
SPACES OF FINITE LENGTH

D. H. FREMLIN

[Received 18 December 1990]

ABSTRACT

I discuss the topological properties of metric spaces of finite one-dimensional Hausdorff measure.

Introduction

Let (X, p) be a metric space. Define ftp = fi*p: &X-*[0, oo] by writing

H*p(A) = sup inf { 2 diamp(i4,): Ac\jA,cX, diamp(,4t) ^ <5 Vi e

for each Ac.X, the one-dimensional Hausdorff outer measure on X. If
fip(X) < oo, I will say that X is of finite length. In this paper I seek to investigate
the topological properties of metric spaces of finite length, concentrating on
connected spaces. The basis of the work is the fact that a space X of finite length
is a 'finite cut space', that is, its topology has a base consisting of sets with finite
boundary (corresponding to the 'regular curves' of [22]). (See 1C below.) This is
already enough to prove some remarkable properties; for instance, if X is
connected then it is locally connected (2A-2B), and if it is connected and a Borel
set in its metric completion then it is path-connected (3G). I then set out to
develop a structure theory for spaces of finite length, showing how the measure
theory associated with the outer measure JU* connects with the topology (§4). A
striking result from this part of the theory is in 41: if Cc.X is connected and
/ip(C) is finite, then C is actually \ip-measurable and np(C\C) = 0. In § 5,1 show
that metric spaces of finite length can be embedded homeomorphically in 'good'
spaces of finite length, indeed, as subspaces of compact connected spaces of finite
length in U3 (5H). I end the paper with topological characterizations of finite
length in general separable metric spaces which extend some of those given for
continua in [6].

1. Basic definitions and results

I list the fundamental known facts on which I shall rely.

1A. Length. Let (X, p) be a metric space, and define /zp by the formula in the
Introduction, interpreting inf 0 as oo, so that n*p(A) = oo if A is non-separable.

(a) ju* is a metric outer measure [7, p. 7]. The associated measure np defined by
CarathSodory's method [7, p. 3] is defined on a a-algebra including the a-algebra
of Borel sets [7, p. 6]. For any A^X there is a G6 set E^A such that
fip(E) = n*(A) [7, p. 8], so that \ip is outer regular for the G6 sets. If E^X is
^-measurable and tip{E) < oo then fip(E) = sup{/ip(F): F c £ , F is closed in X)
[7, p. 8].
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(b) If Y c X is any set and o = p f Y x Y is the induced metric on Y, then ji*
is the restriction of y.*p to 0>Y.

(c) If X = U and p is the usual metric of U then p* is Lebesgue outer measure
on R and \xp is Lebesgue measure [7, p. 12].

(d) If T c Z is an arc (i.e., a homeomorphic image of [0,1]), then jt/p(r) is just
the length of T [7, p. 29].

(e) If (y, o) is another metric space and / : X-» Y is Lipschitz-1 (that is,
o(J(x),f(x'))^p(x,x') for all *, x'eX), then ju*(/[A]) ^ ^ ( ,4) for every
A<zX[7,p. 10].

(f) If (y, cr) is another metric space and/: A"—» Y is Lipschitz-1, then

(See [6, Theorem 1; 3, Theorem; 8, p. 176], In this formula, interpret '#*(/) ' as
#(/) e fcl if / is finite, and as «> if / is infinite, and 'J* h(y)tia(dyy as the infimum
of the integrals J g(y)l*>a{dy) as g runs over the juCT-measurable functions from Y
to [0, o°] such that g(y) ^h(y) for every y e Y.)

IB. Finite cut spaces. Let (X, S£) be a topological space. For A c j f write dA
for AMntA, the boundary of A. I will say that (X, 5£) is a. finite cut space if

« = { G : G e £, dG is finite}

is a base for St. (In this paper I will reserve the symbol ^ for this context.) Note
that if G and H belong to ^ so do G fl //, G U / / and Z\G (because the sets with
finite boundary form a subalgebra of 9>X containing the closures and interiors of
its members).

Compact metrizable connected finite cut spaces are treated in [22], where they
are called 'regular continua'.

1C. The essential link between 1A and IB is the following long-known result.

PROPOSITION. A metric space of finite length is a finite cut space.

Proof. [6, §3, Corollary].

2. Finite cut spaces

In this section I give an account of the elementary properties of finite cut
spaces. I am concerned primarily with separable metric spaces; but where an
argument applies more generally I allow weaker hypotheses. From the point of
view of this paper, the most important fact is 2A: connected Hausdorff finite cut
spaces are locally connected. Most of the other results amount to saying that
finite cut spaces are well-behaved in various ways; thus 2E-2G show that
components are regularly arranged, while 2H-2J do the same for path-
components. The technical result 2F(a) will be very useful later.

2A. THEOREM. A connected Hausdorff finite cut space is locally connected.

Proof. Let A!" be a connected Hausdorff finite cut space, x a point of X, U a
neighbourhood of x, C the component of U containing x; I have to show that C is
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a neighbourhood of x. If U = X then C = X and the result is trivial. Otherwise, let
Go be an open set with finite boundary containing x and included in U. Because X
is Hausdorff, there is a neighbourhood V of x, included in Go, with V C\ dG0 = 0 .
Let Gx be an open set with finite boundary containing x and included in V; then
Gx c U.

Let % be the algebra of relatively open-and-closed subsets of Gx. If E, E' e %
and E D 9GX = E' D dGx then EAE' c Gx so £ A £ ' is both open and closed in X;
because X is connected and Gxc.U±X, EAE' = 0 and E = E'.

Because dGx is finite, % must also be finite. Its atoms therefore constitute a
finite partition of Gx into closed connected sets. Let Co be the atom of %
containing x; then C0C\ Gx is open, so Co must be a neighbourhood of x\ also
COQ C, so C is also a neighbourhood of x, as required.

REMARK. For metric spaces, this result is given in [14b, § 51.IV, Theorem 1]

2B. COROLLARY. A connected metric space of finite length is locally connected.

2C. It is convenient to collect here some very elementary facts about finite cut
spaces.

LEMMA. Let X be a finite cut space.
(a) Any subspace of X, with the subspace topology, is a finite cut space.
(b) If X is Hausdorff, it is regular.
(c) If X is separable and metrizable then it has at most countably many

non-singleton components.

Proof, (a) If YcX and GcX, then dY(G D Y), the boundary of GHY
taken in Y, is a subset of 9XG.

(b) Take x e X and a neighbourhood U of x. Then there is an open set G with
finite boundary such that x e G c U. Now, because X is Hausdorff, there is a
neighbourhood V of x such that V c G and V C\ 9G = 0 . S o f c i / .

(c). Let $? be a countable base for the topology consisting of open sets with
finite boundary, and let D be the countable set Utfea?<5#; t n e n every non-
singleton component of X must meet D.

2D. COROLLARY. If X is a connected Hausdorff finite cut space then

y = {G: G <^X is open and connected, dG is finite}

is a base for the topology of X.

Proof. If x e X and U is a neighbourhood of x, take an open set H with finite
boundary such that x eH c.H c (/ (using 2C(b)); let G be the component of H
containing x. By 2A, G is open. Moreover, G is relatively closed in H, so
dG c 3H is finite.

2E. THEOREM. Let X be a Lindelof Hausdorff finite cut space. If C is a
component of X and F is a closed subset of X disjoint from C, there is an
open-and-closed subset of X separating C from F.
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Proof. Let us write C* for the intersection of all the open-and-closed subsets of
X including C. Let $ be the family of open sets with finite boundaries.

(a) If G € <$ and G D C* = 0 , there is an open-and-closed subset W of X
separating C* from G. For there is surely an open-and-closed set Wo such that
C* c Wo and aCDlV0 = 0 ; now try W = W0\G = W0\G.

(b) If £ is a closed subset of X disjoint from C*, then there is an
open-and-closed subset W of X separating C* from E. For let $f be

{G: Ge% either G fl C* = 0 or G D E = 0 } .

Because A' is regular (2C), $? is an open cover of X; because X is Lindelof, there
is a sequence (Hn)neN in VC covering X. Now we can find increasing sequences
(Un)neN, (Vn)neN in <S such that

for every n e M. To see this, start with U0=V0 = 0 . Given Un and Kn, use (a) of
this proof to find an open-and-closed set Wn 3 C* such that Wn D Vn = 0 and
lVn fl (dHn\C*) = 0 and, if ft, n C* = 0 , then Wn n ^M = 0 . Try

(/n+1 = Un U•(//„ H Wn), Vn+l = VnU(Hn\Un+1).

A straightforward calculation checks that this works.
On completing the induction, set W = UneN Un\ ^ is open-and-closed because

its complement is LlieN Vn, and of course C* c W c Z \£ .
(c) It follows that C* is connected. For if G and / / are open sets in X with

C * c G U / / , C * n G D / / = 0 , then C* n G = C*\// and C*HH are disjoint
closed sets. Being regular and Lindelof, X is normal [14, § 14.1, Theorem 1], so
there are disjoint open sets Gu Hx with C ' n G c G , , C* r\H<=,Hx\ so that
C* c.Gx\JHx. Applying (b) with E = X\(GlUHl), we can find an open-and-
closed W with C* c W c Gx U Hx. In this case WOG, and W fl //, are open-and-
closed, so one includes C and the other is disjoint from C*. Thus one of C* C\ G,
C* DH is empty. As G, / / are arbitrary, C* is connected.

(d) Accordingly C = C* and (b) gives the result.

2F. COROLLARY. Let (X, 5£) be a Lindelof Hausdorff finite cut space. Write <&
for the family of open sets with finite boundary.

(a) The family

*&* = {G: G e ^ , <9G lies within one component of G}

is a base for S£; in fact, every member of *3 has a finite partition into members
of<S*.

(b) If E, F are closed subsets of X such that no component of X meets both E
and F, then E and F can be separated by an open-and-closed set.

Proof, (a) Take any G € <S. If G = 0 then Ge<S* and we have finished.
Otherwise, let Cl}..., Ck be the components of G meeting 9G. Applying
Theorem 2E to G, we have a partition Wlt ...,Wk of G into relatively
open-and-closed sets such that C, c Wj for each /. Set G, = G fl V̂  for each i; then
Gx,..., Gk is a partition of G into open sets, and G, = Wh so <9G, = W,\G c C, c
G, for each i, and each G, belongs to <§*.

(b) By the theorem, each component of X can be separated by an open-and-



SPACES OF FINITE LENGTH 4 5 3

closed set from at least one of E, F. Consequently,

W={W: Wis open and closed, WHE = 0 or WC\F = 0}

is an open cover of X. Let (Wn)neN be a sequence in W covering X. Set
W^ = Wn\Ui<n W£ for each neN; then (W^),,^ is a disjoint cover of X by
members of °W. Set W = \J{W'n: neN, £ n w ; # 0 } ; then W is open-and-

REMARK. Note that if X is connected then G is connected for every G e ^ * .

2G. PROPOSITION. Lef X be a Hausdorff finite cut space. Then

R = {(x,y): x, y belong to the same component of X)

is closed in X x X.

Proof. Take (x, y)eR. If x = y then of course (x, y)eR. If x i=- y, take an open
set G with finite boundary such that xeG and y $ G. Then (x, y) belongs to the
closure of R f) (G x (X\G)); but this is included in

U {C x C: C i sa component of A' meeting 3G},

which is a closed subset of R, so again (x, y) e R.

2H. PROPOSITION. Let X be a Hausdorff first-countable finite cut space. Then

Q = {(x,y): x, y belong to the same path-component of X)

is closed in X x X.

Proof. Let x, y be distinct points of X such that (x, v) e Q. Choose decreasing
sequences (Gn)neN, (Hn)neN of open sets with finite boundaries such that
GonHo = 0 and {Gn\ neN}, {Hn: neN} are bases of neighbourhoods of x, y
respectively. For each neN there is a continuous function /„: [0, 1]—>X such
that yn(0) € Gn and yn(l) e Hn, because Q meets GnxHn. For k^n set

tnk = inf{r: /„(*) $ Gk}, ank = yn(tnk) e dGk,

M^ = sup{«: yn(u)$Hk}, bnk = yn(unk)e 9Hk.

Let 2F be any non-principal ultrafilter on f̂ ; because dGk, 9Hk are finite,

ak = Urn ank, bk = lim bnk

are defined in dGk, dHk for each k. Moreover, there are paths ok, y, xk in X such
that

ok runs from ak+l to ak within Gk,

y runs from a0 to 60,
rfc runs from bk to bk+l within Hk

for every k e N, obtained by taking appropriate pieces of appropriate yn. Putting
these together, one sees that

y* = (x)~..ro1~o(Ty~T(rT1~..r(y)

is a path from x to y, so (x, y) e Q.
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21. COROLLARY. If X is a Hausdorff first-countable finite cut space then
(a) path-components of X are closed;
(b) if X is path-connected it is locally path-connected.

Proof, (a) This is immediate from 2H.
(b) If G is an open set with finite boundary, then every path-component of G

must meet dG, so G has only finitely many path-components, which are all
closed, by (a). Now if x e G, one of the path-components of G is a path-
connected neighbourhood of x included in G. As X is regular, this shows that X is
locally path-connected.

2J. PROPOSITION. Let X be a metrizable finite cut space and a ^ 0. Let Qa be the
set of pairs (x, y) e X x X such that for every ($ > a there is a path of length at
most f$ from x to y in X. Then Qa is a closed set in X x X.

Proof. The argument follows that of 2H. As before, take distinct x, y such that
(x,y)eQa. Fix e>0. Take {Gn)neN, {Hn)neN and (yn)neN as before, but this
time require also that the length of each path yn is at most a+ e. Writing
lh(y \ [t, u]) for the length of the path defined by y \ [t, u], take the paths ok, y,
rk such that

\h(ok)^2-ke + lim lh(yrt \ [tnik+1, tnk]),

lh(y) ^ e + lim lh(yn \ [tn0, un0\),
n-*3F

lim lh(y« \ [unk, unk+x)).
n-*8F

In this case we shall have

= 2 H°k) + lh(y) + 2 M*k) *£ 5e + lim lh(y«) ̂  a + 6e.

As e is arbitrary, (x,y)eQa.

3. Connected metrizable finite cut spaces

This section is devoted to the properties of connected metric finite cut spaces.
By 2A they are locally connected, and I begin with a survey of simple facts about
connected, locally connected metric spaces (3A-3C). Then I give some straight-
forward results about finite cut spaces (3D-3F) before ending the section with
one of the principal theorems of this paper (3G), a striking sufficient condition for
a finite cut space to be path-connected.

3A. LEMMA. Let Z be a complete metric space and X a connected, locally
connected G6 set in Z. Then X is path-connected.

Proof. This is the Mazurkiewicz-Moore-Menger theorem [2,10.3.10].

3B. LEMMA. Let (X, p) be a connected, locally connected metric space with
diamp(A

r)<oo.
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(a) There is a metric o on X, equivalent to p, given by the formula

o{x, y) = inf{diamp(C): C c X is connected and x, y eC}.

(b) Write %afor the completion of X with respect to o, and b for the metric of
Jta; then the sets

Ux(x, a) = {y: yeX, a(y, x) < a),

Ux(w,a) = {y: y eX, &(y, w)< a),

U{w, a) = {v: ve Xa, d{v, w) < a)

are connected whenever x e X, we Xa, a > 0.
(c) Jta is connected, locally connected and path-connected.
(d) If G is a regular open subset of Xa {that is, the interior of a closed subset of

Jta), then the boundary dG of G in Xais a subset of dx{G D A'), the closure in Jta

of the boundary dx(G C\X)ofGnX in X.
(e) If G is a connected open subset of Xa, then G C\X is connected.

Proof. Most of this must be standard, but I sketch the arguments.
(a) a is a metric because p is a metric and X is connected and diamp(A

r) < »; Q
is equivalent to p because X is locally connected.

(b) First,

Ux(x, oc) = U {C: C c X is connected, x e C, diamp(C) < a}

is connected. Now

Ux(w, a) = U {Ux(z, a - d(z, w)): zeX, d(z, w) < \oc)

is connected. Because it is dense in U(w, a), so is the latter.
(c) By (b), $a is connected and locally connected. So Xa is path-connected by

3A.
(d) Suppose, if possible, otherwise; take w e dG\dx(G d X). Set a =

^(w, dx(G n X)) > 0. Then Ux(w, a) is a connected subset of X meeting both G
and X\G (because w e dG = GD Jta\G and X is dense in %a) but not meeting
dx(GC\X); which is impossible.

(e) Suppose, if possible, otherwise. Then GDX can be partitioned into two
non-empty relatively open sets Ho, Hx c X. Set V = int Ho, taken in Jta, so that V
is a regular open subset of Xa and Hoc.V HX c.H0C\X. Because G is connected
and meets both V and Xa\V, it meets dV\ by (d), G meets dx(Vr\X) c dxH0;
but of course this is not so.

REMARK. Of course the hypothesis 'diamp(A
r)<<»' is nearly irrelevant, being

used only to ensure that o(x, y) is always finite.

3C. LEMMA. Let (X, p) be a connected, locally connected, separable metrizable
space. Write

BT(X) = {x: there is an open connected G c ^ such that G\{x} is not connected).

Then Br(Ar) is a Ka set in X {that is, a countable union of compact sets).
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Proof, (a) Let p be a metric, defining the topology of X, such that
dianip^) <°°. Construct o as in 3B. Consider

BTO(X) = {x: X\{x} is not connected}.

Let D c X be a countable dense set. For each pair y, z of points of D let Â ,z be
the intersection of all the closed connected subsets of Xa containing both y and z.
Because Xa is path-connected, one of these closed connected' sets will be
compact, and Kyz is also compact. Set

B0 = U{Kyz\{y,z}: y,zeD};

then Bo is a Ka subset of Xa.
If x e Bro^), then X\{x} is not connected, so Xa\{x} is not connected (by (e)

above), and has at least two components, which must meet D; take y, zeD
belonging to different components of Xo\{x}. Of course every connected subset
of Jta containing both y and z must also contain x, so x e Kyz. As x is arbitrary,
this shows that Bxo(X) c Bo.

Ifwe Bo, take v, z e D such that w e Kyz\{y, z}. Then Xa\{w} includes no arc
from y to z, so cannot be path-connected; but it is surely a locally connected G6

subset of Xa, so cannot be connected. Accordingly its dense subset X\{w}
cannot be connected. Thus w eB^A"); as w is arbitrary, Bro(A

r) is equal to Bo

and is a Ka set.
(b) Now let °ti be any countable base for the topology of X consisting of

connected open sets. By (a),

B = {x: 3Ue°U such that U\{x} is not connected}

is a Ka set in X. Of course B c Br(Ar). But also, if x e B r ^ ) , let G be a
connected open subset of X such that G\{x} is not connected. Let G', G" be
disjoint non-empty open sets with union G\{*}, and let Ue°ll be such that
xeU^G. Because G is connected, x e G7 n G", so that UDG', UHG" form a
partition of U\{x} into non-empty open sets, and x e B.

Thus B r ^ ) = B is a Ka set.

REMARK. Compare [22, Theorem III.5.3 and elsewhere]. Br(Ar) is the set of
'local separating points' in X [21].

3D. LEMMA. Let {X, p) be a connected metric finite cut space with diamp(A
r) <

oo. Let o be the metric on X defined as in 3B. Then there is a Gd subset W of
Jta, including X, which is a finite cut space.

Proof. Let H c X be an open subset of X with finite boundary dxH in X. Set
V = int H, taken in ka. Then dV c dxH = dxH, by 3B(d), so dV is finite.

So if we write

Wn = U {V: V c l f f is open, diam5(V) ^2"" , dV is finite},

we see that X c Wn for each n eN, and the G6 set W = (~]neN Wn is a finite cut
space, as required.

3E. THEOREM. A connected metrizable finite cut space is separable.
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Proof. Let (X, p) be a connected metric finite cut space.
(a) Consider first the case in which X is path-connected. Suppose, if possible,

that X is not separable. Let e > 0 be such that there is an uncountable set A c X
with p(a, a')> e for all distinct a, a' eA. Fix x0 e X and for each a e A let Ta be a
path from x0 to a. Set

% - {G: G^Xis open, dG is finite, diam(G)*£ e}.

For n e N set

Wn = {x: xeX,3Ge% such that p(x, X\G) > 2""}.

Then (Wn)neN is an increasing sequence of open sets covering X, so there is an
neN such that A' = {a: aeA, Ya c Wn) is uncountable.

For each xeWn choose Gx e % such that p(x, X\GX) > 2~n. Choose a sequence
(^k)keN of finite subsets of % by the rule

%o={GXo}, Xk+l = {Gx: xeWnD\J{dH: HeWk}}

for each k. Set #f = U*eN %k, V = U #?• Then 9if is a countable family of sets of
diameter less than e, so there must be some a eA'\U.

Of course x0 e U. Take z to be the first point of Ta not belonging to U. Let w be
a point on Fa, strictly preceding z in Ta, such that p(*, z) «s 2~" for every * lying
between w and z in Ta. Then w € U so there are fc 6 t̂ J, H e fflk such that w eH.
Now z ^ if so there is a point JC of dH lying between w and z in Ta. Observe that
x e Ta c= IV,,. But now p(z, x) ^ 2~" so z € Gx € fflk+\, which is impossible.

Thus X must be separable if it is path-connected.
(b) For the general case, we may replace p by an equivalent bounded metric

p'. Because X is locally connected (2A) we may now form a metric o from p ' by
the method of 3B. Take the G6 set W c.Xa as in 3D. Then W is connected
(because X is dense in W) and locally connected (by 2A again) and therefore
path-connected (by 3A). Applying (a), we find that W is separable so that X is
also separable.

3F. LEMMA. Let (X,'£) be a separable metrizable finite cut space. Write

<§={G: GeZ, dG is finite),

<§* = {G: G € ^, dG lies within one component of G}.

Then there is a sequence (°Uk)keM of finite subsets of <&* such that
0) %={*};
(ii) for each k eN, °Uk is disjoint and U °Uk is dense in X;
(iii) ifj ^k, Ue % and V e % then either VcUorVHU = 0;
(iv) ifx eH e S then there is a k eN such that

Fk(x) = \J{0: Ue%,xeU}czH;

(v) Fk(x) is a neighbourhood of x for every x eX, keN;
(vi) if o is a pseudometric on X and o(D, V) > 0 whenever k e M, U, V e °Uk

and U C\V = 0 , then the topology £CT defined by o includes X.
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Proof. By definition, ^ is a base for the topology of X; let (Gi)ieN run over a
subset of $ which is still a base for the topology. Choose (%)keN inductively as
follows: %={X}; given %, set

%={UHGk: Ue%}U{U\Gk: Ue%}.

Then %'k is disjoint and °U'k c
 (S. By 2E(a) we can find a finite disjoint family

°Uk+i £ %* such that every member of °H'k is a union of members of %*+!• It is
easy to see that this process produces a sequence satisfying (i)-(v).

As for (vi), givenxeHe%, take j^keN such that

Set <5 = min{a(£7, V): £/, K e % , C/nV = 0}>O. If o(y,x)<6, take U,Ve
% such that xeU, yeV; then a(f? D V) < <5 so 0 D V * 0 . Now U c Fk(x) so
F D int i)(;t) =£ 0 and Fn/;(jt)_^0. But we have V c V for some V e %, in
which case V n î (x) * 0 and V" c ^(jt); thus ̂  e î (jc) c #.

This shows that H^{y: o(y, x) < 8} is a neighbourhood of * in £a. As * and
H are arbitrary, 21 c %a.

3G. THEOREM. Lef X be a connected metrizable finite cut space which is
{homeomorphic to) a Borel subset of a complete metric space. Then X is
path-connected.

Proof. The argument will depend on Martin's theorem that Borel games are
determined [15,16]. As often happens with arguments of this kind, there seems
to be a choice between letting the details swamp the ideas, and leaving rather a
lot of work to the reader. What I aim to do is to set up an infinite game with
Borel payoff set in which a winning strategy for Player I leads to a path in X and a
winning strategy for Player II would lead to a decomposition of X into
open-and-closed sets.

Of course we know already that X is separable, by 3E. It is convenient to note
at once that, for a metric space, the property of being a Borel set in its
completion is a topological one [14, § 35. IV]. So we may take any metric p on X
defining its topology and X will be a Borel set in the corresponding completion
Jtp. I choose to take for p a totally bounded metric [14, § 22.11, Corollary la], so
that Jtp will be compact. In the discussion below, topological notions such as
closure and boundary are to be taken in X unless otherwise indicated. For A^X,
I will write A~ for the closure of A in Jtp) so that A (the closure of A in X) is just
XDA~.

Now take any two distinct points x, y of X and a sequence (^lk)keN as in 3F
above, with the associated family (Fk(z))keNtZeX. Note that G must be connected
for every G e <§* (see the remark following 2E). Now set

^ = {^J}UU {dU: Ue%} = {x, y} U (X\\J %),

so that each Dk is a finite set and Dkc.Dk+1 for each keN.
By a (I, k)-chain from d to d' I shall mean a finite chain of the form

(do,UuduU2,...,Um,dm)

where do = d, d1}..., dm = d' are distinct points of Dk, Ux,..., Um are (not
necessarily distinct) members of °Uk, and d^x, dt both belong to U( for 1 =£ i ̂  m.
I will say that such a chain is covered by a set F if U( c F for 1 «s i: «s k.
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Now to describe the game. Player I must begin with the move

{x,X,y),

the unique (1,0)-chain from x to y. Given that Player I has played, for his fcth
move, a (I, k - l)-chain (d0, Ux,..., Um, dm), Player II must reply by choosing
one of the links (d,_i, Uif dt) from the chain. Player I must now, for his (k + l)st
move, choose a (I, fc)-chain from d,_x to d{ which is covered by U{. (Such a chain
always exists because U( is connected and {U: U e °Uk, t / c U{) is a finite family
of open sets with union dense in Uh)

For any particular play p of the game, write Vk(p) for the open set, belonging
to %, in the link chosen by Player II for his {k + l)st move in that play. Observe
that Vp(p) = X and that Vk+l(p) c Vk(p) for every k. Now Player I wins the play
P if OkeN Vki.p)^®', otherwise Player II wins.

Let P be the set of all plays in the game, and give it its natural metrizable
topology. To see that the set Px of plays won by Player I is a Borel set in P, note
first that if z e C\keN Vk(p) and H is any neighbourhood of z in X, then there is a
keN such that Fk{z)cH; in particular, Vk(p)cH. This means that if p e Px then
inf*^ di2unp(Vk(p)) = 0. Of course,

P' = \p: peP, inf di
I kefH

is a G6 set in P. Next, for any p eP', we have a wpeXa given by

and the map p*-*wp: P'—>Xa is continuous. Because Z is a Borel set in
jta, Px={p: pe P', wp e X} is a Borel set in P.

It follows by Martin's theorem that either Player I or Player II has a winning
strategy. Before tracing the consequences of this dichotomy, I make the following
observation. If Q c P is any closed set, write

W(Q) = Pi U {Vk(q)~: qeQ}^Xa.
keN

Then we have also

e N
Vk{q)~: qeQ\.

For suppose that w eW(Q). Then we can find qkeQ such that w e Vk(qk)~ for
each keN. Let q e Q be any cluster point of (qk)ke^ (here we need to note that
there are only finitely many moves available to a player at any particular point in
the game, so that P is compact); then for any k e N there is an / 5= k such that the
plays q( and q agree down to Player II's (k 4- l)st move, so that w € Vi(qt)~ c
Vftfoi)~ = Vk(q)~- Thus w e C\keN Vk(q)~-

Now let us look at what it means for one of the players to have a winning
strategy. The idea of the game is that when Player I offers a chain
(do, Ux, ..., Um, dm) he is claiming that there is a path from d0 to dm through the
intervening sets and points Uh d{ in that order; while when Player II responds
with the link (<i,-_i, Uh dt) he is claiming that such a path will be defective in that
link. I have to show that a strategy for either player will in some sense be
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sufficiently continuous to ensure that his claims can be assembled to form a path
or a disconnection of X.

Case 1. Suppose that Player I has a winning strategy. Let P* c P, be the set of
all plays in which Player I follows his strategy; then P* is a closed set in P. For
each k e N consider

Ck = \J{Vk(p)~: pePt}.

This is a connected subset of X containing both x and y. For if
(d0, U\, •', Um, dm) is the (k + l)st move by Player I in any play p eP*, then
every link (rf,_i, Uit d{) is a possible response by Player II, so U~ c Ck for every /.
Also, every 0t is connected so every U~ is connected. This means that if
(d, U, d') is the fcth move by Player II in p, then d and d' belong to the same
component of Ck. An easy induction on k now shows that every Ck is connected.

Consequently,

is a compact connected subset of Xa, because (Ck)keN is a decreasing sequence
of compact connected sets. But also

W(Pf) = U f H Vk(p)~: p e Pt] = {wp: p e />,*} c JT.

So x and y both belong to a connected compact subset C = W(Pf) of X. By 2A,
C is locally connected; by 3A, it is path-connected; so x and y are joined by a
path in C which is also a path in X.

Case 2. Now suppose, if possible, that Player II has a winning strategy. Let
Pj* c PYPj be the set of plays in which Player II follows his strategy; again, P,* is
closed in P. Define an equivalence relation on D = [JkeN Dk by writing d~d' if
either d = d' or there is a finite chain

d = d0, Uu dx,..., Um, dm = d'

where for 1 ^ * =s m we have Uie
Gll = U/te^ °llk, dt-x e Dh dt € 0h and no play in

Pi* has (</,-_!, Uh d{) for any of Player II's moves.
Let us investigate the relation ~. First, note that if p e P,* then f\eN Vk(p) =

0 , that is, X D f\eN y*(/0~ = 0 , so Z D W(P*r) = 0 . Let z be any point of X.
Then there is a keN such that z^LJ{Kt(p)~: P^Pfi}; because °llk is finite,
there is a connected open neighbourhood H of z which does not meet V^/?) for
any p e Pfu in which case any two members of D C\H must be equivalent for ~.
It follows at once that

{int C: C is an equivalence class in D for —}

is a disjoint cover of X by open sets. As X is supposed to be connected, we find
that D is itself the sole equivalence class for ~.

In particular, x~y. Take a finite chain

x = d0, Uudu ..., Um, dm=y

witnessing this, with all the d( distinct. Player I can use this chain to mark out a
play, compatible with Player II's strategy, as follows. He must of course start with
(JC, X, y), to which Player II must respond (x, X, y). Now, given that Player II's
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kth move was of the form {dr, V, ds) where r<s, Ur+x\J ... U t / s cV, and
d{ $ Dk-l if r < i <s, then Player I examines those dif for r ̂  / =s s, which belong
to Dk. He will be able to use all of these to form the unique (I, fc)-chain with links
of the form (dh U, d,) where (//+1U ... U t / ; c t / c y . He takes such a chain for
his (k + l)st move. Now sooner or later this will lead to Player II being
confronted with a (I, fc)-chain in which all the links are of the form (rf,_i, U, dt).
But the dh Ut were chosen among those links which he has renounced for any
move; and his strategy breaks down.

So Player II does not have a winning strategy, Player I does have a winning
strategy, and there is a path from x to y in X. As x and y are arbitrary, X is
path-connected.

3H. REMARKS. In 4M below I give an example of a connected finite cut
subspace of U2 which is not path-connected. Under special axioms the hypothesis
'X is Borel in its completion' can be materially relaxed, since X and P, are of
virtually the same type by the criteria of descriptive set theory, and it appears
consistent to suppose that there are many more determined games than the Borel
games (see [18, Chapter 6]). Note that R. L. Moore, building on a construction of
B. Knaster, gave an example of a connected locally connected Ka subset of the
plane which is not pathwise connected ([17,13]; see also [11; § 3-8]); thus in 3G
we really need to know that A!" is a finite cut space.

4. Connected spaces of finite length

I turn now to the special properties of spaces of finite length. By 1C, we can
use all the results of §§ 2-3. But we have in addition some remarkable
interactions between the length measure and the topology which lead us to an
effective structure theory for these spaces.

The starting point is M. Bogn£r's theorem that a connected set must have the
same length as its closure (4A(c)). Next, the length measure on a connected set
defines an intrinsic distance (4B) which has a variety of useful properties
(4C-4F). The 'structure theorem' is 4G-4H; it gives an effective description of
connected spaces of finite length enabling us to draw 4I-4L as straightforward
corollaries. I end with an example (4M) of a connected space of finite length
which is not path-connected; the example seems to demand the ideas of 4G.

4A. PROPOSITION. Let (X, p) be a metric space and C c.X a connected set.
(a) ^ ( O ^ d i a m ^ C ) .
(b) / / n*(C) < 00 then C is totally bounded.
(c) In any case, fip(C) = JUJ

Proof (a) If x e C, then y*-^p(y, x): X—»R is a Lipschitz-1 map onto an
interval / of R; writing A for Lebesgue measure, we have

sup p(y,x) = XI ^n*p(C)
yeC

by lA(e); as x is arbitrary, diamp(C) *s (j.*(C).
(b) If x € C and 0 < e < supyeC p( v, x), then

): CnU(x, e)^>[0, e[



462 D. H. FREMLIN

is surjective, where U(x, e) = {y: p(y, x) < e). Consequently (as in (a))

But note also that the open sets U(x, e) are [ip-measurable (see lA(a)).
Consequently, if JC0, •••, xn are points of C which are at least a distance 2e apart,
so that the balls U(xh e) are disjoint,

and n + 1 ^ (i*(C)/e. As e is arbitrary, C must be totally bounded.
(c) (This is the main theorem of [1]; but I give a shorter proof.) We may

suppose that juJ(C)<°° and that C=£0. Fix e>0 . Let E D C be a G6 set such
that ixp(E) = ii*p(C) and F c £ a closed set such that \ip{F)^ y,p(E)- e (see
lA(a)), so that fi*(C\F) ^ e.

Take neN and set Gn = {y: p(y, F)<2~"}. Take any 6 belonging to
]0, min(e, 2"")]. Let (x,),e/ be a maximal family in C\Gn subject to the condition
that p(xh Xj) 5= 2<5 if / =£;. I claim that #(/) =̂  eld. To see this, we may of course
suppose that # ( / ) ^ 2 . For each iel, set C, = {x: xeC, p(x,Xi)<8}; then
C^C, so the Lipschitz-1 function x*-^p(x, xt) takes all values in ]0, 6[ on C,,
and jUp(C,) 5= 6. As in the proof of (b), we get

) fi*p(C\F) ^ e,

which is what I said.
Now set Bi = {x: p(x,Xi)<26} for each iel; we have diamp(J5,)s£4<5

for each /, and C\GncU«e/#i> E,e/diamp(5l)
:^4<3#(/)^4e. As 8 is arbitrary,

fip(C\Gn) =s 4e. As n is arbitrary, y,p(C\F) =s4e and
//p(C) ^ ^P(F) + 4 E < /ip(£) + 4e = /.;(C) + 4c.

As e is arbitrary, //P(C) = juJ

REMARK. For a stronger form of (c), see Corollary 41 below.

4B. We now have a result paralleling 3B above.

THEOREM. Let (X, p) be a connected metric space of finite length. Define
o: X x AT-*- U by setting

o(x, v) = inf{^J(C): C c X is connected, x, y e C}.
Then o is a metric on X, equivalent to p, and n* = ii*.

Proof, (a) Of course a is a pseudometric, and o(x, y) 3s p(x, y) for all x, y, so
a is a metric. If x e X and e > 0, let U be an open p-neighbourhood of x such that
fip(U)^e. Let V be the component of U containing x; by 2A above, V is a
neighbourhood of x, and a(x, y) «s JUP(V) =s £ for every y eV. This shows that a is
p-continuous and defines the same topology on X.

(b) Because p^o, fxp(A) =£ fil(A) for every i 4 c X On the other hand, given
A c X and or > *̂*(>1) and 6 > 0, set

% = {G: G^Xis open, dG is finite, jup(G)^ 6}.

Then 3fe is a base for the topology of X. Let (Gn)neN be a sequence in %
covering X, and set Hn = Gn\[Ji<n G, for each i < n; then every Hn belongs to %
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and D = X\{JneN Hn c [JneN dGn is countable. Because every Hn is /ip-
measurable, TmeNl*p(A ^ Hn) = fi*(A\D) = np(A) < oc. Choose open sets H'n
such that AC\Hn^H'n^Hn for each n and £neN np(H'n) ^ a. Let W be the set of
components of UneN H'n; then each member of $? is open, so $? is countable, and
also every member H of M must be included in some Hn, so diamCT(//)^
(ip(H)^d. Now 2e' = $eu{{x}: xeD} is a countable cover of ,4 by sets of
cr-diameter at most <5, and

2 diama(#) = 2 diama(#)*£ 2 M # ) = 2 HP(H'n)^a.
HeX" HeX He9t neN

As 6 is arbitrary, p£(i4) ̂  oc; as A and or are arbitrary, ^* =s jzj and JU* = juj.

REMARK. The move from p to o evidently corresponds to re-parametrizing an
arc by its arc-length distance. For compact X this is due to [5].

4C. DEFINITIONS. Let (A!", p) be a metric space.
(a) I say that (A!", p) has the almost geodesic property if

p(x, y) = inf{jitJ(C): C c X is connected, x, y e C}

for all x, y eX. Observe that if o is constructed by the process of 4B then (X, o)
necessarily has the almost geodesic property.

(b) A geodesic in X is an arc T such that the length of T (necessarily equal to
jUp(F), see lA(d)) is precisely the distance between the two endpoints of F. Note
that any subarc of a geodesic is again a geodesic.

(c) I say that (X, p) has the geodesic property if for any distinct x, y e X there
is a geodesic with endpoints x, y.

REMARK. For compact X, the geodesic and almost geodesic properties (which
by 4D below coincide) correspond to p being 'convex' in the sense of [5].

4D. PROPOSITION. / / {X, p) is a compact metric space with a dense subset Y
which has the almost geodesic property then X has the geodesic property.

Proof. Let x, y be distinct points of X. Let (xn)neN, {yn)neN be sequences in Y
converging to x, y respectively. For each n e N let Cn be a connected subset of Y,
containing xn and yn, with /^(C,) ^ p(xn, yn) + 2"". Then Cn is a compact
connected subset of X with fip(Cn) = fi*(Cn) =s p(xn, yn) + 2"", by 4A(c).

By 3.16-3.19 of [7], there is a compact connected set C c ^ , a cluster point of
(Cn)neN for the Hausdorff metric on the space of closed subsets of X, containing
both x and y and with ^P(C) =£ lim inf,,^ fip(Cn) = p(x, y). (The arguments of [7]
are cast for subsets of U"; but of course they apply equally well in any compact
metric space. See also 5C below.) Now by 2B and 3A, C is path-connected, so
there is an arc F c C joining x and y; the length of F is JUP(F) (by lA(d)) and must
be exactly p(x, y).

4E. COROLLARY. / / (X, p) is a connected metric space of finite length and o is
constructed as in 4B, then the completion of (X, o) has the geodesic property.

Proof. Because fj.a(X) = fip{X)<<*>, {X, o) is totally bounded (4A(b)) and its
completion is compact; now 4D gives the result.
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4F. LEMMA. Let (X, o) be a metric space with the almost geodesic property, and
(Xa, o) its completion. Then (Xa, o) has all the properties o/3B(b)-(c) above.

Proof. These properties were all deduced from the first, that Ux(x, a) is
connected for every x e X, a>0. But in the present context

Ux(*y a) ~ U {C: C c X is connected, xeC, jua(C) < a},

so it is surely connected.

4G. THEOREM. Let (X, p) be a connected metric space of finite length. Set

Br(Ar) = {x: there is a connected open set G c l s u c h that

G\{x} is not connected}.

Then BT(X) is a Ka subset of X and (ip(X\Br(X)) = 0.

Proof By 2B and 3C, Br(AT) is a Ka set, so is pip-measurable. To find
jMp(Br(x)), first take o to be the metric on X defined by the formula in 4B, so that
[ip = fi% and fip = fia. Let (Xa, a) be the completion of (A', a), so that (Xa, a) is
a compact connected metric space of finite length with the geodesic property
(4E).

Now let D c X be a countable dense set and for each pair y, z of distinct points
in D choose a geodesic Tyz from y to z in Xa. Set

then (ignoring the trivial case in which D is a singleton) Y is a dense connected
subset of Jta, so we have

Hd(Y) = Ha(Xa) = vl{X) = ^{X) = nP(X),

using 4A(c) twice.
The point is that if T is any geodesic in Xo, then jU&(r\Br(A")) = 0. To see this,

let u and v be the endpoints of F, and take e > 0. Let V 2 T be an open set in Xa

such that (J,Q(VXT) =£ e. Define h: X—* F by saying that h(x) is that point of F for
which o(u, h(x)) = min(a(w, JC), o(u, v)), for each x eX. Then h is Lipschitz-1,
so fil(h[V\T])^E, by lA(e). Set A = h[V\T] U {u, v}. Take any weFVi. Let
<5 > 0 be such that Vx = {w1: o{w', w) < 6} c V. Then

{w1: w'e Vu h(w') = w} = {w},

so V̂ XIw} is not connected and its dense subset (X D Vj)\{»v} is not connected.
But (as remarked in 4F) X n Vx is a connected open set in X, so w e Br(A'). Thus
T\A c BT(X), and /i?(r\Br(Ar)) < p&A) =s e. As e is arbitrary, Jus(F\Br(Ar)) = 0.

Because Y is a countable union of geodesies, jua(y\Br(Ar)) = 0 and

= fid(X\Bv(X))

/za(y\Br(*)) = 0,

as claimed.

4H. REMARKS. The theorem 4G, as stated, is sufficient for the corollaries
below. But to gain a mental picture of these spaces, it seems useful to look at the
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set Y c.Xa of the proof. This is a countable union of arcs, each of which has
almost all its points (as measured by fia, which along the arc is the natural copy of
Lebesgue measure) in X, and indeed almost all these points are 'local separating
points' in X, disconnecting some open set. The proof of 3C gives us just a little
more: if °U is any base for the topology of X, then each local separating point of
X disconnects some (component of some) member of °U. If we think of Y as a
countable union of arcs of which any two intersect at most in an endpoint of one
of them (see [7,3.13-3.14]), we get the kind of picture arising in Example 4M.

41. COROLLARY. Let (X, p) be a metric space and C c A ' a connected set with
JU*(C) < oo. Then C is \ip-measurable and pp(C\C) = 0.

Proof. Applying 4G to (C, p \ C2) we see that there is a Ka set B c C
with iip(C\B) = 0; now B is /^-measurable so C also is. Accordingly 4A(c) tells
us that iip{C\C) = 0.

4J. COROLLARY. Let (X, p) be a metric space and C c Z a connected set with
ju*(C)<oo. Then C is a 'regular \-set\ that is, it is [immeasurable and, writing
U(x, a) = {y: p(y, x) < a), we have

d ( C n U( ))a[o 2a o4odiamp(Cn U(x, a))

for \ip-almost all x eC.

Proof We may suppose that X is complete. In this case C is compact (4A(b)),
so the arguments of [7, § 3.2] tell us that C is a regular 1-set. But as np(C\C) = 0,
it follows at once that C is a regular 1-set.

4K. COROLLARY. Let (X, p) be a connected metric space of finite length. Then
\ip is inner regular for the compact sets, that is, is a Radon measure in the sense
of [9].

Proof. Because \ip is certainly inner regular for the closed sets (lA(a)), 4G
shows that it will be inner regular for the Ka sets, and therefore for the compact
sets.

4L. COROLLARY. Let (X, p) be a metric space of finite length, (Y, o) any metric
space, and f: X—*-Y a Lipschitz-1 function. If E c Z is \ip-measurable and lies
entirely within one component of X, then

is \io-measurable.

Proof. We may of course suppose that X is itself connected. By 4K there is an
increasing sequence (Kn)neN of compact subsets of E with l im, ,^n p (E\K n ) = 0.
Let °U be a countable base for the topology of X. Set

gH(y) = U*{Kn Hf-*[&}]), g(y) = # * ( £ H/" l[{y}))
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for y e Y, n e N. Then {y: gn(y) ^ k} is just

{y: 3Ult..., Uk e % such that Dt D Uj = 0Vi±j, y ef[Kn D US] V/},

so is Ka and ^-measurable, for every n, k eN. Thus each gn is ^-measurable.
Now

(,:

is ^-negligible because/is Lipschitz-1 and E\JneNKn is \ip-negligible (lA(e)).
So g is also ^-measurable.

4M. EXAMPLE. There is a subspace X of If52, with n*(X)<«>, where p is the
usual metric of 1R2, such that X is connected but not path-connected.

Proof, (a) Construct sequences (si)ieN, (Sj)ieN such that
s0eU2,
Si is the circle centre s{ radius 2~',
J/6Uy</Syifi>0,
Stfl {sji j eN} is dense in Sit

for every / eN. Set Y = [JieNSi) then Y is a connected subset of (R2 and
fip(Y) = 4jt<<x>. Set Z = F; then Z is a compact connected subset of U2 and
pp(Z) = iip(Y)«», by4A(c).

Consider J5 = Br(Z), in the notation of 3C and 4G. Then np{B) = \ip{Z). Let
A c Z\B be a Bernstein set in Z\B (that is, such that A and (Z\Z?)V<4 meet every
uncountable Borel subset of Z\B). Try X = BUA. Then B c I c Z so jUp^)
exists and is finite.

(b) Suppose, if possible, that X is not connected. Then there are disjoint
relatively open sets_G, H^Z such that X<=,GUH and X0 G, XDH are not
empty and G = Z\H. Examine dG = G\G c Z. As this is disjoint from X it meets
neither B nor A. But it is compact so it must be countable. Also it is not empty
(because Z is connected) so it must have an isolated point z say. Because Z is
locally connected (2B), z has a connected neighbourhood U such that U n dG =
{z}. Then U meets both G and H and £/\{z} g G U / f s o U\{z) is not connected
and z € Br(Z) = 5, which is absurd.

(c) Suppose, if possible, that X includes some arc T. Then T\B is a Borel
subset of Z included in A, so must be countable; because B is Ka, there must be
an arc r ^ m B . Recall that by the argument of 3C, J5 = Br(z) may be
constructed as Ut/e<fcBro((/) where % is a countable base for the topology of Z
consisting of sets with finite boundary; again because every Bro(t/) is Ka, there
must be a U e °U and an arc T2 e I \ n Bro(f/).

Next observe that there is an arc T3 c r 2 which is a subarc of a closed Jordan
curve 5 c i / . For there is surely ajeN such that /ip(F2C\5,)>0.

(i) If Sj and T2 share any arc, then this arc will contain infinitely many points sit

and there will be circles 5, c: U which meet T2 twice or more, so that consecutive
points of T2 along 5, will serve as endpoints of T3.

(ii) If Sj and F2 do not share any arc, then 5,\F2 must have infinitely many
components; all but finitely many of these must lie within U, so that the
endpoints of one of them will serve as endpoints of F3.
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The set U\T3 is an open set in the locally connected space Z, so has only
countably many components. For each component C of U\T3) C is relatively
open in Z and relatively closed in UXT3, but cannot be relatively closed in U,
because Uis connected; so CDF3 =£0. There is therefore a countable set D c T 3

such that C D D =£ 0 for every component C of U\T3. Let z be any point of T3\D,
and examine the components of U\{z}. If C is a component of U\{z}, then
either 5\{z}gC or (5\{z})nC = 0 ; but the latter is impossible, because it
would force C to be a component of U\T3, in which case COD would have to be
non-empty, so that C would meet 5\{z}. So in fact U\{z) has only one
component, and z $ Bro(U); but U was chosen with F2 so that F2 c Bro(f/).

Thus we have a contradiction, resolvable only by abandoning the idea that
there is an arc T c X.

(d) Assembling (a)-(c) we see that X has the required properties.

5. Embedding theorems

I give some results to show that spaces which are topologically of finite length
can be expressed as subsets of 'good' spaces.

5A. LEMMA. Let (X, p) be a non-empty metric space of finite length. Then there
are a metric o on X and a sequence (Cn)neN of components of X such that

o is equivalent to p;
UneN Cn is dense in X;

(
Vo(Cn) - t*PCn for each neN.

Proof If X has only finitely many components, this is trivial; so suppose
otherwise.

(a) Take <S, <§* and (%)keN from 3F. Set °U = \JkeN %, D = (Jue% dU. Then
there is a family {tu)Ueql such that

tu 6 U for every Ue°U;
if U, V e °U and U c V and tv e D then tu = tv;
if U e °U and 3U * 0 then tv e dU.

For we may choose {tu)Ueauk for each k in turn, taking care that
if U e %, V e °Uk-x> U c V and tv e 0 then tv = tv\
if U e %k and either k = 0 or tv $ U, where V is the member of %*_i including
U, and if U D D =£ 0 , then tu e 0 H D is taken to minimise

min{/: 3We%, tuedW};

if t(j cannot be chosen by either of these rules (so that, in particular, 9U = 0 ) ,
any tv e U is taken.

It is straightforward to check that this construction works.
(b) Now let ^ be the set of components of X containing some ty. Then

Y = \J<€^{tu\ U e °U) is dense, so 9? must be infinite. We may enumerate <€ as
(Cn)neN in such a way that for each k eN the set

{i:

is of the form {/: / «s n} for some n. (The point is that

{tu: U6%}^{tu: Ue<Uk+l)
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for each k.) In this case we find that, for each U e%, neN,

since if C, D 0=£0 either C, nat/=?t0, so that tv G Ch or C, c (/, so that if
tv e C, either tv = tv, and i = n, or V £ U,=s* /̂> and i > n.

Observe in particular that tx e Co.
We need also to know that if U e % and r^ e Cn then £/ D C« is connected. For

if dUi=0 then d£/ lies within a single component C of D and tyedU, so
a t / c C c C and C,,n£? = C is connected; while if dU = 0 then C £ {/ and
Cw fl £/ = Cn is connected.

(c) For each n s= 1, choose £/„, (/^, $„ and s'n as follows. Take the first k such
that C fl {tv: Ue%}^0, and take Un e % such that tUn e Cn\ set 5rt = tUn\ now
observe that k > 0 because n > 0, so that we may take U'n to be the member of
°Uk-i including Un, and set s'n = f̂ . I seek a metric a, equivalent to p, such that
a(sn, s'n) =£= 2"" for each n 5= 1.

(d) Set

* = U ( C x Cn) U {(5B> O : » * 1} U { « , *„): » ^ 1}»

so that R is a symmetric subset of YxY. Observe that if U e °U and Cn is the
component of X containing tv and * e U\Cn, (x,y)eR then _y e f7. For we know
that dU^Cn. If x and y belong to the same Cm, then Cm DdU = 0 so
^ e Cm c t/. Otherwise, we have {x, y} = {5m, 5̂ ,} for some m. Now if V is any
member of °U such that fv € U\Cn, then ( v e V n ( / , so V n (/¥=0 and either
V c ( / or V =3 £/; but the latter is impossible, because tv =£r ,̂ so F c ( / .
Accordingly, if JC = sm = tUm e t/\Cn, then Um c t/ so U'm g [/ and ^ = ŝ , = fu; e U\
while if x = s'm = ry; e C/\Cn then Umc.U'mc.U and y = sm e 0.

(e) Define 0: y x y - > [0, «>] by setting

6(x, y) = inf{^p(C): C ̂ X is connected, x, y eC}

if x and y belong to the same Cn,

if n 2= 1, and

0(x, )>) = «>

if (x, y) e (y x Y)\R. Note that 0 f Cn x Cn is a metric on each Cn, as in 4B. Now
define o0: Y x y-» [0, «>] by setting

<>o(x, y) = inf 2 0(^/» -^i+i): x0,..., xn e Y, xo = x, xn=y\.

Of course ao(x, z) ^ ao(x, ^) + o0(y, z) for all x, y, z e Y.
(f) If £/e % and y e £ ? n C m then

Ooih, y)* 2 ^ P ( ^ n Q) + 2 (2"': l*i*m, sh s', e 0};

the proof is a simple induction on m. For we know that if tu € Cn then we must
have m^n, and either m = n and tJ0(?t/> ^ ) ^ (̂̂ t/> >)^Jl tp(^'^ Q)> because
UC\Cn is connected, as remarked in (b), or m>n and Cm c £/, so that 5m G U,
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s'm e 0 fl U«<m Q (see (d)) and, using the inductive hypothesis to bound
Oo(tUt s'm), we have

tv, s'm) + 0(s'm, sm) + B{sm, y)

* 2 Pp(# n ci) + 2 (2"<: 1 ^« < m, 5,-, 5; e(/}+ 2~m + ^ C

= 2 VP(U n CO + 2 (2"': 1 ^ * ^ m> s» si e t/}.

Consequently

7 n Y) *£ 2(iUp(C7) + 2 I2"': i ^ h sh si e L

(g) In particular, o0(tx, y)<°° for every y e Y, and a0 is finite-valued, and
therefore a pseudometric. Also every point of X has neighbourhoods intersecting
Y in sets of arbitrarily small ao-diameter. For given x e X, e > 0 there is a
neighbourhood G of x such that

now there is a k e N such that Fk(x) c G. If x e 3f/ for some U ̂ .°Uk then x e Y
and ao(x, y) *= 2e for every y e Ffc(x) D Y, so diamCTo(FA.(x) fl Y) =s 4e. Otherwise,
F^(JC) = 0 for that (/ e % containing x, so diamao(F*(;t) D Y) ̂  2e.

(h) If x, yeCn for some n e N , then ao(x, y) = 6{x, y). For of course
o0(x, y) *£ 6(x, y). On the other hand, if x =x0, ..., xm =y is a chain from x to y
in Y, and if E,<w 0(*/, Jfi+i) < °°, so that (JC/_!, x,) € R for each /, then either every
X; e Cn so that E,<m (̂̂ «> ̂ 1+1) ^ (̂̂ > ^) (because 0 \ C\ is a metric), or there are
first and last j , k such that Xj$Cn, xk$Cn. But in this case xJ_l=xk+l€Cn,
because the linkages between different components of Y formed by the pairs
(sm, s'm) yield no cycles. So

2 0(xh xI+1) s* 6(x, xy_0 + 0(xk+u y) ^ d{x, y).

As x0,..., xm are arbitrary, ao(x, y) ^ 0(x, y) and the two are equal.
(i) Let U, V e °U be such that 0 n V = 0 . Then ao(i7 n Y, V n Y) > 0. To see

this, let Q be the component of X containing tv and Cm the component
containing tv. Set

6 = min({2-', 2~m} U {p(x, ^): xedU,ye 9V}) > 0.

Now let x0,..., xn be points of Y such that x0 e 0, xn e V and £,<„ 0(x,, x,+1) < » .
Of course (x,_!, x,) e R for 1 =£ / =s n. Take /, A: to be first and last such that
Xj+x $ 0 and xk-X $ V- Then by (d) we must have xy € Ct, xk € Cm.

If / = m, then

/j tfyXif X(+x) ^ Go\Xj> Xk)
 == tfyXj, Xk)f

Kn

by (h) above. But also any connected set containing both xy and xk must meet
both dU and dV so must have p-diameter at least 6, and 0(x;, xfc) 5= 6, so that
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If l^m, we must have at least one of the jumps (sh s',), (s'm, sm) appearing
among the pairs (*,_i, xt) for / < i *£ k; so in this case

2 8(xh xl+1) ^ mm(d(sh s',), 0(s'm, sm)) s* S.
i<n

Because xo,...,xn are arbitrary, we have o0(0r\Y, VnY)^d>0, as
required.

(j) From (f) we see that there is a unique extension of oQ to a pseudometric o
on A" which is continuous with respect to p; that is, the topology %a defined by o
is included in the original topology %p. But now observe that if U e % then U n Y
is dense in U. Accordingly, o(U, V) = o0(U D Y, V D Y) > 0 whenever U, V e %
and 0 fl V = 0 , by (i). By (vi) of 3F, %a 3 Sp.

(k) Thus a is equivalent to p. We already know that U« 6 N Q is dense in X.
Next,

2 o(cn, U C,) ^ I ofo, O ^ 2 2 - < oo.

Finally, a agrees with 0 on each Cn; but by 4B it follows that ju* agrees with nl
on each Cn, so that (ia(Cn) = fip(Cn).

5B. THEOREM. Let (X, p) be a metric space of finite length. Then X is
homeomorphic to a subset of a compact connected metric space of finite length.

Proof. We may of course suppose that X^0. By 5A, we may find a metric o
on X, equivalent to p, and a sequence (Cn)neN of components in X such that
L L N C is dense, tn*\o(CH,\Ji<nCi)«*> and na(Cn) = nP{Cn) for each n.
Choose ($„)„*!, (s'n)n3ll such that sn e Cn and 5̂  e U«<« Q for each n ^ l and
Hn*i tf(*/t> 0 < °°- Take W to be X U Un^i T« where each Tn is a new arc drawn
from sn to s'n. Let r be a metric on W, extending o, and giving length a(sn, s'n) to
each Fn. If we set Y' = UneN Cn U U*s=i rn, then y is a dense connected subset
of W and

By 4A(c), JUT(IV)<<». So (W, r) is totally bounded (4A(b)) and its completion
(WT, f) is compact; moreover, ^^(Wr)<«» by 4A(c) again, and WT is connected
because it has a dense connected subspace Y'. Thus WT is a compact connected
metric space of finite length in which X is homeomorphically embedded.

5C. The next lemma seems interesting enough to be worth giving in greater
generality and precision than is quite needed here. It complements Theorem 3.18
of [7].

LEMMA. Let (X, p) be a metric space, 7 c X . Suppose that a^O is such that
whenever VCis a finite family of open sets in X, all meeting Y, there is a connected
set Cc.X, meeting every member of V€, such that jup(C) =£ a. Then fip{Y)^ a.
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Proof. We may suppose that X is complete and that Y =£ 0 . Now Y is totally
bounded. For given e>0, let (y,)l6/ be a maximal family in Y such that
p(yi,yj)'^2e whenever i#y. Then for any <5e]0, e[, finite / c / , we may
consider $? = {U(yh 6): ieJ}, writing U{y, y) = {x: x e X, p(x, y) < y}. If C is
any connected subset of X meeting every member of $?, then (unless J is a
singleton) n*(C n U(yh e))^e-6 for each ieJ; so juJ(C) 2* #(/)(£ - <5). But
we are supposing that such a C can always be found with nP(C)^ a, so we get
#(/)«£ max(l, a/(e — 6)). Because / and 6 are arbitrary, #(/) =s max(l, ale).
Because e is arbitrary, Y is totally bounded.

Now let 6 > 0. Set r\ = 6/(1 + 3<xd~l) > 0. Let W be a finite open cover of Y by
sets of diameter at most r\, all meeting Y. Then there is a connected set C c.X,
meeting every member of df€, with jup(C) =£ a. We know that jup(C) ==£ a (4A(c))
so that C is a finite cut space (1C) and locally connected (2A) and pathwise
connected (3A). Accordingly there is a tree FcC meeting every member of 2if
(as in the proof of 3.18 in [7]). Now we may express F as U/</c Fi where

diamp(/v) *£ 6 for each i < k,

or,

A: ^ 1 + 36"Vp(^) ^ 1 +

[7, Lemma 3.17]. Set

for each i < k. Then

diamp(£,•) ^ diamp (F{) + 4rj ^ 56 for all i < k,

diamp(£:i) ^ Ar)k + 2 diamp(iv) «£ 4r^(l + 3OT6"1) + or = or + 46.

As 6 is arbitrary, jt* *(Y") ^ a, as claimed.

5D. LEMMA. Let {X, o) be a compact metric space of finite length with the
geodesic property and AczX a non-empty finite set. Then we may find a connected
compact Kc.X and a Lipschitz-1 function g: X-+K such that

(i) AcK,
(ii) g(x) = x for every x e K,

(iii) g " 1 ^ } ] = {a} for every aeA,
(iv) \ia-almost every point of K has an open neighbourhood in K homeomor-

phic to the open interval ]0, 1[.

Proof. If #(Ar) =£ 1, this is trivial; so let us suppose that dian^A!") > 0.
(a) First note that there is a countable compact set F c X such that whenever

aeA, xeX\{a) there is a yeF with o(x,y)<o(a, y). To see this, set
/„ = diama(Ar)/(V2)" for each neN, and choose for each aeA, neN an
<*an e ]yn+i> Yn] such that Fan = {x: o(a, x) = aan) is finite; such an aan will always
exist by lA(e). Set F = AUUaeA>neNFan; then F is countable and compact
because A is finite. If aeA, x e X\{a), let n be such that yn+x < o(x, a) =£ yn. Let
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T be a geodesic from a to x, and let y be the point of Y such that o(a, y) = aro „+,.
Then yeF and o{a,x)^yn = 2yn+2<2o(a,y), while also (because F is a
geodesic) o(a, y) + o(y, x) = o(a, x); so o(x, y) < o(a, y).

(b) Consider the family <1> of all Lipschitz-1 functions / : X—>X such that
f(y) = y for every yeF. Then 4> is a compact subset of the space of all continuous
functions from X to itself with the topology of uniform convergence, and
composition is continuous on <I>; moreover, the map / »-»/[A'] is a continuous
function from <£ to the space X of compact subsets of X with the Hausdorff
metric. Because composition is continuous on O, the set <J>0 of idempotent
functions (i.e., functions such that f°f=f) is closed in O. Accordingly,
{f[X]: f e <J>o} is a compact set in % and must have a minimal member K; take
g e $ 0 with g[X] = K. Observe that if a e A and x e X\{a}, there is a y e F which
is nearer to x than to a; but g(y) = y, so y is also nearer to g(x) than to a, and
g(x)^a. Thus g " 1 ^ } ] = {a} for every a eA.

(c) I have still to prove (iv). If x and y are distinct points of K, there is a
geodesic T from JC to y in A". But because g is Lipschitz-1 and g(x) =x, g(y) =y,
g[T] must be a geodesic from x to y in K. Thus K has the geodesic property.
Being separable, it has a dense connected subset Y which is a countable union of
geodesies (as in the proof of 4G), and JUCT(Y) = iia{K) by 4A(c). Thus juCT-almost
every member of K lies on a geodesic in K.

(d) Now let F be any geodesic in K, and e>0 . Let V be an open
neighbourhood of T in X such that iia{V\T) < e and dV is finite. (The first
condition is satisfied by any neighbourhood small enough, and the second is
achievable because X is a finite cut space and T is compact.) Take x0, xx to be the
endpoints of T and let h: A"—>T be the Lipschitz-1 function defined by saying
that

h(x) e F, o{h{x), JC0) = min(a(jc, x0), o(xl, x0)) for every x e X.

Then fia(h[V\T]) < e and h[F] is countable so there is an open set # 3
h[(V\Y)UF]U{xo,x1} with [ia(H)^e. The components of HHT are all
intervals in T, with lengths totalling at most e. Let E be the union of all those
components of HHT which meet h[FU dV]U {xQ, *i}; because FUdV is
compact, E is a finite union of connected sets, and pia(E) = (ia(E) =s fxo(H) =£ e.

(e) Let y be any pointof T\E. The component 7 of T\E containing y is an
interval in T; let y0, yi e £ be its endpoints. Note that neither belongs to H, so
that V H /^[{y,}] = {yj for both i; also ay n /i"1^] = 0 , so

v n h~x[J\ = vnh~l[ju {y0, y,}] = (v nh~l[j]) u {y0, * } .

Examine W = V fl/i"1^]. Because / is relatively open in F, W is open in A";
and W c V n /T*[/] = W U {y0, ^ } . Thus 9W = {y0, y j .

(f) We may therefore define gt: X—>Kby setting

, x = ( ^ ) ifg(x)eX\W,
8A > \h(g(x)) ifg(x)eW,

and g! will be continuous. In fact, gt will be Lipschitz-1, because g and h and h °g
are Lipschitz-1 and X has the geodesic property, so that if z eg'^XWV],
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z'eg~l[W] then

o{z,z')^o{g{z),g{z'))
= min(a(g(z), y0) + a(y0, g(z')), o(g(z), yx) + o(yx, g(z')))
s* min(o(gx(z), y0) + o(y0> gx(z')), o(gx(z), yx) + o(yx> gx{z')))
= o{gx{z),gx{z')).

Furthermore, gx is idempotent. For if x eg~l[X\W], then gx(x) = g(x) e X\W,
so g(gx(x))=g(x)eX\W and *?(*) = *(*) =*i(x). While if xeg~l[W], then
gi(jc) = h(g(x)) e T c K, so gl(x) = g(gt(x)) = A(g(gi(x))) and g?(x) = gl(x).

Finally, if jceF, then g(x)=x$W, because 7n/i[F] = 0 , so F D W = 0 .
Putting these together, we have gx e <J>0- Also, gi[A"] c AT. By the choice of AT, we
must have gx[X] = A". Now consider KC\W. If xeKDW then g(jt) = x e W so
gi(jt) = h(x) e T; but also gx(x) = x, because gx is idempotent. Thus K D W c T
and 7 = r n W = /CDW is a relatively open set in ^ , containing _y, and
homeomorphic to ]0,1[.

(g) Thus if we write M for the set of points in K which have relatively
open neighbourhoods in K homeomorphic to ]0,1[, we see that F\£cAf
and ju*(r\A/) ^ fta(E) «s e. As £ is arbitrary, (ia(T\M) = 0; as F is arbitrary,

This completes the proof.

5E. LEMMA. Let (X, p) be a compact connected metric space of finite length and
B c i 3 an open ball. Suppose that I c l is a finite set and h: I—* dB an injection.
Let £>0. Then we can find f, (Bj)ieN such that

(i) / : X-* B is a continuous function;
(ii) f~l[dB] = / and f extends h;
(iii) each Bt is an open ball included in B;
(iv) Bi

(v) E/e

(vi) for every ieN, f~l[Bi) is connected, diamp(f~
l[Bi]) =£ e and f~l[dBt\ is

finite;
(vii) / \ X\f~\\JieN Bt] is injective;

(viii) /[^JXU/g^ Bj can be covered by finitely many straight-line segments, none
perpendicular to any axis ofU3.

Proof, (a) The result is trivial if #{X) ^ 1; so let us suppose henceforth that X
has more than one point.

Let o be the metric on X constructed by the method of 4B. Then (X, o) has the
geodesic property (4E). Note that p^o. Let 6 be such that 0<6=s^e,
8 <diamCT(A') and 8 < o(x, x') for all distinct x, x' el.

(b) Let / 4 c Z b e a finite set, with diama(<<4) > 6, such that / c A, o(x, A) *s 8
for every x e X, and any connected set C including A has fj,a(X\C) < 8 (using
5C). Let K, g be obtained from X, o, A as in Lemma 5D. Then K = g[X] is
connected, so fj.a(X\K)<8. Because g is Lipschitz-1, fia(g[X\K]) < 8 (lA(e)).
Write

M = {x: x e K, x has an open neighbourhood in K homeomorphic to ]0,1[},

so that (ia{K\M) = 0. Fix on a countable dense set D c K and a point d0 e D.



474 D. H. FREMLIN

(c) Let G be a relatively open subset of K, including

(K\M)Ug[X\K]UD\JI,

and with jua(G) ^ 6. Set

H = \J{V: V^Kis relatively open in K, (ia(V\G) = 0}.

Then H is relatively open in K, fia(H) = fio(G) ^ 6, and V <=.H whenever V c K
is relatively open and fia(V\H) = 0.

(d) Because K is locally connected (2A), the components of H are relatively
open in K. If x, x' are distinct points of /, then o(x, x') > 6 s* na(H) 2s diama(C)
for each component C of H, so x and x' must belong to distinct components of H.
Enumerate / as (.*,),<„•. Because K\M is compact, it is covered by finitely many
components of H; enumerate the components of H meeting (K\M) U / U {d0} as
{Hi)i<n where n 2*n' and xt e Ht for i <n'.

Choose open balls B{ c B, for i < n, such that their closures are disjoint,
diam(5J) =* 2~'~1e for each i, and for i<n' the ball B( is internally tangent to B at
h(xf) e 9B.

(e) Now consider K' = K\[^Ji<n Ht. This is a compact subset of M, so each of
its points lies in a relatively open subset of K homeomorphic to ]0,1[, and there
is a finite cover (Ej)j<m of K' by relatively open subsets of K\{dQ}
homeomorphic to ]0,1[. Observe that the union of two such sets cannot be
homeomorphic to the unit circle S1, -because it would then be a proper
open-and-closed subset of K. Consequently, if two of the E} meet, their union is
also homeomorphic to ]0,1[, so we may take it that the Ej are disjoint. If C is any
connected relatively open subset of K, and / < m, then E, n C is either an open
interval in Ej or the union of two open intervals, one at each end of Ej. In any
case, dK(Ej n C), the boundary of Ej D C in K, is finite. So

is finite for every component C of H.
(f) If Co, Cx are distinct components of H then their closures are disjoint. For

otherwise there is a point x e dKC0C\ dKCx. Now x e Ej for some j<m and
Co H Ej, Cx D Ej must include open intervals in E) abutting at x. Thus x belongs to
an open interval V c £ y such that V\(C0U Ca) = {x}. But now V is relatively
open in K and (ia(V\H) = 0 so that x e V c H, which is absurd.

(g) Set / = U/<* dKHi. Then / is finite, and each point of / belongs to dKHi for
exactly one i < n. We may therefore choose a function hx: J U /—> B such that ht

extends h, hx is injective and hx(x) € B D <9/?, whenever x e dKHi- (Of course
)

Examine K' = Uy<m £y\Ui<« ^/ again. Each E}\{Ji<n Ht is a finite disjoint
union of arcs with endpoints in / , so we may express K' as {Jk<t Tk where the Tk

are disjoint arcs. For each k<l let uk, u'keJ be the endpoints of Tk. Choose a
disjoint family (Ak)k<i of polygonal arcs in B\{Ji<n Bt such that, for each k,

(i) the endpoints of A* are hx{uk), hx{u'k),
(ii) no line segment of Ak is perpendicular to any axis in IR3,
(iii) Ak n U/<* Bi = {hx(uk), hx(u'k)} precisely;

there is room for these because all the /?, are disjoint (and we have three
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dimensions to move in). Note that as jua(/f) =s 6 < diama(y4) *£ dmma(K) *s
lAa{K), we surely have / > 0.

(h) Now enumerate the components of H\\Ji<nHi as (Hi)i9n. (They must be
infinite in number because D c H is dense in K and juCT(//) < no(K) = Ho(H),
while Ho(C) = juCT(C) for every component C of H, by 4A(c).) For each i^n, Ht

is an open interval in exactly one Tk; let us define k{i) by taking Ht c Yk(i). Let yh

y[ be the endpoints of Ht in r ^ ; note that the yh y[ are all distinct from each
other and from the uk, u'k, by (f).

Assign in turn, for each / s= n, an open ball Bt c B and points z,, z\ e B in such
a way that

(a) Zi, z\ are distinct points of A (̂j) belonging to the interior of one of the
straight-line segments constituting A^(/), and #, is the open ball with these
points as a diameter;

(p) Bt D Bj = B,: D A* = 0 for j<i,k<l,k±£(/);
(Y) 5, n Ajt(,) is precisely the closed line segment with endpoints zh z\\
(6) if n^j<i and k = k{i) = ^(y), then h(uk), zh z\, z,, z), h(u'k) are distinct

and appear in the same order along Ak as uk) yh y\, yjt yj, u'k appear along

(e)

Moreover, take care to do this in such a way that Afc n {Ji3sn Bt is dense in A*, for
each k < I; this will be possible because Tk C\ Ui&n Hi is dense in Tk for each k.

(i) Set K" = K\H; then {yr. i^n}U {y'± i ^ n) is dense in K", and there is a
unique continuous injection h2: K"UI—>B such that h2(yi) = zt and h2{y'i) = z\
for every / ̂  n, h2(uk) = hx(uk) and h2(u'k) = hx(u'k) for every k < I, and h2(Xj) =
h(Xi) for every / < n ' . Observe that h2[Tk\H] = A^ \U , € N Bt for every k<l, so

(j) By Tietze's theorem, there is for each ieN a continuous 0f: / / , -^B,
extending h2 \ HL and such that 4>Tx[dBi] = h2

l[dBi] = dHt U (#, n /). Now we
have a common extension <f) = h2UU/6N <t>i- K-*B, which is continuous because
h2 and all the 0, are continuous and lim,^.^ diam(fi,) = 0.

Examine the function <f>. We see that
<j>~l[dB] = I and <f> ex tends h;
<l>~1[Bi] = Hi for each i eN;
4>-x[dBi] = dHi U {Hi D / ) for each ieN;
<p~l[Bi] = Hi\I for each i e N;
(f> \ K" U / = h2 is injective;
0ffl\U<«a/EU*<f A* U *[/]_•
(k) We need to know that g 1[HI]cAr is connected for every ieN; this is

because dKHi^g[X\K] = <Z>, so that g~l[Hi\ = Ht Ug~l[Hi]. But of course any
component C of g"*[//,] must be open in X (because X is of finite length, so is
locally connected, and g~l[Hi] is open), so CC\H,^dC^0. Thus every
component of g"^//,] meets //,; because Ht is connected, so is g~l[Ht].

Note also that gtA'YK] c /A / , because / c , 4 , so g"1^*}] = {x} for each x el.
(1) Now set / = <f>g: X^B. We see that

(i) / i s continuous;
(ii) f~x[3B] = g~l[/] = / and / extends h, because g(x) = x for x e I;

(iii) each Bt is an open ball included in B;
(iv) Btn Bj for /=£/;
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(v) E,6N diam(fl,) ^ E,eN 2"'-1e = s;
(vi) (a) for each i e N, f~l[Bi] = g~l[Ht] is connected;

(P) for each i e N,

26 ^ e;

(Y) for each i 6 N, / " ^ f l , ] = g " 1 ^ n /) U 3//,] = (//, n /) U 5//, is fin-
ite, because gfAA/C] does not meet dHUl;

(vii) / r *\T1[UieW *d = / r ( * V l [ # ]) U / = / r K" U / = fc2 is injective;
(viii)/[A'JXU/eN^i sU*</AfcU/i[/] can be covered by finitely many line

segments, none perpendicular to any axis.
Thus the lemma is proved.

5F. As in 5C, I give a lemma in a form which goes a little further than is
absolutely necessary.

LEMMA. Let Y c Un be a connected set, where n ss 1. Write p for the Euclidean
metric of U". Then

where j^h(a)da is the supremum of the integrals J g(a) da as g runs over the
Borel measurable functions with g(a) *s h(a) for every a e U.

Proof, (a) For any AcUn, set

Observe that y(A\JA')^y{A) + y{A') if AC\A' = 0. I wish to prove that

(b) Suppose first that A^U" is connected, aeA, <5 >0 and that
A£U(a, 6) = {x: p{x,a)<6). Then y(A n U(a, 6)) ^ 6. For let 77 > 0, and
consider the sets Et = n^A D U(a, 6)] for each / < n , where Kf: W^>U is the ith
coordinate map. Let C, be the component of £, containing ^,(a). Then there is an
interval Jt 3 C, such that neither endpoint of /, belongs to E, and A(/,) ̂  A(C,) + rj,
where we write A for Lebesgue linear measure. Set V = (~]i<nJt~l[Jj]. Then
V r\AC\U(a, 6) is relatively open-and-closed in A n U(a, <5); because y4 is
connected and not included in U(a, 6), there must be a point

xeVHAD U(a, d) n

But now Jii(x) e 7, for each i, so

6 = p(a, x) ^ 2 l^(fl) - w,(*)| ^
i<n i<n

^ nrj + 2 A,(£,) ^ n?7 + y{A D (/(a, 6)).

As 7) is arbitrary, we have the result.
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(c) We may suppose that i//(Y)<a>. In this case /zp(Y)<<». For let <5>0; let
be a maximal family in Y subject to the requirement that p(yh y}) 2= 26 for

/ =£/*, and consider ^(YH U(yi, <5)) for each i. We have

U(yh 6))
! € /

at least if # ( / ) > l , and #( / )^max( l , ^ - ^ ( Y ) ) . Now Yc[Ji<nU(yh28) and
E,e/diamp £/(>>,, 26) <4<5#(/)ss4max(<5, T//(Y)), while diam(t/(#, 26)) ^ 4 6 for
each 1. As 6 is arbitrary, jup(Y) ^4t//(y).

(d) To remove the constant 4, we may argue as follows. Consider the compact
connected set Y. We have jup(Y\Y) = 0 (41), so that

A({*: #*({>>: y e Y, y(i) = a}) * #*({>>: y e Y, y(i) = a})}) ^ k(xt[Y\Y\) = 0

for each i, and V ( ^ ) = V'(^')- Now consider any arc T c IR", with endpoints a, b.
Then surely V ( H ^ £,<„ lf l(0~^(0l ^ P(a> b). Breaking T up into subarcs, we
see at once that ip(T) is greater than or equal to the length of T, which is just
fj.p(T) (lA(d)). But now, given 3>0, we can find a tree F c f . a finite union of
arcs, with jup(F) 2= JUP(Y) - <5; so that

As 6 is arbitrary, jup(Y)^ t//(Y).

5G. LEMMA. Lef YclR" be a compact connected set. Suppose that for each
i<n the set {y: yeY, y(i) = a} is finite for almost all aeU. Then Y is
homeomorphic to a subset ofW of finite length.

Proof We may suppose that Yc[0, 1]". For each i<n, set £,(<*) =
#*({y: yeY, y(i) = a}). Then g, is measurable (because Y is compact), and
finite almost everywhere, by hypothesis. Define #,: [0, 1 ]-•[(), 1] by setting

for each a e [0, 1]. Define <l>: [0, l]"-» [0, 1]" by setting <f>(y) = (<t>i(y(i)))i<n for
each y e [0, 1]". Then <f>[Y] is homeomorphic to Y, and

#*({z: z € <t>[Y], z(i) = a}) da ^ 1

for each i. By 5F, 0[Y] has finite length.

REMARK. The hypotheses of this lemma can be significantly relaxed.

5H. THEOREM. Let (X, pi) be a metric space of finite length. Then it is
homeomorphic to a subspace of some compact connected subspace ofU3 of finite
length.

Proof In view of 5B, it will be enough to consider the case in which X is itself
compact and connected,

(a) The first step is to construct sequences (hn)neN, (2ftn)neN such that, for
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every n eN,

(i) hn is a continuous function from X to U3,

(ii) $ftn is a family of open balls in U3 with disjoint closures,

(iii) h~l[B] is connected and h~l[dB] is finite, for every B e 0$n,

(iv) hn \X\Kl[\J®n] is injective,
(v) hn[X]\J $n can be covered by finitely many line segments, none

perpendicular to any axis of R3,

(Vi) U ^ n + l S U ^ ,
(vii) hn+l agrees with hn on X\h~x^J $}n],

(viii) KU[B] = Kl[B] for every B e ®n,

(ix) lim^o,, E {diam(fl): B e LU* %} = 0,
(x) limn_^ supfle3Bn d i a m p ^ 1 ^ ] ) = 0.

Construction. Start with 5 0 an open ball of diameter 1; set S80= {Bo} and let
h0: X^Bobe any continuous function.

Given hn and S8rt, let Bn be a member of 58n with maximal diameter. Set
Xn = h-1[Bn], In=h~1[dBn]. By Lemma 5E, we can find (Bni)ieN,fn such that

(a) fn: Xn—*Bn is a continuous function;
(P) / ^ [ S B J = /„ and/„ extends hn\In\
(y) each Bni is an open ball included in Bn;
(6) Bni DBnj = 0 if i ,fe/;
(e) E^diam(fin <)^2-"-1;

(£) for each / e N , Z ; 1 ^ ] is connected, diamp(f-
l[Bni])^2~n and fnl[dBni) is

finite;

(TI) /„ \ Xn\f-
x[\JieU Bni] is injective;

(9) /.[A^JNUICM ^«i c a n be covered by finitely many line segments, none
perpendicular to any axis of U3.

Now set

hn+1(x) =fm(x) for x e Xn, = hn(x) if x €

It is easy to check that this construction of (hn)neN and (Bn)neN achieves
(i)-(viii). For (ix), observe that if we set 38 = \JneN % = {Bo} U {£„,: n, ieN},
then Efl6gBdiam(fl)s2 2; consequently {5n: n € N} must be the whole of S3, so
that

2 fdiam(fl): B e (J 2U = 2 diam(flr)->0

as n—> °°. As for (x), given e > 0, let n e f̂J be such that 2~" =s e. Then

so ^ = {B: BeS8n, diamp^"1^]) > e} is finite. Let ms^n be such that
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r<m). Then

U $r £ (SBWW) U {flri: r^n,ie

so diamp(/ir
 X[B])*s e whenever r ^ m and 5 e S8r. (Note that it is a consequence

of (i)-(viii) that h~l[B] = h~x[B] whenever r^n and Be $„.)
(b) Now (vii)-(ix) show that (hn)neN is a uniformly convergent sequence of

functions; let h be its limit, so that h: X—>IR3 is continuous. If neN and
x e X\h~l[U $„], then /ir(x) =/*„(*) for every r^n, so /i(x) = /!„(>:); while if
B e $}„ and JC € / ^ [ B ] , then /ir(A:) e B for every r ^ n, so h{x) e B. Accordingly
we have h[X]\J {B: B e %} chn[X]\\J % covered by a finite number of line
segments, none perpendicular to any axis. Now take any i < 3. Let jr.,: [R3—» U be
the ith coordinate map, and write A for Lebesgue measure. Because

a s n —^<», w e s e e t h a t f o r a l m o s t e v e r y a e U t h e r e i s a n n e N s u c h t h a t
atU{Xi[B]: Be®n}. But for any such oc, h[X] (1 jr~l[{a}] must be finite,
being covered by finitely many line segments not parallel to the ith axis, so each
meeting •7r7"1[{a'}] m a t m o s t o n e point.

Thus Lemma 5G tells us that h[X] is homeomorphic to a subspace of IR3 of
finite length.

(c) Finally, h is injective. To see this, take any distinct points x, y e X. Let
n e f̂J be such that dianip^"^/?]) < p{x, y) for every B e $&„. Let us examine four
possible cases.

(a) If neither hn{x) nor hn(y) belongs to U 58n then we have h(x) = hn(x) =£
hn(y) = h(y), using Condition (a)(rv) above.

(P) If hH(x)*\J®n and hn(y)eBe®n then yeK\B]t so x$Kl[B] and
h(x) = hn(x)$B, h(y)eB; so h(x)*h(y).

(Y) Similarly, if hn{x) e l j ^ and hn{y) $ \J ®n then h{x)±h(y).
(5) Finally, if /*„(*) e B e mn and hn(y) e f l ' e ^ t h e n B * B', s o B n B ' = 0

and h(x)eB must be different from h(y)eB'.
Thus h(x)¥ih(y) in all cases; as x and y are arbitrary, h is injective. Because X

is supposed to be compact, it follows that X is homeomorphic to h[X], and
therefore to some subspace of IR3 of finite length.

51. REMARKS. Note that any separable metrizable finite cut space must be
homeomorphic to some subspace of IR3, by Hurewicz's theorem [12, Theorem
V.3]. The extra work above, answering a question of [6, p. 140], seems necessary
to show that if we start with a space of finite length, we can finish with a space of
finite length for the usual metric of U3.

In both 5B and 5H, I offer constructions for new equivalent metrics still giving
finite length to a space. It is natural to pause for a moment to consider the
relationship between \ia and \ip if o and p are equivalent metrics on the same
space X both giving it finite length. Even if X = [0, 1], it is possible for \xp and jUa

to be mutually orthogonal as measures. So we may ask: given a metric space
(X, p) of finite length, can it be embedded in a space (Y, o) of finite length, in
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such a way that \ip and /ia \ X are mutually absolutely continuous (or even more
closely related), and Y is compact, or connected, or R3?

6. Topological characterizations of finite length

In [21,4,10,6], some remarkable characterizations of compact connected
spaces of finite length are given. Here I show that many of their formulations are
sufficient to describe metric spaces of finite length even without assuming
connectedness or compactness.

6A. DEFINITION. A topological space (X, S£) is topologically of finite length if
there is a metric p on X, defining the topology %, for which ju*(Ar) <°o.

REMARKS. Of course a space which is topologically of finite length has to be
metrizable, and moreover has to be separable, as remarked in IA. We know also
that it must be a finite cut space (1C). So generally in this section I shall be
dealing with separable metrizable finite cut spaces.

6B. THEOREM. Let (X, St) be a separable metrizable finite cut space. Then the
following are equivalent:

(a) X is topologically of finite length;
(b) for each pair x, y of distinct points of X there is a finite family *3Cxy of perfect

non-empty subsets of X such that every connected subset of X containing
both x and y includes some member of VCxy;

(c) for each pair x, y of distinct points of X there is a finite family s&xy of subsets
of X such that no countable compact subset of X includes any member of
sixy and every closed connected subset of X containing both x and y does
include some member of s$xy;

(d) for each pair x, y of distinct points of X there is a continuous function
f: X^>U such that

{a: f(x)<a<f(y),f-l[{a}] is finite}

is uncountable.

Scheme of proof. It is obvious that (b) implies (c); the proof will therefore be
given in three parts 6C, 6E and 6F below, showing respectively that (a)^>(b),
that (c)=>(a) and that (a)=>(d)=>(c). In between is a lemma (6D) which is
supposed to clarify the difference between (b) and (c), which is actually very
small.

6C. Proof of 6B (a)=>(b). Let p be a metric on X defining 5E and with
Hp(X) < oo. Let x and y be distinct points of X. If they belong to different
components of X take jfcxy = 0 and stop. Otherwise let C be the component of X
containing them. Let $? be the set of connected relatively open subsets of C with
finite boundaries in C; then df€ is a base for the topology of C (see 2C). Define
/ : C—>U by setting f(z) = p(z, x) for each zeC; then / is Lipschitz-1. For
HeW, define gH: R-*NU{°°} by setting gH(a) = #*(// nf~l[{a}]) for each
a e i ; then gH is measurable for Lebesgue measure A (4L) and finite almost
everywhere (lA(f)). Let % c $f be a countable base for the topology of C. Then
there is a perfect set K c ]0, p(x, y)[ such that k(K) > 0, gu \ K is continuous for
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every U e°U, and gc\ K'\s constant and finite. Suppose that gc{<x) — n for every
<xeK. Of course n 2* 1 because f[C] 3 [0, p{x, y)).

Fix aoeK such that X(Kn[a0— 6, <xo+d])>0 for every <5>0. Enumerate
f~l[{ao}] as (*,),<„. Take a disjoint family (Ui)i<n in °U such that x, 6 £/, for each
1. Then gu^o) = 1 for each i; because gy. \ K is continuous, there is a 6 > 0 such
that gui(a) = 1 f°r every i<n, ae K' = KC\ [a0 — 6, ao+ 6]. We may suppose
also that 6 is so small that \ao—f(z)\ > d for every z e {Ji<n dU{ U {x, y) (the
boundaries being taken in C).

Set E; = Ui C\f~l[K'] for each / < n. Then each E{ is a Borel subset of X and
f[Ei] = K' so //P(£:I)^A(/C')>O. Recall that \ip \ 9>C is inner regular for the
compact sets (4K), so there is for each i a perfect set K( c Et with jup(^,) > 0.

Suppose, if possible, that there is a connected set C ' c Z , containing both x
and y, but not including any Kt. Take z, e K,\C for each i < n, and examine

U{z: z e Ui,f(z)<f(zi)},

/<«
Then V and W are relatively open in C, because if z 6 c?£/, then either
f(z) < min(or0, /(z,)) or /(z) > max(a0) /(z,)). Also VUW = C\{zt: * < n} 2 C ,
V C\W = 0, j c e l ^ n C and y e W f l C . Of course this is impossible, because C
is supposed to be connected.

Thus any connected subset of X containing both x and y must include some Kh

and we can set %xy — {Kji i < n) to witness (b).

6D. LEMMA. Let X be a connected, locally connected metric space. Suppose
that AQ, ... , An are subsets of X which are not relatively compact in X. Then for
any distinct x, y eX there is a closed connected C c Z such that x, y eC but
A; ^ C for every i «s n.

Proof. We may suppose that X is a dense subset of a locally connected
complete metric space {Xa, o) constructed as in 3B. For each / ̂  n let (ajj)jeN be
a sequence in At with no cluster point in X. Let Ft be the set of cluster points of
(fl,y)yeN in Xa, and set F = U/««^ <^Xa\X. Then Xa\F is connected and locally
connected, so by the Mazurkiewicz-Moore-Menger theorem (3A) it is path-
connected and there is a path T c= Xa\F from x to y. For each i^n there must be
a j(i) e N such that aiJ(i) $ T, because F( C\ T = 0 and T is compact. Because Xa is
locally connected, there is a connected open set W c Xa such that F c W and
aiKi) =£ W for each i ̂  n. By 3B(e), WHX is connected, soC = A r nWDA r i sa
relatively closed connected subset of X not containing any «,,/(,), so not including
any Ah while of course it contains x and y.

6E. Proof of 6B (c)=>(a). Now let us assume that (X, S£) satisfies Condition
(c), and seek a metric p defining % for which ^(X) < ».

(a) Write 5if for the set of uncountable compact subsets of X. For distinct x,
y s X write
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If Cc.X is a closed connected set containing both x and y, then C is locally
connected (2A), so we can apply 6D to C and

= {A: Ae s&xy, AQ

to find a closed connected C c C not including any member of si, but containing
both x and y\ now C" must include some A e . s ^ , in which case A e 3 ^ and
i c C . Thus every closed connected set containing both x and y must include
some member of 3£xy.

y

(b) Take ^, <3*, (%)keN and ( / ^ ( x ) ) ^ , * ^ as in Lemma 3F above. Write
%=U %, Dk = \J{dU: Ue%},

kN

Then <£ is countable, so there is a family (17*)/Ceg of strictly positive real numbers
such that E/o=s VK ^ 1- For each # e <£, there is a subset of K homeomorphic to
{0,1}^, so there is an atomless Radon probability fiK on X with fiK(K) = 1. Set
li = ^Ke'$rlKllK- Then ju is an atomless Radon measure on X, [iX^l, and
fiK^r)K>0 for every tf e %.

(c) For £/ e % set

inf{e*: k e N, U e %}

where ek = \l(k + #(%)) for each k e N. For x, y e X set

p(x,y) = i n f { 2 v ( ^ ) : neN, Uo>... ,Une%

xeU0)ye Un, 0t D

Then

p(x, z) ^ p(x, 3;) + p{y, z) for all x, y, z e X.

(d) If x e X and e > 0, let G be an open neighbourhood of x such that
ju(G) ^ £. Let /: ̂  e"1 be such that Fk(x) g G. Then /^(x) is a neighbourhood of x
and if y e iVc(x) there is a U e °Uk such that x, y both belong to U, so that

p(x, y) ^ v(U) ^ n{0) + ek*i JM(G) + i ^ 2e.

As ^ and e are arbitrary, p is a continuous pseudometric, and the topology %p

defined by p is no larger than SE.
(e) Let k e N. Set

<5* = min({£,: i^k}U{rfK: Ke%k})>0.

Then p(VOj Vi) ̂  5* whenever Vo, Vi are members of ^ with Von V, = 0 . For
suppose, if possible, otherwise. Then there must be a finite chain Uo,... , Une°U
such that ( / o n y o # 0 , £/„ n Vi # 0 , 5 H C//+1 ^ 0 for / <n and £,•*„ v(f/,) < 6fc.
Take such a chain of minimal length. Observe that for i^n, j^k we have
v(Ui) <Sk^ Sj so Ui must belong to some % for r > k. So Vo c£ t/0 and VX$LUX.
On the other hand, we cannot have Uo^ Vo or t/n c Vn, because n is minimal. So
in fact Uor\Vo = 0 and dU0n dVo*0; similarly, dUnndVl*0. The same
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argument shows that, because Ut £ Ui+1 and Ui+l<f:Uh dU, C\ d(Ji+l ¥=0 for each
i < n, if n > 0. However, all the Ut are supposed to belong to CS*, so each Ut has a
component C, including dUt. The union C = {Ji<n C, is now a connected subset of
LU* 5 meeting both 5F0 and dVi; take jceCfl 9V0, yeCndVt. Then C is a
closed connected set, so by (a) above includes some member K of %xy. In this
case Ke%k, so

6k<riK^n(K)*£M(C)^ S KUd* S v(l/,)< 6k,

which is impossible.
This shows that p(V0, Vx) ^ 5k, as claimed. By (vi) of 3F, ^ c ^ , so £ = £CT.
(f) Finally, take any 6 > 0. Because every JU^ is atomless with compact

support,
lim sup{fiK(D): Ue%}=0

for every K e %. It follows that

lim sup{fi(U): Ue%} = 0.
k—»°°

Let A: be such that k ^ 1/6 and fi(U) ^ <5 for every £/€%*. Then

diamp(f7) ^

for every U e°Uk. Moreover,

because ju is atomless, so fi(U) = in(U) for every Ue^ilk. As 6 is arbitrary,
2 < oo. So p is a metric witnessing (a).

6F. Proof of 6B(a) =>(d)=>(c). For (a)=>(d), take a metric p witnessing (a),
and set f(z) = p(z,x) for zeX; by lA(f), /~r[{a}] is finite for almost all

Now assume (d); I have to show that (c) is true. The argument for this is mostly
in 6C. If x and y do not belong to the same component C of X, take s&xy = 0 and
stop. Otherwise, take $? and °U as in 6C, and a continuous function / : X—»[R
such that

Bo = {a: f{x) < a <f(y), /"'[{a}] is finite}

is uncountable. Let neMbe such that

is uncountable; of course n s* 1 because f[C] 3 Bo. For each cxeBl} there is a
disjoint family (Uj)i<n in °U such that U( meets/"^{ar}] for each /; because Bx is
uncountable and °U is countable, there is a fixed family (Uj)i<n in % such that

B2={a: aeB1,Uinf-1[{<x}]*0
is uncountable. Take a0 e Z?2 such that B2 H [<*0 — 6, ar0 + 6] is uncountable for
every 6 > 0. Fix 6 > 0 such that |or0 - / ( z ) | > 6 for every ze{x,y}U \Jt<n dM,
taking the boundaries in C, as in 6C. Write B3 = B2 H [ar0 — S, a0 4- 6].

Set E{ = Ui C\f~l[B2] for each i < n. Then, just as in 6C, every connected set C
containing both x and y must include some £,. So we may take s£xy = {£,: / < «}.
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6G. COROLLARY. Let X be a separable metrizable finite cut space.
(a) / / every component of X is topologically of finite length, so is X.
(b) / / there is a finite-to-one continuous function from X to a space which is

topologically of finite length, then X is topologically of finite length.

Proof, (a) This is immediate from the criteria 6B(b) or 6B(c).
(b) We may suppose that there is a finite-to-one continuous function (j>: X—>

Y where (Y, o) is a metric space of finite length. If x and y are distinct points of
X, take a neighbourhood U of x, with finite boundary, such that 0 does not
contain either y or any point of (t>~l[{(t>(x)}] other than x. Then 6 =
min{o(<t)(x),(f)(z)y.zedU}>0. Define / : X^>U by setting /(z) =
min(<5, a(<j>(x), <p(z))) for zeU, f(z) = 6 if zeX\U. Then by lA(f) there are
uncountably many a e ]/(*), f(y)[ = ]0, d[ such that {w: w e Y, o(w, (j>(x)) = a}
is finite, and for any such a we shall have /~1[{«'}] finite. Thus / witnesses
6B(d) for x and y. As x and y are arbitrary, X is topologically of finite length.

6H. REMARKS. It is now easy to see that the conditions (A), (B), (C) of [6,
Theorem 3], are equivalent for all separable metric spaces. To bring their
conditions (D) and (E) into play we should add the phrase 'of which Xo is
compact' to the phrase 'given any two disjoint closed subsets Xo, Xx in X\

61. Using Theorem 5B we can add another, elementary, characterization of
finite length.

PROPOSITION. A topological space X is topologically of finite length if and only if
there are a metric o on X defining its topology, a bounded set A c= IR and a
surjection from A onto X which is Lipschitz-1 for o and the usual metric of A.

Proof, (a) Suppose that X is topologically of finite length. We may express X
as a subset of a compact connected metric space (Z, p) of finite length, by 5B.
Now there is a Lipschitz-1 surjection / : [0, 2fip(Z)]—»Z. Set A =f~1[X],
o = p \ X2; then o, A and / \ A witness the condition.

(b) If X satisfies the condition then p*(X)^ k*(A) <°°, by lA(c) and lA(e);
so X is topologically of finite length.

CONCLUDING REMARKS. The obvious challenge left open here is to find some
appropriate extension of these ideas to two- and higher-dimensional Hausdorff
measure. The difficulties are likely to be immense; see for instance [20]. By and
large, the results of § 1 generalize (see [6,7]); if X has finite d-dimensional
Hausdorff measure, its topology has a base consisting of sets whose boundaries
have finite (d - l)-dimensional measure. When we come to connectedness,
however, it is not clear what we should aim to do. The standard examples of
connected spaces which are not locally connected, etc., can be embedded as
bounded sets of IR2 of zero two-dimensional measure; and we can have a dense
connected subset of Un of zero two-dimensional measure, so that 4A dies. It may
be that some m-dimensional analogue of connectedness (see, for example,
[11, §§ 4-9]) is relevant here.

When we come to §§ 5-6, a number of direct questions present themselves. For
instance, following 6B(d), we can ask the following:
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Let (X, p) be a separable metric space, and suppose that for each x eX, open G
containing x, there is a continuous function f:X^U such that f(x) = 0, f(y) = 1
for every y eX\G, and {a: ae]0, l[, ^,P(/~1[{^}])<00} w uncountable. Does
it follow that there is an equivalent metric o on X such that [ik+l a(X) < <»?

(Here I write \ikp for A>dimensional Hausdorff measure.) Or, following 5B and
5H, we can ask:

// (X, p) is a metric space of finite k-dimensional Hausdorff measure, is it
necessarily homeomorphic to a subspace of a compact metric space, orofU2k+1,
of finite k-dimensional measure!

Finally, I gave 61 above as a foundation for asking:

// (X, p) is a metric space of finite k-dimensional Hausdorff measure, can we
find an equivalent metric o on X, a bounded set A c Uk and a surjection from A
onto X which is Lipschitz-1 for o and the usual metric of A?

Added in proof (November 1991). I have shown that if (X, p) is any metric
space of finite length, there is an / : X-+U3 such that / is a homeomorphism
between X and f[X] and n*f[A] = \i*pA for every A^X, where z is the
Euclidean metric of U3. The proof is in University of Essex Research Reports
91-22 and 91-25, titled respectively 'Embedding spaces of finite length in
continua' and 'Embedding spaces of finite length in IR3'.
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