Errata and addenda for Volume 5, 2015 printing

I collect here known errors and omissions, with their discoverers, in Volume 5 of my book *Measure Theory* (see my web page, http://www1.essex.ac.uk/maths/people/fremlin/mt.htm).

Part I

p l (511Y) Add new exercise:

(d) Show that, for a set I, $(\omega_1, \omega, \omega)$ is a precaliber triple of \mathbb{N}^I iff I is countable.

p l (514Y) Add new exercise:

(g) Let \mathfrak{A} be a ccc Dedekind complete Boolean algebra with Maharam type κ . Show that there is a σ -ideal \mathcal{J} of the Baire σ -algebra $\mathcal{Ba}(\{0,1\}^{\kappa})$ such that $\mathfrak{A} \cong \mathcal{Ba}(\{0,1\}^{\kappa})/\mathcal{J}$.

p 1 Proposition 515N has been revised, and new results added. The last part of this section now reads **515N Proposition** Let *I* be a set. Write \mathfrak{G} for the regular open algebra $\operatorname{RO}(\{0,1\}^I)$.

(a) \mathfrak{G} is ccc and Dedekind complete and isomorphic to the category algebra of $\{0,1\}^I$. The algebra of open-and-closed subsets of $\{0,1\}^I$ is an order-dense subalgebra of \mathfrak{G} .

(b) Let \mathfrak{A} be a Boolean algebra. Then \mathfrak{A} is isomorphic to \mathfrak{G} iff it is Dedekind complete and there is a Boolean-independent family $\langle a_i \rangle_{i \in I}$ in \mathfrak{A} such that the subalgebra generated by $\{a_i : i \in I\}$ is order-dense in \mathfrak{A} .

(c) If I is infinite, \mathfrak{G} is homogeneous.

5150 Proposition (a) A Boolean algebra is isomorphic to $\mathfrak{G} = \operatorname{RO}(\{0,1\}^{\mathbb{N}})$ iff it is Dedekind complete, atomless, has countable π -weight and is not $\{0\}$. In particular, the regular open algebra $\operatorname{RO}(\mathbb{R})$ is isomorphic to \mathfrak{G} .

(b) Every atomless order-closed subalgebra of \mathfrak{G} is isomorphic to \mathfrak{G} .

515P Proposition A Boolean algebra \mathfrak{A} is isomorphic to $\mathrm{RO}(\{0,1\}^{\omega_1})$ iff

- (α) it is non-zero, ccc and Dedekind complete,
- (β) every non-zero principal ideal of \mathfrak{A} has π -weight ω_1 ,
- (γ) there is a non-decreasing family $\langle A_{\xi} \rangle_{\xi < \omega_1}$ of countable subsets of \mathfrak{A} such that each A_{ξ} is order-dense in the order-closed subalgebra of \mathfrak{A} which it generates, $A_{\zeta} = \bigcup_{\xi < \zeta} A_{\xi}$ for every non-zero countable limit ordinal ζ , $\bigcup_{\xi < \omega_1} A_{\xi}$ is order-dense in \mathfrak{A} .

515Q Proposition Let \mathfrak{A} be an atomless order-closed subalgebra of $\mathfrak{G} = \operatorname{RO}(\{0,1\}^{\omega_1})$. Then \mathfrak{A} is isomorphic either to $\operatorname{RO}(\{0,1\}^{\omega})$ or to \mathfrak{G} or to the simple product $\operatorname{RO}(\{0,1\}^{\omega}) \times \mathfrak{G}$.

p 1 Proposition 516S has been rewritten, and now reads

516S Proposition Let \mathfrak{A} be a Boolean algebra.

(a) If \mathfrak{B} is a subalgebra of \mathfrak{A} and $(\kappa, \lambda, <\theta)$ is a precaliber triple of \mathfrak{A} such that $\theta \leq \omega$, then $(\kappa, \lambda, <\theta)$ is a precaliber triple of \mathfrak{B} . In particular, every precaliber pair of \mathfrak{A} is a precaliber pair of \mathfrak{B} and \mathfrak{B} will satisfy Knaster's condition if \mathfrak{A} does.

(b) If \mathfrak{B} is a regularly embedded subalgebra of \mathfrak{A} , then every precaliber triple of \mathfrak{A} is a precaliber triple of \mathfrak{B} .

(c) If \mathfrak{B} is a Boolean algebra and $\phi : \mathfrak{A} \to \mathfrak{B}$ is a surjective order-continuous Boolean homomorphism, then every precaliber triple of \mathfrak{A} is a precaliber triple of \mathfrak{B} .

(d) If \mathfrak{B} is a principal ideal of \mathfrak{A} then every precaliber triple of \mathfrak{A} is a precaliber triple of \mathfrak{B} .

(e) If \mathfrak{A} is the simple product of a family $\langle \mathfrak{A}_i \rangle_{i \in I}$ of Boolean algebras, $(\kappa, \lambda, \langle \theta)$ is a precaliber triple of \mathfrak{A}_i for every $i \in I$ and $\mathrm{cf} \kappa > \#(I)$, then $(\kappa, \lambda, \langle \theta)$ is a precaliber triple of \mathfrak{A} .

Extract from MEASURE THEORY, results-only version, by D.H.FREMLIN, University of Essex, Colchester. This material is copyright. It is issued under the terms of the Design Science License as published in http://dsl.org/copyleft/dsl.txt. This is a development version and the source files are not permanently archived, but current versions are normally accessible through https://wwwl.essex.ac.uk/maths/people/fremlin/mt.htm. For further information contact david@fremlin.org.

p l Add new result:

516V Proposition Let \mathfrak{A} be an atomless Boolean algebra which satisfies Knaster's condition. Then \mathfrak{A} has an atomless order-closed subalgebra with countable Maharam type.

p 1 (516X) Add new exercise:

(n) Suppose that \mathfrak{A} and \mathfrak{B} are Boolean algebras and that there is a surjective Boolean homomorphism from \mathfrak{A} to \mathfrak{B} . Show that if $(\kappa, \lambda, <\theta)$ is a precaliber triple of \mathfrak{A} and θ is countable, then $(\kappa, \lambda, <\theta)$ is a precaliber triple of \mathfrak{B} .

p 1 (516Y) Add new exercise:

(a) Let \mathfrak{A} be an atomless Dedekind complete ccc Boolean algebra such that $(\kappa, \kappa, 2)$ is a precaliber triple of \mathfrak{A} for every regular uncountable cardinal κ . Then \mathfrak{A} has an atomless closed subalgebra of countable Maharam type.

p l (517Y) Add new exercise:

(d) (i) Suppose that $\mathcal{A}, \mathcal{B} \in [[\mathbb{N}]^{\omega}]^{<\mathfrak{p}}, \mathcal{A}$ is downwards-directed and $A \cap B$ is infinite for all $A \in \mathcal{A}, B \in \mathcal{B}$. Show that there is a set $D \subseteq \mathbb{N}$ such that $D \setminus A$ is finite for every $A \in \mathcal{A}$ and $D \cap B$ is infinite for every $B \in \mathcal{B}$. (ii) Show that \mathfrak{p} is regular.

- **p** 1 In Proposition 521G, add $\tau(\mu) \leq \max(\omega, \sup_{i \in I} \tau(\mu_i), \min\{\lambda : \#(I) \leq 2^{\lambda}\}).$
- **p** 1 (Proposition 521O) Add new part:

(d) If $\langle A_i \rangle_{i \in I}$ is a disjoint family of subsets of X and $\#(I) > \max(\omega, \max(\mu))$ then there is an $i \in I$ such that $X \setminus A_i$ has full outer measure.

p 1 (521X) Add new exercise:

(n) For a measure space (X, Σ, μ) with null ideal $\mathcal{N}(\mu)$, write $\operatorname{hcov}(\mu)$ for $\inf_{E \in \Sigma \setminus \mathcal{N}(\mu)} \operatorname{cov}(E, \mathcal{N}(\mu))$. (Count $\inf \emptyset$ as ∞ , as usual.) Show that if (X, Σ, μ) and (Y, T, ν) are semi-finite measure spaces, neither having zero measure, with c.l.d. product $(X \times Y, \Lambda, \lambda)$, then $\operatorname{hcov}(\lambda) = \min(\operatorname{hcov}(\mu), \operatorname{hcov}(\nu))$.

p 1 Add new part to Lemma 522C: (iii) $(\mathbb{N}^{\mathbb{N}}, \leq^*) \equiv_{\mathrm{T}} (\mathbb{N}^{\mathbb{N}}, \preceq).$

 $\begin{array}{l} \mathbf{p} \quad \mathbf{l} \quad (\text{part (e) of the proof of 522C}): \text{ for } `(\mathbb{N}^{\mathbb{N}}, \leq', [\mathbb{N}^{\mathbb{N}}]^{\leq \omega}) \equiv_{\mathrm{GT}} (\mathbb{N}^{\mathbb{N}}, \leq^*, \mathbb{N}^{\mathbb{N}}) \equiv_{\mathrm{GT}} (\mathbb{N}^{\mathbb{N}}, \leq^*, \mathbb{N}^{\mathbb{N}})' \text{ read} \\ `(\mathbb{N}^{\mathbb{N}}, \leq', [\mathbb{N}^{\mathbb{N}}]^{\leq \omega}) \equiv_{\mathrm{GT}} (\mathbb{N}^{\mathbb{N}}, \leq^*, \mathbb{N}^{\mathbb{N}}) \equiv_{\mathrm{GT}} (\mathbb{N}^{\mathbb{N}}, \leq^*, \mathbb{N}^{\mathbb{N}})'. \end{array}$

p 111 l 24 (Theorem 522S) Add new part:

(c) non \mathcal{M} is the least cardinal of any set $A \subseteq \mathbb{N}^{\mathbb{N}}$ such that for every $g \in \mathbb{N}^{\mathbb{N}}$ there is an $f \in A$ such that $\{n : f(n) = g(n)\}$ is infinite.

p 1 (part (b-ii- α) of the proof of 522S): for ' $f^*(j+1) = \tilde{f}(\tilde{f}(f^*(j))) \ge \tilde{f}(\tilde{f}(g(i))) \ge \tilde{f}(g(i+1)) \ge g(i+2)$ ' read ' $f^*(j+1) \ge \tilde{f}(\tilde{f}(f^*(j))) \ge \tilde{f}(\tilde{f}(g(i))) \ge \tilde{f}(g(i+1)) \ge g(i+2)$ '.

p l Exercise 522Xc is wrong, and has been deleted. 522Xe is a copy of 521Xc, and has been dropped. 522Xb is now 522Xc, 522Xd is now 522Xe, 522Xf-522Xg are now 522Xg-522Xh.

p l Exercise 522Yi is wrong, and has been revised. Exercise 522Yj is now 522Sc.

- **p** 1 Add new problem: **522Z** Is it the case that (ℝ, ∈, \mathcal{M}) ≡_{GT} (ℕ^ℕ, finint, ℕ^ℕ)? (See 522S and the proof of 522V.)
- **p** 1 Add new fragment to 523Ia:

(ii) non $\mathcal{N}_{\kappa^{(+n)}} \leq \max(\kappa^{(+n)}, \operatorname{non} \mathcal{N}_{\kappa} \text{ for every } n \in \mathbb{N}.$

523I(a-ii) and 523I(a-iii) are now 523I(a-iii) and 523I(a-iv).

p 1 (part (c) of the proof of 523N): for 'cov($\kappa, [\kappa]^{\leq \omega}$)' read 'cov($\kappa, \in, [\kappa]^{\leq \omega}$)'.

MEASURE THEORY (abridged version)

- **p** 1 Part (ii) of Exercise 523Yf is superseded by 524Na below, so has been dropped.
- **p** 1 Add new result:

524U Lemma Let $(\mathfrak{A}, \overline{\mu})$ be a probability algebra. Then there is a Radon probability measure on $\{0, 1\}^{\tau(\mathfrak{A})}$ with measure algebra isomorphic to $(\mathfrak{A}, \overline{\mu})$.

p 1 (525X) Add new exercise:

(i) Show that if $(X, \mathfrak{T}, \Sigma, \mu)$ is a Radon measure space and $\mu X > 0$, then $\operatorname{cov} \mathcal{N}(\mu) \geq \mathfrak{m}_{K}$.

p 1 (Exercise 526Xc) For 'non $\mathcal{N}wd = \text{non }\mathcal{M}$ ' and 'cf $\mathcal{N}wd = \text{cf }\mathcal{M}$ ' read 'non $\mathcal{N}wd = \omega$ ' and 'cf $\mathcal{N}wd \leq \text{cf }\mathcal{M}$ '.

p 168 l 2 In Theorem 527C, we have to assume that μ and ν are inner regular with respect to the Borel sets.

p 169 l 18 (part (a) of the proof of 527F) for 'algebra of subsets of $\mathcal{P}(\mathbb{N}^{\mathbb{N}})$ ' read 'subalgebra of $\mathcal{P}(\mathbb{N}^{\mathbb{N}})$ '.

p 169 l 25 (part (a) of the proof of 527F) for 'and again $U_{\tau} \setminus E \subseteq U_{\tau} \notin \mathcal{I}$ ' read 'and again $U_{\tau} \setminus E \supseteq U_{\tau} \notin \mathcal{I}$ '.

p 173 l 38 (part (c-iii) of the proof of 527J) for $f^{-1}[F] \subseteq N_V \cup \{x : \phi_0[\{x\}] \notin \mathcal{M}(Y)\}$ ' read $f^{-1}[F] \subseteq N_V \cup \{x : \phi_0(V)[\{x\}] \notin \mathcal{M}(Y)\}$ '.

p 173 l 45 (part (c-iii) of the proof of 527J) for $V_0 = (N^* \times Y) \cup \tilde{W}$ and $x \in X \setminus N^*$ read $V_0 = (\tilde{N} \times Y) \cup \tilde{W}$ and $x \in X \setminus \tilde{N}$.

p 177 l 4 (part (d) of the proof of 527O): for ' $F \in \mathcal{B}(Y) \setminus \mathcal{M}(X)$ ' read ' $F \in \mathcal{B}(Y) \setminus \mathcal{M}(Y)$ '.

p 177 l 33 Exercise 527Xh has been moved to 513Xr. Exercise 527Xi has been moved to 527Ye, and corrected, replacing $\mathcal{N}(\mu) \ltimes_{\mathcal{B}(X \times Y)} \mathcal{M}(Y) \preccurlyeq_{\mathrm{T}} \mathcal{N}(\mu) \ltimes_{\mathcal{M}} \mathcal{M}(Y) \preccurlyeq_{\mathrm{T}} \mathcal{N}(\mu) \ltimes_{\mathcal{B}(X \times Y)} \mathcal{M}(Y) \preccurlyeq_{\mathrm{T}} \mathcal{N}(\mu) \times \mathcal{N}'$. Add new exercise:

(h) Show that a measurable algebra is harmless iff it is purely atomic.

 $527\mathrm{Yb}\mathchar`-527\mathrm{Yc}\mathchar`-527\mathrm{Yd}\ma$

- **p 210 l 14** Part (d) of Proposition 531E has been strengthened, and now reads (d) If X is K-analytic (in particular, if X is compact) and Y is a continuous image of X, $\operatorname{Mah}_{R}(Y) \subseteq \operatorname{Mah}_{R}(X)$.
- **p 209 l 14** (part (c) of the proof of 531A): for $F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} H_n$ read $F = \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} H_n$.
- **p 213 l 1** (case 5 in part (b) of the proof of 531G): for 'becomes $\kappa = \omega$ ' read 'becomes $\kappa \leq \omega$ '.

p 214 l 7 Theorem 531L has been restated, and now reads

Theorem Let X be a Hausdorff space.

(a) If $\omega \in \operatorname{Mah}_{\mathbf{R}}(X)$ then $\{0,1\}^{\omega}$ is a continuous image of a compact subset of X.

(b) If $\kappa \geq \omega_2$ belongs to $\operatorname{Mah}_{\mathrm{R}}(X)$ and $\lambda \leq \kappa$ is an infinite cardinal such that (κ, λ) is a measure-precaliber pair of every probability algebra, then $\{0, 1\}^{\lambda}$ is a continuous image of a compact subset of X.

p 214 l 21 (part (b) of the proof of 531L): for

$$\bar{\nu}_{\kappa}(\inf_{\xi\in I}c_{\xi}\cap e_{\xi}\cap \inf_{\eta\in J}c_{\eta}\setminus e_{\eta})=\frac{1}{2^{\#(I\cup J)}}\bar{\nu}_{\kappa}(\inf_{\xi\in I\cup J}c_{\xi})$$

read

$$\bar{\mu}(\inf_{\xi\in I} c_{\xi} \cap e_{\xi} \cap \inf_{\eta\in J} c_{\eta} \setminus e_{\eta}) = \frac{1}{2^{\#(I\cup J)}} \bar{\mu}(\inf_{\xi\in I\cup J} c_{\xi}).$$

D.H.FREMLIN

p 1 Proposition 531M has been restated, and now reads

Proposition If κ is an infinite cardinal and $\{0,1\}^{\kappa}$ is a continuous image of a closed subset of X whenever X is a compact Hausdorff space such that $\kappa \in \operatorname{Mah}_{R}(X)$, then κ is a measureprecaliber of every probability algebra.

- p 215 l 20 Proposition 531N has been moved to 531Vb. 531O-531P are now 531N-531O.
- **p 217 l 28** (part (b)((i) \Rightarrow (ii)) of the proof of 531P, now 531O): for \mathfrak{D}_{ξ} read \mathfrak{C}_{ξ} .
- **p 219 l 9** The proof of 531Q has been rewritten, with the first part now presented as follows:

531P Lemma Let Y be a zero-dimensional compact metrizable space, μ an atomless Radon probability measure on Y, $A \subseteq Y$ a μ -negligible set and Q a countable family of closed subsets of Y. Then there are closed sets $K, L \subseteq Y$, with union Y, such that

$$\begin{split} & K \cup L = Y, \quad K \cap L \cap A = \emptyset, \quad \mu(K \cap L) \geq \frac{1}{2}, \\ & K \cap Q = \overline{Q \setminus L} \text{ and } L \cap Q = \overline{Q \setminus K} \text{ for every } Q \in \mathcal{Q}. \end{split}$$

p 219 l 12 A further property of the measure constructed in 531Q is declared, so that the statement of the proposition now reads

Proposition Suppose that $\operatorname{cf} \mathcal{N}_{\omega} = \omega_1$. Then there are a hereditarily separable perfectly normal compact Hausdorff space X, of weight ω_1 , with a Radon probability measure of Maharam type ω_1 such that every negligible set is metrizable.

p 221 l 33 (part (g) of the proof of 531Q): for $\sum_{\delta \in I} \mu_{\eta} Q'_{\delta \eta} = \mu \pi_{\eta} [H]$, read $\sum_{\delta \in I} \mu_{\eta} Q'_{\delta \eta} = \mu_{\eta} \pi_{\eta} [H]$.

 ${\bf p}~224~l~27$ Theorem 531T has been revised, and now reads

Theorem Suppose that $\omega \leq \kappa < \mathfrak{m}_{K}$. If X is a Hausdorff space and $\kappa \in \operatorname{Mah}_{R}(X)$, then $\{0,1\}^{\kappa}$ is a continuous image of a compact subset of X.

$\mathbf{p}\ \mathbf{224}\ \mathbf{l}\ \mathbf{39}$ Add new results:

531U Proposition Let X be a Hausdorff space.

(a) Give the space $P_{\mathbf{R}}(X)$ of Radon probability measures on X its narrow topology. If $\kappa \geq \omega_2$ belongs to $\operatorname{Mah}_{\mathbf{R}}(X)$, then $\{0,1\}^{\kappa}$ is a continuous image of a compact subset of $P_{\mathbf{R}}(X)$.

(b) Give the space $P_{\mathrm{R}}(X \times X)$ its narrow topology. Then its tightness $t(P_{\mathrm{R}}(X \times X))$ is at least sup $\mathrm{Mah}_{\mathrm{R}}(X)$.

531V Proposition (a) Suppose that the continuum hypothesis is true. Then there is a compact Hausdorff space X such that $\omega_1 \in \operatorname{Mah}_R(X)$ but $\{0,1\}^{\omega_1}$ is not a continuous image of a closed subset of $P_R(X)$.

(b) Suppose that there is a family $\langle W_{\xi} \rangle_{\xi < \omega_1}$ in \mathcal{N}_{ω_1} such that every closed subset of $\{0, 1\}^{\omega_1} \setminus \bigcup_{\xi < \omega_1} W_{\xi}$ is scattered. Then there is a compact Hausdorff space X such that $\omega_1 \in \operatorname{Mah}_{\mathbf{R}}(X)$ but $\{0, 1\}^{\omega_1}$ is not a continuous image of a closed subset of X.

p 225 l 8 (531X) Add new exercises:

(g) Let X be a Hausdorff space such that $\operatorname{Mah}_{R}(X) \subseteq \{0, \omega\}$, and \mathcal{N} the null ideal of Lebesgue measure on \mathbb{R} . Show that the union of fewer than add \mathcal{N} universally Radon-measurable subsets of X is universally Radon-measurable.

>(k) Let X be a Hausdorff space and κ a cardinal. Show that there is a Radon probability measure on X with Maharam type κ iff *either* κ is finite and $2^{\kappa} \leq 2\#(X)$ or $\kappa = \omega \leq \#(X)$ or $\kappa \in \operatorname{Mah}_{R}(X)$ or cf $\kappa = \omega$ and $\kappa = \sup \operatorname{Mah}_{R}(X)$.

(1) Let X be a Hausdorff space and κ an infinite cardinal. (i) Show that $\{0,1\}^{\kappa}$ is a continuous image of a compact subset of X iff $[0,1]^{\kappa}$ is a continuous image of a compact subset of X, and that in this case $\{0,1\}^{\kappa}$ is a continuous image of a compact subset of $P_{\mathrm{R}}(X)$. (ii) Show that if X is normal and $\{0,1\}^{\kappa}$ is a continuous image of a closed subset of X then $[0,1]^{\kappa}$ is a continuous image of X completely regular and $\{0,1\}^{\kappa}$ is a continuous image of a compact subset of X then $[0,1]^{\kappa}$ is a continuous image of a closed subset of X then $[0,1]^{\kappa}$ is a continuous image of a compact subset of X then $[0,1]^{\kappa}$ is a continuous image of a compact subset of X then $[0,1]^{\kappa}$ is a continuous image of X.

531Xg-531Xi are now 531Xh-531Xj, 531Xj is now 531Xq, 531Xk-531Xn are now 531Xm-531Xp,

MEASURE THEORY (abridged version)

p 225 l 29 (531Y) Add new exercises:

(d) Let X be a completely regular Hausdorff space and $\kappa \geq \omega_2$ a cardinal. Show that if $\kappa \in \operatorname{Mah}_R(X)$ then the Banach space $\ell^1(\kappa)$ is isomorphic, as linear topological space, to a subspace of the Banach space $C_b(X)$.

(e) Let X be a locally compact Hausdorff space and κ an infinite cardinal such that $\ell^1(\kappa)$ is isomorphic, as linear topological space, to a subspace of $C_0(X)$ (definition: 436I). Show that $\kappa \in \operatorname{Mah}_R(X)$.

p 243 l 19534 has been thoroughly reorganised, with a few corrections and some supplementary results. In particular, the Galvin-Mycielski-Solovay characterization of strong measure zero in \mathbb{R} (534H) is now 534K.

p 1 (Proposition 535F) for $\theta E^{\bullet} \supseteq \theta E$ for every $E \in \Sigma'$ read $\theta a \supseteq \theta a$ for every $a \in \mathfrak{A}'$.

The result can be proved with a slightly weaker hypothesis: instead of $\#(\mathfrak{A}) \leq \omega_1$ we can use $\#(\mathfrak{A}) \leq \operatorname{add} \mu$ and a triffing modification to the proof.

- **p** l (Exercise 535Xa) for 'A any subset of X' read 'A a non-negligible subset of X'.
- **p** 1 Exercise 535Ya has been moved to 565Yb.
- **p l** Add new result:

536E Proposition Let (X, Σ, μ) be a semi-finite measure space, with null ideal $\mathcal{N}(\mu)$. Suppose that $\pi(\mu) \leq \operatorname{cov}(E, \mathcal{N}(\mu))$ whenever $E \in \Sigma \setminus \mathcal{N}(\mu)$. Then every \mathfrak{T}_p -separable \mathfrak{T}_p -compact subset of $\mathcal{L}^0 = \mathcal{L}^0(\Sigma)$ is stable.

p 1 (563X) Add new exercise:

(c) Suppose that $\mathfrak{m}_K = \mathfrak{c}$. Let $(X, \mathfrak{T}, \Sigma, \mu)$ be a Radon measure space such that $\tau(\mu) \leq \mathfrak{c}$. Show that every pointwise compact subset of $L^0(\Sigma)$ is stable.

p 327 l 45 Add two paragraphs:

539V Lemma For $\mathcal{K} \subseteq [\mathbb{N}]^{<\omega}$, set $\partial \mathcal{K} = \{K \setminus \{\max K\} : \emptyset \neq K \in \mathcal{K}\}$. For every $\xi < \omega_1$, there is a PV norm $\|\|$ on $[\mathbb{N}]^{<\omega}$ such that $\emptyset \in \partial^{\xi} \mathcal{L}$ where $\mathcal{L} = \{L : \|L\| \leq 1\}$.

539W Theorem Let \mathfrak{C} be a countable atomless Boolean algebra, not $\{0\}$. Write $M_{\rm sm}$ for the set of totally finite submeasures on \mathfrak{C} , regarded as a subset of $[0, \infty[^{\mathfrak{C}}, \text{ and } M_{\rm esm}]$ for the set of exhaustive totally finite submeasures on \mathfrak{C} . Then $M_{\rm sm}$ is Polish, and $M_{\rm esm} \subseteq M_{\rm sm}$ is coanalytic and not Borel. Setting

 $F_{\xi} = \{\nu : \nu \in M_{\text{esm}} \text{ has exhaustivity rank at most } \xi\}$

for $\xi < \omega_1$, every F_{ξ} is a Borel subset of $M_{\rm sm}$ and every analytic subset of $M_{\rm esm}$ is included in some F_{ξ} .

p 328 l 24 Exercise 539Yd is now dealt with in 539Tc, so has been dropped.

Part II

p l Add new result:

542K Proposition Let κ be a quasi-measurable cardinal.

(a) For every cardinal $\theta < \kappa$ there is a family \mathcal{D}_{θ} of countable sets, with cardinal less than κ , which is stationary over θ .

(b) There is a family \mathcal{A} of countable sets, with cardinal at most κ , which is stationary over κ .

p 30 l 8 (543X) Add new exercise:

(d) Let μ be Lebesgue measure on \mathbb{R} , and $\theta = \frac{1}{2}(\mu^* + \mu_*)$ the outer measure described in 413Xd. Show that μ is the measure defined from θ by Carathéodory's method.

p 43 l 23 Sections §§546-547 have been rewritten as §§546-548, incorporating work of A.Kumar and S.Shelah.

Volume 5

p l (555Y) Add new exercises:

- (g) Suppose that λ is a two-valued-measurable cardinal, and $\kappa > \lambda$ a cardinal. Show that
 - $\Vdash_{\mathbb{P}_{\kappa}}$ there is a probability measure on ω_1 with Maharam type greater than the least atomlessly-measurable cardinal.

(h) In 555C, suppose that $X = \kappa$ and that μ is a $\{0, 1\}$ -valued measure on κ witnessing that κ is two-valued-measurable. For $J \subseteq \kappa$ let $P_J : L^{\infty}(\mathfrak{B}_{\kappa}) \to L^{\infty}(\mathfrak{B}_{\kappa})$ be the corresponding conditional expectation as in part (b) of the proof of 555F. Show that for every $\sigma \in \mathfrak{B}_{\kappa}^{\kappa}$ there is a countable set $J \subseteq \kappa$ such that $\mu\{\xi : \xi < \kappa, u_{\sigma} = P_J(\chi\sigma(\xi))\} = 1$.

p l New material has been added, as follows:

5A1C Concatenation Suppose that σ , τ are two functions with domains α , β respectively which are ordinals. Then we can form their **concatenation** $\sigma^{\gamma}\tau$, setting

$$\operatorname{dom}(\sigma^{\frown}\tau) = \alpha + \beta$$

(the ordinal sum),

$$(\sigma^{\uparrow}\tau)(\xi) = \sigma(\xi) \text{ if } \xi < \alpha,$$
$$(\sigma^{\uparrow}\tau)(\alpha + \eta) = \tau(\eta) \text{ if } \eta < \beta.$$

The operator \uparrow is associative, so we can omit brackets and speak of $\sigma \uparrow \tau \uparrow v$. The empty function \emptyset is an identity in the sense that

$$\emptyset^{\frown}\sigma = \sigma^{\frown}\emptyset = \sigma$$

whenever dom(σ) is an ordinal.

In this context, it will often be helpful to have a special notation for functions with domain the singleton set $\{0\} = 1$; I will write $\langle t \rangle$ for the function with domain $\{0\}$ and value t.

We can also have infinite concatenations. If $\langle \sigma_n \rangle_{n \in \mathbb{N}}$ is a sequence of functions with ordinal domains, we can form the concatenations

$$\sigma_0^\frown \sigma_1, \quad \sigma_0^\frown \sigma_1^\frown \sigma_2, \quad \sigma_0^\frown \sigma_1^\frown \sigma_2^\frown \sigma_3, \quad \dots$$

to get a sequence of functions each extending its predecessors. The union will be a function with domain the ordinal $\sup_{n \in \mathbb{N}} \operatorname{dom}(\sigma_0) + \ldots + \operatorname{dom}(\sigma_n)$. I will generally denote it $\sigma_0^{\frown} \sigma_1^{\frown} \sigma_2^{\frown} \ldots$ or in some similar form.

5A1C-5A1O are now 5A1D-5A1P.

p 1 (5A1C, now 5A1D) Add new part:

(d) If X is a Polish space and \leq is a well-founded relation on X such that $\{(x, y) : x < y\}$ is analytic, then the height of \leq is countable.

- $\mathbf{p} \ \mathbf{l} \ (\text{part (e-iv) of 5A1E, now 5A1F}): \text{ for } \mathrm{cf}[\kappa]^{\leq \omega} = \max(\kappa, \mathrm{cf}[\lambda]^{\leq \omega}) \ \mathrm{read } \ \mathrm{cf}[\kappa]^{\leq \omega} \leq \max(\kappa, \mathrm{cf}[\lambda]^{\leq \omega}).$
- **p** 1 (5A1I, now 5A1J) Add new parts:

(d) If $R \subseteq X \times X$ is an equivalence relation on a set X I will say that a set $A \subseteq X$ is R-free if A meets each equivalence class under R in at most one point.

(e) Let X be a set and R an equivalence relation on X.

(i) For any cardinal κ , there is a partition $\langle X_{\xi} \rangle_{\xi < \kappa}$ of X into R-free sets iff every R-equivalence class has cardinal at most κ .

(ii) If $A \subseteq X$ is *R*-free then $R[B] \cap R[C] = \emptyset$ whenever $B, C \subseteq A$ are disjoint.

- **p** 1 (proof of 5A1J, now 5A1K): delete 'and $S = S_M$ '.
- **p** 1 (part (b) of the proof of 5A1M, now 5A1N) For $(\langle fg_{\alpha} \rangle_{\alpha \in S})$ read $(\langle fg_{\alpha} \rangle_{\alpha \in S_1})$.

p 284 l 8 (part (d) of the proof of 5A1M, now 5A1N) For ' $\{x : f_g(x) = g_h(x)\}$ ' read ' $\{x : f_g(x) = f_h(x)\}$ '.

p l I have added some new results:

MEASURE THEORY (abridged version)

5A1Q Lemma Let I and J be non-empty finite sets, and $R \subseteq I \times J$ a relation such that R[I] = J. Set

$$k = \max_{x \in I} \#(R[\{x\}]), \quad l = \min_{y \in J} \#(R^{-1}[\{y\}]).$$

Then there is a $K \subseteq I$ such that R[K] = J and $\#(K) \leq \frac{1+\ln k}{l} \#(I)$.

5A1R Definition If I is a set and \mathcal{A} is a family of sets, \mathcal{A} is **stationary over** I if for every function $f:[I]^{\leq \omega} \to [I]^{\leq \omega}$ there is an $A \in \mathcal{A}$ such that $f[J] \subseteq A$ for every $J \in [A \cap I]^{\leq \omega}$.

5A1S Remarks (a) If \mathcal{A} is stationary over *I*, then $\{A \cap I : A \in \mathcal{A}\}$ is stationary over *I*.

(b) If \mathcal{A} is stationary over I, and for every $A \in \mathcal{A}$ we are given a family \mathcal{B}_A which is stationary over A, then $\bigcup_{A \in \mathcal{A}} \mathcal{B}_A$ is stationary over I.

(c) If ζ is an ordinal of uncountable cofinality, and $S \subseteq \zeta$ is stationary in the ordinary sense of 4A1C, then S is stationary over ζ in the sense of 5A1R.

5A1T Theorem (a) There is a family $\langle e_{\xi} \rangle_{\xi < \omega_1}$ such that $e_{\xi} : \xi \to \mathbb{N}$ is an injective function for each $\xi < \omega_1$ and $e_{\eta} \triangle (e_{\xi} \upharpoonright \eta)$ is finite whenever $\eta < \xi < \omega_1$.

(b) There is a sequence $\langle \leq_n \rangle_{n \in \mathbb{N}}$ of partial orders on ω_1 such that

 (ω_1, \leq_n) is a tree of height at most n+1 for each $n \in \mathbb{N}$,

 $\eta \leq_0 \xi$ iff $\eta = \xi$,

$$\leq_n \subseteq \leq_{n+1}$$
 for every $n \in \mathbb{N}$

 $\bigcup_{n \in \mathbb{N}} \leq_n \text{ is the usual well-ordering of } \omega_1.$

p 285 l 25 (5A2Ab) for 'cf($\prod_{i \in I} P_i$) \leq cf P' read 'cf($\prod_{i \in F} P_i$) \leq cf P'.

p 1 (part (b-ii) of the proof of 5A2B): for 'add $P \ge \delta > \#(\xi)$ ' read 'add $P \ge \lambda^+ \#(\xi)$ '.

p 287 l 4 (part (a) of the proof of 5A2E): for $\operatorname{cov}_{\mathrm{Sh}}(\alpha, \gamma', \gamma', \delta) \leq \operatorname{cf}[\alpha]^{<\gamma'}$ read $\operatorname{cov}_{\mathrm{Sh}}(\alpha, \gamma', \gamma', \delta) \leq \operatorname{cf}[\alpha]^{<\gamma''}$.

p 292 l 34 (part (e) of the proof of 5A2G): for

$$g^*(\eta) = \sup\{f(\xi) : \xi < \gamma_0, h^*(\xi) = \eta\}$$

read

$$g^*(\eta) = \sup\{f(\xi) : \xi < \gamma_0, f(\xi) < h^*(\xi) = \eta\}.$$

p 1 Add ' $t(Y) \leq t(X)$ ' to the list in 5A4Bb.

p 309 l 31 Part (d-iii) of 5A4C has been revised, and now reads

So if there is a continuous surjection from a closed subset of X onto $\{0,1\}^{\kappa}$, there is a nonempty closed $K \subseteq X$ such that $\chi(x, K) \ge \kappa$ for every $x \in K$.

p 311 l 1 5A4Eb is now 4A3S(a-i), so has been deleted. 5A4Ec-5A4Ed are now 5A4Eb-5A4Ec.

p 311 l 30 (5A4E(c-iii), now 5A4E(b-iii)) for ' $V \in \mathcal{V}_n$ ' read ' $V \in \mathcal{V}'_n$ '.

p 1 (5A4E) Add new fragment:

(c)(iii) Every subset of X with the Baire property is expressible as $G \triangle M$ where G is a cozero set and M is meager.

p 1 **Compact-open topologies** I have interpolated a couple of paragraphs on a class of topologies on spaces of functions, and a note on irreducible surjections.

5A4Ia Let X and Y be topological spaces and F a set of functions from X to Y. The **compact-open** topology on F is the topology generated by sets of the form $\{f : f \in F, f[K] \subseteq H\}$ where $K \subseteq X$ is compact and $H \subseteq Y$ is open.

(b) Let X be a compact topological space and I a set; give $Y = \{0, 1\}^I$ its usual product topology and Z = C(X; Y) its compact-open topology. Let \mathcal{E} be the algebra of open-and-closed subsets of X. (i) Z is homeomorphic to \mathcal{E}^I with its product topology, where here we give \mathcal{E}

5A4I

Volume 5

its discrete topology. (ii) Set $H_i = \{y : y \in Y, y(i) = 1\}$ for $i \in I$. Then $\{\{f : f \in Z, f^{-1}[H_i] = E\} : i \in I, E \in \mathcal{E}\}$ is a subbase for the topology of Z.

5A4J Proposition Let X be a set and \mathcal{A} a family of countable sets which is stationary over X. Give X its discrete topology and $X^{\mathbb{N}}$ the product topology; let $\mathcal{M}(X^{\mathbb{N}})$ be the associated ideal of meager sets. Then non $\mathcal{M}(X^{\mathbb{N}}) \leq \max(\#(\mathcal{A}), \operatorname{non} \mathcal{M}(\mathbb{R}))$.

5A4K Lemma Let X be a topological space and K, L closed subsets of X such that $K \cup L = X$. Set $Z = \{(x, 1) : x \in K\} \cup \{(x, 0) : x \in L\} \subseteq X \times \{0, 1\}$, and wwrite $\pi : Z \to X$ for the first-coordinate map. Then π is an irreducible continuous surjection.

The former 5A4I is now 5A4L.