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Vector-valued gauge integrals

D.H.Fremlin

University of Essex, Colchester, England

1A The Riemann integral One of the ways of defining the Riemann integral of a real-valued function
over an interval [a, b] ⊆ R is to say that

R
∫ b

a
f ≏

∑n
i=0 f(xi)(ai+1 − ai)

where a = a0 ≤ x0 ≤ a1 ≤ x1 ≤ a2 ≤ . . . ≤ an ≤ xn ≤ an+1 = b. Of course in order to get a good
approximation we have to pick suitable strings ai.

What are we going to keep, and what are we going to change?
We are going to keep the finite sums, and we are going to keep the idea of ‘multiplication’. So some of

the algebra is going to stay the same.
The first thing I want to change is the formula ‘ai+1 − ai’. This is to be replaced by ‘the measure of the

interval Ci between ai and ai+1’, so we get a formula
∫ b

a
f ≏

∑n
i=0 f(xi)νCi

where C0, . . . , Cn are sets and ν is a measure of size (in the present case, of length).
I didn’t say what kind of interval the Ci should be (open, closed, half-open). This is because it is going to

be very convenient to insist on the ‘intervals’, or whatever kind of set we are going to allow, being disjoint.
Open intervals would do this. But we shall also want to have neat and tidy unions C0 ∪ . . . ∪ Cn. And to
get C0 ∪ . . .∪Cn = [a, b] we are likely to have to use some half-open intervals. The reason we can be casual
about this when looking at the ordinary Riemann integral is that ]ai, ai+1[, ]ai, ai+1], [ai, ai+1[ and [ai, ai+1]
all have the same measure. But already with a Riemann-Stieltjes integral we have to be more careful.

Next, expressing sums in the form
∑n

i=0 . . .i clutters the formulae and is a waste of a letter. So I am
going to ask you to join me in using a formula

Sttt(f, ν) =
∑

(x,C)∈ttt f(x) νC

where ttt is a finite set of pairs (x,C). (Because I’ll always be looking at commutative additions, it won’t matter
if we throw away any indication of the order in which one is supposed to add things up. Also we’ll never want
to count any term (x,C) more than once. The formula I wrote down above for the Riemann integral allows
us to start with a0 = x0 = a1 = x1 = a2 = a, so that the sum begins with f(a)(a − a) + f(a)(a − a) + . . . .
This is just wasting time and we shan’t miss it.)

Now for another change. The f(x) and νC don’t have to be real numbers. We just need things which we
can multiply together and then add up. To make the algebra come right, we shall want the values f(x) to
belong to a linear space U , the values νC to belong to a linear space V (of course allowing V = U), and the
values f(x)νC to belong to a third linear space W , the ‘multiplication’ corresponding to a bilinear operator
from U × V to W . Because I might want to play with this a bit, I will give it a name 〈 | 〉, and demand that

〈u1 + u2|v〉 = 〈u1|v〉 + 〈u2|v〉, 〈u|v1 + v2〉 = 〈u|v1〉 + 〈u|v2〉,

〈αu|v〉 = 〈u|αv〉 = α〈u|v〉

for all u, u1, u2 ∈ U , v, v1, v2 ∈ V and scalars α. So our guiding formula is
∫

f dν ≏ Sttt(f, ν) =
∑

(x,C)∈ttt〈f(x)|νC〉.

(What scalars? Easiest to take our linear spaces to be real. But the algebra is the same if you take complex
scalars.)

⊕⊕⊕

One of the things gauge integrals are good for is giving us definitions of vector-valued integrals of vector-
valued functions over vector-valued measures. Making sense of these definitions will be another matter, of
course.
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1B Which pairs (x,C)?
⊕⊕⊕

/
⊗⊗⊗

Another thing about gauge integrals is that at every step we have an
enormous amount of choice. There is a handful of standard examples, beginning with the Riemann integral,
in which we have constructions which are clearly going to be a permanent part of mathematics. Elsewhere
the formulations must be regarded as experimental.

However, the following pattern seems to cover enough cases to be a useful limitation to impose. For the
rest of the week, we shall have a set X, a family C of subsets of X, and a set Q ⊆ X × C of allowable
pairs; and we shall look at the set TQ of tagged partitions ttt which are finite subsets of Q and such that
C ∩ C ′ = ∅ whenever (x,C) and (x′, C ′) are distinct members of ttt.

Examples (i) For the Riemann integral R
∫ b

a
, X will be [a, b], C will be the family of subintervals

(open, closed or half-open) of [a, b], and Q will be {(x,C) : x ∈ [a, b], C ∈ C, x ∈ C}. So a
Riemann sum

∑n
i=0 f(xi)(ai+1 − ai) can be represented as Sttt(f, ν) where ttt = {(xi, [ai, ai+1[) :

i ≤ n}∪{(b, {b})}. (I put the last term in because one of the rules later, for the Riemann integral,
will be that we shall have a preference for tagged partitions ttt such that

⋃

(x,C)∈ttt C = [a, b].)

(ii) For the Birkhoff integral on a σ-finite measure space (X, Σ, µ), C will be the family of
measurable sets of finite measure, and Q will be {(x,C) : x ∈ X, C ∈ C}.

(iii) For the Henstock integral on R (never mind if you haven’t heard of this), X will be R, C
will be the family of bounded subintervals of R, and Q will be {(x,C) : C ∈ C, x ∈ C}, just as
for the Riemann integral.

I have just mentioned the spread
⋃

(x,C)∈ttt C of a tagged partition ttt; I will denote this Httt.

1C What do we mean by ≏? Remember that in our formula
∫

f dν ≏ Sttt(f, ν) =
∑

(x,C)∈ttt〈f(x)|νC〉,

the sums Sttt(f, ν) belong to a linear space W . To make sense of approximation in W , we need a topology,
and this had better be a Hausdorff topology so that the integrals are uniquely defined as limiting values
of these sums. To make sense of the ordinary algebra of integration, the topology should be a linear space
topology, so that (w,w′) 7→ w + w′ and (α,w) 7→ αw are continuous. In fact I think that in all the examples
I’ll be looking at, U and V also will be linear topological spaces, and the bilinear map 〈 | 〉 will be continuous.

1D When do we get a good approximation? Now we come to the fun bit. To make Sttt(f, ν) a good
approximation to

∫

f dν, we are going to have to ask quite a lot of the tagged partition ttt. Again, I am
going to specialize to criteria of two particular forms. (I ought to remark that some very interesting gauge
integrals have been introduced which cannot be expressed in this way.)

(a) We may require ttt to be δ-fine where δ ⊆ X ×PX and ttt is δ-fine if ttt ⊆ δ. Of course the requirement
in 1B that ttt ⊆ Q is just like this. The difference is that we are going to have a whole family ∆ of gauges
δ ⊆ X ×PX, and we are going to pick one of them after we have been told how good an approximation to
the integral is required.

Examples (i) For the Riemann integral on [a, b], ∆ will be the family of uniform metric
gauges δη of the form

{(x,A) : x ∈ [a, b], A ⊆ [a, b], diam A ≤ η}

for some η > 0. (So a Riemann sum
∑n

i=0 f(xi)(ai+1 − ai) will correspond to a δη-fine tagged
partition if ai+1 − ai ≤ η for every i.)

(ii) For the Birkhoff integral on a σ-finite measure space (X, Σ, µ), ∆ will be the family of
gauges of the form

δE = {(x,A) : there is an E ∈ E including A ∪ {x}}

where E is a countable partition of X into measurable sets.
(iii) For the Henstock integral on R, ∆ will be the family of neighbourhood gauges of the

form

δGGG = {(x,A) : x ∈ R, A ⊆ Gx}
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where GGG = 〈Gx〉x∈R and Gx is an open set containing x for every x ∈ R.

Note that in all these three examples, ∆ is downwards-directed in the sense that whenever δ1, δ2 ∈ ∆
there is a δ ∈ ∆ such that δ ⊆ δ1 ∩ δ2.

(i) δη ∩ δη′ = δmin(η,η′).
(ii) δE ∩ δE′ = δ{E∩E′:E∈E,E′∈E′}.
(iii) δ〈Gx〉x∈R

∩ δ〈G′
x
〉x∈R

= δ〈Gx∩G′
x
〉x∈R

.

This is something we can work round if we have to, but I am going to try to ensure that all my families ∆
of gauges have this property.

(b) You will see that the empty set will always be a δ-fine tagged partition, so we are certainly going
to have to ask more. The second type of criterion I will use will concern the spreads Httt rather than the
individual members of ttt. The idea is that we are going to want the residues X \ Httt to be small (empty if
possible, but often it’s not), and also, in many cases, of particular shapes. To express this, I will suppose
that we have a family R of collections R of ‘residual’ subsets of X, and that for R ⊆ PX a tagged partition
ttt will be ‘R-filling’ if X \ Httt ∈ R. It will be convenient later to insist from the beginning that ∅ ∈ R for
every R ∈ R.

Examples (i) For the Riemann integral on [a, b], we are going to demand Httt = [a, b] (this
corresponds to the requirements a = a0, an+1 = b), so that R will have only one member,
R = {∅}.

(ii) For the classical integral on a σ-finite (X, Σ, µ), we are going to have

R = {RFǫ : F ∈ Σ, µF < ∞, ǫ > 0},

where RFǫ = {E : E ∈ Σ, µ(E ∩ F ) ≤ ǫ}. Thus ttt will be RFǫ-filling if Httt covers F , up to a set
of measure at most ǫ.

(iii) For the Henstock integral on R, we shall have

R = {RC : C ∈ C},

where

RC = {R \ C ′ : C ⊆ C ′ ∈ C} ∪ {∅}

for C ∈ C. Thus ttt will be RC-filling if Httt is an interval including C.

Once again, in these examples, and I will do my best to keep it so, R is downwards-directed.

(i) The singleton set {{∅}} is surely downwards-directed.
(ii) RFǫ ∩RF ′ǫ′ ⊇ RF∪F ′,min(ǫ,ǫ′).
(iii) RC1

∩RC2
⊇ RC if C ⊇ C1 ∪ C2.

1E Compatibility Let me run through the structure again as it stands. We have a set X, a family C
of subsets of X, a set Q ⊆ X × C, the corresponding set TQ of tagged partitions ttt, a downwards-directed
family ∆ of gauges, and a downwards-directed family R of residual classes. Next, we have linear spaces U ,
V and W , a bilinear function 〈 | 〉 : U × V → W , and a Hausdorff linear space topology on W ; and finally
we have functions f : X → U and ν : C → V and sums Sttt(f, ν) =

∑

(x,C)∈ttt〈f(x)|νC〉. I am going to want
to say

(*)
∫

f dν = w if for every open set G ⊆ W containing w there are a δ ∈ ∆ and an R ∈ R

such that Sttt(f, ν) ∈ G whenever ttt ∈ T is δ-fine and R-filling.

But of course this will be out of the question unless, for every δ ∈ ∆ and R ∈ R, there is a δ-fine R-filling ttt;
because otherwise (*) will be vacuously satisfied for every w. So we need to be sure that we have compatible
families ∆ and R in this sense.

Examples (i) For the Riemann integral, we just have to observe that if η > 0 then n = ⌈ b−a
η

⌉

is finite, so we can take ai = min(b, a + iη) for i ≤ n + 1.
(ii) For the classical integral, given δ = δE and R = RFǫ, there is a finite subset E0 of E \ {∅}

such that µ(F \
⋃

E0) ≤ ǫ; for E ∈ E0 choose xE ∈ E, and set ttt = {(xE , F ∩ E) : E ∈ E0}.
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(iii) For the Henstock integral, given a neighbourhood gauge δ = δ〈Gx〉x∈R
and a residual class

RC , take a, b such that C ⊆ [a, b] and set

A = {c : c ∈ [a, b], there is a δ-fine ttt such that Httt = [a, c]}.

Start with ttt = {(a, {a})} to see that a ∈ A, so A is a non-empty subset of [a, b] and has a
supremum d say. There is an η > 0 such that [d−η, d+η] ⊆ Gd. There is a c ∈ [d−η, d]∩C; let ttt be
a δ-fine partition such that Httt = [a, c]. If c = b then ttt is already δ-fine and RC-filling. Otherwise,
set ttt′ = ttt ∪ {(d, ]c, min(d + η, b)]}. Then ttt′ is a δ-fine partition and Httt′ = [a, min(d + η, b)]. So
min(d + η, b) ∈ C; as min(d + η, b) ≤ d ≤ b, we have d = b = min(d + η, b) and ttt′ is δ-fine and
RC-filling.

⊕⊕⊕

Remark Note that, at least in the definition, we don’t need to say anything about ‘measurability’ of the
function f , and the function ν doesn’t have to be defined on any more sets than those in C. So, for instance,
with the Henstock-Stieltjes integral, we can take any real-valued function ν defined on bounded intervals of
R with the property that if C and C ′ are adjoining disjoint intervals then ν(C ∪ C ′) = νC + νC ′. For the
definition, we don’t even have to say that, though if it isn’t true we are in danger of having few ν-integrable
functions. But we certainly don’t have to trouble ourselves with countable additivity for the time being.

1F Theorem (a) Under the conditions of 1E,
∫

is bilinear, in the sense that
∫

(f1 + f2)dν exists and is equal to
∫

f1 dν +
∫

f2 dν

whenever f1, f2 : X → U and ν : C → V are such that
∫

f dν1 and
∫

f dν2 are defined,
∫

f d(ν1 + ν2) exists and is equal to
∫

f dν1 +
∫

f dν2

whenever f : X → U and ν1, ν2 : C → V are such that
∫

f dν1 and
∫

f dν2 are defined,
∫

(αf)dν and
∫

f d(αν) exist and are equal to α
∫

f dν

whenever f : X → U and ν : C → V are such that
∫

f dν is defined, and α ∈ R
C .

(b) Suppose now that we have linear spaces U1 and V1, a topological linear space W1, a bilinear map

〈 | 〉1 : U1 × V1 → W1, a continuous linear operator T : W → W1 and linear operators T̂ : U → U1 and

T̃ : V → V1 such that T (〈u|v〉) = 〈T̂ u|T̃ v〉1 for all u ∈ U and v ∈ V . Then
∫

(T̂ f)d(T̃ ν) = T (
∫

fdν)
whenever f : X → U and ν : C → V are such that

∫

fdν is defined in W .

proof (a) This is because all the functions Sttt are bilinear, and addition and scalar multiplication in W are
continuous.

(b) Similarly, T (Sttt(f, ν)) = Sttt(T̂ f, T̃ ν) for every ttt, and T is continuous.

Remark The statement of (b) looks rather involved. The easy examples are when one of U , V is one-
dimensional and we can identify W with the other. More generally, there are further examples when W is
a tensor product of U and V .

2 Saks-Henstock indefinite integrals

2A Resumé We are working with a set X, a family C of subsets of X, a set Q ⊆ X × C, the set

TQ = {ttt : ttt is a finite subset of Q, C ∩ C ′ = ∅ for all distinct (x,C), (x′, C ′) ∈ ttt},

a downwards-directed family ∆ of gauges δ ⊆ X × PX, and a downwards-directed family R of residual
classes R ⊆ PX, all containing ∅. Off-stage, we have linear spaces U , V and W , a bilinear operator
〈 | 〉 : U × V → W , and a Hausdorff linear space topology on W .

2B Subdivisions I am going to add some further conditions to the list of properties of X, C, Q, ∆ and
R.

(a) First, R should not only be downwards-directed, but should also have the following property:

for every R ∈ R there is a R′ ∈ R such that A ∪ B ∈ R whenever A, B ∈ R′ are disjoint.
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(Since we are still going to insist that ∅ should belong to every member of R, this will imply that R′ ⊆ R.
It’s important that we look only at the unions of disjoint sets A, B here. In cases like the Henstock
integral, where we have sharp restrictions on the shapes of members of residual sets – residual sets are
always complements of bounded intervals – the condition here will be trivially satisfied.)

(b) Let E0 be the family of subsets of X expressible in the form E =
⋃

C0 where C0 ⊆ C is a finite disjoint
set. (So Httt ∈ E0 whenever ttt ∈ TQ.) Then we want

(i) whenever C, C ′ ∈ C then C ∩ C ′ ∈ C and C \ C ′ ∈ E0,
(ii) whenever R ∈ R and E ∈ E0, there is an E′ ∈ E0 such that E ⊆ E′ and X \ E′ ∈ R.

(c) Finally, we shall assume that ∆ is downwards-directed and we have a kind of super-compatibility, as
follows:

whenever C ∈ C, δ ∈ ∆ and R ∈ R, there is a δ-fine ttt ∈ T such that Httt ⊆ C and C \ Httt ∈ R.

(d) It is easy to check that all of these conditions are satisfied by the three leading examples I’ve been
examining. (Of course the arguments for (c) are based on the arguments for simple compatibility in 1E.)
It is also not hard to confirm that (a)-(c) here (together, of course, with the list of conditions in 2A) imply
that ∆ and R are compatible (see Fremlin 03, 481Hf), so that we have a well-defined notion of integral.

*2C For completeness, I mention two technical points.

Lemma Suppose that X, C, Q, TQ, ∆ and R satisfy the conditions of 2A-2B.
(a) For any R ∈ R there is a sequence 〈Ri〉i∈N in R such that whenever J ⊆ N is finite, Ai ∈ Ri for i ∈ J

and 〈Ai〉i∈J is disjoint then
⋃

i∈J Ai ∈ R.
(b) Let E be the subalgebra of PX generated by C. Then for any E ∈ E , δ ∈ ∆ and R ∈ R there is a

δ-fine ttt ∈ TQ such that Httt ⊆ E and E \ Httt ∈ R.

proof (a) Fremlin 03, 481He

(b) Fremlin 03, 482Aa.

2D Saks-Henstock Lemma The point about the conditions in 2B is that they are satisfied by a decent
proportion of the current crop of leading examples, and they are sufficient to lead to a useful kind of indefinite
integral.

Theorem Suppose that X, C, Q, TQ, ∆, R, U , V , W and 〈 | 〉 satisfy the conditions of 2A-2B, and moreover
W is complete in its given linear space topology. Let E be the subalgebra of PX generated by C. If
f : X → U and ν : C → V are functions, then

∫

f dν is defined in the sense of 1E iff there is a function
F : E → W such that

(α) F is additive1

and for every neighbourhood G of 0 in W there are δ ∈ ∆, R ∈ R such that
(β) Sttt(f, ν) − F (Httt) ∈ G for every δ-fine ttt ∈ T ,
(γ) F (E) ∈ G whenever E ∈ E ∩ R.

In this case, F is uniquely determined by the conditions (α)-(γ), and F (X) =
∫

fdν.

proof (a) Suppose that
∫

f dν is defined.

(i) I had better begin by showing that while the hypotheses allow ∅ ∈ C and ν∅ 6= 0, this will not upset
the result. In fact for any neighbourhood G of 0 in W there is a δ ∈ ∆ such that Sttt(f, ν) ∈ G whenever
ttt ∈ T is δ-fine and Httt = ∅. PPP Take a neighbourhood G1 of 0 in W , δ ∈ ∆ and R ∈ R such that G1−G1 ⊆ G
and Ssss(f, ν) −

∫

f dν ∈ G1 whenever sss ∈ TQ is δ-fine and R-filling. If ttt ∈ TQ is δ-fine and Httt = ∅, take any
δ-fine R-filling sss ∈ T , and consider sss′ = sss \ ttt, sss′′ = sss∪ ttt. Because Hsss ∩Httt = ∅, both sss′ and sss′′ belong to TQ;
both are δ-fine; and because Hsss′ = Hsss′′ = Hsss, both are R-filling. So

Sttt(f, ν) = Ssss′′(f, ν) − Ssss′(f, ν) = (Ssss′′(f, ν) −

∫

fdν) − (Ssss′(f, ν) −

∫

fdν)

∈ G1 − G1 ⊆ G,

1that is, F (E ∪ E′) = F (E) ∪ F (E′) whenever E, E′ ∈ E are disjoint.
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as required. QQQ

(ii) For E ∈ E , write T ′
E for the set of those ttt ∈ TQ such that, for every (x,C) ∈ ttt, either C ⊆ E or

C ∩E = ∅. For any δ ∈ ∆, R ∈ R and finite D ⊆ E there is a δ-fine ttt ∈
⋂

E∈D T ′
E such that E \Httt ∈ R for

every E ∈ D. PPP Let 〈Ri〉i∈N be a sequence in R such that whenever J ⊆ N is finite, Ai ∈ Ri for i ∈ J and
〈Ai〉i∈J is disjoint then

⋃

i≤n Ai ∈ R (2Ca). Let E∗ be the subalgebra of E generated by D, and enumerate

the atoms of E∗ as 〈Ei〉i<n. By 2Cb, there is for each i < n a δ-fine sssi ∈ TQ such that Hsssi
⊆ Ei and

Ei \ Hsssi
∈ Ri. Set ttt =

⋃

i<n sssi. If E ∈ D then E =
⋃

i∈J Ei for some J ⊆ n. For any (x,C) ∈ ttt, there is
some i < n such that (x,C) ∈ sssi and C ⊆ Ei, so that C ⊆ E if i ∈ J , C ∩ E = ∅ otherwise; thus ttt ∈ T ′

E .
Moreover, E \ Httt =

⋃

i∈J(Ei \ Hsssi
) belongs to R. QQQ

(iii) We therefore have a filter F∗ on T generated by sets of the form

TEδR = {ttt : ttt ∈ T ′
E is δ-fine, E \ Httt ∈ R}

as δ runs over ∆, R runs over R and E runs over E . For ttt ∈ TQ and E ⊆ X set tttE = {(x,C) : (x,C) ∈
ttt, C ⊆ E}. Now F (E) = limttt→F∗ StttE

(f, ν) is defined in W for every E ∈ E . PPP For any neighbourhood G
of 0 in W , there are δ ∈ ∆ and R ∈ R such that

∫

f dν − Sttt(f, ν) ∈ G for every δ-fine R-filling ttt ∈ TQ. Let
R′ ∈ R be such that A ∪ B ∈ R for all disjoint A, B ∈ R′. If ttt, ttt′ belong to TE,δ,R′ = TX\E,δ,R′ , then set

sss = {(x,C) : (x,C) ∈ ttt′, C ⊆ E} ∪ {(x,C) : (x,C) ∈ ttt, C ∩ E = ∅}.

Then sss ∈ TE is δ-fine, and also E \ Hsss = E \ Httt′ , (X \ E) \ Hsss = (X \ E) \ Httt both belong to R′; so their
union X \ Hsss belongs to R, and sss is R-filling. Accordingly

StttE
(f, ν) − Sttt′

E
(f, ν) = Sttt(f, ν) − Ssss(f, ν) ∈ G − G.

As G is arbitrary and W is complete, this is enough to show that limttt→F∗ StttE
(f, ν) is defined. QQQ

(iv) F (∅) = 0. PPP Let G be a neighbourhood of 0 in W . By (i), there is a δ ∈ ∆ such that Sttt(f, ν) ∈ G
whenever ttt ∈ T is δ-fine and Httt = ∅. Since {ttt : ttt is δ-fine} belongs to F∗,

F (∅) = limttt→F∗ Sttt∅(f, ν) ∈ G;

as G is arbitrary, F (∅) = 0. QQQ
If E, E′ ∈ E , then

Sttt
E∪E′ (f, ν) + Sttt

E∩E′ (f, ν) = StttE
(f, ν) + Sttt

E′ (f, ν)

for every ttt ∈ T ′
E ∩ T ′

E′ ; as T ′
E ∩ T ′

E′ belongs to F∗,

F (E ∪ E′) + F (E ∩ E′) = F (E) + F (E′).

Since F (∅) = 0, F (E ∪ E′) = F (E) + F (E′) whenever E ∩ E′ = ∅, and F is additive.

(v) Now suppose that G is a neighbourhood of 0 in W . Let G1 be a neighbourhood of 0 in W such
that G1 − G1 + G1 − G1 ⊆ G. Let δ ∈ ∆ and R∗ ∈ R be such that Sttt(f, ν) −

∫

fdν ∈ G1 for every δ-fine,
R∗-filling ttt ∈ T . Let R ∈ R be such that A ∪ B ∈ R∗ for all disjoint A, B ∈ R.

(ααα) If ttt ∈ T is δ-fine, then Sttt(f, ν) − F (Httt) ∈ G. PPP There is a δ-fine sss ∈ T such that

Ssss(f, ν) −
∫

fdν ∈ G1,
for every (x,C) ∈ sss, either C ⊆ Httt or C ∩ Httt = ∅,
(X \ Httt) \ Hsss ∈ R, Httt \ Hsss ∈ R,
∑

(x,C)∈sss,C⊆Httt
〈f(x)|νC〉 − F (Httt) ∈ G1

because the set of sss with these properties belongs to F∗. Now, setting sss1 = {(x,C) : (x,C) ∈ sss, C ⊆ Httt}
and ttt′ = ttt ∪ (sss \ sss1), ttt′ is δ-fine and R∗-filling, like sss, so

Sttt(f, ν) − F (Httt) = Sttt(f, ν) − Ssss1
(f, ν) + Ssss1

(f, ν) − F (Httt)

= Sttt′(f, ν) − Ssss(f, ν) + Ssss1(f, ν) − F (Httt)

= (Sttt′(f, ν) −

∫

fdν)) − (Ssss(f, ν) −

∫

fdν) + (Ssss1
(f, ν) − F (Httt))

∈ G1 − G1 + G1 ⊆ G. QQQ
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(βββ) If E ∈ E ∩ R then F (E) ∈ G. PPP There is a ttt such that

ttt ∈ T ′
E is δ-fine,

E \ Httt and (X \ E) \ Httt both belong to R,
StttE

(f, ν) − F (E) ∈ G1

(once again, the set of candidates belongs to F∗, so is not empty). In this case ttt and tttX\E are both R∗-filling
and δ-fine, so

F (E) = Sttt(f, ν) − StttX\E
(f, ν) − StttE

(f, ν) + F (E)

= (Sttt(f, ν) −

∫

fdν) − (StttX\E
(f, ν) −

∫

fdν) − (StttE
(f, ν) − F (E))

∈ G1 − G1 − G1 ⊆ G. QQQ

Thus F has all the required properties.

(vi) To see that F is unique, suppose that F ′ : E → R is another function with the same properties,
and take E ∈ E and a neighbourhood G of 0 in W . Then there are δ, δ′ ∈ ∆ and R, R′ ∈ R such that

Sttt(f, ν) − F (Httt) ∈ G for every δ-fine ttt ∈ T ,
Sttt(f, ν) − F ′(Httt) ∈ G for every δ-fine ttt ∈ T ,
F (E) ∈ G whenever E ∈ E ∩ R,
F ′(E) ∈ G whenever E ∈ E ∩ R′.

Now taking δ′′ ∈ ∆ such that δ′′ ⊆ δ ∩ δ′, and R′′ ∈ R such that R′′ ⊆ R∩R′, there is a δ′′-fine ttt ∈ T such
that Httt ⊆ E and E \ Httt ∈ R′′. In this case

Sttt(f, ν) − F (E) = Sttt(f, ν) − F (Httt) − F (E \ Httt)

(because F is additive)

∈ G − G

because E \ Httt ∈ R′′ ⊆ R and ttt is δ′′-fine, therefore δ-fine. Similarly, Sttt(f, ν) − F ′(E) ∈ G − G so
F ′(E) − F (E) ∈ G − G − G + G. As G and E are arbitrary, F = F ′.

(b) In the other direction, suppose that F : E → W has the properties (α)-(γ). Take a neighbourhood G
of 0 in W . Let G1 be a neighbourhood of 0 in W such that G1 −G1 ⊆ G. Then there are δ ∈ ∆ and R ∈ R

such that

Sttt(f, ν) − F (Httt) ∈ G1, F (E) ∈ G1

whenever ttt ∈ TQ is δ-fine and E ∈ E ∩ R. Now suppose that ttt ∈ TQ is δ-fine and R-filling. Then

Sttt(f, ν) − F (X) = (Sttt(f, ν) − F (Httt)) − F (X \ Httt) ∈ G1 − G1 ⊆ G.

As G is arbitrary,
∫

fdν is defined and equal to F (X).

Remark In this context, I will call F the Saks-Henstock indefinite integral of f with respect to ν.
(Warning! Do not suppose it is like any other kind of indefinite integral you have seen.)

3 Why bother?
⊕⊕⊕

3A What are gauge integrals good at? (a) With practice, you will I hope find that you can quite
often devise gauge integrals which will at least agree with your favourite classical integrals (whether scalar-
or vector-valued) on the functions the classical integrals will integrate. Thus the Henstock integral H

∫

on R,
by which I mean the gauge integral got from the configuration of Example (iii) and taking νC to be the
length of C for every bounded interval C ⊆ R, extends the Lebesgue integral and various kinds of improper
Riemann integral. (This takes a bit of proving, I have to admit. See Fremlin 03, §483.) Typically, gauge
integrals go farther. But of course one rather likes the idea of integrating more functions.

(b) While the limiting process described in (*) of 1E is a complex one, and a good deal more difficult
than a simple limit of sequences, we can get a definition of an integral from just this one process. Ordinary



8

approaches to either Riemann or Lebesgue integration ask for repeated limit stages which have to be done
in just the right order. In the Riemann integral, we quickly find ourselves looking at ‘improper’ Riemann
integrals, which are limits of Riemann integrals; while in the Lebesgue integral, we use one limit process to
measure sets, and a second to integrate functions.

(c) Gauge integrals are good at integrating derivatives. For instance:

Theorem If f : R → R is a differentiable function such that γ = limx→∞ f(x) − limx→−∞ f(x) is defined
in R, then H

∫

f ′ is defined and equal to γ.

proof In 2D, take F (
⋃

C0) =
∑

C∈C0
f(sup C)− f(inf C), F (R \

⋃

C0) = γ −F (
⋃

C0) whenever C0 ⊆ C \{∅}
is finite and disjoint. [We need to check that this is well-defined, that is, we get the same sum when
⋃

C0 =
⋃

C1.] To get |F (Httt) − Sttt(f, ν)| ≤ ǫ for δGGG-fine ttt, take Gx small enough so that

|f(b) − f(a) − (b − a)f ′(x)| ≤
ǫ|b−a|

π(1+a2+b2)

whenever a ≤ x ≤ b and a, b both belong to Gx. To get |F (R \C ′)| ≤ ǫ whenever C ′ is an interval including
C, we just have to take C big enough.

⊗⊗⊗

3B What are gauge integrals bad at? Rather a lot of things. Subspaces don’t work well. (You
should not think of the function F of 2D as an ordinary indefinite integral; F (E) there does not have to
have much to do with

∫

f × χE dν.) Nor do products. There are convergence theorems (see 3J below),
but it takes hard work to make them give the full value of the classical theorems, and often the easiest way
to prove them is to find a classical integral associated with your gauge integral, and use the convergence
theorems for that. (Thus for a non-negative function f : R → [0,∞[, H

∫

f is equal to the ordinary Lebesgue
integral of f if either is defined.)

⊗⊗⊗

3C Riemann-Stieltjes integrals If we take the tagged-partition structure of the Riemann integral,
as defined in Example (i), but use a functional ν with an atom, then we can have problems. Taking C to
be the family of subintervals of [0, 1], set νC = 1 if 1

2 ∈ C, 0 otherwise. Then, for any f : [0, 1] → R and
ttt ∈ TQ,

Sttt(f, ν) = f(x) if (x,C) ∈ ttt and
1

2
∈ C,

= 0 if
1

2
/∈ Httt.

So if ttt is δη-fine, where δη is the uniform metric gauge {(x,A) : x ∈ [0, 1], A ⊆ [0, 1], diam A ≤ η}, and
{∅}-filling, we shall have Sttt(f, ν) = f(x) for some x belonging to the closure of an interval C, of diameter
at most η, containing 1

2 . This means that the gauge integral
∫

fdν will be defined, and equal to α, iff

for every ǫ > 0 there is an η ∈
]

0, 1
2

[

such that |f(x) − α| ≤ ǫ whenever there is a δη-fine

tagged partition ttt with Httt = [0, 1] and an interval C such that (x,C) ∈ ttt and 1
2 ∈ C.

But of course for any x ∈ [ 12 − η, 1
2 + η] we can find such ttt and C; just take C to be [12 − η, 1

2 + η] and fill
[

0, 1
2 − η

[

and
]

1
2 + η, 1

]

by the method in 1E. So we find that
∫

fdν = α iff for every ǫ > 0 there is an η ∈
]

0, 1
2

[

such that |f(x) − α| ≤ ǫ whenever

x ∈ [12 − η, 1
2 + η];

that is, iff f is continous at 1
2 and f( 1

2 ) = α.

Next, given that f is continous at 1
2 , its Saks-Henstock indefinite integral F is defined by saying that

F (E) = f(
1

2
) if

1

2
∈ E,

= 0 otherwise.

(For this function satisfies (α)-(γ) of 2D.) But if we look at
∫

f ×χE dν, this will be defined only if f ×χE

is continuous at 1
2 ; that is, either f( 1

2 ) = 0 or 1
2 does not lie on the boundary of E. In particular, if f = χX

is the constant function with value 1, and C =
[

0, 1
2

[

or [0, 1
2 ], then

∫

f ×χC dν is undefined, although F (C)
is defined and is 0 or 1 respectively.
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In the language of Riemann-Stieltjes integration, the functional ν here corresponds to a jump function
g = χ[0, 1

2 ] or g = χ
[

0, 1
2

[

; and Riemann-Stieltjes integrals
∫

fdg are problematic when f and g share a
point of discontinuity.

3D Multipliers The phenomenon in 3C is related to a general question. For any notion of integration
∫

. . . dν, we can ask: for which functions g will it be true that
∫

g × f dν is defined whenever
∫

fdν is
defined? We say that such a function g is a multiplier for the integral. In the context of this note, where
we have functions f : X → U where U is a vector space, the natural multipliers to look for are real-valued
functions g defined on X so that we can interpret g × f with the formula (g × f)(x) = g(x)f(x). In 3N, for
Riemann integration with respect to the point mass ν, the multipliers will be just the functions continuous
at 1

2 . For ordinary Riemann integration with respect to length, the multipliers turn out to be the Riemann
integrable functions. For the Lebesgue integral on Rn, the multipliers are the essentially bounded Lebesgue
measurable functions. For gauge integrals they can be difficult to characterize. But for the Henstock integral
on R, we have an elegant result: g : R → R is a multiplier iff there is a function g0 of bounded variation such
that g = g0 almost everywhere in Lebesgue’s sense. (Integration by parts works for the Henstock integral.)
And these are still multipliers for the vector-valued case, at least when U = W is a complete locally convex
space. (Of course I am taking it for granted that V = R, νC is the length of C for every bounded interval
C ⊆ R, and that 〈u|α〉 = αu for u ∈ U and α ∈ R.)

3E Returning to the questions raised in 3B, there are things which can be done.

The Henstock integral in R2 (a) Example (iii) of 1B/1D/1E has a two-dimensional form, as follows.

(iv) Take X = R2, C the set of rectangles C1 × C2 where C1, C2 ⊆ R are bounded intervals,
Q = {(x,C) : x ∈ R2, C ∈ C, x ∈ C}, TQ the corresponding set of tagged partitions, ∆ the family
of neighbourhood gauges on R2 (derived from families 〈Gx〉x∈R2 of open sets in R2 such that
x ∈ Gx for every x ∈ R2), and R = {RC : C ∈ C} where RC = {R2 \ C ′ : C ⊆ C ′ ∈ C} ∪ {∅}.

I should warn you that this is not quite standard. The big problem is that it’s not rotation-invariant. To
be much use in conventional physical applications, one wants structures which are both translation- and
rotation-invariant, like Lebesgue measure. But it seems to be a useful idea as long as you are committed to
a particular orientation of the coordinates.

[There is a most interesting construction, the ‘Pfeffer integral’, which is rotation-invariant, and gives a
strong version of the divergence theorem in Rr. But it’s a limit of gauge integrals rather than a gauge
integral itself, and it’s a week’s work to describe it. See Fremlin 03, §484.]

(b) We now have a result corresponding to Theorem 3Ac, but for a rather special kind of differentiation.
I will say that a function f : R2 → R is cross-differentiable at (a, b), with cross-derivative α =
(D×f)(a, b), if for every ǫ > 0 there is a neighbourhood G of (a, b) such that

|f(x, y) − f(x, b) − f(a, y) + f(a, b) − α(x − a)(y − b)| ≤ ǫ|x − a||y − b|

whenever (x, y) ∈ G. If you have looked at the proof that
∂2f

∂x∂y
=

∂2f

∂y∂x
when f has continuous second partial

derivatives, you will find it easy to show that such a function is cross-differentiable, with D×f =
∂2f

∂x∂y
. (The

class of these functions is actually quite interesting – they correspond to the ‘strongly derivable interval
functions’ of Laczkovich 82.)

(c) Theorem Suppose that f : R2 → R is cross-differentiable everywhere, and that

γ = lim
x→∞
y→∞

f(x, y) − lim
x→∞

y→−∞

f(x, y) − lim
x→−∞
y→∞

f(x, y) + lim
x→−∞
y→−∞

f(x, y)

is defined in R. Then H
∫

D×f is defined and equal to γ.

(d) We have a similar result for functions f : R2 → W for any locally convex Hausdorff linear topological
space W . And the same ideas work in Rr for any integer r ≥ 1.

3F Fubini’s theorem There is a version of Fubini’s theorem for the Henstock integral.
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Theorem (a) Suppose that f : R2 → R is zero outside some bounded set, and has a two-dimensional
Henstock integral H

∫

f(x, y)d(x, y). Let g : R → R be such that g(x) = H
∫

f(x, y)dy whenever the one-
dimensional Henstock integral H

∫

f(x, y)dy is defined. Then the one-dimensional Henstock integral H
∫

g(x)dx
is defined and equal to H

∫

f(x, y)d(x, y).
(b) Suppose that f , g : R → R have one-dimensional Henstock integrals. Then the two-dimensional

Henstock integral H
∫

f(x)g(y)d(x, y) is defined and equal to H
∫

f(x)dx · H
∫

g(y)dy.

proof (a) See Fremlin 03, 482M.

(b) See Fremlin n11.

Remarks I have stated this result for real-valued f only; in the vector-valued case it will work well enough
if U = W is finite-dimensional, but not for infinite-dimensional spaces (see 3G). There is no difficulty in
extending the idea of Example (iv) to give a Henstock integral on Rr for any integer r ≥ 1. In Fubini’s
theorem, however, while (a) above extends to (real-valued) functions from Rr+s ∼= Rr ×Rs for any r and s,
I do not know whether (b) extends unless at least one of r and s is equal to 1. The following problem seems
to be an obstacle if min(r, s) = 2:

Problem Let C be the set of rectangles in R2, as in Example (iv), and E0 the set of finite
unions of members of C. Is there a constant M ≥ 0 such that

whenever φ : C → [0, 1] is a function such that
∑

C∈C0
φC ≤ 1 for every finite disjoint

C0 ⊆ C, there is an additive function λ : E0 → [0,M ] such that φC ≤ λC for every
C ∈ C?

(For the one-dimensional version, the answer is ‘yes’, with M = 1; but M = 1 won’t work in two dimensions.
As of 4.7.11, the best example is due to Mircea Petrarche and shows that in two dimensions M must be at
least 3

2 . See Fremlin n11.)

3G Example There is a Henstock integrable f : R2 → ℓ2 such that H
∫

f(x, y)dy is undefined for every
y ∈ [0, 1[.

proof (a) Take orthonormal enj ∈ ℓ2 for n ∈ N and j < 4n. Set

f(x, y) = 2nenj if 2−n−1 < x ≤ 3 · 2−n−2, 4nj ≤ y < 4n(j + 1),

= −2nenj if 3 · 2−n−2 < x ≤ 2−n, 4nj ≤ y < 4n(j + 1),

= 0 for other x, y ∈ R.

(b) If y ∈ [0, 1[ then

‖
∫ 3·2−n−2

2−n−1
f(x, y)dx‖ = 2−n−2 · 2n =

1

4

for every n, so limδ↓0

∫ 1

δ
f(x, y)dx and H

∫ 1

0
f(x, y)dx are undefined (see Fremlin 03, 483Bd).

(c) The bulk of the argument concerns the two-dimensional integral H
∫

f(x, y)d(x, y). I aim to describe
the associated Saks-Henstock indefinite integral. Taking E to be the algebra of subsets of R2 generated by
the family C of products of bounded intervals, we can define F on E by setting

F (E) =
∑∞

n=0

∑4n−1
j=0

∫

E∩(]2−n−1,2−n]×[4−nj,4−n(j+1)[)
fdµ,

where the integrals here are the ordinary Lebesgue integral with respect to two-dimensional Lebesgue mea-
sure µ, because all but finitely many terms in this sum will be zero. The property (α) of 2D is immediate
from the form of the definition of F , and (γ) there is equally elementary, since in fact F (E) = 0 whenever
E is disjoint from [0, 1]2.

As for (β), set

G = {(x, y) : f is constant on a neighbourhood of (x, y)},

E = {(x, y) : (x, y) ∈ R2 \ G, f is bounded on a neighbourhood of (x, y)}.
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Then R2 \ G is a closed set included in (Q × R) ∪ (R × Q), so is Lebesgue negligible, while R2 \ (G ∪ E) is
the line segment {0} × [0, 1].

Let ǫ > 0. For each n ∈ N, set

En = E ∩ int{(x, y) : ‖f(x, y)‖ ≤ 2n},

and let G̃n ⊇ En be an open set of measure at most 4−nǫ such that ‖f(x, y)‖ ≤ 2n for every (x, y) ∈ G̃n.
Let m ∈ N be such that 2−m ≤ ǫ. Let GGG = 〈Gxy〉(x,y)∈R2 be a family of open sets such that (x, y) ∈ Gxy for
every (x, y) and

—– if (x, y) ∈ G, then f is constant on Gxy,

—– if n ∈ N and (x, y) ∈ En, then Gxy ⊆ G̃n,

—– if y ∈ [0, 1] then diam G0y ≤ 2−m.

Then, writing µ for two-dimensional Lebesgue measure on R2, ‖F (Httt) − Sttt(f, µ)‖ ≤ 5ǫ for every δGGG-fine ttt.
PPP Set

sss = {((x, y), C) : ((x, y), C) ∈ ttt, (x, y) ∈ G},

sssn = {((x, y), C) : ((x, y), C) ∈ ttt, (x, y) ∈ En} for n ∈ N,

tttn = {((0, y), C) : ((0, y), C) ∈ ttt, y ∈ [0, 1], 2−n−1 < sup π1[C] ≤ 2−n} for n ≥ m,

where π1(x, y) = x for (x, y) ∈ R2. Then, for any n ≥ m and j < 4n,

∑

((0,y),C)∈tttn

∫

C∩(]2−n−1,2−n]×[4−nj,4−n(j+1)[)

fdµ

=
∑

((0,y),C)∈tttn

sup π1[C]≤3·2−n−2

2n(sup π1[C] − 2−n−1)µ1(π2[C] ∩
[

4−nj, 4−n(j + 1)
[

)enj

+
∑

((0,y),C)∈tttn

3·2−n−2<sup π1[C]

2n(2−n − sup π1[C])µ1(π2[C] ∩
[

4−nj, 4−n(j + 1)
[

)enj

(writing π2(x, y) = y for (x, y) ∈ R2, and µ1 for one-dimensional Lebesgue measure on R)

= βjenj

where |βj | ≤ 2−n−2 · 2n · 4−n = 4−n−1. Consequently

‖F (Htttn
)‖2 = ‖

∑

((0,y),C)∈tttn

F (C)‖2

= ‖
4n−1
∑

j=0

∑

((0,y),C)∈tttn

∫

C∩(]2−n−1,2−n]×[4−nj,4−n(j+1)[)

fdµ‖2

= ‖
4n−1
∑

j=0

βjenj‖
2 =

4n−1
∑

j=0

β2
j ≤ 4n · 4−2n−2 = 4−n−2

and ‖F (Htttn
)‖ ≤ 2−n−1 for every n ≥ m. Now we can estimate
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‖F (Httt) − Sttt(f, µ)‖ ≤ ‖F (Hsss) − Ssss(f, µ)‖ +

∞
∑

n=0

‖F (Hsssn
) − Ssssn

(f, µ)‖

+

∞
∑

n=m

‖F (Htttn
) − Stttn

(f, µ)‖

≤
∑

((x,y),C)∈sss

‖F (C) − f(x, y)µC‖

+

∞
∑

n=0

∑

((x,y),C)∈sssn

(‖F (C)‖ + ‖f(x, y)µC‖) +

∞
∑

n=m

‖F (Htttn
)‖

≤ 0 +
∞
∑

n=0

∑

((x,y),C)∈sssn

2n+1µC +
∞
∑

n=m

2−n−1

≤
∞
∑

n=0

2n+1µG̃n + 2−m ≤
∞
∑

n=0

2n+1 · 4−nǫ + ǫ = 5ǫ. QQQ

As ǫ is arbitrary, F satisfies the conditions of 2L, and f is Henstock integrable.

3H Line integrals We sometimes want to form a line integral, in two- or three-dimensional space, of a
scalar- or vector-valued function. Ordinary approaches tend to insist on curves of finite length, that is, on
rectifiable parametrizations of curves, and on continuous integrands. A version of the Henstock integral can
do fractionally better than that, as follows.

Proposition Suppose that X is (the set of points of) a simple curve in a normed space V . Let C be
the family of subintervals (open, closed or half-open) of X, Q the set of pairs {(v, C) : C ∈ C, v ∈ C},
TQ the corresponding set of tagged partitions, ∆ the set of neighbourhood gauges on X, R = {{∅}}. Set
ν∅ = 0 and νC = v↑(C) − v↓(C) if C ∈ C \ {∅}, writing v↓(C) and v↑(C) for the starting and finishing
endpoints of C. Suppose that there is a countable closed set D ⊆ X such that for every v ∈ X \D there is a
neighbourhood G of v meeting X in a set of finite length2. Let f : X → W be a function with a derivative
(∇f)(v) ∈ B(V ; W ) with respect to its domain at every point v of X.3 Then

∫

∇f dν is defined and equal

to f(v↑(X)) − f(v↓(X)).

Remark In the language of 1A, I am taking U to be the normed space B(V ; W ) of bounded linear operators
from V to W , and 〈T |v〉 = Tv for T ∈ B(V ; W ), v ∈ V . I didn’t work through exactly this structure X, C,
Q, ∆ and R, but the arguments of §1 include all the ideas needed to show that it satisfies the requirements
of 2A-2B. The point is that because X is a ‘simple’ curve there are no crossing points and X looks almost
like the unit interval, except that it might start and finish in the same place.

proof (a)(i) Note that it will be enough to consider the case in which W is a Banach space, because if f
is differentiable regarded as a function from V to W then it is still differentiable, with the same derivative,
when regarded as a function from V to the completion Ŵ ; and if

∫

∇f) dν is defined when we think of 〈 | 〉

as a function from B(V ; W )× V to Ŵ , and belongs to W , then it is still defined, with the same value, if we
think of 〈 | 〉 as a function from B(V ; W ) × V to W , because both the target f(v↑(X)) − f(v↓(X)) and the
approximating sums Sttt(f, ν) belong to W .

(ii) The next thing to note is that there is a countable closed set D′ ⊆ X, containing the endpoints
v↓(X) and v↑(X), such that every component of X \ D′ has finite length. PPP For each component C of
X \ D, take sequences 〈aCn〉n∈N, 〈bCn〉n∈N in C converging to v↓(C), v↑(C) respectively, and set

D′ = D ∪ {aCn : n ∈ N, C is a component of X \ D}

∪ {bCn : n ∈ N, C is a component of X \ D} ∪ {v↓(X), v↑(X)}.

2that is, there is an M ≥ 0 such that
∑

i<n
‖vi+1 − vi‖ ≤ M whenever v0, . . . , vn are taken in order along X ∩ G.

3that is, for every v ∈ X and ǫ > 0 there is an η > 0 such that ‖f(v′) − f(v) − ((∇f)(v))(v′ − v)‖ ≤ ǫ‖v′ − v‖ whenever
v′ ∈ X and ‖v′ − v‖ ≤ η.
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Now if I is a component of X \ D′, then its closure I = I ∪ {v↓(I), v↑(I)} is included in X \ D, so every
point of I has a neighbourhood meeting X in a set of finite length; because I is compact, it can be covered
by finitely many such neighbourhoods, and is itself of finite length. QQQ

(b) Let E be the algebra of subsets of X generated by C. Then we have an additive function F : E → W
defined by setting

F (
⋃

i≤n Ci) =
∑n

i=0 f(v↑(Ci)) − f(v↓(Ci))

whenever C0, . . . , Cn ∈ C are disjoint and non-empty. (There is a little bit of geometry here; we have
to know that every member of E is a finite disjoint union of members of C, that the intersection of two
members of C belongs to C, and that when we have two or more disjoint non-empty members C0, . . . , Cn

of C with union in C, then two of them must be abutting in such a way that v↑(Ci) = v↓(Cj), Ci ∪ Cj ∈ C,
v↓(Ci ∪ Cj) = v↓(Ci) and v↑(Ci ∪ Cj) = v↑(Cj).)

(c) If I is a component of X \ D′ and ǫ > 0, there is a δ ∈ ∆ such that
∑

(v,C)∈ttt ‖f(v↑(C)) − f(v↓(C)) − (∇f(v)(v↑(C) − v↓(C))‖ ≤ ǫ

whenever ttt ∈ T is δ-fine and Httt ⊆ I. PPP Set M = lh(I); by the choice of D′, M is finite. For each v ∈ X,
let Gv ⊆ V be an open set containing v such that

‖f(v′) − f(v) −∇f(v)(v′ − v)‖ ≤
ǫ

M
‖v′ − v‖

for every v′ ∈ X ∩ Gv. Then

δ = {(v,A) : v ∈ X, A ⊆ X ∩ Gv}

belongs to ∆. Now suppose that ttt ∈ T is δ-fine and Httt ⊆ I. Then

‖F (Httt) − Sttt(∇f, ν)‖

= ‖
∑

(v,C)∈ttt

f(v↑(C)) − f(v↓(C)) −
∑

(v,C)∈ttt

∇f(v)(νC)‖

≤
∑

(v,C)∈ttt

‖f(v↑(C)) − f(v↓(C)) −∇f(v)(v↑(C) − v↓(C))‖

≤
∑

(v,C)∈ttt

‖f(v↑(C)) − f(v) −∇f(v)(v↑(C) − v)‖

+
∑

(v,C)∈ttt

‖f(v) − f(v↓(C)) −∇f(v)(v − v↓(C))‖

≤
∑

(x,C)∈ttt

ǫ

M
‖v↑(C) − v‖ +

∑

(x,C)∈ttt

ǫ

M
‖v − v↓(C)‖

(because v↑(C), v↓(C) ∈ Gv whenever (v, C) ∈ δ)

≤
ǫ

M
lh(I)

(because the intervals [v↓(C), v], [v, v↑(C)], as (v, C) runs over ttt, are non-overlapping subintervals of C0)

= ǫ. QQQ

(d) If ǫ > 0 there is a δ ∈ ∆ such that ‖F (Httt) − Sttt(∇f, ν)‖ ≤ ǫ whenever ttt ∈ T is δ-fine and Httt = X.
PPP Let I be the family of components of X \ D′. Because I and D′ are both countable, we have families
〈ǫC〉C∈I and 〈ǫv〉v∈D′ of strictly positive real numbers such that

∑

C∈I ǫC +
∑

v∈D′ ǫv ≤ ǫ. For each C ∈ I,
(c) tells us that there is a δC ∈ ∆ such that

∑

(v,C)∈ttt ‖f(v↑(C)) − f(v↓(C)) −∇f(v)(v↑(C) − v↓(C))‖ ≤ ǫC
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whenever ttt ∈ TQ is δC-fine and Httt ⊆ C. For each v ∈ D′ let Gv be an open neighbourhood of v in V such

that ‖∇f(v)‖‖v′ − v′′‖ + ‖f(v′′) − f(v′)‖ ≤ ǫv whenever v′, v′′ ∈ X ∩ Gv. Now let δ be a neighbourhood
gauge included in

⋃

C∈I{(v,A) : v ∈ C, (v,A) ∈ δC , A ⊆ C} ∪ {(v,A) : v ∈ D′, A ⊆ X ∩ Gv}.

Suppose that ttt is δ-fine and Httt = X. Then

∑

(v,C)∈ttt

‖F (C) − 〈∇f(v)|νC〉‖

=
∑

(v,C)∈ttt

‖f(v↑(C)) − f(v↓(C)) −∇f(v)(v↑(C) − v↓(C))‖

=
∑

I∈I

∑

(v,C)∈ttt
C⊆I

‖f(v↑(C)) − f(v↓(C)) −∇f(v)(v↑(C) − v↓(C))‖

+
∑

(v,C)∈ttt

v∈D′

‖f(v↑(C)) − f(v↓(C)) −∇f(v)(v↑(C) − v↓(C))‖

≤
∑

I∈I

ǫI +
∑

v∈D′

ǫv ≤ ǫ. QQQ

(e) By 2D,
∫

∇f dν is defined, and F is the Saks-Henstock integral of ∇f with respect to ν, so
∫

∇f dν =

f(v↑(X)) − f(v↓(X)).

3I Corollary In Proposition 3H, suppose that V = W = C, and that f is an analytic function with
domain including X. Then

∫

f dν is defined. Let F be the Saks-Henstock indefinite integral of f with
respect to ν. If g is an analytic function such that g′(z) = f(z) for every z ∈ X ∩ dom g and C ∈ C is a
closed interval included in dom g, then F (C) = g(v↑(C) − g(v↓(C)).

proof We need to know enough about analytic functions (e.g., that an analytic function has Taylor series
valid near each point of its domain) to know that we shall be able to cover X by the domains of primitives
g of f . So we can apply the result to finitely many primitives g, each relevant to some subinterval of X.

Remark I went to the trouble, in 3H-3I, to leave the curve X unparametrized. Of course it would be
unusual to have a simple curve which didn’t come with a reasonably natural parametrization. But I like the
idea of a definition which doesn’t involve choosing a parametrization and then showing that it didn’t matter
which parametrization you chose.

Of course this means that I have sacrificed curves which repeat parts of themselves, forwards or backwards,
which are often useful in the theory of complex variables. To allow this we should need to change the notion
of ‘tagged partition’, which would force us to re-negotiate the Saks-Henstock indefinite integral.

3J Classical integrals of vector-valued functions Let (X, Σ, µ) be a σ-finite measure space and
U = W a Hausdorff linear topological space, V = R, 〈w|α〉 = αw for α ∈ R and w ∈ W . Let C be the
family of measurable sets of finite measure, Q = X × C, TQ the corresponding set of tagged partitions,
δE =

⋃

E∈E E × PE, RFǫ = {E : E ∈ Σ, µ(E ∩ F ) ≤ ǫ} as in Example (ii).

(a) When W is a separable Banach space, we get an extension of the Bochner integral. (It is possible to
have a function such that

∫

f dµ is defined but
∫

‖f‖dµ = ∞.)

(b) When the topology on W is a weak topology, we get an extension of the Pettis integral. (In this
case, W will not normally be complete, so we cannot be sure of having a Saks-Henstock indefinite integral
as defined in 2D. However, if f : X → W is such that there is a function F : Σ → W with the properties
(α)-(γ) of 2D, then f will be integrable.)

3K Definition A set ∆ of gauges on a set X is countably full if whenever 〈δn〉n∈N is a sequence in ∆
and x 7→ n(x) is a function from X to N, then there is a δ ∈ ∆ such that (x,A) ∈ δn(x) whenever (x,A) ∈ δ.
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Observe that for any topological space X the set of neighbourhood gauges on X is countably full. However,
the family of gauges described in 1D for the classical integral is not a countably full family.

3L Definition If X is a set, C is a family of subsets of X, V is a normed space and δ ⊆ X × PX
is a gauge, a function ν : C → V is δ-moderate if there is a strictly positive h : X → ]0,∞[ such that
∑

(x,C)∈ttt h(x)‖νC‖ ≤ 1 whenever ttt ∈ TX×C is δ-fine.

3M A convergence theorem Suppose that X, C, Q, ∆ and R are as in 2A-2B, and that ∆ is countably
full in the sense of 3K. Let U , V and W be Banach spaces, and 〈 | 〉 : U × V → W a continuous bilinear

operator; let ν : C → V be a function which is δ̃-moderate in the sense of 3L for some δ̃ ∈ ∆. Let 〈fn〉n∈N

be a sequence of functions from X to U such that
∫

fndν is defined for every n, and Fn the Saks-Henstock
indefinite integral of fn for each n. Suppose that

—– f(x) = limn→∞ fn(x) is defined in U for every n ∈ N;
—– F (E) = limn→∞ Fn(E) is defined in W for every E in the algebra E of subsets of X

generated by C;
—– 〈Fn〉n∈N is uniformly convergent to F .

Then
∫

fdν is defined, and the Saks-Henstock indefinite integral of f with respect to ν is F ; in particular,
∫

fdν = limn→∞

∫

fndν.

proof (a) Let γ ≥ 0, h : X → ]0,∞[ and δ̃ ∈ ∆ be such that

‖〈u|v〉‖ ≤ γ‖u‖‖v‖ for every u ∈ U , v ∈ V ,

∑

(x,C)∈ttt h(x)‖νC‖ ≤ 1 for every δ̃-fine ttt ∈ TQ.

Note that because every Fn is additive, F : E → W is certainly additive.

(b) Let ǫ > 0. Let 〈nk〉k∈N be a strictly increasing sequence in N such that ‖Fnk
(E)−F (E)‖ ≤ 2−kǫ for

every k ∈ N and E ∈ E . For each k ∈ N, let δk ∈ ∆ be such that ‖Sttt(fnk
, ν) − Fnk

(Httt)‖ ≤ 2−kǫ for every
δk-fine ttt ∈ TQ. Let R ∈ R be such that ‖Fn0

(E)‖ ≤ ǫ for every E ∈ E ∩ R.

(i) For x ∈ X, let k(x) ∈ N be such that γ‖fnk(x)
(x) − f(x)‖ ≤ ǫh(x). Let δ ∈ ∆ be such that

(x,A) ∈ δk(x) ∩ δ̃ whenever (x,A) ∈ δ. Then ‖Sttt(f, ν) − F (Httt)‖ ≤ 6ǫ for every δ-fine ttt. PPP For each l ∈ N,
set tttl = {(x,C) : (x,C) ∈ ttt, k(x) = l}; note that tttl belongs to TQ and is δl-fine. Then

‖Sttt(f, ν) − F (Httt)‖ = ‖
∞
∑

l=0

Stttl
(f, ν) − F (Htltltl

)‖

(of course all but finitely many terms in the sum are zero)

≤
∞
∑

l=0

‖Stttl
(f, ν) − F (Htltltl

)‖

≤
∞
∑

l=0

‖Stttl
(f, ν) − Stttl

(fnl
, ν)‖ + ‖Stttl

(fnl
, ν) − Fnl

(Htttl
‖

+ ‖Fnl
(Htttl

− F (Htltltl
)‖

≤
∞
∑

l=0

∑

(x,C)∈tttl

‖〈f(x)|νC〉 − 〈fnl
(x)|νC〉‖ + 2−lǫ + 2−lǫ

≤ 4ǫ +

∞
∑

l=0

∑

(x,C)∈tttl

γ‖f(x) − fnl
(x)‖‖νC‖

≤ 4ǫ +

∞
∑

l=0

2−lǫ
∑

(x,C)∈tttl

h(x)‖νC‖ ≤ 4ǫ +

∞
∑

l=0

2−lǫ = 6ǫ. QQQ

(ii) If E ∈ E ∩ R then
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‖F (E)‖ ≤ ‖F (E) − Fn0
(E)‖ + ‖Fn0

(E)‖ ≤ 2ǫ.

(c) Thus F satisfies (α)-(γ) of Theorem 2D, and f is integrable with respect to ν, with Saks-Henstock
indefinite integral F .

3N Example Suppose that X, C, Q, TQ, ∆ and R are as in 2A-2B, and that ∆ is countably full. Let
ν : C → [0,∞[ be a non-negative functional which is δ-moderate for some δ ∈ ∆, and 〈fn〉n∈N a non-
decreasing sequence of functions such that

∫

fndν is defined for every n ∈ N, supn∈N

∫

fndν = α < ∞, and
f(x) = supn∈N fn(x) is finite for every x ∈ X. Then

∫

fdν is defined and equal to α.
⊗⊗⊗

Remark Note that this does not have the full strength of B.Levi’s theorem in the classical theory.
Asking for ν to be ‘moderate’ in the sense of 3M corresponds to having a σ-finite measure space. But more
importantly, we have to assume that 〈fn〉n∈N is convergent at every point, which is not required in the
standard theorem.

References
Birkhoff G. [35] ‘Integration of functions with values in a Banach space’, Trans. Amer. Math. Soc. 38

(1935) 357-378.
Bongiorno B., Di Piazza L. & Musia l K. [00] ‘An alternate approach to McShane integral’, Real Analysis

Exchange 25 (2000) 829-848.
Bongiorno B., Di Piazza L. & Preiss D. [00] ‘A constructive minimal integral which includes Lebesgue

integrable functions and derivatives’, J. London Math. Soc. (2) 62 (2000) 117-126.
Fremlin D.H. [94] ‘The Henstock and McShane integrals of vector-valued functions’, Illinois J. Math. 38

(1994) 471-479.
Fremlin D.H. [95] ‘The generalized McShane integral’, Illinois J. Math. 39 (1995) 39-67.
Fremlin D.H. [03] Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2003.
Fremlin D.H. [n92] ‘The McShane and Birkhoff integrals of vector-valued functions’, University of Essex

Mathematics Department Research Report 92-10, 1992.
Fremlin D.H. [n11] ‘Products of gauge integrals’, note of 4.7.11 (http://www.essex.ac.uk/maths/

people/fremlin/preprints.htm).
Fremlin D.H. & Mendoza J. [94] ‘On the integration of vector-valued functions’, Illinois J. Math. 38 (1994)

127-147.
Gordon R.A. [90] ‘The McShane integral of Banach-valued functions’, Illinois J. Math. 34 (1990) 557-567.
Gordon R.A. [94] The Integrals of Lebesgue, Denjoy, Perron and Henstock. Amer. Math. Soc., 1994

(Graduate Studies in Mathematics 4).
Henstock R. [63] Theory of Integration. Butterworths, 1963.
Henstock R. [83] ‘A problem in two-dimensional integration’, J. Australian Math. Soc. (A) 35 (1983)

386-404.
Henstock R. [88] Lectures on the Theory of Integration. World Scientific Press, 1988.
Henstock R. [91] The General Theory of Integration. Clarendon, 1991.
Laczkovich M. [82] ‘On additive and strongly derivable interval functions’, Acta Math. Acad. Sci. Hun-

garicae 39 (1982) 255-265.


