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1 The problem

1A Notation (a) I will call a family S of sets hereditary if PI ⊆ S for every I ∈ S.

(b) Let T be a set and S a family of sets. I say that S is 1
2 -filling over T if S is hereditary and for

every I ∈ [T ]<ω there is a J ⊆ I such that #(J) ≥ 1
2#(I) and J ∈ S.

For cardinals λ, κ I write P (κ, λ) for the statement

whenever S ⊆ [κ]<ω is 1
2 -filling over κ, there is a set A ∈ [κ]λ such that [A]<ω ⊆ S.

1B The problem For which cardinals is P (κ, λ) true?

1C Two examples (a) P (ω, ω) is false. PPP Set S = {∅}∪ {I : I ⊆ N, I 6= ∅, #(I) ≤ 1 + min I}. Then S
is 1

2 -filling over N and there is no infinite A ⊆ N such that [A]<ω ⊆ S. QQQ (This is a version of the Schreier
family.)

(b) If ω1 = c then P (ω1, ω1) is false. PPP Enumerate [0, 1] as 〈tξ〉ξ<ω1
. For each ξ < ω1 choose a compact

set Kξ ⊆ [0, 1] \ {xη : η ≤ ξ} of Lebesgue measure at least 1
2 . Set S = {I : I ⊆ ω1,

⋂
ξ∈I Kξ 6= ∅}. Then S

is 1
2 -filling over ω1 but there is no uncountable set A ⊆ ω1 such that [A]<ω ⊆ S. QQQ

2 General theory

2A Compact families (a) I will say that a family S of sets is compact if it is closed in PT where
T =

⋃
S.

(b) If S is a hereditary family of finite sets, the following are equiveridical: (i) S is compact; (ii) there is
no strictly increasing sequence in S; (iii) [A]<ω 6⊆ S for any infinite A.

(c) So if S is a compact hereditary family of finite sets, then any hereditary S′ ⊆ S is compact.

2B Derivations (a) Let S be a hereditary family of sets and I an ideal of sets. Set

∂IS = {I : {t : t /∈ I, I ∪ {t} ∈ S} /∈ I}.

Then ∂IS is hereditary and included in S.

(b) Again supposing that S is a hereditary family of sets and I an ideal of sets, define 〈∂α
I S〉α<On

inductively:

∂0
IS = S;

for any ordinal α, ∂α+1
I S = ∂I(∂α

I S);

for non-zero limit ordinals α, ∂α
I S =

⋂
β<α ∂β

IS.

Then 〈∂α
I S〉α<On is a non-increasing family of hereditary sets.

Write rankI S for the smallest ordinal γ such that ∂γ+1
I S = ∂γ

IS. Note that if S is a compact hereditary
family of finite sets then this kernel ∂γ

IS must be empty; so that for any ordinal α we have

α < rankI(S) ⇐⇒ ∂α
I S 6= ∅ ⇐⇒ ∅ ∈ ∂α

I S.

(c) If S, S′ are hereditary families of sets and I is an ideal of sets, then ∂I(S ∪ S′) = ∂IS ∪ ∂IS′.
Consequently ∂α

I (S ∪ S′) = ∂α
I S ∪ ∂α

I S′ for every α. If S and S′ are compact hereditary families of finite
sets, then rankI(S ∪ S′) = max(rankI(S), rankI(S′)).
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(d) If S is a hereditary family of sets and I, J are ideals of sets with I ⊆ J , then ∂J S ⊆ ∂IS;
consequently ∂α

J S ⊆ ∂α
I S for every α, and if S is a compact family of finite sets then rankI(S) ≥ rankJ (S).

(e) If S is a family of sets of ordinals, set

∂̃S = {I : I ∈ S, I ∪ {ξ} ∈ S for some ordinal ξ such that I ⊆ ξ},

and for ordinals α define ∂̃αS by setting

∂̃0S = S, ∂̃αS =
⋂

β<α ∂̃(∂̃βS)

if α > 0. If S is hereditary, then every ∂̃αS is hereditary and 〈∂̃αS〉α∈On is non-increasing.

2C Lemma Suppose that S is a hereditary family of sets, and that I is an ideal of subsets of T ⊇
⋃

S.
For t ∈ T set St = {I : I ∪ {t} ∈ S, t /∈ I}.

(a) ∂α
I (St) = (∂α

I S)t for every ordinal α and every t ∈ T .
(b) If S ⊆ [T ]<ω is compact and not empty, then rankI(S) = (minA∈I supt∈T\A rankI(St)) + 1.

proof (a) Induce on α. The induction starts with α = 0, St = St. For the inductive step to a successor
ordinal α + 1, if I ⊆ T then

I ∈ ∂α+1
I St ⇐⇒ {s : s ∈ T \ I, I ∪ {s} ∈ ∂α

I St} /∈ I

⇐⇒ {s : s ∈ T \ I, I ∪ {s} ∈ (∂α
I S)t} /∈ I

(by the inductive hypothesis)

⇐⇒ t /∈ I and {s : s ∈ T \ (I ∪ {t}), I ∪ {t} ∪ {s} ∈ ∂α
I S} /∈ I

⇐⇒ t /∈ I and I ∪ {t} ∈ ∂α+1
I S

⇐⇒ I ∈ (∂α+1
I S)t,

so the induction proceeds. For the inductive step to a non-zero limit ordinal α, if I ⊆ T then

I ∈ ∂α
I St ⇐⇒ I ∈ ∂β

ISt for every β < α

⇐⇒ I ∈ (∂β
IS)t for every β < α

⇐⇒ t /∈ I and I ∪ {t} ∈ ∂β
IS for every β < α

⇐⇒ t /∈ I and I ∪ {t} ∈ ∂α
I S

⇐⇒ I ∈ (∂α
I S)t,

and again we can continue.

(b) In this case St = {I \ {t} : t ∈ I ∈ S} is also compact, for every t ∈ T . Set γt = rankI(St) for every
t ∈ T , γ = minA∈I supt∈T\A γt.

For an ordinal α,

α + 1 < rankI(S) ⇐⇒ ∅ ∈ ∂α+1
I S

(2Bb)

⇐⇒ {t : {t} ∈ ∂α
I S} /∈ I

⇐⇒ {t : ∅ ∈ (∂α
I S)t} /∈ I

⇐⇒ {t : ∅ ∈ ∂α
I (St)} /∈ I

⇐⇒ {t : α < γt} /∈ I

⇐⇒ α < γ.

It follows at once that rankI(S) ≤ γ + 1. In the other direction, if γ = β + 1 is a successor ordinal, then

β < γ, ∅ ∈ ∂β+1
I S and γ < rankI(S); if γ is a non-zero limit ordinal, then ∅ ∈ ∂α

I S for every α < γ, so again
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∅ ∈ ∂γ
IS and γ < rankI(S); finally, if γ = 0 then γ < rankI(S) because S 6= ∅. So in all cases rankI(S) is

greater than γ and must be exactly γ + 1, as claimed.

2D Lemma Suppose that S ⊆ [T ]<ω is hereditary and 1
2 -filling over a non-empty set T , and that I is a

proper ideal of subsets of T containing singletons. Set κ = add I. Then ∅ ∈ ∂κ
IS.

Remark Here add I is the additivity of I, the least cardinal of any subset of I with no upper bound in I
(see Fremlin 08, §511).

proof (a) Suppose first that κ ≥ ω1, that is, that I is a σ-ideal.

(i) In this case, I show by induction on α that for every α < κ there is an Mα ∈ I such that ∂α
I S is

1
2 -filling over T \ Mα. The induction starts with M0 = ∅.

(ii) For the inductive step to α + 1, given that ∂α
I S is 1

2 -filling over T \ Mα, ??? suppose, if possible,

that ∂α+1
I S is not 1

2 -filling over T \ M for any M ∈ I. Because I is a σ-ideal containing singletons, we can
choose inductively families 〈Iξ〉ξ<ω1

and 〈Nξ〉ξ<ω1
such that

every Iξ is a finite subset of T \ Mα,

every Nξ belongs to I,

Iξ ∩
⋃

η<ξ Nη = ∅ and #(J) < 1
2#(Iξ) whenever J ∈ ∂α+1

I S and J ⊆ Iξ

(because we are supposing that ∂α+1
I S is not 1

2 -filling over T \ (Mα ∪
⋃

η<ξ Nη)),

Nξ = Iξ ∪
⋃

J⊆Iξ,J /∈∂α+1

I
S{t : J ∪ {t} ∈ ∂α

I S}

(which belongs to I by the definition of ∂α+1
I S). Now there is some k ∈ N such that A = {ξ : #(Iξ) = k}

is infinite; of course k ≥ 1. Let m be the greatest integer less than k
2 , and let r ≥ 1 be such that

mr + k < 1
2k(r + 1). Take ξ0 < . . . < ξr ∈ A and consider I =

⋃
i≤r Iξi

. This is a finite subset of T \ Mα

so there is a J ⊆ I such that J ∈ ∂α
I S and #(J) ≥ 1

2#(I) = 1
2k(r + 1). There must therefore be some

first j such that #(J ∩ Iξj
) ≥ 1

2k. In this case, by the choice of the Iξ, J ∩ Iξj
/∈ ∂α+1

I S and Nξj
includes

{t : (J ∩ Iξj
) ∪ {t} ∈ ∂α

I S} ⊇ J , so that Iξi
∩ J must be empty for every i > j. What this means is that

#(J) =
∑r

i=0 #(J ∩ Iξi
) ≤ mj + k,

and

1

2
k(r + 1) ≤ mj + k ≤ mr + k,

which is impossible, by the choice of r. XXX

Thus the induction proceeds to α + 1.

(iii) For the inductive step to a non-zero limit ordinal α < κ, we need only set Mα =
⋃

β<α Mβ , which
belongs to I because I is κ-additive.

(iv) Now because T /∈ I it follows that ∅ ∈ ∂α
I S for every α < κ, so that ∅ ∈ ∂κ

IS, as claimed.

(b) Now suppose that κ = ω. Fix a non-zero m ∈ N for the moment. Choose a sequence 〈tn〉n∈N of
distinct elements of T so that

whenever j ≤ m and J ⊆ {ti : i < n} and J /∈ ∂j+1
I S, then J ∪ {tn} /∈ ∂j

IS;

this is possible because when we come to choose tn only a set belonging to I is forbidden to us. Now look
at K = {tn : n < 2m}. There is an I ∈ S such that I ⊆ K and #(I) = m; express I as 〈tni

〉i<m where

n0 > n1 > . . . > nm−1. Set Ij = {tni
: j ≤ i < m} for each j. Now Ij ∈ ∂j

IS for every j ≤ m. PPP Induce on

j. I0 = I ∈ S = ∂0
IS. If Ij ∈ ∂j

IS, then Ij+1 ⊆ {ti : i < nj} and Ij+1 ∪ {tnj
} = Ij ∈ ∂j

IS, so Ij+1 ∈ ∂j+1
I S.

QQQ

In particular, ∅ = Im ∈ ∂m
I S. As m is arbitrary, ∅ ∈ ∂ω

I S. So we have the result in this case too.

2E Minimal families (a) If S is 1
2 -filling over T , there is a minimal S′ ⊆ S which is 1

2 -filling over T .

(For the intersection of any downwards-directed family of 1
2 -filling sets is again 1

2 -filling.)
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(b) If S ⊆ [T ]<ω is a minimal 1
2 -filling set, then for every maximal J ∈ S there must be a finite I ⊇ J

such that J is the unique member of S included in I such that #(J) ≥ 1
2#(I). (For otherwise we could

delete J .)

(c) If S ⊆ [T ]<ω is compact and hereditary and 1
2 -filling, there is a compact minimal 1

2 -filling S′ ⊆ [T ]<ω.

(d) The Schreier family S of 1Ca is minimal 1
2 -filling. PPP If I ∈ S is maximal, set n = min I, J = I ∪ n;

then #(I) = n + 1, #(J) = 2n + 1 and I is the only member of [J ]n+1 belonging to S. QQQ

2F Lemma Let T be a set and S ⊆ [T ]<ω a compact 1
2 -filling family. Then there is a finite I ⊆ T such

that for every non-empty J ∈ [T \ I]<ω there is a K ∈ S ∩ PJ such that #(K) > 1
2#(J).

proof By 2Ea, there is a minimal 1
2 -filling family S′ ⊆ S. Because S is compact, so is S′, and S′ has

a maximal element J0. By 2Eb, there is an I ∈ [T ]<ω such that J0 is the unique member of S′ ∩ PI
with #(J0) ≥ 1

2#(I). Let J ⊆ T \ I be a non-empty finite set. If #(J) = 1, then of course J ∈ S′ and

#(J) > 1
2#(J). If #(J) ≥ 2, there is a K ∈ S′ ∩ (J ∪ I) such that

#(K) ≥ d 1
2#(J ∪ I)e ≥ 1 + d 1

2#(I)e > #(J0).

As J0 is maximal, K 6⊇ J0 and K∩I is a member of S′∩PI other than J0. It follows that #(K∩I) < 1
2#(I)

so #(K \ I) > 1
2#(J), while K \ I ∈ S′ ⊆ S.

2G Monotonicity I spell out an obvious fact: if P (κ, λ) is true, then P (κ′, λ′) is true whenever λ′ ≤ λ
and κ′ ≥ κ.

3 A connexion with bases in Banach spaces

3A Theorem Suppose that κ is an uncountable cardinal. Then the following are equiveridical:
(i) P (κ, ω);
(ii) If X is a Banach space and 〈eξ〉ξ<κ is a family of unit vectors in X such that every weak neighbourhood

of 0 in X contains all but finitely many of the eξ, there is a sequence 〈ξi〉i∈N of distinct elements of κ such

that infn∈N ‖
1

n+1

∑n
i=0 eξi

‖ = 0;

(iii) If X is a Banach space and 〈eξ〉ξ<κ is a family of unit vectors in X such that every weak neighbourhood
of 0 in X contains all but finitely many of the eξ, there is a sequence 〈ξi〉i∈N of distinct elements of κ such

that limn→∞ ‖
1

n+1

∑n
i=0 eξi

‖ = 0.

proof (i)⇒(iii) Suppose that P (κ, ω) is true. Let X be a Banach space and 〈eξ〉ξ<κ is a family of unit
vectors in X such that every weak neighbourhood of 0 in X contains all but finitely many of the eξ.

(ααα) For ε > 0, consider the set

Sε = {I : I ⊆ κ, there is some f ∈ X∗ such that ‖f‖ ≤ 1 and f(eξ) ≥ ε for every ξ ∈ I}.

If A ⊆ κ and [A]<ω ⊆ Sε, then A ∈ Sε. PPP For each I ∈ [A]<ω there is an fI in the unit ball of X∗ such that
fI(eξ) ≥ ε for every ξ ∈ I. Let f be a weak* limit of the fI as I increases through the finite subsets of A;
then f(eξ) ≥ ε for every ξ ∈ A, so f witnesses that A ∈ Sε. QQQ

Since every weak neighbourhood of 0 contains all but finitely many of the eξ, Sε ⊆ [κ]<ω, and there is no
infinite set A ⊆ κ such that [A]<ω ⊆ Sε. We are supposing that P (κ, ω) is true. So if A ∈ [κ]<ω, ε > 0 and
δ > 0, Sε is not δ-filling over κ \ A.

(βββ) ??? Suppose, if possible, that there is an ε > 0 such that

∀ n ∈ N ∃ I ∈ [κ]<ω ∀ J ∈ [κ \ I]n, ‖
∑

ξ∈J eξ‖ ≥ εn.

Then there is an A ∈ [κ]≤ω such that ‖
∑

ξ∈J eξ‖ ≥ ε#(J) for every finite J ⊆ κ\A. For each J ∈ [κ\A]<ω,

choose fJ ∈ X∗ such that ‖fJ‖ ≤ 1 and fJ(
∑

ξ∈J eξ) ≥ ε#(J), and set IJ = {ξ : ξ ∈ J , fJ(eξ) ≥
ε

2
}. Then

ε#(J) ≤
∑

ξ∈J fJ(eξ) ≤ #(IJ ) +
ε

2
#(J),
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so #(IJ ) ≥
ε

2
#(J), while IJ ∈ Sε/2. As J is arbitrary, Sε/2 is ε

2 -filling over κ \A; but this is supposed to be

impossible. XXX

(γγγ) Accordingly

∀ ε > 0 ∃ n ∈ N ∀ I ∈ [κ]<ω ∃ J ∈ [κ \ I]n, ‖
∑

ξ∈J eξ‖ < εn.

For each k ∈ N choose nk ∈ N such that

∀ I ∈ [κ]<ω ∃ J ∈ [κ \ I]nk , ‖
∑

ξ∈J eξ‖ < 2−knk.

Of course no nk can be 0. Choose 〈mk〉k∈N in N such that
∑

l<k 2−lmlnl ≤ 2−kmknk, nk+1 ≤ 2−kmknk

for every k. Now we can choose Jkr, for k ∈ N and r < mk, such that

Jkr ∈ [κ]nk , Jkr ∩ Jls = ∅ if either l < k and s < ml or l = k and s < r,

‖
∑

ξ∈Jnr
eξ‖ < 2−knk.

Take a sequence 〈ξi〉i∈N enumerating
⋃

k∈N,r<mk
Jkr in such a way that if ξi ∈ Jls, ξj ∈ Jkr and i ≤ j, then

either l < k or l = k and r ≤ s.

Set Mk =
∑

l<k mlnl for k ∈ N. Suppose that k ≥ 1 and Mk ≤ n < Mk+1. Then ‖
∑

i<n eξi
‖ ≤ 7 · 2−kn.

PPP Express n as Mk + mnk + j where m < mk and j < nk. Then

‖
∑

i<n

eξi
‖ = ‖

∑

l<k

∑

s<ml

∑

ξ∈Jls

eξ +
∑

r<m

∑

ξ∈Jkr

eξ +
∑

Mk+mnk≤i<n

eξ‖

≤
∑

l<k

∑

s<ml

2−lnl +
∑

r<m

2−knk + j

≤
∑

l<k

2−lnlml + 2−kmnk + nk

≤
∑

l<k−1

2−lnlml + 2−k+1mk−1nk−1 + 2−kmnk + 2−k+1mk−1nk−1

≤ 2−k+1nk−1mk−1 + 2−k+1mk−1nk−1 + 2−kmnk + 2−k+1mk−1nk−1

≤ 2−k+1n + 2−k+1n + 2−kn + 2−k+1n = 7 · 2−kn,

as claimed. QQQ

(δδδ) Thus limn→∞ ‖
1

n

∑
i<n eξi

‖ = 0 and (iii) is true.

(iii)⇒(ii) is trivial.

¬(i)⇒ ¬(ii) (ααα) Let S ⊆ [κ]<ω be a 1
2 -filling family not including [A]<ω for any infinite A ⊆ κ. Write

c00 for the linear space of functions x : κ → R such that {ξ : x(ξ) 6= 0} is finite. For x ∈ c00 set
‖x‖ = supI∈S

∑
ξ∈I |x(ξ)|. Because all singleton subsets of κ belong to S, ‖ ‖ is a norm on c00. Let X be

the completion of c00 for this norm, and set eξ(η) = 1 if η = ξ, 0 otherwise, so that ‖eξ‖ = 1 for every ξ < κ.

(βββ) We can identify the dual of X with a subspace of c0(κ). PPP Because c00 is dense in X, every f ∈ X∗

is defined by the family 〈f(eξ)〉ξ<κ ∈ R
κ. Consider the set D = {y × χI : I ∈ S, ‖y‖∞ ≤ 1}. By §4C,

this is a compact subset of R
κ, and it is norm-bounded in c0(κ), so it is compact for the weak topology

Ts(c0(κ), `1(κ)). By Krěın’s theorem, the closed convex hull C of D in c0(κ) for Ts(c0(κ), `1(κ)) is compact.
Being compact and balanced, C must also be the closed balanced convex hull of D in R

κ for Ts(R
κ, c00).

So if z ∈ C, we have (z|x) ≤ ‖x‖ whenever x ∈ c00, and z represents a member of the unit ball of X∗. On
the other hand, if z ∈ R

κ \ C, there is an x ∈ c00 such that (z|x) > supy∈D(y|x) = ‖x‖. So we can identify
C with the unit ball of X∗, and every member of X∗ with a multiple of a member of C, which will still lie
in c0(κ). QQQ
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(γγγ) It follows that every weak neighbourhood of 0 in X contains all but finitely many of the eξ. Now
suppose that 〈ξi〉i∈N is a sequence of distinct elements of κ. Then for every n ∈ N there is an I ⊆ {ξi : i ≤ n}

such that I ∈ S and #(I) ≥
n+1

2
. So ‖

1

n+1

∑n
i=0 eξi

‖ ≥
1

2
.

Thus X and 〈eξ〉ξ<κ witness that (ii) is false.

4 Other concepts of density

4A Weaker ideas of density Suppose that ψ : N → [0,∞[ is a function. If T is a set and S ⊆ [T ]<ω,
we can say that S is ψ-filling over T if (i) PI ⊆ S for every I ∈ S (ii) for every I ∈ [T ]<ω there is a J ⊆ I
such that #(J) ≥ ψ(#(I)) and J ∈ S. For infinite cardinals κ and λ, let Pψ(κ, λ) be the statement

whenever S ⊆ [κ]<ω is ψ-filling over κ, then there is an A ∈ [λ]κ such that [A]<ω ⊆ S.

Now we have the following.

4B Proposition If ψ : N → [0,∞[ is any function such that ψ(n) ≤ n for every n and limn→∞
ψ(n)

n
= 0,

then Pψ(c, ω) is false.

proof Set εn = supi≥n
ψ(i)

i
for n ≥ 1, so that 〈εn〉n≥1 is a non-increasing sequence in [0, 1] with limit 0. Set

T = {z : z ∈ C, |z| = 1}. Set

S =
⋃

n≥1{I : I ∈ [T ]≤n, ∃ w ∈ T, | arg
z

w
| ≤ πεn for every z ∈ I}.

Then S ⊆ [T ]<ω and J ∈ S whenever J ⊆ I ∈ S. If I ∈ [T ]n, where n ≥ 1, then for each w ∈ T

set Iw = {z : z ∈ I, | arg
z

w
| ≤ πεn} ∈ S. Writing µ for normalized Haar measure on T , then for each

z ∈ T , {w : z ∈ Iw} has measure εn, so
∫

#(Iw)µ(dw) = εn#(J) = nεn and there is a w ∈ T with
#(Iw) ≥ nεn ≥ ψ(n). This shows that S is ψ-filling over T .

If A ⊆ T is infinite, take any distinct z1, z2 ∈ A, and let n ≥ 2 be such that 2πεn < | arg
z1

z2

|. If I ∈ [A]n

contains both z1 and z2, and m ≥ n, then there can be no w ∈ T such that | arg
zi

w
| ≤ πεm for both i, so

I /∈ S. Thus [A]<ω 6⊆ S.
Since #(T ) = c we have the result.

4C Proposition If limn→∞ ψ(n) = ∞ and S is a compact hereditary ψ-filling family over an infinite set
T , and I is a proper ideal of subsets of T containing singletons, then rankI(S) > ω.

proof Use the argument of (b) of the proof of Lemma 2D; in place of 2m, take some r such that ψ(r) ≥ m.

4D If ψ(n)/n is bounded away from zero, then we return to the original problem.

Proposition Let ψ : N → [0,∞[ be a function such that, for some ε > 0, εn ≤ ψ(n) ≤ (1 − ε)n for every n.
Then Pψ(κ, λ) ⇐⇒ P (κ, λ) for all infinite cardinals κ and λ.

proof (a) Suppose that δ > 0 and δ′ < 1 and φ, θ : N → [0,∞[ are such that θ(n) ≥ δn and φ(n) ≤ δ′n for
every n. Let m be such that (1−δ)m ≤ 1−δ′. If S ⊆ [κ]<ω is θ-filling over κ then S′ = {I0∪I2∪ . . .∪Im−1 :
I0, . . . , Im−1 ∈ S} is φ-filling over κ. PPP Take any J ∈ [κ]<ω. Choose Ii inductively such that Ii ⊆ J \

⋃
j<i Ij

and Ii ∈ S and #(Ii) ≥ θ(#(J \
⋃

j<i Ij)) for each i. Inducing on i, we see that #(J \
⋃

j<i Ij) ≤ (1−δ)j#(J)

for each i, so that if we set I =
⋃

i<m Ii then I ∈ S′ and I ⊆ J and #(I) ≥ δ′#(J) ≥ φ(#(J)). QQQ

(b) It follows that Pφ(κ, λ) ⇒ Pθ(κ, λ). PPP Let S ⊆ [κ]<ω be θ-filling. Set S′ = {I0 ∪ I2 ∪ . . . ∪ In−1 :
I0, . . . , Im−1 ∈ S}. Then S′ is φ-filling over κ, so there is an A′ ∈ [κ]λ such that [A′]<ω ⊆ S′. Let F be an
ultrafilter on [A′]<ω containing {J : ξ ∈ J ∈ [A′]<ω} for every ξ ∈ A′. For each J ∈ [A′]<ω, there is a function
fJ : J → m such that f−1

J [{i}] ∈ S for every i < n. Define f : A′ → m by setting f(ξ) = limJ→F fJ (ξ)
for every ξ ∈ A′. Then there is some j < m such that A = f−1[{j}] has cardinal λ. If K ∈ [A]<ω the set
{J : K ⊆ f−1

J [{j}]} belongs to F , so is not empty, and K ∈ S. Thus [A]<ω ⊆ S. As S is arbitrary, we have
Pθ(κ, λ). QQQ
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(c) Applying this with δ = min(1
2 , ε), δ′ = max( 1

2 , 1− ε), φ = ψ, θ(n) = 1
2n and the other way about, we

have the result.

4E Proposition There is a function ψ : N → [0,∞[ such that limn→∞ ψ(n) = ∞ and Pψ(κ+, κ+) is false
for every infinite cardinal κ.

proof For n ∈ N let ψ(n) be the largest number m such that

whenever D ⊆ [n]3 then either there is a set I ∈ [n]m such that [I]3 ⊆ D or there is a set
I ∈ [n]m such that [I]3 ∩ D = ∅.

By the (finite) Ramsey theorem, limn→∞ ψ(n) = ∞.
Now suppose that κ is any cardinal. For each ζ < κ+ let fζ : ζ → κ be an injection. Let D ⊆ [κ+]3 be

the set of triples {ξ, η, ζ} where ξ < η < ζ < κ+ and fζ(ξ) < fζ(η). Let S be the family of all finite subsets
I of κ+ such that either [I]3 ⊆ D or [I]3 ∩ D = ∅. By the choice of ψ, S is ψ-filling.

Let A ⊆ κ+ be such that [A]<ω ⊆ S. Then either [A]3 ⊆ D or [A]3 ∩ D = ∅.
case 1 If [A]3 ⊆ D then #(A) ≤ κ. PPP??? Otherwise, take ξ ∈ A such that otp(A∩ ξ) = κ and ζ ∈ A such

that ξ < ζ. Then fζ¹A ∩ ξ is an injection from A ∩ ξ to fζ(ξ) < κ, which is impossible. XXXQQQ
case 2 If [A]3 ∩ D = ∅ then A is countable. PPP??? Otherwise, take ζ ∈ A such that otp(A ∩ ζ) = ω. Then

fζ¹A is order-reversing so does not attain its minimum. XXXQQQ
Thus #(A) < κ+. As A is arbitrary, S witnesses that Pψ(κ+, κ+) is false.

4F MC-dense families: Definition (see Avilés Plebanek & Rodŕıguez p09) Let (X,Σ, µ) be a
measure space. A family S is MC-dense over (X,Σ, µ) if it is hereditary and whenever F ∈ Σ, γ < µF
and 〈An〉n∈N is a sequence of sets covering X, then there is an I ∈ S such that µ∗(F ∩

⋃
{An : n ∈ N,

I ∩ An 6= ∅}) ≥ γ.

4G Theorem (Avilés Plebanek & Rodŕıguez p09, 3.4) Let (X,Σ, µ) be a measure space such that
there is an uncountable disjoint family of subsets of X of full outer measure. Then there is a compact
hereditary family S ⊆ [X]<ω which is MC-dense over (X,Σ, µ).

proof (a) By 4B, there is a hereditary compact S0 ⊆ [c]<ω such that for every finite I ⊆ c there is a J ∈ S0

such that J ⊆ I and #(J) ≥
√

#(I). Let 〈Dξ〉ξ<ω1
be an uncountable disjoint family of subsets of X with

full outer measure. Set

S = {I : I ∈ [X]<ω, #(I ∩ Dξ) ≤ 1 for every ξ < ω1, {ξ : ξ < ω1, I ∩ Dξ 6= ∅} ∈ S0}.

Then S is a compact hereditary family of finite subsets of X.

(b) S is MC-dense. PPP Suppose that F ∈ Σ, γ < µF < ∞ and that 〈An〉n∈N covers X. For each ξ < ω1,
µ∗(Dξ ∩ F ) = µF > γ, so there is a finite Kξ ⊆ N such that µ∗(Dξ ∩ F ∩

⋃
n∈Kξ

An) ≥ γ; of course we may

suppose that Dξ ∩ An 6= ∅ for every n ∈ Kξ. Let K ∈ [N]<ω be such that P = {ξ : Kξ = K} is infinite.
Set m = #(K); then P has a subset of cardinal m2, so there is an I ⊆ P such that #(I) = m and I ∈ S0.
Enumerate I as 〈ξi〉i<m and K as 〈ki〉i<m; for each i < m take xi ∈ Dξi

∩ Aki
; consider J = {xi : i < m}.

Then J ∈ S and

µ∗(F ∩
⋃
{An : n ∈ N, I ∩ An 6= ∅}) ≥ µ∗(F ∩

⋃
n∈K An) ≥ γ.

As F , γ and 〈An〉n∈N are arbitrary, S is MC-dense. QQQ

Remark Recall that if (X,Σ, µ) is a probability space in which singletons are negligible and there is no
quasi-measurable cardinal less than or equal to #(X), then there is an uncountable disjoint family of subsets
of X with full outer measure (Fremlin 08, 547E).

4H Proposition Let κ be an atomlessly-measurable cardinal, and µ an atomless κ-additive probability
with domain Pκ. Then there is a compact hereditary family S ⊆ [κ]<ω which is MC-dense over (κ,Pκ, µ).

proof (a) There is a stochastically independent family 〈Eξ〉ξ<κ of subsets of κ of measure 1
2 . PPP By the

Gitik-Shelah theorem (Gitik & Shelah 89, or Fremlin 08, 543E), the Maharam type of µ is at least κ.

Since this applies to any normalized measure of the form
1

µE
µ E, where µE > 0, we see that every non-zero
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principal ideal of the measure algebra A of µ has Maharam type at least κ. So the measure algebra Bκ of
the usual measure on {0, 1}κ can be embedded into A (Fremlin 02, 322P), and there is a stochastically
independent family 〈eξ〉ξ<κ of elements of A of measure 1

2 . Take Eξ such that E•

ξ = eξ for each ξ. QQQ

(b) Re-coding a family of the type in (a), we can get an independent family 〈Eξn〉ξ<κ,n∈N of sets of
measure 1

2 . In this case, setting Fξ =
⋂

n∈N
Eξn, every Fξ is negligible. Now let S be the family of finite

subsets I of κ such that

η ∈ Eξk \ Fξ whenever η ∈ I, ξ ∈ I ∩ η and k < #(I).

Clearly S is hereditary. To see that S is compact, observe that if ξ, η ∈ I ∈ S and ξ < η, there is an n ∈ N

such that η /∈ Eξn \ Fξ, and in this case #(I) ≤ n.

(c) S is MC-dense over (κ,Pκ, µ). PPP Let 〈An〉n∈N be a sequence of sets covering κ, and γ < 1. Then
there is a finite family 〈Bi〉i<m of sets, all of non-zero measure, such that for every i < m there is an n ∈ N

such that Bi ⊆ An, and µ(
⋃

i<m Bi) ≥ γ. Because the Eξn are independent, there is a countable M ⊆ κ
such that 〈Eξn〉ξ∈κ\M,n∈N are independent of each other and also of the algebra generated by {Bi : i < m}
(Fremlin 01, 272Q1).

Choose 〈ξi〉i<m inductively, as follows. Given that 〈ξi〉i<j is a strictly increasing family in κ \ M , where
j < m, we have

µ(Bj ∩
⋂

i<j,k<m Eξik \ Fξi
) = µ(Bj ∩

⋂
i<j,k<m Eξik) = µBj ·

∏
i<j,k<m µEξik > 0,

so we can take ξj ∈ Bj ∩
⋂

i<j,k<m Eξik \ Fξi
such that ξj > ξi for every i < j, and continue. At the end of

the construction, set I = {ξi : i < m}, and see that I ∈ S, while

µ(
⋃
{An : I ∩ An 6= ∅}) ≥ µ(

⋃
i<m Bi) ≥ γ.

As 〈An〉n∈N and γ are arbitrary, S is MC-dense. QQQ

4I Proposition Suppose that there are infinitely many measurable cardinals. Then there is a probability
space (X,Σ, µ) in which all singletons are negligible but there is no MC-dense compact hereditary subset of
[X]<ω.

proof (a) Let 〈κn〉n∈N be a strictly increasing sequence of measurable cardinals, and set κ = supn∈N κn.
For each n ∈ N let Fn be a non-principal κn-complete ultrafilter on κn, and define µ : Pκ → [0, 1] by setting

µA =
∑

n∈N,A∩κn∈Fn
2−n−1.

Then (κ,Pκ, µ) is a probability space in which every singleton is negligible. Let S ⊆ [κ]<ω be a hereditary
MC-compact set. The rest of the argument will be devoted to showing that S is not compact.

(b) For each n ∈ N there are families 〈Di〉i≤n, 〈Ti〉i≤n+1 such that

(α) Di ∈ Fi, Di ∩ κi−1 = ∅ for every i ≤ n,

(counting κ−1 as 0),

(β) if m ≤ n + 1 and Ai ∈ Fi for every i < m, then there is an I ∈ Tm such that I ∩ Ai 6= ∅
for every i ≤ m,

(γ) Ti ⊆ [κ]<ω is hereditary for every i ≤ n + 1,

(δ) if m ≤ n + 1, J ∈ Tm and ξi ∈ Di for m ≤ i ≤ n, then J ∪ {ξi : m ≤ i ≤ n} ∈ S.

PPP Choose the Di, Ti by downwards induction on i, as follows. Start with Tn+1 = S. Of course (γ) and (δ)
are satisfied, while (α) is so far vacuous. If Ai ∈ Fi for i ≤ n, set

A′
i = Ai \

⋃

j<i

A′
j for i ≤ n,

= κ \
⋃

j<i

A′
j for i > n.

1Later editions only.
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Note that A′
i ∈ Fi for i ≤ n. Since 〈A′

i〉i∈N covers κ, there is a J ∈ S such that µ∗(
⋃
{A′

i : J ∩ A′
i 6= ∅}) >

1 − 2−n−1. As µA′
i = 2−i−1 for i ≤ n, J meets A′

i ⊆ Ai for every i ≤ n, while J ∈ Tn+1. As 〈Ai〉i≤n is
arbitrary, (β) is satisfied.

For the downwards step to m ≤ n, set

Tmξ = {J : J ⊆ κm−1, J ∪ {ξ} ∈ Tm+1}

for each ξ < κm. Because κm is strongly inaccessible, #(P([κm−1]
<ω)) < κm, and there is a Tm ⊆ [κm−1]

<ω

such that Dm = {ξ : κm−1 ≤ ξ < κm, Tmξ = Tm} belongs to Fm. Now (α) and (γ) are well in hand,
because every Tmξ is hereditary. If Ai ∈ Fi for every i < m, there is an I ∈ Tm+1 such that I ∩ Ai 6= ∅ for
i < m and I ∩ Dm 6= ∅; take ξ ∈ I ∩ Dm; then J = I ∩ κm belongs to Tmξ = Tm, and J ∩ Ai 6= ∅ for i < m.
Thus (β) is satisfied at the new level. If J ∈ Tm and ξi ∈ Di for m ≤ i ≤ n, then J ∪ {ξm} ∈ Tm+1, so
J ∪ {ξi : m ≤ i ≤ n} ∈ S. So (δ) is satisfied, and the induction proceeds. QQQ

At the end of the induction, observe that T0 6= ∅ (by (β)), so that we have a family 〈Di〉i≤n such that
Di ∈ Fi for every i ≤ n and {ξ0, . . . , ξn} ∈ S whenever ξi ∈ Di for every i ≤ n.

(c) For each n ∈ N, take 〈Dni〉i≤n as in (β). Set D∗
i =

⋂
n≥i Dni; then D∗

i ∈ Fi for i ∈ N. Take any

sequence 〈ξi〉i∈N ∈
∏

i∈N
D∗

i ; then {ξi : i ∈ N} is infinite and {ξi : i ≤ n} ∈ S for every n, so S is not
compact, as claimed.

5 Connexions with precalibers of measure algebras

5A Measure-precaliber pairs: Definition (Fremlin 08, 511E) Let (A, µ̄) be a probability algebra.
Say that a measure-precaliber pair of (A, µ̄) is pair (κ, λ) of cardinals such that whenever 〈aξ〉ξ<κ is
a family in A with infξ<κ µ̄aξ > 0, there is a Γ ∈ [κ]λ such that {aξ : ξ ∈ Γ} is centered. A measure-
precaliber of (A, µ̄) is a cardinal κ such that (κ, κ) is a measure-precaliber pair. Observe that if κ has
uncountable cofinality, it is a measure-precaliber of (A, µ̄) iff it is a precaliber of A, and that ω is a measure-
precaliber of any probability algebra. I will say that (κ, λ) is a measure-precaliber pair of probability
algebras if it is a measure-precaliber pair of every probability algebra; in particular, every cardinal less
than mK is a measure-precaliber of probability algebras (Fremlin 08, 525Ud1).

The definition here is written out for probability algebras. But suppose that A is any Boolean algebra. If
(κ, λ) is a measure-precaliber pair of probability algebras, and A ⊆ A \ {0} has positive intersection number
(Fremlin 02, 391H), and 〈aξ〉ξ<κ is a family in A, then there is a Γ ∈ [κ]λ such that {aξ : ξ ∈ Γ} is
centered. PPP By Kelley’s theorem (Fremlin 02, 391I), there is an additive functional ν : A → [0, 1] such
that ν1 = 1 and infa∈A νa > 0. (I am passing over the trivial case A = {0}.) Let I be the ideal {a : νa = 0}
and B the quotient algebra A/I; then we have a functional ν̄ : B → [0, 1] defined by setting ν̄a• = νa for

every a ∈ A. Next, we have a probability algebra (B̂, µ̄) defined by taking a metric completion of B and
extending ν̄ (Fremlin 02, 393B). We are supposing that κ is a measure-precaliber pair of (B, µ̄). So there

is a Γ ∈ [κ]λ such that {a•

ξ : ξ ∈ Γ} is centered in B̂. It follows at once that {aξ : ξ ∈ Γ} is centered in A. QQQ

5B Note on Example 1Cb The point of 1Cb is that if the continuum hypothesis is true then ω1 is
not a measure-precaliber of the measure algebra of Lebesgue measure on [0, 1]. Generally, if (κ, λ) is not a
measure-precaliber pair of probability algebras, then P (κ, λ) is false. PPP Let (A, µ̄) be a probability algebra
and 〈aξ〉ξ<κ a family in A such that infξ<κ µ̄Aξ = ε > 0. Set S = {I : I ∈ [κ]<ω, infξ∈I aξ 6= 0}. Then S is
ψ-filling over κ, where ψ(n) = εn for every n. Also there is no A ∈ [κ]λ such that [A]<ω ⊆ S. So S witnesses
that P (κ, λ) is false. QQQ

5C Lemma Let S be a set and 〈Et〉t∈T a non-empty family of subsets of S. Then the following are
equiveridical:

(i) there is a non-negative finitely additive functional ν : PS → [0, 1] such that νEt > 0 for every t ∈ T ;
(ii) there are a probability space (X,Σ, µ) and a family 〈Ft〉t∈T in Σ such that µFt > 0 for every t ∈ T

and, for I ∈ [T ]<ω,
⋂

t∈I Ft = ∅ whenever
⋂

t∈I Et = ∅.

proof (i)⇒(ii) Re-normalizing ν if necessary, we may suppose that νS = 1. Let N be the ideal {N : N ⊆
S, νN = 0} and B the quotient Boolean algebra PS/N ; then we have a strictly positive finitely additive
functional ν̄ : B → [0, 1] defined by setting ν̄E• = νE for every E ⊆ S. We can therefore complete (B, ν̄)
to form a probability algebra (A, µ̄) (see Fremlin 02, 393B). Now let (X,Σ, µ) be the Stone space of (A, µ̄)
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(Fremlin 02, 321J-321K). For t ∈ T let Ft ⊆ X be the open-and-closed set corresponding to the image E•

t

of Et in B ⊆ A. Then

µFt = µ̄E•

t = ν̄E•

t = νEt > 0

for every t ∈ T . Also, if
⋂

t∈I Et = ∅, where I ⊆ T is finite, then

µ(
⋂

t∈I

Ft) = µ̄(inf
t∈I

E•

t ) = ν̄(inf
t∈I

E•

t )

= ν̄(
⋂

t∈I

Et)
• = 0;

because
⋂

t∈I Ft is an open subset of X, it must be empty. So we have a suitable structure (X,µ, 〈Ft〉t∈T ).

(ii)⇒(i) Now suppose that we have (X,Σ, µ) and 〈Ft〉t∈T as in (ii). Then there is a finitely additive
functional µ̃ : PX → [0, 1] extending µ (Fremlin 02, 391F). Let Z be the Stone space of PS (Fremlin

02, 311E-311F). For any x ∈ X, {Et : t ∈ T, x ∈ Ft} has the finite intersection property, so there is an

f(x) ∈ Z such that f(x) ∈ Êt whenever x ∈ Ft, writing Êt for the open-and-closed subset of Z corresponding

to Et ∈ PS. Observe that Ft ⊆ f−1[Êt] for every t ∈ T . Set νC = µ̃f−1[Ĉ] for every C ⊆ S; because

C 7→ Ĉ : PS → PZ is a Boolean homomorphism, ν is a finitely additive functional. For any t ∈ T ,

νEt = µ̃f−1[Êt] ≥ µ̃Ft = µFt > 0,

so ν witnesses that (i) is true.

5D Definition Suppose that T is a set and S ⊆ [T ]<ω is hereditary. I will say that S accommodates
a measure if there is a finitely additive functional ν on PS such that ν{I : t ∈ I ∈ S} > 0 for every t ∈ T ;
that is, if 〈Et〉t∈T satisfies the conditions of Lemma 5C, where Et = {I : t ∈ I ∈ S} for t ∈ T .

In this case, setting Tn = {t : νEt ≥ 2−n} and ψn(i) = 2−ni, we have a sequence 〈Tn〉n∈N of subsets of T
covering T such that S is ψn-filling over Tn for every n ∈ N.

The importance of this is the following. If κ is a precaliber of probability algebras, then whenever (X,Σ, µ)
is a probability space and 〈Eξ〉ξ<κ is a family in Σ such that µEξ > 0 for every ξ < κ, there is a set A ⊆ κ,
of cardinal κ, such that

⋂
ξ∈I Eξ 6= ∅ for every finite I ⊆ A. So if a hereditary set S ⊆ [κ]<ω accommodates

a measure, there is an A ∈ [κ]κ such that [A]<ω ⊆ S.

5E We can use the ideas of §§5C-5D from another angle, as follows.

Proposition (G.Plebanek) Suppose that S ⊆ [T ]<ω is ψ-filling over T , where infn≥1
ψ(n)

n
> 0. Let (κ, λ) be

a measure-precaliber pair of probability algebras and 〈Aξ〉ξ<κ a family of infinite subsets of T . Then there
is a Γ ∈ [κ]λ such that for every I ∈ [Γ]<ω there is a J ∈ S such that I ⊆ {ξ : ξ < κ, J ∩ Aξ 6= ∅}.

proof Write ε = infn≥1
ψ(n)

n
,

S̃ = {I : I ∈ [κ]<ω, ∃ J ∈ S, J ∩ Aξ 6= ∅ for every ξ ∈ I}.

For ξ < κ, set Bξ = {I : ξ ∈ I ∈ S̃}. Then C = {Bξ : ξ < κ} has intersection number at least ε. PPP Given a
finite family 〈Ck〉k∈K in C (not supposed distinct), express each Ck as Bξk

. Because every Aξk
is infinite, we

can find a family 〈tk〉k∈K in T , these being all distinct, such that tk ∈ Aξk
for each k. Because S is ψ-filling

over T , there is a set L ⊆ k with #(L) ≥ εk such that J = {tk : k ∈ L} belongs to S. Set I = {ξk : k ∈ L};
then J witnesses that I ∈ S̃, while also I ∈

⋂
k∈L Ck. QQQ

By the remarks in §5A, there is a Γ ∈ [κ]λ such that {Bξ : ξ ∈ Γ} is centered, which is what we need to
know.

6 Large cardinals

6A For singular cardinals κ we have the following fragment of information concerning P (κ, λ).

Proposition (Apter & Džamonja 01) Suppose that κ and λ are infinite cardinals such that cf(λ) > cf(κ).
If P (κ, λ) is true, then there is a κ0 < κ such that P (κ′, λ) is true whenever κ0 ≤ κ′ ≤ κ.
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proof ??? Suppose, if possible, otherwise. Then there is an increasing family 〈κξ〉ξ<cf(κ) of cardinals, with

supremum κ, such that P (κξ, λ) is false for every ξ < cf(κ). So for each ξ < cf(κ) we can find a 1
2 -filling

family Sξ ⊆ [κξ]
<ω such that [A]<ω 6⊆ Sξ for any A ⊆ [κξ]

λ. Now set κ′
ξ = supη<ξ κη for ξ < cf(κ), and

consider

S = {I : I ∈ [κ]<ω, I ∩ κξ \ κ′
ξ ∈ Sξ for every ξ < cf(κ)}.

It is easy to check that S is 1
2 -filling over κ, so there ought to be a set A ∈ [κ]λ such that [A]<ω ⊆ S. But

now, setting Aξ = A ∩ κξ \ κ′
ξ, [Aξ]

<ω ⊆ Sξ for every ξ < cf(κ), so #(Aξ) < λ for every ξ < cf(κ); since

cf(κ) < cf(λ), #(A) < λ. XXX

6B Proposition (Apter & Džamonja 01) If κ is a Ramsey cardinal (Jech 78, §29, p. 328), then
P (κ, κ) is true.

proof If S ⊆ [κ]<ω is 1
2 -filling, then then there is an A ∈ [κ]κ such that for every n ∈ N either [A]n ⊆ S or

[A]n ∩ S = ∅. But the latter is impossible. So [A]<ω ⊆ S.

6C Lemma Let κ be a quasi-measurable cardinal (Fremlin 08, §542), and I an ω1-saturated normal
ideal in Pκ. Let S ⊆ [κ]<ω be a compact hereditary family.

(a) Defining ∂γ
I , for ordinals γ, as in 2Bb, there is a countable ordinal γ such that ∂γ

IS = ∅.

(b) Defining ∂̃γ as in 2Be, there is a D ∈ I such that ∂̃γ(S ∩ [κ \ D]<ω) = ∅.

proof (a)(i) For n ≥ 1 define an ideal In of subsets of κn inductively by setting I1 = I, and for n ≥ 1
taking In+1 to be the family of those subsets W of κn+1 such that

{x : x ∈ κn, W [{x}] /∈ I} ∈ In,

where I write W [{x}] = {ξ : (x, ξ) ∈ W}, identifying κn+1 with κn × κ. Then it is easy to check that every
In is a κ-additive ideal of subsets of κn containing all singletons. Also it is ω1-saturated. PPP Induce on n.
If 〈Wα〉α<ω1

is a family in Pκn+1 \ In+1, set Vα = {x : x ∈ κn, Wα[{x}] /∈ I}, so that Vα /∈ In for every n.
Because In is ω1-saturated, therefore κ-saturated, while κ > ω1 (Fremlin 08, 542B), there is an x ∈ κn

such that A = {α : x ∈ Vα} is uncountable (Fremlin 08, 541Cb); now 〈Wα[{x}]〉α∈A cannot be disjoint, so
〈Wα〉α<ω1

is not disjoint. QQQ

(ii) For A ⊆ κ, n ≥ 1 write A↑n for {(ξ1, . . . , ξn) : ξ1, . . . , ξn ∈ A, ξ1 < ξ1 < . . . < ξn}. If n ≥ 1
and W ∈ In, then there is an A ∈ I such that W ∩ (κ \ A)↑n = ∅. PPP Induce on n. For n = 1 we
need only take A = W . For the inductive step to n + 1, set V = {x : x ∈ κn, W [{x}] /∈ I}, so that
V ∈ In. By the inductive hypothesis we have a B ∈ I such that V ∩ (κ \ B)↑n = ∅. Now, for ξ < κ, set
Eξ =

⋃
{W [{x}] : x ∈ ((ξ + 1) \ B)↑n}. Then Eξ is the union of fewer than κ members of I and belongs to

I. Because I is normal,

A = B ∪
⋃

ξ<κ Eξ \ (ξ + 1)

belongs to I. If (x, ξ) ∈ (κ \ A)↑n+1, then x ∈ ((ζ + 1) \ B)↑n where ζ is the last coordinate of x, so
W [{x}] \ (ζ + 1) ⊆ Eζ \ (ζ + 1) does not contain ξ and (x, ξ) /∈ W . Thus we have an appropriate set A. QQQ

(iii) Now suppose that S ⊆ [κ]<ω is compact and hereditary. Set Wα
n = {(ξ1, . . . , ξn) : {ξ1, . . . , ξn} ∈

∂α
I S} for each α. Because every In is ω1-saturated, Wα

n \ Wα+1
n ∈ In for all but countably many α, and

there is an α < ω1 such that Wα
n \ Wα+1

n ∈ In for every n ∈ N. Now, by (ii), there is a C ∈ I such that
(κ \C)↑n ∩Wα

n \Wα+1
n is empty for every n (we can manage every n simultaneously because I is a σ-ideal);

and of course we can suppose also that C contains 0 and every successor ordinal less than κ, because I is
normal.

What this means is that if I ∩ C = ∅ and I ∈ ∂α
I S \ {∅} then there is a ξ ∈ κ \ C such that I ⊆ ξ and

I ∪ {ξ} ∈ ∂α
I S. PPP Express I as {ξ1, . . . , ξn} where ξ1 < . . . < ξn. Then

(ξ1, . . . , ξn) ∈ Wα
n ∩ (κ \ C)↑n ⊆ Wα+1

n ,

so I ∈ ∂α+1
I S and {ξ : I ∪ {ξ} ∈ ∂α

I S} does not belong to I, so contains something not in C ∪ I. QQQ
Accordingly ∂α

I S ∩ [κ \ C]<ω has no maximal element other than possibly ∅, and must be empty or {∅}.
Since ∂α

I S is hereditary, it must itself be included in {∅}, and ∂α+1
I S is empty. So we can take γ = α + 1.
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(b) For ξ < κ, set

Fξ =
⋃
{{η : η < κ, I ∪ {η} ∈ ∂β

IS} : β ≤ α, I ∈ [ξ + 1]<ω \ ∂β+1
I S} ∈ I.

Then

D = {0} ∪ {ξ + 1 : ξ < κ} ∪
⋃

ξ<κ Fξ \ (ξ + 1)

belongs to I. Setting S′ = κ \ D, we find that ∂̃βS′ ⊆ ∂β
IS for every β ≤ γ. PPP Induce on β. Start with

β = 0, S′ ⊆ S. For the inductive step to a successor ordinal β + 1 where β ≤ α, take I ∈ ∂̃β+1S′. Then
there is an η such that I ⊆ η < κ and I ∪ {η} ∈ ∂̃βS′. Set ξ = sup I; as η /∈ D, η > ξ + 1 and η /∈ Fξ. On

the other hand, I ∪ {η} ∈ ∂βS, by the inductive hypothesis; so I ∈ ∂β+1
I S. As I is arbitrary, the induction

proceeds. The step to a non-zero limit ordinal is trivial, so we have the result. QQQ In particular,

∂̃γS′ ⊆ ∂γ
IS = ∅,

as required.

6D Proposition If κ is a quasi-measurable cardinal, then P (κ, ω) is true.

proof Putting 2D and 6Ca together, we see that there can be no S ⊆ [κ]<ω which is compact, hereditary
and 1

2 -filling over κ.

6E Corollary At least if it is consistent to suppose that there are two-valued-measurable cardinals, it is
consistent to suppose that P (c, ω) is true.

6F Remark Dodos & Kanellopoulos p05 have shown that if we impose describability conditions
on our filling families, we get a similar result in ZFC. Specifically, their Theorem 5 shows a little more than
the following: if S ⊆ [ [0, 1] ]<ω has the Baire property in the restricted sense (see Kuratowski 66), and is

ψ-filling where infn≥1
ψ(n)

n
> 0, then there is an uncountable compact set K ⊆ [0, 1] such that [K]<ω ⊆ S.

7 Constructions of 1
2 -filling sets

7A(a) If I, J ⊆ N write I d J for {2n : n ∈ I} ∪ {2n + 1 : n ∈ J}. For R, S ⊆ PN write R ¢ S for
{I d J : I ∈ R, J ∈ S} ∪ {J d I : I ∈ R, J ∈ S}. Observe that if R and S are hereditary so is R ¢ S. Write
K for the ideal of finite sets.

I will say that a set S is quasi- 1
2 -filling over T if it is hereditary and whenever J ⊆ T is a finite set

with an even number of elements, there is an I ∈ S ∩ PJ such that #(I) = 1
2#(J). As in 2E(a), any

quasi- 1
2 -filling family includes a minimal quasi-1

2 -filling family.

(b) If S ⊆ [T ]<ω is quasi- 1
2 -filling over T , and I is a proper ideal of subsets of T containing singletons,

with additivity κ, then rankI S > ω. PPP Setting ψ(n) = b 1
2nc, S is ψ-filling over T , so we can use Proposition

4C. QQQ

(c) If R, S ⊆ [N]<ω are hereditary so is R ¢ S. If R, S ⊆ [N]<ω are compact so is R ¢ S (because the
map (I, J) 7→ I d J is continuous).

(d) If R ⊆ [N]<ω is 1
2 -filling over N and S ⊆ [N]<ω is quasi- 1

2 -filling over N then R ¢ S is 1
2 -filling over

N. PPP Let K ∈ [N]<ω. Set K1 = {n : 2n ∈ K}, K2 = {n : 2n + 1 ∈ K}, mi = #(Ki) for both i. (i) If

m1 is even, there are I1 ∈ S ∩ PK1 such that #(I1) ≥
m1

2
and I2 ∈ R ∩ PK2 such that #(I2) ≥

m2

2
; now

I1 d I2 ∈ (R ¢ S) ∩ PK and #(I1 d I2) ≥
1
2#(K). (ii) If m2 is even, similarly. (iii) If m1 and m2 are both

odd, set K ′
1 = K1 \ {max K1}. Then there are I1 ∈ S ∩ PK ′

1 such that #(I1) ≥
m1−1

2
and I2 ∈ R ∩ PK2

such that #(I2) ≥
m2+1

2
; now I1 d I2 ∈ (R ¢S)∩PK and #(I1 d I2) ≥

1
2#(K). So all cases are covered. QQQ

7B Notation Write ‡(T, F, V, S) to mean
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(α) F ⊆ T , T \ F is infinite;
(β) S ⊆ [T ]<ω is compact and hereditary;
(γ) supK∈S #(K \ F ) is finite;
(δ) whenever J ∈ [T ]<ω and #(J ∩ V ) ≥ #(J \ (F ∪ V )) there is a K ∈ S ∩ PJ such that

#(K) ≥ 1
2#(J).

7C Lemma Suppose that ‡(T, V, F, S). Let I ∈ S ∩PF , t ∈ T \F . Then there are S′, V ′, I∗ and Ĩ such
that

‡(T, F, V ′, S′);
S′ ⊇ S, S′ ∩ PF = S ∩ PF ;
V ′ ⊇ V , t ∈ V ′, K ∩ V = ∅ for every K ∈ S′ \ S;
I ⊆ I∗ ∈ S′;
I∗ ⊆ Ĩ and I∗ is the only member of S′ ∩ P Ĩ such that #(I∗) ≥ 1

2#(Ĩ);

Ĩ ⊆ F ∪ V ′ and #(F ∩ Ĩ) < 1
2#(Ĩ).

proof (a) Set m = supK∈S #(K \ F ). Applying clause (δ) of 7B to J ∈ [F ]<ω, we see that S ∩ PF is
1
2 -filling over F ; by 2F, there is an I ′ ∈ [F ]<ω such that for every non-empty J ∈ [F \ I ′]<ω there is a

K ∈ S ∩ PJ with #(K) > 1
2#(J); of course we may suppose that I ′ ⊇ I. Set k = m + 1 + 3#(I ′) + #(V ).

Let I∗ ∈ [T \ V ]k be such that I∗ ∩ F = I ′ and t ∈ I∗ ∪ V . Let Ĩ ∈ [T ]2k−1 be such that Ĩ ∩ F = I ′ and

I∗ ∪ V ⊆ Ĩ. Set V ′ = Ĩ \ F , m′ = 2#(V ′) = 2(2m + 1 + 5#(I ′) + 2#(V )),

S′ = S ∪ {K : K ∈ [T ]<ω, K ∩ F ∈ S, #(K \ F ) ≤ m′, K ∩ V = ∅,

either K ∩ Ĩ = I∗ or #(K ∩ Ĩ) < k}.

Then all the requirements on S′, V ′, I∗ and Ĩ are easily verified, with the exception of clause (δ) of 7B.

(b) So let J ∈ [T ]<ω be such that #(J ∩ V ′) < #(J \ (F ∪ V ′)). Note first that

#(J \ F ) < 2#(J ∩ V ′) ≤ m′.

case 1 Suppose that #(J∩V ) ≥ #(J∩(F \V )). Then there is a K ∈ S∩PJ such that #(K) ≥ 1
2#(J),

and K ∈ S′.

case 2 Suppose that #(J ∩ V ) < #(J ∩ (F \ V )) and #(Ĩ \ J) ≤ 2#(I ′). Then

#(J ∩ Ĩ \ (F ∪ V )) ≥ #(Ĩ \ F ) − 2#(I ′) − #(V ) = #(Ĩ) − 3#(I ′) − #(V ) = k + m.

Take L ⊆ J ∩ Ĩ \ (F ∪ V ) such that #(L) = k − 1 ≥ 1
2 (#(J ∩ Ĩ) − 1).

case 2a If J ∩ F \ Ĩ 6= ∅ then (because F ∩ Ĩ = I ′) there is a K1 ∈ S ∩ P(J ∩ F \ Ĩ) such that

#(K1) ≥
1
2 (1 + #(J ∩ F \ Ĩ)). Set K = K1 ∪ L ∪ (J \ (F ∪ Ĩ)) ⊆ J . Then K ∩ F = K1 ∈ S and K ∩ V = ∅

and #(K \ F ) ≤ #(J \ F ) ≤ m′. Also #(K ∩ Ĩ) = k − 1 < #(Ĩ), so K ∈ S′. Finally

#(K) ≥ 1
2 (#(J ∩ F \ Ĩ) − 1) + 1

2 (#(J ∩ Ĩ) − 1) + #(J \ (F ∪ Ĩ)) ≥ 1
2#(J).

case 2b If J ∩ F ⊆ Ĩ and J 6⊇ Ĩ set K = L ∪ (J \ Ĩ) ⊆ J . Then K ∩ F = ∅ ∈ S, K ∩ V = ∅,
#(K \ F ) ≤ m′ and #(K ∩ Ĩ) < 1

2#(Ĩ), so K ∈ S′. Now

#(K) = k − 1 + #(J \ Ĩ) ≥ 1
2#(J ∩ Ĩ) + #(J \ Ĩ) ≥ 1

2#(J).

case 2c If J ∩ F ⊆ Ĩ and J ⊇ Ĩ set K = I∗ ∪ (J \ Ĩ) ⊆ J . Then K ∩ F = I ′ ∈ S, K ∩ V = ∅,
#(K \ F ) ≤ m′ and K ∩ Ĩ = I∗, so K ∈ S′. This time

#(K) = k + #(J \ Ĩ) ≥ 1
2#(Ĩ) + #(J \ Ĩ) ≥ 1

2#(J).

case 3 Suppose that #(J ∩ V ) < #(J ∩ (F \ V )) and #(Ĩ \ J) > 2#(I ′). Let K0 ∈ S ∩ P(J ∩ F ) be
such that #(K0) ≥

1
2#(J ∩ F ). Then

#(K0) + #(J ∩ (F \ V )) > 1
2 (#(J ∩ F ) + #(J ∩ V ) + #(J ∩ (F \ V )) = 1

2#(J),
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so there is an M ⊆ J ∩ (F \ V ) such that #(K0) + #(M) = d 1
2#(J)e. We can suppose that the points of

M are taken, as far as possible, from J \ (F ∪ Ĩ), so that

#(M ∩ Ĩ) ≤ d
1

2
#(J ∩ Ĩ \ F )e ≤

1

2
(#(J ∩ Ĩ \ F ) + 1)

≤
1

2
(#(J ∩ Ĩ) + 1) ≤

1

2
(#(Ĩ) − 2#(I ′)) = k −

1

2
− #(I ′),

and #(M ∩ Ĩ) ≤ k − 1 − #(I ′). Set K = K0 ∪ M ⊆ J . Then K ∩ F = K0 ∈ S, K ∩ V = ∅, #(K \ F ) ≤ m′

and

#(K ∩ Ĩ) = #(K0 ∩ Ĩ) + #(M ∩ Ĩ) ≤ #(I ′) + k − 1 − #(I ′) < 1
2#(Ĩ),

so K ∈ S′. And #(K) ≥ 1
2#(J) by the choice of M .

Thus in all cases we can find a K ∈ S′ ∩ PJ such that #(K) ≥ 1
2#(J), and (δ) of 7B is satisfied.

7D Proposition Suppose that T , F , S are such that F ⊆ T , #(F ) ≤ ω, #(T \ F ) = ω and S ⊆ [F ]<ω

is compact and 1
2 -filling. Then there is a compact minimal 1

2 -filling S̃ ⊆ [T ]<ω such that S = S̃ ∩ [F ]<ω.

proof Let 〈In〉n∈N run over S, and let 〈tn〉n∈N enumerate T \ F . Choose 〈Sn〉n∈N, 〈Vn〉n∈N, 〈I∗n〉n∈N and

〈Ĩn〉n∈N inductively, as follows. S0 = S and V0 = ∅. Given that ‡(T, F, Vn, Sn) is true, use 7C to choose I∗n,

Ĩn, Vn+1 and Sn+1 so that

‡(T, F, Vn+1, Sn+1);
Sn+1 ⊇ Sn, Sn+1 ∩ PF = Sn ∩ PF ;
Vn+1 ⊇ Vn, tn ∈ Vn+1, K ∩ Vn = ∅ for every K ∈ Sn+1 \ Sn;
In ⊆ I∗n ∈ Sn+1;

I∗n ⊆ Ĩn and I∗n is the only member of Sn+1 ∩ P Ĩn such that #(I∗n) ≥ 1
2#(Ĩn);

Ĩn ⊆ F ∪ Vn+1 and #(F ∩ Ĩn) < 1
2#(Ĩn).

At the end of the induction set S∞ =
⋃

n∈N
Sn. Then S∞ ⊆ [T ]<ω is hereditary, and S∞ ∩ [F ]<ω = S.

Next, S∞ is 1
2 -filling over T . PPP If J ∈ [T ]<ω, there is an n ∈ N such that J \ F ⊆ {ti : i ≤ n} ⊆ Vn+1. In

this case #(J \ (F ∪ Vn+1)) ≤ #(J ∩ Vn+1) so there is a K ∈ Sn+1 ∩ PJ such that #(K) ≥ 1
2#(J), and of

course K ∈ S∞. QQQ
Also S∞ is compact. PPP Suppose that [A]<ω ⊆ S∞. Then [A ∩ F ]<ω ⊆ S so A ∩ F is finite. If A \ F is

not empty, let n be such that tn ∈ A. If K ∈ [A]<ω there is an m ∈ N such that K ∪ {tn} ∈ Sm+1 \ Sm. In
this case, K ∪ {tn} cannot meet Vm, so m ≤ n. Thus [A]<ω ⊆ Sn+1; as Sn+1 is compact, A is finite; as A is
arbitrary, S∞ is compact. QQQ

Now let S̃ ⊆ S∞ be a minimal 1
2 -filling family. Then S̃ ∩ [F ]<ω ⊆ S. ??? If S̃ ∩ [F ]<ω 6= S, let n be such

that In /∈ S̃. There must be some K ∈ S̃ ∩ P Ĩn such that #(K) ≥ 1
2#(Ĩn). Now K 6⊇ In so K 6= I∗n and

K /∈ Sn+1. Because #(F ∩ Ĩn) < 1
2#(Ĩn), K ∩ Vn+1 6= ∅ so K /∈ Sm+1 \ Sm for any m > n and K /∈ S∞. XXX

Thus S = S̃ ∩ [F ]<ω, as required.

7E Corollary Set I = [N]<ω. Then for any α < ω1 there is a compact minimal 1
2 -filling S ⊆ [N]<ω such

that rankI(S) ≥ α.

proof We have only to construct a compact 1
2 -filling R with rankI(R) ≥ α, and then use 7D to express it

as the trace of a compact minimal 1
2 -filling family.

8 Problems

8A The problems DU(a) and DU(b) from my problem list can be expressed as

DU(a): is P (ω1, ω) true?

DU(b): does m > ω1 imply P (ω1, ω1)?

Of course we can also ask, more generally,

is P (ω1, ω1) consistent?

and, in the light of Corollary 6E,
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is P (c, c) consistent? if κ is two-valued-measurable and we add κ random reals, does P (c, c)
become true?

is it consistent to suppose that P (κ, ω) is false for every κ? what about P (c+, ω)?

From §§5C-5D above, we see that the situation for families accommodating measures is much more
familiar, and corresponds to questions about calibers of measure algebras, as considered in Comfort &

Negrepontis 82 and Fremlin 08, §525. So we have to ask

if S ⊆ [T ]<ω is 1
2 -filling over T , does it necessarily accommodate a measure, in the sense of

§5D?

This question is raised, in effect, in Galvin & Prikry 00. A positive answer seems wildly improbable but
no counter-example is known.

In Propostion 4B, c is the natural limit of the argument given; but is it really best possible? What about
2ω1? 4F
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preprints from F.Galvin, M.Džamonja and J.Rodŕıguez. In particular, the idea of looking at P (ω1, ω) arose
in conversations with Argyros, who also proved (ii)⇒(i) of Theorem 3A and suggested the question answered
by Proposition 7D, while the idea of looking at higher cardinals comes from Apter & Džamonja 01, and
the question about families ‘accommodating measures’ is from Galvin & Prikry 00.
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