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Chapter 65

Applications

At long last I turn again to some of the results for which the theory outlined in this volume was developed.
I start with some relatively elementary ideas using nothing more advanced than §624, showing that locally
jump-free virtual local martingales are associated with ‘exponential’ processes of the same kind (651C).
These in turn are associated with identities for integral equations (651G, 651K) and change-of-law results
(651I). Ideas at the same level take us to Lévy’s characterization of Brownian motion (653F); going deeper,
and using the time-changes of §635, we can represent many locally jump-free local martingales in terms of
Brownian motion (653G).

The exponential processes of §651 can be thought of as solutions of a particularly simple kind of stochastic
differential equation. Working very much harder, we find that we have versions of Picard’s theorem, for
integral equations with a Lipschitz condition on the integrand, for both the Riemann-sum integral (654G)
and the S-integral (654L). A twist in the theory of exponential processes, with a refinement inspired by the
theory of financial markets, leads us to the famous Black-Scholes equation (655D).

Version of 11.9.23

651 Exponential processes

Associated with any jump-free integrator is an ‘exponential process’ (651B); if the integrator is a mar-
tingale, the exponential process may be a uniformly integrable martingale (651D-651E). This gives us an
important class of non-negative martingales which we can use in change-of-law results (651J).

651A Notation As always, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is a stochastic integration structure. L0 =
L0(A); if h : R → R is a Borel measurable function, I write h̄ for either of the corresponding operators
on members of L0 (612Ac) and on processes in L0 (612B). Limits in L0 will be taken with respect to the
topology of convergence in measure (613B). For a fully adapted process uuu = 〈uσ〉σ∈S , u↓ = limσ↓S uσ is its
starting value if this is defined (613Bk). For local integrators vvv and www, [vvv

∗
www] is their covariation and vvv∗ is

the quadratic variation of vvv (617H).
E = Eµ̄ is integration with respect to µ̄ as in §§365 and 613, and L1

µ̄ = L1(A, µ̄) is the corresponding

L-space, while θ(w) = E(|w| ∧χ1) for w ∈ L0 (613Ba). For τ ∈ T , Pτ : L1
µ̄ → L1

µ̄∩L0(Aτ ) is the conditional

expectation operator associated with the closed subalgebra Aτ . For z ∈ L1
µ̄, PPPz is the martingale 〈Pτz〉τ∈T .

For y ∈ L0(A), y1 is the constant process on {τ : y ∈ L0(Aτ )} with value y (612De).

651B Theorem Let S be a non-empty sublattice of T . Suppose that vvv is a locally jump-free local
integrator, and uuu a locally moderately oscillatory process, both with domain S. Set zzz = exp(vvv− v↓1− 1

2vvv
∗).

Then zzz is a locally jump-free local integrator, zzz = 1+iivvv(zzz) and iizzz(uuu) = iivvv(uuu×zzz). If vvv is in fact a jump-free
integrator and uuu a moderately oscillatory process, then zzz is a jump-free integrator

proof (a) Suppose, to begin with, that vvv = 〈vσ〉σ∈S is a jump-free integrator and uuu is moderately oscillatory.

(i) By 616Ib and 615Gb, v↓ is defined. By 617H-617I, vvv∗ is defined everywhere on S and is an integrator;
by 618T, it is jump-free; by 618Ga, www = vvv − v↓1− 1

2vvv
∗ and zzz = exp(www) are jump-free, therefore moderately

oscillatory.
Express vvv∗, www and zzz as 〈v∗σ〉σ∈S , 〈wσ〉σ∈S and 〈zσ〉σ∈S . We have w↓ = limσ↓S v∗σ = 0 (617J(b-i)).
Because vvv and vvv∗ are integrators, so is www; by 616N, zzz is an integrator. Now v↓1 + 1

2vvv
∗ is a jump-free

integrator of bounded variation, so
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2 Applications 651B

www∗ = vvv∗ − 2[vvv
∗
v↓1+ 1

2vvv
∗] + (v↓1+ 1

2vvv
∗)∗ = vvv∗

by 624C.

(ii) We have

∫

S
uuu dzzz =

∫

S
uuu d(exp(www))

=

∫

S
uuu× exp(www) dwww +

1

2

∫

S
uuu× exp(www) dwww∗

(619C, because exp′ = exp′′ = exp)

=

∫

S
uuu× zzz dwww +

1

2

∫

S
uuu× zzz dvvv∗

(because www∗ = vvv∗)

=

∫

S
uuu× zzz d(www + v↓1+ 1

2vvv
∗)

(
∫
S uuu× zzz d(v↓1) = 0 because v↓∆1 is the zero interval function)

=

∫

S
uuu× zzz dvvv.

(b) In the general case, in which vvv is a locally jump-free local integrator and uuu is locally moderately
oscillatory, then for any τ ∈ S we see that zzz↾S ∧ τ is a jump-free integrator and

∫
S∧τ uuu dzzz =

∫
S∧τ uuu× zzz dvvv.

So zzz is a locally jump-free local integrator and iizzz(uuu) = iivvv(uuu× zzz). Now

zzz = z↓1+ iizzz(1) = 1+ iivvv(zzz)

because

z↓ = exp(w↓) = exp(0) = χ1.

651C Corollary Let S be a non-empty sublattice of T , and vvv a locally jump-free virtually local mar-
tingale with domain S. Then zzz = exp(vvv − v↓1− 1

2vvv
∗) is a locally jump-free virtually local martingale.

proof By 623Kd, vvv is a local integrator, so 651B tells us that zzz is a locally jump-free local integrator
(therefore locally moderately oscillatory) and zzz = 1+ iivvv(zzz). By 623O, iivvv(zzz) and therefore zzz are virtually
local martingales.

651D It is useful to know when exp(vvv − v↓1 − 1
2vvv

∗) is actually a martingale. The following criterion
gives us a sufficient condition.

Theorem Let S be a non-empty finitely full sublattice of T and vvv = 〈vσ〉σ∈S a locally jump-free virtually
local martingale with quadratic variation vvv∗ = 〈v∗σ〉σ∈S . Let zzz = exp(vvv − v↓1 − 1

2vvv
∗) be the associated

exponential process, as in 651B-651C. If β = supσ∈S E(exp( 12 (vσ − v↓))) is finite, then zzz is a uniformly
integrable martingale.

proof (a) Since vvv − v↓1 is a locally jump-free virtually local martingale (using 623Kg) with quadratic
variation vvv∗, it is enough to consider the case v↓ = 0, so that zzz = exp(vvv − 1

2vvv
∗). Being a virtually

local martingale (651C) and non-negative, zzz is a ‖ ‖1-bounded supermartingale (627Da) and, setting zσ =
exp(vσ − 1

2v
∗
σ),

|‖zσ‖1 = E(zσ) ≤ E(z↓) = 1

for every σ ∈ S. As S is finitely full, zzz is an approximately local martingale (623K(b-iii)), so w = limσ↑S zσ
is defined (623La), and E(w) = ‖w‖1 ≤ 1 (613Bc).

(b) The next thing to observe is that vvv is ‖ ‖1-bounded. PPP Again because S is finitely full, vvv also is an
approximately local martingale. Take τ ∈ S and ǫ > 0. Then there is a non-empty downwards-directed
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651D Exponential processes 3

subset A ⊆ S such that supρ∈A µ̄[[ρ < τ ]] ≤ ǫ and RA(vvv), as defined in 623B, is a martingale. Express it as
〈vAσ〉σ∈S . Then limσ↓S vAσ = v↓ = 0 (623B(c-i)). By 622Ed, 0 is the ‖ ‖1-limit 1limσ↓S vAσ (622Ed) and
E(vAτ ) = limσ↓S E(vAσ) = 0. It follows that

‖vAτ‖1 = E(v+Aτ ) + E(v−Aτ ) = 2E(v+Aτ ) = 2‖v+Aτ‖1.
By definition, vAτ = limρ↓A vτ∧ρ, so v

+
Aτ = limρ↓A v

+
τ∧ρ (since x 7→ x+ : L0 → L0 is continuous), while

x+ ≤ 2 exp( 12x) for any x ∈ L0 because max(α, 0) ≤ 2 exp( 12α) for every α ∈ R. So

‖v+τ∧ρ‖1 = E(v+τ∧ρ) ≤ 2E(exp( 12vτ∧ρ) ≤ 2β

for every ρ ∈ A and

‖vAτ‖1 = 2‖v+Aτ‖1 ≤ 2 supρ∈A ‖v+τ∧ρ‖1 ≤ 4β,

while

θ(vτ − vAτ ) ≤ µ̄[[vτ 6= vAτ ]] ≤ µ̄(supρ∈A [[vτ 6= vτ∧ρ]]) ≤ µ̄(supρ∈A [[ρ < τ ]]) ≤ ǫ.

As ǫ is arbitrary, ‖vτ‖1 ≤ 4β; as τ is arbitrary. vvv is ‖ ‖1-bounded. QQQ
By 623La again, it follows that we have a limit v = limσ↑S vσ. In this case, exp( 12v) = limσ↑S exp( 12vσ)

(613Bb), so

E(exp( 12v)) ≤ lim infσ↑S E(exp( 12vσ)) ≤ β

(613Bc once more).

(c) For 0 < α < 1 and σ ∈ S set zασ = exp(αvσ − 1
2α

2v∗σ). If q =
1

2α−α2
, then q > 1 and

E(zqασ) ≤ β(2−2α)/(2−α).

PPP

zqασ = exp(qαvσ − 1
2qα

2v∗σ) = exp( 1
2−αvσ − α

2(2−α)v
∗
σ)

= exp( α
2−αvσ − α

2(2−α)v
∗
σ)× exp( 1−α2−αvσ)

so, by Hölder’s inequality (244Eb),

E(zqασ) ≤ ‖exp( α
2−αvσ − α

2(2−α)v
∗
σ)‖(2−α)/α‖exp( 1−α2−αvσ)‖(2−α)/(2−2α)

=
(
E(exp(vσ − 1

2v
∗
σ))

)α/(2−α) (
E(exp( 12vσ))

)(2−2α)/(2−α)

≤
(
E(exp( 12vσ))

)(2−2α)/(2−α) ≤ β(2−2α)/(2−α). QQQ

It follows that {zασ : σ ∈ S} is uniformly integrable (621Be). But αvvv is a locally jump-free virtually local
martingale with quadratic variation α2vvv∗, starting from 0, so 〈zασ〉σ∈S is a virtually local martingale, by
651C; as S is finitely full, it is an approximately local martingale (623K(b-iii) again); by 623Nb, it is in fact
a martingale, and wα = limσ↑S zασ is defined, with

E(wα) = limσ↑S E(zασ) = limσ↓S E(zασ) = E(limσ↓S zασ) = 1.

(d) For each α ∈ ]0, 1[ and σ ∈ S,

zασ = exp(αvσ − 1
2α

2v∗σ) = exp(α2vσ − 1
2α

2v∗σ)× exp(α(1− α)vσ)

= zα
2

σ × exp(α(1− α)vσ);

taking the limit as σ ↑ S,
wα = wα

2 × exp(α(1− α)v)

(because multiplication and the operations u 7→ |u|α2

, u 7→ exp(α(1− α)u) from L0 to itself are continuous
for the topology of convergence in measure). By Hölder’s inequality again,
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4 Applications 651D

1 = E(wα) ≤ ‖wα2‖1/α2 ‖exp(α(1− α)v)‖1/(1−α2)

=
(
E(w)

)α2 (
E((exp(α(1− α)v))1/(1−α

2))
)1−α2

=
(
E(w)

)α2 (
E((exp( 12v))

2α/(1+α))
)1−α2

.

Taking the limit as α ↑ 1, we get

‖w‖1 = E(w) ≥ 1 ≥ supσ∈S ‖zσ‖1
by (a).

(e) By 623N(b-iii), it follows that zzz is a uniformly integrable martingale.

651E Corollary Let S be a non-empty sublattice of T and vvv a locally jump-free virtually local martingale
with domain S. Let zzz = exp(vvv − v↓1− 1

2vvv
∗) be the associated exponential process.

(a) If exp( 12vvv
∗) is ‖ ‖1-bounded, then zzz is a uniformly integrable martingale.

(b) If vvv∗ is an L∞-process, then zzz is a martingale.

proof (a) As in 651D, it is enough to consider the case in which v↓ = 0.

(i) Suppose to begin with that S is finitely full. Express vvv, vvv∗ and zzz as 〈vσ〉σ∈S , 〈v∗σ〉σ∈S and 〈zσ〉σ∈S .
For any non-negative u, v ∈ L0,

(E(
√
u× v))2 ≤ ‖√u‖22 ‖

√
v‖22 = E(u)E(v).

Now for any σ ∈ S we have exp(vσ) = zσ × exp( 12v
∗
σ), so

(E(exp( 12vσ)))
2 ≤ E(zσ)E(exp(

1
2v

∗
σ)) ≤ E(exp( 12v

∗
σ))

because zzz is a supermartingale starting at χ1, as in part (a) of the proof of 651D. Accordingly

supσ∈S E(exp( 12vσ)) ≤
√

supσ∈S E(exp( 12v
∗
σ))

is finite, and zzz is a uniformly integrable martingale, by 651D.

(ii) For the general case, let Ŝf be the finitely-covered envelope of S, and v̂vv = 〈v̂τ 〉τ∈Ŝf
, v̂vv∗ and ẑzz the

fully adapted extensions of vvv, vvv∗ and zzz to Ŝf . Then v̂vv∗ is the quadratic variation of v̂vv (617N), the starting
value of v̂vv is 0 (615H) and ẑzz = exp(v̂vv− 1

2 v̂vv
∗) (612Qb). Also v̂vv∗ is non-decreasing, so exp( 12 v̂vv

∗) is non-decreasing

(614If). Since S is cofinal with Ŝf (611Pe), supτ∈Ŝf
E(exp( 12 v̂τ )) = supσ∈S E(exp( 12vσ)) is finite. So (i) tells

us that ẑzz is a uniformly integrable martingale and therefore zzz = ẑzz↾S is a uniformly integrable martingale,
as claimed.

(b) This is immediate from (a).

651F Corollary If www is Brownian motion (612T), then exp(www − 1
2ιιι)↾Tb is a martingale.

proof As observed in 624F, www∗ can be identified with the identity process ιιι on Tf , and therefore lies in L∞

on Tb, so we can apply 651Eb to www↾Tb ∧ τ for each τ ∈ Tb.

651G Theorem Let S be a non-empty sublattice of T , and vvv, www locally jump-free local integrators with
domain S. Set zzz = exp(vvv − v↓1− 1

2vvv
∗) and yyy = www − [vvv

∗
www]. Then

iiyyy×zzz(uuu) = iiwww(uuu× zzz) + iivvv(uuu× yyy × zzz)

for any locally moderately oscillatory process uuu with domain S.
proof We know that yyy and zzz are locally jump-free local integrators (618T, 617I, 616N again), so yyy×zzz also
is (618Ga, 616Qa), and uuu×yyy and uuu×zzz are locally moderately oscillatory (616Ib again, 615F(b-iii)). Setting
zzz′ = iivvv(zzz), we know that zzz′ − zzz is constant (651B). If τ ∈ S, then
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651J Exponential processes 5

∫

S∧τ
uuu d(yyy × zzz) =

∫

S∧τ
uuu× zzz dyyy +

∫

S∧τ
uuu× yyy dzzz +

∫

S∧τ
uuu dyyydzzz

(613M)

=

∫

S∧τ
uuu× zzz dwww −

∫

S∧τ
uuu× zzz d[vvv

∗
www]

+

∫

S∧τ
uuu× yyy × zzz dvvv +

∫

S∧τ
uuu dzzz′dyyy

(651B, and because the interval functions ∆zzz and ∆zzz′ are equal, so ∆yyy×∆zzz = ∆zzz′×∆yyy and
∫
S∧τ . . . dyyydzzz =∫

S∧τ . . . dzzz
′dyyy)

=

∫

S∧τ
uuu× zzz dwww −

∫

S∧τ
uuu× zzz dvvvdwww

+

∫

S∧τ
uuu× yyy × zzz dvvv +

∫

S∧τ
uuu× zzz dvvvdyyy

(617I once more, 617Q)

=

∫

S∧τ
uuu× zzz dwww −

∫

S∧τ
uuu× zzz dvvvdwww +

∫

S∧τ
uuu× yyy × zzz dvvv

+

∫

S∧τ
uuu× zzz dwwwdvvv −

∫

S∧τ
uuu× zzz dvvvd[www

∗
vvv]

(because ∆vvv ×∆yyy = ∆www ×∆vvv −∆[www
∗
vvv]×∆vvv)

=

∫

S∧τ
uuu× zzz dwww +

∫

S∧τ
uuu× yyy × zzz dvvv −

∫

S∧τ
uuu× zzz d[vvv

∗
[www

∗
vvv]]

=

∫

S∧τ
uuu× zzz dwww +

∫

S∧τ
uuu× yyy × zzz dvvv

by 624C again, because vvv is locally jump-free and [www
∗
vvv] is locally of bounded variation, so [vvv

∗
[www

∗
vvv]] = 0.

651H Corollary Let S be a non-empty sublattice of T , and vvv, www locally jump-free virtually local
martingales. Set zzz = exp(vvv − v↓1− 1

2vvv
∗) and yyy = www − [www

∗
vvv]. Then yyy × zzz is a virtually local martingale.

proof Since vvv∗ and [www
∗
vvv] both start from 0, yyy × zzz starts from a value w↓ with finite expectation (623Kg).

By 623Kd again, vvv and www are local integrators. Now

yyy × zzz − w↓1 = iiyyy×zzz(1) = iiwww(zzz) + iivvv(yyy × zzz)

is a virtually local martingale by 623O again, so yyy × zzz also is.

651I Proposition Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S locally jump-
free virtually local martingales such that zzz = exp(vvv − v↓1 − 1

2vvv
∗) is a uniformly integrable martingale and

v′ = limσ↑S(vσ − 1
2v

∗
σ) is defined in L0, where vvv∗ = 〈v∗σ〉σ∈S . Set yyy = www − [www

∗
vvv]. Then there is a change of

law on A rendering yyy a virtually local martingale.

proof Because zzz is a uniformly integrable martingale, it must be PPPz↾S, where
z = limσ↑S exp(vσ − v↓ − 1

2v
∗
σ) = exp(v′ − v↓)

belongs to L1
µ̄ (622J); note that [[z > 0]] = 1. Now 651H tells us that yyy × PPPz = yyy × zzz is a virtually local

µ̄-martingale. Set γ = Eµ̄(z) and ν̄a = 1
γEµ̄(z × χa) for a ∈ A. Then (A, ν̄) is a probability algebra and yyy

is a virtually local ν̄-martingale, by 625C.

651J Corollary Let S be a non-empty sublattice of T , uuu = 〈uσ〉σ∈S a locally moderately oscillatory
process such that γ = ‖uuu‖∞ is finite, and www = 〈wσ〉σ∈S a locally jump-free virtually local martingale with

D.H.Fremlin



6 Applications 651J

quadratic variation www∗ such that exp( 12γ
2www∗) is a ‖ ‖1-bounded process. Set yyy = www+ iiwww∗(uuu). Then there is

a change of law on A rendering yyy a virtually local martingale.

proof Set vvv = −iiwww(uuu); note that its starting value is 0. By 618R and 623O once more, vvv is a locally
jump-free virtually local martingale. Express the quadratic variations vvv∗, www∗ as 〈v∗σ〉σ∈S and 〈w∗

σ〉σ∈S . By
617Q(a-iii),

v∗σ =
∫
S∧σ(−uuu)

2 dwww∗ ≤ γ2
∫
S∧σ dwww

∗ ≤ γ2w∗
σ

and supσ∈S E(exp( 12v
∗
σ)) is finite. By 651Ea, zzz = exp(vvv − 1

2vvv
∗) is a uniformly integrable martingale.

On the other hand,

iiwww∗(uuu) = ii[www ∗

www](uuu× 1) = [iiwww(uuu)
∗
iiwww(1)]

(617Q(a-ii))

= −[vvv
∗
www − w↓1] = −[vvv

∗
www]

by 624C once more. So yyy is equal to www − [www
∗
vvv] and can be made into a virtually local martingale by a

change of law, by 651I.

Remark Of course the leading application is to the case in which www is Brownian motion and S is bounded
above in Tb, so that supσ∈S E(exp( 12γ

2w∗
σ)) is finite for every γ.

651K S-integrals It is easy to find re-formulations of 651B and 651G in terms of S-integrals, as follows.

Theorem Suppose that 〈At〉t∈T is right-continuous, and that S is a non-empty order-convex sublattice
of T . Let vvv = 〈vσ〉σ∈S be a jump-free integrator, and xxx an S-integrable process with domain S. Set
zzz = exp(vvv − v↓1− 1

2vvv
∗).

(a)

S
∫
S xxx dzzz = S

∫
S xxx× zzz dvvv.

(b) Suppose that www is another jump-free integrator with domain S. Set yyy = www − [vvv
∗
www]. Then

S
∫
S xxx d(yyy × zzz) = S

∫
S xxx× zzz dwww + S

∫
S xxx× yyy × zzz dvvv.

proof (a) We know that zzz is jump-free (651B). So zzz × 1(S)
< = zzz< (641O) and zzz and xxx× zzz are S-integrable

(645F, 645Ka, 645Pb). Next,

Siivvv(zzz) = Siivvv(zzz × 1(S)
< )

(646Kb)

= Siivvv(zzz<) = iivvv(zzz)

(646Kc)

= zzz − 1

(651B). So 646R tells us that

S
∫
S xxx× zzz dvvv = S

∫
S xxx d(Siivvv(zzz)) = S

∫
S xxx d(zzz − 1) = S

∫
S xxx dzzz − S

∫
S xxx d1 = S

∫
S xxx dzzz.

(b) Similarly,

S

∫

S
xxx× zzz dwww + S

∫

S
xxx× yyy × zzz dvvv = S

∫

S
xxx d(Siiwww(zzz)) + S

∫

S
xxx d(Siivvv(yyy × zzz))

(because yyy and yyy × zzz are jump-free)

Measure Theory



652A Lévy processes 7

= S

∫

S
xxx d(iiwww(zzz)) + S

∫

S
xxx d(iivvv(yyy × zzz))

(again because yyy × zzz is jump-free)

= S

∫

S
xxx d(iiwww(zzz) + iivvv(yyy × zzz)).

But setting uuu = 1(S) in 651G, we have

iiwww(zzz) + iivvv(yyy × zzz) = iiyyy×zzz(1(S)) = yyy × zzz − w↓1(S)

where w↓ is the common starting value of www, yyy and yyy × zzz. So

S

∫

S
xxx× zzz dwww + S

∫

S
xxx× yyy × zzz dvvv = S

∫

S
xxx d(yyy × zzz)− S

∫

S
xxx d(w↓1

(S))

= S

∫

S
xxx d(yyy × zzz),

as claimed.

651X Basic exercises (a) Let S be a non-empty sublattice of T . Suppose that vvv = 〈vσ〉σ∈S is a locally
jump-free local integrator, and y ∈ ⋂

σ∈S L
0(Aσ). Set v↓ = limσ↓S vσ and zzz = y exp(vvv − v↓1 − 1

2vvv
∗). Show

that zzz = y1+ iivvv(zzz).

651 Notes and comments We are trying to combine the fundamental result 623O, which tells us we
have a virtually local martingale, with 625B, which will demand a true martingale if we are to identify our
exponential process zzz = exp(vvv − v↓1 − 1

2vvv
∗) with PPPz for a Radon-Nikodým derivative z. So a good deal

of work has been done on this, of which I offer a sample in 651D-651E. In this context Brownian motion
(651F) is more than the leading example; it is the archetype of a locally jump-free martingale, in a sense
which I hope to make clear in §653.

Note that zzz can also be regarded as a solution of the stochastic integral equation

zτ = χ1 +
∫
S∧τ zzz dvvv

(651B). The correction term − 1
2vvv

∗ in the formula for zzz vanishes if vvv is of bounded variation, leaving us with
the solution zτ = exp(vτ ) corresponding to the solution of the integral equation

z(t) = 1 +
∫ t
0
z(s)v′(s)ds

when v(0) = 0. For martingales vvv we need the term in vvv∗ here just as we need it in Itô’s Lemma. I will
return to integral equations in §654.

Version of 7.1.23/18.2.23

652 Lévy processes

When defining the Poisson process in 612U, I referred to 455P in Volume 4. §455 is hard work; it is the
longest section in the whole treatise and bristles with technical difficulties. Some of these are exacerbated
by the generality which seemed natural at that point – for instance, it is meant to support the treatment
of multidimensional Brownian motion in Chapter 47. The processes described in the last quarter of §455
take values in Polish groups which need not even be abelian. But these processes have always been the
standard-bearers for the theory of stochastic processes I have set out to describe in the present volume, and
the time has come to link the approaches.

652A Notation If (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is a stochastic integration structure, I write ť for the
constant stopping time at t, for each t ∈ T , Ť for the sublattice {ť : t ∈ T} of T , and Tb, Tf ⊆ T for the
ideals of bounded and finite-valued stopping times. µL will be Lebesgue measure on R. For any measure µ,

c© 2018 D. H. Fremlin
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8 Applications 652A

N (µ) will be the ideal of µ-negligible sets. For a topological space Ω, B(Ω) will be the Borel σ-algebra of
Ω. If S is a sublattice of T , I(S) will be the set of finite sublattices of S, and S2↑ will be {(σ, τ) : σ, τ ∈ S,
σ ≤ τ}.

652B Independence (a) Since Chapter 27 I have given the fundamental concept of ‘stochastic inde-
pendence’ rather cavalier treatment. So perhaps I should run through the definitions in the forms I will
use here. If (A, µ̄) is a probability algebra, two subalgebras B, C of A are (stochastically) independent if
µ̄(b ∩ c) = µ̄b · µ̄c whenever b ∈ B and c ∈ C; more generally, a family 〈Bi〉i∈I of subalgebras of A is indepen-
dent if µ̄(infi∈J bi) =

∏
i∈J µ̄bi whenever J ⊆ I is finite and bi ∈ Bi for every i ∈ J (325L, 458La). Turning

to families in L0 = L0(A), 〈ui〉i∈I is independent if 〈Bi〉i∈I is independent where Bi = {[[ui ∈ E]] : E ⊆ R

is Borel} is the closed subalgebra generated by ui for each i ∈ I. u ∈ L0 is independent of an algebra C ⊆ A

if B and C are independent where B is the closed subalgebra generated by u. More elaborately, a family
〈ui〉i∈I in L0 is independent of C, where C is a subalgebra of A, if B and C are independent, where B is the
smallest closed subalgebra of A including all the subalgebras generated by the ui.

(b) Using the Monotone Class Theorem in the form 313Gc, we see that if B, C ⊆ A are such that both
B and C are closed under ∩ and µ̄(b ∩ c) = µ̄b · µ̄c for all b ∈ B and c ∈ C, then the closed subalgebras B,
C generated by B, C respectively are independent. (Show first that µ̄(b ∩ c) = µ̄b · µ̄c for b ∈ B and c ∈ C.)

(c) If B is a closed subalgebra of A, the set C = {u : u ∈ L0, u is independent of B} is closed for the
topology of convergence in measure. PPP Take v ∈ C. α ∈ R and ǫ > 0. Write d for [[v > α]]. Then there are
a δ > 0 such that µ̄(d \ [[v > α+ 2δ]]) ≤ ǫ, and a u ∈ C such that θ(v − u) ≤ ǫδ. Consider c = [[u > α+ δ]].
Then c \ d ⊆ [[u− v > δ]] and

d \ c ⊆ (d \ [[v > α+ 2δ]]) ∪ ([[v > α+ 2δ]] \ c)

⊆ (d \ [[v > α+ 2δ]]) ∪ [[v − u > δ]],

so

µ̄(c△ d) ≤ µ̄(d \ [[v > α+ 2δ]]) + µ̄[[|u− v| > δ]] ≤ 2ǫ.

Now if b ∈ B,

|µ̄(b ∩ d)− µ̄b · µ̄d| ≤ |µ̄(b ∩ d)− µ̄(b ∩ c)|+ µ̄b|µ̄d− µ̄c|+ |µ̄(b ∩ c)− µ̄b · µ̄c|
≤ 2µ̄(d△c) + 0

(because u is independent of B)

≤ 4ǫ.

As ǫ > 0, µ̄(b ∩ d) = µ̄b · µ̄d; as α and b are arbitrary, u is independent of B; as u is arbitrary, C is closed. QQQ

652C Definition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure. I will say that a fully adapted process 〈vσ〉σ∈Tf

is a Lévy process if it is locally
near-simple and

whenever s, t ≥ 0, v(s+t)̌ − vš is independent of As and has the same distribution (364Gb1) as
vť.

Examples (i) The identity process is a Lévy process. (By 613Ea, it is locally near-simple. And in the
notation of 612F, ιť = tχ1 for every t ≥ 0.)

(ii) Brownian motion, as described in 612T, is a Lévy process (477D(c-ii)).

(iii) The standard Poisson process, as described in 612U, is a Lévy process (455P-455R).

(iv) The Cauchy process, to be described in 652M-652O below, is a Lévy process.

1Formerly 364Xd.

Measure Theory



652F Lévy processes 9

652D Lemma If (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a right-continuous real-time stochastic integration
structure and vvv = 〈vσ〉σ∈Tf

a Lévy process, then v0̌ = limt↓0 vť = 0.

proof v0̌ has the same distribution as v0̌−v0̌, so must be 0. And 0̌ = inft>0 ť in T (611Ce), so limt↓]0,∞] vť =
v0̌ by 632E.

652E Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vτ 〉τ∈Tf

, www = 〈wτ 〉τ∈Tf
two Lévy processes. If vť = wť for every t ≥ 0, then

vvv = www.

proof Note that vvv↾Tb is locally near-simple, just because vvv↾Tb∧τ = vvv↾Tf ∧τ is near-simple for every τ ∈ Tb.
Similarly, www↾Tb is near-simple. Now {ť : t ≥ 0} separates Tb (633Da) and is cofinal with Tb, so vvv↾Tb = www↾Tb
by 633F. As Tf is the covered envelope of Tb, vvv = www (612Qa).

652F Classical Lévy processes I have already used the phrase ‘Lévy process’ in §455 to describe a
class of processes of the form 〈Xt〉t≥0 (455Q). In one sense these are very much more general than the
processes of this section, because they deal with U -valued random variables where U can be any separable
metrizable topological group. But there is a crucial difference in that the whole analysis is based on a prior
notion of what the distributions λt of the Xt are to be. In particular, both the measure µ̈ and the filtration

〈 ˆ̈Σt〉t≥0 (455T) are defined from the joint distribution of 〈Xt〉t≥0 (454K), while in the present section I am
dealing with processes in which the underlying probability algebra (A, µ̄) and the filtration 〈At〉t≥0 need not
be describable from the process 〈vť〉t≥0.

To bridge the gap, I offer the following.

Proposition Let Cdlg be the space of càdlàg real-valued functions on [0,∞[, endowed with its topology
of pointwise convergence. Let 〈λt〉t>0 be a family of distributions (that is, Radon probability measures on
R) such that the convolution λs ∗ λt (257A) is equal to λs+t for all s, t > 0, and limt↓0 λtG = 1 for every
open subset G of R containing 0. Let µ̈ be the completion regular quasi-Radon probability measure on Cdlg

defined by saying that

µ̈{ω : ω ∈ Cdlg, ω(s0) ∈ E0, ω(si)− ω(si−1) ∈ Ei for 1 ≤ i ≤ n}

= δ0E0 ·
n∏

i=1

λsi−si−1
Ei (∗)

whenever 0 = s0 < . . . < sn in [0,∞[ and E0, . . . , En ⊆ R are Borel sets (here δ0 is the Dirac measure

concentrated at 0), and Σ̈ its domain. For t ≥ 0, set

Σ̈t = {F : F ∈ Σ̈, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Cdlg and ω′↾[0, t] = ω↾[0, t]},

ˆ̈Σt = {F△A : F ∈ Σ̈t, A ∈ N (µ̈)}

so that 〈 ˆ̈Σt〉t≥0 is a right-continuous filtration of σ-subalgebras of Σ̈ (455T). Let (C, ¯̈µ) be the measure algebra

of (Cdlg, Σ̈, µ̈) and set Ct = {E• : E ∈ ˆ̈Σt} for t ≥ 0, so that (C, ¯̈µ, [0,∞[ , 〈Ct〉t≥0) is a right-continuous
stochastic integration structure (632K) with associated set T of stopping times and family 〈Cτ 〉τ∈T of
closed subalgebras. Setting Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0, 〈Xt〉t≥0 is progressively measurable and gives
rise to a locally near-simple process uuu = 〈uσ〉σ∈Tf

such that if σ ∈ Tf is represented by a stopping time

h : Cdlg → [0,∞[ (in the sense of 455L or 612Gb) adapted to 〈 ˆ̈Σt〉t≥0, and Xh(ω) = Xh(ω)(ω) for ω ∈ Cdlg,

then uσ = X•

h in L0(µ) (612H, 631D). Now uuu is a Lévy process as defined in 652C, and the distribution of
uť is λt for every t ≥ 0.

proof (a) For the existence of such a measure µ̈, see 455Pc and 455K. I did not discuss the question of
uniqueness there, but as µ̈ is complete and completion regular it must be the completion of its restriction
µ̈↾Ba(Cdlg) to the Baire σ-algebra of Cdlg. Now Ba(Cdlg) is the subspace σ-algebra on Cdlg induced by

Ba(R[0,∞[ =
⊗̂

[0,∞[B(R) (4A3N), so Ba(Cdlg) is the σ-algebra of subsets of Cdlg generated by the coordinate

D.H.Fremlin



10 Applications 652F

functionals ω 7→ ω(s) for s ≥ 0, and by the Monotone Class Theorem (136C) µ̈↾Ba(Cdlg) is determined by
the values specified in (*) above.

(b) Theorem 455U tells us that if h : Cdlg → [0,∞] is a stopping time adapted to 〈 ˆ̈Σt〉t≥0 and we define
φh : Cdlg × Cdlg → Cdlg by setting

φh(ω, ω
′)(t) = ω′(t− h(ω)) + ω(h(ω)) if t ≥ h(ω),

= ω(t) otherwise,

then φh is inverse-measure-preserving for µ̈× µ̈ and µ̈.

(c) Turning to the conditions in 652C, set Xt(ω) = ω(t) for ω ∈ Cdlg and t ≥ 0. For t ≥ 0, Xt is

continuous, so is Σ̈-measurable, and now Xt is
ˆ̈Σt-measurable. By 631D, 〈Xt〉t≥0 is progressively measurable

so uuu is well-defined and locally near-simple (631D).
If s, t ≥ 0 then the distribution of u(s+t)̌ −uš is the distribution of the random variable ω 7→ ω(s+t)−ω(s).

But now take h to be the constant stopping time with value s and consider φh : Cdlg × Cdlg → Cdlg. We
have

φh(ω, ω
′)(s+ t)− φh(ω, ω

′)(s) = φh(ω, ω
′)(s+ t)− ω(s) = ω′(t).

Because φh is inverse-measure-preserving, the distribution of ω 7→ ω(s + t) − ω(s) is the same as the
distribution of (ω, ω′) 7→ φh(ω, ω

′)(s + t) − φh(ω, ω
′)(s) = ω′(t), which is the same as the distribution of

ω′ 7→ ω′(t) and uť.

Finally, if s ≤ t, E ∈ ˆ̈Σs and F ⊆ R is Borel, then take h once again to be the constant stopping time
with value s, and let E′ ∈ Σ̈t be such that µ̈(E△E′) = 0. Then

µ̈(E ∩ {ω : ω(t)− ω(s) ∈ F}
= µ̈(E′ ∩ {ω : ω(t)− ω(s) ∈ F}
= µ̈2{(ω, ω′) : φh(ω, ω

′) ∈ E′, φh(ω, ω
′)(t)− φh(ω, ω

′)(s) ∈ F}
= µ̈{ω : ω ∈ E′} · µ̈{ω′ : ω′(t− s) ∈ F}
= µ̈{ω : ω ∈ E} · µ̈{ω′ : ω′(t)− ω′(s) ∈ F}.

Translating this into terms of (C, ¯̈µ, [0,∞[ , 〈Ct〉t≥0) and uuu,

¯̈µ(a ∩ [[uť − uš ∈ F ]]) = ¯̈µa · ¯̈µ[[uť − uš ∈ F ]]

for every a ∈ Cs and Borel set F ⊆ R; that is, uť − uš is independent of Cs. So uuu satisfies all the clauses of
652C.

652G Sums of stopping times Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a real-time stochastic inte-
gration structure.

(a) If τ ∈ T and s ≥ 0 we have an element τ + š of T defined by saying that

[[τ + š > t]] = [[τ > t− s]] if s ≤ t,

= 1 if s > t.

(b)(i) τ ∨ š ≤ τ + š whenever τ ∈ T and s ≥ 0.
(ii) If τ ∈ T and s, s′ ≥ 0 then τ + (s+ s′)̌ = (τ + š) + š′.
(iii) τ + 0̌ = τ for every τ ∈ T .
(iv) If s, s′ ≥ 0 then š+ š′ = (s+ s′)̌ .
(v) If τ , τ ′ ∈ T and s ≥ 0 then [[τ ≤ τ ′]] ⊆ [[τ + š ≤ τ ′ + š]].
(vi) For any τ ∈ T , {τ + š : s ≥ 0} separates T ∨ τ .
(vii) Suppose that 〈At〉t≥0 is right-continuous. If A ⊆ T , s ≥ 0 and we write A+ š for {σ+ š : σ ∈ A},

then inf(A+ š) = (inf A) + š.

proof (a) Setting

at = [[τ > t− s]] if s ≤ t, 1 otherwise,

Measure Theory
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we see that at belongs to At−s ⊆ At in the first case and to At in either case. If 0 ≤ t ≤ t′, then

at = [[τ > t− s]] ⊇ [[τ > t′ − s]] = at′ if s ≤ t,

= 1 ⊇ [[τ > t′ − s]] = at′ if t < s ≤ t′,

= 1 = at′ if t
′ < s,

so at ⊇ at′ in all cases. And

sup
t′>t

at′ = lim
t′↓t

at′ = lim
t′↓t

[[τ > t′ − s]] = [[τ > t− s]] = at if s ≤ t,

= lim
t′↓t,t′<s

at′ = 1 = at otherwise.

Thus 〈at〉t≥0 satisfies the conditions of 611A(b-i) and defines a stopping time which we may call τ + ť.

(b)(i) For any t ≥ 0,

[[τ ∨ š > t]] = [[τ > t]] ∪ [[š > t]] ⊆ [[τ > t− s]] = [[τ + š > t]] if s ≤ t,

⊆ 1 = [[τ + š > t]] if s ≥ t.

(ii)

[[(τ + š) + š′ > t]] = [[τ + š > t− s′]] = [[τ > t− (s+ s′)]]

= [[τ + (s+ s′)̌ ]] if s+ s′ ≤ t,

= 1 = [[τ + (s+ s′)̌ ]]

if t < s or s ≤ t and t− s < s′.

(iii) The formula in (a) tells us that [[τ + 0̌ > t]] = [[τ > t− 0]] = [[τ > t]] for every t.

(iv) For t ≥ 0,

[[š+ š′ > t]] = [[š > t− s′]] = 0 = [[(s+ s′)̌ > t]] if s+ s′ ≤ t,

i.e., s′ ≤ t and s ≤ t− s′,

= [[š > t− s′]] = 1 = [[(s+ s′)̌ > t]] if s′ ≤ t < s+ s′,

i.e., s′ ≤ t and t− s′ < s,

= 1 = [[(s+ s′)̌ > t]] if t < s′.

(v) If 0 ≤ t < s then [[τ ′ + š > t]] = 1. If s ≤ t then

[[τ ≤ τ ′]] ∩ [[τ + š > t]] = [[τ ≤ τ ′]] ∩ [[τ > t− s]] ⊆ [[τ ′ > t− s]] = [[τ ′ + š > t]].

So [[τ + š > t]] \ [[τ ′ + š > t]] does not meet [[τ ≤ τ ′]] for any t > 0, [[τ ≤ τ ′]] ∩ [[τ ′ + š < τ + š]] = 0 (see 611D)
and [[τ ≤ τ ′]] ⊆ [[τ + š ≤ τ ′ + š]].

(vi) Suppose that τ ′, τ ′′ ∈ T ∨ τ and 0 6= a ⊆ [[τ ′ < τ ′′]]. Then there are a t ≥ 0 such that b =
a ∩ [[τ ′′ > t]] \ [[τ ′ > t]] is non-zero, and a t′ > t such that c = b \ [[τ ′ > t]] is non-zero. For i ∈ N set si = i(t′−t).
Then there is certainly an i such that i(t′ − t) > t, in which case [[τ + ši > t]] = 1, so there is a first n ∈ N

such that d = c ∩ [[ť < τ + šn]] is non-zero. Since [[τ + š0 > t]] ⊆ [[τ ′ > t]] is disjoint from c, n ≥ 1.
Now c ⊆ [[τ ′ ≤ ť]] and d ⊆ [[ť < τ + šn]], so d ⊆ [[τ ′ ≤ τ + šn]]. At the same time,

c ⊆ [[τ + šn−1 ≤ ť]] ⊆ [[τ + šn ≤ ť′]]

by (ii) and (v) above, and as c is also included in [[ť′ < τ ′′]], we have c ⊆ [[τ + šn < τ ′′]] and

a ∩ [[τ ′ ≤ τ + šn]] ∩ [[τ + šn < τ ′′]] ⊇ d 6= 0.

As a is arbitrary, [[τ ′ < τ ′′]] ⊆ sups≥0([[τ
′ ≤ τ + š]] ∩ [[τ + š < τ ′′]]). As τ ′ and τ ′′ are arbitrary, we have the

result.
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(vii) Write τ for inf A, τ ′ for inf(A + š). If A is empty, so is A + š, so max T = τ = τ ′ = τ + š.
Otherwise. if 0 ≤ t < s then

[[τ + š > t]] = 1 = [[š > t]] = [[τ ′ > t]]

because š is a lower bound for A+ š so š ≤ τ ′. If A 6= ∅ and s ≤ t then

[[τ ′ > t]] = sup
t′>t

inf
σ∈A+š

[[σ > t′]]

(632C(a-i))

= sup
t′>t

inf
σ∈A

[[σ + š > t′]] = sup
t′>t

inf
σ∈A

[[σ > t′ − s]]

= sup
t′>t−s

inf
σ∈A

[[σ > t′]] = [[τ > t− s]]

(632C(a-i) again)

= [[τ + š > t]].

Thus [[τ ′ > t]] = [[τ + š > t]] for all t ≥ 0 and τ ′ = τ + š, as claimed.

652H Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process.
(a) For any s ≥ 0 and τ ∈ Tf , vτ+š − vτ is independent of Aτ and has the same distribution as vš.
(b) For any τ ∈ Tf , 〈vτ+š − vτ 〉s≥0 is independent of Aτ and has the same distribution as 〈vš〉s≥0.

proof (a)(i) Write D for the set of those τ ∈ Tf such that vτ+š− vτ is independent of Aτ and has the same

distribution as vš. By the definition in 652C, Ť is included in D.

(ii) D is full. PPP Suppose that τ ∈ T and supσ∈D [[τ = σ]] = 1. Then τ ∈ Tf by 611N(e-i), and there is
a sequence 〈σi〉i∈N in D such that 1 = supi∈N ai, where ai = [[τ = σi]] for i ∈ N. Set bi = ai \ supj<i aj for
i ∈ N; as ai ∈ Aτ ∩ Aσi

for every i, bi ∈ Aτ and therefore bi ∈ Aσi
(611H(c-iii)).

Now if a ∈ Aτ and α ∈ R,

µ̄(a ∩ [[vτ+š − vτ > α]]) =
∞∑

i=0

µ̄(a ∩ bi ∩ [[vτ+š − vτ > α]])

=
∞∑

i=0

µ̄(a ∩ bi ∩ [[vσi+š − vσi
> α]])

(because bi ⊆ [[vτ = vš]] ∩ [[τ + š = σi + š]], by 652G(b-v))

=

∞∑

i=0

µ̄(a ∩ bi) · µ̄[[vσi+š − vσi
> α]]

(because a ∩ bi ∈ Aσi
and σi ∈ D, so vσi+š − vσi

is independent of Aσi
)

=

∞∑

i=0

µ̄(a ∩ bi) · µ̄[[vš > α]]

(because vσi+š − vσi
has the same distribution as vš)

= µ̄a · µ̄[[vš > α]].

Taking a = 1, this shows that vτ+š − vτ has the same distribution as vš. So in fact we see that

µ̄(a ∩ [[vτ+š − vτ > α]]) = µ̄a · µ̄[[vτ+š − vτ > α]]

whenever a ∈ Aτ and α ∈ R, and (using the Monotone Class Theorem) that vτ+š− vτ is independent of Aτ .
Thus τ ∈ D. As τ was an arbitrary member of the covered envelope of D, D is full. QQQ

(iii) If A ⊆ D is non-empty and downwards-directed, then inf A ∈ D. PPP Write τ for inf A. As Tf is
an ideal of T , τ ∈ Tf . A + š = {σ + š : σ ∈ A} is downwards-directed (652G(b-v)) and inf(A+ š) = τ + š

Measure Theory
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(652G(b-vii)). Since 〈At〉t≥0 is right-continuous and vvv is locally near-simple, vτ = limσ↓A vσ (632F), vτ+š =
limσ↓A vσ+š and vτ+š − vτ = limσ↓A vσ+š − vσ.

Since vσ+š − vσ has the same distribution as vš for every σ ∈ A, vτ+š − vτ also has the same distribition
as vš, by 454Ve2. Since vσ+š − vσ is independent of Aσ, and therefore of the smaller algebra Aτ . for every
σ ∈ A, vτ+š − vτ is independent of Aτ , by 652Bc. So τ ∈ D, as claimed. QQQ

(iv) D = Tf . PPP We saw in (ii) that D is a full sublattice of Tf . As Ť separates Tf (633Ea) and is
included in D, D separates Tf . If τ ∈ Tb, then Aτ = {σ : τ ≤ σ ∈ D} is non-empty and downwards-directed
and has infimum τ (633Eb); by (iii) just above, τ ∈ D. Thus D ⊇ Tb: as D is full, D = Tf (611N(e-ii)). QQQ

(b) For C ⊆ [0,∞[ write BC for the closed subalgebra generated by {vτ+ť − vτ : t ∈ C}.
(i) If C ⊆ [0,∞[ is finite then BC and Aτ are independent. PPP Induce on #(C). If C is empty then

BC = {0, 1} and the result is trivial. For the inductive step to #(C) = n ≥ 1 enumerate C in ascending
order as (t1, . . . , tn) and set t0 = 0. Then BC is the closed subalgebra generated by {vτ+ťi+1

−vτ+ťi : i < n}.
Suppose that α0, . . . , αn−1 ∈ R and a ∈ Aτ . Setting a0 = a and ai+1 = ai ∩ [[vτ+ťi+1

− vτ+ťi > αi]] for i < n,

we see that ai ∈ Aτ+ťi , while vτ+ťi+1
− vτ+ťi = v(τ+ťi)+(ti+1−ti )̌ − vτ+ťi is independent of Aτ+ťi by (a)

above, so that µ̄ai+1 = µ̄ai · µ̄[[vτ+ťi+1
− vτ+ťi > αi]]. Consequently

µ̄(a ∩ infi<n [[vτ+ťi+1
− vτ+ťi > αi]]) = µ̄a ·∏n−1

i=0 µ̄[[vτ+ťi+1
− vτ+ťi > αi]].

In particular,

µ̄(infi<n [[vτ+ťi+1
− vτ+ťi > αi]]) =

∏n−1
i=0 µ̄[[vτ+ťi+1

− vτ+ťi > αi]]

so

µ̄(a ∩ infi<n [[vτ+ťi+1
− vτ+ťi > αi]]) = µ̄a · µ̄(infi<n [[vτ+ťi+1

− vτ+ťi > αi]]).

As a and α0, . . . , αn−1 are arbitrary, Aτ and BC are independent (apply 313Gb to the subsets

{infi<n [[vτ+ťi+1
− vτ+ťi > αi]] : α0, . . . , αn−1 ∈ R},

{d : µ̄(a ∩ d) = µ̄a · µ̄d for every a ∈ Aτ}
of A). QQQ

(ii) Now E =
⋃{BC : C ⊆ [0,∞[ is finite} is a subalgebra of B[0,∞[ and µ̄(a ∩ e) = µ̄a · µ̄e whenever

a ∈ Aτ and e ∈ E. As ∩ : A × A → A and µ̄ : A → [0, 1] are continuous for the measure-algebra topology
(323Ba, 323Ca), µ̄(a ∩ d) = µ̄a · µ̄d whenever a ∈ Aτ and d belongs to the topological closure of E, which is
the closed subalgebra generated by E (323J), that is, B[0,∞[. Thus 〈vτ+š − vτ 〉s≥0 is independent of Aτ .

(iii) As for the distribution of 〈vτ+š − vτ 〉s≥0, we saw in (i) of the argument above that

µ̄(inf
i<n

[[vτ+ťi+1
− vτ+ťi > αi]]) =

n−1∏

i=0

µ̄[[vτ+ťi+1
− vτ+ťi > αi]]

=

n−1∏

i=0

µ̄[[v(ti+1−ti )̌ > αi]]

(using the other clause in (a))

=

n−1∏

i=0

µ̄[[vťi+1
− vťi > αi]]

whenever 0 ≤ t0 ≤ . . . ≤ tn. So 〈vτ+š − vτ 〉s≥0 has the same distribution as 〈vš〉s≥0.

652I Theorem Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic integra-
tion structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process such that Osclln(vvv↾[0̌, τ ]) ∈ L∞(A) for every τ ∈ Tb. Then
vvv↾Tb is an L1-process.

2Later editions only.
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proof Take τ∗ ∈ Tb; I need to show that vτ∗ ∈ L1
µ̄.

(a) Take t∗ ≥ 0 such that τ∗ ≤ ť∗. Since vvv is locally near-simple, vvv↾T ∧ ť∗ is near-simple. Set δ = 1
2 and

apply the construction of 615M to vvv↾T ∧ ť∗ and δ to obtain families 〈D′
i〉i∈N, 〈y′i〉i∈N and 〈c′iσ〉i∈N,σ∈T ∧ť∗

as in 615M. Set τ ′1 = infD′
1; then τ

′
1 ∈ D′

1 and vτ ′

1
= y′1 (631Q), while y′0 = v0̌ = 0 and c′0σ = 1 for every

σ ∈ T ∧ ť∗.
Since τ ′1 ∈ D′

1, the formula in 615Ma tells us that [[τ ′1 < ť∗]] ⊆ [[|vτ ′

1
− 0| ≥ 1]]; so if τ ′1 = 0̌ this must be

because ť∗ = 0̌, τ∗ = 0̌, vτ∗ = 0 ∈ L1
µ̄ and we’re done. So suppose from now on that τ ′1 6= 0̌. In this case

there is an integer m ≥ 1 such that η ∈ ]0, t∗] such that a = [[τ ′1 > η]] is non-zero, where η = t∗

m . If 0 ≤ s ≤ η
and we set σ = š ∧ τ ′1, then

a = [[τ ′1 > η]] \ [[š > η]] ⊆ [[š < τ ′1]] ⊆ [[σ < τ ′1]] = c′0σ \ c′1σ ⊆ [[|vσ| < 1
2 ]]

(615M(d-v))

⊆ [[|vš| < 1
2 ]] ∪ [[τ ′1 < š]]

so in fact a ⊆ [[|vš| < 1
2 ]].

(b) Now re-apply 615M to vvv↾T ∧ ť∗, this time with δ = 1, to get 〈Di〉i∈N, 〈yi〉i∈N and 〈ciσ〉i∈N,σ∈T ∧ť∗ .
Set τi = infDi for i ∈ N; this time we have τi ∈ Di so ciσ = [[τi ≤ σ]] for i ∈ N and σ ≤ ť∗.

For i ∈ N, set ai = inf0≤s≤η [[|vτi+š − vτi | < 1
2 ]], so that µ̄a0 ≥ µ̄a is non-zero. Since 〈vτi+š − vτi〉s≥0

has the same distribution as 〈vš〉s≥0 (652Hb), µ̄ai = µ̄a0 for every i ≥ n; write γ for this common value.
Since 〈vτi+š − vτi〉s≥0 is independent of Aτi for each i, µ̄(ai ∩ b) = γµ̄b for every i ∈ N and b ∈ Aτi ; as also
ai ∈ Aτi+1

for every i, 〈ai〉i∈N is independent.

(c) The point is that ai ∩ [[τi+1 < ť∗]] ⊆ [[τi + η̌ ≤ τi+1]] for every i ∈ N. PPP We know that {τi + š : s ≥ 0}
separates T ∨ τi (652G(b-vi)), so A = {τi + š : 0 ≤ s ≤ η} separates T ∩ [τi, τi + η̌] (633C(b-iii)). Now

ai ⊆ [[|vσ − vτi | ≤ 1
2 ]] whenever σ ∈ A. If σ belongs to the covered envelope Â of A, then

ai = supρ∈A ai ∩ [[σ = ρ]] ∩ [[|vρ − vτi | ≤ 1
2 ]] ⊆ [[|vσ − vτi | ≤ 1

2 ]].

Now consider τ = (τi+ η̌)∧τi+1 and Âτ = {σ : τ ≤ σ ∈ Â}. Then Âτ is downwards-directed and its infimum
is τ , by 633Eb, so vτ = limσ↓Âτ

vσ (632F),

|vτ − vτi | × χai = limσ↓Âτ
|vσ − vτi | × χai ≤ 1

2χai

and ai ⊆ [[|vτ − vτi | ≤ 1
2 ]]. On the other hand, [[τi+1 < ť∗]] ⊆ [[|vτi+1

− vτi | ≥ 1]] so

ai ∩ [[τi+1 < ť∗]] ∩ [[τi+1 < τi + η̌]] ⊆ [[|vτ − vτi | ≤ 1
2 ]] ∩ [[|vτi+1

− vτi | ≥ 1]] ∩ [[τi+1 = τ ]]

⊆ [[|vτ − vτi | ≤ 1
2 ]] ∩ [[|vτ − vτi | ≥ 1]] = 0

and ai ∩ [[τi+1 < ť∗]] ⊆ [[τi + η̌ ≤ τi+1]]. QQQ

(d) If I ⊆ n ∈ N then infi∈I ai ∩ [[τn < ť∗]] ⊆ [[(η#(I))̌ ≤ τn]]. PPP Induce on n. For n = 0 this is trivial.
For the inductive step to n+ 1, if I ⊆ n+ 1 and n /∈ I then I ⊆ n and

inf
i∈I

ai ∩ [[τn+1 < ť∗]] ⊆ inf
i∈I

ai ∩ [[τn < ť∗]]

⊆ [[(η#(I))̌ ≤ τn]] ⊆ [[(η#(I))̌ ≤ τn+1]].

If n ∈ I set J = I \ {n}; then

inf
i∈I

ai ∩ [[τn+1 < ť∗]] = an ∩ [[τn+1 < ť∗]] ∩ inf
i∈J

ai ∩ [[τn < ť∗]]

⊆ [[τn + η̌ ≤ τn+1]] ∩ [[(η#(J))̌ ≤ τn]]

(by (c) above and the inductive hypothesis)

Measure Theory
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⊆ [[(η#(J))̌ + η̌ ≤ τn+1]]

(652G(b-v))

= [[(η#(I))̌ ≤ τn+1]]

by 652G(b-iv). Thus the induction continues. QQQ

(e) Now µ̄[[τn < τ∗]] ≤ nm(1− γ)n−m for every n > m. PPP If I ⊆ n and #(I) > m, then

[[τn < τ∗]] ∩ inf
i∈I

ai ⊆ [[τn < ť∗]] ∩ inf
i∈I

ai

⊆ [[(η#(I))̌ ≤ τn]] ∩ [[τn < ť∗]]

(by (c))

= 0

because η#(I) ≥ t∗. So

[[τn < τ∗]] = sup
I⊆n

([[τn < τ∗]] ∩ inf
i∈I

ai ∩ inf
i∈n\I

1 \ ai)

⊆ sup
I⊆n,#(I)≤m

inf
i∈n\I

1 \ ai)

has measure at most nm(1− γ)n−m, since the ai are independent and µ̄(1 \ ai) = 1− γ for every i, by (b).
QQQ

(f) Everything I have said so far applies to any Lévy process. But now consider the hypothesis on the
oscillations of vvv↾[0̌, τ ] for τ ∈ Tb. Let β ≥ 0 be such that Osclln(vvv↾[0̌, ť∗]) ≤ βχ1. Then |yi+1−yi| ≤ (β+1)χ1
for every i ∈ N (618N), so |yn| ≤ n(β + 1)χ1 for every n ∈ N, and

[[τ∗ < τn]] = sup
i<n

[[τi ≤ τ∗]] \ [[τi+1 ≤ τ∗]] = sup
i<n

ciτ∗ \ ci+1,τ∗ ⊆ sup
i<n

[[|vτ∗ − yi| < 1]]

(615Md)

⊆ [[|vτ∗ ≤ n(β + 1)]];

since also

[[τ∗ = τn]] ⊆ [[vτ∗ = yn]] ⊆ [[|vτ∗ ≤ n(β + 1)]],

[[|vτ∗ > n(β + 1)]] ⊆ [[τn < τ∗]] has measure at most nm(1− γ)n−m for n > m. But γ = µ̄a0 is greater than
0, so

‖vτ∗‖1 ≤
∞∑

n=0

(β + 1)µ̄[[|vτ∗ | > n(β + 1)]]

(365A)

≤ (m+ 1)(β + 1) +

∞∑

n=m+1

nm(1− γ)n−m

is finite, and vτ∗ ∈ L1
µ̄, as required.

652J Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process such that vvv↾Tb is an L1-process. Then there is an
α ∈ R such that vvv − αιιι is a local martingale.

proof (a) Consider first the case in which E(vť) = 0 for every t ≥ 0.

D.H.Fremlin
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(i) If 0 ≤ s ≤ t, then vť − vš is independent of As and has zero expectation; so E(χb × (vť − vš) =
µ̄b · E(vť − vš) = 0 for every b ∈ As. Writing Pš for the conditional expectation associated with the closed
subalgebra Aš = As, Pš(vť − vš) = 0 and Pš(vť) = Pš(vš) = vš. Thus vvv↾ [0,∞[ˇ is a martingale.

(ii) Now there is a local martingale www with domain Tf extending vvv↾ [0,∞[ˇ (622Ob), and www is locally
near-simple (632I). Because vvv and www are both locally near-simple and agree on [0,∞[ˇ, they are equal (633F
again). So vvv is a local martingale.

(b)(i) For the general case, set f(t) = E(vť) for t ≥ 0. Then f(s+ t) = f(s)+f(t) for all s, t ≥ 0, because
f(s+ t)− f(t) = E(v(s+t)ˇ = vť) and v(s+tˇ = vť has the same distribution as vš and therefore has the same

expectation. As f( 1n ) =
1
nf(1) for every integer n ≥ 1, and v0̌ = 0, f(q) = qf(1) for every rational q ≥ 0.

(ii) f : [0,∞[ → R is Borel measurable. PPP For M , t ≥ 0, set fM (t) = E(med(−Mχ1, vť,Mχ1)). We
know that limt↓0 vť = 0 for the topology of convergence in measure (652D), so

limt↓s vť − vš = limt↓s vť − vš = limt↓s v(t−s)̌ = 0

for every s ≥ 0; similarly,

limt↑s vť − vš = − limt↑s vš − vť = − limt↑s v(s−t)̌ = 0

for every s > 0. Thus t 7→ vť : [0,∞[ → L0 is continuous, and it follows that t 7→ med(−Mχ1, vť,Mχ1) is
continuous for the topology of convergence in measure. But this agrees with the norm topology of L1

µ̄ on the
uniformly integrable set [−Mχ1,Mχ1], so t 7→ med(−Mχ1, vť,Mχ1) is ‖ ‖1-continuous and fM : [0,∞[ → R

is continuous. Now f(t) = limn→∞ fn(t) for every t, so f is Borel measurable. QQQ

(iii) Consequently there is a δ > 0 such that f is bounded on [0, δ]. PPP There is a compact setK ⊆ [0,∞[,
of non-zero Lebesgue measure, such that f↾K is continuous, therefore bounded. Now f↾(K −K)∩ [0,∞[ is
bounded and K −K includes [−δ, δ] for some δ > 0 (443Dc), so f↾[0, δ] is bounded. QQQ

(iv) limt↓0 f(t) = 0. PPP Set M = supt∈[0,δ] |f(t)|. If n ∈ N and 0 ≤ t ≤ 2−nδ, M ≥ |f(2nt)| = 2n|f(t)|
and |f(t)| ≤ 2−nM . QQQ Since |f(s)− f(t)| = |f(|s− t|)| for all s, t ≥ 0, f is continuous. Now f(q) = qf(1)
for every rational q > 0, so f(t) = tf(1) for every t ≥ 0.

(v) Now consider www = vvv−f(1)ιιι. Because both vvv and ιιι are locally near-simple with domain Tf (631Ea),
so is www. Express www as 〈wσ〉σ∈Tf

. If s, t ≥ 0, the distribution of w(s+t)̌ − wš = v(s+t)̌ − vš + tf(1)χ1
is the same as that of wť, and w(s+t)̌ − wš is independent of As, so www is a Lévy process. For σ ∈ Tb,
ισ ∈ L∞(A) ⊆ L1

µ̄, so wσ ∈ L1
µ̄; while E(wš) = f(s) − f(1)s = 0 for every s ≥ 0. By (a), www is a local

martingale, and we have an expression of the right form for vvv.

652K Theorem Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic inte-
gration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process. Then vvv is a semi-martingale, therefore a local integrator.

proof (a) Set ψ(σ, τ) = med(−χ1, vτ − vσ, χ1) for (σ, τ) ∈ T 2↑
f . Applying 633M(b-i) to ψ↾(T ∧ τ)2↑ for

τ ∈ Tf , we see that ψ is a strictly adapted interval function. By 633Mc,

www = iiψ(1) = 〈
∫
T ∧τ dψ〉τ∈Tf

is defined everywhere in Tf ; by 633Mg, www is locally near-simple; by 633Me, Osclln(www↾T ∧ τ) ≤ χ1 for every
τ ∈ Tf . By 633Md, vvv −www is locally of bounded variation.

(b) The point is that www is a Lévy process. PPP Set ψ0 = ψ↾([0,∞[ˇ)2↑. Since vvv↾ [0,∞[ˇ is moderately
oscillatory, www0 = iiψ0

(1) is defined everywhere on [0,∞[ˇ, and by 633N (applied to ψ↾(T ∧ ť)2↑ for t ≥ 0)
www0 = www↾ [0,∞[ˇ.

Express w as 〈wσ〉σ∈Tf
. If s, t ≥ 0, then 〈v(s+t)̌ vš〉t≥0 is independent of As (652Hb) and has the same

distribution as 〈vť〉t≥0. Set

ψ′(ť, ť′) = ψ((s+ t)̌ , (s+ t′)̌ )) = med(−χ1, v(s+t)̌ − v(s+t′ )̌ , χ1)

= med(−χ1, (v(s+t)̌ − vš)− (v(s+t′ )̌ − vš), χ1)

for 0 ≤ t ≤ t′; then ψ′ and ψ0 have the same distribution, that is,

Measure Theory
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µ̄(infi≤n [[ψ′(ťi, ť′i) > αi]]) = µ̄(infi≤n [[ψ0(ťi, ť
′
i) > αi]])

whenever 0 ≤ ti ≤ t′i and αi ∈ R for i ≤ n (454Vd3). At the same time, ψ′ is independent of As, that is,

µ̄(a ∩ infi≤n [[ψ′(ťi, ť′i) > αi]]) = µ̄a · µ̄(infi≤n [[ψ′(ťi, ť′i) > αi]])

whenever a ∈ As and 0 ≤ ti ≤ t′i and αi ∈ R for i ≤ n. It follows that I 7→ SI(ψ
′,1) : [0,∞[

<ω → L0 and
I 7→ SI(ψ0,1) have the same distribution, that is,

µ̄(infi≤n [[SIi(ψ
′,1) > αi]]) = µ̄(infi≤n [[SIi(ψ0,1) > αi]])

whenever I0, . . . , In are finite subsets of {ť : t ≥ 0} and αi ∈ R for i ≤ n, while I 7→ SI(ψ
′,1) is independent

of As. Now this means that if t ≥ 0 then the limits∫
[0,∞[̌ ∧ť dψ

′ =
∫
[0,∞[̌ ∩[š,(s+t)̌ )

dψ = w(s+t)̌ − wš

and ∫
[0,∞[̌ ∧ť dψ0 = wť

have the same distribution (454Ve again), while w(s+t)̌ − wš is independent of As (652Bc). As s and t are
arbitrary, www is a Lévy process. QQQ

(c) Since Osclln(www↾T ∧ τ) ≤ χ1 for every τ ∈ Tf , www↾Tb is an L1-process (652I) and there is an α ∈ R

such that www − αιιι is a local martingale (652J). But now our original process

vvv = (vvv −www) + αιιι+ (www − αιιι)

is expressible as the sum of a locally order-bounded process and a local martingale, so is a semi-martingale,
that is, is a local integrator (627Q).

652L Proposition Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be a right-continuous real-time stochastic in-
tegration structure, and vvv = 〈vσ〉σ∈Tf

a Lévy process. Then its quadratic variation vvv∗ is a Lévy process.

proof Since vvv is a local integrator (652K), its quadratic variation is defined everywhere in Tb. Express vvv∗

as 〈v∗τ 〉τ∈Tb
.

(a) By 631Jb, vvv∗ is locally near-simple.

(b) We know that Ť separates Tb (633Da), so if t ≥ 0 then Ť ∧ ť = {š : 0 ≤ s ≤ t} separates Tb ∧ ť
(633D(b-i)) and contains both min(Tb∧ ť) = 0̌ and max(Tb∧ ť) = ť. Also vvv↾Ť ∧ ť is an integrator (616P(b-ii)).
By 633Ph, vvv∗ extends the quadratic variation of vvv↾Ť ∧ ť; in particular,

v∗
ť
=
∫
Ť∧ť(dvvv)

2 = limI↑I(Ť∧ť) SI(1, (dvvv)
2).

(c) Now if s, t ≥ 0 and I ∈ I(Ť ∧ ť) = (Ť ∧ ť)<ω, then SI+š(1, (dvvv)
2) is independent of As and has

the same distribution as SI(1, (dvvv)
2). PPP If #(I) ≤ 1, then SI+š(1, (dvvv)

2) and SI(1, (dvvv)
2) are both zero.

Otherwise, let 〈si〉i≤n be the increasing enumeration of I; then 〈v(s+si )̌ 〉i≤n is independent of As and has

the same distribution as 〈vši〉i≤n, by 652Hb, so SI+š(1, (dvvv)
2) =

∑n−1
i=0 (v(s+si+1 )̌ −v(s+si )̌ )2 is independent

of As and has the same distribution as
∑n−1
i=0 (vši+1

− vši)
2 = SI+š(1, (dvvv)

2). QQQ

(d) Consequently

v∗(s+t)̌ − v∗š =

∫

Ť∧(s+t)̌

(dvvv)2 −
∫

Ť∧š
(dvvv)2 =

∫

Ť∩[š,(s+t)̌ ]

(dvvv)2

= lim
I↑I(Ť∩[š,(s+t)̌ ])

SI(1, (dvvv)
2) = lim

I↑I(Ť∧ť)
SI+š(1, (dvvv)

2)

is independent of As, by 652Bc, and has the same distribution as
∫
Ť∧ť(dvvv)

2 = v∗
ť
by 454Ve. Thus vvv∗ satisfies

the conditions of 652C and is a Lévy process.

3Later editions only.
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652M The Cauchy process I mentioned the Cauchy distribution in the exercises to §285, but I wish
now to go rather more deeply into its properties, so I run over the basic facts from the beginning.

(a) If t > 0, then

∫∞
−∞

t

π(t2+ξ2)
dξ =

1

π

∫∞
−∞

d

dξ
arctan(1 + ξ

t )dξ = 1,

so we have a distribution λt on R with density function ξ 7→ t
π(t2+ξ2) (271H), the Cauchy distribution

with centre 0 and scale parameter t.

(b)(i) For t > 0 and η ∈ R,

∫∞
0
e−tξ cos ηξ dξ =

1

t2+η2

∫∞
0

d

dξ
(ηe−tξ sin ηξ − te−tξ cos ηξ)dξ =

t

t2+η2
.

So
∫∞
−∞ e−iηξe−t|ξ|dξ =

∫∞
−∞ e−t|ξ| cos ηξ dξ =

2t

t2+η2
,

the Fourier transform of ξ 7→ e−t|ξ| is η 7→ 2t√
2π(t2+η2)

and the inverse Fourier transform of η 7→ 2t√
2π(t2+η2)

is ξ 7→ e−t|ξ| (283J), that is,

e−t|ξ| =
∫∞
−∞ eiξη

t

π(t2+η2)
dη =

∫∞
−∞ eiξηλt(dη)

for ξ ∈ R (235K), and the characteristic function of λt is ξ 7→ e−t|ξ| (285Aa).

(ii) The argument gives us another integral:
∫∞
0

1−cos η

η2
dη =

π

2
. PPP For any t > 0,

∫∞
0

cos η

t2+η2
dη =

1

2

∫∞
−∞

eiη

t2+η2
dη =

π

2t
e−t

and
∫∞
0

1

t2+η2
dη =

1

t

∫∞
0

1

1+η2
dη =

π

2t
.

Because cos η ≤ 1, sin η ≤ η, 1− cos η ≤ 1
2η

2 and 0 ≤ 1−cos η

η2
≤ min(

1

2
,
1

η2
) for every η > 0,

∫∞
0

1−cos η

η2
dη is

defined in R and equal to

limt↓0
∫∞
0

1−cos η

t2+η2
dη = limt↓0

π

2t
(1− e−t) =

π

2
. QQQ

(c) If s, t > 0 the characteristic function of λs ∗ λt is ξ 7→ e−s|ξ|e−t|ξ| = e−(s+t)|ξ| (285R), that is, it is
equal to the characteristic function of λs+t, and λs ∗ λt = λs+t (285Ma).

We can therefore apply the construction of 652F with the family 〈λt〉t>0 to obtain a probability space

(Cdlg, Σ̈, µ̈), a stochastic integration structure (C, ¯̈µ, [0,∞[ , 〈Ct〉t≥0) and a classical Lévy process uuu, the
Cauchy process.

(d) Writing C([0,∞[) ⊆ Cdlg for the set of continuous functions from [0,∞[ to R, µ̈C([0,∞[) = 0. PPP
Writing Xt(ω) = ω(t) for ω ∈ Cdlg and t ≥ 0 as usual,

µ̈{ω : |Xt(ω)| ≤ ǫ} = 1− 2
∫∞
ǫ

t

π(t2+ξ2)
dξ ≤ 1− 2

π

∫∞
ǫ

t

2ξ2
dξ = 1− t

πǫ

whenever 0 < t ≤ ǫ. So if n > 1
ǫ is an integer and we set Fn(ǫ) = {ω : |Xti+1

(ω)−Xti(ω)| ≤ ǫ for every i < n}
where ti =

i
n for i ≤ n,

µ̈Fn(ǫ) = µ̈{ω : |Xt1 | ≤ ǫ}n ≤ (1− 1

nπǫ
)n ≤ e−1/πǫ

because the Xti+1
−Xti are independent with the same distribution as Xt1 and ln(1 − 1

nπǫ ) ≤ − 1
nπǫ . But

now
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C([0,∞[) ⊆ ⋃
m∈N

⋂
n≥m Fn(ǫ)

has measure at most lim infn→∞ µ̈Fn(ǫ) ≤ e−1/πǫ. As ǫ is arbitrary, C([0,∞[) is negligible. QQQ

652N Alternative description of the Cauchy process (a) Let µ0 be the indefinite-integral measure

over µL corresponding to the function ξ 7→ 1

πξ2
: R \ {0} → [0,∞[ (234J), µ1 the subspace measure on [0,∞[

induced by µL, and µ = µ0 × µ1 the c.l.d. product measure on S = R× [0,∞[ (251F). We see that

µ is atomless (234Nf, 251Xt),
µ({ξ} × [0,∞[) = µ(R× {t}) = 0 whenever ξ ∈ R and t ≥ 0,

µ({ξ : |ξ| ≥ δ} × [0, t]) =
2t

πδ
is finite whenever δ > 0 and t ∈ [0,∞[,

µ([0, δ]× [α, β]) = µ([−δ, 0]× [α, β]) = ∞ whenever δ > 0 and 0 ≤ α < β.

(b) Let ν be the Poisson point process on (S, µ) with intensity 1 (495E4), so that ν is a probability
measure on Ω = PS, and Σ its domain. Then for ν-almost every ̟ ⊆ S,

ξ 6= 0, |ξ| 6= |ξ′| and s 6= s′ whenever (ξ, s), (ξ′, s′) ∈ ̟ are distinct

(applying 495H5 to (ξ, s) 7→ |ξ| and (ξ, s) 7→ s),

̟ ∩ {(ξ, s) : |ξ| ≥ δ, s ≤ t} is finite whenever δ > 0 and t ∈ [0,∞[ are rational,

̟ ∩ ([0, δ]× [α, β]) and ̟ ∩ ([−δ, 0]× [α, β]) are infinite

whenever δ > 0 and 0 ≤ α < β and α, β and δ are rational.

Write Ω0 for the set of ̟ ⊆ S with these properties. Note that if ̟ ∈ Ω0 then in fact

̟ ∩ {(ξ, s) : |ξ| ≥ δ, s ≤ t} is finite whenever δ > 0 and t ∈ [0,∞[,

̟ ∩ ([0, δ]× [α, β]) and ̟ ∩ ([−δ, 0]× [α, β]) are infinite

whenever δ > 0 and 0 ≤ α < β.

(c) For t ≥ 0 set

Σt = {H△A : H ∈ Σ, H = {̟ : ̟ ⊆ S, ̟ ∩ (R× [0, t]) ∈ H}, A ∈ N (µ)}.
Then 〈Σt〉t≥0 is a filtration of σ-subalgebras of Σ. Moreover, it is right-continuous. PPP Take any t ≥ 0, and
set sn = t + 2−n for n ∈ N. Setting S0 = R × [0, t], S1 = R × ]t+ 1,∞[ and Sn = R × ]sn−2, sn−1] for
n ≥ 2, we have an isomorphism ψ : PS → ∏

n∈N PSn where ψ(̟) = 〈̟ ∩ Sn〉n∈N for ̟ ⊆ S, and ψ is a

measure space isomorphism between ν and the product measure λ̃ =
∏
n∈N νn, where each νn is the Poisson

point process with intensity 1 on Sn endowed with the subspace measure induced by µ (495F). Suppose
that H ∈ ⋂

s>t Σs and consider ψ[H]. For each n ∈ N, there is an Hn ∈ Σ such that Hn = {̟ : ̟ ⊆ S,
̟∩ (R× [0, sn]) ∈ Hn} and H△Hn is ν-negligible. Setting H ′

n =
⋂
m≥nHm, we see that H ′

n = {̟ : ̟ ⊆ S,

̟ ∩ (R × [0, sn]) ∈ H ′
n} and H△H ′

n is negligible for each n. Now each ψ[H ′
n] ⊆

∏
n∈N PSn is determined

by coordinates in {0, n + 2, n + 3, . . . }, so ⋂
m∈N ψ[H

′
m] =

⋂
m≥n ψ[H

′
m] is determined by coordinates in

{0, n+2, n+3, . . . } for each n, and there is therefore a W ⊆ ∏
n∈N PSn determined by the single coordinate

{0} such that W△⋂
m∈N ψ[H

′
m] is λ̃-negligible, by 254Rd. But now H△ψ−1[W ] is ν-negligible, while

ψ−1[W ] = {̟ : ̟ ⊆ S, ̟ ∩ (R × [0, t]) ∈ ψ−1[W ]}. So H ∈ Σt. As t and H are arbitrary, 〈Σt〉t≥0 is
right-continuous. QQQ

(d) Suppose that we have an m ≥ 0 and family 〈Eα〉0≤α<1 of Borel subsets of [−1, 1]× [0,m] such that

Eα ⊆ Eβ whenever 0 ≤ α ≤ β < 1,

4In earlier editions I used the word ‘density’.
5Later editions only.
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if 0 ≤ α < 1 and (ξ, t) ∈ Eα then (−ξ, t) ∈ Eα,

if 0 ≤ α < 1 there is a δ > 0 such that |ξ| ≥ δ whenever (ξ, t) ∈ Eα.

For 0 ≤ α < 1 set

Xα(̟) =
∑

(ξ,s)∈̟∩Eα

ξ if ̟ ∈ Ω0,

(this is legitimate because ̟ ∩ Eα is finite)

= 0 if ̟ ∈ Ω \ Ω0.

Then
(i) limα↑1Xα(̟) is defined in R for almost every ̟,
(ii) setting h(̟) = supα<1 |Xα(̟)| for̟ ∈ Ω, (

∫
h dν)2 is defined and is not greater than supα<1

∫
Eα

ξ2µ(d(ξ, s)).

PPP(i)(ααα) If

Tα = {H : H ∈ Σ, H = {̟ : ̟ ∈ Ω, ̟ ∩ Eα ∈ H}},

T̂α = {H△A : H ∈ Tα, A ∈ N (ν)},

T′
α = {H : H ∈ Σ, H = {̟ : ̟ \ Eα ∈ H}},

T̂′
α = {H△A : H ∈ T′

α, A ∈ N (ν)},
then Xα is T̂α-measurable. We have ∫

Eα
|ξ|µ(d(ξ, s)) ≤ µEα <∞,

∫
Xαdν =

∫

Eα

ξ µ(d(ξ, s))

(495Oa6)

=

∫

Eα

−ξ µ(d(ξ, s))

(because (ξ, t) 7→ (−ξ, t) : Eα → Rα is a µ-preserving bijection)

= 0.

If 0 < β < α, then

Xβ(̟)−Xα(̟) =
∑

(ξ,s)∈̟∩Eβ\Eα
ξ

for ̟ ∈ Ω0. So Xβ − Xα is T̂′
α-measurable By 495F7, T′

α and Tα are independent, so T̂′
α and T̂α are

independent. Since
∫
Xβ − Xαdν = 0,

∫
H
Xβ − Xαdν = 0 for every H ∈ T̂α, so Xα is a conditional

expectation of Xβ on T̂α. But this means that 〈Xα〉α<1 is a martingale with respect to the ordering ≤ on
[0, 1[.

(βββ) Next, 495Ob7 tells us that

∫
X2
αdν =

∫

Eα

ξ2µ(d(ξ, s)) + (

∫

Eα

ξ µ(d(ξ, s)))2

=

∫

Eα

ξ2µ(d(ξ, s)) ≤ m

∫

[−1,1]

ξ2µ0(dξ) =
2m

π

6Formerly 495L.
7Later editions only.
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for every α ∈ [0, 1[. So {Xα : 0 ≤ α < 1} is ‖ ‖2-bounded, therefore uniformly integrable (621Be). By 622J,
v = limα↑1X•

α is defined in L0(ν) for the topology of convergence in measure and infα<1 supα≤β<1 |v−X•

β | =
0.

(γγγ) If we take any Σ-measurable function g : Ω → R such that g• = v and write Q for Q ∩ [0, 1[, we
know that

infq∈Q supq′∈Q,q′≥q |g• −X•

q′ | = 0 in L0(A)

and because Q is countable, this translates directly to

infq∈Q supq′∈Q,q′≥q |g(̟)−Xq′(̟)| = 0 for ν-almost every ̟ ⊆ S
if we calculate the suprema and infimum in [0,∞]. But now observe that, at least for ̟ ∈ Ω0,

supq′∈Q,q′≥q |h(̟)−Xtq′(̟)| = supq≤β<1 |g(̟)−Xβ(̟)|
for every q ∈ Q, because if q ≤ β < 1 and̟ ∈ Ω0, there is a q

′ ∈ Q such that β < q′ <1 and̟∩(Eq′\Eβ) = ∅
so that Xβ(̟) = Xq′(̟). And now we see that for ν-almost every ̟ ∈ Ω0,

infα<1 supα≤β<1 |g(̟)−Xβ(̟)| = 0

and g(̟) = limα↑1Xα(̟).

(ii) As noted in (i-γ) just above, if ̟ ∈ Ω0 and 0 ≤ α < 1 there is a rational q ∈ [α, 1[ such that
Xα(̟) = Xq(̟), so h(̟) = supq∈Q,0≤q<1 |Xq(̟)| for every ̟ ∈ Ω0. Now 623M tells us that sup0≤α<1 |X•

α|
is defined in L0(ν) and

(

∫
h dν)2 = ‖ sup

q∈Q,0≤q<1
|X•

q |‖21 ≤ ‖ sup
0≤α<1

|X•

α|‖21

≤ sup
0≤α<1

‖X•

α‖22 = sup
α<1

∫

Eα

ξ2µ(d(ξ, s))

by (i-β). QQQ

(e)(i) For m, n ∈ N, α ∈ [0, 1[ and ̟ ∈ Ω set

Emnα = {(ξ, s) : 2−n−1 < |ξ| ≤ 2−n, 0 ≤ s ≤ αm} ⊆ S,

Ymnα(̟) =
∑

(ξ,s)∈̟∩Emnα

ξ if ̟ ∈ Ω0,

= 0 otherwise.

Then

∫

Emnα

ξ2µ(d(ξ, s)) = αm

∫

Fn

ξ2µ0(dξ)

(where Fn = {η : 2−n−1 < |η| ≤ 2−n})

=
αm

π
µLFn =

2−nαm

π
.

If we set

hmn(̟) = supα∈Q∩[0,1[ |Ymnα(̟)| ∈ [0,∞]

for ̟ ∈ Ω, E(hmn) ≤ 2−n/2
√

m
π , by (d-ii). But this means that

Ω2 = {̟ : ̟ ∈ Ω0,
∑∞
n=0 hmn(̟) <∞ for every m ∈ N}

is ν-conegligible. At the same time, for ̟ ∈ Ω2,

D.H.Fremlin



22 Applications 652Ne

|Ymnα(̟)| ≤ supq∈Q∩[0,1[ |Ymnq(̟)| ≤ hmn(̟)

whenever m, n ∈ N and α ∈ [0, 1[, just as in (d-i-γ) and (d-ii) above.

(ii) For t ≥ 0 and n ∈ N, set

Etn = {(ξ, s) : 2−n−1 < |ξ| ≤ 2−n, 0 ≤ s ≤ t} ⊆ S,

Ytn(̟) =
∑

(ξ,s)∈̟∩Etn

ξ if ̟ ∈ Ω0,

= 0 otherwise.

If ̟ ∈ Ω2 then, applying (i) with m = ⌊t + 1⌋ and α = t
m , we see that

∑∞
n=0 Ytn(̟) is defined (as an

unconditional sum) and finite. Since ̟ ∩ (]1,∞[× [0, t]) and ̟ ∩ (]−∞,−1[× [0, t]) are finite,

Zt(̟) =
∑∞
n=0 Ytn(̟) +

∑
(ξ,s)∈̟,|ξ|>1,s≤t ξ

is defined. We see also that, for any m ∈ N,

Zt(̟) = limn→∞
∑n
k=0 Ytk(̟) +

∑
(ξ,s)∈̟,|ξ|>1,s≤t ξ

uniformly for t ∈ [0,m]. Since the functions

t 7→ ∑n
k=0 Ytk(̟) +

∑
(ξ,s)∈̟,|ξ|>1,s≤t ξ

are càdlàg for every n ∈ N, t 7→ Zt(̟) : [0,m] → R is càdlàg. Since m is arbitrary, t 7→ Zt(̟) : [0,∞[ → R

is càdlàg.

For completeness, I will set Zt(̟) = 0 for t ≥ 0 and ̟ ∈ Ω \ Ω2, so that t 7→ Zt(̟) is càdlàg for every
̟ ∈ Ω.

(f) If t ≥ 0, the characteristic function of Zt is η 7→ e−t|η|. PPP For n ∈ N, set

Ftn = {(ξ, s) : 2−n ≤ |ξ| ≤ 2n, s ≤ t} ⊆ S,

gn(ξ, s) = ξ if (ξ, s) ∈ Ftn,

= 0 for other (ξ, s) ∈ S,

Ztn(̟) =
∑

(ξ,s)∈̟∩Ftn

ξ if ̟ ∩ Ftn is finite,

= 0 for other ̟ ⊆ S.

Then Zt(̟) = limn→∞ Ztn(̟) for every ̟ ∈ Ω2. Now the characteristic function of Ztn is

η 7→
∫
PS e

iηZtndν = exp(
∫
S
(eiηgn − 1)dµ)

by 495P8. Next,

∫

S

(eiηgn − 1)dµ =

∫ t

0

(∫ −2−n

−2n

1

πξ2
(eiηξ − 1)dξ +

∫ 2n

2−n

1

πξ2
(eiηξ − 1)dξ

)
dt

=
1

π

∫ t

0

∫ 2n

2−n

1

ξ2
(eiηξ + e−iηξ − 2)dξdt

=
2t

π

∫ 2n

2−n

1

ξ2
(cos ηξ − 1)dξ

= −2t

π

∫ 2n

2−n

1

ξ2
(1− cos |η|ξ)dξ.

8Formerly 495M.
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As in (b-ii) of the proof of 652M,
∫∞
0

1

ξ2
(1 − cos |η|ξ)dξ = |η|

∫∞
0

1

ξ2
(1 − cos ξ)dξ is finite, so we can apply

Lebesgue’s Dominated Convergence Theorem again to see that

lim
n→∞

∫

S

(eiηgn − 1)dµ = − lim
n→∞

2t

π

∫ 2n

2−n

1

ξ2
(1− cos |η|ξ)dξ = −2t

π

∫ ∞

0

1

ξ2
(1− cos |η|ξ)dξ

= −2t|η|
π

∫ ∞

0

1

ξ2
(1− cos ξ)dξ = −2t|η|

π
· π
2

(652M(b-ii))

= −t|η|,

and

∫

PS
eiηZtdν = lim

n→∞

∫

PS
eiηZtndν = lim

n→∞
exp(

∫

S

(eiηgn − 1)dµ)

= exp( lim
n→∞

∫

S

(eiηgn − 1)dµ) = exp(−t|η|),

as claimed. QQQ
By 285Mb, it follows that (for t > 0) the distribution of Zt is the Cauchy distribution λt as defined in

652M.

(g)(i) If s, t > 0, Zs+t − Zs has the same distribution as Zt. PPP Setting φs(ξ, t
′) = (ξ, s + t′) for ξ ∈ R

and t′ ≥ 0, φs is a measure-preserving bijection between (S, µ) and R× [s,∞[ with its subspace measure, so
̟ 7→ φ−1

s [̟] : PS → PS is ν-inverse-measure-preserving (495F), while (in the notation of (e) above)
∑

(ξ,t′)∈̟∩Fs+t,n\Fsn
ξ =

∑
(ξ,t′)∈φ−1

s [̟]∩Ftn\F0n
ξ

for every ̟ ∈ Ω0. So Zs+t,n − Zsn and Ztn − Zt0 = Ztn have the same distribution for each n. Since
〈Zt′n〉n∈N converges in measure to Zt′ for every t

′ ≥ 0, 454U9 tells us that Z•

s+t −Z•

s and Z•

t have the same
distribution, that is, Zs+t − Zs and Zt have the same distribution. QQQ

(ii) If s, t ≥ 0 and we take Σ′
s to be

{H△A : H ∈ Σ, H = {̟ : ̟ ⊆ S, ̟ ∩ (R× ]s,∞[) ∈ H}, A ∈ N (µ)},
then Σ′

s and Σs, as defined in (c), are independent, by 495F again, while Zs+t − Zs is Σ′
s-measurable. So

Zs+t − Zs is independent of Σs.

(h) Accordingly we have a second representation of the Cauchy process based on (Ω, ν) rather than on
(Cdlg, µ̈). We saw in (e-ii) that t 7→ Zt(̟) is càdlàg for every ̟ ∈ Ω. Taking At to be {E• : E ∈ Σt}
for t ≥ 0, 631D tells us that in the stochastic integration structure (A, ν̄, [0,∞[ , 〈At〉t≥0) we have a locally
near-simple process zzz = 〈zσ〉σ∈Tf

such that zť = Z•

t for every t ≥ 0. Because 〈Σt〉t≥0 is right continuous
((c) above), so is 〈At〉t≥0. Thus zzz is a Lévy process as defined in 652B.

(i) We can use this new representation to get some information about typical sample paths in the process
described in 652Mc.

If ̟ ∈ Ω0 and t > 0 we have a canonical enumeration 〈(ξ̃nt(̟), s̃nt(̟))〉n∈N of the countably infinite

set ̟ ∩ (R × [0, t]) such that |ξ̃n+1,t(̟)| < |ξ̃nt(̟)| for every n ∈ N. Now we find that for any t ≥ 0, the
conditional sum

∑∞
n=0 ξ̃nt(̟) = limn→∞

∑n
i=0 ξ̃it(̟)

9Later editions only.
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is defined in R and equal to Zt(̟) for almost every ̟. PPP For 0 ≤ α < 1, set Eα = ([−1,−1 + α] ∪ [1 −
α, 1])× [0, t]. By (d-i),

Ω1t = {̟ : ̟ ∈ Ω0, limα↑1
∑

(ξ,s)∈̟∩Eα
ξ is defined in R}

is ν-conegligible. Now if ̟ ∈ Ω1t ∩Ω2 and ǫ > 0, ̟ ∩ ((]−∞,−1[∪ ]1,∞[)× [0, t] is finite, so there is a first

m ∈ N such that |ξ̃mt|(̟) ≤ 1, Next, there is a β ∈ [0, 1[ such that

ǫ ≥ |∑(ξ,s)∈̟∩Eα′
ξ −∑

(ξ,s)∈̟∩Eα
ξ| = |∑(ξ,s)∈̟∩(Eα′\Eα) ξ|

whenever β ≤ α ≤ α′ < 1. Taking k ≥ m such that |ξ̃kt(̟)| ≤ β, we see that if k ≤ n ≤ n′ then

|∑n′

i=0 ξ̃it(̟)−∑n
i=0 ξ̃it(̟)| = |∑(ξ,s)∈̟∩(Eα′\Eα) ξ| ≤ ǫ

where α = 1− |ξ̃nt| and α′ = 1− |ξ̃n′t|. As ǫ is arbitrary, limn→∞
∑n
i=0 ξ̃it(̟) is defined.

At the same time,

Zt(̟) = lim
n→∞

∑

(ξ,s)∈̟,s≤t
|ξ|>2−n

ξ =
∑

(ξ,s)∈̟,ξ>1

ξ + lim
n→∞

∑

(ξ,s)∈̟,s≤t
2−n<|ξ|≤1

ξ

=
∑

(ξ,s)∈̟,ξ>1

ξ + lim
α↑1

∑

(ξ,s)∈̟,s≤t
1−α<|ξ|≤1

ξ = lim
n→∞

n∑

i=0

ξ̃it(̟). QQQ

(j) By (e-ii), we have a function φ : Ω → Cdlg defined by saying that

φ(̟)(t) = Zt(̟) if ̟ ∈ Ω2,

= 0 otherwise.

Now φ is inverse-measure-preserving for ν and the measure µ̈ defined in 652Mc. PPP If 0 = s0 < . . . < sn in
[0,∞[ and αi ∈ R for i ≤ n, then

νφ−1{ω : ω ∈ Cdlg, ω(s0) ≤ α0, ω(si)− ω(si−1) ≤ αi for 1 ≤ i ≤ n}
= ν{̟ : ̟ ∈ Ω2, Zs0(̟) ≤ α0, Zsi(̟)− Zsi−1

(̟) ≤ αi for 1 ≤ i ≤ n}
= 0 if α0 < 0,

=
∏

1≤i≤n
ν{̟ : Zsi(̟)− Zsi−1

(̟) ≤ αi}

(by (g-ii))

=
∏

1≤i≤n
ν{̟ : Zsi−si−1

(̟) ≤ αi}

(by (g-i))

=
∏

1≤i≤n
λsi−si−1

]−∞, αi] otherwise

(by (f)), and in either case is equal to

µ̈{ω : ω(s0) ≤ α0, ω(si)− ω(si−1) ≤ αi for 1 ≤ i ≤ n}.
Since H = {H : H ∈ Σ̈, νφ−1[H] is defined and equal to µ̈H} is a Dynkin class, it contains all sets of
the form {ω : ω ∈ Cdlg, ω(s0) ∈ E0, ω(si) − ω(si−1) ∈ Ei for 1 ≤ i ≤ n} where n ∈ N and Ei ⊆ R is
Borel for every i ≤ n, and therefore the σ-algebra generated by these, which contains all sets of the form
{ω : ω ∈ Cdlg, ω(si) ∈ Ei for i ≤ n} where n ∈ N and Ei ⊆ R is Borel for every i ≤ n, and therefore is the

subspace σ-algebra defined by the Baire σ-algebra of R[0,∞[. Since µ̈ is a completion regular quasi-Radon
probability measure, every H ∈ Σ̈ is expressible as H0△A where H0 ∈ H and A is included in a µ̈-negligible
member of H; because ν is complete, Σ̈ ⊆ H, that is, φ is inverse-measure-preserving. QQQ
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(k) If ̟ ∈ Ω2 and t ≥ 0, then

φ(̟)(t)− lim
s↑t

φ(̟)(s) = ξ if (ξ, t) ∈ ̟,

= 0 if there is no ξ such that (ξ, t) ∈ ̟.

PPP Take m ∈ N such that t ≤ m, and ǫ > 0. Let k ∈ N be such that
∑∞
n=k hmn(̟) ≤ ǫ, where hmn is defined

as in (e-i) above. For s ≥ 0 set f(s) =
∑

(ξ,s′)∈̟,|ξ|>2−k,s′≤s ξ; as ̟ ∈ Ω0, this is a finite sum. Then

|φ(̟)(s)− f(s)| = |Zs(̟)− f(s)| ≤ ǫ

for every s ≤ m, while

f(t)− lim
s↑t

f(s) = ξ if (ξ, t) ∈ ̟,

= 0 if there is no ξ such that (ξ, t) ∈ ̟.

Now

lim sup
s↑t

|φ(̟)(t)− ξ − φ(̟)(s)|

≤ |φ(̟)(t)− f(t)|+ lim sup
s↑t

|f(t)− f(s)− ξ|+ lim sup
s↑t

|f(s)− φ(̟)(s)|

≤ 2 sup
s≤t

|φ(̟)(s)− f(s)| ≤ 2ǫ

if (ξ, t) ∈ ̟, and

lim sups↑t |φ(̟)(t)− φ(̟)(s)| ≤ 2ǫ

if there is no ξ such that (ξ, t) ∈ ̟. As ǫ is arbitrary, we have the result. QQQ

(l) If ω ∈ Cdlg, I will write Jump(ω) for

{(ξ, t) : ξ ∈ R \ {0}, t > 0, ω(t) = lims↑t ω(s) + ξ}.
Observe that ̟ = Jump(φ(̟)) for every ̟ ∈ Ω2, by (k).

For E ⊆ S, set

A1(E) = {ω : E ∩ Jump(ω) 6= ∅}.
If E ∈ B(S), A1(E) ∈ Σ̈. PPP Since (ω, t) 7→ ω(t) : Cdlg × [0,∞[ → R is Σ̈⊗̂B([0,∞[)-measurable (631D),

{(ω, ξ, t, s) : |ω(t)− ω(s)− ξ| ≤ 2−n}
belongs to Σ̈⊗̂B(S × [0,∞[) for every n ∈ N,

{(ω, ξ, t, 〈sn〉n∈N) : (ξ, t) ∈ E, t− 2−n ≤ sn < t

and |ω(t)− ω(sn)− ξ| ≤ 2−n for every n ∈ N}

belongs to

Σ̈⊗̂B(S × [0,∞[
N
)

and its projection A1(E) can be obtained by Souslin’s operation from members of Σ̈ (423O), so belongs to

Σ̈ (431A again). QQQ Now (k) tells us that

µ̈A1(E) = νφ−1[A1(E)] = ν(Ω2 ∩ φ−1[A1(E)])

= ν{̟ : ̟ ∈ Ω2, E ∩̟ 6= ∅}
= 1− e−µE if µE is finite,

= 1 if µE = ∞.
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(m) Observe now that µ is atomless and (S, µ) is a countably separated measure space (343D), while
µ̈ is complete. So Jump : Cdlg → PS leads us to a complete image measure µ̈ Jump−1 which agrees with
ν on sets of the form {S : S ∩ E 6= ∅} where µE < ∞, and therefore extends ν (495I10); that is, Jump is
inverse-measure-preserving for µ̈ and ν. We can therefore refer to (b) above to see that, for µ̈-almost every
ω ∈ Cdlg,

ξ 6= 0, |ξ| 6= |ξ′| and s 6= s′ whenever (ξ, s), (ξ′, s′) ∈ Jump(ω) are distinct,

Jump(ω) ∩ {(ξ, s) : |ξ| ≥ δ, s ≤ t} is finite whenever δ > 0 and t ∈ [0,∞[,

Jump(ω) ∩ ([0, δ]× [α, β]) and ̟ ∩ ([−δ, 0]× [α, β]) are infinite

whenever δ > 0 and 0 ≤ α < β,

so that for µ̈-almost every ω we have, for every t > 0, a canonical enumeration 〈(ξnt(ω), snt(ω))〉n∈N of
the countably infinite set Jump(ω) ∩ (R × [0, t]) such that |ξn+1,t(ω)| < |ξnt(ω)| for every n ∈ N; we take

ξnt(ω) = ξ̃nt(Jump(ω)), snt(ω) = s̃nt(Jump(ω)) whenever Jump(ω) ∈ Ω0 and n ∈ N.

If ̟ ∈ Ω2, then ̟ = Jump(φ(̟)), so ξnt(φ(̟)) = ξ̃nt(̟) and snt(φ(̟)) = s̃nt(̟) for all t > 0 and
n ∈ N. For any particular t > 0, Ω2 ∩ Ω1t is conegligible and

∑∞
n=0 ξnt(φ(̟)) =

∑∞
n=0 ξ̃nt(̟) = Zt(̟) = φ(̟)(t).

So ω(t) =
∑∞
n=0 ξnt(ω) whenever ω ∈ φ[Ω2 ∩ Ω1t]. On the other hand, ω 7→ ξnt(ω) = ξ̃nt(Jump(ω)) is

Σ̈-measurable for each n because Jump is (Σ̈,Σ)-measurable and ξ̃nt is Σ-measurable. But this implies

that {ω : ω(t) =
∑∞
n=0 ξnt(ω)} belongs to Σ̈; as it includes the set φ[Ω2 ∩ Ω1t] of full outer measure, it is

conegligible. So we see that ω(t) =
∑∞
n=0 ξnt(ω) for µ̈-almost every ω ∈ Cdlg.

652O Third construction for the Cauchy process (a)(i) Write µW = µW2 for two-dimensional
Wiener measure on the space Ω = C([0,∞[ ;R2)0 of continuous functions from [0,∞[ to R2 starting at
zero. Recall that Ω can be identified with C([0,∞[)20 and µW with µ2

W1, where µW1 is one-dimensional
Wiener measure on C([0,∞[)0. For ω ∈ Ω, I will write ω0, ω1 for its coordinates in C([0,∞[)0, so that
ω(t) = (ω0(t), ω1(t)) for t ≥ 0. Write Σ for the domain of µW . For t ≥ 0, let Σt be the σ-algebra of sets
F ∈ Σ such that ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t].

(ii) For t ≥ 0, let ht be the Brownian hitting time to the closed set [t,∞[× R (477I), so that ht(ω) =
inf{s : ω0(s) ≥ t}, counting inf ∅ as ∞, and ω0(ht(ω)) = t if ht(ω) is finite. Evidently t 7→ ht(ω) is
non-decreasing. Set

Ω′
0 = {ω : ω ∈ C([[0,∞[)0, ω0[[0,∞[ ] = R}, Ω′ = Ω′

0 × C([[0,∞[)0;

then Ω′
0 is µW1-conegligible in C([[0,∞[)0 (478Ma), so Ω′ is µW -conegligible in Ω. For ω ∈ Ω′, ht(ω) < ∞

and ω(ht(ω)) = t for every t ≥ 0. Of course h0(ω) = 0 for every ω ∈ Ω.
If t ≥ 0 and α > 0, then

µW {ω : ω ∈ Ω, ht(ω) ≤ α} = µW {ω : ω ∈ Ω, max
s≤α

ω0(s) ≥ t}

= µW1{ω0 : ω0 ∈ C([0,∞[)0, max
s≤α

ω0(s) ≥ t}

(identifying µW with µ2
W1)

=
2√
2π

∫ ∞

t/
√
α

e−ξ
2/2dξ

by 477J. Accordingly the distribution of ht is absolutely continuous and has a Radon-Nikodým derivative,
with respect to Lebesgue measure,

α 7→ d

dα

2√
2π

∫∞
t/

√
α
e−η

2/2dη =
2√
2π

t

2α
√
α
e−t

2/2α =
t

α
√
2πα

e−t
2/2α

10Formerly 495Xa.
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for α > 0.

(iii) Each ht is a stopping time adapted to 〈Σs〉s≥0 (477I(c-iii)), so we can speak of the σ-algebra
Σht

= {E : E ∈ Σ, E ∩ {ω : ht(ω) ≤ s} ∈ Σs for every s ≥ 0}, as in 612G.

(b)(i) For t ≥ 0 and ω ∈ Ω, set

Zt(ω) = ω1(ht(ω)) if ht(ω) <∞,

= 0 otherwise.

Since (f, s) 7→ f(s) : C([0,∞[) × [0,∞[ → R is continuous for the topology of uniform convergence on
compact sets (4A2G(g-iii)), (ω, s) 7→ ω0(s) : Ω× [0,∞[ → R is continuous. Now ht is lower semi-continuous
(477I(c-ii)), therefore Borel measurable (4A3Ce), so Zt : Ω → R is Borel measurable, therefore Σ-measurable.

(ii) In fact Zt is always Σht
-measurable. PPP Take α ∈ R and set E = {ω : Zt(ω) > α}. If s ≥ 0,

ω ∈ E, ht(ω) ≤ s and ω′ ∈ Ω are such that ω′↾[0, s] = ω↾[0, s], then ω′
0(ht(ω)) = ω0(ht(ω)) = t and

ω′
0(r) = ω0(r) < t for r < ht(ω), so ht(ω

′) = ht(ω) ≤ s,

Zt(ω
′) = ω′

1(ht(ω)) = ω1(ht(ω)) = Zt(ω) > α,

and ω′ ∈ E. Thus E∩{ω : ht(ω) ≤ s} ∈ Σs; as s is arbitrary, E ∈ Σht
; as α is arbitrary, Zt is Σht

-measurable.
QQQ

(iii) For any t > 0, the distribution of Zt is the Cauchy distribution λt of 652M. PPP Take any a ∈ R,
and set f = χ ]−∞, a]. Then

µW {ω : Zt(ω) ≤ a} =

∫

Ω

fZtdµW =

∫

Ω′

f(ω1(ht(ω)))µW (dω)

=

∫

Ω′

f(ω1(ht(ω0,0)))µW (dω)

(where 0 ∈ C([0,∞[)0 is the constant function with value 0, because ht(ω) is calculated from ω0)

=

∫

Ω′

0

∫

C([0,∞[)0

f(ω1(ht(ω0,0)))µW1(dω1)µW1(dω0)

(identifying µW with µ2
W1)

=

∫

Ω′

0

∫

R

f(α)
1√

2πht(ω0,0)
e−α

2/2ht(ω0,0)dαµW1(dω0)

(by 271Ic, because ω1 7→ ω1(ht(ω0,0)) is normally distributed with expectation 0 and variance ht(ω0,0))

=

∫

Ω′

0

∫ a

−∞

1√
2πht(ω0,0)

e−α
2/2ht(ω0,0)dαµW1(dω0)

=

∫ a

−∞

∫

Ω′

0

1√
2πht(ω0,0)

e−α
2/2ht(ω0,0)µW1(dω0)dα

=

∫ a

−∞

∫

Ω′

1√
2πht(ω0,0)

e−α
2/2ht(ω0,0)µW (dω)dα

(because ω 7→ ω0 : Ω → C([0,∞[)0 is inverse-measure-preserving)

=

∫ a

−∞

∫

Ω′

1√
2πht(ω)

e−α
2/2ht(ω)µW (dω)dα

=

∫ a

−∞

∫ ∞

0

1√
2πβ

e−α
2/2β t

β
√
2πβ

e−t
2/2βdβ dα

(by (a-ii))

=
t

2π

∫ a

−∞

2

α2+t2

∫ ∞

0

e−γdγ dα

(substituting γ =
α2+t2

2β
)
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=

∫ a

−∞

t

π(α2+t2)
dα = λt ]−∞, a] .

As a is arbitrary, we have the result. QQQ

(c) Suppose that 0 ≤ t ≤ t′.

(i) By 455U/477G we have a function φ : Ω× Ω → Ω defined by setting

φ(ω, ω′)(s) = ω(ht(ω)) + ω′(s− ht(ω)) if s ≥ ht(ω),

= ω(s) if s ≤ ht(ω)

which is inverse-measure-preserving for µW × µW and µW .

(ii) For almost every ω, ω′ ∈ Ω, ht(ω) and ht′−t(ω′) are finite, and for such pairs

ht′(φ(ω, ω
′)) = min{s : φ(ω, ω′)0(s) ≥ t′}

(writing φ(ω, ω′)0(s) for the first component of φ(ω, ω′)(s))

= min{s : s > ht(ω), φ(ω, ω
′)0(s) ≥ t′}

(because if s ≤ ht(ω) then φ(ω, ω
′)0(s) = ω0(s) ≤ t})
= min{s : s > ht(ω), t+ ω′

0(s− ht(ω)) ≥ t′}
= ht(ω) + min{s : ω′

0(s) ≥ t′ − t} = ht(ω) + ht′−t(ω
′),

Zt′(φ(ω, ω
′)) = φ(ω, ω′)1(ht(ω) + ht′−t(ω

′))

= ω1(ht(ω)) + ω′
1(ht′−t(ω

′)) = Zt(φ(ω, ω
′)) + Zt′−t(ω

′).

Because φ is inverse-measure-preserving, Zt′ − Zt has the same distribution as

(ω, ω′) 7→ Zt′(φ(ω, ω
′))− Zt(φ(ω, ω

′)) = Zt′−t(ω′)

which has the same distribution as Zt′−t.

(iii) If ω ∈ E ∈ Σht
and ω′ ∈ Ω is such that ω′↾[0, ht(ω)] = ω↾[0, ht(ω)], then ω

′ ∈ E. PPP If ht(ω) = ∞
this is trivial. Otherwise, setting s = ht(ω), we see that ω ∈ E∩{ω̃ : h(ω̃) ≤ s} ∈ Σs while ω

′↾[0, s] = ω↾[0, s]
so ω′ ∈ E ∩ {ω̃ : h(ω̃) ≤ s} ⊆ E. QQQ

Now if ω ∈ E ∈ Σht
and ω′ ∈ Ω then φ(ω, ω′)↾[0, ht(ω)] = ω↾[0, ht(ω)] so φ(ω, ω

′) ∈ E. The same applies
to the complement of E, so we see that φ−1[E] = E × Ω for every E ∈ Σht

. And it follows that Zt′ − Zt is
independent of Σht

. PPP If E ∈ Σht
and α ∈ R, set F = {ω : (Zt′ − Zt)(ω) > α}; then

µW (E ∩ F ) = µ2
W (φ−1[E] ∩ φ−1[F ]) = µ2

W ((E × Ω) ∩ φ−1[F ])

= µ2
W ((E × Ω) ∩ (Ω× {ω′ : Zt′−t(ω

′) > α}))
(by (i) above)

= µ2
W ((E × Ω) ∩ (Ω× F )) = µWE · µWF.

As E and α are arbitrary we have the result. QQQ

(d) From (c), we can easily confirm that 〈Zt〉t≥0 here has the same distribution as the process 〈Zt〉t≥0 of
652N. But the filtration 〈Σht

〉t≥0 is not right-continuous and the paths 〈Zt(ω)〉t≥0 are not càdlàg, so to get
a Lévy process as described in 652C there is still some work to do.

(i) If 0 ≤ s ≤ t, E ∈ Σhs
and r ≥ 0, then

E ∩ {ω : ht(ω) ≤ r} = (E ∩ {ω : hs(ω) ≤ r}) ∩ {ω : ht(ω) ≤ r}
is the intersection of two members of Σr and belongs to Σr; so E ∈ Σht

. Thus Σhs
⊆ Σht

.
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(ii) For t ≥ 0, set

Tt = {E△A : E ∈ ⋂
s>t Σhs

, A ∈ N (µW )}.
Then 〈Tt〉t≥0 is a filtration of σ-subalgebras of Σ, and is right-continuous. PPP If t ≥ 0 and E ∈ ⋂

s>t Ts,
then for each n ∈ N there is an An ∈ N (µW ) such that E△An ∈ ⋂

s>t+2−n Σhs
; using (i) just above, we

see that F =
⋂
n∈NE△An ∈ ⋂

s>t Σhs
and E△F ⊆ ⋃

n∈NAn is negligible. QQQ Note also that Σht
⊆ Tt for

every t, by (i).

(iii) For t ≥ 0 and ω ∈ Ω, set h̃t(ω) = infs>t hs(ω) = lims↓t hs(ω). Because ht ≤ hs whenever t ≤ s,

ht ≤ h̃t for every t and t 7→ h̃t(ω) : [0,∞[ → [0,∞] is non-decreasing and càdlàg for every ω. We find also

that h̃t =a.e. ht for every t ≥ 0. PPP h̃t(ω) is always limn→∞ ht+2−n(ω), and

{ω : h̃t(ω) ≤ α} =
⋂
m∈N

⋃
n∈N{ω : ht+2−n(ω) ≤ α+ 2−m}

has measure

limm→∞ limn→∞
2√
2π

∫∞
(t+2−n)/

√
α+2−m

e−ξ
2/2dξ =

2√
2π

∫∞
t/

√
α
e−ξ

2/2dξ

whenever t ≥ 0 and α > 0, by (a-ii) above. So {ω : h̃t(ω) ≤ α} and {ω : ht(ω) ≤ α} have the same measure

for every α; as the former is always included in the latter, h̃t =a.e. ht. QQQ

(iv) For t ≥ 0 and ω ∈ Ω, set

Z̃t(ω) = ω1(h̃t(ω)) if ω ∈ Ω′,

= 0 otherwise.

Then Z̃t =a.e. Zt for every t, and 〈Z̃t(ω)〉t≥0 is càdlàg for every ω. PPP If ω /∈ Ω′ this is trivial. Otherwise,

t 7→ h̃t(ω) : [0,∞[ → [0,∞[ is càdlàg and ω1 : [0,∞[ → R is continuous so t 7→ ω1(h̃t(ω)) : [0,∞[ → R is
càdlàg. QQQ

Next, Z̃t is Tt-measurable for every t ≥ 0. PPP Z̃t =a.e. limn→∞ Zt+2−n and if s > t then limn→∞ Zt+2−n

is Σhs
-measurable by (b-ii) above. So in fact limn→∞ Zt+2−n is (

⋂
s>t Σhs

)-measurable and Z̃t is Tt-
measurable. QQQ

(v) If 0 ≤ t ≤ t′ then Z̃t′ − Z̃t is independent of Tt. PPP For n ∈ N, Zt′+2−n − Zt+2−n is independent

of Σh
t+2−n

and therefore of
⋂
s>t Σhs

and of Tt. Now Z̃t′ − Z̃t =a.e. limn→∞ Zt′+2−n − Zt+2−n so is in the

closure of {Zt′+2−n − Zt+2−n : n ∈ N} for the topology of convergence in measure; by 652Bc, applied with

B = {E• : E ∈ Tt}, Z̃t′ − Z̃t is independent of Tt. QQQ

(vi) Putting these together, we see that if (A, µ̄W ) is the measure algebra of (Ω,Σ, µW ) and Bt =
{E• : E ∈ Tt} ⊆ A for t ≥ 0, we have a right-continuous real-time stochastic integration structure

(A, µ̄W , [0,∞[ , 〈Bt〉t≥0); and 613D, applied to 〈Tt〉t≥0 and 〈Z̃t〉t≥0, tells us that 〈Z̃t〉t≥0 is progressively
measurable and corresponds to a locally near-simple process 〈z̃σ〉σ∈Tf

which is a Lévy process in the sense
of 652C.

652X Basic exercises (a) Suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a right-continuous real-
time stochastic integration structure and vvv = 〈vσ〉σ∈Tf

a Lévy process. Show that if τ ∈ Tf and 〈tn〉n∈N is
a non-decreasing sequence in [0,∞[, then 〈vτ+ťn+1

− vτ+ťn〉n∈N is independent.

(b) Show that the formula in 652Ga can be adapted to describe the sum of any two stopping times, and
explore the properties of this operation. (Hint : 364C.)

(c) Let vvv = 〈vσ〉σ∈Tf
be a Lévy process such that α = E(v1̌) is finite. Show that vvv − αιιι is a local

martingale. (Hint : 632Ma.)

(d) In 652Ni, show that ξ̃ns is a stopping time adapted to 〈Σt〉t≥0 for all n ∈ N and s > 0.

(e) In 652Od, show that h̃t is always the Brownian hitting time to ]t,∞[ × R, so is a stopping time
adapted to the right-continuous filtration 〈⋂r>s Σr〉s≥0.
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(f) Suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a real-time stochastic integration structure. (i)
Show that if s ≥ 0 then τ 7→ τ + š : T → T is a lattice homomorphism. (ii) Show that if τ ∈ T then
t 7→ τ + ť : [0,∞[ → Tf is order-continuous.

652Y Further exercises (a) Let µ̈ be the measure on Cdlg corresponding to the Poisson process, as in
612U. Show that it is not a Radon measure for the topology of pointwise convergence on Cdlg.

(b) Let (C, ν̄, [0,∞[ , 〈Ct〉t≥0, T , 〈Cτ 〉τ∈T ) be the real-time stochastic integration structure of 612T, and
www = 〈wτ 〉τ∈Tf

Brownian motion. Set At = C2t for t ≥ 0, so that (C, ν̄, [0,∞[ , 〈At〉t≥0) is a stochastic

integration structure, and S = {ť : t ≥ 0}. Show that with respect to the structure (C, ν̄, [0,∞[ , 〈At〉t≥0),
〈wσ〉σ∈S is a fully adapted process but is not a local integrator.

(c) Let f : [0,∞[ → R be a càdlàg function. For t > 0, write f(t−) for lims↑t f(s). For finite sets
I ⊆ [0,∞[, define αI by saying that α∅ = 0 and

αI =
∑n−1
i=0 f(si+1)− f(si)−med(−1, f(si+1)− f(si), 1)

if #(I) = n > 0 and 〈si〉i<n is the increasing enumeration of I. Take t ≥ 0, and write Qt for (Q∩ [0, t])∪{t}.
Show that

(i) For every ǫ > 0, {s : 0 < s ≤ t, |f(s)− f(s−)| ≥ ǫ} is finite;
(ii) α =

∑
0<s≤t f(s)− f(s−)−med(−1, f(s)− f(s−), 1) is defined;

(iii) For every ǫ > 0, there is a finite set J ⊆ Qt such that |αI − α| ≤ ǫ whenever I ⊆ [0, t] is finite and
J ⊆ I.

(d) Let (Ω,Σ, µ) be a probability space and 〈Xt〉t≥0 a family of random variables defined everywhere on Ω
such that t 7→ Xt(ω) : [0,∞[ → R is càdlàg for every ω ∈ Ω. For ω ∈ Ω and t > 0 set Xt−(ω) = lims↑tXs(ω).
For ω ∈ Ω and t ≥ 0 and non-empty sets I ⊆ [0,∞[, set

Yt(ω) =
∑

0<s≤tXs(ω)−Xs−(ω)−med(−1, Xs(ω)−Xs−(ω), 1),

WI =
∑n−1
i=0 Xsi+1

−Xsi −med(−χΩ, Xsi+1
−Xsi , χΩ)

where 〈si〉i≤n is the increasing enumeration of I. for ω ∈ Ω, write V (ω) for the total variation of the function
s 7→ Ys(ω) : [0, t] → R. Take any t ≥ 0. Show that

(i) Yt : Ω → R is measurable;
(ii) writing It for the set of finite subsets of [0, t], Y •

t = limI↑It
W •

I for the topology of convergence in
measure on L0(µ);

(iii) V is measurable and finite-valued.

(e) Let uuu = 〈uσ〉σ∈Tf
be a a classical Lévy process. For finite sets I ⊆ [0,∞[ define wI by saying that

wI = 0 if I is empty and otherwise wI =
∑n−1
i=0 uši+1

− uši −med(−χ1, uši+1
− uši , χ1) where 〈si〉i≤n is the

increasing enumeration of I. For t ≥ 0 let It be the set of finite subsets of [0, t]. Show that
(i) yť = limI↑It

wI is defined for every t ≥ 0;
(ii) yyy = 〈yσ〉σ∈[0,∞[̌ is locally of bounded variation;
(iii) uť − yť has finite expectation for every t ≥ 0;
(iv) E(uť − yť) = tE(u1̌ − y1̌) for every t ≥ 0.

652Z Problem Is the Cauchy process, as described in 652Mc, a local martingale?

652 Notes and comments The ‘classical’ Lévy processes of 652F are the natural translation of the (real-
valued) Lévy processes of §455 into the language of this volume. What I call a Lévy process in 652C offers
a generalization. We then find ourselves doing some work in 652G-652H to show that the processes of 652C
have a weak form of the Markov property of 455U. For classical Lévy processes, it is enough to express the
ideas of 633M-633N in terms of càdlàg functions (652Yc-652Ye), giving us an easier route to 652I-652K. The
calculations are not trivial, but they are natural once you have come to terms with the fact that we really
do not have continuous sample paths except in very few cases, and consequently have to understand the
jumps Xs(ω)−Xs−(ω), as in 652Yd; compare 641N.
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However, the step from ‘classical Lévy process’ to ‘Lévy process’, as defined here, is more than a formality.
The point is that the independent-increment property changes from

whenever 0 ≤ t0 ≤ . . . ≤ tn then Xt1 −Xt0 , . . . , Xtn −Xtn−1
are independent (455Q)

to

vť − vš is independent of As whenever 0 ≤ s ≤ t.

The former version translates into

vť − vš is independent of {vš′ : 0 ≤ s′ ≤ s} whenever 0 ≤ s ≤ t;

it comes to the same thing for classical Lévy processes because in that context, in effect, As is defined as
the closed subalgebra generated by {vš′ : 0 ≤ s′ ≤ s}. If we want to move to more complex structures (for
instance, in order to look at an interaction between two different Lévy processes, as in multidimensional
Brownian motion) we need to make the distinction. We cannot take it for granted that a general Lévy process
〈vτ 〉τ∈Tb

will copy every feature of the associated classical Lévy process defined from the distributions λt of vť.
The culminating result of §455 was the strong Markov property of classical Lévy processes (Theorem 455U).
Applied to Brownian motion it was the basis of large parts of §§477-479. I have not found a corresponding
property of Lévy processes as defined in 652C.

Lévy processes have been studied intensively, and in this section I have been content to stop at the semi-
martingale property (652K), since this belongs to the basic classification scheme for stochastic processes
which I am following in this volume. But you should be aware that the analysis in 652G-652K amounts
to a few baby steps towards a general description of Lévy processes, the Lévy-Khintchine and Lévy-Itô
decompositions (Sato 13, §8 and §§19-20). As a very special case, I offer a detailed analysis of the Cauchy
distribution (652M-652O). Regarded as a classical Lévy process, as in 652M, this is straightforward enough
to have been an exercise in §455. But the Lévy-Itô decomposition seeks to describe it in terms of its ‘Lévy
measure’ µ in 652N, and to reach the final formula

ω(t) =
∑∞
n=0 ξnt(ω) for µ̈-almost every ω

in 652Nm I think we must do a good deal more work. Note that the sum here is a conditional sum. We really
do have to take the terms in an appropriate order, biggest jumps first. Nearly always in this volume we take
things as they arrive, in temporal order. But in the present case, if 0 < s ≤ t, ω(s) =

∑∞
n=0 ξns(ω) is the

sum of a subsequence of 〈ξnt(ω)〉n∈N, summing those jumps which occurred at or before the time s, not (for
instance) an initial segment. When we look at the whole jump set Jump(ω) for a measure-generic ω ∈ Cdlg,
all its points are isolated, but its closure in [−∞,∞] × [0,∞] is Jump(ω) ∪ {(0, t) : t ∈ [0,∞]} ∪ {(α,∞) :
α ∈ [−∞,∞]}, and it has no useful natural enumeration.

I dare say you have learnt how to calculate the integrals of 652Mb by contour integration. I offer the
alternative route through Fourier transforms just because I gave what I hope was a correct and reasonably
complete argument for the Fourier transform inversion theorem in §283, and I have omitted contour inte-
gration entirely from this treatise because of the difficulty of presenting the Jordan Curve Theorem in the
style I have chosen. But if you look at the contours required for the results here you will have no difficulty
in describing approximating polygons and triangulations in elementary geometric terms, so that a more or
less elementary version of the Residue Theorem is adequate.

I go through the details of 652O partly because they are striking (and include a solution to 478Ym11),
but mostly to offer a different view of the jumps in the Cauchy process. I do not think it is obvious from
the formula in 652Ma that the Cauchy process is discontinuous (652Md). In fact the analysis in 652N shows
that it is a ‘pure jump’ process, that is, almost every sample path is expressible as the sum of its jumps
– provided, that is, that we can express the sum in the right way, because it is typically not of bounded
variation, and we do not have a saltus function of the type in 226B. The method of 652N clearly has a
potential for generalization to other probability measures on R × [0,∞[. But in the absence of the general
theory of Lévy processes and Lévy measures, as described in Sato 13, it is bound to look a bit arbitrary,
even though an elementary scaling argument shows that if there is an expression in terms of a Poisson
point process as in 652Nc, then the underlying measure must look like the measure µ of 652Na. Also, of
course, this exposition leans rather heavily on §495. On the other hand, once we have worked through
the formulae of 652O, we can see that the jumps in the paths 〈Z̃t(ω)〉t≥0 there correspond to jumps in
gt(ω0) = inf{s : ω0(s) > t} for one-dimensional Brownian paths ω0. Now we know that almost every ω0

11Later editions only.
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is continuous and nowhere differentiable (477K). It follows that it will have many local maxima, and we
can expect it to happen (countably and densely) often that the hitting time to a value t is a strict local
maximum of ω0, so that lims↑t gs(ω0) will be strictly less than gt(ω0).

Version of 22.9.20/30.9.23

653 Brownian processes

In 624F, we saw that the quadratic variation of Brownian motion is the identity process. In fact, under
suitable conditions, this characterizes Brownian motion among local martingales (653F). Elaborating on the
argument, we can show that (again under suitable conditions) general locally jump-free local martingales
can be described in terms of Brownian motion and a time-change of the type considered in §635.

653A Notation As always, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure;
L0 = L0(A) will be given its topology of convergence in measure, defined by the F-norm θ where θ(w) =
E(|w| ∧ χ1A) for w ∈ L0. L1

µ̄ ⊆ L0 will be the L-space defined by µ̄.

For t ∈ T , ť ∈ T will be the constant stopping time at t; for τ ∈ T , Pτ will be the conditional expectation
associated with Aτ . If S is a sublattice of T , I(S) will be the set of finite sublattices of S.

I will use the symbols
∫

for Riemann-sum integrals and S
∫

for S-integrals. If S is a sublattice of T then

1(S) will be the constant process with domain S and value χ1A. When T = [0,∞[, ιιι = 〈ιτ 〉τ∈Tf
will be the

identity process.

653B Distributions (a) If k ≥ 1 and u1, . . . , uk ∈ L0, we have a sequentially order-continuous function
E 7→ [[(u1, . . . , uk) ∈ E]] from the Borel σ-algebra Bk of Rk to A (619E). This leads us to a Borel probability
measure E 7→ µ̄[[u ∈ E]] : Bk → [0, 1]; the completion of this measure is a Radon probability measure νU on
Rk (256C), which I will call the distribution of U = (u1, . . . , uk) (cf. 364Yo).

Note that if (A, µ̄) is the measure algebra of a probability space (Ω,Σ, µ), and the identification of L0(A)
with L0(µ) represents ui as f

•

i , where fi : Ω → R is measurable for 1 ≤ i ≤ k, then the distribution νU is just
the joint distribution of the sequence (f1, . . . , fk) of random variables as described in 271B. If h : Rk → R

is a bounded Borel measurable function, then E(h̄(U)) =
∫
h dνU . PPP Set

W = {h : h is a bounded Borel measurable function,

E(h̄(U)) and

∫
h dνU are defined, finite and equal}.

If h = χE where E ∈ Bk, then h ∈ W by the definitions of h̄ (619Eb) and νU . Since W is a linear space
closed under limits of uniformly bounded monotonic sequences (use 271E and 619Ef), it contains all bounded
Borel measurable functions. QQQ

(b) We can now speak of the corresponding characteristic function ϕνU where

ϕνU (y) =

∫
eiy .xνU (dx) =

∫
cos(y .x)νU (dx) + i

∫
sin(y .x)νU (dx)

= E(cos(η1u1 + . . .+ ηkuk)) + iE(sin(η1u1 + . . .+ ηkuk))

for y = (η1, . . . , ηk) ∈ Rk, and I will call this the characteristic function of U = (u1, . . . , uk), following
285Ab. If now V ∈ (L0)k has the same characteristic function as U , it must have the same distribution as
U , by 285M.

(c) If u1, . . . , uk are stochastically independent (367W), then the distribution νU of U = (u1, . . . , uk) is
the product of the distributions νui

of ui (272G).

653C Lemma Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S a locally jump-free virtually local
martingale such that its quadratic variation vvv∗ is an L∞-process. Writing v↓ for the starting value of vvv,

c© 2014 D. H. Fremlin
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zzz1 = sin(vvv − v↓1(S))× exp( 12vvv
∗), zzz2 = cos(vvv − v↓1(S))× exp( 12vvv

∗)

are martingales.

proof I follow the line of argument in 651B-651E.

(a) To begin with (down to the end of (c)) I will suppose that S is finitely full. As in 651C, vvv is a local
integrator; so v↓ is defined. As in 651B, vvv∗ has domain S and is a locally jump-free local integrator (617L).

As in 651D, vvv − v↓1(S) is a virtually local martingale with quadratic variation vvv∗, so it will be enough to
deal with the case v↓ = 0.

(b)(i) We can apply 619K with h(x, y) = sinx exp( 12y) and VVV = (vvv,vvv∗) to see that

zzz1 = iih̄VVV (1
(S)) = iivvv(cos(vvv)× exp( 12vvv

∗))

+
1

2
iivvv∗(sin(vvv)× exp( 12vvv

∗))

− 1

2
iivvv∗(sin(vvv)× exp( 12vvv

∗))

+
1

2
ii[vvv ∗

vvv∗](cos(vvv)× exp( 12vvv
∗))

+
1

8
ii(vvv∗)∗(sin(vvv)× exp( 12vvv

∗))

= iivvv(cos(vvv)× exp( 12vvv
∗)) = iivvv(zzz2)

because [vvv
∗
vvv∗] and (vvv∗)∗ are both the zero process, by 624C.

(ii) Similarly, taking g(x, y) = cosx exp( 12y), the starting value of zzz2 = ḡVVV is χ1, so

zzz2 = 1(S) + iiḡVVV (1
(S)) = 1(S) − iivvv(sin(vvv)× exp( 12vvv

∗)) = 1(S) − iivvv(zzz1).

(c) By 623O, zzz1 and zzz2 are virtually local martingales; because S is finitely full, they are approximately
local martingales (623K(b-iii)). Express vvv∗ as 〈v∗σ〉σ∈S . If τ ∈ S, then there is an M ≥ 0 such that
v∗τ ≤ M1(S), so that sup(|zzz1|↾S ∧ τ) and sup(|zzz2|↾S ∧ τ) are both at most eM1(S). But this means that
zzz1↾S ∧ τ and zzz2↾S ∧ τ are uniformly integrable; as τ is arbitrary, zzz1 and zzz2 are martingales (623Na).

(d) Thus the result is true if S is finitely full. In general, write Ŝf for the finitely-covered envelope of S,
and v̂vv, v̂vv∗, ẑzz1 and ẑzz2 for the fully additive extensions of vvv, vvv∗, zzz1 and zzz2 to Ŝf . As in (a-ii) of the proof of
651E,

ẑzz1 = sin(v̂vv − v↓1(Ŝf ))× exp( 12 v̂vv
∗), ẑzz2 = cos(v̂vv − v↓1(Ŝf ))× exp( 12 v̂vv

∗),

while 〈v̂∗τ 〉τ∈Ŝf
= v̂vv∗ is an L∞-process because if τ ∈ Ŝf there are a σ ∈ S and an M ≥ 0 such that τ ≤ σ

and v̂∗σ ≤M1Ŝf , in which case v̂∗τ ≤M1Ŝf . So (a)-(c) tell us that ẑzz1 and ẑzz2 are martingales, and it follows
at once that zzz1 = ẑzz1↾S and zzz2 = ẑzz2↾S are martingales.

653D Lemma Let S be a sublattice of T with least element τ and greatest element τ ′, and vvv = 〈vσ〉σ∈S a
locally jump-free virtually local martingale with quadratic variation vvv∗ = 〈v∗σ〉σ∈S . If vτ = 0 and v∗τ ′ = γχ1
for some γ > 0, then vτ ′ has a normal distribution with mean 0 and variance γ and is independent of Aτ .

proof (a) Take any non-zero a ∈ Aτ . Then

E(χa× sin(vτ ′)) = E(χa× Pτ (sin(vτ ′)))

(because a ∈ Aτ )

= e−γ/2E(χa× Pτ (sin(vτ ′)× exp( 12v
∗
τ ′)))

= e−γ/2E(χa× sin(vτ )× exp( 12v
∗
τ ))

(653C)
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= 0,

and similarly

E(χa× cos(vτ ′)) = e−γ/2E(χa× cos(vτ )) = e−γ/2µ̄a.

Applying the same argument to the virtually local martingale αvvv with quadratic variation α2vvv∗, we see that

E(χa× sin(αvτ ′)) = 0, E(χa× cos(αvτ ′)) = e−γα
2/2µ̄a

for any α ∈ R.

(b) Setting a = 1, this means that the characteristic function

α 7→ E(cos(αvτ ′)) + iE(sin(αvτ ′))

of the distribution of vτ ′ is just α 7→ e−γα
2/2, which is the characteristic function of the normal distribution

with mean 0 and variance γ (285E); by 285Ma, vτ ′ must be normally distributed with mean 0 and variance
γ.

(c) Next, µ̄(a ∩ [[vτ ′ > β]]) = µ̄a · µ̄[[vτ ′ > β]] whenever a ∈ Aτ and β ∈ R. PPP If a = 0 this is trivial.

Otherwise, take B to be the principal ideal of A generated by a. Set ν̄ =
1

µ̄a
µ̄↾B, and consider w ∈ L0(B)

defined by saying that [[w > α]] = a ∩ [[vτ ′ > α]] for every α ∈ R. Now we see that

Eν̄(sin(αw)) =
1

µ̄a
Eµ̄(χa× sin(αvτ ′)) = 0,

Eν̄(cos(αw)) =
1

µ̄a
Eµ̄(χa× cos(αvτ ′)) = e−γα

2/2

for α ∈ R. But this means that w and vτ ′ have the same characteristic function and the same distribution,
so that

µ̄(a ∩ [[vτ ′ > β]]) = µ̄a · ν̄[[w > β]] = µ̄a · µ̄[[vτ ′ > β]]. QQQ

As β is arbitrary, vτ ′ is independent of Aτ , as required.

653E Lemma Let S be a sublattice of T with least element τ and greatest element τ ′, and vvv = 〈vσ〉σ∈S
a locally jump-free virtually local martingale with quadratic variation vvv∗ = 〈v∗σ〉σ∈S , starting from vτ = 0.
If τ = τ0 ≤ . . . ≤ τk in S and v∗τj = γjχ1 for j ≤ k, where 0 = γ0 ≤ γ1 ≤ . . . ≤ γk, then (vτ0 , . . . , vτk) has a

centered Gaussian distribution with covariance matrix 〈γmin(j,l)〉j,l≤k (definition: 456A).

proof For j ≤ k, write wj for vτj .

(a) If 0 ≤ j < k and γj < γj+1, wj+1 −wj has a normal distribution with mean 0 and variance γj+1 − γj
and is independent of Aτj . PPPWrite Sj for S∩[τj , τj+1] and set uσ = vσ−wj for σ ∈ Sj . Then uuu = 〈uσ〉σ∈Sj

is
a jump-free local martingale, being the difference of the jump-free local martingale 〈vσ〉σ∈Sj

and the constant
process 〈wj〉σ∈Sj

. Also, defining stopping-time intervals c(σ, σ′) as in 611J and the interval function ∆uuu as
in 613Cc, we have

(∆uuu)(c(σ, σ′)) = uσ′ − uσ = (∆vvv)(c(σ, σ′))

when σ ≤ σ′ in Sj , so if we write uuu∗ = 〈u∗σ〉σ∈Sj
for the quadratic variation of uuu,

u∗τj+1
=

∫

Sj

(duuu)2 =

∫

Sj

(dvvv)2

=

∫

S∧τj+1

(dvvv)2 −
∫

S∧τj
(dvvv)2 = v∗τj+1

− v∗τj = (γj+1 − γj)χ1.

By 653D, wj+1 − wj = uτj+1
is normally distributed with mean 0 and variance γj+1 − γj and independent

of Aτj . QQQ
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(b) On the other hand, if 0 ≤ j < k and γj = γj+1, wj+1 = wj , by 624D, so trivially wj+1 − wj
is independent of Aτj , and in the language of §456 has a centered Gaussian distribution with covariance
matrix (0).

(c) Now 〈wj+1 −wj〉j<k is stochastically independent. PPP Suppose that αj ∈ R for j < k. Then, for each
j < k, infj′<j [[wj′+1 − wj′ > αj′ ]] ∈ Aτj , so

µ̄( inf
j′≤j

[[wj′+1 − wj′ > αj′ ]]) = µ̄([[wj+1 − wj > αj ]] ∩ inf
j′≤j

[[wj′+1 − wj′ > αj′ ]])

= µ̄([[wj+1 − wj > αj ]]) · µ̄( inf
j′≤j

[[wj′+1 − wj′ > αj′ ]]).

Inducing on j, we see that

µ̄(infj′≤j [[wj′+1 − wj′ > αj′ ]]) =
∏
j′≤j µ̄([[wj′+1 − wj′ > αj′ ]])

for j < k, and in particular

µ̄(infj<k [[wj+1 − wj > αj ]]) =
∏
j<k µ̄([[wj+1 − wj > αj ]]).

As α0, . . . , αk−1 are arbitrary, 〈wj+1 − wj〉j<k is stochastically independent. QQQ

(d) It follows that the distribution of 〈wj+1−wj〉j<k is the product of the distributions of the wj+1−wj
(653Bc), and is a centered Gaussian distribution with covariance matrix 〈βjj′〉j,j′<k, where βjj = γj+1 − γj
and βjj′ = 0 if j 6= j′ (see 456Be).

(e) Consequently

〈wj〉j≤k = 〈∑j−1
j′=0 wj′+1 − wj′〉j≤k

has a centered Gaussian distribution (456Ba), and its covariance matrix is

〈
E(wj × wl)

〉
j,l≤k =

〈 j−1∑

j′=0

l−1∑

l′=0

E((wj′+1 − wj′)× (wl′+1 − wl′))
〉
j,l≤k

=
〈 j−1∑

j′=0

l−1∑

l′=0

βj′l′
〉
j,l≤k

=
〈min(j,l)−1∑

j′=0

γj′+1 − γj′
〉
j,l≤k = 〈γmin(j,l)〉j,l≤k

as claimed.

653F Theorem (‘Lévy’s characterization of Brownian motion’) Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T )
be a right-continuous real-time stochastic integration structure and vvv = 〈vτ 〉τ∈Tf

a locally jump-free local
martingale such that

(α) the quadratic variation of vvv is the identity process,
(β) A is the closed subalgebra of itself defined by {vť : t ≥ 0},
(γ) for each t ≥ 0, At is the closed subalgebra of A defined by {vš : s ≤ t}.

Then (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T , vvv) is isomorphic to Brownian motion as defined in 612T.

proof (a) Let (C, ν̄, 〈Cr〉r≥0,Q,www) be Brownian motion as described in 612T, writing Q for the set of
stopping times associated with the filtration 〈Cr〉r≥0. For t ≥ 0 and α ∈ R, set atα = [[vť > α]] and
ctα = [[wť > α]]. Then

µ̄(infi≤n atiαi
) = ν̄(infi≤n ctiαi

)

whenever t0, . . . , tn ≥ 0 and α0, . . . , αn ∈ R. PPP Of course we can suppose that 0 = t0 ≤ . . . ≤ tn. In this
case, Lemma 653E tells us that (vť0 , . . . , vťn) has a centered Gaussian distribution with covariance matrix
〈min(ti, tj)〉i,j≤n. But of course this is also the distribution of (wť0 , . . . , wťn) (477Db, 456Bb). So

µ̄(infi≤n atiαi
) = µ̄(infi≤n [[vťi > αi]]) = µ̄(infi≤n [[wťi > αi]]) = ν̄(infi≤n ctiαi

). QQQ
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(b) It follows that there is a measure algebra isomorphism φ : C → A such that φ(ctα) = atα whenever
t ≥ 0 and α ∈ R. PPP Of course (a) tells us that if (s, α) and (t, β) are such that csα = ctβ , then asα = atβ .
So (a) can be interpreted as saying that if C = {ctα : r ≥ 0, α ∈ R}, we have a function φ0 : C → A defined
by saying that φ0(ctα) = atα for all t and α, and ν̄(infi≤n di) = µ̄(infi≤n φ0di) for all d0, . . . , dn ∈ C. By
324P, φ0 has an extension to a measure-preserving Boolean homomorphism φ : D → A, where D is the
closed subalgebra of C generated by {ctα : t ≥ 0, α ∈ R}; but this is C itself, by 612Td. Moreover, φ[C] will
be a closed subalgebra of A including φ0[C] = {atα : t ≥ 0, α ∈ R} (324Kb), so is the whole of A. Thus φ is
a surjective measure-preserving Boolean homomorphism; being measure-preserving, it is surely injective, so
is an isomorphism. QQQ

(c) Let Tφ : L0(C) → L0(A) be the f -algebra isomorphism corresponding to φ (612Af). Because φ(ctα) =
atα for all t and α, Tφwť = vť for every t ≥ 0.

(d) φ[Ct] = At for every t ≥ 0. PPP By 612T(d-ii), Ct is the closed subalgebra defined by {wš : s ≤ t}, so
φ[Ct] is the closed subalgebra defined by {Tφwš : s ≤ t} = {vš : s ≤ t} and is equal to At. QQQ

Thus φ is an isomorphism between (C, ν̄, 〈Ct〉t≥0) and (A, µ̄, 〈At〉t≥0) and therefore corresponds to an
isomorphism between (C, ν̄, 〈Ct〉t≥0,Q, 〈Cρ〉ρ∈Q) and (A, µ̄, 〈At〉t≥0, T , 〈Aτ 〉τ∈T ).

(e) It follows that if we define φ̂ : Q → T as in 634B, so that [[φ̂(ρ) > t]] = φ([[ρ > t]]) for ρ ∈ Q and t ≥ 0,
and set

v′τ = Tφwφ̂−1(τ)

for τ ∈ Tf , then vvv′ = 〈v′τ 〉τ∈Tf
, like www, will be locally near-simple. At the same time, (c) tells us that if Tc

is the lattice of constant stopping times, vvv′↾Tc = vvv↾Tc. Now Tc is a separating cofinal sublattice of the ideal
Tb of bounded stopping times (633Da), so vvv′↾Tb = vvv↾Tb (633F); as Tf is the covered envelope of Tb, vvv′ = vvv
(612Qa). Thus

vτ = Tφwφ̂−1(τ) for τ ∈ Tf , vφ̂(ρ) = Tφwρ for ρ ∈ Qf ,

and φ̂ induces an isomorphism between (C, ν̄, 〈Ct〉t≥0,Q,www) and (A, µ̄, 〈At〉t≥0, T , vvv).

653G Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member, vvv = 〈vτ 〉τ∈S a locally jump-free local martingale such that vminS = 0, and vvv∗ = 〈v∗τ 〉τ∈S
the quadratic variation of vvv. Suppose that for every n ∈ N there is a τ ∈ S such that v∗τ ≥ nχ1A. Let
(C, ν̄, 〈Cr〉r≥0,Q,www) be Brownian motion as described in 612T, again writing Q for the set of stopping times
associated with 〈Cr〉r≥0. Express www as 〈wσ〉σ∈Qf

. Then there are φ, π̂ and Q′ such that

φ : C → A is a measure-preserving Boolean homomorphism,
π̂ : Q → T is a right-continuous lattice homomorphism,
Q′ = {ρ : ρ ∈ Qf , π̂(ρ) ∈ S} is an ideal in Q including the ideal Qb of bounded stopping

times,
taking Tφ : L0(C) → L0(A) to be the f -algebra homomorphism associated with φ and 〈ιρ〉ρ∈Qf

to be the identity process on Qf , vπ̂(ρ) = Tφ(wρ) and v
∗
π̂(ρ) = Tφ(ιρ) for every ρ ∈ Q′,

if uuu = 〈uτ 〉τ∈S and zzz = 〈zρ〉ρ∈Q′ are locally moderately oscillatory processes such that Tφ(zρ) =
uπ̂(ρ) for every ρ ∈ Q′, then

∫
S∧τ uuu dvvv = Tφ(

∫
Q∧ρ zzz dwww) whenever τ ∈ S and ρ ∈ Q′ are such that

v∗τ = Tφ(ιρ).

proof (a)(i) Because vvv is jump-free, vvv∗ is jump-free (618T). It follows that for every r ≥ 0 there is a τ ∈ S
such that v∗τ = rχ1A. PPP If r = 0 we can take τ = minS. Otherwise, by hypothesis, there is a τ ′ ∈ S such
that v∗τ ′ ≥ rχ1A. By 631Rb, applied to the jump-free process vvv∗↾S ∧ τ ′, there is a τ ∈ [minS, τ ′] such that
‖v∗τ‖∞ ≤ r and [[v∗τ < r]] ⊆ [[τ = τ ′]]; but this means that [[v∗τ < r]] = 0 and v∗τ = rχ1A. QQQ

(ii) For r ≥ 0, set

πr = inf{τ : τ ∈ S, v∗τ ≥ sχ1A for some s > r};
because S is order-convex and has a least element, πr ∈ S. By 632H, v∗πr

≥ rχ1A; by (i) just above,
v∗πr

≤ sχ1A whenever r < s, so v∗πr
= rχ1A for every r ≥ 0. Of course πr ≤ πs whenever 0 ≤ r ≤ s, while

πr = infs>r πs for every r ≥ 0, that is, 〈πr〉r≥0 is right-continuous in the sense of 635Cd.
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(b)(i) For r ≥ 0 and α ∈ R, set arα = [[vπr
> α]], crα = [[wř > α]]. Then

µ̄(infi≤n ariαi
) = ν̄(infi≤n criαi

)

whenever r0, . . . , rn ≥ 0 and α0, . . . , αn ∈ R. PPP Of course we can suppose that r0 ≤ . . . ≤ rn. In this case,
Lemma 653E tells us that (0, vπr0

, . . . , vπrn
) has a centered Gaussian distribution with covariance matrix

〈min(ri, rj)〉−1≤i,j≤n, counting 0 as r−1. But of course this is also the distribution of (0, wř0 , . . . , wřn). So

µ̄(infi≤n ariαi
) = µ̄(infi≤n [[vπri

> αi]]) = µ̄(infi≤n [[wři > αi]]) = ν̄(infi≤n criαi
). QQQ

(ii) It follows that there is a measure-preserving Boolean homomorphism φ : C → A such that φ(crα) =
arα whenever r ≥ 0 and α ∈ R. PPP Of course (i) tells us that if (r, α) and (s, β) are such that crα = csβ ,
then arα = asβ . So (i) can be interpreted as saying that if C = {crα : r ≥ 0, α ∈ R}, we have a function
φ0 : C → A defined by saying that φ0(crα) = arα for all r and α, and µ̄(φ0(infi≤n di)) = ν̄(infi≤n φ0(di)) for
all d0, . . . , dn ∈ C. By 324P again, φ0 has an extension to a measure-preserving Boolean homomorphism
φ : D → A, where D is the closed subalgebra of C generated by {crα : r ≥ 0, α ∈ R}; but this is C itself, by
612Td. QQQ

Looking at the associated homomorphism Tφ : L0(C) → L0(A), we see that

[[Tφ(wř) > α]] = φ([[wř > α]]) = [[vπr
> α]]

whenever r ≥ 0 and α ∈ R, so Tφ(wř) = vπr
for every r.

(c)(i) Returning to (a-ii), 635B-635C tell us that if we set Br = Aπr
for r ≥ 0, we have a right-continuous

filtration 〈Br〉r∈[0,∞[ of closed subalgebras of A, and that if R is the lattice of stopping times adapted to
〈Br〉r∈[0,∞[, we have a lattice homomorphism π : R → T such that π(ř) = πr for every r ≥ 0 and π is
right-continuous. Note that in the formula ‘π(ř)’ here, ř must be interpreted as a constant stopping time
in R, which in a formal sense is not the same thing as a constant stopping time in Q, as examined in (b).
Recall that [[σ = σ′]] ⊆ [[π(σ) = π(σ′)]] for all σ, σ′ ∈ R (635Cc).

Note next that π(σ) ∈ S for every σ ∈ Rb. PPP The set R′ = {σ : σ ∈ R, π(σ) ∈ S} is an order-convex
sublattice of R (635D(a-i), 635E(h-i)). We know that πr ∈ S, so ř ∈ R′ for every r ≥ 0; since minR = 0̌
belongs to R′, Rb ⊆ R′. QQQ Moreover,

vπ(ř) = vπr
= Tφ(wř)

for every r ≥ 0, by (b-ii). (I see that I am employing the notation ř in both senses here.)

(ii) If r ≥ 0 then Cr is the closed subalgebra of C generated by {csα : s ∈ [0, r], α ∈ R} (612T(d-ii)).
Consequently φ[Cr] is the closed subalgebra of A generated by {asα : s ∈ [0, r], α ∈ R} (314H) and is included
in Aπr

. Being measure-preserving, φ is order-continuous and injective. We therefore have an injective lattice

homomorphism φ̂ : Q → R associated with φ (634B again), which is order-continuous because 〈Cr〉r∈[0,∞[

is right-continuous (632C(a-i), 634Be). As noted in 634B(c-i) and 634B(b-iii), [[φ̂(ρ) = φ̂(ρ′)]] = φ([[ρ = ρ′]])
for all ρ, ρ′ ∈ Q, and φ̂(ρ) ∈ Rf whenever ρ ∈ Qf . As in 634Bf, ιφ̂(ρ) = Tφ(ιρ) for ρ ∈ Qf .

(d)(i) Set D = {σ : σ ∈ Rb, v
∗
π(σ) = ισ}. Then D = Rb. PPP If σ = ř, π(σ) = πr and ισ = rχ1A, so σ ∈ D

by (a-ii). If σ ∈ Rb and σ
′ ∈ D, then

[[v∗π(σ) = ισ]] ⊇ [[v∗π(σ) = v∗π(σ′)]] ∩ [[ισ = ισ′ ]] ⊇ [[π(σ) = π(σ′)]] ∩ [[σ = σ′]] = [[σ = σ′]]

by 635Cc. So if σ ∈ Rb belongs to the full envelope of D, σ ∈ D; in particular, as Rb is a sublattice of R,
D is finitely full. If A ⊆ D is non-empty and downwards-directed and σ = inf A, then π(σ) = infσ′∈A π(σ′)
and

v∗π(σ) = infσ′∈A v∗π(σ′) = infσ′∈A ισ′ = ισ

because vvv∗ is an order-continuous lattice homomorphism (632H). By 633G, D = Rb. QQQ
It follows that π is injective. PPP If σ, σ′ are distinct members ofR, there is an r ≥ 0 such that σ∧ř 6= σ′∧ř;

now

v∗π(σ)∧πr
= v∗π(σ∧ř) = ισ∧ř 6= ισ′∧ř 6= v∗π(σ′)∧πr

so π(σ) ∧ πr 6= π(σ′) ∧ πr and π(σ) 6= π(σ′). QQQ
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(ii) Set π̂ = πφ̂ : Q → T . As both φ̂ and π are injective right-continuous lattice homomorphisms, so
is π̂. For r ≥ 0, π̂(ř) = πr; in particular, π̂(minQ) = minS; consequently Q′ = π̂−1[S] is an order-convex
sublattice of Qf containing minQ, that is, is an ideal in Qf . Also Qb ⊆ Q′.

Now vπ̂(ρ) = Tφ(wρ) for every ρ ∈ Qb. PPP This time, set D′ = {ρ : ρ ∈ Qb, vπ̂(ρ) = Tφ(wρ)}. If ρ ∈ Qb

and ρ′ ∈ D′, then

[[vπ̂(ρ) = Tφ(wρ)]] ⊇ [[vπ̂(ρ) = vπ̂(ρ′)]] ∩ [[Tφ(wρ) = Tφ(wρ′)]]

⊇ [[π(φ̂(ρ)) = π(φ̂(ρ′))]] ∩ φ([[wρ = wρ′ ]])

⊇ [[φ̂(ρ) = φ̂(ρ′)]] ∩ φ([[wρ = wρ′ ]]) = φ([[ρ = ρ′]]).

So if ρ ∈ Qb belongs to the full envelope of D′,

[[vπ̂(ρ) = Tφ(wρ)]] ⊇ supρ′∈D′ φ([[ρ = ρ′]]) = φ(supρ′∈D′ [[ρ = ρ′]]) = φ(1C) = 1A

and vπ̂(ρ)) = Tφ(wρ), that is, ρ ∈ D′. In particular, D′ is finitely full. By (d), it contains all constant
stopping times. If A ⊆ D′ is non-empty and downwards-directed and has infimum ρ, then {π̂(ρ′) : ρ′ ∈ A}
is downwards-directed and has infimum π̂(ρ), so

vπ̂(ρ) = lim
ρ′↓A

vπ̂(ρ′)

(because vvv is locally near-simple)

= lim
ρ′↓A

Tφ(wρ′) = Tφ( lim
ρ′↓A

wρ′)

(because Tφ is continuous for the topologies of convergence in measure on L0(C) and L0(A) (613Bn))

= Tφ(wρ)

because www is locally near-simple. So inf A ∈ D′. Consequently D′ = Qb ⊆ D′, by 633G again. QQQ

(e) We are at last ready to look at some integrals.

(i) Taking uuu and zzz as in the last clause of the statement of this theorem, Sπ̂[I](uuu, dvvv) = Tφ(SI(zzz, dwww))

for every I ∈ I(Qb). PPP Because π̂↾I : I → φ̂[I] is an injective lattice homomorphism, π̂[J ] will be a maximal
totally ordered subset of π̂[I] whenever J is a maximal totally ordered subset of I. So if 〈ρi〉i≤n linearly
generates the I-cells, 〈π̂(ρi)〉i≤n will linearly generate the π̂[I]-cells (see 611L), and

Sπ̂[I](uuu, dvvv) =

n−1∑

i=0

uπ̂(ρi) × (vπ̂(ρi+1) − vπ̂(ρi)) =

n−1∑

i=0

Tφ(zρi)× (Tφ(wρi+1
)− Tφ(wρi))

= Tφ(

n−1∑

i=0

zρi × (wρi+1
− wρi)) = Tφ(SI(zzz, dwww)). QQQ

(ii) Set S ′ = π̂[Q′]. Then
∫
S′∧π̂(ρ) uuu dvvv = Tφ(

∫
Q∧ρ zzz dwww) for every ρ ∈ Qb. PPP Because π̂ : Q′ → S is

an injective lattice homomorphism, π̂↾Q∧ ρ is a lattice isomorphism between Q∧ ρ = Q′ ∧ ρ = Qb ∧ ρ and
S ′ ∧ π̂(ρ), so

∫

S′∧π̂(ρ)
uuu dvvv = lim

J↑I(S′∧π̂(ρ))
SJ(uuu, dvvv) = lim

I↑I(Q∧ρ)
Sπ̂[I](uuu, dvvv)

= lim
I↑I(Q∧ρ)

Tφ(SI(zzz, dwww)) = Tφ( lim
I↑I(Q∧ρ)

SI(zzz, dwww)) = Tφ(

∫

Q∧ρ
zzz dwww). QQQ

(iii) Again suppose that ρ ∈ Qb. Then S ′ ∧ π̂(ρ) vvv-separates S ∧ π̂(ρ)). PPP Suppose that τ ≤
τ ′ ≤ π̂(ρ) and vτ 6= vτ ′ . Then v∗τ 6= v∗τ ′ , by 624E applied to vvv↾[τ, τ ′]. So there is an r ≥ 0 such that
[[v∗τ < r]] ∩ [[v∗τ ′ > r]] 6= 0. But v∗πr

= rχ1A, so [[v∗τ < v∗πr
]] ∩ [[v∗τ ′ > v∗πr

]] 6= 0. Since [[πr ≤ τ ]] ⊆ [[v∗πr
≤ v∗τ ]]
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(614Ib), [[τ < πr]] ⊇ [[v∗τ < v∗πr
]]; similarly, [[πr < τ ′]] ⊇ [[v∗πr

< v∗τ ′ ]]. It follows that, setting τ̄ = πr ∧ π̂(ρ),
[[τ ≤ τ̄ ]] ∩ [[τ̄ < τ ′]] 6= 0. And

τ̄ = πr ∧ π̂(ρ) = π̂(ř ∧ ρ) ∈ S ′ ∧ π̂(ρ).
Thus the conditions of 633Sa are satisfied, and S ′ ∧ π̂(ρ) vvv-separates S ∧ π̂(ρ)). QQQ

Of course S ′ contains π̂(ρ), so is cofinal with S ∧ π̂(ρ), and we can use 633Ka to see that

Tφ(
∫
Q∧ρ zzz dwww) =

∫
S′∧π̂(ρ) uuu dvvv =

∫
S∧π̂(ρ) uuu dvvv.

(iv) Now suppose that we are given ρ ∈ Qb and τ ∈ S such that v∗τ = Tφ(ιρ), as in the statement of
the theorem. Then v∗τ = v∗π̂(ρ), so vvv is constant on [τ ∧ π̂(ρ), τ ∨ π̂(ρ)] (624E) and

∫
S∧τ uuu dvvv =

∫
S∧τ∧π̂(ρ) uuu dvvv =

∫
S∧π̂(ρ) uuu dvvv = Tφ(

∫
Q∧ρ zzz dwww).

(v) Finally, suppose we are told only that ρ ∈ Q′, τ ∈ S and v∗τ = Tφ(ιρ). Set τ
′ = supr≥0 τ ∧πr. Then

v∗τ ′ = supr≥0 v
∗
τ ∧ v∗πr

= supr≥0 v
∗
τ ∧ rχ1A = v∗τ ,

so vvv is constant on [τ ′, τ ]. Now

v∗τ∧πr
= v∗τ ∧ rχ1A = Tφ(ιρ) ∧ rχ1A = Tφ(ιρ ∧ rχ1C) = Tφ(ιρ∧ř)

for each r, so

∫

S∧τ
uuu dvvv =

∫

S∧τ ′

uuu dvvv = lim
r→∞

∫

S∧τ∧πr

uuu dvvv

(because iivvv(uuu) is locally jump-free (618R))

= lim
r→∞

Tφ(

∫

Q∧ρ∧ř
zzz dwww) = Tφ( lim

r→∞

∫

Q∧ρ∧ř
zzz dwww) = Tφ(

∫

Q∧ρ
zzz dwww).

This completes the proof.

653H Remarks This theorem has been a strenuous journey through a tangle of technicalities. It is
attempting to say that any locally jump-free local martingale is a kind of time-changed version of Brownian
motion, and that integration with respect to such a martingale can sometimes be reduced to integration
with respect to Brownian motion. The key is in part (b) of the proof. If we pick the stopping times πr
correctly, we can get a process 〈vπr

〉r≥0 which has the same distribution as 〈wr〉r≥0 and can therefore be
thought of as a version of Brownian motion. The measure-preserving homomorphism φ is supposed to give
a structural foundation for this thought. Being an injective Boolean homomorphism, it represents C as a
closed subalgebra of A. We have to check that Cr can now be identified with a subalgebra of Aπr

, and we
find that this identifies the bounded stopping times adapted to 〈Cr〉r∈[0,∞[ with a vvv-separating sublattice of
domvvv, so that the image of www determines vvv. But here we come to something important. A can be a much
larger algebra than C. I do not mean just that it can have arbitrarily large Maharam type, which is what
I usually meant by ‘large’ measure algebra in Volumes 3 and 5. From the point of view of the stochastic
processes it supports, what matters more is that there can be large subalgebras of A which are stochastically
independent of the image of C. For instance, A may have been set up to model a family of more or less
independent martingales – e.g., Brownian motion in Rn where n > 1 – and there does not have to be any
natural way of simultaneously reducing them to a single copy of one-dimensional Brownian motion.

It is this potential complication which makes the final clause on integration so involved; while φ, π̂ and
Q′ all have constructive definitions, there is no straightforward way of getting from uuu to zzz or vice versa, and
τ does not have to be π̂(ρ). Given the process uuu, for instance, we should like to set zρ = T−1

φ uπ̂(ρ), but this

won’t work unless (at least) uπ̂(ρ) ∈ L0(φ[Cρ]) for enough ρ. (See 653Xb.) Or given the process zzz, there will
be an indeterminacy in uuu on any interval [τ, τ ′] on which vvv∗ (and therefore vvv) is constant. Moreover, even
if all these difficulties have been resolved, there is no promise that the required calculations, beginning with
the πr of part (a) of the proof, will be manageable; and in many important cases, we want to compute an
integral

∫
S∧τ uuu dvvv where τ is unconnected with φ[C], and this theorem gives no help at all.
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Nevertheless, it tells us that it will always be worth looking at the possibility of describing a given
jump-free martingale in terms of Brownian motion (see 653Yb), and there are useful special cases in which
simplifications are possible, as in the following.

653I Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member, vvv = 〈vτ 〉τ∈S a locally jump-free local martingale such that vminS = 0, and vvv∗ = 〈v∗τ 〉τ∈S
the quadratic variation of vvv. Suppose that for every n ∈ N there is a τ ∈ S such that v∗τ ≥ nχ1A. Let
(C, ν̄, 〈Cr〉r∈[0,∞[,Q,www) be Brownian motion. Then there are φ and π̂ such that

φ : C → A is a measure-preserving Boolean homomorphism,
π̂ : Q → T is a lattice homomorphism,
if f : R2 → R is continuous, then, taking Tφ : L0(C) → L0(A) to be the f -algebra homomor-

phism associated with φ,
∫
S∧π̂(ρ) f̄(vvv,vvv

∗) dvvv = Tφ(
∫
Q∧ρ f̄(www,ιιι) dwww) whenever ρ ∈ Qf ∩ π̂−1[S].

proof In 653G, set uuu = f̄(vvv,vvv∗), τ = π̂(ρ) and zzz = f̄(www↾Q′, ιιι↾Q′), where Q′ = {ρ′ : ρ′ ∈ Qf , π̂(ρ
′) ∈ S}.

Because f is continuous, these are near-simple, and

Tφzρ′ = Tφ(f̄(wρ′ , ιρ′)) = f̄(Tφwρ′ , Tφιρ′)

(619Eg)

= f̄(vπ̂(ρ′), v
∗
π̂(ρ′)) = uπ̂(ρ′)

for every ρ′ ∈ Q′, so the conditions of 653G are satisfied and we can read the result off.

653J Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with
a least member, vvv = 〈vτ 〉τ∈S a locally jump-free local martingale such that vminS = 0, and vvv∗ = 〈v∗τ 〉τ∈S
the quadratic variation of vvv. Suppose that for every n ∈ N there is a τ ∈ S such that v∗τ ≥ nχ1A. Let
(C, ν̄, 〈Cr〉r∈[0,∞[,Q,www) be Brownian motion. Then there are φ and π̂ such that

φ : C → A is a measure-preserving Boolean homomorphism,
π̂ : Q → T is a lattice homomorphism,
if h : R2 → R is locally bounded and Borel measurable then, taking Tφ : L0(C) → L0(A)

to be the f -algebra homomorphism associated with φ, S
∫
S∧π̂(ρ) h̄(vvv,vvv

∗) dvvv = Tφ( S
∫
Q∧ρ h̄(www,ιιι) dwww)

whenever ρ ∈ Qf ∩ π̂−1[S].

proof (a) Take φ, π̂, Tφ, τ and ρ as in 653I. Let H be the set of locally bounded Borel measurable
real functions on R2. Because vvv and www are locally jump-free and start at zero, they are equal to their
previsible versions vvv< and www< (641O) and are surely locally S-integrable (directly from the definitions in
645F and 645P), so h̄(vvv,vvv∗) and h̄(www,ιιι) are locally S-integrable (645J) and the S-integrals S

∫
S∧π̂(ρ) h̄(vvv,vvv

∗) dvvv

and S
∫
Q∧ρ h̄(www,ιιι) dwww are defined. Write H0 for the set of those h ∈ H such that S

∫
S∧π̂(ρ) h̄(vvv,vvv

∗) dvvv =

Tφ( S
∫
Q∧ρ h̄(www,ιιι) dwww).

(b) If h : R2 → R is continuous, then h ∈ H0. PPP h̄(vvv,vvv∗) and h̄(www,ιιι) are locally jump-free (619Gd), so
are equal to h̄(vvv,vvv∗)< and h̄(www,ιιι)< except perhaps at minS, minQ respectively; that is, in the language of
§645,

(h̄(vvv,vvv∗)↾S ∧ π̂(ρ))< = (h̄(vvv,vvv∗)↾S ∧ π̂(ρ))× 1
(S∧π̂(ρ))
< ,

(h̄(www,ιιι)↾Q ∧ ρ)< = (h̄(www,ιιι)↾Q ∧ ρ)× 1
(Q∧ρ)
<

(using 641G(c-ii) to see that the shift to S ∧ π̂(ρ) and Q ∧ ρ makes no difference). We therefore have

S

∫

S∧π̂(ρ)
h̄(vvv,vvv∗) dvvv = S

∫

S∧π̂(ρ)
h̄(vvv,vvv∗)< dvvv =

∫

S∧π̂(ρ)
h̄(vvv,vvv∗) dvvv = Tφ(

∫

Q∧ρ
h̄(www,ιιι) dwww)

(by 653I)
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= Tφ( S

∫

Q∧ρ
h̄(www,ιιι)< dwww) = Tφ( S

∫

Q∧ρ
h̄(www,ιιι) dwww)

and h ∈ H0. QQQ

(c) If 〈hn〉n∈N is a sequence in H0 such that h(α) = limn→∞ hn(α) for every α ∈ R and supn∈N |hn| is
locally bounded, then h ∈ H0. PPP

〈(h̄n(vvv,vvv∗)↾S ∧ π̂(ρ))× 1(S∧π̂(ρ))
< 〉n∈N

is uniformly previsibly order-bounded, because there is a continuous function g : R → [0,∞[ such that
|hn(α, β)| ≤ g(|α|+ |β|) for all n, α and β (645Cb), and

|(h̄n(vvv,vvv∗)↾S ∧ π̂(ρ))× 1(S∧π̂(ρ))
< | ≤ (ḡ(|vvv|+ |vvv∗|)↾S ∧ π̂(ρ))× 1(S∧π̂(ρ))

<

= (ḡ(|vvv|+ |vvv∗|)↾S ∧ π̂(ρ))<
for every n. Also 〈h̄n(vvv,vvv∗)↾S ∧ π̂(ρ)〉n∈N is order*-convergent to h̄(vvv,vvv∗)↾S ∧ π̂(ρ) (642Bd). So

S
∫
S∧π̂(ρ) h̄(vvv,vvv

∗) dvvv = limn→∞ S
∫
S∧π̂(ρ) h̄n(vvv,vvv

∗) dvvv

by 645T. Similarly,

S
∫
Q∧ρ h̄(www,ιιι) dwww = limn→∞ S

∫
Q∧ρ h̄n(www,ιιι) dwww.

Accordingly

S
∫
S∧π̂(ρ) h̄(vvv,vvv

∗) dvvv = limn→∞ Tφ( S
∫
Q∧ρ h̄n(www,ιιι) dwww) = Tφ( S

∫
Q∧ρ h̄(www,ιιι) dwww)

and h ∈ H0. QQQ

(d) By 645Cc we see that H0 = H, as required.

653K Brownian processes The lemmas 653D-653E, and Theorem 653F, have a direct simplicity which
has vanished completely in Theorem 653G and its corollaries. In the generality claimed for 653G, with
an arbitrary time-set T and a largely arbitrary locally jump-free local martingale vvv, we have to expect
complications. But suppose (as I am sure many readers are already doing) that T = [0,∞[, that S contains
all bounded stopping times, and that vvv∗ = ιιι is the identity process. In this case 653E already tells us what
the distribution of vvv is on the lattice of constant stopping times. Working through the proof of 653G in this
case, we see that

ιπr
= v∗πr

= rχ1A = ιř

so that πr = ř (here to be interpreted as a member of T ) for every r ≥ 0. Consequently Br = Ar for
every r and R = T ; moreover, the formula in 635B ensures that π(σ) = σ for every σ ∈ R. Accordingly

π̂, as defined in (d-ii) of the proof of 653G, is just the natural embedding φ̂ of Q into T corresponding to
the embedding φ : C → A as in 634B. Because φ[C], in the interesting cases, is smaller than A, the process
vvv, defined on an ideal of T , can be far from isomorphic to the process www. Nevertheless, it has enough in
common to make it seem useful to have a phrase to describe it. I will therefore use the following definition.
Note that (unlike the processes considered in 653G-653J) I do not require these processes to be strongly
unbounded. You will see that the abstraction here corresponds to the difference between ‘Lévy process’ as
defined in 652C and the classical version in 652F.

Definition A Brownian-type process is a locally jump-free virtually local martingale vvv, defined on a
lattice S of stopping times based on a real-time stochastic integration structure, such that the quadratic
variation of vvv is ιιι↾S.

653X Basic exercises (a) In 653F, show that (γ) is not a consequence of the other hypotheses.

(b) In 653G, let uuu = 〈uτ 〉τ∈S be a near-simple fully adapted process. Show that there is a fully adapted
process zzz = 〈zρ〉ρ∈Q such that Tφ(zρ) = uπ̂(ρ) for every ρ ∈ Q iff uπr

∈ L0(φ[Cr]) for every r ≥ 0, and in
this case zzz is near-simple.
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(c) In 653B, show that if 〈ui〉i∈I is any family in L0, there is an associated sequentially order-continuous
Boolean homomorphism φ from the Baire σ-algebra Ba(RI) to A such that φ{x : x(i) ∈ E} = [[ui ∈ E]]
whenever i ∈ I and E is a Borel subset of R, so that we have a corresponding probability measure W 7→
µ̄φ(W ) : Ba(RI) → [0, 1] (compare 454J).

653Y Further exercises (a) Suppose that 〈At〉t∈T is right-continuous, that S is a sublattice of T and
vvv = 〈vσ〉σ∈S is a locally jump-free local martingale. Show that there are

a stochastic integration structure (D, λ̄, T ∗, 〈Dt〉t∈T∗) such that T is an initial segment of T ∗

and T ∗ \ T is order-isomorphic to [0,∞[,
an ideal S∗ of the lattice T ∗ of stopping times adapted to 〈Dt〉t∈T∗ ,
a locally jump-free local martingale zzz = 〈zτ 〉τ∈S∗ such that for every r ≥ 0 there is a τ ∈ S∗

such that z∗τ ≥ rχ1D, where zzz
∗ is the quadratic variation of zzz,

and a measure-preserving Boolean homomorphism φ : A → D such that zπ(σ) is defined and equal to Tφ(vσ)
for every σ ∈ S, where for σ ∈ T

[[π(σ) > t]] = φ([[σ > t]]) if t ∈ T,

= 0 if t ∈ T ∗ \ T,

and Tφ : L0(A) → L0(D) is the f -algebra homomorphism defined from φ. Show that this can be done in
such a way that π[S] zzz-separates S∗.

(b) Use 653Ya and 653G to show that 651F implies 651C.

653 Notes and comments Clearly 653C is just the complex-valued version of 651C expressed in terms of
its real and imaginary parts separated. We could omit this step altogether, and go straight from 651C to
653D, if we re-worked the theory so far with the complex linear space L0

C (241J, 366M) in place of the real
linear space L0.

The argument for 653F depends heavily on the fact that we can define an isomorphism of a structure
(A, µ̄, 〈At〉t≥0, T , vvv) in terms of a measure-preserving Boolean isomorphism. I have tried to present this
neither too pedantically nor too glibly. The point of the careful elaboration of Chapter 61 is to show how
the processes we are looking at are definable in terms of stochastic integration structures (A, µ̄, T, 〈At〉t∈T )
as described in the notes to §613, so that isomorphisms of these structures will carry faithful copies of the
processes with them.

You will see that the main results of §635 are an attempt to generalize part of the proof of 653G. A
conspicuous difficulty in applying 653G is the requirement that the quadratic variation of the martingale vvv
should be unbounded in a strong sense. However this is not the real obstacle, since with a different kind of
time-change any martingale has a strongly unbounded end-extension (653Ya).

In 653I-653J I look at functions of two variables and processes uuu = f̄(vvv,vvv∗), zzz = f̄(www,ιιι). In fact what
really matters is that uuu is calculated from vvv by the same ‘legitimate’ method as zzz is calculated from www.
Introducing the quadratic variations vvv∗ and www∗ = ιιι is permitted because

vvv∗ = vvv2 − 2iivvv(vvv), ιιι = www2 − 2iiwww(www)

and indefinite integration is a legitimate method. But to go farther with this idea we should need a defini-
tion of ‘legitimate method’ which included a way of matching operations in different stochastic integration
structures.

Version of 26.9.24

654 Picard’s theorem

The general theory of solutions of ordinary differential equations begins with a classical existence and
uniqueness theorem: if h is a continuous function of two variables which is Lipschitz in the first variable,
then the differential equation

x′(t) = h(x(t), t), x(0) = x⋆
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or, equivalently, the integral equation

x(t) = x⋆ +
∫ t
0
h(x(s), s)ds

has a unique solution. In this section I present corresponding results for stochastic integral equations of this
type, first for the Riemann-sum integral (654G) and then for the S-integral (654L).

654A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure, and E the inte-
gral on L1(A, µ̄); L0, L2, L∞ and θ will be L0(A), L2(A, µ̄), L∞(A) and the standard F-norm defining the
topology of convergence in measure on L0 (613B).

For a sublattice S of T and τ ∈ S, I write S ∧ τ for {σ : σ ∈ S, σ ≤ τ}, S ∨ τ for {σ : σ ∈ S, τ ≤ σ} and
I(S) for the upwards-directed set of finite sublattices of S. 1(S) will be the constant process with domain
S and value χ1.

If uuu = 〈uσ〉σ∈S is a process, sup |uuu| = supσ∈S |uσ| if this is defined in L0, and ‖uuu‖∞ = supσ∈S ‖uσ‖∞,
counting this as ∞ if any uσ does not belong to L∞. If uuu = 〈uσ〉σ∈S is a process and z ∈ L0(A∩⋂

σ∈S Aσ),
then zuuu = 〈z × uσ〉σ∈S . If uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S are processes, then [[uuu 6= vvv]] = supσ∈S [[uσ 6= vσ]].

If h : Rk → R is Borel measurable, then I write h̄ for any of the corresponding functions from (L0)k to
L0 and from ((L0)S)k to (L0)S for a set S, as in 619E-619G.

If S is a sublattice of T , Mo-b(S) is the space of order-bounded fully adapted processes with domain
S, Mn-s(S) the space of near-simple processes with domain S, Mmo(S) the space of moderately oscillatory
processes with domain S, and for uuu ∈Mmo(S) uuu< is its previsible version (641F).Mpo-b(S) is the solid linear
subspace of Mo-b(S) generated by {uuu< : uuu ∈ Mn-s(S)}. The ucp topology on Mo-b(S) is the linear space
topology defined by the F-norm uuu 7→ θ(sup |uuu|) as in 615B. M0

S-i(S) is the closure of {uuu< : uuu ∈ Mn-s(S)} in

Mpo-b(S) for the S-integration topology (645E-645F), andMS-i(S) = {xxx : xxx ∈Mo-b(S), xxx×1(S)
< ∈M0

S-i(S)}.
SI(uuu, dvvv) will denote a Riemann sum (613Fb);

∫
S uuu dvvv and

∫
S uuu |dvvv| will be Riemann-sum integrals (613H),

with associated indefinite integrals iivvv(uuu) (613O); and S
∫
S xxx dvvv and Siivvv(xxx) will refer to the S-integral and

indefinite S-integral defined in 645P and 646K.

654B Lemma (a) Let S be a non-empty sublattice of T such that infτ∈S supσ∈S [[τ < σ]] = 0, and
uuu = 〈uσ〉σ∈S a fully adapted process.

(a) If uuu is locally order-bounded, it is order-bounded.
(b) If uuu is locally moderately oscillatory, it is moderately oscillatory.
(c) If uuu is locally near-simple, it is near-simple.

proof For τ ∈ S, set aτ = supσ∈S [[τ < σ]]. Then aτ ′ ⊆ aτ whenever τ ≤ τ ′ in S, while we are supposing
that infτ∈S aτ = 0, so infτ∈S µ̄aτ = 0.

(a) Suppose that uuu is locally order-bounded. Set A = {uσ : σ ∈ S}. Let ǫ > 0. Then there is a τ ∈ S
such that µ̄aτ ≤ ǫ. For any σ ∈ S,

[[uσ 6= uσ∧τ ]] ⊆ [[τ < σ]] ⊆ aτ ,

so uσ × χ(1 \ aτ ) = uσ∧τ × χ(1 \ aτ ). Accordingly

{u× χ(1 \ aτ ) : u ∈ A} ⊆ {uσ × χ(1 \ aτ ) : σ ∈ S ∧ τ}
is order-bounded, because uuu is locally order-bounded, while µ̄(1 \ aτ ) ≥ 1−ǫ. By 613Bp, A is order-bounded
in L0, that is, uuu is an order-bounded process.

(b) Take ǫ > 0. Let τ ∈ S be such that µ̄aτ ≤ ǫ. Set uuu′ = 〈u′σ〉σ∈S where u′σ = uσ∧τ for σ ∈ S. Then uuu′
is fully adapted (612Ib). uuu′↾S ∧ τ is moderately oscillatory because it is equal to uuu↾S ∧ τ , and uuu′↾S ∨ τ is
moderately oscillatory because it is constant. So uuu′ is moderately oscillatory (615F(a-v)). If σ ∈ S,

[[u′σ 6= uσ]] = [[uσ∧τ 6= uσ]] ⊆ [[σ ∧ τ < σ]] = [[τ < σ]] ⊆ aτ ,

while uuu is order-bounded by (a) above, so

sup |uuu− uuu′| ≤ 2 sup |uuu| × χaτ

and θ(sup |uuu− uuu′|) ≤ µ̄aτ ≤ ǫ. As ǫ is arbitrary, uuu belongs to the topological closure of Mmo(S) in Mo-b(S)
and is moderately oscillatory (615F(a-iv)).
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(c) If uuu is locally near-simple, then it is locally moderately oascillatory (by 631Ca) and moderately
oscillatory (by (b) above), so is near-simple by 631F(c-ii).

654C Lemma Let S be a sublattice of T and h : Rk → R a continuous function. Then h̄(uuu1, . . . ,uuuk) ∈
Mo-b = Mo-b(S) whenever uuu1, . . . ,uuuk ∈ Mo-b, and h̄ : Mk

o-b → Mo-b is continuous for the ucp topology on
Mo-b.

proof We can repeat the argument of 615Ca. The result is trivial if S is empty; suppose otherwise. Express
uuui as 〈uiσ〉σ∈S for each i.

(a) For ξ ∈ R, set g(ξ) = sup{|h(x)| : x ∈ Rk, ‖x‖∞ ≤ |ξ|}; then g is continuous, and |h̄(v1, . . . , vk)| ≤
ḡ(v) whenever v1, . . . , vk, v ∈ L0 and |vi| ≤ v for 1 ≤ i ≤ k.

Suppose that uuui = 〈uiσ〉σ∈S belongs to Mo-b for 1 ≤ i ≤ k. Set ū = sup1≤i≤k sup |uuui|. Then

|h̄(u1σ, . . . , ukσ)| ≤ g(ū) for every σ ∈ S, so {h̄(u1σ, . . . , ukσ) : σ ∈ S} is order-bounded in L0, and
h̄(uuu1, . . . ,uuuk) ∈Mo-b.

(b) Now take vvvi = 〈viσ〉σ∈S ∈ Mo-b for 1 ≤ i ≤ k and ǫ > 0. Set v̄ = supσ∈S,1≤i≤k |viσ|, and let M ≥ 0

be such that µ̄[[v̄ > M ]] ≤ ǫ. Let δ ∈ ]0, 1] be such that |h(x) − h(y)| ≤ ǫ whenever y ∈ [−M − 1,M + 1]k

and ‖x− y‖∞ ≤ δ. Then for any w1, . . . , wk, w
′
1, . . . , w

′
k ∈ L0,

[[|h̄(w′
1, . . . , w

′
k)− h̄(w1, . . . , wk)| > ǫ]]

⊆ sup
1≤i≤k

[[|wi| > M ]] ∪ [[|w′
i − wi| > δ]].

Take any uuu1, . . . ,uuuk ∈ Mo-b such that θ(sup |uuui − vvvi|) ≤ δǫ for every i. Set ū = supσ∈S,1≤i≤k |uiσ − viσ|
and w̄ = supσ∈S |h̄(u1σ, . . . , ukσ)− h̄(v1σ, . . . , vkσ)|. Then µ̄[[ū > δ]] ≤ kǫ, so

[[w̄ > ǫ]] = sup
σ∈S

[[|h̄(u1σ, . . . , ukσ)− h̄(v1σ, . . . , vkσ)| > ǫ]]

⊆ sup
σ∈S,1≤i≤k

[[|viσ| > M ]] ∪ sup
σ∈S,i≤k

[[|uiσ − viσ| > δ]] = [[v̄ > M ]] ∪ [[ū > δ]]

has measure at most (k + 1)ǫ, and

θ(sup |h̄(uuu1, . . . ,uuuk)− h̄(vvv1, . . . , vvvk)|) = θ(w̄) ≤ (k + 2)ǫ.

As vvv1, . . . , vvvk and ǫ are arbitrary, h̄ :Mk
o-b →Mk

o-b is continuous.

654D Lemma Let S be a sublattice of T with a greatest element, and define zzz = 〈zσ〉σ∈S by setting
zσ = χ[[σ < maxS]] for σ ∈ S.

(a) Suppose that uuu = 〈uσ〉σ∈S is a moderately oscillatory process and vvv = 〈vσ〉σ∈S an integrator. Then

zzz × iivvv(uuu) = zzz × iivvv(zzz × uuu) = zzz × iizzz×vvv(uuu)

and
∫
S uuu dvvv =

∫
S zzz × uuu dvvv.

(b) Let www = 〈wσ〉σ∈S be a process of bounded variation, and www↑ = 〈w↑
σ〉σ∈S its cumulative variation

(614O). Then
∫
S |d(zzz ×www)| ≤ sup |zzz × (www↑ + |www|)|.

(c) Suppose that S has a least member and that www = 〈wσ〉σ∈S is an order-bounded fully adapted process
starting from wminS = 0. Then sup |www| ≤ sup |zzz×www|+Osclln(www), where Osclln(www) is the residual oscillation
of www (618B).

(d) Suppose thatwww = 〈wσ〉σ∈S is a fully adapted process and that α ≥ 0 is such that [[σ < maxS]] ⊆ [[|wσ| ≤ α]]
for σ ∈ S. Then www is order-bounded, ‖ sup |zzz ×www|‖∞ ≤ α and ‖www‖∞ ≤ α+ ‖Osclln(www)‖∞.

(e) If uuu ∈Mmo(S) then uuu< = (zzz × uuu)<.

proof (a)(i) I should begin by pointing out that zzz is the simple process with domain S, breakpoint string
(maxS), starting value χ1 and value 0 at maxS. So in particular it is of bounded variation (614Q(a-iii),
or otherwise), hence an integrator (616Ra); consequently zzz × uuu is an integrator (616Pa, or otherwise) and
moderately oscillatory (616Ib). Thus all the indefinite integrals here have domain S.

Take σ ∈ S. If I ∈ I(S ∧ σ) then
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SI(uuu, dvvv)× zσ = SI(zzz × uuu, dvvv)× zσ = SI(uuu, d(zzz × vvv))× zσ.

PPP If I is empty, this is trivial. Otherwise, take (τ0, . . . , τn) linearly generating the I-cells. Then

SI(uuu, dvvv)× zσ =
n−1∑

i=0

uτi × (vτi+1
− vτi)× zσ

=

n−1∑

i=0

uτi × zτi × (vτi+1
− vτi)× zσ

(because τi ≤ σ, so [[σ < maxS]] ⊆ [[τi < maxS]] and zτi × zσ = zσ)

= SI(zzz × uuu, dvvv)× zσ;

similarly,

SI(uuu, dvvv)× zσ =

n−1∑

i=0

uτi × (vτi+1
× zτi+1

− vτi × zτi)× zσ

= SI(uuu, d(zzz × vvv))× zσ. QQQ

Taking the limit as I ↑ I(S ∧ σ),
zσ ×

∫
S∧σ uuu dvvv = zσ ×

∫
S∧σ zzz × uuu dvvv = zσ ×

∫
S∧σ uuu d(zzz × vvv).

As σ is arbitrary,

zzz × iivvv(uuu) = zzz × iivvv(zzz × uuu) = zzz × iizzz×vvv(uuu).

(ii) Repeating part of the calculation when σ = maxS, we see that if τ0 ≤ τ1 in S, then
[[uτ0 × (vτ1 − vτ0) 6= 0]] ⊆ [[τ0 < τ1]] ⊆ [[τ0 < maxS]] = [[zτ0 = χ1]],

so, in the language of 613F,

∆c(τ0,τ1)(uuu, dvvv) = uτ0 × (vτ1 − vτ0)

= uτ0 × zτ0 × (vτ1 − vτ0) = ∆c(τ0,τ1)(zzz × uuu, dvvv).

It follows immediately that SI(uuu, dvvv) = SI(zzz × uuu, dvvv) for every I ∈ I(S) and
∫
S uuu dvvv =

∫
S zzz × uuu dvvv.

(b) zzz×www is of bounded variation (614Q(a-ii)), so the integral
∫
S |d(zzz×www)| is defined. Suppose that σ0 ≤

. . . ≤ σn = maxS and σi ∈ S for each i ≤ n. Set a0 = [[σ0 = maxS]] and aj = [[σj−1 < σj ]] ∩ [[σj = maxS]]
for 1 ≤ j ≤ n. Then 〈aj〉j≤n is a partition of unity in A. Set y =

∑n−1
i=0 |wσi+1

× zσi+1
− wσi

× zσi
|. Then

a0 ⊆ infi≤n [[zσi
= 0]] ⊆ [[y = 0]]

and if 0 ≤ j < n

aj+1 = [[σj < σj+1]] ∩ [[σj+1 = maxS]]
⊆ inf

i≤j
[[zσi

= χ1]] ∩ inf
j<i≤n

[[zσi
= 0]]

⊆ inf
i<j

[[wσi+1
× zσi+1

− wσi
× zσi

= wσi+1
− wσi

]]

∩ [[wσj+1
× zσj+1

− wσj
× zσj

= −wσj
× zσj

]] ∩ [[zσj
= χ1]]

∩ inf
j<i<n

[[wσi+1
× zσi+1

− wσi
× zσi

= 0]]

⊆ [[y =
∑j−1
i=0 (|wσi+1

− wσi
|+ |wσj

|]] ⊆ [[y ≤ w↑
σj

+ |wσj
|]];

again because aj+1 ⊆ [[zσj
= χ1]],

aj+1 ⊆ [[y ≤ (w↑
σj

+ |wσj
|)× zσj

]] ⊆ [[y ≤ sup |zzz × (www↑ + |www|)|]].
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As supj≤n aj = 1, y ≤ sup |zzz × (www↑ + |www|)|; as σ0, . . . , σn are arbitrary,
∫
S |d(zzz ×www)| ≤ sup |zzz × (www↑ + |www|)|.

(c) Write w̄ for sup |zzz × www|. Suppose that σ ∈ S and that I ∈ I(S ∧ σ) contains both minS and
σ. Then, defining OscllnI(www) as in 618B, |wσ| ≤ w̄ + OscllnI(www). PPP Let (τ0, . . . , τn) linearly generate
the I-cells, so that τ0 = minS, τn = σ and OscllnI(www) = supi<n |wτi+1

− wτi |. Set a0 = [[τ0 = σ]] and
ai = [[τi−1 < σ]] ∩ [[τi = σ]] for 1 ≤ i ≤ n, so that supi≤n ai = 1. For 1 ≤ i ≤ n,

ai ⊆ [[wσ = wτi ]] ∩ [[zτi−1
= χ1]]

⊆ [[|wσ| ≤ |wτi − wτi−1
|+ |wτi−1

× zτi−1
|]] ⊆ [[|wσ| ≤ OscllnI(www) + w̄]];

also, of course,

a0 ⊆ [[wσ = wminS ]] ⊆ [[wσ = 0]] ⊆ [[|wσ| ≤ OscllnI(www) + w̄]].

As supi≤n ai = 1, |wσ| ≤ OscllnI(www) + w̄. QQQ

So if I ∈ I(S) contains minS and σ,

|wσ| ≤ OscllnI∧σ(www) + w̄ ≤ OscllnI(www) + w̄;

it follows that |wσ| ≤ Osclln∗I(www) + w̄ for every I ∈ S, and taking the infimum over I we have |wσ| ≤
Osclln(www) + w̄. As σ is arbitrary, sup |www| ≤ Osclln(www) + w̄, as claimed.

(d) If σ ∈ S then

[[σ < maxS]] ⊆ [[|wσ| ≤ α]] ⊆ [[|wσ × zσ| ≤ α]],

[[maxS ≤ σ]] ⊆ [[wσ = wmaxS ]] ∩ [[zσ = 0]] ⊆ [[|wσ × zσ| ≤ α]].

So |wσ| ≤ αχ1∨ |wmaxS | and |wσ × zσ| ≤ αχ1; as σ is arbitrary, www is order-bounded, sup |zzz×www| ≤ αχ1 and
‖ sup |zzz ×www|‖∞ ≤ α.

Now (c) tells us that

‖ sup |www|‖∞ ≤ ‖ sup |zzz ×www|‖∞ + ‖Osclln(www)‖∞ ≤ α+ ‖Osclln(www)‖∞.

(e) Looking at the definition of uuu< in 641E-641F, we see that if uuu = 〈uσ〉σ∈S and zzz × uuu = 〈vσ〉σ∈S then
whenever σ ∈ I ∈ I(S) we have a disjoint family 〈aσ′〉σ′∈I such that

aσ′ ⊆ [[σ′ < σ]] ∩ [[uI<σ = uσ′ ]] ∩ [[vI<σ = vσ′ ]]

⊆ [[uσ′ = vσ′ ]] ∩ [[uI<σ = uσ′ ]] ∩ [[vI<σ = vσ′ ]] ⊆ [[uI<σ = vI<σ]]

for every σ′ ∈ I, while

1 \ supσ′∈I aσ′ ⊆ [[uI<σ = 0]] ∩ [[vI<σ = 0]] ⊆ [[uI<σ = vI<σ]].

So uI<σ = vI<σ; as I is arbitrary, u<σ = v<σ; as σ is arbitrary, uuu< = (zzz × uuu)<.

654E Lemma Let S be a sublattice of T . Write M0
mo for the space of moderately oscillatory processes

uuu = 〈uσ〉σ∈S with starting value 0. For an integrator vvv, write vvv∗ for its quadratic variation. Suppose that
uuu ∈ Mmo = Mmo(S) and that www, www′ ∈ M0

mo are such that www is a virtually local martingale and www′ is of
bounded variation; set vvv = www +www′. Then

‖ sup |iivvv(uuu)|‖2 ≤ 2(
√

‖www∗‖∞ + ‖
∫
S |dwww′|‖∞)‖ sup |uuu|‖2.

proof (a) To begin with (down to the end of (c) below), suppose that S is full. For a fully adapted process

uuu with domain S, let j(uuu) be the infimum of sums
√
‖ sup |zzz∗|‖1 + ‖

∫
S |dzzz′|‖2 where zzz, zzz′ ∈ M0

mo, zzz is a
virtually local martingale, zzz′ is of bounded variation, and |uuu| ≤ |zzz|+ |zzz′|, counting j(uuu) as ∞ if there are no
such zzz and zzz′. (By 623Kd, we shall be able to speak of the quadratic variation zzz∗.)

We find that ‖ sup |uuu|‖2 ≤ 2j(uuu) for every uuu ∈ Mmo. PPP If j(uuu) = ∞, this is trivial. Otherwise, let ǫ > 0.
Take zzz, zzz′ ∈ M0

mo such that zzz is a virtually local martingale, zzz′ is of bounded variation, |uuu| ≤ |zzz|+ |zzz′| and√
‖ sup |zzz∗|‖1 + ‖

∫
S |dzzz′|‖2 ≤ j(uuu) + ǫ. Now, expressing zzz as 〈zσ〉σ∈S ,
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‖ sup |zzz|‖2 ≤ 2 sup
σ∈S

‖zσ‖2

(623M, because zzz is an approximately local martingale, by 623J)

≤ 2 sup
σ∈S

√
‖z∗σ‖1

(624H)

≤ 2
√

‖ sup |zzz∗|‖1.

On the other side, sup |zzz′| ≤
∫
S |dzzz′| because zzz′ starts from 0, so ‖ sup |zzz′|‖2 ≤ ‖

∫
S |dzzz′|‖2. Putting these

together,

‖ sup |uuu|‖2 ≤ ‖ sup |zzz|+ sup |zzz′|‖2 ≤ ‖ sup |zzz|‖2 + ‖ sup |zzz′|‖2

≤ 2
√

‖ sup |zzz∗|‖1 + ‖
∫

S
|dzzz′|‖2 ≤ 2(j(uuu) + ǫ).

As ǫ is arbitrary, we have the result. QQQ

(b) Take uuu, www, www′ and vvv as in the statement of the lemma. Then j(iivvv(uuu)) ≤ ‖ sup |uuu|‖2(
√
‖www∗‖∞ +

‖
∫
S |dwww′|‖∞). PPP If uuu = 0 then iivvv(uuu) = 0 and the result is trivial. If uuu 6= 0 and either sup |www∗| or

∫
S |dwww′|

is not in L∞, the result is again trivial. So suppose that both sup |www∗| and
∫
S |dwww′| belong to L∞. Setting

yyy = iiwww(uuu) and yyy
′ = iiwww′(uuu), iivvv(uuu) = yyy + yyy′. Now yyy is a virtually local martingale (623O), yyy′ is of bounded

variation (614T), and both start from 0.
Next, yyy∗ = iiwww∗(uuu2) (617Q(a-iii)), so

‖ sup |yyy∗|‖1 = ‖ sup |iiwww∗(uuu2)|‖1 = ‖
∫

S
|d(iiwww∗(uuu2))|‖1

(because iiwww∗(uuu2) is non-decreasing and starts from 0)

≤ ‖ sup |uuu2| ×
∫

S
dwww∗‖1

(614T)

≤ ‖ sup |uuu2|‖1 ‖
∫

S
dwww∗‖∞ = ‖(sup |uuu|)2‖1‖www∗‖∞

(because www∗ is non-decreasing and starts from 0), and
√
‖ sup |yyy∗|‖1 ≤ ‖ sup |uuu|‖2‖

√
www∗‖∞.

On the other side, ∫
S |dyyy′| ≤ sup |uuu| ×

∫
S |dwww′|

(614T again), so ‖
∫
S |dyyy′|‖2 ≤ ‖ sup |uuu|‖2‖

∫
S |dwww′|‖∞. Putting these together,

j(iivvv(uuu)) ≤
√

‖ sup |yyy∗|‖1 + ‖
∫

S
|dyyy′|‖2

≤ ‖ sup |uuu|‖2
(√

‖www∗‖∞ + ‖
∫

S
|dwww′|‖∞

)
,

as claimed. QQQ

(c) Combining this with (a), we see that

‖ sup |iivvv(uuu)|‖2 ≤ 2j(iivvv(uuu)) ≤ 2(
√

‖www∗‖∞ + ‖
∫
S |dwww′|‖∞)‖ sup |uuu|‖2.

(d) This proves the result when S is full. For the general case, let Ŝ be the covered envelope of S and

ûuu, ŵww, ŵww′, v̂vv, ŵww∗ the fully adapted extensions of uuu, www, www′, vvv, www∗ to Ŝ. Then ûuu, ŵww and ŵww′ belong to Mmo(Ŝ)
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(615F(a-vi)), while ŵww is a virtually local martingale (623J), ŵww and ŵww′ have starting value 0 (615H), ŵww′ is
of bounded variation (614Q(a-iv-β)), v̂vv = ŵww + ŵww′ and ŵww∗ is the quadratic variation of ŵww (617N). By (a)-(c)
above,

‖ sup |iiv̂vv(ûuu)|‖2 ≤ 2(
√

‖ŵww∗‖∞ + ‖
∫
Ŝ |dŵww′|‖∞)‖ sup |ûuu|‖2.

Now we know that iiv̂vv(ûuu) is the fully adapted extension of iivvv(uuu) (616Q(c-ii)), so that sup |iiv̂vv(ûuu)| =
sup |iivvv(uuu)| (614Ga); at the same time,

‖ŵww∗‖∞ = ‖ sup |ŵww∗|‖∞ = ‖ sup |www∗|‖∞ = ‖www∗‖∞
and sup |ûuu| = sup |uuu|. Finally,

∫
Ŝ |dŵww′| =

∫
S |dwww′| by 614Q(a-iv-β) again. So

‖ sup |iivvv(uuu)|‖2 ≤ 2(
√

‖www∗‖∞ + ‖
∫
S |dwww′|‖∞)‖ sup |uuu|‖2,

as required.

654F Lemma (The key.) Let S be a sublattice of T with a greatest element. Suppose that h : R2 → R

is a continuous function and that K ≥ 0 is such that |h(α, β)−h(α′, β)| ≤ K|α−α′| for all α, α′, β ∈ R; let
www = 〈wσ〉σ∈S , www′ = 〈w′

σ〉σ∈S be processes with domain S such that www is a virtually local martingale, www′ is of
bounded variation and both start fom 0. Write www∗ for the quadratic variation of www, www′↑ for the cumulative
variation of www′, and zzz for 〈χ[[σ < maxS]]〉σ∈S . Suppose that

2K(
√

‖www∗‖∞ + 2‖zzz ×www′↑‖∞) < 1. (*)

Set vvv = www +www′. Then for any uuu⋆, yyy ∈Mmo =Mmo(S) there is a unique uuu ∈Mmo such that

uuu = uuu⋆ + iivvv(h̄(uuu,yyy)).

proof The proof will proceed in three steps, the first two being with a variation on the hypothesis (*).

(a) Suppose that ‖uuu⋆‖∞ and ‖yyy‖∞ are both finite, and that instead of the hypothesis (*) we suppose
that

2Kγ < 1 where γ =
√
‖www∗‖∞ + ‖

∫
S |dwww′|‖∞. (**)

(i) Define a sequence 〈uuun〉n≥1 of processes with domain S by saying that uuu0 = uuu⋆ and

uuun+1 = uuu⋆ + iivvv(h̄(uuun, yyy))

for every n ∈ N. Then every uuun belongs to Mmo (induce on n, using 619Gc and 616J in the inductive step).
Set zzzn = uuun+1 − uuun for n ≥ 0. Then

zzzn+1 = uuun+2 − uuun+1 = iivvv(h̄(uuun+1, yyy))− iivvv(h̄(uuun, yyy))

= iivvv(h̄(uuun+1, yyy)− h̄(uuun, yyy))

for every n. Now 654E tells us that

‖ sup |zzzn+1|‖2 ≤ 2γ‖ sup |h̄(uuun+1, yyy)− h̄(uuun, yyy)|‖2 ≤ 2Kγ‖ sup |uuun+1 − uuun|‖2
(by the Lipschitz condition on h)

= 2Kγ‖ sup |zzzn|‖2

for n ∈ N. At the beginning of the iteration,

‖ sup |zzz0|‖2 = ‖ sup |uuu1 − uuu⋆|‖2 = ‖ sup |iivvv(h̄(uuu⋆, yyy))|‖2
≤ 2γ‖ sup |h̄(uuu⋆, yyy)|‖2 ≤ 2γ‖h̄(uuu⋆, yyy)‖∞

is finite because both ‖uuu⋆‖∞ and ‖yyy‖∞ are finite and h is locally bounded. As 2Kγ < 1,
∑∞
n=0 ‖ sup |zzzn|‖2

is finite.
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(ii) Of course

θ(u) = E(|u| ∧ χ1) ≤ ‖u‖1 ≤ ‖u‖2
for every u ∈ L0. So

∑∞
n=0 θ(sup |zzzn|) < ∞ and 〈uuun〉n∈N is Cauchy for the ucp uniformity. As Mmo is

complete under the ucp uniformity (615F(a-iv)), uuu = limn→∞ uuun is defined inMmo. Because h is continuous,
h̄(uuu,yyy) = limn→∞ h̄(uuun, yyy) (619H). By 616J, applied to the integrating interval function ∆vvv (616Ic),

uuu⋆ + iivvv(h̄(uuu,yyy)) = limn→∞ uuu⋆ + iivvv(h̄(uuun, yyy)) = limn→∞ uuun+1 = uuu.

(iii) Thus we have an appropriate uuu. It will be helpful to know that sup |uuu| ∈ L2. PPP Since
∑∞
n=0 ‖ sup |zzzn|‖2 <

∞, z =
∑∞
n=0 sup |zzzn| is defined in L2; now |uuu⋆| + z ≥ sup |uuun| for every n ∈ N, so sup |uuu| ≤ |uuu⋆| + z is

square-integrable. QQQ

(b) When we come to prove that our solutions are unique, the following formulation will be useful. As
in (a), assume that (**) is true. Suppose that

uuu1⋆, uuu
′
1⋆, yyy1, yyy

′
1, uuu1, uuu

′
1 ∈Mmo,

uuu1 = uuu1⋆ + iivvv(h̄(uuu1, yyy1)), uuu′1 = uuu′1⋆ + iivvv(h̄(uuu
′
1, yyy

′
1));

suppose moreover that sup |uuu1| ∈ L2, and set a = [[uuu1⋆ 6= uuu′1⋆]] ∪ [[yyy1 6= yyy′1]]. Then [[uuu1 6= uuu′1]] ⊆ a. PPP Let
ǫ > 0. Let M ≥ 0 be such that µ̄[[sup |uuu′1| > M ]] ≤ ǫ and set a′ = a ∪ [[sup |uuu′1| > M ]]. Set ũuu0 =
med(−M 1(S),uuu′1,M 1(S)) and ũuun+1 = uuu1⋆ + iivvv(h̄(ũuun, yyy1)) for n ∈ N. Then

‖ sup |ũuun+1 − uuu1|‖2 = ‖ sup |iivvv(h̄(ũuun, yyy1)− h̄(uuu1, yyy1))|‖2
≤ 2γ‖ sup |h̄(ũuun, yyy1)− h̄(uuu1, yyy1)|‖2 ≤ 2Kγ‖ sup |ũuun − uuu1|‖2

for each n, while ‖ sup |ũuu0 − uuu1|‖2 ≤ M + ‖ sup |uuu1|‖2 is finite. So limn→∞ ‖ sup |ũuun − uuu1|‖2 = 0 and
uuu′1 = limn→∞ ũuun for the ucp topology.

At the same time, we find that [[ũuun 6= uuu′1]] ⊆ a′ for every n. To see this, induce on n. At the start,
[[ũuu0 6= uuu′1]] = [[sup |uuu′1| > M ]] ⊆ a′. For the inductive step,

[[ũuun+1 6= uuu′1]] = [[uuu1⋆ + iivvv(h̄(ũuun, yyy1)) 6= uuu′1⋆ + iivvv(h̄(uuu
′
1, yyy

′
1))]]

⊆ [[uuu1⋆ 6= uuu′1⋆]] ∪ [[h̄(ũuun, yyy1) 6= h̄(uuu′1, yyy
′
1)]] ⊆ a ∪ [[ũuun 6= uuu′1]] ⊆ a′,

so the induction proceeds.
It follows that [[uuu1 6= uuu′1]] \ a has measure at most ǫ. As ǫ is arbitrary, [[uuu1 6= uuu′1]] ⊆ a. QQQ

(c) For the second stage of the existence proof, continue to assume (**), but drop the ‖ ‖∞-boundedness
conditions on uuu⋆ and yyy, and suppose only that uuu⋆, yyy ∈Mmo.

(i) In this case, set

uuu⋆k = med(−k1(S),uuu⋆, k1
(S)), yyyk = med(−k 1(S), yyy, k 1(S)),

ak = [[sup |uuu⋆| ≥ k]] ∪ [[sup |yyy| ≥ k]]

for k ∈ N. By (a), there is for each k a uuuk ∈Mmo such that uuuk = uuu⋆k + iivvv(h̄(uuuk, yyyk)) and ‖ sup |uuuk|‖2 <∞.
By (b), [[uuuk 6= uuul]] ⊆ ak for l ≥ k. Since a0 = 1 and 〈ak〉k∈N is a non-increasing sequence with infimum 0,

supk∈N χ(ak \ χak+1)× supj≤k+1 sup |uuuj | = supk∈N sup |uuuk| = z

is defined in L0 and sup |uuu−uuuk| ≤ z×χak for each k. This shows that uuu = limk→∞ uuuk for the ucp topology,
so uuu ∈Mmo and

uuu = limk→∞ uuu⋆k + iivvv(h̄(uuuk, yyyk)) = uuu⋆ + iivvv(h̄(uuu,yyy))

as in (a-ii), but this time noting that h̄(uuu,yyy) = limk→∞ h̄(uuuk, yyyk) for the ucp topology.

(ii) To see that uuu is unique, let uuu1 ∈Mmo be such that uuu1 = uuu⋆ + iivvv(h̄(uuu1, yyy)). This time, (b) tells us
that [[uuu1 6= uuuk]] ⊆ ak for each k. So uuu1 = uuu.

(d) We are now ready to tackle the result under the given hypothesis (*).
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(i) Setting www′
1 = zzz × www′, we see from 614Q(a-ii), or otherwise, that www′

1 is of bounded variation, and
from 654Db that

‖
∫

S
|dwww′

1|‖∞ ≤ ‖ sup |zzz × (www′↑ + |www′|)|‖∞

= ‖zzz × (www′↑ + |www′|)‖∞ ≤ 2‖zzz ×www′↑‖∞
because www′ starts from 0. We therefore have

2K(
√

‖www∗‖∞ + ‖
∫
S |dwww′

1|‖∞) < 1,

and if we set vvv1 = www+www′
1, (c) tells us that there is a near-simple process uuu1 such that uuu1 = uuu⋆+iivvv1(h̄(uuu1, yyy)).

Set www′
2 = www′ −www′

1 and uuu = uuu1 + iiwww′

2
(h̄(uuu1, yyy)).

We see that

zzz × vvv1 = zzz ×www + zzz ×www′
1 = zzz ×www + zzz × zzz ×www′ = zzz ×www + zzz ×www′ = zzz × vvv,

zzz × uuu = zzz × uuu1 + zzz × iiwww′

2
(h̄(uuu1, yyy)) = zzz × uuu1 + zzz × iizzz×www′

2
(h̄(uuu1, yyy))

(654Da)

= zzz × uuu1

because zzz ×www′
2 = 0. Note also that

zzz × h̄(zzz × uuu,yyy) = zzz × h̄(zzz × zzz × uuu,zzz × yyy)

(619Ge)

= zzz × h̄(zzz × uuu,zzz × yyy) = zzz × h̄(uuu,yyy).

Consequently

zzz × iivvv(h̄(uuu,yyy)) = zzz × iizzz×vvv(zzz × h̄(uuu,yyy))

(654Da again)

= zzz × iizzz×vvv(zzz × h̄(zzz × uuu,yyy)) = zzz × iizzz×vvv1(zzz × h̄(zzz × uuu1, yyy))

= zzz × iivvv1(h̄(uuu1, yyy)) = zzz × (uuu1 − uuu⋆) = zzz × (uuu− uuu⋆),

that is,

zzz × (uuu− uuu⋆ − iivvv(h̄(uuu,yyy))) = 0.

Expressing uuu and uuu⋆ as 〈uσ〉σ∈S and 〈u⋆σ〉σ∈S , this means that for any σ ∈ S we have

[[σ < maxS]] ⊆ [[uσ = u⋆σ +
∫
S∧σ h̄(uuu,yyy)dvvv]].

At the top end, we can calculate

umaxS = u⋆,maxS +

∫

S
h̄(uuu1, yyy)dvvv1 +

∫

S
h̄(uuu1, yyy)dwww

′
2

= u⋆,maxS +

∫

S
h̄(uuu1, yyy)dvvv = u⋆,maxS +

∫

S
zzz × h̄(uuu1, yyy)dvvv

(by the other part of 654Da)

= u⋆,maxS +

∫

S
zzz × h̄(zzz × uuu1, yyy)dvvv

and, unwinding,

Measure Theory



654G Picard’s theorem 51

= u⋆,maxS +

∫

S
zzz × h̄(zzz × uuu,yyy)dvvv

= u⋆,maxS +

∫

S
zzz × h̄(uuu,yyy)dvvv = u⋆,maxS +

∫

S
h̄(uuu,yyy)dvvv.

But this means that, for any σ ∈ S,
[[σ = maxS]] ⊆ [[uσ = u⋆σ +

∫
S∧σ h̄(uuu,yyy)dvvv]]

and uσ = u⋆σ +
∫
S∧σ h̄(uuu, dyyy)dvvv. As σ is arbitrary, uuu = uuu⋆ + iivvv(h̄(uuu, dyyy)).

(ii) To show uniqueness we can run the argument backwards, as follows. Suppose that ũuu is a near-simple
process such that ũuu = uuu⋆ + iivvv(h̄(ũuu,yyy)). Set ũuu

′ = uuu⋆ + iivvv1(h̄(ũuu,yyy)). Then

zzz × ũuu′ = zzz × uuu⋆ + zzz × iizzz×vvv1(h̄(ũuu,yyy))

= zzz × uuu⋆ + zzz × iizzz×vvv(h̄(ũuu,yyy)) = zzz × ũuu

so that

zzz × ũuu′ = zzz × uuu⋆ + zzz × iivvv1(h̄(ũuu,yyy)) = zzz × uuu⋆ + zzz × iivvv1(h̄(zzz × ũuu,yyy))

= zzz × uuu⋆ + zzz × iivvv1(h̄(zzz × ũuu′, yyy)) = zzz × uuu⋆ + zzz × iivvv1(h̄(ũuu
′, yyy)),

while

u⋆,maxS +

∫

S
h̄(ũuu,yyy)dvvv1 = u⋆,maxS +

∫

S
zzz × h̄(ũuu,yyy)dvvv1

= u⋆,maxS +

∫

S
zzz × h̄(ũuu′, yyy)dvvv1 = u⋆,maxS +

∫

S
h̄(ũuu′, yyy)dvvv1.

As in (i) just above, this is enough to show that

ũuu′ = uuu⋆ + iivvv1(h̄(ũuu
′, yyy)),

so that ũuu′ = uuu1, because we know from (c-ii) that we have a unique solution to the equation defining uuu1.
Consequently

zzz × ũuu = zzz × ũuu′ + zzz × iiwww′

2
(h̄(ũuu, dyyy)) = zzz × uuu1 = zzz × uuu;

and once again

u⋆,maxS +

∫

S
h̄(ũuu,yyy)dvvv = u⋆,maxS +

∫

S
h̄(zzz × ũuu,yyy)dvvv

= u⋆,maxS +

∫

S
h̄(zzz × uuu,yyy)dvvv = u⋆,maxS +

∫

S
h̄(uuu,yyy)dvvv,

so ũuu and uuu agree at maxS and are equal. Thus the solution assembled in (i) is unique.
This completes the proof under the hypothesis (*).

654G Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T
with a least member. Suppose that h : R2 → R is a continuous function and that K ≥ 0 is such that
|h(α, β) − h(α′, β)| ≤ K|α − α′| for all α, α′, β ∈ R. Let vvv be a locally near-simple local integrator with
domain S. Then for any locally moderately oscillatory processes uuu⋆, yyy with domain S there is a unique
locally moderately oscillatory process uuu with domain S such that

uuu = uuu⋆ + iivvv(h̄(uuu,yyy)).

proof (a) Let ǫ > 0 be such that 2K(
√
ǫ + 3ǫ) < 1. By the Bichteler-Dellacherie theorem (627J), vvv is a

semi-martingale; by the Fundamental Theorem of Martingales (643M), we can express it as www +www′ where
www = 〈wσ〉σ∈S is a local martingale, www′ = 〈w′

σ〉σ∈S is locally of bounded variation and Osclln(www↾S ∧ τ) ≤ ǫχ1
for every τ ∈ S.
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(b) For the time being (down to the end of (f) below), suppose that S has a greatest member and that www
is a martingale. Then uuu⋆ and yyy are moderately oscillatory, vvv is a near-simple integrator and Osclln(www) ≤ ǫχ1.
Express uuu⋆ as 〈u⋆σ〉σ∈S .

We know that www is locally near-simple (632Ia), therefore near-simple, so www′ also is near-simple, and its
cumulative variation www′↑ = 〈w′↑

σ 〉σ∈S is near-simple (631K). Let www∗ = 〈w∗
σ〉σ∈S be the quadratic variation of

www; this too is near-simple (631Ja).

(c) By 631Ra, there is a non-decreasing sequence 〈τn〉n∈N in S such that τ0 = minS, infn∈N [[τn < maxS]] =
0 and whenever n ∈ N and σ ∈ [τn, τn+1],

[[|w′↑
σ + w∗

σ − w′↑
τn − w∗

τn | ≥ ǫ]] ⊆ [[σ = τn+1]].

(d) For n ∈ N, write Sn = S ∧ τn. Then we have a sequence 〈uuun〉n∈N of moderately oscillatory processes
such that

uuun = uuu⋆↾Sn + iivvv↾Sn
(h̄(uuun, yyy↾Sn))

for each n. PPP Induce on n. The induction starts with uuu0 = uuu⋆↾S0 where S0 = {minS}. For the inductive
step to n+ 1, given uuun = 〈unσ〉σ∈Sn

, set

S̃n = [τn, τn+1], ũuu⋆n = uuu⋆↾S̃n + (unτn − u⋆τn)1
(S̃n),

w̃ww = www↾S̃n − wτn1
(S̃n), w̃ww′ = www′↾S̃n − w′

τn1
(S̃n), ṽvv = w̃ww + w̃ww′.

Then w̃ww and w̃ww′ are near-simple processes with domain S̃n (631Fa), w̃ww is a martingale (622Db, 622Ea), w̃ww′

is of bounded variation (614Lc) and both start with value 0 at min S̃n = τn. The quadratic variation w̃ww∗ =

〈w̃∗
σ〉σ∈S̃n

of w̃ww iswww∗↾S̃n−w∗
τn1

(S̃n) (use both halves of 617Kb), and the cumulative variation w̃ww′↑ = 〈w̃′↑
σ 〉σ∈S̃n

of w̃ww′ is www′↑↾S̃n − w′↑
τn1

(S̃n) (614Pb).

We know that, for σ ∈ S̃n,
[[σ < τn+1]] ⊆ [[|w′↑

σ − w′↑
τn | < ǫ]] ⊆ [[|w̃′↑

σ | ≤ ǫ]],

so 654Dd tells us that ‖ sup |zzz × w̃ww′↑|‖∞ ≤ ǫ, where zzz = 〈χ[[σ < τn+1]]〉σ∈S̃n
. Similarly,

[[σ < τn+1]] ⊆ [[|w∗
σ − w∗

τn | < ǫ]] ⊆ [[|w̃∗
σ| ≤ ǫ]],

and by the other half of 654Dd,

‖w̃ww∗‖∞ ≤ ǫ+ ‖Osclln(w̃ww∗)‖∞ = ǫ+ ‖(Osclln(w̃ww))2‖∞
(618Sb)

= ǫ+ ‖Osclln(w̃ww)‖2∞ = ǫ+ ‖Osclln(www↾S̃n)‖2∞ ≤ ǫ+ ‖Osclln(www)‖2∞ ≤ ǫ+ ǫ2.

Accordingly

2K
(√

‖w̃ww∗‖∞ + 2‖zzz × w̃ww′↑‖∞
)
≤ 2K(

√
ǫ+ ǫ2 + 2ǫ) ≤ 2K(

√
ǫ+ 3ǫ) < 1

by the choice of ǫ. We can therefore apply 654F to see that there is a moderately oscillatory process ũuun with
domain S̃n such that ũuun = ũuu⋆n + iiṽvv(h̄(ũuun, ỹyy)).

Since the processes uuun and ũuun take the same value at τn, they have a common extension uuun ∪ ũuun to
Sn ∪ S̃n, which is a covering sublattice of Sn+1 (if σ ∈ Sn+1 = [τ0, τn+1] then {σ} is covered, in the sense

of 611M, by {σ ∧ τn, σ ∨ τn} ⊆ Sn ∪ S̃n). We therefore have a fully adapted process uuun+1 with domain
Sn+1 extending uuun∪ ũuun. By 615F(a-v), uuun∪ ũuun is moderately oscillatory; by 615F(a-vi), uuun+1 is moderately
oscillatory. Now if σ ∈ Sn+1, we have∫

(Sn+1∧σ)∧τn
h̄(uuun+1, yyy)dvvv =

∫
Sn∧(σ∧τn)

h̄(uuun, yyy↾Sn)d(vvv↾Sn) = un,σ∧τn − u⋆,σ∧τn ,

∫
(Sn+1∧σ)∨τn

h̄(uuun+1, yyy)dvvv =
∫
S̃n∧(σ∨τn)

h̄(ũuun, ỹyy)dṽvv = ũσ∨τn − u⋆,σ∨τn − unτn + u⋆τn .

By 613J(c-i),
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∫

Sn+1∧σ
h̄(uuun+1, yyy)dvvv = un,σ∧τn − u⋆,σ∧τn + ũσ∨τn − u⋆,σ∨τn − unτn + u⋆τn

= un+1,σ∧τn + un+1,σ∨τn − un+1,τn − u⋆,σ∧τn − u⋆,σ∨τn + u⋆τn

= un+1,σ − u⋆σ

by 612D(f-i). As σ is arbitrary,

uuun+1 = uuu⋆↾Sn+1 + iivvv(h̄(uuun+1, yyy))

and the induction continues. QQQ

(e) At the end of the induction set S∞ =
⋃
n∈N Sn; as uuun+1 extends uuun for every n, we have a process

uuu∞ =
⋃
n∈N uuun with domain S∞. If σ, σ′ ∈ S∞, there is an n ∈ N such that Sn contains both, so uuu∞ is

fully adapted. It is locally moderately oscillatory because if σ ∈ S∞ there is an n ∈ N such that σ ∈ Sn and
uuu∞↾S∞ ∧ σ = uuun↾Sn ∧ σ is near-simple. Because τn ∈ S∞ and

infn∈N supσ∈S∞
[[τn < σ]] ⊆ infn∈N [[τn < maxS]] = 0,

uuu∞ is moderately oscillatory (654Bb).
Again because infn∈N [[τn < maxS]] = 0, S∞ covers S, so S∞ and S have the same covered envelope, and

uuu∞ has an extension to a process uuu = 〈uσ〉σ∈S with domain S (612Qa). Because uuu↾S∞ is locally moderately
oscillatory, uuu is locally moderately oscillatory (615F(b-v)), therefore moderately oscillatory.

Now take any n ∈ N and σ ∈ Sn. Then
uσ = unσ = u⋆σ +

∫
Sn∧σ

h̄(uuun, yyy)dvvv = u⋆σ +
∫
S∧σ h̄(uuu,yyy)dvvv.

So uuu agrees with uuu⋆ + iivvv(h̄(uuu,vvv)) on S∞; as S∞ covers S, uuu = uuu⋆ + iivvv(h̄(uuu,vvv)).

(f) Now suppose that uuu′ = 〈u′σ〉σ∈S is another moderately oscillatory process such that uuu′ = uuu⋆ +
iivvv(h̄(uuu

′, yyy)). Then uuu′↾Sn = uuun for every n ∈ N. PPP Induce on n. If n = 0 then Sn = {minS} and both uuu′

and uuu⋆ take the value u⋆,minS at minS. For the inductive step to n + 1, the inductive hypothesis tells us

that u′τn = unτn . Now, for σ ∈ S̃n = [τn, τn+1],

u′σ = u⋆σ +

∫

S∧σ
h̄(uuu′, yyy)dvvv

= u⋆σ +

∫

(S∧σ)∧τn
h̄(uuu′, yyy)dvvv +

∫

(S∧σ)∨τn
h̄(uuu′, yyy)dvvv

= u⋆σ + unτn − u⋆τn +

∫

S̃n∧σ
h̄(uuu′, yyy)dvvv.

As σ is arbitrary,

uuu′↾S̃n = uuu⋆↾S̃n + (unτn − u⋆τn)1
S̃n + iivvv↾S̃n

(h̄(uuu′↾S̃n, yyy↾S̃n)).

But 654F assured us that this equation had a unique solution, so uuu′↾S̃n must be identical with ũuun as found
in (c), and therefore agrees with uuun+1 and with uuu on S̃n. As Sn ∪ S̃n covers Sn+1, uuu

′ agrees with uuu on Sn+1.
So the induction continues. QQQ

Accordingly uuu′ agrees with uuu on S∞ and therefore on its full envelope S. Thus uuu is uniquely defined.

(g) So we have the result in the special case in which S has a greatest member and www is a martingale.
For the general case, let S ′ be a covering ideal of S such that www↾S ′ is a martingale. Then (b)-(f) tell
us that for every τ ∈ S ′ there is a unique near-simple process uuuτ with domain S ∧ τ such that uuuτ =
uuu⋆↾S ∧ τ + iivvv↾S∧τ (h̄(uuuτ , yyy↾S ∧ τ)). If τ ≤ τ ′ in S ′ then uuuτ ′↾S ∧ τ satisfies the same equation as uuuτ , so must
be equal to uuuτ . As in (e), with S ′ in place of S∞, there is therefore a fully adapted process uuu = 〈uσ〉σ∈S with
domain S extending every uuuτ , and such that uuu = uuu⋆+ iivvv(h̄(uuu, dyyy)). Because uuu↾S ∧ τ = uuuτ is near-simple for
every τ ∈ S ′, uuu is locally near-simple (631F(b-v)). And as in (e), we see that if uuu′ has the same property,
then uuu′↾Sτ = uuuτ for every τ ∈ S ′, so that uuu′ = uuu.

This completes the proof.
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654H Lemma Suppose that 〈At〉t∈T is right-continuous, and that S = [minS,maxS] is an interval in
T . Define zzz = 〈zσ〉σ∈S by setting zσ = χ[[σ < maxS]] for σ ∈ S. Suppose that xxx ∈ MS-i =MS-i(S), and
that vvv ∈Mn-s =Mn-s(S) is an integrator.

(a) zzz × Siivvv(xxx) = zzz × Siizzz×vvv(xxx).
(b) Siivvv(xxx)< = Siivvv(zzz × xxx)<.

proof (a) For any σ ∈ S,

[[ S
∫
S∧σ xxx dvvv 6= S

∫
S∧σ xxx d(zzz × vvv)]] ⊆ [[vvv↾S ∧ σ 6= (zzz × vvv)↾S ∧ σ]]

(646C)

⊆ [[maxS ≤ σ]] ⊆ [[χ[[σ < maxS]] = 0]].

So zzz × (Siivvv(xxx)− Siizzz×vvv(xxx)) = 0 and we have the result.

(b) For σ ∈ S, set uσ = S
∫
S∧σ xxx dvvv and u′σ = S

∫
S∧σ zzz × xxx dvvv. Then

[[zσ × uσ 6= zσ × u′σ]] = [[zσ = χ1]] ∩ [[uσ 6= u′σ]]

⊆ [[σ < maxS]] ∩ [[xxx↾S ∧ σ 6= (zzz × xxx)↾S ∧ σ]]
(647J)

⊆ [[σ < maxS]] ∩ sup
σ′∈S∧σ

[[zσ′ = 0]]

= [[σ < maxS]] ∩ sup
σ′∈S∧σ

[[σ′ = maxS]] = 0.

So zσ × uσ = zσ × u′σ; as σ is arbitrary, zzz × Siivvv(xxx) = zzz × Siivvv(zzz × xxx). Putting this together with 654De,

Siivvv(xxx)< = (zzz × Siivvv(xxx))< = (zzz × Siivvv(zzz × xxx))< = Siivvv(zzz × xxx)<.

654I Now for an S-integral version of 654E.

Lemma Suppose 〈At〉t∈T is right-continuous and that S = [minS,maxS] is an interval in T . Let M0
n-s be

the space of near-simple processes uuu = 〈uσ〉σ∈S with domain S such that uminS = 0. For a near-simple
integrator vvv, write vvv∗ for its quadratic variation. Suppose that www, www′ ∈M0

n-s are such that www is a martingale
and www′ is of bounded variation; set vvv = www +www′. If xxx ∈ M0

S-i =M0
S-i(S), uuu ∈ Mmo =Mmo(S) and |xxx| ≤ uuu<,

then

‖ sup |Siivvv(xxx)|‖2 ≤ 2(
√

‖www∗‖∞ + ‖
∫
S |dwww′|‖∞)‖ sup |uuu|‖2.

proof (a) Write γ for 2(
√

‖www∗‖∞ + ‖
∫
S |dwww′|‖∞)‖ sup |uuu|‖2. If this is infinite, we can stop, so suppose that

γ is finite.
The set {u : u ∈ L2, ‖u‖2 ≤ γ} is closed in L0 for the topology of convergence in measure (613Bc).

Next, yyy 7→ sup |yyy| : Mo-b → L0 is continuous for the ucp topology on Mo-b = Mo-b(S) and the topology of
convergence in measure on L0 (615C(b-ii)), so {yyy : ‖ sup |yyy|‖2 ≤ γ} is closed in Mo-b for the ucp topology.

(b) By 646O, Siivvv is continuous on A = {xxx : xxx ∈M0
S-i, |xxx| ≤ uuu<} for the S-integration topology on A and

the ucp topology on Mo-b, so

C = {xxx′ : xxx′ ∈ A, ‖ sup |Siivvv(xxx′)|‖2 ≤ γ}
is relatively closed in A for the S-integration topology. We know also that, writing A0 for {uuu′ : uuu′ ∈ Mmo,
|uuu′| ≤ uuu}, {uuu′< : uuu′ ∈ A0} is dense in A (645La), Siivvv(uuu

′
<) = iivvv(uuu

′) for every uuu′ ∈ A0 (646Kc), and that

‖ sup |iivvv(uuu′)|‖2 ≤ 2(
√

‖www∗‖∞ + ‖
∫
S |dwww′|‖∞)‖ sup |uuu′|‖2 ≤ γ

for every uuu′ ∈ A0 (654E). So uuu′< ∈ C for every uuu′ ∈ A0, and C is dense in A. But this means that C is
actually equal to A; consequently xxx ∈ C and ‖ sup |Siivvv(xxx)|‖2 ≤ γ, as claimed.
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654J Lemma Suppose that 〈At〉t∈T is right-continuous. Let S = [minS,maxS] be an interval in
T . Suppose that h : R2 → R is a locally bounded Borel measurable function and that K ≥ 0 is such that
|h(α, β)−h(α′, β)| ≤ K|α−α′| for all α, α′, β ∈ R; let www = 〈wσ〉σ∈S , www′ = 〈w′

σ〉σ∈S be near-simple processes
with domain S such that www is a martingale, www′ is of bounded variation and wminS = w′

minS = 0. Write
www∗ for the quadratic variation of www, www′↑ for the cumulative variation of www′, and zzz for 〈χ[[σ < maxS]]〉σ∈S .
Suppose that 2K(

√
‖www∗‖∞+2‖zzz×www′↑‖∞) < 1. Set vvv = www+www′. Then for any xxx⋆, yyy ∈MS-i =MS-i(S) there

is a unique process xxx ∈MS-i such that

xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.

Remark I ought to say at once that by Siivvv(h̄(xxx,yyy))< I mean the previsible version (Siivvv(h̄(xxx,yyy)))< of the
indefinite S-integral Siivvv(h̄(xxx,yyy)). I think it looks better without the extra brackets.

proof We can follow the same line of argument as in 654F.

(a) Suppose that ‖xxx⋆‖∞ and ‖yyy‖∞ are both finite, and that 2Kγ < 1 where γ =
√
‖www∗‖∞+‖

∫
S |dwww′|‖∞.

(i) Define 〈xxxn〉n∈N, 〈uuun〉n∈N by saying that xxx0 = xxx⋆ and

uuun = Siivvv(h̄(xxxn, yyy)), xxxn+1 = xxx⋆ + uuun<

for n ∈ N. Then h̄(xxxn, yyy) ∈ MS-i (645Jb) and uuun belongs to Mn-s = Mn-s(S) (646N), so xxxn+1 ∈ MS-i, for
any n ≥ 0.

For n ≥ 0,

|h̄(xxxn+1, yyy)− h̄(xxxn, yyy)| ≤ K|xxxn+1 − xxxn| = K|(uuun − uuun−1)<|
(counting uuu−1 as 0)

= |K(uuun − uuun−1)|<
(641Gd), so

‖ sup |uuun+1 − uuun|‖2 = ‖ sup |Siivvv(h̄(xxxn+1, yyy)− h̄(xxxn, yyy))|‖2
≤ 2γ‖ sup |K(uuun − uuun−1)|‖2

(654I)

= 2γK‖ sup |uuun − uuun−1|‖2
for n ∈ N. At the beginning of the iteration, because h is locally bounded and both xxx⋆ and yyy are bounded,
K ′ = ‖h̄(xxx⋆, yyy)‖∞ is finite, |h̄(xxx⋆, yyy)× 1(S)

< | ≤ K ′1(S)
< and

‖ sup |uuu0 − uuu−1|‖2 = ‖ sup |Siivvv(h̄(xxx⋆, yyy))|‖2
= ‖ sup |Siivvv(h̄(xxx⋆, yyy)× 1(S)

< )|‖2 ≤ 2γ‖K ′χ1‖2 = 2K ′γ

is finite. As 2Kγ < 1,
∑∞
n=0 ‖ sup |uuun+1 − uuun|‖2 is finite and ‖ sup |un|‖2 <∞ for every n.

(ii) As in 654F, it follows that 〈uuun〉n∈N is Cauchy for the ucp uniformity, and has a limit uuu in Mn-s.
This time, we need to check that limn→∞ ‖ sup |uuun − uuu|‖2 = 0. PPP For any n,

sup |uuu− uuun| ≤
∑∞
i=n+1 sup |ui − ui−1|,

‖ sup |uuu− uuun|‖2 ≤ ∑∞
i=n+1 ‖ sup |ui − ui−1|‖2 → ∞

as n→ ∞. QQQ In particular, sup |uuu| is square-integrable.
Set xxx = xxx⋆ + uuu<. For n ≥ 0, xxx− xxxn+1 = (uuu− uuun)<, so

|h̄(xxx,yyy)− h̄(xxxn+1, yyy)| ≤ K|uuu− uuun|<,

‖ sup |Siivvv(h̄(xxx,yyy)))− uuun+1|‖2 = ‖ sup |Siivvv(h̄(xxx,yyy)− h̄(xxxn+1, yyy))|‖2
≤ 2Kγ‖ sup |uuu− uuun|‖2 → 0
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as n→ ∞. Accordingly, taking limits for the ucp topology,

xxx− xxx⋆ = uuu< = (limn→∞ uuun)< = Siivvv(h̄(xxx,yyy))<

and xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.

(b) Once again assume that 2Kγ < 1 where γ =
√
‖www∗‖∞ + ‖

∫
S |dwww′|‖∞. Suppose that

xxx0⋆, xxx1⋆, yyy0, yyy1, xxx0, xxx1 ∈MS-i

are such that

xxx0 = xxx0⋆ + Siivvv(h̄(xxx0, yyy0))<, xxx1 = xxx1⋆ + Siivvv(h̄(xxx1, yyy1))<.

Set

uuu0 = Siivvv(h̄(xxx0, yyy0)), uuu1 = Siivvv(h̄(xxx1, yyy1)),

and suppose that sup |uuu0| ∈ L2. Set a = [[xxx0⋆ 6= xxx1⋆]] ∪ [[yyy0 6= yyy1]]. Then [[uuu0 6= uuu1]] ⊆ a. PPP Let ǫ > 0. Let
M ≥ 0 be such that µ̄[[sup |uuu1| > M ]] ≤ ǫ and set a′ = a ∪ [[sup |uuu1| > M ]].

Now repeat the inductive construction of (a-i), adjusted as follows. Set ũuu0 = med(−M1(S),uuu1,M1(S))
and

x̃xxn+1 = xxx0⋆ + ũuun<, ũuun+1 = Siivvv(h̄(x̃xxn+1, yyy0))

for n ∈ N. Then

|h̄(x̃xxn+1, yyy0)− h̄(xxx0, yyy0)| ≤ K|x̃xxn+1 − xxx0| = K|ũuun − uuu0|<,

‖ sup |ũuun+1 − uuu0|‖2 = ‖ sup |Siivvv(h̄(x̃xxn+1, yyy0)− h̄(xxx0, yyy0))|‖2
≤ 2Kγ‖ sup |ũuun − uuu0|‖2

for each n, while ‖ sup |ũuu0 − uuu0|‖2 ≤ M + ‖ sup |uuu0|‖2 is finite. So limn→∞ ‖ sup |ũuun − uuu0|‖2 = 0 and
uuu0 = limn→∞ ũuun for the ucp topology.

At the same time, we find that [[ũuun 6= uuu1]] ⊆ a′ for every n. To see this, induce on n. At the start,
[[ũuu0 6= uuu1]] = [[sup |uuu1| > M ]] ⊆ a′. For the inductive step,

[[ũuun+1 6= uuu1]] = [[Siivvv(h̄(x̃xxn+1, yyy0)− h̄(xxx1, yyy1)) 6= 0]] ⊆ [[h̄(x̃xxn+1, yyy0)− h̄(xxx1, yyy1) 6= 0]]

(647J again)

⊆ [[x̃xxn+1 6= xxx1]] ∪ [[yyy0 6= yyy1]]

⊆ [[xxx0⋆ 6= xxx1⋆]] ∪ [[ũuun< 6= uuu1<]] ∪ a ⊆ [[ũuun 6= uuu1]] ∪ a

(641G(a-iii))

⊆ a′

by the inductive hypothesis, so the induction proceeds.
It follows that [[uuu0 6= uuu1]] \ a ⊆ a′ \ a has measure at most ǫ. As ǫ is arbitrary, [[uuu0 6= uuu1]] ⊆ a. QQQ

(c) For the second stage of the existence proof, continue to assume that 2Kγ < 1 where γ =
√
‖www∗‖∞ +

‖
∫
S |dwww′|‖∞, but drop the ‖ ‖∞-boundedness conditions on xxx⋆ and yyy, and suppose only that xxx⋆, yyy ∈MS-i.

(i) In this case, set

xxxk∗ = med(−k1(S)
< ,xxx⋆, k1

(S)
< ), yyyk = med(−k1(S)

< , yyy, k1(S)
< ),

ak = [[sup |xxx⋆| > k]] ∪ [[sup |yyy| > k]]

for k ∈ N. (Recall that we know from 645Kb that xxx⋆ and yyy are order-bounded.) By (a), there is for each k
a uuuk ∈ Mn-s such that sup |uuuk| is square-integrable and, setting xxxk = xxxk∗ + uuuk<, uuuk = Siivvv(h̄(xxxk, yyyk)). By
(b), [[uuuk 6= uuul]] ⊆ ak for l ≥ k. Since 〈ak〉k∈N is a non-increasing sequence with infimum 0,

z = supk∈N sup |uuuk| = sup |uuu0| ∨ supk∈N χ(ak \ χak+1)× supj≤k+1 sup |uuuj |
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is defined in L0 and sup |uuuk − uuul| ≤ z × χak whenever k ≤ l. Accordingly uuu = limk→∞ uuuk is defined for the
ucp topology, and uuu is near-simple (631Ba). Next, setting xxx = xxx⋆ + uuu<, we have, for any k,

[[xxx 6= xxxk]] ⊆ [[xxx⋆ 6= xxxk]] ∪ [[uuu< 6= uuuk<]] ⊆ ak ∪ [[uuu 6= uuuk]] = ak,

[[uuuk< 6= Siivvv(h̄(xxx,yyy))<]] ⊆ [[uuuk 6= Siivvv(h̄(xxx,yyy))]] = [[Siivvv(h̄(xxxk, yyyk)) 6= Siivvv(h̄(xxx,yyy))]]

⊆ [[h̄(xxxk, yyyk) 6= h̄(xxx,yyy)]] ⊆ [[xxxk 6= xxx]] ∪ [[yyyk 6= yyy]] ⊆ ak

and

[[xxx 6= xxx⋆ + Siivvv(h̄(xxx,yyy))<]] ⊆ [[xxx 6= xxxk]] ∪ [[xxx⋆ 6= xxxk∗]] ∪ [[Siivvv(h̄(xxx,yyy))< 6= uuuk<]] ⊆ ak.

As k is arbitrary, xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.

(ii) To see that xxx is unique, let xxx′ ∈ MS-i be such that xxx′ = xxx⋆ + Siivvv(h̄(xxx
′, yyy))<. This time, (b) tells

us that, setting uuu′ = Siivvv(h̄(xxx
′, yyy)), [[uuu′ 6= uuuk]] ⊆ ak for each k. So uuu′ = uuu and xxx′ = xxx.

(d) Now turn to the given hypothesis that 2K(
√

‖www∗‖∞ + 2‖zzz ×www′↑‖∞) < 1.

(i) As in 654F, set www′
1 = zzz × www′ and vvv1 = www + www′

1. Then, as before, we have 2K(
√

‖www∗‖∞ +
‖
∫
S |dwww′

1|‖∞) < 1. So (c-i) tells us that there is an S-integrable process xxx1 such that xxx1 = xxx⋆+Siivvv1(h̄(xxx1, yyy))<.

Set www′
2 = www′ −www′

1 and xxx = xxx1 + Siiwww′

2
(h̄(xxx1, yyy))<. We see that

vvv1 +www′
2 = www +www′ = vvv,

xxx = xxx⋆ + Siivvv1(h̄(xxx1, yyy))< + Siiwww′

2
(h̄(xxx1, yyy))< = xxx⋆ + Siivvv(h̄(xxx1, yyy))<,

zzz × xxx = zzz × xxx1 + zzz × Siiwww′

2
(h̄(xxx1, yyy))< = zzz × xxx1 + zzz × Siizzz×www′

2
(h̄(xxx1, yyy))<

(654Ha)

= zzz × xxx1

because zzz ×www′
2 = 0. Consequently

Siivvv(h̄(xxx,yyy))< = Siivvv(zzz × h̄(xxx,yyy))<

(654Hb))

= Siivvv(zzz × h̄(zzz × xxx,yyy))<

(619Ge again, as in the proof of 654F)

= Siivvv(zzz × h̄(zzz × xxx1, yyy))< = Siivvv(h̄(xxx1, yyy))<

and xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<, as required.

(ii) To show uniqueness we can run the argument backwards, as follows. Suppose that xxx′ ∈ MS-i is
such that xxx′ = xxx⋆ + Siivvv(h̄(xxx

′, yyy))<. Set xxx′1 = xxx⋆ + Siivvv1(h̄(xxx
′, yyy))<. Then

zzz × xxx′1 = zzz × xxx⋆ + zzz × Siizzz×vvv1(h̄(xxx
′, yyy))<

= zzz × xxx⋆ + zzz × Siizzz×vvv(h̄(xxx
′, yyy))< = zzz × xxx′

so that Siivvv1(h̄(xxx
′
1, yyy))< = Siivvv1(h̄(xxx

′, yyy))< and xxx′1 = xxx⋆ + Siivvv1(h̄(xxx
′
1, yyy))<. But this implies that xxx′1 = xxx1,

by the uniqueness established in (c-ii), and zzz × xxx′1 = zzz × xxx1. Now

xxx′ = xxx′1 + Siiwww′

2
(h̄(xxx′, yyy))< = xxx′1 + Siiwww′

2
(h̄(xxx′1, yyy))<

= xxx1 + Siiwww′

2
(h̄(xxx1, yyy))< = xxx.

Thus the solution offered in (i) is unique.
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654K The key step in the next stage involves re-starting an S-integral, so I separate it out.

Lemma Suppose that 〈At〉t∈T is right-continuous, and that S ⊆ T is an order-convex sublattice with a least
member. Let h : R2 → R be a locally bounded Borel measurable function. Take processes xxx, xxx⋆, yyy ∈MS-i(S)
and an integrator vvv ∈Mn-s(S). Set uuu = Siivvv(h̄(xxx,yyy)) and express uuu as 〈uσ〉σ∈S , uuu< as 〈u<σ〉σ∈S .

Fix τ ∈ S. Set
S ′ = S ∧ τ , xxx′ = xxx↾S ′, vvv′ = vvv↾S ′, yyy′ = yyy↾S ′, xxx′⋆ = xxx⋆↾S ′,

S ′′ = S ∨ τ , xxx′′ = xxx↾S ′′, vvv′′ = vvv↾S ′′, yyy′′ = yyy↾S ′′ xxx′′⋆ = xxx⋆↾S ′′ + x̃xx∗

where x̃xx∗ = u<τ1
(S′′) + (uτ − u<τ )1

(S′′)
< .

(a) Siivvv′(h̄(xxx
′, yyy′)) = Siivvv(h̄(xxx,yyy))↾S ′, so Siivvv′(h̄(xxx

′, yyy′))< = Siivvv(h̄(xxx,yyy))<↾S ′.
(b) xxx′′⋆ ∈MS-i(S ′′).
(c) xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))< if and only if

xxx′ = xxx′⋆ + Siivvv′(h̄(xxx
′, yyy′))< and xxx′′ = xxx′′⋆ + Siivvv′′(h̄(xxx

′′, yyy′′))<.

proof (a)(i) We should start by noting that h̄(xxx,yyy) is S-integrable, by 645J as usual, so we can talk about
the indefinite S-integral Siivvv(h̄(xxx,yyy)). Similarly, because xxx′, yyy′, xxx′′ and yyy′′ are S-integrable (646Hd) and vvv′,
vvv′′ are near-simple integrators (631F(a-iv), 616P(b-ii)), we have the indefinite S-integrals Siivvv′(h̄(xxx

′, yyy′)) and
Siivvv′′(h̄(xxx

′′, yyy′′)).
For σ ∈ S write Sσ for S ∧ σ.

(ii) If σ ∈ S ′ then

S

∫

Sσ

h̄(xxx,yyy) dvvv = S

∫

Sσ

h̄(xxx↾Sσ, yyy↾Sσ) d(vvv↾Sσ)

= S

∫

Sσ

h̄(xxx′↾Sσ, yyy′↾Sσ) d(vvv′↾Sσ)

= S

∫

Sσ

h̄(xxx′, yyy′) dvvv′.

So Siivvv′(h̄(xxx
′, yyy′)) = Siivvv(h̄(xxx,yyy))↾S ′. By 641G(c-ii), it follows that Siivvv′(h̄(xxx

′, yyy′))< = Siivvv(h̄(xxx,yyy))<↾S ′.

(b) Here I should point out that x̃xx∗ × 1(S′′)
< = (uτ1

(S′′))< belongs to M0
S-i(S ′′) so xxx′′⋆ ∈MS-i(S ′′).

(c)(i) For σ ∈ S ′′, set u′′σ = S
∫
[τ,σ]

h̄(xxx,yyy) dvvv, so that Siivvv′′(h̄(xxx
′′, yyy′′)) = 〈u′′σ〉σ∈S′′ and Siivvv′′(h̄(xxx

′′, yyy′′))< =

〈u′′<σ〉σ∈S′′ .
If σ ∈ S ′′, then

uσ = S

∫

Sσ

h̄(xxx,yyy) dvvv = S

∫

S′

h̄(xxx,yyy) dvvv + S

∫

[τ,σ]

h̄(xxx,yyy) dvvv

(646J, because Sσ ∧ τ = S ′ and Sσ ∨ τ = [τ, σ])

= uτ + S

∫

[τ,σ]

h̄(xxx,yyy) dvvv = uτ + u′′σ.

We know that (uuu↾S ′′)< = (uuu<↾S ′′)× 1(S′′)
< (641G(c-ii)), so that

[[τ < σ]] ⊆ [[u<σ = uτ + u′′<σ]] ∩ [[x̃∗σ = uτ ]] ⊆ [[u<σ = x̃∗σ + u′′<σ]],

where x̃xx∗ = 〈x̃∗σ〉σ∈S′′ , while

[[τ = σ]] ⊆ [[u<σ = u<τ ]] ∩ [[u′′<σ = 0]] ∩ [[x̃∗σ = u<τ ]] ⊆ [[u<σ = x̃∗σ + u′′<σ]].

Thus u<σ = x̃∗σ + u′′<σ; as σ is arbitrary, Siivvv(h̄(xxx,yyy))<↾S ′′ = x̃xx∗ + Siivvv′′(h̄(xxx
′′, yyy′′))<.

(ii) Writing uuu′ for Siivvv′(h̄(xxx′, yyy′)) and uuu′′ for Siivvv′′(h̄(xxx′′, yyy′′)), we know from (a) that uuu′< = uuu<↾S ′ and
from (i) just above that x̃xx∗ + uuu′′< = uuu<↾S ′′. Since S ′ ∪ S ′′ covers S, and xxx and xxx⋆ + uuu< are fully adapted,
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xxx = xxx⋆ + uuu< ⇐⇒ xxx↾S ′ = xxx⋆↾S ′ + uuu<↾S ′ and xxx↾S ′′ = xxx⋆↾S ′′ + uuu<↾S ′′

⇐⇒ xxx′ = xxx′⋆ + uuu′< and xxx′′ = xxx⋆↾S ′′ + x̃xx∗ + uuu′′<

⇐⇒ xxx′ = xxx′⋆ + uuu′< and xxx′′ = xxx′′⋆ + uuu′′<,

that is,

xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<

⇐⇒ xxx′ = xxx′⋆ + Siivvv′(h̄(xxx
′, yyy′))< and xxx′′ = xxx′′⋆ + x̃xx∗ + Siivvv′′(h̄(xxx

′′, yyy′′))<.

654L With this in hand, we can embark on a full-strength version of Theorem 654G.

Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with a least
member. Suppose that h : R2 → R is a locally bounded Borel measurable function and that K ≥ 0 is such
that |h(α, β)−h(α′, β)| ≤ K|α−α′| for all α, α′, β ∈ R. Let vvv be a locally near-simple local integrator with
domain S. Then for any locally S-integrable processes xxx⋆ = 〈x⋆σ〉σ∈S , yyy with domain S there is a unique
locally S-integrable process xxx with domain S such that

xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.

proof (a) Let ǫ > 0 be such that 2K(
√
ǫ+3ǫ) < 1. As in part (a) of the proof of 654G, we can express vvv as

www+www′ where www = 〈wσ〉σ∈S is a local martingale, www′ = 〈w′
σ〉σ∈S is of bounded variation and Osclln(www) ≤ ǫχ1.

For the time being (down to the end of (d) below), suppose that that www is a martingale and that S has a
greatest member, so that vvv is near-simple and xxx⋆ and yyy are S-integrable.

We know that www and www′ are near-simple, so the cumulative variation www′↑ = 〈w′↑
σ 〉σ∈S of www′ and the

quadratic variation www∗ = 〈w∗
σ〉σ∈S of www are near-simple.

As in part (c) of the proof of 654G, there is a non-decreasing sequence 〈τn〉n∈N in S such that τ0 = minS,
infn∈N [[τn < maxS]] = 0 and whenever n ∈ N and σ ∈ [τn, τn+1],

[[w′↑
σ + w∗

σ − w′↑
τn − w∗

τn ≥ ǫ]] ⊆ [[σ = τn+1]].

(b) For n ∈ N, write Sn = S ∧ τn = [minS, τn]. Then we have a sequence 〈xxxn〉n∈N of S-integrable
processes such that

xxxn ∈MS-i(Sn), xxxn = xxx⋆↾Sn + Siivvv↾Sn
(h̄(xxxn, yyy↾Sn))<

for each n. PPP Induce on n. As in part (d) of the proof of 654G, the induction starts with xxx0 = xxx⋆↾{minS}.
For the inductive step to n+ 1, given xxxn, set uuu = Siivvv↾Sn

(h̄(xxxn, yyy↾Sn)) and express uuu as 〈uσ〉σ∈Sn
; set

S̃n = [τn, τn+1], x̃xxn∗ = xxx⋆↾S̃n + u<τn1
(S̃n) + (uτn − u<τn)1

(S̃n)
< ,

w̃ww = www↾S̃n − wτn1
(S̃n), w̃ww′ = www′↾S̃n − w′

τn1
(S̃n), ṽvv = w̃ww + w̃ww′.

Then w̃ww and w̃ww′ are near-simple processes with domain S̃n, w̃ww is a martingale, w̃ww′ is of bounded variation

and both start with value 0 at min S̃n = τn. The quadratic variation w̃ww∗ of w̃ww is www∗↾S̃n −w∗
τn1

(S̃n), and the

cumulative variation w̃ww′↑ of w̃ww′ is www′↑↾S̃n − w↑
τn1

(S̃n).
As before, setting zzz = 〈χ[[σ < τn+1]]〉σ∈S̃n

,

2K
(√

‖w̃ww∗‖∞ + 2‖zzz × w̃ww′↑‖∞
)
≤ 2K(

√
ǫ+ 3ǫ) < 1.

We can therefore apply 654J to see that there is a unique S-integrable process x̃xxn with domain S̃n such that
x̃xxn = x̃xxn∗ + Siiṽvv(h̄(x̃xxn, ỹyy))<.

Since the processes xxxn and x̃xxn take the same value x⋆τn+u<τn at τn, we have a fully adapted process xxxn+1

with domain Sn+1 extending them both. By 646J again, xxxn+1 is S-integrable. Now Siivvv↾Sn
(h̄(xxxn+1↾Sn, yyy↾Sn)) =

uuu, and 654Kc tells us that

xxxn+1 = xxx⋆↾Sn+1 + Siivvv↾Sn+1
(h̄(xxxn+1, yyy↾Sn+1))<,

so the induction continues. QQQ
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(c) At the end of the induction, as in part (e) of the proof of 654G, we have a process xxx = 〈xσ〉σ∈S
extending every xxxn. Next, setting

uuun = Siivvv(h̄(xxx↾Sn, yyy↾Sn)) = Siivvv↾Sn
(h̄(xxxn, yyy↾Sn)),

for each n, we see that uuun is near-simple (646N again) and uuun = uuun+1↾Sn for each n. Accordingly, just as
in the proof of 654G, there is a near-simple uuu = 〈uσ〉σ∈S such that uuun = uuu↾Sn for every n.

Now uuu< is S-integrable (645R(a-i)) so xxx⋆ + uuu< is S-integrable. But

xxx↾Sn = xxx⋆↾Sn + uuun< = xxx⋆↾Sn + (uuu↾Sn)<
= xxx⋆↾Sn + uuu<↾Sn = (xxx⋆ + uuu<)↾Sn

for every n, by 641G(c-ii) again. Since
⋃
n∈N Sn covers S, xxx = xxx⋆+uuu< is S-integrable. Consequently h̄(xxx,yyy)

is S-integrable (645J again) and we can speak of Siivvv(h̄(xxx,yyy))<. Since

xxx↾Sn = xxx⋆↾Sn + Siivvv(h̄(xxx↾Sn, yyy↾Sn))<
= xxx⋆↾Sn + (Siivvv(h̄(xxx,yyy))↾Sn)< = xxx⋆↾Sn + Siivvv(h̄(xxx,yyy))<↾Sn

for each n,

xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<.

(d) If xxx′ is another S-integrable process such that xxx′ = xxx⋆ + Siivvv(h̄(xxx
′, yyy))<, then we see that

xxx′↾Sn = xxx⋆↾Sn + Siivvv↾Sn
(h̄(xxx′↾Sn, yyy↾Sn))<

for each n. Applying 654Kc in the reverse direction to S̃n = Sn+1 ∨ τn, we see by induction that xxx′↾S̃n
satisfies the same equation as x̃xxn for each n. By the uniqueness guaranteed in 654J, xxx′↾S̃n = x̃xxn for each n,
and xxx′ = xxx. Thus we have both existence and uniqueness in the case in which S has a greatest member.

(e) For the general case, as in part (g) of the proof of 654G, we have a covering ideal S ′ of S such that
www↾S ′ is a martingale. For each τ ∈ S ′ we have a partial solution xxxτ with domain S ∧ τ . These have a
common extension to a process xxx with domain S, which will be the solution we seek on the whole lattice S.

654X Basic exercises (a) In 654G, suppose that uuu′⋆, yyy
′ and uuu′ are other locally moderately oscillatory

processes with domain S such that uuu′ = uuu′⋆ + iivvv(h̄(uuu
′, yyy′)). Show that [[uuu′ 6= uuu]] ⊆ [[uuu′⋆ 6= uuu⋆]] ∪ [[yyy′ 6= yyy]].

(b) Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with a least
member. Suppose that h : R2 → R is a continuous function such that |h(α, β) − h(α′, β)| ≤ |β||α − α′|
for α, α′, β ∈ R. Show that for any locally moderately oscillatory processes uuu⋆, yyy with domain S and any
integrator vvv ∈Mn-s(S) there is a unique uuu ∈Mn-s(S) such that uuu = uuu⋆ + iivvv(h̄(uuu,yyy)). (Hint : for K ≥ 0 set
yyyK = med(−K1(S), yyy,K1(S)).)

(c) In 654G, show that if vvv and uuu⋆ are locally jump-free then uuu is locally jump-free.

(d) Show how 654G can be deduced from 654L.

(e) Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T with a least
member. Suppose that k ≥ 1, that h : Rk+1 → R is a locally bounded Borel measurable function and
that K ≥ 0 is such that |h(α, β1, . . . , βk) − h(α′, β1, . . . , βk))| ≤ K|α − α′| for all α, α′, β1, . . . , βk ∈ R.
Let vvv be a locally near-simple local integrator with domain S. (i) Show that if h is continuous and uuu⋆,
yyy1, . . . , yyyk are locally near-simple processes with domain S there is a unique locally near-simple process
uuu with domain S such that uuu = uuu⋆ + iivvv(h̄(uuu,yyy1, . . . , yyyk)). (ii) Show that if xxx⋆, yyy1, . . . , yyyk are locally S-
integrable processes with domain S there is a unique locally S-integrable process xxx with domain S such that
xxx = xxx⋆ + Siivvv(h̄(xxx,yyy1, . . . , yyyk))<. (iii) Show that if uuu⋆ is a locally near-simple process with domain S and
yyy1, . . . , yyyk are locally S-integrable processes with domain S there is a unique locally near-simple process uuu
with domain S such that uuu = uuu⋆ + Siivvv(h̄(uuu<, yyy1, . . . , yyyk)).
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(f) In 654L, show that if vvv and xxx⋆ are locally jump-free then xxx is locally jump-free.

654Y Further exercises (a) Suppose that 〈At〉t∈T is right-continuous, and that S is an order-convex
sublattice of T with a least element. Write Mn-s for Mn-s(S). Let H1, H2 :Mn-s →Mn-s and K ≥ 0 be such
that, for both j, (α) if uuu, uuu′ ∈ Mn-s, σ ∈ S and uuu↾S ∧ σ = uuu′↾S ∧ σ then Hj(uuu)↾S ∧ σ = Hj(uuu

′)↾S ∧ σ (β)
sup |Hj(uuu)−Hj(uuu

′)| ≤ K sup |uuu− uuu′| for all uuu, uuu′ ∈ Mn-s. Show that for any near-simple integrator vvv with
domain S and any uuu⋆ ∈Mn-s(S) there is a unique uuu ∈Mn-s such that uuu = uuu⋆ +H1(iivvv(H2(uuu))).

654 Notes and comments Rather against the general tendency of this treatise, I have given a substantial
amount of space to an independent proof of a theorem (654G) which can be regarded as a corollary of a
later result in the same section (654L, 654Xd). We could save a little paper by going straight to 654L. But I
have tried, for once, to make the path gentler, though longer, by introducing those ideas which can be used
in the context of the Riemann-sum integral, before tackling the extra technical difficulties of the S-integral.

There is a switch between the equations uuu = uuu⋆ + iivvv(h̄(uuu,yyy)) and xxx = xxx⋆ + Siivvv(h̄(xxx,yyy))<. In the first,
we are dealing throughout with (locally) moderately oscillatory processes. In the second, while vvv remains
a locally near-simple local integrator, the other variables are locally S-integrable. So we need a locally
S-integrable indefinite integral, and the definition in §646 led to a locally near-simple indefinite S-integral,
just as the definition in §613 led to a locally near-simple indefinite Riemann-sum integral. I have therefore
turned to what one might call a previsible indefinite S-integral. (There is an immediate suggestion that we
could look at previsible definite S-integrals, but I shall not pursue this here.) A re-shuffling of the notion is
in 654Xe(iii).

The idea of the proof here is to follow the standard method in elementary courses on ordinary differential
equations, using a contraction mapping on a suitable metric space. The trick is to find an appropriate
metric. In 654E I show that the norm uuu 7→ ‖ sup |uuu|‖2 will serve in a special case which turns out to be
adequate. In fact I think that the F-norm j of the proof of that lemma is closer to the heart of the matter,
as its formula carries a hint of the way in which we have to treat martingales and processes of bounded
variation differently.

Of course the method can be adapted to go a great deal farther. I think that we can reach 654Ya without
adding any substantial new ideas to those in the proof of 654G. I note also that the Lipschitz condition can
be significantly relaxed (654Xb, and see Protter 05, §V.3).

Version of 13.2.21

655 The Black-Scholes model

This volume is supposed to be an introduction to stochastic integration for a mathematically sophisticated
but otherwise untutored readership. You will find it difficult to persuade anyone else to take your efforts
seriously if you do not have something to say about its most famous applications, starting with Black &

Scholes 73. I will therefore take the space to give a very short account of the simplest model derived by
their method, even though the mathematical content is no more than direct quotes from the work so far,
and all the interesting ideas relate to the theory of financial markets.

655A Stochastic differential equations In §§651 and 653, I expressed every result in terms of integral
equations; so that Theorem 651B, for instance, reads∫

S uuu dzzz =
∫
S uuu× zzz dvvv.

But the mnemonic for it, in the style of §617, would be

dzzz ∼ zzz dvvv,

and some authors are happy to express this in the form
dzzz

dvvv
= zzz. Similarly, where in Theorem 654G I write

uuu = uuu⋆ + iivvv(h̄(uuu,yyy)),

others might write

uminS = u⋆,minS , duuu ∼ duuu⋆ + h̄(uuu,yyy)dvvv
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or perhaps

uminS = u⋆,minS ,
duuu

dvvv
=

duuu⋆

dvvv
+ h̄(uuu,yyy).

I myself prefer to regard these alternative expressions as potentially suggestive abbreviations. For instance,
they erase the distinction between the Riemann-sum integral and the S-integral; as we have seen in 654L,
this can be a helpful stimulus, but does not release us from the obligation to find sufficient conditions on
the inputs vvv, xxx⋆, yyy and h there.

655B A model of stock prices For the rest of this section, I will suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0,
T , 〈Aτ 〉τ∈T ) is a right-continuous real-time stochastic integration structure and S is a non-empty ideal of T ,
that is, an order-convex sublattice with least member 0̌ = min T . Let ιιι be the identity process (612F) and
www a Brownian-type process on S, that is, a locally jump-free local martingale with domain S and quadratic
variation www∗ = ιιι↾S (653K). Consider the differential equation

duuu ∼ αuuudιιι+ βuuudwww, u0̌ = u⋆

or

uuu = u⋆1+ αiiιιι(uuu) + βiiwww(uuu) = u⋆1+ iiw̃ww(uuu)

where w̃ww = αιιι + βwww and u⋆ ∈ L0(A0). Then w̃ww is a locally jump-free local integrator and its quadratic
variation w̃ww∗ is

[w̃ww
∗
w̃ww] = α2[ιιι

∗
ιιι] + 2αβ[ιιι

∗
www] + β2[www

∗
www] = β2ιιι

by 624C, because ιιι is locally of bounded variation and both ιιι and www are locally jump-free. So the equation
has solution

uuu = u⋆ exp(w̃ww − 1
2β

2ιιι)

(put 651B and 613L(b-ii) together, as in 651Xa), which is a locally jump-free local integrator and is unique
(654G, with h(x, y) = x and uuu⋆ = u⋆1).

655C A model for options Now suppose that we have an ‘option’ in a ‘stock’ whose value is accurately
modelled by the process uuu. Our objective is to find a rational approach leading to a way of determining the
value vvv of this option. We assume that vvv depends on the time and the value of uuu at that time; that is, that
there is a function h such that vvv = h̄(uuu, ιιι). (If uuu and vvv are represented, in the manner of 631D, by real-valued
processes 〈Ut〉t≥0 and 〈Vt〉t≥0 with càdlàg sample paths, we are supposing that Vt(ω) = h(Ut(ω), t) for most
pairs (ω, t).) The terms of the option will give us some information about the function h; for instance, a call
option, allowing us to buy a quantity c of the stock for a strike price x1 at expiry time t1, will then have
value h(x, t1) = cmax(x − x1, 0), because we shall be able to buy the stock at price x1 and sell it at price
x; if x ≤ x1, we just do nothing.

We assume also that h is twice continuously differentiable, with partial derivatives h1, h2 and second
partial derivatives h11, . . . , h22. Then we have

vvv = h̄(uuu, ιιι) = h̄(u⋆, 0) + iih̄(uuu,ιιι)(1)

= h̄(u⋆, 0) + iiuuu(h̄1(uuu, ιιι)) + iiιιι(h̄2(uuu, ιιι)) +
1

2
iiuuu∗(h̄11(uuu, ιιι))

by 619K, because uuu and ιιι are jump-free local integrators, and ιιι∗ = [ιιι
∗
uuu] = 0. In the differential form, this

becomes

dvvv ∼ h̄1(uuu, ιιι)duuu+ h̄2(uuu, ιιι)dιιι+
1

2
h̄11(uuu, ιιι)duuu

∗.

To get an expression for the term iiuuu∗(. . . ), observe that uuu∗ = (iiw̃ww(uuu))
∗ (617Kc) and we can use 617Q(a-iii)

to see that

iiuuu∗(h̄11(uuu, ιιι)) = iiw̃ww∗(h̄11(uuu, ιιι)× uuu2) = β2iiιιι(h̄11(uuu, ιιι)× uuu2).

So we have
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vvv = h̄(u⋆, 0) + iiuuu(h̄1(uuu, ιιι)) + iiιιι(h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι))

or, using the mnemonic for 617Q in the form duuu∗ ∼ uuu2dwww∗ ∼ β2uuu2dιιι,

dvvv ∼ h̄1(uuu, ιιι)duuu+ (h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι))dιιι.

655D Hedging and a risk-free portfolio Still supposing that there is such a function h, consider a
hedged version of the option. In addition to the option, we ‘hedge’ by a suitably varying quantity ḡ(uuu, ιιι) in
the stock uuu to give us a portfolio ṽvv = vvv − iiuuu(ḡ(uuu, ιιι)) in which the (so far unknown) value of vvv is modified
by the accumulated losses and gains of our hedging strategy. Let me try to explain the intuition behind
this. Actually I should perhaps begin with an explanation of the minus sign. The idea of a ‘hedge’ is that
we can ‘sell the stock short’, that is, sell stock we don’t necessarily possess; in a strictly regulated market,
this will be to some extent controlled by a requirement that we should borrow some stock from a legitimate
holder, and then sell that; but in any case, we take cash now, and promise to buy the stock back soon at the

price then ruling, either because we have to return it to its original owner, or because we never delivered it.
This is not an option, it is a contract. From the point of view of our counterparty, it is just like buying real
stock. Of course they have to trust us, but it is part of the theory of ‘perfect markets’ that the agents do
trust each other. There is a question about who decides the buy-back time, but our counterparty doesn’t
much mind, because they will be able to buy the stock in the market whenever we ask (remember, we shall
be paying the price at that time, and this is a perfect market, so there will always be buyers and sellers at
that price). The idea behind this is that if we possess a call option, we stand to make money if the stock
rises in value, and not if it falls; by going short, we hedge our bet to make our prospects more even.

We allow g to take negative values; this is because we can ‘go long’, that is, buy some stock with the
intention of selling it again if our strategy calls on us to do so. Note that we believe that uuu is jump-free, so
can imagine adjusting the hedge rapidly compared with changes in uuu.

We shall have

ṽvv = h̄(u⋆, 0) + iiuuu(h̄1(uuu, ιιι)− ḡ(uuu, ιιι)) + iiιιι(h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι))

or

ṽ0̌ = h̄(u⋆, 0), dṽvv ∼ (h̄1(uuu, ιιι)− ḡ(uuu, ιιι))duuu+ (h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι))dιιι.

So if we set g = h1, we get

ṽvv = h̄(u⋆, 0) + iiιιι(h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι)),

dṽvv ∼ (h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι))dιιι.

Now this is ‘risk-free’; for a short time interval [σ, σ′],

ṽσ′ − ṽσ ≏ (h̄2(uσ, σ) +
1

2
β2h̄11(uσ, σ))× (σ′ − σ)

is well approximated by something calculable from knowledge of the stopping times σ, σ′ and the situation
at the starting time σ, but not requiring any foreknowledge of the evolution of uuu or www. Consequently we
can compare it with other risk-free investments. Suppose that we can be sure of being able to borrow, or
lend, cash, at an interest rate ρ, with complete safety. We are supposed to be operating in a perfect market,
in which every agent knows just what we know about www and uuu, and can do the same calculations, so that
the process h̄(uuu, ιιι) describes the evolution of the market price, either buying or selling, of the option. We
therefore expect ṽσ′ − ṽσ, the agreed expected profit from holding the portfolio ṽ from time σ to time σ′,
to be very close to the expected income over that time period if we sell our option and our holding in the
stock uuu, and invest the net proceeds in a bond at interest rate ρ.

At this point I need to remark that these net proceeds will not be the current value ṽσ. The process ṽvv
takes past gains and losses into account in the term iiuuu(ḡ(uuu, ιιι)). But these are water under the bridge. Our
holding at, and immediately after, the time σ is vσ − ḡ(uσ, σ)× uσ, because if g is positive, that is, we are
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shorting the stock, we shall have to buy it back at once to liquidate our position, while if g is negative, that
is, we are holding some stock, we will sell it. So we expect that

ṽσ′ − ṽσ ≏ ρ(vσ − h̄1(uσ, σ)× uσ)× (σ′ − σ),

that is,

dṽvv ∼ ρ(vvv − h̄1(uuu, ιιι)× uuu)dιιι,

and matching the two formulae for dṽvv we get

h̄2(uuu, ιιι) +
1

2
β2uuu2 × h̄11(uuu, ιιι) = ρ(vvv − uuu× h̄1(uuu, ιιι)) = ρ(h̄(uuu, ιιι)− uuu× h̄1(uuu, ιιι)).

To ensure this, we shall have to have

h2(x, t) +
1

2
β2x2h11(x, t) = ρ(h(x, t)− xh1(x, t))

for all relevant x and t, that is,

∂h

∂t
+

1

2
β2x2

∂2h

∂x2
+ ρx

∂h

∂x
− ρh = 0

which is the Black-Scholes equation for the evolution of the value h(x, t) of an option in a stock with
price x at time t.

655 Notes and comments For obvious reasons, an enormous amount of work has been done on adaptations
and correction terms for the Black-Scholes equation. But I will indulge myself by saying why I think that
most of this effort has been wasted, at least from the point of view of those who have paid for it. Up to the
end of 655C we are enjoying ourselves with some pretty mathematics, and the finance theory of 655D, in the
abstract, offers us some interesting new challenges. But look at the ‘supposes’ and ‘assumes’ there. Why
should we believe that the value of a stock can be described by the formulae of 655B? Empirical evidence
from stock exchange records shows that many stocks have followed this pattern for years at a time; but
companies do quite often go bankrupt or get taken over, and the model so far has no place for either. Can
we be sure that the value of an option depends only on the time and on the present value of the stock? The
argument I presented above pays no attention to risk-aversion, because if the rest of the theory were sound,
there would be no risk; but even hedge funds are, in practice, risk-averse, and only intermittently do they
have blind faith in the theory. Why should the function h, if it exists, be twice continuously differentiable?
The model I have described assumes that the parameters α, β and ρ are constant. All of these we can
hope to do something about – but only if we have a convincing account of how they will change in the
future. There are ways of inferring what the majority of currently active traders expect them to do, but
are we supposed to believe that ‘the market’ is always right about such things, when we read daily of gross
blunders, and when interest rates, in particular, are influenced so heavily by government action? I wrote ‘we
can imagine adjusting the hedge rapidly compared with changes in uuu’. A very large amount of money has
been, and is being, spent on speeding up trading processes to make this true. But what if there is enough
trading in the options on a stock to make the corresponding hedges a significant influence on the price of
the stock?

And then there is all the stuff about perfect markets. One of the greatest advantages claimed for open
markets is that prices give a rapid and trustworthy way for information to percolate through the system;
but in more than one financial market in 2012-2014, the volume of trading, the bulk of it between rival
pricing models, offered large rewards for fraudulent manipulation of price indices, which duly occurred. On
most trading days, to be sure, and for most stocks and many options, there are active agents and (among
themselves) good information and low transaction costs; but local market failures, when trading in individual
stocks is suspended, are common, and more general failures, in which whole sectors are briefly paralyzed,
occur in most decades.

One of these failures is particularly associated with the Nobel prizewinners Myron Scholes and Robert
Merton, who belonged to the limited partnership Long-Term Capital Management which came spectacularly
to grief in 1998. For an account of the rise and fall of LTCM, see Lowenstein 01. Their business model
amounted to betting when the odds seemed right. Typically they were accepting other peoples’ hedges,
acting as a kind of unregulated insurance company. Of course they could do this only because not everyone
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took exactly the same view of the options involved, and the margins on the bets were necessarily narrow,
so the success of the fund depended on betting very heavily. They reached the level at which their own
transactions were having a substantial effect, and at which quite possibly temporary variations in market
prices were leading to changes in the value of their assets sufficient to alarm not only their investors but
their counterparties and creditors and the Federal Reserve Bank of New York. With hindsight we can see
that they made a string of bad decisions; but a common feature of these was that they assumed too readily
that they could wait for anomalies to evaporate. In particular, they tried to take advantage of a reluctance
on the part of other investors to hold Russian bonds, both private and governmental. This anomaly did
not evaporate, and culminated in defaults. LTCM seem to have been using pricing models which took
inadequate account of such risks.

One would have hoped that the catastrophe would have led to more realistic assessments by financiers.
But that didn’t happen. Lehman Brothers under Richard Fuld were acting for LTCM all through the crisis
of 1998. In 2008 it was Fuld’s turn to destroy his company by obstinately hanging on through warning
signals. Nobody that year was imprudently exposed to Russia. They had found ways of being imprudently
exposed to mortgages.

To put it bluntly: I do not think that this can be fixed by tinkering. Option pricing began because
people had good reasons for wanting to buy options, and Black, Scholes, Merton and others offered formulae
with reasonably plausible justifications, at least in comparison with what had gone before. But the many
mathematical refinements which have been developed since have been no substitute for good judgement.
The enormous structures which have been built on these ideas in some countries are, I believe, cancerous
growths, and should be starved into remission before radical surgery becomes forced.
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