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Chapter 64

The fundamental theorem of martingales and the S-integral

To my mind, the ‘Riemann-sum’ integral of §613 is the natural starting point for a theory of stochastic
integration, and it has a rich assortment of properties. But if you are acquainted with the Lebesgue-Stieltjes
integral, you will have noticed that I have not given results corresponding to the standard convergence
theorems of §123, and if you have taken the trouble to check, you will have noticed that they aren’t true of
the integral as presented so far. If we make the right modifications, however, we do have a kind of sequential
smoothness (644C) which can, with some difficulty, be used as the basis for what I will call the ‘S-integral’
(645P). In fact the S-integral is much closer than the Riemann-sum integral to the standard stochastic
integral developed in Protter 05.

To do this we need to know quite a lot more about stochastic processes. In §641 I describe the ‘previsible
version’ of a near-simple process, which corresponds to the càglàd function equal except at jump points to
a càdlàg function of a real variable. Looking at pointwise limits of sequences of previsible versions, we are
led to the previsible processes of §642, which have the kind of measurability demanded of an integrand in
the S-integral (645I). But the really important fact, if we are going to have the S-integral for martingale
integrators which are not jump-free, is the fundamental theorem of martingales: under certain conditions,
an integrator can be expressed not just as the sum of a virtually local martingale and a process of bounded
variation, as in the Bichteler-Dellacherie theorem (627J), but as such a sum in which the virtually local
martingale has small residual oscillation (643M).

With the S-integral defined, we can look at its properties, which by and large correspond to those of
the Riemann-sum integral as established in chapters 61-63. Many of the details are not trivial, and I work
through them in §646-648, with an S-integral version of Itô’s formula (646T).

I end the chapter with a brief note (§649) left over from Chapter 63, on Riemann-sum integrals, in the
classical context of progressively measurable stochastic processes defined on a probability space, which can
be calculated from sample paths, one path at a time; for non-decreasing integrators, we can use a Stieltjes
integral on each path to calculate the S-integral.

Version of 20.1.21/29.9.23

641 Previsible versions

In §618 I introduced ‘jump-free’ processes without going into the question of what the ‘jumps’ were which
they were free of. We now need to look at the structure of processes which are not jump-free. In the standard
model of locally near-simple processes as those representable by processes with càdlàg sample paths (631D),
we have direct descriptions of σ-algebras Σh− and random variables Xh− defined in terms of observations
taken before a stopping time h, rather than at the stopping time, as in 612H. I present these descriptions
in 642E, following corresponding definitions in the more abstract language I favour in this volume (641B,
641F). Once we have got hold of the previsible version uuu< of a near-simple process, we have an expression
for the residual oscillation of uuu in terms of uuu − uuu< (641Nb, 642Ga). For moderately oscillatory processes
which are not near-simple, we do not have such a direct description of their jumps, but the construction
of the previsible version still works (641L), and we have effective results on indefinite integrals (641Q) and
quadratic variations (641R).

641A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure, as described in
the notes to §613. If 〈Bi〉i∈I is a family of closed subalgebras of A,

∨
i∈I Bi will be the smallest closed
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2 The S-integral 641A

subalgebra including every Bi. θ will be the standard functional defining the topology of convergence in
measure on L0(A) (613B). If t ∈ T then ť will be the constant stopping time at t. If S is a sublattice
of T , I(S) will be the upwards-directed set of finite sublattices of S; Mfa(S), Mo-b(S), Mmo(S), Mlmo(S)
and Mn-s(S) will be the spaces of fully adapted, order-bounded, moderately oscillatory, locally moderately
oscillatory and near-simple processes with domain S. If uuu = 〈uσ〉σ∈S belongs to Mo-b(S), sup |uuu| will be the
supremum supσ∈S |uσ| in L0(A), and Osclln(uuu) will be the residual oscillation of uuu (618B). For sublattices
I, J of T , I ⊔ J will be the sublattice of T generated by I ∪ J .

641B The algebras AS<τ (a) Definition If S is a sublattice of T and τ ∈ T , let AS<τ be the closed
subalgebra of A generated by {a ∩ [[σ < τ ]] : σ ∈ S, a ∈ Aσ}. Note that AS<τ ⊆ Aτ , by 611H(c-i). I will
write A<τ for AT<τ .

(b) Let S be a sublattice of T .

(i) If σ ≤ τ in T then AS<σ ⊆ AS<τ . PPP If ρ ∈ S then [[ρ < σ]] ∈ Aρ and [[ρ < σ]] ⊆ [[ρ < τ ]] so

{a ∩ [[ρ < σ]] : ρ ∈ S, a ∈ Aρ} = {a ∩ [[ρ < σ]] ∩ [[ρ < τ ]] : ρ ∈ S, a ∈ Aρ}
⊆ {a ∩ [[ρ < τ ]] : ρ ∈ S, a ∈ Aρ}. QQQ

(ii) If σ ∈ S, τ ∈ T and u ∈ L0(Aσ), then u × χ[[σ < τ ]] ∈ L0(AS<τ ). PPP Write u′ for u × χ[[σ < τ ]].
For α ≥ 0, [[u′ > α]] = [[u > α]] ∩ [[σ < τ ]] and [[u′ < −α]] ∩ [[σ < τ ]] belong to AS<τ . Now if α < 0

[[u′ > α]] = supβ∈]α,0] [[u
′ ≥ β]] = 1 \ infβ∈]α,0] [[u

′ < β]]

again belongs to AS<τ , so u
′ ∈ L0(AS<τ ). QQQ

(iii) If S ′ is a sublattice of T covering S, then AS<τ ⊆ AS′<τ for every τ ∈ T . PPP If σ ∈ S and a ∈ Aσ,
then a ∩ [[ρ = σ]] ∈ Aρ for every ρ ∈ S ′ (611Hc), so

a ∩ [[σ < τ ]] = a ∩ [[σ < τ ]] ∩ sup
ρ∈S

[[ρ = σ]] = sup
ρ∈S

a ∩ [[σ < τ ]] ∩ [[ρ = σ]]

= sup
ρ∈S

a ∩ [[ρ = σ]] ∩ [[ρ < τ ]] ∈ AS′<τ . QQQ

In particular, AS<τ ⊆ AS′<τ whenever S ⊆ S ′ and τ ∈ T .

(iv) Now suppose that S is finitely full and that τ ∈ S. Then AS<τ is the closed subalgebra C generated
by {[[σ < τ ]] : σ ∈ S}. PPP Of course 1 ∩ [[σ < τ ]] ∈ AS<τ for every σ ∈ S, so C ⊆ AS<σ. On the other hand, if
σ ∈ S and a ∈ Aσ then a′ = a ∩ [[σ < τ ]] belongs to Aσ ∩Aτ by 611H(c-iii). By 611I, there is a ρ ∈ T such
that a′ ⊆ [[ρ = σ]] and 1 \ a′ ⊆ [[ρ = τ ]]; now ρ ∈ S and a′ = [[ρ < τ ]] ∈ C. So AS<σ ⊆ C and we have equality.
QQQ

(c) Suppose that τ ∈ T , I is a non-empty finite sublattice of T and (τ0, . . . , τn) linearly generates the
I-cells (611L). Let B be the set of those b ∈ A such that

b ∩ [[τ ≤ τ0]] is either [[τ ≤ τ0]] or 0, b ∩ [[τn < τ ]] ∈ Aτn ,
for every i < n there is an a ∈ Aτi such that b ∩ [[τi < τ ]] \ [[τi+1 < τ ]] = a ∩ [[τi < τ ]] \ [[τi+1 < τ ]].

Then AI<τ = B. PPP Writing J for {τ0, . . . , τn}, J covers I (611Ke) so AI<τ = AJ<τ ((b-iii) above). Set

d−1 = [[τ ≤ τ0]] = 1 \ τ0 < τ , dn = [[τn < τ ]],

di = [[τi < τ ]] \ [[τi+1 < τ ]] for i < n.

Then {d−1, d0, . . . , dn} is a partition of unity in A, and di ∈ AJ<τ whenever −1 ≤ i ≤ n.
Set B−1 = {0, d−1} and for 0 ≤ i ≤ n set Bi = {di ∩ a : a ∈ Aτi}. Then Bi is always an order-closed

subalgebra of the principal ideal of A generated by di, while B = {b : b ∩ di ∈ Bi whenever −1 ≤ i ≤ n}.
So B is an order-closed subalgebra of A. Since Bi ⊆ AJ<τ whenever −1 ≤ i ≤ n, B ⊆ AJ<τ .

If −1 ≤ i ≤ n, j ≤ n and a ∈ Aτj , then di ∩ a ∩ [[τj < τ ]] belongs toBi, because if i < j then di ∩ [[τj < τ ]] =
0, while if j ≤ i then a ∩ [[τj < τ ]] ∈ Aτi . So if we write A = {a ∩ [[τj < τ ]] : j ≤ n, a ∈ Aτj} for the generating
subset of AJ<τ , we see that a ∩ di ∈ Bi whenever a ∈ A and −1 ≤ i ≤ n, that is, A ⊆ B. Accordingly
AJ<τ ⊆ B and B = AJ<τ = AI<τ , as claimed. QQQ
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641D Previsible versions 3

(d) If t ∈ T then A<ť =
∨
s<t As. PPP If s < t, then [[š < ť]] = 1 so As = Aš ⊆ A<ť. On the other hand, if

σ ∈ T ,

[[σ < ť]] = sups∈T [[ť > s]] \ [[σ > s]] = sups<t 1 \ [[σ > s]]

belongs to
∨
s<t As. QQQ

(e) If τ ∈ T then A<τ is the closed subalgebra of A generated by

A = {a : there is a t ∈ T such that a ∈ At and a ⊆ [[τ > t]]}.
PPP Let B be the closed subalgebra generated by A. If t ∈ T , a ∈ At and a ⊆ [[τ > t]], then a ∈ Ať and
a ⊆ [[ť < τ ]] (611E(a-i-δ)), so a ∈ A<τ ; consequently B ⊆ A<τ . If σ ∈ T and t ∈ T , then [[τ > t]] \ [[σ > t]]
belongs to At and is included in [[τ > t]], so belongs to A ⊆ B; taking the supremum over t, [[σ < τ ]] ∈ B.
As σ is arbitrary and T is full, (b-iv) tells us that A<τ ⊆ B and we have equality. QQQ

641C Theorem Let S be a sublattice of T , and C ⊆ T a non-empty set with supremum τ .
(a) AS<τ =

∨
σ∈C AS<σ.

(b) Now suppose that C ⊆ S. Set a = infσ∈C [[σ < τ ]]. Then
∨
σ∈C Aσ = {(b \ a) ∪ (c ∩ a) : b ∈ Aτ , c ∈ AS<τ}.

proof (a) By 641B(b-i),
∨
σ∈C AS<σ ⊆ AS<τ . In the other direction, if ρ ∈ S and a ∈ Aρ then a ∩ [[ρ < τ ]] =

supσ∈C a ∩ [[ρ < σ]] (611Eb), so belongs to
∨
σ∈C AS<σ. As ρ is arbitrary, AS<τ ⊆ ∨

σ∈C AS<σ.

(b) Write B for
∨
σ∈C Aσ and B′ for {(b \ a) ∪ (c ∩ a) : b ∈ Aτ , c ∈ AS<τ}.

(i) Note first that

[[σ < τ ]] ∈ Aσ ∩AS<τ ⊆ B ∩ AS<τ

for every σ ∈ C, so a ∈ B ∩ AS<τ .

(ii) If b ∈ Aτ , then

b \ [[σ < τ ]] ∈ Aσ ⊆ B

for every σ ∈ C (using 611H(c-iii) again), so b \ a ∈ B.
If ρ ∈ S, d ∈ Aρ and ρ ≤ τ , then d ∩ [[ρ < σ]] ∈ Aσ ⊆ B for every σ ∈ C, soB contains supσ∈C d ∩ [[ρ < σ]] =

d ∩ [[ρ < τ ]] (611Eb again). Accordingly AS<τ ⊆ B. By (i), it follows that c ∩ a ∈ B whenever c ∈ AS<τ .
Thus B′ ⊆ B.

(iii) B′ is a closed subalgebra of A. PPP (Cf. 314Ja.) The map (b, c) 7→ (b \ a) ∪ (c ∩ a) : A × A → A is
an order-continuous Boolean homomorphism, while Aτ ×AS<τ is a closed subalgebra of A×A, so the image
B′ is a closed subalgebra of A (314F(a-i)). QQQ

If σ ∈ C and d ∈ Aσ then d ∈ Aτ and d ∩ [[σ < τ ]] ∈ AS<τ . So

d = (d \ a) ∪ (d ∩ a) = (d \ a) ∪ (d ∩ [[σ < τ ]] ∩ a)

belongs to B′. As σ and d are arbitrary,
⋃
σ∈C Aσ ⊆ B′; as B′ is a closed subalgebra, B ⊆ B′ and we have

equality.

641D Proposition Let S be a sublattice of T and vvv = 〈vτ 〉τ∈S an L1-process with a previsible variation
vvv# = 〈v#σ 〉σ∈S (626J). Then v#τ ∈ L0(AS<τ ) for every τ ∈ S.
proof Consider the formulae

∆c(σ,σ′)(1, Pdvvv) = Pσvσ′ − vσ,

v#τ = w1limI↑I(S∧τ) SI(1, Pdvvv).

If σ ≤ σ′ in S ∧ τ , ∆c(σ,σ′)(1, Pdvvv) ∈ L0(Aσ) and

[[∆c(σ,σ′)(1, Pdvvv) 6= 0]] ⊆ [[σ < σ′]] ⊆ [[σ < τ ]],

so ∆c(σ,σ′)(1, Pdvvv) ∈ L0(AS<τ ), by 641B(b-ii). Accordingly SI∧τ (1, Pdvvv) ∈ L0(AS<τ ) for every I ∈ I(S∧τ).
Since L1

µ̄ ∩ L0(AS<τ ) is closed in L1
µ̄ for the weak topology of L1

µ̄ (613B(i-ii)), v#τ ∈ L0(AS<τ ).
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4 The S-integral 641E

641E Lemma Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a fully adapted process and I a non-empty finite
sublattice of S.

(a) For any τ ∈ T there is an element uI<τ of L0(AI<τ ) defined by saying that [[τ ≤ min I]] ⊆ [[uI<τ = 0]]
and

[[σ < τ ]] \ supσ′∈I([[σ < σ′]] ∩ [[σ′ < τ ]]) ⊆ [[uI<τ = uσ]]

for every σ ∈ I.
(b) If (σ0, . . . , σn) linearly generates the I-cells, then

[[τ ≤ σ0]] ⊆ [[uI<τ = 0]], [[σn < τ ]] ⊆ [[uI<τ = uσn
]],

[[σi < τ ]] ∩ [[τ ≤ σi+1]] ⊆ [[uI<τ = uσi
]] for every i < n.

(c) The process 〈uI<τ 〉τ∈T is fully adapted.
(d) If J is a maximal totally ordered subset of I, then uJ<τ = uI<τ for every τ ∈ T .
(e) If τ ∈ S then uI<τ = u(I∧τ)<τ .

proof (a) For σ ∈ I set

aσ = [[σ < τ ]] \ supσ′∈I([[σ < σ′]] ∩ [[σ′ < τ ]]) ∈ AI<τ .

Let B ⊆ AI<τ be the set of atoms of the subalgebra generated by {aσ : σ ∈ I}. If b ∈ B, either b ∩ aσ = 0
for every σ ∈ I and

b = 1 \ supσ∈I aσ ⊇ [[τ ≤ min I]]

or Jb = {σ : σ ∈ I, b ⊆ aσ} is non-empty. In the former case, set vb = 0. In the latter case, if σ, σ′ ∈ Jb, b
is included in [[σ < τ ]] ∩ [[σ′ < τ ]] so cannot meet either [[σ < σ′]] or [[σ′ < σ]] for any σ, σ′ ∈ Jb, and

b ⊆ [[σ = σ′]] ⊆ [[uσ = uσ′ ]]

for any σ, σ′ ∈ Jb. Accordingly we can write vb for the common value of uσ × χb for any σ ∈ Jb. Now
if σ ∈ Jb and a ∈ Aσ, then a ∩ b = a ∩ [[σ < τ ]] ∩ b belongs to AI<τ for every a ∈ Aσ, so vb = uσ × χb
belongs to L0(AI<τ ). We therefore have an element v =

∑
b∈B vb of L0(AI<τ ) such that v × χb = vb × χb

for every b ∈ B and consequently v × χaσ = uσ × χaσ, that is, aσ ⊆ [[v = uσ]], for every σ ∈ I. Since also
[[τ ≤ min I]] ⊆ 1 \ supσ∈I aσ ⊆ [[v = 0]], this v has the property required of uI<τ , and the formula given does
indeed define a member of L0(AI<τ ).

(b) Of course

[[τ ≤ σ0]] = [[τ ≤ min I]] ⊆ [[uI<τ = 0]].

If i < n and σ ∈ I then

[[τ ≤ σi+1]] ∩ [[σi < σ]] ∩ [[σ < τ ]] ⊆ [[σi < σ]] ∩ [[σ < σi+1]] = 0

(611Kd). So

[[σi < τ ]] ∩ [[τ ≤ σi+1]] ⊆ [[σi < τ ]] \ supσ∈I([[σi < σ]] ∩ [[σ < τ ]]) ⊆ [[uI<τ = uσi
]].

At the top end, since σn = max I, [[σn < σ]] ∩ [[σ < τ ]] = 0 for every σ ∈ I, so [[σn < τ ]] ⊆ [[uI<τ = uσn
]].

(c) As AI<τ ⊆ Aτ , uI<τ ∈ L0(Aτ ) for every τ ∈ T . If τ , τ ′ ∈ T , c = [[τ = τ ′]] and σ ∈ I, then
c ∩ [[σ < τ ]] = c ∩ [[σ < τ ′]] for every σ ∈ I (611E(c-iii-γ)), so

c ∩ ([[σ < τ ]] \ sup
σ′∈I

([[σ < σ′]] ∩ [[σ′ < τ ]]))

= c ∩ ([[σ < τ ′]] \ sup
σ′∈I

([[σ < σ′]] ∩ [[σ′ < τ ′]]))

⊆ [[uI<τ = uσ]] ∩ [[uI<τ ′ = uσ]] ⊆ [[uI<τ = uI<τ ′ ]].

At the same time

c ∩ [[τ ≤ min I]] = c ∩ [[τ ′ ≤ min I]]

⊆ [[uI<τ = 0]] ∩ [[uI<τ ′ = 0]] ⊆ [[uI<τ = uI<τ ′ ]].
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So c ⊆ [[uI<τ = uI<τ ′ ]]; as τ and τ ′ are arbitrary, 〈uI<τ 〉τ∈T is fully adapted.

(d) If 〈σi〉i≤n is the increasing enumeration of J , then it linearly generates both the I-cells and the
J-cells, so (b) gives the result.

(e) For any σ ∈ I,

[[σ < τ ]] \ sup
σ′∈I

([[σ < σ′]] ∩ [[σ′ < τ ]])

= [[σ ∧ τ < τ ]] \ sup
σ′∈I

([[σ ∧ τ < σ′ ∧ τ ]] ∩ [[σ′ ∧ τ < τ ]])

= [[σ ∧ τ < τ ]] \ sup
σ′∈I∧τ

([[σ ∧ τ < σ′]] ∩ [[σ′ < τ ]])

⊆ [[uI<τ = uσ∧τ ]] ∩ [[u(I∧τ)<τ = uσ∧τ ]]

while

[[τ ≤ min I]] = [[τ ≤ min(I ∧ τ)]] ⊆ [[uI<τ = 0]] ∩ [[u(I∧τ)<τ = 0]].

641F Definition Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process. For τ ∈ S, set
u<τ = limI↑I(S) uI<τ

when the limit exists in L0(A), defining uI<τ as in 641E. If u<τ is defined for every τ ∈ S, I will call
uuu< = 〈u<τ 〉τ∈S the previsible version of uuu.

641G Proposition Let S be a sublattice of T .
(a) Let uuu = 〈uσ〉σ∈S be a fully adapted process with a previsible version uuu< = 〈u<σ〉σ∈S .

(i) u<σ ∈ L0(AS<σ) for every σ ∈ S.
(ii) uuu< is fully adapted to 〈At〉t∈T .
(iii) [[uuu< 6= 0]] ⊆ [[uuu 6= 0]].
(iv) If z ∈ L0(A ∩⋂

σ∈S Aσ), then zuuu (definition: 612De) has a previsible version, which is zuuu<.
(v) If S has a least element, then u<minS = 0.
(vi) If S ′ is a sublattice of S which covers S, then uuu↾S ′ has a previsible version, which is uuu<↾S ′.
(vii) Suppose that uuu is order-bounded.

(α) For any τ ∈ S, |u<τ | ≤ supσ∈S(|uσ| × χ[[σ < τ ]]).
(β) For any τ , τ ′ ∈ S,

|u<τ ′ | × χ[[τ < τ ′]] ≤ supσ∈S∨τ (|uσ| × χ[[σ < τ ′]]).

(γ) uuu< is order-bounded and sup |uuu<| ≤ sup |uuu|.
(viii) If uuu is locally order-bounded then uuu< is locally order-bounded.

(b) Writing 1(S) for the constant process with value χ1 and domain S, its previsible version 1(S)
< is defined

and equal to 〈χeσ〉σ∈S , where eσ = supσ′∈S [[σ′ < σ]] for σ ∈ S.
(c) Suppose that uuu = 〈uσ〉σ∈S is a fully adapted process.

(i) uuu has a previsible version iff uuu↾S ∧ τ has a previsible version for every τ ∈ S.
(ii) In this case, (uuu↾S ∧ τ)< = uuu<↾S ∧ τ and

(uuu↾S ∨ τ)< = (uuu<↾S ∨ τ)× 〈χ[[τ < σ]]〉σ∈S∨τ = (uuu<↾S ∨ τ)× 1(S∨τ)
<

for every τ ∈ S.
(d) Suppose that k ≥ 1 is an integer, and h : Rk → R is a continuous function. Take UUU = 〈uuui〉i<k where

each uuui is a fully adapted process with domain S with a previsible version uuui<, and set UUU< = 〈uuui<〉i<k where
uuui< is the previsible version of uuui for each i. Define h̄ : (L0)k → L0 and h̄UUU = h̄◦UUU as in 619E-619F. Then
h̄UUU has a previsible version (h̄UUU)< = h̄◦(UUU<)× 1(S)

< . If h(0, . . . , 0) = 0, then (h̄UUU)< = h̄◦UUU<.
(e) Let M be the set of those order-bounded processes uuu with domain S such that uuu has a previsible

version uuu<.
(i) M is an f -subalgebra of Mo-b(S), and uuu 7→ uuu< :M →Mo-b(S) is an f -algebra homomorphism.
(ii) M is closed for the ucp topology on Mo-b(S), and uuu 7→ uuu< :M →Mo-b(S) is continuous.

D.H.Fremlin



6 The S-integral 641G

proof (a)(i) We know that uI<σ, as defined in 641E, belongs to L0(AI<σ) ⊆ L0(AS<σ for every non-empty
I ∈ I(S) (641Ea, 641B(b-iii)). Since L0(AS<σ) is closed in L0(A) (613B(i-i)), u<σ ∈ L0(AS<σ).

(ii) By (i), u<σ ∈ L0(AS<σ ⊆ L0(Aσ for every σ ∈ S, Now suppose that σ, σ′ ∈ S and write c for
[[σ = σ′]]. For each I ∈ I(S) \ {∅}, uI<σ × χc = uI<σ′ × χc (641Ec), so u<σ × χc = u<σ′ × χc, that is,
c ⊆ [[u<σ = u<σ′ ]]. As σ and σ′ are arbitrary, uuu< is fully adapted.

(iii) Set

b = 1 \ [[uuu 6= 0]] = infσ∈S [[uσ = 0]].

Looking at the formula in 641Ea, we see that b ⊆ [[uI<τ = 0]] whenever τ ∈ S and I ∈ I(S) is non-empty.
So b ⊆ [[u<τ = 0]] whenever τ ∈ S and [[uuu< 6= 0]] ⊆ 1 \ b = [[uuu 6= 0]].

(iv) Set vσ = z × uσ for σ ∈ S, so that 〈vσ〉σ∈S = zuuu is fully adapted (612D(e-i)), and define vI<σ,
for σ ∈ S and non-empty I ∈ I(S), as in 641E. Again referring to the formula in 641Ea, we see that
vI<σ = z × uI<σ for all σ and I. But now we have

limI↑I(S) vI<σ = limI↑I(S) z × uI<σ = z × limI↑I(S) uI<σ = z × u<σ

for every σ ∈ S, so (zuuu)< is defined and equal to zuuu<.

(v) If I ∈ I(S) is non-empty, then minS ≤ min I so uI<minS = 0; taking the limit as I increases,
u<(minS) = 0.

(vi) Take τ ∈ S ′ and ǫ > 0. Then there is a non-empty I0 ∈ I(S) such that θ(u<τ − uI<τ ) ≤ ǫ
whenever I ∈ I(S) includes I0. Let J0 be a finite sublattice of S ′, containing τ , such that µ̄a ≤ ǫ where

a = supσ∈I0(1 \ supρ∈J0 [[σ = ρ]]).

Take any J ∈ I(S ′) including J0, and set I = J ⊔ I0. Then [[uI<τ 6= uJ<τ ]] ⊆ a. PPP Let B be the subalgebra
of A generated by

{a} ∪ {[[σ = ρ]] : σ ∈ I0, ρ ∈ J} ∪ {[[σ ≤ ρ]] : σ, ρ ∈ I}
and let b be any atom of B disjoint from a. Then for every σ ∈ I0 there is a ρ ∈ J such that b meets [[σ = ρ]],
in which case b ⊆ [[σ = ρ]]. The set

⋃
ρ∈J{σ : σ ∈ S, b ⊆ [[σ = ρ]]}

is a sublattice of S including I0∪J and therefore including I. For each σ ∈ I, b is included in one of [[τ ≤ σ]],
[[σ < τ ]] because τ ∈ J0 ⊆ I. If b ⊆ [[τ ≤ σ]] for every σ ∈ I, then

b ⊆ [[τ ≤ min I]] ⊆ [[τ ≤ min J ]] ⊆ [[uI<τ = 0]] ∩ [[uJ<τ = 0]] ⊆ [[uI<τ = uJ<τ ]].

Otherwise, set ρ = sup{σ : σ ∈ I, b ⊆ [[σ < τ ]]}; then b ⊆ [[ρ < τ ]], and if σ ∈ I and σ 6≤ ρ, b ⊆ [[τ ≤ σ]]. So
b ⊆ [[uI<τ = uρ]]. Next, let ρ′ ∈ J be such that b ⊆ [[ρ = ρ′]]. Then b ⊆ [[ρ′ < τ ]], and if σ′ ∈ J and σ′ 6≤ ρ′,
b ⊆ [[τ ≤ σ′]]. So b ⊆ [[uJ<τ = uρ′ ]]. Putting these together, b ⊆ [[uI<τ = uJ<τ ]] in this case also. As b is
arbitrary, [[uI<τ = uJ<τ ]] includes 1 \ a and [[uI<τ 6= uJ<τ ]] ⊆ a. QQQ

It follows that

θ(u<τ − uJ<τ ) ≤ θ(u<τ − uI<τ ) + µ̄ǫ ≤ 2ǫ,

and this is true whenever J0 ⊆ J ∈ I(S ′). As ǫ is arbitrary, u<τ = limJ↑I(S′) uJ<τ . As τ is arbitrary,
(uuu↾S ′)< is defined and equal to uuu<↾S ′.

(vii)(ααα) In the formulae of 641Ea, we see that if σ ∈ I ∈ I(S) then
[[σ < τ ]] \ supσ′∈I([[σ < σ′]] ∩ [[σ′ < τ ]]) ⊆ [[|uI<τ | = |uσ| × χ[[σ < τ ]]]],

while [[τ ≤ min I]] ⊆ [[uI<τ = 0]]. So |uI<τ | ≤ supσ∈I(|uσ| × χ[[σ < τ ]]); in the limit as I ↑ I(S), |u<τ | ≤
supσ∈S(|uσ| × χ[[σ < τ ]]).

(βββ) By the same argument, we see that if τ ∈ I ∈ I(S) then |uI<τ ′ | × χ[[τ < τ ′]] ≤ supσ∈S∨τ |uσ| ×
χ[[σ < τ ′]], so |u<τ ′ | × χ[[τ < τ ′]] ≤ supσ∈S∨τ |uσ| × χ[[σ < τ ′]].

(γγγ) And (α) tells us that |uuu<| is bounded above by sup |uuu|.

Measure Theory
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(viii) Similarly, if uuu is locally order-bounded and τ ∈ S, then |uI<σ| ≤ sup |uuu↾S∧τ | whenever σ ∈ S∧τ
and I ∈ I(S) is non-empty, so sup |uuu<↾S ∧ τ | ≤ sup |uuu↾S ∧ τ |. (Or see (c) below.)

(b) Set uσ = χ1 for σ ∈ S, so that 1(S) = 〈uσ〉σ∈S . This time we see that for any σ ∈ S and non-empty
I ∈ I(S),

[[min I < σ]] ⊆ [[uI<σ = χ1]], [[σ ≤ min I]] ⊆ [[uI<σ = 0]],

so in fact uI<σ = χ[[min I < σ]]. Now

u<σ = lim
I↑I(S)

χ[[min I < σ]] = sup
I∈I(S)

χ[[min I < σ]]

= sup
σ′∈S

χ[[σ′ < σ]] = χ( sup
σ′∈S

[[σ′ < σ]]) = χeσ,

as claimed.

(c)(i)(ααα) Suppose that uuu has a previsible version uuu<, and τ ∈ S. If σ ∈ S ∧ τ and I ∈ I(S) contains τ ,
then uI<σ = u(I∧τ)<σ. So

limJ↑I(S∧τ) uJ<σ = limI↑I(S) u(I∧τ)<σ = limI↑I(S) uI<σ = u<σ.

As σ is arbitrary, uuu↾S ∧ τ has a previsible version, which is in fact uuu<↾S ∧ τ .
(βββ) Now suppose that τ ∈ S and www = uuu↾S ∧ τ has a previsible version www< = 〈w<σ〉σ∈S∧τ . Then

uI<τ = w(I∧τ)<τ for every I ∈ I(S) containing τ , and limI↑I(S) uI<τ = limJ↑I(S∧τ) wJ<τ = w<τ is defined.
So if uuu↾S ∧ τ has a previsible version for every τ ∈ S, limI↑I(S) uI<τ is defined for every τ ∈ S and uuu has

a previsible version.

(ii)(ααα) We saw in (i-α) above that (vvv↾S ∧ τ)< = vvv<↾S ∧ τ .
(βββ) Take σ ∈ S ∨ τ , and set c = [[τ < σ]]. If I is a finite sublattice of S containing σ and τ , and

J = I ∨ τ , then for σ′ ∈ I set

aσ′ = [[σ′ < σ]] \ supσ′′∈I([[σ
′ < σ′′]] ∩ [[σ′′ < σ]])

and for σ′ ∈ J set

bσ′ = [[σ′ < σ]] \ supσ′′∈J([[σ
′ < σ′′]] ∩ [[σ′′ < σ]]).

Observe that bσ′ = aσ′ ⊆ c for every σ′ ∈ J . So, for σ′ ∈ J , we have

bσ′ ⊆ [[uI<σ = uσ′ ]] ∩ [[uJ<σ = uσ′ ]] ⊆ [[uI<σ = uJ<σ]].

Since

c = [[τ < σ]] = [[min J < σ]] = supσ′∈J bσ′

(see the construction in 641Ea), c ⊆ [[uI<σ = uJ<σ]] and c ⊆ [[uJ<σ = χc× uI<σ]].
On the other hand,

1 \ c = [[τ = σ]] ⊆ [[uJ<σ = 0]]

and 1 \ c ⊆ [[uJ<σ = χc× uI<σ]]. So uJ<σ = χc× uI<σ. Taking the limit as I increases through I(S),
limJ↑I(S∨τ) uJ<σ = limI↑I(S) u(I∨τ)<σ = χc× u<σ.

As σ is arbitrary,

(uuu↾S ∨ τ)< = (uuu<↾S ∨ τ)× 〈χ[[τ < σ]]〉σ∈S∨τ = (uuu<↾S ∨ τ)× 1(S∨τ)
<

by (b) applied in S ∨ τ .
(d) For each i, express uuui as 〈uiσ〉σ∈S and uuui< as 〈ui<σ〉σ∈S where ui<σ = limI↑I(S) ui,I<σ. Write

UI<σ = 〈ui,I<σ〉i<k for σ ∈ S and non-empty I ∈ I(S). Then
limI↑I(S) UI<σ = 〈limI↑I(S) ui,I<σ〉i<k = 〈ui<σ〉i<k

is defined for any σ ∈ S; I will call it U<σ.

D.H.Fremlin



8 The S-integral 641G

Set vσ = h̄(〈uiσ〉i<k) and zσ = χ1 for σ ∈ S, so that h̄UUU = 〈vσ〉σ∈S and 1(S) = 〈zσ〉σ∈S . If τ ∈ I ∈ I(S)
then

[[min I = τ ]] ⊆ [[vI<τ = 0]] ∩ [[zI<τ = 0]] ⊆ [[vI<τ = h̄(UI<τ )× zI<τ ]],

[[min I < τ ]] ⊆ [[vI<τ = h̄(UI<τ )]] ∩ [[zI<τ = χ1]] ⊆ [[vI<τ = h̄(UI<τ )× zI<τ ]]

while if h(0, . . . , 0) = 0 we have

[[min I = τ ]] ⊆ [[vI<τ = 0]] ∩ [[UI<τ = 0]]

⊆ [[vI<τ = 0]] ∩ [[h̄(UI<τ ) = 0]] ⊆ [[vI<τ = h̄(UI<τ )]].

In the limit, we see that

v<τ = limI↑I(S) h̄(UI<τ )× zI<τ = h̄(U<τ )× z<τ

because h̄ : (L0)k → L0 and × : L0 × L0 are continuous (619Ed, 613Ba), while if h(0, . . . , 0) = 0 then

v<τ = limI↑I(S) h̄(UI<τ ) = h̄(U<τ ).

As τ is arbitrary,

(h̄UUU)< = vvv< = (h̄UUU<)× 1(S)
<

and (h̄UUU)< = h̄UUU< if h(0, . . . , 0) = 0.

(e)(i) This is immediate from (d), applied to addition and multiplication and the lattice operations.

(ii)(ααα) Suppose that uuu = 〈uσ〉σ∈S belongs to the closure of M ∩Mo-b(S) in Mo-b(S), σ ∈ S and ǫ > 0.
Then there are www ∈M ∩Mo-b(S) and non-empty I ∈ I(S) such that

θ(sup |uuu−www|) ≤ ǫ, θ|wJ<σ − wI<σ| ≤ ǫ whenever I ⊆ J ∈ I(S).
Now the same calculation as in (a-vii) shows that

|uJ<σ − wJ<σ| ≤ sup |uuu−www|
for every non-empty J ∈ I(S), so θ(uJ<σ − uI<σ) ≤ 3ǫ whenever I ⊆ J ∈ I(S). As ǫ is arbitrary,
limI↑I(S) uI<σ is defined; as σ is arbitrary, uuu ∈M .

(βββ) And (a-vii) and (d) tell us again that sup |vvv<−www<| ≤ sup |vvv−www| for every vvv, www ∈M , so vvv 7→ vvv<
is continuous.

641H Lemma Let S be a sublattice of T and S ′ a sublattice of S which separates S. If uuu = 〈uσ〉σ∈S is
fully adapted and τ ∈ S is such that u<τ is defined, then u<τ = limI↑I(S′) uI<τ .

proof Let ǫ > 0. Then there is a non-empty I ∈ I(S) such that θ(u<τ − uJ<τ ) ≤ ǫ whenever J ∈ I(S)
includes I. Next, there is a finite set C ⊆ S ′ such that

∑
σ∈I µ̄([[σ < τ ]] \ supρ∈C([[σ ≤ ρ]] ∩ [[ρ < τ ]])) ≤ ǫ;

let K0 be the sublattice of S ′ generated by C. Set

a = supσ∈I([[σ < τ ]] \ supρ∈C([[σ ≤ ρ]] ∩ [[ρ < τ ]])),

so that µ̄a ≤ ǫ. Take any K ∈ I(S ′) including K0 and set J = I ⊔ K. Then 1 \ a ⊆ [[uJ<τ = uK<τ ]]. PPP
Setting

aσ = [[σ < τ ]] \ supρ∈J([[σ < ρ]] ∩ [[ρ < τ ]])

for σ ∈ J , as in part(a) of the proof of 641E, we see that if σ, σ′ ∈ J then aσ ∩ [[σ = σ′]] ⊆ aσ′ . Now if σ ∈ K
then

aσ = aσ ∩ [[σ < τ ]] \ sup
ρ∈K

([[σ < ρ]] ∩ [[ρ < τ ]])

⊆ [[uJ<τ = uσ]] ∩ [[uK<τ = uσ]] ⊆ [[uJ<τ = uK<τ ]].

And if σ ∈ I then

Measure Theory
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aσ \ a ⊆ aσ ∩ sup
ρ∈C

([[σ ≤ ρ]] ∩ [[ρ < τ ]]) \ sup
ρ∈C

([[σ < ρ]] ∩ [[ρ < τ ]])

⊆ sup
ρ∈C

(aσ ∩ [[σ = ρ]]) ⊆ sup
ρ∈C

aρ ⊆ [[uJ<τ = uK<τ ]].

But we know that the covered envelope of I ∪K is a sublattice (611M(b-i)), so includes J . So for any
σ ∈ J we have

aσ \ a = supρ∈I∪K aσ ∩ [[σ = ρ]] \ a ⊆ supρ∈I∪K aρ \ a ⊆ [[uJ<τ = uK<τ ]].

And we certainly have

[[τ ≤ min J ]] = [[τ ≤ min J ]] ∩ [[τ ≤ minK]]

⊆ [[uJ<τ = 0]] ∩ [[uK<τ = 0]] ⊆ [[uJ<τ = uK<τ ]].

Since [[τ ≤ min J ]] ∪ supσ∈J aσ = 1, we see that 1 \ a ⊆ [[uJ<τ = uK<τ ]], as claimed. QQQ
It follows that

θ(uK<τ − u<τ ) ≤ θ(uK<τ − uJ<τ ) + θ(uJ<τ − u<τ ) ≤ µ̄[[uK<τ 6= uJ<τ ]] + ǫ

(as J ⊇ I)

≤ µ̄a+ ǫ ≤ 2ǫ.

And this is true whenever K ∈ I(S ′) includes K0. As ǫ is arbitrary, u<τ = limK↑I(S′) uK<τ .

641I Proposition Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a simple process with breakpoint string
(τ0, . . . , τn) and starting value u↓ (614Ba).

(a) u<τ is defined and

infσ∈S [[τ ≤ σ]] ⊆ [[u<τ = 0]], [[σ < τ ]] ∩ [[τ ≤ τ0]] ⊆ [[u<τ = u↓]] for every σ ∈ S,

[[τi < τ ]] ∩ [[τ ≤ τi+1]] ⊆ [[u<τ = uτi ]] for every i < n, [[τn < τ ]] ⊆ [[u<τ = uτn ]]

for every τ ∈ S.
(b) Writing uuu< for the previsible version of uuu,

sup |uuu| = |uτn | ∨ sup |uuu<|.

proof (a) Take any I ∈ I(S) such that τi ∈ I for every i ≤ n. We have σ0 ≤ . . . ≤ σm and 0 ≤ k0 ≤ . . . ≤
kn ≤ m such that

σki = τi for i ≤ n,

(σ0, . . . , σk0) linearly generates the I ∧ τ0-cells,

(σki , . . . , σki+1
) linearly generates the I ∩ [τi, τi+1]-cells for each i ≤ n,

(σkn , . . . , σm) linearly generates the I ∨ τn-cells,
and therefore (σ0, . . . , σm) linearly generates the I-cells. Then

[[σj < τ ]] ∩ [[τ ≤ σj+1]] ⊆ [[σj < τ0]] ⊆ [[uσj
= u↓]] if j < k0,

⊆ [[τi ≤ σj ]] ∩ [[σj < τi+1]] ⊆ [[uσj
= uτi ]]

if i ≤ n and ki ≤ j < ki+1,

⊆ [[τn ≤ σj ]] ⊆ [[uσj
= uτn ]] if kn ≤ i < m.

By 641Eb, we have

[[τ ≤ σ0]] ⊆ [[uI<τ = 0]],

D.H.Fremlin



10 The S-integral 641I

[[σj < τ ]] ∩ [[τ ≤ σj+1]] ⊆ [[uI<τ = uσj
]] ∩ [[uσj

= u↓]] ⊆ [[uI<τ = u↓]] if j < k0,

⊆ [[uI<τ = uσj
]] ∩ [[uσj

= uτi ]] ⊆ [[uI<τ = uτi ]]

if i ≤ n and ki ≤ j < ki+1,

⊆ [[uI<τ = uσj
]] ∩ [[uσj

= uτn ]] ⊆ [[uI<τ = uτn ]] if kn ≤ i < m

and

[[σm < τ ]] ⊆ [[uI<τ = uσm
]] ∩ [[τn ≤ σm]] ⊆ [[uI<τ = uτn ]].

Since

[[σ0 ≤ τ ]] ∩ [[τ < τ0]] = supj<k0 [[σj ≤ τ ]] ∩ [[τ < σj+1]],

[[τi < τ ]] ∩ [[τ ≤ τi+1]] = supki≤j<ki+1
[[σj < τ ]] ∩ [[τ ≤ σj+1]],

[[τn < τ ]] = supkn≤j [[σj < τ ]] ∩ [[τ ≤ σj+1]] ∪ [[σm < τ ]],

we get

[[τ ≤ min I]] ⊆ [[uI<τ = 0]], [[min I < τ ]] ∩ [[τ < τ0]] ⊆ [[uI<τ = u↓]],

[[τi < τ ]] ∩ [[τ ≤ τi+1]] ⊆ [[uI<τ = uτi ]], [[τn < τ ]] ⊆ [[uI<τ = uτn ]].

If therefore we define v by the given formula, so that

infσ∈S [[τ ≤ σ]] ⊆ [[v = 0]], [[σ < τ ]] ∩ [[τ ≤ τ0]] ⊆ [[v = u↓]] for every σ ∈ S,

[[σi < τ ]] ∩ [[τ ≤ τi+1]] ⊆ [[v = uτi ]] for every i < n, [[τn < τ ]] ⊆ [[v = uτn ]],

and set c = infσ∈S [[τ ≤ σ]], then

c ∪ [[min I < τ ]] ⊆ [[uI<τ = v]]

whenever {τ0, . . . , τn} ⊆ I ∈ I(S). It follows that, for any σ ∈ S,
c ∪ [[σ < τ ]] ⊆ [[uI<τ = v]]

whenever {σ, τ0, . . . , τn} ⊆ I ∈ I(S). Consequently we shall have

limI↑I(S) uI<τ × χ(c ∪ [[σ < τ ]]) = v × χ(c ∪ [[σ < τ ]])

for every σ ∈ S, and therefore

limI↑I(S) uI<τ × χ(c ∪ supσ∈S [[σ < τ ]]) = v × χ(c ∪ supσ∈S [[σ < τ ]]),

that is,

limI↑I(S) uI<τ = v.

(b) Of course |uτn | ≤ sup |uuu|, and sup |uuu<| ≤ sup |uuu| by 641G(a-vii), so sup |uuu| ≥ |uτn | ∨ sup |uuu<|.
In the other direction, if σ ∈ S then

([[σ < τ0]], [[τ0 ≤ σ]] ∩ [[σ < τ1]]. . . . , [[σn−1 ≤ σ]] ∩ [[σ < τn]], ∩ τn ≤ σ

is a partition of unity in A, so
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|uσ| = (|uσ| × χ[[σ < τ0]]) ∨ sup
i<n

(|uσ| × χ([[τi ≤ σ]] ∩ [[σ < τi+1]]))

∨ (|uσ| × χ[[τn ≤ σ]])

= (|u↓| × χ[[σ < τ0]]) ∨ sup
i<n

(|uτi | × χ([[τi ≤ σ]] ∩ [[σ < τi+1]]))

∨ (|uτn | × χ[[τn ≤ σ]])

= (|u<τ0 | × χ[[σ < τ0]]) ∨ sup
i<n

(|u<τi+1
| × χ([[τi ≤ σ]] ∩ [[σ < τi+1]]))

∨ (|uτn | × χ[[τn ≤ σ]])

≤ sup |uuu<| ∨ |uτn |.
As σ is arbitrary, sup |uuu| ≤ |uτn | ∨ sup |uuu<|.

641J We can now complement 614C with a formula for an integral
∫
S uuu dvvv when it is the integrator vvv

which is simple.

Lemma Let S be a non-empty sublattice of T , vvv = 〈vσ〉σ∈S a simple process with starting value v↓ and
breakpoint string (τ0, . . . , τn), and uuu = 〈uσ〉σ∈S a fully adapted process which has a previsible version
uuu< = 〈u<σ〉σ∈S . Then ∫

S
uuu dvvv = u<τ0 × (vτ0 − v↓) +

∑n
i=1 u<τi × (vτi − vτi−1

).

proof (a) Suppose that i ≤ n and that

either i = 0, S ′ = S ∧ τ0, τ0 ∈ I ∈ I(S ′) and v = v↓
or 1 ≤ i ≤ n, S ′ = S ∩ [τi−1, τi]), τi ∈ I ∈ I(S ′) and v = vτi−1

then

SI(uuu, dvvv) = uI<τi × (vτi − v).

PPP Let (σ0, . . . , σk) linearly generate the I-cells. Then

SI(uuu, dvvv) =

k−1∑

j=0

uσj
× (vσj+1

− vσj
)

=

k−1∑

j=0

uσj
× (vτi − v)× χ[[σj+1 = τi]]× χ[[σj < τi]]

(because [[vσj+1
6= vσj

]] ⊆ [[σj < τi]] ∩ [[σj+1 = τi]] ⊆ [[v = vσj
]] ∩ [[vτi = vσj+1

]])

=

k−1∑

j=0

uI<τi × (vτi − v)× χ[[σj+1 = τi]]× χ[[σj < τi]]

(641Eb)

= uI<τi × (vτi − v)

because

[[uI<τi 6= 0]] ⊆ [[σ0 < τi]] = supj<k([[σj < τi]] ∩ [[σj+1 = τi]]). QQQ

Taking the limit as I ↑ I(S ′),
∫
S′ uuu dvvv is defined and equal to u<τi × (vτi − v).

(b) At the top end,
∫
S∨τn

uuu dvvv = 0 because vvv is constant on S ∨ τn. So
∫

S

uuu dvvv =

∫

S∧τ0

uuu dvvv +
n∑

i=1

∫

S∩[τi−1,τi]

uuu dvvv +

∫

S∨τn

uuu dvvv

= u<τ0 × (vτ0 − v↓) +

n∑

i=1

u<τi × (vτi − vτi−1
).
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641K Lemma Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a non-decreasing non-negative fully adapted
process and τ a member of S.

(a) If I is a non-empty finite sublattice of S then uI<τ = supρ∈I(uρ × χ[[ρ < τ ]]).

(b) If I, J ∈ I(S) and I ⊆ J then uI<τ ≤ uJ<τ .
(c) u<τ is defined and equal to supρ∈S(uρ × χ[[ρ < τ ]]).

proof (a) I return to the formula of 641Ea. Set x = supρ∈I(uρ × χ[[ρ < τ ]]) and

aσ = [[σ < τ ]] \ supσ′∈I([[σ < σ′]] ∩ [[σ′ < τ ]])

for σ ∈ I. Let b be an atom of the subalgebra generated by {[[σ < ρ]] : σ, ρ ∈ I ∪ {τ}}. If b ∩ aσ = 0 for
every σ ∈ I then

b ⊆ [[uI<τ = 0]] ∩ [[x = 0]] ⊆ [[uI<τ = x]].

If σ ∈ I is such that b ⊆ aσ then b ⊆ [[σ < τ ]] ⊆ [[uσ ≤ x]]. At the same time, if ρ ∈ I and b ⊆ [[ρ < τ ]], then
b ∩ [[σ < ρ]] = 0 so

b ⊆ [[ρ ≤ σ]] ⊆ [[uρ ≤ uσ]]

(614Ib)

⊆ [[uρ × χ[[ρ < τ ]] ≤ uσ]]

because uσ ≥ 0; accordingly b ⊆ [[x ≤ uσ]] and

b ⊆ aσ ∩ [[x = uσ]] ⊆ [[uI<τ = uσ]] ∩ [[x = uσ]] ⊆ [[uI<τ = x]]

by 641Ea. As b is arbitrary, uI<τ = x, as claimed.

(b) It follows at once that if I, J ∈ I(S) and I ⊆ J , then uI<τ ≤ uJ<τ for every τ ∈ S.
(c) If τ ∈ S,

uI<τ = supσ∈I(uσ × χ[[σ < τ ]]) ≤ supσ∈I uσ ≤ uτ

for every I ∈ I(S), so supI∈I(S) uI<τ is defined and equal to limI↑I(S) uI<τ . And of course supI∈I(S) uI<τ =

supρ∈S(uρ × χ[[ρ < τ ]]).

641L Theorem Let S be a sublattice of T , and uuu a fully adapted process with domain S.
(a) If uuu is non-decreasing and non-negative, it has a previsible version uuu<; uuu< is non-decreasing and

uuu< ≤ uuu.
(b) If uuu is (locally) of bounded variation, it has a previsible version which is (locally) of bounded variation.
(c) If uuu is (locally) moderately oscillatory, it has a previsible version which is (locally) moderately oscil-

latory.

proof (a) Express uuu as 〈uσ〉σ∈S . By 641Kc, u<τ = supρ∈S(uρ × χ[[ρ < τ ]]) is defined for every τ ∈ S; the
formula shows at once that u<τ ≤ u<τ ′ ≤ uτ ′ whenever τ ≤ τ ′ in S.

(b) If uuu is of bounded variation, it is expressible as the difference vvv′ − vvv′′ of two order-bounded non-
negative non-decreasing processes (614J-614K), and now uuu< = vvv′< − vvv′′< (641G(e-i)) is again the difference
of two order-bounded non-negative non-decreasing processes, by (a) here and 641G(a-vii), so is of bounded
variation. If uuu is locally of bounded variation then the same argument, applied to uuu↾S ∧ τ for τ ∈ S, shows
that uuu< is defined and locally of bounded variation (using 641Gc).

(c) Now we know that Mmo(S) is the closure in Mo-b(S) of the space Mbv(S) of processes of bounded
variation (615Ea), so 641G(e-i) tells us that every moderately oscillatory process on S has a previsible
version. Moreover, because uuu< ∈Mbv(S) for every uuu ∈Mbv(S), by (b), and the map uuu 7→ uuu< is continuous
for the ucp topology (641G(e-ii)), uuu< will be moderately oscillatory whenever uuu is.

As in (b), it follows that uuu< is defined, and is locally moderately oscillatory, whenever uuu is locally
moderately oscillatory.
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641M Lemma Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a locally moderately oscillatory process with
previsible version uuu< = 〈u<σ〉σ∈S . Suppose that 〈τn〉n∈N is a non-decreasing sequence in S with supremum
τ (taken in T ) which belongs to S. Set a = infn∈N [[τn < τ ]]. Then a ⊆ [[u<τ = limn→∞ uτn ]].

proof Because uuu is moderately oscillatory, uuu< and w = limn→∞ uτn are both defined (641L). Take ǫ > 0.
Then there is a finite sublattice I of S such that θ(u<τ − uJ<τ ) ≤ ǫ whenever J ∈ I(S) includes I. For
each σ ∈ I, [[σ < τ ]] = supn∈N [[σ < τn]] (611Eb once more), while of course 〈[[σ < τn]]〉n∈N is non-decreasing.
There is therefore an n ∈ N such that µ̄b ≤ ǫ, where

b = supσ∈I([[σ < τ ]] \ [[σ < τn]]).

Now take any m ≥ n and consider the finite sublattice J of S generated by I ∪{τm, τ}. It is easy to see that

{σ : σ ∈ T , [[τm < σ]] ∩ [[σ < τ ]] ⊆ b}
is full, therefore a sublattice of T (611M(b-i) again). As it includes I ∪ {τm, τ}, it includes J . So

[[uJ<τ = uτm ]] ⊇ [[τm < τ ]] \ supσ∈J([[τm < σ]] ∩ [[σ < τ ]]) ⊇ a \ b.

Accordingly

θ(χa× (uJ<τ − uτm)) ≤ µ̄(a ∩ [[uJ<τ 6= uτm ]]) ≤ µ̄b ≤ ǫ.

But now

θ(χa× (u<τ − uτm)) ≤ θ(χa× (u<τ − uJ<τ )) + θ(χa× (uJ<τ − uτm))

≤ θ(u<τ − uJ<τ ) + ǫ ≤ 2ǫ,

and this is true for every m ≥ n. Consequently θ(χa×(u<τ −w)) ≤ 2ǫ. As ǫ is arbitrary. χa×(u<τ −w) = 0
and a ⊆ [[u<τ = w]], as claimed.

641N The natural idea of a ‘jump’ in a real function f is a point t at which the left and right limits
f(t−), f(t+) of the function are defined and different. (See 226B.) For a càdlàg function f , the limits exist
(at least, on the interior of dom f) with f(t+) = f(t), so we are looking at f(t) − f(t−). In a near-simple
process uuu, this corresponds to a non-zero value of uuu− uuu<. Subject to a necessary close look at the bottom
end of the domain of uuu, we find that a jump-free process, in the sense of §618, is one for which uuu is essentially
equal to uuu<; and in fact we can get an expression for the residual oscillation Osclln(uuu).

Proposition Let S be a non-empty sublattice of T , and uuu = 〈uσ〉σ∈S an order-bounded process with a
previsible version uuu< = 〈u<τ 〉τ∈S .

(a) For τ ∈ S set eτ = supσ∈S [[σ < τ ]]. Then χeτ × |uτ − u<τ | ≤ Osclln(uuu↾S ∧ τ).
(b) If uuu is near-simple, then Osclln(uuu) = supτ∈S χeτ × |uτ − u<τ |.

proof (a) Suppose that τ ∈ I ⊆ J in I(S ∧ τ). Take (σ0, . . . , σn) linearly generating the J-cells, and set
ai = [[σi < σi+1]] ∩ [[σi+1 = τ ]] for i < n. Then

ai ⊆ [[|uτ − uJ<τ | = |uσi+1
− uσi

|]] ⊆ [[|uτ − uJ<τ | ≤ OscllnJ(uuu)]]

for i < n, while

[[min I < τ ]] ⊆ [[σ0 < τ ]] ⊆ supi<n ai

because σn = τ . So

|uτ − uJ<τ | × χ[[min I < τ ]] ≤ OscllnJ(uuu) ≤ Osclln∗I(uuu↾S ∧ τ).
Letting J ↑ I(S ∧ τ), we get

|uτ − u<τ | × χ[[min I < τ ]] ≤ Osclln∗I(uuu↾S ∧ τ).
Now

limI↑I(S∧τ) [[min I < τ ]] = limσ↓S [[σ < τ ]] = supσ∈S [[σ < τ ]] = eτ ,

so limI↑I(S∧τ) χ[[min I < τ ]] = χeτ , and
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14 The S-integral 641N

|uτ − u<τ | × χeτ = lim
I↑I(S∧τ)

(|uτ − u<τ | × χ[[min I < τ ]])

≤ lim
I↑I(S∧τ)

Osclln∗I(uuu↾S ∧ τ) = inf
I∈I(S∧τ)

Osclln∗I(uuu↾S ∧ τ)

= Osclln(uuu↾S ∧ τ),
as required.

(b) Note that as uuu is moderately oscillatory (631Ca), it has a previsible version (641L). Write ω(uuu) for
supτ∈S χeτ × |uτ − u<τ |.

(i) Suppose that uuu is simple, with breakpoint string (τ0, . . . , τn) in S and starting value u↓. Take
σ ≤ σ′ in S. Then, using the formulae in 641Ia,

—– if σ′ ≤ τ0,

|uσ′ − uσ| = |uσ′ − uσ| × χ[[σ < σ′]] = |uσ′ − u↓| × χ[[σ < σ′]]

≤ |uσ′ − u↓| × χeσ′ = |uσ′ − u<σ′ | × χeσ′ ≤ ω(uuu);

—– if i < n and τi ≤ σ ≤ σ′ ≤ τi+1,

|uσ′ − uσ| ≤ |uτi+1
− uτi | = |uτi+1

− uτi | × χ[[τi < τi+1]]

= |uτi+1
− u<τi+1

| × χ[[τi < τi+1]]

≤ |uτi+1
− u<τi+1

| × χeτi+1
≤ ω(uuu);

—– if τn ≤ σ, |uσ′ − uσ| = 0.

By the first formula in 618Ca,

Osclln(uuu) ≤ Osclln∗I(uuu) ≤ ω(uuu),

where I = {τ0, . . . , τn}.
(ii) Generally, if uuu is near-simple, take any ǫ > 0. Then there is a simple process uuu′ = 〈u′σ〉σ∈S such

that θ(ū) ≤ ǫ, where ū = sup |uuu− uuu′|. Now

Osclln(uuu) ≤ Osclln(uuu′) + Osclln(uuu− uuu′)

(618B(c-ii))

≤ ω(uuu′) + 2ū

((i) above and 618B(b-ii))

≤ ω(uuu) + ω(uuu′ − uuu) + 2ū

(because vvv 7→ vvv − vvv< is linear, by 641Ge)

≤ ω(uuu) + 4ū.

So

θ((Osclln(uuu)− ω(uuu))+) ≤ θ(4ū) ≤ 4ǫ.

As ǫ is arbitrary, θ((Osclln(uuu)− ω(uuu))+) = 0 and Osclln(uuu) ≤ ω(uuu) in this case also.

(iii) Putting this together with (a), we see that ω(uuu) = Osclln(uuu), as claimed.

641O Corollary Let S be a non-empty sublattice of T , and uuu a locally jump-free process with domain
S. Then uuu< = uuu× 1(S)

< .

proof (a) To begin with, suppose that uuu is jump-free, therefore near-simple (631Cb). Then Osclln(uuu) = 0
so, in the language of 641N, χeτ × (uτ ×u<τ ) = 0 for every τ ∈ S, that is, 1(S)

< × (uuu−uuu<) = 0 (641Gb) and
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641Q Previsible versions 15

uuu× 1(S)
< = uuu< × 1(S)

< = (uuu× 1(S))<

(641G(e-i))

= uuu<.

(b) In general, take any τ ∈ S; then uuu↾S ∧ τ is jump-free, so

uuu<↾S ∧ τ = (uuu↾S ∧ τ)<
(641G(c-ii))

= (uuu↾S ∧ τ)× (1(S)↾S ∧ τ)<
= (uuu↾S ∧ τ)× (1(S)

< ↾S ∧ τ) = (uuu× 1(S)
< )↾S ∧ τ).

As τ is arbitrary, uuu< = uuu× 1(S)
< .

641P Corollary Let S be a non-empty sublattice of T , and uuu = 〈uσ〉σ∈S a near-simple process with
starting value u↓ = 0. Then Osclln(uuu) = supτ∈S |uτ − u<τ |.
proof Of course uuu is moderately oscillatory (631Ca again) so has a starting value (615H). In the language
of 641Nb, Osclln(uuu) = supτ∈S χeτ × |uτ − u<τ |. But if τ ∈ S,

1 \ eτ = inf
σ∈S

[[τ ≤ σ]] = inf
σ∈S

[[τ = σ ∧ τ ]]

⊆ [[uτ = limσ↓S uσ∧τ ]] = [[uτ = u↓]] = [[uτ = 0]]

while of course we also have 1 \ eτ ⊆ [[uI<τ = 0]] for every non-empty I ∈ I(S), so 1 \ eτ ⊆ [[u<τ = 0]]. Thus
1 \ eτ ⊆ [[uτ = u<τ ]] and χeτ × |uτ − u<τ | = |uτ − u<τ | for every τ ∈ S, so Osclln(uuu) = supτ∈S |uτ − u<τ |.

641Q Theorem Let S be a sublattice of T , uuu a locally moderately oscillatory process with previsible
version uuu<, and vvv a local integrator with previsible version vvv<. Setwww = iivvv(uuu). Thenwww−www< = uuu<×(vvv−vvv<).
proof Because uuu, vvv and www are all locally moderately oscillatory (616Ib, 616J), all the previsible versions
are defined (641L). Express uuu, vvv, uuu<, vvv< and www< as 〈uσ〉σ∈S , 〈vσ〉σ∈S , 〈u<σ〉σ∈S , 〈v<σ〉σ∈S and 〈w<σ〉σ∈S .

(a) Suppose to begin with that uuu and vvv are both non-negative and non-decreasing. Thenwww is non-negative
and non-decreasing (616Rb). Take any τ ∈ S.

(i) If σ ∈ S ∧ τ then

uσ × (vτ − vσ) ≤
∫
S∩[σ,τ ]

uuu dvvv ≤ u<τ × (vτ − vσ).

PPP If J is a finite sublattice of S ∩ [σ, τ ] containing both σ and τ , take a sequence (σ0, . . . , σn) linearly
generating the J-cells. Then

uσ × (vτ − vσ) = uσ ×
n−1∑

i=0

vσi+1
− vσi

≤
n−1∑

i=0

uσi
× (vσi+1

− vσi
)

=

n−1∑

i=0

uσi
× χ[[σi < τ ]]× (vσi+1

− vσi
)

(because [[σi = τ ]] ⊆ [[σi = σi+1]] ⊆ [[vσi
= vσi+1

]] for each i)

=

n−1∑

i=0

u{σi}<τ × χ[[σi < τ ]]× (vσi+1
− vσi

)

(by the formula in 641Ea)
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16 The S-integral 641Q

≤
n−1∑

i=0

u<τ × (vσi+1
− vσi

)

(by the argument in part (a-ii) of the proof of 641L)

= u<τ × (vτ − vσ),

and

uσ × (vτ − vσ) ≤ SJ(uuu, dvvv) ≤ u<τ × (vτ − vσ).

In the limit as J ↑ I(S ∩ [σ, τ ]),

uσ × (vτ − vσ) ≤
∫
S∩[σ,τ ]

uuu dvvv ≤ u<τ × (vτ − vσ). QQQ

(ii) Now let I be a non-empty finite sublattice of S. Then
uI<τ × (vτ − vI<τ ) ≤ (wτ − wI<τ )× χ[[min I < τ ]] ≤ u<τ × (vτ − vI<τ ).

PPP Take a sequence (τ0, . . . , τn) linearly generating the I-cells. As [[τ ≤ τ0]] ⊆ [[uI<τ = 0]] ∩ [[χ[[min I < τ ]] = 0]],
we certainly have

[[τ ≤ τ0]] ⊆ [[uI<τ × (vτ − vI<τ ) ≤ (wτ − wI<τ )× χ[[min I < τ ]]]]

∩ [[(wτ − wI<τ )× χ[[min I < τ ]] ≤ u<τ × (vτ − vI<τ )]].

Set di = [[τi < τ ]] \ [[τi+1 < τ ]] for i < n and dn = [[τn < τ ]]. Then for any i ≤ n we have di ⊆ [[wI<τ = wτi ]] =
[[wτ − wI<τ = wτ − wτi ]] so (i) tells us that

di ⊆ [[uI<τ × (vτ − vI<τ ) ≤ (wτ − wI<τ )× χ[[min I < τ ]]]]

∩ [[(wτ − wI<τ )× χ[[min I < τ ]] ≤ u<τ × (vτ − vI<τ )]].

Since [[τ ≤ τ0]] ∪ supi≤n di = 1, we have the result. QQQ

(iii) Taking the limit as I ↑ I(S) in (ii),

u<τ × (vτ − v<τ ) ≤ (wτ − w<τ )× χe ≤ u<τ × (vτ − v<τ )

where e = limI↑I(S) [[min I < τ ]] = supσ∈S [[σ < τ ]]. But now u<τ × (vτ − v<τ )×χe = (wτ −w<τ )×χe while
1 \ e ⊆ [[wτ = 0]] ∩ [[w<τ = 0]] ∩ [[u<τ = 0]],

so u<τ × (vτ − v<τ )× χ(1 \ e) = (wτ − w<τ )× χ(1 \ e); adding, we get u<τ × (vτ − v<τ ) = (wτ − w<τ ).

(iv) As τ is arbitrary, we have www − www< = uuu< × (vvv − vvv<) whenever uuu and vvv are non-negative and
non-decreasing.

(b) Since the operator (uuu,vvv) 7→ iivvv(uuu) is bilinear and the operator uuu 7→ uuu< is linear, it follows that
www − www< = uuu< × (vvv − vvv<) whenever uuu and vvv are of bounded variation (614J-614K again). Now if uuu is of
bounded variation, the map vvv 7→ iivvv(uuu) :Mmo(S) →Mmo(S) is continuous for the ucp topology on Mmo(S)
(615Rb). Since the map vvv 7→ vvv< is also continuous (641G(e-ii)) and the ucp topology on Mmo is Hausdorff,
www−www< = uuu< × (vvv − vvv<) whenever uuu is of bounded variation and vvv is moderately oscillatory. And if vvv is an
integrator, then uuu 7→ iivvv(uuu) : Mmo → Mo-b is continuous (616J) and takes values in Mmo (616J, 616Ib), so
now we see that www −www< = uuu< × (vvv − vvv<) whenever uuu is moderately oscillatory and vvv is an integrator.

(c) For the general case in which uuu is locally moderately oscillatory and vvv is a local integrator, apply (b)
to uuu↾S ∧ τ and vvv↾S ∧ τ to see that u<τ × (vτ − v<τ ) = (wτ − w<τ ) for every τ ∈ S; of course this depends
on the fact that uuu<↾S ∧ τ = (uuu↾S ∧ τ) (641Gc).

641R Corollary Let S be a non-empty sublattice of T and vvv a local integrator with domain S, starting
value 0 and quadratic variation vvv∗ (617H). Write vvv<, vvv

∗
< for the previsible versions of vvv and vvv∗. Then

vvv∗ − vvv∗< = (vvv − vvv<)
2.

proof We know that vvv∗ = vvv2 − 2iivvv(vvv) (617Ka). So

vvv∗ − vvv∗< = vvv2 − vvv2< − 2vvv< × (vvv − vvv<) = (vvv − vvv<)
2,

using 641Gd and 641Q.
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641T Since the previsible version of a moderately oscillatory process is moderately oscillatory (641L),
an integral

∫
S uuu<dvvv will often be defined. There are a couple of useful conditions which will ensure it is

actually equal to
∫
S uuu dvvv.

Proposition Let S be a sublattice of S, uuu a moderately oscillatory process with previsible version uuu< and
vvv an integrator. If either vvv is jump-free or uuu is jump-free and has starting value 0, then

∫
S uuu<dvvv =

∫
S uuu dvvv.

proof (a) If uuu is jump-free and has starting value 0, then in fact uuu< = uuu, by 641O or 641P, and the result
is trivial. So in the rest of this proof I will assume that vvv is jump-free. Express uuu, uuu< and vvv as 〈uσ〉σ∈S ,
〈u<σ〉σ∈S and 〈vσ〉σ∈S .

(b) Suppose that uuu is non-negative and non-decreasing. Recall that if σ, τ in S then

0 ≤ uσ × χ[[σ < τ ]] = u{σ}<τ ≤ u<τ ≤ uτ ,

as in the proof of 641La. So if I ∈ I(S) is non-empty and (τ0, . . . , τn) linearly generates the I-cells,

|SI(uuu− uuu<, dvvv)| = |
n−1∑

i=0

(uτi − u<τi)× (vτi+1
− vτi)|

≤
n−1∑

i=0

(uτi − u<τi)× χ[[τi < τi+1]]× |vτi+1
− vτi |

≤ OscllnI(vvv)×
n−1∑

i=0

(uτi − u<τi)× χ[[τi < τi+1]]

≤ OscllnI(vvv)× (uτ0 +

n−1∑

i=1

uτi − uτi−1
)

= OscllnI(vvv)× uτn−1
≤ OscllnI(vvv)× sup |uuu|

→ 0 as I ↑ I(S)
because vvv is jump-free. So in this case we have

∫
S(uuu− uuu<)dvvv = 0 and

∫
S uuu<dvvv =

∫
S uuu dvvv.

(c) Now, as in part (b) of the proof of 641Q, the linearity of integrations and of the operator uuu 7→ uuu<
ensures that

∫
S uuu<dvvv =

∫
S uuu dvvv whenever uuu is of bounded variation and vvv is jump-free, and the continuity of

the operators uuu 7→ uuu < and uuu 7→
∫
S uuu dvvv implies that

∫
S uuu<dvvv =

∫
S uuu dvvv whenever uuu is moderately oscillatory

and vvv is jump-free.

641U For the next result of this kind, I begin with a lemma which casts a little light on the difference
between discrete-time processes and continuous-time processes.

Lemma Suppose that T has no points isolated on the right. Then whenever τ ≤ τ ′ in T and ǫ > 0 there is
a σ ∈ [τ, τ ′] such that [[τ < σ]] = [[τ < τ ′]] and µ̄([[τ < τ ′]] \ [[σ < τ ′]]) ≤ ǫ.

proof Set A = {σ : σ ∈ [τ, τ ′], [[τ < σ]] = [[τ < τ ′]]}. A is non-empty (because τ ′ ∈ A) and downwards-
directed (by 611E(c-i-β)); moreover, supσ∈A [[σ < τ ′]] = [[τ < τ ′]]. PPP??? Otherwise, b = [[τ < τ ′]] \ supσ∈A [[σ < τ ′]]
is non-zero. Now b ⊆ supt∈T [[τ ′ > t]] \ [[τ > t]] (611D); let t ∈ T be such that b ∩ [[τ ′ > t]] \ [[τ > t]] is non-zero.
Because t is not isolated on the right, [[τ ′ > t]] = sups>t [[τ

′ > s]] (611A(b-i)), and there is an s > t such that
b ∩ [[τ ′ > s]] \ [[τ > t]] is non-zero.

Set a = [[τ ′ > s]] \ [[τ > t]]. Then a ∈ As = Aš (611Hb) and a ⊆ [[τ ′ > s]], so a ∈ Aš ∩ Aτ ′ (611H(a-i)).
There is a therefore a σ ∈ T such that

a ⊆ [[σ = š]], 1 \ a ⊆ [[σ = τ ′]], š ∧ τ ′ ≤ σ ≤ š ∨ τ ′

(611I again). We see that

[[σ < τ ]] = [[σ < τ ]] ∩ ([[š < τ ]] ∪ [[τ ′ < τ ]]) = [[σ < τ ]] ∩ [[š < τ ]]

⊆ [[σ < τ ′]] ∩ [[š < τ ]] ⊆ a ∩ [[š < τ ]] ⊆ [[τ > s]] \ [[τ > t]]

(611E(a-i-δ) once more)
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18 The S-integral 641U

= 0,

that is, τ ≤ σ, while also

[[τ ′ < σ]] = [[τ ′ < σ]] ∩ ([[τ ′ < š]] ∪ [[τ ′ < τ ′]])

= [[τ ′ < σ]] ∩ [[τ ′ < š]] ⊆ a ∩ [[τ ′ < š]] = 0

and σ ≤ τ ′. Moreover,

a ⊆ [[σ = š]] \ [[τ > t]] = [[σ = š]] ∩ [[τ ≤ ť]] ⊆ [[τ < σ]]

(use 611E(a-i-ζ)), while

[[τ < τ ′]] \ a ⊆ [[τ < τ ′]] ∩ [[σ = τ ′]] ⊆ [[τ < σ]].

So [[τ < τ ′]] ⊆ [[τ < σ]] = [[τ < τ ′]] and σ ∈ A.
On the other hand,

a ⊆ [[σ = š]] ∩ [[š < τ ′]] ⊆ [[σ < τ ′]],

so a ∩ b = 0. But we chose t and s so that a should meet b. XXXQQQ
There is therefore a σ ∈ A such that µ̄([[τ < τ ′]] \ [[σ < τ ′]]) ≤ ǫ, which is what we are looking for.

641V Proposition Suppose that T has no points isolated on the right. Let S be an order-convex
sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process. Then uuu<< = uuu<.

Remark I hope it is clear that uuu<< = 〈u<<σ〉σ∈S is the previsible version (uuu<)< of the previsible version of
uuu, so that uuu<<τ = limI↑I(S) u<,I<τ for every τ ∈ S.
proof (a) Suppose to begin with (down to the end of (g) below) that S has a greatest element τ and that
ǫ > 0. Let J ∈ I(S) be such that τ ∈ J and

θ(u<τ − uI<τ ) ≤ ǫ, θ(u<<τ − u<,I<τ ) ≤ ǫ

whenever J ⊆ I ∈ I(S). Let J0 be a maximal totally ordered subset of J .

(b) We need to know that if I ∈ I(S) includes J0 then θ(u<τ − uI<τ ) ≤ ǫ and θ(u<<τ − u<,I<τ ) ≤ ǫ. PPP
Let K be a maximal totally ordered subset of I including J0. The set

L = {σ : σ ∈ S, minK ≤ σ ≤ maxK, med(ρ, σ, ρ′) ∈ {ρ, ρ′}
whenever ρ, ρ′ are successive members of K}

is a sublattice of S including J and K is a maximal totally ordered subset of L, so uI<τ = uK<τ = uL<τ
(641Ed) and θ(u<τ − uI<τ ) = θ(u<τ − uL<τ ) ≤ ǫ. Similarly, θ(u<<τ − u<,I<τ ) ≤ ǫ. QQQ

(c) Enumerate J0 in increasing order as 〈τi〉i≤n, so that τn = τ . For each i < n set ci = [[τi < τi+1]] and

choose τ ′i ∈ T such that τi ≤ τ ′i ≤ τi+1, [[τi < τ ′i ]] = ci and µ̄(ci \ [[τ
′
i < τi+1]]) ≤ ǫ

n+1
, as in 641U. Because S

is order-convex, τ ′i ∈ S. Set τ ′n = τ and a = supi<n(ci \ [[τ
′
i < τi+1]]), so that µ̄a ≤ ǫ.

(d) Let i < n. Then

[[τi < τ ]] ∩ [[τ ′i = τ ]] ⊆ a,

[[τ ′i < τ ]] ∩ [[τi+1 = τ ]] \ a = [[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]] \ a = [[τi < τ ]] ∩ [[τi+1 = τ ]] \ a.

PPP

[[τi < τ ]] ∩ [[τ ′i = τ ]] = [[τi < τ ]] ∩ [[τ ′i = τi+1]] ∩ [[τi+1 = τ ]]

⊆ [[τi < τi+1]] ∩ [[τ ′i = τi+1]] ⊆ a.

Next,
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([[τ ′i < τ ]] ∩ [[τi+1 = τ ]])△ ([[τi < τ ]] ∩ [[τi+1 = τ ]])

= ([[τ ′i < τi+1]] ∩ [[τi+1 = τ ]])△ ([[τi < τi+1]] ∩ [[τi+1 = τ ]])

⊆ [[τ ′i < τi+1]]△ [[τi < τi+1]] = [[τi < τi+1]] \ [[τ
′
i < τi+1]] ⊆ a

so [[τ ′i < τ ]] ∩ [[τi+1 = τ ]] \ a = [[τi < τ ]] ∩ [[τi+1 = τ ]] \ a. Finally, if i = n − 1 then τi+1 = τ ′i+1 = τ so surely
[[τ ′i < τ ]] ∩ [[τi+1 = τ ]] \ a = [[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]] \ a. If i < n− 1 then

[[τ ′i+1 = τ ]] = [[τ ′i+1 = τi+2]] ∩ [[τi+2 = τ ]], [[τi+1 = τ ]] = [[τi+1 = τi+2]] ∩ [[τi+2 = τ ]],

so

[[τ ′i+1 = τ ]]△ [[τi+1 = τ ]] ⊆ [[τ ′i+1 = τi+2]]△ [[τi+1 = τi+2]] = [[τ ′i+1 < τi+2]]△ [[τi+1 < τi+2]]

= [[τi+1 < τi+2]] \ [[τ
′
i+1 < τi+2]] ⊆ a

and [[τ ′i < τ ]] ∩ [[τi+1 = τ ]] \ a = [[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]] \ a. QQQ

(e) Set L = {τ ′i : i ≤ n}. Then θ(u<<τ − u<,L<τ ) ≤ 2ǫ. PPP Set L′ = {τ0, τ ′0, τ1, τ ′1, . . . , τn}. Then
u<,L′<τ =

∑n−1
i=0 u<τi × χ([[τi < τ ]] ∩ [[τ ′i = τ ]]) + u<τ ′

i
× χ([[τ ′i < τ ]] ∩ [[τi+1 = τ ]])

(641Eb). Similarly,

u<,L<τ =
∑n−1
i=0 u<τ ′

i
× χ([[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]]).

Since [[τi < τ ]] ∩ [[τ ′i = τ ]] and ([[τ ′i < τ ]] ∩ [[τi+1 = τ ]])△ ([[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]]) are both included in a for every
i < n ((d) above), [[u<,L′<τ 6= u<,L<τ ]] ⊆ a and

θ(u<<τ − u<,L<τ ) ≤ θ(u<<τ − u<,L′<τ ) + ǫ ≤ 2ǫ

because J0 ⊆ L′. QQQ

(f) Let I ∈ I(S) be such that J ∪ {τ ′i : i < n} ⊆ I and θ(u<τ ′

i
− uI<τ ′

i
) ≤ ǫ

n+1
for every i < n. Take a

maximal totally subset I0 of I including {τi : i ≤ n} ∪ {τ ′i : i < n}. For each i < n, set Ki = I0 ∩ [τi, τ
′
i ]. If

σ ∈ Ki, we have

[[σ < τ ′i ]] ∈ Aσ ∩Aτ ′

i
⊆ Aτi+1

so we can define σ̃ ∈ T by saying that

[[σ < τ ′i ]] ⊆ [[σ̃ = σ]], [[τ ′i ≤ σ]] ⊆ [[σ̃ = τi+1]]

(611I once more). Now τi ≤ σ̃ ≤ τi+1 so σ̃ ∈ S. If ρ ≤ σ in Ki then

[[σ < τ ′i ]] = [[σ < τ ′i ]] ∩ [[ρ < τ ′i ]] ⊆ [[ρ̃ ≤ σ̃]], [[τ ′i ≤ σ]] ⊆ [[σ̃ = τi+1]] ⊆ [[ρ̃ ≤ σ̃]],

so ρ̃ ≤ σ̃; it follows that K̃i = {σ̃ : σ ∈ Ki} is totally ordered. Because [[τi < τ ′i ]] = [[τi < τi+1]], τ̃i = τi, so

minKi = τi = min K̃i. Also max K̃i = τ̃ ′i = τi+1.
The point of this is that [[σ < τ ′i ]] = [[σ̃ < τi+1]] for every σ ∈ Ki. It follows that uKi<τ

′

i
= uK̃i<τi+1

, and

this is true for every i < n.
Now set K =

⋃
i<nKi and K̃ =

⋃
i<n K̃i. Both of these are totally ordered sets including J0 with

minK = min K̃ = τ0. Since K ∩ [τi, τ
′
i ] = Ki = I0 ∩ [τi, τ

′
i ],

ci = [[τi < τ ′i ]] ⊆ [[uI0<τ ′

i
= uKi<τ

′

i
]] = [[uI<τ ′

i
= uKi<τ

′

i
]];

similarly, K̃∩[τi, τi+1] = K̃i, so ci = [[τi < τi+1]] ⊆ [[uK̃<τi+1
= uK̃i<τi+1

]]; accordingly ci ⊆ [[uI<τ ′

i
= uK̃<τi+1

]].

Next, [[τi+1 = τ ]] ⊆ [[uK̃<τ = uK̃<τi+1
]] (641Ec), so if we set bi = ci ∩ [[τi+1 = τ ]], we have bi ⊆ [[uI<τ ′

i
= uK̃<τ ]].

By the choice of I, θ((u<τ ′

i
− uK̃<τ )× χbi) ≤ ǫ

n+1
.

(g) Now we find that

θ(u<<τ − u<τ ) ≤ 2ǫ+ θ(u<,L<τ − u<τ )

(by (e))
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20 The S-integral 641V

≤ 3ǫ+ θ(u<,L<τ − uK̃<τ )

(by (b), because J0 ⊆ K̃)

= 3ǫ+ θ(u<,L<τ − uK̃<τ × χ[[τ0 < τ ]])

(because τ0 = min K̃, so [[τ0 = τ ]] ⊆ [[uK̃<τ = 0]])

= 3ǫ+ θ(u<,L<τ −
n−1∑

i=0

uK̃<τ × χ([[τi < τ ]] ∩ [[τi+1 = τ ]]))

≤ 4ǫ+ θ(u<,L<τ −
n−1∑

i=0

u<τ ′

i
× χ([[τi < τ ]] ∩ [[τi+1 = τ ]]))

(by (f))

≤ 5ǫ+ θ(u<,L<τ −
n−1∑

i=0

uτ ′

i
× χ([[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]]))

(because supi<n([[τi < τ ]] ∩ [[τi+1 = τ ]])△ ([[τ ′i < τ ]] ∩ [[τ ′i+1 = τ ]]) ⊆ a has measure at most ǫ, by (d))

= 5ǫ

as noted in (e).

(h) At this point, we recall that ǫ > 0 was arbitrary, so we see that u<<τ = u<τ . This was all on the
assumption that τ = maxS. But generally, given that S is an order-convex subset of T and that τ ∈ S, we
can apply the argument so far to uuu↾S ∧ τ , (uuu↾S ∧ τ)< = uuu<↾S ∧ τ and (uuu↾S ∧ τ)<< = uuu<<↾S ∧ τ (641G(c-ii))
to see that we still have u<<τ = uτ . Thus uuu<< = uuu<.

641W Proposition Suppose that T has no points isolated on the right. Let S be an order-convex
sublattice of T , uuu = 〈uσ〉σ∈S a moderately oscillatory process and vvv = 〈vσ〉σ∈S a near-simple integrator.
Then

∫
S uuu<dvvv =

∫
S uuu dvvv.

proof (a) If vvv is simple, we can use the formula of 641J to see that
∫
S uuu dvvv is determined by the previsible

version uuu<. Since in this context we have uuu<< = uuu<, by 641V, we shall have
∫
S uuu<dvvv =

∫
S uuu dvvv.

(b) If uuu is of bounded variation, then vvv 7→
∫
S uuu dvvv is continuous for the ucp topology (631H(a-ii)). At the

same time, uuu< is of bounded variation (641Lb), so {vvv : vvv ∈ Mn-s(S),
∫
S uuu dvvv =

∫
S uuu<dvvv} is closed for the

ucp topology. By (a), it contains all simple functions, so it is the whole of Mn-s(S), which is more than we
need.

(c) In general, take any ǫ > 0. Let δ > 0 be such that θ(
∫
S www dvvv) ≤ ǫ whenever I ∈ I(S) and www ∈Mmo(S)

is such that θ(sup |www|) ≤ δ (616J, applied to ∆vvv). Then we have a process ũuu of bounded variation such that
θ(sup |uuu − ũuu|) ≤ δ. As ũuu is moderately oscillatory it has a previsible version ũuu<. Now

∫
S ũuu dvvv =

∫
S ũuu<dvvv,

by (b), while θ(
∫
S uuu dvvv −

∫
S ũuu dvvv) ≤ ǫ. Next, sup |uuu< − ũuu<| ≤ sup |uuu − ũuu|) and θ(

∫
S uuu<dvvv −

∫
S ũuu<dvvv) ≤ ǫ.

Putting these together, we see that θ(
∫
S uuu dvvv −

∫
S uuu<dvvv) ≤ 2ǫ. As ǫ is arbitrary,

∫
S uuu<dvvv =

∫
S uuu dvvv.

641X Basic exercises (a) In 641B, show that A<min T = {0, 1} and A<max T =
∨
t∈T At.

(i) Give an example of a structure (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ), a martingale 〈uσ〉σ∈T , a τ ∈ T and a
finite sublattice I of T such that uI<τ is not the conditional expectation of uτ on the algebra AI<τ .

(b) Let S be a non-empty sublattice of T , and vvv a near-simple process with domain S and previsible
version vvv<. Show that sup |vvv| = sup |vvv<| ∨ |v↑|, where v↑ = limσ↑S vσ.

(h) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a locally moderately oscillatory process with previsible
version uuu< = 〈u<σ〉σ∈S . Suppose that A is a non-empty upwards-directed subset of S such that τ = supA
belongs to S. Set a = infσ∈A [[σ < τ ]]. Show that a ⊆ [[u<τ = limσ↑A uσ]].
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641 Notes Previsible versions 21

(c) Let S be a sublattice of T and vvv,www near-simple processes with domain S such that (vvv−vvv<)×(www−www<) =
0. Show that Osclln(vvv +www) = Osclln(vvv) ∨Osclln(www).

(d) Let S be a sublattice of T and vvv a process of locally bounded variation with domain S and starting

value 0. Let vvv↑ = 〈
∫
S∧τ |dvvv|〉τ∈S be the cumulative variation of vvv (614O). Show that vvv↑ − vvv↑< = |vvv − vvv<|.

(Hint : 614P(c-ii).)

(e) Let S be a sublattice of T and vvv, www two local integrators with domain S, at least one of which has
starting value 0. Write zzz for their covariation. Show that zzz − zzz< = (vvv − vvv<)× (www −www<).

(f) Show that if T has an element which is isolated on the right, then there are simple processes uuu, vvv
defined on the whole of T such that

∫
T uuu< dvvv 6=

∫
T uuu dvvv.

(g) Suppose that T has no points isolated on the right. Let S be an order-convex sublattice of T ,
uuu = 〈uσ〉σ∈S a moderately oscillatory process and vvv = 〈vσ〉σ∈S a near-simple integrator. Show that iivvv(uuu) =
iivvv(uuu<).

(h) Let S be a sublattice of T and uuu a non-decreasing fully adapted process with domain S. Show that
uuu< is defined everywhere in S.

641Y Further exercises (a) Give an example, in the context of 641B, of a structure (A, T, 〈At〉t∈T , T )
with stopping times σ, τ ∈ T such that A<(σ∧τ) 6= A<σ ∩ A<τ .

(b) Suppose that B is a closed subalgebra of A which is coordinated with 〈At〉t∈T in the sense of 634Fb.
Set Bt = B∩At for t ∈ T , and let TB ⊆ T be the sublattice of stopping times for (B, 〈Bt〉t∈T ), as in 634C.
Show that if τ ∈ TB then B<τ , defined from τ and TB by the formula of 641B, is equal to B ∩ A<τ .

(d)(i) Let uuu be a simple process defined on a non-empty sublattice of T . Show that uuu< is previsibly simple
in the sense of 612Ye. (ii) Let uuu be a previsibly simple process on a sublattice S of T defined from sequences
(τ0, . . . , τn) and u∗, u0, . . . , , un by the formulae of 612Ye. Suppose that vvv = 〈vσ〉σ∈S is an integrator with
domain S and that either vvv is jump-free or S is order-convex and no member of T is isolated on the right.
Show that

∫

S

uuu dvvv = u∗ × (vτ0 − v↓) +
n−1∑

i=0

ui × (vτi+1
− vτi) + uτn × (v↑ − vτn)

where v↓ = limσ↓S vσ and v↑ = limσ↑S vσ.

641 Notes and comments While 〈A<ť〉t∈T is a filtration of closed subalgebras of A, you must not think
of <τ , in A<τ and u<τ , as a stopping time. We have to re-examine all our standard formulae, as in 641Ca
and 641Ya. The familiar appearance of 641G(a-ii) is not exactly an accident, but it certainly demands a
proper check.

The concept of ‘previsibility’ is awkward at the bottom end. In the definitions in 641E-641F, I have chosen
to set u<τ = 0 if τ = min domuuu. This will cascade through the clauses ‘h(0, . . . , 0) = 0’ and ‘g(0) = 0’
in the statements of 641Gd and 642Da, ‘= 0 otherwise’ in the statement of 642E, ‘= 0 if h(ω) = 0’ in the
statements of 642Fb and 642La, and ‘= 0 if t = 0’ in the statement of 642K, all of which seem a little
arbitrary. (There is also a subformula ‘χeτ×’ in the statement of 641N which is there for the same reason.)
But it seems to me that there are similar difficulties, sometimes acknowledged1 and sometimes not, in the
alternative presentations I have seen. On the ideological ground that a ‘previsible’ process uuu = 〈uσ〉σ∈S is
one in which each value uτ can be determined from observations of uσ in regions [[σ < τ ]], I have taken the
view that in the region infσ∈S [[τ ≤ σ]], where we have no previous information, we must go to a default
value, and that the only sensible general default value is 0. If you have any reason to choose another, you

1Cf. Rogers & Williams 00, intro. to Chap. IV.
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22 The S-integral 641 Notes

should model this with a process starting at a time less than τ . In the meantime, I ask you to put up with
the fact that the previsible version 1(S)

< of a constant process 1(S) might not be 1(S). After all, at the time
of the first observation, its constancy is not previsible.

Up to this point it has seemed safe to write 1 for a constant process with value χ1 without declaring
a domain other than the default T of 612D(e-i). But if (as will be necessary when we come to define the
S-integral in §645) we want to talk about 1<, it will be essential to understand exactly what its domain is.
The notation 1(S) is inelegant but, I hope, easily interpreted.

Note that in 641W we have a fundamental difference between T = N and T = [0,∞[ (see 641Xf). The
point here is that when we come to the S-integral we shall have a basic formula

S
∫
S uuu< dvvv =

∫
S
uuu dvvv

(645R(a-i)), so it is interesting to know when this happens to be equal to the Riemann-sum integral
∫
S uuu< dvvv.

In 641Q-641R I return to a theme from §617. The formulae

d(iivvv(uuu)) ∼ uuu dvvv, dvvv∗ ∼ (dvvv)2, d[vvv
∗
www] ∼ dvvv dwww

reappear, transformed, in formulae for the jumps of iivvv(uuu) (641Q), vvv∗ (641R) and [vvv
∗
www] (641Xe). Similarly,

dvvv↑ ∼ |dvvv| (616T) turns into the formula of 641Xd, a refinement of 618U.
In 641U-641W I look at some results which depend on particular assumptions concerning the totally

ordered set T of the stochastic integration structure and the domain of the processes under consideration.
While in a sense these are restrictive, they are in fact satisfied by all the leading examples of the theory
once we have left the case T = N. It is fair to consider them as the normal case. Elsewhere (641Nb, 641P,
641W) I call on processes to be near-simple. This is indeed a restriction (for instance, previsible versions
are often not near-simple). Its necessity is clear in 641P; the previsible version can tell us only about jumps
as we approach a limit from below, not as we approach from above.

Version of 1.7.24

642 Previsible processes

I continue the work of §641 with a description of the previsible version of a process defined in the standard
way from a probability space and a filtration of σ-algebras (642E-642G). The other objective of the section
is to make a step towards a general theory of ‘previsible’ processes. The point is that among such processes,
starting with those of the form uuu<, a form of sequential convergence (the order*-convergence of 642B) has
striking connections with stochastic integration. I will come to this in §644. For the moment, I present
a definition of the space Mpv of previsible processes, with some of its elementary properties (642D) and a
description in terms of suitably measurable processes in the case in which T = [0,∞[ (642L).

642A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. θ will be the
standard functional defining the topology of convergence in measure on L0(A) (613B). If t ∈ T then ť will
be the constant stopping time at t. If S is a sublattice of T , I(S) will be the upwards-directed set of
finite sublattices of S, and S ∧ τ will be the lattice {σ ∧ τ : σ ∈ S} for every τ ∈ S. Mfa(S), Msimp(S),
Mo-b(S),Mn-s(S) andMmo(S) will be the spaces of fully adapted processes, simple processes, order-bounded
processes, near-simple processes and moderately oscillatory processes with domain S. If uuu = 〈uσ〉σ∈S is an
order-bounded process (614E), sup |uuu| will be the supremum supσ∈S |uσ| in L0(A), and Osclln(uuu) will be the
residual oscillation of uuu (618B).

642B Order*-convergence in L0 and (L0)S (a) In 367A, I gave a definition of order*-convergent
sequence in arbitrary lattices which is more elaborate than we need here. For our present purposes, it will
be enough to know that, because A is a Dedekind complete Boolean algebra, a sequence 〈un〉n∈N in L0(A)
is order*-convergent to u ∈ L0(A) iff it is order-bounded and

u = infn∈N supi≥n ui = supn∈N infi≥n ui

c© 2013 D. H. Fremlin
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642Bc Previsible processes 23

(367Gb). Another way of expressing this is to say that 〈un〉n∈N is order*-convergent to u iff there are a non-
decreasing sequence 〈vn〉n∈N and a non-increasing sequence 〈wn〉n∈N such that supn∈N vn = infn∈N wn = u
and vn ≤ un ≤ wn for every n. In this case, u is the limit of 〈un〉n∈N for the topology of convergence in
measure (367Pa).

Note that 〈un〉n∈N is order*-convergent to u iff 〈un−u〉n∈N is order*-convergent to 0 (367Cd), and that if
〈un〉n∈N is order-convergent to 0 and |vn| ≤ |un| for every n, then 〈vn〉n∈N is order-convergent to 0 (367Cc,
367Bd).

If A is expressed as the measure algebra of a probability space (Ω,Σ, µ), and each un, u is represented as
f•

n, f
• where the fn, f are measurable real-valued functions defined on Ω, then 〈un〉n∈N is order*-convergent

to u iff f(ω) = limn→∞ fn(ω) for almost every ω (367F). Hence, or otherwise, we see that if 〈un〉n∈N is order*-
convergent to u and 〈vn〉n∈N is order*-convergent to v, then 〈un+ vn〉n∈N, 〈ḡ(un)〉n∈N and 〈un× vn〉n∈N are
order*-convergent to u + v, ḡ(u) and u × v respectively, for any continuous g : R → R. More generally, if
〈uin〉n∈N is order*-convergent to ui for 1 ≤ i ≤ k, and g : Rk → R is continuous, then 〈ḡ(u1n, . . . , ukn)〉n∈N,
defined as in 619Eb, is order*-convergent to ḡ(u1, . . . , uk).

(b) Now suppose that we have a sublattice S of T . Then L0(A)S is isomorphic, as f -algebra, to L0(AS),
where AS is the simple product (315A, 364R) and is itself a Dedekind complete Boolean algebra (315D(e-
i)). So we shall be able to use the same formula for sequences of processes: if S is a sublattice of T ,
〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N is a sequence of processes with domain S, and uuu = 〈uσ〉σ∈S is another process
with domain S, then

〈uuun〉n∈N is order*-convergent to uuu

⇐⇒ 〈uuun〉n∈N is order-bounded and uuu = inf
n∈N

sup
i≥n

uuui = sup
n∈N

inf
i≥n

uuui

⇐⇒ 〈unσ〉n∈N is order-bounded and uσ = inf
n∈N

sup
i≥n

uiσ = sup
n∈N

inf
i≥n

uiσ

for every σ ∈ S
⇐⇒ 〈unσ〉n∈N is order*-convergent to uσ for every σ ∈ S.

Note that if we have an order*-convergent sequence of fully adapted processes, the limit will also be fully
adapted. PPP Suppose that 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N is a sequence of fully adapted processes order*-
convergent to uuu = 〈uσ〉σ∈S . For each σ ∈ S, 〈unσ〉n∈N is a sequence in L0(Aσ) which is order*-convergent,
therefore topologically convergent, to uσ, and uσ ∈ L0(Aσ) because L0(Aσ) is topologically closed. If σ,
τ ∈ S and [[σ = τ ]] = a, then

uσ × χa = limn→∞ unσ × χa = limn→∞ unτ × χa = uτ × χa,

so a ⊆ [[uσ = uτ ]]. Thus uuu is fully adapted. QQQ

(c) A topologically convergent sequence need not be order*-convergent (245Cc), but if 〈un〉n∈N is a
sequence in L0 such that

∑∞
n=0 θ(un) is finite, then 〈un〉n∈N is order*-convergent to 0. PPP I check first that

{|un| : n ∈ N} is bounded above. If ǫ > 0, there is an n ∈ N such that
∑∞
m=n µ̄[[|um| ≥ 1]] ≤ ∑∞

m=n θ(um) ≤ ǫ;

now there is a k ≥ 1 such that
∑n−1
m=0 µ̄[[|um| > k]] ≤ ǫ, so that

µ̄(supm∈N [[|um| > k]]) ≤ ∑n−1
m=0 µ̄[[|um| > k]] +

∑∞
m=n µ̄[[|um| ≥ 1]] ≤ 2ǫ.

As ǫ is arbitrary,

µ̄(infα∈R supm∈N [[|um| > α]]) = limα→∞ µ̄(supm∈N [[|um| > α]]) = 0

and 〈|un|〉n∈N is bounded above, by the criterion in 364L(a-ii).
Accordingly we may speak of supm≥n |um| for each n. Given ǫ > 0, let n ∈ N be such that

∑∞
m=n θ(um) ≤

ǫ2; then

µ̄[[supm≥n |um| > ǫ]] ≤ ∑∞
m=n µ̄[[|um| > ǫ]] ≤ 1

ǫ

∑∞
m=n θ(um) ≤ ǫ,
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24 The S-integral 642Bc

so θ(supm≥n |um|) ≤ 2ǫ. As ǫ is arbitrary, infn∈N supm≥n |um| = 0 and 〈un〉n∈N is order*-convergent to 0.
QQQ

(d) The description of order*-convergence in L0 in terms of pointwise convergence in L
0, given in (a)

above, makes it easy to see that if 〈hn〉n∈N is a sequence of Borel measurable functions from Rk to R, and
h(x) = limn→∞ hn(x) is defined in R for every x ∈ Rk, then 〈h̄n(u1, . . . , uk)〉n∈N is order*-convergent to
h̄(u1, . . . , uk) whenever u1, . . . , uk ∈ L0. (See 619Ee-619Ef.)

(e) Note that if 〈xn〉n∈N is a non-decreasing sequence in L0(A) then it is order*-convergent iff it is order-
bounded, and its order*-limit is then supn∈N xn, which is also its topological limit. At the same time, if
〈xn〉n∈N is topologically convergent, then its topological limit is an upper bound of {xn : n ∈ N}, so is again
the order*-limit.

We are now ready for the next definition.

642C Definition Let S be a sublattice of T . I will say that a process xxx with domain S is previsible if
it belongs to the smallest subset of (L0)S which contains uuu< for every simple process uuu and is closed under
order*-convergence of sequences in (L0)S .

642D Theorem Let S be a sublattice of T , and Mpv(S) the space of previsible processes with domain
S.

(a) Mpv(S) is an f -subalgebra of Mfa(S), and ḡuuu ∈ Mpv(S) whenever uuu ∈ Mpv(S) and g : R → R is a
continuous function such that g(0) = 0.

(b) Mpv(S) ∩Mo-b(S) is closed in Mo-b(S) for the ucp topology. Consequently uuu< ∈ Mpv(S) for every
uuu ∈Mn-s(S).

(c) If τ ∈ S, then Mpv(S ∧ τ) = {xxx↾S ∧ τ : xxx ∈Mpv(S)}.
proof (a) Because uuu< is defined and fully adapted for every simple process uuu with domain S (641I, 641G(a-
ii)), and the limit of an order*-convergent sequence inMfa(S) belongs toMfa(S) (642Bb),Mpv(S) ⊆Mfa(S).
If g : R → R is continuous and g(0) = 0, then {xxx : xxx ∈ Mpv(S), ḡxxx ∈ Mpv(S)} is closed under order*-
convergence, by the last remark in 642Ba, and contains uuu< for every uuu ∈Msimp(S), by 612La and 641Gd, so
must be the whole of Mpv(S). Similarly, if uuu ∈Msimp(S), {xxx : xxx ∈Mpv(S), uuu<+xxx ∈Mpv(S)} =Mpv(S); so
if xxx ∈Mpv(S), {uuu : uuu ∈Mpv(S), uuu+xxx ∈Mpv(S)} =Mpv(S), and Mpv(S) is closed under addition. Putting
these together, Mpv(S) is an f -subalgebra of Mfa(S).

(b)(i) Suppose that xxx = 〈xσ〉σ∈S belongs to the closure of Mpv(S) ∩Mo-b(S) in Mo-b(S) for the ucp
topology. Then for each n ∈ N there is a xxxn ∈ Mpv(S) such that θ(x̄n) ≤ 2−n, where x̄n = sup |xxxn − xxx|.
Now 〈xxxn〉n∈N is order*-convergent to xxx. PPP Express each xxxn as 〈xnσ〉σ∈S . Setting wn =

∑n
i=0 x̄i for n ∈ N,

〈wn〉n∈N is Cauchy for the linear space topology of convergence in measure, so is convergent to w say;
w ≥ wn for every n and 〈w −wn〉n∈N is a non-increasing sequence with infimum 0. For any σ ∈ S, we have
|xnσ − xσ| ≤ wn for every n, so

infn∈N supi≥n xiσ ≤ infn∈N supi≥n wi + xσ = xσ

and similarly

supn∈N infi≥n xiσ ≥ xσ;

of course

supn∈N infi≥n xiσ ≤ infn∈N supi≥n xiσ,

so 〈xnσ〉n∈N is order*-convergent to xσ. QQQ
Thus xxx ∈Mpv(S). As xxx is arbitrary, Mpv(S) ∩Mo-b(S) is ucp-closed.
(ii) Since uuu 7→ uuu< : Mmo(S) → Mo-b(S) is continuous (641G(e-ii)), {uuu : uuu ∈ Mmo(S), uuu< ∈ Mpv(S)}

is relatively ucp-closed in Mmo(S); as it certainly includes Msimp(S), it must include the relative closure

Msimp(S) ∩Mmo(S) =Mn-s(S) (631Ba, 631Ca).
(c)(i) If vvv ∈Msimp(S) then vvv↾S ∧ τ ∈Msimp(S ∧ τ) (612K(d-ii)) and vvv<↾S ∧ τ = (vvv↾S ∧ τ)< (641G(c-ii))

belongs to Mpv(S ∧ τ). Now
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{xxx : xxx ∈Mpv(S), xxx↾S ∈Mpv(S ∧ τ)}
is closed under order*-convergence; since it contains vvv< for every vvv ∈ Msimp(S), it is the whole of Mpv(S),
that is, xxx↾S ∧ τ ∈Mpv(S ∧ τ) for every xxx ∈Mpv(S).

(ii)(ααα) For uuu ∈Mfa(S ∧ τ), define ũuu = 〈ũσ〉σ∈S by saying that ũσ = uσ∧τ × χ[[σ ≤ τ ]] for every σ ∈ S.
Then ũuu is fully adapted. PPP As [[σ ≤ τ ]] ∈ Aσ (611H(c-i)) and uσ∧τ ∈ L0(Aσ∧τ ) ⊆ L0(Aσ), ũσ ∈ L0(Aσ)
for every σ ∈ S. If σ, σ′ ∈ S and a = [[σ = σ′]], then a ⊆ [[σ ∧ τ = σ′ ∧ τ ]] and a ∩ [[σ ≤ τ ]] = a ∩ [[σ′ ≤ τ ]]
(611E(c-v-α, 611E(c-iv-α))) so

ũσ × χa = uσ∧τ × χ([[σ ≤ τ ]] ∩ [[σ = σ′]]) = uσ′∧τ × χ([[σ′ ≤ τ ]] ∩ [[σ = σ′]]) = ũσ′ × χa

and a ⊆ [[ũσ = ũσ′ ]]. QQQ
Of course ũuu↾S ∧ τ = uuu.

(βββ) If vvv = 〈vσ〉σ∈S∧τ belongs to Msimp(S ∧ τ), there is a www ∈ Msimp(S) such that www< = (vvv<)
∼.

PPP There is certainly a www′ ∈ Msimp(S) extending vvv (631Ma, or otherwise). Now define www′′ = 〈w′′
σ〉σ∈S ∈

Msimp(S) by saying that

[[σ < τ ]] ⊆ [[w′′
σ = χ1]], [[τ ≤ σ]] ⊆ [[w′′

σ = 0]]

for every σ ∈ S (612Ka), and set www = www′ ×www′′. Expressing www as 〈wσ〉σ∈S ,

[[σ < τ ]] ⊆ [[wσ = vσ]], [[τ ≤ σ]] ⊆ [[wσ = 0]]

for every σ ∈ S.
If σ ≤ τ , then [[σ′ < σ]] ⊆ [[wσ′ = vσ′ ]] for every σ′, so, in the language of 641E, wI<σ = vI<σ for every

I ∈ I(S ∧ σ) and w<σ = v<σ. Thus www<↾S ∧ τ = vvv<. For general σ ∈ S, if σ ∧ τ ∈ I ∈ I(S ∧ σ),
[[σ′ < σ]] \ ([[σ′ < σ ∧ τ ]] ∩ [[σ ∧ τ < σ]]) ⊆ [[τ ≤ σ′]] ∪ [[σ ≤ τ ]] ⊆ [[wσ′ = 0]] ∪ [[σ ≤ τ ]]

for every σ′ ∈ I, so wI<σ × χ[[τ < σ]] = 0. Taking the limit as I ↑ I(S ∧ σ), w<σ × χ[[τ < σ]] = 0, so

w<σ = w<σ × χ[[σ ≤ τ ]] = w<(σ∧τ) × χ[[σ ≤ τ ]]

(because www< is fully adapted)

= v<(σ∧τ) × χ[[σ ≤ τ ]].

Thus www< = (vvv<)
∼, as required. QQQ

(γγγ) If 〈uuun〉n∈N is a sequence inMfa(S∧τ) which is order*-convergent to uuu ∈Mfa(S∧τ), then 〈ũuun〉n∈N

is order*-convergent to ũuu. PPP Expressing uuun as 〈unσ〉σ∈S∧τ , etc., we have

infn∈N supi≥n ũiσ = infn∈N supi≥n ui,σ∧τ × χ[[σ ≤ τ ]] = uσ∧τ × χ[[σ ≤ τ ]] = ũσ

and similarly

supn∈N infi≥n ũiσ = ũσ

for every σ ∈ S. QQQ
(δδδ) So

{xxx : xxx ∈Mpv(S ∧ τ), x̃xx ∈Mpv(S)}
is closed under order*-convergence and contains vvv< for every vvv ∈Msimp(S∧τ), and is the whole ofMpv(S∧τ).
So

Mpv(S ∧ τ) = {x̃xx↾S ∧ τ : xxx ∈Mpv(S ∧ τ)} ⊆ {xxx↾S ∧ τ : xxx ∈Mpv(S)}.
With (i), this shows that we have equality.

642E Previsible versions in the standard model of near-simple processes I had better work
through the connections between the constructions of 641B and 641E and the ideas on processes with càdlàg
sample paths from which they were derived.
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Proposition Let (Ω,Σ, µ) be a complete probability space and 〈Σt〉t∈[0,∞[ a right-continuous filtration of
σ-subalgebras of Σ all containing every negligible subset of Ω. Suppose that we are given a family 〈Ut〉t≥0

of real-valued functions on Ω such that Ut is Σt-measurable for every t and t 7→ Ut(ω) : [0,∞[ → R is càdlàg
for every ω ∈ Ω. Let h : Ω → [0,∞[ be a stopping time, and Σh− the σ-subalgebra of Σ generated by {E :
there is a t ∈ [0,∞[ such that E ∈ Σt and h(ω) > t for every ω ∈ E}; define Uh− : Ω → R by setting

Uh−(ω) = lim
t↑h(ω)

Ut(ω) if h(ω) > 0,

= 0 otherwise.

Suppose that (A, µ̄, 〈At〉t∈[0,∞[) and uuu = 〈uσ〉σ∈Tf
are defined from (Ω,Σ, µ, 〈Σt〉t∈[0,∞[) and 〈Ut〉t∈[0,∞[

as in 612H. Let τ be the stopping time represented by h (612Ha), and uuu< = 〈u<σ〉σ∈Tf
the previsible version

of uuu. Then
(a) A<τ = {E• : E ∈ Σh−},
(b) u<τ = U•

h− in L0(A).

proof Note that uuu is locally near-simple, by 631D, so we can speak of its previsible variation.

(a) This is a direct translation of the description of A<τ in 641Be.

(b)(i) For n ∈ N, define fn : Ω → R by setting

fn(ω) = 0 if h(ω) = 0,

= U2−nk(ω) if k < 4n and 2−nk < h(ω) ≤ 2−n(k + 1),

= U2n(ω) if 2
n < h(ω).

Then Uh−(ω) = limn→∞ fn(ω) for every ω.

(ii) In fact we know more than just that Uh− = limn→∞ fn. Given ǫ > 0, there is for each ω ∈ Ω an
n ∈ N such that |Uh−(ω)− Ut(ω)| ≤ ǫ whenever max(0, h(ω)− 2−n) ≤ t < h(ω). So there is an n such that
µF ≥ 1− ǫ, where

F = {ω : h(ω) ≤ 2n and |Uh−(ω)− Ut(ω)| ≤ ǫ

whenever t ∈ Q ∩
[
max(0, h(ω)− 2−n, h(ω))

[
}

= {ω : h(ω) ≤ 2n and |Uh−(ω)− Ut(ω)| ≤ ǫ

whenever max(0, h(ω)− 2−n) ≤ t < h(ω)}.

Now suppose that I ∈ I(Tf ) includes the finite sublattice In = {(2−nk)∨ : k ≤ 4n} of constant stopping
times. Then there is a sequence (σ0, . . . , σm), linearly generating the I-cells, such that the totally ordered
set In is included in {σj : j ≤ m}. Take stopping times g0, . . . , gm : Ω → [0,∞[ representing σ0, . . . , σm
and adjusted so that gj ≤ gj+1 for every j and whenever σj = ť then gj(ω) = t for every ω. Observe that
{gj(ω) : j ≤ m} ⊇ {2−nk : k ≤ 4n} for every ω. We can now calculate uI<τ from 641Eb, and find that

uI<τ = f̃•, where

f̃(ω) = 0 if h(ω) = 0,

= Ugj (ω) if j < m and gj(ω) < h(ω) ≤ gj+1(ω),

= Ugm(ω) if gm(ω) < h(ω).

If ω ∈ F , then either h(ω) = 0 and f̃(ω) = 0, or there is a k < 4n such that 2−nk < h(ω) and
|Uh−(ω) − Ut(ω)| ≤ ǫ whenever 2−nk ≤ t < h(ω). In the latter case, let j ≤ m be maximal such that
gj(ω) < h(ω). Then 2−nk ≤ gj(ω) and

|f̃(ω)− Uh−(ω)| = |Ugj (ω)− Uh−(ω)| = |Ugj(ω)(ω)− Uh−(ω)| ≤ ǫ.

So we see that F ⊆ {ω : |f̃(ω)− Uh−(ω)| ≤ ǫ} and

θ(uI<τ − U•

h−) = θ((f̃ − Uh−)•) ≤ ǫ+ µ(Ω \ F ) ≤ 2ǫ.

Measure Theory



642F Previsible processes 27

And this is true whenever In ⊆ I ∈ I(Tf ).
(iii) As ǫ is arbitrary,

U•

h− = limI↑I(Tf ) uI<τ = u<τ ,

as claimed.

642F I spell out what amounts to a special case (though here we do not need a right-continuous filtration)
so as to be able to quote it later.

Corollary Suppose that (Ω,Σ, µ) is a complete probability space, 〈Σt〉t≥0 a filtration of σ-subalgebras
of Σ such that every µ-negligible set belongs to Σ0, and (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) the associated
real-time stochastic integration structure.

(a) Suppose that S is a sublattice of Tf containing 0̌ and that uuu = 〈uσ〉σ∈S is a simple process with
breakpoint string (τ0, . . . , τn) in S starting from τ0 = 0̌. Suppose that h0, . . . , hn : Ω → [0,∞[ are stopping
times representing τ0, . . . , τn respectively, starting from h0(ω) = 0 for every ω, and such that h0 ≤ . . . ≤ hn.
For i ≤ n, let fi : Ω → R be a measurable function representing uτi ∈ L0(A). If h : Ω → [0,∞[ is any
stopping time representing a member σ of S, and we set

f(ω) = fi(ω) if i < n and hi(ω) ≤ h(ω) < hi+1(ω),

= fn(ω) if hn(ω) ≤ h(ω),

then f• = uσ in L0(A).
(b) Now suppose that uuu< = 〈u<σ〉σ∈S is the previsible version of uuu. If h : Ω → [0,∞[ is any stopping

time representing a member σ of S, and we set

f−(ω) = 0 if h(ω) = 0,

= fi(ω) if i < n and hi(ω) < h(ω) ≤ hi+1(ω),

= fn(ω) if hn(ω) < h(ω),

then f•

− = u<σ in L0(A).

proof (a) I had better check that f is measurable; this is because all the sets {ω : hi(ω) < h(ω)} are
measurable, as is {ω : h(ω) = 0}. Now we have

[[f• = uσ]] ⊇ sup
i≤n

[[f• = f•

i ]] ∩ [[uτi = uσ]]

(because f•

i = uτi for each i)

⊇ sup
i≤n

{ω : f(ω) = fi(ω)}•
∩ [[τi ≤ σ]] ∩ [[σ < τi+1]]

(612H(a-iv), taking τn+1 = max T , so that [[σ < τn+1]] = 1, because σ ∈ Tf )
= sup

i≤n
{ω : f(ω) = fi(ω)}•

∩ {ω : hi(ω) ≤ h(ω)}•
∩ {ω : h(ω) < hi+1(ω)}•

(counting hn+1(ω) as ∞)

= sup
i≤n

{ω : hi(ω) ≤ h(ω) < hi+1(ω)}• = {ω : h0(ω) ≤ h(ω)}• = Ω• = 1,

so f• = uσ.

(b) Similarly,

[[f•

− = u<σ]] ⊇ ([[f•

− = 0]] ∩ [[u<σ = 0]]) ∪ sup
i≤n

([[f•

− = f•

i ]] ∩ [[uτi = u<σ]])

⊇ ({ω : f−(ω) = 0}•
∩ [[σ = 0̌]])

∪ sup
i≤n

({ω : f−(ω) = fi(ω)}•
∩ [[τi < σ]] ∩ [[σ ≤ τi+1]])

(641I, again taking τn+1 = max T )
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⊇ ({ω : h(ω) = 0}•
∩ [[σ = 0̌]])

∪ sup
i≤n

({ω : f−(ω) = fi(ω)}•
∩ {ω : hi(ω) < h(ω) ≤ hi+1(ω)}•)

(again taking hn+1(ω) = ∞ for every ω)

= {ω : h(ω) = 0}•
∪ sup
i≤n

{ω : hi(ω) < h(ω) ≤ hi+1(ω)}•

= {ω : h0(ω) ≤ h(ω)}• = 1,

so f•

− = u<σ.

642G Corollary Suppose that (Ω,Σ, µ, 〈Σt〉t∈[0,∞[), (A, µ̄, 〈At〉t∈[0,∞[), 〈Ut〉t≥0 and uuu = 〈uτ 〉τ∈Tf
are as

in 631D and 642E, that is, with right-continuous filtrations and càdlàg sample paths.
(a) If h : Ω → [0,∞[ is a stopping time representing τ ∈ Tf , and

f(ω) = sup
0<t≤h(ω)

|Ut(ω)− lim
s↑t

Us(ω)| if h(ω) > 0

= 0 if h(ω) = 0,

then f• = Osclln(uuu↾[0̌, τ ]) in L0(A).
(b) uuu is locally jump-free iff ω 7→ Ut(ω) : [0,∞[ → R is continuous for almost every ω.

proof (a)(i) I had better check that f is measurable. PPP Given α ∈ R, consider the set

H = {(t, ω) : ω ∈ Ω, 0 < t ≤ h(ω), |Ut(ω)− lim
s↑t

Us(ω)| > α}

=
⋃

n∈N
q∈Q∩[0,∞[

⋂

q′∈Q,q′≥q

{(t, ω) : q < t ≤ h(ω)}

∩ ({(t, ω) : t ≤ q′} ∪ {(t, ω) : |Ut(ω)− Uq′(ω)| ≥ α+ 2−n})
∈ B⊗̂Σ

where B is the Borel σ-algebra of [0,∞[, because the ordinate set {(t, ω) : 0 ≤ t ≤ h(ω)} belongs to B⊗̂Σ
(252Xj2) and (t, ω) 7→ Ut(ω) is B⊗̂Σ-measurable (631D). Set π2(t, ω) = ω for ω ∈ Ω and t ≥ 0. Because µ
is complete, Σ is closed under Souslin’s operation (431A); because [0,∞[ is Polish,

E = {ω : f(ω) > α} = π2[H]

belongs to Σ (423O2). As α is arbitrary, f is measurable. QQQ

(ii) Refining these ideas, we can learn more.

(ααα) Fix α > 0 for a moment. Define H as in (i) above, so that E = {ω : f(ω) > α} is the projection
of H on Ω. Now, for any ω ∈ E, the càdlàg function t 7→ Ut(ω) : [0, h(ω)] → R can have at most finitely
many jumps of size α or more, so there is a least g(ω) ∈]0, h(ω)] such that (g(ω), ω) ∈ H. For ω ∈ X \ E,
set g(ω) = h(ω).

(βββ) g is a stopping time. PPP For any s ∈ [0,∞[,

{ω : ω ∈ Ω, g(ω) ≤ s} = {ω : h(ω) ≤ s} ∪ π2[Hs]

where

Hs = {(t, ω) : ω ∈ Ω, 0 < t ≤ s, |Ut(ω)− lim
t′↑t

Ut′(ω)| > α}

=
⋃

n∈N
q∈Q∩[0,∞[

⋂

q′∈Q,q≤q′≤s

{(t, ω) : q < t ≤ s}

∩ ({(t, ω) : t ≤ q′} ∪ {(t, ω) : |Ut(ω)− Uq′(ω)| ≥ α+ 2−n})
∈ B⊗̂Σs

2Later editions only.
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because (t, ω) 7→ Ut(ω) : [0, s] × Ω → R is (B⊗̂Σs)-measurable, as observed in part (a) of the proof of
631D. Now one of the assumptions transferred from 631D is that Σs contains all µ-negligible sets, so that
(Ω,Σs, µ↾Σs) is complete, Σs is closed under Souslin’s operation and π2[Hs] ∈ Σs. Since {ω : h(ω) ≤ s}
certainly belongs to Σs, {ω : g(ω) ≤ s} ∈ Σs. As s is arbitrary, g is a stopping time. QQQ

(γγγ) Let σ ∈ T be the stopping time represented by g. Then σ ≤ τ and

χ[[0̌ < σ]]× |uσ − u<σ| ≤ Osclln(uuu↾[0̌, σ]) (641Na)

≤ Osclln(uuu↾[0̌, τ ])

(618D). But

E = {ω : h(ω) > 0, |Ug(ω)(ω)− limt′↑g(ω) Ut′(ω)| > α},
so

χ[[0̌ < σ]]× [[|uσ − u<σ| > α]] = E• = [[f• > α]]

by 642E. It follows that [[f• > α]] ⊆ [[Osclln(uuu↾[0̌, τ ]) > α]]. And this is true for every α > 0.

(δδδ) Taking the supremum over α > 0, we get [[f• > 0]] ⊆ [[Osclln(uuu↾[0̌, τ ]) > 0]]. And of course
[[f• > α]] = 1 = [[Osclln(uuu↾[0̌, τ ]) > α]] if α < 0. So in fact we have f• ≤ Osclln(uuu↾[0̌, τ ]).

(iii) In the other direction, if σ ≤ τ in T , we have a stopping time g : Ω → [0,∞[ representing σ, and
we can suppose that g ≤ h. Now, for any ω ∈ Ω such that g(ω) > 0,

|Ug(ω)− Ug−(ω)| = lims↑g(ω) |Ug(ω)(ω)− Us(ω)| ≤ f(ω)

and

f• ≥ |U•

g − U•

g−
| = |uσ − u<σ|

by 642Eb again. By 641Nb, Osclln(uuu↾[0̌, τ ]) ≤ f• and we have equality.

(b) Setting

fn(ω) = sup0<t≤n |Ut(ω)− lims↑t Us(ω)|
for n ≥ 1 and ω ∈ Ω, we see that

ω 7→ Ut(ω) : [0,∞[ → R is continuous for almost every ω

⇐⇒ fn = 0 a.e. for every n ≥ 1

⇐⇒ Osclln(uuu↾[0̌, ň]) = 0 for every n ≥ 1

by (a). Setting vτ = Osclln(uuu↾[0̌, τ ]) for τ ∈ Tf , 618Da tells us that 〈vτ 〉τ∈Tf
is a non-decreasing fully

adapted process; conseqently

uuu is locally jump-free ⇐⇒ vτ = 0 for every τ ∈ Tf
⇐⇒ vτ∧ň = 0 for every τ ∈ Tf and n ∈ N

(because if τ ∈ Tf then supn∈N [[τ = τ ∧ ň]] = 1)

⇐⇒ vň = 0 for every n ≥ 1

⇐⇒ Osclln(uuu↾[0̌, ň]) = 0 for every n ≥ 1

⇐⇒ ω 7→ Ut(ω) : [0,∞[ → R is continuous for almost every ω.

642H Previsible σ-algebras In the context of 642E-642G, we have an important σ-algebra of subsets
of [0,∞[× Ω.

Definitions (a) Given a probability space (Ω,Σ, µ) and a filtration 〈Σt〉t≥0 of σ-subalgebras of Σ, the
previsible σ-algebra is the σ-algebra Λpv of subsets of [0,∞[×Ω generated by sets ]s,∞[×E where s ≥ 0
and E ∈ Σs.
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(b) I will say that a family 〈Xt〉t≥0 of real-valued functions on Ω is previsibly measurable if (t, ω) 7→
Xt(ω) : [0,∞[× Ω → R is Λpv-measurable.

642I Proposition Previsibly measurable processes are progressively measurable.

proof Given a probability space (Ω,Σ, µ) and a filtration 〈Σt〉t≥0 of σ-subalgebras of Σ, consider the set

Λ = {W :W ⊆ [0,∞[× Ω, W ∩ ([0, t]× Ω) ∈ B([0, t])⊗̂Σt for every t ≥ 0}
where B([0, t]) is the Borel σ-algebra of [0, t]. Then Λ is a σ-algebra of subsets of [0,∞[ × Ω containing
]s,∞[× E whenever s ≥ 0 and E ∈ Σs, so Λpv ⊆ Λ. Now a family 〈Xt〉t≥0 of real-valued functions on Ω is
a previsibly measurable process iff (s, ω) 7→ Xs(ω) : [0,∞[×Ω → R is Λpv-measurable; but in this case it is

Λ-measurable and (s, ω) 7→ Xs(ω) : [0, t]× Ω → R is B([0, t])⊗̂Σt-measurable for every t, that is, 〈Xt〉t≥0 is
progressively measurable.

642J Lemma Let (Ω,Σ, µ) be a complete probability space, 〈Σt〉t≥0 a filtration of σ-subalgebras of Σ,
Λpv the associated previsible σ-algebra and W a member of Λpv.

(a) If h : Ω → [0,∞] is a stopping time, then {(t, ω) : h(ω) < t} ∈ Λpv.
(b) F = π2[W ] belongs to Σ, where π2(t, ω) = ω for ω ∈ Ω and t ≥ 0.
(c) Now suppose that every Σt contains every negligible set. If F is not negligible there is a stopping

time h : Ω → [0,∞] such that {ω : (t, h(ω)) ∈W} is not negligible.

proof (a)

{(t, ω) : h(ω) < t} =
⋃
q∈Q,q≥0 ]q,∞[× {ω : h(ω) ≤ q}.

(b) Take A0 ⊆ Λpv to be the family

{{0} × Ω} ∪ {]s, t]× E : s < t, E ∈ Σs} ∪ {]s,∞[× E : E ∈ Σs}.
The complement of any member of A0 is expressible as a finite union of members of A0, so the family
Sous(A0) of sets obtainable by Souslin’s operation from sets in A0 includes Λpv (421F). By 423O again,
F = π2[W ] ∈ Sous(Σ) = Σ (431A again).

(c)(i) Set

A = {[s, t]× E : 0 < s ≤ t, E ∈ ⋃
s′<s Σs′} ∪ {{0} × Ω}

then

Sous(A) = Sous(Sous(A)) ⊇ Sous(A0) ⊇ Λpv.

Note that the intersection of two members of A belongs to A. (If s′0 < s0 ≤ t0, s
′
1 < s1 ≤ t1, E0 ∈ Σs′0 and

E1 ∈ Σs′1 and ([s0, t0]×E0)∩ ([s1, t1]×E1) is not empty, it is equal to [max(s0, s1),min(t0, t1)]× (E0 ∩E1)
where max(s′0, s

′
1) < max(s0, s1) ≤ min(t0, t1) and E0 ∩ E1 ∈ Σmax(s′0,s

′
1)
.)

(ii) Express W as the kernel of a Souslin scheme 〈Aρ〉ρ∈S∗ where Aρ ∈ A for ρ ∈ S∗ =
⋃
n≥1 N

n.

Because A is closed under finite intersections, we can suppose that Aρ′ ⊆ Aρ if ρ ⊆ ρ′. For each ρ, we can
express Aρ as Iρ×Eρ where Eρ ∈ Σ and Iρ is a non-empty closed subinterval of [0,∞[ such that Eρ ∈ Σmin Iρ .

It follows that for any K ⊆ NN,

π2[
⋃
φ∈K

⋂
n≥1Aφ↾n] =

⋃
φ∈K

⋂
n≥1Eφ↾n.

As F =
⋃
φ∈NN

⋂
n≥1Eφ↾n is not negligible, there is a compact K ⊆ NN such that F̃ is not negligible, where

F̃ =
⋃
φ∈K

⋂
n≥1Eφ↾n (431D). Set W̃ =

⋃
φ∈K

⋂
n≥1Aφ↾n, so that F̃ = π2[W̃ ]. Note that if ω ∈ F̃ , then

Kω = {φ : φ ∈ K, ω ∈ Eφ↾n for every n ≥ 1}
is compact in NN, so

W̃−1[{ω}] = ⋃
φ∈K{t : ω ∈ ⋂

n≥1Eφ↾n, t ∈
⋂
n≥1 Iφ↾n} =

⋃
φ∈Kω

⋂
n≥1 Iφ↾n

is compact (421M).

Measure Theory



642K Previsible processes 31

(iii) Define h : Ω → [0,∞] by setting

h(ω) = inf W̃−1[{ω}] for every ω ∈ Ω

(interpreting inf ∅ as ∞). Then h is a stopping time. PPP Take t ≥ 0. Set

L = {φ : φ ∈ K, Eφ↾n ∈ Σt for every n ≥ 1},

W̃t = W̃ ∩ ([0, t]× Ω) =
⋃

φ∈K

⋂

n≥1

(Iρ↾n ∩ [0, t])× Eφ↾n

=
⋃

φ∈L

⋂

n≥1

(Iρ↾n ∩ [0, t])× Eφ↾n

because if φ ∈ K \ L, there is an n ≥ 1 such that Eφ↾n /∈ Σt, in which case min Iφ↾n > t and Iφ↾n ∩ [0, t] is
empty. Now

{ω : h(ω) ≤ t} = {ω : W̃−1[{ω}] ∩ [0, t] 6= ∅}
(because W̃−1[{ω}] is compact)

= π2[W̃t] =
⋃

φ∈L

⋂

n≥1

Eφ↾n ∈ Σt

because µ↾Σt is complete so Σt is closed under Souslin’s operation (431A once more). Thus h is a stopping
time in the sense of 455La and 612H. QQQ And

{ω : (ω, h(ω)) ∈W} = {ω : h(ω) <∞} = π2[W̃ ] = F̃

is non-negligible.

642K Proposition Let (Ω,Σ, µ, 〈Σt〉t≥0, 〈Ut〉t≥0) be as in 642E. For ω ∈ Ω set

Ut−(ω) = lim
s↑t

Us(ω) if t > 0,

= 0 if t = 0.

(a) If we take a stopping time h : Ω → [0,∞[ and define Uh− as in 642E, we have Uh−(ω) = Uh(ω)−(ω)
for every ω;

(b) 〈Ut−〉t≥0 is previsibly measurable.

proof (a) We just have to read the definitions.

(b) For each n ∈ N, ω ∈ Ω and t ≥ 0 set

fn(t, ω) = 0 if t = 0,

= U2−nk(ω) if k < 4n and 2−nk < t ≤ 2−n(k + 1),

= U2n(ω) if 2
n < t.

Then

{(t, ω) : fn(t, ω) > α} =W ∪
⋃

k<2n

(
(
]
2−kn,∞

[
× {ω : U2−nk(ω) > α})

\ (
]
2−n(k + 1),∞

[
× {ω : U2−nk(ω) > α})

)

∪ (]2n,∞[× {ω : U2n(ω) > α})
where

W = ([0,∞[× Ω) \ (]0,∞[× Ω) if α < 0,

= ∅ if α ≥ 0.

These sets all belong to Λpv, so fn is Λpv-measurable, for every n ∈ N. Now Ut−(ω) = limn→∞ fn(t, ω) for
all ω and t, so (t, ω) 7→ Ut−(ω) is Λpv-measurable.
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642L Theorem Let (Ω,Σ, µ) be a complete probability space and 〈Σt〉t∈[0,∞[ a filtration of σ-subalgebras
of Σ all containing every negligible subset of Ω. Let Λpv be the corresponding previsible σ-algebra. Suppose
that (A, µ̄, 〈At〉t∈[0,∞[) is defined from (Ω,Σ, µ, 〈Σt〉t∈[0,∞[) as in 612H.

(a) Write L
0 = L

0(Λpv) for the f -algebra of Λpv-measurable functions from [0,∞[ × Ω to R. For every
φ ∈ L

0, there is a fully adapted process xxxφ = 〈xφσ〉σ∈Tf
defined by saying that xφσ = φ•

h whenever
h : Ω → [0,∞[ is a stopping time representing σ ∈ Tf , where

φh(ω) = 0 if h(ω) = 0,

= φ(h(ω), ω) for other ω ∈ Ω,

and now xxxφ ∈Mpv =Mpv(Tf ) as defined in 642D.

(b) The map φ 7→ xxxφ : L0 →Mpv is a surjective f -algebra homomorphism with kernel

{φ : φ ∈ L
0 and there is a µ-conegligible set E

such that φ(t, ω) = 0 whenever ω ∈ E and t > 0},

and xxxgφ = ḡxxxφ for every φ ∈ L
0 and every Borel measurable g : R → R such that g(0) = 0.

(c)(i) If 〈φn〉n∈N is a sequence in L
0 converging pointwise to φ ∈ L

0, then 〈xxxφn
〉n∈N is order*-convergent

to xxxφ.

(ii) If 〈xxxn〉n∈N is a sequence in Mpv which is order*-convergent to xxx ∈ Mpv, there is a pointwise
convergent sequence 〈φn〉n∈N in L

0 such that xxxn = φn for every n ∈ N.

Remark Of course we have an immediate identification between L
0 here and the set of previsibly measurable

processes as defined in 642Hb.

proof (a)(i) Consider the set Φ of functions φ : [0,∞[ × Ω → R such that φh is Σh-measurable for every
stopping time h : Ω → [0,∞[. Then Φ is a linear space closed under multiplication and pointwise limits of
sequences. If s ≥ 0, E ∈ Σs and φ = χ(]s,∞[× E), then for any finite stopping time h and any t ≥ 0,

{ω : φh(ω) = 1} ∩ {ω : h(ω) ≤ t} = {ω : ω ∈ E, h(ω) > s} ∩ {ω : h(ω) ≤ t}
certainly belongs to Σt if t ≥ s, and otherwise is empty, so still belongs to Σt. As t is arbitrary, {ω : φh(ω) =
1} ∈ Σh and φh is Σh-measurable. As h is arbitrary, χ(]s,∞[× E) ∈ Φ.

Of course χ([0,∞[×Ω) ∈ Φ. Since {W : χW ∈ Φ} is a Dynkin class (136A) closed under finite intersection,
it includes the σ-algebra generated by sets of the form ]s,∞[×E where E ∈ Σs, that is, χW ∈ Φ for every
W ∈ Λpv. Consequently every Λpv-measurable real-valued function belongs to Φ, that is, L0 ⊆ Φ.

(ii) Now take φ ∈ L
0. If h0, h1 : Ω → [0,∞[ are stopping times representing the same member of

Tf , they are equal almost everywhere (612H(a-iv) again), in which case φh0
=a.e. φh1

and φ•

h0
= φ•

h1
; we

therefore have, for each σ ∈ Tf , a unique member xφσ of L0(A) such that xφσ = φ•

h whenever h• = σ. Just
as in 612H(b-ii), xxx = 〈xφσ〉σ∈Tf

is fully adapted.

(iii) The map φ 7→ xxxφ : L0 → L0(A)Tf is a linear operator; moreover, if g : R → R is Borel measurable
and g(0) = 0, then xxxgφ = ḡxxxφ for every φ ∈ L

0. (In the language of (i) above,

xgφ,σ = ((gφ)h)
• = (gφh)

• = ḡ(xφσ)

whenever a finite stopping time h represents σ ∈ Tf .) So φ 7→ xxxφ is a multiplicative Riesz homomorphism.
Next, if 〈φn〉n∈N is a sequence in L

0 converging pointwise to φ ∈ L
0, 〈xxxφn

〉n∈N is order*-convergent to xxxφ.
(This time, if h is a finite stopping time representing σ ∈ Tf , limn→∞(φn)h(ω) = φh(ω) for every ω, so
〈xφnσ〉n∈N = 〈(φn)•h〉n∈N is order*-convergent to φ•

h = xφσ.)

(iv) If s ≥ 0, E ∈ Σs and φ = χ(]s,∞[ × E), then xxxφ ∈ Mpv. PPP Let vvv = 〈vσ〉σ∈Tf
be the simple

process defined by the formulae of 612Ka with n = 0, τ0 = š, u∗ = 0 and u0 = χE•. Then vvv< = 〈v<σ〉σ∈Tf

is defined by saying that

[[σ ≤ š]] ⊆ [[v<σ = 0]], [[š < σ]] ⊆ [[v<σ = χE•]]

for every σ ∈ Tf (641I) again). On the other hand, if a finite stopping time h represents σ, then
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φh(ω) = 0 if h(ω) ≤ s,

= χE(ω) if h(ω) > s.

Since

[[š < σ]] = [[σ > s]] = {ω : h(ω) > s}•

(611E(a-i-δ), 612H(a-i)), φ•

h = v<σ. As σ is arbitrary, xxxφ = vvv< belongs to Mpv. QQQ

(v) If φ = χ({0} × Ω), then xxxφ = 0. So

xxxχ([0,∞[×Ω) = xxxχ(]0,∞[×Ω) ∈Mpv.

(vi) By (iii) and (v), {W : W ∈ Λpv, xxxχW ∈ Mpv} is a Dynkin class closed under finite intersections;
by (iv), it includes {]s,∞[ × E : s ≥ 0, E ∈ Σs}, so is the whole of Λpv. Now {φ : φ ∈ L

0, xxxφ ∈ Mpv} is a
linear subspace of L0 closed under pointwise convergence of sequences, and includes {χW :W ∈ Λpv}, so is
the whole of L0.

This concludes the proof of (a).

(b)(i) In the course of (a) above, I showed that φ 7→ xxxφ is a multiplicative Riesz homomorphism and
that xxxgφ = ḡxxxφ for Borel measurable functions g such that g(0) = 0.

(ii)(ααα) If φ ∈ L
0 and there is a negligible set F such that φ is zero except on ]0,∞[ × F , then

φ(h(ω), ω) = 0 whenever ω ∈ Ω \F and h is a finite stopping time, so xφσ = 0 for every σ ∈ Tf and xxxφ = 0.

(βββ) If φ ∈ L
0 and xxxφ = 0, set W = {(t, ω) : ω ∈ Ω, t > 0, φ(t, ω) 6= 0} and F = π2[W ], as in 642J. If

h : Ω → [0,∞[ is a stopping time representing σ ∈ Tf , then
{ω : (ω, h(ω)) ∈W}• = [[xφσ 6= 0]] = 0,

that is, {ω : (ω, h(ω)) ∈W} is negligible. By 642Jc, F is negligible, while φ is zero on ]0,∞[× (Ω\F ). Thus
the declared set is the kernel of the operator φ 7→ xxxφ.

(iii) Let 〈φn〉n∈N be a sequence in L
0 such that 〈xxxφn

〉n∈N is order*-convergent in Mpv. Then there is
a pointwise convergent sequence 〈φ′n〉n∈N in L

0 such that xxxφ′
n
= xxxφn

for every n. PPP Set

W = {(t, ω) : ω ∈ Ω, t > 0, 〈φn(t, ω)〉n∈N is not convergent}.
Then W ∈ Λpv. If h : Ω → [0,∞[ is a stopping time representing σ ∈ Tf , then

{ω : (ω, h(ω)) ∈W} = {ω : 〈φn(ω, h(ω))〉n∈N is not convergent}
is negligible because 〈xφnσ〉n∈N is order*-convergent in L0(A). By 642Jc again, F = π2[W ] is negligible. For
n ∈ N, ω ∈ Ω and t ≥ 0, set

φ′n(t, ω) = 0 if t = 0 or ω ∈ F,

= φn(t, ω) otherwise.

Since Σ0 contains every negligible set, ]0,∞]× (Ω\F ) ∈ Λpv and φ′n ∈ L
0 for every n. Also, by (ii-α) above,

xxxφ′
n
= xxxφn

for every n, while 〈φ′n〉n∈N is pointwise convergent everywhere in [0,∞[× Ω. QQQ

(iv) Suppose that vvv = 〈vσ〉σ∈Tf
is a simple process.

(ααα) Let (τ0, . . . , τk) be a breakpoint string for vvv, starting from τ0 = 0̌ (use 612Kb), and for i ≤ k
choose measurable fi : Ω → R such that f•

i = vτi . For each i ≤ k, there is a stopping time hi : Ω → [0,∞[
representing τi. We can take h0 = 0, and since supi≤j hi is always a stopping time (455L(c-iv)), we can
suppose that h0 ≤ . . . ≤ hk. Now set

φ(t, ω) = 0 if t = 0,

= fi(ω) if i < k and hi(ω) < t ≤ hi+1(ω),

= fk(ω) if hk(ω) < t.
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(βββ) φ ∈ L
0. PPP For α ∈ R, i ≤ k and q ∈ Q set Eαqi = {ω : hi(ω) ≤ q, fi(ω) > α}. Then

E•

αqi = [[vτi > α]] \ [[τi > q]] ∈ Aq

because [[vτi > α]] ∈ Aτi . (See the definition in 611G.) So Eαqi ∈ Σq and

]q,∞[× Eαqi = {(t, ω) : hi(ω) ≤ q < t, fi(ω) > α}
belongs to Λpv. Taking the union over q ∈ Q ∩ [0,∞[,

{(t, ω) : hi(ω) < t, fi(ω) > α} ∈ Λpv.

As already noted in 642Ja, {(t, ω) : hi+1(ω) < t} ∈ Λpv for every i < k. Accordingly

{(t, ω) : t > 0, φ(t, ω) > α}
=

⋃

i<k

({(t, ω) : hi(ω) < t, fi(ω) > α} \ {(t, ω) : hi+1(ω) < t})

∪ {(t, ω) : hk(ω) < t, fk(ω) > α}
∈ Λpv.

Of course {(t, ω) : t = 0, φ(t, ω) > α} is either {0} × Ω or ∅, and in either case belongs to Λpv. So φ is
Λpv-measurable. QQQ

(γγγ) If h : Ω → [0,∞[ is a stopping time representing σ ∈ Tf , then

φh(ω) = 0 if h(ω) = 0,

= fi(ω) if i < k and hi(ω) < h(ω) ≤ hi+1(ω),

= fk(ω) if hk(ω) < h(ω).

So

[[σ = 0̌]] = {ω : h(ω) = 0}• ⊆ {ω : φh(ω) = 0}• = [[φ•

h = 0]],

[[τk < σ]] = {ω : hk(ω) < h(ω)}• ⊆ {ω : φh(ω) = fk(ω)}• = [[φ•

h = vτk ]],

[[τi < σ]] ∩ [[σ ≤ τi+1]] = {ω : hi(ω) < h(ω) ≤ hi+1(ω)}•

⊆ {ω : φh(ω) = fi(ω)}• = [[φ•

h = vτi ]]

for i < k. Matching this with 641I, we see that φ•

h = v<σ. As h is arbitrary, xxxφ = vvv<.

(v) Consider now the set

{xxxφ : φ ∈ L
0} ⊆Mpv.

From (iv), we see that this contains vvv< for every vvv ∈ Msimp(Tf ); from (iii) here and (a-iii) above, we see
that it is closed under sequential order*-convergence; by the definition in 642C, it must be the whole ofMpv.
Thus φ 7→ xxxφ : L0 →Mpv is surjective.

This completes the proof of (b).

(c) These facts have been dealt with in (a-iii) and (b-iii) above.

642M Proposition Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T
such that inf A ∈ S whenever A ⊆ S is non-empty and bounded below in S. If uuu = 〈uσ〉σ∈S is moderately
oscillatory, there is a uuu′ ∈Mn-s(S) such that uuu< = uuu′<.

proof If S is empty, this is trivial, so let us suppose otherwise.

(a) If S has greatest and least members and δ > 0, then there is a simple process uuu′ = 〈u′σ〉σ∈S such
that θ(sup |uuu< − uuu′<|) ≤ 2δ and θ(sup |uuu′|) ≤ θ(sup |uuu<|) + 2δ. PPP Construct 〈Di〉i∈N, 〈yi〉i∈N, 〈di〉i∈N,
〈ciσ〉i∈N,σ∈S and ũuu = 〈ũσ〉σ∈S from uuu and δ as in 615M. For i ∈ N, set τi = infDi, so that τi ∈ S and
yi ∈ L0(

⋂
σ∈Di

Aσ) = L0(Aτi) (615Mb, 632C(a-iii)). As D0 = S and τi ≤ σ whenever i ∈ N and σ ∈ Di+1
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(615Ma), τ0 = minS and τi ≤ τi+1 for every i. Let n ≥ 1 be such that µ̄dn ≤ δ (615M(c-ii)), and
take uuu′ = 〈u′σ〉σ∈S to be the simple process with domain S and breakpoint string (τ0, . . . , τn) such that
[[τi < τi+1]] ⊆ [[u′τi = yi]] for i ≤ n and u′τn = 0 (612Ka).

If σ ∈ S and i < n, then

[[σ < τi+1]] ⊆ infτ∈Di+1
[[σ < τ ]] ⊆ 1 \ ci+1,σ

(615M(d-i)). If σ ∈ S, i < n, τ ∈ Di and I ∈ I(S) contains τ , then for any σ′ ∈ I

[[τ ≤ σ′]] ∩ [[σ′ < σ]] ∩ [[σ ≤ τi+1]] ⊆ ciσ′ \ ci+1,σ′ ⊆ [[ũσ′ = yi]]

(615Me). As σ′ is arbitrary,

[[τ < σ]] ∩ [[σ ≤ τi+1]] ⊆ [[ũI<σ = yi]],

defining ũI<σ as in 641Ea. Taking the limit as I ↑ I(S),
[[τ < σ]] ∩ [[σ ≤ τi+1]] ⊆ [[ũ<σ = yi]].

Now

[[τi < σ]] ∩ [[σ ≤ τi+1]] = sup
τ∈Di

[[τ < σ]] ∩ [[σ ≤ τi+1]]

(632C(a-ii))

⊆ [[ũ<σ = yi]];

and at the same time we have

[[τi < σ]] ∩ [[σ ≤ τi+1]] ⊆ [[u′<σ = yi]]

by 641I. So [[τi < σ]] ∩ [[σ ≤ τi+1]] ⊆ [[u′<σ = ũ<σ]], and this is true whenever i < n. At the bottom,

[[τ0 = σ]] ⊆ [[u′<σ = 0]] ∩ [[ũ<σ = 0]] ⊆ [[u′<σ = ũ<σ]],

so [[σ ≤ τn]] ⊆ [[u′<σ = ũ<σ]]. But

[[τn < σ]] = supτ∈Dn
[[τ < σ]] ⊆ dn.

As σ is arbitrary, [[uuu′< 6= ũuu<]] ⊆ dn and θ(sup |uuu′< − ũuu<|) ≤ µ̄dn ≤ δ.
We know also that

sup |ũuu< − uuu<| = sup |(ũuu− uuu)<|
(641G(e-i))

≤ sup |ũuu− uuu|
(641G(a-vii))

≤ δχ1

(615Mf), so θ(sup |uuu′< − uuu<|) ≤ 2δ.
As for sup |uuu′|, this is sup |uuu′<| by 641Ib, because u′τn = 0. So

θ(sup |uuu′|) = θ(sup |uuu′<|) ≤ θ(sup |uuu′< − uuu<|) + θ(sup |uuu<|) ≤ θ(sup |uuu<|) + 2δ,

as required. QQQ

(b) With a bit more effort we have a similar result in the general case. Again, take any δ > 0. By 615G,
u↓ = limσ↓S uσ and u↑ = lim↑S uσ are defined, and there are τ∗, τ∗ ∈ S such that

θ(supσ∈S∨τ∗ |uσ − u↑|) ≤ δ, θ(supσ∈S∧τ∗ |uσ − u↓|) ≤ δ;

we can suppose that τ∗ ≤ τ∗. We now have

θ(supσ∈S∨τ∗ |uσ − uτ∗ |) ≤ 2δ.
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S1 = S ∩ [τ∗, τ
∗], like S, is closed under arbitrary infima, and uuu↾S1 is moderately oscillatory (615F(a-i)),

so (a) tells us that there is a simple process uuu′1 = 〈u′1σ〉σ∈S1
such that θ(sup |(uuu↾S1)< − uuu′1<|) ≤ 2δ. Let

(τ0, . . . , τn) be a breakpoint string for uuu′1 starting from τ0 = τ∗ and ending with τn = τ∗. Let uuu′ = 〈u′σ〉σ∈S

be the simple process defined by the formula of 612Ja from τ0, . . . , τn and

u∗ = u↓, u
′
1τ0 , . . . , u

′
1τn−1

, uτn × χ(supσ∈S [[τn < σ]]).

(Because [[τn < σ]] ∈ Aτn for every σ ∈ S, supσ∈S [[τn < σ]] ∈ Aτn and uτn ×χ(supσ∈S [[τn < σ]]) ∈ L0(Aτn).)
Set

w = supσ∈S∧τ0 |uσ − u↓| ∨ supσ∈S1
|u<σ − u′1<σ| ∨ supσ∈S∨τn |uσ − uτn |;

then θ(w) ≤ 5δ. Fix τ ∈ S.
(i) For any σ ∈ S,

[[τ ≤ τ0]] ∩ [[σ < τ ]] ⊆ [[σ < τ0]]

⊆ [[uσ = uσ∧τ0 ]] ∩ [[u′σ = u↓]]

⊆ [[|uσ − u′σ| = |uσ∧τ0 − u↓|]] ⊆ [[|uσ − u′σ| ≤ w]]

By 641G(a-vii-α), applied to uuu− uuu′, [[τ ≤ τ0]] ⊆ [[|u<τ − u′<τ | ≤ w]].

(ii) Take i < n and σ ∈ S; set σ′ = med(τi, σ, τi+1). Applying 641I to the simple processes uuu′, uuu′1, we
have

[[τi < σ]] ∩ [[σ ≤ τi+1]] ⊆ [[u′<σ = u′τi ]] ∩ [[u′1<σ′ = u′1τi ]] ∩ [[u′τi = u′1τi ]] ∩ [[u<σ = u<σ′ ]]

⊆ [[|u<σ − u′<σ| = |u<σ′ − u′1<σ′ |]]
⊆ [[|u<σ − u′<σ| ≤ w]].

(iii) At the top end, setting σ′ = σ∨τn, we have [[τn < σ′]] ⊆ [[u′ρ = uτn ]] whenever ρ ∈ S∨τn. Applying
641G(a-vii-β) to uuu− uuu′,

[[τn < σ′]] ⊆ [[|u<σ′ − u′<σ′ | ≤ supρ∈S∨τn(|uρ − u′ρ| × χ[[ρ < σ′]]|)]],
so

[[τn < σ′]] ⊆ [[|u<σ′ − u′<σ′ | ≤ supρ∈S∨τn |uρ − uτn |]]
⊆ [[|u<σ′ − u′<σ′ | ≤ w]].

Now

[[τn < σ]] ⊆ [[τn < σ]] ∩ [[σ = σ′]] ⊆ [[τn < σ′]] ∩ [[u<σ = u<σ′ ]] ∩ [[u′<σ = u′<σ′ ]]

⊆ [[|u<σ′ − u′<σ′ | ≤ w]] ∩ [[u<σ − u′<σ = u<σ′ − u′<σ′ ]]

⊆ [[|u<σ − u′<σ| ≤ w]].

(iv) Since

([[σ ≤ τ0]], [[τ0 < σ]] ∩ [[σ ≤ τ1]], . . . , [[τn−1 < σ]] ∩ [[σ ≤ τn]], [[τn < σ]])

is a partition of unity in A, we see that |u<σ − u′<σ| ≤ w; as σ is arbitrary, sup |uuu< − uuu′<| ≤ w and
θ(sup |uuu< − uuu′<|) ≤ 5δ.

(v) A further feature of the construction here is that sup |uuu′| ≤ sup |uuu′<|. PPP By 641Ib, sup |uuu′| =
sup |uuu′<| ∨ |u′τn |. But

u′τn = uτn × χ(supσ∈S [[τn < σ]]) = u′τn × χ(supσ∈S [[τn < σ]]).

And if σ ∈ S, then [[τn < σ]] ⊆ [[u′<σ = u′τn ]], so

|u′τn | × χ[[τn < σ]] ≤ |u′<σ| ≤ sup |uuu′<|.
Taking the supremum over σ, |u′τn | ≤ sup |uuu′<| and sup |uuu′| = sup |uuu′<|.
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(c) Once more supposing that S is a non-empty finitely full sublattice of T such that inf A ∈ S whenever
A ⊆ S is non-empty and bounded below in S, take any uuu ∈ Mmo(S). Choose simple processes uuun, vvvn as
follows. Start with uuu0 = 0, the constant process on S with value 0. Given that uuun is a simple process with
domain S, (b) tells us that there is a simple process vvvn such that

θ(sup |uuu< − uuun< − vvvn<|) ≤ 2−n, sup |vvvn| = sup |vvvn<|. (*)

Set uuun+1 = uuun + vvvn and continue.
The construction ensures that

sup |uuun+1 − uuun| = sup |vvvn| = sup |vvv<n|, θ(sup |uuu< − uuu(n+1)<|) ≤ 2−n

for every n. Consequently (in the notation of 615B)

θ̂(uuun+1 − uuun) = θ̂(vvvn+1) = θ̂(vvv(n+1)<)

= θ̂(uuu< − uuu(n+2)< − uuu< + uuu(n+1)<) ≤ 2−n+1

for every n, and
∑∞
n=0 θ̂(uuun+1 −uuun) <∞. Because Mo-b(S) is complete under the ucp uniformity (615Cc),

〈uuun〉n∈N has a limit uuu′ say for the ucp topology, and uuu′ is near-simple.
Since

θ̂(uuu′< − uuun<) ≤ θ̂(uuu′ − uuun) → 0

as n→ ∞,

limn→∞ vvvn< = limn→∞(uuu(n+1)< − uuun<) = 0.

By (*) above,

uuu< = limn→∞(uuun< + vvvn<) = uuu′<.

So uuu′ witnesses that the proposition is true.

642N Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such
that inf A ∈ S whenever A ⊆ S is non-empty and bounded below in S. If uuu = 〈uσ〉σ∈S is moderately
oscillatory, uuu< is a previsible process.

proof By 642M, there is a vvv ∈ Mn-s(S) such that uuu< = vvv<. Now there is a sequence 〈vvvn〉n∈N in
Msimp(S) such that limn→∞ θ(sup |vvvn − vvv|) = 0; taking a subsequence if necessary, we can arrange that∑
n∈N θ(sup |vvvn−vvv|) is finite. Since sup |vvvn<−vvv<| ≤ sup |vvvn−vvv| for each n (641G(a-vii-γ)),

∑
n∈N θ(sup |vvvn<−

vvv<|) is finite and 〈sup |vvvn<−vvv<|〉n∈N is order*-convergent to 0 (642Bc). It follows at once that if we express
vvv< as 〈v<σ〉σ∈S and each vvvn< as 〈vn<σ〉σ∈S , 〈vn<σ〉n∈N is order*-convergent to v<σ for every σ ∈ S and
〈vvvn<〉n∈N is order*-convergent to vvv< (642Bb). So vvv< ∈Mpv(S) and uuu< is previsible.

642O Proposition (a) Let S be a sublattice of T such that there is a countable set A ⊆ S which
separates S. Then uuu< is previsible for every uuu ∈Mmo(S).

(b) If T ⊆ R, then for every sublattice S of T there is a countable subset of S which separates S.
proof (a)(i) Consider first the case in which uuu is non-negative and non-increasing. If S is empty or a
singleton, the result is trivial; so suppose otherwise. Then A 6= ∅. Write S ′ for the sublattice of S generated
by A, so that S ′ is countable and not empty and separates S; let 〈In〉n∈N be a non-decreasing sequence
of finite sublattices of S ′ with union S ′. For each n, enumerate a maximal totally ordered subset of In in
increasing order as (τn0, . . . , τn,k(n)), and let uuun = 〈unσ〉σ∈S be the simple process with domain S defined
by saying that

[[σ < τn0]] ⊆ [[unσ = 0]], [[τn,k(n) ≤ σ]] ⊆ [[unσ = uτn,k(n)
]],

[[τni ≤ σ]] ∩ [[σ < τn,i+1]] ⊆ [[unσ]] = uτni
for 0 ≤ i < k(n).

If τ ∈ S and n ∈ N, then

[[τ ≤ τn0]] ⊆ [[uIn<τ = 0]], [[τn,k(n) < τ ]] ⊆ [[uIn<τ = uτn,k(n)
]],
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[[τni < τ ]] ∩ [[τ ≤ τn,i+1]] ⊆ [[uIn<τ = uτni
]] for every i < k(n)

by 641Eb. On the other hand, 641I tells us that

inf
σ∈S

[[τ ≤ σ]] ⊆ [[un<τ = 0]],

[[σ < τ ]] ∩ [[τ ≤ τn0]] ⊆ [[un<τ = 0]] for every σ ∈ S,
so [[τ ≤ τn0]] ⊆ [[un<τ = 0]], while

[[τk(n) < τ ]] ⊆ [[un<τ = uτkn
]],

[[τni < τ ]] ∩ [[τ ≤ τn,i+1]] ⊆ [[un<τ = uτni
]] for every i < n.

So we see that uIn<τ = un<τ .
Finally, given τ ∈ S, we know from 641 that u<τ = limI↑I(S′) uI<τ . But any finite subset of S ′ is included

in In for all n large enough, so u<τ is the topological limit of 〈uIn<τ 〉n∈N = 〈un<τ 〉n∈N. However, 〈uIn<τ 〉n∈N

is non-decreasing, by 641Kb. So 〈uuun<τ 〉n∈N order*-converges to uuu<τ , by 642Be. As τ is arbitrary, 〈uuun<〉n∈N

order*-converges to uuu< (642Bb).

(ii) If uuu is of bounded variation, then it is expressible as a difference uuu′ − uuu′′ where uuu′ and uuu′′ are
non-negative, non-increasing order-bounded processes (614J). So uuu< = uuu′< − uuu′′< (641G(e-i)) is a difference
of previsible processes and is previsible (642Da). Finally, the space M of order-bounded processes with

previsible versions is closed for the ucp topology of Mo-b(S) (641G(e-ii)), so includes Mbv(S) = Mmo(S)
(615E).

(b) The set T0 of points of T which are isolated on the right in T is countable, so there is a countable
dense subset Q of T including T0.

(i) For q ∈ Q and τ ∈ S, set
cτq = [[τ ≤ q̌]] \ supσ∈S([[τ < σ]] ∩ [[σ ≤ q̌]]).

Note that if σ, τ ∈ S then cσq ∩ cτq ⊆ [[σ = τ ]]. PPP

cσq ∩ cτq ⊆ [[σ ≤ q̌]] ∩ [[τ ≤ q̌]] \ ([[τ < σ]] ∩ [[σ ≤ q̌]])

= [[σ ≤ q̌]] ∩ [[τ ≤ q̌]] ∩ ([[σ ≤ τ ]] ∪ [[q̌ < σ]]) ⊆ [[σ ≤ τ ]],

and similarly cσq ∩ cτq ⊆ [[τ ≤ σ]]. QQQ Choose a countable Cq ⊆ S such that supτ∈Cq
cτq = supτ∈S cτq.

Next, for q, r ∈ Q, set

brq = supτ∈S([[τ > r]] \ [[τ > q]]) = supτ∈S([[ř < τ ]] ∩ [[τ ≤ q̌]]),

and choose a countable Brq ⊆ S such that bqr = supτ∈Brq
([[τ > r]] \ [[τ > q]]). Set A =

⋃
q,r∈QBrq∪

⋃
q∈Q Cq,

so that A is a countable subset of S.
(ii) ??? Suppose, if possible, that A does not separate S. Then there are τ , τ ′ ∈ S such that

a = [[τ < τ ′]] \ supρ∈A([[τ ≤ ρ]] ∩ [[ρ < τ ′]])

is non-zero. Note that if ρ ∈ A, then

[[τ = ρ]] ∩ a ⊆ [[τ = ρ]] ∩ [[τ < τ ′]] ∩ ([[ρ < τ ]] ∪ [[τ ′ ≤ ρ]]) = 0.

As a ⊆ [[τ < τ ′]], and {q̌ : q ∈ Q} separates T (633Da), there is a q ∈ Q such that a1 = a ∩ [[τ ≤ q̌]] ∩ [[q̌ < τ ′]]
is non-zero. Now we know that

0 = a1 ∩ sup
ρ∈Cq

[[ρ = τ ]] ⊇ a1 ∩ sup
ρ∈Cq

(cτq ∩ cρq) = a1 ∩ sup
σ∈S

(cτq ∩ cσq) = a1 ∩ cτq

= a1 ∩ [[τ ≤ q̌]] \ sup
σ∈S

([[τ < σ]] ∩ [[σ ≤ q̌]]) = a1 \ sup
σ∈S

([[τ < σ]] ∩ [[σ ≤ q̌]])

so there is a σ ∈ S such that a2 = a1 ∩ [[τ < σ]] ∩ [[σ ≤ q̌]] is non-zero. Again because {q̌ : q ∈ Q} separates
T , there is an r ∈ Q such that a3 = a2 ∩ [[τ ≤ ř]] ∩ [[ř < σ]] is non-zero. Now

a3 ⊆ [[ř < σ]] ∩ [[σ ≤ q̌]] ⊆ brq = supρ∈A([[ř < ρ]] ∩ [[ρ ≤ q̌]])
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and there is a ρ ∈ A such that a4 = a3 ∩ [[ř < ρ]] ∩ [[ρ ≤ q̌]] is non-zero. But in this case

0 6= a4 ⊆ a ∩ [[τ ≤ ř]] ∩ [[ř < ρ]] ∩ [[ρ ≤ q̌]] ∩ [[q̌ < τ ′]]

⊆ a ∩ [[τ ≤ ρ]] ∩ [[ρ < τ ′]]

which is impossible, by the definition of a. XXX

(iii) So the countable set A separates S, as required.

642X Basic exercises (a) Let S be a sublattice of T , and 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N a sequence in
(L0)S which is order*-convergent to uuu ∈ (L0)S . (i) Show that if every uuun is non-decreasing, then uuu is
non-decreasing. (ii) Show that if every uuun is fully adapted and of bounded variation and supn∈N

∫
S |duuun| is

defined in L0, then uuu is of bounded variation. (iii) Give an example in which every uuun is simple, but uuu is
neither near-simple nor an integrator. (iv) Show that if every uuun is a martingale, and {unσ : n ∈ N, σ ∈ S}
is uniformly integrable, then uuu is a martingale. (Hint : 367Xo3.)

(b) Let S be a sublattice of T , and 〈uuun〉n∈N a sequence of order-bounded processes with domain S such

that
∑∞
n=0 θ̂S(uuun) is finite. Show that 〈uuun〉n∈N is order*-convergent to 0.

(c) Suppose that T = N. Show that Mpv(Tf ) can be identified with the space of sequences 〈xn〉n∈N in
L0(A) such that x0 = 0 and xn ∈ L0(An−1) for n ≥ 1.

(d) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb, 618Xa, 622Xd, 626Xa
and 627Xa. Let f : [0,∞[ → R be a function and uuu the corresponding process on Tf . (i) Show that if f is
of bounded variation and is continuous on the right, uuu< corresponds to the function g where g(0) = 0 and
g(t) = lims↑t f(s) for t > 0. (ii) Show that order*-convergence in L0(A) corresponds to ordinary sequential
convergence in R. (iii) Show that uuu is previsible iff f(0) = 0 and f is Borel measurable.

(e) Let S be a sublattice of T and z a member of L0(A ∩⋂
σ∈S Aσ). Show that if xxx ∈ Mpv(S) then zxxx

(definition: 612De) belongs to Mpv(S).

(f) Suppose that T = [0,∞[ and that vvv = 〈vσ〉σ∈Tf
is the standard Poisson process (612U). (i) Let 〈τn〉n∈N

be the sequence of jump times of vvv (612Ue-612Uf). Show that [[v<σ = 0]] = [[σ ≤ τ1]] and [[v<σ = nχ1]] =
[[τn < σ]] ∩ [[σ ≤ τn+1]] for every n ≥ 1 and σ ∈ Tf . (ii) Show that v<ť = vť for every t ≥ 0. (iii) Show that
t 7→ vť : T → L0(A) is continuous.

(g) Show that if 〈Xt〉t≥0 is a previsibly measurable process then X0 is constant.

642Y Further exercises (a) Suppose that T = ω1, the first uncountable ordinal. (i) Show that for
any previsible process 〈xσ〉σ∈T there is a ξ < ω1 such that xη̌ = xmax T whenever ξ ≤ η < ω1. (ii)
Define vvv = 〈vσ〉σ∈T by saying that vσ = χ[[σ = max T ]] for σ ∈ T . Show that vvv is a simple process and

a submartingale, but is not previsible. (iii) Show that if A =
⋃
ξ<ω1

Aξ then vvv is equal to its previsible
variation.

(b) Give an example of a stochastic integration structure (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) and a moderately
oscillatory process uuu with domain T such that uuu< is not previsible.

(c) Let www = 〈wσ〉σ∈Tf
be the local martingale of 634N, a difference of independent Poisson processes.

Show that www is not a previsible process. (Hint : show that if τ1 is the stopping time at which www makes its
first jump, then E(zτ1 × wτ1) = 0 for every ‖ ‖∞-bounded previsible process zzz = 〈zσ〉σ∈Tf

.)

642 Notes and comments The idea of ‘jump’ arises most naturally from the representation of a locally
near-simple process by a classical stochastic process with càdlàg sample paths, as in 642E. There is a
paradoxical element in 641N and 642G which is is of the greatest importance. When we have a classical

3Later editions only.

D.H.Fremlin



40 The S-integral 642 Notes

stochastic process with càdlàg sample paths, we can detect jumps directly from the basic process 〈Ut〉t≥0. But
if we turn to the corresponding process 〈U•

t 〉t∈[0,∞[ = 〈uť〉t∈[0,∞[, we may well find that uť = uť− = lims↑t uš
for every t > 0, as in 642Xf. To discuss jumps in the language I have chosen for the development of the
general theory, we have to look for jumps at arbitrary stopping times, which is the idea of part (a-ii) of the
proof of 642G.

You will see that I have not mentioned martingales in this section or the last, and the ‘previsible variations’
of §626 appear only in the example 642Ya. There is a good deal more to be said about both, of course, but
most of it will have to wait until we have some further tools, starting with 643B. For the moment, however,
I call your attention to 642Yc. Martingales which are not jump-free may well not be previsible.

The idea of 642L is that ‘previsible processes’ in the sense of 642C correspond to ‘previsibly measurable
processes’ in the sense of 642H. I will try to use these phrases consistently to distinguish between the two
concepts. Note that the correspondence is not exact because I find myself requiring previsible processes to
start with 0 (see the notes to §641) but previsibly measurable processes can start with any constant function.
We shall find that for all the important things we call on previsible processes to do the starting value is
irrelevant.

Version of 24.7.17/9.6.21

643 The fundamental theorem of martingales

I come at last to one of the most remarkable properties of martingales: under moderately restrictive
conditions, a martingale can be expressed as the sum of a local martingale with small jumps and a process
of locally bounded variation (643M). In fact I express the result in terms of the ‘residual oscillations’
introduced in §618, but these are intimately connected with ‘jumps’ in sample paths, if we use the standard
representation of locally near-simple processes (631D, 642E-642G). The proof depends on the notion of
‘accessibility’ of a stopping time (643C).

643A Notation We have the usual foundations; (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is a stochastic integration
structure, and L0(A) is given its topology of convergence in measure, defined by the functional θ where
θ(u) = E(|u| ∧ χ1) for u ∈ L0(A). For t ∈ T , ť is the constant stopping time at t. For τ ∈ T , Pτ : L1

µ̄ → L1
µ̄

is the conditional expectation associated with Aτ . In addition, we shall need the closed subalgebras AS<τ

defined in 641B. For a locally moderately oscillatory process uuu, uuu< will be its previsible version (641L). For
a sublattice S of T , I(S) is the set of finite sublattices of S, and if τ ∈ S, then S ∧ τ = {σ ∧ τ : σ ∈ S} and
S ∨ τ = {σ ∨ τ : σ ∈ S}.

643B Theorem Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a locally moderately oscillatory process and C
a non-empty upwards-directed subset of S with supremum τ ∈ S. Write 〈u<σ〉σ∈S for the previsible version
of uuu and a for infσ∈C [[σ < τ ]].

(a) Set w = limσ↑C uσ. Then

[[w = u<τ ]] ⊇ a, [[w = uτ ]] ⊇ 1 \ a.

(b) Now suppose that uuu is a martingale. Write PS<τ : L1
µ̄ → L1

µ̄ for the conditional expectation associated
with AS<τ . Then a ⊆ [[u<τ = PS<τuτ ]].

proof Of course we know from 641L that uuu has a previsible version.

(a)(i) 615Ga, applied in S ∧ τ , tells us that w is well-defined. Let ǫ > 0. Then there is a finite sublattice
J of S, containing minS, such that θ(u<τ − uI<τ ) ≤ ǫ whenever J ⊆ I ∈ I(S). Let σ0 ∈ C be such that
µ̄d ≤ ǫ, where d = supσ′∈J [[σ

′ < τ ]] \ [[σ′ < σ0]] (611Eb). Take σ ∈ C such that σ0 ≤ σ and θ(w − uσ) ≤ ǫ,
and let I ∈ I(S) be the sublattice generated by J ∪ {σ}. Using 611E(c-i) and 611E(c-ii), it is easy to check
that

{σ′ : [[σ < σ′]] ∩ [[σ′ < τ ]] ⊆ d}
is a sublattice of T ; as it includes J ∪ {σ}, it includes I. But this means that

a \ d ⊆ [[σ < τ ]] \ d ⊆ [[uI<τ = uσ]],

Measure Theory



643D The fundamental theorem of martingales 41

and

θ((w − u<τ )× χa) ≤ θ(w − uσ) + θ((uσ − uI<τ )× χa) + θ(uI<τ − u<τ )

≤ ǫ+ µ̄d+ ǫ ≤ 3ǫ.

As ǫ is arbitrary, θ((w − u<τ )× χa) = 0 and a ⊆ [[w = u<τ ]].

(ii)On the other side, if σ ∈ C then [[σ = τ ]] ⊆ [[uσ′ = uτ ]] whenever σ
′ ∈ C and σ ≤ σ′, so [[σ = τ ]] ⊆ [[w = uτ ]].

As σ is arbitrary, 1 \ a ⊆ [[w = uτ ]].

(b) Write B for the closed subalgebra
∨
σ∈C Aσ generated by

⋃
σ∈C Aσ. By 621C(g-ii), the conditional

expectation of uτ on B is the ‖ ‖1-limit 1limσ↑C Pσuτ = 1limσ↑C uσ, which is equal to w (613B(d-i)). If
c ∈ AS<τ and c ⊆ a, then c ∈ B, by 641Cb, so

E(χc× PS<τuτ ) = E(χc× uτ ) = E(χc× w) = E(χc× u<τ )

because a ⊆ [[w = u<τ ]]. As both PS<τuτ and u<τ belong to L0(AS<τ ) (641G(a-i)), and a ∈ AS<τ (by the
definition in 641Ba), this shows that χa× PS<τuτ = χa× u<τ , that is, a ⊆ [[PS<τuτ = u<τ ]].

643C Approachability and accessibility Suppose that τ ∈ T .

(a) The region of accessibility of τ is

acc(τ) = sup∅6=C⊆T ∧τ ([[supC = τ ]] \ supσ∈C [[σ = τ ]]).

(b) For σ ∈ T , write σ ≪ τ for supρ∈T ([[σ < ρ]] ∩ [[ρ < τ ]]). The region of approachability of τ is

app(τ) = infσ≤τ ([[σ = τ ]] ∪ [[σ ≪ τ ]])

so that

1 \ app(τ) = supσ≤τ ([[σ < τ ]] \ [[σ ≪ τ ]]).

(c) acc(τ) ⊆ app(τ). PPP Suppose that C ⊆ T ∧ τ is non-empty and that σ ≤ τ . Then

[[supC = τ ]] ∩ [[σ < τ ]] \ [[σ ≪ τ ]] ⊆ [[σ < supC]] \ [[σ ≪ τ ]] = sup
ρ∈C

[[σ < ρ]] \ [[σ ≪ τ ]]

(611Eb)

⊆ sup
ρ∈C

[[σ < ρ]] \ ([[σ < ρ]] ∩ [[ρ < τ ]]) ⊆ sup
ρ∈C

[[ρ = τ ]]

and

([[supC = τ ]] \ supρ∈C [[ρ = τ ]]) ∩ ([[σ < τ ]] \ [[σ ≪ τ ]]) = 0.

As C and σ are arbitrary, acc(τ) ∩ (1 \ app(τ)) = 0, that is, acc(τ) ⊆ app(τ). QQQ

(d)(i) If τ ∈ T then

[[supC = τ ]] \ supσ∈C [[σ = τ ]] = (1 \ [[supC < τ ]]) ∩ infσ∈C [[σ < τ ]] ∈ A<τ

whenever ∅ 6= C ⊆ T ∧ τ , so acc(τ) ∈ A<τ .

(ii) If σ, ρ, τ ∈ T then

[[σ < ρ]] ∩ [[ρ < τ ]] = [[σ < ρ]] ∩ [[ρ < τ ]] ∩ [[σ < τ ]] = [[σ < ρ ∧ τ ]] ∩ [[ρ < τ ]] ∈ A<τ ,

so [[σ ≪ τ ]] ∈ A<τ and app(τ) ∈ A<τ .

(iii) Note that acc(min T ) = 0, because the only non-empty subset of T ∧ min T is {min T }, while
app(min T ) = 1.

643D Proposition For t ∈ T , let ť be the constant stopping time at t. Let Tr-i be the set of those t ∈ T
which are isolated on the right, and for t ∈ Tr-i define ť

+ ∈ T by saying that
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ť+ = max T if t = maxT is the greatest element of T,

= š if t is not the greatest element of T

and s is the least element of T greater than t.

Then app(τ) = 1 \ supt∈Tr-i
[[τ = ť+]] for every τ ∈ T .

proof (a)(i) Note that if σ, τ ′, τ ′′ ∈ T then

[[τ ′ ≤ τ ′′]] ∩ [[σ ≪ τ ′]] = sup
ρ∈T

[[τ ′ ≤ τ ′′]] ∩ [[σ < ρ]] ∩ [[ρ < τ ′]]

⊆ sup
ρ∈T

[[σ < ρ]] ∩ [[ρ < τ ′′]] = [[σ ≪ τ ′′]],

just as in 611E(c-iv-α).

(ii) If t ∈ Tr-i and ρ ∈ T ,

[[ť < ρ]] ∩ [[ρ < ť+]] = sup
s,s′∈T

([[ρ > s]] \ [[ť > s]]) ∩ ([[ť+ > s′]] \ [[ρ > s′]])

⊆ sup
s≥t,s′≤t

[[ρ > s]] \ [[ρ > s′]]

(because if s < t then [[ť > s]] = 1 and if s′ > t then [[ť+ > s′]] = 0)

⊆ sup
s′≤s

[[ρ > s]] \ [[ρ > s′]] = 0.

So [[ť≪ ť+]] = 0. And of course

[[ť < ť+]] ⊇ [[ť+ > t]] \ [[ť+ > t]] = 1.

Now

[[τ = ť+]] = [[τ ≤ ť+]] ∩ [[ť < ť+]] \ ([[ť+ ≤ τ ]] ∩ [[ť≪ ť+]])

(611E(c-iv-α) and (i) just above)

⊆ [[ť < τ ]] \ [[ť≪ τ ]] ⊆ 1 \ app(τ).

As t is arbitrary,

app(τ) ⊆ 1 \ supt∈Tr-i
[[τ = ť+]].

(b) If σ ≤ τ and b ⊆ [[σ < τ ]] \ [[σ ≪ τ ]] is non-zero, there is a t ∈ T such that

b′ = b ∩ [[τ > t]] \ [[σ > t]]

is non-zero. ??? If t /∈ Tr-i, [[τ > t]] = sups>t [[τ > s]] (611A(b-i)), and there is an s > t such that b′ ∩ [[τ > s]] 6=
0. But now

b′ ∩ [[τ > s]] = ⊆ b ∩ [[τ > s]] \ [[σ > t]]

⊆ b ∩ [[š < τ ]] ∩ [[ť < š]] ∩ [[σ ≤ ť]] ⊆ b ∩ [[σ ≪ τ ]],

contrary to the hypothesis on b. XXX
Thus t ∈ Tr-i. Now we know from (a-ii) that [[ť < τ ]] ∩ [[τ < ť+]] = 0, so [[ť+ ≤ τ ]] = [[ť < τ ]] ⊇ b′. At the

same time, b′ is disjoint from

[[σ ≪ τ ]] ⊇ [[σ < ť+]] ∩ [[ť+ < τ ]] ⊇ [[σ ≤ ť]] ∩ [[ť+ < τ ]] ⊇ b′ ∩ [[ť+ < τ ]]

so b′ ⊆ [[τ ≤ ť+]] and b′ ⊆ b ∩ [[τ = ť+]].
As b is arbitrary, [[σ < τ ]] \ [[σ ≪ τ ]] ⊆ supt∈Tr-i

[[τ = ť+]]. As σ is arbitrary,

1 \ app(τ) ⊆ supt∈Tr-i
[[τ = ť+]], app(τ) ⊇ 1 \ supt∈Tr-i

[[τ = ť+]].

Putting this together with (a), we have equality, as claimed.
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643E Proposition Suppose that τ ∈ T . For non-empty C ⊆ T ∧ τ , set
aC = [[supC = τ ]] \ supσ∈C [[σ = τ ]].

(a) aC = infσ∈C [[σ < τ ]] \ [[supC < τ ]] belongs to A<τ whenever ∅ 6= C ⊆ T ∧ τ ; so acc(τ) ∈ A<τ .

(b) For every non-empty C ⊆ T ∧τ there is a non-empty upwards-directed D ⊆ T ∧τ such that aD = aC .
Consequently

acc(τ) = sup{[[supC = τ ]] \ sup
σ∈C

[[σ = τ ]] :

C ⊆ T ∧ τ is non-empty and upwards-directed}.

(c) If υ ∈ T , acc(τ) ∩ [[υ = τ ]] = acc(υ) ∩ [[υ = τ ]].

proof (a) Immediate from the definitions and the fact that b \ c = (1 \ c) \ (1 \ b) for all b, c ∈ A.

(b) Set D = {σ′ : σ′ ≤ supC, [[σ′ < τ ]] ⊇ infσ∈C [[σ < τ ]]. By 611E(c-ii), D is closed under ∨. Because
C ⊆ D, supD = supC and infσ∈D [[σ < τ ]] = infσ∈C [[σ < τ ]], so aD = aC .

(c) Write c for [[υ = τ ]]. If ∅ 6= C ⊆ T ∧ τ set D = {σ ∧ υ : σ ∈ C}, so that ∅ 6= D ⊆ T ∧ υ, and

c ∩ aC = c ∩ [[supC = τ ]] \ sup
σ∈C

[[σ = τ ]] = c ∩ [[τ ∧ supC = τ ]] \ sup
σ∈C

[[σ ∧ τ = τ ]]

⊆ [[υ ∧ supC = υ]] \ sup
σ∈C

[[σ ∧ υ = υ]] = [[supD = υ]] \ sup
σ∈D

[[σ = υ]]

(611Cd)

⊆ b.

Taking the supremum over C, c ∩ acc(τ) ⊆ acc(υ). Similarly, c ∩ acc(υ) ⊆ acc(τ) and c ∩ acc(τ) = c ∩ acc(υ),
as claimed.

643F Lemma Suppose that 〈At〉t∈T is right-continuous. Take τ ∈ T and ǫ > 0. For I ∈ I(T ∧ τ) and
σ ≤ τ , set

dσI = (app(τ) \ acc(τ)) ∩ [[σ < τ ]] \ supρ∈I([[σ < ρ]] ∩ [[ρ < τ ]]), wσI = PσχdσI .

For I ∈ I(T ∧ τ) set wI = supσ≤τ wσI .

(a)(i) dσ0I ∩ [[σ0 = σ1]] = dσ1I ∩ [[σ0 = σ1]] whenever I ∈ I(T ∧ τ) and σ0, σ1 ≤ τ .

(ii) For any σ ≤ τ , limI↑I(T ∧τ) µ̄dσI = 0.

(b) For any I ∈ I(T ∧ τ), 〈wσI〉σ≤τ is fully adapted.

(c) If I ⊆ J in I(T ∧ τ), then dσI ⊇ dσJ and wσI ≥ wσJ for every σ ≤ τ , and wI ≥ wJ .

(d) For I ∈ I(T ∧ τ), set
AI = {σ : σ ≤ τ , [[wσI > ǫ]] ⊇ [[σ < τ ]]}.

(i) [[wI > ǫ]] = supσ∈AI
[[σ < τ ]].

(ii) AI is closed under ∧.
(iii) Set σ̄I = inf AI . Then

(α) σ̄I ≤ τ ;

(β) dσ̄II is the limit limσ↓AI
dσI for the measure-algebra topology of A;

(γ) wσ̄II is the limit 1limσ↓AI
wσI for the norm topology of L1

µ̄;

(δ) [[wI > ǫ]] ⊆ [[wσ̄II ≥ ǫ]].

(iv) If I ⊆ J in I(T ∧ τ) then AI ⊇ AJ and σ̄I ≤ σ̄J .

(e) There is an I ∈ I(T ∧ τ) such that E(wI) ≤ 3ǫ.

proof (a)(i) Setting b = [[σ0 = σ1]], b ∩ [[σ0 < σ]] = b ∩ [[σ1 < σ]] for every σ ∈ T (611E(c-v), or otherwise),
so
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b ∩ dσ0I = (app(τ) \ acc(τ)) ∩ b ∩ [[σ0 < τ ]] \ sup
ρ∈I

(b ∩ [[σ0 < ρ]] ∩ [[ρ < τ ]])

= (app(τ) \ acc(τ)) ∩ b ∩ [[σ1 < τ ]] \ sup
ρ∈I

(b ∩ [[σ1 < ρ]] ∩ [[ρ < τ ]])

= b ∩ dσ1I .

(ii) Take any η > 0. Since app(τ) ∩ [[σ < τ ]] ⊆ [[σ ≪ τ ]], there is a finite set J ⊆ T such that

η ≥ µ̄(app(τ) ∩ [[σ < τ ]] \ sup
ρ∈J

[[σ < ρ]] ∩ [[ρ < τ ]])

= µ̄(app(τ) ∩ [[σ < τ ]] \ sup
ρ∈J

[[σ < ρ ∧ τ ]] ∩ [[ρ ∧ τ < τ ]]).

Now if I ∈ I(T ∧ τ) includes {ρ ∧ τ : ρ ∈ J},
dσI ⊆ app(τ) ∩ [[σ < τ ]] \ supρ∈J [[σ < ρ ∧ τ ]] ∩ [[ρ ∧ τ < τ ]]

has measure at most η. As η is arbitrary, limI↑I(T ∧τ) µ̄dσI = 0.

(b) wσI = PσχdσI certainly belongs to L0(Aσ) for every σ ≤ τ . If σ0, σ1 ≤ τ and b = [[σ0 = σ1]], then
we saw in (a-i) that b ∩ dσ0I = b ∩ dσ1I , so

χb× wσ0I = χb× Pσ0
χdσ0I = χb× Pσ1

χdσ0I

(622Bb)

= Pσ1
χ(b ∩ dσ0I)

(because b ∈ Aσ1
, by 611H(c-i))

= Pσ1
χ(b ∩ dσ1I) = χb× wσ1I ,

and b ⊆ [[wσ0I = wσ1I ]]. As σ0 and σ1 are arbitrary, 〈wσI〉σ≤τ is fully adapted.

(c) Immediate from the definitions. Perhaps I should note here that wσI ≤ χ1 for every σ and I, so that
wI is always defined and less than or equal to χ1.

(d)(i) If σ ≤ τ , then there is a ρ ∈ AI such that [[ρ < τ ]] = [[wσI > ǫ]] ∩ [[σ < τ ]]. PPP b = [[wσI > ǫ]] ∩ [[σ < τ ]]
belongs to Aσ, so there is a ρ ≤ τ such that b ⊆ [[ρ = σ]] and 1 \ b ⊆ [[ρ = τ ]] (611I). As b ⊆ [[σ < τ ]], b =
[[ρ = σ]] = [[ρ < τ ]]. Now

[[wρI > ǫ]] ⊇ [[ρ = σ]] ∩ [[wσI > ǫ]] = b = [[ρ < τ ]]

and ρ ∈ AI . QQQ
Accordingly

sup
σ≤τ

([[wσI > ǫ]] ∩ [[σ < τ ]]) ⊆ sup
σ∈AI

[[σ < τ ]] ⊆ sup
σ∈AI

[[wσI > ǫ]] ⊆ [[wI > ǫ]].

Now, by 364L(a-ii),

[[wI > ǫ]] = sup
σ≤τ

[[wσI > ǫ]] = sup
σ≤τ

([[wσI > ǫ]] ∩ [[σ < τ ]])

(because dτI ⊆ [[τ < τ ]] = 0, so wτI = 0 and [[wσI > ǫ]] ∩ [[σ = τ ]] ⊆ [[wτI > ǫ]] = 0 for every σ ≤ τ)

⊆ sup
σ∈AI

[[σ < τ ]] ⊆ [[wI > ǫ]]

and we have equality.

(ii) Suppose that σ0, σ1 ∈ AI , and set σ = σ0 ∧ σ1, b = [[σ = σ0]] ⊆ [[wσI = wσ0I ]]. Then

[[wσI > ǫ]] ⊇ b ∩ [[wσ0I > ǫ]] ⊇ b ∩ [[σ0 < τ ]] = b ∩ [[σ < τ ]].
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Similarly,

[[wσI > ǫ]] ⊇ [[σ = σ1]] ∩ [[σ < τ ]];

as [[σ = σ0]] ∪ [[σ = σ1]] = 1 (611E(a-ii-γ)), [[σ < τ ]] ⊆ [[wσI > ǫ]] and σ ∈ AI .

(iii)(ααα) Of course τ ∈ AI . So σ̄I ≤ τ .

(βββ) Because 〈At〉t∈T is right-continuous, we have [[σ̄I < ρ]] = supσ∈AI
[[σ < ρ]] for any ρ ∈ T (632C(a-

ii)); because AI is downwards-directed, 〈[[σ < ρ]]〉σ∈AI
is upwards-directed and [[σ̄I < ρ]] = limσ↓AI

[[σ < ρ]]
for the measure-algebra topology (323D(a-ii)). Because ∩ and \ are continuous for the measure-algebra
topology (323Ba),

dσ̄II = (app(τ) \ acc(τ)) ∩ [[σ̄I < τ ]] \ sup
ρ∈I

([[σ̄I < ρ]] ∩ [[ρ < τ ]])

= lim
σ↓AI

(app(τ) \ acc(τ)) ∩ [[σ < τ ]] \ sup
ρ∈I

([[σ < ρ]] ∩ [[ρ < τ ]])) = lim
σ↓AI

dσI .

(γγγ)

lim sup
σ↓AI

‖wσ̄II − wσI‖1

≤ lim sup
σ↓AI

‖Pσ̄I
χdσ̄II − Pσχdσ̄II‖1 + lim sup

σ↓AI

‖Pσχdσ̄II − PσχdσI‖1

≤ 0 + lim sup
σ↓AI

‖χdσ̄II − χdσI‖1

(621B(g-i))

= lim sup
σ↓AI

µ̄(dσ̄II △ dσI) = 0.

Thus wσ̄II = 1limσ↓AI
wσI .

(δδδ) The point is that [[σ < τ ]] ⊆ [[wσ̄II > γ]] whenever σ ∈ AI and γ < ǫ. PPP??? Otherwise, set
η = µ̄([[σ < τ ]] \ [[wσ̄II > γ]]) > 0. By (γ) just above, there is a ρ ∈ AI such that ρ ≤ σ and ‖wρI −wσ̄II‖1 <
η(ǫ− γ). In this case,

η ≤ µ̄([[ρ < τ ]] \ [[wσ̄II > γ]]) ≤ µ̄([[wρI > ǫ]] \ [[wσ̄II > γ]])

≤ 1

ǫ−γ
‖wρI − wσ̄II‖1 < η

which is absurd. XXXQQQ

As γ is arbitrary, [[σ < τ ]] ⊆ [[wσ̄II ≥ ǫ]] for every σ ∈ AI . So

[[wI > ǫ]] = supσ∈AI
[[σ < τ ]] ⊆ [[wσ̄II ≥ ǫ]],

as claimed.

(iv) If σ ∈ AJ then

[[σ < τ ]] ⊆ [[wσJ > ǫ]] ⊆ [[wσI > ǫ]]

because wσJ ≤ wσI (by (c) above). So σ ∈ AI . Thus AJ ⊆ AI and σ̄I = inf AI ≤ inf AJ = σ̄J .

(e) Set σ∗ = supI∈I(T ∧τ) σ̄I ≤ τ . By the definition of acc(τ), [[σ∗ = τ ]] \ acc(τ) is included in supI∈I(T ∧τ) [[σ̄I = τ ]];

because 〈σ̄I〉I∈I(T ∧τ) and 〈[[σ̄I = τ ]]〉I∈I(T ∧τ) are non-decreasing, this is the limit limI↑I(T ∧τ) [[σ̄I = τ ]] for
the measure-algebra topology.

Putting this together with (a-ii), we see that there is an I ∈ I(T ∧ τ) such that σ∗ ∈ I, µ̄dσ∗I ≤ ǫ2 and
µ̄(([[σ∗ = τ ]] \ acc(τ)) \ [[σ̄I = τ ]]) ≤ ǫ2.

Consider
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ǫµ̄[[wI > ǫ]] ≤ ǫµ̄[[wσ̄II ≥ ǫ]]

((d-iii-δ) above)

≤ ǫµ̄[[wσ̄II × χ[[σ̄I < σ∗]] ≥ ǫ]] + ǫµ̄[[wσ∗I ≥ ǫ]]

(because [[σ̄I ≥ σ∗]] = [[σ̄I = σ∗]] ⊆ [[wσ̄II = wσ∗I ]])

≤ E(wσ̄II × χ[[σ̄I < σ∗]]) + E(wσ∗I)

= µ̄(dσ̄II ∩ [[σ̄I < σ∗]]) + µ̄dσ∗I

(because wσ̄II = Pσ̄I
χdσ̄II and [[σ̄I < σ∗]] ∈ Aσ̄I

)

≤ µ̄(dσ̄II ∩ [[σ̄I < σ∗]] ∩ [[σ∗ = τ ]]) + ǫ2

(because σ∗ ∈ I, so dσ̄II ∩ [[σ̄I < σ∗]] ∩ [[σ∗ < τ ]] = 0)

≤ µ̄(([[σ∗ = τ ]] \ a) \ [[σ̄I = τ ]]) + ǫ2 ≤ 2ǫ2,

so µ̄[[wI > ǫ]] ≤ 2ǫ and E(wI) ≤ 3ǫ.

643G Lemma Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a non-negative non-decreasing ‖ ‖∞-bounded
process. Suppose that for every ǫ > 0 there are an I ∈ I(S) and a w ∈ L0(A) such that ‖w‖1 ≤ ǫ and
Pσvτ − vσ ≤ w whenever σ ≤ τ in S and [[σ < σ′]] ∩ [[σ′ < τ ]] = 0 for every σ′ ∈ I. Let vvv# be the previsible
variation of vvv (626M). Then vvv# is jump-free.

proof The case S = ∅ is trivial; suppose that S is non-empty.

(a) Something is worth noting straight away. Of course we shall have Pσvτ − vσ = Pσ(vτ − vσ) ≥ 0
whenever σ ≤ τ in S; that is, vvv is a submartingale and we can speak of its previsible version. Since vvv is
‖ ‖∞-bounded, Pσvτ − vσ is always square-integrable. Now suppose that σ ≤ τ in S, and that

γ = supσ=σ0≤...≤σn=τ ‖
∑n−1
j=0 Pσj

vσj+1
− vσj

‖2
is finite. Then ‖v#τ − v#σ ‖2 ≤ γ. PPP By 626K(f-ii), v#τ − v#σ is the value of the previsible version of vvv↾S ∨ σ
at τ , so belongs to the weak closure of A = {SI(1, Pdvvv) : {σ, τ} ⊆ I ∈ I(S ∩ [σ, τ ])} in L1

µ̄. If {σ, τ} ⊆ I ∈
I(S ∩ [σ, τ ]), let (σ0, . . . , σn) linearly generate the I-cells, so that SI(1, Pdvvv) =

∑n−1
j=0 Pσj

vσj+1
− vσj

and

we have ‖SI(1, Pdvvv)‖2 ≤ γ. Thus ‖y‖2 ≤ γ for every y ∈ A. Now if z ∈ L∞(A), ‖z‖2 ≤ 1 and η > 0, there
is a y ∈ A such that

E(z × (v#τ − v#σ )) ≤ η + E(z × y) ≤ η + ‖y‖2 ≤ η + γ;

as η and z are arbitrary, ‖v#τ − v#σ ‖2 ≤ γ. QQQ
Squaring, we have

E((v#τ − v#σ )
2) ≤ supσ=σ0≤...≤σn=τ E((

∑n−1
j=0 Pσj

vσj+1
− vσj

)2).

Moreover, whenever σ = σ0 ≤ . . . ≤ σn ≤ τ , we have

E((
n−1∑

j=0

Pσj
vσj+1

− vσj
)2) ≤ E(2

n−1∑

j=0

(
n−1∑

k=j

Pσk
vσk+1

− vσk
)× (Pσj

vσj+1
− vσj

))

= 2

n−1∑

j=0

n−1∑

k=j

E((Pσk
vσk+1

− vσk
)× (Pσj

vσj+1
− vσj

))

= 2

n−1∑

j=0

n−1∑

k=j

E(Pσj
(Pσk

vσk+1
− vσk

)× (Pσj
vσj+1

− vσj
))

= 2

n−1∑

j=0

n−1∑

k=j

E(Pσj
(vσk+1

− vσk
)× (Pσj

vσj+1
− vσj

))

= 2

n−1∑

j=0

E(Pσj
(vτ − vσj

)× (Pσj
vσj+1

− vσj
)).
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(b) Now for the main line of this proof. Let M > 0 be such that ‖vσ‖∞ ≤M for every σ ∈ S. Let ǫ > 0.
Let I ∈ I(S) and w ∈ L0(A) be such that I 6= ∅, ‖w‖1 ≤ ǫ and Pσvτ − vσ ≤ w whenever σ ≤ τ in S and
[[σ < σ′]] ∩ [[σ′ < τ ]] = 0 for every σ′ ∈ I; we can suppose that w ≤ Mχ1. Let (τ0, . . . , τn) linearly generate
the I-cells. Then we shall have 0 ≤ Pσvτ − vσ ≤ w whenever

either σ ≤ τ ≤ τ0
or τi−1 ≤ σ ≤ τ ≤ τi where 1 ≤ i ≤ n,
or τn ≤ σ ≤ τ .

Set w′ = supσ∈S Pσw. Then

E(w′) ≤ ‖w′‖2 ≤ 2 sup
σ∈S

‖Pσw‖2

(623M, since PPPw is a martingale)

≤ 2‖w‖2 = 2
√

E(w2) ≤ 2
√
ME(w) ≤ 2

√
ǫM.

(c) Suppose that 〈ki〉i≤n+1, 〈σij〉i≤n+1,j≤ki are such that σij ∈ S whenever i ≤ n+ 1 and j ≤ ki and

σ00 ≤ σ01 ≤ . . . ≤ σ0k0 = τ0,

τi−1 = σi0 ≤ . . . ≤ σiki = τi for 1 ≤ i ≤ n,

τn = σn+1,0 ≤ . . . ≤ σn+1,kn+1
.

Then, using the last formula in (a),

E(

n+1∑

i=0

(

ki−1∑

j=0

Pσij
vσi,j+1

− vσij
)2)

≤ 2

n+1∑

i=0

ki−1∑

j=0

E((Pσij
vσiki

− vσij
)× (Pσij

vσi,j+1
− vσij

))

≤ 2

n+1∑

i=0

ki−1∑

j=0

E(w × (Pσij
vσi,j+1

− vσij
))

= 2

n+1∑

i=0

ki−1∑

j=0

E(Pσij
w × (vσi,j+1

− vσij
))

≤ 2

n+1∑

i=0

ki−1∑

j=0

E(w′ × (vσi,j+1
− vσij

))

= 2E(w′ × (vσn+1,kn+1
− vσ00

)) ≤ 4ME(w′) ≤ 8M
√
ǫM.

(d) Putting this together with (a), we see that if σ ≤ τ0 and τn ≤ τ then

E
(
(v#τ0 − v#σ )

2 +
∑n
i=1(v

#
τi
− v#τi−1

)2 + (v#τ − v#τn)
2
)
≤ 8M

√
ǫM .

Now consider Osclln∗I(vvv
#). By 618Ca, this is

sup{|v#σ′ − v#σ | : σ, σ′ ∈ S and either σ ≤ σ′ ≤ τ0

or there is an i such that τi−1 ≤ σ ≤ σ′ ≤ τi

or τn ≤ σ ≤ σ′}
= sup
σ∈S∧τ0

(v#τ0 − v#σ ) ∨ sup
1≤i≤n

(v#τi − v#τi−1
) ∨ sup

τ∈S∨τn

(v#τ − v#τn).
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So

Osclln∗I(vvv
#)2 = sup

σ∈S∧τ0

(v#τ0 − v#σ )
2 ∨ sup

1≤i≤n
(v#τi − v#τi−1

)2 ∨ sup
τ∈S∨τn

(v#τ − v#τn)
2

≤ sup
σ∈S∧τ0
τ∈S∨τn

(
(v#τ0 − v#σ )

2 +
∑

1≤i≤n

(v#τi − v#τi−1
)2 + (v#τ − v#τn)

2
)
.

As the sum here increases as σ decreases and τ increases,

E((Osclln∗I(vvv
#))2) ≤ sup

σ∈S∧τ0
τ∈S∨τn

E
(
(v#τ0 − v#σ )

2 +
∑

1≤i≤n

(v#τi − v#τi−1
)2 + (v#τ − v#τn)

2
)

≤ 8M
√
ǫM.

Accordingly

θ(Osclln∗I(vvv
#)) ≤ E(Osclln∗I(vvv

#)) ≤ ‖Osclln∗I(vvv
#)‖2 ≤

√
8M

√
ǫM .

As ǫ is arbitrary, infI∈I(S) θ(Osclln∗I(vvv
#)) = 0 and vvv# is jump-free.

643H Lemma Suppose that 〈At〉t∈T is right-continuous. Take τ1 in T and a non-negative v ∈ L0(Aτ1)∩
L1
µ̄. Set vσ = v × χ[[σ = τ1]] for σ ∈ T ∧ τ1. Then vvv = 〈vσ〉σ∈T ∧τ1 is a non-negative non-decreasing

submartingale. Let vvv# = 〈v#σ 〉σ∈T ∧τ1 be its previsible variation, and vvv#< = 〈v#<σ〉σ∈T ∧τ1 the previsible

version of vvv#. If τ ≤ τ1 then app(τ) \ acc(τ) ⊆ [[v#τ = v#<τ ]].

proof Write a∗ for app(τ) \ acc(τ).

(a) By 612CF, vσ ∈ L0(Aσ) for every σ ≤ τ1. If σ, σ
′ ∈ T ∧ τ1 then

vσ × χ[[σ = σ′]] = v × χ([[τ1 ≤ σ]] ∩ [[σ = σ′]])

= v × χ([[τ1 ≤ σ′]] ∩ [[σ = σ′]]) = vσ′ × χ[[σ = σ′]]

so [[σ = σ′]] ⊆ [[vσ = vσ′ ]]; thus vvv is fully adapted. Because v ∈ L1
µ̄, vvv is an L1-process. If σ ≤ σ′, then

[[τ1 ≤ σ]] ⊆ [[τ1 ≤ σ′]] so (because v ≥ 0) vσ ≤ vσ′ ; thus vvv is non-decreasing, therefore a submartingale
(626B), and has a previsible version (626M), which is itself non-negative and non-decreasing, therefore
locally moderately oscillatory (616Ra, or otherwise), and has a previsible version (641L).

(b) Suppose first that v ≤ χa∗.

(i) Take I ∈ I(T ∧ τ), and for σ ≤ τ define dσI , wσI and wI from τ as in 643F. Suppose that
σ0 ≤ σ1 ≤ τ and [[σ0 < σ]] ∩ [[σ < σ1]] = 0 for every σ ∈ I. Then Pσ0

vσ1
− vσ0

≤ wI . PPP

[[σ0 < σ]] ∩ [[σ < τ ]] ∩ [[σ1 = τ ]] ⊆ [[σ0 < σ]] ∩ [[σ < σ1]] = 0,

that is, [[σ0 < σ]] ∩ [[σ < τ ]] ⊆ [[σ1 < τ ]] for every σ ∈ I, and

a∗ ∩ [[σ0 < τ ]] \ [[σ1 < τ ]]

⊆ a∗ ∩ [[σ0 < τ ]] \ sup
σ∈I

([[σ0 < σ]] ∩ [[σ < τ ]])

= dσ0I .

Consequently

Pσ0
vσ1

− vσ0
= Pσ0

(v × χ[[σ1 = τ1]]− v × χ[[σ0 = τ1]])

= Pσ0
(v × χ([[τ = τ1]] ∩ [[σ1 = τ ]] \ [[σ0 = τ ]]))

≤ Pσ0
(v × χ([[σ0 < τ ]] \ [[σ1 < τ ]]))

≤ Pσ0
χdσ0I = wσ0I ≤ wI . QQQ
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(ii) Now 643Fe tells us that for every ǫ > 0 there is an I ∈ I(T ∧ τ) such that E(wI) ≤ ǫ. So we can
apply 643G to see that (vvv↾T ∧ τ)# is jump-free, that is, that vvv#↾T ∧ τ is jump-free (626K(f-i)). It follows

that v#<τ = v#τ (641O), so surely we have a∗ ⊆ [[v#<τ = v#τ ]].

(c) Next suppose that ∅ 6= C ⊆ T ∧ τ and v ≤ χaC , where

aC = [[supC = τ ]] \ supσ∈C [[σ = τ ]] ⊆ acc(τ)

as in 643E.

(i) If ρ ≤ σ ∈ C,

vρ = v × χ[[ρ = τ1]] ≤ χ(aC ∩ [[ρ = τ1]]) ≤ χ(aC ∩ [[σ = τ ]]) = 0

so vvv↾T ∧ σ = 0, vvv#↾T ∧ σ = (vvv↾T ∧ σ)# = 0 (626K(f-i)), v#σ = v#<σ = 0 and [[σ = τ ]] ⊆ [[v#τ = v#<τ ]] (because

vvv#< is fully adapted, by 641G(a-ii)).

(ii) If supC ≤ σ ≤ σ′ ≤ τ then

[[σ < σ′]] ⊆ [[supC < τ ]] ⊆ [[vσ = 0]] ∩ [[vσ′ = 0]]

so

E(Pσvσ′ − vσ) = E(vσ′ − vσ) = E((vσ′ − vσ)× χ[[σ < σ′]]) = 0;

as vσ ≤ Pσvσ′ , Pσvσ′ − vσ = 0. It follows that SI(1, Pdvvv) = 0 for every finite sublattice I of [supC, τ ] and
vvv# is constant on [supC, τ ]. Accordingly

[[supC < τ ]] ⊆ [[v#τ = v#supC ]] ∩ [[v#<τ = v#supC ]] ⊆ [[v#τ = v#<τ ]].

(iii) Putting these together,

a∗ ⊆ 1 \ aC ⊆ [[v#τ = v#<τ ]].

(d) Thirdly, suppose that t ∈ Tr-i and that v ≤ χ[[τ = ť+]] where ť+ is defined as in 643D. If τ ∧ ť+ ≤ ρ ≤
σ ≤ τ then

[[ρ < σ]] ⊆ [[ρ < τ1]] ∩ [[ť+ < σ]] ⊆ [[vρ = 0]] ∩ [[vσ = 0]]

because

vσ ≤ χ([[τ = ť+]] ∩ [[σ = τ1]]) ≤ χ([[τ = ť+]] ∩ [[σ = τ ]]).

So

Pρvσ − vρ = (Pρvσ − vρ)× χ[[ρ < σ]] = Pρ((vσ − vρ))× χ[[ρ < σ]]) = 0.

Thus vvv# is constant on [τ ∧ ť+, τ ] and [[τ ∧ ť+ < τ ]] ⊆ [[v#<τ = v#τ ]].

If σ ≤ τ ∧ ť then [[τ = ť+]] ⊆ [[σ < τ1]] ⊆ [[vσ = 0]], so v#
τ∧ť

= 0 = v#
<τ∧ť

. Now

[[τ < ť+]] ⊆ [[τ ≤ ť]] ∪ ([[ť < τ ]] ∩ [[τ < ť+]]) = [[τ ≤ ť]]

⊆ [[v#τ = v#
τ∧ť

]] ∩ [[v#<τ = v#
<τ∧ť

]] ⊆ [[v#τ = v#<τ ]]

and

[[v#τ = v#<τ ]] ⊇ 1 \ [[τ = ť+]] ⊇ a∗.

(e)(i) If we think of v 7→ vvv, vvv 7→ vvv#, vvv# 7→ v#τ and vvv# 7→ v#<τ as functions, then v 7→ v#τ and v 7→ v#<τ
are additive, and the set

A = {v : v ∈ L0(Aτ1) ∩ L1
µ̄, v ≥ 0, a∗ ⊆ [[v#τ = v#<τ ]]}

is closed under addition and multiplication by non-negative scalars. So

D = {d : d ∈ Aτ1 , v ∈ A whenever v ∈ L0(Aτ1) ∩ L1
µ̄ and 0 ≤ v ≤ χd}
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is an ideal of Aτ1 . (If d0, d1 ∈ D, d ∈ Aτ1 , d ⊆ d0 ∪ d1, v ∈ L0(Aτ1) ∩ L1
µ̄ and 0 ≤ v ≤ χd, then

v = v × χd0 + v × χ(d1 \ d0) is the sum of two members of A.) We know also that a∗ ∈ D ((b) above, with
643Cd), aC ∈ D whenever ∅ 6= C ⊆ T ∧ τ (by (c)) and [[τ = ť+]] ∈ D whenever t ∈ Tr-i (by (d)). So

supD ⊇ a∗ ∪ acc(τ) ∪ (1 \ app(τ)) = 1

by the definition of acc(τ) and 643D, and supd∈D µ̄d = 1.

(ii) Now suppose just that v ∈ L0(Aτ1) is non-negative and integrable. Let δ > 0 be such that
E(v×χa) ≤ ǫ whenever µ̄a ≤ δ. Let d ∈ D be such that µ̄(1 \ d) ≤ δ, andM > 0 such that E((v−Mχ1)+) ≤
ǫ. Set w =

1

M
(v ∧Mχd). Then w ∈ L0(Aτ1), 0 ≤ w ≤ v and v − w ≤ (v −Mχ1)+ + v × χ(acc(τ) \ d) so

E(v−w) ≤ 2ǫ. Also w ∈ A (using (d) above), and a∗ ⊆ [[w#
τ = w#

<τ ]]. We know too that vvv#−www# = (vvv−www)#.
Since vvv −www is non-negative, 626M tells us that

E(v#τ − w#
τ ) ≤ E(vτ − wτ ) ≤ 2ǫ.

Now w#
<τ ≤ v#<τ ≤ v#τ and w#

<τ ≤ w#
τ ≤ v#τ so

E((v#τ − v#<τ )× χa∗) ≤ E(v#τ − w#
τ ) + E((w#

τ − w#
<τ )× χa∗) ≤ 2ǫ.

As ǫ is arbitrary, a∗ ⊆ [[v#τ = v#<τ ]] and the proof is complete.

643I Lemma Suppose that 〈At〉t∈T is right-continuous. Take τ1 ∈ T and a martingale uuu = 〈uσ〉σ≤τ1 .
Suppose that ǫ > 0 is such that [[σ < τ1]] ⊆ [[|uσ| ≤ ǫ]] for every σ ≤ τ1. Then there is a martingale ũuu =
〈ũσ〉σ≤τ1 such that Osclln(ũuu) ≤ 2ǫχ1 and uuu− ũuu is of bounded variation.

proof Write v for uτ1 .

(a)(i) Set v́ = v+ and v̀ = v−, so that v́ and v̀ are non-negative integrable members of L0(Aτ1). As in
643H, set

v́σ = v́ × [[σ = τ1]], v̀σ = v̀ × [[σ = τ1]], vσ = v × [[σ = τ1]]

for σ ≤ τ1,

v́vv = 〈v́σ〉σ≤τ1 , v̀vv = 〈v̀σ〉σ≤τ1 , vvv = 〈vσ〉σ≤τ1 ,
and let v́vv#, v̀vv# be the previsible variations of v́vv and v̀vv respectively; write vvv# for v́vv# − v̀vv#, the previsible
version of vvv. Then vvv−vvv# is a martingale (626Ka). Set ũuu = uuu−vvv+vvv#, so that ũuu is a martingale. Note that

v́vv, v̀vv, v́vv# and v̀vv# are non-negative monotonic processes so are of bounded variation; accordingly vvv, vvv# and
uuu− ũuu = vvv − vvv# are of bounded variation.

(ii) uτ1 = vτ1 , so if σ ≤ τ1 then

[[σ = τ1]] ⊆ [[uσ − vσ = 0]]

while

[[σ < τ1]] ⊆ [[|uσ| ≤ ǫ]] ∩ [[vσ = 0]] ⊆ [[|uσ − vσ| ≤ ǫ]];

thus |uσ − vσ| ≤ ǫχ1. It follows at once that |u<σ − v<σ| ≤ ǫχ1 and that |uσ − vσ − u<σ + v<σ| ≤ 2ǫχ1 for
every σ ≤ τ1.

(iii) If σ ≤ τ1 and P<σ is the conditional expectation associated with the subalgebra A<σ, |ũσ −
P<σũσ| ≤ 2ǫχ1. PPP As v#σ ∈ L0(A<σ) (641D), P<σv

#
σ = v#σ and

|ũσ − P<σũσ| = |uσ − vσ − P<σuσ + P<σvσ + v#σ − P<σv
#
σ |

≤ |uσ − vσ|+ |P<σ(uσ − vσ)| ≤ |uσ − vσ|+ P<σ|uσ − vσ|
≤ ǫχ1 + P<σ(ǫχ1) = 2ǫχ1. QQQ

(b) Take τ ≤ τ1.

(i) Set a∗ = app(τ) \ acc(τ). Then 643H and the last remark in (i) above tell us that
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a∗ ⊆ [[v́#τ = v́#<τ ]] ∩ [[v́#τ = v́#<τ ]] ⊆ [[v#τ = v#<τ ]]

⊆ [[ũτ − ũ<τ = uτ − u<τ − vτ + v<τ ]] ⊆ [[|ũτ − ũ<τ | ≤ 2ǫχ1]].

(ii) Now suppose that C is a non-empty upwards-directed subset of T ∧ τ with supremum ρ and that
aC = [[ρ = τ ]] \ supσ∈C [[σ = τ ]], as in 643F and 643H. Of course aC is also expressible as [[ρ = τ ]] ∩ infσ∈C [[σ < ρ]].
Next, aC ⊆ [[ũ<ρ = P<ρũρ]] by 643Bb, because ũuu is a martingale. Now

aC ⊆ [[ũ<ρ = P<ρũρ]] ∩ [[ũτ = ũρ]] ∩ [[ũ<τ = ũ<ρ]]

(using 641L) again)

⊆ [[|ũτ − ũ<τ | = |ũρ − P<ρũρ|]] ⊆ [[|ũτ − ũ<τ | ≤ 2ǫχ1]]

by (a-iii) above.

(iii) Next, suppose that t ∈ T is isolated on the right, and define ť+ as in 643D. Set ρ = τ ∧ ť+ and
c = [[ť < ρ]] = [[ρ > t]] (611E(a-i-δ).

(ααα) c ⊆ [[ũ<ρ = ũť]]. PPP For any σ ∈ T ,

[[ť < σ]] ∩ [[σ < ρ]] ⊆ [[ť < σ]] ∩ [[σ < ť+]] = 0.

So if I ∈ I(T ∧ τ1) contains ť, and ũI<τ is defined from ũuu as in 641Ea, then c = [[ť < ρ]] ⊆ [[ũI<τ = ũť]].
Taking the limit as I ↑ I(T ∧ τ1), c ⊆ [[ũ<ρ = ũť]]. QQQ

(βββ) c ∈ Ať ∩Aρ. Now if a ∈ A and a ⊆ c, then a ∈ Ať = At (611Hb) iff a ∈ Aρ. PPP If a ∈ Ať then
a ∈ Aρ by 611H(a-i). In the other direction, set B = {b : b ∈ A, c ∩ b ∈ Ať}. Then B is a closed subalgebra
of A. If σ ∈ T , then

c ∩ [[σ < ρ]] = c ∩ [[σ < ť+]]

(because c = [[ť+ ≤ ρ]] = [[ť+ = ρ]])

= c ∩ [[σ ≤ ť]] ∈ Ať,

so [[σ < ρ]] ∈ B. By the definition of A<ρ (641Ba), A<ρ ⊆ B and c ∩ a ∈ Ať. QQQ

(γγγ) c ⊆ [[P<ρũρ = ũť]]. PPP For α ∈ R,

[[P<ρũρ × χc > α]] = [[P<ρũρ > α]] ∩ c if α ≥ 0,

= [[P<ρũρ > α]] ∪ (1 \ c) if α ≤ 0,

and in either case belongs to Ať. So P<ρũρ × χc ∈ L0(Ať). Now if a ∈ Ať,

E(((ũť × χc)× χa) = E(ũť × χ(c ∩ a)) = E(ũť+ × χ(c ∩ a))

(because ũ is a martingale)

= E(ũρ × χ(c ∩ a))

(because c ⊆ [[ρ = ť+]])

= E(P<ρũρ × χ(c ∩ a))

(because c ∩ a ∈ A<ρ)

= E((P<ρũρ × χc)× χa)).

So ũť × χc = P<ρũρ × χc, that is, c ⊆ [[P<ρũρ = ũť]]. QQQ

(δδδ) Putting (α) and (γ) together,
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[[τ = ť+]] = [[ρ = ť+]] ∩ [[ρ = τ ]] ⊆ c ∩ [[ũτ = ũρ]] ∩ [[ũ<τ = ũ<ρ]]

⊆ [[ũ<ρ = P<ρũρ]] ∩ [[ũτ = ũρ]] ∩ [[ũ<τ = ũ<ρ]]

⊆ [[|ũτ − ũ<τ | = |ũρ − Pρũρ|]] ⊆ [[|ũτ − ũ<τ | ≤ 2ǫχ1]]

by (a-iii) again.

(iv) Assembling (i)-(iii), we see that

1 = a∗ ∪ sup∅6=C⊆T ∧τ aC ∪ supt∈Tr-i
[[τ = ť+]] ⊆ [[|ũτ − ũ<τ | ≤ 2ǫχ1]]

and |ũτ − ũ<τ | ≤ 2ǫχ1. As τ is arbitrary and ũuu is near-simple (632I), Osclln(ũuu) ≤ 2ǫχ1 (641Nb), and we
have found a suitable auxiliary martingale.

643J Corollary Suppose that 〈At〉t∈T is right-continuous. Take an interval S = [τ, τ ′] where τ ≤ τ ′

in T , and a martingale uuu = 〈uσ〉σ∈S . Suppose that ǫ > 0 is such that [[σ < τ ′]] ⊆ [[|uσ − uτ | ≤ ǫ]] for every
σ ∈ S. Then there is a martingale ũuu = 〈ũσ〉σ∈S such that Osclln(ũuu) ≤ ǫχ1, ũτ = 0 and uuu− ũuu is of bounded
variation.

proof Set u′σ = Pσ(uτ ′ − uτ ) for σ ≤ τ ′, so that uuu′ = 〈u′σ〉σ≤τ ′ is a martingale. Then [[σ < τ ′]] ⊆ [[|u′σ| ≤ ǫ]]
for every σ ≤ τ ′. PPP We have

[[σ ≤ τ ]] = [[σ = σ ∧ τ ]] ⊆ [[Pσ(uτ ′ − uτ ) = Pσ∧τ (uτ ′ − uτ )]]

(622Bb once more)

= [[u′σ = PσPτ (uτ ′ − uτ )]]

(622Ba)

⊆ [[u′σ = 0]] ⊆ [[|u′σ| ≤ ǫ]],

while also

[[τ ≤ σ]] ∩ [[σ < τ ′]] = [[σ = σ ∨ τ ]] ∩ [[σ ∨ τ < τ ′]]

⊆ [[u′σ = Pσ∨τ (uτ ′ − uτ )]] ∩ [[|uσ∨τ − uτ | ≤ ǫ]]

⊆ [[u′σ = uσ∨τ − uτ ]] ∩ [[|uσ∨τ − uτ | ≤ ǫ]] ⊆ [[|u′σ| ≤ ǫ]].

Now

[[σ < τ ′]] ⊆ [[σ ≤ τ ]] ∪ ([[τ ≤ σ]] ∪ [[σ < τ ′]]) ⊆ [[|u′σ| ≤ ǫ]],

as claimed. QQQ
By 643I, there is a martingale ũuu′ = 〈ũ′σ〉σ≤τ ′ such that Osclln(ũuu′) ≤ 2ǫχ1 and uuu′ − ũuu′ is of bounded

variation. Set ũuu = 〈ũσ〉σ∈S where ũσ = ũ′σ − ũ′τ for σ ∈ S. Then ũuu is a martingale and ũτ = 0. In the
language of 613Cc, ∆ũuu = ∆(ũuu′↾S), so

Osclln(ũuu) = Osclln(ũuu′↾S) ≤ Osclln(ũuu′) ≤ 2ǫ

(using 618D(b-i)). We see also that u′σ = uσ−uτ for every σ ∈ S, so uσ− ũσ = u′σ− ũ′σ+uτ + ũ′τ for σ ∈ S,
∆(uuu − ũuu) = ∆((uuu′ − ũuu′)↾S) and

∫
S |d(uuu − ũuu)| is defined in L0(A) and equal to

∫
S |d(uuu′ − ũuu′)|; thus uuu− ũuu is

of bounded variation, as required.

643K Lemma Let S be a sublattice of T and 〈τn〉n∈N a non-decreasing sequence in S such that S ⊆⋃
n∈N[τ0, τn]. Suppose that for each n ∈ N we are given a fully adapted process uuun = 〈unσ〉σ∈S∩[τn,τn+1]

starting from unτn = 0.
(a) There is a unique fully adapted process uuu = 〈uσ〉σ∈S such that

uσ = unσ +
∑n−1
i=0 uiτi+1

whenever σ ∈ S, n ∈ N and τn ≤ σ ≤ τn+1. (*)

(b) If every uuun is a martingale, then uuu is a martingale.
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(c) If every uuun is order-bounded, then uuu is locally order-bounded and Osclln(uuu↾S∧τn) = supi<nOsclln(uuui)
for every n ∈ N.

proof Set S0 =
⋃
n∈N S ∩ [τn, τn+1].

(a) S0 is a sublattice of T . PPP If σ, σ′ ∈ S0, letm, n ∈ N be such that τm ≤ σ ≤ τm+1 and τn ≤ σ′ ≤ τn+1.
We can suppose that m ≤ n. In this case σ ∧ σ′ ∈ [τm, τm+1] and σ ∨ σ′ ∈ [τn, τn+1] belong to S0. QQQ

The formula (*) defines a fully adapted process uuu∗ on S0. PPP If n ∈ N and τn ≤ σ ≤ τn+1 then

unσ +
∑n−1
i=0 uiτi+1

∈ L0(Aσ) because L0(Aτi+1
) ⊆ L0(Aσ) for every i < n. If m ≤ n in N, σ ∈ [τm, τm+1],

σ′ ∈ [τn, τn+1] and c = [[σ = σ′]], then

—– if m = n then c ⊆ [[unσ = unσ′ ]] = [[unσ +
∑n−1
i=0 uiτi+1

= unσ′ +
∑n−1
i=0 uiτi+1

]];
—– if m < n then

c ⊆ [[σ = τm+1]] ∩ inf
m<i<n

[[τi = τi+1]] ∩ [[σ′ = τn]]

⊆ [[umσ = umτm+1
]] ∩ inf

m<i<n
[[uiτi+1

= 0]] ∩ [[unσ′ = 0]]

⊆ [[umσ +
∑m−1
i=0 uiτi+1

= unσ′ +
∑n−1
i=0 uiτi+1

]],

In particular, this shows that if σ = σ′ belongs to [τn, τn+1] for more than one n, then (*) gives a well-assigned
value for uσ; and in general we have [[σ = σ′]] ⊆ [[uσ = uσ′ ]], so that uuu∗ is fully adapted. QQQ

Next, S0 covers S ∧ τn for every n. PPP Induce on n. For n = 0 this is trivial. For the inductive step to
n+ 1 ≥ 1, if σ ∈ S ∧ τn+1 then {σ} is covered by {σ ∧ τn, σ ∨ τn} ⊆ S ∧ τn ∪ S ∩ [τn, τn+1] and therefore by
S0. As σ is arbitrary, S ∧ τn+1 is covered by S0. QQQ

Consequently S0 covers S. Writing ũuu∗ for the fully adapted extension of uuu∗ to the covered envelope S̃0 of
S0, we have S ⊆ S̃0 and uuu = ũuu∗↾S is a fully adapted process satisfying the condition (*). And because (*)
determines the process uuu∗ = uuu↾S0, it determines uuu (612R).

(b) uuu↾S0 is a martingale. PPP Suppose that m, n ∈ N, σ ∈ [τm, τm+1], σ
′ ∈ [τn, τn+1] and σ ≤ σ′. If m > n

then σ = σ′ and of course Pσuσ′ = uσ. If m = n then

Pσuσ′ =
∑m−1
i=0 Pσuiτi+1

+ Pσumσ′ =
∑m−1
i=0 uiτi+1

+ umσ = uσ.

If m < n then

Pσuσ′ =

m−1∑

i=0

Pσuiτi+1
+

n−1∑

i=m

Pσuiτi+1
+ Pσunσ′

=

m−1∑

i=0

uiτi+1
+ Pσumτm+1

+

n−1∑

i=m+1

Pσuiτi+1
+ Pσunσ′

=

m−1∑

i=0

uiτi+1
+ umσ +

n−1∑

i=m+1

PσPτiuiτi+1
+ PσPτnunσ′

= uσ +

n−1∑

i=m+1

Pσuiτi + Pσunτn = uσ.

As σ and σ′ are arbitrary, uuu↾S0 is a martingale. QQQ
Because S0 covers S and is cofinal with S, uuu is a martingale. PPP By 622Oa, there is a martingale uuu′ on

the ideal S ′ of T generated by S0 which extends uuu↾S0. Now S ⊆ S ′ so uuu′↾S is an extension of uuu↾S0, and
uuu = uuu′↾S is a martingale. QQQ

(c) Since |unσ′ − unσ| = |uσ′ − uσ| whenever τn ≤ σ ≤ σ′ ≤ τn+1, Osclln(uuu↾[τn, τn+1]) = Osclln(uuun) for
every n. Now an easy induction on n, using 618Db for the inductive step, shows that

Osclln(uuu↾[τ0, τn]) = supi<nOsclln(uuu↾[τi, τi+1]) = supi<nOsclln(uuui)

for every n.
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643L Lemma Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T
with a least element and a non-decreasing sequence 〈τn〉n∈N such that {τn : n ∈ N} is cofinal with S,
and uuu = 〈uσ〉σ∈S a martingale. Then for any ǫ > 0 there is a local martingale ũuu = 〈ũσ〉σ∈S such that
Osclln(ũuu↾S ∧ τ) ≤ ǫχ1 for every τ ∈ S and uuu− ũuu is locally of bounded variation.

proof (a) Choose 〈kn〉n∈N and 〈σi〉i∈N as follows. Start with k0 = 0 and σ0 = minS. Given kn ∈ N and
σkn ∈ S ∧ τn, then, because uuu is locally near-simple (632Ia), there is a non-decreasing 〈σnj〉j∈N in [σkn , τn]
such that σn0 = σkn , infj∈N [[σkj < τn]] = 0 and [[σ < σn,j+1]] ⊆ [[|uσ − uσnj

| ≤ 1
4ǫ]] whenever j ∈ N and

σnj ≤ σ ≤ σn,j+1 (631Ra). Let k ∈ N be such that µ̄[[σnk < τn]] ≤ 2−n; set kn+1 = kn + k and σkn+i = σni
for i ≤ k. Continue.

(b) We see that 〈σi〉i∈N is a non-decreasing sequence in S, that
limi→∞ µ̄[[σi < τn]] = limm→∞ µ̄[[σkm+1

< τn]] ≤ limm→∞ µ̄[[σkm+1
< τm]] = 0

for every n ∈ N, and that [[σ < σi+1]] ⊆ [[|uσ − uσi
| ≤ 1

4ǫ]] whenever i ∈ N and σi ≤ σ ≤ σi+1. Set S0 =⋃
i∈N S ∧ σi. Then S0 is an ideal of S covering every τn and therefore covering S.
(c) For each i ∈ N, we can apply 643J to uuu↾[σi, σi+1] to see that there is a martingale ũuui = 〈ũiσ〉σi≤σ≤σi+1

such that Osclln(ũuui) ≤ 2−i−1ǫ, ũiσi
= 0 and ũuui − uuu↾[σi, σi+1] is of bounded variation. By 643K, we have a

martingale ũuu′ = 〈ũ′σ〉σ∈S0
such that Osclln(ũuu′↾S∧σi) ≤ ǫ for every i ∈ N; it follows that Osclln(ũuu′↾S∧σ) ≤ ǫ

for every σ ∈ S0.
Consider the difference (uuu↾S0)− ũuu′. If i ∈ N and σ ∈ [σi, σi+1], this is given by

uσ − ũ′σ = uσ − ũiσ − ũ′σi
.

So, for any i, ∫
S∧σi

|d(uuu− ũuu′)| = ∑i−1
j=0

∫
[σj ,σj+1]

|d(uuu− ũuu′)| = ∑i−1
j=0

∫
[σj ,σj+1]

|d(uuui − ũuui)|

is well-defined, that is, (uuu−ũuu′)↾S∧σi is of bounded variation. Thus uuu↾S0−ũuu′ is locally of bounded variation.

(e) For any i ∈ N,

Osclln(ũuu′↾S ∧ σi) = sup
j<i

Osclln(ũuu′↾[σj , σj+1])

(using 618Db repeatedly)

= sup
j<i

Osclln(ũuuj) ≤ ǫχ1.

So Osclln(uuu′↾S ∧ σ) ≤ ǫχ1 for any σ ∈ S0 (618Da again).

(f) As S0 ⊆ S covers S, they have the same covered envelope, and we have a unique fully adapted process
ũuu with domain S extending ũuu′. Since S0 is a covering ideal of S, ũuu is a local martingale. uuu− ũuu is locally of
bounded variation because (uuu− ũuu)↾S0 is locally of bounded variation and we can apply 614Q(b-v). Finally,

supτ∈S Osclln(ũuu↾S ∧ τ) = supσ∈S′ Osclln(ũuu′↾S0 ∧ σ) ≤ ǫχ1

by 618Lc.

643M Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T
with a least element, and vvv = 〈vσ〉σ∈S a semi-martingale. Then for any ǫ > 0 there is a local martingale
ṽvv = 〈ṽσ〉σ∈S such that supτ∈S Osclln(ṽvv↾S ∧ τ) ≤ ǫχ1 and vvv − ṽvv is locally of bounded variation.

proof (a) By 611Pc, S is finitely full. Because the sum of two processes which are locally of bounded
variation is again locally of bounded variation (614Q(b-iii)), it is enough to consider the case in which vvv is
a virtually local martingale, in which case it will be a local martingale and locally near-simple (632I). Let
S0 be a covering ideal of S such that vvv↾S0 is a martingale. By 627N, there are a non-decreasing sequence
〈τn〉n∈N in S0 and a non-decreasing sequence 〈dn〉n∈N in A such that

dn ∈ Aτn , dn ⊆ [[τn+1 = τn]]
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for every n ∈ N, and

supn∈N dn ∪ [[τ ≤ τn]] = 1, vτ = limn→∞ vτ∧τn

for every τ ∈ S.
(b) Set S ′ =

⋃
n∈N S ∧ τn. Then vvv↾S ′ is a martingale. By 643L, there is a local martingale ũuu = 〈ũσ〉σ∈S′

such that Osclln(ũuu↾S ′ ∧ σ) ≤ ǫχ1 for every σ ∈ S ′ and vvv − ũuu is locally of bounded variation.

(c) By 627O there are processes ṽvv = 〈ṽτ 〉τ∈S and vvv# = 〈v#τ 〉τ∈S such that

ṽτ = limn→∞ ũτ∧τn , v#τ = limn→∞ vτ∧τn − ũτ∧τn

for every τ ∈ S. Observe that

ṽτ + v#τ = limn→∞ vτ∧τn = vτ

for every τ ∈ S. Now 627Od tells us that ṽvv is a local martingale; 627Oe tells us that vvv − ṽvv = vvv# is locally
of bounded variation; and 627Of tells us that Osclln(ṽvv↾S ∧ τ) ≤ ǫχ1 for every τ ∈ S. So ṽvv has the required
properties.

Remark Recall that a semi-martingale is the same thing as a local integrator (627Q).

643N I have more than once noted (622P, 624H, 626T) that L2-martingales have a special place in the
theory, and later in this chapter they will become of prime importance. We are now ready for a general
result showing why.

Lemma Suppose that 〈At〉t∈T is right-continuous. Let S be a sublattice of T with a greatest element, and
vvv = 〈vσ〉σ∈S an integrator. Then for every ǫ > 0 there are an L∞-martingale ṽvv and a process vvv′ of bounded
variation, both with domain S, such that µ̄[[vvv 6= ṽvv + vvv′]] ≤ ǫ.

proof (a) By 627J/627Q, vvv is a semi-martingale; let vvv1 = 〈v1σ〉σ∈S be a virtually local martingale such that
vvv − vvv1 is locally of bounded variation. As S has a greatest element, vvv− vvv1 is actually of bounded variation.
Let v̂vv1 = 〈v̂1σ〉σ∈Ŝ be the fully adapted extension of vvv1 to the covered envelope Ŝ of S. Then there is a

non-empty downwards-directed set A ⊆ Ŝ such that supρ∈A µ̄[[ρ < maxS]] ≤ 1
3ǫ and vvv2 = RA(v̂vv1), as defined

in 623B,is a martingale. Set b = supρ∈A [[ρ < maxS]], so that µ̄b ≤ 1
3ǫ. Note that maxS is also the greatest

element of Ŝ (611M(b-ii)). If σ ∈ Ŝ and ρ ∈ A, then

1 \ b ⊆ [[ρ = maxS]] ⊆ [[σ ≤ ρ]] ⊆ [[v̂1,σ∧ρ = v̂1σ]];

taking the limit as ρ ↓ A,
1 \ b ⊆ [[v̂1,σ = limρ↓A v̂1,σ∧ρ]], [[v̂1,σ 6= limρ↓A v̂1,σ∧ρ]] ⊆ b,

As σ is arbitrary, [[vvv2 6= v̂vv1]] ⊆ b.
Express vvv2 as 〈v2σ〉σ∈Ŝ . Consider the martingale vvv3 = PPPv2,maxS (622F). This extends vvv2 to T . By 643L

there is a local martingale www = 〈wσ〉σ∈T such that Osclln(www) ≤ χ1 and vvv3 − www is of bounded variation;
replacing www by www − wmin T 1 if necessary. we can arrange that wmin T = 0. Now there is a τ ′ ∈ T such
that www↾T ∧ τ ′ is a martingale and b′ = [[τ ′ < max T ]] has measure at most 1

3ǫ. Also www is near-simple (632Ia
again). By 631Ra again, SL1(www) is true and there is a non-decreasing sequence 〈τi〉i∈N in T such that
τ0 = min T , infi∈N [[τi < max T ]] = 0 and [[σ < τi+1]] ⊆ [[|wσ − wτi | < 1]] whenever i ∈ N and σ ∈ [τi, τi+1].
Accordingly |wτn+1

− wτn | ≤ 2χ1 whenever n ∈ N. PPP Looking at the definition in 641Ea, we see that
|wI<τn+1

− wτn | × χ[[τn < τn+1]] ≤ χ1 for every finite sublattice I of S containing τn and τn+1, so that
|w<τn+1

−wτn |×χ[[τn < τn+1]] ≤ χ1; while |wτn+1
−w<τn+1

|×χ[[τn < τn+1]] ≤ Osclln(vvv↾S∧τn+1), by 641Na.
So

|wτn+1
− wτn | × χ[[τn < τn+1]] ≤ χ1 + Osclln(www↾S ∧ τn+1)

≤ χ1 + Osclln(www) ≤ 2χ1

(using 618D(b-i)). It follows at once that ‖wτn+1
− wτn‖∞ ≤ 2. QQQ

As wτ0 = 0, ‖wτn‖∞ ≤ 2n for every n ∈ N. Next, there is an n ∈ N such that b′′ = [[τn < max T ]] has
measure at most 1

3ǫ. Try
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ṽvv = PPPwτn∧τ ′↾S, vvv′ = vvv1 − vvv + (www − vvv3)↾S, c = b ∪ b′ ∪ b′′.

Then ṽvv is an L∞-martingale, vvv′ is of bounded variation and µ̄c ≤ ǫ. We have

[[ṽvv 6= www↾S]] ⊆ [[τn ∧ τ ′ < maxS]]
(because www↾T ∧ τn ∧ τ ′ is a martingale)

⊆ [[τn < max T ]] ∩ [[τ ′ < max T ]] ⊆ b′ ∪ b′′.

Consequently

[[ṽvv 6= vvv + vvv′]] ⊆ [[ṽvv 6= www↾S]] ∪ [[www↾S 6= vvv1 + (www − vvv3)↾S]]
⊆ b′ ∪ b′′ ∪ [[vvv3↾S 6= vvv1]] ⊆ b′ ∪ b′′ ∪ [[vvv3↾Ŝ 6= v̂vv1]] ⊆ b′ ∪ b′′ ∪ [[vvv2 6= v̂vv1]]

(because vvv3 extends vvv2)

⊆ b′ ∪ b′′ ∪ b = c

has measure at most ǫ, as required.

643O Lemma Suppose that 〈At〉t∈T is right-continuous, and that S is a non-empty finitely full sublattice
of T with a greatest member such that inf A ∈ S for every non-empty A ⊆ S. If vvv is a near-simple integrator
with domain S, there are an L∞-martingale ṽvv and a near-simple process vvv′ of bounded variation, both with
domain S, such that [[vvv 6= ṽvv + vvv′]] has measure at most ǫ.

proof By 643N, we have an L∞-martingale ṽvv and a process vvv′0 of bounded variation, both with domain S,
such that a = [[vvv 6= ṽvv + vvv′0]] has measure at most ǫ. Express vvv, ṽvv and vvv′0 as 〈vσ〉σ∈S , 〈ṽσ〉σ∈S and 〈v′0σ〉σ∈S .
By 632Ia once more, ṽvv is locally near-simple; as S has a greatest member, ṽvv is actually near-simple. Set
uuu = 〈uσ〉σ∈S where uσ = χ(upr(1 \ a,Aσ)) for σ ∈ S, and vvv′ = uuu× (vvv − ṽvv). Then uuu is near-simple, by 632G,
so vvv′ is near-simple, by 631F(a-ii). Now for any σ ∈ S,

1 \ a ⊆ [[vσ − ṽσ − v′0σ = 0]] ∈ Aσ,

so

[[uσ 6= 0]] = upr(1 \ a,Aσ) ⊆ [[vσ − ṽσ − v′0σ = 0]]

and uuu× (vvv − ṽvv − vvv′0) = 0, that is, vvv′ = uuu× vvv′0. By 614Q(a-ii), vvv′ is of bounded variation. Finally,

[[vvv 6= ṽvv + vvv′]] ⊆ [[vvv 6= ṽvv + vvv′0]] ∪ [[vvv′0 6= vvv′]] ⊆ a ∪ [[uuu 6= 1]]

= a ∪ sup
σ∈S

(1 \ upr(1 \ a,Aσ) ⊆ a ∪ sup
σ∈S

(1 \ (1 \ a)) = a

has measure at most ǫ.

643X Basic exercises (a) Show that if t ∈ T then the region of accessibility of ť is 1 if {s : s < t} is
non-empty and has supremum t, 0 otherwise.

(b) Let 〈τn〉n∈N be the sequence of jump times associated with the standard Poisson process, as described
in 612U. Show that the region of accessibility of τn is 0 for every n ≥ 1.

(c) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process with a previsible version
uuu< = 〈u<σ〉σ∈S . Show that whenever σ, τ ∈ S, [[σ < τ ]] \ [[σ ≪ τ ]] ⊆ [[u<τ = uσ]].

643Y Further exercises (a) Suppose that τ ∈ T and that C0, . . . , Cn are non-empty subsets of T ∧ τ .
Show that there are D0, . . . , Dn such that

∅ 6= D0 ⊆ . . . ⊆ Dn ⊆ T ∧ τ , supi≤n aDi
⊇ supi≤n aCi

.
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(b) Show that 643L can be used in place of 621Hf or 628D to show that if the filtration is right-continuous
a martingale is a local integrator; now use the construction of 633Ya to see that a martingale is still a local
integrator even when the filtration is not right-continuous.

643 Notes and comments This section seems to be hard work, and I do not know of any route to Theorem
643L which doesn’t use most of the ideas here, though (as usual) my own exposition is designed for line-
by-line checking rather than transparency. Of course the complications involving regions of approachability
are quite unnecessary if we have a real-time stochastic integration structure, in which case app(τ) = 1 for
ecery τ , by 643D.

The proof here is derived, at some remove, from Protter 05, Chap. III. I note that while it depends on
some deep ideas about stochastic processes, it uses little of the theory of integration developed in §§613-617,
so could in principle be used in a proof of Theorem 622H, as suggested in 643Yb.

Version of 25.8.20

644 Pointwise convergence

It is a remarkable fact that while the Riemann-sum integral, as defined in §613, is not ‘sequentially smooth’
in the most natural adaptation of the definition in 436A (644Xb), a variation on this concept (Theorem
644H) gives us a route to a Daniell-type integral, which I will develop in §645.

644A Notation I repeat the familiar list. (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is a stochastic integration struc-
ture. Tf ⊆ T is the ideal of finite stopping times. If S is a sublattice of T , I(S) is the set of finite sublattices
of S and S ∧ τ = {σ∧ τ : σ ∈ S}, S ∨ τ = {σ∨ τ : σ ∈ S} for τ ∈ T . Mmo(S) will be the space of moderately
oscillatory processes with domain S, andMn-s(S) the space of near-simple processes. L0 will be L0(A), with
the topology of convergence in measure defined by the functional θ where θ(w) = E(|w|∧χ1) for w ∈ L0. If S
is a sublattice of T and uuu = 〈uσ〉σ∈S is an order-bounded fully adapted process, I write supuuu for supσ∈S uσ;
‖uuu‖∞ will be supσ∈S ‖uσ‖∞; if uuu is locally moderately oscillatory, uuu< will be its previsible version.

644B Definitions (a) It will be useful to have a short phrase for the following. Let S be a sublattice
of T . A family A of processes with domain S is uniformly order-bounded if supuuu∈A sup |uuu| is defined in
L0; that is, there is a ū ∈ L0 such that |uσ| ≤ ū for every σ ∈ S whenever 〈uσ〉σ∈S ∈ A.

(b) Similarly, a special class of integrators will be prominent in the rest of the chapter. If S is a sublattice
of T , M↑

n-s(S) will be the family of non-negative non-decreasing near-simple processes with domain S. Any
member of M↑

n-s(S), being near-simple, will be order-bounded (631Ba); being non-decreasing, it will be an
integrator (616Ra).

644C Lemma (The key.) Let S be a finitely full sublattice of T such that supD ∈ S whenever D ⊆ S
is countable, non-empty and bounded above in S. Let 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N be a non-increasing
sequence of non-negative moderately oscillatory processes such that infn∈N uuun<, taken in (L0)S , is zero.
Then infn∈N

∫
S uuundvvv = 0 for every vvv ∈M↑

n-s(S).
proof (a) To begin with, suppose that S has greatest and least elements and that vvv = 〈vσ〉σ∈S is jump-free.

(i) ??? If w = infn∈N

∫
S uuundvvv is non-zero, there is an ǫ ∈ ]0, 1] such that

µ̄[[2ǫ(vmaxS − vminS) < w]] ≥ 2ǫ.

PPP Take δ > 0 such that b = [[w > δ]] is non-zero, M ≥ 1 such that µ̄[[vmaxS − vminS ≥M ]] ≤ 1
3 µ̄b and set

ǫ = min(
µ̄b

3
,

δ

2M
). QQQ

(ii) Now choose a non-decreasing sequence 〈τn〉n∈N in S and sequences 〈wn〉n∈N in L0, 〈an〉n∈N in A in-
ductively, as follows. The inductive hypothesis is that wn = infi∈N

∫
S∨τn

uuuidvvv, an ⊆ [[(1 + 2−n)ǫ(vmaxS − vτn) < wn]]

and µ̄an ≥ (1 + 3−n)ǫ.

(ααα) Start with τ0 = minS, w0 = w and a0 = [[2ǫ(vmaxS − vminS) < w]].

D.H.Fremlin



58 The S-integral 644C

(βββ) Given τn, wn and an, let δ ∈ ]0, 1] be such that

[[vmaxS − vτn > 0]] \ [[2−n−1ǫ(vmaxS − vτn) > δ]]

has measure at most 3−n−1ǫ, and set η = 3−n−2ǫδ. Now iivvv(uuun) is jump-free (618Q). By 618E, there is a
τ ′n ∈ S ∨ τn such that [[τn < τ ′n]] = [[τn < maxS]] and, setting y =

∫
S∧τ ′

n
uuundvvv −

∫
S∧τn

uuundvvv, θ(y) ≤ η.

(γγγ) Now there is an I ∈ I(S∨τ ′n), containing τ ′n and maxS, such that θ(SK(uuun, dvvv)−SK′(uuun, dvvv)) ≤ η
wheneverK, K ′ ∈ I(S∨τ ′n) include I, in which case θ(SI∧τ (uuun, dvvv)−

∫
S∩[τ ′

n,τ ]
uuundvvv) ≤ 2η for every τ ∈ S∨τ ′n

(613V(ii-β)).
Take (ρ0, . . . , ρk) linearly generating the I-cells (611L). By 611I, as usual, there is a τn+1 ∈ T such that

[[τn+1 = ρi]] ⊇ [[unρi ≥ ǫ]] \ supj<i [[unρj ≥ ǫ]]

for i < k,

[[τn+1 = ρk]] ⊇ 1 \ supj<i [[unρj ≥ ǫ]],

τ ′n = ρ0 ≤ τn+1 ≤ ρk = maxS
and τn+1 ∈ S because S is finitely full. Now

[[τn+1 < maxS]] ⊆ [[unτn+1
≥ ǫ]]

and

[[ρi ∧ τn+1 < ρi+1 ∧ τn+1]] ⊆ [[ρi < τn+1]] ⊆ supi<j≤k [[τn+1 = ρj ]] ⊆ [[un,ρi∧τn < ǫ]]

for every i < k. Accordingly

SI∧τn+1
(uuun, dvvv) =

k−1∑

i=0

un,ρi∧τn+1
× (vρi+1∧τn+1

− vρi∧τn+1
)

(because (ρ0 ∧ τn+1, . . . , ρk ∧ τn+1) linearly generates the I ∧ τn+1-cells, by 611Kg)

≤
k−1∑

i=0

ǫ(vρi+1∧τn+1
− vρi∧τn+1

) = ǫ(vτn+1
− vτ ′

n
).

Setting

z = (
∫
S∩[τ ′

n,τn+1]
uuundvvv − ǫ(vτn+1

− vτ ′
n
))+ ≤ (

∫
S∩[τ ′

n,τn+1]
uuundvvv − SI∧τn+1

(uuun, dvvv))
+,

θ(z) ≤ 2η, so θ(y + z) ≤ 3η, while∫
S∩[τn.τn+1]

uuundvvv ≤ y + z + ǫ(vτn+1
− vτ ′

n
).

(δδδ) Set an+1 = an ∩ [[y + z ≤ 2−n−1ǫ(vmaxS − vτn)]]. Then

µ̄(an \ an+1) ≤ µ̄([[vmaxS − vτn > 0]] ∩ [[y + z ≥ 2−n−1ǫ(vmaxS − vτn)]]

(because an ⊆ [[wn > 0]] ⊆ [[vmaxS − vτn > 0]])

≤ µ̄([[vmaxS − vτn > 0]] ∩ [[2−n−1ǫ(vmaxS − vτn) ≤ δ]])

+ µ̄[[y + z ≥ δ]]

≤ 3−n−1ǫ+ µ̄[[y + z ≥ δ]] ≤ 2 · 3−n−1ǫ

because θ(y + z) ≤ 3−n−1ǫδ. Accordingly µ̄an+1 ≥ (1 + 3−n−1)ǫ.

(ǫǫǫ) For any i ≥ n,

∫

S∨τn+1

uuuidvvv =

∫

S∨τn

uuuidvvv −
∫

S∩[τn,τn+1]

uuuidvvv

≥ wn −
∫

S∩[τn,τn+1]

uuundvvv ≥ wn − y − z − ǫ(vτn+1
− vτ ′

n
).
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So, setting wn+1 = infi∈N

∫
S∨τn+1

uuuidvvv,

wn+1 ≥ wn − y − z − ǫ(vτn+1
− vτ ′

n
) ≥ wn − y − z − ǫ(vτn+1

− vτn).

Now

an+1 ⊆ [[(1 + 2−n)ǫ(vmaxS − vτn) < wn]] ∩ [[y + z ≤ 2−n−1ǫ(vmaxS − vτn ]])

⊆ [[(1 + 2−n−1)ǫ(vmaxS − vτn) < wn − y − z]]

⊆ [[(1 + 2−n−1)ǫ(vmaxS − vτn+1
) < wn − y − z − ǫ(vτn+1

− vτn)]]

⊆ [[(1 + 2−n−1)ǫ(vmaxS − vτn+1
) < wn+1]],

and the induction proceeds.

(iii) At the end of the induction, set τ = supn∈N τn; by hypothesis, τ ∈ S. Since 〈τn〉n∈N is non-
decreasing, 〈wn〉n∈N and 〈vmaxS − vτn〉n∈N are non-increasing. The construction in (ii) above arranged that
an+1 ⊆ an and µ̄an ≥ ǫ for every n. At the same time we have

an ⊆ [[wn > 0]] ⊆ [[τn < maxS]] = [[τn < τ ′n]] ⊆ [[τn < τ ]]

and

an+1 ⊆ [[unτn+1
≥ ǫ]] ⊆ [[uiτn+1

≥ ǫ]]

whenever n ≥ i. So for any i ∈ N, 〈τn〉n>i is a non-decreasing sequence with supremum τ and

a ⊆ [[τn < τ ]] ∩ [[uiτn ≥ ǫ]]

for every n > i. By 641M or otherwise, a ⊆ [[ui<τ ≥ ǫ]]; as i is arbitrary, a ⊆ [[infi∈N ui<τ ≥ ǫ]]. But also we
have

µ̄a = infn∈N µ̄an ≥ ǫ > 0

so infi∈N ui<τ 6= 0, contrary to hypothesis. XXX

(iv) Thus we see that if S has greatest and least elements and vvv is jump-free, infn∈N

∫
S uuundvvv = 0.

(b) Now suppose only that vvv ∈M↑
n-s(S), while still assuming that S has greatest and least elements.

(i) Consider first the case in which vvv is actually simple. Let (τ0, . . . , τm) be a breakpoint string for vvv
starting from τ0 = minS and finishing with τm = maxS. Then∫

S
uuun dvvv =

∑m−1
j=0 un<τj+1

× (vτj+1
− vτj )

for every n ∈ N (641J). So

limn→∞

∫
S
uuun dvvv =

∑m−1
j=0 limn→∞ un<τj+1

× (vτj+1
− vτj ) = 0.

(ii) If vvv is just near-simple, take ǫ > 0. Set ū = sup |uuu0|. Let δ > 0 be such that θ(v× ū) ≤ ǫ whenever
θ(v) ≤ δ. By 631U, there are non-negative non-decreasing processes vvv′, www, vvv′′, all with domain S, such that
vvv′ is simple, www is jump-free, vvv = vvv′ +www + vvv′′ and θ(supvvv′′) ≤ δ. In this case, we see that

∫

S

uuun dvvv
′′ ≤ sup

I∈I(S)

SI(uuun, dvvv
′′) ≤ ū× sup

I∈I(S)

SI(1, dvvv
′′)

(because, expressing vvv′′ as 〈v′′σ〉σ∈S , unσ × (v′′τ − v′′σ) ≤ ū× (v′′τ − v′′σ) whenever σ ≤ τ in S)
≤ ū× supvvv′′

and θ(supvvv′′) ≤ δ, so that θ(
∫
S uuun dvvv

′′) ≤ ǫ, for every n ∈ N. From (a) above we know that limn→∞

∫
S uuun dwww =

0, and from (i) here we see that limn→∞

∫
S uuun dvvv

′ = 0. So

lim supn→∞ θ(
∫
S
uuun dvvv) = lim supn→∞ θ(

∫
S
uuun dvvv

′′) ≤ ǫ.

As ǫ is arbitrary, limn→∞ θ(
∫
S uuun dvvv) = 0.
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(c) Finally, for the general case, if S is empty the result is of course trivial. Otherwise, given ǫ > 0, there
are τ , τ ′ ∈ S such that τ ≤ τ ′, θ(

∫
S∧τ uuu0dvvv) ≤ ǫ and θ(

∫
S∨τ ′ uuu0dvvv) ≤ ǫ. Consequently θ(

∫
S∧τ uuundvvv) ≤ ǫ and

θ(
∫
S∨τ ′ uuundvvv) ≤ ǫ for every n, and

infn∈N θ(
∫
S
uuundvvv) ≤ 2ǫ+ infn∈N θ(

∫
S′
uuundvvv) = 2ǫ+ θ(infn∈N

∫
S′
uuundvvv)

where S ′ = S ∩ [τ, τ ′]. If n ∈ N, uuun↾S ′ is non-negative and moderately oscillatory (615F(a-i)), and 0 ≤
(uuun↾S ′)< ≤ uuun<↾S ′ (641Gc). So infn∈N(uuun↾S ′)< = 0, while of course 〈uuun↾S ′〉n∈N is non-increasing. As
vvv↾S ′ = vvv↾(S∨τ)∧τ ′ is non-decreasing and near-simple (631F(a-iv)), (b) above tells us that infn∈N

∫
S′ uuundvvv =

0. Consequently θ(infn∈N

∫
S uuundvvv) ≤ 2ǫ; as ǫ is arbitrary, infn∈N

∫
S uuundvvv = 0, and the proof is complete.

644D Lemma Let S be a finitely full sublattice of T such that supD ∈ S whenever D ⊆ S is countable,
non-empty and bounded above in S. Let 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N be a uniformly order-bounded sequence
of moderately oscillatory processes such that 〈uuun<〉n∈N is order*-convergent in (L0)S (definition: 642B). If
vvv ∈M↑

n-s(S), limn→∞

∫
S uuundvvv is defined in L0 for the topology of convergence in measure.

proof Let ǫ > 0.

(a) Writing ū for supn∈N,σ∈S |unσ|, we have

|
∫
S
uuu dvvv| ≤ supI∈I(S) |SI(uuu, dvvv)| ≤ ū× supI∈I(S) SI(1, dvvv) = ū×

∫
S
dvvv

whenever uuu is a moderately oscillatory process with domain S and sup |uuu| ≤ ū. In particular, if n ∈ N,
the monotonic sequences 〈

∫
S infn≤i≤m uuuidvvv〉m≥n, 〈

∫
S supn≤i≤m uuuidvvv〉m≥n are order-bounded in L0 and have

limits w̄n, z̄n respectively in L0 (613Ba). If we take kn ≥ n such that

θ(
∫
S
infn≤i≤kn uuuidvvv − w̄n) ≤ 2−nǫ, θ(z̄n −

∫
S
supn≤i≤kn uuuidvvv) ≤ 2−nǫ,

and set wwwn = infn≤i≤kn uuui, zzzn = supn≤i≤kn uuui, then for any m ≥ n

θ(

∫

S

(wwwn − uuum)+dvvv) ≤ θ(

∫

S

(wwwn − inf
i≤max(m,kn)

uuui)dvvv)

≤ θ(

∫

S

wwwndvvv − w̄n) ≤ 2−nǫ

and similarly

θ(
∫
S
(uuum − zzzn)

+dvvv) ≤ 2−nǫ.

(b) Define 〈xxxn〉n∈N, 〈yyyn〉n∈N inductively by setting xxx0 = www0, yyy0 = zzz0 and

xxxn+1 = med(xxxn,wwwn+1, yyyn), yyyn+1 = med(xxxn, zzzn+1, yyyn)

for every n ∈ N. Because wwwn ≤ uuun ≤ zzzn for each n, xxxn ≤ xxxn+1 ≤ yyyn+1 ≤ yyyn for each n. We also have
yyyn − xxxn ≤ zzzn −wwwn for every n ∈ N. PPP If n = 0 this is immediate. For n > 0,

yyyn − xxxn = (xxxn−1 ∨ zzzn) ∧ yyyn−1 − (xxxn−1 ∨wwwn) ∧ yyyn−1

≤ (xxxn−1 ∨wwwn + xxxn−1 ∨ zzzn − xxxn−1 ∨wwwn) ∧ (yyyn−1 + xxxn−1 ∨ zzzn − xxxn−1 ∨wwwn)
− (xxxn−1 ∨wwwn) ∧ yyyn−1

= xxxn−1 ∨ zzzn − xxxn−1 ∨wwwn
≤ (xxxn−1 + zzzn −wwwn) ∨ (wwwn + zzzn −wwwn)− xxxn−1 ∨wwwn = zzzn −wwwn. QQQ

(c) Next, θ(
∫
S(xxxn − uuum)+dvvv) ≤ (2− 2−n)ǫ whenever n ≤ m. PPP Induce on n. For n = 0 we have

θ(
∫
S
(xxx0 − uuum)+dvvv) = θ(

∫
S
(www0 − uuum)+dvvv) ≤ ǫ

by (a). For the inductive step to n+ 1 ≤ m, we have xxxn+1 ≤ xxxn ∨wwwn+1 so
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θ(

∫

S

(xxxn+1 − uuum)+dvvv) ≤ θ(

∫

S

((xxxn − uuum)+ + (wwwn+1 − uuum)+)dvvv)

≤ θ(

∫

S

(xxxn − uuum)+dvvv) + θ(

∫

S

(wwwn+1 − uuum)+dvvv)

≤ (2− 2−n)ǫ+ 2−n−1ǫ = (2− 2−n−1)ǫ. QQQ

Similarly, θ(
∫
S(uuum − yyyn)

+dvvv) ≤ (2− 2−n)ǫ whenever n ≤ m.

(d) Set uuu′n = med(xxxn,uuun, yyyn) for n ∈ N. Then

(uuun − uuu′n)
+ ≤ uuun − uuun ∧ yyyn = (uuun − yyyn)

+

and similarly (uuu′n − uuun)
+ ≤ (xxxn − uuun)

+, so

θ(

∫

S

uuundvvv −
∫

S

uuu′ndvvv) ≤ θ(

∫

S

|uuun − uuu′n|dvvv) = θ(

∫

S

((uuun − uuu′n)
+ + (uuu′n − uuun)

+)dvvv)

≤ θ(

∫

S

(uuun − yyyn)
+dvvv) + θ(

∫

S

(xxxn − uuun)
+dvvv) ≤ 4ǫ

for every n.

(e)Observe next that all thewwwn, zzzn, xxxn and yyyn are moderately oscillatory processes, and that 〈yyyn−xxxn〉n∈N

is a non-increasing sequence of non-negative moderately oscillatory processes. Now for every n we have

infm≥nuuum< ≤ infn≤i≤kn uuum< = (infn≤i≤kn uuum)< = wwwn<

because uuu 7→ uuu< is a Riesz homomorphism (641G(e-i)), and similarly zzzn< ≤ supm≥n um<. Consequently

inf
n∈N

(yyyn< − xxxn<) ≤ inf
n∈N

(zzzn< −wwwn<)

(by (b))

≤ inf
n∈N

( sup
m≥n

uuum< − inf
m≥n

uuum<) = 0

because 〈uuun<〉n∈N is order*-convergent, so infn∈N supm≥n uuum< = supn∈N infm≥n uuum< (642B).

(f) By 644C, limn→∞

∫
S(yyyn−xxxn)dvvv = 0. As vvv is non-decreasing, uuu 7→

∫
S uuu dvvv is a positive linear operator,

so limn→∞

∫
S yyyndvvv and limn→∞

∫
S xxxndvvv exist and are equal. Since xxxn ≤ uuu′n ≤ yyyn for every n, the common

limit of these integrals is also limn→∞

∫
S uuu

′
ndvvv. Accordingly

lim sup
m,n→∞

θ(

∫

S

uuumdvvv −
∫

S

uuundvvv)

≤ sup
m∈N

θ(

∫

S

uuumdvvv −
∫

S

uuu′mdvvv) + lim sup
m,n→∞

θ(

∫

S

uuu′mdvvv −
∫

S

uuu′ndvvv)

+ sup
n∈N

θ(

∫

S

uuu′ndvvv −
∫

S

uuundvvv)

≤ 4ǫ+ 0 + 4ǫ = 8ǫ

by (d). As ǫ is arbitrary, 〈
∫
S uuundvvv〉n∈N is Cauchy, therefore convergent.

644E Corollary Let S be a finitely full sublattice of T such that supD ∈ S whenever D ⊆ S is
countable, non-empty and bounded above in S, and 〈uuun〉n∈N a uniformly order-bounded sequence of mod-
erately oscillatory processes with domain S such that 〈uuun<〉n∈N is order*-convergent to 0 in (L0)S . Then
limn→∞

∫
S uuundvvv = 0 for vvv ∈M↑

n-s(S).
proof Apply 644D to the sequence 〈wwwn〉n∈N where www2n = uuun and www2n+1 = 0 for every n.
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644F Lemma Let S be a sublattice of T , A a uniformly order-bounded subset of Mmo(S), and vvv an
integrator with domain S.

(a)(i) {
∫
S uuu dvvv : uuu ∈ A} is topologically bounded in L0.

(ii) if S is non-empty,

limτ↑S supuuu∈A θ(
∫
S∨τ

uuu dvvv) = limτ↓S supuuu∈A θ(
∫
S∧τ

uuu dvvv) = 0.

(b) If vvv is non-decreasing, then {
∫
S uuu dvvv : uuu ∈ A} is order-bounded in L0.

proof (a) Let ū ∈ L0 be such that sup |uuu| ≤ ū for every uuu ∈ A.

(i) Take any ǫ > 0. Then there are an M > 0 such that [[ū ≥M ]] has measure at most ǫ, and a δ > 0
such that θ(δz) ≤ ǫ for every z ∈ QS(dvvv). Suppose that uuu ∈ A and set uuu′ = med(−M1(S),uuu,M1(S)). If
I ∈ I(S) then SI( 1

M
uuu′, dvvv) ∈ QS(dvvv) so θ(

δ
M
SI(uuu

′, dvvv)) ≤ ǫ. Also

[[SI(uuu, dvvv) 6= SI(uuu, dvvv)]] ⊆ [[uuu 6= uuu′]]

(613Gd)

= [[sup |uuu| > M ]] ⊆ [[ū ≥M ]]

has measure at most ǫ, so

θ(
δ

M
SI(uuu, dvvv)) ≤ ǫ+ θ(

δ

M
SI(uuu

′, dvvv)) ≤ 2ǫ.

Taking the limit as I ↑ S, θ( δ
M

∫
S uuu dvvv) ≤ 2ǫ; and this is true for every uuu ∈ A. As ǫ is arbitrary, {

∫
S uuu dvvv :

uuu ∈ A} is topologically bounded.

(ii)(ααα) ??? Suppose, if possible, that such that ǫ = 1
3 lim supτ↑S supuuu∈A θ(

∫
S∨τ uuu dvvv) is greater than 0.

As just above, take M ≥ 1 such that [[ū ≥M ]] has measure at most ǫ, and set η =
ǫ

4M
. Take γ > 0, m ≥ 1,

r ≥ m and k ≥ 1 such that

θ( 1
γ
z) < η for every z ∈ QS(dvvv),

mη ≥ 2γ, 1− r!

rm(r−m)!
≤ 1

2
ηm, 2kηm ≥ η,

and set n = rk.
Choose 〈τi〉i≤n inductively, as follows. Start from any τ0 ∈ S such that supuuu∈A θ(

∫
S∨τ0

uuu dvvv) > 2ǫ. Given

that i < n, τi ∈ S and supuuu∈A θ(
∫
S∨τi

uuu dvvv) > 2ǫ, take uuui ∈ A such that θ(
∫
S∨τi

uuui dvvv) > 2ǫ, and set

uuu′i = med(−M1(S),uuui,M1(S)). As before,

θ(
∫
S∨τi

uuu′i dvvv) ≥ θ(
∫
S∨τi

uuu′i dvvv)− µ̄[[uuu′i 6= uuui]] ≥ θ(
∫
S∨τi

uuu′i dvvv)− µ̄[[ū ≥M ]] > ǫ.

Let Ii ∈ I(S∨τi) be such that θ(SIi(uuu
′
i, dvvv)) > ǫ, and take τi+1 ∈ S∨max Ii such that supuuu∈A θ(

∫
S∨τi+1

uuu dvvv) >

2ǫ. Continue.
Then τ0 ≤ . . . ≤ τn in S, and if i < n then Ii ∈ I(S ∩ [τi, τi+1]) for each i < n and

sup{θ(z) : z ∈ QS∩[τi,τi+1](dvvv)} ≥ θ(SIi(
1
M
uuu′i, dvvv)) ≥

1

M
θ(SIi(uuu

′
i, dvvv)) >

ǫ

M
= 4η.

So by 616Hc there is a z ∈ QS(dvvv) such that

η ≤ µ̄[[|z| ≥ γ]] ≤ θ( 1
γ
w),

and we chose γ so that this would not be possible. XXX
Thus limτ↑S supuuu∈A θ(

∫
S∨τ uuu dvvv) = 0.

(βββ) The same argument works downwards. ??? If ǫ = 1
3 lim supτ↓S supuuu∈A θ(

∫
S∧τ uuu dvvv) is greater than

0, take M ≥ 1, η > 0, γ > 0, r ≥ m ≥ 1, k ≥ 1 and n = mk as before, and choose τn ≥ . . . ≥ τ0,
uuun−1, . . . ,uuu0 and In−1, . . . , I0 such that for n ≥ i > 0
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uuui−1 ∈ A, θ(
∫
S∧τi

uuui−1 dvvv) > 2ǫ, Ii−1 ∈ I(S ∧ τi),

θ(SIi−1
(med(−M1(S),uuui−1,M1(S)), dvvv)) > ǫ, τi−1 ≤ min Ii−1.

Once again we finish with τ0 ≤ . . . ≤ τn in S, and Ii ∈ I(S ∩ [τi, τi+1]) for each i < n, while

sup{θ(w) : w ∈ QS∩[τi,τi+1](dvvv)} ≥ 4η

for each i < n, which is impossible. XXX So limτ↓S supuuu∈A θ(
∫
S∧τ uuu dvvv) = 0.

(b) A is upwards-directed; because vvv is non-decreasing, B = {
∫
S uuu dvvv : uuu ∈ A} is upwards-directed; being

topologically bounded, by (a), it is bounded above in L0 (613B(f-v)). Now −B = B is bounded above, B is
bounded below and B is order-bounded.

644G Lemma Suppose that 〈At〉t∈T is right-continuous, and S is a non-empty order-convex subset of
T . On the space Mmo = Mmo(S) of moderately oscillatory processes, we have a linear space topology S

defined by functionals of the form uuu 7→ θ(
∫
S |uuu|dvvv) where vvv ∈ M↑

n-s(S). Let vvv = 〈vσ〉σ∈S be a near-simple

integrator. Then uuu 7→
∫
S uuu dvvv :Mmo → L0 is uniformly continuous, for the uniformity induced by S, on any

uniformly order-bounded set in Mmo.

proof For an integrator vvv with domain S and u ∈Mmo, write ψvvv(u) =
∫
S uuu dvvv.

(a) I should begin by noting straight away that if vvv ∈M↑
n-s(S) and we set φvvv(uuu) = θ(ψvvv|uuu|) for uuu ∈Mmo,

then φvvv is an F-seminorm. PPP (i) If uuu, uuu′ ∈Mmo, then |uuu+ uuu′| ≤ |uuu|+ |uuu′|. As vvv is non-decreasing,

φvvv(uuu+ uuu′) = ψvvv(|uuu+ uuu′|) ≤ ψvvv(|uuu|+ |uuu′|) = ψvvv(|uuu|) + ψvvv(|uuu′|) = φvvv(uuu) + φvvv(uuu
′),

(ii) If uuu ∈ Mmo and α ∈ R, then φvvv(αuuu) = |α|φvvv(uuu), so limα→0 φvvv(αuuu) = 0 and φvvv(αuuu) ≤ φvvv(uuu) if |α| ≤ 1.
QQQ

Accordingly we have a linear space topology S on Mmo defined by {φvvv : vvv ∈M↑
n-s(S)}.

It is worth noting that if vvv, vvv′ ∈ M↑
n-s(S) then vvv + vvv′ ∈ M↑

n-s(S), while φvvv+vvv′ = φvvv + φvvv′ . So if G is any
S-neighbourhood of 0, there are vvv ∈M↑

n-s(S) and δ > 0 such that {uuu : uuu ∈Mmo, φvvv(uuu) ≤ δ} ⊆ G.

(b) From now on, I take it that A ⊆ Mmo is a uniformly order-bounded set and vvv ∈ Mn-s(S) is an
integrator. Let ū ∈ L0 be such that sup |uuu| ≤ ū for every uuu ∈ A. The argument proceeds by looking at a
succession of special cases.

If vvv is actually non-negative and non-increasing, then of course ψvvv : A→ L0 is uniformly continuous, just
because

|ψvvv(uuu)− ψvvv(uuu
′)| = |ψvvv(uuu− uuu′)| ≤ ψvvv(|uuu− uuu′|) = φvvv(uuu− uuu′).

So if vvv is of bounded variation, therefore expressible as the difference of members of M↑
n-s(S) (631L), then

ψvvv is a difference of uniformly continuous processes, therefore uniformly continuous, on A.

(c) (The key.) Suppose that S has greatest and least elements, M = ‖ū‖∞ is finite and vvv is an L∞-
martingale. Then ‖vσ‖2 ≤ ‖vmaxS‖2 ≤ ‖vmaxS‖∞ for every σ ∈ S (621Ca) and vvv is actually ‖ ‖2-bounded.
Let vvv∗ = 〈v∗σ〉σ∈S be the quadratic variation of vvv. Applying 624I with uuu = 1,

E(v∗maxS) = E((vmaxS − vminS)
2) ≤ E(v2maxS) <∞.

Take any ǫ > 0. Let δ ∈ ]0, 1] be such that (2M +1)(δ+2ME(v∗maxS × χc)) ≤ ǫ2 whenever µ̄c ≤ δ. Take uuu,
www ∈ A such that θ(

∫
S |uuu−www|dvvv∗) ≤ δ2. In this case, setting c = [[

∫
S |uuu−www|dvvv∗ > δ]], µ̄c ≤ δ. Consequently

‖
∫

S

|uuu−www|dvvv∗‖1 ≤ δ + E(χc×
∫

S

|uuu−www|dvvv∗) ≤ δ + E(χc× 2M

∫

S

dvvv∗)

(because |uuu−www| ≤ 2M1)

= δ + E(χc× 2Mv∗maxS) ≤
ǫ2

2M+1
.

We see that
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(uuu−www)2 = |uuu−www||uuu+www| ≤ 2M |uuu−www|,
so ‖

∫
S(uuu−www)2dvvv∗‖1 ≤ ǫ2. Now

θ(

∫

S

uuu dvvv −
∫

S

www dvvv) = θ(

∫

S

(uuu−www)dvvv) ≤ ‖
∫

S

(uuu−www)dvvv‖1

≤ ‖
∫

S

(uuu−www)dvvv‖2 =

√
‖
∫

S

(uuu−www)2dvvv∗‖1

(624I again)

≤ ǫ.

As ǫ is arbitrary (and vvv∗ is non-negative and non-decreasing and near-simple, by 631Ja), ψvvv is uniformly
continuous on A.

(d) Next, suppose that S has greatest and least elements and ‖ū‖∞ is finite. Take ǫ > 0. Since
S = [minS,maxS] is finitely full, order-closed in T and has a greatest member, there are an L∞-martingale
ṽvv and a near-simple process vvv′ of bounded variation such that µ̄[[vvv 6= ṽvv + vvv′]] ≤ ǫ (643O). Now

θ(ψvvv(uuu)− ψṽvv(uuu)− ψvvv′(uuu)) ≤ µ̄[[ψvvv(uuu) 6= ψṽvv(uuu) + ψvvv′(uuu)]]

≤ µ̄[[vvv 6= ṽvv + vvv′]] ≤ ǫ

for every uuu ∈ A, while ψṽvv + ψvvv′ is uniformly continuous on A, by (b) and (c). As ǫ is arbitrary, ψvvv is
uniformly continuous on A.

(e) Suppose just that S has greatest and least elements, while ū is defined in L0 and vvv is a near-simple
integrator. Let ǫ > 0. Then there is an M ≥ 0 such that µ̄[[ū > M ]] ≤ ǫ. Set A1 = {uuu : uuu ∈ Mmo,
‖uuu‖∞ ≤ M} and h̄(uuu) = med(−M1,uuu,M1) for uuu ∈ A. Then |h̄(uuu) − h̄(www)| ≤ |uuu − www| for all uuu, www ∈ A,
so h̄ : A → A1 is uniformly continuous; by (d), ψvvv↾A1 is uniformly continuous, so the composition ψvvvh̄ is
uniformly continuous. Next,

θ(ψvvv(uuu)− ψvvv(h̄(uuu))) ≤ µ̄[[ψvvv(uuu) 6= ψvvv(h̄(uuu))]] ≤ µ̄[[uuu 6= h̄(uuu)]] ≤ µ̄[[ū > M ]] ≤ ǫ

for every uuu ∈ A. As ǫ is arbitrary, ψvvv is uniformly approximated on A by uniformly continuous functions
and is itself uniformly continuous.

(f) Finally, for the general case, suppose only that S is order-convex, A ⊆ Mmo is uniformly order-
bounded and that vvv is a near-simple integrator with domain S. If S is empty then #(A) ≤ 1 and trivially
we have a uniformly continuous function. Otherwise, let ǫ > 0. By 644F(a-ii), there is a τ ∈ S such that
supuuu∈A θ(

∫
S∧τ uuu dvvv) ≤ ǫ; applying the other half of 644F(a-ii) to vvv↾S ∨ τ and {uuu↾S ∨ τ : uuu ∈ A}, we see

that there is a τ ′ ∈ S ∨ τ such that supuuu∈A θ(
∫
S∨τ ′ uuu dvvv) ≤ ǫ. (Of course this step depends on knowing that

vvv↾S ∨ τ is a near-simple integrator, by 616P(b-ii) and 631F(a-iv), while uuu↾S ∨ τ is moderately oscillatory
for every uuu ∈Mmo, by 615F(a-i) again; clearly {uuu↾S ∨ τ : uuu ∈ A} will be uniformly order-bounded if A is.)

Now consider S ′ = S ∩ [τ, τ ′] = [τ, τ ′], vvv↾S ′ and {uuu↾S ′ : uuu ∈ A}. From (e) and the last remark in (a)
above we know that there are a non-negative, non-decreasing process ṽvv′ = 〈ṽ′σ〉σ∈S′ and δ > 0 such that
θ(
∫
S′ uuu− uuu′ dvvv) ≤ ǫ whenever uuu, uuu′ ∈ A and

∫
S′ |uuu− uuu′|dṽvv′ ≤ δ. Define ṽvv = 〈ṽσ〉σ∈S by setting

ṽσ = ṽ′med(τ,σ,τ ′) × χ([[τ ≤ σ]] ∩ [[σ < τ ′]]) + ṽ′τ ′ × χ[[τ ′ ≤ σ]]

for σ ∈ S. It is straightforward to check that ṽvv is fully adapted (use 612C), non-negative, non-decreasing
and order-bounded (with greatest value v′τ ′), while ṽvv↾S ′ = ṽvv′; and by 631F(a-iv) again ṽvv is near-simple.

Suppose that uuu ∈ A. Then

θ(
∫
S
uuu dvvv −

∫
S′
uuu dvvv) = θ(

∫
S∧τ

uuu dvvv +
∫
S∨τ ′

uuu dvvv) ≤ 2ǫ

by the choice of τ and τ ′. Now if uuu, uuu′ ∈ A and θ(
∫
S |uuu− uuu′|dṽvv) ≤ δ, we shall have

θ(
∫
S′

|uuu− uuu′|dṽvv′) = θ(
∫
S′

|uuu− uuu′|dṽvv) ≤ δ,

so that θ(
∫
S′(uuu−uuu′)dvvv) ≤ ǫ and θ(

∫
S(uuu−uuu′)dvvv) ≤ 5ǫ. As ǫ is arbitrary, uuu 7→

∫
S uuu dvvv : A→ L0 is uniformly

continuous, and the proof is complete.
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644H Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of
T and 〈uuun〉n∈N a uniformly order-bounded sequence of moderately oscillatory processes with domain S
such that 〈uuun<〉n∈N is order*-convergent in (L0)S . Then limn→∞

∫
S uuundvvv is defined for every near-simple

integrator vvv with domain S. If 〈uuun<〉n∈N is order*-convergent to uuu<, where uuu is moderately oscillatory, then
limn→∞

∫
S uuundvvv =

∫
S uuu dvvv.

proof If 〈nk〉k∈N is strictly increasing and we set wwwk = |uuunk+1
− uuunk

| for each k, 〈wwwk〉k∈N is a uniformly
order-bounded sequence of moderately oscillatory processes such that 〈wwwk<〉k∈N is order*-convergent to 0
(apply the last sentence of 642Ba with g(α, β) = |α−β|). So 644E tells us that limk→∞

∫
S wwwk dvvv = 0 for every

vvv ∈ M↑
n-s(S). As 〈nk〉k∈N is arbitrary, limm,n→∞ θ(

∫
S |uuun − uuum|dvvv) = 0 for every vvv ∈ M↑

n-s(S). By 644G,

limm,n→∞

∫
S uuun − uuumdvvv = 0 for every near-simple integrator vvv with domain S, that is, limn→∞

∫
S uuundvvv is

defined for every near-simple integrator vvv with domain S.
If we know that there is a moderately oscillatory process uuu such that 〈uuun<〉n∈N order*-converges to

uuu<, then we can apply the trick of 644E to a sequence alternating between uuun − uuu and zero to see that
limn→∞

∫
S uuun dvvv =

∫
S uuu dvvv.

644X Basic exercises (a) Let S be a sublattice of T , and 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N a uniformly
order-bounded sequence in (L0)S which is order*-convergent to uuu ∈ (L0)S . Show that uuu is order-bounded.

>>>(b) Give an example of a simple process vvv and a non-increasing sequence 〈uuun〉n∈N of simple processes,
all these processes having the same domain S, such that infn∈N uuun = 0 but 〈

∫
S uuundvvv〉n∈N is not convergent

to 0. (Hint : take T = [0,∞[, A = {0, 1}.)

(c) In 644G, show that the topology S described there is coarser than the ucp topology.

(d)(i) Suppose that U and V are linear topological spaces and T : U → V is a linear operator. Let A ⊆ U
be a non-empty set such that T ↾(A − A) is continuous at 0. Show that T ↾A is uniformly continuous. (ii)
Use this to simplify the formulae in the proof of 644G.

(e) In 644G, suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb, 618Xa, 622Xd,
626Xa, 627Xa and 642Xd. Show that the topology S on Mo-b(Tf ) corresponds to the topology on the space

of bounded functions in C̃´´ (615Xf) generated by functionals of the form f 7→
∫
|f<|dν where ν is a totally

finite Radon measure on [0,∞[, taking f<(0) = 0 and f<(t) = lims↑t f(s) for t > 0.

644 Notes and comments The essence of the Lebesgue integral lies in the convergence theorems of
§123, all concerning limits of integrals of sequences of functions. Here for the first time in this volume
we have a corresponding result for limits of Riemann-sum integrals. The real content lies in the case in
which the sequence 〈uuun〉n∈N of integrands is a non-increasing sequence of non-negative processes such that
infn∈N uuun< = 0 and the integrator is non-decreasing (644C). Moving to the case of a uniformly order-bounded
sequence 〈uuun〉n∈N such that 〈uuun<〉n∈N is order*-convergent in (L0)S (644D) is not quite trivial, but is really
a result about positive linear operators on Riesz spaces. The point here is that Mmo(S) is a Riesz subspace
of (L0)S , but is not as a rule sequentially order-closed.

To handle general integrators, the first step is to deal with L2-martingales (part (c) of the proof of 644G).
At this point it seems that we have to move up a gear, assuming right-continuity of the filtration and
order-convexity of the sublattice S (644G) so as to apply the Fundamental Theorem of Martingales. But
under these conditions we get a result more or less corresponding to the Lebesgue’s Dominated Convergence
Theorem (644H). When adapting this to define a second kind of integral (§645), it will be helpful to refer
to a new uniformity on the space of moderately oscillatory processes (644G). The point is that this is
much coarser than the uniformity corresponding to the ucp topology, but still makes integration uniformly
continuous on uniformly order-bounded sets.
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Version of 29.5.21

645 Construction of the S-integral

We are now in a position to define a sequentially smooth integral which corresponds, in a sense, to
Lebesgue-Stieltjes integrals on the real line. The objective is to integrate bounded previsible processes with
respect to near-simple integrators, and I set this up as a kind of Daniell integral (see 436Ya) based on
ideas in §644. Since simple and near-simple and mderately oscillatory processes, as I have defined them in
this volume, are often not previsible, we need to deal throughout with their previsible versions; and as our
integrals take values in L0 rather than in R or C, we have to calculate with the functional θ rather than
with a modulus or norm.

The key to the programme is really Lemma 644G. We saw there that (subject to certain conditions)
integration with respect to an arbitrary near-simple integrator is controlled by integration with respect to
appropriate non-decreasing processes. We can therefore do nearly all the work of the present section with
non-decreasing integrators, which are very much easier to handle, even though our real aim is to understand
integration with respect to martingales. With a non-decreasing integrator, as with an ordinary non-negative
measure, integration is a positive linear operator. This makes it possible to consider upper integrals, which

are what, in effect, we have in Definition 645Bb. Based on the functionals θ̂#vvv there, we have a linear
space topology TS-i on a large spaceMpo-b of order-bounded processes (645F). As with ordinary integration,
unbounded sequences of integrands can be uncontrollable, so we have to find types of domination – preferably
weaker than simply assuming uniform ‖ ‖∞-boundedness – which will be adequate to ensure convergence
of sequences of integrals. (See 645G-645L.) These bring us to a definition of what I call the ‘S-integral’ in
645P, in a form which makes it easy to check that it is bilinear in integrand and integrator (645Rb), and
with the tools to show that it is sequentially smooth in the integrand (645T).

645A Notation This section brings together many ideas, and there is a correspondingly long list of
notations to recall. As always, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. For
a sublattice A of T and τ ∈ T , A ∧ τ = {σ ∧ τ : σ ∈ A} and A ∨ τ = {σ ∨ τ : σ ∈ A}. L0 = L0(A) (612A)
and θ(w) = E(|w| ∧ χ1) for w ∈ L0 (613Ba). If k ≥ 1 and h : Rk → R is Borel measurable, I will write h̄ for
any of the associated functions from (L0)k to L0 (612A, 619E) and from ((L0)S)k to (L0)S (612B, 619F).

If S is a sublattice of T , uuu, vvv are processes with domain S, and I is a finite sublattice of S, then SI(uuu, dvvv)
will be the corresponding Riemann sum (613Fb), QS(dvvv) the capped-stake variation set (616B) and

∫
S uuu dvvv

(if it exists) the Riemann-sum integral defined in 613H/613Na. 1(S) will be the constant process with domain
S and value χ1.

If S is a sublattice of T , Mo-b(S) is the f -algebra of order-bounded processes with domain S (614Fc); for
uuu = 〈uσ〉σ∈S ∈Mo-b(S), sup |uuu| = supσ∈S |uσ|. Mmo(S) is the f -algebra of moderately oscillatory processes
with domain S (615Fa), and Mmo(S)+ its positive cone. If uuu = 〈uσ〉σ∈S ∈ Mmo(S), uuu< = 〈u<σ〉σ∈S will
always be its previsible version (641L).Mfa(S),Msimp(S) andMn-s(S) are the spaces of fully adapted, simple
and near-simple processes with domain S (612I, 612L, 631Fa). M↑

n-s(S) is the cone of non-negative non-
decreasing near-simple processes with domain S (644Bb), and Mbv(S) is the space of processes of bounded
variation with domain S (614K).

645B Definitions Let S be a sublattice of T .

(a)(i) I will say that a fully adapted process xxx with domain S is previsibly order-bounded if there is
a non-negative uuu ∈ Mmo(S) such that |xxx| ≤ uuu<. Mpo-b(S) will be the set of previsibly order-bounded fully
adapted processes xxx with domain S.

(ii) I will say that a set A ⊆ Mpo-b(S) is uniformly previsibly order-bounded if there is a non-
negative uuu ∈ Mmo(S) such that |xxx| ≤ uuu< for every xxx ∈ A. A uniformly previsibly order-bounded set is
uniformly order-bounded in the sense of 644Bb, by 641G(a-vii-γ).

(b) For xxx ∈Mpo-b(S) and vvv ∈M↑
n-s(S), write θ̂#vvv (xxx) for
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inf{sup
n∈N

θ(

∫

S

uuun dvvv) : 〈uuun〉n∈N is a uniformly order-bounded non-decreasing sequence

of non-negative processes in Mmo(S) and |xxx| ≤ sup
n∈N

uuun<}.

For the avoidance of doubt, perhaps I should say that the supremum here is to be taken in (L0)S , so that
(in the notation of 641F) we have |xσ| ≤ supn∈N un<σ for every σ ∈ S.

(c) If vvv = 〈vσ〉σ∈S , vvv
′ = 〈v′σ〉σ∈S are two fully adapted processes with domain S, I will write vvv 4 vvv′ if

vvv′ − vvv is non-decreasing, that is, vτ − vσ ≤ v′τ − v′σ whenever σ ≤ τ in S, that is, ∆vvv ≤ ∆vvv′ where ∆vvv and
∆vvv′ are the associated adapted interval functions (613Cc).

In this case, if uuu is any non-negative fully adapted process with domain S,
∫
S uuu dvvv ≤

∫
S uuu dvvv

′ if both
integrals are defined (616R(b-i), applied to vvv′ − vvv).

645C A standard fragment of real analysis didn’t quite get into §4A3.
Lemma (a) Let X be a metrizable space. Then the set of Borel measurable real-valued functions on X is
the smallest subset U of RX which contains every bounded continuous real-valued function and is such that
limn→∞ hn ∈ U whenever 〈hn〉n∈N is a sequence in U which has a limit in R at every point and which is
either non-decreasing or non-increasing.

(b) If k ≥ 1 and h : Rk → R is a locally bounded function, then there is a continuous non-decreasing
function g : R → [0,∞[ such that |h(x)| ≤ g(‖x‖) for every x ∈ Rk.

(c) If k ≥ 1 and U is a set of real-valued functions on Rk such that (α) every continuous function belongs
to U (β) limn→∞ fn ∈ U whenever 〈fn〉n∈N is a pointwise convergent sequence in U and supn∈N |fn| is locally
bounded, then every locally bounded Borel measurable function on Rk belongs to U .

proof (a)(i)We know that the set of Borel measurable functions is closed under pointwise limits of sequences
(121E-121F) and that every continuous function is Borel measurable (4A3Cd), so every member of U is Borel
measurable.

(ii) In the other direction, we can argue as follows. Write Cb for the space of bounded continuous
functions on X, and let V be the family of subsets V of RX such that Cb(X) ⊆ V and V is closed under
monotone sequential limits. Then U =

⋂
V.

(ααα) If g ∈ Cb, then it is easy to check that {h : h ∈ RX , g + h ∈ U} belongs to V, so includes U .
Thus g + h ∈ U for every g ∈ Cb and h ∈ U . Next, {g : g ∈ RX , g + h ∈ U for every h ∈ U} belongs to V,
so U is closed under addition. And if α ∈ R, {h : h ∈ RX , αh ∈ U} ∈ V, so αU ⊆ U . Thus U is a linear
subspace of RX .

(βββ) If G ⊆ X is open then αχG ∈ U . PPP If G = X then χG ∈ Cb and we can stop. Otherwise, let ρ
be a metric on X defining its topology, and set hn(x) = min(1, 2nρ(x,X \ G)) for n ∈ N and x ∈ X; then
〈hn〉n∈N is a non-decreasing sequence in Cb with limit χG, so χG ∈ U . QQQ

(γγγ) Set E = {E : E ⊆ X, χE ∈ U}. Then E satisfies (i) of 136A, so is a Dynkin class; as it contains
every open set, it contains every Borel set, by the Monotone Class Theorem (136B).

(δδδ) Because U is a linear subspace of RX , it contains any linear combination of indicator functions
of Borel sets. But any non-negative Borel measurable function is expressible as the limit of a non-decreasing
sequence of such simple Borel measurable functions, so belongs to U ; and now every Borel measurable
function is the difference of non-negative Borel measurable functions, so belongs to U .

(b) For n ∈ N, set γn = sup{|h(x)| : x ∈ Rk, ‖x‖ ≤ n}; define g : R → [0,∞[ by setting

g(α) = γ1 if α ≤ 0,

= (α− n)γn+2 + (n+ 1− α)γn+1 if n ∈ N and n ≤ α ≤ n+ 1.

Then g is continuous and non-decreasing and |h(x)| ≤ g(‖x‖) for every x.
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(c)(i) Take any continuous g : Rk → [0,∞[ and set Vg = {f : f ∈ RRk

, med(−g, f, g) ∈ U}. Then Vg
contains all continuous functions and is closed under sequential pointwise convergence, so contains every
Borel measurable function on Rk, by (a).

(ii) If now h : Rk → R is any locally bounded Borel measurable function, there is a continuous g such
that |h| ≤ g, by (b), while h ∈ Vg, so that h = med(−g, h, g) belongs to U .

645D Lemma Let S be a sublattice of T .
(a)(i) If xxx0, . . . ,xxxk−1 ∈ Mpo-b = Mpo-b(S) and h : Rk → R is a locally bounded Borel measurable

function, then h̄(xxx0, . . . ,xxxk−1)× 1(S)
< ∈Mpo-b; and if h(0, . . . , 0) = 0, then h̄(xxx0, . . . ,xxxk−1) ∈Mpo-b.

(ii) Mpo-b is an f -subalgebra of Mo-b(S).
(iii) uuu< ∈Mpo-b for every uuu ∈Mo-b(S).
(iv) If z ∈ L0(A ∩⋂

σ∈S Aσ) then zxxx (definition: 612De) belongs to Mpo-b for every xxx ∈Mpo-b.

(b) Suppose that vvv ∈M↑
n-s(S). Then θ̂#vvv is an F-seminorm and if xxx, xxx′ ∈Mpo-b, |xxx| ≤ |xxx′| and α ∈ R then

θ̂#vvv (xxx) ≤ θ̂#vvv (xxx
′) and θ̂#vvv (αxxx) ≤ max(1, |α|)θ̂#vvv (xxx).

(c) If now we have another vvv′ ∈ M↑
n-s(S) and vvv 4 vvv′ in the sense of 645Bc, θ̂#vvv (xxx) ≤ θ̂#vvv′(xxx) for every

xxx ∈Mpo-b(S).

proof (a)(i) Let uuu ∈ M+
mo be such that

∑k−1
i=0 |xxxi| ≤ uuu<. By 645Cb, there is a continuous non-decreasing

g : R → [0,∞[ such that |h(x)| ≤ g(‖x‖) for every x ∈ Rk; it follows that

|h̄(xxx0, . . . ,xxxk−1)× 1(S)
< | ≤ ḡ ◦uuu< × 1(S)

< = (ḡuuu)<

(641Gd) and h̄(xxx0, . . . ,xxxk−1)× 1(S)
< ∈Mpo-b. If in addition h(0, . . . , 0) = 0, then

h̄(xxx0, . . . ,xxxk−1) = h̄(xxx0 × 1(S)
< , . . . ,xxxk−1 × 1(S)

< )

= h̄(xxx0, . . . ,xxxk−1)× 1(S)
<

(by 619G(e-ii), because 1(S)
< × 1(S)

< = (1S × 1S)< = 1(S)
< )

∈Mpo-b.

(ii)(ααα) If xxx ∈Mpo-b, there is a non-negative uuu ∈Mmo =Mmo(S) such that |xxx| ≤ uuu<. We know that uuu
is order-bounded, while sup |uuu<| ≤ sup |uuu|, as in 641G(a-vii), so uuu< and xxx are order-bounded.

(βββ) As noted in 612Bc, (i) just above is enough to ensure that Mpo-b is an f -aslgebra.

(δδδ) As in 612Bc, (β) and (γ) are enough to ensure that Mpo-b is an f -algebra.

(ii) This is elementary; all we need to know is that |uuu| is moderately oscillatory and |uuu<| = |uuu|<
(641G(e-i)).

(iii) There is a uuu ∈M+
mo such that |xxx| ≤ uuu<; now |z|uuu = |z|1×uuu is moderately oscillatory (615F(a-iii))

and non-negative, and |zxxx| ≤ |z|uuu< = (|z|uuu)< (641G(a-iv)), so zxxx is previsibly order-bounded.

(iv) This was covered in (i-γ) above.

(b)(i) θ̂#vvv (xxx + x̃xx) ≤ θ̂#vvv (xxx) + θ̂#vvv (x̃xx) for all xxx, x̃xx ∈ Mpo-b. PPP For any ǫ > 0, there are non-decreasing
uniformly order-bounded sequences 〈uuun〉n∈N, 〈ũuun〉n∈N of non-negative moderately oscillatory processes, all
with domain S, such that

|xxx| ≤ supn∈N uuun<, supn∈N θ(
∫
S
uuun dvvv) ≤ θ̂#vvv (xxx) + ǫ,

|x̃xx| ≤ supn∈N ũuun<, supn∈N θ(
∫
S
ũuun dvvv) ≤ θ̂#vvv (x̃xx) + ǫ.

Now 〈uuun + ũuun〉n∈N is a non-decreasing uniformly order-bounded sequence of non-negative moderately oscil-
latory processes, |xxx+ x̃xx| ≤ supn∈N(uuun + ũuun)< and
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θ̂#vvv (xxx+ x̃xx) ≤ sup
n∈N

θ(

∫

S

(uuun + ũuun) dvvv)

≤ sup
n∈N

(
θ(

∫

S

uuun dvvv) + θ(

∫

S

ũuun) dvvv
)
≤ θ̂#vvv (xxx) + θ̂#vvv (x̃xx) + 2ǫ.

As ǫ is arbitrary, we have the result. QQQ

(ii) Suppose that xxx ∈Mpo-b. Let uuu ∈M+
mo be such that |xxx| ≤ uuu<. Then

|αxxx| ≤ |α|uuu< = (|α|uuu)<
for every α, so

lim sup
α→0

θ̂#vvv (αxxx) ≤ lim sup
α→0

θ(

∫

S

|α|uuu dvvv)

= lim sup
α→0

θ(α

∫

S

uuu dvvv) = 0.

So θ̂#vvv is an F-seminorm.

(iii) Immediately from the definition in 645Bb, we see that if xxx, xxx′ ∈ Mpo-b and |xxx| ≤ |xxx′| then

θ̂#vvv (xxx) ≤ θ̂#vvv (xxx
′).

(iv) If 〈uuun〉n∈N is a non-decreasing sequence in M+
mo such that |xxx| ≤ supn∈N uuun<, then 〈|α|uuun〉n∈N is a

non-decreasing sequence in M+
mo and |αxxx| ≤ supn∈N |α|uuun<, so

θ̂#vvv (αxxx) ≤ sup
n∈N

θ(

∫

S

|α|uuun dvvv)

= sup
n∈N

θ(|α|
∫

S

uuun dvvv) ≤ sup
n∈N

max(1, |α|)θ(
∫

S

uuun dvvv)

(613Ba)

= max(1, |α|) sup
n∈N

θ(

∫

S

uuun dvvv).

As 〈uuun〉n∈N is arbitrary, θ̂#vvv (αxxx) ≤ max(1, |α|)θ̂#vvv (xxx); in particular, θ̂#vvv (αxxx) ≤ θ̂#vvv (xxx) if |α| ≤ 1.

(v) If xxx ∈Mpo-b, take a non-negative uuu ∈Mmo such that |xxx| ≤ uuu<. For any α ∈ R, |αxxx| ≤ |α|uuu< so

lim supα→0 θ̂
#
vvv (αxxx) ≤ lim supα→0 θ(

∫
S
|α|uuu dvvv) = lim supα→0 θ(|α|

∫
S
uuu dvvv) = 0.

So all the conditions of 2A5B are satisfied, and θ̂#vvv is an F-seminorm.

(c) If 〈uuun〉n∈N is a uniformly order-bounded non-decreasing sequence of non-negative moderately oscil-
latory processes with domain S and |xxx| ≤ supn∈N uuun<, then 0 ≤

∫
S uuun dvvv ≤

∫
S uuun dvvv

′, so θ(
∫
S uuun dvvv) ≤

θ(
∫
S uuun dvvv

′) for every n; consequently

θ̂#vvv (xxx) ≤ supn∈N θ(
∫
S
uuun dvvv) ≤ supn∈N θ(

∫
S
uuun dvvv

′).

As 〈uuun〉n∈N is arbitrary, θ̂#vvv (xxx) ≤ θ̂#vvv′(xxx).

645E The topology TS-i: Proposition Let S be a sublattice of T .

(a)(i) We have a linear space topology TS-i on Mpo-b =Mpo-b(S) defined by the functionals θ̂#vvv as vvv runs
over M↑

n-s(S).
(ii) If xxx ∈ G ∈ TS-i, there are vvv ∈M↑

n-s(S) and a δ > 0 such that {xxx′ : xxx′ ∈Mpo-b, θ̂
#
vvv (xxx

′−xxx) ≤ δ} ⊆ G.
(iii) For any τ ∈ S, the coordinate projection 〈xσ〉σ∈S 7→ xτ : Mpo-b → L0 is continuous for TS-i and

the topology of convergence in measure on L0.
(iv) TS-i is Hausdorff.
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(v)(α) For any xxx ∈Mpo-b, the map xxx′ 7→ xxx′ × xxx :Mpo-b →Mpo-b is continuous.
(β) If A ⊆ Mpo-b is uniformly previsibly order-bounded, then (xxx,xxx′) 7→ xxx × xxx′ : A × A → Mpo-b is

uniformly continuous.
(vi) If z ∈ L0(A ∩⋂

σ∈S Aσ) then xxx
′ 7→ zxxx′ :Mpo-b →Mpo-b is continuous.

(b) Let S be the linear space topology on Mmo = Mmo(S) defined by the F-seminorms uuu 7→ θ(
∫
S |uuu| dvvv)

as vvv runs over M↑
n-s(S). Then uuu 7→ uuu< : Mmo → Mpo-b is continuous for S and TS-i. Consequently

uuu 7→ uuu< :Mmo →Mpo-b is continuous for the ucp topology on Mmo and TS-i.

proof (a)(i) By 645Db and 2A5B, the functionals θ̂#vvv , for vvv ∈M↑
n-s =M↑

n-s(S), define a linear space topology
on Mpo-b.

(ii) By the definition of TS-i (2A5B, 2A3Fc) there are vvv0, . . . , vvvn ∈M↑
n-s and a δ > 0 such that

{xxx′ : xxx′ ∈Mpo-b, maxi≤n θ̂
#
vvvi(xxx

′ − xxx) ≤ δ} ⊆ G.

Set vvv =
∑n
i=0 vvvi; then vvv ∈ M↑

n-s and vvvj 4 vvv so θ̂#vvv (xxx
′) ≥ θ̂#vvvj (xxx

′) for every xxx′ ∈ Mpo-b and j ≤ n (645Dc).

Accordingly {xxx′ : xxx′ ∈Mpo-b, θ̂
#
vvv (xxx

′ − xxx) ≤ δ} ⊆ G.

(iii) Let vvv be the simple process defined on S by the formula in 612Ka, taking the breakpoint string to
be (τ), the base value v∗ to be 0, and v0 = χ1. Observe that the starting value v↓ = limσ↓S vσ is χ(1 \ eτ )
where eτ = supσ∈S [[σ < τ ]] (614Ba). Of course vvv is non-negative and non-decreasing.

If uuu = 〈uσ〉σ∈S is a moderately oscillatory process, then

∫

S

uuu dvvv = u<τ × (vτ − v↓)

(641J)

= u<τ × χeτ = u<τ .

Let 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N be any non-decreasing sequence in M+
mo such that |xxx| ≤ supn∈N uuun<. Then

|xτ | ≤ supn∈N un<τ so

θ(xτ ) ≤ supn∈N θ(un<τ ) = supn∈N θ(
∫
S
uuun dvvv).

As 〈uuun〉n∈N is arbitrary, θ(xτ ) ≤ θ̂#vvv (xxx). This shows that 〈xσ〉σ∈S 7→ xτ is continuous at 0. But as it is a
linear operator, it is continuous everywhere in Mpo-b.

(iv) It follows at once that TS-i is Hausdorff, being finer than the topology induced on Mpo-b by the
product topology on (L0)S .

(v)(ααα) I noted in 645D(a-ii) that Mpo-b is closed under multiplication. Take vvv ∈ M↑
n-s and ǫ > 0.

There is a uuu ∈M+
mo such that |xxx| ≤ uuu<. Let M ≥ 1 be such that µ̄[[sup |uuu| ≥M ]] ≤ ǫ; then

[[
∫
S uuu

′ × uuu dvvv > M
∫
S uuu

′ dvvv]] = [[
∫
S(uuu

′ × uuu−Muuu′)dvvv > 0]] ⊆ [[
∫
S(uuu

′ × uuu−Muuu′)+dvvv > 0]]

⊆ [[(uuu′ × uuu−Muuu′)+ 6= 0]]

(613Jd)

⊆ [[sup |uuu| ≥M ]]

for every uuu′ ∈M+
mo, so

θ(
∫
S
uuu′ × uuu dvvv) ≤ ǫ+Mθ(

∫
S
uuu′ dvvv)

for every uuu′ ∈M+
mo. Now suppose that xxx′ ∈M+

mo and θ̂#vvv (xxx
′) <

ǫ

M
. Then there is a non-decreasing uniformly

order-bounded sequence 〈uuun〉n∈N in M+
mo such that |xxx′| ≤ supn∈N uuun< and θ(

∫
S uuun dvvv) ≤

ǫ

M
for every n. In

this case, 〈uuun × uuu〉n∈N is a non-decreasing uniformly order-bounded sequence in M+
n-s such that
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|xxx′ × xxx| ≤ |xxx′| × uuu< ≤ supn∈N uuun< × uuu< = supn∈N(uuun × uuu)<,

so

θ̂#vvv (xxx
′ × xxx) ≤ supn∈N θ(

∫
S
uuun × uuu dvvv) ≤ 2ǫ.

As vvv and ǫ are arbitrary, the linear operator xxx′ 7→ xxx′ × xxx is continuous at 0, therefore continuous.

(βββ) Let uuu ∈ M+
mo be such that |xxx| ≤ uuu< for every xxx ∈ A. Let G be a TS-i-neighbourhood of 0. By

(ii) above, there are a vvv ∈ M↑
n-s and a δ > 0 such that xxx ∈ G whenever xxx ∈ Mpo-b and θ̂#vvv (xxx) ≤ δ. By (α),

xxx 7→ xxx × uuu< is continuous, so there is a TS-i-neighbourhood G
′ of 0 such that θ̂#vvv (xxx × uuu<) ≤ 1

2δ for every
xxx ∈ G′. Now suppose that xxx1, xxx2, xxx

′
1, xxx

′
2 ∈ A and both xxx1 − xxx2 and xxx′1 − xxx′2 belong to G′. Then

|(xxx1 × xxx′1)− (xxx2 − xxx′2)| ≤ |xxx1| × |xxx′1 − xxx′2|+ |xxx1 − xxx2| × |xxx′2|
≤ |xxx′1 − xxx′2| × uuu< + |xxx1 − xxx2| × uuu<

and

θ̂#vvv ((xxx1 × xxx′1)− (xxx2 × xxx′2)) ≤ θ̂#vvv ((xxx
′
1 − xxx′2)× uuu<) + θ̂#vvv ((xxx1 − xxx2)× uuu<) ≤ δ,

so (xxx1 × xxx′1)− (xxx2 × xxx′2) ∈ G. As G is arbitrary, (xxx,xxx′) 7→ xxx× xxx′ is uniformly continuous on A×A.

(vi) This is the special case of (v-α) in which xxx = z1(S)
< .

(b) We have pnly to look at the definition in 645Bb; θ̂#vvv (uuu<) ≤ θ(
∫
S |uuu|dvvv) for all relevant uuu and vvv, so we

shall be able to apply 2A3H to see that uuu 7→ uuu< is continuous for S and TS-i. As for the ucp topology, this
is finer than S, because if vvv ∈ M↑

n-s then θ(
∫
S uuu dvvv) ≤ θ(sup |uuu| × sup |vvv|). So uuu 7→ uuu< is continuous for the

ucp topology and TS-i.

645F Definitions Let S be a sublattice of T .

(a) I will call the topology TS-i defined in 645E the S-integration topology onMpo-b(S). As it is a linear
space topology (645E(a-i)), there is an associated uniformity (3A4Ad) which I will call the S-integration
uniformity.

(b) M0
S-i(S) will be the TS-i-closure of {uuu< : uuu ∈Mmo(S)} in Mpo-b(S).

(c) MS-i(S) will be the set of fully adapted processes xxx with domain S such that xxx× 1(S)
< ∈M0

S-i(S).

645G Proposition Let S be a sublattice of T , and TS-i the S-integration topology onMpo-b =Mpo-b(S).
If 〈xxxn〉n∈N is a uniformly previsibly order-bounded TS-i-Cauchy sequence inMpo-b, then it is TS-i-convergent.

proof (a) By the definition of ‘uniformly previsibly order-bounded’, there must be a non-negative uuu ∈
Mmo =Mmo(S) such that |xxxn| ≤ uuu< for every n ∈ N. Express each xxxn as 〈xnσ〉σ∈S . Because the coordinate
projections from Mpo-b to L0 are continuous linear operators, therefore uniformly continuous (4A5Hd),
〈xnσ〉n∈N is a Cauchy sequence in L0 for each σ ∈ S (4A2Ji), with a limit xσ because L0 is a complete linear
topological space (613Bh). Now xxx = 〈xσ〉σ∈S is fully adapted (613Bl) and |xxx| ≤ uuu< (613Bm), so xxx ∈Mpo-b.

(b) Take vvv ∈ M↑
n-s(S) and ǫ > 0. Then we have a non-decreasing sequence 〈nk〉k∈N such that θ̂#vvv (xxxm −

xxxnk
) ≤ 2−kǫ whenever k, m ∈ N and nk ≤ m. For each k ∈ N choose a non-decreasing uniformly order-

bounded sequence 〈uuuki〉i∈N in M+
mo such that |xxxnk+1

−xxxnk
| ≤ supi∈N uuuki< and supi∈N θ(

∫
S uuuki dvvv) ≤ 2−k+1ǫ.

Set uuu′m = 2uuu∧∑m
k=0 uuukm for m ∈ N. Then 〈uuu′m〉m∈N is a non-decreasing uniformly order-bounded sequence

in M+
mo. The point is that |xxx − xxxn0

| ≤ supm∈Nuuu
′
m<. PPP Note first that for each σ ∈ S, xσ − xn0σ =

limk→∞ xnkσ − xn0σ. This is a limit for the topology of convergence in measure, but as we know that
|xxxnk

| ≤ uuu< for every k, we must certainly have

|xσ − xn0σ| ≤ supk∈N 2u<σ ∧ |xnkσ − xn0σ|
for every σ. (Here I am thinking of uuu as 〈uσ〉σ∈S and its previsible version uuu< as 〈u<σ〉σ∈S , in the manner
of 641E-641F.) Thus we have

D.H.Fremlin



72 The S-integral 645G

|xxx− xxxn0
| ≤ sup

k≥1
2uuu< ∧ |xxxnk

− xxxn0
| ≤ sup

k≥1
2uuu< ∧

k−1∑

j=0

|xxxnj+1
− xxxnj

|

≤ sup
k≥1

2uuu< ∧
k−1∑

j=0

sup
i≥k

uuuji< = sup
k≥1

sup
i≥k

2uuu< ∧
k−1∑

j=0

uuuji<

(because 〈uuuji<〉i∈N is non-decreasing for each j)

≤ sup
k≥1

sup
i≥k

uuu′i< = sup
m∈N

uuu′m<. QQQ

(c) Accordingly, if n ≥ n0,

θ̂#vvv (xxx− xxxn) ≤ θ̂#vvv (xxxn − xxxn0
) + θ̂#vvv (xxx− xxxn0

)

≤ ǫ+ sup
m∈N

θ(

∫

S

uuu′m dvvv) ≤ ǫ+ sup
m∈N

m∑

k=0

θ(

∫

S

uuukm dvvv) ≤ 5ǫ.

As ǫ and vvv are arbitrary, xxx is the TS-i-limit of 〈xxxn〉n∈N.

645H Theorem Let S be a sublattice of T . Suppose that 〈xxxn〉n∈N is a uniformly previsibly order-
bounded sequence in M0

S-i =M0
S-i(S) which is order*-convergent to xxx ∈ (L0)S . Then xxx ∈M0

S-i and 〈xxxn〉n∈N

converges to xxx for the S-integration topology TS-i.

proof (a) The first thing to note is that if a sequence 〈xxxn〉n∈N = 〈〈xnσ〉σ∈S〉n∈N in Mfa =Mfa(S) is order*-
convergent in (L0)S to xxx = 〈xσ〉σ∈S , and τ ∈ S, then 〈xnτ 〉n∈N is order*-convergent to xτ in L0, therefore
convergent in the topology of convergence in measure (367Ma). So 〈xxxn〉n∈N → xxx for the product topology
on (L0)S , and xxx ∈Mfa (613Bl). If moreover 〈xxxn〉n∈N is uniformly previsibly order-bounded, that is, there is
a uuu ∈M+

mo =Mmo(S)+ such that |xxxn| ≤ uuu< for every n, then |xxx| ≤ uuu< so xxx ∈Mpo-b =Mpo-b(S).
Secondly, if a sequence in Mpo-b is simultaneously order*-convergent and TS-i-convergent, the limits must

be the same, because the coordinate projections are TS-i-continuous (645E(a-iii)), that is, TS-i is finer than
the topology induced by the product topology on (L0)S . And if a sequence in M0

S-i is TS-i-convergent in
Mpo-b, its limit belongs to M0

S-i, because M
0
S-i is defined to be a TS-i-closure.

(b) So all we need to prove is that, under the conditions of the theorem, 〈xxxn〉n∈N is TS-i-convergent in
Mpo-b; and by 645G it will in fact be enough to show that it is TS-i-Cauchy. I seek to do this successively more
complex sequences 〈xxxn〉n∈N. First, suppose it is of the form 〈uuun<〉n∈N where 〈uuun〉n∈N is a non-decreasing
sequence in M+

mo with an upper bound uuu ∈Mmo. Then 〈xxxn〉n∈N is a non-decreasing sequence with an upper
bound uuu<, so is order*-convergent to its supremum xxx in (L0)S , which is a fully adapted process (612Ia).

As 0 ≤ xxx ≤ uuu<, xxx ∈ Mpo-b. If vvv ∈ M↑
n-s(S), then 〈

∫
S uuun dvvv〉n∈N is a non-decreasing sequence in L0 with

an upper bound
∫
S uuu dvvv, so has a limit in L0 (613Ba) and is Cauchy. For any m ∈ N,

0 ≤ xxx− xxxm ≤ supn≥m uuun< − uuum<,

so

θ̂#vvv (xxx− xxxm) ≤ supn≥m θ(
∫
S
uuun − uuum dvvv).

Thus

limm→∞ θ̂#vvv (xxx− xxxm) ≤ limm→∞ supn≥m θ(
∫
S
uuun − uuum dvvv) = 0;

as vvv is arbitary, 〈xxxn〉n∈N is TS-i-convergent to xxx.

(c) Suppose next that 〈xxxn〉n∈N is a non-decreasing sequence in (M0
S-i)

+, and that it is bounded above
by uuu< where uuu ∈ M+

mo. Then again it is order*-convergent to its supremum xxx, and xxx ∈ Mpo-b. Take

vvv ∈M↑
n-s(S). and ǫ > 0. For each n ∈ N, let uuun ∈Mmo be such that θ̂#vvv (xxxn − uuun<) ≤ 2−nǫ. For each n, set

uuu′n = med(0, supi≤n uuui,uuu); then
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|xxxn − uuu′n<| = |med(0, sup
i≤n

xxxi,uuu<)−med(0, sup
i≤n

uuui<,uuu<)|

(641Ge)

≤ | sup
i≤n

xxxi − sup
i≤n

uuui<| ≤
n∑

i=0

|xxxi − uuui<|,

so

θ̂#vvv (xxxn − uuu′n<) ≤
∑n
i=0 θ̂

#
vvv (xxxi − uuui<) ≤ 2ǫ.

Now we know from (b) that 〈uuu′n<〉n∈N is TS-i-convergent, so there is an m ∈ N such that θ̂#vvv (uuu
′
n<−uuu′m<) ≤ ǫ

for every n ≥ m; in which case θ̂#vvv (xxxn< − xxxm<) ≤ 5ǫ for every n ≥ m. As vvv and ǫ are arbitrary, 〈xxxn〉n∈N is
Cauchy, therefore convergent, and the limit must be xxx.

(d) Applying (c) to 〈xxxn − xxx0〉n∈N, we see that if 〈xxxn〉n∈N is a non-decreasing previsibly order-bounded
sequence in M0

S-i, it will be TS-i-convergent; it follows at once that if 〈xxxn〉n∈N is a non-increasing previsibly
order-bounded sequence in M0

S-i, it is TS-i-convergent.

(e) Now let 〈xxxn〉n∈N be any previsibly order-bounded sequence in M0
S-i which is order*-convergent to

xxx ∈ (L0)S . For each n ∈ N, set xxxn = supi≥n xxxi, the supremum being taken in (L0)S . Then xxxn is the order*-

convergent limit of the non-decreasing sequence 〈supi≤m xxxn+i〉m∈N inM0
S-i, which of course is bounded above

in Mpo-b because 〈xxxi〉i∈N is, so xxxn ∈ M0
S-i, by (d). We now see that 〈xxxn〉n∈N is a non-increasing sequence

in M0
S-i, bounded below in Mpo-b, which is order*-convergent to xxx. So xxx ∈ M0

S-i and is the TS-i-limit of
〈xxxn〉n∈N.

Similarly, xxxn = infi≥n xxxi belongs to M
0
S-i for every n, and xxx is the TS-i-limit of 〈xxxn〉n∈N.

To see that xxx is in fact the TS-i-limit of the original sequence 〈xxxn〉n∈N, take any vvv ∈ M↑
n-s(S). If n ∈ N,

then |xxxn − xxx| ≤ xxxn − xxxn, so

θ̂#vvv (xxxn − xxx) ≤ θ̂#vvv (xxxn − xxxn)

≤ θ̂#vvv (xxxn − xxx) + θ̂#vvv (xxx− xxxn) → 0

as n→ ∞. As vvv is arbitrary, 〈xxxn〉n∈N is topologically convergent to xxx. This completes the proof.

645I Corollary Let S be a sublattice of T . If xxx ∈ Mpo-b(S) is a previsible process (642C), then
xxx ∈M0

S-i =M0
S-i(S).

proof Let uuu ∈Mmo(S)+ be such that |xxx| ≤ uuu<. The set

{xxx′ : xxx′ ∈ (L0)S , med(−uuu<,xxx′,uuu<) ∈M0
S-i}

contains uuu′< for every uuu′ ∈ Mn-s(S) and is closed under order*-convergence, by 645H, so contains xxx =
med(−uuu<,xxx,uuu<).

645J Proposition Let S be a sublattice of T , k ≥ 1 an integer and h : Rk → R a locally bounded Borel
measurable function. Write M0

S-i, MS-i for M
0
S-i(S), MS-i(S).

(a) If XXX ∈ (M0
S-i)

k, then h̄XXX × 1(S)
< ∈M0

S-i; if h(0, . . . , 0) = 0, then h̄XXX ∈M0
S-i.

(b) h̄XXX ∈MS-i for every XXX ∈Mk
S-i.

proof ExpressXXX as 〈xxxi〉i<k. For any xxx ∈Mfa(S), write R(xxx) for xxx×1(S)
< . By 645D(a-i), R(h̄XXX) ∈Mpo-b =

Mpo-b(S).
(a)(i) Let g : Rk → R be a continuous function.

(ααα) If vvv ∈ M↑
n-s(S) and ǫ > 0, there is an M ≥ 0 such that θ̂#vvv (R(ḡXXX) − R(ḡXXX ′)) ≤ ǫ, where XXX ′ =

〈med(−M1(S)
< ,xxxi,M1(S)

< )〉i<k. PPP There is a uuu ∈M+
mo =Mmo(S)+ such that |xxxi| ≤ uuu< for every i < k. Set

ū = sup |uuu|, and let M ≥ 0 be such that µ̄[[ū ≥M ]] ≤ ǫ. In this case, setting xxx′i = med(−M1(S)
< ,xxxi,M1(S)

< ),
we have
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|xxxi − xxx′i| = (|xxxi| −M1(S)
< )+ ≤ (uuu< −M1(S)

< )+ = ((uuu−M1(S))+)<.

So, writing XXX ′ for 〈xxx′i〉i<k,

[[R(ḡXXX) 6= R(ḡXXX ′)]] ⊆ [[ḡXXX 6= ḡXXX ′]] ⊆ sup
i<k

[[xxxi 6= xxx′i]]

(612Sc, 619Ec)

⊆ [[((uuu−M1(S))+)< 6= 0]].

Next, |xxx′i| ≤ |xxxi| so xxx′i ∈ Mpo-b for every i, R(ḡXXX ′) ∈ Mpo-b, R(ḡXXX) − R(ḡXXX ′) ∈ Mpo-b and there is a

ũuu in M+
mo such that |R(ḡXXX) − R(ḡXXX ′)| ≤ ũuu<. Setting ũuun = ũuu ∧ n(uuu −M1(S))+ for n ∈ N, 〈ũuun〉n∈N is a

non-decreasing uniformly order-bounded sequence in M+
mo and

|R(ḡXXX)−R(ḡXXX ′)| ≤ supn∈N ũuu< ∧ n(uuu< −M1(S)
< )+ = supn∈N ũuun<.

Accordingly

θ̂#vvv (R(ḡXXX)−R(ḡXXX ′)) ≤ sup
n∈N

θ(

∫

S

ũuun dvvv) ≤ sup
n∈N

µ̄[[
∫
S ũuun dvvv 6= 0]]

≤ sup
n∈N

µ̄[[ũuun 6= 0]] ≤ µ̄[[(uuu−M1(S))+ 6= 0]] = µ̄[[ū > M ]] ≤ ǫ,

as required. QQQ

(βββ) R(ḡXXX) ∈ M0
S-i. PPP Take vvv ∈ M↑

n-s(S) and ǫ > 0. By (α), there is an M ≥ 0 such that, setting

XXX ′ = 〈xxx′i〉i<k where xxx′i = med(−M1(S)
< ,xxxi,M1(S)

< ) for i < k, we have θ̂#vvv (R(ḡXXX) − R(ḡXXX ′)) ≤ ǫ. Next, let

δ > 0 be such that θ̂#vvv (δ1
(S)
< ) ≤ ǫ (645Db), and η > 0 such that |g(β)−g(β′)| ≤ δ whenever β, β′ ∈ [−M,M ]k

and ‖β − β′‖∞ ≤ η; setting K = 1 +
2

η
sup‖β‖∞≤M |g(β)|, we shall have |g(β) − g(β′)| ≤ δ +K‖β − β′‖∞

whenever β, β′ ∈ [−M,M ]k, while K ≥ 1. For each i < k, because xxxi ∈M0
S-i, there is a uuui ∈Mmo =Mmo(S)

such that θ̂#vvv (xxxi − uuui<) ≤ ǫ

K
; set UUU ′ = 〈uuu′i〉i<k and UUU ′

< = 〈uuu′i<〉i<k where uuu′i = med(−M1(S),uuui,M1(S)) for

i < k. Note that uuu′i< = med(−M1(S)
< ,uuui<,M1(S)

< ) for i < k.

Since |xxx′i − uuu′i<| ≤ |xxxi − uuui<|, θ̂#vvv (xxx′i − uuu′i<) ≤
ǫ

K
for each i; since ‖xxx′i‖∞ and ‖uuu′i<‖∞ are both less than

or equal to M for each i,

|R(ḡXXX ′)− ḡUUU ′
<| = |R(ḡXXX ′)−R(ḡUUU ′

<)|
(641Gd)

= R(|ḡXXX ′ − ḡUUU ′
<|) ≤ R(δ111(S) +K

k−1∑

i=0

|xxx′i − uuui<|)

≤ δ111
(S)
< +K

k−1∑

i=0

|xxx′i − uuui<|

and

θ̂#vvv (R(ḡXXX)− ḡUUU ′)<) ≤ θ̂#vvv (R(ḡXXX)−R(ḡXXX ′)) + θ̂#vvv (R(ḡXXX)− ḡUUU ′
<)

≤ ǫ+ θ̂#vvv (δ1
(S)
< ) +K

k−1∑

i=0

θ̂#vvv (xxx
′
i − uuui<)

≤ ǫ+ ǫ+ kǫ = (k + 2)ǫ.

As vvv and ǫ are arbitrary, R(ḡXXX) ∈M0
S-i. QQQ
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(ii) Now consider the space U of Borel measurable functions f : Rk → R such that R(f̄XXX) ∈ M0
S-i.

Suppose that 〈fn〉n∈N is a pointwise convergent sequence in U with limit f , and that g = supn∈N |fn| is
locally bounded. In this case, |f̄nXXX| ≤ ḡXXX for each n, while R(ḡXXX) ∈ Mpo-b (645D(a-i)), so 〈R(f̄nXXX)〉n∈N

is a uniformly previsibly order-bounded sequence in M0
S-i. Also 〈f̄nXXX〉n∈N is order*-convergent in (L0)S to

f̄XXX, by 642Bd applied at each coordinate in S. So 〈R(f̄nXXX)〉n∈N is order*-convergent to R(f̄XXX), and 645H
tells us that R(f̄XXX) ∈M0

S-i, that is, f ∈ U .
Since we know from (i) that every continuous function from Rk to R belongs to U , we see that our locally

bounded Borel measurable function h belongs to U , by 645Cc, and h̄XXX × 1(S)
< ∈M0

S-i.

(iii) If h(0, . . . , 0) = 0 then, as in part (a-i) of the proof of 645D, we can use 619Ge to see that

h̄XXX = h̄R(XXX) = R(h̄XXX) = R(h̄R(XXX)) = R(h̄XXX) ∈M0
S-i.

(b) If XXX ∈ Mk
S-i then R(XXX) = (xxx1 × 1(S)

< , . . . ,xxxk × 1(S)
< ) belongs to (M0

S-i)
k and R(h̄R(XXX)) ∈ M0

S-i, by
(a); but now 619G(e-i) tells us that R(h̄XXX) = R(h̄R(XXX)), so h̄XXX ∈MS-i.

645K Proposition Let S be a sublattice of T , k ≥ 1 an integer, h : Rk → R a locally bounded Borel
measurable function and z ∈ L0(A ∩⋂

σ∈S Aσ).

(a) M0
S-i =M0

S-i(S) is an f -subalgebra of Mpo-b(S) and zxxx ∈M0
S-i for every xxx ∈M0

S-i.
(b) MS-i =MS-i(S) is an f -subalgebra of Mo-b(S) and zxxx ∈MS-i for every xxx ∈MS-i.

proof (a) Because the S-integration topology onMpo-b is a linear space topology (645E(a-i)), and {uuu< : uuu ∈
Mmo(S)} is a linear subspace ofMpo-b =Mpo-b(S), its closureM0

S-i is a linear subspace (2A5Ec). Now 645Ja

and 612Bc, as usual, show that M0
S-i is an f -subalgebra of Mpo-b. Since z1S ∈ Mmo(S), z1(S)

< = (z1S)<
(641G(a-iv)) belongs to M0

S-i, and if xxx ∈M0
S-i then

zxxx = (z1S)× xxx = z1S × (1(S)
< × xxx) = z1(S)

< × xxx ∈M0
S-i

because M0
S-i is closed under ×.

(b)(i) If xxx = 〈xσ〉σ∈S belongs to MS-i, then xxx × 1(S)
< ∈ M0

S-i ⊆ Mpo-b is order-bounded. Setting
eσ = supσ′∈S [[σ′ < σ]] for σ ∈ S, as in 641Gb, we have

supσ∈S |xσ × χ(1 \ eσ)| = sup |xxx× 1(S)
< | = w̄

say defined in L0. Set e = infσ∈S eσ.
Take any ǫ > 0. If σ, τ ∈ S and σ ≤ τ , then eσ ⊆ eτ , so there is a τ ∈ S such that µ̄(eτ \ e) ≤ ǫ. Now if

σ ∈ S,
[[τ ≤ σ]] ∪ e ⊆ [[σ = τ ]] ∪ eσ ⊆ [[|xσ| = |xτ |]] ∪ [[|xσ| ≤ w]] ⊆ [[|xσ| ≤ |xτ | ∨ w]].

[[σ < τ ]] \ e ⊆ eτ \ e.

But this means that {xσ × χ(1 \ (eτ \ e)) : σ ∈ S} is order-bounded in L0, while µ̄(1 \ (eτ \ e)) ≥ 1− ǫ. As ǫ
is arbitrary, {xσ : σ ∈ S} is order-bounded, by 613Bp, and xxx ∈Mo-b(S).

(ii) MS-i = {xxx : xxx ∈ Mfa(S), xxx × 1(S)
< ∈ M0

S-i} is an f -subalgebra just because yyy 7→ yyy × 1(S)
< :

(L0)S → (L0)S is a multiplicative Riesz homomorphism and M0
S-i is an f -subalgebra of Mpo-b. Similarly, if

xxx = 〈xσ〉σ∈S ∈MS-i, (zxxx)× 1(S)
< = z(xxx× 1(S)

< ) belongs to M0
S-i so zxxx ∈MS-i.

645L Lemma Let S be a sublattice of T . Give Mpo-b(S) its S-integration topology TS-i. Suppose that
xxx ∈M0

S-i(S).
(a) If uuu∗ ∈ Mmo = Mmo(S) is such that |xxx| ≤ uuu∗<, then A = {uuu : uuu ∈ Mmo, |uuu| ≤ uuu∗} is uniformly

order-bounded and

xxx ∈ {uuu< : uuu ∈ A} ⊆ {uuu< : uuu ∈Mmo, sup |uuu| ≤ sup |uuu∗|}.
(b) There is a www∗ ∈Mmo such that xxx ∈ {uuu< : uuu ∈Msimp(S), |uuu| ≤ www∗}.

proof (a) Setting ū = sup |uuu∗|, of course ū = supuuu∈A sup |uuu|, so A is uniformly order-bounded.

If G is a neighbourhood of xxx in Mpo-b =Mpo-b(S), there are a vvv ∈M↑
n-s =M↑

n-s(S) and a δ > 0 such that
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{xxx′ : xxx′ ∈Mpo-b, θ̂
#
vvv (xxx

′ − xxx) ≤ δ}
is included in G (645E(a-ii)). Since xxx ∈ M0

S-i = M0
S-i(S), there is a uuu ∈ Mmo such that θ̂#vvv (uuu< − xxx) ≤ δ.

Consider uuu′ = med(−uuu∗,uuu,uuu∗). Then uuu′ ∈ Mmo and uuu′ ∈ A. Next, because the operation of taking
previsible version is a lattice homomorphism (641Ge again), uuu′< = med(−uuu∗<,uuu<,uuu∗<). Since |xxx| ≤ uuu∗<,
|xxx− uuu′<| ≤ |xxx− uuu<| and

θ̂#vvv (xxx− uuu′<) ≤ θ̂#vvv (xxx− uuu<) ≤ δ,

so uuu′< ∈ G.

Thus G meets {uuu< : uuu ∈ A}. As G is arbitrary, xxx ∈ {uuu< : uuu ∈ A}.
(b) As xxx ∈ Mpo-b, there is certainly a uuu∗ ∈ Mmo such that |xxx| ≤ uuu∗; again write ū for sup |uuu∗|, and now

let www∗ be the non-negative non-decreasing process defined from ū as in 614Ie, so that |uuu| ≤ www∗ whenever
uuu ∈ Mfa(S) and sup |uuu| ≤ ū. Take any vvv ∈ M↑

n-s and ǫ > 0. By (a), there is a uuu ∈ Mmo such that |uuu| ≤ uuu∗

and θ̂#vvv (xxx− uuu<) ≤ ǫ.
Let δ > 0 be such that θ(

∫
S |zzz|dvvv) ≤ ǫ whenever zzz ∈ Mmo and θ(sup |zzz|) ≤ δ (616J, applied to ∆vvv). By

615O, we have a process www ∈Mbv(S) such that θ(sup |www − uuu|) ≤ δ and sup |www| ≤ sup |uuu|. We can express www
as www′ −www′′ where www, www′′ are order-bounded non-negative non-decreasing processes (614J).

Turn now to the construction in 617B. For any I ∈ I(S) we have a simple process wwwI = 〈wIσ〉σ∈S defined
by saying that wwwI has a breakpoint string in I, wwwI and www agree on I, and 1 \ supτ∈I [[τ ≤ σ]] ⊆ [[wIσ = 0]]
for every σ ∈ S; and we have corresponding processes www′

I , www
′′
I . Evidently wwwI = www′

I −www′′
I . Now because www′ is

non-negative and non-decreasing, we must have 0 ≤ www′
I ≤ www′ for every I ∈ I(S). Next, 617B(b-ii) tells us

that ∫
S
www′dvvv = limI↑I

∫
S
www′
Idvvv,

that is,

0 = limI↑I(S)

∫
S
www′ −www′

I dvvv = limI↑I(S)

∫
S
|www′ −www′

I |dvvv.
Consequently

limI↑I(S)

∫
S
|www −wwwI |dvvv ≤ limI↑I(S)

∫
S
(|www′ −www′

I |+ |www′′ −www′′
I |)dvvv = 0,

and there is an I ∈ I(S) such that
∫
S |www −wwwI |dvvv ≤ ǫ, while wwwI is a simple process.

At this point note that sup |wwwI | ≤ sup |www↾I| ≤ sup |uuu|, so |wwwI | ≤ www∗, while

θ̂#vvv (xxx−wwwI<) ≤ θ̂#vvv (xxx− uuu<) + θ̂#vvv (uuu< −wwwI<) ≤ ǫ+

∫

S

|uuu−wwwI |dvvv

≤ ǫ+

∫

S

|uuu−www|dvvv +
∫

S

|www −wwwI |dvvv ≤ 2ǫ+

∫

S

|uuu−www|dvvv ≤ 3ǫ

by the choice of δ and www. As ǫ and vvv are arbitrary, xxx ∈ {uuu< : uuu ∈Msimp(S), |uuu| ≤ www∗}.

645N I have spent all this time on M0
S-i and TS-i because these can be described and investigated in

a very general context. But for the new integral, we need to restrict ourselves in a way which is already
familiar.

Lemma Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T . If uuu ∈Mmo(S)
and vvv ∈M↑

n-s(S), then θ̂#vvv (uuu<) = θ(
∫
S |uuu|dvvv).

proof (a) Setting uuun = |uuu| for every n ∈ N, 〈uuun〉n∈N is a uniformly order-bounded non-decreasing sequence
in M+

mo and |uuu<| ≤ supn∈N uuun<, so

θ̂#vvv (uuu<) ≤ supn∈N θ(
∫
S
uuundvvv) = θ(

∫
S
|uuu|dvvv).

(b) Now suppose that 〈uuun〉n∈N is a non-decreasing uniformly order-bounded sequence in M+
mo such that

|uuu<| ≤ supn∈N uuun<. Then 〈uuun<〉n∈N is non-decreasing, so 〈|uuu<| ∧uuun<〉n∈N order*-converges to |uuu<|, that is,
〈(|uuu| ∧uuun)<〉n∈N order*-converges to |uuu|<. Now 〈|uuu| ∧uuun〉n∈N is uniformly order-bounded, so Theorem 644H
tells us that

∫
S |uuu| dvvv = limn→∞

∫
S |uuu| ∧ uuun dvvv and
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θ(
∫
S
|uuu| dvvv) = limn→∞ θ(

∫
S
|uuu| ∧ uuun dvvv) ≤ limn→∞ θ(

∫
S
uuun dvvv).

As 〈uuun〉n∈N is arbitrary, θ(
∫
S |uuu|dvvv) ≤ θ̂#vvv (uuu<).

645O Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T ,
and give Mpo-b(S) its S-integration topology TS-i. If xxx ∈ MS-i(S) and vvv ∈ Mn-s(S) is an integrator, then
there is a unique z ∈ L0 such that whenever A ⊆ Mmo(S) is uniformly order-bounded and ǫ > 0 there is a
TS-i-neighbourhood G of xxx× 1(S)

< such that θ(z −
∫
S uuu dvvv) ≤ ǫ whenever uuu ∈ A and uuu< ∈ G.

proof Write R(xxx) ∈M0
S-i(S) for xxx× 1(S)

< .

(a) Let A be the family of uniformly order-bounded subsets of Mmo = Mmo(S) such that R(xxx) ∈
{uuu< : uuu ∈ A}. By 645L, A is not empty.

Define T : Mmo → L0 by setting Tuuu =
∫
S uuu dvvv for uuu ∈ Mmo. For A ∈ A, let FA be the filter on Mmo

generated by sets of the form {uuu : uuu ∈ A, uuu< ∈ G} where G is a TS-i-neighbourhood of R(xxx). Then the
image filter T [[FA]] on L0 is Cauchy. PPP Let ǫ > 0. By 644G, T ↾A is uniformly continuous for the uniformity
induced by the topology S on Mmo described there, so there are a vvv′ ∈ M↑

n-s(S) and a δ > 0 such that
θ(Tuuu − Tuuu′) ≤ ǫ whenever uuu, uuu′ ∈ A and

∫
S |uuu − uuu′|dvvv′ ≤ δ. Next, G = {yyy : yyy ∈ Mpo-b = Mpo-b(S),

θ̂#vvv′(yyy − R(xxx)) ≤ 1
2δ} is a neighbourhood of R(xxx), so F = {uuu : uuu ∈ A, uuu< ∈ G} belongs to FA. If uuu, uuu′ ∈ F ,

then

∫

S

|uuu− uuu′|dvvv′ = θ̂#vvv′((uuu− uuu′)<)

(645N)

= θ̂#vvv′(uuu< − uuu′<) ≤ δ,

and θ(Tuuu − Tuuu′) ≤ ǫ. This shows that T [[FA]] contains a set of diameter at most ǫ for the metric defined
by θ. As ǫ is arbitrary, T [[FA]] is Cauchy. QQQ

(b) It follows that

zA = limT [[FA]] = limuuu→FA

∫
S
uuu dvvv

is defined. If A, A′ ∈ A and A ⊆ A′, then FA′ ⊆ FA and limuuu→FA′

∫
S uuu dvvv is defined, so this is also

limuuu→FA

∫
S uuu dvvv, that is, zA′ = zA. If A, A

′ are any two members of A, then A∪A′ ∈ A so zA = zA∪A′ = zA′ .

We can therefore define z ∈ L0 by saying that z = zA for every A ∈ A.

(c) Suppose that ǫ > 0 and A ⊆Mmo is uniformly order-bounded. If A /∈ A, then G =Mpo-b \ {uuu< : uuu ∈
A} is a neighbourhood of R(xxx), and certainly θ(z −

∫
S uuu dvvv) ≤ ǫ whenever uuu ∈ A and uuu< ∈ G. If A ∈ A,

then there is an F ∈ FA such that θ(zA −
∫
S uuu dvvv) ≤ ǫ whenever uuu ∈ F . Now F must include some set of

the form {uuu : uuu ∈ A, uuu< ∈ G} where G is a neighbourhood of R(xxx), so we see that

θ(z −
∫
S
uuu dvvv) = θ(zA −

∫
S
uuu dvvv) ≤ ǫ

whenever uuu ∈ A and uuu< ∈ G.

(d) Thus we have found a z with the given properties. To see that it is unique, recall from (a) that there
is an A ∈ A, and observe that z = limuuu→FA

∫
S uuu dvvv.

645P Definition Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of
T .

(a) If xxx ∈ MS-i(S) and vvv ∈ Mn-s(S) is an integrator, I will say that the element z of L0 defined as in
Theorem 645O is S

∫
S xxx dvvv, the S-integral of xxx with respect to vvv.

(b) In these circumstances I will say that members of MS-i(S) are S-integrable.
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(c) Note that if xxx is a fully adapted process with domain S, xxx is S-integrable iff xxx× 1(S)
< is S-integrable,

and in this case S
∫
S xxx dvvv = S

∫
S xxx× 1(S)

< dvvv for every near-simple integrator vvv with domain S.

(d) If xxx is a fully adapted process with domain S, I will say that it is locally S-integrable if xxx↾S ∧ τ ∈
MS-i(S ∧ τ) for every τ ∈ S.

(e) Following my practice with the Riemann-sum integral (613H), I shall allow myself to write S
∫
S xxx dvvv for

S
∫
S(xxx↾S) d(vvv↾S) whenever xxx, vvv are fully adapted processes such that S ⊆ domxxx∩domvvv, xxx↾S is S-integrable

and vvv↾S is a near-simple integrator.

645Q Law-independence It is a while since I mentioned law-independence, but the question of which
features of a structure (A, µ̄, T, 〈At〉t∈T ) really depend on the measure µ̄, rather than just the measurable
algebra A and the filtration 〈At〉t∈T , never goes away. I have done my best to express concepts and theorems
in terms which make it easy to see that they are law-independent. I have found however that some results
seem most naturally expressed in terms of the functionals θ of 613Ba, and these need to be checked. In
many cases there is an obvious re-statement of a theorem in terms of the topology of convergence in measure,
which is safely law-independent. In the second half of §634, I introduced ‘coordinated’ subalgebras, which
are surely not law-independent, but they have been practically invisible since. I remind you that anything
involving martingales is not expected to be law-independent (though the property of being a semi-martingale
is), but the regions of accessibility and approachability in 643C are law-independent.

In 645E, however, we have a new formula involving θ. Just as ucp topologies are defined in terms of

functionals uuu 7→ θ̂(uuu) = θ(sup |uuu|) (615B), 645E uses functionals

uuu 7→ θ̂#vvv (uuu) = inf〈uuun〉n∈N
supn θ(

∫
S
uuun dvvv).

But changing the measure on A just produces a new F-norm ϑ on L0 which is equivalent to θ, so the F-norms

θ̂#vvv and ϑ̂#vvv will be equivalent and induce the same topology TS-i on Mpo-b. Thus TS-i, the spaces M0
S-i and

MS-i and the S-integral are law-independent.

645R Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T .
(a) Suppose that uuu ∈Mmo(S) and vvv ∈Mn-s =Mn-s(S) is an integrator.
(i) uuu< ∈M0

S-i(S) and S
∫
S uuu<dvvv =

∫
S uuu dvvv.

(ii) If either vvv is jump-free or T has no points isolated on the right, S
∫
S uuu<dvvv =

∫
S uuu< dvvv.

(b) If xxx, xxx′ ∈MS-i =MS-i(S), vvv, vvv′ ∈Mn-s are integrators, and α ∈ R, then

S
∫
S xxx+ xxx′ dvvv = S

∫
S xxx dvvv + S

∫
S xxx

′ dvvv, S
∫
S xxx d(vvv + vvv′) = S

∫
S xxx dvvv + S

∫
S xxx dvvv

′,

S
∫
S αxxx dvvv = S

∫
S xxx d(αvvv) = α S

∫
S xxx dvvv.

(c)(i) If xxx ∈MS-i, vvv ∈M↑
n-s(S) and xxx ≥ 0, then S

∫
S xxx dvvv ≥ 0;

(ii) if xxx ∈MS-i and vvv is a constant process with domain S, then S
∫
S xxx dvvv = 0.

proof (a)(i) Directly from the definition in 645Fb we see that uuu< ∈ M0
S-i = M0

S-i(S). Write TS-i for the
S-integration topology onMpo-b =Mpo-b(S). Set z = S

∫
S uuu< dvvv. If ǫ > 0, then A = {uuu} is surely a uniformly

order-bounded subset of Mmo = Mmo(S), so there is a TS-i-neighbourhood G of uuu< in Mpo-b such that
θ(z −

∫
S uuu

′ dvvv) ≤ ǫ whenever uuu′ ∈ A and uuu′< ∈ G; that is, θ(z −
∫
S uuu dvvv) ≤ ǫ. As ǫ is arbitrary, z =

∫
S uuu dvvv.

(ii) Now 641T and 641W tell us that this will be equal to
∫
S uuu<dvvv if either vvv is jump-free or T has no

points isolated on the right.

(b) For xxx ∈MS-i write R(xxx) for xxx× 1(S)
< .

(i) We know from 645Kb that αxxx+ xxx′ ∈MS-i. Set

z = S
∫
S xxx dvvv, z′ = S

∫
S xxx

′ dvvv, z̃ = S
∫
S αxxx+ xxx′ dvvv.

By 645L, there are uniformly order-bounded sets A, A′ ⊆Mn-s such that R(xxx) ∈ {uuu< : uuu ∈ A} and R(xxx′) ∈
{uuu< : uuu ∈ A′}. In this case, αA + A′ is uniformly order-bounded and R(αxxx + xxx′) ∈ {uuu< : uuu ∈ αA+A′},
because R is a linear operator and TS-i is a linear space topology.
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Take any ǫ > 0. Then there are neighbourhoods G, G′ and G̃ of R(xxx), R(xxx′) and R(αxxx+xxx′) respectively
such that

θ(z −
∫
S
uuu dvvv) ≤ ǫ for every uuu ∈ A such that uuu< ∈ G,

θ(z′ −
∫
S
uuu dvvv) ≤ ǫ for every uuu ∈ A′ such that uuu< ∈ G′,

θ(z̃ −
∫
S
uuu dvvv) ≤ ǫ for every uuu ∈ αA+A′ such that uuu< ∈ G̃.

Again because TS-i is a linear space topology, we can suppose, shrinking G and G′ if necessary, that αG+G′ ⊆
G̃. Now we know that there are uuu ∈ A, uuu′ ∈ A′ such that uuu< ∈ G and uuu′< ∈ G′. Set ũuu = αuuu + uuu′; then

ũuu ∈ αA+A′ and ũuu< ∈ αG+G′ ⊆ G̃. So

θ(z −
∫
S
uuu dvvv) ≤ ǫ, θ(z′ −

∫
S
uuu′ dvvv) ≤ ǫ, θ(z̃ −

∫
S
ũuu dvvv) ≤ ǫ.

But
∫
S ũuu dvvv = α

∫
S uuu dvvv+

∫
S uuu

′ dvvv, so θ(z̃−αz−z′) ≤ 3ǫ. As ǫ is arbitrary, z̃ = αz+z′, that is, S
∫
S αxxx+xxx

′ dvvv =

α S
∫
S xxx dvvv + S

∫
S xxx

′ dvvv.

(ii) To see that S
∫
S is linear in the integrator as well as in the integrand, repeat the method, with slight

variations, as follows. Start with

z = S
∫
S xxx dvvv, z′ = S

∫
S xxx dvvv

′, z̃ = S
∫
S xxx d(αvvv + vvv′).

Let A ⊆Mn-s be a uniformly order-bounded set such that R(xxx) ∈ {uuu< : uuu ∈ A}.
Take any ǫ > 0. Then there is a neighbourhood G of R(xxx) such that

θ(z −
∫
S
uuu dvvv) ≤ ǫ , θ(z′ −

∫
S
uuu dvvv′) ≤ ǫ, θ(z̃ −

∫
S
uuu d(αvvv + vvv′)) ≤ ǫ

for every uuu ∈ A such that uuu< ∈ G. Since there is a uuu ∈ A such that uuu< ∈ G, and

α
∫
S
uuu dvvv +

∫
S
uuu dvvv′ =

∫
S
uuu d(αvvv + vvv′),

θ(z̃ − αz − z′) ≤ 3ǫ. As ǫ is arbitrary, z̃ = αz + z′, that is, S
∫
S xxx d(αvvv + vvv′) = α S

∫
S xxx dvvv + S

∫
S xxx dvvv

′. So we
have both halves of the result claimed.

(c)(i) Since xxx × 1
(S)
< ≥ 0, and S

∫
S xxx dvvv = S

∫
S xxx × 1

(S)
< dvvv, it will be enough to deal with the case in

which xxx ∈ M0
S-i. Let uuu∗ ∈ M+

mo be such that |xxx| ≤ uuu∗<, and set A = {uuu : uuu ∈ Mmo, |uuu| ≤ uuu∗}. By 645L,

xxx ∈ {uuu< : uuu ∈ A}. Let ǫ > 0. Then there are a www ∈M↑
n-s(S) and a δ > 0 such that θ( S

∫
S xxx dvvv −

∫
S uuu dvvv) ≤ ǫ

whenever uuu ∈ A and θ̂#www (xxx− uuu<) ≤ δ. Now |uuu| ∈ A and

|xxx− |uuu|<| = ||xxx| − |uuu<|| ≤ |xxx− uuu<|, θ̂#www (xxx− |uuu|<) ≤ θ̂#www (xxx− uuu<) ≤ δ

(645Db), so θ( S
∫
S xxx dvvv −

∫
S |uuu|dvvv) ≤ ǫ. But

∫
S |uuu|dvvv ∈ (L0)+ (616R(b-i) again). As ǫ is arbitrary and (L0)+

is closed (613Ba), S
∫
S xxx dvvv ∈ (L0)+, as claimed.

(ii) If vvv is constant, it is an integrator (616P(b-i)), and S
∫
S xxx dvvv is defined. Also

∫
S uuu dvvv = 0 for every

uuu ∈Mmo (613Lc), so S
∫
S xxx dvvv = 0.

645S Theorem Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of T .
Give M0

S-i = M0
S-i(S) and L0 the S-integration topology TS-i and the topology of convergence in measure

respectively, with their associated uniformities. If vvv ∈ Mn-s(S) is an integrator, then xxx 7→ S
∫
S xxx dvvv : M0

S-i →
L0 is uniformly continuous on any uniformly previsibly order-bounded subset of M0

S-i.

proof Let A ⊆ M0
S-i be uniformly previsibly order-bounded. Then there is a uuu∗ ∈ Mn-s(S)+ such that

A ⊆ {xxx : |xxx| ≤ uuu∗<}. Set B = {uuu : uuu ∈ Mn-s(S), |uuu| ≤ uuu∗}; note that B and B − B are uniformly order-
bounded. Take ǫ > 0. Then there is a TS-i-neighbourhood G of 0 in M0

S-i such that θ(
∫
S uuu dvvv) ≤ ǫ whenever

uuu ∈ B − B and uuu< ∈ G (645O). Let H be a neighbourhood of 0 in M0
S-i such that H +H −H ⊆ G. If xxx,

xxx′ ∈ A and xxx′ − xxx ∈ H, then there are uuu, uuu′ ∈ B such that

xxx− uuu< ∈ H, θ( S
∫
S
xxx dvvv −

∫
S
uuu dvvv) ≤ ǫ,

xxx′ − uuu′ ∈ H, θ( S
∫
S
xxx′ dvvv −

∫
S
uuu′ dvvv) ≤ ǫ
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(645L, 645O). In this case, uuu− uuu′ ∈ B −B and uuu< − uuu′< ∈ G, so

θ( S
∫
S
xxx′ dvvv − S

∫
S
xxx dvvv) ≤ 2ǫ+ θ(

∫
S
uuu′ dvvv −

∫
S
uuu dvvv) = 2ǫ+ θ(

∫
S
uuu′ − uuu dvvv) ≤ 3ǫ.

As ǫ is arbitrary, S-integration with respect to vvv is uniformly continuous on A.

645T Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T .
Suppose that 〈xxxn〉n∈N is a sequence inMS-i(S) such that 〈xxxn×1(S)

< 〉n∈N is uniformly previsibly order-bounded
and 〈xxxn〉n∈N is order*-convergent to xxx in (L0)S . Then xxx is S-integrable and S

∫
S xxx dvvv = limn→∞ S

∫
S xxxn dvvv for

every integrator vvv ∈Mn-s(S).
proof Write R(xxx) for xxx × 1(S)

< , etc., as usual. By 645H, 〈R(xxxn)〉n∈N is TS-i-convergent to R(xxx). Since
{R(xxx)} ∪ {R(xxxn) : n ∈ N} is uniformly previsibly order-bounded, 645S tells us that

S
∫
S
xxx dvvv = S

∫
S
R(xxx) dvvv = limn→∞ S

∫
S
R(xxxn) dvvv = limn→∞ S

∫
S
xxxn dvvv.

645X Basic exercises >>>(a) Suppose that 〈At〉t∈T is right-continuous, and that S is an order-convex
sublattice of T . Show that if A ⊆Mn-s(S) is uniformly order-bounded, then it is bounded above and below
in Mn-s(S). (Hint : show that if ū ≥ 0 in L0, and we set uσ = sup{u : u ∈ L0(Aσ), u ≤ ū} for σ ∈ S, then
〈uσ〉σ∈S satisfies the conditions of 632F.)

(b) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb, 618Xa, 622Xd, 626Xa,
627Xa, 642Xd and 644Xe. (i) Show that Mpo-b(Tf ) corresponds to the space V of bounded functions
f : [0,∞[ → R such that f(0) = 0. (ii) Show that the S-integration topology on Mpo-b(Tf ) corresponds to

the topology on V generated by functionals f 7→
∫
f dν where ν is a totally finite Radon measure on [0,∞[.

(iii) Show that M0
S-i(Tf ) corresponds to the space W = {f : f ∈ V , f is universally measurable}. (iv) Show

that if f ∈ W corresponds to xxx ∈ M0
S-i, g : [0,∞[ → R is a non-decreasing function of bounded variation

which is continuous on the right and vvv is the process corresponding to g, then S
∫
Tf
xxx dvvv =

∫
f dνg where νg

is the Lebesgue-Stieltjes measure on [0,∞[ defined from g.

(c) Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice, and 〈uuun〉n∈N a uni-
formly previsibly order-bounded sequence of jump-free processes with domain S which is order*-convergent
to a jump-free process uuu. Show that limn→∞

∫
S uuundvvv =

∫
S uuu dvvv for every near-simple integrator vvv with

domain S.

645Y Further exercises (a) Let S be a sublattice of T . (i) Show that 4 (645Bc) is transitive and
reflexive, that is, is a pre-order on Mfa =Mfa(S) in the sense of 511A. (ii) Show that if ≡ is the associated
equivalence relation, then the setMfa/≡ of equivalence classes can be thought of as a partially ordered linear
space in the sense of §351. (iii) Taking Mbv ⊆Mfa to be the space of processes of bounded variation, show
that if vvv ∈Mbv and vvv′ ≡ vvv then vvv′ ∈Mbv. (iv) Show that the image of Mbv in M/≡ is a Dedekind complete
Riesz space in the sense of §353.

(b) Find an example of a sublattice S with a least element and an order-bounded fully adapted process
xxx = 〈xσ〉σ∈S such that xminS = 0 but xxx /∈Mpo-b(S).

645 Notes and comments In 645P we have at last arrived at something like the standard stochastic
integral as described in Rogers & Williams 00 and Protter 05. In particular, we have a dominated
convergence theorem (645T). The S-integral is not an extension of the Riemann-sum stochastic integral of
§613. They are linked by the formula S

∫
uuu< dvvv =

∫
uuu dvvv of 645Ra. But integrands for the Riemann-sum

integral need not be previsible, and integrators need not be near-simple. It is true that we shall often have
S
∫
uuu< dvvv =

∫
uuu< dvvv (645R(a-ii)), but this is a touch accidental, and the theorems I have offered concerning

the Riemann-sum integral are mostly unconcerned with this phenomenon.
I said in the introduction to this section that I was trying to define an integral which would look like a

Lebesgue-Stieltjes integral. For a non-decreasing integrator, the S-integral is indeed of this type, at least if
T = [0,∞[. But the purpose of this volume is to look at integration with respect to martingales, and here
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the analogy is too weak to be useful. Only if we suppress martingales altogether, as in 645Xb or 649L, do
we get a direct correspondence. The wonder is that we can devise any kind of sequentially smooth integral
with a martingale integrator.

The definition of M0
S-i in 645F corresponds to a kind of universal measurability, as in 645Xb, but with an

extra boundedness condition. Typically, theorems involving the S-integral, when they speak of uniformly
order-bounded families, require families included in sets {xxx : |xxx|×1< ≤ uuu<} where uuu is moderately oscillatory,
rather than just {xxx : sup |xxx| ≤ w̄}.

This section is based on a discussion of the properties of previsible versions uuu< of moderately oscillatory
processes uuu. It is therefore worth noting that in the context of the principal results here, it would have been
enough to start from near-simple processes uuu (642M).

Version of 21.2.22

646 Basic properties of the S-integral

Having defined the S-integral as an adaptation of the Riemann-sum integral for previsible processes
(645O, 645Pa, 645I), it is natural to look for parallels to the properties of the Riemann-sum integral set out
in Chapters 61-63. After a few easy remarks (646B-646D), I embark on the question of splitting a domain S
into S ∧ τ and S ∨ τ (646J). This leads naturally to an examination of indefinite S-integrals (646K), which
I approach through a result on capped-stake variation sets for martingale integrators (646P). We have a
change-of-variable theorem (646R), a formula for jumps in an indefinite S-integral (646S) and a version of
Itô’s formula (646T).

646A Notation As in §645, I shall be calling on a substantial part of the special notation developed
in this volume. (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure, with its associated
Riesz space L0 = L0(A), endowed with the linear space topology of convergence in measure and the defining
F-seminorm θ where θ(w) = E(|w| ∧ χ1) for w ∈ L0 (613Ba). I write L1

µ̄ = L1(A, µ̄) for the L-space of

members of L0 with finite expectation. For σ ∈ T , Pσ : L1
µ̄ → L1

µ̄ will be the conditional expectation
associated with Aσ. We have the algebras AS<τ for sublattices S of T and τ ∈ T (641B). If S is a sublattice
of T and τ ∈ S, I write S ∧ τ and S ∨ τ for {σ ∧ τ : σ ∈ S} and {σ ∨ τ : σ ∈ S} respectively, and I(S)
for the upwards-directed set of finite sublattices of S. 1(S) will be the constant process with domain S and
value χ1.

For a process uuu = 〈uσ〉σ∈S ∈ (L0)S , I write [[uuu 6= 0]] for supσ∈S [[uσ 6= 0]] (612Sb); if uuu is order-bounded, I
write sup |uuu| for supσ∈S |uσ|; if sup |uuu| ∈ L∞(A), I write ‖uuu‖∞ for ‖ sup |uuu|‖∞ = supσ∈S ‖uσ‖∞. If uuu and vvv
are fully adapted processes and I is a finite sublattice of domuuu∩ domvvv, then SI(uuu, dvvv) is the Riemann sum
described in 613Fb. If vvv is a fully adapted process and S is a sublattice of domvvv, QS(dvvv) is the capped-stake
variation set described in 616B. For processes vvv, vvv′ with the same domain I say that vvv 4 vvv′ if vvv′ − vvv is non-
decreasing (645Bc), and in this context vvv ≡ vvv′ if vvv′ − vvv is constant. An L2-process is a process uuu = 〈uσ〉σ∈S

such that u2σ ∈ L1
µ̄ for every σ ∈ S (622Ca). If uuu = 〈uσ〉σ∈S is a process and z ∈ L0(A ∩ ⋂

σ∈S Aσ), then
zuuu = 〈z × uσ〉σ∈S (612De). For a moderately oscillatory process uuu, uuu< is its previsible version (641L).

For a sublattice S of T ,Mfa(S) is the space of fully adapted processes with domain S,Msimp(S) ⊆Mfa(S)
the space of simple processes (612L), Mo-b(S) the space of order-bounded processes (614Fc), Mmo(S) the
space of moderately oscillatory processes (615Fa), Mn-s(S) the space of near-simple processes (631Fa),
M↑

n-s(S) the cone of non-negative non-decreasing near-simple processes (644Bb), Mj-f(S) the space of jump-
free processes (618G) and Mpo-b(S) the space of previsibly order-bounded processes (645Ba). On Mo-b(S)
we have the ucp topology (615B) and on Mpo-b(S) we have the S-integration topology TS-i; M

0
S-i(S) is the

TS-i-closure of {uuu< : uuu ∈ Mmo(S)} (645F), and MS-i(S) is {xxx : xxx ∈ Mo-b(S), xxx × 1(S)
< ∈ M0

S-i(S)} (645Fc).

If vvv ∈M↑
n-s(S), θ̂#vvv is the corresponding F-seminorm on Mpo-b(S) (645Bb).

Finally, we shall be looking at both Riemann-sum integrals
∫
S uuu dvvv (613L) and S-integrals S

∫
S xxx dvvv (645P).

For the former case, our default assumption is that uuu is moderately oscillatory and vvv is an integrator (616K);
in the latter, that 〈At〉t∈T is right-continuous (632B), S is order-convex, xxx ∈MS-i(S) and vvv is a near-simple
integrator.

646B Lemma Let S be a sublattice of T . If xxx = 〈xσ〉σ∈S ∈ M0
S-i(S) then xτ ∈ L0(AS<τ ) for every

τ ∈ S.
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proof Define vvv = 〈vσ〉σ∈S by saying that vσ = χ[[τ ≤ σ]] for σ ∈ S. Then vvv is a non-negative order-
bounded non-decreasing simple process with breakpoint string (τ), so belongs to M↑

n-s(S). If ǫ > 0, there

is a uuu = 〈uσ〉σ∈S ∈ Mmo(S) such that θ̂#vvv (xxx − uuu<) < ǫ. Now there is a uniformly order-bounded non-
decreasing sequence 〈uuun〉n∈N = 〈〈unσ〉σ∈S〉n∈N of non-negative moderately oscillatory processes such that
|xxx−uuu<| ≤ supn∈N uuun< and supn∈N θ(

∫
S uuun dvvv) ≤ ǫ. In this case, |xτ −u<τ | ≤ supn∈N un<τ , while 〈un<τ 〉n∈N

is a non-decreasing sequence and supn∈N θ(un<τ ) ≤ ǫ (using 641J). So θ(xτ − u<τ ) ≤ ǫ. We know also that
u<τ ∈ L0(AS<τ ) (641G(a-i)). As ǫ is arbitrary and L0(AS<τ ) is closed, xτ ∈ L0(AS<τ ).

646C Proposition Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T , xxx
an S-integrable process and vvv a near-simple integrator, both with domain S. Then [[ S

∫
S xxx dvvv 6= 0]] ⊆ [[vvv 6= 0]].

proof Set a = infσ∈S [[vσ = 0]] and z = S
∫
S xxx dvvv = S

∫
S xxx×1(S)

< dvvv. By the definition of the S-integral in 645O-

645P, there is for any ǫ > 0 a uuu ∈Mmo(S) such that θ(z−
∫
S uuu dvvv) ≤ ǫ, so that θ(z×χa−χa×

∫
S uuu dvvv) ≤ ǫ.

But χa×
∫
S uuu dvvv = 0 (613Ld), so θ(z×χa) ≤ ǫ. As ǫ is arbitrary, θ(z×χa) = 0 and [[z 6= 0]] ⊆ 1 \ a = [[vvv 6= 0]].

Remark It seems to be harder to match the other half of 613Ld; see 647J. But we have the following easy
remark.

646D Proposition Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T ,
xxx a member of MS-i(S), and vvv a near-simple integrator with domain S. If z ∈ L0(A ∩⋂

σ∈S Aσ), then

S
∫
S
zxxx dvvv = S

∫
S
xxx d(zvvv) = z × S

∫
S
xxx dvvv.

proof (a) To begin with, suppose that xxx ∈ M0
S-i = M0

S-i(S). In this case, zxxx ∈ M0
S-i (645Ka), and if

uuu∗ ∈ M+
mo =Mmo(S)+ is such that |xxx| ≤ uuu∗<, then |zxxx| ≤ (|z|uuu∗)< (see the proof of 645D(a-iv)). Also zvvv is

a near-simple integrator (631F(a-v), 616P(b-iv)). Let ǫ > 0. Then there is a δ > 0 such that θ(z × u) ≤ ǫ
whenever θ(u) ≤ δ. Setting A = {uuu : uuu ∈ Mmo, |uuu| ≤ uuu∗} and A′ = {uuu : uuu ∈ Mmo, |uuu| ≤ |z|uuu∗}, we have
TS-i-neighbourhoods G, G

′ of xxx, zxxx respectively such that

θ( S
∫
S
xxx d(zvvv)−

∫
S
uuu d(zvvv)) ≤ ǫ whenever uuu ∈ A and uuu< ∈ G,

θ( S
∫
S
xxx dvvv −

∫
S
uuu dvvv) ≤ δ whenever uuu ∈ A and uuu< ∈ G,

θ( S
∫
S
zxxx dvvv −

∫
S
uuu dvvv) ≤ ǫ whenever uuu ∈ A′ and uuu< ∈ G′;

and because xxx′ 7→ zxxx′ is continuous (645E(a-vi)), we can suppose that zxxx′ ∈ G′ whenever xxx′ ∈ G. Now there
is a uuu ∈ A such that uuu< ∈ G, in which case we shall have

θ( S
∫
S
xxx d(zvvv)−

∫
S
uuu d(zvvv)) ≤ ǫ,

θ(z × S
∫
S
xxx dvvv − z ×

∫
S
uuu dvvv) ≤ ǫ,

θ( S
∫
S
zxxx dvvv −

∫
S
zuuu dvvv) ≤ ǫ,

and moreover ∫
S
uuu d(zvvv) = z ×

∫
S
uuu dvvv =

∫
S
zuuu dvvv

(613L(b-ii)). So

θ( S
∫
S
xxx d(zvvv)− z × S

∫
S
xxx dvvv) ≤ 2ǫ, θ( S

∫
S
zxxx dvvv − z × S

∫
S
xxx dvvv) ≤ 2ǫ;

as ǫ is arbitrary, the three expressions are equal.

(b) For the general case of xxx ∈MS-i(S), we have

S
∫
S zxxx dvvv = S

∫
S(zxxx)× 1(S)

< dvvv = S
∫
S z(xxx× 1(S)

< )dvvv,

S
∫
S xxx d(zvvv) = S

∫
S xxx× 1(S)

< d(zvvv), z × S
∫
S xxx dvvv = z × S

∫
S xxx× 1(S)

< dvvv,

while xxx× 1(S)
< ∈M0

S-i, so (a) tells us that these three terms are equal.
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646E It will be convenient to have a partial expression of the continuity of S-integration in a more
precise form than those offered in §645.
Lemma Suppose that 〈At〉t∈T is right-continuous, S is an order-convex sublattice of T , and vvv ∈ M↑

n-s(S).
If xxx ∈M0

S-i(S), then θ( S
∫
S xxx dvvv) ≤ θ̂#vvv (xxx).

proof Let ǫ > 0. Then there is an order-bounded non-decreasing sequence 〈uuun〉n∈N in Mmo(S)+ such that

|xxx| ≤ supn∈N uuun< and supn∈N θ(
∫
S uuundvvv) ≤ θ̂#vvv (xxx)+ ǫ. We are supposing that xxx is previsibly order-bounded,

so there is a uuu ∈Mmo(S)+ such that |xxx| ≤ uuu<. Set uuu
′
n = uuu ∧ uuun for each n ∈ N. Then

|xxx| ≤ uuu< ∧ supn∈N uuun< = supn∈N(uuu< ∧ uuun<) = supn∈N uuu
′
n<

(641G(e-i)), so

0 ≤ | S
∫

S

xxx dvvv| ≤ S

∫

S

|xxx|dvvv ≤ S

∫

S

(sup
n∈N

uuu′n<)dvvv

(because S
∫
S ..dvvv is a positive linear operator, by 645Rc)

= sup
n∈N

S

∫

S

uuu′n<dvvv

(645T, because 〈uuu′n<〉n∈N is uniformly previsibly order-bounded and order*-convergent to its supremum)

= sup
n∈N

∫

S

uuu′ndvvv ≤ sup
n∈N

∫

S

uuundvvv

and

θ( S
∫
S xxx dvvv) ≤ θ(supn∈N

∫
S
uuundvvv) = supn∈N θ(

∫
S
uuundvvv) ≤ θ̂#vvv (xxx) + ǫ.

As ǫ is arbitrary, we have the result.

646F Lemma Let S be a sublattice of T , and τ a member of S. Suppose that uuu′ = 〈u′σ〉σ∈S∧τ and
uuu′′ = 〈u′′σ〉σ∈S∨τ are families in L0. Define R(uuu′,uuu′′) ∈ (L0)S by saying that R(uuu′,uuu′′) = 〈uσ〉σ∈S where

uσ = u′σ∧τ × χ[[σ < τ ]] + u′′σ∨τ × χ[[τ ≤ σ]]

for σ ∈ S.
(a)(i) R(uuu′,uuu′′)↾S ∧ τ = uuu′ + zzz, where zzz = 〈(u′′τ − u′τ )× χ[[σ = τ ]]〉σ∈S∧τ .

(ii) R(uuu′,uuu′′)↾S ∨ τ = uuu′′.
(b) Regarded as an operator from (L0)S∧τ × (L0)S∨τ to (L0)S , R is linear, positive and order-continuous.
(c) If uuu′ and uuu′′ are fully adapted, then R(uuu′,uuu′′) is fully adapted.
(d) If uuu′ and uuu′′ are order-bounded, thenR(uuu′,uuu′′) is order-bounded and sup |R(uuu′,uuu′′)| ≤ sup |uuu′|∨sup |uuu′′|.
(e) Suppose that uuu′ and uuu′′ are moderately oscillatory.

(i) R(uuu′,uuu′′) is moderately oscillatory.
(ii) uuu′< = R(uuu′,uuu′′)<↾S ∧ τ .

(f) If uuu′ and uuu′′ are near-simple, R(uuu′,uuu′′) is near-simple.
(g) Suppose that uuu′ and uuu′′ are moderately oscillatory, and that vvv is an integrator with domain S. Then∫

S
R(uuu′,uuu′′)dvvv =

∫
S∧τ

uuu′ dvvv +
∫
S∨τ

uuu′′ dvvv.

proof Throughout the proof I will write uuu for R(uuu′,uuu′′).

(a)(i) For σ ∈ S ∧ τ ,

u′σ∧τ × χ[[σ < τ ]] + u′′σ∨τ × χ[[τ ≤ σ]]

= u′σ + (u′′τ − u′τ )× χ[[σ = τ ]].

(ii) For σ ∈ S ∨ τ ,
u′σ∧τ × χ[[σ < τ ]] + u′′σ∨τ × χ[[τ ≤ σ]] = u′′σ.
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(b) We just have to observe that, for any σ ∈ S,
(uuu′,uuu′′) 7→ (u′σ∧τ , u

′′
σ∨τ ) : (L

0)S∧τ × (L0)S∨τ → L0 × L0

is linear, positive and order-continuous, and so is

(u′, u′′) 7→ u′ × χ[[σ < τ ]] + u′′ × χ[[τ ≤ σ]] : L0 × L0 → L0.

(c)(i) If σ ∈ S, then u′σ∧τ ∈ L0(Aσ∧τ ) ⊆ L0(Aσ); [[σ < τ ]] ∈ Aσ so χ[[σ < τ ]] ∈ L0(Aσ); and

u′′σ∨τ × χ[[τ ≤ σ]] = u′′σ∨τ × χ[[σ ∨ τ = σ]]

(611E(a-ii-β))

∈ L0(Aσ)

by 612C. So uσ ∈ L0(Aσ).

(ii) If σ, σ′ ∈ S then

[[σ = σ′]] ⊆ [[σ ∧ τ = σ′ ∧ τ ]] ∩ [[σ ∨ τ = σ′ ∨ τ ]]
\ (([[σ < τ ]]△ [[σ′ < τ ]]) ∪ ([[τ ≤ σ]]△ [[τ ≤ σ′]]))

(611Ec, passim)

⊆ [[u′σ∧τ = u′σ′∧τ ]] ∩ [[u′′σ∨τ = u′′σ′∨τ ]]

∩ [[χ[[σ < τ ]] = χ[[σ′ < τ ]]]] ∩ [[χ[[τ ≤ σ]] = χ[[τ ≤ σ′]]]]

⊆ [[uσ = uσ′ ]].

So R(uuu′,uuu′′) = 〈uσ〉σ∈S is fully adapted.

(d) Setting ū = sup |uuu′| ∨ sup |uuu′′|, we have

|uσ| = |u′σ∧τ × χ[[σ < τ ]] + u′′σ∨τ × χ[[τ ≤ σ]]|
= (|u′σ∧τ | × χ[[σ < τ ]]) ∨ (|u′′σ∨τ | × χ[[τ ≤ σ]])

≤ (ū× χ[[σ < τ ]]) ∨ (ū× χ[[τ ≤ σ]]) = ū

for every σ ∈ S.
(e)(i) Use (a). The process zzz = 〈(u′′τ − u′τ ) × χ[[σ = τ ]]〉σ∈S∧τ is simple (612Ka), so uuu↾S ∧ τ = uuu′ + zzz is

moderately oscillatory, while uuu↾S ∨ τ = uuu′′ is also moderately oscillatory. By 615F(a-v), uuu is moderately
oscillatory.

(ii) By the formula in 641Ia with τ0 = τ , zzz< = 0, so

uuu<↾S ∧ τ = (uuu↾S ∧ τ)<
(641G(c-ii))

= uuu′< + zzz<

(641G(e-i))

= uuu′.

(f) Again, if uuu′ and uuu′′ are near-simple, so are uuu↾S ∨ τ = uuu′′ and uuu↾S ∧ τ = uuu′ + zzz, because zzz is simple;
so R(uuu′,uuu′′) is near-simple, by 631F(a-iv).

(g) Since uuu is moderately oscillatory,
∫
S uuu dvvv is defined and equal to

∫
S∧τ uuu dvvv +

∫
S∨τ uuu dvvv (613J(c-i)).

Now
∫
S∨τ uuu dvvv =

∫
S∨τ uuu

′′ dvvv because uuu′′ = uuu↾S ∨ τ . As for
∫
S∧τ uuu dvvv, observe that if v↓ = limσ↓S vσ then
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∫

S∧τ

zzz dvvv = lim
σ↓S

u′′τ × χ[[σ = τ ]]× (vτ − v↓) + (u′′τ − u′τ )× (vτ − vτ )

(614C)

= u′′τ × χ( inf
σ∈S

[[σ = τ ]])× (vτ − v↓)

= 0

because infσ∈S [[σ = τ ]] ⊆ [[v↓ = vτ ]]. So∫
S∧τ

uuu dvvv =
∫
S∧τ

uuu′ dvvv +
∫
S∧τ

zzz dvvv =
∫
S∧τ

uuu′ dvvv

and ∫
S
uuu dvvv =

∫
S∧τ

uuu dvvv +
∫
S∨τ

uuu dvvv =
∫
S∧τ

uuu′ dvvv +
∫
S∨τ

uuu′′ dvvv,

as claimed.

646G Lemma Let S be a sublattice of T , and τ a member of S. Suppose that vvv′ = 〈v′σ〉σ∈S∧τ ∈
M↑

n-s(S ∧ τ) and vvv′′ = 〈v′′σ〉σ∈S∨τ ∈M↑
n-s(S ∨ τ).

(a) There is a vvv = 〈vσ〉σ∈S ∈M↑
n-s(S) such that vvv′′ = vvv↾S ∨ τ .

(b) There is a vvv = 〈vσ〉σ∈S ∈M↑
n-s(S) such that

vvv′ = vvv↾S ∧ τ , vvv′′ ≡ vvv↾S ∨ τ .
(c) If www ∈M↑

n-s(S), there is a vvv∗ ∈M↑
n-s(S) such that

www 4 vvv∗, vvv′ 4 vvv∗↾S ∧ τ , vvv′′ 4 vvv∗↾S ∨ τ .

proof (a) In the language of 646F, set vvv = R(0, vvv′′), where 0 is the zero process with domain S ∧ τ . By
646Ff, vvv is a near-simple process; the defining formula

vσ = v′′σ∨τ × [[τ ≤ σ]]

shows that vvv↾S ∨ τ = vvv′′ and that vvv is non-negative and non-decreasing. Now we know that vvv′′ is order-
bounded (616Ib), so sup |vvv| = sup |vvv′′| is defined. Thus vvv is order-bounded; being monotonic, it is an
integrator (616Ra).

(b) Set

ṽvv′ = vvv′′ + (v′τ − v′′τ )1↾S ∨ τ = 〈v′τ + v′′σ − v′′τ 〉σ∈S∨τ ,

so that ṽvv′ ∈M↑
n-s(S ∨ τ).

Now set vvv = R(vvv′, ṽvv′), where R : (L0)S∧τ × (L0)S∨τ → (L0)S is defined as in 646F. By 646Ff, vvv is
near-simple. vvv is non-negative because vvv′ and ṽvv′ are non-negative. vvv is non-decreasing because if σ ≤ σ′ in
S, a = [[σ′ < τ ]], b = [[σ < τ ]] \ a and c = [[τ ≤ σ]] then

vσ = v′σ∧τ × χa+ v′σ∧τ × χb+ (v′τ − v′′τ + v′′σ∨τ )× χc

≤ v′σ′∧τ × χa+ v′τ × χb+ (v′τ − v′′τ + v′′σ′∨τ )× χc

≤ v′σ′∧τ × χa+ (v′τ − v′′τ + v′′σ′∨τ )× χb+ (v′τ − v′′τ + v′′σ′∨τ )× χc = vσ′ .

If σ ∈ S ∧ τ , then

vσ = v′σ∧τ × χ[[σ < τ ]] + (v′τ − v′′τ + v′′σ∨τ )× χ[[τ ≤ σ]]

= v′σ∧τ × χ[[σ < τ ]] + (v′τ − v′′τ + v′′σ∨τ )× χ[[τ = σ]]

= v′σ∧τ × χ[[σ < τ ]] + v′τ × χ[[τ = σ]] = v′σ,

so vvv′ = vvv↾S ∧ τ . If σ ≤ σ′ in S ∨ τ then of course

vσ′ − vσ = (v′τ − v′′τ + v′′σ′)− (v′τ − v′′τ + v′′σ) = v′′σ′ − v′′σ ,

so vvv↾S ∨ τ ≡ vvv′′. Finally, as in (a), vvv is order-bounded, therefore an integrator.

(c) Take vvv as in (b) and set vvv∗ = vvv +www.
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646H Lemma Let S be a sublattice of T , and τ a member of S. For uuu = 〈uσ〉σ∈S ∈ (L0)S define
R∗(uuu) ∈ (L0)S∨τ by saying that

R∗(uuu) = 〈uσ × χ[[τ < σ]]〉σ∈S∨τ = (uuu↾S ∨ τ)× 1(S∨τ)
< .

(a)(i) R∗ : (L0)S → (L0)S∨τ is an order-continuous f -algebra homomorphism.
(ii) If uuu ∈ (L0)S is fully adapted, then R∗(uuu) is fully adapted.
(iii) If uuu ∈Mo-b(S), then R∗(uuu) ∈Mo-b(S ∨ τ) and sup |R∗(uuu)| ≤ sup |uuu|.
(iv) If uuu ∈Mmo(S) then R∗(uuu) ∈Mmo(S ∨ τ).
(v) If xxx, uuu ∈ (L0)S , xxx↾S ∧ τ ≤ uuu↾S ∧ τ and R∗(xxx) ≤ uuu↾S ∨ τ , then xxx ≤ uuu.

(b) If uuu ∈Mmo(S), then (uuu↾S ∨ τ)< = R∗(uuu<).
(c) Suppose that xxx ∈Mpo-b(S). Write xxx′ for xxx↾S ∧ τ .
(i) xxx′ ∈Mpo-b(S ∧ τ) and R∗(xxx) ∈Mpo-b(S ∨ τ).
(ii) If vvv ∈M↑

n-s(S) , and we set vvv′ = vvv↾S ∧ τ and vvv′′ = vvv↾S ∨ τ , then
max(θ̂#vvv′(xxx

′), θ̂#vvv′′R
∗(xxx)) ≤ θ̂#vvv (xxx) ≤ θ̂#vvv′(xxx

′) + θ̂#vvv′′R
∗(xxx).

(d) If xxx ∈MS-i(S) then xxx↾S ∧ τ ∈MS-i(S ∧ τ) and xxx↾S ∨ τ ∈MS-i(S ∨ τ).
proof (a)(i) Immediate from the facts that [[τ < σ]] ∈ Aσ for all τ and σ, and if a ∈ A then u 7→ u× χa is
an order-continuous f -algebra homomorphism from L0 to itself.

(ii) If uuu is fully adapted, then uuu↾S ∨ τ is fully adapted (612Dc). Next, xxx = 〈χ[[τ < σ]]〉σ∈S∨τ is fully
adapted, because if σ, σ′ ∈ S ∨ τ then

[[χ[[τ < σ]] 6= χ[[τ < σ′]]]] = [[τ < σ]]△ [[τ < σ′]]

does not meet [[σ = σ′]], by 611E(c-iv-β). So R∗(uuu) = (uuu↾S ∨ τ)× xxx is fully adapted.

(iii) This is just because |uσ × χ[[τ < σ]]| ≤ |uσ| ≤ sup |uuu| for every σ ∈ S ∧ τ .
(iv) 1(S∨τ) is constant therefore moderately oscillatory, so 1(S∨τ)

< is moderately oscillatory (641L),
while uuu↾S ∨ τ is moderately oscillatory (615F(a-i)); so the product R∗(uuu) = (uuu↾S ∨ τ)×1(S∨τ)

< is moderately
oscillatory (615F(a-iii)).

(v) Express xxx, uuu as 〈xσ〉σ∈S and 〈uσ〉σ∈S . For σ ∈ S,
xσ × χ[[σ ≤ τ ]] = xσ∧τ × χ[[σ ≤ τ ]] ≤ uσ∧τ × χ[[σ ≤ τ ]] = uσ × χ[[σ ≤ τ ]]

and

xσ × χ[[τ < σ]] = xσ∨τ × χ[[τ < σ]] ≤ uσ∨τ × χ[[τ < σ]]

(because R∗(xxx) ≤ uuu↾S ∨ τ)
= uσ × χ[[τ < σ]],

so xσ ≤ uσ.

(b) This is covered by 641G(c-ii).

(c)(i) Let uuu ∈Mmo(S)+ be such that |xxx| ≤ uuu<. Then uuu↾S ∧ τ ∈Mmo(S ∧ τ) and uuu↾S ∨ τ ∈Mmo(S ∨ τ)
(615F(a-i) again), while (uuu↾S ∧ τ)< = uuu<↾S ∧ τ and (uuu↾S ∨ τ)< = R∗(uuu<), by 641Gc. So

|xxx↾S ∧ τ | ≤ (uuu↾S ∧ τ)<, xxx↾S ∧ τ ∈Mpo-b(S ∧ τ),

|R∗(xxx)| = R∗(|xxx|) ≤ R∗(uuu<) = (uuu↾S ∨ τ)<, R∗(xxx) ∈Mpo-b(S ∨ τ).

(ii) Observe first that vvv′ and vvv′′ are non-negative non-decreasing near-simple integrators (see 631F(a-iv)
and 616P(b-ii)).

(ααα) Let 〈uuun〉n∈N be a uniformly order-bounded non-decreasing sequence of non-negative moderately
oscillatory processes with domain S such that |xxx| ≤ supn∈N uuun<. Setting xxx′ = xxx↾S ∧ τ , vvv′ = vvv↾S ∧ τ and
uuu′n = uuun↾S ∧ τ for each n, we have uuu′n< = uuun<↾S ∧ τ for each n (641Gc again), so
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|xxx′| ≤ supn∈N uuun<↾S ∧ τ = supn∈N uuu
′
n<,

while 〈uuu′n〉n∈N is a non-decreasing sequence of non-negative moderately oscillatory processes (615F(a-i) once
more); also sup |uuu′n| ≤ sup |uuun| for each n, so 〈uuu′n〉n∈N is uniformly order-bounded. Accordingly

θ̂#vvv′(xxx
′) ≤ sup

n∈N

θ(

∫

S∧τ

uuu′n dvvv
′)

= sup
n∈N

θ(

∫

S∧τ

uuun dvvv) ≤ sup
n∈N

θ(

∫

S

uuun dvvv)

because vvv is non-decreasing and uuun is non-negative, so

0 ≤
∫
S∧τ

uuun dvvv =
∫
S
uuun dvvv −

∫
S∨τ

uuun dvvv ≤
∫
S
uuun dvvv

for every n. As 〈uuun〉n∈N is arbitrary, θ̂#vvv′(xxx
′) ≤ θ̂#vvv (xxx).

(βββ) The same line of argument works in S ∨ τ . Again, let 〈uuun〉n∈N be a uniformly order-bounded
non-decreasing sequence of non-negative moderately oscillatory processes with domain S such that |xxx| ≤
supn∈N uuun<. This time, setting vvv′′ = vvv↾S ∨ τ and uuu′′n = uuun↾S ∨ τ for each n, we have uuu′′n< = R∗(uuun<) for
each n ((b) above), so

|R∗(xxx)| ≤ sup
n∈N

R∗(uuun<)

(recall that R∗ is an order-continuous lattice homomorphism with domain (L0)S)

= sup
n∈N

uuu′′n<.

As in (α), 〈uuu′′n〉n∈N is a uniformly order-bounded non-decreasing sequence of non-negative near-simple pro-
cesses. Accordingly

θ̂#vvv′′R
∗(xxx) ≤ sup

n∈N

θ(

∫

S∨τ

uuu′′n dvvv
′′)

= sup
n∈N

θ(

∫

S∨τ

uuun dvvv) ≤ sup
n∈N

θ(

∫

S

uuun dvvv).

As 〈uuun〉n∈N is arbitrary, θ̂#vvv′′R
∗(xxx) ≤ θ̂#vvv (xxx).

(γγγ) Thus

max(θ̂#vvv′(xxx
′), θ̂#vvv′′R

∗(xxx)) ≤ θ̂#vvv (xxx).

As for the other inequality, let 〈uuu′n〉n∈N, 〈uuu′′n〉n∈N be uniformly order-bounded non-decreasing sequences
in Mmo(S ∧ τ)+, Mmo(S ∨ τ)+ respectively such that |xxx′| ≤ supn∈N uuu

′
n< and |R∗(xxx)| ≤ supn∈N uuu

′′
n<. Set

uuun = R(uuu′n,uuu
′′
n) for each n, where R is the operator defined in 646F; then 〈uuun〉n∈N is a uniformly order-

bounded non-decreasing sequence inMmo(S) (646Fb, 646Fd, 646F(e-i)). Now |xxx| ≤ supn∈N uuun<. PPP Express
xxx as 〈xσ〉σ∈S , uuun as 〈unσ〉σ∈S , uuun< as 〈un<σ〉σ∈S and uuu′′n< as 〈u′′n<σ〉σ∈S∧τ for each n. If σ ∈ S, then

|xσ| × χ[[σ ≤ τ ]] = |xσ∧τ | × χ[[σ ≤ τ ]] ≤ sup
n∈N

un<(σ∧τ) × χ[[σ ≤ τ ]]

= sup
n∈N

un<σ × χ[[σ ≤ τ ]]

because

|xxx′| ≤ supn∈N uuu
′
n< = supn∈N uuun<↾S ∧ τ

(641Gc once more) and uuun< is fully adapted. We also have

|xσ| × χ[[τ < σ]] = |xσ∨τ | × χ[[τ < σ]] ≤ sup
n∈N

u′′n<(σ∨τ) × χ[[τ < σ]]

(because |R∗(xxx)| ≤ supn∈N uuu
′′
n<)
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= sup
n∈N

u′′n<(σ∨τ) × χ[[τ < σ]] = sup
n∈N

u′′n<σ × χ[[τ < σ]]

because uuu′′n< = R∗(uuun<) for every n, by (b) above. So |xσ| ≤ supn∈N un<σ; as σ is arbitrary, |xxx| ≤
supn∈N uuun<. QQQ

Accordingly

θ̂#vvv (xxx) ≤ sup
n∈N

θ(

∫

S

uuun dvvv) ≤ sup
n∈N

(
θ(

∫

S∧τ

uuu′n dvvv) + θ(

∫

S∧τ

uuu′′n dvvv)
)

(646Fg)

= sup
n∈N

(
θ(

∫

S∧τ

uuu′n dvvv
′) + θ(

∫

S∧τ

uuu′′n dvvv
′′)
)

= sup
n∈N

θ(

∫

S∧τ

uuu′n dvvv
′) + sup

n∈N

θ(

∫

S∧τ

uuu′′n dvvv
′′)

because these are all non-decreasing sequences. As 〈uuu′n〉n∈N and 〈uuu′′n〉n∈N are arbitrary,

θ̂#vvv (xxx) ≤ θ̂#vvv′(xxx
′) + θ̂#vvv′′R

∗(xxx).

(d)(i) Here write yyy for xxx× 1
(S)
< and yyy′ for

yyy↾S ∧ τ = (xxx↾S ∧ τ)× (1
(S)
< ↾S ∧ τ) = (xxx↾S ∧ τ)× 1

(S∧τ)
<

(using 641G(c-ii) again). As yyy ∈M0
S-i(S), we know from (c-i) that yyy′ ∈Mpo-b(S ∧ τ). Take vvv′ ∈M↑

n-s(S ∧ τ)
and ǫ > 0. Then we have a vvv ∈ M↑

n-s(S) such that vvv′ = vvv↾S ∧ τ (646Gb). Let uuu ∈ Mmo(S) be such that

θ̂#vvv (yyy − uuu<) ≤ ǫ, and set uuu′ = uuu↾S ∧ τ . Then (c-ii) tells us that

θ̂#vvv′(yyy
′ − uuu′<) ≤ θ̂#vvv (yyy − uuu<) ≤ ǫ.

As vvv′ and ǫ are arbitrary, yyy′ ∈M0
S-i(S ∧ τ) and xxx↾S ∧ τ ∈MS-i(S ∧ τ).

(ii) As for (xxx↾S ∨ τ)× 1(S∨τ)
< = R∗(xxx), the point is that this is equal to R∗(xxx× 1(S)

< ). PPP

R∗(xxx× 1(S)
< ) = R∗(xxx)×R∗(1(S)

< ) = R∗(xxx)× 1(S∨τ)
<

((b) above)

= R∗(xxx). QQQ

Since xxx× 1(S)
< ∈M0

S-i(S), (c-i) tells us that R∗(xxx) ∈Mpo-b(S ∨ τ). Take vvv′′ ∈M↑
n-s(S ∨ τ) and ǫ > 0. Then

we have a vvv ∈ M↑
n-s(S) such that vvv′′ = vvv↾S ∨ τ (646Ga). Let uuu ∈ Mmo(S) be such that θ̂#vvv (xxx − uuu<) ≤ ǫ.

Then uuu′′ = uuu↾S ∨ τ is moderately oscillatory and

θ̂#vvv′′(R
∗(xxx)− uuu′′<) = θ̂#vvv′′(R

∗(xxx)−R∗(uuu<)) ≤ θ̂#vvv (xxx− uuu<) ≤ ǫ

by (b) and (c-ii). As vvv′′ and ǫ are arbitrary, R∗(xxx) ∈M0
S-i(S ∨ τ), so xxx↾S ∨ τ ∈MS-i(S ∨ τ).

646I Lemma Let S be a sublattice of T and τ a member of S. Define R∗ : (L0)S → (L0)S∨τ as in 646H.
Take xxx ∈ (L0)S .

(a) If xxx↾S ∧ τ ∈Mpo-b(S ∧ τ) and R∗(xxx) ∈Mpo-b(S ∨ τ), then xxx ∈Mpo-b(S).
(b) If xxx↾S ∧ τ ∈M0

S-i(S ∧ τ) and R∗(xxx) ∈M0
S-i(S ∨ τ), then xxx ∈M0

S-i(S).
(c) If xxx↾S ∧ τ ∈MS-i(S ∧ τ) and xxx↾S ∨ τ ∈MS-i(S ∨ τ), then xxx ∈MS-i(S).

proof Write xxx′ for xxx↾S ∧ τ .
(a) There are uuu′ ∈ Mmo(S ∧ τ)+ and uuu′′ ∈ Mmo(S ∨ τ)+ such that |xxx′| ≤ uuu′< and |R∗(xxx)| ≤ uuu′′<. Set

uuu = R(uuu′,uuu′′), as defined in 646F. Then uuu ∈Mmo(S)+ (646F(e-i)),

|xxx′| ≤ uuu′< = uuu<↾S ∧ τ
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(646F(e-ii)) and

|R∗(xxx)| ≤ uuu′′< = (uuu↾S ∨ τ)< = R∗(uuu<) ≤ uuu<↾S ∨ τ
(646Fa, 646Hb). Putting these together, |xxx| ≤ uuu< (646H(a-v)) and xxx ∈Mpo-b(S).

(b) Take vvv ∈ M↑
n-s(S) and ǫ > 0. Then vvv′ = vvv↾S ∧ τ and vvv′′ = vvv↾S ∨ τ are non-negative non-decreasing

near-simple integrators, so there are uuu′ ∈Mmo(S ∧ τ) and uuu′′ ∈Mmo(S ∨ τ) such that

θ̂#vvv′(uuu
′
< − xxx′) ≤ ǫ, θ̂#vvv′′(uuu

′′
< −R∗(xxx)) ≤ ǫ.

Set uuu = R(uuu′,uuu′′). Then uuu′< = uuu<↾S ∧ τ (646F(e-ii)) and R∗(uuu<) = uuu′′< (646Hb), so

θ̂#vvv (uuu< − xxx) ≤ θ̂#vvv′((uuu< − xxx)↾S ∧ τ) + θ̂#vvv′′R
∗(uuu< − xxx)

(646H(c-ii))

= θ̂#vvv′(uuu
′
< − xxx′) + θ̂#vvv′′(uuu

′′
< −R∗(xxx)) ≤ 2ǫ.

As ǫ is arbitrary, xxx ∈M0
S-i(S).

(c) (xxx × 1
(S)
< )↾S ∧ τ = xxx′ × 1

(S∧τ)
< belongs to M0

S-i(S ∧ τ) and R∗(xxx × 1
(S)
< ) ∈ M0

S-i(S ∨ τ). PPP Setting

eσ = supσ′∈S [[σ′ < σ]] for σ ∈ S, 1(S)
< = 〈χeσ〉σ∈S (641Gb), and

R∗(1
(S)
< ) = 〈χeσ × χ[[τ < σ]]〉σ∈S∨τ = 〈χ[[τ < σ]]〉σ∈S∨τ = 1

(S∨τ)
<

because [[τ < σ]] ⊆ eσ for every σ. Now

R∗(xxx× 1
(S)
< ) = R∗(xxx)×R∗(1

(S)
< )

(646H(a-i))

= (xxx↾S ∨ τ)× 1
(S∨τ)
< × 1

(S∨τ)
< = (xxx↾S ∨ τ)× 1

(S∨τ)
<

belongs to M0
S-i(S ∨ τ). QQQ

Now (b) tells us that xxx× 1
(S)
< ∈M0

S-i(S), that is, xxx ∈MS-i(S).

646J Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T ,
and τ a member of S. If xxx ∈ (L0)S , then xxx is an S-integrable process iff xxx↾S ∧ τ and xxx↾S ∨ τ are both
S-integrable, and in this case

S
∫
S
xxx dvvv = S

∫
S∧τ

xxx dvvv + S
∫
S∨τ

xxx dvvv

for every near-simple integrator vvv with domain S.
proof (a) By 646Hd and 646Ic, xxx is S-integrable iff xxx↾S ∧ τ and xxx↾S ∨ τ are S-integrable.

(b)(i) Now suppose that xxx, xxx′ = xxx↾S∧τ and xxx′′ = xxx↾S∨τ are all S-integrable, and that vvv is a near-simple
integrator with domain S. Then vvv′ = vvv↾S ∧ τ and vvv′′ = vvv↾S ∨ τ are near-simple integrators (631F(a-iv) and
616P(b-ii) again), so we can form the integrals

z = S
∫
S xxx dvvv, z′ = S

∫
S∧τ xxx dvvv, z′′ = S

∫
S∨τ xxx dvvv,

and setting

yyy = x× 1(S)
< . yyy′ = yyy↾S ∧ τ = (xxx↾S ∧ τ)× 1(S∧τ)

< ,

R∗(yyy) = (yyy↾S ∨ τ)× 1(S∨τ)
< = (xxx↾S ∨ τ)× 1(S∨τ)

<

as in 646H-646I, we have

z = S
∫
S yyy dvvv, z′ = S

∫
S∧τ yyy

′ dvvv′, z′′ = S
∫
S∨τ R

∗(yyy)dvvv′′.

By 645La, there is a non-negative ū ∈ L0 such that yyy belongs to the closure of A = {uuu< : uuu ∈ Mmo(S),
sup |uuu| ≤ ū} for the S-integration topology on M0

S-i(S). Set A′ = {uuu< : uuu ∈ Mmo(S ∧ τ), sup |uuu| ≤ ū} and
A′′ = {uuu< : uuu ∈Mmo(S ∨ τ), sup |uuu| ≤ ū}.
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(ii) Take ǫ > 0. Then we have vvv, vvv′, vvv′′ and δ > 0 such that vvv = 〈vσ〉σ∈S , vvv
′ = 〈v′σ〉σ∈S∧τ and

vvv′′ = 〈v′′σ〉σ∈S∨τ are all non-negative non-decreasing near-simple integrators,

θ(z −
∫
S
uuu dvvv) ≤ ǫ whenever uuu ∈ A and θ̂#vvv (yyy − uuu<) ≤ δ,

θ(z′ −
∫
S∧τ

uuu dvvv′) ≤ ǫ whenever uuu ∈ A′ and θ̂#vvv′(yyy
′ − uuu<) ≤ δ,

θ(z′′ −
∫
S∨τ

uuu dvvv′′) ≤ ǫ whenever uuu ∈ A′′ and θ̂#vvv′′(R
∗(yyy)− uuu′′<) ≤ δ.

Now there is a www = 〈w∗
σ〉σ∈S ∈M↑

n-s(S) such that

vvv 4 www, vvv′ 4 www↾S ∧ τ , vvv′′ 4 www↾S ∨ τ
(646Gc). We chose ū so that there would be a uuu ∈ A such that θ̂#www (yyy − uuu<) ≤ δ. In this case, setting

www′ = www↾S ∧ τ , www′′ = www↾S ∨ τ ,

uuu′ = uuu↾S ∧ τ ∈ A′, uuu′′ = uuu↾S ∨ τ ∈ A′′,

we have

θ̂vvv(yyy − uuu<) ≤ θ̂#www (yyy − uuu<) ≤ δ

(645Dc),

θ̂vvv′(yyy
′ − uuu′<) ≤ θ̂#www′(yyy′ − uuu′<) ≤ θ̂#www (yyy − uuu<) ≤ δ

(646H(c-ii)) and

θ̂vvv′′(R
∗(yyy)− uuu′′<) ≤ θ̂#www′′(R∗(yyy)− uuu′′<) ≤ θ̂#www (yyy − uuu<) ≤ δ

by the other half of 646H(c-ii). So

θ(z −
∫
S
uuu dvvv) ≤ ǫ, θ(z′ −

∫
S∧τ

uuu′ dvvv′) ≤ ǫ, θ(z′′ −
∫
S∨τ

uuu′′ dvvv′′) ≤ ǫ.

But

∫

S

uuu dvvv =

∫

S∧τ

uuu dvvv +

∫

S∨τ

uuu dvvv

(613J(c-i) again)

=

∫

S∧τ

uuu′ dvvv′ +

∫

S∨τ

uuu′′ dvvv′′,

so θ(z − z′ − z′′) ≤ 3ǫ. As ǫ is arbitrary, z = z′ + z′′, that is,

S
∫
S
xxx dvvv = S

∫
S∧τ

xxx dvvv + S
∫
S∨τ

xxx dvvv,

as claimed.

646K Indefinite S-integrals Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex
sublattice of T .

(a) Suppose that xxx is a locally S-integrable process and that vvv is a locally near-simple local integrator,
both with domain S. Then we can define zτ = S

∫
S∧τ xxx dvvv for τ ∈ S (646Hd, 646J). Now the indefinite

S-integral of xxx with respect to vvv is Siivvv(xxx) = 〈zτ 〉τ∈S .

(b) It will more than once be useful to note that, in the context of (a) just above, Siivvv(xxx) = Siivvv(xxx×1(S)
< ).

PPP If τ ∈ S then

S

∫

S∧τ

xxx dvvv = S

∫

S∧τ

xxx× 1(S∧τ)
< dvvv = S

∫

S∧τ

xxx× 1(S)
< × 1(S∧τ)

< dvvv

(because 1(S)
< ↾S ∧ τ = 1(S∧τ)

< )

Measure Theory



646L Basic properties of the S-integral 91

= S

∫

S∧τ

xxx× 1(S)
< dvvv. QQQ

(c) If uuu is a locally moderately oscillatory process with domain S then Siivvv(uuu<) = iivvv(uuu). PPP If τ ∈ S
then

S

∫

S∧τ

uuu<dvvv = S

∫

S∧τ

(uuu<↾S ∧ τ)dvvv = S

∫

S∧τ

(uuu↾S ∧ τ)< dvvv

(641G(c-ii) once more)

=

∫

S∧τ

(uuu↾S ∧ τ)dvvv

(645R(a-i))

=

∫

S∧τ

uuu dvvv. QQQ

646L Lemma Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of
T . Let vvv be a near-simple integrator and xxx an S-integrable process, both with domain S. For τ ∈ S,
set zτ = S

∫
S∧τ xxx dvvv. Suppose that uuu∗ ∈ Mmo(S)+ is such that |xxx| ≤ uuu∗. Then for any ǫ > 0 there is a

TS-i-neighbourhood G of xxx such that θ(zτ −
∫
S∧τ uuu dvvv) ≤ ǫ whenever uuu ∈ Mmo(S), |uuu| ≤ uuu∗, uuu< ∈ G and

τ ∈ S.
proof (a) I should begin by noting that zτ is defined for every τ ∈ S, by 646J. Define Rτ : (L0)S → (L0)S ,
for τ ∈ S, by setting

Rτ (〈uσ〉σ∈S) = 〈uσ × χ[[σ ≤ τ ]]〉σ∈S

for 〈uσ〉σ∈S ∈ (L0)S . As in 646F and 646H, Rτ is an order-continuous f -algebra homomorphism and Rτ (uuu)
is fully adapted whenever uuu ∈ (L0)S is fully adapted. If yyy is any S-integrable process with domain S and
τ ∈ S then

Rτ (yyy)↾S ∧ τ = yyy↾S ∧ τ , (Rτ (yyy)↾S ∨ τ)× 1(S∨τ)
< = 0,

so

S

∫

S

Rτ (yyy)dvvv = S

∫

S∧τ

Rτ (yyy)dvvv + S

∫

S∨τ

Rτ (yyy)dvvv

(646J)

= S

∫

S∧τ

Rτ (yyy)dvvv + S

∫

S∨τ

Rτ (yyy)× 1(S∨τ)
< dvvv

= S

∫

S∧τ

yyy dvvv.

In particular, zτ = S
∫
S Rτ (xxx)dvvv.

If uuu ∈Mmo(S) then

S

∫

S

Rτ (uuu<)dvvv = S

∫

S∧τ

(uuu<↾S ∧ τ)dvvv = S

∫

S∧τ

(uuu↾S ∧ τ)< dvvv

=

∫

S∧τ

uuu dvvv

by 645R(a-i) again.
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(b) Let ǫ > 0. By 645S, there are a vvv∗ ∈ M↑
n-s(S) and a δ > 0 such that θ( S

∫
S yyy dvvv − S

∫
S yyy

′ dvvv) ≤ ǫ

whenever yyy, yyy′ ∈ M0
S-i(S), |yyy| ≤ uuu∗<, |yyy′| ≤ uuu∗< and θ̂#vvv∗(yyy − yyy′) ≤ δ. Set G = {yyy : yyy ∈ Mpo-b(S),

θ̂#vvv∗(yyy−xxx) ≤ δ}, so that G is a TS-i-neighbourhood of xxx. If uuu ∈Mn-s(S), |uuu| ≤ uuu∗ and uuu< ∈ G, then, for any
τ ∈ S,

|Rτ (xxx)−Rτ (uuu<)| = |Rτ (xxx− uuu<)| ≤ |xxx− uuu<|,
so

θ̂#vvv∗(Rτ (xxx)−Rτ (uuu<)) ≤ θ̂#vvv∗(xxx− uuu<) ≤ δ

and

θ(zτ −
∫
S∧τ

uuu dvvv) = θ( S
∫
S
Rτ (xxx)dvvv − S

∫
S
Rτ (uuu<)dvvv) ≤ ǫ,

as required.

646M Proposition Suppose that 〈At〉t∈T is right-continuous and that S is a non-empty order-convex
sublattice of T . Let vvv be a near-simple integrator and xxx an S-integrable process, both with domain S; set
z = S

∫
S xxx dvvv and zτ = S

∫
S∧τ xxx dvvv for τ ∈ S. Then limτ↑S zτ = z and limτ↓S zτ = 0.

proof By 646Kb, Siivvv(xxx) = Siivvv(xxx× 1(S)
< ), while S

∫
S xxx dvvv = S

∫
S xxx× 1(S)

< dvvv; so we may assume that xxx itself

belongs to M0
S-i(S). Let uuu∗ ∈ M+

mo = Mmo(S)+ be such that |xxx| ≤ uuu∗<, and take ǫ > 0. By 646L, there is a
TS-i-neighbourhood G of xxx such that θ(zτ −

∫
S∧τ uuu dvvv) ≤ ǫ whenever τ ∈ S, uuu ∈Mmo, |uuu| ≤ uuu∗ and uuu< ∈ G.

At the same time, there is a TS-i-neigbourhood G′ of xxx such that θ(z −
∫
S uuu dvvv) ≤ ǫ whenever uuu ∈ Mmo,

|uuu| ≤ uuu∗ and uuu< ∈ G′. By 645La, there is a uuu ∈Mmo such that |uuu| ≤ uuu∗ and uuu< ∈ G ∩G′. So now we have

θ(zτ −
∫
S∧τ

uuu dvvv) ≤ ǫ whenever τ ∈ S, θ(z −
∫
S
uuu dvvv) ≤ ǫ.

Accordingly

lim sup
τ↑S

θ(z − zτ ) ≤ θ(z −
∫
S
uuu dvvv) + lim sup

τ↑S
θ(
∫
S
uuu dvvv −

∫
S∧τ

uuu dvvv)

+ lim sup
τ↑S

θ(
∫
S∧τ

uuu dvvv − zτ )

≤ ǫ+ 0 + ǫ

(613J(f-ii))

= 2ǫ,

lim sup
τ↓S

θ(zτ ) ≤ lim sup
τ↓S

θ(
∫
S∧τ

uuu dvvv) + lim sup
τ↓S

θ(
∫
S∧τ

uuu dvvv − zτ )

≤ 0 + ǫ

(613J(f-i))

= ǫ.

As ǫ is arbitrary, we have the result.

646N Theorem Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of
T . Let vvv be a near-simple integrator and xxx an S-integrable process, both with domain S. Then Siivvv(xxx) is a
near-simple integrator.

proof (a) As in 646M, we may assume that xxx belongs to M0
S-i(S). Again set zτ = S

∫
S∧τ xxx dvvv for τ ∈ S, and

take ǫ > 0 and uuu∗ ∈ M+
mo = Mmo(S)+ such that |xxx| ≤ uuu∗<. Also as in 646M, using 646L and 645L, we have

a uuu ∈ Mmo such that |uuu| ≤ uuu∗ and θ(zτ −
∫
S∧τ uuu dvvv) ≤ ǫ for every τ ∈ S. Since S is finitely full (611O),

θ(sup |Siivvv(xxx) − iivvv(uuu)|) ≤ 2
√
ǫ (615Db); while iivvv(uuu) is near-simple, by 631I. As ǫ is arbitrary, Siivvv(xxx) is

fully adapted (by 613Bl) and near-simple.

(b) To see that Siivvv(xxx) is an integrator, we can use 617E, as follows. Consider C = {
∫
uuu dvvv : uuu ∈ Mmo,

|uuu| ≤ uuu∗}. Then C is topologically bounded in L0. PPP Set ū = sup |uuu∗|. Let ǫ > 0. Then there is an
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M > 0 such that µ̄[[ū ≥M ]] ≤ ǫ. Let δ > 0 be such that θ(Mδz) ≤ ǫ for every z ∈ QS(dvvv). If uuu ∈ Mmo,

I ∈ I(S) and ‖uuu‖∞ ≤ M , then
1

M
SI(uuu, dvvv) ∈ QS(dvvv) so θ(δSI(uuu, dvvv)) ≤ ǫ; taking the limit as I ↑ I(S),

θ(δ
∫
S uuu dvvv) ≤ ǫ. Generally, if uuu ∈Mmo and |uuu| ≤ uuu∗, set uuu′ = med(−M1(S),uuu,M1(S)); then θ(δ

∫
S uuu

′ dvvv) ≤ ǫ

and [[
∫
S uuu dvvv 6=

∫
S uuu

′ dvvv]] ⊆ [[uuu 6= uuu′]] has measure at most ǫ, so θ(δ
∫
S uuu dvvv) ≤ 2ǫ. Thus θ(δz) ≤ 2ǫ for every

z ∈ C. As ǫ is arbitrary, C is topologically bounded. QQQ

(c) Now QS(dSiivvv(xxx)) is included in the topological closure C of C. PPP If z ∈ QS(dSiivvv(xxx)), there are
an I ∈ I(S) and a uuu ∈ Mfa(I) such that ‖uuu‖∞ ≤ 1 and z = SI(uuu, dSiivvv(xxx)). Take ǫ > 0. Then there is a

uuu′ ∈ Mmo such that |uuu′| ≤ uuu∗ and θ(zτ −
∫
S∧τ uuu

′ dvvv) ≤ ǫ

1+#(I)
for every τ ∈ S, as in (a) above, that is,

such that θ(zτ − z′τ ) ≤ 1

1+#(I)
ǫ for every τ , where 〈z′τ 〉τ∈S = zzz′ is the indefinite integral iivvv(uuu

′). In this

case, θ(SI(uuu, dSiivvv(xxx)) − SI(uuu, dzzz
′)) ≤ ǫ. By 627Ha, there is a www ∈ Msimp(S) such that ‖www‖∞ ≤ 1 and

SI(uuu, dzzz
′) =

∫
S www dzzz

′. Now we know from 617E that
∫
S www dzzz

′ =
∫
S www × uuu′ dvvv, which belongs to C because

|www × uuu′| ≤ |uuu′| ≤ uuu∗. And θ(z −
∫
S www dzzz

′) ≤ ǫ. As z and ǫ are arbitrary, QS(dSiivvv(xxx)) ⊆ C. QQQ

As the closure of a topologically bounded set in L0 is topologically bounded (613B(f-iii)), QS(dSiivvv(xxx))
is topologically bounded and Siivvv(xxx) is an integrator.

646O Lemma Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of T .
Let vvv be a near-simple integrator with domain S, and A ⊆ M0

S-i =M0
S-i(S) a uniformly previsibly order-

bounded set. Then Siivvv↾A is uniformly continuous with respect to the S-integration uniformity on A and
and the ucp uniformity on Mo-b(S).
proof (a) It is enough to consider the case in which A = {xxx : xxx ∈ M0

S-i, |xxx| ≤ uuu∗<} where uuu∗ ∈ Mmo(S)+.
By 646N, we know that Siivvv(xxx) ∈Mn-s(S) for every xxx ∈ A.

(b) Take ǫ > 0. Then there is a TS-i-neighbourhood G of 0 in M0
S-i such that θ( S

∫
S xxx dvvv − S

∫
S yyy dvvv) ≤ ǫ2

whenever xxx, yyy ∈ A and xxx − yyy ∈ G (645S); and we may suppose that G is of the form {xxx : xxx ∈ M0
S-i,

θ̂#www (xxx) ≤ δ} where δ > 0 and www ∈ M↑
n-s(S). Fix τ ∈ S for the moment. Defining Rτ : (L0)S → (L0)S as

in the proof of 646L, Rτ (xxx) ∈ M0
S-i and |Rτ (xxx)| ≤ |xxx| for xxx ∈ M0

S-i, so Rτ (xxx) ∈ A for every xxx ∈ A; also
Rτ (xxx) ∈ G for every xxx ∈ G. Consequently θ( S

∫
S Rτ (xxx)dvvv − S

∫
S Rτ (yyy)dvvv) ≤ ǫ2 whenever xxx, yyy ∈ A, xxx− yyy ∈ G

and τ ∈ S. But we also have S
∫
S Rτ (xxx)dvvv = S

∫
S∧τ xxx dvvv for xxx ∈M0

S-i and τ ∈ S, as observed in part (a) of the
proof of 646L. So we get

θ( S
∫
S∧τ xxx dvvv − S

∫
S∧τ yyy dvvv) ≤ ǫ2

whenever xxx, yyy ∈ A, xxx− yyy ∈ G and τ ∈ S.
(c) Now we know that Siivvv(xxx) is near-simple, therefore order-bounded, for every xxx ∈ M0

S-i; while S is
order-convex, therefore finitely full. So we can apply 615Db again to see that θ(sup |Siivvv(xxx)− Siivvv(yyy)|) ≤ 2ǫ
whenever xxx, yyy ∈ A and xxx− yyy ∈ G. As ǫ is arbitrary, Siivvv↾A is uniformly continuous.

646P Lemma Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of T
with a least element. Let vvv = 〈vσ〉σ∈S be a martingale. Then Svvv = {τ : τ ∈ S, QS∧τ (dvvv) is uniformly
integrable} is a covering ideal of S.
proof (a) Note first that if τ ∈ Svvv and σ ∈ S ∧ τ , then QS∧σ(dvvv) ⊆ QS∧τ (dvvv) is uniformly integrable, so
σ ∈ Svvv. If τ , τ ′ ∈ Svvv, then QS∧(τ∨τ ′)(dvvv) ⊆ QS∧τ (dvvv)+QS∧τ ′(dvvv). PPP If z ∈ QS∧(τ∨τ ′)(dvvv) there is a simple

process uuu = 〈uσ〉σ∈S∧(τ∨τ ′) such that ‖uuu‖∞ ≤ 1 and z =
∫
S∧(τ∨τ ′)

uuu dvvv (627Ha again). By 612K(d-i), there

is a breakpoint string for uuu of the form (τ0, . . . , τm, . . . , τn) where τ0 = minS, τm = τ and τn = τ ∨ τ ′. Now

z =

∫

S∧(τ∨τ ′)

uuu dvvv =

n−1∑

i=0

uτi × (vτi+1
− vτi)

(614C, because τ0 = minS and τn = τ ∨ τ ′)

D.H.Fremlin



94 The S-integral 646P

=

m−1∑

i=0

uτi × (vτi+1
− vτi) +

n−1∑

i=m

uτi × (vτi+1
− vτi) ∈ QS∧τ (dvvv) +QS∧τ ′(dvvv). QQQ

So QS∧(τ∨τ ′)(dvvv) is included in the sum of two uniformly integrable sets and is uniformly integrable (621B(c-
i)). As τ and τ ′ are arbitrary, Svvv is closed under ∨ and is an ideal in S.

(b) Suppose that S has a greatest element and vvv = 〈vσ〉σ∈S is an L2-martingale. Then ‖vσ‖2 ≤ ‖vmaxS‖2
for every σ ∈ S and vvv is L2-bounded. Let vvv∗ = 〈v∗σ〉σ∈S be its quadratic variation. If uuu is a simple process
with domain S and ‖uuu‖∞ ≤ 1, then

‖
∫
S
uuu dvvv‖22 ≤ ‖

∫
S
uuu2 dvvv∗‖1 ≤ ‖

∫
S
dvvv∗‖1 = ‖v∗maxS‖1 <∞

by 624I and 624G. So

QS(dvvv) ⊆ {
∫
S
uuu dvvv : uuu ∈Msimp(S), ‖uuu‖∞ ≤ 1}

(627Ha once more) is a ‖ ‖2-bounded subset of L2 and is uniformly integrable (621Be).

(c) Next, suppose that S has a greatest element and that vvv is such that vminS = 0 and Osclln(vvv) ≤ χ1.
As vvv is locally near-simple (632Ia), therefore near-simple, there is a non-decreasing sequence 〈τn〉n∈N in S
such that τ0 = minS, infn∈N [[τn < maxS]] = 0 and [[|vσ − vτn | ≥ 1]] ⊆ [[σ = τn+1]] whenever n ∈ N and
σ ∈ [τn, τn+1] (631Ra). Now |vτ − vτn | ≤ 2χ1 whenever n ∈ N and τn ≤ τ ≤ τn+1. PPP Applying the method
of 641E to vvv′ = vvv↾[τn, τn+1], we see that if τ ∈ [τn, τn+1] then |vI<τ − vτn | × χ[[τn < τ ]] ≤ χ1 for every finite
sublattice I of [τn, τ ] containing τn, so that |v<τ − vτn | × χ[[τn < τ ]] ≤ χ1; while |vτ − v<τ | × χ[[τn < τ ]] ≤
Osclln(vvv′), by 641Na. So

|vτ − vτn | × χ[[τn < τ ]] ≤ χ1 + Osclln(vvv′) ≤ χ1 + Osclln(vvv) ≤ 2χ1

(using 618D(b-ii)), whenever τn ≤ τ ≤ τn+1. It follows at once that |vτ −vτn | ≤ 2χ1 for every τ ∈ [τn, τn+1].
QQQ

Consequently |vτ | ≤ 2nχ1 whenever n ∈ N and minS ≤ τ ≤ τn, and vvv↾[minS, τn] is an L2-martingale
for every n. By (b), τn ∈ Svvv for every n; since

supn∈N [[τ ≤ τn]] ⊇ supn∈N [[maxS = τn]] = 1

for every τ ∈ S, Svvv is a covering ideal of S.
(d) If S has a greatest element and vvv is such that Osclln(vvv) ≤ χ1, but we are told nothing about vminS ,

then we can apply (c) to vvv′ = 〈vσ − vminS〉σ∈S to see that Svvv = Svvv′ is a covering ideal of S because
QS∧τ (dvvv) = QS∧τ (dvvv

′) for every τ .

(e) Now suppose that vvv is of bounded variation and v̄ =
∫
S |dvvv| has finite expectation. If uuu ∈ Msimp(S)

and ‖uuu‖∞ ≤ 1, then |SI(uuu, dvvv)| ≤ SI(1
(S), |dvvv|) ≤ v̄. So |z| ≤ v̄ for every z ∈ QS(dvvv) and QS(dvvv) is

uniformly integrable.

(f) Suppose that S has a greatest element and vvv is of bounded variation, but we do not know whether
v̄ =

∫
S |dvvv| has finite expectation. Set zτ =

∫
S∧τ |dvvv| for τ ∈ S. Because vvv is a martingale, it is near-simple

(632Ia again), and zzz = 〈zτ 〉τ∈S is near-simple (631K). By 631Ra again, there is a non-decreasing sequence
〈τn〉n∈N in S such that τ0 = minS, infn∈N [[τn < maxS]] = 0 and [[|zσ − zτn | ≥ 1]] ⊆ [[σ = τn+1]] whenever
n ∈ N and σ ∈ [τn, τn+1]. In this case,

zτn+1
− zτn ≤ 2χ1 + |vτn+1

− vτn |
for every n. PPP Suppose that τn = σ0 ≤ . . . ≤ σk = τn+1. For j ≤ k, set

aj = [[
∑j−1
i=0 |vσi+1

− vσi
| > 2χ1 + |vτn+1

− vτn |]], bj = aj+1 \ aj if j < k.

Then, for any j < k,

bj ⊆ [[vσj+1
6= vσj

]] ⊆ [[σj < τn+1]]

⊆ [[zσj
− zτn < χ1]] ⊆ [[|vσj

− vτn | < χ1]] ∩ [[
∑j−1
i=0 |vσi+1

− vσi
| < χ1]];

since also bj ⊆ aj+1,
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bj ⊆ [[|vσj+1
− vσj

| > χ1 + |vτn+1
− vτn |]].

Now observe that

[[σj+1 < τn+1]] ⊆ [[zσj+1
− zτn < χ1]] ⊆ [[

∑j
i=0 |vσi+1

− vσi
| < χ1]]

is disjoint from aj+1 and therefore from bj , so

bj ⊆ [[σj+1 = τn+1]] ⊆ [[|vσj+1
− vσj

| = |vτn+1
− vσj

|]].
Putting these together,

bj ⊆ [[|vσj
− vτn | < χ1]] ∩ [[|vσj+1

− vσj
| > χ1 + |vτn+1

− vτ |]]
∩ [[|vσj+1

− vσj
| = |vτn+1

− vσj
|]]

⊆ [[|vσj
− vτn | < χ1]] ∩ [[|vτn+1

− vσj
| > χ1 + |vτn+1

− vτn |]] = 0.

This is true for every j < k, so ak = 0 and
∑j−1
i=0 |vσi+1

− vσi
| ≤ 2χ1 + |vτn+1

− vτn |. As σ0, . . . , σk are
arbitrary, zτn+1

− zτn ≤ 2χ1 + |vτn+1
− vτn |. QQQ

Since vvv, being a martingale, is an L1-process, we see that zτn ∈ L1
µ̄ for every n. Consequently (e) tells

us that QS∧τn(dvvv) is uniformly integrable and τn ∈ Svvv for every n. As supn∈N [[τn = maxS]] = 1, Svvv is a
covering ideal of S.

(g) Next, suppose only that S has a greatest member. By the fundamental theorem of martingales
(643L), there is a local martingale v̂vv with domain S such that Osclln(v̂vv) ≤ χ1 and ṽvv = vvv − v̂vv has bounded
variation. Now, for any τ ∈ S,

QS∧τ (dvvv) ⊆ QS∧τ (dv̂vv) +QS∧τ (dṽvv)

(616Dc), so Svvv ⊇ Sv̂vv ∩ Sṽvv includes the intersection of two covering ideals and (being itself an ideal) is a
covering ideal of S (611Nc).

(h) Finally, if we suppose only that S is order-convex and has a least member, we know from (g) that
Svvv ∩ (S ∧ τ) covers S ∧ τ for every τ ∈ S, so Svvv covers S, and we’re done.

646Q Theorem Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of T
with a least element. Let vvv be a near-simple integrator and xxx an S-integrable process, both with domain S.

(a) If vvv is a martingale, then Siivvv(xxx) is a local martingale.
(b) If vvv is jump-free, then Siivvv(xxx) is jump-free.
(c) If vvv is of bounded variation, then Siivvv(xxx) is of bounded variation.

proof Since Siivvv(xxx) = Siivvv(xxx×1(S)
< ) (646Kb), and xxx×1(S)

< belongs to M0
S-i(S), we can suppose throughout

that xxx ∈M0
S-i(S). Set zτ = S

∫
S∧τ xxx dvvv for τ ∈ S.

(a)(i) Write

Svvv = {τ : τ ∈ S, QS∧τ (dvvv) is uniformly integrable},

S ′ = {τ : τ ∈ S, ‖xxx↾S ∧ τ‖∞ <∞}.
Then S ′ is an ideal of S, because (S ∧ τ) ∪ (S ∧ τ ′) covers S ∧ (τ ∨ τ ′) so sup |xxx↾S ∧ (τ ∨ τ ′)| = sup |xxx↾S ∧
τ | ∨ sup |xxx↾S ∧ τ ′| for all τ , τ ′ ∈ S. As in part (a) of the proof of 646P, Svvv is an ideal in S, so Svvv ∩S ′ also is.

(ii) Siivvv(xxx)↾Svvv∩S ′ is a martingale. PPP Take σ ≤ τ in Svvv∩S ′ and work in S∧τ . There is anM ≥ 0 such
that |xxx↾S ∧ τ | ≤ M1; now |xxx↾S ∧ τ | ≤ M1(S∧τ)

< . By 645La once more, xxx↾S ∧ τ belongs to the TS-i-closure
of {uuu< : uuu ∈ A} where A = {uuu : uuu ∈Mmo(S ∧ τ), |uuu| ≤M1}; by 646L there is for every δ > 0 a uuu ∈ A such
that θ(zσ′ −

∫
S∧σ′ uuu dvvv) ≤ δ for every σ′ ∈ S ∧ τ . Set C = MQS∧τ (dvvv), so that C is uniformly integrable.

If uuu ∈Mmo(S ∧ τ) and ‖uuu‖∞ ≤M , then
∫
S∧τ uuu dvvv = limI↑I(S∧τ) SI(uuu, dvvv) belongs to the closure C of C for

the topology of convergence in measure. But now we see that zτ also belongs to C; and the same applies to
zσ, since of course C ⊇MQS∧σ(dvvv).

Because C is uniformly integrable, C ⊆ L1
µ̄ and the norm topology of L1

µ̄ agrees with the topology of
convergence in measure on C (621B(c-ii)). Given ǫ > 0, there is a δ > 0 such that
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‖zτ − u‖1 ≤ ǫ whenever u ∈ C and θ(zτ − u) ≤ δ,

‖zσ − u‖1 ≤ ǫ whenever u ∈ C and θ(zσ − u) ≤ δ.

We therefore have a uuu ∈Mmo(S ∧ τ) such that

‖zτ −
∫
S∧τ

uuu dvvv‖1 ≤ ǫ, ‖zσ −
∫
S∧σ

uuu dvvv‖1 ≤ ǫ.

At this point, we repeat the trick in a different way. As
∫
S∧τ uuu dvvv = limI↑I(S∧τ) SI(uuu, dvvv) for the topology

of convergence in measure, and SI(uuu, dvvv) ∈ C for every I ∈ I(S ∧ τ),
∫
S∧τ uuu dvvv = 1limI↑I(S∧τ) SI(uuu, dvvv), the

limit for the norm topology on L1
µ̄. There is therefore an I0 ∈ I(S ∧ τ) such that

‖
∫
S∧τ

uuu dvvv − SI(uuu, dvvv)‖1 ≤ ǫ

whenever I0 ⊆ I ∈ I(S ∧ τ). Similarly, there is a J0 ∈ I(S ∧ σ) such that

‖
∫
S∧σ

uuu dvvv − SJ(uuu, dvvv)‖1 ≤ ǫ

whenever J0 ⊆ J ∈ I(S ∧ σ). Let K be the sublattice of S ∧ τ generated by I0 ∪ J0 ∪ {τ}. Then K ∧ σ ⊇ J0
so

‖
∫
S∧τ

uuu dvvv − SK(uuu, dvvv)‖1 ≤ ǫ, ‖
∫
S∧σ

uuu dvvv − SK∧σ(uuu, dvvv)‖1 ≤ ǫ

and

‖zτ − SK(uuu, dvvv)‖1 ≤ 2ǫ, ‖zσ − SK∧σ(uuu, dvvv)‖1 ≤ 2ǫ.

Now

Pσ(uσ′ × (vτ ′ − vσ′)) = PσPσ′(uσ′ × (vτ ′ − vσ′)) = Pσ(uσ′ × (Pσ′vτ ′ − Pσ′vσ′))

= Pσ(uσ′ × (vσ′ − vσ′)) = 0

whenever σ ≤ σ′ ≤ τ ′ ≤ τ , so PσSK∨σ(uuu, dvvv) = 0 and

PσSK(uuu, dvvv) = PσSK∧σ(uuu, dvvv) = SK∧σ(uuu, dvvv)

(using 613G(a-ii)). Since Pσ is ‖ ‖1-reducing,
‖Pσzτ − zσ‖1 ≤ 4ǫ.

As ǫ is arbitrary, Pσzτ = zσ; as σ and τ are arbitrary, Siivvv(xxx)↾S ′ is a martingale. QQQ

(iii) S ′ is a covering ideal of S. PPP There is a non-negative moderately oscillatory process uuu∗ = 〈u∗σ〉σ∈S

such that |xxx| ≤ uuu∗<, and by 642M we can suppose that uuu∗ is near-simple. Take τ ∈ S and ǫ > 0. There
is an M > 0 such that µ̄[[sup |uuu∗| ≥M ]] ≤ ǫ. Because uuu∗ is near-simple, there is a τ ′ ∈ S ∧ τ such that
[[u∗σ ≥M ]] ⊆ [[σ = τ ′]] for every σ ∈ S ∧ τ ′ and [[τ ′ < τ ]] ⊆ [[u∗τ ≥M ]] (631Ra once more, applied in S ∧ τ
with δ = M). So µ̄[[τ ′ < τ ]] ≤ ǫ. Next, for σ ∈ S ∧ τ ′, u∗I<σ ≤ Mχ1 for every I ∈ I(S ∧ σ), because
[[σ′ < σ]] ⊆ [[σ′ < τ ′]] ⊆ [[u∗σ′ ≤M ]] for every σ′ ∈ S ∧ σ. So u∗<σ ≤Mχ1 for σ ≤ τ ′, and

sup |xxx↾S ∧ τ ′| ≤ sup |uuu∗<↾S ∧ τ ′| ≤Mχ1.

Thus τ ′ ∈ S ′; as ǫ is arbitrary, S ′ covers {τ}; as τ is arbitrary, S ′ covers S. QQQ

(iv) By 646P, Svvv is a covering ideal of S. So Svvv ∩ S ′ covers S (611Nc again). Since Siivvv(xxx)↾Svvv ∩ S ′ is
a martingale, Siivvv(xxx) is a local martingale.

(b) Let uuu∗ ∈ Mmo = Mmo(S)+ be such that |xxx| ≤ uuu∗< and set A = {yyy : yyy ∈ M0
S-i(S), |yyy| ≤ uuu∗<},

B = {uuu : uuu ∈ Mmo, |uuu| ≤ uuu∗}. Then xxx ∈ {uuu< : uuu ∈ B}, taking the closure for the S-integration topology
(645La yet again). By 646O, Siivvv(xxx) belongs to the closure of {Siivvv(uuu<) : uuu ∈ B} for the ucp topology on
Mo-b(S). But observe that if uuu ∈Mmo then

S
∫
S∧τ (uuu<↾S ∧ τ) dvvv = S

∫
S∧τ (uuu↾S ∧ τ)< dvvv =

∫
S∧τ

uuu dvvv

so Siivvv(uuu<) = iivvv(uuu). And we know that iivvv(uuu) is jump-free for every uuu ∈Mmo, by 618Q. So Siivvv(xxx) belongs
to the closure of Mj-f(S) in Mo-b(S) and is jump-free by 618Ga.
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(c) Take uuu∗, A and B as in (b) just above, and set ū = sup |uuu∗| ×
∫
S |dvvv|. Then iivvv(uuu) is of bounded

variation, with ∫
S
|d(iivvv(uuu))| ≤ sup |uuu| ×

∫
S
|dvvv| ≤ ū

for every uuu ∈ B (614T). As before,

Siivvv(xxx) ∈ {Siivvv(uuu<) : uuu ∈ B} = {iivvv(uuu) : uuu ∈ B}
where the closures are taken in the ucp topology. But this means that Siivvv(xxx) belongs to the closure of
{uuu : uuu ∈ Mbv(S),

∫
S |duuu| ≤ ū} for the product topology on (L0)S , and Siivvv(xxx) is of bounded variation, by

614N.

646R Theorem Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of T .
Let vvv be a near-simple integrator and xxx, xxx′ two S-integrable processes, all with domain S; write zzz for the
indefinite S-integral Siivvv(xxx). Then S

∫
S xxx

′ dzzz = S
∫
S xxx

′ × xxx dvvv.

proof (a) Of course it will be enough to deal with the case of non-empty S. We know from 646N that zzz is
a near-simple integrator, and from 645Kb that xxx× xxx′ is S-integrable, so the integrals here are well-defined.
Since

zzz = Siivvv(xxx) = Siivvv(xxx× 1(S)
< ), S

∫
S xxx

′ dzzz = S
∫
S xxx

′ × 1(S)
< dzzz

and

S
∫
S xxx

′ × xxx dvvv = S
∫
S xxx

′ × xxx× 1(S)
< dvvv = S

∫
S(xxx

′ × 1(S)
< )× (xxx× 1(S)

< )dvvv

(646Kb again), we can suppose throughout that xxx and xxx′ belong to M0
S-i =M0

S-i(S). There is a uuu∗ ∈M+
mo =

Mmo(S)+ such that |xxx| ∨ |xxx′| ≤ uuu∗<; by 642M and 645Lb, we can suppose that uuu∗ ∈ Mn-s(S)+ and that xxx′

belongs to the TS-i-closure of {uuu< : uuu ∈Msimp(S), |uuu| ≤ uuu∗}.
(b) Take any simple process uuu = 〈uσ〉σ∈S and ǫ > 0. Write ū for sup |uuu|.
(i) There is a TS-i-neighbourhood G0 of xxx such that whenever ǔuu ∈ Mmo is such that |ǔuu| ≤ uuu∗ and

ǔuu< ∈ G0 then θ(
∫
S uuu dzzz −

∫
S uuu džzz) ≤ ǫ, where žzz = iivvv(ǔuu). PPP Let (τ0, . . . , τn) be a breakpoint string for uuu.

Take δ > 0 such that θ(ū× z) ≤ ǫ

2n+2
whenever θ(z) ≤ δ. By 646L, there is a TS-i-neighbourhood G0 of xxx

such that whenever ǔuu ∈Mmo is such that |ǔuu| ≤ uuu∗ and ǔuu< ∈ G0 then θ(žτ − zτ ) ≤ δ for every τ ∈ S, where
〈žτ 〉τ∈S = žzz = iivvv(ǔuu) and 〈zτ 〉τ∈S = zzz. In this case,

∫

S

uuu dzzz −
∫

S

uuu džzz = u↓ × (zτ0 − žτ0) +

n−1∑

i=0

uτi × ((zτi+1
− žτi+1

)− (zτi − žτi))

+ uτn × ((z↑ − ž↑)− (zτn − žτn))

where u↓ = limσ↓S uσ, z↑ = limσ↑S zσ and ž↑ = limσ↑S žσ (614C again, since limσ↓S zσ = limσ↓S žσ = 0, by
646M and 613J(f-i) again). Consequently

θ(

∫

S

uuu dzzz −
∫

S

uuu džzz) ≤ (2n+ 2) sup
σ,τ∈S

θ(uσ × (zτ − žτ ))

≤ (2n+ 2) sup
τ∈S

θ(ū× (zτ − žτ )) ≤ ǫ.

So this G0 will serve. QQQ

(ii) There is a TS-i-neighbourhood G1 of xxx such that whenever ǔuu ∈ Mmo is such that |ǔuu| ≤ uuu∗ and
ǔuu< ∈ G1 then θ( S

∫
S uuu< × ǔuu< dvvv − S

∫
S uuu< × xxx dvvv) ≤ ǫ. PPP Set C = {yyy : yyy ∈ M0

S-i, |yyy| ≤ uuu∗<} and D = {yyy : yyy ∈
M0

S-i, |yyy| ≤ (|uuu| × uuu∗)<}. The operators yyy 7→ uuu< × yyy : C → D and yyy 7→ S
∫
S yyy dvvv : D → L0 are continuous

when C and D are given the S-integration topology and L0 is given the topology of convergence in measure
(645E(a-v-α), 645S), so yyy 7→ S

∫
S uuu< × yyy dvvv : C → L0 is continuous and there is a neighbourhood G1 of xxx

such that θ( S
∫
S uuu< × yyy dvvv − S

∫
S uuu< × xxx dvvv) ≤ ǫ whenever yyy ∈ G1 ∩ C; this G1 serves. QQQ
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(iii) Now there is a ǔuu ∈ Mmo such that |ǔuu| ≤ uuu∗ and ǔuu< ∈ G0 ∩ G1 (645La, as always). In this case,
writing žzz = iivvv(ǔuu) as before, θ(

∫
S uuu džzz −

∫
S uuu dzzz) ≤ ǫ and θ( S

∫
S uuu< × ǔuu< dvvv − S

∫
S uuu< × xxx dvvv) ≤ ǫ. But again

we know from 617E that
∫
S uuu džzz =

∫
S uuu × ǔuu dvvv, and from 645R(a-i) that S

∫
S uuu< × ǔuu< dvvv =

∫
S uuu × ǔuu dvvv. So

we have

θ(

∫

S

uuu dzzz − S

∫

S

uuu< × xxx dvvv)

≤ θ(

∫

S

uuu dzzz −
∫

S

uuu džzz) + θ( S

∫

S

uuu< × ǔuu< dvvv − S

∫

S

uuu< × xxx dvvv) ≤ 2ǫ.

(iv) As ǫ is arbitrary,
∫
S uuu dzzz = S

∫
S uuu< × xxx dvvv.

(c) We know that, setting C = {yyy : yyy ∈M0
S-i, |yyy| ≤ uuu∗<} and D = {yyy : yyy ∈M0

S-i, |yyy| ≤ (uuu∗ × uuu∗)<},
yyy 7→ yyy × xxx : C → D

is (TS-i,TS-i)-continuous and

yyy 7→ S
∫
S yyy dzzz : C → L0, yyy 7→ S

∫
S yyy dvvv : D → L0

are TS-i-continuous (645E(a-v-α), 645S again), so

B = {yyy : yyy ∈ C, S
∫
S yyy × xxx dvvv = S

∫
S yyy dzzz}

is (relatively) closed in C for TS-i; and it includes C ′ = {uuu< : uuu ∈Msimp(S), |uuu| ≤ uuu∗}, by (b). But we chose
uuu∗ so that xxx′ belongs to C and is in the TS-i-closure of C ′, so xxx′ ∈ B, as required.

Mnemonic d(Siivvv(xxx)) = xxx dvvv.

646S Proposition Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex sublattice of
T . Let vvv be a near-simple integrator and xxx an S-integrable process, both with domain S. Then Siivvv(xxx) −
Siivvv(xxx)< = xxx× (vvv − vvv<)× 1

(S)
< .

proof (a) To begin with, suppose that xxx ∈M0
S-i =M0

S-i(S). By 646N, Siivvv(xxx) is near-simple, so we can speak
of its previsible version Siivvv(xxx)<. Let uuu

∗ ∈M+
mo =Mmo(S)+ be such that |xxx| ≤ uuu∗<. Set C = {yyy : yyy ∈M0

S-i,
|yyy| ≤ uuu∗<}, C ′ = {uuu< : uuu ∈ Mmo, |uuu| ≤ uuu∗} and B = {yyy : yyy ∈ C, Siivvv(yyy) − Siivvv(yyy)< = yyy × (vvv − vvv<)}. If
uuu ∈Mmo and |uuu| ≤ uuu∗, then

Siivvv(uuu<)− Siivvv(uuu<)< = iivvv(uuu)− iivvv(uuu)<

(646Kc)

= uuu< × (vvv − vvv<)

by 641Q, so uuu< ∈ B; thus C ′ ⊆ B. We know that Siivvv : C → Mn-s(S) is continuous for TS-i and
the ucp topology (646O), while uuu 7→ uuu< : Mmo → Mmo is continuous for the ucp topology (641G(e-
ii)), so yyy 7→ Siivvv(yyy) − Siivvv(yyy)< is continous for TS-i and the ucp topology and therefore for TS-i and the
product topology on (L0)S . At the same time, the embedding M0

S-i
⊂→ (L0)S is continuous (645E(a-iii)), so

yyy 7→ yyy × (vvv − vvv<) :M
0
S-i → (L0)S is continuous and B is closed in C. Since B includes the dense subset C ′

of C (see 645La), B = C, so

Siivvv(xxx)− Siivvv(xxx)< = xxx× (vvv − vvv<) = xxx× 1
(S)
< × (vvv − vvv<).

(b) For the general case of S-integrable xxx, set yyy = xxx× 1(S)
< ∈M0

S-i(S); then Siivvv(xxx) = Siivvv(yyy), so

Siivvv(xxx)− Siivvv(xxx)< = Siivvv(yyy)− Siivvv(yyy)< = yyy × (vvv − vvv<) = xxx× (vvv − vvv<)× 1(S)
< .

646T Itô’s Formula, fourth form Suppose that 〈At〉t∈T is right-continuous, and that S is an order-
convex sublattice of T with a least element. Let vvv be a jump-free integrator with domain S, and vvv∗ its
quadratic variation; let h : R → R be a differentiable function such that its derivative h′ is locally Lipschitz,
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that is, Lipschitz on every bounded set. If h′′ : R → R is a locally bounded Borel measurable function
Lebesgue-almost-everywhere equal to the derivative of h′, then

S
∫
S
xxx d(h̄vvv) = S

∫
S
xxx× h̄′vvv dvvv +

1

2
S
∫
S
xxx× h̄′′vvv dvvv∗

for every xxx ∈MS-i =MS-i(S).
proof (a) To begin with (down to the end of (b)), suppose that h′ is continuously differentiable and that
its derivative is everywhere equal to h′′. As before, we need only to prove the result for xxx ∈M0

S-i(S).
We need to know that if yyy ∈Mpo-b(S) then yyy× h̄′vvv = yyy× (h̄′vvv)< and yyy× h̄′′vvv = yyy× (h̄′′vvv)<. PPP By 618Ga,

h̄′vvv is jump-free. Set eσ = supτ∈S [[τ < σ]] for σ ∈ S. Expressing h̄′vvv as 〈v′σ〉σ∈S and yyy as 〈yσ〉σ∈S , we see
from 641Na that (v′σ − v′<σ)× χeσ = 0, while yσ × χ(1 \ eσ) = 0, for every σ ∈ S; so yσ × v′σ = yσ × v′σ<

for

every σ, and yyy × h̄′vvv = yyy × (h̄′vvv)<. Similarly, yyy × h̄′′vvv = yyy × (h̄′′vvv)<. QQQ
It follows that if uuu ∈Mmo =Mmo(S) then

(uuu× h̄′vvv)< = uuu< × (h̄′vvv)< = uuu< × h̄′vvv, (uuu× h̄′′vvv)< = uuu< × h̄′′vvv.

(b) Now for the main argument. Let uuu ∈M+
mo be such that |xxx| ≤ uuu<, and set

uuu∗ = uuu× (|h̄′vvv| ∨ |h̄′′vvv|),

A = {yyy : yyy ∈M0
S-i, |yyy| ≤ uuu<}, A∗ = {yyy : yyy ∈M0

S-i, |yyy| ≤ uuu∗<}.
By 645Ja, yyy × h̄′vvv = yyy × (h̄′vvv)< belongs to M0

S-i for every yyy ∈ A, and yyy 7→ yyy × h̄′vvv : M0
S-i → M0

S-i is
TS-i-continuous (645E(a-v)), while yyy 7→ S

∫
S yyy dvvv is continuous on A∗ (645S). So yyy 7→ S

∫
S yyy × h̄′vvvdvvv : A → L0

is continuous. Similarly, yyy 7→ S
∫
S yyy× h̄′′vvvdvvv : A→ L0 and yyy 7→ S

∫
S yyy d(h̄vvv) : A→ L0 are continuous (recalling

from 616O that h̄vvv is an integrator, and from 631F(a-i) that it is near-simple).
Now we know from 619D that if uuu′ ∈Mmo then

∫
S
uuu′ d(h̄vvv) =

∫
S
uuu′ × h̄′vvv dvvv +

1

2

∫
S
uuu′ × h̄′′vvv dvvv∗,

so that

S
∫
S
uuu′< d(h̄vvv) = S

∫
S
uuu′< × h̄′vvvdvvv +

1

2
S
∫
S
uuu′< × h̄′′vvvdvvv∗.

And we know also that xxx belongs to the closure of A′ = {uuu′< : uuu′ ∈ Mmo, |uuu′| ≤ uuu} in M0
S-i. Since we are

looking at continuous operators into a Hausdorff space, we can conclude that

S
∫
S
xxx d(h̄vvv) = S

∫
S
xxx× h̄′vvv dvvv +

1

2
S
∫
S
xxx× h̄′′vvv dvvv∗.

(c) Now turn everything round, and start from locally bounded Borel measurable functions g : R → R.
For such a function, define I(g) : R → R by setting

I(g)(α) =

∫ α

0

g(β)dβ if α ≥ 0,

= −
∫ 0

α

g(β)dβ if α ≤ 0,

the integrals here being with respect to Lebesgue measure, of course. Then I(g) will be continuous, indeed
locally Lipschitz, and its derivative will be almost everywhere equal to g; I(g) will be the derivative of I2(g)
everywhere. Fix an xxx ∈MS-i, and let Φ be the set of locally bounded Borel measurable g : R → R such that

S
∫
S
xxx d(I2(g)vvv) = S

∫
S
xxx× I(g)vvv dvvv +

1

2
S
∫
S
xxx× ḡvvv dvvv∗.

Then (a)-(b) tell us that Φ contains all continuous functions from R to itself. Now the point is that
if 〈gn〉n∈N is a sequence in Φ converging pointwise to a function g : R → R, and if 〈gn〉n∈N is locally
uniformly bounded in the sense that supn∈N,|α|≤M |gn(α)| is finite for every M ≥ 0, then g ∈ Φ. PPP Because

g(α) = limn→∞ gn(α) for every α, 〈xxx× ḡnvvv〉n∈N is order*-convergent to xxx× ḡvvv. Next, supn∈N |gn| is locally
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bounded, so is bounded above by a continuous function (645Cb), and {|ḡnvvv| : n ∈ N} is bounded above by
a jump-free process (618Ga again). Accordingly {ḡnvvv× 1(S)

< : n ∈ N} is uniformly previsibly order-bounded
(use 641O), so {xxx× ḡnvvv × 1(S)

< : n ∈ N} is uniformly previsibly order-bounded (because Mpo-b(S) is closed
under multiplication, by 645D(a-ii)). By 645T,

S

∫

S

xxx× ḡvvv dvvv∗ = S

∫

S

xxx× ḡvvv × 1(S)
< dvvv∗

= lim
n→∞

S

∫

S

xxx× ḡnvvv × 1(S)
< dvvv∗ = lim

n→∞
S

∫

S

xxx× ḡnvvv dvvv
∗.

Next, 〈I(gn)〉n∈N and 〈I2(gn)〉n∈N are also locally uniformly bounded sequences converging pointwise to
I(g) and I2(g) respectively. So

S
∫
S
xxx× I(g)vvv dvvv = limn→∞ S

∫
S
xxx× I(gn)vvv dvvv,

S

∫

S

xxx× I2(g)vvv dvvv = lim
n→∞

S

∫

S

xxx× I2(gn)vvv dvvv

= lim
n→∞

S

∫

S

xxx× I(gn)vvv dvvv +
1

2
S

∫

S

xxx× ḡnvvv dvvv
∗

= S

∫

S

xxx× I(g)vvv dvvv +
1

2
S

∫

S

xxx× ḡvvv dvvv∗

and g ∈ Φ. QQQ
Consequently Φ contains all locally bounded Borel measurable functions (645Cc).

(d) Returning to the stated hypothesis, in which xxx ∈ MS-i, h : R → R is differentiable, its derivative h′

is locally Lipschitz, and h′′ is a locally bounded Borel measurable function equal almost everywhere to the
derivative of h′, set β = h(0) and γ = h′(0); then

h′(α) = γ + I(h′′)(α), h(α) = β + γα+ I2(h′′)(α)

for every α. Setting g = h′′, we have

h̄′vvv = γ1+ I(g)vvv, h̄vvv = β1+ γvvv + I2(g)vvv.

Now

S

∫

S

xxx d(h̄vvv) = β S

∫

S

xxx d1+ γ S

∫

S

xxx dvvv + S

∫

S

xxx d(I2(g)vvv)

= 0 + γ S

∫

S

xxx dvvv + S

∫

S

xxx× I(g)vvv dvvv +
1

2
S

∫

S

xxx× ḡvvv dvvv∗

(using 645R(c-ii) and (c) above)

= S

∫

S

xxx× h̄′vvv dvvv +
1

2
S

∫

S

xxx× h̄′′vvv dvvv∗

as required.

646X Basic exercises (a) In 646F, show that R(h̄uuu′, h̄uuu′′) = h̄R(uuu′,uuu′′) whenever uuu′ ∈ (L0)S∧τ , uuu′′ ∈
(L0)S∨τ and h : R → R is a Borel measurable function.

(b) In 646H, show that R∗(h̄uuu) = h̄R∗(uuu) whenever uuu ∈ (L0)S and h : R → R is a Borel measurable
function with h(0) = 0.

(c) Suppose that 〈At〉t∈T is right-continuous, S is an order-convex sublattice of T and ū ∈ (L0)+. Show
that {uuu : uuu ∈ Mn-s(S), sup |uuu| ≤ ū} has a greatest member defined by setting uσ = sup{u : u ∈ L0(Aσ),
u ≤ ū} for σ ∈ S. (Hint : use 611H and 632F.)
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(d) In 646R, show that Siizzz(xxx) = Siivvv(xxx
′ × xxx).

(e) In 646T, show that Siih̄vvv(xxx) = Siivvv(xxx× h̄′vvv) + 1
2Siivvv∗(xxx× h̄′′vvv).

646 Notes and comments Working through the basic properties of the Riemann-sum integral as set out
in Chapter 61, we find that (as we naturally hope) most of them seem to be shared by the S-integral. I
checked bilinearity in 645Rb. Some of the others are straightforward (646B, 646C, 646M, 646Qc. 646S,
646T), some take more thought (645K, 646N, 646Qb, 646R) and some are apparently much harder (646J,
646Qa, 647J).

Even in terms of the concepts used in this presentation, I have not taken the shortest road to 646J, and
surely it is going to need a proper look at the definition of the S-integral, but all the same it seems to take
more pages than it should. The difficulty is that in the S-integral we are committed to a special class of
integrands, so that when we split the sublattice S into S ∧ τ and S ∨ τ the breakpoint τ has to be analysed
from both sides; this is what the operators R of 646F and its approximate inverse xxx 7→ (xxx↾S ∧ τ,R∗(xxx)) are
doing, and the problem is that these are not true inverses of each other.

Coming to the properties of indefinite S-integrals (646N, 646Q), we find ourselves facing interesting ques-
tions. When showing that an indefinite integral with respect to a martingale is a virtually local martingale,
there were already significant obstacles for the Riemann-sum integral, but the methods of §621 turned out
to be adequate. For the S-integral, I think we need to go much deeper, with another appeal to the fun-
damental theorem of martingales. In fact this allows us to bypass Theorem 623O altogether, as well as
giving a striking new fact about martingale integrators in 646P. Concerning the value of [[ S

∫
S xxx dvvv 6= 0]], we

have an easy argument to show that it is included in [[vvv 6= 0]] (646C), but to show that it is included in
[[xxx 6= 0]] (corresponding to the result for the Riemann-sum integral in 613Ld), we apparently need a special
construction, which I will come to in the next section.

Naturally, the proof I give of the change-of-variable result 646R is based on the corresponding result 617E
for the Riemann-sum integral; the application of 617E is hidden in (b-iii) of the proof of 646R. But here
again we have a not-quite-trivial check to make on the limiting process we need to use. It goes a bit more
smoothly if we start from 645Lb rather than 645La. As for Itô’s formula, the obvious extension (part (b) of
the proof of 646T) is straightforward in view of what has been done before. But with a little bit of analysis
we can use the sequential convergence properties of the S-integral to extend the result to a larger class of
functions h. I am rather supposing that you recognise the relevance of Rademacher’s theorem (262Q); if
h′ : R → R is locally Lipschitz, it will be differentiable almost everywhere, and its derivative will have an
extension to a locally bounded Borel measurable function (225J).

The definition ofM0
S-i in 645F leaves the nature of S-integrable processes unclear. Of course you could say

the same for universal measurability as defined in 434D; it is markedly less easy to form a mental picture of
a ‘typical’ universally measurable function than of a typical Lebesgue integrable function, because universal
measurability is not easily described in terms of universally negligible sets (439Xe). But we can say a little
bit, as in 646B.

Version of 29.3.23

647 Changing the filtration II

The answer (647J) to a natural question left over from §646 leads us to a new construction to add to
those in the second half of Chapter 63.

647A Notation As usual, (A, µ̄) will be a probability algebra, and 〈At〉t∈T a filtration of closed subal-
gebras of A, with the associated lattice T of stopping times and family 〈Aτ 〉τ∈T of subalgebras. If C is a
closed subalgebra of A and a ∈ A, upr(a,C) is the upper envelope of a in C. L0 = L0(A) will be given its
topology of convergence in measure.

If S is a sublattice of T and τ ∈ S, S ∧ τ = {σ ∧ τ : σ ∈ S} and I(S) is the set of finite sublattices of
S. We shall be looking at some of the usual spaces of fully adapted processes; if S is a sublattice of T , then
Mfa(S) is the space of fully adapted processes with domain S, Msimp the space of simple processes, Mo-b

c© 2014 D. H. Fremlin
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102 The S-integral 647A

the space of order-bounded processes, Mmo the space of moderately oscillatory processes, Mn-s the space of
near-simple processes,M↑

n-s the space of non-negative non-decreasing near-simple processes,Mbv the space of
processes of finite variation, Mpo-b the space of previsibly order-bounded processes (645B), M0

S-i the closure

of {uuu< : uuu ∈ Mmo} for the S-integration topology TS-i on Mpo-b, and MS-i the space {xxx : xxx × 1(S)
< ∈ M0

S-i}
(645F). If uuu = 〈uσ〉σ∈S is order-bounded, sup |uuu| = supσ∈S |uσ|. If uuu and vvv are fully adapted processes, I
write uuu 4 vvv if vvv −uuu is non-decreasing. For uuu ∈Mmo, uuu< ∈Mpo-b is its previsible version.

∫
will denote the

Riemann-sum integral of §613 and S
∫
the S-integral of §645.

647B Lemma Let S be a sublattice of T , and T the linear space topology on Mpo-b =Mpo-b(S) defined
by the F-seminorms θ̂#vvv (645Db) where vvv ∈M↑

n-s(S) is ‖ ‖∞-bounded. Then T is the S-integration topology
on Mpo-b.

proof Because the S-integration topology TS-i is defined by a larger family of F-seminorms, T is coarser
than TS-i. In the other direction, let G be a TS-i-neighbourhood of 0 inMpo-b. Then there are a vvv ∈M↑

n-s(S)
and an ǫ > 0 such that G includes {www : www ∈Mpo-b, θ̂

#
vvv (www) ≤ 3ǫ} (645E(a-ii)). Set v̄ = sup |vvv|, let M ≥ 0 be

such that µ̄[[v̄ ≥M ]] ≤ ǫ and set vvv′ = vvv∧M1. Then G′ = {www : www ∈Mpo-b, θ̂
#
vvv′(www) ≤ ǫ} is a T-neighbourhood

of 0. Now G′ ⊆ G. PPP The point is that, for any uuu ∈Mmo =Mmo(S),

[[
∫
S uuu dvvv

′ 6=
∫
S uuu dvvv]] ⊆ [[vvv′ 6= vvv]]

(613Jd)

= [[v̄ > M ]]

has measure at most ǫ, and

θ(
∫
S
uuu dvvv) ≤ ǫ+ θ(

∫
S
uuu dvvv′).

If www ∈ G′, there is a uniformly order-bounded non-decreasing sequence 〈uuu(n)〉n∈N in M+
mo such that |www| ≤

supn∈N uuu
(n)
< and supn∈N θ(

∫
S uuu

(n)dvvv′) ≤ 2ǫ. In this case,

θ̂#vvv (www) ≤ supn∈N θ(
∫
S
uuu(n)dvvv) ≤ 3ǫ

and www ∈ G. As www is arbitrary, G′ ⊆ G. QQQ
Thus G is a T-neighbourhood of 0, and 0 has the same neighbourhoods for T and TS-i. As these are both

linear space topologies, they coincide.

647C I give a couple of perfectly elementary facts which were not spelt out in Volume 3.

Lemma Suppose that D is a closed subalgebra of A, and b ∈ A; let B be the closed subalgebra of A

generated by {b} ∪D.
(a) If c ∈ B, then b ∩ c = b ∩ upr(b ∩ c,D).
(b) If u ∈ L0(B), there are u′, u′′ ∈ L0(D) such that u = u′ × χb+ u′′ × χ(1 \ b).

proof (a) Of course b ∩ c ⊆ b ∩ upr(b ∩ c,D). In the other direction, we know that B = {(a ∩ b) ∪ (a′ \ b) : a,
a′ ∈ D} (314Ja), so that there is an a ∈ D such that b ∩ c = b ∩ a. In this case,

b ∩ upr(b ∩ c,D) = b ∩ upr(b ∩ a,D) = b ∩ a ∩ upr(b,D)

(313Sc)

= b ∩ a = b ∩ c,

as claimed.

(b) Let C be the principal ideal of B generated by b. Then the maps d 7→ d ∩ b : D → C and d 7→
d ∩ b : B → C are both order-continuous surjective Boolean homomorphisms. So the corresponding Riesz
homomorphisms T ′ : L0(D) → L0(C) and T : L0(B) → L0(C) (364P) are surjective, and there is a
u′ ∈ L0(D) such that T ′u′ = Tu. Now if α ∈ R,
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b ∩ [[u′ > α]] = [[T ′u′ > α]]

(by the defining formula for T ′ in 364Pa)

= [[Tu > α]] = b ∩ [[u > α]].

So

[[u′ × χb > α]] = b ∩ [[u′ > α]] = [[u× χb > α]] if α ≥ 0,

= b ∩ [[u′ > α]] ∪ (1 \ b) = [[u× χb > α]] if α < 0,

and u′ × χb = u× χb.
Repeating the argument with 1 \ b in the place of b, we obtain an appropriate u′′.

647D Construction For most of the rest of this section, b will be a fixed member of A. For t ∈ T , let Bt

be the subalgebra of A generated by {b}∪At; then Bt = {(a ∩ b) ∪ (a′ \ b) : a, a′ ∈ A} is a closed subalgebra
(312N, 314J). If s ≤ t then {b} ∪ As ⊆ Bt so Bs ⊆ Bt; accordingly 〈Bt〉t∈T is a filtration.

647E Notation From now on, therefore, we shall have the two filtrations 〈At〉t∈T and 〈Bt〉t∈T , giving sto-
chastic integration structures A = (A, µ̄, T, 〈At〉t∈T , TA, 〈Aσ〉σ∈TA

) and B = (A, µ̄, T, 〈Bt〉t∈T , TB, 〈Bτ 〉τ∈TB
).

For the various spaces of processes, I will write AM0
S-i(S), BMmo(S), AMpo-b(S) etc. When we come to

S-integration, I will talk of F-seminorms Aθ̂#vvv , the S-integration topology BTS-i and S-integrals AS
∫
. (As we

shall see in 647Fe, there is no need for such distinctions in regard to Riemann-sum integrals.)

647F Proposition (a)(i) TA is a sublattice of TB.
(ii) min TA = min TB and max TA = max TB.

(b) For any σ ∈ TA, Bσ is the subalgebra of A generated by {b} ∪ Aσ.
(c) If σ, τ ∈ TA, then [[σ < τ ]] and [[σ = τ ]] are the same in either structure.
(d) Let S be a sublattice of TA.
(i) If uuu is an A-fully adapted process with domain S, it is B-fully adapted.
(ii) AMsimp(S) ⊆ BMsimp(S).
(iii) AMo-b(S) ⊆ BMo-b(S), and the ucp topology on AMo-b(S) is the subspace topology induced by

the ucp topology on BMo-b(S).
(iv) AMn-s(S) ⊆ BMn-s(S).
(v) AMbv(S) ⊆ BMbv(S).
(vi) AMmo(S) ⊆ BMmo(S).

(e) If uuu, vvv are A-fully adapted processes with domain S, and
∫
S uuu dvvv is defined in either of the structures

A, B, then it is defined in the other, with the same value.
(f) If S is a sublattice of TA and vvv an A-integrator with domain S, then vvv is a B-integrator.
(g) If S is a sublattice of TA and uuu belongs to AMmo(S) ⊆ BMmo(S), then its previsible version uuu< is the

same when calculated in either of the structures A, B.

proof (a)(i) The definition in 611A(b-i) makes it plain that TA ⊆ TB just because At ⊆ Bt for every t. The
formulae of 611Cb and 611Cc show that TA and TB can both be regarded as sublattices of AT , so that TA is
a sublattice of TB.

(ii) Immediate from the formulae in 611Cf.

(b) Write B′
σ for the subalgebra of A generated by {b} ∪ Aσ. If a ∈ Aσ, then a \ [[σ > t]] ∈ At ⊆ Bt for

every t ∈ T , so a ∈ Bσ. Next, b and [[σ > t]], and therefore b \ [[σ > t]], belong to Bt for every t, so b ∈ Bσ;
accordingly B′

σ ⊆ Bσ.
In the other direction, take c ∈ Bσ. For each t ∈ T , set at = upr(b ∩ c \ [[σ > t]],At). Because

c \ [[σ > t]] ∈ Bt, b ∩ at = b ∩ c \ [[σ > t]] (647Ca). So b ∩ as ⊆ b ∩ at if s ≤ t. Also, because [[σ > t]] ∈ At,
at = upr(b ∩ c,At) \ [[σ > t]] is disjoint from [[σ > t]] for each t. Set a = supt∈T at. If s ∈ T , then
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a \ [[σ > s]] = sup
t∈T

(upr(b ∩ c,At) \ [[σ > t]]) \ [[σ > s]]

= sup
t<s

(upr(b ∩ c,At) \ [[σ > t]]) ∪ sup
t≥s

(upr(b ∩ c,At) \ [[σ > s]])

= sup
t≤s

(upr(b ∩ c,At) \ [[σ > t]])

(because As ⊆ At so upr(b ∩ c,At) ⊆ upr(b ∩ c,As) if t ≥ s)

∈ As.

Thus a ∈ Aσ and b ∩ a ∈ B′
σ, while

b ∩ a = supt∈T b ∩ c \ [[σ > t]] = b ∩ c \ inft∈T [[σ > t]].

On the other hand,

(b ∩ c ∩ inft∈T [[σ > t]]) \ [[σ > s]] = 0 ∈ As

for every s ∈ T , so b ∩ c ∩ inft∈T [[σ > t]] belongs to Aσ ⊆ B′
σ. Accordingly b ∩ c ∈ B′

σ.
Similarly, c \ b ∈ B′

σ. So c ∈ B′
σ. As c is arbitrary, B

′
σ = Bσ, as claimed.

(c) The defining formulae

[[σ < τ ]] = supt∈T [[τ > t]] \ [[σ > t]], [[σ = τ ]] = 1 \ ([[σ < τ ]] ∪ [[τ < σ]])

do not refer to the filtrations.

(d)(i) S is a sublattice of TB because TA is. Expressing uuu as 〈uσ〉σ∈S , uσ ∈ L0(Aσ) ⊆ L0(Bσ) for every
σ ∈ S. If σ, τ ∈ S, then [[σ = τ ]] ⊆ [[uσ = uτ ]] in either structure, so uuu is B-fully adapted.

(ii) Of course
⋂
σ∈S Aσ ⊆ ⋂

σ∈S Bσ. So if uuu satisfies the conditions of 612J with respect to 〈Aσ〉σ∈S ,
it satisfies them with respect to 〈Bσ〉σ∈S .

(iii) ‘Order-boundedness’ of a process depends only on the structure of L0, not on the filtration (614Ea),

so AMo-b(S) ⊆ BMo-b(S). Similarly, if we think of θ̂ (615B) as an F-seminorm defined on the space of order-

bounded families in (L0)S , the ucp topologies on AMo-b(S), BMo-b(S) are defined by the restrictions of θ̂
to these spaces, so must agree on the smaller space AMo-b(S).

(iv) Now the closure AMn-s(S) of AMsimp(S) in AMo-b(S) (631Ba) must be included in the closure
BMn-s(S) of BMsimp(S) in BMo-b(S) just because AMsimp(S) ⊆ BMsimp(S).

(v) As in (iii), the definition of ‘bounded variation’ in 614J-614K refers to the lattice structure of S,
but not to the filtration.

(vi) And now, as in (iv), the closure AMmo(S) of AMbv(S) (615E) must be included in the closure
BMmo(S) of BMbv(S).

(e) Again, working through the definitions (§613), we see that the filtration is nowhere referred to, and
that

∫
S uuu dvvv is determined by the lattice structure of S, the processes uuu, vvv ∈ (L0)S and the topology of

convergence in measure on L0.

(f) We know that the capped-stake variation set B = Q
(A)
S (dvvv), calculated with reference to the family

〈Aσ〉σ∈S , is topologically bounded. Now

Q
(B)
S (dvvv) ⊆ {z′ × χb+ z′′ × χ(1 \ b) : z′, z′′ ∈ B}.

PPP If S is empty, this is trivial. Otherwise, if z ∈ Q
(B)
S (dvvv), there are τ0 ≤ . . . ≤ τn in S and u0, . . . , un−1

such that ui ∈ L0(Bτi) and ‖ui‖∞ ≤ 1 for each i, and z =
∑n−1
i=0 ui × (vτi+1

− vτi). For each i, Bτi is
the algebra generated by Aτi ∪ {b}, so there are u′i, u

′′
i ∈ L0(Aτi) such that ui = u′i × χb + u′′i × χ(1 \ b)

(647Cb), and replacing these by med(−χ1, u′i, χ1) and med(−χ1, u′′i , χ1) if necessary, we can suppose that
|u′i|, |u′′i | ≤ χ1. In this case,

z′ =
∑n−1
i=0 u

′
i × (vτi+1

− vτi), z′′ =
∑n−1
i=0 u

′′
i × (vτi+1

− vτi)
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belong to B (616C(ii)). And z = z′ × χb+ z′′ × χ(1 \ b). QQQ
Since z′ 7→ z′ × χb : L0 → L0 is linear and continuous, {z′ × χb : z′ ∈ B} is topologically bounded

(3A5N(b-v)). Similarly, {z′ × χ(1 \ b) : z′ ∈ B} is topologically bounded; so Q
(B)
S (dvvv) is included in the sum

of two topologically bounded sets and is topologically bounded, that is, vvv is a B-integrator.

(g) Once again, the definition in 641E-641F depends only on the lattice structure of S, the regions
[[σ < τ ]] for σ, τ ∈ S and the topology of convergence in measure on L0, which are unchanged by the change
in filtration.

647G Proposition Suppose that 〈At〉t∈T is right-continuous.
(a) 〈Bt〉t∈T is right-continuous.
(b) TA is an order-closed sublattice of TB.
(c) If τ ∈ TB, there are σ, σ′ ∈ TA such that b ⊆ [[τ = σ]] and 1 \ b ⊆ [[τ = σ′]]. In particular, TA covers TB.

proof (a) If t ∈ T is not isolated on the right, take c ∈ ⋂
s>tBs. Then for every s > t there are as, a

′
s ∈ As

such that c ∩ b = as ∩ b and c \ b = a′s \ b. Set

a = sups′>t inft<s≤s′ as, a′ = sups′>t inft<s≤s′ a
′
s;

then a ∈ ⋂
s′>t As = At and

c ∩ b = sup
s′>t

inf
t<s≤s′

(as ∩ b) = (sup
s′>t

inf
t<s≤s′

as) ∩ b

(by the distributive laws 313B, as usual)

= a ∩ b,

and similarly a′ ∈ At and c \ b = a′ \ b, so c = (a ∩ b) ∪ (a′ \ b) belongs to Bt. As c and t are arbitrary,
〈Bt〉t∈T is right-continuous.

(b) Use 611Cb in its full strength and 632C(a-i) to see that if A ⊆ TA is non-empty, we get formulae
defining supA and inf A in both TA and TB.

(c) For t ∈ T , set at = upr([[τ > t]] ∩ b,At); then at ∩ b = [[τ > t]] ∩ b, by 647Ca, because [[τ > t]] ∈ Bt. If
s ≤ t in T , then

[[τ > t]] ∩ b ⊆ [[τ > s]] ∩ b ⊆ as ∈ As ⊆ At,

so at ⊆ as. If t ∈ T is not isolated on the right in T , set a = sups>t as; then a = supt<s≤s′ as ∈ As′ for every
s′ > t, so (because the filtration is right-continuous) a ∈ At, while

[[τ > t]] ∩ b = sups>t [[τ > s]] ∩ b ⊆ a

so at ⊆ a and at = sups>t as. But this means that the conditions of 611A(b-i) are satisfied by 〈at〉t∈T and
we have a σ ∈ TA such that [[σ > t]] = at for every t. Next, for each t,

[[σ > t]] ∩ b = at ∩ b = [[τ > t]] ∩ b.

So if we calculate [[σ < τ ]] ∩ b from the formulae in 611D, we see that it is

supt∈T (b ∩ [[τ > t]] \ [[σ > t]]) = supt∈T (([[τ > t]] ∩ b) \ ([[σ > t]] ∩ b)) = 0,

and similarly [[τ < σ]] ∩ b = 0, so b ⊆ [[τ = σ]].
Similarly, we have a σ′ ∈ TA defined by setting [[σ′ > t]] = upr([[τ > t]] \ b,At) for every t ∈ T , and

1 \ b ⊆ [[τ = σ′]].

647H Lemma Suppose that 〈At〉t∈T is right-continuous, and that S is an order-convex sublattice of TA.
Let vvv ∈ BM↑

n-s(S) be ‖ ‖∞-bounded. Then there is a ‖ ‖∞-bounded www ∈ AM↑
n-s(S) such that vvv 4 www.

Remark Perhaps I should make it clear that when I write ‘S is an order-convex sublattice of TA’ I mean
that whenever τ , τ ′ ∈ S, σ ∈ TA and τ ≤ σ ≤ τ ′, then σ ∈ S. We do not expect S to be order-convex when
regarded as a sublattice of TB.
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proof (a) Express vvv as 〈vτ 〉τ∈S . For the time being (down to the end of (f) below) suppose that [[vvv 6= 0]] ⊆ b.
Set M = ‖vvv‖∞. For τ ∈ S set ṽτ = min{v : v ∈ L0(Aτ ), v ≥ vτ}; this is defined because {v : v ∈ L0(Aτ ),
v ≥ vτ} is non-empty (it contains Mχ1, for instance) and downwards-directed, and L0(Aτ ) is order-closed
in L0.

(b)(i) Of course 0 ≤ ṽτ ≤Mχ(upr(b,Aτ )), so [[ṽτ > 0]] ⊆ upr(b,Aτ ), for every τ ∈ S.
(ii) Next, [[vτ = ṽτ ]] ⊇ b for each τ . PPP (Cf. 121I, 364Xp.) If α ≥ 0, then [[vτ > α]] belongs to Bτ and is

included in b, so by 647Fb is of the form b ∩ a for some a ∈ Aτ . In this case, Mχa + αχ(1 \ a) belongs to
L0(Aτ ) and is greater than or equal to vτ , so is greater than or equal to ṽτ , and [[ṽτ > α]] ⊆ a. Consequently

[[ṽτ × χb > α]] ⊆ b ∩ a = [[vτ > α]] = [[vτ × χb > α]].

Of course

[[ṽτ × χb > α]] = 1 = [[vτ × χb > α]]

for every α < 0, because vτ ≥ 0. As α is arbitrary, ṽτ ×χb ≤ vτ ×χb. Since vτ ≤ ṽτ , ṽτ ×χb ≤ vτ ×χb and
ṽτ × χb = vτ × χb, that is, b ⊆ [[ṽτ = vτ ]]. QQQ

(c) ṽvv = 〈ṽτ 〉τ∈S is A-fully adapted. PPP We arranged in (a) that ṽτ ∈ L0(Aτ ) for every τ ∈ S. Suppose
that σ, τ in S and a = [[σ = τ ]]. Then a ∈ Aσ ∩ Aτ (611H(c-i)) and a ⊆ [[vσ = vτ ]]. Now

ṽσ × χa ≥ vσ × χa = vτ × χa

so ṽσ×χa+Mχ(1 \ a) ≥ vτ ; at the same time, χ(1 \ a) and ṽσ ×χa = ṽσ×χ[[σ ≤ τ ]]×χa belong to L0(Aτ )
(612C), so ṽσ×χa+Mχ(1 \ a) ∈ L0(Aτ ) and ṽσ×χa+Mχ(1 \ a) ≥ ṽτ . Thus ṽσ×χa ≥ ṽτ ×χa. Similarly,
ṽτ ×χa ≥ ṽσ×χa and the two are equal, that is, a ⊆ [[ṽσ = ṽτ ]]. As σ and τ are arbitrary, ṽvv is fully adapted.
QQQ

(d) ṽvv is of bounded variation. PPP Suppose that τ0 ≤ . . . ≤ τn in S. For 1 ≤ k ≤ n, set ak = [[ṽτk < ṽτk−1
]].

If 1 ≤ k ≤ i ≤ n, then ak ∈ Aτi and

ak ∩ b ⊆ [[ṽτk = vτk ]] ∩ [[ṽτk < ṽτk−1
]] ∩ [[ṽτk−1

= vτk−1
]] ⊆ [[vτk < vτk−1

]] = 0,

so ak ∩ upr(b,Aτi) = 0 and ak ⊆ [[ṽτi = 0]]; consequently ak ∩ ai = 0 if k < i. Turning this round, we see
that ak ∩ ai = 0 if 1 ≤ i < k, so that

ak ⊆ inf
1≤i<k

[[ṽτi−1
≤ ṽτi ]] ⊆ [[

∑k−1
i=1 |ṽτi − ṽτi−1

| = ṽτk−1
− ṽτ0 ]]

⊆ [[
∑k−1
i=1 |ṽτi − ṽτi−1

| ≤Mχ1]],

while on the other side

ak ⊆ infk≤i≤n [[ṽτi = 0]] ⊆ [[
∑n
i=k+1 |ṽτi − ṽτi−1

| = 0]].

Putting these together,

ak ⊆ [[
∑n
i=1 |ṽτi − ṽτi−1

| ≤Mχ1 + |ṽτk − ṽτk−1
|]] ⊆ [[

∑n
i=1 |ṽτi − ṽτi−1

| ≤ 2Mχ1]].

On the other hand,

1 \ sup
1≤i≤n

ai ⊆ inf
1≤i≤n

[[ṽτi−1
≤ ṽτi ]] ⊆ [[

∑n
i=1 |ṽτi − ṽτi−1

| = ṽτn − ṽτ0 ]]

⊆ [[
∑n
i=1 |ṽτi − ṽτi−1

| ≤Mχ1]],

so in fact we have

[[
∑n
i=1 |ṽτi − ṽτi−1

| ≤ 2Mχ1]] = 1

and
∑n
i=1 |ṽτi − ṽτi−1

| ≤ 2Mχ1. As τ0, . . . , τn are arbitrary, ṽvv is of bounded variation, with
∫
S |dṽvv| ≤ 2Mχ1.

QQQ

(e) ṽvv is A-near-simple. PPP Suppose that τ0 ≤ τ1 in S. If A ⊆ S ∩ [τ0, τ1] is non-empty and downwards-
directed and has infimum τ in TA, then τ ∈ A because A is order-convex in TA. We know that v = limσ↓A ṽσ
is defined, because ṽvv is of A-bounded variation, therefore A-moderately-oscillatory (616Ra).
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Of course v ≥ 0. Now v ∈ ⋂
σ∈A L

0(Aσ) = L0(Aτ ) (632C(a-iii)), while

v ≥ v × χb = limσ↓A ṽσ × χb = limσ↓A vσ = vτ

by 632F, because vvv is B-near-simple and TA is order-closed in TB, so τ is still the infimum of A in TB. It
follows that ṽτ ≤ v, while

b ⊆ [[v = vτ ]] ∩ [[vτ = ṽτ ]] ⊆ [[v = ṽτ ]].

Set a = [[ṽτ < v]] ⊆ [[v > 0]]. Then a ∈ Aτ and a ∩ b = 0. But this means that, for every σ ∈ A, a is
disjoint from upr(b,Aσ) and ṽσ × χa = 0. Consequently v × χa = limσ↓A ṽσ × χa = 0, and a must be 0.
Thus v ≤ ṽτ and v = ṽτ . As ṽvv↾S ∩ [τ0, τ1] is A-moderately-oscillatory, it is A-locally-near-simple, by 632F
again, and in fact A-near-simple, since max(S ∩ [τ0, τ1]) = τ1 belongs to S ∩ [τ0, τ1].

Since the whole process ṽvv is A-moderately-oscillatory, it is A-near-simple, by 631Fc. QQQ

(f) Setting wτ =
∫
S∧τ |dṽvv| for τ ∈ S, www = 〈wτ 〉τ∈S is A-near-simple (631K), and of course it is non-

negative and non-decreasing; moreover, ‖www‖∞ = ‖
∫
S |dṽvv|‖∞ is finite. If σ ≤ τ in S, then

b ⊆ [[vτ − vσ = ṽτ − ṽσ]], 1 \ b ⊆ [[vτ − vσ = 0]]

so

vτ − vσ ≤ |ṽτ − ṽσ| ≤ wτ − wσ;

as σ and τ are arbitrary, vvv 4 www.

(g) This deals with the case when [[vvv 6= 0]] ⊆ b. Of course just the same arguments apply when [[vvv 6= 0]] ⊆ 1 \ b.
For the general case, consider vvv′ = (χb)vvv = 〈χb×vτ 〉τ∈S and vvv′′ = vvv−vvv′. These are both B-near-simple non-
decreasing non-negative processes bounded above by a multiple of χ1, while [[vvv′ 6= 0]] ⊆ b and [[vvv′′ 6= 0]] ⊆ 1 \ b.
So we have ‖ ‖∞-bounded processeswww′, www′′ ∈ AM↑

n-s(S) such that vvv′ 4 www′ and vvv′′ 4 www′′. Settingwww = www′+www′′,
www ∈ AM↑

n-s(S) is ‖ ‖∞-bounded and vvv 4 www, as required.

647I Proposition Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of TA,
and Ŝ(B) the covered envelope of S in TB.

(a)(i) Ŝ(B) is order-convex in TB.
(ii) For any A-fully adapted process xxx with domain S, there is a unique B-fully adapted process x̂xx with

domain Ŝ(B) extending xxx.
(b)(i) If xxx ∈ AMo-b(S) then x̂xx ∈ BMo-b(Ŝ(B)) and sup |x̂xx| = sup |xxx|.
(ii) If vvv ∈ AMn-s(S) then v̂vv ∈ BMn-s(Ŝ(B)).

(iii) If vvv ∈ AMbv(S) then v̂vv ∈ BMbv(Ŝ(B)).
(iv) If vvv is an A-integrator with domain S, then v̂vv is a B-integrator.

(v) If uuu ∈ AMmo(S) then ûuu ∈ BMmo(Ŝ(B)) and the previsible version of ûuu is the image of the previsible
version of uuu.

(c)(i) If www ∈ AMpo-b(S), then ŵww ∈ BMpo-b(Ŝ(B)).

(ii) The map www 7→ ŵww : AMpo-b(S) → BMpo-b(Ŝ(B)) is continuous for the S-integration topologies ATS-i

and BTS-i.
(iii) If xxx ∈ AMS-i(S), then x̂xx ∈ BMS-i(Ŝ(B)).

(d) If xxx ∈ AMS-i(S), then BS
∫
Ŝ(B) x̂xx dv̂vv = AS

∫
S xxx dvvv for every A-integrator vvv ∈ AMn-s(S).

proof (a)(i) Suppose that τ , τ ′ ∈ Ŝ(B) and τ̃ ∈ TB are such that τ ≤ τ̃ ≤ τ ′. Take a ∈ A \ {0}. Because
TA covers TB (647Gc), there are σ, σ′ ∈ S and σ̃ ∈ TA such that a′ = a ∩ [[σ = τ ]] ∩ [[σ′ = τ ′]] ∩ [[σ̃ = τ̃ ]] is
non-zero. Now med(σ, σ̃, σ′) ∈ S, because S is order-convex in TA and σ ∧ σ′ ≤ med(σ, σ̃, σ′) ≤ σ ∨ σ′, and

0 6= a′ ⊆ a ∩ [[med(τ, τ̃ , τ ′) = med(σ, σ̃, σ′)]] ⊆ a ∩ [[τ̃ = med(σ, σ̃, σ′)]].

As a is arbitrary, τ̃ ∈ Ŝ(B); thus Ŝ(B) is order-convex in TB.
(ii) We just have to remember that uuu is B-fully adapted, as noted in 647F(d-i), and apply 612Qa.

(b)(i) By 647F(d-iii), xxx is B-order-bounded, so x̂xx is B-order-bounded, by 614Ga.

(ii) Argue as in (i), but using 647F(d-iv) for the first step and 631Ga for the second.
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(iii) Use 647F(d-v) and 614Q(a-iv-β).

(iv) 647Ff and 616I.

(v) By 647F(d-vi) and 615F(a-vi), ûuu is B-moderately-oscillatory. Concerning its previsible version ûuu<,
we know from 641G(a-v), applied in B, that ûuu<↾S is the previsible version of uuu↾S, which is the same whether
calculated in A or B, as noted in 647Fg; so ûuu< must be the B-fully-adapted extension of the A-previsible

version uuu< of uuu, that is. ûuu< is the image of uuu< in BMfa(Ŝ(B)).

(c)(i) www is A-fully adapted, so ŵww is B-fully adapted, by (a-ii) just above. Let uuu ∈ AMmo(S)+ be such
that |www| ≤ uuu<, and consider ûuu. We saw in (b-v) that, writing ûuu< for the previsible version of ûuu, we have
ûuu<↾S = uuu<, so 0 = (|www|−uuu<)+ = (|ŵww|− ûuu<)+↾S (612Qb), and |ŵww| ≤ ûuu<. Thus ŵww ∈ BMpo-b(S), as claimed.

(ii) Let G be a BTS-i-neighbourhood of 0 in BMpo-b(Ŝ(B)). Then there are a ‖ ‖∞-bounded vvv ∈
BM↑

n-s(Ŝ(B)) and an ǫ > 0 such that www ∈ G whenever www ∈ BMpo-b(Ŝ(B)) and Bθ̂#vvv (www) ≤ ǫ (put 645E(a-ii)
and 647B together). Now v̂vv is B-near-simple ((b-ii) above) and is non-negative and non-decreasing (614Q(a-
iv-α)) and bounded above by a constant process, so by 647H there is a ṽvv ∈ AM↑

n-s(S) such that vvv↾S 4 ṽvv. In

this case, G′ = {www : www ∈ AMpo-b(S), Aθ̂#ṽvv (www) < ǫ} is an ATS-i-neighbourhood of 0 in AMpo-b(S). If www ∈ G′,

ŵww ∈ G. PPP There is a non-decreasing uniformly order-bounded sequence 〈uuu(n)〉n∈N in AMmo(S)+ such that

|www| ≤ supn∈N uuu
(n)
< and θ(

∫
S uuu

(n)dṽvv) ≤ ǫ for every n ∈ N. Because vvv↾S 4 ṽvv,

θ(

∫

Ŝ(B)

ûuu(n)dvvv) = θ(

∫

S

uuu(n)dvvv)

(613T, work8ing in B)

≤ θ(

∫

S

uuu(n)dṽvv)

(645Bc, working in A)

≤ ǫ

for every n. Next, I said in 645Bb that the supremum supn∈N uuu
(n)
< is to be taken in (L0)S ; but of course the

space BMfa(S) of B-fully adapted processes with domain S is order-closed in (L0)S (612Ia), so supn∈N uuu
(n)
< ∈

BMfa(S) and is the supremum of {uuu(n)< : n ∈ N} in BMfa(S). Now the map uuu 7→ ûuu is an order-isomorphism

between BMfa(S) and the space BMfa(Ŝ(B)) of B-fully adapted processes with domain Ŝ(B) (612Qb again),

and supn∈N(uuu
(n)
< )̂ = (supn∈N uuu

(n)
< )̂ . Consequently

|ŵww| ≤ (supn∈N uuu
(n)
< )̂ = supn∈N(uuu

(n)
< )̂ = supn∈N ûuu

(n)
< ,

while 〈ûuu(n)〉n∈N is a non-decreasing uniformly order-bounded sequence in BMmo(Ŝ(B))+. Accordingly Bθ̂#vvv (ŵww) ≤
ǫ and ŵww ∈ G. QQQ

As G is arbitrary, www 7→ ŵww is continuous at 0; being a linear operator, it is continuous.

(iii)(ααα) Suppose to begin with that xxx ∈ AM0
S-i(S). Because ûuu ∈ BMmo(Ŝ(B)) and (uuu<)̂ = (ûuu)< for

every uuu ∈ AMmo(S), and yyy 7→ ŷyy : AMpo-b(S) → BMpo-b(Ŝ(B)) is continuous, x̂xx will belong to

{ûuu< : uuu ∈ AMmo(S)} ⊆ {uuu′< : uuu′ ∈ BMmo(Ŝ(B))} = BM0
S-i(Ŝ(B)).

(βββ) Now take any xxx ∈ AMS-i(S). Then xxx × 1(S)
< ∈ AM0

S-i(S), and (xxx × 1(S)
< )ˆ ∈ BM0

S-i(Ŝ(B)). The

point is that 1(S)
< = 1(Ŝ(B))

< ↾S, just because 1(Ŝ(B)) = (1(S))ˆ. It follows that x̂xx× 1(Ŝ(B))
< is a B-fully adapted

process with domain Ŝ(B) extending xxx×1(S)
< and must be equal to (xxx×1(S)

< )ˆ ∈ BM0
S-i(Ŝ(B)). Consequently

x̂xx ∈ BMS-i(Ŝ(B)) in this case too.

(d)(i) Because Ŝ(B) is order-convex in TB, by (a-i), and 〈Bt〉t∈T is right-continuous (647Ga), we can
speak of both S-integrals (645P). Write z for BS

∫
Ŝ(B) x̂xx dv̂vv and z′ for AS

∫
S xxx dvvv.

(ii) Suppose to begin with that xxx ∈ AM0
S-i(S). Let ǫ > 0. We know that there is a uuu∗ ∈ AMmo(S)+

such that |xxx| ≤ uuu∗<, in which case ûuu∗ ∈ BMmo(Ŝ(B))+ and |x̂xx| ≤ ûuu∗<. There is a neighbourhood G of x̂xx in

Measure Theory
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BM0
S-i(Ŝ(B)) such that θ(z−

∫
Ŝ(B) ũuu dv̂vv) ≤ ǫ whenever ũuu ∈ BMmo(Ŝ(B)), |ũuu| ≤ ûuu∗ and ũuu< ∈ G; similarly, there

is a neighbourhood G′ of xxx in in AM0
S-i(S) such that θ(z′−

∫
S uuu dvvv) ≤ ǫ whenever uuu ∈ AMmo(Ŝ(B)), |uuu| ≤ uuu∗

and uuu< ∈ G′. And since the map xxx′ 7→ x̂xx′ is continuous, we can suppose that x̂xx′ ∈ G whenever xxx′ ∈ G′.
By 645La, there is a uuu ∈ AMmo(S) such that |uuu| ≤ uuu∗ and uuu< ∈ G′. In this case, θ(z −

∫
Ŝ(B) ûuu dv̂vv) ≤ ǫ

and θ(z′ −
∫
S uuu dvvv) ≤ ǫ, while

∫
S uuu dvvv =

∫
Ŝ(B) ûuu dv̂vv by 613T. So θ(z − z′) ≤ 2ǫ. As ǫ is arbitrary, z = z′, as

required.

(iii) And of course we now have

BS
∫
Ŝ(B) x̂xx dv̂vv = BS

∫
Ŝ(B) x̂xx× 1(Ŝ(B))

< dv̂vv = AS
∫
S xxx× 1(S)

< dv̂vv = AS
∫
S xxx dv̂vv

for every xxx ∈ AMS-i(S).

647J Theorem Suppose that 〈At〉t∈T is right-continuous and S is an order-convex sublattice of T .
If www is an S-integrable process with domain S, and vvv is a near-simple integrator with domain S, then
[[ S
∫
S www dvvv 6= 0]] ⊆ [[www 6= 0]].

proof I stopped speaking of TA and AM0
S-i and AS

∫
because I wish to regard this result as a fact about S-

integration expressible in the language of §§645-646. But of course the idea is to apply the ideas of 647D-647I,
so I immediately set b = [[www 6= 0]] and move to the structures considered in 647D-647E. By 647Id,

S
∫
S www dvvv = AS

∫
S www dvvv = BS

∫
Ŝ(B) ŵww dv̂vv,

where Ŝ(B) is the covered envelope of S in TB and uuu 7→ ûuu is the canonical isomorphism between BMfa(S) and
BMfa(Ŝ(B)) described in 612Qb. Now [[ŵww 6= 0]] = [[www 6= 0]] (612S(c-ii)). At the same time, χb ∈ L0(Bmin Ŝ(B)).
So

BS
∫
Ŝ(B) ŵww dv̂vv = BS

∫
Ŝ(B)(χb)ŵww dv̂vv = χb× BS

∫
Ŝ(B) ŵww dv̂vv

(646D), and

[[AS
∫
S www dvvv 6= 0]] = [[χb× BS

∫
S(B) ŵww dv̂vv 6= 0]] ⊆ b,

as claimed.

647X Basic exercises (a) Suppose that 〈At〉t∈T is right-continuous and that S is an order-convex
sublattice of T . Let vvv be a near-simple process of bounded variation and www an S-integrable process, both
with domain S. Show that

∫
S |d(Siivvv(www))| ≤ sup |www|×

∫
S |dvvv|. (Hint : apply 647J towww−med(−M1<,www,M1<)

for M ≥ 0.)

647 Notes and comments In §646 we found that most of the standard properties of the Riemann-sum
integral transferred without much trouble to the S-integral; only the result

∫
S =

∫
S∧τ +

∫
S∨τ gave difficulty,

and this was attributable to a technical problem at the least member τ of S ∨ τ . We did of course need to
know a little more about martingales (646P), and this fact seems to depend on the fundamental theorem of
martingales. However, there was a curious gap when we came to look at [[ S

∫
www dvvv 6= 0]]. A straightforward

calculation (613Jd) showed that, for the Riemann-sum integral, [[
∫
uuu dvvv 6= 0]] ⊆ [[uuu 6= 0]] ∩ [[vvv 6= 0]]. There was

no difficulty in showing that [[ S
∫
www dvvv 6= 0]] ⊆ [[vvv 6= 0]] (646C). But it seems to be much harder to confirm that

[[ S
∫
www dvvv 6= 0]] ⊆ [[www 6= 0]] (647J).

Version of 4.5.20/29.9.23

648 Changing the algebra II

In §634, I looked at questions involving pairs (A,B) where B is a closed subalgebra of A, and the
corresponding stochastic integration structures A and B. In particular, we can relate Riemann-sum integrals
calculated in the two structures (634Eg). Unsurprisingly, there is a corresponding result for S-integration
(648G), though it seems to need a good deal more work.

c© 2020 D. H. Fremlin
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648A Notation As usual, A = (A, µ̄, T, 〈At〉t∈T , TA, 〈Aσ〉σ∈TA
) will be a stochastic integration structure.

For nearly the whole section, we shall have a closed subalgebra B of A with the associated structure
B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) as in 634C. As in §634, I will use formulations like ‘xxx is A-previsibly-
order-bounded’, ‘vvv′ ∈ BMn-s(S ′)’, ‘AS

∫
S xxx dvvv’ to indicate which structure is being considered at any particular

moment.
If E ⊆ R is a Borel set and h : E → R is a Borel measurable function, h̄ is the corresponding function

from {u : u ∈ L0(A), [[u ∈ E]] = 1} to L0(A) (612Ac). If uuu is a moderately oscillatory process, uuu< will
denote its previsible version (641F). I use the symbol

∫
for Riemann-sum integrals (613H, 613L) and S

∫
for

S-integrals (645P); E will be the ordinary integral on L1
µ̄ = L1(A, µ̄), and θ the associated F-norm on L0(A)

(613Ba). The F-seminorms θ̂#vvv will be those of 645B. SI(uuu, dvvv) will be the Riemann sum (613Fb). 1(S) will
be the constant process on S with value χ1.

We shall have the usual spaces of processes: Mfa (fully adapted, 612I), Mmo (moderately oscillatory,
615Fa), Mn-s (near-simple, 631Ba), Mpo-b (previsibly order-bounded, 645Ba), M↑

n-s (non-decreasing non-
negative near-simple, 644Bb), M0

S-i and MS-i (S-integrable, 645F). If S is a sublattice of TA, I(S) will be
the directed set of finite sublattices of S.

648B Lemma Let E be a Borel subset of R; write QE for {u : u ∈ L0(A), [[u ∈ E]] = 1}. Let h : E → R

be a continuous function. Suppose that S is a finitely full sublattice of TA and uuu = 〈uσ〉σ∈S a moderately

oscillatory process such that {uσ : σ ∈ S} ⊆ QE , the closure being for the topology of convergence in measure
on L0(A). Then h̄uuu = 〈h̄(uσ)〉σ∈S is a moderately oscillatory process.

proof (Compare 615F(a-ii).)

(a)(i) If σ ∈ S and α ∈ R, [[h̄(uσ) > α]] = [[uσ ∈ h−1[ ]α,∞[ ]]] ∈ Aσ, so h̄(uσ) ∈ L0(Aσ).

(ii) If σ, τ ∈ S,
[[σ = τ ]] ⊆ [[uσ = uτ ]] ⊆ [[h̄(uσ) = h̄(uτ )]]

by 612A(d-iii). Thus h̄uuu is fully adapted.

(b) If 〈σn〉n∈N is a monotonic sequence in S, u = limn→∞ uσn
is defined in L0(A) and belongs to

{uσ : σ ∈ S} ⊆ QE . Since h̄ : QE → L0(A) is continuous (367S/613Bb), limn→∞ h̄(uσn
) = h̄(u) is defined.

As S is finitely full, this is enough to ensure that h̄uuu is moderately oscillatory (615N(iii)).

648C Lemma Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of TA, www a
‖ ‖2-bounded martingale with domain S, and xxx a ‖ ‖∞-bounded S-integrable process with domain S. If www∗

is the quadratic variation of www, ‖( S
∫
S xxx dwww)

2‖1 ≤ ‖ S
∫
S xxx

2dwww∗‖1 <∞.

proof This is trivial if S = ∅, so suppose otherwise. Express www as 〈wσ〉σ∈S .

(a) I had better run through the check that the S-integrals are defined. Since www is ‖ ‖2-bounded, it is
‖ ‖1-bounded and an integrator and moderately oscillatory (622G). Because the filtration is right-continuous,
www is locally near-simple (632Ia), therefore near-simple (631F(c-ii)), and www∗ is also near-simple (631J) as well
as being an integrator (617I). And xxx2 ∈M0

S-i(S) by 645Ka. So we can form S
∫
S xxx dwww and S

∫
S xxx

2dwww∗.

(b) For the time being (down to the end of (h) below), suppose that xxx ∈ M0
S-i(S). Set M = ‖xxx‖∞,

K = supσ∈S ‖wσ‖2, A = {yyy : yyy ∈ M0
S-i(S), ‖yyy‖∞ ≤ M}, A2 = {yyy : yyy ∈ M0

S-i(S), ‖yyy‖∞ ≤ M2}. Note that if

yyy ∈ A then |yyy| ≤ M1
(S)
< . PPP We know that |yyy| ≤ M1(S) and also that there is a non-negative uuu ∈ Mmo(S)

such that |yyy| ≤ uuu<. Now

uuu< = (uuu× 1S))< = uuu< × 1
(S)
< ,

so

|yyy| × (1(S) − 1S
<) ≤ uuu< × (1(S) − 1S

<) = 0

and

|yyy| = |yyy| × 1(S) = |yyy| × 1
(S)
< ≤M1S) × 1

(S)
< =M1

(S)
< . QQQ

Measure Theory
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So A is uniformly previsibly order-bounded. Similarly, A2 is uniformly previsibly order-bounded.

(c) By 645S, yyy 7→ S
∫
S yyy dwww : A → L0(A) and yyy 7→ S

∫
S yyy dwww

∗ : A2 → L0(A) are continuous when M0
S-i(S)

is given its S-integration topology and L0(A) is given the topology of convergence in measure. Since mul-
tiplication on L0(A) is continuous, yyy 7→ ( S

∫
S yyy dwww)

2 : A → L0(A) is continuous. Since yyy 7→ yyy2 : A 7→ A2 is

continuous (645E(a-v-β)), yyy 7→ S
∫
S yyy

2dwww∗ : A→ L0(A) is continuous.

(d) If uuu ∈Mmo(S) is ‖ ‖∞-bounded,

‖(
∫

S

uuu dwww)2‖1 = E((

∫

S

uuu dwww)2) = E(

∫

S

uuu2dwww∗)

(624I)

= ‖
∫

S

uuu2dwww∗‖1

by 614Ig, because uuu2 is non-negative and www∗ is non-decreasing. And by 622P we have ‖
∫
S uuu dwww‖2 ≤ K‖uuu‖∞,

so ‖(
∫
S uuu dwww)

2‖1 ≤ K2‖uuu‖2∞.

(e) Set B = {uuu : uuu ∈ Mmo(S), ‖uuu‖∞ ≤ M}. Then A is the closure of {uuu< : uuu ∈ B} for the S-integration

topology of M0
S-i(S). PPP If uuu ∈ B, −M1(S) ≤ uuu ≤ M1S so −M1

(S)
< ≤ uuu< ≤ M1S

< and uuu< ∈ A. On the

other hand, if yyy ∈ A, vvv ∈M↑
n-s(S) and ǫ > 0, there is certainly a uuu ∈Mmo(S) such that θ̂#vvv (yyy − uuu<) ≤ ǫ, by

the definition of M0
S-i(S). Now, setting ũuu = med(−M1(S),uuu,M1(S)),

|yyy − ũuu<| = |med(−M1
(S)
< , yyy,M1

(S)
< )−med(−M1

(S)
< ,uuu<,M1

(S)
< )| ≤ |yyy − uuu<|

so

θ̂#vvv (yyy − ũuu<) ≤ θ̂#vvv (yyy − uuu<) ≤ ǫ

(645Db), while ũuu ∈ B. As yyy, vvv and ǫ are arbitrary, A ⊆ {uuu< : uuu ∈ B} (645E(a-ii)). QQQ

(f) It follows that if yyy ∈ A, then ( S
∫
S yyy dwww)

2 belongs to the closure, for the topology of convergence in
measure, of

{( S
∫
S uuu<dwww)

2 : uuu ∈ B} = {(
∫
S
uuu dwww)2 : uuu ∈ B} ⊆ C

where C = {z : z ∈ L0(A), ‖z‖1 ≤ K2M2}. So ( S
∫
S yyy dwww)

2 ∈ C = C (613Bc). Because ‖ ‖1 : L0(A) → [0,∞]

is lower semi-continuous (613Bc), yyy 7→ ‖( S
∫
S yyy dwww)

2‖1 : A→ R is lower semi-continuous (4A2B(d-i)).

(g) Concerning S
∫
S yyy

2dwww∗ we have a little more. Note first that, setting uuu = 1(S) in (d), we see that

‖
∫
S
dwww∗‖1 = ‖(

∫
S
dwww)2‖1 ≤ K2

is finite. Now if uuu ∈ B, 0 ≤ uuu2 ≤M21(S), so

0 ≤
∫
S
uuu2dwww∗ ≤M2w̄

where w̄ =
∫
S dwww

∗. Setting D = {z : z ∈ L0(A), 0 ≤ z ≤M2w̄}, D is closed for the topology of convergence
in measure and includes

{
∫
S
uuu2dwww∗ : u ∈ B} = { S

∫
S
(uuu2)<dwww

∗ : u ∈ B} = { S
∫
S
uuu2<dwww

∗ : u ∈ B}
so contains S

∫
S yyy

2dwww∗ for every y ∈ A. In particular, S
∫
S xxx

2dwww∗ ∈ D, so

‖ S
∫
S xxx

2dwww∗‖1 ≤M2‖w̄‖1 ≤M2K2 <∞.

Observe next that D is uniformly integrable, so the ‖ ‖1-topology on D agrees with the topology of conver-
gence in measure (621B(c-ii)), and z 7→ ‖z‖1 : D → R is continuous. But this means that yyy 7→ ‖ S

∫
S yyy

2dwww∗‖1 :
A→ R is continuous.

(h) Putting (f) and (g) together, we see that

yyy 7→ ‖( S
∫
S yyy dwww)

2‖1 − ‖ S
∫
S yyy

2dwww∗‖1 : A→ R

D.H.Fremlin



112 The S-integral 648C

is lower semi-continuous (4A2B(d-iii)). And as

‖( S
∫
S uuu< dwww)

2‖1 − ‖ S
∫
S uuu

2
<dwww

∗‖1 = ‖(
∫
S
uuu dwww)2‖1 − ‖

∫
S
uuu2dwww∗‖1 = 0

for every uuu ∈ B, ‖( S
∫
S yyy dwww)

2‖1 − ‖ S
∫
S yyy

2dwww∗‖1 ≤ 0 for every yyy ∈ A. In particular, ‖( S
∫
S xxx dwww)

2‖1 ≤
‖ S
∫
S xxx

2dwww∗‖1.

(i) This deals with the result when xxx ∈M0
S-i(S). For the general case in which xxx ∈MS-i(S), apply (b)-(h)

to xxx× 1
(S)
< .

648D We come now to the main work of the section in which we are working in both the original
stochastic integration structure A and an embedded structure B.

Lemma Suppose that 〈At〉t∈T is right-continuous. Let B be a closed subalgebra of A which is coordinated
with 〈At〉t∈T , and B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) the corresponding stochastic integration struc-
ture, where Bt = B∩At for t ∈ T . Let S ′ be a relatively order-convex sublattice of TB and S its order-convex
hull in TA. If xxx ∈ AM0

S-i(S) and xxx↾S ′ ∈ L0(B)S
′

, then xxx↾S ′ ∈ BM0
S-i(S).

proof (a) We need the following basic facts: S ′ is B-finitely full (611Pc), S ′ separates S (633Da and
633D(b-i), because constant processes belong to TB), S ′ is cofinal with S and inf A ∈ S whenever A ⊆ S
is non-empty and has a lower bound in S. Recall also that we have a multiplicative Riesz homomorphism
Ψ : AMn-s(S ′) → AMn-s(S) such that Ψ(uuu′) extends uuu′ for every uuu′ ∈ AMn-s(S) (631Mb), while BMn-s(S ′) =

AMn-s(S ′) ∩ L0(B)S
′

(634Eb). It follows that BM↑
n-s(S ′) = AM↑

n-s(S ′) ∩ L0(B)S
′

.

(b)(i) Let P : L1
µ̄ → L1

µ̄ be the conditional expectation operator associated with B. If yyy = 〈yσ〉σ∈S

belongs to (L1
µ̄)

S set P ′(yyy) = 〈P (yσ)〉σ∈S′ .

(ii) If uuu ∈ AMfa(S) is ‖ ‖∞-bounded then P ′(uuu) ∈ BMfa(S ′). PPP Express uuu as 〈uσ〉σ∈S . If σ ∈ S ′ then
uσ ∈ L0(Aσ). Writing Pσ for the conditional expectation associated with the closed subalgebra Aσ, we know
that B and Aσ are relatively independent over their intersection Bσ (634H) so that PPσ is the conditional
expectation operator corresponding toBσ. Now P (uσ) = PPσ(uσ) ∈ L0(Bσ). Thus P

′(uuu) ∈ ∏
σ∈S′ L0(Bσ).

If σ, τ ∈ S ′ and b = [[σ = τ ]], then b ∈ B, so

P (uσ)× χb = P (uσ × χb) = P (uτ × χb) = P (uτ )× χb

and b ⊆ [[P (uσ) = P (uτ )]]. So P
′(uuu) is B-fully adapted. QQQ

(iii) If uuu ∈ AMmo(S) is ‖ ‖∞-bounded, then P ′(uuu) ∈ BMmo(S ′) and P ′(uuu)< = P ′(uuu<). PPP We have just
seen that P ′(uuu) is B-fully adapted. Write M for ‖uuu‖∞. On the uniformly integrable set A = {z : z ∈ L0(A),
‖z‖∞ ≤M} the topology of convergence in measure coincides with the norm topology of L1

µ̄; as P : A→ A
is ‖ ‖1-continuous, it is continuous for the topology of convergence in measure. If 〈σn〉n∈N is a monotonic
sequence in S ′, 〈uσn

〉n∈N is a sequence in A which converges for the topology of convergence in measure
to a member of A, so 〈(P (uσn

)〉n∈N converges for the topology of convergence in measure. As 〈σn〉n∈N is
arbitrary and S ′ is B-finitely-full, P ′(uuu) is B-moderately-oscillatory (615N(iii) again).

Express uuu as 〈uσ〉σ∈S and P ′(uuu) as 〈wσ〉σ∈S′ . For τ ∈ S ′ and non-empty I ∈ I(S ′), define uI<τ from
〈uσ〉σ∈S and wI<τ from 〈wσ〉σ∈S′ as in 641E. Now for σ ∈ I set

bσ = [[σ < τ ]] \ supσ′∈I [[σ < σ′]] ∩ [[σ′ < τ ]],

and set b = [[τ ≤ min I]]. Because S ′ ⊆ TB, bσ and b belong to B, while

bσ ⊆ [[uI<τ = uσ]] ∩ [[wI<τ = wσ]],

b ⊆ [[uI<τ = 0]] ∩ [[wI<τ = 0]].

Accordingly

bσ ⊆ [[P (uI<τ ) = wσ]] ∩ [[wI<τ = wσ]] ⊆ [[P (uI<τ ) = wI<τ ]],

b ⊆ [[P (uI<τ ) = wI<τ ]].

As b ∪ supσ∈I bσ = 1, wI<τ = P (uI<τ ). As I is arbitrary and P is continuous on {z : z ∈ L0(A), |z| ≤Mχ1},
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w<τ = limI↑I(S′) wI<τ = P (limI↑I(S′) uI<τ );

as τ is arbitrary, (P ′(uuu))< = P (uuu↾S ′)<. But S ′ separates S, so (uuu↾S ′)< = uuu<↾S ′ (641Hb) and

(P ′(uuu))< = P (uuu<↾S ′) = P ′(uuu)<. QQQ

(c) xxx↾S ′ ∈ BMpo-b(S ′).
PPP Let uuu ∈ AMmo(S)+ be such that |xxx| ≤ uuu<. Consider the functions g : R → ]−1, 1[, h : ]−1, 1[ given by

the formulae

g(α) =
α

1+|α|
for α ∈ R, h(β) =

β

1−|β|
for β ∈ ]−1, 1[.

Then g = h−1, h = g−1 are the two halves of an order-preserving homeomorphism between R and ]−1, 1[.
Set

QA = {u : u ∈ L0(A), [[|u| < 1]] = 1}, QB = {u : u ∈ L0(B), [[|u| < 1]] = 1}.
I will write

ḡ : L0(A)S → QS
A
, ḡ′ : L0(B)S

′ → QS′

B
h̄ : QS′

B
→ L0(B)S

′

for the induced functions as in 612A-612B, so that h̄ is the inverse of ḡ′.
By 615F(a-ii), ḡuuu is A-moderately-oscillatory, and we have

|ḡxxx| = ḡ|xxx|
(because |g(α)| = g(|α|) for α ∈ R)

≤ ḡuuu<

(by 612A(d-iii), because g is order-preserving)

= (ḡuuu)<

by 641Gd, while setting ū = sup |uuu|, sup ḡuuu ≤ ḡ(ū). Since ḡuuu ∈ QS
A
is ‖ ‖∞-bounded, we can form P ′(ḡuuu); by

(b), P ′(ḡuuu) is B-moderately-oscillatory and (P ′(ḡuuu))< = P ′((ḡuuu)<). Note that P (u) ∈ QB for every u ∈ QA,

so P ′(ḡuuu) ∈ QS′

B
and ḡuuu ∈ [−P ḡ(ū), P ḡ(ū)]S′

, while [−P ḡ(ū), P ḡ(ū)] is a topologically closed subset of QB.

By 648B, applied in B, h̄P ′(ḡuuu) ∈ L0(B)S
′

is a B-moderately-oscillatory process.
Still working in B, we know that the previsible version (h̄P ′(ḡuuu))< is defined. To compute it, note that

we have ḡ′(h̄P ′(ḡuuu))< = (ḡ′h̄P ′(ḡuuu))< = (P ′(ḡuuu))<. So

(h̄P ′(ḡuuu))< = h̄ḡ′((h̄P ′(ḡuuu))<) = h̄P ′(ḡuuu)<.

Now we see that

|xxx↾S ′| = |h̄ḡ′xxx↾S ′| = |h̄P ′(ḡxxx)|
(because xxx↾S ′ ∈ L0(B)S

′

and (ḡxxx)↾S ′ ∈ L∞(B)S
′

)

≤ h̄P ′(|ḡxxx|) = h̄P ′(ḡ|xxx|) ≤ h̄P ′(ḡuuu<)

(because P ′ is a positive linear operator and h̄ is order-preserving)

= h̄P ′(ḡuuu<) = (h̄P ′(ḡuuu))<

while h̄P ′(ḡuuu) is non-negative and B-moderately-oscillatory. So xxx↾S ′ is B-previsibly-order-bounded. QQQ

(d) Suppose that vvv = 〈vσ〉σ∈S is a non-negative non-decreasing ‖ ‖∞-bounded A-fully-adapted process
such that vσ ∈ L0(B) for every σ ∈ S ′, and that uuu = 〈uσ〉σ∈S is a ‖ ‖∞-bounded A-moderately-oscillatory
process. Then ‖

∫
S uuu dvvv‖∞ ≤ ‖uuu‖∞‖vvv‖∞ and P (

∫
S uuu dvvv) =

∫
S′ P

′(uuu)dvvv.
PPP Because uuu is A-moderately-oscillatory, P ′(uuu) is B-moderately oscillatory, while vvv is A-fully adapted,

vvv′ = vvv↾S ′ is B-fully adapted and both are of bounded variation, the integrals are defined. As S ′ is cofinal
with S and separates S, while inf A ∈ S whenever A ⊆ S is non-empty and bounded below in S, 633K tells
us that

∫
S′ uuu dvvv =

∫
S uuu dvvv.
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Write M , M ′ for ‖uuu‖∞ and ‖vvv‖∞. If σ0 ≤ . . . ≤ σn in S ′,

‖
n−1∑

i=0

uσi
× (vσi+1

− vσi
)‖∞ ≤ ‖

n−1∑

i=0

|uσi
| × |vσi+1

− vσi
|‖∞

≤ ‖
n−1∑

i=0

M |vσi+1
− vσi

|‖∞

=M‖vσn
− vσ0

‖∞ ≤M‖vσn
‖∞ ≤MM ′.

At the same time

P (
∑n−1
i=0 uσi

× (vσi+1
− vσi

)) =
∑n−1
i=0 P (uσi

)× (vσi+1
− vσi

)

because vσi+1
− vσi

∈ L∞(B) for every i.
Accordingly ‖SI(uuu, dvvv)‖∞ ≤ MM ′ and P (SI(uuu, dvvv)) = SI(Puuu, dvvv) for every I ∈ I(S ′). Taking the limit

as I ↑ I(S ′), ‖
∫
S′ uuu dvvv‖∞ ≤MM ′. At the same time, since P is continuous on {y : ‖y‖∞ ≤MM ′},

P (

∫

S

uuu dvvv) = P (

∫

S′

uuu dvvv) = lim
I↑I(S′)

P (SI(uuu, dvvv))

= lim
I↑I(S′)

SI(Puuu, dvvv) =

∫

S′

Puuu dvvv =

∫

S′

P ′(uuu) dvvv. QQQ

(e) Suppose that yyy ∈ AMpo-b(S) is ‖ ‖∞-bounded, that vvv ∈ AM↑
n-s(S) is ‖ ‖∞-bounded, and that vvv′ = vvv↾S ′

belongs to L0(B)S
′

. Then P ′(yyy) ∈ BMpo-b(S ′), vvv′ ∈ BMn-s(S ′) and Bθ̂#vvv′(P
′(yyy)) ≤ max(1, ‖yyy‖∞‖vvv‖∞)Aθ̂#vvv (yyy).

PPP Set M = ‖yyy‖∞, M ′ = ‖vvv‖∞ and γ = Aθ̂#vvv (yyy). Then |yyy| ≤M1
(S)
< so

|P ′(yyy)| ≤ P ′(|yyy|) ≤MP ′(1
(S)
< ) =MP ′(1(S))< =M1

(S′)
<

by (b-iii). So yyy′ is B-previsibly-order-bounded.
Let ǫ > 0. Then there is a uniformly order-bounded non-decreasing sequence 〈uuun〉n∈N in AMmo(S)+ such

that |yyy| ≤ supn∈N uuun< and supn∈N θ(
∫
S uuundvvv) ≤ γ + ǫ. Replacing uuun by uuun ∧M1(S) if necessary, we can

arrange that ‖uuun‖∞ ≤ M for every n. Expressing yyy as 〈yσ〉σ∈S and uuun< as 〈un<σ〉σ∈S for each n, we see
that for σ ∈ S ′

|P (yσ)| ≤ P (|yσ|) ≤ P (sup
n∈N

un<σ) = P ( 1lim
n→∞

un<σ)

(taking the ‖ ‖1-limit)

= 1lim
n→∞

P (un<σ) = sup
n∈N

P (un<σ).

So

|P ′(yyy)| ≤ supn∈N P
′(uuun<) = supn∈N P

′(uuun)<

by (b-iii) above, while 〈P ′(uuun)〉n∈N is a uniformly order-bounded non-decreasing sequence of non-negative
B-moderately-oscillatory processes. So

Bθ̂#vvv′(P
′(yyy)) ≤ sup

n∈N

θ(

∫

S′

P ′(uuun)dvvv
′) = sup

n∈N

θ(P (

∫

S

uuundvvv))

(by (d) above)

≤ sup
n∈N

E(P (

∫

S

uuundvvv)) = sup
n∈N

E(

∫

S

uuundvvv)

≤ max(1,MM ′) sup
n∈N

E(
1

max(1,MM ′)

∫

S

uuundvvv)

= max(1,MM ′) sup
n∈N

θ(
1

max(1,MM ′)

∫

S

uuundvvv)

(because ‖
∫
S uuundvvv‖∞ ≤MM ′, also noted in (d))
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≤ max(1,MM ′) sup
n∈N

θ(

∫

S

uuundvvv) ≤ max(1,MM ′)(γ + ǫ).

As ǫ is arbitrary, Bθ̂#vvv′(P
′(yyy)) ≤ max(1,MM ′)γ, as claimed. QQQ

(f) If xxx is ‖ ‖∞-bounded, then xxx′ ∈ BM0
S-i(S). PPP By (c), or otherwise, xxx′ is B-previsibly-order-bounded.

Take vvv′ ∈ BM↑
n-s(S ′) and ǫ > 0. Then there is an M ′ ≥ 0 such that µ̄[[supvvv′ > M ′]] ≤ 1

2ǫ. Set www′ =

vvv′ ∧M ′1(S′), so that www′ ∈ BM↑
n-s(S ′) and ‖www′‖∞ ≤M ′, while µ̄[[www′ 6= vvv′]] ≤ 1

2ǫ. As noted in (a), www′ belongs
to AMn-s(S ′) and has an extension www = Ψ(www′) belonging to AMn-s(S). Because Ψ is a Riesz homomorphism,
0 ≤ www ≤M ′1(S), and by 631M(b-iv) www is non-decreasing. So www ∈ AM↑

n-s(S).
We can therefore speak of the F-seminorm Aθ̂#www . SetM = ‖xxx‖∞, and let δ > 0 be such that max(1, 2MM ′)δ <

1
2ǫ. As xxx ∈ AM0

S-i(S), there is a uuu ∈ AMmo(S) such that Aθ̂#www (xxx−uuu<) ≤ δ. Replacing uuu by med(−M1(S).uuu,M1(S))
if necessary, we can arrange that ‖uuu‖∞ ≤M , so that ‖xxx− uuu<‖∞ ≤ 2M . Now P ′(uuu) ∈ BMmo(S ′) and

Bθ̂#www′(xxx
′ − (P ′(uuu))<) = Bθ̂#www′(xxx

′ − P ′(uuu<)) = Bθ̂#www′(P
′(xxx− uuu<))

≤ (1 + 2MM ′)Aθ̂#www (xxx− uuu<)

(by (e) above)

< (1 + 2MM ′)δ ≤ 1

2
ǫ.

Working in B, we have a uniformly previsibly order-bounded non-decreasing sequence 〈uuu′n〉n∈N in BMmo(S ′)+

such that |xxx′ − (P ′(uuu))<| ≤ supn∈N uuu
′
n< and supn∈N θ(

∫
S′ uuu

′
ndwww

′) ≤ 1
2ǫ. For each n,

θ(

∫

S′

uuu′ndvvv
′ −

∫

S′

uuu′ndwww
′) ≤ µ̄[[

∫
S′ uuu

′
ndvvv

′ 6=
∫
S′ uuu

′
ndwww

′]] ≤ µ̄[[vvv′ 6= www′]]

(613Ld)

≤ 1

2
ǫ,

so

θ(
∫
S′
uuu′ndvvv

′) ≤ 1

2
ǫ+ θ(

∫
S′
uuu′ndwww

′) ≤ ǫ.

Accordingly

Bθ̂#vvv′(xxx
′ − P ′(uuu)<) ≤ supn∈N θ(

∫
S′
uuu′ndvvv

′) ≤ ǫ.

As vvv′ and ǫ are arbitrary, xxx′ ∈ BM0
S-i(S ′). QQQ

(g) Finally, in the general case in which xxx ∈ AM0
S-i(S) and xxx′ ∈ L0(B)S

′

, set xxxn = med(−M1
(S)
< ,xxx,M1

(S)
< )

and xxx′n = xxxn↾S ′ for each n ∈ N. Then xxxn ∈ AM0
S-i(S) is ‖ ‖∞-bounded and xxx′n = med(−M1

(S′)
< ,xxx′,M1

(S′)
< )

belongs to L0(B)S
′

; by (f), xxx′n ∈ BM0
S-i(S ′), for every n ∈ N. Writing xxx′ for xxx↾S ′, xxx′ is B-previsibly-order-

bounded (by (c)) and |xxx′n| ≤ |xxx′| for every n, so 〈xxx′n〉n∈N is uniformly B-previsibly-order-bounded, while it

is order*-convergent to xxx′ in L0(B)S
′

; by 645H, xxx′ ∈ BM0
S-i(S ′).

648E Lemma Suppose that 〈At〉t∈T is right-continuous. Let B be a closed subalgebra of A which is
coordinated with 〈At〉t∈T , and B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) the corresponding stochastic inte-
gration structure, where Bt = B ∩ At for t ∈ T . Let S ′ be a relatively order-convex sublattice of TB and S
its order-convex hull in TA. If uuu ∈ AMn-s(S) and uuu↾S ′ ∈ L0(B)S

′

then uuu′ = uuu↾S ′ is near-simple in either A
or B.

proof uuu is A-moderately-oscillatory (631Ca) and S is A-finitely-full (611Pc, as before), so uuu is´
´
-convergent

(615N) and uuu↾S ′ is ´
´
-convergent, working in either A or B. If A ⊆ S ′ is non-empty and has a lower bound
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in S ′, then A has a greatest lower bound in TB which is also its infimum in TA, because TB is an order-closed
sublattice of TA (634C(f-ii)); and because S ′ is order-convex in TB, this common infimum belongs to S.

We know that uuu′ is A-moderately-oscillatory (615F(a-i)), therefore B-moderately-oscillatory (634Ee). If
A ⊆ S ′ is downwards-directed and has a lower bound in S ′, then (as we have just seen) there is a common
value inf A ∈ S ′ of its infimum taken in either TB or TA. By 632H, uinf A = limσ↓A uσ, because we are
supposing that uuu is A-near-simple. Finally, the filtration 〈Bt〉t∈T is right-continuous (634C(f-i)). As A is
arbitary, we can apply 632H in the other direction, working in the structure B, to see that uuu′ is B-near-simple,
therefore A-near-simple (634Eb).

648F Lemma Suppose that 〈At〉t∈T is right-continuous. Let B be a closed subalgebra of A which is
coordinated with 〈At〉t∈T , and B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) the corresponding stochastic inte-
gration structure, where Bt = B ∩ At for t ∈ T . Let S ′ be a relatively order-convex sublattice of TB and S
its order-convex hull in TA. Let xxx ∈ AM0

S-i(S), vvv ∈ AM↑
n-s(S) be such that xxx′ = xxx↾S ′ and vvv′ = vvv↾S ′ belong

to L0(B)S
′

. If Bθ̂#vvv′(xxx
′) = 0 then AS

∫
S xxx dvvv = 0.

proof We know that S ′ ⊇ {med(σ, ť, τ) : σ, τ ∈ S ′, t ∈ T} A-separates S (633D). By 648D, xxx′ ∈ BM0
S-i(S ′),

while vvv′ is non-negative, non-decreasing and order-bounded, and by 648E is near-simple in either structure.

Thus vvv′ ∈ BM↑
n-s(S ′), and Bθ̂#vvv′(xxx

′) is surely defined.
??? Suppose, if possible, that ǫ = 1

4θ(A S
∫
S xxx dvvv) is greater than 0. Working in B, we have an order-bounded

non-decreasing sequence 〈uuu′n〉n∈N in BMmo(S ′)+ such that xxx′ ≤ supn∈N uuu
′
n< and supn∈N θ(

∫
S′ uuu

′
ndvvv

′) ≤ ǫ.

Next, working in A, there are a www ∈ AMmo(S)+ such that
∫
S www dvvv ≥ 3ǫ and Aθ̂#vvv (|xxx −www<|) < ǫ, so there

is an order-bounded non-decreasing sequence 〈wwwn〉n∈N in AMmo(S)+ such that |xxx−www<| ≤ supn∈Nwwwn< and
supn∈N θ(

∫
S wwwndvvv) ≤ ǫ. Observe that

xxx ≥ www< − |xxx−www<| ≥ infn∈N(www< −wwwn<) = infn∈N(www −wwwn)<.

Setting www′ = www↾S ′, www′
n = wwwn↾S ′ we have (www′ −www′

n)< = (www −wwwn)<↾S ′ for each n (641Hb again). So

infn∈N(www
′ −www′

n)< ≤ xxx′ ≤ supn∈N uuu
′
n, www′

< ≤ supn∈Nwww
′
n< + uuu′n<,

〈(www′∧(www′
n+uuu

′
n))<〉n∈N is order*-convergent towww′

< in L0(B)S
′

and
∫
S′ www

′dvvv′ = limn→∞

∫
S′(www

′∧(www′
n+uuu

′
n))dvvv

′

by 644H. On the other hand, 633Ka tells us that∫
S′
www′dvvv′ =

∫
S
www dvvv,

∫
S′
www′
ndvvv

′ =
∫
S
wwwndvvv

for every n ∈ N, so θ(
∫
S′ www

′dvvv′) ≥ 3ǫ while

θ(

∫

S′

(www′ ∧ (www′
n + uuun))dvvv

′) ≤ θ(

∫

S′

www′
ndvvv

′) + θ(

∫

S′

uuundvvv
′)

≤ θ(

∫

S

wwwndvvv) + ǫ ≤ 2ǫ

for every n. XXX Thus AS
∫
S xxx dvvv = 0.

648G Theorem Suppose that 〈At〉t∈T is right-continuous. Let B be a closed subalgebra of A which
is coordinated with 〈At〉t∈T , and B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) the corresponding stochastic inte-
gration structure, where Bt = B ∩ At for t ∈ T . Let S ′ be a relatively order-convex sublattice of TB and S
its order-convex hull in TA. Let xxx ∈ AMS-i(S) and an A-near-simple A-integrator www with domain S be such

that xxx′ = xxx↾S ′, www′ = www↾S ′ belong to L0(B)S
′

. Then BS
∫
S′ xxx

′dwww′ = AS
∫
S xxx dwww.

proof (a) For the time being (down to the end of (h) below), suppose that S ′ has a greatest member and
xxx ∈ AM0

S-i(S) is ‖ ‖∞-bounded.

(i) We know from 648D above that xxx′ ∈ BM0
S-i(S ′), while www′ is a B-near-simple B-integrator (648E,

634Ib). So the integral BS
∫
S′ xxx

′dwww′ is defined.

(ii) Conversely, by 634Eb again, BMn-s(S ′) = AMn-s(S ′) ∩ L0(B)S
′

is an f -subalgebra of AMn-s(S ′).
By 631M we have a multiplicative Riesz homomorphism Ψ : AMn-s(S ′) → AMn-s(S) such that Ψ(uuu) extends
uuu for every uuu ∈ AMn-s(S ′). By 633F, Ψ(uuu) is the only A-near-simple process with domain S extending uuu.
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(b) Let M ≥ 0 be such that −M1
(S)
< ≤ xxx ≤M1

(S)
< . Write Y for the set of those yyy ∈ AM0

S-i(S) such that

|yyy| ≤ 3M1
(S)
< , yyy↾S ′ ∈ L0(B)S

′

and BS
∫
S′(yyy↾S ′)d(zzz↾S ′) = AS

∫
S yyy dzzz whenever zzz ∈ AMn-s(S) is an A-integrator

and zzz↾S ′ ∈ L0(B)S
′

.

(c) uuu< ∈ Y whenever uuu ∈ AMmo(S), |uuu| ≤ 3M1(S) and uuu′ = uuu↾S ′ belongs to L0(B)S
′

. PPP Certainly

uuu< ∈ AM0
S-i(S) and |uuu<| ≤ 3M1

(S)
< . By 641Hb once more, uuu<↾S ′ = uuu′< belongs to L0(B)S

′

. If zzz is an

A-near-simple A-integrator with domain S and zzz′ = zzz↾S ′ belongs to L0(B)S
′

, then zzz′ is a B-near-simple
B-integrator (648E, 634Ib as before). Now

BS

∫

S′

(uuu<↾S ′)dzzz′ = BS

∫

S′

uuu′<dzzz
′ = B

∫

S′

uuu′dzzz′

(645R(a-i))

= A

∫

S′

uuu dzzz

(634Eg)

= A

∫

S

uuu dzzz

(633Ka, because S ′ separates S, by 633D(b-i))

= AS

∫

S

uuu<dzzz.

As zzz is arbitrary, uuu< ∈ Y . QQQ

(d) If 〈yyyn〉n∈N is a sequence in Y which is order*-convergent to yyy in L0(A)S , then yyy ∈ Y . PPP Because

|yyyn| ≤ 3M1
(S)
< for every n, 〈yyyn〉n∈N is uniformly A-previsibly-order-bounded and |yyy| ≤ 3M1

(S)
< . Writing

yyy′ = yyy↾S ′, yyy′n = yyyn↾S ′ for each n ∈ N, we see that 〈yyy′n〉n∈N is order*-convergent to yyy′ in L0(A)S
′

; as

yyy′n ∈ L0(B)S
′

for every n and L0(B) is topologically closed in L0(A), yyy′ ∈ L0(B)S
′

. Also |yyy′n| ≤ 3M1
(S′)
<

for every n, so 〈yyy′n〉n∈N is uniformly B-previsibly-order-bounded. By 645H, working first in A and then in
B, yyy ∈ AM0

S-i(S) and yyy′ ∈ BM0
S-i(S ′). Moreover, if zzz is an A-near-simple A-integrator with domain S and

zzz↾S ′ ∈ L0(B)S
′

, then

BS

∫

S′

yyy′d(zzz↾S ′) = lim
n→∞

BS

∫

S′

yyy′nd(zzz↾S ′)

(645S)

= lim
n→∞

AS

∫

S

yyyndzzz = AS

∫

S

yyy dzzz.

So yyy ∈ Y . QQQ

(e) If vvv′ ∈ BMn-s(S ′)+ is non-decreasing and order-bounded, there is a yyy ∈ Y such that Bθ̂#vvv′(xxx
′−yyy↾S ′) = 0.

PPP (i) For each n ∈ N take úuu′n ∈ BMmo(S ′) such that Bθ̂#vvv′(|xxx′ − úuu′n<|) ≤ 2−n, and a non-decreasing se-

quence 〈úuu′nm〉m∈N in BMmo(S ′)+ such that θ(
∫
S′ úuu

′
nmdvvv

′) ≤ 2−n+1 for everym and |xxx′−úuu′n<| ≤ supm∈N úuu
′
nm<.

By 642M, working in B, we have ùuu′n, ùuu
′
nm in BMn-s(S ′) such that ùuu′n< = úuu′n<, ùuu

′
nm< = úuu′nm for all n, m ∈ N.

Setting

uuu′n = med(−M1(S′), ùuu′n,M1(S′)), uuu′nm = (supi≤m ùuu
′
ni)

+ ∧ 2M1(S′)

for m, n ∈ N, we see that uuu′n, uuu
′
nm ∈ BMn-s(S ′), 0 ≤ uuu′n ≤ 2M1(S′) and

|xxx′ − uuu′n<| ≤ |xxx′ − ùuu′n<| ∧ 2M1
(S′)
< = |xxx′ − úuu′n<| ∧ 2M1

(S′)
<

≤ sup
m∈N

úuu′nm< ∧ 2M1
(S′)
< = sup

m∈N

ùuu′nm< ∧ 2M1
(S′)
< = sup

m∈N

uuu′nm<
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for all m, n ∈ N. Moreover, because vvv′ is non-decreasing,

∫

S′

uuu′nmdvvv
′ ≤

∫

S′

(sup
i≤n

ùuu′ni)
+dvvv′ =

∫

S′

(sup
i≤n

úuu′ni)
+dvvv′

(using 645R(a-i), because (supi≤n ùuu
′
ni)

+
< = (supi≤n úuu

′
ni)

+
<)

=

∫

S′

úuu′nmdvvv
′ ≤ 2−n+1

for all m, n ∈ N.

(ii) Looking at the function Ψ of 631M and (a-ii) above, Ψ(1(S′)) must be 1(S). We can speak of
uuun = Ψ(uuu′n) and uuunm = Ψ(uuu′nm) for n, m ∈ N, and we shall have |uuun| ≤ M1(S), 0 ≤ uuunm ≤ 2M1(S) for all
n and m, while 〈uuunm〉m∈N is non-decreasing for each n. Now consider

zzznm = infi≤n(uuui + uuuim) ∈ AMn-s(S)
for n, m ∈ N. Then zzznm always lies between −M1(S) and 3M1(S), while 〈zzznm〉m∈N is non-decreasing for
each n and 〈zzznm〉n∈N is non-increasing for each m. So if we set

yyyn = supm∈N zzznm< ∈ AM0
S-i(S)

for each n, yyyn will be the order*-limit of 〈zzznm<〉m∈N. By (c)-(d) above, yyyn ∈ Y for each n, while 〈yyyn〉n∈N is
non-increasing, so yyy = infn∈N yyyn also belongs to Y .

(iii) Write zzz′nm = zzznm↾S ′, yyy′n = yyyn↾S ′ and yyy′ = yyy↾S ′. We always have xxx′ ≤ uuu′n< + supm∈N uuu
′
nm<. So

if n ∈ N,

xxx′ ≤ inf
i≤n

(uuu′i< + sup
m∈N

uuu′im<) = sup
m∈N

inf
i≤n

(uuu′i< + uuu′im<)

(using the distributive law 352Ea repeatedly)

= sup
m∈N

zzz′nm< = yyy′n.

(The point here is that, by 641Hb yet again, (zzznm↾S ′)< = (zzznm)<↾S ′, so we can use the formula zzz′nm<
without inhibitions.) Accordingly xxx′ ≤ yyy′. Now, for any n ∈ N,

0 ≤ yyy′ − xxx′ ≤ yyy′n − uuu′n< + |uuu′n< − xxx′|
= sup
m∈N

(www′
nm< − uuu′n<) + |uuu′n< − xxx′| ≤ sup

m∈N

uuu′nm< + |uuu′n< − xxx′|

so

Bθ̂#vvv′(yyy
′ − xxx′) ≤ Bθ̂#vvv′( sup

m∈N

uuu′nm<) + Bθ̂#vvv′(uuu
′
n< − xxx′)

≤ sup
m∈N

∫

S′

uuu′nmdvvv
′ + 2−n ≤ 2−n+1 + 2−n.

As n is arbitrary, Bθ̂#vvv′(yyy
′ − xxx′) = 0, as required. QQQ

(f) If vvv ∈ M↑
n-s(S) and vvv′ = vvv↾S ′ belongs to L0(B)S

′

, then BS
∫
S′ xxx

′dvvv′ = AS
∫
S′ xxx dvvv. PPP By 648E again, vvv′

is B-near-simple, and of course it is non-negative and non-decreasing. By (e), there is a yyy ∈ Y such that

Bθ̂#vvv′(xxx
′ − yyy′) = 0, writing yyy′ for yyy↾S ′. Now

BS
∫
S′ xxx

′ − yyy′ dvvv′ = 0 by 646E,

BS
∫
S′ yyy

′dvvv′ = AS
∫
S yyy dvvv because yyy ∈ Y ,

AS
∫
S xxx− yyy dvvv = 0 by 648F,

so BS
∫
S′ xxx

′dvvv′ = AS
∫
S xxx dvvv. QQQ
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(g) If zzz is an A-L2-martingale with domain S and zzz′ = zzz↾S ′ belongs to L0(B)S
′

, then BS
∫
S′ xxx

′dzzz′ =

AS
∫
S′ xxx dzzz. PPP We are supposing that S ′ has a greatest member, which will also be the greatest member of S.

By 632Ia again, zzz is A-locally-near-simple, therefore A-near-simple; by 366J, it is ‖ ‖2-bounded, therefore
‖ ‖1-bounded and an A-integrator (622G). Write zzz∗ for the A-quadratic variation of zzz, which is non-negative,
non-decreasing, locally near-simple (631Jb) and an integrator (617I again), therefore belongs to AM↑

n-s(S).
The A-quadratic variation of zzz′ is zzz∗↾S ′ (633Ph), and this is equal to its B-quadratic variation (634Ib).

By (e) again, there is a yyy ∈ Y such that, setting yyy′ = yyy↾S ′, Bθ̂#zzz∗↾S′(xxx′ −yyy′) = 0. Since |xxx−yyy| ≤ 4M1(S),

(xxx′ − yyy′)2 ≤ 4M |xxx′ − yyy′| and Bθ̂#zzz∗↾S′(xxx′ − yyy′)2 = 0. By 646E and 648F,

BS
∫
S′(xxx

′ − yyy′)2d(zzz∗↾S ′) = AS
∫
S(xxx− yyy)2dzzz∗ = 0;

by 648C,

‖(BS
∫
S′(xxx

′ − yyy′)dzzz′)2‖1 = ‖(AS
∫
S(xxx− yyy)dzzz)2‖1 = 0,

BS
∫
S′(xxx

′ − yyy′)dzzz′ = AS
∫
S(xxx− yyy)dzzz = 0

and

BS
∫
S′ xxx

′dzzz′ = BS
∫
S′ yyy

′dzzz′ = AS
∫
S yyy dzzz = AS

∫
S xxx dzzz. QQQ

(h) Now turn to the given A-near-simple A-integrator www. Let ǫ > 0. Working in B, 643O tells us that
we have an L∞-bounded B-martingale w̃ww′ and a B-near-simple process vvv′ of bounded variation, both with
domain S ′, such that a = [[www′ 6= vvv′ + w̃ww′]] has measure at most ǫ. Now vvv′ can be expressed as vvv′1 − vvv′2 where
vvv′1, vvv

′
2 ∈ BM↑

n-s(S ′) (631L). Let vvv1 = Ψ(vvv′1), vvv2 = Ψ(vvv′2) be the A-near-simple processes extending vvv′1 and vvv′2
to S. Then vvv1 and vvv2 belong to AM↑

n-s(S). Since w̃ww′ is also an A-martingale (634Ia), and S ′ is cofinal with
S, there is a A-martingale w̃ww with domain S which extends w̃ww′. As in (g), w̃ww is A-near-simple, so must be
Ψ(w̃ww′), and in particular is ‖ ‖∞-bounded.

Writing zzz for vvv1 − vvv2 + w̃ww and zzz′ for zzz↾S ′ = vvv′ + w̃ww′, we have

BS

∫

S′

xxx′dzzz′ = BS

∫

S′

xxx′dvvv′1 − BS

∫

S′

xxx′dvvv′2 + BS

∫

S′

xxx′dw̃ww′

= AS

∫

S

xxx dvvv1 − AS

∫

S

xxx dvvv2 + AS

∫

S

xxx dw̃ww

(by (f) and (g))

= AS

∫

S

xxx dzzz.

So

[[BS
∫
S′ xxx

′dwww′ 6= AS
∫
S′ xxx dwww]] ⊆ [[BS

∫
S′ xxx

′dwww′ 6= BS
∫
S′ xxx

′dzzz′]] ∪ [[AS
∫
S xxx dwww 6= AS

∫
S xxx dzzz]]

⊆ [[www′ 6= zzz′]] ∪ [[www 6= zzz]]

(646C)

= [[www′ − zzz′ 6= 0]] ∪ [[Ψ(www′ − zzz′) 6= 0]] = [[www′ − zzz′ 6= 0]]

(631M(b-v))

= a

has measure at most ǫ. As ǫ is arbitrary, BS
∫
S′ xxx

′dwww′ = AS
∫
S′ xxx dwww.

(i) This deals with the case in which S ′ has a greatest member and xxx ∈ AM0
S-i(S) is ‖ ‖∞-bounded. If

we know just that S ′ has a greatest member, set

xxxn = med(−n1(S)
< ,xxx, n1

(S)
< )

for each n. Then each xxxn ∈ AM0
S-i(S) is ‖ ‖∞-bounded. Because xxx× 1

(S)
< ∈ AM0

S-i(S) is A-previsibly-order-
bounded, 〈xxxn〉n∈N is A-uniformly-previsibly-order-bounded, while 〈xxxn〉n∈N is order*-convergent to xxx× 1

(S)
< .
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By 648D, (xxx× 1
(S)
< )↾S ′ ∈ BM0

S-i(S ′) is B-previsibly-order-bounded so 〈xxxn↾S ′〉n∈N is B-uniformly-previsibly-

order-bounded, while it is order*-convergent to (xxx× 1
(S)
< )↾S ′. Accordingly

AS

∫

S

xxx dwww = AS

∫

S

xxx× 1
(S)
< dwww = lim

n→∞
AS

∫

S

xxxndwww

(645T)

= lim
n→∞

BS

∫

S

(xxxn↾S ′)dwww′

(by (a)-(h))

= BS

∫

S′

(xxx↾S ′)× 1
(S′)
< dwww′ = BS

∫

S′

xxx′dwww′.

(j) Finally, for the general case of a relatively order-convex sublattice S ′ of TB, we know from 646M that

BS
∫
S′ xxx

′dwww′ = limτ↑S′ BS
∫
S′∧τ xxx

′dwww′,

AS
∫
S xxx dwww

′ = limτ↑S AS
∫
S∧τ xxx dwww = limτ↑S′ AS

∫
S∧τ xxx dwww

because S ′ is cofinal with S. But for every τ ∈ S ′, S ∧ τ is the order-convex hull of S ′ ∧ τ , so we can apply
(b)-(i) to see that BS

∫
S′∧τ xxx

′dwww′ = AS
∫
S∧τ xxx dwww. In the limit, we have BS

∫
S′ xxx

′dwww′ = AS
∫
S xxx dwww.

648X Basic exercises (a) Let (A, µ̄) be a probability algebra and B a closed subalgebra of A. Show
that there is a continuous order-preserving projection from L0(A) onto L0(B).

648Z Problem In 648G, can we drop the hypothesis that ‘B is coordinated with 〈At〉t∈T ’?

648 Notes and comments We have just gone through an uncommonly dense argument aiming at an
expected result. Some of the complications (e.g., the shift from the moderately oscillatory processes úuu′n to
the near-simple processes ùuu′n in part (e) of the proof of 648G) arise from the idiosyncratic formulations I
have chosen. Others come from my extension of the S-integral from previsible processes, as described in
§642, to the S-integrable processes of §645; in effect, this is part (f) of the proof of 648G, relying on 648F. I
note also that part (d) of the proof of 648D duplicates the idea of 647B.

Periodically, in this volume, I have looked at the question of law-independence. I noted in 645Q that the
S-integral is law-independent. In 648G the hypotheses and conclusion are all law-independent except for the
requirement that B should be coordinated with 〈At〉t∈T . It would be sufficient to suppose that

there is a ν̄ such that (A, ν̄) is a probability algebra and B is coordinated with (A, ν̄, 〈At〉t∈T ),
obtaining a version which demands only that A should be a measurable algebra. But an affirmative answer
to 648Z would show that no such manoeuvre is called for.

Version of 30.9.14/28.1.20

649 Pathwise integration

The integrals of §613 and §645 are defined in terms of convergence in L0. The most important applications
are associated with processes of the form 〈Xt(ω)〉t≥0,ω∈Ω with paths 〈Xt(ω)〉t≥0. It turns out that in the
case of the Riemann-sum integral, we can often, with some effort, define integrals ‘pathwise’. I do not think
that this approach gives a good picture of the theory as a whole, but it is surely worth knowing what can
be done.

The S-integral is rather different; I do not see any way of giving a pathwise description of the S-integral
with respect to Brownian motion, for instance. But for non-decreasing integrators we have an effective
approach through Stieltjes integrals, which I have hinted at in earlier sections. I now give a detailed account
of the method (649H, 649L).

c© 2014 D. H. Fremlin
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649A Notation We need only fragments of the standard framework. (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ), if
not explicitly introduced, will be a stochastic integration structure. L0 will be the Riesz space L0(A) with
the topology of convergence in measure. If S is a sublattice of T , I(S) will be the set of finite sublattices
of S, Msimp(S) will be the space of simple processes with domain S and Mn-s(S) will be the space of near-
simple processes with domain S; if τ ∈ S then S ∧ τ will be {σ ∧ τ : σ ∈ S; if vvv is a fully adapted process
with domain including S, QS(dvvv) will be the capped-stake variation set of vvv↾S. When vvv is near-simple, vvv<
will be its previsible version. I use

∫
to denote Riemann-sum integrals and S

∫
to denote S-integrals.

649B Theorem Suppose that S is a sublattice of T with a least element. Let vvv = 〈vσ〉σ∈S be an
integrator and uuu = 〈uσ〉σ∈S a near-simple process. Suppose that we have, for each n ∈ N, a non-decreasing
sequence 〈τni〉i∈N in S such that τn0 = minS, infi∈N [[τni < supS]] = 0 and, for each i ∈ N,

[[σ < τn,i+1]] ⊆ [[|uσ − uτn,i
| ≤ 2−n]] for every σ ∈ [τn,i, τn,i+1],

[[τn,i+1 < supS]] ⊆ [[|uτn,i+1
− uτn,i

| ≥ 2−n]].

Then

zn = limk→∞

∑k−1
i=0 uτn,i

× (vτn,i+1
− vτn,i

)

is defined for each n, and 〈zn〉n∈N is order*-convergent to
∫
S uuu dvvv.

proof (a) Let n ∈ N.

(i) Set znk =
∑k−1
i=0 uτni

× (vτn,i+1
− vτni

) for k ∈ N. If k ≤ l, then

[[znk 6= znl]] ⊆ sup
k≤i<l

[[vτn,i+1
6= vτni

]] ⊆ sup
k≤i<l

[[τn,i+1 6= τni]]

⊆ sup
k≤i≤l

[[τni 6= supS]] ⊆ [[τnk < supS]].

But as 〈[[τnk < supS]]〉k∈N is a non-increasing sequence with infimum 0, this means that 〈znk〉k∈N is actually
order*-convergent to some zn ∈ L0, with [[znk 6= zn]] ⊆ [[τnk < supS]] for every k. Thus the topological limit
zn is always defined.

(ii) Define uuun = 〈unσ〉σ∈S by saying that, for σ ∈ S,
[[τni = σ]] ∪ ([[τni ≤ σ]] ∩ [[σ < τn,i+1]]) ⊆ [[uσ = uτni

]]

for every i ∈ N; because

〈[[τni = σ]] ∪ ([[τni ≤ σ]] ∩ [[σ < τn,i+1]])〉i∈N

is always disjoint, with supremum

supi∈N [[σ ≤ τni]] ⊇ supi∈N [[τni = supS]] = 1,

uuun is a fully adapted process. Next, uuun↾S ∧ τnk is simple, with breakpoint string (τn0, . . . , τnk), and
znk =

∫
S∧τnk

uuundvvv for each k (614C). We know also that if k ∈ N and σ ∈ S ∧ τnk,
1 = supi<k([[τni ≤ σ]] ∩ [[σ < τn,i+1]]) ∪ [[σ = τnk]] ⊆ [[|uσ − unσ| ≤ 2−n]].

But this means that if I ∈ I(S ∧ τnk), SI(uuu− uuun, dvvv) ∈ 2−nQS(dvvv).

(iii) The integral
∫
S uuu dvvv is limk→∞

∫
S∧τnk

uuu dvvv. PPP We know that
∫
S uuu dvvv = limσ↑S

∫
S∧σ uuu dvvv (613J(f-

ii)). Similarly, if k ∈ N,
∫
S∧τnk

uuu dvvv = limσ↑S

∫
S∧τnk∧σ

uuu dvvv. But this means that

[[
∫
S uuu dvvv 6=

∫
S∧τnk

uuu dvvv]] ⊆ sup
σ∈S

[[
∫
S∧σ uuu dvvv 6=

∫
S∧τnk∧σ

uuu dvvv]]

⊆ sup
σ∈S

[[σ 6= τnk ∧ σ]] ⊆ sup
σ∈S

[[τnk < σ]] = [[τnk < supS]]

(611Eb). As infk∈N supl≥k [[τnk < supS]] = 0,
∫
S uuu dvvv = limk→∞

∫
S∧τnk

uuu dvvv. QQQ
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(b) Let C be the solid convex hull of QS(dvvv), and C its topological closure. Then C is topologically
bounded (627M) so C is topologically bounded (3A5N(b-ii)); also C is convex (2A5Eb) and solid (613B(f-
vi)). Now we see from (a-ii) that if n, k ∈ N then SI(uuu − uuun, dvvv) ∈ 2−nC for every I ∈ I([minS, τnk]),
so ∫

S∧τnk
uuu dvvv − znk =

∫
S∧τnk

uuu− uuundvvv ∈ 2−nC;

letting k → ∞, and using (a-iii), ∫
S
uuu dvvv − zn ∈ 2−nC.

Because C is solid and convex,

supl≤n≤m |zn −
∫
S
uuu dvvv| ∈ ∑m

n=l 2
−nC ⊆ 2−l+1C

whenever l ≤ m. By 613B(f-v), {supl≤n≤m |zn−
∫
S uuu dvvv| : m ≥ l} is bounded above in L0, and its supremum

wl belongs to 2−l+1C (613Ba).

Repeating the argument, w′
p = supl≥p wl is defined, and belongs to 2−p+2C, for every p ∈ N. As C is

topologically bounded, limp→∞ θ(w′
p) = 0 and infp∈N w

′
p = 0. But |zn−

∫
S uuu dvvv| ≤ wp ≤ w′

p whenever n ≥ p,

while 〈w′
p〉p∈N is non-increasing and has infimum 0, so 〈zn〉n∈N is order*-convergent to

∫
S uuu dvvv, as claimed.

649C From 649B, we see that, under the hypotheses there, we have a chance of expressing a Riemann-
sum integral as an order*-limit of order*-limits of explicitly defined Riemann sums. The hypotheses are
elaborate, but they correspond to a version of SL1 in 631Oa, so they will be satisfied in a useful number of
cases. The really important feature of the result, however, is that (under appropriate conditions) the τni,
and hence the zn, can be determined pathwise, as in the following form of the theorem.

Corollary (Bichteler 81, 7.14, or Karandikar 95) Let (Ω,Σ, µ) be a complete probability space and
〈Σt〉t∈[0,∞[ a right-continuous filtration of σ-subalgebras of Σ, all containing every negligible subset of Ω;
suppose that (A, µ̄) and 〈At〉t≥0 are the corresponding measure algebra and filtration of closed subalgebras.
Let 〈Ut〉t≥0, 〈Vt〉t≥0 be stochastic processes such that t 7→ Ut(ω) : [0,∞[ → R is càdlàg for every ω ∈ Ω,
and (t, ω) 7→ Vt(ω) : [0,∞[×Ω → R is progressively measurable; let uuu, vvv be the corresponding fully adapted
processes with domain Tf , as in 612H and 631D. Suppose that vvv is a local integrator.

Let h : Ω → [0,∞[ be a stopping time, and τ∗ = h• the corresponding stopping time in Tf . For n ∈ N

and ω ∈ Ω, define hni(ω), for i ∈ N, by setting hn0(ω) = 0 and then

hn,i+1(ω) = inf({h(ω)} ∪ {t : t ≥ hni(ω), |Ut(ω)− Uhni(ω)(ω)| > 2−n})
for i ∈ N.

In this case,
(a) every hni is a stopping time adapted to 〈Σt〉t≥0,
(b)

fn(ω) =
∑∞
i=0 Uhni

(ω)
(
Vhn,i+1

(ω)− Vhni
(ω)

)

is defined for all n ∈ N and ω ∈ Ω,
(c) f = limn→∞ fn is defined in R almost everywhere in Ω, and f• =

∫
[0̌,τ∗]

uuu dvvv.

proof (a) Induce on i. If i = 0 this is trivial. For the inductive step to i+ 1, given t ≥ 0,

{ω : hn,i+1(ω) < t}
= {ω : h(ω) < t} ∪

⋃

s<t

{ω : hni(ω) ≤ s, |Us(ω)− Uhni(ω)(ω)| > 2−n}

= {ω : h(ω) < t} ∪
⋃

q∈Q,q<t

{ω : hni(ω) ≤ q, |Uq(ω)− Uhni(ω)(ω)| > 2−n}

because s 7→ Us(ω) is càdlàg for every ω. Now the inductive hypothesis tells us that hni is a stopping time,
and we saw in 631D that (t, ω) 7→ Ut(ω) is progressively measurable, so Uhni

is Σhni
-measurable (455Le),

where I write Uhni
for ω 7→ Uhni(ω)(ω), as in 455L and 612H. For α ∈ R, set
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Eα = {ω : Uhni(ω)(ω) > α} = {ω : Uhni
(ω) > α} ∈ Σhni

;

if q < t, then Eα ∩{ω : hni(ω) ≤ q} belongs to Σq ⊆ Σt. But this means that Uhni
×χ{ω : hni(ω) ≤ q}, and

therefore (Uq − Uhni
) × χ{ω : hni(ω) ≤ q}, are Σt-measurable for every q < t, and

⋃
q∈Q,q<t{ω : hni(ω) ≤

q, |Uq(ω)− Uhni(ω)(ω)| > 2−n} ∈ Σt.
It follows at once that {ω : hn,i+1(ω) < t} belongs to Σt for every t. But we are supposing that 〈Σt〉t≥0

is right-continuous, so hni is a stopping time adapted to 〈Σt〉t≥0, by 455Lb.

(b) Accordingly I will allow myself to use the notations Uhni
, Vhni

for all n, i ∈ N.

(i) |Uhn,i+1
(ω) − Uhni

(ω)| ≥ 2−n whenever n, i ∈ N, ω ∈ Ω and hn,i+1(ω) < h(ω). PPP??? Otherwise,
because t 7→ Ut(ω) is everywhere continuous on the right, there is a t > hn,i+1(ω) such that |Us(ω) −
Uhni

(ω)| ≤ 2−n for every s ∈ [hn,i+1(ω), t]; but now hn,i+1(ω) must be greater than or equal to min(t, h(ω)).
XXXQQQ

(ii) Note also that, for each ω ∈ Ω and n ∈ N, hni(ω) = h(ω) for all but finitely many i. PPP???
Otherwise, 〈hni(ω)〉i∈N is a strictly increasing sequence in [0, h(ω)], while 〈Uhni(ω)(ω)〉i∈N is not convergent.
XXXQQQ Accordingly

fn(ω) =
∑∞
i=0 Uhni(ω)

(
Vhn,i+1

(ω)− Vhni
(ω)

)

is defined, as required.

(c)(i) Set S = [0̌, τ∗] ⊆ T . We know from 631D that uuu is locally near-simple, so
∫
S uuu dvvv is defined. For

n, i ∈ N, set τni = h•

ni ∈ Tf , as in 612Ha. Then 〈τni〉n,i∈N satisfies the hypotheses of 649B. PPP Take n ∈ N.
Because 〈hni〉i∈N is non-decreasing, so is 〈τni〉i∈N. Of course τn0 = 0̌ = minS. We have supS = τ∗ = h•, so

infi∈N [[τni < supS]] = (
⋂
i∈N{ω : hni(ω) < h(ω)})• = 0

by (b-ii). If i ∈ N and σ ∈ [τni, τn,i+1] then we can express σ as g• where g is a stopping time and
hni ≤ g ≤ hn,i+1; in this case uσ = U•

g (612H(b-i)) and |Ug(ω)−Uhni
(ω)| ≤ 2−n whenever g(ω) < hn,i+1(ω),

so [[σ < τn,i+1]] ⊆ [[|uσ − uτni
| ≤ 2−n]]. And (b) above tells us that [[τn,i+1 < τ∗]] ⊆ [[|uτn,i+1

− uτni
| ≥ 2−n]].

QQQ

(ii) If n ∈ N,

fn(ω) = limk→∞

∑k−1
i=0 Uhni

(ω)
(
Vhn,i+1

(ω)− Vhni
(ω)

)

for every ω. So

f•

n = limk→∞

∑k−1
i=0 uτni

× (vτn,i+1
− vτni

)

can be identified with zn as described in 649B. As 〈zn〉n∈N →∗
∫
S uuu dvvv, 642Ba tells us that 〈fn〉n∈N is

convergent a.e., and if f = limn→∞ fn then f• =
∫
S uuu dvvv, as required.

649D In the presence of a special kind of filter on N, we have a quite different way of calculating
stochastic integrals by looking at one path at a time.

(a) Definition A filter F on N is measure-converging (538Ag) if whenever (Ω,Σ, µ) is a probability
space, 〈En〉n∈N is a sequence in Σ, and limn→∞ µEn = 1, then

⋃
A∈F

⋂
n∈AEn is conegligible.

(b) Suppose that F is a measure-converging filter on N, (Ω,Σ, µ) is a probability space, and 〈fn〉n∈N is
a sequence in L

0 = L
0(µ) which converges in measure to f ∈ L

0. Then limn→F fn =a.e. f (538N(a-iii)).

Remark It seems still to be unknown whether ZFC is enough to prove the existence of a measure-converging
filter (see 538Z). However, the continuum hypothesis, for instance, is more than sufficient to ensure that
measure-converging filters exist (538Ng).

649E Proposition (cf. Nutz p11) Suppose that F is a measure-converging filter on N. Let (Ω,Σ, µ) be
a complete probability space, 〈Σt〉t≥0 a right-continuous filtration of σ-subalgebras of Σ all containing every
negligible set; suppose that (A, µ̄), 〈At〉t≥0 are the corresponding probability algebra and filtration of closed
subalgebras. Let 〈Ut〉t≥0, 〈Vt〉t≥0 be stochastic processes on Ω, adapted to 〈Σt〉t≥0, such that the paths
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t 7→ Ut(ω), t 7→ Vt(ω) are càdlàg for every ω; let uuu, vvv be the corresponding locally near-simple processes
defined on Tf (631D), and suppose that vvv is a local integrator. Let h, h′ : Ω → [0,∞[ be stopping times
corresponding to τ , τ ′ ∈ Tf , with h(ω) ≤ h′(ω) for every ω. Enumerate Q∩ [0,∞[ as 〈qn〉n∈N, starting with
q0 = 0, and for n ∈ N let 〈qni〉i≤n be the increasing enumeration of {qi : i ≤ n}. Set

fn(ω) =
∑n−1
i=0 Umed(h(ω),qni,h′(ω))(ω)

(
Vmed(h(ω),qn,i+1,h′(ω))(ω)− Vmed(h(ω),qni,h′(ω))(ω)

)

for ω ∈ Ω. Then f(ω) = limn→F fn(ω) is defined for almost every ω, f is Σ-measurable and f• =
∫
[τ,τ ′]

uuu dvvv.

proof Write S ′ for {med(τ, q̌, τ ′) : q ∈ Q ∩ [0,∞[} ∪ {τ ′}, as in 633L. For n ∈ N, set In = {med(τ, q̌i, τ
′) :

i ≤ n}, I ′n = In ∪ {τ ′}. Note that τ = med(τ, q̌0, τ
′) belongs to In, and that if we set

an = supi≤n [[τ
′ = med(τ, q̌i, τ

′)]] ⊇ supi≤n [[τ
′ ≤ q̌i]];

then an ⊆ supσ∈In [[ρ = σ]] for every ρ ∈ I ′n. Because τ
′ ∈ Tf , limn→∞ µ̄an = 1.

Now

∫

[τ,τ ]

uuu dvvv =

∫

S′

uuu dvvv

(633L)

= lim
n→∞

SI′n(uuu, dvvv)

(because if J ⊆ S ′ is finite there is an m ∈ N such that J ⊆ I ′n for every n ≥ m)

= lim
n→∞

SIn(uuu, dvvv)

(because [[SI′n(uuu, dvvv) = SIn(uuu, dvvv)]] ⊇ an, by 613S)

= lim
n→∞

f•

n = ( lim
n→F

fn)
•

because F is a measure-converging filter.

649F I have given a number of results (612H, 614U, 631D, 649C, 649E) on the ways in which classical
stochastic processes, based on probability spaces, give rise to the processes considered in this volume, based
on probability algebras. To get full value from these, we need to know which processes can be represented
in this way. I have held off so far because there are technical complications which I feel are irrelevant to the
ideas I really want to express, but I think it is time I gave a result which handles a reasonable proportion
of cases. I begin with a minor extension of ideas from §§631 and 633.

Lemma Suppose that 〈At〉t∈T is right-continuous. Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a locally

near-simple process. Let S̃ be the full ideal of T generated by S. Then there is a locally near-simple process
ũuu with domain S̃ extending uuu. If uuu is non-negative and non-decreasing, we can arrange that ũuu should be
non-negative and non-decreasing.

proof If S = ∅ then S̃ = ∅ and there is nothing to prove. So I suppose from now on that S is non-empty.

(a) Set σ1 = inf S and S1 = S ∪{σ1}. Then S1 is a sublattice of S and the starting value u↓ = limσ↓S uσ
is defined and belongs to L0(

⋂
σ∈S Aσ) (631Ca, applied to S ∧ τ for any τ ∈ S). Because 〈At〉t∈T is right-

continuous, u↓ ∈ L0(Aσ1
) (632C(a-iii)); moreover, if τ ∈ S, then [[σ1 < τ ]] = supσ∈S∧τ [[σ < τ ]] (632C(a-ii)),

so

[[σ1 = τ ]] = infσ∈S∧τ [[σ = τ ]] ⊆ infσ∈S∧τ [[uσ = uτ ]] ⊆ [[u↓ = uτ ]].

So we have a fully adapted process uuu1 = 〈u1σ〉σ∈S1
defined by saying that u1,σ1

= u↓ and u1σ = uσ for every
σ ∈ S.

Next, uuu1 is locally near-simple. PPP Take any τ ∈ S and ǫ > 0. Then there is a simple process uuu′ =
〈u′σ〉σ∈S∧τ such that θ(uuu) ≤ ǫ where uuu = supσ∈S∧τ |uσ − u′σ|). Let (τ0, . . . , τn) be a breakpoint string for uuu′

ending with τn = τ . Consider the simple process uuu′1 = 〈u′1σ〉σ∈S1∧τ with breakpoint string (σ1, τ0, . . . , τn)
and

[[u′1σ = u′τi ]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]] for i < n,
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[[u′1σ = u↓]] ⊇ [[σ < τ0]]

for every σ ∈ S1, while u
′
1τn = u′τn . Let u

′
↓ be the starting value of uuu′ (614Ba). Since u′↓ = limσ↓S∧τ u

′
σ and

u↓ = limσ↓S∧τ uσ, |u′↓ − u↓| ≤ ū. Now we see that, for σ ∈ S,

[[σ < τ0]] ⊆ [[u′σ = u′↓]] ∩ [[u′1σ = u↓]] ∩ [[|uσ − u′σ| ≤ ū]]

⊆ [[u′σ = u′↓]] ∩ [[u′1σ = u↓]] ∩ [[|uσ − u′σ| ≤ ū]] ∩ [[u1σ = uσ]] ⊆ [[|u1σ − u′1σ| ≤ 2ū]],

while

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[u′1σ = u′τi ]] ∩ [[u′σ = u′τi ]] ∩ [[u1σ = uσ]] ∩ [[|uσ − u′σ| ≤ ū]]

⊆ [[|u1σ − u′1σ| ≤ ū]]

for i < n and, of course,

|u1τ − u′1τ | = |uτ − u′τ | ≤ ū.

Thus we have |u1σ − u′1σ| ≤ 2ū for every σ ∈ S. At the bottom end,

[[σ1 < τ0]] ⊆ [[u′1σ1
= u↓]] = [[u′1σ1

= u1σ1
]],

[[σ1 = τ0]] ⊆ [[u′1σ1
= u′τ0 ]] ∩ [[u1σ1

= uτ0 ]] ⊆ [[|u1σ1
− u′1σ1

| ≤ ū]].

Assembling these,

θ(supσ∈S1
|u1σ − u′1σ|) ≤ θ(2ū) ≤ 2ǫ.

As τ and ǫ is arbitrary, uuu1 is locally near-simple. QQQ

(b) Write σ2 for min T and S2 for the lattice S1 ∪ {σ2} = S ∪ {σ2, σ1}. We have a fully adapted process
uuu2 = 〈u2σ〉σ∈S2

defined by saying that u2σ = u1σ for σ ∈ S1 and

[[u2σ2
= 0]] ⊇ [[σ2 < σ1]], [[u2σ2

= u↓]] ⊇ [[σ2 = σ1]].

Since uuu2↾S2∧σ1 is simple while uuu2↾S2∨σ1 = uuu1 is locally near-simple, uuu2 is locally near-simple (631F(a-iv)).
And of course uuu2 extends uuu. Moreover, if uuu is non-negative and non-decreasing,

0 ≤ u2σ2
≤ u↓ = infσ∈S uσ

so uuu2 is non-negative and non-decreasing.

(c) We are now in a position to turn to 631M. S2 is coinitial with S̃, just because min S̃ = min T belongs

to S2. So we have a function Ψ∗ :Mln-s(S2) →Mln-s(S̃) as described in 631Mc. Set ũuu = Ψ∗(uuu2). Then ũuu is
locally near-simple and extends uuu2 (631M(c-iii)), so extends uuu. If uuu, and therefore uuu2, are non-negative and
non-decreasing, so is ũuu, by 631M(c-iii) again. So we have an extension of the kind we need.

649G Lemma Suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a real-time integration structure and S
is a non-empty sublattice of T . There is a non-decreasing sequence 〈τn〉n∈N in S such that supn∈N [[τ ≤ τn]] =
1 for every τ ∈ S.
proof For q ∈ Q ∩ [0,∞[, [[supS > q]] = supσ∈S [[σ > q]] (611Cb), so there is a countable set Aq ⊆ S such
that [[supS > q]] = supσ∈Aq

[[σ > q]], because A is ccc (322G, 316E). Accordingly there is a (non-empty)

countable set A ⊆ S such that [[supS > q]] = supσ∈A [[σ > q]] for every rational q ≥ 0. At the same time,
there is a countable B ⊆ S such that supσ∈S [[σ = supS]] = supσ∈B [[σ = supS]]. Taking a sequence 〈σn〉n∈N

running over A ∪B, and setting τn = supi≤n σi for n ∈ N, 〈τn〉n∈N is a non-decreasing sequence in S and

[[supS > q]] = supn∈N [[τn > q]] for every q ∈ Q ∩ [0,∞[,

supσ∈S [[σ = supS]] = supn∈N [[τn = supS]].
Now take any τ ∈ S and non-zero a ∈ A. If a′ = a ∩ [[τ = supS]] is non-zero, there is an n ∈ N

such that a′ ∩ [[τn = supS]] 6= 0, and now a ∩ [[τn = τ ]] 6= 0. Otherwise, there is a t ≥ 0 such that a′′ =
a ∩ [[supS > t]] \ [[τ > t]] is non-zero. Let q > t be rational and such that a′′ ∩ [[supS > q]] 6= 0; then there is
an n ∈ N such that
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0 6= a′′ ∩ [[τn > q]] ⊆ [[τ < τn]]

and a ∩ [[τ ≤ τn]] 6= 0.
As a is arbitrary, supn∈N [[τ ≤ τn]] = 1 and we have a suitable sequence 〈τn〉n∈N.

649H Theorem Suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a right-continuous real-time stochas-
tic integration structure.

(a)(i) There is a complete probability space (Ω,Σ, µ) such that (A, µ̄) can be identified with the measure
algebra of (Ω,Σ, µ).

(ii) For E ∈ Σ, write E• for the corresponding member of A; for t ≥ 0 set Σt = {E : E ∈ Σ, E• ∈ At}.
Then 〈Σt〉t≥0 is a right-continuous filtration of σ-algebras all containing every negligible subset of Ω.

(iii) Members of T can be represented by stopping times h : Ω → [0,∞] as in 612H, with the corre-
sponding identification of the algebras Aτ as in 612H(a-iii).

(b) Now suppose that uuu = 〈uσ〉σ∈S is a locally near-simple process with non-empty domain S ⊆ Tf . Then
there are a progressively measurable stochastic process 〈Ut〉t≥0 and a non-decreasing sequence 〈hn〉n∈N of
finite-valued stopping times, all adapted to 〈Σt〉t≥0, such that

(α) hn represents a stopping time τn ∈ S for every n ∈ N, and supn∈N [[σ ≤ τn]] = 1 for every
σ ∈ S,

(β) U•

g = uσ whenever g : Ω → [0,∞[ is a stopping time representing σ ∈ S,
(γ) t 7→ Ut(ω) : [0, hn(ω)] → R is càdlàg for every ω ∈ Ω and n ∈ N.

proof (a) Really this is just the Loomis-Sikorski theorem (321J); I remarked in 321K that the construction
there always gives a complete measure space, and in this context, of course, it gives a probability space. To
see that 〈Σt〉t≥0 is a right-continuous filtration we need only look at the definitions in 611Aa and 632B, and
surely every negligible set belongs to every Σt. Now 612H tells us all we need to know.

I remark that because every Σt contains every negligible set, the same is true of Σh, as defined in 612H(a-
iii), for every stopping time h.

(b)(i) For the time being (down to the end of (v)) I will suppose that S is an ideal of Tf . By 649G, we
have a non-decreasing sequence 〈τn〉n∈N in S, starting with τ0 = min T = 0̌, such that supn∈N [[σ ≤ τn]] = 1
for every σ ∈ S. Now each τn can be represented by a stopping time hn; since 〈hn(ω)〉n∈N must be a
non-decreasing sequence in [0,∞[ for almost every ω, and negligible sets all belong to Σ0, we can adjust the
hn, if necessary, to arrange that 〈hn〉n∈N is a non-decreasing sequence of finite stopping times.

(ii) Set S∗ =
⋃
k≥1 N

k. Choose 〈τr〉r∈S∗ , 〈hr〉r∈S∗ and 〈Yr〉r∈S∗ inductively, as follows. Start with

τ<n> = τn and h<n> = hn, for n ∈ N, where I write <n> for the member of N1 with value n. Now choose a
Σhn

-measurable real-valued Y<n> such that Y •

<n> = uτn ; do this in such a way that Y<n+1>(ω) = Y<n>(ω)
whenever hn+1(ω) = hn(ω).

Given r ∈ Nk let r′ be its successor in the lexicographic ordering of Nk, so that r′↾k − 2 = r↾k − 2 and
r′(k − 1) = r(k − 1) + 1; let 〈τra<n>〉n∈N be a non-decreasing sequence in [τr, τr′ ] such that

τra<0> = τr, supn∈N [[τra<n> = τr′ ]] = 1,

[[σ < τra<n+1>]] ⊆ [[|uσ − uτ
ra<n+1>

| ≤ 2−n]] for every σ ∈ [τra<n>, τra<n+1>]

for each n ∈ N (631Ra). Now choose a sequence 〈hra<n>〉n∈N of stopping times such that hra<n> represents
τra<n> for each n; as we shall necessarily have

hra<0> =a.e. hr, supn∈N hra<n> =a.e. hr′ ,

hra<n> ≤a.e. hra<n+1> for each n,

we can adjust the functions on a negligible set so that

hra<> = hr, supn∈N hra<n> = hr′ ,

hra<n> ≤ hra<n+1> for each n.

Finally, choose 〈Yra<n>〉n∈N such that Yra<0> = Yr and, for each n,

Yra<n> : Ω → R is a Σh
ra<n>

-measurable function and Y •

ra<n>
= uτ

ra<n>
,
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Yra<n+1>(ω) = Yra<n>(ω) whenever hra<n+1>(ω) = hra<n>(ω),
Yra<n>(ω) = Yr′(ω) whenever hra<n>(ω) = hr′(ω),
|Yra<n>(ω)− Yr(ω)| ≤ 2−k whenever hra<n>(ω) < hr′(ω).

(The point here is that Aτ
ra<n>

is always {E• : E ∈ Σra<n>, by 612H(a-iii), so that we can manage the

first clause in this list, and the rest can be achieved by adjustments on negligible sets.)
Note that the construction ensures that if r0, r1 ∈ S∗ and hr0(ω) = hr1(ω), we shall have Yr0(ω) = Yr1(ω).

(iii) At the end of the induction, define Ut(ω), for t ≥ 0 and ω ∈ Ω, as follows. If hr(ω) < t for
every r ∈ S∗, set Ut(ω) = 0. Otherwise, we have a sequence γ ∈ NN such that hγ↾k(ω) ≤ t < h(γ↾k)′(ω)

for every k ≥ 1. In this case, |Yγ↾k+1(ω) − Yγ↾k(ω)| ≤ 2−k for every k, so limk→∞ Yγ↾k(ω) is defined; take
this for Ut(ω). Note that this will ensure that |Ut(ω) − Yr(ω)| ≤ 2−k−1 whenever k ≥ 1, r ∈ Nk and
hr(ω) ≤ t < hr′(ω).

Now (t, ω) 7→ Ut(ω) is progressively measurable. PPP Take t0 ∈ [0,∞[ and α ∈ R, and set H = {(t, ω) : t ≤
t0, ω ∈ Ω, Ut(ω) > α}. Then

H = H0 ∪
⋃
k≥1

⋃
r∈Nk{(t, ω) : t ≤ t0, hr(ω) ≤ t < hr′(ω), Yr(ω) > t+ 2−k−1}

where H0 = {(t, ω) : hr(ω) < t ≤ t0} if α < 0, else ∅. Now if r ∈ S∗ and we set Er = {ω : hr(ω) ≤ t0},
Er ∈ Σt0 and hr↾Er is Σt0 -measurable, so {(t, ω) : hr(ω) ≤ t ≤ t0} and {(t, ω) : hr(ω) < t ≤ t0} belong
to B⊗̂Σt0 , where B is the Borel σ-algebra of R. It follows that H0 ∈ B⊗̂Σt0 . Next, given r ∈ S∗, Yr is
Σhr

-measurable, so Yr↾Er is Σt0 -measurable, since E ∩ Er ∈ Σt0 for every E ∈ Σhr
. Next, if k ∈ N and

r ∈ Nk

{(t, ω) : hr(ω) ≤ t ≤ t0, Yr(ω) > t+ 2−k−1}
belongs to B⊗̂Σhr

and is included in [0, t0]× Er, it belongs to B⊗̂Σt0 ; while

{(t, ω) : hr′(ω) < t ≤ t0

also belongs to B⊗̂Σt0 , so the difference

{(t, ω) : t ≤ t0, hr(ω) ≤ t < hr′(ω), Yr(ω) > t+ 2−k−1}
belongs to Σt0 . Taking the union of these, H ∈ Σt0 . As t0 and α are arbitrary, (t, ω) 7→ Ut(ω) is progressively
measurable. QQQ

(iv) Accordingly we have a fully adapted process vvv = 〈vσ〉σ∈Tf
defined by saying that vσ = U•

g whenever
g : Ω → [0,∞[ is a stopping time representing σ ∈ Tf . Since Uhr(ω) = Yr(ω) whenever r ∈ S∗ and ω ∈ Ω,
Uhr

= Yr and vτr = uτr for every r ∈ S∗.
We know also that if k ≥ 1, r ∈ Nk and g is a finite-valued stopping time representing σ ∈ T , then

|Ug(ω)(ω)− Yr(ω)| ≤ 2−k−1 whenever hr(ω) ≤ g(ω) < hr′(ω).

Translating this into terms of T and vvv,

[[τr ≤ σ]] ∩ [[σ < τr′ ]] ⊆ [[|vσ − uτr | ≤ 2−k−1]]

Since, by the choice of the τr, we also have

[[τr ≤ σ]] ∩ [[σ < τr′ ]] ⊆ [[|uσ − uτr | ≤ 2−k]],

we get

[[τr ≤ σ]] ∩ [[σ < τr′ ]] ⊆ [[|vσ − uσ| ≤ 2−k−2]].

If σ ∈ S, so that supn∈N [[σ ≤ τn]] = 1, then

1 = supr∈Nk [[σ = τr]] ∪ supr∈Nk([[τr < σ]] ∩ [[σ < τr′ ]]) ⊆ [[|vσ = uσ| ≤ 2−k−2]]

for every k ∈ N, so that vσ = uσ.
Thus vvv extends uuu.

(v) If n ∈ N and ω ∈ Ω then t 7→ Ut(ω) : [0, hn(ω)] → R is càdlàg.

PPP(ααα) Suppose that 〈ti〉i∈N is a strictly decreasing sequence in [0, hn(ω)]. Set t = limi→∞ ti. For each
k ≥ 1, there is an r ∈ Nk such that hr(ω) ≤ t < hr′(ω). But in this case there is a j ∈ N such that hr(ω) ≤
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ti < hr′(ω) for every i ≥ j, so that |Uti(ω) − Yr(ω)| ≤ 2−k−1 for every i ≥ j and |Ut(ω) − Yr(ω)| ≤ 2−k−1.
As k is arbitrary, Ut(ω) = limi→∞ Uti(ω).

(βββ) If now 〈ti〉i∈N is a strictly increasing sequence in [0, hn(ω)], then by the choice of 〈hr〉r∈S∗ we
find that

for every k ≥ 1 there are an r ∈ Nk and a j ∈ N such that hr(ω) ≤ ti < hr′(ω) for every i ≥ j.

But this means that for every k ≥ 1 there are an r ∈ Nk and a j ∈ N such that such that |Uti(ω) −
Yr(ω)| ≤ 2−k−1 for every i ≥ j; it follows at once that limi→∞ Uti(ω) is defined. Putting these together,
t 7→ Ut(ω) : [0, hn(ω)] → R is càdlàg. QQQ

(vi) This proves the result when S is an ideal. In general, we still have a non-decreasing sequence

〈τn〉n∈N in S such that supn∈N [[σ ≤ τn]] = 1 for every σ ∈ S. Now S̃ = {σ : supn∈N [[σ ≤ τn]] = 1} is a full
ideal of T included in Tf , so is the full ideal generated by S, and we have a locally near-simple process ũuu

with domain S̃ extending uuu (649F). Applying (i)-(v) to ũuu, we get a suitable process 〈Ut〉t≥0.

649I Scholium If, in 649Hb, uuu is a non-negative non-decreasing process, then we can arrange that
〈Ut〉t≥0 is non-decreasing. PPP Working through the proof, we see that in part (b-ii), when we come to choose
〈Yr〉r∈S∗ , we have 0 ≤ uτn ≤ uτn+1

, so can require that 0 ≤ Y<n> ≤ Y<n+1>, for each n. Similarly, when
we come to choose 〈Yra<n>〉n∈N, we shall have Yr ≤ Yr′ and

uτr ≤ uτ
ra<n>

≤ uτ
ra<n+1>

≤ uτr′

for each n, so we can arrange that

Yr ≤ Yra<n> ≤ Yra<n+1> ≤ Yr′

for each n. Looking at the definition of Ut in (b-iii), we see that we shall now necessarily get a non-negative
non-decreasing process.

Of course I ought to check also that we can still use the idea in (b-vi). But I noted in 649F that if we
start from a non-negative non-decreasing process uuu, then the extension ũuu can be made to be non-negative
and non-decreasing. So this part of the argument also works. QQQ

649J Lemma Let (Ω,Σ, µ) be a complete probability space, 〈Σt〉t≥0 a right-continuous filtration of
σ-subalgebras of Σ all containing every negligible set, and 〈Ut〉t≥0 a progressively measurable stochastic
process. Let h : Ω → [0,∞[ be a stopping time such that t 7→ Ut(ω) : [0, h(ω)] → R is càdlàg for every
ω ∈ Ω. For ω ∈ Ω and t ≥ 0 set

U<t(ω) = lim
s↑t

Us(ω) if 0 < t ≤ h(ω),

= 0 otherwise.

(a) 〈U<t〉t≥0 is a previsibly measurable stochastic process, therefore progressively measurable.

(b) Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be the real-time stochastic integration structure defined from
(Ω,Σ, µ, 〈Σt〉t≥0), and τ ∈ Tf the stopping time represented by h (612H(a-i)). If uuu, zzz are the fully adapted
processes defined from U and U< as in 612Hb, then uuu↾T ∧ τ is near-simple and its previsible version is
zzz↾T ∧ τ .

(c) Now suppose that 〈Vt〉t≥0 is another progressively measurable stochastic process, this time non-
negative and non-decreasing, such that t 7→ Vt(ω) : [0, h(ω)] → R is càdlàg for every ω ∈ Ω. Let vvv be the
process defined by 〈Vt〉t≥0. For ω ∈ Ω let νω be the Radon measure on [0, h(ω)] such that νω[0, t] = Vt(ω)
for every t ≥ 0, and set

e(ω) =
∫
[0,h(ω)]

U<t(ω)νω(dt).

Then e : Ω → R is Σh-measurable and e• =
∫
T ∧τ uuu dvvv.

proof (a) If α ∈ R, then
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{(t, ω) : U<t(ω) > α}
= H0 ∪

⋃

q∈Q
q>α

⋃

q′∈Q

⋂

q′′∈Q

q′′≥q′

{(t, ω) : q′ < t ≤ h(ω), either t ≤ q′′ or Uq′′(ω) ≥ q} (∗)

where

H0 = ({0} × Ω) ∪ {(t, ω) : h(ω) < t} if α < 0, (∗∗)
= ∅ if α ≥ 0.

Now as Uq′′ is always Σq′′ -measurable, the sets {(t, ω) : q′ < t, Uq′′(ω) ≥ q} always belong to the previsible
σ-algebra Λpv (642Ha). Also

{(t, ω) : h(ω) < t} =
⋃
q∈Q [q,∞[× {ω : h(ω) ≤ q}

belongs to Λpv, so {(t, ω) : t ≤ h(ω)} also does, and of course [0,∞[ × Ω and {0} × Ω also do. So all the
elements of the formulae (*) and (**) correspond to sets in Λpv and {(t, ω) : U<t(ω) > α} ∈ Λpv. As α is
arbitrary, 〈U<t〉t≥0 is previsibly measurable, therefore progressively measurable (642I).

(b)(i) uuu↾T ∧ τ is near-simple. PPP This can be proved by a simple adaptation of the argument in 631D;
or alternatively, we can set

U ′
t(ω) = Ut(ω) if t < h(ω),

= Uh(ω)(ω) if t ≥ h(ω).

Then, for any t ≥ 0 and α ∈ R,

{ω : U ′
t(ω) > α} = {ω : h(ω) > t, Ut(ω) > α} ∪ {ω : h(ω) ≤ t, Uh(ω)(t) > α}

belongs to Σt. Evidently t 7→ U ′
t(ω) is càdlàg for every ω. We can therefore apply 631D as written to show

that the process uuu′ defined from 〈U ′
t〉t≥0 is locally near-simple, so that uuu↾T ∧ τ = uuu′↾T ∧ τ is near-simple.

QQQ

(ii) Let ǫ > 0. Then there is a simple process www = 〈wσ〉σ∈T ∧τ such that θ(ū) ≤ ǫ where ū =
sup |www − uuu↾T ∧ τ |). Take a breakpoint sequence (σ0, . . . , σn) for www such that 0̌ = σ0 ≤ . . . ≤ σn = τ , and
choose stopping times g0, . . . , gn such that 0 = g0 ≤ . . . ≤ gn = h and gi represents σi for each i ≤ n; for
each i, let fi be a Σgi -measurable function such that f•

i = wσi
. Set

Wt(ω) = fi(ω) if i < n and gi(ω) ≤ t < gi+1(ω),

= fn(ω) if gn(ω) ≤ t.

Then 〈Wt〉t≥0 is a progressively measurable stochastic process representing www, and we have

W<t(ω) = 0 if t = 0,

= fi(ω) if i < n and gi(ω) < t ≤ gi+1(ω),

= gn(ω) if gn(ω) < t.

Like 〈U<t〉t≥0, this is a previsibly measurable process; let www′ be the process it represents. Then www′↾T ∧ τ =
www<, by 641Ia.

Now consider the previsibly measurable process 〈U<t−W<t〉t≥0. If g : Ω → [0,∞[ is a stopping time and
g ≤ h, and we write U<g(ω), W<g(ω) for U<g(ω)(ω) and W<g(ω)(ω), then

U<g(ω)−W<g(ω) = lim
s↑g(ω)

Us(ω)−Ws(ω) if g(ω) > 0,

= 0 otherwise.
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If f̄ : Ω → [0,∞[ is such that f̄• = ū, then

{ω : |U<g(ω)−W<g(ω)| > f̄(ω)} ⊆ ⋃
q∈Q,q≥0{ω : |Uq∧h(ω)−Wq∧h(ω)| > f̄(ω)}

where I write q ∧ h for the stopping time ω 7→ min(q, h(ω)), so is negligible, and |U•

<g −W •

<g| ≤ ū. Thus

sup |zzz −www<| = sup |zzz −www′↾T ∧ τ | ≤ ū.

On the other hand,

sup |www< − (uuu↾T ∧ τ)<| ≤ sup |www − uuu↾T ∧ τ | ≤ ū

by 641G(a-vii). So

θ(sup |zzz − (uuu↾T ∧ τ)<|) ≤ θ(2ū) ≤ 2ǫ;

as ǫ is arbitrary, zzz = (uuu↾T ∧ τ)<.

(c)(i) Of course νω is the Stieltjes measure associated with the non-decreasing function t 7→ Vt(ω). The
description in 114Xa is fully adequate for our needs here, and you should have no difficulty in filling in the
arguments sketched there. If you are willing to use the full resources of the numbered theorems in previous
volumes, however, and the fact that the function is càdlàg, the quickest route to the present case may be to
apply 416K to the finitely additive functional ν′ω defined on the ring T of subsets of [0, h(ω)] generated by
the half-open intervals of the form [0, α[ by saying that

ν′ω [0, α[ = limt↑α Vt(ω)

if 0 < α ≤ h(ω)
Because t 7→ U<t(ω) is bounded and Borel measurable on [0, h(ω)], the integral e(ω) is always defined.

Let f : Ω → R be a Σ-measurable function such that f• =
∫
S∧τ uuu dvvv.

(ii) Much as in (b-ii), take ǫ > 0 and a simple process www = 〈wσ〉σ∈T ∧τ such that θ(ū) ≤ ǫ2 where
ū = sup |www − uuu↾T ∧ τ |. Let M > 0 be such that F = {ω : Vh(ω) > M} has measure at most ǫ, and take

a finite sublattice I of T ∧ τ such that θ(SJ(uuu, dvvv) −
∫
S∧τ uuu dvvv) ≤ ǫ2

M
whenever I ⊆ J ∈ I(T ∧ τ). Let

J ⊇ I∪{0̌, τ} be a finite sublattice of T ∧τ which includes a breakpoint string for www; let (σ0, . . . , σn) linearly
generate the J-cells, so that 0̌ = σ0 ≤ . . . ≤ σn = τ , (σ0, . . . , σn) is a breakpoint sequence for www (612Kb),
and SJ(uuu, dvvv) =

∑n
i=1 uσi−1

× (vσi
− vσi−1

). Now choose g0, . . . , gn, f0, . . . , fn and define 〈W<t〉t≥0 as in
(b-ii).

This time, we calculate

f̂(ω) =

∫

[0,h(ω)]

W<t(ω)νω(dt) =

n∑

i=1

fi(ω)νω(]gi−1(ω), gi(ω)])

(because f0(ω) = 0)

=

n∑

i=1

fi(ω)(Vgi(ω)− Vgi−1
(ω))

for each ω. So f̂• = SJ(uuu dvvv) and
∫
Ω
min(1, |f(ω)− f̂(ω)|)µ(dω) ≤ ǫ2; accordingly F ′ = {ω : |f(ω)− f̂(ω)| ≥

ǫ} has measure at most ǫ.
At the same time, again taking f̄ : Ω → [0,∞[ such that f̄• = ū, the set

E = {ω : |U<t(ω)−W<t(ω)| ≤ f̄(ω) for every t ∈ [0, h(ω)]

is conegligible. PPP Set

E′ = {ω : |Uq(ω)− fi(ω)| ≤ f̄(ω) whenever i < n and q ∈ Q ∩ [gi(ω), gi+1(ω)[

⊇ {ω : |Uq∧h(ω)− U ′
q∧h(ω)| ≤ f̄(ω) for every q ∈ Q ∩ [0,∞[}.

Because |uq̌∧τ − wq̌∧τ | ≤ ū for every q ≥ 0, E′ is conegligible. If ω ∈ E′ and t ∈ [0, h(ω)] then
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|U<t(ω)−W<t(ω)| = 0 if t = 0,

= lim
q∈Q,q↑t

|Uq(ω)− fi(ω)| if i < n and gi(ω) < t ≤ gi+1(ω),

and in either case is at most f̄(ω). So E ⊇ E′ is conegligible. QQQ

We also know that
∫
Ω
min(1, f̄(ω))µ(dω) ≤ ǫ2

M
, so that F ′′ = {ω : f̄(ω) >

ǫ

M
} has measure at most ǫ.

Now take any ω ∈ E \ (F ∪ F ′ ∪ F ′′). Then |U<t(ω)−W<t(ω)| ≤ f̄(ω) for every t ∈ [0, h(ω)], so

|e(ω)− f(ω)| ≤ |e(ω)− f̂(ω)|+ |f̂(ω)− f(ω)| ≤ f̄(ω)νω([0, h(ω)]) + ǫ

≤Mf̄(ω) + ǫ ≤ 2ǫ,

while F ∪ F ′ ∪ F ′′ has measure at most 3ǫ. As ǫ is arbitrary, e =a.e. f and e• = f• =
∫
T ∧τ uuu dvvv.

649K Lemma Let (Ω,Σ, µ) be a probability space and 〈Σt〉t≥0 a filtration of σ-subalgebras of Σ. Let

Λpv be the corresponding previsible σ-algebra and write L for the smallest subset of R[0,∞[×Ω such that

constant functions belong to L,
scalar multiples of functions in L belong to L,
if φ ∈ L and ψ ∈ R[0,∞[×Ω and |φ| ∧ |ψ| = 0, then φ+ ψ ∈ L iff ψ ∈ L,
χ(]s,∞[× E) ∈ L whenever s ≥ 0 and E ∈ Σs,
limn→∞ φn ∈ L whenever 〈φn〉n∈N is a pointwise convergent sequence in L.

Then L is the set of all Λpv-measurable real-valued functions on [0,∞[× Ω.

proof (a)Writing L0(Λpv) for the set of Λpv-measurable functions, this is a linear space containing ]s,∞[×E
whenever s ≥ 0 and E ∈ Σs and is closed under sequential pointwise convergence, so includes L.

(b) In the other direction, write Λ for {W :W ⊆ [0,∞[×Ω, χW ∈ L}. Then Λ is a Dynkin class (136A).
Also I = {]s,∞[ × E : s ≥ 0, E ∈ Σs} is a subset of Λ closed under finite intersections (if E ∈ Σs and
F ∈ Σt then E ∩F ∈ Σmax(s,t) and (]s,∞[×E)∩ (]t,∞[×F ) = ]max(s, t),∞[× (E ∩F )), so Λ includes the
σ-algebra generated by I (136B), which is Λpv. Thus χW ∈ L for every W ∈ Λpv.

It follows at once that
∑n
i=0 αiχWi ∈ L whenever α0, . . . , αn ∈ R and W0, . . . ,Wn ∈ Λpv, therefore that

f ∈ L whenever f : Ω → [0,∞[ is Λpv-measurable, and finally that L0(Λpv) ⊆ L. So we have equality.

649L Theorem Let (Ω,Σ, µ) be a complete probability space, 〈Σt〉t≥0 a right-continuous filtration of
σ-subalgebras of Σ all containing every negligible set, (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) the corresponding
real-time stochastic integration structure, 〈Xt〉t≥0 a previsibly measurable stochastic process and 〈Vt〉t≥0 a
non-negative non-decreasing stochastic process. Let h : Ω → [0,∞[ be a stopping time such that t 7→ Xt(ω)
is bounded on [0, h(ω)] and t 7→ Vt(ω) : [0, h(ω)] → R is càdlàg for every ω ∈ Ω, and write τ for the
corresponding stopping time in T . Let xxx, vvv be the processes defined by 〈Xt〉t≥0 and 〈Vt〉t≥0. For ω ∈ Ω let
νω be the Radon measure on [0, h(ω)] such that νω[0, t] = Vt(ω) for every t ≥ 0, and set

e(ω) =
∫
]0,h(ω)]

Xt(ω)νω(dt).

Then e : Ω → R is Σ-measurable and e• = S
∫
T ∧τ xxx dvvv.

proof (a) Let Λpv be the previsible σ-algebra derived from 〈Σt〉t≥0, and L
0 = L

0(Λpv) the space of Λpv-
measurable real-valued functions on [0,∞[×Ω. By the definition in 642Hb, we have a one-to-one correspon-
dence between L

0 and the space of previsibly measurable processes, matching φ ∈ L
0 with 〈Xt〉t≥0 where

Xt(ω) = φ(t, ω) for all t and ω; and in this case 〈Xt〉t≥0 corresponds to the process xxxφ as defined in 642L.
Recall from 642L that φ 7→ xxxφ is an f -algebra homomorphism taking pointwise convergent sequences to
order*-convergent sequences.

(b) For M ≥ 0, φ ∈ L
0 and ω ∈ Ω, set

eφM (ω) =
∫
]0,h(ω)]

med(−M,φ(t, ω),M)νω(dt).

(This is always defined because t 7→ φ(t, ω) is always Borel measurable.) Let L be the set of those φ ∈ L
0

such that eφM is measurable and
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e•φM = S
∫
T ∧τ

med(−M1<,xxxφ,M1<)dvvv

for every M ≥ 0. Then L satisfies the conditions of 649K.

PPP(i) If φ is constant with value α, then

eφM (ω) = med(−M,α,M)(Vh(ω)(ω)− V0(ω))

for every ω, so

e•φM = med(−M,α,M)(V •

h − V •

0 ) = med(−M,α,M)vτ − v0̌,

while

S

∫

T ∧τ

med(−M1<,xxxφ,M1<)dvvv = S

∫

T ∧τ

med(−M,α,M)1< dvvv

=

∫

T ∧τ

med(−M,α,M)1 dvvv

= med(−M,α,M)(vτ − v0̌).

So these are equal, for every M , and φ ∈ L.

(ii) Of course a scalar multiple of a member of L belongs to L because φ 7→ eφ and Siivvv are linear.
Similarly, if |φ| ∧ |ψ| = 0 then |xxxφ| ∧ |xxxψ| = 0, so

eφ+ψ,M = eφM + eψM ,

med(−M1<,xxxφ+ψ,M1<) = med(−M1<,xxxφ,M1<) + med(−M1<,xxxψ,M1<)

and if φ ∈ L then φ+ ψ ∈ L iff ψ ∈ L.

(iii) As in (i), if φ = χ(]s,∞[× E), we can compute

eφM (ω) = min(1,M)(Vh(ω)(ω)− Vs(ω)) if ω ∈ E and h(ω) ≤ s,

= 0 otherwise,

so

e•φM = min(1,M)χa× (vτ − vτ∧š)

where a = E•. At the same time, xxxφ = uuu< where uuu is the simple process with breakpoint š and value 0
below š, value χa from š onwards. So

S

∫

T ∧τ

med(−M1<,xxxφ,M1<)dvvv = S

∫

T ∧τ

min(1,M)uuu<dvvv =

∫

T ∧τ

min(1,M)uuu dvvv

(645R(a-i))

=

∫

(T ∧τ)∨š

min(1,M)1 dvvv

= min(1,M)χa× (vτ − vτ∧š)

and again we have equality, so φ ∈ L.

(iv) And finally, for the key point, if 〈φn〉n∈N is a sequence in L converging pointwise to φ, then
〈xxxφn

〉n∈N is order*-convergent to xxxφ (642L(c-i)), so 〈med(−M1<,xxxφn
,M1<)〉n∈N is always a previsibly

order-bounded sequence which is order*-convergent to med(−M1<,xxxφ,M1<), and

S
∫
T ∧τ

med(−M1<,xxxφ,M1<)dvvv = limn→∞ S
∫
T ∧τ

med(−M1<,xxxφn
,M1<)dvvv

by 645T. At the same time, of course, 〈med(−M,φn(t, ω),M)〉n∈N → med(−M,φ(t, ω),M) for every t and
ω, so by the ordinary dominated convergence theorem eφM (ω) = limn→∞ eφnM (ω) for every ω and
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e•φM = lim
n→∞

e•φnM
= lim
n→∞

S

∫

T ∧τ

med(−M1<,xxxφn
,M1<)dvvv

= S

∫

T ∧τ

med(−M1<,xxxφ,M1<)dvvv,

so that φ ∈ L. QQQ

(c) By 649K, L = L
0. Now suppose that 〈Xt〉t≥0 is a previsibly measurable stochastic such that t 7→

Xt(ω) is bounded on [0, h(ω)] for each ω, and that e(ω) =
∫
]0,h(ω)]

Xt(ω)νω(dt) for every ω. Set φ(t, ω) =

Xt(ω) for t ≥ 0 and ω ∈ Ω; then φ ∈ L
0 so φ ∈ L. If M ≥ 0, then {(t, ω) : t ≤ h(ω), |φ(t, ω)| > M}

belongs to Λpv, so its projection FM = {ω : |φ(t, ω)| > M for some t ≤ h(ω)} belongs to Σ (642Jb). Because
t 7→ Xt(ω) is bounded on [0, h(ω)] for each ω,

⋂
M∈N FM = ∅.

If M ∈ N and ω ∈ Ω \ FM ,

eφM (ω) =
∫
]0,h(ω)]

φ(t, ω)νω(dt) = e(ω).

So e = limM→∞ eφM is measurable. Similarly,

[[med(−M1<,xxxφ,M1<) 6= xxxφ × 1<]] ⊆ F •

M

for every M , so

[[ S
∫
T ∧τ med(−M1<,xxxφ,M1<)dvvv 6= S

∫
T ∧τ xxxφ × 1< dvvv]]

is included in F •

M , for every M (647J). But infM∈N F
•

M = 0, so

S

∫

T ∧τ

xxxφdvvv = S

∫

T ∧τ

xxxφ × 1< dvvv

(645Pc)

= lim
M→∞

S

∫

T ∧τ

med(−M1<,xxxφ,M1<)dvvv = lim
M→∞

e•φM = e•,

as required.

649X Basic exercises (a) In 649H, show that if uuu is locally of bounded variation then we can arrange
that t 7→ Ut(ω) : [0, hn(t)] → R is of bounded variation for every ω ∈ Ω and every n.

(b) State and prove a form of 649L which will cover S-integrals with respect to processes which are locally
of bounded variation. (Hint : §437.)

649Y Further exercises (a) In 649C, show that the formula

hn,i+1(ω) = inf({h(ω)} ∪ {t : t ≥ hni(ω), |Ut(ω)− Uhni(ω)(ω)| ≥ 2−n})
also works.

649 Notes and comments Both 649C and 649E refer to the Riemann-sum integral; there seem to be
insuperable difficulties in devising any kind of path-by-path definition for the general S-integral. Bichteler’s
construction (649C) depends on some deep arguments, not here but in the proof of 627M. The method of
649E demands rather less understanding of stochastic processes (in a formal sense, I don’t think we have
to know even that martingales are local integrators), but in the context of this volume measure-converging
filters are black magic; even the full axiom of choice is a bit strong for what we want to do here, and while I
expect most readers would prefer to do measure theory with dependent choice at least, I think the techniques
of Chapter 56 ought to be enough for a sufficiently determined purist to set out nearly all the ideas here in
a form based on ZF alone. The advantage of 649E, if there is one, is that (at least for integrals between
constant stopping times) we have a formula in terms of Ut, Vt alone, without even seeking to define Uh
and Vh for non-constant stopping times h. I suppose that in principle this offers an opportunity to use the
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formula as a definition of
∫ t′
t
U dV without troubling about right-continuity of the filtration 〈Σt〉t≥0 or any

hypothesis on the paths of the processes U and V . But I do not see much use for a stochastic integral which
does not allow for integration over intervals determined by arbitrary stopping times, and for these I think
we need something like the hypotheses of 649E.

Most of this section, by page-count, has been devoted to an elaborate analysis of the relationship between
S-integration with respect to a non-decreasing process and pathwise Lebesgue-Stieltjes integration. Of course
this should be regarded as one of the starting points for the theory of the S-integral, not its culmination.
The whole point of the S-integral is that it provides a common extension of the natural integral with respect
to integrators of bounded variation and Itô’s integral with respect to Browniam motion.
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