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Comparing d-ideals Note o 3.3.86

1. Definitions (a) Let P be a parfkally ordered set. Write
add(P) = inf{#(A) : ACP , A has no upper bound in P} ,

cf(P)

fl

inf{ ﬁ(Q) : QC P is cofinal with P} ,
ci(P) = inf{ #Q) : QC P is coinitial with P}

(taking inf@= oo if need be).

(b) If X, Y are sets and 4 , & are ideals of PX ana @y
respectively, say that (X,S) < (Y,%) if there is a set SCX*Y such

that

[Br=N
I

(2:3C2, MOl | -

wvhere Xl =({y: d xe¢X ., 00 e8}) .

2. Proposition < is transieE&tive & reflexive.

3. Proposition If (X,A)S(Y,é) then

add( %) < ada(q) , cf(4d) < ef(F) .

proof If S XXY witnesses that (X,4) < (¥,4) and A < 4 witnesses
that ad@(d) <« , then { S[E] : Ee s } witnesses that add(3) < w ;
if ¥ ¢ 4 witnesses that cf(§) <x then { I, : Ke $ } witnesses
that cf(§) < « , where |
I, = {x:xeX, s{x)J€K)} = i3 :1¢Xx, S[IJCK)
S PNEYD .
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, Proposition If a;d(:\) = cf(4) = add(4) , then x,4 )‘5

(Xa¥) .

proof Set k = cf(J) and let <E<>§<K enumerate , cofinal subset of
9 .  set Fé = L)]<§E7 for { <k , so that <F§><<i< is an increasing
family in A (as add(d) =« > W ). Because add(&) =« there is
. . \

a family <G§>§ B & such that L)i b £ 4. set He = b1 <§G7
éé- forf]<§. Now try

S = L)§<_<(X\F§)x i Al
Then we see easily that

SEEgjg_ Hg 64 Hé<“a
so that S[E] € § for every E€ d , while if ECX and EZ J then

EZFE for every g <« and S[E] = L)§<KH§ '3 4 ;

5. Examples (a) If « is a regular uncountable acardinal and
NS is the non-stationary ideal of K , then
2dd([<1<) = c£([KI™) = add(NS,) = « < c£(NS,) ,

so that (c,[k]) < (kN8 ) but  (k,N5,) £ (k,[eI™) .

(b) [m =«] £If M and A are the ideals of meagre and Lebesgue
negligible subsets of R , reppectively, then (E,M) and (R,AS) are
isomorphic and sur add(d) = add(A') = cf(M) = cf(N) = « , so that

(%,M) and (E,JU\) are equivelent to (C,[c]<c) .
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6. Lemma If <A§>§<Lo is a family of uncountable subsets of O, ,
1

there is a non-stationary set AQQ,‘ such that A('\A§ A @ for every

§<w1.

proof Set F ={a :a € A'§ \ g <a} , where Aé is the set of clusamter

points of A in the order topology of t‘a,‘ . Set A = L‘.\,,‘\ Fr .

7. Theorem If you add W random reals to a model of ZFC + GCH,

2

you get a model in which

(8) (X,4) < (R, ) vhenever 4§ is a o=ideal in $X and
cf(d) , ci(PxN 4 ) are both < ; imxpax

() (b, N8w,) < RMN)

() @A) < @M ;

(@) Ry £ (w,,4) for any ideal 3 e 0)@1 (in particular,
(R, M) £ (w1,Nsw1) )
(&) (o8, ) £ A (o0 that (R £ R, ) -

ppoof We need to know the following facts about thzis kind of random-real

model.

%)
W =2 1

-

(B) F ACR, H#(A) =€ , such that sxmrx no uncountable subset

of A belongs to A .  (Kunen 84, Theorem 3.18.)

(€) 1f ACR and 44(A) < O, then Ae d. (Kunen 8L, 3.19.)

1 coscecne

(D) If ACR and A€N , then there is an A' C A such that
#(ar) =, and A' gN .
(B) 1f ACR, #4() = ©Q, and A A, then ¢t~ Pa) =

1



Now for the main argument.

(a) Let AR be a set of carfiinal &€ such that every uncountable
a4

subset of A is non-negligible (fact B). Fix on a meagre conegligible
set Hg/% and set Ea =a+H for a €A . Then every Ea is meagre,

while if BC A is uncountable then () E = B+H =R, because B must

2 =
meet the conegligible set x-H for every x € R . Next, let M s g and
U < ’VX \N§ Dve cofinal and coinitial, respectively, and of cardinal < T.
Let L(D H Q(-* A Dbe any injection, and <GV>V€U‘ a partition of R into

non-meagre sets. (Recall that ZFC implies that there is a partition of E

into @ non-meagre sets.) Choose any function f : R = X such that

f(x) « WWK:Ke W, XéEqD(K)}

if VeU and x€&0Gy ;
there is such a function because { K : x & Ecp(K) } is always countable,
so cannot cover V. Set S={ (f(x),x) : x€R}<L XXR . Then
-1 f .

e X €
f[K]C_lE¢(K)C-»AJ\\7 ¥
M e, &€ MV veU,

so S witnesses that (X,3) e (B,,/\A) .

i

SCK]

sCv]

1

L
(b) Follows from (a), becassuse 2 1. g (fact A).
(¢) Also follows from (a), because cf(M) < &« (in any model of
O [
ZFC), while in our present model, ci(@E\N‘) < BRI Y =2 Tew

by fact D.

(d) Now if SC RX Q, MEZRERF P etotiomlg there is a B e
- —_ 1 ~

[%}wq such that S[B] = S[B] ; since B € M (faet €) and R ﬁ)\/\ §

S cannot witness that (B,M) < (b.),].ﬁ) .
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(e) Finally, 2 suppose, if possible, that S< &, XR is

L 4

such that, for IC  , S[IJ €A iff TeNs, . Then S ]¢ N
1

so (by fact D) there is an AL S[w,] such that #(n) = ), and

AN . Now cf(N'a Pa) = u),] (fact E); 1let <A§>§<Q1 enuigkaic®

a cofinal subset of A'n PA . Set D¢ = S—1[A\A§] for each & < w, -

Then S[Dg] QA\Ag €N so mm D{ éNSk.),‘ and Di is uncountable, for

each g < u),] . Ilet DC 001 be a non-stationary set such that
DNDg £Z@ for every & (Lemma 6). Then S[D]. meets A\Ag for
every § < W, 4 50 SIDINAE AN and s(D] € U . x

So (w,',NSw") £ R,N) .



8. Remarks (a) Theorem 7a is a xversion of a result of J.Cichon,

building on results of myself & M.Burke.
(b) I learnt fact D from H.Woodin.

(g) Using Cohen reals instead of random reals, we get the

corresponding results with M ana Af interchanged.

(d) What the proof of 7e really shows is that (in this model) if

S¢ 031x;§ and S[u)1] £ JU\’ there is an A &€ NS such that S[A] éuAf :

“4

9. Problem From 7b,7d and x§5 we 3 P~y g =x e i
see that the following are both consistent with ZFC:

®,M) < (D88 | ) £ RN
1

(@1,Nsw1) < R, M £ (w1,Nsw1) s

The guestion arises: is it consistent to suppose that (R,M) and

1
I give a proposition related to this.

Q(,b,‘,NSw) are equivalent? or (B'M) and ((«B,‘,NSQ“) ?

10. ILemma If SC uﬁ is such that, for A G3q s

S[A] € Nsm1 iff A e ng% .

then there is a closed unbounded CQ; Lb1 such that

sTE) = 9 ¥ & cc.



proof (a) Set
A:{{:Rq<§,(?,§)€$}.
’? If AENS

8 then by the pressing-down lemma there is an " < l«),‘
1

“such that
($:Cen, (D es) £ N5,
1

but now S[{q}]éNSw . x
1

(b) Set
B=(£:39>8, (O esy.

For each £e€ B choose f£(§) >§ such that (£(£),0 €5 . Set
F = ((: §<w1,f(§)<§ Ve (nB};

then F 1is a closed unbounded sets and S[[,),]\ F] 2B, so Be NS‘_Q .
1

(¢) set
p o« (8= o kD) 8 {.
Consdier S[DIN(AuLB) . @ 1f & € S[DIN(AUB) , there is an 4 €D
such that (1,0 €5 ; as L E€ACE, 4 =€ ; so £eD and () e s .

¥® s S[D) € AUB € N8, and DeNs,, -

(d) Now take any closed unbounded CC Q1\(Au ByD) .

11. Proposition If (X,§) < (W, N8 ) < (x,4) , there is a
1

YC X such that (¥, Ja PV = (N8 ) .
1

proof @9 Ve have SC XX, , TC &, XX such that, for I<X and JC W, ,
S[1] € NS, iff Ie€d ,

Il e 4 iff Je B, -
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Let U be the composition 8eT S;LJ?

1 Then U[J] é.NShJ suxkher

1

iff J € N§ , 50 by Lemmg 10 there is a closed unbounded set (:g;u31

Bt

such that, for every £ € C ,

s g1 = v = (&) .
For §£€C choose h(§) € X such that ({,n(§)) €T and (n(),{) €5 ;
such exists because (§,§) € 8T . 1If & , 9 are distinct members of C
then

n(p €8T, § € TSI
s0 (§,h(?)) £T and h(§) # h(r)) . Thus h : C - X is injective.

If JCC and J €NS , then Skmigdgad nlJ] < T0J] cf.
1

If JCC and J€NS_ then S[HJ]]1DJ so nJl & 3 . Thus, taking

Y = nc] ,

(¥, §n PY) T (c,NS_ n PC),

t

But of course ggﬁ strictly increasing enumeartion of C witnesses that

(C.@CANSLJ1) = (01,NS(_)1) %

12. Remarks Thus Problem 9 is related to the question, of independent
interest:
is it consistent to assume that there is a subsetzof B such that

(Y, Mn Py) & (w1,Nsw1) ?

(& similarly form .AP ). Bringing the problem back to W, , we can ask:

is it consistent to assume that there is a countably-generated

T—subalgebra af J  of ﬂd,' such that (i) § = ZﬁNSw1 is

cofinal with NS, (ii) the algebra 2/4 is ccc?
1
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12. Yet another question In Theorem 7, it is left open whether

(B,M) < (b.),‘,NSk) ) . If instead of addéing &, random realws we
1

addd® random reals, then we can answer this as follows, because

3

of the following. First, another fact for thize list of Theorem 7:

(F) cf(NS&31) = u)z .

Now add another result to (a)-(e):
(£) (=) < RN so cf(A) =€ and (i€ & > <, )

R, £ (@85, ) -
1

p Take the set A of fact B and enumerate it as { ag s & <c}) .
Set S=1{(§ a) : {<C}; then, for Ic@ , S[1] e N' iff
I is countable. Consequently cf(A') > cf([&]so) (Prop. 3) = <
(because cf(€) >« ), and of course cf(N) < €. On the other
hand, cf(NSk>1) =W, <C, so (R, N) £ (01,Nsw1) by Prop. 3 again.
Q

I do not know what ¥Xhappens when & = Wy Indeged, I do not

know whether (in ZFC) (wo,,[w ]Sw) <(w,,NS . ) . There is a simple
2 2 = 1 w
1 suchthat 4 & @ T-dect

combinatorial characterization of this question, since for ;ny (X,-’ﬂ ) L
we can see that (K,EK}S‘J) < (X,4) iff there is a family Af/\{(h( in
ﬂ such that (.{([A{ €9 for every uncountable I & . So I askg:

is there such a family when W\ = Wy 4 = NSLO ?

1

14. Prime ideals The arguments above are designed for the special

ideals Al . N ana Nsw . However the basic relation < is of interest
1

in other contexts. In partimcular, there is a simplification in the context

of prime ideals, as follows. If J 4 PX is a prime ideal and (X,4) <

(Y,j.) then there are a Z<C Y and an f : Z = X such that 9 =
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{I:ng,f_1[1]€é-} . 9 Let S XxY Dbe such that ﬁ:
(1:1CX, 81 € £) . Then 8X) £ 4 . set Z=S5[X] and let
f: Z-X be any selector for sV, 1r 1€ { then f-1[I]§; S[1]
€l . 17 1CX and 1§ then xN\I€d s J=f[X\IJe e
and

£ = XN = 2N £ &
So 7Z , f serve. Q

Accordingly, for prime ideals, < corresponds to the Rudin-Keisler

ordering of ultrafilters.

15. Alternative relations. - Prexpaxkiak sxderxodxxizxzkeszrxkexiE

I fixed on < as the largest straightforward relation for which it seemdd
natural to say that if (X, 9) < (Y,é—) then § is derivable from 4 .
There are several smaller relations of interest e.g.
x,4) <, (1, ) i d £:X~Y such that
43 i3:icx e d},
(x,4) &, (1, @) iz J £:Y=X such that
4= (x:0gk, s d)
(cf. §14). There is also a larger relation given by
(x,4) <* (1,4) if there are functions Iv G, : § - & ,su=n
J = HJ > 4 e j such that IgHJ whenever
6 T J .
(1r (x5, 9) < (1,4) then (X,4) <* (¥,4) Dbecause we can take
& G = S[I], H;= XxN\S~[YNJ] .)  The point of <* 1is the Bartoszynski-
Raisonnier-Stern result that (in ZFC) (B,JA) £ (B,Af) (see ???T%%?.???)'

We can see that of the arguments above, Prop. 3 applies to <* ,

while Theorem 7a-c applies to 52 .
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16. Note added 7.5.86 M. Burke has referred me to Abraham & Shelah

R R IR NI I A

86, where the question '"is (w ,foz]s-w) < (W, NS _ ) 2" is treated.
s 2 = 1 t«),‘

They remark that F.Galvin proved that if K >3 and 2} < K for every

A\ <« , then (K+,[K+]-<-K) £ (k,Ns,) ; so that, in particular, the

continuum hypothesis faxzex implies that (u)2,[bo2]-<-")) £ (w,‘,NSw | "
1

alse _<_(,;>) <

Abraham and Shelah Exxe describe models in which (@2,[@2]

(w1’NSu ) ; one of them allows #Hl=C .
1

A proof of Galvin's result is given in Baumgartner Hajnal & Maté 75.

oo-noccac.o.ooot-.-uooooooto

wWxlt is easy to see that the pxapm theorem

(10, L dS7) £ (NS, )

is unaffected by cce forcing; so that, in particular, it is true in
the random-real models considered in Theorem 7 above. So in all

these models we have (E,M\) £ (“’31’NS»\)1) .
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