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1 Definition Let E be a Riesz space and || || a Riesz norm on E. Construct inductively a family (Ge)econ
as follows. The inductive hypothesis will be that every A € G is a non-empty subset of E* with a supremum
in E. Start with Gy = {{z} : € E1}. For each ordinal ¢,

Ger1 Z{UA:@#Aggg,
{sup A : A € A} is upwards-directed and has a supremum in E}.

For non-zero limit ordinals §, G = Un<£ G,. At the end of the induction, set G = UEGOn Ge. Of course
G = G, for some (. Observe that |JA € G whenever A is a non-empty subset of G, {supA : A € A} is
upwards-directed and | J A has a least upper bound in F.

2 Lemma For every £ < ¢ and a > 0,

(a) A = {ax : x € A} belongs to G whenever A € G,

(b) A+ B={z+y:2x €A, yc B} belongs to Gc whenever A, B € G,
(c) ANB={xANy:z €A,y e B} belongs to G¢ whenever A, B € Ge.

proof Induce on £. The point is that if A, B C E have suprema, then sup(aAd) = asup 4, sup(A + B) =
sup A + sup B and sup(A A B) = sup A A sup B are defined (FREMLIN 02, 351D and 352Ea).

The induction starts with the elementary case in which A, B, A+ B and A A B are singleton sets for
every A € A and B € B. For the inductive step to & + 1, if A*, B* € Geyy let A, B C G be such that
A*=UA, B* =B, {supA: A € A} is upwards-directed and {sup B : B € B} is upwards-directed. Then
{aA: A € A} is a subset of G, with union aA*,

{sup(ad): Ae A} = {asupA: Aec A}
is upwards-directed, and sup(aA*) = asup A*. Next, {A+ B: A€ A, B € B} is a subset of G¢ with union
A* + B*,
{sup(A+B): A€ A, BeB}={supA: A€ A} + {supB: B € B}

is upwards-directed, and sup(A* + B*) = sup A* + sup B*. Similarly, {AAB: A € A, B € B} is a subset of
Ge with union A* A B*,

{sup(AANB): Ac A, BeB}={supA: Aec A} A{supB: B € B}

is upwards-directed, and sup(A* A B*) = sup A* A sup B*.
The inductive step to a limit ordinal is elementary.

3 Theorem For any « > 0, the following are equiveridical:
(i) there is a Fatou norm || ||" on E such that ||z||" < ||z| < «||z||’ for every = € E;
(ii) || sup A]| < asup,ey4 ||z]| for every A € G.

proof (i)=(ii) If (i) is true, then || sup A||" = sup,c4 ||z|" whenever £ < ( and A € G¢. PP Induce on £. The
case of limit ordinals is elementary. For the inductive step to £ + 1, if A* € Gey1 express it as | J.A where
A C Ge and {sup A: A € A} is upwards-directed. Then sup A* = sup 4¢ 4 sup 4, so

z). Q

I

|| sup A*||" = sup sc 4 | sup A||" = sup ¢ 4 SuP,ea 7] = sup,ea-
Consequently, for any A € G = G,

Isup A|| < o sup A" = asup,eq [l2]" < asup,eq [l

(ii)=-(i) If (ii) is true, then for every = € E set



)" = inf{sup,c 4 [lyll : A € G, [x] < sup A}.

Since {|z|} € G, ||z||" < ||z|. Of course ||z||" < |ly||" whenever |z| < |y|. Using Lemma 2(a-b), with £ = ¢,
we see that [|az|” < ||z and ||z + y||” < ||z]|" + ||yl whenever @ > 0 and z, y € E. And condition (ii)
tells us that [|z]| < asup,ec 4 [|y]| whenever A € G and sup A =z, so |[z]| < af|z||" for every z. In particular,
|z]|" # 0 for every non-zero x, and || ||" is a Riesz norm.

Finally, if A C E* is a non-empty upwards-directed set with supremum z, ||z]|" < sup,c, [|z]|’. P Let
€ > 0. For each = € A, let A, € G be such that z <sup A, and sup,¢c 4, [[yll < [|z||' + € Set B, = {yAwx:
y € Az}. By (c) of Lemma 2, applied to A, and {x}, B, € G, while of course sup B, = © Asup 4, = x.

Accordingly B = J, 4 B: belongs to G, sup B = z and

121" < supye Yl < supyea supyea, Iyl < €+ supyea [

As € is arbitrary, we have the result. Q
So || || is a Fatou norm.

4 Theorem Let F be a weakly (o, co)-distributive Riesz space with the countable sup property. If || || is
a weakly Fatou norm on FE, there is an equivalent Fatou norm on E.

proof (a) For A, B C E" say that B < A if for every y € B there is an x € A such that y < .

(b) Let (Ge)e<c be constructed as in Definition 1. Then whenever ¢ < ¢ and A € G, there is an
upwards-directed B < A with supremum sup A. I* Induce on £. The step to limit £ is elementary. For the
inductive step to £ + 1, take A* € G¢41, and express it as | A where A C G and C = {sup A : A € A} is
upwards-directed. We can suppose that {0} € A. Set z = sup A* = supC. Because E has the countable
sup property, there is a sequence (z,)nen in C with supremum z; because C' is upwards-directed, we can
take (z,)nen to be non-decreasing, and also zg = 0.

For each n € N, take A,, € A such that z, = sup 4,,. By the inductive hypothesis, there is an upwards-
directed set B, < A,, with supremum z,. Choose (A!),en inductively, as follows. A = By = Ay = {0}.
Given that n > 0, A!,_ is upwards-directed and A}, _; < B,, for every m > n—1, set By, = {zpAy : y € By, }
for each m > n. Then B,,, is upwards-directed and has supremum z, A z,, = z,. Because F is weakly
(0, 00)-distributive, there is a set A,,, with supremum z,, such that A,, < By, for every m > n (see FREMLIN
02, 368N). Since of course By, < B, A,, < By, for m > n. Now set

A, =A,  U{yVvyrye A, 1, 7€ A}
Then A, is upwards-directed. Since A],_; U A, < B,, and B,, is upwards-directed, Al =% By, for m > n,
and the induction can continue.

At the end of this induction, set B = [J,cyA4;. Because (A])nen is a non-decreasing sequence of
upwards-directed sets, B is upwards-directed. Because

Al < By < Ay C A”

for each n, B < A*. And because 4,, < Al C B and sup A, = z, for every n, any upper bound of B must
be an upper bound of {z, : n € N}, and z = sup B.
Thus the inductive step to G¢y1 is successful, and we have the result. Q

(c) It follows that if || || is a weakly Fatou norm, and a > 0 is such that || sup A|| < asup,¢ 4 ||| whenever
A C E7 is non-empty and has a supremum, then condition (ii) of Theorem 3 is satisfied, and there is an
equivalent Fatou norm on E.
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