Problem DU

D.H.FREMLIN

University of Essex, Colchester, England

1 The problem

1A Notation (a) I will call a family S of sets hereditary if $\mathcal{P}I \subseteq S$ for every $I \in S$.

(b) Let T be a set and S a family of sets. I say that S is $\frac{1}{2}$ -filling over T if S is hereditary and for every $I \in [T]^{<\omega}$ there is a $J \subseteq I$ such that $\#(J) \ge \frac{1}{2}\#(I)$ and $J \in S$.

For cardinals λ , κ I write $P(\kappa, \lambda)$ for the statement

whenever $S \subseteq [\kappa]^{<\omega}$ is $\frac{1}{2}$ -filling over κ , there is a set $A \in [\kappa]^{\lambda}$ such that $[A]^{<\omega} \subseteq S$.

1B The problem For which cardinals is $P(\kappa, \lambda)$ true?

1C Two examples (a) $P(\omega, \omega)$ is false. **P** Set $S = \{\emptyset\} \cup \{I : I \subseteq \mathbb{N}, I \neq \emptyset, \#(I) \leq 1 + \min I\}$. Then S is $\frac{1}{2}$ -filling over \mathbb{N} and there is no infinite $A \subseteq \mathbb{N}$ such that $[A]^{<\omega} \subseteq S$. **Q** (This is a version of the Schreier family.)

(b) If $\omega_1 = \mathfrak{c}$ then $P(\omega_1, \omega_1)$ is false. **P** Enumerate [0, 1] as $\langle t_{\xi} \rangle_{\xi < \omega_1}$. For each $\xi < \omega_1$ choose a compact set $K_{\xi} \subseteq [0, 1] \setminus \{x_{\eta} : \eta \leq \xi\}$ of Lebesgue measure at least $\frac{1}{2}$. Set $S = \{I : I \subseteq \omega_1, \bigcap_{\xi \in I} K_{\xi} \neq \emptyset\}$. Then S is $\frac{1}{2}$ -filling over ω_1 but there is no uncountable set $A \subseteq \omega_1$ such that $[A]^{<\omega} \subseteq S$. **Q**

2 General theory

2A Compact families (a) I will say that a family S of sets is compact if it is closed in $\mathcal{P}T$ where $T = \bigcup S$.

(b) If S is a hereditary family of finite sets, the following are equiveridical: (i) S is compact; (ii) there is no strictly increasing sequence in S; (iii) $[A]^{<\omega} \not\subseteq S$ for any infinite A.

(c) So if S is a compact hereditary family of finite sets, then any hereditary $S' \subseteq S$ is compact.

2B Derivations (a) Let S be a hereditary family of sets and \mathcal{I} an ideal of sets. Set

 $\partial_{\mathcal{I}}S = \{I : \{t : t \notin I, I \cup \{t\} \in S\} \notin \mathcal{I}\}.$

Then $\partial_{\mathcal{I}} S$ is hereditary and included in S.

(b) Again supposing that S is a hereditary family of sets and \mathcal{I} an ideal of sets, define $\langle \partial_{\mathcal{I}}^{\alpha} S \rangle_{\alpha < \text{On}}$ inductively:

 $\partial^0_{\tau} S = S;$

for any ordinal α , $\partial_{\mathcal{I}}^{\alpha+1}S = \partial_{\mathcal{I}}(\partial_{\mathcal{I}}^{\alpha}S);$

for non-zero limit ordinals α , $\partial_{\mathcal{I}}^{\alpha}S = \bigcap_{\beta < \alpha} \partial_{\mathcal{I}}^{\beta}S$.

Then $\langle \partial_I^{\alpha} S \rangle_{\alpha < On}$ is a non-increasing family of hereditary sets.

Write rank_{\mathcal{I}} S for the smallest ordinal γ such that $\partial_{\mathcal{I}}^{\gamma+1}S = \partial_{\mathcal{I}}^{\gamma}S$. Note that if S is a compact hereditary family of finite sets then this kernel $\partial_{\mathcal{I}}^{\gamma}S$ must be empty; so that for any ordinal α we have

$$\alpha < \operatorname{rank}_{\mathcal{I}}(S) \iff \partial_{\mathcal{I}}^{\alpha}S \neq \emptyset \iff \emptyset \in \partial_{\mathcal{I}}^{\alpha}S.$$

(c) If S, S' are hereditary families of sets and \mathcal{I} is an ideal of sets, then $\partial_{\mathcal{I}}(S \cup S') = \partial_{\mathcal{I}}S \cup \partial_{\mathcal{I}}S'$. Consequently $\partial_{\mathcal{I}}^{\alpha}(S \cup S') = \partial_{\mathcal{I}}^{\alpha}S \cup \partial_{\mathcal{I}}^{\alpha}S'$ for every α . If S and S' are compact hereditary families of finite sets, then $\operatorname{rank}_{\mathcal{I}}(S \cup S') = \max(\operatorname{rank}_{\mathcal{I}}(S), \operatorname{rank}_{\mathcal{I}}(S'))$. (d) If S is a hereditary family of sets and \mathcal{I} , \mathcal{J} are ideals of sets with $\mathcal{I} \subseteq \mathcal{J}$, then $\partial_{\mathcal{J}}S \subseteq \partial_{\mathcal{I}}S$; consequently $\partial_{\mathcal{J}}^{\alpha}S \subseteq \partial_{\mathcal{I}}^{\alpha}S$ for every α , and if S is a compact family of finite sets then $\operatorname{rank}_{\mathcal{I}}(S) \ge \operatorname{rank}_{\mathcal{J}}(S)$.

(e) If S is a family of sets of ordinals, set

 $\tilde{\partial}S = \{I : I \in S, \ I \cup \{\xi\} \in S \text{ for some ordinal } \xi \text{ such that } I \subseteq \xi\},\$

and for ordinals α define $\tilde{\partial}^{\alpha}S$ by setting

$$\tilde{\partial}^0 S = S, \quad \tilde{\partial}^\alpha S = \bigcap_{\beta < \alpha} \tilde{\partial}(\tilde{\partial}^\beta S)$$

if $\alpha > 0$. If S is hereditary, then every $\tilde{\partial}^{\alpha}S$ is hereditary and $\langle \tilde{\partial}^{\alpha}S \rangle_{\alpha \in On}$ is non-increasing.

2C Lemma Suppose that S is a hereditary family of sets, and that \mathcal{I} is an ideal of subsets of $T \supseteq \bigcup S$. For $t \in T$ set $S_t = \{I : I \cup \{t\} \in S, t \notin I\}$.

(a) $\partial_{\mathcal{I}}^{\alpha}(S_t) = (\partial_{\mathcal{I}}^{\alpha}S)_t$ for every ordinal α and every $t \in T$.

(b) If $S \subseteq [T]^{<\omega}$ is compact and not empty, then $\operatorname{rank}_{\mathcal{I}}(S) = (\min_{A \in \mathcal{I}} \sup_{t \in T \setminus A} \operatorname{rank}_{\mathcal{I}}(S_t)) + 1$.

proof (a) Induce on α . The induction starts with $\alpha = 0$, $S_t = S_t$. For the inductive step to a successor ordinal $\alpha + 1$, if $I \subseteq T$ then

$$I \in \partial_{\mathcal{I}}^{\alpha+1}S_t \iff \{s : s \in T \setminus I, I \cup \{s\} \in \partial_{\mathcal{I}}^{\alpha}S_t\} \notin \mathcal{I}$$
$$\iff \{s : s \in T \setminus I, I \cup \{s\} \in (\partial_{\mathcal{I}}^{\alpha}S)_t\} \notin \mathcal{I}$$

(by the inductive hypothesis)

 $\begin{array}{l} \Longleftrightarrow \ t \notin I \ \text{and} \ \{s : s \in T \setminus (I \cup \{t\}), \ I \cup \{t\} \cup \{s\} \in \partial_{\mathcal{I}}^{\alpha}S\} \notin \mathcal{I} \\ \Leftrightarrow \ t \notin I \ \text{and} \ I \cup \{t\} \in \partial_{\mathcal{I}}^{\alpha+1}S \\ \Leftrightarrow \ I \in (\partial_{\mathcal{I}}^{\alpha+1}S)_t, \end{array}$

so the induction proceeds. For the inductive step to a non-zero limit ordinal α , if $I \subseteq T$ then

$$\begin{split} I \in \partial_{\mathcal{I}}^{\alpha} S_t \iff I \in \partial_{\mathcal{I}}^{\beta} S_t \text{ for every } \beta < \alpha \\ \iff I \in (\partial_{\mathcal{I}}^{\beta} S)_t \text{ for every } \beta < \alpha \\ \iff t \notin I \text{ and } I \cup \{t\} \in \partial_{\mathcal{I}}^{\beta} S \text{ for every } \beta < \alpha \\ \iff t \notin I \text{ and } I \cup \{t\} \in \partial_{\mathcal{I}}^{\alpha} S \\ \iff I \in (\partial_{\mathcal{I}}^{\alpha} S)_t, \end{split}$$

and again we can continue.

(b) In this case $S_t = \{I \setminus \{t\} : t \in I \in S\}$ is also compact, for every $t \in T$. Set $\gamma_t = \operatorname{rank}_{\mathcal{I}}(S_t)$ for every $t \in T$, $\gamma = \min_{A \in \mathcal{I}} \sup_{t \in T \setminus A} \gamma_t$.

For an ordinal α ,

$$\alpha + 1 < \operatorname{rank}_{\mathcal{I}}(S) \iff \emptyset \in \partial_{\mathcal{I}}^{\alpha + 1}S$$

(2Bb)

$$\begin{array}{l} \Longleftrightarrow \quad \{t:\{t\} \in \partial_{\mathcal{I}}^{\alpha}S\} \notin \mathcal{I} \\ \Leftrightarrow \quad \{t: \emptyset \in (\partial_{\mathcal{I}}^{\alpha}S)_t\} \notin \mathcal{I} \\ \Leftrightarrow \quad \{t: \emptyset \in \partial_{\mathcal{I}}^{\alpha}(S_t)\} \notin \mathcal{I} \\ \Leftrightarrow \quad \{t: \alpha < \gamma_t\} \notin \mathcal{I} \\ \Leftrightarrow \quad \alpha < \gamma. \end{array}$$

It follows at once that $\operatorname{rank}_{\mathcal{I}}(S) \leq \gamma + 1$. In the other direction, if $\gamma = \beta + 1$ is a successor ordinal, then $\beta < \gamma, \ \emptyset \in \partial_{\mathcal{I}}^{\beta+1}S$ and $\gamma < \operatorname{rank}_{\mathcal{I}}(S)$; if γ is a non-zero limit ordinal, then $\emptyset \in \partial_{\mathcal{I}}^{\alpha}S$ for every $\alpha < \gamma$, so again

 $\emptyset \in \partial_{\mathcal{I}}^{\gamma}S$ and $\gamma < \operatorname{rank}_{\mathcal{I}}(S)$; finally, if $\gamma = 0$ then $\gamma < \operatorname{rank}_{\mathcal{I}}(S)$ because $S \neq \emptyset$. So in all cases $\operatorname{rank}_{\mathcal{I}}(S)$ is greater than γ and must be exactly $\gamma + 1$, as claimed.

2D Lemma Suppose that $S \subseteq [T]^{<\omega}$ is hereditary and $\frac{1}{2}$ -filling over a non-empty set T, and that \mathcal{I} is a proper ideal of subsets of T containing singletons. Set $\kappa = \operatorname{add} \mathcal{I}$. Then $\emptyset \in \partial_{\mathcal{I}}^{\kappa} S$.

Remark Here add \mathcal{I} is the **additivity** of \mathcal{I} , the least cardinal of any subset of \mathcal{I} with no upper bound in \mathcal{I} (see FREMLIN 08, §511).

proof (a) Suppose first that $\kappa \geq \omega_1$, that is, that \mathcal{I} is a σ -ideal.

(i) In this case, I show by induction on α that for every $\alpha < \kappa$ there is an $M_{\alpha} \in \mathcal{I}$ such that $\partial_{\mathcal{I}}^{\alpha}S$ is $\frac{1}{2}$ -filling over $T \setminus M_{\alpha}$. The induction starts with $M_0 = \emptyset$.

(ii) For the inductive step to $\alpha + 1$, given that $\partial_{\mathcal{I}}^{\alpha}S$ is $\frac{1}{2}$ -filling over $T \setminus M_{\alpha}$, **?** suppose, if possible, that $\partial_{\mathcal{I}}^{\alpha+1}S$ is not $\frac{1}{2}$ -filling over $T \setminus M$ for any $M \in \mathcal{I}$. Because \mathcal{I} is a σ -ideal containing singletons, we can choose inductively families $\langle I_{\xi} \rangle_{\xi < \omega_1}$ and $\langle N_{\xi} \rangle_{\xi < \omega_1}$ such that

every I_{ξ} is a finite subset of $T \setminus M_{\alpha}$,

every N_{ξ} belongs to \mathcal{I} ,

$$I_{\xi} \cap \bigcup_{n < \xi} N_{\eta} = \emptyset$$
 and $\#(J) < \frac{1}{2} \#(I_{\xi})$ whenever $J \in \partial_{\mathcal{T}}^{\alpha+1}S$ and $J \subseteq I_{\xi}$

(because we are supposing that $\partial_{\mathcal{I}}^{\alpha+1}S$ is not $\frac{1}{2}$ -filling over $T \setminus (M_{\alpha} \cup \bigcup_{\eta < \xi} N_{\eta}))$,

$$N_{\xi} = I_{\xi} \cup \bigcup_{J \subset I_{\varepsilon}, J \notin \partial_{\tau}^{\alpha+1} S} \{t : J \cup \{t\} \in \partial_{\mathcal{I}}^{\alpha} S\}$$

(which belongs to \mathcal{I} by the definition of $\partial_{\mathcal{I}}^{\alpha+1}S$). Now there is some $k \in \mathbb{N}$ such that $A = \{\xi : \#(I_{\xi}) = k\}$ is infinite; of course $k \geq 1$. Let m be the greatest integer less than $\frac{k}{2}$, and let $r \geq 1$ be such that $mr + k < \frac{1}{2}k(r+1)$. Take $\xi_0 < \ldots < \xi_r \in A$ and consider $I = \bigcup_{i \leq r} I_{\xi_i}$. This is a finite subset of $T \setminus M_{\alpha}$ so there is a $J \subseteq I$ such that $J \in \partial_{\mathcal{I}}^{\alpha}S$ and $\#(J) \geq \frac{1}{2}\#(I) = \frac{1}{2}k(r+1)$. There must therefore be some first j such that $\#(J \cap I_{\xi_j}) \geq \frac{1}{2}k$. In this case, by the choice of the $I_{\xi}, J \cap I_{\xi_j} \notin \partial_{\mathcal{I}}^{\alpha+1}S$ and N_{ξ_j} includes $\{t : (J \cap I_{\xi_j}) \cup \{t\} \in \partial_{\mathcal{I}}^{\alpha}S\} \supseteq J$, so that $I_{\xi_i} \cap J$ must be empty for every i > j. What this means is that

$$\#(J) = \sum_{i=0}^{r} \#(J \cap I_{\xi_i}) \le mj + k,$$

and

$$\frac{1}{2}k(r+1) \le mj + k \le mr + k,$$

which is impossible, by the choice of r.

Thus the induction proceeds to $\alpha + 1$.

(iii) For the inductive step to a non-zero limit ordinal $\alpha < \kappa$, we need only set $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$, which belongs to \mathcal{I} because \mathcal{I} is κ -additive.

(iv) Now because $T \notin \mathcal{I}$ it follows that $\emptyset \in \partial_{\mathcal{I}}^{\alpha}S$ for every $\alpha < \kappa$, so that $\emptyset \in \partial_{\mathcal{I}}^{\kappa}S$, as claimed.

(b) Now suppose that $\kappa = \omega$. Fix a non-zero $m \in \mathbb{N}$ for the moment. Choose a sequence $\langle t_n \rangle_{n \in \mathbb{N}}$ of distinct elements of T so that

whenever $j \leq m$ and $J \subseteq \{t_i : i < n\}$ and $J \notin \partial_{\mathcal{I}}^{j+1}S$, then $J \cup \{t_n\} \notin \partial_{\mathcal{I}}^j S$;

this is possible because when we come to choose t_n only a set belonging to \mathcal{I} is forbidden to us. Now look at $K = \{t_n : n < 2m\}$. There is an $I \in S$ such that $I \subseteq K$ and #(I) = m; express I as $\langle t_{n_i} \rangle_{i < m}$ where $n_0 > n_1 > \ldots > n_{m-1}$. Set $I_j = \{t_{n_i} : j \leq i < m\}$ for each j. Now $I_j \in \partial_{\mathcal{I}}^j S$ for every $j \leq m$. **P** Induce on j. $I_0 = I \in S = \partial_{\mathcal{I}}^0 S$. If $I_j \in \partial_{\mathcal{I}}^j S$, then $I_{j+1} \subseteq \{t_i : i < n_j\}$ and $I_{j+1} \cup \{t_{n_j}\} = I_j \in \partial_{\mathcal{I}}^j S$, so $I_{j+1} \in \partial_{\mathcal{I}}^{j+1} S$. **Q**

In particular, $\emptyset = I_m \in \partial_{\mathcal{I}}^m S$. As *m* is arbitrary, $\emptyset \in \partial_{\mathcal{I}}^\omega S$. So we have the result in this case too.

2E Minimal families (a) If S is $\frac{1}{2}$ -filling over T, there is a minimal $S' \subseteq S$ which is $\frac{1}{2}$ -filling over T. (For the intersection of any downwards-directed family of $\frac{1}{2}$ -filling sets is again $\frac{1}{2}$ -filling.)

(b) If $S \subseteq [T]^{<\omega}$ is a minimal $\frac{1}{2}$ -filling set, then for every maximal $J \in S$ there must be a finite $I \supseteq J$ such that J is the unique member of S included in I such that $\#(J) \ge \frac{1}{2}\#(I)$. (For otherwise we could delete J.)

(c) If $S \subseteq [T]^{<\omega}$ is compact and hereditary and $\frac{1}{2}$ -filling, there is a compact minimal $\frac{1}{2}$ -filling $S' \subseteq [T]^{<\omega}$.

(d) The Schreier family S of 1Ca is minimal $\frac{1}{2}$ -filling. **P** If $I \in S$ is maximal, set $n = \min I$, $J = I \cup n$; then #(I) = n + 1, #(J) = 2n + 1 and I is the only member of $[J]^{n+1}$ belonging to S. **Q**

2F Lemma Let T be a set and $S \subseteq [T]^{<\omega}$ a compact $\frac{1}{2}$ -filling family. Then there is a finite $I \subseteq T$ such that for every non-empty $J \in [T \setminus I]^{<\omega}$ there is a $K \in S \cap \mathcal{P}J$ such that $\#(K) > \frac{1}{2} \#(J)$.

proof By 2Ea, there is a minimal $\frac{1}{2}$ -filling family $S' \subseteq S$. Because S is compact, so is S', and S' has a maximal element J_0 . By 2Eb, there is an $I \in [T]^{<\omega}$ such that J_0 is the unique member of $S' \cap \mathcal{P}I$ with $\#(J_0) \geq \frac{1}{2}\#(I)$. Let $J \subseteq T \setminus I$ be a non-empty finite set. If #(J) = 1, then of course $J \in S'$ and $\#(J) > \frac{1}{2}\#(J)$. If $\#(J) \geq 2$, there is a $K \in S' \cap (J \cup I)$ such that

 $\#(K) \ge \left\lceil \frac{1}{2} \#(J \cup I) \right\rceil \ge 1 + \left\lceil \frac{1}{2} \#(I) \right\rceil > \#(J_0).$

As J_0 is maximal, $K \not\supseteq J_0$ and $K \cap I$ is a member of $S' \cap \mathcal{P}I$ other than J_0 . It follows that $\#(K \cap I) < \frac{1}{2} \#(I)$ so $\#(K \setminus I) > \frac{1}{2} \#(J)$, while $K \setminus I \in S' \subseteq S$.

2G Monotonicity I spell out an obvious fact: if $P(\kappa, \lambda)$ is true, then $P(\kappa', \lambda')$ is true whenever $\lambda' \leq \lambda$ and $\kappa' \geq \kappa$.

3 A connexion with bases in Banach spaces

3A Theorem Suppose that κ is an uncountable cardinal. Then the following are equiveridical: (i) $P(\kappa, \omega)$;

(ii) If X is a Banach space and $\langle e_{\xi} \rangle_{\xi < \kappa}$ is a family of unit vectors in X such that every weak neighbourhood of 0 in X contains all but finitely many of the e_{ξ} , there is a sequence $\langle \xi_i \rangle_{i \in \mathbb{N}}$ of distinct elements of κ such that $\inf_{n \in \mathbb{N}} \left\| \frac{1}{n+1} \sum_{i=0}^{n} e_{\xi_i} \right\| = 0$;

(iii) If X is a Banach space and $\langle e_{\xi} \rangle_{\xi < \kappa}$ is a family of unit vectors in X such that every weak neighbourhood of 0 in X contains all but finitely many of the e_{ξ} , there is a sequence $\langle \xi_i \rangle_{i \in \mathbb{N}}$ of distinct elements of κ such that $\lim_{n \to \infty} \left\| \frac{1}{n+1} \sum_{i=0}^{n} e_{\xi_i} \right\| = 0.$

proof (i) \Rightarrow (iii) Suppose that $P(\kappa, \omega)$ is true. Let X be a Banach space and $\langle e_{\xi} \rangle_{\xi < \kappa}$ is a family of unit vectors in X such that every weak neighbourhood of 0 in X contains all but finitely many of the e_{ξ} .

(α) For $\epsilon > 0$, consider the set

 $S_{\epsilon} = \{I : I \subseteq \kappa, \text{ there is some } f \in X^* \text{ such that } \|f\| \le 1 \text{ and } f(e_{\xi}) \ge \epsilon \text{ for every } \xi \in I\}.$

If $A \subseteq \kappa$ and $[A]^{<\omega} \subseteq S_{\epsilon}$, then $A \in S_{\epsilon}$. **P** For each $I \in [A]^{<\omega}$ there is an f_I in the unit ball of X^* such that $f_I(e_{\xi}) \geq \epsilon$ for every $\xi \in I$. Let f be a weak* limit of the f_I as I increases through the finite subsets of A; then $f(e_{\xi}) \geq \epsilon$ for every $\xi \in A$, so f witnesses that $A \in S_{\epsilon}$. **Q**

Since every weak neighbourhood of 0 contains all but finitely many of the e_{ξ} , $S_{\epsilon} \subseteq [\kappa]^{<\omega}$, and there is no infinite set $A \subseteq \kappa$ such that $[A]^{<\omega} \subseteq S_{\epsilon}$. We are supposing that $P(\kappa, \omega)$ is true. So if $A \in [\kappa]^{<\omega}$, $\epsilon > 0$ and $\delta > 0$, S_{ϵ} is not δ -filling over $\kappa \setminus A$.

(β) ? Suppose, if possible, that there is an $\epsilon > 0$ such that

$$\forall n \in \mathbb{N} \exists I \in [\kappa]^{<\omega} \forall J \in [\kappa \setminus I]^n, \|\sum_{\xi \in J} e_{\xi}\| \ge \epsilon n.$$

Then there is an $A \in [\kappa]^{\leq \omega}$ such that $\|\sum_{\xi \in J} e_{\xi}\| \geq \epsilon \#(J)$ for every finite $J \subseteq \kappa \setminus A$. For each $J \in [\kappa \setminus A]^{<\omega}$, choose $f_J \in X^*$ such that $\|f_J\| \leq 1$ and $f_J(\sum_{\xi \in J} e_{\xi}) \geq \epsilon \#(J)$, and set $I_J = \{\xi : \xi \in J, f_J(e_{\xi}) \geq \frac{\epsilon}{2}\}$. Then

$$\epsilon \#(J) \le \sum_{\xi \in J} f_J(e_\xi) \le \#(I_J) + \frac{\epsilon}{2} \#(J),$$

so $\#(I_J) \ge \frac{\epsilon}{2} \#(J)$, while $I_J \in S_{\epsilon/2}$. As J is arbitrary, $S_{\epsilon/2}$ is $\frac{\epsilon}{2}$ -filling over $\kappa \setminus A$; but this is supposed to be impossible. **X**

 (γ) Accordingly

$$\forall \epsilon > 0 \exists n \in \mathbb{N} \forall I \in [\kappa]^{<\omega} \exists J \in [\kappa \setminus I]^n, \|\sum_{\xi \in J} e_{\xi}\| < \epsilon n.$$

For each $k \in \mathbb{N}$ choose $n_k \in \mathbb{N}$ such that

$$\forall I \in [\kappa]^{<\omega} \exists J \in [\kappa \setminus I]^{n_k}, \|\sum_{\xi \in J} e_\xi\| < 2^{-k} n_k.$$

Of course no n_k can be 0. Choose $\langle m_k \rangle_{k \in \mathbb{N}}$ in \mathbb{N} such that

$$\sum_{l < k} 2^{-l} m_l n_l \le 2^{-k} m_k n_k, \quad n_{k+1} \le 2^{-k} m_k n_k$$

for every k. Now we can choose J_{kr} , for $k \in \mathbb{N}$ and $r < m_k$, such that

 $J_{kr} \in [\kappa]^{n_k}, \quad J_{kr} \cap J_{ls} = \emptyset$ if either l < k and $s < m_l$ or l = k and s < r,

$$\left\|\sum_{\xi \in J_{nr}} e_{\xi}\right\| < 2^{-k} n_k$$

Take a sequence $\langle \xi_i \rangle_{i \in \mathbb{N}}$ enumerating $\bigcup_{k \in \mathbb{N}, r < m_k} J_{kr}$ in such a way that if $\xi_i \in J_{ls}, \xi_j \in J_{kr}$ and $i \leq j$, then either l < k or l = k and $r \leq s$.

Set $M_k = \sum_{l < k} m_l n_l$ for $k \in \mathbb{N}$. Suppose that $k \ge 1$ and $M_k \le n < M_{k+1}$. Then $\|\sum_{i < n} e_{\xi_i}\| \le 7 \cdot 2^{-k} n$. **P** Express n as $M_k + m n_k + j$ where $m < m_k$ and $j < n_k$. Then

$$\begin{split} \|\sum_{i$$

as claimed. ${\bf Q}$

($\boldsymbol{\delta}$) Thus $\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{i < n} e_{\xi_i} \right\| = 0$ and (iii) is true.

 $(iii) \Rightarrow (ii)$ is trivial.

 $\neg(\mathbf{i}) \Rightarrow \neg(\mathbf{ii})$ ($\boldsymbol{\alpha}$) Let $S \subseteq [\kappa]^{<\omega}$ be a $\frac{1}{2}$ -filling family not including $[A]^{<\omega}$ for any infinite $A \subseteq \kappa$. Write c_{00} for the linear space of functions $x : \kappa \to \mathbb{R}$ such that $\{\xi : x(\xi) \neq 0\}$ is finite. For $x \in c_{00}$ set $||x|| = \sup_{I \in S} \sum_{\xi \in I} |x(\xi)|$. Because all singleton subsets of κ belong to S, || || is a norm on c_{00} . Let X be the completion of c_{00} for this norm, and set $e_{\xi}(\eta) = 1$ if $\eta = \xi$, 0 otherwise, so that $||e_{\xi}|| = 1$ for every $\xi < \kappa$.

($\boldsymbol{\beta}$) We can identify the dual of X with a subspace of $c_0(\kappa)$. **P** Because c_{00} is dense in X, every $f \in X^*$ is defined by the family $\langle f(e_{\xi}) \rangle_{\xi < \kappa} \in \mathbb{R}^{\kappa}$. Consider the set $D = \{y \times \chi I : I \in S, \|y\|_{\infty} \leq 1\}$. By §4C, this is a compact subset of \mathbb{R}^{κ} , and it is norm-bounded in $c_0(\kappa)$, so it is compact for the weak topology $\mathfrak{T}_s(c_0(\kappa), \ell^1(\kappa))$. By Krein's theorem, the closed convex hull C of D in $c_0(\kappa)$ for $\mathfrak{T}_s(c_0(\kappa), \ell^1(\kappa))$ is compact. Being compact and balanced, C must also be the closed balanced convex hull of D in \mathbb{R}^{κ} for $\mathfrak{T}_s(\mathbb{R}^{\kappa}, c_{00})$. So if $z \in C$, we have $(z|x) \leq \|x\|$ whenever $x \in c_{00}$, and z represents a member of the unit ball of X^* . On the other hand, if $z \in \mathbb{R}^{\kappa} \setminus C$, there is an $x \in c_{00}$ such that $(z|x) > \sup_{y \in D}(y|x) = \|x\|$. So we can identify C with the unit ball of X^* , and every member of X^* with a multiple of a member of C, which will still lie in $c_0(\kappa)$. \mathbf{Q}

(γ) It follows that every weak neighbourhood of 0 in X contains all but finitely many of the e_{ξ} . Now suppose that $\langle \xi_i \rangle_{i \in \mathbb{N}}$ is a sequence of distinct elements of κ . Then for every $n \in \mathbb{N}$ there is an $I \subseteq \{\xi_i : i \leq n\}$ such that $I \in S$ and $\#(I) \geq \frac{n+1}{2}$. So $\|\frac{1}{n+1} \sum_{i=0}^{n} e_{\xi_i}\| \geq \frac{1}{2}$.

Thus X and $\langle e_{\xi} \rangle_{\xi < \kappa}$ witness that (ii) is false

4 Other concepts of density

4A Weaker ideas of density Suppose that $\psi : \mathbb{N} \to [0, \infty[$ is a function. If T is a set and $S \subseteq [T]^{<\omega}$, we can say that S is ψ -filling over T if (i) $\mathcal{P}I \subseteq S$ for every $I \in S$ (ii) for every $I \in [T]^{<\omega}$ there is a $J \subseteq I$ such that $\#(J) \ge \psi(\#(I))$ and $J \in S$. For infinite cardinals κ and λ , let $P_{\psi}(\kappa, \lambda)$ be the statement

whenever $S \subseteq [\kappa]^{<\omega}$ is ψ -filling over κ , then there is an $A \in [\lambda]^{\kappa}$ such that $[A]^{<\omega} \subseteq S$. Now we have the following.

4B Proposition If $\psi : \mathbb{N} \to [0, \infty[$ is any function such that $\psi(n) \leq n$ for every n and $\lim_{n\to\infty} \frac{\psi(n)}{n} = 0$, then $P_{\psi}(\mathfrak{c}, \omega)$ is false.

proof Set $\epsilon_n = \sup_{i \ge n} \frac{\psi(i)}{i}$ for $n \ge 1$, so that $\langle \epsilon_n \rangle_{n \ge 1}$ is a non-increasing sequence in [0, 1] with limit 0. Set $T = \{z : z \in \mathbb{C}, |z| = 1\}$. Set

$$S = \bigcup_{n \ge 1} \{ I : I \in [T]^{\le n}, \exists w \in T, |\arg \frac{z}{w}| \le \pi \epsilon_n \text{ for every } z \in I \}.$$

Then $S \subseteq [T]^{<\omega}$ and $J \in S$ whenever $J \subseteq I \in S$. If $I \in [T]^n$, where $n \ge 1$, then for each $w \in T$ set $I_w = \{z : z \in I, |\arg \frac{z}{w}| \le \pi \epsilon_n\} \in S$. Writing μ for normalized Haar measure on T, then for each $z \in T$, $\{w : z \in I_w\}$ has measure ϵ_n , so $\int \#(I_w)\mu(dw) = \epsilon_n \#(J) = n\epsilon_n$ and there is a $w \in T$ with $\#(I_w) \ge n\epsilon_n \ge \psi(n)$. This shows that S is ψ -filling over T.

If $A \subseteq T$ is infinite, take any distinct $z_1, z_2 \in A$, and let $n \ge 2$ be such that $2\pi\epsilon_n < |\arg \frac{z_1}{z_2}|$. If $I \in [A]^n$

contains both z_1 and z_2 , and $m \ge n$, then there can be no $w \in T$ such that $|\arg \frac{z_i}{w}| \le \pi \epsilon_m$ for both *i*, so $I \notin S$. Thus $[A]^{<\omega} \not\subseteq S$.

Since $\#(T) = \mathfrak{c}$ we have the result.

4C Proposition If $\lim_{n\to\infty} \psi(n) = \infty$ and S is a compact hereditary ψ -filling family over an infinite set T, and \mathcal{I} is a proper ideal of subsets of T containing singletons, then $\operatorname{rank}_{\mathcal{I}}(S) > \omega$.

proof Use the argument of (b) of the proof of Lemma 2D; in place of 2m, take some r such that $\psi(r) \ge m$.

4D If $\psi(n)/n$ is bounded away from zero, then we return to the original problem.

Proposition Let $\psi : \mathbb{N} \to [0, \infty[$ be a function such that, for some $\epsilon > 0$, $\epsilon n \le \psi(n) \le (1 - \epsilon)n$ for every n. Then $P_{\psi}(\kappa, \lambda) \iff P(\kappa, \lambda)$ for all infinite cardinals κ and λ .

proof (a) Suppose that $\delta > 0$ and $\delta' < 1$ and $\phi, \theta : \mathbb{N} \to [0, \infty[$ are such that $\theta(n) \ge \delta n$ and $\phi(n) \le \delta' n$ for every n. Let m be such that $(1-\delta)^m \le 1-\delta'$. If $S \subseteq [\kappa]^{<\omega}$ is θ -filling over κ then $S' = \{I_0 \cup I_2 \cup \ldots \cup I_{m-1} : I_0, \ldots, I_{m-1} \in S\}$ is ϕ -filling over κ . **P** Take any $J \in [\kappa]^{<\omega}$. Choose I_i inductively such that $I_i \subseteq J \setminus \bigcup_{j < i} I_j$ and $I_i \in S$ and $\#(I_i) \ge \theta(\#(J \setminus \bigcup_{j < i} I_j))$ for each i. Inducing on i, we see that $\#(J \setminus \bigcup_{j < i} I_j) \le (1-\delta)^j \#(J)$ for each i, so that if we set $I = \bigcup_{i < m} I_i$ then $I \in S'$ and $I \subseteq J$ and $\#(I) \ge \delta' \#(J) \ge \phi(\#(J))$. **Q**

(b) It follows that $P_{\phi}(\kappa, \lambda) \Rightarrow P_{\theta}(\kappa, \lambda)$. **P** Let $S \subseteq [\kappa]^{<\omega}$ be θ -filling. Set $S' = \{I_0 \cup I_2 \cup \ldots \cup I_{n-1} : I_0, \ldots, I_{m-1} \in S\}$. Then S' is ϕ -filling over κ , so there is an $A' \in [\kappa]^{\lambda}$ such that $[A']^{<\omega} \subseteq S'$. Let \mathcal{F} be an ultrafilter on $[A']^{<\omega}$ containing $\{J : \xi \in J \in [A']^{<\omega}\}$ for every $\xi \in A'$. For each $J \in [A']^{<\omega}$, there is a function $f_J : J \to m$ such that $f_J^{-1}[\{i\}] \in S$ for every i < n. Define $f : A' \to m$ by setting $f(\xi) = \lim_{J \to \mathcal{F}} f_J(\xi)$ for every $\xi \in A'$. Then there is some j < m such that $A = f^{-1}[\{j\}]$ has cardinal λ . If $K \in [A]^{<\omega}$ the set $\{J : K \subseteq f_J^{-1}[\{j\}]\}$ belongs to \mathcal{F} , so is not empty, and $K \in S$. Thus $[A]^{<\omega} \subseteq S$. As S is arbitrary, we have $P_{\theta}(\kappa, \lambda)$. **Q**

(c) Applying this with $\delta = \min(\frac{1}{2}, \epsilon)$, $\delta' = \max(\frac{1}{2}, 1-\epsilon)$, $\phi = \psi$, $\theta(n) = \frac{1}{2}n$ and the other way about, we have the result.

4E Proposition There is a function $\psi : \mathbb{N} \to [0, \infty[$ such that $\lim_{n\to\infty} \psi(n) = \infty$ and $P_{\psi}(\kappa^+, \kappa^+)$ is false for every infinite cardinal κ .

proof For $n \in \mathbb{N}$ let $\psi(n)$ be the largest number m such that

whenever $D \subseteq [n]^3$ then either there is a set $I \in [n]^m$ such that $[I]^3 \subseteq D$ or there is a set $I \in [n]^m$ such that $[I]^3 \cap D = \emptyset$.

By the (finite) Ramsey theorem, $\lim_{n\to\infty} \psi(n) = \infty$.

Now suppose that κ is any cardinal. For each $\zeta < \kappa^+$ let $f_{\zeta} : \zeta \to \kappa$ be an injection. Let $D \subseteq [\kappa^+]^3$ be the set of triples $\{\xi, \eta, \zeta\}$ where $\xi < \eta < \zeta < \kappa^+$ and $f_{\zeta}(\xi) < f_{\zeta}(\eta)$. Let S be the family of all finite subsets I of κ^+ such that either $[I]^3 \subseteq D$ or $[I]^3 \cap D = \emptyset$. By the choice of ψ , S is ψ -filling.

Let $A \subseteq \kappa^+$ be such that $[A]^{<\omega} \subseteq S$. Then either $[A]^3 \subseteq D$ or $[A]^3 \cap D = \emptyset$.

case 1 If $[A]^3 \subseteq D$ then $\#(A) \leq \kappa$. **P?** Otherwise, take $\xi \in A$ such that $\operatorname{otp}(A \cap \xi) = \kappa$ and $\zeta \in A$ such that $\xi < \zeta$. Then $f_{\zeta} \upharpoonright A \cap \xi$ is an injection from $A \cap \xi$ to $f_{\zeta}(\xi) < \kappa$, which is impossible. **XQ**

case 2 If $[A]^3 \cap D = \emptyset$ then A is countable. **P?** Otherwise, take $\zeta \in A$ such that $\operatorname{otp}(A \cap \zeta) = \omega$. Then $f_{\zeta} \upharpoonright A$ is order-reversing so does not attain its minimum. **XQ**

Thus $\#(A) < \kappa^+$. As A is arbitrary, S witnesses that $P_{\psi}(\kappa^+, \kappa^+)$ is false.

4F MC-dense families: Definition (see AVILÉS PLEBANEK & RODRÍGUEZ P09) Let (X, Σ, μ) be a measure space. A family S is **MC-dense over** (X, Σ, μ) if it is hereditary and whenever $F \in \Sigma$, $\gamma < \mu F$ and $\langle A_n \rangle_{n \in \mathbb{N}}$ is a sequence of sets covering X, then there is an $I \in S$ such that $\mu^*(F \cap \bigcup \{A_n : n \in \mathbb{N}, I \cap A_n \neq \emptyset\}) \geq \gamma$.

4G Theorem (AVILÉS PLEBANEK & RODRÍGUEZ P09, 3.4) Let (X, Σ, μ) be a measure space such that there is an uncountable disjoint family of subsets of X of full outer measure. Then there is a compact hereditary family $S \subseteq [X]^{<\omega}$ which is MC-dense over (X, Σ, μ) .

proof (a) By 4B, there is a hereditary compact $S_0 \subseteq [\mathfrak{c}]^{<\omega}$ such that for every finite $I \subseteq \mathfrak{c}$ there is a $J \in S_0$ such that $J \subseteq I$ and $\#(J) \ge \sqrt{\#(I)}$. Let $\langle D_{\xi} \rangle_{\xi < \omega_1}$ be an uncountable disjoint family of subsets of X with full outer measure. Set

 $S = \{I : I \in [X]^{<\omega}, \ \#(I \cap D_{\xi}) \le 1 \text{ for every } \xi < \omega_1, \ \{\xi : \xi < \omega_1, \ I \cap D_{\xi} \neq \emptyset\} \in S_0\}.$

Then S is a compact hereditary family of finite subsets of X.

(b) S is MC-dense. **P** Suppose that $F \in \Sigma$, $\gamma < \mu F < \infty$ and that $\langle A_n \rangle_{n \in \mathbb{N}}$ covers X. For each $\xi < \omega_1$, $\mu^*(D_{\xi} \cap F) = \mu F > \gamma$, so there is a finite $K_{\xi} \subseteq \mathbb{N}$ such that $\mu^*(D_{\xi} \cap F \cap \bigcup_{n \in K_{\xi}} A_n) \ge \gamma$; of course we may suppose that $D_{\xi} \cap A_n \neq \emptyset$ for every $n \in K_{\xi}$. Let $K \in [\mathbb{N}]^{<\omega}$ be such that $P = \{\xi : K_{\xi} = K\}$ is infinite. Set m = #(K); then P has a subset of cardinal m^2 , so there is an $I \subseteq P$ such that #(I) = m and $I \in S_0$. Enumerate I as $\langle \xi_i \rangle_{i < m}$ and K as $\langle k_i \rangle_{i < m}$; for each i < m take $x_i \in D_{\xi_i} \cap A_{k_i}$; consider $J = \{x_i : i < m\}$. Then $J \in S$ and

$$\mu^*(F \cap \bigcup \{A_n : n \in \mathbb{N}, \ I \cap A_n \neq \emptyset\}) \ge \mu^*(F \cap \bigcup_{n \in K} A_n) \ge \gamma.$$

As F, γ and $\langle A_n \rangle_{n \in \mathbb{N}}$ are arbitrary, S is MC-dense. **Q**

Remark Recall that if (X, Σ, μ) is a probability space in which singletons are negligible and there is no quasi-measurable cardinal less than or equal to #(X), then there is an uncountable disjoint family of subsets of X with full outer measure (FREMLIN 08, 547E).

4H Proposition Let κ be an atomlessly-measurable cardinal, and μ an atomless κ -additive probability with domain $\mathcal{P}\kappa$. Then there is a compact hereditary family $S \subseteq [\kappa]^{<\omega}$ which is MC-dense over $(\kappa, \mathcal{P}\kappa, \mu)$.

proof (a) There is a stochastically independent family $\langle E_{\xi} \rangle_{\xi < \kappa}$ of subsets of κ of measure $\frac{1}{2}$. **P** By the Gitik-Shelah theorem (GITIK & SHELAH 89, or FREMLIN 08, 543E), the Maharam type of μ is at least κ . Since this applies to any normalized measure of the form $\frac{1}{\mu E} \mu \sqcup E$, where $\mu E > 0$, we see that every non-zero

principal ideal of the measure algebra \mathfrak{A} of μ has Maharam type at least κ . So the measure algebra \mathfrak{B}_{κ} of the usual measure on $\{0,1\}^{\kappa}$ can be embedded into \mathfrak{A} (FREMLIN 02, 322P), and there is a stochastically independent family $\langle e_{\xi} \rangle_{\xi < \kappa}$ of elements of \mathfrak{A} of measure $\frac{1}{2}$. Take E_{ξ} such that $E_{\xi}^{\bullet} = e_{\xi}$ for each ξ . **Q**

(b) Re-coding a family of the type in (a), we can get an independent family $\langle E_{\xi n} \rangle_{\xi < \kappa, n \in \mathbb{N}}$ of sets of measure $\frac{1}{2}$. In this case, setting $F_{\xi} = \bigcap_{n \in \mathbb{N}} E_{\xi n}$, every F_{ξ} is negligible. Now let S be the family of finite subsets I of κ such that

$$\eta \in E_{\xi k} \setminus F_{\xi}$$
 whenever $\eta \in I, \xi \in I \cap \eta$ and $k < \#(I)$.

Clearly S is hereditary. To see that S is compact, observe that if $\xi, \eta \in I \in S$ and $\xi < \eta$, there is an $n \in \mathbb{N}$ such that $\eta \notin E_{\xi n} \setminus F_{\xi}$, and in this case $\#(I) \leq n$.

(c) S is MC-dense over $(\kappa, \mathcal{P}\kappa, \mu)$. **P** Let $\langle A_n \rangle_{n \in \mathbb{N}}$ be a sequence of sets covering κ , and $\gamma < 1$. Then there is a finite family $\langle B_i \rangle_{i < m}$ of sets, all of non-zero measure, such that for every i < m there is an $n \in \mathbb{N}$ such that $B_i \subseteq A_n$, and $\mu(\bigcup_{i < m} B_i) \ge \gamma$. Because the $E_{\xi n}$ are independent, there is a countable $M \subseteq \kappa$ such that $\langle E_{\xi n} \rangle_{\xi \in \kappa \setminus M, n \in \mathbb{N}}$ are independent of each other and also of the algebra generated by $\{B_i : i < m\}$ (FREMLIN 01, 272Q¹).

Choose $\langle \xi_i \rangle_{i < m}$ inductively, as follows. Given that $\langle \xi_i \rangle_{i < j}$ is a strictly increasing family in $\kappa \setminus M$, where j < m, we have

$$\mu(B_j \cap \bigcap_{i < j,k < m} E_{\xi_i k} \setminus F_{\xi_i}) = \mu(B_j \cap \bigcap_{i < j,k < m} E_{\xi_i k}) = \mu B_j \cdot \prod_{i < j,k < m} \mu E_{\xi_i k} > 0,$$

so we can take $\xi_j \in B_j \cap \bigcap_{i < j,k < m} E_{\xi_i k} \setminus F_{\xi_i}$ such that $\xi_j > \xi_i$ for every i < j, and continue. At the end of the construction, set $I = \{\xi_i : i < m\}$, and see that $I \in S$, while

$$\mu(\bigcup\{A_n : I \cap A_n \neq \emptyset\}) \ge \mu(\bigcup_{i < m} B_i) \ge \gamma.$$

As $\langle A_n \rangle_{n \in \mathbb{N}}$ and γ are arbitrary, S is MC-dense. **Q**

4I Proposition Suppose that there are infinitely many measurable cardinals. Then there is a probability space (X, Σ, μ) in which all singletons are negligible but there is no MC-dense compact hereditary subset of $[X]^{<\omega}$.

proof (a) Let $\langle \kappa_n \rangle_{n \in \mathbb{N}}$ be a strictly increasing sequence of measurable cardinals, and set $\kappa = \sup_{n \in \mathbb{N}} \kappa_n$. For each $n \in \mathbb{N}$ let \mathcal{F}_n be a non-principal κ_n -complete ultrafilter on κ_n , and define $\mu : \mathcal{P}\kappa \to [0, 1]$ by setting

$$\mu A = \sum_{n \in \mathbb{N}, A \cap \kappa_n \in \mathcal{F}_n} 2^{-n-1}$$

Then $(\kappa, \mathcal{P}\kappa, \mu)$ is a probability space in which every singleton is negligible. Let $S \subseteq [\kappa]^{<\omega}$ be a hereditary MC-compact set. The rest of the argument will be devoted to showing that S is not compact.

(b) For each $n \in \mathbb{N}$ there are families $\langle D_i \rangle_{i \leq n}$, $\langle T_i \rangle_{i \leq n+1}$ such that

(
$$\alpha$$
) $D_i \in \mathcal{F}_i, D_i \cap \kappa_{i-1} = \emptyset$ for every $i \leq n$,

(counting κ_{-1} as 0),

(β) if $m \leq n+1$ and $A_i \in \mathcal{F}_i$ for every i < m, then there is an $I \in T_m$ such that $I \cap A_i \neq \emptyset$ for every $i \leq m$,

(γ) $T_i \subseteq [\kappa]^{<\omega}$ is hereditary for every $i \leq n+1$,

(δ) if $m \leq n+1$, $J \in T_m$ and $\xi_i \in D_i$ for $m \leq i \leq n$, then $J \cup \{\xi_i : m \leq i \leq n\} \in S$.

P Choose the D_i , T_i by downwards induction on i, as follows. Start with $T_{n+1} = S$. Of course (γ) and (δ) are satisfied, while (α) is so far vacuous. If $A_i \in \mathcal{F}_i$ for $i \leq n$, set

$$\begin{aligned} A'_i &= A_i \setminus \bigcup_{j < i} A'_j \text{ for } i \le n, \\ &= \kappa \setminus \bigcup_{j < i} A'_j \text{ for } i > n. \end{aligned}$$

¹Later editions only.

Note that $A'_i \in \mathcal{F}_i$ for $i \leq n$. Since $\langle A'_i \rangle_{i \in \mathbb{N}}$ covers κ , there is a $J \in S$ such that $\mu^*(\bigcup \{A'_i : J \cap A'_i \neq \emptyset\}) > 1 - 2^{-n-1}$. As $\mu A'_i = 2^{-i-1}$ for $i \leq n$, J meets $A'_i \subseteq A_i$ for every $i \leq n$, while $J \in T_{n+1}$. As $\langle A_i \rangle_{i \leq n}$ is arbitrary, (β) is satisfied.

For the downwards step to $m \leq n$, set

$$T_{m\xi} = \{J : J \subseteq \kappa_{m-1}, J \cup \{\xi\} \in T_{m+1}\}$$

for each $\xi < \kappa_m$. Because κ_m is strongly inaccessible, $\#(\mathcal{P}([\kappa_{m-1}]^{<\omega})) < \kappa_m$, and there is a $T_m \subseteq [\kappa_{m-1}]^{<\omega}$ such that $D_m = \{\xi : \kappa_{m-1} \leq \xi < \kappa_m, T_{m\xi} = T_m\}$ belongs to \mathcal{F}_m . Now (α) and (γ) are well in hand, because every $T_{m\xi}$ is hereditary. If $A_i \in \mathcal{F}_i$ for every i < m, there is an $I \in T_{m+1}$ such that $I \cap A_i \neq \emptyset$ for i < m and $I \cap D_m \neq \emptyset$; take $\xi \in I \cap D_m$; then $J = I \cap \kappa_m$ belongs to $T_{m\xi} = T_m$, and $J \cap A_i \neq \emptyset$ for i < m. Thus (β) is satisfied at the new level. If $J \in T_m$ and $\xi_i \in D_i$ for $m \leq i \leq n$, then $J \cup \{\xi_m\} \in T_{m+1}$, so $J \cup \{\xi_i : m \leq i \leq n\} \in S$. So (δ) is satisfied, and the induction proceeds. **Q**

At the end of the induction, observe that $T_0 \neq \emptyset$ (by (β)), so that we have a family $\langle D_i \rangle_{i \leq n}$ such that $D_i \in \mathcal{F}_i$ for every $i \leq n$ and $\{\xi_0, \ldots, \xi_n\} \in S$ whenever $\xi_i \in D_i$ for every $i \leq n$.

(c) For each $n \in \mathbb{N}$, take $\langle D_{ni} \rangle_{i \leq n}$ as in (β). Set $D_i^* = \bigcap_{n \geq i} D_{ni}$; then $D_i^* \in \mathcal{F}_i$ for $i \in \mathbb{N}$. Take any sequence $\langle \xi_i \rangle_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} D_i^*$; then $\{\xi_i : i \in \mathbb{N}\}$ is infinite and $\{\xi_i : i \leq n\} \in S$ for every n, so S is not compact, as claimed.

5 Connexions with precalibers of measure algebras

5A Measure-precaliber pairs: Definition (FREMLIN 08, 511E) Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra. Say that a measure-precaliber pair of $(\mathfrak{A}, \bar{\mu})$ is pair (κ, λ) of cardinals such that whenever $\langle a_{\xi} \rangle_{\xi < \kappa}$ is a family in \mathfrak{A} with $\inf_{\xi < \kappa} \bar{\mu}a_{\xi} > 0$, there is a $\Gamma \in [\kappa]^{\lambda}$ such that $\{a_{\xi} : \xi \in \Gamma\}$ is centered. A measureprecaliber of $(\mathfrak{A}, \bar{\mu})$ is a cardinal κ such that (κ, κ) is a measure-precaliber pair. Observe that if κ has uncountable cofinality, it is a measure-precaliber of $(\mathfrak{A}, \bar{\mu})$ iff it is a precaliber of \mathfrak{A} , and that ω is a measureprecaliber of any probability algebra. I will say that (κ, λ) is a measure-precaliber pair of probability algebras if it is a measure-precaliber pair of every probability algebra; in particular, every cardinal less than \mathfrak{m}_{K} is a measure-precaliber of probability algebras (FREMLIN 08, 525Ud¹).

The definition here is written out for probability algebras. But suppose that \mathfrak{A} is any Boolean algebra. If (κ, λ) is a measure-precaliber pair of probability algebras, and $A \subseteq \mathfrak{A} \setminus \{0\}$ has positive intersection number (FREMLIN 02, 391H), and $\langle a_{\xi} \rangle_{\xi < \kappa}$ is a family in A, then there is a $\Gamma \in [\kappa]^{\lambda}$ such that $\{a_{\xi} : \xi \in \Gamma\}$ is centered. **P** By Kelley's theorem (FREMLIN 02, 391I), there is an additive functional $\nu : \mathfrak{A} \to [0, 1]$ such that $\nu 1 = 1$ and $\inf_{a \in A} \nu a > 0$. (I am passing over the trivial case $\mathfrak{A} = \{0\}$.) Let I be the ideal $\{a : \nu a = 0\}$ and \mathfrak{B} the quotient algebra \mathfrak{A}/I ; then we have a functional $\bar{\nu} : \mathfrak{B} \to [0, 1]$ defined by setting $\bar{\nu}a^{\bullet} = \nu a$ for every $a \in \mathfrak{A}$. Next, we have a probability algebra $(\widehat{\mathfrak{B}}, \bar{\mu})$ defined by taking a metric completion of \mathfrak{B} and extending $\bar{\nu}$ (FREMLIN 02, 393B). We are supposing that κ is a measure-precaliber pair of $(\mathfrak{B}, \bar{\mu})$. So there is a $\Gamma \in [\kappa]^{\lambda}$ such that $\{a_{\xi} : \xi \in \Gamma\}$ is centered in $\widehat{\mathfrak{B}}$. It follows at once that $\{a_{\xi} : \xi \in \Gamma\}$ is centered in \mathfrak{A} .

5B Note on Example 1Cb The point of 1Cb is that if the continuum hypothesis is true then ω_1 is not a measure-precaliber of the measure algebra of Lebesgue measure on [0, 1]. Generally, if (κ, λ) is not a measure-precaliber pair of probability algebras, then $P(\kappa, \lambda)$ is false. **P** Let $(\mathfrak{A}, \bar{\mu})$ be a probability algebra and $\langle a_{\xi} \rangle_{\xi < \kappa}$ a family in \mathfrak{A} such that $\inf_{\xi < \kappa} \bar{\mu} A_{\xi} = \epsilon > 0$. Set $S = \{I : I \in [\kappa]^{<\omega}, \inf_{\xi \in I} a_{\xi} \neq 0\}$. Then S is ψ -filling over κ , where $\psi(n) = \epsilon n$ for every n. Also there is no $A \in [\kappa]^{\lambda}$ such that $[A]^{<\omega} \subseteq S$. So S witnesses that $P(\kappa, \lambda)$ is false. **Q**

5C Lemma Let S be a set and $\langle E_t \rangle_{t \in T}$ a non-empty family of subsets of S. Then the following are equiveridical:

(i) there is a non-negative finitely additive functional $\nu : \mathcal{P}S \to [0,1]$ such that $\nu E_t > 0$ for every $t \in T$; (ii) there are a probability space (X, Σ, μ) and a family $\langle F_t \rangle_{t \in T}$ in Σ such that $\mu F_t > 0$ for every $t \in T$ and, for $I \in [T]^{<\omega}$, $\bigcap_{t \in I} F_t = \emptyset$ whenever $\bigcap_{t \in I} E_t = \emptyset$.

proof (i) \Rightarrow (ii) Re-normalizing ν if necessary, we may suppose that $\nu S = 1$. Let \mathcal{N} be the ideal $\{N : N \subseteq S, \nu N = 0\}$ and \mathfrak{B} the quotient Boolean algebra $\mathcal{P}S/\mathcal{N}$; then we have a strictly positive finitely additive functional $\bar{\nu} : \mathfrak{B} \rightarrow [0, 1]$ defined by setting $\bar{\nu}E^{\bullet} = \nu E$ for every $E \subseteq S$. We can therefore complete $(\mathfrak{B}, \bar{\nu})$ to form a probability algebra $(\mathfrak{A}, \bar{\mu})$ (see FREMLIN 02, 393B). Now let (X, Σ, μ) be the Stone space of $(\mathfrak{A}, \bar{\mu})$

(FREMLIN 02, 321J-321K). For $t \in T$ let $F_t \subseteq X$ be the open-and-closed set corresponding to the image E_t^{\bullet} of E_t in $\mathfrak{B} \subseteq \mathfrak{A}$. Then

$$\mu F_t = \bar{\mu} E_t^{\bullet} = \bar{\nu} E_t^{\bullet} = \nu E_t > 0$$

for every $t \in T$. Also, if $\bigcap_{t \in I} E_t = \emptyset$, where $I \subseteq T$ is finite, then

$$\mu(\bigcap_{t\in I} F_t) = \bar{\mu}(\inf_{t\in I} E_t^{\bullet}) = \bar{\nu}(\inf_{t\in I} E_t^{\bullet})$$
$$= \bar{\nu}(\bigcap_{t\in I} E_t)^{\bullet} = 0;$$

because $\bigcap_{t \in I} F_t$ is an open subset of X, it must be empty. So we have a suitable structure $(X, \mu, \langle F_t \rangle_{t \in I})$.

(ii) \Rightarrow (i) Now suppose that we have (X, Σ, μ) and $\langle F_t \rangle_{t \in T}$ as in (ii). Then there is a finitely additive functional $\tilde{\mu} : \mathcal{P}X \rightarrow [0, 1]$ extending μ (FREMLIN 02, 391F). Let Z be the Stone space of $\mathcal{P}S$ (FREMLIN 02, 311E-311F). For any $x \in X$, $\{E_t : t \in T, x \in F_t\}$ has the finite intersection property, so there is an $f(x) \in Z$ such that $f(x) \in \widehat{E_t}$ whenever $x \in F_t$, writing $\widehat{E_t}$ for the open-and-closed subset of Z corresponding to $E_t \in \mathcal{P}S$. Observe that $F_t \subseteq f^{-1}[\widehat{E_t}]$ for every $t \in T$. Set $\nu C = \tilde{\mu}f^{-1}[\widehat{C}]$ for every $C \subseteq S$; because $C \mapsto \widehat{C} : \mathcal{P}S \to \mathcal{P}Z$ is a Boolean homomorphism, ν is a finitely additive functional. For any $t \in T$,

$$\nu E_t = \tilde{\mu} f^{-1}[\tilde{E_t}] \ge \tilde{\mu} F_t = \mu F_t > 0,$$

so ν witnesses that (i) is true.

5D Definition Suppose that T is a set and $S \subseteq [T]^{<\omega}$ is hereditary. I will say that S accommodates a measure if there is a finitely additive functional ν on $\mathcal{P}S$ such that $\nu\{I : t \in I \in S\} > 0$ for every $t \in T$; that is, if $\langle E_t \rangle_{t \in T}$ satisfies the conditions of Lemma 5C, where $E_t = \{I : t \in I \in S\}$ for $t \in T$.

In this case, setting $T_n = \{t : \nu E_t \ge 2^{-n}\}$ and $\psi_n(i) = 2^{-n}i$, we have a sequence $\langle T_n \rangle_{n \in \mathbb{N}}$ of subsets of T covering T such that S is ψ_n -filling over T_n for every $n \in \mathbb{N}$.

The importance of this is the following. If κ is a precaliber of probability algebras, then whenever (X, Σ, μ) is a probability space and $\langle E_{\xi} \rangle_{\xi < \kappa}$ is a family in Σ such that $\mu E_{\xi} > 0$ for every $\xi < \kappa$, there is a set $A \subseteq \kappa$, of cardinal κ , such that $\bigcap_{\xi \in I} E_{\xi} \neq \emptyset$ for every finite $I \subseteq A$. So if a hereditary set $S \subseteq [\kappa]^{<\omega}$ accommodates a measure, there is an $A \in [\kappa]^{\kappa}$ such that $[A]^{<\omega} \subseteq S$.

5E We can use the ideas of \S 5C-5D from another angle, as follows.

Proposition (G.Plebanek) Suppose that $S \subseteq [T]^{<\omega}$ is ψ -filling over T, where $\inf_{n\geq 1} \frac{\psi(n)}{n} > 0$. Let (κ, λ) be a measure-precaliber pair of probability algebras and $\langle A_{\xi} \rangle_{\xi < \kappa}$ a family of infinite subsets of T. Then there is a $\Gamma \in [\kappa]^{\lambda}$ such that for every $I \in [\Gamma]^{<\omega}$ there is a $J \in S$ such that $I \subseteq \{\xi : \xi < \kappa, J \cap A_{\xi} \neq \emptyset\}$.

proof Write
$$\epsilon = \inf_{n \ge 1} \frac{\psi(n)}{n}$$
,

$$\hat{S} = \{I : I \in [\kappa]^{<\omega}, \exists J \in S, J \cap A_{\xi} \neq \emptyset \text{ for every } \xi \in I\}.$$

For $\xi < \kappa$, set $B_{\xi} = \{I : \xi \in I \in \tilde{S}\}$. Then $\mathcal{C} = \{B_{\xi} : \xi < \kappa\}$ has intersection number at least ϵ . **P** Given a finite family $\langle C_k \rangle_{k \in K}$ in \mathcal{C} (not supposed distinct), express each C_k as B_{ξ_k} . Because every A_{ξ_k} is infinite, we can find a family $\langle t_k \rangle_{k \in K}$ in T, these being all distinct, such that $t_k \in A_{\xi_k}$ for each k. Because S is ψ -filling over T, there is a set $L \subseteq k$ with $\#(L) \ge \epsilon k$ such that $J = \{t_k : k \in L\}$ belongs to S. Set $I = \{\xi_k : k \in L\}$; then J witnesses that $I \in \tilde{S}$, while also $I \in \bigcap_{k \in L} C_k$. **Q**

By the remarks in §5A, there is a $\Gamma \in [\kappa]^{\lambda}$ such that $\{B_{\xi} : \xi \in \Gamma\}$ is centered, which is what we need to know.

6 Large cardinals

6A For singular cardinals κ we have the following fragment of information concerning $P(\kappa, \lambda)$.

Proposition (APTER & DŽAMONJA 01) Suppose that κ and λ are infinite cardinals such that $cf(\lambda) > cf(\kappa)$. If $P(\kappa, \lambda)$ is true, then there is a $\kappa_0 < \kappa$ such that $P(\kappa', \lambda)$ is true whenever $\kappa_0 \leq \kappa' \leq \kappa$.

$$\mathcal{S} = \{ I : I \in [\kappa]^{<\omega}, I \cap \kappa_{\xi} \setminus \kappa_{\xi}' \in \mathcal{S}_{\xi} \text{ for every } \xi < \mathrm{cf}(\kappa) \}.$$

It is easy to check that S is $\frac{1}{2}$ -filling over κ , so there ought to be a set $A \in [\kappa]^{\lambda}$ such that $[A]^{<\omega} \subseteq S$. But now, setting $A_{\xi} = A \cap \kappa_{\xi} \setminus \kappa'_{\xi}$, $[A_{\xi}]^{<\omega} \subseteq S_{\xi}$ for every $\xi < cf(\kappa)$, so $\#(A_{\xi}) < \lambda$ for every $\xi < cf(\kappa)$; since $cf(\kappa) < cf(\lambda), \#(A) < \lambda$.

6B Proposition (APTER & DŽAMONJA 01) If κ is a Ramsey cardinal (JECH 78, §29, p. 328), then $P(\kappa, \kappa)$ is true.

proof If $S \subseteq [\kappa]^{<\omega}$ is $\frac{1}{2}$ -filling, then there is an $A \in [\kappa]^{\kappa}$ such that for every $n \in \mathbb{N}$ either $[A]^n \subseteq S$ or $[A]^n \cap S = \emptyset$. But the latter is impossible. So $[A]^{<\omega} \subseteq S$.

6C Lemma Let κ be a quasi-measurable cardinal (FREMLIN 08, §542), and \mathcal{I} an ω_1 -saturated normal ideal in $\mathcal{P}\kappa$. Let $S \subseteq [\kappa]^{<\omega}$ be a compact hereditary family.

- (a) Defining $\partial_{\mathcal{I}}^{\gamma}$, for ordinals γ , as in 2Bb, there is a countable ordinal γ such that $\partial_{\mathcal{I}}^{\gamma}S = \emptyset$.
- (b) Defining $\tilde{\partial}^{\tilde{\gamma}}$ as in 2Be, there is a $D \in \mathcal{I}$ such that $\tilde{\partial}^{\gamma}(S \cap [\kappa \setminus D]^{<\omega}) = \emptyset$.

proof (a)(i) For $n \ge 1$ define an ideal \mathcal{I}_n of subsets of κ^n inductively by setting $\mathcal{I}_1 = \mathcal{I}$, and for $n \ge 1$ taking \mathcal{I}_{n+1} to be the family of those subsets W of κ^{n+1} such that

$$\{x: x \in \kappa^n, W[\{x\}] \notin \mathcal{I}\} \in \mathcal{I}_n,$$

where I write $W[\{x\}] = \{\xi : (x,\xi) \in W\}$, identifying κ^{n+1} with $\kappa^n \times \kappa$. Then it is easy to check that every \mathcal{I}_n is a κ -additive ideal of subsets of κ^n containing all singletons. Also it is ω_1 -saturated. **P** Induce on n. If $\langle W_{\alpha} \rangle_{\alpha < \omega_1}$ is a family in $\mathcal{P}\kappa^{n+1} \setminus \mathcal{I}_{n+1}$, set $V_{\alpha} = \{x : x \in \kappa^n, W_{\alpha}[\{x\}] \notin \mathcal{I}\}$, so that $V_{\alpha} \notin \mathcal{I}_n$ for every n. Because \mathcal{I}_n is ω_1 -saturated, therefore κ -saturated, while $\kappa > \omega_1$ (FREMLIN 08, 542B), there is an $x \in \kappa^n$ such that $A = \{\alpha : x \in V_{\alpha}\}$ is uncountable (FREMLIN 08, 541Cb); now $\langle W_{\alpha}[\{x\}]\rangle_{\alpha \in A}$ cannot be disjoint, so $\langle W_{\alpha} \rangle_{\alpha < \omega_1}$ is not disjoint. **Q**

(ii) For $A \subseteq \kappa$, $n \ge 1$ write $A^{\uparrow n}$ for $\{(\xi_1, \ldots, \xi_n) : \xi_1, \ldots, \xi_n \in A, \xi_1 < \xi_1 < \ldots < \xi_n\}$. If $n \ge 1$ and $W \in \mathcal{I}_n$, then there is an $A \in \mathcal{I}$ such that $W \cap (\kappa \setminus A)^{\uparrow n} = \emptyset$. **P** Induce on n. For n = 1 we need only take A = W. For the inductive step to n + 1, set $V = \{x : x \in \kappa^n, W[\{x\}] \notin \mathcal{I}\}$, so that $V \in \mathcal{I}_n$. By the inductive hypothesis we have a $B \in \mathcal{I}$ such that $V \cap (\kappa \setminus B)^{\uparrow n} = \emptyset$. Now, for $\xi < \kappa$, set $E_{\xi} = \bigcup \{W[\{x\}] : x \in ((\xi + 1) \setminus B)^{\uparrow n}\}$. Then E_{ξ} is the union of fewer than κ members of \mathcal{I} and belongs to \mathcal{I} . Because \mathcal{I} is normal,

$$A = B \cup \bigcup_{\xi < \kappa} E_{\xi} \setminus (\xi + 1)$$

belongs to \mathcal{I} . If $(x,\xi) \in (\kappa \setminus A)^{\uparrow n+1}$, then $x \in ((\zeta + 1) \setminus B)^{\uparrow n}$ where ζ is the last coordinate of x, so $W[\{x\}] \setminus (\zeta + 1) \subseteq E_{\zeta} \setminus (\zeta + 1)$ does not contain ξ and $(x,\xi) \notin W$. Thus we have an appropriate set A. **Q**

(iii) Now suppose that $S \subseteq [\kappa]^{<\omega}$ is compact and hereditary. Set $W_n^{\alpha} = \{(\xi_1, \ldots, \xi_n) : \{\xi_1, \ldots, \xi_n\} \in \partial_{\mathcal{I}}^{\alpha}S\}$ for each α . Because every \mathcal{I}_n is ω_1 -saturated, $W_n^{\alpha} \setminus W_n^{\alpha+1} \in \mathcal{I}_n$ for all but countably many α , and there is an $\alpha < \omega_1$ such that $W_n^{\alpha} \setminus W_n^{\alpha+1} \in \mathcal{I}_n$ for every $n \in \mathbb{N}$. Now, by (ii), there is a $C \in \mathcal{I}$ such that $(\kappa \setminus C)^{\uparrow n} \cap W_n^{\alpha} \setminus W_n^{\alpha+1}$ is empty for every n (we can manage every n simultaneously because \mathcal{I} is a σ -ideal); and of course we can suppose also that C contains 0 and every successor ordinal less than κ , because \mathcal{I} is normal.

What this means is that if $I \cap C = \emptyset$ and $I \in \partial_{\mathcal{I}}^{\alpha}S \setminus \{\emptyset\}$ then there is a $\xi \in \kappa \setminus C$ such that $I \subseteq \xi$ and $I \cup \{\xi\} \in \partial_{\mathcal{I}}^{\alpha}S$. **P** Express I as $\{\xi_1, \ldots, \xi_n\}$ where $\xi_1 < \ldots < \xi_n$. Then

$$(\xi_1,\ldots,\xi_n) \in W_n^{\alpha} \cap (\kappa \setminus C)^{\uparrow n} \subseteq W_n^{\alpha+1}$$

so $I \in \partial_{\mathcal{I}}^{\alpha+1}S$ and $\{\xi : I \cup \{\xi\} \in \partial_{\mathcal{I}}^{\alpha}S\}$ does not belong to \mathcal{I} , so contains something not in $C \cup I$. **Q**

Accordingly $\partial_{\mathcal{I}}^{\alpha}S \cap [\kappa \setminus C]^{<\omega}$ has no maximal element other than possibly \emptyset , and must be empty or $\{\emptyset\}$. Since $\partial_{\mathcal{I}}^{\alpha}S$ is hereditary, it must itself be included in $\{\emptyset\}$, and $\partial_{\mathcal{I}}^{\alpha+1}S$ is empty. So we can take $\gamma = \alpha + 1$. (b) For $\xi < \kappa$, set

$$F_{\xi} = \bigcup \{ \{\eta : \eta < \kappa, \ I \cup \{\eta\} \in \partial_{\mathcal{I}}^{\beta}S \} : \beta \le \alpha, \ I \in [\xi + 1]^{<\omega} \setminus \partial_{\mathcal{I}}^{\beta + 1}S \} \in \mathcal{I}$$

Then

$$D = \{0\} \cup \{\xi + 1 : \xi < \kappa\} \cup \bigcup_{\xi < \kappa} F_{\xi} \setminus (\xi + 1)$$

belongs to \mathcal{I} . Setting $S' = \kappa \setminus D$, we find that $\tilde{\partial}^{\beta}S' \subseteq \partial_{\mathcal{I}}^{\beta}S$ for every $\beta \leq \gamma$. **P** Induce on β . Start with $\beta = 0, S' \subseteq S$. For the inductive step to a successor ordinal $\beta + 1$ where $\beta \leq \alpha$, take $I \in \tilde{\partial}^{\beta+1}S'$. Then there is an η such that $I \subseteq \eta < \kappa$ and $I \cup \{\eta\} \in \tilde{\partial}^{\beta}S'$. Set $\xi = \sup I$; as $\eta \notin D, \eta > \xi + 1$ and $\eta \notin F_{\xi}$. On the other hand, $I \cup \{\eta\} \in \partial^{\beta}S$, by the inductive hypothesis; so $I \in \partial_{\mathcal{I}}^{\beta+1}S$. As I is arbitrary, the induction proceeds. The step to a non-zero limit ordinal is trivial, so we have the result. **Q** In particular,

$$\partial^{\gamma} S' \subseteq \partial^{\gamma}_{\mathcal{T}} S = \emptyset$$

as required.

6D Proposition If κ is a quasi-measurable cardinal, then $P(\kappa, \omega)$ is true.

proof Putting 2D and 6Ca together, we see that there can be no $S \subseteq [\kappa]^{<\omega}$ which is compact, hereditary and $\frac{1}{2}$ -filling over κ .

6E Corollary At least if it is consistent to suppose that there are two-valued-measurable cardinals, it is consistent to suppose that $P(\mathfrak{c}, \omega)$ is true.

6F Remark DODOS & KANELLOPOULOS P05 have shown that if we impose describability conditions on our filling families, we get a similar result in ZFC. Specifically, their Theorem 5 shows a little more than the following: if $S \subseteq [[0,1]]^{<\omega}$ has the Baire property in the restricted sense (see KURATOWSKI 66), and is ψ -filling where $\inf_{n\geq 1} \frac{\psi(n)}{n} > 0$, then there is an uncountable compact set $K \subseteq [0,1]$ such that $[K]^{<\omega} \subseteq S$.

7 Constructions of $\frac{1}{2}$ -filling sets

7A(a) If $I, J \subseteq \mathbb{N}$ write $I \sqcup J$ for $\{2n : n \in I\} \cup \{2n + 1 : n \in J\}$. For $R, S \subseteq \mathcal{P}\mathbb{N}$ write $R \boxplus S$ for $\{I \sqcup J : I \in R, J \in S\} \cup \{J \sqcup I : I \in R, J \in S\}$. Observe that if R and S are hereditary so is $R \boxplus S$. Write \mathcal{K} for the ideal of finite sets.

I will say that a set S is **quasi-\frac{1}{2}-filling** over T if it is hereditary and whenever $J \subseteq T$ is a finite set with an *even* number of elements, there is an $I \in S \cap \mathcal{P}J$ such that $\#(I) = \frac{1}{2}\#(J)$. As in 2E(a), any quasi- $\frac{1}{2}$ -filling family includes a minimal quasi- $\frac{1}{2}$ -filling family.

(b) If $S \subseteq [T]^{<\omega}$ is quasi- $\frac{1}{2}$ -filling over T, and \mathcal{I} is a proper ideal of subsets of T containing singletons, with additivity κ , then rank_{\mathcal{I}} $S > \omega$. **P** Setting $\psi(n) = \lfloor \frac{1}{2}n \rfloor$, S is ψ -filling over T, so we can use Proposition 4C. **Q**

(c) If $R, S \subseteq [\mathbb{N}]^{<\omega}$ are hereditary so is $R \boxplus S$. If $R, S \subseteq [\mathbb{N}]^{<\omega}$ are compact so is $R \boxplus S$ (because the map $(I, J) \mapsto I \sqcup J$ is continuous).

(d) If $R \subseteq [\mathbb{N}]^{<\omega}$ is $\frac{1}{2}$ -filling over \mathbb{N} and $S \subseteq [\mathbb{N}]^{<\omega}$ is quasi- $\frac{1}{2}$ -filling over \mathbb{N} then $R \boxplus S$ is $\frac{1}{2}$ -filling over \mathbb{N} . \mathbf{P} Let $K \in [\mathbb{N}]^{<\omega}$. Set $K_1 = \{n : 2n \in K\}$, $K_2 = \{n : 2n + 1 \in K\}$, $m_i = \#(K_i)$ for both *i*. (i) If m_1 is even, there are $I_1 \in S \cap \mathcal{P}K_1$ such that $\#(I_1) \ge \frac{m_1}{2}$ and $I_2 \in R \cap \mathcal{P}K_2$ such that $\#(I_2) \ge \frac{m_2}{2}$; now $I_1 \sqcup I_2 \in (R \boxplus S) \cap \mathcal{P}K$ and $\#(I_1 \sqcup I_2) \ge \frac{1}{2} \#(K)$. (ii) If m_2 is even, similarly. (iii) If m_1 and m_2 are both odd, set $K'_1 = K_1 \setminus \{\max K_1\}$. Then there are $I_1 \in S \cap \mathcal{P}K'_1$ such that $\#(I_1) \ge \frac{m_1-1}{2}$ and $I_2 \in R \cap \mathcal{P}K_2$ such that $\#(I_2) \ge \frac{m_2+1}{2}$; now $I_1 \sqcup I_2 \in (R \boxplus S) \cap \mathcal{P}K$ and $\#(I_1 \sqcup I_2) \ge \frac{1}{2} \#(K)$. So all cases are covered. \mathbf{Q}

7B Notation Write $\ddagger(T, F, V, S)$ to mean

12

(α) $F \subseteq T, T \setminus F$ is infinite; (β) $S \subseteq [T]^{<\omega}$ is compact and hereditary;

 $(\gamma) \sup_{K \in S} \#(K \setminus F)$ is finite;

(δ) whenever $J \in [T]^{<\omega}$ and $\#(J \cap V) \ge \#(J \setminus (F \cup V))$ there is a $K \in S \cap \mathcal{P}J$ such that $\#(K) \ge \frac{1}{2}\#(J)$.

7C Lemma Suppose that $\ddagger(T, V, F, S)$. Let $I \in S \cap \mathcal{P}F$, $t \in T \setminus F$. Then there are S', V', I^* and \tilde{I} such that

$$\begin{split} &\ddagger (T, F, V', S'); \\ &S' \supseteq S, \, S' \cap \mathcal{P}F = S \cap \mathcal{P}F; \\ &V' \supseteq V, \, t \in V', \, K \cap V = \emptyset \text{ for every } K \in S' \setminus S; \\ &I \subseteq I^* \in S'; \\ &I^* \subseteq \tilde{I} \text{ and } I^* \text{ is the only member of } S' \cap \mathcal{P}\tilde{I} \text{ such that } \#(I^*) \ge \frac{1}{2} \#(\tilde{I}); \\ &\tilde{I} \subseteq F \cup V' \text{ and } \#(F \cap \tilde{I}) < \frac{1}{2} \#(\tilde{I}). \end{split}$$

proof (a) Set $m = \sup_{K \in S} \#(K \setminus F)$. Applying clause (δ) of 7B to $J \in [F]^{<\omega}$, we see that $S \cap \mathcal{P}F$ is $\frac{1}{2}$ -filling over F; by 2F, there is an $I' \in [F]^{<\omega}$ such that for every non-empty $J \in [F \setminus I']^{<\omega}$ there is a $K \in S \cap \mathcal{P}J$ with $\#(K) > \frac{1}{2}\#(J)$; of course we may suppose that $I' \supseteq I$. Set k = m + 1 + 3#(I') + #(V). Let $I^* \in [T \setminus V]^k$ be such that $I^* \cap F = I'$ and $t \in I^* \cup V$. Let $\tilde{I} \in [T]^{2k-1}$ be such that $\tilde{I} \cap F = I'$ and $I^* \cup V \subseteq \tilde{I}$. Set $V' = \tilde{I} \setminus F$, m' = 2#(V') = 2(2m + 1 + 5#(I') + 2#(V)),

$$S' = S \cup \{K : K \in [T]^{<\omega}, K \cap F \in S, \#(K \setminus F) \le m', K \cap V = \emptyset,$$

either $K \cap \tilde{I} = I^*$ or $\#(K \cap \tilde{I}) < k\}.$

Then all the requirements on S', V', I^* and \tilde{I} are easily verified, with the exception of clause (δ) of 7B.

(b) So let $J \in [T]^{<\omega}$ be such that $\#(J \cap V') < \#(J \setminus (F \cup V'))$. Note first that

$$#(J \setminus F) < 2#(J \cap V') \le m'.$$

case 1 Suppose that $\#(J \cap V) \ge \#(J \cap (F \setminus V))$. Then there is a $K \in S \cap \mathcal{P}J$ such that $\#(K) \ge \frac{1}{2}\#(J)$, and $K \in S'$.

case 2 Suppose that $\#(J \cap V) < \#(J \cap (F \setminus V))$ and $\#(\tilde{I} \setminus J) \le 2\#(I')$. Then

$$\#(J \cap \hat{I} \setminus (F \cup V)) \ge \#(\hat{I} \setminus F) - 2\#(I') - \#(V) = \#(\hat{I}) - 3\#(I') - \#(V) = k + m.$$

Take $L \subseteq J \cap \tilde{I} \setminus (F \cup V)$ such that $\#(L) = k - 1 \ge \frac{1}{2}(\#(J \cap \tilde{I}) - 1)$.

case 2a If $J \cap F \setminus \tilde{I} \neq \emptyset$ then (because $F \cap \tilde{I} = I'$) there is a $K_1 \in S \cap \mathcal{P}(J \cap F \setminus \tilde{I})$ such that $\#(K_1) \geq \frac{1}{2}(1 + \#(J \cap F \setminus \tilde{I}))$. Set $K = K_1 \cup L \cup (J \setminus (F \cup \tilde{I})) \subseteq J$. Then $K \cap F = K_1 \in S$ and $K \cap V = \emptyset$ and $\#(K \setminus F) \leq \#(J \setminus F) \leq m'$. Also $\#(K \cap \tilde{I}) = k - 1 < \#(\tilde{I})$, so $K \in S'$. Finally

$$\#(K) \ge \frac{1}{2}(\#(J \cap F \setminus \hat{I}) - 1) + \frac{1}{2}(\#(J \cap \hat{I}) - 1) + \#(J \setminus (F \cup \hat{I})) \ge \frac{1}{2}\#(J).$$

case 2b If $J \cap F \subseteq \tilde{I}$ and $J \not\supseteq \tilde{I}$ set $K = L \cup (J \setminus \tilde{I}) \subseteq J$. Then $K \cap F = \emptyset \in S$, $K \cap V = \emptyset$, $\#(K \setminus F) \leq m'$ and $\#(K \cap \tilde{I}) < \frac{1}{2} \#(\tilde{I})$, so $K \in S'$. Now

$$\#(K) = k - 1 + \#(J \setminus \tilde{I}) \ge \frac{1}{2} \#(J \cap \tilde{I}) + \#(J \setminus \tilde{I}) \ge \frac{1}{2} \#(J).$$

case 2c If $J \cap F \subseteq \tilde{I}$ and $J \supseteq \tilde{I}$ set $K = I^* \cup (J \setminus \tilde{I}) \subseteq J$. Then $K \cap F = I' \in S$, $K \cap V = \emptyset$, $\#(K \setminus F) \leq m'$ and $K \cap \tilde{I} = I^*$, so $K \in S'$. This time

$$\#(K) = k + \#(J \setminus \tilde{I}) \ge \frac{1}{2} \#(\tilde{I}) + \#(J \setminus \tilde{I}) \ge \frac{1}{2} \#(J).$$

case 3 Suppose that $\#(J \cap V) < \#(J \cap (F \setminus V))$ and $\#(\tilde{I} \setminus J) > 2\#(I')$. Let $K_0 \in S \cap \mathcal{P}(J \cap F)$ be such that $\#(K_0) \ge \frac{1}{2}\#(J \cap F)$. Then

 $\#(K_0) + \#(J \cap (F \setminus V)) > \frac{1}{2}(\#(J \cap F) + \#(J \cap V) + \#(J \cap (F \setminus V))) = \frac{1}{2}\#(J),$

so there is an $M \subseteq J \cap (F \setminus V)$ such that $\#(K_0) + \#(M) = \lceil \frac{1}{2} \#(J) \rceil$. We can suppose that the points of M are taken, as far as possible, from $J \setminus (F \cup \tilde{I})$, so that

$$\begin{aligned} \#(M \cap \tilde{I}) &\leq \left\lceil \frac{1}{2} \#(J \cap \tilde{I} \setminus F) \right\rceil \leq \frac{1}{2} (\#(J \cap \tilde{I} \setminus F) + 1) \\ &\leq \frac{1}{2} (\#(J \cap \tilde{I}) + 1) \leq \frac{1}{2} (\#(\tilde{I}) - 2\#(I')) = k - \frac{1}{2} - \#(I') \end{aligned}$$

and $\#(M \cap \tilde{I}) \leq k - 1 - \#(I')$. Set $K = K_0 \cup M \subseteq J$. Then $K \cap F = K_0 \in S$, $K \cap V = \emptyset$, $\#(K \setminus F) \leq m'$ and

$$#(K \cap \tilde{I}) = #(K_0 \cap \tilde{I}) + #(M \cap \tilde{I}) \le #(I') + k - 1 - #(I') < \frac{1}{2} #(\tilde{I}),$$

so $K \in S'$. And $\#(K) \ge \frac{1}{2} \#(J)$ by the choice of M.

Thus in all cases we can find a $K \in S' \cap \mathcal{P}J$ such that $\#(K) \geq \frac{1}{2} \#(J)$, and (δ) of 7B is satisfied.

7D Proposition Suppose that T, F, S are such that $F \subseteq T, \#(F) \leq \omega, \#(T \setminus F) = \omega$ and $S \subseteq [F]^{<\omega}$ is compact and $\frac{1}{2}$ -filling. Then there is a compact minimal $\frac{1}{2}$ -filling $\tilde{S} \subseteq [T]^{<\omega}$ such that $S = \tilde{S} \cap [F]^{<\omega}$.

proof Let $\langle I_n \rangle_{n \in \mathbb{N}}$ run over S, and let $\langle t_n \rangle_{n \in \mathbb{N}}$ enumerate $T \setminus F$. Choose $\langle S_n \rangle_{n \in \mathbb{N}}$, $\langle V_n \rangle_{n \in \mathbb{N}}$, $\langle I_n^* \rangle_{n \in \mathbb{N}}$ and $\langle \tilde{I}_n \rangle_{n \in \mathbb{N}}$ inductively, as follows. $S_0 = S$ and $V_0 = \emptyset$. Given that $\ddagger(T, F, V_n, S_n)$ is true, use 7C to choose I_n^* , \tilde{I}_n , V_{n+1} and S_{n+1} so that

 $\begin{aligned} & \ddagger (T, F, V_{n+1}, S_{n+1}); \\ & S_{n+1} \supseteq S_n, S_{n+1} \cap \mathcal{P}F = S_n \cap \mathcal{P}F; \\ & V_{n+1} \supseteq V_n, t_n \in V_{n+1}, K \cap V_n = \emptyset \text{ for every } K \in S_{n+1} \setminus S_n; \\ & I_n \subseteq I_n^* \in S_{n+1}; \\ & I_n^* \subseteq \tilde{I}_n \text{ and } I_n^* \text{ is the only member of } S_{n+1} \cap \mathcal{P}\tilde{I}_n \text{ such that } \#(I_n^*) \ge \frac{1}{2} \#(\tilde{I}_n); \\ & \tilde{I}_n \subseteq F \cup V_{n+1} \text{ and } \#(F \cap \tilde{I}_n) < \frac{1}{2} \#(\tilde{I}_n). \end{aligned}$

At the end of the induction set $S_{\infty} = \bigcup_{n \in \mathbb{N}} S_n$. Then $S_{\infty} \subseteq [T]^{<\omega}$ is hereditary, and $S_{\infty} \cap [F]^{<\omega} = S$. Next, S_{∞} is $\frac{1}{2}$ -filling over T. **P** If $J \in [T]^{<\omega}$, there is an $n \in \mathbb{N}$ such that $J \setminus F \subseteq \{t_i : i \leq n\} \subseteq V_{n+1}$. In this case $\#(J \setminus (F \cup V_{n+1})) \leq \#(J \cap V_{n+1})$ so there is a $K \in S_{n+1} \cap \mathcal{P}J$ such that $\#(K) \geq \frac{1}{2}\#(J)$, and of course $K \in S_{\infty}$. **Q**

Also S_{∞} is compact. **P** Suppose that $[A]^{<\omega} \subseteq S_{\infty}$. Then $[A \cap F]^{<\omega} \subseteq S$ so $A \cap F$ is finite. If $A \setminus F$ is not empty, let n be such that $t_n \in A$. If $K \in [A]^{<\omega}$ there is an $m \in \mathbb{N}$ such that $K \cup \{t_n\} \in S_{m+1} \setminus S_m$. In this case, $K \cup \{t_n\}$ cannot meet V_m , so $m \leq n$. Thus $[A]^{<\omega} \subseteq S_{n+1}$; as S_{n+1} is compact, A is finite; as A is arbitrary, S_{∞} is compact. **Q**

Now let $\tilde{S} \subseteq S_{\infty}$ be a minimal $\frac{1}{2}$ -filling family. Then $\tilde{S} \cap [F]^{<\omega} \subseteq S$. **?** If $\tilde{S} \cap [F]^{<\omega} \neq S$, let n be such that $I_n \notin \tilde{S}$. There must be some $K \in \tilde{S} \cap \mathcal{P}\tilde{I}_n$ such that $\#(K) \geq \frac{1}{2}\#(\tilde{I}_n)$. Now $K \not\supseteq I_n$ so $K \neq I_n^*$ and $K \notin S_{n+1}$. Because $\#(F \cap \tilde{I}_n) < \frac{1}{2}\#(\tilde{I}_n)$, $K \cap V_{n+1} \neq \emptyset$ so $K \notin S_{m+1} \setminus S_m$ for any m > n and $K \notin S_{\infty}$. **X** Thus $S = \tilde{S} \cap [F]^{<\omega}$, as required.

7E Corollary Set $\mathcal{I} = [\mathbb{N}]^{<\omega}$. Then for any $\alpha < \omega_1$ there is a compact minimal $\frac{1}{2}$ -filling $S \subseteq [\mathbb{N}]^{<\omega}$ such that rank $\mathcal{I}(S) \ge \alpha$.

proof We have only to construct a compact $\frac{1}{2}$ -filling R with $\operatorname{rank}_{\mathcal{I}}(R) \ge \alpha$, and then use 7D to express it as the trace of a compact minimal $\frac{1}{2}$ -filling family.

8 Problems

8A The problems DU(a) and DU(b) from my problem list can be expressed as

DU(a): is $P(\omega_1, \omega)$ true?

DU(b): does $\mathfrak{m} > \omega_1$ imply $P(\omega_1, \omega_1)$?

Of course we can also ask, more generally,

is $P(\omega_1, \omega_1)$ consistent?

and, in the light of Corollary 6E,

is $P(\mathfrak{c}, \mathfrak{c})$ consistent? if κ is two-valued-measurable and we add κ random reals, does $P(\mathfrak{c}, \mathfrak{c})$ become true?

is it consistent to suppose that $P(\kappa, \omega)$ is false for every κ ? what about $P(\mathfrak{c}^+, \omega)$?

From \S SC-5D above, we see that the situation for families accommodating measures is much more familiar, and corresponds to questions about calibers of measure algebras, as considered in COMFORT & NEGREPONTIS 82 and FREMLIN 08, \S 525. So we have to ask

if $S \subseteq [T]^{<\omega}$ is $\frac{1}{2}$ -filling over T, does it necessarily accommodate a measure, in the sense of §5D?

This question is raised, in effect, in GALVIN & PRIKRY 00. A positive answer seems wildly improbable but no counter-example is known.

In Propostion 4B, \mathfrak{c} is the natural limit of the argument given; but is it really best possible? What about 2^{ω_1} ? 4F

Acknowledgements Conversations with S.Argyros, M.Džamonja, I.Farah, G.Plebanek, R.Haydon, J.T.Moore; preprints from F.Galvin, M.Džamonja and J.Rodríguez. In particular, the idea of looking at $P(\omega_1, \omega)$ arose in conversations with Argyros, who also proved (ii) \Rightarrow (i) of Theorem 3A and suggested the question answered by Proposition 7D, while the idea of looking at higher cardinals comes from APTER & DŽAMONJA 01, and the question about families 'accommodating measures' is from GALVIN & PRIKRY 00.

References

Apter A.W. & Džamonja M. [01] 'Some remarks on a question of D.H.Fremlin regarding ϵ -density', Arch. Math. Logic 40 (2001) 531-540.

Avilés A., Plebanek G. & Rodríguez J. [p09] 'The McShane integral in weakly compactly generated spaces', 2009.

Comfort W.W. & Negrepontis S. [82] Chain Conditions in Topology. Cambridge U.P., 1982.

Dodos P. & Kanellopoulos V. [p05] 'Definable filling families of finite subsets of the Cantor set', preprint, 2005.

Fremlin D.H. [84] Consequences of Martin's Axiom. Cambridge U.P., 1984.

Fremlin D.H. [87] Measure-additive coverings and measurable selectors. Dissertationes Math. 260 (1987).

Fremlin D.H. [89] 'Measure algebras', pp. 876-980 in MONK 89.

Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Theory. Torres Fremlin, 2003.

Fremlin D.H. [08] Measure Theory, Vol. 5: Set-theoretic Measure Theory. Torres Fremlin, 2008 (http://www.lulu.com).

Galvin F. & Prikry K. [00] 'On Kelley's intersection numbers', Proc. Amer. Math. Soc. 129 (2000) 315-323. Gitik M. & Shelah S. [89] 'Forcings with ideals and simple forcing notions', Israel J. Math. 68 (1989) 129-160.

Jech T. [78] Set Theory. Academic, 1978.

Monk J.D. [89] (ed.) Handbook of Boolean Algebra. North-Holland, 1989.

Trotter W.T. [92] Combinatorics and Partially Ordered Sets. Johns Hopkins, 1992.