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D.H.Fremlin

University of Essex, Colchester, England

1 The problem

1A Problem GO The problem as asked in my problem sheet was:

Let µ be a Radon probability measure on X = R
r, where r ≥ 1, and λ = µN the product

measure on XN. Suppose that F ⊆ X is a closed set. For ω ∈ XN, n ≥ 1 and y ∈ X, set
ζωyn = mini<n ‖ω(i)−y‖, kωyn = min{i : i < n, ‖ω(i)−y‖ = ζωyn}; set Fωn = {y : ω(kωyn) ∈ F}.
Is it always the case that limn→∞ µ(F△Fn(ω)) = 0 for λ-almost every ω?

In this form, the question remains open, though affirmative answers in special cases are given in Theorems
3B and 5B below. I will look also at generalizations, based on the following definitions.

1B Definitions (a) Let (X, ρ) be a metric space.

(i) For n ≥ 1, ̟ ∈ Xn and z ∈ ̟[n], set

V (̟, z) = {x : ρ(x, z) = ρ(x,̟[n]) and if i < j < n and z = ̟(j) 6= ̟(i)

then ρ(x, z) < ρ(x,̟(i))};

that is, z = ̟(j) where j < n is minimal subject to ρ(x,̟(j)) = ρ(x,̟[n]). Now the partition 〈V (̟, z)〉z∈̟[n]

is the Voronoi tesselation defined by ̟.

(ii) If f is any function defined on X, and ̟ ∈ ⋃
n≥1X

n, we have a function F (̟, f) defined by setting

F (̟, f)(x) = f(z) whenever z is a value of ̟ and x ∈ V (̟, z).

(b) Now suppose that µ is a topological probability measure on X. In this context, Σ will always be
the domain of µ, λ the product measure µN on Ω = XN, and Λ the domain of λ. I will say that µ is
Mycielski-regular if, for every Σ-measurable f : X → R, 〈F (ω↾n, f)〉n≥1 converges in measure to f for
λ-almost every ω.

1C Example Suppose that X is a set and µ is a probability measure with domain PX such that µ{x} = 0
for every x ∈ X and there is a set H ⊆ X such that 0 < µH < 1. (Such a measure exists whenever #(X) is
not measure-free in the sense of Fremlin 03, §438. In this case, taking disjoint subsets X0, X1 of X of the
same size as X, we have probability measures µ0, µ1 with domains PX0, PX1 and both zero on singletons,
and we can set µE = 1

2 (µ0(E ∩X0) + µ1(E ∩X1)) for every E ⊆ X, H = X0.)
Now let ρ be the zero-one metric on X. In this case, for any n ∈ N and ̟ ∈ Xn,

V (̟,̟(0)) = (X \̟[n]) ∪ {̟(0)}
has measure 1, while

V (̟, z) = {z}
is negligible for z ∈ ̟[n]\{̟(0)}. So

∫
F (̟, f)dµ = f(̟(0)) for every f : X → R. In particular, for ω ∈ Ω,

lim
n→∞

∫
F (ω↾n, χH)dµ = 1 if ω(0) ∈ H,

= 0 otherwise,

and 〈F (ω↾n, χH)〉n≥1 is never convergent in measure to χH. Thus µ is not Mycielski-regular.

1D Example Let 〈nk〉k∈N, 〈Mk〉k∈N, 〈δk〉k∈N be sequences such that, for each k ∈ N,
1
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Mk =
∏

j<k 2nj + 1, δk =
∏

j<k
1

3nj

,

nk ∈ N, nk ≥ 2k+2, Mk(1 − δk

2k+3
)nk ≤ 1

2k
,

starting from δ0 = M0 = 1. For each k, let Xk be a set with 2nk + 1 elements, and tk a point of Xk. Set
X =

∏
k∈N

Xk and define ρ : X ×X → [0, 1] by setting

ρ(x, y) =
1

2k+1
if x↾k = y↾k and x(k), y(k) are different members of Xk \ {tk},

=
1

2k+2
if x↾k = y↾k and just one of x(k), y(k) is equal to tk,

= 0 if x = y.

Then (X, ρ) is a compact metric space. For each k ∈ N, let µk be the probability measure on Xk such that

µk{tk} =
1

2k+3
and µk{t} =

1

2nk

(1 − 1

2k+3
) for t ∈ Xk \ {tk}; let µ be the product measure

∏
k∈N

µk, so that

µ is a Radon probability measure on X.
µ is not Mycielski-regular. PPP Set

G = {x : x ∈ X, x(k) = tk for some k ∈ N},
so that

µG ≤ ∑∞
k=0

1

2k+3
=

1

4
.

For k ∈ N and σ ∈ ∏
j<k Xj , set Eσ = {x : x ∈ X, x↾k = σ, x(k) = tk}. Note that as µj{t} ≥ 1

3nj

for every

j < k and t ∈ Xj , µEσ ≥ δk

2k+3
. Set

Wk = {ω : ω ∈ Ω, ω[nk] ∩ Eσ 6= ∅ for every σ ∈ ∏
j<k Xj};

then

λ(Ω \Wk) ≤ ∑
σ∈∏

j<k Xj
(1 − µEσ)nk ≤Mk(1 − δk

2k+3
)nk ≤ 1

2k
.

If ω ∈Wk, consider F (ω↾nk, χG). Set T = Xk \ ({tk} ∪ {ω(i)(k) : i < nk}). Then #(T ) ≥ nk so

µkT ≥ 1
2 (µXk \ {tk}) ≥ 7

16
.

So if we set H = {x : x ∈ X, x(k) ∈ T}, µH ≥ 7
16 . Now if x ∈ H, there is a first i < nk such that

ω(i) ∈ Ex↾k, but there is no j < nk such that ω(j)↾k + 1 = x↾k + 1. This means that

ρ(x, ω(i)) =
1

2k+2
= ρ(x, ω[nk])

and ρ(ω(j), x) ≥ 1

2k+1
for j < i. Accordingly

F (ω↾nk, χG)(x) = χG(ω(i)) = 1.

Thus we see that µ{x : F (ω↾nk, χG)(x) = 1} ≥ 7
16 and µ{x : |F (ω↾nk, χG)(x) − χG(x)| = 1} ≥ 3

16 .
It follows that if ω ∈ ⋃

m∈N

⋂
k≥mWk, 〈F (ω↾n, χG)〉n≥1 does not converge in measure to χG. Since this

is true for almost every ω, µ is not Mycielski-regular. QQQ

1E Problem Which topological probability measures on metric spaces are Mycielski-regular?
We have just seen two non-Mycielski-regular examples. There is an easy positive result in 2C, and more

interesting ones in 3B and 5B. In §§4 and 6 I offer general classes of space in which we can hope for further
positive results.

Several of the results below are stated for topological probability measures on separable metric spaces.
In view of Proposition 2N, these will in fact apply to any topological probability measure on a metric space
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for which there is a separable subset of full outer measure (equivalently, a closed separable conegligible set);
it is easy to see that these are just the τ -additive topological probability measures.

2 General remarks

2A Elementary facts Let (X, ρ) be a metric space.

(a) If n ≥ 1, and ̟ ∈ Xn and f is any function with domain X, then F (̟, f)[X] ⊆ f [X]. If f : X → Y
and g : Y → Z are functions, then F (̟, gf) = gF (̟, f). More generally, if Y0, . . . , Ym, Z are sets and fj :
X → Yj , φ :

∏
j≤m Yj → Z are functions, then φ(F (̟, f0)(x), . . . , F (̟, fm)(x)) = F (̟,φ(f0, . . . , fm))(x)

for every x ∈ X.
V (̟, z) is a Borel set (actually, the intersection of a closed set with an open set) for every z ∈ ̟[n]; so

if f is real-valued, then F (̟, f) is Borel measurable.

(b) Now suppose that µ is a topological probability measure on X, as in 1Bb. If f , g are functions
defined on X and equal µ-almost everywhere, then for λ-almost every ω ∈ Ω we shall have fω = gω, so
F (ω↾n, f) = F (ω↾n, g) for every n.

2B It is sometimes convenient to interpolate an extra definition into the description of the functions
F (̟, f) in 1B(a-ii): for n ∈ N, ̟ ∈ Xn and x ∈ X, let k(̟,x) be the least j such that ρ(x,̟[n]) =
ρ(x,̟(j)), so that x ∈ V (̟,̟(k(̟,x))) and F (̟, f) = f(̟(k(̟,x))) for any function f .

Lemma Let (X, ρ) be a metric space, µ a topological probability measure on X with domain Σ, f : X → R

a Σ-measurable function, and n ≥ 1.
(a) The functions (̟,x) 7→ k(̟,x) : Xn × X → n, (̟,x) 7→ ̟(k(̟,x)) : Xn × X → X are Borel

measurable.
(b) The function (ω, x) 7→ F (ω↾n, f)(x) is B(Ω)⊗̂Σ-measurable, where B(Ω) is the Borel σ-algebra of Ω.
(c)(i) ω 7→

∫
F (ω↾n, f)dµ is B(Ω)-measurable.

(ii) ω 7→
∫
χX ∧ |F (ω↾n, f) − f |dµ is B(Ω)-measurable.

proof (a)(i) For i < n,

{(̟,x) : k(̟,x) = i} =
⋂

j<n

{(̟,x) : ρ(̟(j), x) − ρ(̟(i), x) ≥ 0}

\
⋃

j<i

{(̟,x) : ρ(̟(j), x) − ρ(̟(i), x) = 0}

is Borel measurable because all the functions (̟,x) 7→ ρ(̟(j), x) are continuous.

(ii) For any α ∈ R and i < n, E = {x : f(x) ≤ α} belongs to Σ and the Borel set {(ω, x) : k(ω↾n, x) = i}
belongs to Λ⊗̂Σ, so

{(ω, x) : F (ω↾n, f)(x) ≤ α} =
⋃

i<n{(ω, x) : k(ω↾n, x) = i, ω(i) ∈ E} ∈ Λ⊗̂Σ;

as α is arbitrary, (ω, x) 7→ F (ω↾n, f)(x) is Λ⊗̂Σ-measurable.

(c)(i) Apply Fubini’s theorem in the form Fremlin 01, 252P to the positive and negative parts of f .

(ii) Of course (ω, x) 7→ min(1, |F (ω↾n, f)(x) − f(x)|) is also B(Ω)⊗̂Σ-measurable, so we can use the
same form of Fubini’s theorem.

2C Proposition Let (X, ρ) be a metric space, and µ a point-supported probability measure on X. Then
µ is Mycielski-regular.

proof If f : X → R is any function and x ∈ X is such that µ{x} > 0, then for λ-almost every ω ∈ Ω,
x ∈ ω[N]. So for such ω there is an m such that x = ω(m), and for any n > m we shall have x ∈ V (ω↾n, x)
and F (ω↾n, f)(x) = f(x). Since the set X0 = {x : µ{x} > 0} is countable and µ-conegligible, X0 ⊆ ω[N] for
almost every ω, and for such ω, 〈F (ω↾n, f)〉n≥1 converges µ-almost everywhere to f .

2D Proposition Let (X, ρ) be a separable metric space, and µ a topological probability measure on X.
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(a) If X0 is the support of µ, then for every k ∈ N, X0 = ω[N \ k] for λ-almost every ω.
(b) If f : X → R is continuous, there are conegligible sets Ω0 ⊆ Ω,X0 ⊆ X such that limn→∞ F (ω↾n, f)(x) =

f(x) whenever x ∈ X0 and ω ∈ Ω0.

proof (a) Then X0 is separable, so its topology has a countable base U . For each U ∈ U \ {∅}, µU > 0, so
{ω : ω[N \ k] ∩ U 6= ∅} is conegligible; accordingly

Ω′
0 = {ω : ω[N \ k]) ⊇ X0}
⊇

⋂

U∈U\{∅}
{ω : U ∩ ω[N \ k] 6= ∅}

is conegligible. On the other hand, X0 is µ-conegligible, so XN
0 and Ω0 = Ω′

0 ∩XN
0 are λ-conegligible.

(b) If ω ∈ Ω0 and x ∈ X0, then ω[N] meets every neighbourhood of x, so limn→∞ ρ(x, ω[n]) = 0 and

limn→∞ F (ω↾n, f)(x) = limn→∞ f(ω(k(ω↾n, x)) = f(x).

2E Zero-one law: Proposition Let (X, ρ) be a separable metric space and µ a topological probability
measure on X.

(a) There is a λ-conegligible set Ω0 ⊆ Ω such that if ω, ω′ ∈ Ω0 are eventually equal, then for µ-almost
every x ∈ X there is an n ∈ N such that F (ω↾m, f)(x) = F (ω′↾m, f)(x) for every m ≥ n and every function
f defined on X.

(b) If f : X → R is a bounded Σ-measurable function, then there is an α ∈ R such that lim supn→∞
∫
F (ω↾n, f)dµ =

α for λ-almost every ω.

proof (a) Let Y be {x : x ∈ X, µ{x} > 0}, so that Y is countable. Set

Ω0 = {ω : Y ⊆ ω[N \ k] and µ(ω[N \ k]) = 1 for every k ∈ N}.
If ω, ω′ ∈ Ω0 and ω(m) = ω′(m) for every m ≥ l, set I = ω[k]∪ω′[l] \Y ; then µI = 0, so X0 = ω[N \ l] \ I is
µ-conegligible. If x ∈ X0, then either x ∈ Y and there is an n ≥ k such that x ∈ ω[n \ l], or x /∈ Y and there
is an n ≥ l such that ρ(x, ω[n \ l]) < ρ(x, I). The same will now be true for every m ≥ n. So for any m ≥ n
we either have x ∈ Y and ω(k(ω↾m,x)) = x = ω′(k(ω↾m,x)), or x /∈ Y and k(ω↾m,x) = k(ω′↾m,x) ∈ m \ l.
In either case, F (ω↾m, f)(x) = F (ω′↾m, f)(x) for any f .

(b) Set h(ω) = lim supn→∞
∫
F (ω↾n, f)dµ for ω ∈ Ω. Then h is Borel measurable, by 2B(c-i). If ω,

ω′ ∈ Ω0 are eventually equal, then limn→∞(F (ω↾n, f) − F (ω′↾n, f)) = 0 almost everywhere, so

limn→∞(
∫
F (ω↾n, f)dµ−

∫
F (ω′↾n, f)dµ) = 0

and h(ω) = h(ω′). By Fremlin 01, 254Sb, {ω : ω ∈ Ω0, h(ω) > α} has measure either 0 or 1 for every α,
so there is an α such that h(ω) = α for almost every ω.

2F Proposition Let (X, ρ) be a separable metric space and µ a topological probability measure on X.
(a) We have a functional θ : Σ → [0, 1] such that, for any E ∈ Σ, lim supn→∞

∫
F (ω↾n, χE)dµ = θE for

λ-almost every ω ∈ Ω.
(b)(i) θ is a unital submeasure.

(ii) θH ≤ µH for every closed H ⊆ X, and θG ≥ µG for every open G ⊆ X.
(iii) If E ∈ Σ is such that its topological boundary is µ-negligible, then θE = µE.

Remark For the basic properties of submeasures, see Fremlin 02, chap. 39.

proof (a) This is just a re-statment of 2Eb.

(b)(i) Elementary.

(ii)(ααα) Let H ⊆ X be closed, and ǫ > 0. Then there is a continuous f : X → R such that χH ≤ f
and

∫
fdµ ≤ µH + ǫ. Now, for almost every ω ∈ Ω, 〈Fn(ω↾n, f)〉n≥1 converges to f µ-almost everywhere,

by 2D. It follows at once that, for almost every ω,
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θH = lim sup
n→∞

F (ω↾n, χH)dµ

≤ lim sup
n→∞

F (ω↾n, f)dµ =

∫
fdµ ≤ µH + ǫ;

as ǫ is arbitrary, θH ≤ µH.

(βββ) If now G ⊆ X is open, then

µG = 1 − µ(X \G) ≤ θX − θ(X \G) ≤ θG

because θ is a unital submeasure.

(iii) We have

µE = µ(intE) ≤ θ(intE) ≤ θE ≤ θE ≤ µE = µE.

2G Theorem Let (X, ρ) be a separable metric space, µ a topological probability measure on X and
θ : Σ → [0, 1] the functional described in 2F. Then the following are equiveridical:

(i) µ is Mycielski-regular;
(ii) θ is absolutely continuous with respect to µ;
(iii) θ = µ.

proof (i)⇒(iii)⇒(ii) are immediate.

(ii)⇒(i) Suppose that (ii) is true. Given a measurable f : X → R, then for each k ∈ N take δk > 0 such
that θE ≤ 2−k whenever µE ≤ δk. Then there is a continuous gk : X → R such that Ek = {x : gk(x) 6= f(x)}
has measure at most min(2−k, δk) (Fremlin 03, 418Xq). Now {x : F (̟, f)(x) 6= F (̟, gk)(x)} ⊆ {x :
F (̟,χEk)(x) = 1} for every̟ ∈ ⋃

n≥1X
n. LetWk be the set of ω such that limn→∞ F (ω↾n, gk)(x) = gk(x)

for almost every x and lim supn→∞
∫
F (ω↾n, χEk)dµ ≤ 2−k. Then Wk is conegligible. Set Ω0 =

⋂
k∈N

Wk.
For any ̟,

|F (̟, f) − F (̟, gk)| ∧ χX = F (̟, |f − gk|) ∧ F (̟,χX)

= F (̟, |f − gk| ∧ χX) ≤ F (̟,χEk),

and

|F (̟, f) − f | ∧ χX
≤ |F (̟, f) − F (̟, gk)| ∧ χX + |F (̟, gk) − gk| ∧ χX + |gk − f | ∧ χX
≤ F (̟,χEk) + |F (̟, gk) − gk| ∧ χX + χEk.

So if ω ∈W ,

lim sup
n→∞

∫
|F (ω↾n, f) − f | ∧ χX dµ

≤ lim sup
n→∞

∫
F (ω↾n, χEk)dµ+ lim sup

n→∞

∫
|F (ω↾n, gk) − gk| ∧ χXdµ+ µEk

≤ 2−k + 0 + 2−k = 2−k+1

for every k, and 〈F (ω↾n, f)〉n≥1 converges to f in measure. As f is arbitrary, µ is Mycielski-regular.

2H Remark In this context, note that F (̟,χE) will always be {0, 1}-valued (see the second remark in
2A); if ̟ ∈ Xn,

∫
F (̟,χE)dµ =

∑
z∈E∩̟[n] µV (̟, z).

2I Moderated Voronoi tesselations Let X, ρ, µ, Ω and λ be as in 1B. I will say that µ has moderated
Voronoi tesselations if for every ǫ > 0 there is an M ≥ 0 such that
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∑∞
n=1 λ({ω : µ(

⋃{V ′(ω↾n, z) : z ∈ ω[n], µV ′(ω↾n, z) ≥ M

n
}) ≥ ǫ})

is finite, where here each V ′(ω↾n, z) is the punctured Voronoi tile V (ω↾n, z) \ {z}.

2J Theorem Let (X, ρ) be a separable metric space, and µ a topological probability measure on X which
has moderated Voronoi tesselations. Then µ is Mycielski-regular.

proof Let θ be the submeasure described in 2E-2F. Then θ is absolutely continuous with respect to µ. PPP
Let ǫ > 0. Let M ≥ 0 be such that

∑∞
n=1 λ({ω : µ(

⋃{V ′(ω↾n, z) : z ∈ ω[n], µV ′(ω↾n, z) ≥ M

n
}) ≥ 1

3
ǫ})

is finite, defining V ′(ω↾n, z) as in 2I. Let Ω1 be the set of those ω such that µ(
⋃{V ′(ω↾n, z) : z ∈

ω[n], µV ′(ω↾n, z) ≥ M

n
}) is less than 1

3ǫ for all but finitely many n; then Ω1 is λ-conegligible.

Let δ > 0 be such that 2Mδ ≤ 1
3ǫ, δ ≤ 1

3ǫ and δ ≤ 1
2 . Suppose that µE ≤ δ, and let Ω2 be the set of

those ω such that {n : #({i : i < n, ω(i) ∈ E}) > 2δn} is finite; by the strong law of large numbers, Ω2 is
λ-conegligible. Take any ω ∈ Ω1 ∩ Ω2. Let n be such that

µ(
⋃{V ′(ω↾n, z) : z ∈ ω[n], µV ′(ω↾n, z) ≥ M

n
}) ≤ 1

3ǫ,

#({i : i < n, ω(i) ∈ E}) ≤ 2δn},
and set

I = E ∩ ω[n], J = {z : z ∈ ω[n], µV ′(ω↾n, z) ≥ M

n
}.

We have

∫
F (ω↾n, χE)dµ =

∑

z∈I

µV (ω↾n, z) = µI +
∑

z∈I∩J

µV ′(ω↾n, z) +
∑

z∈I\J

µV ′(ω↾n, z)

≤ µE +
1

3
ǫ+ #(I \ J) · M

n
≤ 2

3
ǫ+

M#(I)

n
≤ 2

3
ǫ+

2Mδn

n
≤ ǫ.

This is true for all but finitely many n, so lim supn→∞
∫
F (ω↾n, χE)dµ ≤ ǫ; as this is true for almost every

ω, θE ≤ ǫ. As ǫ is arbitrary, θ is absolutely continuous with respect to µ. QQQ
By Theorem 2G, µ is Mycielski-regular.

2K Irregular measures The discussion above refers to ‘topological measures’, meaning measures which
measure all Borel sets (Fremlin 03, 411A). This allows for the possibility that some highly irregular sets are
measurable. However in the context of this note this is a bit beside the point. Let us say that a topological
probability measure µ on a topological space X is almost a Borel measure if for every set E which is
measured by µ there is a Borel set H such that µ(E△H) = 0. (Obvious examples are completions of Borel
measures, like Radon probability measures; another is the image measure µLf

−1 on the split interval I‖

(Fremlin 03, 419L), where µL is Lebesgue measure on [0, 1] and f(t) = t− for t ∈ [0, 1].) Now we have the
following.

2L Proposition Let (X, ρ) be a separable metric space and µ a topological probability measure on X.
(a) If µ is Mycielski-regular, it is almost a Borel measure.
(b) If µ is almost a Borel measure, then µ is Mycielski-regular iff its restriction µB to the Borel σ-algebra

of X is Mycielski-regular.

proof (a) Suppose that E ∈ Σ. Then there is an ω ∈ Ω such that 〈F (ω↾n, χE)〉n≥1 converges in measure
to E. Now there is a sequence 〈nk〉k∈N such that 〈F (ω↾nk, χE)〉k∈N → χE µ-a.e. But all the functions
F (ω↾nk, χE) are Borel measurable (2A above), so if we set

H = {x : limk→∞ F (ω↾nk, f)(x) = 1},
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H is a Borel set and µ(E△H) = 0.

(b) Let λB be the product measure µN

B. Because µ extends µB, λ extends λB (Fremlin 01, 254H).

(i) If µ is Mycielski-regular and E ⊆ X is Borel, then

lim supn→∞
∫
F (ω↾n, χE)dµ = µE

for λ-almost every ω ∈ Ω. But F (̟,χE) is Borel measurable for every ̟, so

lim supn→∞
∫
F (ω↾n, χE)dµB = µBE

for λ-almost every ω ∈ Ω. Moreover, because E is Borel measurable,

ω 7→
∫
F (ω↾n, χE)dµB

is ΛB-measurable for every n ∈ N (2B). But this means that the λ-negligible set

{ω : lim supn→∞
∫
F (ω↾n, χE)dµB 6= µBE}

belongs to ΛB and is λB-negligible. As E is arbitrary, µB is Mycielski-regular, by 2G.

(ii) If µB is Mycielski-regular and E ∈ Σ, there is a Borel set H such that µ(E△H) = 0. Now

W = {ω : ω[N] ∩ (E△H) 6= ∅}
is λ-conegligible, while

W ′ = {ω : lim supn→∞
∫
F (ω↾n, χH)dµB = µBH}

is λB-conegligible, therefore λ-conegligible, and W ∩W ′ is λ-conegligible. But if ω ∈W ∩W ′, F (ω↾n, χH) =
F (ω↾n, χE) for every n, so

lim sup
n→∞

∫
F (ω↾n, χE)dµ = lim sup

n→∞

∫
F (ω↾n, χH)dµ

= lim sup
n→∞

∫
F (ω↾n, χH)dµB = µBH = µE.

As E is arbitrary, µ is Mycielski-regular.

2M Proposition Let (X, ρ) be a metric space. Then the set of Mycielski-regular topological probability
measures on X is convex.

proof (a) Let µ0, µ1 be Mycielski-regular topological measures on X, with domains Σ0 and Σ1 respectively,
and α0 ∈ ]0, 1[; set α1 = 1 − α0 and µ = α0µ0 + α1µ1, so that Σ = Σ0 ∩ Σ1. Let λ0, λ1 and λ be the
corresponding product measures on Ω = XN. Let ν be the product measure on Q = {0, 1}N where each
factor {0, 1} is given the point-supported measure α0δ0 +α1δ1, and let θ be the product measure ν×λ0×λ1

on Z × Ω × Ω.

(b) Define φ : Q× Ω × Ω → Ω by setting

φ(q, ω0, ω1)(n) = ωq(n)(kq(n)(q, n))

for n ∈ N, where

ki(q, n) = #({j : j < n, q(j) = i})
for q ∈ Q, n ∈ N and i ∈ {0, 1}. It is easy to check that φ is inverse-measure-preserving for θ and λ. (Use
Fremlin 01, 254G.)

(c) ??? Suppose, if possible, that µ is not Mycielski-regular. Let f : X → R be a Σ-measurable function
such that

{ω : 〈F (ω↾n, f)〉n≥1 does not converge in measure to f}

=
⋃

m∈N

⋂

k≥1

⋃

n≥k

{ω :

∫
χX ∧ |F (ω↾n, f) − f |dµ ≥ 2−m}
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is not λ-negligible. We therefore have an ǫ > 0 such that

W =
⋂

k≥1

⋃
n≥k{ω :

∫
χX ∧ |F (ω↾n, f) − f |dµ > 2ǫ}

is not λ-negligible, while W ∈ Λ, by 2B. Accordingly θφ−1[W ] > 0. Setting Q0 = {q : q ∈ Q is not eventually
constant}, Q0 is ν-conegligible, so there is a q ∈ Q0 such that V = {(ω0, ω1) : (q, ω0, ω1) ∈ φ−1[W ]} is not
(λ0 × λ1)-negligible.

However, because µ0 and µ1 are both Mycielski-regular, and f is Σi-measurable for both i,

Vi = {ω : limn→∞
∫
χX ∧ |F (ω↾n, f) − f |dµ = 0}

is λi-conegligible for both i, and V0 × V1 is λ0 × λ1-conegligible. There must therefore be a k ∈ N such that

{(ω0, ω1) :

∫
χX ∧ |F (ω0↾n, f) − f |dµ ≤ ǫ,

∫
χX ∧ |F (ω1↾n, f) − f |dµ ≤ ǫ for every n ≥ k}

is non-empty. Take any point (ω0, ω1) in the intersection. Let l ≥ 1 be such that ki(q, l) = #({j : j < l,
q(j) = i}) ≥ k for both i. Then ω = φ(q, ω0, ω1) belongs to W , so there is an n ≥ l such that

∫
χX ∧ |F (ω↾n, f) − f |dµ > 2ǫ.

However, if we look at ω[n], we see that it is precisely ω0[k0(q, n)]∪ω1[k1(q, n)]. If z ∈ ω[n] and x ∈ V (ω↾n, z),
then if z ∈ ω0[k0(q, n)] we must have x ∈ V (ω0↾k0(q, n), z) and

F (ω↾n, f)(x) = f(z) = F (ω0↾k0(q, n), f)(x),

while if z ∈ ω1[k1(q, n)] we must have x ∈ V (ω1↾k1(q, n), z) and

F (ω↾n, f)(x) = f(z) = F (ω1↾k1(q, n), f)(x).

But this means that

|F (ω↾n, f) − f | ≤ |F (ω0↾k0(q, n), f) − f | ∨ |F (ω1↾k1(q, n), f) − f |,
while k0(q, n) ≥ k0(q, l) and k1(q, n) ≥ k1(q, l) are both at least k; so

2ǫ <

∫
χX ∧ |F (ω↾n, f) − f |dµ

≤
∫

(χX ∧ |F (ω0↾k0(q, n), f) − f |) + (χX ∧ |F (ω1↾k1(q, n), f) − f |)dµ ≤ 2ǫ

which is absurd. XXX

(d) So µ is Mycielski-regular, as claimed.

2N Proposition Let (X, ρ) be a metric space and µ a topological probability measure on X. Let Y ⊆ X
be a set of full outer measure; set ρY = ρ↾Y × Y and let µY be the subspace measure on Y . Then µY is
Mycielski-regular iff µ is.

proof (a) Set ΩY = Y N; then ΩY has full outer measure for λ = µN, and the subspace measure λY induced
by λ on ΩY is the product measure µN

Y (Fremlin 01, 254L). Note that if ̟ ∈ Y n, then the Voronoi
tesselation of Y corresponding to ̟ is precisely 〈Y ∩ V (̟, z)〉z∈̟[n] where 〈V (̟, z)〉z∈̟[n] is the Voronoi
tesselation of X corresponding to ̟. So if we have a function f : X → R, and we write FY (̟, f↾Y ) : Y → R

for the function defined on Y by the formulae of 1Ba, then FY (̟, f↾Y ) = F (̟, f)↾Y .
If f : X → R is Σ-measurable and n ∈ N, set

hfn(ω) =
∫

X
χX ∧ |F (ω↾n, f) − f |dµ

for ω ∈ Ω. Then for any ω ∈ ΩY we shall have

hfn(ω) =

∫

X

χX ∧ |F (ω↾n, f) − f |dµ =

∫

Y

χY ∧ |(F (ω↾n, f)↾Y ) − (f↾Y )|dµY

(Fremlin 01, 214F)
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=

∫

Y

χY ∧ |FY (ω↾n, fY − fY |dµY

if we write fY for f↾Y .

(b) Suppose that µ is Mycielski-regular. Let g : Y → R be ΣY -measurable, where ΣY = domµY is the
subspace σ-algebra induced by Σ on Y . Then there is a Σ-measurable f : Y → R extending g (Fremlin

00, 121I). Now we know that

{ω : ω ∈ Ω, limn→∞ hfn(ω) = 0}
is λ-conegligible, so

{ω : ω ∈ ΩY , limn→∞ hfn(ω) = 0}
is λY -conegligible, that is,

{ω : ω ∈ ΩY , limn→∞
∫

Y
χY ∧ |FY (ω↾n, g − g|dµY = 0}

is λY -conegligible. As g is arbitrary, µY is Mycielski-regular.

(c) Suppose that µY is Mycielski-regular, and f : X → R is Σ-measurable. In this case,

W = {ω : ω ∈ Ω, limn→∞
∫

X
χX ∧ |F (ω↾n, f − f |dµ = 0}

belongs to Λ, so

λW = λY (W ∩ ΩY ) = λY {ω : ω ∈ ΩY , lim
n→∞

∫

X

χX ∧ |F (ω↾n, f − f |dµ = 0}

= λY {ω : ω ∈ ΩY , lim
n→∞

∫

Y

χY ∧ |FY (ω↾n, fY − fY |dµY = 0}

(where fY = f↾Y , as before)

= 1.

As f is arbitrary, µ is Mycielski-regular.

3 The one-dimensional case

3A Theorem Let µ be a topological probability measure on R. Then µ has moderated Voronoi tessela-
tions.

proof Let ǫ > 0.

(a) Set p = max(2, ⌈5

ǫ
⌉). Let M ≥ 1 be an integer such that e(p+1)(1− 1

2p )M ≤ 1
2 . By Stirling’s formula

(Fremlin 01, 252Yu), there is an m0 ∈ N such that m! ≥ mme−m for every m ≥ m0.
1 Set γ =

1

21/2Mp
,

n0 = Mpmax(m0, p) + 1.

(b) For the time being (down to the end of (e) below) fix on an n ≥ n0. Set l = ⌊n−1

M
⌋ and m = ⌊ l

p
⌋, so

that m ≥ max(m0, p). For 1 ≤ i ≤ l, set

αi = sup{α : µ ]−∞, α[ ≤ Mi

n
},

so that

µ ]−∞, αi[ ≤ Mi

n
≤ µ ]−∞, αi].

Set J0 = ]−∞, α1], Jl = [αl,∞[ and for 0 < i < l set Ji = [αi, αi+1].

1I suppose that actually m! ≥ mme−m for every m ∈ N.
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(c) (The fiddly bit.)

(i) For i < l, µJi ≥ M

n
≥ µ(int Ji). PPP Ji is a closed interval of one of the forms

]−∞, α1], [αi, αi+1],

so that µJi is one of

µ ]−∞, α1], µ ]−∞, αi+1] − µ ]−∞, αi[,

and in either case has measure at least
M

n
. On the other hand, intJi is of one of the forms

]−∞, α1[, ]αi, αi+1[,

and its measure is one of

µ ]−∞, α1[, µ ]−∞, αi+1[ − µ ]−∞, αi],

which can be at most
M

n
. QQQ

(ii) µ(int Jl) ≤ M

n
. PPP

µ(int Jl) = 1 − µ ]−∞, αl] ≤ 1 − Ml

n
≤ M

n

because Ml ≤ n− 1 < M(l + 1) so n−Ml ≤M . QQQ

(iii) If C ⊆ R is an interval (bounded or unbounded, open, closed, or half-open) and µC >
2M

n
, then

there is an i < l such that Ji ⊆ C. PPP As µC > µ(int Jl), there is a first i < l such that C ∩ Ji is non-empty.
If Ji ⊆ C we can stop. Otherwise, C cannot contain inf Ji (because if this is finite it belongs to Ji−1), and
µC > µ(int Ji), so C contains the upper endpoint of Ji, which is αi+1. Now set C ′ = ]−∞, αi] if i > 0, ∅ if
i = 0; C ∩ C ′ = ∅ and

Mi

n
≤ µC ′ ≤ 1 − µC <

n−2M

n
≤ M(l−1)

n

because n ≤M(l + 1). Thus i+ 1 < l. At the same time,

µ ]−∞, αi+2[ ≤ M(i+2)

n
< µ(C ∪ C ′) ≤ µ ]−∞, supC]

so αi+2 ≤ supC. If supC ∈ C, then αi+2 ∈ C; if supC /∈ C then

µ ]−∞, αi+2[ ≤ M(i+2)

n
< µ(C ∪ C ′) ≤ µ ]−∞, supC[

and αi+2 < supC, so again αi+2 ∈ C. Thus we have Ji+1 ⊆ C, which will do very well. QQQ

(iv) If C ⊆ R is an interval, then µC ≤ 2M

n
+

M

n
#({i : i < l, Ji ⊆ C}). PPP The set K = {i : i < l,

Ji ⊆ C} is of the form i1 \ i0 where i0 ≤ i1 ≤ l. Set i′0 = max(0, i0 − 1) and i′1 = i1 + 1; then C ⊆
]
αi′0

, αi′1

[

(counting α0 as −∞ and αl+1 as ∞), and

µC ≤ µ
]
−∞, αi′1

[
− µ

]
−∞, αi′0

]
≤ Mi′1

n
− Mi′0

n
≤ M(#(K)+2)

n
. QQQ

(v) If K ⊆ l then µ(
⋃

i∈K Ji) ≥ M#(K)

n
. PPP If K is of the form i1 \ i0, where i0 ≤ i1 ≤ l, then

—– if i0 = 0,

µ(
⋃

i∈K Ji) = µ(]0, αi1 ]) ≥
Mi1

n
=

M#(K)

n
;

—– if i0 > 0,
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µ(
⋃

i∈K Ji) = µ([αi0 , αi1 ]) = µ ]−∞, αi1 ] − µ ]−∞, αi0 [ ≥
Mi1

n
− Mi0

n
=

M#(K)

n
.

Generally, we can induce on #(K), as follows. The case K = ∅ is trivial. For the inductive step to #(K) ≥ 1,
set j = maxK and consider the component C of

⋃
i∈K Ji including Jj . This must be of the form

⋃
i∈i1\i0

Ji

where i0 ≤ j < i1 ≤ l. So

µC ≥ M(i1−i0)

n
≥ M#(K∩i1\i0)

n
=

M#(K\i0)
n

.

On the other hand,
⋃

i∈K Ji \ C =
⋃

i∈K∩i0
Ji is disjoint from C, and #(K ∩ i0) < #(K), so, using the

inductive hypothesis,

µ(
⋃

i∈K

Ji) = µ(
⋃

i∈K∩i0

Ji) + µ(
⋃

i∈K∩i1\i0

Ji)

≥ M#(K∩i0)

n
+

M#(K\i0)
n

=
M#(K)

n
. QQQ

(d) For ω ∈ Ω, set

Hn(ω) =
⋃{V ′(ω↾n, z) : z ∈ ω[n], µV ′(ω↾n, z) ≥ 4M+1

n
},

Kω = {i : i < l, Ji ⊆
⋃

z∈ω[n] V
′(ω↾n, z)}.

Then µHn(ω) ≤ 5M

n
#(Kω). PPP If z ∈ ω[n] and the punctured tile V ′(ω↾n, z) has measure greater than

4M

n
,

then V ′(ω↾n, z) has two components, one on each side of z, both intervals, and at least one has measure

greater than
2M

n
, so must include some Ji for i < l, by (c-iii). Thus the number of components of Hn(ω) is

at most 2#(Kω). Let C be the set of components of Hn(ω). For each C ∈ C, µC ≤ 2M

n
+

M

n
#({i : i < l,

Ji ⊆ C}), by (c-iv). So

µHn(ω) =
∑

C∈C
µC ≤

∑

C∈C

M

n
#({i : Ji ⊆ C}) +

2M

n
#(C)

≤ M

n
#({i : Ji ⊆ Hn(ω)}) +

4M

n
#(Kω) ≤ 5M

n
#(Kω) QQQ

It follows that if µH(ω) ≥ ǫ,

#(Kω) ≥ nǫ

5M
ǫ ≥ ǫl

5
≥ l

p
≥ m.

(e) We find that

λ{ω : µHn(ω) ≥ ǫ} ≤ γn.

PPP By the last remark in (d), {ω : µHn(ω) ≥ ǫ} ⊆ {ω : #(Kω) ≥ m} has measure at most

λ{ω : #(Kω) ≥ m} ≤
∑

K∈[l]m

λ{ω : ω[n] does not meet
⋃

i∈K

Ji}

≤ #([l]m)(1 − Mm

n
)n

(because by (c-vi),
⋃

i∈K Ji has measure at least
Mm

n
for every K ∈ [l]m)

≤ #([m(p+ 1)]m)(1 − Mm

n
)n

(because m ≥ p and l ≤ (m+ 1)p ≤ m(p+ 1))
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≤ (m(p+1))m

m!
(1 − 1

2p
)Mmp

(because Mmp ≤Ml < n ≤M(l + 1) ≤M(m(p+ 1) + 1) ≤ 2Mmp)

=
e−mmm

m!
(e(p+ 1)(1 − 1

2p
)Mp)m ≤ 1

2m
≤ 1

2n/2Mp
= γn. QQQ

(f) At last we are ready to vary n. Since (b)-(e) apply to all n ≥ n0, and γ < 1, we have

∞∑

n=1

λ{ω : µ(
⋃

{V ′(ω↾n, z) : z ∈ ω[n], µV ′(ω↾n, z) ≥ 4M+1

n
}) ≥ ǫ}

≤ n0 +

∞∑

n=n0

λ{ω : µHn(ω) ≥ ǫ} ≤ n0 +

∞∑

n=n0

γn <∞.

As ǫ is arbitrary, the definition in 2I is satisfied and µ has moderated Voronoi tesselations.

3B Corollary If µ is a topological probability measure on R, it is Mycielski-regular.

proof Put 2J and 3A together.

3C Remark The definition in 1Bb refers to convergence in measure of sequences 〈F (ω↾n, f)〉n≥1. The
corresponding question for almost-everywhere convergence has a positive answer for separable X and con-
tinuous f (see 2D) but not for general measurable f , even in the one-dimensional case; when (X, ρ, µ) is
the unit interval with its usual metric and Lebesgue measure, there is a construction in Mycielski p10,
§4 of an open set G ⊆ X such that, for λ-almost every ω, 〈F (ω↾n, χG)〉n≥1 does not converge µ-almost
everywhere to χG.

4 The homogeneous case

4A(a) In this section, I will suppose that the metric space (X, ρ) of 1B is compact and that its isometry
group G is sesquitransitive, that is, for any x, y ∈ X there is an R ∈ G such that Rx = y and Ry = x.
Give G its topology of pointwise convergence, so that G is a compact Hausdorff topological group (Fremlin

03, 441G), and has a unique Haar probability measure ν. In this case there is exactly one isometry-invariant
Radon probability measure on X (Fremlin 03, 441H and 443Ud); I will suppose that µ is that invariant
measure.

(b)(i) For any T ∈ G, the map ω 7→ Tω : Ω → Ω is an isomorphism of the measure space (Ω, λ), just
because x 7→ T (x) is an isomorphism of (X,µ).

(ii) Note that (T, ω) 7→ Tω : G × Ω → Ω is continuous (Fremlin 03, 441Ga, or otherwise), and also
that it is inverse-measure-preserving for the product measure ν × λ and λ. PPP If W ⊆ Ω is a Borel set, then
W ′ = {(T, ω) : Tω ∈W} is a Borel set, so

(ν × λ)(W ′) =
∫
λ{ω : Tω ∈W}ν(dT ) =

∫
λWν(dT ) = λW .

As λ is inner regular with respect to the Borel sets, this is enough to show that (T, ω) 7→ Tω is inverse-
measure-preserving (Fremlin 03, 412K). QQQ

(iii) Another useful fact: if z ∈ X, then T 7→ T (z) : G → X is inverse-measure-preserving for
ν and µ. PPP It is continuous, so defines an image Radon probability measure ν′ on X by the formula
ν′E = ν{T : T (z) ∈ E} for every Borel set E ⊆ X. Now, for any S ∈ G, ν′S−1[E] = ν{T : ST (z) ∈ E} =
ν{T : T (z) ∈ E} because ν is translation-invariant; but this means that ν′S−1[E] = ν′E for every Borel set
E, so that ν′ is S-invariant. As S is arbitrary, ν′ is isometry-invariant; but µ is the only isometry-invariant
Radon probability measure on X, so ν′ = µ and T 7→ T (z) is (ν, µ)-inverse-measure-preserving. QQQ

(c) For examples of the situation in (a) above, we have a sphere (in any Euclidean space), with either
the Euclidean metric or the great-circle metric, and with a normalized Hausdorff measure; also (X, ρ, µ) as
described in Example 2D, and the tori considered in 5A below.
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4B Proposition In the context of 1B/4A,

(λ× µ){(ω, x) : F (ω↾n, f)(x) ≥ α} = µ{x : f(x) ≥ α}
whenever n ≥ 1, f : X → R is Σ-measurable and α ∈ R.

proof Set γ = µ{x : f(x) ≥ α}.
(a) Consider first the case in which f is Borel measurable, so that the functions (ω, x) 7→ F (ω↾n, f)(x)

and (T, ω, x) 7→ F (Tω↾n, f)(x) are Borel measurable. For fixed ̟ ∈ Xn, consider k(T̟, x) as defined in
2B. We have

ρ(x, T̟[n]) = ρ(x, T̟[n]) = ρ(x, T [̟[n]]) = ρ(T−1(x),̟[n]),

k(T̟, x) = min{i : ρ(x, T̟(i)) = ρ(x, T̟[n])}
= min{i : ρ(T−1(x),̟(i)) = ρ(T−1(x),̟[n]))} = k(̟,T−1(x)),

F (T̟, f)(x) = f(T̟(k(T̟, x))) = f(T̟(k(̟,T−1(x)))) = F (̟, fT )(T−1(x))

for every T ∈ G and x ∈ X. Next, for any y ∈ X, T 7→ T (y) is inverse-measure-preserving, so

ν{T : f(T (y)) ≥ α} = µ{x : f(x) ≥ α} = γ.

Consequently

(ν × µ){(T, x) : F (T̟, f)(x) ≥ α} = (ν × µ){(T, x) : F (̟, fT )(T−1(x)) ≥ α}

=

∫
µ{x : F (̟, fT )(T−1(x)) ≥ α}ν(dT )

=

∫
µ(T [{x : F (̟, fT )(x) ≥ α}])ν(dT )

=

∫
µ{x : F (̟, fT )(x) ≥ α}ν(dT )

(because each T ∈ G is an isomorphism of (X,µ))

= (ν × µ){(T, x) : F (̟, fT )(x) ≥ α}
= (ν × µ){(T, x) : fT (̟(k(̟,x))) ≥ α}

=

∫
ν{T : fT (̟(k(̟,x))) ≥ α}µ(dx)

=

∫
γ µ(dx) = γ.

Applying this with ̟ = ω↾n,

(λ× µ){(ω, x) : F (ω↾n, f)(x) ≥ α} = (ν × λ× µ){(T, ω, x) : F (Tω↾n, f)(x) ≥ α}
(because the map (T, ω) → Tω is inverse-measure-preserving)

=

∫
(ν × µ){(T, x) : F (Tω↾n, f)(x) ≥ α}λ(dω)

=

∫
γ λ(dω) = γ,

as required.

(b) For general bounded measurable f , we have Borel measurable functions f0, f1 such that f0 ≤ f ≤ f1
and

µ{x : f0(x) ≥ α} = µ{x : f1(x) ≥ α} = γ;

now {(ω, x) : F (ω↾n, f)(x) ≥ α} includes {(ω, x) : F (ω↾n, f0)(x) ≥ α} and is included in {(ω, x) :
F (ω↾n, f1)(x) ≥ α}, so also has measure γ.
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(c) Finally, for general measurable f , set g = arctan f ; then F (̟, g) = arctanF (̟, f) for all ̟, so

{(ω, x) : F (ω↾n, f)(x) ≥ α} = {(ω, x) : F (ω↾n, g)(x) ≥ arctan(α)}
has measure µ{x : g(x) ≥ arctan(α)} = γ.

Remark Note that an alternative expression of this result is

λ{ω : F (ω↾n, f)(ω(n)) ≥ α} = µ{x : f(x) ≥ α} whenever n ≥ 1, f : X → R is Σ-measurable
and α ∈ R

(compare Mycielski p10, Theorem 1).

4C Proposition In the context of 1B/4A,
(a)

∫
F (T̟, f)dµ =

∫
F (̟, fT )dµ whenever T ∈ G, ̟ ∈ ⋃

n≥1X
n and f is µ-integrable.

(b)
∫∫

F (T̟, f)dµ ν(dT ) =
∫
fdµ whenever ̟ ∈ ⋃

n≥1X
n, x ∈ X and f : X → R is µ-integrable.

proof (a) As in part (a) of the proof of 4B, F (T̟, f)(x) = F (̟, fT )(T−1(x)) for all x and T . So
∫
F (T̟, f)dµ =

∫
F (̟, fT )(T−1x)µ(dx) =

∫
F (̟, fT )(x)µ(dx)

because T is an automorphism of (X,µ).

(b)(i) Suppose that f is bounded and Borel measurable. Note that
∫
f(T (y))ν(dT ) =

∫
fdµ for every

y ∈ X, because T 7→ T (y) is inverse-measure-preserving. So

∫∫
F (T̟, f)dµ ν(dT ) =

∫∫
F (̟, fT )(x)µ(dx)ν(dT )

=

∫∫
fT (̟(k(̟,x)))ν(dT )µ(dx)

=

∫
(

∫
fdµ)µ(dx) =

∫
fdµ.

(ii) If f is bounded and integrable, let f0, f1 be Borel measurable functions such that f0 ≤ f ≤ f1 and
both are equal almost everywhere to f . Then

F (T̟, f0) ≤ F (T̟, f) ≤ F (T̟, f1)

for every T , and ∫∫
F (T̟, f0)dµ ν(dT ) =

∫∫
F (T̟, f1)dµ ν(dT ) =

∫
fdµ,

so
∫∫

F (T̟, f)dµ ν(dT ) is defined and equal to
∫
fdµ.

(iii) If f is non-negative and integrable, set fl = f ∧ lχX for l ∈ N. Then 〈F (T̟, fl)〉l∈N is a
non-decreasing sequence with supremum F (T̟, f) for every T , so

∫∫
F (T̟, f)dµ ν(dT ) = sup

l∈N

∫∫
F (T̟, fl)dµ ν(dT )

= sup
l∈N

∫
fldµ =

∫
fdµ.

(iv) Finally, for general integrable f ,

∫∫
F (T̟, f)dµ ν(dT ) =

∫∫
F (T̟, f+)dµ ν(dT ) −

∫∫
F (T̟, f−)dµ ν(dT )

=

∫
f+dµ−

∫
f−dµ =

∫
fdµ.

4D Example There is a compact metric space (X, ρ) with a sesquitransitive isometry group such that
its invariant Radon measure does not have moderated Voronoi tesselations.
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proof Choose integers M0, n0,m0,M1, n1,m1, . . . such that, for every k ∈ N, Mk =
∏

j<k mj (starting with

M0 = 1), nk ≥ 1, nk ≥ 2kMk, Mk(1 − 1

Mk

)nk ≤ 1

2
and mk = 2nk.

For k ∈ N, let Yk be a set with mk elements. Set X =
∏

k∈N
Yk, and Zk =

∏
j<k Yj for k ∈ N (starting

with Z0 = {∅}), so that #(Zk) = Mk. For x, y ∈ X, set

ρ(x, y) = inf{ 1

k+1
: k ∈ N, x↾k = y↾k}.

Then (X, ρ) is a compact metric space. For k ∈ N and σ ∈ Zk set Xσ = {x : σ ⊆ x ∈ X}; then
Xσ = B(x, 1

k+1 ) for every x ∈ Xσ. The isometry group of X contains all functions of the form

x 7→ 〈πk(x(k))〉k∈N

where πk : Yk → Yk is a permutation for each k, so is sesquitransitive. Let µ be the invariant Radon

probability measure; then µXσ = µXτ =
1

Mk

whenever k ∈ N and σ, τ ∈ Zk, so µ is the product of the

uniform probability measures on the factors Yk.

For each k ∈ N, set

Hk = {ω : µ(
⋃{V ′(ω↾nk, z) : z ∈ ω[nk], µV ′(ω↾nk, z) ≥ k

nk

}) ≥ 1

2
},

H ′
k = {ω : ω[nk] ∩Xσ 6= ∅ for every σ ∈ Zk}.

Then H ′
k ⊆ Hk. PPP If ω ∈ H ′

k, then for each σ ∈ Zk let iσ < nk be minimal such that ω(iσ) ∈ Xσ. If we
look at V (ω↾nk, ω(iσ)), we see that this includes

Xσ \ ⋃
i<nk

Xω(i)↾k+1,

because if x ∈ Xσ then iσ is the first i such that ρ(x, ω(i)) ≤ 1

k+1
, while if x /∈ ⋃

i<nk
Xω(i)↾k+1 then

ρ(x, ω[nk]) ≥ 1

k+1
. So

µV ′(ω↾nk, ω(iσ)) = µV (ω↾nk, ω(iσ)) ≥ 1

Mk

− nk

Mk+1

=
1

Mk

(1 − nk

mk

) =
1

2Mk

≥ k

nk

,

so

V ′(ω↾nk, ω(iσ)) ⊆ ⋃{V ′(ω↾nk, z) : z ∈ ω[nk], µV ′(ω↾nk, z) ≥ k

nk

}.

Note also that the calculations just above show that

µV ′(ω↾nk, ω(iσ)) ∩Xσ ≥ 1

2
µXσ.

This is true for each σ ∈ Zk. So

µ(
⋃

{V ′(ω↾nk, z) : z ∈ ω[nk], µV ′(ω↾nk, z) ≥ k

nk

}) ≥
∑

σ∈Zk

µV ′(ω↾nk, ω(iσ)) ∩Xσ

≥
∑

σ∈Zk

1

2
µXσ =

1

2
,

and ω ∈ Hk. QQQ

On the other hand, λH ′
k ≥ 1

2
. PPP For each σ ∈ Zk,

λ{ω : ω[nk] ∩Xσ = ∅} = (1 − 1

Mk

)nk ,

so
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λ(Ω \H ′
k) ≤Mk(1 − 1

Mk

)nk ≤ 1

2
. QQQ

Thus λHk ≥ 1

2
for every k. Now if we take any M ∈ N,

∞∑

n=1

λ({ω : µ(
⋃

{V ′(ω↾n, z) : z ∈ ω[n], µV ′(ω↾n, z) ≥ M

n
}) ≥ 1

2
}

≥
∞∑

k=M

λ({ω : µ(
⋃

{V ′(ω↾n, z) : z ∈ ω[nk], µV ′(ω↾nk, z) ≥ k

nk
}) ≥ 1

2
}

=
∞∑

k=M

λHk = ∞,

and Definition 2I is not satisfied.

5 Lebesgue measure We can hope to apply results proved in the context of §4 to Lebesgue measure on
[0, 1]r, through the following device.

5A Let S1 ⊆ C be the unit circle, regarded as a group under complex multiplication. For ξ, η ∈ S1, set
σ0(ξ, η) = | arg(ξ−1η)|. Let r ≥ 1 be an integer, and set Y = (S1)r with the ℓ2-metric

σ(y, y′) =
√∑r−1

j=0 σ0(y(j), y′(j))2

for y, y′ ∈ Y . Then S1 and Y are compact metric spaces and their isometry groups are sesquitransitive.
The isometry-invariant Radon probability measure µY on Y is its Haar measure. Set X = [0, 1]r, with the
Euclidean metric ρ, and define φ : X → Y by setting

φ(x)(j) = e2πix(j)

for x ∈ X and j < r. Then φ is inverse-measure-preserving for Lebesgue measure µX on X and µY .
Write ΣX , ΣY for the domains of µX , µY respectively. The set X0 = ]0, 1[

r
is a conegligible subset of

X, and for any x ∈ X0 there is a δ > 0 such that σ(φ(x), φ(x′)) = ρ(x, x′) and x′ ∈ X0 whenever either
ρ(x, x′) ≤ δ or σ(φ(x), φ(x′)) ≤ δ. The map ω 7→ φω : XN → Y N is inverse-measure-preserving for the
product measures λX = µN

X and λY = µN

Y . If f : X → R is ΣX -measurable, there is a ΣY -measurable
g : Y → R such that gφ =a.e. f . In this case, for any x ∈ X0, there is a λX -conegligible subset Wx of
XN such that for every ω ∈ Wx there is an n ∈ N such that F (φω↾m, g)(φ(x)) = F (ω↾m, f)(x) for every
m ≥ n. PPP Take δ > 0 such that σ(φ(x), φ(x′)) = ρ(x, x′) whenever either ρ(x, x′) ≤ δ or σ(φ(x), φ(x′)) ≤ δ.
Set Wx = {ω : ρ(x, ω[N]) < δ}. Because µX is strictly positive, Wx is λX -conegligible. If ω ∈ Wx,
there is an n ∈ N such that ρ(x, ω[n]) < δ; now ρ(φ(x), φω[m]) = ρ(x, ω[m]), k(φω↾m,φx) = k(ω↾m,x),
F (φω↾m, g)(φx) = F (ω↾m, f)(x) for every m ≥ n. QQQ

It follows that if g is such that 〈F (ω↾n, g)〉n∈N converges to g in measure for almost every ω ∈ Y N, then
〈F (ω↾n, f)〉n∈N will converge to f is measure for almost every ω ∈ XN.

5B Theorem Let r ≥ 1 be an integer. Let (X, ρ, µ) be [0, 1]r with its Euclidean metric and Lebesgue
measure. Then µ has moderated Voronoi tesselations, so is Mycielski-regular.

proof (a) Take ǫ ∈ ]0, 1]. Set q = (2 + 2
√
r)r. Let m0 be such that m! ≥ e−mmm for m ≥ m0. Set

M = 1 + ⌈ln 10

ǫ
⌉. Set γ =

1

2ǫ/4M
. Set

n0 = ⌈max(
2M

(21/r−1)r
,
4Mm0

ǫ
,
20

ǫ
)⌉.

(b) Take n ≥ n0. Set l = ⌊( n
M )1/r⌋ ≥ 1. Observe that n ≤ M(l + 1)r so l + 1 ≥ 21/r

21/r−1
, l ≥ 1

21/r−1
,

l + 1 ≤ 21/rl and n ≤ 2Mlr. Set m = ⌊ ǫn
4M ⌋ ≥ m0; then

ǫn

5M
≤ ǫn

4M
− 1 ≤ m and

lr

m
≤ n

Mm
≤ 5

ǫ
; also

m ≤ n

4M
≤ lr.
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Let J be the set of hypercubes of the form
∏

j<r[
ij

l ,
ij+1

l ] where ij < l for j < r, so that #(J ) = lr,
⋃J = X and µJ =

1

lr
and diamJ =

√
r

l
for J ∈ J .

(c) Now the key to the proof is the following elementary fact. Suppose that V ⊆ [0, 1]r is convex and
x ∈ V . Set

Ṽ = V ∩ ⋃
y∈V {J : J ∈ J , J ⊆ intB(y, ρ(y, x))}.

Then µ(V \ Ṽ ) ≤ 2Mq

n
. PPP Let K be the set of members of J meeting B(x,

√
r

l ); then #(K) ≤ q, because

each projection of B(x,
√

r
l ) onto a coordinate has length at most

2
√

r

l
and meets at most 2+2

√
r intervals of

the form [ i
r ,

i+1
r ]. If y ∈ V \ ⋃K, let J ∈ J be such that y ∈ J . Then J ⊆ B(y,

√
r

l ), while ρ(y, x) >
√

r
r , so

J ⊆ intB(y, ρ(x, y)) and y ∈ Ṽ . Accordingly V \ Ṽ ⊆ ⋃K is covered by q members of J , and has measure

at most
q

lr
≤ 2Mq

n
. QQQ

I should perhaps remark at this point that because half-spaces in R
r are convex, all sets V (̟, z), as

defined in 1B(a-i) from the Euclidean metric ρ, will be convex.

(d) For ω ∈ Ω, set

Hn(ω) =
⋃{V (ω↾n, z) : z ∈ ω[n], µV (ω↾n, z) >

4Mq

n
},

Kω = {J : J ∈ J , J ∩ ω[n] = ∅}.

Then µHn(ω) ≤ 4M

n
#(Kω). PPP If z ∈ ω[n] and V (ω↾n, z) has measure greater than

4Mq

n
, then for every

y ∈ V (ω↾n, z), intB(y, ρ(y, z)) does not meet ω[n], and every member of J included in intB(y, ρ(y, z))

belongs to Kω. By (c), V (ω↾n, z) \ ⋃Kω has measure at most
2Mq

n
. Consequently

µ(V (ω↾n, z)) ≤ 2µ(V (ω↾n, z) ∩ ⋃Kω).

Summing over the relevant z,

µHn(ω) ≤ 2µ(Hn(ω) ∩ ⋃Kω) ≤ 2

lr
#(Kω) ≤ 4M

n
#(Kω). QQQ

It follows that if µHn(ω) ≥ ǫ, #(Kω) ≥ ǫn

4M
≥ m.

(e) We find that

λ{ω : µHn(ω) ≥ ǫ} ≤ γn.

PPP By the last remark in (d), {ω : µHn(ω) ≥ ǫ} ⊆ {ω : #(Kω) ≥ m} has measure at most

λ{ω : #(Kω) ≥ m} ≤
∑

K∈[J ]m

λ{ω : ω[n] does not meet
⋃

K}

≤ #([J ]m)(1 − m

lr
)n ≤ lrm

m!
(1 − m

lr
)Mlr

(because Mlr ≤ n)

≤ emlrm

mm
(1 − 1

lr
)Mmlr

(because m ≥ m0 and 1 − m

lr
≤ (1 − 1

lr
)m)

≤ emlrm

mm
(
1

e
)Mm

(because ln(1 − x) ≤ −x, so (1 − x)1/x ≤ 1

e
for every x > 0)
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≤
( elr

meM

)m ≤
( 5e

ǫeM

)m ≤ 1

2m

(by the choice of M)

≤ 1

2ǫn/4M
= γn.

(f) At last we are ready to vary n. Since (b)-(e) apply to all n ≥ n0, and γ is less than 1, we have

∞∑

n=1

λ{ω : µ(
⋃

{V (ω↾n, z) : z ∈ ω[n], µV (ω↾n, z) ≥ 4Mq

n
}) ≥ ǫ}

≤ n0 +
∞∑

n=n0

λ{ω : µHn(ω) ≥ ǫ} ≤ n0 +
∞∑

n=n0

γn <∞.

As ǫ is arbitrary, the definition in 2I is satisfied and µ has moderated Voronoi tesselations. By Theorem 2J,
it follows at once that µ is Mycielski-regular.

5C Proposition In 1B, let (X, ρ, µ) be the unit interval with its usual metric and Lebesgue measure.
Let 〈βn〉n∈N be any sequence in R converging to 0. Then there are a continuous function g : X → [0, 1] and
a sequence 〈nk〉k∈N in N\{0} such that

∫
min(1, |F (ω↾nk, g)−g|)dµ ≥ βnk

for every k ∈ N and every ω ∈ Ω.

proof Let 〈nk〉k∈N be such that βnk
≤ 2−2k−6 for every k. Set

g(x) = 2−k sin(2k+4nkπx) if k ∈ N and 2−k−1 < x ≤ 2−k,

= 0 if x = 0.

Take k ∈ N and ω ∈ Ω. Set δ =
1

2k+3nk

, so that if 4nk ≤ j < 8nk, then g(x) = sin(
2πx

δ
) for jδ ≤ x ≤

(j + 1)δ. Set

K = {i : 2nk ≤ i < 4nk, ω[nk] ∩ ]2iδ, (2i+ 2)δ[ = ∅}.
Then #(K) ≥ nk, and for i ∈ K, there can be at most two values of z ∈ ω[nk] such that V (ω↾nk, z) meets
]2iδ, (2i+ 2)δ[. For these i, therefore, at least one of ]2iδ, (2i+ 1)δ[, ](2i+ 1)δ, (2i+ 2)δ[ is included in a
single tile V (ω↾nk, z), and accordingly F (ω↾nk, g) must be constant on that interval; call it Ii. Now since g
runs through a full cycle in the interval Ii, with magnitude 2−k, the subintervals {x : x ∈ Ii, g(x) ≥ 2−k−1}
and {x : x ∈ Ii, g(x) ≤ −2−k−1} both have length

δ

3
. But this means that

∫
Ii
|F (ω↾nk, g) − g|dµ ≥ δ

3
· 2−k−1.

Summing over i ∈ K,

∫
min(1, |F (ω↾nk) − g|)dµ =

∫
|F (ω↾nk) − g|dµ ≥ δ#(K)

3
· 2−k−1

≥ 2−k−3nkδ = 2−2k−6 ≥ βnk
,

as required.

5D Corollary If (X, ρ, µ) is [0, 1] with its usual metric and Lebesgue measure, there is a continuous
function g : X → [0, 1] such that 〈‖F (ω↾n, g) − g‖1〉n≥1 does not converge to 0 at a geometric rate for any
ω ∈ Ω.

proof Take a sequence 〈βk〉k∈N → 0 such that limk→∞ eγkβk = ∞ whenever γ > 0, and apply 5C.

6 The Lebesgue density property

6A Definition I will say that a locally finite topological measure µ on a metric space (X, ρ) has the
Lebesgue density property if µ has a support and for any set E ⊆ X measured by µ we have
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limδ↓0
µ(E∩B(x,δ)

µB(x,δ)
) = 1

for µ-almost every x ∈ E, where B(x, δ) is the closed ball with centre x and radius δ. (Saying that µ is ‘locally
finite’ amounts to saying that for every x ∈ X there is a δ > 0 such that µB(x, δ) <∞. Saying that ‘µ has
a support’ amounts to saying that, for µ-almost every x, µB(x, δ) > 0 for every δ > 0.) By Besicovitch’s
density theorem (Fremlin 03, 472D), every Radon measure on Euclidean space has the Lebesgue density
property.

6B Theorem (Mycielski p10, Theorem 1) Suppose that (X, ρ) is a separable metric space and µ is
a topological probability measure on X with the Lebesgue density property. Let f : X → R be a domµ-
measurable function. For n ≥ 1, define gn : Ω ×X → R by setting gn(ω, x) = F (ω↾n, f)(x) − f(x). Then
〈gn〉n≥1 converges in measure (for the product measure λ× µ) to the zero function on Ω ×X.

6C Besides convergence in measure, as considered in 1Bb and 6B, and pointwise convergence, as in 3C,
we can ask for convergence of Cesaro limits, calculated as follows. Let µ be a topological probability measure
on a metric space (X, ρ). For n ≥ 1, ̟ ∈ Xn and x ∈ X, set J(̟,x) = {i : i < n, ρ(x,̟(i)) < ρ(x,̟(j))

for j < i}. Now, for f : X → R, set F (̟, f)(x) =
1

#(J(̟,x))

∑
i∈J(̟,x) f(̟(i)). Under what circumstances

shall we have 〈F (ω↾n, f)〉n≥1 converging almost everywhere to f , for almost every ω? The interesting case

is when X is separable, and now we also want µ to be atomless, since if µ{x} > 0 then 〈F (ω↾n, f)(x)〉n≥1

will be eventually constant for almost every ω.

6D Theorem (Mycielski p10, Theorem 2) If (X, ρ) is a metric space and µ is an atomless topological
probability measure on X with the Lebesgue density property, then for any bounded domµ-measurable
function f : X → R, 〈F (ω↾n, f)〉n≥1 → f µ-a.e. for λ-almost every ω.

6E Let (X, ρ, µ) be the unit interval with its usual metric and Lebesgue measure. In Mycielski p10,
§4, there is an example of a measurable function f : X → [0,∞[ such that

〈F (ω↾n, f)〉n≥1

does not converge µ-almost everywhere to f , for λ-almost every ω.
However the question remains open for integrable f (8E).

7 L1-convergence

So far, we have mostly been considering convergence in measure. If we have an integrable function f , we
can also ask whether 〈F (f, ω↾n)〉n≥1 converges to f for ‖ ‖1 for many ω. This seems to be a hard question
in general. However I can give positive answers in a couple of cases. The first is straightforward, in view of
the results so far.

7A Proposition Let (X, ρ) be a separable metric space, and µ a Mycielski-regular topological probability
measure on X with domain Σ. Let f : X → R be a bounded Σ-measurable function. Then limn→∞

∫
|f −

F (f, ω↾n)|dµ = 0 for λ-almost every ω ∈ Ω.

proof (a) Suppose that f = χE where E ∈ Σ. By Proposition 2F and Theorem 2G, lim supn→∞
∫
F (f, ω↾n)dµ =

µE =
∫
fdµ for almost every ω; we also know that 〈F (f, ω↾n)〉n≥1 converges in measure to f , for almost

every ω; by Fremlin 01, 245H(a-ii), limn→∞
∫
|f − F (f, ω↾n)|dµ = 0 for almost every ω.

(b) It follows at once that limn→∞
∫
|f − F (f, ω↾n)|dµ = 0 for almost every ω whenever f : X → R is a

simple function.

(c) In general, given a bounded measurable f : X → R and ǫ > 0, there is a simple function g : X → R

such that |g − f | ≤ ǫχX. In this case,

|f − F (f, ω↾n)| ≤ |g − F (g, ω↾n)| + 2ǫχX

for every ω, so lim supn→∞
∫
|f − F (f, ω↾n)|dµ ≤ 2ǫ for almost every ω; as ǫ is arbitrary, limn→∞

∫
|f −

F (f, ω↾n)|dµ = 0 for almost every ω.
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7B Not every Mycielski-regular measure will give much more than this, as the following example (based
on the same idea as Example 1D) shows.

Example There are a compact metric space (X, ρ), a point-supported probability measure µ on X, and a
function f : X → [0,∞[ such that

∫
fpdµ <∞ for every p ∈ [1,∞[ but lim supn→∞

∫
F (f, ω↾n)dµ = ∞ for

λ-almost every ω ∈ Ω.

proof (a) Choose αn, δn, kn, ηn and mn, for n ∈ N, such that

αn = 2n+2(n+ 1), αnδ
1/(n+1)
n = 2−n,

(1 − δn)kn ≤ 2−n−1,

knηn ≤ 2−n−2, δn + (mn − 1)ηn = 2−n−1.

(b) Set X = {0} ∪ {(n, i) : n ∈ N, i < mn} and define ρ : X ×X → [0,∞[ by setting

ρ(0, (n, i)) = ρ((n, i), 0) =
1

n+1
whenever n ∈ N, i < mn,

ρ((n, i), (n′, i′)) =
1

n+1
+

1

n′+1
whenever n, n′ ∈ N are different, i < mm and i′ < mn′ ,

ρ((n, 0), (n, i)) = ρ((n, i), (n, 0)) =
1

n+2
whenever n ∈ N and 0 < i < mn,

ρ((n, i), (n, j)) = ρ((n, j), (n, i)) =
1

n+3
whenever n ∈ N and 0 < i < j < mn,

ρ(x, x) = 0 for every x ∈ X.

It is easy to see that (X, ρ) is a compact metric space.

(c) Let µ be the point-supported measure on X such that µ{0} = 0 and µ{(n, 0)} = δn and µ{(n, i)} = ηn

whenever n ∈ N and 0 < i < mn. Because
∑∞

n=0 δn + (mn − 1)ηn = 1, µ is a probability measure.

(d) Define f : X → [0,∞[ by setting

f(n, 0) = αn for n ∈ N, f(x) = 0 for other x ∈ X.

If 1 ≤ p <∞, then

‖f‖p ≤ ∑∞
n=0 αnδ

1/p
n <∞

because

αnδ
1/p
n ≤ αnδ

1/(n+1)
n ≤ 2−n

whenever n ≥ p− 1.

(e) Suppose that n ∈ N, ̟ ∈ Xkn and (n, 0) ∈ ̟[kn]; then (n, 0) ∈ V (̟, (n, 0)) and

{i : i < mn, (n, i) /∈ V (̟, (n, 0))} = {i : i < mn, (n, i) ∈ ̟[kn]}
has at most kn members, so µV (̟, (n, 0)) ≥ 2−n−1 − knηn ≥ 2−n−2 and

∫
F (̟, f)dµ ≥ 2−n−2αn ≥ n. At

the same time,

µkn{̟ : ̟ ∈ Xkn , (n, 0) /∈ ̟[kn]} = (1 − δn)kn ≤ 2−n

for each n, so for almost every ω ∈ Ω there are infinitely many n such that (n, 0) ∈ ω[kn], and lim supn→∞ F (ω↾n, f) =
∞.

7C I now turn to a partial result concerning Lebesgue measure on the unit interval, based on ideas in
Grahl 07.

Lemma (Evans & Humke 07) Let (X,Σ, µ) be a probability space and 〈Ei〉i∈I a disjoint family in Σ with

γi = µEi > 0 for every i ∈ I. Set Z =
∏

i∈I Ei with the product probability measure θ =
∏

i∈I
1

γi

µEi
, where

µEi
is the subspace measure on Ei for each i. Suppose that m ∈ N, α ≥ 0 and that f : X → [0, α[ is a

Σ-measurable function. For ̟ ∈ Z set
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h(̟) =
∫

E
fdµ− ∑

i∈I γif(̟(i))

where E =
⋃

i∈I Ei. Then
∫
|h|2mdθ ≤ (2m)!4mα2mγm,

where γ = maxi∈I γi.

proof (a) Let Q be the set of pairs (J, f) where J ∈ [2m]m and f : J → 2m \ J is a function such that
f(i) < i whenever i ∈ J . Then #(Q) ≤ (2m)!. PPP

#(Q) ≤ mm#([2m]m) =
mm

(m!)2
· (2m)!.

Now

(k+1)k+1

((k+1)!)2
=

kk

(k!)2
· 1

k+1
(1 +

1

k
)k ≤ kk

(k!)2
· e

k+1
≤ kk

(k!)2

if k ≥ 2, while

00

(0!)2
=

11

(1!)2
=

22

(2!)2
= 1,

so mm ≤ (m!)2 and #(Q) ≤ (2m)!. QQQ

(b) Let K be the set of functions k : I → {0, . . . , 2m} such that
∑

i∈I k(i) = 2m, and Nk =
(2m)!∏
i∈I

k(i)!

for k ∈ K; let K∗ be {k : k ∈ K, k(i) 6= 1 for every i}. Then
∑

k∈K∗ Nk

∏
i∈I γ

k(i)
i ≤ (2m)!γm. PPP Take any

i∞ /∈ I, set I∞ = I ∪ {i∞}, and let ν be the probability measure on I∞ such that ν{i} = γi for each i ∈ I.
Let ν2m be the product measure on I2m

∞ . Then
∑

k∈K∗ Nkγ
k(i)
i ≤ ν2mW

where

W = {w : w ∈ I2m, w takes at most m values}.
Now for any w ∈W the set

{j : j < 2m, w(j) = w(i) for some i < j}
must have at least m members. So W =

⋃
(J,f)∈QWJf , where WJf = {w : w ∈ I2m, w(j) = w(f(j)) for

every j ∈ J}. On the other hand, if (J, f) ∈ Q and we identify ν2m with the product measure ν2m\J × νJ

on I
2m\J
∞ × IJ

∞ ∼= I2m
∞ , we have

ν2mWJf =

∫

I2m\J

νJ{v : u ∪ v ∈WJf}ν2m\J(du)

=

∫

I2m\J

νJ{v : v(j) = u(f(j)) ∀ j ∈ J}ν2m\J (du)

=

∫

I2m\J

∏

j∈J

γu(f(j))ν
2m\J(du)

≤
∫
γmν2m\J(du) = γm.

So
∑

k∈K∗ Nkγ
k(i)
i ≤ ν2mW ≤ γm#(Q) ≤ (2m)!γm. QQQ

(c) For i ∈ I set

hi(̟) =
∫

Ei
fdµ− γif(̟(i))

for ̟ ∈ Z, so that 〈hi〉i∈I is an independent family of random variables with zero expectation, and h =∑
i∈I hi. Now
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|h|2m = h2m =
∑

k∈K Nk

∏
i∈I h

k(i)
i .

So

∫
|h|2mdθ =

∑

k∈K

Nk

∫ ∏

i∈I

h
k(i)
i dθ =

∑

k∈K

Nk

∏

i∈I

∫
h

k(i)
i dθ

(because the hi are independent)

=
∑

k∈K∗

Nk

∏

i∈I

∫
h

k(i)
i dθ

(because
∫
hidθ = 0 for every i)

≤
∑

k∈K∗

Nk

∏

i∈I

‖hi‖k(i)
∞ ≤

∑

k∈K∗

Nk

∏

i∈I

(2γiα)k(i)

= 22mα2m
∑

k∈K∗

Nkγ
k(i)
i ≤ (2m)!22mα2mγm

by (b).

7D Lemma (Grahl 07, quoting Gut 05) Suppose that p > 1 and that 〈Xi〉i∈I is a finite independent
family of random variables such that E(|Xi|p) is finite for every i ∈ I. Set S =

∑
i∈I Xi. Then

E(|S|p) ≤ max(2p
∑

i∈I E(|Xi|p), 2p2

(
∑

i∈I E(|Xi|))p).

proof It will be enough to deal with the case in which every Xi is non-negative. In this case, set α = E(Sp)
and Si = S −Xi for each i. Then

α =
∑

i∈I

E(Sp−1Xi) =
∑

i∈I

E((Xi + Si)
p−1Xi) ≤ 2p−1

∑

i∈I

E((Xp−1
i + Sp−1

i )Xi)

= 2p−1
∑

i∈I

E(Xp
i ) + E(Sp−1

i Xi) = 2p−1
∑

i∈I

E(Xp
i ) + E(Sp−1

i )E(Xi)

(because Xi and Si are independent)

≤ 2p max(
∑

i∈I

E(Xp
i ),

∑

i∈I

E(Sp−1)E(Xi))

≤ 2p max(
∑

i∈I

E(Xp
i ),

∑

i∈I

(E(Sp))(p−1)/p
E(Xi))

(Fremlin 01, 244Xd)

= 2p max(
∑

i∈I

E(Xp
i ), α(p−1)/p

E(S)).

So if α > 2p
∑

i∈I E(Xp
i ), we must have α ≤ 2pα(p−1)/p

E(S) and α ≤ 2p2

(E(S))p = 2p2

(
∑

i∈I E(Xi))
p.

7E Lemma (see Grahl 07, Theorem 3.2) Let (X,Σ, µ) be a probability space and p > 2; set m =

⌈p(p−1)
p−2 ⌉. Let f : X → [0,∞[ be a Σ-measurable function with

∫
fpdµ <∞, and ǫ > 0. Set β =

∫
fdµ and

C =
2p

ǫp
max(2p‖f‖p

p, 2
p2‖f‖p2

p ) +
24m(2m)!

ǫ2m
.

Let 〈Ei〉i∈I be a finite disjoint family of measurable subsets of X with γi = µEi > 0 for every i ∈ I. Set

Z =
∏

i∈I Ei with the product probability measure θ =
∏

i∈I
1

γi

µEi
, where µEi

is the subspace measure on

Ei for each i. For ̟ ∈ Z set g(̟) =
∑

i∈I γif(̟(i)). Then

θ{̟ : g(̟) ≥ β + ǫ} ≤ Cγp−1
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where γ = maxi∈I γi.

proof (a) For x ∈ X and ̟ ∈ Z, set

f0(x) = f(x) if f(x) ≤ γ−1/p,

= 0 otherwise,

f1(x) = f(x) − f0(x),

g0(̟) =
∑

i∈I

γif0(̟(i)),

g1(̟) =
∑

i∈I

γif1(̟(i)).

(b) Set β0 =
∫

E
f0dµ ≤ β, where E =

⋃
i∈I Ei. Then Lemma 7C tells us that

∫
|β0 − g0(̟)|2mθ(d̟) ≤ (2m)!4mγ−2m/pγm = (2m)!4mγm(p−2)/p ≤ (2m)!4mγp−1.

So

θ{̟ : g0(̟) ≥ β +
1

2
ǫ} ≤ θ{̟ : |β0 − g0(̟)| ≥ 1

2
ǫ}

≤ 22m

ǫ2m

∫
|β0χZ − g0|2mdθ ≤ 24m(2m)!

ǫ2m
γp−1.

(c) By Lemma 7D,

∫
gp
1dθ ≤ max(2p

∑

i∈I

∫

Z

(γif1(̟(i)))pθ(d̟), 2p2

(
∑

i∈I

∫

Z

γif1(̟(i))θ(d̟))p)

= max(2p
∑

i∈I

1

γi

∫

Ei

(γif1(x))
pµ(dx), 2p2

(
∑

i∈I

1

γi

∫

Ei

γif1(x)µ(dx))p)

= max(2p
∑

i∈I

γp−1
i

∫

Ei

f1(x)
pµ(dx), 2p2

(
∑

i∈I

∫

Ei

f1(x)µ(dx))p)

≤ max(2p
∑

i∈I

γp−1

∫

Ei

f1(x)
pµ(dx), 2p2

(

∫

X

f1(x)µ(dx))p)

≤ max(2pγp−1

∫

X

f1(x)
pµ(dx), 2p2

(γ(p−1)/p

∫

X

f1(x)
pµ(dx))p)

(because f1(x) ≥ γ−1/p whenever f1(x) 6= 0, so f1 ≤ γ(p−1)/pfp
1 )

= max(2pγp−1

∫

X

f1(x)
pµ(dx), 2p2

γp−1(

∫

X

f1(x)
pµ(dx))p)

≤ γp−1 max(2p

∫

X

f(x)pµ(dx), 2p2

(

∫

X

f(x)pµ(dx))p)

= γp−1 max(2p‖f‖p
p, 2

p2‖f‖p2

p ).

So

θ{̟ : g1(̟) ≥ 1

2
ǫ} ≤ 2p

ǫp

∫
gp
1dθ ≤

2p

ǫp
max(2p‖f‖p

p, 2
p2‖f‖p2

p )γp−1.

(d) Putting these together,

θ{̟ : g(̟) ≥ β + ǫ} ≤ θ{̟ : g0(̟) ≥ β +
1

2
ǫ} + θ{̟ : g1(̟) ≥ 1

2
ǫ}

≤ 24m(2m)!

ǫ2m
γp−1 +

2p

ǫp
max(2p‖f‖p

p, 2
p2‖f‖p2

p )γp−1

= Cγp−1,
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as claimed.

7F Lemma Let (X,µ) be ]0, 1[ with Lebesgue measure, and n ≥ 2 an integer. Write µn, µn × µk

for the product measures on Xn, Xn × Xk respectively. For ̟ ∈ Xn define 〈ti(̟)〉i<n as in B. Define
φ : Xn → [X]≤n by setting φ(̟) = ̟[n] for ̟ ∈ Xn, and let ζ be the image measure µnφ−1 on [X]≤n.

(a) Suppose that n = 2k is even. Define ψ1 : Xn ×Xk → [X]≤n by setting

ψ1(̟,̟
′) = {t2i(̟) : i < k} ∪ {(1 −̟′(i))t2i(̟) +̟′(i)t2i+2(̟) : i < k − 1}

∪ {(1 −̟′(k − 1))t2k−2(̟) +̟′(k − 1)}.

Then the image measure ζ1 = (µn × µk)ψ−1
1 is equal to ζ.

(b) Suppose that n = 2k is even. Define ψ2 : Xn ×Xk → [X]≤n by setting

ψ2(̟,̟
′) = {t2i+1(̟) : i < k} ∪ {̟′(0)t0(̟)}

∪ {(1 −̟′(i))t2i−1(̟) +̟′(i)t2i(̟) : 1 ≤ i < k}.

Then (µn × µk)ψ−1
2 = ζ.

(c) Suppose that n = 2k + 1 is odd. Define ψ3 : Xn ×Xk → [X]≤n by setting

ψ3(̟,̟
′) = {t2i(̟) : i ≤ k} ∪ {(1 −̟′(i))t2i(̟) +̟′(i)t2i+2(̟) : i < k}.

Then (µn × µk)ψ−1
3 = ζ.

(d) Suppose that n = 2k + 1 is odd. Define ψ4 : Xn ×Xk+1 → [X]≤n by setting

ψ4(̟,̟
′) = {t2i+1(̟) : i < k} ∪ {̟′(0)t1(̟)}

∪ {(1 −̟′(i))t2i−1(̟) +̟′(i)t2i+1(̟) : 1 ≤ i < k}
∪ {(1 −̟′(k − 1))t2k−1(̟) +̟′(k − 1)}.

Then (µn × µk+1)ψ−1
4 = ζ.

Remark Maybe it will help if I try to explain what the functions ψ1, . . . , ψ4 are doing. Given a pair (̟,̟′),
we take every second member of ̟[n] and discard the rest; then we use ̟′ to replace the discarded members
of ̟[n] = φ(̟) by random members of the intervals between the retained members of ̟[n]. The four forms
of the result correspond to whether n is even or odd and whether we are keeping the even members of ̟[n]
or the odd members. Saying that we get the same image measure on [X]≤n in every case amounts to saying
that we can generate our random set K ∈ [X]≤n in two stages, first fixing certain members and then filling
in the gaps independently.

proof (a)(i) If we give [X]≤2k its Fell topology (Fremlin 03, 4A2T), then φ and ψ1 are both continuous,
so ζ and ζ1 are Radon probability measures (Fremlin 03, 418I). Set W = {̟ : ̟ ∈ X2k is injective}; then
W is µ2k-conegligible and W ×Xk is µ2k ×µk-conegligible, while φ[W ] = ψ1[W ×Xk] = [X]2k. Accordingly
[X]2k, which is an open subset of [X]≤2k, is conegligible for both ζ and ζ1.

(ii) It will help to note that if x ∈ X then F = {K : x ∈ K ∈ [X]≤2k} is negligible for both ζ and ζ1.
PPP {̟ : x ∈ ̟[2k]} is µ2k-negligible, so ζF = 0. On the other hand, if ̟ ∈ X2k and x is not a value of ̟,
then

µk{̟′ : (1 −̟′(i))t2i(̟) +̟′(i)t2i+2(̟) = x}
= µk{̟′ : (1 −̟′(k − 1))t2k−2(̟) +̟′(k − 1) = x} = 0

for every i < k − 1, so {̟′ : x ∈ ψ1(̟,̟
′)} is negligible. Accordingly ζ1F = 0. QQQ

(iii) Let ǫ > 0.

(ααα) Let Uǫ be the family of subsets of [X]2k of the form

{K : K ∩ ]αi, βi[ 6= ∅ for i < 2k}
where 0 ≤ αi < βi ≤ 1 for each i, βi − αi ≤ ǫ(αi+1 − βi) for i ≤ 2k− 2, βi − αi ≤ ǫ(αi − βi−1) for i > 0 and
βk−1 − αk−1 ≤ ǫ(1 − βk−1). If U ∈ Uǫ is in the above form,
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ζU = µ2kφ−1[U ] = (2k)!
∏

i<2k(βi − αi).

To estimate (µ2k × µk)ψ−1
1 [U ], set

V = {̟ : ̟ ∈ X2k, α2i < t2i(̟) < β2i for i < k,

β2i < t2i+1(̟) < α2i+2 for i < k − 1, β2k−2 < t2k−1(̟)}.
Then

µ2kV = (2k)!
∏k−1

i=0 (β2i − α2i) ·
∏k−2

i=0 (α2i+2 − β2i) · (1 − β2k−2).

For ̟ ∈ V ,

{̟′ : ψ1(̟,̟
′) ∈ U} =

⋂

i<k−1

{̟′ : α2i+1 < (1 −̟′(i))t2i(̟) +̟′(i)t2i+2(̟) < β2i+1}

∩ {̟′ : α2k−1 < (1 −̟′(k − 1))t2k−2(̟) +̟′(k − 1)}
has measure

k−2∏

i=0

β2i+1−α2i+1

t2i+2(̟)−t2i(̟)
· β2k−1−α2k−1

1−t2k−2(̟)

≥
k−2∏

i=0

β2i+1−α2i+1

(1+2ǫ)(α2i+2−β2i)
· β2k−1−α2k−1

(1+ǫ)(1−β2k−2)

≥ 1

(1+2ǫ)k

k−2∏

i=0

β2i+1−α2i+1

α2i+2−β2i

· β2k−1−α2k−1

1−β2k−2

.

So

ζ1U = (µ2k × µk)ψ−1
1 [U ]

≥ 1

(1+2ǫ)k

k−2∏

i=0

β2i+1−α2i+1

α2i+2−β2i

· β2k−1−α2k−1

1−β2k−2

µ2kV

=
(2k)!

(1+2ǫ)k

k−2∏

i=0

β2i+1−α2i+1

α2i+2−β2i

· β2k−1−α2k−1

1−β2k−2

·
k−1∏

i=0

(β2i − α2i) ·
k−2∏

i=0

(α2i+2 − β2i) · (1 − β2k−2)

=
(2k)!

(1+2ǫ)k

∏

i<2k

(βi − αi) =
ζU

(1+2ǫ)k
.

(βββ) Now let G ⊆ [X]≤2k be an open set. For m ∈ N, set Dm = {2−mk : k ≤ 2m}. If

F = {K : K ∈ [X]2k, K ∩ ⋃
m∈N

Dm 6= ∅} ∪ [X]<2k,

then F is ζ-negligible and ζ1-negligible, by (i)-(ii). For each m, let Vm be the set of members U of Uǫ,
included in G, such that (when expressed in the form of (α) just above) αi, βi are successive members of
Dm for each i < 2k. Note that if m′ ≤ m, U ∈ Vm, U ′ ∈ Vm′ and U ∩ U ′ 6= ∅, then U ⊆ U ′; while

G \ F ⊆ ⋃
m∈N

⋃Vm ⊆ G.

PPP Of course
⋃Vm ⊆ G for every m. If K ∈ G \ F , let 〈si〉i<2k be the increasing enumeration of K, and

δ > 0 such that

δ ≤ ǫ(si+1 − si − 2δ) for every i < 2k − 1, δ ≤ ǫ(1 − s2k−1 − δ),

{K ′ : K ′ ∈ [X]≤2k, K ′ ∩ ]si − δ, si + δ[ 6= ∅ for every i < 2k} ⊆ G.
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Then there is an m ∈ N such that 2−m ≤ δ. For each i < 2k, si /∈ Dm, so we can take successive αi, βi ∈ Dm

such that αi < si < βi, and now

U = {K ′ : K ′ ∈ [X]≤2k, K ′ ∩ ]αi, βi[ 6= ∅ for every i < 2k}
belongs to Vm and contains K. So G \ F ⊆ ⋃

m∈N

⋃Vm. QQQ
Now take

V =
⋃

m∈N
{U : U ∈ Vm, U ∩ U ′ = ∅ whenever m′ < m and U ′ ∈ Vm′}.

Then
⋃V =

⋃
m∈N

⋃Vm. By (α), ζU ≤ (1 + 2ǫ)kζ1U for every U ∈ Uǫ, so

ζG = ζ(
⋃V) =

∑
U∈V ζU ≤ (1 + 2ǫ)k

∑
U∈V ζ1U = (1 + 2ǫ)kζ1G.

(γγγ) This is true for every open G ⊆ [X]≤2k. Since ζ and ζ1 are Radon measures, it follows that
ζ ≤ (1 + 2ǫ)kζ1 (Fremlin 03, 416Ea).

(iv) As ǫ is arbitrary, ζ ≤ ζ1. But both are probability measures, so they must agree on the Borel sets
and are identical.

(b)-(d) The arguments are elementary modifications of those above.

7G Lemma Let (X,µ) be ]0, 1[ with Lebesgue measure, and n ≥ 1. For ̟ ∈ Xn, let E̟ be the family
of components of X \̟[n], and γ̟ = max{µE : E ∈ E̟}. Then

µn{̟ : γ̟ ≥ 1+3 ln n

n
} ≤ 1

n2
.

proof If ̟ ∈ Xn is such that X \ ̟[n] has a component of length
1+3 ln n

n
or more, there must be a

j ≤ n − 3 lnn such that ̟[n] does not meet the interval Ij =

]
j

n
,
j+3 ln n

n

[
. The probability of this

happening, for any particular j, is (1 − µIj)
n; so the probability of it happening for some j is at most

n(1 − 3 ln n

n
)n ≤ n exp(−3 lnn) =

1

n2
.

7H Lemma Let (X, ρ, µ) be ]0, 1[ with its usual metric and Lebesgue measure, and p > 2. Let f : X →
[0,∞[ be such that

∫
fpdµ is finite, and ǫ > 0. Set β =

∫
fdµ, m = ⌈p(p−1)

p−2 ⌉ and

C =
2p

ǫp
max(2p‖f‖p

p, 2
p2‖f‖p2

p ) +
24m(2m)!

ǫ2m
.

If n ≥ 3 and µn is the product measure on Xn, then

µn{̟ :
∫
F (̟, f)dµ ≥ 2(β + ǫ)} ≤ 2(

1

n2
+ (

2+6 ln n

n
)p−1C).

proof (a) Note first that because µ{x : ρ(x, z) = ρ(x, z′)} = 0 for every z, z′ ∈ X, we have a function
h : [X]≤n → [0,∞[ defined by saying that h(K) =

∫
F (̟, f)dµ whenever ̟ ∈ Xn and K = ̟[n] (and

h(∅) = 0, if you like). Let ζ be the measure of Lemma 7F, so that ̟ 7→ ̟[n] is inverse-measure-preserving
for µn and ζ, and

µn{̟ :

∫
F (̟, f)dµ ≥ 2(β + ǫ)} = ζ{K : h(K) ≥ 2(β + ǫ)}

= ζ{K : K ∈ [X]n, h(K) ≥ 2(β + ǫ)}.

Write γ for
1+3 ln n

n
.

(b) For the time being (down to the end of (d) below), suppose that n = 2k is even. Define h1,
h2 : [X]2k → [0,∞[ by saying that if K ∈ [X]2k and 〈ti〉i<2k is the increasing enumeration of K, then
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h1(K) = (1 − t2k−2)f(t2k−1) +
∑k−2

i=0 (t2i+2 − t2i)f(t2i+1),

h2(K) = t1f(t0) +
∑k−1

i=1 (t2i+1 − t2i−1)f(t2i).

Then h(K) ≤ h1(K) + h2(K) for every K ∈ [X]2k, so

ζ{K : K ∈ [X]2k, h(K) ≥ 2(β + ǫ)} ≤ ζ{K : K ∈ [X]2k, h1(K) ≥ β + ǫ}
+ ζ{K : K ∈ [X]2k, h2(K) ≥ β + ǫ}.

(c)(i) To estimate ζ{K : K ∈ [X]2k, h1(K) ≥ β + ǫ}, consider the function ψ1 : X2k × Xk → [X]≤2k

described in Lemma 7F. This is inverse-measure-preserving for the product measure µ2k × µk and ζ, so

ζ{K : K ∈ [X]2k, h1(K) ≥ β + ǫ}
= (µ2k × µk){(̟,̟′) : ̟ is injective, h1(φ1(̟,̟

′)) ≥ β + ǫ}

because µ2k-almost every ̟ is injective, while φ1(̟,̟
′) has 2k elements whenever ̟ is injective. Now set

F = {̟ : ̟ ∈ X2k is injective, every component of X \̟[2k] has length at most γ};

by Lemma 7G, µ2k(X2k \ F ) ≤ 1

n2
. Accordingly

(µ2k × µk){(̟,̟′) : ̟ is injective, h1(φ1(̟,̟
′)) ≥ β + ǫ}

≤ 1

n2
+

∫

F

µk{̟′ : h1(φ1(̟,̟
′)) ≥ β + ǫ}µ2k(d̟).

(ii) If ̟ ∈ F , then

µk{̟′ : h1(φ1(̟,̟
′)) ≥ β + ǫ} ≤ (2γ)p−1C.

PPP Enumerate ̟[2k] in increasing order as 〈ti〉i<2k, and set

K0 = {t2i : i < k},
Ei = ]t2i, t2i+2[ if i < k − 1,

= ]t2k−2, 1[ if i = k − 1.

For any ̟′ ∈ Xk, φ1(̟,̟
′) = K0 ∪ {si(̟

′) : i < k} where si(̟
′) = (1 − ̟′(i)) inf Ei + ̟′(i) supEi for

each i, and h1(φ1(̟,̟
′)) =

∑k−1
i=0 f(si(̟

′))µEi. Now observe that ̟′ 7→ 〈si(̟
′)〉i<k is an isomorphism

between (Xk, µk) and (
∏

i<k Ei, θ), where θ is the product measure
∏

i<k
1

µEi

µEi
as considered in Lemma

7E. So that lemma tells us that

µk{̟′ : ̟′ ∈ Xk, h1(φ1(̟,̟
′)) ≥ β + ǫ}

= θ{̟′ : ̟′ ∈
∏

i<k

Ei,

k−1∑

i=0

f(̟′(i))µEi ≥ β + ǫ}

≤ (max
i<k

µEi)
p−1C ≤ (2γ)p−1C

because each Ei is obtained as the union of two components of X \̟[2k] together with the point between
them. QQQ

(iii) So we see that

ζ{K : K ∈ [X]2k, h1(K) ≥ β + ǫ}
= (µ2k × µk){(̟,̟′) : ̟ is injective, h1(φ1(̟,̟

′)) ≥ β + ǫ}

≤ 1

n2
+ (2γ)p−1C.
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(d) Similarly, using Lemma 7Fb and the function ψ2 there,

ζ{K : K ∈ [X]2k, h2(K) ≥ β + ǫ} ≤ 1

n2
+ (2γ)p−1C.

So

µn{̟ :

∫
F (̟, f)dµ ≥ 2(β + ǫ)} = ζ{K : h(K) ≥ 2(β + ǫ)}

≤ ζ{K : K ∈ [X]2k, h1(K) ≥ β + ǫ}
+ ζ{K : K ∈ [X]2k, h2(K) ≥ β + ǫ}

≤ 2(
1

n2
+ (2γ)p−1C).

(e) This deals with the case of even n. The argument for odd n is essentially the same, using parts (c)
and (d) of Lemma 7F.

7I Theorem Let (X, ρ, µ) be ]0, 1[ with its usual topology and Lebesgue measure, and p > 2. If f : X → R

is such that
∫
|f |pdµ is finite, then

limn→∞
∫
|F (ω↾n, f) − f |dµ = 0

for λ-almost every ω.

proof (a) Note first that if g : X → [0,∞[ is pth-power-integrable,

lim supn→∞
∫
F (ω↾n, g)dµ ≤ 2

∫
|g|dµ

for almost every ω. PPP Let ǫ > 0. As in Lemmas 7E and 7H, set β =
∫
|g|dµ, m = ⌈p(p−1)

p−2 ⌉ and

C =
2p

ǫp
max(2p‖g‖p

p, 2
p2‖g‖p2

p ) +
24m(2m)!

ǫ2m
.

Then 7H tells us that, for any n ≥ 3,

λ{ω :
∫
F (ω↾n, g)dµ ≥ 2(β + ǫ)} ≤ 2(

1

n2
+ (

2+6 ln n

n
)p−1C).

Since
∑∞

n=3 2(
1

n2
+ (

2+6 ln n

n
)p−1C) is finite, {n :

∫
F (ω↾n, g)dµ ≥ 2(β + ǫ)} is finite for almost every ω, and

lim supn→∞
∫
F (ω↾n, g)dµ ≤ 2(β + ǫ)

for almost every ω. As ǫ is arbitrary,

lim supn→∞
∫
F (ω↾n, g)dµ ≤ 2β

for almost every ω. QQQ

(b) Next, given ǫ > 0, we can express |f | as h + g where h : X → R is bounded and continuous and∫
|g|dµ ≤ ǫ. In this case, for almost every ω, 〈F (ω↾n, h)〉n≥1 is uniformly bounded and converges pointwise

to h, while lim supn→∞
∫
F (ω↾n, |g|)dµ ≤ 2ǫ; so

lim sup
n→∞

∫
F (ω↾n, |f |)dµ ≤ lim sup

n→∞

∫
F (ω↾n, h)dµ+ lim sup

n→∞

∫
F (ω↾n, |g|)dµ

≤
∫
hdµ+ 2ǫ ≤

∫
|f |dµ+ 3ǫ.

As ǫ is arbitrary,

lim supn→∞
∫
|F (ω↾n, f)|dµ = lim supn→∞

∫
F (ω↾n, |f |)dµ ≤

∫
|f |dµ

for almost every ω.

(c) However, we already know that µ is Mycielski-regular, by Theorem 5B (or Corollary 3B) and
Proposition 2N. So, for almost every ω, we know that 〈F (ω↾n, f)〉n≥1 converges in measure to f and
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also lim supn→∞
∫
|F (ω↾n, f)|dµ ≤

∫
|f |dµ. But now limn→∞

∫
|f − F (ω↾n, f)|dµ = 0 for all such ω, by

Fremlin 01, 245H(a-ii), as in 7A.

8 Problems The following questions seem to remain open.

8A Is every Radon probability measure on every Euclidean space R
r Mycielski-regular? (This is J.Mycielski’s

original version of the problem, expressed in the language of this note.)

8B Is the measure of Example 4D Mycielski-regular? (I rather think it is.)

8C Is the invariant Radon probability measure on any compact metric space with sesquitransitive isometry
group Mycielski-regular?

8D If (X, ρ) is a separable metric space and µ is an atomless topological probability measure on X with
the Lebesgue density property, must µ be Mycielski-regular?

8E Let (X, ρ, µ) be [0, 1] with its usual metric and Lebesgue measure, and f : X → R a µ-integrable
function. Is it necessarily true that 〈F (ω↾n, f)〉n≥1, as defined in 6C, converges to f µ-a.e. for λ-almost
every ω?

8F Let (X, ρ) be a metric space, µ a Mycielski-regular topological probability measure on X and f :
X → R a µ-integrable function. Under what circumstances do we have limn→∞

∫
F (ω↾n, f)dµ =

∫
fdµ for

almost every ω? (See §7.)
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