}op = the set of cm—functions with
compact suppert and that support {Au) € support (u) for all

ueEd. sShow that A/D is a differential operator of order at

most 2,

Hint. If u€7? wvanishes toéethe; with all its first
two partials at a point X then (Au)(xo)ﬁ 0. Indeed if

OSPY';_H are in ¥ such that PY'=1 in say B(x,,y) =ball
of radius vy and centre Xy and with PY==U off B(xU,ZY).

Since u=u 1=11=Y in B{xy.v),

T (a P B (xg) |
1im|“"———-1——————

IAu(xD) i = IA(uP1PY) {xg)1 = 2iml

2
Tt((x—xo) By (o)) {xg)

< ZMy lim
t-0

since Iul:smlx-xol3. The last limit is finite because
2
(x-xo) B, €T

Now we determine continuous functions a, a ray 13 as follows:

Let v be €7 such that mn==1 in B(0,n). Then xfﬁf’iﬁﬁh
are in 7  where *¥, are the coordinate functions. Define
alx) = (A ) (x),
ai(x) = A(ximn} (%), x€B(0,n)) <1, <d.
aij = A(xixjwn)(x).

Fix Xq and let u€ P. PFor all n such that support ucB(0,n)

ufx} = ulxglo, +Z( (x VY {xg-xg )@ (x)

Fu

- (ax e ) o5y, ) ;g b G040 g 00 )

where u(xg,-) €D wvanishes together with all its first and

second partials at Xy Therefore A[u(xo,-)mn](xo) =0 and

2
(An) (x} =a(xglutxg) + E by gl %, (x )+ by N TN ax ax {xp}




where bi(x) ai(x)-xoia(x)

b, {x) = §[

I3 alj(x)-inaj(x)

D]a (x)+x alx)l.

1% [«]]

15. Incontrast to the above Exercise show that Az is the
restriction to ¢ of the generator of a semi-group on CU(]R ).

Hint. exp{- tlxl being rapidly decreasing is the Fourier
transform of a rapidly decreasing fuaction Flt,x): Jexp:.(g,x)F{t,x]dx
exp(—t-i&l';). The semigroup T £(x} w-ff(y)I‘(t,x—y)tﬁly has as

denerator a constant multiple of A

§ 3. pPotential operators.

Potential cperators are in 4 general sense inverses of

infinitesimal generators. Most important examples of these are

Green functions which wa will meet in Chapter 6,

Let T, be a strongly continuous seni-group with H’l‘ I «m

on a B
anach spage B, R;\ will be the resolvent of T and A

its infinitesimal generator. To investigate when A_1 exsists

45 a densely defined Qperator first consider the equation aAu=g

Using the fact that u is
in the range of R;\ and the resolvent

- . .
quation this is possible only if uxr‘\RAu for a1l A

equi =
quivalently Ttu—u for all +. Next suppose

ar

V=Au 1is in the

range of . = = :
g A. Then J\R’\V— AR, Au=AA (Rlu} = A[ARAu—u] which clearly -

tends to zero as ) tends to zero. Since .”;\RA”E M, we also

have: v € closure of the range of A iff 1lim ARAv= 0. (Indeed
. A-0

if J\Rlv tends to zero as A tends to zero, A(R)\v) =}\RAV—V

so that A(Rlv) tends 0 =~v as A tends to zero}.

has a densely defined domain iff 1im AR x=
A=-0

Thus A_1

for all x€B. Further if v =Au.

R,V =R,Au=ARyu= AR u-u

so that 1lim RAv=—u. Conversely if 1lim R,v=u exsists, the
Ao D Aag
resolvent equation R1v Ryv+ {1- J\)R R,v=0 gives Ryv-u+ R.!u =0

i.e. wu€ED(A) and Au=-v. We have proved.

Proposition 1. vEclosure of the range of A iff k].im}\R,A\.r 0
A_1 exists as a densely defined operator iff 1lim ARy x = D_.Dfnr
"1 exists as a densely definehd»o[;:erator-then
v€D(A—1) iff limRAv=u exists and then A_1v=-u.

Generally si:ganking potential operators are integral operators

all =x€B. If A

and thus are sometimes easier to handle. For example consider the
d-dimensional Brownian semi-group as acting on the space CU(IRd)

of continuous functions vanishing at =. The above reasoning

=1

applles to this and we see that A has a densely defined domain.

2

It will be shown in Chapter 5 that u€c with compact support'

then

u(x) =Adjx{x-y)au(y)dy
q are constants and K(y) =-log|y|l if d4=2 and
Kiy) = |y|™8+2 4f 4a33. Thus at least a~! restricted to

whera A

A(D) (P=all c“-functions with compact support) is given by an

integral operator.




The most inportant theorem in this connection is a theorem
of G: Hunt. To describe this we need a little termnology. Let
K(X) and CO(XJ denote the space of all continuous functions
with compact support, and all continuous functions vanishing at
= respectively, on the locally compact, o-compact space X.aA
linear map V:K(X)-*CD(X) is said to satisfy the Principle of

Positive maximum if the following holds:

For every f€K(X) such that Vi attaing strictly positive'j

values
“al Sgp V £(x} =sup{v E(y): £(y) > a}

(1} is equivalent to the follewing apparently stronger condition
For every feK(X) such that VF attains strictly positive

values
(2} SUp V £ (X} = sup{V{(y): £y} > 0}.

Indeed suppose a and b denote the left and right sides

of (2) and beec<a. Put
A={x: VE(x) »c}.

A is compact since Vf tends to zero at infinity. Let g be
any function in K(X}, which is strictly negative on A. For £
such that ¢ lIVgll<*;%, for all points xqa,v(f+eq) <2, while
at any x€A at which VE(x) =a,Vf (x} +E.Vg (x) >azﬁ. This
contradicts (1) since at all points of A,f+e€g<0.

(2) shows that V must be a non-negative operator. For if
f<0. the rvight side of (4) is zero so that V£ cannot attain

a strictly positive value.

Another condition equivalent to (1) is the following: For

all a>0, A>0 and £fEK(H)

(3} a+AVE+ £2>0 implies a+AVE>0.

Tndeed if o+ AVE(x) <0, V(-f) would attain strictly posi-

tive values and, assuming (1)

(4) sup AV(~£) =sup AVi{-I) >
f=<0

and from o+ AVE+E>0,

sup V(~f) <o
£<0

which contradicts (3).
Conversely suppose (3} holds and w=sup(AVEi+1f). o« is

necessarily > 0, since f and Vi tends to zero at infinity.

a+ AV(-£) + (-£} >0, implying by (3), @ > AVE. 1In particular
if % is a point at which o=Avi(x) + £{x) then £(x) > 0. Thus
at every point at which Vf-F% attains its' maximum, £ is non-

negative. Letting A tend to infinity we obtain (1}.

Theorem 2. Let V be as above. Assume that VK({X) is

dense in CD(X). There exists exactly one positive_strangly

continuous contraction semi-group P, on CO(X} such that

L3

Vf=J’ p, £dt, FeK{x).
0

For every f € X({X), VIi€D(A) (A=infinitesimal generatoxr

of Pt) and AVE=-f.




Proof. We give the proof in a series of steps. Any missing
details can easily be supplied by the reader. The general idea
is to define a resolvent and then use the Hille-Yasida theorem.

Step 1. Fpor every As>0 and feEK(x)
(5} WAVE+ £1l > lAVEN.

Indeed from (3) if a=inf(AVE+ f) ang B=sup(AVE+£) +then

{e<a, B>0 because both £, VfECO{X)
eeVf<Bg

and this implies (5).

let O0<a=<! be €K(X). bpefine
Vaf =V(af), f¢ CD (X)
From {2), if Va(f) attains strictly positive values
sup Vaf= sup V{af) = sup Va(f)

af»>0 £0

i.e. Va also satisfies the pPrinciple of positive maximum,

Thus (5) is wvalid with V replaced by Va and for all fECO(X). :

Also Va is a bounded operator since V is positive.

Step 2. For all Asp
E =
{6) Range (J\VEl + I} Cy (%) .

That the range is closed follows from (5) with V replaced by
Va. For small A (6} is obvious by series expansion. Since the
resolventset of Va is open it is enough to show that if the

claim is valid in the open interval (O,AO) it is valid for 3

If Avaf+f=g then from (5) with v replaced by Va

0

WEH s Ugll + 1AV £ < lighl + IAVE + £1i = 2Hg]l
— X
o L gt

ll?\ovaf+ f-gll =||)DVaf+ f-av, £- fil= ilo-ll Hvafll e

showing that the range cof AUVa+I is dense. )
*
Step 3. AV+I has dense range for all A >0. Let LE CO(X)

be such that L(AVE+f) =0 for all £e€K(¥X). In particular we

02as1, agkK{X), LOAW,E+a.f) =0, FeC,(x}.
such that

From
have for all

step 2, for all g€ CG(X} there exists f€ CO(X)

IIEN 22llgll and AV _f+f=g. We have
ILgl = [L(Avaf+f)l =1L {1-a)f)l <2H4 N ILI{1-a)

where {L| denotes the toal variation measure corresponding

to L., Letting a increase to 1, leads to L=0.

{5) there is a bounded operator J; defined

From step 3 and
on C,(X) such that

(7} J;\(Avf+f)=f, feKk(x).
Define RA by
I\R‘\ = I_J.\'
Step 4. RA satisfies the resolvent eguation:
(8) Ry ~R + (A-wWRyR =0.

Indeed let h ECD(X) . By step 3 there is a segquence an K(X)

such that lJ'_Irl(qun + fn) =h. Then
{9) lim fn=limJu(qun+fn) =J§h.
Finally

: Al _u Al J.ah
Th=lnd, (WE +£) = 1:|m% Ty (WVEHE ) +5R Lim ) £ =bd b




by (7) and (9). - =
Y nd (9). Thus My HI, = ('\_“)JAJu which is equivalent
to (8).

St .
ep 5 Rxg D,IIARAII <1 and the range of RA is dense.
Indeed for f£e€K(x)

(10} Ry {AVE + £} = v

s
¢ that the range of RJ\ contains the range of v, Also the
same equation shows that EIRR;\ (AVE + E)l =I[AVE(S <NAVE + £]|
which from st i
X . ep 3 is equivalent to IIJ\RAH =I1. That Ry 20
5 e i
gquivalent to b <h if k>0, To shaw this let f, be
such +h i =
at llm(Aan+fn) =h. For any €>0, for all large n,
+ 3 VE i
E £,V nT£,20, and using (3) E-I-langO for a1l large n.
But then, =11 =
hen JAh llmJA{Avfn-!-fn) =1lim fnf.lim{€+AVfﬁf-fr? <€ +h
for all g 0.
An appeal to Exercise 9, § 2 gives us a strongly continuou%
asiti i~ i
P ive semi-group Pt on CU(X) with resolvent RA'
Now by (10) for all FekK(X), vf belongs to the domain

D(A} of generator »a of P, and
AVE = AVE - (AVE+ £) = —F.

From PIDPOEJ. =
ticn 1 lim AR}‘h 0 for all he CD [X). A lock at
( U) then convinces us that i.lHIR f=vf for all £ K(x
A € ( )-

Since Pt is non-negative this gives (first for non-negative

and then general)

Lo
fDPtfdt=Vf. FEK(X).

That proves the theorem.

Examples.
1. Let S, be a sub-Markov resclvent on Rd: The operators

§, map the set B(Rd} of bounded measurable functions into
itself, SA 30'}‘5:1\' 1=<1, each SA is given by a measure and

SA satisfies the resclvent equation. Suppose for a set of feD(V),

V(IE]) =limsl(lf!)
A—)D

exists. Then for any €>0, A>0, fED(V)
(13) e +AVE+£20 implies &+ AVE>0.

Indeed, Vfﬁsuf + uSBVE is valid for all p=>0 and fE€ nivy.
Therefore operating on the first inequality in (13) we get the
second because 0 < ASl =1.

As a special case consider the resolvent of the Rrownian

semi~group. We see for d>3 that the operator V defind on

K(Rd) by
VE(x) = —Ym—dl ﬂlé_z y
Xy

satisfies (13) and hence the principle of positive maximum,

2. Let SJ\ and V be as in Example 1 above. A non-negative
Borel measurable function s is called supermedian relative to

8 if ASAS <s for all A>0. Define

A

1V(5f) (a) s(a}) #0

";f(a) - {(S(al)

0 s5(a) =0.

Then V satisfies (13).
Indeed if &5+ AV(sf) +sf> 0, operate by 5, to get

eSAs +V{sf} >0 and recall that ABys s,




3.
Let O0<a<t1, 0 <T<®. For each continuous f define

t
uit) = vE(t) =J E(t-s)s s, 0 <t <.
. St

We i
claim that V satisfies the principle of positive maximﬁm in
[0,T]. To see this suppose first that f ig continuously dif-

ferentiable. Then it can be seen ﬁhat
_1.,-B B[t
£{t) _At u{t) -!--P—Jo[u(t) —u(t—s}]s_1_ﬁc'is

where, g =1 I A==f g 2 1- -8 i
e X o {1-8) "ds. 1In particular if tD is a
um peint of uw in [o,T] then “1emB
o 1in1tnﬁ.(t) +T] f(to) > A ty U(tu)- [Note
u .
b exists]. Now approximate. The semi-group cor-
responding to V when T=a jg the one associated with the
stable distribution with Laplace transform exp(-kﬂ}

12] p.p. 424,

See pFeller

4. ; i
Let again O0<wee<i. For f bounded and integrable on

[D,®) pat

(14) u(t)=Vf(t;=f fit+s)s %ds.
]

If Vi attains Strictly positive values then
{15) sup Vi = sup V£
. {(f >0}
This can be proved as in Example 3 above. A more general

Procedure is the following: For each +ts @

distributi i i
ution Ft on  [0,«) with Laplace transform exp[-tA1—u)

See Feller [2] p.p. 4
p.p 24. The operators 8, defined by

S5.f(x} = Jof(xwwt{dyl

there is a probability

form a semi-group and

w

Vf:JUStfdt

as is seen by using Laplace Transforms. Thus {13} is wvalid for V.

For f bounded and integrable Vf is continuous and vanishes at

infinity and in this case (13) can be seen to imply (15) .

5. Let d=2>3 and 0<n<2. TFor each bounded measurablie

function f with compact support on Hfi define

(16) I (£) (%) = J[x-yla“df(Y}dY-
Then
(1) supI £= supI f
R P B

We have seen in the proof of the Riesz composition formula

that, Iaf is equal except for a constant to
o

o =1

(18) Vf:J ¢

T, fdt
o t

where Tt is the Brownian semi-group. Suppose that e+ AVE+ £ 0.

We then have since Tte: E,

E+AVI E+T, £20

for all t and =x. a
m Z—1
2

Fizg x and let gl{t) =th(x). Then Vth(x)=J s g(t+s}ds.
¢

By Example 4

e +AVT £(x) 20. t>0.




Thus (13) ig valid for v

and this implies {17). The semi-group

V is the Symmetric stahle Semi-group of expo-

and is obtained from the Brownian

ccrresponding to
nent g

ordination bprocedure (Exercise 4, section 1) using the one-sided

[C,») of exponent %.

8table process on

&, Let N(x,dy)
N = i, ayr e gy)

boundeg measvrable

be pProbability measures gp RIS such that

is measurable for every feg B(]Rd) = s5et of
o

functions. Ler g= IN",  then ¢ satisfieg
0

{19} E+GE+E5>0 im lies € +Gf> g,
2 p >

Note that if the Ffirst condition ip (19

) is satisfied for an
£ EB{IRd),

Gf is hecessarily hounded below.

ApPly N tg {19)
to get ¢ +NGE+NE > g, Adding this to (19] ana using the obvicug

identity ng+ I=g

2+ 26E+ NE > g,

Operate by ¥ on this last inequality and add to twice the

first inequality ip {19) to get

e +40£+ 075 5 ¢,

And in general 2“51~2nt4-an3 0. Since £ jgq bounded the
second inequality in (19) must be valid. The corresponding samf-
group is the "Compound Poisson Semi-group";

3.34

Exercises to § 3.

semi-group by the suh—é

1 Let V satisfy the principle of positive maximum.
Shi that for p>» 0, I +pV alsc satisfies the same.
ow >
fies
lint Suppose e+ A(E+pV)f+F>0. Then, since -V satis
Hint. :

1

+ ApVE > — ond by T

(5], €+ApVE>0. Multiply the first 7 and the sec TIT
' z A+ ¥

and add. The result is E+tx{I+pV)E>o0.

. t v =1 above. W at VE = :melles V £ ={.
2 Le be S Sho th 0 (] ' )
ar lar or P> f+PUf—D mplies £=10.
In p tien £ a, imp
Hint Let gEHK(X with Suppor t in fl=»€). Since

i i i X.} >& such
sup Vg = sup(Vg: g > 0)., there is a point x, with £t o} 2

g

= P Vg imum point i
hat Ug X sup V But for all O, 15 a maxim o)
t { 0) . r

0
. But then £(x.)=0. For
Vig+ef} so that g(x,) taf{xg) z0 0

second part use. Exercise 1 above.

. satisfying
3 Let V_  be operators from K{X) into Co(x),
) n
i converges to VI
the principle of positive maximum. If an

uniformly then V satisfies the same.




REFERENCE g

CHAPTER 4
Berqg, C. and Forst, G., P

otential Theory on I, ¥ j}
Abelian Grag S, Springer (Ergebnisse )9??§%S}Cum 2et

e Harmonic functions and Dirichiet Problem
2. Peller, w,

r An Introduction to Probahi ?
Applications, John Wiley {1371) ility Theory and its ! -

Additional References . Introduction
4dditional References. Intreduction

Hille, E., and Phili4
. PS, R.3., Functiopal Al ysi
Semi Groups, A.M.S. Publication (TQS?)nal =28_and

Yosida, K,

Harmonic functions are solutions of the Laplate equation Au=0..

No other single partial differential equation is encountered in so
Funct {
+ functional Analysis, Springer ({1371) . many different situations and exihibits such depth and variety. One

runs into the Laplate equation in many branches of applied physics:

Eilectrostatics, stationary heat flow etc. Directly or indirectly

the Dirichlet problem has influenced many branches of Analysis:
Integral equations, special functions, Calculus of variations etc,.
In §1, Dynkin's formula is proved and some applications are

given. In §2, the Dirichlet problem is introduced. §3 deals with

the Kelvin transformaticn. Some applications are found in the
exercises and in Chapter 6. In §4 we prove the Fatou limit theorem
and derive the existence of the Hilbert transform. §5, dealing

with spherical harmonics can be considered an application of the
Poisson integral formula. The original idea was to give applications

in representation theory but we content curselves with a reference.

Notation

In this Chapter Xt will denote the d-dimentional Brownian

motion as introduced in Chapter 2. If D is an open set the exit

time T from D is the Stopping time

T

inf(t: t>o0, xtqn)

H

» if there is no such t.




