Version of 8.3.24
Chapter 63
Structural alterations

One of the daunting things about stochastic calculus is the amount of preliminary material required before
one can approach the main theorems, let alone the interesting applications. Before proceeding to Chapter
64 we must do some more work more or less at the level of Chapters 61-62, and this is what I will try to
deal with in the present chapter.

I start with a quick run through the properties of near-simple processes (§631) which got pushed out of
Chapter 61 due to shortage of space. The real work of the chapter begins in §632, with ‘right-continuous’
filtrations (¢)er. For such stochastic integration structures, which include the most important examples
(632D), there are useful simplifications in the theory (632C, 632F, 6321, 632J), so it is not surprising that
most presentations of this material take right-continuity of the filtration as a standard hypothesis.

The integral |, sudv, as T have defined it, depends on an elaborate structure: a probability algebra 2 R),
a filtration (s)ier and the sublattice S. We anticipate that changing any of these will change the value
of the integral. But there are many cases in which this doesn’t happen. The simplest of these is ‘change
of law’. As long as we have a strictly positive countably additive measure on the given algebra 2, we shall
have the same integrals, as I pointed out right at the beginning in 613I. Next, there are important classes
of pairs &', S of lattices for which we can expect equality of the integrals | s and /. g+ For these we have to
work fairly hard, since it is certainly not enough just to have min &’ = min § and maxS’ = maxS. In §633
I explore sufficient conditions to make a sublattice S’ of S behave as if it had full outer (Riemann) measure,
so that an integral over S will be the same when taken over S’ (633K).

We are now in a position to look at the effect of replacing (A, i, ()rer) with (B, 4B, (B N Ap)ier)
where 9B is a subalgebra of 2(. As long as we are just looking at integrals, we need only quote from §633;
but if we want to understand martingales (6341), we need the theory of relative independence from Chapter
48. And there is a yet more radical change which we can consider, where the filtration (;):c7 is replaced
by (2, )rer for some family (7,),cr of stopping times. This is what I do in §635.

Version of 4.5.21/21.1.22

631 Near-simple processes

My presentation so far has focused on ‘moderately oscillatory’ integrands, with regular mentions of
‘simple’ processes, and an excursion into ‘jump-free’ processes in §§618-619. Later on, however, there will
be many important results applying to an intermediate class, the ‘near-simple’ processes.

631A Notation We shall need a good many of the formulae introduced in Chapter 61, and as we are
starting a new chapter I will give a particularly detailed list. Throughout, (2, i, T, (A)ter, T, (A ) re7) will
be a stochastic integration structure (§613 notes). For u € LO(2), 0(u) is E(ju| Ax1) (613B). If t € T, { is the
constant stopping time at ¢ (611A). If h : R — R is a Borel function, h is the associated function from L°(2)
to itself (612A). If S is a sublattice of T and 7 € T, then SAT={ocAT:0€S8},SVT={oVT:0€ S}
and Z(S) is the set of finite sublattices of S. [] will appear in formulae of the type [u > o], [u < v]
where u, v € L°(2) and a € R, as in Chapter 36; in formulae of the type [o > t] and [o < 7], where o,
7€ T and t € T, as in 611A and 611D; and in formulae of the type [u # 0] = sup,cs [us # 0] where
u = (Uy)oes € LO(A)®, as in 612S.

For a sublattice S of T, Ma(S), Msimp(S), Mob(S) and Mo, (S) and are the f-algebras of, respectively,
the fully adapted processes (612I), the simple processes (612J), the order-bounded processes and the locally
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2 Structural variations 631A

order-bounded processes (614E) with domain S. I will use the symbol 1 for constant processes with value
x1 € L°(A) (361D, 612De). If u = (uy)ses € Ma(S) and z € LO(A) NN, 5 L°(As), then zu is the process
(z X Ug)pes (612De).

For an order-bounded process u = (uy)ses, Sup [u| = sup,¢cg |u,| € L°(A). For a finite sublattice I of T
and fully adapted processes u, v with domains including I, S;(u, dv) is the Riemann sum defined in 613E-
613F. [sudv and [4 |dv| will denote Riemann-sum integrals as in 613L, while ii,(u) will be an indefinite
integral as defined in 6130.

631B Definitions Let S be a sublattice of T .

(a) A fully adapted process u with domain S is near-simple if it is in the closure of Mgimp(S) for the
ucp topology on M, 1, (S); that is, it is order-bounded and for every e > 0 there is a simple process v with
domain S such that §(sup [u —v|) <.

(b) A fully adapted process u with domain S is locally near-simple if u[S A 7 is near-simple for every
TES.

Remarks Note that in this definition it is essential that the approximating simple process v should have
the same domain as the process u. We have no general assurance that if v is a simple process, and § is a
sublattice of domw, then v[S is near-simple (see 631Xb).

631C Proposition (a) (Locally) near-simple processes are (locally) moderately oscillatory.
(b) (Locally) jump-free processes are (locally) near-simple.

proof (a) We know that simple processes are moderately oscillatory (615E) and that the space of moderately
oscillatory processes is closed in the space of order-bounded processes for the ucp topology (615F(a-iv)), so
near-simple processes are moderately oscillatory. It follows at once that locally near-simple processes are
locally moderately oscillatory.

(b) As declared in 612Ja, the empty process counts as simple, so we need only to look at non-trivial
sublattices. Re-reading part (i) of the proof of 618Gb, we see that if S is a non-empty sublattice of T, u
is a jump-free process with domain S, and € > 0, there is a simple process 4’ with domain S such that
O(sup |lu —u'|) < e. As € is arbitrary, u is near-simple. As in (a) just above, it follows immediately that
locally jump-free processes are locally simple.

631D Where near-simple processes come from: Theorem Let (2, X, 1) be a complete probability
space and (X;);>¢ a filtration of o-subalgebras of ¥, all containing every negligible subset of Q. Suppose
that we are given a family (X;):>¢ of real-valued functions on Q such that X; is ¥;-measurable for every ¢
and ¢t — X;(w) : [0,00] — R is cadlag (in the sense of 4A2A) for every w € Q.

In this case, (X;)¢>o is progressively measurable, and if (2, fz, [0, 0o[, (2¢)i>0, T, (Ar)re7) and (24)oe7;
are defined as in 612H, then x = (z,),c7; is locally near-simple.

proof Just as 613Ub corresponds to 618Gb, the proof here follows that of 618H. Corresponding to the weaker
hypothesis and less ambitious objective, some modifications are necessary. To begin with, the formulae can
be copied exactly, but rather than keep you turning back and forth, I repeat the details.

(a) As before, I start by showing that we have a progressively measurable process. B Take any ¢ > 0
and « € R. Set Q = {qt: ¢ € QN [0,1]}. Then

{(s,w) : s <t, Xs(w) > a}

= {(s,w) : s <t, limsup X,(w) > a}
qlQN[s,t]

(because s — X;(w) is cadlag for every w)
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631D Near-simple processes 3

= U ﬂ U {(s,w):8<t,s>qors<q and Xy (w) > a+27"}
kENgeQ q'EQ
q'<q

e B([0, )&%,

where B([0,¢]) is the Borel o-algebra of [0,t]. Q

We can therefore again apply the method of 612H to define, for each stopping time h : Q — [0, 00],
the o-algebra ¥j and the Y¥j-measurable function X}, and we find ourselves with a stochastic integration
structure (A, fi, [0, 00[, (%¢)1>0, T, (Ar)re7) and a fully adapted process £ = (z5),e7; such that xpe = Xp
for every h.

(b) Let h: Q — [0, 00[ be a stopping time, and € > 0. For w € ) set

f(w)=min({h(w)} U{t:t >0, | X (w)| > €}).

(Once again I can write min rather than inf because if {¢ : | X;(w)| > €} is non-empty it contains its infimum.)

Then f is a stopping time. I For any ¢ > 0, 3; contains every u-negligible set, so (€2, 3, u[%;) is a complete
probability space and ¥, is closed under Souslin’s operation (431A). Next,

{(5:0) 55 <4 [X,@)] > & = Meen(s:0) 15 < 1 X ()] > e~ 2)
belongs to B([0,1])®%;, by (a) applied to the process (s,w) — | X,(w)|. So its projection E = {w :3 s € [0,1],
| Xs(w)| > €} belongs to ; (42301). Now
{w: flw) <ty ={w:hw) <t}UFE € %;.

As t is arbitrary, f is a stopping time adapted to (X;);>0. Q

(¢) Again suppose that h : Q — [0, 00[ is a stopping time and € > 0. Define g,, and Xt("), for n € N and
t > 0, by setting

go(w) = 0 for every w € Q2

and

XM (W) = 0if go(w) > t,
= Xi(w) — Xy, (w) if gn(w) < t,

gn1(w) = inf({h(w)} U{t: >0, | X" (w)] > €}

forn € N, ¢t > 0 and w € ), We see immediately that ¢t — Xt(")(w) is always cadlag. Also we can see by

induction on n that every g, is a stopping time and every Xt(") is Xy-measurable. I For n = 0 this is trivial,
since of course X; — X is Xi-measurable and ¢ — X;(w) — Xo(w) is always cadlag. For the inductive step

ton > 1, gy is a stopping time, by (b) applied to (Xt(nfl)ﬁzo. Next, setting F' = {w : gn(w) < ¢}, we have

FN{w:gn(w) <s} ={w:gnlw) <s}e X, T if s <t,
=FeXift<s
so e, . If E e, then ENF € X, so Xy, x xF is ¥;-measurable; while F' € 3, so X; x xF' is
Y;-measurable. Consequently Xt(n) = (Xy — X,,) x xF is ¥;-measurable, and the induction continues. Q
We therefore have a non-decreasing sequence (g,)nen of stopping times such that, for any n € N and

wE Q,

—— if n =0 then g,(w) =0,

— gn(w) < h(w),

— Xu(w) — Xy, (@)] < € Whenever gu(w) < ¢ < gus1(w),

—if gp41(w) < h(w) then [ Xy, (W) — Xy, (w)] > e
It is at this point that the argument begins to diverge from that of 618H. But we still see that for any w,
(gn(w))nen is a non-decreasing sequence bounded above by h(w), so

ILater editions only.
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4 Structural variations 631D

limy, 00 Xy, (W) = limy, 00 X, () (W)
is defined and finite, in which case there must be some n such that g,1(w) = h(w).

(d) Translating (c) into the language of the stochastic integration structure (2, i, T, (At )eer, T, (Ar)reT),
we see that given any 7 € Ty and € > 0 we have a non-decreasing sequence (7,)nen in 77 such that, for
every n € N,

fifn:OthenTn:(v):min’Ec,

— Tn S T,

— [m <o]nfo < Tnyi] € [Jze — 2r,| < €] for every o € Ty,
and

SUpen [T = 7] = 1.
But this means that if we take n € N such that ¢ = 1\ [r,, = 7] has measure at most ¢, and take v =
(Vo) oeTAr tO be the simple function defined from 7o, ... , 7, and ., ... ,z,, , then [1; < o] nfo < 7i41] C [|zo — vo| < €]
for every 0 € T AT and i < n. So [|xs — v,| > €] C ¢ for every 0 € T A7, and O(sup |(2]T A7) —v]) < 2e.
As € is arbitrary, £[7T A 7T is near-simple; as 7 is arbitrary, z is locally near-simple.

631E Proposition (a) If T' = [0, o[, then the identity process on Ty is locally near-simple.
(b) Brownian motion is locally near-simple.
(¢) The Poisson process is locally near-simple.

proof By 618Ja and 618Jc, the identity process and Brownian motion are locally jump-free, so by 631Cb
they are locally near-simple. As for the Poisson process v, I defined it in 612Ub in terms of a probability
measure on ) = Cqig and a process (Xy);>0 with X;(w) = w(t) for every w, so that ¢ — X,(w) is surely
cadlag for every w, and 631D tells us that v is locally near-simple.

631F Proposition Let S be a sublattice of 7.
(a) Write M,.s = My<(S) for the set of near-simple processes with domain S.
(i) If h: R — R is continuous, then hu € M, for every u € M.
(ii) My, is an f-subalgebra of M, = My, (S).
(iii) M,_s is complete for the ucp uniformity.
(iv) If 7 € S and u € Mg, (S), then u is near-simple iff u[S A 7 and u[S V 7 are both near-simple.
(v) Ifu € My and z € LO(AN(),cs Ao), then zu belongs to M.
(vi) If u is near-simple it is locally near-simple.
(b) Write My, = Mins(S) for the set of locally near-simple processes with domain S.
(i) If h : R — R is continuous, then hu € My, for every 4 € M.
(ii) M5 is an f-subalgebra of the space Mjop, = Mo (S) of locally order-bounded processes with
domain S.
(iii) If u € M¢,(S) and 7 € S, then u is locally near-simple iff u[S A 7 and u[S V 7 are both locally
near-simple.
(iv) fu € Mg and z € LO(AN (), o5 Ao), then zu € M.
(v) fu € M, (S) and {0 : 0 € S, u[S A 0 is near-simple} covers S, then u € My .
(c) Suppose that u is a moderately oscillatory process with domain S.
(i) fulS N7, 7'] is near-simple whenever 7 < 7/ in S, then w is near-simple.
(ii) If w is locally near-simple it is near-simple.

proof (a)(i) By 615Ca, u — hu : Mo ,(S) — Mop(S) is continuous, while hu € Mqimp(S) for every
U € Mimp(S), by 612La. Since M, (S) is the closure of Mgimp(S), hv € M, (S) for every v € M, 4(S).

(ii) Similarly, as Mgimp(S) is closed under the operations +, x and u — |u|, and these are continuous
on My p(S), Mps(S) also is closed under these operations, and is an f-subalgebra of M, p(S).

(iii) By definition, M s is a closed subset of M,1,. As M, is complete under its ucp uniformity
(615Cc), so is M, s (3A4Fd?).

2Later editions only.
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631F Near-simple processes 5

(iv)(a) The operation 4 — u[S A7 : Mo p(S) = Moy, (S A7) is linear, and also continuous, as
O(sup [ulS A 7]) < O(sup |u|)

for every u € My (S). Since u[S AT € Mginp(S A7) for every u € Mginp(S) (612K(d-ii)), ulSA T €
Mgmp(SAT) = Mys(S) for every u € Msimp(S) = Mus(S). Similarly, using 612K (d-iii), u[S vV 7 €
Mys(SV 1) for every u € M, «(S).

(B) Now suppose that u € M, (S) is such that u[S AT and u[SV 7 are near-simple. Let € > 0. Then
there are simple processes ©' = (ul )yesar and u”’ = (u?),csv- such that 8(a'), 8(a”) are both less than or

equal to €, where @' = sup [u' —u[S A 7| and @’ = sup [u”" —ulSV 71|
Let (4,...,7,) and (74,...,7))) be breakpoint strings for u/, u” respectively; we can suppose that

r'n

= 75 = 7. Let v be the simple process defined by the formula in 612Ka from the breakpoint string

7_/

(77%, ceoyTyeo. 1) and the values ui, u’Té, .. ,u’TT,nil,u’T’, ... ,u’T’g, where v is the starting value of u’ (614Ba).
If 0 € S then
[o < 7] C [ue = tonr] N [Uspr = Vorr] N [Vorr = Vo]
C [lug —vo| < @',
[r < o] € [us = uovr] N [ugy, = vovr] N [vovr = vo]
C [lue — vo| < @],
SO

O(sup lu —v|) < O(a@' va") < 2
as € is arbitrary, u is near-simple.
(v) This follows from (ii) because z1[S is simple and zu = (21]S) X u.
(vi) This is immediate from (iv).
(b)(i) follows from (a-i) because (hu)[S AT = h(u|S A T) for every 7 € S.
(ii) Similarly, restriction respects the algebraic and lattice operations on M, ,(S).

(iii) (@) If w is locally near-simple, then u[S A 7 is simple, therefore locally near-simple. Also, if
eS8V,

WSV SVT)AT =wlSAT(SAT)VT
is near-simple, so u[(S V 7) is locally near-simple.

(B) Suppose that u]S A7 and u[S V 7 are locally near-simple. Take any 7/ € SV 7. Then (u[S A
TINSEATIANT=u[SATand W[SVT)[(SAT)VT=w[SVT)(SVT)AT are near-simple, so u[S A 7/
is near-simple.

In general, if 7/ is an arbitrary member of S,

ul[SAT =@ISA(T'VINI(SAT VT) AT
is near-simple, so u is locally near-simple.
(iv) follows from (ii) here or from (a-v).
(v) Write A for {o: 0 € S, u[S A o} is near-simple}.

(o) If 0 € A then v, = (Upro)pes is near-simple. P v,[S Ao =u[S A o is near-simple, by (a-iv),
while v, [SV o is constant with value u,, therefore simple. By (a-iv) in the other direction, v, is near-simple.

Q

(B) Aisclosed under V. P If o, 7 € A, then Upa(ovr) = Upao +Upar —Upponr fOT every p € SA(oVT),
by 612D(f-1), that is, v,y = Vs + Vr —Vsnr. By (@) here, vy, v, and vy, are all near-simple, so the linear
combination v,y and the restriction u[S A (6 V 7) = voyu, [S A (0 V 7) is near-simple. So o V7€ A. Q

D.H.FREMLIN



6 Structural variations 631F

() Now suppose that 7 € S. Then {7} is covered by A so for any ¢ > 0 there are oy, ... ,0, € A such
that sup;<,, [0; = 7] has measure at least 1 — e. Now o = sup,,, o; belongs to A, by (), and a = [o < 7]
has measure at most €. By (a), v, is near-simple, while for p € SA T

lup £ vl Clo# pAol =[o <plclo <7l =a.

Thus [u]S AT # v,]S A 7] C a has measure at most €, while v, [S AT is near-simple. In particular, v, [SAT
is order-bounded; as € is arbitrary, u[S AT is order-bounded, by 613Bp applied to {u, : ¢ € SAT}. But now
we see from the same formula that for every € > 0 there is av € My, s(SAT) such that f(sup [u[SAT—v]|) < ¢
as My (S A7) is closed in M,,(S A7) in the ucp topology, u[S A 7 is near-simple. As 7 is arbitrary, u is
locally near-simple, as claimed.

(c)(i) If S is empty, the result is trivial. Otherwise, since u is moderately oscillatory, it is surely order-
bounded. Let € > 0. By 615Ga, uy = limg4s uy is defined and there is a 7/ € S such that 6(w’) < e where
W = Sup,cgyy |Ue — ut]. Similarly, applying 615Gb to A = SA T/, vy = limy s u, is defined and there is a
7 € S A7’ such that §(w) < e where w = sup,cga, [Us — .

Now u|S N [7,7'] is near-simple, so there is a simple process v’ = (v )sesar such that 8(w”) < e where

w” = sup,cspr |Uo — v, |. Take a breakpoint string (7, ... ,7,) for v starting with 79 = 7 and ending with
T, = 7' (see 612Kb), and let v = (v,)ses be the simple process with domain S based on the starting value
uy, the breakpoint string (7o, ... ,7,) and the values (v} ,... ,v, ). If 0 € S then |u, —v,| < w+2w' 4 2w".
P

[o < 7] Cve =u]nue = tenr] C [|ue —vo| < w],
[r < o100 < 71 € e = tmea(rinn] 1 [0 = thraqqrenan] € [l — 0] < 0],
[7" < o] C [us = ugvr ] N [ve = vL]
C [luo = vo| < |ugys — uT| + urr — UT| + |ur — U‘/r’H]

[Jug — vo| < 20" +w"]. Q
Accordingly 0(sup |u —v|) < O(w + 2w’ + 2w"”) < Be. As € is arbitrary. u is near-simple.

N

(ii) If w is locally near-simple and 7 < 7/ in S, then u|SAT’ is near-simple so u[ SN[, 7] = u[ (SAT)VT
is near-simple ((a-iv) above). As 7 and 7’ are arbitrary, (i) here tells us that u is near-simple.

631G Proposition Let S be a sublattice of 7, S its covered envelope, u = (uy)ses a fully adapted
process, and u its fully adapted extension to S.

(a) u is near-simple iff 4 is near-simple.

(b) u is locally near-simple iff @ is locally near-simple.
proof If § is empty both parts are trivial, so suppose otherwise.

(a)(i) Suppose that u is near-simple. Then it is order-bounded, so @ is order-bounded (614G(b-i)), Let
€ > 0. Then there is a simple process v = (Vs ),es such that 8(sup ju —v|) < e. By 612Qf, the fully adapted
extension ¥ of v to S is simple, while sup & — 9| = sup |u — v| (612Qb, 614G (b-i)). So O(sup |it — 9|) < €; as
€ is arbitrary, @ is near-simple.

(ii) Suppose that @ is near-simple.

(a) 4 is order-bounded, so u = %S is order-bounded. Let € > 0. Then there is a simple process w =
(wr) .c g such that f(sup |[@—w|) < e. Let wy be the starting value of w and (7o, . .. ,7,) a breakpoint sequence
for w. For each i < n, sup,cs [; = 0] = 1, so there is a finite set A; C S such that fi(sup,ca, [1i = 0]) >

1-— —r
I-cells. If i < n,

€

Let I be a finite sublattice of S including | J,,, Ai, and take (po, ..., pp) linearly generating the

sup [, =o] C sup[r, =0 = sup [rn=oc]n]o=p,]
o€eA; ocel oc€el,j<m

(611L)
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631G Near-simple processes 7
< sup [7i = psl,

SO

a = inf<p sup;<,, [7i = pj]
has measure at least 1 — e. Note that

a C supj<p, [pj < 7ol nsupj<,y, [ < ps] € [po < 0] 0 [10 < o

In between,

an[ri < pja] € [7i < pj]

whenever : <n and j <m. P

anfr < pjpa] € sup [ri < pjsalnlr = pe] = Sup [ox < pjsal 0l = pel

C sup [ = pi] C [1i < p;]. Q
k<j
(B) Now let v = (v,)ses be the simple process with starting value w,, breakpoint string (po, - .. , Pm)

and values v,, = w,, for j <m. Take 0 € S. Let B be the finite subalgebra of 2 generated by
{lri=pil:i<n, j<m}pU{ln <o]:i<n}U{lp; <of,j<m};
note that a € *B.
() Let b be a atom of B included in a. Then b C [v, = wy]. P Since
(Ie < polilpo < olnlo < pil,...  [pm-1 < o] n o < pml], [om < o])

is a partition of unity in 2, one of these includes b; and similarly either b C [o < 70] or b C [, < o] or there
is an i < n such that b C [1; < o] nfo < 741]- Now b Ca C [po < 7] so if b C [o < pg] then b C o < 70]
and

b v, =w]nw, =w] C v, =ws].
Similarly, b C a C [7, < pm] 80 if b C [pm < o] then b C |7, < o] and
b C [ve =wp, ] 0wy, =w:]n[ws =w,] C [ve =ws].
Otherwise, let j < m be such that
bclp; <olnlo <pjl € lve = wp,].
If b C o < 7] then
b C [vo = wp, ] nlp; < 7o) N [we =w,]
C [vo = wp, | nw,, = ws] € [vs = ws].

If b C [, < o] then

bCanve =wp,]n[m <pjp]nlws =wr,]
C [ve = wp, [ nlr < pj] 0w = w-,]
(because an 7, < pj+1] € [mn < p5])

C [vo = ij]] n [[ij = wr, ] N [ws = ws, ] € [ve = ws].
And in between, if i <n and b C [1; < o] n[o < 741], then
bcan(r <pjrlnley <7ipal € n < pjlnlp; < 7ig4] € [wy, = wr,]
so

b ¢ [ve = wp, ] nws = wr,] 0wy, =wr] C [ve =wo]

D.H.FREMLIN



8 Structural variations 631G

in this case also, and every possibility is covered. Q

(8) As b is arbitrary, [ve = w,] 2 a, and this is true for every o € S. But now we see that
|tg — Vo] X @& = |ty — wy| X xa < sup [t — w|
for every 0 € S. So
sup [u —v| X xa <sup e —w|, O(sup|u—v|) <O(supla —w|)+ a(1\a) < 2e.
As € is arbitrary, 4 is near-simple, as claimed.

(b)(i) Now suppose that u is locally near-simple. If 0 € S, then S Ao is the covered envelope of S A o
(611M(e-i)) so IS Ao is the fully adapted extension of u]S A o to its covered envelope and is near-simple,
by (a). As S covers S, 631F(b-v) tells us that 4 is locally near-simple.

(ii) Finally, suppose that @ is locally near-simple and that o € S. Again because the fully adapted
extension of u[S A o to the covered envelope of S A o is 4[S A o, which is near-simple; so (a) in the other
direction tells us that u[S A o is near-simple. As o is arbitrary, u is locally near-simple.

631H Many of the arguments of §§614-617 are substantially simplified if we restrict attention to near-
simple processes, and some curious new patterns emerge. A striking one, which will be useful in §641, is the
following.

Proposition Let S be a sublattice of 7 and u a process of bounded variation with domain S.
(a)(i) [sudv is defined for every v € M, 4(S).
(ii) v — fs'u,d'v : Mys(S) — L° is continuous for the ucp topology on M, ¢(S) and the topology of
convergence in measure on L°.
(b)(i) The indefinite integral ii, (u) is near-simple for every v € M, <(S).
(i) v — ity (u) : Mys(S) = Mys(S) is continuous for the ucp topology.

proof (a)(i)(a) Of course u is order-bounded (614La). Write @ for 2sup|u| + [ |du|. The key is the
following fact: for any v € M,(S),
|S1(u, dv)| < @ x sup |v|

for every I € Z(S). P If T is empty, this is trivial. Otherwise, take a sequence (7, ... ,7,) linearly generating
the I-cells. Expressing u as (uy)scs and v as (Vg )oes,

n—1
S](’U,, d’U) = Zuﬂi X (v7i+1 - UT;,)
i=0

n—1
= E (uTi - U’Ti+1) X Uripy = Urg X Vg + Ur, X Vg,
=0

SO

n—1
S, dv)| < Jur, =ty | X or, 3|+ Jtmg | X [0y |+ [, | X Jor, |
i=0
< @ X sup |v

(see 614J). Q

(B) If v € Mgimp(S) then v is of bounded variation (614Q(a-iii)), therefore an integrator (616Ra),
while of course w is also an integrator and therefore moderately oscillatory. So in this case |, sudv is defined.
Now suppose that v € M, s(S). Let ¢ > 0. Then there is a § > 0 such that 6(z x x) < € whenever
z € LO%(A) and §(x) < §. Take v' € Mgmp(S) such that O(sup v’ —v|) < & and J € Z(S) such that
0(Sr(u,dv') — [gudv’) < e whenever J C I € Z(S). In this case, if J C I € Z(S),
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631J Near-simple processes 9

0(Sy (u, dv) — /

udv') < 0(S;(u,dv) — Sy(u,dv’)) + 6(S;(u, dv') — / udv')
S

< 0(Sr(u,d(v—v"))) +e<0(uxsup|v— 'u'|)S+ € < 2e.
As e is arbitrary, [qudv = limyz(s) S1(u, dv) is defined.
(ii) If v € My o(S) then
6(fsudv) < supyez(s) 0(Sr(u, dv)) < 0(u x sup |v]),

so the linear operator v — |, sudv: M, (S) — LY is continuous at 0, therefore continuous.

(b)(3) If v € Mgimp(S) then 4y (u) is simple, by 614D. Now suppose that v € M, 4(S) and € > 0. Again
take ¢ > 0 such that 6(a x ) < € whenever 0(z) < §, and v’ € Mgimp(S) such that 6(sup v’ —v|) < 4. For
any T € S,

g, w0 — )| < supyezsnr) |1a dlw — /)] < 7 x suplo v,
SO
O(sup |iiy (u) — iy (u)|) < O(a x sup v —v'|) <e.
As € is arbitrary, i, (u) is approximated in the ucp topology by simple processes and is near-simple.
(ii) Finally, the same arguments tell us that for v, v’ € M,_<(S),
O(sup |iiy (u) — iy (w)|) < 0(@ x sup [v — v'))

so that v — ii,(u) is continuous.

6311 We have another result showing that an indefinite integral will share a property with the corre-
sponding integrator, as in 614T, 615Rb, 616J, 616Q(c-1) and 618Q-618R.

Proposition Let S be a sublattice of 7, u a moderately oscillatory process and v a near-simple integrator,
both with domain S. Then ¢4, (u) is near-simple.

proof (a) Suppose to begin with that S is full and has a greatest element. Take € > 0. Let 6 > 0 be such that
O (sup |éiy(w)|) < € whenever w is a moderately oscillatory process with domain S such that 6(sup |w|) < ¢

(616J). Let ' be a process of bounded variation such that #(sup |u —u'|) < 6. Then ii,(u') is near-simple,
by 631H(b-i), while

O(sup |iiy (u) — ity (@)]) = O(sup |iiy(u —u)|) <e.
As € is arbitrary, i, (u) belongs to the closure of My (S) in M, (S) and is near-simple, by the definition
in 631B.

(b) Now suppose just that S has a greatest member. Let 4 and ¥ be the fully adapted extensions of u
and v to the covered envelope S of S. Then 4 is moderately oscillatory (615F (a-vi)) and ¢ is a near-simple
integrator (631Ga, 616Ia) so iy (@) is near-simple, by (a). But this is just the fully adapted extension of
iiy(u) to S (616Q(c-ii)). So iy (u) is near-simple, by 631Ga in the other direction.

(c) For the general case, we can apply (b) to u[S A7 and v[S A T to see that 4, (u)[S A 7 is near-simple

for every 7 € S, that is. di,(u) is locally near-simple. We know also that ii,(u) is an integrator (616J),
therefore moderately oscillatory (616Ib). By 631F(c-ii), 44, (u) is near-simple.

631J Proposition Let S be a sublattice of T.
(a) If v, w are near-simple integrators with domain S, then [va] and v* are near-simple.

b) If v, w are locally near-simple local integrators with domain S, then [v jw] and v* are locally near-
\
simple.

proof (a) By 6171, applied in SA T withu =1 for 7 € S,

[wiw] =v xw — (v X wy)1 — diy (W) — il (v)
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10 Structural variations 631J

where v; and w are the starting values of v and w. Now ii,(w) and i, (v) are near-simple by 6311, and
(v, x wy)1 is simple; so 631F(a-ii) tells us that ['va] is near-simple. Of course it follows at once that
v* = [v]v] is near-simple.

(b) Apply (a) to SAT for 7 € S.

631K Theorem Let S be a sublattice of 7, and v a near-simple process of bounded variation. Then its
cumulative variation v" (6140) is near-simple.

proof If S is empty, this is trivial; so suppose otherwise.

(a)(i) Let € > 0. Let v’ = (ul),ecs be a simple process such that 8(wy) < €, where wy = sup Jv — v/|.
Let Iy be a non-empty finite sublattice of S including a breakpoint string for u’. Take I € Z(S) such that
Iy € I and 0(w;) < €, where @, = [g|dv| — Si(1,|dv|). Take (79,...,7,) linearly generating the I-cells;
note that (79,...,7) is a breakpoint string for u’ (612Kb). Let u) be the starting value of ', and v the
starting value of v. Of course

lvy — )| =limg s vy — ug| < wo.

(i) Express v as (v,)ses. Note that if o € S then

[o <] € [uy =] < [lve — )| < wo] € [lvg —vy] < 2w0],

[ri < 01 nlo < 7] € [y = ] € [lvg — | < wo] A [lor, — ety | < o]

C [|ve — vr,| < 2w0]

for i < mn,

[ < o] € [ug = w1 € [lvo —vr, | < 2a0].

(b) Set w = w; + 2wy. Take any 7 € S.
(i) [t < 7o] € [|v]| < @]. P Set 0 =7 A7g. Then 0 < v}l < |v, — v} | + w1 (614P(c-ii-«r)) and

vl]n[lve — vy| < 2]

[r<m]clr=0c]no <] C vl =
[0l < w]. Q

C [Jvl] < wy + 2we] =
(ii) If i < n then [r; < 7]n[r < 7i41] C [Jvf —vl| <w]. P Set ¢ = med(r;,7,741). Then 0 <
vl — vl < vy — vy, | + Wy (614P(c-ii-3)). Now
[ <7lnr <7y C[r=0]n]o < Tit1]
ﬂ\vi - UI,| < oo — vr | + wl]] N[lve —vr,| < 21W00]
[lof = ol | < @1 + 2@0]. Q

N

N

(iii) [r, < 7] € [Jvf — ol | <@]. P Set 0 =7V 7,. Then 0 < vl —v! < |v, —v,, |+w;1 (614P(c-ii-y)).
So

[rn <7l € lr =0l n[lve — vs,| < 2w0] C [|v] — vl | < 2wo + w1]. Q

/

(¢) So if we take v v} )res to be the simple process with breakpoint string (7o,... ,7,), v,

i<nand [r <7 C [[ 7 = 0] for every 7 € S, we shall have, for any 7 € S,
[ <7l € [Io]] < @] n vy = 0] € [lo] — o7 | <,

= o] for

[ < 7l 0 br < misad € [0l — o] < @] n o = ] € [lo} — o] < ]
for i < n,

[r <7l C Il — ol | <@l n ot = ol ] € [l - ol < al;
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631 M Near-simple processes 11

assembling these, we see that |[v] — v’ | < w.
Thus sup [vT — v'| < w, while (w) < 20(wp) + O(w1) < 3¢ and v’ is simple. As € was arbitrary, v" is
near-simple.

631L Corollary Let S be a sublattice of 7 and v a fully adapted process with domain S. Then v is
near-simple and of bounded variation iff it is expressible as the difference of two non-negative non-decreasing
near-simple processes.

proof Given that v = (vy)scs is of bounded variation, let v! be its cumulative variation and set v, =
lim, s vy; then v" + |v) |1 and vT — v + |v|1 are order-bounded non-negative non-decreasing processes with
difference v, and are near-simple if v is (631K). In the other direction, given that v = v; — vy where v,
and v are non-negative non-decreasing near-simple processes, these are order-bounded (by the definition
631Ba) so v is of bounded variation by 614J and near-simple by 631F (a-ii).

631M Theorem Let S be a sublattice of 7 and &’ a sublattice of S which is coinitial with S.
(a)(i) There is a unique function ® : Mgmp(S') = Mimp(S) such that, for every u € Mgimp(S'), ®(u)
extends w and has a breakpoint string in S’.
(ii) ®(hu) = h®(u) for every Borel measurable h: R — R and every 4 € Mgmp(S').
(iii) @ is a multiplicative Riesz homomorphism.
(iv) If 8" # 0 then u and ®(u) have the same starting value for every u € Mgimp(S').
(v) sup |®(u)| = sup |u| for every u € Mgimp(S').
(b)(i) There is a unique function ¥ : M, «(S’) — M, (S) such that ¥ extends ¢ and is continuous with
respect to the ucp topologies on M, s(S") and M, «(S).
(ii) ¥(u)[S’ = u and sup |V (u)| = sup |u| for every u € M, (S’).
(iii) ¥ is a multiplicative Riesz homomorphism and ¥(hu) = h¥(u) for every continuous h : R — R
and every u € M, «(S’).
(iv) For u € M, 4(S’), ¥(u) is non-decreasing iff u is non-decreasing.
(v) For u € M,,5(S’), sup |¥(u)| = sup |u|, so [¥(u) # 0] = [u # 0].
(c) Now suppose that sup,cs [0 < 7] =1 for every o € S.
(i) If v is an integrator with domain S, then [q, udv = [ ¥(u)dv for every u € M, (S’).
(ii) There is a unique function ¥* : M, s(S") = Min-s(S) extending the map @ : Mgimp(S') = Meimp(S)
and such that sup |¥*(u)[S A 7| = sup |u[S’ A 7| whenever u € M),,4(S) and 7 € §'.
(iii) U*(u)]S" = u for every u € M, <(S’), ¥* is a multiplicative Riesz homomorphism, ¥*(hu) =
hU*(u) for every continuous h : R — R and every u € My, <(S’), and ¥*(u) is non-decreasing whenever
u € My,5(S’) is non-decreasing.

proof If &' is empty so is S and everything is trivial, so suppose otherwise.

(a)(i)(a) If u € Mgmp(S’), there is a v € Mgimp(S) such that v extends u and v has a breakpoint string

consisting of members of §&’. P Let (79,...,7,) be a breakpoint string for u, and u its starting value.
Then uy € L°(,cs Uo); because S’ is coinitial with S, (), cg Ao = N, es Ao- We therefore have a simple
process v = (Vy)ses defined from 7o,..., 7y, up, Ury, ... ,Ur, as in 612Ka. Take o € &’. Then [u, = v,]
includes
[us = uy ] nve = uy] 2o < 0],
[ue =ur] N [ve =urn] 2[m < o]n]o < 7i41] for i <n,
and
[uo = ur, ] N [ve = ur,] 2 [ < o],
SO Uy = v,. As o is arbitrary, v extends u, and of course it has a breakpoint string (9,...,7,) in §’. Q

(B) fu € Mgimp(S’), there is at most one v € Mg (S) such that v extends u and v has a breakpoint
string consisting of members of §’. P Suppose that v = (v,)ses and v/ = (V) ),cs are two such processes.
Then there is a finite sublattice of S’ which includes breakpoint strings for both v and v’, and now a string
(Toy ... ,7n) which linearly generates the I-cells will be a breakpoint string for both v and v’ (612Kb).
Observe also that v, v’ can be defined from v, vy, ... vy, and v|,v] ..., v, where

n Tn
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12 Structural variations 631 M

v, = limg sV, V] = limgys vy
by 614Ba. But as S’ is coinitial with S,
vy = limy 5 Ve = limy 5/ V5 = limy s Ue = uy,
and similarly v] = u}. And of course v}, = u,, = v, for every i <n. Sov=1v". Q

We can therefore define ® : Mgimp(S’) = Mgimp(S) in the way claimed.

(ii) If w € Mgimp(S') and b : R — R is Borel measurable, then hu is simple so EiI)(u) is simple and
extends hu; moreover, any breakpoint string for u is a breakpoint string for ®(u) and h®(u) (612La). So
h®(u) = ¢(hu).

(iii) f u, v’ € Mgimp(S’), then ®(u+u') = &(u) +2(u'). P (u)+ P(u') belongs to Mgimp(S), extends
u + v’ and has a breakpoint string in &’ (see the argument in (i-3) above), so must be equal to ®(u + u’).

Q

It follows from (ii) just above that
(ou) = a®(u), Pu?)=(2(u))? @lu|=[(u)|
whenever 4 € Mgimp(S’) and o € R, so that ® is a multiplicative Riesz homomorphism (cf. 612Bc).
(iv) I noted this in (i-3) above.

(v) Since u and ®(u) have the same starting value u; and agree on a common breakpoint string
(Toy- -+ ,Tn), 614Ec tells us that

sup |u| = |uy Vsup; <, |ur, | = sup [®(u)|.
(b)(i) In the notation of 615B,
02 () = O(sup|@(u)|) = O(u)
for every u € Mgimp(S’), and @, regarded as a linear operator from Mgipmp(S’) to Mo (S) is continuous for
the ucp topologies. Because M,,¢(S’) is the closure of Mgim,(S") for the ucp topology on M, (S’) (631Ba),

and M,1,(S) is complete as a linear topological space (615Cc), ® has a unique extension to a continuous
function W : M, (S') = Mo (S) (use 3A4C3 and 3A4G).

(ii) If 7 € S8’ and we set

T ((Ug)oes’) = Ur,  Tr((Vo)oes) = Vr,

we have continuous maps 7, : My, s(S') — L° and 7, : My, 5(S) — L% as ., ¥ and 7). agree on Miimp(S')
they agree on M, «(S’); as 7 is arbitrary, this means that ¥(u)|S’ = u for every u € M, ¢(S’), that is,
that W(u) always extends w. Similarly, the functions u +— sup |u| : M., (S") — L°(2) and u — sup |¥(u)] :
M, (8") — L°(2A) are continuous (615C(b-ii)) and agree on Mgimp(S’), so agree on M, +(S’).

(iii) If & : R — R is continuous, then w — hu : My (S') = My(S') and v — hv : My(S) = My.s(S)
are continuous (615Ca). Since h¥(u) = U(hu) for u € Mginp(S), h¥(u) = U(hu) for u € M, (S). Now we
see that

V() = (D(w)?,  Plu| = |0(u)|
whenever 4 € M, s(S’), so that U is a multiplicative Riesz homomorphism, as in (a-iii).

(iv) If u € M, 4(S") and ¥(u) is non-decreasing then of course v = ¥(u)[S’ is non-decreasing. Con-
versely, looking at the method in (a-i) above, we see that if u € Mg (S’) is non-decreasing then ®(u) is
non-decreasing. Next, if 4 = (u,),es/ is a non-decreasing near-simple process, then for any e > 0 there is
a non-decreasing simple process v such that f(sup |u — v|) < e. P There is certainly a simple process v’
such that 6(sup ju —v’|) < %e. Let (79,...,7s) be a breakpoint sequence for v’. Consider the simple process
v = (Vs )oes’ with starting value equal to the starting value of u, with breakpoint string (7o, ... ,7,), and
with vy, = u, for i < n. Then v is non-decreasing and f(sup [v —v'|) < i€, so f(sup|v —u|) <e. Q

Now ¥(v) = ®(v) is non-decreasing and

3Later editions only.
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631 M Near-simple processes 13

O(sup [¥(u) — ¥ (v)[) = O(sup [¥(u —v)[) = O(sup [u —v|) <e.
As € is arbitrary, Y« must be non-decreasing.

(v) As u — supfu| : Myp(S') — LYR) and u — sup |¥(u)| : M, (S") — L°(2l) are continuous
(615C(b-ii)), it follows from (a-v) that sup |V (u)| = sup |u| for every u € M, (S’). Now

[W(u) # 0] = [sup [ (w)| > O] = [sup [u] > 0] = [u # 0].

(c) Write S7 for |J S A 7, the ideal of S generated by S’.

TES’

(i) (o) We know that v is moderately oscillatory (616Ib again), so vy = lim4s v, and vy = lim; s v,
are defined (615G). Now if € > 0 there are a 7 € S such that (v, — v4+) < 2e whenever 7/ € SV 7, and a
o € & such that fifo < 7] < ie. Now if o' € 8’ V o,

O(vorvr —v1) < ifver # vorve] < fio’ # o' V 7]
=il <7] < plo <7 < 3e.

SO
O(vor — v4) < O(Vor — Vorvr) + O(Vgryr —v4) < %6 + %6 =€
As € is arbitrary, vy = limgys/ Vo
(B) Because S’ is coinitial with S, we see that v; = lim,|sv, is also lim, s v,. We also know
that v’ = v|S’ is an integrator (616P(b-ii)). Now [s udv’ = [ ®(u)dv for every u € Mgjmp(S’). P Let
(70, ... ,7n) be a breakpoint string for w and w its starting value. Then these are also a breakpoint string
and starting value for ®(u) as described in the proof of (a). So

n—1
//'U'dvl =uy X (UTO - ’Ui) + Zuﬂ X (U7i+1 - vTi) + Ur, X (’UT - ,UTn)
=0

= / O (u) dv
s
by 614C. Q
() Now the operators
U — fs,ud'u’, u fS\I/(u)dv

from M,_4(S") to LY are continuous for the ucp topology on M, (S’) and the topology of convergence in
measure on LY, by 616J and (b) above. By (), they agree on Mgimp(S’), which is dense in M,(S’), so
agree everywhere on M, «(S'), as claimed.

(ii)(a) For 7 € &', (a)-(b) here tell us that we have unique functions ®; : Mgimp(S'AT) = Mimp(SAT)
and U, : My, (S8’ A7) — Mys(SAT) such that @, (u) is a simple process extending u and with a breakpoint
string in &’ A 7 for every u € Mgimp(S’ A7), while ¥, extends ®, and is continuous with respect to the ucp
topologies. If 7 < 7/ in &’ and u € M, (S’ A 7'), then

ulS'AT=ul(SAT)YANT E Mys((S'ANT)AT) = Mps(S"AT)

(using 631F (a-iv)), while similarly U, (u)[S AT € My s(SAT). If 4 € Mgmp(S" A 7'), then ¥,/ (u) €
Mgimp (S A 7') has a breakpoint string in 8’ A7/, s0 W,/ (u)[S AT € Mgimp(S A7) has a breakpoint string in
S’ A7 (612K (d-ii)) and extends u[S’ A 7, so must be equal to ¥, (u[S’ A7), by (a-i) here.

If now u € M (S, V. (u[S' A7) = U (u]S A7')[S AT whenever 7 < 7/ in §’. We therefore have
a unique process v = Pf(u) with domain S] such that v|S AT = U, (u]S" A7) for every 7 € &', and
v € Myys(S}). Now v has a unique fully adapted extension © to the covered envelope &} of 7.

At this point, observe that our hypothesis ‘sup,cs [0 < 7] = 1 for every o € S’ ensures that S| covers
S in the sense of 611M, that is, that S C S}. As S| C S C S}, & is also the covered envelope of S. Using
631GDb in both directions, we see that © and #]S are both locally near-simple. I will say that U*(u) = 9]S,
the unique fully adapted extension of ¥y(u) to S.

D.H.FREMLIN



14 Structural variations 631 M

(B) Just as @ (ulS" A7) = @ (u]S" AT)[S AT whenever u € Minp(S') and 7 <
have @, (u[S" A7) = ®(u)|S A T whenever u € Mgimp(S’) and 7 € 8. Consequently ¥((u) =
U*(u) = ®(u) whenever u € Mginp(S').

() Inoted in (a-v) that sup |®,(u)| = sup |u| whenever 7 € &’ and u € Mgin,p(S' AT); by 615C(b-ii),
sup | ¥, (u)| = sup |u| whenever 7 € 8" and u € M, (S’ A7), so
sup |[¥*(u)[S A 7| = sup | U5 (w)[S AT
=sup |V, (ulS"AT)| =sup|ulS" AT
for every 7 € 8" and u € M), 5(S').

(6) As for the uniqueness of the function U*, suppose that ¥ : My, s(S’) = Miys(S) extends @ and
is such that sup |¥5(u)[S A 7| = sup [ulS’ A 7| whenever u € My, (S) and 7 € 8. Then Ui(u)[SAT =
O (u]S’ A7) whenever 4 € Mginp(S') and 7 € ', so U (u)[S AT =T (u]S AT) whenever u € My,(S’)
and 7 € &', Ui (u)[S] = ¥§(u) whenever u € My, 5(S’) and ¥ (u) = U*(u) whenever u € My, 5(S').

(iii) If 7 € S" and u € Min(S'),
U*(u)[S'ANT=TF(u)[S'AT=T,(u]SAT)ISAT=u[S'AT

by (b-ii); as 7 is arbitrary, U*(u) extends u. Next, it follows at once from (b-iii) that ¥§ is a multiplicative
Riesz homomorphism and W) (hu) = hW}(u) for every continuous i : R — R and every u € M, <(S’). By
612Qb, we have the same result for ¥*. Finally, if u € M), 5(S) is non-decreasing, then U (ulS’" A7) is
non-decreasing for every 7 € §’, by (b-iv), so U§(u) is non-decreasing and ¥*(u) is non-decreasing by 612Qg.

631N Lemma Let S be a sublattice of T, 4 = (us)ses a locally near-simple process, and A C S a
non-empty set such that inf A € S. If u, = 0 for every p € A, then uiur 4 = 0.

proof Write 7 for inf A.

(a) To begin with, suppose that S = [r, max S] is a closed interval in 7 with least element 7, tmaxs = 0
and 4 > 0. In this case, u is near-simple.

(i) If o €S, a=Ju, >0] and € > 0, there are a 01 € S and a ¢ € A such that o1 > 0, a C [0 < 01],
e < e and

aCculp<o]ulor <plulu, > 0]

whenever p € S. P Let 7 > 0 be such that ¢g = an[u, < 27]) is at most %e. Then there is a simple process

v with domain S such that, writing o for sup [v — u|, 6(v) < 3ne, so that ¢; = [0 > 7] has measure at most

le. Set ¢ = couer. Asw[S Vo is simple (612K (d-iii)), it has a breakpoint string (oo, ... ,0,) such that

0o =0, o, = max S and [o < o1] = Jo < maxS] (612M). Since upmaxs = 0, a C o < 01]. Next, if p € S,
then

[o < plnlp <o1] € [ve =vo] C [lup — uo| < 20]
and
anfu, =0]n[us >2n]nfo < p]nlp <oi]
Canfluy, —us| >2n]n[lup — us| < 20] C [0 >n] =c1.
So
aCcou(anfus >2n]) Ccouerup <o]ulor < pluu, > 0],
as required. Q
(ii) For t € T, set by = inf{Ju, > 0Juo > {] : 0 € S}.
(a) by € A, for every t € T, because [u, > 0] € Ay s0
[us >0Juo >t] = (Juy > 0)no <t ulo >t] € A; =2,

for every o € T, using 611H (c-iii).
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631NN Near-simple processes 15

(B) If s <t then b; C by because [o > t] C [o > s] for every o.

() If t € T is not isolated on the right, b, = sup,, bs. B Take € > 0. Write v for med(r, ¢, maxS) €
S. By (i) above, there are a 01 € S and a ¢ € 2 such that

v<o1, Ju,>0]cCv<oi], fc<e,
and
[uy, >0] Ccufo <v]ufor <o]ufus, > 0]

for every 0 € S. Let s > t be such that id < e where d = ([7 > t]\ [7 > s]) U (Jo1 > t]\ [o1 > $])-
Take any o € S. We have

by C Juy > 0] ufv > t] = [uy > 0] u[r > t],
binfo<v] € (Jue >0Jufe>t])ne <]
(because [o < 7] = 0)
C [u, > 0], (%)

[up, >0]nv <o]nfo < o1] € cufu, > 0],

[r>t]cdulr>s] cdulo > 4],
binfv<o]nfoc <oi] Ccudulus, >0Jufe > s], (%)
[or <o] Cfo>s]ulor <3

cdulo>s]ulo <{]

cdulo>sju(r <{i]nfu, =0])
(because [o; < v] is disjoint from [u, > 0]),

binfor <o) cdulfo > s]. (%)
Collecting the three lines marked (x), we see that b, C cudu Ju, > 0] U o > s]. Aso isarbitrary, b, C cudub;
and fi(by \ bs) < fic + fid < 2e. As € is arbitrary, by = sup,., bs. Q

(iii) Accordingly there is a 7 € T such that [7/ > t] = b forevery t € T. If t € T, [7 > t] C [o > ]
for every o € S, so [t > t] C by; thus 7 < 7/. On the other hand, if o € A, then b; C [o > t] for every ¢, so
7T <oyasT=inf A, 7' = 7. Thus by = [r > t] for every t € T.

(iv) ? If u, # 0, set a = Ju, > 0]. By (i), we have a 01 € § and a ¢ € U such that a C [ < 71],
e < %ﬂa and
acculor <plufu, >0]
for every p € S. Since
0£a\ec Ir < o] = supyer(lon > 0\ [r > ]),
there is a ¢ € T such that
0# (a\c)nfor >t\[r >t] = (a\c)n[or > t]n[r <{].
Next, we know that
[T >t] = b, = inf,es([u, > 0] U p > t]);
taking complements,
[r < = supes(fu, = 0] n o < 71).
There is therefore a p € S such that

0+# (a\e)nfor >t]nfu, =0]n[p <{]
c (a\e)nfup, =0]nfp < o1l = (a\e)\ ([or < p] U Ju, # 0])
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16 Structural variations 631NN

and
agculor < p]ufu, > 0]
contrary to the choice of o1 and ¢. X
(v) So u, =0, and we have the result in the case when & = [7, max S|, Umaxs = 0 and u > 0.

(b) For the general case, take any py € A. We know that |u| is locally near-simple (631F(b-ii)) so
[ul[S A po and |u|[S N [T, po] are near-simple (631F(a-iv)). By 631Mb, there is an extension of |u|[S N |7, po]
to a non-negative near-simple process ' = (u,,)se[r,p]- Now AApg = {pApo:p € A} is a subset of [7, po],
and if p € A then

[P < pol € [upnpe = o] S [Upnpe =0, Tpo < pl € [Upnpe = Upol € [Upnp, = 0]
80 Uppp, = 0. Thus uj, = |u,| = 0 for every p € AA po. Also, of course, 7 = inf(A A pg). So (a) tells us that
|ur| = u) =0 and u, = 0. Thus the result is true in the general case too.

6310 Witnessing sequences Both ‘near-simple’ and ‘jump-free’ processes can be thought of as pro-
cesses approximated in the right way by simple processes with finite breakpoint strings. In appropriate
circumstances they can be characterized by the existence of suitable (infinite) non-decreasing sequences of
stopping times, as follows. Let S be a sublattice of T with greatest and least elements, and u = (u,)scs a
fully adapted process.

(a) SL;(u) is the statement
for every 6 > 0 there is a non-decreasing sequence (7;);cn in S such that
(o) 7o = min S,
(B) Mwryy, — ur,| < 0] C [Tix1 = max S] for every i € N,
(7) infien [ < max S| =0,
(0) [o < Tig1] C [Jue — ur,| < 8] whenever ¢ € N and o € S N [, Tit1]-

(b) SLa(u) is the statement
for every § > 0 there is a non-decreasing sequence (7;);cn in S such that
(o) 790 = min S,
(B) llwryy, — ur| < 0] C [Tis1 = maxS] for every i € N,
(7) infien [ < max S| =0,
(0) [o < Tig1] C [Juo — ur| < 8] whenever i € N and o € S N [, Tit1],
(€) [tr, .y —ur| <6 for every i € N.

631P Proposition Let S be a sublattice of 7 with greatest and least elements and u a fully adapted
process with domain S.

(a) If SLy(u) is true, then w is near-simple.

(b) If SLa(u) is true, then u is jump-free.

proof Express u as (uy)ses-
(a)(i) For every ¢ > 0 there is a simple process v = (v,)scs such that

fi(sup,es [lug — vo| > 6]) < 6.

P Let (7;)ien be as in SLy(u). As ([7; < max S])en is a non-increasing sequence with infimum 0, there is
an n € N such that fid < §, where d = [, < maxS]. Let v = (v,)ses be the simple process such that

[ri <o]nfo < Tit1] C [ve = ur,] fori<n, [rm <o] C[ve =ur,]

for every 0 € S. Then, for any o € S,

INdC[m=0c]usup[n <o]nfo < Tit1]
<n

(because 79 = min S and [, < o]\ d = [7,, = max S| n [o = max S])
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631R Near-simple processes 17

< d])

< ([ve = ur, ] n[ue = ur,]) v sup([ve = ur] 0 [lus — ur,
<n

C [lue — vo| < 0].

So sup,es [|ue — vo| > 6] C d has measure at most 5. Q

(ii) It follows that u is order-bounded. ¥ For any J > 0 there is a simple process v = (v,)ses such
that ia > 1 —§ and

a € [lug = vy| < 6] € [lus| < sup fv] + dx1]

for every o € S. But this means that {|u, x xa : ¢ € 8} is bounded above in LY. As § is arbitrary, 613C(p-i)
tells us that {|u,|: o € S} is bounded above in LY, that is, u is order-bounded. Q

(iii) Now we can re-phrase (i) as saying that
‘For every d > 0 there is a simple process v such that i([sup v —ul) > d]) <&’

so that for every 0 > 0 there is a simple process v such that 6(sup v —u|) < 26, and u is near-simple.

(b) Of course SLo(u) implies SL;(u), so (a) tells us that u is near-simple, therefore order-bounded; set
@ = sup |ul.

Let 6 > 0, and take (7;);en as in the statement of SLa(u). Let n > 1 be such that a7, < maxS] < §;
set @ = [, < maxS]. Consider I = {rg,... ,7}. If i <n and o, ¢’ € [1;,Ti+1] then

< 4],

<4, [o=Tix] € [Juoc — us,

[o < 7isal € [luo — ur,
0 |ty — ur,| < dx1. Similarly, |uyr — ur, | < dx1 and |u, — ugs| < 25x1.
If o, 0’ € [T, max 8] then [uy # uy/] C [T < maxS] = a, while |uy —uyr| < 24, 80 |ue —uy| < 24 X xa.
By 618Ca,
Osclin(u) < Oscllnj(u) < 26x1 + 24 x xa
and
6(Osclln(u)) < 0(26x1 + 2a x xa) < 26 + fia < 36.

As ¢ is arbitrary, Osclln(u) = 0 and u is jump-free.

631Q Lemma Let S be a finitely full sublattice of 7 with a greatest member such that inf A € S for
every non-empty A C S, and u a near-simple process with domain §. Take 6 > 0 and construct (D;);en
and (y;)ieny from u and ¢ as in 615M; this is possible because u is moderately oscillatory (631Ca). Then
inf D; € D; and uint p, = y; for every i € N.

proof Induce on i. At the bottom, minS = min Dy € Dy and Yo = Umin p,- For the inductive step to i+ 1,
write 7 for inf D; and set 8’ = S V 7. Define a process v = (v, )scs by setting

Ve = ((Juo — yi| Adx1) V dwy) — 0x1
for 0 € &', where w, = x[o = maxS8] for 0 € S§’. Because M, s(S’) is closed under linear and lattice
operations and contains u[S’ (631Fa) and the simple processes y;1]S’ and w = (wy)ses (612Jb), v is
near-simple, with vp.xs = 0.
Because 7 € D;, 7 = min D; and
Dis1={c:0€8, Jo <maxS] C [|ue —yi| > ]} ={o:0€S, v, =0}

Write 7/ for inf D; 1. Then 631N tells us that v,» = 0, that is, that 7 € D;y;. It follows at once that
Yiy1 = limgyp, , s = u;/, and the induction continues.

631R Stopping Lemmas: Theorem Let S be a finitely full sublattice of 7 with greatest and least
members such that inf A € S for every non-empty A C S, and u a moderately oscillatory process with
domain S.

(a) u is near-simple iff SL; (u) is true.

(b) w is jump-free iff SLo(u) is true.
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18 Structural variations 631R

proof Express u as (Uq)ses.

(a) We know from 631Pa that if SL;(u) is true then w is near-simple, so it will be enough to show the
converse. Suppose that u is near-simple, and take any ¢ > 0.

(i) Construct (D;)ien, (¥i)ien, (diYien and (¢io)ien,oes from u and § as in 615M. Set 7, = inf D; for
each i. By 631Q, 7, = min D; and u,, = y; for every i. Because every member of D, is greater than or
equal to some member of D;, 7; < ;41 for every i. Of course 79 = min Dy = min S.

(ii) Now d; = [r; < max 8] for each i, so inf,cy [1; < maxS] = 0. Since 7541 € D;y1,

[[|u7'i+1 —Up| < 5]] = [[|u7'7:+1 - y2| < 6]] c HTi-‘rl = InaXS]]

for every i € N.
If i e Nand 0 € SN [r, Ti+1] then

Cic = ﬂTi < O']] = ]., Citl,o = HTH»l < O']] = ].\[[O' < Ti+1ﬂ.
So

lo < Tit1] = cio \ Cit1,0 C [Jue — vi| < 0]
(615M(d-v))

[lue — ur,| < 0].

Thus (7;);en satisfies (a)-(d) of SLy(u). As § was arbitrary, SL;(u) is true.

(b) Here we know from 631Pb that if SLy(u) is true then u is jump-free, so again it will be enough to
show the converse. Suppose that u is jump-free. By 631Cb, u is near-simple. By (a) just above, SL;(u) is
true. Take 0 > 0, and let (7;);en be a sequence as in the statement of SL; (u).

Take any ¢ € N. 2 Suppose that [ur,,, —us, > 0] is non-zero. Then there is an 7 > 0 such that
a= [ur,, —ur, >0+n] #0. Let I € Z(S) be such that §(Osclln}(u)) < njia; we can suppose that 7,
Tit+1 € I. Set b = [Oscllny(u) < 7], so that anbd # 0. Let o¢ < ... < oy, linearly generate the I N [r;, 741]-
cells. Then

anbnfo; <Tip1] Canbnus, < ur 4+ 9]
< [[uffj+1 < Ue; +77]] n [[uo'j < Uryy — 77]] < [[Uj-i-l < Ti-‘rl]]

for every j < m. Inducing on j, we see that anbd C Jo; < 7,11] for every j < m. But o,, = 7,41, so this is
impossible. X

Similarly, [ur,,, — ur, < —6] cannot be non-zero, and |u,,,, — ur,| < dx1, for every i. Thus (7;);en has
the property (e) in the statement of SLa(u) as well as the properties («)-(8) there. As § is arbitrary, SLo(u)
is true.

631S Proposition Let S be a finitely full sublattice of T with greatest and least members and u =
(us)ses a moderately oscillatory process. If inf A € S and uinfa = lim, 4 u, for every non-empty
downwards-directed A C S, then u is near-simple.

proof Take any § > 0.

(a) Construct (D;)ien, (Yi)ien, (diYien and (¢io)iences from u and § as in 615M. Set 7; = inf D; for
each 7; then 7; € §. Since every member of D, is greater than or equal to some member of D;, 7; < 7541
for every 1.

(b) 7; € D; for every i € N. PP Induce on i. At the bottom, 79 = min S = min Dy € Dy. For the inductive
step to ¢ + 1, we have

Yi = hmo’LDi Ug = Ur; € Lo (Q[‘rl)
Set
a= [[|u7i+1 - yl| 2 6]] € 2[7'1'+1 - leaxS-
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Then thereis a7 € T such that a C [7 = 7;41] and 1\ a C [ = max S]. Because S is finitely full, 7 € SV7;41
and

[r <maxS] c a=[r=mrp]n(lur., —vil 26] C [lur — 3l = ];

asalsor; € Dyand 7, <7, 7 € Djyg.
If 0, 0’ € D;y1 and o < ¢’, then

[/ < max 8] € [o < maxS] C [|Jus — yi| > 4]
and |uy — y;| > dxJo’ < maxS]. Taking the limit as o | D;11,
[tr,,, —yil > 0x[0’ <maxS], [o’ <maxS]C a.
But now we have
aClr=mu]cr<o], 1\ac[o'=maxS]c[r <o,
soT <o'. As ¢ is arbitrary, 7 <inf D;y1 =101 and ;1 =7 € Dy 1. Q

(¢) So7; = min D; and y; = u,, € L°(A,,) for each i. Since [r; < max S| = d; for each i, inf;ey [1; < max S| =
0. Since Ti+1 € Di+1,

[[|u7'i+1 - uTi' < 6]] = IHUTH»I - yl| < 6]] < [[Ti-‘rl = maXS]]

for every i € N.
If i e Nand 0 € SN [r, Ty+1] then

Cic = HTZ' < O']] = ]., Citl,o = HTH»l < O']] = ].\[[O' < Ti+1ﬂ.
So

[o < Tit1] = cio \ Cit1,60 C [Juo — yi| < 9]
(615M(d-v) again)
— [Juo — ur,| < 0],

Thus (7;);en satisfies (a)-(0) of SLi(u). As § was arbitrary, SL;(u) is true; by 631Pa, u is near-simple.

631T So far we have been looking at questions arising naturally from the ideas of Chapter 61. I come
now to something which will be important in §644.

Lemma Let S be a sublattice of T, and C' the set of non-negative non-decreasing order-bounded near-simple
processes with domain S. If u = (u,),es belongs to C and Osclln(u) # 0, there is a non-zero simple process
v € C such that u —v € C.

proof (a) Since we are supposing that Osclln(u) # 0, we can be sure that S is non-empty. Set
up = limg s s = infoes o, Uy = liMers o = SUP,cs Uo

(631C, 613Ba).

(b) Set € = %Q(Osclln(u)). Let w = (w,)scs be a simple process such that 6(w) < €2, where w =

sup [u —w|, and 7, 7" € S such that 6(u,, —uy) < € and 8(ur — u;+) < € let I be a finite sublattice of
S containing 7, and 7* and including a breakpoint string for w. Take (79,... ,7,) linearly generating the
I-cells; then (7g,... ,7,) is a breakpoint string for w (612Kb again), while 79 < 7, and 7* < 7,,. Now

Osclln(u) < Oscllny(u) = (ur, — uy) Vsup; ., (Ur,,, — Ur,) V (ug — ur, )
(618Cb, because u is non-decreasing), so
B(sup(ur,,, — ur,)) > 0(Oselin(u)) — O(ur, — uy) — Bus — us, )
i<n

> 0(Osclln(u)) — O(ury — ur,) — O(up — urs) > Te.

D.H.FREMLIN
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Consequently
a = [SUp;p Ur,yy — Up, > €] = sup; o, [tr,, — Ur, > 4e]

has measure at least 2¢. On the other hand, [w > €] has measure at most €, so an[w < €] is non-zero.
There is therefore an i < n such that

b= [tr,, —ur, >4e]n[w < €]
is non-zero.
(c) Consider
c=[ur, <eJusup,es(fo < mip] N ur, —us < €]).

Then c€ A, ,. P Forany 0 € T, [0 < 1i11] € ™A, (611H(c-1)) while [ur,,, —us < €] € Ar, ., vo, SO

[[uTz'+1 — Uy < 6]] N [[U < Ti+1]] = [[uTi+1 — Uy < 6] n [[U V Tiy1 = Ti-‘rl]]
(611E(a-ii-B) again)
= [ur,, —us <e€[nfoVrigr <mipa] €Ary

(611H(c-iii)),
lo <mipa] nur,, —us <€) =[o <mp]nlo <mipa]nfur,, —us, <€A, .
Taking the supremum over o,
SupoeS([[O- < Ti-‘rl]] n [[UTH»I — Uy < 6]]) € 22[7'i+1;

as surely [ur,, <eleA, . ,cecA, . Q
Next, cnb = 0. PP Of course

[ur,,, <€lnbC ur,, —u, <4enb=0.

If 0 € S then
lo <7ip1] =[o <m]usup[r; <o]nfo < 1j41]
Jj<i
- [[ua = uo/\‘r'o]] U sup [[wa' = U)-,—j]]
J<i
C [uo < ur]usup [us < ur, 4 20] C [us < ur, + 2w].
j<i

So

bolo <mipalnfur,, —us <€
C [ue S ur +20) N Jur,, —us <€ nfw < €] [tr,, —ur, > 4€]
C [ur, —ur, < 3€]n[tr,, —u, > 4€e] =0.
Taking the supremum over o, bnc=10. Q

(d) Since ¢ € A,
defined by saying that

we have a simple process v = (uy)ses, with singleton breakpoint string (7;41),
[o <7iya] € [vo = 0], [rip1 < o] € [vo = ex(1\ )]
for every o € S. Evidently v is near-simple and non-negative, while if 0 < ¢’ in S,

[o" < mip1] Urip1r < ojue C vy = v

c [[Ua < UO'/]]OHUO' — Vo < Ugr _Uo’]]a
[o < Tmip1]ue C v, =0] C Jue — v, > 0],
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[o <7ipa]nris1 < o'J\e
< [[UU = 0]] n [[UU’ = 6]] n [[uTi+1 < UU’]] \ [[uTi+1 —Ug < 6]]
C [ve S vo ] N Ve — vy < €] N ug —uy > €]

C HUU < 'UG"II n Huo — Vg < Ugr 7va’ﬂa

[riqa <of\ccC ﬂun+1 <ug]n [[Un+1 > e]n vy < €] € [us — vy >0].
So v and u — v are both non-decreasing, while 4 — v is non-negative. Finally,
vy = x(116) > exb £0

and v is non-zero. Thus we have an appropriate v.

631U Theorem Let S be a non-empty sublattice of 7 and w a non-negative, order-bounded, non-
decreasing near-simple process with domain S§. Then for any € > 0 there are non-negative, non-decreasing
processes v, w with domain S such that v is simple, w is jump-free, 4 — v — w is non-negative and non-
decreasing, and f(sup |u —v —w|) < e.

proof (a) As in 631T, let C be the set of non-negative non-decreasing near-simple order-bounded processes
with domain S. Note that if v = (v,)secs is a non-negative non-decreasing order-bounded process,

Sup [v| = sup,es Vo = limgts V5.

(I think the formulae will look cleaner if I write supwv rather than sup |v| in this case.) It follows that if v,
v’ € C then sup(v +v') = supv + supv’.

(b) Write C” for the set of simple processes v € C such that u —v € C. For v € C’, set
q(v) = sup{f(supv’) : v € C, v+ v € C'}.
Choose (v, )nen inductively such that

v, €C', vy —v, €C,

O(sup(Vn41 —vn)) > q(vn) — 277

for every n € N. Then (v,)nen is a non-decreasing sequence of processes bounded above by u. Set v/ =
SUp,,en Un; by 612Ia, v’ is a fully adapted process. Evidently v’ is non-decreasing and non-negative; moreover,
Uy — Uy, € C whenever m > n, so v’ — v, is non-decreasing and non-negative for every n.

(¢) limy, 00 O(sup(vp41 —vy)) = 0. P (SUpv,)nen is non-decreasing and bounded above by supu, so is

convergent for the topology of measure (613Ba); accordingly, using (a),

lim O(sup(vp1+1 —v,)) = lim 6(supv,41 —supv,) =0. Q

n—o0 n—o0
It follows that lim, .. g(v,) = 0. Note also that supv’ = sup,,cysupv,, so that
lim;, - o0 O(sup(v’ — v,,)) = lim, o0 O(supv’ — supw,,) = 0;

as every v,, is simple, v’ is near-simple and belongs to C.

(d) Set w =u —v'. By (¢), w is near-simple; moreover, as 4 — v,, is non-decreasing and non-negative for
every n, so is w. Now w is jump-free. PP?7 Otherwise, 631T tells us that there is a non-zero simple process
v € C such that w — v € C. Consequently

v, +v, u—v,—v=u—-v —v)+ @ —v,)
belong to C for every n, and g(v,) > 6(supv) > 0 for every n; which is impossible. XQ
(e) Now observe that
O(sup(u — v, —w)) = f(supv’ — supwv,) — 0

as n — 0o0. So v, will serve for v for any sufficiently large n.
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631V Corollary Let S be a non-empty sublattice of 7 and u a near-simple process of bounded variation
with domain §. Then for any e > 0 there are processes v, w with domain S such that v is simple, w is
jump-free and of bounded variation and ([ |d(u — v —w)|) < e

proof By 631L, u is expressible as ug — w1 where ug, u; are non-negative non-decreasing near-simple
order-bounded processes. By 631U, we have simple processes vg, v1 and jump-free processes of bounded
variation wg, w; such that 29 = up — vg — wg and z; = u; — v; — w; are non-decreasing and non-negative
and 6(sup |zo|), 6(sup|21]) are both at most L.

Set v = vg — vy, w = wyg —wy and 2 = 2y — 21, so that v is simple, w is jump-free and of bounded
variation, and u —v —w = 2. Now [s|dz| < sup |zo| + sup|z1|. P Expressing z, 29 and z1 as (25)ocs,
(200)oes and (214 )0es, We see that

|Z‘r - ZO’l < |ZOT - ZOO’l + |Zl‘r - zla| = (ZOT - ZOO’) + (Zl‘r - zlo‘)
whenever ¢ < 7 in §. Consequently
Sr(1,|dz|) < S1(1,dzo) + Sr(1,dzq)

for every I € Z(S), and

dz| < dz +/d2 =1 o+ 0'*1. o+ 210
/S | ‘ o /(S 0 S ! Ul%ns(zo A ) Ulig(zo 1 )

<l li = .
< lim 200 + lim 21, = sup 20| +sup |z1]. Q

So we have
0( [ |dz|) < O(sup |zo|) + O(sup |21]) < €

as required.

631X Basic exercises (a)

(j) Let S be a sublattice of T, and give (L°)S its product topology when each factor is given the topology
of convergence in measure. Let Mgm, C (LO)5 be the set of simple processes with domain S. Show that
the topological closure of M, in (L°)S is the set of all fully adapted processes with domain S.

Let S be a sublattice of 7 and u a near-simple process with domain S. Show that u[S N [r,7'] is
near-simple whenever 7 < 7/ in S.

(b) Give an example of a simple process u and a sublattice S’ of domu such that u[S’ is not near-simple.
(Hint: take S’ the lattice of constant stopping times.)

(c) Let S be a sublattice of T, and u a near-simple process with domain S. Show that for any € > 0
there is a simple process u’ with domain S such that §(sup |[u —u’|) < € and sup |u’| < sup |u|.

(d) Let S be a sublattice of 7 and (u,)ses a near-simple process. Set v; = sup,cgn, Uo for 7 € S (cf.
614Fb). Show that (v;),ecs is a near-simple process.

(e) In 631Mb, show that v € M,_(S’) is of bounded variation iff ¥(v) € M, _(S) is of bounded variation,
and in this case ¥(v") = U(v').

(f) In 631Mb, show that if v is a local integrator with domain S, then 4,5/ (u) = i, (¥ (u))[S’ for every
u € M,(S).

(h) Let S be a finitely full sublattice of S such that inf A € S for every non-empty A C S. Show that
S A7 is full for every 7 € S.
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(i) Let v be a non-negative, non-decreasing near-simple process. (i) Show that there are a non-negative,
non-decreasing jump-free process w and a sequence (u,,),ecn of non-negative non-decreasing simple processes
such that v = w + ZZOZO Uy,. (ii) Show that for every e > 0 there is a non-decreasing simple process u such
that v — u is non-decreasing and 6(Osclln(v — u)) < e.

(k) In 631Mb, show that Osclln(¥(u)) = Osclln(u) for every u € M, 5(S’), so that ¥(u) is jump-free iff
u is jump-free.

(1) Let S be a non-empty finitely full sublattice of 7, and u = (us),es a fully adapted process. Show
that u is near-simple iff u is locally near-simple and moderately oscillatory iff w is locally near-simple and
order-bounded and lim,+s u, is defined in L°(2).

631Y Further exercises (a) Let w = (w,)sec7, be Brownian motion based on the real-time stochastic
integration structure (€, ,[0,00[, (¢;)s>0), as described in 612T. Set S = T A 1 where 1 is the constant
stopping time with value 1. Show that there is a near-simple process 4 = (u,)scs of bounded variation such
that 44, (u) is not a martingale.

(b) Let S be a sublattice of T and u = (u,)secs & near-simple process. Show that if S’ is a sublattice of
S which is order-convex in § (that is, SN [o, 7] C &’ whenever o < 7 in §’), then u]S’ is near-simple.

(c) Let uy,... ,ux be (locally) near-simple processes all with the same domain S, and h : R* - R a
continuous function. Write U for (uy,... ,u;). Show that hU (619G) is (locally) near-simple.

(e) Let S be a sublattice of 7. Show that M, <(S) is closed in Mjo.(S) for the local ucp topology of
615Xb.

(d) Suppose that S = [min S, max S] is a closed interval in 7 and that u = (u,)secs is a jump-free process.
Show that for every z € L%(/mins) there is a 7 € S such that [umins < 2] N[z < Umaxs] € [ur = 2].

(f) Let (2, ) be the Lebesgue measure algebra and (e,),en a stochastically independent sequence of

members of 21 of measure % For n € N let s, be the subalgebra of 2 generated by {e; : i < n} and

set Aopi1 = Aapga for each n. In the stochastic integration structure (2, i, N, (A )nen, T, (Ar)re7), take
S={n:neN}and S = {0, : n € N} where o, = 2n for each n. Set v,, = ZOSKHH%(QX@ — x1) for

n € N. Show that v = (vy, Jnen is a || ||2-bounded martingale and a near-simple integrator with domain &',
but that if we define ¥(v) € M,,_(S) as in 631Mb, ¥(v) is not an integrator.

631 Notes and comments

From the beginning, the theory of continuous-time stochastic processes has given special prominence to
those which have continuous or cadlag sample paths; see §455. Just as the jump-free processes of §618
correspond to continuous sample paths (618H), near-simple processes correspond to cadlag sample paths
(631D). In comparison, the definition I offer of ‘near-simple’ process (631B) is agreeably more straightforward
than the definition of ‘jump-free’ process in 618B. The only thing to remember is that, as with simple
processes and jump-free processes, the restriction of a near-simple process to a sublattice need not be near-
simple. So we have to take care when specifying the domain of any near-simple process we want to think
about. But the journey through the elementary properties of the space M,, s of near-simple processes (631C,
631D-631J) gives no difficulties. 631K calls for a little ingenuity, but all the ingredients are in §614. Perhaps
this is a good place to remark that near-simple processes are defined in terms of the ucp topology, so remain
near-simple under any change of law.

In 631M I give a wide-ranging result on the extension of near-simple processes to larger sublattices. Like
the previous extension theorem 612P, it is (in essence) too facile to offer much insight. But in the proofs of
612Qa and 631N these general propositions give us a helpful lift over potentially awkward obstacles.

The point of the stopping lemma SL; in 6310-631S is that we often have a description of (locally)
near-simple processes which is of a quite different kind from that in 631B. Furthermore, this alternative
description, when applicable, leads us to a strikingly stronger approximation by simple processes than that
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promised by 631B. If we take a sequence (7, )nen as constructed in the proof of 631Ra, and truncate it
appropriately, we find ourselves with a breakpoint string (g,...,7,) from which we can define a simple
process 4’ e-approximating the near-simple process u except in the small region [, < maxS]. Now we
knew that we had an approximation which would be e-close to u except perhaps in a region of measure at
most €. But the Stopping Lemma gives us a progressive description of the approximation, each successive
breakpoint being chosen in terms of a criterion observable at the time of the jump. Once again, a simple
modification of SL; gives us a matching description SLo of jump-free processes.

I have tried to set these out in a way which exhibits one of the essential difficulties in the theory of
stochastic processes. If a process is significant at all, stopping times defined by that process are likely to be
important. (See §8477-479, for instance, or the jump-times of the Poisson process in 612Uf.) For jump-free
processes like Brownian motion, especially if we have a representation with continuous sample paths, we
expect hitting times to be easy to investigate, though there can be real surprises (see 652M-652N below).
In fact we can have a kind of Darboux continuity, as in 631Yd. But with cadlag paths we never know
quite what will happen next; as we watch the process evolve, it might at any moment flip into a new state
unforeseeable from anything we have seen before. I will go into this further in §643, with the notion of
‘accessibility’ of a stopping time.

As usual, my presentation is ahistorical. Near-simple processes, as I have defined them, are close enough to
the classical concept of cadlag process for the classical theory (see 633R below) to have results corresponding
to 631R. The ‘moderately oscillatory’ processes of §614, and the fundamental facts in 615M, are my own
invention. But you will have no difficulty in seeing how 615M could be inspired by a proof of 631Ra.

There are other ways in which a process may be expressible as the limit of a more or less special sequence
of simple processes. I give 631U as a ‘theorem’ because this is the form I shall want to quote in §644. But
631V is an alternative form of the same idea. In the version of 631Xi(i), we see that v is expressed as the
sum of a jump-free part and a ‘saltus’ part, recalling the Lebesgue decomposition of a function of bounded
variation into a continuous part and a saltus part, as in 226Ca. In 631V I suggest a different measure of
approximation, using ([ |du|) in place of f(sup |u|). And in 643M there will be a (much deeper) result on
martingales which also seeks to express a given process as the sum of a simpler process and a process with
small residual oscillation.

Version of 14.8.20/6.12.21
632 Right-continuous filtrations

Up to this point, we have been able (with some effort) to work in the full generality of stochastic integration
structures (2, i, T, (A¢)ter) as described in §§611-613. We are now approaching territory in which we shall
need to have filtrations which are ‘right-continuous’ in the sense of 632B. These include the standard examples
(632D). The results I present here are a quick run through new features of the structures developed in §§611-
612 (632C) and an important characterization of near-simple processes on infimum-closed full sublattices
(632F). With this in hand, we see that in the most familiar contexts local martingales will be locally near-
simple (632I) and we have a useful test for being a martingale (632J). In 632N I describe a classic example
of a local martingale.

632A Notation As usual, (A, i, T, (A)er, T, (A )re7) will be a stochastic integration structure. If
ACT and T €T, Lwrite AAT for {o AT :0 € A}. The f-algebra L° = L°(2l) will be given its linear space
topology of convergence in measure. 7y, 7y € T will be the ideals of bounded and finite-valued stopping
times, as in 611A(b-iii). For o € T, P, will be the conditional expectation operator from L}-L = LY (2, i) to
itself associated with the closed subalgebra 2, ; for z € L}i, Pz will be the martingale (P,z),c7. I will write
Him for || [|;-limits in L.

632B Definition I will say that (:)ier or (U, i, T, (UAt)er) or (A, i, T, (At)ter, T, (Ar)re7) is right-
continuous if 2; = [, , ™A, whenever ¢ € T is not isolated on the right.

The notion of ‘right-continuity’ is of course a phenomenon which can appear anywhere in the theory of
ordered sets, and will recur intermittently in this volume in a variety of contexts. I have therefore chosen
this phrase for general use, as follows. If P and @ are partially ordered sets, an order-preserving function
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f+ P — Q is right-continuous if inf f[C] is defined and equal to f(inf C') whenever C' C P is non-empty
and downwards-directed and has an infimum in P. When P is totally ordered, this will be the case iff
inf,~, f(¢) = f(p) whenever p € P is not isolated on the right. So a filtration (;),er of closed subalgebras
of 2 is right-continuous if it is right-continuous when considered as an order-preserving function from T to
the set of closed subalgebras of 2 (or, of course, when considered as a function from T to P2l). Similarly,
a filtration (¥)se(o,00[ Of 0-algebras is right-continuous if ¥; = (.., X, for every t > 0. See 632C(a-iii) for
another example, and 632C(a-ii) for a kind of inverted example.

s>t

632C Proposition Suppose that (2;);cr is right-continuous.
(a) Suppose that C' C T is non-empty.
(i)
[infC >t] = ing [T > t] if ¢ is isolated on the right,
TE

= sup inf [7 > s] otherwise.
s>t T€C

(i) [inf C < 7] = sup, e [v < 7] for every 7 € T.
(iii) Aintc = Nyec Ar-
(b) (Compare 611Cd.) If C, D C T are non-empty, then inf C Vinf D =inf{oc V7 :0 € C, 7 € D}.
(c) If § is a sublattice of T, u = (uy)ses is a fully adapted process and A C S is a non-empty downwards-
directed set such that u = lim, 4 u, is defined in L°, then u € LO(Ains 4).

proof (a) Write o for inf C.
(i) f s’ > tin T, then
supgs, infrec [1 > s] = supy s s, infrec [T > 5] € Ay,
SO
SUpgs infrec [1> 8] € N, As = Az
whenever ¢t € T is not isolated on the right, and the result follows immediately from 611F.

(ii) By 611E(c-iv-8), [0 < 7] 2 sup,c¢ [v < 7). Let t € T If t is isolated on the right, then

[[7‘>t]]\[[a>t]]:[[7'>t]]\31612[[U>t]]

((i) above)
=sup [r > ¢]\[v>t] C sup v < 7];
vel vel
otherwise, again using (i),
[ > t]\ [o > t] =sup([r > s]\ sup inf [v > §])
s>t s>t vEC

C sup[r > s]\ inf Ju > $]
s>t vel

=sup sup([7 > s]\ [v > s]) € sup [v < 7].
s>t vel vel

So
lo < 7] =supyer [T >t]\ o >t] C sup,cc [v < 7]
and we have equality.

(iii) Now suppose that ¢ = infC' in 7. By 611H(c-ii), %, C (),c™Ar. Conversely, suppose that
a € (N,ec®Ur and that t € T. For s € T set a;, = infrec [T > s]; then a\ as = sup,cca\[r > s] € A
(611G). By (a), [0 > t] = a; if t is isolated on the right, and is sup,-, as otherwise. So
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a\ o >t] = a\a; € 2 if ¢ is isolated on the right,

=a\ supas = infa\as € m A = Ay otherwise
s>t s>t o>t

because
infsia\as =infy>esia\as € Ay

whenever ' > t. Ast is arbitrary, a € 2,. As a is arbitrary, %, 2 ) 2, and we have equality.

TelC

(b) Set E={oVvrT:0€C, 7€ D}, ¢pc(t) = infsecfo >t], ¢pp(t) = infyep o > ] and ¢p(t) =
inf,eg Jo > t] for t € T. Then

or(t) = aeg}TfeD [ovr>t]= rrelcr,lrfeD [o >tjulr >1t] = Ulrelfc [o >t]u TlélfD [T > 1]
(313Bd)
= ¢c(t)uép(t)

for every t € T'. If t is isolated on the right, we have
[inf E > t] = ¢op(t) = ¢c(t) U dp(t) = [inf C > t] u[inf D > t].
If ¢ is not isolated on the right, then
[inf E >t] = suIt) or(s) = suIt) dc(s)ugp(s) = sup oc(s)udp(s)
s> s>

s,8'>t

= sup ¢c(s) U sup ¢p(s’) = [inf C > t] u [inf D > ¢t].
s>t s'>t

Thus
[inf E > t] = [inf C > ¢] u[inf D > t] = [inf C Vinf D > {]
for every t, and inf F = inf C' V inf D, as claimed.
(c) Put 613Bj and (a-iii) here together.

632D Examples (a) In the construction of Brownian motion in 612T, (€;);>¢ is right-continuous.
P Suppose that t > 0 and that ¢ € ., €,. For each k € N let E} € ¥, 5+ be such that E} = c. Since
E;AE) is negligible for all j and k, ¢ = E* where E' = (o U5 Ej- But now E € (., X,; as 477Hc tells

us that ., S =%, E€ S and c€ ¢,. Q

s>t

(b) In the construction of the standard Poisson process in 612U, (A;);>¢ is right-continuous. ¥ From
the formulae

S = {F:FCQ Fes,)

and

S =N, S

s>t 'S
in 612Uc, it is clear that ¥; = (1), , ¥, and therefore 2; = (., 2; for every t > 0. Q

632E Lemma (Compare 631N.) Suppose that (2;);cr is right-continuous. Let S be a sublattice of
T, u = (Us)ses a locally near-simple process, and A C S a non-empty downwards-directed set such that
7 = inf A belongs to S. Then u, = lim, 4 u,, and in fact for every e > 0 there is a 0 € A such that
9<SuPpeSm[r,a] lup —ur|) <e.

proof (a) Take any 7/ € A. Then u|S N [r,7'] is near-simple (631F(iv)), so there is a simple process

v = (Vp)pesnir, such that O(sup v —ulS N [r,7]) < %e. v has starting value v, and a breakpoint
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string (oo,... ,0p) say. For each i < n, [T < o;] = sup,cy[o < o;] (632C(a-ii)); as A is downwards-

directed, there is a 0 € A such that ¢ < 7/ and a([r < o]\ [o < 0i]) < ——

< 3D for every 7. Set b =

sup;<,, [T < oi] \ [o < 03], so that fib < 3e and

[vp # v7] € sup;<,, [oi < pn[r <oi] Cb,

1\b C v, =v:] C[lup —ur| < 2¢]
for every p € SN [r,0]. Now u|S N [r,7'] is order-bounded so @ = sup |u|S N [r,7’]| is defined in L°, and

now |u, — us| < §6X1 + @ x xb for every p € SN[, o], so
2 _ 2 _
O(suppesnr,o] [Up — url) < 9(56)(1) +6(a x xb) < zet ab < e.
(b) Of course it follows at once that u, = limy 4 u,-.

632F Theorem Suppose that (2;);cr is right-continuous. Let S be a finitely full sublattice of 7 such
that inf A € S whenever A C § is non-empty and has a lower bound in S. If u = (uy),es is a fully adapted
process, then u is locally near-simple iff it is locally moderately oscillatory and

(1) Uint a4 = liﬁug for every non-empty downwards-directed A C S
[eg

with a lower bound in S.

proof (a) Suppose that u satisfies the conditions.

(i) If S has a least element, we can apply 631S to see that u[S A 7 is near-simple for every 7 € S, that
is, that u is locally near-simple.

(ii) Generally, we can apply (i) to see that w[S N [r, 7] is near-simple whenever 7 < 7/ in §. Now if
7' € S, ulS A7’ is moderately oscillatory and 631F(c-i) assures us that u[S A 7’ is near-simple. Accordingly
u is locally near-simple.

(b) Now suppose that u is locally near-simple. By 631Ca, u is surely locally moderately oscillatory, so it
will be enough to show that it satisfies the condition (). Take a non-empty downwards-directed set A C S
with a lower bound in S; by hypothesis, inf A € S; by 632E, winr 4 = limy 4 ue; so u satisfies (), and we're
done.

632G Corollary Suppose that (2(;);cr is right-continuous. Let S be a finitely full sublattice of 7 such
that inf A € S for every non-empty A C S with a lower bound in S, and a € . Set u, = x(upr(a,2,)) for
o €S, and u = (Uy)ses- Then u is near-simple.

proof For o € S, write a, for upr(a,2,). Iff o < 71in A, A, C A; so a; C a, and x1 > uy > u, > 0.
Accordingly u is of bounded variation and moderately oscillatory. If A C S is non-empty and downwards-
directed and 7 = inf A, then a, = sup,c 4 a,. B Set ¢ =sup,c4 a,. f 0 € A, ¢ =sup,/c4 o <, @or belongs
to ™As. So ¢ € (,cqAs = A, by 632C(a-iii). As a C ¢, a; C c. But of course ¢ C a,, so we have equality.
Q This means that a, = lim, 4 a, for the measure-algebra topology on 2 (323D (a-ii)) and

Ur = X(a‘r) = hmaiA X(acr) = hmo’iA Ug

(367Ra). As A is arbitrary, 632F tells us that u is locally near-simple, and by 631F(c-ii) it is actually
near-simple.

632H Corollary Suppose that (2;);cr is right-continuous. Let S be a finitely full sublattice of 7 such
that inf A € S for every non-empty A C § with a lower bound in S, and v = (v;),es a locally jump-free
non-decreasing process. Then v : S — L° is an order-continuous lattice homomorphism.

proof By 614Ia, v is a lattice homomorphism. If A C S is upwards-directed and sup A € S, then
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Usup A = hmTTA Ur = SUPrcyg Ur
by 6181 and 613Ba. On the other side, v is locally near-simple (631Cb), so if A C § is downwards-directed
and inf A S 87 then

Vint 4 = limry 4 vr = infreq vy

by 632F. Accordingly v is order-continuous in the sense of 313H.

6321 Theorem Suppose that (;)er is right-continuous. Let S be a finitely full sublattice of T such
that inf A € S for every non-empty A C S. Then a virtually local martingale with domain S is a locally
near-simple local martingale.

proof (a) Let u = (u,)scs be a virtually local martingale with domain S§. By 623K(b-iii), it is an ap-
proximately local martingale. Write S’ for {o : 0 € S, u[S A ¢ is a martingale}, so that S’ is an ideal
of § (622M). Take 7 € S and € > 0. Then there is a non-empty downwards-directed A C S A 7 such
that sup,c4 fifp < 7] < € and R4(u), as defined in 623B, is a martingale (623J). Now inf A € S, while
[inf A < 7] =sup,c 4 [p < 7], by 632C(a-ii). So ifinf A < 7] = sup,¢ 4 fifp < 7] is at most e. Moreover, for
o€ SAInfA, lim, 4 usnp = Uo, SO u[S ANinf A = Ry(u)[S Ainf A is a martingale, and inf A € §’, while
[t =inf A] > 1 —e€. As 7 and € are arbitrary, &’ covers S and u is a local martingale.

(b) We know that wu is locally moderately oscillatory (622H). If A C S is non-empty and downwards-
directed, take any v € A and ¢ > 0. Then there is a p € S such that fifp <v] < e and u[S Ap is a
martingale. Now A A p is downwards-directed and has infimum p Ainf A (611Ch), so A ninf a4 = (yen Apro
(632C(a-iii)) and

UpAinf A = Pp/\ianup/\U = }Tlirjl Pp/\aup/\v
(621C(g-1))
= (lrljg Pp/\oup/\'u
(613B(d-i))

= limu,ne-
glA pRa

There is therefore a 09 € A A v such that 6(uprne — Upnint 4) < € Whenever o € A and 0 < gg. But now we
have, whenever o € A and o < o,

O(tupno — o) < ifp < o] < pfp <v] <e
and similarly 6(upnint A — Uinfa) < €, 50 O(Us — Uint 4) < 3€. As € is arbitrary, uinfa = lims 4 uo. Thus

condition (1) of 632F is satisfied and u is locally near-simple.

632J Where martingales come from Coming back to the basic theory of martingales, we have the
following.

Proposition Suppose that (2(;);cr is right-continuous. Let (u;)ier be a martingale in the sense that
Uy € L}L and ug is the conditional expectation of u; on 2, whenever s <¢in T. If w = (w;)rc7; is a locally
near-simple process such that w; = u; for every ¢ € T', then w is a martingale.

proof (a) Fix t € T for the moment. Set C = {0 : 0 € Ty, Wy = P,uz}.
(i) If s <t, then § € C, just because A; = Az, S0 wz = us = Psuy.
(ii) If 0g, 01 € C and 7 € Ty, is such that [t =op]Jur =01] =1, thenT € C. P

[Prus = wr] 2 [o0 = 7] N [Pyttt = Woo ] N [Prus = Poyue] N [wr = we,]
= oo = 7] N [Prus = Pyyud]
(because g € C' and w is fully adapted)

MEASURE THEORY



632L Right-continuous filtrations 29

= oo = 7]

by 622Bb. Similarly, [Pru; = w.] 2 [7 = 01] and
[Prus =w ] 2[r =0co]ufr=01] =1,
so Pru; = w,, that is, 7 € C. Q
(iii) In particular, putting (ii) here and 611E(a-ii-y) together, o A 7 € C whenever o, 7 € C.

(iv) If A C C is non-empty and downwards-directed, with infimum 7, then 7 € C. P Pu; = (P,ut)pet
is a martingale (622Fa), so

Pruy = lim Pyuy
alA

(put 6321 and 632F together, or look at (a) of the proof of 6321I)

=limw, = w
olA o T

by 632F again. Q

(v)Ifr<fthente€C. PSet A={o:0¢€C,7 <0} Then A is downwards-directed, by (iii), and
non-empty, because it contains . Because 7 is Dedekind complete, 7* = inf A is defined, and 7* € C by (iv).
Of course 7 < 7*. 2 If 7 # 7%, then [7 < 7*] # 0 and there is an s € T such that [7* > s]\ [r > s] # 0.
As [T > s] # 0, s must be less than or equal to ¢, and § € C' by (i). Now consider ¢ = [r < §]. We have

ceANA C AN As

by 611H(c-ii). So there is a 7/ € T such that [7' = §] 2 c and [’ = 7*] 21\ ¢ (611I), and 7" € C by (ii).
Consider
Anlr =)ol <Pl =)

Slne)u([r <7*)\e)=cu(l\e) =1.

-

Thus 7 < 7/, 50 7/ € A and 7* < 7’. On the other hand,

0#[* >s|\[r>s]=[s<7*]n[r < 3]
(611E(a-i-6))
cls<m)nlr =3 c[r <]
(611E(c-iii-y), so this is impossible. X
Accordingly 7 = 7* belongs to C', as claimed. Q

(b) Thus w, = P,u; whenever t € T and 7 < . Now, of course, if ¢ < 7 in Ty, there is a t € T such that
T <1{, and

P,w, = P, Pruy = Poupy = wg.

As o and 7 are arbitrary, w is a martingale.

632K Lemma Let (©,%, ;1) be a probability space with measure algebra (2, i), and (X;);>0 a right-
continuous filtration of o-subalgebras of 3. If we set Ay = {E* : E € ¥} for ¢ > 0, then (2;);>¢ is a
right-continuous filtration.

proof Taket >0 and a € (,.,2As. Then for each n € N there is an E,, € ¥,;5-» such that E; = a. Set
E=U,en ﬂiZn Ej; then E € (., X = ¥; and a = E* € ;.

632L Proposition Let (©2,3, 1) be a complete probability space and (¥;)¢cjo,00[ & right-continuous
filtration of o-subalgebras of 3, all containing every negligible subset of 2. Suppose that we are given a
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family (X;);>0 of measurable real-valued functions on 2 such that ¢t — X, (w) is cadlag for every w and X,
is a conditional expectation of X; on ¥ whenever 0 < s <t. Define (2, f1, (2¢):>0) and u = (u,),e7; as in
612H and 631D. Then u[7, is a martingale and u is a local martingale.

proof By 631D, u is well-defined and is a locally near-simple fully adapted process. We have u; = X}
for t € T, so us is the conditional expectation of uy on A; = {E* : E € ¥} whenever s < t. Moreover,
(At)te[0,00[ Is right-continuous, by 632K. But now 632J tells us that u[7; is a martingale, so that u is a local
martingale.

632M Proposition Let v = (v,),c7; be the Poisson process as defined in 612U.

(a) If ¢ is the identity process, (v —¢)[7T, is a martingale, so that v — ¢ is a local martingale.

(b) The previsible variation of v[ 7y is ¢[Tp.
proof (a) (i) In order to use results from §455, I will in fact take a step back from the structure (€2, 3, 11, (¥¢)¢[0,00[)
introduced in 612Uc, and for most of the argument work with the structure (Cag, %, i, (it>te[0m[) from

which it was defined, with the associated o-algebras zzr = (s>t 2s; here Cqig is the space of all cadlag
functions from [0,00[ to R. For t > 0 and w € Cqjg, set YVi(w) = w(t) —t. If 0 < s < ¢, then Y, is a
conditional expectation of Y; on E;" P This is trivial if s = ¢, just because Y is is-measurable. If s <t,
then we can use 4550 and 4558, as follows. Let h : Cqig — [0, 00[ be the constant stopping time with value
s. Then the o-algebra Z; of 4550D is

{F:Fe¥ Fn{w:h(w) <s}eX] forevery s >0} = 3F.
So if we define ji s, for w € Cqig, as in 4550, and set
9@) = [y, Yilo!) s ()

whenever this is defined, then g will be a conditional expectation of Y; on Ej, by 4550b. Next, ¢, : Calg —
Cayg is inverse-measure-preserving for ji and fi.s, where

bos(W)(8) =w(s) if 8" < s,
w(s) +w'(s —s)ifs< s

(455Sc¢). So

0@) = [ Yilbuaw))ii(de’) = /C Duos () () — 1 ji(de)

Caig dlg

:/ w(s) + W' (t —s) — tji(dw’)
Caig

—w(s) —t+ / W (= $)ji(dw’) = w(s) — t + E(A_s)
Caig
(where \;_; is the distribution of the random variable w’ — W' (t — $))
=w(s) — s =Ys(w)
because A\;_; is the Poisson distribution with expectation ¢ — s, as chosen in 612U.
This shows that Yy is a conditional expectation of Y; on X1. Q
(ii) We know also from 455T that 3} is included in
S, = {FAA: F €3, Ais ji-negligible).

It follows at once that Y is a conditional expectation of ¥; on the o-algebra 3, and therefore that Y, [Q is a
conditional expectation of Y;[{2 on X, because (2 is a conegligible subset of Cy4;. And this is true whenever
s <tin [0,00].
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(iii) As noted in 632Db, (2¢);e[0,00 is @ right-continuous filtration, and it follows at once that () sc(o,o0
is right-continuous. And we know that v and ¢ are locally near-simple processes (631E), so (ii) and 632Jc
tell us that (v —¢)[ 7, is a martingale. Of course this means that v — ¢ will be a local martingale on 7.

(b) Since (v —¢)[Tp is a martingale, its previsible variation is zero (626Kc), so the previsible variation of
v[ Ty is the same as the previsible variation of ¢| 7, (using 626Kb), which is ¢ 7, (626Q).

*632NN I described local martingales which are not martingales in 622Xe and 622Xj, and plenty of other
examples are provided by 632L; for instance, ‘Brownian motion’, as described in 6127, is a martingale if you
take it to be defined on 7; (622L), but only a local martingale if you take it to be defined everywhere on 7
(632Ye). There is a classic example which is more interesting, because it arises naturally in the context of
§8477-479.

Example (a) Let u = pw be three-dimensional Wiener measure (477D) on Q = C([0,00[;R?)g, ¥ its
domain, and (2, 1) its measure algebra. For ¢ > 0 set

Y, ={F:FeX w e F whenever w € F, w' € Q and w'[[0,t] = w[[0, ]},
S = {FAH : F € 2, uH =0},

A = {F*: F e}

By 477Hc in three dimensions, ¥; = (),; Xs, 50 (2;)¢>0 is right-continuous.

s>t

(b) Let e be a unit vector in R3. Set Q' = {w : w € Q, e is not a value of w}; by 478Me, ' is conegligible,
so belongs to ¥, for every ¢t. For t > 0 and w € (2 set

1
[lw(®)—ell

Yi(w) = if we ),
= 0 otherwise .
Then Y; is Yi-measurable for every ¢ and ¢ — Y;(w) is continuous for every w, so we have a corresponding
locally jump-free process v = (v;)re7; (618H).
(c) limy o0 E(Y:) = 0. P For ¢, R > 0, the probability density function of the random variable w — w(t)

(\/21?)3 e~ llwll?/2t (put 274Ad and 2721 together), so by 2711c

isx+—

_ 1 —|jx]|?/2t__1
EY) = | e lo—e]

(where the integral is taken with respect to Lebesgue measure on R?)

1 1 _ 2 1
<1y 221 g
~ R /]3(67}%) (V2rt)? [lz—e]|

1 1 1 1 1 1
<=+ de =+ + L4
=R Ve /Bw) le—el " T R T (Vamip /B(O,R) T

So limsup,_, ., E(Y:) < % for every R > 0 and must be 0. Q

Since E(Yy) = 1, (Y2)¢>0 is not a martingale and v is not a martingale.

(d) If n € N and h,, is the Brownian hitting time to the ball B(e,27™) (4771), then h,, is adapted to
(X¢)e>0 (477I(c-iii)), so represents a stopping time 7, adapted to (2;);>0 (612Ha). Set S = J,,cn{7: 7 € Ty,

T < 7,}. Because (7,)nen is non-decreasing, S is an ideal of Ty. Now S is a covering ideal in the sense of
611N. P (This is where we need to be in three or more dimensions.) For each n € N and ¢ > 0,
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glrn > t] = pw{w : hn(w) > t}
> pw{w : B(e,27") Nw[[0,00[] =0} =1 —hp(B(e,27"))
(where hp is ‘Brownian hitting probability’, see 4771a)
=1—Wp(e2-n)(0)
(where W is ‘equilibrium potential’, 479Cb and 479Pb)
=1-2""

by 479Da. But this means that if 7 € 7y and n € N there is a ¢ > 0 such that g7 > ¢] < 27", and now
[r>m] clr>tjulm <t]

has measure at most 27", So
Supyes AlT = 0] > Alr =7 AT] = 1 - afr > 7] > 1 - 27"+

As n is arbitrary, sup,cs [T = o] = 1; as 7 is arbitrary, S is a covering ideal of T7;. Q

(e) At the same time, for each n € N, (v)s<r, is a martingale. I» Apply 478V with G = {x : ||z —¢|| >
27"} and f(x) = ”TieH, so that h,, is the Brownian exit time from G. Again because we are in at least
three dimensions, G has few wandering paths (478N), so 478Vb tells us that if g < h,, is a stopping time
representing o < 7, then Y} is the conditional expectation of Y}, on X4, that is, v» = P,v.,. Q

Thus v is a local martingale.

632X Basic exercises (a) Suppose that (2;);cr is not right-continuous. Show that in this case there are
a simple process 4 = (uy)se7 and a non-empty downwards-directed set A C T such that limg |4 ts # Uint A-
(Hint: reduce to the case in which a € [,,,%As \ /; does not include any non-zero member of ;. Try
A={o:0>1 o =maxT]2a}, uy =0, Upax7 = X1.)

(b) Suppose that T' = [0, co[. Show that if (2;);>¢ is right-continuous, and we identify 7; with a subset
of L% as in 611Xa, then 7} is order-closed in L (definition: 313Da).

(c) Suppose that (;)icr is right-continuous. Show that the function o — oV 7 : T — T is order-
continuous for every 7 € T.

(d) Suppose that (2, a@, T, (Ae)rer, T, (Ar)re7) is the structure described in 612U, and v the standard
Poisson process. Show that (v —¢)? — ¢ is a local martingale.

(e) Let w be Brownian motion (612T, 622L) and ¢ the corresponding identity process. Use the method
of 632M to show that w |7, and w? — ¢[7; are martingales, without appealing to Dynkin’s formula.

632Y Further exercises (a) Suppose that 2 has countable Maharam type. Show that {t : ¢t € T,
Ay # ANy, As} is countable.

(b) Define a family (21, );c7 of closed subalgebras of 2 by setting

2 =2, if t € T is isolated on the right,
= m A, otherwise.

s>t

(i) Show that (" );er is a right-continuous filtration. (ii) Let 7+ be the set of stopping times with respect
to (A );er. Show that if we think of 7 and T+ as subsets of A7, as suggested in 611Ac, then 7 is a
sublattice of 7. (iii) Show that every member of 7 is the infimum in 7 of a subset of 7. (iv) Show
that if A is a non-empty subset of 7T, its supremum in 7+ belongs to 7. (v) Show that for every 7 € T+
there is a greatest o € T such that ¢ < 7in 7.
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(c) Dropping the measure i, and supposing only that 2 is a Dedekind complete Boolean algebra and
(¢)er is a filtration of order-closed subalgebras of 2, as in 611A, show that parts (a)-(b) of 632C are still
valid.

(d) Suppose that 2 is a complete weakly (o, 0o)-distributive Boolean algebra (e.g., a probability algebra;
see 316G and 322F) and ()7 is a right-continuous filtration of order-closed subalgebras of 2(. (i) Let
(Cn)nen be a sequence of ideals of 7. Show that sup((), ey Cn) = infrensup Cy. (ii) Let S be a sublattice
of 7 such that inf D € S for every non-empty countable set D C S. Show that the intersection of a sequence
of covering ideals of S is a covering ideal.

(e) Let (€,7,[0,00[,(€:)i>0, T, (€r)re7) be the real-time stochastic integration structure of 612T, and
w = (w,)se7; Brownian motion. Show that for every z € LY(¢) and o € Ty there is a 7 € Ty such that
o < 1 and w; = z; so that w is not a martingale.

(f) Let pr, be Lebesgue measure on [0, oo, and v the corresponding Poisson point process with intensity 1
as described in §495, so that v is a complete probability measure on P [0, co[. Let Q be the set {w : w C ]0, 00|,
w0, al is finite for every a > 0}. Show that vQ2 = 1; let u be the subspace measure on 2 and ¥ its domain.
For ¢ > 0 let 3; be the o-algebra generated by sets of the form {w : w € Q, #(w) N[0,s] = n}AE where
n €N, s <tand uE = 0; show that (X;);>¢ is a right-continuous filtration of o-subalgebras of ¥. For ¢ > 0,
w € Qset Xy (w) = #(wN[0,t]); show that (X;);>0 is adapted to (X;);>0, and that ¢ — X (w) is cadlag for
every w. Show that if we take the stochastic process defined from (Q, v, (X¢)¢>0, (Xt)t>0) by the method of
612H/631D, we obtain a structure (24, /i, (%4;)¢>0, (vr)re7;) isomorphic to that of 612U.

(g) Give an example of near-simple processes u, v defined on 7, in a real-time structure with a right-
continuous filtration, such that fTud'v = 0, where T is the set of constant stopping times, but fT udv is

undefined, where T; is the finitely-covered envelope of T'.

632 Notes and comments The aim of this section is to show the kind of simplification which is achieved
by assuming right-continuity. After the basic list in 632C, the most important general facts are 632F and
6321.

As with 612U, we don’t really need §455 in the proof of 632Ma. Instead of expressing the Poisson process
in terms of a Lévy process as described in §455, we can start from a probability space better adapted to
the problem (632Yf). But we still have some work to do, because the Markov property has got to come
in somewhere, and the Poisson point processes of §495 aren’t trivial. The method above also provides an
alternative route to 622L, missing out the harmonic analysis, and giving a slightly stronger result (632Xe).

Version of 18.12.20/30.10.23
633 Separating sublattices

At various points, I have looked at relations between a process 4 = (u,)scs and its fully adapted extension
to the covered envelope of §; turning these round, we find connections between the properties of 4 and its
restriction to a covering sublattice of S. When the filtration is right-continuous and we have a near-simple
process we can go much farther, and an effective concept is that of ‘separating’ sublattice (633B). Once
again we have a useful result on equality of integrals (633K) and many correspondences between properties
of u and u[S’ (6330, 633P).

633A Notation Once again, (A, &, T, (As)ier, T, (A )-c7) will be a stochastic integration structure. If
S is a sublattice of T, Z(S) is the set of finite sublattices of S, and M, (S) the space of locally near-simple
processes with domain S. For t € T, # will be the constant stopping time at t. L% = L°(2A) will be given
the linear space topology of convergence in measure. For w € L% 6(w) will be E(|w| A x1), where E is
integration with respect to fi; for an order-bounded fully adapted process u = (uy)oecs, sup |u| will be
sup({0} U {|us| : 0 € S}). If I, J C T are sublattices, I write I LI J for the sublattice of T generated by
TUlJ.

(©) 2013 D. H. Fremlin
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34 Structural variations 633B
633B Definition Let S be a sublattice of 7 and A, B subsets of S.
(a) I will say that A separates B if [0 < 7] = sup,c4([0 < p]n[o < 7]) for all o, 7 € B.

(b) If v = (vy)es is a fully adapted process, I will say that A v-separates B if whenever o, 7 € B then
o < 7l [0, # 0.1 € sup,eallo < ol [p < 7]).

633C Lemma Let S be a sublattice of 7 and A, B, C, D subsets of S.

(a) If AC B, C C D and A separates D then B separates C.

(b) A separates its covered envelope.

(c) If A separates B and B separates C' then A separates C.

(d) If A separates B and 7* is an upper bound of B in T then AA7* = {o A7* : 0 € A} separates B.
(e) A separates B iff A v-separates B for every fully adapted process v with domain S.

proof (a) Immediate from 633Ba.

(b) If o, 7 belong to the covered envelope of A,

[oc<7]= sup [Jo<7]n[o’ =a]n[r' =7]
o/, T'€EA

sup [0/ =o]n[r’ =71]n]o’ <7']
o/, T'EA
= sup [o'=0o]n[r'=71]no’ <p]n]p <]
o', 7'es

peg

N

suplo < plalp <7l o<l
pEA
so [o < 7] =supyeq o < p]nlp <]
(c) If o, 7 € C, then
[o <] C S,lé%([[(f <dnfo’ <))

sup ([o <d'Info’ <7]nfo’ <p]nfp < 7]
o'€B,pEA

ilelg([[a <plnlp<r]clo<r]

N

(d) If o, 7 € A then

[[U/\T*<7'/\7'*]]=[[0’<T]]ﬁ[[0’<7'*]]ZEEB(HUSpHOHp<Tﬂﬂ[[O'<T*]])

c sup([eAT* < pATnpAT" <TAT*])
peEA

(e) Immediately from the definitions in 633B we see that if A separates B then A v-separates B for every
v € M;,(S). Conversely, if A v-separates B for every v € M, (S) and o, 7 € B, set v, = x[p < 7] for p € S.
Then v = (v,) pes is fully adapted, being a simple process with breakpoint string (7) (612J). And

[o <] =[o <7]n[ve #v:] < sup,eallo <plnlp<7]) o <7]
so [o < 7] =sup,ea(lo <plnlp <7l

633D Proposition Let S be a sublattice of T.

(a) If Ty C T is dense for the order topology of T' (4A2R) and contains every point of T' which is isolated
on the right in T, then Ty = {f : t € Ty} separates S.

(b)(i) If A C T separates S, B C § is coinitial with S and C' C S is cofinal with S, then A’ =
{med(r,0,7") : 7 € B, 0 € A, 7' € C} separates S.
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(ii) If v is a fully adapted process with domain S, A C T v-separates S, B C S is coinitial with § and
C C S is cofinal with S, then S is v-separated by A’ = {med(r,0,7"): 7€ B,oc € A, 7' € C}.

proof (a) Suppose that 7, 7/ in S and t € T'. Then [7" > t]\ [T > t] € supgerq, ([7" > s]\ [7 > s]). P If ¢
is isolated on the right in 7', then ¢ € Ty and the result is trivial. Otherwise,
[7" > t]\ [t > t] = supysi([7" > ']\ [1 > t]) € sup,eq, ([7" > s]\ [ > s])

because if s’ > ¢ then the open interval |¢,s'[ is non-empty and meets Ty, and if s € Ty N J¢,s'[ then
[7>s]cr>s]and [r>s] c[r>1]. Q
Consequently

[r<7]= iél;)([[r’ >\ [r > t])

=sup([r' > s]\[r > s]) = sup([r < 3] n[5 < 7])
s€Ty s€To

by 611E(a-i-8). As 7 and 7’ are arbitrary, Ty separates S.

(b)(i) Suppose that 7, 7" in S and [r < 7'] #0. Let 4 € B, 71 € C be such that i <7 <7’ <7{. We
know that [7 < 7'] = sup,e [T < o] n[o < 7']. For 0 € A set 6 = med(71,0,7]) € A’. We have

[r<é]nfe <T]o[r<m{Ad]n[rnVo<T]
(because T Ao <6 <7 Vo)
=[r<H]nlr<o]n[n <7]n]o <]
(611E(c-i-a) and (c-ii-«v))
Slr<olnlr<rnfo <] =[r <o]nfo <]

(611E(c-iii-y)). So

sup ([r < o]nfo < 7']) =sup([r <é]n[s < 7])
occA’ oA

2 sup([r < ol nfr <7D =[r <7

because A separates S. As 7 and 7’ are arbitrary, A’ separates S.

(ii) Use the same argument, but looking only at the case 7 < 7/ and reading ’[v, # v./] for ‘[7 < 7]’

633E Lemma Let S be a finitely full sublattice of 7 such that inf A € S whenever A C S is non-empty
and has a lower bound in S, 8" a sublattice of S, S} the finitely-covered envelope (6110) of &', and 7 an
element of |J, .5 S A 0.

(a) A={o:7<0€ 3}} is non-empty and downwards-directed, and inf A € S.

(b) If S’ separates S then inf A = 7.

(¢) f v = (Vs )oes is fully adapted and S’ v-separates S, then vips 4 = v;.

proof (a) By the hypothesis on 7, A is non-empty, and of course it is downwards-directed. Because S is
finitely full, A C S, and 7 is a lower bound for A. So 7* = inf A belongs to S, and 7 < 7*.

Note that if 0 € &’ and a = [t < o]n]o < 7*], then a = 0. P Take any o9 € S’ such that 7 < oy.
Then we have a o* € T such that [o* = o] Da, while [o* =o¢] 21\ a (611I). In this case, o* € A so
[e* <] =0and a =0. Q

(b) It follows at once that if &’ separates S then 7 = 7*, that is, inf A = 7.

(c) Similarly, if S" v-separates S, then v, = v .
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633F Proposition Let S be a sublattice of 7 and u, v locally near-simple processes with domain S.
Suppose that C C S separates S and that inf,cc [o < 7] =0 for every 7 € S. If u]C = v|C then u = v.

proof (a) Set w = u — v, and express w as (W, ),es. Then w is near-simple (631F (a-ii)), w is zero on C
and I need to show that w is zero on S.

(a) Consider first the case in which S has a greatest element which belongs to C. If 2 = (z5)ses is a
simple process then |supw| < 2sup |z—w|. P Let (09, ... ,0,) be a breakpoint string for z with o,, = max S,
and write z; for the starting value of z and Z for sup |2 — w|. Take any 7 € S. Then

[T < 70] = sup([r < o]no < 70]) € sup([r > 7] N o < 710])

ceC oceC
¢ sup([zr = 2] n[zo = 2,]) € sup [z, = 25] € sup [|2-]| = |26 — wo]
ceC oeC oeC

(because w, = 0 for every o € C)
c =] < 21,

while if 7 < n then

[o: <7]n]r <oi1] = 216110)([[01 <7lnfr <o n]r <o]nfo < oit1])

C 216110)([[01» <7]nr <oit1]nfo: <o]nlo < Tit1])
C sup [z = 25] € [l27] < 7]
and
lon < 7] € [27 = 25, — w0, ] € [l2-] < 2]

Thus |2,| < Z; as 7 is arbitrary, sup |z| < z. Q
Now we see that

sup |w| < sup |z| 4+ sup |z — w| < 2sup |z — w|;
since w is near-simple, there is for any € > 0 a simple process z such that 6(sup |z —w|) < € and (sup |w|) <
2e. We conclude that w = 0, as required.
(b) In the general case, take any 7 € S and 7* € C. Then C and C A 7* separate S A7* (633Ca, 633Cd),
while {o,7*} covere {o A 7*} (611M(b-1)) S0 |werr+| < |we| V Jwy<| = 0 (614Ga) for every o € C. By (a),

applied to w[S A 7%, wrpr« = 0 and [r < 7] C [w, =0]. As infrvcc[7* < 7] =0, w, =0 and w = 0 in
this case also.

633G Lemma Let S C T be a sublattice and D C S a cofinal finitely full set which separates S and is
such that inf A € D for every non-empty downwards-directed A C D with a lower bound in §. Then D = S.

proof Take any 7 € S, and set A = {0 : 0 € D, 7 < o}. Because D is cofinal with S, A is non-empty;
because D is finitely full, it is closed under A (611P(a-ii)), so A also is closed under A, and is downwards-
directed, while 7 is a lower bound of A belonging to S. Set 7* = inf A; then 7* € D and 7 < 7*.

? If 7 # 7%, there is a 0 € D such that [r < o] n[o < 7*] # 0, because D separates S. Set ¢ = [7 < o];
then ¢ € 2, and 1\c € A, C Ar+. So thereis a 7/ € T such that ¢ C [7' = o] and 1\ c C [7' = 7*] (6111
again). Since [7' = o] u[r’ =7*] =1, and D is finitely full, 7’ € D; also

c=[r<aln[r=0c]cr<7], WN\ecc[r=r]cr<7]
so 7 < 7. Accordingly 7 € A and 7* < 7’. But
[7 <2 =0o]nfo<t*]2[r <o]nfoe<T*] #0

so this is impossible. X
Thus 7 = 7* belongs to D; as 7 is arbitrary, D = S.
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633H Lemma Suppose that I, J € Z(T), with J C I. Then there are totally ordered sets Jy C J and
Iy C I such that Jy covers J, Iy covers I and Jy C I.

proof We know from 611Ke that there is a totally ordered set Jy C J covering J. If Jy = 0, all we have
to do is to use 611Ke again to find a totally ordered set Iy C I covering I. Otherwise, enumerate Jy in
ascending order as (0;)i<n. Set

Ko=INminT,09], K;=IN[oj_1,04]for1<i<n, Kp41=1N][o,, maxT].

For each i < n+ 1, let K] C K; be a totally ordered set covering the finite sublattice K;; now set Iy =
JoUU,;<pq1 K7, so that I is a totally ordered subset of I, including .Jo, which covers K = Ui<n+1 K;.
At the same time, K covers I. I Let 7 € I. Set
To=TAN0og, 7i=med(o;_1,7,0;)forl<i<mn, T,41=7Vo,

Then 7; € K; C K for every i <n+1. Also [t = 1] = [r < 0¢] and [r = 7,41] = [on < 7], by 611E(a-ii-3).
As for the middle terms, if 1 <7 <n then

[r=n]=[r=0@Voi_1)Aa]2[r=7Voi]n][rVoi_1=(TVoi_1)Adi]
=[oici <7]nr Vo1 <oi] =Joici < T]nr <o) nfoi-i < oy

(611ED)
=[oir <7]n[r <o
So
sup [t = o] 2 sup [r =]
ceK i<n+1
2[r <ooJu sup ([oi—1 < 7]n[r <o])ufon, <7]=1
1<i<n

(611Ed), and K covers {r}. As 7 is arbitrary, K covers I. Q
Consequently Iy covers I, by 611M(g-1) as usual.

6331 Lemma Let S be a sublattice of 7, S’ a finitely full sublattice of S and 1 a strictly adapted interval
function defined on S?'. Suppose that J € Z(S) and (0, ),c; are such that 7 < o, € S’ and

Uiy = SUDsespr resinlro, [V(0,T) — (0, 7)|
is defined in L° for each 7 € J. Let I € Z(S’) be such that o, € I for every 7 € J. Then
|S1us (1, dip) — Sr(1,dvp)| <237 s tr.

proof (a) To begin with, suppose that J = {7} is a singleton.

(i) Write I for the covered envelope of I. There is a 7/ € I such that 7 < 7/ and [p < 7'] = [p < 7] for
every p € I. P Foreach 0 € I, [1 < o] € A, N A, so there is a ¢’ € T such that [r; < o] C [¢' = o] and
lo <7] € o’ =0;]. Now 7 <o’ €1 for each o € I, so
<7 =infye;o’ €l CS.
Take p € I. Then certainly [p < 7] C [p<7']. 7 Ifa=[p < 7]\ [p < 7] is non-zero then there is a o € I
such that @’ = an[p = o] is non-zero. In this case,
0#£d clo<t|\[e<7]C]o<]n]r<o]
o<l =ol < [o < "In[ <ol

because 7/ < ¢’; but this is impossible. X So [p < 7] = [p < 7'], as required. Q
Of course 0 = [o, < 7] = [or < 7'] so 7" < 0.

(ii) Write I' = TU {7’} and K = I’ U{r}. Then {p: p € T, pV 7' € I'} is a sublattice including
I' U{r} so it includes K and K V 7/ C I'; consequently K V 7/ =I' V7’ and Skv,(1,dp) = Sy (1, dy).
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(iii) |Skar(1,dy) — Spar(1,dy)| < 24,. P Take (0o,...,0.) linearly generating the (I’ A 77)-
cells; note that every o; belongs to I. Then (o9 A T,... 0, AT) linearly generates the (K A 7/)-cells and
(coVTy...,0m V T) linearly generates the (K N [r,7'])-cells. So

SK/\T/ (17 ddj) - SI’/\T’ (17 dw)

m—1
= Y(oi AT, 0541 AT) + (0 V T,0541 V T) = P(0,0541).
i=0
Set
b, = [[T<O’0]] if i = —1,
=[o: <7]n[r < 0i11] it 0 < i < m,
=[r=on]ifi=m;
then b_1,... ,b,, is a partition of unity in 2. Now observe that if —1 < i < j < m then

[
[

c¥lojnTojpi AT)=0ln[Y(0; V1,041V T)=1(0f,0541)]
[(oi ATyoj00 AT) +2p(0j V T,0541 V T) = Y(04,0541) = 0],

while if 0 < j < i <m then

b Clos<7]Clojp1 <T]Cloj VT =041 AT]n[o; AT =0j]n[0j41 AT = 0j41]

CW(oiVT,0541VT)=0]n[(os AT,0511 AT) = Y(04,0541)]
C oy AT, 0541 AT) +2p(0j V T,0541 V T) —(0j,0541) = 0].
So
|Sk A (1, dp) — Sppr (1, dy)]
m—1 m
= | (V(oj AT, 0500 AT) + (05 V7,041 V1) — (05,0541)) X xbil
§=0 i=—1
m—1
= | (W(oj AT, 0541 AT) + (0 VT,0541 V1) —1p(05,0541)) x xbj]
j=0
m—1
< [Y(oj AT, 7) + (7,041 V1) = P(0j AT, 0541V T)| X xb;
7=0
m—1
< Z(W(Uj/\ﬂgjﬂ V1) = (o AT, )| 4 [9(T, 0540 V T) = (7, T)]) X xb;
§=0
m—1
= (|1/)(0'] AT, T/) - ¢(Uj A 7—37)| + |1/)(T7 T/) - 1/1(7'7 T)D X ij
§=0
(because b; C [ < ojq1] = [ < ojq1] = [7 = 0j41] = [7 = 041 V 7] for every j < m)
m—1
< Z 2 X xb;
j=0
(because 7/ € S’ and 7 < 7' < ;)
< 2u,
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as claimed. Q
(iv) Putting (ii) and (iii) together, we see that | Sk (1,dy)—Sp (1, dy)| < 24,.. But ILJ is a sublattice of
K covering I' and J, so it covers K, and Sy,5(1,dy) = Sk (1, dy) by 613S. Similarly, Sy (1, dy) = S;(1, dy),
and |Srus(1,dy) — Sr(1,dy)| < 2a,, as required.
(b) For the general case, induce on #(J). If J is empty, the result is trivial, and if #(J) = 1 it is covered

by (a) above. For the inductive step to #(J) = n > 2, if J is not totally ordered then it has a totally ordered
subset J' which covers J (611Ke), and

1Srus (1, dip) = Sp(1,dp)| = [Squp (1, dyp) — Sp(1,dy)| <2 a,
TeJ!
(by the inductive hypothesis)

<2 .

TeJ

If J is totally ordered, set J' = J \ {max J}; then

|S1us (1, d) — Sr(1,dy)| < [Srus(1,dy) — Siup (1, dy)| + [S1us (1, dy) — Si(1,dy)|
< |S(IUJ’)u{maxJ})(1adw) - SII_IJ’(]-ad'(/)” +2 Z Ur
TeJ!
(by the inductive hypothesis)

<2 4
by (a). Thus the induction continues in either case.

633J Lemma Let S be a sublattice of 7, S’ a finitely full cofinal sublattice of S and 1) an order-bounded
strictly adapted interval function defined on S*'. For 7 € Sset A, = {0 : 7 <0 € §'}, and for 7 € S,
€ A, set

Urr! = SUDseSAT pEA AT W}(Ua ,0) - w(0—7 T)‘

Suppose that z = fs dip is defined and that inf . ca_u, = 0 for every 7 € S. Then fs, dvy is defined and
equal to z.
proof Let € > 0. Then there is a J € Z(S) such that 6(z — Sk (1,dy)) < € whenever J C K € ZS. For
each 7€ J, 7+ urp 1 Ay — (L°)T is order-preserving so lim,/ |, u,.» = 0 and there is a o, € A, such that
O(tro,) < ———. Set Iy = {0, : 7€ J}.

1+#(J)
Suppose that Io € I € Z(S’). Then |S7,y(1,dy) — Sr(1,dy)| < ) ¢ ;ure, by 6331 But now we see that

0(z — S1(1,dy)) < 0(z — Srug(1,d)) + >0 c; 0(ure, ) < €+ 2€
by the choice of J and (o) cs. As € is arbitrary, fs' dvy is defined and equal to z.

633K Theorem (a) Suppose that (2;);cr is right-continuous. Let S be a finitely full sublattice of T
such that inf A € S for every non-empty subset A of S with a lower bound in S, and u, v fully adapted
processes with domain S such that u is order-bounded and v is locally near-simple. Let S8’ be a sublattice
of S, cofinal with S, which v-separates S. If z = fsud'v is defined then fs’ u dv is defined and equal to z.

(b) Suppose that S, 8’ are sublattices of 7 such that &’ is finitely full and is included in S. Let u, v be
fully adapted processes defined on S. For 7 € S set A, = {0 : 7 < o € §'}. Suppose that A, is non-empty
and

Ur =limgpa, Uy, vy =limypa, v,
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for every 7 € S. If z = [, udv is defined then [sudv is defined and equal to z.

proof (a)(i) Suppose to begin with that S’ is finitely full. For 7 € S, set A, ={o:7 <o € 3}} Because
&’ is cofinal with S, A, # 0 and inf A, € S, while v, = viyr 4. by 633Ec. Because ()¢ is right-continuous
and v is locally near-simple,

hm‘ﬁLAr SUPpeAa., p<o |UP - ,UT| = hmdl,Ar SUPpeAa., p<o |UP - vian| =0
(632E). Now set ¢ = uAwv (613Cc, 613Dd), so that ¥(o,7) = us X (v — vy) when ¢ < 7in S, and 1) is
strictly adapted and order-bounded. Write @ for sup |u|. Then whenever 7 € § we have v, = vipr 4. (633Ec),
o
lim sup [¢(o,p) — (o, 7)| < lim  sup ax |v, — v, | =0.
T VAT ceSAT, pEAL AT TV A pe A AT

Thus 1 satisfies the conditions of 633J and

/Sudv:/sdw
:/,Cw
://udv

(ii) In general, the finitely-covered envelope 3} of & is a cofinal finitely full sublattice of S which v-
separates S, so

(613Hc)

(633J)

as required.

fsud'v = fs}udv: fs,udv
by 613T.

(b) Let € > 0. Let J € Z(S’) be such that 8(z — Sr(u,dv)) < € whenever J C I € Z(S’). Now suppose
that I is any finite sublattice of S including J. Then there are a totally ordered subset Jy of J covering
J and a totally ordered subset Iy of I, including Jy, which covers I (633H). Let (7;)i<, be the increasing
enumeration of Iy. Then we can find 7/ € A,,, for i < n, such that

€
n+1’

—— whenever i, j <n, 0 € A, 0’ € A, 0 < 7/ and o’ < 7] then 0(uy X Vo' —ur, X vr;) <

—ifi <nand 7; € S then 7/ = 7;.
Set oy = inf,>j>; 7; for i <n. Then 0 < ... < oy; foreachi<n,0; € Sand 73 <o; <7/5and oy =17;

if 7, € Jo. So if we set I} = {o; : i <n}, we have

n—1

0(Sr, (u,dv) — Si(u, dv)) = G(Z Ug, X Vg,yy — Ur, X Uppyy — Ug, X Vg, + Ur, X Ur,)
i=0
< 2e.
Because Jy covers J and Jy C I, the covered envelope of Ij) includes I" = IgLiJ (611M(b-i)) and Sy, (u, dv) =
Sy (u, dv) (613T again). But I' D J so 6(z — Sy (u, dv)) < e. Consequently 6(z — Sr(u,dv)) < 3¢; and this
is true whenever J C I € Z(S).
As € is arbitrary, |, sudv is defined and equal to z.

633L Corollary Suppose that (;):cr is right-continuous, and 7 < 7/ in 7. Let u be a near-simple
process and v a near-simple integrator, both defined on [, 7/]. Suppose that Ty C T is a dense set for the order
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topology containing every point of T" which is isolated on the right. Set &’ = {7/} U {med(r,%,7’) : t € Tp}.
Then fs, udv is defined and equal to f[T i u dv.

proof By 616K f[T_T,]ud'v is defined. By 633D(b-i), S’ separates [r,7’], and it is cofinal with [r,7'] just
because it contains 7. We can therefore apply 633Ka to see that fs' udv = f[T ) udv.

*633M I star the next couple of paragraphs because they are here for a very special application in §652.

Lemma Let S be a sublattice of 7 and u = (uy),es a moderately oscillatory process with domain S.
(a) For every € > 0 and 3 > 0, there are a b € 2 and a v > 0 such that b > 1 — € and

Z?:_ol abn IHUTH»I —un| > B]) <~

whenever 79 < ... <7, in S,

(b)(i) For ¢ < 7 in S, set

1[}(0" T) = med(ixla Ur — Ug, Xl)a 1/)/(0', T) =Ur — Ug — 1/)(07 T)'
Then ) and ' are strictly adapted interval functions on S.
(ii) If o < 7 and ¢/ < 7/ in S, then |¢(o,7) — Y(o’,7")| and |¢'(o,7) — ¢’ (¢’,7")| are both at most

|tg — tpr| + |tur — tsr|.

(c) [gdy" and [ dy are defined.

(d) w' = diys (1) is of bounded variation and w = 4, (1) is moderately oscillatory.

(e) Osclln(w) < x1.

(f) Express w as (w,),es. If 7 <7/ in S, then w,» — w, € L°(D,), where D, is the closed subalgebra of
A generated by {u, —uy 10,0’ € SN[r, 7], 0 <o’}

(g) If w is near-simple, w is near-simple.
proof If & = () all of this is true for trivial reasons, so in the following arguments I will take it that S is
non-empty.

(a) (Compare (i)=-(iv) in the proof of 615N.) It is enough to deal with the case in which g < 1. We
know that there is a process v = (vys)ses of bounded variation such that f(sup|u — v|) < %Be. Set

bo = [sup [u —v| < 34]; then fiby > 1 — Je. Writing © = [ |dv|, we have a v > 0 such that jib; > 1 — Je
where b = [t < %W/B]]. Set b = by nby; then b > 1 —e.
If o <7in S then

[lur = uol > 8] € [lur — vel > 18] U [lor — o] > 28] U [lor — ur| > 31,

so bn [lur —ug| = B] € b [lv; — vs| > 38]. Now take any 79 < ... < 7, in S. Then

n—1 n—1
Zﬁ(bﬂ[ﬂunﬂ — Ur; Zﬁ]]) < ﬂ(blm[[lvTi+1 —Un > %6]])
=0 =0
n—1 3
< B}E(Xbl X ‘rUTiJA - rUTiD
=0
3 _ 3 1
< E]E(Xbl x ) < 3 'g’Yﬂ <.

(b)(i) Since a — med(—1,a,1) : R — R is Borel measurable and (o,7) +— u, — u, is strictly adapted
(613Cc), ¥ and 1)’ are strictly adapted (613Db-613Dc).

(ii) For @, y, z, o/, i/, 2 € L,
o' =a+ (2 —2) < (@Vy) + (@ —2) V(Y —y)

VY <(zvy)+ @ —x)vVy —y), |[ZVy —xVvyl <|z—z|V|y -yl
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[Z' VY Ve —avyva <[’ VY —aVvyl V] -z <[ [ VIY -yl VI -2
similarly, |2/ Ay’ — 2z Ayl < |2’ — x|V |y — y|. Consequently
| med(z’,y’, 2") — med(z,y, 2)|

=@ ANY)V @A)V Y AZ)=(xAy)V(zAz)V(yA=2)|

<l ANy —z Ay V]| AZ —a A VY AN —y Az

<o’ =z vy —yl V] 2]
In particular, | med(—x1, 2’, x1) — med(—x1,z, x1)| < |2’ — x|, so

[(o, 1) — (o, 7)) < |ur — g — Urr + upr| < g — upr| + |y — upl.
Next, for any z € LY, med(—x1,,x1) — 2 = med(—x1 — 2,0, x1 — ), so
|(med(—x1,y,x1) —y) — (med(—x1, 2, x1) — )|
Sl=xl-z+xl+ylVIxl—y—xl+z[=ly -z

for all z, y € L°. And

[V (o, 7) =Y (0, 7)| < |ur — ug — urr + Upr | < fug — Uor | + [ur — ur].

(¢) To begin with (down to the end of (v) below), suppose that S is finitely full. Let € > 0.

(i) By 615Ga, uy = lims4su, is defined and there is a 7% € S such that that 6(z*) < e where
2* = Sup,egyre [Uur —ut|. Then afz* > 1] < 4e.

(ii) By (a) above, there are by € 2 and v > 0 such that fibp > 1 — € and

n—1 _
> i A(bon [[|u'ri+1 —Up| 2 ﬂ) <z

whenever 79 < ... <7, in S. Set § = min(é,%).
(iii) By 615F (a-i) ]S A 7* is moderately oscillatory, therefore 1|-convergent(615G/615J), while S A 7*

is full (611Me). Construct (D;);en, (yi)ien and (d;)ien from u[S A 7* and § as in 615M. For i € N set
D; =U,ep, SV o. There is an m € N such that fid,,, < € (615M(c-ii)). Choose 7y, ... , 7o in such a way
that for each 1 <m

7 € Dy,

0(z;) < me—jl where z; = sup{|u, — y;| : 0 € D}, 0 < 7;},

if i <m then 7; < 741.
(By 615Gb, when we come to choose 7 anything far enough down Dy, will serve.) Set z = supj.<,,, zx; then
0(z) < edso iz >8] <e Set b=bon [z <]n[z* < 1]\ dp; then ib>1— Te.

(iv) Take i < m and a finite sublattice K of S N [1;, 7;+1] containing 7; and 7,41,

(o) Let (0)j<n be the increasing enumeration of a maximal totally ordered subset of K, so that

7; = 09 and 7,41 = 0. Define (a;);<, inductively by saying that
aj = [Jug, —yil = 0]\ sup; ; a;

for each j and a* = 1\ sup;,, a;. Then the a; are disjoint and a; € A, C 2, for each j, so we have a
7/ € T such that a; C [7] = 0;] for j < n, while a* C [7/ =7;]. As S is supposed to be full, 7/ € S. Now
sup, <, [7f = o] =1, 7 < 7/ <7y and [u,s — y;| < ] is disjoint from every a; and from [|ur,,, —yi| > J]
so is included in [} = mipa1] N [rig1 = 7%) € [/ = 7*]. So 7} € Dj41.

(B) For | < n,
|SK(17d¢/) - ¢/(Tiv Ti+1)| X X(bmal) < 45X[HUT1'+1 - uTi| > i]]
P Concerning the case I = 0, observe that ag = [|ur, — y;| > 0] C [z > ] is disjoint from b and the result
is trivial. Otherwise, we know that Sk (1,dy’) = Z;L;Ol Y (0j,0541) (613Ec). Now if 0 < j <1 —2 then
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ap C [Huffj - y1| < 6]] N muﬂj-u - y2| < 6]] - mu0j+1 - uﬂj' < 25]] c Hw/(o—jvo—j-i-l) = 0]]
and if [ < j <nthen 7{ <7/ Vo; <7/ Vo <7180 7 Vojand 77 Vo4 belong to D}y, and
a; C [[O'j = Ti/ \Y O'j]] N [[Uj+1 = Til \/JjJrl]]

n [HUT{VUJ' - uTi+1| < Zi+1]] n [[|uT{VUj+1 - un+1| < Zi-‘rl]]

c H|u0'j+l - uffj‘ < 22]]

and
aNbc [[|ut7j+1 - uUj‘ < %]] c [['(/J/(o-ﬁo-j-‘rl) = O]]
So
ISk (1, dp") — ' (13, Ti1)| X x(bnar) = [ (o121, 00) — ' (Ti, Tig1)| X x(bnay).
Now
ap [[|u01—1 - yi‘ < 6]] n [[ludo - yi‘ < 6]] c [Hutfl—l - uﬂ" < 25]]
and also
ap © [[Ul =0 \/Ti/]] < [Hutfz - u"’i+1‘ < 2zi+1]]

SO

bna; C [Jug,_, — tr| + |to, — ur, | < 46]
¢ W' (o1-1,01) = ¢/ (7i, Tiga)| < 40]
((b-ii) above). So
[ (o1-1,01) — ¥/ (73, Tix1)| X x(bnay) < 46x1.
At the same time,
bran flur, —ur | < 30 € [ (i is1) = 0] 0 [lto,_, — o, | < 7 + 4]
< [¥'(7i, 7iv1) = 0l 0 [ (011, 00) = O],

and in fact

ISk (1, dy") = ' (73, Tig1) | X x(bnvay) = [ (01-1,00) — ¥ (73, Tig1)| X x(bnay)
> 11 Q

< 45X[[‘uﬂ+1 — U

(v) Concerning a*, we have

a*

N

inf [lus, —wil <0]

N

jglilin [lto, — uajl <1]

€ [¥'(7i 7i1) = 0] 0 inf [9'(0j, 0541) = 0]
C [Sk(1,dy’) = ' (7i, i3]
(0) Since a* U sup, <, a; = 1, we see that

|SK(17 dw/) - W(Ti7Ti+1)| X Xb < 4§X[Hu7'i+1 — Ur,

And this is true whenever ¢ < m and K is a finite sublattice of S N [1;,7;—1] containing 7; and 7;41.

)
(v) Now suppose that J € Z(S) includes I = {79, ... , T }-

a) Sjar(1L,d)x xb=0. PIfo <7 < 75in S, then ¢ and 7 both belong to S A 7* = Dy, so
(@) Synr(1,dy) X 0 ) g 05
|ur — uy| < 2z; < 2z and

b C [lur —ug| <26] € [¢'(0,7) = 0],
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that is, ¥/(0,7) x xb = 0. As o and 7 are arbitrary, Sjar,(1,d¢’) X xb =0. Q
Similarly, |u; — us| < 22* and
b [lur —us| < 3] € [¥(o,7) = 0]
whenever 7* < o < 7in S, so Sy~ (1,dy’) x xb = 0. We see also that if 7, <o <7 < 7* then
[¢'(o,7) #0] € [o <7] € [rm <77] C dm
(615M(c-i)), so ¥’(0, ) x xb = 0, and we conclude that S, -+(1,dy’) x xb = 0. So in fact we have

m—1

Sy(1,d") x xb = (Synry (L, dW') + D Sipr )1, i)

1=0
+ SJﬂ[T,,,L,T*](]-a dw/) + SJ\/T* (1a dd)/)) X Xb

m—1
= Z S]ﬂ[Ti,Ti+1]17d¢/) X Xb7

=0

1S(1,d') = Sp(1,dy)] x xb < Z St i) (L A ) (3, i | X X

m—1
< 6X|I|u7i+l —Ur| 2 i]]
=0
by (iv-9) above, and
m—1
0S5 (1,dy’) — S1(1,d")| x xb) < E(Y 0x[lur,, —un| > 1)
=0

m—1
=46 Z ﬂl[luTi+l - un' > ﬂ] < 4oy < 4e
=0

by (ii) above. Since ib > 1 —Te, 0(S;(1,dy’) — S;(1,dy’)) < 1le, and this is true for every finite sublattice
of § including I. As € is arbitrary, |, s dy' is defined.

(vi) All this has been on the assumption that S was full. But for the general case, we can take
the covered envelope S of S and the fully adapted extension & = (iy), s of u to S (612Q). Setting

V'(0,7) = Gy — e —med(—x1, 4y — Gy, x1) when o < 7in 8, (i)-(v) tell us that Js dy) is defined. And now
we see from 613T that [ dy’ is defined.

(vii) In the notation of 613Cc, ¢ = Au — 1)’. Because u is moderately oscillatory, u; = lim, s u, is
defined (615Gb) so [¢ du is defined (613N) and [ dv) is defined.

(d)(i) As observed in 6130(b-i), w = (wo)oes = ([sp, AW)oes and w' = (W) )ses = ([s,, A')ocs are
well-defined, while

u=ul+ fS/\ aes—u¢1+w+w
Set A= {S;(1,d|¢']) : I € Z(S)}.
(ii) Let € > 0. Then there is a process v = (v,)ses of bounded variation such that 6(sup [u —v|) <

Setb:[[sup|'vfu|Sg]];thenﬂbzlfe. Ifo <7in S, then

<L
3
[ (o, 7)| X xb < |ur = ug| X x (b0 [Jur — ug| > 1])
2
< (Jvr — vs| +§X1) x x[|vr —vo| > %]] < 3|vy — V5.
So

MEASURE THEORY



*633M Separating sublattices 45

S1(1,d|¢']) x xb < 351(1, |dv]) <3 [ |dv]

for every I € Z(S), and {z x xb: x € A} is bounded above in L. As ¢ is arbitrary, A is bounded above in
L° (613B(p-i)). Set z = sup A.

(iii) If o < ... <7, In S, Y1, |wT+1 —w, | <z P Take € > 0. Then for each i < n there is a

Ji €Z(SN [Ti,nH] containing 7; and Ti+1, such that 6(z;) < < where

= | dyp’ = S5, (1,dy’)]

SN[7i,Tit1]
= |w;'i+1 - w;'l ( d'(/} )| > ‘wT +1 - u)fl'7_| - |S(Iz(17d¢/)|
Now
‘w’/"z‘+1 - wfrl| <z+ ‘Sh(]—vdd/)‘ <z + S.]i(l, |dwl|)

for each i. Setting I =, .,, /i,

Z ‘szJrl_wlflSSI( |d¢|)+zz Ozl<Z+Zz 021
while (37 2;) < e. As € is arbitrary, Y7~/ |wn+1 —wl, | <z Q

As 79,...,T, are arbitrary, w’ is of bounded variation.

(iv) In particular, w’ is moderately oscillatory, so w = u — u;1 —w’ is moderately oscillatory.

(e) Now the arguments of (a)-(d) apply equally to the fully adapted extension @ of u to S and the
associated strictly adapted interval functlon 1,/1, which must be the adapted extension of ¥ to S2T. The
corresponding indefinite integral w = ii;(1 = ([sn, di)) +cé extends w (613T) so must be the fully adapted

extension of u to S. Now Osclln(w) = Osclln(ﬁ)) (618La) and Osclln () is at most Osclln(¢)) (618Pc), which
is at most x1, as can be seen directly from the formulae in 6180.

(f) We know that w,r —w, = fSﬂ[T.T/] dy (613](c-1)). Now (0, 0’) € LO(D,) for every (o,0') € (SV 7)1,
s0 S7(1,dy) € LY(D,) for every I € Z(SV 7). As L%(D,) is closed for the topology of convergence in measure
(613B(i-1)), wy — wy = hmITI(Sﬂ[T,T’]) S1(1,dv) belongs to LO(QT).

(g) Let € > 0. Then there is a simple process v = (vs)scs such that f(suplu —v|) < le. Set d =
[sup |u — v| > %]], then fid < e. Let (19,... ,7,) be a breakpoint string for v, and consider the simple process
2z = (25 )oes define by saying that if o € S then

[o <70] €20 =0], [m <0]C 26 =ws],

[ri <o]nfo < 7it1] € [26 = wr,] for i < n.

Now [w # 2] C d. P Take 7 € S and write a for Jw, # z,]. Then

an[r <] = [wr #0]n[r < 70] € sup{[¢Y(o,0") #0]n[r <] :0 <0 <7}

c sup{[¢(o,0") #0]nfo < o] no’ <70] : 0 <0’}
c sup{[|uor — us| > 1] N [vs = v,r] : 0, 0’ € S}
c sup{[Jus —vs| > 3] :0 €S} =d;

00 [ < 71 = [rvr, #wn,] € sup{[(,0") £ 0] : 70 S0 < o' <7V 7}
C sup{[|uor —us| > 1] n[rn < o]n[rn <o']:0 <o’}

N

N

sup{[|us —vs| > 1] : 0 € S} =d
and for ¢ <n
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anr <7]nr < 7it1] = [Wrvr, # w0 [T < Tia]

c sup{[w(o,0") #0]nfo’ < ;1] : s <o <0’}
c sup{[|uor —us| > 100’ < Tq1] : 7 <o <o’}
c sup{[lus —vo| > 3] : 0 € S} =d.

Thus in fact a C d; as 7 is arbitrary, [w # 2] C d. Q
Now O(w — z) < id < e. As € is arbitrary, w is near-simple.

*633N Lemma Suppose that ()7 is right-continuous. Let S be a finitely full sublattice of 7 such
that inf A € § whenever A C S is non-empty and has a lower bound in S, and 4 = (u,)ses & near-simple
process. As in 633M, set

1/)(0-7 T) = med(*le Ur — Ug, Xl)
when o < 7 in S. Let & be a cofinal sublattice of S which separates S. Then [q, dyp = [ dy.

proof We can use the arguments of 6331-633K.

(a) To begin with, suppose that S’ is finitely full. The point is that if o < 7 < 7/ then |[¢(o, ") =9 (0, T)| <
|t —u, | (633M(b-ii)). Let S’ be the finitely covered envelope of Sp. If 7 € S, A, = S'N(T V) is downwards-
directed with infimum 7 (633Eb) and lim, 4, u, = u, (632E); as T V 7 is order-convex, therefore finitely
full (611Pc), A, is finitely full (611Pb), and

lim sup  |Y(o,p) —Y(o,7)] = lim sup |u,—u,| =0

T LAr  seSAT 'L Ar PEALNT'
peS’'N[T,7']
by 615Db.
Now we know from 633Mc that z = [sdi) is defined. Let € > 0. Let J € Z(S) be such that 6(z —
Sk(1,dy)) < e whenever J C K € Z(S). For each 7 € J, let 0, € A, be such that 6(a,) < ﬁ(f) where

Ur = SUPseSAT,pesS N7, 7] W(Ua IO) - 1/)(0-7 T)'

If I € Z(S’) contains o, for every 7 € J, consider K = I LI J. By the choice of J, (Sk(1,dy) — z) < e. By
6331, [Sk(1,dy) — Sr(1,dy)| <23 . 4, and O(Sk(1,dY) — Sr(1,dy)) < 2e. But now

< e+ 2e = 3e.

As € is arbitrary, |, s dv is defined and equal to z.

(b) In general, writing S’} for the finitely-covered envelope of S, 5‘} is a cofinal finitely full sublattice of
S which separates S, so fg} dip = z. But now 613T tells us that [, d = z.

6330 Proposition Suppose that (;)ser is right-continuous. Let S be a finitely full sublattice of T
such that inf A € S for every non-empty A C S with a lower bound in S, u = (u,)scs an order-bounded
locally near-simple process, and S’ a sublattice of S which is cofinal and coinitial with S and u-separates S.
Write v’ for u[S’.

(a) Osclln(u) = Osclln(u').

(b) u is jump-free iff w4’ is jump-free.

proof This is trivial if S is empty; suppose otherwise. Of course &’ must also be non-empty.

(a)(i) If 3} is the finitely-covered envelope of &', then S‘} C S, and of course 3} is cofinal with & and

u-separates S. Since Osclln(u') = Osclln(u[S‘}) (618L), it is enough to consider the case in which S’ itself
is finitely full.
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For 7 € S,set A, = {0 : 7 <o € &} and 7# = inf A,, so that 7# € S, u,» = u, (633Ec) and
(because (Ay)ier is right-continuous and w is locally near-simple) u, = limy 4, u,. In fact, u is constant on
SN[r,7#]. PIf ' € SN[r,7#] then A, = A, so u = limyja_uy = u,. Q

(ii) If I € Z(S’) is non-empty then Osclln}(u) < Oscllnj(uw'). P Let 09 < ... < 0, linearly generate
the I-cells, and set 0_; = minT, 0,11 = max 7. Write w for Oscllnj(u’).  Suppose that —1 < i <mn, 7,
TeSando; <7 <7 <oy, [ur —up| L w. Writing A Aojyq for {oAojp1:0 € Ap}, A Aoy is a
coinitial subset of A/, s0 Uz = limgy 4, rg,,, Uo and there is a o' € S’ N[/, 0441] such that [uy —u,| £ w.
Similarly, there is a ¢ € &’ N [7,0’] such that |uy,r — us| € w. But now o; < o < o’ < 7441, so 618B(b-iv)
and 618Ca tell us that

[ugr — ug| < Osclin}(u') = w. X

Thus |u; — u| < w whenever —1 < i <n, 7,7 € Sand o; <7 < 7/
direction, Osclln}(u) < w. Q
Accordingly

IA

0i+1- By 618Ca in the other

Osclln(u) = Ieilrll(fS) Oscllnj (u) < Iez(i‘g/g\{@} Oscllnj (u)

< inf Oscllnj (u') =

Oscllnj(u') = Osclln(u’).
S el o) scllng (u') sclln(u’)

lim
I1Z(8")
(iii) () Take € > 0, a non-empty I € Z(S) and (7o,...,7n) linearly generating the I-cells. Set
71 =min7 and 7,41 = max 7.
(B) We know that u is locally moderately oscillatory (631Ca). So we can choose o, > ... > 0y,
in that order, such that o; € A;, and O(sup{|ues — ur,| : 0/ € A, 0/ < 0;}) < n%rl for each i (apply

615Gb to u[S A (6" ANinf;cj<,, 0;) where 0 € A, ). Set w; = SUDg/c A, o<, |tgr — ur,| for 0 < i < n and
W = SUPg<;<,, Wi, 50 that O(w) <e. Set K = {0g,... ,0,} € Z(S').
Set 01 =min7 and 0,41 =maxT. f0<i<n+1, 0S8 and o < g; then |u, — ugnrr,| < w. P If
i =mn+ 1 this is trivial. If ¢ < n, then [r; < o] € A, C A,, so we can define o’ € T by saying that
[n<olclo' =0, [r<nlclo =0l

(6111). Because S’ is finitely full, o’/ € §’, while of course 7; < ¢/, so 0’ € A;,. Now

|ua — UopAT | = ‘u(r\/‘ri — Urp,;

(612D(£-1))

= [ug — ur | X X[ < 0] < |upr —ur| <w; <w. Q

Now suppose that —1 < i < n and o, ¢’ € 8" are such that 0; <o <0’ < ;41. Then 7; <o A 741 <
O’l /\Ti+1 S Tit+1- So

Iuo’ - u0| S |U'U’ - uU’/\‘ri+1‘ + |ua’/\n+1 - ua/\nur1| + |u0'/\7'i+1 - uo’|
< Oscllng(u) 4 2w

(using 618Ca again). Taking the supremum over i, o and ¢’ and applying 618Ca in the other direction,
Osclin(u’) < Osclln (u') < Oscllnj (u) + 2w
and

0((Osclln(u’) — Osclln} (u))*) < 0(2w) < 2e.

(7) As e is arbitrary, 6((Osclln(u’)—Osclln}(u))*) = 0 and Osclln(u’) < Oscllnj(u). As I is arbitrary,
Osclln(u’) < Osclln(u). With (ii) above, this shows that Osclln(u) = Osclln(u').

(b) In particular, Osclln(u) = 0 iff Osclln(w’) = 0, that is, w is jump-free iff «’ is jump-free.
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633P 633K is an attempt to reproduce the success of 613T for sublattices which are separating rather
than covering. We can try to follow other results about covering envelopes in the same way.

Theorem Suppose that (;):er is right-continuous. Let S be a finitely full sublattice of T such that
inf A € S for every non-empty A C S with a lower bound in S, §’ a sublattice of & which is cofinal and
coinitial with S and separates S, and u = (u,)scs a locally near-simple fully adapted process. Write u’ for
ulS’.

(a) If ' is simple then u is simple.
b) If ' is near-simple then w is near-simple.
¢) u is order-bounded iff 4’ is order-bounded.
d) w is (locally) of bounded variation iff u’ is (locally) of bounded variation.
e) u is an integrator iff w4’ is an integrator.
f) u is a martingale iff w’ is a martingale.
g) If «’ is a local martingale then u is a local martingale.
) Suppose that " is a local integrator. Then w is a local integrator and the quadratic variation of u’ is
' where u* is the quadratic variation of u.

(
(
(
(
(
(
(

h
u*[S
proof Throughout the proof, write S} for the finitely-covered envelope of &', so that 3} CS. ForTes,
set A, ={c:7<o0€ 3}}, so that inf A, = 7 (633Eb) and (because (2;)icr is right-continuous and u

is locally near-simple) u, = limy, |4, u, (632F once more). Everything is trivial if S’ is empty, so I shall
suppose otherwise.

(a) By 612Qf, uFS} is simple. We have a starting value u, and breakpoint string (79,... ,7,) for u{g}
Because S’ is coinitial with S, ﬂaeé} Ao = Nyes Ao and u* € LN, csAs)- By 612Ka, there is a simple
fully adapted process v = (v, ),es defined by saying that

[vr =uw]2[r <70], [vr=u.]2[m <T7],

[vr =ur]2[m <71]n[r < 7] fori <n
for every 7 € S. Evidently v extends u[g} Because (2;)ier is right-continuous,
Uy = limg 4, Vo = limepa, s = ur
for every 7 € S (632F yet again), and u = v is simple.

(b) By 631Ga, u[S} is near-simple, because the covered envelopes of S’ and S} are the same. Let € > 0.

Then there is a simple process u' = (u/, >UE$‘} such that 6(z) < e, where @ = sup

A |ug —ul|. Asin (a)

GES}
just above, we have a simple process v = (v;),es extending u’. Now if 7 € S,

lur — vr| =limgya, |uo — Vo] = limgya, |ue —ul,| <
because A, C 3} Thus

O(sup, s [ur — vr]) = 6(7) < .
As € is arbitrary, 4 is near-simple.

(c) If u is order-bounded then u’ is certainly order-bounded, by 614Fa. If u’ is order-bounded, so is its

fully adapted extension @& = (4,,) s to the covered envelope of S" (614G (b-i)). Writing @ for sup '],
ur| =limgya, |uo| <@

for every 7 € S, so u is order-bounded.

(d)(3) If w is (locally) of bounded variation then u’ is (locally) of bounded variation by 614Lb and
614Q(b-i).
(i) (@) If u' is of bounded variation, so is u[S}, by 614Lb; set z = fg}

in § and € > 0. Then there are 0; € A,,, for i < n, such that 8(u, — u,,) < € whenever o € A;, and o < ;.
Set o} = inf;< <, 0; for i <n; then o} € A,, and o} < o, for each 4, and o < ... < o/,. Now

du|. Suppose that 7o < ... <7,
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n—1 n—1
0((2 |u‘l'i+1 = Ur | — Z)+) < 9((2 |u0{+1 — Ug!
1=0 i=0

<2(n+1e

. . n—1 . . . .
As € is arbitrary, > [tur,, — ur,| < 2. As 7g,... , T, are arbitrary, u is of bounded variation.

(B) If o' is locally of bounded variation, and 7 € S, take ¢ € S8’ such that 7 < o, and consider
S ANo and 8’ A o. Evidently S A o is a finitely full sublattice of 7 such that inf A € S A o whenever
A C S Ao is non-empty and has a lower bound in § A o, and 8’ A o separates S A o by 633C(b-iii), while
(ulSA0)[(S"ANo) =u'|S" Ao is of bounded variation. So («) tells us that u[S A o is of bounded variation.
It follows at once that u[S A 7 is of bounded variation; as 7 is arbitrary, u is locally of bounded variation.

(e)(i) By 616P(b-ii), u’ is surely an integrator if w is. So let us suppose that u’ is an integrator and seek
to show that u is.

(ii) By 616la, u[S’} is an integrator. Now Qs(du) C Qé} (du). P Take w € Qs(du) and € > 0.
There are 79 < ... < 7, in § and v; € L>®(2;,), for i < n, such that ||v;]lec < 1 for every i and w =

Z?:_Ol v; X (Ur,, — ur). For i < n thereis a 0; € A, such that 0(ue — ur,) < i whenever o € A,, and
n

€

o < 0;. Set o) = infi<j<, 0; for i < n, so that of < ... < o}, while 1, < g} € S’} and 0(u,r — ur,) < o
<< / o

for each i.
Because 7; < o, Ay, C Ay and v; € L®(A,r) for each i. By 616C(ii), w' = Y7 (v X (Uor,, — Uqt)
belongs to QS} (du). But

n—1
(w — ) = 0(fw — ']} < O3 feil X (o — 01, + fir, — t]))
i=0
< 9(22 [tr, —ugr|) < QZH(WTi —Ugr|) < 2e.
i=0 i=0

As e and w are arbitrary, Qs(du) C QS} (du). Q
As the closure of a topologically bounded set is topologically bounded, Qs(du) is topologically bounded.

(£)(i) If w is a martingale then of course ¥’ is a martingale (622Db).

(ii) If «’ is a martingale then there is a martingale v = (v;),ecs, extending u’, where S; is the ideal of
T generated by &’ (6220a). Since &' is cofinal with S, S C &; and v|S is a martingale, while v agrees with
u on &’ and therefore on 3}
If 7 € S, then S V 7 is a finitely full sublattice of 7 containing inf A whenever A C S V 7 is non-empty.
so v|S V 7 is locally near-simple (632Ia). By 632F, as always,

vy = limg 4. Ve =limepa, Uy = ur.
Sou =[S is a martingale.

(g) If v is a local martingale, there is a covering ideal S; of &’ such that «'[S] is a martingale. Let &;
be the ideal of S generated by S7. Then Sy covers S’ which is cofinal with S, so §; covers S. By 633C(b-ii),
S1 separates S;. Also S is a finitely full sublattice of T such that inf A € S; for every non-empty A C S;
with a lower bound in &;, while u[S; is locally near-simple (631Gb, since S; and S have the same covered
envelope). Moreover, S} is cofinal and coinitial with S;. Since u[S; = 4/[S] is a martingale, (f) tells us
that u[S7 is a martingale, so that u is a local martingale.

(h) We have to check that (e) still works in a ‘local’ form. The point is that if 7 € S’ then S’ A7 separates
S AT (633C(b-iii)). So if ' is a local integrator and 7 € S, there is a 7/ € &’ such that 7 < 7/, and now
u[S A7’ is an integrator because u'[S’ A7/ is an integrator; by 616P(b-ii), u|SAT = (u[SAT)[SAT is an
integrator. As 7 is arbitrary, u is a local integrator.
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If 7 € &', then 8’ A T separates S A 7 and therefore u-separates S A 7; and of course S’ A 7 is cofinal and
coinitial with S A 7. Setting u; = lim, s u,, this is also lim,|s u, because S’ is coinitial with S. So
2

ui:uT—uf—2f8/wudu:u3—uf—2fs,mudu

(633Ka). As 7 is arbitrary, u*|S’ is the quadratic variation of w'.

633S Proposition Suppose that (;):cr is right-continuous. Let & C T be a finitely full sublattice such
that inf A € S whenever A C S is non-empty and has a lower bound in S, and A a subset of S.

(a) If v = (vy)pes is fully adapted and whenever ¢ < 7 in § and v, # v, there is a p € A such that
[o <plnlp < 7] #0, then A v-separates S.

(b) If whenever 0 < 7 in S and [o < 7] # 0 there is a p € A such that Jo < p]n[p < 7] # 0, then A
separates S.

proof (a)(i) If A is empty then v is constant and the result is trivial, so suppose otherwise. For p € A set
by=[o <plnlp<7]. Thenbd, C [o AT <p]n[p <7]andb, €A, sob, € A.. There is therefore a p’ € T
such that b, C [p’ = p] and 1\ b, C [p’ = 7]. Because S is finitely full, p’ € S. We see that c AT < p/ <7,
and that b, = [p’ < 7].

(ii) Set 7 = inf A. By hypothesis, 7/ € S, and o AT < 7 < 7. By 632C(a-ii), [7' < 7] =
sup,e4 [0 < 7] =sup,ca by
? If vy # vonr, there is a p € A such that ¢ = [o AT <p]n[p <7'] is non-zero. As 7 < 7,
cCb, Cp=p]c[r <pl; but this is impossible. X

(iii) Thus v, = vear and

Hvo 7& UTH n [[0 < 7_]] - IIUJ/\T 7& vT]] - [[UT’ 7& UT]]
c7' <7 =supb,.
peEA

As o and 7 are arbitrary, A separates S.

(b) This now follows from 633Ce.

633Q Continuous time Using some of the ideas above, we can build stochastic integration structures
in which no time is isolated on the right.

Proposition Let (2, ii, T, (Us)ier, T, (A+)re7) be a right-continuous stochastic integration structure. Then
there are a right-continuous stochastic integration structure (A, i, 77, (2 )rers, T', (2,) pe77), based on the
same probability algebra (2, i), and a lattice homomorphism o +— ¢’ : T — T’ such that

T’ has no points isolated on the right,

Wor =Ay and 0! < 7] =[oc < 7] forallo, 7€ T,

for every p € T’ there is a 0 € T such that 0’ < p and A, = 2,,.

Construction (a) It will be enough to deal with the case in which T is disjoint from 77 =T x [0, 1[. Give
T' its lexicographic ordering. Then T’ is a non-empty totally ordered set with no points isolated on the
right. For t € T and a € [0,1] set A o) = A;. Then (A,).cr is a right-continuous filtration of closed
subalgebras. Let (2, &, T", (2 )rer, T', (A,)pe7+) be the corresponding stochastic integration structure.

Note that 7 C AT and and 7' C AT are disjoint.
(b) For o € T, define ¢’ € T’ by setting
[o! > (t,a)] = o > ]
whenever t € T and « € [0,1[. Then o + o’ : T — T is a lattice homomorphism, and (min7)’ = min 7",

(max 7))’ = max 7"’ (use the formulae in 611C). If o, 7 € T,

[o! <7')= sup [r'>E@)]\][o" > (t0a)]
teT,a€0,1]

—?2¥[T>tﬂ\[[a>t}]:[[a<7]].
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Consequently [o! < 7']=Joc <7]and [¢' =7 =Jo =7] for all 0, 7 € T. Next, for o € T,

Ayr = {a:a\ o’ > (t,a)] € A,q) whenever t € T and a € [0,1[}
={a:a\[o >t] € U whenever t € T} = ,.

If t € T and £ € T is the constant stopping time at ¢, and (s, 3) € T’, then

[t > (s,8)] = [t > ]
= 1if s <, that is, if (s, 8) < (¢,0),
= 0if s > ¢, that is, if (¢,0) < (s, 5).
So ' € T’ is the constant stopping time at (¢,0).

(c) Consider the set
S={p:peT'and thereis a o € T such that o/ < p and A, = A, }.

(i) The constant stopping time 7 belongs to S for every r € T'. P If r = (¢,a), then r > (¢,0) so
7> (¢,0) =1, while %; = A = Aoy = A Q And of course max T’ = (maxT)’ belongs to S (see
611XD).

(ii) S is finitely full. P If p € 7" and there is a finite set J C S such that sup,.c; [p" = p] = 1, we may
take it that J is a sublattice of S. Taking (po, ... , pn) linearly generating the J-cells, we have pg < ... < p,
and sup,<,, a; = 1 where a; = [p; = p] for i < n. Set b; = a;\ sup,_;a; for i < n; then b; € A, and
b; C [p; = p] for each i, while (b;);<y is a partition of unity in 2.
For each ¢ < n, let o; € T be such that o} < p; and 2,, = A,,. As b; € Ay, for each 7, thereisa o e T
such that b; C [o = o;] for each i (6111 yet again). Now

bi C o =0 nfpi =p] =[o"=0oi]n]o; < p]nlp: =p] < o' <p]
for each 4, so o/ < p. Thus p € S; as p is arbitrary, S is finitely full. Q
(iii) inf A € S for every non-empty A C S. P Set
B ={0:0 €T and there is a p € A such that A, =2,}, 7 =infB.

Then for every p € A thereis a o € B such that o’ < p and 2, = 2,, in which case 7/ < o’ < p. Accordingly
7! <inf A. On the other hand, because (A;)rer and (A,.),cr+ are both right-continuous, 632C(a-iii) tells us
that

Ay = naEB As 2 ﬂpEA le = Ainra 2 A = A,
as observed in (b). So 7 witnesses that inf A € S. Q

(iv) Consequently S = 7'. P By (i), S separates 7' and is cofinal with 7”; by (ii), S is equal to its
finitely-covered envelope. So 633E tells us that if p € 7’ there is a non-empty A C S such that inf A = p
and peS. Q

Thus we have a suitable stochastic integration structure (2, i, 7", () rers, T, () pe77)-

633R Theorem If (2, i, [0, 00, (At)i>0, T, (Ar)re7) is a real-time stochastic integration structure and
u € Min.s(75), then u can be represented by a process with cadlag sample paths as in Theorem 631D.

proof Express u as (us)oeT;-

(a) By 321J, we can suppose that the probability algebra (2, i) is the measure algebra of a complete
probability space (Q,3, i). Writing ¥, = {E : E € &, E* € 2} for t > 0, we have a filtration <f)t>t20 of
o-subalgebras of ¥, all containing every fi-negligible set. Write @ for Q N [0, 00|, and for ¢ € @ choose a
Y-measurable function X, : Q@ — R such that its equivalence class X o in LO(f) = LO(2A) is equal to ug.

For each n € N, let v,, = (Vno)oeTrn be a simple process with domain 7 A 72 such that 6(z,) < 47",
where z, = SUp,cran |tg — Vnol, and let (7n0,... ,Tnm, ) be a breakpoint sequence for v,, starting from
Tno = 0 and ending with 7,,,,, = 7. Choose stopping times §no, - - - , Gnm,, , adapted to (it>t20, representing
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Tn0s - - - s Tnm,, espectively in the way described in 612Ha, so that {w : gni(w) > t}* = [1 > t] for every
t >0 and ¢ < m,. Adjusting the g,; on a negligible set if necessary, we can arrange that 0 = gno(w) <
gn1(w) < ... < Gnm, (W) = n for every w € 2. Finally, choose a ¥-measurable function h,, : Q@ — [0, co[ such
that he, = z, in LO(A).
(b) As 0(z,) <47, i{w :w € Q, hy(w) > 27"} < 27 for every n € N; consequently
F={w:weQ limsup, . hn(w) >0} C MNnen Umsniw: B (W) > 27}
is negligible. Next, for n € N, i < m,, and ¢, ¢’ € Q such that ¢ < ¢’ < n, set
Frigy = {w:w € Q, §uiw) <4 < ¢ < it (W), [Xy (@) = X ()] > 20 (w)};
then

Fliqe = i < @[ < mniva] nllug —ugl > 22,]
C [lug — vng| > 2] U [lug — vagl > 2]
(because [1,i < 4] N[ < Tnit1] € [Vng = Vnr] 0 [Vng = var,.])
=0,

SO Fhiqq is negligible. Set
Q=P\(FUUnenicm, q.qcq.a<q<n Friod';

then Q is a conegligible subset of ).
(c) Fix w € Q for the moment.

(i) For every t > 0, limqum[tm[Xq(w) is defined in R. ¥ If € > 0, then (because w ¢ F') there
is an n > t such that h,(w) < 2e. Since 0 = Gno(w) < ... < Gum, (w) = n, there is an i < m,, such
that gni(w) <t < gnit1(w). Ifnow ¢, ¢ € Q and t < ¢ < ¢’ < Gn,it1(w), we know that w ¢ Fqe SO
| Xg (w) — Xq(w)] < 2k, (w) < €. As € is arbitrary (and @ is dense in [0, 00[) limg|gnt, e Xq(w) is defined.
Q

(ii) Set X¢(w) = limquﬁ[mo[Xq(w) for t > 0. Note that X,(w) = X,(w) for ¢ € Q.

(iif) (X¢(w))e>0 is cadlag. B We just have to rerun the argument for (i) above. Given ¢ > 0 and € > 0,
there is a t’ = gy, ;4+1(w) such that ¢t < ¢’ and | Xy (w) — X4(w)| < € whenever ¢, ¢ € Q andt < g < ¢ <.
It follows at once that | X (w) — X;(w)| < € whenever ¢t < s < t/. As t and € are arbitrary, (X¢(w))>0 is
cadlag. Q

(d) Because € is conegligible in Q and p is complete, the subspace o-algebra & = {ENQ: E € £} is just
3 NP, and the subspace measure p = fi[ ¥ is a probability measure, with measure algebra isomorphic to
2 (322Jb). We can identify L°(u) with L°(ji) (indeed, in the formulations of Chapter 24 £°(yu) is actually

a subset of £L%(j1)), and as every %; contains 2\ 2, we have a filtration (3;):>¢ of o-subalgebras of ¥ given
by the formula

Et:{EmQEGEt}:EthQ

fort >0. Ifg:Q — [0, 0] is a stopping time adapted to <it>t207 then g€ is a stopping time adapted
to (X¢)1>0; and conversely, if g : 2 — [0, 00[ is a stopping time adapted to (X;);>0, then any extension of
g to a real-valued function defined on € is a stopping time adapted to <2t>t20. What this means is that
(A, 2, [0, 00[ , (Ar)¢>0) is represented by (Q, %, 1, (Z¢)i>0) just as well as by (Q, %, i, (X¢)¢>0)-

(e) Now fix t > 0 for a bit.

(i) The first thing to note is that if ¢ <n € N then v,; = limg gnt,00[ Ung in L°. P For any s < n,
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my,—1

Uns = D Vnry X X([rai <5105 < 7o)
1=0

My —1

= Z Unrpy X (X[Tnit1 > 8] = X[ni > s]).
=0

But

limql,Qﬂ[t,oo[ X[[Tni > Q]] = X[[Tni > t]]
for all n € N and i < my,, just because [rni > t] = sup ., [T > s] (611A(b-1)). So v,,; = limg ont,c0] Vng-

Q

(ii) Tt follows that u; = limg ont,co ug- P If n > ¢ then we have
Hmsup, | oniecof [Ug — il < 225 +Hmsupg one,cof [Vng — Vnil = 22n,
S0
limsupqun[tpo[ lug — ug| < 2inf,,5y 2, =0

and uy = limg | gn[t,00[ Ug- Q

(iii) Since @ N [t, 00| is countable, ug = X(; for every ¢ € Q and X; =, ... limg onit,00] Xq»

Xt. = limqum[tm[ X(; = qu\LQﬂ[t,oo[ Uq = Uj.
Asu; € L°() and 3y = {F : E C Q, E* € 2}, X; is ¥j-measurable.

(e) Thus Q, X, p, (X:)i>0 and (X;)¢>0) satisfy the conditions of 631D, and provide a locally near-simple
process T = (¥,)ge7; in the corresponding stochastic integration structure, which we are identifying with
(2, 11, [0, 000, (Ae)i>0, T, (Ar)re7). Now u and z are locally near-simple processes with domain 7; and
up = Xp = x; for every t > 0. As {{ : t > 0} separates T; (633Da) and inf;> [{ < 7] = infi>o [t > ] =0
for every 7 € Ty, 633F tells us that u = . So we have a representation of u of the kind we seek.

633X Basic exercises (a) Suppose that (2;):cr is right-continuous. Let S be a sublattice of 7 which
separates its order-convex hull S~, u a near-simple process with domain S, and v a martingale with domain
S. Show that i, (u) is a local martingale. (Hint: reduce to the case in which S has a least member. Let v™
be the martingale with domain S~ extending v, and 4™ the near-simple process with domain S~ extending
u (use 631Mb). Show that i, (u) = @iy~ (u™)[S, and apply 6230, 632Ib and 622Dc.)

(b) Suppose that T' = [0, o[, (AU, &) is the measure algebra of Lebesgue measure p on [0,1], and 2, = A
for every t € T. Define Xy(w), for t € T and w € [0,1], by setting X;(w) = -1 if w # ¢, 0 if w = ¢. Let
T C T be the set of constant stopping times, so that S = T U {max T} is a cofinal and coinitial sublattice
which separates 7. Define u = (us)ses by setting umax7 = 0 and u;y = X; for t € T. (i) Show that
Uinf A = liMs | 4 Uy and limyq4 Ue = Usyp 4 for every non-empty A C S. (ii) Show that if we take ¥; = dom p
for every t € T, then (X;)ier is progressively measurable, so that we have a natural extension of u to a fully
adapted process defined on 7, while (2, i, T, (s)ter) is right-continuous. (iii) Show that u is not locally
order-bounded.

(c) Show that every subset of T separates its covered envelope.

633Y Further exercises (a) Let (U, i, T, (At)ier, T, (Ar)reT) be a stochastic integration structure.
Write Ty; for {t: ¢ € T is not isolated on the right in 7'}. Take an injective function ¢ — ¢ from T to a set
disjoint from T'. Set T+ =T U {tT : ¢t € Ty;}. On T* take the relation

{(5,t) 15, t €T, s <tyU{(s,tT):s€T, t €Ty, s<t}
U{(sTt):se€Ty, teT, s<tyU{(sT,tT) s, t €Ty, s <t}

D.H.FREMLIN



54 Structural alterations 633Y

(i) Show that T is totally ordered. (ii) Set s+ = [\ oy ooy As for ¢ € Tpy; show that (A,),cr+ is a right-
continuous filtration of closed subalgebras of 2. Let (2, i, T*, (%), e+, T+, (2,) je7+) be the corresponding
stochastic integration structure. (iii) Show that we have a lattice homomorphism o +— o* : T — T+ defined
by saying that [o+ > t] = [o > ] for t € T and [o* > t1] = [0 > {] for t € T},;. (iv) Show that A,+ = A,
and [o+r < 7%] = [o < 7] for all o, 7 € T. (v) Show that {o+ : 0 € T} separates T+. (vi) Suppose that
w = (w,),e7+ is a fully adapted process. Show that u = (w,+),c7 is fully adapted, that u is a martingale
if w is a martingale, and that Osclln(u) < 2 Osclln(w) if w is near-simple.

(b) Let (A, @, T+, (A) e+, T, (Ap) pe7+ ) be the right-continuous version of (A, iz, T, (As)ter, T, (A7 )7reT),
as in 633Ya. Let S be an order-convex sublattice of 7 and R C T+ the order-convex hull of R’ = {o* : 0 €
S}. (i) Show that R’ separates R. (ii) Suppose that 4 = (u,)ses is a near-simple process. Show that there
is a near-simple process v = (v,),er such that v,+ = u, for every o € S.

(c) Suppose that (2, &, [0, 00[, (A)>0, T, (Ar)re7) is a real-time stochastic integration structure and u
is a locally jump-free process with domain 7;. Show that u can be represented by a process with continuous
sample paths as in 618H.

(d) Suppose that (2;)¢cr is right-continuous. Let S C T be a finitely full sublattice such that inf A € S
whenever A C S is non-empty and has a lower bound in S, and &’ a sublattice of S such that whenever T,
7' € S and [r < 7'] #0 there is a 0 € 8’ such that [ < o] n o < 7'] # 0. Show that S’ separates S.

633 Notes and comments This volume began with two sections devoted to the algebra of lattices of
stopping times and fully adapted processes. It would all have been much easier if we could have worked
throughout with totally ordered sets of stopping times. Even for integrals of the form f (5,17 however, this is
inadequate (632Yg). The problem is not so much in the calculation of the integral as in its definition. In
633K-633L we see that if an integral fsud'v is defined on the rules of §613, and subject to mild conditions
on the processes u and v, then we can hope to find a totally ordered sublattice S’ of S such that || gudv =
/. sudv. But the nearest thing to a converse result, in 633Kb, looks at finitely full sublattices S’, which will
not be totally ordered except in trivial cases.

It is true that we can reduce a Riemann sum S; on an arbitrary finite sublattice I to the corresponding
sum on a totally ordered sublattice Iy of I (613Ec), and in the calculations so far this is what I have done
more often than not. But whenever we want to look at sums Sy, S; on two different sublattices, this method
becomes problematic; there is no reason to suppose that there will be compatible totally ordered sublattices
Iy C I and Jy C J which will be suitable. Even when J C I we have to do some work (633H). What we
want is a totally ordered sublattice of 7 which will deal with all integrals of interest simultaneously; and
even in the most favourable case (633L), we should have to restrict ourselves to integrals between constant
stopping times, which are inadequate for many of the most important applications of the theory.

I have given a number of results showing that classical stochastic processes, based on probability spaces
and filtrations of g-algebras, can be associated with processes dealt with in this volume (612H, 615P, 614U,
618H, 632L). I have not spent much time on converses. looking at cases in which a process defined by the
properties considered here can be represented by one of the classical expressions. But in 633R we have a
comfortingly straightforward result which seems entitled to a couple of pages.

Version of 25.1.22/28.9.23

634 Changing the algebra

If (A, ;1) is a probability algebra with a filtration ()7 and B is a closed subalgebra of 2, then we have a
probability algebra (B, i|B) with a filtration (B NA¢)rer. In this section I examine elementary connexions
between stochastic calculus in the two structures, with notes on lattices of stopping times (634C) and
stochastic processes (634E). The case in which B and 2l; are relatively independent over their intersection
for every t is particularly important (634F-634I). T end the section with a product construction adapted to
the representation of families of independent stochastic processes (634K-634M) and a worked example on
independent Poisson processes (634N).

(©) 2012 D. H. Fremlin
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634A Notation A = (A, i, T, (A)er, Ta, (Ar)re7,) Will be a stochastic integration structure, and
0 = 0 the usual functional defining the topology of convergence in measure on L°(2), as in 613Ba. If S is
a sublattice of Ty, then Z(S) is the set of finite sublattices of S.

If 9B is a closed subalgebra of A, Py : L}] — L%L N L°(B) will be the conditional expectation associated
with B. For 7 € Ty, I will write P, for Py .

Recall that if B is an order-closed subalgebra of 2, we can identify L°(8) with an order-closed f-
subalgebra of L%(2) (612Ae). In particular, a subset of L°(%8) is order-bounded in L°(B) iff it is order-
bounded in L°(2). We have L' (B, ] B) = L°(B) N L' (A, i) = L°(B) N L}, and the expectation Egpp on
L*(B, 1] B) is just the restriction of E = E; to L*(B, 1] B) (see 3650a?, 365Qa’). Consequently 05 =
0,1 L°(B), and the topology of convergence in measure on L°(B) is the subspace topology induced by the
topology of convergence in measure on L°(21). It will also be useful to note that a subset of L°(8)NLY(2A, 1)
is uniformly integrable in L' (B8, u|B8) iff it is uniformly integrable in L}L.

For a family (€x)rex of closed subalgebras of 2, I write \/, o, € for the closed subalgebra generated by
Urex €k Similarly, for closed subalgebras €, € I will write € vV & for the closed subalgebra generated by
¢ud’. (Cf. 458Ad.) Note that as 2 is ccc (322G), a subalgebra of 2 is closed iff it is a o-subalgebra (331G).

634B I begin with a general result on morphisms of the structures here.

Proposition Let B be a Dedekind complete algebra and (B;):cr a filtration of order-closed subalgebras of
B; write Tg and (B, )7, for the associated lattice of stopping times and family of closed subalgebras of B,
as in §611. Suppose that ¢ : B — 2 is an order-continuous Boolean homomorphism such that ¢[B;] C 2,
for every t € T.
(a) We have a lattice homomorphism ¢ : T — T4 defined by saying that [¢(c) > t] = ¢[o > t] for every
o€ Tg.
(b)(i) ¢(minTp) = min T4, ¢(max Tp) = max Ta. If t € T and # is the constant stopping time at ¢ in Tz,
then ¢(f) is the constant stopping time at ¢ in 7.
(i) If C' C Tp then ¢(sup C) = sup ¢[C].
(iii) ¢[T5b) € Taw and ¢[Tes] C Tas.
(¢)(i) If o, 0o’ € Tp then

(ii) If ¢ is injective, so is .
(d) 3[B,] C Ay, for every o € Tg. )
(e) If (B)ier is right-continuous, then ¢ is order-continuous,
(f) If T = [0, 00[ and we define the identity processes (io)oe7s;, (tr)re7i; as in 612F, then ¢y ) = Tyio
for every o € Tpg, where T, : LY(B) — L°(2) is the f-algebra homomorphism associated with ¢ (612Af).

proof (a)(i) If o € Tp, then
oo > t] € ¢[B¢] C A, for every t € T,
if s <t then o > t] C [o > s] so ¢Jo > t] C ¢Jo > s],
if t € T is not isolated on the right then [o > t] = sup,., [0 > s], and because ¢ is order-
continuous, ¢Jo > t] = sup,-, #lo > s|.
Thus the function ¢ — ¢Jo > t] satisfies the conditions of 611A(b-i), and defines a member of 74 which we
may call (o).

(ii) If C' C Tg is non-empty, then

[6(sup €©) > 1] = ¢sup € > 1] = é(sup [ > ¢])

(611Ch)

4Formerly 365Pa.
5Formerly 365Ra.
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= sup ¢fo > ]
oeC

(again because ¢ is order-continuous)

= 31618 [[(5(0’) >t] = [[SU-pgeC QJA)(O') > 1]

for every t € T, so ¢(sup C) = sup §[C]. If o, o’ € Tg, then

[6(c Aa’) > t] = plo Ao’ > t] = é([o > t]n]o’ > t])
(611Cc)
= ¢lo > t]ngfo’ > 1]
=[6(0) > t]n[d(o") > t] = [é(0) A d(0”) > 1]

for every t € T, and ¢p(oAc”) = ¢p(0)Ad(c”). Putting these together, we see that ¢ is a lattice homomorphism.
(b) (i) Look at the descriptions of max 7 and min 7 in 611Cf, and remember that 0 = Oy and ¢lyg = 1y.
Concerning constant stopping times, if ¢ € T then
[6(F) > s] = ¢[f > s] = ¢l = 1y if 5 < t,
— ¢0p = Og if 5 > 1,
so ¢(f) is the constant stopping time at ¢ in the structure (2, () er).
(ii) This is covered by (a-ii) above.

(iii) Because ngS is order-preserving and takes constant stopping times to constant stopping times,
B[Tep) C Tap. Now if o € Tps, 0 = sup,eqp 0 AL, so (ii) tells us that

P(0) = supyer ¢(0) AT
(now interpreting ¢ as a constant stopping time in 74) and belongs to Tay.

(c)(i) By the definition in 611D

¢lo <o'] = ¢(§1£ [o" >t)\[o > 1]) = ngpw[[o’ > t]\ ¢lo > t])

= fg(ﬂfz@(a') > ]\ [b(0) > 1]) = [9(o) < d(o")]-
The other equalities follow at once.
(ii) If ¢ is injective and o, o’ € T are different, then o = 0'] # 1y so
[6(0) = d(0")] = ¢lo = 0'] # ¢(1s) = 1a
and ¢(0) # ¢(0”).
(d) Suppose that b € B,. Then for any t € T, b\ [o > t] € By, so

o0\ [6(0) > t] = ¢b\ ¢lo > ] = ¢(b\ [0 > 1]) € ¢[B.] € A

Thus ¢b € A,

(e) If C C Tg is a non-empty set with has infimum o,, set 7, = inf $[C]. As ¢ is order-preserving, ¢(o.)
is a lower bound of ¢[C] and ¢(0,) < 7.
If t € T is isolated on the right, then

[ > 1] € infpec [¢(0) > 1] = ¢(infoec [0 > t]) = ¢ow > 1]
by 632C(a-i). If t € T is not isolated on the right, then
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[« > t] = sup [« > s] € sup inf [¢(o) > s]
s>t s>t 0€C

= ¢(sup inf [o > s]) = ¢lo. > 1]
s>t 0€C
by the other formula in 632C(a-i). So

[7 > ] € ¢low > 1] = [6(0) > 1]

for every ¢, and 7, < ¢(o,). Thus inf §[C] = G(inf C). We know already from (b-ii) that sup ¢[C] =
sup ¢(inf C). As C is arbitrary, ¢ is order-continuous in the sense of 313Ha.

(f) By (b-iii), ¢(c) € Tas. Now, for t € R,

[t3(0) > 1] = [6(0) > 1] = 8o > 1] = ¢leo > t] = [Tyto > 1] if t >0,
=1y = ¢ly = P[te > t] = [Tyto > t] otherwise,
8O Lg(p) = Tytg.

634C Proposition Suppose that 9 is an (order-)closed subalgebra of 2.
(a) Set By =B NA; for t € T. Then (By)ier is a filtration of closed subalgebras of 9B.
(b) Let Tg be the set of stopping times defined from (2B, (B;):c7) by the formula of 611A (b-i).
(i) Tp is a sublattice of T containing min 74, max 74 and all constant stopping times.
(ii) If C C Tp is non-empty then its supremum is the same whether calculated in Tg or in 74.
(ili) We can identify the order-ideals Tg, and Tgy of bounded and finite stopping times in 7 with
Te N Tap and Tg N Tay respectively.
(c) If o, 7 € Tp then the regions [o < 7], [o < 7] and [o = 7], when defined by the formulae of 611D
interpreted in either (2, (At)ier) or (B, (Bi)ier), are the same, and belong to B.
(d) If 7 € Tg, and we define corresponding algebras 2(,; and 9B, by the formula of 611G interpreted in
(A, (Ae)eer), (B, (Bi)ier) respectively, then B, =B NA;.
(e) Suppose that S is a sublattice of Tg.
(i) If SA is the covered envelope of S in Ty, then SA N T is the covered envelope S‘E of S in Tp.
(ii) A family u = (u,)ses in LY(B) is fully adapted to ($B;);er iff it is fully adapted to (Us)ier.
(iii) If u = (uy)ges is fully adapted to (B)ier and 4 is the extension of u to Sy which is fully adapted
to (At)er, then '&[SR is the extension of u to S which is fully adapted to (B)ier.
(f) Suppose that (;)er is right-continuous.
(i) (B¢)ter is right-continuous.
(ii) Tg is order-closed in Ta.
(g) f T' = [0,00[ and we write ¢t = (t5)se7;, for the identity process in the structure (A, (%4s)¢cr, Ta),
then ¢]7gy is the identity process in the structure (B, (Bi)ier, Tn)-

proof (a) Each 9B, being the intersection of order-closed subalgebras of 2, is an order-closed subalgebra of
2l and therefore an order-closed subalgebra of B. If s <t then A, C 2A; so B, C B;.

We are now in the special case of 634B in which ¢b = b for every b € 8. Consequently é(a) = o for
every o € Tg, and Tg is actually a subset of T4. Because the identity map ¢ is a lattice homomorphism
(634B(b-i)), Tp is a sublattice of Ty.

(b) We just have to adapt 634Bb to this special case, in which Tg C T4 and qAﬁ is the identity embedding.
(c) Similarly, this is just the form now taken by 634B(c-i).
(d) Going back to the formula in 611G,

B, = (({b:beB, b\[r>1] € By}

teT
=(b:beB, b\[r>t]eBNA} = [{b:be B, b\[r>1] €Ay}
teT teT

(because [T > t] € B for every t € T')
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=%BnN m{a:aEQ(,a\[[T>t]]Gﬁlt}:‘BﬂQlT.
teT

(e)(d) If 7 € T, then
TESy = sup,esr=0]=1 < 7€ Sz
So
SaNTs=8NTs = S

(ii) Immediate from 612Da, (c) and (d), if we recall that
LO(BNA) = LO(B) N LO(A,)
for every 7 (612A(e-)).

(iii) The point is that if & = (i), g, , then @, € L°(B) for every 7 € Sp. P If 7 € Sg and o € R then

[ar > o] = [4r > a] n sup [7 = o] = sup([é, > a] nr = o])
ceS ceS
=sup(Jus > o] nr =0o]) € B.
o€S
(Of course I am relying on (c) for assurance that [ = o] has a consistent interpretation.) @ Now (ii) just
above tells us that @[Sy is fully adapted to (3B:):er, while it surely extends w.

(f) (i) Look at the definition in 632B: as (2;)er is right-continuous,
By =BNA =BN[ o, As =Ny BNA =yo; Bs
whenever ¢ € T' is not isolated on the right.

(ii) If C C Tp is non-empty, then sup C, calculated in Ty, belongs to T by (b-ii) above. As for its
infimum, this is given by the formula

[infC >t] = 122 [T > t] if ¢ is isolated on the right,

= inf [1 > therwi
s;ilg inf [T > s] otherwise
of 632C(a-1), which (because B is order-closed in ) is the same whether calculated in 9B or 2. So supC
and inf C, taken in T, both belong to 7Tp; as C is arbitrary, 7 is an order-closed sublattice of T as defined
in 313Da.

(g) This is just the form taken by 634Bf in the present context.

Remark If we think of 7, as a sublattice of [, 2, as suggested in 611Ac, then Tg = ToN[[,c B¢, while
[I;cr B¢ is an order-closed subalgebra of [],., 2 (315Xc).

634D Notation In the context of 634Ce, we shall be able to regard a process u € L°(B) as being
fully adapted either in the structure A = (U, i, T, (At)er, Ta, (Ar)res) (A, (Ai)ter) or in the structure
B = (B,alB,T,{Bt)er, T, (Bo)oeT), Where B, = BN, for t € T. Consequently we shall be able to
test w against the definitions in this volume in two different ways. We have to check which properties are
‘absolute’, in the sense that u will have them in one structure iff it has them in the other, and which are not.
Most of the checks are very easy, just as 634C is. While working through the list, it will save a great many
words if T use abbreviated expressions of the type ‘u is A-simple’, ‘u is a B-integrator’ to mean ‘interpreted
in the structure A, u is a simple process’, ‘interpreted in the structure B, u is an integrator’, and so forth.
But we have already seen in 634C(e-ii) that if w is a process such that its domain is a sublattice of T and
its values all belong to LY(B) — these properties being intrinsic to u — then u is A-fully-adapted iff it is
B-fully-adapted, so in this context I can say simply that ‘u is fully adapted’ with little danger of confusion.
A useful number of other concepts are equally easily handled, as in the next proposition.
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634E Proposition Let B be a closed subalgebra of 2, and B = (B, @B, T, (Bi)ier, To, (Bo)oeTs) the
corresponding stochastic integration structure, where B, = B N2, for t € T. Suppose that S is a sublattice
of Tg and that u € L°(B)? is fully adapted.

(a) u is B-simple iff it is A-simple.

b) u is B-(locally)-near-simple iff it is A-(locally)-near-simple.
¢) u is B-order-bounded iff it is A-order-bounded.
d) w is of B-bounded variation iff it is of A-bounded variation.
e) u is B-(locally)-moderately-oscillatory iff it is A-(locally)-moderately-oscillatory.
f) u is A-jump-free iff it is B-jump-free.

(g) Ifv € L°(B)% is another fully adapted process, then the integral [ u dv is defined for (B, 1] B, (Bi)er)
iff it is defined for (2, fi, (A;)¢er), With the same value; that is, B [qudv = A [gudv if either is defined.

(
(
(
(
(

proof Really all we have to do is to look at the definitions.

(a) Whether a process (uy)scs is simple depends only on the ordering of S and the values of [o < 7],
[o < 7] for o, T € S; given that S C Tg. 634C(b-i) and 634Cc assure us that we can calculate these either
in A or B and get the same results.

o~

(b) The definition of ‘near-simple’ process calls on expressions of the form f(u—u') = 0(sup,cg |us —u,|)
(631Ba, 615B); but the supremum here will have the same value whether interpreted in L°(2() or L°(B),
and I noted in 634A that there is no dispute about the value of §(u) for u € L°(®). So u is B-near-simple
iff it is A-near-simple; applying this to u[S A 7 for 7 € S, we see that u is B-locally-near-simple iff it is
A-locally-near-simple.

(c) Here we just need to remember that a subset of L°(28) is order-bounded in L°(B) iff it is order-
bounded in L°(2), as noted in 634A.

(d) Satisfaction of any of the conditions (i)-(iii) in 614J is independent of the structure we are working
in.

(e) Here it seems that we need a more sophisticated approach, using both characterizations of ‘moderately
oscillatory’.

(i)(a)If u is B-moderately-oscillatory, then for every e > 0 there is a fully adapted process u' €
(L°(B))S of bounded variation (determined in either system, see (d)) such that §(sup [u —u'|) < ¢, so u is
A-moderately-oscillatory.

(B) If u is A-moderately-oscillatory, write Sa C Ta for the A-covered envelope of S, and & = (Uo)ges,

for the corresponding extension of u. By 615N, (u,, Ynen is convergent in L°(2() for every monotonic sequence
(0)nen in S; but LO($B) is a topologically closed set in LY(21) (367Rc), 50 (s, )nen is convergent in L°(B) for
every monotonic sequence (o, )nen in S, and u is B-moderately-oscillatory, by 615N in the other direction.

(ii) Now

u is B-locally-moderately-oscillatory
< u[S A 7 is B-moderately-oscillatory for every 7 € S
<= u[S A 7 is A-moderately-oscillatory for every 7 € S
<= wu is A-locally-moderately-oscillatory.

(f) See 618B. For I € Z(S), Osclln;(u) and Oscllnj(u) are calculated in terms of suprema in L°; again
because LY(B) is order-closed in L°(2), and A.(1,|du|) € L°(B) whenever e is a stopping-time interval
with endpoints in S, we will get the same values for Osclln;(u), Osclln}(u) = sup;c jez(s) Osclln(u) and
Osclln(u) = inf;c7(s) Oscllnj(u) on either interpretation.

(g) Again because L°(B) is a topologically closed set in L°(2(), convergence in L°(2l) of a filter on L°(*8)
implies convergence in L°(®8). And for I € Z(S), the evaluation of S;(u,dv) € L°(B) is the same in either
structure. So
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IB%fSud'v = limpyz(s) S1(u, dv) = Afsudv
if either form of the integral is defined.

Remarks Thus I shall be able from now on, in the context of processes in L°(8)® where S C Tg, to use the
phrases ‘simple’; ‘near-simple’, ‘order-bounded’, 'bounded variation’, ‘moderately oscillatory’, ’jump-free’,
and the formula | s udv, without specifying whether I am thinking in the structure A or the structure B.

634F Relative independence You may have noticed an omission in 634E above. There is no mention
of ‘martingales’. In general, the shift from an algebra 2l to a subalgebra B need not respect conditional
expectations in the right way. In many cases, however (for instance, if 2 is based on a product probability
measure, and B on one of the factors), we do have strong connexions between martingales for (U, &, () ier)
and martingales for (B, a8, (B)ier). The key concept is that of ‘relative independence’, already used in
§628. In that section I was relying heavily on the work of §458, so did not separate the more elementary
ideas; perhaps it will help if I set them out now.

Definitions (a) (see 458La) If B, € and © are closed subalgebras of 2, I say that B and € are relatively
(stochastically) independent over ® if Pox(bne¢) = Ppxb x Poyc for all b € B and ¢ € €.

(b) T will say that a closed subalgebra % of 2 is coordinated with the filtration (;):cr if B and 2,
are relatively independent over 8; = B N A, for every t € T.

634G Proposition If B, € are closed subalgebras of 2, the following are equiveridical:
(i) B and € are relatively independent over 8 N €;

(i) Pyne(u X v) = Pyneu X Pypnev for all uw € L®(B), v € L>(€);

(111) P%P(x; = P%m(x;;

(IV) P%PQ = P@P%;

(v) Pyu € L°(€) whenever u € L}, N L°(Q).

proof 458M.

634H Lemma Let B be a closed subalgebra of 2 which is coordinated with (2;):er, and B = (B, a8, T,
(Bi)ier, T, (Bs)oeT) the corresponding stochastic integration structure, where By = BN A, for t € T.
Then B and 2, are relatively independent over B, for every o € Tg.

proof (a) Writing  for the constant stopping time at ¢ (611A(b-ii)), we have 2; = 2l; (611Hb); by 634G(v),
the hypothesis ‘B is coordinated with (2(;);c7r’ amounts to saying that

Ppu e LP(B) for every t € T and u € L, N L°(B).
(b) For t € T and ¢ € B, define fc by saying that
[tc >s] =1if s <t,
=cifs>t.

It is easy to check that (because ¢ € B;) the conditions of 611B(b-i) are satisfied, so that {c € Tz. We see
that

W, ={a:a e, a\lic> s] € A for every s € T'}
={a:a\ce U for every s >t} ={a:a\ceA}.
Now ¢ < ¢ and
[t < ic] =supser [te > s]\ [t > s] =c.
So [fe=1] =1\c Ifue L,

Pieu = Pr(u x x¢) + Pre(u x x(1\ ¢)) = u x xc + (Preu) X x(1\¢)
(because u x yc € L°(A;.) and 1\ ¢ € 2;,)
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— u x xe + (Pau) x x(1\0)

by 622Bb. It follows that if u € L%, N L°(B), then P;.u € L°(B).

(¢) For o € Tg, set
Cy={tc:teT, c=]o>1t]},

D, ={m0N...ANTp : 7, € Cy for i <n}.
Then

Ao =Nerfazaro>t] € At} =Ncc, Ur =Nyep, Ar
by 611Eb. We know from (b) that Pru € L°(B) N L. for every 7 € Cy; now if 79,... ,7, € Cy and
T=TN...\NTp,

Pu=P,...P,ueL’(B)NL,

for every u € L°(B) N L}, by 622Ba. Thus Pru € L°(B) whenever 7 € Dy and u € L°(B) N L.

Now observe that {4, : 7 € D,} is downwards-directed and has intersection 2,. So P,u = lim, p_ Pru
for every u € L}], by 621C(g-i). In 621Cg I called this a a || ||;-limit, but for our purposes here it is enough
to think of it as a limit for the topology of convergence in measure, because L°(B) is closed for the topology
of convergence in measure, and all we need to know is that if u € L°(B) N L} then P,u € L°(%B). Thus 2,
and B satisfy 634G(v), and are relatively independent over 2, NB = B, (634Cd).

6341 Theorem Let B be a closed subalgebra of 20 which is coordinated with (2;)ier, and B =
(B, @B, T, (Bi)er, To, (Bo)oers) the corresponding stochastic integration structure, where B; = B N A
for t € T. Let S be a sublattice of T and u = (u,)ses a fully adapted process such that u, € L°(%8) for
every o € S.

(a) u is a (local) B-martingale iff it is a (local) A-martingale.

(b) u is a (local) B-integrator iff it is a (local) A-integrator, and in this case its B-quadratic variation is
the same as its A-quadratic variation.

proof (a) For o € Tg, write Q, : L' (B, i|B) — L'(B, i]B) for the conditional expectation associated
with the closed subalgebra B,. Suppose that u € L°(B) N L, = L'(B,i]B). Then B and A, are
relatively independent over B, = 2 N B, (634H), so P,u € L°(B) N L°(A,) = L°(B,), and we have
E(P,u x xb) = E(u x xb) for every b € A, and therefore for every b € B,. But this means that P,u satisfies
the property defining Q,u, and P,u = Q,u.

Now we see that

u is a ‘B-martingale
<— Q,u, = U, whenever c < 7in S
<= P,u; = u, whenever c < 71in S
<= u is a YU-martingale.

Observe next that a sublattice 8’ of S is a B-covering ideal of S iff it is an A-covering ideal of S, by
634Cc. So we have

u is a ‘B-local martingale
<= there is a covering ideal S’ of S
such that u|S’ is a B-martingale
<= there is a covering ideal S’ of S
such that 4|S’ is a 2A-martingale

<= u is an YU-local martingale.
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(b)(i)(e) Suppose that u is a B-integrator. Then there is a 7y such that (98, ) is a probability algebra
and u is a (B, )-strong integrator (627Ld). Let z € L} N L°(B) be such that vpb = Ez(z x xb) for
every b € B (625B; note that in this sentence we do not need to distinguish between E; and Ez9). Set
va =E;(z x xa) for every a € ; because [z > 0] =1, (U, ») is a probability algebra.

If 7 € Tg, B and 2, are relatively independent over B N A, for 7 as well as for . P Let Q, : LI —
LL N L°(B,) be the conditional expectation associated with B, for v. If w € L. N L°(B), then

Qrw = Pr(w x z) X

P,z

(625B(b-i); of course [Prz > 0] = 1 by 625B(a-vi), so there is no problem with the reciprocal). But
w x z € L, N L°(B), because z € L°(B), so Pr(w x z) € L°(B), using 634H. Similarly, P.z € L°(B), so
Q-w € L°(B). By 634G(v), B and A, are relatively independent over B N2, for . Q

Now suppose that € > 0. Then we have processes w, w’ with domain S, B-fully adapted, such that
lu #w+w'] # 0, wis a (B, ¥y)-uniformly integrable martingale, and w’ is of B-bounded variation. By
(a) above, w is an (U, 7)-martingale, and w’ is of A-bounded variation, as noted in 634Ed. Also, of course,
w is still uniformly integrable in L.. As e is arbitrary, u is an (2, ¥)-strong integrator. It follows at once
that u is an A-integrator.

(B) If u is a B-local-integrator, then we can apply (i) to see that u[S A7 is an A-integrator whenever
T € S, so that u is an A-local-integrator.

(ii) In the other direction, if w is an A-integrator, then it is a B-integrator. B Going back to the
definition of ‘integrator’ in 616Fc, we see that z € BQs(u) there are I € Z(S) and w € L°(%8)! such that
w is B-fully-adapted, ||w|s < 1 and z = S;(w,du). Now, of course, w € L°(21)! is A-fully-adapted, so
z € AQs(uw). Thus BQs(u) C AQs(u) N L°(B) is topologically bounded in L°(2A) and therefore also in
L°(B), since the linear space topology of L°(B) is that induced by the linear space topology of L°(2l). So
u is a B-integrator. Q

Just as in (i-8) above, it follows at once that if u is an A-local-integrator it is a B-local-integrator.

(iii) If w is a local integrator (either in A or in B), set u} = lim,|s u,. For any 7 € S,

2 2
u u¢—2f8udv

2 _
is the same whether calculated in A or B, as noted in 634Eg. By 617Ka, the quadratic variation (u}),cs of
u is the same in either structure.

634J One of the most important operations in probability theory is the use of product measures to
simultaneously represent independent random variables. In order to do the same for the stochastic processes
we have been studying here, we have to pay attention to filtrations. The next lemma provides one of the
tools we need.

Lemma Let (Q,%, 1) and (€, %', /) be probability spaces, and (Z, <) a non-empty downwards-directed
. p o ) .
. €= = - )
partially ordered set. Let (X¢)cez and (X})¢ez be families of o-subalgebras of X, ¥' respectively such that
Ye C XY, and X C X/ whenever £ < 1, while every X¢ contains every u-negligible set and every X/ contains
§ n I3 n n 13 125 13
every p'-negligible set. Write T = (.. X¢ and T = MNeez X%+ Let A be the product probability measure
on Q x €, and A its domain.
a) Suppose that S 1s such that for every { € Z there is a S ®Y' such that is
S hat W € A i h that f ¢ € E there i We € ¥:®% such that WAW,
A-negligible. Then there is a W’ € T&Y' such that WAW’ is A-negligible.
(b) Suppose that W € A is such that for every { € = there is a W, € 25@322 such that WAW, is
A-negligible. Then there is a W’ € T&T' such that WAW’ is A-negligible.
¢) Suppose that S = ® , € X and € > 0 are such that X <e. en there is
S hat W cez 2e®@Y, B € ¥ and 0 h that A(WA(E x Q/ Then th
an E; € T such that A\(WA(E; x ) < 3e.

proof (a) Since there is certainly a member of @Y/ differing from W by a A-negligible set (251Ib), we
can suppose that W itself belongs to X&Y', Let 2’ be the measure algebra of (€',%, 1i'). Then 418Ta tells
us that we have a function f : @ — 2’ defined by setting f(w) = W[{w}]* for w € Q, and that f[Q] is
a separable subset of 2’ for the measure-algebra topology of 2!’ and f is ¥-measurable for this topology.
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Similarly, for any £ € Z, we have a X¢-measurable fe : @ — 2’ such that fe(w) = We[{w}]* for every w. But
since WAW is A-negligible, W[{w}|AW¢[{w}] is p/-negligible for p-almost every w, by Fubini’s theorem
(252D). So f =a.. fe. As we are supposing that every p-negligible set belongs to X¢, f is Y¢-measurable.

This is true for every £ € =, so f is actually T-measurable. But now we can use 418Ta in the other
direction to see that there is a W’ € TAY such that W/[{w}]* = f(w) for every w € Q. By Fubini’s theorem
again, A\(WAW’) = 0, as required.

b) For each n € =, we can apply (a) to (2,2, ), (', 3, u. X)) and (We)eez <y to see that there
n 12 ns My | &g £/6€E,6<n
isa W, € T@)E;’ such that A\,(WAW}) = 0, where A, is the product of y and j;. Of course it follows

that A(WAW)) = 0 and also that S\(W;,AWC’) = 0 whenever 7, ¢ € Z, where X is the product of x| T and
p'. Fixing ¢ € =, we can apply (a) again to (2,3, p'), (, T, u[T) and (Wy),e= to see that there is a
W' € T&T’ such that S\(W'AWC’) =0, in which case A(W'AW) will be zero.

(c) Try By = {w:w e Q, fW[{w}] > 1}. By 252P, E; € X for every £ € E, so Ey € T. We have

BN\ E) < [ /(W (B x @) [{w}](dw) = MW\ (B x ),

%M(E \E1) < [/ ((Ex )\ W)[{w}p(dw) = A(E x )\ W)
SHEIAB) S ANWA(E x ) < e

and

AWA(E; x Q) < u(BEYAE) + A\WA(E x Q) < 3e.

634K Theorem Let (2;);cr be a stochastically independent family of closed subalgebras of 2 (see 325L).
Suppose that (£, <) is a non-empty downwards-directed partially ordered set and that for each i € I we
have a non-decreasing family (B¢)ecz of closed subalgebras of ; with intersection B;. Set ® =\/,_; B,
and for £ € = set D¢ = \/; .1 Bie. Then D = (o2 De.

iel

proof (a) If I is empty or a singleton, the result is trivial. Note also that for any I we surely have
D C ez De, so it will be enough to show that (.2 De CD.

(b) Suppose that I = {7,j} has two members. Let (,%, 1) and (Q,%', u') be probability spaces with
measure algebras which can be identified with (2, &[2;), (2, [ 2;) respectively (321J); set e = {EF : FE €
S, B €Dy}, Ny ={F:Ee¥, F* €Bj} for { € E. Note that every ¥¢ and X is a o-algebra containing
all negligible sets, and that (X¢)¢ec= and <E_/§>§ez are non-decreasing.

We can identify the measure algebra (€, \) of the product (2 x Q’, A, \) with the probability algebra free
product of (2, i[2;) and (A, £l 2A;) (325D or 325I), which in turn embeds naturally in 2( (325J, 325L);
write ¢ : € — 2 for the embedding. If E € ¥ and F € ¥/, then ¢((F x F)*) = E*nF*. Now, for £ € &,
P{W* - W € 25652'5}] is the o—subailgebra of A generated by Bic U B¢, that is, De. So if d € ez D,
we have for each { € Z a We € L@ such that (W) = d. It follows that A(WeAW;) = 0 for all &,
n € 2. By 634Jb, there is a W € T&T’ such that AWeAW) = 0 for every § € Z, that is, ¢W* = d,
where T = ﬂgez Ye and T' = ﬂgea Efé. But now ¢W* belongs to the closed subalgebra of 2 generated by
{E*:Ee€T}U{F*: FeT}=%,UB;, which is D. As d is arbitrary, Nee= D¢ € D, as required.

(c) Suppose that I is finite. Then D = [,z D¢. P Induce on #(I). I have already dealt with the cases
#(I) < 2. For the inductive step to #(I) > 3, take any j € I and set I’ = I \ {j}. Set ' =\/,;, 2;; then
2" and 2(; are independent, as in 272K or 458Le.

For § € E, set D =V, Bie. By the inductive hypothesis, D" = \/,.;, B; is (eez Dp. Now, of
course, (Dg)¢ez is non-decreasing, and Dg = B¢ V D} for each &, while © = B; VD' So (b) tells us that
D= ﬂ&EE D¢. Thus the induction proceeds. Q
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(d) Now consider the case of arbitrary I. Suppose that d € (\;czD¢ and 0 < € < 1. Because the

topological closure of the subalgebra (J ;¢ i finite Vics i 18 V;ep 2i (323J), which contains d, there are a
finite J C I and an element e of \/,.; 2; such that A(d A €) < e. This time, observe that A = Vies i and
A = Vien s %i are independent. Setting Be =\/,c; B¢ for £ € Z, we see from (c) that Nees Be =\, D

Now, following the pattern of (b), take probability spaces (2, %, u) and (Q', X', 1) with measure algebras
isomorphic to 2 and 2’ respectively, and set Ye={E:E* € %5} for £ € =. Translating 634Jc into terms
of the measure algebras, we see that there is an e; € \/;.;®; such that ji(d A e;) < 3e. Of course e; € D.

As € is arbitrary, d belongs to the closure of ® for the measure-algebra topology; but ® is topologically
closed, so d € ®. Thus we have the required result in this case also, and the proof is complete.

634L Theorem Let (98;);c; be a stochastically independent family of closed subalgebras of 2. Suppose
that for each i € I we have a filtration (%) of closed subalgebras of 9B;. For eacht € T set €; = \/,.; B:.

(a) (€4)ter is a filtration.

(b) Fori e I and t € T, ®B; N & = By and B; and ¢, are relatively independent over B;.

(c) If {(Bit)ter is right-continuous for every ¢ € I, then (€;);er is right-continuous.

proof (a) Immediate from the definitions of ‘filtration’ and *\/’.

(b) Of course B; N €; O B;;. Next, B; and Vjel\{i} B, are independent, that is, they are relatively
independent over {0,1}; by 458Ld, they are relatively independent over B;; C B;. A fortiori, B; and
\/j i B;; are relatively independent over B;;, and therefore B; and B; VvV \/ ki B, = & are relatively
independent over B;; (458Ld again). But this means that B; N €, is relatively independent of itself over
B, and must be equal to B;;.

(c) If t € T is not isolated on the right, apply Theorem 634K with Z = {5 : s > t} to see that &; = (., Cs.

634M Corollary Suppose that ((2;, fi;))ier is a family of probability algebras, and that (;)ier is
a filtration in 2A; for each i. Then there are a probability algebra (€, \) with a filtration (€;)ier and a
stochastically independent family (2B;);cs of closed subalgebras such that 9B, is coordinated with (€;)¢er
and (B;, \[B;, (B; N €;)er) is isomorphic to (As, fis, (Ast)eer) for every i € I. If every (Us)ser is right-
continuous, we can arrange that (€;);er should be right-continuous.

proof Take (€, ), (g;)ics) to be the probability algebra free product of (s, fi;))ier (325K), and set B; =
gili] for i € I, & = \/;c;&[™Us] for t € T. As noted in 325L, (B;)ics is an independent family of closed
subalgebras of €, while (%B;, \[B;) = (A, i;) for every i, so 634L gives the result.

634N Example: independent Poisson processes To show how these ideas may be used, I work
through an important special case.

(a) Let (B,7,(B¢)i>0, T, (Uo)oeTs,) be the standard Poisson process of 612U in its measure-algebra
form. Let (2(, i) be the probability algebra free product of (8, 7) with itself, with associated embeddings
£1:B = A g9 : B — A write B for ¢, [B] for each i. Set A, = &1[B¢] V £2[By] for t > 0, so that (A;)i>0
is a right-continuous filtration (612Uc, 632Db, 634Lc), while £;[B,] = B® N, for both i and every ¢, and
each B() is coordinated with (2;);>0 (634Lb).

(b) For each i, &; is an isomorphism between (B, 7, (B;);>0) and (B, i BO (BD N Ay)ieio,00), SO
matches Tgy with Tga)p = Tgw N Tay (634Cb). Now u = (ug)seTs,; is matched with u; = <uw>g€7é(i>f,
and u; is locally near-simple because u is (634Eb). Because T contains all the constant processes,
sup{[r < o] : o € Tew py = 1 for every 7 € Ty, u; has an extension to a locally near-simple process
defined on Ty (631M(c-ii)). Because Tg) ; contains the constant processes, it separates Tay (633D), so the
extension is unique (633F); I will call it v,.

(c) For each i, v; — 1y is a local martingale. B By 632Ma, u — ¢ (where 13 as the identity process on
Tey) is a local martingale, so its copy (v; — L%gf))['ﬁE(i)f is a local martingale (634Ia) and v; — ¢y is a local

martingale (633Pg; of course Tga) ; separates Tay because it contains all constant processes). @ It follows
that w = v; — v2 is a local martingale.
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(d)(i) v} = v;, because u* =u (6170b) so u} = u;, and we can apply 633Ph to see that v} and v; agree
on Tgys, and therefore on T4y (633F).

(ii) The covariation [vy T’Ug] is zero. I Express v; as (Vig)ocT;,; for each i. If 0 < s < ¢, then, writing 5
and f for the constant stopping times at s and ¢ respectively, v;; — v;5 has a Poisson distribution with mean
t—s, so

alvi#vigl =1—e 79 <t —s

for each i. Now suppose that t > 0, n > 1 and that I is a sublattice of [0,] containing 3; for every j < m,
where s; = jt/n. In this case

Q(Sj(l,d'vld‘vg)) /_L[[S](l,d’llld’vg) # 0]]

Al sup  [Ao(1,dvydvy) £ 0])
8€Sti0([)

IN A

(where Stig(]) is the set of I-cells)
< ﬂ(sup [[U1,§j+1 7é v17§j]] n [[U27§j+1 7& U27-§j]])

j<n

(because both v; and v, are non-decreasing)

7
L

< ﬂ([[v175j+1 # Ul,éj]] n HUZS;’-H 7£ U275_7‘]])

S <
[
]

ﬂ(ﬂv17§j+l # Ul,gj]]) ! [_IJ([['U2,§j+1 3& U2,§j]])

<
I
o

(because [vis,,, # vi,5;] € B for all i and j, and B and B2 are stochastically independent)

S
|
—

t2

<D (41— 85)* =~

<
I
o

Taking the limit as I 1 S([0,7]), f[() j dvrdvy = 0. As t is arbitrary, the covariation [vy T'vg] is zero at every
constant stopping time. Because the constant stopping times separate Ty, and [v; Tvg] is locally near-simple
(631Jb), [v4 T’Ug] =0, by 633F. Q

(ifi) w* = vy + vs.
P w' =[v; —v2[v1 —vo] = [v1]v1] + [v2]v2] = 0] + 05 =v1 +v2. Q

*

(iv) The previsible variation of w?|Tap is 2¢] Tap. P We know that w is a local martingale, so w? — w
is a virtually local martingale (624B), therefore a local martingale (632I); now (iii) just above, with (c), tells
us that w? — 2ug is a local martingale, so w?[7Ta, and 2¢[ 74, have the same previsible variation (as in the
proof of 632Mb), which is 2¢[Tas, by 626Q. Q

e) Note that w corresponds to a Lévy process (455Q, §652) derived from the family (\});>o where
(e) D yp y (Ab)e>
2t n 0O 12k
)\2({%}) =e %t Zk:max(—n,O) k! (k+n)!

for n € Z, because v, and v, can be determined from w and w*.

634X Basic exercises (a) Let 9B be a closed subalgebra of 2, and B = (B, @B, T, (Bi)ter, To: (Bo)oecTs)
the corresponding stochastic integration structure, where 8; = B N2; for ¢ € T. Suppose that S is a sub-
lattice of Tp and that u € L°(B8) is fully adapted. Show that (i) if u is an A-integrator it is a B-integrator
(ii) if u is a local A-integrator it is a local B-integrator and its B-quadratic variation is the same as its
A-quadratic variation.
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634Y Further exercises (a) Let 2 be an eight-element Boolean algebra with atoms a, b, ¢, and B
the subalgebra generated by {b}. Let 2y be the subalgebra generated by {a} and for ¢ > 0 let 2; be the
subalgebra generated by {a,b}. For t > 0 set 7 = f(auc) in the language of part (b) of the proof of
634H. Show that the infimum 7 = inf, o 75, taken in T, is such that [7 > 0] = a, so is not the infimum of
{Ts 15> 0} in Tg.

(b) Suppose that S is a sublattice of Ty and that v = (v,),es is a fully adapted process which is not of
bounded variation. (i) Show that there are &, A, (€;)ier, B, (B;)rer and v’ such that (€, \) is a probability
algebra, (€;)ter is a filtration of closed subalgebras of €, B is a closed subalgebra of €, B; = BN, for every
teT, (A i, (As)er,v) is isomorphic to (B, A[B, (B;)ier,v’), but v’ is not an integrator for the structure
(€, (C)eer). (ii) Show that if (A;)ier is right-continuous we can arrange that (€;)er is right-continuous.

(c) Give an example of a probability algebra (2(, i) with a closed subalgebra € and a non-increasing
sequence (B, )nen of closed subalgebras such that (), B, = {0,1} but [, (€ V B,) # €.

(d) (‘Emery’s example’, see PROTTER 05, IV.2) In the structure defined in 634N, let = (2;)c7;, be
the fully adapted process defined by saying that z5 = 0 and z, = Li if 7 € Tay and [ > 0] = 1, where ¢

is the identity process. (i) Show that f[() ;& dw is defined for every T € Tay. (ii) Show that the indefinite
integral z = i, (x) is not a local martingale, but that for every e > 0 there is a local martingale 2z’ with
domain Ty such that ffz # 2'] <e.

634 Notes and comments Even by the standards of this volume, I have taken 634B-634E extremely slowly.
The point is that nearly everything up to this point was written on the understanding that we are starting
from a settled structure (2, i, (A¢)ter). I have remarked many times that the topology of convergence in
measure is more important than the measure itself, but this is fairly easy to incorporate into one’s intuitive
picture, because so many of the definitions and arguments refer directly to the topology. In this section I am
exploring a much more radical change. Substituting 9% for 2, in the measure-algebra version of probability
theory I am working in here, corresponds to a deliberate closing of the eyes to some of the randomness in
the ‘outer’ model (2, ). Probability theory would of course be impossible without this. We never suppose
that we have grasped all the possible stochastic elements of a real-world situation, and must always be ready
to extend our model by elaborating on our probability space or probability algebra. I have discussed this
aspect of probability theory in the introduction to §275. But this means that we must at some point check
every concept and theorem for the transformations which will be appropriate when the framework shifts.

Many of the checks are so elementary that they hardly need mentioning, and you may feel that I have
laboured unnecessarily. If so, do feel at liberty to write ‘obvious’ in the margin of your copy. In particular,
it is not clear that we need to spell 634B out explicitly, rather than proceed directly to the more intuitively
appealing 634C. But I fear that the tempting intuitions here are not perfectly safe, and that pulling the
algebras 9B, 2 apart as in 634B forces a necessary extra clarity, if you can face the extra elaboration in the
notation.

We come to some new phenomena when we investigate relative independence (634F-634G). The point is
that the concepts of ‘martingale’ and ‘integrator’ are less absolute than ‘fully adapted’, ‘bounded variation’
and so on. Even Brownian motion, unsuitably embedded, can become a process which is not an integrator
(634YDb). Without checking, we cannot be sure that the conditional expectation associated with B; = BN,
is appropriately related to the conditional expectation associated with 2(;. When it is, we have a much closer
relationship between the structure (B, |98, (Bi)ier, Te) and its attendant space Mg,p of fully adapted
processes, regarded in isolation, and its alternative realization as a subspace of Mz, (634H, 6341I)..

Product measures provide a tool for representing arbitrary independent families of random variables
(272J). The corresponding construction for probability algebras is the probability algebra free product of
§325. To use this, we need to be able to define a filtration on the product from given filtrations on the
factors. To begin with, this is easy (634La-634Lb), at least if you know the right things about relative
independence. But elsewhere in this section we repeatedly depend on right-continuity, and to be sure that
the elementary construction I offer produces a right-continuous filtration on the product we have to look
hard at product measures (634J).
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Version of 6.3.23/29.9.23
635 Changing the filtration

In this section I introduce the elementary theory of ‘local times’. In the principal applications, we have
a process which is easier to handle if we replace the standard clock T" with a variable-speed clock (7, ),cr
where the clock-times are now a totally ordered family of stopping times. I will come to such applications
in Chapter 65. Here I want to set up a language to discuss the transformation in which a process (u;)rer
is mapped to (ur(y))per, Where R is the lattice of R-based stopping times and m(p) € T corresponds to
p € R. Starting from the construction in 635B, we have basic algebraic properties (corresponding to ideas
in §611) in 635C and can then follow a programme along the same lines as elsewhere, looking at the usual
kinds of process and Riemann-sum integrals.

635A Notation (A, i, T, (As)ier, T, (A )-c7) will be a stochastic integration structure, and 6 the usual
F-norm on L°(2A) (613Ba). For 7 € T, P, will be the conditional expectation operator associated with 2.
If S is a sublattice of T, Z(S) will be the family of finite sublattices of S.

Now for the new idea.

635B Construction For the whole of this section, (R, <) will be a new (non-empty) totally ordered
set, and (7m,),cr a non-decreasing family in 7. For r € R, I will write B, for 2, _, so that (B,),cr is
a filtration of closed subalgebras of 2, and we shall have a corresponding stochastic integration structure
(52[7 H, R’ Ra <%r>reRa Rv <%p>p€7€)'

For p € R, 7(p) € L°(2A)T will be defined by saying that

[w(p) > t] = ig}f%([[p > r]ufm >t]) if t € T is isolated on the right in T,
T

= sup inf ([p > r] u [7, > §]) for other ¢t € T
s>t TER

635C Theorem Suppose that ()7 is right-continuous.
(a) For every p € R, m(p), as defined in 635B, belongs to T, and B, = A ().
(b)(i) The map 7 : R — T is a lattice homomorphism.
(ii) 7(min R) = inf,cg 7 in 7, 7(maxR) = max 7.
(iii) If » € R and 7 € R is the corresponding constant stopping time, then 7(7) = ..
(iv) If p € Ry then 7(p) < sup,.cp mr.
() [m(p) <m(p)] < [p <Pl [m(p) < 7(p)]2[p < '] and [p=p']  [7(p) = 7(p")] for all p, p" € R.
(d) Suppose that (m,),cr is right-continuous in the sense that 7, = infyep 4> 74 in T whenever r € R
is not isolated on the right in R. Then
(i) (B)rer is right-continuous;
(ii) 7 is right-continuous (see 632B).

proof (a)(i) For p € R and r € R there is a w(p,r) € T defined by saying that [n(p,r) >1t] =
lop>rjuln,>t] fort € T. P [p>r] € B, =2, ; looking at the definition of A, (611G), we see that
lp>rjuln, >t] € Asforeveryt € T. If s < ¢inT then [m, > t] C [m, > s]sop>r]ulm >t] < [p>r]um > s].
Ift € T is not isolated on the right, [7, > t] = sup,~, [7, > s]so [p > r]u[m. > t] =sup,, [p > r]u [m > s].

So the function ¢t — [p > r]u [r, > t] satisfies the conditions of 611A(b-i). Q

(i) Comparing the definition of 7(p) in 635B with the formula in 632C(a-i) (which is applicable because
(A¢)ter is right-continuous), we see that 7(p) is just inf,.cg m(p,7) in T, and certainly belongs to 7.

(iii) Take any p € R. For a € U,
a€B, < a\[p>r] € B, =AU, foreveryr € R

<~ a\([p>r]ulmr >1t]) €A for everyr € Rand t € T
<~ a\[r(p,r) >t] €A for everyr € Rand t €T

< a €Uy, foreveryr € R < ac ﬂ W) = 2Ar(p)
reR
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by 632C(a-iii), again using the general hypothesis that (2;)¢cr is right-continuous. So B, = ().

(b)(i)(e) For r € R, p — w(p,7) : R — T is a lattice homomorphism. P Use 611Cb and 611Cc;
we just have to note that p — [p > r] is a lattice homomorphism, so that p — [r(p,r) > t] is a lattice
homomorphism for every t € T. Q

B) w(pAp)=m(p) Am(p') for p, p € R. P By (), both are equal to inf,cr(m(p,r) A7(p/,7)). Q
() m(p) va(p) <m(pVyp) for all p, p € R. (By (B), or otherwise, 7 is order-preserving.)
@) m(pvyp) <m(p)vVw(p) forall p, P € R. P Forany t € T,

. . / o : / /

inf [r(p,7) > 1] inf [x(p,r) > 4] = inf ([r(p,r) > Julr(e,r") > 1)

r}rllefR([[p >r]ulm >t]ulp >r]ulr > t])

) infR([[p > max(r, )] up’ > max(r,r")]u [mr, V7 > t])
‘e
= ngf ([p Vv p' > max(r, )] U [Tmax(rry > t] = iglf?L [r(pVp',r) >t

So if t is isolated on the right,

[r(pv p') > 1] = inf [x(pV p',7) > 1]

(632C(a-1) again)

N

rlng% [w(p,7) > t] U inf [=(p',7) > 1]

[x(p) >t u [ (p) > ]] [x(p) v m(p') >,

while if ¢ is not isolated on the right,

[m(pVyp)>t] = sup 1nf [7(pVp',r)>s] C ?ﬁf(rmf [w(p,7) > s]u Tlg}; [w(p's7) > s])

= sup inf [7(p’',r) > s]u sup mf [w(p's7) > 5]
s>t r€R

= [x(p) >l u[x(p') > }]:[[77( )V (p') >t
Accordingly w(p V p') < w(p) V7(p'). Q
(€) Thus 7 : R — T is a lattice homomorphism.
(ii) If r € R, then
[r(minR,r) > ] = [ > 1], [r(maxR,r)>t]=1
for every t € T, so m(minR,r) = 7, and 7(maxR,r) = max 7. Accordingly
m(minR) = inf,cg 7(min R, r) = inf,.c g 7.,
m(max R) = inf,cg m(max R, r) = max T.

(iii) Forge Rand t € T,

[n(7,q) >t] = [mg > t] if r <g,
= 1 otherwise,

SO

ﬂ'(T»‘D = Tq ifr <gq,

= max 7 otherwise.
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Taking the infimum over r, 7(¥) = infy>, 74 = 7.
(iv) Write 7 for the supremum sup,.cp 7, taken in 7. If p € Ry then
inf (Ip > rfulme > t]) ¢ mf([p > r]ulr >1])
:[[T>t]]urié1}f%[[p>r]]:[[7>t]].
So
[m(p) >t] = inf ([[p >rjufm, >t]) C [t >t] if t € T is isolated on the right in T,

fsupmf([[p>s]]u[[7rs>t]] ) C sup[[7'>s = [r > t] for other t € T,
s>t TE

and 7(p) < 7, as claimed.
(c)(i) Set a=[p<p]. HteT and r € R, then

[w(psr) >t =1[p >r]ulm >t] Caulp>r]ulr. >t] =aulr(p,r) >1].
If ¢ is isolated on the right in 7', then

/ 3 / 3
[w(e/) > 1] = inf [x(0',7) > 1] € int (a0 [(p, ) > 1]
=av inf [r(p,7) > 1] = au]n(p) > 1],
while if ¢ is not isolated on the right,

[w (p)>t]]—sup1nfﬂ (0, r)>s]]Csup1nfau[[7r(p, r) > s]

s>t 1€ s>t 1€
*ausupmf[ (p,7) > s] =au[r(p) > t].
s>t TER

So
[7(p) < m(p")] = supyer ([x(p') > ]\ [ (p) > t]) C a
(ii) Similarly, [7(p’) < 7w(p)] € [’ < p]; taking complements, [7(p) < 7(p)] 2 [p < o]
(iii) Now
[7(p) = 7(p")] = [m(p) <7 (P (p") <7(p)]
2lp<pInle <pl=1lp= 71

(d)(3) If r € R is not isolated on the right, then 7, = inf,~, m,, so
gBT :iqu::qu>TQLw ::r1q>r93q
(632C(a-iii) again). Thus (B, ),cr is right-continuous.
(ii) Set
7 =infyep m(p) = infpeprerm(p,7),
taken in 7.
(a) If r € R is isolated on the right, then 7 < w(inf D,r). P For any ¢t € T,

[r(inf D,7) > ¢] = [inf D > r]Ju[r,. > t] = (p1££ lo>r])ulr >t]

(applying 632C(a-i) to (B, )recr)

= I [r(p,r) > ] 2 [infpep 7(p,r) > ] 2[7 > 1]. Q

69
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(B) If r € R is not isolated on the right, then 7 < w(inf D, r). B We have 7, = inf s, my. If t € T' is
isolated on the right,

[w(inf D,r) > t] = [inf D > r]u [m, > t] = (sup ig} [p > q])ulinfys, mq > t]
q>r P
= (sup mf lp>4q])u (mf [rg > t]) 2 inf ([ry > t]u inf [p > q])
>r q>r peD

q>r P

= inf inf (Ip > qJ Uy > 1)) = inf inf [x(p,0) > ] 2 [7 > 1],

If t € T is not isolated on the right, then

[r(inf D,7) > t] = [inf D > r]u [r, > t] = (sup mf [p > q]) u (sup inf [rqy > s])
q>r PE s>t 4>T

= Zgg((zgg inf [p> gl v (inf [r, > s]))

B) f(inf [p > >
i‘iﬁ’éﬁr(é‘é [p>q]ulmg > s])

—bsli}?éggl}g]g[[ w(p,q) > s]2 sslilt)[[7'>s]] = [r > t].
Thus [r > ¢] C [x(inf D,r) > t] for every ¢t and 7 < w(inf D, 7). Q
(7) Putting these together, 7 < m(inf D, r) for every r and 7 < w(inf D). On the other hand,
w(inf D) = inf,cg w(inf D, r) <inf,ep rerm(p,r) = 7.

So in fact w(inf D) = 7 = inf ,cp 7(p), as required.

635D Proposition Suppose that (;):er is right-continuous. Let Q be a sublattice of R.
(a)(i) m[Q)] is a sublattice of T.
(ii) If w = (ur)ren[o) is a process fully adapted to (2A¢)ier, then um = (ur () e is fully adapted to
<%T’>T€R'
(iii) Let v : w[Q]*"T — L°(2A) be an adapted interval function (613C), and set ¥, (p, p') = ¥ (7 (p), 7(p'))
when p < p/ in Q. Then 1, is an adapted interval function.
(iv) In (iii), if ¢ is strictly adapted then 1, is strictly adapted.
(b) Now suppose that u = (ur),ecx[o] is fully adapted and that 1 is an adapted interval function on 7[Q)].
Then [,umdy, = fn[g] u d if either is defined.

proof (a)(i) This is just because 7 is a lattice homomorphism (635C(b-i)).
(if) If p € Q then uy(,) € LA () = L°(B,) by 635Ca. If p, p € Q then
[ur(p) = tr(p)] 2 [7(p) = w(p)] 2 [p = ]
by 635Cc. So (ur())peco satisfies both the conditions of 612Da.

(iii)(a) If p < p/ in Q then 7(p) < w(p’) in 7[Q] (by 635C(b-i) again), so ¥(w(p),7(p’)) is defined
and belongs to L°(2(,) = L°(B,) (635Ca). Thus ¢, is a well-defined function on Q*'. And of course
bx(p, p) = (r(p), 7(p)) = 0 for every p e Q.

B)Iftp, po, o €eQ p<p <o <o,beB,andbC [p=p]n]o’ =0c], then 7(p) <
m(o") < 7(o )1n7T[Q]b€Ql7r(p)andbg[[7r() m(p )]]m[[ (c)Y=m
With (), this shows that v, is an adapted interval function.

() <
()] (635Cc), so b C [ib(x(p), w(0)) = ¢(w(p), w(0"))]-

(iv) Continuing from (iii), suppose that v is strictly adapted. Then

[o=pnlo" = ol c[x(p) = ()] 0 [r (o) = 7(o)]

S0 Y, is strictly adapted.
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(b)(i) We know from (a) that ur is a fully adapted process and v, is an adapted interval function. If
J € I(Q), then 7[J] € I(w[Q]) because 7 is a lattice homomorphism. Now S;(um,dr) = Sy (u,dy). P
If J is empty, this is trivial. Otherwise, let (po, ... , pn) linearly generate the J-cells (611L). If p € J, then

SUPi<n [[T((p) = Tr(pl)]] 2 SuP;<n [[p = pl]] =1
Consider the string (79,...,7,) where 7; = w(p;) for i < n. This is a non-decreasing sequence in w[J].
If 7 € 7[J], there must be a p € J such that 7(p) = 7; now py < p < pp, so 79 < 7 < 7,. Thus
To = min7[J] and 7, = max7[J]. If ¢ <n and 7 € w[J] N [7;, Ti+1], let p € J be such that 7 = 7(p); setting
p' = med(p;, p, piv1), m(p') = med(r;,7,7541) = 7 while p' € {p;, pi+1}, so that 7 € {7, 7541}. But this
means that {79,...,7,} is a maximal totally ordered subset of «[.J], so that (7o,...,7,) linearly generates
the m[J]-cells.
Consequently

n—1 n—1
S‘/r[]] (UadU)) = Zuﬁ X ’l/)(TiaTi-‘rl) = Z Ur(p;) X d)ﬂ'(piapi-l-l) = SJ(uﬂ-ad’(/)ﬂ')' Q

=0 =0

(ii) Suppose that z = fﬂ[g]udw is defined. Let € > 0. Then there is an Iy € Z(7[Q]) such that

0(z — Sr(u,dy)) < e whenever Iy C I € Z(n[Q]). Let A be a finite subset of Q such that Iy = n[4], and
Jo € Z(Q) the sublattice generated by A. If Jy C J € Z(Q), then «[J] D w[Jo] 2 I, so

0(2 - SJ(’U‘T(7d¢TF)) = 6(‘2 - S‘n’[]] (’U.,d?/))) S €.
As € is arbitrary, [, o uT dir is defined and equal to z.

(iii) Suppose that z = fg um di, is defined. Let € > 0. Then there is a Jy € Z(Q) such that
0(z — Sy(um,dir)) < e whenever Jy C J € Z(Q). If n[Jy] C I € Z(w[Q)), let A be a finite subset of Q such
that I = m[A], and let J be the sublattice of Q generated by Jo U A; then Jy C J € Z(Q) and w[J] = I, so

0(z — Sr(u,dy)) = 0(z — Sy(um,dip,)) < e.
As € is arbitrary, fﬂ[g] u dip is defined and equal to z. This completes the proof.

635E Proposition Suppose that (;):er is right-continuous. Let S C T be a sublattice and u = (u,),cs
a fully adapted process. Set Q = 7~ 1[S] = dom(7u).

(a) ur is order-bounded iff u7[Q] is order-bounded.

(b) um is of bounded variation iff u[#[Q)] is of bounded variation.

(c) um is an integrator for the structure (2, fi, R, (B, )rcr) iff ul7[Q] is an integrator for the structure
(Ql, f, T7 <Qlt>t€T)'

(d) ur is a martingale for the structure (A, i, R, (B,)rer) iff u[n[Q] is a martingale for the structure
(Ql, i, T, <Q[t>t€T)'

(e) ur is jump-free iff ul7w[Q] is jump-free.

(f) Let S be the covered envelope of S in T, O the covered envelope of @ in R and u the fully adapted
extension of u to S. Then W[Q] C S and '&,ﬂ'[Q is the fully adapted extension of um to 0.

(g) If u is moderately oscillatory then ur is moderately oscillatory.

(h)(i) If S is order-convex in 7 then Q is order-convex in R.

(ii) Suppose that (m,),cr is right-continuous (635Cd). If S is order-convex and w is near-simple, then

um is near-simple.

proof If Q is empty, then 7[Q] will be empty and everything is trivial. So suppose that Q is non-empty.
Because 7 : R — T is a lattice homomorphism (635C(b-1)), m[Q] is a sublattice of T.

(a) We have only to note that {ur(,y : p € Q} = {u, : p € 7[Q]}.
(b)(i) If u7w[Q] is of bounded variation and pg < ... < p, in Q then

< Sy el

n—1
Zi:o |u7r(Pi+1) — Un(ps)

so ur is of bounded variation.
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(ii) If wrr is of bounded variation and 79 < ... < 7, in 7[Q], take p} € Q such that w(p;) = 7; for each
i. Set p; = sup;; pj for i <n, so that pg < ... < py, 7(p;) =7 for i <n, and

< fg |d(ur)|.

n—1
= ic0 [Ur(pip1) = Un(pi)

n—1
Zi:o |U‘Ti+1 — Ur
As 19,...,T, are arbitrary, u[7[Q)] is of bounded variation.
(c)(i) Qrig)(du) € Qo(d(ur)). P Suppose that I € Z(n[Q]) is non-empty and that w = (w,),¢r is a
fully adapted process with ||w||e < 1. Let (70,...,7,) linearly generate the I-cells. As in (b-ii) above, we

have pg < ... < p, in Q such that m(p;) = 7; for each i. Now w,, € LY(,(,,)) = L°(B,,) and [Jwy, [l < 1.
So

7(ps)

n—1
Sr(w, du) = Z Wr, X (Ur,, — Ug,)
i=0

n—1
= wr, X (Un(pyy1) — Un(p)) € Qold(ur))
=0

(616C(ii)). As I and w are arbitrary, Q(g](du) C Qo(d(ur)). Q
So if ur is an integrator, u[7[Q] is an integrator (616Fc, 613B(f-iii)).

(ii) Qo(d(um)) € Qrjgj(du). B Suppose that I € Z(Q) is non-empty and that w = (w;)-¢s is a fully
adapted process with ||w||e < 1. Let (po, ... ,pn) linearly generate the I-cells. Now 7(pg) < ... < 7(pn)
and w,, € L°(Ar(,,)) and ||w), || < 1 for each i. So

Sl(wv d(’UJT)) = Z?:_Ol Wp; X (uW(Pi+1) - uﬂ'(Pi)) € QW[Q] (du)

As I and w are arbitrary, Qo(d(ur)) C Qr[g)(du). Q
So if u[7[Q] is an integrator, ur is an integrator.

(d)(i) Suppose that um is a martingale. Take 7 < 7’ in 7[Q]. Again as in (b-ii) of this proof, there are
p < p'in Q such that 7 = 7(p) and 7" = 7(p’). Now A, =B, so

Prurr = Prg(py = Ur(p) = Ur-
As 7 and 7’ are arbitrary, u[7[Q)] is a martingale.

(ii) Suppose that u[7[Q] is a martingale. Take p < p"in Q. Then 7(p) < 7(p') in 7[Q], and B, = A ().
So the conditional expectation of wur(,) on B, is Pr(p)Ur(y) = Un(p)- As p and p' are arbitrary, ur is a
martingale.

(e) By (a), we know that if either ur or u[w[Q] is jump-free, then both are order-bounded. So we can
suppose throughout that this is so.

(i) Suppose that py < ... < p, in Q. Set p_1 =minR, ppy1 = maxR, 73 =min7T, 7,41 = maxT
and 7; = m(p;) for 0 < i < m. Then
W = sup{|un(p) — Ur(p)| 1 p, p' € Q and there is an i
such that —1<i<mnand p; <p<p <pii1},
w = sup{|u,s — u,|: 7, 7’ € 7[Q] and there is an i
such that —1<i<mnand 7, <7<7 <711}
are equal.

P(a) If 7, 7/ € 7[Q] are such that 7; <7 < 7/ < 7,41 where —1 <4 < n+ 1, then we can express 7, 7/
as w(p), w(p') for p, p' € Q; replacing p by med(p;, p, pi+1) if necessary, we can suppose that p; < p < p;i1;
replacing p’ by med(p, p’, pi+1) if necessary, we can suppose that p < p’ < p;y1. Now

[urr = tr| = |tn(pry = tn(p| < 0.

As 7 and 7/ are arbitrary, w < w.

MEASURE THEORY



635G Changing the filtration 73

(B) If w is defined and p, p’ € Q are such that p; < p < p’ < p;11 where —1 < i < n + 1, then
7 < m(p) < m(p') < Tig1, 80 |Un(py — Un(p)| < w. As p and p’ are arbitrary, w < w. Q
(ii) Suppose that py < ... < p, in Q and that I € Z(Q), I’ € Z(n[Q]) are such that (pg,...,pn)

linearly generates the I-cells, while (7(pg), ... ,m(pn)) linearly generates the I’-cells. Then Osclinj(ur) =
Oscllny, (u]7[Q]). P Put (i) here together with 618Ca. Q

(iii) Suppose that um is jump-free. Let € > 0. Then there is a non-empty I € Z(Q) such that
Oscllnj(ur) < e. Let (po,...,pn) linearly generate the I-cells. Set I' = {m(po),...,m(pn)} € Z(7[Q]).
Then (7(po), ... ,7(prn)) linearly generates the I'-cells. By (ii),

6(Oscllny, (u[7[Q])) = 0(Oscllnj (ur)) < e.
As e is arbitrary, u[7[Q)] is jump-free.

(iv) Suppose that u[7[Q] is jump-free. Let € > 0. Then there is a non-empty I’ € Z(n[Q]) such that
Osclln}, (u]7[Q]) < €. Let (70,...,7s) linearly generate the I'-cells. Take py < ... < p, in Q such that
m(p;) = 7; for each i. Set I = {po,...,pn}t € Z(Q). Then (po, ..., pn) linearly generates the I-cells, so

6(Oscllnj (um)) = 6(Oscllny (u[7[Q])) < e.
As € is arbitrary, um is jump-free.
(f) If p € Q then
sup,¢s [7(p) = 7] 2 sup, g [7(p) = 7(p)] 2 supy e [p =P =1,
so w(p) € S. Now ar] Q is fully adapted and extends wr, so is the fully adapted extension of ur.

(g) For any € > 0, there is a process v = (v, )rcs of bounded variation such that f(sup |u —v|) < e. Now
v is of bounded variation ((b) above) and

sup lur —un| = SUp e o [tir(p) = Vr(p)| < SUP,es |Ur — V7| = sup [u — v,
so (sup |lum — vm|) < e. As € is arbitrary, um is moderately oscillatory.

(h)(i) If po, p1 € Q, p € R and pg < p < p1, then w(pg) < m(p) < 7(p1), while 7(po) and m(p1) belong
to S;s0 m(p) € S and p € Q. Thus Q is order-convex.

(ii) Suppose that A C Q is non-empty and downwards-directed and has a lower bound p. € Q. Then
inf A, the infimum of A in R, lies between p, and any member of A, so belongs to Q. Next, B = w[A] is
non-empty and downwards-directed and has a lower bound in S, so inf B € S, while inf B = 7(inf A) by
635C(d-ii). Given € > 0, there is a 79 € B such that 0(u, — uinr ) < € whenever 7 € B and 7 < 79 (632E).
Take po € A such that 79 = 7(po); then 0(ur(,) — Ur(inf 4)) < € whenever p € A and p < pp. As A and € are
arbitrary, um satisfies (1) of 632F.

As u is near-simple, it is moderately oscillatory, so um is moderately oscillatory. By 632F, ur is locally
near-simple, and in fact near-simple, by 631F (c-ii).

635F Theorem Suppose that (;);cr is right-continuous. Let S be an order-convex sublattice of T,
and v = (Vs)secs a near-simple integrator; let Q be a sublattice of R such that m[Q] is a cofinal sublattice
of § which v-separates S (633Bb). If u = (u),es is a moderately oscillatory process, then [, umd(vr) is
defined and equal to [ u dv.

proof By 633Ka, fn[g] udv is defined and equal to [gudv. By 635Db, this is also [, umd(vr), since of
course the adapted interval function A(vr) (613Cc) is precisely (Av), as defined in 635DDb.

635G Corollary Suppose that (2;);cr is right-continuous. Let S be an order-convex sublattice of T,
and v = (v,)y,es a near-simple integrator, with quadratic variation v*. If Q is a sublattice of 7=1[S] such
that 7[Q] v-separates S, then the quadratic variation of vr[Q is v*m[ Q.

proof If Q is empty, this is trivial; so suppose otherwise. By 635Ec, vm is an integrator, so v7[Q is an
integrator and has a quadratic variation. Take any p € Q. Then 7[Q A p] v-separates S A w(p). P If 7,
7 e SAT(p) and o € Q, then
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[r<mlonpl=Ir<m(o)Ar(p)] =[r <m(o)]n[r <n(p)] =[r <(o)],
[w(onp) <7]=lr(o) Am(p) <7'] = r(o) <TJulr(p) <7'] = [r(o) <71,

[T <m(eAp)n[r(cnp)<7]=][r<m(o)]n[r(c) <]
So if 7 < 7/, then

N

jlelg([[T <m(o)]nlx(o) <)
= igg(ﬂT <7w(oAp)|nfr(cAp)<T].

[[UT 7é UT']]

As 7 and 7’/ are arbitrary, 7[Q A p] v-separates S A 7(p). Q
Of course S A7 (p) is still order-convex, and m[Q A p] is cofinal with S A w(p) because it contains 7(p). So
635F tells us that fg/\p vrd(vm) = fsm(p) vdv. Next, v? is also a near-simple integrator (631F(a-i), 616N),

and clearly v?m = (v7)?, so

2y _ 2y _ 2
fQ/\p d((’l)ﬂ') ) - fQ/\p d(’U 7T) - fS/\Tr(p) d(’l) )
by 635F again. Accordingly

2 _ 2\ _ ok
fQ/\p d((vm)?) — 2fQAp v d(vm) = fSM(p) d(v?) QISM(F)) vdv = vy

(617Kb). As p is arbitrary, the quadratic variation of v7|Q is the function p — ”;(p) 1 Q@ — L), that is,
v¥*r] Q.

635X Basic exercises (a) Suppose that (2;):cr is right-continuous. Let S be an order-convex sublattice
of T, and v, w local integrators with domain S, with covariation ['va]. Show that if Q is a sublattice of

7S] such that 7[Q] separates S, then [vW[QTqu[Q] is defined and equal to ['vT'w]ﬂ[Q.

635Y Further exercises (a) Set Tl = {t~ :t € T} U {t* : t € T} with the total ordering defined by

saying that, for s, t € T,
sT<tt <= 57 <t7 <= s <tt & s<t, sT<t7 <= s<t
(i) Show that Tl is totally ordered. (ii) For t € T, set B, = s, By+ = A if t = max T, and By = Nost As
otherwise. Show that (%B,),cri is a right-continuous filtration. Write T for the corresponding lattice of
stopping times. (iii) For t € T set m, =i~ € TI. For p € T let m(p) € Tl be given by the formula in 635B.
Show that
[m(p) >t ] =[n(p) >t ] =[p>1]

for every t € T. (iv) Show that [7(p) < w(7)] = [p < 7] for all p, 7 € T, and that w(p) =n(r) iff p=17. (v)
Show that if 7 € 7!l then B, = {A,: p € T, 7(p) > 7}

635 Notes and comments In this section, right-continuity of the filtration (;):cr is a generally ruling
hypothesis; this is because it seems to be necessary for the basic algebra of the lattice homomorphism
m: R — T (635Ca). With the elementary properties of this homomorphism in hand, the programme of
635D-635G is obvious, and we have just to make sure that it is watertight. In 653G-653J I will explain how
the ideas behind 635F can sometimes be used to replace an integral with respect to an unfamiliar jump-free
martingale by an integral with respect to Brownian motion.
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