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The generalized McShane integral
D.H.Fremlin

University of Essex, Colchester, England

I develop an extension of the McShane integral and discuss its relationships with the Pettis,
Talagrand and Bochner integrals.

Introduction A large number of different methods of integration of Banach-space-valued functions have
been introduced, based on the various possible constructions of the Lebesgue integral. They commonly
run fairly closely together when the range space is separable (or has w∗-separable dual) and diverge more
or less sharply for general range spaces. Here I describe a natural extension of the McShane integral to
functions from any of a wide class of topological measure spaces to a Banach space, and give both positive
and negative results concerning it and the other four integrals listed above.

1. The McShane integral I propose to use this name for a method of integrating vector-valued functions
which is adapted from the integration process described in [McS83]. As I wish to make rather a large step
(from real-valued functions defined on R

n or R
N to vector-valued functions defined on σ-finite outer regular

quasi-Radon measure spaces), I give a full list of the definitions and theorems in the elementary theory as I
develop it, even though most of the proofs will not involve any new ideas.

1A Definitions Let (S,T,Σ, µ) be a non-empty σ-finite quasi-Radon measure space which is outer
regular, that is, such that µE = inf{µG : E ⊆ G ∈ T} for every E ∈ Σ. A generalized McShane
partition of S is a sequence 〈(Ei, ti)〉i∈N such that 〈Ei〉i∈N is a disjoint family of measurable sets of finite
measure, µ(S \

⋃
i∈N

Ei) = 0 and ti ∈ S for each i. A gauge on S is a function ∆ : S → T such that
s ∈ ∆(s) for every s ∈ S. A generalized McShane partition 〈(Ei, ti)〉i∈N is subordinate to a gauge ∆ if
Ei ⊆ ∆(ti) for every i ∈ N.

Now let X be a Banach space. I will say that a function φ : S → X is McShane integrable, with
McShane integral w, if for every ǫ > 0 there is a gauge ∆ : S → T such that

lim supn→∞ ‖w −
∑

i≤n µEi.φ(ti)‖ ≤ ǫ

for every generalized McShane partition 〈(Ei, ti)〉i∈N of S subordinate to ∆.

1B Remarks (a) For the elementary theory of quasi-Radon measure spaces see [Fr74], [Frn82] and [Fr84];
the same idea, expressed in a more general context, underlies the ‘Radon spaces of type (H)’ of B.Rodriguez-
Salinas ([RSJG79], [RS91]). The principal examples of σ-finite outer regular quasi-Radon measure spaces
are

(i) all totally finite Radon and quasi-Radon measure spaces;
(ii) all Lindelöf Radon measure spaces (e.g., Lebesgue measure on R

n);
(iii) all subspaces of such spaces (1L below);
(iv) finite products of such spaces ([Frn82], 4C, or [Fr84], A7Ea);
(v) all products of probability spaces of these types ([Frn82], 4F, or [Fr84], A7Eb).

(b) The essential facts I shall need here are that a quasi-Radon measure µ is inner regular for the
closed sets (that is, µE = sup{µF : F ⊆ E, F is closed} for every measurable E) and τ -smooth (that is,
µ(

⋃
G) = supG∈G µG for every non-empty upwards-directed family G of open sets).

(c) In addition, we shall need to know that an outer regular quasi-Radon measure is locally finite (that
is, every point belongs to an open set of finite measure). Moreover, it has the following property, formally
stronger than what is declared by the usual definition of ‘outer regular’: if E is any measurable set, and
ǫ > 0, there is an open set G ⊇ E such that µ(G \ E) ≤ ǫ. Another elementary fact about outer regular
measures is that if µ is an outer regular measure on S, and f : S → [0,∞[ is an integrable function, then
for any ǫ > 0 there is a lower semi-continuous function h : S → R such that f(t) < h(t) for every t ∈ S and∫
h ≤ ǫ+

∫
f .
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(d) I had better remark straight away that my version of the McShane integral is well-defined, in the
sense that any given function has at most one value of the integral. Of course this is just because there
are enough generalized McShane partitions: if S 6= ∅ and ∆ : S → T is any gauge, there is a generalized
McShane partition subordinate to it. To see this, observe that

G = {G : G ∈ T, µG <∞, ∃ s ∈ S, G ⊆ ∆(s)}
is an open cover of S, so that (because µ is τ -smooth) we have

µH = sup{µ(H ∩
⋃
G0) : G0 ⊆ G is finite}

for every open H ⊆ S; now, because µ is σ-finite, there is a sequence 〈Gi〉i∈N in G such that µ(S \
⋃

i∈N
Gi) =

0. If we choose for each i a ti ∈ S such that Gi ⊆ ∆(ti), and write Ei = Gi \
⋃

j<iGj for i ∈ N, we shall

have a generalized McShane partition 〈(Ei, ti)〉i∈N subordinate to ∆.
Now because the family of gauges on S is directed downwards (if ∆0 and ∆1 are gauges, so is s 7→

∆0(s) ∩ ∆1(s)) this shows that for any particular φ there will be at most one w satisfying the definition
above.

(e) There is a technical fault in the definition of the McShane integral above. It ignores the case S = ∅.
On the other hand, I certainly wish to count the empty set as a quasi-Radon measure space, and to accept
the empty function as McShane integrable, with integral zero. Of course this is a triviality, and in the proofs
below I shall systematically pass the case S = ∅ by, though I do wish it to be included in the statements of
the results.

(f) It is in fact possible to define a McShane integral on outer regular quasi-Radon measure spaces which
are not σ-finite. As however such a space must consist of a σ-finite part together with a family of closed
sets, of strictly positive measure, on each of which the topology is indiscrete (see [GP84], §13), the McShane
integral outside the σ-finite part corresponds just to unconditional summability of appropriate families in X;
and the extra technical complications (we have to use uncountable families 〈(Ei, ti)〉i∈I instead of sequences)
seem more trouble than they’re worth.

1C We are now ready for some elementary facts about the McShane integral. I give no proofs as the
arguments are of a type familiar from [McS83].

Proposition Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon space and X a Banach space.
(a) If φ, ψ : S → X are McShane integrable functions with McShane integrals w, z respectively then

φ+ ψ is McShane integrable, with integral w + z.
(b) Let Y be another Banach space and T : X → Y a bounded linear operator. If φ : S → X is McShane

integrable, with McShane integral w, then Tφ : S → Y is McShane integrable, with McShane integral Tw.
(c) If C ⊆ X is a closed cone and φ : S → C is a McShane integrable function, then its McShane integral

belongs to C.

Remark Of course the principal use of (b) is with Y = R, and the principal use of (c) is with X = R,
C = [0,∞[.

1D Readers familiar with [McS83] will already have observed that my definition of the McShane integral
is significantly different from (and more complex than) the most natural generalisations of the work in
[McS83]; a much simpler expression is used in [FMp91] and [Frp91]. The extra elaboration of my definition
here is necessary to deal with the wider context in which I operate. However I must of course justify my
terminology by showing that in the limited contexts considered in [McS83] and [Go90] my formulations agree
with the simpler ones. The first point is that for compact spaces S there is no need to take infinite McShane
partitions. Let us say that a finite strict generalized McShane partition of S is a family 〈(Ei, ti)〉i≤n

such that E0, . . . , En is a finite disjoint cover of S by measurable sets (I find it convenient still to allow
Ei = ∅ for some i) and ti ∈ S for each i ≤ n. Now we have the following:

1E Proposition Let (S,T,Σ, µ) be a compact Radon measure space andX a Banach space; let φ : S → X
be a function. Then φ is McShane integrable, with McShane integral w, if and only if for every ǫ > 0 there
is a gauge ∆ : S → T such that whenever 〈(Ei, ti)〉i≤n is a finite strict generalized McShane partition of S
subordinate to ∆ then ‖w −

∑
i≤n µEiφ(ti)‖ ≤ ǫ.

Remark I follow [Fr74] in taking a Radon measure space to be a Hausdorff locally finite quasi-Radon
measure space in which the measure is inner regular for the compact sets.
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proof Evidently any McShane integrable function φ : S → X must satisfy the condition offered, as this
merely restricts the class of partitions considered (of course a finite McShane partition can be extended to
an infinite one by adding empty Ei.) For the reverse implication, suppose that φ, w satisfy the condition.
Let ǫ > 0 and let ∆ : S → T be a gauge such that ‖w−

∑
i≤n µEiφ(ti)‖ ≤ ǫ for every finite strict generalized

McShane partition 〈(Ei, ti)〉i≤n subordinate to ∆. Now let 〈(Ei, ti)〉i∈N be an infinite generalized McShane
partition subordinate to ∆. Because S is compact, we can find a finite cover of it by sets of the form
∆(t); accordingly, adding finitely many negligible sets Ei to the beginning of the sequence if necessary, we
may take it that S =

⋃
i∈I Ei. For each i ∈ N choose an open set Gi such that Ei ⊆ Gi ⊆ ∆(ti) and

µ(Gi \ Ei)‖φ(ti)‖ ≤ 2−iǫ.
There is a finite k ∈ N such that S =

⋃
i≤k Gi. Now if n ≥ k, we have S =

⋃
i≤nGi, so there is a disjoint

family 〈E′
i〉i≤n of measurable sets such that Ei ⊆ E′

i ⊆ Gi for every i ≤ n and S =
⋃

i≤nE
′
i. But in this

case 〈(E′
i, ti)〉i≤n is a finite strict generalized McShane partition of S subordinate to ∆, so we must have

‖w −
∑

i≤n µE
′
i.φ(ti)‖ ≤ ǫ.

On the other hand, we also have
‖
∑

i≤n µE
′
iφ(ti) −

∑
i≤n µEiφ(ti)‖ ≤

∑
i≤n(µE′

i − µEi)‖φ(ti)‖ ≤
∑

i≤n 2−iǫ ≤ 2ǫ.
So

‖w −
∑

i≤n µEiφ(ti)‖ ≤ 3ǫ
for all n ≥ k; as ǫ is arbitrary, φ is McShane integrable with integral w.

1F The definitions of [McS83] do not as a rule refer to partitions into arbitrary measurable sets; instead
they use various types of ‘interval’ for the Ei – e.g., half-open intervals in R. I can give a general criterion
for the applicability of such methods, as follows.

Proposition Let (S,T,Σ, µ) be a compact Radon measure space and X a Banach space. Let A ⊆ Σ be
a subalgebra of Σ such that whenever F ⊆ G ⊆ S, F is closed and G is open there is an A ∈ A such
that F ⊆ A ⊆ G; let C ⊆ A be such that every member of A is a finite disjoint union of members of C.
Then a function φ : S → X is McShane integrable, with McShane integral w, iff for every ǫ > 0 there is a
gauge ∆ : S → T such that ‖w −

∑
i≤n µCiφ(ti)‖ ≤ ǫ for every finite strict generalized McShane partition

〈(Ci, ti)〉i≤n of S, subordinate to ∆, such that Ci ∈ C for every i ≤ n.

proof (a) Of course a McShane integrable function (as I have defined it) must satisfy the condition.

(b) For the converse, I use the following facts.

(i) If E ∈ Σ and E ⊆ G ∈ T and η > 0 there is an A ∈ A such that A ⊆ G and µ(E△A) ≤ η. For take
any closed set F ⊆ E, open set H ⊇ E such that µ(H \ F ) ≤ η, and take A such that F ⊆ A ⊆ G ∩H.

(ii) Suppose that ∆ : S → T is a gauge and that 〈(Ei, ti)〉i≤n is a strict finite generalized McShane
partition of S subordinate to ∆. Then for any ǫ > 0 there are A0, . . . , An ∈ A such that 〈(Ai, ti)〉i≤n is
a strict finite generalized McShane partition of S, subordinate to ∆, and

∑
i≤n µ(Ai△Ei)‖φ(ti)‖ < ǫ. To

see this, take η > 0 so small that 2(n + 1)2η
∑

i≤n ‖φ(ti)‖ ≤ ǫ. Now for each i ≤ n take A′
i ∈ A such

that A′
i ⊆ ∆(ti) and µ(Ei△A

′
i) ≤ η. Set A = S \

⋃
i≤nA

′
i ∈ A. Because S is compact and Hausdorff and

S =
⋃

i≤n ∆(ti), the set {G : G ∈ T, ∃ i ≤ n, G ⊆ ∆(ti)} is an open cover of S and has a finite subcover,

and there are closed sets F0, . . . , Fn such that Fi ⊆ ∆(ti) for each i and
⋃

i≤n Fi = S; consequently there

are A′′
0 , . . . , A

′′
n ∈ A such that A′′

i ⊆ ∆(ti) for each i and
⋃

i≤nA
′′
i = S (take A′′

i such that Fi ⊆ A′′
i ⊆ Gi for

each i). Now set
Ai = (A′

i ∪ (A ∩A′′
i )) \

⋃
j<iAj

for each i ≤ n. Evidently A0, . . . , An are disjoint, belong to A and cover S, and Ai ⊆ ∆(ti) for each i. Also
µ(Ei△Ai) ≤ µ(Ei△A

′
i) + µA+

∑
j<i µ(Ei ∩A

′
j) ≤ η + (n+ 1)η + iη ≤ (2n+ 2)η

for each i. So ∑
i≤n µ(Ei△Ai)‖φ(ti)‖ ≤ 2(n+ 1)2η

∑
i≤n ‖φ(ti)‖ ≤ ǫ,

as required.

(c) Now suppose that φ satisfies the condition. Let ǫ > 0 and let ∆ : S → T be a gauge such that
‖w−

∑
i≤n µCiφ(ti)‖ ≤ ǫ whenever 〈(Ci, ti)〉i≤n is a strict finite generalized McShane cover of S by members

of C subordinate to ∆. Let 〈(Ei, ti)〉i≤n be any strict finite generalized McShane cover of S subordinate
to ∆. By (b), there are disjoint A0, . . . , An ∈ A such that

⋃
i≤nAi = S, Ai ⊆ ∆(ti) for each i and
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∑
i≤n µ(Ei△Ai)‖φ(ti)‖ ≤ ǫ. By the hypothesis on C, we can express each non-empty Ai as a disjoint union

Ci0 ∪ . . . ∪ Ci,k(i) of members of C. Now write tij = ti for each j ≤ k(i); we see that 〈(Cij , tij)〉i≤n,j≤k(i) is
a strict finite generalized McShane cover of S subordinate to ∆, so

‖w −
∑
i≤n

µEiφ(ti)‖ ≤ ‖w −
∑
i≤n

µAiφ(ti)‖ +
∑
i≤n

|µEi − µAi|‖φ(ti)‖

≤ ‖w −
∑

i≤n,j≤k(i)

µCijφ(ti)‖ + ǫ

≤ 2ǫ.

As ǫ is arbitrary, the criterion of 1E shows that φ is McShane integrable.

1G Examples Examples relevant to the work of [McS83] are (i) S = [a, b], C = {[c, d[: a ≤ c < d ≤
b} ∪ {{b}} (ii) S =

∏
i≤n[ai, bi], C = {

∏
i≤n Ci : Ci ∈ Ci ∀ i ≤ n} where Ci consists of intervals, as in (i).

For infinite products, if each Si (in a countable or uncountable product) is a compact Radon probability
space with an associated family Ci, then the corresponding cylinder sets in S =

∏
i Si, of the form

∏
i Ci

where each Ci belongs to Ci ∪ {Si} and {i : Ci 6= Si} is finite, do the same for S.
Of course [McS83] uses gauge functions of the form δ : S → ]0,∞[ rather than of the form ∆ : S → T;

but the translation from one to the other, in a metric space (S, ρ), is trivial, if we match δ(s) to the open
set ∆(s) = {t : ρ(t, s) < δ(s)}.

In [Go90], [FMp91] and [Frp91] ‘partitions’ into non-overlapping closed intervals are used systematically;
but of course these could be read throughout as half-open intervals without it making any difference.

1H The next step is to show that my version of the McShane integral agrees with the ordinary integral
in the case X = R. For the case S = [0, 1], this is already covered by 1F and the results of [Go90]; for other
S we still have some work to do. In fact I show a more general result in one direction: for any Banach
space X, if φ : S → X is Bochner integrable, with Bochner integral w, then it is McShane integrable, with
McShane integral w. (For the definition and elementary properties of the Bochner integral, see [DS58]).

We need two fairly straightforward lemmas.

1I Lemma Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach space.
Let E ⊆ X be a set of finite measure and x ∈ X; let φ : S → X be the function which takes the value x on
E, 0 elsewhere. Then φ is McShane integrable, with integral w = µE.x.

proof Let ǫ > 0. Let F be a closed set and G an open set such that F ⊆ E ⊆ G and µ(G \ F ) ≤ ǫ.
Set ∆(s) = G if s ∈ F , G \ F if s ∈ G \ F , S \ F if s ∈ S \ G. Then an easy calculation shows
that limn→∞ ‖w −

∑
i≤n µEiφ(ti)‖ ≤ ǫ‖x‖ whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of S

subordinate to ∆.

1J Lemma Let (S,T,Σ, µ) be an outer regular quasi-Radon measure space and X a Banach space.
Let φ : S → X be a function and suppose that h : S → R is a lower semi-continuous function such that
‖φ(s)‖ < h(s) for every s ∈ S. Then there is a gauge ∆ : S → T such that

∑
i∈N

µEi‖φ(ti)‖ ≤
∫
h for every

n whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of S subordinate to φ.

proof Set ∆(s) = {t : h(t) > ‖φ(s)‖} for each s; this works.

1K Theorem Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space. Let φ : S → X be a Bochner integrable function with Bochner integral w. Then φ is McShane
integrable with McShane integral w.

proof Let ǫ > 0. Then there is a ‘simple’ function ψ : S → X, of the form
ψ(s) = xi when s ∈ Fi, 0 if s /∈

⋃
i≤n Fi,

where F0, . . . , Fn are disjoint sets of finite measure and each xi ∈ X, such that
∫
‖φ(s) − ψ(s)‖µ(ds) ≤ ǫ.

Set w0 =
∑

i≤n µFixi; then ‖w−w0‖ ≤ ǫ. As remarked in 1Bc above, there must be a lower semi-continuous

function h : S → R such that ‖φ(s) − ψ(s)‖ < h(s) for each s ∈ S and
∫
h ≤ 2ǫ. Now Lemma 1I tells us

that ψ is McShane integrable, with McShane integral w0; let ∆0 be a gauge such that
lim supn→∞ ‖w0 −

∑
i≤n µEiψ(ti)‖ ≤ ǫ



5

whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of S subordinate to ∆0. Also Lemma 1J tells us
that there is a gauge ∆1 on S such that∑

i∈N
µEi‖φ(ti) − ψ(ti)‖ ≤ 2ǫ

whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of S subordinate to ∆1.
If we now take ∆(s) = ∆0(s) ∩ ∆1(s) for each s ∈ S, we see that ∆ is a gauge on S and that

lim supn→∞ ‖w −
∑

i≤n µEiφ(ti)‖ ≤ 4ǫ

for every generalized McShane partition 〈(Ei, ti)〉i∈N of S subordinate to ∆. As ǫ is arbitrary, φ is McShane
integrable with McShane integral w.

1L My next objective is to prove a result in the opposite direction: if φ : S → R is McShane integrable,
it is integrable in the usual sense. This will lead directly to a more general result: if φ : S → X is McShane
integrable, it is Pettis integrable. My route to this takes us past some further useful facts.

Recall that if (S,T,Σ, µ) is any quasi-Radon space, and A ⊆ S is any set (not necessarily measurable),
then (A,TA,ΣA, µA) is a quasi-Radon measure space, where TA is the induced topology on A, ΣA = {E∩A :
E ∈ Σ}, and µA(B) = min{µE : B = A ∩ E} for B ∈ ΣA. (See [Frn82], 5B and [Fr84], A7D.) It is easy to
see that if (S,T,Σ, µ) is σ-finite or outer regular, so is (A,TA,ΣA, µA). Accordingly, if X is a Banach space
and φ : S → X is a function, we may discuss the McShane integrability of φ↾A : A→ X. Now we have the
following results. The first is an elementary lemma.

1M Lemma Let (S,T,Σ, µ) be a non-empty σ-finite outer regular quasi-Radon measure space and X a
Banach space. Suppose that φ : S → X has the property that for every ǫ > 0 there is a gauge ∆ : S → T

such that
lim supn→∞ ‖

∑
i≤n µEiφ(ti) −

∑
i≤n µFiφ(ui)‖ ≤ ǫ

whenever 〈(Ei, ti)〉i∈N and 〈(Fi, ui)〉i∈N are generalized McShane partitions of X subordinate to ∆. Then φ
is McShane integrable.

proof Take ǫ, ∆ as above. The point is that if 〈(Fi, ui)〉i∈N is a generalized McShane partition of S
subordinate to ∆, and π : N → N is any bijection, than 〈(Fπ(i), uπ(i))〉i∈N is also a generalized McShane
partition of S subordinate to ∆, so that

lim supn→∞ ‖
∑

i≤n µFiφ(ui) −
∑

i≤n µFπ(i)φ(uπ(i))‖ ≤ ǫ.
It follows at once that there is some k ∈ N such that

supn≥k ‖w −
∑

i≤n µFiφ(ui)‖ ≤ 2ǫ,

where w =
∑

i≤k µFiφ(ti). Now

lim supn→∞ ‖w −
∑

i≤n µEiφ(ti)‖ ≤ 3ǫ

whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of S subordinate to ∆.
If for each ǫ > 0 we use the method above to find a gauge ∆ǫ and a vector wǫ, we see that ‖wǫ − wη‖ ≤

3(ǫ+ η) for all ǫ, η > 0; so that w = limǫ↓0 wǫ is defined in X (this is one of the few points where we need
X to be complete), and of course w will be the McShane integral of φ.

1N Theorem Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space. If φ : S → X is McShane integrable, then φ↾A is McShane integrable for every A ⊆ S.

proof Let w be the McShane integral of φ, and ǫ > 0. Let ∆ : S → T be a gauge such that lim supn→∞ ‖w−∑
i≤n µEiφ(ti)‖ ≤ ǫ whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of S subordinate to ∆.

Let ∆A(s) = A∩∆(s) for s ∈ A; then ∆A is a gauge on A. Let 〈(Ei, ti)〉i∈N and 〈(Fi, ui)〉i∈N be generalized

McShane partitions of A subordinate to ∆A. For each i ∈ N choose Ẽi, F̃i ∈ Σ such that Ei = Ẽi ∩ A,
µAEi = µẼi, Fi = F̃i ∩A and µAFi = µF̃i. Set

H =
⋃

i∈N
(Ẽi ∩ ∆(ti)) ∩

⋃
i∈N

(F̃i ∩ ∆(ui)).
For i ∈ N set

E∗
i = H ∩ Ẽi ∩ ∆(ti) \

⋃
j<iE

∗
j ,

F ∗
i = H ∩ F̃i ∩ ∆(ui) \

⋃
j<i F

∗
j .

Then
⋃

i∈N
E∗

i =
⋃

i∈N
F ∗

i = H.
Fix any generalized McShane partition 〈(Hi, vi)〉i∈N of S subordinate to ∆. Define H ′

i, v
′
i, H

′′
i , v′′i by

writing
H ′

2i = E∗
i , v′2i = ti, H

′
2i+1 = Hi \H, v′2i+1 = vi,

H ′′
2i = F ∗

i , v′′2i = ui, H
′
2i+1 = Hi \H, v′2i+1 = vi
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for each i ∈ N. Then 〈(H ′
i, v

′
i)〉i∈N and 〈(H ′′

i , v
′′
i )〉i∈N are both generalized McShane partitions of S subordi-

nate to ∆. So
lim supn→∞ ‖

∑
i≤n µH

′
iφ(v′i) −

∑
i≤n µH

′′
i φ(v′′i )‖ ≤ 2ǫ.

But on translating this through the definitions above, we see that
lim supn→∞ ‖

∑
i≤n µAEiφ(ti) −

∑
i≤n µAFiφ(ui)‖ ≤ 2ǫ.

So the criterion of Lemma 1M is satisfied, and φ↾A is McShane integrable.

Remark I give this as a theorem about arbitrary subspaces, because of course this is one of the most
important constructions of quasi-Radon measure spaces (see [Frn82], 6G). However the applications below
will be to measurable A, in which case the argument can be slightly simplified.

See also 2B below.

1O Theorem Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and h : S → R a
function. Then h is McShane integrable iff it is integrable in the ordinary sense, and the two integrals are
equal.

proof If h is integrable in the ordinary sense, it is Bochner integrable, and therefore McShane integrable, by
1K. If h is McShane integrable, it is measurable; this is a special case of 3Ea below, so I omit the argument
here; the argument of 3Ea can be substantially simplified for this case. If we set E = {s : h(s) ≥ 0},
then by Theorem 1N we have a McShane integral (McS)

∫
E
h. Now if g : E → [0,∞[ is any function which

is integrable in the ordinary sense, and dominated by h, we must have
∫

E
g = (McS)

∫
E
g ≤ (McS)

∫
E
h;

because h is measurable, it follows that
∫

E
h is defined. Similarly,

∫
S\E

h is defined, so that h is integrable.

2. Convergence theorems
Since Lebesgue’s time, the search for ‘convergence theorems’ has been central to the study of integration

theories. Here I show that the integral I have defined performs well in this direction. I begin with a result
of a technical type (Proposition 2B), showing that we can form integrals of the type

∫
E
φ without problems.

2A Lemma Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space, X a Banach space
and φ : S → X a McShane integrable function. Let F be an upwards-directed family of measurable subsets
of S such that µE = sup{µ(E ∩ F ) : F ∈ F} for every E ∈ Σ. Then for every ǫ > 0 there are an F ∈ F
and a gauge ∆ : S → T such that ‖

∑
i≤n µ(Ei)φ(ti)‖ ≤ ǫ whenever E0, . . . , En are measurable sets of finite

measure disjoint from each other and from F , and ti ∈ S is such that Ei ⊆ ∆(ti) for each i ≤ n.

proof Let w be the McShane integral of φ, and let ∆ be a gauge on S such that
lim supn→∞ ‖w −

∑
i≤n µEiφ(ti)‖ ≤ ǫ

3

for every generalized McShane partition 〈(Ei, ti)〉i∈N of S subordinate to ∆.
Suppose, if possible, that there is no F ∈ F witnessing the truth of the lemma. Then we may choose

Fk, 〈(Eki, tki)〉i≤n(k) inductively, as follows. Take F0 to be any member of F . Given Fk ∈ F , choose
〈(Eki, tki)〉i≤n(k) such that the Eki are measurable sets disjoint from each other and from Fk and included
in ∆(tki), and ‖

∑
i≤n(k) µEkiφ(tki)‖ > ǫ. Now take Fk+1 ∈ F such that Fk+1 ⊇ Fk and ‖

∑
i≤n(k) µ(Eki ∩

Fk+1)φ(tki)‖ ≥ ǫ. Continue. At the end of the induction write E =
⋃

k∈N

⋃
i≤n(k)Eki ∩ Fk+1.

Let 〈(Ei, ti)〉i∈N be any generalized McShane partition of S subordinate to ∆. Set m(k) =
∑

j<k(n(j)+2)

for each k, and define 〈(Hi, ui)〉i∈N as follows. For k ∈ N, i ≤ n(k) set
Hm(k)+i = Eki ∩ Fk+1, um(k)+i = tki;

now take Hm(k)+n(k)+1 = Ek \ E, um(k)+n(k)+1 = tk for each k.
Evidently 〈(Hi, ui)〉i∈N is a generalized McShane partition of S subordinate to ∆. So there must be some

N ∈ N such that ‖w −
∑

i≤r µHiφ(ui)‖ <
ǫ
2 for every r ≥ N . On the other hand,

‖
∑

m(k)≤i≤m(k)+n(k) µHiφ(ui)‖ = ‖
∑

i≤n(k) µ(Eki ∩ Fk+1)φ(tki)‖ ≥ ǫ

for every k; which is impossible if k ≥ N .
This contradiction proves the lemma.

2B Proposition Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space. Let E ∈ Σ and let φ : S → X be a function which is zero on S \E. Then φ is McShane integrable iff
φ↾E is McShane integrable, and in this case the integrals are equal.

proof The case E = ∅ is trivial and as usual I will ignore it. We have already seen in Theorem 1N that if φ
is McShane integrable then φ↾E is McShane integrable. Now suppose that φ↾E is McShane integrable with
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integral w. Let ǫ > 0, and let ∆0 : E → TE be a gauge such that lim supn→∞ ‖w −
∑

i≤n µEiφ(ti)‖ ≤ ǫ

whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of E subordinate to ∆0. Let F be the family of
subsets of E which are closed in S; then (because µ is inner regular for the closed sets) we have µEH =
supF∈F µE(H ∩ F ) for every H ∈ ΣE , so by Lemma 2A we can find an F ∈ F and a gauge ∆1 on E such
that ‖

∑
i≤n µEiφ(ti)‖ ≤ ǫ whenever t0, . . . , tn ∈ E, E0, . . . , En are measurable subsets of E disjoint from

each other and from F , and Ei ⊆ ∆1(ti) for every i.
For each n ∈ N choose an open set Gn ⊇ E such that µ(Gn \ E) ≤ 2−nǫ/(n+ 1). Now let ∆ : S → T be

a gauge such that
(i) if s ∈ E then ∆(s) ∩ E ⊆ ∆0(s) ∩ ∆1(s);
(ii) if s ∈ E and n ≤ ‖φ(s)‖ < n+ 1 then ∆(s) ⊆ Gn;
(iii) if s ∈ S \ E then ∆(s) ⊆ S \ F .
Let 〈(Ei, ti)〉i∈N be a generalized McShane partition of S subordinate to ∆. Write I = {i : ti ∈ E},

H =
⋃

i∈I Ei; observe that F ⊆ H. Let 〈(Fi, ui)〉i∈N be any generalized McShane partition of E subordinate
to ∆0. Fix some u ∈ E. Define 〈(F ′

i , u
′
i)〉i∈N by setting

F ′
2i = Ei ∩E, u′2i = ti if i ∈ I;
F ′

2i = ∅, t′2i = u if i ∈ N \ I;
F ′

2i+1 = Fi \H, u′2i+1 = ui for all i ∈ N.
Then 〈(F ′

i , u
′
i)〉i∈N is a generalized McShane partition of E subordinate to ∆0, so

lim supn→∞ ‖w −
∑

i≤n µF
′
iφ(u′i)‖ ≤ ǫ.

On the other hand, if n ∈ N,

‖
∑
i<n

µEiφ(ti) −
∑
i<2n

µF ′
iφ(u′i)‖ = ‖

∑
i<n,i∈I

µ(Ei \ E)φ(ti) +
∑
i<n

µ(Fi \H)φ(ui)‖

≤
∑
k∈N

∑
k≤‖φ(ti)‖<k+1

(k + 1)µ(Ei \ E) + ǫ

≤
∑
k∈N

(k + 1)µ(Gk \ E) + ǫ

≤
∑
k∈N

2−kǫ+ ǫ ≤ 3ǫ

because Ei ⊆ Gk if i ∈ I and k ≤ ‖φ(ti)‖ < k + 1, while 〈Fi \H〉i<n is a disjoint family of subsets of E \ F
with Fi \H ⊆ ∆1(ui) for each i. So

lim supn→∞ ‖w −
∑

i≤n µEiφ(ti)‖ ≤ 4ǫ.
As ǫ is arbitrary, w is the McShane integral of φ.

2C For the principal theorem of this section, we need to recall some well-known facts concerning vector
measures. Suppose that Σ is a σ-algebra of sets and X a Banach space.

(i) Let us say that a function ν : Σ → X is ‘weakly countably additive’ if f(ν(
⋃

i∈N
Ei)) =

∑
i∈N

f(νEi)
for every disjoint sequence 〈Ei〉i∈N in Σ and every f ∈ X∗. The first fact is that in this case ν is countably
additive, that is,

∑
i∈N

νEi is unconditionally summable to ν(
⋃

i∈N
Ei) for the norm topology whenever

〈Ei〉i∈N is a disjoint sequence of measurable sets with union E ([Ta84], 2-6-1; [DU77], p. 22, Corollary 4).

(ii) If now µ is a measure with domain Σ such that νE = 0 whenever µE = 0, then for every ǫ > 0 there
is a δ > 0 such that ‖νE‖ ≤ ǫ whenever µE ≤ δ.

(iii) Thirdly, suppose that 〈νn〉n∈N is a sequence of countably additive functions from Σ to X such that
νE = limn→∞ νnE exists in X, for the weak topology of X, for every E ∈ Σ; then ν is countably additive.
(Use Nikodým’s theorem ([Di84], p. 90) to see that ν is weakly countably additive.)

If (S,T,Σ, µ) is a σ-finite outer regular quasi-Radon measure space and φ : S → X is a McShane integrable
function, then by Theorem 1N we have an indefinite integral ν : Σ → X given by νE =

∫
φ↾E; now Theorem

1O shows us that ν is weakly countably additive, and accordingly countably additive.

2D Lemma Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space. If φ : S → X is McShane integrable with McShane integral w, then

‖w‖ ≤
∫
‖φ(t)‖µ(dt).
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proof Take any f in the unit ball of X∗. By 1C, f(w) is the McShane integral of fφ : S → R, and by
Theorem 1O this is the ordinary integral of fφ. So we have

|f(w)| = |
∫
fφ| ≤

∫
|fφ| ≤

∫
‖φ‖.

As f is arbitrary, ‖w‖ ≤
∫
‖φ‖.

2E Lemma Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space, X a Banach space
and φ : S → X a McShane integrable function. Then for any ǫ > 0 there is a gauge ∆ : S → T such that

lim supn→∞ ‖
∑

i≤n µEiφ(ti) −
∫

E
φ‖ ≤ ǫ

whenever E0, . . . are disjoint sets of finite measure with union E and t0, . . . ∈ S are such that Ei ⊆ ∆(ti)
for each i.

proof Recall that by Theorem 1N we can speak of
∫

E
φ =

∫
φ↾E, and by Proposition 2B we can identify

this with the integral of χE ×φ, so that
∫
φ =

∫
E
φ+

∫
S\E

φ for every E ∈ Σ. Let ∆ : S → T be a gauge such

that lim supn→∞ ‖
∫
φ−

∑
i≤n µEiφ(ti)‖ ≤ 1

2ǫ whenever 〈(Ei, ti)〉i∈N is a generalized McShane partition of
S subordinate to ∆. Now let E0, . . . be disjoint sets of finite measure with union E, and t0, . . . ∈ S such
that Ei ⊆ ∆(ti) for each i. Let 〈(Fi, ui)〉i∈N be a generalized McShane partition of S \E, subordinate to ∆,
such that lim supn→∞ ‖

∫
S\E

φ−
∑

i≤n µFiφ(ui)‖ ≤ 1
2ǫ. (Readers will have no difficulty in dealing separately

with the case E = S.)
If we set

E′
2i = Ei, t

′
2i = ti, E

′
2i+1 = Fi, t

′
2i+1 = ui

for i ∈ N, then 〈(E′
i, t

′
i)〉i∈N is a generalized McShane partition of S subordinate to ∆. So

lim sup
n→∞

‖

∫
E

φ−
∑
i<n

µEiφ(ti)‖

≤ lim sup
n→∞

(‖

∫
φ−

∑
i<2n

µE′
iφ(t′i)‖ + ‖

∫
S\E

φ−
∑
i<n

µFiφ(ui)‖)

≤ ǫ,

as required.

2F Theorem Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space. Let 〈φn〉n∈N be a sequence of McShane integrable functions from S to X, and suppose that φ(t) =
limn→∞ φn(t) exists in X for every t ∈ S. If moreover the limit

νE = limn→∞

∫
E
φn

exists in X, for the weak topology, for every E ∈ Σ, φ is McShane integrable and
∫
φ = νS.

proof Fix ǫ > 0.

(a) For t ∈ S, n ∈ N set qn(t) = supj≥i≥n ‖φj(t) − φi(t)‖. Let h : S → R be a strictly positive function

such that
∫
h ≤ ǫ. For each t, write r(t) = min{n : qn(t) ≤ h(t), ‖φ(t)‖ ≤ n}; set Ak = {t : r(t) = k} for

each k. For each k ∈ N, let Wk ⊇ Ak be a measurable set with µ∗(Wk \Ak) = 0; set Vk = Wk \
⋃

j<k Wj for

each k, so that 〈Vk〉k∈N is a disjoint cover of S by measurable sets, and Ak ⊆
⋃

j≤k Vj and µ∗(Vk \Ak) = 0

for each k. For each k, write V ∗
k =

⋃
j≤k Vj =

⋃
j≤k Wj ; take δk > 0 such that ‖νE‖ ≤ 2−kǫ whenever

µE ≤ δk (see (ii) of 2C above); let Gk ⊇ V ∗
k be an open set such that µ(Gk \ V ∗

k ) ≤ min(δk, 2
−kǫ).

(b) If k ∈ N and E ⊆ V ∗
k is measurable, then ‖νE −

∫
E
φk‖ ≤

∫
E
h. To see this, it is enough to consider

the case E ⊆ Vj where j ≤ k. In this case, observe that
‖νE −

∫
E
φk‖ ≤ lim supn→∞ ‖

∫
E
φn −

∫
E
φk‖ ≤ supn≥k

∫
E
‖φn(t) − φk(t)‖µ(dt)

by Lemma 2D. Now µ∗(E \Aj) = 0 and for t ∈ Aj we have ‖φn(t) − φk(t)‖ ≤ qj(t) ≤ h(t) for every n ≥ k,
so ∫

E
‖φn(t) − φk(t)‖µ(dt) ≤

∫
E
h

for every n ≥ k, giving the result.

(c) Let ∆′ : S → T be a gauge such that lim supn→∞ |
∫
h −

∑
i≤n µEi.h(ti)| ≤ ǫ whenever 〈(Ei, ti)〉i∈N

is a generalized McShane partition of S subordinate to ∆′; then
∑

i∈N
µEi.h(ti) ≤ 2ǫ for any such partition.

For each k ∈ N let ∆k : S → T be a gauge such that
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‖
∫

E
φk −

∑
i≤n µEiφk(ti)‖ ≤ 2−kǫ

whenever E0, . . . , En are disjoint measurable sets with union E and t0, . . . , tn ∈ S are such that Ei ⊆ ∆k(ti)
for each i; such a gauge exists by Lemma 2E. Define ∆ : S → T by setting ∆(t) = ∆k(t) ∩ ∆′(t) ∩ Gk for
t ∈ Ak.

(d) Let 〈(Ei, ti)〉i∈N be a generalized McShane partition of S subordinate to ∆. I seek to estimate νS−xn,
where xn =

∑
i≤n µEiφ(ti). Fix n for the moment.

Set Ik = {i : i ≤ n, ti ∈ Ak} for each k; of course all but finitely many of the Ik are empty. For i ∈ Ik, set
E′

i = Ei∩V
∗
k . We have Ei ⊆ ∆(ti) ⊆ Gk, so

∑
i∈Ik

µ(Ei \E
′
i) ≤ 2−kǫ, and

∑
i∈Ik

µ(Ei \E
′
i)‖φ(ti)‖ ≤ 2−kkǫ,

because ‖φ(t)‖ ≤ k for t ∈ Ak. Consequently, if we write
y0 =

∑
i≤n µE

′
iφ(ti),

we shall have ‖xn − y0‖ ≤
∑

k∈N
2−kkǫ = 2ǫ.

For each i ≤ n, let k(i) be such that ti ∈ Ak(i). Then we have ‖φ(ti) − φk(i)(ti)‖ ≤ h(ti) for each i. So∑
i≤n µE

′
i‖φ(ti) − φk(i)(ti)‖ ≤

∑
i∈N

µEih(ti) ≤ 2ǫ,

because 〈(Ei, ti)〉i∈N is subordinate to ∆′. Accordingly, writing
y1 =

∑
i≤n µE

′
iφk(i)(ti),

we have ‖xn − y1‖ ≤ 4ǫ.

Set Hk =
⋃
{E′

i : i ∈ Ik} for each k. Because E′
i ⊆ ∆k(ti) for each i ∈ Ik, we have

‖
∑

i∈Ik
µE′

iφk(ti) −
∫

Hk

φk‖ ≤ 2−kǫ.

Consequently, writing
y2 =

∑
k∈N

∫
Hk

φk,

we have ‖xn − y2‖ ≤ 6ǫ.

Next, for any k, Hk ⊆ V ∗
k , so we have

‖νHk −
∫

Hk

φk‖ ≤
∫

Hk

h,

by (b) above. So writing y3 =
∑

k∈N
νHk we have ‖y2 − y3‖ ≤

∫
h and ‖xn − y3‖ ≤ 7ǫ.

If we set H ′
k =

⋃
{Ei : i ∈ Ik}, then µ(H ′

k \ Hk) ≤ δk, so that ‖νH ′
k − νHk‖ ≤ 2−kǫ, for each k.

Accordingly ‖xn − y4‖ ≤ 9ǫ, where
y4 =

∑
k∈N

νH ′
k = ν(

⋃
k∈N

H ′
k) = ν(

⋃
i≤nEi).

Thus
‖ν(

⋃
i≤nEi) −

∑
i≤n µEiφ(ti)‖ ≤ 9ǫ.

Because ν is countably additive,
lim supn→∞ ‖νS −

∑
i≤n µEiφ(ti)‖ ≤ 9ǫ.

This shows that φ is McShane integrable, with integral νS.

Remark This generalizes Theorem 2I of [FMp91].

2G Corollary Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space.

(a) Let 〈φn〉n∈N be a sequence of McShane integrable functions from S toX such that φ(t) = limn→∞ φn(t)
exists in X for every t ∈ S. If

C = {fφn : f ∈ X∗, ‖f‖ ≤ 1, n ∈ N}

is uniformly integrable, then φ is McShane integrable.

(b) Let φ : S → X be a Pettis integrable function and 〈Ei〉i∈N a cover of S by measurable sets. Suppose
that φ↾Ei is McShane integrable for each i. Then φ is McShane integrable.

proof (a) The point is that φn, φ satisfy the conditions of Theorem 2F. To see this, take E ∈ Σ and ǫ > 0.
Because C is uniformly integrable, there are a set F of finite measure and a δ > 0 such that

∫
H
|g| ≤ ǫ

whenever g ∈ C and µ(H ∩ F ) ≤ δ; consequently ‖
∫

E\G
φn‖ ≤ ǫ for all n ∈ N whenever G ∈ Σ and

µ(F \G) ≤ δ. Now set
An = {t : ‖φi(t) − φj(t)‖µF ≤ ǫ ∀ i, j ≥ n};

then 〈An〉n∈N is an increasing sequence with union S, so there is an n such that µ∗(F ∩An) ≥ µF − δ. Let
G ∈ Σ be such that An ∩ F ⊆ G ⊆ F and µG = µ∗(An ∩ F ). Then whenever i, j ≥ n we have

‖
∫

E∩G
φi −

∫
E∩G

φj‖ ≤
∫

E∩G
‖φi(t) − φj(t)‖µ(dt) ≤ µG supt∈An

‖φi(t) − φj(t)‖ ≤ ǫ.
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Also ‖
∫

E\G
φi‖ and ‖

∫
E\G

φj‖ are both less than or equal to ǫ, so ‖
∫

E
φi −

∫
E
φj‖ ≤ 3ǫ. This shows that

〈
∫

E
φi〉i∈N is a Cauchy sequence and therefore convergent, for every E ∈ Σ. Accordingly the conditions of

2F are satisfied and φ is McShane integrable.

(b) Apply 2F with φn(t) = φ(t) for t ∈
⋃

i≤nEi, 0 elsewhere.

3. Relations with other integrals
I come now to a discussion of the relationship between the McShane integral, as I have defined it, and

other integrals of vector-valued functions. I have already observed that any Bochner integrable function is
McShane integrable (1K). Complementing this we have Theorem 3B: every McShane integrable function is
Pettis integrable.

3A Definitions Let (S,Σ, µ) be a probability space and X a Banach space, with dual X∗.

(a) A function φ : S → X is Pettis integrable if for every E ∈ Σ there is a wE ∈ X such that∫
E
f(φ(x))µ(dx) exists and is equal to f(wE) for every f ∈ X∗; in this case wS is the Pettis integral of φ,

and the map E → wE : Σ → X is the indefinite Pettis integral of φ.

(b) A function φ : S → X is Talagrand integrable, with Talagrand integral w, if w = limn→∞
1
n

∑
i<n φ(si)

for almost all sequences 〈si〉i∈N ∈ SN, where SN is given its product probability. (See [Ta87], Theorem 8.)

3B Theorem Let (S,T,Σ, µ) be a σ-finite outer regular quasi-Radon measure space and X a Banach
space. If φ : S → X is McShane integrable, with McShane integral w, then it is Pettis integrable, with
Pettis integral w.

proof For every E ∈ Σ we have a McShane integral wE of φ↾E, by 1N. If g ∈ X∗ then gφ↾E : E → R is
McShane integrable, with integral g(wE), by Proposition 1C. But we have seen in 1O that this means that∫

E
gφ exists and is g(wE). As g is arbitrary, φ is Pettis integrable, with indefinite Pettis integral E 7→ wE ;

and the Pettis integral of φ is wS = w.

Remark This generalises Theorem 2C of [FMp91].

3C I come now to a result connecting the McShane and Talagrand integrals. Recall that if (S,Σ, µ) is a
probability space, a set A of real-valued functions is stable (in Talagrand’s terminology) if for every E ∈ Σ,
with µE > 0, and all real numbers α < β, there are m, n ≥ 1 such that µm+nZ(A,E,m, n, α, β) < (µE)m+n,
where throughout the rest of paper I write Z(A,E, I, J, α, β) for

{(t, u) : t ∈ EI , u ∈ EJ , ∃ f ∈ A, f(t(i)) ≤ α ∀ i ∈ I, f(u(j)) ≥ β ∀ j ∈ J},
and µ∗

m+n is the ordinary product outer measure on Sm × Sn. Now if X is a Banach space, a function
φ : S → X is properly measurable if {hφ : h ∈ X∗, ‖h‖ ≤ 1} is stable. Talagrand proved ([Ta87],

Theorem 8) that φ is Talagrand integrable iff it is properly measurable and the upper integral
∫
‖φ(t)‖µ(dt)

is finite.
The next proposition requires a lemma about gauges in quasi-Radon spaces.

3D Lemma Let (S,T,Σ, µ) be a quasi-Radon probability space and ∆ : S → T a gauge. Then
(a) {x : x ∈ SN, µ(

⋃
i∈N

∆(x(i))) = 1} has outer measure 1 in SN;
(b) writing µn for the quasi-Radon product measure on Sn,

limn→∞

∫
µ(

⋃
i<n ∆(u(i)))µn(du) = 1.

Remark The definition and properties of product quasi-Radon measures are sketched in [Fr84], A7E and
discussed in detail in [Frn82]. For the purposes of this paper it would be enough to prove the lemma with
µn the ordinary product measure of Sn. The crucial fact is that both product measures satisfy Fubini’s
theorem in the sense that if I, J are disjoint sets and µI , µJ , µI∪J the measures of SI , etc., then for
any µI∪J -measurable set W ⊆ SI∪J we have almost every section Wu = {v : uav ∈ W} measurable, and∫
µJ (Wu)µI(du) = µI∪JW .

proof (a) Suppose, if possible, otherwise.
(i) Set h(x) = µ(

⋃
i∈N

∆(x(i))) for each x ∈ SN. For any set I let µI be the product quasi-Radon

measure on SI .
There is a closed set W ⊆ SN such that µNW > 0 and h(x) < 1 for every x ∈W . Set

T =
⋃

n∈N
{u : u ∈ Sn, µN\n{v : v ∈ SN\n, uav ∈W} > 0}.
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For u ∈ T set g(u) = µ(
⋃

i<dom(u) ∆(u(i))). Choose a sequence 〈un〉n∈N in T as follows. u0 is to be the

empty sequence. Given un ∈ T , choose un+1 ∈ T such that un+1 properly extends un and g(un+1) ≥
sup{g(u) : un ⊂ u ∈ T}− 2−n. Now we see that if un ∈ Sk(n) for each n, 〈k(n)〉n∈N is strictly increasing, so
x =

⋃
n∈N

un ∈ SN; also, for each n ∈ N,

{v : v ∈ SN\k(n), (x↾k(n))av ∈W} 6= ∅,
so x ∈W because W is closed. Consequently h(x) < 1.

Let F ⊆ S \
⋃

i∈N
∆(x(i)) be a non-empty self-supporting closed set, so that µ(F ∩ G) > 0 for every

open set G meeting F . Then, in particular, µ(F ∩ ∆(t)) > 0 for every t ∈ F , so there is a δ > 0 such that
µ∗D > 0, where

D = {t : t ∈ F, µ(F ∩ ∆(t)) ≥ δ}.

(ii) Because 〈g(un)〉n∈N is a bounded non-decreasing sequence, there is an n ∈ N such that g(un+1) −
g(un) + 2−n < δ. We have

µN\k(n){v : ua

n v ∈W} > 0,
while

µ∗
N\k(n){v : ∃ i ≥ k(n), v(i) ∈ D} = 1,

so there is some i ≥ k(n) such that
µ∗

N\k(n){v : ua

n v ∈W, v(i) ∈ D} > 0.

Set m = i+ 1,
E = {w : w ∈ Sm\k(n), µN\m{y : ua

nw
ay ∈W} > 0};

then E is µm\k(n)-measurable and

µN\k(n){v : ua

n v ∈W, v↾m\k(n) /∈ E} = 0.

Consequently there is a v ∈ SN\k(n) such that v↾m\k(n) ∈ E and v(i) ∈ D. But now consider
u = ua

n (v↾m\k(n)).
We see that u ∈ T and un ⊂ u, so

g(u) ≤ g(un+1) + 2−n.
On the other hand, u(i) ∈ D, so

g(u) − g(un) ≥ µ(∆(u(i)) \
⋃

j<k(n)

∆(u(j)))

≥ µ(∆(u(i)) ∩ F ) ≥ δ.

Thus
g(un+1) ≥ g(u) − 2−n ≥ g(un) − 2−n + δ,

contrary to the choice of n.
This contradiction proves the first part of the lemma.

(b) The second part follows. For each n ∈ N define hn : SN → [a, b] by setting
hn(x) = µ(

⋃
i<n ∆(x(i))) ∀ x ∈ SN.

Then limn→∞ hn(x) = h(x) for every x, so

1 =
∫
h(x)µN(dx) = limn→∞

∫
hn(x)µN(dx) = limn→∞

∫
µ(

⋃
i<n ∆(u(i))µn(du),

as required.

3E Proposition Let X be a Banach space such that the unit ball B of X∗ is w∗-separable. If (S,T,Σ, µ)
is a quasi-Radon probability space and φ : S → X is a McShane integrable function, then it is properly
measurable.

proof (a) Let w be the McShane integral of φ. Set A = {hφ : h ∈ X∗, ‖h‖ ≤ 1} ⊆ R
S ; we have to show

that A is stable. Note that because the unit ball of X∗ is separable for the w∗-topology on X∗, and the map
h 7→ hφ : X∗ → R

S is continuous for the w∗-topology on X∗ and the topology of pointwise convergence on
R

S , A has a countable dense subset A0. Take E ∈ Σ, with µE > 0, and α < α′ < β′ < β in R. For m, n ≥ 1
set Hmn = Z(A,E,m, n, α, β), H ′

mn = Z(A0, E,m, n, α
′, β′); then Hmn ⊆ H ′

mn and H ′
mn is measurable for

the usual (completed) product measure on Em × En. We seek an m with µ2mH
′
mm < (µE)2m.

Set ǫ = 1
6 (β′ − α′)µE > 0. Let ∆ : S → T be a gauge such that

lim supJ⊆I is finite ‖w −
∑

i∈J µEi.φ(ti)‖ ≤ ǫ
whenever 〈(Ei, ti)〉i∈I is a generalized McShane partition of S subordinate to ∆.
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The set E, with its induced topology and measure, is a quasi-Radon measure space. So we may apply
Lemma 3D to E, with an appropriate normalization of its measure, to see that there is an m ∈ N such that
µ∗

mD > 0, where
D = {t : t ∈ Em, µ(

⋃
i<mE ∩ ∆(t(i))) ≥ 3

4µE}.
Suppose, if possible, that µ2mH

′
mm = (µE)2m. Then H ′

mm must meet D2; take t, u ∈ D such that
(t, u) ∈ H ′

mm. Set
H =

⋃
i<m ∆(t(i)) ∩

⋃
i<m ∆(u(i));

then µH ≥ 1
2µE. Let 〈t(i)〉m≤i∈N be any sequence in S such that µ(

⋃
i≥m ∆(t(i))) = 1 (see §3 above).

Choose disjoint covers 〈Ei〉i<m, 〈Fi〉i<m of H by measurable sets such that Ei ⊆ ∆(t(i)) and Fi ⊆
∆(u(i)) for each i < m. Choose a disjoint cover 〈Ei〉i≥m of

⋃
i≥m ∆(t(i)) \H by measurable sets such that

Ei ⊆ ∆(t(i)) for each i ≥ m. Set u(i) = t(i), Fi = Ei for i ≥ m. Then we see that 〈(Ei, t(i))〉i∈N and
〈(Fi, u(i))〉i∈N are both generalized McShane partitions of S subordinate to the gauge ∆. So we must have

lim supn→∞ ‖
∑

i≤n µ(Ei).φ(t(i)) −
∑

i≤n µ(Fi).φ(u(i))‖ ≤ 2ǫ,
by the choice of ∆. But this says just that

‖
∑

i<m µEi.φ(t(i)) − µFi.φ(u(i))‖ ≤ 2ǫ.
Now (t, u) ∈ H ′

mm, so is there is an f ∈ A such that f(t(i)) ≤ α′ and f(u(i)) ≥ β′ for every i < m. f is
of the form hφ for some h of norm at most 1, so

|
∑

i<m µEi.f(t(i)) − µFi.f(u(i))| ≤ 2ǫ.
However, f(t(i)) ≤ α′ for each i and

∑
i<m µEi = µH, so∑

i<m µEi.f(t(i)) ≤ α′µH;
similarly

∑
i<m µFi.f(u(i)) ≥ β′µH, and we get

2ǫ ≥ (β′ − α′)µH ≥ (β′ − α′) 1
2µE = 3ǫ,

which is absurd.
This shows that A is indeed stable, so that φ is properly measurable.

3F Corollary Let (S,T,Σ, µ) be a quasi-Radon probability space and X a Banach space such that the

unit ball of X∗ is w∗-separable. If φ : S → X is McShane integrable and
∫
‖φ(s)‖µ(ds) < ∞, then φ is

Talagrand integrable.

Remark These generalise Proposition 2L and Corollary 2M of [FMp91].

3G Corollary Let (S,T,Σ, µ) be a quasi-Radon probability space and X a Banach space. If φ : S → X
is McShane integrable then its indefinite Pettis integral has totally bounded range.

proof By 4-1-5 of [Ta84], it is enough to show that C = {fφ : f ∈ X∗, ‖f‖ ≤ 1} is totally bounded for
‖ ‖1. This will be so iff every countable subset of C is totally bounded. But 3E shows that any countable
subset of C is stable, and therefore totally bounded by [Ta84], 9-5-2.

3H I conclude with some questions left open by the work above.

Problems (a) Suppose that (S,T,Σ, µ) is a quasi-Radon probability space, X is a Banach space, and
φ : S → X a Pettis integrable function. Does it follow that the indefinite integral of φ has totally bounded
range?

(b) Suppose that (S,Σ, µ) is a σ-finite measure space, X is a Banach space, and ψ : S → X is a function.
Suppose that T1 and T2 are two topologies on S making it an outer regular quasi-Radon measure space. If
φ is McShane integrable for T1, must it be McShane integrable for T2?

As a special case of this, take S = [0, 1] with its usual measure, T1 the topology associated with a strong
lifting ([Frn82], 3G), and T2 the usual topology.

If the unit ball of X∗ is w∗-separable, then the answer is ‘yes’; see [Frn92].

(c) Suppose that (S,T,Σ, µ) is a quasi-Radon probability space, X a Banach space, and φ : S → X a
measurable Pettis integrable function. Must φ be McShane integrable? (If there is no real-valued-measurable
cardinal, yes.)
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