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Chapter 64
The fundamental theorem of martingales and the S-integral

To my mind, the ‘Riemann-sum’ integral of §613 is the natural starting point for a theory of stochastic
integration, and it has a rich assortment of properties. But if you are acquainted with the Lebesgue-Stieltjes
integral, you will have noticed that I have not given results corresponding to the standard convergence
theorems of §123, and if you have taken the trouble to check, you will have noticed that they aren’t true of
the integral as presented so far. If we make the right modifications, however, we do have a kind of sequential
smoothness (644C) which can, with some difficulty, be used as the basis for what I will call the ‘S-integral’
(645P). In fact the S-integral is much closer than the Riemann-sum integral to the standard stochastic
integral developed in PROTTER 05.

To do this we need to know quite a lot more about stochastic processes. In §641 I describe the ‘previsible
version’ of a near-simple process, which corresponds to the caglad function equal except at jump points to
a cadlag function of a real variable. Looking at pointwise limits of sequences of previsible versions, we are
led to the previsible processes of §642, which have the kind of measurability demanded of an integrand in
the S-integral (645I). But the really important fact, if we are going to have the S-integral for martingale
integrators which are not jump-free, is the fundamental theorem of martingales: under certain conditions,
an integrator can be expressed not just as the sum of a virtually local martingale and a process of bounded
variation, as in the Bichteler-Dellacherie theorem (627J), but as such a sum in which the virtually local
martingale has small residual oscillation (643M).

With the S-integral defined, we can look at its properties, which by and large correspond to those of
the Riemann-sum integral as established in chapters 61-63. Many of the details are not trivial, and I work
through them in §646-648, with an S-integral version of It&’s formula (646T).

I end the chapter with a brief note (§649) left over from Chapter 63, on Riemann-sum integrals, in the
classical context of progressively measurable stochastic processes defined on a probability space, which can
be calculated from sample paths, one path at a time; for non-decreasing integrators, we can use a Stieltjes
integral on each path to calculate the S-integral.
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In §618 T introduced ‘jump-free’ processes without going into the question of what the ‘jumps’ were which
they were free of. We now need to look at the structure of processes which are not jump-free. In the standard
model of locally near-simple processes as those representable by processes with cadlag sample paths (631D),
we have direct descriptions of o-algebras ¥;- and random variables X;- defined in terms of observations
taken before a stopping time h, rather than at the stopping time, as in 612H. I present these descriptions
in 642E, following corresponding definitions in the more abstract language I favour in this volume (641B,
641F). Once we have got hold of the previsible version u~ of a near-simple process, we have an expression
for the residual oscillation of u in terms of u — u~ (641Nb, 642Ga). For moderately oscillatory processes
which are not near-simple, we do not have such a direct description of their jumps, but the construction
of the previsible version still works (641L), and we have effective results on indefinite integrals (641Q) and
quadratic variations (641R).

641A Notation (A, i, T, (UAs)eer, T, (Ar)re7) will be a stochastic integration structure, as described in
the notes to §613. If (B;);cr is a family of closed subalgebras of 2, \/,.;B; will be the smallest closed
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2 The S-integral 641A

subalgebra including every 9,;. 6 will be the standard functional defining the topology of convergence in
measure on LO(2A) (613B). If t € T then  will be the constant stopping time at t. If S is a sublattice
of T, Z(S) will be the upwards-directed set of finite sublattices of S; M, (S), Mob(S), Mimo(S);, Mimo(S)
and M, s(S) will be the spaces of fully adapted, order-bounded, moderately oscillatory, locally moderately
oscillatory and near-simple processes with domain S. If u = (u,),es belongs to M, (S), sup |u| will be the
supremum sup,cg |tuy| in L2(2A), and Osclln(u) will be the residual oscillation of u (618B). For sublattices
I, J of T, IUJ will be the sublattice of T generated by I U J.

641B The algebras s, (a) Definition If S is a sublattice of 7 and 7 € T, let 2s<, be the closed
subalgebra of 2 generated by {anfo <7]:0 € S, a € A,}. Note that As<, C A, by 611H(c-i). T will
write A, for Ay,

(b) Let S be a sublattice of T.
(i) fo <7in T then As<, C As<r. PIf pe Sthen [p<o] €A, and [p < o] C [p < 7] so0

{anfp<o]:peS,acA,}={anlp<o]nlp<t]:peS, acU}
Clanfp<t]:peS,acU,}. Q

(i) Ifo eS8, 7€ T and u e L°%A,), then u x x[o < 7] € L°(™As<,). P Write u’ for u x x[o < 7].
Fora>0, v >a]=[u>a]n]o < 7] and [’ < —a]n]o < 7] belong to As<. Now if o < 0

[v' > a] = supgejq [w' = B] = 1\ infgejq o) [v' < A]
again belongs to As<,, so v’ € L°(As~,). Q

(iii) If S’ is a sublattice of T covering S, then As<, C As/«, forevery 7 € T. P If 0 € S and a € A,
then an[p = o] € A, for every p € S’ (611Hc), so

anfo<t]=anfo<t]nsupfp=oc] =supanfo <7]n[p=0]
peES pES

=supanfp=o]nfp<7] € As<r. Q
pES

In particular, As<, C As/«» whenever S C S’ and 7 € 7.

(iv) Now suppose that S is finitely full and that 7 € S. Then s is the closed subalgebra € generated
by {[oc < 7] :0 € S}. P Of course 1 no < 7] € AUs<, for every 0 € S, s0 € C As<,. On the other hand, if
o€ S and a € Uy then o/ = anfo < 7] belongs to A, N2 by 611H(c-iii). By 6111, there is a p € T such
that ' C[p=oc]and 1\a' C[p=7];nowp e Sand a’ =[p < 7] € €. So AUs<, C € and we have equality.
Q

(c) Suppose that 7 € T, I is a non-empty finite sublattice of 7 and (79,... ,7,) linearly generates the
I-cells (611L). Let B be the set of those b € A such that
bn[r < 7] is either [r < 7o) or 0, bn[r, <7] €A, ,
for every i < nthereisan a € A, such that bn [r; < 7]\ [riq1 < 7] =an[n < 7]\ [1i+1 < 7]
Then 2y, = B. P Writing J for {r9,... , 7}, J covers I (611Ke) so A;, = Ay, ((b-iii) above). Set

di=r<n]=1\1n<71, d,=[m<T7],

di = [ri < 7]\ [7is1 < 7] for i <n.

Then {d_1,dy,... ,d,} is a partition of unity in 2, and d; € A ;.. whenever —1 < i < n.

Set B_1 = {0,d_1} and for 0 < i < n set B; = {d;na:a € A, }. Then B, is always an order-closed
subalgebra of the principal ideal of 2 generated by d;, while B = {b: bnd; € B; whenever —1 < i < n}.
So B is an order-closed subalgebra of 2. Since B; C A ;.. whenever —1 < i <n, B C A ;.

If -1 <i<n,j<nanda €, thend;nan[r; < 7] belongs toB;, becauseifi < j thend; n[r; < 7] =
0, while if j < then an[r; < 7] € ™A;,. Soif we write A = {an[r; < 7] :j <n, a € A, } for the generating
subset of A ;.,, we see that and; € B; whenever a € A and —1 < i < n, that is, A C B. Accordingly
Ajer CB and B =A; ., =A;, as claimed. Q
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641D Previsible versions 3

(d) Ift € T then Az =\, ,As. P If s < ¢, then [§ <{] =1 s0 Ay =A; € A-;. On the other hand, if
ceT,

[[U < tv]] = SUDgeT [[E > 5]] \ [[U > 8]] = SUPg<¢ 1\ [[U > 8]]
belongs to \/,_, As. Q
(e) If 7 € T then A, is the closed subalgebra of 2 generated by
A ={a: there is a t € T such that a € 2; and a C [7 > t]}.

P Let B be the closed subalgebra generated by A. If ¢ € T, a € ; and a C [r > ¢], then a € A; and
a C [t < 7] (611E(a-i-d)), so a € A-,; consequently B C A_,. If 0 € T and t € T, then [ > ]\ [o > ]
belongs to 2; and is included in [7 > t], so belongs to A C B; taking the supremum over ¢, [o < 7] € B.
As o is arbitrary and T is full, (b-iv) tells us that 2., C B and we have equality. Q

641C Theorem Let S be a sublattice of 7, and C C 7T a non-empty set with supremum 7.

(a) §2[S<‘r = vaeC Ql$<a~
(b) Now suppose that C C S. Set a = inf,ec [o < 7]. Then

Voce ™o = {(b\a)u(cna):be A, c € Ascr}.
proof (a) By 641B(b-i), V.o As<os € As<r. In the other direction, if p € S and a € A, thenan[p < 7] =
sup,ec an[p < o] (611Eb), so belongs to \/, . ™Us<o. As p is arbitrary, As<r €V, o As<o-
(b) Write B for \/, . Ao and B’ for {(b\a)u(cna):be,, ccAs<}.
(i) Note first that
[e <7]eAsnUAscr CBNAscr
for every c € C,s0a € BN As<,.
(ii) If b € A, then
b\[o<7]eA, CB

for every o € C (using 611H(c-iii) again), so b\ a € B.
IfpeS,deAyand p < 7,thendn[p < o] € A, C B forevery o € C, so B contains sup,c-dnp < o] =
dn[p < 7] (611Eb again). Accordingly s, C B. By (i), it follows that cna € B whenever ¢ € As.
Thus B’ C B.

(iii) B’ is a closed subalgebra of 2. P (Cf. 314Ja.) The map (b,c) — (b\a)u(cna) : A x A — A is
an order-continuous Boolean homomorphism, while 2, x 25, is a closed subalgebra of 2 x 2, so the image
B’ is a closed subalgebra of 2 (314F(a-1)). Q

IfoeCandde®, thend €A, and dnfo < 7] € As<,. So

d=(d\a)u(dna)=(d\a)u(dn]o <7]na)
belongs to B’. As o and d are arbitrary, |J, .o Ao C B'; as B’ is a closed subalgebra, B C B’ and we have
equality.
641D Proposition Let S be a sublattice of 7 and v = (v, ),ecs an L-process with a previsible variation
v# = (v})yes (626]). Then v € L°(As,) for every 7 € S.
proof Consider the formulae
AC(070/)(1, Pd’U) = PUUU/ — Vo,

v = wllimpz(sar) S1(1, Pdv).
If o <o’ in SAT, Aro,or)(1, Pdv) € L°(A;) and
[Aco,0n (1, Pdv) #0] C [o <o'] € [o < 7],
50 Ay(g,01) (1, Pdv) € L°(As<), by 641B(b-ii). Accordingly Sia,(1, Pdv) € L°(As<,) for every I € Z(SAT).
Since L}, N L°(As<) is closed in L}, for the weak topology of L}, (613B(i-ii)), v# € LO(As<).
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4 The S-integral 641E

641E Lemma Let S be a sublattice of T, u = (uy)ses a fully adapted process and I a non-empty finite
sublattice of S.

(a) For any 7 € T there is an element u;-, of L°(2A;,) defined by saying that [r < minI] C [ur<, = 0]
and

[o < 7]\ supye;(fo < o'[nfo" <7]) C [ur<r = us]

for every o € I.
(b) If (o9, ... ,0n) linearly generates the I-cells, then

HT < 0'0]] c [[ul<'r = Oﬂa [[Jn < T]] - Hul<'r = Uan]]v

loi < 7]nr < 0oit1] € [ur<r = up,] for every i < n.

(¢) The process (ur<r)re7 is fully adapted.
(d) If J is a maximal totally ordered subset of I, then uj, = us~, for every 7 € T.
(e) If 7 € S then ur<r = U(rary<r-

proof (a) For o € I set
o = o < 7]\ sup,c;([o <o'[no’ <7]) € Arer.

Let B C 27, be the set of atoms of the subalgebra generated by {a, : o € I'}. If b € B, either bna, =0
for every o € I and

b=1\ sup,c; o 2 [7 < minI]

or Jy={0:0 €1, bCa,} is non-empty. In the former case, set v, = 0. In the latter case, if o, o’ € Jp, b
is included in o < 7] n o’ < 7] so cannot meet either o < o'] or [0’ < o] for any o, o’ € Jp, and

bClo=0']C [us =]

for any o, o’ € J,. Accordingly we can write v, for the common value of u, x xb for any o € J,. Now
if o € Jp and a € A, then anb = anfo < 7] nb belongs to A;., for every a € Ay, s0 vp = uy X xb
belongs to L°(2Ar~,). We therefore have an element v = > ben Vb of LO(2A;.,) such that v x xb = vy, X xb
for every b € B and consequently v X xa, = u, X Xag, that is, ay C [v = u,], for every o € I. Since also
[r <minI] C 1\ sup,¢;as C [v = 0], this v has the property required of u;,, and the formula given does
indeed define a member of L°(A7,).

(b) Of course
[T <oo]l =[r <minl] C Jus<, =0].
If i <nand o € I then
[t <oipi]nfoi <o]lnfo<7] CJo; <o]nfo <oi+1] =0
(611Kd). So
loi <7]n[r <oig1] € [os < 7]\ supyer([os < o] nfo < 7]) C [ur<r = ue,].

At the top end, since 0, = max I, [o, < o] nJo < 7] =0 for every o € I, so [o, < 7] C [ur<r = to,]-

(c) As Arr C Ay, urer € LOA,) for every 7 € 7. If 7, 7 € T, ¢ = [t =7'] and o € I, then
cnfo < 7] =cnfo < 7'] for every o € I (611E(c-iii-y)), so

cen(fo < 1]\ S}JEI)I([[U <dnfo’ <7]))

=cn(fo < 7]\ 2}161)1([[0 <d]nle’ <))

c HUI<T = Ua]] n [[UI<7-’ = Ua]] c [[ul<'r = UI<T/]]'

At the same time

cnr <minl] =cn[r' < minl]

< [[UI<T = 0]] n [[UI<T’ = O]] c [[u1<7' = uI<T’]]'
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641G Previsible versions 5

So ¢ C [ur<r = ur<,/]; as 7 and 7’ are arbitrary, (ur<,)rc7 is fully adapted.

(d) If (0y)i<n is the increasing enumeration of J, then it linearly generates both the I-cells and the
J-cells, so (b) gives the result.

(e) For any o € I,
[o < 7]\ sup(Jo < o'|nfo’ <7])
o'el

=JornT <7\ sup([o AT <o AT]n[o’ AT < T])
o'el

=JonT<T]\ sup (oAT<d]n[o" <7])
o' €INT
c [[UI<T = ua/\‘r]] n [[u(l/\'r)<‘r = UU/\T]]
while

[* <minI] = [r <min(I A7)] € [ur<r = 0] n[uar<- = 0].

641F Definition Let S be a sublattice of 7, and 4 = (uy),es a fully adapted process. For 7 € S, set
u<r = limpz(sy ur<-

when the limit exists in L°(2A), defining u;., as in 641E. If u., is defined for every 7 € S, I will call
U< = (U<, )res the previsible version of u.

641G Proposition Let S be a sublattice of 7.
(a) Let u = (u{,>,,€5 be a fully adapted process with a previsible version 4« = (u<y)ses-
(i) Uy € L°(™As<,) for every o € S.
(ii) u< is fully adapted to (A¢)ier.
(if) [u< # 0] < [u £ 0].
(iv) If z € L°(AN(,cs Ao), then zu (definition: 612De) has a previsible version, which is zu..
(v) If S has a least element, then u<pins = 0.
(vi) If &’ is a sublattice of S which covers S, then 4[S’ has a previsible version, which is u<[S’.
(vii) Suppose that u is order-bounded.
(a) For any 7 € 8, Ju<s| < supycs(lus| x Xl < 7]).
(B) For any 7, 7' € S,

fucrr| x X7 < 7] € suDyesys (ol x Xlo < 7']).

(7) u< is order-bounded and sup |u<| < sup |u|.
(viii) If w is locally order-bounded then u. is locally order-bounded.
(b) Writing 1(9) for the constant process with value y1 and domain S, its previsible version 1¢5) is defined
and equal to (xes)res, Where e, = sup,cs [0’ < o] for o € S.
(c) Suppose that u = (u,)ses is a fully adapted process.
(i) u has a previsible version iff u[S A 7 has a previsible version for every 7 € S.
(ii) In this case, (W[SAT)c =u<[S AT and

@lSVT)e = |SVT) X {X[T < )oecsvr = W< [SVT) X 1EvV7)

for every 7 € S.

(d) Suppose that k > 1 is an integer, and h : R¥ — R is a continuous function. Take U = (u;);<; where
each u; is a fully adapted process with domain S with a previsible version u;., and set U~ = (u;<);<x where
u;< is the previsible version of u; for each i. Define h : (L°)* — L° and hU = hoU as in 619E-619F. Then
hU has a previsible version (hU). = ho(U~) x 1), If h(0,... ,0) = 0, then (hU). = hoU .

(e) Let M be the set of those order-bounded processes u with domain S such that v has a previsible
version % .

(i) M is an f-subalgebra of M,1,(S), and u — u~ : M — M,1,(S) is an f-algebra homomorphism.
(ii) M is closed for the ucp topology on M, 1,(S), and u — u< : M — M, ,(S) is continuous.

D.H.FREMLIN



6 The S-integral 641G

proof (a)(i) We know that u;., as defined in 641E, belongs to L°(2;-,) C L°(2s<, for every non-empty
I € Z(S) (641Ea, 641B(b-iii)). Since L°(As<,) is closed in LO(A) (613B(i-i)), u<y € L°(As<,).

(ii) By (i), u<y € L°(RAs<, € L°(A, for every o € S, Now suppose that o, ¢/ € S and write ¢ for
[c =0d’']. For each I € Z(S)\ {0}, ur<s X X¢ = tur<or X xc (641Ec), 80 ucy X XC = U< X XC, that is,
¢ C [ucy = ticy]. As o and o’ are arbitrary, u is fully adapted.
(iii) Set
b=1 \ [[’U, 7& 0]] = infUGS IIUU = 0]]
Looking at the formula in 641Ea, we see that b C [u;<, = 0] whenever 7 € S and I € Z(S) is non-empty.
So b C [u<, = 0] whenever 7 € S and Ju< # 0] € 1\ b= [u # 0].

(iv) Set v, = z X u, for o € S, so that (vs)recs = zu is fully adapted (612D(e-i)), and define vy,
for 0 € § and non-empty I € Z(S), as in 641E. Again referring to the formula in 641Fa, we see that
Vico = 2 X UJ<, Tor all o and I. But now we have

limpyz(s) Vi<o = limpz(s) 2 X Ur<o = 2 X liMppz(s) Ur<o = 2 X U<q
for every o € S, so (zu)< is defined and equal to zu-.

(v) If T € Z(S) is non-empty, then minS < min7 80 Ur<mins = 0; taking the limit as I increases,
U< (minS) = 0.

(vi) Take 7 € S’ and € > 0. Then there is a non-empty Iy € Z(S) such that 0(u<, — ur<,) < €
whenever I € Z(S) includes Iy. Let Jy be a finite sublattice of &', containing 7, such that jia < € where

@ = 5up,ep, (1 supycy, [ = o))
Take any J € Z(S') including Jy, and set I = J U Iy. Then Jur<r # uj<,] € a. P Let B be the subalgebra
of 2 generated by
{a}U{[lo=p]l:0€ly,pedtu{lo<p]:0,pel}

and let b be any atom of B disjoint from a. Then for every o € I there is a p € J such that b meets [o = p],
in which case b C [o = p]. The set

Upeslo 0 €8, bc[o=p]}

is a sublattice of § including Iy UJ and therefore including I. For each o € I, b is included in one of |7 < o],
[o < 7] because 7 € Jy CI. If b C [ < o] for every o € I, then

bC[r<minl] C [r <minJ] C [ur<r = 0] nus<cr = 0] C [ur<r = uj<r].

Otherwise, set p=sup{oc:o0 €I, bC o <7]};thenbCp<7],andif o € I and 0 £ p, b C [t < o]. So
b C [ur<r = u,]. Next, let p’ € J be such that b C [p = p']. Then b C [p’ < 7], and if ¢/ € J and o’ £ o/,
bC[r<o’]. SobcC[ujer =uy]. Putting these together, b C [ur<r = uj<,] in this case also. As b is
arbitrary, [ur<, = uj<,] includes 1\ a and Jur<; #uj<-] C a. Q

It follows that

Oucr —ujcr) < O(ucr —urcs) + fie < 2e,

and this is true whenever Jo C J € I(S’). As € is arbitrary, u<, = limjy7(s)uj<r. As 7 is arbitrary,
(u]8’)< is defined and equal to u[S".

(vii)(e) In the formulae of 641Ea, we see that if o € I € Z(S) then
[o <7\ supgrer(lo < o] nlo’ <7]) € [lur<r| = fuo| x x[o < ]I,

while [7 <minT] C [ur<r =0]. So |ur<r| < sup,c;(|us| X x[o < 7]); in the limit as I 1 Z(S), |ucr| <
sup,es(|uo| X x[o < 7]).

(B) By the same argument, we see that if 7 € I € Z(S) then |uj</| x x[7 < 7'] < sup,csyr [Us| X
X[o < 7], s0 |ucr| X x[T < 7] < supyesysr [Us| X x[o < 7'].

(7) And () tells us that |u<| is bounded above by sup |u.
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(viii) Similarly, if u is locally order-bounded and 7 € S, then |u;<,| < sup [u|SAT| whenever 0 € SAT
and I € Z(S) is non-empty, so sup [u<[S A 7| < sup|u[S A 7|. (Or see (c) below.)

(b) Set uy = x1 for o € S, so that 15) = (u,),cs. This time we see that for any o € S and non-empty
Ie€Z(8),

[[min[<a]]g HUI<U:X1]]7 ﬂ0§m1n1ﬂ§ Hul<a':0]],
so in fact ur<, = x[min I < o]. Now
Uey = lim y[minl < o] = sup x[min/ < o
< IZ(S) [[ ]] I€Z(S) [[ H

= sup x[o’ < o] = x(sup [0’ < o]) = xeo,
o'eS o’'eS

as claimed.

(c)(i)(a) Suppose that u has a previsible version u<, and 7 € S. If 0 € SA 7 and I € Z(S) contains T,
then ur<o = U(rrr)<o- SO

lim jrz(sar) Ui<o = liMpz(s) UWiinr)<o = liMpz(s) Ur<o = U<o-
As o is arbitrary, ]S A 7 has a previsible version, which is in fact u-[S A 7.

(B) Now suppose that 7 € S and w = u[S A 7 has a previsible version w« = (W<s)sesar- Then
UT<r = W(1ar)<7 fOr every I € Z(S) containing 7, and limyz(s) ur<r = im j1zsa7) Wi<r = W< is defined.
So if u[S A7 has a previsible version for every 7 € S, limy7(s) ur<, is defined for every 7 € § and u has

a previsible version.

(ii) (@) We saw in (i-a) above that (V[SAT)c =v[SAT.

(B) Take 0 € SV 7, and set ¢ = [r < ¢]. If I is a finite sublattice of S containing ¢ and 7, and
J =1V, then for o/ € I set

aor = o' < o]\ sup,ner([of < o”]no” < o))
and for ¢’ € J set
bor = [0" < o]\ sup,ne;([o" < o"]n[o” < o]).
Observe that b,» = a4 C c for every o’ € J. So, for ¢’ € J, we have
bor € [ur<o = uor] N tsco = uor] C [ur<o = <ol
Since
c=[r <o]=[minJ < o] = sup,¢; bor

(see the construction in 641Ea), ¢ C [ur<y = Uj<os] and ¢ C [ujco = X€ X Ur<s]-
On the other hand,

IN\e=[r=o0] Cujco =0]
and 1\ ¢ C [ujco = XC X UT<s]. SO Ujcy = XC X Ur<,. Taking the limit as I increases through Z(S),
lim j47(svr) Ui<o = Mppz(s) U(1vr)<o = XC X U<o-
As o is arbitrary,
WISV 1)< = (uc[SVT) X (x[r < 0])gesvr = (u<[SVT) x 1EVD
by (b) applied in S V 7.

(d) For each i, express u; as (Uis)ses and i< as (Ui<o)oes Where uico = limpyz(s) Ui r<o. Write
Ur<o = (Ui 1<0)i<k for o € S and non-empty I € Z(S). Then

limzyz(s) Ur<o = (impzs) i r<o)ick = (Vico)i<k

is defined for any o € §; I will call it U.,,.

D.H.FREMLIN



8 The S-integral 641G
Set vy = h((Uig)ick) and z, = x1 for o € S, so that AU = (v,)ses and 1) = (z,)pes. If 7 € T € Z(S)
then

[[min[ = T] c [[1}[<7- = O]] n [[ZI<T = O] c [[UI<T = B(UI<T) X Z]<7—]],

[minf < 7] € [vr<r = h(Ur<-)]n[21<7 = X1] € [vr<r = 2(Ur<s) X 21<7]
while if h(0,...,0) = 0 we have

[minl = 7] C [vi<r = 0] 0 [Ur<r = 0]
< [vr<r =0l [A(Ur<~) = 0] € i< = h(Ur<-)]-
In the limit, we see that
Ver = limpyzs) E(Ul<r) X Zr<r = B(U<‘r) X Z<r
because h : (L°)* — L% and x : L® x L° are continuous (619Ed, 613Ba), while if h(0,...,0) = 0 then
Ver = limpyz(s) h(Ur<r) = h(U<s).
As 7 is arbitrary,
(W) < =ve = (WU <) x 19
and (hU)< = hU - if h(0,... ,0) = 0.
(e)(i) This is immediate from (d), applied to addition and multiplication and the lattice operations.

(ii) (@) Suppose that u = (uy)secs belongs to the closure of M N My1,(S) in My, (S), 0 € S and € > 0.
Then there are w € M N M,1,(S) and non-empty I € Z(S) such that

O(sup lu —w|) <€, Olwjcy — Wicy| < € whenever I C J € Z(S).
Now the same calculation as in (a-vii) shows that
‘uJ<o - wJ<o*| < sup |U’ - w|

for every non-empty J € Z(S), s0 O(uj<cs — ur<y) < 3¢ whenever I C J € Z(S). As € is arbitrary,
limpyz(s) ur<o is defined; as o is arbitrary, u € M.

(B) And (a-vii) and (d) tell us again that sup [v< —w<| < sup jv —w| for every v, w € M, sov — v<
is continuous.

641H Lemma Let S be a sublattice of 7 and S’ a sublattice of S which separates S. If u = (uy)ocs is
fully adapted and 7 € S is such that u-, is defined, then u, = lim7(s/) ur<-.

proof Let e > 0. Then there is a non-empty I € Z(S) such that 6(u<, — uj<r) < € whenever J € Z(S)
includes I. Next, there is a finite set C C S’ such that

Yooer Mo <7\ sup,eo(lo < p]nlp < 7)) <€
let Ky be the sublattice of 8’ generated by C. Set
a = sup,c([o < 7]\ sup,cc(lo < plnfp <)),
so that fia < e. Take any K € Z(S') including Ky and set J = I UK. Then 1\a C [ujer = ug<.]. P
Setting
ag = [o < 7]\ sup,c;([o < plnlp <7])

for o € J, as in part(a) of the proof of 641E, we see that if o, ¢’ € J then a, n o = 0’] C ayr. Now if o0 € K
then

ar =a,NJo < 7]\ sup(Jo < p]np < 7))
pEK
c [[UJ<T = U(T]] N [[UK<T = uo]] c [[UJ<T = UK<T]]~

And if o € I then
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g\ a C agn sup(fo < plnfp < 7))\ sup(fo < p[n]p <7])
peC peC

C sup(agnfo=p]) C supa, C [ujcr = ux<r]-
peC peC

But we know that the covered envelope of I U K is a sublattice (611M(b-i)), so includes J. So for any
o € J we have

Ao\ @ =Sup,cruk o N[0 =p]\a C sup,cruk ap\a C [uscr = uk<-].
And we certainly have
[t <minJ] = [r < minJ]n[r < min K]
C [us<r =0]n[uk<r = 0] C [us<r = uk <]

Since [7 < min J] U sup,¢ s as = 1, we see that 1\ a C [uj<r = ux<-], as claimed. Q
It follows that

9(“K<T - U<7—) < 9(“K<‘r - UJ<T) + G(UJ<T - u<7‘) < ﬂ[[uK<T 7é uJ<T]] +e€
(as J D2 1)
< e+ € < 2e.

And this is true whenever K € Z(S’) includes K. As € is arbitrary, u<, = limgqz(s) Uk <r-

6411 Proposition Let S be a sublattice of 7 and u = (u,),es & simple process with breakpoint string
(10, .. ,7n) and starting value u; (614Ba).
(a) u<, is defined and

infoes [t < o] Clucr =0], [o<7]n[r<70] C [u<r =u] for every o € S,

[ri <7]nr < 1ig1] € [ucr =uy,] forevery i <n, [r, < 7] C Jucr = us,]

for every T € S.
(b) Writing u for the previsible version of u,

sup |u| = |ur, | V sup [u<]|.

proof (a) Take any I € Z(S) such that 7; € I for every i < n. We have 09 < ... <o, and 0 < kg < ... <
k, < m such that

ok, = T; for i <,
(00, ... ,0k) linearly generates the I A mo-cells,
(Okis--- > Ok;yy) linearly generates the I N [7;, 7;41]-cells for each i < n,

(0k,s--- ,0m) linearly generates the IV 7,-cells,
and therefore (o, ... ,0.,) linearly generates the I-cells. Then
[o; <tln[r <oj1] € [oj < 70] C [us; = uy] if j < ko,
[ <ojlnloj <mipal € [uo, = ur]
ifi <mandk; <j < kit
C [ < 0j] C [ug;, = ur, ] if by <@ <m.
By 641Eb, we have

[[T < OOH < [[UI<T = 0]]7
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10 The S-integral 6411

loj <7lnr < o] € [ur<r = uo, ] N ug; = uy] € [ur<r = wy] if j < ko,
Cc [[UI<T = ucrjﬂ n [[ucrj = un]] c [[ul<'r = uﬂ]]
if i <n and k‘z §j<k}i+1,

C [ur<r = uo, ] N [us;, = ur,] C [ur<r = ug, ] if by <i<m

and
[om < 7] C [ur<r = to,, | N[0 < o] C [ur<r = ur,].
Since
loo < 7]n[r <70 = SUp; g, loj <tlnlr < oj44],
[ri <7]nr < 1ig1] = SUPk, <jckisa loj <7ln[r <oj],
[tn < 7] =supy, < [o; <7]n[r < ojp1]ulom < 7],
we get

[ <minI] C Jur«r =0], [minl <7]n[r < 70] C [ur<r = uy],
[ri <7lnlr < 7] € [ur<r = ur]s o < 7] € [ur<r = usr, .

If therefore we define v by the given formula, so that

infoes[r<o] cv=0], [o<7]n]r<m]C[v=u] foreveryoesS,
[o: <7]n[r < 7ig1] € [v =uy,] forevery i <n, [, <7] < [v=u,],

and set ¢ = inf,ecs [7 < o], then

cUminl < 7] C Jur<r =v]

whenever {7g,... ,7,} CI € Z(S). It follows that, for any o € S,

culo < 7] C ur<r =]
whenever {o,79,...,7,} C I € Z(S). Consequently we shall have
limpyz(syur<- X x(cufo < 7)) =v x x(cuo < 7])

for every o € S, and therefore

limyz(s) ur<r X X(cU supses [0 < 7)) = v x x(cU supyes [0 < 7]),

that is,

limpz(s) ur<- = v.

(b) Of course |u,, | < sup |u|, and sup Ju<| < sup |u| by 641G (a-vii), so sup |u| > |u,,| V sup |u<]|.
In the other direction, if o € S then
(e <m0l [ro <o]nfe<m]....,Jon-1 <c]no<m],nmTm <o

is a partition of unity in 2, so
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[uo] = (luo| x xlo < 70]) v sup(juq| x x([ri < o] 0o < 7i1a]))

V (|ug] x X[ < a])

= (Juy| x x[o < 70]) v gg(l%l x X([ri < o]nfo < 7is]))

V (Jur, | x x[ < o)
= (lucr| X x[o < 70]) Vsup(Jucr,,, | x x([1: < o] o < 7iq4]))
<n
V (Jur, | x x[m < o)
< sup fu<| V |ur, |-
As o is arbitrary, sup |u| < |u,, |V sup |u<|.
6413 We can now complement 614C with a formula for an integral [ s udv when it is the integrator v
which is simple.

Lemma Let S be a non-empty sublattice of 7, v = (v,)secs a simple process with starting value v, and
breakpoint string (79,... ,7,), and 4 = (u,)scs a fully adapted process which has a previsible version
U = <u<0'>0'68~ Then

fsudv = Ucry X (Vrg — V) + Dy Ucr, X (Vry — U7y ).

proof (a) Suppose that i < n and that
eitheri=0,8" =SA71, 0l e€Z(S) and v =10,
orl<i<n,§=8N[r-1,7]),neleZ(S) and v=uv,_,
then

S[(U,d’l]) = Ur<r; X (Uﬂ —’l)).

P Let (09,...,0) linearly generate the I-cells. Then
1(u, dv) Zua] X (Vo1 — Vo)

= Zuaj X (vr, = v) X x[oj41 = 7] x x[o; <]
(because [vo,,, # vo,] C [o; < Ti]n[oj31 = 7] € [v=vo,] 0 [vr, = vo,,,])
=Y trcr, X (vr, = v) X X[oj41 = 7] x x[o; < 7]

(641Eb)
=Ureqr, X (Vg — V)
because
[ur<, # 0] € [oo < 73] = sup; 1 ([o; < ] n[oj41 =7]) Q
Taking the limit as I T Z(S’), fs’ u dv is defined and equal to u<,, X (v, — v).
(b) At the top end, [s,, udv =0 because v is constant on SV 7. So

/ud'v:/ udv—i—Z/ udv+/ u dv
S SATo ﬂ[TL 1,7'; SVTy

=U<ry X UT(] - + E Ucr; X 'Un - UTT',,])~
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12 The S-integral 641K

641K Lemma Let S be a sublattice of 7, u = (u,)scs a non-decreasing non-negative fully adapted
process and 7 a member of S.

(a) If I is a non-empty finite sublattice of S then ur<, = sup,¢;(u, x x[p < 7]).

(b)If I, J € Z(S) and I C J then ujer < ujer.

(¢) u<, is defined and equal to sup,cs(u, X x[p < 7]).
proof (a) I return to the formula of 641Ea. Set x = sup,¢;(u, x x[p < 7]) and
a, = [o < 7]\ supyie;([o < d'|nfo’ < 7))

for o € I. Let b be an atom of the subalgebra generated by {[oc < p] : 0, p € ITU{7}}. If bna, = 0 for
every o € I then

bClurer =0]nJz=0] C [ur<, = z].

If 0 € I is such that b C a, then b C [o < 7] C Ju, < z]. At the same time, if p € I and b C [p < 7], then
bnlo < p] =0so0

b p<o]Cluy, <uol

(614Ib)
C [up x x[p < 7] < uo]

because u, > 0; accordingly b C [ < u,] and
bCasnz=1us] Cur<r =us] Nz =1us] C [ur<r = 7]
by 641Ea. As b is arbitrary, u;<, = x, as claimed.
(b) It follows at once that if I, J € Z(S) and I C J, then uj«, < uj<, for every 7 € S.
(c)Ifres,
ur<r = sup,er(us X x[o < 7]) < sup,epus < ur

for every I € Z(S), so sup ez sy ur<r is defined and equal to limpz(s) ur<,. And of course sup;cz(s) ur<r =
suppes (up X x[p < 7)-

641L Theorem Let S be a sublattice of T, and u a fully adapted process with domain S.

(a) If w is non-decreasing and non-negative, it has a previsible version u.; u. is non-decreasing and
U < u.

(b) If w is (locally) of bounded variation, it has a previsible version which is (locally) of bounded variation.

(c) If w is (locally) moderately oscillatory, it has a previsible version which is (locally) moderately oscil-
latory.

proof (a) Express u as (us)ses. By 641Kc, uc, = sup,es(u, x x[p < 7]) is defined for every 7 € S; the
formula shows at once that ., < uc,s < u,» whenever 7 < 7/ in S.

(b) If u is of bounded variation, it is expressible as the difference v — v of two order-bounded non-
negative non-decreasing processes (614J-614K), and now u« = v, —v”. (641G(e-1)) is again the difference
of two order-bounded non-negative non-decreasing processes, by (a) here and 641G (a-vii), so is of bounded
variation. If 4 is locally of bounded variation then the same argument, applied to u[S A 7 for 7 € S, shows
that u< is defined and locally of bounded variation (using 641Gc).

(c) Now we know that Mp,(S) is the closure in M,1,(S) of the space My (S) of processes of bounded
variation (615Ea), so 641G(e-i) tells us that every moderately oscillatory process on S has a previsible
version. Moreover, because u« € My, (S) for every u € My, (S), by (b), and the map u — u is continuous
for the ucp topology (641G(e-ii)), u< will be moderately oscillatory whenever u is.

As in (b), it follows that u. is defined, and is locally moderately oscillatory, whenever u is locally
moderately oscillatory.
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641M Lemma Let S be a sublattice of 7 and u = (u,)scs a locally moderately oscillatory process with
previsible version 4« = (U< )oes. Suppose that (7,)nen is a non-decreasing sequence in S with supremum
7 (taken in 7)) which belongs to S. Set a = inf,en [7, < 7]. Then a C Ju<, = limy,_ 00 ur, ]

proof Because u is moderately oscillatory, u and w = lim,_,c %, are both defined (641L). Take € > 0.
Then there is a finite sublattice I of S such that O(u<, — uj<,) < € whenever J € Z(S) includes I. For
each o € I, [o < 7] = sup,en [0 < 7] (611Eb once more), while of course ([o < 7,])nen is non-decreasing,.
There is therefore an n € N such that b < €, where

b=sup,c;([o < 7]\ [o <7]).
Now take any m > n and consider the finite sublattice J of S generated by I U{r,,,7}. It is easy to see that
{o:0€T,[tm <o]nfo<7]cb}
is full, therefore a sublattice of T (611M(b-i) again). As it includes I U {7, 7}, it includes J. So
[ujcr =ur,] 2 [Tm < 7]\ sup,e;([tm < o]nfo <7])2a\b.
Accordingly
B(xa X (tger — tin,)) < filan [ug<r # un,]) < fib < e

But now

(XCL X (U<T - UJ<7—)) + G(XCL X (uJ<T - uTm))

O(xa x (v<r — ur,)) <
< (U<T - uJ<T> + € < 2¢,

0
0
and this is true for every m > n. Consequently 6(xa X (u<, —w)) < 2¢. As € is arbitrary. ya X (u<, —w) =0
and a C [u<, = w], as claimed.

641N The natural idea of a ‘jump’ in a real function f is a point ¢ at which the left and right limits
f(t7), f(tT) of the function are defined and different. (See 226B.) For a cadlag function f, the limits exist
(at least, on the interior of dom f) with f(¢T) = f(¢), so we are looking at f(t) — f(¢7). In a near-simple
process u, this corresponds to a non-zero value of u — u~. Subject to a necessary close look at the bottom
end of the domain of u, we find that a jump-free process, in the sense of §618, is one for which wu is essentially
equal to u~; and in fact we can get an expression for the residual oscillation Osclln(u).

Proposition Let S be a non-empty sublattice of 7, and 4 = (u,)scs an order-bounded process with a
previsible version u« = (U<)res-

(a) For 7 € S set e, = sup,cs [0 < 7]. Then xe, X |ur — ucr| < Osclln(u[S A T).

(b) If w is near-simple, then Osclln(u) = sup,cs xer X |ur — u<r|.

proof (a) Suppose that 7 € I C J in Z(S A 7). Take (o0y,...,0,) linearly generating the J-cells, and set
a; = [o; < 0ip1] noiy1 = 7] for i < n. Then

a; C [Jur —ujer| = [Ug,, — Uo,|] € [Jur —user| < Oscllny(u)]
for i < n, while
[minl < 7] C Joo < 7] C sup;., a;
because 0, = 7. So
[ur — ujer| X x[min I < 7] < Oscllny(u) < Osclln}(u[S A 7).
Letting J T Z(S A7), we get
[ur — ucr| X x[min < 7] < Osclln}(u[S A 7).

Now

limzyz(sar) [min 7 < 7] = limgys [o < 7] = sup,es [0 < 7] = e,

so limpyz(sary X[min I < 7] = xe,, and
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14 The S-integral 641N

T T T = li T T inl <

Ur — U<r| X XeE m}glm)(lu Ucr| x x[min I < 7])
< i Oscllnj(u[SAT)= inf Oscllnj(u|S A
< iy CAMWISAT =, i, Osel WIS AT)
= Osclln(u[S A7),

as required.

(b) Note that as u is moderately oscillatory (631Ca), it has a previsible version (641L). Write w(u) for
SUP,cs X€r X |Ur — Ucr|.

(i) Suppose that u is simple, with breakpoint string (7p,...,7,) in S and starting value u;. Take
o < ¢’ in S. Then, using the formulae in 6411a,
—if o’ < 70,
[ugr — Up| = |ugr — ug| X x[o < 0] = |uer —uy| x x[o < 0]
< ugr = uy] X Xeor = [tgr — U<qr| X X1 < w(u);

—ifi<nand 1 <o <o <7y,

|u<7/ - U'<7| < |u7'1:+1 - U'Ti| = |u7'i+1 - uTi| X X[[Ti < Ti+1]]
= |U’Ti+1 - U’<Ti+1‘ X X[[Ti < TiJrl]]
< |U‘Ti+1 - u<ﬂ‘+1‘ X XE€rit1 < w(u);
—if 1, <0, |uer —us| =0.
By the first formula in 618Ca,
Osclln(u) < Osclln}(u) < w(uw),
where I = {79,... , 70}

(i) Generally, if u is near-simple, take any € > 0. Then there is a simple process v’ = (u]),ecs such
that 6(@) < e, where 4@ = sup [u — u'|. Now

Osclin(u) < Osclln(u') + Osclln(u — )
(618B(c-ii))
<w(')+2u
((i) above and 618B(b-ii))
<wu) +w —u)+2u
(because v — v — v is linear, by 641Ge)
< w(u) + 4a.

So
O((Osclln(u) — w())™) < 6(4u) < 4de.
As € is arbitrary, 6((Osclln(u) — w(u))*) = 0 and Osclln(u) < w(u) in this case also.
(iii) Putting this together with (a), we see that w(u) = Osclln(u), as claimed.

6410 Corollary Let S be a non-empty sublattice of 7, and u a locally jump-free process with domain
S. Then u. =u x 1),
proof (a) To begin with, suppose that u is jump-free, therefore near-simple (631Cb). Then Osclln(u) = 0
so, in the language of 641N, ye, X (ur X u<,) = 0 for every 7 € S, that is, 1) x (u —u.) = 0 (641Gb) and
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ux1®8) =u. x 1) = (ux 1))
(641G (e-i))

:u<.

(b) In general, take any 7 € S; then u[S A 7 is jump-free, so

UNSAT=UISAT)<
(641G (c-ii))
= @|SAT)x (1S AT)
=W[SAT)x (1S SAT) = (ux1E)SAT).

As 7 is arbitrary, u. =u x 1),

641P Corollary Let S be a non-empty sublattice of T, and u = (u,),ecs a near-simple process with
starting value u; = 0. Then Osclln(u) = sup,cg |tr — U<r|.
proof Of course u is moderately oscillatory (631Ca again) so has a starting value (615H). In the language

of 641Nb, Osclln(u) = sup,cs xer X |ur —uc,|. Butif 7 € S,

=i <ol =i =
1\e; ;Ielg [T <] ;Ielg [r=0AT]

C [ur =limgys ugnr] = [ur = wy] = [ur = 0]

while of course we also have 1\ e, C [ur<, = 0] for every non-empty I € Z(S), so 1\ e, C Juc, = 0]. Thus
1\er C [ur = ucer] and xer X |ur —Ucr| = |Ur — uc,| for every 7 € S, so Osclln(u) = sup, cg |ur — ucr|.

641Q Theorem Let S be a sublattice of T, u a locally moderately oscillatory process with previsible
version u«, and v a local integrator with previsible version v.. Set w = éiy(u). Then w—w. = uc X (Vv—v).

proof Because u, v and w are all locally moderately oscillatory (616Ib, 616J), all the previsible versions
are defined (641L). Express u, v, u<, v« and w< as (Us)oes, (Vo)oes, (U<o)oes, (V<o)oes and (Wey)oes-

(a) Suppose to begin with that u and v are both non-negative and non-decreasing. Then w is non-negative
and non-decreasing (616Rb). Take any 7 € S.

(i) If 0 € SA T then
Uy X (U — ) < me[o T]ud'u < ter X (V7 — vg).

P If J is a finite sublattice of S N [0, 7] containing both ¢ and 7, take a sequence (o, ... ,0,) linearly
generating the J-cells. Then

n—1 n—1
Uy X (Vr — VUy) = Uy X Z”fn+1 — Vg, < Zuai X (Voyyy — Vo)
=0 i=0
n—1
= Z U, X x[oi < 7] X (Vg,, — Vs,)
=0
(because [o; = 7] C [0y = 0i41] € [vs, = Vo, ] for each 7)
n—1
= Zu{di}<‘r X X[[Ui < T]] X (U0i+1 - vtfi)
=0

(by the formula in 641Ea)
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n—1
S ZU<T X (’UO"H,l - UO’»;)
=0

(by the argument in part (a-ii) of the proof of 641L)
=Ucr X (Vr — V),
and
Uy X (U —Vs) < Sj(u,dv) < ucr X (Vp — V).

In the limit as J 1+ Z(S N [0, 7]),

Us X (U —v5) < me[U’T]ud'v <ter X (U —v,). Q

(ii) Now let I be a non-empty finite sublattice of S. Then
Ur<r X (UT - UI<T) < (wT - wI<T) X X[[Hlln] < Tﬂ < ucer X (UT - UI<T)-

P Take a sequence (79, . .. ,T,) linearly generating the I-cells. As [7 < 70] C [ur<r = 0] n[x[min I < 7] = 0],
we certainly have

HT < TO]] c Hul<‘r X (’U‘r - UI<T) < (w'r - wI<‘r) X Xﬂmll’l] < T]H]
N[(wr —wrer) X x[min I < 7] < uer X (7 — v7<r)].

Set d; = [1; < 7]\ [ri41 < 7] for i < n and d,, = [, < 7]]. Then for any i < n we have d; C [wr<, = w,,] =
[wr — wrer = wr — wy,] so (i) tells us that

d; C [ur<r X (Vr —vr<r) < (Wr — wrer) X x[minI < 7]]
N(wr —wrer) X x[minl < 7] < ucr X (vr — v7<r)].

Since [7 < 70] U sup;<,, d; = 1, we have the result. Q

(iii) Taking the limit as I T Z(S) in (ii),

Uer X (U —V<r) < (W —Wer) X X€ < Ucr X (Vy — V<)
where e = limyy7(s) [min I < 7] = sup, s [0 < 7]. But now u<, x (v; —v<7) X xe = (w; —w<,) X xe while
1\e C [w; =0]n[wer =0] N Juc, =0],

50 ticr X (17 — ver) X X(1\€) = (wy — wer) X X(1\ €); adding, we get tcr X (tr — vr) = (w; — wer).

(iv) As 7 is arbitrary, we have w — w« = u< X (v — v<) whenever u and v are non-negative and
non-decreasing.

(b) Since the operator (u,v) +— ii,(u) is bilinear and the operator u — u. is linear, it follows that
w—We = U X (v —ve) whenever u and v are of bounded variation (614J-614K again). Now if u is of
bounded variation, the map v — iy (%) : Mipno(S) = Mmo(S) is continuous for the ucp topology on My, (S)
(615Rb). Since the map v — v is also continuous (641G(e-ii)) and the ucp topology on M,y,, is Hausdorff,
wW— W =uUc X (V—v<) whenever u is of bounded variation and v is moderately oscillatory. And if v is an
integrator, then w — iy (u) : My — Mo.p is continuous (616J) and takes values in My, (616J, 616Ib), so
now we see that w —w~ = u~ X (v —v<) whenever u is moderately oscillatory and v is an integrator.

(c) For the general case in which u is locally moderately oscillatory and v is a local integrator, apply (b)
toulS AT and v[S AT to see that uc, X (v —v<,) = (Wr — w<,) for every T € S; of course this depends
on the fact that u« [SAT= (u]S A T) (641Gc).

641R Corollary Let S be a non-empty sublattice of 7 and v a local integrator with domain S, starting
value 0 and quadratic variation v* (617H). Write v, v% for the previsible versions of v and v*. Then
v*—vi = (v—vo)
proof We know that v* = v? — 2ii,(v) (617Ka). So

2 2

v —vl =v2—vi —2u. x (v—v.)=(v—v)}

using 641Gd and 641Q.
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641T Since the previsible version of a moderately oscillatory process is moderately oscillatory (641L),
an integral [ s u<dv will often be defined. There are a couple of useful conditions which will ensure it is
actually equal to [cudv.

Proposition Let S be a sublattice of S, u a moderately oscillatory process with previsible version u. and
v an integrator. If either v is jump-free or u is jump-free and has starting value 0, then fs Ucdv = fs'u,dv.

proof (a) If u is jump-free and has starting value 0, then in fact u« = u, by 6410 or 641P, and the result
is trivial. So in the rest of this proof I will assume that v is jump-free. Express u, u< and v as (u,)ses,

(U<o)oes and (vy)oes-
(b) Suppose that u is non-negative and non-decreasing. Recall that if o, 7 in S then
0<u; x x[o < 7] =ufor<r Su<r < g,
as in the proof of 641La. So if I € Z(S) is non-empty and (7o, ... ,7,) linearly generates the I-cells,

n—1
‘S[(’U, —’U,<,d’l))| = | Z(uﬂ - u<7'i) x (UT1‘+1 - v"’i)
=0
n—1
< (u‘n - u<‘n) X X[[Ti < Ti+1]] x |U7'i+1 - 'Un-|
=0
n—1
< Oscllng(v) x Z(Ur —ucr,) X X[ < i1
=0

n—1
< Oscllng(v) X (ur, + Z Ur, — Ury )
i=1

= Osclln;(v) X u,,_, < Oscllnz(v) x sup |u|
—0as I TZ(S)
because v is jump-free. So in this case we have [¢(u —u<)dv =0 and [qucdv = [sudv.
(c) Now, as in part (b) of the proof of 641Q, the linearity of integrations and of the operator u — u«
ensures that || Su<dv = J s dv whenever u is of bounded variation and v is jump-free, and the continuity of

the operators u — u < and u — [su dv implies that [(u.dv = [5udv whenever u is moderately oscillatory
and v is jump-free.

641U For the next result of this kind, I begin with a lemma which casts a little light on the difference
between discrete-time processes and continuous-time processes.

Lemma Suppose that T has no points isolated on the right. Then whenever 7 < 7/ in 7 and € > 0 there is
a o € [r,7] such that [r < o] =[r < 7] and a([r < 7]\ [Jo < 7]) <e.

proof Set A ={c:0 € [r,7], [r <o] = [r <7']}. Ais non-empty (because 7/ € A) and downwards-
directed (by 611E(c-i-/3)); moreover, sup,c 4 [0 < 7'] = [r < 7/]. P? Otherwise, b = [7 < 7]\ sup,c4 [0 < 7']
is non-zero. Now b C sup,cp [7" > t]\ [T > t] (611D); let t € T be such that bn [7" > t]\ [r > t] is non-zero.
Because ¢ is not isolated on the right, [7" > ¢] = sup,, [7' > s] (611A(b-1)), and there is an s > ¢ such that
bn[r’ > s]\ [t > t] is non-zero.

Set a = [7" > s]\[r >t]. Then a € A; = A; (611Hb) and a C [’ > s], so a € A; N A, (611H(a-1)).
There is a therefore a ¢ € T such that

aClo=3], 1W\acfo=7], $AT <o<sivr7

(6111 again). We see that

[e<tl=loc<t]n(E<7julr <7])=Jc <7]n[s<T]
Clo<tns<t]Ccan[s<Tt]Cr>s]\][r>1]
(611E(a-i-6) once more)
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that is, 7 < o, while also

[ <o) =[] <a]ln([7 <3]ulr <]
=[r'<o]nr' <3| Can]r <3 =0
and o < 7/. Moreover,
aClo=3\[r>t]=Jo=3]n[r<{ clr<o]
(use 611E(a-i-¢)), while
[r<t]\ac[r<t]nfo=7]c][r<o]

Sor<t]cr<o]=[r<7]and o€ A
On the other hand,

aClo=3n[s<7]clo <],

so anb = 0. But we chose ¢t and s so that a should meet b. XQ
There is therefore a o € A such that g([r < 7]\ [o < 7']) <€, which is what we are looking for.

641V Proposition Suppose that T has no points isolated on the right. Let S be an order-convex
sublattice of 7 and u = (u,),es @ moderately oscillatory process. Then u = uc.

Remark I hope it is clear that 4« = (u«cy)oes is the previsible version (u<)< of the previsible version of
u, so that ., = limyyz(s) u<, 1<, for every 7 € S.

proof (a) Suppose to begin with (down to the end of (g) below) that S has a greatest element 7 and that
€ > 0. Let J € Z(S) be such that 7 € J and

9(u<‘r - uI<T) < €, 0(u<<'r - u<,I<'r) <e

whenever J C I € Z(S). Let Jy be a maximal totally ordered subset of J.

(b) We need to know that if I € Z(S) includes Jy then O(uc, —uj<,) < e and O(uwcr — U< j<r) <e. P
Let K be a maximal totally ordered subset of I including Jy. The set

L={c:0€e€8 minK <o <maxK, med(p,0,p') € {p,p'}
whenever p, p’ are successive members of K}

is a sublattice of S including J and K is a maximal totally ordered subset of L, s0 uj<r = Ux<r = U<~
(641Ed) and O(u<r — ur<r) = 0(ucr —up<r) < €. Similarly, 0(vwcr —uc 1<) <c. Q

(c) Enumerate Jy in increasing order as (7;);<p, so that 7, = 7. For each i < n set ¢; = [1; < 7;41] and
choose 7/ € T such that 7; <7/ < 741, [1 < 7/] = ¢; and (e \ [7] < 7ig1]) < nL-i—l’ as in 641U. Because S
is order-convex, 7/ € S. Set 7, = 7 and a = sup,,,(¢; \ [7} < Ti+1]), so that fia < e.

(d) Let i < n. Then

[r: <7]n[rl=71] Ca,

[7i <7]nlrigr =7]\a=[r] <7]n[ri; =7]\a=[r <7]n[riy1 = 7]\ a.

[ri<7t]n[rl=7]=[rn<7]n[r] =71 0 [rix1 = 7]
Cn<miplnlr =7i41] Cca

Next,
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(It} < 7] nrixr =) & ([7s < 7] 0 [13401 = 7])
= ([7/ < mixal n i1 =7]) & ([1 < mial n 741 = 7])
clr <miplaln<nip]l=[n<mu\[r <mip]ca
so [/ <7]n[riq1 =7]\a = [r; < 7] [riy1 = 7]\ a. Finally, if i = n — 1 then 7,41 = 7/, = 7 so surely
[} <7]nlrigr =7]\a=[r] <7]n[r{;; = 7]\ a. Ifi<n—1then
[[T{+1 =7]= [[Tz'l+1 =T N [rive =71,  [ri41 = 7] = [1i1 = Tig2] N [Tig2 = 7],

SO

[ri1 =71l & lrien = 7] € [741 = Tiga] & [0 = Tig2] = [0 < Tig2] & [ri1 < Tiso]
= [rit1 < g2l \[741 < Tiv2] Ca
and [} < 7] n[ripi =71]\a=[r] <7]n[ri, =7]\a. Q
e) Set L={7/:i<n}. Then 0(vecr —uc <r) <2 P Set L' = {79, 7},71,7{,...,Tn}. Then
7 » 0 1

ucier = Yoy tcr X X(Im < 7ln 7 = 71) + uery x x([7} < 7} 0 [ries = 7))
(641EDb). Similarly,

uc,ner = Yisg ter, X X[ <7l 07y = 7))
Since [r; < 7] n[r{ = 7] and ([7{ < 7] n[ri41 = 7]) & ([7{ < 7] n[7i,, = 7]) are both included in a for every
i <n ((d) above), [u< r/<r # U<, L<-] C a and

O(ucr —u<,L<r) < O(uccr —u<,prcr) +€< 2€
because Jo C L. Q

(f) Let I € Z(S) be such that JU {7} :i <n} C I and O(ucy —ur<rr) < ni-s-l for every ¢ < n. Take a

maximal totally subset Iy of I including {7; : ¢ <n}U {7/ : i < n}. For each i < n, set K; = Iy N [r;,7{]. If
o € K;, we have

[o<r]eU,nAs A

Ti+1
so we can define & € T by saying that
[r<rlcl=ol, [<olclo=rul
(6111 once more). Now 7; <6 < 7,41 s0 6 € S. If p <0 in K; then
b<tl=lo<lnlp<rlclp<dl, [ <olcls=rulcls<al,

so p < &; it follows that K; = {6 : 0 € K;} is totally ordered. Because [r; < 7/] = [1i < Ti+1], 7i = 7, s0
min K; = 7, = min K;. Also max K; = 7] = Ti41.

The point of this is that [o < 7;] = [6 < 7i41] for every o € K;. It follows that ux,<r; = ug, ...,
this is true for every i < n. 5 y

Now set K = |J;.,, Ki and K = |J,_,, K;. Both of these are totally ordered sets including Jo with
min K = min K = 7. Since K N [1:,7]] = K; = Io N [13, 7],

and

¢i = [ < 7] € [ur,<rt = uk,<rf] = [ur<r; = ur, <o

similarly, f(ﬂ[Ti,TiH] =K, ,s0¢; = [i < Tit1] € [[u[(<n+1 = u[(i<7'17+1]]; accordingly ¢; C [ur<,/ = uf(<n+1]].
Next, [rip1 =7] € [ug., = ug,,, ] (641Ec), soif weset b; = c; n [riy1 = 7], wehave b; C [ur<r; = ug_.].
€

By the choice of I, O((u<rs —ug ) X xbi) < o

(g) Now we find that

O(uccr —Ucr) <26+ O(uc f<r — Ucr)

(by (e))
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20 The S-integral 641V

< 3e+O(ucper —ug.,)
(by (b), because Jy C K)
=3e+0(uc,p<r — Ui, X X[10 < 7])
(because 7o = min K, so [rg = 7] € [ug., =0])
n—1
=3e+0(ucpar — Zukq x x([r: < 7] frigr = 71))
i=0
n—1

<de+0(u<,p<r — Z s X X([1i < 7] 0 [1i01 = 7]))
=0

(by (f))
n—1
< 5e+0(u<,<r — Z ur X x([r <7ln iy =7])
=0
(because sup; ., ([ < 7] N [rig1 = 7]) & ([7{ < 7] n 7,1 = 7]) € a has measure at most ¢, by (d))
= e

as noted in (e).

(h) At this point, we recall that ¢ > 0 was arbitrary, so we see that u«, = u~,. This was all on the
assumption that 7 = max S. But generally, given that S is an order-convex subset of 7 and that 7 € S, we
can apply the argument so far to u[SAT, (U[SAT)c =u[SAT and (U[SAT)« = U [SAT (641G(c-ii))
to see that we still have uw; = ur. Thus u = u-.

641W Proposition Suppose that T has no points isolated on the right. Let & be an order-convex
sublattice of T, u = (uy)res & moderately oscillatory process and v = (v,)scs a near-simple integrator.
Then [qucdv = [sudv.

proof (a) If v is simple, we can use the formula of 641J to see that [ g udv is determined by the previsible
version #.. Since in this context we have .« = u., by 641V, we shall have [su.dv = [sudv.

(b) If w is of bounded variation, then v — [sudw is continuous for the ucp topology (631H(a-ii)). At the
same time, u< is of bounded variation (641Lb), so {v : v € M,(S), [sudv = [su-dv} is closed for the
ucp topology. By (a), it contains all simple functions, so it is the whole of M, _¢(S), which is more than we
need.

(c) In general, take any € > 0. Let § > 0 be such that ( [ w dv) < e whenever I € Z(S) and w € My,o(S)
is such that (sup |w|) < ¢ (616J, applied to Av). Then we have a process & of bounded variation such that
O(sup [u — @|) < 6. As @ is moderately oscillatory it has a previsible version .. Now [s@dv = [sudv,
by (b), while 6([gudv — [sudv) < e. Next, sup [uc — | < sup [u —@|) and O([gucdv — [gudv) < e.
Putting these together, we see that 6( [qudv — [qucdv) < 2e. As € is arbitrary, [qucdv = [gudv.

641X Basic exercises (a) In 641B, show that A min7 = {0,1} and Acpax 7 = Ve As-

(i) Give an example of a structure (U, &, T, (As)eer, T, (Ar)re7), & martingale (uy)oer, a 7 € T and a
finite sublattice I of 7 such that u;., is not the conditional expectation of w, on the algebra ;.

(b) Let S be a non-empty sublattice of 7, and v a near-simple process with domain S and previsible
version v<. Show that sup [v| = sup [v<| V |v4|, where v} = limgqs v,

(h) Let S be a sublattice of 7 and u = (u,)secs a locally moderately oscillatory process with previsible
version U<« = (Ucy)oes. Suppose that A is a non-empty upwards-directed subset of S such that 7 = sup A

belongs to S. Set a = inf,c4 [0 < 7]. Show that a C [uc, = limst4 us].
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(c) Let S be a sublattice of T and v, w near-simple processes with domain S such that (v—v<)x(w—w<) =
0. Show that Osclln(v +w) = Osclln(v) V Osclln(w).

(d) Let S be a sublattice of 7 and v a process of locally bounded variation with domain S and starting
value 0. Let v" = ([, |dv])-es be the cumulative variation of v (6140). Show that v" — vl = v —wv|
(Hint: 614P(c-ii).)

(e) Let S be a sublattice of T and v, w two local integrators with domain S, at least one of which has
starting value 0. Write 2z for their covariation. Show that z —z. = (v —v<) X (w —w<).

(f) Show that if T has an element which is isolated on the right, then there are simple processes u, v
defined on the whole of T such that [u.dv # [udv.

(g) Suppose that T has no points isolated on the right. Let S be an order-convex sublattice of T,
u = (uy)ses a moderately oscillatory process and v = (v, ),es a near-simple integrator. Show that i4, (u) =

iy (U<).

(h) Let S be a sublattice of 7 and u a non-decreasing fully adapted process with domain §. Show that
U is defined everywhere in S.

641Y Further exercises (a) Give an example, in the context of 641B, of a structure (2, T, (As)ter, T)
with stopping times o, 7 € T such that A (,nr) # Ao N A,

(b) Suppose that B is a closed subalgebra of 2 which is coordinated with (2;);er in the sense of 634Fb.
Set B, = BNA; for t € T, and let Ty C T be the sublattice of stopping times for (B, (B:)ier), as in 634C.
Show that if 7 € T then B, defined from 7 and Ty by the formula of 641B, is equal to BN A,.

(d)(i) Let u be a simple process defined on a non-empty sublattice of 7. Show that u. is previsibly simple
in the sense of 612Ye. (ii) Let u be a previsibly simple process on a sublattice S of 7 defined from sequences
(Toy -+ y7n) and us, ug, ... ,,u, by the formulae of 612Ye. Suppose that v = (v, )scs is an integrator with
domain & and that either v is jump-free or S is order-convex and no member of T is isolated on the right.
Show that

n—1
/ wdv = u, X (v, —vy) + Zuz X (Vrpyy — ) + U, X (V4 — v7,)
S i=0
where v = lim, |5 v, and v4 = limgps Vo

641 Notes and comments While (A _;);cr is a filtration of closed subalgebras of 2, you must not think
of <7, in A, and u~,, as a stopping time. We have to re-examine all our standard formulae, as in 641Ca
and 641Ya. The familiar appearance of 641G(a-ii) is not exactly an accident, but it certainly demands a
proper check.

The concept of ‘previsibility’ is awkward at the bottom end. In the definitions in 641E-641F, I have chosen
to set u<, = 0 if 7 = mindomwu. This will cascade through the clauses ‘h(0,...,0) = 0’ and ‘g(0) = O’
in the statements of 641Gd and 642Da, ‘= 0 otherwise’ in the statement of 642E, ‘= 0 if h(w) = 0’ in the
statements of 642Fb and 642La, and ‘= 0 if ¢ = 0’ in the statement of 642K, all of which seem a little
arbitrary. (There is also a subformula ‘ye,x’ in the statement of 641N which is there for the same reason.)
But it seems to me that there are similar difficulties, sometimes acknowledged!' and sometimes not, in the
alternative presentations I have seen. On the ideological ground that a ‘previsible’ process 4 = (u,)gecs iS
one in which each value u, can be determined from observations of u, in regions [o < 7], I have taken the
view that in the region inf,cs [7 < o], where we have no previous information, we must go to a default
value, and that the only sensible general default value is 0. If you have any reason to choose another, you

LCf. ROGERS & WILLIAMS 00, intro. to Chap. IV.
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should model this with a process starting at a time less than 7. In the meantime, I ask you to put up with
the fact that the previsible version 1) of a constant process 1(5) might not be 1(5). After all, at the time
of the first observation, its constancy is not previsible.

Up to this point it has seemed safe to write 1 for a constant process with value y1 without declaring
a domain other than the default 7 of 612D(e-i). But if (as will be necessary when we come to define the
S-integral in §645) we want to talk about 1., it will be essential to understand exactly what its domain is.
The notation 1(5) is inelegant but, I hope, easily interpreted.

Note that in 641W we have a fundamental difference between T'= N and T = [0, co[ (see 641Xf). The
point here is that when we come to the S-integral we shall have a basic formula

$sucdv = fsudv

(645R(a-1)), so it is interesting to know when this happens to be equal to the Riemann-sum integral fs U, dv.
In 641Q-641R I return to a theme from §617. The formulae

d(iiy(u)) ~udv,  dv* ~ (dv)?,  dvjw] ~ dvdw

reappear, transformed, in formulae for the jumps of 77y (u) (641Q), v* (641R) and [v [w] (641Xe). Similarly,
dv" ~ |dv| (616T) turns into the formula of 641Xd, a refinement of 618U.

In 641U-641W I look at some results which depend on particular assumptions concerning the totally
ordered set T of the stochastic integration structure and the domain of the processes under consideration.
While in a sense these are restrictive, they are in fact satisfied by all the leading examples of the theory
once we have left the case T'= N. It is fair to consider them as the normal case. Elsewhere (641Nb, 641P,
641W) I call on processes to be near-simple. This is indeed a restriction (for instance, previsible versions
are often not near-simple). Its necessity is clear in 641P; the previsible version can tell us only about jumps
as we approach a limit from below, not as we approach from above.

Version of 1.7.24

642 Previsible processes

I continue the work of §641 with a description of the previsible version of a process defined in the standard
way from a probability space and a filtration of c-algebras (642E-642G). The other objective of the section
is to make a step towards a general theory of ‘previsible’ processes. The point is that among such processes,
starting with those of the form u., a form of sequential convergence (the order*-convergence of 642B) has
striking connections with stochastic integration. I will come to this in §644. For the moment, I present
a definition of the space M, of previsible processes, with some of its elementary properties (642D) and a
description in terms of suitably measurable processes in the case in which 7' = [0, oo[ (642L).

642A Notation (A, a, T, () ier, T, (A )re7) will be a stochastic integration structure. 6 will be the
standard functional defining the topology of convergence in measure on L°(2) (613B). If ¢t € T then £ will
be the constant stopping time at t. If S is a sublattice of 7, Z(S) will be the upwards-directed set of
finite sublattices of S, and S A 7 will be the lattice {oc A7 : 0 € S} for every 7 € S. Ma(S), Mgimp(S),
Mo(S), M,.s(S) and My, (S) will be the spaces of fully adapted processes, simple processes, order-bounded
processes, near-simple processes and moderately oscillatory processes with domain S. If u = (u,)ses is an
order-bounded process (614E), sup |u| will be the supremum sup, ¢ |u,| in L°(A), and Osclln(u) will be the
residual oscillation of u (618B).

642B Order*-convergence in L° and (L°)S (a) In 367A, I gave a definition of order*-convergent
sequence in arbitrary lattices which is more elaborate than we need here. For our present purposes, it will
be enough to know that, because 2l is a Dedekind complete Boolean algebra, a sequence (uy,)nen in LO(A)
is order*-convergent to u € L%(2l) iff it is order-bounded and

u = inf,en sup;>,, ui = sup,,cy infi>n u;
(© 2013 D. H. Fremlin
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(367Gb). Another way of expressing this is to say that (u,)nen is order*-convergent to w iff there are a non-
decreasing sequence (v, )neny and a non-increasing sequence (wy,)nen such that sup, ey vn = infpeywn, = u
and v, < u, < w, for every n. In this case, u is the limit of (u,)nen for the topology of convergence in
measure (367Pa).

Note that (u,)nen is order*-convergent to w iff (u, —u)nen is order*-convergent to 0 (367Cd), and that if
(Un)nen is order-convergent to 0 and |v,| < |u,| for every n, then (vy,)nen is order-convergent to 0 (367Cc,
367Bd).

If A is expressed as the measure algebra of a probability space (€2, 3, 1), and each u,, u is represented as
fr, f* where the f,, f are measurable real-valued functions defined on €, then (u,)nen is order*-convergent
to wiff f(w) = limy, 00 frn(w) for almost every w (367F). Hence, or otherwise, we see that if (u, )nen is order*-
convergent to u and (v, )nen is order*-convergent to v, then (u, + vpn)nen, (G(un))nen and (u, X v, )nen are
order*-convergent to u 4+ v, g(u) and u x v respectively, for any continuous g : R — R. More generally, if
(Uin ) nen is order*-convergent to u; for 1 <4 < k, and g : R¥ — R is continuous, then (§(uin, ... , Urn))nen,
defined as in 619Eb, is order*-convergent to g(uy,... ,ux).

(b) Now suppose that we have a sublattice S of 7. Then L°()® is isomorphic, as f-algebra, to L°(2A°),
where S is the simple product (315A, 364R) and is itself a Dedekind complete Boolean algebra (315D (e-
i)). So we shall be able to use the same formula for sequences of processes: if S is a sublattice of T,
(Un)nen = ({(Uno)oes)nen 18 a sequence of processes with domain S, and u = (u,),es is another process
with domain S, then

(Un)nen is order*-convergent to u

<= (Up)nen is order-bounded and u = inf supu; = sup inf u;
neN i>n neNi=n

<= (Upo)nen is order-bounded and u, = inf sup u;, = sup inf u;,
neN i>n neNt>n

for every 0 € S
<= (Uno)nen is order*-convergent to u, for every o € S.
Note that if we have an order*-convergent sequence of fully adapted processes, the limit will also be fully
adapted. P Suppose that (Up)nen = ((Uno)oes)nen i a sequence of fully adapted processes order*-
convergent to u = (Uuy)ges. For each 0 € S, (Uny)nen is a sequence in L°(2,) which is order*-convergent,

therefore topologically convergent, to u,, and u, € L°(2l,) because L°(2,) is topologically closed. If o,
7 €S and [o = 7] = a, then

Ug X X0 = liMy 00 Une X Xa = liMy o0 Unr X XG = Ur X X,
50 a C [ue = u;]. Thus u is fully adapted. Q
(c) A topologically convergent sequence need not be order*-convergent (245Cc), but if (up)nen is a

sequence in L° such that Y7, 0(uy) is finite, then (uy)nen is order*-convergent to 0. P I check first that
{|un| : n € N} is bounded above. If € > 0, there is an n € N such that

now there is a k > 1 such that Z:Ln;lo Af|um| > k] <€, so that
A(sup e [um| > K1) < 32070 Allum| > K]+ £, Bllum| > 1] < 2¢.
As € is arbitrary,
fi(infaer sup,en [[um| > o) = lima o fi(sup,,en [lum| > a]) =0

and (|uy|)nen is bounded above, by the criterion in 364L(a-ii).
Accordingly we may speak of sup,,~,, |t | for each n. Given e > 0, let n € N be such that >~ (u,,) <
€2; then -

_ _ 1
lsup > [um| > €] <300, Allum| > €] < 23200, 0(um) <€,
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80 0(sup,,>,, [um|) < 2e. As e is arbitrary, inf,ensup,,>,, [um| = 0 and (up)nen is order*-convergent to 0.

Q

(d) The description of order*-convergence in L° in terms of pointwise convergence in £°, given in (a)
above, makes it easy to see that if (h,),en is a sequence of Borel measurable functions from R* to R, and

h(z) = lim, o0 hy(z) is defined in R for every € RF, then (h,(u1,... ,us))nen is order*-convergent to

h(uy,... ,ux) whenever uy,... ,ux € LY. (See 619Ee-619Ef.)

(e) Note that if (x,,),en is a non-decreasing sequence in L°(2() then it is order*-convergent iff it is order-
bounded, and its order*-limit is then sup,cy,, which is also its topological limit. At the same time, if
(Xn)nen is topologically convergent, then its topological limit is an upper bound of {z,, : n € N}, so is again
the order*-limit.

We are now ready for the next definition.

642C Definition Let S be a sublattice of 7. I will say that a process £ with domain S is previsible if
it belongs to the smallest subset of (L°)S which contains u. for every simple process u and is closed under
order*-convergence of sequences in (L%)S.

642D Theorem Let S be a sublattice of T, and M, (S) the space of previsible processes with domain
S.

(a) Mpy(S) is an f-subalgebra of M, (S), and gu € M,,(S) whenever u € My (S) and g : R - Ris a
continuous function such that ¢g(0) = 0.

(b) Mpy(S) N Mo, (S) is closed in My, (S) for the ucp topology. Consequently u. € My (S) for every
u € M,<(S).

(c)If 7 €S8, then My (SAT) ={2[SAT:2 € My (S)}.

proof (a) Because u. is defined and fully adapted for every simple process u with domain S (6411, 641G(a-
ii)), and the limit of an order*-convergent sequence in Mz, (S) belongs to Mg, (S) (642Bb), Mpy(S) C M (S).
If g : R — R is continuous and ¢g(0) = 0, then {z : ¢ € M, (S), g € My, (S)} is closed under order*-
convergence, by the last remark in 642Ba, and contains u for every 4 € Mgimp(S), by 612La and 641Gd, so
must be the whole of M, (S). Similarly, if u € Mgmp(S), {z : 2 € Mpo(S), uc +x € M (S)} = My (S); so
ifx e My(S), {u:u € My (S), u+x € My (S)} = Mpo(S), and My, (S) is closed under addition. Putting
these together, My, (S) is an f-subalgebra of M, (S).

(b)(i) Suppose that £ = (2,)scs belongs to the closure of My, (S) N Mo (S) in My(S) for the ucp
topology. Then for each n € N there is a x,, € My, (S) such that 0(z,) < 27", where Z,, = sup |¢,, — Z|.
Now (Z,,)nen is order*-convergent to . I Express each &, as (Z,,)secs. Setting w, = > - ,Z; for n € N,
(wp)nen is Cauchy for the linear space topology of convergence in measure, so is convergent to w say;
w > wy, for every n and (w — w,)nen 18 a non-increasing sequence with infimum 0. For any o € S, we have
|Tne — x| < w, for every n, so

inf,en SUDP; >y, Tie < inf,en SUD; >y, Wi + To = T
and similarly
SUp, ey infi>n Tie > T}
of course
Sup,en infi>n Tip < infpensup;s, Tio,

80 (Zne)nen is order*-convergent to z,. Q
Thus ¢ € M, (S). As x is arbitrary, My, (S) N Mo, (S) is ucp-closed.

(ii) Since u — U< : Mo(S) = Mo (S) is continuous (641G(e-ii)), {u : u € Myo(S), u< € Mpy(S)}
is relatively ucp-closed in My, (S); as it certainly includes Mgimp(S), it must include the relative closure
Meimp(S) N Mno(S) = M,s(S) (631Ba, 631Ca).

(0)(d) If v € Mgimp(S) then v SAT € Mimp(SAT) (612K(d-ii)) and v« [SAT = (W[SAT)< (641G(c-ii))
belongs to M, (S A 7). Now
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{Z:xe Mp(S), 1S € M (SAT)}

is closed under order*-convergence; since it contains v« for every v € Mgimp(S), it is the whole of M, (S),
that is, £[S AT € Mpy (S A 1) for every x € My (S).

(i) () For u € Mg, (S A7), define @ = (ly)ses by saying that @, = ugar X xJo < 7] for every o € S.
Then @ is fully adapted. P As [o < 7] € 2, (611H(c-i)) and uspr € LO(Asnr) € LO(Ay), @p € LO(As)
forevery 0 € S. If o, 0’ e Sanda = o =0'], thena C o AT7=0"A7] and ano <7] = anfo’ < 7]
(611E(c-v-cv, 611E(c-iv-ar))) so

Ug X X0 = Ugnr X X([o < 7] N[0 =0"]) = tonr X x([o! < 7] 0o =0"]) =ts X xa

and a C [, = Uo']. Q
Of course u[S A 7 = u.

(B) If v = (V5)oesar belongs to Mgimp(S A7), there is a w € Mgmp(S) such that we = (v<)™.
P There is certainly a w’ € Mgimp(S) extending v (631Ma, or otherwise). Now define w” = (w))),es €
Mgimp(S) by saying that

[o <7] ¢ wg =x1], [r<o] clwy=0]
for every o € § (612Ka), and set w = w’ x w”. Expressing w as (w,)scs,
[0 <7l lwo=v,], [r<olclw,=0]

for every o € S.
If 0 <7, then [0’ < 0] C [wer = v,/] for every o', so, in the language of 641E, wr<, = vi<, for every
I€Z(SNo)and wey = v<y. Thuswo[SAT=v.. For general 0 € S, if c AT €I €Z(S No),

[o! <a]\([o' <onT]nfonT<o]) C[r<oJulo <7] CJwy =0]Jufo < 7]

for every o’ € I, so wr<, X x[7 < ] = 0. Taking the limit as I 1 Z(S A o), w<y X x[7 < o] =0, so

Weo = Weo X X[o < T] = weionry X x[o < 7]
(because w< is fully adapted)

= V<(onT) X X[[U < T]]'

Thus w< = (v<)™, as required. Q

() If (up)nen is a sequence in Mg, (S A7) which is order*-convergent to u € Mg, (SAT), then (@, )nen
is order*-convergent to &. B Expressing %, as (Uns)secsar, €tc., we have

infpen Sup; s, Ui = infren sup;>, Uionr X X[0 < 7] = tonr x x[o < 7] = G0y
and similarly
Sup, ey if;>n Uie = o
for every o € S. Q
() So
{x:ze My (SAT), &€ My,(S)}

is closed under order*-convergence and contains v« for every v € Mimp(SAT), and is the whole of M, (SAT).

So
My (SAT)={ZISAT: € My(SAT)} C{z[SAT: € My(S)}.
With (i), this shows that we have equality.

642E Previsible versions in the standard model of near-simple processes I had better work
through the connections between the constructions of 641B and 641E and the ideas on processes with cadlag
sample paths from which they were derived.
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Proposition Let (2,%, ) be a complete probability space and (X¢);e[0,00[ @ right-continuous filtration of
o-subalgebras of ¥ all containing every negligible subset of Q. Suppose that we are given a family (Uy):>0
of real-valued functions on € such that U, is ¥;-measurable for every ¢ and ¢ — U (w) : [0, 00[ — R is cadlag
for every w € Q. Let h: Q — [0, 00[ be a stopping time, and ;- the o-subalgebra of ¥ generated by {F :
there is a ¢ € [0, 00 such that E € ¥; and h(w) > t for every w € E}; define Ujy- : Q@ — R by setting

Up-(w) tTl}Lr(rL) Ui(w) if h(w) > 0,
= 0 otherwise.

Suppose that (2, i, (A)e[0,00) a0d ¥ = (us)se7; are defined from (2, 3, 1, (X¢)iejo,00)) and (Ut)1efo,00]
as in 612H. Let 7 be the stopping time represented by h (612Ha), and u< = (u<,)se7; the previsible version
of u. Then

(a) A, = {E*: B3},

(b) uer = Up_ in LO(A).

proof Note that u is locally near-simple, by 631D, so we can speak of its previsible variation.
(a) This is a direct translation of the description of 2., in 641Be.
(b)(i) For n € N, define f, :  — R by setting

fa(w) =0if h(w) =0,
=Up-np(w) if k <4™ and 27"k < h(w) <27"(k + 1),
= Usn(w) if 2" < h(w).

Then Uj- (w) = limy, 00 fn(w) for every w.

(ii) In fact we know more than just that Up- = lim,, o f,. Given € > 0, there is for each w € Q an
n € N such that |U,- (w) — Up(w)| < € whenever max(0, h(w) —27") <t < h(w). So there is an n such that
uEF >1—¢€, where
F={w:h(w) <2" and |Uy- (w) — U(w)| < €
whenever ¢t € QN [max(0, h(w) — 27", h(w)) [}
={w: h(w) <2" and |U),- (w) — Ur(w)] <€
whenever max (0, h(w) —27") <t < h(w)}.
Now suppose that I € Z(Ty) includes the finite sublattice I, = {(27"k)" : k < 4"} of constant stopping
times. Then there is a sequence (o, ... ,0.,), linearly generating the I-cells, such that the totally ordered
set I, is included in {o; : j < m}. Take stopping times go,... ,gm : @ — [0, 00[ representing oy, ... ,om

and adjusted so that g; < g;j4+1 for every j and whenever o; = { then g;(w) = ¢ for every w. Observe that
{gj(w) : j <m} D {27 "k : k < 4"} for every w. We can now calculate ur<, from 641Eb, and find that

ur<r = f*, where

f(w) =0if h(w) =0,
= Uy, (w) if j <m and g;(w) < h(w) < gj41(w),
=U,,, (w) if gm(w) < h(w).
If w € F, then either h(w) = 0 and f(w) = 0, or there is a k < 4" such that 27"k < h(w) and

|Up- (w) — Up(w)| < € whenever 27"k < ¢t < h(w). In the latter case, let j < m be maximal such that
gj(w) < h(w). Then 27"k < g;(w) and

/() = Un- (@) = [Ug; (w) = Un- ()| = Uy, () (@) = Un- ()| < e.
So we see that F C {w : |f(w) — Up- (w)| < €} and
O(urcr —Up_) = 0((f = Up-)*) < e+ p(Q\ F) < 2¢.
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And this is true whenever I, C I € Z(Ty).
(iii) As e is arbitrary,

Up- =limpzery) ur<r = u<r,

as claimed.

642F I spell out what amounts to a special case (though here we do not need a right-continuous filtration)
so as to be able to quote it later.

Corollary Suppose that (2,3, u) is a complete probability space, (¥:);>0 a filtration of o-subalgebras
of ¥ such that every p-negligible set belongs to 3¢, and (2, fi, [0, 0], (As) >0, T, (Ar)re7) the associated
real-time stochastic integration structure.

(a) Suppose that S is a sublattice of T; containing 0 and that 4 = (u,)scs is a simple process with
breakpoint string (7o, ... ,7,) in S starting from 79 = 0. Suppose that hy, ... , h, :  — [0, 0o are stopping
times representing 7o, . . . , 7, respectively, starting from hg(w) = 0 for every w, and such that hy < ... < h,.
For i < n, let f; : @ — R be a measurable function representing u,, € LO(2). If h : © — [0,00][ is any
stopping time representing a member o of S, and we set

f(w) = filw) if i <n and h;(w) < h(w) < hip1(w),
= fn(w) if hp(w) < h(w),
then f* = u, in L°(2).

(b) Now suppose that u« = (u<,)ses is the previsible version of w. If h : Q — [0, 00[ is any stopping
time representing a member o of S, and we set

f-(w) =0if h(w) =0,
= fi(w) if i <n and h;(w) < h(w) < hiy1(w),
= fn(w) if b (w) < h(w),
then f* = u, in LO().

proof (a) I had better check that f is measurable; this is because all the sets {w : h;(w) < h(w)} are
measurable, as is {w : h(w) = 0}. Now we have

[f* = uo] 2 sup[f* = f7] 0 [ur, = uo]

i<n
(because fr = u,, for each 7)
2 sup{w: f(w) = fi(w)}* nlr <olnfo < 7]

i<n
(612H(a-iv), taking 7,41 = max 7T, so that [0 < 7,,41] = 1, because o € Ty)
=sup{w: f(w) = fi(w)}* n{w : hiy(w) < h(w)}* Nn{w: h(w) < hit1(w)}*

(counting h,11(w) as 00) .
= sup{w : hij(w) < h(w) < hip1(w)}* ={w: ho(w) < h(w)}* =Q° =1,

so f* = u,. .
(b) Similarly,
[f2 =us] 2([f2 = 0] nucy =0]) U ?EE([U: = f21n[ur = u<s])
2 ({w: f-(w) =0} n[o=0])
u iulz({w (f-(w) = filw)} nln <olnlo < 7ia])

(6411, again taking 7,41 = maxT)
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2 ({w: h(w) =0}*nfo =0])
usup({w : fo(w) = fi(w)}* n{w: hi(w) < h(w) < hip1(w)}*)

i<n
(again taking h,41(w) = oo for every w)
={w: h(w) =0} U sup{w : h;(w) < h(w) < hip1(w)}*
i<n

— {w: ho(w) < h@)}* =1,
SO f: =U<o-

642G Corollary Suppose that (2, , 1, (Ze)re(o,0e()s (O i (Ae)eiooer)s (Ue)iz0 and u = {uy) e, are as
in 631D and 642E, that is, with right-continuous filtrations and cadlag sample paths.

(a) If h: Q@ — [0, 00] is a stopping time representing 7 € 7, and

flw)y= sup |U(w)—lmUs(w)|if h(w) >0
0<t<h(w) stt
=0 if h(w) =0,

then f* = Osclln(ul[0,7]) in LO(2).

(b) u is locally jump-free iff w +— Up(w) : [0,00[ = R is continuous for almost every w.

proof (a)(i) I had better check that f is measurable. I* Given o € R, consider the set

H={(t,w):weQ 0<t<h(w), |U(w)— lsi?tlUS(w)l > a}

= U (1 {(tw):g<t<hw)}
neN  ¢'€Q,q'>q
g€QN(0,00[
A {(w) 1< qFULw) : 1Uw) - Up(@)] > a+27"))

€ B®Y
where B is the Borel o-algebra of [0, oc[, because the ordinate set {(t,w) : 0 < ¢t < h(w)} belongs to B&Y
(252Xj?) and (t,w) — Uy(w) is B®X-measurable (631D). Set o (t,w) = w for w € Q and ¢ > 0. Because p
is complete, ¥ is closed under Souslin’s operation (431A); because [0, co[ is Polish,

F={w: [(w) > a} = m[H]
belongs to X (42302). As « is arbitrary, f is measurable. Q
(ii) Refining these ideas, we can learn more.

(a) Fix a > 0 for a moment. Define H as in (i) above, so that F = {w : f(w) > a7} is the projection
of H on Q. Now, for any w € E, the cadlag function ¢ — Uy(w) : [0, h(w)] — R can have at most finitely
many jumps of size a or more, so there is a least g(w) €]0, h(w)] such that (g(w),w) € H. For w € X \ E,

set g(w) = h(w).
(B) g is a stopping time. I For any s € [0, oo],
{w:rweQ, gw) <s}={w:h(w) <s}Umg[Hs]

where

Ho = ()0 € 0,0 <t < 5, [U4(w) ~ I V()| > a}

= U N {tw:g<t<s}
neN  ¢'€Q,g<q'<s
q€QN[0,00]
N{tw) : t<dU{tw): [U(w) — Uy (w)| = a+27"})

€ BRY,

2Later editions only.
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because (t,w) +— Us(w) : [0,5] x @ — R is (BR®Y,)-measurable, as observed in part (a) of the proof of
631D. Now one of the assumptions transferred from 631D is that ¥ contains all p-negligible sets, so that
(Q, %5, uXs) is complete, ¥ is closed under Souslin’s operation and mo[Hs] € Xs. Since {w : h(w) < s}
certainly belongs to X;, {w : g(w) < s} € ;. As s is arbitrary, g is a stopping time. Q

(7) Let o € T be the stopping time represented by g. Then ¢ < 7 and

X[0 < o] X |uy — u<y| < Osclln(u[[0, o)) (641Na)
< Osclln(ul [0, 7])
(618D). But
E={w:h(w) >0, |Ugyw)(w) = limy g Up ()] > a},
0

X[0 < o] x [Jug — ucs| > a] = E* =[f* > o]
by 642E. It follows that [f* > o] C [Osclln(u[[0,7]) > «]. And this is true for every a > 0.

(0) Taking the supremum over o > 0, we get [f* > 0] C [Osclln(u[[0,7]) > 0]. And of course
[f* > a] =1=[Osclin(u[[0,7]) > ] if @ < 0. So in fact we have f* < Osclln(u[[0, 7]).

(iii) In the other direction, if o < 7 in T, we have a stopping time g : Q@ — [0, co[ representing o, and
we can suppose that ¢ < h. Now, for any w € 2 such that g(w) > 0,

Ug(w) — Uyg- ()| = limgpg(w) [U(w) (@) = Us(w)| < f(w)
and
ez |U(; - Ug.*| = [us — U<o]|
by 642Eb again. By 641Nb, Osclln(u[[0,7]) < f* and we have equality.
(b) Setting
fn(w) = supgi<p [U(w) — limgyy Us(w)]
for n > 1 and w € ), we see that

w = Ug(w) : [0,00] = R is continuous for almost every w
<= fp=0a.e. foreveryn>1
<= Osclln(u[[0,7]) = 0 for every n > 1

by (a). Setting v, = Osclln(ul[0,7]) for 7 € Tf, 618Da tells us that (v:);e7; is a non-decreasing fully
adapted process; conseqently

u is locally jump-free <= v, =0 for every 7 € T
<= vypp =0 for every 7 € Ty and n € N
(because if 7 € Ty then sup, oy [T =7 AR] =1)
<~ vy =0 for every n > 1
<= Osclln(u[[0,7]) = 0 for every n > 1
<— wr Ui(w) : [0,00[ = R is continuous for almost every w.

642H Previsible o-algebras In the context of 642E-642G, we have an important o-algebra of subsets
of [0, 00[ x .

Definitions (a) Given a probability space (2, %, 1) and a filtration (¥;);>¢ of o-subalgebras of X, the
previsible o-algebra is the o-algebra Ay, of subsets of [0, co[ x £ generated by sets |s, oco[ x E where s > 0
and E € X,.
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(b) I will say that a family (X;);>o of real-valued functions on (2 is previsibly measurable if (¢,w) —
Xi¢(w) : [0,00[ x @ — R is Apy-measurable.

6421 Proposition Previsibly measurable processes are progressively measurable.

proof Given a probability space (€2, %, 1) and a filtration (¥;);>¢ of o-subalgebras of 3, consider the set
A={W:W C[0,00[ x Q, WnN([0,t] x Q) € B0, ])®X; for every t > 0}

where B([0,%]) is the Borel o-algebra of [0,¢]. Then A is a o-algebra of subsets of [0,00[ x £ containing
]s,00] X E whenever s > 0 and E € 3, so Apy C A. Now a family (X;);>o of real-valued functions on € is
a previsibly measurable process iff (s,w) — X (w) : [0, 00[ x @ — R is Apy-measurable; but in this case it is
A-measurable and (s,w) — X, (w) : [0,1] x Q@ — R is B([0,])@%;-measurable for every ¢, that is, (X;)¢>0 is
progressively measurable.

642J Lemma Let (2, %, 1) be a complete probability space, (X;);>¢ a filtration of o-subalgebras of 3,
Ay the associated previsible o-algebra and W a member of Ag,.

(a) If h: @ — [0, 00] is a stopping time, then {(¢,w) : h(w) <t} € Apy.

(b) F' = m2[W] belongs to X, where ma(t,w) = w for w € Q and t > 0.

(c) Now suppose that every ¥; contains every negligible set. If F' is not negligible there is a stopping
time h : Q@ — [0, 00] such that {w : (¢, h(w)) € W} is not negligible.
proof (a)

{(t,w) s h(w) <t} = Uyequq0la, 00l x {w: h(w) < g}

(b) Take Ay C A,y to be the family
{0} x QY U{]s,t] x BE:s<t, E€XstU{]s,00[x E: E € 5,}.

The complement of any member of Ag is expressible as a finite union of members of Ay, so the family
Sous(Ag) of sets obtainable by Souslin’s operation from sets in Ay includes Ap, (421F). By 4230 again,
F = m[W] € Sous(X) = X (431A again).

(c)(i) Set
A={[s,f] xE:0<s<t, Eel, s} U{{0} xQ}
then
Sous(A) = Sous(Sous(A)) D Sous(Ag) 2 Apy.

Note that the intersection of two members of A belongs to A. (If s{; < sg < to, $§ < s1 <t1, Ep € ¥, and
Ey € Xy and ([so,to] x Eo) N ([s1,t1] x F1) is not empty, it is equal to [max(so, s1), min(to,t1)] x (Eo N E1)
where max(sg, s7) < max(so, s1) < min(to,t1) and Eo N E1 € Sax(sy,s))-)

(ii) Express W as the kernel of a Souslin scheme (A,),cs- where 4, € A for p € S* = J,,~; N™.
Because A is closed under finite intersections, we can suppose that A, C A, if p C p’. For each p, we can
express A, as [, x E, where E, € ¥ and I, is a non-empty closed subinterval of [0, co[ such that E, € Xin 1, -
It follows that for any K C NN,

2 [U¢EK ﬂnzl Agin] = U¢eK ﬂnZl Egin-

As F = U¢€NN ﬂn21 Egn is not negligible, there is a compact K C N such that F is not negligible, where
F= User Nns1 Eorn (431D). Set W= User Nn>1 Aprn, so that F = my[W]. Note that if w € F, then

K,={¢:¢€ K, we Ey, for every n > 1}
is compact in NV, so
Wﬁl[{w}] = U(]SEK{t W E ﬂnzl E¢[n, te ﬂnzl I(zgrn} = U¢EKW mn21 I(ﬁf’n
is compact (421M).
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(iii) Define h : Q — [0, o0o] by setting
h(w) = inf W [{w}] for every w € Q
(interpreting inf §) as oo). Then h is a stopping time. I Take ¢ > 0. Set
L={¢:¢€ K, Eg,, € & for every n > 1},

W, =W n ([0, x Q) Uﬂ 1) X Egin
PpeEK n>1
U m XE¢
peL n>1

because if ¢ € K \ L, there is an n > 1 such that Ey},, ¢ X;, in which case min I}, > ¢ and I4p, N [0,¢] is
empty. Now

] {w:h(w) <t} ={w: W {w}] N[0, 1] # 0}
(because W~t[{w}] is compact)

= ﬂg[Wt] = U m Ewn € 3

¢peLn>1

because u|X; is complete so 3, is closed under Souslin’s operation (431A once more). Thus h is a stopping
time in the sense of 455La and 612H. @ And

{w: (w,h(w)) e W} ={w: h(w) <o} =m[W]=F

is non-negligible.
642K Proposition Let (2, %, 11, (X;)¢>0, (Ui)i>0) be as in 642E. For w €  set
U- (w) = li%rtl Us(w) if t > 0,

=0ift=0.

(a) If we take a stopping time h : © — [0, 00[ and define Uy~ as in 642E, we have U}~ (w) = Up(y)- (w)
for every w;
(b) (Us-)i>0 is previsibly measurable.

proof (a) We just have to read the definitions.
(b) For each n € N, w € Q and t > 0 set

falt,w) =0if t =0,
= Up-np(w) if k <4™ and 27"k < ¢ < 27"(k + 1),
= Upn (w) if 27 < t.

Then
{(t,w): fult,w) > at =W U | J ((]27Fn,00] x {w : Up-np(w) > a})
k<2n
\(]27”(/@ + 1),00[ X {w : Up—np(w) > a}))
U (12", 00[ x {w : Uan (w) > a})
where

W = ([0,00[ x 2) \ (]J0,00[ x Q) if & <0,
=0ifa>0.
These sets all belong to Apy, so f, is Apy-measurable, for every n € N. Now U;— (w) = lim,, 00 fr (¢, w) for

all w and ¢, so (t,w) — U;- (w) is Ap,-measurable.
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642L Theorem Let (£2, ¥, ;1) be a complete probability space and (X¢);¢[0,00[ @ filtration of o-subalgebras
of 3 all containing every negligible subset of 2. Let Ay, be the corresponding previsible o-algebra. Suppose
that (A, i, (U¢)¢ejo,00) is defined from (2, %, i, (X¢)¢e(0,00[) as in 612H.

(a) Write £ = LY(A,y) for the f-algebra of A,,-measurable functions from [0, 00 x 2 to R. For every
¢ € LY there is a fully adapted process z, = (Tgpo)oeT; defined by saying that x4, = ¢; whenever
h:Q —[0,00] is a stopping time representing o € Ty, where

on(w) =0if h(w) =0,
= ¢(h(w),w) for other w € Q,

and now x, € My, = My, (Tf) as defined in 642D.
(b) The map ¢ — x4 : L — M, is a surjective f-algebra homomorphism with kernel

{¢p:0¢€ £° and there is a p-conegligible set E
such that ¢(t,w) = 0 whenever w € E and t > 0},

and z 4 = gz, for every ¢ € L% and every Borel measurable g : R — R such that g(0) = 0.
(c)(i) If (pn)nen is a sequence in £° converging pointwise to ¢ € L, then (x4, )nen is order*-convergent
to xy.
(i) If (@n)nen is a sequence in M, which is order*-convergent to £ € My, there is a pointwise
convergent sequence (¢, )nen in L0 such that z,, = ¢,, for every n € N.

Remark Of course we have an immediate identification between £° here and the set of previsibly measurable
processes as defined in 642Hb.

proof (a)(i) Consider the set ® of functions ¢ : [0,00[ X 2 — R such that ¢, is Xp-measurable for every
stopping time h : Q — [0,00[. Then ® is a linear space closed under multiplication and pointwise limits of
sequences. If s >0, £ € 3, and ¢ = x(]s,o0[ X E), then for any finite stopping time h and any ¢t > 0,

{wigpw)=1}N{w: h(w) <t} ={w:w e E, h(w) > s} N{w: h(w) <t}
certainly belongs to ¥; if ¢t > s, and otherwise is empty, so still belongs to ;. As ¢ is arbitrary, {w : ¢p(w) =
1} € ¥p, and ¢y, is Xp-measurable. As h is arbitrary, x(]s,o0[ X E) € ®.
Of course ([0, 00[x ) € ®. Since {W : xW € ®} is a Dynkin class (136A) closed under finite intersection,

it includes the o-algebra generated by sets of the form |s, oo[ x E where E € X, that is, xW € ® for every
W € Apy. Consequently every Ap,-measurable real-valued function belongs to @, that is, £° C &.

(ii) Now take ¢ € LY. If hg, hy : Q — [0,00[ are stopping times representing the same member of
Ty, they are equal almost everywhere (612H(a-iv) again), in which case ¢pn, =ae. én, and ¢} = ¢3 ; we

therefore have, for each o € 7, a unique member x4, of L°(2A) such that ZTgo = @5, Whenever h* = 0. Just
as in 612H(b-ii), £ = (745)oeT; is fully adapted.

(iii) The map ¢ — x4 : L% — LO(A)77 is a linear operator; moreover, if g : R — R is Borel measurable

and ¢(0) = 0, then z,4 = gz, for every ¢ € L. (In the language of (i) above,

LTgp,o0 = ((g¢)h)' = (gd)h)' = g(%&a)
whenever a finite stopping time h represents o € T;.) So ¢ — x4 is a multiplicative Riesz homomorphism.
Next, if (¢, )nen is a sequence in L9 converging pointwise to ¢ € £°, (T4, )nen is order*-convergent to 4.
(This time, if h is a finite stopping time representing o € Tz, limy, o0 (¢n)n(w) = ¢p(w) for every w, so
(g, o)neN = ((dn)})nen is order*-convergent to ¢} = z4s.)

(iv) If s > 0, E € ¥, and ¢ = x(]s,00[ x E), then x4 € My,. P Let v = (v,)sec7, be the simple
process defined by the formulae of 612Ka with n =0, 79 = 5, u. = 0 and ug = xE£*. Then v« = (vV<s)oeT;
is defined by saying that

[o <] lvee =0], [5 <] Clvce =xE"]

for every o € T; (6411) again). On the other hand, if a finite stopping time h represents o, then
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on(w) =01if h(w) < s,
= xE(w) if h(w) > s.
Since
[§<o]=]oc>s]={{w:h(w) > s}

(611E(a-i-6), 612H(a-i)), ¢3, = v<o. As o is arbitrary, £, = v< belongs to My,. Q

(v) If ¢ = x({0} x Q), then 2, = 0. So

Ty ((0,00[x2) = Tx(10,00[x2) € Mpy-

(vi) By (iii) and (v), {W : W € Apy, Z,w € My} is a Dynkin class closed under finite intersections;
by (iv), it includes {]s,00[ x E : s > 0, E € $,}, so is the whole of Ap,. Now {¢: ¢ € L0, 24 € M} is a
linear subspace of £ closed under pointwise convergence of sequences, and includes {xW : W € A}, so is

the whole of £°.
This concludes the proof of (a).

(b)(i) In the course of (a) above, I showed that ¢ — x4 is a multiplicative Riesz homomorphism and
that £,4 = gz, for Borel measurable functions g such that g(0) = 0.

(ii)(a) If ¢ € L% and there is a negligible set F' such that ¢ is zero except on ]0,00[ x F, then
¢(h(w),w) = 0 whenever w € 2\ F and h is a finite stopping time, so x4, = 0 for every o € Ty and x4 = 0.

B)IgpeLlandzy =0,set W ={(t,w):weQ t>0, d(t,w) # 0} and F = mo[W], as in 642]. If
h:Q —[0,00] is a stopping time representing o € Ty, then

{w: (W hw)) € Wi = [240 # 0] = 0,

that is, {w : (w, h(w)) € W} is negligible. By 642Jc, F is negligible, while ¢ is zero on ]0, co[ x (2\ F'). Thus
the declared set is the kernel of the operator ¢ — 4.

(iii) Let (¢n)nen be a sequence in L such that (24, )nen is order*-convergent in M. Then there is
a pointwise convergent sequence (¢, ),en in £° such that Ty =Ty, for every n. B Set

W ={(t,w) :weQ, t>0, (¢n(t,w))nen is not convergent}.
Then W € A,y. If B : Q — [0, 00[ is a stopping time representing o € 7y, then
{w: (w,h(w)) € W} ={w: (¢n(w, h(w)))nen is not convergent}

is negligible because (4, »)nen is order*-convergent in L°(). By 642Jc again, F' = m2[W] is negligible. For
neN, weQandt>0, set

¢ (t,w)=0if t =0 or w € F,

= ¢n(t,w) otherwise.

Since ¥y contains every negligible set, |0, 00] x (Q\ F) € Ay and ¢, € LO for every n. Also, by (ii-) above,
xy =xy, for every n, while (¢;,)nen is pointwise convergent everywhere in [0, 00[ x Q2. Q

(iv) Suppose that v = (v,)se7; is a simple process.

() Let (79,... ,7x) be a breakpoint string for v, starting from 79 = 0 (use 612Kb), and for i < k
choose measurable f; : @ — R such that ff = v,,. For each ¢ < k, there is a stopping time h; : Q@ — [0, 0]
representing 7;. We can take hg = 0, and since sup,;; h; is always a stopping time (455L(c-iv)), we can
suppose that hg < ... < hi. Now set
o(t,w) =0if t =0,
= fl(w) if i < k and h,(w) <t< h,;+1(w),
= fk(w) if hk(w) < t.
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(B) pe LY. PFora€eR,i<kand g€ Qset Epy = {w: hi(w) <gq, fi(w) > a}. Then
Esyi = vr, > o]\ [1i > q] €2y
because v, > a] € A;,. (See the definition in 611G.) So E,4 € &, and
]g;00[ X Eagi = {(t,w) : hi(w) < g <t fi(w) > a}
belongs to A,,. Taking the union over ¢ € QN [0, oof,
{(t,w) : hi(w) < t, filw) > a} € Ap,y.
As already noted in 642Ja, {(t,w) : hit1(w) < t} € A,y for every ¢ < k. Accordingly

{(t,w) : t >0, ¢(t,w) > a}
= JUtw) : hiw) <t filw) > a} \ {(t,w) : hisa(w) < 1})

i<k
U{(t,w) : hx(w) < t, fr(w) > a}
€ Apy.

Of course {(t,w) : t = 0, ¢p(t,w) > a} is either {0} x ©Q or @, and in either case belongs to A,,. So ¢ is
Apy-measurable. Q

() If h: @ — [0, 00 is a stopping time representing o € Ty, then
on(w) =0if h(w) =0,
= fiw) if i < k and h;(w) < h(w) < higp1(w),
= fr(w) if hg(w) < h(w).
So
[o=0] = {w: h(w) = 0}* < {w: ¢n(w) = 0}* = [¢}, = 0],
[ < o] ={w: hn(w) < h(w)} € {w: dn(w) = fulw)}* = [¢}, = vr],

[r <olnfo < 7] ={w : hi(w) < h(w) < hip1(w)}*
CHw: on(w) = fi(w)}* = [65, = vr]
for ¢ < k. Matching this with 6411, we see that ¢; = v<,. As h is arbitrary, £, = v.
(v) Consider now the set
{zs:d €L} C My,

From (iv), we see that this contains v. for every v € Mgmp(7y); from (iii) here and (a-iii) above, we see
that it is closed under sequential order*-convergence; by the definition in 642C, it must be the whole of M.
Thus ¢ — x4 : L0 — M, is surjective.

This completes the proof of (b).

(c) These facts have been dealt with in (a-iii) and (b-iii) above.

642M Proposition Suppose that (;);cr is right-continuous. Let S be a finitely full sublattice of T
such that inf A € S whenever A C § is non-empty and bounded below in S. If 4 = (us)scs is moderately
oscillatory, there is a ' € M,_¢(S) such that u. = u’.

proof If § is empty, this is trivial, so let us suppose otherwise.

(a) If S has greatest and least members and § > 0, then there is a simple process 4’ = (u/),es such
that O(sup juc —u’|) < 2§ and O(sup [u'|) < O(sup [u<|) + 26. P Construct (D;)ien, (Yi)ien, (di)ien,
(CioYieN,ces and & = (Uy)pes from u and 6 as in 615M. For i € N, set 7, = inf D;, so that , € S and
y; € Lo(ﬂaeDi A, ) = LO(A,,) (615Mb, 632C(a-iii)). As Dy = S and 7; < 0 whenever i € N and o € D;
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(6156Ma), 79 = minS and 7; < 741 for every i. Let m > 1 be such that ud, < 6 (615M(c-ii)), and
take 4’ = (ul),cs to be the simple process with domain S and breakpoint string (7o, ... ,7,) such that
[7i < Tiy1] C [u), = yi] for i <n and v, =0 (612Ka).
If o € S and i < n, then
[[0' < Ti+1]] - infTeDi+1 [[O' < T]] - 1\0i+17g
(615M(d-i)). If o € S, i <n, T € D; and I € Z(S) contains 7, then for any o’ € I
[t <d'lnfo’ <o]nfo <7it1] C Cior \ Cit1,00 € [tior = i)
(615Me). As ¢’ is arbitrary,
[r <o]nlo < 7] € [G1<o = il
defining ;<. as in 641Ea. Taking the limit as I 1 Z(S),
[T <o]nlo < Tig1] C [tco = i)

Now

[i <o]nfo <7ip1] = sup [r < o] nfo < 744]
T€D;

(632C(a-ii))

C [ico = il

and at the same time we have
[7i <olnlo < 7iga] € [uly = uil
by 641I. So [1; < o] n[o < Ti41] C [ul, = t<o], and this is true whenever i < n. At the bottom,
[ro = o] € [tz = 01 [ii<o = 0] € [ty = ol
so [o <7,] C [ul, = l<s]. But
[Tn < o] =sup,ep, [T < o] C dn.

As o is arbitrary, [u_ #u.] C d, and §(sup [u_ —u-|) < fid, < 0.
We know also that

sup [« — u<| = sup |(a — u)<|
(641G(e-1))
< sup [& — uf
(641G(a-vii))
< dxl

(615Mf), so O(sup [ul —u|) < 24.

As for sup |u'], this is sup [u’ | by 641Ib, because u. = 0. So
O(sup ['[) = O(sup [u’[) < O(sup [ul —u<]) + O(sup [u<|) < O(sup [u<l) + 24,

as required. Q

(b) With a bit more effort we have a similar result in the general case. Again, take any § > 0. By 615G,
up = lim, s ue and uy = limys u, are defined, and there are 7%, 7, € S such that

Uy —uyl) <6;

Q(SUPaeSvT* |u0 - UTD < 53 Q(SUPUES/\T*

we can suppose that 7, < 7*. We now have

O(Supyesyre [Us — Ur+]) < 26.
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S1 = SN r, 7], like S, is closed under arbitrary infima, and u[S; is moderately oscillatory (615F(a-i)),
so (a) tells us that there is a simple process | = (u},)scs, such that O(sup|(u[S1)<« —uj|) < 25. Let

(7o, ... ,7n) be a breakpoint string for @) starting from 79 = 7. and ending with 7,, = 7*. Let 4’ = (u} )yes
be the simple process defined by the formula of 612Ja from 7, ..., 7, and
U = Up, Wypse e Wy Up, X X(SUD,es [T < 0]).

(Because [7, < o] € A, for every o € S, sup,cs [1n < o] € A, and u,, x x(Sup,es [T < o)) € LO(A,).)
Set

W = SUP,cSAT, U — u¢| V Sup,es, U<y — u/1<0'| V SUPsesvr, U — ur, |;
then f(w) < 50. Fix 7 € S.
(i) For any 0 € S,

[T <7m]nfo <] Clo< 0]
C [uo = uonr] N fug = uy]
C [luo = ugl = lugnr, = uyll € [lue — ug| < w]
By 641G(a-vii-ar), applied to u — ', [7 < 70] € [Jlucr — v, | < w].

(ii) Take i < n and o € S; set 0/ = med(7;, 0, 75+1). Applying 6411 to the simple processes u’, u}, we
have

[ < olnlo <7l € Iy = )0 [ cpr = v ] 0 [y, = w4, ] 0 fico = o]

< [Hu<<7 - ul<a‘ = |u<yr — u/1<o"|]]

[luco —ulol < wl-

N

(iii) At the top end, setting o’ = oV 7, we have [7, < ¢'] C [u}, = u,, ] whenever p € SV 7,. Applying
641G (a-vii-f) to u — o/,

[rn < 0] € [lucor = o] < sUP,esyr, ([up = upl x x[p < o],

o
[ < '] € lucer — ] < U5y, iy — tr,
 lucor —tep] < ]
Now
[tn <ol C[m<o]nfo=0]C[m <o ]n[uce =uco ] nul, =ul,]
C [lucor —ulps| S wlnuce —uly = uce —ul,]

C [luco —tiy| < wl.

(iv) Since
(e <70l [ro <a]nfo<nl,... ,[m-1 <0o]n]o < 7], [tn < ])

is a partition of unity in 2, we see that |uc, — ul,| < w; as o is arbitrary, sup |u« — v | < w and
f(sup jlu<c —ul|) < 506.

(v) A further feature of the construction here is that sup|u’| < sup|u’.|. P By 641Ib, sup |u| =
sup [u_| V |[u |. But

U, = tr, X X(sWses [Tn < 0]) = ur, X x(sup,ses [T < 0]).

And if o € S, then [, < o] C [ul, =’ ], so

/
Tn

|u

x Xl < 0] < luly| < sup L.

Taking the supremum over o, |u | < sup|u’ | and sup |u'| = sup |[u’|.
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(c) Once more supposing that S is a non-empty finitely full sublattice of 7 such that inf A € S whenever
A C S is non-empty and bounded below in S, take any u € M,0(S). Choose simple processes u,,, v, as
follows. Start with ug = 0, the constant process on S with value 0. Given that u,, is a simple process with
domain S, (b) tells us that there is a simple process v,, such that

O(sup [uc —tne —Vn<|) <277, sup fv,| = sup o<l )

Set w1 = u, + v, and continue.
The construction ensures that

SUD [t 1 — o] = sUp fon| = sUp o], O(sUD fe — wrinye]) <27
for every n. Consequently (in the notation of 615B)

~ -~ ~

O(Unt1 —up) = 0(vpy1) = 9(”(n+1)<)
=0

(Us —U(ni2)c — U< +Uy1)<) < 27"t

o~

for every n, and Y7 O(un 41 —u,) < 00. Because M,yp,(S) is complete under the ucp uniformity (615Cc),
{(un)nen has a limit u’ say for the ucp topology, and u’ is near-simple.
Since

~

5(u’< —Up<) <O —u,) =0
as n — 0o,
limy, 00 Vne = liMy 00 (W(n41)< — Un<) = 0.
By (*) above,
Ue = limy, o0 (U< +Vpe) =ul.

So u’ witnesses that the proposition is true.

642N Corollary Suppose that (2(;)¢cr is right-continuous. Let S be a finitely full sublattice of T such
that inf A € & whenever A C S is non-empty and bounded below in S. If 4 = (uy)ses is moderately
oscillatory, u is a previsible process.

proof By 642M, there is a v € M, s(S) such that u« = v.. Now there is a sequence (v,)nen in
Mgimp(S) such that lim,,_,o 0(sup |v, — v|) = 0; taking a subsequence if necessary, we can arrange that
> nen 0(sup v, —v]) is finite. Since sup |[v,< —v<| < sup |[v,—v| for each n (641G (a-vii-y)), >, o O(sup [V, < —
v|) is finite and (sup [v,,« —V<|)nen is order*-convergent to 0 (642Bc). It follows at once that if we express
Vo as (Vey)oes and each v, as (Un<o)oes, (Un<o)nen is order*-convergent to v, for every o € § and
(Vn<)nen is order*-convergent to v« (642Bb). So v« € My (S) and u< is previsible.

6420 Proposition (a) Let S be a sublattice of 7 such that there is a countable set A C S which
separates S. Then u. is previsible for every u € My,o(S).
(b) If T C R, then for every sublattice S of T there is a countable subset of S which separates S.

proof (a)(i) Consider first the case in which % is non-negative and non-increasing. If S is empty or a
singleton, the result is trivial; so suppose otherwise. Then A # (. Write S’ for the sublattice of S generated
by A, so that &’ is countable and not empty and separates S; let (I,)nen be a non-decreasing sequence
of finite sublattices of &’ with union &’. For each n, enumerate a maximal totally ordered subset of I,, in
increasing order as (7,0, .. , Tn,k(n)), and let w, = (Uns)ses be the simple process with domain S defined
by saying that

[[0 < TnO]] c [[una = 0]]7 [[Tn,k:(n) < 0]] < [[UTLU = uTn,k(n)]]’
[T < o]nfo < Tnit1] € [tne] = ur,, for 0 <i < k(n).
If €S and n € N, then

[[T < TnOH - [[uIn<T = O]]a [[Tn,k(n) < 7_]] C [[uln<7— = Uka(n)]]a
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[t < 7N [7 < Tniva] C [ur,<r = ur,,] for every i < k(n)

by 641Eb. On the other hand, 6411 tells us that

. < _
;relg [[T — Uﬂ c [[un<'r 0]]7

[o <7]In[r < 7nol] € [un<r = 0] for every o € S,

50 [7 < Tno] C [tn<r = 0], while

[rk(n) < 7] C [un<r = un,, ],

[T < TN [7 < Tnyit1] € [tn<r = ur,,] for every i < n.

So we see that ur, «r = Un<r-

Finally, given 7 € S, we know from 641 that u., = lim47(s/) ur<-. But any finite subset of S’ is included
in I,, for all n large enough, so u«, is the topological limit of (us, «7)nen = (Un<r)nen. However, (us, <r)nen
is non-decreasing, by 641Kb. So (up<;)nen order*-converges to u,, by 642Be. As 7 is arbitrary, (Un<)nen
order*-converges to u~ (642Bb).

(ii) If u is of bounded variation, then it is expressible as a difference w' — u” where 4’ and 4" are
non-negative, non-increasing order-bounded processes (614J). So u« = u’ —u”. (641G(e-i)) is a difference
of previsible processes and is previsible (642Da). Finally, the space M of order-bounded processes with
previsible versions is closed for the ucp topology of M, (S) (641G(e-ii)), so includes My (S) = Mmo(S)
(615E).

(b) The set Ty of points of T' which are isolated on the right in 7" is countable, so there is a countable
dense subset @ of T including Tj.

(i) For g € Q and 7 € S, set

\ supges([r <o nfo < g]).

[o <dglnlr <dg\(Ir <olnlo <dl)
=lo<dnlr<dn(lo<7]uld<o]) clo<T],

and similarly coqncrq C [r < 0]. Q Choose a countable Cy C S such that sup.c¢, ¢rqg = SUp,cg Crg-
Next, for ¢, r € Q, set

brq = supres([r > r]\[r > ql) = sup.es([F < 7] n[r < 4ql),

and choose a countable B,.q C S such that by, = sup.cp, ([T > r]\[7 > ¢]). Set A=, ,.cq BreUlU,eq Co
so that A is a countable subset of S.

(ii) ? Suppose, if possible, that A does not separate S. Then there are 7, 7/ € S such that
a=[r <7\ suppeallr < plnlp <)
is non-zero. Note that if p € A, then
[r=rlnaclr=plnlr <7Tno(lp <rlulr" <pl) = 0.
Asa C[r < 7'],and {G: g € Q} separates T (633Da), thereisaq € Q suchthatay =an[r < g n[d < 7]

is non-zero. Now we know that

O=ain sup [p=7]2a1n sup (crqNcpg) = a1 N sup(Crq NCoq) = a1 NCrq
peC pECy oS

:am[[TS(ﬂ]\itelg([[7<0]]ﬂ[[oﬁd]]):a1\ilelg([[7<0]]ﬁ[[0§tﬂ])

so there is a o € S such that as = a; N7 < o] n[o < §] is non-zero. Again because {G : ¢ € Q} separates
T, there is an r € @ such that as = as N [r < 7] n [ < o] is non-zero. Now

as € [F < o]0 [0 < d) € brg = suppeall7 < pl 0 [ < )
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and there is a p € A such that ay = asn [F < p] n[p < §] is non-zero. But in this case

O#fas Canr<#nlF<plnp<dlnld<T]
Canfr<plnlp<T]
which is impossible, by the definition of a. X

(iii) So the countable set A separates S, as required.

642X Basic exercises (a) Let S be a sublattice of T, and (4, )nen = ({(Uno)oes)nen a sequence in
(L%)S which is order*-convergent to u € (L°)S. (i) Show that if every u, is non-decreasing, then u is
non-decreasing. (ii) Show that if every u,, is fully adapted and of bounded variation and sup,,cy [ [du,| is
defined in L°, then u is of bounded variation. (iii) Give an example in which every u, is simple, but u is
neither near-simple nor an integrator. (iv) Show that if every u,, is a martingale, and {u,, : n € N, 0 € S}
is uniformly integrable, then u is a martingale. (Hint: 367X03.)

(b) Let S be a sublattice of T, and (u,)nen a sequence of order-bounded processes with domain S such
that Y7 Os(u,) is finite. Show that (w,),en is order*-convergent to 0.

(c) Suppose that T' = N. Show that M,,(7;) can be identified with the space of sequences (xy)nen in
LO(2A) such that xg = 0 and z,, € LO(A,,_1) for n > 1.

(d) Suppose that T' = [0,00[ and A = {0,1}, as in 613W, 615Xf, 616Xa, 617Xb, 618Xa, 622Xd, 626Xa
and 627Xa. Let f :[0,00] — R be a function and u the corresponding process on 7;. (i) Show that if f is
of bounded variation and is continuous on the right, u. corresponds to the function g where g(0) = 0 and
g(t) = limgys f(s) for t > 0. (ii) Show that order*-convergence in L°(2l) corresponds to ordinary sequential
convergence in R. (iii) Show that u is previsible iff f(0) =0 and f is Borel measurable.

(e) Let S be a sublattice of 7 and z a member of LO(A N[, .5 As). Show that if x € M, (S) then zz
(definition: 612De) belongs to My (S).

(f) Suppose that T' = [0, oo[ and that v = (v,)se7; is the standard Poisson process (612U). (i) Let (7,)nen
be the sequence of jump times of v (612Ue-612Uf). Show that [v<, = 0] = [o < 7] and [v<, = nxl] =
[7n < o] nfo < Tpyq] for every n > 1 and o € Ty. (ii) Show that v_; = v; for every t > 0. (iii) Show that
t s v;: T — L°(A) is continuous.

(g) Show that if (X;);>0 is a previsibly measurable process then Xy is constant.

642Y Further exercises (a) Suppose that T' = wy, the first uncountable ordinal. (i) Show that for
any previsible process (z,)se7 there is a £ < wy such that z; = Zmax7 Whenever { < n < wy. (ii)
Define v = (v,)se7 by saying that v, = x[o = maxT] for o € T. Show that v is a simple process and
a submartingale, but is not previsible. (iii) Show that if A = U5 <, U¢ then v is equal to its previsible
variation.

(b) Give an example of a stochastic integration structure (2, i, T, (A¢)ter, T, (A )re7) and a moderately
oscillatory process u with domain 7 such that u. is not previsible.

(c) Let w = (wy)oeT; be the local martingale of 634N, a difference of independent Poisson processes.
Show that w is not a previsible process. (Hint: show that if 7 is the stopping time at which w makes its
first jump, then E(z,, X wy,) = 0 for every || ||oo-bounded previsible process 2z = (25)se7; )

642 Notes and comments The idea of ‘jump’ arises most naturally from the representation of a locally
near-simple process by a classical stochastic process with cadlag sample paths, as in 642E. There is a
paradoxical element in 641N and 642G which is is of the greatest importance. When we have a classical

3Later editions only.
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stochastic process with cadlag sample paths, we can detect jumps directly from the basic process (U )¢>0. But
if we turn to the corresponding process (Uf)ic[0,00] = (Ui)tc[0,00[, We may well find that u; = uz— = limgps us
for every t > 0, as in 642Xf. To discuss jumps in the language I have chosen for the development of the
general theory, we have to look for jumps at arbitrary stopping times, which is the idea of part (a-ii) of the
proof of 642G.

You will see that I have not mentioned martingales in this section or the last, and the ‘previsible variations’
of §626 appear only in the example 642Ya. There is a good deal more to be said about both, of course, but
most of it will have to wait until we have some further tools, starting with 643B. For the moment, however,
I call your attention to 642Yc. Martingales which are not jump-free may well not be previsible.

The idea of 642L is that ‘previsible processes’ in the sense of 642C correspond to ‘previsibly measurable
processes’ in the sense of 642H. I will try to use these phrases consistently to distinguish between the two
concepts. Note that the correspondence is not exact because I find myself requiring previsible processes to
start with 0 (see the notes to §641) but previsibly measurable processes can start with any constant function.
We shall find that for all the important things we call on previsible processes to do the starting value is
irrelevant.

Version of 24.7.17/9.6.21

643 The fundamental theorem of martingales

I come at last to one of the most remarkable properties of martingales: under moderately restrictive
conditions, a martingale can be expressed as the sum of a local martingale with small jumps and a process
of locally bounded variation (643M). In fact I express the result in terms of the ‘residual oscillations’
introduced in §618, but these are intimately connected with ‘jumps’ in sample paths, if we use the standard
representation of locally near-simple processes (631D, 642E-642G). The proof depends on the notion of
‘accessibility’ of a stopping time (643C).

643 A Notation We have the usual foundations; (2, ii, T, (t)ter, T, (A7) re7) is a stochastic integration
structure, and L°(2() is given its topology of convergence in measure, defined by the functional § where
0(u) = E(|u| A x1) for u € LO(A). For t € T, T is the constant stopping time at ¢t. For 7 € T, Py : L, — L},
is the conditional expectation associated with 2. In addition, we shall need the closed subalgebras s
defined in 641B. For a locally moderately oscillatory process u, u~ will be its previsible version (641L). For
a sublattice S of T, Z(S) is the set of finite sublattices of S, and if 7 € S, then SAT={0AT:0 € S} and
Svr={oVrT:0€S}.

643B Theorem Let S be a sublattice of T, u = (u,)scs a locally moderately oscillatory process and C
a non-empty upwards-directed subset of & with supremum 7 € §. Write (u<,)ses for the previsible version
of w and a for inf,ec o < 7].

(a) Set w = limy4c uy. Then

[w=ucr]2a, [w=u]21\a.

(b) Now suppose that u is a martingale. Write Ps<; : L}L — L}L for the conditional expectation associated
with As<,. Then a C Ju<, = Ps<ru.].

proof Of course we know from 641L that w has a previsible version.

(a)(i) 615Ga, applied in S A7, tells us that w is well-defined. Let € > 0. Then there is a finite sublattice
J of 8, containing min S, such that (u<,; — ur<,) < € whenever J C I € Z(S). Let o¢ € C be such that
fd < €, where d = sup,.c; [0’ < 7]\ [0’ < 00] (611Eb). Take o € C such that o9 < ¢ and f(w — u,) < €,
and let I € Z(S) be the sublattice generated by J U {o}. Using 611E(c-i) and 611E(c-ii), it is easy to check
that

{0/ 1o <od'ln]o’ < 7] cd}
is a sublattice of T as it includes J U {o}, it includes I. But this means that
a\dc [o <7]\dC [ur<; = u,],
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643D The fundamental theorem of martingales 41

and
O(w—ucr) X xa) < O(w —uy) + 0((ug — ur<r) X xa) + 0(Uj<r —u<r)
<e+ pd+e < 3e.
As e is arbitrary, 0((w —u<r) X xa) =0 and a C [w = u<,].

(ii) On the other side, if 0 € C then [o = 7] C [uy,s = u,] whenever o’ € C and o < 0’,s0 [0 = 7] C [w = u,].
As o is arbitrary, 1\ a C [w = u,].

(b) Write B for the closed subalgebra \/ .- %4, generated by (J,c 2o By 621C(g-ii), the conditional
expectation of u, on B is the ||||;-limit lim,4+c Pru, = llimyqc e, which is equal to w (613B(d-i)). If
c € As<, and ¢ C a, then ¢ € B, by 641Cb, so

E(xe X Ps<rur) = E(xe X ur) = E(xe x w) = E(xe X ucr)
because a C [w = u<,]. As both Ps<,u, and u., belong to L°(2s,) (641G(a-i)), and a € As<, (by the
definition in 641Ba), this shows that ya X Ps<,u, = xa X u<,, that is, a C [Ps<rt; = u<r].
643C Approachability and accessibility Suppose that 7 € T.
(a) The region of accessibility of 7 is

ace(T) = supprocrar([sup C = 7]\ supyec o = 7]).

(b) For 0 € T, write 0 < 7 for sup ([0 < p]n[p < 7]). The region of approachability of 7 is
app(7) = inf,<([oc = 1] U Jo < 7])
so that
1\ app(7) = sup, <, ([o < 7]\ [o < 7]).

(c) acc(r) € app(7). P Suppose that C' C T A 7 is non-empty and that o < 7. Then

[[supC:T]]m[[a<T]]\[[a<<T]]g[[U<supC]]\[[a<<T]]:Is)gg[[a<p]]\[[a<<r]]

(611Eb)

N

sup [o < p]\ ([0 < p]nfp <7]) C sup[p=1]
peC peC

and
([5up C = 71\ supjec o = 1) 0 (o < 71\ [o < 7]) = 0.
As C and o are arbitrary, acc(r) n (1\ app(7)) = 0, that is, acc(7) € app(7). Q
(d)(3) If 7 € T then
[supC = 7]\ supyec o =7] = 1\ [supC < 7]) n infoec o < 7] € Acr

whenever ) # C C T AT, s0 acc(T) € Acr.

(ii) If o, p, T € T then

lo<plnlp<tl=lo<plnlp<tinlo<t]=lc<pAr]n]p<7]€UAcr,

50 [o < 7] € A<, and app(7) € A.

(iii) Note that acc(min7T) = 0, because the only non-empty subset of 7 A min7 is {min 7}, while
app(min7) = 1.

643D Proposition For ¢t € T, let  be the constant stopping time at ¢t. Let T}_; be the set of those t € T
which are isolated on the right, and for ¢ € T,.; define {+ € T by saying that
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{* = max T if t = max T is the greatest element of T,
= § if ¢ is not the greatest element of T'

and s is the least element of T' greater than t¢.
Then app(7) = 1\ sup;cq,_ [7 =] for every 7 € T.
proof (a)(i) Note that if o, 7/, 7/ € T then

[ <7"|nfo< ] =sup [t <7"]nfo<p]n]p <]
pET

Csupfo<p]nlp<7]=]oc<T"],
peT

just as in 611E(c-iv-a).
() IfteTyand peT,

i< dnlp<#1= suw (Ip>s)\ > )0 ([ > T\ [ > )

c sup [p>s]\[p>5]
s>t,s'<t

(because if s < t then [f > s] = 1 and if s’ > ¢ then [T > s'] =0
c sup [p>s]\[p>sT=0.

s'<s
So [t < 7] = 0. And of course
[t <ttt >\ [{T > ¢t] = 1.

Now

[r=t]=[r <t]n[t <)\ (" <7]n[t <))
(611E(c-iv-a) and (i) just above)
clt<7]\[F < 7] 1\ app(r).
As t is arbitrary,
app(7) € 1\ sup,ep_ [7 =11].

(b)If o <TandbC o < 7]\[o < 7] is non-zero, there is a t € T such that
V=bnr>t]\[o>1]
is non-zero. T If t ¢ T,;, [T > t] = sup,~, [T > s] (611A(b-i)), and there is an s > ¢ such that b’ n [7 > s] #
0. But now
Vnlr>s]l= cbonlr>s]\[o>1]
cons<t]nft<s]nfo <] cbnfo <],

contrary to the hypothesis on b. X
Thus ¢ € Ty;. Now we know from (a-ii) that [{ < 7] n[r <&T] =0, s0 [iT <7] = [f <7] 2. At the
same time, b’ is disjoint from

[o<r]ofo <t ]nlit <7]2]o <{n[tt <7] 2V n[it < 7]
sob/ Cr<tfJand b cbn[r=1{t].
As b is arbitrary, [o < 7]\ [0 < 7] C sup,ep,_ [r =#1]. As o is arbitrary,
1\ app(7) € supyeq,, [T =], app(r) 21\ sup,eq,, [r = 7]
Putting this together with (a), we have equality, as claimed.

MEASURE THEORY



643F The fundamental theorem of martingales 43

643E Proposition Suppose that 7 € 7. For non-empty C C T AT, set
ac = [supC = 7]\ sup, ¢ [o = 7].

(a) ac = infyec [o < 7]\ [sup C < 7] belongs to A, whenever § # C C T A T; s0 ace(T) € A
(b) For every non-empty C' C T A7 there is a non-empty upwards-directed D C T A7 such that ap = ac.
Consequently

acc(r) = sup{[sup C = 7] \ sgg [o=1]:
C C T AT is non-empty and upwards-directed}.
(¢) fveT,acc(r)nv=r7] =acc(v)nv=r].
proof (a) Immediate from the definitions and the fact that b\ ¢ = (1\¢)\ (1\d) for all b, ¢ € 2.

(b) Set D = {0’ : o/ < supC, [0’ < 7] 2 inf,ec o < 7]. By 611E(c-ii), D is closed under V. Because
C CD,supD =supC and inf,ep [0 < 7] = infyec [o < 7], 80 ap = ac.

(c) Write cfor [u=7]. 0 #AC CT ATset D={ocAv:0€C}, sothat 0 #D CT Av, and

cnac=cnsupC =71]\ sup o =7 =cnrAsupC =7]\ sup [c AT =7]

oeC ceC
ClvAsupC =v]\ sup [o Av=0] =[supD =v]\ sup [o =]
oeC oeD

(611Cd)
Cb.

Taking the supremum over C, ¢n acc(r) C acc(v). Similarly, ¢n acc(v) € ace(r) and ¢n ace(r) = ¢n ace(v),
as claimed.

643F Lemma Suppose that (2;):er is right-continuous. Take 7 € 7 and € > 0. For I € Z(T A7) and
o< T, set

do1 = (app(7) \ acc(7)) N o < 7]\ sup,c;([o < p]nfp <7]), wor = Poxdor-

For I € Z(T AT) set wy = Sup, <, WeJ-
(a)(i) dyor N[00 = 01] = dg,1 0 [00 = 01] Whenever I € Z(T A7) and o9, 01 < 7.
(ii) For any o < 7, lim4z(7ar) fidor = 0.
(b) For any I € Z(T AT), (Wor)o<- is fully adapted.
(¢)If I CJinZ(T A7), then dy; Ddyy and wes > wyy for every o < 7, and wy > wy.
(d) For I € Z(T A T), set

Ar={o:0 <7, [wsr > €] 2[o < 7]}

(i) [wr > €] =sup,eq, [0 < 7].
(i1) Ay is closed under A.
(iii) Set 5y = inf A;. Then
a)or <
B) dz, 1 is the limit lim,| 4, d,; for the measure-algebra topology of ;
v) Wz, 1 is the limit lim, 4, wer for the norm topology of L}L;
8) [wr > €] € [ws, 1 > €].
(iv) IEI CJinZ(T A7) then Ay D Ay and 6; < d.
(e) There is an I € Z(T A7) such that E(wy) < 3e.

(
(
(
(

proof (a)(i) Setting b = [oo = 01], bn oo < o] = bn o1 < o] for every o € T (611E(c-v), or otherwise),
S0
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bndy,r = (app(7) \ acc(7))nbn oo < 7]\ Slé}f])(bﬁ [oo < p]nlp<T])

= (app(7)\ acc(r))nbnfor < 7]\ Slelll)(bﬂ [er <plnlp <7])

=bn do—lj.
(ii) Take any n > 0. Since app(7)n[o < 7] € [o < 7], there is a finite set J C T such that
1= Alapp(r) 1o < 71\ suplo < o < 7]
pPE-

:ﬂ(app(T)ﬂ[[a<T]]\51615)[[0<p/\7]]m[[p/\7'<7]]).

Now if I € Z(T A7) includes {p AT :p € J},
dor € app(T)nfo < 1]\ sup,c; o <pAT[n[pAT <T]
has measure at most 7. As 7 is arbitrary, lim4z(7ar) fidor = 0.

(b) wyr = P,xd, certainly belongs to L°(2,) for every o < 7. If 09, 01 < 7 and b = [o¢ = 01], then
we saw in (a-i) that bnd,,r = bndey, 1, so

Xb X Woor = Xb X PoyXdoor = Xb X Py, Xdoo1
(622Bb)

= o1 X(b n dUOI)
(because b € A,,, by 611H(c-1))

= UlX(bmd011> = xb x Wei T,

and b C [Wey1 = Weo,1]. As 0¢ and oy are arbitrary, (wer)o<- is fully adapted.

(c) Immediate from the definitions. Perhaps I should note here that w,; < x1 for every ¢ and I, so that
wy is always defined and less than or equal to x1.

(d)(@) If o < 7, then thereisa p € Aj such that [p < 7] = [wer > €[ nJo < 7]. P b= [wyr > €[ nfo < 7]
belongs to 2, so there is a p < 7 such that bC [p=0] and 1\bC [p=7] (6111). AsbC o< 7], b =
[p=0] =[p<7]. Now

[wpr > el 2[p=olnwer > €] =b=[p <]
and p € A;. Q
Accordingly
sup([wyr > €| nfo < 7]) € sup Jo < 7] € sup [wer > €] C [wr > €].

o<t o€AS o€AS

Now, by 364L(a-ii),

[wr > €] = sup [wer > €] = sup(Jwer > €] nfo < 7])

o<t
(because dr; C [t < 7] =0, so wyr =0 and [wyr > €| n o =7] C [wrr > €] =0 for every o < 1)

C sup o < 7] C Jwr > €]
ogEAT

and we have equality.
(ii) Suppose that og, o1 € Ay, and set 0 = 0g A o1, b= [0 = 0¢] € [wor = Weys]. Then

[wor > €] 206N [weer > €[ 2bnog < 7] =bn]o < 7].
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Similarly,
[wor > €] 2o =o1]no < 7];
as [o = op]ufo = 01] =1 (611E(a-ii-v)), [o < 7] C [wer > €] and o € Aj.
(iii) () Of course 7 € A;. So gy < 7.

(B) Because (2;);er is right-continuous, we have [6; < p] = sup,¢ 4, [0 < p] for any p € T (632C(a-
ii)); because A; is downwards-directed, (o < p])sca, is upwards-directed and [ < p] = limy 4, [0 < 0]
for the measure-algebra topology (323D(a-ii)). Because n and \ are continuous for the measure-algebra
topology (323Ba),

dz,1 = (app(7) \ ace(r)) n [or < 7]\ Sgr;([[ﬁz <plnlp<7])

= Jim (app(7) \ ace()) nfo < 7]\ ig)([[a <Anlp<7l) = lim dor.

(7

lim sup ||ws, 1 — wsrll1
glAr

<limsup ||Ps,xds,1 — Prxds, 1|1 + limsup | P, xds,;1 — Py Xxdorl1
olAg olAr

< 0+ limsup ||xds,1 — Xdor11
olAr

(621B(g-1))
= limsup fi(ds,; 1 & dy1) = 0.
OZLA[

Thus Ws,1 = 1lima¢AI WeT-

(6) The point is that o < 7] C Jws,1 > 7] whenever 0 € Ay and v < e. P? Otherwise, set
n = Ao < 7]\ [ws,r >~]) > 0. By (7) just above, there is a p € Ay such that p < o and ||jw,r — ws, 1|1 <
n(e —~y). In this case,

n < ille <7\ [worr > A1) < illwpr > €]\ [wo,r > A1)

1
< ;Hw,ﬂ —wa,rll1 <7

which is absurd. XQ
As « is arbitrary, [o < 7] C [ws, 1 > €] for every o € A;. So
[w; > = supyes, [o < 71 € [ws,s >,
as claimed.
(iv) If o € A then
[o < 7] CJwes > €] C [wor > €]
because w,; < wyr (by (c) above). So o0 € A;. Thus A; C Ay and 67 =inf Ay <infA; =35.

(e) Set 0™ = sup;ez(7ar) 01 < 7. By the definition of ace(7), [o* = 7]\ acc(7) is included in sup;cz(7ar [01 = 7];
because (61)rez(Tar) and ([o7 = 7])ez(7Ar) are non-decreasing, this is the limit lim 4z (7a-) [o7 = 7] for
the measure-algebra topology.

Putting this together with (a-ii), we see that there is an I € Z(T A7) such that o* € I, fid,+; < €? and

A(([o* = 1]\ ace(r))\ [or = 7]) < €.
Consider
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eiwr > €] < efifws, 1 > €]

((d-iii-d) above)

< efiws, 1 X x[o1 < 0*] > €] + epJworr > €]
(because [ > o*] = [67 = 0*] C [ws,1 = wo+1])

< E(ws, 1 x x[o1 < 0*]) + E(we1)

= [i(ds, 1 n[o7 < 0*]) + fidy~1
(because ws,; = P5,xds,1 and [o1 < o*] € As,)

< ids,rnor < o*]nfo* =7]) + €
(because o* € I, s0 ds,1n[or < o*]nfo* < 7] =0)

<A([o* =7 a)\[or = 7]) + € < 2¢%,
so ffw; > €] < 2e and E(wy) < 3e.

643G Lemma Let S be a sublattice of T and v = (v,)scs a non-negative non-decreasing || ||o-bounded
process. Suppose that for every e > 0 there are an I € Z(S) and a w € L°() such that ||w|; < € and
P,v; — vy < w whenever 0 < 7in S and o < 0’| n[o’ < 7] = 0 for every o’ € I. Let v* be the previsible
variation of v (626M). Then v# is jump-free.

proof The case S = () is trivial; suppose that S is non-empty.

(a) Something is worth noting straight away. Of course we shall have P,v, — v, = Ps(v; —vs) > 0
whenever ¢ < 7 in §; that is, v is a submartingale and we can speak of its previsible version. Since v is
| l|loo-bounded, P,v, — v, is always square-integrable. Now suppose that o < 7 in S, and that

-1
Y= Supo’:aog...go’n:’r HZ;L:O Po’jvgj+1 - Ua'j H2

is finite. Then ||[v¥ — v¥ ]2 < v. P By 626K (f-ii), v¥ — v¥ is the value of the previsible version of v|S V &
at 7, so belongs to the weak closure of A = {S;(1, Pdv) : {o,7} C I € Z(SN[o,7])} in L}. If {o,7} C 1 €
Z(S N [o,7]), let (oq,...,0,) linearly generate the I-cells, so that S;(1, Pdv) = E;:Ol Py, v5,,, — Vs, and

J

we have ||S7(1, Pdv)||2 <. Thus |ly||2 < 7 for every y € A. Now if z € L>(2), ||z]]2 <1 and n > 0, there
is a y € A such that

E(z x (v —v#)) <n+E(zxy) <n+llylla <n+

as n and z are arbitrary, |[v¥ —v¥[s < 7. Q
Squaring, we have

-1
]E((’Uv# - ’U#)Q) < Supa:oog...ganzr]E((Z?:O PUjUUj+1 - UUJ‘)Q)'

Moreover, whenever ¢ = 0¢ < ... < 0, < 7, we have

n—1 n—1 n—1
E((Z dev0j+1 - UU]‘)2) < E(2 Z(Z Po'kva'k+1 - vﬂk) X (PUijj+1 - vdj))
§=0 i=0 k=3

SR

3
|

1
E((PUkalc+1 - Udk) X (dev0j+1 - 'UUJ‘))

n

(]

2

I
- o
T T
—-

s .
I

I
M
M

E(Pﬂj(PUkv0k+1 71]6%) X (PUijj+1 7”%’))
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(b) Now for the main line of this proof. Let M > 0 be such that ||vs||cc < M for every o € S. Let € > 0.
Let I € Z(S) and w € L°(2l) be such that I # 0, ||w|; < € and P,v, — v, < w whenever o < 7 in S and
[oc < d']nfo’ < 7] =0 for every ¢’ € I; we can suppose that w < Mx1. Let (79,... ,7,) linearly generate
the I-cells. Then we shall have 0 < P,v, — v, < w whenever
eitherc <1 <19
orTi_1 <o <7<T1; where1<i<n,
ort, <o <T.

Set w' = sup,cg Prw. Then

E(w’) < [[w'll2 < 2sup || Powlla
4SS
(623M, since Pw is a martingale)

< 2||lw|ls = 2/EW?) < 2/ ME(w) < 2VeM.

(c) Suppose that (k;)i<n+1, (0ij)i<n+1,j<k, are such that o;; € S whenever i <n+1 and j < k; and

000 <001 < ... < 0ok, = To,
Ti_l:Jiog...§Uiki:nfor1§i§n,

Tn = 0n+1,0 < oo < Ontd kpgr -

Then, using the last formula in (a),

n+1 k;—1
E(Z(Z PUijUUi,j+1 - ’UUU)2)
i=0 j=0
n+1k;—1
S 2 ]E((Pffijvaiki - UUz‘j) X (Pm:jvo'i,j+1 - UUij))
i=0 j=0
n+1lk;—1
<2 Z E(w x (Po'ijvo'i,j+1 - 'Um'j))
=0 j=0
n+1k;—1
=2 Z Z E(Paijw X (Uo'i,j+1 - Uoij))
i=0 j=0
n+lk;—1
<2 E(w/ X (Uo'i,j+1 - UUU))
i=0 j=0
= 2E(w' X (Vg 1y 1., — Vou)) < 4ME(w') < 8MVeM.

(d) Putting this together with (a), we see that if ¢ < 79 and 7,, < 7 then
E((vZ — o)+ X0 (0 —vZ_ )2+ (v — 0% )?) <8MVeM.

Ti—1

Now consider Oscllnj(v*). By 618Ca, this is

sup{|v?, — v¥|: 0, 0’ € S and either 0 < 0’ <7y
or there is an 4 such that 7,_1 <o <o’ <73
ort, <o <o}

= sup (v% —v#)V sup (v —v¥ v sup (vF —o¥).

ogESNATY 1<i<n TESVT,
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So

Osclln}(v#)?* = sup (vfé —v#)? Vv sup (vf’f fvfi_l)Q\/ sup (v fvif

ocESNATY 1<i<n TESVT,

< sup ((v —v¥)?+ E (¥ —v¥ )2+ (0¥ —0v¥)?).
gESNTO 1<i<n
TESV T, ==

As the sum here increases as o decreases and 7 increases,
E((Oscllnj(v#))?) < sup E((v% —v#)? + Z (v —o¥ )2+ (v —0¥)?)

oc€SNATY
TESVT, ==

< 8M+VeM.

Accordingly
6(Oscllnj (v#)) < E(Oscllnj(v#)) < || Osclln (v#)|]2 < V8MVeM.
As € is arbitrary, inf;cz(s) 6(Osclln} (v#)) = 0 and v is jump-free.

643H Lemma Suppose that (2;);c7 is right-continuous. Take 71 in 7 and a non-negative v € L(2L,,)N
L}-L. Set v, = v X x[o=m] for ¢ € T A7. Then v = (vs)oecTar, 1S & non-negative non-decreasing

submartingale. Let v# = (v#),c7as, be its previsible variation, and v¥ = (v%,)sc7ar, the previsible
version of v#. If 7 < 11 then app(7) \ acc(r) C [u¥ = o7, ].

proof Write a* for app(7) \ acc(r).
(a) By 612CF, v, € L°(2,) for every o < 11. If 0, 0’ € T A7y then

ve X X[o =0l =vx x([11 < a]nfo=7c"])
=vxx([n <d]nfo=0"]) =vs x x[o = 0]
so [0 =0'] € [ve = vo]; thus v is fully adapted. Because v € L, v is an L'-process. If ¢ < o, then
[r1 <o) €[ <0’ so (because v > 0) v, < v,v; thus v is non-decreasing, therefore a submartingale
(626B), and has a previsible version (626M), which is itself non-negative and non-decreasing, therefore
locally moderately oscillatory (616Ra, or otherwise), and has a previsible version (641L).

(b) Suppose first that v < xa*.

(i) Take I € Z(T A7), and for o < 7 define d,;, wyr and w; from 7 as in 643F. Suppose that
00 <01 <7and [og <og]nfo <o1] =0 for every o € I. Then P, vy, — V5, < wy. P

[oo <o]nfo<t]n]or=7] C oo <o]nfo <o1] =0,

that is, [oo < o] nfo < 7] C [o1 < 7] for every o € I, and

a* nfog < 7]\ o1 < 7]
c a*nfog < 7]\ sup([oo < o] n o < 7])
oel
=dg,1-
Consequently
PogUoy = Voy = Poy (v X x[o1 = 1] = v x x[oo = 7])
= Py (v x x([r = 7] n[o1 = 7]\ [00 = 7]))

< Py (v % x([oo < 7]\ [o1 < 7]))
S PO'OXdO'gI = WgyI S wr. Q
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(ii) Now 643Fe tells us that for every e > 0 there is an I € Z(T A7) such that E(wy) < e. So we can
apply 643G to see that (v[7 A 7)# is jump-free, that is, that v# [T A 7 is jump-free (626K (f-i)). It follows
that v¥_ = v# (6410), so surely we have a* C [v%, = v#].

(c) Next suppose that § # C C T A7 and v < xac, where
ac = [supC = 7]\ sup,c¢ [o = 7] C acc(r)
as in 643E.
H)Ifp<oceC,
vp=vxx[p=mnl<x(acnlp=mn]) <x(acnfo=7]) =0
sov|T Ao =0,v#|T Ao = w|T Ao)# =0 (626K(f-i)), v# = v¥, =0 and [o = 7] € [u# = v¥,] (because
v? is fully adapted, by 641G (a-ii)).
(ii) If supC < o < ¢’ < 7 then
[o <o'] CsupC < 7] C [ve =0]n v, =0]
0
E(P,v,r — v5) = E(vyr — v5) = E((vsr — v5) X x[o < &']) = 0;

as vy < Pyvgr, Povyr — v, = 0. It follows that S;(1, Pdv) = 0 for every finite sublattice I of [sup C, 7] and
v# is constant on [sup C, 7]. Accordingly

[[supC’ < T]] c [[Uf = Uipc’]] n [[’Uﬁ:_ = vipC]] < [[UZ'% = ’UﬁT]]'

(iii) Putting these together,
a* € 1\ac C [o# =¥ ].
(d) Thirdly, suppose that t € T;.; and that v < x[r = 7] where T is defined as in 643D. If T AfT < p <
o < 7 then
[p <ol clp<mlnf" <o) c v, =0]n[vs=0]
because
vo <x([r=t"]nlo=n]) < x([r =t*]n[o =]).
So
Bpog = vy = (Bpvg = vp) X x[p < 0] = Pp((vy —v,)) x x[p < 0]) = 0.

Thus v# is constant on [r AT, 7] and [r AT < 7] € [o¥, = v#].

ki
If o <7 Afthen [r=1"] C o <m] C v, =0], so vaEZOZUﬁmf' Now

[r<t)clr<fu(f<t]n]r<&])=][r<{]

c [vff =¥ Jn[v¥, =v¥ ] c [vf = v¥,]

and

[vf = )21\ [r =i*] 20"

(e)(i) If we think of v — v, v = v#, v# s v# and v# — v¥_ as functions, then v — v# and v — 0¥,

are additive, and the set
A={v:veLl’®,)NLL,v>0,a" C[v# = o ]}
is closed under addition and multiplication by non-negative scalars. So

D={d:de®,,veAwhenever ve LA, )N L} and 0 < v < xd}
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is an ideal of 2,,. (If dy, dy € D, d € A, dCdyudy, v € LO(A,,) ﬂL}L and 0 < v < xd, then
v="uv X xdg + v x x(di \ do) is the sum of two members of A.) We know also that a* € D ((b) above, with
643Cd), ac € D whenever ) # C C T A1 (by (c)) and [r = 7] € D whenever t € T,; (by (d)). So

sup D Da* U acc(r)u(1\ app(r)) =1
by the definition of acc(r) and 643D, and sup,cp fid = 1.

(ii) Now suppose just that v € L°(2(,,) is non-negative and integrable. Let § > 0 be such that
E(vx xa) < € whenever fia < §. Let d € D be such that ji(1\ d) < §, and M > 0 such that E((v—Myx1)") <

ﬁ(v A Mxd). Then w € L°(2A,,), 0 <w < vand v —w < (v — Mx1)T + v x x(acc() \ d) so
E(v—w) < 2e. Alsow € A (using (d) above), and a* C [w# = w¥ ]. We know too that v# —w# = (v—w)*.
Since v — w is non-negative, 626M tells us that

E(v# — w#) < E(v, —w,) < 2e.

€. Set w =

Now w¥, < v¥_ <o# and w?, < w# <v# so
E((uf — oF,) x xa*) < E(f — wf) + E((wf — wf,) x ya) < 2

As e is arbitrary, a* C [u# = %] and the proof is complete.

6431 Lemma Suppose that (A;);er is right-continuous. Take 71 € T and a martingale 4 = (Ug)o<r -
Suppose that € > 0 is such that [o < 7] C [|us| < €] for every o < 7. Then there is a martingale 4 =
(Us)o<r such that Osclln(a) < 2ex1 and u — @ is of bounded variation.

proof Write v for u,, .

(a)(i) Set ¥ = v+ and ¥ = v~, so that ¥ and ¥ are non-negative integrable members of L°(2,, ). As in
643H, set

be=0x[o=mn], Ve=0x[o=7], v,=vX][oc=m]
for o < 71,
0= <1;0'>0'§7'1’ v = <’z)0>0'f7'17 v = <U0'>0'§7'1’

and let 13#, " Dbe the previsible variations of ¥ and ¥ respectively; write v# for o7 — iJ#, the previsible
version of v. Then v —v# is a martingale (626Ka). Set @ = u —v +v*, so that % is a martingale. Note that
v, v, o7 and ¥ are non-negative monotonic processes so are of bounded variation; accordingly v, v# and
u—1u=v—v” are of bounded variation.

(ii) ur, = vy, so if 0 < 7y then
[e =7] C [us — ve = 0]
while
[o <] < lusl < el nfve = 0] € [lus —vo| <el;

thus |u, — ve| < exl. Tt follows at once that |uc, — v<y| < exl and that |uy — V5 — Ucy + V<] < 2ex1 for
every o < T1.

(iii) If 0 < 71 and P, is the conditional expectation associated with the subalgebra 2A.,, |4, —
P_,0i,| < 2ex1l. P As v# € LY(A,) (641D), P 0¥ = v¥ and
iy — Pegiiy| = [tte — Vo — Pegliy + Pegvy +v7 — Pegv¥|
S |ucr - UJ| + |P<0'(ua - Ua)| S |ua - UU| +P<0‘|u0' — Vo

< ex1 + Peg(exl) = 2ex1. Q

(b) Take 7 < 1.
(i) Set a* = app(7) \ acc(r). Then 643H and the last remark in (i) above tell us that
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a* C [6# = 6%, ] [6# = 6%,] € [v# = vE ]

C [ty —licr = Ur — Ucr — Uy + V7] C [JUr — Ger| < 2ex1].
(ii) Now suppose that C' is a non-empty upwards-directed subset of T A 7 with supremum p and that

ac = [p=7]\ sup,ec [0 = 7], as in 643F and 643H. Of course ac is also expressible as [p = 7] n inf,cc [o < p].
Next, ac C [tu<, = P<,u,] by 643Bb, because @ is a martingale. Now

ac C [i<, = Peptip] nlir = @p] nicr = tic,]
(using 641L) again)

c [“u'r - '11<7—| = |ﬂp - P</ﬂ]p|]] < [Hﬂ'ﬂ' - ﬂ<‘I" < 26X1]]

by (a-iii) above.

(iii) Next, suppose that t € T is isolated on the right, and define £+ as in 643D. Set p = 7 A+ and
c=[t<p] =[p>t] (611E(a-i-6).

(o) ¢ C [uc, =1;]. P Forany o € T,
[t<olnfoe<plclt<o]n]o<it]=0.

So if I € Z(T A 1) contains £, and @i;<, is defined from @ as in 641Ea, then ¢ = [f < p] C [ir<, = @]
Taking the limit as I 1+ Z(T A1), ¢ C [u<, = @;]. Q

(B) ceA;nA,. Now if a € A and a C ¢, then a € A; = A, (611Hb) iff a € A,. P If a € A; then
a € 2, by 611H(a-i). In the other direction, set B ={b:b € A, cnb € A;}. Then B is a closed subalgebra
of A. If o € T, then

enfo<p]l =cnfo < tt]
(because ¢ = [{+ < p] = [{+ = p])
=cno <{t] €,

so [o < p] € B. By the definition of A, (641Ba), A, CB and cna € A;. Q
(7) ¢ € [P<ptu, = u;]. B For a € R,
[P<,t, x xc > o] = [P<pt, > a]ncif a >0,
= [P<pt, > a]u(1\c¢)if a <0,

and in either case belongs to 2A;. So P<,u, x xc € LY(;). Now if a € 2j,

E(((@ x xc) x xa) = E(i; x x(cna)) = E(ag x x(cna))
(because @ is a martingale)
— E(@, x x(cna))
(because ¢ C [p =£T])
=E(P<,u, x x(cna))
(because cna € A.,)
= E((P<,t, X xc) X xa)).

So Uy x xc = P<,l, X xc, that is, ¢ C [P<,u, = 4;]. Q

(6) Putting («) and () together,
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< iy — iicr] = 8, — Pyiip|] € [ir — ficr| < 26x1]
by (a-iii) again.
(iv) Assembling (i)-(iii), we see that
1 =a*usupy ocrar @c U super,, [1 =] C [|dr — G<r| < 2ex1]

and |, — t<r| < 2exl. As 7 is arbitrary and @ is near-simple (632I), Osclln(@) < 2ex1 (641Nb), and we
have found a suitable auxiliary martingale.

643J Corollary Suppose that (2;)icr is right-continuous. Take an interval S = [r, 7] where 7 < 7/
in 7, and a martingale 4 = (uy)ses. Suppose that € > 0 is such that [o < 7] C [Juy — u,| < €] for every
o € S. Then there is a martingale & = (i, )scs such that Osclln(a) < ex1, @, = 0 and u — @ is of bounded
variation.

proof Set ul, = P,(u; — u;) for o <7/, so that v’ = (u}),<, is a martingale. Then [o < 7'] C [lul| < €]
for every o < 7/. I We have

(622Bb once more)

(622Ba)
C [uz = 0] € [lug| <€,
while also
[r<o]nfo<r]=Jo=0cVT]noVvTt <]
c [[u;‘ = PUVT(UT’ - u‘r)]] n [Hucr\/'r - u'r| < 6]]
- IIUZT = Ugvr — UT]] N [Hua\/T - ”U,7—| < 6]] c [[|u:7| < 6]]
Now

[o <] clo<rlu(lr <ofulo <7T) < [lu;| <€,

as claimed. Q

By 6431, there is a martingale @' = (@), <, such that Osclln(a’) < 2ex1 and w' — @’ is of bounded
variation. Set @ = (i,),es Where 4, = 4/ — @, for 0 € §. Then @ is a martingale and @, = 0. In the
language of 613Cc, Au = A(@'[S), so

Osclin(z) = Osclln(a'|S) < Osclln(a’) < 2¢
(using 618D(b-i)). We see also that u), = u, —u, for every o € S, 50 Uy — Uy = U, — U, +u, + @, for o € S,

Aw—u) = A((w —u')|S) and [g|d(u —u)| is defined in L°(2) and equal to [ |d(uw’ —a')|; thus u — @ is
of bounded variation, as required.

643K Lemma Let S be a sublattice of 7 and (7,)nen a non-decreasing sequence in S such that S C
Unen(T0, 7). Suppose that for each n € N we are given a fully adapted process w, = (Uno)oecsnir,,mmii]
starting from wu,,, = 0.

(a) There is a unique fully adapted process u = (uy),es such that

Uy = Uno + E;L:_Ol Uir,,, Whenever c € S, n € Nand 7, <o < 741, *)

(b) If every u,, is a martingale, then u is a martingale.
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(c) If every u,, is order-bounded, then w is locally order-bounded and Osclln(u[SAT,) = sup;,, Osclln(u;)
for every n € N.

proof Set So =, xS N [Tns Tt1]-

neN
(a) Sy is a sublattice of 7. P If o, 0/ € Sy, let m, n € N be such that 7,,, < o < Tpp1 and 7, < 0/ < 7741
We can suppose that m < n. In this case o A 0’ € [Ty, Ty1] and o V o’ € [1,, T11] belong to Sy. Q
The formula (*) defines a fully adapted process u* on S;. P If n € N and 7, < 0 < 7,41 then
Upe + 22:01 Uir,, € L°(2A,) because LO(QlTHl) C LO(A,) for every i < n. f m < nin N, o € [Ty, Tims1),
o' € [Tn, Tht1] and ¢ = [o = o], then
—— if m = n then ¢ C [une = tUno'] = [tno + Z?;Ol Uiz, = Uno' + Z?;ol Wir o |5
—— if m < n then

cClo=7mi]n inf [r=741]n]o’ =7.]
m<i<n

Hu"w'::um7m+1ﬂr]ngg£nﬂufﬂ+l::Oﬂmﬂuno’:zoﬂ

N

- [[uma + ZZBI WUir; 1y = Uno’ + Z?;Ol ui7i+1]]7

In particular, this shows that if o = o’ belongs to [7,,, T,+1] for more than one n, then (*) gives a well-assigned
value for uy; and in general we have [o = 0’] C [u, = u,y], so that u* is fully adapted. Q

Next, Sy covers S A 7, for every n. IP Induce on n. For n = 0 this is trivial. For the inductive step to
n+12>1,if 0 € S AT,y then {0} is covered by {o AT, 0V 7, } €S AT, US N7y, 7417 and therefore by
So. As o is arbitrary, S A 7,41 is covered by Sp. Q

Consequently Sy covers S. Writing @ for the fully adapted extension of u* to the covered envelope Sy of
So, we have S C Sy and u = @*|S is a fully adapted process satisfying the condition (*). And because (*)
determines the process u* = u[Sy, it determines u (612R).

(b) u[Sy is a martingale. B Suppose that m, n € N, 0 € [Ty, Timnt1], 0" € [Tn, Try1] and o < o’. Ifm > n
then ¢ = ¢’ and of course P,uy = uy. If m = n then
-1 —1
Prugr = Z:n:’() PO'UiTi+1 + Potmer = ZZZO Uir; 1 + Umo = Ug-
If m < n then

—1 n—1
Paui7i+1 + § PUuiTi+1 + Pauna’

i=m

3

Pyug

I
i

n—1

Uir; g + Pffum‘l'm+1 + E PouiTH_l + Pyt
0 i=m-+1

I
M3

=

n—1
uir,;+1 + Ume + § PUPTiuiTi+1 + Popfnuno’
i=m-+1

3

Il
=)

%
n—1

= Uy + Z Pcruin + Paurm’n = Ug-

i=m-+1

As o and ¢’ are arbitrary, u[Sy is a martingale. Q

Because Sy covers S and is cofinal with S, u is a martingale. I By 6220a, there is a martingale 4’ on
the ideal 8’ of T generated by Sy which extends u[S;. Now & C 8’ so 4'[S is an extension of u[Sy, and
u =u'[S is a martingale. Q

() Since |tungr — Ung| = |uor — uy| whenever 7, < o < ¢’ < 7,41, Osclln(ul[7,, 711]) = Osclln(u,,) for
every n. Now an easy induction on n, using 618Db for the inductive step, shows that

Osclln(u [, 7n]) = sup;,, Osclln(u|[7;, Ti+1]) = sup;.,, Osclln(u;)

for every n.
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643L Lemma Suppose that (2;)icr is right-continuous. Let S be an order-convex sublattice of T
with a least element and a non-decreasing sequence (7,,)nen such that {7, : n € N} is cofinal with S,
and ¥ = (uy)ses a martingale. Then for any e > 0 there is a local martingale &4 = (i,)scs such that
Osclln(a[S A7) < exl for every 7 € S and u — @ is locally of bounded variation.

proof (a) Choose (k,)nen and (0;);en as follows. Start with kg = 0 and 09 = minS. Given k,, € N and
Ok, € S ATy, then, because u is locally near-simple (632Ia), there is a non-decreasing (op;)jen in [0k, , 7]
such that 0,0 = oy, infjen[or; < 7] = 0 and [0 < 0y j41] C [[te — Uq,,| < 1€] whenever j € N and
onj <0 <oy j+1 (631Ra). Let k € N be such that fifo,, < 7] <277 set kypy1 = kn + k and o, 15 = 0
for i < k. Continue.

(b) We see that (o;);en is a non-decreasing sequence in S, that
lim; o0 /][[O'i < Tn]] = limy, oo ﬂ[[o'km,+1 < Tn]] < limy,— o0 ﬂ[[aka < Tm]] =0

for every n € N, and that [0 < 0i41] C [Jue — e, | < $€] whenever i € N and 0; < 0 < 0y41. Set Sy =
Uien S A oi. Then Sy is an ideal of S covering every 7,, and therefore covering S.

(c) For each i € N, we can apply 643J to u[[0;,0;11] to see that there is a martingale %; = (lis)o,<o<o.s,
such that Osclln(a;) < 27 Y¢, @y, = 0 and @; — u[[0y, 0441] is of bounded variation. By 643K, we have a
martingale @' = (@) ),cs, such that Osclln(@'[SAc;) < € for every i € N; it follows that Osclln(a' [SA o) < e
for every o € Sy.

Consider the difference (u]Sy) —@’. If i € N and o € [0y, 0,41], this is given by

~1 ~ ~/
Uy — Uy = Uy — Ujg — Uy, -

So, for any ¢,

S V=) =355 [, =) = 500

i 05,0j+1]

|d(u; —u;)|
is well-defined, that is, (u—u)[S Ao; is of bounded variation. Thus u[Sy—' is locally of bounded variation.

(e) For any i € N,

Osclln(@' | S A 0;) = sup Osclln(@’' [ [0, 0j41])
j<i
(using 618Db repeatedly)

= sup Osclln(z;) < exl.
J<i

So Osclln(u'[S A o) < ex1 for any o € Sy (618Da again).

(f) As So C S covers S, they have the same covered envelope, and we have a unique fully adapted process
% with domain S extending @’. Since Sy is a covering ideal of S, @ is a local martingale. u — @ is locally of
bounded variation because (u —@)[Sy is locally of bounded variation and we can apply 614Q(b-v). Finally,

sup, s Osclln(u]S A 7) = sup, s Osclln(@' [Sy A o) < exl
by 618Lc.

643M Theorem Suppose that (2;);cr is right-continuous. Let & be an order-convex sublattice of T
with a least element, and v = (v,),cs a semi-martingale. Then for any € > 0 there is a local martingale
¥ = (U5 )ses such that sup,.cs Osclln(v]S A7) < ex1 and v — v is locally of bounded variation.

proof (a) By 611Pc, S is finitely full. Because the sum of two processes which are locally of bounded
variation is again locally of bounded variation (614Q(b-iii)), it is enough to consider the case in which v is
a virtually local martingale, in which case it will be a local martingale and locally near-simple (632I). Let
Sy be a covering ideal of S such that v[Sy is a martingale. By 627N, there are a non-decreasing sequence
(Tn)nen In Sy and a non-decreasing sequence (dy,)nen in 2 such that

dn S Q[Tn7 dn c [[Tn+1 = Tn]]
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for every n € N, and
SUpP,eN dp U [[7- < Tn]] =1, vy =limy,e Ur ATy,
for every 7 € S.

(b) Set §" = ,,en S A T Then v[S’ is a martingale. By 643L, there is a local martingale & = (iy)ses’
such that Osclln(@]S’ A o) < exl for every o € &’ and v — 4 is locally of bounded variation.

(c) By 6270 there are processes ¥ = (9, ),es and v# = (v¥),cs such that
#
UT

U7 = limy, 00 UT ATy = lim,, 50 Ur AT, — UrAT,

for every 7 € §. Observe that
Ur + ,U‘]# = limy, o0 Urnr, = Ur

for every 7 € S. Now 6270d tells us that @ is a local martingale; 6270e tells us that v — ¥ = v# is locally
of bounded variation; and 6270f tells us that Osclln(@[S A7) < ex1 for every 7 € S. So ¥ has the required
properties.

Remark Recall that a semi-martingale is the same thing as a local integrator (627Q).

643N I have more than once noted (622P, 624H, 626T) that L?-martingales have a special place in the
theory, and later in this chapter they will become of prime importance. We are now ready for a general
result showing why:.

Lemma Suppose that (;)ier is right-continuous. Let S be a sublattice of 7 with a greatest element, and
v = (V,)secs an integrator. Then for every € > 0 there are an L>°-martingale © and a process v’ of bounded
variation, both with domain S, such that pfv # 0 +v'] <e.

proof (a) By 627J/627Q, v is a semi-martingale; let v1 = (v1,)secs be a virtually local martingale such that
v — v is locally of bounded variation. As S has a greatest element, v — v; is actually of bounded variation.
Let 91 = (015),cg be the fully adapted extension of v; to the covered envelope S of S. Then there is a

non-empty downwards-directed set A C S such that sup e 4 fi[p < maxS] < teand vy = R4(01), as defined
in 623B,is a martingale. Set b = sup ¢ 4 [p < maxS], so that b < %e. Note that max S is also the greatest

clement of S (611M(b-ii)). If ¢ € S and p € A, then
I\bC [p=maxS] C [0 < p] C [01,0np = V15];
taking the limit as p | A,
1\bC [1,0 =limpya 01,5np]s  [01,6 7 limppa 01,0n,] C b,

As o is arbitrary, [ve # 01] C b.

Express vy as <U20>U€$. Consider the martingale v3 = Pvg maxs (622F). This extends v2 to 7. By 643L
there is a local martingale w = (w,)se7 such that Osclln(w) < x1 and vz — w is of bounded variation;
replacing w by w — wpi, 71 if necessary. we can arrange that wpi, 7 = 0. Now there is a 7/ € T such
that w|7T A 7' is a martingale and b’ = [7' < max 7] has measure at most fe. Also w is near-simple (632Ia
again). By 631Ra again, SL;(w) is true and there is a non-decreasing sequence (7;);cn in 7 such that
7o = min T, infieny [ <max 7] = 0 and [o < 741] C [Jws — wy,| < 1] whenever ¢ € N and o € [y, Ti41)-
Accordingly |w;,,, — w;,| < 2x1 whenever n € N. I Looking at the definition in 641Ea, we see that
|Wr<r,,, — Wr,| X X[ < Tag1] < x1 for every finite sublattice I of S containing 7,, and 7,41, so that
|Wer,,, —Wr, [ X X[Th < Tnyr] < x15 while [wr,, —wer, | X X[ < Thy1] < Osclln(w[SAT,11), by 641Na.
So

X X[n < Th1] < x1 + Osclln(w[S A 741)
< x1 4 Osclln(w) < 2x1

|w7n+1 - Wr,

(using 618D(b-i)). It follows at once that ||w,, ., —wr, [l < 2. Q
As wy, =0, ||wr, | < 2n for every n € N. Next, there is an n € N such that b’ = [r, < maxT] has
measure at most %e. Try
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0 =Pw, ar[S, v =v1—v+(w—-v3)[S, c=bubud”

Then v is an L°°-martingale, v’ is of bounded variation and jic < e. We have

[0 #w|S] C [t AT < maxS]
(because w[T A1, A7’ is a martingale)
Clrm <maxT]n[r’ <maxT] cbd ubd”.

Consequently

[v#£v+v]Co#wSJuwlS #v1 + (w—v3)|S]
CV Ut Us|S #vi] b U Uws[S #1] €V Ub U vy # 01]
(because v3 extends v2)
cbub' ub=c

has measure at most ¢, as required.

6430 Lemma Suppose that (2;);cr is right-continuous, and that S is a non-empty finitely full sublattice
of 7 with a greatest member such that inf A € S for every non-empty A C S. If v is a near-simple integrator
with domain S, there are an L°-martingale ¥ and a near-simple process v’ of bounded variation, both with
domain S, such that [v # ¥ 4+ v] has measure at most e.

proof By 643N, we have an L*°-martingale ¥ and a process v, of bounded variation, both with domain S,
such that a = [v # ¥ 4+ v(] has measure at most e. Express v, ¥ and v{ as (Vg )oes, (Us)oes and (v),)ses-
By 632Ia once more, v is locally near-simple; as S has a greatest member, v is actually near-simple. Set
u = (Uy)ses where u, = x(upr(l\a,,)) for 0 € S, and v/ = u x (v — v). Then u is near-simple, by 632G,
so v’ is near-simple, by 631F (a-ii). Now for any o € S,

1\a C vy — 0y — v}, =0] € Ay,
SO
[us # 0] = upr(1\ a,%;) C [vy — 0y — vy, = 0]
and u X (v — ¥ —v() = 0, that is, v' = u x v}. By 614Q(a-ii), v’ is of bounded variation. Finally,
[v£v+v] Cv#v+vi]ulvg #v'] Caulu#1]
=au sup(l\ upr(l\a,2,) Causup(l\(1\a)) =a
ceS oceS

has measure at most €.

643X Basic exercises (a) Show that if ¢ € T then the region of accessibility of £ is 1 if {s : s < t} is
non-empty and has supremum ¢, 0 otherwise.

(b) Let (7, )nen be the sequence of jump times associated with the standard Poisson process, as described
in 612U. Show that the region of accessibility of 7, is 0 for every n > 1.

(c) Let S be a sublattice of T and u = (us)ses a fully adapted process with a previsible version
e = (U<y)oes. Show that whenever o, 7 € S, [o < 7]\ [0 <€ 7] C [u<r = us].

643Y Further exercises (a) Suppose that 7 € T and that Cy, ... ,C, are non-empty subsets of T A 7.
Show that there are Dy, ..., D, such that

0#£DgC...CD,CTAT, SUP;<,, @D, 2 SUP;<,, GC; -
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(b) Show that 643L can be used in place of 621Hf or 628D to show that if the filtration is right-continuous
a martingale is a local integrator; now use the construction of 633Ya to see that a martingale is still a local
integrator even when the filtration is not right-continuous.

643 Notes and comments This section seems to be hard work, and I do not know of any route to Theorem
643L which doesn’t use most of the ideas here, though (as usual) my own exposition is designed for line-
by-line checking rather than transparency. Of course the complications involving regions of approachability
are quite unnecessary if we have a real-time stochastic integration structure, in which case app(7) = 1 for
ecery 7, by 643D.

The proof here is derived, at some remove, from PROTTER 05, Chap. III. I note that while it depends on
some deep ideas about stochastic processes, it uses little of the theory of integration developed in §§613-617,
so could in principle be used in a proof of Theorem 622H, as suggested in 643YDh.

Version of 25.8.20

644 Pointwise convergence

It is a remarkable fact that while the Riemann-sum integral, as defined in §613, is not ‘sequentially smooth’
in the most natural adaptation of the definition in 436A (644Xb), a variation on this concept (Theorem
644H) gives us a route to a Daniell-type integral, which I will develop in §645.

644 A Notation I repeat the familiar list. (2, @, T, (A¢)rer, T, (A )re7) is a stochastic integration struc-
ture. Ty C T is the ideal of finite stopping times. If S is a sublattice of T, Z(S) is the set of finite sublattices
of Sand SAT={oAT:0€ S}, SVT={oVT:0€S}forT e T. Myo(S) will be the space of moderately
oscillatory processes with domain S, and M,,_(S) the space of near-simple processes. L° will be L°(2l), with
the topology of convergence in measure defined by the functional § where 0(w) = E(Jw|Ax1) for w € LY. If S
is a sublattice of 7 and u = (us)ocs is an order-bounded fully adapted process, I write supu for sup,cg to;
le]| oo will be sup,es ||to]loo; if # is locally moderately oscillatory, u« will be its previsible version.

644B Definitions (a) It will be useful to have a short phrase for the following. Let S be a sublattice
of T. A family A of processes with domain S is uniformly order-bounded if sup, ¢ 4 sup |u| is defined in
LP; that is, there is a @ € L° such that |u,| < @ for every o € S whenever (uy)ses € A.

(b) Similarly, a special class of integrators will be prominent in the rest of the chapter. If S is a sublattice
of T, M .(S) will be the family of non-negative non-decreasing near-simple processes with domain S. Any
member of M (S), being near-simple, will be order-bounded (631Ba); being non-decreasing, it will be an
integrator (616Ra).

644C Lemma (The key.) Let S be a finitely full sublattice of 7 such that sup D € S whenever D C S
is countable, non-empty and bounded above in §. Let (Un)nen = ((Uno)oecS)nen be a non-increasing
sequence of non-negative moderately oscillatory processes such that inf,cyu,<, taken in (L°)®, is zero.
Then infren [ undv = 0 for every v € M (S).

proof (a) To begin with, suppose that S has greatest and least elements and that v = (v,)ses is jump-free.
(i) ? If w=infen fs u,dv is non-zero, there is an € € )0, 1] such that
B[2€(Vmax s — Vmins) < w] > 2e.
P Take 6 > 0 such that b = [w > §] is non-zero, M > 1 such that fifvmaxs — Umins > M| < %[Lb and set
T

e=min(*,—). Q

3’'2M

(ii) Now choose a non-decreasing sequence (7, )nen in S and sequences (wy,)nen in LY, (an)nen in 2 in-
ductively, as follows. The inductive hypothesis is that w,, = inf;cy vaT w;dv, an C [(14 27™)e(Vmaxs — vr,,) < Wy
and fian, > (1437 ")e.

(a) Start with 79 = min S, wy = w and ap = [26(Vmax S — Umins) < W].
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(B) Given 7, w, and a,, let § €]0,1] be such that
[Vmaxs — vr, > 0]\ H2_n_16(vmax8 —vr,) > 0]

has measure at most 3 " le, and set n = 37" "2¢§. Now iiy(u,) is jump-free (618Q). By 618E, there is a
7}, € 8§V 7, such that [r, < 7)] = [1, < maxS] and, setting y = [5,,, wndv — [5,  undv, 6(y) <.

(7) Now thereisan I € Z(SVr,,), containing 7, and max S, such that 6(Sk (u,, dv)— Sk (U, dv)) <n
whenever K, K’ € Z(SV7),) include I, in which case Q(SIAT Uy, dv) fsa[ , undv) < 2n for every T € SV,

(613V (ii-B)).
Take (po, ... , pr) linearly generating the I-cells (611L). By 6111, as usual, there is a 7,41 € T such that

[Tnt1 = pi] 2 [unp; > €]\ sup;; [uny; > €]
for i < k,
[T+ =pe] 21\ SUP; <4 [unp, = €,
T =p0 < Tnt1 < pp = maxS
and 7,41 € S because S is finitely full. Now
HTH—O—l < maxS]] - [[unfn+1 Z EH
and

[pi A Tns1 < pivt ATnga] € [pi < Tnga] € supijcp [Tntr = pj] € [unpins, <€

for every i < k. Accordingly

SI/\'rn_H ’U,n,d’l) § Un,p; ATpi1 X vpi+1/\Tn+l - /UP«;/\Tn-H)

(because (po A Tty .-+ s Pk A Trg1) hnearly generates the I A 7,41-cells, by 611Kg)
k—1
< 6(ﬁUPz’-¢-1/\‘l'n+1 - Upi/\Tn+l) = 6(’U‘l'n-¢-1 - ’UT;,,)'
i=0
Setting

Updv — €(vr, ., — v )T Undv — Sipr, (U, dv)) T,

2 = (ISN[TT/”TnH] S (fsm[Tyl,,ngJrl]
0(z) <21, so O(y + 2) < 3n, while

fSﬁ['rn‘TnJrl] Updv < y+z+ 6(U7n+1 — 7)7_7,1)_

(8) Set ant1 =anny+2 <27 Le(vmaxs — vr,)]. Then

lan \ ant1) < fi([vmaxs — vr, > 0] N[y +2 > 27n715(vmax5 —vr,)]
(because ap, C [wy, > 0] € [Umaxs — vr, > 0])
< fi([vmaxs — vr, > 0] N [27" Le(vmaxs — vr,) < 6])
+ afy + z > 0]
<3 et iyt z>0]<2-37" e

because §(y + z) < 37" Led. Accordingly jia,y1 > (14 37" 1)e.
(e) For any i > n,

/ u;dv :/ uid'v—/ u;dv
SVTp41 SVTy, Sm["'nﬂ’n#»l]

an—/ Updv > Wy —y — 2 —€(vr,,, — Vrr).
Sﬂ[Tn,Tn+1]
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So, setting w, 41 = inf;en vaTn+1 u;dv,
Wnil 2 Wp —Y — 2 — €(U7n+1 - 'UT,,’L) > Wy —Y—2— e(UTnJrl - UTn)'

Now

ant1 C [(14+27")e(Wmaxs — vr,) < wp] Ny + 2 < 27" Le(vmaxs — vr,])
C [+ 27 Ve(vmaxs — vr,) < Wp —y — 2]
Cl@+27" Ve(vmaxs — Vrpyy) <wp —y — 2 — (v, — vr,)]
C [ +27""De(Vmaxs — Vr,py) < Wnpa],
and the induction proceeds.

(iii) At the end of the induction, set 7 = sup,cy7n; by hypothesis, 7 € S. Since (7,)nen is non-
decreasing, (wy,)nen and (Umaxs — Ur, yneN are non-increasing. The construction in (ii) above arranged that
an+1 C ap, and fia, > € for every n. At the same time we have

an C [wy, > 0] C [1 < max S| = [rn < 7] € [70 < 7]
and
ant1 C [tnr,y > €] € [Wir,,, > €]
whenever n > i. So for any ¢ € N, (,),>; is a non-decreasing sequence with supremum 7 and
a C [ < 7] 0 [wir, > €]

for every n > i. By 641M or otherwise, a C [u;<, > €]; as ¢ is arbitrary, a C [inf;eyu;<r > €]. But also we
have

pa =inf, ey fla, > € >0
S0 inf;en U<+ # 0, contrary to hypothesis. X
(iv) Thus we see that if S has greatest and least elements and v is jump-free, inf, e || g Undv =0.
(b) Now suppose only that v € M, (S), while still assuming that S has greatest and least elements.

(i) Consider first the case in which v is actually simple. Let (7g,... ,7) be a breakpoint string for v
starting from 79 = min S and finishing with 7,,, = maxS. Then

m—1
fs Up dv =3 770 Un<ryy X (Ur, 4, — Ur))
for every n € N (641J). So

. m—15.
lim,, 00 fs u, dv = ijo limy, o0 Un<ryyy X (Vry, —0r;) = 0.

(ii) If v is just near-simple, take € > 0. Set @ = sup |ug|. Let § > 0 be such that 6(v x @) < e whenever
6(v) < 4. By 631U, there are non-negative non-decreasing processes v, w, v”, all with domain S, such that
v’ is simple, w is jump-free, v = v’ +w +v” and d(supv”) < 4. In this case, we see that

/und'v”g sup Sr(u,,dv’”) <ux sup Sp(1,dv”)
s IeZ(S) I€eZ(S)

Yoes, Ung X (VY —v)) <@ x (v)! —v])) whenever 0 < 7 in S)

1

(because, expressing v” as (v))

< 4 x supv”

and f(supv”) < 4, so that ([ u, dv”) < ¢, for every n € N. From (a) above we know that lim, o [ @, dw =
0, and from (i) here we see that lim,, o [s %, dv’ = 0. So
limsup,, H(IS U, dv) = limsup,,_, G(fs u, dv’”) < e.

As € is arbitrary, limy, . 0( [ %, dv) = 0.
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(c) Finally, for the general case, if S is empty the result is of course trivial. Otherwise, given ¢ > 0, there
are 7, 7" € S such that 7 < 7/, G(IS/\T uodv) < € and G(fsw, updv) < e. Consequently G(fSAT u,dv) < € and
0( s, undv) < € for every n, and

infren 0 [ undv) < 2¢ + infen 0( [, wndv) = 26 + 0(inf ey [, undv)

where &' = SN [r,7]. If n € N, u,,[S’ is non-negative and moderately oscillatory (615F(a-i)), and 0 <
(Un 8N« < up ]S (641Ge). So inf,en(un S’ )<« = 0, while of course (u,[S')nen is non-increasing. As
v[S" = v[(SVT)AT is non-decreasing and near-simple (631F (a-iv)), (b) above tells us that inf, ey [q, wndv =
0. Consequently 6(inf,,cn fs u,dv) < 2¢; as ¢ is arbitrary, inf,en fs u,dv = 0, and the proof is complete.

644D Lemma Let S be a finitely full sublattice of T such that sup D € § whenever D C § is countable,
non-empty and bounded above in S. Let (un)nen = ((Uno)oes)nen be a uniformly order-bounded sequence
of moderately oscillatory processes such that (u,<),en is order*-convergent in (L°)° (definition: 642B). If
v € M (S), lim, o0 /. 5 Undv is defined in L for the topology of convergence in measure.

proof Let e > 0.
(a) Writing u for sup,,cy ,es [Uno|, We have
|f8udv| < supreg(s) [S1(w, )| < @ x sup;ezs) S1(1, dv) = u x fs dv

whenever u is a moderately oscillatory process with domain S and sup Ju| < @. In particular, if n € N,
the monotonic sequences ([ inf,<i<m idv)m>n, ([sSUP,<i<m widV)m>n are order-bounded in L and have
limits 10, 2, respectively in LY (613Ba). If we take k,, > n such that

O [ infpcich, widv — @,) <27, 0(2, — [ sup,<icp, widv) < 27",
and set wy, = inf,,<j<p, Wi, 2, = SUP,,<; <, Ui, then for any m >n

9(/8(10” —u,,) dv) < 9(/8(wn - inf  w;)dv)

i<max(m,ky)

< 9(/ w,dv — W,) < 27"
S

and similarly

G(fs(um — 2zy) Tdv) < 27",

(b) Define (€, )nen, (Yn)nen inductively by setting £y = wg, Yo = 2o and
Tpi1 = med(mnawn+1yyn)a Ynt+1 = med(mnazn+1>yn)

for every n € N. Because w,, < u, < z, for each n, , < z,11 < yYypy1 < ¥y, for each n. We also have
Yn — Tp < 2, —w, for every n € N. P If n = 0 this is immediate. For n > 0,

Yn —Cn = (n-1V2p) AYpn—1— (Zpn_1VWy) AYpn_1
S (Ep1 VW + X1V 2y =T A VW) A (Yne1 +Zno1 V2 — 1 Vwy)
= (@n—1 VWwn) ANYn—1
=, 1VZ, —Zp_1 VW,

< (-Tnfl +zn_wn)v(wn +zn_wn)_xn71 VW, =2, — Wy Q

(c) Next, 0( [g(2n — upm)Tdv) < (2 —27")e whenever n < m. P Induce on n. For n = 0 we have
9([8(:1:0 — Uy, Tdv) = 9(f5(’w0 —uy)Tdv) <e

by (a). For the inductive step to n + 1 < m, we have Z,,11 < T, VWp41 SO
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( /S (@nsr — ) ) < O /S (@n — )t + (Wng1 — th) "))

< 9(/ (Tn — Up) T dv) + 9(/(wn+1 —Uy,) T dv)
S S
<(2-2"e+2"le=(2-2"1e. Q
Similarly, ([ (%m — yn)Tdv) < (2 —27")e whenever n < m.
(d) Set u), = med(z,,,un,y,) for n € N. Then
(un —up)" <twp —up AYn = (U —yn)"

and similarly (u!, —u,)" < (z, —u,)T, so
9(/ w,dv — / ul dv) < 0(/ lu, —u|dv) = 0(/((un —u)" + (), —u,)")dv)
S S s S

< 9(/8(un —yn)Tdv) + 6(/8(.7;n —u,)Tdv) < 4e

for every n.

(e) Observe next that all the w,,, z,,, ,, and y,, are moderately oscillatory processes, and that (y, —2,)nen
is a non-increasing sequence of non-negative moderately oscillatory processes. Now for every n we have

lnf’mzn Um < < lﬂfngigkn Un< = (lnfngigkn u?n)< = Wnp<

because u + u is a Riesz homomorphism (641G (e-i)), and similarly z,,< < sup,,,>,, tm<. Consequently

}lrelf&(yn< - xn<) S 7lzr€lfl\.l(zn< - wn<)

(by (b))

< inf (sup U< — inf w,,<) =0
neN m>n m>n

because (U« )nen is order*-convergent, so inf,enSup,,>, Um< = SUpP, ey iNfm>n Um< (642B).

(f) By 644C, lim,,_, fg (yn—zy,)dv = 0. Aswv is non-decreasing, u — fs u dv is a positive linear operator,
so lim,, oo fs Yndv and lim,,_, fs x,dv exist and are equal. Since z, < ul, <y, for every n, the common
limit of these integrals is also lim,, e |, s u! dv. Accordingly

limsupO(/ umdv—/undv)
m,n—o0o S S
< sup 9(/ Uy dv —/u;ndv) +limsup9(/ u,, dv — / ul dv)
meN S S m,n—o0 S S
+ sup 9(/ u:ldv—/undv)
neN S S
<4e+ 0+ 4e = 8e

by (d). As € is arbitrary, ([gu,dv)nen is Cauchy, therefore convergent.

644E Corollary Let S be a finitely full sublattice of T such that supD € S whenever D C S is
countable, non-empty and bounded above in S, and (u,),en @ uniformly order-bounded sequence of mod-
erately oscillatory processes with domain S such that (u,),en is order*-convergent to 0 in (L°)S. Then
limy, o0 [ Undv = 0 for v € M (S).

n-s

proof Apply 644D to the sequence (w,)nen Where wa, = 4, and wa,4+1 = 0 for every n.
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644F Lemma Let S be a sublattice of 7, A a uniformly order-bounded subset of M,,(S), and v an
integrator with domain S.
(a)(i) {[sudv : u € A} is topologically bounded in L°.
(ii) if S is non-empty,
lim 15 SUPyc 4 9<f3w udv) = lim, | s Sup,c 4 H(ISAT udv) = 0.
(b) If v is non-decreasing, then { [gudv : u € A} is order-bounded in L°.
proof (a) Let @ € L° be such that sup |u| < @ for every u € A.

(i) Take any € > 0. Then there are an M > 0 such that [& > M] has measure at most ¢, and a 6 > 0
such that 0(5z) < € for every z € Qs(dv). Suppose that u € A and set w' = med(—M1(5) u, M1(S)). If
I € Z(S) then S;(u',dv) € Qs(dv) so (L Sr(w',dv)) < e. Also

[[Sf(uv dv) 7é Sf(u7 d’l))]] c [[u 7é 'U/]]
(613Gd)
= [sup Ju| > M] C [a > M]

has measure at most ¢, so
KB 4 /
G(MSI('U,, dv)) <e+ 9(M51<’u, ,dv)) < 2e.

Taking the limit as I 1S, 0(< Jsudv) < 2¢ and this is true for every u € A. As € is arbitrary, { [qudv :
u € A} is topologically bounded.

(ii) (@) 7 Suppose, if possible, that such that e = % lim SUP, 45 SUPye 4 O( [, w dv) is greater than 0.

€

As just above, take M > 1 such that [@ > M] has measure at most €, and set n = e Take v >0, m > 1,
r>m and k > 1 such that

0(%2) < n for every z € Qs(dv),

r! 1 m
mn = 27, 1*m§§77 s 2kn™ =,
and set n = rk.
Choose (7;)i<n inductively, as follows. Start from any 79 € S such that sup, ¢ 4 e(fsvm udv) > 2e. Given
that i < n, 7; € S and sup,c 4 0([s,, wdv) > 2, take u; € A such that (s, u;dv) > 2¢, and set

w), = med(—M1() u;, M1(5). As before,
0[5, widv) >0([ ., ujdv)—pafu; #u] >0, ujdv)—p[a>M]>e

Let I; € Z(SV;) be such that 0(Sy, (u}, dv)) > €, and take 7,41 € SVmax I; such that sup,, ¢ 4 e(fsvmrl udv) >
2¢. Continue.
Then 79 < ... <7, in S, and if ¢ < n then I; € Z(S N [r;, 7;41]) for each i < n and

€

1
sup{0(2) : 2 € Qsnrs, iy, ] (W)} > O(S, (17}, dv)) > M@(Sh (ul, dv)) > 27 = 4
So by 616Hc there is a z € Qs(dv) such that

n < allzl = A1 < 0(3w),

and we chose v so that this would not be possible. X
Thus lim4s supye 4 0( [, udv) = 0.

(B) The same argument works downwards.  If € = { limsup,. g sup,c 4 0([5,, u dv) is greater than
0, take M > 1,7 >0,v>0,r>m > 1,k > 1 and n = mk as before, and choose 7, > ... > 7,
Up_1,...,u9 and I,_1,..., Iy such that for n >1i >0
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U;i—1 GA, 9(‘[5/\7_. U;—1 d’l)) >2e¢, I 4 EI(S/\TZ'),

0(Sy,_, (med(—M1S) u; 1, M19)) dv)) >€, 7,1 <minl;_;.
Once again we finish with 79 < ... <7, in S, and I; € Z(S N [r;, Ti41]) for each i < n, while
sup{@(w) Tw e QSQ[T{,,H+1](dIU)} > 477

for each i < n, which is impossible. X So lim, |5 sup,c 4 0( [s,, wdv) = 0.

(b) A is upwards-directed; because v is non-decreasing, B = { [udv : u € A} is upwards-directed; being
topologically bounded, by (a), it is bounded above in L° (613B(f-v)). Now —B = B is bounded above, B is
bounded below and B is order-bounded.

644G Lemma Suppose that (2(;):cr is right-continuous, and S is a non-empty order-convex subset of
T. On the space My, = Muo(S) of moderately oscillatory processes, we have a linear space topology &
defined by functionals of the form u — 0( [ [u|dv) where v € M (S). Let v = (vs)ses be a near-simple
integrator. Then u — || sudv: My, — L is uniformly continuous, for the uniformity induced by &, on any
uniformly order-bounded set in Mp,,.

proof For an integrator v with domain § and u € My, write 1y (u) = [gu dv.

(a) I should begin by noting straight away that if v € M (S) and we set ¢y (1) = 0(y|u|) for u € My,
then ¢, is an F-seminorm. P (i) If u, w’ € My, then |u +u'| < Ju| + |u'|. As v is non-decreasing,

Po(u+u') = by (fu+u'|) < oo (ful + [u']) = o (ju]) + Do ([0']) = do(u) + du(w),
(ii) If u € My and a € R, then ¢y, (au) = |a|dy (1), so lim,_ o ¢p(au) = 0 and ¢y (cu) < ¢y (u) if |af < 1.
Q
Accordingly we have a linear space topology & on My, defined by {¢, : v € M, (S)}.
It is worth noting that if v, v’ € M, (S) then v +v' € M (S), while ¢y1y = ¢y + ¢p. So if G is any

n-s n-s

G-neighbourhood of 0, there are v € M) ((S) and § > 0 such that {u:u € My, ¢p(u) < 6} C G.

(b) From now on, I take it that A C M,,, is a uniformly order-bounded set and v € M, <(S) is an
integrator. Let # € L° be such that sup [u| < @ for every u € A. The argument proceeds by looking at a
succession of special cases.

If v is actually non-negative and non-increasing, then of course v, : A — L is uniformly continuous, just
because

Vo (1) — Yo ()| = [t (u — o) < Pu(ju —u']) = do(u —u').
So if v is of bounded variation, therefore expressible as the difference of members of M (S) (631L), then
1y is a difference of uniformly continuous processes, therefore uniformly continuous, on A.

(c) (The key.) Suppose that S has greatest and least elements, M = ||i| o is finite and v is an L°°-
martingale. Then ||vs|l2 < [|[Umaxsll2 < |Umaxs|leo for every o € § (621Ca) and v is actually || ||2-bounded.
Let v* = (v}),cs be the quadratic variation of v. Applying 6241 with u = 1,

E(v}; ) = E((Vmaxs — vminS)z) < ]E(UrznaxS) < 0.

max S

Take any € > 0. Let § € ]0,1] be such that (2M +1)(6 + 2ME(v},,. s X xc)) < €% whenever fic < §. Take u,
w € A such that 0( [ |u —w|dv*) < §2. In this case, setting ¢ = [ [ [u — w|dv* > 6], ic < 6. Consequently

H/ lu — wldv*| §6+E(ch/ u — wldv") §6+E(xc><2M/dv*)
S S S

(because |u —w| < 2M1)

2

* €
=0+ E(xec x 2Mvy o s) < ST

We see that
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(u—w)? = |u—wl|u+w <2Mu —w|,

so || fs(u —w)?dv*||; < €. Now

wéu@—émmzwém—m@hwém—m@m

<| /s(“ —w)dv]l; = W /S(“ —w)2dv;

<e.

(6241 again)

As ¢ is arbitrary (and v* is non-negative and non-decreasing and near-simple, by 631Ja), v, is uniformly
continuous on A.

(d) Next, suppose that S has greatest and least elements and |||/« is finite. Take € > 0. Since
S = [min S, max §] is finitely full, order-closed in 7 and has a greatest member, there are an L>-martingale
¥ and a near-simple process v’ of bounded variation such that v # © +v'] < € (6430). Now

9(7/)11 (u) - 7/)1"1 (u) - 1/)1)’ (u)) < ,a[[wv (u) 7& 7/’6 (u) + 7/)1:/(“)]]
<pfv#v+0] <e

for every u € A, while ¢ + 1y is uniformly continuous on A, by (b) and (c). As € is arbitrary, 1, is
uniformly continuous on A.

(e) Suppose just that S has greatest and least elements, while @ is defined in L° and v is a near-simple
integrator. Let € > 0. Then there is an M > 0 such that gJa > M] < e. Set 41 = {u : v € My,,
luloo < M} and h(u) = med(—M1,u, M1) for u € A. Then |h(u) — h(w)| < |u — w| for all u, w € A,
so h: A — Ay is uniformly continuous; by (d), ¥ A; is uniformly continuous, so the composition 1,h is
uniformly continuous. Next,

0(tho(u) — Yo (h(u))) < Al (w) # ¥u(h(w))] < Alu # h(w)] < Ala > M] < e
for every u € A. As e is arbitrary, 1, is uniformly approximated on A by uniformly continuous functions
and is itself uniformly continuous.

(f) Finally, for the general case, suppose only that S is order-convex, A C M,,, is uniformly order-
bounded and that v is a near-simple integrator with domain S. If S is empty then #(A) < 1 and trivially
we have a uniformly continuous function. Otherwise, let € > 0. By 644F(a-ii), there is a 7 € S such that
SuPyea 0([5,. wdv) < € applying the other half of 644F (a-ii) to v[S V 7 and {u[SV 7 : u € A}, we see
that there is a 7/ € SV 7 such that sup,c 4 0([s,,,, dv) < e. (Of course this step depends on knowing that
v[S V 7 is a near-simple integrator, by 616P(b-ii) and 631F (a-iv), while ]S V 7 is moderately oscillatory
for every u € My, by 615F (a-i) again; clearly {u[SV 7 :u € A} will be uniformly order-bounded if A is.)

Now consider 8’ = SN [r,7'] = [r,7], v|S’ and {u]S’ : u € A}. From (e) and the last remark in (a)
above we know that there are a non-negative, non-decreasing process ¥ = (9 ),ecs and § > 0 such that
0([s u—u' dv) < e whenever u, u' € A and [, |u —u'|dd’ < 6. Define ¥ = (05)ses by setting

Vo = Upeq(rory X X([T < oln]o <7'1) + 07 x X[ < 0]

for o € S. Tt is straightforward to check that @ is fully adapted (use 612C), non-negative, non-decreasing
and order-bounded (with greatest value v’,), while #|S’ = v'; and by 631F(a-iv) again  is near-simple.
Suppose that u € A. Then

G(fsudv - fs/ud'u) = G(fSMudv + fsw,udv) < 2
by the choice of 7 and 7/. Now if u, u’ € A and 0( [ |u —u'|dD) < §, we shall have
9(]8, lu —u'|dv") = 9(f5/ lu —u'|dv) <6,

so that 0([5, (u—u')dv) < € and 0([5(u —u')dv) < 5e. As € is arbitrary, u — [gudv : A — L° is uniformly
continuous, and the proof is complete.
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644H Theorem Suppose that (;)er is right-continuous. Let S be an order-convex sublattice of
T and (un)nen a uniformly order-bounded sequence of moderately oscillatory processes with domain S
such that (w,<),en is order*-convergent in (L°)S. Then lim,, /. s Undv is defined for every near-simple
integrator v with domain S. If (4, < )nen is order*-convergent to u., where u is moderately oscillatory, then
limy, o0 [gUndv = [qudv.

proof If (ng)ren is strictly increasing and we set wi = |ty ,, — Un,| for each k, (wy)ren is a uniformly
order-bounded sequence of moderately oscillatory processes such that (wy<)ren is order*-convergent to 0
(apply the last sentence of 642Ba with g(«, 8) = |a—3]). So 644E tells us that limy_, oo fs wy, dv = 0 for every
v € M} (S). As (np)ren is arbitrary, limy, noo 0( [ [tin — Um|dv) = 0 for every v € M ((S). By 644G,
limy, n—soo [5%n — Umdv = 0 for every near-simple integrator v with domain S, that is, lim, o [ Undv is
defined for every near-simple integrator v with domain S.

If we know that there is a moderately oscillatory process u such that (u,<)nen order*-converges to
U, then we can apply the trick of 644E to a sequence alternating between u, —u and zero to see that
limy, o0 [gUn dv = [gudv.

644X Basic exercises (a) Let S be a sublattice of 7, and (¥n)nen = ((Uno)oes)nen a uniformly
order-bounded sequence in (L°)® which is order*-convergent to u € (L°)S. Show that u is order-bounded.

>(b) Give an example of a simple process v and a non-increasing sequence (u,)nen of simple processes,
all these processes having the same domain S, such that inf,cnu, = 0 but ( f s U, dv),en 18 not convergent
to 0. (Hint: take T = [0, 00[, 2 = {0,1}.)

(c) In 644G, show that the topology & described there is coarser than the ucp topology.

(d)(i) Suppose that U and V are linear topological spaces and T : U — V is a linear operator. Let A C U
be a non-empty set such that T'[(A — A) is continuous at 0. Show that T'[A is uniformly continuous. (ii)
Use this to simplify the formulae in the proof of 644G.

(e) In 644G, suppose that T = [0, 00[ and 20 = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb, 618Xa, 622Xd,
626Xa, 627Xa and 642Xd. Show that the topology & on M,.1,(7Tf) corresponds to the topology on the space

of bounded functions in C'* (615Xf) generated by functionals of the form f +— [ |f<|dv where v is a totally
finite Radon measure on [0, oo, taking f-(0) =0 and f(¢t) = limg f(s) for ¢t > 0.

644 Notes and comments The essence of the Lebesgue integral lies in the convergence theorems of
§123, all concerning limits of integrals of sequences of functions. Here for the first time in this volume
we have a corresponding result for limits of Riemann-sum integrals. The real content lies in the case in
which the sequence (u,),ecn of integrands is a non-increasing sequence of non-negative processes such that
inf, ey un<« = 0 and the integrator is non-decreasing (644C). Moving to the case of a uniformly order-bounded
sequence (U, )nen such that (U, <)nen is order*-convergent in (L°)S (644D) is not quite trivial, but is really
a result about positive linear operators on Riesz spaces. The point here is that M;,,(S) is a Riesz subspace
of (L)%, but is not as a rule sequentially order-closed.

To handle general integrators, the first step is to deal with L?-martingales (part (c) of the proof of 644G).
At this point it seems that we have to move up a gear, assuming right-continuity of the filtration and
order-convexity of the sublattice S (644G) so as to apply the Fundamental Theorem of Martingales. But
under these conditions we get a result more or less corresponding to the Lebesgue’s Dominated Convergence
Theorem (644H). When adapting this to define a second kind of integral (§645), it will be helpful to refer
to a new uniformity on the space of moderately oscillatory processes (644G). The point is that this is
much coarser than the uniformity corresponding to the ucp topology, but still makes integration uniformly
continuous on uniformly order-bounded sets.
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Version of 29.5.21

645 Construction of the S-integral

We are now in a position to define a sequentially smooth integral which corresponds, in a sense, to
Lebesgue-Stieltjes integrals on the real line. The objective is to integrate bounded previsible processes with
respect to near-simple integrators, and I set this up as a kind of Daniell integral (see 436Ya) based on
ideas in §644. Since simple and near-simple and mderately oscillatory processes, as I have defined them in
this volume, are often not previsible, we need to deal throughout with their previsible versions; and as our
integrals take values in L° rather than in R or C, we have to calculate with the functional # rather than
with a modulus or norm.

The key to the programme is really Lemma 644G. We saw there that (subject to certain conditions)
integration with respect to an arbitrary near-simple integrator is controlled by integration with respect to
appropriate non-decreasing processes. We can therefore do nearly all the work of the present section with
non-decreasing integrators, which are very much easier to handle, even though our real aim is to understand
integration with respect to martingales. With a non-decreasing integrator, as with an ordinary non-negative
measure, integration is a positive linear operator. This makes it possible to consAider upper integrals, which
are what, in effect, we have in Definition 645Bb. Based on the functionals 0 there, we have a linear
space topology Ts.; on a large space M1, of order-bounded processes (645F). As with ordinary integration,
unbounded sequences of integrands can be uncontrollable, so we have to find types of domination — preferably
weaker than simply assuming uniform || ||so-boundedness — which will be adequate to ensure convergence
of sequences of integrals. (See 645G-645L.) These bring us to a definition of what I call the ‘S-integral’ in
645P, in a form which makes it easy to check that it is bilinear in integrand and integrator (645Rb), and
with the tools to show that it is sequentially smooth in the integrand (645T).

645A Notation This section brings together many ideas, and there is a correspondingly long list of
notations to recall. As always, (2, i, T, (A)eer, T, () re7) will be a stochastic integration structure. For
a sublattice Aof T and 7 € T, AANT={oAT:0€ A} and AVT={oVT:0€ A}. L° = LO(A) (6124)
and O(w) = E(|w| A x1) for w € L° (613Ba). If k > 1 and h : R¥ — R is Borel measurable, I will write h for
any of the associated functions from (L°)* to L% (612A, 619E) and from ((L°)®)* to (L°)S (612B, 619F).

If S is a sublattice of T, u, v are processes with domain S, and I is a finite sublattice of S, then Sy (u, dv)
will be the corresponding Riemann sum (613Fb), Qs(dv) the capped-stake variation set (616B) and [qu dv
(if it exists) the Riemann-sum integral defined in 613H/613Na. 1(5) will be the constant process with domain
S and value x1.

If S is a sublattice of T, M, (S) is the f-algebra of order-bounded processes with domain S (614Fc); for
U = (Ug)oes € Mon(S), sup [u| = sup, s [Us|. Mmo(S) is the f-algebra of moderately oscillatory processes
with domain S (615Fa), and Mo (S)™T its positive cone. If 4 = (Uus)oes € Mmo(S), uc = (Ucy)oes will
always be its previsible version (641L). M, (S), Msimp(S) and M, 4(S) are the spaces of fully adapted, simple
and near-simple processes with domain S (6121, 612L, 631Fa). M, (S) is the cone of non-negative non-
decreasing near-simple processes with domain S (644Bb), and M, (S) is the space of processes of bounded
variation with domain S (614K).

645B Definitions Let S be a sublattice of T .

(a)(i) I will say that a fully adapted process  with domain § is previsibly order-bounded if there is
a non-negative ¥ € Myo(S) such that |z] < uc. Myo(S) will be the set of previsibly order-bounded fully
adapted processes £ with domain S.

(ii) I will say that a set A C Mpob(S) is uniformly previsibly order-bounded if there is a non-
negative 4 € M;o(S) such that |2| < u. for every & € A. A uniformly previsibly order-bounded set is
uniformly order-bounded in the sense of 644Bb, by 641G (a-vii-y).

(b) For & € Mpo,(S) and v € M (S), write 67 () for
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inf{sup 0( / Uy, dv) : (Up)nen is a uniformly order-bounded non-decreasing sequence
neN S

of non-negative processes in Mp,o(S) and |z| < supuy, < }.
neN

For the avoidance of doubt, perhaps I should say that the supremum here is to be taken in (L°)°, so that
(in the notation of 641F) we have |z,| < sup, ey Uun<o for every o € S.

(c) If v = (Vs)pes, V' = (V)ses are two fully adapted processes with domain S, I will write v < v’ if
v’ — v is non-decreasing, that is, v, — v, < v. — v whenever ¢ < 7 in S, that is, Av < Av’ where Av and
Av’ are the associated adapted interval functions (613Cc).

In this case, if u is any non-negative fully adapted process with domain S, fs'u,d'u < fs'u,d'v’ if both
integrals are defined (616R(b-i), applied to v' — v).

645C A standard fragment of real analysis didn’t quite get into §4A3.

Lemma (a) Let X be a metrizable space. Then the set of Borel measurable real-valued functions on X is
the smallest subset U of RX which contains every bounded continuous real-valued function and is such that
lim,, o0 hyy € U whenever (h,)nen is a sequence in U which has a limit in R at every point and which is
either non-decreasing or non-increasing.

(b) If K > 1 and h : R¥ — R is a locally bounded function, then there is a continuous non-decreasing
function g : R — [0, 0o such that |h(x)| < g(||x||) for every x € RF.

(c) If k> 1 and U is a set of real-valued functions on R* such that («) every continuous function belongs
to U (B) limy, o0 fr € U whenever (f,)nen is a pointwise convergent sequence in U and sup,, ¢y | f»| is locally
bounded, then every locally bounded Borel measurable function on R* belongs to U.

proof (a) (i) We know that the set of Borel measurable functions is closed under pointwise limits of sequences
(121E-121F) and that every continuous function is Borel measurable (4A3Cd), so every member of U is Borel
measurable.

(ii) In the other direction, we can argue as follows. Write C} for the space of bounded continuous
functions on X, and let V be the family of subsets V of R¥ such that C;(X) C V and V is closed under
monotone sequential limits. Then U = (V.

(@) If g € Gy, then it is easy to check that {h : h € RX, g+ h € U} belongs to V, so includes U.
Thus g +h € U for every g € Cp and h € U. Next, {g: g € RX, g+ h € U for every h € U} belongs to V,
so U is closed under addition. And if « € R, {h: h € RX ah € U} € V, s0o aU C U. Thus U is a linear
subspace of RX.

(B) If G C X is open then axG € U. P If G = X then xG € C}, and we can stop. Otherwise, let p
be a metric on X defining its topology, and set h,(x) = min(1,2"p(z, X \ G)) for n € N and z € X; then
(hn)nen is a non-decreasing sequence in Cj, with limit xG, so xG € U. Q

(v) Set E={E: EC X, xE € U}. Then & satisfies (i) of 136A, so is a Dynkin class; as it contains
every open set, it contains every Borel set, by the Monotone Class Theorem (136B).

(6) Because U is a linear subspace of RX | it contains any linear combination of indicator functions
of Borel sets. But any non-negative Borel measurable function is expressible as the limit of a non-decreasing
sequence of such simple Borel measurable functions, so belongs to U; and now every Borel measurable
function is the difference of non-negative Borel measurable functions, so belongs to U.

(b) For n € N, set v, = sup{|h(z)| : € R¥, ||z|| < n}; define g : R — [0, c0[ by setting

gla)=m fa <0,
=(a—n)Yr2t+n+1l—a)pt1ifneNandn <a<n+1

Then g is continuous and non-decreasing and |h(z)| < g(||z||) for every x.
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(c)(i) Take any continuous g : R¥ — [0,00[ and set V,, = {f : f € RR" med(—g, f,g9) € U}. Then V,
contains all continuous functions and is closed under sequential pointwise convergence, so contains every
Borel measurable function on R¥, by (a).

(ii) If now h : R¥ — R is any locally bounded Borel measurable function, there is a continuous g such
that || < g, by (b), while h € Vj, so that h = med(—g, h, g) belongs to U.

645D Lemma Let S be a sublattice of 7.
(a)(i) If zo,... ,Tx—1 € Mpop = Mpo(S) and h : RF — R is a locally bounded Borel measurable
function, then A(zo, ... ,2r_1) x 1) € Mo1; and if h(0,...,0) = 0, then h(zo,... ,Tx_1) € Mpor.
(ii) Mpo-p is an f-subalgebra of M,.1,(S).
(iil) u< € Mpo.1, for every u € Mo i (S).
(iv) If z € L°(AN (N, cs Ao) then zz (definition: 612De) belongs to M1, for every & € Miq.p.
(b) Suppose that v € M, (S). Then 6F is an F-seminorm and if z, &’ € Mpon, |z| < |z'| and o € R then
0 (z) < 6 (z') and 6] (oz) < max(1, |a|)6f (z).
(c) If now we have another v’ € M (S) and v < v’ in the sense of 645Bc, é\#(a:) < é\v,(z) for every
T c Mpo_b(S).

proof (a)(i) Let u € M, be such that Zf;ol |z;| < uc. By 645Cb, there is a continuous non-decreasing
g : R — [0,00[ such that |h(z)| < g(||z||) for every z € R¥; it follows that
|h(zg, ..., 2r_1) x 1| < gour x 1) = (gu)

(641Gd) and h(zo, ... ,xx_1) x 1) € Moy, If in addition h(0,...,0) = 0, then

h(zo,. .., xp_1) =h(xog x 1), ... 2,1 x 1))
= B($07 s axkrfl) X 1(§)
(by 619G (e-ii), because 1) x 1) = (15 x 15). = 1)
€ Mpo—b-
(ii) (o) If £ € Mpo.p, there is a non-negative 4 € My = Mo (S) such that |z| < u.. We know that u

is order-bounded, while sup |u<| < sup |ul, as in 641G(a-vii), so u« and & are order-bounded.
(B) As noted in 612Bc, (i) just above is enough to ensure that My, is an f-aslgebra.
(6) As in 612Bc, () and () are enough to ensure that My, is an f-algebra.

(ii) This is elementary; all we need to know is that |u| is moderately oscillatory and |u<| = |u|<
(641G(e-i)).

(iii) There is a u € M such that |z| < u.; now |z|u = |2|1 X u is moderately oscillatory (615F(a-iii))
and non-negative, and |zz| < |zlu< = (]z|u)< (641G (a-iv)), so zzx is previsibly order-bounded.

(iv) This was covered in (i-y) above.

(b)(i) 5#(:1: +z) < 5#(:1:) + 07 (z) for all ¢, £ € Mo P For any € > 0, there are non-decreasing
uniformly order-bounded sequences (u,,)nen, (Un)nen of non-negative moderately oscillatory processes, all
with domain S, such that

|| < sup,cyUn<, SUP,en G(fs u, dv) <0 (x) + ¢,

|Z| < sup,enUn<, SUD,ey 9(f8 U, dv) < 07 () + €.

Now (up, + Up)nen is a non-decreasing uniformly order-bounded sequence of non-negative moderately oscil-
latory processes, |T + | < sup, ey (%, + )< and
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0F (z + &) < sup 9(/ (un + @y,) dv)
neN S

< Sup(@(/s u, dv) + 9(/ i) dv) < 0F (z) + 0 (&) + 2¢.

neN S
As € is arbitrary, we have the result. Q
(ii) Suppose that £ € M. Let u € M| be such that |#| < u.. Then
laz| < |afuc = (Jafu)<

for every a, so

a—0 a—0

lim sup @f(am) < lim sup 0(/ |cv|u dv)
s
= lim sup H(a/ udv) = 0.
a—0 S

So 5# is an F-seminorm.

(iii) Immediately from the definition in 645Bb, we see that if z, £’ € Mpop and |z| < |2'| then
03 (z) < 03 ().

(iv) If (u,)nen is a non-decreasing sequence in M such that || < sup, cyUn<, then (Jafu,)en is a
non-decreasing sequence in M and |az| < sup,,cy ||t <, SO

07 (ox) < sup 6( |a\un dv)
neN

sup 0(|c| 'u,nd'v ) < supmax(1, |al])d (/ U, dv)
neN neN S

(613Ba)

— max(1, |a]) sup 9(/ w, dv).
neN S

As (up)nen is arbitrary, 0F (ax) < max(1, |a|) #(x); in particular, é\f(aa:) < é\f(x) if |a] < 1.
(v) If £ € Myo1, take a non-negative u € My, such that || <uc. For any a € R, |az| < |ajuc so
limsup,_,, 04 (az) < limsup,_,, H(IS |a|u dv) = limsup,,_,, 9(|a|f8udv) =0.
So all the conditions of 2A5B are satisfied, and é\f is an F-seminorm.

(¢) If (up)nen is a uniformly order-bounded non-decreasing sequence of non-negative moderately oscil-
latory processes with domain S and || < sup,cyUn<, then 0 < [su,dv < [gu, dv', so O([gu, dv) <
0([sun dv') for every n; consequently

0F (z) < SUP,,en G(fs U, dv) < sup,,cy 0(fs u, dv’).

As (u,)nen is arbitrary, 0#( z) < é\f(z)

645E The topology Ts;: Proposition Let S be a sublattice of T .
(a)(i) We have a linear space topology Ts.; on My, = Mpob(S) defined by the functionals 6% as v runs
over M (S).
(i) If £ € G € ., there are v € M (S) and a § > 0 such that {2’ : 2’ € Mo, 67 (z' —z) < 6} C G.
(iii) For any 7 € S, the coordinate projection (zs)ses — @7 : Mpon — LY is continuous for Tg; and
the topology of convergence in measure on L°.
(iv) g is Hausdorff.
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(v)(«) For any & € Mo, the map &’ — 2’ x & : Mpo, — Mpo.p, is continuous.
(B) If A C Mo is uniformly previsibly order-bounded, then (z,2') — 2z x &’ : A x A = My, is
uniformly continuous.
(vi) If z € LO(AN Noes o) then ' — zx" : My, — Mo is continuous.
(b) Let & be the linear space topology on My, = Mo(S) defined by the F-seminorms u — 6( [s |u| dv)
as v runs over M/ (S). Then u — uc : My, — Mo, is continuous for & and Tgi. Consequently
U= U My, = Mpop is continuous for the ucp topology on My, and Tg ;.

proof (a)(i) By 645Db and 2A5B, the functionals 0F  forv € M = M/ (S), define a linear space topology
on Mpo—b-

(ii) By the definition of Ts.; (2A5B, 2A3Fc) there are vy, ... ,v, € M and a § > 0 such that
{&' : 2’ € Myop, max;<y, 0f (x' —z) <6} CG.
Set v =" jv;; thenv € M and v; < v so 0f (z') > @\Zf (z') for every &' € Mo, and j < n (645Dc).
Accordingly {' : &' € Myor,, 0F (' —z) <6} C G.

(iii) Let v be the simple process defined on S by the formula in 612Ka, taking the breakpoint string to
be (7), the base value v, to be 0, and vy = x1. Observe that the starting value v, = limy s v, is x(1\ e;)
where e, = sup,¢s [0 < 7] (614Ba). Of course v is non-negative and non-decreasing.
If u = (uy)oes is a moderately oscillatory process, then

/'u,d'v =Ucr X (Vr — V)
S
(641)

= U<y X X€r = U<y

Let (Un)nen = ((Uno)oes)nen be any non-decreasing sequence in M,

o such that |z| < sup, cyUn<. Then
|77 < sup,en Un<r SO
0(zr) < sup,en 8(Uner) = SUP, ey G(fs Uy, dv).

As (up)nen is arbitrary, 0(z,) < (?# (). This shows that (x,),es + @, is continuous at 0. But as it is a
linear operator, it is continuous everywhere in My, p.

(iv) It follows at once that Tg; is Hausdorff, being finer than the topology induced on M., by the
product topology on (L°).

(v)(@) I noted in 645D(a-ii) that My, is closed under multiplication. Take v € M), and € > 0.
There is a u € M, such that |z| <u.. Let M > 1 be such that ji[sup |u| > M] < € then

[[su xudv>M [u dv] = [[s(u' xu— Mu)dv > 0] C [[s( xu— Mu')"dv > 0]
c (W xu— Mu')" #0]

(6133d)
C [sup |[u| > M]

for every u’' € M, so

mo’

H(fsu’ xudv) < e+ M@(fsu’dv)
for every u' € M. Now suppose that &’ € M- and 6F (z') < ﬁ Then there is a non-decreasing uniformly

order-bounded sequence (u,)nen in M, such that |2'| < sup, cyun< and 0( [qu, dv) < ﬁ for every n. In

this case, (u, X u),en is a non-decreasing uniformly order-bounded sequence in M, such that
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" x 2| < [2'] X uc < SUPpenUna X Uc = SUPen(Un X U)<,
SO
0 (z' x ) < SUDP,, ey Q(fs Uy, X udv) < 2e.
As v and € are arbitrary, the linear operator ' — z’ X  is continuous at 0, therefore continuous.

(B) Let u € M} be such that |z] < u. for every £ € A. Let G be a Tg-neighbourhood of 0. By
ii) above, there are a v € M and a § > 0 such that x € G whenever £ € M,,.;, and 9# z) < 6. By (a),
n- p

T — T X u. is continuous, so there is a Tg_i-neighbourhood G’ of 0 such that é\f (x xuc) < %5 for every
z € G'. Now suppose that &1, 2, ], £, € A and both 1 — 22 and 2} — z), belong to G'. Then

S

(@1 x &) — (T2 — 2)| < |21] X [2) — @] + |21 — 2 X |5
< [} — @] X uc +|z1 — o X uc
and
0 (w1 x 2}) — (2 x b)) < O (@) — ) x uc) + 05 (21 —22) X uc) <4,
so (&1 X x}) — (2 x xh) € G. As G is arbitrary, (z,2') — 2 x &’ is uniformly continuous on A x A.
(vi) This is the special case of (v-a) in which z = 21(5).

(b) We have pnly to look at the definition in 645Bb; 6 (u.) < ([ [u|dv) for all relevant u and v, so we
shall be able to apply 2A3H to see that u — u. is continuous for & and Ts.;. As for the ucp topology, this
is finer than &, because if v € M then 0( [gudv) < 6(sup [u| x sup [v|). So u — u is continuous for the
ucp topology and Tg;.

645F Definitions Let S be a sublattice of 7.

(a) I will call the topology Ts.; defined in 645E the S-integration topology on M1, (S). Asitis alinear
space topology (645E(a-i)), there is an associated uniformity (3A4Ad) which I will call the S-integration
uniformity.

(b) MJ(S) will be the Tg-closure of {u< : 4 € Myo(S)} in Mpon(S).

(c) Ms.(S) will be the set of fully adapted processes £ with domain S such that z x 1) € M2 (S).

645G Proposition Let S be a sublattice of 7, and Tg; the S-integration topology on Mpe.b, = Mpob(S).
If (€, ) nen is a uniformly previsibly order-bounded g ;-Cauchy sequence in Mo 1, then it is Tg j-convergent.

proof (a) By the definition of ‘uniformly previsibly order-bounded’, there must be a non-negative u €
Mo = Mino(S) such that |z, | <wu~ for every n € N. Express each ,, as (Tno)scs. Because the coordinate
projections from Mp,p to LY are continuous linear operators, therefore uniformly continuous (4A5Hd),
(Tpo)nen is a Cauchy sequence in L° for each o € S (4A2Ji), with a limit x, because L° is a complete linear
topological space (613Bh). Now & = (2, ),es is fully adapted (613Bl) and |2| < u< (613Bm), so £ € Myo-p-

(b) Take v € M (S) and € > 0. Then we have a non-decreasing sequence (ny)ren such that é\# (T —
Z,,) < 27%¢ whenever k, m € N and n;, < m. For each k € N choose a non-decreasing uniformly order-
bounded sequence (ug;)ien in M.}, such that |z, ,, —n,| < sup;eytric and sup;cy 0( [ up; dv) < 27F e,
Set wl, =2u A ;- Uky for m € N. Then (u],)men is a non-decreasing uniformly order-bounded sequence
in M7,. The point is that |& — &,,| < sup,,cyul,.. P Note first that for each 0 € S, 2, — 2p,0 =
limy o0 Tnyo — Tngo- This is a limit for the topology of convergence in measure, but as we know that

|z, | <uc for every k, we must certainly have
|xa - xnoo" S SupkeN 2u<0 A ‘xnko - xnoo
for every o. (Here I am thinking of u as (u,)scs and its previsible version 4« as (u<,)ses, in the manner

of 641E-641F.) Thus we have
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k—1
T — T, | <sup22uc Al|x,, — Tn,| <sup2uc A E [T, 1 — Zn,
k>1 E>1 —
7j=0
k—1 k-1
<sup2u- A E SUpUj;< = supsup 2u< A E Ujic

k>1 E>1i>k

j=0 = j=0

(because (4ji<)ien is non-decreasing for each j)

< supsupu;_ = supu,,.. Q
k>1i>k meN

(c) Accordingly, if n > ny,
0 (x — ) < 0F (1 — T0y) + 07 (T — Ty

<e+ sup 0(/ u,, dv) < €+ sup ZH(/ Upm dv) < Be.
meN S meN ;7 S

As e and v are arbitrary, z is the Tg;-limit of (2, )nen.

645H Theorem Let S be a sublattice of 7. Suppose that (z,)nen is a uniformly previsibly order-
bounded sequence in MJ; = M,(S) which is order*-convergent to z € (L°)®. Then z € MY, and (z,,)nen
converges to & for the S-integration topology ¥s_.

proof (a) The first thing to note is that if a sequence (z,)neny = ((Tno)oes)nen In Miy = Mg, (S) is order*-
convergent in (L°)° to £ = (7,)yes, and 7 € S, then (z,,,)nen is order*-convergent to z, in L%, therefore
convergent in the topology of convergence in measure (367Ma). So (z,)nen — @ for the product topology
on (L%, and € My, (613Bl). If moreover (x,,)ncn is uniformly previsibly order-bounded, that is, there is
au € M}, = My (S)" such that |z,| < uc for every n, then |2| < uc so 2 € Mpyot, = Mpo1r(S).

Secondly, if a sequence in Mp,.1, is simultaneously order*-convergent and Ts.;-convergent, the limits must
be the same, because the coordinate projections are Tg j-continuous (645E(a-iii)), that is, T is finer than
the topology induced by the product topology on (L°)®. And if a sequence in Mg_i is Tgj-convergent in
M1, its limit belongs to Mé)_i7 because Mg_i is defined to be a Tg_;-closure.

(b) So all we need to prove is that, under the conditions of the theorem, (&, )nen is Ts-convergent in
Mpo-1; and by 645G it will in fact be enough to show that it is Tg.;-Cauchy. Iseek to do this successively more
complex sequences (Z,)nen. First, suppose it is of the form (u,<)necn where (u,)necn iS & non-decreasing
sequence in M.} with an upper bound u € My,,. Then (z,,),en is a non-decreasing sequence with an upper
bound 1., so is order*-convergent to its supremum z in (L°)°, which is a fully adapted process (612Ia).

AsO0 <z <uc,x € Myyp. Ifve M (S), then ([su,dv),en is a non-decreasing sequence in L° with
an upper bound [ udv, so has a limit in L (613Ba) and is Cauchy. For any m € N,

0<z—-2z, < SUPy,>m Un< — Um<,s
SO
0F (x — x,,) < SUD,, >, Q(fs Uy, — Uy, dV).
Thus
lim,;, oo @\f(a: —Zp) < limy, 00 SUD, >4y, 9(f3 Uy, — Wy dV) = 0;
as v is arbitary, (&, )nen is Tg.j-convergent to .

(c) Suppose next that (z,),en is a non-decreasing sequence in (MJ,)", and that it is bounded above
by u. where u € M\ . Then again it is order*-convergent to its supremum z, and & € My,,. Take

v e M] (S). and € > 0. For each n € N, let u,, € My, be such that é\#(mn — U, <) < 27" For each n, set
u;, = med (0, sup,; <, u;,u); then
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z, —u, | = |med(0,supz;,uc) — med(0, supu;<,u<)]
i<n i<n
(641Ge)
n
< |supz; —supui<| <Y |@; —uicl,
i<n i<n i—0
s0

é\#(zn - u/n<) < Z?:o é\#(xz - ui<) < 2e.

Now we know from (b) that (u;,_),cn is Tsj-convergent, so there is an m € N such that (s (u, . —u,, ) <e

for every m > m; in which case ’0\# (X< — Zm<) < 5e for every n > m. As v and e are arbitrary, (€, )nen is
Cauchy, therefore convergent, and the limit must be z.

(d) Applying (c¢) to (x, — Zo)nen, we see that if (x,),en is a non-decreasing previsibly order-bounded
sequence in Mg_i, it will be Tg j-convergent; it follows at once that if (z,),en is a non-increasing previsibly
order-bounded sequence in Mso_i, it is Tg.j-convergent.

(e) Now let (z,)nen be any previsibly order-bounded sequence in M, which is order*-convergent to
x € (L%)%. For each n € N, set Z,, = sup;>,, T;, the supremum being taken in (L°). Then Z,, is the order*-
convergent limit of the non-decreasing seqaence (SUP; <y i) meN 0L Mé)_i, which of course is bounded above
in Myop because (z;)ien is, so T, € MJ;, by (d). We now see that (Z,)nen is a non-increasing sequence
in Mg_i, bounded below in M., which is order*-convergent to . So z € Mg_i and is the Tg ;-limit of
<§n>n€N'

Similarly, z,, = inf;>,, x; belongs to MSO_i for every n, and z is the Tg ;-limit of (z,)nen.

To see that z is in fact the Tg ;-limit of the original sequence (z,),en, take any v € M (S). If n € N,
then |z, —z| <Z, —z,, so

é'\Z;‘#(xn —z) < é\#(fn -z,)
<O0f@.—=z)+0f(x—z,) =0

as n — oo. As v is arbitrary, (&, )nen is topologically convergent to . This completes the proof.

6451 Corollary Let S be a sublattice of 7. If £ € Mpo(S) is a previsible process (642C), then
T € Mg = MZ(S).

proof Let u € M;,,(S)™ be such that |z| < u.. The set
{z' 12’ € (LY)S, med(—uc,z’',uc) € M2}

contains u’ for every u’ € M,(S) and is closed under order*-convergence, by 645H, so contains =
med(—u<, T, uc).

645J Proposition Let S be a sublattice of 7, k > 1 an integer and h : R¥ — R a locally bounded Borel
measurable function. Write MY, Mg for M2 ,(S), Ms.i(S).

(a) If X € (MQ,)*, then hX x 18 € MY,; if h(0,...,0) = 0, then hX € MY,.

(b) hX € Mg, for every X € Mé“l

proof Express X as (z;)i<). For any £ € M;,(S), write R(z) for £ x 1. By 645D (a-i), R(hX) € Mpop, =
Mo (S).
(a)(i) Let g : R* — R be a continuous function.

(@) If v € M (S) and € > 0, there is an M > 0 such that 67 (R(gX) — R(§X")) < €, where X' =
(med(—M1E) 2;, M1))); 1. P There is au € Mt = My,o(S)T such that |z;| <u. for every i < k. Set
@ = sup |u|, and let M > 0 be such that ji[a > M] < e. In this case, setting 2} = med(—M1$) z;, M1()),
we have
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@i — 2| = (Jo;| - M1D)T < (ue — M1E)* = ((w— M1E)T)..

So, writing X’ for (), <,

[R(gX) # R(gX")] < [9X # gX'] < sup [x; # z7]

(612Sc, 619Ec)
< [((w—M1®)T) . #0].

Next, |z}| < |®;| so &} € Mo, for every i, R(gX') € Mpor, R(GX) — R(gX') € Mpon and there is a
@ in M, such that |R(3X) — R(3X')| < <. Setting @, = @ A n(u — M1 for n € N, (@, )nen is a
non-decreasing uniformly order-bounded sequence in M and

|R(gX) — R(gX")| < sup,entic An(u< — M1E)* = SUpP,en Un< -
Accordingly

neN

< sup ifd, # 0] < af(u — ML)t £ 0] = ala > M] <,
neN

04 (R(GX) — R(gX") < sup( [ oy do) < sup pl i do 0]
S neN

as required. Q

(B) R(gX) € MJ,. P Take v € M (S) and € > 0. By («), there is an M > 0 such that, setting
X' = (2});icr where 2, = med(—M1&), z;, M1&)) for i < k, we have 6 (R(gX) — R(gX')) < e. Next, let
§ > 0 be such that 6 (§1)) < € (645Db), and 5 > 0 such that |g(3)—g(8")| < § whenever 8, 8’ € [-M, M]*

and |8 — f'||lec < m; setting K =1+ %SUPHBHMgM 19(B)|, we shall have [g(8) — g(8')] <6+ K||8 - f'll~
whenever 3, 3’ € [-M, M¥, while K > 1. For each i < k, because z; € Mg_i, there is a u; € Mo = Mimo(S)
such that 6f (z; —u;.) < %; set U' = (u})i<i, and U = (u]_);<x where u; = med(—M1) u;, M1) for
i < k. Note that w,_ = med(—M1$) u;., M1)) for i < k.

Since |z; —uj_| < |y —ui<], gf(m; —u;_) < % for each 4; since ||2}||oc and ||u}_||« are both less than

or equal to M for each i,

|R(gX") — gU| = |R(gX") — R(3U")|

(641Gd)
k—1
=R(IgX' —gU.|) < RS + K Y |2} — u;c))
1=0
k—1
e N
i=0
and

07 (R(3X) — gU")<) < 6 (R(gX) — R(gX")) + 0 (R(3X) — gU".)
k—1
< e+ 0F(019) + K 0F () —uic)
1=0
<e+e+ke=(k+2)e

As v and € are arbitrary, R(gX) € M2,. Q
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(ii) Now consider the space U of Borel measurable functions f : R¥ — R such that R(fX) € MY,.
Suppose that (fn)nen is a pointwise convergent sequence in U with limit f, and that g = sup, ey |[fn| is
locally bounded. In this case, |f,X| < gX for each n, while R(gX) € Mpop (645D(a-1)), so (R (fnX))nen
is a uniformly previsibly order-bounded sequence in Mg Also (f,X),en is order*-convergent in (L°)° to
fX, by 642Bd applied at each coordinate in S. So (R(fn,X))nen is order*-convergent to R(fX), and 645H
tells us that R(fX) € MJ;, that is, f € U.

Since we know from (i) that every continuous function from R” to R belongs to U, we see that our locally
bounded Borel measurable function & belongs to U, by 645Cc, and hX x 1) € M.

(iii) If A(0,...,0) = O then, as in part (a-i) of the proof of 645D, we can use 619Ge to see that
hX = hR(X) = R(hX) = R(hR(X)) = R(hX) € M2 ,.

(b) If X € Mk, then R(X) = (z

1 ><_1(<‘5),... zi, x 1)) belongs to (M2,)* and R(hR(X)) € MY, by
(a); but now 619G(e-i) tells us that R(hX) =

R(hR(X)), so hX € Ms..

645K Proposition Let S be a sublattice of 7, k > 1 an integer, h : R*¥ — R a locally bounded Borel
measurable function and z € LO(2AN (N, cs Ao)-

(a) M3, = MQ2,(S) is an f-subalgebra of My, (S) and zz € M2, for every z € MY ;.

(b) Ms; = Mg;(S) is an f-subalgebra of M,1,(S) and z& € Mg; for every & € Mg.;.

proof (a) Because the S-integration topology on M1, is a linear space topology (645E(a-i)), and {u< :u €
Mmo(S)} is a linear subspace of My, = Mpo-b(S), its closure MSO_i is a linear subspace (2A5Ec). Now 645Ja
and 612Bc, as usual, show that MY, is an f-subalgebra of Mp,p. Since 215 € Myo(S), 21 = (215)
(641G (a-iv)) belongs to M2 ., and if z € MJ; then

2z = (215) x = 215 x (1) x 2) = 218 x 2 € MY,
because Mé)_i is closed under Xx.

(b)(Q) If = (x,)rses belongs to Mg, then & x 1 ¢ M{, C Mpyoyp is order-bounded. Setting
€s =SUp,cg 0" < o] for o € S, as in 641Gb, we have

SUDyes [ X X(1\ €0)| = suplz x 1] = @

say defined in L°. Set e = inf,es €o.
Take any € > 0. If 0, 7 € S and 0 < 7, then e, C e, so there is a 7 € § such that fi(e, \ e) < e. Now if
oc€S,

[r<olueclo=7lues Clze] = |z-[]Ulzo| < w] C [lzo| < o]V w].

[o <7]\eCer\e.

But this means that {z, x x(1\ (e, \¢e)) : ¢ € S} is order-bounded in LY, while ji(1\ (e;\e)) > 1—¢. Ase
is arbitrary, {z, : 0 € S} is order-bounded, by 613Bp, and € M, (S).

(if) Ms; = {x : ¢ € M(S), £ x 19 € M.} is an f-subalgebra just because y — y x 1) :
(L°)S — (L%)S is a multiplicative Riesz homomorphism and M is an f-subalgebra of M, 1,. Similarly, if
z = (T,)ges € Mg, (22) x 1) = z(z x 12)) belongs to MY, so zx € Mg;.

645L Lemma Let S be a sublattice of 7. Give My, 1(S) its S-integration topology Ts.;. Suppose that
z € M2,(S).

(a) If u* € Mmo = Mmo(S) is such that || < uk, then A = {u : u € My, |u] < w*} is uniformly
order-bounded and

ze{uc:uec A} C{uc:u € Mpyo, sup [u| < sup|u*|}.

(b) There is a w* € My, such that & € {u< : u € Mgnp(S), |u| <w*}.

proof (a) Setting @ = sup |u*|, of course @ = sup, ¢ 4 sup |u|, so A is uniformly order-bounded.
If G is a neighbourhood of & in My, = Mpo 1 (S), there are a v € M = M (S) and a § > 0 such that
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{2/ 2’ € Mo, GAf(z’ —z) <4}
is included in G (645E(a-ii)). Since € MJ; = M2,(S), there is a u € My, such that oF (uc —z) < 6.
Consider v’ = med(—u*,u,u*). Then v’ € My, and v’ € A. Next, because the operation of taking
previsible version is a lattice homomorphism (641Ge again), u. = med(—u%,u.,u%). Since |z| < uk,
|t —ul | < |z —u.|and

0 (x —ul) <0 (@ —uc) <0,
sou_ €G.

Thus G meets {u< :u € A}. As G is arbitrary, € {u : u € A}.

(b) As & € Mo, there is certainly a u* € My, such that || < u*; again write 4 for sup |u*|, and now
let w* be the non-negative non-decreasing process defined from @ as in 614le, so that |u| < w* whenever
u € M, (S) and sup |u| < 4. Take any v € M and € > 0. By (a), there is a u € My, such that |u| < u*
and 5#(:1: —u.) <e

Let § > 0 be such that 6( [ |z|dv) < € whenever z € My, and f(sup|z|) < ¢ (616J, applied to Av). By
6150, we have a process w € My, (S) such that O(sup |w — u|) < § and sup |w| < sup Ju|. We can express w
as w’ —w"” where w, w” are order-bounded non-negative non-decreasing processes (614J).

Turn now to the construction in 617B. For any I € Z(S) we have a simple process w; = (wy,)ses defined
by saying that w; has a breakpoint string in I, w; and w agree on I, and 1\ sup,¢; [7 < o] € [wre = 0]
for every o € S; and we have corresponding processes w’, w7. Evidently w; = w} —w7. Now because w’ is
non-negative and non-decreasing, we must have 0 < w7 < w’ for every I € Z(S). Next, 617B(b-ii) tells us
that

S

fs w'dv = limpz fs w'dv,
that is,
0= lim]TI(s) fS w — w} dv = lim]TI(S) fS |'UJ/ — 'w}|d'v
Consequently
limmz(s) fS |’U) — 'lU[|d’U < limmz(s) fs(|w’ - ’U)II| + |’U)// - w’I’ )d’U = 0,

and there is an I € Z(S) such that fs |lw —w;|dv <€, while w; is a simple process.
At this point note that sup |wy| < sup |w]I| < sup |u|, so |wr| < w*, while

~ ~ -~

Qf(x—wk) < Gf(mfu<) +0#(u< —wic) < e+/ lu —w;|dv
s

§e+/\u7w|dv+/|wfw1|dv§26+/|u—w|dv§3e
S s s

by the choice of § and w. As e and v are arbitrary, € {u< : u € Minp(S), [u] < w*}.

645N I have spent all this time on Mg_i and Tg; because these can be described and investigated in
a very general context. But for the new integral, we need to restrict ourselves in a way which is already
familiar.

Lemma Suppose that (2;):er is right-continuous. Let S be an order-convex sublattice of 7. If u € M, (S)
and v € M (S), then 63 (uc) = 0( [ |u|dv).

proof (a) Setting u,, = |u| for every n € N, (u,,)nen is a uniformly order-bounded non-decreasing sequence
in M} and Ju<| < sup,cyUn<, SO

05 (u<) < sup,, e 0 [ undv) = 0( [ [uldv).
(b) Now suppose that (u,)nen is a non-decreasing uniformly order-bounded sequence in M. such that
[u<| < sup,entUn<. Then (U,<)nen is non-decreasing, so (Ju<| A Unp<)nen order*-converges to |u<|, that is,

((Ju] Ap) <) nen order*-converges to |u|<. Now (Ju| Awy)nen is uniformly order-bounded, so Theorem 644H
tells us that [ [u|dv = lim, . [ [u| Au, dv and
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O [ lul dv) = Timy, o0 0 [ [u] A, dv) < Timy, o0 0( [ un dv).

As (un)nen is arbitrary, 6( [ [u|dv) < 0F (uo).

6450 Theorem Suppose that (2;);cr is right-continuous. Let S be an order-convex sublattice of T,
and give Myo(S) its S-integration topology Tsi. If # € Mg;(S) and v € M, 4(S) is an integrator, then
there is a unique z € L° such that whenever A C M,,,(S) is uniformly order-bounded and e > 0 there is a
Tg.i-neighbourhood G of z x 1) such that §(z — fs'u,d'v) < e whenever u € A and u. € G.

proof Write R(x) € MY,(S) for z x 1),

(a) Let A be the family of uniformly order-bounded subsets of My, = Muo(S) such that R(z) €
{u< :u € A}. By 645L, A is not empty.

Define T : My, — L by setting Tu = [qudv for u € My,. For A € A, let F4 be the filter on My,
generated by sets of the form {u : u € A, u« € G} where G is a Tgi-neighbourhood of R(z). Then the
image filter T'[[F4]] on LY is Cauchy. P Let € > 0. By 644G, T'[ A is uniformly continuous for the uniformity
induced by the topology & on M,,, described there, so there are a v’ € M (S) and a § > 0 such that
0(Tu — Tu') < e whenever u, w' € A and [g|u —u/|dv’ < 0. Next, G = {y : y € Myo, = Mpon(S),
é\ﬁ(y — R(z)) < 16} is a neighbourhood of R(z), so F = {u:u € A, uc € G} belongs to Fa. If u, v’ € F,
then

/ fu— | = 6 ((u— )2
S
(645N)

~

and 6(Tu — Tu') < e. This shows that T[[F4]] contains a set of diameter at most € for the metric defined
by 6. As e is arbitrary, T[[F4]] is Cauchy. Q
(b) It follows that
za = Im T[[Fa]] = limy 7, [(udv

is defined. If A, A’ € Aand A C A’, then Far C F4 and lim,7,, fsud'v is defined, so this is also
limy, 7, fsud'v, that is, z4» = 24. If A, A’ are any two members of A, then AUA’ € Asoz4 = zaua’ = 2ar.
We can therefore define z € LY by saying that z = z4 for every A € A.

(c) Suppose that € > 0 and A C My, is uniformly order-bounded. If A ¢ A, then G = Mpop \ {u< :u €
A} is a neighbourhood of R(x), and certainly 6(z — [gudv) < e whenever u € A and uc € G. If A € A,
then there is an F' € F4 such that 0(z4 — fsud'v) < € whenever u € F. Now F must include some set of
the form {u:u € A, uc € G} where G is a neighbourhood of R(x), so we see that

0(z — fsud'u) =0(za — fsudv) <e
whenever u € A and u« € G.
(d) Thus we have found a z with the given properties. To see that it is unique, recall from (a) that there

isan A € A, and observe that z = lim,_, r, fs'u,d'u.

645P Definition Suppose that (;);cr is right-continuous and that S is an order-convex sublattice of

T.

(a) If z € Mg;(S) and v € M,(S) is an integrator, I will say that the element z of L defined as in
Theorem 6450 is fsm dv, the S-integral of & with respect to v.

(b) In these circumstances I will say that members of Mg ;(S) are S-integrable.
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(c) Note that if 2 is a fully adapted process with domain S, z is S-integrable iff 2 x 1) is S-integrable,
and in this case fsxd'u = fsx x 1) dv for every near-simple integrator v with domain S.

(d) If z is a fully adapted process with domain &, I will say that it is locally S-integrable if z|[SA T €
Msi(S A7) for every 7 € S.

(e) Following my practice with the Riemann-sum integral (613H), I shall allow myself to write §5 dv for
fs (z]S) d(v[S) whenever &, v are fully adapted processes such that S C domz Ndomw, z[S§ is S-integrable
and v[S is a near-simple integrator.

645Q Law-independence It is a while since I mentioned law-independence, but the question of which
features of a structure (2, i, T, (Ut)+e7) really depend on the measure fi, rather than just the measurable
algebra 2( and the filtration (;);cr, never goes away. I have done my best to express concepts and theorems
in terms which make it easy to see that they are law-independent. I have found however that some results
seem most naturally expressed in terms of the functionals 6 of 613Ba, and these need to be checked. In
many cases there is an obvious re-statement of a theorem in terms of the topology of convergence in measure,
which is safely law-independent. In the second half of §634, I introduced ‘coordinated’ subalgebras, which
are surely not law-independent, but they have been practically invisible since. I remind you that anything
involving martingales is not expected to be law-independent (though the property of being a semi-martingale
is), but the regions of accessibility and approachability in 643C are law-independent.

In 645E, however, we have a new formula involving 6. Just as ucp topologies are defined in terms of

~

functionals u — 6(u) = 6(sup |u|) (615B), 645E uses functionals
w s O (u) = inf(y, ), 0 SUD, 0(f$ u, dv).

But changing the measure on 2 just produces a new F-norm 9 on L which is equivalent to 8, so the F-norms
9# and 19# will be equivalent and induce the same topology s on Mpo.. Thus Tg i, the spaces Mg_i and
Mg ; and the S-integral are law-independent.

645R Theorem Suppose that (2;):cr is right-continuous. Let S be an order-convex sublattice of T.
(a) Suppose that u € My,o(S) and v € M, = M, 5(S) is an integrator.

(i) ue € MI;(S) and fouodv = [gudv.

(ii) If either v is jump-free or T' has no points isolated on the right, 5@5 Udv = fs U dv.
(b) f &, ' € Mg; = Mgs;(S), v, v' € M, are integrators, and « € R, then

foxt+a'dv= foxdv+ fox'dv, foxdv+v)= fsxdv+ fozdv,

fsaxdv = §sxd(ow) = a fsxdv.
(c)(i) If & € Mg, v € M (S) and z > 0, then §cxdv > 0;
(i) if z € Mg and v is a constant process with domain S, then f¢xdv = 0.

proof (a)(i) Directly from the definition in 645Fb we see that u. € M3, = M2 ,(S). Write Tg; for the
S-integration topology on Mo, = Mpob(S). Set z = $guc dv. If € > 0, then A = {u} is surely a uniformly
order-bounded subset of My, = Mpo(S), so there is a Tgi-neighbourhood G of u« in My, such that
0(z — [su' dv) < e whenever ' € A and u’_ € G; that is, 0(z — [qudv) < e. As € is arbitrary, z = [sudv.

(ii) Now 641T and 641W tell us that this will be equal to fs U dv if either v is jump-free or T has no
points isolated on the right.

(b) For x € Mg write R(zx) for  x 1.
(i) We know from 645Kb that az + ' € Mg;. Set
z= fexdv, 2= fsx'dv, Z= fsox+z'dv.

By 645L, there are uniformly order-bounded sets A, A" C M,,¢ such that R(z) € {u< :u € A} and R(z’') €
{u< :u € A’}. In this case, A + A’ is uniformly order-bounded and R(az + z') € {uc :u € aA+ A'},
because R is a linear operator and Tg; is a linear space topology.
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Take any € > 0. Then there are neighbourhoods G, G' and G of R(z), R(z’) and R(ax 4 z') respectively
such that

0(z — fsud'v) < ¢ for every u € A such that u. € G,
0(z — fsud'v) < e for every u € A’ such that u. € G/,

0(z — fsudv) < € for every u € A + A’ such that u € G.

Again because Ts ; is a linear space topology, we can suppose, shrinking G' and G’ if necessary, that aG+G’ C
G. Now we know that there are u € A, v’ € A" such that u« € G and u_. € G'. Set & = au + u'; then
@cad+ A and i € oG+ G CG. So

0(z — fsudv) <e 02— fsu’d'v) <e 0(Z- fsﬁdv) <e
But [gudv = o [qudv+ [gu' dv,so 0(Z—az—2") < 3e. As eis arbitrary, Z = az+2/, that is, §gar+a’dv =
afsxdv+ fox dv.

(ii) To see that fs is linear in the integrator as well as in the integrand, repeat the method, with slight
variations, as follows. Start with

2= fexdv, 2= fsxdv, Z= foxdlav+v).

Let A C M, _s be a uniformly order-bounded set such that R(z) € {u. :u € A}.
Take any € > 0. Then there is a neighbourhood G of R(x) such that

0(z — fsudv) <e, 9(z’—f8udv’) <e H(Z- fsud(av+v’)) <e
for every u € A such that u. € G. Since there is a u € A such that u. € G, and
afsudv+ fsudv’ = fsud(av+v’),
0(2 — az — 2') < 3e. As € is arbitrary, Z = az + 2/, that is, fszd(av +v') = a fsxdv+ foxdv'. So we
have both halves of the result claimed.

(c)(i) Since z x 1) > 0, and fsxdv = fsx 1%dw, it will be enough to deal with the case in
which z € M§;. Let u* € M be such that |z| < u%, and set A = {u : u € My, |[u| < u*}. By 645L,

x € {uc :u e A}. Let € > 0. Then there are a w € M (S) and a 6 > 0 such that 0( sz dv — [udv) < e
whenever u € A and 6 (x —u.) < 6. Now |u| € A and

[~ ful<| = llal — fu<l| < Jo —ucl, Bz — ful<) < Of(z—us) <0
(645Db), so O( fsz dv — [s [u|dv) < e. But [ |u|dv € (L°)" (616R(b-i) again). As € is arbitrary and (L°)*
is closed (613Ba), fsxdv € (L°)T, as claimed.

(ii) If v is constant, it is an integrator (616P(b-1)), and fgx dv is defined. Also [sudv = 0 for every
u € My, (613Lc), so sz dv = 0.

645S Theorem Suppose that (2;);cr is right-continuous and that S is an order-convex sublattice of T.
Give M{;, = M§;(S) and L° the S-integration topology Ts; and the topology of convergence in measure
respectively, with their associated uniformities. If v € M, 4(S) is an integrator, then z — fsmd'v t M2, —
LY is uniformly continuous on any uniformly previsibly order-bounded subset of MY ;.

proof Let A C MY, be uniformly previsibly order-bounded. Then there is a u* € M, (S)T such that
AC{z: |z| <ul}. Set B={u:ue M,(S), [u| <u'}; note that B and B — B are uniformly order-
bounded. Take € > 0. Then there is a Tg_;-neighbourhood G of 0 in Mg_i such that 0(f5 u dv) < € whenever
u € B— B and uc € G (6450). Let H be a neighbourhood of 0 in M{; such that H + H — H C G. If z,
z' € A and ¢’ — x € H, then there are u, v’ € B such that

T—u. €H, H(fsxdv—fsudv)ge,
' —u € H, G(fsm’dv—fsu’dv)ge
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(645L, 6450). In this case, u —u' € B — B and u« —u’. € G, so
G(fsx’d'v— fsxdv) §26+9(f8u’dv—fsudv) :26+9(f8u’—ud'v) < 3e.

As € is arbitrary, S-integration with respect to v is uniformly continuous on A.

645T Theorem Suppose that (;):cr is right-continuous. Let S be an order-convex sublattice of T.
Suppose that (2,,)nen is a sequence in Mg_;(S) such that (z,, x 1)) ,,cy is uniformly previsibly order-bounded
and (Z,,)nen is order*-convergent to x in (L°)°. Then z is S-integrable and fsz dv = lim,, fs x,, dv for
every integrator v € M, (S).

proof Write R(x) for  x 1) etc., as usual. By 645H, (R(2,))nen is Ts.-convergent to R(x). Since
{R(z)} U{R(x,) : n € N} is uniformly previsibly order-bounded, 645S tells us that

fsxdv = fs R(z) dv = lim,—, fs R(z,) dv = lim, o0 fg z, dv.

645X Basic exercises >(a) Suppose that (;)er is right-continuous, and that S is an order-convex
sublattice of 7. Show that if A C M, _¢(S) is uniformly order-bounded, then it is bounded above and below
in M,s(S). (Hint: show that if @ > 0 in L°, and we set u, = sup{u : u € L°(2,), u < u} for 0 € S, then
(ug)oes satisfies the conditions of 632F.)

(b) Suppose that T' = [0,00[ and 2 = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb, 618Xa, 622Xd, 626Xa,
627Xa, 642Xd and 644Xe. (i) Show that Mo, (T7) corresponds to the space V of bounded functions
f 10,00 = R such that f(0) = 0. (ii) Show that the S-integration topology on My, (7f) corresponds to
the topology on V' generated by functionals f — [ f dv where v is a totally finite Radon measure on [0, col.
(iii) Show that MY ;(7;) corresponds to the space W = {f : f € V, f is universally measurable}. (iv) Show
that if f € W corresponds to £ € M2, g : [0,00[ — R is a non-decreasing function of bounded variation
which is continuous on the right and v is the process corresponding to g, then fo zdv = [ fdv, where v,

is the Lebesgue-Stieltjes measure on [0, co[ defined from g.

(c) Suppose that (A;)ier is right-continuous. Let S be an order-convex sublattice, and (w,)nen & uni-
formly previsibly order-bounded sequence of jump-free processes with domain S which is order*-convergent
to a jump-free process u. Show that lim,_, |, sUndv = /. gudv for every near-simple integrator v with
domain S.

645Y Further exercises (a) Let S be a sublattice of 7. (i) Show that < (645Bc) is transitive and
reflexive, that is, is a pre-order on Mg, = Mg, (S) in the sense of 511A. (ii) Show that if = is the associated
equivalence relation, then the set Mg, /= of equivalence classes can be thought of as a partially ordered linear
space in the sense of §351. (iii) Taking My, C M, to be the space of processes of bounded variation, show
that if v € My, and v’ = v then v’ € My,,. (iv) Show that the image of M}, in M /= is a Dedekind complete
Riesz space in the sense of §353.

(b) Find an example of a sublattice S with a least element and an order-bounded fully adapted process
T = (25)ses such that zmins = 0 but £ ¢ M,01,(S).

645 Notes and comments In 645P we have at last arrived at something like the standard stochastic
integral as described in ROGERS & WILLIAMS 00 and PROTTER 05. In particular, we have a dominated
convergence theorem (645T). The S-integral is not an extension of the Riemann-sum stochastic integral of
§613. They are linked by the formula §u.dv = [udv of 645Ra. But integrands for the Riemann-sum
integral need not be previsible, and integrators need not be near-simple. It is true that we shall often have
f$ucdv = [uc dv (645R(a-ii)), but this is a touch accidental, and the theorems I have offered concerning
the Riemann-sum integral are mostly unconcerned with this phenomenon.

I said in the introduction to this section that I was trying to define an integral which would look like a
Lebesgue-Stieltjes integral. For a non-decreasing integrator, the S-integral is indeed of this type, at least if
T = [0,00[. But the purpose of this volume is to look at integration with respect to martingales, and here
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the analogy is too weak to be useful. Only if we suppress martingales altogether, as in 645Xb or 649L, do
we get a direct correspondence. The wonder is that we can devise any kind of sequentially smooth integral
with a martingale integrator.

The definition of MY, in 645F corresponds to a kind of universal measurability, as in 645Xb, but with an
extra boundedness condition. Typically, theorems involving the S-integral, when they speak of uniformly
order-bounded families, require families included in sets {2 : |2|x 1. < u.} where u is moderately oscillatory,
rather than just {z : sup |z| < @w}.

This section is based on a discussion of the properties of previsible versions . of moderately oscillatory
processes u. It is therefore worth noting that in the context of the principal results here, it would have been
enough to start from near-simple processes u (642M).

Version of 21.2.22
646 Basic properties of the S-integral

Having defined the S-integral as an adaptation of the Riemann-sum integral for previsible processes
(6450, 645Pa, 6451), it is natural to look for parallels to the properties of the Riemann-sum integral set out
in Chapters 61-63. After a few easy remarks (646B-646D), I embark on the question of splitting a domain S
into SA T and SV 7 (646J). This leads naturally to an examination of indefinite S-integrals (646K), which
I approach through a result on capped-stake variation sets for martingale integrators (646P). We have a
change-of-variable theorem (646R), a formula for jumps in an indefinite S-integral (646S) and a version of
It6’s formula (646T).

646 A Notation As in §645, I shall be calling on a substantial part of the special notation developed
in this volume. (2, i, T, (At)ter, T, (Ar)re7) will be a stochastic integration structure, with its associated
Riesz space L° = L%(2A), endowed with the linear space topology of convergence in measure and the defining
F-seminorm 6 where 6(w) = E(Jw| A x1) for w € L° (613Ba). T write L}, = L'(2, i) for the L-space of
members of L° with finite expectation. For ¢ € T, P, : L,lz — L}-L will be the conditional expectation
associated with 2,. We have the algebras s, for sublattices S of 7 and 7 € T (641B). If S is a sublattice
of Tand 7 € §, I write SAT and SV 7 for {c AT :0 € S} and {o V7 : 0 € S} respectively, and Z(S)
for the upwards-directed set of finite sublattices of S. 1(5) will be the constant process with domain S and
value x1.

For a process 4 = (u,)yes € (L°)°, I write [u # 0] for sup,cg [u, # 0] (612Sb); if u is order-bounded, I
write sup |u| for sup,cs |[us|; if sup [u] € L>(A), I write |[u|loo for ||sup |u|||cc = sup,cs ||Uslloo- If w and v
are fully adapted processes and I is a finite sublattice of domu Ndomw, then S;(u, dv) is the Riemann sum
described in 613Fb. If v is a fully adapted process and S is a sublattice of domw, Qs (dv) is the capped-stake
variation set described in 616B. For processes v, v’ with the same domain I say that v < v’ if v — v is non-
decreasing (645Bc), and in this context v = v’ if v’ — v is constant. An L2?-process is a process 4 = (Uy)yes
such that u? € L}, for every 0 € S (622Ca). If u = (ug)ses is a process and z € LO(AN[),csAo), then
2u = (2 X Ug)oes (612De). For a moderately oscillatory process w, u< is its previsible version (641L).

For a sublattice S of T, Mg, (S) is the space of fully adapted processes with domain S, Mgimp(S) C Mg (S)
the space of simple processes (612L), M,,(S) the space of order-bounded processes (614Fc), M,0(S) the
space of moderately oscillatory processes (615Fa), M, <(S) the space of near-simple processes (631Fa),
M (8) the cone of non-negative non-decreasing near-simple processes (644Bb), M; ¢(S) the space of jump-
free processes (618G) and Mpo(S) the space of previsibly order-bounded processes (645Ba). On M, (S)
we have the ucp topology (615B) and on M, 1,(S) we have the S-integration topology Ts.i; MJ(S) is the
Tgi-closure of {u~ :u € Myo(S)} (645F), and Msi(S) is {z : x € M1,(S), z x 1) € M (S)} (645Fc).
Ifve M (S), 6 is the corresponding F-seminorm on Mpob(S) (645Bb).

Finally, we shall be looking at both Riemann-sum integrals [¢u dv (613L) and S-integrals §q x dv (645P).
For the former case, our default assumption is that u is moderately oscillatory and v is an integrator (616K);
in the latter, that (2;):c7 is right-continuous (632B), S is order-convex, £ € Mg ;(S) and v is a near-simple
integrator.

646B Lemma Let S be a sublattice of 7. If £ = (2,)5es € MSO_i(S) then z, € L°(™Us<,) for every
TeS.
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proof Define v = (v,)s,es by saying that v, = x[r < o] for ¢ € §. Then v is a non-negative order-
bounded non-decreasing simple process with breakpoint string (7), so belongs to M (S). If € > 0, there
isau = (Us)oes € Mmo(S) such that o (x —u<) < e. Now there is a uniformly order-bounded non-
decreasing sequence (U, )nen = ((Uno)oes)nen of non-negative moderately oscillatory processes such that
|2 —u| < sup,eyne and sup, oy 0( [ un dv) < e. In this case, [, —u<r| < Sup, ey Un<r, While (Un<r)nen
is a non-decreasing sequence and sup,, ey 0(un<-) < € (using 641J). So 0(z, — u<,) < e. We know also that
Uer € L°(™As<,) (641G(a-i)). As € is arbitrary and L°(Rs,) is closed, x, € L°(As<,).

646C Proposition Suppose that (2;);cr is right-continuous. Let S be an order-convex sublattice of T,
an S-integrable process and v a near-simple integrator, both with domain S. Then [ §5 dv # 0] C [v # 0].

proof Set a = infyes [v, = 0] and z = sz dv = fzx 1) dv. By the definition of the S-integral in 6450-
645P, there is for any € > 0 au € My,o(S) such that 0(z — [sudv) <, so that 6(z x xa—xa x [sudv) <e.
But xax [gudv =0 (613Ld), so 8(zx xa) < e. As eis arbitrary, #(zx xa) = 0and [z # 0] € 1\ a = [v # 0].
Remark It seems to be harder to match the other half of 613Ld; see 647J. But we have the following easy

remark.

646D Proposition Suppose that (;):c7 is right-continuous. Let S be an order-convex sublattice of T,
x a member of Mg (S), and v a near-simple integrator with domain S. If z € LY(2(N Nyes o), then

fszzdv = fsmd(zv) =z X fsxd'v.

proof (a) To begin with, suppose that € M2, = MJ,(S). In this case, z& € MJ, (645Ka), and if
u* € M = Myo(S)™ is such that || < u¥, then |zz| < (|z|u*)< (see the proof of 645D (a-iv)). Also zv is
a near-simple integrator (631F (a-v), 616P(b-iv)). Let € > 0. Then there is a § > 0 such that 6(z x u) < e
whenever (u) < 0. Setting A = {u : u € My, [u] <u*} and A" = {u : u € My, |u| < |z|u*}, we have
Tg.i-neighbourhoods G, G’ of x, zx respectively such that

o( fsxd(zv) - fsud(zv)) < e whenever u € A and u. € G,
G(fsa:dv - fsudv) < ¢ whenever u € A and u € G,

O(fszxdv— fsudv) < e whenever u € A’ and u. € G';

and because ' — 2z’ is continuous (645E(a-vi)), we can suppose that z&’ € G’ whenever ' € G. Now there
is au € A such that u. € G, in which case we shall have

G(fsmd(z'v) - fsud(z'v)) <,
0(z x fsxdv—zxfsudv)ge,

G(fs zx dv — fs 2udv) < e,
and moreover
fsud(zv) =z X fsud'v = fszudv
(613L(b-ii)). So
H(fsxd(zv) —z X fszdv) < 2, 9(}38 ze dv — 2 X fszdv) < 2¢;
as € is arbitrary, the three expressions are equal.
(b) For the general case of £ € Mg ;(S), we have
forzxdv = §(2x) x 18 dv = §s 2(z x 19))dv,

fozd(zv) = fox x 19 d(2v), z2x foxdv=12x fox x1E) dv,

while £ x 18) € MY, so (a) tells us that these three terms are equal.
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646E It will be convenient to have a partial expression of the continuity of S-integration in a more
precise form than those offered in §645.

Lemma Suppose that (;):e7 is right-continuous, S is an order-convex sublattice of T, and v € M} (S).
If z € MY,(S), then 0( §sz dv) < 07 (z).
proof Let ¢ > 0. Then there is an order-bounded non-decreasing sequence (u,)nen in My (S)T such that
2| < sup,,enUn< and sup,,cy O( [ undv) < 0F () +e. We are supposing that & is previsibly order-bounded,
so there is a 4 € Mo(S)™ such that |z| < wu.. Set u), = u Aw, for each n € N. Then

|£L'| S U< A SUPen Un< = SupneN(u< A un<) = SuanNu;z<
(641G(e-i)), so

0< |j{mdv| < % lz|dv < %(supuiK)dv
S S S neN

(because fs ..dv is a positive linear operator, by 645Rc¢)

= sup j{u;Kdv
neN J§

(645T, because (u], _)nen is uniformly previsibly order-bounded and order*-convergent to its supremum)

= Sup/u%d'v < sup/und'v
neNJS neNJS

and

0( fsx dv) < O(sup,,cy fs u,dv) = sup, ey G(fs wndv) < 0 (z) + €

As ¢ is arbitrary, we have the result.

646F Lemma Let S be a sublattice of 7, and 7 a member of §. Suppose that ' = (ul)sesar and

u’ = (u"),esy, are families in L°. Define R(u',u") € (L°)S by saying that R(u/,u") = (us),cs where

Ug = ULnr X X[o < T]+uly, x x[T < 0]

for o € S.
(a)(i) R/, ”)[S AT =1+ 2z, where z = ((u — ul) x x[o = T])sesnr-
(ii) (’ u")ISvT=u".
(b) Regarded as an operator from (L)% x (L)SV7 to (L°)S, R is linear, positive and order-continuous.
(c) If w' and u are fully adapted, then R(u’,u") is fully adapted.
(d) f'u, and ¢ are order- bounded, then R(u',u") is order-bounded and sup |R(u’, u”")| < sup |[u'|Vsup |u
(e) Suppose that u’ and u” are moderately oscillatory.
(i) R(v',u") is moderately oscillatory.
(i) . = R(u',u")<[S A T.
(f) If v’ and u” are near-simple, R(u’,u") is near-simple.
(g) Suppose that w4’ and u” are moderately oscillatory, and that v is an integrator with domain S. Then

fs R/, u")dv = fSM u' dv + fSVT u” dv.

proof Throughout the proof I will write u for R(u’,u”).
(a)(i) Forc e SA T,

//‘

s X x[oe < 7] +ul,, x x[r < o]
= ug + (u] —uy) x x[o = 7].

(ii) Forc e SV,

X xlo <7l +ugy. x x[r <o = ug.

D.H.FREMLIN



84 The S-integral 646F

(b) We just have to observe that, for any o € S,

(u’,'u,”) — (u/ u” ) . (LO)S/\T x (LO)S\/T — LO X LO

oNT)» YoVT

is linear, positive and order-continuous, and so is

(', u") = u' x x[o < 1] +u x x[r <o) L° x LY — L°.

(c)(i) If 0 € S, then ul, ., € L°(RAyp,) C LO(A,); [o < 7] € A, s0 x[o < 7] € L°(A,); and

oNT

u:)"\/T X X[[T S U]] = u:)"\/T

x xlo VT =o0]
(611E(a-ii-8))
e L°(2A,)

by 612C. So u, € L°(2,).
(ii) If o, 0’ € S then

[c=0d]clonT=0dAT]n[oVT=0"VT]
\((Ie <lafe’ <7hu(lr <ol afr <o)
(611Ec, passim)
C [uonr = ugin N [ugy, = ugz.]
nlxle < 7] =xlo" <7llnlxlr < o] =x[r < ']
C [uo = uo].

So R(u',u") = (us)ses is fully adapted.

//|
)

(d) Setting @ = sup |[u'| V sup |[u”|, we have

luo| = ugn, X x[o < 7]+ ugy, x x[7 < o]
11

|
= (e | X xlo < TV (| % ] < 1)
< (ax xlo <)V (@x xIr < ol) = @

for every o € S.

(e)(i) Use (a). The process z = ((u” — u.) X x[o = T])sesar is simple (612Ka), so u[SAT =u' + 2z is

T

moderately oscillatory, while u[S V 7 = 4" is also moderately oscillatory. By 615F(a-v), u is moderately
oscillatory.

(ii) By the formula in 6411a with 70 = 7, 2« = 0, so

u[SAT=W[SAT)<
(641G (c-ii))
=ul + 2.
(641G(e-1))

(f) Again, if 4’ and u” are near-simple, so are u[S V 7 = u” and u[S A7 = u’ + 2, because z is simple;
so R(u',u") is near-simple, by 631F(a-iv).

(g) Since u is moderately oscillatory, fsud'v is defined and equal to fSATud'v + vaT“d” (613J(c-1)).
Now [g,, udv = [s, u"dv because u” =u[SV 7. As for [5. udv, observe that if v, = limy|s v, then
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" !/

/ zdv =limu] x x[o = 7] x (v; —vy) + () —ul) x (v; — v;)
SAT olS

(614C)

" . o -
= x(int o = 7]) % (0 = v,)

=0

because inf,es [o = 7] C [vy = v,]. So

fS/\TUdv = fS/\TU/ dv + fS/\TZdv = fS/\TU/ dv
and

fSUdv = fS/\TUdv + vaT’U,d'U = fS/\TU/ dv + fS\/T UN d’U,
as claimed.

646G Lemma Let S be a sublattice of 7, and 7 a member of S. Suppose that v/ = (V) )scsnr €
M (SAT)and v = (V) gesyr € M (S V T).

(a) There is a v = (v,),es € M (S) such that v =v[SV 7.
(b) There is a v = (v, )pes € M .(S) such that

v =v|SAT, v/ =v[SVT.
(c) If w € M (S), there is a v* € M, (S) such that

w=<vY, vV=vSAT, v v SV

proof (a) In the language of 646F, set v = R(0,v”), where 0 is the zero process with domain S A 7. By
646Ff, v is a near-simple process; the defining formula

Ve = Uy, X [T < 0]

shows that v[S V 7 = v” and that v is non-negative and non-decreasing. Now we know that v" is order-
bounded (616Ib), so sup [v| = sup Jv”’| is defined. Thus v is order-bounded; being monotonic, it is an
integrator (616Ra).

(b) Set
v =v"+ (v —v)LISV T = (v + 0! — v sesvrs
so that o' € M (S V 7).

Now set v = R(v',9"), where R : (L°)° " x (L)%™ — (L°)% is defined as in 646F. By 646Ff, v is
near-simple. v is non-negative because v’ and ¥’ are non-negative. v is non-decreasing because if o < ¢’ in
S,a=[o' <7],b=[o <7]\aand ¢ = [r < o] then

Vo = U X X0+ Uypp X xbF (V) — 0+ 0l,) X xC
< Ugipr X Xa + 0 X Xb+ (V7 — v +vg0y,) X xC
< Vginr X Xa + (Vr = 0f +0gy0) X XD+ (v = v+ vgy,) X xE = g
If c € S AT, then

Vo = Vgp, X X[o < 7]+ (v — v +v5y,) x X[ < o]

= vzlj/\‘r X X[[U < T]] + (v'/r 7”‘/1'/ +vz/7/\/‘r) X X[[T = J]]
= pr X X[o < 7]+ 0. X X[ = 0] =,
sov' =v|SAT. If 0 <o’ in 8V T then of course

Vor = Vg = (vp — v 7)) — (v — v +vg) = vy — g,
sov|SV 1 =v". Finally, as in (a), v is order-bounded, therefore an integrator.

(c) Take v as in (b) and set v* = v +w.
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646H Lemma Let S be a sublattice of 7, and 7 a member of S. For u = (uy)ses € (L°)S define
R*(u) € (L°)SV™ by saying that
R*(u) = (uy x X[7 < 0])oesvr = @[SV T) x 1EVT),

(a)(i) R* : (L°)S — (L°)SVT is an order-continuous f-algebra homomorphism.
(ii) If w € (L°)S is fully adapted, then R*(u) is fully adapted.
(iii) If w € Moy, (S), then R*(u) € Mo,(S V 7) and sup |R*(u)| < sup |ul.
(iv) If u € Myo(S) then R*(u) € Myo(SV 7).
(v) Ifz,u € (L°)°, 2[SAT <u[SATand R*(z) <ul[S VT, then z < u.
(b) If u € Mo(S), then (u|SV 1) = R*(u<).
(c) SuppObe that & € Mpo(S). Write 2’ for ]S A 7.
(i) &' € Mpor(SAT) and R*(z) € Mpor (S V 7).
(ii) If v € M} (S) , and we set v/ = v[S A7 and v” = v[S V 7, then
max(07; (2'), 07, R* (x)) < 6 (x) < 07 (') + 6], R* (=)

(d) f £ € Mg ;(S) then 2]SAT € Mg i(SAT)and ]SV T € Mg;(SV 7).

proof (a)(i) Immediate from the facts that [7 < o] € U, for all 7 and o, and if @ € A then u — u X xa is
an order-continuous f-algebra homomorphism from L° to itself.

(ii) If w is fully adapted, then u[S V 7 is fully adapted (612Dc). Next, = (x[7 < 0])sesv- is fully
adapted, because if o, ¢/ € SV 7 then

IxXl[t <ol #x[r<d]l=[r<o]a]r<d]
does not meet [o = ¢’], by 611E(c-iv-8). So R*(u) = (u|SV 7) x  is fully adapted.
(iii) This is just because |uy, X x[7 < o]| < |ue| < sup |u] for every o € SAT.

(iv) 1(5V7) is constant therefore moderately oscillatory, so 1(Y™) is moderately oscillatory (641L),
while [ SV 7 is moderately oscillatory (615F (a-i)); so the product R*(u) = (u[SV 1) x 1Y) is moderately
oscillatory (615F (a-iii)).

(v) Express z, u as (T5)ses and (Ug)oes. For o € S,
To X X[o < 7] = 2onr X X[0 < 7] < Ugpr X [0 < 7] = up x x[o < 7]

and

To X X[T < 0] = Tovr X X[T < 0] < Upvr X X[T < ]
(because R*(z) <ulSVT)
=u, x X[t < o],

S0 Ty < Uy
(b) This is covered by 641G(c-ii).

(c)(i) Let u € Mp,o(S)T be such that |z] <u.. Then u|SAT € Mpo(SAT) and ulSV T € Mpo(SV T)
(615F(a-1) again), while (u[SAT)c =u[SA T and (u[SV 1) = R*(u<), by 641Ge. So

leISAT| < W[SAT)<, Z[SATE Mpor(SAT),
[R*(z)] = R*(|]) < R*(u<) = (w[SVT)<, R (@) € Mpon(SV 7).

(ii) Observe first that v’ and v are non-negative non-decreasing near-simple integrators (see 631F (a-iv)
and 616P (b-ii)).

() Let (wy)nen be a uniformly order-bounded non-decreasing sequence of non-negative moderately
oscillatory processes with domain S such that |2 < sup,,cyUn<. Setting ' = 2[SA T, v/ =v[S AT and
u;, = u, [S A7 for each n, we have u;, . = u,[S AT for each n (641Gc again), so

MEASURE THEORY



646H Basic properties of the S-integral 87

|z'| < sup,enUn<[S AT =sup,cyul, .,

while (u/,),en is a non-decreasing sequence of non-negative moderately oscillatory processes (615F(a-i) once
more); also sup |ul,| < sup |u,| for each n, so (u])nen is uniformly order-bounded. Accordingly

0% (x') < sup 9(/ ul, dv')
neN SAT

neN neN

= sup 9(/ U, dv) < sup 9(/ Uy, dv)
SAT S
because v is non-decreasing and u,, is non-negative, so

0§fSATundv:fsundv—vaTundvSfsund'v

for every n. As (up)nen is arbitrary, 53% (z') < 6F ().

(B) The same line of argument works in S V 7. Again, let (u,)n,ecy be a uniformly order-bounded
non-decreasing sequence of non-negative moderately oscillatory processes with domain S such that |z| <
SUP, N Un<- This time, setting v = v[S V 7 and 4], = u,,[S V 7 for each n, we have u;, . = R*(u,<) for
each n ((b) above), so

|R* ()| < sup R* (un<)
neN

(recall that R* is an order-continuous lattice homomorphism with domain (L°)%)
= supu;, .
neN

As in («), (ul')nen is a uniformly order-bounded non-decreasing sequence of non-negative near-simple pro-
cesses. Accordingly

0%, R*(x) < sup 6( / u’ ")
neN SVt

= sup 0(/ U, dv) < sup@(/ U, dv).
SVt S

neN neN
As (up)nen is arbitrary, é\f, R*(z) < 6f ().
(v) Thus
max (07 (2'), 07, R*(x)) < 6F (x).

o
As for the other inequality, let (u])nen, (u))nen be uniformly order-bounded non-decreasing sequences
in Mio(S AT)T, Muo(S V 7)T respectively such that |2'| < sup,cyul,. and |R*(z)| < sup,cnul .. Set
u, = R(ul,u) for each n, where R is the operator defined in 646F; then (u,)nen is a uniformly order-
bounded non-decreasing sequence in My, (S) (646Fb, 646Fd, 646F (e-i)). Now || < sup,,cy Un<. I Express

Z as (To)oes, Un 88 (Uno)oes; Unc 85 (Un<o)oes and ul, - as (U], _,)sesnar for each n. If o € S, then

|zo| X X[o < 7] = |Tonr| X x[o < 7] < Sugun<(0/\‘r) x x[o < 7]
ne

= supUn<s X x[o < 7]
neN

because
/ ! —
2| < sup,enU,o = SUP ey Una [S AT

(641Gc once more) and u, < is fully adapted. We also have

|z, | x X[T < 0] = |Tov-| X X[T < 0] < S‘ég“%qaw) x x[r < o]
n
(because |R*(x)| < sup,,en Uy )
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7 "
= sup un<(a'\/7') X X[[T < U]] = SUpP Up g X X[[T < Uﬂ
neN neN

because ul,. = R*(un<) for every n, by (b) above. So |z,| < sup,cyun<o; as o is arbitrary, |z| <

SUP,en Un<- Q
Accordingly

67 (z) < sup 0(/ u, dv) < sup(ﬁ(/ ul, dv) + 0(/ u, dv))
S SAT

neN neN SAT
(646Fg)

= sup(&(/SAT ul, dv') + 9(/ ul dv"))

neN SAT

= sup 6(/ u,, dv') + sup 6(/ ull dv'”)
SAT SAT

neN neN

because these are all non-decreasing sequences. As (u))nen and (ull),cn are arbitrary,

0F (z) < 0% (') + 07, R*(x).

(d)(i) Here write y for & x 1(<S) and y’ for
YISAT=(2|SAT)x AT1SAT) = (]S AT) x 15T
(using 641G(c-ii) again). Asy € MJ(S), we know from (c-i) that y' € Myon(SAT). Take v’ € M (SAT)
and € > 0. Then we have a v € M, (S) such that v’ = v[S A T (646Gb). Let u € My,,(S) be such that
0F (y —u.) <e, and set w' = u|S A 7. Then (c-ii) tells us that
O —ul) < By —u) <e
As v’ and € are arbitrary, y’ € MJ;(SA7T) and ]S AT € Msi(SAT).
(ii) As for (]S V 7) x 18V™) = R*(z), the point is that this is equal to R*(z x 1)). P

R*(z x 1)) = R*(x) x R*(1¥)) = R*(z) x 1V
((b) above)
=R'(z). Q

Since  x 1) € M2.(S), (c-i) tells us that R*(z) € Mpo1,(SV 7). Take v” € M (SV 7) and € > 0. Then
we have a v € M] (S) such that v/ = v[SV 7 (646Ga). Let u € Mo(S) be such that 67 (x —u.) < e.
Then v’ = u[S V 7 is moderately oscillatory and

07, (R*(z) —w2) = 07, (R*(x) — R*(u<)) < 0 (x —us) <e

v’ v’

by (b) and (c-ii). As v” and € are arbitrary, R*(z) € MJ,(SV 1), s0 ]SV T € Mg;i(SV ).

6461 Lemma Let S be a sublattice of 7 and 7 a member of S. Define R* : (L°)S — (L°)SV7 as in 646H.
Take z € (L°)S.

(a) fz[SAT € Mpob(SAT) and R*(x) € Mpon(SV 7), then & € Mpo1(S).

) Ifz]SATE M2 (SAT)and R*(z) € M2,(SV T), then z € M2,(S).

() fx|SATE Msi(SAT) and ]SV T € Mgi(SV 7), then x € Mg;(S).
proof Write z’ for z[|S A T.

(a) There are ' € Myo(S A T)" and 6’ € Myo(S V 7)T such that |2'| < u_ and |R*(z)| < u’. Set
u = R(u,u"), as defined in 646F. Then u € My,o(S)* (646F(e-1)),

lz/| <ul =u [SAT
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(646F (e-ii)) and
|R*(z)| <u’l = ulSVT)c = R*(uc) <u[SVT
(646Fa, 646Hb). Putting these together, |z| < u< (646H(a-v)) and £ € Mpon(S).

(b) Take v € M (S) and € > 0. Then v/ = v[S A7 and v"" = v[S V T are non-negative non-decreasing
near-simple integrators, so there are ' € Muo(S A7) and u” € Mpy,o(S V 7) such that

0h(u. —z') <e 0F,(w. — R*(x)) <e

v

Set u = R(u',u"”). Then u_ =u.[S A7 (646F(e-ii)) and R*(u~) = u”. (646Hb), so

0f (ue —x) <0 (ue —2)ISAT) + 0% R (ue — )

(646H (c-ii))
=0 (. —2')+ 07

(Ul — R*(z)) < 2.
v ( <
As € is arbitrary, £ € M2,(S).
(©) (@ x 1S AT =2 x 17 belongs to M2, (S A7) and R*(z x 1) € M2.(SV 7). P Setting
es =SUp,cs [0’ < o] for o €S, 1(<S) = (Xes)oes (641Gb), and

* S SVt
R* (1)) = (xes x X[7 < o])oesvr = (X[T < o])oesvr = 17

because [T < o] C e, for every o. Now

R*(x x 1(<8)) = R*(z) x R*(1(<S))
(646H(a-1))
= @SV T)x 15V 1Y) = (z1S v 1) x 15V
belongs to M2.(SVT). Q
Now (b) tells us that & x 1(<$) € M3.,(S), that is, z € Msi(S).
646J Theorem Suppose that (2;);cr is right-continuous. Let S be an order-convex sublattice of T,

and 7 a member of S. If z € (L), then z is an S-integrable process iff ]S A 7 and z[S V 7 are both
S-integrable, and in this case

fsx dv = fs/\rxd” + fS\/Tz dv
for every near-simple integrator v with domain S.
proof (a) By 646Hd and 646Ic, z is S-integrable iff z[S A 7 and 2[S V 7 are S-integrable.

(b)(i) Now suppose that z, 2’ = 2[SAT and "’ = 2[SV T are all S-integrable, and that v is a near-simple
integrator with domain S. Then v/ = v[S A7 and v”/ = v[S V 7 are near-simple integrators (631F(a-iv) and
616P(b-ii) again), so we can form the integrals

z= fsxdv, 2= f;, xdv, 2= §s, xdv,
and setting
y=2x19. ¢y =y|SAT=(z[SAT)x 1E),
R*(y) = WISV 7) x1EV) = (]S Vv 7) x 1EV7)
as in 646H-6461, we have

z= fsydv’ Zl = fS/\'ryl d’Ul, ZN = fSVT R*(y)d’UN.

By 645La, there is a non-negative % € L° such that y belongs to the closure of A = {u : u € My,0(S),
sup |u| < @} for the S-integration topology on MY ;(S). Set A’ = {u< : u € Myo(S A7), suplu| < @} and
A" ={uc :u € Myo(SV 1), suplul < a}.
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(ii) Take € > 0. Then we have v, v', v and § > 0 such that v = (vs)ses, V' = (V. )sesrr and
v” = (v)),esvr are all non-negative non-decreasing near-simple integrators,

0(z — fsud'v) < € whenever u € A and 5#(3/ —u.) <9,
0(z' — fSATud'v’) < e whenever u € A" and éﬁ(y’ —u.) <6,

(R*(y) —uZ) <9.

v

0(z" — vaT'u,dv”) < ¢ whenever u € A” and 6
Now there is a w = (w%),es € M (S) such that
vxw, vV Iw[SAT, vV wlSVT
(646Gc). We chose @ so that there would be a u € A such that o (y —u<) < 6. In this case, setting

w=w[|SAT, w'=wlSVT,

w =u[SATEA, u =ulSvreAd,
we have

buly —u<) <Oy —uc) <o
(645Dc),
by —ul) <Oy —ul) <Oy —uo) <9
(646H(c-ii)) and
Oy (R*(y) — u'l) < 67,
by the other half of 646H(c-ii). So
0(z — fsudv) <e O(2 - fSATu’ dv') <e, (2 — vaTu” dv") <.

/udv:/ udv+/ udv
S SAT SVt
:/ u’dv’+/ u’ dv”,
SAT SVt

s0 0(z — 2/ — 2") < 3e. As € is arbitrary, z = 2’ 4+ 2’ that is,

j;x(h): j;ATde%-f;vTﬁdU,

(R*(y) —u’) <0h(y—uc) <o

But

(613J(c-i) again)

as claimed.

646K Indefinite S-integrals Suppose that (;)ier is right-continuous and that S is an order-convex
sublattice of T .

(a) Suppose that z is a locally S-integrable process and that v is a locally near-simple local integrator,
both with domain S. Then we can define 2z, = §5. xdv for 7 € S (646Hd, 646J). Now the indefinite
S-integral of £ with respect to v is Siiy(z) = (2, )recs.

(b) It will more than once be useful to note that, in the context of (a) just above, Siiy (2) = Siiy (2 x 1(5)).
P If 7 € S then

j{ :z:d'v:f a:xl(f”)d'u:}( z x 1) x 1M dy
SAT SAT SAT

(because 1) [S A 1T = 1E77)
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:}( zx19) dv. Q
SAT

(c) If u is a locally moderately oscillatory process with domain S then Sii,(u<) = iiy(u). P If 7€ S
then

% u<dv:j{ (u<[S/\T)d'u:f (U[SAT)< dv
SAT SAT SAT

= (ulS A T)dv

SAT

(641G(c-ii) once more)

(645R(a-1))
= udv. Q

SAT

646L Lemma Suppose that (;);er is right-continuous and that S is an order-convex sublattice of
T. Let v be a near-simple integrator and & an S-integrable process, both with domain S. For 7 € S,
set zr = §5. Tdv. Suppose that u* € My (S)T is such that |2| < u*. Then for any € > 0 there is a
Tg.i-neighbourhood G of & such that 6(z; — [, udv) < € whenever u € My,(S), |u| < u*, uc € G and
T€eS.

proof (a) I should begin by noting that z, is defined for every 7 € S, by 646J. Define R, : (L°)S — (L°)%,
for 7 € S, by setting

R:((ug)oes) = (uo X X[0 < T])oes

for (uy)ees € (L°)°. As in 646F and 646H, R, is an order-continuous f-algebra homomorphism and R, (u)
is fully adapted whenever u € (L°)S is fully adapted. If y is any S-integrable process with domain S and
7 € S then

R,@)[SAT=ylSAT, (R@)ISVT)x 16V =0,

SO

f&@@: R+ § R.(y)dv
S SAT SVt

(6461)
= R, (y)dv + R, (y) x 1EV7) dv

SAT SV

= ?( y dv.
SAT

In particular, z; = f¢ R-(x)dv.
If u € Mpyo(S) then

%SRT(u<)dv: j{SM(udS/\T)dv:j{ (WS A7) dv

SAT
/ u dv
SAT

by 645R(a-1) again.
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(b) Let € > 0. By 645S, there are a v* € M] (S) and a § > 0 such that 6( fydv — oy’ dv) < €
whenever y, ¥y € M2,(S), |yl < u%, [y| < ul and gf(y —yY) <6 Set G ={y:y € Myn(S),
07 (y —x) < 6}, so that G is a Tgj-neighbourhood of z. If u € My4(S), |u| < u* and u. € G, then, for any
TES,

|R-(x) — Rr(u<)| = |Rr (2 —us)| < |2 —uc],

SO

0F-(R-(2) — Rr(ue)) < 0 (@ —uc) <0

and

0(zr — [, udv) =0 § R-(z)dv — §. R-(uc)dv)
as required.

646M Proposition Suppose that (;):er is right-continuous and that S is a non-empty order-convex
sublattice of 7. Let v be a near-simple integrator and £ an S-integrable process, both with domain S; set
z= §sxdvand z; = §5, xdv for 7 € S. Then lim s z; = z and lim, s z; = 0.

proof By 646Kb, Siiy(z) = Siiy(z x 1)), while fozdv = foz x 1) dv; so we may assume that z itself
belongs to MY ,(S). Let u* € M, = M;yo(S)™ be such that |z| <u%, and take e > 0. By 646L, there is a
Tg.i-neighbourhood G of z such that (z; — [s, wdv) < e whenever 7 € S, u € My, |u| <u* andu. € G.
At the same time, there is a Tg;-neigbourhood G’ of z such that 6(z — fs'u,d'v < € whenever 4 € M,

lu| <u* and u< € G'. By 645La, there is a 4 € My, such that |u| <u* and u« € GNG’. So now we have
0(zr — fSATud'v) < e whenever 7 €S, 6(z— fsud'v) <e

Accordingly
limsupf(z — z,;) <0(z— | _udv) +limsupd( |_ udv — u dv
nsupf(z =) <0~ fud) +lmswpd( fudv [, u)
+ lim sup 6 udv — z,
nsup (Ssnr )
<e+0+e€
(613J(f-ii))
= 2e,
limsup 8(z,) < limsup @ udv) + limsup 6 udv — 2,
nsup (=) < limsup0( [ welo) + Timsup 0 [, )
<0+4c¢€
(613J(f-1))

As ¢ is arbitrary, we have the result.

646N Theorem Suppose that (2;);er is right-continuous and that S is an order-convex sublattice of
T. Let v be a near-simple integrator and  an S-integrable process, both with domain S. Then Sii, (z) is a
near-simple integrator.

proof (a) As in 646M, we may assume that & belongs to Mg (S). Again set z, = §5, zdv for 7 € S, and
take € > 0 and u* € M} = Mm0(3)+ such that || <wuk. Also as in 646M, using 646L and 645L, we have
au € My, such that |u| < wu* and 0(z; — [, udv) < e for every 7 € S. Since S is finitely full (6110),
O(sup |Siiy(x) — iiy(w)|) < 24/€ (615Db); while diy(u) is near-simple, by 6311. As € is arbitrary, Siiy(z) is
fully adapted (by 613Bl) and near-simple.

(b) To see that Siiy(z) is an integrator, we can use 617E, as follows. Consider C = {[udv : u € My,
lu| < u*}. Then C is topologically bounded in L. P Set @ = sup|u*|. Let ¢ > 0. Then there is an
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M > 0 such that pJa > M] < e. Let § > 0 be such that §(Mdz) < € for every z € Qs(dv). If u € My,
I € Z(S) and |ju|lcc < M, then ﬁSI('u,, dv) € Qs(dv) so 6(6S1(u,dv)) < € taking the limit as I 1 Z(S),

0(6 [gudv) < e. Generally, ifu € My, and |u| < u*, set u’ = med(—M1) u, M1©)); then 6(5 [ u' dv) < e
and [[sudv # [su' dv] C [u # u'] has measure at most €, so (0 [gudv) < 2e. Thus 0(0z) < 2¢ for every
z € C. As € is arbitrary, C' is topologically bounded. Q

(c) Now Qs(dSiiy(x)) is included in the topological closure C' of C. P If z € Qs(dSiiy(z)), there are
an I € Z(S) and a u € M, (I) such that |ul| < 1 and z = S7(u,dSii,(x)). Take € > 0. Then there is a

u' € My, such that |[u'| < u* and 0(z, — [5,, v dv) < ﬁ(f) for every 7 € S, as in (a) above, that is,
1

such that 6(z, — zL) < TEDC for every 7, where (2] ).cs = 2’ is the indefinite integral ii,(u’). In this

case, 0(Sr(u,dSiiy(x)) — Si(u,dz’)) < e. By 627Ha, there is a w € Mgmp(S) such that [|w|js < 1 and
Si(u,dz’) = [qwdz’. Now we know from 617E that [wdz’ = [gw x u'dv, which belongs to C' because
lw x u'| < /| <u*. And 6(z — [qwdz’) < e. As z and € are arbitrary, Qs(dSiiy(z)) C C. Q

As the closure of a topologically bounded set in LY is topologically bounded (613B(f-iii)), Qs(dSiiy(z))
is topologically bounded and Sii, () is an integrator.

6460 Lemma Suppose that (;):er is right-continuous and that S is an order-convex sublattice of T.
Let v be a near-simple integrator with domain S, and A C M, = M2 ,(S) a uniformly previsibly order-
bounded set. Then Sii, [ A is uniformly continuous with respect to the S-integration uniformity on A and
and the ucp uniformity on M, p(S).

proof (a) It is enough to consider the case in which A = {z : z € M2,, |z| < uX} where u* € My (S)™.
By 646N, we know that Sii, () € M,5(S) for every z € A.

(b) Take € > 0. Then there is a Tg;-neighbourhood G of 0 in M ; such that 6( ﬁgxd'v — ﬁsydv) < €2
whenever z, y € A and z —y € G (645S); and we may suppose that G is of the form {z : ¢ € MY,
0% (z) < 6} where § > 0 and w € M (S). Fix 7 € S for the moment. Defining R, : (L%)S — (L%)S as
in the proof of 646L, R,(x) € M2, and |R,(z)| < |z| for z € MY, so R,(x) € A for every z € A; also
R.(x) € G for every x € G. Consequently 0( fo R-(x)dv — §5 R-(y)dv) < € whenever x,y € A,z —y € G
and 7 € S. But we also have §g R, (z)dv = 5, xdv forz € M, and 7 € S, as observed in part (a) of the
proof of 646L. So we get

0( ﬁS/\T zdv — fS/\‘r Y d’U) < 62
whenever £,y € A,z —y € G and 7 € S.
(c) Now we know that Siiy(z) is near-simple, therefore order-bounded, for every z € M2.; while S is

order-convex, therefore finitely full. So we can apply 615Db again to see that 6(sup |Sii, (z) — Siiy (y)]) < 2
whenever £,y € A and £ —y € G. As € is arbitrary, Sii, [ A is uniformly continuous.

646P Lemma Suppose that (2;);er is right-continuous and that S is an order-convex sublattice of T
with a least element. Let v = (v,)scs be a martingale. Then S, = {7 : 7 € S, Qs (dv) is uniformly
integrable} is a covering ideal of S.

proof (a) Note first that if 7 € S, and 0 € S A 7, then Qspo(dv) C Qsa-(dv) is uniformly integrable, so
0 €Sy If 7, 7" €Sy, then Qsp(rvry (V) € Qsar(dv) +Qspr (dv). P If 2 € Qsprvr)(dv) there is a simple
process 4 = (Ug)sesa(rvr) Such that [ul|e <1 and z = fS/\(TvT/)'"’dv (627Ha again). By 612K(d-i), there
is a breakpoint string for u of the form (7g,... ,7n,... ,7,) where 79 = min S, 7, = 7 and 7, = 7V 7. Now

n—1
z:/ udv = E Ur, X (Vry, — Vry)
SA(TVT!) i—0

(614C, because 79 = minS and 7, = 7V 7')
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3

n—1
Ur; X (’UTH»I - UTi) =+ Z Ur; X (UTi+1 - Uﬂ') € QS/\T(dv) +QS/\T’(dv)' Q

I
o

%

So Qsa(rvr)(dv) is included in the sum of two uniformly integrable sets and is uniformly integrable (621B(c-
i)). As 7 and 7’ are arbitrary, S, is closed under V and is an ideal in S.

(b) Suppose that S has a greatest element and v = (v,),ecs is an L2 -martingale. Then ||vy]l2 < ||Vmaxs||2
for every o € S and v is L?-bounded. Let v* = (v*),cs be its quadratic variation. If u is a simple process
with domain § and ||u|/s < 1, then

1wl < [ f,udv*lly < L[ do s = [ofpnslls < o0
by 6241 and 624G. So
Qs(dv) C{ [qudv: u € Mmp(S), [lullo <1}
(627Ha once more) is a || ||2-bounded subset of L? and is uniformly integrable (621Be).

(c) Next, suppose that S has a greatest element and that v is such that vyins = 0 and Osclln(v) < x1.
As v is locally near-simple (632]a), therefore near-simple, there is a non-decreasing sequence (7, )nen in S
such that 79 = minS, inf,en 7 < maxS] = 0 and [Jve — vy, | > 1] C [o = Tn41] whenever n € N and
0 € [T, Tnt+1] (631Ra). Now |v, — v,, | < 2x1 whenever n € N and 7, <7 < 7,,41. P Applying the method
of 641E to v’ = v|[rs, Tnr1], we see that if 7 € [1,, Tha1] then |vrer —vr | X X[ < 7] < x1 for every finite
sublattice I of [7,, 7] containing 7,, so that |[ve, — v;,| X x[7n < 7] < x1; while |v; — ver| X X[ < 7] <
Osclln(v’), by 641Na. So

[vr — vz, | X X[ < 7] < x1+ Osclln(v’) < x1 + Osclln(v) < 2x1

(using 618D (b-ii)), whenever 7, < 7 < 7,,41. It follows at once that |v; —v,, | < 2x1 for every 7 € [1,, Tn11].

Q

Consequently |v,| < 2nx1 whenever n € N and minS < 7 < 7,, and v[[min S, 7,,] is an L?-martingale
for every n. By (b), 7, € S, for every n; since

sup, ey [7 < 7] 2 sup,, ey [maxS =7,] =1
for every T € S, Sy is a covering ideal of S.

(d) If S has a greatest element and v is such that Osclln(v) < x1, but we are told nothing about vpin s,
then we can apply (¢) to v/ = (U, — Umins)ses to see that S, = S,/ is a covering ideal of S because
QS/\T(dv) = QS/\T (dvl) for every 7.

(e) Now suppose that v is of bounded variation and © = [ |dv| has finite expectation. If u € Mgimp(S)
and ||ulloe < 1, then |S(u,dv)| < S;(1S)|dv]) < ©. So |z| < © for every z € Qs(dv) and Qs(dv) is
uniformly integrable.

(f) Suppose that S has a greatest element and v is of bounded variation, but we do not know whether
U = [5|dv| has finite expectation. Set z, = [5, |dv| for 7 € S. Because v is a martingale, it is near-simple
(632Ia again), and z = (z;),es is near-simple (631K). By 631Ra again, there is a non-decreasing sequence
(Tn)nen In S such that 7o = min S, inf,en [ < maxS] = 0 and [|z5 — 25, | > 1] C [o = 741] whenever
n € Nand o € [7,, Ty41]. In this case,

BTpt1 = R < 2X1 + ‘v7n+1 - an|
for every n. I Suppose that 7, =09 < ... < o) = T41. For j <k, set
i—1 o
a; = [[ZZ:O ‘Uo'i+1 - Um'| > 2x1 + ‘U7n+l - UTnH]’ bj = aj41\aj lfj <k.
Then, for any j < k,

bj c [[Uffj+1 # UU]'H < [[O-j < TnJrlﬂ

C HZUJ- -z, <x1] € [chrj — v, | <x1]n [[Zg;(} |Uai+1 — Vg,

< x1k;

since also b; C a;41,
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bj c ﬂ|v0j+1 - UG_;" > Xl + |v7n+l - an”]'

Now observe that

[[Uj+1 < Tn+1]] c [[ZUJ‘+1 =27, < Xl]] c [[Zg:o |UO’¢+1 — Vo, | < Xl]]
is disjoint from a4+, and therefore from b;, so
bj < [[0j+1 = Tn+1]] < [[|U0j+1 - ’UUJ" = ‘UTn+1 - UUjH]'

Putting these together,

bj - |:[|U(7j - v"’n| < Xl]] n [[|v¢7j+1 - UlTj' > Xl + |1}Tn,+1 - UTH]
n [Hv0'j+1 _Uffjl = ‘U7n+1 - UUjH]

- ﬂ|%j — v, | <x1]n H:|1)Tn+1 - Ucr_7~| > x1+ |U7n+1 -, |] =0.

This is true for every j < k, so a = 0 and Zz;ol [Voiiy — Vo, | < 2X1 + |v7, ., — v, |. As 0p,... 0% are
arbitrary, RTpi1 = Rrn <2x1+ "U‘Fn-u = Urp |- Q

Since v, being a martingale, is an L!-process, we see that z, € L}L for every n. Consequently (e) tells
us that Qsar, (dv) is uniformly integrable and 7, € S, for every n. As sup,cy [ = maxS] =1, S, is a

covering ideal of S.

(g) Next, suppose only that S has a greatest member. By the fundamental theorem of martingales
(643L), there is a local martingale ¥ with domain S such that Osclln(9) < x1 and ¥ = v — © has bounded
variation. Now, for any 7 € S,

Qsar(dv) € Qsar(dv) + Qsar (dv)

(616Dc), so Sy 2 Sy NSy includes the intersection of two covering ideals and (being itself an ideal) is a
covering ideal of S (611Nc).

(h) Finally, if we suppose only that S is order-convex and has a least member, we know from (g) that
Sy N (S AT) covers S AT for every 7 € S, so S, covers S, and we're done.

646Q Theorem Suppose that (2;)¢cr is right-continuous and that S is an order-convex sublattice of T
with a least element. Let v be a near-simple integrator and £ an S-integrable process, both with domain S.

(a) If v is a martingale, then Sii,(z) is a local martingale.

(b) If v is jump-free, then Sii,(z) is jump-free.

(c) If v is of bounded variation, then Sii,(x) is of bounded variation.

proof Since Siiy(x) = Siiy(z x 1)) (646Kb), and = x 1¢8) belongs to MY ;(S), we can suppose throughout
that 2 € Mg (S). Set zr = §5, xdvfor 7€ S.

(a)(i) Write
Sy ={7:7 €S, Qsnr(dv) is uniformly integrable},

S'={r:7€8, |2ISAT|oo < 00}.

Then &’ is an ideal of S, because (S A T) U (S A7) covers SA (T V 7') sosup|z[S A (V1) =sup|z]S A
7| Vsup|ze[SAT| for all 7, 7/ € S. As in part (a) of the proof of 646P, S, is an ideal in S, so S, NS’ also is.

(ii) Siiy(x)[Sy NS’ is a martingale. I Take 0 < 7in S, NS’ and work in SA7T. There is an M > 0 such
that [z[S A 7| < M1; now |z[S A 7| < M1EA), By 645La once more, £[S A 7 belongs to the Tg i-closure
of {uc :u € A} where A = {u:u € Myo(S A7), Ju| < M1}; by 646L there is for every 6 > 0 a u € A such
that 0(z, — fSAU, udv) < 6 for every o/ € SAT. Set C = MQsp-(dv), so that C is uniformly integrable.
Ifu € Muo(SAT) and [[ulle < M, then [g, wdv = limz(sar) Sr(u,dv) belongs to the closure C of C for
the topology of convergence in measure. But now we see that z, also belongs to C; and the same applies to
2y, since of course C' O MQspq(dv).

Because C is uniformly integrable, C' C L}L and the norm topology of L,% agrees with the topology of
convergence in measure on C' (621B(c-ii)). Given € > 0, there is a § > 0 such that
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|lzr — ull1 < e whenever u € C and 0(z, —u) < 6,

|lzo — ull1 < € whenever u € C and 0(z, —u) <6

We therefore have a u € Mo (S A7) such that
lzr =[5, wdvll <€ 2o =[5, wdv|y <e

At this point, we repeat the trick in a different way. As [s, wdv = lim4z(sar) S1(u, dv) for the topology
of convergence in measure, and Sy(u, dv) € C for every I € Z(SAT), fS/\T wdv = limpyzsar) S1(u, dv), the
limit for the norm topology on L. There is therefore an Iy € Z(S A7) such that

||fSATudv — Si(u,dv)||1 <e
whenever Iy C I € Z(S A 7). Similarly, there is a Jy € Z(S A o) such that
||fSAUudv = Sy(u,dv)|jy <e

whenever Jy C J € Z(S A o). Let K be the sublattice of S A 7 generated by Ip U JyU{7}. Then K Ao D Jy
S0

||fSATud'v — Sk(u,dv)||1 <e, ||fSMudv — Skro(u,dv)||; <e
and
||Z-,— — SK(’U,, d’U)Hl < 26, ||Z[,— — SKAU(’II,7d’l))||1 < 2e.

Now

PJ(UU/ X (’UT/ — ’UJ/)) = PUPU/(’LLJ/ X (’UT/ — Ug/)) = Pg(’u,g/ X (PJ/’UT/ — PU/UU/))
= Pa(ug/ X (’UU/ — UO")) = 0

whenever o < ¢/ < 7' < 7,80 P,SKv,(u,dv) =0 and
P,Sk(u,dv) = PySgne (U, dv) = Sgaos(u, dv)
(using 613G(a-ii)). Since P, is || ||;-reducing,
|1 Pyzr — zo|l1 < 4e.

As € is arbitrary, P,z = z,; as o and 7 are arbitrary, Sii,(2)[S’ is a martingale. Q

(iii) &’ is a covering ideal of S. I There is a non-negative moderately oscillatory process u* = (u%)yes
such that |z| < u%, and by 642M we can suppose that u* is near-simple. Take 7 € S and € > 0. There
is an M > 0 such that gfsup |u*| > M] < e. Because u* is near-simple, there is a 7/ € S A 7 such that
[ut > M] C o =7'] for every 0 € S AT and [r' < 7] C [uf > M] (631Ra once more, applied in S A 7
with 6 = M). So a[r’ <7] < €. Next, for 0 € SAT, uj_, < Mx1 for every I € I(S A 0), because
[of <o) cfo’ < 7] Cut, <M] for every 6’ € SAc. Soul, < Mxl for o <7/, and

sup [z[S AT| <sup [ul [SAT| < Mx1.
Thus 7/ € §’; as € is arbitrary, S’ covers {7}; as 7 is arbitrary, S’ covers S. Q

(iv) By 646P, S, is a covering ideal of S. So S, NS’ covers S (611Nc again). Since Siiy(2)[Sy, NS’ is

a martingale, Sii,(z) is a local martingale.
(b) Let u* € Mpo = Mpuo(S)T be such that [z] < ut and set A = {y : y € MJ,(S), ly| < ut},
B ={u:u € Mp,, |u| <u*}. Then z € {u. :u € B}, taking the closure for the S-integration topology

(645La yet again). By 6460, Sii,(z) belongs to the closure of {Siiy(u<) : u € B} for the ucp topology on
M,.1(S). But observe that if u € My, then

Fsp (U [SAT)dv = §5, (U[SAT) dv = fSATudv

S0 Siiy(u<) = tiy(u). And we know that iiy(u) is jump-free for every u € My, by 618Q. So Sii,(z) belongs
to the closure of Mj¢(S) in M,.1,(S) and is jump-free by 618Ga.
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(c) Take u*, A and B as in (b) just above, and set & = sup |u*| x [q|dv]. Then iiy(u) is of bounded
variation, with

fs |d(iiy (u))| < sup |u| x fs |dv| <@
for every u € B (614T). As before,
Stiy(z) € {Siiy(u<) : u € B} = {iiy(u) : u € B}

where the closures are taken in the ucp topology. But this means that Sii,(x) belongs to the closure of
{u:u e My(S), [s|du| < u} for the product topology on (L°)%, and Siiy(z) is of bounded variation, by
614N.

646R Theorem Suppose that (;):c7 is right-continuous and that S is an order-convex sublattice of T.
Let v be a near-simple integrator and z, £’ two S-integrable processes, all with domain S; write z for the
indefinite S-integral Siiy(x). Then §sa’'dz = §sx' x z dv.

proof (a) Of course it will be enough to deal with the case of non-empty S. We know from 646N that z is
a near-simple integrator, and from 645Kb that & x &’ is S-integrable, so the integrals here are well-defined.
Since

z = Siiy(x) = Siiy(z x 1¥)),  foz'dz = o' x 1) dz
and
fox' xxdv= foa' xz x 18 dv = f(a' x 1)) x (z x 1)) dv
(646Kb again), we can suppose throughout that z and 2’ belong to M{; = MJ(S). There is au* € M} =

Mpno(S)T such that |z| V |z’| < u; by 642M and 645Lb, we can suppose that u* € M, ¢(S)* and that 2’
belongs to the Tgi-closure of {u« : u € Minp(S), [u] <u*}.

(b) Take any simple process 4 = (uy,)r,es and € > 0. Write @ for sup |u|.
(i) There is a Tgi-neighbourhood Gy of z such that whenever &4 € My, is such that Ja| < u* and
e € Go then 0([gudz — [qudz) < e, where Z = iiy (). B Let (70,...,7,) be a breakpoint string for u.
Take ¢ > 0 such that 0(a x z) < ﬁ whenever 0(z) < §. By 646L, there is a Tg;-neighbourhood Gy of x

such that whenever 4 € M,y,, is such that |&| <wu* and @« € Gy then 0(2, — z;) < ¢ for every 7 € S, where
(27 )res = 2 = liy(0) and (2;)res = 2. In this case,

n—1
/Udz - / udz = uy x (ZTQ - 27-0) + Zun X ((ZTi+1 - 27'7:+1) - (ZT«; - 57’7))
S S i=0

+ ur, X ((2r = %) = (27, = 2r,))

where u; = lim,|s Uy, 24 = limyqs 2, and 2y = limy4s 2, (614C again, since lim, s 2, = limy s 2, = 0, by
646M and 613J(f-i) again). Consequently

0(/8'u,dz - /Sudi) < (2n+2) sup O(ue X (zr — 27))

o, TES
< (2n+2)supb(u x (2 — %;)) < e
TES
So this G will serve. Q

(ii) There is a Tg-neighbourhood G; of & such that whenever 4 € M,,, is such that |&| < u* and
i € Gy then O( fouc xtuodv — foue xxdv) <e. P Set C={y:ye M, [y <ui}andD={y:ye
ME;, ly| < (Ju| x u*)<}. The operators y — u< xy : C = D and y — §sydv : D — L° are continuous
when C and D are given the S-integration topology and L° is given the topology of convergence in measure
(645E(a-v-cr), 645S), so y — fsuc xydv : C — LY is continuous and there is a neighbourhood Gy of
such that 0( fgu< x ydv — fsuc x x dv) < e whenever y € G5 N C; this Gy serves. Q
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(iii) Now there is a % € My, such that |a| < u* and 2« € Gy N Gy (645La, as always). In this case,
writing Z = 44y (@) as before, 0( [qudz — [sudz) < e and 0( fouc X e dv — fsuc x xdv) < e. But again
we know from 617E that [(udz = [qu x @ dv, and from 645R(a-i) that fsuc X @c dv = [qu x wdv. So

we have
9(/udz— j{u< X & dv)
s s

§9(/udz—/ud2)+9(%u< X e dv — fu< X & dv) < 2e.
s S S s

(iv) As € is arbitrary, [qudz = fsuc x zdv.
(c) We know that, setting C ={y:y € MJ,, ly| <u:}and D={y:y e MJ,, ly| < (u* x u*)},
y—yxzx:C—D
is (Ts.i, Ts.i)-continuous and
y— foydz:C—-L° y— foydv:D — L°
are Tgj-continuous (645E(a-v-ar), 6458 again), so
B={y:yeC, fsyxzdv= §sydz}

is (relatively) closed in C' for Tg;; and it includes C' = {u< : 4 € Mgnmp(S), |u| <u*}, by (b). But we chose
u* so that 2’ belongs to C and is in the Tg j-closure of C’, so ' € B, as required.

Mnemonic d(Sii, (z)) = x dv.

646S Proposition Suppose that (2;):cr is right-continuous and that S is an order-convex sublattice of
T. Let v be a near-simple integrator and & an S-integrable process, both with domain S. Then Sii, (z) —

Siiy(z)c =2 X (v —v<) X 1(<S).

proof (a) To begin with, suppose that z € MJ; = MJ,(S). By 646N, Sii,(z) is near-simple, so we can speak
of its previsible version Siiy(z)<. Let u* € M = My,o(S)T be such that |z] <u®. Set C = {y:y € MY,
ly <ut}, C' ={uc :u € My, [u| <u*}and B ={y:y € C, Siiy(y) — Stipy(y)« =y x (v —v)}. If
u € My, and |u| < u*, then

S'LZU (U<) - SZlv (U<)< = 'LZU (U) - 'LZU (U)<
(646Kc)
=uc X (V-v<)
by 641Q, so u« € B; thus ¢/ C B. We know that Sii, : C — M,.(S) is continuous for Tg; and
the ucp topology (6460), while u — u~ : My, — My is continuous for the ucp topology (641G(e-
ii)), so y > Siiy(y) — Siiy(y)< is continous for Ts; and the ucp topology and therefore for Tg; and the
product topology on (L°)°. At the same time, the embedding MJ; & (L°)¢ is continuous (645E(a-iii)), so

y—yx (w—vo): M{; — (L% is continuous and B is closed in C. Since B includes the dense subset C’
of C (see 645La), B = C, so

Siiy(z) — Siiy(T)c =2 X (V—v<) =2 X 1(<‘S) x (v—v<).
b) For the general case of S-integrable z, set y = 2 x 1) € MY .(S); then Siiy(x) = Siiy(y), so
S-i

Sty () — Sty ()« = Siiy(y) — Siiy(¥)c =y x (v —ve) =2 x (v —v) x 1),

646T It6’s Formula, fourth form Suppose that (2;):er is right-continuous, and that S is an order-
convex sublattice of T with a least element. Let v be a jump-free integrator with domain S, and v* its
quadratic variation; let h : R — R be a differentiable function such that its derivative h’ is locally Lipschitz,
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that is, Lipschitz on every bounded set. If h” : R — R is a locally bounded Borel measurable function
Lebesgue-almost-everywhere equal to the derivative of h’, then

fsmd(fw) = fsm X ﬁ’vdv—i—%fsx x h''v dv*
for every ¢ € Ms; = Mg.i(S).

proof (a) To begin with (down to the end of (b)), suppose that b’ is continuously differentiable and that
its derivative is everywhere equal to h”. As before, we need only to prove the result for z € M2 ,(S).

We need to know that if y € M,,.1,(S) then y x h'v =y x (h'v) < and y x h'v = y x (h"v).. P By 618Ga,
h'v is jump-free. Set e, = sup, g [T < o] for ¢ € S. Expressing h'v as (v)),cs and y as (y,)oes, We see
from 641Na that (v, —v’,) x xe, = 0, while y, x x(1\ e5) = 0, for every o € S; 50 y, X v, = yo X v,,_ for
every o, and y x h'v =y x (h'v).. Similarly, y x h"v =y x (h"v)-. Q

It follows that if u € My = Mpo(S) then

(u x h'v)c =uc x (') =uc x h'v, (uxhv)c =u. x h'v.
(b) Now for the main argument. Let u € M} be such that || < u., and set
u* =u x (|h'v| vV |h"v]),
A={y:ye M, lyl <uc}, A ={y:yeM; |yl <ul}.

By 645Ja, y x h'v = y x (h'v)< belongs to M2, for every y € A, and y — y x h'v : M2, — M2, is
Tg.-continuous (645E(a-v)), while y — $5y dv is continuous on A* (645S). So y — $sy x Wvdv : A — L°
is continuous. Similarly, y — §sy x h'vdv : A — L° andy — §syd(hv) : A — L° are continuous (recalling
from 6160 that hv is an integrator, and from 631F (a-i) that it is near-simple).

Now we know from 619D that if v’ € M, then

fsu’d(fw) = fs'u,' X B/vvar%fS'u,’ x h''v dv*,
so that
foul d(hw) = § ul x R'vdv + % $oul x h'vdv*.

And we know also that z belongs to the closure of A’ = {u’_ : ' € My, [o/| < u} in MQ,. Since we are
looking at continuous operators into a Hausdorff space, we can conclude that

fsxd(ﬁv) = fsx X B’vdv—&—%fsaz x h''v dv*.

(¢) Now turn everything round, and start from locally bounded Borel measurable functions g : R — R.
For such a function, define I(g) : R — R by setting

I(g)(a) = /0 " g(B)aB it a0,

0
- —/ g(B)dB if a <0,

the integrals here being with respect to Lebesgue measure, of course. Then I(g) will be continuous, indeed
locally Lipschitz, and its derivative will be almost everywhere equal to g; I(g) will be the derivative of I2(g)
everywhere. Fix an x € Mg, and let ® be the set of locally bounded Borel measurable g : R — R such that

fszd(ﬂ_(g)v) = fsm x@vd’u—k%fsx X gu dv*.

Then (a)-(b) tell us that ® contains all continuous functions from R to itself. Now the point is that
if {(gn)nen is a sequence in ® converging pointwise to a function ¢ : R — R, and if (gp)nen is locally
uniformly bounded in the sense that sup,,cy joj<as |gn ()] is finite for every M > 0, then g € ®. I* Because
g(a) = limy, o0 gn(a) for every a, (T X gn¥)nen is order*-convergent to & x gv. Next, sup,, ¢y |gn| is locally
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bounded, so is bounded above by a continuous function (645Cb), and {|g,v| : n € N} is bounded above by
a jump-free process (618Ga again). Accordingly {g,v X 18 :neN } is uniformly previsibly order-bounded
(use 6410), so {z x g,v x 1$¥) : n € N} is uniformly previsibly order-bounded (because M.1,(S) is closed
under multiplication, by 645D(a-ii)). By 645T,

fxxgvdv*: j{xxgvxl(f)dv*
s s

= lim z X guv x 1) dv* = lim T X gpvdv™.

Next, (I(gn))nen and (I%(gn))nen are also locally uniformly bounded sequences converging pointwise to
I(g) and I?(g) respectively. So

fsz x I(g)vdv = lim,_, o fsz x I(gn)v dv,

fxx[z(g)vdv: lim x X I%(gn)vdv
S

n—roo S

= lim a:x](gn)vdv—&—%j[xxgnvdv*

= fa: X I(g)vd'u+1j{a: X gu dv”*
s 2 s
and g € . Q
Consequently ® contains all locally bounded Borel measurable functions (645Cc).

(d) Returning to the stated hypothesis, in which € Mg;, h : R — R is differentiable, its derivative h’
is locally Lipschitz, and h” is a locally bounded Borel measurable function equal almost everywhere to the
derivative of b/, set 8 = h(0) and v = h’(0); then

W(a) =7y +I(h") (@), h(e)=p+ya+I*(h")(a)

for every «. Setting g = h”, we have

h'v =~v1+ I(gw, hv=B1+~yv+ I%(g)v.

Now

j{xd(ﬁv)zﬁj(mdl—&—'yj{xdv—&—j{xd(ﬂ(g)v)
S s s s
:(H—vj{a:dv—l— j{xxl(g)vdv—&—lj[mxgvdv*
S S 2 /s

(using 645R(c-ii) and (c) above)

= fxxﬁ’vdv—&—lfxxﬁ”vdv*
S 2 )s

as required.

646X Basic exercises (a) In 646F, show that R(hu', hu") = hR(u',u") whenever u’ € (L°)S"" u' €
(L°)SVT and h : R — R is a Borel measurable function.

(b) In 646H, show that R*(hu) = hR*(u) whenever u € (L°)® and h : R — R is a Borel measurable
function with h(0) = 0.

(c) Suppose that (2l;);er is right-continuous, S is an order-convex sublattice of 7 and 4 € (L°)*. Show
that {u : u € M,<(S), sup |u| < @} has a greatest member defined by setting u, = sup{u : u € L°(2,),
u < a} for o € S. (Hint: use 611H and 632F.)
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(d) In 646R, show that Sii,(x) = Sii, (2’ x ).

(e) In 646T, show that Sii, (z) = Siiy(z x H'v) + 1 Siiy-(z x h'v).

646 Notes and comments Working through the basic properties of the Riemann-sum integral as set out
in Chapter 61, we find that (as we naturally hope) most of them seem to be shared by the S-integral. I
checked bilinearity in 645Rb. Some of the others are straightforward (646B, 646C, 646M, 646Qc. 646S,
646T), some take more thought (645K, 646N, 646Qb, 646R) and some are apparently much harder (646J,
646Qa, 6477J).

Even in terms of the concepts used in this presentation, I have not taken the shortest road to 646J, and
surely it is going to need a proper look at the definition of the S-integral, but all the same it seems to take
more pages than it should. The difficulty is that in the S-integral we are committed to a special class of
integrands, so that when we split the sublattice S into S A7 and S V 7 the breakpoint 7 has to be analysed
from both sides; this is what the operators R of 646F and its approximate inverse & — (2|S A7, R*(x)) are
doing, and the problem is that these are not true inverses of each other.

Coming to the properties of indefinite S-integrals (646N, 646Q), we find ourselves facing interesting ques-
tions. When showing that an indefinite integral with respect to a martingale is a virtually local martingale,
there were already significant obstacles for the Riemann-sum integral, but the methods of §621 turned out
to be adequate. For the S-integral, I think we need to go much deeper, with another appeal to the fun-
damental theorem of martingales. In fact this allows us to bypass Theorem 6230 altogether, as well as
giving a striking new fact about martingale integrators in 646P. Concerning the value of | fsxd'u # 0], we
have an easy argument to show that it is included in [v # 0] (646C), but to show that it is included in
[z # 0] (corresponding to the result for the Riemann-sum integral in 613Ld), we apparently need a special
construction, which I will come to in the next section.

Naturally, the proof I give of the change-of-variable result 646R, is based on the corresponding result 617E
for the Riemann-sum integral; the application of 617E is hidden in (b-iii) of the proof of 646R. But here
again we have a not-quite-trivial check to make on the limiting process we need to use. It goes a bit more
smoothly if we start from 645Lb rather than 645La. As for Itd’s formula, the obvious extension (part (b) of
the proof of 646T) is straightforward in view of what has been done before. But with a little bit of analysis
we can use the sequential convergence properties of the S-integral to extend the result to a larger class of
functions h. T am rather supposing that you recognise the relevance of Rademacher’s theorem (262Q); if
h' : R — R is locally Lipschitz, it will be differentiable almost everywhere, and its derivative will have an
extension to a locally bounded Borel measurable function (225J).

The definition of MY, in 645F leaves the nature of S-integrable processes unclear. Of course you could say
the same for universal measurability as defined in 434D; it is markedly less easy to form a mental picture of
a ‘typical’ universally measurable function than of a typical Lebesgue integrable function, because universal
measurability is not easily described in terms of universally negligible sets (439Xe). But we can say a little
bit, as in 646B.

Version of 29.3.23
647 Changing the filtration II

The answer (647J) to a natural question left over from §646 leads us to a new construction to add to
those in the second half of Chapter 63.

647A Notation As usual, (2, i) will be a probability algebra, and (;):er a filtration of closed subal-
gebras of 2, with the associated lattice 7 of stopping times and family (2(.),c7 of subalgebras. If € is a
closed subalgebra of 2 and a € 2, upr(a, €) is the upper envelope of a in €. L% = L°(2) will be given its
topology of convergence in measure.

If S is a sublattice of T and 7 € S, SAT = {0 A7 :0 € S} and Z(S) is the set of finite sublattices of
S. We shall be looking at some of the usual spaces of fully adapted processes; if S is a sublattice of T, then
M;a(S) is the space of fully adapted processes with domain S, Msimp the space of simple processes, M.,

(©) 2014 D. H. Fremlin
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the space of order-bounded processes, My, the space of moderately oscillatory processes, M, _s the space of
near-simple processes, M, | the space of non-negative non-decreasing near-simple processes, My, the space of
processes of finite variation, M,.1, the space of previsibly order-bounded processes (645B), M2, the closure
of {uc : u € My} for the S-integration topology Tg.; on My.p, and Mg the space {z : & x 18 e M3}
(645F). If u = (uo)oes is order-bounded, sup |u| = sup,¢gs |us|. If w and v are fully adapted processes, I
write u < v if v — u is non-decreasing. For u € My, U< € My, is its previsible version. [ will denote the
Riemann-sum integral of §613 and § the S-integral of §645.

647B Lemma Let S be a sublattice of 7, and ¥ the linear space topology on My, = My, (S) defined
by the F-seminorms 8 (645Db) where v € M (S) is || ||c-bounded. Then ¥ is the S-integration topology
on Mpob.
proof Because the S-integration topology Tg.; is defined by a larger family of F-seminorms, ¥ is coarser
than Tq;. In the other direction, let G' be a ¥g j-neighbourhood of 0 in M. Then there are av € MII_S(S)
and an € > 0 such that G includes {w : w € Mo, g (w) < 3¢} (645E(a-ii)). Set v = sup |v], let M > 0 be
such that o > M] < ¢ and set v/ =v AM1. Then G' = {w : w € Myon, éz% (w) < €} is a T-neighbourhood
of 0. Now G’ C G. P The point is that, for any u € My, = Muo(S),

[sudd' # [sudv] € [ # 0]
(613Jd)
= [v > M]

has measure at most ¢, and
H(ISudv) < e+9(f$udv’).

If w € G’, there is a uniformly order-bounded non-decreasing sequence (u(™),cy in Mt such that |w| <

SUDP, e u(<n) and sup,,cy 0( [ u(™dv’) < 2¢. In this case,
05 (w) < sup,,cn O( [guWdv) < 3¢

and w € G. As w is arbitrary, G’ C G. Q
Thus G is a T-neighbourhood of 0, and 0 has the same neighbourhoods for ¥ and g ;. As these are both
linear space topologies, they coincide.

647C I give a couple of perfectly elementary facts which were not spelt out in Volume 3.

Lemma Suppose that © is a closed subalgebra of 2, and b € 2A; let B be the closed subalgebra of 2
generated by {b} UD.

(a) If c€ B, then bnec=bn upr(bne, D).

(b) If u € LO°(®B), there are v/, u” € LY(D) such that u = u’ x xb+ u" x x(1\b).

proof (a) Of course bnec C bn upr(bne,®). In the other direction, we know that 8 = {(anb) u(a’\b) : q,
a’ € ©} (314Ja), so that there is an a € ® such that bne = bna. In this case,

bnupr(bne,®) =bnupr(bna, D) =bnan upr(h,D)
(313Sc)
=bna=bnec,

as claimed.

(b) Let € be the principal ideal of B generated by b. Then the maps d — dnb: ® — € and d —
dnb: B — € are both order-continuous surjective Boolean homomorphisms. So the corresponding Riesz
homomorphisms 77 : L%(®) — L°(€) and T : L°(B) — L°(€) (364P) are surjective, and there is a
u' € LY(D) such that T'u’ = Tu. Now if o € R,
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bnlu > a] =[T'v > ]
y the defining formula for 7" in a
by the defining f la for 7" in 364P
=[Tu>a]=bn]u>al.

So

[ xxb>a]=bnu >a] =Juxxb>a]if a>0,
=bnfu >aJu(1\b)=[ux xb>a]if a <0,

and v’ x xb=u x xb.
Repeating the argument with 1\ b in the place of b, we obtain an appropriate u”.

647D Construction For most of the rest of this section, b will be a fixed member of 2. For ¢t € T', let B,
be the subalgebra of 2 generated by {b} U2; then B, = {(anb)u (a’\b) : a, a’ € A} is a closed subalgebra
(312N, 314J). If s < ¢ then {b} UAs C B, so B, C By; accordingly (Bi)ier is a filtration.

647E Notation From now on, therefore, we shall have the two filtrations (2(;);c7r and (B¢)er, giving sto-
chastic integration structures A = (2, i, T, (At)ter, Ta, (Ao)oeT,) and B = (A, i, T, (Bi)ter, To, (Br)reTs)-
For the various spaces of processes, I will write AMJ(S), BMumo(S), AMpo1(S) etc. When we come to
S-integration, I will talk of F-seminorms Agf , the S-integration topology BTs.; and S-integrals Af. (As we
shall see in 647Fe, there is no need for such distinctions in regard to Riemann-sum integrals.)

647F Proposition (a)(i) T is a sublattice of Tg.
(ii) min 74 = min 73 and max T, = max Tg.
(b) For any o € Ta, B, is the subalgebra of 2 generated by {b} U2,.
(¢) If o, T € Ta, then [o < 7] and Jo = 7] are the same in either structure.
(d) Let S be a sublattice of 7.
(i) If w is an A-fully adapted process with domain S, it is B-fully adapted.
(i) A Mo (S) € BMyinup(S).
(iii) AMy1,(S) € BM,1(S), and the ucp topology on AM, ,(S) is the subspace topology induced by
the ucp topology on BM, (S).
(iv) AM,(S) C BM,s(S).
(V) AMbv(S) g BMbV(S)
(vi) AMpo(S) C BMpyo(S).
(e) If u, v are A-fully adapted processes with domain S, and [ s udv is defined in either of the structures
A, B, then it is defined in the other, with the same value.
(f) If S is a sublattice of T and v an A-integrator with domain S, then v is a B-integrator.
(g) If S is a sublattice of Ty and u belongs to AM,o(S) € BMuo(S), then its previsible version u« is the
same when calculated in either of the structures A, B.

proof (a)(i) The definition in 611A(b-i) makes it plain that 74 C Tp just because A; C B, for every ¢. The
formulae of 611Cb and 611Cc show that T, and 7 can both be regarded as sublattices of A7, so that T4 is
a sublattice of Tg.

(ii) Immediate from the formulae in 611Cf.

(b) Write B’ for the subalgebra of 2 generated by {b} U%(,. If a € A,, then a\ o > t] € A C B; for
every t € T, so a € B,. Next, b and [o > t], and therefore b\ [o > t], belong to B; for every ¢, so b € B,;
accordingly B/ C B,.

In the other direction, take ¢ € 9B,. For each t € T, set a; = upr(bne)\ [o >t],2;). Because
c\[oc>t] € By, bnay = bne\ o >t] (647Ca). So bnas Cbna; if s < t. Also, because o > t] € s,
ar = upr(bne,Ay) \ [o > t] is disjoint from [o > ¢] for each t. Set a = sup,cr as. If s € T, then
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a\ o >s] = igj]g(upr(bﬁc, A )\ [o >t])\ o > 5]

= sup(upr(bne, )\ [o > t]) u sup(upr(bne, )\ [o > s])
t<s t>s

= sup(upr(bne,A) \ [o > t])

t<s
(because A, C 2A; so upr(bne, ;) € upr(bne,As) if t > )
e As.

Thus a € 2, and bna € BL, while
bna =sup,crbne\ o >t] =bnc)\ infier [o > t].
On the other hand,
(bnen infier o > t])\[o > s] =0 € U
for every s € T, so bnen infier [o > t] belongs to 2A, C B! . Accordingly bnc € B
Similarly, ¢\ b € B.. So c € B/ . As c is arbitrary, B/ = B,, as claimed.

(e

(c) The defining formulae
l[o <7] =super [t >t[\[o>t], [o=7]=1\([c <T]u]r <0a])
do not refer to the filtrations.

(d)(i) S is a sublattice of Tg because T is. Expressing u as (uq)qes, o € LO(A,) € L°(B,) for every
oceS8. Ifo, 7 €S8, then [o = 7] C [us = u,] in either structure, so u is B-fully adapted.

(ii) Of course (), cs™%o € (Nyes Bo- So if u satisfies the conditions of 612J with respect to (As)ses,
it satisfies them with respect to (B,)scs.

(iii) ‘Order-boundedness’ of a process depends only on the structure of L, not on the filtration (614Ea),
s0 AM, (S) € BM, (S). Similarly, if we think of 6 (615B) as an F-seminorm defined on the space of order-
bounded families in (L°)®, the ucp topologies on AM,.1,(S), BM,.1,(S) are defined by the restrictions of 0
to these spaces, so must agree on the smaller space AM, (S).

(iv) Now the closure AM,(S) of AMinp(S) in AM,,(S) (631Ba) must be included in the closure
BM,s(S) of BMimp(S) in BMo1,(S) just because AMgimp(S) € BMimp(S).

(v) As in (iii), the definition of ‘bounded variation’ in 614J-614K refers to the lattice structure of S,
but not to the filtration.

(vi) And now, as in (iv), the closure AMp(S) of AM,,(S) (615E) must be included in the closure
BMno(S) of BMpy(S).

(e) Again, working through the definitions (§613), we see that the filtration is nowhere referred to, and
that |, sudv is determined by the lattice structure of S, the processes u, v € (L°)® and the topology of
convergence in measure on L°.

(f) We know that the capped-stake variation set B = Qng) (dv), calculated with reference to the family
(A,)ses, is topologically bounded. Now

Qgﬁ)(dv) C{z xxb+z2" x x(1\b): 2, 2" € B}.

P If S is empty, this is trivial. Otherwise, if z € Qgg)(d'v), there are 79 < ... < 7, in S and ug,... ,Un_1
such that u; € L°(B,,) and |ju;||oc < 1 for each 4, and 2z = Z?;Ol u; X (Ur,,, — vr,). For each i, B, is
the algebra generated by 2., U {b}, so there are u}, v/ € L°(2,,) such that u; = u} x xb + u/ x x(1\b)
(647Cb), and replacing these by med(—x1,u}, x1) and med(—x1,u;, x1) if necessary, we can suppose that
[uf], Juy| < x1. In this case,

7= Z?:_OI ué x (vﬂ+1 - Uﬂ')? 2= Z?:_ol ug/ x (U7i+1 - UTi)
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belong to B (616C(ii)). And z = 2" x xb+ 2" x x(1\b). Q

Since 2’ + 2/ x xb : LY — L is linear and continuous, {2’ x xb : 2’ € B} is topologically bounded
(3A5N(b-v)). Similarly, {2’ x x(1\b) : 2/ € B} is topologically bounded; so QEgB)(dv) is included in the sum
of two topologically bounded sets and is topologically bounded, that is, v is a B-integrator.

(g) Once again, the definition in 641E-641F depends only on the lattice structure of S, the regions
[o < 7] for o, 7 € S and the topology of convergence in measure on L°, which are unchanged by the change
in filtration.

647G Proposition Suppose that (2;)ier is right-continuous.

(a) (B¢)ter is right-continuous.

(b) Ta is an order-closed sublattice of Tg.

(c) If 7 € Tg, there are o, 0/ € T4 such that b C [t = o] and 1\ b C [r = ¢']. In particular, T covers Tg.

proof (a) If t € T is not isolated on the right, take ¢ €
such that cnb=asnband ¢\ b=a,\b. Set

s>¢ Bs. Then for every s > t there are as, af, € 2,

— 3 ! : /.
a = supy~,infic<oras, @ =supy.,infic<y al;

then a € (,,o, ™As = A; and
b= inf (asnbd) = inf as)nb
cnb= o B (e n? = o B a0
(by the distributive laws 313B, as usual)
=anb,

and similarly o’ € 2; and ¢\b = a’\b, so ¢ = (anb)u(a’\b) belongs to B;. As c¢ and ¢ are arbitrary,
(B¢) e is right-continuous.

(b) Use 611Cb in its full strength and 632C(a-1) to see that if A C T, is non-empty, we get formulae
defining sup A and inf A in both 7, and Tp.

(c) For t € T, set a; = upr([r > t] nb,2As); then a; nb = [ > t] nb, by 647Ca, because [r > t] € B;. If
s <tin T, then

[r>t]nbC[r>s)nbCaseAs CA,

so a; C as. If t € T is not isolated on the right in 7', set a = sup,., as; then a = sup, <, as € Ay for every
s’ > t, so (because the filtration is right-continuous) a € 2, while

[r>t]nb=sup,,[r>s]nbCa

so a; C a and a; = sup,, as. But this means that the conditions of 611A(b-i) are satisfied by (as)ier and
we have a o € Ty such that [o > t] = a; for every t. Next, for each ¢,

l[o>tlnb=a;nb=[r>t]nb.
So if we calculate [o < 7] nb from the formulae in 611D, we see that it is

super (b0 [7 >\ [o > t]) = super(([7 > ] nd)\ ([0 > ] nb)) =0,

and similarly [r < o]nb=0,s0b C [T =0o].
Similarly, we have a ¢’ € T, defined by setting [¢’ > t] = upr([r > t]\b,2;) for every ¢t € T, and
I\bclr=d1].

647H Lemma Suppose that (2;):er is right-continuous, and that S is an order-convex sublattice of Ty.
Let v € BM,! (S) be || ||so-bounded. Then there is a || |oo-bounded w € AM, (S) such that v < w.

Remark Perhaps I should make it clear that when I write ‘S is an order-convex sublattice of Ty’ I mean
that whenever 7, 7/ € S, 0 € Ty and 7 < 0 < 7/, then 0 € S. We do not expect S to be order-convex when
regarded as a sublattice of Tg.
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proof (a) Express v as (v, )rcs. For the time being (down to the end of (f) below) suppose that [v # 0] C b.
Set M = ||[v||oo. For 7 € S set 9, = min{v : v € LY(2A,), v > v, }; this is defined because {v : v € LO(2L,),
v > v, } is non-empty (it contains M1, for instance) and downwards-directed, and L°(2(,) is order-closed
in LO.

(b)(3) Of course 0 < 9, < Mx(upr(b,,)), so [0, > 0] € upr(b, A, ), for every 7 € S.

(ii) Next, [v, = 0,] 2 b for each 7. P (Cf. 1211, 364Xp.) If o > 0, then [v, > «] belongs to B, and is
included in b, so by 647FD is of the form bna for some a € ;. In this case, Mxa + ax(1\ a) belongs to
L°(2,) and is greater than or equal to v, so is greater than or equal to 9, and [0, > o] C a. Consequently

[o- xxb>a] Cbna=[v; >a] = v x xb>a].
Of course
[o- x xb>a] =1=[v, x xb> ]

for every a < 0, because v, > 0. As « is arbitrary, v, X xb < v; X xb. Since v, < 0., 0, X xb < v, X xb and
0y X xXb=1wv; x xb, that is, b C [0, = v,]. Q

(c) ¥ = (¥, )res is A-fully adapted. B We arranged in (a) that o, € L°(2,) for every 7 € S. Suppose
that o, 7in S and a = o = 7]. Then a € A, N2 (611H(c-1)) and a C [v, = v,]. Now

Vo X XG 2 Vg X XA = Vr X XQ

0 Uy X Xa+ Mx(1\ a) > v,; at the same time, x(1\ a) and ¥, X ya = 0, x x[o < 7] x xa belong to L°(2L,)
(612C), s0 Ty x xa+Mx(1\a) € L°(A;) and 0, x xa+ Mx(1\ a) > ¥,. Thus 9, x xa > 9, x xa. Similarly,
Oy X xa > 0y X xa and the two are equal, that is, a C [0, = ¥;]. As o and 7 are arbitrary, v is fully adapted.

Q

(d) v is of bounded variation. I Suppose that 70 < ... <7, in S. For 1 < k < n, set ay, = [0r, < Vrp_, ]
If1 <k <i<n,then a; € A;, and

apnbc [[f}”l'k = ka]] n [[’Zka < ’Zka—l]] n [[ﬁ‘ﬂc—l = UTk—l]] < [[UTk < UTk—l]] =0,
so ag N upr(b,A;,) = 0 and ay C [0,, = 0]; consequently axna; = 0 if k¥ < 4. Turning this round, we see

that apna; =0if 1 <i < k, so that

. ~ ~ k—1 |~ ~ ~ ~
ap C 1%111£k II/UTifl < UTi]] c [[Zi:l ‘v‘h‘ - UTi—ll = Urp_y — UTO]]

k—1 |~ ~
[[Zi:l |v7'7', - vTi—l‘ S MX”]?

N

while on the other side
ar € infrcicn [0r, = 0] € 32041 [0r, — Ory [ = 0]
Putting these together,
ar © [0y [0 = Oy | < MXL+[0r, — 0, ] € 20 [0 — O, | < 2M ]
On the other hand,

1\ sup a; © lIlf [[177571 < 177’1]] < [[E?:l |’ET¢ - 6T¢71| = ﬁTn - ’[]7'0]]
1<i<n 1<i<n

HZ?:l |/l~)7'i - ’57'1'—1‘ < MX]-]]v

N

so in fact we have
IIZ?:l |177'i - @7'1‘,—1| < 2MX1]] =1

and YO, [0y, =0y, ,| < 2Mx1. As 7,... , T, are arbitrary, v is of bounded variation, with [¢|do| < 2Mx1.
Q

(e) v is A-near-simple. P Suppose that 70 < 71 in S. If A C SN [, 7] is non-empty and downwards-
directed and has infimum 7 in 7, then 7 € A because A is order-convex in 7. We know that v = lim, 4 U,
is defined, because v is of A-bounded variation, therefore A-moderately-oscillatory (616Ra).
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Of course v > 0. Now v € (N, ¢4 LY(2As) = LO(A;) (632C(a-iii)), while
v >0 X xb=lims 40 X xb=1lims 40, =0,

by 632F, because v is B-near-simple and 7y is order-closed in Tg, so 7 is still the infimum of A in 7. It
follows that v, < v, while

bClv=uv]n[vr =9,] C[v=72,]

Set a = [0, <v] C[v>0]. Then a € A, and anb = 0. But this means that, for every o € A, a is
disjoint from upr(b,2,) and 0, x xa = 0. Consequently v x ya = limy, 4 05 X xa = 0, and a must be 0.
Thus v < 0, and v = 0,. As 0[S N [19, 71] is A-moderately-oscillatory, it is A-locally-near-simple, by 632F
again, and in fact A-near-simple, since max(S N 79, 71]) = 71 belongs to S N [1p, 71].

Since the whole process v is A-moderately-oscillatory, it is A-near-simple, by 631Fc. Q

f) Setting w, = dv| for 7 € S, w = (w;)res is A-near-simple (631K), and of course it is non-
( g SAT ) S p )
negative and non-decreasing; moreover, |[w||oc = || [5 |d0]]« is finite. If 0 < 7 in S, then

bC v —vs =0 — 0], 1\bC v, —v,=0]
SO
Vr — Vg < |07 — U] < Wy — We;
as o and T are arbitrary, v < w.

(g) This deals with the case when [v # 0] C b. Of course just the same arguments apply when [v # 0] € 1\ b.
For the general case, consider v’ = (xb)v = (xb X v;)res and v”" = v —v’. These are both B-near-simple non-
decreasing non-negative processes bounded above by a multiple of x1, while [v’ # 0] C band [v” # 0] € 1\ b.
So we have || ||o-bounded processes w’, w” € AM, (S) such that v’ < w’ and v” < w”. Setting w = w’+w",
w € AM] (S) is || || o-bounded and v < w, as required.

6471 Proposition Suppose that (2;);cr is right-continuous. Let S be an order-convex sublattice of Ty,
and S® the covered envelope of S in Tg.
(a)(i) S® is order-convex in Tg.
(ii) For any A-fully adapted process & with domain S, there is a unique B-fully adapted process & with
domain S®) extending .
(b)(i) If & € AM,1,(S) then & € BM,,(S®)) and sup |&| = sup |z|.
(i) If v € AM,_4(S) then & € BM,_(S®)
(iii) If v € AM,,y(S) then © € BMy, (S®)
(iv) If v is an A-integrator with domain S, then v is a B-integrator.
(v) If u € AMyo(S) then @ € BM;o(S®)) and the previsible version of 4 is the image of the previsible
version of u.
()(d) If w € AMpo1n(S), then w € BMpo1,(S®).
(ii) The map w — w : AM,0.,(S) — IB%Mpo_b(S(B)) is continuous for the S-integration topologies A%g.;
and ]B‘Is_i.
(iii) If 2 € AMg(S), then & € BMg;(S®).
(d) If £ € AMgi(S), then Bfs ) & do = Afg x dv for every A-integrator v € AM,_4(S).

proof (a)(i) Suppose that 7, 7/ € S®) and 7 € Tg are such that 7 < 7 < 7/. Take a € 2\ {0}. Because
Ta covers T (647Gc), there are 0, 0/ € S and 6 € Ty such that o’ = anfo=7]nfo’ =7]n6=7] is
non-zero. Now med(c,d,0’) € S, because S is order-convex in T3 and o A ¢/ < med(o,5,0’) <o Vo', and

0+#d Canfmed(r,7,7) = med(o,5,0')] € an[7 = med(o,5,0")].
As a is arbitrary, 7 € S®: thus S® is order-convex in Tg.
(ii) We just have to remember that w is B-fully adapted, as noted in 647F(d-i), and apply 612Qa.
(b)(i) By 647F(d-iii),  is B-order-bounded, so & is B-order-bounded, by 614Ga.
(ii) Argue as in (i), but using 647F(d-iv) for the first step and 631Ga for the second.
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(iii) Use 647F(d-v) and 614Q(a-iv-5).
(iv) 647Ff and 6161.

(v) By 647F(d-vi) and 615F(a-vi), & is B-moderately-oscillatory. Concerning its previsible version @,
we know from 641G(a-v), applied in B, that @« [ S is the previsible version of u[S, which is the same whether
calculated in A or B, as noted in 647Fg; so .- must be ‘the B-fully-adapted extension of the A-previsible
version u. of u, that is. @ is the image of u. in BM;,(S®).

(c)(i) w is A-fully adapted, so w is B-fully adapted, by (a-ii) just above. Let u € AM,,,(S)" be such
that |w| < u., and consider 4. We saw in (b-v) that, writing . for the previsible version of &, we have
U |S=uc,500=(Jw—u)t = (Jw| —a) T[S (612Qb), and |w| < @.. Thus w € BM,,1(S), as claimed.

(ii) Let G be a BTgj-neighbourhood of 0 in BMy1,(S®). Then there are a || [|oo-bounded v €
BM, (S®) and an e > 0 such that w € G whenever w € BM,o.,(S®) and B6; (w) < e (put 645E(a-ii)

and 647B together). Now 9 is B-near-simple ((b-ii) above) and is non-negative and non-decreasing (614Q(a-
iv-a)) and bounded above by a constant process, so by 647H there is a © € AM (S) such that v|S < 9. In
this case, G' = {w : w € AMpo(S), A@\# (w) < €} is an ATg j-neighbourhood of 0 in AM o, (S). fw € G/,
w € G. P There is a non-decreasing uniformly order-bounded sequence (u(”)>neN in AM,,(S)T such that
lw| < sup,cn u(<") and 6( [ u(™dp) < € for every n € N. Because v[S < 9,

9(/ @™ dv) :0(/ u™ dv)
S® S

<0 / i)
S

(613T, work8ing in B)

(645Bc, working in A)
<e

for every n. Next, I said in 645Bb that the supremum sup,,cy 'u,(<n) is to be taken in (L°)S; but of course the
space BMp, (S) of B-fully adapted processes with domain S is order-closed in (L°)® (612Ia), so sup,,cy u(<n) €
BM:,(S) and is the supremum of {u(<") :n € N} in BM,(S). Now the map u — @ is an order-isomorphism
between BM,(S) and the space BMg, (S®)) of B-fully adapted processes with domain S® (612Qb again),
and supneN(u(g))’\ = (sup,en u(<n))/\. Consequently

|Iw| < (SuanNu(<n) )A = SuanN(u(<n) )A = SuanNIa(<n)7

while (&(™),,cy is a non-decreasing uniformly order-bounded sequence in BM, (S®)F. Accordingly B (w) <
ceandw e G. Q
As G is arbitrary, w — @ is continuous at 0; being a linear operator, it is continuous.
(iii) (a) Suppose to begin with that 2 € AMY,(S). Because &t € BM;,o(S®) and (u.)™ = (@) for
every 4 € AMyo(S), and y — § : AM,01,(S) — BM,po1,(S®) is continuous,  will belong to

(e cu € AMpo(S)} C {ul s o/ € BMypo(S®)} = BMY,(S®).

(B) Now take any 2 € AMs(S). Then & x 1) € AM(S), and (z x 1&))" € BMI,(S®)). The
point is that 1) = l(f(B)) IS, just because 1687 = (1(9)* Tt follows that & x l(f(m) is a B-fully adapted
process with domain S®) extending z x 1) and must be equal to (xx19) ¢ IB%Mg_i(S (). Consequently
& € BMg.(S®) in this case too.

(d) (i) Because S® is order-convex in Tg, by (a-i), and (B,)er is right-continuous (647Ga), we can
speak of both S-integrals (645P). Write z for Bfs ) & do and 2’ for Afg x dv.

(ii) Suppose to begin with that z € AMJ(S). Let € > 0. We know that there is a u* € AM,o(S)™
such that |z| < u%, in which case &* € BM;,o(S®)* and |2| < &%. There is a neighbourhood G of & in
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BMY (S®)) such that 6(z — Ja@ wdd) < € whenever & € BMpmo(S®), || < @* and 4. € G; similarly, there
is a neighbourhood G’ of z in in AMY ;(S) such that 0(z' — [sudv) < € whenever u € AMp, (S®), lu| < u*
and u. € G’. And since the map z’ — 2’ is continuous, we can suppose that &’ € G whenever 2’ € G'.

By 645La, there is a u € AMy,o(S) such that |u| < u* and uc € G'. In this case, 0(z — [50) U dD) < €
and 0(z' — [gudv) < ¢, while [qudv = [4 @dd by 613T. So 6(z — 2') < 2e. As € is arbitrary, z = 2/, as
required.

(iii) And of course we now have
Bfar) & di = Bfgo) & x 16 db = Afgz x 1) dio = A do
for every x € AMg;(S).

647J Theorem Suppose that (2;);cr is right-continuous and S is an order-convex sublattice of T.
If w is an S-integrable process with domain &, and v is a near-simple integrator with domain &, then

[fswdv # 0] C [w # 0].

proof I stopped speaking of T, and AMS_i and Af because I wish to regard this result as a fact about S-
integration expressible in the language of §§645-646. But of course the idea is to apply the ideas of 647D-6471,
so I immediately set b = Jw # 0] and move to the structures considered in 647D-647E. By 6471d,

fswdv = Afsw dv = Bfs s W do,

where S® is the covered envelope of S in Tp and u — @ is the canonical isomorphism between BMg,(S) and
BM;,(S®)) described in 612Qb. Now [ # 0] = [w # 0] (612S(c-ii)). At the same time, yb € L°(B_, s )-
So

Bfg(m wdo = st(m) (xb)w dv = xb x B]%(B) w dv
(646D), and
[Afsw dv # 0] = [xb x Bfg, wdv # 0] C b,

as claimed.

647X Basic exercises (a) Suppose that (;)er is right-continuous and that S is an order-convex
sublattice of 7. Let v be a near-simple process of bounded variation and w an S-integrable process, both
with domain S. Show that [ [d(Siiy(w))| < sup [w|x [ |dv|. (Hint: apply 647.J tow—med(—M1.,w, M1.)
for M >0.)

647 Notes and comments In §646 we found that most of the standard properties of the Riemann-sum
integral transferred without much trouble to the S-integral; only the result [¢ = [, + [, gave difficulty,
and this was attributable to a technical problem at the least member 7 of S V 7. We did of course need to
know a little more about martingales (646P), and this fact seems to depend on the fundamental theorem of
martingales. However, there was a curious gap when we came to look at [ § wdv # 0]. A straightforward
calculation (613Jd) showed that, for the Riemann-sum integral, [ [udv # 0] C [u # 0] n [v # 0]. There was
no difficulty in showing that [ § w dv # 0] C [v # 0] (646C). But it seems to be much harder to confirm that
[$wdv #0] C [w# 0] (6477).

Version of 4.5.20/29.9.23

648 Changing the algebra I1

In §634, I looked at questions involving pairs (,2) where 9 is a closed subalgebra of 2, and the
corresponding stochastic integration structures A and B. In particular, we can relate Riemann-sum integrals
calculated in the two structures (634Eg). Unsurprisingly, there is a corresponding result for S-integration
(648G), though it seems to need a good deal more work.

(©) 2020 D. H. Fremlin
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648A Notation As usual, A = (L, g, T, (UAt)ter, Ta, (Ao)oeT,) Will be a stochastic integration structure.
For nearly the whole section, we shall have a closed subalgebra % of 2l with the associated structure

= (B, 1B, T, (Bi)er, Tn, (Bo)oeT;,) as in 634C. As in §634, I will use formulations like ‘@ is A-previsibly-
order-bounded’, ‘v’ € BM,(S’)’, ‘Afg  dv’ to indicate which structure is being considered at any particular
moment.

If E C Ris a Borel set and h : E — R is a Borel measurable function, h is the corresponding function
from {u : u € LORA), [u € E] = 1} to L°(2A) (612Ac). If u is a moderately oscillatory process, u. will
denote its previsible version (641F). I use the symbol [ for Riemann-sum integrals (613H, 613L) and § for
S-integrals (645P); E will be the ordinary integral on L, = L' (%, i), and 6 the associated F-norm on L°(2l)
(613Ba). The F-seminorms 83 will be those of 645B. S;(u, dv) will be the Riemann sum (613Fb). 1(5) will
be the constant process on § with value x1.

We shall have the usual spaces of processes: My, (fully adapted, 612I), M, (moderately oscillatory,
615Fa), M, s (near-simple, 631Ba), M., (previsibly order-bounded, 645Ba), M,  (non-decreasing non-
negative near-simple, 644Bb), MJ, and Ms; (S-integrable, 645F). If S is a sublattice of Tx, Z(S) will be
the directed set of finite sublattices of S.

648B Lemma Let E be a Borel subset of R; write Qg for {u:u € L°(2), [u€ E] =1}. Let h: E - R
be a continuous function. Suppose that S is a finitely full sublattice of Ty and u = (uy),es a moderately
oscillatory process such that {u, : 0 € S} C Qp, the closure being for the topology of convergence in measure
on LO(A). Then hu = (h(u,))ses is a moderately oscillatory process.

proof (Compare 615F(a-ii).)
(a)(i) If 0 € S and a € R, [h(u,) > o] = [us € h[]a, 00[]] € Ay, 50 h(uy) € LO(Ay).
(i) Ifo, 7 €S,
o =71 € [o = ur] < [(uo) = A(ur)]
by 612A(d-iii). Thus hu is fully adapted.
(b) If (0p)nen is a monotonic sequence in S, u = lim, o Uy, is defined in L°(”A) and belongs to

{uy :0 €S} C Qp. Since h: Qg — L°(2) is continuous (367S/613Bb), lim,, o, h(u,, ) = h(u) is defined.
As S is finitely full, this is enough to ensure that hu is moderately oscillatory (615N(iii)).

648C Lemma Suppose that (2;)ier is right-continuous. Let S be an order-convex sublattice of Tx, w a
I l2-bounded martingale with domain S, and « a || ||co-bounded S-integrable process with domain S. If w*
is the quadratic variation of w, ||( sz dw)?|, < | fgz*dw*[; < co.

proof This is trivial if § = (), so suppose otherwise. Express w as (wy)ses-

(a) T had better run through the check that the S-integrals are defined. Since w is || ||2-bounded, it is
| ll1-bounded and an integrator and moderately oscillatory (622G). Because the filtration is right-continuous,
w is locally near-simple (632Ia), therefore near-simple (631F(c-ii)), and w* is also near-simple (631J) as well
as being an integrator (6171). And z* € Mg ;(S) by 645Ka. So we can form fsx dw and §g 2?dw*.

(b) For the time being (down to the end of (h) below), suppose that £ € M2,(S). Set M = ||z,
K =sup,cs |woll2, A ={y 1y € MI(S), llyloo < M}, Az = {y 1y € M;(S), lyllc < M?}. Note that if

y € A then |y| < M1(<S). P We know that |y| < M1(S) and also that there is a non-negative u € My,(S)
such that |y| < wu.. Now

ue = (ux19) . =u. x 1(<$)7
SO
ly| x (1) —18) <uc x (19 —18) =0
and

S) S S
lyl = Iyl x 1) = [y x 1 < M19 <1 = . Q
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So A is uniformly previsibly order-bounded. Similarly, As is uniformly previsibly order-bounded.

(c) By 6455,y — $oydw: A — LO(A) and y — foydw* : Ay — L°(2) are continuous when M (S)
is given its S-integration topology and L°() is given the topology of convergence in measure. Since mul-
tiplication on L°(2A) is continuous, y — ( sy dw)? : A — L°(2) is continuous. Since y — y* : A — Ay is
continuous (645E(a-v-3)), y — §sy*dw* : A — L°(A) is continuous.

(d) fu € Mpo(S) is || ||co-bounded,

2 . 2\ 2 *
H(/Sudw) ||_E<(/Sudw> >fE</Su )

-y / w?dw*,
S

by 614Ig, because u® is non-negative and w* is non-decreasing. And by 622P we have || [su dw||z < K ||ulo,
so [|([swdw)?[l1 < K?|lul%.

(e) Set B ={u:u € Myo(S), |[ul|cc < M}. Then A is the closure of {u. : u € B} for the S-integration
topology of M,(S). P Ifu € B, —M1) <u < M1S so —M1¥) <u_ < M1S and u. € A. On the
other hand, if y € A, v € M (S) and € > 0, there is certainly a u € My, (S) such that 8 (y —u.) < ¢, by
the definition of MZ(S). Now, setting & = med(—M1() u, M1(5),

(6241)

~ S S S S
ly — | = |med(~M1 y, M1Y) — med(- M1 u, M1 < Jy —u |
S0
0F (y—ic) <O (y—uc) < e
(645DDb), while & € B. As y, v and € are arbitrary, A C {u. : u € B} (645E(a-ii)). Q

(f) Tt follows that if y € A, then ( fsydw)2 belongs to the closure, for the topology of convergence in
measure, of

{($sucdw)® :u e B} = {(f‘s'u,dw)2 ru€ B} CC
where C' = {z: z € L°(), ||z[1 < K*M?}. So (§sydw)? € C = C (613Bc). Because |||y : L°(2A) — [0, o0]
is lower semi-continuous (613Bc), y — [|( fsy dw)?||1 : A — R is lower semi-continuous (4A2B(d-i)).
(g) Concerning s y*dw* we have a little more. Note first that, setting u = 19) in (d), we see that
I fy dwlly = [ f, dw)?]ly < K2
is finite. Now if u € B, 0 < u? < M?1) so
2 * 2,7
0< fsu dw* < M-“w

where w = [ dw*. Setting D = {z: z € L%(A), 0 < z < M?w}, D is closed for the topology of convergence
in measure and includes

{f5u2dw* tu € B} = {fs(u2)<dw* tu € B} = {ffsuid’w* :u € B}
so contains §sy*dw* for every y € A. In particular, §¢z?dw* € D, so
| § x2dw*[|; < M?||w|, < M?K? < oc.

Observe next that D is uniformly integrable, so the || ||;-topology on D agrees with the topology of conver-
gence in measure (621B(c-ii)), and z — ||z[1 : D — R is continuous. But this means that y — || $5y*dw*||; :
A — R is continuous.

(h) Putting (f) and (g) together, we see that
vy [($sydw)?s — || fsy?dw[1: A = R
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is lower semi-continuous (4A2B(d-iii)). And as

I foue dw)l — || fsuZdw |y = | [sudw)?]y — | [5u2dw | =0

for every u € B, ||(fsydw)?|1 — || §sy*dw*||1 < 0 for every y € A. In particular, ||( sz dw)?|, <
| s z°dw* |1

(i) Tl(l};) deals with the result when z € M{;(S). For the general case in which z € Mg ;(S), apply (b)-(h)
tox x 1.7,

648D We come now to the main work of the section in which we are working in both the original
stochastic integration structure A and an embedded structure B.

Lemma Suppose that (;):cr is right-continuous. Let 9B be a closed subalgebra of 2 which is coordinated
with (Ut)rer, and B = (B, 5B, T, (Bi)icr, Tp, (Bos)oeT) the corresponding stochastic integration struc-
ture, where B; = BNA; fort € T. Let S’ be a relatively order-convex sublattice of 75 and S its order-convex
hull in 7a. If z € AMY,(S) and ]S’ € LO(B)S', then ]S’ € BMY,(S).

proof (a) We need the following basic facts: S’ is B-finitely full (611Pc), S’ separates S (633Da and
633D (b-1), because constant processes belong to Tp), S’ is cofinal with S and inf A € § whenever A C S
is non-empty and has a lower bound in S§. Recall also that we have a multiplicative Riesz homomorphism
U AM,(S") — AM,_(S) such that ¥(u') extends u’ for every u’ € AM,,_<(S) (631Mb), while BM, (S’) =
AM,(S")NLO(B)S" (634EDb). Tt follows that BM (S') = AM] (S') N LO(B)S".

(b)(i) Let P : L. — L be the conditional expectation operator associated with B. If y = (y5)ses
belongs to (L}L)S set P'(y) = (P(Yo))oes’-

(ii) If u € AM¢,(S) is || [[co-bounded then P’(u) € BM,(S’). B Express u as (ug)ses. If o € S’ then
u, € L°(2A,). Writing P, for the conditional expectation associated with the closed subalgebra 2, we know
that B and 2, are relatively independent over their intersection B, (634H) so that PP, is the conditional
expectation operator corresponding to B,. Now P(uy) = PP, (u,) € L°(B,). Thus P'(u) € [],cs L°(Bo).
If o, 7€ S and b = Jo = 7], then b € B, so
P(ug) X xb = P(uys X xb) = P(ur x xb) = P(u;) x xb
and b C [P(u,) = P(u,)]. So P'(u) is B-fully adapted. Q
(iii) If u € AMo(S) is || ||co-bounded, then P’'(u) € BMy,o(S') and P'(u)< = P'(u<). I We have just
seen that P’(u) is B-fully adapted. Write M for ||u||o. On the uniformly integrable set A = {z: z € L°(2),
[ 2]lc < M} the topology of convergence in measure coincides with the norm topology of LL; as P: A — A
is || ||1-continuous, it is continuous for the topology of convergence in measure. If (0;,)nen IS @ monotonic
sequence in 8, (uy, )nen is a sequence in A which converges for the topology of convergence in measure
to a member of A, so ((P(us, ))nen converges for the topology of convergence in measure. As (0, )nen 18
arbitrary and S’ is B-finitely-full, P’(u) is B-moderately-oscillatory (615N(iii) again).
Express 4 as (uy)ses and P'(u) as (wy)ses’. For 7 € 8" and non-empty I € Z(S'), define uj, from
(Ug)oes and wr<, from (w,),es as in 641E. Now for o € T set

boe = o < 7]\ supe; [o < o']no’ < 7],
and set b = [t < min I]. Because 8’ C Tg, b, and b belong to 9B, while
by C [[UI<T = Uoﬂ n [[w1<r = w0]]a
b - [['LL[<7- = O]] n [[U)[<7- = O]]
Accordingly
by

N

[[P(u1<‘r) = wo’]] N [[wI<T = wd]] c [[P(UI<T) = wI<T]]>

bc[Plur<s) = wr<-].

Asbusup,c; b, =1, wi<r = P(ur<,). As I is arbitrary and P is continuous on {z : z € LO(2), |z| < Mx1},

MEASURE THEORY



648D Changing the algebra I 113

Wer = limpz(sy wi<r = Plimpz(sy ur<r);
as 7 is arbitrary, (P'(u))< = P(u[S')<. But &’ separates S, so (u|S")« =u|S’ (641Hb) and
(P'(u))< = P(uc[S) = P'(u)<. Q

(c) 218" € BMyon(S').
P Let u € AM,,,(S)™ be such that |z| < u.. Consider the functions g : R — |—1,1[, h : |1, 1] given by
the formulae

«

g(a) =17

for o €R, R(B) = 1—5|m for B €]—1,1[.

Then g = h=1, h = g~ ! are the two halves of an order-preserving homeomorphism between R and ]—1, 1[.
Set

lal

Qu={u:ue L), lu <1] =1}, Qp={u:ue L'DB), lul <1]=1}.
I will write
G: L) - QF, 7 :L°B)S - Q5 h:QF — LO(B)S
for the induced functions as in 612A-612B, so that A is the inverse of g’.
By 615F (a-ii), gu is 2A-moderately-oscillatory, and we have

92| = glz|
(because |g(a)| = g(Ja]) for o € R)
< guc
(by 612A(d-iii), because g is order-preserving)
= (gu)<

by 641Gd, while setting @ = sup |u|, sup gu < g(). Since gu € QF is || [|so-bounded, we can form P’(gu); by
(b), P'(gu) is B-moderately-oscillatory and (P’(gu))< = P'((gu)<). Note that P(u) € Qg for every u € Qq,
so P'(gu) € Qg and gu € [—Pg(a), Pg(a)]®’, while [~ Pg(@), Pg(@)] is a topologically closed subset of Q.
By 648B, applied in B, hP’(gu) € L°(B)S" is a B-moderately-oscillatory process.
Still working in B, we know that the previsible version (hP’(gu))< is defined. To compute it, note that
we have §'(hP'(gu))< = (7'hP'(7u)) < = (P'(gu))<. So
(hP'(qu))< = hg'((hP'(gu))<) = hP'(gu)<.

Now we see that

zIS'| = [hg'z]S'| = |hP'(gz)|
(because 2|8’ € L(B)S" and (gz)|S' € L>(B)S)
< hP'(|gz|) = hP'(glz|) < hP'(qu<)
(because P’ is a positive linear operator and h is order-preserving)
= hP'(qu<) = (hP'(gu))<

while hP’(gu) is non-negative and B-moderately-oscillatory. So 2[S’ is B-previsibly-order-bounded. @

(d) Suppose that v = (vs)ses is a non-negative non-decreasing || ||s-bounded A-fully-adapted process
such that v, € LY(%B) for every o € &, and that u = (uy)yes is a || ||oo-bounded A-moderately-oscillatory
process. Then || [¢udv||o < [ul|s||v]co and P([sudv) = [5, P'(u)dv.

P Because u is A-moderately-oscillatory, P’'(u) is B-moderately oscillatory, while v is A-fully adapted,
v = 0|8’ is B-fully adapted and both are of bounded variation, the integrals are defined. As &’ is cofinal
with § and separates S, while inf A € S whenever A C S is non-empty and bounded below in S, 633K tells
us that [g, udv = [sudv.
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Write M, M’ for ||ul|c and ||V|lco. If 09 < ... <0y, in &,

X |U0'i+1 — Vo,

n—1
oo < Z o,
=0

n—1
< ” Z M|qu‘,+1 — Vo,
=0

= Mlvo, = voylloo < Mvo, [loo < MM'.

n—1
” Zum‘ X (UUH»I - Ufn)
=0

At the same time

—1 —1
P(Z?:O uUi X (Uo'i+1 - UUi)) = ZZ‘L:O P(um‘) X (U0'¢+1 - UU@')
because v,,,, — vy, € L(B) for every i.
Accordingly [|St(u, dv)||cc < MM’ and P(S;(u,dv)) = S;(Pu,dv) for every I € Z(S’). Taking the limit
as [T Z(S'), || [goudv||oo < MM'. At the same time, since P is continuous on {y : [|y[lecc < MM'},

P(/Sudv) = P(//udv) = lim P(Si(u,dv))

ITZ(S)

= lim SI(Pu,d'u):/ Pudv:/ P'(u)dv. Q

IZ(S)

(e) Suppose that y € AM,1,(S) is || || so-bounded, that v € AM]! (S) is || ||so-bounded, and that v’ = v[S’
belongs to L(B)S". Then P’ (y) € BMpo1(S'), v € BM,.o(S’) and BOZ: (P'(y)) < max(1, [[y|oo|[v]| o) A (3).
P Set M = |lylloc, M’ = |[v]|oc and 7 = AGF (y). Then |y| < M1 so

P'@y)| < P(y)) < MPA¥) = MP1®) . = M1
< <

by (b-iii). So ¥’ is B-previsibly-order-bounded.

Let € > 0. Then there is a uniformly order-bounded non-decreasing sequence (&, )nen in AM,(S)™ such
that |y| < sup,cytn< and sup, ey 0([sundv) < v+ €. Replacing u, by u, A M1(S) if necessary, we can
arrange that ||u,|lcc < M for every n. Expressing ¥ as (Yo )oes and U< as (Un<os)oes for each n, we see
that for o € &’

1P(ys)| < P(lyo|) < P(Sugun@) = P(1lim u, <)
ne

n—oo
(taking the || [|1-limit)
= llim P(up<os) = sup P(un<s)-

n—o0 neN

So
|P'(y)| < sup,en P'(Un<) = sup, ey P’ (un) <

by (b-iii) above, while (P’ (%, ))nen is a uniformly order-bounded non-decreasing sequence of non-negative
B-moderately-oscillatory processes. So

BO¥ (P (y)) < sup / P (un)dv’) = sup 0(P( / )
neN ’ neN S

(by (d) above)

< sup E(P(/ u,dv)) = sup E(/ Uy, dv)
neN S neN S

7 1
< max(1, MM )ilégE(imax(l,MM’) /S’u,ndfu)

= max(1, MM ):lelgg(max(l,MM’) /Sund'v)

(because || [ undv||oc < MM’, also noted in (d))
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< max(1, MM") sup 0(/ updv) < max(1, MM')(y +¢).
neN S

As € is arbitrary, Baf(P’(y)) < max(1, MM')y, as claimed. Q

(f) If z is || || o-bounded, then ' € BM2,(S). P By (c), or otherwise, ' is B-previsibly-order-bounded.
Take v’ € BM] (S') and € > 0. Then there is an M’ > 0 such that ffsupv’ > M'] < fe. Set w' =
v' A M1 so that w' € BM] (S') and [|w'|o < M’, while fw’ # v'] < 1e. As noted in (a), w’ belongs
to AM, s(S’) and has an extension w = ¥(w’) belonging to AM,, (S). Because ¥ is a Riesz homomorphism,
0 <w < M'19 and by 631M(b-iv) w is non-decreasing. So w € AM] (S).

We can therefore speak of the F-seminorm A . Set M = |||, and let § > 0 be such that max(1,2M M")§ <
1e. Asz € AMY(S), thereis au € AMy,o(S) such that AB% (x—u.) < 6. Replacing u by med(—M1(5) 4, M1(S))
if necessary, we can arrange that ||u||cc < M, so that ||z —u<||cc < 2M. Now P'(u) € BMyo(S’) and

B,z — (P'(w)<) = BOY (2 — P'(us)) = BOY (P'(z — u.))
< (1+2MM"AGH (x —u.)
(by (e) above)

< (1+2MM")§ < se.

Working in B, we have a uniformly previsibly order-bounded non-decreasing sequence (u.,)pen in BMy,(S') ™
such that |2’ — (P'(u))<| < sup, ey, and sup, ey 0( [, ul,dw’) < Le. For each n,

o [ !~ [ i) <l g wlde’ # [ '] < o’ # ']

(613Ld)
< l<—j
— 2 7
SO
1
0([s undv') < Se+0( [, udw') < e
Accordingly

BOY (&' — P'(u)<) < sup,ey 0[5, updv’) < e.
As v’ and € are arbitrary, ' € BMJ,(S'). Q

(g) Finally, in the general case in which z € AMZ (S) andz’ € LO(B)S', set ,, = med(—Ml(f),x, M1(<S))
and z), = z,|S’ for each n € N. Then ,, € AMJ ,(S) is || ||co-bounded and z!, = med(—Ml(fl),x’, M1(<S/))
belongs to LO(B)S'; by (f), z!, € BMZ,(S'), for every n € N. Writing 2’ for 2[S’, &’ is B-previsibly-order-
bounded (by (c¢)) and |2!,| < |z’| for every n, so (x!,)nen is uniformly B-previsibly-order-bounded, while it
is order*-convergent to 2’ in L°(%B)S’; by 645H, &’ € BMY,(S).

648E Lemma Suppose that (2;)ier is right-continuous. Let 9B be a closed subalgebra of 20 which is
coordinated with (2)er, and B = (B, @B, T, (Bi)ier, Tp, (Bo)oeT:) the corresponding stochastic inte-
gration structure, where B; = BN A, for t € T. Let S’ be a relatively order-convex sublattice of Tg and S
its order-convex hull in 4. If u € AM,(S) and ]S’ € LO(B)S’ then w’' = u|S’ is near-simple in either A
or B.
proof u is A-moderately-oscillatory (631Ca) and S is A-finitely-full (611Pc, as before), so u is ||-convergent

(615N) and u[S’ is l-convergent, working in either A or B. If A C &’ is non-empty and has a lower bound

D.H.FREMLIN



116 The S-integral 648E

in &, then A has a greatest lower bound in 7g which is also its infimum in 7T, because Tg is an order-closed
sublattice of Ty (634C(f-ii)); and because S’ is order-convex in 7p, this common infimum belongs to S.

We know that u’ is A-moderately-oscillatory (615F(a-i)), therefore B-moderately-oscillatory (634Ee). If
A C &' is downwards-directed and has a lower bound in &', then (as we have just seen) there is a common
value inf A € & of its infimum taken in either 7 or Tx. By 632H, tinr a4 = lim, 4 u,, because we are
supposing that u is A-near-simple. Finally, the filtration (2B;);cr is right-continuous (634C(f-i)). As A is
arbitary, we can apply 632H in the other direction, working in the structure B, to see that «’ is B-near-simple,
therefore A-near-simple (634EDb).

648F Lemma Suppose that (;)ier is right-continuous. Let 9B be a closed subalgebra of 21 which is
coordinated with (UA)ier, and B = (B, 4B, T, (Bi)ier, T, (Bos)ocT) the corresponding stochastic inte-
gration structure, where B; = B NA; for t € T. Let S’ be a relatively order-convex sublattice of Tg and S
its order-convex hull in Ty. Let z € AM$(S), v € AM] (S) be such that ' = z|S’ and v/ = v|S’ belong

to LO(B)S". 1f BOZ (2) = 0 then Af,z dv = 0.

proof We know that &' O {med(c,t,7): 0, 7 € S, t € T} A-separates S (633D). By 648D, =’ € BM{ ;(S'),
while v’ is non-negative, non-decreasing and order-bounded, and by 648E is near-simple in either structure.
Thus v' € BM] (S'), and B7; (2') is surely defined.

n-s

? Suppose, if possible, that e = i&(A fﬁs x dv) is greater than 0. Working in B, we have an order-bounded
non-decreasing sequence (u),)nen in BMpyo(S')T such that 2’ < sup, cyu;,. and sup, oy 0([5, u,dv’) < e.
Next, working in A, there are a w € AMpo(S)™ such that [wdv > 3¢ and Aé\#ﬂz —w<|) < € so there
is an order-bounded non-decreasing sequence (W, )nen in AMo(S)™ such that |2 —w<| < sup,,cyWn< and
sup,,ey 0( [ wndv) < e. Observe that

r>we — |z —we| > infpen(we —wpe) = infpen(w —wy,) <.
Setting w’ = w[S’, w), = w, S’ we have (w' —w),)c = (w —w,)<[S' for each n (641Hb again). So
infen (W' — W) <& < SUp e, W < SUDey Whe + U,

((w' A (w!, +u},)) <) nen is order*-convergent to w’. in L(B)S and [g, w'dv’ = lim, o0 [ (W' A(w), +ul,))dv’
by 644H. On the other hand, 633Ka tells us that

fs’ w'dv’ = fswd'v, fs' w! dv' = fswnd'v
for every n € N, so H(fs, w'dv’) > 3e while

o [ ' A w, + w)v') < 6 [

§0(/wndv)+e§26
s

w), dv’) + 0(/ w,dv')

’ /

for every n. X Thus Afsx dv = 0.

648G Theorem Suppose that (;);cr is right-continuous. Let 9B be a closed subalgebra of 2 which
is coordinated with (;)ier, and B = (B, a[B, T, (Bi)ier, To, (Bo)oeTs) the corresponding stochastic inte-
gration structure, where B; = B NA; for t € T. Let S’ be a relatively order-convex sublattice of Tg and S
its order-convex hull in 7. Let x € AMg ;(S) and an A-near-simple A-integrator w with domain S be such
that ' = 2|S’, w' = w|S’ belong to L°(B)S". Then Bf,, z'dw’ = Af x dw.

proof (a) For the time being (down to the end of (h) below), suppose that S’ has a greatest member and
z € AMY(S) is || ||co-bounded.

(i) We know from 648D above that 2’ € BMJ;(S’), while w’ is a B-near-simple B-integrator (648E,
634Ib). So the integral Bfg, 'dw’ is defined.

(ii) Conversely, by 634Eb again, BM,_4(S') = AM,_4(S') N LY(B)S" is an f-subalgebra of AM, (S').
By 631M we have a multiplicative Riesz homomorphism ¥ : AM,, ((S") — AM,_s(S) such that ¥(u) extends
u for every u € AM,, 4(S’). By 633F, ¥(u) is the only A-near-simple process with domain § extending u.
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(b) Let M > 0 be such that —M1(<S) <z < M1(<S). Write Y for the set of those y € AMJ;(S) such that
y| < 3M1Y) 1S’ € LO(B)S" and Bfs, (y|S")d(2]S’) = Afsy dz whenever z € AM,, 4(S) is an A-integrator
and 2|8’ € LO(B)S".

(c) uc € Y whenever u € AM;(S), [u| < 3M1(5) and v’ = u]S’ belongs to LO(B)S". P Certainly
uc € AMYQ,(S) and |u<| < 3M1(<$). By 641Hb once more, u- S’ = /. belongs to L°(B)S". If z is an
A-near-simple A-integrator with domain S and 2’ = 2[S’ belongs to L° (%)Sl, then 2’ is a B-near-simple
B-integrator (648E, 634Ib as before). Now

IB}{ (uc8")d2 :]B%j{ u_dz' = ]B/ u'd?’
’ ! Sl
:A/ udz
:A/udz
s

(633Ka, because S’ separates S, by 633D (b-1))

= j{u<dz.
s

(d) If {yn)nen is a sequence in Y which is order*-convergent to y in L°(2), then y € Y. P Because

(645R (a-i))

(634Eg)

As z is arbitrary, u- € Y. Q

lyn| < 3M 1(<$) for every n, (Yn)nen is uniformly A-previsibly-order-bounded and |y| < 3M 1(<S). Writing
y = ylS, y, = yn|S' for each n € N, we see that (y/,)nen is order*-convergent to y’ in LO()S'; as
y!, € LO%(B)S for every n and L°(B) is topologically closed in L°(2), y' € LO(B)S". Also |y, | < 3M1(<S/)
for every n, so (¥],)nen is uniformly B-previsibly-order-bounded. By 645H, working first in A and then in
B,y € AM2,(S) and y' € BM{,(S’). Moreover, if z is an A-near-simple A-integrator with domain S and
z|S" € LO(B)S', then

(645S)
= lim A$ y,dz=A$ ydz
n— 00 S S
SoyeY.Q

(e) If v/ € BM,_(S')* is non-decreasing and order-bounded, there is ay € Y such that B, (z'—y|S’) = 0.

v/
P (i) For each n € N take 4], € BM,,,(S’) such that B@ﬁﬂm’ —1),_]) < 27", and a non-decreasing se-

quence (i, )men in BMpo(S) " such that 0( [, @,,,,dv") < 27" for every m and |&/—t;, .| < Sup,,cn G-
4

By 642M, working in B, we have u,,, ,,,, in BM,, <(S’) such that u,,_ = 4,,_, %,,,,. = U,,, for all n, m € N.
Setting

u/, = med(—M1) 4/, M1S)) wl = (SUP<py U) T A 2M1(5")

for m, n € N, we see that u/,, u/,,, € BM,4(S"), 0 <u/, < 2M1(5) and

& —u,_| <o’ — | A2M1S) =g — ! _| A2M1S)

<sup,, _ A 2M1(<$/) =sup, _ A 2M1(<Sl) = sup u/

nm< nm< nm<
meN meN meN
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for all m, n € N. Moreover, because v’ is non-decreasing,

/ Unm V' < / (supry) "’ = / (supi, ;)" dv’

i<n i<n
(using 645R(a-i), because (Sup;<,, ;)< = (sup;<,, 4,;) %)
:/ b, dv’ < 27"

for all m, n € N.

(ii) Looking at the function ¥ of 631M and (a-ii) above, ¥(1(5)) must be 1(5). We can speak of
u, = U(u,) and u,, = ¥(u!,) for n, m € N, and we shall have |u,| < M1, 0 < u,,, <2M1) for all
n and m, while (U )men is non-decreasing for each n. Now consider

Zpm = infign(ui + uim) S AMn—s(s)

for n, m € N. Then z,,, always lies between —M1) and 3M1(5), while (2,m)men is non-decreasing for
each n and (Znm)nen s non-increasing for each m. So if we set

Yn = SUPpeN Znm< € A‘7\4§-i($)

for each n, y,, will be the order*-limit of (Zpm<)men. By (¢)-(d) above, y, € Y for each n, while (Y, )nen is
non-increasing, so y = inf, ¢y ¥y, also belongs to Y.

(iii) Write 27, = 2om|[S’, ¥, = Yn[S’ and ¥y’ = y[S’. We always have ' < u), _ + Sup,,enUpmo- SO
ifneN,

z’ < inf (uj. + sup wj,,.) = sup inf (uj +uj, )
i<n meN meNi<n
(using the distributive law 352Ea repeatedly)
= SUD Zp = Y-
meN

(The point here is that, by 641Hb yet again, (2,m[S")< = (Znm)<[S’, so we can use the formula 2],
without inhibitions.) Accordingly ' <y’. Now, for any n € N,

0<y —a' <y, —up +u,. — 2|
= sup (W« — Uy ) + |ug, . — 2’| < sup up,, o + U, —x
meN meN

/

SO

nm<

B0, (y —z') < BOY, (sup ul,, ) + BO (u,,_ —2')
meN

< sup / u, dv' 427" <27t Lo
meN 4

As n is arbitrary, ]B%ajf (y —z') =0, as required. Q

(f) If v € M (S) and v’ = v|S’ belongs to L°(%B)", then Bf, z’'dv’ = Af, x dv. P By 648E again, v/
is B-near-simple, and of course it is non-negative and non-decreasing. By (e), there is a y € Y such that
B@f (' —y') =0, writing ¢’ for y[S’. Now
B, x' —y' dv’ = 0 by 646E,
Bfs, y'dv’ = Afsy dv because y € Y,
Afsx —ydv = 0 by 648F,

so Bfs, x'dv’ = Afszdv. Q
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(g) If z is an A-L%-martingale with domain S and 2’ = 2|8’ belongs to L°(B)S’, then B, ¢'dz’ =
Afs, z dz. P We are supposing that S’ has a greatest member, which will also be the greatest member of S.
By 632Ia again, z is A-locally-near-simple, therefore A-near-simple; by 366J, it is || ||2-bounded, therefore
I ]l1-bounded and an A-integrator (622G). Write z* for the A-quadratic variation of z, which is non-negative,
non-decreasing, locally near-simple (631Jb) and an integrator (6171 again), therefore belongs to AM] (S).
The A-quadratic variation of 2’ is 2*[S’ (633Ph), and this is equal to its B-quadratic variation (634Ib).

By (e) again, there is ay € ): such that, setting ¢y’ = y|S’, Bﬂﬁ 1s(@ —y') = 0. Since |z —y| < AM1(S),
(&' —y')? < 4M|z’ —y'| and BOY. 5 (z' —y')? = 0. By G46E and 648F,

B, (&' —y')%d(z*S") = Afg(z — y)*dz" = 0;
by 648C,
I(Bfs, (=’ —y")dz')?[ly = [|(Afs (2 — y)dz)*|l = O,

B, (' —y')dz' = Afs(x —y)dz =0
and

B, x'dz’ = Bfs, y'dz = Afsydz = Af xzdz. Q

(h) Now turn to the given A-near-simple A-integrator w. Let ¢ > 0. Working in B, 6430 tells us that
we have an L>°-bounded B-martingale @’ and a B-near-simple process v’ of bounded variation, both with
domain &', such that a = [w’ # v’ + '] has measure at most e. Now v’ can be expressed as v} — v} where
v, vh € BM] (S) (631L). Let vy = ¥(v}), v = ¥(v)) be the A-near-simple processes extending v} and v}
to S. Then v; and v, belong to AM, (S). Since @' is also an A-martingale (634Ia), and S’ is cofinal with
S, there is a A-martingale @ with domain S which extends w’. As in (g), @ is A-near-simple, so must be
U(w'), and in particular is || [|s-bounded.

Writing 2z for v1 —ve +w and 2’ for 2[S’ = v’ + @', we have

IB%]( x'dz’ :IB%?( x' dv) —IB%}( m’d’u’Q—i—Bf x' dw'’
:Aj{xdvl—Aj{zdvg +A‘¥mdﬂ)
s s s

= Af xdz.
S

(by (f) and (g))

So

[Bfs, x'dw’ # Afs, x dw] C [Bf, x'dw’ # Bfs, 2'd2'] U [Afs x dw # Afs x dz]
Cw #2]ulw# 2]
(646C)
=[w -2 #0Ju[¥(w' —2) # 0] = [w — 2" # 0]
(631M(b-v))

=a
has measure at most e. As € is arbitrary, ]B%fs, ' dw' = Afs, z dw.

(i) This deals with the case in which &’ has a greatest member and z € AM2,(S) is || ||o-bounded. If
we know just that S’ has a greatest member, set

T, = med(—nlg),x,nlg))
for each n. Then each z,, € AMJ(S) is || ||co-bounded. Because z x 1(<S) € AMY (S) is A-previsibly-order-

bounded, (x,,)nen is A-uniformly-previsibly-order-bounded, while (z,),cn is order*-convergent to  x 1(<S).
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By 648D, (x x 1(<S)) IS’ € BMQ,(S') is B-previsibly-order-bounded so (z,[S'),en is B-uniformly-previsibly-
order-bounded, while it is order*-convergent to (z X 1(<S)) IS’. Accordingly

A}[zdw :A}[x x 1% dw = lim A}[ T, dw
(645T)

= lim ]Bf (z,1S")dw’
s

n—oo

(by (a)-(h))
= j{ (z]S) x 1(<S/)dw’ = IB% z'dw’.

(j) Finally, for the general case of a relatively order-convex sublattice S’ of T, we know from 646M that

B, «'dw’ = lim s Bf, _a'dw’,

Afsx dw' = lim,ys Afs, 2 dw = lim s Afg, x dw

because S’ is cofinal with S. But for every 7 € &', S A 7 is the order-convex hull of 8’ A 7, so we can apply
(b)-(i) to see that Bfg, , x'dw’ = Afs, xdw. In the limit, we have Bfg, 2'dw’ = Afsx dw.

648X Basic exercises (a) Let (2, i) be a probability algebra and 9B a closed subalgebra of 2. Show
that there is a continuous order-preserving projection from L°(2l) onto L%(B).

648Z Problem In 648G, can we drop the hypothesis that ‘B is coordinated with (¢)ier’?

648 Notes and comments We have just gone through an uncommonly dense argument aiming at an
expected result. Some of the complications (e.g., the shift from the moderately oscillatory processes ., to
the near-simple processes u,, in part (e) of the proof of 648G) arise from the idiosyncratic formulations I
have chosen. Others come from my extension of the S-integral from previsible processes, as described in
§642, to the S-integrable processes of §645; in effect, this is part (f) of the proof of 648G, relying on 648F. I
note also that part (d) of the proof of 648D duplicates the idea of 647B.

Periodically, in this volume, I have looked at the question of law-independence. I noted in 645Q that the
S-integral is law-independent. In 648G the hypotheses and conclusion are all law-independent ezcept for the
requirement that B should be coordinated with (2(;)¢c7. It would be sufficient to suppose that

there is a 7 such that (2, 7) is a probability algebra and B is coordinated with (2, 7, (2;)er),
obtaining a version which demands only that 2l should be a measurable algebra. But an affirmative answer
to 6487 would show that no such manoeuvre is called for.

Version of 30.9.14/28.1.20
649 Pathwise integration

The integrals of §613 and §645 are defined in terms of convergence in L°. The most important applications
are associated with processes of the form (X;(w))t>0wen with paths (X;(w))¢>0. It turns out that in the
case of the Riemann-sum integral, we can often, with some effort, define integrals ‘pathwise’. I do not think
that this approach gives a good picture of the theory as a whole, but it is surely worth knowing what can
be done.

The S-integral is rather different; I do not see any way of giving a pathwise description of the S-integral
with respect to Brownian motion, for instance. But for non-decreasing integrators we have an effective
approach through Stieltjes integrals, which I have hinted at in earlier sections. I now give a detailed account
of the method (649H, 649L).

(©) 2014 D. H. Fremlin
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649A Notation We need only fragments of the standard framework. (2, g, T, (Ae)ier, T, (Ar)rer), if
not explicitly introduced, will be a stochastic integration structure. L° will be the Riesz space L°(2l) with
the topology of convergence in measure. If S is a sublattice of 7, Z(S) will be the set of finite sublattices
of 8, Mgimp(S) will be the space of simple processes with domain S and M, _(S) will be the space of near-
simple processes with domain S; if 7 € S then SA T will be {c A7 :0 € S; if v is a fully adapted process
with domain including S, Qs(dv) will be the capped-stake variation set of v[S. When v is near-simple, v
will be its previsible version. I use [ to denote Riemann-sum integrals and § to denote S-integrals.

649B Theorem Suppose that S is a sublattice of 7 with a least element. Let v = (v,),es be an
integrator and u = (u,)scs a near-simple process. Suppose that we have, for each n € N, a non-decreasing
sequence (Tn;)ien in S such that 7,0 = min S, inf;cy [T < supS] = 0 and, for each ¢ € N,

[o < Tniv1] C [Jue — ur, | < 277] for every o € [Tni, Tn,iv1),
[7niv1 <supS] € [|vr, oy — Ur, .| =277
Then
Zp = limg o0 Zf;ol U, X (Vry iy — Vry )
is defined for each n, and (z,)nen is order*-convergent to | sudv.
proof (a) Let n € N.

(i) Set znr = S0 s,y X (vr,, .,y —Ur,) for k € N. If k < I, then

[2nk # 2] € sup IIan,i-Fl # V7, ] © sup [Tnit1 # il
k<i<l E<i<l

N

sup [7n; # sup S| € [T < sup SJ.
k<i<l

But as ([Tnr < sup S])ren is a non-increasing sequence with infimum 0, this means that (z,x)ken is actually
order*-convergent to some z, € L°, with [z,x # 2,] C [Tux < sup 8] for every k. Thus the topological limit
zpn 18 always defined.

(ii) Define u,, = (uny)oecs by saying that, for o € S,
[T = o] U ([Tni < a]nfo < Tniga]) € [ue = ur,,]
for every i € N; because
(Irni = ol u ([rni < o] n o < Tnit1]))ien
is always disjoint, with supremum
sup;en [0 < Tni] 2 sup;en [T = sup S| = 1,

u, is a fully adapted process. Next, u,[S A T, is simple, with breakpoint string (7,9,...,7nk), and
Znk = fS/\'r . u, dv for each k (614C). We know also that if k € N and 0 € S A 7,

1= sup,,([tni < o] n[o < T ip1]) Vo = Tur] € [Jue — uno| < 277].
But this means that if I € Z(S A T), Si(u —up, dv) € 27"Qs(dv).

(iii) The integral [qudv is limg oo [5, . udv. P We know that Jsudv = limgys [, wdv (613J(f-
ii)). Similarly, if k € N, fS/\Tnk udv = limyts fs/\mk/\audv. But this means that

[fsudv# [5,, udv]c sug[[fs/\oudv;éfsmnk/\audv]]
[o4S]

sup [0 # Tk A o] C sup [Tk < o] = [Tk < sup S]
oc€ES o€S

N

(611EDb). As infrensup;sy, [Tax <supS] =0, [qudv = limg_o fSATnk udv. Q
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(b) Let C be the solid convex hull of Qs(dv), and C its topological closure. Then C' is topologically
bounded (627M) so C is topologically bounded (3A5N(b-ii)); also C is convex (2A5Eb) and solid (613B(f-
vi)). Now we see from (a-ii) that if n, k& € N then S;(u — u,,dv) € 27"C for every I € Z(minS, 7,.x)),
o

_ —n.
fSATnk udv — 2y = fSATnk U — u,dv € 27"C,
letting k — oo, and using (a-iii),
Joudv -z, €27C.
Because C is solid and convex,

SUP < n<m |20 — fsudv| ey 27nC Cc 2 I

n=l

whenever | < m. By 613B(f-v), {sup;<, <, |2n — [su dv| : m > 1} is bounded above in L°, and its supremum
w; belongs to 27+1C (613Ba).

Repeating the argument, w; = sup;>, w; is defined, and belongs to 27PT2C for every p € N. As C is
topologically bounded, limy,_, , 6(w},) = 0 and inf ey w), = 0. But |z, — fsud'v| < wy < wy, whenever n > p,
while (w))pen is non-increasing and has infimum 0, so (z,,)nen is order*-convergent to [ u dv, as claimed.

649C From 649B, we see that, under the hypotheses there, we have a chance of expressing a Riemann-
sum integral as an order*-limit of order*-limits of explicitly defined Riemann sums. The hypotheses are
elaborate, but they correspond to a version of SL; in 6310a, so they will be satisfied in a useful number of
cases. The really important feature of the result, however, is that (under appropriate conditions) the 7,;,
and hence the z,, can be determined pathwise, as in the following form of the theorem.

Corollary (BICHTELER 81, 7.14, or KARANDIKAR 95) Let (2, %, 1) be a complete probability space and
(Et)tefo,00[ @ right-continuous filtration of o-subalgebras of X, all containing every negligible subset of
suppose that (A, i) and (2(;);>0 are the corresponding measure algebra and filtration of closed subalgebras.
Let (U)e>0, (Vi)i>0 be stochastic processes such that ¢t — Uy(w) : [0,00[ — R is cadlag for every w € Q,
and (t,w) — Vi(w) : [0,00] x Q — R is progressively measurable; let u, v be the corresponding fully adapted
processes with domain 7Ty, as in 612H and 631D. Suppose that v is a local integrator.

Let h : © — [0,00[ be a stopping time, and 7% = h* the corresponding stopping time in 7;. For n € N
and w € Q, define h,;(w), for i € N, by setting h,o(w) = 0 and then

i () = ()} U {E £ 2 hua(@), [Uw) = U @) > 27)
for i € N.
In this case,
(a) every hy,; is a stopping time adapted to (X¢);>0,
(b)
f’fl (Ld) = Zfio U}Lm (LU) (th,i+l (CU) - th‘, (LU))
is defined for all n € N and w € 2,

(¢) f =1lim, o fp is defined in R almost everywhere in 2, and f* = f[ ]udv.

0,7*

proof (a) Induce on 4. If 4 = 0 this is trivial. For the inductive step to i 4+ 1, given ¢ > 0,

{OJ . hn’i+1(w) < t}
={w:h(w)<t}U U{w Dhpi(w) <5, |Us(W) = Up, ) (W) > 277}

s<t
—fwih(@) <t U | 1@ i) < 4, 10 (@) = Un, (@) > 277
q€Q,q<t
because s — Uy (w) is cadlag for every w. Now the inductive hypothesis tells us that h,; is a stopping time,

and we saw in 631D that (¢,w) — U(w) is progressively measurable, so Uy, , is 3y, ,-measurable (455Le),
where I write Uy,,, for w i Uy, (u)(w), as in 455L and 612H. For o € R, set
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Eq ={w: Uy, () (w) > a} ={w: U,
if ¢ < t, then E, N{w : hypi(w) < ¢} belongs to X, C ;. But this means that Uy, X x{w : hn;(w) < ¢}, and
therefore (Uy — Up,,;) X x{w : hni(w) < ¢}, are Xy-measurable for every ¢ < t, and |, cq < {w 1 hni(w) <
¢, |Ug(w) = Up,, () ()| > 277} € Xy

It follows at once that {w : hy ;41(w) < t} belongs to X; for every t. But we are supposing that (¥;);>0
is right-continuous, so h,; is a stopping time adapted to (X;);>0, by 455Lb.

(w) >a} ey

ni?

(b) Accordingly I will allow myself to use the notations Uy, ,, Vj,,, for all n, i € N.

(i) |Un, ;1 (W) = Up,,(w)| > 27" whenever n, i € N, w € Q and hy, i11(w) < h(w). P? Otherwise,
because t — Ui(w) is everywhere continuous on the right, there is a ¢ > hy, 41(w) such that |Us(w) —
U, (w)| < 27" for every s € [hy, i+1(w), t]; but now hy, ;41(w) must be greater than or equal to min(¢, h(w)).
xQ

(ii) Note also that, for each w € @ and n € N, h,;(w) = h(w) for all but finitely many i. P?
Otherwise, (hni(w))ien is a strictly increasing sequence in [0, h(w)], while (Uy, () (w))ien is not convergent.
XQ Accordingly

fn(UJ) = Zfio Uhni(w) (th,i+1 (w) - th‘ (w))

is defined, as required.

(c)(i) Set S = [0,7*] € T. We know from 631D that u is locally near-simple, so [¢udv is defined. For
n, i € N, set 7, = hy; € Ty, as in 612Ha. Then (7,i)n ien satisfies the hypotheses of 649B. I Take n € N.
Because (hy;)ien is non-decreasing, so is (7,;)ien. Of course 7,0 = 0 = minS. We have sup S = 7* = h*, so

infien [T < sup S| = (N;eniw @ hni(w) < h(w)})* =0

by (b-ii). If i € N and ¢ € [Thi, Tn,i+1] then we can express o as g* where ¢ is a stopping time and
hni < g < hpiya; in this case u, = Uy (612H(b-i)) and |Uy(w) = Up,,, (w)| < 27" whenever g(w) < hpit1(w),
so [0 < Tniv1] € [|ue — ur,,| <27"]. And (b) above tells us that [7, ;11 < 7] C [|ur, .\, — vr,, | >27"].

(ii) If n € N,
Fa(@) = im0 32570 Unyo (@) (Vi1 (@) = Vi ()
for every w. So
f'r.L = limy o0 Zf;()l Ur,,; X (UTW,,i+1 - UTni)

can be identified with z, as described in 649B. As (z,)neny —* fs'ud'v7 642Ba tells us that (f,)nen is
convergent a.e., and if f = lim, ., f, then f* = fsud'v, as required.

649D In the presence of a special kind of filter on N, we have a quite different way of calculating
stochastic integrals by looking at one path at a time.

(a) Definition A filter F on N is measure-converging (538Ag) if whenever (2,3, u) is a probability
space, (En)nen is a sequence in ¥, and limy, o o, = 1, then (J . 7 (),c 4 En is conegligible.

(b) Suppose that F is a measure-converging filter on N, (2,3, u) is a probability space, and (fy)nen is
a sequence in £° = £%(u) which converges in measure to f € £%. Then lim,, 7 fn =a.. f (538N (aiii)).

Remark It seems still to be unknown whether ZFC is enough to prove the existence of a measure-converging
filter (see 538Z). However, the continuum hypothesis, for instance, is more than sufficient to ensure that
measure-converging filters exist (538Ng).

649E Proposition (cf. NuTz P11) Suppose that F is a measure-converging filter on N. Let (2, X, i) be
a complete probability space, (¥;);>0 a right-continuous filtration of o-subalgebras of ¥ all containing every
negligible set; suppose that (2, i), (A;)¢>0 are the corresponding probability algebra and filtration of closed
subalgebras. Let (U;)i>0, (Vi)i>0 be stochastic processes on 2, adapted to (X;);>0, such that the paths
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t — Ug(w), t — Vi(w) are cadlag for every w; let u, v be the corresponding locally near-simple processes
defined on Ty (631D), and suppose that v is a local integrator. Let h, b’ : @ — [0, 00[ be stopping times
corresponding to 7, 7" € Ty, with h(w) < h'(w) for every w. Enumerate Q N [0, co[ as (¢n)nen, starting with
¢o =0, and for n € N let (gy;)i<n be the increasing enumeration of {g; : # < n}. Set
n—1
(@) = 22120 Umed(h(w).gui b)) (@) (Vimed (h() gn.co1.h7 () (@) = Vined(h(w) g () ()

for w € Q. Then f(w) = lim,,—, 7 f(w) is defined for almost every w, f is X-measurable and f* = f[ u dv.

7]

proof Write &’ for {med(7,¢,7") : ¢ € QN [0,00[} U {7'}, as in 633L. For n € N, set I, = {med(r,q;,7’) :
i <n}, I, =1, U{r'}. Note that 7 = med(7, o, 7") belongs to I,,, and that if we set

an = SUp;<, [7" = med(7, §;, )] 2 sup,<,, [7" < G];

then a,, C sup,¢;, [p = o] for every p € I,. Because 7’ € Ty, lim, ;o0 fia, = 1.

Now -
/ udv = / u dv
[7,7] !

= lim SI; (’l.l,7d'l))
n— oo )

(633L)

(because if J C &' is finite there is an m € N such that J C I/, for every n > m)
= lim Sy, (u,dv)
n— o0
(because [Sy: (u, dv) = St,, (u,dv)] 2 an, by 613S)

= lim f* = (lim ¢
because F is a measure—converging filter.

649F 1 have given a number of results (612H, 614U, 631D, 649C, 649E) on the ways in which classical
stochastic processes, based on probability spaces, give rise to the processes considered in this volume, based
on probability algebras. To get full value from these, we need to know which processes can be represented
in this way. I have held off so far because there are technical complications which I feel are irrelevant to the
ideas I really want to express, but I think it is time I gave a result which handles a reasonable proportion
of cases. I begin with a minor extension of ideas from §§631 and 633.

Lemma Suppose that (;):er is right-continuous. Let S be a sublattice of T and u = (u,)y,ecs a locally
near-simple process. Let S be the full ideal of T generated by S. Then there is a locally near-simple process
@ with domain S extending w. If u is non-negative and non-decreasing, we can arrange that % should be
non-negative and non-decreasing.

proof If S = then S = 0 and there is nothing to prove. So I suppose from now on that S is non-empty.

(a) Set 01 =inf S and S; = SU{0o1}. Then & is a sublattice of S and the starting value vy = lim, s u,
is defined and belongs to L%((,cs o) (631Ca, applied to S A 7 for any 7 € S). Because ()¢er is right-
continuous, u; € L%(Ay,) (632C(a-iii)); moreover, if 7 € S, then [o1 < 7] = sup,egn, [0 < 7] (632C(a-ii)),
S0

[[Ul = T]] = infoES/\‘r [[U = 7-]] C infUES/\T IIUO' = UT]] c [[UJ, = U,.,-]].

So we have a fully adapted process u1 = (u1,)ses, defined by saying that vy », = u; and u1, = u, for every
o€S.
Next, u; is locally near-simple. P Take any 7 € S and ¢ > 0. Then there is a simple process u' =

(ul)oesnr such that O(u) < e where u = sup,csn, |ue — u,|). Let (7o,...,7,) be a breakpoint string for «’
ending with 7,, = 7. Consider the simple process 6} = (u},)ses,Ar With breakpoint string (o1, 70,-.. ,7n)
and

[u)y =u ] 2[r <o]nfo < 1iqq] for i <n,
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[ui, = w20 < 70]
for every o € Sy, while uj, =, . Let u) be the starting value of u’ (614Ba). Since u| = limy | sar u, and

uy = limg sar Uo, |ui —uy| < @. Now we see that, for o € S,

[o <70] € [up =W\ ]n[ur, = w]nlus —u;| < @]

Q~ 9~

< [ug = uiln vty = wilnflus —ug| < a0 ure = uo] € [lure —ui,| < 2],

while

/
Ti

[ < ol lo < 7i11] € [y = ] 0 [ty = ] [ty = o] 0 [luig — ] < 1]
- IHUIO' - ullo" S ’a]]
for ¢ < n and, of course,
s — | = Jur — | <
Thus we have |ui, — u},| < 24 for every o € S. At the bottom end,

[on < 7o) € [urg, = w] = [ur,, = wia],

[on = 10] € [ul,, = ui ] 0 [wie, = ur] € [lure, —uis, | < 4.
Assembling these,
O(supyes, [u1o — Uy, |) < 0(2u) < 2e.

As 7 and € is arbitrary, u; is locally near-simple. Q

(b) Write o3 for min 7 and Sy for the lattice S; U {02} = SU {02, 01}. We have a fully adapted process
Uy = (Us)ocs, defined by saying that us, = u1, for o € & and

[uze, = 0] 2 o2 < 01], [uze, =uy] 2oz = 01].
Since us [ Sy Aoy is simple while us[Sa V oy = 4y is locally near-simple, us is locally near-simple (631F (a-iv)).
And of course uy extends u. Moreover, if u is non-negative and non-decreasing,
0 <ugp, Luyp =infoes s

SO uo is non-negative and non-decreasing.

(c) We are now in a position to turn to 631M. S, is coinitial with S, just because min S = min 7~ belongs
to Sz. So we have a function ¥* : My, 4(S2) — Mln_s(g) as described in 631Mc. Set & = ¥*(u3). Then @ is
locally near-simple and extends uy (631M(c-iii)), so extends u. If w, and therefore uy, are non-negative and
non-decreasing, so is @, by 631M(c-iii) again. So we have an extension of the kind we need.

649G Lemma Suppose that (2, &, [0, 00[, (Us)1>0, T, (Ar)re7) is a real-time integration structure and S
is a non-empty sublattice of 7. There is a non-decreasing sequence (7, )nen in S such that sup,,cy [7 < 7] =
1 for every 7 € S.

proof For ¢ € QN [0,00], [supS > ¢q] = sup,es [0 > ¢] (611Cb), so there is a countable set A; C S such
that [supS > ¢ = sup,c4, [0 > ], because A is cce (322G, 316E). Accordingly there is a (non-empty)
countable set A C S such that [supS > ¢] = sup,c4 [0 > ¢] for every rational ¢ > 0. At the same time,
there is a countable B C S such that sup,cg [0 = sup S| = sup, g [c = sup S]. Taking a sequence (o) nen
running over A U B, and setting 7,, = sup,.,, o; for n € N, (7;,)nen is a non-decreasing sequence in & and

[sup S > q] = sup,en [Tn > ¢] for every ¢ € QN [0, oo,

SUP,es [0 = sup S| = sup,,cy [ = sup S].

Now take any 7 € § and non-zero a € 2A. If ' = an[r =supS] is non-zero, there is an n € N
such that a' N[, =supS] # 0, and now an[r, = 7] # 0. Otherwise, there is a ¢ > 0 such that a” =
anfsupS > t]\ [r > t] is non-zero. Let ¢ > ¢ be rational and such that a” n [sup S > ¢] # 0; then there is
an n € N such that
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0#£a" n[r >4q] Cr <]

and an[r < 7,] #0.
As a is arbitrary, sup,, oy [T < 7,] = 1 and we have a suitable sequence (7,,)nen.

649H Theorem Suppose that (A, fi, [0, co[, (A¢)¢>0, T, (Ar)re7) is a right-continuous real-time stochas-
tic integration structure.

(a)(i) There is a complete probability space (€2, X, 1) such that (2(, i) can be identified with the measure
algebra of (Q, X, u).

(ii) For FE € ¥, write E* for the corresponding member of ; for t > 0 set ¥y ={E: E € &, E* € 2, }.
Then (X;);>0 is a right-continuous filtration of o-algebras all containing every negligible subset of €.

(iii) Members of T can be represented by stopping times h : Q — [0, 00] as in 612H, with the corre-
sponding identification of the algebras 2L, as in 612H(a-iii).

(b) Now suppose that u = (u,)ses is a locally near-simple process with non-empty domain S C 7. Then
there are a progressively measurable stochastic process (U;);>0 and a non-decreasing sequence (h,)nen of
finite-valued stopping times, all adapted to (£;);>0, such that

(c) h, represents a stopping time 7,, € S for every n € N, and sup,,cy [0 < 7,,] = 1 for every
o €S,

(B) Uy = u, whenever g : Q — [0,00[ is a stopping time representing o € S,

(7) t = U(w) : [0, hp(w)] — R is cadlag for every w € Q and n € N.

proof (a) Really this is just the Loomis-Sikorski theorem (321J); I remarked in 321K that the construction
there always gives a complete measure space, and in this context, of course, it gives a probability space. To
see that (3;);>¢ is a right-continuous filtration we need only look at the definitions in 611Aa and 632B, and
surely every negligible set belongs to every ;. Now 612H tells us all we need to know.

I remark that because every X; contains every negligible set, the same is true of ¥, as defined in 612H(a-
iii), for every stopping time h.

(b)(i) For the time being (down to the end of (v)) I will suppose that S is an ideal of T;. By 649G, we
have a non-decreasing sequence (7, )nen in S, starting with 7o = min 7" = 0, such that sup, oy [0 < 7,] = 1
for every 0 € S. Now each 7, can be represented by a stopping time h,; since (h,(w)),eny must be a

non-decreasing sequence in [0, oo[ for almost every w, and negligible sets all belong to ¥y, we can adjust the
hn, if necessary, to arrange that (h,)nen is a non-decreasing sequence of finite stopping times.

(i) Set S* = U,~, N*. Choose (7.),es+, (h)res+ and (Y;)res- inductively, as follows. Start with
Tens = Tnp and heps = hy,, for n € N, where I write <n> for the member of N! with value n. Now choose a
X, -measurable real-valued Y.,,> such that Y2, = u,,; do this in such a way that Y115 (w) = Yeps (w)
whenever h,1(w) = by, (w).

Given r € N* let 7/ be its successor in the lexicographic ordering of N*, so that 7/[k — 2 = r[k — 2 and
r'(k—1)=r(k—1)+1; let (T,~ > )nen be a non-decreasing sequence in [, 7,~] such that

Tr~<0> = Try  SUPpeN [[7-7"”<n> = TT']] =1,

[o < Trmcni1s] C [lus — u7r~<n+1>| < 27"] for every 0 € [Tr~cn>, Tr~<ni1s)

for each n € N (631Ra). Now choose a sequence (h,~ ., )nen Of stopping times such that h,.~ ., represents
Ty~<n> for each n; as we shall necessarily have

hr’“<0> =ae. N, SUpP,, eN hr”<n> =a.c Dy
R~ <n> Zae. Rp~<ni1s for each n,
we can adjust the functions on a negligible set so that
hrmcs = he,  SUDen Hpmcns = hov,
hpmcns < Rpm<piqs for each n.

Finally, choose (Y~ > )nen such that Y.~ .o =Y, and, for each n,

. ta _ < 1 ° =
Yircns 12— Risa X, _ -measurable function and Y2 _  =u, __ _,
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Yimcnti1> (W) = Yom cs (w) whenever hym 15 (W) = hpm < (W),
Y cn> (w) =Y,/ (w) whenever hrm<n> (w) = hy (w)a
|YT”<n>(w) - Yr(w)l < 2716 whenever hr”<n> (w) < hr’ (w)
(The point here is that 2, __ is always {E® : E' € ¥,~,>, by 612H(a-iii), so that we can manage the
first clause in this list, and the rest can be achieved by adjustments on negligible sets.)
Note that the construction ensures that if 7o, 71 € S* and hy, (w) = hy, (w), we shall have V;,  (w) = Y, (w).

(iii) At the end of the induction, define Uy(w), for t > 0 and w € Q, as follows. If h.(w) < ¢ for
every r € S*, set Us(w) = 0. Otherwise, we have a sequence v € NV such that h,(w) <t < Py iy (W)
for every k > 1. In this case, [Yypt1(w) — Yy p(w)| < 2% for every k, so limy_,o Yok (w) is defined; take
this for Uy(w). Note that this will ensure that |U;(w) — Y;.(w)| < 27571 whenever k > 1, » € N*¥ and
hr(w) <t < hp(w).

Now (t,w) + Us(w) is progressively measurable. I Take to € [0,00] and o € R, and set H = {(t,w) : t <
to, w € Q, Uy(w) > a}. Then

H = HoUUp>1 Urene {(t,0) 1t <o, hp(w) <t < hyr(w), Yo(w) >t +27571}

where Hy = {(t,w) : hp(w) <t < to} if @ < 0, else §. Now if r € S* and we set E, = {w : h,(w) < to},
E, € 3, and h,|E, is ¥;,-measurable, so {(t,w) : h,(w) < t < 4o} and {(t,w) : h.(w) < ¢t < to} belong
to B@)Eto, where B is the Borel o-algebra of R. It follows that Hy € B@Zto. Next, given r € S*, Y, is
3, -measurable, so Y, [E, is ¥; -measurable, since £ N E, € ¥, for every E € ¥j, . Next, if £ € N and
r e Nk

{(t,w) : hp(w) <t < tp, Yo(w) >t +27F1}
belongs to B®Y,, and is included in [0,ty] x E,, it belongs to B&Y,; while
{(t,w) : hpr(w) <t <t
also belongs to B@Eto, so the difference
{(t,w) : t <ty hyp(w) <t < by (w), Vy(w) >t 42751}

belongs to X;,. Taking the union of these, H € ¥;,. Astp and « are arbitrary, (¢,w) — Uy(w) is progressively
measurable. Q

(iv) Accordingly we have a fully adapted process v = (v,)se7; defined by saying that v, = Uy whenever
g:Q — [0,00[ is a stopping time representing o € Ty. Since Up,, () = Y;(w) whenever r € §* and w € Q,
U, =Y, and v, = u,, for every r € S*.

We know also that if £ > 1, 7 € N* and ¢ is a finite-valued stopping time representing o € 7T, then

Uy (w) = Yy (w)| < 27771 whenever h,(w) < g(w) < hy(w).

Translating this into terms of 7 and v,

[ <olnle <] Cllve —ur, | <27%77]
Since, by the choice of the 7., we also have

[7 <o]nfo < 7] C [Jue — ur, | <27F],
we get

[7 <o]nfo < 7] C [lve — us| <27%2].
If o € S, so that sup, ¢y [0 < 7,] = 1, then

1 =sup,ep [0 = 7] U sup,ee ([ < o] n o < 7)) € [Jvo = us| < 27%77]

for every k € N, so that v, = u,.
Thus v extends u.

(v) If n e Nand w € Q then t — Up(w) : [0, hp(w)] — R is cadlag.

P(a) Suppose that (t;);en is a strictly decreasing sequence in [0, b, (w)]. Set t = lim;_, t;. For each
k > 1, there is an r € N¥ such that h,(w) <t < h,s(w). But in this case there is a j € N such that h,(w) <
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t; < hy(w) for every i > j, so that |Uy, (w) — Yy (w)] < 27F71 for every i > j and |Uy(w) — Y, (w)| < 27571,
As k is arbitrary, Up(w) = lim; 00 U, (w).

(B) If now (t;);en is a strictly increasing sequence in [0, b, (w)], then by the choice of (h;)rcs we
find that

for every k > 1 there are an » € N¥ and a j € N such that h,(w) < t; < h(w) for every i > j.

But this means that for every & > 1 there are an 7 € N*¥ and a j € N such that such that |Uy,(w) —
Y, (w)] < 27F71 for every i > j; it follows at once that lim; o, Uy, (w) is defined. Putting these together,
t— Up(w) : [0, hy(w)] = R is cadlag. Q

(vi) This proves the result when S is an ideal. In general, we still have a non-decreasing sequence
(Tu)nen in S such that sup,cy [0 < 7,] = 1 for every 0 € S. Now S = {0 : sup,,ey [0 < 7] = 1} is a full
ideal of 7 included in 7%, so is the full ideal generated by S, and we have a locally near-simple process «
with domain S extending u (649F). Applying (i)-(v) to @, we get a suitable process (Uy)s>o.

6491 Scholium If, in 649Hb, u is a non-negative non-decreasing process, then we can arrange that
(Ut) >0 is non-decreasing. I Working through the proof, we see that in part (b-ii), when we come to choose
(Y:)res+, we have 0 < u,, < ur,.,,, so can require that 0 < Y~ < Yoy, 415, for each n. Similarly, when
we come to choose (Y~ o~ )nen, we shall have Y, <Y, and

< < <
Urp S U7 0= uTr"<n+1> = Ur,

for each n, so we can arrange that
Y, < Yr“<n> < }/;“<n+1> <Y

for each n. Looking at the definition of U; in (b-iii), we see that we shall now necessarily get a non-negative
non-decreasing process.

Of course I ought to check also that we can still use the idea in (b-vi). But I noted in 649F that if we
start from a non-negative non-decreasing process u, then the extension % can be made to be non-negative
and non-decreasing. So this part of the argument also works. Q

649J Lemma Let (£2,%, ) be a complete probability space, (X:)¢>0 a right-continuous filtration of
o-subalgebras of ¥ all containing every negligible set, and (U);>0 a progressively measurable stochastic
process. Let h : Q — [0,00[ be a stopping time such that ¢ — Uz(w) : [0, h(w)] — R is cadlag for every
we Q. ForweQandt >0 set

Ucr(w) = ligl Us(w) if 0 < t < h(w),
S
= 0 otherwise.

(a) (U<t)t>0 is a previsibly measurable stochastic process, therefore progressively measurable.

(b) Let (A, &, [0,00[, (Ae)1>0, T, (A+)re1) be the real-time stochastic integration structure defined from
(2,2, 1, (X¢)e>0), and 7 € Ty the stopping time represented by h (612H(a-i)). If u, z are the fully adapted
processes defined from U and U. as in 612Hb, then u[7 A 7 is near-simple and its previsible version is
zZ[T AT

(c) Now suppose that (V;);>o is another progressively measurable stochastic process, this time non-
negative and non-decreasing, such that ¢ — Vi(w) : [0, h(w)] — R is cadlag for every w € 2. Let v be the
process defined by (V;)¢>0. For w € Q let v, be the Radon measure on [0, h(w)] such that v,[0,t] = Vi(w)
for every t > 0, and set

e(@) = [io oy U<t @ (dt).
Then e : Q — R is ¥p-measurable and e* = [ udv.

proof (a) If o € R, then
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{(t,w) : Uct(w) > a}

~moJ U N

q€Q ¢’€Q ¢"€Q
>a

{(t,w) : ¢’ < t_g h(w), either t < ¢" or Uyr(w) > q} (%)
where
Ho = ({0} x Q) U{(t,w) : hw) < t} if a <0, (5#)

=0ifa>0.

Now as Uy is always ¥,s-measurable, the sets {(t,w) : ¢’ < t, Uy (w) > ¢} always belong to the previsible
o-algebra A, (642Ha). Also

{(t,w) s h(w) <t} = Uyeqlg, 00 x {w: h(w) < ¢}

belongs to Ay, so {(t,w) : t < h(w)} also does, and of course [0,00[ x 2 and {0} x © also do. So all the
elements of the formulae (*) and (**) correspond to sets in Ay, and {(t,w) : Uci(w) > a} € Apy. As a'is
arbitrary, (U<)i>0 is previsibly measurable, therefore progressively measurable (642I).

(b)(i) 4T A 7 is near-simple. B This can be proved by a simple adaptation of the argument in 631D;
or alternatively, we can set
Ul(w) = Up(w) if t < h(w),
= Up(w)(w) if t > h(w).
Then, for any ¢t > 0 and a € R,
{w: Ul) > a} = {w: h(w) > £, Ui(w) > a} U{w : hiw) < t, Upy(t) > a}

belongs to ;. Evidently ¢t — U/ (w) is cadlag for every w. We can therefore apply 631D as written to show
that the process ©’ defined from (U])¢>0 is locally near-simple, so that u[7 A7 = /[T A 7 is near-simple.

Q

(ii) Let € > 0. Then there is a simple process w = (Wy,)se7ar such that 0(@) < e where @ =
sup |lw — u[T A 7]). Take a breakpoint sequence (o, ... ,0,) for w such that 0 =09 < ... < o0, =7, and
choose stopping times gg,... , g, such that 0 = g9 < ... < g, = h and g; represents o; for each ¢ < n; for

each i, let f; be a ¥ ,-measurable function such that f = w,,. Set

Wi(w) = fi(w) if i <n and ¢;(w) <t < giv1(w),
= () i galw) < 1

Then (Wy):>0 is a progressively measurable stochastic process representing w, and we have

Wer(w)=01if t =0,
= fi(w) if i <n and g;(w) <t < giy1(w),
= gp(w) if gn(w) < t.
Like (U<¢)¢>0, this is a previsibly measurable process; let w’ be the process it represents. Then w'[T AT =
w., by 641]a.

Now consider the previsibly measurable process (Uc; — Wey)i>0. If g : Q — [0, 00[ is a stopping time and
g < h, and we write U< y(w), Weg(w) for Ucgy(w) and Wy, (w), then

Ucg(w) = Weg(w) = %il(n)Us(w) — W(w) if g(w) > 0,
stg(w
= 0 otherwise.
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If f:Q — [0,00[ is such that f* = @, then
{w:Ucg(w) = Weg ()| > f(w)} € Ugeqgzolw : [Ugan(w) = Wonn(w)l > f(w)}
where I write g A & for the stopping time w +— min(g, h(w)), so is negligible, and |U2, — W2 | < @. Thus
sup |z —w<| =sup|z —w' [T A7| < @.
On the other hand,
sup [we — (u|T AT)<| <sup|lw—ulT AT| <@
by 641G(a-vii). So
O(sup |z — (u|T AT)<|) < 0(20) < 2¢
as € is arbitrary, z = (u]T A T)<.

(c) (i) Of course v, is the Stieltjes measure associated with the non-decreasing function ¢ — Vi(w). The
description in 114Xa is fully adequate for our needs here, and you should have no difficulty in filling in the
arguments sketched there. If you are willing to use the full resources of the numbered theorems in previous
volumes, however, and the fact that the function is cadlag, the quickest route to the present case may be to

apply 416K to the finitely additive functional v/, defined on the ring T of subsets of [0, h(w)] generated by
the half-open intervals of the form [0, o by saying that

v, [0, af = limypa Vi(w)
if 0 <a<hw)
Because t +— Uci(w) is bounded and Borel measurable on [0, h(w)], the integral e(w) is always defined.
Let f: Q — R be a ¥-measurable function such that f* = fSATud'v.
(ii) Much as in (b-ii), take € > 0 and a simple process w = {w,),e7r- such that 6(@) < €2 where
@ =sup|lw —u|T A7|. Let M > 0 be such that F' = {w : V3(w) > M} has measure at most ¢, and take
a finite sublattice I of 7 A 7 such that 6(S;(u,dv) — [5, udv) < % whenever I C J € Z(T A 7). Let

J D TU{0, 7} be a finite sublattice of 7 A7 which includes a breakpoint string for w; let (oy, ... ,0,) linearly
generate the J-cells, so that 0 = 09 < ... < 0, = 7, (00,... ,0,) is a breakpoint sequence for w (612Kb),
and Sy(u,dv) = >0 | Uy, , X (Vo, — Vo, ,). Now choose go,... ,9n, fo,--- , fn and define (Wc¢)i>0 as in
(b-ii).

This time, we calculate

flw) = /[o,hw W ey ()i (dt) Zfl (1i-1 (@), gi(w)])

(because fo(w) = 0)

Il

fi (w) (Vgl (w) - ng‘—1 (w))

=1

for each w. So f* = S;(udv) and Jomin(1, | f(w) — f(w)|)u(dw) < €2; accordingly F' = {w : |f(w) — f(w)| >
€} has measure at most e. - -
At the same time, again taking f : Q — [0, 00[ such that f* = @, the set

E = {w: [Uat(w) - Wer(w)] < f(w) for every t € [0, h(w)]
is conegligible. I Set

E' ={w:|Uy(w) — fi(w)| < f(w) whenever i <n and ¢ € QN [gi(w), git1(w)]
2 {w : [Ugan(w) = Ugap(w)] < f(w) for every ¢ € QN [0, 00[}-

Because |ugnr — wgnr| < @ for every g > 0, E’ is conegligible. If w € E’ and ¢ € [0, h(w)] then
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Ucr(w) — Wer(w)] =0 if t =0,

= lim |Uy(w)— fi(w)|if i <n and ¢g;(w) <t < git1(w),
q€Q,qtt

and in either case is at most f(w). So £ D E' is conegligible. Q
We also know that [, min(1, f(w))u(dw) <
Now take any w € E\ (FUF'UF"). Then |U-4(w) — Wy (w)| < f(w) for every t € [0, h(w)], so

le(w) = fW)] < le(w) = fw)| + [f(w) = fw)] < Fw)r([0, h(w)]) + €
SMf(w)—i—eS%,

2 —
CM, so that F" = {w : f(w) > ﬁ} has measure at most e.

while F'U F" U F" has measure at most 3¢. As € is arbitrary, e =, f and e* = f* = [ udv.

649K Lemma Let (2, %, ) be a probability space and (¥;):>0 a filtration of o-subalgebras of ¥. Let
Apyv be the corresponding previsible o-algebra and write £ for the smallest subset of RI9:[X2 gych that
constant functions belong to L,
scalar multiples of functions in £ belong to £,
if ¢ € £ and ¢ € RIO®X2 and |¢| A || = 0, then ¢+ € £ iff ¢ € L,
X(]s,00[ x E) € L whenever s >0 and E € X,
lim,, o0 ¢r, € £ whenever (¢, )nen IS a pointwise convergent sequence in L.
Then £ is the set of all A,,-measurable real-valued functions on [0, co[ x €.

proof (a) Writing £Y(A,y) for the set of A,y-measurable functions, this is a linear space containing |s, oo[x E
whenever s > 0 and FE € ¥, and is closed under sequential pointwise convergence, so includes L.

(b) In the other direction, write A for {W : W C [0, 00[ x Q, xW € L£}. Then A is a Dynkin class (136A).
Also T = {]s,0[ x E : s > 0, E € ¥,} is a subset of A closed under finite intersections (if £ € ¥, and
F €% then ENF € Xpax(s,) and (]s,00[ x E) N (]t,00[ x F') = Jmax(s,t),00[ x (ENF')), so A includes the
o-algebra generated by Z (136B), which is Apy. Thus xW € £ for every W € Ay,

It follows at once that E?:o a;xW; € £ whenever «y, ... ,a, € Rand Wy, ... , W, € Ay, therefore that
f € £ whenever f:Q — [0, 00 is Apy,-measurable, and finally that £%(A,,) C £. So we have equality.

649L Theorem Let (2, %, 1) be a complete probability space, (X;);>0 a right-continuous filtration of
o-subalgebras of ¥ all containing every negligible set, (2, &, [0, 00[, (2t)i>0, T, (2-)re7) the corresponding
real-time stochastic integration structure, (X;);>o a previsibly measurable stochastic process and (V;);>0 a
non-negative non-decreasing stochastic process. Let h : Q — [0, 0o be a stopping time such that ¢t — X;(w)
is bounded on [0, h(w)] and ¢ — Vi(w) : [0,h(w)] — R is cadlag for every w € €, and write 7 for the
corresponding stopping time in 7. Let &, v be the processes defined by (X;);>0 and (V;);>0. For w € Q let
v,, be the Radon measure on [0, h(w)] such that v,[0,¢] = Vi(w) for every t > 0, and set

e(w) = ﬁO,h(w)] X (w)v, (dt).
Then e : ) — R is Y-measurable and e* = fTAde'v.

proof (a) Let A, be the previsible o-algebra derived from (¥;):>0, and £ = LO(A,,) the space of Apy-
measurable real-valued functions on [0, oo x . By the definition in 642Hb, we have a one-to-one correspon-
dence between £° and the space of previsibly measurable processes, matching ¢ € £° with (X;);>¢ where
Xi(w) = ¢(t,w) for all t and w; and in this case (X;);>o corresponds to the process z, as defined in 642L.
Recall from 642L that ¢ — x4 is an f-algebra homomorphism taking pointwise convergent sequences to
order*-convergent sequences.

(b) For M >0, ¢ € L% and w € €, set
CopM (w) = £07h(w)] med(_Ma ¢(ta (.U), M)Vw(dt)

(This is always defined because t — ¢(t,w) is always Borel measurable.) Let £ be the set of those ¢ € £°
such that ey is measurable and
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ey = fTM med(—M1.,z4, M1.)dv

for every M > 0. Then L satisfies the conditions of 649K.
P (i) If ¢ is constant with value «, then

egm (w) = med(—M, a, M) (V) (w) — Vo(w))
for every w, so
e = med(—M, o, M)(Vy — V) = med(—M, o, M), — vy,
while
f med(—M1.,24, M1 )dv = j{ med(—M, o, M)1. dv
TAT TAT
:/ med(—M, o, M)1 dv
TAT

= med(—M, a, M) (v, — vg).
So these are equal, for every M, and ¢ € L.

(ii) Of course a scalar multiple of a member of £ belongs to £ because ¢ — ey and Sii, are linear.
Similarly, if |¢| A [¢)] = 0 then || A Jzy| = 0, so

Coptyp,M = €pM + EyM,
med(—M1<,x¢,+w, M1<) = med(—M1<,(L‘¢,, M1<) + med(—M1<,.’£¢, M1<)
and if € £ then o+ € L iff ¥ € L.

(iii) As in (i), if ¢ = x(]s, 0] x E), we can compute

epm(w) = min(1, M) (Vi) (w) — Vs(w)) if w € £ and h(w) < s,
= 0 otherwise,
o
gy = min(l, M)xa X (v; — vrps)

where a = E°. At the same time, £4 = u< where u is the simple process with breakpoint § and value 0
below 3, value xa from § onwards. So

min(1, M)udv :/ min(1, M)u dv

f med(—M1c, 24, M1 )dv = f
TAT TAT

TAT
(645R (a-))

:/ min(1, M)1 dv
(TAT)VE

=min(1, M)xa X (vr — Vrps)

and again we have equality, so ¢ € L.

(iv) And finally, for the key point, if (¢,)nen is a sequence in £ converging pointwise to ¢, then
(€y, )nen is order*-convergent to x4 (642L(c-1)), so (med(—M1lc,zy, ,M1.))pen is always a previsibly
order-bounded sequence which is order*-convergent to med(—M1., 2,4, M1.), and

fTM med(— M1, 24, M1 )dv = lim,, fTM med(—M1.,zy,, M1.)dv

by 645T. At the same time, of course, (med(—M, ¢, (t,w), M))nen — med(—M, ¢(t,w), M) for every t and
w, so by the ordinary dominated convergence theorem egns(w) = lim,, o0 €4, pm(w) for every w and
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ey = lim el = lim med(—M1.,z4,, M1)dv

n— oo n—oo T/\T

= f med(—M1<,.’I:¢,Ml<)d’U7
TAT

so that p € £. Q

(c) By 649K, £ = £°. Now suppose that (X;):>¢ is a previsibly measurable stochastic such that ¢ —

X¢(w) is bounded on [0, h(w)] for each w, and that e(w) = f]o h(w)] Xi(w)vy,(dt) for every w. Set ¢(t,w) =

Xi(w) for t > 0 and w € Q; then ¢ € L s0 ¢ € L. If M > 0, then {(t,w) : t < h(w), |p(t,w)| > M}
belongs to Ay, so its projection Fiy = {w : |¢(t,w)| > M for some t < h(w)} belongs to ¥ (642Jb). Because
t — X¢(w) is bounded on [0, h(w)] for each w, ;e Far = 0.

If M e Nand w € )\ Fiy,

egm(w) = f]o,h(w)] o(t,w)v, (dt) = e(w).
So e = limps o0 €40 is measurable. Similarly,
[med(—M1lc,xy, M1) #xy x 1] C Fyy
for every M, so

[ 7., med(—=M1. 2y, M1o)dv # $.. x4 X 1< dv]
is included in F},, for every M (647J). But infyren Fyp = 0, so

j( Tydv = f Ty X 1o dv
TAT TAT
(645Pc)

Jv}l—r>noo TAT med(—M1<,z¢, M1<)d'v - Jv}l—rfloc Com = ¢

as required.

649X Basic exercises (a) In 649H, show that if u is locally of bounded variation then we can arrange
that ¢ — Up(w) : [0, hy,(t)] — R is of bounded variation for every w € Q and every n.

(b) State and prove a form of 649L which will cover S-integrals with respect to processes which are locally
of bounded variation. (Hint: §437.)

649Y Further exercises (a) In 649C, show that the formula
B s1(w) = E(LR@)} U {8 52 hus(w), V(@) — Un, o) (@)] = 277)

also works.

649 Notes and comments Both 649C and 649E refer to the Riemann-sum integral; there seem to be
insuperable difficulties in devising any kind of path-by-path definition for the general S-integral. Bichteler’s
construction (649C) depends on some deep arguments, not here but in the proof of 627M. The method of
649E demands rather less understanding of stochastic processes (in a formal sense, I don’t think we have
to know even that martingales are local integrators), but in the context of this volume measure-converging
filters are black magic; even the full axiom of choice is a bit strong for what we want to do here, and while I
expect most readers would prefer to do measure theory with dependent choice at least, I think the techniques
of Chapter 56 ought to be enough for a sufficiently determined purist to set out nearly all the ideas here in
a form based on ZF alone. The advantage of 649E, if there is one, is that (at least for integrals between
constant stopping times) we have a formula in terms of Ui, V; alone, without even seeking to define Uj,
and V}, for non-constant stopping times h. I suppose that in principle this offers an opportunity to use the
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formula as a definition of f:/ U dV without troubling about right-continuity of the filtration (X;);>¢ or any
hypothesis on the paths of the processes U and V. But I do not see much use for a stochastic integral which
does not allow for integration over intervals determined by arbitrary stopping times, and for these I think
we need something like the hypotheses of 649E.

Most of this section, by page-count, has been devoted to an elaborate analysis of the relationship between
S-integration with respect to a non-decreasing process and pathwise Lebesgue-Stieltjes integration. Of course
this should be regarded as one of the starting points for the theory of the S-integral, not its culmination.
The whole point of the S-integral is that it provides a common extension of the natural integral with respect
to integrators of bounded variation and [t6’s integral with respect to Browniam motion.
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