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1 Definition Let E be a Riesz space and ‖ ‖ a Riesz norm on E. Construct inductively a family 〈Gξ〉ξ∈On

as follows. The inductive hypothesis will be that every A ∈ Gξ is a non-empty subset of E+ with a supremum
in E. Start with G0 = {{x} : x ∈ E+}. For each ordinal ξ,

Gξ+1 = {
⋃

A : ∅ 6= A ⊆ Gξ,

{sup A : A ∈ A} is upwards-directed and has a supremum in E}.

For non-zero limit ordinals ξ, Gξ =
⋃

η<ξ Gη. At the end of the induction, set G =
⋃

ξ∈On
Gξ. Of course

G = Gζ for some ζ. Observe that
⋃
A ∈ G whenever A is a non-empty subset of G, {supA : A ∈ A} is

upwards-directed and
⋃
A has a least upper bound in E.

2 Lemma For every ξ ≤ ζ and α ≥ 0,
(a) αA = {αx : x ∈ A} belongs to Gξ whenever A ∈ Gξ,
(b) A + B = {x + y : x ∈ A, y ∈ B} belongs to Gξ whenever A, B ∈ Gξ,
(c) A ∧ B = {x ∧ y : x ∈ A, y ∈ B} belongs to Gξ whenever A, B ∈ Gξ.

proof Induce on ξ. The point is that if A, B ⊆ E have suprema, then sup(αA) = α supA, sup(A + B) =
supA + supB and sup(A ∧ B) = supA ∧ supB are defined (Fremlin 02, 351D and 352Ea).

The induction starts with the elementary case in which A, B, A + B and A ∧ B are singleton sets for
every A ∈ A and B ∈ B. For the inductive step to ξ + 1, if A∗, B∗ ∈ Gξ+1 let A, B ⊆ Gξ be such that
A∗ =

⋃
A, B∗ =

⋃
B, {supA : A ∈ A} is upwards-directed and {sup B : B ∈ B} is upwards-directed. Then

{αA : A ∈ A} is a subset of Gξ with union αA∗,

{sup(αA) : A ∈ A} = {α supA : A ∈ A}

is upwards-directed, and sup(αA∗) = α supA∗. Next, {A + B : A ∈ A, B ∈ B} is a subset of Gξ with union
A∗ + B∗,

{sup(A + B) : A ∈ A, B ∈ B} = {sup A : A ∈ A} + {supB : B ∈ B}

is upwards-directed, and sup(A∗ + B∗) = supA∗ + supB∗. Similarly, {A∧B : A ∈ A, B ∈ B} is a subset of
Gξ with union A∗ ∧ B∗,

{sup(A ∧ B) : A ∈ A, B ∈ B} = {sup A : A ∈ A} ∧ {supB : B ∈ B}

is upwards-directed, and sup(A∗ ∧ B∗) = supA∗ ∧ supB∗.
The inductive step to a limit ordinal is elementary.

3 Theorem For any α ≥ 0, the following are equiveridical:
(i) there is a Fatou norm ‖ ‖′ on E such that ‖x‖′ ≤ ‖x‖ ≤ α‖x‖′ for every x ∈ E;
(ii) ‖ sup A‖ ≤ α supx∈A ‖x‖ for every A ∈ G.

proof (i)⇒(ii) If (i) is true, then ‖ sup A‖′ = supx∈A ‖x‖′ whenever ξ ≤ ζ and A ∈ Gζ . PPP Induce on ξ. The
case of limit ordinals is elementary. For the inductive step to ξ + 1, if A∗ ∈ Gξ+1 express it as

⋃
A where

A ⊆ Gξ and {sup A : A ∈ A} is upwards-directed. Then supA∗ = supA∈A supA, so

‖ sup A∗‖′ = supA∈A ‖ sup A‖′ = supA∈A supx∈A ‖x‖ = supx∈A∗ ‖x‖. QQQ

Consequently, for any A ∈ G = Gζ ,

‖ sup A‖ ≤ α‖ sup A‖′ = α supx∈A ‖x‖′ ≤ α supx∈A ‖x‖.

(ii)⇒(i) If (ii) is true, then for every x ∈ E set
1



2

‖x‖′ = inf{supy∈A ‖y‖ : A ∈ G, |x| ≤ supA}.

Since {|x|} ∈ G, ‖x‖′ ≤ ‖x‖. Of course ‖x‖′ ≤ ‖y‖′ whenever |x| ≤ |y|. Using Lemma 2(a-b), with ξ = ζ,
we see that ‖αx‖′ ≤ α‖x‖′ and ‖x + y‖′ ≤ ‖x‖′ + ‖y‖′ whenever α ≥ 0 and x, y ∈ E. And condition (ii)
tells us that ‖x‖ ≤ α supy∈A ‖y‖ whenever A ∈ G and supA = x, so ‖x‖ ≤ α‖x‖′ for every x. In particular,
‖x‖′ 6= 0 for every non-zero x, and ‖ ‖′ is a Riesz norm.

Finally, if A ⊆ E+ is a non-empty upwards-directed set with supremum z, ‖z‖′ ≤ supx∈A ‖x‖′. PPP Let
ǫ > 0. For each x ∈ A, let Ax ∈ G be such that x ≤ supAx and supy∈Ax

‖y‖ ≤ ‖x‖′ + ǫ. Set Bx = {y ∧ x :
y ∈ Ax}. By (c) of Lemma 2, applied to Ax and {x}, Bx ∈ G, while of course supBx = x ∧ supAx = x.
Accordingly B =

⋃
x∈A Bx belongs to G, supB = z and

‖z‖′ ≤ supy∈B ‖y‖ ≤ supx∈A supy∈Ax

‖y‖ ≤ ǫ + supx∈A ‖x‖′.

As ǫ is arbitrary, we have the result. QQQ
So ‖ ‖′ is a Fatou norm.

4 Theorem Let E be a weakly (σ,∞)-distributive Riesz space with the countable sup property. If ‖ ‖ is
a weakly Fatou norm on E, there is an equivalent Fatou norm on E.

proof (a) For A, B ⊆ E+ say that B 4 A if for every y ∈ B there is an x ∈ A such that y ≤ x.

(b) Let 〈Gξ〉ξ≤ζ be constructed as in Definition 1. Then whenever ξ ≤ ζ and A ∈ Gξ, there is an
upwards-directed B 4 A with supremum supA. PPP Induce on ξ. The step to limit ξ is elementary. For the
inductive step to ξ + 1, take A∗ ∈ Gξ+1, and express it as

⋃
A where A ⊆ Gξ and C = {sup A : A ∈ A} is

upwards-directed. We can suppose that {0} ∈ A. Set z = supA∗ = supC. Because E has the countable
sup property, there is a sequence 〈zn〉n∈N in C with supremum z; because C is upwards-directed, we can
take 〈zn〉n∈N to be non-decreasing, and also z0 = 0.

For each n ∈ N, take An ∈ A such that zn = sup An. By the inductive hypothesis, there is an upwards-
directed set Bn 4 An with supremum zn. Choose 〈A′

n〉n∈N inductively, as follows. A′
0 = B0 = A0 = {0}.

Given that n > 0, A′
n−1 is upwards-directed and A′

n−1 4 Bm for every m ≥ n−1, set Bnm = {zn∧y : y ∈ Bm}
for each m ≥ n. Then Bnm is upwards-directed and has supremum zn ∧ zm = zn. Because E is weakly
(σ,∞)-distributive, there is a set Ãn, with supremum zn, such that Ãn 4 Bnm for every m ≥ n (see Fremlin

02, 368N). Since of course Bnm 4 Bm, Ãn 4 Bm for m ≥ n. Now set

A′
n = A′

n−1 ∪ {y ∨ ỹ : y ∈ A′
n−1, ỹ ∈ Ãn}.

Then A′
n is upwards-directed. Since A′

n−1 ∪ Ãn 4 Bm and Bm is upwards-directed, A′
n 4 Bm for m ≥ n,

and the induction can continue.
At the end of this induction, set B =

⋃
n∈N

A′
n. Because 〈A′

n〉n∈N is a non-decreasing sequence of
upwards-directed sets, B is upwards-directed. Because

A′
n 4 Bn 4 An ⊆ A∗

for each n, B 4 A∗. And because Ãn 4 A′
n ⊆ B and sup Ãn = zn for every n, any upper bound of B must

be an upper bound of {zn : n ∈ N}, and z = supB.
Thus the inductive step to Gξ+1 is successful, and we have the result. QQQ

(c) It follows that if ‖ ‖ is a weakly Fatou norm, and α ≥ 0 is such that ‖ sup A‖ ≤ α supx∈A ‖x‖ whenever
A ⊆ E+ is non-empty and has a supremum, then condition (ii) of Theorem 3 is satisfied, and there is an
equivalent Fatou norm on E.
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