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Problem DU
D.H.FREMLIN

University of Essex, Colchester, England

1 The problem
1A Notation (a) I will call a family S of sets hereditary if PI C S for every I € S.

(b) Let T be a set and S a family of sets. I say that S is %-ﬁlling over T if S is hereditary and for
every I € [T]<“ there is a J C I such that #(J) > 3#(I) and J € S.
For cardinals A\, x I write P(k, \) for the statement
whenever S C []<“ is 1-filling over k, there is a set A € []* such that [A]<* C S.

1B The problem For which cardinals is P(x, A) true?

lC Two examples (a) P(w,w) is false. P Set S = {0} U {I ITCN, IT#0,#(I) <14+ minl}. Then S
3-filling over N and there is no infinite A C N such that [4]<* C S. Q (T hlS is a version of the Schreier
family.)

(b) If w; = ¢ then P(w;,w ) is false. P Enumerate [0, 1] as (te)e<w,. For each £ < wq choose a compact
set K¢ € [0,1]\ {z; : n < £} of Lebesgue measure at least 3. Set S = {I: 1 C wy, Neer Ke # 0}. Then S
is 1-filling over wy but there is no uncountable set A C w; such that [A]<¥* C S. Q

2 General theory

2A Compact families (a) I will say that a family S of sets is compact if it is closed in PT where
T=US.

(b) If S is a hereditary family of finite sets, the following are equiveridical: (i) S is compact; (ii) there is
no strictly increasing sequence in S; (iii) [A]<* € S for any infinite A.

(c) So if S is a compact hereditary family of finite sets, then any hereditary S’ C S is compact.

2B Derivations (a) Let S be a hereditary family of sets and Z an ideal of sets. Set
0rS={I:{t:t¢I, TU{t}eS}t¢TI}.
Then 975 is hereditary and included in S.
(b) Again supposing that S is a hereditary family of sets and Z an ideal of sets, define (0%S)a<on
inductively:
028 = S;
for any ordinal a, 937'S = 97(9%5);
for non-zero limit ordinals o, 925 =5, 355.

Then (0%S)a<on is a non-increasing family of hereditary sets.

Write rankz S for the smallest ordinal v such that 8}“5’ = 07S. Note that if S is a compact hereditary
family of finite sets then this kernel 975 must be empty; so that for any ordinal o we have

a <rankz(S) <= 025 #0 < 0 € 92S.

(c) If S, S’ are hereditary families of sets and Z is an ideal of sets, then d7(S U S’) = 975 U 975".
Consequently 0¢(SUS’) = 925 U 925’ for every a. If S and S’ are compact hereditary families of finite
sets, then rankz(S U S’) = max(rankz(S), rankz(S")).
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(d) If S is a hereditary family of sets and Z, J are ideals of sets with Z C J, then 9475 C 075;
consequently 9%S C 0¢S for every «, and if S is a compact family of finite sets then rankz(S) > rank7(S).

(e) If S is a family of sets of ordinals, set
S ={I:Te€S, TU{¢} €S for some ordinal ¢ such that I C £},
and for ordinals a define S by setting
S =5, 0°S =y, 00°9)

if @ > 0. If S is hereditary, then every 9*S is hereditary and (0*S)scon is non-increasing.

2C Lemma Suppose that S is a hereditary family of sets, and that Z is an ideal of subsets of T' D |JS.
ForteTset Sy ={I:TU{t} €S, t¢I}.

(a) 02(S:) = (025) for every ordinal o and every t € T

(b) If S C [T]<* is compact and not empty, then rankz(S) = (minaez supyep 4 rankz(St)) + 1.

proof (a) Induce on «. The induction starts with o = 0, S; = S;. For the inductive step to a successor
ordinal oo+ 1, if I C T then

Tcgt'S, «—= {s:5€T\I,TU{s} €25} ¢7T
< {s:s€T\I,TU{s} €(079):} ¢Z
(by the inductive hypothesis)
< t¢Tand{s:seT\({TU{t}), IU{t}U{s} €0¢S} ¢TI
— t¢ Tand TU{t} € 93T'S
> 1€ (0518,

so the induction proceeds. For the inductive step to a non-zero limit ordinal «, if I C T then

I1€07S, — I¢ 855,5 for every 8 < «
— Ie (855),5 for every f < o
= t¢[andIU{t}G@?Sforeveryﬂ<a
< t¢Tand TU{t} € 07S
<~ 1€ (0%79),
and again we can continue.

(b) In this case Sy = {I \ {t} : t € I € S} is also compact, for every t € T. Set ~; = rankz(S;) for every

t €T, v=minaez SupPyeq\ 4 V-
For an ordinal «,

a+ 1 < rankz(S) 0eoxtts
(2Bb)
(t:{ty o8y ¢ 1
{t:0e€ 079} ¢1
(t:0€02(S)} ¢ T
{tra<m} ¢l
<.

rretre 1

It follows at once that rankz(S) < v + 1. In the other direction, if v = 5+ 1 is a successor ordinal, then
<y 0e (‘35“5 and v < rankz(S); if v is a non-zero limit ordinal, then () € 8¢S for every a < v, so again
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0 € 07S and v < rankz(S); finally, if v = 0 then v < rankz(S) because S # ). So in all cases rankz(S) is
greater than v and must be exactly v + 1, as claimed.

2D Lemma Suppose that S C [T]<“ is hereditary and %—ﬁlling over a non-empty set 7', and that 7 is a
proper ideal of subsets of T containing singletons. Set k = addZ. Then () € 94S.

Remark Here add 7 is the additivity of Z, the least cardinal of any subset of Z with no upper bound in 7
(see FREMLIN 08, §511).

proof (a) Suppose first that k > wy, that is, that Z is a o-ideal.

(i) In this case, I show by induction on « that for every o < & there is an M, € T such that 05 is
%—ﬁlling over T'\ M,. The induction starts with My = 0.

(ii) For the inductive step to o + 1, given that 025 is %—ﬁlling over T'\ M,, ? suppose, if possible,
that 8}"+1S is not %—ﬁlling over T'\ M for any M € Z. Because Z is a o-ideal containing singletons, we can
choose inductively families (I¢)¢<,, and (Ng)e<o, such that

every I is a finite subset of 7'\ M,,

every N¢ belongs to Z,

Ie N Upce Ny = 0 and #(J) < 3#(I¢) whenever J € 93+ and J C I¢
(because we are supposing that 937 S is not i-filling over 7'\ (M, U Uyy<e Nn)):

Ne =1 U UJgIg,J¢8;+1S{t rJU{t} € 075}
(which belongs to Z by the definition of 937'S). Now there is some k € N such that A = {¢ : #(I¢) = k}
is infinite; of course & > 1. Let m be the greatest integer less than £ and let r > 1 be such that

2
mr+k < 3k(r+1). Take {§ < ... < & € A and consider I = Ui<, I¢;- This is a finite subset of 7"\ M,

i

so there is a J C I such that J € 0¢S and #(J) > 3#(I) = 3k(r +1). There must therefore be some
first j such that #(J N I¢,) > k. In this case, by the choice of the I¢, J NI, ¢ 037'S and N, includes

{t: (Unl)u{t} € 035} 2 J, so that I, N J must be empty for every i > j. What this means is that
#(J) = Lico #(T N Ie) <mj + k,

and
%k(r—i—l)gmj—i-kgmr—i—k,

which is impossible, by the choice of r. X
Thus the induction proceeds to a + 1.

(iii) For the inductive step to a non-zero limit ordinal a < , we need only set M, = (J;.,, Mg, which
belongs to Z because 7 is k-additive.

iv) Now because T ¢ Z it follows that () € ¢S for every a < k, so that ) € %S, as claimed.
T T

(b) Now suppose that kK = w. Fix a non-zero m € N for the moment. Choose a sequence (ty)nen of
distinct elements of T" so that

whenever 7 <m and J C {t; :i <n} and J ¢ 357'S, then JU {t,} ¢ 9%5;
this is possible because when we come to choose t,, only a set belonging to Z is forbidden to us. Now look
at K = {t, : n < 2m}. There is an I € S such that I C K and #(I) = m; express I as (tn,)i<m where
ng >ny > ...>n,mo1. Set I; = {t,, 1 j <i<m} for each j. Now I; € 5‘%5 for every j < m. PP Induce on
j. Io=1€S=08S. If I; € 3,5, then I;1y C {t; :i < n;} and I;41 U{t,,} = I; € 35S, so I;+, € 057'S.
Q

In particular, §) = I,,, € 07*S. As m is arbitrary, ) € 94S. So we have the result in this case too.

2E Minimal families (a) If S is %—ﬁlling over T, there is a minimal S’ C S which is %—ﬁlling over T
(For the intersection of any downwards-directed family of %-ﬁlling sets is again %—ﬁlling.)



(b) If S C [T]<* is a minimal 3-filling set, then for every maximal J € S there must be a finite I D J
such that J is the unique member of S included in I such that #(J) > #(I). (For otherwise we could
delete J.)

(c) If S C [T]<¥ is compact and hereditary and $-filling, there is a compact minimal 3-filling 5" C [T]<%.

(d) The Schreier family S of 1Ca is minimal %—ﬁlling. P If ] € Sis maximal, set n = min/, J = I Umn;
then #(I) =n + 1, #(J) = 2n+ 1 and [ is the only member of [J]"*! belonging to S. Q

2F Lemma Let T be a set and S C [T]<“ a compact 3-filling family. Then there is a finite / C T such
that for every non-empty J € [T'\ I]<“ there is a K € SN PJ such that #(K) > S#(J).

proof By 2Ea, there is a minimal %—ﬁlling family S C S. Because S is compact, so is S, and S’ has
a maximal element Jy. By 2Eb, there is an I € [T]<“ such that Jy is the unique member of S’ N PI
with #(Jo) > 3#(I). Let J C T\ I be a non-empty finite set. If #(J) = 1, then of course J € S’ and
#(J) > 5#(J). If #(J) > 2, there is a K € 8’ N (J U I) such that

#(K) > [5#(JUD)] =2 1+ [5#()] > #(Jo).

As Jo is maximal, K 2 Jo and KNI is a member of S’NPI other than Jy. It follows that #(K NI) < 24(I)
so #(K\I) > 3#(J), while K\ I € 8’ C S.

2G Monotonicity I spell out an obvious fact: if P(x, ) is true, then P(x’, \') is true whenever X' < A
and &' > k.

3 A connexion with bases in Banach spaces

3A Theorem Suppose that x is an uncountable cardinal. Then the following are equiveridical:

(i) P(k,w);

(ii) If X is a Banach space and (e¢)¢< is a family of unit vectors in X such that every weak neighbourhood
of 0 in X contains all but finitely many of the e¢, there is a sequence (&;);en of distinct elements of x such
that inf,ex ||ni+1 el =0;

(i) If X is a Banach space and (e¢)¢< is a family of unit vectors in X such that every weak neighbourhood
of 0 in X contains all but finitely many of the e¢, there is a sequence (&;);en of distinct elements of k£ such

. 1
that lim,, ”nT—l Z?:o eg,|| = 0.

proof (i)=-(iii) Suppose that P(x,w) is true. Let X be a Banach space and (eg)e< is a family of unit
vectors in X such that every weak neighbourhood of 0 in X contains all but finitely many of the e;.

(a) For € > 0, consider the set
Se ={I: I C k, there is some f € X* such that ||f|| <1 and f(e¢) > € for every £ € I}.

If AC kand [A]<¥ C S, then A € S.. P For each I € [A]<% there is an f; in the unit ball of X* such that
fi(ee) > € for every £ € I. Let f be a weak™ limit of the f; as I increases through the finite subsets of A;
then f(e¢) > € for every £ € A, so f witnesses that A € S.. Q

Since every weak neighbourhood of 0 contains all but finitely many of the e¢, Se C [£]<¢, and there is no
infinite set A C  such that [A]<¥ C S.. We are supposing that P(x,w) is true. So if A € [k]<¥, € > 0 and
d > 0, S is not o-filling over & \ A.

(B) ? Suppose, if possible, that there is an € > 0 such that
VneNII e[V Je[R\I" X eesecl = en.
Then there is an A € [k]=% such that || > ceyeell = e#(J) for every finite J C x\ A. For each J € [\ A]<¥,
choose f; € X* such that | fs[| <1 and f;(3 ccyee) > e#(J), and set [; ={{:§ € J, fsle) > g} Then

eH#(J) < Deey falee) < #(Ly) + %#(J)a



so #(Iy) > %#(J), while I; € Sc/5. As J is arbitrary, S/, is $-filling over &\ A; but this is supposed to be
impossible. X
() Accordingly
Ve>03neNVIeKITe R\, X ceyecl <en.

For each k € N choose n; € N such that

VIe < ITe[R\I]™, [[DXecsecl < 27 Fny,.
Of course no ny can be 0. Choose (my)ren in N such that

ek 27 uny < 27Fmyng, g < 27Fmgny
for every k. Now we can choose Jy,, for k € N and r < my, such that

Jer € [K]™,  Jgr N Jis =0 if either [ < k and s <my or Il =k and s < r,

||Z§EJnr 65” < Q*knk.

Take a sequence (&;);cn enumerating UkeN’Kmk Jir in such a way that if & € Jis, §; € Jyr and ¢ < 7, then
either [ < korl=kandr <s.

Set My, = >, myny for k € N. Suppose that £ > 1 and My, <n < Mgy1. Then ||
P Express n as My + mny + j where m < my, and j < ni. Then

1D eell=1D > D ee+>. Dot >, el

<7-27Fn.

i<n 651'

i<n I<k s<mq £€J;s r<m € Jy, Mi+mni<i<n
< E E 270y + E 27 ny, 4§
I<k s<my r<m
< E 2*lmml + 27kmnk + ng
<k
< E 2_lnlml + 2_k+1mk,1nk,1 + 2_kmnk + 2_k+1mk,1nk,1
I<k-—1

< 27k+1nk_1mk—1 + 2ik+1mkx—1nk—1 + 27km7’lk; _|_27k+1mk_1nk_1
<2 FHlp g2kl 4 oy o Rty — 7. 97k

as claimed. Q

. 1
() Thus limp, o0 ||E Dicn €

=0 and (iii) is true.
(iii)=-(ii) is trivial.

=(i)= —(ii) (@) Let S C [x]<“ be a i-filling family not including [A]<“ for any infinite A C x. Write
coo for the linear space of functions z : k — R such that { : z(§) # 0} is finite. For x € coo set
2]l = supres D ¢er [#(§)]- Because all singleton subsets of x belong to S, || || is a norm on cgo. Let X be
the completion of cyg for this norm, and set eg(n) = 1 if n = £, 0 otherwise, so that |le¢|| = 1 for every £ < k.

(B8) We can identify the dual of X with a subspace of ¢y(k). I Because ¢ is dense in X, every f € X*
is defined by the family (f(e¢))e<x € R*. Consider the set D = {y x xI : I € S, |ly||oc < 1}. By 8§4C,
this is a compact subset of R”, and it is norm-bounded in ¢o(k), so it is compact for the weak topology
T(co(k), 01 (k)). By Krein’s theorem, the closed convex hull C' of D in cy(x) for T4(co(k), £1(x)) is compact.
Being compact and balanced, C' must also be the closed balanced convex hull of D in R* for T,(R", coo).
So if z € C, we have (z|z) < ||z|| whenever x € cgo, and z represents a member of the unit ball of X*. On
the other hand, if z € R™ \ C, there is an = € cgo such that (z|z) > sup,cp(y|z) = [|z|. So we can identify
C with the unit ball of X*, and every member of X* with a multiple of a member of C, which will still lie

inco(k). Q



(7) It follows that every weak neighbourhood of 0 in X contains all but finitely many of the e.. Now

suppose that (£;);en is a sequence of distinct elements of k. Then for every n € N there isan I C {§; : 4 < n}
> ntl BLE
such that I € S and #(I) > R So Hn+1 Yoo e

Thus X and (e¢)e<,. witness that (ii) is false.

_2~

4 Other concepts of density

4A Weaker ideas of density Suppose that 1) : N — [0, 00] is a function. If T is a set and S C [T]<%,
we can say that S is ¢-filling over T if (i) PI C S for every I € S (ii) for every I € [T]<“ thereisa J C I
such that #(J) > ¢(#(I)) and J € S. For infinite cardinals x and A, let Py(x, A) be the statement
whenever S C [k]<“ is ¢-filling over k, then there is an A € [A]® such that [4]<¥ C S.
Now we have the following.

4B Proposition If ¢ : N — [0, co] is any function such that (n) < n for every n and lim,, @ =0,

then Py (c,w) is false.

proof Set ¢, = sup;>,, @ for n > 1, so that {(€,),>1 is a non-increasing sequence in [0, 1] with limit 0. Set
T={z:2€C, |z| =1}. Set

S=Upsi{l: 1€ [T)=", 3w e T, \argi| < e, for every z € I'}.
Then S C [T]<% and J € S whenever J C I € S. If I € [T]", where n > 1, then for each w € T

set I, ={z:2 €1, |arg§| < me,} € S. Writing p for normalized Haar measure on T, then for each

z €T, {w: z € I,} has measure €,, so [#(I,)pu(dw) = e,#(J) = ne, and there is a w € T with
#(I,) > ne, > 1p(n). This shows that S is ¢-filling over T

If A C T is infinite, take any distinct 21, 20 € A, and let n > 2 be such that 27e,, < | argi—1|. If I € [A"
2

contains both z; and 25, and m > n, then there can be no w € T such that \arg% < me,, for both i, so

I¢S. Thus [A][<¥ £ S.
Since #(T') = ¢ we have the result.

4C Proposition If lim, . ¥(n) = co and S is a compact hereditary 1-filling family over an infinite set
T, and Z is a proper ideal of subsets of T' containing singletons, then rankz(S) > w.

proof Use the argument of (b) of the proof of Lemma 2D; in place of 2m, take some r such that ¥ (r) > m.

4D If ¢»(n)/n is bounded away from zero, then we return to the original problem.

Proposition Let ¢ : N — [0, 0o be a function such that, for some € > 0, en < ¢(n) < (1 — ¢)n for every n.
Then Py(k,\) <= P(k, A) for all infinite cardinals x and .

proof (a) Suppose that § > 0 and ¢’ < 1 and ¢, 8 : N — [0, oo[ are such that 6(n) > dn and ¢(n) < é'n for
every n. Let m be such that (1—0)™ < 1—¢". If S C [x]<% is #-filling over k then S’ = {IyUT,U.. . Ul,_1 :
Iy, ..., Im—1 € S}is ¢-filling over k. P Take any J € [x]<“. Choose I; inductively such that I; C J\Uj<i I;
and I; € S and #(1;) > 0(#(J\U, ., 1;)) for each i. Inducing on i, we see that #(J\U,_; I;) < (1—-6)#(J)
for each 4, so that if we set I = J,_,, I; then I € S" and I C J and #(I) > 0'#(J) > ¢(#(J)). Q

(b) It follows that Py(x,\) = Py(k,A). P Let S C [k]<¥ be #-filling. Set S' = {IpUI,U...UI,_1:
Io, ..., Im—1 € S}. Then S’ is ¢-filling over &, so there is an A’ € [x]* such that [A']<* C S’. Let F be an
ultrafilter on [A’]<“ containing {.J : £ € J € [A’]<*“} for every £ € A’. For each J € [A’|<“, there is a function
fr:J — m such that f;'[{i}] € S for every i < n. Define f : A’ — m by setting f(¢) = limy_# fs(€)
for every £ € A’. Then there is some j < m such that A = f~1[{j}] has cardinal . If K € [A]<% the set
{J: K C f;'[{5}]} belongs to F, so is not empty, and K € S. Thus [A]<¥ C S. As S is arbitrary, we have
Pg(li, )\) Q
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(c) Applying this with § = min(%, €), 8 = max(%, l—¢€),d=1,0(n)= én and the other way about, we
have the result.

4E Proposition There is a function ¢ : N — [0, oo[ such that lim,_. 1)(n) = co and Py (k™ x™) is false
for every infinite cardinal k.

proof For n € N let ¢(n) be the largest number m such that
whenever D C [n]® then either there is a set I € [n]™ such that [I]> C D or there is a set
I € [n]™ such that [I]>N D = 0.
By the (finite) Ramsey theorem, lim,,_, o ¥ (n) = co.

Now suppose that « is any cardinal. For each ¢ < s let fc : ( — & be an injection. Let D C [kT]3 be
the set of triples {¢,n,(} where { <n < (< k™ and f¢(€) < fe(n). Let S be the family of all finite subsets
I of k™ such that either [I]> C D or [I]> N D = (). By the choice of v, S is ¥-filling.

Let A C kT be such that [A]<% C S. Then either [A]*> C D or [A]* N D = 0.

case 1 If [A]> C D then #(A) < k. P? Otherwise, take £ € A such that otp(AN¢) = k and ¢ € A such
that £ < ¢. Then f.JAN¢ is an injection from ANE to fe(€) < k, which is impossible. XQ

case 2 If [A]> N D = () then A is countable. PP? Otherwise, take ¢ € A such that otp(A N () = w. Then
fel A is order-reversing so does not attain its minimum. XQ

Thus #(A) < k™. As A is arbitrary, S witnesses that Py (x™, ™) is false.

4F MC-dense families: Definition (see AVILES PLEBANEK & RODRIGUEZ P09) Let (X, X, 1) be a
measure space. A family S is MC-dense over (X, X, ) if it is hereditary and whenever F' € ¥, v < pF'
and (Ap)nen is a sequence of sets covering X, then there is an I € S such that p*(FNJ{A, : n € N,
InA, #0}) > 1.

4G Theorem (AvILES PLEBANEK & RODRIGUEZ P09, 3.4) Let (X, X, 1) be a measure space such that
there is an uncountable disjoint family of subsets of X of full outer measure. Then there is a compact
hereditary family S C [X]<¢ which is MC-dense over (X, X, u).

proof (a) By 4B, there is a hereditary compact Sy C [c]<“ such that for every finite I C ¢ there is a J € Sy
such that J C I and #(J) > /#(I). Let (D¢)¢<w, be an uncountable disjoint family of subsets of X with
full outer measure. Set

S={I:1€[X]< #(IND¢)<1forevery & <wi, {{:&<wi, INDe#0} € Sp}.
Then S is a compact hereditary family of finite subsets of X.

(b) S is MC-dense. PP Suppose that F' € 3, v < uF < oo and that (A, ),en covers X. For each & < wy,
w*(DeNF) = pF >+, so there is a finite K¢ C N such that u*(De N F N Uner Ay) > ; of course we may
suppose that De N A,, # 0 for every n € K¢. Let K € [N]<“ be such that P = {¢ : K, = K} is infinite.
Set m = #(K); then P has a subset of cardinal m?, so there is an I C P such that #(I) = m and I € Sp.
Enumerate I as (&)i<m and K as (k;)i<m; for each i < m take x; € D¢, N Ay,; consider J = {z; : i < m}.
Then J € S and

p(FO A :ineN, INA, #0}) > p*(FNU,cx An) > 7.
As F, v and (A,)nen are arbitrary, S is MC-dense. Q

Remark Recall that if (X,X, u) is a probability space in which singletons are negligible and there is no
quasi-measurable cardinal less than or equal to #(X), then there is an uncountable disjoint family of subsets
of X with full outer measure (FREMLIN 08, 547E).

4H Proposition Let £ be an atomlessly-measurable cardinal, and p an atomless x-additive probability
with domain Pk. Then there is a compact hereditary family S C [k]<“ which is MC-dense over (k, Pk, 11).

proof (a) There is a stochastically independent family (E¢)¢<, of subsets of x of measure 1. J By the

Gitik-Shelah theorem (GITIK & SHELAH 89, or FREMLIN 08, 543E), the Maharam type of u is at least k.

Since this applies to any normalized measure of the form MLE ul E, where uF > 0, we see that every non-zero
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principal ideal of the measure algebra 2l of 1 has Maharam type at least k. So the measure algebra %5, of
the usual measure on {0,1}" can be embedded into A (FREMLIN 02, 322P), and there is a stochastically
independent family (e¢)¢<, of elements of 2 of measure % Take E¢ such that Ef = e¢ for each {. Q

(b) Re-coding a family of the type in (a), we can get an independent family (Fe,)e<p nen of sets of

measure % In this case, setting Fr =) Ee¢p, every F¢ is negligible. Now let S be the family of finite

subsets I of k such that

neN

N € Eei, \ Fr whenever n € I, £ € INn and k < #(I).

Clearly S is hereditary. To see that S is compact, observe that if £, n € I € S and £ < 7, there isan n € N
such that n ¢ Eg, \ F¢, and in this case #(I) < n.

(c) S is MC-dense over (k, Pk, u). PP Let (A, )nen be a sequence of sets covering x, and v < 1. Then
there is a finite family (B;);<m of sets, all of non-zero measure, such that for every i < m there is an n € N
such that B; C A, and u(J B;) > «y. Because the E¢, are independent, there is a countable M C &

. 1
such that (Een)eew\ M nen arefrﬁlependent of each other and also of the algebra generated by {B; : i < m}
(FREMLIN 01, 272Q*).
Choose (§;)i<m inductively, as follows. Given that ({;);<; is a strictly increasing family in x\ M, where
7 < m, we have

M(Bj N ﬂi<j,k:<m E¢k \Fﬁi) = :u(Bj N ni<j,k<m E&k) = pBj - Hi<j,k<m plek >0,
so we can take & € Bj N[ ),_; o Beik \ Fe, such that §; > &; for every i < j, and continue. At the end of
the construction, set I = {&; : ¢ < m}, and see that I € S, while
(ULAn - 10 Ay £ 01) > 0o Bi) = 7.
As (A )nen and v are arbitrary, S is MC-dense. Q

41 Proposition Suppose that there are infinitely many measurable cardinals. Then there is a probability
space (X, X, 1) in which all singletons are negligible but there is no MC-dense compact hereditary subset of
[X]<v.

proof (a) Let (kn)nen be a strictly increasing sequence of measurable cardinals, and set k = sup,,cy kn-
For each n € N let F;, be a non-principal k,-complete ultrafilter on &, and define y : Px — [0, 1] by setting

_ —n—1
pA = ZneN,Armnefn 2 :

Then (k, Pk, u) is a probability space in which every singleton is negligible. Let S C [k]<“ be a hereditary
MC-compact set. The rest of the argument will be devoted to showing that S is not compact.

(b) For each n € N there are families (D;);<n, (Ti)i<n+1 such that
(o) D; € F;, D Nky—1 = 0 for every i < n,
(counting k_; as 0),
(B)if m <n+1and A; € F; for every i < m, then there is an I € T,,, such that I N A; # (
for every i < m,
(v) T; C [k]<“ is hereditary for every i < n+1,
)ifm<n+1l,JeT,and & € D; form <i<n,then JU{ m<i<n}es.
P Choose the D;, T; by downwards induction on 4, as follows. Start with T;,11 = S. Of course () and (9)
are satisfied, while («) is so far vacuous. If A; € F; for i < n, set

A= A;\ | 4 fori <n,
Jj<i
:H\UA;- for i > n.

i<i

ILater editions only.
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Note that A} € F; for i < n. Since (Al);en covers k, there is a J € S such that p*((J{A; : TN A, #0}) >
1—27""1 As pA, =271 for i < n, J meets A; C A; for every i < n, while J € T,,41. As (A;)i<p is
arbitrary, () is satisfied.

For the downwards step to m < n, set

Tone = {J: J C ki1, JU{E} € Trnyr}

for each £ < k,. Because k,, is strongly inaccessible, #(P([km—1]<“)) < £m, and there is a Ty, C [Kpm—1]<“
such that Dy, = {{ : km—1 < & < K, Time = T} belongs to F,,. Now (a) and (y) are well in hand,
because every T, is hereditary. If A; € F; for every ¢ < m, there is an I € T}, such that I N A; # 0 for
i <mand I N D, # 0; take £ € I N D,,; then J = I N Kk, belongs to Tyne = Ty, and J N A; # 0 for i < m.
Thus (/) is satisfied at the new level. If J € T}, and & € D; for m < i < n, then JU{&,} € Tint1, SO
JU{& :m <i<n}eS. So(d) is satisfied, and the induction proceeds. Q

At the end of the induction, observe that To # @ (by (8)), so that we have a family (D;);<, such that
D; € F; for every i <n and {&,...,&,} € S whenever & € D; for every i < n.

(c) For each n € N, take (Dy;)i<n as in (8). Set Df = (),~; Dni; then Dy € F; for i € N. Take any
sequence (&;)ien € [[;eny Df; then {& : i € N} is infinite and {&; : ¢ < n} € S for every n, so S is not
compact, as claimed.

5 Connexions with precalibers of measure algebras

5A Measure-precaliber pairs: Definition (FREMLIN 08, 511E) Let (2(, i) be a probability algebra.
Say that a measure-precaliber pair of (2, ) is pair (k,A) of cardinals such that whenever (ag)ecs is
a family in 2 with infe<, fiae > 0, there is a I' € []* such that {a¢ : £ € T'} is centered. A measure-
precaliber of (2, ) is a cardinal k such that (k, k) is a measure-precaliber pair. Observe that if  has
uncountable cofinality, it is a measure-precaliber of (2(, i) iff it is a precaliber of 2, and that w is a measure-
precaliber of any probability algebra. I will say that (x, \) is a measure-precaliber pair of probability
algebras if it is a measure-precaliber pair of every probability algebra; in particular, every cardinal less
than mg is a measure-precaliber of probability algebras (FREMLIN 08, 525Ud!).

The definition here is written out for probability algebras. But suppose that 2 is any Boolean algebra. If
(K, A\) is a measure-precaliber pair of probability algebras, and A C 20\ {0} has positive intersection number
(FREMLIN 02, 391H), and (ag¢)¢<, is a family in A, then there is a I' € [x]* such that {a¢ : £ € T'} is
centered. I By Kelley’s theorem (FREMLIN 02, 391I), there is an additive functional v : 2 — [0, 1] such
that ¥1 =1 and inf,c 4 va > 0. (I am passing over the trivial case 2 = {0}.) Let I be the ideal {a : va = 0}
and B the quotient algebra A/I; then we have a functional 7 : 8 — [0, 1] defined by setting va* = va for
every a € 2. Next, we have a probability algebra (%, i) defined by taking a metric completion of B and
extending 7 (FREMLIN 02, 393B). We are supposing that « is a measure-precaliber pair of (%, ). So there
is a I € [x]* such that {ag : £ € T'} is centered in PB. It follows at once that {ae : £ €T} is centered in A. Q

5B Note on Example 1Cb The point of 1Cb is that if the continuum hypothesis is true then w; is
not a measure-precaliber of the measure algebra of Lebesgue measure on [0,1]. Generally, if (k, A) is not a
measure-precaliber pair of probability algebras, then P(k, ) is false. I Let (2, ii) be a probability algebra
and (a¢)e<. a family in 2 such that infe, 1Ae = € > 0. Set S = {I: I € [k|<¥, infecrae # 0}. Then S is
-filling over k, where 1)(n) = en for every n. Also there is no A € [k]* such that [A]<% C S. So S witnesses
that P(x,\) is false. Q

5C Lemma Let S be a set and (E;);cr a non-empty family of subsets of S. Then the following are
equiveridical:

(i) there is a non-negative finitely additive functional v : P.S — [0, 1] such that vE; > 0 for every t € T}

(ii) there are a probability space (X, %, u) and a family (F})ier in ¥ such that pF; > 0 for every t € T
and, for I € [T]<%, ,c; F; = 0 whenever (,.; E; = 0.

proof (i)=-(ii) Re-normalizing v if necessary, we may suppose that v.S = 1. Let A/ be the ideal {N : N C
S, vN = 0} and B the quotient Boolean algebra PS/N; then we have a strictly positive finitely additive
functional 7 : B — [0,1] defined by setting 7E* = vE for every E C S. We can therefore complete (B, D)
to form a probability algebra (2, i) (see FREMLIN 02, 393B). Now let (X, X, 1) be the Stone space of (2, fz)
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(FREMLIN 02, 321J-321K). For ¢t € T let F; C X be the open-and-closed set corresponding to the image E}
of B; in B C 2A. Then
by =pE =vE =vE, >0
for every t € T. Also, if (,c; £y = 0, where I C T is finite, then

M(tg F) = ﬂ(%rg E}) = D(%g E})

ﬂ(ﬂ E;)* =0;

tel
because (,c; F; is an open subset of X, it must be empty. So we have a suitable structure (X, p, (F;)ier)-

(ii)=(i) Now suppose that we have (X, %, x) and (Fy)ier as in (ii). Then there is a finitely additive
functional i : PX — [0, 1] extending 1 (FREMLIN 02, 391F). Let Z be the Stone space of P.S (FREMLIN
02, 311E-311F). For any = € X, {E; : t € T, x € F;} has the finite intersection property, so there is an
f(z) € Z such that f(x) € E\t whenever x € F}, writing E\t for the open-and-closed subset of Z corresponding
to Ey € PS. Observe that F; C f_l[/E\t] for every t € T. Set vC = ﬂf‘l[a] for every C' C S; because
C+— C:PS — PZ is a Boolean homomorphism, v is a finitely additive functional. For any ¢t € T,

vE, = if [Ey] > iF, = uF, > 0,

so v witnesses that (i) is true.

5D Definition Suppose that T is a set and S C [T]<“ is hereditary. I will say that S accommodates
a measure if there is a finitely additive functional v on PS such that v{I :t € I € S} > 0 for every t € T}
that is, if (E¢)er satisfies the conditions of Lemma 5C, where Fy = {I :t€ I € S} fort € T.

In this case, setting T,, = {t: vE; > 27"} and ¢, (i) = 274, we have a sequence (T},)nen of subsets of T'
covering T such that S is ¥, -filling over T,, for every n € N.

The importance of this is the following. If  is a precaliber of probability algebras, then whenever (X, X, 1)
is a probability space and (E¢)e<, is a family in ¥ such that pFEe > 0 for every £ < &, there is a set A C &,
of cardinal x, such that (.., E¢ # 0 for every finite I C A. So if a hereditary set S C [k]<“ accommodates
a measure, there is an A € [k]® such that [A]<¥ C S.

5E We can use the ideas of §§5C-5D from another angle, as follows.
Proposition (G.Plebanek) Suppose that S C [T]<¢ is ¢-filling over T', where inf, >, @ > 0. Let (k,\) be
a measure-precaliber pair of probability algebras and (A¢)s<, a family of infinite subsets of 7. Then there
is a T € [x]* such that for every I € [[|<“ there is a J € S such that I C {£: & <k, J N A¢ # 0}

¥(n)

proof Write e = inf, >, 0

S={I:T€[k]<¥,3J€S, JNA#0 for every £ € I}.

For § <k,set Be={l:{€el¢€ S}. Then C = {B¢ : £ < Kk} has intersection number at least e. I Given a
finite family (Cy)rek in C (not supposed distinct), express each Cy as Be, . Because every Ag, is infinite, we
can find a family (tx)rex in T, these being all distinct, such that ¢ € A¢, for each k. Because S is y-filling
over T, there is a set L C k with #(L) > €k such that J = {t;, : k € L} belongs to S. Set I = {{;, : k€ L};
then .J witnesses that I € S, while also T € Nier Cr- Q

By the remarks in §5A, there is a I' € [x]* such that {Bg : £ € T'} is centered, which is what we need to
know.

6 Large cardinals

6A For singular cardinals k£ we have the following fragment of information concerning P(k, A).

Proposition (APTER & DZAMONJA 01) Suppose that « and A are infinite cardinals such that cf(\) > cf(k).
If P(k,A) is true, then there is a kg < k such that P(x’,\) is true whenever g < k' < k.
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proof 7 Suppose, if possible, otherwise. Then there is an increasing family (k¢)e<cf() Of cardinals, with
supremum &, such that P(ke, A) is false for every & < cf(x). So for each £ < cf(k) we can find a %—ﬁlling
fami.lz Se C [ke]<“ such that [A]<¥ € S¢ for any A C [re]*. Now set Kg = sup, ¢ ki for § < cf(x), and
consider

S={I:1€[r]~¥, INke\r; € S for every § < cf(k)}.

It is easy to check that S is i-filling over k, so there ought to be a set A € []* such that [4]<* C S. But
now, setting Ae = AN ke \ kg, [Ag]<¥ C S¢ for every § < cf(k), so #(Ag) < A for every € < cf(k); since
cf(k) < cf(N), #(4) <A\ X

6B Proposition (APTER & DzZaMONJA 01) If x is a Ramsey cardinal (JECH 78, §29, p. 328), then
P(k, k) is true.

proof If S C [k]<“ is i-filling, then then there is an A € [x]" such that for every n € N either [A]" C S or
[A]* N S = 0. But the latter is impossible. So [A]<¥ C S.

6C Lemma Let x be a quasi-measurable cardinal (FREMLIN 08, §542), and Z an w;-saturated normal
ideal in Px. Let S C [k]<“ be a compact hereditary family.

(a) Defining 97, for ordinals v, as in 2Bb, there is a countable ordinal v such that 975 = 0.

(b) Defining 97 as in 2Be, there is a D € T such that 97(S N [x\ D]<¥) = 0.

proof (a)(i) For n > 1 define an ideal Z,, of subsets of ™ inductively by setting Z; = Z, and for n > 1
taking Z,, 41 to be the family of those subsets W of ™! such that

{z:zer™ Wi{z}) ¢ 1} €T,

where I write W[{z}] = {£ : (z,€) € W}, identifying k"' with "™ x k. Then it is easy to check that every
7T, is a k-additive ideal of subsets of k™ containing all singletons. Also it is wi-saturated. I Induce on n.
If (Wa)a<w, is a family in P\ 7,11, set V,, = {z: @ € k", W,[{z}] ¢ T}, so that V,, ¢ Z,, for every n.
Because Z,, is wy-saturated, therefore s-saturated, while k > w; (FREMLIN 08, 542B), there is an z € k"
such that A = {a: x € V,,} is uncountable (FREMLIN 08, 541Cb); now (W, [{z}])aca cannot be disjoint, so
(Wa)a<w, is not disjoint. Q

(ii) For A C k, n > 1 write AT for {(&1,...,&n) 1 &1, &n €A 6 <& < ... < &) Ifn>1
and W € Z,, then there is an A € T such that W N (k\ A)' = (. P Induce on n. For n = 1 we
need only take A = W. For the inductive step to n + 1, set V. = {z : © € ", W[{z}] ¢ I}, so that
V € T,. By the inductive hypothesis we have a B € Z such that V N (k\ B)!™ = (). Now, for £ < k, set
Ee=U{W[{z}]: 2 € (¢+1)\ B)!"}. Then E is the union of fewer than x members of Z and belongs to
T. Because 7 is normal,

A=BUUec, Be\ (€+1)

belongs to Z. If (z,€) € (k\ A)1""!, then z € ((¢ + 1)\ B)'™ where ( is the last coordinate of z, so
WH{z} \ ((+1) C E¢\ ((+ 1) does not contain & and (x,§) ¢ W. Thus we have an appropriate set A. Q

(iii) Now suppose that S C []<“ is compact and hereditary. Set W = {(&1,...,&,) : {&1,-.. , &} €
028} for each . Because every 7, is wi-saturated, W \ W+l € Z,, for all but countably many «, and
there is an o < wy such that W \ Wott € T, for every n € N. Now, by (ii), there is a C' € Z such that
(k\C)I"" MW\ Wot! is empty for every n (we can manage every n simultaneously because Z is a o-ideal);
and of course we can suppose also that C' contains 0 and every successor ordinal less than x, because 7 is
normal.

What this means is that if INC =0 and I € 925 \ {0} then there is a £ € k \ C such that I C £ and
TU{¢} €02S. P Express I as {{1,...,&,} where §& < ... <¢&,. Then

(€1,..., &) eWen(k\C)I" C Watl,

so I €03t S and {¢: TU{¢} € 935S} does not belong to Z, so contains something not in C U I. Q
Accordingly 925 N [k \ C]=“ has no maximal element other than possibly @), and must be empty or {0}.
Since 0% S is hereditary, it must itself be included in {#}, and 93! S is empty. So we can take y = o + 1.
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(b) For ¢ < k, set
Fe=U{{n:n<r IU{n}ediSy:B<a, le[c+1]<v\ "5} e
Then
D={0}U{g+1:8<r}UUec, Fe\(E+1)

belongs to Z. Setting S’ = k \ D, we find that IPS C 855’ for every 5 < . PP Induce on (. Start with
B =0,8 CS. For the inductive step to a successor ordinal 8 + 1 where 8 < a, take I € 9°+1S’. Then
there is an 7 such that I Cn < x and I U {n} € 3°S’. Set € =supl;asn¢ D, n>E+1 and n ¢ F¢. On
the other hand, I U {n} € 88, by the inductive hypothesis; so I € 8@“5. As I is arbitrary, the induction
proceeds. The step to a non-zero limit ordinal is trivial, so we have the result. Q In particular,

IS C S =0,

as required.

6D Proposition If « is a quasi-measurable cardinal, then P(k,w) is true.

proof Putting 2D and 6Ca together, we see that there can be no S C [x]<“ which is compact, hereditary
and %-ﬁlling over K.

6E Corollary At least if it is consistent to suppose that there are two-valued-measurable cardinals, it is
consistent to suppose that P(c,w) is true.

6F Remark Dopos & KANELLOPOULOS P05 have shown that if we impose describability conditions
on our filling families, we get a similar result in ZFC. Specifically, their Theorem 5 shows a little more than
the following: if S C [[0,1]]<“ has the Baire property in the restricted sense (see KURATOWSKI 66), and is

y-filling where inf,,>q vn) 0, then there is an uncountable compact set K C [0, 1] such that [K]<¥ C S.

n

7 Constructions of %—ﬁlling sets

TA(@) If I, J C Nwrite ITUJ for {2n : n € I} U{2n+1:n € J}. For R, S C PN write RH S for
{IUJ:ITeR, JeStU{JUI:I€R,JecS}. Observe that if R and S are hereditary so is REH S. Write
KC for the ideal of finite sets.

I will say that a set S is quasi-%-ﬁlling over T if it is hereditary and whenever J C T is a finite set
with an even number of elements, there is an I € SN PJ such that #(I) = $#(J). As in 2E(a), any

1

quasi-5-filling family includes a minimal quasi—%—ﬁlling family.

(b) If S C [T]<¥ is quasi-3-filling over T', and Z is a proper ideal of subsets of T' containing singletons,
with additivity x, then rankz S > w. I Setting ¥ (n) = L%nJ, S is y-filling over T', so we can use Proposition

iC. Q

(c) If R, S C [N]<% are hereditary so is REBS. If R, S C [N]<¥ are compact so is REB S (because the
map (I,J) — I U .J is continuous).

(d) If R C [N]<“ is i-filling over N and S C [N]<“ is quasi-1-filling over N then RH S is 3-filling over
N. P Let K € [N*“. Set K1 = {n:2n€ K}, Ky ={n:2n+1¢€ K}, m; = #(K;) for both . (i) If

my is even, there are I; € S NPK; such that #(I) > % and Is € RN'PK, such that #(I) > %; now
LUl e (RBS)NPK and #([1 U I5) > %#(K) (ii) If my is even, similarly. (iii) If m; and ms are both

odd, set K1 = K7 \ {max K;}. Then there are Iy € S NPK] such that #(I;) > m;l and Iy € RNPK,

m2+1

such that #(I3) > ;now I; UL, € (RBS)NPK and #(1, UI) > 1#(K). So all cases are covered. Q

7B Notation Write (T, F,V, S) to mean
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T, T\ F is infinite;

[T]<% is compact and hereditary;

SUpgeg #(K \ F) is finite;

§) whenever J € [T]<% and #(J NV) > #(J\ (FUV)) there is a K € SN PJ such that
#(K) > 5#(J).

Fc
S C

7C Lemma Suppose that {(T,V, F,S). Let I € SNPF,t € T\ F. Then there are S’, V', I* and I such
that
T, F, V'S,
S'D>S,SNPF =SNPF;
V'OV, teV/, KNV =0 for every K € 5"\ S;
ICI*es,;
I* C I and I* is the only member of S’ N PI such that #(I*) > %#(f);
ICFUV and #(FN1I) < L1#(D).

proof (a) Set m = supgcg#(K \ F). Applying clause (§) of 7B to J € [F|<“, we see that S N PF is
3-filling over F; by 2F, there is an I’ € [F]|<“ such that for every non-empty J € [F\ I'|<% there is a
K € SNPJ with #(K) > 1#(J); of course we may suppose that I’ D I. Set k =m + 1+ 3#(I') + #(V).
Let I* € [T\ V]¥ be such that [* N F = I and t € I*UV. Let I € [T]**~! be such that I N F = I’ and
IPUVCL Set V! =T\ F, m' = 24(V") = 2(2m + 1 + 54(I') + 24(V)),
S =SU{K:Ke[l[|*,KNFeS #K\F)<m/,KNV =0,
either KNI = 1" or #(K N1I) < k}.
Then all the requirements on S’, V’, I* and I are easily verified, with the exception of clause (d) of 7B.
(b) So let J € [T]<¥ be such that #(J NV’) < #(J\ (FUV')). Note first that
H(I\F) < 24(JNV') < m'.
case 1 Suppose that #(JNV) > #(JN(F\V)). Then there is a K € SNP.J such that #(K) > 1#(J),
and K € S'.
case 2 Suppose that #(J NV) < #(JN(F\V)) and #(I \ J) < 2#(I’). Then
BINT\(FUV)) = #(0\ F) = 28(1) — #(V) = #(0) = 38(I') - #(V) =k +m.
Take L C JNI\ (FUV) such that #(L) =k — 1> J(#(JN1) - 1).

case 2a If JﬂF\]~ # () then (because F N 1T = I') there is a K € SNP(JNF\I) such that
#(Ky) > L1+ #(JNF\D). Set K= KyULU(J\ (FUI))CJ. Then KNF =K, € Sand KNV =0
and #(K\ F) <#(J\F) <m’. Also #(KNI)=k—1<#(I),so K € S'. Finally

#(K) > F(#INFND) = 1)+ 5(#(IND) = 1) + #(J \ (FUI)) > J#(J).
case 2b If JNF CTand J 2 Iset K =LU(J\I)CJ. Then KNF=0cS, KNV =,
#K\F)<m/ and#(Kﬁf)<%#(I~),soK€S’. Now
#K) =k —1+#(I\I) = 34N 1)+ #(T\ 1) > $#(J).
case2cIfJﬂF§fandJQfsetK:I*U(J\f)QJ. Then KNF=1I'eS, KNV =,
#(K\F)<m' and KNI=1I*soK e This time
H(K) =k+#(T\D) 2 38D + #(JI\ 1) > 3#()).

case 3 Suppose that #(J NV) < #(JN(F\V)) and #(I \ J) > 2#(I"). Let Ko € SNP(JNF) be
such that #(Ko) > #(J N F). Then

#(Ko) + #(JN(F\V)) > 5#(INF) +#(JNV) + #(J N (F\V)) = 5#(J),
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so there is an M C J N (F\ V) such that #(Ko) + #(M) = [$#(J)]. We can suppose that the points of
M are taken, as far as possible, from J \ (F U ), so that

#MAD) <[0T\ < SHINTVF) +1)
< ST 1) < D - 24T = k- — #(T'),

and#(Mﬁf)Sk—l—#(I’). Set K=KoUMCJ. Then KNF=Koe S, KNV =0, #( K\ F) <m/
and

H#(KNT) = #(EoN D)+ #MNI) <HIT) +k—1-#(I) < 3#(),

so K € 8. And #(K) > 1#(J) by the choice of M.
Thus in all cases we can find a K € S’ NPJ such that #(K) > 1#(J), and (8) of 7B is satisfied.

7D Proposition Suppose that T', F', S are such that FF C T, #(F) <w, #(I'\ F) = w and § C [F]¥
is compact and %—ﬁlling. Then there is a compact minimal %-ﬁlling S C [T]<¥ such that S = SN I[F]<¥.

proof Let (I,,)pen run over S, and let (t,)neny enumerate T\ F. Choose (Sp)nen, (Va)nen, (I})nen and
<fn>neN inductively, as follows. Sop = S and Vy = 0. Given that {(T, F,V,, S,) is true, use 7C to choose I\,
fn, Vie1 and Sy, 41 so that

T, F, Vagr, Sna);

Snt1 2 Sny Sp1 NPF =S, NPF;

Vit1 2 Vi, tn € Vi1, KNV, =0 for every K € Sp1 \ Sn;

I, C I} € Spya;

I C I,, and I is the only member of S,,+1 N PI,, such that #(I2) > %#(fn);

I, CFUV,y and #(F N 1,) < L4(1,).

At the end of the induction set Soo = |J,,cyy Sn- Then Sy, C [T]5* is hereditary, and Soo N [F]<¥ = S.
Next, So is 3-filling over 7. B If J € [T]<%, there is an n € N such that J\ F C {t; : i <n} C V,41. In
this case #(J \ (F'U V,11)) < #(J N Vi) so there is a K € S,41 N PJ such that #(K) > 24(J), and of
course K € So. Q

Also So is compact. I Suppose that [A]<¥ C So. Then [AN F|<¥ C S so AN F is finite. If A\ F is
not empty, let n be such that ¢, € A. If K € [A]<“ there is an m € N such that K U {t,} € Spt1 \ Sm- In
this case, K U {t,} cannot meet V,,, so m < n. Thus [A]<% C S, 11; as S,41 is compact, A is finite; as A is
arbitrary, S, is compact. Q

Now let S C S. be a minimal 1-filling family. Then SN [F]<* C S. ? If SN [F]<¥ # S, let n be such
that I, ¢ S. There must be some K € SN PI, such that #(K) > %#(in) Now K 2 I, so K # I and
K ¢ S,4+1. Because #(Fﬂfn) < %#(fn), KNVpi1 #0so K & Syt \ Sy, for any m > n and K ¢ So. X
Thus S = S N [F]<¥, as required.

7E Corollary Set Z = [N]<*. Then for any a < w; there is a compact minimal 3-filling S C [N]<“ such
that rankz(S) > a.

proof We have only to construct a compact %-ﬁlling R with rankz(R) > «, and then use 7D to express it
as the trace of a compact minimal %—ﬁlling family.

8 Problems

8A The problems DU(a) and DU(b) from my problem list can be expressed as
DU(a): is P(w1,w) true?
DU(b): does m > wy imply P(wy,w;)?
Of course we can also ask, more generally,
is P(w1,w1) consistent?
and, in the light of Corollary 6E,
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is P(c,c) consistent? if x is two-valued-measurable and we add x random reals, does P(c, c)
become true?

is it consistent to suppose that P(r,w) is false for every x? what about P(¢t,w)?

From §§5C-5D above, we see that the situation for families accommodating measures is much more
familiar, and corresponds to questions about calibers of measure algebras, as considered in COMFORT &
NEGREPONTIS 82 and FREMLIN 08, §525. So we have to ask

if S C [T]<* is 3-filling over T, does it necessarily accommodate a measure, in the sense of
§5D7
This question is raised, in effect, in GALVIN & PRIKRY 00. A positive answer seems wildly improbable but
no counter-example is known.

In Propostion 4B, ¢ is the natural limit of the argument given; but is it really best possible? What about

2417 4F

Acknowledgements Conversations with S.Argyros, M.Dzamonja, [.Farah, G.Plebanek, R.Haydon, J.T.Moore;
preprints from F.Galvin, M.Dzamonja and J.Rodriguez. In particular, the idea of looking at P(wq,w) arose

in conversations with Argyros, who also proved (ii)=-(i) of Theorem 3A and suggested the question answered
by Proposition 7D, while the idea of looking at higher cardinals comes from APTER & DZAMONJA 01, and
the question about families ‘accommodating measures’ is from GALVIN & PRIKRY 00.
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