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Chapter 63

Structural alterations

One of the daunting things about stochastic calculus is the amount of preliminary material required before
one can approach the main theorems, let alone the interesting applications. Before proceeding to Chapter
64 we must do some more work more or less at the level of Chapters 61-62, and this is what I will try to
deal with in the present chapter.

I start with a quick run through the properties of near-simple processes (§631) which got pushed out of
Chapter 61 due to shortage of space. The real work of the chapter begins in §632, with ‘right-continuous’
filtrations 〈At〉t∈T . For such stochastic integration structures, which include the most important examples
(632D), there are useful simplifications in the theory (632C, 632F, 632I, 632J), so it is not surprising that
most presentations of this material take right-continuity of the filtration as a standard hypothesis.

The integral
∫
S uuu dvvv, as I have defined it, depends on an elaborate structure: a probability algebra (A, µ̄),

a filtration 〈At〉t∈T and the sublattice S. We anticipate that changing any of these will change the value
of the integral. But there are many cases in which this doesn’t happen. The simplest of these is ‘change
of law’. As long as we have a strictly positive countably additive measure on the given algebra A, we shall
have the same integrals, as I pointed out right at the beginning in 613I. Next, there are important classes
of pairs S ′, S of lattices for which we can expect equality of the integrals

∫
S′ and

∫
S . For these we have to

work fairly hard, since it is certainly not enough just to have minS ′ = minS and maxS ′ = maxS. In §633
I explore sufficient conditions to make a sublattice S ′ of S behave as if it had full outer (Riemann) measure,
so that an integral over S will be the same when taken over S ′ (633K).

We are now in a position to look at the effect of replacing (A, µ̄, 〈At〉t∈T ) with (B, µ̄↾B, 〈B ∩ At〉t∈T )
where B is a subalgebra of A. As long as we are just looking at integrals, we need only quote from §633;
but if we want to understand martingales (634I), we need the theory of relative independence from Chapter
48. And there is a yet more radical change which we can consider, where the filtration 〈At〉t∈T is replaced
by 〈Aπr

〉r∈R for some family 〈πr〉r∈R of stopping times. This is what I do in §635.

Version of 4.5.21/21.1.22

631 Near-simple processes

My presentation so far has focused on ‘moderately oscillatory’ integrands, with regular mentions of
‘simple’ processes, and an excursion into ‘jump-free’ processes in §§618-619. Later on, however, there will
be many important results applying to an intermediate class, the ‘near-simple’ processes.

631A Notation We shall need a good many of the formulae introduced in Chapter 61, and as we are
starting a new chapter I will give a particularly detailed list. Throughout, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will
be a stochastic integration structure (§613 notes). For u ∈ L0(A), θ(u) is E(|u|∧χ1) (613B). If t ∈ T , ť is the
constant stopping time at t (611A). If h : R → R is a Borel function, h̄ is the associated function from L0(A)
to itself (612A). If S is a sublattice of T and τ ∈ T , then S ∧ τ = {σ ∧ τ : σ ∈ S}, S ∨ τ = {σ ∨ τ : σ ∈ S}
and I(S) is the set of finite sublattices of S. [[ ]] will appear in formulae of the type [[u > α]], [[u ≤ v]]
where u, v ∈ L0(A) and α ∈ R, as in Chapter 36; in formulae of the type [[σ > t]] and [[σ < τ ]], where σ,
τ ∈ T and t ∈ T , as in 611A and 611D; and in formulae of the type [[uuu 6= 0]] = supσ∈S [[uσ 6= 0]] where
uuu = 〈uσ〉σ∈S ∈ L0(A)S , as in 612S.

For a sublattice S of T , Mfa(S), Msimp(S), Mo-b(S) and Mlo-b(S) and are the f -algebras of, respectively,
the fully adapted processes (612I), the simple processes (612J), the order-bounded processes and the locally
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2 Structural variations 631A

order-bounded processes (614E) with domain S. I will use the symbol 1 for constant processes with value
χ1 ∈ L0(A) (361D, 612De). If uuu = 〈uσ〉σ∈S ∈Mfa(S) and z ∈ L0(A) ∩

⋂
σ∈S L

0(Aσ), then zuuu is the process
〈z × uσ〉σ∈S (612De).

For an order-bounded process uuu = 〈uσ〉σ∈S , sup |uuu| = supσ∈S |uσ| ∈ L0(A). For a finite sublattice I of T
and fully adapted processes uuu, vvv with domains including I, SI(uuu, dvvv) is the Riemann sum defined in 613E-
613F.

∫
S uuu dvvv and

∫
S |dvvv| will denote Riemann-sum integrals as in 613L, while iivvv(uuu) will be an indefinite

integral as defined in 613O.

631B Definitions Let S be a sublattice of T .

(a) A fully adapted process uuu with domain S is near-simple if it is in the closure of Msimp(S) for the
ucp topology on Mo-b(S); that is, it is order-bounded and for every ǫ > 0 there is a simple process vvv with
domain S such that θ(sup |uuu− vvv|) ≤ ǫ.

(b) A fully adapted process uuu with domain S is locally near-simple if uuu↾S ∧ τ is near-simple for every
τ ∈ S.

Remarks Note that in this definition it is essential that the approximating simple process vvv should have
the same domain as the process uuu. We have no general assurance that if vvv is a simple process, and S is a
sublattice of domvvv, then vvv↾S is near-simple (see 631Xb).

631C Proposition (a) (Locally) near-simple processes are (locally) moderately oscillatory.

(b) (Locally) jump-free processes are (locally) near-simple.

proof (a)We know that simple processes are moderately oscillatory (615E) and that the space of moderately
oscillatory processes is closed in the space of order-bounded processes for the ucp topology (615F(a-iv)), so
near-simple processes are moderately oscillatory. It follows at once that locally near-simple processes are
locally moderately oscillatory.

(b) As declared in 612Ja, the empty process counts as simple, so we need only to look at non-trivial
sublattices. Re-reading part (i) of the proof of 618Gb, we see that if S is a non-empty sublattice of T , uuu
is a jump-free process with domain S, and ǫ > 0, there is a simple process uuu′ with domain S such that
θ(sup |uuu − uuu′|) ≤ ǫ. As ǫ is arbitrary, uuu is near-simple. As in (a) just above, it follows immediately that
locally jump-free processes are locally simple.

631D Where near-simple processes come from: Theorem Let (Ω,Σ, µ) be a complete probability
space and 〈Σt〉t≥0 a filtration of σ-subalgebras of Σ, all containing every negligible subset of Ω. Suppose
that we are given a family 〈Xt〉t≥0 of real-valued functions on Ω such that Xt is Σt-measurable for every t
and t 7→ Xt(ω) : [0,∞[ → R is càdlàg (in the sense of 4A2A) for every ω ∈ Ω.

In this case, 〈Xt〉t≥0 is progressively measurable, and if (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) and 〈xσ〉σ∈Tf

are defined as in 612H, then xxx = 〈xσ〉σ∈Tf
is locally near-simple.

proof Just as 613Ub corresponds to 618Gb, the proof here follows that of 618H. Corresponding to the weaker
hypothesis and less ambitious objective, some modifications are necessary. To begin with, the formulae can
be copied exactly, but rather than keep you turning back and forth, I repeat the details.

(a) As before, I start by showing that we have a progressively measurable process. PPP Take any t ≥ 0
and α ∈ R. Set Q = {qt : q ∈ Q ∩ [0, 1]}. Then

{(s, ω) : s ≤ t, Xs(ω) > α}

= {(s, ω) : s ≤ t, lim sup
q↓Q∩[s,t]

Xq(ω) > α}

(because s 7→ Xs(ω) is càdlàg for every ω)
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631D Near-simple processes 3

=
⋃

k∈N

⋂

q∈Q

⋃

q′∈Q
q′≤q

{(s, ω) : s ≤ t, s > q or s ≤ q′ and Xq′(ω) ≥ α+ 2−k}

∈ B([0, t])⊗̂Σt

where B([0, t]) is the Borel σ-algebra of [0, t]. QQQ
We can therefore again apply the method of 612H to define, for each stopping time h : Ω → [0,∞[,

the σ-algebra Σh and the Σh-measurable function Xh, and we find ourselves with a stochastic integration
structure (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) and a fully adapted process xxx = 〈xσ〉σ∈Tf

such that xh• = X•

h

for every h.

(b) Let h : Ω → [0,∞[ be a stopping time, and ǫ > 0. For ω ∈ Ω set

f(ω) = min({h(ω)} ∪ {t : t ≥ 0, |Xt(ω)| ≥ ǫ}).

(Once again I can write min rather than inf because if {t : |Xt(ω)| ≥ ǫ} is non-empty it contains its infimum.)
Then f is a stopping time. PPP For any t ≥ 0, Σt contains every µ-negligible set, so (Ω,Σt, µ↾Σt) is a complete
probability space and Σt is closed under Souslin’s operation (431A). Next,

{(s, ω) : s ≤ t, |Xs(ω)| ≥ ǫ} =
⋂
k∈N

{(s, ω) : s ≤ t, |Xs(ω)| > ǫ− 2−k}

belongs to B([0, t])⊗̂Σt, by (a) applied to the process (s, ω) 7→ |Xs(ω)|. So its projection E = {ω : ∃ s ∈ [0, t],
|Xs(ω)| ≥ ǫ} belongs to Σt (423O

1). Now

{ω : f(ω) ≤ t} = {ω : h(ω) ≤ t} ∪ E ∈ Σt.

As t is arbitrary, f is a stopping time adapted to 〈Σt〉t≥0. QQQ

(c) Again suppose that h : Ω → [0,∞[ is a stopping time and ǫ > 0. Define gn and X
(n)
t , for n ∈ N and

t ≥ 0, by setting

g0(ω) = 0 for every ω ∈ Ω

and

X
(n)
t (ω) = 0 if gn(ω) > t,

= Xt(ω)−Xgn(ω) if gn(ω) ≤ t,

gn+1(ω) = inf({h(ω)} ∪ {t : t ≥ 0, |X
(n)
t (ω)| ≥ ǫ}

for n ∈ N, t ≥ 0 and ω ∈ Ω, We see immediately that t 7→ X
(n)
t (ω) is always càdlàg. Also we can see by

induction on n that every gn is a stopping time and every X
(n)
t is Σt-measurable. PPP For n = 0 this is trivial,

since of course Xt −X0 is Σt-measurable and t 7→ Xt(ω) −X0(ω) is always càdlàg. For the inductive step

to n ≥ 1, gn is a stopping time, by (b) applied to 〈X
(n−1)
t 〉t≥0. Next, setting F = {ω : gn(ω) ≤ t}, we have

F ∩ {ω : gn(ω) ≤ s} = {ω : gn(ω) ≤ s} ∈ Σs ⊆ Σt if s ≤ t,

= F ∈ Σt if t ≤ s

so F ∈ Σgn . If E ∈ Σgn then E ∩ F ∈ Σt, so Xgn × χF is Σt-measurable; while F ∈ Σt so Xt × χF is

Σt-measurable. Consequently X
(n)
t = (Xt −Xgn)× χF is Σt-measurable, and the induction continues. QQQ

We therefore have a non-decreasing sequence 〈gn〉n∈N of stopping times such that, for any n ∈ N and
ω ∈ Ω,

—– if n = 0 then gn(ω) = 0,
—– gn(ω) ≤ h(ω),
—– |Xt(ω)−Xgn(ω)| < ǫ whenever gn(ω) ≤ t < gn+1(ω),
—– if gn+1(ω) < h(ω) then |Xgn+1

(ω)−Xgn(ω)| ≥ ǫ.

It is at this point that the argument begins to diverge from that of 618H. But we still see that for any ω,
〈gn(ω)〉n∈N is a non-decreasing sequence bounded above by h(ω), so

1Later editions only.
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4 Structural variations 631D

limn→∞Xgn(ω) = limn→∞Xgn(ω)(ω)

is defined and finite, in which case there must be some n such that gn+1(ω) = h(ω).

(d) Translating (c) into the language of the stochastic integration structure (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ),
we see that given any τ ∈ Tf and ǫ > 0 we have a non-decreasing sequence 〈τn〉n∈N in Tf such that, for
every n ∈ N,

—– if n = 0 then τn = 0̌ = min Tf ,
—– τn ≤ τ ,
—– [[τn ≤ σ]] ∩ [[σ < τn+1]] ⊆ [[|xσ − xτn | < ǫ]] for every σ ∈ Tf ,

and

supn∈N [[τn = τ ]] = 1.

But this means that if we take n ∈ N such that c = 1 \ [[τn = τ ]] has measure at most ǫ, and take vvv =
〈vσ〉σ∈T ∧τ to be the simple function defined from τ0, . . . , τn and xτ0 , . . . , xτn , then [[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[|xσ − vσ| < ǫ]]
for every σ ∈ T ∧ τ and i < n. So [[|xσ − vσ| ≥ ǫ]] ⊆ c for every σ ∈ T ∧ τ , and θ(sup |(xxx↾T ∧ τ)− vvv|) ≤ 2ǫ.
As ǫ is arbitrary, xxx↾T ∧ τ is near-simple; as τ is arbitrary, xxx is locally near-simple.

631E Proposition (a) If T = [0,∞[, then the identity process on Tf is locally near-simple.
(b) Brownian motion is locally near-simple.
(c) The Poisson process is locally near-simple.

proof By 618Ja and 618Jc, the identity process and Brownian motion are locally jump-free, so by 631Cb
they are locally near-simple. As for the Poisson process vvv, I defined it in 612Ub in terms of a probability
measure on Ω = Cdlg and a process 〈Xt〉t≥0 with Xt(ω) = ω(t) for every ω, so that t 7→ Xt(ω) is surely
càdlàg for every ω, and 631D tells us that vvv is locally near-simple.

631F Proposition Let S be a sublattice of T .
(a) Write Mn-s =Mn-s(S) for the set of near-simple processes with domain S.
(i) If h : R → R is continuous, then h̄uuu ∈Mn-s for every uuu ∈Mn-s.
(ii) Mn-s is an f -subalgebra of Mo-b =Mo-b(S).
(iii) Mn-s is complete for the ucp uniformity.
(iv) If τ ∈ S and uuu ∈Mfa(S), then uuu is near-simple iff uuu↾S ∧ τ and uuu↾S ∨ τ are both near-simple.
(v) If uuu ∈Mn-s and z ∈ L0(A ∩

⋂
σ∈S Aσ), then zuuu belongs to Mn-s.

(vi) If uuu is near-simple it is locally near-simple.
(b) Write Mln-s =Mln-s(S) for the set of locally near-simple processes with domain S.

(i) If h : R → R is continuous, then h̄uuu ∈Mln-s for every uuu ∈Mln-s.
(ii) Mln-s is an f -subalgebra of the space Mlo-b = Mlo-b(S) of locally order-bounded processes with

domain S.
(iii) If uuu ∈ Mfa(S) and τ ∈ S, then uuu is locally near-simple iff uuu↾S ∧ τ and uuu↾S ∨ τ are both locally

near-simple.
(iv) If uuu ∈Mln-s and z ∈ L0(A ∩

⋂
σ∈S Aσ), then zuuu ∈Mln-s.

(v) If uuu ∈Mfa(S) and {σ : σ ∈ S, uuu↾S ∧ σ is near-simple} covers S, then uuu ∈Mln-s.
(c) Suppose that uuu is a moderately oscillatory process with domain S.

(i) If uuu↾S ∩ [τ, τ ′] is near-simple whenever τ ≤ τ ′ in S, then uuu is near-simple.
(ii) If uuu is locally near-simple it is near-simple.

proof (a)(i) By 615Ca, uuu 7→ h̄uuu : Mo-b(S) → Mo-b(S) is continuous, while h̄uuu ∈ Msimp(S) for every
uuu ∈Msimp(S), by 612La. Since Mn-s(S) is the closure of Msimp(S), h̄vvv ∈Mn-s(S) for every vvv ∈Mn-s(S).

(ii) Similarly, as Msimp(S) is closed under the operations +, × and uuu 7→ |uuu|, and these are continuous
on Mo-b(S), Mn-s(S) also is closed under these operations, and is an f -subalgebra of Mo-b(S).

(iii) By definition, Mn-s is a closed subset of Mo-b. As Mo-b is complete under its ucp uniformity
(615Cc), so is Mn-s (3A4Fd

2).

2Later editions only.
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631F Near-simple processes 5

(iv)(ααα) The operation uuu 7→ uuu↾S ∧ τ :Mo-b(S) →Mo-b(S ∧ τ) is linear, and also continuous, as

θ(sup |uuu↾S ∧ τ |) ≤ θ(sup |uuu|)

for every uuu ∈ Mo-b(S). Since uuu↾S ∧ τ ∈ Msimp(S ∧ τ) for every uuu ∈ Msimp(S) (612K(d-ii)), uuu↾S ∧ τ ∈

Msimp(S ∧ τ) = Mn-s(S) for every uuu ∈ Msimp(S) = Mn-s(S). Similarly, using 612K(d-iii), uuu↾S ∨ τ ∈
Mn-s(S ∨ τ) for every uuu ∈Mn-s(S).

(βββ) Now suppose that uuu ∈Mfa(S) is such that uuu↾S ∧ τ and uuu↾S ∨ τ are near-simple. Let ǫ > 0. Then
there are simple processes uuu′ = 〈u′σ〉σ∈S∧τ and uuu′′ = 〈u′′σ〉σ∈S∨τ such that θ(ū′), θ(ū′′) are both less than or
equal to ǫ, where ū′ = sup |uuu′ − uuu↾S ∧ τ | and ū′′ = sup |uuu′′ − uuu↾S ∨ τ |.

Let (τ ′0, . . . , τ
′
m) and (τ ′′0 , . . . , τ

′′
n ) be breakpoint strings for uuu′, uuu′′ respectively; we can suppose that

τ ′m = τ ′′0 = τ . Let vvv be the simple process defined by the formula in 612Ka from the breakpoint string
(τ ′0, . . . , τ, . . . , τ

′′
n ) and the values u′↓, u

′
τ ′
0
, . . . , u′τ ′

m−1
, u′′τ , . . . , u

′′
τ ′′
n
, where u′↓ is the starting value of uuu

′ (614Ba).

If σ ∈ S then

[[σ < τ ]] ⊆ [[uσ = uσ∧τ ]] ∩ [[u′σ∧τ = vσ∧τ ]] ∩ [[vσ∧τ = vσ]]

⊆ [[|uσ − vσ| ≤ ū′]],

[[τ ≤ σ]] ⊆ [[uσ = uσ∨τ ]] ∩ [[u′σ∨τ = vσ∨τ ]] ∩ [[vσ∨τ = vσ]]

⊆ [[|uσ − vσ| ≤ ū′′]],

so

θ(sup |uuu− vvv|) ≤ θ(ū′ ∨ ū′′) ≤ 2ǫ;

as ǫ is arbitrary, uuu is near-simple.

(v) This follows from (ii) because z1↾S is simple and zuuu = (z1↾S)× uuu.

(vi) This is immediate from (iv).

(b)(i) follows from (a-i) because (h̄uuu)↾S ∧ τ = h̄(uuu↾S ∧ τ) for every τ ∈ S.

(ii) Similarly, restriction respects the algebraic and lattice operations on Mo-b(S).

(iii)(ααα) If uuu is locally near-simple, then uuu↾S ∧ τ is simple, therefore locally near-simple. Also, if
τ ′ ∈ S ∨ τ ,

(uuu↾S ∨ τ)↾(S ∨ τ) ∧ τ ′ = (uuu↾S ∧ τ ′)↾(S ∧ τ ′) ∨ τ

is near-simple, so uuu↾(S ∨ τ) is locally near-simple.

(βββ) Suppose that uuu↾S ∧ τ and uuu↾S ∨ τ are locally near-simple. Take any τ ′ ∈ S ∨ τ . Then (uuu↾S ∧
τ ′)↾(S ∧ τ ′) ∧ τ = uuu↾S ∧ τ and (uuu↾S ∨ τ ′)↾(S ∧ τ ′) ∨ τ = (uuu↾S ∨ τ)↾(S ∨ τ) ∧ τ ′ are near-simple, so uuu↾S ∧ τ ′

is near-simple.

In general, if τ ′ is an arbitrary member of S,

uuu↾S ∧ τ ′ = (uuu↾S ∧ (τ ′ ∨ τ))↾(S ∧ (τ ′ ∨ τ)) ∧ τ ′

is near-simple, so uuu is locally near-simple.

(iv) follows from (ii) here or from (a-v).

(v) Write A for {σ : σ ∈ S, uuu↾S ∧ σ} is near-simple}.

(ααα) If σ ∈ A then vvvσ = 〈uρ∧σ〉ρ∈S is near-simple. PPP vvvσ↾S ∧ σ = uuu↾S ∧ σ is near-simple, by (a-iv),
while vvvσ↾S∨σ is constant with value uσ, therefore simple. By (a-iv) in the other direction, vvvσ is near-simple.
QQQ

(βββ) A is closed under ∨. PPP If σ, τ ∈ A, then uρ∧(σ∨τ) = uρ∧σ+uρ∧τ−uρ∧σ∧τ for every ρ ∈ S∧(σ∨τ),
by 612D(f-i), that is, vvvσ∨τ = vvvσ +vvvτ −vvvσ∧τ . By (α) here, vvvσ, vvvτ and vvvσ∧τ are all near-simple, so the linear
combination vvvσ∨τ and the restriction uuu↾S ∧ (σ ∨ τ) = vvvσ∨τ ↾S ∧ (σ ∨ τ) is near-simple. So σ ∨ τ ∈ A. QQQ

D.H.Fremlin



6 Structural variations 631F

(γγγ) Now suppose that τ ∈ S. Then {τ} is covered by A so for any ǫ > 0 there are σ0, . . . , σn ∈ A such
that supi≤n [[σi = τ ]] has measure at least 1− ǫ. Now σ = supi≤n σi belongs to A, by (β), and a = [[σ < τ ]]
has measure at most ǫ. By (α), vvvσ is near-simple, while for ρ ∈ S ∧ τ

[[uρ 6= vσρ]] ⊆ [[ρ 6= ρ ∧ σ]] = [[σ < ρ]] ⊆ [[σ < τ ]] = a.

Thus [[uuu↾S ∧ τ 6= vvvσ↾S ∧ τ ]] ⊆ a has measure at most ǫ, while vvvσ↾S∧τ is near-simple. In particular, vvvσ↾S∧τ
is order-bounded; as ǫ is arbitrary, uuu↾S ∧τ is order-bounded, by 613Bp applied to {uσ : σ ∈ S ∧τ}. But now
we see from the same formula that for every ǫ > 0 there is a vvv ∈Mn-s(S∧τ) such that θ(sup |uuu↾S∧τ−vvv|) ≤ ǫ;
as Mn-s(S ∧ τ) is closed in Mo-b(S ∧ τ) in the ucp topology, uuu↾S ∧ τ is near-simple. As τ is arbitrary, uuu is
locally near-simple, as claimed.

(c)(i) If S is empty, the result is trivial. Otherwise, since uuu is moderately oscillatory, it is surely order-
bounded. Let ǫ > 0. By 615Ga, u↑ = limσ↑S uσ is defined and there is a τ ′ ∈ S such that θ(w′) ≤ ǫ where
w′ = supσ∈S∨τ ′ |uσ − u↑|. Similarly, applying 615Gb to A = S ∧ τ ′, u↓ = limσ↓S uσ is defined and there is a
τ ∈ S ∧ τ ′ such that θ(w) ≤ ǫ where w = supσ∈S∧τ |uσ − u↓|.

Now uuu↾S ∩ [τ, τ ′] is near-simple, so there is a simple process vvv′ = 〈v′σ〉σ∈S∧τ such that θ(w′′) ≤ ǫ where
w′′ = supσ∈S∧τ |uσ − v′σ|. Take a breakpoint string (τ0, . . . , τn) for vvv

′ starting with τ0 = τ and ending with
τn = τ ′ (see 612Kb), and let vvv = 〈vσ〉σ∈S be the simple process with domain S based on the starting value
u↓, the breakpoint string (τ0, . . . , τn) and the values (v′τ0 , . . . , v

′
τn). If σ ∈ S then |uσ−vσ| ≤ w+2w′+2w′′.

PPP

[[σ < τ ]] ⊆ [[vσ = u↓]] ∩ [[uσ = uσ∧τ ]] ⊆ [[|uσ − vσ| ≤ w]],

[[τ ≤ σ]] ∩ [[σ ≤ τ ′]] ⊆ [[uσ = umed(τ,σ,τ ′)]] ∩ [[vσ = v′med(τ,σ,τ ′)]] ⊆ [[|uσ − vσ| ≤ w′′]],

[[τ ′ ≤ σ]] ⊆ [[uσ = uσ∨τ ′ ]] ∩ [[vσ = v′τ ′ ]]

⊆ [[|uσ − vσ| ≤ |uσ∨τ ′ − u↑|+ |uτ ′ − u↑|+ |uτ ′ − v′τ ′ |]]

⊆ [[|uσ − vσ| ≤ 2w′ + w′′]]. QQQ

Accordingly θ(sup |uuu− vvv|) ≤ θ(w + 2w′ + 2w′′) ≤ 5ǫ. As ǫ is arbitrary. uuu is near-simple.

(ii) If uuu is locally near-simple and τ ≤ τ ′ in S, then uuu↾S∧τ ′ is near-simple so uuu↾S∩[τ, τ ′] = uuu↾(S∧τ ′)∨τ
is near-simple ((a-iv) above). As τ and τ ′ are arbitrary, (i) here tells us that uuu is near-simple.

631G Proposition Let S be a sublattice of T , Ŝ its covered envelope, uuu = 〈uσ〉σ∈S a fully adapted

process, and ûuu its fully adapted extension to Ŝ.
(a) uuu is near-simple iff ûuu is near-simple.
(b) uuu is locally near-simple iff ûuu is locally near-simple.

proof If S is empty both parts are trivial, so suppose otherwise.

(a)(i) Suppose that uuu is near-simple. Then it is order-bounded, so ûuu is order-bounded (614G(b-i)), Let
ǫ > 0. Then there is a simple process vvv = 〈vσ〉σ∈S such that θ(sup |uuu−vvv|) ≤ ǫ. By 612Qf, the fully adapted

extension v̂vv of vvv to Ŝ is simple, while sup |ûuu− v̂vv| = sup |uuu− vvv| (612Qb, 614G(b-i)). So θ(sup |ûuu− v̂vv|) ≤ ǫ; as
ǫ is arbitrary, ûuu is near-simple.

(ii) Suppose that ûuu is near-simple.

(ααα) ûuu is order-bounded, so uuu = ûuu↾S is order-bounded. Let ǫ > 0. Then there is a simple process www =
〈wτ 〉τ∈Ŝ such that θ(sup |ûuu−www|) ≤ ǫ. Let w↓ be the starting value ofwww and (τ0, . . . , τn) a breakpoint sequence
for www. For each i ≤ n, supσ∈S [[τi = σ]] = 1, so there is a finite set Ai ⊆ S such that µ̄(supσ∈Ai

[[τi = σ]]) ≥

1−
ǫ

n+1
. Let I be a finite sublattice of S including

⋃
i≤nAi, and take (ρ0, . . . , ρm) linearly generating the

I-cells. If i ≤ n,

sup
σ∈Ai

[[τi = σ]] ⊆ sup
σ∈I

[[τi = σ]] = sup
σ∈I,j≤m

[[τi = σ]] ∩ [[σ = ρj ]]

(611L)
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631G Near-simple processes 7

⊆ sup
j≤m

[[τi = ρj ]],

so

a = infi≤n supj≤m [[τi = ρj ]]

has measure at least 1− ǫ. Note that

a ⊆ supj≤m [[ρj ≤ τ0]] ∩ supj≤m [[τn ≤ ρj ]] ⊆ [[ρ0 ≤ τ0]] ∩ [[τn ≤ ρm]].

In between,

a ∩ [[τi < ρj+1]] ⊆ [[τi ≤ ρj ]]

whenever i ≤ n and j < m. PPP

a ∩ [[τi < ρj+1]] ⊆ sup
k≤m

[[τi < ρj+1]] ∩ [[τi = ρk]] = sup
k≤m

[[ρk < ρj+1]] ∩ [[τi = ρk]]

⊆ sup
k≤j

[[τi = ρk]] ⊆ [[τi ≤ ρj ]]. QQQ

(βββ) Now let vvv = 〈vσ〉σ∈S be the simple process with starting value w↓, breakpoint string (ρ0, . . . , ρm)
and values vρj = wρj for j ≤ m. Take σ ∈ S. Let B be the finite subalgebra of A generated by

{[[τi = ρj ]] : i ≤ n, j ≤ m} ∪ {[[τi ≤ σ]] : i ≤ n} ∪ {[[ρj ≤ σ]], j ≤ m};

note that a ∈ B.

(γγγ) Let b be a atom of B included in a. Then b ⊆ [[vσ = wσ]]. PPP Since

([[σ < ρ0]], [[ρ0 ≤ σ]] ∩ [[σ < ρ1]], . . . , [[ρm−1 ≤ σ]] ∩ [[σ < ρm]], [[ρm ≤ σ]])

is a partition of unity in A, one of these includes b; and similarly either b ⊆ [[σ < τ0]] or b ⊆ [[τn ≤ σ]] or there
is an i < n such that b ⊆ [[τi ≤ σ]] ∩ [[σ ≤ τi+1]]. Now b ⊆ a ⊆ [[ρ0 ≤ τ0]] so if b ⊆ [[σ < ρ0]] then b ⊆ [[σ < τ0]]
and

b ⊆ [[vσ = w↓]] ∩ [[wσ = w↓]] ⊆ [[vσ = wσ]].

Similarly, b ⊆ a ⊆ [[τn ≤ ρm]] so if b ⊆ [[ρm ≤ σ]] then b ⊆ [[τn ≤ σ]] and

b ⊆ [[vσ = wρm ]] ∩ [[wρm = wτn ]] ∩ [[wσ = wτn ]] ⊆ [[vσ = wσ]].

Otherwise, let j < m be such that

b ⊆ [[ρj ≤ σ]] ∩ [[σ < ρj+1]] ⊆ [[vσ = wρj ]].

If b ⊆ [[σ < τ0]] then

b ⊆ [[vσ = wρj ]] ∩ [[ρj < τ0]] ∩ [[wσ = w↓]]

⊆ [[vσ = wρj ]] ∩ [[wρj = wσ]] ⊆ [[vσ = wσ]].

If b ⊆ [[τn ≤ σ]] then

b ⊆ a ∩ [[vσ = wρj ]] ∩ [[τn < ρj+1]] ∩ [[wσ = wτn ]]

⊆ [[vσ = wρj ]] ∩ [[τn ≤ ρj ]] ∩ [[wσ = wτn ]]

(because a ∩ [[τn < ρj+1]] ⊆ [[τn ≤ ρj ]])

⊆ [[vσ = wρj ]] ∩ [[wρj = wτn ]] ∩ [[wσ = wτn ]] ⊆ [[vσ = wσ]].

And in between, if i < n and b ⊆ [[τi ≤ σ]] ∩ [[σ < τi+1]], then

b ⊆ a ∩ [[τi < ρj+1]] ∩ [[ρj < τi+1]] ⊆ [[τi ≤ ρj ]] ∩ [[ρj < τi+1]] ⊆ [[wρj = wτi ]]

so

b ⊆ [[vσ = wρj ]] ∩ [[wσ = wτi ]] ∩ [[wρj = wτi ]] ⊆ [[vσ = wσ]]
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8 Structural variations 631G

in this case also, and every possibility is covered. QQQ

(δδδ) As b is arbitrary, [[vσ = wσ]] ⊇ a, and this is true for every σ ∈ S. But now we see that

|uσ − vσ| × χa = |uσ − wσ| × χa ≤ sup |ûuu−www|

for every σ ∈ S. So

sup |uuu− vvv| × χa ≤ sup |ûuu−www|, θ(sup |uuu− vvv|) ≤ θ(sup |ûuu−www|) + µ̄(1 \ a) ≤ 2ǫ.

As ǫ is arbitrary, uuu is near-simple, as claimed.

(b)(i) Now suppose that uuu is locally near-simple. If σ ∈ S, then Ŝ ∧ σ is the covered envelope of S ∧ σ

(611M(e-i)) so ↾̂↾↾Ŝ ∧ σ is the fully adapted extension of uuu↾S ∧ σ to its covered envelope and is near-simple,

by (a). As S covers Ŝ, 631F(b-v) tells us that ûuu is locally near-simple.

(ii) Finally, suppose that ûuu is locally near-simple and that σ ∈ S. Again because the fully adapted

extension of uuu↾S ∧ σ to the covered envelope of S ∧ σ is ûuu↾Ŝ ∧ σ, which is near-simple; so (a) in the other
direction tells us that uuu↾S ∧ σ is near-simple. As σ is arbitrary, uuu is locally near-simple.

631H Many of the arguments of §§614-617 are substantially simplified if we restrict attention to near-
simple processes, and some curious new patterns emerge. A striking one, which will be useful in §641, is the
following.

Proposition Let S be a sublattice of T and uuu a process of bounded variation with domain S.
(a)(i)

∫
S uuu dvvv is defined for every vvv ∈Mn-s(S).

(ii) vvv 7→
∫
S uuu dvvv : Mn-s(S) → L0 is continuous for the ucp topology on Mn-s(S) and the topology of

convergence in measure on L0.

(b)(i) The indefinite integral iivvv(uuu) is near-simple for every vvv ∈Mn-s(S).
(ii) vvv 7→ iivvv(uuu) :Mn-s(S) →Mn-s(S) is continuous for the ucp topology.

proof (a)(i)(ααα) Of course uuu is order-bounded (614La). Write ū for 2 sup |uuu| +
∫
S |duuu|. The key is the

following fact: for any vvv ∈Mo-b(S),

|SI(uuu, dvvv)| ≤ ū× sup |vvv|

for every I ∈ I(S). PPP If I is empty, this is trivial. Otherwise, take a sequence (τ0, . . . , τn) linearly generating
the I-cells. Expressing uuu as 〈uσ〉σ∈S and vvv as 〈vσ〉σ∈S ,

SI(uuu, dvvv) =
n−1∑

i=0

uτi × (vτi+1
− vτi)

=

n−1∑

i=0

(uτi − uτi+1
)× vτi+1

− uτ0 × vτ0 + uτn × vτn

so

|SI(uuu, dvvv)| ≤
n−1∑

i=0

|uτi − uτi+1
| × |vτi+1

|+ |uτ0 | × |vτ0 |+ |uτn | × |vτn |

≤ ū× sup |vvv|

(see 614J). QQQ

(βββ) If vvv ∈ Msimp(S) then vvv is of bounded variation (614Q(a-iii)), therefore an integrator (616Ra),
while of course uuu is also an integrator and therefore moderately oscillatory. So in this case

∫
S uuu dvvv is defined.

Now suppose that vvv ∈ Mn-s(S). Let ǫ > 0. Then there is a δ > 0 such that θ(ū × x) ≤ ǫ whenever
x ∈ L0(A) and θ(x) ≤ δ. Take vvv′ ∈ Msimp(S) such that θ(sup |vvv′ − vvv|) ≤ δ and J ∈ I(S) such that
θ(SI(uuu, dvvv

′)−
∫
S uuu dvvv

′) ≤ ǫ whenever J ⊆ I ∈ I(S). In this case, if J ⊆ I ∈ I(S),
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631J Near-simple processes 9

θ(SI(uuu, dvvv)−

∫

S

uuu dvvv′) ≤ θ(SI(uuu, dvvv)− SI(uuu, dvvv
′)) + θ(SI(uuu, dvvv

′)−

∫

S

uuu dvvv′)

≤ θ(SI(uuu, d(vvv − vvv′))) + ǫ ≤ θ(ū× sup |vvv − vvv′|) + ǫ ≤ 2ǫ.

As ǫ is arbitrary,
∫
S uuu dvvv = limI↑I(S) SI(uuu, dvvv) is defined.

(ii) If vvv ∈Mn-s(S) then

θ(
∫
S
uuu dvvv) ≤ supI∈I(S) θ(SI(uuu, dvvv)) ≤ θ(ū× sup |vvv|),

so the linear operator vvv 7→
∫
S uuu dvvv :Mn-s(S) → L0 is continuous at 0, therefore continuous.

(b)(i) If vvv ∈ Msimp(S) then iivvv(uuu) is simple, by 614D. Now suppose that vvv ∈ Mn-s(S) and ǫ > 0. Again
take δ > 0 such that θ(ū× x) ≤ ǫ whenever θ(x) ≤ δ, and vvv′ ∈ Msimp(S) such that θ(sup |vvv′ − vvv|) ≤ δ. For
any τ ∈ S,

|
∫
S∧τ

uuu d(vvv − vvv′)| ≤ supI∈I(S∧τ) |SI(uuu, d(vvv − vvv′))| ≤ ū× sup |vvv − vvv′|,

so

θ(sup |iivvv(uuu)− iivvv′(uuu)|) ≤ θ(ū× sup |vvv − vvv′|) ≤ ǫ.

As ǫ is arbitrary, iivvv(uuu) is approximated in the ucp topology by simple processes and is near-simple.

(ii) Finally, the same arguments tell us that for vvv, vvv′ ∈Mn-s(S),

θ(sup |iivvv(uuu)− iivvv′(uuu)|) ≤ θ(ū× sup |vvv − vvv′|)

so that vvv 7→ iivvv(uuu) is continuous.

631I We have another result showing that an indefinite integral will share a property with the corre-
sponding integrator, as in 614T, 615Rb, 616J, 616Q(c-i) and 618Q-618R.

Proposition Let S be a sublattice of T , uuu a moderately oscillatory process and vvv a near-simple integrator,
both with domain S. Then iivvv(uuu) is near-simple.

proof (a) Suppose to begin with that S is full and has a greatest element. Take ǫ > 0. Let δ > 0 be such that
θ(sup |iivvv(www)|) ≤ ǫ whenever www is a moderately oscillatory process with domain S such that θ(sup |www|) ≤ δ
(616J). Let uuu′ be a process of bounded variation such that θ(sup |uuu− uuu′|) ≤ δ. Then iivvv(uuu

′) is near-simple,
by 631H(b-i), while

θ(sup |iivvv(uuu)− iivvv(ũuu)|) = θ(sup |iivvv(uuu− ũuu)|) ≤ ǫ.

As ǫ is arbitrary, iivvv(uuu) belongs to the closure of Mn-s(S) in Mo-b(S) and is near-simple, by the definition
in 631B.

(b) Now suppose just that S has a greatest member. Let ûuu and v̂vv be the fully adapted extensions of uuu

and vvv to the covered envelope Ŝ of S. Then ûuu is moderately oscillatory (615F(a-vi)) and v̂vv is a near-simple
integrator (631Ga, 616Ia) so iiv̂vv(ûuu) is near-simple, by (a). But this is just the fully adapted extension of

iivvv(uuu) to Ŝ (616Q(c-ii)). So iivvv(uuu) is near-simple, by 631Ga in the other direction.

(c) For the general case, we can apply (b) to uuu↾S ∧ τ and vvv↾S ∧ τ to see that iivvv(uuu)↾S ∧ τ is near-simple
for every τ ∈ S, that is. iivvv(uuu) is locally near-simple. We know also that iivvv(uuu) is an integrator (616J),
therefore moderately oscillatory (616Ib). By 631F(c-ii), iivvv(uuu) is near-simple.

631J Proposition Let S be a sublattice of T .
(a) If vvv, www are near-simple integrators with domain S, then [vvv

∗
www] and vvv∗ are near-simple.

(b) If vvv, www are locally near-simple local integrators with domain S, then [vvv
∗
www] and vvv∗ are locally near-

simple.

proof (a) By 617I, applied in S ∧ τ with uuu = 1 for τ ∈ S,

[vvv
∗
www] = vvv ×www − (v↓ × w↓)1− iivvv(www)− iiwww(vvv)
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10 Structural variations 631J

where v↓ and w↓ are the starting values of vvv and www. Now iivvv(www) and iiwww(vvv) are near-simple by 631I, and
(v↓ × w↓)1 is simple; so 631F(a-ii) tells us that [vvv

∗
www] is near-simple. Of course it follows at once that

vvv∗ = [vvv
∗
vvv] is near-simple.

(b) Apply (a) to S ∧ τ for τ ∈ S.

631K Theorem Let S be a sublattice of T , and vvv a near-simple process of bounded variation. Then its
cumulative variation vvv↑ (614O) is near-simple.

proof If S is empty, this is trivial; so suppose otherwise.

(a)(i) Let ǫ > 0. Let uuu′ = 〈u′σ〉σ∈S be a simple process such that θ(w̄0) ≤ ǫ, where w̄0 = sup |vvv − uuu′|.
Let I0 be a non-empty finite sublattice of S including a breakpoint string for uuu′. Take I ∈ I(S) such that
I0 ⊆ I and θ(w̄1) ≤ ǫ, where w̄1 =

∫
S |dvvv| − SI(1, |dvvv|). Take (τ0, . . . , τn) linearly generating the I-cells;

note that (τ0, . . . , τn) is a breakpoint string for uuu′ (612Kb). Let u′↓ be the starting value of uuu′, and v↓ the
starting value of vvv. Of course

|v↓ − u′↓| = limσ↓S |vσ − u′σ| ≤ w̄0.

(ii) Express vvv as 〈vσ〉σ∈S . Note that if σ ∈ S then

[[σ < τ0]] ⊆ [[u′σ = u′↓]] ⊆ [[|vσ − u′↓| ≤ w̄0]] ⊆ [[|vσ − v↓| ≤ 2w̄0]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[u′σ = u′τi ]] ⊆ [[|vσ − u′τi | ≤ w̄0]] ∩ [[|vτi − u′τi | ≤ w̄0]]

⊆ [[|vσ − vτi | ≤ 2w̄0]]

for i < n,

[[τn ≤ σ]] ⊆ [[u′σ = u′τn ]] ⊆ [[|vσ − vτn | ≤ 2w̄0]].

(b) Set w̄ = w̄1 + 2w̄0. Take any τ ∈ S.

(i) [[τ < τ0]] ⊆ [[|v↑τ | ≤ w̄]]. PPP Set σ = τ ∧ τ0. Then 0 ≤ v↑σ ≤ |vσ − v↓|+ w̄1 (614P(c-ii-α)) and

[[τ < τ0]] ⊆ [[τ = σ]] ∩ [[σ < τ0]] ⊆ [[v↑τ = v↑σ]] ∩ [[|vσ − v↓| ≤ 2w̄0]]

⊆ [[|v↑τ | ≤ w̄1 + 2w̄0]] = [[|v↑τ | ≤ w̄]]. QQQ

(ii) If i < n then [[τi ≤ τ ]] ∩ [[τ < τi+1]] ⊆ [[|v↑τ − v↑τi | ≤ w̄]]. PPP Set σ = med(τi, τ, τi+1). Then 0 ≤

v↑σ − v↑τi ≤ |vσ − vτi |+ w̄1 (614P(c-ii-β)). Now

[[τi ≤ τ ]] ∩ [[τ < τi+1]] ⊆ [[τ = σ]] ∩ [[σ < τi+1]]

⊆ [[|v↑τ − v↑τi | ≤ |vσ − vτi |+ w̄1]] ∩ [[|vσ − vτi | ≤ 2w̄0]]

⊆ [[|v↑τ − v↑τi | ≤ w̄1 + 2w̄0]]. QQQ

(iii) [[τn ≤ τ ]] ⊆ [[|v↑τ − v↑τn | ≤ w̄]]. PPP Set σ = τ ∨τn. Then 0 ≤ v↑σ−v
↑
τn ≤ |vσ−vτn |+ w̄1 (614P(c-ii-γ)).

So

[[τn ≤ τ ]] ⊆ [[τ = σ]] ∩ [[|vσ − vτn | ≤ 2w̄0]] ⊆ [[|v↑τ − v↑τn | ≤ 2w̄0 + w̄1]]. QQQ

(c) So if we take vvv′ = 〈v′τ 〉τ∈S to be the simple process with breakpoint string (τ0, . . . , τn), v
′
τi = v↑τi for

i ≤ n and [[τ < τ0]] ⊆ [[v′τ = 0]] for every τ ∈ S, we shall have, for any τ ∈ S,

[[τ < τ0]] ⊆ [[|v↑τ | ≤ w̄]] ∩ [[v′τ = 0]] ⊆ [[|v↑τ − v′τ | ≤ w̄]],

[[τi ≤ τ ]] ∩ [[τ < τi+1]] ⊆ [[|v↑τ − v↑τi | ≤ w̄]] ∩ [[v′τ = v↑τi ]] ⊆ [[|v↑τ − v′τ | ≤ w̄]]

for i < n,

[[τn ≤ τ ]] ⊆ [[|v↑τ − v↑τn | ≤ w̄]] ∩ [[v′τ = v↑τn ]] ⊆ [[|v↑τ − v′τ | ≤ w̄]];
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assembling these, we see that |v↑τ − v′τ | ≤ w̄.
Thus sup |vvv↑ − vvv′| ≤ w̄, while θ(w̄) ≤ 2θ(w0) + θ(w1) ≤ 3ǫ and vvv′ is simple. As ǫ was arbitrary, vvv↑ is

near-simple.

631L Corollary Let S be a sublattice of T and vvv a fully adapted process with domain S. Then vvv is
near-simple and of bounded variation iff it is expressible as the difference of two non-negative non-decreasing
near-simple processes.

proof Given that vvv = 〈vσ〉σ∈S is of bounded variation, let vvv↑ be its cumulative variation and set v↓ =
limσ↓S vσ; then vvv

↑ + |v↓|1 and vvv↑ −vvv+ |v↓|1 are order-bounded non-negative non-decreasing processes with
difference vvv, and are near-simple if vvv is (631K). In the other direction, given that vvv = vvv1 − vvv2 where vvv1
and vvv2 are non-negative non-decreasing near-simple processes, these are order-bounded (by the definition
631Ba) so vvv is of bounded variation by 614J and near-simple by 631F(a-ii).

631M Theorem Let S be a sublattice of T and S ′ a sublattice of S which is coinitial with S.
(a)(i) There is a unique function Φ : Msimp(S

′) → Msimp(S) such that, for every uuu ∈ Msimp(S
′), Φ(uuu)

extends uuu and has a breakpoint string in S ′.
(ii) Φ(h̄uuu) = h̄Φ(uuu) for every Borel measurable h : R → R and every uuu ∈Msimp(S

′).
(iii) Φ is a multiplicative Riesz homomorphism.
(iv) If S ′ 6= ∅ then uuu and Φ(uuu) have the same starting value for every uuu ∈Msimp(S

′).
(v) sup |Φ(uuu)| = sup |uuu| for every uuu ∈Msimp(S

′).
(b)(i) There is a unique function Ψ :Mn-s(S

′) →Mn-s(S) such that Ψ extends Φ and is continuous with
respect to the ucp topologies on Mn-s(S

′) and Mn-s(S).
(ii) Ψ(uuu)↾S ′ = uuu and sup |Ψ(uuu)| = sup |uuu| for every uuu ∈Mn-s(S

′).
(iii) Ψ is a multiplicative Riesz homomorphism and Ψ(h̄uuu) = h̄Ψ(uuu) for every continuous h : R → R

and every uuu ∈Mn-s(S
′).

(iv) For uuu ∈Mn-s(S
′), Ψ(uuu) is non-decreasing iff uuu is non-decreasing.

(v) For uuu ∈Mn-s(S
′), sup |Ψ(uuu)| = sup |uuu|, so [[Ψ(uuu) 6= 0]] = [[uuu 6= 0]].

(c) Now suppose that supτ∈S′ [[σ ≤ τ ]] = 1 for every σ ∈ S.
(i) If vvv is an integrator with domain S, then

∫
S′ uuu dvvv =

∫
S Ψ(uuu) dvvv for every uuu ∈Mn-s(S

′).
(ii) There is a unique function Ψ∗ :Mln-s(S

′) →Mln-s(S) extending the map Φ :Msimp(S
′) →Msimp(S)

and such that sup |Ψ∗(uuu)↾S ∧ τ | = sup |uuu↾S ′ ∧ τ | whenever uuu ∈Mln-s(S) and τ ∈ S ′.
(iii) Ψ∗(uuu)↾S ′ = uuu for every uuu ∈ Mln-s(S

′), Ψ∗ is a multiplicative Riesz homomorphism, Ψ∗(h̄uuu) =
h̄Ψ∗(uuu) for every continuous h : R → R and every uuu ∈ Mln-s(S

′), and Ψ∗(uuu) is non-decreasing whenever
uuu ∈Mln-s(S

′) is non-decreasing.

proof If S ′ is empty so is S and everything is trivial, so suppose otherwise.

(a)(i)(ααα) If uuu ∈Msimp(S
′), there is a vvv ∈Msimp(S) such that vvv extends uuu and vvv has a breakpoint string

consisting of members of S ′. PPP Let (τ0, . . . , τn) be a breakpoint string for uuu, and u↓ its starting value.
Then u↓ ∈ L0(

⋂
σ∈S′ Aσ); because S ′ is coinitial with S,

⋂
σ∈S′ Aσ =

⋂
σ∈S Aσ. We therefore have a simple

process vvv = 〈vσ〉σ∈S defined from τ0, . . . , τn, u↓, uτ0 , . . . , uτn as in 612Ka. Take σ ∈ S ′. Then [[uσ = vσ]]
includes

[[uσ = u↓]] ∩ [[vσ = u↓]] ⊇ [[σ < τ0]],

[[uσ = uτi ]] ∩ [[vσ = uτi ]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]] for i < n,

and

[[uσ = uτn ]] ∩ [[vσ = uτn ]] ⊇ [[τn ≤ σ]],

so uσ = vσ. As σ is arbitrary, vvv extends uuu, and of course it has a breakpoint string (τ0, . . . , τn) in S ′. QQQ

(βββ) If uuu ∈Msimp(S
′), there is at most one vvv ∈Msimp(S) such that vvv extends uuu and vvv has a breakpoint

string consisting of members of S ′. PPP Suppose that vvv = 〈vσ〉σ∈S and vvv′ = 〈v′σ〉σ∈S are two such processes.
Then there is a finite sublattice of S ′ which includes breakpoint strings for both vvv and vvv′, and now a string
(τ0, . . . , τn) which linearly generates the I-cells will be a breakpoint string for both vvv and vvv′ (612Kb).
Observe also that vvv, vvv′ can be defined from v↓, vτ0 , . . . , vτn and v′↓, v

′
τ0 , . . . , v

′
τn where
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12 Structural variations 631M

v↓ = limσ↓S vσ, v′↓ = limσ↓S v
′
σ

by 614Ba. But as S ′ is coinitial with S,

v↓ = limσ↓S vσ = limσ↓S′ vσ = limσ↓S′ uσ = u↓,

and similarly v′↓ = u↓. And of course v′τi = uτi = vτi for every i ≤ n. So vvv = vvv′. QQQ

We can therefore define Φ :Msimp(S
′) →Msimp(S) in the way claimed.

(ii) If uuu ∈ Msimp(S
′) and h : R → R is Borel measurable, then h̄uuu is simple so h̄Φ(uuu) is simple and

extends h̄uuu; moreover, any breakpoint string for uuu is a breakpoint string for Φ(uuu) and h̄Φ(uuu) (612La). So
h̄Φ(uuu) = Φ(h̄uuu).

(iii) If uuu, uuu′ ∈Msimp(S
′), then Φ(uuu+uuu′) = Φ(uuu)+Φ(uuu′). PPP Φ(uuu)+Φ(uuu′) belongs toMsimp(S), extends

uuu + uuu′ and has a breakpoint string in S ′ (see the argument in (i-β) above), so must be equal to Φ(uuu + uuu′).
QQQ

It follows from (ii) just above that

Φ(αuuu) = αΦ(uuu), Φ(uuu2) = (Φ(uuu))2, Φ|uuu| = |Φ(uuu)|

whenever uuu ∈Msimp(S
′) and α ∈ R, so that Φ is a multiplicative Riesz homomorphism (cf. 612Bc).

(iv) I noted this in (i-β) above.

(v) Since uuu and Φ(uuu) have the same starting value u↓ and agree on a common breakpoint string
(τ0, . . . , τn), 614Ec tells us that

sup |uuu| = |u↓ ∨ supi≤n |uτi | = sup |Φ(uuu)|.

(b)(i) In the notation of 615B,

θ̂Φ(uuu) = θ(sup |Φ(uuu)|) = θ̂(uuu)

for every uuu ∈Msimp(S
′), and Φ, regarded as a linear operator from Msimp(S

′) to Mo-b(S) is continuous for
the ucp topologies. Because Mn-s(S

′) is the closure of Msimp(S
′) for the ucp topology on Mo-b(S

′) (631Ba),
and Mo-b(S) is complete as a linear topological space (615Cc), Φ has a unique extension to a continuous
function Ψ :Mn-s(S

′) →Mo-b(S) (use 3A4Cf3 and 3A4G).

(ii) If τ ∈ S ′ and we set

π′
τ (〈uσ〉σ∈S′) = uτ , πτ (〈vσ〉σ∈S) = vτ ,

we have continuous maps π′
τ : Mn-s(S

′) → L0 and πτ : Mn-s(S) → L0; as πτΨ and π′
τ agree on Msimp(S

′)
they agree on Mn-s(S

′); as τ is arbitrary, this means that Ψ(uuu)↾S ′ = uuu for every uuu ∈ Mn-s(S
′), that is,

that Ψ(uuu) always extends uuu. Similarly, the functions uuu 7→ sup |uuu| : Mo-b(S
′) → L0(A) and uuu 7→ sup |Ψ(uuu)| :

Mn-s(S
′) → L0(A) are continuous (615C(b-ii)) and agree on Msimp(S

′), so agree on Mn-s(S
′).

(iii) If h : R → R is continuous, then uuu 7→ h̄uuu :Mn-s(S
′) →Mn-s(S

′) and vvv 7→ h̄vvv :Mn-s(S) →Mn-s(S)
are continuous (615Ca). Since h̄Ψ(uuu) = Ψ(h̄uuu) for uuu ∈Msimp(S), h̄Ψ(uuu) = Ψ(h̄uuu) for uuu ∈Mn-s(S). Now we
see that

Ψ(uuu2) = (Φ(uuu))2, Ψ|uuu| = |Φ(uuu)|

whenever uuu ∈Mn-s(S
′), so that Ψ is a multiplicative Riesz homomorphism, as in (a-iii).

(iv) If uuu ∈ Mn-s(S
′) and Ψ(uuu) is non-decreasing then of course uuu = Ψ(uuu)↾S ′ is non-decreasing. Con-

versely, looking at the method in (a-i) above, we see that if uuu ∈ Msimp(S
′) is non-decreasing then Φ(uuu) is

non-decreasing. Next, if uuu = 〈uσ〉σ∈S′ is a non-decreasing near-simple process, then for any ǫ > 0 there is
a non-decreasing simple process vvv such that θ(sup |uuu − vvv|) ≤ ǫ. PPP There is certainly a simple process vvv′

such that θ(sup |uuu−vvv′|) ≤ 1
2ǫ. Let (τ0, . . . , τn) be a breakpoint sequence for vvv′. Consider the simple process

vvv = 〈vσ〉σ∈S′ with starting value equal to the starting value of uuu, with breakpoint string (τ0, . . . , τn), and
with vτi = uτi for i ≤ n. Then vvv is non-decreasing and θ(sup |vvv − vvv′|) ≤ 1

2ǫ, so θ(sup |vvv − uuu|) ≤ ǫ. QQQ
Now Ψ(vvv) = Φ(vvv) is non-decreasing and

3Later editions only.
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631M Near-simple processes 13

θ(sup |Ψ(uuu)−Ψ(vvv)|) = θ(sup |Ψ(uuu− vvv)|) = θ(sup |uuu− vvv|) ≤ ǫ.

As ǫ is arbitrary, Ψu must be non-decreasing.

(v) As uuu 7→ sup |uuu| : Mo-b(S
′) → L0(A) and uuu 7→ sup |Ψ(uuu)| : Mn-s(S

′) → L0(A) are continuous
(615C(b-ii)), it follows from (a-v) that sup |Ψ(uuu)| = sup |uuu| for every uuu ∈Mn-s(S

′). Now

[[Ψ(uuu) 6= 0]] = [[sup |Ψ(uuu)| > 0]] = [[sup |uuu| > 0]] = [[uuu 6= 0]].

(c) Write S ′
1 for

⋃
τ∈S′ S ∧ τ , the ideal of S generated by S ′.

(i)(ααα) We know that vvv is moderately oscillatory (616Ib again), so v↑ = limτ↑S vτ and v↓ = limτ↓S vτ
are defined (615G). Now if ǫ > 0 there are a τ ∈ S such that θ(vτ ′ − v↑) ≤

1
2ǫ whenever τ

′ ∈ S ∨ τ , and a

σ ∈ S ′ such that µ̄[[σ < τ ]] ≤ 1
2ǫ. Now if σ′ ∈ S ′ ∨ σ,

θ(vσ′∨τ − v↑) ≤ µ̄[[vσ′ 6= vσ′∨τ ]] ≤ µ̄[[σ′ 6= σ′ ∨ τ ]]

= µ̄[[σ′ < τ ]] ≤ µ̄[[σ < τ ]] ≤
1

2
ǫ,

so

θ(vσ′ − v↑) ≤ θ(vσ′ − vσ′∨τ ) + θ(vσ′∨τ − v↑) ≤
1
2ǫ+

1
2ǫ = ǫ.

As ǫ is arbitrary, v↑ = limσ↑S′ vσ.

(βββ) Because S ′ is coinitial with S, we see that v↓ = limσ↓S vσ is also limσ↓S′ vσ. We also know
that vvv′ = vvv↾S ′ is an integrator (616P(b-ii)). Now

∫
S′ uuu dvvv

′ =
∫
S Φ(uuu) dvvv for every uuu ∈ Msimp(S

′). PPP Let
(τ0, . . . , τn) be a breakpoint string for uuu and u↓ its starting value. Then these are also a breakpoint string
and starting value for Φ(uuu) as described in the proof of (a). So

∫

S′

uuu dvvv′ = u↓ × (vτ0 − v↓) +
n−1∑

i=0

uτi × (vτi+1
− vτi) + uτn × (v↑ − vτn)

=

∫

S

Φ(uuu) dvvv

by 614C. QQQ

(γγγ) Now the operators

uuu 7→
∫
S′
uuu dvvv′, uuu 7→

∫
S
Ψ(uuu) dvvv

from Mn-s(S
′) to L0 are continuous for the ucp topology on Mn-s(S

′) and the topology of convergence in
measure on L0, by 616J and (b) above. By (β), they agree on Msimp(S

′), which is dense in Mn-s(S
′), so

agree everywhere on Mn-s(S
′), as claimed.

(ii)(ααα) For τ ∈ S ′, (a)-(b) here tell us that we have unique functions Φτ :Msimp(S
′∧τ) →Msimp(S∧τ)

and Ψτ :Mn-s(S
′ ∧ τ) →Mn-s(S ∧ τ) such that Φτ (uuu) is a simple process extending uuu and with a breakpoint

string in S ′ ∧ τ for every uuu ∈Msimp(S
′ ∧ τ), while Ψτ extends Φτ and is continuous with respect to the ucp

topologies. If τ ≤ τ ′ in S ′ and uuu ∈Mn-s(S
′ ∧ τ ′), then

uuu↾S ′ ∧ τ = uuu↾(S ′ ∧ τ ′) ∧ τ ∈Mn-s((S
′ ∧ τ ′) ∧ τ) =Mn-s(S

′ ∧ τ)

(using 631F(a-iv)), while similarly Ψτ ′(uuu)↾S ∧ τ ∈ Mn-s(S ∧ τ). If uuu ∈ Msimp(S
′ ∧ τ ′), then Ψτ ′(uuu) ∈

Msimp(S ∧ τ ′) has a breakpoint string in S ′ ∧ τ ′, so Ψτ ′(uuu)↾S ∧ τ ∈Msimp(S ∧ τ) has a breakpoint string in
S ′ ∧ τ (612K(d-ii)) and extends uuu↾S ′ ∧ τ , so must be equal to Ψτ (uuu↾S

′ ∧ τ), by (a-i) here.
If now uuu ∈ Mln-s(S

′), Ψτ (uuu↾S
′ ∧ τ) = Ψτ ′(uuu↾S ′ ∧ τ ′)↾S ∧ τ whenever τ ≤ τ ′ in S ′. We therefore have

a unique process vvv = Ψ∗
0(uuu) with domain S ′

1 such that vvv↾S ∧ τ = Ψτ (uuu↾S
′ ∧ τ) for every τ ∈ S ′, and

vvv ∈Mln-s(S
′
1). Now vvv has a unique fully adapted extension v̂vv to the covered envelope Ŝ ′

1 of S ′
1.

At this point, observe that our hypothesis ‘supτ∈S′ [[σ ≤ τ ]] = 1 for every σ ∈ S’ ensures that S ′
1 covers

S in the sense of 611M, that is, that S ⊆ Ŝ ′
1. As S ′

1 ⊆ S ⊆ Ŝ ′
1, Ŝ

′
1 is also the covered envelope of S. Using

631Gb in both directions, we see that v̂vv and v̂vv↾S are both locally near-simple. I will say that Ψ∗(uuu) = v̂vv↾S,
the unique fully adapted extension of Ψ0(uuu) to S.

D.H.Fremlin



14 Structural variations 631M

(βββ) Just as Φτ (uuu↾S
′ ∧ τ) = Φτ ′(uuu↾S ′ ∧ τ ′)↾S ∧ τ whenever uuu ∈ Msimp(S

′) and τ ≤ τ ′ in S ′, we
have Φτ (uuu↾S

′ ∧ τ) = Φ(uuu)↾S ∧ τ whenever uuu ∈ Msimp(S
′) and τ ∈ S ′. Consequently Ψ∗

0(uuu) = Φ(uuu)↾S ′
1 and

Ψ∗(uuu) = Φ(uuu) whenever uuu ∈Msimp(S
′).

(γγγ) I noted in (a-v) that sup |Φτ (uuu)| = sup |uuu| whenever τ ∈ S ′ and uuu ∈Msimp(S
′∧τ); by 615C(b-ii),

sup |Ψτ (uuu)| = sup |uuu| whenever τ ∈ S ′ and uuu ∈Mn-s(S
′ ∧ τ), so

sup |Ψ∗(uuu)↾S ∧ τ | = sup |Ψ∗
0(uuu)↾S ∧ τ |

= sup |Ψτ (uuu↾S
′ ∧ τ)| = sup |uuu↾S ′ ∧ τ |

for every τ ∈ S ′ and uuu ∈Mln-s(S
′).

(δδδ) As for the uniqueness of the function Ψ∗, suppose that Ψ∗
1 :Mln-s(S

′) →Mln-s(S) extends Φ and
is such that sup |Ψ∗

1(uuu)↾S ∧ τ | = sup |uuu↾S ′ ∧ τ | whenever uuu ∈ Mln-s(S) and τ ∈ S ′. Then Ψ∗
1(uuu)↾S ∧ τ =

Φτ (uuu↾S
′ ∧ τ) whenever uuu ∈ Msimp(S

′) and τ ∈ S ′, so Ψ∗
1(uuu)↾S ∧ τ = Ψτ (uuu↾S

′ ∧ τ) whenever uuu ∈ Mln-s(S
′)

and τ ∈ S ′, Ψ∗
1(uuu)↾S

′
1 = Ψ∗

0(uuu) whenever uuu ∈Mln-s(S
′) and Ψ∗

1(uuu) = Ψ∗(uuu) whenever uuu ∈Mln-s(S
′).

(iii) If τ ∈ S ′ and uuu ∈Mln-s(S
′),

Ψ∗(uuu)↾S ′ ∧ τ = Ψ∗
0(uuu)↾S

′ ∧ τ = Ψτ (uuu↾S ∧ τ)↾S ′ ∧ τ = uuu↾S ′ ∧ τ

by (b-ii); as τ is arbitrary, Ψ∗(uuu) extends uuu. Next, it follows at once from (b-iii) that Ψ∗
0 is a multiplicative

Riesz homomorphism and Ψ∗
0(h̄uuu) = h̄Ψ∗

0(uuu) for every continuous h : R → R and every uuu ∈ Mln-s(S
′). By

612Qb, we have the same result for Ψ∗. Finally, if uuu ∈ Mln-s(S) is non-decreasing, then Ψτ (uuu↾S
′ ∧ τ) is

non-decreasing for every τ ∈ S ′, by (b-iv), so Ψ∗
0(uuu) is non-decreasing and Ψ∗(uuu) is non-decreasing by 612Qg.

631N Lemma Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a locally near-simple process, and A ⊆ S a
non-empty set such that inf A ∈ S. If uρ = 0 for every ρ ∈ A, then uinf A = 0.

proof Write τ for inf A.

(a) To begin with, suppose that S = [τ,maxS] is a closed interval in T with least element τ , umaxS = 0
and uuu ≥ 0. In this case, uuu is near-simple.

(i) If σ ∈ S, a = [[uσ > 0]] and ǫ > 0, there are a σ1 ∈ S and a c ∈ A such that σ1 ≥ σ, a ⊆ [[σ < σ1]],
µ̄c ≤ ǫ and

a ⊆ c ∪ [[ρ < σ]] ∪ [[σ1 ≤ ρ]] ∪ [[uρ > 0]]

whenever ρ ∈ S. PPP Let η > 0 be such that c0 = a ∩ [[uσ ≤ 2η]]) is at most 1
2ǫ. Then there is a simple process

vvv with domain S such that, writing v̄ for sup |vvv − uuu|, θ(v̄) ≤ 1
2ηǫ, so that c1 = [[v̄ > η]] has measure at most

1
2ǫ. Set c = c0 ∪ c1. As vvv↾S ∨ σ is simple (612K(d-iii)), it has a breakpoint string (σ0, . . . , σn) such that
σ0 = σ, σn = maxS and [[σ < σ1]] = [[σ < maxS]] (612M). Since umaxS = 0, a ⊆ [[σ < σ1]]. Next, if ρ ∈ S,
then

[[σ ≤ ρ]] ∩ [[ρ < σ1]] ⊆ [[vρ = vσ]] ⊆ [[|uρ − uσ| ≤ 2v̄]]

and

a ∩ [[uρ = 0]] ∩ [[uσ > 2η]] ∩ [[σ ≤ ρ]] ∩ [[ρ < σ1]]

⊆ a ∩ [[|uρ − uσ| > 2η]] ∩ [[|uρ − uσ| ≤ 2v̄]] ⊆ [[v̄ > η]] = c1.

So

a ⊆ c0 ∪ (a ∩ [[uσ > 2η]]) ⊆ c0 ∪ c1 ∪ [[ρ < σ]] ∪ [[σ1 ≤ ρ]] ∪ [[uρ > 0]],

as required. QQQ

(ii) For t ∈ T , set bt = inf{[[uσ > 0]] ∪ [[σ > t]] : σ ∈ S}.

(ααα) bt ∈ At for every t ∈ T , because [[uσ > 0]] ∈ Aσ so

[[uσ > 0]] ∪ [[σ > t]] = ([[uσ > 0]] ∩ [[σ ≤ ť]]) ∪ [[σ > t]] ∈ Ať = At

for every σ ∈ T , using 611H(c-iii).
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631N Near-simple processes 15

(βββ) If s ≤ t then bt ⊆ bs because [[σ > t]] ⊆ [[σ > s]] for every σ.

(γγγ) If t ∈ T is not isolated on the right, bt = sups>t bs. PPP Take ǫ > 0. Write υ for med(τ, ť,maxS) ∈
S. By (i) above, there are a σ1 ∈ S and a c ∈ A such that

υ ≤ σ1, [[uυ > 0]] ⊆ [[υ < σ1]], µ̄c ≤ ǫ,

and

[[uυ > 0]] ⊆ c ∪ [[σ < υ]] ∪ [[σ1 ≤ σ]] ∪ [[uσ > 0]]

for every σ ∈ S. Let s > t be such that µ̄d ≤ ǫ where d = ([[τ > t]] \ [[τ > s]]) ∪ ([[σ1 > t]] \ [[σ1 > s]]).
Take any σ ∈ S. We have

bt ⊆ [[uυ > 0]] ∪ [[υ > t]] = [[uυ > 0]] ∪ [[τ > t]],

bt ∩ [[σ < υ]] ⊆ ([[uσ > 0]] ∪ [[σ > t]]) ∩ [[σ < ť]]

(because [[σ < τ ]] = 0)

⊆ [[uσ > 0]], (∗)

[[uυ > 0]] ∩ [[υ ≤ σ]] ∩ [[σ < σ1]] ⊆ c ∪ [[uσ > 0]],

[[τ > t]] ⊆ d ∪ [[τ > s]] ⊆ d ∪ [[σ > s]],

bt ∩ [[υ ≤ σ]] ∩ [[σ < σ1]] ⊆ c ∪ d ∪ [[uσ > 0]] ∪ [[σ > s]], (∗)

[[σ1 ≤ σ]] ⊆ [[σ > s]] ∪ [[σ1 ≤ š]]

⊆ d ∪ [[σ > s]] ∪ [[σ1 ≤ ť]]

⊆ d ∪ [[σ > s]] ∪ ([[τ ≤ ť]] ∩ [[uυ = 0]])

(because [[σ1 ≤ υ]] is disjoint from [[uυ > 0]]),

bt ∩ [[σ1 ≤ σ]] ⊆ d ∪ [[σ > s]]. (∗)

Collecting the three lines marked (∗), we see that bt ⊆ c ∪ d ∪ [[uσ > 0]] ∪ [[σ > s]]. As σ is arbitrary, bt ⊆ c ∪ d ∪ bs
and µ̄(bt \ bs) ≤ µ̄c+ µ̄d ≤ 2ǫ. As ǫ is arbitrary, bt = sups>t bs. QQQ

(iii) Accordingly there is a τ ′ ∈ T such that [[τ ′ > t]] = bt for every t ∈ T . If t ∈ T , [[τ > t]] ⊆ [[σ > t]]
for every σ ∈ S, so [[τ > t]] ⊆ bt; thus τ ≤ τ ′. On the other hand, if σ ∈ A, then bt ⊆ [[σ > t]] for every t, so
τ ′ ≤ σ; as τ = inf A, τ ′ = τ . Thus bt = [[τ > t]] for every t ∈ T .

(iv) ??? If uτ 6= 0, set a = [[uτ > 0]]. By (i), we have a σ1 ∈ S and a c ∈ A such that a ⊆ [[τ < σ1]],
µ̄c ≤ 1

2 µ̄a and

a ⊆ c ∪ [[σ1 ≤ ρ]] ∪ [[uρ > 0]]

for every ρ ∈ S. Since

0 6= a \ c ⊆ [[τ < σ1]] = supt∈T ([[σ1 > t]] \ [[τ > t]]),

there is a t ∈ T such that

0 6= (a \ c) ∩ [[σ1 > t]] \ [[τ > t]] = (a \ c) ∩ [[σ1 > t]] ∩ [[τ ≤ ť]].

Next, we know that

[[τ > t]] = bt = infρ∈S([[uρ > 0]] ∪ [[ρ > t]]);

taking complements,

[[τ ≤ ť]] = supρ∈S([[uρ = 0]] ∩ [[ρ ≤ ť]]).

There is therefore a ρ ∈ S such that

0 6= (a \ c) ∩ [[σ1 > t]] ∩ [[uρ = 0]] ∩ [[ρ ≤ ť]]

⊆ (a \ c) ∩ [[uρ = 0]] ∩ [[ρ < σ1]] = (a \ c) \ ([[σ1 ≤ ρ]] ∪ [[uρ 6= 0]])
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16 Structural variations 631N

and

a 6⊆ c ∪ [[σ1 ≤ ρ]] ∪ [[uρ > 0]]

contrary to the choice of σ1 and c. XXX

(v) So uτ = 0, and we have the result in the case when S = [τ,maxS], umaxS = 0 and uuu ≥ 0.

(b) For the general case, take any ρ0 ∈ A. We know that |uuu| is locally near-simple (631F(b-ii)) so
|uuu|↾S ∧ ρ0 and |uuu|↾S ∩ [τ, ρ0] are near-simple (631F(a-iv)). By 631Mb, there is an extension of |uuu|↾S ∩ [τ, ρ0]
to a non-negative near-simple process uuu′ = 〈u′σ〉σ∈[τ,ρ0]. Now A∧ ρ0 = {ρ∧ ρ0 : ρ ∈ A} is a subset of [τ, ρ0],
and if ρ ∈ A then

[[ρ ≤ ρ0]] ⊆ [[uρ∧ρ0 = uρ]] ⊆ [[uρ∧ρ0 = 0]], [[ρ0 ≤ ρ]] ⊆ [[uρ∧ρ0 = uρ0 ]] ⊆ [[uρ∧ρ0 = 0]]

so uρ∧ρ0 = 0. Thus u′ρ = |uρ| = 0 for every ρ ∈ A ∧ ρ0. Also, of course, τ = inf(A ∧ ρ0). So (a) tells us that
|uτ | = u′τ = 0 and uτ = 0. Thus the result is true in the general case too.

631O Witnessing sequences Both ‘near-simple’ and ‘jump-free’ processes can be thought of as pro-
cesses approximated in the right way by simple processes with finite breakpoint strings. In appropriate
circumstances they can be characterized by the existence of suitable (infinite) non-decreasing sequences of
stopping times, as follows. Let S be a sublattice of T with greatest and least elements, and uuu = 〈uσ〉σ∈S a
fully adapted process.

(a) SL1(uuu) is the statement

for every δ > 0 there is a non-decreasing sequence 〈τi〉i∈N in S such that
(α) τ0 = minS,
(β) [[|uτi+1

− uτi | < δ]] ⊆ [[τi+1 = maxS]] for every i ∈ N,
(γ) infi∈N [[τi < maxS]] = 0,
(δ) [[σ < τi+1]] ⊆ [[|uσ − uτi | < δ]] whenever i ∈ N and σ ∈ S ∩ [τi, τi+1].

(b) SL2(uuu) is the statement

for every δ > 0 there is a non-decreasing sequence 〈τi〉i∈N in S such that
(α) τ0 = minS,
(β) [[|uτi+1

− uτi | < δ]] ⊆ [[τi+1 = maxS]] for every i ∈ N,
(γ) infi∈N [[τi < maxS]] = 0,
(δ) [[σ < τi+1]] ⊆ [[|uσ − uτi | < δ]] whenever i ∈ N and σ ∈ S ∩ [τi, τi+1],
(ǫ) |uτi+1

− uτi | ≤ δ for every i ∈ N.

631P Proposition Let S be a sublattice of T with greatest and least elements and uuu a fully adapted
process with domain S.

(a) If SL1(uuu) is true, then uuu is near-simple.
(b) If SL2(uuu) is true, then uuu is jump-free.

proof Express uuu as 〈uσ〉σ∈S .

(a)(i) For every δ > 0 there is a simple process vvv = 〈vσ〉σ∈S such that

µ̄(supσ∈S [[|uσ − vσ| > δ]]) ≤ δ.

PPP Let 〈τi〉i∈N be as in SL1(uuu). As 〈[[τi < maxS]]〉i∈N is a non-increasing sequence with infimum 0, there is
an n ∈ N such that µ̄d ≤ δ, where d = [[τn < maxS]]. Let vvv = 〈vσ〉σ∈S be the simple process such that

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[vσ = uτi ]] for i < n, [[τn ≤ σ]] ⊆ [[vσ = uτn ]]

for every σ ∈ S. Then, for any σ ∈ S,

1 \ d ⊆ [[τn = σ]] ∪ sup
i<n

[[τi ≤ σ]] ∩ [[σ < τi+1]]

(because τ0 = minS and [[τn ≤ σ]] \ d = [[τn = maxS]] ∩ [[σ = maxS]])
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⊆ ([[vσ = uτn ]] ∩ [[uσ = uτn ]]) ∪ sup
i<n

([[vσ = uτi ]] ∩ [[|uσ − uτi | < δ]])

⊆ [[|uσ − vσ| < δ]].

So supσ∈S [[|uσ − vσ| > δ]] ⊆ d has measure at most δ. QQQ

(ii) It follows that uuu is order-bounded. PPP For any δ > 0 there is a simple process vvv = 〈vσ〉σ∈S such
that µ̄a ≥ 1− δ and

a ⊆ [[|uσ − vσ| ≤ δ]] ⊆ [[|uσ| ≤ sup |vvv|+ δχ1]]

for every σ ∈ S. But this means that {|uσ×χa : σ ∈ S} is bounded above in L0. As δ is arbitrary, 613C(p-i)
tells us that {|uσ| : σ ∈ S} is bounded above in L0, that is, uuu is order-bounded. QQQ

(iii) Now we can re-phrase (i) as saying that

‘For every δ > 0 there is a simple process vvv such that µ̄([[sup |vvv − uuu|) > δ]]) ≤ δ’

so that for every δ > 0 there is a simple process vvv such that θ(sup |vvv − uuu|) ≤ 2δ, and uuu is near-simple.

(b) Of course SL2(uuu) implies SL1(uuu), so (a) tells us that uuu is near-simple, therefore order-bounded; set
ū = sup |uuu|.

Let δ > 0, and take 〈τi〉i∈N as in the statement of SL2(uuu). Let n ≥ 1 be such that µ̄[[τn < maxS]] ≤ δ;
set a = [[τn < maxS]]. Consider I = {τ0, . . . , τn}. If i < n and σ, σ′ ∈ [τi, τi+1] then

[[σ < τi+1]] ⊆ [[|uσ − uτi | < δ]], [[σ = τi+1]] ⊆ [[|uσ − uτi | ≤ δ]],

so |uσ − uτi | ≤ δχ1. Similarly, |uσ′ − uτi | ≤ δχ1 and |uσ − uσ′ | ≤ 2δχ1.
If σ, σ′ ∈ [τn,maxS] then [[uσ 6= uσ′ ]] ⊆ [[τn < maxS]] = a, while |uσ −uσ′ | ≤ 2ū, so |uσ −uσ′ | ≤ 2ū×χa.

By 618Ca,

Osclln(uuu) ≤ Osclln∗I(uuu) ≤ 2δχ1 + 2ū× χa

and

θ(Osclln(uuu)) ≤ θ(2δχ1 + 2ū× χa) ≤ 2δ + µ̄a ≤ 3δ.

As δ is arbitrary, Osclln(uuu) = 0 and uuu is jump-free.

631Q Lemma Let S be a finitely full sublattice of T with a greatest member such that inf A ∈ S for
every non-empty A ⊆ S, and uuu a near-simple process with domain S. Take δ > 0 and construct 〈Di〉i∈N

and 〈yi〉i∈N from uuu and δ as in 615M; this is possible because uuu is moderately oscillatory (631Ca). Then
infDi ∈ Di and uinfDi

= yi for every i ∈ N.

proof Induce on i. At the bottom, minS = minD0 ∈ D0 and y0 = uminD0
. For the inductive step to i+1,

write τ for infDi and set S ′ = S ∨ τ . Define a process vvv = 〈vσ〉σ∈S′ by setting

vσ = ((|uσ − yi| ∧ δχ1) ∨ δwσ)− δχ1

for σ ∈ S ′, where wσ = χ[[σ = maxS]] for σ ∈ S ′. Because Mn-s(S
′) is closed under linear and lattice

operations and contains uuu↾S ′ (631Fa) and the simple processes yi1↾S
′ and www = 〈wσ〉σ∈S′ (612Jb), vvv is

near-simple, with vmaxS = 0.
Because τ ∈ Di, τ = minDi and

Di+1 = {σ : σ ∈ S ′, [[σ < maxS]] ⊆ [[|uσ − yi| ≥ δ]]} = {σ : σ ∈ S ′, vσ = 0}.

Write τ ′ for infDi+1. Then 631N tells us that vτ ′ = 0, that is, that τ ′ ∈ Di+1. It follows at once that
yi+1 = limσ↓Di+1

uσ = uτ ′ , and the induction continues.

631R Stopping Lemmas: Theorem Let S be a finitely full sublattice of T with greatest and least
members such that inf A ∈ S for every non-empty A ⊆ S, and uuu a moderately oscillatory process with
domain S.

(a) uuu is near-simple iff SL1(uuu) is true.
(b) uuu is jump-free iff SL2(uuu) is true.
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18 Structural variations 631R

proof Express uuu as 〈uσ〉σ∈S .

(a) We know from 631Pa that if SL1(uuu) is true then uuu is near-simple, so it will be enough to show the
converse. Suppose that uuu is near-simple, and take any δ > 0.

(i) Construct 〈Di〉i∈N, 〈yi〉i∈N, 〈di〉i∈N and 〈ciσ〉i∈N,σ∈S from uuu and δ as in 615M. Set τi = infDi for
each i. By 631Q, τi = minDi and uτi = yi for every i. Because every member of Di+1 is greater than or
equal to some member of Di, τi ≤ τi+1 for every i. Of course τ0 = minD0 = minS.

(ii) Now di = [[τi < maxS]] for each i, so infi∈N [[τi < maxS]] = 0. Since τi+1 ∈ Di+1,

[[|uτi+1
− uτi | < δ]] = [[|uτi+1

− yi| < δ]] ⊆ [[τi+1 = maxS]]

for every i ∈ N.
If i ∈ N and σ ∈ S ∩ [τi, τi+1] then

ciσ = [[τi ≤ σ]] = 1, ci+1,σ = [[τi+1 ≤ σ]] = 1 \ [[σ < τi+1]].

So

[[σ < τi+1]] = ciσ \ ci+1,σ ⊆ [[|uσ − yi| < δ]]

(615M(d-v))

= [[|uσ − uτi | < δ]].

Thus 〈τi〉i∈N satisfies (α)-(δ) of SL1(uuu). As δ was arbitrary, SL1(uuu) is true.

(b) Here we know from 631Pb that if SL2(uuu) is true then uuu is jump-free, so again it will be enough to
show the converse. Suppose that uuu is jump-free. By 631Cb, uuu is near-simple. By (a) just above, SL1(uuu) is
true. Take δ > 0, and let 〈τi〉i∈N be a sequence as in the statement of SL1(uuu).

Take any i ∈ N. ??? Suppose that [[uτi+1
− uτi > δ]] is non-zero. Then there is an η > 0 such that

a = [[uτi+1
− uτi > δ + η]] 6= 0. Let I ∈ I(S) be such that θ(Osclln∗I(uuu)) < ηµ̄a; we can suppose that τi,

τi+1 ∈ I. Set b = [[Osclln∗I(uuu) ≤ η]], so that a ∩ b 6= 0. Let σ0 ≤ . . . ≤ σm linearly generate the I ∩ [τi, τi+1]-
cells. Then

a ∩ b ∩ [[σj < τi+1]] ⊆ a ∩ b ∩ [[uσj
≤ uτi + δ]]

⊆ [[uσj+1
≤ uσj

+ η]] ∩ [[uσj
< uτi+1

− η]] ⊆ [[σj+1 < τi+1]]

for every j < m. Inducing on j, we see that a ∩ b ⊆ [[σj < τi+1]] for every j ≤ m. But σm = τi+1, so this is
impossible. XXX

Similarly, [[uτi+1
− uτi < −δ]] cannot be non-zero, and |uτi+1

− uτi | ≤ δχ1, for every i. Thus 〈τi〉i∈N has
the property (ǫ) in the statement of SL2(uuu) as well as the properties (α)-(δ) there. As δ is arbitrary, SL2(uuu)
is true.

631S Proposition Let S be a finitely full sublattice of T with greatest and least members and uuu =
〈uσ〉σ∈S a moderately oscillatory process. If inf A ∈ S and uinf A = limσ↓A uσ for every non-empty
downwards-directed A ⊆ S, then uuu is near-simple.

proof Take any δ > 0.

(a) Construct 〈Di〉i∈N, 〈yi〉i∈N, 〈di〉i∈N and 〈ciσ〉i∈N,σ∈S from uuu and δ as in 615M. Set τi = infDi for
each i; then τi ∈ S. Since every member of Di+1 is greater than or equal to some member of Di, τi ≤ τi+1

for every i.

(b) τi ∈ Di for every i ∈ N. PPP Induce on i. At the bottom, τ0 = minS = minD0 ∈ D0. For the inductive
step to i+ 1, we have

yi = limσ↓Di
uσ = uτi ∈ L0(Aτi).

Set

a = [[|uτi+1
− yi| ≥ δ]] ∈ Aτi+1

⊆ AmaxS .
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Then there is a τ ∈ T such that a ⊆ [[τ = τi+1]] and 1 \ a ⊆ [[τ = maxS]]. Because S is finitely full, τ ∈ S∨τi+1

and

[[τ < maxS]] ⊆ a = [[τ = τi+1]] ∩ [[|uτi+1
− yi| ≥ δ]] ⊆ [[|uτ − yi| ≥ δ]];

as also τi ∈ Di and τi ≤ τ , τ ∈ Di+1.
If σ, σ′ ∈ Di+1 and σ ≤ σ′, then

[[σ′ < maxS]] ⊆ [[σ < maxS]] ⊆ [[|uσ − yi| ≥ δ]]

and |uσ − yi| ≥ δχ[[σ′ < maxS]]. Taking the limit as σ ↓ Di+1,

|uτi+1
− yi| ≥ δχ[[σ′ < maxS]], [[σ′ < maxS]] ⊆ a.

But now we have

a ⊆ [[τ = τi+1]] ⊆ [[τ ≤ σ′]], 1 \ a ⊆ [[σ′ = maxS]] ⊆ [[τ ≤ σ′]],

so τ ≤ σ′. As σ′ is arbitrary, τ ≤ infDi+1 = τi+1 and τi+1 = τ ∈ Di+1. QQQ

(c) So τi = minDi and yi = uτi ∈ L0(Aτi) for each i. Since [[τi < maxS]] = di for each i, infi∈N [[τi < maxS]] =
0. Since τi+1 ∈ Di+1,

[[|uτi+1
− uτi | < δ]] = [[|uτi+1

− yi| < δ]] ⊆ [[τi+1 = maxS]]

for every i ∈ N.
If i ∈ N and σ ∈ S ∩ [τi, τi+1] then

ciσ = [[τi ≤ σ]] = 1, ci+1,σ = [[τi+1 ≤ σ]] = 1 \ [[σ < τi+1]].

So

[[σ < τi+1]] = ciσ \ ci+1,σ ⊆ [[|uσ − yi| < δ]]

(615M(d-v) again)

= [[|uσ − uτi | < δ]].

Thus 〈τi〉i∈N satisfies (α)-(δ) of SL1(uuu). As δ was arbitrary, SL1(uuu) is true; by 631Pa, uuu is near-simple.

631T So far we have been looking at questions arising naturally from the ideas of Chapter 61. I come
now to something which will be important in §644.

Lemma Let S be a sublattice of T , and C the set of non-negative non-decreasing order-bounded near-simple
processes with domain S. If uuu = 〈uσ〉σ∈S belongs to C and Osclln(uuu) 6= 0, there is a non-zero simple process
vvv ∈ C such that uuu− vvv ∈ C.

proof (a) Since we are supposing that Osclln(uuu) 6= 0, we can be sure that S is non-empty. Set

u↓ = limσ↓S uσ = infσ∈S uσ, u↑ = limσ↑S uσ = supσ∈S uσ

(631C, 613Ba).

(b) Set ǫ =
1

9
θ(Osclln(uuu)). Let www = 〈wσ〉σ∈S be a simple process such that θ(w̄) ≤ ǫ2, where w̄ =

sup |uuu −www|, and τ∗, τ
∗ ∈ S such that θ(uτ∗ − u↓) ≤ ǫ and θ(u↑ − uτ∗) ≤ ǫ; let I be a finite sublattice of

S containing τ∗ and τ∗ and including a breakpoint string for www. Take (τ0, . . . , τn) linearly generating the
I-cells; then (τ0, . . . , τn) is a breakpoint string for www (612Kb again), while τ0 ≤ τ∗ and τ∗ ≤ τn. Now

Osclln(uuu) ≤ Osclln∗I(uuu) = (uτ0 − u↓) ∨ supi<n(uτi+1
− uτi) ∨ (u↑ − uτn)

(618Cb, because uuu is non-decreasing), so

θ(sup
i<n

(uτi+1
− uτi)) ≥ θ(Osclln(uuu))− θ(uτ0 − u↓)− θ(u↑ − uτn)

≥ θ(Osclln(uuu))− θ(uτ0 − uτ∗)− θ(u↑ − uτ∗) ≥ 7ǫ.
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20 Structural variations 631T

Consequently

a = [[supi<n uτi+1
− uτi > 4ǫ]] = supi<n [[uτi+1

− uτi > 4ǫ]]

has measure at least 2ǫ. On the other hand, [[w̄ ≥ ǫ]] has measure at most ǫ, so a ∩ [[w̄ ≤ ǫ]] is non-zero.
There is therefore an i < n such that

b = [[uτi+1
− uτi > 4ǫ]] ∩ [[w̄ ≤ ǫ]]

is non-zero.

(c) Consider

c = [[uτi+1
≤ ǫ]] ∪ supσ∈S([[σ < τi+1]] ∩ [[uτi+1

− uσ ≤ ǫ]]).

Then c ∈ Aτi+1
. PPP For any σ ∈ T , [[σ < τi+1]] ∈ Aτi+1

(611H(c-i)) while [[uτi+1
− uσ ≤ ǫ]] ∈ Aτi+1∨σ, so

[[uτi+1
− uσ ≤ ǫ]] ∩ [[σ ≤ τi+1]] = [[uτi+1

− uσ ≤ ǫ]] ∩ [[σ ∨ τi+1 = τi+1]]

(611E(a-ii-β) again)

= [[uτi+1
− uσ ≤ ǫ]] ∩ [[σ ∨ τi+1 ≤ τi+1]] ∈ Aτi+1

(611H(c-iii)),

[[σ < τi+1]] ∩ [[uτi+1
− uσ ≤ ǫ]] = [[σ < τi+1]] ∩ [[σ ≤ τi+1]] ∩ [[uτi+1

− uσ ≤ ǫ]] ∈ Aτi+1
.

Taking the supremum over σ,

supσ∈S([[σ < τi+1]] ∩ [[uτi+1
− uσ ≤ ǫ]]) ∈ Aτi+1

;

as surely [[uτi+1
≤ ǫ]] ∈ Aτi+1

, c ∈ Aτi+1
. QQQ

Next, c ∩ b = 0. PPP Of course

[[uτi+1
≤ ǫ]] ∩ b ⊆ [[uτi+1

− uτi ≤ 4ǫ]] ∩ b = 0.

If σ ∈ S then

[[σ < τi+1]] = [[σ < τ0]] ∪ sup
j≤i

[[τj ≤ σ]] ∩ [[σ < τj+1]]

⊆ [[uσ = uσ∧τ0 ]] ∪ sup
j≤i

[[wσ = wτj ]]

⊆ [[uσ ≤ uτ0 ]] ∪ sup
j≤i

[[uσ ≤ uτj + 2w̄]] ⊆ [[uσ ≤ uτi + 2w̄]].

So

b ∩ [[σ < τi+1]] ∩ [[uτi+1
− uσ ≤ ǫ]]

⊆ [[uσ ≤ uτi + 2w̄]] ∩ [[uτi+1
− uσ ≤ ǫ]] ∩ [[w̄ ≤ ǫ]] ∩ [[uτi+1

− uτi ≥ 4ǫ]]

⊆ [[uτi+1
− uτi ≤ 3ǫ]] ∩ [[uτi+1

− uτi ≥ 4ǫ]] = 0.

Taking the supremum over σ, b ∩ c = 0. QQQ

(d) Since c ∈ Aτi+1
, we have a simple process vvv = 〈uσ〉σ∈S , with singleton breakpoint string (τi+1),

defined by saying that

[[σ < τi+1]] ⊆ [[vσ = 0]], [[τi+1 ≤ σ]] ⊆ [[vσ = ǫχ(1 \ c)]]

for every σ ∈ S. Evidently vvv is near-simple and non-negative, while if σ ≤ σ′ in S,

[[σ′ < τi+1]] ∪ [[τi+1 ≤ σ]] ∪ c ⊆ [[vσ = vσ′ ]]

⊆ [[vσ ≤ vσ′ ]] ∩ [[uσ − vσ ≤ uσ′ − vσ′ ]],

[[σ < τi+1]] ∪ c ⊆ [[vσ = 0]] ⊆ [[uσ − vσ ≥ 0]],
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[[σ < τi+1]] ∩ [[τi+1 ≤ σ′]] \ c

⊆ [[vσ = 0]] ∩ [[vσ′ = ǫ]] ∩ [[uτi+1
≤ uσ′ ]] \ [[uτi+1

− uσ ≤ ǫ]]

⊆ [[vσ ≤ vσ′ ]] ∩ [[vσ′ − vσ ≤ ǫ]] ∩ [[uσ′ − uσ ≥ ǫ]]

⊆ [[vσ ≤ vσ′ ]] ∩ [[uσ − vσ ≤ uσ′ − vσ′ ]],

[[τi+1 ≤ σ]] \ c ⊆ [[uτi+1
≤ uσ]] ∩ [[uτi+1

≥ ǫ]] ∩ [[vσ ≤ ǫ]] ⊆ [[uσ − vσ ≥ 0]].

So vvv and uuu− vvv are both non-decreasing, while uuu− vvv is non-negative. Finally,

vτi+1
= ǫχ(1 \ c) ≥ ǫχb 6= 0

and vvv is non-zero. Thus we have an appropriate vvv.

631U Theorem Let S be a non-empty sublattice of T and uuu a non-negative, order-bounded, non-
decreasing near-simple process with domain S. Then for any ǫ > 0 there are non-negative, non-decreasing
processes vvv, www with domain S such that vvv is simple, www is jump-free, uuu − vvv − www is non-negative and non-
decreasing, and θ(sup |uuu− vvv −www|) ≤ ǫ.

proof (a) As in 631T, let C be the set of non-negative non-decreasing near-simple order-bounded processes
with domain S. Note that if vvv = 〈vσ〉σ∈S is a non-negative non-decreasing order-bounded process,

sup |vvv| = supσ∈S vσ = limσ↑S vσ.

(I think the formulae will look cleaner if I write supvvv rather than sup |vvv| in this case.) It follows that if vvv,
vvv′ ∈ C then sup(vvv + vvv′) = supvvv + supvvv′.

(b) Write C ′ for the set of simple processes vvv ∈ C such that uuu− vvv ∈ C. For vvv ∈ C ′, set

q(vvv) = sup{θ(supvvv′) : vvv′ ∈ C, vvv + vvv′ ∈ C ′}.

Choose 〈vvvn〉n∈N inductively such that

vvvn ∈ C ′, vvvn+1 − vvvn ∈ C,

θ(sup(vvvn+1 − vvvn)) ≥ q(vvvn)− 2−n

for every n ∈ N. Then 〈vvvn〉n∈N is a non-decreasing sequence of processes bounded above by uuu. Set vvv′ =
supn∈N vvvn; by 612Ia, vvv′ is a fully adapted process. Evidently vvv′ is non-decreasing and non-negative; moreover,
vvvm − vvvn ∈ C whenever m ≥ n, so vvv′ − vvvn is non-decreasing and non-negative for every n.

(c) limn→∞ θ(sup(vvvn+1 − vvvn)) = 0. PPP 〈supvvvn〉n∈N is non-decreasing and bounded above by supuuu, so is
convergent for the topology of measure (613Ba); accordingly, using (a),

lim
n→∞

θ(sup(vvvn+1 − vvvn)) = lim
n→∞

θ(supvvvn+1 − supvvvn) = 0. QQQ

It follows that limn→∞ q(vvvn) = 0. Note also that supvvv′ = supn∈N supvvvn, so that

limn→∞ θ(sup(vvv′ − vvvn)) = limn→∞ θ(supvvv′ − supvvvn) = 0;

as every vvvn is simple, vvv′ is near-simple and belongs to C.

(d) Set www = uuu− vvv′. By (c), www is near-simple; moreover, as uuu− vvvn is non-decreasing and non-negative for
every n, so is www. Now www is jump-free. PPP??? Otherwise, 631T tells us that there is a non-zero simple process
vvv ∈ C such that www − vvv ∈ C. Consequently

vvvn + vvv, uuu− vvvn − vvv = (uuu− vvv′ − vvv) + (vvv′ − vvvn)

belong to C for every n, and q(vvvn) ≥ θ(supvvv) > 0 for every n; which is impossible. XXXQQQ

(e) Now observe that

θ(sup(uuu− vvvn −www)) = θ(supvvv′ − supvvvn) → 0

as n→ ∞. So vvvn will serve for vvv for any sufficiently large n.
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631V Corollary Let S be a non-empty sublattice of T and uuu a near-simple process of bounded variation
with domain S. Then for any ǫ > 0 there are processes vvv, www with domain S such that vvv is simple, www is
jump-free and of bounded variation and θ(

∫
S |d(uuu− vvv −www)|) ≤ ǫ.

proof By 631L, uuu is expressible as uuu0 − uuu1 where uuu0, uuu1 are non-negative non-decreasing near-simple
order-bounded processes. By 631U, we have simple processes vvv0, vvv1 and jump-free processes of bounded
variation www0, www1 such that zzz0 = uuu0 − vvv0 −www0 and zzz1 = uuu1 − vvv1 −www1 are non-decreasing and non-negative
and θ(sup |zzz0|), θ(sup |zzz1|) are both at most 1

2ǫ.
Set vvv = vvv0 − vvv1, www = www0 − www1 and zzz = zzz0 − zzz1, so that vvv is simple, www is jump-free and of bounded

variation, and uuu − vvv − www = zzz. Now
∫
S |dzzz| ≤ sup |zzz0| + sup |zzz1|. PPP Expressing zzz, zzz0 and zzz1 as 〈zσ〉σ∈S ,

〈z0σ〉σ∈S and 〈z1σ〉σ∈S , we see that

|zτ − zσ| ≤ |z0τ − z0σ|+ |z1τ − z1σ| = (z0τ − z0σ) + (z1τ − z1σ)

whenever σ ≤ τ in S. Consequently

SI(1, |dzzz|) ≤ SI(1, dzzz0) + SI(1, dzzz1)

for every I ∈ I(S), and

∫

S

|dzzz| ≤

∫

S

dzzz0 +

∫

S

dzzz1 = lim
σ↑S

(z0σ + z1σ)− lim
σ↓S

(z0σ + z1σ)

(613N)

≤ lim
σ↑S

z0σ + lim
σ↑S

z1σ = sup |zzz0|+ sup |zzz1|. QQQ

So we have

θ(
∫
S
|dzzz|) ≤ θ(sup |zzz0|) + θ(sup |zzz1|) ≤ ǫ

as required.

631X Basic exercises (a)

(j) Let S be a sublattice of T , and give (L0)S its product topology when each factor is given the topology
of convergence in measure. Let Msimp ⊆ (L0)S be the set of simple processes with domain S. Show that
the topological closure of Msimp in (L0)S is the set of all fully adapted processes with domain S.

Let S be a sublattice of T and uuu a near-simple process with domain S. Show that uuu↾S ∩ [τ, τ ′] is
near-simple whenever τ ≤ τ ′ in S.

(b) Give an example of a simple process uuu and a sublattice S ′ of domuuu such that uuu↾S ′ is not near-simple.
(Hint : take S ′ the lattice of constant stopping times.)

(c) Let S be a sublattice of T , and uuu a near-simple process with domain S. Show that for any ǫ > 0
there is a simple process uuu′ with domain S such that θ(sup |uuu− uuu′|) ≤ ǫ and sup |uuu′| ≤ sup |uuu|.

(d) Let S be a sublattice of T and 〈uσ〉σ∈S a near-simple process. Set vτ = supσ∈S∧τ uσ for τ ∈ S (cf.
614Fb). Show that 〈vτ 〉τ∈S is a near-simple process.

(e) In 631Mb, show that vvv ∈Mn-s(S
′) is of bounded variation iff Ψ(vvv) ∈Mn-s(S) is of bounded variation,

and in this case Ψ(vvv↑) = Ψ(vvv↑).

(f) In 631Mb, show that if vvv is a local integrator with domain S, then iivvv↾S′(uuu) = iivvv(Ψ(uuu))↾S ′ for every
uuu ∈Mn-s(S

′).

(h) Let S be a finitely full sublattice of S such that inf A ∈ S for every non-empty A ⊆ S. Show that
S ∧ τ is full for every τ ∈ S.
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(i) Let vvv be a non-negative, non-decreasing near-simple process. (i) Show that there are a non-negative,
non-decreasing jump-free process www and a sequence 〈uuun〉n∈N of non-negative non-decreasing simple processes
such that vvv = www +

∑∞
n=0 uuun. (ii) Show that for every ǫ > 0 there is a non-decreasing simple process uuu such

that vvv − uuu is non-decreasing and θ(Osclln(vvv − uuu)) ≤ ǫ.

(k) In 631Mb, show that Osclln(Ψ(uuu)) = Osclln(uuu) for every uuu ∈ Mn-s(S
′), so that Ψ(uuu) is jump-free iff

uuu is jump-free.

(l) Let S be a non-empty finitely full sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process. Show
that uuu is near-simple iff uuu is locally near-simple and moderately oscillatory iff uuu is locally near-simple and
order-bounded and limσ↑S uσ is defined in L0(A).

631Y Further exercises (a) Let www = 〈wσ〉σ∈Tf
be Brownian motion based on the real-time stochastic

integration structure (C, ν̄, [0,∞[ , 〈Ct〉t≥0), as described in 612T. Set S = T ∧ 1̌ where 1̌ is the constant
stopping time with value 1. Show that there is a near-simple process uuu = 〈uσ〉σ∈S of bounded variation such
that iiwww(uuu) is not a martingale.

(b) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a near-simple process. Show that if S ′ is a sublattice of
S which is order-convex in S (that is, S ∩ [σ, τ ] ⊆ S ′ whenever σ ≤ τ in S ′), then uuu↾S ′ is near-simple.

(c) Let uuu1, . . . ,uuuk be (locally) near-simple processes all with the same domain S, and h : Rk → R a
continuous function. Write UUU for (uuu1, . . . ,uuuk). Show that h̄UUU (619G) is (locally) near-simple.

(e) Let S be a sublattice of T . Show that Mln-s(S) is closed in Mlo-b(S) for the local ucp topology of
615Xb.

(d) Suppose that S = [minS,maxS] is a closed interval in T and that uuu = 〈uσ〉σ∈S is a jump-free process.
Show that for every z ∈ L0(AminS) there is a τ ∈ S such that [[uminS ≤ z]] ∩ [[z ≤ umaxS ]] ⊆ [[uτ = z]].

(f) Let (A, µ̄) be the Lebesgue measure algebra and 〈en〉n∈N a stochastically independent sequence of
members of A of measure 1

2 . For n ∈ N let A2n be the subalgebra of A generated by {ei : i < n} and
set A2n+1 = A2n+2 for each n. In the stochastic integration structure (A, µ̄,N, 〈An〉n∈N, T , 〈Aτ 〉τ∈T ), take

S = {ň : n ∈ N} and S ′ = {σn : n ∈ N} where σn = 2̌n for each n. Set vσn
=

∑
0≤i<n

1

i+1
(2χei − χ1) for

n ∈ N. Show that vvv = 〈vσn
〉n∈N is a ‖ ‖2-bounded martingale and a near-simple integrator with domain S ′,

but that if we define Ψ(vvv) ∈Mn-s(S) as in 631Mb, Ψ(vvv) is not an integrator.

631 Notes and comments
From the beginning, the theory of continuous-time stochastic processes has given special prominence to

those which have continuous or càdlàg sample paths; see §455. Just as the jump-free processes of §618
correspond to continuous sample paths (618H), near-simple processes correspond to càdlàg sample paths
(631D). In comparison, the definition I offer of ‘near-simple’ process (631B) is agreeably more straightforward
than the definition of ‘jump-free’ process in 618B. The only thing to remember is that, as with simple
processes and jump-free processes, the restriction of a near-simple process to a sublattice need not be near-
simple. So we have to take care when specifying the domain of any near-simple process we want to think
about. But the journey through the elementary properties of the spaceMn-s of near-simple processes (631C,
631D-631J) gives no difficulties. 631K calls for a little ingenuity, but all the ingredients are in §614. Perhaps
this is a good place to remark that near-simple processes are defined in terms of the ucp topology, so remain
near-simple under any change of law.

In 631M I give a wide-ranging result on the extension of near-simple processes to larger sublattices. Like
the previous extension theorem 612P, it is (in essence) too facile to offer much insight. But in the proofs of
612Qa and 631N these general propositions give us a helpful lift over potentially awkward obstacles.

The point of the stopping lemma SL1 in 631O-631S is that we often have a description of (locally)
near-simple processes which is of a quite different kind from that in 631B. Furthermore, this alternative
description, when applicable, leads us to a strikingly stronger approximation by simple processes than that
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promised by 631B. If we take a sequence 〈τn〉n∈N as constructed in the proof of 631Ra, and truncate it
appropriately, we find ourselves with a breakpoint string (τ0, . . . , τn) from which we can define a simple
process uuu′ ǫ-approximating the near-simple process uuu except in the small region [[τn < maxS]]. Now we
knew that we had an approximation which would be ǫ-close to uuu except perhaps in a region of measure at
most ǫ. But the Stopping Lemma gives us a progressive description of the approximation, each successive
breakpoint being chosen in terms of a criterion observable at the time of the jump. Once again, a simple
modification of SL1 gives us a matching description SL2 of jump-free processes.

I have tried to set these out in a way which exhibits one of the essential difficulties in the theory of
stochastic processes. If a process is significant at all, stopping times defined by that process are likely to be
important. (See §§477-479, for instance, or the jump-times of the Poisson process in 612Uf.) For jump-free
processes like Brownian motion, especially if we have a representation with continuous sample paths, we
expect hitting times to be easy to investigate, though there can be real surprises (see 652M-652N below).
In fact we can have a kind of Darboux continuity, as in 631Yd. But with càdlàg paths we never know
quite what will happen next; as we watch the process evolve, it might at any moment flip into a new state
unforeseeable from anything we have seen before. I will go into this further in §643, with the notion of
‘accessibility’ of a stopping time.

As usual, my presentation is ahistorical. Near-simple processes, as I have defined them, are close enough to
the classical concept of càdlàg process for the classical theory (see 633R below) to have results corresponding
to 631R. The ‘moderately oscillatory’ processes of §614, and the fundamental facts in 615M, are my own
invention. But you will have no difficulty in seeing how 615M could be inspired by a proof of 631Ra.

There are other ways in which a process may be expressible as the limit of a more or less special sequence
of simple processes. I give 631U as a ‘theorem’ because this is the form I shall want to quote in §644. But
631V is an alternative form of the same idea. In the version of 631Xi(i), we see that vvv is expressed as the
sum of a jump-free part and a ‘saltus’ part, recalling the Lebesgue decomposition of a function of bounded
variation into a continuous part and a saltus part, as in 226Ca. In 631V I suggest a different measure of
approximation, using θ(

∫
S |duuu|) in place of θ(sup |uuu|). And in 643M there will be a (much deeper) result on

martingales which also seeks to express a given process as the sum of a simpler process and a process with
small residual oscillation.

Version of 14.8.20/6.12.21

632 Right-continuous filtrations

Up to this point, we have been able (with some effort) to work in the full generality of stochastic integration
structures (A, µ̄, T, 〈At〉t∈T ) as described in §§611-613. We are now approaching territory in which we shall
need to have filtrations which are ‘right-continuous’ in the sense of 632B. These include the standard examples
(632D). The results I present here are a quick run through new features of the structures developed in §§611-
612 (632C) and an important characterization of near-simple processes on infimum-closed full sublattices
(632F). With this in hand, we see that in the most familiar contexts local martingales will be locally near-
simple (632I) and we have a useful test for being a martingale (632J). In 632N I describe a classic example
of a local martingale.

632A Notation As usual, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. If
A ⊆ T and τ ∈ T , I write A∧ τ for {σ∧ τ : σ ∈ A}. The f -algebra L0 = L0(A) will be given its linear space
topology of convergence in measure. Tb, Tf ⊆ T will be the ideals of bounded and finite-valued stopping
times, as in 611A(b-iii). For σ ∈ T , Pσ will be the conditional expectation operator from L1

µ̄ = L1(A, µ̄) to

itself associated with the closed subalgebra Aσ; for z ∈ L1
µ̄, PPPz will be the martingale 〈Pσz〉σ∈T . I will write

1lim for ‖ ‖1-limits in L1
µ̄.

632B Definition I will say that 〈At〉t∈T or (A, µ̄, T, 〈At〉t∈T ) or (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is right-
continuous if At =

⋂
s>t As whenever t ∈ T is not isolated on the right.

The notion of ‘right-continuity’ is of course a phenomenon which can appear anywhere in the theory of
ordered sets, and will recur intermittently in this volume in a variety of contexts. I have therefore chosen
this phrase for general use, as follows. If P and Q are partially ordered sets, an order-preserving function
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f : P → Q is right-continuous if inf f [C] is defined and equal to f(inf C) whenever C ⊆ P is non-empty
and downwards-directed and has an infimum in P . When P is totally ordered, this will be the case iff
infq>p f(q) = f(p) whenever p ∈ P is not isolated on the right. So a filtration 〈At〉t∈T of closed subalgebras
of A is right-continuous if it is right-continuous when considered as an order-preserving function from T to
the set of closed subalgebras of A (or, of course, when considered as a function from T to PA). Similarly,
a filtration 〈Σt〉t∈[0,∞[ of σ-algebras is right-continuous if Σt =

⋂
s>t Σs for every t ≥ 0. See 632C(a-iii) for

another example, and 632C(a-ii) for a kind of inverted example.

632C Proposition Suppose that 〈At〉t∈T is right-continuous.
(a) Suppose that C ⊆ T is non-empty.

(i)

[[inf C > t]] = inf
τ∈C

[[τ > t]] if t is isolated on the right,

= sup
s>t

inf
τ∈C

[[τ > s]] otherwise.

(ii) [[inf C < τ ]] = supυ∈C [[υ < τ ]] for every τ ∈ T .
(iii) Ainf C =

⋂
τ∈C Aτ .

(b) (Compare 611Cd.) If C, D ⊆ T are non-empty, then inf C ∨ infD = inf{σ ∨ τ : σ ∈ C, τ ∈ D}.
(c) If S is a sublattice of T , uuu = 〈uσ〉σ∈S is a fully adapted process and A ⊆ S is a non-empty downwards-

directed set such that u = limσ↓A uσ is defined in L0, then u ∈ L0(Ainf A).

proof (a) Write σ for inf C.

(i) If s′ > t in T , then

sups>t infτ∈C [[τ > s]] = sups′≥s>t infτ∈C [[τ > s]] ∈ As′ ,

so

sups>t infτ∈C [[τ > s]] ∈
⋂
s>t As = At

whenever t ∈ T is not isolated on the right, and the result follows immediately from 611F.

(ii) By 611E(c-iv-β), [[σ < τ ]] ⊇ supυ∈C [[υ < τ ]]. Let t ∈ T . If t is isolated on the right, then

[[τ > t]] \ [[σ > t]] = [[τ > t]] \ inf
υ∈C

[[υ > t]]

((i) above)

= sup
υ∈C

[[τ > t]] \ [[υ > t]] ⊆ sup
υ∈C

[[υ < τ ]];

otherwise, again using (i),

[[τ > t]] \ [[σ > t]] = sup
s>t

([[τ > s]] \ sup
s′>t

inf
υ∈C

[[υ > s′]])

⊆ sup
s>t

[[τ > s]] \ inf
υ∈C

[[υ > s]]

= sup
s>t

sup
υ∈C

([[τ > s]] \ [[υ > s]]) ⊆ sup
υ∈C

[[υ < τ ]].

So

[[σ < τ ]] = supt∈T [[τ > t]] \ [[σ > t]] ⊆ supυ∈C [[υ < τ ]]

and we have equality.

(iii) Now suppose that σ = inf C in T . By 611H(c-ii), Aσ ⊆
⋂
τ∈C Aτ . Conversely, suppose that

a ∈
⋂
τ∈C Aτ and that t ∈ T . For s ∈ T set as = infτ∈C [[τ > s]]; then a \ as = supτ∈C a \ [[τ > s]] ∈ As

(611G). By (a), [[σ > t]] = at if t is isolated on the right, and is sups>t as otherwise. So
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a \ [[σ > t]] = a \ at ∈ At if t is isolated on the right,

= a \ sup
s>t

as = inf
s>t

a \ as ∈
⋂

t′>t

At′ = At otherwise

because

infs>t a \ as = inft′≥s>t a \ as ∈ At′

whenever t′ > t. As t is arbitrary, a ∈ Aσ. As a is arbitrary, Aσ ⊇
⋂
τ∈C Aτ and we have equality.

(b) Set E = {σ ∨ τ : σ ∈ C, τ ∈ D}, φC(t) = infσ∈C [[σ > t]], φD(t) = infσ∈D [[σ > t]] and φE(t) =
infσ∈E [[σ > t]] for t ∈ T . Then

φE(t) = inf
σ∈C,τ∈D

[[σ ∨ τ > t]] = inf
σ∈C,τ∈D

[[σ > t]] ∪ [[τ > t]] = inf
σ∈C

[[σ > t]] ∪ inf
τ∈D

[[τ > t]]

(313Bd)

= φC(t) ∪ φD(t)

for every t ∈ T . If t is isolated on the right, we have

[[inf E > t]] = φE(t) = φC(t) ∪ φD(t) = [[inf C > t]] ∪ [[infD > t]].

If t is not isolated on the right, then

[[inf E > t]] = sup
s>t

φE(s) = sup
s>t

φC(s) ∪ φD(s) = sup
s,s′>t

φC(s) ∪ φD(s′)

= sup
s>t

φC(s) ∪ sup
s′>t

φD(s
′) = [[inf C > t]] ∪ [[infD > t]].

Thus

[[inf E > t]] = [[inf C > t]] ∪ [[infD > t]] = [[inf C ∨ infD > t]]

for every t, and inf E = inf C ∨ infD, as claimed.

(c) Put 613Bj and (a-iii) here together.

632D Examples (a) In the construction of Brownian motion in 612T, 〈Ct〉t≥0 is right-continuous.
PPP Suppose that t ≥ 0 and that c ∈

⋂
s>t Cs. For each k ∈ N let Ek ∈ Σt+2−k be such that E•

k = c. Since
Ej△Ek is negligible for all j and k, c = E• where E =

⋂
k∈N

⋃
j≥k Ej . But now E ∈

⋂
s>t Σs; as 477Hc tells

us that
⋂
s>t Σ̂s = Σ̂t, E ∈ Σ̂t and c ∈ Ct. QQQ

(b) In the construction of the standard Poisson process in 612U, 〈At〉t≥0 is right-continuous. PPP From
the formulae

Σt = {F : F ⊆ Ω, F ∈ ˆ̈Σt}

and

ˆ̈Σt =
⋂
s>t

ˆ̈Σs

in 612Uc, it is clear that Σt =
⋂
s>t Σs and therefore At =

⋂
s>t At for every t ≥ 0. QQQ

632E Lemma (Compare 631N.) Suppose that 〈At〉t∈T is right-continuous. Let S be a sublattice of
T , uuu = 〈uσ〉σ∈S a locally near-simple process, and A ⊆ S a non-empty downwards-directed set such that
τ = inf A belongs to S. Then uτ = limσ↓A uσ, and in fact for every ǫ > 0 there is a σ ∈ A such that
θ(supρ∈S∩[τ,σ] |uρ − uτ |) ≤ ǫ.

proof (a) Take any τ ′ ∈ A. Then uuu↾S ∩ [τ, τ ′] is near-simple (631F(iv)), so there is a simple process
vvv = 〈vρ〉ρ∈S∩[τ,τ ′] such that θ(sup |vvv − uuu↾S ∩ [τ, τ ′]) ≤ 1

3ǫ. vvv has starting value vτ and a breakpoint
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632H Right-continuous filtrations 27

string (σ0, . . . , σn) say. For each i ≤ n, [[τ < σi]] = supσ∈A [[σ < σi]] (632C(a-ii)); as A is downwards-

directed, there is a σ ∈ A such that σ ≤ τ ′ and µ̄([[τ < σi]] \ [[σ < σi]]) ≤
ǫ

3(n+1)
for every i. Set b =

supi≤n [[τ < σi]] \ [[σ < σi]], so that µ̄b ≤ 1
3ǫ and

[[vρ 6= vτ ]] ⊆ supi≤n [[σi ≤ ρ]] ∩ [[τ < σi]] ⊆ b,

1 \ b ⊆ [[vρ = vτ ]] ⊆ [[|uρ − uτ | ≤
2
3ǫ]]

for every ρ ∈ S ∩ [τ, σ]. Now uuu↾S ∩ [τ, τ ′] is order-bounded so ū = sup |uuu↾S ∩ [τ, τ ′]| is defined in L0, and

now |uρ − uτ | ≤
2

3
ǫχ1 + ū× χb for every ρ ∈ S ∩ [τ, σ], so

θ(supρ∈S∩[τ,σ] |uρ − uτ |) ≤ θ(
2

3
ǫχ1) + θ(ū× χb) ≤

2

3
ǫ+ µ̄b ≤ ǫ.

(b) Of course it follows at once that uτ = limσ↓A uσ.

632F Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such
that inf A ∈ S whenever A ⊆ S is non-empty and has a lower bound in S. If uuu = 〈uσ〉σ∈S is a fully adapted
process, then uuu is locally near-simple iff it is locally moderately oscillatory and

(†) uinf A = lim
σ↓A

uσ for every non-empty downwards-directed A ⊆ S

with a lower bound in S.

proof (a) Suppose that uuu satisfies the conditions.

(i) If S has a least element, we can apply 631S to see that uuu↾S ∧ τ is near-simple for every τ ∈ S, that
is, that uuu is locally near-simple.

(ii) Generally, we can apply (i) to see that uuu↾S ∩ [τ, τ ′] is near-simple whenever τ ≤ τ ′ in S. Now if
τ ′ ∈ S, uuu↾S ∧ τ ′ is moderately oscillatory and 631F(c-i) assures us that uuu↾S ∧ τ ′ is near-simple. Accordingly
uuu is locally near-simple.

(b) Now suppose that uuu is locally near-simple. By 631Ca, uuu is surely locally moderately oscillatory, so it
will be enough to show that it satisfies the condition (γ). Take a non-empty downwards-directed set A ⊆ S
with a lower bound in S; by hypothesis, inf A ∈ S; by 632E, uinf A = limσ↓A uσ; so uuu satisfies (†), and we’re
done.

632G Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such
that inf A ∈ S for every non-empty A ⊆ S with a lower bound in S, and a ∈ A. Set uσ = χ(upr(a,Aσ)) for
σ ∈ S, and uuu = 〈uσ〉σ∈S . Then uuu is near-simple.

proof For σ ∈ S, write aσ for upr(a,Aσ). If σ ≤ τ in A, Aσ ⊆ Aτ so aτ ⊆ aσ and χ1 ≥ uσ ≥ uτ ≥ 0.
Accordingly uuu is of bounded variation and moderately oscillatory. If A ⊆ S is non-empty and downwards-
directed and τ = inf A, then aτ = supσ∈A aσ. PPP Set c = supσ∈A aσ. If σ ∈ A, c = supσ′∈A,σ′≤σ aσ′ belongs
to Aσ. So c ∈

⋂
σ∈A Aσ = Aτ , by 632C(a-iii). As a ⊆ c, aτ ⊆ c. But of course c ⊆ aτ , so we have equality.

QQQ This means that aτ = limσ↓A aσ for the measure-algebra topology on A (323D(a-ii)) and

uτ = χ(aτ ) = limσ↓A χ(aσ) = limσ↓A uσ

(367Ra). As A is arbitrary, 632F tells us that uuu is locally near-simple, and by 631F(c-ii) it is actually
near-simple.

632H Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such
that inf A ∈ S for every non-empty A ⊆ S with a lower bound in S, and vvv = 〈vτ 〉τ∈S a locally jump-free
non-decreasing process. Then vvv : S → L0 is an order-continuous lattice homomorphism.

proof By 614Ia, vvv is a lattice homomorphism. If A ⊆ S is upwards-directed and supA ∈ S, then
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vsupA = limτ↑A vτ = supτ∈A vτ

by 618I and 613Ba. On the other side, vvv is locally near-simple (631Cb), so if A ⊆ S is downwards-directed
and inf A ∈ S, then

vinf A = limτ↓A vτ = infτ∈A vτ

by 632F. Accordingly vvv is order-continuous in the sense of 313H.

632I Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such
that inf A ∈ S for every non-empty A ⊆ S. Then a virtually local martingale with domain S is a locally
near-simple local martingale.

proof (a) Let uuu = 〈uσ〉σ∈S be a virtually local martingale with domain S. By 623K(b-iii), it is an ap-
proximately local martingale. Write S ′ for {σ : σ ∈ S, uuu↾S ∧ σ is a martingale}, so that S ′ is an ideal
of S (622M). Take τ ∈ S and ǫ > 0. Then there is a non-empty downwards-directed A ⊆ S ∧ τ such
that supρ∈A µ̄[[ρ < τ ]] ≤ ǫ and RA(uuu), as defined in 623B, is a martingale (623J). Now inf A ∈ S, while
[[inf A < τ ]] = supρ∈A [[ρ < τ ]], by 632C(a-ii). So µ̄[[inf A < τ ]] = supρ∈A µ̄[[ρ < τ ]] is at most ǫ. Moreover, for
σ ∈ S ∧ inf A, limρ↓A uσ∧ρ = uσ, so uuu↾S ∧ inf A = RA(uuu)↾S ∧ inf A is a martingale, and inf A ∈ S ′, while
[[τ = inf A]] ≥ 1− ǫ. As τ and ǫ are arbitrary, S ′ covers S and uuu is a local martingale.

(b) We know that uuu is locally moderately oscillatory (622H). If A ⊆ S is non-empty and downwards-
directed, take any υ ∈ A and ǫ > 0. Then there is a ρ ∈ S such that µ̄[[ρ < υ]] ≤ ǫ and uuu↾S ∧ ρ is a
martingale. Now A∧ ρ is downwards-directed and has infimum ρ∧ inf A (611Ch), so Aρ∧inf A =

⋂
σ∈AAρ∧σ

(632C(a-iii)) and

uρ∧inf A = Pρ∧inf Auρ∧υ = 1lim
σ↓A

Pρ∧σuρ∧υ

(621C(g-i))

= lim
σ↓A

Pρ∧σuρ∧υ

(613B(d-i))

= lim
σ↓A

uρ∧σ.

There is therefore a σ0 ∈ A ∧ υ such that θ(uρ∧σ − uρ∧inf A) ≤ ǫ whenever σ ∈ A and σ ≤ σ0. But now we
have, whenever σ ∈ A and σ ≤ σ0,

θ(uρ∧σ − uσ) ≤ µ̄[[ρ < σ]] ≤ µ̄[[ρ < υ]] ≤ ǫ

and similarly θ(uρ∧inf A − uinf A) ≤ ǫ, so θ(uσ − uinf A) ≤ 3ǫ. As ǫ is arbitrary, uinf A = limσ↓A uσ. Thus
condition (†) of 632F is satisfied and uuu is locally near-simple.

632J Where martingales come from Coming back to the basic theory of martingales, we have the
following.

Proposition Suppose that 〈At〉t∈T is right-continuous. Let 〈ut〉t∈T be a martingale in the sense that
ut ∈ L1

µ̄ and us is the conditional expectation of ut on As whenever s ≤ t in T . If www = 〈wτ 〉τ∈Tb
is a locally

near-simple process such that wť = ut for every t ∈ T , then www is a martingale.

proof (a) Fix t ∈ T for the moment. Set C = {σ : σ ∈ Tb, wσ = Pσut}.

(i) If s ≤ t, then š ∈ C, just because As = Aš, so wš = us = Pšut.

(ii) If σ0, σ1 ∈ C and τ ∈ Tb is such that [[τ = σ0]] ∪ [[τ = σ1]] = 1, then τ ∈ C. PPP

[[Pτut = wτ ]] ⊇ [[σ0 = τ ]] ∩ [[Pσ0
ut = wσ0

]] ∩ [[Pτut = Pσ0
ut]] ∩ [[wτ = wσ0

]]

= [[σ0 = τ ]] ∩ [[Pτut = Pσ0
ut]]

(because σ0 ∈ C and www is fully adapted)
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= [[σ0 = τ ]]

by 622Bb. Similarly, [[Pτut = wτ ]] ⊇ [[τ = σ1]] and

[[Pτut = wτ ]] ⊇ [[τ = σ0]] ∪ [[τ = σ1]] = 1,

so Pτut = wτ , that is, τ ∈ C. QQQ

(iii) In particular, putting (ii) here and 611E(a-ii-γ) together, σ ∧ τ ∈ C whenever σ, τ ∈ C.

(iv) If A ⊆ C is non-empty and downwards-directed, with infimum τ , then τ ∈ C. PPP PPPut = 〈Pσut〉σ∈T

is a martingale (622Fa), so

Pτut = lim
σ↓A

Pσut

(put 632I and 632F together, or look at (a) of the proof of 632I)

= lim
σ↓A

wσ = wτ

by 632F again. QQQ

(v) If τ ≤ ť then τ ∈ C. PPP Set A = {σ : σ ∈ C, τ ≤ σ}. Then A is downwards-directed, by (iii), and
non-empty, because it contains ť. Because T is Dedekind complete, τ∗ = inf A is defined, and τ∗ ∈ C by (iv).
Of course τ ≤ τ∗. ??? If τ 6= τ∗, then [[τ < τ∗]] 6= 0 and there is an s ∈ T such that [[τ∗ > s]] \ [[τ > s]] 6= 0.
As [[τ > s]] 6= 0, s must be less than or equal to t, and š ∈ C by (i). Now consider c = [[τ ≤ š]]. We have

c ∈ Aš ∩Aτ ⊆ Aš ∩Aτ∗

by 611H(c-ii). So there is a τ ′ ∈ T such that [[τ ′ = š]] ⊇ c and [[τ ′ = τ∗]] ⊇ 1 \ c (611I), and τ ′ ∈ C by (ii).
Consider

[[τ ≤ τ ′]] ⊇ ([[τ ≤ š]] ∩ [[τ ′ = š]]) ∪ ([[τ ≤ τ∗]] ∩ [[τ ′ = τ∗]])

⊇ ([[τ ≤ š]] ∩ c) ∪ ([[τ ≤ τ∗]] \ c) = c ∪ (1 \ c) = 1.

Thus τ ≤ τ ′, so τ ′ ∈ A and τ∗ ≤ τ ′. On the other hand,

0 6= [[τ∗ > s]] \ [[τ > s]] = [[š < τ∗]] ∩ [[τ ≤ š]]

(611E(a-i-δ))

⊆ [[š < τ∗]] ∩ [[τ ′ = š]] ⊆ [[τ ′ < τ∗]]

(611E(c-iii-γ), so this is impossible. XXX
Accordingly τ = τ∗ belongs to C, as claimed. QQQ

(b) Thus wτ = Pτut whenever t ∈ T and τ ≤ ť. Now, of course, if σ ≤ τ in Tb, there is a t ∈ T such that
τ ≤ ť, and

Pσwτ = PσPτut = Pσut = wσ.

As σ and τ are arbitrary, www is a martingale.

632K Lemma Let (Ω,Σ, µ) be a probability space with measure algebra (A, µ̄), and 〈Σt〉t≥0 a right-
continuous filtration of σ-subalgebras of Σ. If we set At = {E• : E ∈ Σt} for t ≥ 0, then 〈At〉t≥0 is a
right-continuous filtration.

proof Take t ≥ 0 and a ∈
⋂
s>t As. Then for each n ∈ N there is an En ∈ Σt+2−n such that E•

n = a. Set
E =

⋃
n∈N

⋂
i≥nEi; then E ∈

⋂
s>t Σs = Σt and a = E• ∈ At.

632L Proposition Let (Ω,Σ, µ) be a complete probability space and 〈Σt〉t∈[0,∞[ a right-continuous
filtration of σ-subalgebras of Σ, all containing every negligible subset of Ω. Suppose that we are given a

D.H.Fremlin



30 Structural variations 632L

family 〈Xt〉t≥0 of measurable real-valued functions on Ω such that t 7→ Xt(ω) is càdlàg for every ω and Xs

is a conditional expectation of Xt on Σs whenever 0 ≤ s ≤ t. Define (A, µ̄, 〈At〉t≥0) and uuu = 〈uτ 〉τ∈Tf
as in

612H and 631D. Then uuu↾Tb is a martingale and uuu is a local martingale.

proof By 631D, uuu is well-defined and is a locally near-simple fully adapted process. We have uť = X•
t

for t ∈ T , so uš is the conditional expectation of uť on As = {E• : E ∈ Σs} whenever s ≤ t. Moreover,
〈At〉t∈[0,∞[ is right-continuous, by 632K. But now 632J tells us that uuu↾Tb is a martingale, so that uuu is a local
martingale.

632M Proposition Let vvv = 〈vτ 〉τ∈Tf
be the Poisson process as defined in 612U.

(a) If ιιι is the identity process, (vvv − ιιι)↾Tb is a martingale, so that vvv − ιιι is a local martingale.
(b) The previsible variation of vvv↾Tb is ιιι↾Tb.

proof (a)(i) In order to use results from §455, I will in fact take a step back from the structure (Ω,Σ, µ, 〈Σt〉t∈[0,∞[)

introduced in 612Uc, and for most of the argument work with the structure (Cdlg, Σ̈, µ̈, 〈Σ̈t〉t∈[0,∞[) from

which it was defined, with the associated σ-algebras Σ̈+
t =

⋂
s>t Σ̈s; here Cdlg is the space of all càdlàg

functions from [0,∞[ to R. For t ≥ 0 and ω ∈ Cdlg, set Yt(ω) = ω(t) − t. If 0 ≤ s ≤ t, then Ys is a

conditional expectation of Yt on Σ̈+
s . PPP This is trivial if s = t, just because Ys is Σ̈s-measurable. If s < t,

then we can use 455O and 455S, as follows. Let h : Cdlg → [0,∞[ be the constant stopping time with value

s. Then the σ-algebra Σ̈+
h of 455Ob is

{F : F ∈ Σ̈, F ∩ {ω : h(ω) ≤ s′} ∈ Σ̈+
s′ for every s

′ ≥ 0} = Σ̈+
s .

So if we define µ̈ωs, for ω ∈ Cdlg, as in 455O, and set

g(ω) =
∫
Cdlg

Yt(ω
′) µ̈ωs(dω

′)

whenever this is defined, then g will be a conditional expectation of Yt on Σ̈+
s , by 455Ob. Next, φωs : Cdlg →

Cdlg is inverse-measure-preserving for µ̈ and µ̈ωs, where

φωs(ω
′)(s′) = ω(s′) if s′ < s,

= ω(s) + ω′(s′ − s) if s ≤ s′

(455Sc). So

g(ω) =

∫

Cdlg

Yt(φωs(ω
′))µ̈(dω′) =

∫

Cdlg

φωs(ω
′)(t)− t µ̈(dω′)

=

∫

Cdlg

ω(s) + ω′(t− s)− t µ̈(dω′)

= ω(s)− t+

∫

Cdlg

ω′(t− s)µ̈(dω′) = ω(s)− t+ E(λt−s)

(where λt−s is the distribution of the random variable ω′ 7→ ω′(t− s))

= ω(s)− s = Ys(ω)

because λt−s is the Poisson distribution with expectation t− s, as chosen in 612U.

This shows that Ys is a conditional expectation of Yt on Σ̈+
s . QQQ

(ii) We know also from 455T that Σ̈+
s is included in

ˆ̈Σs = {F△A : F ∈ Σ̈s, A is µ̈-negligible}.

It follows at once that Ys is a conditional expectation of Yt on the σ-algebra ˆ̈Σs, and therefore that Ys↾Ω is a
conditional expectation of Yt↾Ω on Σs, because Ω is a conegligible subset of Cdlg. And this is true whenever
s ≤ t in [0,∞[.
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(iii) As noted in 632Db, 〈Σt〉t∈[0,∞[ is a right-continuous filtration, and it follows at once that 〈At〉t∈[0,∞[

is right-continuous. And we know that vvv and ιιι are locally near-simple processes (631E), so (ii) and 632Jc
tell us that (vvv − ιιι)↾Tb is a martingale. Of course this means that vvv − ιιι will be a local martingale on Tf .

(b) Since (vvv− ιιι)↾Tb is a martingale, its previsible variation is zero (626Kc), so the previsible variation of
vvv↾Tb is the same as the previsible variation of ιιι↾Tb (using 626Kb), which is ιιι↾Tb (626Q).

*632N I described local martingales which are not martingales in 622Xe and 622Xj, and plenty of other
examples are provided by 632L; for instance, ‘Brownian motion’, as described in 612T, is a martingale if you
take it to be defined on Tb (622L), but only a local martingale if you take it to be defined everywhere on Tf
(632Ye). There is a classic example which is more interesting, because it arises naturally in the context of
§§477-479.

Example (a) Let µ = µW be three-dimensional Wiener measure (477D) on Ω = C([0,∞[ ;R3)0, Σ its
domain, and (A, µ̄) its measure algebra. For t ≥ 0 set

Σ′
t = {F : F ∈ Σ, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t]},

Σt = {F△H : F ∈ Σ′
t, µH = 0},

At = {F • : F ∈ Σt}.

By 477Hc in three dimensions, Σt =
⋂
s>tΣs, so 〈At〉t≥0 is right-continuous.

(b) Let e be a unit vector in R3. Set Ω′ = {ω : ω ∈ Ω, e is not a value of ω}; by 478Mc, Ω′ is conegligible,
so belongs to Σt for every t. For t ≥ 0 and ω ∈ Ω set

Yt(ω) =
1

‖ω(t)−e‖ if ω ∈ Ω′,

= 0 otherwise .

Then Yt is Σt-measurable for every t and t 7→ Yt(ω) is continuous for every ω, so we have a corresponding
locally jump-free process vvv = 〈vτ 〉τ∈Tf

(618H).

(c) limt→∞ E(Yt) = 0. PPP For t, R > 0, the probability density function of the random variable ω 7→ ω(t)

is x 7→
1

(
√
2πt)3

e−‖x‖2/2t (put 274Ad and 272I together), so by 271Ic

E(Yt) =

∫

R3

1

(
√
2πt)3

e−‖x‖2/2t 1

‖x−e‖dx

(where the integral is taken with respect to Lebesgue measure on R3)

≤
1

R
+

∫

B(e,R)

1

(
√
2πt)3

e−‖x‖2/2t 1

‖x−e‖dx

≤
1

R
+

1

(
√
2πt)3

∫

B(e,R)

1

‖x−e‖dx =
1

R
+

1

(
√
2πt)3

∫

B(0,R)

1

‖x‖dx

=
1

R
+

1

(
√
2πt)3

∫ R

0

4πs2 ·
1

s
ds =

1

R
+

2πR2

(
√
2πt)3

.

So lim supt→∞ E(Yt) ≤
1

R
for every R > 0 and must be 0. QQQ

Since E(Y0) = 1, 〈Yt〉t≥0 is not a martingale and vvv is not a martingale.

(d) If n ∈ N and hn is the Brownian hitting time to the ball B(e, 2−n) (477I), then hn is adapted to
〈Σt〉t≥0 (477I(c-iii)), so represents a stopping time τn adapted to 〈At〉t≥0 (612Ha). Set S =

⋃
n∈N

{τ : τ ∈ Tf ,
τ ≤ τn}. Because 〈τn〉n∈N is non-decreasing, S is an ideal of Tf . Now S is a covering ideal in the sense of
611N. PPP (This is where we need to be in three or more dimensions.) For each n ∈ N and t ≥ 0,

D.H.Fremlin



32 Structural variations 632Nd

µ̄[[τn > t]] = µW {ω : hn(ω) > t}

≥ µW {ω : B(e, 2−n) ∩ ω[ [0,∞[ ] = ∅} = 1− hp(B(e, 2−n))

(where hp is ‘Brownian hitting probability’, see 477Ia)

= 1− W̃B(e,2−n)(0)

(where W̃ is ‘equilibrium potential’, 479Cb and 479Pb)

= 1− 2−n

by 479Da. But this means that if τ ∈ Tf and n ∈ N there is a t ≥ 0 such that µ̄[[τ > t]] ≤ 2−n, and now

[[τ > τn]] ⊆ [[τ > t]] ∪ [[τn ≤ t]]

has measure at most 2−n+1. So

supσ∈S µ̄[[τ = σ]] ≥ µ̄[[τ = τ ∧ τn]] = 1− µ̄[[τ > τn]] ≥ 1− 2−n+1.

As n is arbitrary, supσ∈S [[τ = σ]] = 1; as τ is arbitrary, S is a covering ideal of Tf . QQQ

(e) At the same time, for each n ∈ N, 〈vσ〉σ≤τn is a martingale. PPP Apply 478V with G = {x : ‖x− e‖ >

2−n} and f(x) =
1

‖x−e‖ , so that hn is the Brownian exit time from G. Again because we are in at least

three dimensions, G has few wandering paths (478N), so 478Vb tells us that if g ≤ hn is a stopping time
representing σ ≤ τn then Yg is the conditional expectation of Yhn

on Σg, that is, vσ = Pσvτn . QQQ
Thus vvv is a local martingale.

632X Basic exercises (a) Suppose that 〈At〉t∈T is not right-continuous. Show that in this case there are
a simple process uuu = 〈uσ〉σ∈T and a non-empty downwards-directed set A ⊆ T such that limσ↓A uσ 6= uinf A.
(Hint : reduce to the case in which a ∈

⋂
s>t As \ At does not include any non-zero member of At. Try

A = {σ : σ ≥ ť, [[σ = max T ]] ⊇ a}, uť = 0, umax T = χ1.)

(b) Suppose that T = [0,∞[. Show that if 〈At〉t≥0 is right-continuous, and we identify Tf with a subset
of L0 as in 611Xa, then Tf is order-closed in L0 (definition: 313Da).

(c) Suppose that 〈At〉t∈T is right-continuous. Show that the function σ 7→ σ ∨ τ : T → T is order-
continuous for every τ ∈ T .

(d) Suppose that (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is the structure described in 612U, and vvv the standard
Poisson process. Show that (vvv − ιιι)2 − ιιι is a local martingale.

(e) Let www be Brownian motion (612T, 622L) and ιιι the corresponding identity process. Use the method
of 632M to show that www↾Tb and www

2 − ιιι↾Tb are martingales, without appealing to Dynkin’s formula.

632Y Further exercises (a) Suppose that A has countable Maharam type. Show that {t : t ∈ T ,
At 6= A ∩

⋂
s>t As} is countable.

(b) Define a family 〈A+
t 〉t∈T of closed subalgebras of A by setting

A
+
t = At if t ∈ T is isolated on the right,

=
⋂

s>t

As otherwise.

(i) Show that 〈A+
t 〉t∈T is a right-continuous filtration. (ii) Let T + be the set of stopping times with respect

to 〈A+
t 〉t∈T . Show that if we think of T and T + as subsets of AT , as suggested in 611Ac, then T is a

sublattice of T +. (iii) Show that every member of T + is the infimum in T + of a subset of T . (iv) Show
that if A is a non-empty subset of T , its supremum in T + belongs to T . (v) Show that for every τ ∈ T +

there is a greatest σ ∈ T such that σ ≤ τ in T +.
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(c) Dropping the measure µ̄, and supposing only that A is a Dedekind complete Boolean algebra and
〈At〉t∈T is a filtration of order-closed subalgebras of A, as in 611A, show that parts (a)-(b) of 632C are still
valid.

(d) Suppose that A is a complete weakly (σ,∞)-distributive Boolean algebra (e.g., a probability algebra;
see 316G and 322F) and 〈At〉t∈T is a right-continuous filtration of order-closed subalgebras of A. (i) Let
〈Cn〉n∈N be a sequence of ideals of T . Show that sup(

⋂
n∈N

Cn) = infn∈N supCn. (ii) Let S be a sublattice
of T such that infD ∈ S for every non-empty countable set D ⊆ S. Show that the intersection of a sequence
of covering ideals of S is a covering ideal.

(e) Let (C, ν̄, [0,∞[ , 〈Ct〉t≥0, T , 〈Cτ 〉τ∈T ) be the real-time stochastic integration structure of 612T, and
www = 〈wσ〉σ∈Tf

Brownian motion. Show that for every z ∈ L0(C) and σ ∈ Tf there is a τ ∈ Tf such that
σ ≤ τ and wτ = z; so that www is not a martingale.

(f) Let µL be Lebesgue measure on [0,∞[, and ν the corresponding Poisson point process with intensity 1
as described in §495, so that ν is a complete probability measure on P [0,∞[. Let Ω be the set {ω : ω ⊆ ]0,∞[,
ω∩ [0, a] is finite for every a ≥ 0}. Show that νΩ = 1; let µ be the subspace measure on Ω and Σ its domain.
For t ≥ 0 let Σt be the σ-algebra generated by sets of the form {ω : ω ∈ Ω, #(ω) ∩ [0, s] = n}△E where
n ∈ N, s ≤ t and µE = 0; show that 〈Σt〉t≥0 is a right-continuous filtration of σ-subalgebras of Σ. For t ≥ 0,
ω ∈ Ω set Xt(ω) = #(ω ∩ [0, t]); show that 〈Xt〉t≥0 is adapted to 〈Σt〉t≥0, and that t 7→ Xt(ω) is càdlàg for
every ω. Show that if we take the stochastic process defined from (Ω, ν, 〈Σt〉t≥0, 〈Xt〉t≥0) by the method of
612H/631D, we obtain a structure (A, µ̄, 〈At〉t≥0, 〈vτ 〉τ∈Tf

) isomorphic to that of 612U.

(g) Give an example of near-simple processes uuu, vvv defined on T , in a real-time structure with a right-
continuous filtration, such that

∫
Ť
uuu dvvv = 0, where Ť is the set of constant stopping times, but

∫
Ts
uuu dvvv is

undefined, where Ts is the finitely-covered envelope of Ť .

632 Notes and comments The aim of this section is to show the kind of simplification which is achieved
by assuming right-continuity. After the basic list in 632C, the most important general facts are 632F and
632I.

As with 612U, we don’t really need §455 in the proof of 632Ma. Instead of expressing the Poisson process
in terms of a Lévy process as described in §455, we can start from a probability space better adapted to
the problem (632Yf). But we still have some work to do, because the Markov property has got to come
in somewhere, and the Poisson point processes of §495 aren’t trivial. The method above also provides an
alternative route to 622L, missing out the harmonic analysis, and giving a slightly stronger result (632Xe).

Version of 18.12.20/30.10.23

633 Separating sublattices

At various points, I have looked at relations between a process uuu = 〈uσ〉σ∈S and its fully adapted extension
to the covered envelope of S; turning these round, we find connections between the properties of uuu and its
restriction to a covering sublattice of S. When the filtration is right-continuous and we have a near-simple
process we can go much farther, and an effective concept is that of ‘separating’ sublattice (633B). Once
again we have a useful result on equality of integrals (633K) and many correspondences between properties
of uuu and uuu↾S ′ (633O, 633P).

633A Notation Once again, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. If
S is a sublattice of T , I(S) is the set of finite sublattices of S, and Mln-s(S) the space of locally near-simple
processes with domain S. For t ∈ T , ť will be the constant stopping time at t. L0 = L0(A) will be given
the linear space topology of convergence in measure. For w ∈ L0, θ(w) will be E(|w| ∧ χ1), where E is
integration with respect to µ̄; for an order-bounded fully adapted process uuu = 〈uσ〉σ∈S , sup |uuu| will be
sup({0} ∪ {|uσ| : σ ∈ S}). If I, J ⊆ T are sublattices, I write I ⊔ J for the sublattice of T generated by
I ∪ J .

c© 2013 D. H. Fremlin
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633B Definition Let S be a sublattice of T and A, B subsets of S.

(a) I will say that A separates B if [[σ < τ ]] = supρ∈A([[σ ≤ ρ]] ∩ [[σ < τ ]]) for all σ, τ ∈ B.

(b) If vvv = 〈vσ〉σ∈S is a fully adapted process, I will say that A vvv-separates B if whenever σ, τ ∈ B then
[[σ < τ ]] ∩ [[vσ 6= vτ ]] ⊆ supρ∈A([[σ ≤ ρ]] ∩ [[ρ < τ ]]).

633C Lemma Let S be a sublattice of T and A, B, C, D subsets of S.
(a) If A ⊆ B, C ⊆ D and A separates D then B separates C.
(b) A separates its covered envelope.
(c) If A separates B and B separates C then A separates C.
(d) If A separates B and τ∗ is an upper bound of B in T then A ∧ τ∗ = {σ ∧ τ∗ : σ ∈ A} separates B.
(e) A separates B iff A vvv-separates B for every fully adapted process vvv with domain S.

proof (a) Immediate from 633Ba.

(b) If σ, τ belong to the covered envelope of A,

[[σ < τ ]] = sup
σ′,τ ′∈A

[[σ < τ ]] ∩ [[σ′ = σ]] ∩ [[τ ′ = τ ]]

= sup
σ′,τ ′∈A

[[σ′ = σ]] ∩ [[τ ′ = τ ]] ∩ [[σ′ < τ ′]]

= sup
σ′,τ ′∈S
ρ∈A

[[σ′ = σ]] ∩ [[τ ′ = τ ]] ∩ [[σ′ ≤ ρ]] ∩ [[ρ < τ ′]]

⊆ sup
ρ∈A

[[σ ≤ ρ]] ∩ [[ρ < τ ]] ⊆ [[σ < τ ]],

so [[σ < τ ]] = supρ∈A [[σ ≤ ρ]] ∩ [[ρ < τ ]].

(c) If σ, τ ∈ C, then

[[σ < τ ]] ⊆ sup
σ′∈B

([[σ ≤ σ′]] ∩ [[σ′ < τ ]])

= sup
σ′∈B,ρ∈A

([[σ ≤ σ′]] ∩ [[σ′ < τ ]] ∩ [[σ′ ≤ ρ]] ∩ [[ρ < τ ]]

⊆ sup
ρ∈A

([[σ ≤ ρ]] ∩ [[ρ < τ ]] ⊆ [[σ < τ ]].

(d) If σ, τ ∈ A then

[[σ ∧ τ∗ < τ ∧ τ∗]] = [[σ < τ ]] ∩ [[σ < τ∗]] = sup
ρ∈A

([[σ ≤ ρ]] ∩ [[ρ < τ ]] ∩ [[σ < τ∗]])

⊆ sup
ρ∈A

([[σ ∧ τ∗ ≤ ρ ∧ τ∗]] ∩ [[ρ ∧ τ∗ < τ ∧ τ∗]])

(e) Immediately from the definitions in 633B we see that if A separates B then A vvv-separates B for every
vvv ∈Mfa(S). Conversely, if A vvv-separates B for every vvv ∈Mfa(S) and σ, τ ∈ B, set vρ = χ[[ρ < τ ]] for ρ ∈ S.
Then vvv = 〈vρ〉ρ∈S is fully adapted, being a simple process with breakpoint string (τ) (612J). And

[[σ < τ ]] = [[σ < τ ]] ∩ [[vσ 6= vτ ]] ⊆ supρ∈A([[σ ≤ ρ]] ∩ [[ρ < τ ]]) ⊆ [[σ < τ ]]

so [[σ < τ ]] = supρ∈A([[σ ≤ ρ]] ∩ [[ρ < τ ]]).

633D Proposition Let S be a sublattice of T .
(a) If T0 ⊆ T is dense for the order topology of T (4A2R) and contains every point of T which is isolated

on the right in T , then Ť0 = {ť : t ∈ T0} separates S.
(b)(i) If A ⊆ T separates S, B ⊆ S is coinitial with S and C ⊆ S is cofinal with S, then A′ =

{med(τ, σ, τ ′) : τ ∈ B, σ ∈ A, τ ′ ∈ C} separates S.
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(ii) If vvv is a fully adapted process with domain S, A ⊆ T vvv-separates S, B ⊆ S is coinitial with S and
C ⊆ S is cofinal with S, then S is vvv-separated by A′ = {med(τ, σ, τ ′) : τ ∈ B, σ ∈ A, τ ′ ∈ C}.

proof (a) Suppose that τ , τ ′ in S and t ∈ T . Then [[τ ′ > t]] \ [[τ > t]] ⊆ sups∈T0
([[τ ′ > s]] \ [[τ > s]]). PPP If t

is isolated on the right in T , then t ∈ T0 and the result is trivial. Otherwise,

[[τ ′ > t]] \ [[τ > t]] = sups′>t([[τ
′ > s′]] \ [[τ > t]]) ⊆ sups∈T0

([[τ ′ > s]] \ [[τ > s]])

because if s′ > t then the open interval ]t, s′[ is non-empty and meets T0, and if s ∈ T0 ∩ ]t, s′[ then
[[τ ′ > s′]] ⊆ [[τ ′ > s]] and [[τ > s]] ⊆ [[τ > t]]. QQQ

Consequently

[[τ < τ ′]] = sup
t∈T

([[τ ′ > t]] \ [[τ > t]])

= sup
s∈T0

([[τ ′ > s]] \ [[τ > s]]) = sup
s∈T0

([[τ ≤ š]] ∩ [[š < τ ]])

by 611E(a-i-δ). As τ and τ ′ are arbitrary, Ť0 separates S.

(b)(i) Suppose that τ , τ ′ in S and [[τ < τ ′]] 6= 0. Let τ1 ∈ B, τ ′1 ∈ C be such that τ1 ≤ τ ≤ τ ′ ≤ τ ′1. We
know that [[τ < τ ′]] = supσ∈A [[τ ≤ σ]] ∩ [[σ < τ ′]]. For σ ∈ A set σ̂ = med(τ1, σ, τ

′
1) ∈ A′. We have

[[τ ≤ σ̂]] ∩ [[σ̂ < τ ′]] ⊇ [[τ ≤ τ ′1 ∧ σ]] ∩ [[τ1 ∨ σ < τ ′]]

(because τ ′1 ∧ σ ≤ σ̂ ≤ τ1 ∨ σ)

= [[τ ≤ τ ′1]] ∩ [[τ ≤ σ]] ∩ [[τ1 < τ ′]] ∩ [[σ < τ ′]]

(611E(c-i-α) and (c-ii-α))

⊇ [[τ ≤ σ]] ∩ [[τ < τ ′]] ∩ [[σ < τ ′]] = [[τ ≤ σ]] ∩ [[σ < τ ′]]

(611E(c-iii-γ)). So

sup
σ∈A′

([[τ ≤ σ]] ∩ [[σ < τ ′]]) = sup
σ∈A

([[τ ≤ σ̂]] ∩ [[σ̂ < τ ′]])

⊇ sup
σ∈A

([[τ ≤ σ]] ∩ [[σ < τ ′]]) = [[τ < τ ′]]

because A separates S. As τ and τ ′ are arbitrary, A′ separates S.

(ii) Use the same argument, but looking only at the case τ ≤ τ ′ and reading ’[[vτ 6= vτ ′ ]]’ for ‘[[τ < τ ′]]’.

633E Lemma Let S be a finitely full sublattice of T such that inf A ∈ S whenever A ⊆ S is non-empty
and has a lower bound in S, S ′ a sublattice of S, Ŝ ′

f the finitely-covered envelope (611O) of S ′, and τ an

element of
⋃
σ∈S′ S ∧ σ.

(a) A = {σ : τ ≤ σ ∈ Ŝ ′
f} is non-empty and downwards-directed, and inf A ∈ S.

(b) If S ′ separates S then inf A = τ .
(c) If vvv = 〈vσ〉σ∈S is fully adapted and S ′ vvv-separates S, then vinf A = vτ .

proof (a) By the hypothesis on τ , A is non-empty, and of course it is downwards-directed. Because S is
finitely full, A ⊆ S, and τ is a lower bound for A. So τ∗ = inf A belongs to S, and τ ≤ τ∗.

Note that if σ ∈ S ′ and a = [[τ ≤ σ]] ∩ [[σ < τ∗]], then a = 0. PPP Take any σ0 ∈ S ′ such that τ ≤ σ0.
Then we have a σ∗ ∈ T such that [[σ∗ = σ]] ⊇ a, while [[σ∗ = σ0]] ⊇ 1 \ a (611I). In this case, σ∗ ∈ A so
[[σ∗ < τ∗]] = 0 and a = 0. QQQ

(b) It follows at once that if S ′ separates S then τ = τ∗, that is, inf A = τ .

(c) Similarly, if S ′ vvv-separates S, then vτ = vτ∗ .
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633F Proposition Let S be a sublattice of T and uuu, vvv locally near-simple processes with domain S.
Suppose that C ⊆ S separates S and that infσ∈C [[σ < τ ]] = 0 for every τ ∈ S. If uuu↾C = vvv↾C then uuu = vvv.

proof (a) Set www = uuu − vvv, and express www as 〈wσ〉σ∈S . Then www is near-simple (631F(a-ii)), www is zero on C
and I need to show that www is zero on S.

(a) Consider first the case in which S has a greatest element which belongs to C. If zzz = 〈zσ〉σ∈S is a
simple process then | supw| ≤ 2 sup |zzz−www|. PPP Let (σ0, . . . , σn) be a breakpoint string for zzz with σn = maxS,
and write z↓ for the starting value of zzz and z̄ for sup |zzz −www|. Take any τ ∈ S. Then

[[τ < τ0]] = sup
σ∈C

([[τ ≤ σ]] ∩ [[σ < τ0]]) ⊆ sup
σ∈C

([[τ > τ0]] ∩ [[σ < τ0]])

⊆ sup
σ∈C

([[zτ = z↓]] ∩ [[zσ = z↓]]) ⊆ sup
σ∈C

[[zτ = zσ]] ⊆ sup
σ∈C

[[|zτ | = |zσ − wσ|]]

(because wσ = 0 for every σ ∈ C)

⊆ [[|zτ | ≤ z̄]],

while if i ≤ n then

[[σi ≤ τ ]] ∩ [[τ < σi+1]] = sup
σ∈C

([[σi ≤ τ ]] ∩ [[τ < σi+1]] ∩ [[τ ≤ σ]] ∩ [[σ < σi+1]])

⊆ sup
σ∈C

([[σi ≤ τ ]] ∩ [[τ < σi+1]] ∩ [[σi ≤ σ]] ∩ [[σ < τi+1]])

⊆ sup
σ∈C

[[zτ = zσ]] ⊆ [[|zτ | ≤ z̄]]

and

[[σn ≤ τ ]] ⊆ [[zτ = zσn
− wσn

]] ⊆ [[|zτ | ≤ z̄]].

Thus |zτ | ≤ z̄; as τ is arbitrary, sup |zzz| ≤ z̄. QQQ
Now we see that

sup |www| ≤ sup |zzz|+ sup |zzz −www| ≤ 2 sup |zzz −www|;

since www is near-simple, there is for any ǫ > 0 a simple process zzz such that θ(sup |zzz−www|) ≤ ǫ and θ(sup |www|) ≤
2ǫ. We conclude that www = 0, as required.

(b) In the general case, take any τ ∈ S and τ∗ ∈ C. Then C and C ∧ τ∗ separate S ∧ τ∗ (633Ca, 633Cd),
while {σ, τ∗} covere {σ ∧ τ∗} (611M(b-i)) so |wσ∧τ∗ | ≤ |wσ| ∨ |wτ∗ | = 0 (614Ga) for every σ ∈ C. By (a),
applied to www↾S ∧ τ∗, wτ∧τ∗ = 0 and [[τ ≤ τ∗]] ⊆ [[wτ = 0]]. As infτ∗∈C [[τ∗ < τ ]] = 0, wτ = 0 and www = 0 in
this case also.

633G Lemma Let S ⊆ T be a sublattice and D ⊆ S a cofinal finitely full set which separates S and is
such that inf A ∈ D for every non-empty downwards-directed A ⊆ D with a lower bound in S. Then D = S.

proof Take any τ ∈ S, and set A = {σ : σ ∈ D, τ ≤ σ}. Because D is cofinal with S, A is non-empty;
because D is finitely full, it is closed under ∧ (611P(a-ii)), so A also is closed under ∧, and is downwards-
directed, while τ is a lower bound of A belonging to S. Set τ∗ = inf A; then τ∗ ∈ D and τ ≤ τ∗.

??? If τ 6= τ∗, there is a σ ∈ D such that [[τ ≤ σ]] ∩ [[σ < τ∗]] 6= 0, because D separates S. Set c = [[τ ≤ σ]];
then c ∈ Aσ and 1 \ c ∈ Aτ ⊆ Aτ∗ . So there is a τ ′ ∈ T such that c ⊆ [[τ ′ = σ]] and 1 \ c ⊆ [[τ ′ = τ∗]] (611I
again). Since [[τ ′ = σ]] ∪ [[τ ′ = τ∗]] = 1, and D is finitely full, τ ′ ∈ D; also

c = [[τ ≤ σ]] ∩ [[τ ′ = σ]] ⊆ [[τ ≤ τ ′]], 1 \ c ⊆ [[τ ′ = τ∗]] ⊆ [[τ ≤ τ ′]]

so τ ≤ τ ′. Accordingly τ ′ ∈ A and τ∗ ≤ τ ′. But

[[τ ′ < τ∗]] ⊇ [[τ ′ = σ]] ∩ [[σ < τ∗]] ⊇ [[τ ≤ σ]] ∩ [[σ < τ∗]] 6= 0

so this is impossible. XXX
Thus τ = τ∗ belongs to D; as τ is arbitrary, D = S.
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633H Lemma Suppose that I, J ∈ I(T ), with J ⊆ I. Then there are totally ordered sets J0 ⊆ J and
I0 ⊆ I such that J0 covers J , I0 covers I and J0 ⊆ I0.

proof We know from 611Ke that there is a totally ordered set J0 ⊆ J covering J . If J0 = ∅, all we have
to do is to use 611Ke again to find a totally ordered set I0 ⊆ I covering I. Otherwise, enumerate J0 in
ascending order as 〈σi〉i≤n. Set

K0 = I ∩ [min T , σ0], Ki = I ∩ [σi−1, σi] for 1 ≤ i ≤ n, Kn+1 = I ∩ [σn,max T ].

For each i ≤ n + 1, let K ′
i ⊆ Ki be a totally ordered set covering the finite sublattice Ki; now set I0 =

J0 ∪
⋃
i≤n+1K

′
i, so that I0 is a totally ordered subset of I, including J0, which covers K =

⋃
i≤n+1Ki.

At the same time, K covers I. PPP Let τ ∈ I. Set

τ0 = τ ∧ σ0, τi = med(σi−1, τ, σi) for 1 ≤ i ≤ n, τn+1 = τ ∨ σn.

Then τi ∈ Ki ⊆ K for every i ≤ n+1. Also [[τ = τ0]] = [[τ ≤ σ0]] and [[τ = τn+1]] = [[σn ≤ τ ]], by 611E(a-ii-β).
As for the middle terms, if 1 ≤ i ≤ n then

[[τ = τi]] = [[τ = (τ ∨ σi−1) ∧ σi]] ⊇ [[τ = τ ∨ σi−1]] ∩ [[τ ∨ σi−1 = (τ ∨ σi−1) ∧ σi]]

= [[σi−1 ≤ τ ]] ∩ [[τ ∨ σi−1 ≤ σi]] = [[σi−1 ≤ τ ]] ∩ [[τ ≤ σi]] ∩ [[σi−1 ≤ σi]]

(611Eb)

= [[σi−1 ≤ τ ]] ∩ [[τ ≤ σi]].

So

sup
σ∈K

[[τ = σ]] ⊇ sup
i≤n+1

[[τ = τi]]

⊇ [[τ ≤ σ0]] ∪ sup
1≤i≤n

([[σi−1 ≤ τ ]] ∩ [[τ ≤ σi]]) ∪ [[σn ≤ τ ]] = 1

(611Ed), and K covers {τ}. As τ is arbitrary, K covers I. QQQ
Consequently I0 covers I, by 611M(g-i) as usual.

633I Lemma Let S be a sublattice of T , S ′ a finitely full sublattice of S and ψ a strictly adapted interval
function defined on S2↑. Suppose that J ∈ I(S) and 〈στ 〉τ∈J are such that τ ≤ στ ∈ S ′ and

ūτ = supσ∈S∧τ,τ ′∈S′∩[τ,στ ] |ψ(σ, τ
′)− ψ(σ, τ)|

is defined in L0 for each τ ∈ J . Let I ∈ I(S ′) be such that στ ∈ I for every τ ∈ J . Then

|SI⊔J(1, dψ)− SI(1, dψ)| ≤ 2
∑
τ∈J ūτ .

proof (a) To begin with, suppose that J = {τ} is a singleton.

(i) Write Î for the covered envelope of I. There is a τ ′ ∈ Î such that τ ≤ τ ′ and [[ρ < τ ′]] = [[ρ < τ ]] for

every ρ ∈ Î. PPP For each σ ∈ I, [[τ ≤ σ]] ∈ Aσ ∩ Aστ
so there is a σ′ ∈ T such that [[τj ≤ σ]] ⊆ [[σ′ = σ]] and

[[σ < τj ]] ⊆ [[σ′ = στ ]]. Now τ ≤ σ′ ∈ Î for each σ ∈ I, so

τ ≤ τ ′ = infσ∈I σ
′ ∈ Î ⊆ S ′.

Take ρ ∈ Î. Then certainly [[ρ < τ ]] ⊆ [[ρ < τ ′]]. ??? If a = [[ρ < τ ′]] \ [[ρ < τ ]] is non-zero then there is a σ ∈ I
such that a′ = a ∩ [[ρ = σ]] is non-zero. In this case,

0 6= a′ ⊆ [[σ < τ ′]] \ [[σ < τ ]] ⊆ [[σ < τ ′]] ∩ [[τ ≤ σ]]

⊆ [[σ < τ ′]] ∩ [[σ′ = σ]] ⊆ [[σ < τ ′]] ∩ [[τ ′ ≤ σ]]

because τ ′ ≤ σ′; but this is impossible. XXX So [[ρ < τ ]] = [[ρ < τ ′]], as required. QQQ
Of course 0 = [[στ < τ ]] = [[στ < τ ′]] so τ ′ ≤ στ .

(ii) Write I ′ = I ⊔ {τ ′} and K = I ′ ⊔ {τ}. Then {ρ : ρ ∈ T , ρ ∨ τ ′ ∈ I ′} is a sublattice including
I ′ ∪ {τ} so it includes K and K ∨ τ ′ ⊆ I ′; consequently K ∨ τ ′ = I ′ ∨ τ ′ and SK∨τ ′(1, dψ) = SI′∨τ ′(1, dψ).
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(iii) |SK∧τ ′(1, dψ) − SI′∧τ ′(1, dψ)| ≤ 2ūτ . PPP Take (σ0, . . . , σm) linearly generating the (I ′ ∧ τ ′)-

cells; note that every σi belongs to Î. Then (σ0 ∧ τ, . . . , σm ∧ τ) linearly generates the (K ∧ τ ′)-cells and
(σ0 ∨ τ, . . . , σm ∨ τ) linearly generates the (K ∩ [τ, τ ′])-cells. So

SK∧τ ′(1, dψ)− SI′∧τ ′(1, dψ)

=

m−1∑

j=0

ψ(σi ∧ τ, σj+1 ∧ τ) + ψ(σj ∨ τ, σj+1 ∨ τ)− ψ(σj , σj+1).

Set

bi = [[τ < σ0]] if i = −1,

= [[σi ≤ τ ]] ∩ [[τ < σi+1]] if 0 ≤ i < m,

= [[τ = σm]] if i = m;

then b−1, . . . , bm is a partition of unity in A. Now observe that if −1 ≤ i < j < m then

bi ⊆ [[τ < σi+1]] ⊆ [[τ < σj ]]

⊆ [[σj ∧ τ = σj+1 ∧ τ ]] ∩ [[σj ∨ τ = σj ]] ∩ [[σj+1 ∨ τ = σj+1]]

⊆ [[ψ(σj ∧ τ, σj+1 ∧ τ) = 0]] ∩ [[ψ(σj ∨ τ, σj+1 ∨ τ) = ψ(σj , σj+1)]]

⊆ [[ψ(σi ∧ τ, σj+1 ∧ τ) + ψ(σj ∨ τ, σj+1 ∨ τ)− ψ(σj , σj+1) = 0]],

while if 0 ≤ j < i ≤ m then

bi ⊆ [[σi ≤ τ ]] ⊆ [[σj+1 ≤ τ ]] ⊆ [[σj ∨ τ = σj+1 ∧ τ ]] ∩ [[σj ∧ τ = σj ]] ∩ [[σj+1 ∧ τ = σj+1]]

⊆ [[ψ(σi ∨ τ, σj+1 ∨ τ) = 0]] ∩ [[ψ(σi ∧ τ, σj+1 ∧ τ) = ψ(σi, σj+1)]]

⊆ [[ψ(σj ∧ τ, σj+1 ∧ τ) + ψ(σj ∨ τ, σj+1 ∨ τ)− ψ(σj , σj+1) = 0]].

So

|SK∧τ ′(1, dψ)− SI′∧τ ′(1, dψ)|

= |
m−1∑

j=0

m∑

i=−1

(
ψ(σj ∧ τ, σj+1 ∧ τ) + ψ(σj ∨ τ, σj+1 ∨ τ)− ψ(σj , σj+1)

)
× χbi|

= |
m−1∑

j=0

(
ψ(σj ∧ τ, σj+1 ∧ τ) + ψ(σj ∨ τ, σj+1 ∨ τ)− ψ(σj , σj+1)

)
× χbj |

≤
m−1∑

j=0

|ψ(σj ∧ τ, τ) + ψ(τ, σj+1 ∨ τ)− ψ(σj ∧ τ, σj+1 ∨ τ)| × χbj

≤
m−1∑

j=0

(
|ψ(σj ∧ τ, σj+1 ∨ τ)− ψ(σj ∧ τ, τ)|+ |ψ(τ, σj+1 ∨ τ)− ψ(τ, τ)|

)
× χbj

=
m−1∑

j=0

(
|ψ(σj ∧ τ, τ

′)− ψ(σj ∧ τ, τ)|+ |ψ(τ, τ ′)− ψ(τ, τ)|
)
× χbj

(because bj ⊆ [[τ ≤ σj+1]] = [[τ ′ ≤ σj+1]] = [[τ ′ = σj+1]] = [[τ ′ = σj+1 ∨ τ ]] for every j < m)

≤
m−1∑

j=0

2ūτ × χbj

(because τ ′ ∈ S ′ and τ ≤ τ ′ ≤ στ )

≤ 2ūτ
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as claimed. QQQ

(iv) Putting (ii) and (iii) together, we see that |SK(1, dψ)−SI′(1, dψ)| ≤ 2ūτ . But I⊔J is a sublattice of
K covering I ′ and J , so it coversK, and SI⊔J(1, dψ) = SK(1, dψ) by 613S. Similarly, SI′(1, dψ) = SI(1, dψ),
and |SI⊔J (1, dψ)− SI(1, dψ)| ≤ 2ūτ , as required.

(b) For the general case, induce on #(J). If J is empty, the result is trivial, and if #(J) = 1 it is covered
by (a) above. For the inductive step to #(J) = n ≥ 2, if J is not totally ordered then it has a totally ordered
subset J ′ which covers J (611Ke), and

|SI⊔J(1, dψ)− SI(1, dψ)| = |SI⊔J ′(1, dψ)− SI(1, dψ)| ≤ 2
∑

τ∈J ′

ūτ

(by the inductive hypothesis)

≤ 2
∑

τ∈J

ūτ .

If J is totally ordered, set J ′ = J \ {max J}; then

|SI⊔J (1, dψ)− SI(1, dψ)| ≤ |SI⊔J(1, dψ)− SI⊔J ′(1, dψ)|+ |SI⊔J ′(1, dψ)− SI(1, dψ)|

≤ |S(I⊔J ′)⊔{max J})(1, dψ)− SI⊔J ′(1, dψ)|+ 2
∑

τ∈J ′

uτ

(by the inductive hypothesis)

≤ 2
∑

τ∈J

ūτ

by (a). Thus the induction continues in either case.

633J Lemma Let S be a sublattice of T , S ′ a finitely full cofinal sublattice of S and ψ an order-bounded
strictly adapted interval function defined on S2↑. For τ ∈ S set Aτ = {σ : τ ≤ σ ∈ S ′}, and for τ ∈ S,
τ ′ ∈ Aτ set

uττ ′ = supσ∈S∧τ,ρ∈Aτ∧τ ′ |ψ(σ, ρ)− ψ(σ, τ)|.

Suppose that z =
∫
S dψ is defined and that infτ ′∈Aτ

uττ ′ = 0 for every τ ∈ S. Then
∫
S′ dψ is defined and

equal to z.

proof Let ǫ > 0. Then there is a J ∈ I(S) such that θ(z − SK(1, dψ)) ≤ ǫ whenever J ⊆ K ∈ IS. For
each τ ∈ J , τ ′ 7→ uττ ′ : Aτ → (L0)+ is order-preserving so limτ ′↓τ uττ ′ = 0 and there is a στ ∈ Aτ such that

θ(uτστ
) ≤

ǫ

1+#(J)
. Set I0 = {στ : τ ∈ J}.

Suppose that I0 ⊆ I ∈ I(S ′). Then |SI⊔J (1, dψ)−SI(1, dψ)| ≤
∑
τ∈J uτστ

by 633I. But now we see that

θ(z − SI(1, dψ)) ≤ θ(z − SI⊔J(1, dψ)) +
∑
τ∈J θ(uτστ

) ≤ ǫ+ 2ǫ

by the choice of J and 〈σJ 〉τ∈J . As ǫ is arbitrary,
∫
S′ dψ is defined and equal to z.

633K Theorem (a) Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T
such that inf A ∈ S for every non-empty subset A of S with a lower bound in S, and uuu, vvv fully adapted
processes with domain S such that uuu is order-bounded and vvv is locally near-simple. Let S ′ be a sublattice
of S, cofinal with S, which vvv-separates S. If z =

∫
S uuu dvvv is defined then

∫
S′ uuu dvvv is defined and equal to z.

(b) Suppose that S, S ′ are sublattices of T such that S ′ is finitely full and is included in S. Let uuu, vvv be
fully adapted processes defined on S. For τ ∈ S set Aτ = {σ : τ ≤ σ ∈ S ′}. Suppose that Aτ is non-empty
and

uτ = limσ↓Aτ
uσ, vτ = limσ↓Aτ

vσ
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for every τ ∈ S. If z =
∫
S′ uuu dvvv is defined then

∫
S uuu dvvv is defined and equal to z.

proof (a)(i) Suppose to begin with that S ′ is finitely full. For τ ∈ S, set Aτ = {σ : τ ≤ σ ∈ Ŝ ′
f}. Because

S ′ is cofinal with S, Aτ 6= ∅ and inf Aτ ∈ S, while vτ = vinf Aτ
by 633Ec. Because 〈At〉t∈T is right-continuous

and vvv is locally near-simple,

limσ↓Aτ
supρ∈Aτ ,ρ≤σ |vρ − vτ | = limσ↓Aτ

supρ∈Aτ ,ρ≤σ |vρ − vinf A| = 0

(632E). Now set ψ = uuu∆vvv (613Cc, 613Dd), so that ψ(σ, τ) = uσ × (vτ − vσ) when σ ≤ τ in S, and ψ is
strictly adapted and order-bounded. Write ū for sup |uuu|. Then whenever τ ∈ S we have vτ = vinf Aτ

(633Ec),
so

lim
τ ′↓Aτ

sup
σ∈S∧τ,ρ∈Aτ∧τ ′

|ψ(σ, ρ)− ψ(σ, τ)| ≤ lim
τ ′↓Aτ

sup
ρ∈Aτ∧τ ′

ū× |vρ − vτ | = 0.

Thus ψ satisfies the conditions of 633J and

∫

S

uuu dvvv =

∫

S

dψ

(613Hc)

=

∫

S′

dψ

(633J)

=

∫

S′

uuu dvvv

as required.

(ii) In general, the finitely-covered envelope Ŝ ′
f of S ′ is a cofinal finitely full sublattice of S which vvv-

separates S, so ∫
S
uuu dvvv =

∫
Ŝ′
f

uuu dvvv =
∫
S′
uuu dvvv

by 613T.

(b) Let ǫ > 0. Let J ∈ I(S ′) be such that θ(z − SI(uuu, dvvv)) ≤ ǫ whenever J ⊆ I ∈ I(S ′). Now suppose
that I is any finite sublattice of S including J . Then there are a totally ordered subset J0 of J covering
J and a totally ordered subset I0 of I, including J0, which covers I (633H). Let 〈τi〉i≤n be the increasing
enumeration of I0. Then we can find τ ′i ∈ Aτi , for i ≤ n, such that

—– whenever i, j ≤ n, σ ∈ Aτi , σ
′ ∈ Aτj , σ ≤ τ ′i and σ

′ ≤ τ ′j then θ(uσ×vσ′−uτi×vτj ) ≤
ǫ

n+1
,

—– if i ≤ n and τi ∈ S ′ then τ ′i = τi.

Set σi = infn≥j≥i τ
′
j for i ≤ n. Then σ0 ≤ . . . ≤ σn; for each i ≤ n, σi ∈ S ′ and τi ≤ σi ≤ τ ′i ; and σi = τi

if τi ∈ J0. So if we set I ′0 = {σi : i ≤ n}, we have

θ(SI′0(uuu, dvvv)− SI(uuu, dvvv)) = θ
(n−1∑

i=0

uσi
× vσi+1

− uτi × vτi+1
− uσi

× vσi
+ uτi × vτi

)

≤ 2ǫ.

Because J0 covers J and J0 ⊆ I ′0, the covered envelope of I ′0 includes I
′ = I ′0⊔J (611M(b-i)) and SI′0(uuu, dvvv) =

SI′(uuu, dvvv) (613T again). But I ′ ⊇ J so θ(z − SI′(uuu, dvvv)) ≤ ǫ. Consequently θ(z − SI(uuu, dvvv)) ≤ 3ǫ; and this
is true whenever J ⊆ I ∈ I(S).

As ǫ is arbitrary,
∫
S uuu dvvv is defined and equal to z.

633L Corollary Suppose that 〈At〉t∈T is right-continuous, and τ ≤ τ ′ in T . Let uuu be a near-simple
process and vvv a near-simple integrator, both defined on [τ, τ ′]. Suppose that T0 ⊆ T is a dense set for the order
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topology containing every point of T which is isolated on the right. Set S ′ = {τ ′} ∪ {med(τ, ť, τ ′) : t ∈ T0}.
Then

∫
S′ uuu dvvv is defined and equal to

∫
[τ,τ ′]

uuu dvvv.

proof By 616K
∫
[τ,τ ′]

uuu dvvv is defined. By 633D(b-i), S ′ separates [τ, τ ′], and it is cofinal with [τ, τ ′] just

because it contains τ ′. We can therefore apply 633Ka to see that
∫
S′ uuu dvvv =

∫
[τ,τ ′]

uuu dvvv.

*633M I star the next couple of paragraphs because they are here for a very special application in §652.

Lemma Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process with domain S.
(a) For every ǫ > 0 and β > 0, there are a b ∈ A and a γ ≥ 0 such that µ̄b ≥ 1− ǫ and

∑n−1
i=0 µ̄(b ∩ [[|uτi+1

− uτi | ≥ β]]) ≤ γ

whenever τ0 ≤ . . . ≤ τn in S,
(b)(i) For σ ≤ τ in S, set

ψ(σ, τ) = med(−χ1, uτ − uσ, χ1), ψ′(σ, τ) = uτ − uσ − ψ(σ, τ).

Then ψ and ψ′ are strictly adapted interval functions on S.
(ii) If σ ≤ τ and σ′ ≤ τ ′ in S, then |ψ(σ, τ) − ψ(σ′, τ ′)| and |ψ′(σ, τ) − ψ′(σ′, τ ′)| are both at most

|uσ − uσ′ |+ |uτ − uτ ′ |.
(c)

∫
S dψ

′ and
∫
S dψ are defined.

(d) www′ = iiψ′(1) is of bounded variation and www = iiψ(1) is moderately oscillatory.
(e) Osclln(www) ≤ χ1.
(f) Express www as 〈wτ 〉τ∈S . If τ ≤ τ ′ in S, then wτ ′ − wτ ∈ L0(Dτ ), where Dτ is the closed subalgebra of

A generated by {uσ′ − uσ : σ, σ′ ∈ S ∩ [τ, τ ′], σ ≤ σ′}.
(g) If uuu is near-simple, www is near-simple.

proof If S = ∅ all of this is true for trivial reasons, so in the following arguments I will take it that S is
non-empty.

(a) (Compare (i)⇒(iv) in the proof of 615N.) It is enough to deal with the case in which β ≤ 1. We

know that there is a process vvv = 〈vσ〉σ∈S of bounded variation such that θ(sup |uuu − vvv|) <
1

6
βǫ. Set

b0 = [[sup |uuu− vvv| < 1
3β]]; then µ̄b0 ≥ 1 − 1

2ǫ. Writing v̄ =
∫
S |dvvv|, we have a γ ≥ 0 such that µ̄b1 ≥ 1 − 1

2ǫ

where b1 = [[v̄ < 1
3γβ]]. Set b = b0 ∩ b1; then µ̄b ≥ 1− ǫ.

If σ ≤ τ in S then

[[|uτ − uσ| ≥ β]] ⊆ [[|uτ − vτ | ≥
1
3β]] ∪ [[|vτ − vσ| ≥

1
3β]] ∪ [[|vτ − uτ | ≥

1

3
β]],

so b ∩ [[|uτ − uσ| ≥ β]] ⊆ b ∩ [[|vτ − vσ| ≥
1
3β]]. Now take any τ0 ≤ . . . ≤ τn in S. Then

n−1∑

i=0

µ̄(b ∩ [[|uτi+1
− uτi | ≥ β]]) ≤

n−1∑

i=0

µ̄(b1 ∩ [[|vτi+1
− vτi | ≥

1
3β]])

≤
n−1∑

i=0

3

β
E(χb1 × |vτi+1

− vτi |)

≤
3

β
E(χb1 × v̄) ≤

3

β
·
1

3
γβ ≤ γ.

(b)(i) Since α 7→ med(−1, α, 1) : R → R is Borel measurable and (σ, τ) 7→ uτ − uσ is strictly adapted
(613Cc), ψ and ψ′ are strictly adapted (613Db-613Dc).

(ii) For x, y, z, x′, y′, z′ ∈ L0,

x′ = x+ (x′ − x) ≤ (x ∨ y) + (x′ − x) ∨ (y′ − y),

x′ ∨ y′ ≤ (x ∨ y) + (x′ − x) ∨ (y′ − y), |x′ ∨ y′ − x ∨ y| ≤ |x′ − x| ∨ |y′ − y|,
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|x′ ∨ y′ ∨ z′ − x ∨ y ∨ z| ≤ |x′ ∨ y′ − x ∨ y| ∨ |z′ − z| ≤ |x′ − x| ∨ |y′ − y| ∨ |z′ − z|;

similarly, |x′ ∧ y′ − x ∧ y| ≤ |x′ − x| ∨ |y′ − y|. Consequently

|med(x′, y′, z′)−med(x, y, z)|

= |(x′ ∧ y′) ∨ (x′ ∧ z′) ∨ (y′ ∧ z′)− (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)|

≤ |x′ ∧ y′ − x ∧ y| ∨ |x′ ∧ z′ − x ∧ z| ∨ |y′ ∧ z′ − y ∧ z|

≤ |x′ − x| ∨ |y′ − y| ∨ |z′ − z|.

In particular, |med(−χ1, x′, χ1)−med(−χ1, x, χ1)| ≤ |x′ − x|, so

|ψ(σ, τ)− ψ(σ′, τ ′)| ≤ |uτ − uσ − uτ ′ + uσ′ | ≤ |uσ − uσ′ |+ |uτ − uτ ′ |.

Next, for any x ∈ L0, med(−χ1, x, χ1)− x = med(−χ1− x, 0, χ1− x), so

|(med(−χ1, y, χ1)− y)− (med(−χ1, x, χ1)− x)|

≤ | − χ1− x+ χ1 + y| ∨ |χ1− y − χ1 + x| = |y − x|

for all x, y ∈ L0. And

|ψ′(σ, τ)− ψ′(σ′, τ ′)| ≤ |uτ − uσ − uτ ′ + uσ′ | ≤ |uσ − uσ′ |+ |uτ − uτ ′ |.

(c) To begin with (down to the end of (v) below), suppose that S is finitely full. Let ǫ > 0.

(i) By 615Ga, u↑ = limσ↑S uσ is defined and there is a τ∗ ∈ S such that that θ(z∗) ≤ ǫ where
z∗ = supτ∈S∨τ∗ |uτ − u↑|. Then µ̄[[z

∗ ≥ 1
4 ]] ≤ 4ǫ.

(ii) By (a) above, there are b0 ∈ A and γ ≥ 0 such that µ̄b0 ≥ 1− ǫ and
∑n−1
i=0 µ̄(b0 ∩ [[|uτi+1

− uτi | ≥
1
4 ]]) ≤ γ

whenever τ0 ≤ . . . ≤ τn in S. Set δ = min(
1

8
,
ǫ

γ
).

(iii) By 615F(a-i) uuu↾S ∧ τ∗ is moderately oscillatory, therefore´
´
-convergent(615G/615J), while S ∧ τ∗

is full (611Me). Construct 〈Di〉i∈N, 〈yi〉i∈N and 〈di〉i∈N from uuu↾S ∧ τ∗ and δ as in 615M. For i ∈ N set
D∗
i =

⋃
σ∈Di

S ∨ σ. There is an m ∈ N such that µ̄dm ≤ ǫ (615M(c-ii)). Choose τm, . . . , τ0 in such a way
that for each i ≤ m

τi ∈ Di,

θ(zi) ≤
ǫδ

m+1
where zi = sup{|uσ − yi| : σ ∈ D∗

i , σ ≤ τi},

if i < m then τi ≤ τi+1.

(By 615Gb, when we come to choose τk anything far enough down Dk will serve.) Set z = supk≤m zk; then

θ(z) ≤ ǫδ so µ̄[[z ≥ δ]] ≤ ǫ. Set b = b0 ∩ [[z < δ]] ∩ [[z∗ < 1
4 ]] \ dm; then µ̄b ≥ 1− 7ǫ.

(iv) Take i < m and a finite sublattice K of S ∩ [τi, τi+1] containing τi and τi+1,

(ααα) Let 〈σj〉j≤n be the increasing enumeration of a maximal totally ordered subset of K, so that
τi = σ0 and τi+1 = σn. Define 〈aj〉j≤n inductively by saying that

aj = [[|uσj
− yi| ≥ δ]] \ supj′<j aj′

for each j and a∗ = 1 \ supj≤n aj . Then the aj are disjoint and aj ∈ Aσj
⊆ Aτi+1

for each j, so we have a
τ ′i ∈ T such that aj ⊆ [[τ ′i = σj ]] for j ≤ n, while a∗ ⊆ [[τ ′i = τi]]. As S is supposed to be full, τ ′i ∈ S. Now
supj≤n [[τ

′
i = σj ]] = 1, τi ≤ τ ′i ≤ τi+1 and [[|uτ ′

i
− yi| < δ]] is disjoint from every aj and from [[|uτi+1

− yi| ≥ δ]]
so is included in [[τ ′i = τi+1]] ∩ [[τi+1 = τ∗]] ⊆ [[τ ′i = τ∗]]. So τ ′i ∈ Di+1.

(βββ) For l ≤ n,

|SK(1, dψ′)− ψ′(τi, τi+1)| × χ(b ∩ al) ≤ 4δχ[[|uτi+1
− uτi | ≥

1
4 ]].

PPP Concerning the case l = 0, observe that a0 = [[|uτi − yi| ≥ δ]] ⊆ [[zi ≥ δ]] is disjoint from b and the result

is trivial. Otherwise, we know that SK(1, dψ′) =
∑n−1
j=0 ψ

′(σj , σj+1) (613Ec). Now if 0 ≤ j ≤ l − 2 then
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al ⊆ [[|uσj
− yi| < δ]] ∩ [[|uσj+1

− yi| < δ]] ⊆ [[|uσj+1
− uσj

| < 2δ]] ⊆ [[ψ′(σj , σj+1) = 0]]

and if l ≤ j < n then τ ′i ≤ τ ′i ∨ σj ≤ τ ′i ∨ σj+1 ≤ τi+1 so τ ′i ∨ σj and τ
′
i ∨ σj+1 belong to D∗

i+1 and

al ⊆ [[σj = τ ′i ∨ σj ]] ∩ [[σj+1 = τ ′i ∨ σj+1]]

∩ [[|uτ ′
i∨σj

− uτi+1
| ≤ zi+1]] ∩ [[|uτ ′

i∨σj+1
− uτi+1

| ≤ zi+1]]

⊆ [[|uσj+1
− uσj

| ≤ 2z]]

and

al ∩ b ⊆ [[|uσj+1
− uσj

| ≤ 1
2 ]] ⊆ [[ψ′(σj , σj+1) = 0]].

So

|SK(1, dψ′)− ψ′(τi, τi+1)| × χ(b ∩ al) = |ψ′(σl−1, σl)− ψ′(τi, τi+1)| × χ(b ∩ al).

Now

al ⊆ [[|uσl−1
− yi| ≤ δ]] ∩ [[|uσ0

− yi| ≤ δ]] ⊆ [[|uσl−1
− uτi | ≤ 2δ]]

and also

al ⊆ [[σl = σl ∨ τ
′
i ]] ⊆ [[|uσl

− uτi+1
| ≤ 2zi+1]]

so

b ∩ al ⊆ [[|uσl−1
− uτi |+ |uσl

− uτi+1
| ≤ 4δ]]

⊆ [[|ψ′(σl−1, σl)− ψ′(τi, τi+1)| ≤ 4δ]]

((b-ii) above). So

|ψ′(σl−1, σl)− ψ′(τi, τi+1)| × χ(b ∩ al) ≤ 4δχ1.

At the same time,

b ∩ al ∩ [[|uτi − uτi+1
| ≤ 1

4 ]] ⊆ [[ψ′(τi, τi+1) = 0]] ∩ [[|uσl−1
− uσl

| ≤ 1
4 + 4δ]]

⊆ [[ψ′(τi, τi+1) = 0]] ∩ [[ψ′(σl−1, σl) = 0]],

and in fact

|SK(1, dψ′)− ψ′(τi, τi+1)| × χ(b ∩ al) = |ψ′(σl−1, σl)− ψ′(τi, τi+1)| × χ(b ∩ al)

≤ 4δχ[[|uτi+1
− uτi | ≥

1
4 ]]. QQQ

(γγγ) Concerning a∗, we have

a∗ ⊆ inf
j≤n

[[|uσj
− yi| < δ]]

⊆ inf
j≤k≤n

[[|uσk
− uσj

| ≤ 1]]

⊆ [[ψ′(τi, τi+1) = 0]] ∩ inf
j<n

[[ψ′(σj , σj+1) = 0]]

⊆ [[SK(1, dψ′) = ψ′(τi, τi+1)]].

(δδδ) Since a∗ ∪ supj≤n aj = 1, we see that

|SK(1, dψ′)− ψ′(τi, τi+1)| × χb ≤ 4δχ[[|uτi+1
− uτi | ≥

1
4 ]].

And this is true whenever i < m and K is a finite sublattice of S ∩ [τi, τi−1] containing τi and τi+1.

(v) Now suppose that J ∈ I(S) includes I = {τ0, . . . , τm}.

(ααα) SJ∧τ0(1, dψ
′) × χb = 0. PPP If σ ≤ τ ≤ τ0 in S, then σ and τ both belong to S ∧ τ∗ = D0, so

|uτ − uσ| ≤ 2zi ≤ 2z and

b ⊆ [[|uτ − uσ| ≤ 2δ]] ⊆ [[ψ′(σ, τ) = 0]],
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that is, ψ′(σ, τ)× χb = 0. As σ and τ are arbitrary, SJ∧τ0(1, dψ
′)× χb = 0. QQQ

Similarly, |uτ − uσ| ≤ 2z∗ and

b ⊆ [[|uτ − uσ| ≤
1
2 ]] ⊆ [[ψ′(σ, τ) = 0]]

whenever τ∗ ≤ σ ≤ τ in S, so SJ∨τ∗(1, dψ′)× χb = 0. We see also that if τm ≤ σ ≤ τ ≤ τ∗ then

[[ψ′(σ, τ) 6= 0]] ⊆ [[σ < τ ]] ⊆ [[τm < τ∗]] ⊆ dm

(615M(c-i)), so ψ′(σ, τ)× χb = 0, and we conclude that SJ∩[τm,τ∗](1, dψ
′)× χb = 0. So in fact we have

SJ(1, dψ
′)× χb =

(
SJ∧τ0(1, dψ

′) +

m−1∑

i=0

SJ∩[τi,τi+1]1, dψ
′)

+ SJ∩[τm,τ∗](1, dψ
′) + SJ∨τ∗(1, dψ′)

)
× χb

=
m−1∑

i=0

SJ∩[τi,τi+1]1, dψ
′)× χb,

|SJ(1, dψ
′)− SI(1, dψ

′)| × χb ≤
m−1∑

i=0

|SJ∩[τi,τi+1](1, dψ
′)ψ′(τi, τi+1| × χb

≤
m−1∑

i=0

4δχ[[|uτi+1
− uτi | ≥

1
4 ]]

by (iv-δ) above, and

θ(|SJ (1, dψ
′)− SI(1, dψ

′)| × χb) ≤ E(

m−1∑

i=0

4δχ[[|uτi+1
− uτi | ≥

1
4 ]])

= 4δ

m−1∑

i=0

µ̄[[|uτi+1
− uτi | ≥

1
4 ]] ≤ 4δγ ≤ 4ǫ

by (ii) above. Since µ̄b ≥ 1− 7ǫ, θ(SJ(1, dψ
′)− SI(1, dψ

′)) ≤ 11ǫ, and this is true for every finite sublattice
of S including I. As ǫ is arbitrary,

∫
S dψ

′ is defined.

(vi) All this has been on the assumption that S was full. But for the general case, we can take

the covered envelope Ŝ of S and the fully adapted extension ûuu = 〈ûσ〉σ∈Ŝ of uuu to Ŝ (612Q). Setting

ψ̂′(σ, τ) = ûτ − ûσ −med(−χ1, ûτ − ûσ, χ1) when σ ≤ τ in Ŝ, (i)-(v) tell us that
∫
Ŝ dψ̂

′ is defined. And now

we see from 613T that
∫
S dψ

′ is defined.

(vii) In the notation of 613Cc, ψ = ∆uuu − ψ′. Because uuu is moderately oscillatory, u↓ = limσ↓S uσ is
defined (615Gb) so

∫
S duuu is defined (613N) and

∫
S dψ is defined.

(d)(i) As observed in 613O(b-i), www = 〈wσ〉σ∈S = 〈
∫
S∧σ dψ〉σ∈S and www′ = 〈w′

σ〉σ∈S = 〈
∫
S∧σ dψ

′〉σ∈S are
well-defined, while

uuu = u↓1+ 〈
∫
S∧σ

duuu〉σ∈S = u↓1+www +www′.

Set A = {SI(1, d|ψ
′|) : I ∈ I(S)}.

(ii) Let ǫ > 0. Then there is a process vvv = 〈vσ〉σ∈S of bounded variation such that θ(sup |uuu−vvv|) ≤
1

3
ǫ.

Set b = [[sup |vvv − uuu| ≤ 1
3 ]]; then µ̄b ≥ 1− ǫ. If σ ≤ τ in S, then

|ψ′(σ, τ)| × χb ≤ |uτ − uσ| × χ(b ∩ [[|uτ − uσ| > 1]])

≤ (|vτ − vσ|+
2

3
χ1)× χ[[|vτ − vσ| >

1
3 ]] ≤ 3|vτ − vσ|.

So
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SI(1, d|ψ
′|)× χb ≤ 3SI(1, |dvvv|) ≤ 3

∫
S
|dvvv|

for every I ∈ I(S), and {x× χb : x ∈ A} is bounded above in L0. As ǫ is arbitrary, A is bounded above in
L0 (613B(p-i)). Set z̄ = supA.

(iii) If τ0 ≤ . . . ≤ τn in S,
∑n−1
i=0 |w′

τi+1
− w′

τi | ≤ z̄. PPP Take ǫ > 0. Then for each i < n there is a

Ji ∈ I(S ∩ [τi, τi+1], containing τi and τi+1, such that θ(zi) ≤
ǫ
n where

zi = |

∫

S∩[τi,τi+1]

dψ′ − SJi(1, dψ
′)|

= |w′
τi+1

− w′
τi − SJi(1, dψ

′)| ≥ |w′
τi+1

− w′
τi | − |SJi(1, dψ

′)|

Now

|w′
τi+1

− w′
τi | ≤ zi + |SJi(1, dψ

′)| ≤ zi + SJi(1, |dψ
′|)

for each i. Setting I =
⋃
i<n Ji,

∑n−1
i=0 |w′

τi+1
− w′

τi | ≤ SI(1, |dψ
′|) +

∑n−1
i=0 zi ≤ z̄ +

∑n−1
i=0 zi

while θ(
∑n−1
i=0 zi) ≤ ǫ. As ǫ is arbitrary,

∑n−1
i=0 |w′

τi+1
− w′

τi | ≤ z̄. QQQ

As τ0, . . . , τn are arbitrary, www′ is of bounded variation.

(iv) In particular, www′ is moderately oscillatory, so www = uuu− u↓1−www′ is moderately oscillatory.

(e) Now the arguments of (a)-(d) apply equally to the fully adapted extension ûuu of uuu to Ŝ and the

associated strictly adapted interval function ψ̂, which must be the adapted extension of ψ to Ŝ2↑. The

corresponding indefinite integral ŵww = iiψ̂(1) = 〈
∫
Ŝ∧τ dψ̂〉τ∈Ŝ extends www (613T) so must be the fully adapted

extension of uuu to Ŝ. Now Osclln(www) = Osclln(ŵww) (618La) and Osclln(ŵww) is at most Osclln(ψ̂) (618Pc), which
is at most χ1, as can be seen directly from the formulae in 618O.

(f) We know that wτ ′ −wτ =
∫
S∩[τ,τ ′]

dψ (613J(c-i)). Now ψ(σ, σ′) ∈ L0(Dτ ) for every (σ, σ′) ∈ (S∨τ)2↑,

so SI(1, dψ) ∈ L0(Dτ ) for every I ∈ I(S∨τ). As L0(Dτ ) is closed for the topology of convergence in measure
(613B(i-i)), wτ ′ − wτ = limI↑I(S∩[τ,τ ′]) SI(1, dψ) belongs to L

0(Dτ ).

(g) Let ǫ > 0. Then there is a simple process vvv = 〈vσ〉σ∈S such that θ(sup |uuu − vvv|) ≤ 1
2ǫ. Set d =

[[sup |uuu− vvv| > 1
2 ]]; then µ̄d ≤ ǫ. Let (τ0, . . . , τn) be a breakpoint string for vvv, and consider the simple process

zzz = 〈zσ〉σ∈S define by saying that if σ ∈ S then

[[σ < τ0]] ⊆ [[zσ = 0]], [[τn ≤ σ]] ⊆ [[zσ = wτn ]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[zσ = wτi ]] for i < n.

Now [[www 6= zzz]] ⊆ d. PPP Take τ ∈ S and write a for [[wτ 6= zτ ]]. Then

a ∩ [[τ < τ0]] = [[wτ 6= 0]] ∩ [[τ < τ0]] ⊆ sup{[[ψ(σ, σ′) 6= 0]] ∩ [[τ < τ0]] : σ ≤ σ′ ≤ τ}

⊆ sup{[[ψ(σ, σ′) 6= 0]] ∩ [[σ < τ0]] ∩ [[σ′ < τ0]] : σ ≤ σ′}

⊆ sup{[[|uσ′ − uσ| > 1]] ∩ [[vσ = vσ′ ]] : σ, σ′ ∈ S}

⊆ sup{[[|uσ − vσ| >
1
2 ]] : σ ∈ S} = d;

a ∩ [[τn ≤ τ ]] = [[wτ∨τn 6= wτn ]] ⊆ sup{[[ψ(σ, σ′) 6= 0]] : τn ≤ σ ≤ σ′ ≤ τ ∨ τn}

⊆ sup{[[|uσ′ − uσ| > 1]] ∩ [[τn ≤ σ]] ∩ [[τn ≤ σ′]] : σ ≤ σ′}

⊆ sup{[[|uσ − vσ| >
1
2 ]] : σ ∈ S} = d;

and for i < n
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a ∩ [[τi ≤ τ ]] ∩ [[τ < τi+1]] = [[wτ∨τi 6= wτi ]] ∩ [[τ < τi+1]]

⊆ sup{[[ψ(σ, σ′) 6= 0]] ∩ [[σ′ < τi+1]] : τi ≤ σ ≤ σ′}

⊆ sup{[[|uσ′ − uσ| > 1]] ∩ [[σ′ < τi+1]] : τi ≤ σ ≤ σ′}

⊆ sup{[[|uσ − vσ| >
1
2 ]] : σ ∈ S} = d.

Thus in fact a ⊆ d; as τ is arbitrary, [[www 6= zzz]] ⊆ d. QQQ
Now θ(www − zzz) ≤ µ̄d ≤ ǫ. As ǫ is arbitrary, www is near-simple.

*633N Lemma Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such
that inf A ∈ S whenever A ⊆ S is non-empty and has a lower bound in S, and uuu = 〈uσ〉σ∈S a near-simple
process. As in 633M, set

ψ(σ, τ) = med(−χ1, uτ − uσ, χ1)

when σ ≤ τ in S. Let S ′ be a cofinal sublattice of S which separates S. Then
∫
S′ dψ =

∫
S dψ.

proof We can use the arguments of 633I-633K.

(a) To begin with, suppose that S ′ is finitely full. The point is that if σ ≤ τ ≤ τ ′ then |ψ(σ, τ ′)−ψ(σ, τ)| ≤
|uτ ′−uτ | (633M(b-ii)). Let S ′ be the finitely covered envelope of S0. If τ ∈ S, Aτ = S ′∩(T ∨τ) is downwards-
directed with infimum τ (633Eb) and limσ↓Aτ

uσ = uτ (632E); as T ∨ τ is order-convex, therefore finitely
full (611Pc), Aτ is finitely full (611Pb), and

lim
τ ′↓Aτ

sup
σ∈S∧τ

ρ∈S′∩[τ,τ ′]

|ψ(σ, ρ)− ψ(σ, τ)| = lim
τ ′↓Aτ

sup
ρ∈Aτ∧τ ′

|uρ − uτ | = 0

by 615Db.
Now we know from 633Mc that z =

∫
S dψ is defined. Let ǫ > 0. Let J ∈ I(S) be such that θ(z −

SK(1, dψ)) ≤ ǫ whenever J ⊆ K ∈ I(S). For each τ ∈ J , let στ ∈ Aτ be such that θ(ūτ ) ≤
ǫ

1+#(J)
where

ūτ = supσ∈S∧τ,ρ∈S′∩[τ,τ ′] |ψ(σ, ρ)− ψ(σ, τ)|.

If I ∈ I(S ′) contains στ for every τ ∈ J , consider K = I ⊔ J . By the choice of J , θ(SK(1, dψ)− z) ≤ ǫ. By
633I, |SK(1, dψ)− SI(1, dψ)| ≤ 2

∑
τ∈J ūτ and θ(SK(1, dψ)− SI(1, dψ)) ≤ 2ǫ. But now

θ(z − SI(1, dψ)) ≤ θ(z − SK(1, dψ)) + θ(SK(1, dψ)− SI(1, dψ))

≤ ǫ+ 2ǫ = 3ǫ.

As ǫ is arbitrary,
∫
S′ dψ is defined and equal to z.

(b) In general, writing Ŝ ′
f for the finitely-covered envelope of S, Ŝ ′

f is a cofinal finitely full sublattice of

S which separates S, so
∫
Ŝ′
f

dψ = z. But now 613T tells us that
∫
S′ dψ = z.

633O Proposition Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T
such that inf A ∈ S for every non-empty A ⊆ S with a lower bound in S, uuu = 〈uσ〉σ∈S an order-bounded
locally near-simple process, and S ′ a sublattice of S which is cofinal and coinitial with S and uuu-separates S.
Write uuu′ for uuu↾S ′.

(a) Osclln(uuu) = Osclln(uuu′).
(b) uuu is jump-free iff uuu′ is jump-free.

proof This is trivial if S is empty; suppose otherwise. Of course S ′ must also be non-empty.

(a)(i) If Ŝ ′
f is the finitely-covered envelope of S ′, then Ŝ ′

f ⊆ S, and of course Ŝ ′
f is cofinal with S and

uuu-separates S. Since Osclln(uuu′) = Osclln(uuu↾Ŝ ′
f ) (618L), it is enough to consider the case in which S ′ itself

is finitely full.
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For τ ∈ S, set Aτ = {σ : τ ≤ σ ∈ S ′} and τ# = inf Aτ , so that τ# ∈ S, uτ# = uτ (633Ec) and
(because 〈At〉t∈T is right-continuous and uuu is locally near-simple) uτ = limσ↓Aτ

uσ. In fact, uuu is constant on
S ∩ [τ, τ#]. PPP If τ ′ ∈ S ∩ [τ, τ#] then Aτ ′ = Aτ so uτ ′ = limσ↓Aτ

uσ = uτ . QQQ

(ii) If I ∈ I(S ′) is non-empty then Osclln∗I(uuu) ≤ Osclln∗I(uuu
′). PPP Let σ0 ≤ . . . ≤ σn linearly generate

the I-cells, and set σ−1 = min T , σn+1 = max T . Write w for Osclln∗I(uuu
′). ??? Suppose that −1 ≤ i ≤ n, τ ,

τ ′ ∈ S and σi ≤ τ ≤ τ ′ ≤ σi+1, |uτ − uτ ′ | 6≤ w. Writing Aτ ′ ∧ σi+1 for {σ ∧ σi+1 : σ ∈ Aτ ′}, Aτ ′ ∧ σi+1 is a
coinitial subset of Aτ ′ , so uτ ′ = limσ↓Aτ′∧σi+1

uσ and there is a σ′ ∈ S ′ ∩ [τ ′, σi+1] such that |uσ′ − uτ | 6≤ w.
Similarly, there is a σ ∈ S ′ ∩ [τ, σ′] such that |uσ′ − uσ| 6≤ w. But now σi ≤ σ ≤ σ′ ≤ σi+1, so 618B(b-iv)
and 618Ca tell us that

|uσ′ − uσ| ≤ Osclln∗I(uuu
′) = w. XXX

Thus |uτ − uτ ′ | ≤ w whenever −1 ≤ i ≤ n, τ , τ ′ ∈ S and σi ≤ τ ≤ τ ′ ≤ σi+1. By 618Ca in the other
direction, Osclln∗I(uuu) ≤ w. QQQ

Accordingly

Osclln(uuu) = inf
I∈I(S)

Osclln∗I(uuu) ≤ inf
I∈I(S′)\{∅}

Osclln∗I(uuu)

≤ inf
I∈I(S′)\{∅}

Osclln∗I(uuu
′) = lim

I↑I(S′)
Osclln∗I(uuu

′) = Osclln(uuu′).

(iii)(ααα) Take ǫ > 0, a non-empty I ∈ I(S) and (τ0, . . . , τn) linearly generating the I-cells. Set
τ−1 = min T and τn+1 = max T .

(βββ) We know that uuu is locally moderately oscillatory (631Ca). So we can choose σn ≥ . . . ≥ σ0,

in that order, such that σi ∈ Aτi and θ(sup{|uσ′ − uτi | : σ
′ ∈ Aτi , σ

′ ≤ σi}) ≤
ǫ

n+1
for each i (apply

615Gb to uuu↾S ∧ (σ∗ ∧ infi<j≤n σj) where σ
∗ ∈ Aτn). Set wi = supσ′∈Aτi

,σ′≤σi
|uσ′ − uτi | for 0 ≤ i ≤ n and

w = sup0≤i≤n wi, so that θ(w) ≤ ǫ. Set K = {σ0, . . . , σn} ∈ I(S ′).
Set σ−1 = min T and σn+1 = max T . If 0 ≤ i ≤ n + 1, σ ∈ S ′ and σ ≤ σi then |uσ − uσ∧τi | ≤ w. PPP If

i = n+ 1 this is trivial. If i ≤ n, then [[τi ≤ σ]] ∈ Aσ ⊆ Aσi
so we can define σ′ ∈ T by saying that

[[τi ≤ σ]] ⊆ [[σ′ = σ]], [[σ < τi]] ⊆ [[σ′ = σi]]

(611I). Because S ′ is finitely full, σ′ ∈ S ′, while of course τi ≤ σ′, so σ′ ∈ Aτi . Now

|uσ − uσ∧τi | = |uσ∨τi − uτi |

(612D(f-i))

= |uσ − uτi | × χ[[τi ≤ σ]] ≤ |uσ′ − uτi | ≤ wi ≤ w. QQQ

Now suppose that −1 ≤ i ≤ n and σ, σ′ ∈ S ′ are such that σi ≤ σ ≤ σ′ ≤ σi+1. Then τi ≤ σ ∧ τi+1 ≤
σ′ ∧ τi+1 ≤ τi+1. So

|uσ′ − uσ| ≤ |uσ′ − uσ′∧τi+1
|+ |uσ′∧τi+1

− uσ∧τi+1
|+ |uσ∧τi+1

− uσ|

≤ Osclln∗I(uuu) + 2w

(using 618Ca again). Taking the supremum over i, σ and σ′ and applying 618Ca in the other direction,

Osclln(uuu′) ≤ Osclln∗K(uuu′) ≤ Osclln∗I(uuu) + 2w

and

θ((Osclln(uuu′)−Osclln∗I(uuu))
+) ≤ θ(2w) ≤ 2ǫ.

(γγγ) As ǫ is arbitrary, θ((Osclln(uuu′)−Osclln∗I(uuu))
+) = 0 and Osclln(uuu′) ≤ Osclln∗I(uuu). As I is arbitrary,

Osclln(uuu′) ≤ Osclln(uuu). With (ii) above, this shows that Osclln(uuu) = Osclln(uuu′).

(b) In particular, Osclln(uuu) = 0 iff Osclln(uuu′) = 0, that is, uuu is jump-free iff uuu′ is jump-free.
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633P 633K is an attempt to reproduce the success of 613T for sublattices which are separating rather
than covering. We can try to follow other results about covering envelopes in the same way.

Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be a finitely full sublattice of T such that
inf A ∈ S for every non-empty A ⊆ S with a lower bound in S, S ′ a sublattice of S which is cofinal and
coinitial with S and separates S, and uuu = 〈uσ〉σ∈S a locally near-simple fully adapted process. Write uuu′ for
uuu↾S ′.

(a) If uuu′ is simple then uuu is simple.
(b) If uuu′ is near-simple then uuu is near-simple.
(c) uuu is order-bounded iff uuu′ is order-bounded.
(d) uuu is (locally) of bounded variation iff uuu′ is (locally) of bounded variation.
(e) uuu is an integrator iff uuu′ is an integrator.
(f) uuu is a martingale iff uuu′ is a martingale.
(g) If uuu′ is a local martingale then uuu is a local martingale.
(h) Suppose that uuu′ is a local integrator. Then uuu is a local integrator and the quadratic variation of uuu′ is

uuu∗↾S ′, where uuu∗ is the quadratic variation of uuu.

proof Throughout the proof, write Ŝ ′
f for the finitely-covered envelope of S ′, so that Ŝ ′

f ⊆ S. For τ ∈ S,

set Aτ = {σ : τ ≤ σ ∈ Ŝ ′
f}, so that inf Aτ = τ (633Eb) and (because 〈At〉t∈T is right-continuous and uuu

is locally near-simple) uτ = limσ↓Aτ
uσ (632F once more). Everything is trivial if S ′ is empty, so I shall

suppose otherwise.

(a) By 612Qf, uuu↾Ŝ ′
f is simple. We have a starting value u∗ and breakpoint string (τ0, . . . , τn) for uuu↾Ŝ

′
f .

Because S ′ is coinitial with S,
⋂
σ∈Ŝ′

f
Aσ =

⋂
σ∈S Aσ and u∗ ∈ L0(

⋂
σ∈S Aσ). By 612Ka, there is a simple

fully adapted process vvv = 〈vτ 〉τ∈S defined by saying that

[[vτ = u∗]] ⊇ [[τ < τ0]], [[vτ = uτn ]] ⊇ [[τn ≤ τ ]],

[[vτ = uτi ]] ⊇ [[τi ≤ τ ]] ∩ [[τ < τi+1]] for i < n

for every τ ∈ S. Evidently vvv extends uuu↾Ŝ ′
f . Because 〈At〉t∈T is right-continuous,

vτ = limσ↓Aτ
vσ = limσ↓Aτ

uσ = uτ

for every τ ∈ S (632F yet again), and uuu = vvv is simple.

(b) By 631Ga, uuu↾Ŝ ′
f is near-simple, because the covered envelopes of S ′ and Ŝ ′

f are the same. Let ǫ > 0.

Then there is a simple process uuu′ = 〈u′σ〉σ∈Ŝ′
f
such that θ(ū) ≤ ǫ, where ū = supσ∈Ŝ′

f
|uσ − u′σ|. As in (a)

just above, we have a simple process vvv = 〈vτ 〉τ∈S extending uuu′. Now if τ ∈ S,

|uτ − vτ | = limσ↓Aτ
|uσ − vσ| = limσ↓Aτ

|uσ − u′σ| ≤ ū

because Aτ ⊆ Ŝ ′
f . Thus

θ(supτ∈S |uτ − vτ |) = θ(ū) ≤ ǫ.

As ǫ is arbitrary, uuu is near-simple.

(c) If uuu is order-bounded then uuu′ is certainly order-bounded, by 614Fa. If uuu′ is order-bounded, so is its
fully adapted extension ûuu = 〈û′σ〉σ∈Ŝ′ to the covered envelope of S ′ (614G(b-i)). Writing ū for sup |ûuu′|,

|uτ | = limσ↓Aτ
|uσ| ≤ ū

for every τ ∈ S, so uuu is order-bounded.

(d)(i) If uuu is (locally) of bounded variation then uuu′ is (locally) of bounded variation by 614Lb and
614Q(b-i).

(ii)(ααα) If uuu′ is of bounded variation, so is uuu↾Ŝ ′
f , by 614Lb; set z =

∫
Ŝ′
f

|duuu|. Suppose that τ0 ≤ . . . ≤ τn

in S and ǫ > 0. Then there are σi ∈ Aτi , for i ≤ n, such that θ(uσ − uτi) ≤ ǫ whenever σ ∈ Aτi and σ ≤ σi.
Set σ′

i = infi≤j≤n σj for i ≤ n; then σ′
i ∈ Aτi and σ′

i ≤ σi for each i, and σ
′
0 ≤ . . . ≤ σ′

n. Now
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θ((

n−1∑

i=0

|uτi+1
− uτi | − z)+) ≤ θ((

n−1∑

i=0

|uσ′
i+1

− uσ′
i
| − z)+) + 2

n∑

i=0

θ(uσ′
i
− uτi)

≤ 2(n+ 1)ǫ.

As ǫ is arbitrary,
∑n−1
i=0 |uτi+1

− uτi | ≤ z. As τ0, . . . , τn are arbitrary, uuu is of bounded variation.

(βββ) If uuu′ is locally of bounded variation, and τ ∈ S, take σ ∈ S ′ such that τ ≤ σ, and consider
S ∧ σ and S ′ ∧ σ. Evidently S ∧ σ is a finitely full sublattice of T such that inf A ∈ S ∧ σ whenever
A ⊆ S ∧ σ is non-empty and has a lower bound in S ∧ σ, and S ′ ∧ σ separates S ∧ σ by 633C(b-iii), while
(uuu↾S ∧ σ)↾(S ′ ∧ σ) = uuu′↾S ′ ∧ σ is of bounded variation. So (α) tells us that uuu↾S ∧ σ is of bounded variation.
It follows at once that uuu↾S ∧ τ is of bounded variation; as τ is arbitrary, uuu is locally of bounded variation.

(e)(i) By 616P(b-ii), uuu′ is surely an integrator if uuu is. So let us suppose that uuu′ is an integrator and seek
to show that uuu is.

(ii) By 616Ia, uuu↾Ŝ ′
f is an integrator. Now QS(duuu) ⊆ QŜ′

f
(duuu). PPP Take w ∈ QS(duuu) and ǫ > 0.

There are τ0 ≤ . . . ≤ τn in S and vi ∈ L∞(Aτi), for i < n, such that ‖vi‖∞ ≤ 1 for every i and w =
∑n−1
i=0 vi × (uτi+1

− uτi). For i ≤ n there is a σi ∈ Aτi such that θ(uσ − uτi) ≤
ǫ

n+1
whenever σ ∈ Aτi and

σ ≤ σi. Set σ′
i = infi≤j≤n σj for i ≤ n, so that σ′

0 ≤ . . . ≤ σ′
n, while τi ≤ σ′

i ∈ Ŝ ′
f and θ(uσ′

i
− uτi) ≤

ǫ

n+1

for each i.
Because τi ≤ σ′

i, Aτi ⊆ Aσ′
i
and vi ∈ L∞(Aσ′

i
) for each i. By 616C(ii), w′ =

∑n
i=0 vi × (uσ′

i+1
− uσ′

i
)

belongs to QŜ′
f
(duuu). But

θ(w − w′) = θ(|w − w′|) ≤ θ(

n−1∑

i=0

|vi| × (|uτi+1
− uσ′

i+1
|+ |uτi − uσ′

i
|))

≤ θ(2
n∑

i=0

|uτi − uσ′
i
|) ≤ 2

n∑

i=0

θ(|uτi − uσ′
i
|) ≤ 2ǫ.

As ǫ and w are arbitrary, QS(duuu) ⊆ QŜ′
f
(duuu). QQQ

As the closure of a topologically bounded set is topologically bounded, QS(duuu) is topologically bounded.

(f)(i) If uuu is a martingale then of course uuu′ is a martingale (622Db).

(ii) If uuu′ is a martingale then there is a martingale vvv = 〈vτ 〉τ∈S1
extending uuu′, where S1 is the ideal of

T generated by S ′ (622Oa). Since S ′ is cofinal with S, S ⊆ S1 and vvv↾S is a martingale, while vvv agrees with

uuu on S ′ and therefore on Ŝ ′
f .

If τ ∈ S, then S ∨ τ is a finitely full sublattice of T containing inf A whenever A ⊆ S ∨ τ is non-empty.
so vvv↾S ∨ τ is locally near-simple (632Ia). By 632F, as always,

vτ = limσ↓Aτ
vσ = limσ↓Aτ

uσ = uτ .

So uuu = vvv↾S is a martingale.

(g) If uuu′ is a local martingale, there is a covering ideal S ′
1 of S ′ such that uuu′↾S ′

1 is a martingale. Let S1

be the ideal of S generated by S ′
1. Then S1 covers S ′ which is cofinal with S, so S1 covers S. By 633C(b-ii),

S ′
1 separates S1. Also S1 is a finitely full sublattice of T such that inf A ∈ S1 for every non-empty A ⊆ S1

with a lower bound in S1, while uuu↾S1 is locally near-simple (631Gb, since S1 and S have the same covered
envelope). Moreover, S ′

1 is cofinal and coinitial with S1. Since uuu↾S ′
1 = uuu′↾S ′

1 is a martingale, (f) tells us
that uuu↾S1 is a martingale, so that uuu is a local martingale.

(h) We have to check that (e) still works in a ‘local’ form. The point is that if τ ∈ S ′ then S ′∧τ separates
S ∧ τ (633C(b-iii)). So if uuu′ is a local integrator and τ ∈ S, there is a τ ′ ∈ S ′ such that τ ≤ τ ′, and now
uuu↾S ∧ τ ′ is an integrator because uuu′↾S ′ ∧ τ ′ is an integrator; by 616P(b-ii), uuu↾S ∧ τ = (uuu↾S ∧ τ ′)↾S ∧ τ is an
integrator. As τ is arbitrary, uuu is a local integrator.
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If τ ∈ S ′, then S ′ ∧ τ separates S ∧ τ and therefore uuu-separates S ∧ τ ; and of course S ′ ∧ τ is cofinal and
coinitial with S ∧ τ . Setting u↓ = limσ↓S uσ, this is also limσ↓S′ uσ because S ′ is coinitial with S. So

u∗τ = u2τ − u2↓ − 2
∫
S∧τ

uuu duuu = u2τ − u2↓ − 2
∫
S′∧τ

uuu duuu

(633Ka). As τ is arbitrary, uuu∗↾S ′ is the quadratic variation of uuu′.

633S Proposition Suppose that 〈At〉t∈T is right-continuous. Let S ⊆ T be a finitely full sublattice such
that inf A ∈ S whenever A ⊆ S is non-empty and has a lower bound in S, and A a subset of S.

(a) If vvv = 〈vσ〉σ∈S is fully adapted and whenever σ ≤ τ in S and vσ 6= vτ there is a ρ ∈ A such that
[[σ ≤ ρ]] ∩ [[ρ < τ ]] 6= 0, then A vvv-separates S.

(b) If whenever σ ≤ τ in S and [[σ < τ ]] 6= 0 there is a ρ ∈ A such that [[σ ≤ ρ]] ∩ [[ρ < τ ]] 6= 0, then A
separates S.

proof (a)(i) If A is empty then vvv is constant and the result is trivial, so suppose otherwise. For ρ ∈ A set
bρ = [[σ ≤ ρ]] ∩ [[ρ < τ ]]. Then bρ ⊆ [[σ ∧ τ ≤ ρ]] ∩ [[ρ ≤ τ ]] and bρ ∈ Aρ so bρ ∈ Aτ . There is therefore a ρ

′ ∈ T
such that bρ ⊆ [[ρ′ = ρ]] and 1 \ bρ ⊆ [[ρ′ = τ ]]. Because S is finitely full, ρ′ ∈ S. We see that σ ∧ τ ≤ ρ′ ≤ τ ,
and that bρ = [[ρ′ < τ ]].

(ii) Set τ ′ = inf A. By hypothesis, τ ′ ∈ S, and σ ∧ τ ≤ τ ′ ≤ τ . By 632C(a-ii), [[τ ′ < τ ]] =
supρ∈A [[ρ′ < τ ]] = supρ∈A bρ.

??? If vτ ′ 6= vσ∧τ , there is a ρ ∈ A such that c = [[σ ∧ τ ≤ ρ]] ∩ [[ρ < τ ′]] is non-zero. As τ ′ ≤ τ ,
c ⊆ bρ ⊆ [[ρ = ρ′]] ⊆ [[τ ′ ≤ ρ]]; but this is impossible. XXX

(iii) Thus vτ ′ = vσ∧τ and

[[vσ 6= vτ ]] ∩ [[σ < τ ]] ⊆ [[vσ∧τ 6= vτ ]] ⊆ [[vτ ′ 6= vτ ]]

⊆ τ ′ < τ = sup
ρ∈A

bρ.

As σ and τ are arbitrary, A separates S.

(b) This now follows from 633Ce.

633Q Continuous time Using some of the ideas above, we can build stochastic integration structures
in which no time is isolated on the right.

Proposition Let (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) be a right-continuous stochastic integration structure. Then
there are a right-continuous stochastic integration structure (A, µ̄, T ′′′, 〈Ar〉r∈T ′′′ , T ′′′, 〈Aρ〉ρ∈T ′′′), based on the
same probability algebra (A, µ̄), and a lattice homomorphism σ 7→ σ′′′ : T → T ′′′ such that

T ′′′ has no points isolated on the right,
Aσ′′′ = Aσ and [[σ′′′ < τ ′′′]] = [[σ < τ ]] for all σ, τ ∈ T ,
for every ρ ∈ T ′′′ there is a σ ∈ T such that σ′′′ ≤ ρ and Aσ = Aρ.

Construction (a) It will be enough to deal with the case in which T is disjoint from T ′′′ = T × [0, 1[. Give
T ′′′ its lexicographic ordering. Then T ′′′ is a non-empty totally ordered set with no points isolated on the
right. For t ∈ T and α ∈ [0, 1[ set A(t,α) = At. Then 〈Ar〉r∈T ′′′ is a right-continuous filtration of closed
subalgebras. Let (A, µ̄, T ′′′, 〈Ar〉r∈T ′′′ , T ′′′, 〈Aρ〉ρ∈T ′′′) be the corresponding stochastic integration structure.

Note that T ⊆ A
T and and T ′′′ ⊆ A

T ′′′

are disjoint.

(b) For σ ∈ T , define σ′′′ ∈ T ′′′ by setting

[[σ′′′ > (t, α)]] = [[σ > t]]

whenever t ∈ T and α ∈ [0, 1[. Then σ 7→ σ′′′ : T → T ′′′ is a lattice homomorphism, and (min T )′′′ = min T ′′′,
(max T )′′′ = max T ′′′ (use the formulae in 611C). If σ, τ ∈ T ,

[[σ′′′ < τ ′′′]] = sup
t∈T,α∈[0,1[

[[τ ′′′ > (t, α)]] \ [[σ′′′ > (t, α)]]

= sup
t∈T

[[τ > t]] \ [[σ > t]] = [[σ < τ ]].
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Consequently [[σ′′′ ≤ τ ′′′]] = [[σ ≤ τ ]] and [[σ′′′ = τ ′′′]] = [[σ = τ ]] for all σ, τ ∈ T . Next, for σ ∈ T ,

Aσ′′′ = {a : a \ [[σ′′′ > (t, α)]] ∈ A(t,α) whenever t ∈ T and α ∈ [0, 1[}

= {a : a \ [[σ > t]] ∈ At whenever t ∈ T} = Aσ.

If t ∈ T and ť ∈ T is the constant stopping time at t, and (s, β) ∈ T ′′′, then

[[ť′′′ > (s, β)]] = [[ť > s]]

= 1 if s < t, that is, if (s, β) < (t, 0),

= 0 if s ≥ t, that is, if (t, 0) ≤ (s, β).

So ť′′′ ∈ T ′′′ is the constant stopping time at (t, 0).

(c) Consider the set

S = {ρ : ρ ∈ T ′′′ and there is a σ ∈ T such that σ′′′ ≤ ρ and Aσ = Aρ}.

(i) The constant stopping time ř belongs to S for every r ∈ T ′′′. PPP If r = (t, α), then r ≥ (t, 0) so
ř ≥ (t, 0)̌ = ť′′′, while Ať = At = A(t,α) = Ar. QQQ And of course max T ′′′ = (max T )′′′ belongs to S (see
611Xb).

(ii) S is finitely full. PPP If ρ ∈ T ′′′ and there is a finite set J ⊆ S such that supρ′∈J [[ρ
′ = ρ]] = 1, we may

take it that J is a sublattice of S. Taking (ρ0, . . . , ρn) linearly generating the J-cells, we have ρ0 ≤ . . . ≤ ρn
and supi≤n ai = 1 where ai = [[ρi = ρ]] for i ≤ n. Set bi = ai \ supj<i aj for i ≤ n; then bi ∈ Aρi and
bi ⊆ [[ρi = ρ]] for each i, while 〈bi〉i≤n is a partition of unity in A.

For each i ≤ n, let σi ∈ T be such that σ′′′
i ≤ ρi and Aσi

= Aρi . As bi ∈ Aσi
for each i, there is a σ ∈ T

such that bi ⊆ [[σ = σi]] for each i (611I yet again). Now

bi ⊆ [[σ = σi]] ∩ [[ρi = ρ]] = [[σ′′′ = σ′′′
i ]] ∩ [[σ′′′

i ≤ ρi]] ∩ [[ρi = ρ]] ⊆ [[σ′′′ ≤ ρ]]

for each i, so σ′′′ ≤ ρ. Thus ρ ∈ S; as ρ is arbitrary, S is finitely full. QQQ

(iii) inf A ∈ S for every non-empty A ⊆ S. PPP Set

B = {σ : σ ∈ T and there is a ρ ∈ A such that Aσ = Aρ}, τ = inf B.

Then for every ρ ∈ A there is a σ ∈ B such that σ′′′ ≤ ρ and Aσ = Aρ, in which case τ ′′′ ≤ σ′′′ ≤ ρ. Accordingly
τ ′′′ ≤ inf A. On the other hand, because 〈At〉t∈T and 〈Ar〉r∈T ′′′ are both right-continuous, 632C(a-iii) tells us
that

Aτ =
⋂
σ∈B Aσ ⊇

⋂
ρ∈A Aρ = Ainf A ⊇ Aτ ′′′ = Aτ

as observed in (b). So τ witnesses that inf A ∈ S. QQQ

(iv) Consequently S = T ′′′. PPP By (i), S separates T ′′′ and is cofinal with T ′′′; by (ii), S is equal to its
finitely-covered envelope. So 633E tells us that if ρ ∈ T ′′′ there is a non-empty A ⊆ S such that inf A = ρ
and ρ ∈ S. QQQ

Thus we have a suitable stochastic integration structure (A, µ̄, T ′′′, 〈Ar〉r∈T ′′′ , T ′′′, 〈Aρ〉ρ∈T ′′′).

633R Theorem If (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a real-time stochastic integration structure and
uuu ∈Mln-s(Tf ), then uuu can be represented by a process with càdlàg sample paths as in Theorem 631D.

proof Express uuu as 〈uσ〉σ∈Tf
.

(a) By 321J, we can suppose that the probability algebra (A, µ̄) is the measure algebra of a complete

probability space (Ω̃, Σ̃, µ̃). Writing Σ̃t = {E : E ∈ Σ̃, E• ∈ At} for t ≥ 0, we have a filtration 〈Σ̃t〉t≥0 of

σ-subalgebras of Σ̃, all containing every µ̃-negligible set. Write Q for Q ∩ [0,∞[, and for q ∈ Q choose a

Σ̃-measurable function X̃q : Ω̃ → R such that its equivalence class X̃•
q in L0(µ̃) ∼= L0(A) is equal to uq̌.

For each n ∈ N, let vvvn = 〈vnσ〉σ∈T ∧ň be a simple process with domain T ∧ ň such that θ(zn) ≤ 4−n,
where zn = supσ∈T ∧ň |uσ − vnσ|, and let (τn0, . . . , τnmn

) be a breakpoint sequence for vvvn starting from

τn0 = 0̌ and ending with τnmn
= ň. Choose stopping times g̃n0, . . . , g̃nmn

, adapted to 〈Σ̃t〉t≥0, representing
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τn0, . . . , τnmn
respectively in the way described in 612Ha, so that {ω : g̃ni(ω) > t}• = [[τni > t]] for every

t ≥ 0 and i ≤ mn. Adjusting the g̃ni on a negligible set if necessary, we can arrange that 0 = g̃n0(ω) ≤

g̃n1(ω) ≤ . . . ≤ g̃nmn
(ω) = n for every ω ∈ Ω̃. Finally, choose a Σ̃-measurable function h̃n : Ω̃ → [0,∞[ such

that h̃•
n = zn in L0(A).

(b) As θ(zn) ≤ 4−n, µ̃{ω : ω ∈ Ω̃, h̃n(ω) ≥ 2−n} ≤ 2−n for every n ∈ N; consequently

F = {ω : ω ∈ Ω̃, lim supn→∞ h̃n(ω) > 0} ⊆
⋂
n∈N

⋃
m≥n{ω : h̃m(ω) ≥ 2−m}

is negligible. Next, for n ∈ N, i < mn and q, q′ ∈ Q such that q ≤ q′ ≤ n, set

Fniqq′ = {ω : ω ∈ Ω̃, g̃niω) ≤ q ≤ q′ < g̃n,i+1(ω), |X̃q′(ω)− X̃q(ω)| > 2h̃n(ω)};

then

F •

niqq′ = [[τni ≤ q̌]] ∩ [[q̌′ < τn,i+1]] ∩ [[|uq̌′ − uq̌| > 2zn]]

⊆ [[|uq̌′ − vnq̌′ | > zn]] ∪ [[|uq̌ − vnq̌| > zn]]

(because [[τni ≤ q̌]] ∩ [[q̌′ < τn,i+1]] ⊆ [[vnq̌′ = vnτni
]] ∩ [[vnq̌ = vnτni

]])

= 0,

so Fniqq′ is negligible. Set

Ω = Ω′ \ (F ∪
⋃
n∈N,i<mn,q,q′∈Q,q≤q′≤n

Fniqq′ ;

then Ω is a conegligible subset of Ω̃.

(c) Fix ω ∈ Ω for the moment.

(i) For every t ≥ 0, limq↓Q∩[t,∞[ X̃q(ω) is defined in R. PPP If ǫ > 0, then (because ω /∈ F ) there

is an n > t such that h̃n(ω) ≤ 1
2ǫ. Since 0 = g̃n0(ω) ≤ . . . ≤ g̃nmn

(ω) = n, there is an i < mn such
that g̃ni(ω) ≤ t < g̃n,i+1(ω). If now q, q′ ∈ Q and t ≤ q ≤ q′ < g̃n,i+1(ω), we know that ω /∈ Fniqq′ so

|X̃q′(ω) − X̃q(ω)| ≤ 2h̃n(ω) ≤ ǫ. As ǫ is arbitrary (and Q is dense in [0,∞[) limq↓Q∩[t,∞[ X̃q(ω) is defined.
QQQ

(ii) Set Xt(ω) = limq↓Q∩[t,∞[ X̃q(ω) for t ≥ 0. Note that Xq(ω) = X̃q(ω) for q ∈ Q.

(iii) 〈Xt(ω)〉t≥0 is càdlàg. PPP We just have to rerun the argument for (i) above. Given t ≥ 0 and ǫ > 0,

there is a t′ = g̃n,i+1(ω) such that t < t′ and |X̃q′(ω)− X̃q(ω)| ≤ ǫ whenever q, q′ ∈ Q and t ≤ q ≤ q′ < t′.
It follows at once that |Xs(ω) − Xt(ω)| ≤ ǫ whenever t ≤ s < t′. As t and ǫ are arbitrary, 〈Xt(ω)〉t≥0 is
càdlàg. QQQ

(d) Because Ω is conegligible in Ω̃ and µ is complete, the subspace σ-algebra Σ = {E ∩Ω : E ∈ Σ} is just
Σ ∩ PΩ, and the subspace measure µ = µ̃↾Σ is a probability measure, with measure algebra isomorphic to
A (322Jb). We can identify L0(µ) with L0(µ̃) (indeed, in the formulations of Chapter 24 L

0(µ) is actually

a subset of L0(µ̃)), and as every Σ̃t contains Ω̃ \Ω, we have a filtration 〈Σt〉t≥0 of σ-subalgebras of Σ given
by the formula

Σt = {E ∩ Ω : E ∈ Σt} = Σt ∩ PΩ

for t ≥ 0. If g̃ : Ω̃ → [0,∞[ is a stopping time adapted to 〈Σ̃t〉t≥0, then g̃↾Ω is a stopping time adapted
to 〈Σt〉t≥0; and conversely, if g : Ω → [0,∞[ is a stopping time adapted to 〈Σt〉t≥0, then any extension of

g to a real-valued function defined on Ω̃ is a stopping time adapted to 〈Σ̃t〉t≥0. What this means is that

(A, µ̄, [0,∞[ , 〈At〉t≥0) is represented by (Ω,Σ, µ, 〈Σt〉t≥0) just as well as by (Ω̃, Σ̃, µ̃, 〈Σ̃t〉t≥0).

(e) Now fix t ≥ 0 for a bit.

(i) The first thing to note is that if t < n ∈ N then vnť = limq↓Q∩[t,∞[ vnq̌ in L0. PPP For any s < n,
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vnš =

mn−1∑

i=0

vnτni
× χ([[τni ≤ š]] ∩ [[š < τn,i+1]])

=

mn−1∑

i=0

vnτni
× (χ[[τn,i+1 > s]]− χ[[τni > s]]).

But

limq↓Q∩[t,∞[ χ[[τni > q]] = χ[[τni > t]]

for all n ∈ N and i ≤ mn, just because [[τni > t]] = sups>t [[τni > s]] (611A(b-i)). So vnť = limq↓Q∩[t,∞[ vnq̌.
QQQ

(ii) It follows that uť = limq↓Q∩[t,∞[ uq̌. PPP If n > t then we have

lim supq↓Q∩[t,∞[ |uq̌ − uť| ≤ 2zn + lim supq↓Q∩[t,∞[ |vnq̌ − vnť| = 2zn,

so

lim supq↓Q∩[t,∞[ |uq̌ − uť| ≤ 2 infn>t zn = 0

and uť = limq↓Q∩[t,∞[ uq̌. QQQ

(iii) Since Q ∩ [t,∞[ is countable, uq̌ = X̃•
q for every q ∈ Q and Xt =a.e. limq↓Q∩[t,∞[ X̃q,

X•
t = limq↓Q∩[t,∞[ X̃

•
q = limq↓Q∩[t,∞[ uq̌ = uť.

As uť ∈ L0(At) and Σt = {E : E ⊆ Ω, E• ∈ At}, Xt is Σt-measurable.

(e) Thus Ω, Σ, µ, 〈Σt〉t≥0 and 〈Xt〉t≥0) satisfy the conditions of 631D, and provide a locally near-simple
process xxx = 〈xσ〉σ∈Tf

in the corresponding stochastic integration structure, which we are identifying with
(A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ). Now uuu and xxx are locally near-simple processes with domain Tf and
uť = X•

t = xť for every t ≥ 0. As {ť : t ≥ 0} separates Tf (633Da) and inft≥0 [[ť < τ ]] = inft≥0 [[τ > t]] = 0
for every τ ∈ Tf , 633F tells us that uuu = xxx. So we have a representation of uuu of the kind we seek.

633X Basic exercises (a) Suppose that 〈At〉t∈T is right-continuous. Let S be a sublattice of T which
separates its order-convex hull S∼, uuu a near-simple process with domain S, and vvv a martingale with domain
S. Show that iivvv(uuu) is a local martingale. (Hint : reduce to the case in which S has a least member. Let vvv∼

be the martingale with domain S∼ extending vvv, and uuu∼ the near-simple process with domain S∼ extending
uuu (use 631Mb). Show that iivvv(uuu) = iivvv∼(uuu

∼)↾S, and apply 623O, 632Ib and 622Dc.)

(b) Suppose that T = [0,∞[, (A, µ̄) is the measure algebra of Lebesgue measure µ on [0, 1], and At = A

for every t ∈ T . Define Xt(ω), for t ∈ T and ω ∈ [0, 1], by setting Xt(ω) =
1

ω−t if ω 6= t, 0 if ω = t. Let

Ť ⊆ T be the set of constant stopping times, so that S = Ť ∪ {max T } is a cofinal and coinitial sublattice
which separates T . Define uuu = 〈uσ〉σ∈S by setting umax T = 0 and uť = X•

t for t ∈ T . (i) Show that
uinf A = limσ↓A uσ and limσ↑A uσ = usupA for every non-empty A ⊆ S. (ii) Show that if we take Σt = domµ
for every t ∈ T , then 〈Xt〉t∈T is progressively measurable, so that we have a natural extension of uuu to a fully
adapted process defined on T , while (A, µ̄, T, 〈At〉t∈T ) is right-continuous. (iii) Show that uuu is not locally
order-bounded.

(c) Show that every subset of T separates its covered envelope.

633Y Further exercises (a) Let (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) be a stochastic integration structure.
Write Tni for {t : t ∈ T is not isolated on the right in T}. Take an injective function t 7→ t+ from T to a set
disjoint from T . Set T+++ = T ∪ {t+ : t ∈ Tni}. On T+++ take the relation

{(s, t) : s, t ∈ T, s ≤ t} ∪ {(s, t+) : s ∈ T, t ∈ Tni, s ≤ t}

∪ {(s+, t) : s ∈ Tni, t ∈ T, s < t} ∪ {(s+, t+) : s, t ∈ Tni, s ≤ t}.
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(i) Show that T+++ is totally ordered. (ii) Set At+ =
⋂
s∈T,s>t As for t ∈ Tni; show that 〈Ar〉r∈T+++ is a right-

continuous filtration of closed subalgebras of A. Let (A, µ̄, T+++, 〈Ar〉r∈T+++ , T +++, 〈Aρ〉ρ∈T +++) be the corresponding
stochastic integration structure. (iii) Show that we have a lattice homomorphism σ 7→ σ+++ : T → T +++ defined
by saying that [[σ+++ > t]] = [[σ > t]] for t ∈ T and [[σ+++ > t+]] = [[σ > t]] for t ∈ Tni. (iv) Show that Aσ+++ = Aσ

and [[σ+++ < τ+++]] = [[σ < τ ]] for all σ, τ ∈ T . (v) Show that {σ+++ : σ ∈ T } separates T +++. (vi) Suppose that
www = 〈wρ〉ρ∈T +++ is a fully adapted process. Show that uuu = 〈wσ+++〉σ∈T is fully adapted, that uuu is a martingale
if www is a martingale, and that Osclln(uuu) ≤ 2Osclln(www) if www is near-simple.

(b) Let (A, µ̄, T+++, 〈Ar〉r∈T+++ , T +++, 〈Aρ〉ρ∈T +++) be the right-continuous version of (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ),
as in 633Ya. Let S be an order-convex sublattice of T and R ⊆ T +++ the order-convex hull of R′ = {σ+++ : σ ∈
S}. (i) Show that R′ separates R. (ii) Suppose that uuu = 〈uσ〉σ∈S is a near-simple process. Show that there
is a near-simple process vvv = 〈vρ〉ρ∈R such that vσ+++ = uσ for every σ ∈ S.

(c) Suppose that (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) is a real-time stochastic integration structure and uuu
is a locally jump-free process with domain Tf . Show that uuu can be represented by a process with continuous
sample paths as in 618H.

(d) Suppose that 〈At〉t∈T is right-continuous. Let S ⊆ T be a finitely full sublattice such that inf A ∈ S
whenever A ⊆ S is non-empty and has a lower bound in S, and S ′ a sublattice of S such that whenever τ ,
τ ′ ∈ S and [[τ < τ ′]] 6= 0 there is a σ ∈ S ′ such that [[τ ≤ σ]] ∩ [[σ < τ ′]] 6= 0. Show that S ′ separates S.

633 Notes and comments This volume began with two sections devoted to the algebra of lattices of
stopping times and fully adapted processes. It would all have been much easier if we could have worked
throughout with totally ordered sets of stopping times. Even for integrals of the form

∫
[š,ť]

, however, this is

inadequate (632Yg). The problem is not so much in the calculation of the integral as in its definition. In
633K-633L we see that if an integral

∫
S uuu dvvv is defined on the rules of §613, and subject to mild conditions

on the processes uuu and vvv, then we can hope to find a totally ordered sublattice S ′ of S such that
∫
S′ uuu dvvv =∫

S uuu dvvv. But the nearest thing to a converse result, in 633Kb, looks at finitely full sublattices S ′, which will
not be totally ordered except in trivial cases.

It is true that we can reduce a Riemann sum SI on an arbitrary finite sublattice I to the corresponding
sum on a totally ordered sublattice I0 of I (613Ec), and in the calculations so far this is what I have done
more often than not. But whenever we want to look at sums SI , SJ on two different sublattices, this method
becomes problematic; there is no reason to suppose that there will be compatible totally ordered sublattices
I0 ⊆ I and J0 ⊆ J which will be suitable. Even when J ⊆ I we have to do some work (633H). What we
want is a totally ordered sublattice of T which will deal with all integrals of interest simultaneously; and
even in the most favourable case (633L), we should have to restrict ourselves to integrals between constant
stopping times, which are inadequate for many of the most important applications of the theory.

I have given a number of results showing that classical stochastic processes, based on probability spaces
and filtrations of σ-algebras, can be associated with processes dealt with in this volume (612H, 615P, 614U,
618H, 632L). I have not spent much time on converses. looking at cases in which a process defined by the
properties considered here can be represented by one of the classical expressions. But in 633R we have a
comfortingly straightforward result which seems entitled to a couple of pages.

Version of 25.1.22/28.9.23

634 Changing the algebra

If (A, µ̄) is a probability algebra with a filtration 〈At〉t∈T and B is a closed subalgebra of A, then we have a
probability algebra (B, µ̄↾B) with a filtration 〈B∩At〉t∈T . In this section I examine elementary connexions
between stochastic calculus in the two structures, with notes on lattices of stopping times (634C) and
stochastic processes (634E). The case in which B and At are relatively independent over their intersection
for every t is particularly important (634F-634I). I end the section with a product construction adapted to
the representation of families of independent stochastic processes (634K-634M) and a worked example on
independent Poisson processes (634N).

c© 2012 D. H. Fremlin
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634A Notation A = (A, µ̄, T, 〈At〉t∈T , TA, 〈Aτ 〉τ∈TA
) will be a stochastic integration structure, and

θ = θµ̄ the usual functional defining the topology of convergence in measure on L0(A), as in 613Ba. If S is
a sublattice of TA, then I(S) is the set of finite sublattices of S.

If B is a closed subalgebra of A, PB : L1
µ̄ → L1

µ̄ ∩ L0(B) will be the conditional expectation associated
with B. For τ ∈ TA, I will write Pτ for PAτ

.
Recall that if B is an order-closed subalgebra of A, we can identify L0(B) with an order-closed f -

subalgebra of L0(A) (612Ae). In particular, a subset of L0(B) is order-bounded in L0(B) iff it is order-
bounded in L0(A). We have L1(B, µ̄↾B) = L0(B) ∩ L1(A, µ̄) = L0(B) ∩ L1

µ̄, and the expectation Eµ̄↾B on

L1(B, µ̄↾B) is just the restriction of E = Eµ̄ to L1(B, µ̄↾B) (see 365Oa4, 365Qa5). Consequently θµ̄↾B =
θµ̄↾L

0(B), and the topology of convergence in measure on L0(B) is the subspace topology induced by the
topology of convergence in measure on L0(A). It will also be useful to note that a subset of L0(B)∩L1(A, µ̄)
is uniformly integrable in L1(B, µ̄↾B) iff it is uniformly integrable in L1

µ̄.
For a family 〈Ck〉k∈K of closed subalgebras of A, I write

∨
k∈K Ck for the closed subalgebra generated by⋃

k∈K Ck. Similarly, for closed subalgebras C, C′ I will write C ∨ C
′ for the closed subalgebra generated by

C∪C
′. (Cf. 458Ad.) Note that as A is ccc (322G), a subalgebra of A is closed iff it is a σ-subalgebra (331G).

634B I begin with a general result on morphisms of the structures here.

Proposition Let B be a Dedekind complete algebra and 〈Bt〉t∈T a filtration of order-closed subalgebras of
B; write TB and 〈Bσ〉σ∈TB

for the associated lattice of stopping times and family of closed subalgebras of B,
as in §611. Suppose that φ : B → A is an order-continuous Boolean homomorphism such that φ[Bt] ⊆ At

for every t ∈ T .

(a) We have a lattice homomorphism φ̂ : TB → TA defined by saying that [[φ̂(σ) > t]] = φ[[σ > t]] for every
σ ∈ TB.

(b)(i) φ̂(min TB) = min TA, φ̂(max TB) = max TA. If t ∈ T and ť is the constant stopping time at t in TB,

then φ̂(ť) is the constant stopping time at t in TA.

(ii) If C ⊆ TB then φ̂(supC) = sup φ̂[C].

(iii) φ̂[TBb] ⊆ TAb and φ̂[TBf ] ⊆ TAf .
(c)(i) If σ, σ′ ∈ TB then

[[φ̂(σ) < φ̂(σ′)]] = φ[[σ < σ′]], [[φ̂(σ) ≤ φ̂(σ′)]] = φ[[σ ≤ σ′]],

[[φ̂(σ) = φ̂(σ′)]] = φ[[σ = σ′]].

(ii) If φ is injective, so is φ̂.
(d) φ[Bσ] ⊆ Aφ̂(σ) for every σ ∈ TB.

(e) If 〈Bt〉t∈T is right-continuous, then φ̂ is order-continuous,
(f) If T = [0,∞[ and we define the identity processes 〈ισ〉σ∈TBf

, 〈ιτ 〉τ∈TAf
as in 612F, then ιφ̂(σ) = Tφισ

for every σ ∈ TBf , where Tφ : L0(B) → L0(A) is the f -algebra homomorphism associated with φ (612Af).

proof (a)(i) If σ ∈ TB, then

φ[[σ > t]] ∈ φ[Bt] ⊆ At for every t ∈ T ,
if s ≤ t then [[σ > t]] ⊆ [[σ > s]] so φ[[σ > t]] ⊆ φ[[σ > s]],
if t ∈ T is not isolated on the right then [[σ > t]] = sups>t [[σ > s]], and because φ is order-

continuous, φ[[σ > t]] = sups>t φ[[σ > s]].

Thus the function t 7→ φ[[σ > t]] satisfies the conditions of 611A(b-i), and defines a member of TA which we

may call φ̂(σ).

(ii) If C ⊆ TB is non-empty, then

[[φ̂(supC) > t]] = φ[[supC > t]] = φ(sup
σ∈C

[[σ > t]])

(611Cb)

4Formerly 365Pa.
5Formerly 365Ra.
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= sup
σ∈C

φ[[σ > t]]

(again because φ is order-continuous)

= sup
σ∈C

[[φ̂(σ) > t]] = [[supσ∈C φ̂(σ) > t]]

for every t ∈ T , so φ̂(supC) = sup φ̂[C]. If σ, σ′ ∈ TB, then

[[φ̂(σ ∧ σ′) > t]] = φ[[σ ∧ σ′ > t]] = φ([[σ > t]] ∩ [[σ′ > t]])

(611Cc)

= φ[[σ > t]] ∩ φ[[σ′ > t]]

= [[φ̂(σ) > t]] ∩ [[φ̂(σ′) > t]] = [[φ̂(σ) ∧ φ̂(σ′) > t]]

for every t ∈ T , and φ̂(σ∧σ′) = φ̂(σ)∧φ̂(σ′). Putting these together, we see that φ̂ is a lattice homomorphism.

(b)(i) Look at the descriptions of max T and min T in 611Cf, and remember that φ0B = 0A and φ1B = 1A.
Concerning constant stopping times, if t ∈ T then

[[φ̂(ť) > s]] = φ[[ť > s]] = φ1B = 1A if s < t,

= φ0B = 0A if s ≥ t,

so φ̂(ť) is the constant stopping time at t in the structure (A, 〈At〉t∈T ).

(ii) This is covered by (a-ii) above.

(iii) Because φ̂ is order-preserving and takes constant stopping times to constant stopping times,

φ̂[TBb] ⊆ TAb. Now if σ ∈ TBf , σ = supt∈T σ ∧ ť, so (ii) tells us that

φ̂(σ) = supt∈T φ̂(σ) ∧ ť

(now interpreting ť as a constant stopping time in TA) and belongs to TAf .

(c)(i) By the definition in 611D

φ[[σ < σ′]] = φ(sup
t∈T

[[σ′ > t]] \ [[σ > t]]) = sup
t∈T

(φ[[σ′ > t]] \ φ[[σ > t]])

= sup
t∈T

([[φ̂(σ′) > t]] \ [[φ̂(σ) > t]]) = [[φ̂(σ) < φ̂(σ′)]].

The other equalities follow at once.

(ii) If φ is injective and σ, σ′ ∈ TB are different, then [[σ = σ′]] 6= 1B so

[[φ̂(σ) = φ̂(σ′)]] = φ[[σ = σ′]] 6= φ(1B) = 1A

and φ̂(σ) 6= φ̂(σ′).

(d) Suppose that b ∈ Bσ. Then for any t ∈ T , b \ [[σ > t]] ∈ Bt, so

φb \ [[φ̂(σ) > t]] = φb \ φ[[σ > t]] = φ(b \ [[σ > t]]) ∈ φ[Bt] ⊆ At.

Thus φb ∈ Aφ̂(σ).

(e) If C ⊆ TB is a non-empty set with has infimum σ∗, set τ∗ = inf φ̂[C]. As φ̂ is order-preserving, φ̂(σ∗)

is a lower bound of φ̂[C] and φ̂(σ∗) ≤ τ∗.
If t ∈ T is isolated on the right, then

[[τ∗ > t]] ⊆ infσ∈C [[φ̂(σ) > t]] = φ(infσ∈C [[σ > t]]) = φ[[σ∗ > t]]

by 632C(a-i). If t ∈ T is not isolated on the right, then
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[[τ∗ > t]] = sup
s>t

[[τ∗ > s]] ⊆ sup
s>t

inf
σ∈C

[[φ̂(σ) > s]]

= φ(sup
s>t

inf
σ∈C

[[σ > s]]) = φ[[σ∗ > t]]

by the other formula in 632C(a-i). So

[[τ∗ > t]] ⊆ φ[[σ∗ > t]] = [[φ̂(σ∗) > t]]

for every t, and τ∗ ≤ φ̂(σ∗). Thus inf φ̂[C] = φ̂(inf C). We know already from (b-ii) that sup φ̂[C] =

supφ(inf C). As C is arbitrary, φ̂ is order-continuous in the sense of 313Ha.

(f) By (b-iii), φ̂(σ) ∈ TAf . Now, for t ∈ R,

[[ιφ̂(σ) > t]] = [[φ̂(σ) > t]] = φ[[σ > t]] = φ[[ισ > t]] = [[Tφισ > t]] if t ≥ 0,

= 1A = φ1B = φ[[ισ > t]] = [[Tφισ > t]] otherwise,

so ιφ̂(σ) = Tφισ.

634C Proposition Suppose that B is an (order-)closed subalgebra of A.
(a) Set Bt = B ∩ At for t ∈ T . Then 〈Bt〉t∈T is a filtration of closed subalgebras of B.
(b) Let TB be the set of stopping times defined from (B, 〈Bt〉t∈T ) by the formula of 611A(b-i).

(i) TB is a sublattice of TA containing min TA, max TA and all constant stopping times.
(ii) If C ⊆ TB is non-empty then its supremum is the same whether calculated in TB or in TA.
(iii) We can identify the order-ideals TBb and TBf of bounded and finite stopping times in TB with

TB ∩ TAb and TB ∩ TAf respectively.
(c) If σ, τ ∈ TB then the regions [[σ < τ ]], [[σ ≤ τ ]] and [[σ = τ ]], when defined by the formulae of 611D

interpreted in either (A, 〈At〉t∈T ) or (B, 〈Bt〉t∈T ), are the same, and belong to B.
(d) If τ ∈ TB, and we define corresponding algebras Aτ and Bτ by the formula of 611G interpreted in

(A, 〈At〉t∈T ), (B, 〈Bt〉t∈T ) respectively, then Bτ = B ∩ Aτ .
(e) Suppose that S is a sublattice of TB.

(i) If ŜA is the covered envelope of S in TA, then ŜA ∩ TB is the covered envelope ŜB of S in TB.
(ii) A family uuu = 〈uσ〉σ∈S in L0(B) is fully adapted to 〈Bt〉t∈T iff it is fully adapted to 〈At〉t∈T .

(iii) If uuu = 〈uσ〉σ∈S is fully adapted to 〈Bt〉t∈T and ûuu is the extension of uuu to ŜA which is fully adapted

to 〈At〉t∈T , then ûuu↾ŜB is the extension of uuu to ŜB which is fully adapted to 〈Bt〉t∈T .
(f) Suppose that 〈At〉t∈T is right-continuous.

(i) 〈Bt〉t∈T is right-continuous.
(ii) TB is order-closed in TA.

(g) If T = [0,∞[ and we write ιιι = 〈ισ〉σ∈TAf
for the identity process in the structure (A, 〈At〉t∈T , TA),

then ιιι↾TBf is the identity process in the structure (B, 〈Bt〉t∈T , TB).

proof (a) Each Bt, being the intersection of order-closed subalgebras of A, is an order-closed subalgebra of
A and therefore an order-closed subalgebra of B. If s ≤ t then As ⊆ At so Bs ⊆ Bt.

We are now in the special case of 634B in which φb = b for every b ∈ B. Consequently φ̂(σ) = σ for

every σ ∈ TB, and TB is actually a subset of TA. Because the identity map φ̂ is a lattice homomorphism
(634B(b-i)), TB is a sublattice of TA.

(b) We just have to adapt 634Bb to this special case, in which TB ⊆ TA and φ̂ is the identity embedding.

(c) Similarly, this is just the form now taken by 634B(c-i).

(d) Going back to the formula in 611G,

Bτ =
⋂

t∈T

{b : b ∈ B, b \ [[τ > t]] ∈ Bt}

=
⋂

t∈T

{b : b ∈ B, b \ [[τ > t]] ∈ B ∩ At} =
⋂

t∈T

{b : b ∈ B, b \ [[τ > t]] ∈ At}

(because [[τ > t]] ∈ B for every t ∈ T )
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= B ∩
⋂

t∈T

{a : a ∈ A, a \ [[τ > t]] ∈ At} = B ∩ Aτ .

(e)(i) If τ ∈ TB, then

τ ∈ ŜA ⇐⇒ supσ∈S [[τ = σ]] = 1 ⇐⇒ τ ∈ ŜB.

So

ŜA ∩ TB = ŜB ∩ TB = ŜB.

(ii) Immediate from 612Da, (c) and (d), if we recall that

L0(B ∩ Aτ ) = L0(B) ∩ L0(Aτ )

for every τ (612A(e-i)).

(iii) The point is that if ûuu = 〈ûτ 〉τ∈ŜA
, then ûτ ∈ L0(B) for every τ ∈ ŜB. PPP If τ ∈ ŜB and α ∈ R then

[[ûτ > α]] = [[ûτ > α]] ∩ sup
σ∈S

[[τ = σ]] = sup
σ∈S

([[ûτ > α]] ∩ [[τ = σ]])

= sup
σ∈S

([[uσ > α]] ∩ [[τ = σ]]) ∈ B.

(Of course I am relying on (c) for assurance that [[τ = σ]] has a consistent interpretation.) QQQ Now (ii) just

above tells us that ûuu↾ŜB is fully adapted to 〈Bt〉t∈T , while it surely extends uuu.

(f)(i) Look at the definition in 632B: as 〈At〉t∈T is right-continuous,

Bt = B ∩ At = B ∩
⋂
s>t As =

⋂
s>tB ∩ As =

⋂
s>tBs

whenever t ∈ T is not isolated on the right.

(ii) If C ⊆ TB is non-empty, then supC, calculated in TA, belongs to TB by (b-ii) above. As for its
infimum, this is given by the formula

[[inf C > t]] = inf
τ∈C

[[τ > t]] if t is isolated on the right,

= sup
s>t

inf
τ∈C

[[τ > s]] otherwise

of 632C(a-i), which (because B is order-closed in A) is the same whether calculated in B or A. So supC
and inf C, taken in TA, both belong to TB; as C is arbitrary, TB is an order-closed sublattice of TA as defined
in 313Da.

(g) This is just the form taken by 634Bf in the present context.

Remark If we think of TA as a sublattice of
∏
t∈T At, as suggested in 611Ac, then TB = TA∩

∏
t∈T Bt, while∏

t∈T Bt is an order-closed subalgebra of
∏
t∈T At (315Xc).

634D Notation In the context of 634Ce, we shall be able to regard a process uuu ∈ L0(B)S as being
fully adapted either in the structure A = (A, µ̄, T, 〈At〉t∈T , TA, 〈Aτ 〉τ∈TA

) (A, 〈At〉t∈T ) or in the structure
B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

), where Bt = B ∩ At for t ∈ T . Consequently we shall be able to
test uuu against the definitions in this volume in two different ways. We have to check which properties are
‘absolute’, in the sense that uuu will have them in one structure iff it has them in the other, and which are not.
Most of the checks are very easy, just as 634C is. While working through the list, it will save a great many
words if I use abbreviated expressions of the type ‘uuu is A-simple’, ‘uuu is a B-integrator’ to mean ‘interpreted
in the structure A, uuu is a simple process’, ‘interpreted in the structure B, uuu is an integrator’, and so forth.
But we have already seen in 634C(e-ii) that if uuu is a process such that its domain is a sublattice of TB and
its values all belong to L0(B) – these properties being intrinsic to uuu – then uuu is A-fully-adapted iff it is
B-fully-adapted, so in this context I can say simply that ‘uuu is fully adapted’ with little danger of confusion.
A useful number of other concepts are equally easily handled, as in the next proposition.
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634E Proposition Let B be a closed subalgebra of A, and B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB
) the

corresponding stochastic integration structure, where Bt = B∩At for t ∈ T . Suppose that S is a sublattice
of TB and that uuu ∈ L0(B)S is fully adapted.

(a) uuu is B-simple iff it is A-simple.
(b) uuu is B-(locally)-near-simple iff it is A-(locally)-near-simple.
(c) uuu is B-order-bounded iff it is A-order-bounded.
(d) uuu is of B-bounded variation iff it is of A-bounded variation.
(e) uuu is B-(locally)-moderately-oscillatory iff it is A-(locally)-moderately-oscillatory.
(f) uuu is A-jump-free iff it is B-jump-free.
(g) If vvv ∈ L0(B)S is another fully adapted process, then the integral

∫
S uuu dvvv is defined for (B, µ̄↾B, 〈Bt〉t∈T )

iff it is defined for (A, µ̄, 〈At〉t∈T ), with the same value; that is, B
∫
S uuu dvvv = A

∫
S uuu dvvv if either is defined.

proof Really all we have to do is to look at the definitions.

(a) Whether a process 〈uσ〉σ∈S is simple depends only on the ordering of S and the values of [[σ < τ ]],
[[σ ≤ τ ]] for σ, τ ∈ S; given that S ⊆ TB. 634C(b-i) and 634Cc assure us that we can calculate these either
in A or B and get the same results.

(b) The definition of ‘near-simple’ process calls on expressions of the form θ̂(uuu−uuu′) = θ(supσ∈S |uσ−u
′
σ|)

(631Ba, 615B); but the supremum here will have the same value whether interpreted in L0(A) or L0(B),
and I noted in 634A that there is no dispute about the value of θ(u) for u ∈ L0(B). So uuu is B-near-simple
iff it is A-near-simple; applying this to uuu↾S ∧ τ for τ ∈ S, we see that uuu is B-locally-near-simple iff it is
A-locally-near-simple.

(c) Here we just need to remember that a subset of L0(B) is order-bounded in L0(B) iff it is order-
bounded in L0(A), as noted in 634A.

(d) Satisfaction of any of the conditions (i)-(iii) in 614J is independent of the structure we are working
in.

(e) Here it seems that we need a more sophisticated approach, using both characterizations of ‘moderately
oscillatory’.

(i)(ααα)If uuu is B-moderately-oscillatory, then for every ǫ > 0 there is a fully adapted process uuu′ ∈
(L0(B))S of bounded variation (determined in either system, see (d)) such that θ(sup |uuu− uuu′|) ≤ ǫ, so uuu is
A-moderately-oscillatory.

(βββ) If uuu is A-moderately-oscillatory, write ŜA ⊆ TA for the A-covered envelope of S, and ûuu = 〈ûσ〉σ∈ŜA

for the corresponding extension of uuu. By 615N, 〈uσn
〉n∈N is convergent in L0(A) for every monotonic sequence

〈σ〉n∈N in S; but L0(B) is a topologically closed set in L0(A) (367Rc), so 〈uσn
〉n∈N is convergent in L0(B) for

every monotonic sequence 〈σn〉n∈N in S, and uuu is B-moderately-oscillatory, by 615N in the other direction.

(ii) Now

uuu is B-locally-moderately-oscillatory

⇐⇒ uuu↾S ∧ τ is B-moderately-oscillatory for every τ ∈ S

⇐⇒ uuu↾S ∧ τ is A-moderately-oscillatory for every τ ∈ S

⇐⇒ uuu is A-locally-moderately-oscillatory.

(f) See 618B. For I ∈ I(S), OscllnI(uuu) and Osclln∗I(uuu) are calculated in terms of suprema in L0; again
because L0(B) is order-closed in L0(A), and ∆e(1, |duuu|) ∈ L0(B) whenever e is a stopping-time interval
with endpoints in S, we will get the same values for OscllnI(uuu), Osclln∗I(uuu) = supI⊆J∈I(S) OscllnJ (uuu) and

Osclln(uuu) = infI∈I(S) Osclln∗I(uuu) on either interpretation.

(g) Again because L0(B) is a topologically closed set in L0(A), convergence in L0(A) of a filter on L0(B)
implies convergence in L0(B). And for I ∈ I(S), the evaluation of SI(uuu, dvvv) ∈ L0(B) is the same in either
structure. So
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B
∫
S
uuu dvvv = limI↑I(S) SI(uuu, dvvv) = A

∫
S
uuu dvvv

if either form of the integral is defined.

Remarks Thus I shall be able from now on, in the context of processes in L0(B)S where S ⊆ TB, to use the
phrases ‘simple’, ‘near-simple’, ‘order-bounded’, ’bounded variation’, ‘moderately oscillatory’, ’jump-free’,
and the formula

∫
S uuu dvvv, without specifying whether I am thinking in the structure A or the structure B.

634F Relative independence You may have noticed an omission in 634E above. There is no mention
of ‘martingales’. In general, the shift from an algebra A to a subalgebra B need not respect conditional
expectations in the right way. In many cases, however (for instance, if A is based on a product probability
measure, and B on one of the factors), we do have strong connexions between martingales for (A, µ̄, 〈At〉t∈T )
and martingales for (B, µ̄↾B, 〈Bt〉t∈T ). The key concept is that of ‘relative independence’, already used in
§628. In that section I was relying heavily on the work of §458, so did not separate the more elementary
ideas; perhaps it will help if I set them out now.

Definitions (a) (see 458La) If B, C and D are closed subalgebras of A, I say that B and C are relatively
(stochastically) independent over D if PDχ(b ∩ c) = PDχb× PDχc for all b ∈ B and c ∈ C.

(b) I will say that a closed subalgebra B of A is coordinated with the filtration 〈At〉t∈T if B and At

are relatively independent over Bt = B ∩ At for every t ∈ T .

634G Proposition If B, C are closed subalgebras of A, the following are equiveridical:
(i) B and C are relatively independent over B ∩ C;
(ii) PB∩C(u× v) = PB∩Cu× PB∩Cv for all u ∈ L∞(B), v ∈ L∞(C);
(iii) PBPC = PB∩C;
(iv) PBPC = PCPB;
(v) PBu ∈ L0(C) whenever u ∈ L1

µ̄ ∩ L0(C).

proof 458M.

634H Lemma LetB be a closed subalgebra of A which is coordinated with 〈At〉t∈T , and B = (B, µ̄↾B, T,
〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) the corresponding stochastic integration structure, where Bt = B ∩ At for t ∈ T .
Then B and Aσ are relatively independent over Bσ for every σ ∈ TB.

proof (a) Writing ť for the constant stopping time at t (611A(b-ii)), we have Ať = At (611Hb); by 634G(v),
the hypothesis ‘B is coordinated with 〈At〉t∈T ’ amounts to saying that

Pťu ∈ L0(B) for every t ∈ T and u ∈ L1
µ̄ ∩ L0(B).

(b) For t ∈ T and c ∈ Bt, define ťc by saying that

[[ťc > s]] = 1 if s < t,

= c if s ≥ t.

It is easy to check that (because c ∈ Bt) the conditions of 611B(b-i) are satisfied, so that ťc ∈ TB. We see
that

Aťc = {a : a ∈ A, a \ [[ťc > s]] ∈ As for every s ∈ T}

= {a : a \ c ∈ As for every s ≥ t} = {a : a \ c ∈ At}.

Now ť ≤ ťc and

[[ť < ťc]] = sups∈T [[ťc > s]] \ [[ť > s]] = c.

So [[ťc = ť]] = 1 \ c. If u ∈ L1
µ̄,

Pťcu = Pťc(u× χc) + Pťc(u× χ(1 \ c)) = u× χc+ (Pťcu)× χ(1 \ c)

(because u× χc ∈ L0(Aťc) and 1 \ c ∈ Aťc)
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= u× χc+ (Pťu)× χ(1 \ c)

by 622Bb. It follows that if u ∈ L1
µ̄ ∩ L0(B), then Pťcu ∈ L0(B).

(c) For σ ∈ TB, set

Cσ = {ťc : t ∈ T , c = [[σ > t]]},

Dσ = {τ0 ∧ . . . ∧ τn : τi ∈ Cσ for i ≤ n}.

Then

Aσ =
⋂
t∈T {a : a \ [[σ > t]] ∈ At} =

⋂
τ∈Cσ

Aτ =
⋂
τ∈Dσ

Aτ

by 611Eb. We know from (b) that Pτu ∈ L0(B) ∩ L1
µ̄ for every τ ∈ Cσ; now if τ0, . . . , τn ∈ Cσ and

τ = τ ∧ . . . ∧ τn,

Pτu = Pτ0 . . . Pτnu ∈ L0(B) ∩ L1
µ̄

for every u ∈ L0(B) ∩ L1
µ̄, by 622Ba. Thus Pτu ∈ L0(B) whenever τ ∈ Dσ and u ∈ L0(B) ∩ L1

µ̄.

Now observe that {Aτ : τ ∈ Dσ} is downwards-directed and has intersection Aσ. So Pσu = limτ↓Dσ
Pτu

for every u ∈ L1
µ̄, by 621C(g-i). In 621Cg I called this a a ‖ ‖1-limit, but for our purposes here it is enough

to think of it as a limit for the topology of convergence in measure, because L0(B) is closed for the topology
of convergence in measure, and all we need to know is that if u ∈ L0(B) ∩ L1

µ̄ then Pσu ∈ L0(B). Thus Aσ
and B satisfy 634G(v), and are relatively independent over Aσ ∩B = Bσ (634Cd).

634I Theorem Let B be a closed subalgebra of A which is coordinated with 〈At〉t∈T , and B =
(B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB

) the corresponding stochastic integration structure, where Bt = B ∩ At

for t ∈ T . Let S be a sublattice of TB and uuu = 〈uσ〉σ∈S a fully adapted process such that uσ ∈ L0(B) for
every σ ∈ S.

(a) uuu is a (local) B-martingale iff it is a (local) A-martingale.

(b) uuu is a (local) B-integrator iff it is a (local) A-integrator, and in this case its B-quadratic variation is
the same as its A-quadratic variation.

proof (a) For σ ∈ TB, write Qσ : L1(B, µ̄↾B) → L1(B, µ̄↾B) for the conditional expectation associated
with the closed subalgebra Bσ. Suppose that u ∈ L0(B) ∩ L1

µ̄ = L1(B, µ̄↾B). Then B and Aσ are

relatively independent over Bσ = A ∩ Bσ (634H), so Pσu ∈ L0(B) ∩ L0(Aσ) = L0(Bσ), and we have
E(Pσu×χb) = E(u×χb) for every b ∈ Aσ and therefore for every b ∈ Bσ. But this means that Pσu satisfies
the property defining Qσu, and Pσu = Qσu.

Now we see that

uuu is a B-martingale

⇐⇒ Qσuτ = uσ whenever σ ≤ τ in S

⇐⇒ Pσuτ = uσ whenever σ ≤ τ in S

⇐⇒ uuu is a A-martingale.

Observe next that a sublattice S ′ of S is a B-covering ideal of S iff it is an A-covering ideal of S, by
634Cc. So we have

uuu is a B-local martingale

⇐⇒ there is a covering ideal S ′ of S

such that uuu↾S ′ is a B-martingale

⇐⇒ there is a covering ideal S ′ of S

such that uuu↾S ′ is a A-martingale

⇐⇒ uuu is an A-local martingale.
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(b)(i)(ααα) Suppose that uuu is a B-integrator. Then there is a ν̄0 such that (B, ν̄0) is a probability algebra
and uuu is a (B, ν̄0)-strong integrator (627Ld). Let z ∈ L1

µ̄ ∩ L0(B) be such that ν̄0b = Eµ̄(z × χb) for
every b ∈ B (625B; note that in this sentence we do not need to distinguish between Eµ̄ and Eµ̄↾B). Set
ν̄a = Eµ̄(z × χa) for every a ∈ A; because [[z > 0]] = 1, (A, ν̄) is a probability algebra.

If τ ∈ TB, B and Aτ are relatively independent over B ∩ Aτ for ν̄ as well as for µ̄. PPP Let Qτ : L1
ν̄ →

L1
ν̄ ∩ L

0(Bτ ) be the conditional expectation associated with Bτ for ν̄. If w ∈ L1
ν̄ ∩ L

0(B), then

Qτw = Pτ (w × z)×
1

Pτz

(625B(b-i); of course [[Pτz > 0]] = 1 by 625B(a-vi), so there is no problem with the reciprocal). But
w × z ∈ L1

µ̄ ∩ L0(B), because z ∈ L0(B), so Pτ (w × z) ∈ L0(B), using 634H. Similarly, Pτz ∈ L0(B), so

Qτw ∈ L0(B). By 634G(v), B and Aτ are relatively independent over B ∩ Aτ for ν̄. QQQ
Now suppose that ǫ > 0. Then we have processes www, www′ with domain S, B-fully adapted, such that

ν̄[[uuu 6= www +www′]] 6= 0, www is a (B, ν̄0)-uniformly integrable martingale, and www′ is of B-bounded variation. By
(a) above, www is an (A, ν̄)-martingale, and www′ is of A-bounded variation, as noted in 634Ed. Also, of course,
www is still uniformly integrable in L1

ν̄ . As ǫ is arbitrary, uuu is an (A, ν̄)-strong integrator. It follows at once
that uuu is an A-integrator.

(βββ) If uuu is a B-local-integrator, then we can apply (i) to see that uuu↾S ∧ τ is an A-integrator whenever
τ ∈ S, so that uuu is an A-local-integrator.

(ii) In the other direction, if uuu is an A-integrator, then it is a B-integrator. PPP Going back to the
definition of ‘integrator’ in 616Fc, we see that z ∈ BQS(uuu) there are I ∈ I(S) and www ∈ L0(B)I such that
www is B-fully-adapted, ‖www‖∞ ≤ 1 and z = SI(www, duuu). Now, of course, www ∈ L0(A)I is A-fully-adapted, so
z ∈ AQS(uuu). Thus BQS(uuu) ⊆ AQS(uuu) ∩ L0(B) is topologically bounded in L0(A) and therefore also in
L0(B), since the linear space topology of L0(B) is that induced by the linear space topology of L0(A). So
uuu is a B-integrator. QQQ

Just as in (i-β) above, it follows at once that if uuu is an A-local-integrator it is a B-local-integrator.

(iii) If uuu is a local integrator (either in A or in B), set u↓ = limσ↓S uσ. For any τ ∈ S,

u2τ − u2↓ − 2
∫
S
uuu dvvv

is the same whether calculated in A or B, as noted in 634Eg. By 617Ka, the quadratic variation 〈u∗τ 〉τ∈S of
uuu is the same in either structure.

634J One of the most important operations in probability theory is the use of product measures to
simultaneously represent independent random variables. In order to do the same for the stochastic processes
we have been studying here, we have to pay attention to filtrations. The next lemma provides one of the
tools we need.

Lemma Let (Ω,Σ, µ) and (Ω′,Σ′, µ′) be probability spaces, and (Ξ,≤) a non-empty downwards-directed
partially ordered set. Let 〈Σξ〉ξ∈Ξ and 〈Σ′

ξ〉ξ∈Ξ be families of σ-subalgebras of Σ, Σ′ respectively such that

Σξ ⊆ Ση and Σ′
ξ ⊆ Σ′

η whenever ξ ≤ η, while every Σξ contains every µ-negligible set and every Σ′
ξ contains

every µ′-negligible set. Write T =
⋂
ξ∈Ξ Σξ and T′ =

⋂
ξ∈Ξ Σ′

ξ. Let λ be the product probability measure

on Ω× Ω′, and Λ its domain.
(a) Suppose that W ∈ Λ is such that for every ξ ∈ Ξ there is a Wξ ∈ Σξ⊗̂Σ′ such that W△Wξ is

λ-negligible. Then there is a W ′ ∈ T⊗̂Σ′ such that W△W ′ is λ-negligible.
(b) Suppose that W ∈ Λ is such that for every ξ ∈ Ξ there is a Wξ ∈ Σξ⊗̂Σ′

ξ such that W△Wξ is

λ-negligible. Then there is a W ′ ∈ T⊗̂T′ such that W△W ′ is λ-negligible.
(c) Suppose that W ∈

⋂
ξ∈Ξ Σξ⊗̂Σ′, E ∈ Σ and ǫ ≥ 0 are such that λ(W△(E × Ω′)) ≤ ǫ. Then there is

an E1 ∈ T such that λ(W△(E1 × Ω′)) ≤ 3ǫ.

proof (a) Since there is certainly a member of Σ⊗̂Σ′ differing from W by a λ-negligible set (251Ib), we
can suppose that W itself belongs to Σ⊗̂Σ′. Let A′ be the measure algebra of (Ω′,Σ′, µ′). Then 418Ta tells
us that we have a function f : Ω → A

′ defined by setting f(ω) = W [{ω}]• for ω ∈ Ω, and that f [Ω] is
a separable subset of A′ for the measure-algebra topology of A′ and f is Σ-measurable for this topology.

Measure Theory



634K Changing the algebra 63

Similarly, for any ξ ∈ Ξ, we have a Σξ-measurable fξ : Ω → A
′ such that fξ(ω) =Wξ[{ω}]

• for every ω. But
since W△Wξ is λ-negligible, W [{ω}]△Wξ[{ω}] is µ

′-negligible for µ-almost every ω, by Fubini’s theorem
(252D). So f =a.e. fξ. As we are supposing that every µ-negligible set belongs to Σξ, f is Σξ-measurable.

This is true for every ξ ∈ Ξ, so f is actually T-measurable. But now we can use 418Ta in the other
direction to see that there is aW ′ ∈ T△Σ′ such thatW ′[{ω}]• = f(ω) for every ω ∈ Ω. By Fubini’s theorem
again, λ(W△W ′) = 0, as required.

(b) For each η ∈ Ξ, we can apply (a) to (Ω,Σ, µ), (Ω′,Σ′
η, µ

′
η↾Σ

′
η) and 〈Wξ〉ξ∈Ξ,ξ≤η to see that there

is a W ′
η ∈ T⊗̂Σ′

η such that λη(W△W ′
η) = 0, where λη is the product of µ and µ′

η. Of course it follows

that λ(W△W ′
η) = 0 and also that λ̃(W ′

η△W
′
ζ) = 0 whenever η, ζ ∈ Ξ, where λ̃ is the product of µ↾T and

µ′. Fixing ζ ∈ Ξ, we can apply (a) again to (Ω′,Σ′, µ′), (Ω,T, µ↾T) and 〈W ′
η〉η∈Ξ to see that there is a

W ′ ∈ T⊗̂T′ such that λ̃(W ′△W ′
ζ) = 0, in which case λ(W ′△W ) will be zero.

(c) Try E1 = {ω : ω ∈ Ω, µ′W [{ω}] ≥ 1
2}. By 252P, E1 ∈ Σξ for every ξ ∈ Ξ, so E1 ∈ T. We have

1

2
µ(E1 \ E) ≤

∫
µ′((W \ (E × Ω′))[{ω}]µ(dω) = λ(W \ (E × Ω′)),

1

2
µ(E \ E1) ≤

∫
µ′((E × Ω′) \W )[{ω}]µ(dω) = λ((E × Ω′) \W )

so

1

2
µ(E1△E) ≤ λ(W△(E × Ω′)) ≤ ǫ

and

λ(W△(E1 × Ω′)) ≤ µ(E1△E) + λ(W△(E × Ω′)) ≤ 3ǫ.

634K Theorem Let 〈Ai〉i∈I be a stochastically independent family of closed subalgebras of A (see 325L).
Suppose that (Ξ,≤) is a non-empty downwards-directed partially ordered set and that for each i ∈ I we
have a non-decreasing family 〈Biξ〉ξ∈Ξ of closed subalgebras of Ai with intersection Bi. Set D =

∨
i∈I Bi,

and for ξ ∈ Ξ set Dξ =
∨
i∈I Biξ. Then D =

⋂
ξ∈Ξ Dξ.

proof (a) If I is empty or a singleton, the result is trivial. Note also that for any I we surely have
D ⊆

⋂
ξ∈Ξ Dξ, so it will be enough to show that

⋂
ξ∈Ξ Dξ ⊆ D.

(b) Suppose that I = {i, j} has two members. Let (Ω,Σ, µ) and (Ω′,Σ′, µ′) be probability spaces with
measure algebras which can be identified with (Ai, µ̄↾Ai), (Aj , µ̄↾Aj) respectively (321J); set Σξ = {E : E ∈
Σ, E• ∈ Biξ}, Σ

′
ξ = {F : E ∈ Σ′, F • ∈ Bjξ} for ξ ∈ Ξ. Note that every Σξ and Σ′

ξ is a σ-algebra containing

all negligible sets, and that 〈Σξ〉ξ∈Ξ and 〈Σ′
ξ〉ξ∈Ξ are non-decreasing.

We can identify the measure algebra (C, λ̄) of the product (Ω×Ω′,Λ, λ) with the probability algebra free
product of (Ai, µ̄↾Ai) and (Aj , µ̄↾Aj) (325D or 325I), which in turn embeds naturally in A (325J, 325L);
write φ : C → A for the embedding. If E ∈ Σ and F ∈ Σ′, then φ((E × F )•) = E• ∩ F •. Now, for ξ ∈ Ξ,
φ[{W • : W ∈ Σξ⊗̂Σ′

ξ}] is the σ-subalgebra of A generated by Biξ ∪ Bjξ, that is, Dξ. So if d ∈
⋂
ξ∈Ξ Dξ,

we have for each ξ ∈ Ξ a Wξ ∈ Σξ⊗̂Σ′
ξ such that φ(W •

ξ ) = d. It follows that λ(Wξ△Wη) = 0 for all ξ,

η ∈ Ξ. By 634Jb, there is a W ∈ T⊗̂T′ such that λ(Wξ△W ) = 0 for every ξ ∈ Ξ, that is, φW • = d,
where T =

⋂
ξ∈Ξ Σξ and T′ =

⋂
ξ∈Ξ Σ′

ξ. But now φW • belongs to the closed subalgebra of A generated by

{E• : E ∈ T} ∪ {F • : F ∈ T′} = Bi ∪Bj , which is D. As d is arbitrary,
⋂
ξ∈Ξ Dξ ⊆ D, as required.

(c) Suppose that I is finite. Then D =
⋂
ξ∈Ξ Dξ. PPP Induce on #(I). I have already dealt with the cases

#(I) ≤ 2. For the inductive step to #(I) ≥ 3, take any j ∈ I and set I ′ = I \ {j}. Set A′ =
∨
i∈I′ Ai; then

A
′ and Aj are independent, as in 272K or 458Le.

For ξ ∈ Ξ, set D
′
ξ =

∨
i∈I′ Biξ. By the inductive hypothesis, D

′ =
∨
i∈I′ Bi is

⋂
ξ∈Ξ D

′
ξ. Now, of

course, 〈D′
ξ〉ξ∈Ξ is non-decreasing, and Dξ = Bjξ ∨D

′
ξ for each ξ, while D = Bj ∨D

′. So (b) tells us that

D =
⋂
ξ∈Ξ Dξ. Thus the induction proceeds. QQQ

D.H.Fremlin



64 Structural alterations 634K

(d) Now consider the case of arbitrary I. Suppose that d ∈
⋂
ξ∈Ξ Dξ and 0 < ǫ ≤ 1

2 . Because the

topological closure of the subalgebra
⋃
J⊆I is finite

∨
i∈J Ai is

∨
i∈I Ai (323J), which contains d, there are a

finite J ⊆ I and an element e of
∨
i∈J Ai such that λ̄(d△ e) ≤ ǫ. This time, observe that Ã =

∨
i∈J Ai and

Ã
′ =

∨
i∈I\J Ai are independent. Setting B̃ξ =

∨
i∈J Biξ for ξ ∈ Ξ, we see from (c) that

⋂
ξ∈Ξ B̃ξ =

∨
i∈J Di.

Now, following the pattern of (b), take probability spaces (Ω,Σ, µ) and (Ω′,Σ′, µ′) with measure algebras

isomorphic to Ã and Ã
′ respectively, and set Σξ = {E : E• ∈ B̃ξ} for ξ ∈ Ξ. Translating 634Jc into terms

of the measure algebras, we see that there is an e1 ∈
∨
i∈J Di such that µ̄(d△ e1) ≤ 3ǫ. Of course e1 ∈ D.

As ǫ is arbitrary, d belongs to the closure of D for the measure-algebra topology; but D is topologically
closed, so d ∈ D. Thus we have the required result in this case also, and the proof is complete.

634L Theorem Let 〈Bi〉i∈I be a stochastically independent family of closed subalgebras of A. Suppose
that for each i ∈ I we have a filtration 〈Bit〉t∈T of closed subalgebras ofBi. For each t ∈ T set Ct =

∨
i∈I Bit.

(a) 〈Ct〉t∈T is a filtration.
(b) For i ∈ I and t ∈ T , Bi ∩ Ct = Bit and Bi and Ct are relatively independent over Bit.
(c) If 〈Bit〉t∈T is right-continuous for every i ∈ I, then 〈Ct〉t∈T is right-continuous.

proof (a) Immediate from the definitions of ‘filtration’ and ‘
∨
’.

(b) Of course Bi ∩ Ct ⊇ Bit. Next, Bi and
∨
j∈I\{i} Bj are independent, that is, they are relatively

independent over {0, 1}; by 458Ld, they are relatively independent over Bit ⊆ Bi. A fortiori, Bi and∨
j 6=iBjt are relatively independent over Bit, and therefore Bi and Bit ∨

∨
j 6=iBjt = Ct are relatively

independent over Bit (458Ld again). But this means that Bi ∩ Ct is relatively independent of itself over
Bit, and must be equal to Bit.

(c) If t ∈ T is not isolated on the right, apply Theorem 634K with Ξ = {s : s > t} to see that Ct =
⋂
s>t Cs.

634M Corollary Suppose that 〈(Ai, µ̄i)〉i∈I is a family of probability algebras, and that 〈Ait〉t∈T is
a filtration in Ai for each i. Then there are a probability algebra (C, λ̄) with a filtration 〈Ct〉t∈T and a
stochastically independent family 〈Bi〉i∈I of closed subalgebras such that Bi is coordinated with 〈Ct〉t∈T
and (Bi, λ̄↾Bi, 〈Bi ∩ Ct〉t∈T ) is isomorphic to (Ai, µ̄i, 〈Ait〉t∈T ) for every i ∈ I. If every 〈Ait〉t∈T is right-
continuous, we can arrange that 〈Ct〉t∈T should be right-continuous.

proof Take (C, λ̄, 〈εi〉i∈I) to be the probability algebra free product of 〈(Ai, µ̄i)〉i∈I (325K), and set Bi =
εi[Ai] for i ∈ I, Ct =

∨
i∈I εi[Ait] for t ∈ T . As noted in 325L, 〈Bi〉i∈I is an independent family of closed

subalgebras of C, while (Bi, λ̄↾Bi) ∼= (Ai, µ̄i) for every i, so 634L gives the result.

634N Example: independent Poisson processes To show how these ideas may be used, I work
through an important special case.

(a) Let (B, ν̄, 〈Bt〉t≥0, TB, 〈uσ〉σ∈TBf
) be the standard Poisson process of 612U in its measure-algebra

form. Let (A, µ̄) be the probability algebra free product of (B, ν̄) with itself, with associated embeddings
ε1 : B → A, ε2 : B → A; write B

(i) for εi[B] for each i. Set At = ε1[Bt] ∨ ε2[Bt] for t ≥ 0, so that 〈At〉t≥0

is a right-continuous filtration (612Uc, 632Db, 634Lc), while εi[Bt] = B
(i) ∩ At for both i and every t, and

each B
(i) is coordinated with 〈At〉t≥0 (634Lb).

(b) For each i, εi is an isomorphism between (B, ν̄, 〈Bt〉t≥0) and (B(i), µ̄↾B(i), 〈B(i) ∩ At〉t∈[0,∞[), so
matches TBf with TB(i)f = TB(i) ∩ TAf (634Cb). Now uuu = 〈uσ〉σ∈TBf

is matched with uuui = 〈uiσ〉σ∈T
B
(i)f

,

and uuui is locally near-simple because uuu is (634Eb). Because TB(i)f contains all the constant processes,
sup{[[τ ≤ σ]] : σ ∈ TB(i)f} = 1 for every τ ∈ TAf , uuui has an extension to a locally near-simple process
defined on TAf (631M(c-ii)). Because TB(i)f contains the constant processes, it separates TAf (633D), so the
extension is unique (633F); I will call it vvvi.

(c) For each i, vvvi − ιιιA is a local martingale. PPP By 632Ma, uuu − ιιιB (where ιιιB as the identity process on
TBf ) is a local martingale, so its copy (vvvi − ιιι

B
(f)
i

)↾TB(i)f is a local martingale (634Ia) and vvvi − ιιιA is a local

martingale (633Pg; of course TB(i)f separates TAf because it contains all constant processes). QQQ It follows
that www = vvv1 − vvv2 is a local martingale.
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(d)(i) vvv∗i = vvvi, because uuu
∗ = uuu (617Ob) so uuu∗i = uuui, and we can apply 633Ph to see that vvv∗i and vvvi agree

on TBf , and therefore on TAf (633F).

(ii) The covariation [vvv1
∗
vvv2] is zero. PPP Express vvvi as 〈viσ〉σ∈TAf

for each i. If 0 ≤ s ≤ t, then, writing š

and ť for the constant stopping times at s and t respectively, viť − viš has a Poisson distribution with mean
t− s, so

µ̄[[vi,ť 6= vi,š]] = 1− e−(t−s) ≤ t− s

for each i. Now suppose that t ≥ 0, n ≥ 1 and that I is a sublattice of [0̌, ť] containing šj for every j ≤ n,
where sj = jt/n. In this case

θ(SI(1, dvvv1dvvv2)) ≤ µ̄[[SI(1, dvvv1dvvv2) 6= 0]]

≤ µ̄( sup
e∈Sti0(I)

[[∆e(1, dvvv1dvvv2) 6= 0]])

(where Sti0(I) is the set of I-cells)

≤ µ̄(sup
j<n

[[v1,šj+1
6= v1,šj ]] ∩ [[v2,šj+1

6= v2,šj ]])

(because both vvv1 and vvv2 are non-decreasing)

≤
n−1∑

j=0

µ̄([[v1,šj+1
6= v1,šj ]] ∩ [[v2,šj+1

6= v2,šj ]])

=

n−1∑

j=0

µ̄([[v1,šj+1
6= v1,šj ]]) · µ̄([[v2,šj+1

6= v2,šj ]])

(because [[vi,šj+1
6= vi,šj ]] ∈ B

(i) for all i and j, and B
(1) and B

(2) are stochastically independent)

≤
n−1∑

j=0

(sj+1 − sj)
2 =

t2

n
.

Taking the limit as I ↑ S([0̌, ť]),
∫
[0̌,ť]

dvvv1dvvv2 = 0. As t is arbitrary, the covariation [vvv1
∗
vvv2] is zero at every

constant stopping time. Because the constant stopping times separate TA, and [vvv1
∗
vvv2] is locally near-simple

(631Jb), [vvv1
∗
vvv2] = 0, by 633F. QQQ

(iii) www∗ = vvv1 + vvv2.

PPP www∗ = [vvv1 − vvv2
∗
vvv1 − vvv2] = [vvv1

∗
vvv1] + [vvv2

∗
vvv2] = vvv∗1 + vvv∗2 = vvv1 + vvv2. QQQ

(iv) The previsible variation of www2↾TAb is 2ιιι↾TAb. PPP We know that www is a local martingale, so www2 −www∗

is a virtually local martingale (624B), therefore a local martingale (632I); now (iii) just above, with (c), tells
us that www2 − 2ιιιA is a local martingale, so www2↾TAb and 2ιιι↾TAb have the same previsible variation (as in the
proof of 632Mb), which is 2ιιι↾TAb, by 626Q. QQQ

(e) Note that www corresponds to a Lévy process (455Q, §652) derived from the family 〈λ′t〉t≥0 where

λ′t({n}) = e−2ttn
∑∞
k=max(−n,0)

t2k

k!(k+n)!

for n ∈ Z, because vvv1 and vvv2 can be determined from www and www∗.

634X Basic exercises (a) LetB be a closed subalgebra of A, and B = (B, µ̄↾B, T, 〈Bt〉t∈T , TB, 〈Bσ〉σ∈TB
)

the corresponding stochastic integration structure, where Bt = B ∩ At for t ∈ T . Suppose that S is a sub-
lattice of TB and that uuu ∈ L0(B)S is fully adapted. Show that (i) if uuu is an A-integrator it is a B-integrator
(ii) if uuu is a local A-integrator it is a local B-integrator and its B-quadratic variation is the same as its
A-quadratic variation.
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634Y Further exercises (a) Let A be an eight-element Boolean algebra with atoms a, b, c, and B

the subalgebra generated by {b}. Let A0 be the subalgebra generated by {a} and for t > 0 let At be the
subalgebra generated by {a, b}. For t > 0 set τt = ť(a ∪ c) in the language of part (b) of the proof of
634H. Show that the infimum τ = infs>0 τs, taken in TA, is such that [[τ > 0]] = a, so is not the infimum of
{τs : s > 0} in TB.

(b) Suppose that S is a sublattice of TA and that vvv = 〈vσ〉σ∈S is a fully adapted process which is not of
bounded variation. (i) Show that there are C, λ̄, 〈Ct〉t∈T , B, 〈Bt〉t∈T and vvv′ such that (C, λ̄) is a probability
algebra, 〈Ct〉t∈T is a filtration of closed subalgebras of C, B is a closed subalgebra of C, Bt = B∩Ct for every
t ∈ T , (A, µ̄, 〈At〉t∈T , vvv) is isomorphic to (B, λ̄↾B, 〈Bt〉t∈T , vvv

′), but vvv′ is not an integrator for the structure
(C, 〈Ct〉t∈T ). (ii) Show that if 〈At〉t∈T is right-continuous we can arrange that 〈Ct〉t∈T is right-continuous.

(c) Give an example of a probability algebra (A, µ̄) with a closed subalgebra C and a non-increasing
sequence 〈Bn〉n∈N of closed subalgebras such that

⋂
n∈N

Bn = {0, 1} but
⋂
n∈N

(C ∨Bn) 6= C.

(d) (‘Emery’s example’, see Protter 05, IV.2) In the structure defined in 634N, let xxx = 〈xτ 〉τ∈TAf
be

the fully adapted process defined by saying that x0̌ = 0 and xτ =
1

ιτ
if τ ∈ TAf and [[τ > 0]] = 1, where ιιι

is the identity process. (i) Show that
∫
[0̌,τ ]

xxx dwww is defined for every τ ∈ TAf . (ii) Show that the indefinite

integral zzz = iiwww(xxx) is not a local martingale, but that for every ǫ > 0 there is a local martingale zzz′ with
domain TAf such that µ̄[[zzz 6= zzz′]] ≤ ǫ.

634 Notes and comments Even by the standards of this volume, I have taken 634B-634E extremely slowly.
The point is that nearly everything up to this point was written on the understanding that we are starting
from a settled structure (A, µ̄, 〈At〉t∈T ). I have remarked many times that the topology of convergence in
measure is more important than the measure itself, but this is fairly easy to incorporate into one’s intuitive
picture, because so many of the definitions and arguments refer directly to the topology. In this section I am
exploring a much more radical change. Substituting B for A, in the measure-algebra version of probability
theory I am working in here, corresponds to a deliberate closing of the eyes to some of the randomness in
the ‘outer’ model (A, µ̄). Probability theory would of course be impossible without this. We never suppose
that we have grasped all the possible stochastic elements of a real-world situation, and must always be ready
to extend our model by elaborating on our probability space or probability algebra. I have discussed this
aspect of probability theory in the introduction to §275. But this means that we must at some point check
every concept and theorem for the transformations which will be appropriate when the framework shifts.

Many of the checks are so elementary that they hardly need mentioning, and you may feel that I have
laboured unnecessarily. If so, do feel at liberty to write ‘obvious’ in the margin of your copy. In particular,
it is not clear that we need to spell 634B out explicitly, rather than proceed directly to the more intuitively
appealing 634C. But I fear that the tempting intuitions here are not perfectly safe, and that pulling the
algebras B, A apart as in 634B forces a necessary extra clarity, if you can face the extra elaboration in the
notation.

We come to some new phenomena when we investigate relative independence (634F-634G). The point is
that the concepts of ‘martingale’ and ‘integrator’ are less absolute than ‘fully adapted’, ‘bounded variation’
and so on. Even Brownian motion, unsuitably embedded, can become a process which is not an integrator
(634Yb). Without checking, we cannot be sure that the conditional expectation associated with Bt = B∩At
is appropriately related to the conditional expectation associated with At. When it is, we have a much closer
relationship between the structure (B, µ̄↾B, 〈Bt〉t∈T , TB) and its attendant space MfaB of fully adapted
processes, regarded in isolation, and its alternative realization as a subspace of MfaA (634H, 634I)..

Product measures provide a tool for representing arbitrary independent families of random variables
(272J). The corresponding construction for probability algebras is the probability algebra free product of
§325. To use this, we need to be able to define a filtration on the product from given filtrations on the
factors. To begin with, this is easy (634La-634Lb), at least if you know the right things about relative
independence. But elsewhere in this section we repeatedly depend on right-continuity, and to be sure that
the elementary construction I offer produces a right-continuous filtration on the product we have to look
hard at product measures (634J).
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Version of 6.3.23/29.9.23

635 Changing the filtration

In this section I introduce the elementary theory of ‘local times’. In the principal applications, we have
a process which is easier to handle if we replace the standard clock T with a variable-speed clock 〈πr〉r∈R
where the clock-times are now a totally ordered family of stopping times. I will come to such applications
in Chapter 65. Here I want to set up a language to discuss the transformation in which a process 〈uτ 〉τ∈T

is mapped to 〈uπ(ρ)〉ρ∈R, where R is the lattice of R-based stopping times and π(ρ) ∈ T corresponds to
ρ ∈ R. Starting from the construction in 635B, we have basic algebraic properties (corresponding to ideas
in §611) in 635C and can then follow a programme along the same lines as elsewhere, looking at the usual
kinds of process and Riemann-sum integrals.

635A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure, and θ the usual
F-norm on L0(A) (613Ba). For τ ∈ T , Pτ will be the conditional expectation operator associated with Aτ .
If S is a sublattice of T , I(S) will be the family of finite sublattices of S.

Now for the new idea.

635B Construction For the whole of this section, (R,≤) will be a new (non-empty) totally ordered
set, and 〈πr〉r∈R a non-decreasing family in T . For r ∈ R, I will write Br for Aπr

, so that 〈Br〉r∈R is
a filtration of closed subalgebras of A, and we shall have a corresponding stochastic integration structure
(A, µ̄, R,R, 〈Br〉r∈R,R, 〈Bρ〉ρ∈R).

For ρ ∈ R, π(ρ) ∈ L0(A)T will be defined by saying that

[[π(ρ) > t]] = inf
r∈R

([[ρ > r]] ∪ [[πr > t]]) if t ∈ T is isolated on the right in T,

= sup
s>t

inf
r∈R

([[ρ > r]] ∪ [[πr > s]]) for other t ∈ T.

635C Theorem Suppose that 〈At〉t∈T is right-continuous.
(a) For every ρ ∈ R, π(ρ), as defined in 635B, belongs to T , and Bρ = Aπ(ρ).
(b)(i) The map π : R → T is a lattice homomorphism.

(ii) π(minR) = infr∈R πr in T , π(maxR) = max T .
(iii) If r ∈ R and ř ∈ R is the corresponding constant stopping time, then π(ř) = πr.
(iv) If ρ ∈ Rf then π(ρ) ≤ supr∈R πr.

(c) [[π(ρ) < π(ρ′)]] ⊆ [[ρ < ρ′]], [[π(ρ) ≤ π(ρ′)]] ⊇ [[ρ ≤ ρ′]] and [[ρ = ρ′]] ⊆ [[π(ρ) = π(ρ′)]] for all ρ, ρ′ ∈ R.
(d) Suppose that 〈πr〉r∈R is right-continuous in the sense that πr = infq∈R,q>r πq in T whenever r ∈ R

is not isolated on the right in R. Then
(i) 〈Br〉r∈R is right-continuous;
(ii) π is right-continuous (see 632B).

proof (a)(i) For ρ ∈ R and r ∈ R there is a π(ρ, r) ∈ T defined by saying that [[π(ρ, r) > t]] =
[[ρ > r]] ∪ [[πr > t]] for t ∈ T . PPP [[ρ > r]] ∈ Br = Aπr

; looking at the definition of Aπr
(611G), we see that

[[ρ > r]] ∪ [[πr > t]] ∈ At for every t ∈ T . If s ≤ t in T then [[πr > t]] ⊆ [[πr > s]] so [[ρ > r]] ∪ [[πr > t]] ⊆ [[ρ > r]] ∪ [[πr > s]].
If t ∈ T is not isolated on the right, [[πr > t]] = sups>t [[πr > s]] so [[ρ > r]] ∪ [[πr > t]] = sups>t [[ρ > r]] ∪ [[πr > s]].
So the function t 7→ [[ρ > r]] ∪ [[πr > t]] satisfies the conditions of 611A(b-i). QQQ

(ii) Comparing the definition of π(ρ) in 635B with the formula in 632C(a-i) (which is applicable because
〈At〉t∈T is right-continuous), we see that π(ρ) is just infr∈R π(ρ, r) in T , and certainly belongs to T .

(iii) Take any ρ ∈ R. For a ∈ A,

a ∈ Bρ ⇐⇒ a \ [[ρ > r]] ∈ Br = Aπr
for every r ∈ R

⇐⇒ a \ ([[ρ > r]] ∪ [[πr > t]]) ∈ At for every r ∈ R and t ∈ T

⇐⇒ a \ [[π(ρ, r) > t]] ∈ At for every r ∈ R and t ∈ T

⇐⇒ a ∈ Aπ(ρ,r) for every r ∈ R ⇐⇒ a ∈
⋂

r∈R

Aπ(ρ,r) = Aπ(ρ)
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by 632C(a-iii), again using the general hypothesis that 〈At〉t∈T is right-continuous. So Bρ = Aπ(ρ).

(b)(i)(ααα) For r ∈ R, ρ 7→ π(ρ, r) : R → T is a lattice homomorphism. PPP Use 611Cb and 611Cc;
we just have to note that ρ 7→ [[ρ > r]] is a lattice homomorphism, so that ρ 7→ [[π(ρ, r) > t]] is a lattice
homomorphism for every t ∈ T . QQQ

(βββ) π(ρ ∧ ρ′) = π(ρ) ∧ π(ρ′) for ρ, ρ′ ∈ R. PPP By (α), both are equal to infr∈R(π(ρ, r) ∧ π(ρ
′, r)). QQQ

(γγγ) π(ρ) ∨ π(ρ′) ≤ π(ρ ∨ ρ′) for all ρ, ρ ∈ R. (By (β), or otherwise, π is order-preserving.)

(δδδ) π(ρ ∨ ρ′) ≤ π(ρ) ∨ π(ρ′) for all ρ, ρ′ ∈ R. PPP For any t ∈ T ,

inf
r∈R

[[π(ρ, r) > t]] ∪ inf
r∈R

[[π(ρ′, r) > t]] = inf
r,r′∈R

([[π(ρ, r) > t]] ∪ [[π(ρ′, r′) > t]])

= inf
r,r′∈R

([[ρ > r]] ∪ [[πr > t]] ∪ [[ρ′ > r′]] ∪ [[πr′ > t]])

⊇ inf
r,r′∈R

([[ρ > max(r, r′)]] ∪ [[ρ′ > max(r, r′)]] ∪ [[πr ∨ πr′ > t]])

= inf
r,r′∈R

([[ρ ∨ ρ′ > max(r, r′)]] ∪ [[πmax(r,r′) > t]] = inf
r∈R

[[π(ρ ∨ ρ′, r) > t]].

So if t is isolated on the right,

[[π(ρ ∨ ρ′) > t]] = inf
r∈R

[[π(ρ ∨ ρ′, r) > t]]

(632C(a-i) again)

⊆ inf
r∈R

[[π(ρ, r) > t]] ∪ inf
r∈R

[[π(ρ′, r) > t]]

= [[π(ρ) > t]] ∪ [[π(ρ′) > t]] = [[π(ρ) ∨ π(ρ′) > t]],

while if t is not isolated on the right,

[[π(ρ ∨ ρ′) > t]] = sup
s>t

inf
r∈R

[[π(ρ ∨ ρ′, r) > s]] ⊆ sup
s>t

( inf
r∈R

[[π(ρ, r) > s]] ∪ inf
r∈R

[[π(ρ′, r) > s]])

= sup
s>t

inf
r∈R

[[π(ρ′, r) > s]] ∪ sup
s>t

inf
r∈R

[[π(ρ′, r) > s]]

= [[π(ρ) > t]] ∪ [[π(ρ′) > t]] = [[π(ρ) ∨ π(ρ′) > t]].

Accordingly π(ρ ∨ ρ′) ≤ π(ρ) ∨ π(ρ′). QQQ

(ǫǫǫ) Thus π : R → T is a lattice homomorphism.

(ii) If r ∈ R, then

[[π(minR, r) > t]] = [[πr > t]], [[π(maxR, r) > t]] = 1

for every t ∈ T , so π(minR, r) = πr and π(maxR, r) = max T . Accordingly

π(minR) = infr∈R π(minR, r) = infr∈R πr,

π(maxR) = infr∈R π(maxR, r) = max T .

(iii) For q ∈ R and t ∈ T ,

[[π(ř, q) > t]] = [[πq > t]] if r ≤ q,

= 1 otherwise,

so

π(ř, q) = πq if r ≤ q,

= max T otherwise.
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Taking the infimum over r, π(ř) = infq≥r πq = πr.

(iv) Write τ for the supremum supr∈R πr taken in T . If ρ ∈ Rf then

inf
r∈R

([[ρ > r]] ∪ [[πr > t]]) ⊆ inf
r∈R

([[ρ > r]] ∪ [[τ > t]])

= [[τ > t]] ∪ inf
r∈R

[[ρ > r]] = [[τ > t]].

So

[[π(ρ) > t]] = inf
r∈R

([[ρ > r]] ∪ [[πr > t]]) ⊆ [[τ > t]] if t ∈ T is isolated on the right in T,

= sup
s>t

inf
r∈R

([[ρ > s]] ∪ [[πs > t]]) ⊆ sup
s>t

[[τ > s]] = [[τ > t]] for other t ∈ T,

and π(ρ) ≤ τ , as claimed.

(c)(i) Set a = [[ρ < ρ′]]. If t ∈ T and r ∈ R, then

[[π(ρ′, r) > t]] = [[ρ′ > r]] ∪ [[πr > t]] ⊆ a ∪ [[ρ > r]] ∪ [[πr > t]] = a ∪ [[π(ρ, r) > t]].

If t is isolated on the right in T , then

[[π(ρ′) > t]] = inf
r∈R

[[π(ρ′, r) > t]] ⊆ inf
r∈R

(a ∪ [[π(ρ, r) > t]])

= a ∪ inf
r∈R

[[π(ρ, r) > t]] = a ∪ [[π(ρ) > t]],

while if t is not isolated on the right,

[[π(ρ′) > t]] = sup
s>t

inf
r∈R

[[π(ρ′, r) > s]] ⊆ sup
s>t

inf
r∈R

a ∪ [[π(ρ, r) > s]]

= a ∪ sup
s>t

inf
r∈R

[[π(ρ, r) > s]] = a ∪ [[π(ρ) > t]].

So

[[π(ρ) < π(ρ′)]] = supt∈T ([[π(ρ
′) > t]] \ [[π(ρ) > t]]) ⊆ a.

(ii) Similarly, [[π(ρ′) < π(ρ)]] ⊆ [[ρ′ < ρ]]; taking complements, [[π(ρ) ≤ π(ρ′)]] ⊇ [[ρ ≤ ρ′]].

(iii) Now

[[π(ρ) = π(ρ′)]] = [[π(ρ) ≤ π(ρ′)]] ∩ [[π(ρ′) ≤ π(ρ)]]

⊇ [[ρ ≤ ρ′]] ∩ [[ρ′ ≤ ρ]] = [[ρ = ρ′]].

(d)(i) If r ∈ R is not isolated on the right, then πr = infq>r πq, so

Br = Aπr
=

⋂
q>r Aπq

=
⋂
q>rBq

(632C(a-iii) again). Thus 〈Br〉r∈R is right-continuous.

(ii) Set

τ = infρ∈D π(ρ) = infρ∈D,r∈R π(ρ, r),

taken in T .

(ααα) If r ∈ R is isolated on the right, then τ ≤ π(infD, r). PPP For any t ∈ T ,

[[π(infD, r) > t]] = [[infD > r]] ∪ [[πr > t]] = ( inf
ρ∈D

[[ρ > r]]) ∪ [[πr > t]]

(applying 632C(a-i) to 〈Br〉r∈R)

= inf
ρ∈D

[[π(ρ, r) > t]] ⊇ [[infρ∈D π(ρ, r) > t]] ⊇ [[τ > t]]. QQQ
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(βββ) If r ∈ R is not isolated on the right, then τ ≤ π(infD, r). PPP We have πr = infq>r πq. If t ∈ T is
isolated on the right,

[[π(infD, r) > t]] = [[infD > r]] ∪ [[πr > t]] = (sup
q>r

inf
ρ∈D

[[ρ > q]]) ∪ [[infq>r πq > t]]

= (sup
q>r

inf
ρ∈D

[[ρ > q]]) ∪ (inf
q>r

[[πq > t]]) ⊇ inf
q>r

([[πq > t]] ∪ inf
ρ∈D

[[ρ > q]])

= inf
q>r

inf
ρ∈D

([[ρ > q]] ∪ [[πq > t]]) = inf
q>r

inf
ρ∈D

[[π(ρ, q) > t]] ⊇ [[τ > t]].

If t ∈ T is not isolated on the right, then

[[π(infD, r) > t]] = [[infD > r]] ∪ [[πr > t]] = (sup
q>r

inf
ρ∈D

[[ρ > q]]) ∪ (sup
s>t

inf
q>r

[[πq > s]])

= sup
s>t

((sup
q>r

inf
ρ∈D

[[ρ > q]]) ∪ (inf
q>r

[[πq > s]]))

⊇ sup
s>t

inf
q>r

( inf
ρ∈D

[[ρ > q]] ∪ [[πq > s]])

= sup
s>t

inf
q>r

inf
ρ∈D

[[π(ρ, q) > s]] ⊇ sup
s>t

[[τ > s]] = [[τ > t]].

Thus [[τ > t]] ⊆ [[π(infD, r) > t]] for every t and τ ≤ π(infD, r). QQQ

(γγγ) Putting these together, τ ≤ π(infD, r) for every r and τ ≤ π(infD). On the other hand,

π(infD) = infr∈R π(infD, r) ≤ infρ∈D,r∈R π(ρ, r) = τ .

So in fact π(infD) = τ = infρ∈D π(ρ), as required.

635D Proposition Suppose that 〈At〉t∈T is right-continuous. Let Q be a sublattice of R.
(a)(i) π[Q] is a sublattice of T .
(ii) If uuu = 〈uτ 〉τ∈π[Q] is a process fully adapted to 〈At〉t∈T , then uuuπ = 〈uπ(ρ)〉ρ∈Q is fully adapted to

〈Br〉r∈R.
(iii) Let ψ : π[Q]2↑ → L0(A) be an adapted interval function (613C), and set ψπ(ρ, ρ

′) = ψ(π(ρ), π(ρ′))
when ρ ≤ ρ′ in Q. Then ψπ is an adapted interval function.

(iv) In (iii), if ψ is strictly adapted then ψπ is strictly adapted.
(b) Now suppose that uuu = 〈uτ 〉τ∈π[Q] is fully adapted and that ψ is an adapted interval function on π[Q].

Then
∫
Q uuuπ dψπ =

∫
π[Q]

uuu dψ if either is defined.

proof (a)(i) This is just because π is a lattice homomorphism (635C(b-i)).

(ii) If ρ ∈ Q then uπ(ρ) ∈ L0(Aπ(ρ)) = L0(Bρ) by 635Ca. If ρ, ρ ∈ Q then

[[uπ(ρ) = uπ(ρ)]] ⊇ [[π(ρ) = π(ρ)]] ⊇ [[ρ = ρ]]

by 635Cc. So 〈uπ(ρ)〉ρ∈Q satisfies both the conditions of 612Da.

(iii)(ααα) If ρ ≤ ρ′ in Q then π(ρ) ≤ π(ρ′) in π[Q] (by 635C(b-i) again), so ψ(π(ρ), π(ρ′)) is defined
and belongs to L0(Aπ(ρ′)) = L0(Bρ′) (635Ca). Thus ψπ is a well-defined function on Q2↑. And of course
ψπ(ρ, ρ) = ψ(π(ρ), π(ρ)) = 0 for every ρ ∈ Q.

(βββ) If ρ, ρ′, σ, σ′ ∈ Q, ρ ≤ ρ′ ≤ σ′ ≤ σ, b ∈ Bρ and b ⊆ [[ρ = ρ′]] ∩ [[σ′ = σ]], then π(ρ) ≤ π(ρ′) ≤
π(σ′) ≤ π(σ) in π[Q], b ∈ Aπ(ρ) and b ⊆ [[π(ρ) = π(ρ′)]] ∩ [[π(σ′) = π(σ)]] (635Cc), so b ⊆ [[ψ(π(ρ), π(σ)) = ψ(π(ρ′), π(σ′))]].
With (α), this shows that ψπ is an adapted interval function.

(iv) Continuing from (iii), suppose that ψ is strictly adapted. Then

[[ρ = ρ′]] ∩ [[σ′ = σ]] ⊆ [[π(ρ) = π(ρ′)]] ∩ [[π(σ′) = π(σ)]]

⊆ [[ψ(π(ρ), π(σ)) = ψ(π(ρ′), π(σ′))]]

so ψπ is strictly adapted.
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(b)(i) We know from (a) that uuuπ is a fully adapted process and ψπ is an adapted interval function. If
J ∈ I(Q), then π[J ] ∈ I(π[Q]) because π is a lattice homomorphism. Now SJ(uuuπ, dψπ) = Sπ[J](uuu, dψ). PPP
If J is empty, this is trivial. Otherwise, let (ρ0, . . . , ρn) linearly generate the J-cells (611L). If ρ ∈ J , then

supi≤n [[π(ρ) = π(ρi)]] ⊇ supi≤n [[ρ = ρi]] = 1.

Consider the string (τ0, . . . , τn) where τi = π(ρi) for i ≤ n. This is a non-decreasing sequence in π[J ].
If τ ∈ π[J ], there must be a ρ ∈ J such that π(ρ) = τ ; now ρ0 ≤ ρ ≤ ρn, so τ0 ≤ τ ≤ τn. Thus
τ0 = minπ[J ] and τn = maxπ[J ]. If i < n and τ ∈ π[J ] ∩ [τi, τi+1], let ρ ∈ J be such that τ = π(ρ); setting
ρ′ = med(ρi, ρ, ρi+1), π(ρ

′) = med(τi, τ, τi+1) = τ while ρ′ ∈ {ρi, ρi+1}, so that τ ∈ {τi, τi+1}. But this
means that {τ0, . . . , τn} is a maximal totally ordered subset of π[J ], so that (τ0, . . . , τn) linearly generates
the π[J ]-cells.

Consequently

Sπ[J](uuu, dψ) =

n−1∑

i=0

uτi × ψ(τi, τi+1) =

n−1∑

i=0

uπ(ρi) × ψπ(ρi, ρi+1) = SJ(uuuπ, dψπ). QQQ

(ii) Suppose that z =
∫
π[Q]

uuu dψ is defined. Let ǫ > 0. Then there is an I0 ∈ I(π[Q]) such that

θ(z − SI(uuu, dψ)) ≤ ǫ whenever I0 ⊆ I ∈ I(π[Q]). Let A be a finite subset of Q such that I0 = π[A], and
J0 ∈ I(Q) the sublattice generated by A. If J0 ⊆ J ∈ I(Q), then π[J ] ⊇ π[J0] ⊇ I0, so

θ(z − SJ(uuuπ, dψπ)) = θ(z − Sπ[J](uuu, dψ)) ≤ ǫ.

As ǫ is arbitrary,
∫
Q uuuπ dψπ is defined and equal to z.

(iii) Suppose that z =
∫
Q uuuπ dψπ is defined. Let ǫ > 0. Then there is a J0 ∈ I(Q) such that

θ(z − SJ(uuuπ, dψπ)) ≤ ǫ whenever J0 ⊆ J ∈ I(Q). If π[J0] ⊆ I ∈ I(π[Q]), let A be a finite subset of Q such
that I = π[A], and let J be the sublattice of Q generated by J0 ∪A; then J0 ⊆ J ∈ I(Q) and π[J ] = I, so

θ(z − SI(uuu, dψ)) = θ(z − SJ(uuuπ, dψπ)) ≤ ǫ.

As ǫ is arbitrary,
∫
π[Q]

uuu dψ is defined and equal to z. This completes the proof.

635E Proposition Suppose that 〈At〉t∈T is right-continuous. Let S ⊆ T be a sublattice and uuu = 〈uτ 〉τ∈S

a fully adapted process. Set Q = π−1[S] = dom(πuuu).
(a) uuuπ is order-bounded iff uuu↾π[Q] is order-bounded.
(b) uuuπ is of bounded variation iff uuu↾π[Q] is of bounded variation.
(c) uuuπ is an integrator for the structure (A, µ̄, R, 〈Br〉r∈R) iff uuu↾π[Q] is an integrator for the structure

(A, µ̄, T, 〈At〉t∈T ).
(d) uuuπ is a martingale for the structure (A, µ̄, R, 〈Br〉r∈R) iff uuu↾π[Q] is a martingale for the structure

(A, µ̄, T, 〈At〉t∈T ).
(e) uuuπ is jump-free iff uuu↾π[Q] is jump-free.

(f) Let Ŝ be the covered envelope of S in T , Q̂ the covered envelope of Q in R and ûuu the fully adapted

extension of uuu to Ŝ. Then π[Q̂] ⊆ Ŝ and ûuuπ↾Q̂ is the fully adapted extension of uuuπ to Q̂.
(g) If uuu is moderately oscillatory then uuuπ is moderately oscillatory.
(h)(i) If S is order-convex in T then Q is order-convex in R.
(ii) Suppose that 〈πr〉r∈R is right-continuous (635Cd). If S is order-convex and uuu is near-simple, then

uuuπ is near-simple.

proof If Q is empty, then π[Q] will be empty and everything is trivial. So suppose that Q is non-empty.
Because π : R → T is a lattice homomorphism (635C(b-i)), π[Q] is a sublattice of T .

(a) We have only to note that {uπ(ρ) : ρ ∈ Q} = {uρ : ρ ∈ π[Q]}.

(b)(i) If uuu↾π[Q] is of bounded variation and ρ0 ≤ . . . ≤ ρn in Q then
∑n−1
i=0 |uπ(ρi+1) − uπ(ρi)| ≤

∫
π[Q]

|duuu|,

so uuuπ is of bounded variation.
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(ii) If uuuπ is of bounded variation and τ0 ≤ . . . ≤ τn in π[Q], take ρ′i ∈ Q such that π(ρ′i) = τi for each
i. Set ρi = supj≤i ρ

′
j for i ≤ n, so that ρ0 ≤ . . . ≤ ρn, π(ρi) = τi for i ≤ n, and

∑n−1
i=0 |uτi+1

− uτi | =
∑n−1
i=0 |uπ(ρi+1) − uπ(ρi)| ≤

∫
Q
|d(uuuπ)|.

As τ0, . . . , τn are arbitrary, uuu↾π[Q] is of bounded variation.

(c)(i) Qπ[Q](duuu) ⊆ QQ(d(uuuπ)). PPP Suppose that I ∈ I(π[Q]) is non-empty and that www = 〈wτ 〉τ∈I is a
fully adapted process with ‖www‖∞ ≤ 1. Let (τ0, . . . , τn) linearly generate the I-cells. As in (b-ii) above, we
have ρ0 ≤ . . . ≤ ρn in Q such that π(ρi) = τi for each i. Now wτi ∈ L0(Aπ(ρi)) = L0(Bρi) and ‖wτi‖∞ ≤ 1.
So

SI(www, duuu) =

n−1∑

i=0

wτi × (uτi+1
− uτi)

=

n−1∑

i=0

wτi × (uπ(ρi+1) − uπ(ρi)) ∈ QQ(d(uuuπ))

(616C(ii)). As I and www are arbitrary, Qπ[Q](duuu) ⊆ QQ(d(uuuπ)). QQQ
So if uuuπ is an integrator, uuu↾π[Q] is an integrator (616Fc, 613B(f-iii)).

(ii) QQ(d(uuuπ)) ⊆ Qπ[Q](duuu). PPP Suppose that I ∈ I(Q) is non-empty and that www = 〈wτ 〉τ∈I is a fully
adapted process with ‖www‖∞ ≤ 1. Let (ρ0, . . . , ρn) linearly generate the I-cells. Now π(ρ0) ≤ . . . ≤ π(ρn)
and wρi ∈ L0(Aπ(ρi)) and ‖wρi‖∞ ≤ 1 for each i. So

SI(www, d(uuuπ)) =
∑n−1
i=0 wρi × (uπ(ρi+1) − uπ(ρi)) ∈ Qπ[Q](duuu).

As I and www are arbitrary, QQ(d(uuuπ)) ⊆ Qπ[Q](duuu). QQQ
So if uuu↾π[Q] is an integrator, uuuπ is an integrator.

(d)(i) Suppose that uuuπ is a martingale. Take τ ≤ τ ′ in π[Q]. Again as in (b-ii) of this proof, there are
ρ ≤ ρ′ in Q such that τ = π(ρ) and τ ′ = π(ρ′). Now Aτ = Bρ, so

Pτuτ ′ = Pτuπ(ρ′) = uπ(ρ) = uτ .

As τ and τ ′ are arbitrary, uuu↾π[Q] is a martingale.

(ii) Suppose that uuu↾π[Q] is a martingale. Take ρ ≤ ρ′ inQ. Then π(ρ) ≤ π(ρ′) in π[Q], andBρ = Aπ(ρ).
So the conditional expectation of uπ(ρ′) on Bρ is Pπ(ρ)uπ(ρ′) = uπ(ρ). As ρ and ρ′ are arbitrary, uuuπ is a
martingale.

(e) By (a), we know that if either uuuπ or uuu↾π[Q] is jump-free, then both are order-bounded. So we can
suppose throughout that this is so.

(i) Suppose that ρ0 ≤ . . . ≤ ρn in Q. Set ρ−1 = minR, ρn+1 = maxR, τ−1 = min T , τn+1 = max T
and τi = π(ρi) for 0 ≤ i ≤ n. Then

w̃ = sup{|uπ(ρ′) − uπ(ρ)| : ρ, ρ
′ ∈ Q and there is an i

such that − 1 ≤ i ≤ n and ρi ≤ ρ ≤ ρ′ ≤ ρi+1},

w = sup{|uτ ′ − uτ | : τ, τ
′ ∈ π[Q] and there is an i

such that − 1 ≤ i ≤ n and τi ≤ τ ≤ τ ′ ≤ τi+1}

are equal.

PPP(ααα) If τ , τ ′ ∈ π[Q] are such that τi ≤ τ ≤ τ ′ ≤ τi+1 where −1 ≤ i ≤ n+ 1, then we can express τ , τ ′

as π(ρ), π(ρ′) for ρ, ρ′ ∈ Q; replacing ρ by med(ρi, ρ, ρi+1) if necessary, we can suppose that ρi ≤ ρ ≤ ρi+1;
replacing ρ′ by med(ρ, ρ′, ρi+1) if necessary, we can suppose that ρ ≤ ρ′ ≤ ρi+1. Now

|uτ ′ − uτ | = |uπ(ρ′) − uπ(ρ)| ≤ w̃.

As τ and τ ′ are arbitrary, w ≤ w̃.
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(βββ) If w is defined and ρ, ρ′ ∈ Q are such that ρi ≤ ρ ≤ ρ′ ≤ ρi+1 where −1 ≤ i ≤ n + 1, then
τi ≤ π(ρ) ≤ π(ρ′) ≤ τi+1, so |uπ(ρ′) − uπ(ρ)| ≤ w. As ρ and ρ′ are arbitrary, w̃ ≤ w. QQQ

(ii) Suppose that ρ0 ≤ . . . ≤ ρn in Q and that I ∈ I(Q), I ′ ∈ I(π[Q]) are such that (ρ0, . . . , ρn)
linearly generates the I-cells, while (π(ρ0), . . . , π(ρn)) linearly generates the I ′-cells. Then Osclln∗I(uuuπ) =
Osclln∗I′(uuu↾π[Q]). PPP Put (i) here together with 618Ca. QQQ

(iii) Suppose that uuuπ is jump-free. Let ǫ > 0. Then there is a non-empty I ∈ I(Q) such that
Osclln∗I(uuuπ) ≤ ǫ. Let (ρ0, . . . , ρn) linearly generate the I-cells. Set I ′ = {π(ρ0), . . . , π(ρn)} ∈ I(π[Q]).
Then (π(ρ0), . . . , π(ρn)) linearly generates the I ′-cells. By (ii),

θ(Osclln∗I′(uuu↾π[Q])) = θ(Osclln∗I(uuuπ)) ≤ ǫ.

As ǫ is arbitrary, uuu↾π[Q] is jump-free.

(iv) Suppose that uuu↾π[Q] is jump-free. Let ǫ > 0. Then there is a non-empty I ′ ∈ I(π[Q]) such that
Osclln∗I′(uuu↾π[Q]) ≤ ǫ. Let (τ0, . . . , τn) linearly generate the I ′-cells. Take ρ0 ≤ . . . ≤ ρn in Q such that
π(ρi) = τi for each i. Set I = {ρ0, . . . , ρn} ∈ I(Q). Then (ρ0, . . . , ρn) linearly generates the I-cells, so

θ(Osclln∗I(uuuπ)) = θ(Osclln∗I′(uuu↾π[Q])) ≤ ǫ.

As ǫ is arbitrary, uuuπ is jump-free.

(f) If ρ ∈ Q̂ then

supτ∈S [[π(ρ) = τ ]] ⊇ supρ′∈Q [[π(ρ) = π(ρ′)]] ⊇ supρ′∈Q [[ρ = ρ′]] = 1,

so π(ρ) ∈ Ŝ. Now ûuuπ↾Q̂ is fully adapted and extends uuuπ, so is the fully adapted extension of uuuπ.

(g) For any ǫ > 0, there is a process vvv = 〈vτ 〉τ∈S of bounded variation such that θ(sup |uuu− vvv|) ≤ ǫ. Now
vvvπ is of bounded variation ((b) above) and

sup |uuuπ − vvvπ| = supρ∈Q |uπ(ρ) − vπ(ρ)| ≤ supτ∈S |uτ − vτ | = sup |uuu− vvv|,

so θ(sup |uuuπ − vvvπ|) ≤ ǫ. As ǫ is arbitrary, uuuπ is moderately oscillatory.

(h)(i) If ρ0, ρ1 ∈ Q, ρ ∈ R and ρ0 ≤ ρ ≤ ρ1, then π(ρ0) ≤ π(ρ) ≤ π(ρ1), while π(ρ0) and π(ρ1) belong
to S; so π(ρ) ∈ S and ρ ∈ Q. Thus Q is order-convex.

(ii) Suppose that A ⊆ Q is non-empty and downwards-directed and has a lower bound ρ∗ ∈ Q. Then
inf A, the infimum of A in R, lies between ρ∗ and any member of A, so belongs to Q. Next, B = π[A] is
non-empty and downwards-directed and has a lower bound in S, so inf B ∈ S, while inf B = π(inf A) by
635C(d-ii). Given ǫ > 0, there is a τ0 ∈ B such that θ(uτ − uinf B) ≤ ǫ whenever τ ∈ B and τ ≤ τ0 (632E).
Take ρ0 ∈ A such that τ0 = π(ρ0); then θ(uπ(ρ) − uπ(inf A)) ≤ ǫ whenever ρ ∈ A and ρ ≤ ρ0. As A and ǫ are
arbitrary, uuuπ satisfies (†) of 632F.

As uuu is near-simple, it is moderately oscillatory, so uuuπ is moderately oscillatory. By 632F, uuuπ is locally
near-simple, and in fact near-simple, by 631F(c-ii).

635F Theorem Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T ,
and vvv = 〈vσ〉σ∈S a near-simple integrator; let Q be a sublattice of R such that π[Q] is a cofinal sublattice
of S which vvv-separates S (633Bb). If uuu = 〈uτ 〉τ∈S is a moderately oscillatory process, then

∫
Q uuuπ d(vvvπ) is

defined and equal to
∫
S uuu dvvv.

proof By 633Ka,
∫
π[Q]

uuu dvvv is defined and equal to
∫
S uuu dvvv. By 635Db, this is also

∫
Q uuuπ d(vvvπ), since of

course the adapted interval function ∆(vvvπ) (613Cc) is precisely (∆vvv)π as defined in 635Db.

635G Corollary Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice of T ,
and vvv = 〈vσ〉σ∈S a near-simple integrator, with quadratic variation vvv∗. If Q is a sublattice of π−1[S] such
that π[Q] vvv-separates S, then the quadratic variation of vvvπ↾Q is vvv∗π↾Q.

proof If Q is empty, this is trivial; so suppose otherwise. By 635Ec, vvvπ is an integrator, so vvvπ↾Q is an
integrator and has a quadratic variation. Take any ρ ∈ Q. Then π[Q ∧ ρ] vvv-separates S ∧ π(ρ). PPP If τ ,
τ ′ ∈ S ∧ π(ρ) and σ ∈ Q, then
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[[τ ≤ π(σ ∧ ρ)]] = [[τ ≤ π(σ) ∧ π(ρ)]] = [[τ ≤ π(σ)]] ∩ [[τ ≤ π(ρ)]] = [[τ ≤ π(σ)]],

[[π(σ ∧ ρ) < τ ′]] = [[π(σ) ∧ π(ρ) < τ ′]] = [[π(σ) < τ ′]] ∪ [[π(ρ) < τ ′]] = [[π(σ) < τ ′]],

[[τ ≤ π(σ ∧ ρ)]] ∩ [[π(σ ∧ ρ) < τ ′]] = [[τ ≤ π(σ)]] ∩ [[π(σ) < τ ′]].

So if τ ≤ τ ′, then

[[vτ 6= vτ ′ ]] ⊆ sup
σ∈Q

([[τ ≤ π(σ)]] ∩ [[π(σ) < τ ′]])

= sup
σ∈Q

([[τ ≤ π(σ ∧ ρ)]] ∩ [[π(σ ∧ ρ) < τ ′]]).

As τ and τ ′ are arbitrary, π[Q ∧ ρ] vvv-separates S ∧ π(ρ). QQQ
Of course S ∧ π(ρ) is still order-convex, and π[Q∧ ρ] is cofinal with S ∧ π(ρ) because it contains π(ρ). So

635F tells us that
∫
Q∧ρ vvvπ d(vvvπ) =

∫
S∧π(ρ) vvv dvvv. Next, vvv

2 is also a near-simple integrator (631F(a-i), 616N),

and clearly vvv2π = (vvvπ)2, so ∫
Q∧ρ

d((vvvπ)2) =
∫
Q∧ρ

d(vvv2π) =
∫
S∧π(ρ)

d(vvv2)

by 635F again. Accordingly∫
Q∧ρ

d((vvvπ)2)− 2
∫
Q∧ρ

vvvπ d(vvvπ) =
∫
S∧π(ρ)

d(vvv2)− 2
∫
S∧π(ρ)

vvv dvvv = v∗
π(ρ)

(617Kb). As ρ is arbitrary, the quadratic variation of vvvπ↾Q is the function ρ 7→ v∗π(ρ) : Q → L0(A), that is,

vvv∗π↾Q.

635X Basic exercises (a) Suppose that 〈At〉t∈T is right-continuous. Let S be an order-convex sublattice
of T , and vvv, www local integrators with domain S, with covariation [vvv

∗
www]. Show that if Q is a sublattice of

π−1[S] such that π[Q] separates S, then [vvvπ↾Q∗
wwwπ↾Q] is defined and equal to [vvv

∗
www]π↾Q.

635Y Further exercises (a) Set T ‖ = {t− : t ∈ T} ∪ {t+ : t ∈ T} with the total ordering defined by
saying that, for s, t ∈ T ,

s+ ≤ t+ ⇐⇒ s− ≤ t− ⇐⇒ s− ≤ t+ ⇐⇒ s ≤ t, s+ ≤ t− ⇐⇒ s < t.

(i) Show that T ‖ is totally ordered. (ii) For t ∈ T , set Bt− = At, Bt+ = A if t = maxT , and Bt+ =
⋂
s>t As

otherwise. Show that 〈Br〉r∈T‖ is a right-continuous filtration. Write T ‖ for the corresponding lattice of

stopping times. (iii) For t ∈ T set πt = ť− ∈ T ‖. For ρ ∈ T let π(ρ) ∈ T ‖ be given by the formula in 635B.
Show that

[[π(ρ) > t+]] = [[π(ρ) > t−]] = [[ρ > t]]

for every t ∈ T . (iv) Show that [[π(ρ) < π(τ)]] = [[ρ < τ ]] for all ρ, τ ∈ T , and that π(ρ) = π(τ) iff ρ = τ . (v)
Show that if τ ∈ T ‖ then Bτ =

⋂
{Aρ : ρ ∈ T , π(ρ) ≥ τ}.

635 Notes and comments In this section, right-continuity of the filtration 〈At〉t∈T is a generally ruling
hypothesis; this is because it seems to be necessary for the basic algebra of the lattice homomorphism
π : R → T (635Ca). With the elementary properties of this homomorphism in hand, the programme of
635D-635G is obvious, and we have just to make sure that it is watertight. In 653G-653J I will explain how
the ideas behind 635F can sometimes be used to replace an integral with respect to an unfamiliar jump-free
martingale by an integral with respect to Brownian motion.
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