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1 The problem

1A Problem GO The problem as asked in my problem sheet was:
Let 1 be a Radon probability measure on X = R", where » > 1, and A = p the product
measure on X". Suppose that F C X is a closed set. For w € X, n > 1 and y € X, set
Coyn = MiN;p, [|w(2) —Y||, kwyn = min{i : ¢ < n, |w(i)=y|| = Coyn}; set Fon = {y : w(kwyn) € F'}.
Is it always the case that lim, o p(FAF,(w)) = 0 for A-almost every w?
In this form, the question remains open, though affirmative answers in special cases are given in Theorems
3B and 5B below. I will look also at generalizations, based on the following definitions.

1B Definitions (a) Let (X, p) be a metric space.

(i) Forn > 1, w € X" and z € w[n], set

V(w,z) ={z:p(z,2) = p(x,w[n]) and if i < j <n and z = w(j) # @w(i)
then p(z, z) < p(z,@(i))};

that is, z = w(j) where j < n is minimal subject to p(x, @(j)) = p(x, @[n]). Now the partition (V (@, 2)) .cwn]
is the Voronoi tesselation defined by w.

(if) If f is any function defined on X, and @ € {J,,5; X", we have a function F'(w, f) defined by setting
F(w, f)(z) = f(2) whenever z is a value of @ and z € V(w, 2).

(b) Now suppose that p is a topological probability measure on X. In this context, ¥ will always be
the domain of p, A the product measure pN on Q@ = XY, and A the domain of X. I will say that p is
Mycielski-regular if, for every Y-measurable f : X — R, (F(w[n, f))n>1 converges in measure to f for
A-almost every w.

1C Example Suppose that X is a set and p is a probability measure with domain PX such that u{z} =0
for every x € X and there is a set H C X such that 0 < uH < 1. (Such a measure exists whenever #(X) is
not measure-free in the sense of FREMLIN 03, §438. In this case, taking disjoint subsets Xy, X7 of X of the
same size as X, we have probability measures pg, p1 with domains P X, PX; and both zero on singletons,
and we can set puE = 1(uo(E N Xo) + p1(E N X)) for every E C X, H = X,.)

Now let p be the zero-one metric on X. In this case, for any n € N and w € X",

V(w,@(0)) = (X \ @[n]) U{=(0)}
has measure 1, while
V(w,z) ={z}

is negligible for z € w[n]\{w(0)}. So [ F(w, f)du = f(w(0)) for every f : X — R. In particular, for w € Q,

lim | F(wln,xH)dp =1if w(0) € H,

n—oo

= 0 otherwise,

and (F'(w[n,xH))n>1 is never convergent in measure to xH. Thus p is not Mycielski-regular.

1D Example Let (ng)ren, (Mk)ken, (Ok)ken be sequences such that, for each k € N,
1
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ng €N, ny =282 M1 - o)™ < o

starting from d9 = My = 1. For each k, let X be a set with 2n; + 1 elements, and t; a point of Xj. Set
X = [Ien Xx and define p: X x X — [0,1] by setting

pz,y) = DYy if 2k = ylk and x(k), y(k) are different members of Xy, \ {tx},
= leJrQ if 27k = ylk and just one of z(k), y(k) is equal to ty,
=0ifx=y

Then (X, p) is a compact metric space. For each k € N, let y; be the probability measure on X}, such that

wr{te} = Qk% and pp{t} = i(l - 216%) for t € Xy \ {tx}; let u be the product measure [], oy i, so that

w1 is a Radon probability measure on X.
w is not Mycielski-regular. I Set

G={z:z€ X, z(k) =ty for some k € N},

so that

oo 1 1
ILLG § Zk=0 9k+3 = Z'

For k€ Nand o € [[; ;, X;, set E, = {z: 2 € X, z[k =0, z(k) = tx}. Note that as p;{t} > % for every
3

j<k:andt€Xj,,uEU>L Set

— k43"

Wi ={w:w € Q, wng NE,; #0 for every o € [[;,, X;}1;

then
n 5 n 1
)‘(Q \ Wk) < ZUEHK;« Xj(l - MEU) k< Mk:(l - ﬁ) k< o
If w € Wy, consider F(w|ng, xG). Set T = Xi \ ({tx} U {w(i)(k) : ¢ < ng}). Then #(T) > ny so
7
weT > 5(uXe \ {ti}) = e

Soif weset H={z:2 € X, z(k) € T}, uH > %. Now if x € H, there is a first ¢ < ny such that
w(i) € Egk, but there is no j < ny such that w(j)[k + 1 = z[k + 1. This means that

pla.w(i)) = 5o = ol wing))

1
2k+1

and p(w(j),z) > for j < i. Accordingly

F(wlng, xG)(@) = xG(w(i)) = L.

Thus we see that p{z : F(wlng, xG)(z) =1} > £ and p{z : |F(w[ng, xG)(x) — xG(z)| =1} > &.
It follows that if w € (J,,eny Npsm Was (F(w[n, XG))n>1 does not converge in measure to xG. Since this
is true for almost every w, u is not Mycielski-regular. @

1E Problem Which topological probability measures on metric spaces are Mycielski-regular?

We have just seen two non-Mycielski-regular examples. There is an easy positive result in 2C, and more
interesting ones in 3B and 5B. In §§4 and 6 I offer general classes of space in which we can hope for further
positive results.

Several of the results below are stated for topological probability measures on separable metric spaces.
In view of Proposition 2N, these will in fact apply to any topological probability measure on a metric space
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for which there is a separable subset of full outer measure (equivalently, a closed separable conegligible set);
it is easy to see that these are just the m-additive topological probability measures.

2 General remarks
2A Elementary facts Let (X, p) be a metric space.

(a) If n > 1, and w € X™ and f is any function with domain X, then F(w, f)[X]C f[X]. f f: X =Y
and g : Y — Z are functions, then F(w,gf) = gF (w, f). More generally, if Yy,... ,Y,,, Z are sets and f; :
X =Y, ¢: 1<, Y; — Z are functions, then ¢(F(w, fo)(2),... , F(@, fm)(z)) = F(@,d(fo,- .. , fm))(2)
for every z € X.

V(w, z) is a Borel set (actually, the intersection of a closed set with an open set) for every z € w[n]; so
if f is real-valued, then F(w, f) is Borel measurable.

(b) Now suppose that p is a topological probability measure on X, as in 1Bb. If f, g are functions
defined on X and equal p-almost everywhere, then for A-almost every w € Q we shall have fw = gw, so
F(wln, f) = F(w|n, g) for every n.

2B It is sometimes convenient to interpolate an extra definition into the description of the functions
F(w, f) in 1B(a-ii): for n € N, w € X™ and = € X, let k(w,z) be the least j such that p(z,w[n]) =
p(z,@(j)), so that x € V(w, w(k(w,x))) and F(w, f) = f(w(k(w,z))) for any function f.
Lemma Let (X, p) be a metric space, u a topological probability measure on X with domain ¥, f: X — R
a Y-measurable function, and n > 1.

(a) The functions (w,z) — k(w,z) : X" X X — n, (w,z) — w(k(w,z)) : X” x X — X are Borel
measurable.

(b) The function (w,z) — F(w|n, f)(z) is B(Q)®X-measurable, where B() is the Borel o-algebra of Q.

(c)(i) w [ F(wln, f)du is B(2)-measurable.

(ii) w— [xX A |F(win, f) — fldp is B(£2)-measurable.

proof (a)(i) For i < n,
{(@,z) : k(w,z) =i} = O{(w,fv) :p(@(j), z) — p(w(i), ) > 0}
j \ 'U'{(w, z) : p(w(j), ) — p(w=(i), z) = 0}
is Borel measurable because all the functions (w, g;)]z p(w(j),z) are continuous.

(ii) Forany « € Rand i < n, E = {z : f(z) < a} belongs to ¥ and the Borel set {(w, z) : k(w[n,z) =i}
belongs to ARY, so

{(w,z) : F(wln, f)(z) < a} = Uy {(w, 2) : k(win,z) = i, w(i) € E} € ARY;
as « is arbitrary, (w,z) — F(w[n, f)(z) is A®Y-measurable.
(¢)(i) Apply Fubini’s theorem in the form FREMLIN 01, 252P to the positive and negative parts of f.
(ii) Of course (w,z) — min(1, |F(wn, f)(z) — f(x)|) is also B(Q)®X-measurable, so we can use the
same form of Fubini’s theorem.
2C Proposition Let (X, p) be a metric space, and p a point-supported probability measure on X. Then
w is Mycielski-regular.

proof If f : X — R is any function and z € X is such that u{z} > 0, then for A-almost every w € Q,
2 € w[N]. So for such w there is an m such that z = w(m), and for any n > m we shall have z € V(w|n, x)
and F(wn, f)(z) = f(x). Since the set Xo = {z : p{z} > 0} is countable and p-conegligible, Xy C w[N] for
almost every w, and for such w, (F(w[n, f)),>1 converges p-almost everywhere to f.

2D Proposition Let (X, p) be a separable metric space, and p a topological probability measure on X.



(a) If Xy is the support of p, then for every k € N, Xy = w[N\ k] for A-almost every w.
(b) If f : X — R is continuous, there are conegligible sets Qg C Q, Xg C X such that lim,, . F(w[n, f)(z) =
f(z) whenever x € X and w € .

proof (a) Then X is separable, so its topology has a countable base U. For each U € U \ {0}, pU > 0, so
{w:w|N\ k]NU # 0} is conegligible; accordingly

0 = {w:w[N\£]) 2 Xo}
D ﬂ {w:UNw[N\ k] # 0}

Ueu\{0}
is conegligible. On the other hand, X, is pu-conegligible, so X} and Qg = Q) N X' are A-conegligible.

(b) If w € Qg and x € X, then w[N] meets every neighbourhood of x, so lim,,_,« p(z,w[n]) = 0 and

2E Zero-one law: Proposition Let (X, p) be a separable metric space and p a topological probability
measure on X.
(a) There is a A-conegligible set Qp C € such that if w, W’ € Qg are eventually equal, then for u-almost
every x € X there is an n € N such that F(w[m, f)(z) = F(w'[m, f)(x) for every m > n and every function
f defined on X.
(b) If f : X — Ris a bounded X-measurable function, then there is an o € R such that limsup,, . [ F(w|n, f)du =
a for A-almost every w.

proof (a) Let Y be {z : z € X, p{x} > 0}, so that Y is countable. Set
Qo ={w:Y CwN\ k| and p(w[N\ k]) =1 for every k € N}.

If w, ' € Qg and w(m) = w'(m) for every m > 1, set I = w[k]UW'[[]\Y; then pul =0, so Xg = w[N\ ]\ ] is
p-conegligible. If z € Xy, then either x € Y and there is an n > k such that € wn\ ], or ¢ Y and there
is an n > [ such that p(z,w[n \1]) < p(x,I). The same will now be true for every m > n. So for any m > n
we either have z € Y and w(k(w[m,z)) = 2 = ' (k(w[m,z)), or x ¢ Y and k(w|m,z) = k(W' [m,z) € m\ .
In either case, F(w|m, f)(z) = F(w'[m, f)(x) for any f.

(b) Set h(w) = limsup,_,, [ F(wln, f)du for w € Q. Then h is Borel measurable, by 2B(c-i). If w,
w' € Qg are eventually equal, then lim,, . (F(w[n, f) — F(«'In, f)) = 0 almost everywhere, so
(

limn_,oo(fF wln, f)du — fF(w’[n,f)d,u) =0

and h(w) = h(w’). By FREMLIN 01, 254Sb, {w : w € Qo, h(w) > a} has measure either 0 or 1 for every a,
so there is an « such that h(w) = « for almost every w.

2F Proposition Let (X, p) be a separable metric space and u a topological probability measure on X.
(a) We have a functional 6 : ¥ — [0, 1] such that, for any E € X, limsup,, . [ F(wln,xE)du = 0E for
A-almost every w € Q.
(b)(i) 0 is a unital submeasure.
(ii) 0H < pH for every closed H C X, and G > uG for every open G C X.
(iii) If E € ¥ is such that its topological boundary is p-negligible, then F = uE.

Remark For the basic properties of submeasures, see FREMLIN 02, chap. 39.
proof (a) This is just a re-statment of 2Eb.
(b)(i) Elementary.

(ii) () Let H C X be closed, and € > 0. Then there is a continuous f : X — R such that yH < f
and [ fdu < pH + €. Now, for almost every w € Q, (Fj,(w[n, f))n>1 converges to f p-almost everywhere,
by 2D. It follows at once that, for almost every w,



0H = limsup F(w[n,xH)du

n—00

< limsup F(wn, f)du = /fd,u < pH + ¢

as € is arbitrary, 6H < uH.
(B) If now G C X is open, then
uG=1-—p(X\G) <X —-0(X\G) <0G
because 6 is a unital submeasure.
(iii) We have
wE = p(int E) < 0(int E) < 0E < 0E < uE = pE.

2G Theorem Let (X, p) be a separable metric space, p a topological probability measure on X and

0 : 3 — [0,1] the functional described in 2F. Then the following are equiveridical:
(i) p is Mycielski-regular;
(ii) € is absolutely continuous with respect to p;
(iii) 6 = p.

proof (i)=-(iii)=(ii) are immediate.

(ii)=-(i) Suppose that (ii) is true. Given a measurable f : X — R, then for each k € N take J; > 0 such
that 0F < 27% whenever uE < ;. Then there is a continuous g;, : X — R such that Ey, = {z : gr(v) # f(x)}
has measure at most min(27%,6;) (FREMLIN 03, 418Xq). Now {z : F(w, f)(z) # F(w,gx)(z)} C {x :
F(w, xEy)(x) = 1} for every w € | J,,»; X™. Let W}, be the set of w such that lim,, . F(w[n, gi)(x) = gr(x)
for almost every = and limsup,,_,, [ F(w[n, xEx)dp < 27%. Then W, is conegligible. Set Qo = (.o W
For any w,

|F (@, f) = F(@, g1)| A XX = F(@,[f — g|) A F(@, xX)
:F(wv‘ffg“/\XX) SF(waXEk)a

and
<|F(w, f) = F(w@,gx)| A XX + [F(w@, gk) — gkl A XX + gk — fI A XX
< F(w, xEy) + |F(w, gr) — gkl A xX + xEk.

Soifwe W,

timsup [ [F(@in, f) = f| A X du

n—oo

< limsup / F(wln, xEx)dp + limsup/ |[F'(wln, gk) — gr| A xXdp + pEy
<27k po427F =27k
for every k, and (F(wln, f))n>1 converges to f in measure. As f is arbitrary, 4 is Mycielski-regular.
2H Remark In this context, note that F(w, xE) will always be {0, 1}-valued (see the second remark in
2A); if we X7,

f F(w, xE)du = ZZGEﬂw[n] nV (@, z).

21 Moderated Voronoi tesselations Let X, p, u, Q and A be as in 1B. I will say that ;4 has moderated
Voronoi tesselations if for every € > 0 there is an M > 0 such that



Sl Aw s w(U{V! (win, 2) : 2 € wln], pV' (wln, 2) > %}) > €})

is finite, where here each V'(wln, z) is the punctured Voronoi tile V(w[n, 2) \ {z}.

2J Theorem Let (X, p) be a separable metric space, and p a topological probability measure on X which
has moderated Voronoi tesselations. Then p is Mycielski-regular.

proof Let 6 be the submeasure described in 2E-2F. Then 6 is absolutely continuous with respect to u. P
Let ¢ > 0. Let M > 0 be such that

Yot Mw s (V' (win, 2) : 2 € wln], pV'(wln, 2) > *}) > 36})
is finite, defining V'(w[n,2) as in 2I. Let €; be the set of those w such that pu(U{V'(wln,z) : 2z €
wln], pV'(win, z) > %}) is less than %e for all but ﬁnitely many n; then £ is A-conegligible.

Let 4 > 0 be such that 2M§ < 36 0 < 36 and 6 < 5. Suppose that pE < 4, and let Q5 be the set of
those w such that {n : #({i: i <n, w(i) € E}) > 20n} 1s finite; by the strong law of large numbers, Qs is
A-conegligible. Take any w € 7 N s. Let n be such that

WUV (@l 2) : 2 € wln), pV'(wln,2) > 2}) < L,

#{i:i<n,w() e E}) <2n},

and set
I=FEnuwpn], J={z:zecwn|, uV'(wn,z)> %}

We have

/F( In, xE)du = Z,uV = ul + Z uV' (wln, z) + Z uV' (wln, z)

zel zelnJ zeI\J
1 M 2 M+#(I 2 2M

This is true for all but finitely many n, so limsup,,_, . [ F(wln, xE)du < €; as this is true for almost every
w, OF < e. As € is arbitrary, 0 is absolutely continuous with respect to u. Q
By Theorem 2G, p is Mycielski-regular.

2K Irregular measures The discussion above refers to ‘topological measures’, meaning measures which
measure all Borel sets (FREMLIN 03, 411A). This allows for the possibility that some highly irregular sets are
measurable. However in the context of this note this is a bit beside the point. Let us say that a topological
probability measure p on a topological space X is almost a Borel measure if for every set E which is
measured by p there is a Borel set H such that y(EAH) = 0. (Obvious examples are completions of Borel
measures, like Radon probability measures; another is the image measure pz, f~' on the split interval I
(FREMLIN 03, 419L), where py, is Lebesgue measure on [0,1] and f(t) = ¢~ for t € [0,1].) Now we have the
following.

2L Proposition Let (X, p) be a separable metric space and p a topological probability measure on X.

(a) If p is Mycielski-regular, it is almost a Borel measure.

(b) If u is almost a Borel measure, then p is Mycielski-regular iff its restriction ug to the Borel o-algebra
of X is Mycielski-regular.

proof (a) Suppose that E € 3. Then there is an w € Q such that (F(w[n,xE)),>1 converges in measure
to E. Now there is a sequence (ng)gen such that (F(w[ng, xE))ken — xF p-a.e. But all the functions
F(wlng, xE) are Borel measurable (2A above), so if we set

H = {z : limg o0 Flwlng, f)(z) =1},



H is a Borel set and u(EAH) = 0.
(b) Let Ag be the product measure . Because u extends g, A extends A (FREMLIN 01, 254H).
(i) If u is Mycielski-regular and E C X is Borel, then
limsup,,_, fF(w[n,XE)du = uk
for A-almost every w € Q. But F(w, xE) is Borel measurable for every w, so
limsup,,_, f F(wln,xE)dus = ppFE
for A-almost every w € 2. Moreover, because F is Borel measurable,
w [ Fwin, xE)dus
is Ap-measurable for every n € N (2B). But this means that the A-negligible set
{w:limsup,_ ., [ F(win,xE)dus # nsE}

belongs to Ap and is Ag-negligible. As F is arbitrary, ug is Mycielski-regular, by 2G.

(ii) If pup is Mycielski-regular and E € X, there is a Borel set H such that u(EAH) = 0. Now

W ={w:w[NN(EAH) # 0}
is A-conegligible, while
W' = {w : limsup,_o, [ F(wln, xH)dps = psH}

is Ag-conegligible, therefore A-conegligible, and W NW" is A-conegligible. But if w € WNW', F(w|n,xH) =
F(wln,xE) for every n, so

limsup/F(w[n,XE)du: limsup/F(w[n,XH)d,u

n—0oo n—oo

= limsup/F(w[n,XH)d,uB =ugH = pE.

n—oo

As FE is arbitrary, p is Mycielski-regular.

2M Proposition Let (X, p) be a metric space. Then the set of Mycielski-regular topological probability
measures on X is convex.

proof (a) Let pg, u1 be Mycielski-regular topological measures on X, with domains ¥ and ¥y respectively,
and ag € ]0,1[; set oy = 1 — ap and p = apuo + @11, so that ¥ = ¥p N X1, Let Ag, A1 and A be the
corresponding product measures on €2 = X. Let v be the product measure on Q = {0, 1} where each
factor {0, 1} is given the point-supported measure agpdp + 101, and let 6 be the product measure v x A\g X A
on Z x £ x €.

(b) Define ¢ : @ x Q2 x Q — € by setting
(b(q) Wo, Wl)(n) = Wq(n)(k'q(n) (q7 n))
for n € N, where

for g € Q, n € Nand i € {0,1}. Tt is easy to check that ¢ is inverse-measure-preserving for 6 and A. (Use
FREMLIN 01, 254G.)

(c) ? Suppose, if possible, that u is not Mycielski-regular. Let f : X — R be a ¥-measurable function
such that

{w: (F(wln, f))n>1 does not converge in measure to f}

= U m U{w:/XX/\|F(CUfn,f)—f|d'u22—m}

meNk>1n>k
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is not A-negligible. We therefore have an ¢ > 0 such that
W= ﬂkzl Unzk{w : fXX AN|F(win, f) — fldp > 2¢}

is not A-negligible, while W € A, by 2B. Accordingly ¢~ [W] > 0. Setting Qo = {q : ¢ € Q is not eventually
constant}, Qo is v-conegligible, so there is a ¢ € Qg such that V = {(wo,w1) : (¢,wo,w1) € ¢~ [W]} is not
(Ao x A1)-negligible.

However, because o and p; are both Mycielski-regular, and f is ¥;-measurable for both i,

Vi = {w: lim, oo [ XX A|F(w]n, f) = fldu = 0}
is A;-conegligible for both 7, and Vy x V7 is Ag X Aj-conegligible. There must therefore be a k € N such that

() s [ XX AIF (ol f)  Fldn <

/XX A|F(wiln, f) — fldu < € for every n > k}

is non-empty. Take any point (wg,w;) in the intersection. Let [ > 1 be such that k;(q,1) = #({j : j <,
q(j) = i}) > k for both 4. Then w = ¢(q,wp,w1) belongs to W, so there is an n > [ such that

[ XX AF(win, f) = fldp > 2e.

However, if we look at w[n], we see that it is precisely wg[ko (g, n)|Uw1[k1(g,n)]. If z € wn] and x € V(w(n, 2),
then if z € wylko(g, n)] we must have x € V(wolko(g,n),z) and

while if z € wy[k1(g,n)] we must have x € V(w;[k1(g,n), 2) and
F(win, f)(z) = f(2) = F(w1 k(g n), f)(2).
But this means that
[F(wln, f) = fI < [F(wolko(g; n), f) = fIV [F(wilki(g,n), f) = fl,
while ko(g,m) > ko(q,1) and k1(q,n) > k1(q,1) are both at least k; so

2e < XX A |Plwln ) - fidu

< /(XX A|F(wolko(g,n), f) = fI) + XX A [F(w1lki(q,n), f) — fl)dp < 2e
which is absurd. X
(d) So p is Mycielski-regular, as claimed.
2N Proposition Let (X, p) be a metric space and p a topological probability measure on X. Let Y C X

be a set of full outer measure; set py = plY X Y and let uy be the subspace measure on Y. Then uy is
Mycielski-regular iff p is.

proof (a) Set Qy = Y, then Qy has full outer measure for A = u, and the subspace measure \y induced
by A on Qy is the product measure p} (FREMLIN 01, 254L). Note that if w € Y™, then the Voronoi
tesselation of Y corresponding to w is precisely (Y NV (@, 2)).cwm Where (V(w, 2)).cwfn) is the Voronoi
tesselation of X corresponding to w. So if we have a function f : X — R, and we write Fy (w, f[Y):Y - R
for the function defined on Y by the formulae of 1Ba, then Fy (w, f|Y) = F(w, f)|Y.

If f: X — R is Y-measurable and n € N, set

hfn(w) = fX XX A |F(anaf) - f|d:u
for w € Q. Then for any w € Qy we shall have

(@) = /X XX A F(wln, f) — fldu = /Y XY A(F(wln, HIY) = (F1Y)dpy
(FREMLIN 01, 214F)



:/ XY/\ |FY(WrnafY - fy|d,U,Y
Y

if we write fy for flY.

(b) Suppose that u is Mycielski-regular. Let g : Y — R be Xy-measurable, where ¥y = dom py is the
subspace c-algebra induced by ¥ on Y. Then there is a Y-measurable f : ¥ — R extending g (FREMLIN
00, 1211). Now we know that

{w:weQ, lim, o0 hy,(w) =0}
is A-conegligible, so
{w:w e Qy, lim,_ o hypp(w) =0}
is Ay-conegligible, that is,
{w:weQy, lim, fY XY A |Fy(win, g — g|lduy = 0}
is Ay-conegligible. As g is arbitrary, py is Mycielski-regular.
(¢) Suppose that py is Mycielski-regular, and f : X — R is X-measurable. In this case,
W=Aw:weQ,lim, . fxxX/\ |F(wn, f — fldu =0}
belongs to A, so

AW =XAy(WNQy) =Av{w:we Ny, lim / XX A |F(wln, f — fldu =0}
n—0oo X

= )\y{w tw € Qy, nhH;o/ xY A ‘Fy(w[n,fy — fyld,uy = 0}
- Y

(where fy = flY, as before)
=1.

As f is arbitrary, u is Mycielski-regular.

3 The one-dimensional case

3A Theorem Let p be a topological probability measure on R. Then ;1 has moderated Voronoi tessela-
tions.

proof Let € > 0.

(a) Set p = max(2, [%D Let M > 1 be an integer such that e(p+1)(1 — o)™ <

5 By Stirling’s formula

1
5-
1

(FREMLIN 01, 252Yu), there is an mg € N such that m! > m™e™™ for every m > mg.! Set v = SIVERTTE

ng = Mpmax(mq,p) + 1.

(b) For the time being (down to the end of (e) below) fix on an n > ng. Set [ = L%j and m = LéJ, S0
that m > max(mg,p). For 1 <i <1, set

ai = sup{a : p]—00,af < 21},

so that

p]—o0, ;] < M < o0, ).

n

Set Jy = |—00, 1], Ji = [ay, 00[ and for 0 < ¢ < [ set J; = [a, atjt1]-

11 suppose that actually m! > m™e~"™ for every m € N.
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(c) (The fiddly bit.)

(i) Fori <, pJ; > % > p(int J;). B J; is a closed interval of one of the forms
]—00,041}7 [aiaai+1]7
so that p.J; is one of
,M]_O0,0QL :u]_oovai-‘rl] _/J]_O0,0Q‘[,

and in either case has measure at least % On the other hand, int J; is of one of the forms

}_007051[7 ]aiaai+1[7
and its measure is one of
/,L]*O0,0QL ,U,]*O0,0[i_;,_l[*‘u]*O0,0Li?

which can be at most % Q

M

(ii) p(int J;) < — P

p(int ;) = 1 — p]—o00, ay) < 1 —% < %

because Ml <n—-1<M({l+1)son—MI <M. Q

(iii) If C C R is an interval (bounded or unbounded, open, closed, or half-open) and uC > %, then

there is an i < [ such that J; C C. P As puC > p(int J;), there is a first 4 < [ such that C' N J; is non-empty.
If J; € C we can stop. Otherwise, C' cannot contain inf J; (because if this is finite it belongs to J;_1), and
uC > p(int J;), so C contains the upper endpoint of J;, which is a;11. Now set C' = |—o0, ;] if ¢ > 0, () if
1=0;CNC' =0 and

n—2M _ M(-1)

n n

%§u0’§1—uc<

because n < M (I +1). Thus ¢ + 1 <. At the same time,
M{(i+2)

=00, o] < <p(CUCl") < pl—oo,sup C]

$0 a2 <supC. If supC € C, then a; 2 € C; if supC ¢ C then
p] =00, aiga| < @ <u(CUl’) < pl—oo,supC|

and a;y9 < supC, so again a; 49 € C'. Thus we have J; 11 C C, which will do very well. Q

iv C R is an interval, then uC' < — + — 1<, J; C . e set =11 <l
iv) If C C R is an i th’Qi/[]\:#"lJCPThK"l

J; € C} is of the form 4; \ ip where ip < i3 <. Set if, = max(0,49 — 1) and #{ =41 + 1; then C' C }0%70@-/1 [
(counting ap as —oo and ;47 as 00), and

n n n

M (K)

n

(v) If K C1then u(U;ex Ji) =
—ifip =0,

. P If K is of the form ; \ ig, where ig < i; <[, then

M(UZGK Jz) = 'u(}O)ail]) Z Miq _ M#(K)’

n n

—if ig > 0,
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1(Usere i) = illevig, iy ]) = p1]—00, 0] — ] —00, gy [ > 22 — Mio _ M#E)

n n n

Generally, we can induce on #(K), as follows. The case K = () is trivial. For the inductive step to #(K) > 1,
set j = max K and consider the component C' of | J;. x J; including J;. This must be of the form Ui@.l\i0 Ji
where 10 S.] < i1 <I. So

pO 2 Mario) 5 MF(OINi0) _ MA(Vi)

n n

On the other hand, U;cx Ji \ C = Uiegny, /i 18 disjoint from C, and #(K Nig) < #(K), so, using the
inductive hypothesis,

plJ=nC U B+ U

i€EK 1€ KNig 1€KNi1\ig
> MH#(KNio) + M#(K \io) _ M#(K) Q
n n n

(d) For w € Q, set

Ho(w) = UV (@ln.2) : 2 € wln), uV(wln, 2) > 2Ly,

Ky ={iri<l, Ji CU,eup V'(win, 2)}

%#(Kw). P If z € w[n] and the punctured tile V'(w[n, z) has measure greater than %,

Then pH,(w) <
then V'(wn,z) has two components, one on each side of z, both intervals, and at least one has measure

greater than %, so must include some J; for ¢ < I, by (c-iii). Thus the number of components of H, (w) is

at most 2#(K,,). Let C be the set of components of H,(w). For each C € C, uC < % + M#({ ti <,
Ji € C}), by (c-iv). So

=Y e <Y Maincon+ 2y

cec cec

< %#({z’ i C Ha(w)}) + S (L) < ZEH(KL) Q

It follows that if pH(w) > €

#(Kw)z;—]\;e>%z >m

T |~

(e) We find that
Mw: pHy(w) > e} <A™
P By the last remark in (d), {w : pH,(w) > €} C {w : #(K,) > m} has measure at most

Mw: #(Ky)>m Z Mw : w[n| does not meet U Ji}

Ke[l]m €K
Mm

<#(m@ -y

(because by (c-vi), |J;cx Ji has measure at least ? for every K € [I]™)

< #(Im(p+1)]™)(1 = 22y

n

(because m > p and I < (m+ 1)p < m(p+1))
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< (m(p+1))™ (1 _ i)klmp

m! 2p
(because Mmp < Ml <n < M(+1) < M(m(p+1)+1) <2Mmp)
e”""'m™m 1 1 1

= m! (e(p + 1)(1 - g)ﬂ/[ﬂ)m S ﬁ S 9n/2Mp - fYn Q

(f) At last we are ready to vary n. Since (b)-(e) apply to all n > ng, and v < 1, we have

Z Mw : M(U{V’(w[n,z) cz ewln], pV'(win, z) > 4M+1}) > €}
n=1

n

o0 o0
< ng+ Zx\{w:an(w)ze}Sno—i- Z’y"<oo.

n=ngo n=no

As € is arbitrary, the definition in 21 is satisfied and g has moderated Voronoi tesselations.

3B Corollary If i is a topological probability measure on R, it is Mycielski-regular.
proof Put 2J and 3A together.

3C Remark The definition in 1Bb refers to convergence in measure of sequences (F(w[n, f))n>1. The
corresponding question for almost-everywhere convergence has a positive answer for separable X and con-
tinuous f (see 2D) but not for general measurable f, even in the one-dimensional case; when (X, p, u) is
the unit interval with its usual metric and Lebesgue measure, there is a construction in MYCIELSKI P10,
84 of an open set G C X such that, for A-almost every w, (F(w[n,xG))n>1 does not converge p-almost
everywhere to xG.

4 The homogeneous case

4A(a) In this section, I will suppose that the metric space (X, p) of 1B is compact and that its isometry
group G is sesquitransitive, that is, for any x, y € X there is an R € G such that Rx = y and Ry = =.
Give G its topology of pointwise convergence, so that G is a compact Hausdorff topological group (FREMLIN
03, 441G), and has a unique Haar probability measure v. In this case there is exactly one isometry-invariant
Radon probability measure on X (FREMLIN 03, 441H and 443Ud); I will suppose that p is that invariant
measure.

(b)(i) For any T € G, the map w — Tw : @ — Q is an isomorphism of the measure space (€2, A), just
because x +— T'(x) is an isomorphism of (X, u).

(ii) Note that (T,w) — Tw : G x Q —  is continuous (FREMLIN 03, 441Ga, or otherwise), and also
that it is inverse-measure-preserving for the product measure v x A and A. P If W C Q is a Borel set, then
W' ={(T,w) : Tw € W} is a Borel set, so

(v x NW') = [Mw:Twe W(dT) = [ AWv(dT) = AW.

As X is inner regular with respect to the Borel sets, this is enough to show that (T,w) — Tw is inverse-
measure-preserving (FREMLIN 03, 412K). Q

(iii) Another useful fact: if z € X, then T — T(z) : G — X is inverse-measure-preserving for
v and p. PP It is continuous, so defines an image Radon probability measure v/ on X by the formula
V'E = v{T : T(z) € E} for every Borel set E C X. Now, for any S € G, V'S7'E] =v{T : ST(2) € E} =
v{T : T(z) € E} because v is translation-invariant; but this means that v/S™![E] = v/E for every Borel set
E, so that ¢/ is S-invariant. As S is arbitrary, v/ is isometry-invariant; but p is the only isometry-invariant
Radon probability measure on X, so v/ = u and T +— T'(z) is (v, u)-inverse-measure-preserving. Q

(c) For examples of the situation in (a) above, we have a sphere (in any Euclidean space), with either
the Euclidean metric or the great-circle metric, and with a normalized Hausdorff measure; also (X, p, 1) as
described in Example 2D, and the tori considered in 5A below.
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4B Proposition In the context of 1B/4A,
A x p{(w,z) : F(win, f)(z) = a} = p{z : f(z) = o}
whenever n > 1, f : X — R is 3Y-measurable and a € R.
proof Set v = p{z : f(z) > a}.

(a) Consider first the case in which f is Borel measurable, so that the functions (w,z) — F(wln, f)(x)
and (T,w,z) — F(Twln, f)(x) are Borel measurable. For fixed w € X™, consider k(T'w,x) as defined in
2B. We have

pla, Tw(n]) = p(z, Twln]) = p(z, Tlwn]]
(

) =
kE(Tw,x) = min{i : p(z,Tw(i)) = p(z, Tw
= min{i : p(T~ " (2), (1)) = p(T~ " (), w[n]))} = k(w, T~} (2)),
F(Tw, f)(z) = f(Tw(k(Tw,z))) = f(Tw(k(w, T~ (z)))) = F(w, fT)(T" (z))
for every T € G and z € X. Next, for any y € X, T — T(y) is inverse-measure-preserving, so

AT : f(T(y) =2 ot = pla: f(z) 2 a} =1
Consequently

(v x W{(T.2) : F(Tw, f)(@) > a} = (v x p){(T,) : F(w, fT)(T () > a}
— [ e+ Pl /)T @) = a)v(ar)

— [l F@ 7)) = alwiar)
— [ nla: Fl@. 1)(@) 2 a)var)

(because each T € G is an isomorphism of (X, u))
= xpf{(T,z): F(w, [T)(z) 2 o}
= x p{(T,z): fT(w(k(w,z))) > a}

_ / AT : fT(w(k(w, 7)) > a}p(de)
= / v p(dx) = 7.

Applying this with @w = wln,

(A x @){(w,2) : F@ln, )(@) = a} = (v x A x @){(T,w,2) : F(Twin, f)(z) = a}
(because the map (T,w) — Tw is inverse-measure-preserving)

= /(V x {(T,z) : F(Twln, f)(z) > a}A(dw)
= /M(dw) =

as required.

(b) For general bounded measurable f, we have Borel measurable functions fy, f1 such that fo < f < f;
and

ple: fo(z) > af = pfz: fi(z) > o} =7

now {(w,z) : F(wln, f)(z) > a} includes {(w,z) : F(wln, fo)(x) > a} and is included in {(w,x) :
F(wln, f1)(x) > a}, so also has measure ~.
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(c) Finally, for general measurable f, set g = arctan f; then F(tw, g) = arctan F(w, f) for all w, so
{{w,2) : F(wln, f)(z) > a} = {(w,z) : F(wln,g)(x) > arctan(a)}
has measure p{x : g(z) > arctan(«)} = 7.

Remark Note that an alternative expression of this result is
Mw: F(wn, f)(w(n)) > a} = p{z: f(x) > a} whenever n > 1, f : X — R is X-measurable
and a € R
(compare MYCIELSKI P10, Theorem 1).

4C Proposition In the context of 1B/4A,
a) [F(Tw, f)du = [ F(w, fT)dy whenever T € G, w € |, X™ and f is p-integrable.
b) [[ F(Tw, f)duv(dT) = [ fdu whenever @ € (J,», X", # € X and f: X — R is y-integrable.

proof (a) As in part (a) of the proof of 4B, F(T'w, f)(x ) = (w (T ( )) for all z and T. So
JF(Tw, f)du= [ F(w, fT)(T"'x) = [ F(w )l de)
because T is an automorphism of (X, p).

(b)(i) Suppose that f is bounded and Borel measurable. Note that [ f(T(y))v(dT) = [ fdu for every
y € X, because T — T'(y) is inverse-measure-preserving. So

[[ rer=.pawvian) = [[ p@. ir@utdoman)

/ ST (@ (k(w, 2)))p(dT) ()

- [ / fdpu)(da) = / fd.

(ii) If f is bounded and integrable, let fy, f1 be Borel measurable functions such that fo < f < f; and
both are equal almost everywhere to f. Then

for every T, and

[[ F(Tw, fo)duv(dT) = [[ F(Tw, fi)duv(dT) = [ fdp,
so [[ F(Tw, f)duv(dT) is defined and equal to [ fdpu.

(iii) If f is non-negative and integrable, set f; = f AlxX for I € N. Then (F(Tw, fi))en is a
non-decreasing sequence with supremum F(T'w, f) for every T, so

// (Tw, f)duv(dT) = sup // (Tw, fi)dpv(dT)

=sur>/fzdu=/fdu-
leN
(iv) Finally, for general integrable f,

//F(Tw,f)duy(dT) - // F(Tw, fH)duv(dT) — //F(Tw,f‘)duu(dT)
— [ rrau= [ rdu= [ san

4D Example There is a compact metric space (X, p) with a sesquitransitive isometry group such that
its invariant Radon measure does not have moderated Voronoi tesselations.
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proof Choose integers My, ng, mg, M1,mn1,m1,... such that, for every k € N, M, = Hj<k m; (starting with
My =1), np > 1, ny > 2kM,,, My(1 — ML)M < % and my, = 2ny,.
k
For k € N, let Y}, be a set with my elements. Set X =[], Ys, and Z =[]
with Zy = {0}), so that #(Z) = Mj,. For z, y € X, set

j<i Yj for k € N (starting

plx,y) = inf{k%_1 ckeN, alk =ylk}.

Then (X,p) is a compact metric space. For k¥ € N and 0 € Zy set X, = {z : ¢ C = € X}; then

X, = B(z, k%rl) for every x € X,. The isometry group of X contains all functions of the form

z = (mi(z(k)))en
where 7 : Y, — Yj is a permutation for each k, so is sesquitransitive. Let pu be the invariant Radon

probability measure; then uX, = uX, = ML whenever k € N and o, 7 € Zj, so p is the product of the

k
uniform probability measures on the factors Y.

For each k € N, set

Hy = {w: p(U{V' (@l 2) - 2 € wlmid oV (wing. 2) 2 7)) > 53,

Hj, = {w: wlng] N X, # 0 for every o € Z;}.

Then H; C Hy. P If w € Hj, then for each 0 € Zj let i, < nj be minimal such that w(i,) € X,. If we
look at V(w[ng,w(is)), we see that this includes

Xo \ Ui<nk Xw(i){k«#la

because if © € X, then i, is the first ¢ such that p(z,w(i)) < !

[k while if ¢ (J;_,,, Xw(i)ik+1 then
1
plx,wng]) > oL So

, SNy : IR L7
pV' (wlng,w(is)) = pV(wlng, wlic)) > M, Mg

:ﬁk( my _2Mk _?’Lk7

SO
V/(@lng, w(is)) € UV (@lnk, 2) : 2 € wlni], uV (wlng, 2) > 2},
k
Note also that the calculations just above show that
pV' (wing,w(ic)) N Xy > %MXU-

This is true for each o € Z. So

k .
p( V' (wing, 2) : 2 € wng), uV' (Wlng, 2) > =) > Y pV' (wlng, w(is)) N X,
Nk
1 1
> Z hXe =3,
and w € H;. Q
On the other hand, AHj, > % P For each o € Z;,

Mw:wng N X, =0} = (1 - Mik)m’

SO
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MO\ HY) < My(1 - -b)m <

- Q

N | =

Thus AHy > % for every k. Now if we take any M € N,

Z;A({w : u(U{V’(w[n, 2):z ewn], uV'(wln,z) > %}) > %}

> 30 Mw sV (@, 2) - 2 € el V(@ 2) 2 3 1) 2 5}
k=M

= i /\Hk = 00,
k=M

and Definition 21 is not satisfied.

5 Lebesgue measure We can hope to apply results proved in the context of §4 to Lebesgue measure on
[0,1]", through the following device.

5A Let S! C C be the unit circle, regarded as a group under complex multiplication. For &, n € S*, set
oo(€,m) = |arg(€71n)|. Let r > 1 be an integer, and set Y = (S1)” with the £2-metric

o(y.y') = \/X52) ooy (i), ¥/ ()2

for y, ¥’ € Y. Then S! and Y are compact metric spaces and their isometry groups are sesquitransitive.
The isometry-invariant Radon probability measure uy on Y is its Haar measure. Set X = [0,1]", with the
Euclidean metric p, and define ¢ : X — Y by setting
$()(j) = >

for x € X and j < r. Then ¢ is inverse-measure-preserving for Lebesgue measure ux on X and py.
Write Xy, Xy for the domains of px, py respectively. The set Xy = ]0,1[" is a conegligible subset of
X, and for any x € X there is a 6 > 0 such that o(¢(x), p(2’)) = p(z,2’) and 2’ € Xy whenever either
p(z,2") < & or o(p(z),é(2")) < 8. The map w — ¢w : XV — YN is inverse-measure-preserving for the
product measures Ax = MAR,I( and Ay = u)N/. If f: X — R is Xy-measurable, there is a Xy -measurable
g Y — R such that g¢ =, f. In this case, for any x € Xy, there is a Ax-conegligible subset W, of
X" such that for every w € W, there is an n € N such that F(¢w|m, g)(é(x)) = F(wlm, f)(z) for every
m > n. P Take § > 0 such that o(¢(x), p(2’)) = p(z,2’) whenever either p(x,2’) < § or o(é(x), p(z’)) < 4.
Set W, = {w : p(z,w[N]) < ¢}. Because px is strictly positive, W, is Ax-conegligible. If w € W,,
there is an n € N such that p(z,w[n]) < 6; now p(é(x), pwm]) = p(z,w[m]), k(¢wIm, px) = k(wlm,x),
F(¢w|m, g)(¢x) = F(wlm, f)(x) for every m > n. Q

It follows that if g is such that (F(w[n, g))nen converges to g in measure for almost every w € YN, then
(F(wln, f))nen will converge to f is measure for almost every w € XN,

5B Theorem Let r > 1 be an integer. Let (X, p,u) be [0,1]" with its Euclidean metric and Lebesgue
measure. Then p has moderated Voronoi tesselations, so is Mycielski-regular.

proof (a) Take € € ]0,1]. Set ¢ = (24 2y/r)". Let mg be such that m! > e ™m™ for m > mg. Set

10 1
_ 2M  4Mm, 20
o = (a2 e 2
n r T 21/T 1
(b) Take n > ng. Set | = [(&)/7] > 1. Observe that n < M(l+1)" so [ +1 > 7 L2
1/r r — | . P L n 5. Jls
I4+1 <2V and n < 2MI". Set m = |55] > mo; then5M §4M lgmandm ng < E,albo

n

A
aM —

m <
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Let J be the set of hypercubes of the form [] +1] where i; < [ for j < r, so that #(J) =1,

j<r[TJ

UJ:XanduJ:llr anddiasz? for J € J.
(c) Now the key to the proof is the following elementary fact. Suppose that V' C [0,1]" is convex and
x e V. Set
V=Vn Uyevid : J €T, J Cint B(y, p(y,z))}

Then p(V \ V) < . . PP Let K be the set of members of J meeting B(x, ‘l[) then #(K) < ¢, because
each projection of B(x i) onto a coordinate has length at most \Tf and meets at most 2+ 2,/7 intervals of
the form [£, “H]. If y € V\UIC let J € J be such that y € J. Then J C B(y, f) while p(y,z) > ﬁ, S0
J C int By, p(z,y)) and y € V. Accordingly V \ V C [JK is covered by ¢ members of 7, and has measure
at most l% < 2Mq Q

I should perhaps remark at this point that because half-spaces in R" are convex, all sets V(w, z), as
defined in 1B(a-i) from the Euclidean metric p, will be convex.

(d) For w € Q, set
H,(w) =U{V(wIn,z) : z € wn], uV(wln, z) > :ﬂ}’

Ko={J:JeJ,JNwn] =0}
Then pH,(w) < %#(KUJ). P If z € w[n] and V(w|n, z) has measure greater than %, then for every
y € V(wln,z), int B(y, p(y, 2)) does not meet win|, and every member of J included in int B(y, p(y, z))
belongs to K. By (¢), V(w[n, z) \ UK, has measure at most QRﬂ. Consequently
p(V(wln, z)) < 2u(V(wln,z) N JKLy).

Summing over the relevant z,
2 aM
pHy (W) < 2u(Hn(w) NUKY) < Z#(KL) < —#(Ku). Q

It follows that if pH, (w) > €, #(K,) > m >m

(e) We find that
Mw: pHy(w) > e} <A™
P By the last remark in (d), {w : pH,(w) > €} C {w : #(K,) > m} has measure at most

Mw: #(Ky) >m} < Z Mw : w[n] does not meet UIC}
Kelglm™

<#([I™MA -7 <

[rm

m\MI"
m! (1 N IT)M

(because M1" < n)

em]rm 1

L \Mml"”
S )

(because m > mg and 1 — lT <(1- %)m)

mJjrm
< el L\ Mm
- mm™ ‘e

(because In(1 — z) < —x, so (1 — z)Y/* < for every z > 0)
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(by the choice of M)

1 n
< Qen/aM v

(f) At last we are ready to vary n. Since (b)-(e) apply to all n > ng, and « is less than 1, we have
> Mo p(JVwin,2) : 2 € wlnl, pV(wln, z) > 24}) > ¢}
n=1

<not+ Y Mw:pHo(w) > e} <np+ Y 4" < .

n=ng n=ng

As e is arbitrary, the definition in 2I is satisfied and p has moderated Voronoi tesselations. By Theorem 2J,
it follows at once that p is Mycielski-regular.

5C Proposition In 1B, let (X, p, ) be the unit interval with its usual metric and Lebesgue measure.
Let (B,)nen be any sequence in R converging to 0. Then there are a continuous function g : X — [0, 1] and
a sequence (ny)gen in N\ {0} such that [ min(1, |[F(w[ng, g) —g|)dp > By, for every k € N and every w € Q.

proof Let (ny)ren be such that 3,, < 27276 for every k. Set

g(x) = 27" sin(2F M nyrr) if k € Nand 27771 <2 <27,
=0ifx=0.

2rx
=)

Take k € Nand w € Q. Set § = ﬁ, so that if 4ny < j < 8ng, then g(x) = sin( 5 for j6 < x <
k
(7 +1)8. Set
K = {i:2ny <i < 4ng, wlng] N]2id, (2i + 2)[ = 0}.

Then #(K) > ny, and for ¢ € K, there can be at most two values of z € w[ny] such that V(w[ng, z) meets
12i6, (20 + 2)6[. For these i, therefore, at least one of 24, (2¢ 4+ 1)d[, ](2¢ + 1)4, (2¢ + 2)d] is included in a
single tile V(w[ng, 2), and accordingly F(w|ng,g) must be constant on that interval; call it I;. Now since g
runs through a full cycle in the interval I;, with magnitude 27%, the subintervals {z : x € I;, g(x) > 27k"1}

and {z : x € I;, g(r) < —27%~1} both have length g But this means that

LQTk1

Wl >

[ [E@ine, g) = gldp >

Summing over i € K,

i SH#HEK) ok
/mln(la |F(ank) _g‘)dlﬁ = /‘F(u}[nk) — g|du > # .9 k—1
S B
as required.
5D Corollary If (X, p,p) is [0,1] with its usual metric and Lebesgue measure, there is a continuous

function g : X — [0, 1] such that (||F(w[n,g) — g|l1)n>1 does not converge to 0 at a geometric rate for any
w e .

proof Take a sequence (8;)reny — 0 such that limg_, o0 e’* 3, = 0o whenever v > 0, and apply 5C.

6 The Lebesgue density property

6A Definition I will say that a locally finite topological measure p on a metric space (X, p) has the
Lebesgue density property if ;4 has a support and for any set £ C X measured by p we have
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w(ENB(x,5)

nB(z,8) )=1

limgio
for p-almost every « € E, where B(z, ¢) is the closed ball with centre x and radius §. (Saying that p is ‘locally
finite’” amounts to saying that for every x € X there is a § > 0 such that uB(z,0) < co. Saying that ‘u has
a support’ amounts to saying that, for u-almost every x, uB(x,d) > 0 for every § > 0.) By Besicovitch’s
density theorem (FREMLIN 03, 472D), every Radon measure on Euclidean space has the Lebesgue density

property.

6B Theorem (MYCIELSKI P10, Theorem 1) Suppose that (X, p) is a separable metric space and p is
a topological probability measure on X with the Lebesgue density property. Let f : X — R be a dom p-
measurable function. For n > 1, define g, : 2 x X — R by setting g, (w,x) = F(w|n, f)(z) — f(x). Then
(gn)n>1 converges in measure (for the product measure A X p) to the zero function on 2 x X.

6C Besides convergence in measure, as considered in 1Bb and 6B, and pointwise convergence, as in 3C,
we can ask for convergence of Cesaro limits, calculated as follows. Let u be a topological probability measure
on a metric space (X, p). Forn > 1, w € X" and z € X, set J(w,z) = {i : i <n, p(z,w(?)) < p(z,w(j))
for j < i}. Now, for f: X — R, set F(w, f)(z) = m Yic(we) f(@(1)). Under what circumstances
shall we have (F(w[n, f)),>1 converging almost everywhere to f, for almost every w? The interesting case
is when X is separable, and now we also want u to be atomless, since if p{z} > 0 then (F(w[n, f)(z))n>1
will be eventually constant for almost every w.

6D Theorem (MYCIELSKI P10, Theorem 2) If (X, p) is a metric space and p is an atomless topological
probability measure on X with the Lebesgue density property, then for any bounded dom p-measurable

function f: X — R, (F(w[n, f))n>1 — f p-a.e. for A-almost every w.

6E Let (X, p, ) be the unit interval with its usual metric and Lebesgue measure. In MYCIELSKI P10,
§4, there is an example of a measurable function f : X — [0, 0o such that

(Fwln, f))nz1

does not converge p-almost everywhere to f, for A-almost every w.
However the question remains open for integrable f (8E).

7 L'-convergence

So far, we have mostly been considering convergence in measure. If we have an integrable function f, we
can also ask whether (F'(f,w[n)),>1 converges to f for || ||; for many w. This seems to be a hard question
in general. However I can give positive answers in a couple of cases. The first is straightforward, in view of
the results so far.

7A Proposition Let (X, p) be a separable metric space, and p a Mycielski-regular topological probability
measure on X with domain ¥. Let f : X — R be a bounded Y¥-measurable function. Then lim,, f |f—
F(f,wln)|dp = 0 for A\-almost every w € .

proof (a) Suppose that f = xE where E € X. By Proposition 2F and Theorem 2G, limsup,, . [ F(f,w[n)du =
pE = [ fdu for almost every w; we also know that (F(f,w[n)),>1 converges in measure to f, for almost
every w; by FREMLIN 01, 245H (a-ii), lim, o [ |f — F(f,w[n)|du = 0 for almost every w.

(b) It follows at once that lim, . [ |f — F(f,wln)|dw = 0 for almost every w whenever f: X — R is a
simple function.

(c) In general, given a bounded measurable f : X — R and € > 0, there is a simple function g : X — R
such that |g — f| < exX. In this case,

|f = F(f,wIn)| < |g = F(g,wln)| + 2exX

for every w, so limsup,_,o [|f — F(f,wln)|du < 2¢ for almost every w; as € is arbitrary, lim,, . [ |f —
F(f,wln)|dp = 0 for almost every w.
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7B Not every Mycielski-regular measure will give much more than this, as the following example (based
on the same idea as Example 1D) shows.

Example There are a compact metric space (X, p), a point-supported probability measure g on X, and a
function f: X — [0, 00[ such that [ fPdu < oo for every p € [1,00[ but limsup,,_,.. [ F(f,wn)du = oo for
A-almost every w € .

proof (a) Choose ay,, 0y, kn, 1, and m,, for n € N, such that
ay = 2"+2(n + 1)7 Oén67lb/(n+1) = 2_”’7

(1 —8,)k <2771
k"nn S 2_n_27 671 + (mn - 1)77n - 2—n—1.

(b) Set X = {0} U{(n,i) :n €N, i< m,} and define p: X x X — [0, 00[ by setting
p(0, (n,4)) = p((n,i),0) = %-1-1 whenever n € N, ¢ < my,,
1

p((n,0), (', i) = — +

—— whenever n, n’ € N are different, i < m,,, and i < m,,/
n+1 n’'+1 ’ ’ ’

p((1,0), (n, 1)) = p((n, i), (n,0)) = #2 whenever n € N and 0 < i < my,,

p((n,9), (n, 5)) = p((n, §), (n,i)) = %H whenever n € N and 0 < i < j < my,
p(x,x) =0 for every z € X.

It is easy to see that (X, p) is a compact metric space.

(c) Let u be the point-supported measure on X such that 4{0} = 0 and p{(n,0)} = é, and p{(n,9)} = n,
whenever n € N and 0 < i < m,,. Because ZZO:() On + (my, — 1)n, = 1, p is a probability measure.

(d) Define f: X — [0, oo[ by setting
f(n,0) =y, forneN, f(x)=0 for other x € X.
If 1 <p < oo, then
1l < 3202 cndi/® < o0
because
an(grll/p < ozn&l/(nJrl) <9 n
whenever n > p — 1.
(e) Suppose that n € N, w € X*» and (n,0) € w[ky,]; then (n,0) € V(w, (n,0)) and
{i:i<mp, (n,i) ¢ V(w,(n,0))} ={i:i<my, (n,i) € wlky|}

has at most k, members, so pV (@, (n,0)) > 27"t —k,n, > 27" 2 and [ F(w, f)dp > 27" 2a, > n. At
the same time,

prlw i w € Xk (n,0) ¢ wlk,]} = (1 —6,)F <277

for each n, so for almost every w € Q there are infinitely many n such that (n,0) € w(k,], and limsup,,_, ., F(wln, f) =
0.

7C I now turn to a partial result concerning Lebesgue measure on the unit interval, based on ideas in
GRrAHL 07.

Lemma (Evans & HUMKE 07) Let (X, X, 1) be a probability space and (E;);c; a disjoint family in ¥ with

¥i = pE; > 0 for every i € I. Set Z = [],.; E; with the product probability measure § =[], %/LE” where

ip, is the subspace measure on E; for each i. Suppose that m € N, @ > 0 and that f : X — [0, is a
Y-measurable function. For w € Z set
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W) = [ fdp— e, vif (@(i))

where E = J,.; E;. Then

iel
f |R|?™df < (2m)l14mamym,

where v = max;ecr ;.

proof (a) Let @ be the set of pairs (J, f) where J € [2m]™ and f : J — 2m\ J is a function such that

f(@) < i whenever i € J. Then #(Q) < (2m)!. P

#(Q) < mmH#([2m]™) = . (2m)!.

(m!)?

Now
(k+1)k+t kP 1 1 1

((k+1)1)2 (k!)z'm( k

if £ > 2, while
0° 1! 22

)7~ (e @ o

som™ < (m!)? and #(Q) < (2m)!. Q

k(i) = 2m, and Nj = 7(21%)!,
( ) _ F [T, k(0!

for k € K;let K* be {k: ke K, k(i) # 1 for every i}. Then }, . Ni1I;c; 75(1) < (2m)!y™. P Take any

ico & I, set Ino = I U{ix}, and let v be the probability measure on I, such that v{i} = ~; for each i € I.

Let v*™ be the product measure on I2™. Then

2 kek Nﬂf(i) <vmw

(b) Let K be the set of functions & : I — {0,...,2m} such that >, ;

where
W = {w:w € I*™, w takes at most m values}.
Now for any w € W the set
{j:j<2m, w(j) =w(i) for some i < j}
must have at least m members. So W = U; yycq Woy, where Wyp = {w: w € I?™ w(j) = w(f(j)) for

every j € J}. On the other hand, if (J, f) € Q and we identify v?>™ with the product measure 2\ syt

2m)\J
on 12 x 17 = 2™ e have

y2mWJf = / v {v:uUve WJf}Vzm\J(du)
J2m\J
:/ Vo 0(f) = u(f() ¥ § € Th™ (du)
J2m\J
= /2 , 1T vucrony™ (du)
LTy

< /,ymVQm\J(du> _ ,ym
So
Srer Ny <A <4 #(Q) < 2m)h™. Q
(c) For i € I set
hi(w) = [, fdu—if(@(i)

for w € Z, so that (h;);cr is an independent family of random variables with zero expectation, and h =
> icr hi- Now
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m m k(i
|h|2 = h? ZkEK NkHzel z( :
So

/\h|2md9—ZNk/Hh Vag =" Ny H/h @ap

keK i€l keK i€l

:ZNH/ h¥ D ap

keK* i€l

S NI < S0 N T @)

keK* el keK* iel

— 92m2m Z Nk,yf(i) < (Qm)!22m 2m,ym
keK*

(because the h; are independent)

(because [ h;d§ = 0 for every 7)

IN

by (b).

7D Lemma (GRAHL 07, quoting GUT 05) Suppose that p > 1 and that (X;);cs is a finite independent
family of random variables such that E(|X;|?) is finite for every i € I. Set S =} ,; X;. Then

E(S|7) < max(27Y;¢; B(IXi[7), 27" (e B(XiI)P).

proof It will be enough to deal with the case in which every X; is non-negative. In this case, set a = E(SP)
and S; = S — X; for each 7. Then

a= E(SPTIX) =Y E((Xi+S5)7 X)) <207 Y E((XPTT + SPTHXG)
i€l il il
— 2 ' STE(XP) + E(SPIX,) = 200 Y E(XP) + B(SPTDE(X,)
el el
(because X; and S; are independent)

< 27 max(D E(X?),> E(SPHE(X;))

el el
< 27 max(YE(X7), 3 (B(S7) P V/PE(X,))
el i€l

(FREMLIN 01, 244Xd)
=2P max(z E(XP), P~ D/PE(S)).

el
Soif a > 27 Y, E(XP), we must have a < 2°a®~D/PE(S) and a < 27" (E(S))P = 27" (X, E(X:))P.

7E Lemma (see GRAHL 07, Theorem 3.2) Let (X, ) be a probability space and p > 2; set m =

fpg’f_zl)]. Let f: X — [0,00[ be a ¥-measurable function with [ fPdu < oo, and € > 0. Set 8 = [ fdu and

24m (277’1) |

e2m

C =2 max(2?| 5,27 | £[15°) +

Let (E;);er be a finite disjoint family of measurable subsets of X with v; = uF; > 0 for every i € I. Set
Z = [l;c; Ei with the product probability measure 0 = [],; %,uEi, where p g, is the subspace measure on

E; for each i. For w € Z set g(w) = > _,c;7vif(w(i)). Then
0{w : g(w) > B+e} < CyPt



where v = max;er ;.
proof (a) For z € X and w € Z, set
fola) = fa) if f(a) <yH7,
= 0 otherwise,
fi(z) = f(@) = folx),

(@) = Z%‘fo(w(l))

iel

=S i (=)

iel
(b) Set By = [ fodu < 3, where E = |J;o; Ei. Then Lemma 7C tells us that
[ 180 = go() Pm0(dm) < (2m)dmy=2m/gm = () 4mame=D/P < (2m)14map—1.
So

0{w : g0(w) > B+ 3¢} < 0{w : By — g0(w)| > 3¢}

22m 24m (9 ! _
= c2m /WOXZ — go|2md9 < egmm) AP L

(c) By Lemma 7D,

/gfd9<max 21’2/ 7 f1(=(0) PO dew), 27" Z/ 7if1((0))6(d=))")

el i€l
= max(2? (vi f1(z))Pu(dz) 2p Yifi(z )?)
A ;/ :
=max(2P y AF p—1 f1(x)Pu(dx) 2” fi(z
S e T [
< max 2p ~PT 1 f (d$),2p f (ac) (d:L‘ p
; / 1 / 1\
<@ [ fPutdn) 2" 60 [ @)

(because fi(z) >~ /P whenever fi(z) # 0, so fi < P=1D/PfP)
—max?ppl/fl dx2pp1/f1

leax2p/f pi(dz) 2P/f

= AP~ max(27) £|2, 27 || £]12°).
So

0{w : g1(@) > fgfd9 = —maX(2p||f||p 271 £115 )P

1o}
2°

(d) Putting these together,

0w :g(w) > B+e} <O{w:go(w) > ﬁ—l—le} +0{w: g1(w) > %6}

24m(2m)!

e2m

= Oy

— 2P 2 —
1 2 a2 £, 27 £ )
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as claimed.

7F Lemma Let (X, u) be ]0,1[ with Lebesgue measure, and n > 2 an integer. Write u™, pu™ x u*
for the product measures on X", X" x X* respectively. For w € X" define (t;(@));<, as in B. Define
#: X™ — [X]=" by setting ¢(w) = w[n] for w € X™, and let ¢ be the image measure y"¢~* on [X]=".

(a) Suppose that n = 2k is even. Define 1, : X" x X* — [X]=" by setting

’(/)1 (w,w’) = {tgi(w) 1< k} U {(1 — w’(i))tgi(w) + w/(i)tgi_,_g(w) i< k— 1}
U{(1 — @' (k —1))tag—2(w) + @'(k — 1)}
Then the image measure ¢; = (u™ x p*)p;* is equal to ¢.
(b) Suppose that n = 2k is even. Define 15 : X™ x X* — [X]=" by setting

Yo(w, @) = {t2ip1(@) 1 i < k} U {@'(0)to()}
U {(1 — wl(i))t%_l(w) + w’(i)t%(w) 1<i< k‘}
Then (u™ x p*)p5 ' =¢.
(c) Suppose that n = 2k + 1 is odd. Define 3 : X™ x X* — [X]=" by setting
Y3(w, @) = {toi(w) : i <k} U{(1 — @' (i))ta;(w) + @' ()toipe(w) 1 i < k}.
Then (1" x p*)5 ! = ¢.
(d) Suppose that n = 2k + 1 is odd. Define ¢4 : X™ x X**1 — [X]=" by setting
Ya(w, @) = {taip1(@) i <k} U{@'(0)t2(w)}
@] {(1 — w’(i))tzi,l(w) + w/(i)tQiJrl(w) 1< < k}
U{(1 — @' (k—1)tag—1(w) + @' (k — 1)}
Then (u" x pF+t)y ' =¢.
Remark Maybe it will help if T try to explain what the functions ¢4, ... , 14 are doing. Given a pair (w, @),
we take every second member of w[n] and discard the rest; then we use w’ to replace the discarded members
of wn] = ¢(w) by random members of the intervals between the retained members of win]. The four forms
of the result correspond to whether n is even or odd and whether we are keeping the even members of w(n|
or the odd members. Saying that we get the same image measure on [X]<" in every case amounts to saying

that we can generate our random set K € [X]<" in two stages, first fixing certain members and then filling
in the gaps independently.

proof (a)(i) If we give [X]=?* its Fell topology (FREMLIN 03, 4A2T), then ¢ and 1; are both continuous,
so ¢ and (; are Radon probability measures (FREMLIN 03, 4181). Set W = {w : @ € X?* is injective}; then
W is p?*-conegligible and W x X* is 2% x p*-conegligible, while ¢[W] = v, [W x X*] = [X]?*. Accordingly
[X]?*, which is an open subset of [X]<2¥_is conegligible for both ¢ and (;.

(ii) It will help to note that if z € X then F = {K : x € K € [X]=2?*} is negligible for both ¢ and ;.
P {w: 2z € w[2k]} is p*F-negligible, so (F = 0. On the other hand, if @ € X2* and x is not a value of w,
then

e’ (1= @' (i))t2s (@) + @' (0)t2i42(w) = @}
=M@ (1 - (k—1))togo(@w) + @' (k—1) =2} =0

for every i < k — 1, so {w’ : x € ¢ (w,w’)} is negligible. Accordingly (;F = 0. Q

(iii) Let ¢ > 0.

() Let U, be the family of subsets of [X]?* of the form
{K : KN]ai, Bi[ # 0 for i < 2k}

where 0 < a; < 3; <1 for each i, §; — a; < (a1 — G3;) for i <2k —2, 3; — a; < e(e; — B;—1) for i > 0 and
Bri—1— ar—1 < e(l —Pr_1). H U € U, is in the above form,
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(U = p?* ¢~ U] = (20)[T; <00, (8: — ).
To estimate (u2F x p*); U], set

V={w:we X2 g < to;(w) < Bo; for i < k,
Bai < taip1(w) < qgiqe for i <k —1, Bop_o < top—1(w)}.
Then
2RV = 26N} 2y (Bai — azi) - TTi—g (aige — Bai) - (1 — Ban—2).
For w e V,

{w/ . 1/)1(@,’(3/) S U} = m {w' gyl < (1 — w’(i))tgi(w) + w'(i)t2i+2(w) < ,82i+1}
i<k—1

N{w" :agg—1 < (1 — @' (k —1))tog—2(w) + @' (k — 1)}
has measure
k—2

,327:+1—01211+1 . ﬂ2k—1_042k—1
i toite(w)—t2i(w) 1—tap_2(w)
=

k—2
> H Boit1—02i41 - Pok—1—azk—1
- 5 (14+2€)(zit2—PB2i) (14+€)(1—PB2r—2)
i=

k—2
> 1 527‘,+1—C¥27‘,+1 5 ﬁzk—1—0¢2k—1
— (142¢)* 5 Q2iy2—2i 1—PB2r—2
i=

So

QU = (1 x pu* ) [U]
k—2
1 ﬂ2i+1_a2i+1 _521971—@21@71 2kV
 (142¢)F 4 5 Q22— P2i 1—PBak—2
i=

k—2
(Qk)! ﬂ2i+1—042¢+1 X Bak—1—ak 1

(1+2¢)k paiy Q22— L2i 1—Pak—2
k-1 k=2
B2 — a2i) - [ (2ia — Bai) - (1 = Bak—2)
i=0 i=0
_ (2R)! N _ U
= (1120 H (52 Olz) = (1“1’726)’9 .
<2k

(B) Now let G C [X]=2* be an open set. For m € N, set D,, = {27k : k < 2™}, If
F={K:Ke[X* KnU,,yDm# 0} U[X]<?,

then F' is (-negligible and (j-negligible, by (i)-(ii). For each m, let V,, be the set of members U of U,
included in G, such that (when expressed in the form of («) just above) a;, 3; are successive members of
D,, for each i < 2k. Note that if m' <m, U € V,,,, U’ € V,,, and U NU’ # (), then U C U’; while

G\ F CUpenUVn €G.

P Of course |V, C G for every m. If K € G\ F, let (s;)i<a2r be the increasing enumeration of K, and
6 > 0 such that

0 < e(siy1—s;—20) for every i < 2k —1, 0§ <e(l—sg5-1 —0),

{K': K' € [X]=?*, K'N]s; — &,8; + 8] # 0 for every i < 2k} C G.
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Then there is an m € N such that 2™ < §. For each i < 2k, s; ¢ D, so we can take successive «;, §; € Dy,
such that «; < s; < §;, and now

U={K': K e[X]=?*) K'N]a;,Bi] # 0 for every i < 2k}

belongs to V,,, and contains K. So G\ F C |J,,cxyUVm- Q
Now take

V=UpnexilU : U € Vi, UNU'" = ) whenever m’ < m and U’ € Vy }.
Then UV = U,pen U V- By (@), CU < (1 +2€)*¢LU for every U € U, so
CG=¢UV)=>2pep U< (1+ 2€)kZUeV GU = (1+20)k¢G.

<2k

() This is true for every open G C [X]=4*. Since ¢ and (; are Radon measures, it follows that

¢ < (14 2¢)F¢; (FREMLIN 03, 416Ea).

(iv) As e is arbitrary, ¢ < ;. But both are probability measures, so they must agree on the Borel sets
and are identical.

(b)-(d) The arguments are elementary modifications of those above.

7G Lemma Let (X, u) be ]0, 1] with Lebesgue measure, and n > 1. For w € X", let £, be the family
of components of X \ w[n], and v, = max{uFE : E € £,}. Then

1+3Inn 1

proof If w € X™ is such that X \ w[n] has a component of length @ or more, there must be a
j < n —3lnn such that @w[n] does not meet the interval I; = l,w { The probability of this
n n

happening, for any particular j, is (1 — pul;)"; so the probability of it happening for some j is at most

n(l— “ﬂ%)” <nexp(—3lnn) = L

n2

TH Lemma Let (X, p, 1) be ]0,1[ with its usual metric and Lebesgue measure, and p > 2. Let f: X —
[0, 00[ be such that [ fPdy is finite, and € > 0. Set 8 = [ fdu, m = (%1 and

24m (Zm)'

€2m

2p 2 2
C = = max(27[| fI|7, 27 | F11) +

If n > 3 and p™ is the product measure on X", then
n 1 2461 _
pi{w: [ F(w@, f)dp = 2(8+€)} < 2 + (2771 ).

n

proof (a) Note first that because u{x : p(x,z) = p(x,2’)} = 0 for every z, 2’ € X, we have a function
h : [X]=" — [0, 00[ defined by saying that h(K) = [ F(w, f)du whenever w € X" and K = w|n| (and
h(0) = 0, if you like). Let ¢ be the measure of Lemma 7F, so that @ +— w]n] is inverse-measure-preserving
for 4™ and ¢, and

p{w /F(w,f)du >2(8+ et =({K :MEK)>2(8+¢)}
={K: K e[X]", MK)=2(8+¢€)}
Write v for

1+3Inn
—

(b) For the time being (down to the end of (d) below), suppose that n = 2k is even. Define hy,
ha : [X]?* — [0, 00| by saying that if K € [X]?* and (t;);<o is the increasing enumeration of K, then
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hi(K) = (1 — tog—2) f(tox—1) + Zi:g(tm-s-z — to;) f(t2ig1),

ha(K) =ty f(to) + Y12} (baigr — tai1) f (2:)-
Then h(K) < hy(K) + ha(K) for every K € [X]?*] so
(K :Ke [ X! h(K)>28+e} <{{K:Kc[X]* h(K)>p+¢e
+ ({K : K € [X]**, ho(K) > B+ €}

(c)(i) To estimate ({K : K € [X]?**, hi(K) > 8 + €}, consider the function 91 : X2 x Xk — [X]<2k
described in Lemma 7F. This is inverse-measure-preserving for the product measure p?* x p* and ¢, so

(K : K € X%, hi(K) > B+¢}
— (12 x 1) (@, ") : w s injective, hn (61 (@, ")) > B+ ¢}
because p?¥-almost every = is injective, while ¢;(w, @’) has 2k elements whenever @ is injective. Now set
F = {w: w € X? is injective, every component of X \ w[2k] has length at most 7};
by Lemma 7G, p?F(X2k\ F) < % Accordingly
(1 x ") {(w, @) : w is injective, hi(p1(w,@’)) > B+ €}

< % +/ uk{w/ : h1(¢1(w,w/)) > 5+€}M2k(dw)
F

(ii) If w € F, then
W (61 (') = B+ e} < (29)771C.

P Enumerate w[2k] in increasing order as (t;);<ax, and set

Ky = {tgi 11 < k},

FE;, = }tzi,fgzurg[ ifi<k-— 1,

= Jtog—o, 1[ if i =k —1.

For any @’ € X*, ¢ (w,@w') = Ko U {s;(@’) : i < k} where s;,(w’) = (1 — @'(i))inf E; + @’(i) sup E; for
each i, and h(¢1(w, @) = Zf;ol f(si(@"))uE;. Now observe that @’ — (s;(@’))i<k is an isomorphism
between (X*, %) and (I, Ei,0), where 6 is the product measure [],_, u%m; as considered in Lemma
7TE. So that lemma tells us that

Nk{w/ rw' € Xk? h1(¢1(wvw/)) > ﬂ"‘ 6}

k—1
=0{w' @ € [[Ei, Y f(@'())uE:i > B+ ¢}
i<k 1=0
< (max pE;)P1C < (29)P71C
1<

because each E; is obtained as the union of two components of X \ w[2k] together with the point between
them. Q

(iii) So we see that
(K K € X%, hi(K) > B+¢}
= (p* x pF){(w, ') : @ is injective, hy (¢1(w, @')) >  + €}

1 —
< S +@)rc
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(d) Similarly, using Lemma 7Fb and the function 5 there,
K K € [X]*, ho(K) > B+e} < ni + (29)P1C.

So

Wi [l f)dn > 206 +0) = K < (i) 2 25+ )
<K : K e [X)%, hi(K) >+ e}
+{K : K € [X)?*, ho(K) > B+ ¢}
<2(=; + (29)771C).

(e) This deals with the case of even n. The argument for odd n is essentially the same, using parts (c)
and (d) of Lemma 7F.

71 Theorem Let (X, p, ) be ]0, 1] with its usual topology and Lebesgue measure, andp > 2. If f : X — R
is such that [ |f|Pdp is finite, then

lim, oo [ |F(wIn, f) = fldn =0
for A-almost every w.
proof (a) Note first that if g : X — [0, 0o[ is pth-power-integrable,
limsup,,_o, [ F(wln,g)du <2 [ |gldu

for almost every w. P Let € > 0. As in Lemmas 7E and 7H, set 8 = [ |g|dp, m = [p(zf’:;)] and

2 2 2 24m(2m)!
C == max (2|3, 2" llgl;") + =7
Then 7H tells us that, for any n > 3,

Mw : fF(meg)du >2(8+¢€)} < 2(i2 + (W)p—lc).

n n

1 + (W)pflc) is finite, {n : fF(w[n,g)du > 2(8+¢€)} is finite for almost every w, and

Since >°>° 4 2(— -
lim sup,,_, fF(w[n, 9)du < 2(8+¢€)
for almost every w. As € is arbitrary,
limsup,,_, ., fF(w[n, g)du <20
for almost every w. Q

(b) Next, given € > 0, we can express |f| as h + g where h : X — R is bounded and continuous and
J lgldp < e. In this case, for almost every w, (F(wln,h)),>1 is uniformly bounded and converges pointwise
to h, while limsup,, . [ F(w[n,|g])dp < 2¢; so

limsup/F(w[n,|f\)du < limsup/F(w[n,h)du+limsup/F(w[n, lg))du

n—oo n—oo n—oo

< [ hdn 26 < [ |fldu+ se
As ¢ is arbitrary,
limsup,, . [ [F(wln, f)ldu =limsup, ., [ Fwln, |[f)du < [ |fldy
for almost every w.

(c) However, we already know that p is Mycielski-regular, by Theorem 5B (or Corollary 3B) and
Proposition 2N. So, for almost every w, we know that (F(w[n, f))n,>1 converges in measure to f and
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also limsup,, .. [ |F(win, f)ldp < [|f|dp. But now lim, . [|f — F(wln, f)|du = 0 for all such w, by
FREMLIN 01, 245H(a-ii), as in 7A.

8 Problems The following questions seem to remain open.

8A Is every Radon probability measure on every Euclidean space R” Mycielski-regular? (This is J.Mycielski’s
original version of the problem, expressed in the language of this note.)

8B Is the measure of Example 4D Mycielski-regular? (I rather think it is.)

8C Is the invariant Radon probability measure on any compact metric space with sesquitransitive isometry
group Mycielski-regular?

8D If (X, p) is a separable metric space and u is an atomless topological probability measure on X with
the Lebesgue density property, must p be Mycielski-regular?

8E Let (X, p, ) be [0,1] with its usual metric and Lebesgue measure, and f : X — R a p-integrable

function. Is it necessarily true that (F(w|n, f))n>1, as defined in 6C, converges to f u-a.e. for A-almost
every w?

8F Let (X, p) be a metric space, u a Mycielski-regular topological probability measure on X and f :
X — R a p-integrable function. Under what circumstances do we have lim,,_ f F(wln, f)du = f fdu for
almost every w? (See §7.)
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