D.H.FREMLIN & V.KADETS

Department of Mathematical Sciences, University of Essex, Colchester, England

Department of Mechanics and Mathematics, V.N.Karazin Kharkov National University

1 Definition Let E be a Riesz space and || || a Riesz norm on E. Construct inductively a family $\langle \mathcal{G}_{\xi} \rangle_{\xi \in \text{On}}$ as follows. The inductive hypothesis will be that every $A \in \mathcal{G}_{\xi}$ is a non-empty subset of E^+ with a supremum in E. Start with $\mathcal{G}_0 = \{\{x\} : x \in E^+\}$. For each ordinal ξ ,

$$\mathcal{G}_{\xi+1} = \{ \bigcup \mathcal{A} : \emptyset \neq \mathcal{A} \subseteq \mathcal{G}_{\xi}, \}$$

 $\{\sup A : A \in \mathcal{A}\}\$ is upwards-directed and has a supremum in $E\}.$

For non-zero limit ordinals ξ , $\mathcal{G}_{\xi} = \bigcup_{\eta < \xi} \mathcal{G}_{\eta}$. At the end of the induction, set $\mathcal{G} = \bigcup_{\xi \in \text{On}} \mathcal{G}_{\xi}$. Of course $\mathcal{G} = \mathcal{G}_{\zeta}$ for some ζ . Observe that $\bigcup \mathcal{A} \in \mathcal{G}$ whenever \mathcal{A} is a non-empty subset of \mathcal{G} , $\{\sup \mathcal{A} : \mathcal{A} \in \mathcal{A}\}$ is upwards-directed and $\bigcup \mathcal{A}$ has a least upper bound in E.

2 Lemma For every $\xi \leq \zeta$ and $\alpha \geq 0$,

- (a) $\alpha A = \{\alpha x : x \in A\}$ belongs to \mathcal{G}_{ξ} whenever $A \in \mathcal{G}_{\xi}$,
- (b) $A + B = \{x + y : x \in A, y \in B\}$ belongs to \mathcal{G}_{ξ} whenever $A, B \in \mathcal{G}_{\xi}$,
- (c) $A \wedge B = \{x \wedge y : x \in A, y \in B\}$ belongs to \mathcal{G}_{ξ} whenever $A, B \in \mathcal{G}_{\xi}$.

proof Induce on ξ . The point is that if $A, B \subseteq E$ have suprema, then $\sup(\alpha A) = \alpha \sup A$, $\sup(A + B) = \sup A + \sup B$ and $\sup(A \wedge B) = \sup A \wedge \sup B$ are defined (FREMLIN 02, 351D and 352Ea).

The induction starts with the elementary case in which A, B, A + B and $A \wedge B$ are singleton sets for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$. For the inductive step to $\xi + 1$, if $A^*, B^* \in \mathcal{G}_{\xi+1}$ let $\mathcal{A}, \mathcal{B} \subseteq \mathcal{G}_{\xi}$ be such that $A^* = \bigcup \mathcal{A}, B^* = \bigcup \mathcal{B}, \{ \sup A : A \in \mathcal{A} \}$ is upwards-directed and $\{ \sup B : B \in \mathcal{B} \}$ is upwards-directed. Then $\{ \alpha A : A \in \mathcal{A} \}$ is a subset of \mathcal{G}_{ξ} with union αA^* ,

$$\{\sup(\alpha A) : A \in \mathcal{A}\} = \{\alpha \sup A : A \in \mathcal{A}\}\$$

is upwards-directed, and $\sup(\alpha A^*) = \alpha \sup A^*$. Next, $\{A + B : A \in \mathcal{A}, B \in \mathcal{B}\}$ is a subset of \mathcal{G}_{ξ} with union $A^* + B^*$,

$$\{\sup(A+B): A \in \mathcal{A}, B \in \mathcal{B}\} = \{\sup A: A \in \mathcal{A}\} + \{\sup B: B \in \mathcal{B}\}\$$

is upwards-directed, and $\sup(A^* + B^*) = \sup A^* + \sup B^*$. Similarly, $\{A \land B : A \in \mathcal{A}, B \in \mathcal{B}\}$ is a subset of \mathcal{G}_{ξ} with union $A^* \land B^*$,

$$\{\sup(A \land B) : A \in \mathcal{A}, B \in \mathcal{B}\} = \{\sup A : A \in \mathcal{A}\} \land \{\sup B : B \in \mathcal{B}\}\$$

is upwards-directed, and $\sup(A^* \wedge B^*) = \sup A^* \wedge \sup B^*$.

The inductive step to a limit ordinal is elementary.

3 Theorem For any $\alpha \ge 0$, the following are equiveridical:

- (i) there is a Fatou norm || ||' on E such that $||x||' \le ||x|| \le \alpha ||x||'$ for every $x \in E$;
- (ii) $\|\sup A\| \le \alpha \sup_{x \in A} \|x\|$ for every $A \in \mathcal{G}$.

proof (i) \Rightarrow **(ii)** If (i) is true, then $\|\sup A\|' = \sup_{x \in A} \|x\|'$ whenever $\xi \leq \zeta$ and $A \in \mathcal{G}_{\zeta}$. **P** Induce on ξ . The case of limit ordinals is elementary. For the inductive step to $\xi + 1$, if $A^* \in \mathcal{G}_{\xi+1}$ express it as $\bigcup \mathcal{A}$ where $\mathcal{A} \subseteq \mathcal{G}_{\xi}$ and $\{\sup A : A \in \mathcal{A}\}$ is upwards-directed. Then $\sup A^* = \sup_{A \in \mathcal{A}} \sup A$, so

$$\|\sup A^*\|' = \sup_{A \in \mathcal{A}} \|\sup A\|' = \sup_{A \in \mathcal{A}} \sup_{x \in A} \|x\| = \sup_{x \in A^*} \|x\|.$$

Consequently, for any $A \in \mathcal{G} = \mathcal{G}_{\zeta}$,

$$|\sup A\| \le \alpha \|\sup A\|' = \alpha \sup_{x \in A} \|x\|' \le \alpha \sup_{x \in A} \|x\|.$$

(ii) \Rightarrow (i) If (ii) is true, then for every $x \in E$ set

$$||x||' = \inf\{\sup_{y \in A} ||y|| : A \in \mathcal{G}, |x| \le \sup A\}.$$

Since $\{|x|\} \in \mathcal{G}$, $||x||' \leq ||x||$. Of course $||x||' \leq ||y||'$ whenever $|x| \leq |y|$. Using Lemma 2(a-b), with $\xi = \zeta$, we see that $||\alpha x||' \leq \alpha ||x||'$ and $||x + y||' \leq ||x||' + ||y||'$ whenever $\alpha \geq 0$ and $x, y \in E$. And condition (ii) tells us that $||x|| \leq \alpha \sup_{y \in A} ||y||$ whenever $A \in \mathcal{G}$ and $\sup A = x$, so $||x|| \leq \alpha ||x||'$ for every x. In particular, $||x||' \neq 0$ for every non-zero x, and ||||' is a Riesz norm.

Finally, if $A \subseteq E^+$ is a non-empty upwards-directed set with supremum z, $||z||' \leq \sup_{x \in A} ||x||'$. **P** Let $\epsilon > 0$. For each $x \in A$, let $A_x \in \mathcal{G}$ be such that $x \leq \sup A_x$ and $\sup_{y \in A_x} ||y|| \leq ||x||' + \epsilon$. Set $B_x = \{y \land x : y \in A_x\}$. By (c) of Lemma 2, applied to A_x and $\{x\}$, $B_x \in \mathcal{G}$, while of course $\sup B_x = x \land \sup A_x = x$. Accordingly $B = \bigcup_{x \in A} B_x$ belongs to \mathcal{G} , $\sup B = z$ and

$$||z||' \le \sup_{y \in B} ||y|| \le \sup_{x \in A} \sup_{y \in A_x} ||y|| \le \epsilon + \sup_{x \in A} ||x||'.$$

As ϵ is arbitrary, we have the result. **Q**

So || ||' is a Fatou norm.

4 Theorem Let *E* be a weakly (σ, ∞) -distributive Riesz space with the countable sup property. If $\| \|$ is a weakly Fatou norm on *E*, there is an equivalent Fatou norm on *E*.

proof (a) For A, $B \subseteq E^+$ say that $B \preccurlyeq A$ if for every $y \in B$ there is an $x \in A$ such that $y \le x$.

(b) Let $\langle \mathcal{G}_{\xi} \rangle_{\xi \leq \zeta}$ be constructed as in Definition 1. Then whenever $\xi \leq \zeta$ and $A \in \mathcal{G}_{\xi}$, there is an upwards-directed $B \preccurlyeq A$ with supremum sup A. **P** Induce on ξ . The step to limit ξ is elementary. For the inductive step to $\xi + 1$, take $A^* \in \mathcal{G}_{\xi+1}$, and express it as $\bigcup \mathcal{A}$ where $\mathcal{A} \subseteq \mathcal{G}_{\xi}$ and $C = \{\sup A : A \in \mathcal{A}\}$ is upwards-directed. We can suppose that $\{0\} \in \mathcal{A}$. Set $z = \sup A^* = \sup C$. Because E has the countable sup property, there is a sequence $\langle z_n \rangle_{n \in \mathbb{N}}$ in C with supremum z; because C is upwards-directed, we can take $\langle z_n \rangle_{n \in \mathbb{N}}$ to be non-decreasing, and also $z_0 = 0$.

For each $n \in \mathbb{N}$, take $A_n \in \mathcal{A}$ such that $z_n = \sup A_n$. By the inductive hypothesis, there is an upwardsdirected set $B_n \preccurlyeq A_n$ with supremum z_n . Choose $\langle A'_n \rangle_{n \in \mathbb{N}}$ inductively, as follows. $A'_0 = B_0 = A_0 = \{0\}$. Given that n > 0, A'_{n-1} is upwards-directed and $A'_{n-1} \preccurlyeq B_m$ for every $m \ge n-1$, set $B_{nm} = \{z_n \land y : y \in B_m\}$ for each $m \ge n$. Then B_{nm} is upwards-directed and has supremum $z_n \land z_m = z_n$. Because E is weakly (σ, ∞) -distributive, there is a set \tilde{A}_n , with supremum z_n , such that $\tilde{A}_n \preccurlyeq B_{nm}$ for every $m \ge n$ (see FREMLIN 02, 368N). Since of course $B_{nm} \preccurlyeq B_m$, $\tilde{A}_n \preccurlyeq B_m$ for $m \ge n$. Now set

$$A'_n = A'_{n-1} \cup \{ y \lor \tilde{y} : y \in A'_{n-1}, \, \tilde{y} \in \tilde{A}_n \}.$$

Then A'_n is upwards-directed. Since $A'_{n-1} \cup \tilde{A}_n \preccurlyeq B_m$ and B_m is upwards-directed, $A'_n \preccurlyeq B_m$ for $m \ge n$, and the induction can continue.

At the end of this induction, set $B = \bigcup_{n \in \mathbb{N}} A'_n$. Because $\langle A'_n \rangle_{n \in \mathbb{N}}$ is a non-decreasing sequence of upwards-directed sets, B is upwards-directed. Because

$$A'_n \preccurlyeq B_n \preccurlyeq A_n \subseteq A^*$$

for each $n, B \leq A^*$. And because $\tilde{A}_n \leq A'_n \subseteq B$ and $\sup \tilde{A}_n = z_n$ for every n, any upper bound of B must be an upper bound of $\{z_n : n \in \mathbb{N}\}$, and $z = \sup B$.

Thus the inductive step to $\mathcal{G}_{\xi+1}$ is successful, and we have the result. **Q**

(c) It follows that if || || is a weakly Fatou norm, and $\alpha \ge 0$ is such that $|| \sup A || \le \alpha \sup_{x \in A} ||x||$ whenever $A \subseteq E^+$ is non-empty and has a supremum, then condition (ii) of Theorem 3 is satisfied, and there is an equivalent Fatou norm on E.

References

Fremlin D.H. [01] Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, 2001 (http://www.lulu.com/content/ Fremlin D.H. [02] Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2002.

Fremlin D.H. [Pr] Problems, http://www.essex.ac.uk/maths/people/fremlin/problems.pdf.