University of Essex

Department of Mathematics Wivenhoe Park Colchester CO4 3SQ

Tel: Colchester 44144 (STD Code 020 6) Telegraphic address: University Colchester Telex: 98440 (UNILIB COLCHSTR)

from D. H. Fremba

Comparing J-ideals

Note of 3.3.86

- 1. Definitions (a) Let P be a partially ordered set. Write add(P) = inf{#(A): A \(\text{P} \) , A has no upper bound in P }, cf(P) = inf{#(Q): Q \(\text{P} \) is cofinal with P }, ci(P) = inf{#(Q): Q \(\text{P} \) is coinitial with P } (taking inf \(\text{P} = \infty \) if need be).
- (b) If X, Y are sets and J, J are ideals of PX and PY respectively, say that $(X,J) \leq (Y,J)$ if there is a set $S \subseteq X \times Y$ such that

 $\mathcal{G} = \{ \mathbf{I} : \mathbf{I} \subseteq \mathbf{X}, \mathbf{S}[\mathbf{I}] \in \mathcal{G} \},$ where $\mathbf{S}[\mathbf{I}] = \{ \mathbf{y} : \mathbf{G} \times \mathbf{E} \mathbf{I}, (\mathbf{x}, \mathbf{y}) \in \mathbf{S} \}.$

- 2. <u>Proposition</u> \leq is transitative & reflexive.
- 3. Proposition If $(X, \mathcal{A}) \leq (Y, \mathcal{A})$ then $add(\mathcal{A}) \leq add(\mathcal{A})$, $cf(\mathcal{A}) \leq cf(\mathcal{A})$.

proof If $S \subseteq X \times Y$ witnesses that $(X, \mathcal{J}) \leq (Y, \mathcal{J})$ and $A \subseteq \mathcal{J}$ witnesses that $add(\mathcal{J}) \leq \kappa$, then $\{S[E] : E \in A\}$ witnesses that $add(\mathcal{J}) \leq \kappa$; if $K \subseteq \mathcal{J}$ witnesses that $cf(\mathcal{J}) \leq \kappa$ then $\{I_K : K \in K\}$ witnesses that $cf(\mathcal{J}) \leq \kappa$, where

$$I_{K} = \{x : x \in X, S[\{x\}] \subseteq K\} = \bigcup \{I : I \subseteq X, S[I] \subseteq K\}$$
$$= X \setminus S^{-1}[Y \setminus K].$$

4. Proposition If $add(\mathfrak{Z}) = cf(\mathfrak{Z}) = add(\mathfrak{Z})$, then $(X,\mathfrak{Z}) \leq (Y,\mathfrak{Z})$.

proof Set $\kappa = \mathrm{cf}(\mathfrak{J})$ and let $\langle E_{\xi/\xi/\kappa} \rangle$ enumerate a cofinal subset of \mathfrak{J} . Set $F_{\xi} = \bigcup_{1 \leq \xi} E_{1}$ for $\xi < \kappa$, so that $\langle F_{\xi} \rangle_{\xi < \kappa}$ is an increasing family in \mathfrak{J} (as $\mathrm{add}(\mathfrak{J}) = \kappa \geq \omega$). Because $\mathrm{add}(\mathfrak{J}) = \kappa$ there is a family $\langle G_{\xi} \rangle_{\xi < \kappa}$ in \mathfrak{J} such that $\bigcup_{\xi < \kappa} G_{\xi} \not\in \mathfrak{J}$. Set $H_{\xi} = \bigcup_{1 \leq \xi} G_{1}$ of for $1 < \xi$. Now try $S = \bigcup_{\xi < \kappa} (X \setminus F_{\xi}) \times H_{\xi} \subseteq X \times Y.$

Then we see easily that

 $S[E_{\xi}] \subseteq H_{\xi} \quad \in \mathcal{A} \quad \forall \, \xi < \kappa \,,$ so that $S[E] \in \mathcal{A}$ for every $E \in \mathcal{A}$, while if $E \subseteq X$ and $E \not\in \mathcal{A}$ then $E \not\subseteq F_{\xi} \quad \text{for every } \xi < \kappa \quad \text{and} \quad S[E] = \bigcup_{\xi < \kappa} H_{\xi} \not\in \mathcal{A} \,.$

- 5. Examples (a) If κ is a regular uncountable acardinal and NS_{κ} is the non-stationary ideal of κ , then $\operatorname{add}([\kappa]^{<\kappa}) = \operatorname{cf}([\kappa]^{<\kappa}) = \operatorname{add}(NS_{\kappa}) = \kappa < \operatorname{cf}(NS_{\kappa}),$ so that $(\kappa, [\kappa]^{<\kappa}) \leq (\kappa, NS_{\kappa})$ but $(\kappa, NS_{\kappa}) \nleq (\kappa, [\kappa]^{<\kappa})$.
- (b) [$\mathcal{M} = \mathcal{C}$] &If \mathcal{M} and \mathcal{N} are the ideals of meagre and Lebesgue negligible subsets of \mathbb{R} , respectively, then (\mathbb{R},\mathcal{M}) and (\mathbb{R},\mathcal{M}) are isomorphic and maps $\operatorname{add}(\mathcal{M}) = \operatorname{add}(\mathcal{N}) = \operatorname{cf}(\mathcal{M}) = \operatorname{cf}(\mathcal{N}) = \mathcal{C}$, so that (\mathbb{R},\mathcal{M}) and (\mathbb{R},\mathcal{N}) are equivalent to $(\mathcal{C},[\mathcal{C}]^{<\mathcal{C}})$.

6. Lemma If $\langle A_{\xi} \rangle_{\xi < \omega_1}$ is a family of uncountable subsets of ω_1 , there is a non-stationary set $A \subseteq \omega_1$ such that $A \cap A_{\xi} \neq \emptyset$ for every $\xi < \omega_1$.

 $\frac{\text{proof}}{\text{points of A}} \text{ Set } F = \{ \ \alpha : \alpha \in A^*_\xi \ \forall \ \xi < \alpha \ \} \text{ , where } A^*_\xi \text{ is the set of cluster}$ $\text{points of A} \text{ in the order topology of } \omega_1 \text{ . Set } A = \omega_1 \backslash F' \text{ .}$

- 7. Theorem If you add ω_2 random reals to a model of ZFC + GCH, you get a model in which
- (a) $(X, 4) \le (R, M)$ whenever f is a π -ideal in f(X) and f(f(X)), f(f(X)) are both f(f(X)) are both
 - (b) $(\omega_1, NS\omega_1) \leq (R, M)$;
 - (c) $(R, N) \leq (R, M)$;
- (d) $(R, W) \not\succeq (\omega_1, 1)$ for any ideal f of $P\omega_1$ (in particular, $(R, W) \not\succeq (\omega_1, NS_{\omega_1})$);
 - (e) $(\omega_1, NS_{\omega_1}) \not\leq (R, N)$ (so that $(R, N) \not\leq (R, N)$).

<u>proof</u> We need to know the following facts about that is kind of random-real model.

- (A) $C = 2^{\omega_1}$
- (B) $\exists A \subseteq \mathbb{R}$, $\#(A) = \mathbb{C}$, such that exert no uncountable subset of A belongs to \mathcal{N} . (Kunen 84, Theorem 3.18.)
 - (C) If $A \subseteq \mathbb{R}$ and $\#(A) \le \omega_1$ then $A \in \mathcal{M}$. (Kunen 84, 3.19.)
- (D) If $A\subseteq\mathbb{R}$ and $A\notin\mathcal{N}$, then there is an $A'\subseteq A$ such that $\#(A')=\omega_1$ and $A'\notin\mathcal{N}$.
 - (E) If $A \subseteq \mathbb{R}$, $\#(A) = \omega_1$ and $A \not\in \mathcal{N}$, then $cf(\mathcal{N}_1 \mathcal{P}_1) = \omega_1$.

Now for the main argument.

(a) Let $A \subseteq \mathbb{R}$ be a set of cardinal \mathbb{C} such that every uncountable subset of A is non-negligible (fact B). Fix on a meagre conegligible set $H \subseteq \mathbb{R}$ and set $E_a = a + H$ for $a \in A$. Then every E_a is meagre, while if $B \subseteq A$ is uncountable then $\bigcup_{a \in B} E_a = B + H = \mathbb{R}$, because B must meet the conegligible set x - H for every $x \in \mathbb{R}$. Next, let $\mathcal{U} \subseteq \mathcal{J}$ and $\mathcal{U} \subseteq \mathcal{P} X \setminus \mathcal{J}$ be cofinal and coinitial, respectively, and of cardinal $\subseteq \mathbb{C}$. Let $\varphi : \mathcal{U} \to A$ be any injection, and $G_V \setminus_{V \in \mathcal{V}} A$ a partition of \mathbb{R} into non-meagre sets. (Recall that ZFC implies that there is a partition of \mathbb{R} into \mathbb{C} non-meagre sets.) Choose any function $f : \mathbb{R} \to X$ such that

$$f(x) \in V \setminus \{K : K \in \mathcal{K}, x \notin E_{\varphi(K)}\}$$
 if $V \in \mathcal{V}$ and $x \in G_V$;

there is such a function because $\{K: x \notin E_{\phi(K)}\}$ is always countable, so cannot cover V. Set $S = \{(f(x),x): x \in \mathbb{R}\} \subseteq X \times \mathbb{R}$. Then

$$S[K] = f^{-1}[K] \subseteq E_{\varphi(K)} \in \mathcal{M} \ \forall \ K \in \mathcal{K}$$

 $s[v] = f^{-1}[v] \subseteq G_v \notin M \forall v \in U$,

so S witnesses that $(X, \mathcal{G}) \leq (\mathbb{R}, M)$.

- (b) Follows from (a), became $2^{\omega_1} = \alpha$ (fact A).
- (c) Also follows from (a), because $cf(\mathcal{N}) \leq c$ (in any model of ZFC), while in our present model, $ci(\Re \mathbb{N}) \leq \#(\mathbb{R}^{3}) = 2^{\omega_1} = c$, by fact D.
- (d) Now if $S \subseteq \mathbb{R} \times \omega_1$ and $S \in \mathbb{R}$ there is a $B \in \mathbb{R}$ such that $S[B] = S[\mathbb{R}]$; since $B \in \mathcal{M}$ (fact C) and $\mathbb{R} \notin \mathcal{M}$, $\mathbb{R} \in \mathbb{R}$ cannot witness that $(\mathbb{R}, \mathcal{M}) \leq (\omega_1, \mathfrak{J})$.

(e) Finally, ? suppose, if possible, that $S \subseteq \mathcal{U}_1 \times \mathbb{R}$ is such that, for $I \subseteq \mathcal{U}_1$, $S[I] \in \mathcal{N}$ iff $I \in \mathbb{NS}_{\mathcal{U}_1}$. Then $S[\mathcal{U}_1] \notin \mathcal{N}$ so (by fact D) there is an $A \subseteq S[\mathcal{U}_1]$ such that $\#(A) = \mathcal{U}_1$ and $A \notin \mathcal{N}$. Now $cf(\mathcal{N} \wedge \mathcal{P} A) = \mathcal{U}_1$ (fact E); let $A \notin \mathcal{V}_1$ enumerated a cofinal subset of $\mathcal{N} \wedge \mathcal{P} A$. Set $D_\xi = S^{-1}[A \setminus A_\xi]$ for each $\xi < \mathcal{U}_1$. Then $S[D_\xi] \supseteq A \setminus A_\xi \notin \mathcal{N}$ so we $D_\xi \notin \mathbb{NS}_{\mathcal{U}_1}$ and D_ξ is uncountable, for each $\xi < \mathcal{U}_1$. Let $D \subseteq \mathcal{U}_1$ be a non-stationary set such that $D \wedge D_\xi \neq \emptyset$ for every ξ (Lemma 6). Then $S[D] \not\in \mathcal{N}$. So $(\mathcal{U}_1, \mathbb{NS}_{\mathcal{U}_1}) \not\in (\mathbb{R}, \mathcal{N})$.

- 8. Remarks (a) Theorem 7a is a xversion of a result of J.Cichoń, building on results of myself & M.Burke.
 - (b) I learnt fact D from H. Woodin.
- (c) Using Cohen reals instead of random reals, we get the corresponding results with ${\mathcal M}$ and ${\mathcal N}$ interchanged.
- $(\underline{d}) \text{ What the proof of 7e really shows is that (in this model) if } S \subseteq \omega_1 \times \mathbb{R} \text{ and } S[\omega_1] \not\in \mathcal{N} \text{ , there is an } A \in \mathbb{NS}_{\omega_1} \text{ such that } S[A] \not\in \mathcal{N} \text{ .}$
- 9. Problem From 7b,7d and \$5 we see that the following are both consistent with ZFC:

$$\begin{split} &(\mathbb{R},\mathcal{M}) \leq (\omega_1, \operatorname{NS}_{\omega_1}) \not \leq (\mathbb{R},\mathcal{M}) \ , \\ &(\omega_1, \operatorname{NS}_{\omega_1}) \leq (\mathbb{R},\mathcal{M}) \not \leq (\omega_1, \operatorname{NS}_{\omega_1}) \ . \end{split}$$

The question arises: is it consistent to suppose that (R, M) and $(\omega_1, NS_{\omega_1})$ are equivalent? or (R, N) and $(\omega_1, NS_{\omega_1})$?

I give a proposition related to this.

10. Lemma If $S \subseteq \omega_1^2$ is such that, for $A \subseteq \omega_1$, $S[A] \in NS_{\omega_1}$ iff $A \in NS_{\omega_1}$,

then there is a closed unbounded $\mathtt{C} \subseteq \omega_1$ such that

$$s^{-1}[\{\xi\}] = \{\xi\} \ \forall \ \xi \in C.$$

proof (a) Set

A = { \xi : \frac{2}{3}, (7,\xi) \in S \}.

? If A $\not\in$ NS ω_1 then by the pressing-down lemma there is an $\gamma<\omega_1$

such that

(5: 5 € A , (7,5) € S) € NSW, ;

but now S[[7]] & NS W1.

(b) Set

For each $\xi \in B$ choose $f(\xi) > \xi$ such that $(f(\xi), \xi) \in S$. Set

 $F = \{ \zeta : \zeta < \omega_1, f(\xi) < \zeta \ \forall \xi \in \zeta \wedge B \};$

then F is a closed unbounded sets and S[ω_1 \F] \supseteq B, so B \in NS ω_1 .

(c) Set

Consdier S[D] \(A \cup B\). ? If $\xi \in S[D] \setminus (A \cup B)$, there is an $\eta \in D$

such that $(\gamma, \xi) \in S$; as $\xi \notin A \cup B$, $\gamma = \xi$; so $\xi \in D$ and $(\xi, \xi) \in S$.

X so $S[D] \subseteq A \cup B \in NS_{\omega_1}$ and $D \in NS_{\omega_1}$.

- (\underline{d}) Now take any closed unbounded $C \subseteq \omega_1 \setminus (A \cup B \cup D)$.
- 11. Proposition If $(X, \mathcal{G}) \leq (\omega_1, NS_{\omega_1}) \leq (X, \mathcal{G})$, there is a Y \subseteq X such that $(Y, \mathcal{G}, \mathcal{D}Y) \cong (\omega_1, NS_{\omega_1})$.
- proof We have $S \subseteq X \times \omega_1$, $T \subseteq \omega_1 \times X$ such that, for $I \subseteq X$ and $J \subseteq \omega_1$, $S[I] \in NS\omega_1 \quad \text{iff} \quad I \in \mathcal{I} ,$ $T[J] \in \mathcal{I} \quad \text{iff} \quad J \in NS\omega_1 .$

Let U be the composition SoT $\leq \omega_1^2$. Then U[J] ϵ NS $_{\omega_1}$ swxkhex iff J ϵ NS $_{\omega_1}$, so by Lemma 10 there is a closed unbounded set C $\leq \omega_1$ such that, for every $\xi \epsilon$ C,

$$\mathbf{T}^{-1}[\mathbf{S}^{-1}[\{\xi\}]] = \mathbf{U}^{-1}[\{\xi\}] = \{\xi\} .$$

For $\xi \in C$ choose $h(\xi) \in X$ such that $(\xi, h(\xi)) \in T$ and $(h(\xi), \xi) \in S$; such exists because $(\xi, \xi) \in S \circ T$. If ξ , γ are distinct members of C then

$$h(\gamma) \in s^{-1}[\{\gamma\}]$$
, $\xi \notin T^{-1}[s^{-1}[\{\gamma\}]]$

so $(\xi,h(\gamma)) \notin T$ and $h(\xi) \neq h(\gamma)$. Thus $h: C \to X$ is injective.

If $J \subseteq C$ and $J \in NS_{\omega_1}$ then Stated h[J] $\subseteq T[J] \in \mathcal{I}$.

If $J \subseteq C$ and $J \notin NS_{\omega_1}$ then $S[h[J]] \supseteq J$ so $h[J] \notin \mathcal{G}$. Thus, taking Y = h[C],

But of course the strictly increasing enumeartion of C witnesses that $(c, p_{C \land NS_{\omega_1}}) \; \cong \; (\omega_1, {}^{NS_{\omega_1}}) \; .$

12. Remarks Thus Problem 9 is related to the question, of independent interest:

is it consistent to assume that there is a subset $_{k}^{Y}$ of $_{k}^{Z}$ such that $(Y, M \land PY) \cong (\omega_{1}, NS_{\omega_{1}})$?

(& similarly form N). Bringing the problem back to ω_1 , we can ask: is it consistent to assume that there is a countably-generated ∇ -subalgebra of Σ of Ω_1 such that (i) $\Omega = \Sigma \cap \mathbb{NS} \omega_1$ is cofinal with $\mathbb{NS} \omega_1$ (ii) the algebra Σ/Ω is ccc?

- 13. Yet another question In Theorem 7, it is left open whether $(R,\mathcal{N}) \leq (\omega_1, \mathrm{NS}_{\omega_1}) \ . \ \text{If instead of addming} \ \omega_2 \ \text{random realws we}$ add $\omega_3 \ \text{random reals, then we can answer this as follows, because}$ of the following. First, another fact for this list of Theorem 7:
 - (F) $cf(NS_{\omega_1}) = \omega_2$.

Now add another result to (a)-(e):

- (f) $(\mathbb{C}, \mathbb{C}]^{\leq \omega}$) $\leq (\mathbb{R}, \mathbb{N})$ so $\mathrm{cf}(\mathbb{N}) = \mathbb{C}$ and (if $\mathbb{C} > \omega_2$) $(\mathbb{R}, \mathbb{N}) \not\leq (\omega_1, \mathbb{N}_{\omega_1})$.
- P Take the set A of fact B and enumerate it as $\{a_{\xi}: \xi < C\}$. Set $S = \{(\xi, a_{\xi}): \xi < C\}$; then, for $I \subseteq C$, $S[I] \in N$ iff I is countable. Consequently $cf(N) \ge cf([C]^{\le \omega})$ (Prop. 3) = C (because $cf(C) > \omega$), and of course $cf(N) \le C$. On the other hand, $cf(NS_{\omega_1}) = \omega_2 < C$, so $(R, N) \not \le (\omega_1, NS_{\omega_1})$ by Prop. 3 again.

I do not know what thappens when $C = \omega_2$. Indexed, I do not know whether (in ZFC) $(\omega_2, [\omega_2]^{\leq \omega}) \leq (\omega_1, NS_{\omega_1})$. There is a simple such that \mathcal{G} is a \mathcal{G} -ideal combinatorial characterization of this question, since for any (X, \mathcal{G}) we can see that $(\kappa, [\kappa]^{\leq \omega}) \leq (X, \mathcal{G})$ iff there is a family $A_{\mathcal{G}} \leq \kappa$ in $A_{\mathcal{G}} = \mathbb{C}$ such that $A_{\mathcal{G}} \neq \mathcal{G}$ for every uncountable $A_{\mathcal{G}} \leq \kappa$ is there such a family when $\kappa = \omega_2$, $A_{\mathcal{G}} = NS_{\omega_1}$?

14. Prime ideals The arguments above are designed for the special ideals \mathcal{M} , \mathcal{N} and NS_{ω_1} . However the basic relation \leq is of interest in other contexts. In partimcular, there is a simplification in the context of prime ideals, as follows. If $\int d \, PX$ is a prime ideal and $(X,\mathcal{G}) \leq (Y,\mathcal{A})$ then there are a $Z \subseteq Y$ and an $f: Z \to X$ such that $\mathcal{G} = \{ (Y,\mathcal{A}) \}$

{ I : I \subseteq X , f⁻¹[I] \in \oint } . P Let S \subseteq X × Y be such that $\mathcal{J} = \{I : I \subseteq X , S[I] \in \mathcal{J} \}$. Then $S[X] \notin \mathcal{J}$. Set Z = S[X] and let $f : Z \to X$ be any selector for S⁻¹. If $I \in \mathcal{J}$ then $f^{-1}[I] \subseteq S[I] \in \mathcal{J}$. If $I \subseteq X$ and $I \notin \mathcal{J}$ then $X \setminus I \in \mathcal{J}$ so $J = f^{-1}[X \setminus I] \in \mathcal{J}$ and

$$f^{-1}[I] = f^{-1}[X] \setminus J = Z \setminus J \notin \{ \}.$$

So Z , f serve. Q

Accordingly, for prime ideals, \leq corresponds to the Rudin-Keisler ordering of ultrafilters.

15. Alternative relations Thexparkiak except axisxehosenxkexber I fixed on \leq as the largest straightforward relation for which it seemed natural to say that if $(X, \mathcal{J}) \leq (Y, \mathcal{J})$ then \mathcal{J} is derivable from \mathcal{J} . There are several smaller relations of interest e.g.

$$(X, \mathcal{I}) \leq_{1} (Y, \mathcal{J})$$
 if $\mathcal{I} f: X \to Y$ such that
$$\mathcal{I} = \{I: I \subseteq X, f[I] \in \mathcal{J}\},$$
$$(X, \mathcal{I}) \leq_{2} (Y, \mathcal{J}) \text{ if } \mathcal{I} f: Y \to X \text{ such that }$$
$$\mathcal{I} = \{I: I \subseteq X, f^{-1}[I] \in \mathcal{J}\}$$

(cf. §14). There is also a larger relation given by

 $(X, \P) \leq^* (Y, \P)$ if there are functions $I \mapsto G_I : \P \to \P$, where $Y \mapsto H_J : \P \to \P$ such that $I \subseteq H_J$ where $Y \mapsto G_I \subseteq J$.

(If $(X, \mathcal{J}) \leq (Y, \mathcal{J})$ then $(X, \mathcal{J}) \leq^* (Y, \mathcal{J})$ because we can take $\mathbf{x}_{\mathbf{k}} G_{\mathbf{I}} = S[\mathbf{I}]$, $H_{\mathbf{J}} = X \setminus S^{-1}[Y \setminus \mathbf{J}]$.) The point of \leq^* is the Bartoszyński-Raisonnier-Stern result that (in ZFC) $(R, \mathcal{M}) \leq^* (R, \mathcal{N})$ (see Fremlin 85_a).

We can see that of the arguments above, Prop. 3 applies to \leq^* , while Theorem 7a-c applies to \leq_2 .

16. Note added 7.5.86 M. Burke has referred me to Abraham & Shelah 86, where the question "is $(\omega_2, [\omega_2]^{\leq \omega}) \leq (\omega_1, NS_{\omega_1})$?" is treated. They remark that F.Galvin proved that if $\kappa > \omega$ and $2^{\lambda} \leq \kappa$ for every $\lambda < \kappa$, then $(\kappa^+, [\kappa^+]^{\leq \kappa}) \not\leq (\kappa, NS_{\kappa})$; so that, in particular, the continuum hypothesis fareex implies that $(\omega_2, [\omega_2]^{\leq \omega}) \not\leq (\omega_1, NS_{\omega_1})$. Abraham and Shelah also describe models in which $(\omega_2, [\omega_2]^{\leq \omega}) \leq (\omega_1, NS_{\omega_1})$; one of them allows $m = \mathbb{C}$.

A proof of Galvin's result is given in Baumgartner Hajnal & Maté 75.

$$(\omega_2, [\omega_2]^{\leq \omega}) \not\leq (\omega_1, NS_{\omega_1})$$

is unaffected by ccc forcing; so that, in particular, it is true in the random-real models considered in Theorem 7 above. So in all these models we have $(R,N) \not\leq (\omega_1,NS_{\omega_1})$.

References

- D.H.Fremlin [85a] "Cichon's Diagram", Sem. d'Initiation a l'Analyse (G.Choquet, M.Rogalski, J.Saint-Raymond), Univ. Pierre et Marie Curie, Pariws, 23 (1983-4) 5.01-5.13
- K.Kunen [84] "Random and Cohen reals", pp. 887-911 in Handbook of Set-Theoretic Topology (eds. K.Kunen & J.E.Vaughan), North-Holland, 1984
 - U.Abraham & S.Shelah [86] "On the intersection of closed unbounded sets", J.Symbolic Logic 51 (1986) 180-189.
 - J.E.Baumgartner, A.Hajnal & A.Mater [75] "Weak saturation properties of ideals", pp. 137-158 in Infinite and Finite Sets (ed.s. A.Hajnal, R.Rado & V.T.Sos), North-Holland, 1975.