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Chapter 62

Martingales

The centre of the theory of stochastic integration, since Itô 44, has been integrals
∫
uuu dvvv where vvv

is a martingale. In §621 I give a number of inequalities involving finite martingales which will make it
possible to go straight to the general case in §622. In §622 we have to check some algebra concerning
conditional expectations in order to make sense of the idea of ‘fully adapted martingale’, but the theorem
that martingales are local integrators (622G) is a straightforward consequence of 621Hf.

It is not in general the case that an indefinite integral with respect to a martingale is again a martingale.
For a full-strength theorem in this direction I think we need to turn to ‘virtually local’ martingales and
do some hard work (623O). To use Itô’s formula (619C) in its original form, in which the integrator was
Brownian motion, we need of course to know the quadratic variation of Brownian motion, which I come to
at last in 624F.

The next three sections are directed towards a structure theory for integrators in §627. This volume
is devoted to structures based on probability algebras (A, µ̄). The concepts of Chapter 61 are generally
law-independent in the sense that while the existence of the functional µ̄ is essential, its replacement by
another functional ν̄ such that (A, ν̄) is still a probability algebra makes no difference. However nearly
everything involving martingales is shaken up by a change in law. §625 examines such changes, and we find,
remarkably, that we do not change the semi-martingales (625F). In §626 I introduce submartingales and
previsible variations, with the Doob-Meyer theorem on the expression of submartingales as semi-martingales.
In §627 I apply this to supermartingales, and show that local integrators are semi-martingales.

The essential inequality in 621Hf is proved by ordinary martingale methods in §621. There is an alternative
route, incidentally yielding a better constant, which depends on a kind of interpolation; I present this in
§628.
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621 Finite martingales

I have to justify my repeated assertion that martingales are integrators. This, together with the develop-
ments it leads to, will need some non-trivial facts about finite martingales which are most easily described in
advance of their applications. However, the complexity of some of the lemmas below may be more bearable
if you can see what they’re for. So you may wish to treat this section as an appendix, and disentangle the
ideas when you find them being called on in §§622, 624 and 626.

621A Notation This section will be almost independent of the work in Chapter 61, and will be based
rather on the ideas of §275, interpreted as always in the language of Chapter 36. Once again, (A, µ̄) will
be a probability algebra, and for 1 ≤ p < ∞, Lpµ̄ = Lp(A, µ̄) ⊆ L0(A) will be the associated Lp-space

{w : w ∈ L0(A), ‖w‖p <∞} (§366), while E refers to the integral on L1
µ̄ (613Aa).

621B Uniform integrability We are going to need the following results from Volumes 2 and 3.

(a) Recall that a set A ⊆ L1
µ̄ is uniformly integrable if for every ǫ > 0 there is an M ≥ 0 such that

E((|u| −Mχ1)+) ≤ ǫ for every u ∈ A (246Ab, 354P, 365T1); equivalently, if A is ‖ ‖1-bounded and for every
ǫ > 0 there is a δ > 0 such that E(|u| × χa) ≤ ǫ whenever u ∈ A, a ∈ A and µ̄a ≤ δ (246Ca, 246G).
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2 Martingales 621Bb

(b) A non-empty set A ⊆ L0 = L0(A) is uniformly integrable iff

limα→∞ supu∈A E(|u| × χ[[|u| > α]]) = 0

(246I).

(c) Suppose that A, B ⊆ L1
µ̄ are uniformly integrable.

(i) Every subset of A is uniformly integrable; αA is uniformly integrable for every α ∈ R; A + B is
uniformly integrable; the solid hull of A is uniformly integrable (246C, 354Ra).

(ii) The T-closure A of A is uniformly integrable, where T is the topology of convergence in measure
on L0 (613B), and T agrees with the norm topology of L1

µ̄ on A (246J).

(d) A subset of L1
µ̄ is uniformly integrable iff it is relatively compact for the weak topology Ts(L

1
µ̄, L

∞(A))
(243Gb and 247C, or 365T(a-v)).

(e) The following useful fact was left in the exercises for §246. If p > 1, then any ‖ ‖p-bounded subset A
of L0 is uniformly integrable. PPP Suppose that ‖u‖p ≤ γ for u ∈ A. Given ǫ > 0, there is an M > 0 such
that γp ≤ ǫMp−1. Now for any u ∈ A,

(|u| −Mχ1)+ ≤ 1

Mp−1
|u|p, E((|u| −Mχ1)+) ≤ γp

Mp−1
≤ ǫ.

As ǫ is arbitrary, A is uniformly integrable. QQQ

621C Conditional expectations Of course we cannot talk about martingales without speaking of
conditional expectations, and this volume will call on the full resources developed in Volumes 2 and 3, which
I now recapitulate.

(a) Following the definitions in §365, we find that if B is a closed subalgebra of A then L0(B) ∩ L1
µ̄ =

L1(B, µ̄↾B) (365Qa2), and we have a unique positive linear operator PB : L1
µ̄ → L0(B) ∩ L1

µ̄ such that

E(PBu×χb) = E(u×χb) whenever u ∈ L1
µ̄ and b ∈ B (365Q). Counting ‖u‖p as ∞ if u ∈ L0(A) \Lp(A, µ̄),

‖PBu‖p ≤ ‖u‖p for every u ∈ L1
µ̄ and p ∈ [1,∞] (366J).

(b) If B and C are closed subalgebras of A and B ⊆ C, then

PBPC = PCPB = PB.

PPP (Cf. 458M.) Take any u ∈ L1
µ̄. (i) PBPCu ∈ L0(B) and

E(PBPCu× χb) = E(PCu× χb) = E(u× χb) = E(PBu× χb)

for every b ∈ B ⊆ C, so PBPCu = PBu. (ii) PBu ∈ L0(B) ⊆ L0(C) so PCPBu = PBu. QQQ

(c) If B is a closed subalgebra of A, u ∈ L1
µ̄, v ∈ L0(B) and u × v ∈ L1

µ̄, then PB(u × v) = PBu × v

(233K, 365Qa). So if u, v, u× PBv and PBu× v all belong to L1
µ̄,

PB(u× PBv) = PBu× PBv = PB(PBu× v)

and E(u× PBv) = E(PBu× v).

(d) (‘Jensen’s inequality’) Let h : R → R be a convex function and h̄ : L0 → L0 the corresponding map
(612Ac). If u and h̄(u) both belong to L1

µ̄, h̄(PBu) ≤ P (h̄B(u)) for every closed subalgebra B of A (365Qb).

(e) When p = 2, we have a sharper result: if u ∈ L2
µ̄ and B is a closed subalgebra of A, then ‖u‖22 =

‖PBu‖22 + ‖u− PBu‖2. PPP In the Hilbert space L2
µ̄,

(PBu|u) = E(u× PBu) = E(PB(u× PBu)) = E(PBu× PBu)

so

‖u− PBu‖22 = ‖u‖22 − 2(u|PBu) + ‖PBu‖22 = ‖u‖22 − ‖PBu‖22. QQQ

2Formerly 365Ra.
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621F Finite martingales 3

(f) If A ⊆ L1
µ̄ is uniformly integrable, then {PBu : u ∈ A, B is a closed subalgebra of A} is uniformly

integrable (246D, 365Tb).

(g)(i) If B is a non-empty downwards-directed family of closed subalgebras of A with intersection C, and
u ∈ L1 = L1

µ̄, then PCu is the ‖ ‖1-limit 1limB↓B PBu (367Qa).

(ii) If B is a non-empty upwards-directed family of closed subalgebras of A, C is the closed subalgebra
generated by

⋃
B and u ∈ L1, then PCu is the ‖ ‖1-limit 1limB↑B PBu (367Qb).

621D Definitions For the rest of this section, we shall be looking at a non-decreasing finite sequence
〈Ai〉i≤n of closed subalgebras of A; that is, a filtration in the sense of 611A in which the totally ordered set
T is {0, . . . , n} for some integer n. In this context, I will write Pi : L

1
µ̄ → L1

µ̄ for the conditional expectation
operator associated with Ai. Note that PiPj = Pmin(i,j) for all i, j ≤ n, by 621Cb. Let vvv = 〈vi〉i≤n be a

finite sequence in L1
µ̄.

(a) vvv is a martingale adapted to 〈Ai〉i≤n if vi = Pivj whenever i ≤ j ≤ n; equivalently, if vn ∈ L0(An)
and vi = Pivi+1 for every i < n.

(b) vvv is a submartingale adapted to 〈Ai〉i≤n if vi ∈ L0(Ai) and vi ≤ Pivj whenever i ≤ j ≤ n;
equivalently, if vi ∈ L0(Ai) for every i ≤ n and vi ≤ Pivi+1 for every i < n.

(Cf. 275A, 275Yg, 626B.)

621E Doob’s maximal inequality If 〈vi〉i≤n is a martingale adapted to 〈Ai〉i≤n, and v̄ = supi≤n |vi|,
then

tµ̄[[v̄ > t]] ≤ E(|vn| × χ[[v̄ > t]]) ≤ ‖vn‖1,

tµ̄[[v̄ ≥ t]] ≤ E(|vn| × χ[[v̄ ≥ t]]) ≤ ‖vn‖1
for every t ≥ 0.

proof (This is a small modification of 275D.) Set a = [[v̄ > t]], b+i = [[vi > t]], c+i = b+i \ supj<i b
+
j for i ≤ n

and a+ = supi≤n b
+
i = [[supi≤n vi > t]] (364La). Then

tµ̄a+ =

n∑

i=0

tµ̄c+i ≤
n∑

i=0

E(vi × χc+i ) =

n∑

i=0

E(vn × χc+i )

(because c+i ∈ Ai and vi is the conditional expectation of vn on vi)

= E(vn × χa+) ≤ E((vn ∨ 0)× χa).

Similarly, setting a− = supi≤n [[−vτi > t]] = [[infi≤n vi < t]], we have tµ̄a− ≤ E(((−vn) ∨ 0) × χa). Since

a+ ∪ a−,

tµ̄a ≤ E(((vn ∨ 0) + ((−vn) ∨ 0))× χa) = E(|vn| × χa) ≤ E(|vn|) = ‖vn‖1,
as claimed.

For the second version, the result is trivial if t = 0, and for t > 0 we have [[v̄ ≥ t]] = inf0≤s<t [[v̄ > s]], so

tµ̄[[v̄ ≥ t]] = lim
s↑t

sµ̄[[v̄ > s]]

≤ lim
s↑t

E(|vn| × χ[[v̄ > s]]) = E(|vn| × χ[[v̄ ≥ t]]).

621F Lemma Suppose that 〈ui〉i<n and 〈vi〉i≤n are such that ui ∈ L∞(Ai) and ‖ui‖∞ ≤ 1 for every

i < n and 〈vi〉i≤n is a martingale adapted to 〈Ai〉i≤n. Set z =
∑n−1
i=0 ui × (vi+1 − vi). Then ‖z‖2 ≤ ‖vn‖2.

D.H.Fremlin



4 Martingales 621F

proof If vn is not square-integrable, that is, ‖vn‖2 = ∞, this is trivial. So let us suppose that vn ∈ L2
µ̄. In

this case vi is square-integrable for every i (621Cd), so ui × (vi+1 − vi) is square-integrable for every i < n.
Now if i < j < n,

E(ui × (vi+1 − vi)× uj × (vj+1 − vj))

= E(Pj(ui × (vi+1 − vi)× uj × (vj+1 − vj)))

= E(ui × (vi+1 − vi)× uj × Pj(vj+1 − vj)) = 0

by 621Cc. At the same time, of course, E((vi+1 − vi)× (vj+1 − vj)) = 0. So

E(z2) =

n−1∑

i=0

E(u2i × (vi+1 − vi)
2) ≤

n−1∑

i=0

E((vi+1 − vi)
2) =

n−1∑

i=0

E(v2i+1 − v2i )

(621Ce)

≤ E(v2n)

and ‖z‖2 ≤ ‖vn‖2.

621G Proposition Suppose that vvv = 〈vi〉i≤n is a submartingale adapted to 〈Ai〉i≤n. Then there are

a non-decreasing process vvv# = 〈v#i 〉i≤n and a martingale v̂vv adapted to 〈Ai〉i≤n such that vvv = vvv# + v̂vv and

v#0 = 0. If −χ1 ≤ vi ≤ 0 for every i ≤ n, ‖v̂n‖22 ≤ ‖vn‖1 + 2‖v0‖1.
proof (a) Set wj = Pjvj+1 − vj , so that wj ∈ L0(Aj) and wj ≥ 0 for j < n; set v#j =

∑j−1
i=0 wi for j ≤ n, so

that v#j ∈ L0(Aj) for each j, v
#
0 = 0 and vvv# = 〈v#i 〉i≤n is non-decreasing. Set v̂vv = 〈v̂i〉i≤n where v̂i = vi−v#i

for each i, so that vvv = vvv# + v̂vv and v̂i ∈ L0(Ai) for each i. Also, of course, v
#
i and v̂i belong to L1

µ̄ for every
i.

(b) For i < n,

v̂i+1 − v̂i = vi+1 − vi − v#i+1 + v#i = vi+1 − vi − Pivi+1 + vi = vi+1 − Pivi+1,

so

Piv̂i+1 − v̂i = Pi(v̂i+1 − v̂i) = Pi(vi+1 − Pivi+1) = 0;

thus v̂vv is a martingale adapted to 〈Ai〉i≤n.
(c) Now suppose that −χ1 ≤ vi ≤ 0 for i ≤ n. In this case all the vi, Pivj , v

#
i and v̂i belong to

L∞(A) ⊆ L2
µ̄. If i < n then

E(v̂2i+1 − v̂2i ) = E(v̂2i+1 − (Piv̂i+1)
2) = E((v̂i+1 − Piv̂i+1)

2)

(621Ce)

= E((v̂i+1 − v̂i)
2) = E((vi+1 − Pivi+1)

2)

(by (b))

= E(v2i+1 − (Pivi+1)
2)

(621Ce again)

= E(v2i+1 − v2i ) + E(v2i − Piv
2
i+1)

= E(v2i+1 − v2i ) + E((vi − Pivi+1)× (vi + Pivi+1)))

≤ E(v2i+1 − v2i ) + 2E(|vi − Pivi+1|)
(because vi and Pivi+1 both lie between −χ1 and 0)

= E(v2i+1 − v2i ) + 2E(Pivi+1 − vi) = E(v2i+1 − v2i ) + 2E(vi+1 − vi).

Summing over i,

Measure Theory



621H Finite martingales 5

E(v̂2n) ≤ E(v̂20) + E(v2n)− E(v20) + 2E(vn)− 2E(v0)

≤ E(|vn|)− 2E(v0)

(because v# = 0 so v̂0 = v0, while v
2
n ≤ |vn| and vn ≤ 0)

= ‖vn‖1 + 2‖v0‖1.

621H Lemma Let vvv = 〈vi〉i≤n be a finite sequence in L1
µ̄ such that vi ∈ L0(Ai) for i ≤ n. Suppose that

〈αj〉j≤m, 〈uji〉j≤m,i<n are such that

αj ≥ 0 for j ≤ m,
∑m
j=0 αj = 1,

uji ∈ L0(Ai), ‖uji‖∞ ≤ 1 for i < n, j ≤ m.

Set z =
∑m
j=0 αj |

∑n−1
i=0 uji × (vi+1 − vi)|.

(a) If vvv is non-negative and non-decreasing, then µ̄[[z > 1]] ≤ ‖vn‖1.
(b) If vvv is a martingale adapted to 〈Ai〉i≤n then µ̄[[z > 1]] ≤ ‖vn‖22.
(c) If vvv is a submartingale adapted to 〈Ai〉i≤n and −χ1 ≤ vi ≤ 0 for every i ≤ n, then µ̄[[z > 2]] ≤ 3‖v0‖1.
(d) If vvv is a non-negative martingale adapted to 〈Ai〉i≤n, then µ̄[[z > 2]] ≤ 4E(vn).
(e) If vvv is a martingale adapted to 〈Ai〉i≤n, then µ̄[[z > 4]] ≤ 4‖vn‖1.
(f)(cf.Burkholder 66 and 628D below) If vvv is a martingale adapted to 〈Ai〉i≤n, then µ̄[[z > γ]] ≤ 16

γ
‖vn‖1

for every γ > 0.

(g) If vvv is a submartingale adapted to 〈Ai〉i≤n, then µ̄[[z > γ]] ≤ 66

γ
‖vn‖1 − 34

γ
E(v0) for every γ > 0.

Remark For most applications (there is an important exception in 627M) it will be enough to consider the

case m = 0, so that we are looking at z = |∑n−1
i=0 ui × (vi+1 − vi)| where ui ∈ L0(Ai) and ‖ui‖∞ ≤ 1 for

every i; this simplifies the formulae, but seems to make no difference to the ideas required.

proof (a)

µ̄[[z > 1]] ≤ E(z) =
m∑

j=0

αj

n−1∑

i=0

E(|uji| × (vi+1 − vi))

≤
m∑

j=0

αj

n−1∑

i=0

E(vi+1 − vi) =

m∑

j=0

αjE(vn − v0)

= E(vn − v0) ≤ E(vn) = ‖vn‖1.

(b) For j ≤ n, set zj = |∑n
i=0 uji × (vi+1 − vi)|. Then ‖zj‖2 ≤ ‖vn‖2, by 621F. Accordingly

‖z‖2 = ‖∑m
j=0 αjzj‖2 ≤ ∑m

j=0 αj‖zj‖2 ≤ ‖vn‖2,
and

µ̄[[z > 1]] ≤ E(z2) = ‖z‖22 ≤ ‖vn‖22.

(c) By 621G, we can express vvv as vvv# + v̂vv where vvv# = 〈v#i 〉i≤n is non-decreasing, v̂vv = 〈v̂i〉i≤n is a

martingale, v#0 = 0 and ‖v̂n‖22 ≤ ‖vn‖1 + 2‖v0‖1.
Set

z# =
∑m
j=0 αj |

∑n−1
i=0 uji × (v#i+1 − v#i )|, ẑ =

∑m
j=0 αj |

∑n−1
i=0 uji × (v̂i+1 − v̂i)|.

Then z ≤ z# + ẑ, so [[z > 2]] ⊆ [[z# > 1]] ∪ [[ẑ > 1]] and

D.H.Fremlin



6 Martingales 621H

µ̄[[z > 2]] ≤ µ̄[[z# > 1]] + µ̄[[ẑ > 1]] ≤ ‖v#n ‖1 + ‖v̂n‖22
(by (a) and (b) above)

≤ E(v#n − v#0 ) + 2‖v0‖1 + ‖vn‖1 = E(vn − v0) + 2‖v0‖1 + ‖vn‖1
(because vvv − vvv# is a martingale)

= 3‖v0‖1.

(d) Set ṽ̃ṽv = 〈ṽi〉i≤n where ṽi = −(vi ∧ χ1) for each i. Then ṽ̃ṽv is a submartingale adapted to 〈Ai〉i≤n. PPP
For each i, ṽi belongs to L

0(Ai) because vi does. If i < n, then

ṽi = −(vi ∧ χ1) = −(Pivi+1 ∧ χ1) ≤ Pi(−(vi+1 ∧ χ1))
(621Cd, with h(α) = −min(α, 1) = max(−α,−1) for α ∈ R)

= Piṽi+1. QQQ

Of course −χ1 ≤ ṽi ≤ 0 for each i because vi ≥ 0. Set

z̃ =
∑m
j=0 αj |

∑n−1
i=0 uji × (ṽi+1 − ṽi)| =

∑m
j=0 αj |

∑n−1
i=0 uji × (−ṽi+1 + ṽi)|.

Then

µ̄[[z̃ > 2]] ≤ 3‖ṽ0‖1 ((c) above)

≤ 3‖v0‖1.

On the other hand,

[[z 6= z̃]] ⊆ supi≤n [[vi 6= −ṽi]] = supi≤n [[vi > 1]] = [[supi≤n |vi| > 1]],

so

µ̄[[z > 2]] ≤ µ̄[[z̃ > 2]] + µ̄[[z 6= −z̃′]] ≤ 3‖v0‖1 + µ̄[[supi≤n |vi| > 1]]

≤ ‖vn‖1 + 3‖v0‖1 = E(vn + 3v0) = 4E(vn)

by Doob’s maximal inequality (621E).

(e) This time, set

v′i =
1

2
Pi(|vn|+ vn), v′′i =

1

2
Pi(|vn| − vn)

for i ≤ n, and

z′ =
∑m
j=0 αj |

∑n−1
i=0 ui × (v′i+1 − v′i)|, z′′ =

∑m
j=0 αj |

∑n−1
i=0 ui × (v′′i+1 − v′′i )|.

Then 〈v′i〉i≤n is a martingale adapted to 〈Ai〉i≤n, because

Piv
′
i+1 =

1

2
PiPi+1(|vn|+ vn) =

1

2
Pi(|vn|+ vn) = v′i

for every i < n, and of course v′i ≥ 0 for every i ≤ n. Similarly, 〈v′′i 〉i≤n is a non-negative martingale adapted
to 〈Ai〉i≤n. Since v′i − v′′i = Pivn = vi for every i, z ≤ z′ + z′′. So [[z > 4]] ⊆ [[z′ > 2]] ∪ [[z′′ > 2]] and

µ̄[[z > 4]] ≤ µ̄[[z′ > 2]] + µ̄[[z′′ > 2]] ≤ 4E(v′n + v′′n) ((d) above)

= 4E(vn) = 4‖vn‖1,

as claimed.

Measure Theory



621I Finite martingales 7

(f) We now have

µ̄[[z > γ]] = µ̄[[
4

γ
z > 4]] ≤ 4‖4

γ
vn‖1 =

16

γ
‖vn‖1

for every γ > 0.

(g) Again using 621G, express vvv as vvv# + v̂vv where vvv# = 〈v#i 〉i≤n is non-decreasing, v̂vv = 〈v̂i〉i≤n is a

martingale and v#0 = 0. Set

ẑ =
∑m
j=0 αj |

∑n−1
i=0 ui × (v̂i+1 − v̂i)|, z# =

∑m
j=0 αj |

∑n−1
i=0 ui × (v#i+1 − v#i )|.

Applying (a) to
2

γ
vvv# and

2

γ
z#, we see that µ̄[[z# > 1

2γ]] ≤
2

γ
‖v#n ‖1; while (f) tells us that µ̄[[ẑ > 1

2γ]] ≤
32

γ
‖v̂n‖1. Since z ≤ z# + ẑ,

µ̄[[z > γ]] ≤ µ̄[[z# > 1
2γ]] + µ̄[[ẑ > 1

2γ]] ≤
2

γ
‖v#n ‖1 +

32

γ
‖v̂n‖1.

Now we know that

‖v#n ‖1 = E(v#n ) = E(vn)− E(v̂n) = E(vn)− E(v0) ≤ ‖vn‖1 − E(v0)

while

‖v̂n‖1 ≤ ‖vn‖1 + ‖v#n ‖1 ≤ 2‖vn‖1 − E(v0).

So we get

µ̄[[z > γ]] ≤ 66

γ
‖vn‖1 − 34

γ
E(v0).

621I Lemma Suppose that 〈vi〉i≤n is a non-negative martingale adapted to 〈Ai〉i≤n, and that M ≥ 0 is
such that [[vi > M ]] ⊆ [[vj = vn]] whenever i ≤ j ≤ n. Suppose that ui ∈ L∞(Ai) and ‖ui‖∞ ≤ 1 for i < n,

and set z =
∑n−1
i=0 ui × (vi+1 − vi). Take any δ > 0.

(a) z is expressible as z′ + z′′ where z′, z′′ ∈ L0(An) and

‖z′‖1 ≤ (2 +
M

δ
)‖(vn −Mχ1)+‖1,

‖z′′‖22 ≤ δ2 + ‖vn ∧Mχ1‖22.

(b) ‖z‖1 ≤ δ + (2 +
M

δ
)‖vn‖1 +

√
M‖vn‖1.

proof (a) Induce on n.

(i) The case n = 0 is trivial. For the inductive step to n ≥ 1, set β = 2 +
M

δ
and z0 =

∑n−2
i=0 ui ×

(vi+1 − vi); since

[[vi > M ]] ⊆ [[vj = vn]] ∩ [[vn−1 = vn]] ⊆ [[vj = vn−1]]

whenever i ≤ j ≤ n − 1, the inductive hypothesis tells us that we can express z0 as z′0 + z′′0 where z′0,
z′′0 ∈ L0(An−1) and

‖z′0‖1 ≤ β‖(vn−1 −Mχ1)+‖1,

‖z′′0 ‖22 ≤ δ2 + ‖vn−1 ∧Mχ1‖22.
Write P for Pn−1 and v̂ for (vn −Mχ1)+ − (vn−1 −Mχ1)+. Because

[[(vn−1 −Mχ1)+ 6= 0]] = [[vn−1 > M ]] ⊆ [[vn−1 = vn]] ⊆ [[v̂ = 0]],

v̂ = (vn −Mχ1)+ × χ[[vn−1 ≤M ]] ≥ 0, and
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8 Martingales 621I

vn−1 ∧Mχ1− P (vn ∧Mχ1) = vn−1 − (vn−1 −Mχ1)+ − Pvn + P (vn −Mχ1)+

= P (vn −Mχ1)+ − (vn−1 −Mχ1)+ = P v̂ ≥ 0.

(ii) There is a z̃ ∈ L0(An−1) such that ‖z̃‖22 ≤ δ2 + ‖P (vn ∧Mχ1)‖22 and ‖z′′0 − z̃‖1 ≤ M

δ
‖v̂‖1. PPP If

‖z′′0 ‖22 ≤ δ2 + ‖P (vn ∧Mχ1)‖22, set z̃ = z′′0 . Otherwise, the function

γ 7→ ‖med(−γχ1, z′′0 , γχ1)‖22
is continuous, so there is a γ ≥ δ such that ‖z̃‖22 = δ2 + ‖P (vn ∧Mχ1)‖22 where z̃ = med(−γχ1, z′′0 , γχ1). In
this case,

‖z′′0 ‖22 − ‖z̃‖22 = E((|z′′0 |+ |z̃|)× (|z′′0 | − |z̃|)) ≥ 2δE(|z′′0 | − |z̃|) = 2δ‖z′′0 − z̃‖1
because |z′′0 | = |z̃|+ |z′′0 − z̃| and

[[z′′0 6= z̃]] = [[|z′′0 | > γ]] ⊆ [[|z′′0 | ≥ δ]] ∩ [[|z̃| ≥ δ]],

and similarly

‖vn−1 ∧Mχ1‖22 − ‖P (vn ∧Mχ1)‖22
= E

(
(vn−1 ∧Mχ1 + P (vn ∧Mχ1))× (vn−1 ∧Mχ1− P (vn ∧Mχ1))

)

≤ 2M‖vn−1 ∧Mχ1− P (vn ∧Mχ1)‖1 = 2M‖P v̂‖1 = 2M‖v̂‖1
because v̂ ≥ 0. So

‖z′′0 − z̃‖1 ≤ 1

2δ
(‖z′′0 ‖22 − ‖z̃‖22)

≤ 1

2δ
(δ2 + ‖vn−1 ∧Mχ1‖22 − δ2 − ‖P (vn ∧Mχ1)‖22) ≤

M

δ
‖v̂‖1. QQQ

(iii) Set z′′ = z̃+un−1× (vn∧Mχ1−P (vn∧Mχ1)). Since z̃×un−1 ∈ L0(An−1)∩L2
µ̄ and vn∧Mχ1−

P (vn ∧Mχ1) ∈ L∞(A),

0 = E(z̃ × un−1 × (vn ∧Mχ1− P (vn ∧Mχ1)))

= E(P (vn ∧Mχ1)× (vn ∧Mχ1− P (vn ∧Mχ1)))

and

‖z′′‖22 = ‖z̃‖22 + ‖un−1 × (vn ∧Mχ1− P (vn ∧Mχ1))‖22
≤ δ2 + ‖P (vn ∧Mχ1)‖22 + ‖vn ∧Mχ1− P (vn ∧Mχ1)‖22 = δ2 + ‖vn ∧Mχ1‖22.

(iv) Set

z′ = z − z′′

= z0 + un−1 × (vn − vn−1)− z̃ − un−1 × (vn ∧Mχ1− P (vn ∧Mχ1))

= z′0 + z′′0 − z̃

+ un−1 × ((vn −Mχ1)+ − (vn−1 −Mχ1)+ − vn−1 ∧Mχ1 + P (vn ∧Mχ1))

= z′0 + z′′0 − z̃ + un−1 × (v̂ − P v̂),

so that

‖z′‖1 ≤ ‖z′0‖1 + ‖z′′0 − z̃‖1 + ‖v̂‖1 + ‖P v̂‖1
≤ β‖(vn−1 −Mχ1)+‖1 + M

δ
‖v̂‖1 + 2‖v̂‖1

= β(‖(vn−1 −Mχ1)+‖1 + ‖v̂‖1) = β‖(vn −Mχ1)+‖1,

Measure Theory



621J Finite martingales 9

and the induction proceeds.

(b) follows at once, because

‖z′′‖21 ≤ ‖z′′‖22 ≤ δ2 + ‖vn ∧Mχ1‖22 ≤ δ2 +M‖vn‖1
and ‖z′′‖1 ≤ δ +

√
M‖vn‖1.

621J Lemma Suppose that 〈vi〉i≤n is a non-negative submartingale adapted to 〈Ai〉i≤n and z =∑n−1
i=0 Pivi+1 − vi. Then αE(z × χ[[z > 2α]]) ≤ 3(βE(vn) + αE((vn − βχ1)+)) whenever α, β ≥ 0.

proof (see Karatzas & Shreve 91, 1.4.10) (a) For k ≤ n and γ ≥ 0, set

uk = Pkvn − vk, zk =
∑k−1
i=0 Pivi+1 − vi,

(note that zk+1 ∈ L0(Ak) if k < n),

bγ = [[z > γ]],

aγk = [[zk+1 > γ]] \ [[zk > γ]] ∈ Ak if k < n, aγn = 1 \ [[z > γ]] ∈ An.

Because vvv is a submartingale, 0 = z0 ≤ . . . ≤ zn = z, 〈aγk〉k≤n is a partition of unity in A and bγ =
supk<n aγk.

Observe that if k ≤ j then

Pk(Pjvj+1 − vj) = PkPj(vj+1 − vj) = Pk(vj+1 − vj),

so if k < n then

Pkz − zk = Pk(
n−1∑

j=k

Pjvj+1 − vi) = Pk(
n−1∑

j=k

vj+1 − vi)

= Pk(vn − vk) = uk.

(b) For any γ ≥ 0 and k < n.

E(χaγk × z)− γµ̄aγk ≤ E(χaγk × uk) ≤ βµ̄aγk + E(χaγk × (vn − βχ1)+).

PPP

χaγk × uk = χaγk × (Pkz − zk) ≥ χaγk × (Pkz − γχ1)

because aγk ∩ [[zk > γ]] = 0. So

E(χaγk × z)− γµ̄aγk = E(χaγk × Pkz)− γµ̄aγk

(because aγk ∈ Ak)

= E(χaγk × Pk(z − γχ1)) ≤ E(χaγk × uk)

≤ E(χaγk × Pkvn) = E(χaγk × vn)

= E(χaγk × (vn ∧ βχ1)) + E(χaγk × (vn − βχ1)+)

≤ E(χaγk × βχ1) + E(χaγk × (vn − βχ1)+)

= βµ̄aγk + E(χaγk × (vn − βχ1)+). QQQ

(c) Now we see that

E(χbγ × z)− γµ̄bγ =

n−1∑

k=0

E(χaγk × z)− γµ̄aγk

≤
n−1∑

k=0

βµ̄aγk + E(χaγk × (vn − βχ1)+)

= βµ̄bγ + E(χbγ × (vn − βχ1)+)

D.H.Fremlin



10 Martingales 621J

for every γ ≥ 0. Next,

αµ̄b2α ≤ E(χb2α × (z − αχ1)) ≤ E(χbα × (z − αχ1)) = E(χbα × z)− αµ̄bα

because b2α ⊆ [[z − αχ1 > α]] ⊆ bα. It follows that

E(χb2α × z) ≤ (2α+ β)µ̄b2α + E(χb2α × (vn − βχ1)+)

≤ 2(E(χbα × z)− αµ̄bα) + βµ̄bα + E(χbα × (vn − βχ1)+)

≤ 3(βµ̄bα + E(χbα × (vn − βχ1)+)).

(d) On the other hand,

αµ̄bα = αµ̄[[z > α]] ≤ E(z) =
n−1∑

i=0

E(Pivi+1)− E(vi)

=

n−1∑

i=0

E(vi+1)− E(vi) = E(vn)− E(vσ0
) ≤ E(vn)

and

αE(z × χ[[z > 2α]]) = αE(χb2α × z) ≤ 3(βE(vn) + αE((vn − βχ1)+))

= 3(βE(vmax I) + αE((vmax I − βχ1)+)),

as required.

621X Basic exercises (a) Suppose that we think of 621D-621J as applying to a stochastic integration
structure (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) such that T = {0, . . . , n}. Show that if vvv = 〈vσ〉σ∈T is any fully
adapted process, then

QT (dvvv) = {
n−1∑

i=0

ui × (v(i+1)̌ − vı̌) : ui ∈ L0(Ai), ‖ui‖∞ ≤ 1 for every i < n}.

(b) In the context of Lemma 621H, show that, given M ≥ 0, there are n, vvv and 〈ui〉i<n such that vvv is a
martingale and ‖z‖1 ≥M‖vn‖1. (Hint : vi = γiχai, ui = (−1)iχ1 where 1 = a0 ⊇ . . . ⊇ an.)

621 Notes and comments There are some curious formulae here, which is why I think readers may wish
to look ahead to see what they are supposed to do. But 621H, 621I and 621J, as well as 621E, are of the same
kind; they seek to bound quantities calculated from sequences 〈ui〉i≤n and 〈vi〉i≤n in terms of a quantity
determined by the final term vn alone. The same is true of the fundamental inequalities 275D and 275F.

The constant 16 in 621Hf is far from best possible; in fact it is the case there that µ̄[[|z| > γ]] ≤ 2

γ
‖vn‖1

(628D). (I do not know whether the inequality can be improved further.) However the proof in §628 is
substantially longer than that in 621G-621H and demands techniques from measure theory which I do not
think we shall need elsewhere in this volume. The argument above is a better preparation for what will come
later. For instance, the idea in 621G will reappear, in much more general form, in the ‘previsible variations’
of §626.

The formulae in 621I-621J are bound to seem odd. In 621I we are presented with M but anticipate that
δ and ‖vn‖1 can be forced to be small, so that ‖z‖1 is small; this will be used in one of the main results
of the chapter (623O). In 621J we see that limα→∞ f( 1

α
E(vn)) = 0, while a bound on E(z × χ[[z > α]]) is

something we look for if we want to prove that a set is uniformly integrable. See part (b) of the proof of
626M.

The notation of this section is a little clumsier than it might be, because from 621F onwards I repeatedly
speak of elements z =

∑n−1
i=0 ui × (vi+1 − vi) without making the obvious association with QS(dvvv) (621Xa).

I am in fact avoiding any appeal to the ideas introduced in Chapter 61; the material here can be regarded
as a development of §275 in the language of Chapter 36, quite apart from its applications to stochastic
integration, even though it is manifestly directed to those applications.
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Version of 29.7.20

622 Fully adapted martingales

I come now to the promised central fact of the theory: martingales are local integrators. The first step is to
establish a concept of ‘martingale’ for fully adapted processes (622C), which involves us in the properties of
conditional expectations with respect to stopping-time algebras (622B). Elementary facts about martingales
are in 622D-622F. The theorem that every martingale is a local integrator is now easy (622H); of course it
depends on non-trivial ideas from §621. In 622L I check that Brownian motion, as defined in 612T, is a
local martingale. The rest of the section is a miscellany of results which will be needed later.

622A Notation As in Chapter 61, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration struc-
ture, with Tf and Tb the corresponding lattices of finite and bounded stopping times. For t ∈ T , ť is the
constant stopping time at t. As before, I write θ(w) = E(|w| ∧ χ1) for w ∈ L0(A). For a sublattice S of T ,
I(S) will be the set of finite sublattices of S.

For τ ∈ T , Pτ : L1
µ̄ → L0(Aτ ) ∩ L1

µ̄, where L
1
µ̄ = L1(A, µ̄), will be the conditional expectation operator

associated with the closed subalgebra Aτ of A (621C).

622B We need something to match the familiar rule on composition of conditional expectation operators
in 621Cb.

Proposition Suppose that σ, τ ∈ T .
(a) PσPτ = Pσ∧τ .
(b) [[σ = τ ]] ⊆ [[Pσu = Pτu]] for every u ∈ L1

µ̄.

proof (a)(i) Set a = [[σ ≤ τ ]], so that a ∈ Aσ∧τ = Aσ ∩ Aτ (611H(c-ii)), and u ∈ L0(Aσ∧τ ) whenever
u ∈ L0(Aσ) and u = u× χa (612C). Now if u ∈ L1

µ̄ and u = u× χa, we see that

(PσPτu)× χa = Pσ(Pτu× χa) = PσPτ (u× χa) = PσPτu ∈ L0(Aσ)

so that PσPτu ∈ L0(Aσ∧τ ). And if b ∈ Aσ∧τ we surely have

E(PσPτu× χb) = E(Pσ(Pτu× χb)) = E(Pτu× χb) = E(u× χb).

So PσPτu = Pσ∧τu.

(ii) Next, setting a′ = [[τ ≤ σ]], we have u ∈ L0(Aσ∧τ ) whenever u ∈ L0(Aτ ) and u = u× χa′. So now,
if u ∈ L1

µ̄ and u = u× χa′, we have Pτu = Pτu× χa′ ∈ L0(Aσ∧τ ) and PσPτu = Pτu ∈ L0(Aσ∧τ ). As in (i),

E(PσPτu× χb) = E(Pτu× χb) = E(u× χb)

whenever b ∈ Aσ∧τ . So PσPτu = Pσ∧τu in this case also.

(iii) Assembling these, and noting that 1 \ a ⊆ a′,

PσPτu = PσPτ (u× χa) + PσPτ (u× χ(1 \ a))

= Pσ∧τ (u× χa) + Pσ∧τ (u× χ(1 \ a)) = Pσ∧τu

for every u ∈ L1
µ̄, and PσPτ = Pσ∧τ .

(b) Set c = a ∩ a′ = [[σ = τ ]]. Then c ∈ Aσ∧τ and (u× χc)× χa′ = u× χc, so

Pτu× χc = Pτ (u× χc) = PσPτ (u× χc)

(see (a-ii) above)

= Pσ∧τ (u× χc).

Similarly,

Pσu× χc = Pτ∧σ(u× χc) = Pσ∧τ (u× χc) = Pτu× χc.

So [[Pσu = Pτu]] ⊇ c.
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12 Martingales 622C

622C Fully adapted martingales Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted process.

(a) vvv is an L1-process if vσ ∈ L1
µ̄ for every σ ∈ S. Generally, vvv is an Lp-process, for 1 ≤ p < ∞, if

vσ ∈ Lp(A, µ̄) (366A) for every σ ∈ S, and an L∞-process if vσ ∈ L∞(A) (363A, 364J) for every σ ∈ S.
For 1 ≤ p ≤ ∞, vvv is ‖ ‖p-bounded if supσ∈S ‖vσ‖p is finite (counting the supremum as 0 if S is empty).

Note that vvv is ‖ ‖∞-bounded iff it is order-bounded and sup |vvv|, as defined in 614Ea, is in L∞(A).

(b) vvv is a martingale if it is an L1-process and vσ = Pσvτ whenever σ ≤ τ in S.

(c) vvv is a local martingale if there is a covering ideal S ′ of S (611N) such that vvv↾S ′ is a martingale.
Taking S ′ = S we see that every martingale is a local martingale. For classic examples of local martingales

which are not martingales, see 622Xe and 632N.
Note that I do not say ‘vvv is a local martingale if vvv↾S ∧ τ is a martingale for every τ ∈ S’; the ‘local’ in

‘local martingale’ is not the same as the ‘local’ in ‘local integrator’ or ‘locally order-bounded’ or ‘locally of
bounded variation’ or ‘locally moderately oscillatory’.

(e)(i) vvv is uniformly integrable if it is an L1-process and {vσ : σ ∈ S} is uniformly integrable.

(ii) It will be convenient to use the phrase ‘Lp-martingale’ to mean a martingale which is also an
Lp-process.

622D Proposition Let S be a sublattice of T and Mfa = Mfa(S) the Riesz space of fully adapted
processes with domain S. Let S ′ be a sublattice of S.

(a) For any p ∈ [1,∞], the set of Lp-processes with domain S is a solid linear subspace of Mfa, and vvv↾S ′

is an Lp-process whenever vvv ∈Mfa is an Lp-process.
(b)(i) The set of martingales with domain S is a linear subspace of Mfa.

(ii) If vvv ∈Mfa is a martingale then vvv↾S ′ is a martingale.
(c) The set of local martingales with domain S is a linear subspace of Mfa. If S ′ is an ideal of S, then

vvv↾S ′ is a local martingale for every local martingale vvv ∈Mfa.
(d) The set of uniformly integrable processes with domain S is a solid linear subspace of Mfa, and vvv↾S ′

is uniformly integrable whenever vvv ∈Mfa is uniformly integrable.

proof (a) This is immediate from the definitions (622Ca).

(b)(i)-(ii) These too are immediate from the definitions.

(c) Applying (b-i) to appropriate ideals S ∧ τ , we see that the set of local martingales with domain S is
a linear subspace of Mfa. Concerning ideals of S, we need to know that if S ′ is an ideal of S and S1 is a
covering ideal of S, then S1 ∩ S ′ is a covering ideal of S ′. PPP If τ ∈ S ′, then

supσ∈S1∩S′ [[τ = σ]] ⊇ supσ∈S1
[[τ = τ ∧ σ]] ⊇ supσ∈S1

[[τ = σ]] = 1. QQQ

(d) All we need to know is that subsets, sums and scalar multiples and solid hulls of uniformly integrable
sets are uniformly integrable, as declared in 621B(c-i).

622E Elementary facts Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process.

(a) If uuu is constant with a value in L1
µ̄, then uuu is a uniformly integrable martingale.

(b)(i) If τ ∈ S, then uuu is a martingale iff uuu↾S ∧ τ and uuu↾S ∨ τ are martingales. PPP If uuu is a martingale
then uuu↾S ∧ τ and uuu↾S ∨ τ are martingales by 622Db. If uuu↾S ∧ τ and uuu↾S ∨ τ are martingales, then we have

uσ = uσ∨τ + uσ∧τ − uτ ∈ L1
µ̄

for every σ ∈ S (612Df). So uuu is an L1-process. If σ ≤ σ′ in S then

Pσ∧τuσ′∨τ = PσPτuσ′∨τ = Pσuτ

(using 622Ba for the first equality), so
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622F Fully adapted martingales 13

[[σ ≤ τ ]] = [[σ = σ ∧ τ ]] ∩ [[σ = σ ∧ σ′ ∧ τ ]]
∩ [[Pσuσ′∨τ = Pσ∧τuσ′∨τ ]] ∩ [[Pσuσ′∧τ = Pσ∧σ′∧τuσ′∧τ ]]

(611E(a-ii-β, 622Bb)

⊆ [[σ = σ ∧ σ′ ∧ τ ]] ∩ [[Pσuσ′∨τ = Pσuτ ]]

∩ [[Pσuσ′∧τ = uσ∧σ′∧τ ]] ∩ [[uσ = uσ∧σ′ ∧ τ ]]
⊆ [[Pσuσ′∨τ = Pσuτ ]] ∩ [[Pσuσ′∧τ = uσ]]

⊆ [[Pσ(uσ′∧τ + uσ′∨τ − uτ ) = uσ]] = [[Pσuσ′ = uσ]].

On the other hand,

[[τ ≤ σ]] ⊆ [[σ = σ ∨ τ ]] ∩ [[σ′ ∧ τ = τ ]]

⊆ [[σ = σ ∨ τ ]] ∩ [[σ′ ∧ τ = τ ]] ∩ [[Pσuτ = Pσ∨τuτ ]]

∩ [[Pσuσ′∨τ = Pσ∨τuσ′∨τ ]] ∩ [[Pσuσ′∧τ = Pσ∨τuσ′∧τ ]]

⊆ [[σ = σ ∨ τ ]] ∩ [[σ′ ∧ τ = τ ]] ∩ [[Pσuτ = uτ ]]

∩ [[Pσuσ′∨τ = uσ∨τ ]] ∩ [[Pσuσ′∧τ = uσ′∧τ ]]

⊆ [[Pσuτ = uτ ]] ∩ [[Pσuσ′∨τ = uσ]] ∩ [[Pσuσ′∧τ = uτ ]] ⊆ [[Pσuσ′ = uσ]].

So in fact [[Pσuσ′ = uσ]] = 1 and Pσuσ′ = uσ. As σ and σ′ are arbitrary, uuu is a martingale. QQQ

(ii) If τ ∈ S, uuu↾S ∧ τ is a martingale and uuu↾S ∨ τ is constant, then uuu is a martingale. (For the constant
value of uuu↾S ∨ τ must be uτ , which is a value of uuu↾S ∧ τ so is in L1

µ̄.)

(c) If for every ǫ > 0 there is a martingale vvv = 〈vσ〉σ∈S such that ‖uσ − vσ‖1 ≤ ǫ for every σ ∈ S, then
uuu is a martingale. PPP Note first that as there is an L1-process vvv such that uuu − vvv is an L1-process, uuu also
is an L1-process. Now suppose that τ ≤ τ ′ in S and ǫ > 0. Let vvv = 〈vσ〉σ∈S be a martingale such that
‖uσ − vσ‖1 ≤ 1

2ǫ for every σ ∈ S. Then
‖Pτuτ ′ − uτ‖1 ≤ ‖Pτuτ ′ − Pτvτ ′‖1 + ‖Pτvτ ′ − vτ‖1 + ‖vτ − uτ‖1 ≤ ǫ

(using 621Ca to see that ‖Pτ (uτ ′ − vτ ′)‖1 ≤ ‖uτ ′ − vτ ′‖1). As ǫ is arbitrary, Pτuτ ′ = uτ ; as τ and τ ′ are
arbitrary, uuu is a martingale. QQQ

(d) If uuu is a martingale and A ⊆ S is non-empty and downwards-directed, then the ‖ ‖1-limit z =
1limσ↓A uσ is defined and is the limit limσ↓A uσ for the topology of convergence in measure; and if τ ∈ A
then z is the conditional expectation of uτ on

⋂
σ∈A Aσ. PPP By 367Qa, 1limσ↓A uσ = 1limσ↓A Pσuτ is defined

and is the conditional expectation of uτ on
⋂
σ∈A Aσ. By 613B(d-i), this is also the limit limσ↓A uσ. QQQ

In particular, if S is non-empty, then the starting value limσ↓S uσ is defined and belongs to L1
µ̄.

622F Proposition Take any u ∈ L1
µ̄.

(a) PPPu = 〈Pτu〉τ∈T is a uniformly integrable martingale.
(b) Suppose that σ, τ ∈ T and [[u 6= 0]] ⊆ [[σ = τ ]]. Then Pσu = Pτu.

proof (a) By 622Bb, PPPu is fully adapted; by 622Ba, it is a martingale; by 621Cf, it is uniformly integrable.

(b) As in the proof of 622Ba, set a = [[σ ≤ τ ]]. Then u = u× χa and a ∈ Aσ so

Pσu = Pσ(u× χa) = Pσu× χa;

since Pσu ∈ L0(Aσ), Pσu ∈ L0(Aτ ) (612C again) and

Pσu = PτPσu = Pτ∧σu.

Similarly,

Pτu = Pσ∧τu = Pτ∧σu = Pσu,

as claimed.
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14 Martingales 622G

622G I have a great deal more to say about both martingales and local martingales. But I will move
directly to the most important result in this section.

Theorem Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a ‖ ‖1-bounded martingale. Then vvv is an integrator,
therefore moderately oscillatory and order-bounded.

proof If S is empty, this is trivial, so let us suppose that S 6= ∅. Then QS(dvvv) is topologically bounded.
PPP Let ǫ > 0. Let δ > 0 be such that δ supσ∈S ‖vσ‖1 ≤ ǫ2. Take z ∈ QS(dvvv). Then there are a non-empty
finite sublattice I of S and a fully adapted process uuu = 〈uσ〉σ∈I with ‖uuu‖∞ ≤ 1 such that z = SI(uuu, dvvv).

Let (τ0, . . . , τn) linearly generate the I-cells (611L). Then z =
∑n−1
i=0 uτi × (vτi+1

− vτi). Now 〈vτi〉i≤n is a
martingale in the classical sense of 621Da. So

θ(δz) ≤ ǫ+ µ̄[[δ|z| > ǫ]] ≤ ǫ+ µ̄[[|z| > ǫ

δ
]] ≤ ǫ+

16δ

ǫ
‖vτn‖1

(621Hf)

≤ 17ǫ.

As ǫ is arbitrary, QS(dvvv) is topologically bounded. QQQ
Thus vvv is an integrator. By 616Ib, it is moderately oscillatory and order-bounded.

622H Theorem Let S be a sublattice of T . If vvv = 〈vσ〉σ∈S is a local martingale, then it is a local
integrator, therefore locally moderately oscillatory.

proof Let S ′ be a covering ideal of S such that vvv↾S ′ is a martingale. Suppose that τ ∈ S and ǫ > 0. Then
there is a τ1 ∈ S ′ such that c = [[τ ≤ τ1]] has measure at least 1− ǫ (611Mh). Set vvv′ = PPPvτ1↾S ∧ τ . As PPPvτ1
is a uniformly integrable martingale (622Fa), it is an integrator (622G), so vvv′ is an integrator (616P(b-ii)).

Now if σ ∈ S ∧ τ ,

[[vσ = v′σ]] = [[vσ = Pσvτ1 ]] = [[vσ = PσPτ1vτ1 ]] = [[vσ = Pσ∧τ1vτ1 ]] = [[vσ = vσ∧τ1 ]]

(because σ ∧ τ1 belongs to S ′ and vvv↾S ′ is a martingale)

⊇ [[σ ∧ τ1 = σ]] = [[σ ≤ τ1]] ⊇ [[τ ≤ τ1]] = c.

So

[[vvv′ 6= vvv↾S ∧ τ ]] = supσ∈S∧τ [[vσ 6= v′σ]]

is disjoint from c and has measure at most ǫ. As ǫ is arbitrary, vvv↾S ∧ τ is an integrator (616P(b-iii)). As τ
is arbitrary, vvv is a local integrator. QQQ

622I The principal martingale theorems (see §275) take slightly different forms in the present context,
so I take the space to spell one of them out.

Doob’s maximal inequality (second form) Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a martingale.
Then vvv is locally order-bounded, and

µ̄(supσ∈S∧τ [[|vσ| > γ]]) = µ̄([[supσ∈S∧τ |vσ| > γ]]) ≤ 1

γ
E(|vτ |)

for every τ ∈ S and γ > 0.

proof If A ⊆ S ∧ τ is a non-empty finite set, then

µ̄([[supσ∈A |vσ| > γ]]) ≤ 1

γ
E(|vτ |).

PPP Let I be the sublattice of S generated by A, and take τ0 ≤ . . . ≤ τn linearly generating the I-cells (611L
again). Then (vτ0 , . . . , vτn , vτ ) is a finite martingale adapted to (Aτ0 , . . . ,Aτn ,Aτ ), so

µ̄([[supi≤n |vτi | > γ]]) ≤ 1

γ
E(|vτ |)

Measure Theory
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by 621E. Write v for supi≤n |vτi |. If σ ∈ A, then

[[|vσ| ≤ v]] ⊇ supi≤n [[vσ = vτi ]] ⊇ supi≤n [[σ = τi]] = 1

by 611Ke. So vσ ≤ v. Thus [[supσ∈A |vσ| > γ]] ⊆ [[v > γ]] has measure at most
1

γ
E(|vτ |). QQQ

Accordingly cγ = supσ∈S∧τ [[|vσ| > γ]] has measure at most
1

γ
E(|vτ |), by 321D. Since this tends to 0 as γ

increases to ∞, {|vσ| : σ ∈ S ∧ τ} is bounded above in L0(A), and

µ̄([[supσ∈S∧τ |vσ| > γ]]) = µ̄cγ ≤ 1

γ
E(|vτ |)

for every γ > 0 (364L(a-ii)), as required.

622J Proposition Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S a uniformly integrable
martingale.

(a) The ‖ ‖1-limit v = 1limσ↑S vσ is defined in L1
µ̄, and v is also the limit limσ↑S vσ for the topology of

convergence in measure.
(b) vvv = PPPv↾S is order-bounded, and infτ∈S supσ∈S∨τ |v − vσ| = 0.

proof (a)(i) {vσ : σ ∈ S} is relatively weakly compact in L1
µ̄ (621Bd). Let F be an ultrafilter on S

containing S ∨ σ for every σ ∈ S. Then the limit u = w1limσ→F uσ for the weak topology on L1
µ̄ is defined

(2A3R). If τ ∈ S, then Pτ : L1
µ̄ → L1

µ̄ is a norm-continuous linear operator, so is weakly continuous (3A5Ec),
and

Pτu = w1limσ→F Pτvσ = vτ

because S ∨ τ ∈ F and Pτvσ = vτ for every τ ∈ S ∨ σ. So vvv = PPPu↾S.
(ii) Let C be the closed subalgebra of A generated by

⋃
σ∈S Aσ and set v = PCu. By 621C(g-ii),

v = 1limσ↑S Pσu = 1limσ↑S vσ.

By 613B(d-i) again, v = limσ↑S vσ.

(b) If τ ∈ S, then
Pτv = 1limσ↑S Pτvσ = vτ ;

accordingly vvv = PPPv↾S. Being uniformly integrable, vvv is ‖ ‖1-bounded, so 622G tells us that it is moderately
oscillatory; by 615Ga, infτ∈S supσ∈S∨τ |v − vσ| = 0.

622K Lemma Let S be a finitely full sublattice of T , and uuu = 〈uσ〉σ∈S an L1-process such that
E(uσ) = E(uτ ) for all σ, τ ∈ S. Then uuu is a martingale.

proof Take σ ≤ τ ∈ S and a ∈ Aσ ⊆ Aτ . Then there is a τ ′ ∈ T such that a ⊆ [[τ ′ = τ ]] and 1 \ a ⊆ [[τ ′ = σ]]
(611I). Now we have

E(uσ × χa) + E(uσ × χ(1 \ a)) = E(uσ) = E(uτ ′)

= E(uτ ′ × χa) + E(uτ ′ × χ(1 \ a))

= E(uτ × χa) + E(uσ × χ(1 \ a))

so

E(uσ × χa) = E(uτ × χa).

As a is arbitrary and uσ ∈ L1
µ̄ ∩ L0(Cσ), uσ is the conditional expectation of uτ on Cσ. As σ and τ are

arbitrary, uuu is a martingale.

622L Brownian motion: Theorem Let www be Brownian motion, and ιιι the corresponding identity
process. Then www and www2 − ιιι are local martingales, and www↾Tb is a martingale.
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proof As in 612T and 612F, I regard www = 〈wσ〉σ∈Tf
and ιιι = 〈ισ〉σ∈Tf

as processes on the real-time
stochastic integration structure (C, ν̄, [0,∞[ , 〈Ct〉t≥0, T , 〈Cτ 〉τ∈T ), where (C, ν̄) is the measure algebra of
(Ω,Σ, ν), Ω = C([0,∞[)0, ν is one-dimensional Wiener measure and Σ is its domain.

(a) For n ∈ N, let hn : Ω → [0,∞] be the Brownian exit time from ]−n, n[ (477I), so that hn is a stopping
time; write τn for the corresponding stopping time in T (612H). Because h is finite ν-almost everywhere
(478Ma), τn ∈ Tf . Now E(wτ ) = E(w2

τ − ιτ ) = 0 for every τ ∈ T ∧ τn. PPP I use Dynkin’s formula (478K).
Express τ as h• where h ≤ hn is a stopping time. By 478Jd3, there is a smooth function f : R → R with
compact support such that f(x) = x for x ∈ [−n− 1, n+ 1]. In the language of 612H and 478K,

E(wτ ) = E(Xh) = E(f(Xh))

(because h(ω) ≤ hn(ω), so |Xh(ω)| = |ω(h(ω))| ≤ n for almost every ω ∈ Ω)

= f(0) +
1

2
E(

∫ h

0

(∇2f)(Xs)ds = 0

because ∇2f(ξ) = 0 for |ξ| ≤ n, while |Xs(ω)| = |ω(s)| ≤ n whenever s ∈ h(ω). Similarly,

E(w2
τ − ιτ ) = E(X2

h − h) = E(f2(Xh)− h)

= f2(0) +
1

2
E(

∫ h

0

(∇2f2)(Xs)− 2 ds = 0

because (∇2f2)(ξ) = 2 for |ξ| ≤ n. QQQ

(b) By 622K, www↾T ∧ τn and (www2 − ιιι)↾T ∧ τn are martingales for each n ∈ N. Since 〈τn〉n∈N is non-
decreasing, www↾S and (www2 − ιιι)↾S are martingales, where S =

⋃
n∈N

T ∧ τn is an ideal in Tf . If τ is any
member of Tf , it can be represented as h• where h is a finite-valued stopping time; now ω is bounded on
[0, h(ω)] for every ω ∈ Ω, so Ω =

⋃
n∈N

{ω : h(ω) ≤ hn(ω)} and supn∈N [[τ ≤ τn]] = 1. Accordingly S is a

covering ideal of Tf and www and www2 − ιιι are local martingales.

(c) To see that www↾Tb is a martingale, take any t ≥ 0. If σ ∈ S ∧ ť,
E(w2

σ) = E(ισ) = E(σ) ≤ t,

so www↾S∧ ť is ‖ ‖2-bounded, therefore uniformly integrable, as well as being a martingale. By 622J, it is of the
form PPPv↾S ∧ ť for some v ∈ L1

µ̄. But S covers Tf , so S ∧ ť covers Tf ∧ ť (611M(g-ii)) and www↾Tf ∧ ť = PPPv↾Tf ∧ ť
is a martingale. As t is arbitrary, www↾Tb = www↾

⋃
t≥0 Tf ∧ ť is a martingale.

Remark It is also the case that (www2 − ιιι)↾Tb is a martingale; see 632Xe.

622M You will find various more or less elementary facts about martingales in the exercises. One which
will be useful later in this chapter is the following.

Lemma Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a fully adapted process. Then S ′ = {τ : τ ∈ S, vvv↾S ∧τ
is a martingale} is an ideal in S, and vvv↾S ′ is a martingale.

proof (a) If τ ∈ S, then τ ∈ S ′ iff vσ = Pσvτ whenever σ ∈ S and σ ≤ τ . PPP

τ ∈ S ′ ⇐⇒ vσ = Pσvσ′ whenever σ, σ′ ∈ S and σ ≤ σ′ ≤ τ

=⇒ vσ = Pσvτ whenever σ ∈ S and σ ≤ τ

=⇒ vσ = Pσvτ = PσPσ′vτ = Pσvσ′ whenever σ, σ′ ∈ S and σ ≤ σ′ ≤ τ. QQQ

(b) If τ ∈ S and τ ≤ τ ′ ∈ S ′ then τ ∈ S ′. PPP If σ ∈ S and σ ≤ τ then

vσ = Pσvτ ′ = PσPτvτ ′ = Pσvτ . QQQ

3Later editions only.
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(c) If τ , τ ′ ∈ S ′, σ ∈ S and τ ≤ σ ≤ τ ∨ τ ′ then vσ = Pσvτ∨τ ′ . PPP Set a = [[σ ≤ τ ′]] ∈ Aσ (611H(c-i)). We
have

a = [[τ ≤ σ]] ∩ [[σ ≤ τ ′]] ⊆ [[τ ≤ τ ′]] = [[τ ′ = τ ′ ∨ τ ]] ⊆ [[vτ ′ = vτ ′∨τ ]]

(using 611E(c-iv-α) and (a-ii-β)) and

a = [[σ = σ ∧ τ ′]] ⊆ [[Pσvτ ′ = Pσ∧τ ′vτ ′ ]] ∩ [[vσ∧τ ′ = vσ]],

(611E(a-ii-β) again and 622Bb) so

Pσ(vτ∨τ ′ × χa) = Pσ(vτ ′ × χa) = Pσvτ ′ × χa = Pσ∧τ ′vτ ′ × χa

= vσ∧τ ′ × χa = vσ × χa.

Next, setting

a′ = [[τ ′ < σ]] ⊆ [[τ ′ < τ ∨ τ ′]] = [[τ ′ < τ ]] ∪ [[τ ′ < τ ′]]

(611Eb)

= [[τ ′ < τ ]] ⊆ [[τ ′ ≤ τ ]] = [[τ ∨ τ ′ = τ ]] ⊆ [[σ ≤ τ ]] = [[σ ∨ τ = τ ]] = [[σ = τ ]]

⊆ [[vτ∨τ ′ = vτ ]] ∩ [[Pσvτ = Pτvτ ]] ∩ [[vτ = vσ]],

we see that

Pσ(vτ∨τ ′ × χa′) = Pσ(vτ × χa′) = Pσ(vσ × χa′) = vσ × χa′.

Adding, we have Pσvτ∨τ ′ = vσ, as claimed. QQQ

(d) If τ , τ ′ ∈ S ′, σ ∈ S and σ ≤ τ ∨ τ ′ then vσ = Pσvσ∨τ . PPP Set

a = [[σ ≤ τ ]] = [[σ ∨ τ = τ ]] = [[σ ∧ τ = σ]]

⊆ [[vσ∨τ = vσ]] ∩ [[Pσ∧τvτ = Pσvτ ]] ∩ [[vσ∧τ = vσ]].

Then

Pσ(vσ∨τ × χa) = Pσ(vτ × χa) = Pσvτ × χa = PσPτvτ × χa

= Pσ∧τvτ × χa = vσ∧τ × χa = vσ × χa.

And setting

a′ = [[τ < σ]] ⊆ [[σ ∨ τ = σ]] ⊆ [[vσ∨τ = vσ]],

we have

Pσ(vσ∨τ × χa′) = Pσ(vσ × χa′) = vσ × χa′,

so Pσvσ∨τ = vσ. QQQ
Now we have τ ≤ σ ∨ τ ≤ τ ∨ τ ′, so (c) tells us that

vσ = Pσvσ∨τ = PσPσ∨τvτ∨τ ′ = Pσvτ∨τ ′ .

As σ is arbitrary, τ ∨ τ ′ ∈ S ′. As τ and τ ′ are arbitrary, (a) tells us that S ′ is an ideal of S.
(e) Finally, we have vσ = Pσvτ whenever σ, τ ∈ S ′ and σ ≤ τ , so vvv↾S ′ is a martingale.

622N Extensions to covered envelopes: Proposition Let S be a sublattice of T with covered
envelope Ŝ, and uuu = 〈uσ〉σ∈S a fully adapted process with fully adapted extension ûuu = 〈ûσ〉σ∈Ŝ .

(a) If ûuu is a martingale then uuu is a martingale.
(b) If uuu is a local martingale then ûuu is a local martingale.
(c) ûuu is a uniformly integrable martingale iff uuu is a uniformly integrable martingale.

proof (a) This is a special case of 622Db.
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(b) Take τ ∈ Ŝ and ǫ > 0. We know that supσ∈S [[τ = σ]] = 1, so there is a non-empty finite subset I of
S such that µ̄a ≥ 1− ǫ, where a = supσ∈I [[τ = σ]]. Set τ̃ = sup I ∈ S. Then

[[τ ≤ τ̃ ]] ⊇ supσ∈I [[τ = σ]] ∩ [[σ ≤ τ̃ ]] = a

so µ̄[[τ̃ < τ ]] ≤ ǫ. Because uuu is a local martingale, there is a τ ′ ∈ S such that uuu↾S ∧ τ ′ is a martingale and
µ̄[[τ ′ < τ̃ ]] ≤ ǫ. Consider the martingale PPPuτ ′ (622F). This is defined everywhere on T and agrees with uuu on

S∧τ ′. Now Ŝ ∧τ ′ is the covered envelope of S∧τ (611M(e-i)), while PPPuτ ′↾Ŝ ∧τ ′ is fully adapted and extends

uuu↾S ∧ τ ′, so must be equal to ûuu↾Ŝ ∧ τ ′. Thus ûuu↾Ŝ ∧ τ ′ is a martingale, while [[τ ′ < τ ]] ⊆ [[τ ′ < τ̃ ]] ∪ [[τ̃ < τ ]]
has measure at most 2ǫ. As τ and ǫ are arbitrary, ûuu is a local martingale.

(c) If ûuu is a uniformly integrable martingale then uuu = ûuu↾S must be a uniformly integrable martingale. If

uuu is a uniformly integrable martingale, it is of the form PPPu↾S for some u ∈ L1
µ̄ (622J), and now PPPu↾Ŝ is a

uniformly integrable martingale. But PPPu↾Ŝ is a fully adapted process extending uuu, so must be ûuu, and ûuu is
a uniformly integrable martingale.

622O Proposition Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a martingale.
(a) If S1 is the ideal of T generated by S, there is a unique martingale vvv = 〈vτ 〉τ∈S1

extending uuu.
(b) If S2 is the full ideal of T generated by S, there is a local martingale v̂vv = 〈v̂τ 〉τ∈S2

extending uuu.

proof (a) Since S is upwards-directed,
⋃
σ∈S T ∧σ is an ideal of T and must be S1. If τ ∈ S1 and σ, σ′ ∈ S

are such that τ ≤ σ and τ ≤ σ′, then

Pτuσ = PτPσuσ∨σ′ = Pτuσ∨σ′ = Pτuσ′ ,

so we can define vτ ∈ L0(A) by saying that vτ = Pτvσ whenever τ ≤ σ ∈ S. If τ ≤ τ ′ ∈ S1, there is a σ ∈ S
such that τ ′ ≤ σ and

Pτvτ ′ = PτPτ ′uσ = Pτvσ = vτ .

In particular, Pτvτ = vτ and vτ ∈ L0(Aτ ). Also

[[τ = τ ′]] ⊆ [[Pτvτ ′ = Pτ ′vτ ′ ]] = [[vτ = vτ ′ ]]

by 622Bb. So vvv is fully adapted (612Db) and is a martingale. If σ ∈ S then vσ = Pσuσ = uσ, so vvv extends
uuu.

As for uniqueness, if vvv′ = 〈v′τ 〉τ∈S1
is another martingale with domain S1 extending uuu, then

v′τ = Pτv
′
σ = Pτuσ = vτ

whenever τ ≤ σ ∈ S, so vvv′ = vvv.

(b) The covered envelope Ŝ1 is an ideal of T . PPP We know that it is a full sublattice (611M(b-i), 611M(c-

ii)). If τ ∈ T and τ ≤ τ ′ ∈ Ŝ1, then

sup
σ∈S1

[[τ = σ]] ⊇ sup
σ∈S1

[[τ = σ ∧ τ ]]

(because σ ∧ τ ∈ S1 for every σ ∈ S1)

= sup
σ∈S1

[[τ ≤ σ]] ⊇ sup
σ∈S1

[[τ ≤ σ]] ∩ [[σ = τ ′]]

= sup
σ∈S1

[[τ ≤ τ ′]] ∩ [[σ = τ ′]] = sup
σ∈S1

[[σ = τ ′]] = 1

and τ ∈ Ŝ1. QQQ
So Ŝ1 is a full ideal of T , and of course it includes S; while any full ideal including S must include S1

and Ŝ1. Thus S2 = Ŝ1. Now the fully adapted extension v̂vv of vvv has domain S2, extends uuu and is a local
martingale (622Nb).

622P Proposition Let S be a non-empty sublattice of T , uuu = 〈uσ〉σ∈S a moderately oscillatory process
and vvv = 〈vσ〉σ∈S a martingale. Then ‖

∫
S uuu dvvv‖2 ≤ ‖uuu‖∞ supτ∈S ‖vσ‖2.

Measure Theory
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proof The formulae here depend on my conventions for the use of ∞, so perhaps I should restate these.
0 ·∞ = 0, so if either uuu or vvv is 0, the result is trivial. Otherwise, if uuu is not ‖ ‖∞-bounded, then ‖uuu‖∞ = ∞;
if vvv is not ‖ ‖2-bounded, then supτ∈S ‖vσ‖2 = ∞; both cases are trivial. So we can suppose that M = ‖uuu‖∞
and M ′ = supσ∈S ‖vσ‖2 are both finite and non-zero.

As vvv is ‖ ‖2-bounded it is ‖ ‖1-bounded, therefore an integrator (622G), and
∫
S uuu dvvv is defined. The point

is that if I ∈ I(S) then ‖SI(uuu, dvvv)‖2 ≤ MM ′. PPP If I = ∅ or M = 0 this is trivial. Otherwise, take
(τ0, . . . , τn) linearly generating the I-cells. Then

‖SI(uuu, dvvv)‖2 =M‖
n−1∑

i=0

1

M
uτi × (vτi+1

− vτi)‖2 ≤M‖vτn‖2

(by 621F, applied to the martingale (vτ0 , . . . , vτn))

≤MM ′. QQQ

Since ‖ ‖2-balls are closed in L0(A) (613Bc),

‖
∫
S
uuu dvvv‖2 = ‖ limI↑I(S) SI(uuu, dvvv)‖2 ≤MM ′,

as claimed.

622Q Proposition Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S fully adapted processes
such that uuu is locally moderately oscillatory and vvv is a martingale. Then ‖

∫
S∧τ uuu dvvv‖2 ≤ ‖uuu↾S ∧ τ‖∞‖vτ‖2

for every τ ∈ S, and if the right-hand side is always finite, the indefinite integral iivvv(uuu) is a martingale.

proof (a) We know from 622H that vvv is a local integrator so the process iivvv(uuu) is defined everywhere
on S. For τ ∈ S write zτ for

∫
S∧τ uuu dvvv. If τ ∈ S and σ ∈ S ∧ τ , then ‖vσ‖2 ≤ ‖vτ‖2 by 366J, so

622P tells us that ‖zτ‖2 ≤ ‖uuu↾S ∧ τ‖∞‖vτ‖2. At the same time, we see from the argument in 622P that
{SI(uuu, dvvv) : I ∈ I(S ∧ τ)} is ‖ ‖2-bounded, therefore uniformly integrable (621Be).

(b)Now suppose that ‖uuu↾S∧τ‖∞‖vτ‖2 is finite for every τ ∈ S. Take τ ≤ τ ′ in S. Because {SI(uuu, dvvv) : I ∈
I(S∧τ ′)}∪{zτ ′−zτ} is uniformly integrable, and zτ ′−zτ =

∫
S∩[τ,τ ′]

uuu dvvv is the limit limI↑I(S∩[τ,τ ′]) SI(uuu, dvvv)

for the topology of convergence in measure, it is also the limit for ‖ ‖1 (621B(c-ii)). As Pτ is ‖ ‖1-continuous,
this means that

Pτzτ ′ − zτ = Pτ (zτ ′ − zτ ) = limI↑I([τ,τ ′]) PτSI(uuu, dvvv) = 0

because if τ ≤ σ ≤ σ′ ≤ τ ′ then

Pτ (uσ × (vσ′ − vσ)) = PτPσ(uσ × (vσ′ − vσ)) = Pτ (uσ × Pσ(vσ′ − vσ))

= Pτ (uσ × (Pσvσ′ − vσ)) = 0.

So Pτzτ ′ = zτ ; as τ and τ ′ are arbitrary, iivvv(uuu) is a martingale.

622R Law-independence I remarked in 613I that the Riemann-sum integral, like the topology of
convergence in measure on L0(A), does not depend on the measure µ̄ assigned to A; if ν̄ is any strictly positive
totaly finite countably additive functional on A, the stochastic integration structure (A, ν̄, T, 〈At〉t∈T ) will
behave exactly like the original structure (A, µ̄, T, 〈At〉t∈T ). This is the case for most of the rest of Chapter
61. In a formal sense there are a great many definitions to check. Already in 615B I defined the ucp topology

on a space Mo-b(S) in terms of an F-norm θ̂ defined in terms of the standard F-norm θ on L0(A), and θ

does depend on the measure. But if we take this into account, and speak of θµ̄ and θν̄ giving rise to θ̂µ̄ and

θ̂ν̄ , then we know that

for every ǫ > 0 there is a δ > 0 such that ν̄(a) ≤ ǫ whenever µ̄(b) ≤ δ

and consequently

for every ǫ > 0 there is a δ > 0 such that θν̄(u) ≤ ǫ whenever θµ̄(u) ≤ δ,
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for every ǫ > 0 there is a δ > 0 such that θ̂ν̄(uuu) ≤ ǫ whenever θ̂µ̄(uuu) ≤ δ.

Since this works equally well with µ̄ and ν̄ exchanged, the µ̄-ucp topology and uniformity on Mo-b(S) are
the same as the ν̄-ucp topology and uniformity.

Continuing through ‘moderately oscillatory’ processes (615E), ‘integrating interval functions’ and ‘inte-
grators’ (616F), these are defined in terms of the topology of L0(A), so are the same in both structures.
‘Bounded variation’ (614K), ‘cumulative variation’ (614O) and ‘(residual) oscillation’ (618B) can, with a
little care, be defined in ways which do not call on the measure at all, but only on the Riesz space structure of
L0(A), so the same is true of ‘jump-free process’. ‘Covariations’ and ‘quadratic variations’ (617H) are based
on the Riemann-sum integral which doesn’t change. So the way to Itô’s formula (§619) is clear throughout.

Of course the examples, Brownian motion (612T, 622L) and Poisson processes (612U), are based on
explicitly defined measures, and make no sense without them. But it is only in the present section that we
have come to a general class of processes for which we really need to know which measure we are using.
We do not expect anything to do with Lpµ̄ or ‖ ‖p, for p < ∞, to be stable in the way that L0(A), L∞(A)
and ‖ ‖∞ are. In particular, conditional expectations (621C) and martingales (622C) are dependent on the
exact measure we have in hand. So in the present chapter our expectations are reversed. I will return to an
occasion in which, surprisingly, we do have law-independence, in 625F.

622X Basic exercises >>>(a) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a martingale. Let τ ∈ T and
set S ′ = {σ : σ ∈ T , σ ∧ τ ∈ S}. Show that σ 7→ vσ∧τ : S ′ → L0(A) is a martingale.

(b) Let S be a sublattice of T , uuu a process with domain S, and z an element of L0(
⋂
σ∈S Aσ). Show that

if uuu is a martingale and zuuu is an L1-process then zuuu is a martingale.

(c) Let vvv be a local martingale defined on a sublattice S of T . Show that vvv↾S ∨ τ is a local martingale
for every τ ∈ S.

(d) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 616Xa and 615Xf. Let f : [0,∞[ → R be a
function. (i) Show that f corresponds to a martingale with domain Tf iff it corresponds to a local martingale
iff it is constant. (ii) Show that f corresponds to a uniformly integrable process iff it is bounded.

>>>(e) Let (A, µ̄) be the measure algebra of Lebesgue measure on [0, 1]. (i) Set T = [0, 1] and for t ∈ T set
at = [t, 1]• ∈ A, At = {a : a ∩ at is either 0 or at}; show that 〈At〉t∈T is a filtration in the sense of 611B. (ii)
Let T be the associated family of stopping times. Show that for any τ ∈ T there is a least sτ ∈ [0, 1] such
that [[τ > sτ ]] ∩ asτ = 0, and that τ 7→ sτ : T → [0, 1] is a lattice homomorphism. (iii) Show that there is a
τ∗ ∈ T defined by saying that [[τ∗ > t]] = at for every t ∈ [0, 1], and that sτ∗ = 1. (iv) Set S = {τ : τ ≤ τ∗},
S ′ = {τ : τ ≤ τ∗, sτ < 1}; show that S ′ = S \{τ∗} is a covering ideal of S. (v) Set uτ =

1

1−sτ
χasτ for τ ∈ S ′,

uτ∗ = 0; show that uuu = 〈uτ 〉τ∈S is jump-free, that uuu↾S ′ is a martingale, and that uuu is a local martingale
which is not a martingale. *(vi) Show that 〈At〉t∈T is right-continuous in the sense of 632B below.

(f) Let φ : [0, 1] → [0,∞[ be such that limδ↓0 φ(δ) = 0. Let S be a sublattice of T and Mmart,φ the set of
martingales uuu = 〈uσ〉σ∈S such that E(|uσ| × χa) ≤ φ(µ̄a) for every σ ∈ S and a ∈ A. Show that Mmart,φ is
a subset of the space Mo-b(S) of order-bounded processes and is closed in the ucp topology.

>>>(g) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a family in L1
µ̄ such that Pσvτ = vσ whenever σ, τ ∈ S

and σ ≤ τ . Show that vvv is fully adapted.

(h) Let S be a sublattice of T , and vvv a local martingale with domain S. Set S ′ = {τ : τ ∈ T ,
infσ∈S [[σ < τ ]] = 0. Show (i) that S ′ is the full ideal of T generated by S (ii) that there is a unique local
martingale on S ′ extending uuu.

(i) Let S be a non-empty sublattice of T , and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S fully adapted processes such
that vvv is a martingale and z =

∫
S uuu dvvv is defined. Show that ‖z‖2 ≤ ‖uuu‖∞ supσ∈S ‖vσ‖2.

>>>(j) Let (Ω,Σ, µ) be the interval ]0, 1] with Lebesgue measure, and T = [1,∞[. For t ≥ 1, set Σt =

{E : E ∈ Σ, either [0, 1
t
] ∩ E or [0, 1

t
] \ E is negligible}. Set Xt(ω) =

1√
ω

if ωt ≥ 1, 2
√
t if ωt < 1, and
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X∞(ω) =
1√
ω

for every ω ∈ Ω. Set Zt(ω) = −2 if ωt ≥ 1, 2t − 2 if ωt < 1, and Z∞(ω) = −2 for every

ω ∈ Ω. Let (A, µ̄) be the measure algebra of µ, and 〈At〉t≥1 the filtration corresponding to 〈Σt〉t≥1. In
L0(A), set v = X•

∞ and let vvv be the uniformly integrable martingale PPPv; let zzz = 〈zτ 〉τ∈T be the indefinite
integral iivvv(vvv). (i) Set h(ω) = 1

ω
for ω ∈ ]0, 1]; show that h is a stopping time adapted to 〈Σt〉t≥1. (ii) Let

τ ∈ T be the stopping time associated with h. Show that T ∧ τ = {ť ∧ τ : t ≥ 1} ∪ {τ}. (iii) Show that
Pťv = X•

t for every t ≥ 1. (iv) Show that zť = Z•

t for every t ≥ 1. (v) Show that zmax T = Z•

∞. (vi) Show
that zzz is a jump-free local martingale and an L1-process but not a martingale. *(vii) Show that 〈At〉t≥1 is
right-continuous.

(k) Give an example of a stochastic integration structure (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ), a sublattice S
of T and a uniformly integrable process with domain S such that its fully adapted extension to the covered
envelope of S is not an L1-process.

622Y Further exercises (a) Let www = 〈wσ〉σ∈Tf
be Brownian motion. Show that there is a sublattice

S of Tf , with covered envelope Ŝ, such that www↾Ŝ is a local martingale, but www↾S is not.

622 Notes and comments Compared with the martingales of §275 and §621, the point of ‘fully adapted’
martingales is that they are defined on a lattice which is not totally ordered in any case in which the theory
here is appropriate. So we have some new questions to ask. In particular, it is not quite obvious that PσPτ
will be Pσ∧τ (458M, 622Ba), or that every element of L1

µ̄ will generate a fully adapted martingale (622Fa).
622M is another result which is easy in the totally ordered case, but demands finesse in the general context.

If you look at 612H and 632L below, you will see that some measure-theoretic considerations enter the
argument, in particular the notion of progressive measurability, which have no direct parallel in the theory of
stochastic processes in L0. When eventually we come to applications of the theory here, they will generally
be based on such processes as those examined in §455, where the measure theory is essential. But for the
moment we can leave this to look after itself.

Innumerable variations on the concept of ‘martingale’ have been investigated. Here I have looked only
at ‘local’ martingales; ‘approximately local’ and ‘virtually local’ martingales will come in the next section.
Submartingales will reappear in §626, and supermartingales and quasimartingales in §627.

By far the most important martingale in mathematics is Brownian motion, which here appears in 622L.
In the proof I appeal to Dynkin’s formula, a fundamental result in the theory of harmonic functions in §478.
I did warn you, in the introduction to this volume, that applications might depend on ‘further non-trivial
ideas’. But I ought to confess at once that there is an alternative proof, not dependent on anything in §478,
using ideas in §632 below.

Once we have observed that martingales are local integrators (622H), it is clear that we should try to
understand indefinite integrals with respect to martingales, which is indeed where stochastic integration
began, with Itô’s formula for integrals with respect to Brownian motion. Most of the rest of this chapter
will be about integration with respect to martingales. Here I begin with a couple of baby steps, 622P-622Q,
about L2-martingales. Since jump-free processes will often (subject to an appropriate interpretation of the
word ‘locally’) be locally ‖ ‖∞-bounded, 622Q will take us a long way with jump-free martingales.

Version of 10.12.21/21.8.23

623 Approximately and virtually local martingales

I have presented a number of contexts in which an indefinite integral iivvv(uuu) can be expected to share
properties with the integrator vvv (614D, 614T, 616J, 618Q). In contrast with this pattern, we can have a
martingale with a corresponding indefinite integral which is not a martingale (622Xj), and this occurs in
some of the central examples of the theory (631Ya). However the indefinite integral is often ‘almost’ a
martingale in some sense. In this section I give what I think is the most important result in this direction
for the Riemann-sum indefinite integral (623O). In the generality here, we need to go a good deal deeper
than in §622, with what I call ‘virtually local’ martingales (623J). These depend, in turn, on a special class
of operators on spaces of locally moderately oscillatory processes (623B).

c© 2018 D. H. Fremlin
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22 Martingales 623A

623A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. If S is a sub-
lattice of T , Mfa(S), Mo-b(S), Mmo(S) and Mlmo(S) will be the spaces of fully adapted, order-bounded,
moderately oscillatory and locally moderately oscillatory processes with domain S, Mbv(S) ⊆ Mfa(S) will
be the space of processes with bounded variation, and I(S) will be the set of finite sublattices of S. If
h : R → R is a Borel function, h̄ will denote either of the corresponding operators on L0(A) or Mlmo(S)
(612Ac, 612Ia, 615Fb). L1 will be L1(A, µ̄). For τ ∈ T , Pτ : L1 → L1 ∩ L0(Aτ ) will be the conditional
expectation associated with the closed subalgebra Aτ , and if z ∈ L1 PPPz will be the martingale 〈Pτz〉τ∈T .

623B The operators RA: Proposition Let S be a sublattice of T and A ⊆ S a non-empty downwards-
directed set.

(a) We have an f -algebra homomorphism RA :Mlmo(S) →Mlmo(S) defined by setting

RA(〈uσ〉σ∈S) = 〈limρ↓A uσ∧ρ〉σ∈S

whenever 〈uσ〉σ∈S ∈Mlmo(S), and if uuu ∈Mmo(S) then RA(uuu) ∈Mmo(S).
(b) h̄RA = RAh̄ :Mlmo(S) →Mlmo(S) for every continuous function h : R → R.
(c) Take uuu = 〈uσ〉σ∈S ∈Mlmo(S) and express uuu′ = RA(uuu) as 〈u′σ〉σ∈S .

(i) The starting values limσ↓S u
′
σ and limσ↓S uσ are defined and equal.

(ii) If uuu is ‖ ‖1-bounded then uuu′ is ‖ ‖1-bounded and supσ∈S ‖u′σ‖1 ≤ supσ∈S ‖uσ‖1.
(d) Write Ŝ for the covered envelope of S. If uuu ∈Mlmo(S) has fully adapted extension ûuu to Ŝ, then RA(ûuu)

is the fully adapted extension of RA(uuu) to Ŝ.
proof (a)(i) If uuu = 〈uσ〉σ∈S is locally moderately oscillatory, limρ↓A uσ∧ρ is defined (615Gb) and belongs
to L0(Aσ) for every σ ∈ S (613Bj). If σ, τ ∈ S then

[[σ = τ ]] ⊆ infρ∈A [[uσ∧ρ = uτ∧ρ]] ⊆ [[limρ↓A uσ∧ρ = limρ↓A uτ∧ρ]],

so RA(uuu) ∈Mfa(S).
(ii) Because addition, multiplication and modulus are continuous functions on L0(A), RA :Mlmo(S) →

Mfa(S) is an f -algebra homomorphism.

(iii) If uuu = 〈uσ〉σ∈S is moderately oscillatory, then |uσ∧ρ| ≤ sup |uuu| whenever σ ∈ S and ρ ∈ A, so
| limρ↓A uσ∧ρ| ≤ sup |uuu| whenever σ ∈ S, and RA(uuu) is order-bounded, with sup |RA(uuu)| ≤ sup |uuu|. So we
have an operator RA :Mmo(S) →Mo-b(S) which is continuous for the ucp topology.

(iv) If uuu = 〈uσ〉σ∈S is non-decreasing, non-negative and order-bounded, then whenever σ ≤ τ in S we
shall have

0 ≤ uσ∧ρ ≤ uτ∧ρ ≤ sup |uuu|
for every ρ ∈ A, so

0 ≤ limρ↓A uσ∧ρ ≤ limρ↓A uτ∧ρ ≤ sup |uuu|.
Thus RA(uuu) is also non-decreasing, non-negative and order-bounded.

(v) It follows that if uuu ∈Mbv(S), that is, uuu is expressible as the difference of two non-decreasing non-
negative order-bounded processes. then RA(uuu) ∈Mbv(S). Now as RA :Mmo(S) →Mo-b(S) is continuous,

RA[Mmo(S)] = RA[Mbv(S)] ⊆ RA[Mbv(S)] ⊆Mbv(S) =Mmo(S),
and RA(uuu) is moderately oscillatory whenever uuu ∈Mmo(S).

(vi) Generally, if uuu ∈ Mlmo(S), take any τ ∈ S. Then A ∧ τ = {ρ ∧ τ : ρ ∈ A} is a non-empty
downwards-directed subset of S ∧ τ , and uuu↾S ∧ τ is moderately oscillatory, so RA∧τ (uuu↾S ∧ τ) is moderately
oscillatory, by (i)-(v) above. And if σ ∈ S ∧ τ then

limρ↓A uσ∧ρ = limρ↓A uσ∧τ∧ρ = limυ↓A∧τ uσ∧υ,

so RA(uuu)↾S ∧ τ = RA∧τ (uuu↾S ∧ τ) is moderately oscillatory. As τ is arbitrary, RA(uuu) is locally moderately
oscillatory, as claimed.

(b) If h : R → R is continuous, h̄ : L0(A) → L0(A) is continuous (613Bb) and h̄(limρ↓A uτ∧ρ) =
limρ↓A h̄(uτ∧ρ) for every locally moderately oscillatory uuu = 〈uσ〉σ∈S and τ ∈ S.
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623C Approximately and virtually local martingales 23

(c)(i) By 615Gb, u↓ = limσ↓S uσ is defined. Now if ǫ > 0, there is a τ ∈ S such that θ(uσ − u↓) ≤ ǫ for
every σ ∈ S ∧ τ . In this case, if σ ∈ S ∧ τ , θ(uσ∧ρ − u↓) ≤ ǫ for every ρ ∈ A, so θ(u′σ − u↓) ≤ ǫ. As ǫ is
arbitrary, limσ↓S u

′
σ = u↓.

(ii) Writing γ for supσ∈S ‖uσ‖1, {x : x ∈ L0(A), ‖x‖1 ≤ γ} is closed (613Bc), so contains limρ↓A uσ∧ρ
for every σ ∈ S.

(d) We know that ûuu is locally moderately oscillatory (615F(a-vi)), while of course A is a non-empty

downwards-directed subset of Ŝ, so we can speak of RA(ûuu). Looking at the formula in (a), we see that if we
express uuu as 〈uσ〉σ∈S and ûuu as 〈ûσ〉σ∈Ŝ , then we have RA(uuu) = 〈u′σ〉σ∈S and RA(ûuu) = 〈û′σ〉σ∈Ŝ where

u′σ = limρ↓A uσ∧ρ for σ ∈ S,

û′σ = limρ↓A ûσ∧ρ for σ ∈ Ŝ,
so that û′σ = u′σ for σ ∈ S and RA(ûuu) extends RA(uuu). Since RA(ûuu) is fully adapted ((a-i) above), it must be
the fully adapted extension of RA(uuu)

Remark The elementary case in which A = {ρ} is a singleton, so that RA(uuu) = 〈uσ∧ρ〉σ∈S (612Ib), will be
a useful guide. But I introduce the idea here primarily for the sake of applications based on the construction
in 623I below.

623C Proposition Let S be a sublattice of T . For a non-empty downwards-directed set A ⊆ S let
RA : Mlmo(S) → Mlmo(S) be the operator described in 623B. Let A, B ⊆ S be non-empty downwards-
directed sets.

(a) Setting A∨B = {ρ∨ρ′ : ρ ∈ A, ρ′ ∈ B} and A∧B = {ρ∧ρ′ : ρ ∈ A, ρ′ ∈ B}, RA∨B+RA∧B = RA+RB .
(b) RA∧B = RARB = RBRA.
(c) If B ⊆ A, then RARB = RA; in particular, R2

A = RA.
(d) If B is a coinitial subset of A, then RB = RA.

proof (a) Of course both A ∨ B and A ∧ B are non-emptu downwards-directed sets, so we can speak of
RA∨B and RA∧B . Take a moderately oscillatory process uuu = 〈uσ〉σ∈S . If σ ∈ S, then

lim
(ρ,ρ′)↓A×B

u(ρ∨ρ′)∧σ + lim
(ρ,ρ′)↓A×B

u(ρ∧ρ′)∧σ = lim
(ρ,ρ′)↓A×B

u(ρ∧σ)∨(ρ′∧σ) + u(ρ∧σ)∧(ρ′∧σ)

(because T is a distributive lattice, by 611Ca)

= lim
(ρ,ρ′)↓A×B

uρ∧σ + uρ′∧σ

(612D(f-i))

= lim
ρ↓A

uρ∧σ + lim
ρ′↓B

uρ′∧σ.

As σ is arbitrary, RA∨B(uuu) +RA∧B(uuu) = RA(uuu) +RB(uuu); as uuu is arbitrary, RA∨B +RA∧B = RA +RB .

(b) Take uuu = 〈uσ〉σ∈S ∈Mlmo(S) and σ ∈ S, and set

vσ = limρ↓A∧B uσ∧ρ, wσ = limρ↓A limρ′↓B u(σ∧ρ)∧ρ′ .

Let ǫ > 0. Then there are ρ̃ ∈ A, ρ̃′ ∈ B such that θ(vσ − uσ∧ρ∧ρ′) ≤ ǫ whenever ρ ∈ A, ρ′ ∈ B, ρ ≤ ρ̃ and
ρ′ ≤ ρ̃′. Next, there are τ ∈ A, τ ′ ∈ B such that

τ ≤ ρ̃, θ(wσ − limρ′↓B uσ∧τ∧ρ′) ≤ ǫ,

τ ′ ≤ ρ̃′, θ(uσ∧τ∧τ ′ − limρ′↓B uσ∧τ∧ρ′) ≤ ǫ.

Since we also have θ(vσ − uσ∧τ∧τ ′) ≤ ǫ, we see that θ(vσ − wσ) ≤ 3ǫ. As ǫ is arbitrary, vσ = wσ. As σ is
arbitrary,

RA∧B(uuu) = 〈vσ〉σ∈S = 〈wσ〉σ∈S = RARB(uuu).

As uuu is arbitrary, RA∧B = RARB . Similarly, RBRA = RB∧A = RA∧B.
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24 Martingales 623C

(c) If B ⊆ A, consider A∗ = {ρ : ρ ∈ S, ρ′ ≤ ρ for some ρ′ ∈ A}. Then A∗ is closed under ∧ and A is
coinitial with A∗; as B ⊆ A, A∧B ⊆ A∗ is also coinitial with A∗. Now if uuu = 〈uσ〉σ∈S is locally moderately
oscillatory, limρ↓A uσ∧ρ, limρ↓A∗ uσ∧ρ and limρ↓A∧B uσ∧ρ are all defined and equal for every σ ∈ S. As uuu
and σ are arbitrary, RA = RA∗ = RA∧B.

(d) If B is a coinitial subset of A then of course limρ↓B uσ∧ρ = limρ↓A uσ∧ρ whenever the latter is defined.

623D Proposition Let S be a sublattice of T and A ⊆ S a non-empty downwards-directed set. Let
RA : Mlmo(S) → Mlmo(S) be the operator described in 623B. If vvv = 〈vσ〉σ∈S is a (local) integrator, RA(vvv)
is a (local) integrator.

proof Express vvv′ = RA(vvv) as 〈v′σ〉σ∈S .

(a) Consider first the case in which vvv is an integrator.

(i) If ρ ∈ A then QS(d(R{ρ}(vvv))) ⊆ QS(dvvv). PPP Take z ∈ QS(dR{ρ}(vvv)). If S = ∅ then surely
z = 0 ∈ QS(dvvv). Otherwise, 616C(iii) tells us that there are a fully adapted process ũuu = 〈ũσ〉σ∈S such that
‖ũuu‖∞ ≤ 1 and τ0 ≤ . . . ≤ τn such that

z =
∑n−1
i=0 ũτi × (vτi+1∧ρ − vτi∧ρ) =

∑n−1
i=0 ũτi∧ρ × (vτi+1∧ρ − vτi∧ρ)

because if i < n then

[[ũτi∧ρ 6= ũτi ]] ⊆ [[τi ∧ ρ < τi]] ⊆ [[τi ∧ ρ = τi+1 ∧ ρ]] ⊆ [[vτi+1∧ρ = vτi∧ρ]].

So z ∈ QS(vvv), by 616C(ii). QQQ

(ii) QS(dvvv
′) ⊆ QS(uuu, dvvv). PPP If z ∈ QS(dvvv

′)\{0}, express it as SI(uuu, dvvv′) where I ∈ I(S), uuu = 〈uσ〉σ∈I ∈
Mfa(I) and ‖uuu‖∞ ≤ 1. Let (τ0, . . . , τn) linearly generate the I-cells. Then

z =

n−1∑

i=0

uτi × (v′τi+1
− v′τi) = lim

ρ↓A

n−1∑

i=0

uτi × (vτi+1∧ρ − vτi∧ρ)

= lim
ρ↓A

SI(uuu, dR{ρ}(vvv)) ∈ QS(uuu, dvvv)

by (i). QQQ

(iii) Since QS(dvvv) is topologically bounded, so is its closure (613B(f-iii)), and vvv′ is an integrator.

(b) Now suppose that vvv is a local integrator. Take τ ∈ S. Set B = {τ ∧ρ : ρ ∈ A}; then B is a non-empty
downwards-directed subset of S ∧ τ , so we have a corresponding operator RB on Mlmo(S ∧ τ). As vvv is a
local integrator, vvv↾S ∧ τ is an integrator and RB(vvv↾S ∧ τ) is an integrator, by (a). Express RB(vvv↾S ∧ τ) as
〈w′

σ〉σ∈S∧τ . If σ ∈ S ∧ τ ,
v′σ = limρ↓A vσ∧ρ = limρ↓A vσ∧τ∧ρ = limρ↓B vσ∧ρ = w′

σ.

So vvv′↾S ∧ τ = RB(vvv↾S ∧ τ) is an integrator. As τ is arbitrary, vvv′ is a local integrator.

623E Proposition Let S be a sublattice of T and A ⊆ S a non-empty downwards-directed set. Let
RA : Mlmo(S) → Mlmo(S) be the operator described in 623B. If uuu = 〈uσ〉σ∈S is a martingale, RA(uuu) is a
martingale.

proof uuu is locally moderately oscillatory (622H) so RA(uuu) is defined; express it as 〈u′σ〉σ∈S . The point is
that if σ ∈ S then u′σ is the limit 1limρ↓A Pρuσ for the norm topology of L1. PPP For ρ ∈ A,

uσ∧ρ = Pσ∧ρuσ = PρPσuσ = Pρuσ

(622Ba). Next, 1limρ↓A Pρz is defined for every z ∈ L0(A), by 621Cg, and this must also be the limit
limρ↓A Pρz for the topology of convergence in measure (613B(d-i)). So we have

u′σ = limρ↓A uσ∧ρ = limρ↓A Pρuσ = 1limρ↓A Pρuσ,

as claimed. QQQ
If now σ ≤ τ in S,
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Pσu
′
τ = Pσ(1lim

ρ↓A
Pρuτ ) = 1lim

ρ↓A
PσPρuτ

(because Pσ : L1 → L1 is ‖ ‖1-continuous)
= 1lim

ρ↓A
PρPσuτ = 1lim

ρ↓A
Pρuσ = u′σ,

and RA(uuu) = 〈u′σ〉σ∈S is a martingale.

623F Proposition Let S be a sublattice of T , A ⊆ S a non-empty downwards-directed set and RA :
Mlmo(S) → Mlmo(S) the operator described in 623B. Suppose that uuu = 〈uσ〉σ∈S is locally moderately
oscillatory.

(a) If uuu is order-bounded, the residual oscillation Osclln(RA(uuu)) is at most Osclln(uuu).
(b) If uuu is (locally) jump-free, then RA(uuu) is (locally) jump-free.

proof Express uuu′ = RA(uuu) as 〈u′σ〉σ∈S .

(a)(i) As

|u′σ| ≤ supρ∈A |uσ∧ρ| ≤ sup |uuu|
for every σ ∈ S, uuu′ is order-bounded and Osclln(uuu′) is defined.

(ii) If I ∈ I(S) then, in the language of 618B, OscllnI(uuu
′) ≤ Osclln∗I(uuu). PPP If I is empty, this is trivial.

Otherwise, take (τ0, . . . , τn) linearly generating the I-cells. Take ρ ∈ A and i < n. Then

[[ρ ≤ τi]] ⊆ [[τi ∧ ρ = ρ]] ∩ [[τi+1 ∧ ρ = ρ]] ⊆ [[uτi+1∧ρ − uτi∧ρ = 0]]

⊆ [[|uτi+1∧ρ − uτi∧ρ| ≤ Osclln∗I(uuu)]],

[[τi ≤ ρ]] ∩ [[ρ ≤ τi+1]] ⊆ [[τi ∧ ρ = τi]] ∩ [[τi+1 ∧ ρ = med(τi, ρ, τi+1)]]

⊆ [[uτi+1∧ρ − uτi∧ρ = umed(τi,ρ,τi+1) − uτi ]]

⊆ [[|uτi+1∧ρ − uτi∧ρ| ≤ Osclln∗I(uuu)]]

(618Ca),

[[τi+1 ≤ ρ]] ⊆ [[τi ∧ ρ = τi]] ∩ [[τi+1 ∧ ρ = τi+1]]

⊆ [[uτi+1∧ρ − uτi∧ρ = uτi+1
− uτi ]] ⊆ [[|uτi+1∧ρ − uτi∧ρ| ≤ Osclln∗I(uuu)]].

So in fact |uτi+1∧ρ − uτi∧ρ| ≤ Osclln∗I(uuu). Taking the limit as ρ ↓ A, |u′τi+1
− u′τi | ≤ Osclln∗I(uuu). As i is

arbitrary, OscllnI(uuu
′) ≤ Osclln∗I(uuu) (618Ba). QQQ

(iii) Now

Osclln(uuu′) = inf
I∈I(S)

sup
I⊆J∈I(S)

OscllnJ (uuu
′)

≤ inf
I∈I(S)

sup
I⊆J∈I(S)

Osclln∗J (uuu)

= inf
I∈I(S)

sup
I⊆J⊆K∈I(S)

OscllnK(uuu)

= inf
I∈I(S)

sup
I⊆K∈I(S)

OscllnK(uuu) = Osclln(uuu).

(b)(i) If uuu is jump-free, then it is order-bounded (618B(b-ii)) and Osclln(uuu) = 0, so Osclln(uuu′) = 0 and
uuu′ is jump-free.

(ii) If uuu is locally jump-free, then we can apply (i) to uuu↾S ∧ τ and A ∧ τ = {ρ ∧ τ : ρ ∈ A} to see that
uuu′↾S ∧ τ is jump-free for every τ ∈ S, so that uuu′ is locally jump-free.
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623G Proposition Let S be a sublattice of T and A ⊆ S a non-empty downwards-directed set. Let
RA :Mlmo(S) →Mlmo(S) be the operator described in 623B. If uuu = 〈uσ〉σ∈S is locally moderately oscillatory
and vvv = 〈vσ〉σ∈S is a local integrator,

RA(iivvv(uuu)) = iiRA(vvv)(uuu) = iiRA(vvv)(RA(uuu)).

proof (a) Since uuu′ = RA(uuu) is locally moderately oscillatory (623Ba) and vvv′ = RA(vvv) is a local integrator
(623D), all the indefinite integrals are defined everywhere on S; while iivvv(uuu) also, being a local integrator
(616Q(c-i)), is locally moderately oscillatory (616Ib), so we can speak of www′ = RA(iivvv(uuu)).

For I ∈ I(S) and ρ ∈ S write I∧ρ for {σ∧ρ : σ ∈ I}. Express uuu′, vvv′, www′ and zzz′ = iivvv′(uuu
′) = iiRA(vvv)(RA(uuu))

as 〈u′σ〉σ∈S , 〈v′σ〉σ∈S , 〈w′
σ〉σ∈S and 〈z′σ〉σ∈S respectively.

(b) If σ ≤ τ in S and ρ ∈ S,
uσ∧ρ × (vτ∧ρ − vσ∧ρ) = uσ × (vτ∧ρ − vσ∧ρ).

PPP

[[uσ∧ρ 6= uσ]] ⊆ [[ρ < σ]] ⊆ [[σ ∧ ρ = τ ∧ ρ]] ⊆ [[vσ∧ρ = vτ∧ρ]],

so (uσ∧ρ − uσ)× (vτ∧ρ − vσ∧ρ) = 0. QQQ

Letting ρ ↓ A, we see that

u′σ × (v′τ − v′σ) = uσ × (v′τ − v′σ).

It follows at once that

SI(uuu
′, dvvv′) = SI(uuu, dvvv

′)

for every I ∈ I(S), and therefore that iivvv′(uuu) = iivvv′(uuu
′) = zzz′.

(c) Take τ ∈ S and ǫ > 0. There is a J0 ∈ I(S∧τ) such that θ(SI∧τ∧ρ(uuu, dvvv)−
∫
S∧τ∧ρuuu dvvv) ≤ ǫ whenever

ρ ∈ S and I ∈ I(S∧τ) includes J0 (613V(ii-β)), and a J1 ∈ I(S∧τ) such that θ(SI(uuu
′, dvvv′)−

∫
S∧τ uuu

′ dvvv′) ≤ ǫ
whenever I ∈ I(S ∧ τ) includes J1. Let I be the sublattice generated by J0 ∪ J1 ∪ {τ}. Let (τ0, . . . , τn)
linearly generate the I-cells. If ρ ∈ A, then (τ0 ∧ ρ, . . . , τn ∧ ρ) linearly generates the (I ∧ ρ)-cells (611Kg),
while of course I ∧ ρ = I ∧ τ ∧ ρ because τ = max I. Accordingly

SI∧τ∧ρ(uuu, dvvv) =
∑n−1
i=0 uτi∧ρ × (vτi+1∧ρ − vτi∧ρ)

so

θ(
∑n−1
i=0 uτi∧ρ × (vτi+1∧ρ − vτi∧ρ)−

∫
S∧τ∧ρ

uuu dvvv) ≤ ǫ.

Taking the limit as ρ ↓ A,
θ(
∑n−1
i=0 u

′
τi
× (v′τi+1

− v′τi)− w′
τ ) ≤ ǫ,

that is,

θ(SI(uuu
′, dvvv′)− w′

τ ) ≤ ǫ.

Since we also have J1 ⊆ I ∈ I(S ∧ τ), θ(SI(uuu′, dvvv′) − z′τ ) ≤ ǫ and we conclude that θ(w′
τ − z′τ ) ≤ 2ǫ. As τ

and ǫ are arbitrary,

www′ = zzz′ = iivvv′(uuu
′),

and we know from (b) that the last is equal to iivvv′(uuu). So we have RA(iivvv(uuu)) = iiRA(vvv)(RA(uuu)) = iiRA(vvv)(uuu),
as claimed.

623H Corollary Let S be a sublattice of T , A ⊆ S a non-empty downwards-directed set and RA :
Mlmo(S) → Mlmo(S) the operator described in 623B. If vvv = 〈vσ〉σ∈S is a local integrator with quadratic
variation vvv∗, then RA(vvv

∗) is the quadratic variation of RA(vvv).

proof We know that vvv is locally moderately oscillatory (616Ib again). Writing vvv′ for RA(vvv), 623D and
623G tell us that vvv′ is a local integrator and RA(iivvv(vvv)) = iivvv′(vvv

′). Now
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(vvv′)∗ = (vvv′)2 − 2iivvv′(vvv
′)− (v′↓)

21

(where v′↓ is the starting value of vvv′)

= RA(vvv
2)− 2RA(iivvv(vvv))− v2↓1

(623Ba, 623B(c-i))

= RA(vvv
2 − 2iivvv(vvv)− v2↓1)

(because RA(1↾S) = 1↾S)
= RA(vvv)

∗.

623I Lemma Let S be a finitely full sublattice of T (definition: 611O). Suppose that uuu = 〈uσ〉σ∈S is a
moderately oscillatory process, τ∗ ∈ S and M ≥ 0.

(a) Set

A = {ρ : ρ ∈ S, [[ρ < τ∗]] ⊆ [[|uρ| ≥M ]]}.
Then τ∗ ∈ A and ρ ∧ ρ′ ∈ A whenever ρ, ρ′ ∈ A.

(b) Let RA : Mlmo(S) → Mlmo(S) be the operator described in 623B. Suppose that vvv = 〈vσ〉σ∈S is a
moderately oscillatory process such that RA(vvv) = vvv.

(i) [[|uσ| ≥M ]] ⊆ [[vσ = vτ ]] whenever σ ≤ τ in S ∧ τ∗.
(ii) ExpressingRA(uuu) as 〈u′σ〉σ∈S , [[|u′σ| > M ]] ⊆ [[vσ = vτ∗ ]] for every σ ∈ S. In particular, [[|u′σ| > M ]] ⊆ [[u′σ = u′τ∗ ]].

proof (a) τ∗ ∈ A just because [[τ∗ < τ∗]] = 0. To see that A is downwards-directed, repeat the formula in
the proof of 615Ma: if ρ, ρ′ ∈ A, then

[[ρ ∧ ρ′ < τ∗]] = ([[ρ ≤ ρ′]] ∩ [[ρ < τ∗]]) ∪ ([[ρ′ ≤ ρ]] ∩ [[ρ′ < τ∗]])

⊆ ([[ρ ≤ ρ′]] ∩ [[|uρ| ≥M ]]) ∪ ([[ρ′ ≤ ρ]] ∩ [[|uρ′ | ≥M ]])

= ([[ρ ≤ ρ′]] ∩ [[|uρ∧ρ′ | ≥M ]]) ∪ ([[ρ′ ≤ ρ]] ∩ [[|uρ∧ρ′ | ≥M ]])

= [[|uρ∧ρ′ | ≥M ]]

and ρ ∧ ρ′ ∈ A.

(b)(i) If σ ≤ τ in S ∧ τ∗, set a = [[|uσ| ≥M ]]. Then a ∈ Aσ ⊆ Aτ∗ so there is a ρ ∈ T such that
a ⊆ [[ρ = σ]] and 1 \ a ⊆ [[ρ = τ∗]]. As S is finitely full, ρ ∈ S. Now

[[ρ < τ∗]] ⊆ a = [[ρ = σ]] ∩ [[|uσ| ≥M ]] ⊆ [[|uρ| ≥M ]]

and ρ ∈ A.
If ρ′ ∈ A and ρ′ ≤ ρ, then

a ⊆ [[ρ = σ ∧ ρ]] ⊆ [[ρ′ = σ ∧ ρ′]] ⊆ [[τ ∧ ρ′ ≤ σ ∧ ρ′]] = [[τ ∧ ρ′ = σ ∧ ρ′]]
(because we are supposing that σ ≤ τ)

⊆ [[vτ∧ρ′ = vσ∧ρ′ ]].

As ρ is arbitrary,

a ⊆ [[limρ′↓A vτ∧ρ′ = limρ′↓A vσ∧ρ′ ]] = [[vτ = vσ]]

because RA(vvv) = vvv.

(ii) For any ρ ∈ A ∧ τ∗, σ ∧ ρ ≤ τ∗ so [[|uσ∧ρ| ≥M ]] ⊆ [[vσ∧ρ = vτ∗ ]]. But we are supposing that

vvv = RA(vvv) = R{ρ}RA(vvv)

(623Cc, with B = {ρ})
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= R{ρ}(vvv),

so vσ∧ρ = vσ and [[|uσ∧ρ| ≥M ]] ⊆ [[vσ = vτ∗ ]]. Now

[[|u′σ| > M ]] = [[| limρ↓A uσ∧ρ| > M ]] ⊆ sup
ρ∈A∧τ∗

[[|uσ∧ρ| > M ]]

(because τ∗ ∈ A, so A ∧ τ∗ is coinitial with A)

⊆ [[vσ = vτ∗ ]].

As RA(RA(uuu)) = RA(uuu), we can apply this with vvv = RA(uuu) and get [[|u′σ| > M ]] ⊆ [[u′σ = u′τ∗ ]].

623J Definition Let S be a sublattice of T and uuu a locally moderately oscillatory process. Let Ŝ be
the covered envelope of S and ûuu = 〈ûσ〉σ∈Ŝ the fully adapted extension of uuu to Ŝ. Recall that ûuu is locally
moderately oscillatory (615F(b-v)). I will say that uuu is an approximately local martingale if for every
σ ∈ S and ǫ > 0 there is a non-empty downwards-directed set A ⊆ S such that supρ∈A µ̄[[ρ < σ]] ≤ ǫ and
RA(uuu), as defined in 623B, is a martingale; while uuu is a virtually local martingale if ûuu is an approximately
local martingale.

Remarks Note that as the covered envelope of Ŝ is itself, uuu is a virtually local martingale iff ûuu is. And if
S has a greatest element we can drop the ‘for every σ’; uuu will be an approximately local martingale iff for
every ǫ > 0 there is a non-empty downwards-directed set A ⊆ S such that supρ∈A µ̄[[ρ < maxS]] ≤ ǫ and
RA(uuu) is a martingale.

In the context here, since A is downwards-directed, {[[ρ < τ ]] : ρ ∈ A} is upwards-directed, so that
supρ∈A µ̄[[ρ < σ]] will always be µ̄(supρ∈A [[ρ < σ]]) (321C).

623K Proposition Let S be a sublattice of T .
(a)(i) The space Malm(S) of approximately local martingales on S is a linear subspace of Mlmo(S).
(ii) The space Mvlm(S) of virtually local martingales on S is a linear subspace of Mlmo(S).

(b)(i) A local martingale on S is an approximately local martingale.
(ii) An approximately local martingale on S is a virtually local martingale.
(iii) If S is finitely full, a virtually local martingale on S is an approximately local martingale.

(c) If uuu ∈ Mvlm(S) and A ⊆ S is a non-empty downwards-directed set, RA(uuu), as defined in 623B, is a
virtually local martingale.

(d) Every virtually local martingale on S is a local integrator, therefore locally moderately oscillatory.
(e)(i) If uuu ∈ Mfa(S), then uuu is an approximately local martingale iff uuu↾S ∧ τ is an approximately local

martingale for every τ ∈ S.
(ii) If uuu ∈ Mfa(S), then uuu is a virtually local martingale iff uuu↾S ∧ τ is a virtually local martingale for

every τ ∈ S.
(f) A uniformly integrable approximately local martingale on S is a martingale.
(g) If S 6= ∅ and uuu = 〈uσ〉σ∈S is a virtually local martingale, then limσ↓S uσ is defined and belongs to L1.
(h) If uuu = 〈uσ〉σ∈S ∈Mvlm(S) and τ ∈ S then (uuu− uτ1)↾S ∨ τ is a virtually local martingale.

proof Let Ŝ be the covered envelope of S; for a fully adapted process uuu with domain S, write ûuu = 〈ûσ〉σ∈Ŝ

for its fully adapted extension to Ŝ.
(a)(i) It is built into the definition in 623J that a virtually local martingale is locally moderately oscil-

latory. If uuu, vvv ∈ Malm(S), τ ∈ S and ǫ > 0, let A, B ⊆ S be non-empty downwards-directed sets such
that supρ∈A µ̄[[ρ < τ ]] ≤ 1

2ǫ, RA(uuu) is a martingale, supρ∈B µ̄[[ρ < τ ]] ≤ 1
2ǫ and RB(vvv) is a martingale. Then

A∧B is a non-empty downwards-directed subset of S and RA∧B(uuu) = RBRA(uuu), RA∧B(vvv) = RARB(vvv) are
martingales (623Cb, 623E). So RA∧B(uuu+ vvv) is a martingale (622Db), while

sup
ρ∈A∧B

µ̄[[ρ < τ ]] = sup
ρ∈A
ρ′∈B

µ̄[[ρ ∧ ρ′ < τ ]] = sup
ρ∈A
ρ′∈B

µ̄([[ρ < τ ]] ∪ [[ρ′ < τ ]]) ≤ ǫ.

As τ and ǫ are arbitrary, uuu+ vvv is an approximately local martingale.
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If uuu ∈ Malm(S) and α ∈ R, then for any τ ∈ Ŝ and ǫ > 0, we have a non-empty downwards-directed set
A ⊆ S such that supρ∈A µ̄[[ρ < τ ]] ≤ ǫ and RA(uuu) is a martingale. Now RA(αuuu) = αRA(uuu) is a martingale.
So αuuu ∈Malm(S).

(ii) By definition, Mvlm(S) = {uuu : uuu ∈ Mlmo(S), ûuu ∈ Malm(Ŝ)}, where Ŝ is the covered envelope of

S and ûuu is the fully adapted extension of uuu to Ŝ. Since Malm(Ŝ) is a linear subspace of Mlmo(Ŝ), by (i),

and uuu 7→ ûuu : Mlmo(S) → Mlmo(Ŝ) is a linear operator (615F(b-v), 612Qb), Mvlm(S) is a linear subspace of
Mlmo(S).

(b)(i) Suppose that uuu = 〈uσ〉σ∈S is a local martingale. Take any τ ∈ Ŝ and ǫ > 0. Then there is a τ ′ ∈ S
such that uuu↾Ŝ ∧τ ′ is a martingale and µ̄[[τ ′ < τ ]] ≤ ǫ. Of course A = {τ ′} is a non-empty downwards-directed
subset of S and supρ∈A [[ρ < τ ]] = [[τ ′ < τ ]] has measure at most ǫ. Now

RA(ûuu) = 〈limρ↓A uσ∧ρ〉σ∈S = 〈uσ∧τ ′〉σ∈S

agrees with uuu on S ∧ τ and is constant on S ∨ τ , so is a martingale (622E(b-ii)). As ǫ is arbitrary, uuu is an
approximately local martingale.

(ii) Now suppose that uuu is an approximately local martingale. Take τ ∈ Ŝ and ǫ > 0. As in part (b) of
the proof of 622N, there is a τ̃ ∈ S such that µ̄[[τ̃ < τ ]] ≤ ǫ. Now there is a non-empty downwards-directed
set A ⊆ S such that supρ∈A µ̄[[ρ < τ̃ ]] ≤ ǫ and RA(uuu) is a martingale. Of course A ∧ τ̃ is now a non-empty
downwards-directed subset of S and

sup
ρ∈A∧τ̃

µ̄[[ρ < τ ]] = sup
ρ∈A

µ̄[[ρ ∧ τ̃ < τ ]] ≤ sup
ρ∈A

µ̄([[ρ < τ̃ ]] ∪ [[τ̃ < τ ]])

≤ sup
ρ∈A

(µ̄[[ρ < τ̃ ]] + µ̄[[τ̃ < τ ]]) ≤ 2ǫ,

while RA∧τ̃ (uuu) = R{τ̃}RA(uuu) (623Cb) is a martingale (623E) and RA∧τ̃ (ûuu) is the fully adapted extension of

RA∧τ̃ (uuu) (623Bd) and is therefore a local martingale (622Nb). Accordingly RA∧τ̃ (ûuu)↾Ŝ ∧ τ̃ is a martingale.
On the other side of τ̃ ,

RA∧τ̃ (ûuu)↾Ŝ ∨ τ̃ = RAR{τ̃}(ûuu)↾Ŝ ∨ τ̃
is constant, so RA∧τ̃ (ûuu) is a martingale (622E(b-ii) again).

(iii) This time, suppose that uuu is a virtually local martingale, so that ûuu is an approximately local
martingale, and that S is finitely full. Take τ ∈ S and ǫ > 0. Then there is a non-empty downwards-
directed set A ⊆ Ŝ such that RA(ûuu) is a martingale and supρ∈A µ̄[[ρ < τ ]] ≤ ǫ. As we can replace A with

A ∧ τ we can suppose that A ⊆ Ŝ ∧ τ . Set B =
⋃
ρ∈A{σ : σ ∈ S, ρ ≤ σ}. Then B is a downwards-directed

subset of S and

supσ∈B µ̄[[σ < τ ]] ≤ supρ∈A µ̄[[ρ < τ ]] ≤ ǫ.

The point is that RB(uuu) = RA(ûuu)↾S. PPP Express ûuu, RA(ûuu) and RB(uuu) as 〈ûσ〉σ∈Ŝ , 〈û′σ〉σ∈Ŝ and 〈ũσ〉σ∈S

respectively.
Take any σ ∈ S and η > 0; then û′σ = limρ↓A ûσ∧ρ and ũσ = limρ↓B uσ∧ρ. Let ρ̃ ∈ B be such that

θ(ũσ − uσ∧ρ) ≤ η whenever ρ ∈ B and ρ ≤ ρ̃. As there is a ρ ∈ A such that ρ ≤ ρ̃, we can find a ρ̂ ∈ A such

that ρ̂ ≤ ρ̃ and θ(û′σ − ûσ∧ρ̂) ≤ η. Because ρ̂ ∈ Ŝ, supυ∈S [[ρ̂ = υ]] = 1 and there is a finite set I ⊆ S such
that µ̄a ≥ 1 − η where a = supυ∈I [[ρ̂ = υ]]. Now a ∈ Aρ̂ ⊆ Aτ so there is a ρ∗ ∈ T such that a ⊆ [[ρ∗ = ρ̂]]
and 1 \ a ⊆ [[ρ∗ = τ ]] (611I). We have

supυ∈I∪{τ} [[ρ
∗ = υ]] ⊇ supυ∈I([[ρ

∗ = ρ̂]] ∩ [[ρ̂ = υ]]) ∪ [[ρ∗ = τ ]] ⊇ a ∪ (1 \ a) = 1;

as S is finitely full, ρ∗ ∈ S. Consider ρ = ρ∗ ∧ ρ̃. As ρ̂ = ρ̂ ∧ τ ≤ ρ∗ (611I), ρ̂ ≤ ρ and ρ ∈ B. Also

a ⊆ [[ρ∗ = ρ̂]] = [[ρ∗ = ρ̂ ∧ ρ̃]] = [[ρ∗ = ρ]],

so

a ⊆ [[ρ = ρ̂]] ⊆ [[σ ∧ ρ = σ ∧ ρ̂]] ⊆ [[uσ∧ρ = ûσ∧ρ̂]]

and
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θ(uσ∧ρ − ûσ∧ρ̂) ≤ µ̄(1 \ a) ≤ η.

But since also θ(ũσ −uσ∧ρ) ≤ η because ρ ∈ B and ρ ≤ ρ̃, while θ(û′σ − ûσ∧ρ̂) ≤ η by the choice of ρ̂, we see
that

θ(ũσ − û′σ) ≤ θ(ũσ − uσ∧ρ) + θ(uσ∧ρ − ûσ∧ρ̂) + θ(û′σ − ûσ∧ρ̂) ≤ 3η.

As σ and η are arbitrary, RA(ûuu)↾S = RB(uuu). QQQ
Consequently RB(uuu) is a martingale (622D(b-ii)). As τ and ǫ are arbitrary, uuu is an approximately local

martingale.

(c) As observed in (a-i) of the proof of 623B, we can regard RA either as an operator on Mlmo(S) or as
an operator on Mlmo(Ŝ). Again take τ ∈ Ŝ and ǫ > 0, and let B ⊆ Ŝ be a non-empty downwards-directed
set such that supρ∈B µ̄[[ρ < τ ]] ≤ ǫ and RB(ûuu) is a martingale. Then RBRA(ûuu) = RARB(ûuu) (623Cb) is a
martingale (623E). As τ and ǫ are arbitrary, RA(uuu) is a martingale.

(d) If uuu = 〈uσ〉σ∈S is a virtually local martingale and τ ∈ Ŝ, let ǫ > 0. Then there is a non-empty

downwards-directed set A ⊆ Ŝ such that RA(ûuu) is a martingale and µ̄a ≤ ǫ, where a = supρ∈A [[ρ < τ ]].

Express the martingale RA(ûuu) as uuu′ = 〈u′σ〉σ∈Ŝ . This is a local integrator (622H), so uuu′↾Ŝ ∧ τ is an

integrator. If σ ∈ Ŝ ∧ τ , then
1 \ a ⊆ [[τ ≤ ρ]] ⊆ [[σ ≤ ρ]] ⊆ [[σ ∧ ρ = σ]] ⊆ [[ûσ∧ρ = ûσ]]

for every ρ ∈ A, so

u′σ × χ(1 \ a) = limρ↓A ûσ∧ρ × χ(1 \ a) = limρ↓A ûσ × χ(1 \ a) = uσ × χ(1 \ a).

But this means that [[u′σ 6= ûσ]] ⊆ a; as σ is arbitrary, [[uuu′↾Ŝ ∧ τ 6= ûuu↾S ∧ τ ]] ⊆ a has measure at most ǫ. As ǫ
is arbitrary, ûuu↾S ∧ τ is an integrator (616P(b-iii)); as τ is arbitrary, ûuu is a local integrator. Now 616Q(b-i)
tells us that uuu is a local integrator, therefore locally moderately oscillatory (616Ib once more).

(e)(i)(ααα) If uuu is an approximately local martingale and τ ∈ S, let ǫ > 0. Then there is a non-empty
downwards-directed A ⊆ S such that µ̄[[ρ < τ ]] ≤ ǫ for every ρ ∈ A and RA(ûuu) is a martingale. We have

µ̄[[ρ ∧ τ < τ ]] = µ̄[[ρ < τ ]] ≤ ǫ

for every ρ ∈ A. Write A ∧ τ for {ρ ∧ τ : ρ ∈ A}; then A ∧ τ is a non-empty downwards-directed subset of
S ∧ τ and µ̄[[ρ < τ ]] ≤ ǫ for every ρ ∈ A ∧ τ . Now

RA∧τ (uuu↾S ∧ τ) = 〈 lim
ρ↓A∧τ

uσ∧ρ〉σ∈S∧τ = 〈lim
ρ↓A

uσ∧ρ∧τ 〉σ∈S∧τ

= 〈lim
ρ↓A

uσ∧ρ〉σ∈S∧τ = RA(uuu)↾S ∧ τ

is a martingale. As ǫ is arbitrary, uuu↾S ∧ τ is an approximately virtually local martingale (see the remarks
in 623J).

(βββ) If uuu↾S ∧ τ is an approximately local martingale for every τ ∈ S, take τ ∈ S and ǫ > 0. Then
there is a non-empty downwards-directed set A ⊆ S ∧ τ such that supρ∈A µ̄[[ρ < τ ]] ≤ ǫ and RA(uuu↾S ∧ τ) is
a martingale. As τ and ǫ are arbitrary, uuu is an approximately local martingale.

(ii)(ααα) If uuu is a virtually local martingale and τ ∈ S, then ûuu is an approximately local martingale. By

(i), ûuu↾Ŝ ∧ τ is an approximately local martingale. But ûuu↾Ŝ ∧ τ is the fully adapted extension of uuu↾S ∧ τ to
the covered envelope of S ∧ τ , so uuu↾S ∧ τ is a virtually local martingale.

(βββ) If uuu↾S∧τ is a virtually local martingale for every τ ∈ S, that is, ûuu↾Ŝ ∧τ is an approximately local

martingale for every τ ∈ S, take any σ ∈ Ŝ and ǫ > 0. Let τ ∈ S be such that µ̄[[τ < σ]] ≤ 1
2ǫ (611Mh). Then

there is a non-empty downwards-directed set A ⊆ Ŝ ∧ τ such that supρ∈A µ̄[[ρ < τ ]] ≤ 1
2ǫ and RA(ûuu↾Ŝ ∧ τ) is

a martingale. By 623Cb, RA∧σ∧τ (ûuu↾Ŝ ∧ τ) = R{σ∧τ}RA(ûuu↾Ŝ ∧ τ) is a martingale and RA∧σ∧τ (ûuu↾Ŝ ∧ σ ∧ τ)
is a martingale; as RA∧σ∧τ (ûuu↾Ŝ ∨ (σ ∧ τ)) is constant, RA∧σ∧τ (ûuu) is a martingale (622E(b-ii) once more).
Now

µ̄[[ρ ∧ σ ∧ τ < σ]] ≤ µ̄[[ρ < σ ∧ τ ]] + µ̄[[τ < σ]] ≤ ǫ
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for every ρ ∈ A, that is, µ̄[[ρ < σ]] ≤ ǫ for every ρ ∈ A∧σ∧τ . As σ and ǫ are arbitrary, ûuu is an approximately
local martingale and uuu is a virtually local martingale.

(f) Let uuu = 〈uσ〉σ∈S be a uniformly integrable approximately local martingale. Set C = {uσ : σ ∈ S},
so that C is uniformly integrable. Then its closure C (for the topology of convergence in measure) is also
uniformly integrable (621B(c-ii)). Take τ ≤ τ ′ in S and ǫ > 0. Let δ > 0 be such that ‖u×χa‖1 ≤ ǫ whenever
u ∈ C and µ̄a ≤ δ (621Ba). Then there is a downwards-directed set A ⊆ S such that supρ∈A µ̄[[ρ < τ ′]] ≤ δ

and RA(uuu) = 〈u′σ〉σ∈S is a martingale. For σ ∈ S, we have u′σ = limρ↓A uσ∧ρ ∈ C and if σ ≤ τ ′ then

a = [[u′σ 6= uσ]] ⊆ supρ∈A [[σ ∧ ρ 6= σ]] ⊆ supρ∈A [[ρ < τ ′]]

has measure at most δ, so

‖u′σ − uσ‖1 = ‖u′σ × χa− uσ × χa‖1 ≤ 2ǫ.

Consequently

‖Pτuτ ′ − uτ‖1 ≤ ‖Pτuτ ′ − Pτu
′
τ ′‖1 + ‖Pτu′τ ′ − u′τ‖1 + ‖u′τ − uτ‖1

≤ ‖uτ ′ − u′τ ′‖1 + 0 + 2ǫ ≤ 4ǫ.

As ǫ is arbitrary, Pτuτ ′ = uτ ; as τ and τ ′ are arbitrary, uuu is a martingale.

(g) By 615H, limσ↓S uσ = limσ↓Ŝ ûσ. Because Ŝ is non-empty. there is a non-empty downwards-directed

A ⊆ Ŝ such that 〈u′σ〉σ∈Ŝ = RA(ûuu) is a martingale. Take any τ ∈ Ŝ. By 623B(c-i), limσ↓Ŝ u
′
σ is defined and

equal to limσ↓Ŝ ûσ = limσ↓S uσ; by 622Ed, this common value belongs to L1.

(h)(i) To begin with, suppose that S is full. If τ ′ ∈ S ∨ τ and ǫ > 0, then there is a non-empty
downwards-directed set A ⊆ S such that µ̄[[ρ < τ ′]] ≤ ǫ for every ρ ∈ A and RA(uuu) is a martingale. Now
R{τ}∧A(uuu) = R{τ}RA(uuu) is a martingale, by 623Cc and 623D, so R{τ}∨A(uuu)−R{τ}(uuu) = RA(uuu)−R{τ}∧A(uuu)
(623Ca) is a difference of martingales, therefor a martingale (622D(b-i)).

It follows at once that R{τ}∨A(uuu)↾S ∨ τ − R{τ}(uuu)↾S ∨ τ is a martingale. But as {τ} ∨ A and {τ} are
non-empty downwards-directed subsets of S ∨ τ , we can speak of R{τ}∨A(uuu↾S ∨ τ) and R{τ}(uuu↾S ∨ τ). Now
R{τ}∨A(uuu↾S ∨ τ) = R{τ}∨A(uuu)↾S ∨ τ and

R{τ}(uuu↾S ∨ τ) = uτ1↾S ∨ τ = R{τ}∨A(uτ1↾S ∨ τ).
So we see that R{τ}∨A((uuu− uτ1)↾S ∨ τ) is a martingale. And of course µ̄[[ρ < τ ′]] ≤ ǫ for every ρ ∈ {τ} ∨A.
As τ ′ and ǫ are arbitrary, (uuu− uτ1)↾S ∨ τ is a virtually local martingale.

(ii) For the general case, given that uuu ∈ Mvlm(S) and τ ∈ S, we know that ûuu ∈ Mvlm(Ŝ), so (i)

tells us that (ûuu − ûτ1)↾Ŝ ∨ τ is a virtually local martingale; but this is just the fully adapted extension of

(uuu− uτ1)↾S ∨ τ to the covered envelope Ŝ ∨ τ of S ∨ τ (611M(e-i)), so (uuu− uτ1)↾S ∨ τ is a virtually local
martingale.

623L Theorem Let S be a non-empty sublattice of T , and vvv = 〈vσ〉σ∈S a ‖ ‖1-bounded approximately
local martingale. Write γ for supσ∈S ‖vσ‖1.

(a) vvv is an integrator, therefore moderately oscillatory, and limσ↑S vσ is defined.
(b) v̄ = supσ∈S |vσ| is defined in L0(A), and θ(v̄) ≤ 2

√
γ.

proof (a) If z ∈ QS(dvvv), then θ(δz) ≤ δ + 17
√
δγ for every δ > 0. PPP Express z as

∑n−1
i=0 ui × (vτi+1

− vτi)
where τ0 ≤ . . . ≤ τn in S and uτi ∈ L0(Aτi), ‖uτi‖∞ ≤ 1 for each i ≤ n. Then there is a non-empty,
downwards-directed A ⊆ S such that supρ∈A µ̄[[ρ < τn]] ≤ δ and 〈v′σ〉σ∈S = RA(vvv) is a martingale. Now
‖v′τ‖1 ≤ γ for every τ ∈ S, just because the ball {z : ‖z‖1 ≤ γ} is closed for the topology of convergence in

measure (613Bc once more) and v′τ = limρ↓A vτ∧ρ belongs to {vσ : σ ∈ S}.
Setting z′ =

∑n−1
i=0 ui × (v′τi+1

− v′τi), [[z′ 6= z]] ⊆ supρ∈A [[ρ < τn]] has measure at most δ, so θ(δz) ≤
θ(δz′) + δ. But we see from 621Hf that

θ(δz′) ≤ √
δγ + µ̄[[δ|z′| > √

δγ]] ≤ √
δγ +

16δ√
δγ

‖v′τn‖1 ≤ 17
√
δγ
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and θ(δz) ≤ δ + 17
√
δγ. QQQ

As δ is arbitrary, QS(dvvv) is bounded and vvv is an integrator. Accordingly it is moderately oscillatory
(616Ib, as always) and limσ↑S vσ is defined (615Ga).

(b) If B ⊆ S is a finite set, then

µ̄([[supσ∈B |vσ| > β]]) ≤ γ

β

for every β > 0. PPP If B is empty, this is trivial. Otherwise, let δ > 0. Write I for the sublattice of
S generated by B, and take τ0 ≤ . . . ≤ τn linearly generating the I-cells (611L). Let A ⊆ S be a non-
empty downwards-directed set such that supρ∈A µ̄[[ρ < τn]] ≤ δ and 〈v′σ〉σ∈S = RA(vvv) is a martingale. Then
(v′τ0 , . . . , v

′
τn
) is a finite martingale adapted to (Aτ0 , . . . ,Aτn), so

µ̄([[supi≤n |v′τi | > β]]) ≤ 1

β
‖v′τn‖1

by 621E, while ‖v′τn‖ ≤ γ, as in (a) above. Again, [[vτi 6= v′τi ]] ⊆ supρ∈A [[ρ < τn]] for each i, so µ̄([[supi≤n |vτi | > β]]) ≤
γ

β
+ δ. But if we write v for supi≤n |vτi |, then

[[|vσ| ≤ v]] ⊇ supi≤n [[vσ = vτi ]] ⊇ supi≤n [[σ = τi]] = 1

for any σ ∈ B, by 611Ke. So supσ∈B |vσ| ≤ v and [[supσ∈B |vσ| > β]] ⊆ [[v > γ]] has measure at most
γ

β
+ δ.

As δ is arbitrary, µ̄[[supσ∈B |vσ| > β]] ≤ γ

β
. QQQ

Accordingly cγ = supσ∈S [[|vσ| > γ]] has measure at most
γ

β
, by 321D. Since this tends to 0 as β increases

to ∞, v̄ = supσ∈S |vσ| is defined in L0(A), and

µ̄[[v̄ > β]] = µ̄cγ ≤ γ

β

for every β > 0 (364L(a-ii)). Consequently

θ(v̄) ≤ √
γ + µ̄[[v̄ >

√
γ]] ≤ 2

√
γ.

623M Doob’s quadratic maximal inequality: Proposition If S is a non-empty sublattice of T ,
vvv = 〈vσ〉σ∈S is an approximately local martingale, and γ = supσ∈S ‖vσ‖2 is finite, then vvv is order-bounded
and ‖ sup |vvv|‖2 ≤ 2γ.

proof (a) It will simplify things if we note at once that as ‖ ‖2-bounded sets are uniformly integrable
(621Be), vvv is a uniformly integrable approximately local martingale and is actually a martingale (623Kf).

(b)(i) Let us suppose to begin with that S is finite and totally ordered; let 〈τi〉i≤n be its increasing
enumeration. Write v̄ for sup |vvv| and vn for vτn ; set at = [[v̄ > t]] for t ≥ 0. Then tµ̄at ≤ E(|vn| × χat) for
every t, by 621E.

(ii) We need to know that if u ≥ 0 in L0(A) then E(u × v̄) =
∫∞

0
E(u × χat)dt, where

∫
. . . dt is

integration with respect to Lebesgue measure. PPP If u = χc, then

E(u× v̄) =

∫ ∞

0

µ̄[[u× v̄ > t]]dt

(by the definition of integration in L1(A, µ̄), see 365A and 365Da)

=

∫ ∞

0

µ̄(c ∩ at)dt =
∫ ∞

0

E(u× χat)dt.

Because E is a linear functional, E(u × v̄) =
∫∞

0
E(u × χat)dt for every u in S(A) as defined in §361.

Generally, given u ∈ L0(A)+, there is a non-decreasing sequence 〈un〉n∈N in S(A)+ with supremum u, and
now {un × v̄ : w ∈ S(A)+, n ∈ N} is a non-decreasing sequence with supremum u× v̄ (353Pa4), so

4Formerly 353Oa.
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E(u× v̄) = supn∈N E(un × v̄) = supn∈N

∫∞

0
E(un × χat)dt =

∫∞

0
E(u× χat)dt

because E(u× χat) = supn∈N E(un × χat) for every t, so we can use B.Levi’s theorem at the last step. QQQ

(iii) Note also that v2τi ≤ Pi(v
2
n) for every i ≤ n, where Pi is the conditional expectation associated

with Aτi , by Jensen’s inequality (621Cd). So E(v2τi) ≤ E(v2n) is finite for every i.

(iv) We see now that

‖v̄‖22 = E(v̄2) =

∫ ∞

0

µ̄[[v̄2 > s]]ds =

∫ ∞

0

µ̄[[v̄ >
√
s]]ds =

∫ ∞

0

2tµ̄[[v̄ > t]]dt

= 2

∫ ∞

0

tµ̄atdt ≤ 2

∫ ∞

0

E(|vn| × χat)dt = 2E(|vn| × v̄)

(by (i) and (ii))

≤ 2‖vn‖2‖v̄‖2

by Cauchy’s inequality (244Eb). Since we know that

‖v̄‖2 ≤ ∑n
i=0 ‖vτi‖2 ≤ (n+ 1)γ

is finite, ‖v̄‖2 ≤ 2‖vn‖2.
(c) If S is any non-empty finite sublattice of T , let (σ0, . . . , σn) linearly generate the S-cells; then v̄ =

supi≤n |vσi
| (612Dd) and we can apply (b) to see that ‖v̄‖2 ≤ 2‖vmaxS‖2. In general, setting v̄I = supσ∈I |vσ|

when I ∈ I(S), starting with v̄∅ = 0, ‖v̄I‖2 ≤ 2γ for every I, while 〈v̄2I 〉I∈I(S) is upwards-directed, so

E(v̄2) = E( sup
I∈I(S)

v̄2I ) = sup
I∈I(S)

E(v̄2I )

(365Df)

≤ sup
I∈I(S)

4γ2;

taking square roots, we have the result in the general case.

Remark See 275Yd.

623N Theorem Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S an approximately local martin-
gale.

(a) vvv is a martingale iff vvv↾S ∧ τ is uniformly integrable for every τ ∈ S.
(b) The following are equiveridical:
(i) vvv is uniformly integrable;
(ii) there is a z ∈ L1 such that vvv = PPPz↾S;
(iii) {vσ : σ ∈ S} is ‖ ‖1-bounded and ‖v↑‖1 ≥ supσ∈S ‖vσ‖1, where v↑ = limσ↑S vσ;
(iv) vvv is a martingale and the limit 1limσ↑S vσ is defined in L1.

proof (a)(i) If vvv is a martingale and τ ∈ S, then vvv↾S ∧ τ = PPPvτ ↾S ∧ τ is uniformly integrable by 622Fa.

(ii) Now suppose that vvv↾S ∧ τ is uniformly integrable for every τ ∈ S. If σ ≤ τ in S, vvv↾S ∧ τ is a
uniformly integrable approximately local martingale (623Ke) so is a martingale (623Kf) and vσ = Pσvτ . As
σ and τ are arbitrary, vvv is a martingale.

(b)(i)⇒(iv) If (i) is true, then (a) tells us that vvv is a martingale. Of course A = {vσ : σ ∈ S} is
‖ ‖1-bounded, so 623La tells us that z = limσ↑S vσ is defined and belongs to L1. Now A ∪ {z} is uniformly
integrable, so the topology of convergence in measure and the topology defined by ‖ ‖1 agree on A ∪ {z},
and z = 1limσ↑S vσ. Thus (iv) is true.

(iv)⇒(iii) Suppose that (iv) is true. Observe first that
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‖vσ‖1 = ‖Pσvτ‖1 ≤ ‖vτ‖1
whenever σ ≤ τ in S. Now we are supposing that z = 1limσ↑S vσ. Because the embedding L1 ⊂→ L0 is
continuous (613B(d-i)), z is also limσ↑S vσ. Moreover,

‖z‖1 = 1limσ↑S ‖vσ‖1 = supσ∈S ‖vσ‖1
because σ 7→ ‖vσ‖1 : S → R is non-decreasing. So (iii) is true.

(iii)⇒(ii) Suppose that (iii) is true. Set γ = supσ∈S ‖vσ‖1. By 623La, the limit v↑ is defined; we
are supposing that ‖v↑‖1 ≥ γ. In fact we must have equality, because ‖ ‖1-balls are closed; in particular,
v↑ ∈ L1

µ̄.

(ααα) vvv is a martingale. PPP Take σ0 ≤ σ1 in S, and ǫ > 0. Since v↑ ∈ {vτ : τ ∈ S ∨ σ1}, ‖v↑‖1 ≤
supτ∈S∨σ1

‖vτ‖1 and there is a τ ∈ S such that σ1 ≤ τ and ‖vτ‖1 ≥ ‖v↑‖1 − ǫ ≥ γ − ǫ.
Let δ > 0 be such that E(‖vσ × χa‖1) ≤ ǫ whenever σ ∈ {σ0, σ1, τ} and µ̄a ≤ δ. Let A ⊆ S be a

non-empty downwards-directed set such that supρ∈A µ̄[[ρ < τ ]] ≤ δ and 〈v′σ〉σ∈S = RA(vvv) is a martingale.
Set a = supρ∈A [[ρ < τ ]], so that µ̄a ≤ δ. Since v′τ = limρ↓A vτ∧ρ,

‖v′τ‖1 ≤ supρ∈A ‖vτ∧ρ‖1 ≤ γ.

On the other hand, 1 \ a ⊆ [[v′τ = vτ ]], so

E(|v′τ × χ(1 \ a)|) = E(|vτ × χ(1 \ a)|) = ‖vτ‖1 − E(|vτ × χa|) ≥ γ − 2ǫ.

So E(|v′τ × χa|) ≤ 2ǫ. Next, for i either 0 or 1,

ai = [[v′σi
6= vσi

]] ⊆ a, µ̄ai ≤ δ

and ai ∈ Σσi
. So

E(|v′σi
| × χai) = E(|Pσi

v′τ | × χai) ≤ E(Pσi
|v′τ | × χai)

= E(Pσi
(|v′τ | × χai)) = E(|v′τ | × χai) ≤ 2ǫ,

while also E(|vσi
| × χai) ≤ ǫ, so ‖vσi

− v′σi
‖1 ≤ 3ǫ.

Now we see that

‖vσ0
− Pσ0

vσ1
‖1 ≤ 6ǫ+ ‖v′σ0

− Pσ0
v′σ1

‖1 = 6ǫ.

As σ0, σ1 and ǫ are arbitrary, vvv is a martingale. QQQ

(βββ) Now note that v↑ = 1limτ↑S vτ . PPP Let ǫ > 0. By 613D(b-iv), there is a δ > 0 such that
‖z − v↑‖1 ≤ ǫ whenever ‖z‖1 ≤ ‖v↑‖1 and θ(z − v↑) ≤ δ. But there is a τ ∈ S such that θ(vσ − v↑) ≤ δ
whenever σ ∈ S ∨ τ , so ‖vσ − v↑‖1 ≤ ǫ for every σ ∈ S ∨ τ . QQQ But now we see that

vσ = 1limτ↑S Pσvτ = Pσ(1limτ↑S vτ ) = Pσv↑

for every σ ∈ S. So (ii) is true.

(ii)⇒(i) As in (a-i), this is immediate from 622Fa.

623O Theorem Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a locally moderately oscillatory process and
vvv = 〈vσ〉σ∈S a virtually local martingale. Then iivvv(uuu) is a virtually local martingale.

proof It is worth noting straight away that because uuu is locally moderately oscillatory and vvv is a local
integrator (623Kd), iivvv(uuu) is certainly defined everywhere on S. If A ⊆ S is non-empty and downwards-
directed, RA :Mlmo(S) →Mlmo(S) will be the corresponding operator as described in 623B.

part A Suppose for the time being that S is full and has a greatest element, vvv is a martingale, and
‖ sup |uuu|‖∞ ≤ 1. Then vvv = PPPvmaxS↾S is an integrator and is order-bounded.

(a) Let ǫ > 0. Consider the ‖ ‖1-bounded martingale ṽvv = 〈ṽσ〉σ∈S where ṽσ = Pσ|vmaxS | for σ ∈ S. This
is order-bounded (622G); let M ≥ 0 be such that µ̄a ≤ ǫ where a = [[sup |ṽvv| ≥M ]]. Set

A = {ρ : ρ ∈ S, [[ρ < maxS]] ⊆ [[|ṽρ| ≥M ]]}
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as in 623I. Note that

[[www 6= RA(www)]] ⊆ supρ∈A [[ρ < maxS]] ⊆ a

for every www ∈Mlmo(S). Express vvv′ = RA(vvv) as 〈v′σ〉σ∈S and ṽvv′ = RA(ṽvv) as 〈ṽ′σ〉σ∈S .

(b) Now iivvv′(uuu) is a martingale.

PPP(i) Let δ > 0. Then there is an η > 0 such that (2 + M
δ
)η +

√
Mη ≤ δ. Let M ′ ≥ M be such

that ‖(|vmaxS | −M ′χ1)+‖1 ≤ η. Set w = med(−M ′χ1, vmaxS ,M
′χ1), w1 = (vmaxS −M ′χ1)+ and w2 =

(−v′maxS −M ′χ1)+; then vmaxS = w + w1 − w2, w is square-integrable, w1 ≥ 0, w2 ≥ 0, ‖w1‖1 ≤ η and
‖w2‖1 ≤ η. Consider the martingales www = 〈Pσw〉σ∈S , www1 = 〈Pσw1〉σ∈S , www2 = 〈Pσw2〉σ∈S and the associated
martingales www′ = RA(www) = 〈w′

σ〉σ∈S , www
′
1 = RA(www1) = 〈w′

1σ〉σ∈S and www′
2 = RA(www2) = 〈w′

2σ〉σ∈S .

(ii)We have ‖Pσw‖2 ≤ ‖w‖2 ≤M ′ for every σ (244M, 366H(b-iii)), so ‖w′
σ‖2 = ‖ limρ↓A Pσ∧ρw‖2 ≤M ′

for every σ ∈ S (613Bc). Thus www′ is a ‖ ‖2-bounded martingale, while we are supposing that uuu is moderately
oscillatory, so iiwww′(uuu) is a martingale (622Q).

(iii) Observe that

0 ≤ w′
1σ = lim

ρ↓A
Pσ∧ρw1 ≤ lim

ρ↓A
Pσ∧ρ|vmaxS |

= lim
ρ↓A

ṽσ∧ρ = ṽ′σ

for every σ ∈ S. Now RA(www
′
1) = www′

1 (623Cc), so if σ ≤ τ in S,
[[w′

1σ > M ]] ⊆ [[ṽ′σ > M ]] ⊆ [[w′
1σ = w′

1τ ]]

by 623I(b-i). It follows that if τ0 ≤ . . . ≤ τn in S, then (w′
1τ0 , . . . , w

′
1τn) is a non-negative martingale and

[[w′
1τi > M ]] ⊆ [[w′

1τi = w′
1τj ]] ∩ [[w′

1τi = w′
1τn ]] ⊆ [[w′

1τj = w′
1τn ]]

whenever i ≤ j ≤ n. So (Aτ0 , . . . ,Aτn), (w
′
1τ0 , . . . , w

′
1τn) and (uτ0 , . . . , uτn) satisfy the conditions of 621I.

Moreover,

‖w′
1τn‖1 ≤ sup

σ∈S
‖Pσw1‖1

(623B(c-ii))

≤ ‖w1‖1 ≤ η.

So 621I tells us that

‖
n−1∑

i=0

uτi × (w′
1τi+1

− w′
1τi)‖1 ≤ δ + (2 +

M

δ
)‖w′

1τn‖1 +
√
M‖w′

1τn
‖1

≤ δ + (2 +
M

δ
)η +

√
Mη ≤ 2δ

by the choice of η.
Re-expressing this in the standard form I am using for Riemann sums, we have

‖SI(uuu, dwww′
1)‖1 ≤ 2δ

for every finite sublattice I of S. Again because ‖ ‖1-balls are closed for the topology of convergence in
measure, it follows that ‖

∫
S∧τ uuu dwww

′
1‖1 ≤ 2δ for every τ ∈ S.

(iv) Similarly. ‖
∫
S∧τ uuu dwww

′
2‖1 ≤ 2δ for every τ ∈ S. But now recall that vmaxS = w + w1 − w2 so

PPPvmaxS = PPPw +PPPw1 −PPPw2, vvv = www +www1 −www2, vvv
′ = www′ +www′

1 −www′
2 and∫

S∧τ
uuu dvvv′ =

∫
S∧τ

uuu dwww′ +
∫
S∧τ

uuu dwww′
1 −

∫
S∧τ

uuu dwww′
2

for every τ ∈ S. So
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‖
∫
S∧τ

uuu dvvv′ −
∫
S∧τ

uuu dwww′‖1 ≤ 4δ

for every τ ∈ S. Since iiwww′(uuu) is a martingale, by (ii) above, and δ is arbitrary, iivvv′(uuu) is a martingale
(622Ec). QQQ

(c) Recall now that

iivvv′(uuu) = iiRA(vvv)(uuu) = RA(iivvv(uuu))

by 623G. So RA(iivvv(uuu)) is a martingale. Since ǫ was arbitrary, iivvv(uuu) is a virtually local martingale (see the
remarks in 623J).

part B I set out to strip away the extra hypotheses demanded in part A.

(a) Of course it will be enough to suppose that S is full and has a greatest element, vvv is a martingale
and ‖ sup |uuu|‖∞ is finite, since then we can apply (A) to a non-zero multiple of uuu.

(b) Now suppose that S is full and has a greatest element and that vvv is a martingale. In this case, uuu is
still moderately oscillatory and order-bounded. Let ǫ > 0, and take M ≥ 0 such that µ̄[[sup |uuu| ≥M ]] ≤ 1

2ǫ.
Set

A = {ρ : ρ ∈ S, [[ρ < maxS]] ⊆ [[|uρ| ≥M ]]}
as in 623I. Then A is non-empty and downwards-directed and supρ∈A µ̄[[ρ < maxS]] ≤ 1

2ǫ. Set uuu′ =
〈u′σ〉σ∈S = RA(uuu), vvv

′ = 〈v′σ〉σ∈S = RA(vvv) and ũuu = 〈ũσ〉σ∈S = med(−M1,uuu′,M1). Then uuu′ and ũuu are
moderately oscillatory, vvv′ is an integrator (623D) and ‖ sup |ũuu|‖∞ ≤M is finite. If σ ≤ τ in S, then

[[ũσ 6= u′σ]] ⊆ [[|u′σ| > M ]] ⊆ [[vσ = vτ ]]

(623I(b-i) again), so ũσ× (v′τ − v′σ) = u′σ× (v′τ − v′σ). Accordingly SI(ũuu, dvvv′) = SI(uuu
′, dvvv′) for every I ∈ I(S)

and iivvv′(uuu
′) = iivvv′(ũuu). But vvv

′ is a martingale (623E again), so (a) just above tells us that iivvv′(ũuu) is a virtually
local martingale and accordingly iivvv′(uuu

′) is a virtually local martingale.
Let B ⊆ S be a non-empty downwards-directed set such that supρ∈B µ̄[[ρ < maxS]] ≤ 1

2ǫ and RB(iivvv′(uuu
′))

is a martingale. Setting vvv′′ = RB(vvv
′) and uuu′′ = RB(uuu

′), 623G tells us that iivvv′′(uuu
′′) = RB(iivvv′(uuu

′)) is a
martingale. But vvv′′ = RBRA(vvv) = RA∧B(vvv) (623Cb) and similarly uuu′′ = RA∧B(uuu). Applying 623G again,
we see that

RA∧B(iivvv(uuu)) = iiRA∧B(vvv)(RA∧B(uuu)) = iivvv′′(uuu
′′)

is a martingale. And for any σ ∈ S we have

sup
ρ∈A∧B

µ̄[[ρ < σ]] ≤ sup
ρ∈A∧B

µ̄[[ρ < maxS]] = sup
ρ∈A
ρ′∈B

µ̄[[ρ ∧ ρ′ < maxS]]

= sup
ρ∈A
ρ′∈B

µ̄([[ρ < maxS]] ∪ [[ρ′ < maxS]])

≤ sup
ρ∈A
ρ′∈B

(µ̄[[ρ < maxS]] + µ̄[[ρ′ < maxS]]) ≤ ǫ.

As ǫ is arbitrary, iivvv(uuu) is a virtually local martingale.

(c) Thirdly, consider the case in which S is full and has a greatest element but vvv is only a virtually
local martingale. Take ǫ > 0. Then we have a non-empty downwards-directed set A ⊆ S such that
µ̄[[ρ < maxS]] ≤ 1

2ǫ for every ρ ∈ A and RA(vvv) is a martingale. By (b), iiRA(vvv)(uuu) is a virtually local

martingale. Let B ⊆ S be a non-empty downwards-directed set such that supρ∈B µ̄[[ρ < maxS]] ≤ 1
2ǫ and

RB(iiRA(vvv)(uuu)) is a martingale. By 623G and 623Cb once more,

RA∧B(iivvv(uuu)) = iiRA∧B(vvv)(uuu) = iiRBRA(vvv)(uuu) = RB(iiRA(vvv)(uuu))

is a martingale. As in (b), we have supρ∈A∧B µ̄[[ρ < maxS]] ≤ ǫ. As ǫ is arbitrary, iivvv(uuu) is a virtually local
martingale.

(d) If we suppose only that S is full, then for each τ ∈ S we have a moderately oscillatory process uuu↾S∧τ
and a virtually local martingale vvv↾S ∧ τ (623Ke again), while S ∧ τ is full and has a greatest element. By
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(c), iivvv↾S∧τ (uuu↾S ∧ τ) is a virtually local martingale. But this is just iivvv(uuu)↾S ∧ τ . So iivvv(uuu) is a virtually
local martingale, by 623Ke in the other direction.

(e) Finally, in the general case, the covered envelope Ŝ of S is full, the fully adapted extension ûuu of uuu

to Ŝ is locally moderately oscillatory (615F(b-v)) and the fully adapted extension v̂vv of vvv is a virtually local
martingale (623J). So (d) tells us that iiv̂vv(ûuu) is a virtually local martingale. But iiv̂vv(ûuu) is the fully adapted
extension of iivvv(uuu) (apply 613Uc to S ∧ τ for τ ∈ S), so iivvv(uuu) itself is a virtually local martingale (623J
again).

This completes the proof.

623X Basic exercises (a) Let S be a sublattice of T , A ⊆ S a non-empty downwards-directed set
and uuu a locally moderately oscillatory process with domain S. (i) Show that if uuu is order-bounded then
RA(uuu) is order-bounded and sup |RA(uuu)| ≤ sup |uuu|, (ii) Show that if uuu is locally order-bounded then RA(uuu)
is locally order-bounded, (iii) Show that if uuu is of bounded variation, then RA(uuu) is of bounded variation and∫
S |dRA(uuu)| ≤

∫
S |duuu|. (iv) Show that if uuu is locally of bounded variation, then RA(uuu) is locally of bounded

variation. (v) Show that if 1 ≤ p ≤ ∞ and uuu is ‖ ‖p-bounded (622Ca), then RA(uuu) is ‖ ‖p-bounded.

(b) Let S be a sublattice of T and A ⊆ S a non-empty downwards-directed set. Let RA : Mlmo(S) →
Mlmo(S) be the operator described in 623B. Show that if uuu = 〈uσ〉σ∈S is a local martingale then RA(uuu) is
a local martingale.

(c) Show that Brownian motion www on Tf , as described in 612T, is not an L1-process, and that there is a
τ ∈ Tf such that www↾Tf ∨ τ is not a virtually local martingale.

(e) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a virtually local martingale. Show that uuu↾S ′ is a virtually
local martingale for any ideal S ′ of S.

(f) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a virtually local martingale. Show that uσ = uτ whenever
σ, τ ∈ S and Aσ = Aτ .

(g) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process. Show that the following are
equiveridical: (α) uuu is a virtually local martingale and uτ ∈ L1; (β) uuu↾S ∧ τ and uuu↾S ∨ τ are virtually local
martingales.

(h) Let S be a sublattice of T . Suppose that uuu ∈ Mfa(S) and for every τ ∈ S and ǫ > 0 there is a
σ ∈ S such that µ̄[[σ < τ ]] ≤ ǫ and uuu↾S ∧ σ is a virtually local martingale. Show that uuu is a virtually local
martingale.

623Y Further exercises (a) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a virtually local martingale.
Suppose that A ⊆ S is non-empty and downwards-directed, inf A ∈ S and Ainf A =

⋂
σ∈AAσ. Show that

uinf A = limσ↓A uσ.

623 Notes and comments At the price of a substantial effort, we have a theorem on indefinite integrals
with respect to virtually local martingales which matches the form of the corresponding results on processes
of bounded variation (614T), integrators (616J) and jump-free integrators (618Q). But 623O is especially
important because martingales, and in particular Brownian motion, are central to any theory of stochastic
integration. And its difficulty lies largely in the fact that an indefinite integral with respect to a martingale
is not necessarily a martingale (631Ya). In the framework I have settled on for this volume so far, ‘virtually
local martingale’ is the best I can do. I ought to tell you that in the more conventional framework of
right-continuous filtrations (§632), virtually local martingales on ideals of T are actually local martingales
(632Ib), and that the corresponding special case of 623O is a good deal easier to prove, while being a
sufficient foundation for the standard theory.

Observe that 623La covers Doob’s martingale convergence theorem (275G, 367Ja). If we have a ‖ ‖1-
bounded virtually local martingale 〈vσ〉σ∈S , it is moderately oscillatory, so limσ↑S vσ = v↑ is defined, and
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infτ∈S supσ∈S∨τ |vσ − v↑| = 0 (615Ga), corresponding to order*-convergence in L0 as defined in 367A, that
is, to almost-everywhere pointwise convergence of sequences of measurable functions (367F).

The main theorems of this section (623L-623O) involve awkward shifts between ‘approximately local’ and
‘virtually local’, which will have echoes later. As long as we restrict ourselves to finitely full lattices, there is
no difference (623K(b-iii)). I am reluctant to impose such a restriction generally because the Riemann-sum
integral does not insist on it (613T), and many of the ideas of this volume can be effectively expressed in
terms of lattices of constant stopping times. Indeed applications often begin with processes defined on such
a lattice, as in 612H. When we come to the structure theory of integrators, the concept of ‘virtually local’
martingale will provide a particularly striking formulation of the main theorem (627Q).

Version of 21.2.23/22.8.23

624 Quadratic variation

We are at last ready to determine the quadratic variation of Brownian motion (624F). I take the oppor-
tunity to tidy up some simple consequences of results in §§617 and 623 (624B-624E), and to give useful facts
about L2-martingales (624G-624I).

624A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. I write L1, L2,
L∞ for L1(A, µ̄), L2(A, µ̄) and L∞(A) respectively. E will be the integral on L1 and θ will be the F-norm
defining the topology of convergence in measure on L0(A), as in 613B. If vvv and www are local integrators with
the same domain, [vvv

∗
www] will be their covariation (617H); vvv∗ = [vvv

∗
vvv] is the quadratic variation of vvv.

624B Theorem Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S virtually local
martingales such that v↓ × w↓ ∈ L1 where v↓ = limσ↓S vσ and w↓ = limσ↓S wσ. Then vvv ×www − [vvv

∗
www] is a

virtually local martingale.

proof We know that vvv and www are local integrators (623Kd), so the covariance [vvv
∗
www] is defined everywhere

on S (617Hb). We have

vvv ×www − [vvv
∗
www] = iiwww(vvv) + iivvv(www) + z1

where z = v↓ × w↓ ∈ L0(
⋂
σ∈S Aσ); as z ∈ L1, z1 is a martingale. But iiwww(vvv) and iivvv(www) are virtually local

martingales, by 623O, so vvv ×www − [vvv
∗
www] is a virtually local martingale.

624C Proposition Let S be a sublattice of T and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S local integrators. If one
of them is locally jump-free and one is locally of bounded variation, then [vvv

∗
www] = 0. In particular, if vvv is

locally jump-free and locally of bounded variation, then vvv∗ = 0.

proof (a) Suppose that vvv is locally jump-free and www is locally of bounded variation. Take any τ ∈ S. Set
w̄ =

∫
S∧τ |dwww|. Take any ǫ > 0. Let δ > 0 be such that θ(z × w̄) ≤ ǫ whenever θ(z) ≤ δ. Let I ∈ I(S ∧ τ)

be such that θ(Osclln∗I(vvv↾S ∧ τ)) ≤ δ (618B). If J ∈ I(S ∧ τ), J ⊇ I and e is a J-cell, express e as c(σ, τ)
where σ ≤ τ in J ; then

|∆e(1, dvvv dwww)| = |vτ − vσ| × |wτ − wσ| ≤ OscllnJ(vvv)×∆e(1, |dwww|).
Summing over the J-cells,

|SJ(1, dvvv dwww)| ≤ OscllnJ(vvv)× SJ(1, |dwww|) ≤ Osclln∗I(vvv↾S ∧ τ)× w̄

and θ(SJ(1, dvvv dwww)) ≤ ǫ. As ǫ is arbitrary,∫
S∧τ

dvvv dwww = limJ↑I(S∧τ) SJ(1, dvvv dwww)) = 0.

This is true for every τ ∈ S, so [vvv
∗
www] = 0.

Of course the same arguments will apply if vvv is locally of bounded variation and www is locally jump-free.

(b) If vvv is both locally jump-free and locally of bounded variation, then (a) tells us that vvv∗ = [vvv
∗
vvv] = 0.

By 617M, it follows that [vvv
∗
www] = 0. Similarly, [vvv

∗
www] = 0 if www is locally jump-free and locally of bounded

variation.
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624D Lemma Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a virtually local martingale. Then the
following are equiveridical:

(i) vvv is constant;
(ii) vvv is locally jump-free and locally of bounded variation;
(iii) the quadratic variation of vvv is zero.
[ For 624E/653G, want [[vvv 6= v↓1]] ⊆ [[vvv∗ 6= 0]]]

proof (i)⇒(ii) is trivial.

(ii)⇒(iii) is immediate from 624C.

(iii)⇒(i) The result is trivial if S is empty, so let us suppose otherwise. By 623Kd again, vvv is locally
integrable, so its quadratic variation is defined everywhere on S. By 623Kg, v↓ = limσ↓S vσ is defined and
belongs to L1(A, µ̄).

(ααα) Suppose to begin with that S is full and that v↓ = 0. Because the quadratic variation of vvv is
zero, vvv2 = 2iivvv(vvv) is a virtually local martingale (623O again). Take τ ∈ S and ǫ > 0. Let A ⊆ S
be a non-empty downwards-directed set such that supρ∈A µ̄[[ρ < τ ]] ≤ ǫ and zzz = RA(vvv

2), as defined in

623B, is a martingale. Express zzz as 〈zσ〉σ∈S . Then limσ↓S zσ = limσ↓S v
2
σ = 0 (623B(c-i)). The set

{zσ : σ ∈ S ∧ τ} = {Pσzτ : σ ∈ S ∧ τ} is uniformly integrable (621Cf), so the ‖ ‖1-limit 1limσ↓S zσ is zero
(621B(c-ii)) and

E(zτ ) = limσ↓S E(Pσzτ ) = limσ↓S E(zσ) = 0.

As zτ = limρ↓A v
2
τ∧ρ ≥ 0, zτ = 0.

Now note that

[[vτ 6= 0]] = [[v2τ 6= zτ ]] ⊆ supρ∈A [[v2τ 6= v2τ∧ρ]] ⊆ supρ∈A [[ρ < τ ]]

has measure at most ǫ (because A is downwards-directed). As ǫ is arbitrary, vτ = 0; as τ is arbitrary, vvv = 0
is constant.

(βββ) Next, suppose just that S is full. Set wσ = vσ−v↓ for σ ∈ S andwww = 〈wσ〉σ∈S . Since v↓ ∈ L1(A, µ̄),
v↓1 is a martingale and www = vvv−v↓1 is a virtually local martingale. Next, (wτ −wσ)2 = (vτ −vσ)2 whenever
σ ≤ τ in S, so

∫
S∧τ (dwww)

2 =
∫
S∧τ (dvvv)

2 for every τ ∈ S, and the quadratic variation of www is equal to vvv∗ = 0.
By (α), www = 0 and vvv is constant.

(γγγ) Finally, for the general case, let Ŝ be the covered envelope of S and v̂vv the fully adapted extension

of vvv to Ŝ. As noted in 623J, v̂vv is a virtually local martingale. Its quadratic variation is the fully adapted
extension of vvv∗ (617N) so is zero. By (β), v̂vv is constant, so vvv is.

624E Corollary Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a virtually local martingale with quadratic
variation 〈v∗σ〉σ∈S . If τ , τ

′ ∈ S are such that v∗τ = v∗τ ′ , then vvv is constant on S ∩ [τ ∧ τ ′, τ ∨ τ ′].
we need [[vτ 6= vτ ′ ]] ⊆ [[v∗τ 6= v∗τ ′ ]] for 653G

proof (a) To begin with, suppose that τ ≤ τ ′. Write S0 for S ∩ [τ, τ ′]. As vvv∗ is non-decreasing, v∗σ = v∗τ ,
that is,

∫
S∧σ(dvvv)

2 =
∫
S∧τ (dvvv)

2, for every σ ∈ S ∩ [τ, τ ′]. By 623Kh and 623K(e-ii), (vvv − vτ1)↾S ∨ τ and

www = (vvv − vτ1)↾S0 are virtually local martingales. Now ∆www = ∆vvv↾S2↑
0 , so∫

S0∧σ
(dwww)2 =

∫
S0∧σ

(dvvv)2 =
∫
S∧σ

(dvvv)2 −
∫
S′∧τ

(dvvv)2 = 0

for every σ ∈ S, that is, the quadratic variation of www is zero. By 624D, www and vvv = www + vτ1 are constant on
S0.

(b) This deals with the case τ ≤ τ ′. But for the general case, given that v∗τ = v∗τ ′ , we have

[[τ ≤ τ ′]] ⊆ [[τ ∧ τ ′ = τ ]] ∩ [[τ ∨ τ ′ = τ ′]]

⊆ [[v∗τ∧τ ′ = v∗τ ]] ∩ [[v∗τ∨τ ′ = v∗τ ′ ]] ⊆ [[v∗τ∧τ ′ = v∗τ∨τ ′ ]]

and similarly [[τ ′ ≤ τ ]] ⊆ [[v∗τ∧τ ′ = v∗τ∨τ ′ ]]. So v∗τ∧τ ′ = v∗τ∨τ ′ and (a) shows that vvv is constant on S ∩ [τ ∧τ ′, τ ∨
τ ′].
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624F Theorem Let www = 〈wτ 〉τ∈Tf
be Brownian motion. Then its quadratic variation www∗ is the identity

process ιιι.

proof By 622L, www and www2−ιιι are local martingales. Next, www2−www∗ = 2iiwww(www) is a virtually local martingale,
by 624B, so www∗−ιιι is a virtually local martingale. Because both www∗ and ιιι are non-decreasing, www∗−ιιι is locally
of bounded variation. Now recall that www is locally jump-free (618Jc), so www∗ is locally jump-free (618T), while
of course ιιι is locally jump-free (618Ja). So www∗−ιιι is a virtually local martingale, locally jump-free and locally
of bounded variation, and must be constant (624D). Since it starts from 0 at min T , it is zero everywhere
and www∗ = ιιι, as claimed.

624G We saw in 622Q that indefinite integrals with respect to L2-martingales are particularly easy to
analyze. Here I give a characterization and a striking property of such martingales.

Lemma Let S be a sublattice of T , vvv = 〈vσ〉σ∈S an L2-martingale and vvv∗ = 〈v∗σ〉σ∈S its quadratic variation.
Then E(v∗τ ) ≤ E(v2τ ) for every τ ∈ S.
proof As before, vvv∗ is defined everywhere on S. Now E(SI(1, (dvvv)

2)) ≤ E(v2max I) for every non-empty
I ∈ I(S). PPP Take (τ0, . . . , τn) linearly generating the I-cells. If i < n, then

Pτi(vτi × (vτi+1
− vτi)) = vτi × Pτi(vτi+1

− vτi) = 0,

so

E(vτi × (vτi+1
− vτi)) = E(Pτi(vτi × (vτi+1

− vτi))) = 0.

Consequently

E(SI(1, (dvvv)
2)) = E(

n−1∑

i=0

(vτi+1
− vτi)

2)

=

n−1∑

i=0

E(vτi+1
)− E(vτi)

2)− 2E(vτi × (vτi+1
− vτi))

= E(v2τn)− E(v2τ0) ≤ E(v2max I). QQQ

Now if τ ∈ S,
v∗τ = limI↑I(S∧τ) SI(1, (dvvv)

2) ∈ {x : ‖x‖1 ≤ E(v2τ )}.
Bu ‖ ‖1-balls are closed for the topology of convergence in measure (613Bc), so E(v∗τ ) = ‖v∗τ‖1 ≤ E(v2τ ), as
clsimed.

624H Proposition Let S be a non-empty sublattice of T , vvv = 〈vσ〉σ∈S a virtually local martingale with
starting value 0, and vvv∗ = 〈v∗σ〉σ∈S its quadratic variation.

(a) ‖vτ‖2 ≤
√

‖v∗τ‖1 for every τ ∈ S.
(b) If moreover vvv is an approximately local martingale and vvv∗ is an L1-process, then vvv and iivvv(vvv) are

martingales, and ‖vτ‖2 =
√
‖v∗τ‖1 for every τ ∈ S.

Remark Recall that I count ‖vτ‖2 as ∞ if vτ ∈ L0 is not square-integrable, and ‖v∗τ‖1 as ∞ if v∗τ ∈ (L0)+

does not have finite expectation; while of course
√∞ is to be interpreted as ∞.

proof (a)(i) To begin with, suppose that S is full. As in 624B vvv∗ is well-defined and vvv∗−vvv2 is a virtually local
martingale. Take τ ∈ S and ǫ > 0. Then there is a non-empty downwards-directed subset A of S such that
a = supρ∈A [[ρ < τ ]] has measure at most ǫ and RA(vvv

∗−vvv2) is a martingale, where RA :Mlmo(S) →Mlmo(S)
is defined as in 623B. Now RA(vvv)

∗ = RA(vvv
∗), by 623H, so zzz = RA(vvv

∗)−RA(vvv)2 is a martingale. The starting
value of RA(vvv) is 0, by 623B(c-i), as is the starting value of RA(vvv

∗), so the starting value of zzz is 0; expressing
zzz as 〈zσ〉σ∈S , 0 is the conditional expectation of zτ on

⋂
σ∈S Aσ (622Ed), so 0 = E(zτ ) = E(v∗Aτ − v2Aτ ),

where vAτ = limρ↓A vρ∧τ and v∗Aτ = limρ↓A v
∗
ρ∧τ . Accordingly

‖v2Aτ‖1 = E(v2Aτ ) = E(v∗Aτ ) = ‖v∗Aτ‖1 ≤ ‖v∗τ‖1
because 0 ≤ v∗Aτ ≤ v∗τ .
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Now observe that

[[v2Aτ 6= v2τ ]] ⊆ [[vAτ 6= vτ ]] ⊆ supρ∈A [[vρ∧τ 6= vτ ]] ⊆ supρ∈A [[ρ < τ ]] = a

so θ(v2τ − v2Aτ ) ≤ ǫ. As ǫ is arbitrary, v2τ belongs to the closure of {x : ‖x‖1 ≤ ‖v∗τ‖1}. But this is a closed

set for the topology of convergence in measure (613Bc again), so ‖v2τ‖1 ≤ ‖v∗τ‖1, that is, ‖vτ‖2 ≤
√
‖v∗τ‖1.

(ii) For the general case, let Ŝ be the covered envelope of S and v̂vv the fully adapted extension of vvv to

Ŝ, Then Ŝ is full and v̂vv is a virtually local martingale (623J) with starting value 0 (615H, as vvv and v̂vv are
locally moderately oscillatory). Express v̂vv as 〈v̂σ〉σ∈Ŝ and its quadratic variation v̂vv∗ as 〈v̂∗σ〉σ∈Ŝ . By 617N,

v̂vv∗ extends vvv∗. So (a) tells us that

‖vτ‖2 = ‖v̂τ‖2 ≤
√

‖v̂∗τ‖1 =
√
‖v∗τ‖1

for every τ ∈ S.
(b) Now suppose that vvv is an approximately local martingale and vvv∗ is an L1-process, that is, ‖v∗τ‖1 and

therefore ‖vτ‖2 are finite for every τ ∈ S.
(i) If τ ∈ S, then

‖vσ‖2 ≤
√
‖v∗σ‖1 ≤

√
‖v∗τ‖1

for every σ ∈ S ∧ τ , and {vσ : σ ∈ S ∧ τ} is ‖ ‖2-bounded, therefore uniformly integrable (621Be), that is,
vvv↾S ∧ τ is uniformly integrable. By 623Na, vvv is a martingale.

As vvv is also an L2-process, 624G tells us that
√
‖v∗τ‖1 ≤ ‖vτ‖2 for every τ ∈ S, so we have equality.

(ii) As for iivvv(vvv), take τ ≤ τ ′ in S and c ∈ Aτ . For σ ∈ S ∨ τ set

wσ = Pσ((vτ ′ − vτ )× χc)

so that www = 〈wσ〉σ∈S∨τ is a martingale. Write www∗ = 〈w∗
σ〉σ∈S∨τ for its quadratic variation. We see that if

σ ∈ S ∨ τ then c ∈ Aσ so

wσ = Pσ(vτ ′ − vτ )× χc = (vσ − vτ )× χc

because vvv is a martingale; in particular, the starting value wτ of www is 0. As (vτ ′ − vτ ) × χc ∈ L2, www is
an L2-martingale and E(w∗

σ) ≤ E(w2
σ) is finite for every σ ∈ S ∨ τ , by 624G. But from (a) we know that

E(w2
σ) ≤ E(w∗

σ), so we have equality.
Now w∗

τ ′ − w∗
τ = (v∗τ ′ − v∗τ )× χc. PPP If τ0 ≤ . . . ≤ τn in S ∩ [τ, τ ′],

∑n
i=0(wτi+1

− wτi)
2 =

∑n
i=0(vτi+1

− vτi)
2 × χc.

So SI(1, (dwww)
2) = SI(1, (dvvv)

2) × χc for every finite sublattice I of S ∩ [τ, τ ′]. Taking the limit as I ↑
I(S ∩ [τ, τ ′]),

w∗
τ ′ =

∫

S∩[τ,τ ′]

(dwww)2 = lim
I↑I(S∩[τ,τ ′])

SI(1, (dwww)
2)

= lim
I↑I(S∩[τ,τ ′])

SI(1, (dvvv)
2)× χc

=

∫

S∩[τ,τ ′]

(dvvv)2 × χc = (v∗τ ′ − v∗τ )× χc. QQQ

Turning to expectations, we have

E((v∗τ ′ − v∗τ )× χc) = E(w∗
τ ′) = E(w2

τ ′) = E((vτ ′ − vτ )
2 × χc)

= E((v2τ ′ − v2τ )× χc) + 2E(vτ × (vτ ′ − vτ )× χc).

But

E(vτ × (vτ ′ − vτ )× χc) = E(Pτ (vτ × (vτ ′ − vτ )× χc))

= E(vτ × Pτ (vτ ′ − vτ )× χc) = 0

so
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E((v∗τ ′ − v∗τ )× χc) = E((v2τ ′ − v2τ )× χc),

that is to say,

E((v∗τ ′ − v2τ ′)× χc) = E((v∗τ − v2τ )× χc).

As c is arbitrary, Pτ (v
∗
τ ′ − v2τ ′) = v∗τ − v2τ . As τ and τ ′ are arbitrary, vvv∗ − vvv2 is a martingale. But as vvv has

starting value 0,

iivvv(vvv) =
1

2
(vvv2 − vvv∗)

is a martingale, and the proof is complete.

624I Corollary Let S be a sublattice of T , vvv = 〈vσ〉σ∈S a ‖ ‖2-bounded martingale with quadratic
variation vvv∗, and uuu = 〈uσ〉σ∈S a ‖ ‖∞-bounded moderately oscillatory process. Then E((

∫
S uuu dvvv)

2) and

E(
∫
S uuu

2dvvv∗) are finite and equal.

proof By 622Q, zzz = iivvv(uuu) is a ‖ ‖2-bounded martingale, and of course its starting value is 0 (613J(f-i)).
Writing zzz∗ = 〈z∗σ〉σ∈S for its quadratic variation, and expressing zzz as 〈zσ〉σ∈S , we have E(z∗τ ) = E(z2τ ) for
every τ ∈ S, by 624G and 624Hb. We know also that

z∗τ =
∫
S∧τ

dzzz∗ =
∫
S∧τ

uuu2dvvv∗

for every τ ∈ S, by 617Qb.
If S has a greatest member, we just take τ = maxS. In general, we need to check the limits as τ ↑ S.

By 622Q again, E(z2τ ) ≤ ‖uuu‖2∞E(v2τ ) for every τ ∈ S. Since vvv is ‖ ‖2-bounded,
β = supτ∈S E(z∗τ ) = supτ∈S E(z2τ )

is finite. Now zzz∗ is non-decreasing, so

E(

∫

S

uuu2dvvv∗) = E(lim
τ↑S

∫

S∧τ

uuu2dvvv∗) = E(lim
τ↑S

z∗τ )

= E(sup
τ∈S

z∗τ ) = sup
τ∈S

E(z∗τ ) = β

(613B(d-iii)). On the other side, we know that if σ ≤ τ in S then

E((zτ − zσ)
2) = E((z2τ − z2σ − 2zσ × (zτ − zσ)) = E(z2τ )− E(z2σ)

as in (a-i) of the proof of 624H. Generally, for σ, τ ∈ S,

‖zτ − zσ‖22 = E((zτ − zσ)
2) = E((zσ∨τ − zσ∧τ )

2)

(612D(f-ii))

= E(z2σ∨τ )− E(z2σ∧τ ) ≤ β − E(z2σ∧τ ) → 0

as σ, τ ↑ S. So the ‖ ‖2-limit 2limτ↑S zτ is defined and must be equal to the limit limτ↑S zτ =
∫
S uuu dvvv for

the topology of convergence in measure (613B(d-i)); moreover,

E((

∫

S

uuu dvvv)2) = ‖
∫

S

uuu dvvv‖22 = ‖ 2lim
τ↑S

zτ‖22

= lim
τ↑S

‖zτ‖22 = β = E(

∫

S

uuu2dvvv∗),

as claimed.

624X Basic exercises (a) (i) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a martingale. Suppose that
τ , τ ′ ∈ S are such that vτ = vτ ′ . Show that vvv is constant on S ∩ [τ ∧τ ′, τ ∨τ ′]. (ii) Give an example in which
there is a local martingale vvv = 〈vσ〉σ∈T , with quadratic variation vvv∗ = 〈v∗σ〉σ∈T , such that vmax T = vmin T

but v∗max T 6= v∗min T .
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(b) Let S be a finitely full sublattice of T and vvv, www L2-martingales on S. Show that vvv ×www − [vvv
∗
www] is a

martingale. (Hint : 624B, 624G, 623K(b-iii), 623Kf.)

(c) Let S be a sublattice of T , vvv a ‖ ‖2-bounded martingale with domain S, and uuu a locally moderately
osciallatory process with domain S. Write vvv∗ for the quadratic variation of vvv. Show that E((

∫
S uuu dvvv)

2) =

E(
∫
S uuu

2dvvv∗) if either is finite.

624 Notes and comments Nothing in this section is surprising, but to get complete arguments I think
a little care is needed. It is easy to believe that ‖vτ‖2 and ‖v∗τ‖1 in 624Ha are related, but not so simple
to find exact conditions on the process vvv which will ensure this in the cases we might encounter. Of course
there are many paths through the forest. In 624Xb, for instance, I sketch an alternative route to the result
of 622L, not relying on Dynkin’s formula.

Version of 6.3.24

625 Changing the measure

I give essential formulae for calculating the effect of replacing a given probability measure µ̄ with an
equivalent probability measure ν̄ (625B-625C). Semi-martingales (625D) remain semi-martingales under
any such change (625F).

625A Notation I continue in the framework developed in Chapter 61. (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will
be a stochastic integration structure, and Eµ̄ the integral corresponding to µ̄. For τ ∈ T , Pτ : L1

µ̄ → L1
µ̄ will

be the conditional expectation operator associated with Aτ ; if z ∈ L1
µ̄, PPPz = 〈Pτz〉τ∈T will be the martingale

derived from z (622F). If S is a sublattice of T , Mfa(S) will be the space of fully adapted processes with
domain S, and Mlmo(S) the space of locally moderately oscillatory processes with domain S.

625B Change of law: Theorem Let ν̄ be a second functional such that (A, ν̄) is a probability algebra;
write Eν̄ and L1

ν̄ for the corresponding integral and L1-space.
(a)(i) There is a unique z ∈ L1

µ̄ such that ν̄a = Eµ̄(z × χa) for every a ∈ A.

(ii) [[z > 0]] = 1 and z has a multiplicative inverse 1
z
in L0.

(iii) For w ∈ L0, Eν̄(w) = Eµ̄(w × z) if either is defined in [−∞,∞].
(iv) 1

z
∈ L1

ν̄ and µ̄a = Eν̄(
1
z
× χa) for every a ∈ A.

(v) For w ∈ L0,

w ∈ L1
ν̄ ⇐⇒ w × z ∈ L1

µ̄, w ∈ L1
µ̄ ⇐⇒ w × 1

z
∈ L1

ν̄ .

(vi) [[Pτz > 0]] = 1 for every τ ∈ T .
(vii) If τ ∈ T and w ∈ L0(Aτ ), then w ∈ L1

ν̄ iff w × Pτz ∈ L1
µ̄.

(viii) We have a fully adapted process uuu = 〈uτ 〉τ∈T defined by saying that uτ =
1

Pτz
is the multiplicative

inverse of Pτz for every τ ∈ T .
(b) For τ ∈ T , let Qτ : L1

ν̄ → L1
ν̄ ∩ L0(Aτ ) be the conditional expectation operator with respect to the

closed subalgebra Aτ for the probability ν̄.
(i) If w ∈ L1

ν̄ , Pτ (w × z) = Qτw × Pτz.
(ii) If w ∈ L1

µ̄, Qτ (w × 1
z
) = Pτw ×Qτ (

1
z
).

(iii) Pτ (z)×Qτ (
1
z
) = χ1.

(c) Let S be a sublattice of T , and www = 〈wσ〉σ∈S a fully adapted process. WriteQQQ( 1
z
) for the ν̄-martingale

〈Qτ ( 1z )〉τ∈T .
(i) www is is a ν̄-martingale iff www ×PPPz is a µ̄-martingale. In particular, uuu in (a-viii) is a ν̄-martingale.
(ii) www is is a local ν̄-martingale iff www ×PPPz is a local µ̄-martingale.

proof (a) Parts (i)-(iii) are in 365S5. Now (iv) and (v) follow immediately.

c© 2012 D. H. Fremlin
5Formerly 365T.
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44 Martingales 625B

For (vi), we just have to note that

Eν̄(Pτz × χa) = Eν̄(z × χa) = ν̄a > 0

for every non-zero a ∈ Aτ , because [[z > 0]] = 1. It follows at once that uτ =
1

Pτz
is defined for every τ

(364N). We see also that Pτz is the Radon-Nikodým derivative of ν̄↾Aτ with respect to µ̄↾Aτ . So, just as
in (iii), given w ∈ L0(Aτ ), Eν̄(w) = Eµ̄(w × Pτz) if either is defined, and w ∈ L1

ν̄ iff w × Pτz ∈ L1
µ̄. This

deals with (vii).
For any τ ∈ T , uτ ∈ L0(Aτ ) because Pτz ∈ L0(Aτ ). If σ, τ ∈ T and c = [[σ = τ ]], then Pσz×χc = Pτz×χc

(622Bb), so

uσ × χc = uσ × uτ × Pτz × χc = uσ × uτ × Pσz × χc = uτ × χc

and c ⊆ [[uσ = uτ ]]. Thus uuu is fully adapted and (viii) is true.

(b)(i) We know from (a-v) that w × z ∈ L1
µ̄ so Pτ (w × z) is defined. Take any a ∈ Aτ . We know

that Qτw ∈ L1
ν̄ so Qτw × z ∈ L1

µ̄. Since Qτw × χa ∈ L0(Aτ ), 621Cc tells us that Pτ (Qτw × χa × z) =
Qτw × χa× Pτz. But this means that

Eµ̄(Pτ (w × z)× χa) = Eµ̄(w × z × χa) = Eν̄(w × χa) = Eν̄(Qτw × χa)

= Eµ̄(Qτw × z × χa) = Eµ̄(Pτ (Qτw × z × χa))

= Eµ̄(Qτw × Pτz × χa).

As a is arbitrary, and Pτ (w × z) ∈ L1
µ̄ ∩ L0(Aτ ), while Qτw × Pτz ∈ L0(Aτ ), Pτ (w × z) = Qτw × Pτz.

(ii) Exchange µ̄ and ν̄ in (i).

(iii) Set w = z in (ii).

(c)(i) By (a-vii), www is an L1
ν̄-process iff www ×PPPz is an L1

µ̄-process. So we can suppose that both of these
are the case. Now, for σ ≤ τ in S,

wσ = Qσwτ ⇐⇒ wσ × Pσz = Qσwτ × Pσz

(because [[Pσz > 0]] = 1)

⇐⇒ wσ × Pσz = Pσ(wτ × z)

(by (b-i))

⇐⇒ wσ × Pσz = PσPτ (wτ × z)

(because PσPτ = Pσ, by 622Ba)

⇐⇒ wσ × Pσz = Pσ(wτ × Pτz)

by 621Cc again. So

www is a ν̄-martingale ⇐⇒ wσ = Qσwτ whenever σ ≤ τ in S
⇐⇒ wσ × Pσz = Pσ(wτ × Pτz) whenever σ ≤ τ in S
⇐⇒ www ×PPPz is a µ̄-martingale.

(ii)

www is a local ν̄-martingale ⇐⇒ there is a covering ideal S ′ of S
such that www↾S ′ is a ν̄-martingale

⇐⇒ there is a covering ideal S ′ of S
such that (www↾S ′)×PPPz is a µ̄-martingale

⇐⇒ there is a covering ideal S ′ of S
such that (www ×PPPz)↾S ′ is a µ̄-martingale

⇐⇒ www ×PPPz is a local µ̄-martingale.
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625C The next fact belongs with 625Bc, but the proof demands new ideas, as well as being rather long,
so I have separated it out.

Proposition As in 625B, let ν̄ be such that (A, ν̄) is a probability algebra; write Eν̄ and L1
ν̄ for the

corresponding integral and L1-space, and let z ∈ L1
µ̄ be such that ν̄a = Eµ̄(z×χa) for every a ∈ A. Let S be

a sublattice of T , and www = 〈wσ〉σ∈S a fully adapted process. Then www is an approximately local ν̄-martingale
iff www × PPPz is an approximately local µ̄-martingale, and www is a virtually local ν̄-martingale iff www × PPPz is a
virtually local µ̄-martingale.

proof (a)(i) For a non-empty downwards-directed set A ⊆ S, write AA for
⋂
σ∈A Aσ and PA : L1

µ̄ → L1
µ̄ ∩

L0(AA) for the corresponding conditional expectation. If w ∈ L1
µ̄, then PAw = limρ↓A Pρw = 1limρ↓A Pρw

is the limit for the norm topology of L1
µ̄ (621C(g-i) again). Consequently

PτPAw = 1lim
ρ↓A

PτPρw = 1lim
ρ↓A

Pτ∧ρw = 1lim
ρ↓A∧τ

Pτ∧ρw = PA∧τw

= 1lim
ρ↓A

PρPτw = PAPτw

for any τ ∈ S. Thus PτPA = PAPτ = PA∧τ . Similarly, writing QA : L1
ν̄ → L1

ν̄ ∩ L0(AA) for the conditional
expectation corresponding to AA with respect to the probability measure ν̄, QτQA = QAQτ = QA∧τ for
every τ ∈ S.

(ii) QAw × PAz = PA(w × z) whenever w ∈ L1
ν̄ , that is, whenever w × z ∈ L1

µ̄. PPP

QA(w)× PAz = lim
ρ↓A

Qρw × Pρz = lim
ρ↓A

Pρ(w × z) (625B(b-i))

= PA(w × z). QQQ

(b) Let B be a closed subalgebra of A and P : L1
µ̄ → L1

µ̄ ∩ L0(B) = L1
µ̄↾B the associated conditional

expectation. Then

ν̄b = Eµ̄(z × χb) = Eµ̄(P (z × χb)) = Eµ̄↾B(Pz × χb),

for every b ∈ B, that is, Pz is the conditional expectation of ν̄↾B on µ̄↾B. So for w ∈ L0(B)

w ∈ L1
ν̄ ⇐⇒ w ∈ L1

ν̄↾B ⇐⇒ w × Pz ∈ L1
µ̄↾B ⇐⇒ w × Pz ∈ L1

µ̄.

Also [[Pz > 0]] = 1, just as in 625B(a-ii).

(c) Suppose that A ⊆ S is a non-empty downwards-directed set. Let RA : Mlmo(S) → Mlmo(S) be the
corresponding operator defined in 623B. Then RA(www) is a ν̄-martingale iff RA(www × PPPz) is a µ̄-martingale.
PPP Express RA(www) as 〈w′

σ〉σ∈S . We have

RA(PPPz) = 〈limρ↓A Pσ∧ρz〉σ∈S = 〈PA∧σ(z)〉σ∈S .

So

RA(www ×PPPz) = RA(www)×RA(PPPz) (623Ba)

= 〈w′
σ × PA∧σz〉σ∈S .

If τ ∈ S, then
w′
τ = limρ↓A wτ∧ρ = limρ↓A∧τ wρ ∈ L0(AA∧τ )

by 613Bj. So w′
τ ∈ L1

ν̄ iff w′
τ × PA∧τz ∈ L1

µ̄, by (b) above. Thus RA(www) is an L
1
ν̄-process iff RA(www ×PPPz) is

an L1
µ̄-process.

Suppose that this is the case. If σ ≤ τ in S,

Qσ(w
′
τ )× PA∧σz = QσQA(w

′
τ )× PA∧σz

(because w′
τ ∈ L0(AA∧τ ) ⊆ L0(AA))
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= QA∧σ(w
′
τ )× PA∧σz = PA∧σ(w

′
τ × z)

(by (a))

= PA∧σ∧τ (w
′
τ × z) = PσPA∧τ (w

′
τ × z) = Pσ(w

′
τ × PA∧τz).

But now we see that

RA(www) is a ν̄-martingale ⇐⇒ Qσw
′
τ = w′

σ whenever σ ≤ τ

⇐⇒ Qσw
′
τ × PA∧σz = w′

σ × PA∧σz whenever σ ≤ τ

(because [[PA∧σz > 0]] = 1, as noted in (b))

⇐⇒ Pσ(w
′
τ × PA∧τz) = w′

σ × PA∧σz whenever σ ≤ τ

⇐⇒ RA(www ×PPPz) is a µ̄-martingale

which is what I set out to prove. QQQ

(d)(i) If www is an approximately local ν̄-martingale then www ×PPPz is an approximately local µ̄-martingale.
PPP If τ ∈ S and ǫ > 0, there is a δ > 0 such that µ̄a ≤ ǫ whenever a ∈ A and ν̄a ≤ δ. Now there is
a non-empty downwards-directed set A ⊆ S such that supρ∈A ν̄[[ρ < τ ]] ≤ δ and RA(www) is a ν̄-martingale
(623J). By (c), RA(www ×PPPz) is a µ̄-martingale, while supρ∈A µ̄[[ρ < τ ]] ≤ ǫ; as τ and ǫ are arbitrary, www ×PPPz
is an approximately local µ̄-martingale. QQQ

(ii) If www×PPPz is an approximately local µ̄-martingale then www×PPPz×QQQ( 1
z
) is an approximately local ν̄-

martingale, whereQQQ( 1
z
) = 〈Qτ ( 1z )〉τ∈T as in 625Bc. PPP Apply (i) with (µ̄, ν̄, 1

z
,www×PPPz) in place of (ν̄, µ̄, z,www).

QQQ But PPPz ×QQQ( 1
z
) = 1, by 625B(b-iii), so www is an approximately local ν̄-martingale.

(iii) Thus www is an approximately local ν̄-martingale iff www×PPPz is an approximately local µ̄-martingale.

(e) As for virtually local martingales, let Ŝ be the covered envelope of S and ŵww the fully adapted extension

of www to Ŝ. Recalling that I interpret www × PPPz to be defined on domwww ∩ domPPPz = S ∩ T = S, so that it is
www × (PPPz↾S), then it is clear that PPPz↾Ŝ, being fully adapted, must be the fully adapted extension of PPPz↾S
to Ŝ, and that ŵww ×PPPz is the extension of www ×PPPz (612Qb). Now we have

www is a virtually local ν̄-martingale

⇐⇒ ŵww is an approximately local ν̄-martingale (623J)

⇐⇒ ŵww ×PPPz is an approximately local µ̄-martingale ((d) above)

⇐⇒ www ×PPPz is a virtually local µ̄-martingale.

This completes the proof.

625D Definition Let S ⊆ T be a sublattice. A process with domain S is a semi-martingale if it is
expressible as the sum of a virtually local martingale and a process which is locally of bounded variation
(both, of course, with domain S).
Warning! The standard definition of ‘semimartingale’ (no hyphen) is a process which is the sum of a local
martingale, in the sense of 622Cc, and a process which is locally of bounded variation. Most presentations
of the theory take it for granted that the conditions of 632Ib below will be satisfied, so that the distinction
vanishes. Nevertheless, to limit the opportunities for confusion, I will try to be consistent in hyphenating
‘semi-martingale’ when I have the ‘virtually local martingale’ form in mind.

625E Proposition Let S be a sublattice of T . The set of semi-martingales with domain S is a linear
subspace of the space of local integrators with domain S. In particular, every semi-martingale is locally
moderately oscillatory.
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proof Since every virtually local martingale and every process of locally bounded variation is a local
integrator (623Kd, 616Ra) and the sum of two local integrators is a local integrator (616Qa), every semi-
martingale is a local integrator. Since sums and scalar multiples of virtually local martingales are virtually
local martingales (623K(a-ii)) and sums and scalar multiples of processes which are locally of bounded
variation are again locally of bounded variation (614Q(b-iii)), the set of semi-martingales is a linear subspace
of L0(A)S .

625F Theorem A semi-martingale remains a semi-martingale under any change of law.

proof Let ν̄ be a functional such that (A, ν̄) is a probability algebra. Suppose that vvv is a ν̄-semi-martingale.
Express it as vvv1 + vvv2 where vvv1 is a virtually local ν̄-martingale and vvv2 is locally of bounded variation.
Let z ∈ L1

µ̄ be the Radon-Nikodým derivative of ν̄ with respect to µ̄, as in 625B. As in 625B, write

Qτ : L1
ν̄ → L1

ν̄ ∩ L0(Aτ ) for the conditional expectation associated with Aτ with respect to ν̄, and QQQ( 1
z
) for

the ν̄-martingale 〈Qτ ( 1z )〉τ∈T . As in (d-ii) of the proof of 625C, QQQ( 1
z
)×PPPz = 1.

Set www = vvv1 ×QQQ( 1
z
). Applying 625C with (µ̄, ν̄, z,PPP ) replaced by (ν̄, µ̄, 1

z
,QQQ), we see that www is a virtually

local µ̄-martingale and

vvv1 = vvv1 ×QQQ( 1
z
)×PPPz = www ×PPPz.

Writing w↓ and P↓z for the starting values of the local integrators www (625E) and PPPz↾S, and [www
∗
PPPz] for the

covariation of www and PPPz,

vvv = www ×PPPz + vvv2

= [www
∗
PPPz] + iiPPPz(www) + iiwww(PPPz) + (w↓ × P↓z)1+ vvv2

by 617Ka. But iiPPPz(www) and iiwww(PPPz) are virtually local µ̄-martingales, by 623O, while [www
∗
PPPz] is locally of

bounded variation (617L). Thus vvv is the sum of three processes which are locally of bounded variation and
two virtually local µ̄-martingales, so is a µ̄-semi-martingale.

Similarly, any µ̄-semi-martingale is a ν̄-semi-martingale.

625X Basic exercises (a) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa and
622Xd. Let f : [0,∞[ → R be a function. Show that f corresponds to a semi-martingale iff f↾[0, t] is of
bounded variation for every t ≥ 0.

(b) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a semi-martingale. Show that vvv↾S ′ is a semi-martingale
for any ideal S ′ of S.

(c) Let S be a sublattice of T , uuu a process with domain S, and z an element of L0(
⋂
σ∈S Aσ). Show that

if uuu is a semi-martingale then zuuu is a semi-martingale.

(d) Let S be a sublattice of T , uuu a locally moderately oscillatory process and vvv a semi-martingale, both
with domain S. Show that iivvv(uuu) is a semi-martingale.

(e) Let vvv, www be semi-martingales with the same domain. Show that vvv ×www is a semi-martingale.

625 Notes and comments I have said repeatedly that stochastic integration is law-independent. At
the same time it is intimately entwined with the theory of martingales, which are emphatically not law-
independent. 625B is a brisk run through the formulae we need if we are to move freely between different
probability measures on a fixed algebra. In 625F we find that the concept of ‘semi-martingale’ again turns
out, remarkably, to be law-independent. The ideas on stochastic processes required to state the result are not
trivial, but they do not mention any kind of integration; while the proof depends on an excursion through
most of the theory of the Riemann-sum integral so far developed. I do not know whether there is anything
one could call an ‘elementary’ proof of 625F.

There is a great deal more to be said about semi-martingales. In 625X I offer a handful of tasters. But
these will be dramatically upstaged by 627Q below.
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Version of 21.1.25

626 Submartingales and previsible variations

Turning to submartingales, I start with the elementary theory (626B-626G). Serious work begins with
what I call ‘previsible variations’ (626J-626K), based on a new adapted interval function P∆vvv (626H-626I).
Now the final formula of §621 gives us the celebrated Doob-Meyer decomposition theorem (626M, 626O).
The computation of previsible variations can be difficult, but I give some basic special cases (626Q, 626S
and 626T).

626A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is a stochastic integration structure. For t ∈ T , ť is the
constant stopping time at t (611A(b-ii)). If S is a sublattice of T , I(S) is the set of finite sublattices of S.
If σ ≤ τ in T , c(σ, τ) is the corresponding stopping time interval (611J).

On the L-space L1
µ̄ = L1(A, µ̄) we have the integral E defined by µ̄, giving rise to the functional θ(w) =

E(|w| ∧ χ1) for w ∈ L0(A), so that θ defines the topology of convergence in measure on L0(A). For τ ∈ T ,
Pτ is the conditional expectation associated with Aτ . If w ∈ L1

µ̄, PPPw is the martingale 〈Pτw〉τ∈T .
If S is a sublattice of T , Mfa(S) will be the space of fully adapted processes with domain S, and

Mlmo(S) ⊆Mfa(S) the space of locally moderately oscillatory processes.
We shall need to look at the norm and weak topologies on L1

µ̄ as well as the topology of convergence in

measure on L0(A). It will therefore be helpful to have a notation which distinguishes between the three
corresponding notions of limit. I will use ‘lim’ for limits in L0(A) for the topology of convergence in measure,
‘1lim’ for limits in L1

µ̄ for the norm topology defined by ‖ ‖1, and ‘w1lim’ for limits in L1
µ̄ for the weak topology

Ts(L
1
µ̄, L

∞(A)) (365Lc6).

626B Definition (Compare 621Db.) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted process.
vvv is a submartingale if it is an L1-process (definition: 622Ca) and vσ ≤ Pσvτ whenever σ ≤ τ in S.

Clearly every martingale is a submartingale, and every non-decreasing L1-process is a submartingale
(because if σ ≤ τ and vσ ≤ vτ , then Pσvτ − vσ = Pσ(vτ − vσ) ≥ 0).

626C Elementary facts Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a submartingale.

(a) E(vσ) ≤ E(Pσvτ ) = E(vτ ) whenever σ ≤ τ in S.

(b) If S ′ is a sublattice of S, then vvv↾S ′ is a submartingale. (Immediate from 626B.)

(c) If h : R → R is a convex function, h̄vvv = 〈h̄(vσ)〉σ∈S (612B) is an L1-process and either h is non-
decreasing or vvv is a martingale, then h̄vvv is a submartingale. PPP If σ ≤ τ in S then h̄(Pσvτ ) ≤ Pσ(h̄(vτ ))
by Jensen’s inequality (621Cd). If h is non-decreasing, then h̄(vσ) ≤ h̄(Pσvτ ) because vσ ≤ Pσvτ ; if vvv is a
martingale, then h̄(vσ) = h̄(Pσvτ ). So in either case we have h̄(vσ) ≤ Pσ(h̄(vτ )). QQQ

In particular, αvvv is a submartingale for every α ≥ 0.

(d) If uuu = 〈uσ〉σ∈S is another submartingale, uuu+ vvv is a submartingale. (Immediate from 626B, because
conditional expectations are linear operators.)

626D Theorem Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a submartingale.
(a) If vvv is ‖ ‖1-bounded, it is an integrator.
(b) If S has a greatest element and {E(vσ) : σ ∈ S} is bounded below, vvv is ‖ ‖1-bounded.
(c) If {E(vσ) : σ ∈ S} is bounded below, vvv is a local integrator.

proof (a) (Cf. 622G) If S is empty, this is trivial. Otherwise, set β = supσ∈S ‖vσ‖1. If z ∈ QS(vvv), it is

expressible as
∑n−1
i=0 ui × (vτi+1

− vτi) where τ0 ≤ . . . ≤ τn in S and ui ∈ L0(Aτi) and ‖ui‖∞ ≤ 1 for every
i < n (616C(ii)). By 621Hg,

µ̄[[|z| > γ]] ≤ 66

γ
‖vτn‖1 −

34

γ
E(vτ0) ≤

100

γ
β.

6Formerly 365Mc.
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626G Submartingales and previsible variations 49

So

infγ>0 supz∈QS(vvv) µ̄[[|z| > γ]] = 0

and QS(vvv) is topologically bounded (613B(f-ii)), that is, vvv is an integrator.

(b) If α = infσ∈S E(vσ), and σ ∈ S, then
vσ ≤ PσvmaxS , v+σ ≤ (PσvmaxS)

+ ≤ Pσv
+
maxS ≤ Pσ|vmaxS |

and

‖vσ‖1 = E(v+σ ) + E(v−σ ) = 2E(v+σ )− E(vσ) ≤ 2E(Pσ|vmaxS |)− α = 2E(|vmaxS |)− α.

(c) Take τ ∈ S. Since of course vvv↾S∧τ is a submartingale (626Cb), (b) tells us that vvv↾S∧τ is ‖ ‖1-bounded
and (a) tells us that vvv↾S ∧ τ is an integrator. As τ is arbitrary, vvv is a local integrator.

626E From 626D we see that a submartingale vvv will often be moderately oscillatory (616Ib), so will
have limits along directed sets (615G). But for downwards-directed sets we can look for more.

Proposition Let S be a sublattice of T , vvv = 〈vσ〉σ∈S a submartingale and A ⊆ S a non-empty downwards-
directed set such that {E(vσ) : σ ∈ A} is bounded below. Then the ‖ ‖1-limit 1limσ↓A vσ is defined and equal
to the limit limσ↓A vσ for the topology of convergence in measure.

proof Let ǫ > 0. Then there is a τ ∈ A such that ‖vσ − vτ‖1 ≤ 3ǫ whenever σ ∈ A and σ ≤ τ . PPP Set
γ = infσ∈A E(vσ). Let τ0 ∈ A be such that E(vτ0) ≤ γ + ǫ. Then 1limσ↓A Pσvτ0 is defined (621C(g-i)); let
τ ∈ A be such that τ ≤ τ0 and ‖Pσvτ0 − Pτvτ0‖1 ≤ ǫ whenever σ ∈ A and σ ≤ τ . In this case, if σ ∈ A and
σ ≤ τ , we have

‖vσ − vτ‖1 ≤ ‖vσ − Pσvτ0‖1 + ‖Pσvτ0 − Pτvτ0‖1 + ‖Pτvτ0 − vτ‖1
≤ E(Pσvτ0 − vσ) + ǫ+ E(Pτvτ0 − vτ )

= E(vτ0 − vσ) + ǫ+ E(vτ0 − vτ ) ≤ 2(E(vτ0)− γ) + ǫ ≤ 3ǫ. QQQ

As L1
µ̄ is complete under ‖ ‖1, the limit 1limσ↓A vσ is defined. As the embedding L1

µ̄
⊂→ L0(A) is continuous,

this is also the limit limσ↓A vσ.

626F Proposition Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a submartingale such that {E(vσ) : σ ∈ S}
is bounded below. Let A ⊆ S be a non-empty downwards-directed set and RA : Mlmo(S) → Mlmo(S) the
corresponding operator as described in 623B. Then RA(vvv) is defined and is a submartingale.

proof Because vvv is a local integrator (626Dc), it is locally moderately oscillatory (616Ib) and RA(vvv) is
defined; express it as 〈vAσ〉σ∈S . If σ ≤ τ in S and ρ ∈ A, σ ∧ ρ ≤ τ ∧ ρ and

vσ∧ρ ≤ Pσ∧ρvτ∧ρ = PσPρvτ∧ρ = Pσvτ∧ρ.

Now (because {E(vσ) : σ ∈ S} is bounded below) 626E tells us that

vAσ = limρ↓A vσ∧ρ = 1limρ↓A vσ∧ρ, vAτ = 1limρ↓A vτ∧ρ

and therefore

PσvAτ = 1limρ↓A Pσvτ∧ρ.

Accordingly

PσvAτ − vAσ = 1limρ↓A Pσvτ∧ρ − vσ∧ρ ≥ 0

and vAσ ≤ PσvAτ . As σ and τ are arbitrary, RA(vvv) is a submartingale.

626G Lemma Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a submartingale. Let v̂vv = 〈v̂τ 〉τ∈Ŝ be the

fully adapted extension of vvv to the covered envelope Ŝ of S, and Ŝf the finitely-covered envelope of S.
(a) v̂vv↾Ŝf is a submartingale.
(b) If vvv is ‖ ‖1-bounded then v̂vv is ‖ ‖1-bounded.
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(c) If S has a greatest element and {E(vσ) : σ ∈ S} is bounded below, then v̂vv is a submartingale.

proof (a)(i) v̂vv↾Ŝf is an L1-process. PPP If τ ∈ Ŝf , there is a finite set J ⊆ S such that

1 = supσ∈J [[τ = σ]] ⊆ supσ∈J [[v̂τ = vσ]] ⊆ [[|v̂τ | ≤ supσ∈J |vσ|]]
so ‖v̂τ‖1 ≤ ∑

σ∈J ‖vσ‖1 is finite. QQQ

(ii) If τ ∈ Ŝf , σ0 ≤ . . . ≤ σn in S and supi≤n [[τ = σi]] = 1, then v̂σ∧τ ≤ Pσ∧τ v̂τ for every σ ∈ S. PPP
Induce on n. The induction starts with n = 0 and τ = σ0 and vσ∧σ0

≤ Pσ∧σ0
vσ0

.

(ααα) For the inductive step to n ≥ 1, set τ ′ = τ ∧ σn−1 and d = [[σn−1 < τ ]] = [[τ ′ < τ ]]. Then
d ∈ Aσn−1

and d ⊆ [[τ ′ = σn−1]] ∩ [[τ = σn]]. Now

supi<n [[τ
′ = σi]] ⊇ supi<n [[τ = σi]] ∪ d = 1.

So the inductive hypothesis assures us that v̂σ∧τ ′ ≤ Pσ∧τ ′ v̂τ ′ . Next,

Pσn−1
v̂τ − v̂τ ′ = Pσn−1

(v̂τ − v̂τ ′) = Pσn−1
((v̂τ − v̂τ ′)× χd)

= Pσn−1
((vσn

− vσn−1
)× χd) = Pσn−1

(vσn
− vσn−1

)× χd

= (Pσn−1
vσn

− vσn−1
)× χd ≥ 0

and

Pσ∧τ ′ v̂τ = Pσ∧τ ′∧σn−1
v̂τ = Pσ∧τ ′Pσn−1

v̂τ ≥ Pσ∧τ ′ v̂τ ′ ≥ v̂σ∧τ ′ .

(βββ) Set b = [[σ ≤ σn−1]]. Then

b ⊆ [[σ ∧ τ = σ ∧ σn−1 ∧ τ ]] = [[σ ∧ τ = σ ∧ τ ′]]
⊆ [[v̂σ∧τ = v̂σ∧τ ′ ]] ∩ [[Pσ∧τ v̂τ = Pσ∧τ ′ v̂τ ]] ⊆ [[v̂σ∧τ = v̂σ∧τ ′ ]] ∩ [[Pσ∧τ v̂τ ≥ v̂σ∧τ ′ ]]

(using the last formula in (α))

⊆ [[Pσ∧τ v̂τ ≥ v̂σ∧τ ]].

(γγγ) Set

b′ = [[σn−1 ≤ σ]] ∩ [[σ < τ ]] ∈ Aσ.

Then

Pσ∧τ v̂τ × χb′ = PσPτ v̂τ × χb′ = Pσ v̂τ × χb′ = Pσ(v̂τ × χb′)

(because b′ ∈ Aσ)

= Pσ(vσn
× χb′)

(because b′ ⊆ d ⊆ [[τ = σn]])

= Pσvσn
× χb′ = PσPσn

vσn
× χb′

= Pσ∧σn
vσn

× χb′ ≥ vσ∧σn
× χb′ = v̂σ∧τ × χb′

because b′ ⊆ [[σ ∧ σn = σ ∧ τ ]].
(δδδ) Set b′′ = [[τ ≤ σ]]. Then

b′′ = [[σ ∧ τ = τ ]] ⊆ [[v̂σ∧τ = v̂τ ]] ∩ [[Pσ∧τ v̂τ = Pτ v̂τ ]] ⊆ [[v̂σ∧τ = Pσ∧τ v̂τ ]].

(ǫǫǫ) Now observe that b ∪ b′ ∪ b′′ = 1. So [[v̂σ∧τ ≤ Pσ∧τ v̂τ ]] = 1, v̂σ∧τ ≤ Pσ∧τ v̂τ and the induction
proceeds. QQQ

(iii) With 611Pd, this tells us that v̂σ∧τ ≤ Pσ∧τ v̂τ whenever σ ∈ S and τ ∈ Ŝf . Now suppose that

τ ′ ≤ τ in Ŝf and σ ∈ S. Then
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[[τ ′ = σ]] ⊆ [[σ ∧ τ = τ ′]]

⊆ [[v̂σ∧τ = v̂τ ′ ]] ∩ [[Pσ∧τ v̂τ = Pτ ′ v̂τ ]] ⊆ [[v̂τ ′ ≤ Pτ ′ v̂τ ]].

Taking the supremum over σ, [[vτ ′ ≤ Pτ ′vτ ]] = 1 and vτ ′ ≤ Pτ ′vτ . As τ ′ and τ are arbitrary, v̂vv↾Ŝf is a
submartingale.

(b)(i) Set γ = supσ∈S ‖vσ‖1. Then ‖v̂τ‖1 ≤ 3γ for every τ ∈ Ŝf . PPP If τ ∈ Ŝf , there are σ, σ′ ∈ S such
that σ ≤ τ ≤ σ′, by 611Pe. Now v̂τ ≤ Pτvσ′ , by (a) above, so

E(v̂+τ ) ≤ ‖Pτvσ′‖1 ≤ ‖vσ′‖1.
On the other side, vσ ≤ Pσ v̂τ so

E(v̂τ ) = E(Pσ v̂τ ) ≥ E(vσ)

and

‖v̂τ‖1 = 2E(v̂+τ )− E(vτ ) ≤ 2‖vσ′‖1 − E(vσ) ≤ 2‖vσ′‖1 + ‖vσ‖1 ≤ 3γ. QQQ

(ii) Since {v̂τ : τ ∈ Ŝ} ⊆ {v̂τ : τ ∈ Ŝf} (613B(q-ii)), and ‖ ‖1-balls are closed in L0(A) (613Bc),
supτ∈Ŝ ‖v̂τ‖1 ≤ 3γ is finite and v̂vv is ‖ ‖1-bounded.

(c)(i) We know from 626Db and (b) here that v̂vv is an L1-process. Suppose that τ ∈ Ŝ and σ ∈ S. Then
v̂τ∧σ ≤ Pτ∧σ v̂τ . PPP Let ǫ > 0. Then there is a δ ∈ ]0, ǫ] such that E(|vmaxS − v̂τ |×χa) ≤ ǫ whenever µ̄a ≤ δ.
As supρ∈S [[τ = ρ]] = 1, there is a finite set J ⊆ S such that a = 1 \ supρ∈J [[τ = ρ]] has measure at most δ.
Since a ∈ Aτ ⊆ AmaxS , there is a τ ′ ∈ T such that

1 \ a ⊆ [[τ ′ = τ ]], a ⊆ [[τ ′ = maxS]].
Now

‖vτ ′ − vτ‖1 ≤ E(χa× |vmaxS − vτ |) ≤ ǫ

and τ ′ ∈ Ŝf , so v̂σ∧τ ′ ≤ Pσ∧τ ′ v̂τ ′ and

1 \ a ⊆ [[v̂σ∧τ ≤ Pσ∧τ v̂τ ′ ]], θ((v̂σ∧τ − Pσ∧τ v̂τ ′)+) ≤ µ̄a ≤ ǫ.

On the other hand,

θ(Pσ∧τ v̂τ ′ − Pσ∧τ v̂τ ) ≤ ‖Pσ∧τ v̂τ ′ − Pσ∧τ v̂τ‖1 ≤ ‖v̂τ ′ − v̂τ‖1 ≤ ǫ,

so

θ((v̂σ∧τ − Pσ∧τ v̂τ )
+) ≤ θ((v̂σ∧τ − Pσ∧τ v̂τ ′)+ + |Pσ∧τ v̂τ ′ − Pσ∧τ v̂τ |) ≤ 2ǫ.

As ǫ is arbitrary, v̂σ∧τ ≤ Pσ∧τ v̂τ . QQQ

(ii) Repeating the argument of (a-iii), we now see that if τ ′ ∈ Ŝ and τ ′ ≤ τ then [[τ ′ = σ]] ⊆ [[v̂τ ′ ≤ Pτ ′ v̂τ ]]
for every σ ∈ S and v̂τ ′ ≤ Pτ ′ v̂τ . So v̂vv is a submartingale.

626H Proposition Suppose that S is a sublattice of T and vvv = 〈vσ〉σ∈S is an L1-process. Then we
have an adapted interval function (definition: 613C) P∆vvv defined by saying that (P∆vvv)(σ, τ) = Pσvτ − vσ
whenever σ ≤ τ in S.
proof Of course Pσvτ − vσ ∈ L0(Aσ) ⊆ Aτ whenever σ ≤ τ in S, and Pσvσ − vσ = 0 for every σ ∈ S.
Suppose that σ, σ′, τ , τ ′ ∈ S, σ ≤ σ′ ≤ τ ′ ≤ τ and b ∈ Aσ is such that b ⊆ [[σ = σ′]] ∩ [[τ ′ = τ ]]. Then
b ⊆ [[Pσvτ ′ = Pσ′vτ ′ ]] by 622Bb. At the same time,

χb× Pσvτ = Pσ(χb× vτ ) = Pσ(χb× vτ ′) = χb× Pσvτ ′

so b ⊆ [[Pσvτ = Pσvτ ′ ]] and b ⊆ [[Pσvτ = Pσ′vτ ′ ]]. Since we also have b ⊆ [[vσ = vσ′ ]] ∩ [[vτ ′ = vτ ]], b ⊆ [[Pσvτ − vσ = Pσ′vτ ′ −
So the conditions of 613C(a-i) are satisfied by P∆vvv.

626I Definitions Corresponding to the interval functions P∆vvv of 626H, I will write ∆e(uuu, Pdvvv), SI(uuu, Pdvvv)
and QS(Pdvvv) for ∆e(uuu, d(P∆vvv)) SI(uuu, d(P∆vvv)) and QS(d(P∆vvv)) respectively, as in 613F and 616B. Simi-
larly, ∆e(uuu, |Pdvvv|), SI(uuu, |Pdvvv|) and QS(|Pdvvv|) will mean ∆e(uuu, d|P∆vvv|), SI(uuu, d|P∆vvv|) and QS(d|P∆vvv|).
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Note that an L1-process vvv is a submartingale iff P∆vvv ≥ 0.

626J Previsible variations Let S be a sublattice of T and vvv = 〈vσ〉σ∈S an L1-process. If the weak
limit

v#τ = w1limI↑I(S∧τ) SI(1, Pdvvv)

is defined in L1
µ̄ for every τ ∈ S, I will say that vvv# = 〈v#σ 〉σ∈S is the previsible variation of vvv.

626K Proposition Let S be a sublattice of T . Write MD-M =MD-M(S) for the set of L1-processes with
domain S which have previsible variations.

(a) If vvv ∈MD-M then vvv# is an L1-process (in particular, it is fully adapted) and vvv − vvv# is a martingale.
(b) MD-M is a linear subspace of Mfa(S), and the map vvv 7→ vvv# :MD-M →Mfa(S) is linear.
(c) If vvv is a martingale with domain S, then vvv ∈MD-M and vvv# = 0.
(d) Suppose that vvv ∈MD-M.
(i) vvv is locally moderately oscillatory iff vvv# is locally moderately oscillatory.
(ii) vvv is a local integrator iff vvv# is a local integrator.
(iii) vvv is a submartingale iff vvv# is a submartingale.
(iv) vvv is a martingale iff vvv# is a martingale.

(e) If vvv ∈MD-M then P∆vvv# = P∆vvv, vvv# ∈MD-M and (vvv#)# = vvv#.
(f) Suppose that vvv ∈MD-M and ρ ∈ S. Express vvv# as 〈v#σ 〉σ∈S .

(i) vvv↾S ∧ ρ has a previsible variation, which is vvv#↾S ∧ ρ.
(ii) vvv↾S ∨ ρ has a previsible variation, which is 〈v#σ − v#ρ 〉σ∈S∨ρ.

(g) If vvv ∈Mfa(S) is such that vvv↾S ∧ ρ has a previsible variation for every ρ ∈ S, then vvv ∈MD-M.

proof (a) Express vvv# as 〈v#σ 〉σ∈S .

(i) If σ ≤ σ′ ≤ τ in S then Pσvσ′ − vσ ∈ L0(Aτ ), so SI(1, Pdvvv) ∈ L0(Aτ ) whenever I ∈ I(S ∧ τ).
Since L0(Aτ ) ∩ L1

µ̄ = L1(Aτ , µ̄↾Aτ ) is a norm-closed subspace of L1
µ̄, therefore weakly closed, it contains

w1limI↑I(S∧τ) SI(1, Pdvvv) = v#τ .
Suppose that τ ≤ τ ′ in S and a = [[τ = τ ′]]. Then a ∈ Aτ and a ⊆ [[σ = σ′]] whenever τ ≤ σ ≤ σ′ ≤ τ ′.

Accordingly

χa× Pτ (Pσvσ′ − vσ) = χa× Pτ (vσ′ − vσ) = Pτ (χa× (vσ′ − vσ)) = 0

whenever τ ≤ σ ≤ σ′ ≤ τ ′. But this means that χa × SI(1, Pdvvv) = 0 whenever I ∈ I(S ∩ [τ, τ ′]). Now if
I ∈ I(S ∧ τ ′) contains τ , we shall have

χa× (SI(1, Pdvvv)− SI∧τ (1, Pdvvv)) = χa× SI∨τ (1, Pdvvv) = 0

(613G(a-i)). As u 7→ χa× u : L1
µ̄ → L1

µ̄ is linear and norm-continuous, therefore weakly continuous,

χa× (v#τ ′ − vτ ) = χa× w1lim
I↑I(S∧τ ′)

(SI(1, Pdvvv)− SI∧τ (1, Pdvvv))

= w1lim
I↑I(S∧τ ′)

χa× (SI(1, Pdvvv)− SI∧τ (1, Pdvvv)) = 0

and a ⊆ [[v#τ = v#τ ′ ]].

Thus vvv# is fully adapted. Since v#τ is defined as a weak limit in L1
µ̄ for every τ , vvv# is an L1-process.

(ii) If τ ≤ σ ≤ σ′ ≤ τ ′ in S, then Pτ (Pσvσ′−vσ) = Pτ (vσ′−vτ ); consequently PτSI(1, Pdvvv) = Pτvτ ′−vτ
whenever I ∈ I(S ∩ [τ, τ ′]) contains τ and τ ′. Since Pτ : L1

µ̄ → L1
µ̄ is norm-continuous, therefore weakly

continuous, Pτ (v
#
τ ′ − v#τ ) = Pτ (vτ ′ − vτ ), that is, Pτ (vτ ′ − v#τ ′) = vτ − v#τ . As τ and τ ′ are arbitrary, vvv−vvv#

is a martingale.

(b) If uuu, vvv ∈ MD-M and α ∈ R, uuu + vvv and αuuu are L1-processes. So if I ∈ I(S), SI(1, Pd(uuu + vvv)) and
SI(1, Pd(αuuu)) belong to L1

µ̄ and are equal to SI(1, Pduuu)+SI(1, Pdvvv) and αSI(1, Pduuu) respectively. As the

weak topology on L1
µ̄ is a linear space topology. the weak limits

w1limI↑S∧τ SI(1, Pd(uuu+ vvv)), w1limI↑S∧τ SI(1, Pd(αuuu))
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are defined and equal to

w1limI↑S∧τ SI(1, Pduuu) + w1limI↑S∧τ SI(1, Pdvvv), αw1limI↑S∧τ SI(1, Pduuu)

for every τ ∈ S.
(c) If vvv = 〈vσ〉σ∈S is a martingale, then Pσvτ − vσ = 0 whenever σ ≤ τ in S, so SI(1, Pdvvv) = 0 for every

I ∈ I(S) and v#τ is defined and zero for every τ ∈ S.
(d) We know that vvv# − vvv is a martingale, therefore a local integrator and locally moderately oscillatory

(622H), and vvv# − vvv is a submartingale. Accordingly vvv# = vvv + (vvv# − vvv) will have any of these properties iff
vvv does (615F(b-iii), 616Qa, 626Cd, 622Db).

(e) Take σ, τ ∈ S such that σ ≤ τ . As vvv − vvv# is a martingale,

Pσ(vτ − v#τ ) = vσ − v#σ ,

and

(P∆vvv#)(σ, τ) = Pσv
#
τ − v#σ = Pσvτ − vσ = (P∆vvv)(σ, τ).

So P∆vvv# = P∆vvv. Putting (b) and (c) together, (vvv#)# = vvv# − (vvv − vvv#)# is defined and equal to vvv#.

(f)(i) If σ ∈ S ∧ ρ then the calculation

v#σ = w1limI↑I(S∧σ) SI(1, Pdvvv)

yields the same result if we interpret the right-hand side as

w1limI↑I((S∧ρ)∧σ) SI(1, Pd(vvv↾S ∧ ρ)).

(ii) If σ ∈ S ∨ ρ then for any I ∈ I(S ∧ σ) containing ρ we have

v#σ = w1lim
I↑I(S∧σ)

SI(1, Pdvvv) = w1lim
I↑I(S∧σ)

SI∧ρ(1, Pdvvv) + w1lim
I↑I(S∧σ)

SI∨ρ(1, Pdvvv)

(613G(a-i) again)

= w1lim
I↑I(S∧ρ)

SI(1, Pdvvv) + w1lim
I↑I((S∧σ)∨ρ)

SI(1, Pdvvv)

(613K)

= v#ρ + w1lim
I↑I((S∨ρ)∧σ)

SI(1, Pd(vvv↾S ∨ ρ)).

(g) As with (f-i), this is immediate from the definition in 626J.

626L In this context, it is worth having an elementary fact set out in quotable form.

Lemma Let S be a sublattice of T , vvv = 〈vσ〉σ∈S an L1-process and z a member of L∞(A). Then

E(z × SI(1, Pdvvv)) = E(SI(PPPz, dvvv))

for every I ∈ I(S).
proof If σ ≤ τ in S,

E(z × (Pσvτ − vσ)) = E(z × Pσ(vτ − vσ)) = E(Pσz × (vτ − vσ))

by 621Cb; that is, E(z ×∆e(1, Pdvvv)) = E(∆e(PPPz, dvvv)) for every stopping-time interval e with endpoints in
S. Summing over the I-cells, E(z × SI(1, Pdvvv)) = E(SI(PPPz, dvvv))

626M The Doob-Meyer theorem: first form Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a non-
negative submartingale. Then vvv ∈ MD-M(S) and the previsible variation vvv# is non-negative and non-
decreasing, with starting value 0.

proof (a) If σ ≤ σ′ in S, then (in the language of 613C and 613E)
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∆c(σ,σ′)(1, Pdvvv) = Pσvσ′ − vσ ≥ 0

so SI(1, Pdvvv) ≥ 0 for every I ∈ I(S). For τ ∈ S, set Aτ = {SI(1, Pdvvv) : τ ∈ I ∈ I(S ∧ τ)}.
(b) Take any τ ∈ S.
(i) E(z × χ[[z > 2β2]] ≤ 3( 1

β
E(vτ ) + E((vτ − βχ1)+)) whenever z ∈ Aτ and β > 0. PPP Let I ∈ I(S ∧ τ)

be such that τ ∈ I and z = SI(1, Pdvvv). Take σ0 ≤ . . . ≤ σn linearly generating the I-cells. Then 〈vσi
〉i≤n

is a non-negative submartingale in the sense of 621Db adapted to 〈Aσi
〉i≤n, and z =

∑n−1
i=0 Pσi

vσi+1
− vσi

.
By Lemma 621J, β2

E(z × χ[[z > 2β2]] ≤ 3(βE(vσn
) + β2

E((vσn
− βχ1)+)), that is, E(z × χ[[z > 2β2]] ≤

3( 1
β
E(vτ ) + E((vτ − βχ1)+)).QQQ

(ii) The closure Aτ of Aτ for the weak topology S of L1
µ̄ is compact for S. PPP We can estimate

lim sup
α→∞

sup
z∈Aτ

E(|z| × χ[[|z| > α]]) = lim sup
α→∞

sup
z∈Aτ

E(z × χ[[z > α]])

= lim sup
β→∞

sup
z∈Aτ

E(z × χ[[z > 2β2]])

≤ lim sup
β→∞

3(
1

β
E(vτ ) + E((vτ − βχ1)+)) = 0

so Aτ is uniformly integrable by 621Bb. By 247C, Aτ is weakly compact. QQQ

(c) Let F be an ultrafilter on I(S) such that {I : σ ∈ I ∈ I(S)} belongs to F for every σ ∈ S.
(i) For τ ∈ S and I ∈ I(S) write I ∧ τ for {σ ∧ τ : σ ∈ I} ∈ I(S ∧ τ). Because {SI(1, Pdvvv) : τ ∈ I ∈

I(S ∧ τ)} is relatively weakly compact in L1
µ̄, the weak limit v#Fτ = w1limI→F SI∧τ (1, Pdvvv) is defined in L1

µ̄

(3A3De).

(ii) The arguments of the proof of 626Ka now show that vvv#F = 〈v#Fτ 〉τ∈S is an L1-process and that

vvv − vvv#F is a martingale.

(iii) If σ ≤ τ in S and I ∈ I(S) contains both σ and τ , then

SI∧τ (1, Pdvvv) = SI∧σ(1, Pdvvv) + SI∩[σ,τ ](1, Pdvvv) ≥ SI∧σ(1, Pdvvv)

(613G(a-i) once more). Taking the limit,

v#Fτ = w1limI→F SI∧τ (1, Pdvvv) ≥ w1limI→F SI∧τ (1, Pdvvv) = v#Fσ

because the weak topology of L1
µ̄ is a linear space topology for which the positive cone {u : u ≥ 0} is closed.

Similarly, v#Fτ ≥ 0 for every τ ∈ S. Thus vvv#F is non-negative and non-decreasing.

(d) Now take any z ∈ L∞(A) and consider the martingale PPPz = 〈Pσz〉σ∈S .

(i) If I ∈ I(S) then
E(z × SI(1, Pdvvv)) = E(SI(PPPz, dvvv)) = E(SI(PPPz, dvvv

#
F ))

PPP If σ ≤ τ in S then

Pσ(vτ − v#Fτ ) = vσ − v#Fσ, Pσvτ − vσ = Pσv
#
Fτ − v#Fσ

because vvv − vvv#F is a martingale. So P∆vvv = P∆vvv#F and

E(SI(PPPz, dvvv)) = E(z × SI(1, Pdvvv)) = E(z × SI(1, Pdvvv
#
F )) = E(SI(PPPz, dvvv

#
F ))

by 626L. QQQ

(ii) Suppose that τ ∈ S. Taking the limit as I → F ,

E(z × v#Fτ ) = E(z × w1lim
I→F

SI∧τ (1, Pdvvv))

= lim
I→F

E(z × SI∧τ (1, Pdvvv)) = lim
I→F

E(SI∧τ (PPPz, dvvv
#
F )).
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But if σ0 ≤ . . . ≤ σn ≤ τ in S,

|
n−1∑

i=0

Pσi
z × (v#Fσi+1

− v#Fσi
)| ≤

n−1∑

i=0

‖Pσi
z‖∞|v#Fσi+1

− v#Fσi
|

≤
n−1∑

i=0

‖z‖∞(v#Fσi+1
− v#Fσi

)

(because vvv#F is non-decreasing)

= ‖z‖∞(v#Fσn
− v#Fσ0

) ≤ ‖z‖∞v#Fτ .

This shows that {SI∧τ (PPPz, dvvv#F ) : I ∈ I(S)} is order-bounded in L1
µ̄, therefore uniformly integrable. Now

we know also that PPPz is moderately oscillatory (622G), while vvv#F is a local integrator (616Ra), so
∫
S∧τ

PPPz dvvv#F = limI↑I(S∧τ) SI(PPPz, dvvv
#
F ) = limI↑I(S) SI∧τ (PPPz, dvvv

#
F )

(see 613K) is defined, and must be equal to 1limI↑I(S) SI∧τ (PPPz, dvvv
#
F ), by 621B(c-ii). As F includes the filter

generated by {{I : σ ∈ I ∈ I(S)} : σ ∈ S}, this is also 1limI→F SI∧τ (PPPz, dvvv
#
F ). Accordingly

E(z × v#Fτ ) = lim
I→F

E(SI∧τ (PPPz, dvvv
#
F )) = E(1lim

I→F
SI∧τ (PPPz, dvvv

#
F ))

= E( 1lim
I↑I(S)

SI∧τ (PPPz, dvvv
#
F )) = lim

I↑I(S)
E(SI∧τ (PPPz, dvvv

#
F ))

= lim
I↑I(S)

E(SI∧τ (PPPz, dvvv)) = lim
I↑I(S)

E(z × SI∧τ (1, Pdvvv))

= lim
I↑I(S∧τ

E(SI(PPPz, dvvv)) = lim
I↑I(S∧τ)

E(z × SI(1, Pdvvv)).

Since this is true for every z ∈ L∞(A) ∼= (L1
µ̄)

′,

v#Fτ = w1limI↑I(S∧τ) SI(1, Pdvvv).

Thus vvv#F is the previsible variation of vvv as defined in 626J.

(e) To find the starting value v#↓ = limσ↓S v
#
Fσ (613Bk), consider the case z = χ1 in the formula of (c-i)

above. We have PPPz = 1 so E(SI(1, Pdvvv)) = E(SI(1, dvvv)) for every I ∈ I(S). Taking the limit as in 626J,

E(v#Fτ ) = lim
I↑I(S∧τ)

E(SI(1, dvvv)) = lim
I↑I(S∧τ)

E(vmax I − vmin I)

= lim
I↑I(S∧τ)

E(vτ − vmin I) = E(vτ )− lim
σ↓S

E(vσ)

for every τ ∈ S. But this means that limτ↓S E(v#Fτ ) = 0, and as v#Fτ ≥ 0 for every τ ∈ S and vvv#F is

non-decreasing, limτ↓S v
#
Fτ = infτ∈S v

#
Fτ = 0.

626N Lemma Let S be a sublattice of T , A ⊆ S a non-empty downwards-directed set, and RA :
Mlmo(S) → Mlmo(S) the associated operator. If vvv = 〈vσ〉σ∈S is a non-negative submartingale with domain
S and previsible variation vvv#, then the previsible variation RA(vvv)

# of RA(vvv) is RA(vvv
#).

proof (a) By 626F, RA(vvv) is defined and a submartingale and by 623Ba it is non-negative. By 626M, vvv#

and RA(vvv)
# are defined and are non-negative, non-decreasing and start at 0. Express vvv, vvv#, RA(vvv), RA(vvv)

#

and RA(vvv
#) as 〈vσ〉σ∈S , 〈v#σ 〉σ∈S , 〈vAσ〉σ∈S , 〈v#Aσ〉σ∈S and 〈zσ〉σ∈S . As vvv

# is a non-negative non-decreasing
L1-process, it is a submartingale, and zτ = limρ↓A∧τ v

#
ρ = 1limρ↓A∧τ v

#
ρ for every τ ∈ S, as in 626E.

(b) Consider first the case in which A = {ρ} is a singleton, so that vAσ = vσ∧ρ and zσ = v#σ∧ρ for every
σ ∈ S. In this case, vvv↾S ∧ ρ = R{ρ}(vvv)↾S ∧ ρ and

R{ρ}(vvv)
#↾S ∧ ρ = vvv#↾S ∧ ρ = R{ρ}(vvv

#)↾S ∧ ρ
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by 626K(f-i). In particular, v#{ρ}ρ = zρ. On the other side, R{ρ}(vvv)↾S∨ρ is constant so (R{ρ}(vvv)↾S∨ρ)# = 0

and R{ρ}(vvv)
#↾S ∨ ρ is constant with value v#{ρ}ρ (626K(f-ii)). At the same time, R{ρ}(vvv

#) is constant with

value zρ = v#{ρ}ρ on S ∨ ρ. Thus R{ρ}(vvv)
# and R{ρ}(vvv

#) agree on both S ∧ ρ and S ∨ ρ; as they are fully

adapted processes, they agree on S and are identical.

(c) Still supposing that A = {ρ}, take τ ∈ S and I ∈ I(S ∧ τ) such that τ ∧ ρ ∈ I. Then ‖SI(1, Pdvvv#)−
SI(1, Pd(R{ρ}(vvv

#))‖1 ≤ ‖v#τ − v#τ∧ρ‖1. PPP Let (σ0, . . . , σn) be a sequence linearly generating the I-cells
such that τ ∧ ρ = σk for some k ≤ n. For i < k, σi+1 ≤ ρ so

Pσi
v#σi+1

− v#σi
= Pσi

v#σi+1∧ρ − v#σi∧ρ;

summing over i < k, SI∧τ∧ρ(1, Pdvvv
#) = SI∧τ∧ρ(1, Pd(R{ρ}(vvv

#))). On the other side, if k ≤ i ≤ n, we have
τ ∧ ρ ≤ σi ≤ τ so σi ∧ ρ = τ ∧ ρ. Now if k ≤ i < n,

Pσi
v#σi+1∧ρ = Pσi

v#τ∧ρ = v#τ∧ρ = v#σi∧ρ;

it follows that SI∨(τ∧ρ)(1, Pd(R{ρ}(vvv
#))) = 0. So

‖SI(1, Pdvvv#)− SI(1, Pd(R{ρ}(vvv
#))‖1

= ‖SI∨(τ∧ρ)(1, Pdvvv
#)− SI∨(τ∧ρ)(1, Pd(R{ρ}(vvv

#))‖1

= ‖SI∨(τ∧ρ)(1, Pdvvv
#)‖1 = ‖

n−1∑

i=k

Pσi
v#σi+1

− v#σi
)‖1

=
n−1∑

i=k

E(Pσi
v#σi+1

− v#σi
) =

n−1∑

i=k

E(v#σi+1
− v#σi

)

= E(v#σn
− v#σk

) ≤ E(v#τ − v#τ∧ρ) = ‖v#τ − v#τ∧ρ‖1. QQQ

(d) Returning to the case of general A, we have ‖v#τ − v#Aτ‖1 ≤ ‖v#τ − zτ‖1 for every τ ∈ S. PPP Whenever
σ ≤ σ′ in S ∧ τ ,

PσvAσ′ = Pσ(lim
ρ↓A

vσ′∧ρ) = Pσ(1lim
ρ↓A

vσ′∧ρ)

(626E)

= 1lim
ρ↓A

Pσvσ′∧ρ

because Pσ : L1
µ̄ → L1

µ̄ is ‖ ‖1-continuous. Since vAσ′ = 1limρ↓A vσ′∧ρ, PσvAσ′ − vAσ = 1limρ↓A(Pσvσ′∧ρ −
vσ∧ρ). Another way of expressing this is to say that if e is a stopping time interval with endpoints in S ∧ τ ,

∆e(1, PdRA(vvv)) = 1limρ↓A∆e(1, PdR{ρ}(vvv)).

It follows that if I ∈ I(S ∧ τ) then

SI(1, PdRA(vvv)) = 1lim
ρ↓A

SI(1, PdR{ρ}(vvv)) = 1lim
ρ↓A

SI(1, Pd(R{ρ}(vvv)
#))

(626Kh)

= 1lim
ρ↓A

SI(1, PdR{ρ}(vvv
#))

by (b). Consequently

‖SI(1, Pdvvv#)− SI(1, PdRA(vvv))‖1 ≤ sup
ρ∈A

‖SI(1, Pdvvv#)− SI(1, PdR{ρ}(vvv
#))‖1

≤ sup
ρ∈A

‖v#τ − v#τ∧ρ‖1

(by (c))

Measure Theory



626O Submartingales and previsible variations 57

= ‖v#τ − zτ‖1

because {v#τ −v#τ∧ρ : ρ ∈ A} is non-negative and upwards-directed, as in 613B(d-iii), and zτ = limρ↓A v
#
τ∧ρ =

1limρ↓A v
#
τ∧ρ, by 626E again. QQQ

(e) Now take τ ∈ S and ǫ > 0. Then there is a ρ ∈ A such that ‖v#τ∧ρ − zτ‖1 ≤ ǫ. Write ṽvv = R{ρ}(vvv);

since ṽvv is a non-negative submartingale, everything above can be applied to ṽvv. Expressing ṽvv#, RA(ṽvv)
# and

RA(ṽvv
#) as 〈ṽ#σ 〉σ∈S , 〈ṽ#Aσ〉σ∈S and 〈z̃σ〉σ∈S , (d) just above tells us that

‖ṽ#τ − ṽ#Aτ‖1 ≤ ‖ṽ#τ − z̃τ‖1. (*)

Since RAR{ρ} = RA (623Cc), RA(ṽvv) = RA(vvv), RA(ṽvv)
# = RA(vvv)

# and ṽ#Aτ = v#Aτ . From (b) we see

that ṽvv# = R{ρ}(vvv
#) and therefore RA(ṽvv

#) is equal to RA(vvv
#), so z̃τ = zτ and ṽ#τ = v#τ∧ρ. Translating the

formula (*), we see that

‖ṽ#τ∧ρ − v#Aτ‖1 ≤ ‖v#τ∧ρ − zτ‖1 ≤ ǫ, ‖v#Aτ − zτ‖1 ≤ 2ǫ.

As τ and ǫ are arbitrary, RA(vvv)
# = RA(vvv

#).

626O The Doob-Meyer theorem: second form Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a
submartingale such that {E(vσ) : σ ∈ S} is bounded below. Then vvv is expressible as the sum of a non-
negative non-decreasing fully adapted process and a virtually local martingale.

proof (a) For the time being (down to the end of (d) below), suppose that S is finitely full.

(i) For τ ∈ S and M ≥ 0 set

AMτ = {ρ : ρ ∈ S, [[ρ < τ ]] ⊆ [[|vρ| ≥M ]]}.
Then τ ∈ AMτ and AMτ is closed under ∧ (see part (a) of the proof of 623I). Set A = {AMτ : τ ∈ S,
M ≥ 0}.

(ii) If τ ≤ τ ′ in S and 0 ≤M ≤M ′, then

AM ′τ ′ = {ρ : [[τ ′ ≤ ρ]] ∪ [[|vρ| ≥M ′]] = 1} ⊆ {ρ : [[τ ≤ ρ]] ∪ [[|vρ| ≥M ]] = 1} = AMτ

so A is downwards-directed.

(iii) By 626F, RA(vvv) is defined and is a submartingale for every A ∈ A.

(iv) If τ ∈ S and ǫ > 0, there is an A ∈ A such that supρ∈A µ̄[[ρ < τ ]] ≤ ǫ. PPP Because vvv is a local
integrator (626Dc), vvv↾S ∧τ is order-bounded; set v̄ = supσ∈S∧τ |vσ|. LetM ≥ 0 be such that µ̄[[v̄ ≥M ]] ≤ ǫ,
and set A = AMτ . If ρ ∈ A, then

[[ρ < τ ]] ⊆ [[|vρ| ≥M ]] ∩ [[vρ∧τ = vρ]] ⊆ [[|vρ∧τ | ≥M ]] ⊆ [[v̄ ≥M ]]

has measure at most ǫ. QQQ

(b) Take any A ∈ A, and express RA(vvv) as 〈vAσ〉σ∈S .

(i) There is a martingale www such that RA(vvv) + www ≥ 0. PPP Express A as AMτ where M ≥ 0 and
τ ∈ S. As noted in (a-iii), RA(vvv) is a submartingale, in particular an L1-process, and vAτ ∈ L1

µ̄. Set
wσ = Pσ|vAτ |+Mχ1 for σ ∈ S, so that www = 〈wσ〉σ∈S is a martingale.

If σ ∈ S and a = [[vAσ < −M ]], then a ∈ Aσ and a ⊆ [[vAσ = vAτ ]] (623I(b-ii)), so

a ⊆ [[PσvAσ = PσvAτ ]] ⊆ [[vAσ + Pσ|vAτ | ≥ 0]] ⊆ [[vAσ + wσ ≥ 0]],

while of course 1 \ a also is included in [[vAσ +Mχ1 ≥ 0]] ⊆ [[vAσ + wσ ≥ 0]]. Thus RA(vvv)+www is non-negative.
QQQ

(ii) RA(vvv) ∈ MD-M(S) and its previsible variation RA(vvv)
# is non-negative and non-decreasing, with

starting value 0. PPP RA(vvv) +www is a submartingale (626Cd) and we have just seen that it is non-negative.
By 626M, it has a previsible variation (RA(vvv) +www)# which is non-negative and non-decreasing, therefore a
submartingale, and starts at 0. But now RA(vvv)

# is defined and equal to (RA(vvv) +www)#, by 626Kb-626Kc.

QQQ Express RA(vvv)
# as 〈v#Aσ〉σ∈S .
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(iii) Writing γ for infσ∈S E(vσ), E(v
#
Aτ ) ≤ E(vτ )− γ for every τ ∈ S. PPP For σ ∈ S,

vAσ = limρ↓A vσ∧ρ = 1limρ↓A vσ∧ρ

(626E) so

E(vAσ) = limρ↓A E(vσ∧ρ) = infρ∈A E(vσ∧ρ)

(626Ca) and γ ≤ E(vAσ) ≤ E(vσ). Next,

1limσ↓S v
#
Aσ = limσ↓S v

#
Aσ = 0

so limσ↓S E(v#Aσ) = 0. Now RA(vvv)
# −RA(vvv) is a martingale (626Ka), so

E(v#Aτ ) = limσ↓S E(v#Aτ − v#Aσ) = limσ↓S E(vAτ − vAσ) ≤ E(vτ )− γ. QQQ

(iv) If now B ⊆ S is non-empty and downwards-directed, RBRA(vvv) ∈ MD-M(S) and (RBRA(vvv))
# =

RB(RA(vvv)
#). PPP By 626N,

RB(RA(vvv)
#) = RB((RA(vvv) +www)#) = (RB(RA(vvv) +www))#

= (RBRA(vvv) +RB(www))
# = (RBRA(vvv))

#

because RB(www) is a martingale (623E). QQQ

(c) Thus we have a family 〈RA(vvv)#〉A∈A of previsible variations, all non-decreasing and non-negative,
and RB(vvv)

# = (RBRA(vvv))
# = RB(RA(vvv)

#) whenever A, B ∈ A and A ⊆ B.

(i) If σ ∈ S and A ⊆ B in A then

v#Bσ = limρ↓B v
#
A,σ∧ρ ≤ v#Aσ

for every σ. We know also that v#Aσ ≥ 0 and E(v#Aσ) ≤ E(vσ) − γ for every A ∈ A. As A is downwards-

directed, {v#Aσ : A ∈ A} is upwards-directed and ‖ ‖1-bounded, so 1limA↓A v
#
Aσ = supA∈A v

#
Aσ is defined for

every σ ∈ S; I will call it v′′σ .

(ii) vvv′′ = 〈v′′σ〉σ∈S is a fully adapted process. PPP If σ ∈ S, v#Aσ ∈ L0(Aσ) for every A ∈ A, so

v′′σ = supA∈A v
#
Aσ belongs to L0(Aσ) (612A(e-i)). If σ, τ ∈ S and a = [[σ = τ ]], then χa × v#Aσ = χa × v#Aτ

for every A ∈ A, so χa× v′′σ = χa× v′′τ , that is, a ⊆ [[v′′σ = v′′τ ]]. QQQ

(iii) I am not claiming that vvv′′ = 〈v′′σ〉σ∈S is actually a previsible variation in the sense of 626J, or even

an L1-process. But surely it is non-negative and non-decreasing, because 0 ≤ v#Aσ ≤ v#Aτ whenever A ∈ A
and σ ≤ τ , so 0 ≤ v′′σ ≤ v′′τ whenever σ ≤ τ in S. Consequently it is locally moderately oscillatory (616Ra
again).

(iv) If τ ∈ S and ǫ > 0, there are an a ∈ A and a B ∈ A such that µ̄a ≤ ǫ and [[v′′σ 6= v#Aσ]] ⊆ a whenever
σ ∈ S ∧ τ , A ∈ A and A ⊆ B. PPP By (a-iv), there is a B ∈ A such that a = supρ∈B [[ρ < τ ]] has measure at

most ǫ. If A ∈ A, A ⊆ B and σ ≤ τ in S, then RB(vvv)# = RB(RA(vvv
#)) so v#Bσ = limρ↓B v

#
A,σ∧ρ. But for

each ρ ∈ B,

[[v#A,σ∧ρ 6= v#Aσ]] ⊆ [[ρ < σ]] ⊆ [[ρ < τ ]] ⊆ a,

so [[v#Bσ 6= v#Aσ]] ⊆ a. Taking the limit as A ↓ A, [[v#Bσ 6= v′′σ ]] ⊆ a. But now returning to an arbitrary A ∈ A
included in B, we also have [[v#Aσ 6= v′′σ ]] ⊆ a. QQQ

(v) If B ∈ A, then RB(vvv
′′) = RB(vvv)

#. PPP Take τ ∈ S. For any ǫ > 0 there are an a ∈ A and an

A∗ ∈ A such that µ̄a ≤ ǫ and [[v′′σ 6= v#Aσ]] ⊆ a whenever σ ∈ S ∧ τ , A ∈ A and A ⊆ A∗; take A ∈ A such
that A ⊆ B ∩A∗. Since RB(vvv)

# = RB(RA(vvv
′′)),

[[limρ↓B v
#
τ∧ρ 6= v#Bτ ]] = lim

ρ↓B
[[v#τ∧ρ 6= limρ↓B v

#
A,τ∧ρ]]

⊆ sup
ρ∈B

[[v#τ∧ρ 6= v#A,τ∧ρ]] ⊆ a
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has measure at most ǫ. As ǫ is arbitrary, limρ↓B v
#
τ∧ρ = v#Bτ ; as τ is arbitrary, RB(vvv

′′) = RB(vvv)
#. QQQ

(d) Set www = vvv − vvv′′. Because vvv and vvv′′ are locally moderately oscillatory, so is www. For every A ∈ A,

RA(www) = RA(vvv)−RA(vvv
′′) = RA(vvv)−RA(vvv)

#

is a martingale. Note that RA(www) is actually a uniformly integrable martingale, because if ρ ∈ A then
RA(www) is constant on S ∨ ρ. It follows that www is a virtually local martingale. PPP The definition in 623J

referred to the fully adapted extension ŵww of www to the covered envelope Ŝ of S, and our assumption here
is only that S is finitely full, that is, that it is equal to its finitely-covered envelope Ŝf . But each A ∈ A
is a non-empty downwards-directed subset of Ŝ, so we can speak of RA as an operator from Mlmo(Ŝ) to
itself, and ŵww is locally moderately oscillatory (615F(b-v)), so RA(ŵww) is defined as a fully adapted process on

Ŝ. But RA(ŵww) extends RA(www), so must be the fully adapted extension of RA(www), and is again a uniformly
integrable martingale (622Nc).

Suppose now that τ ∈ Ŝ and ǫ > 0. Then there is a σ ∈ Ŝf such that µ̄[[σ = τ ]] ≥ 1 − ǫ (613B(q-i)).
There is an A ∈ A such that supρ∈A µ̄[[ρ < σ]] ≤ ǫ. But now supρ∈A µ̄[[ρ < τ ]] ≤ 2ǫ. As τ and ǫ are arbitrary,
{RA : A ∈ A} is a sufficient family of operators to ensure that www is a virtually local martingale. QQQ

Accordingly vvv = vvv′′ +www is expressed as the sum of a non-negative non-decreasing fully adapted process
and a virtually local martingale, as required.

(e) This deals with the case in which S is finitely full. For the general case, writing v̂vv for the fully

adapted extension of vvv to the covered envelope Ŝ of S, and Ŝf for the finitely-covered envelope of S, v̂vv↾Ŝf is

a submartingale (626Ga). By (a)-(d) above, v̂vv↾Ŝf is expressible in the form vvv′′+www where vvv′′ is non-negative
and non-decreasing and www is a virtually local martingale. Now vvv = (vvv′′↾S) + (www↾S). vvv′′↾S is surely non-

negative and non-decreasing. But www and www↾S have the same fully adapted extension ŵww to Ŝ, and ŵww and
www↾S will be virtually local martingales, as noted in 623J. Thus we have a decomposition of vvv of the type
claimed.

626P Corollary If S is a sublattice of T and vvv = 〈vσ〉σ∈S is a submartingale such that {E(vσ) : σ ∈ S}
is bounded below, then vvv is a semi-martingale.

proof We just have to look at the definition in 625D and remember that non-negative non-decreasing
processes are locally of bounded variation (614Ic-614Id).

626Q We know that the previsible variation of a martingale is always zero. Otherwise, it seems that
the calculation of previsible variations is not a trivial matter, even in the most basic cases. I go through the
argument for one of my leading examples.

Proposition Suppose that T = [0,∞[ and that ιιι = 〈ιτ 〉τ∈Tf
is the identity process as described in 612F.

Then the previsible variation of ιιι↾Tb is itself.

proof (a) Take τ ∈ Tb and ǫ > 0. Let m ∈ N be such that τ is less than or equal to the constant stopping
time (mǫ)̌ and let J be the finite sublattice of Tb generated by {τ ∧ (kǫ)̌ : k ≤ m}. Note that τ = max J
and 0̌ = min Tb = min J . Suppose that I ∈ I(Tb ∧ τ) and J ⊆ I. If e ∈ Sti0(I ∧ τ), there is a k < m
such that e is included in the stopping-time interval c(τ ∧ (kǫ)̌ , τ ∧ ((k + 1)ǫ)̌ ) and e = c(σ, σ′) where
τ ∧ (kǫ)̌ ≤ σ ≤ σ′ ≤ τ ∧ ((k + 1)ǫ)̌ , so that ισ′ − ισ ≤ ǫχ1.

(b) Let 〈σi〉i≤n linearly generate the (I ∧ τ)-cells. Then 0 ≤ ισi+1
− ισi

≤ ǫχ1 for every i < n, σ0 = 0̌ and
σn = τ . Set

vi =
∑i−1
j=0 Pσj

ισj+1
− ισj

, wi = ισi
− vi

for i ≤ n. Then v0 = 0, vi+1 ∈ L0(Aσi
) and vi ≤ vi+1 for i < n. So, for i < n,

Pσi
wi+1 = Pσi

(ισi+1
− vi − Pσi

ισi+1
+ Pσi

ισi
) = ισi

− vi = wi;

thus 〈wi〉i≤n is an L∞-martingale adapted to 〈Aσi
〉i≤n, starting from w0 = ισ0

. We have
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E(

n−1∑

i=0

(vi+1 − vi)
2) = E(

n−1∑

i=0

(vi+1 − vi)× Pσi
(ισi+1

− ισi
))

≤ E(
n−1∑

i=0

(vi+1 − vi)× ǫχ1) = ǫE(
n−1∑

i=0

vi+1 − vi)

= ǫE(
n−1∑

i=0

Pσi
ισi+1

− ισi
) = ǫE(

n−1∑

i=0

ισi+1
− ισi

)

= ǫE(ιτ − ι0̌) = ǫE(ιτ ),

and similarly

E(
∑n−1
i=0 (ισi+1

− ισi
)2) ≤ E(

∑n−1
i=0 (ισi+1

− ισi
)× ǫχ1) ≤ ǫE(ιτ ).

So

E((ιτ − SI(1, Pdιιι))
2) = E((ιτ − vn)

2) = E(w2
n) =

n−1∑

i=0

E((wi+1 − wi)
2)

(because 〈wi〉i≤n is a martingale, so E((wi+1 − wi)× (wj+1 − wj)) = 0 when i 6= j)

≤ 2
n−1∑

i=0

E((ισi+1
− ισi

)2 + (vi+1 − vi)
2) ≤ 4ǫE(ιτ ).

(c) This is true whenever I ∈ I(Tb∧τ) includes J . As ǫ is arbitrary, ιτ is the limit 2limI↑I(Tb∧τ) SI∧τ (1, Pdιιι)

for the norm topology of L2
µ̄. It is therefore also the limit w1limI↑I(Tb∧τ) SI(1, Pdιιι) for the weak topology

of L1
µ̄.

(d) As τ is arbitrary, the previsible variation (ιιι↾Tb)# agrees with ιιι on Tb.

626R Lemma Let S be a full sublattice of T with greatest and least members, and uuu = 〈uσ〉σ∈S a
non-decreasing non-negative jump-free L1-process. Then for every ǫ > 0 there is an I ∈ I(S), containing
minS and maxS, such that ‖SI(1, Pduuu)− umaxS + uminS‖1 ≤ ǫ.

proof By 618Gb, uuu is moderately oscillatory. Since 0 ≤ uσ ≤ umaxS ∈ L1
µ̄ for every σ ∈ S, uuu is uniformly

integrable. Set δ = 1
7ǫ. Construct 〈Di〉i∈N, 〈yi〉i∈N and 〈di〉i∈N from uuu and δ as in 615M. Note that

minD0 = minS so y0 = uminS (615Ma). If i ∈ N, then Di ⊆ S is closed under ∧ and yi = limσ↓Di
uσ,

while di+1 ⊆ di ∩ [[|yi+1 − yi| ≥ δ]] (615Mc) and |yi+1 − yi| ≤ δχ1 (618N, because uuu is jump-free). Because
0 ≤ yi ≤ umaxS , or otherwise, yi ∈ L1

µ̄. Set Bi =
⋂
σ∈Di

Aσ and write Qi : L
1
µ̄ → L1

µ̄ ∩ L0(Bi) for the

associated conditional expectation. As yi ∈ L0(Bi) (615Mb), Qiyi = yi. Because uuu is uniformly integrable,
yi = 1limσ↓Di

uσ (621B(c-ii) again).
If i ∈ N and σ ∈ Di+1, there is a σ′ ∈ Di such that σ′ ≤ σ (615Ma); now σ′′ ≤ σ′ and uσ′′ ≤ uσ′

for every σ′′ ∈ Di ∧ σ′, so yi ≤ uσ; as σ is arbitrary, yi ≤ yi+1. So in fact di+1 ⊆ di ∩ [[yi+1 − yi = δ]] and
yi ≤ yi+1 ≤ yi + δχdi. Now

yi = Qiyi ≤ Qiyi+1 ≤ Qi(yi + δχdi) = yi + δχdi

(because di ∈ Bi), and (Qiyi+1 − yi+1)× χ(1 \ di) = 0. At the same time, yi+1 ≥ yi + δχdi+1, so

(Qiyi+1 − yi+1)
+ ≤ ((yi + δχdi)− (yi + δχdi+1))

+ = δχ(di \ di+1)

and

‖Qiyi+1 − yi+1‖1 = 2E((Qiyi+1 − yi+1)
+)− E(Qiyi+1 − yi+1) ≤ 2δµ̄(di \ di+1).

Summing over i,
∑∞
i=0 ‖Qiyi+1 − yi+1‖1 ≤ 2δ.
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By 615M(c-ii), there is an m ≥ 1 such that E(umaxS × χdm) ≤ δ. Set η =
1

m
δ. Again because every

member of Di+1 dominates some member of Di, we can choose σm, σm−1, . . . , σ0 ∈ S such that σm ∈ Dm,
‖uσm

− ym‖1 ≤ η and

σi ∈ Di, σi ≤ σi+1, ‖uσi
− yi‖1 ≤ η, ‖Pσi

yi+1 −Qiyi+1‖1 ≤ η

for i < m (using 621C(g-i) for the last clause), while σ0 = minS. Since [[σm < maxS]] ⊆ dm and 0 ≤ uσm
≤

umaxS ,

‖umaxS − uσm
‖1 ≤ E(umaxS × χdm) ≤ δ.

Set I = {σi : i ≤ m} ∪ {maxS}. Then

‖SI(1,Pduuu)− umaxS + uminS‖1

= ‖Pσm
umaxS − uσm

− umaxS + uσm
+

m−1∑

i=0

(Pσi
uσi+1

− uσi
− uσi+1

+ uσi
)‖1

≤ ‖Pσm
(umaxS − uσm

)‖1 + ‖umaxS − uσm
‖1 +

m−1∑

i=0

‖Pσi
uσi+1

− uσi+1
‖1

≤ 2‖umaxS − uσm
‖1 +

m−1∑

i=0

‖Qiyi+1 − yi+1‖1

+
m−1∑

i=0

‖Pσi
uσi+1

− uσi+1
−Qiyi+1 + yi+1‖1

≤ 2δ + 2δ +

m−1∑

i=0

‖Pσi
uσi+1

− Pσi
yi+1‖1 +

m−1∑

i=0

‖Pσi
yi+1 −Qiyi+1‖1

+

m−1∑

i=0

‖yi+1 − uσi+1
‖1

≤ 4δ +mη +mη +mη = ǫ.

626S Proposition Let S be a non-empty full sublattice of T , and vvv = 〈vσ〉σ∈S a non-decreasing locally
jump-free L1-process starting from 0. Then it is equal to its previsible variation.

proof (a) Because vvv is moderately oscillatory (618Gb), its starting value v↓ is well-defined (615Gb). We
are supposing that v↓ is zero; as vvv is a non-decreasing L1-process it is a non-negative submartingale and has
a previsible variation vvv# = 〈v#σ 〉σ∈S . I need to show that v#τ = vτ for every τ ∈ S. Clearly it is enough to
consider the case in which S = S ∧ τ . Take w ∈ L∞(A) and ǫ > 0.

(b) If J ∈ I(S) is non-empty, there is an I ∈ I(S) such that J ⊆ I and ‖SI(1, Pdvvv)−vmax J+vmin J‖1 ≤ ǫ.
PPP If J is a singleton, set I = J . Otherwise, take (τ0, . . . , τk) linearly generating the J-cells, so that
τ0 = min J and τk = max J . If j < k, vvv↾S ∩ [τj , τj+1] is a non-decreasing non-negative L1-process, and
is jump-free by 618Gc, while S ∩ [τj , τj+1] is full (see 611Md and 611Me). So 626R tells us that there is

a finite sublattice Ij of S ∩ [τj , τj+1], containing τj and τj+1, such that ‖SIj (1, Pdvvv) − vτj+1
+ vτj‖1 ≤ 1

k
ǫ.

Let I be the sublattice of S generated by
⋃
j<k Ij . Then min I = τ0 = min J , max I = τk = max J and

I ∩ [τj , τj+1] = Ij for each j. So

SI(1, Pdvvv) =
∑k−1
j=0 SIj (1, Pdvvv), vmax I − vmin I =

∑k
j=0 vτj+1

− vτj

and

‖SI(1, Pdvvv)− vmax J + vmin J‖1 ≤ ∑k−1
j=0 ‖SIj (1, Pdvvv)− vτj+1

+ vτj‖1 ≤ ǫ. QQQ

(c) If J ∈ I(S) is non-empty, there is an I ∈ I(S) such that J ⊆ I and ‖SI(1, Pdvvv)− vτ‖1 ≤ 2ǫ. PPP As
in the proof of 626R, vvv here is uniformly integrable, so 0 = 1limσ↓S vσ. Let σ ∈ S be such that σ ≤ min J
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and ‖vσ‖1 ≤ ǫ. By (b), there is an I ∈ I(S) such that I ⊇ J ∪ {σ, τ} and ‖SI(1, Pdvvv) − vτ + vσ‖1 ≤ ǫ, so
that ‖SI(1, Pdvvv)− vτ‖1 ≤ 2ǫ. QQQ

(d) As v#τ = w1limI↑S SI(1, Pdvvv), there is a non-empty J ∈ I(S) such that |E(w×(SI(1, Pdvvv)−v#τ ))| ≤ ǫ
whenever I ∈ I(S) includes J . By (c), there is such an I with ‖SI(1, Pdvvv) − vτ‖1 ≤ 2ǫ, so that |E(w ×
(SI(1, Pdvvv)− vτ ))| ≤ 2ǫ‖w‖∞ and |E(w× (v#τ − vτ ))| ≤ ǫ(1+ 2‖w‖∞). As ǫ and w are arbitrary, v#τ = vτ .

626T Proposition Let S be a full sublattice of T , and vvv = 〈vσ〉σ∈S a locally jump-free L2-martingale.
Then the quadratic variation vvv∗ = 〈v∗σ〉σ∈S of vvv is the previsible variation (vvv2)# of the submartingale vvv2.

proof If S is empty, this is trivial; suppose otherwise. By 622H again, vvv is locally moderately oscillatory, so
its starting value v↓ is defined (615Gb again). Note that v↓ ∈ L2

µ. PPP Take any τ ∈ S. Then {x : x ∈ L0(A),
‖x‖2 ≤ ‖vτ‖2} is closed (613Bc) and includes {vσ : σ ∈ S ∧ τ} (621Ce) so contains v↓. QQQ

(a) Suppose to begin with that v↓ = 0. By Jensen’s inequality (621Cd again), vvv2 is a submartingale
and has a previsible variation (626M). Also vvv∗ is an L1-process (624G) so vvv2 − vvv∗ = 2iivvv(vvv) (617Ka) is a
martingale (624Hb) and (vvv2)# = (v∗)# (626Kc). Now vvv∗ is an L1-process, non-decreasing and starting from
0 (617Jb), while vvv2 and iivvv(vvv) are locally jump-free (618Ga, 618R). By 626S, vvv∗ = (vvv∗)# = (vvv2)#.

(b) For the general case, set www = vvv − v↓1. Then www is a locally jump-free martingale and an L2-process
starting at 0, so (www2)# = www∗. Now, expressing www∗ as 〈w∗

σ〉σ∈S ,

w∗
τ =

∫

S∧τ

dwww∗ =

∫

S∧τ

(dwww)2

(617I)

=

∫

S∧τ

(dvvv)2

(because the interval functions ∆www, ∆vvv are equal)

= v∗τ

for every τ ∈ S. At the same time,

vvv2 −www2 = 2vvv − v2↓1

is a martingale, so

(vvv2)# = (www2)# = www∗ = vvv∗.

626X Basic exercises (a) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb,
618Xa and 622Xd. Let f : [0,∞[ → R be a function and uuu the corresponding process on Tf . (i) Show that uuu
is a submartingale iff f is non-decreasing. (ii) Show that this case the previsible variation of uuu corresponds
to the function t 7→ f(t)− f(0).

(b) Let S be a sublattice, vvv a fully adapted process with domain S and τ ∈ S. Show that vvv is a
submartingale iff vvv↾S ∧ τ and vvv↾S ∨ τ are both submartingales.

(c) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a submartingale such that {E(vσ) : σ ∈ S} is bounded
below. Show that vvv is locally moderately oscillatory. (Hint : 626Gc.)

(d) Let S be a sublattice of T , vvv a non-negative submartingale with domain S, and z a non-negative
member of L0(

⋂
σ∈S Aσ). Show that if zvvv (612D(e-ii)) is an L1-process then it is a submartingale, and that

zvvv# is the previsible variation of zvvv.

(e) Suppose that T = N and that A is atomless. Let u ∈ L0(A) be such that µ̄[[u > 1− α]] = α for
α ∈ [0, 1], and suppose that

An = {a : a ∈ A, a ∩ [[u > 1− 2−n]] ∈ {0, [[u > 1− 2−n]]} for every n ∈ N}.
Show that the martingale PPPu is of bounded variation. (Hint : 611Xh.)
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626 Notes and comments The previsible variations of 626J-626K can be thought of as indefinite integrals
of interval functions Pdvvv based on the weak topology of L1

µ̄ instead of the topology of convergence in measure

on L0(A). I do not really wish to go farther along this route. But there are obvious questions to ask about
the applicability of the ideas of §613 in this context.

In both 626M and 626O, we start with a submartingale vvv and seek to express it as vvv# + www where vvv#

is non-decreasing and www is more or less a martingale. In 626M we have an explicit formula, with vvv# the
‘previsible variation’ as defined in 626J, so that we have picked out a particular solution. In 626O the
statement of the theorem makes no claim that the solution is unique, and of course it is not, because a
constant process can always be added to one term and subtracted from the other. Indeed it is not difficult
to show that there are non-trivial martingales of bounded variation (626Xe) and therefore that there are
many non-negative non-decreasing processes which are not their own previsible variations. The construction
in the proof of 626O gives rise to a particular pair vvv#, www but I have not seen a simple characterization of
the processes vvv# which can arise in this way.

The calculation in 626Q is rather elaborate, but I do not know of an essentially more direct method.
Concerning the other two examples in §612, Brownian motion has previsible variation 0 just because it is a
martingale, and the Poisson process turns out to have previsible variation ιιι; but for a proof of this we shall
have to wait for some more of the general theory (632Mb).

Version of 27.3.21

627 Integrators and semi-martingales

This section is devoted to a kind of structure theory for integrators (627I-627J, 627L, 627Q); I take a
route which passes some further important classes of stochastic process (627B) and ideas from the theory
of linear topological spaces (627F-627G).

627A Notation As always, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) is a stochastic integration structure. For a
sublattice S of T , I(S) is the set of finite sublattices of S; Mfa(S) and Mlmo(S) are the spaces of fully
adapted and locally moderately oscillatory processes with domain S. If uuu = 〈uσ〉σ∈S is order-bounded,
sup |uuu| = sup({0} ∪ {|uσ| : σ ∈ S}) (614E).

1 is the constant process with value χ1. For I ⊆ T and τ ∈ T , I ∧ τ and I ∨ τ are {σ ∧ τ : σ ∈ I},
{σ ∨ τ : σ ∈ I} respectively. E is the standard integral on L1

µ̄ = L1(A, µ̄), and θ(w) = E(|w| ∧ χ1) for

w ∈ L0 = L0(A). For τ ∈ T , Pτ : L1
µ̄ → L1

µ̄ ∩ L0(Aτ ) is the associated conditional expectation. If z ∈ L1
µ̄,

PPPz = 〈Pτz〉τ∈T .

627B Definitions Let S be a sublattice of T and vvv a fully adapted process with domain S.

(a) vvv is a supermartingale if −vvv is a submartingale (626B), that is, vvv is an L1-process and Pσvτ ≤ vσ
whenever σ ≤ τ in S. (Mnemonic: Pdvvv ≤ 0.)

(b) vvv is a quasimartingale if vvv is an L1-process and {E(w) : w ∈ QS(dvvv)} (definition: 616B) is bounded
in R,

(c) I will say that vvv is a strong integrator if whenever ǫ > 0 there are a uniformly integrable martingale
www and a fully adapted process www′ of bounded variation, both with domain S, such that µ̄[[vvv 6= www +www′]] ≤ ǫ.

627C Elementary facts (a)(i) If vvv is a supermartingale, so is vvv↾S ′ for any sublattice S ′ of domvvv. If vvv
and www are supermartingales, so is vvv +www. (Immediate from the definition.)

(ii) If h : R → R is concave and non-decreasing, vvv = 〈vσ〉σ∈S is a supermartingale and h̄vvv is an L1-
process, then h̄vvv is a supermartingale. PPP Set g(x) = −h(−x) for x ∈ R. Then g is convex and non-decreasing,
so ḡ ◦(−vvv) is a submartingale (626Cc) and h̄vvv = −ḡ ◦(−vvv) is a supermartingale. QQQ

(iii) A supermartingale 〈vσ〉σ∈S is a martingale iff E(vσ) = E(vτ ) whenever σ ≤ τ in S. (For in this
case we have Pσvτ ≤ vσ while E(Pσvτ ) = E(vτ ) = E(vσ), so Pσvτ = vσ.)
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(b) Every martingale 〈vσ〉σ∈S is a quasimartingale. PPP If σ ∈ τ in S and u ∈ L∞(Aσ), then

E(u× (vτ − vσ)) = E(Pσ(u× (vτ − vσ))) = E(u× (Pσvτ − vσ)) = 0,

so E(w) = 0 for every w ∈ QS(dvvv). QQQ

(c)(i) A strong integrator is an integrator. PPP By 622G, 616Ra and 616Pa, the sum of a uniformly
integrable martingale and a fully adapted process of bounded variation is an integrator. Now 616P(b-iii)
shows that a strong integrator is an integrator. QQQ

(ii) A linear combination of strong integrators is a strong integrator. (We just have to recall that sums
and scalar multiples of martingales are martingales, sums and scalar multiples of uniformly integrable sets
are uniformly integrable and sums and scalar multiples of processes of bounded variation have bounded
variation.)

(iii) If vvv is a strong integrator with domain S and S ′ is a sublattice of S, then vvv↾S ′ is a strong
integrator. PPP Given ǫ > 0, there are a uniformly integrable martingale www and a process www′ of bounded
variation, both with domain S, such that [[vvv 6= www +www′]] has measure at most ǫ. Now www↾S ′ is a uniformly
integrable martingale (622Dd), www↾S ′ is of bounded variation (614Lb) and [[vvv↾S ′ 6= www↾S ′ +www′↾S ′]] is included
in [[vvv 6= www +www′]], so has measure at most ǫ. QQQ

(iv) If vvv is a fully adapted process with domain S and for every ǫ > 0 there is a strong integrator vvv′

with domain S, such that [[vvv 6= vvv′]] has measure at most ǫ, then vvv is a strong integrator. (Immediate from the
definition of ‘strong integrator’ and from the fact that [[vvv 6= vvv′′]] ⊆ [[vvv 6= vvv′]] ∪ [[vvv′ 6= vvv′′]] for any fully adapted
processes vvv, vvv′ and vvv′′ with domain S.)

627D Proposition Let S be a sublattice of T and vvv a non-negative fully adapted process with domain
S.

(a) If vvv is a virtually local martingale, it is a ‖ ‖1-bounded supermartingale.
(b) If vvv is a ‖ ‖1-bounded supermartingale it is order-bounded.

proof If S is empty, both parts are trivial, so let us suppose that S 6= ∅. Express vvv as 〈vσ〉σ∈S .

(a)(i) The fully adapted extension v̂vv = 〈v̂σ〉σ∈Ŝ of vvv to the covered envelope Ŝ of S is an approximately

local martingale (623J). Let A be the family of non-empty downwards-directed subsets A of Ŝ such that
RA(v̂vv), as defined in 623B, is a martingale, and for A ∈ A express RA(v̂vv) as 〈v̂Aσ〉σ∈Ŝ .

(ii) If A ∈ A, the starting values of RA(v̂vv) and v̂vv are the same (623B(c-i)); so we have a common
starting value v↓ = limσ↓Ŝ vAσ for all the RA(v̂vv). Now v↓ is always the ‖ ‖1-limit 1limσ↓Ŝ v̂Aσ (626E, since

RA(v̂vv) is a submartingale, as noted in 626F). Since all the expectations E(v̂Aσ), for σ ∈ S, must be the

same, this is also E(v↓). This is so for every A ∈ A, so we have E(v̂Aσ) = E(v↓) for every A ∈ A and σ ∈ Ŝ.

(iii) Since vσ ≥ 0 for every σ ∈ S, v̂σ ≥ 0 for every σ ∈ Ŝ, v̂Aσ ≥ 0 for every A ∈ A and σ ∈ Ŝ, and
v↓ ≥ 0. So in fact we have ‖v̂Aσ‖1 = ‖v↓‖1 for every A ∈ A and σ ∈ Ŝ.

Consequently ‖v̂σ‖1 ≤ ‖v↓‖1 for every σ ∈ Ŝ. PPP Because v̂vv is a virtually local martingale, there is for

every ǫ > 0 an A ∈ A such that µ̄[[v̂Aσ 6= v̂σ]] ≤ ǫ. So vσ belongs to the closure {v̂Aσ : A ∈ A} for the
topology of convergence in measure. Because ‖ ‖1-balls are closed for this topology (613Bc),

‖v̂σ‖1 ≤ supA∈A ‖v̂Aσ‖1 = ‖v↓‖1. QQQ
In particular, v̂vv is an L1-process.

(iv) ??? Suppose, if possible, that v̂vv is not a supermartingale. Then there are σ ≤ τ in Ŝ such that
Pσ v̂τ 6≤ v̂σ, that is, c = [[v̂σ < Pσ v̂τ ]] is non-zero. For each n ∈ N we can find an An ∈ A such that
an = supρ∈A [[ρ < τ ]] has measure at most 2−n−2µ̄c. Setting bn = supρ∈A [[ρ < σ]] for each n, bn ∈ Aσ and

∑∞
n=0 µ̄bn ≤ ∑∞

n=0 µ̄an < µ̄c,

so c′ = c \ supn∈N bn is a non-zero member of Aσ. Consider E(vτ × χc′). For each n ∈ N,

θ(vτ − vAnτ ) ≤ µ̄[[vτ 6= vAnτ ]] ≤ µ̄an → 0
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as n→ ∞, so vτ = limn→∞ vAnτ and vτ × χc′ = limn→∞ vAnτ × χv′. Now

E(vσ × χc′) < E(Pσvτ × χc′)

(because 0 6= c′ ⊆ [[vσ < Pσvτ ]])

= E(Pσ(vτ × χc′))

(because c′ ∈ Aσ)

= E(vτ × χc′) = ‖vτ × χc′‖1 ≤ sup
n∈N

‖vAnτ × χc′‖1

(because ‖ ‖1-balls are closed for the topology of convergence in measure)

= sup
n∈N

E(vAnτ × χc′).

There is therefore an n ∈ N such that E(vAnτ ×χc′) > E(vσ ×χc′). But c′ is disjoint from bn, so vσ ×χc′ =
vAnσ × χc′ and

E(vAnσ × χc′) < E(vAnτ × χc′) = E(Pσ(vAnτ × χc′))

= E(PσvAnτ × χc′) = E(vAnσ × χc′)

because RAn
(vvv) is a martingale. But this is absurd. XXX

(v) Thus v̂vv is a supermartingale. But it follows at once that vvv = v̂vv↾S is a supermartingale. And we
saw in (iii) that v̂vv is ‖ ‖1-bounded, so vvv also is ‖ ‖1-bounded.

(b)(i) Set γ = supσ∈S ‖vσ‖1. If τ0 ≤ τ1 ≤ . . . ≤ τn in S there is a v ≥ 0 such that Pτiv ≥ vτi for
every i ≤ n and E(v) ≤ γ. PPP Induce on n. If n = 0 we can set v = vτ0 . For the inductive step to
n + 1 > 0, take v′ ≥ 0 such that E(v′) ≤ γ and Pτiv

′ ≥ vτi for i ≤ n. Then Pτnvτn+1
≤ vτn ≤ Pτnv

′; set
v = vτn+1

+ Pτnv
′ − Pτnvτn+1

. In this case,

E(v) = E(v′) ≤ γ,

while

Pτn+1
v = v ≥ vτn+1

≥ 0

and for i ≤ n

Pτiv = Pτivτn+1
+ Pτiv

′ − Pτivτn+1
≥ vτi . QQQ

So if w = supi≤n vτi ,

µ̄[[w ≥M ]] ≤ µ̄[[supi≤n Pτiv ≥M ]] ≤ 1

M
‖Pτnv‖1 ≤ γ

M

for every M > 0, by Doob’s maximal inequality (621E).

(ii) If A ⊆ S is finite and not empty and zA = supσ∈A vσ, then µ̄[[zA ≥M ]] ≤ γ

M
for every M ≥ 0.

PPP Let I be the sublattice of S generated by A, and τ0 ≤ . . . ≤ τn a sequence in I linearly generating the
I-cells as in 611L. Set z′ = supi≤n vτi . Because supi≤n [[τ = τi]] = 1, vτ ≤ z′ for every τ ∈ I, zA ≤ z′ and

µ̄[[zA ≥M ]] ≤ µ̄[[z′ ≥M ]] ≤ γ

M

by (i). QQQ

(iii) For n ∈ N, set cn = sup{[[zA ≥ n]] : ∅ 6= A ∈ [S]<ω}. Then µ̄cn ≤ γ
n
for every n > 1. By 364L(a-i),

{zA : minS ∈ A ∈ [S]<ω} is bounded above in L0, that is, {vσ : σ ∈ S} is bounded above. Since it is also
bounded below, vvv is order-bounded.

627E Lemma Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a quasimartingale.
(a) There is a non-negative ‖ ‖1-bounded supermartingale www such that vvv +www is a supermartingale.
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(b) If S has a greatest element then vvv is expressible as the difference of two non-negative supermartingales.

(c) If vvv is ‖ ‖1-bounded then it is a semi-martingale (definition: 625D).

proof (a)(i) Set γ = sup{E(w) : w ∈ QS(dvvv)}. Then E(w) ≤ γ for every w ∈ QS(Pdvvv). PPP If w = 0 this
is trivial, as 0 ∈ QS(dvvv), so γ ≥ 0. Otherwise, there are a non-empty I ∈ I(S) and a fully adapted process
uuu = 〈uσ〉σ∈I such that ‖uuu‖∞ ≤ 1 and w = SI(uuu, Pdvvv). Let 〈τi〉i≤n be a sequence linearly generating the
I-cells. Then

E(w) = E(
n−1∑

i=0

uτi × Pτi(vτi+1
− vτi)) = E(

n−1∑

i=0

Pτi(uτi × (vτi+1
− vτi)))

= E(
n−1∑

i=0

uτi × (vτi+1
− vτi)) = E(SI(uuu, dvvv)) ≤ γ

because SI(uuu, dvvv) ∈ QS(dvvv). QQQ

(ii) If I ∈ I(S), then SI(1, |Pdvvv|) ∈ QS(Pdvvv). PPP If I is empty this is trivial. Otherwise, let τ0 ≤ . . . ≤
τn linearly generate the I-cells. For each i < n, set

ai = [[Pτivτi+1
− vτi ≥ 0]], ui = χai − χ(1 \ ai).

Then ai ∈ Aτi , ui ∈ L∞(Aτi) and ‖ui‖∞ ≤ 1. So

SI(1, |Pdvvv|) =
∑n−1
i=0 |Pτivτi+1

− vτi | =
∑n−1
i=0 ui × (Pτivτi+1

− vτi) ∈ QS(Pdvvv)

by 616C(ii). QQQ

(iii) For τ ∈ S set

Aτ = {PτSI(1, |Pdvvv|) : I ∈ I(S ∨ τ)}.

(ααα) If τ ≤ σ0 ≤ σ1 ≤ σ2 in S,

|Pσ0
(vσ2

− vσ0
)| = |Pσ0

(vσ1
− vσ0

) + Pσ0
Pσ1

(vσ2
− vσ1

)|
≤ |Pσ0

(vσ1
− vσ0

|+ Pσ0
|Pσ1

(vσ2
− vσ1

)|,
Pτ |Pσ0

(vσ2
− vσ0

)| ≤ Pτ |Pσ0
(vσ1

− vσ0
)|+ Pτ |Pσ1

(vσ2
− vσ1

)|.

So if τ ≤ τ0 ≤ . . . ≤ τn in S,
Pτ |Pτ0(vτn − vτ0)| ≤ Pτ

∑n−1
i=0 |Pτi(vτi+1

− vτi)|.
PPP Induce on n. The case n = 1 is trivial. For the inductive step to n+ 1 > 1, we have

Pτ |Pτ0(vτn+1
− vτ0)| ≤ Pτ |Pτ0(vτn − vτ0)|+ Pτ |Pτn(vτn+1

− vτn)|

≤ Pτ

n−1∑

i=0

|Pτi(vτi+1
− vτi)|+ Pτ |Pτn(vτn+1

− vτn)|

= Pτ

n∑

i=0

|Pτi(vτi+1
− vτi)|. QQQ

(βββ) If τ ∈ S and I ∈ I(S ∨ τ) is non-empty, then Pτ |Pmin Ivmax I − vmin I | ≤ PτSI(1, |Pdvvv|). PPP
Apply (α) with τ0, . . . , τn a sequence linearly generating the I-cells. QQQ

(γγγ) If τ ∈ S, I, J ∈ I(S ∨ τ) and J ⊆ I, then PτSJ(1, |Pdvvv|) ≤ PτSI(1, |Pdvvv|). PPP If J is empty
this is trivial. Otherwise, let τ1 ≤ . . . ≤ τn be a sequence linearly generating the J-cells; set τ0 = min I and
τn+1 = max I. For j ≤ n set Ij = I ∩ [τj , τj+1]. Then
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PτSJ(1, |Pdvvv|) =
n−1∑

j=1

Pτ |Pτjvτj+1
− vτj | ≤

n∑

j=0

Pτ |Pτjvτj+1
− vτj |

≤
n∑

j=0

PτSIj (1, |Pdvvv|) = Pτ

n∑

j=0

SIj (1, |Pdvvv|) = PτSI(1, |Pdvvv|)

by 613G(a-ii). QQQ

(δδδ) Thus Aτ is upwards-directed. If w ∈ Aτ , then w = Pτw
′ for some w′ ∈ QS(Pdvvv), by (ii); in

which case

‖w‖1 = E(w) = E(w′) ≤ γ.

It follows that wτ = supAτ is defined in L1
µ̄, and belongs to the ‖ ‖1-closure of Aτ (613B(d-iii)). As

Aτ ⊆ L0(Aτ ), wτ ∈ L0(Aτ ). Also ‖wτ‖1 ≤ supw∈Aτ
‖w‖1 ≤ γ.

(ǫǫǫ) Suppose that τ , τ ′ ∈ S and [[τ = τ ′]] = a. If w ∈ Aτ , then w × χa ≤ wτ ′ × χa. PPP Let

τ0 ≤ . . . ≤ τn in S ∨ τ be such that w =
∑n−1
i=0 Pτ |Pτi(vτi+1

− vτi)|; set τ ′i = τi ∨ τ ′ for i ≤ n, and

w′ =
∑n−1
i=0 Pτ ′ |Pτ ′

i
(vτ ′

i+1
− v′τi)|, so that w′ ∈ Aτ ′ . Now, for i ≤ n,

[[τ ′i = τi]] = [[τi ∨ τ ′ = τi ∨ τ ]] ⊇ a
by 611E(c-v-β), so [[vτ ′

i
= vτi ]] ⊇ a and [[Pτ ′

i
v = Pτiv]] ⊇ a for every v ∈ L1

µ̄ (622Bb); also, of course [[Pτv = Pτ ′v]] ⊇ a
for every v ∈ L1

µ̄. Moreover, a ∈ Aτ∧τ ′ (611H(c-i)). Accordingly

w × χa =

n−1∑

i=0

χa× Pτ |Pτi(vτi+1
− vτi)| =

n−1∑

i=0

χa× Pτ ′ |Pτi(vτi+1
− vτi)|

=
n−1∑

i=0

Pτ ′(χa× |Pτi(vτi+1
− vτi)|)

(because χa ∈ L∞(Aτ ′))

=
n−1∑

i=0

Pτ ′ |χa× Pτi(vτi+1
− vτi)| =

n−1∑

i=0

Pτ ′ |χa× Pτ ′
i
(vτi+1

− vτi)|

=
n−1∑

i=0

Pτ ′ |Pτ ′
i
(χa× (vτi+1

− vτi))|

(because χa ∈ L∞(Aτ ′
i
) for every i)

=

n−1∑

i=0

Pτ ′ |Pτ ′
i
(χa× (vτ ′

i+1
− vτ ′

i
))| = w′ × χa

(following a parallel path back)

≤ wτ ′ × χa. QQQ

As w is arbitrary, wτ × χa ≤ wτ ′ × χa. Similarly, w′
τ × χa ≤ wτ × χa and a ⊆ [[wτ = wτ ′ ]]. As τ , τ ′ are

arbitrary, www = 〈wτ 〉τ∈S is a fully adapted process. From (δ), we know that it is ‖ ‖1-bounded.

(iv)(ααα) If τ ≤ τ ′ in S and I ∈ I(S ∨ τ ′), then
PτPτ ′SI(1, |Pdvvv|) = PτSI(1, |Pdvvv|) ≤ wτ ;

that is, Pτw ≤ wτ for every w ∈ Aτ ′ . As Pτ is ‖ ‖1-continuous, and wτ ′ belongs to the ‖ ‖1-closure of Aτ ′ ,
Pτwτ ′ also is less than or equal to wτ . Thus www is a supermartingale and of course it is non-negative.

(βββ) If τ ≤ τ ′ in S and I ∈ I(S ∨ τ ′), then

D.H.Fremlin



68 Martingales 627E

Pτ (vτ ′ + Pτ ′SI(1, |Pdvvv|)) ≤ vτ + |Pτ (vτ ′ − vτ )|+ PτSI(1, |Pdvvv|))
= vτ + PτSI∪{τ}(1, |Pdvvv|)) ≤ vτ + wτ .

So Pτ (vτ ′ + wτ ′) ≤ vτ + wτ . This shows that vvv +www is a supermartingale.

(b) If S has a greatest element, set

uuu = vvv +www +PPP |vmaxS |, uuu′ = www +PPP |vmaxS |.
Then uuu and uuu′ are sums of supermartingales, therefore themselves supermartingales. As their final values
vmaxS+wmaxS+|vmaxS |, wmaxS+|vmaxS | are both greater than or equal to 0, uuu and uuu′ are both non-negative,
and their difference vvv is expressed in the required form.

(c) Since www is a ‖ ‖1-bounded supermartingale, −www is a ‖ ‖1-bounded submartingale, so is a semi-
martingale, by 626P. Thus www is a semi-martingale. Also we are now supposing that vvv is ‖ ‖1-bounded,
so vvv +www is a ‖ ‖1-bounded supermartingale, and it too is a semi-martingale. Accordingly vvv = (vvv +www) −www
is a difference of semi-martingales and is a semi-martingale.

627F For the next step, we need a couple of facts from the theory of linear topological spaces.

Lemma Let U be a Banach space, C a convex subset of U and K a non-empty weak*-compact convex
subset of the dual U∗ of U . Suppose that γ ≥ 0 is such that for every u ∈ C there is an f ∈ K such that
f(u) ≤ γ. Then there is a g ∈ K such that g(u) ≤ γ for every u ∈ C.

proof (a) For each finite I ⊆ C set KI = {f : f ∈ K, f(u) ≤ γ for every u ∈ I}. Then KI 6= ∅. PPP???
Otherwise, I is certainly non-empty. Set Tf = 〈f(u)〉u∈I for f ∈ U∗. Then T : U∗ → R

I is a linear operator
which is continuous for the weak* topology on U∗, so T [K] is a convex compact subset of RI ; and as KI is
empty, T [K] does not meet the closed convex set F = {v : v ∈ R

I , v(u) ≤ γ for every u ∈ I}.
The set D = T [K]−F is convex (2A5Ea) and closed (4A5Ef) and does not contain 0. We therefore have

a linear functional h : RI → R such that infv∈D h(v) > 0 (3A5Cb), that is, supv∈F h(v) < infv′∈T [K] h(v
′).

For u ∈ I write eu for the corresponding unit vector in R
I , and set αu = h(eu), so that h(v) =

∑
u∈I αuv(u)

for every v ∈ R
I . Because F contains βeu for every β ≤ 0, and supv∈F h(v) is finite, αu is at least 0, for

every u ∈ I. Also h cannot be zero, so not every αu is zero. Set α =
∑
u∈I αu and consider ũ = 1

α

∑
u∈I αuu,

so that ũ ∈ C and there is a f̃ ∈ K such that f̃(ũ) ≤ γ. In this case, T f̃ ∈ T [K] and

h(T f̃) =
∑
u∈I αuf̃(u) = f̃(

∑
u∈I αuu) = αf̃(ũ) ≤ αγ = h(

∑
u∈I γeu).

But
∑
u∈I γeu ∈ F , so this is impossible, by the choice of h. XXXQQQ

(b) Now {KI : I ∈ [C]<ω} is a downwards-directed family of non-empty closed subsets of the compact
set K, so has non-empty intersection, and any member of the intersection will serve for g.

627G Lemma Suppose that C ⊆ L1
µ̄ is a non-empty topologically bounded convex set. Then there is a

w ∈ L∞ = L∞(A) such that [[w > 0]] = 1 and supu∈C E(u× w) is finite.

proof (a) For any ǫ ∈ ]0, 1] there is a w ∈ L∞ such that 0 ≤ w ≤ χ1, µ̄[[w = 0]] ≤ ǫ and supu∈C E(u × w)
is finite. PPP Let K be the set {w : 0 ≤ w ≤ χ1, E(w) ≥ 1 − ǫ}. Then K is convex and is closed for
the topology Ts(L

∞, L1
µ̄), so can be regarded as a convex subset of (L1

µ̄)
∗ which is compact for the weak*

topology (365Lc7). Let γ ≥ 1 be such that θ( 1
γ
u) ≤ ǫ for every u ∈ C; then µ̄[[u ≥ γ]] ≤ ǫ for every u ∈ C.

So for every u ∈ C there is a w ∈ K such that E(u × w) ≤ γ (we can take w = χ[[u ≤ γ]]). By 627F, there
is a w ∈ K such that E(u× w) ≤ γ for every u ∈ C. As E(w) ≥ 1− ǫ, µ̄[[w = 0]] ≤ ǫ. QQQ

(b) We can therefore find sequences 〈wn〉n∈N in L∞ and 〈γn〉n∈N in [0,∞[ such that 0 ≤ wn ≤ χ1,

µ̄[[wn = 0]] ≤ 2−n and E(u × wn) ≤ γn for every n ∈ N and u ∈ C. Now w =
∑∞
n=0

2−n

γn+1
wn is defined in

L∞, [[w > 0]] = 1 and E(u× w) ≤ 2 for every u ∈ C.

7Formerly 365Mc.
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627H Lemma Let S be a sublattice of T and vvv a fully adapted process with domain S.
(a) If I ∈ I(S), uuu ∈ Mfa(I) and ‖uuu‖∞ ≤ 1, then there is a www ∈ Mfa(S) such that ‖www‖∞ ≤ 1 and

SJ(www, dvvv) = SI(uuu, dvvv) whenever I ⊆ J ∈ I(S), so that
∫
S www dvvv is defined and equal to SI(uuu, dvvv).

(b) QS(dvvv) is convex.

proof (a) (The key.) Express uuu as 〈uσ〉σ∈I . If I is empty then of course we can take www to be the zero
process with domain S. Otherwise, let τ0 ≤ . . . ≤ τn linearly generate the I-cells. By 612Ka, applied to
(uτ0 , . . . , uτn−1

, 0) and u∗ = 0, there is a simple fully adapted process www = 〈wσ〉σ∈S such that

[[wσ = uτi ]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]],

for i < n, while

[[wσ = 0]] ⊇ [[σ < τ0]] ∪ [[τn ≤ σ]],

for every σ ∈ S. Evidently ‖www‖∞ ≤ supi≤n ‖uτi‖∞ ≤ 1. Now suppose that I ⊆ J ∈ I(S). Then, expressing
vvv as 〈vσ〉σ∈S ,

SJ(www, dvvv) =
∑

e∈Sti0(J)

∆e(www, dvvv)

=
∑

e∈Sti0(J∧τ0)

∆e(www, dvvv) +
∑

e∈Sti0(J∨τn)

∆e(www, dvvv)

+

n−1∑

i=0

∑

e∈Sti0(J∩[τi,τi+1])

∆e(www, dvvv)

(611J(e-iii))

= 0 + 0 +

n−1∑

i=0

∑

e∈Sti0(J∩[τi,τi+1])

uτi ×∆e(1, dvvv)

(because for σ ≤ τ in J , if τ ≤ τ0 then [[vσ 6= vτ ]] ⊆ [[σ < τ0]] ⊆ [[wσ = 0]]; if τn ≤ σ then wσ = 0; and if

τi ≤ σ ≤ τ ≤ τi+1, then [[vσ 6= vτ ]] ⊆ [[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[wσ = uτi ]])

=
n−1∑

i=0

uτi × (vτi+1
− vτi)

(613L(b-i))

= SI(uuu, dvvv)

(613Ec).
Taking the limit as J increases through I(S),

∫
S www dvvv = SI(uuu, dvvv).

(b) Suppose that z, z′ ∈ QS(dvvv) and α ∈ [0, 1]. Then there are I, I ′ ∈ I(S) and uuu ∈Mfa(I), uuu
′ ∈Mfa(I

′)
such that ‖uuu‖∞ ≤ 1, ‖uuu′‖∞ ≤ 1, z = SI(uuu, dvvv) and z′ = SI′(uuu

′, dvvv). Let www, www′ ∈ Mfa(S) be as in (a),
starting from uuu, uuu′ respectively. Set w̃ww = αwww + (1 − α)www′; then ‖w̃ww‖∞ ≤ 1. If J = I ⊔ I ′ is the sublattice
generated by I ∪ I ′,

αz + (1− α)z′ = αSI(uuu, dvvv) + (1− α)SI′(uuu, dvvv)

= αSJ(www, dvvv) + (1− α)SJ (www, dvvv) = SJ(w̃ww, dvvv) ∈ QS(dvvv).

As z, z′ and α are arbitrary, QS(dvvv) is convex.

627I Theorem (Bichteler 79, Dellacherie & Meyer 82, §VIII.4) Let S be a sublattice of T and vvv
an integrator with domain S. Then there is a ν̄ such that (A, ν̄) is a probability algebra and vvv is a uniformly
integrable quasimartingale with respect to ν̄.

proof (a) Express vvv as 〈vσ〉σ∈S . vvv is order-bounded, by 616Ib; set w̄ = sup |vvv|.
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(b) Suppose to begin with that w̄ ∈ L1
µ̄. Set C = QS(dvvv), so that C is topologically bounded in L0.

By 627H, C is convex. Of course 0 ∈ C, and C ⊆ L1
µ̄ because u × (vτ − vσ) ∈ L1

µ̄ whenever σ ≤ τ in
S and u ∈ L∞(Aσ). Let C ′ be the linear sum C + [−w̄, w̄]; then C ′ is convex, non-empty, topologically
bounded and included in L1

µ̄. By 627G, there is a w ∈ L∞(A) such that [[w > 0]] = 1 and supz∈C′ Eµ̄(z×w)
is finite. Adjusting w by a scalar factor if necessary, we can arrange that Eµ̄(w) = 1. In this case, we have
a strictly positive probability ν̄ on A defined by saying that ν̄a = Eµ̄(w × χa) for every a ∈ A, and now
Eν̄(z) = Eµ̄(w × z) for every z ∈ L0 for which either expectation is defined (625B(a-iii)).

It follows that supz∈C Eν̄(z) is finite. Since −z ∈ QS(dvvv) whenever z ∈ QS(dvvv), −z ∈ C whenever
z ∈ C. So supz∈C |Eν̄(z)| is finite, and vvv is a quasimartingale with respect to ν̄. At the same time,
Eν̄(w̄) = Eµ̄(w̄ × w) is finite, so vvv is actually order-bounded in L1

ν̄ and is surely uniformly integrable.

(c) In general, let w′ be a scalar multiple of
1

w̄+χ1
such that Eµ̄(w

′) = 1, and set λ̄a = Eµ̄(w
′ × χa) for

a ∈ A. Then (A, λ̄) is a probability algebra, and w̄ ∈ L1
λ̄
. By (b), we now have a ν̄ of the kind required.

627J Corollary Let S be a sublattice of T , and vvv an integrator with domain S. Then vvv is a semi-
martingale.

proof By 627I, there is a probability measure ν̄ such that vvv is a ν̄-uniformly integrable ν̄-quasimartingale.
By 627Ec, vvv is a ν̄-semi-martingale. By 625F, vvv is a µ̄-semi-martingale.

627K Lemma Let S be a sublattice of T , and vvv an integrator with domain S. Set S ′ = S ∪
{min T ,max T }. Then there is an integrator vvv′ with domain S ′ extending vvv.

proof (a) Express vvv as 〈vσ〉σ∈S , and set v̄ = sup |vvv|. Let www = 〈wτ 〉τ∈T be an extension of vvv to a fully
adapted process defined on the whole of T as described in 612P. Then

[[|wτ | ≤ v̄]] ⊇ [[wτ = 0]] ∪ sup
σ∈S

([[wτ = wσ]] ∩ [[wσ = vσ]] ∩ [[|vσ| ≤ v̄]])

⊇ [[wτ = 0]] ∪ sup
σ∈S

[[σ = τ ]] = 1,

so |wτ | ≤ v̄, for every τ ∈ T .
Of course S ′ is a sublattice of T . Set vvv′ = www↾S ′; then vvv′ is fully adapted and extends vvv.

(b) Now QS′(dvvv′) ⊆ QS(dvvv) + [−4v̄, 4v̄]. PPP Take z ∈ QS′(dvvv′). Express z as SI(uuu, dvvv
′) where I ∈ I(S ′),

uuu = 〈uσ〉σ∈I is fully adapted and ‖uuu‖∞ ≤ 1. If I = ∅ then z = 0 certainly belongs to QS(dvvv) + [−4v̄, 4v̄].
Otherwise, let 〈τi〉i≤n be the increasing enumeration of a maximal totally ordered subset of I. If n = 0 then
again z = 0 belongs to QS(dvvv) + [−4v̄, 4v̄]. If n = 1 then

|z| = |uτ0 × (wτ1 − wτ0)| ≤ 2v̄

and z ∈ QS(dvvv) + [−4v̄, 4v̄]. If n = 2 then

|z| = |uτ0 × (wτ1 − wτ0) + uτ1 × (wτ2 − wτ1)| ≤ 4v̄

and z ∈ QS(dvvv) + [−4v̄, 4v̄]. If n ≥ 3 then, because τ0 ≤ τ1 ≤ . . . ≤ τn−1 ≤ τn are all different, τ1, . . . , τn−1

must all belong to S, so ∑n−2
i=1 uτi × (wτi+1

− wτi) =
∑n−2
i=1 uτi × (vτi+1

− vτi) belongs to QS(dvvv), while

uτ0 × (wτ1 − wτ0) + uτn−1
× (wτn − wτn−1

) ∈ [−4v̄, 4v̄],

so

z = uτ0 × (wτ1 − wτ0) +

n−2∑

i=1

uτi × (wτi+1
− wτi) + un−1 × (wτn − wτn−1

)

∈ QS(dvvv) + [−4v̄, 4v̄]. QQQ

Since QS(dvvv) and [−4v̄, 4v̄] are topologically bounded and the sum of topologically bounded sets is topolog-
ically bounded, QS′(dvvv′) is topologically bounded and vvv′ is an integrator.
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627L Theorem Let S be a sublattice of T and vvv a fully adapted process with domain S.
(a) If S has a greatest element and vvv is a non-negative submartingale, vvv is a strong integrator.
(b) If S has greatest and least elements and vvv is a non-negative supermartingale, vvv is a strong integrator.
(c) If S has greatest and least elements and vvv is a quasimartingale, vvv is a strong integrator.
(d) The following are equiveridical:
(i) vvv is an integrator;
(ii) there is a functional ν̄ such that (A, ν̄) is a probability algebra and vvv is a strong integrator with

respect to ν̄.

proof (a) By the Doob-Meyer theorem (626M), vvv has a previsible variation vvv# which is non-negative and
non-decreasing, therefore of bounded variation (because S has a greatest element). Now www = vvv − vvv# is a
martingale (626Ka); again because S has a greatest element, www is uniformly integrable. So vvv is a strong
integrator.

(b) Express vvv as 〈vσ〉σ∈S . For any σ ∈ S,
‖vσ‖1 = E(vσ) = E(PminSvσ) ≤ E(vminS),

so vvv is ‖ ‖1-bounded, therefore order-bounded (627Db). Write v̄ for sup |vvv|.
Take any ǫ > 0. Let M ≥ 0 be such that µ̄[[v̄ ≥M ]] ≤ ǫ. Then M1 ∧ vvv is a supermartingale (627C(a-ii))

and uuu =M1−M1∧vvv is a non-negative submartingale, therefore a strong integrator, by (a). It follows that
vvv′ =M1− uuu is a strong integrator. But

[[vvv′ 6= vvv]] ⊆ [[v̄ ≥M ]]

has measure at most ǫ. As ǫ is arbitrary, vvv is a strong integrator, by 627C(c-iv).

(c) follows at once from 627Eb, (b) here and 627C(c-ii).

(d)(ii)⇒(i) is immediate from 627C(c-i) and the definition 616Fc, which shows that the property of
being an integrator depends only on the linear space topology of L0, not on the measure.

(ii)⇒(i) Suppose that vvv is an integrator. By 627K, there is an integrator vvv′ with domain S ∪
{min T ,max T } extending vvv. 627I tells us that there is a probability measure ν̄ such that vvv′ is a ν̄-
quasimartingale, therefore a ν̄-strong integrator, by (c) just above. Consequently vvv is a ν̄-strong integrator,
by 627C(c-iii).

627M Corollary Let S be a sublattice of T , and vvv an integrator with domain S. Then the solid convex
hull of QS(dvvv) is topologically bounded.

proof If S is empty, this is trivial, so I suppose otherwise.

(a) I should begin by noting that the set of those z ∈ L0 for which there are α0, . . . , αm ≥ 0 and
z0, . . . , zm ∈ QS(dvvv) such that

∑m
j=0 αj = 1 and |z| ≤ ∑m

j=0 αj |zj | is a solid convex set including QS(dvvv);

moreover, as noted in 613B(f-iv), the solid hull of a topologically bounded set in L0 is topologically bounded.
It will therefore be enough to show that

C(dvvv) = {∑m
j=0 αj |zj | : αj ≥ 0, zj ∈ QS(dvvv) for every j ≤ m,

∑m
j=0 αj = 1}

is topologically bounded. Moreover, for this it will be enough to show that infγ>0 supz∈C(dvvv) µ̄[[z > γ]] = 0

(613B(f-ii)).
Next, if z ∈ C(dvvv), there are α0, . . . , αm ≥ 0, σ0 ≤ . . . ≤ σn in S and a family 〈uji〉j≤m,i<n in L0 such

that uji ∈ L0(Aσi
) and ‖uji‖∞ ≤ 1 for all j and i,

∑m
j=1 αj = 1 and z =

∑m
j=0 αj |

∑n−1
i=0 uji× (vσi+1

− vσi
)|.

PPP Let α0, . . . , αm, z0, . . . , zm be such that αj ≥ 0 and zj ∈ QS(dvvv) for every j, while
∑m
j=0 αj = 1 and

z =
∑m
j=0 αj |zj |. For each j ≤ m, let Ij ∈ I(S) be such that zj ∈ QIj (dvvv) (616Da). Let I be a non-empty

finite sublattice of S including
⋃
j≤m Ij . Then zj ∈ QI(dvvv) for every j (616Dd). Let 〈σi〉i≤n linearly generate

the I-cells. Then for each j we can find uj0, . . . , uj,n−1 such that uji ∈ L0(Aσi
) and ‖uji‖∞ ≤ 1 for each

i < n and zj =
∑n−1
i=0 uji × (vσi+1

− vσi
) (616C(ii) again). Now z =

∑m
j=0 αj |

∑n−1
i=0 uji × (vσi+1

− vσi
)|, as

required. QQQ
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(b) Suppose that vvv is a uniformly integrable martingale. Then C(dvvv) is topologically bounded. PPP By
621Ba, β = supσ∈S ‖vσ‖1 is finite. Take z ∈ C(dvvv) and γ > 0. Take α0, . . . , αm ≥ 0, σ0 ≤ . . . ≤ σn in S
and a family 〈uji〉j≤m,i<n in L0 such that uji ∈ L0(Aσi

) and ‖uji‖∞ ≤ 1 for all j and i,
∑m
j=1 αj = 1 and

z =
∑m
j=0 αj |

∑n−1
i=0 uji × (vσi+1

− vσi
)|. By 621Hf, in its full strength,

µ̄[[|z| > γ]] = µ̄[[z > γ]] ≤ 16

γ
‖vσn

‖1 ≤ 16β

γ
.

As z is arbitrary,

infγ>0 supz∈C(dvvv) µ̄[[|z| > γ]] ≤ infγ>0
16β

γ
= 0

and C(dvvv) is topologically bounded. QQQ

(c) Suppose that vvv is order-bounded and non-decreasing. Then C(dvvv) is topologically bounded. PPP Set

v↑ = supσ∈S vσ and v↓ = infσ∈S vσ. If z ∈ C(dvvv), express it as
∑m
j=0 αj |

∑n−1
i=0 uji × (vσi+1

− vσi
)| where

α0, . . . , αm ≥ 0, σ0 ≤ . . . ≤ σn in S and 〈uji〉j≤m,i<n are such that
∑m
j=0 αj = 1 and uji ∈ L0(Aσi

) and

‖uji‖∞ ≤ 1 for all j and i. Then

z ≤
m∑

j=0

αj

n−1∑

i=0

|uji| × (vσi+1
− vσi

)

≤
m∑

j=0

αj

n−1∑

i=0

vσi+1
− vσi

= vσn
− vσ0

≤ v↑ − v↓.

Thus C(dvvv) ⊆ [0, v↑ − v↓] is order-bounded, therefore topologically bounded. QQQ

(d) Suppose that vvv is a strong integrator. Then C(dvvv) is topologically bounded. PPP Let ǫ > 0. Then there
are a uniformly integrable martingalewww and non-decreasing, order-bounded processeswww′,www′′, all with domain
S, such that µ̄[[vvv 6= www +www′ −www′′]] ≤ ǫ. By (b)-(c), C(dwww), C(dwww′) and C(dwww′′) are all topologically bounded,
so their algebraic sum is topologically bounded and there is a γ > 0 such that µ̄[[z + z′ + z′′ > γ]] ≤ ǫ
whenever z ∈ C(dwww), z′ ∈ C(dwww′) and z′′ ∈ C(dwww′′). Now suppose that z∗ ∈ C(dvvv). Express z∗ as∑m
j=0 αj |

∑n−1
i=0 uji × (vσi+1

− vσi
)| where α0, . . . , αm ≥ 0, σ0 ≤ . . . ≤ σn in S and 〈uji〉j≤m,i<n are such

that
∑m
j=0 αj = 1 and uji ∈ L0(Aσi

) and ‖uji‖∞ ≤ 1 for all j and i. Set ṽvv = www +www′ −www′′,

z =
∑m
j=0 αj |

∑n−1
i=0 uji × (wσi+1

− wσi
)| ∈ C(dwww),

z′ =
∑m
j=0 αj |

∑n−1
i=0 uji × (w′

σi+1
− w′

σi
)| ∈ C(dwww′),

z′′ =
∑m
j=0 αj |

∑n−1
i=0 uji × (w′′

σi+1
− w′′

σi
)| ∈ C(dwww′′)

and

z̃ =
∑m
j=0 αj |

∑n−1
i=0 uji × (ṽσi+1

− ṽσi
)|

where vvv = 〈vσ〉σ∈S , etc. Then

z̃ ≤ z + z′ + z′′, [[z∗ 6= z̃]] ⊆ [[vvv 6= ṽvv]],

so

µ̄[[|z∗| > γ]] = µ̄[[z∗ > γ]] ≤ µ̄[[z̃ > γ]] + µ̄[[vvv 6= ṽvv]]

≤ µ̄[[z + z′ + z′′ > γ]] + ǫ ≤ 2ǫ.

As ǫ is arbitrary, C(dvvv) is topologically bounded. By (a), the solid convex hull of QS(dvvv) is topologically
bounded. QQQ

(e) For the general case, we know from 627Ld that vvv is a strong integrator with respect to an alternative
law, which gives the same topologically bounded sets in L0, so the solid convex hull of QS(dvvv) is topologically
bounded in this case also.
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*627N I star the next couple of lemmas because I am sure that most readers will be interested primarily
in the case T = [0,∞[, for which they are essentially irrelevant, in view of 627R.

Lemma Let S be a non-empty finitely full sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process such
that limσ↑A uσ is defined in L0(A) for every non-empty upwards-directed set A ⊆ S with an upper bound
in S. Then there are a non-decreasing sequence 〈τn〉n∈N in S and a non-decreasing sequence 〈dn〉n∈N in A

such that

dn ∈ Aτn , dn ⊆ [[τn+1 = τn]]

for every n ∈ N, and

supn∈N(dn ∪ [[τ ≤ τn]]) = 1, uτ = limn→∞ uτ∧τn

for every τ ∈ S.

proof (a) For σ ∈ S and k ∈ N, set

aσk = supτ∈S∨σ [[|uτ − uσ| ≥ 2−k]];

for σ ∈ S set

bσ = supk∈N aσk = supτ∈S∨σ [[uτ 6= uσ]], cσ = 1 \ upr(bσ,Aσ).

(Here upr(bσ,Aσ) = inf{a : a ∈ Aσ, bσ ⊆ a}, the upper envelope of bσ in Aσ, as in 313S.) Set d = supσ∈S cσ.

(b) If σ ∈ S and k ∈ N, then infτ∈S∨σ µ̄(aσk \ [[|uτ − uσ| ≥ 2−k]]) = 0. PPP For τ ∈ S ∨ σ set eτ =
[[|uτ − uσ| ≥ 2−k]], so that aσk = supτ∈S∨σ eτ .

(i) If τ , τ ′ ∈ S ∨ σ then

eτ ∩ [[τ = τ ′]] = [[|uτ − uσ| ≥ 2−k]] ∩ [[τ = τ ′]]

= [[|uτ ′ − uσ| ≥ 2−k]] ∩ [[τ = τ ′]] = eτ ′ ∩ [[τ = τ ′]],

eτ ∩ [[τ ≤ τ ′]] = eτ ∩ [[τ = τ ∧ τ ′]] ⊆ eτ∧τ ′ ,

eτ ∩ [[τ ′ ≤ τ ]] = eτ ∩ [[τ = τ ∨ τ ′]] ⊆ eτ∨τ ′ ,

and eτ ⊆ eτ∧τ ′ ∪ eτ∨τ ′ . Similarly, eτ ′ ⊆ eτ∧τ ′ ∪ eτ∨τ ′ .

Now eτ∧τ ′ ∈ Aτ∧τ ′ ⊆ Aτ∨τ ′ , so there is a τ ′′ ∈ T such that

eτ∧τ ′ ⊆ [[τ ′′ = τ ∧ τ ′]], 1 \ eτ∧τ ′ ⊆ [[τ ′′ = τ ∨ τ ′]]
(611I). Because S is finitely full, τ ′′ ∈ S, and of course σ ≤ τ ∧ τ ′ ≤ τ ′′. Now

eτ ′′ ⊇ [[τ ′′ = τ ∧ τ ′]] ∩ eτ∧τ ′ = eτ∧τ ′

and also

eτ ′′ ⊇ [[τ ′′ = τ ∨ τ ′]] ∩ eτ∨τ ′ ⊇ eτ∨τ ′ \ eτ∧τ ′ ,

so

eτ ′′ ⊇ eτ∧τ ′ ∪ eτ∨τ ′ ⊇ eτ ∪ eτ ′ .

(ii) Thus {eτ : τ ∈ S ∧ σ} is upwards-directed and

supτ∈S∧σ µ̄eτ = µ̄(supτ∈S∧σ eτ ) = µ̄aσk.

Taking complements in aσk,

infτ∈S∧σ µ̄(aσk
\ eτ ) = 0,

as required. QQQ

(c)(i) For any σ ∈ S, cσ ∈ Aσ and cσ ∩ aσk = 0 for every k ∈ N, so cσ ⊆ [[uτ = uσ]] for every τ ∈ S ∨ σ.
Generally, for τ ∈ S,
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[[uτ = uτ∧σ]] ⊇ [[τ = τ ∧ σ]] ∪ ([[τ = τ ∨ σ]] ∩ [[uσ = uτ∨σ]])

⊇ [[τ ≤ σ]] ∪ ([[σ ≤ τ ]] ∩ cσ) ⊇ cσ.

(ii) If σ ≤ σ′ ≤ τ in S,
[[uτ 6= uσ′ ]] ⊆ [[uτ 6= uσ]] ∪ [[uσ′ 6= uσ]] ⊆ bσ;

taking the supremum over τ ,

bσ′ ⊆ bσ ⊆ upr(bσ,Aσ) ∈ Aσ ⊆ Aσ′

and

upr(bσ′ ,Aσ′) ⊆ upr(bσ,Aσ),

that is, cσ ⊆ cσ′ .

(d)(i) There is a non-empty countable subset A0 ⊆ S such that d = supσ∈A0
cσ. Now there is a countable

sublattice S0 of S, includingA0, such that whenever σ ∈ S0 and k ∈ N then infτ∈S0∨σ µ̄(aσk \ [[|uτ − uσ| ≥ 2−k]]) =
0. PPP For k ∈ N and σ ∈ S there is a sequence 〈τσki〉i∈N in S∨σ such that infi∈N µ̄(aσk \ [[|uτσki

− uσ| ≥ 2−k]]) =
0, by (b). Set S0 =

⋃
n∈N

An where

An+1 = {σ ∧ σ′ : σ, σ′ ∈ An} ∪ {σ ∨ σ′ : σ, σ′ ∈ An} ∪ {τσki : σ ∈ An, k, i ∈ N}
for each n ∈ N. QQQ

(ii) Let 〈σ′
n〉n∈N be a sequence running over S0 and set σn = supi≤n σ

′
i for n ∈ N; then 〈σn〉n∈N is a

non-decreasing sequence in S0 and {σn : n ∈ N} is cofinal with S0. Set dn = cσn
for n ∈ N; by (c),

d = supσ∈A0
cσ ⊆ supn∈N cσ′

n
⊆ supn∈N cσn

= supn∈N dn ⊆ d

and d = supn∈N dn. Note that dn ⊆ [[uτ = uτ∧σn
]] for every n ∈ N and τ ∈ S, by (c-i) above, while dn ⊆ dn+1

for every n by (c-ii).

(e) If τ ∈ S then infσ∈S0
[[σ < τ ]] ⊆ cτ . PPP??? Otherwise,

upr(bτ ,Aτ ) ∩ infσ∈S0
[[σ < τ ]] 6= 0.

Because infσ∈S0
[[σ < τ ]] ∈ Aτ ,

bτ ∩ infσ∈S0
[[σ < τ ]] 6= 0

and there is a k ≥ 1 such that

aτ,k−1 ∩ infσ∈S0
[[σ < τ ]] 6= 0;

finally, there is a τ ′ ∈ S ∨ τ such that

a = [[|uτ ′ − uτ | ≥ 2−k+1]] ∩ infσ∈S0
[[σ < τ ]]

is non-zero.
If σ ∈ S0 then

a ⊆ ([[σ < τ ]] ∩ [[|uτ ′ − uτ | ≥ 2−k+1]])

⊆ ([[σ ≤ τ ′]] ∩ [[|uτ ′ − uσ| ≥ 2−k]]) ∪ ([[σ ≤ τ ]] ∩ [[|uτ − uσ| ≥ 2−k]])

⊆ [[|uσ∨τ ′ − uσ| ≥ 2−k]]) ∪ [[|uσ∨τ − uσ| ≥ 2−k]]) ⊆ aσk.

Consequently

infρ∈S0∨σ µ̄(a \ [[|uρ − uσ| ≥ 2−k]]) ≤ infρ∈S0∨σ µ̄(aσk \ [[|uρ − uσ| ≥ 2−k]]) = 0.

We can therefore choose inductively a non-decreasing sequence 〈ρn〉n∈N in S0 such that

µ̄(a \ [[|uρn+1
− uρn | ≥ 2−k]]) ≤ 1

2
µ̄a

for every n ∈ N. But this means that
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θ(uτ∧ρn+1
− uτ∧ρn) ≥ 2−kµ̄[[|uτ∧ρn+1

− uτ∧ρn | ≥ 2−k]])

≥ 2−kµ̄([[ρn+1 < τ ]] ∩ [[|uρn+1
− uρn | ≥ 2−k]])

≥ 2−kµ̄(a ∩ [[|uρn+1
− uρn | ≥ 2−k]]) ≥ 2−k−1µ̄a

for every n; which contradicts our hypothesis that limσ↑A uσ is defined in L0(A) for every non-empty
upwards-directed set A ⊆ S with an upper bound in S. XXXQQQ

(f) So for any τ ∈ S

sup
n∈N

(dn ∪ [[τ ≤ σn]]) = d ∪ (1 \ inf
n∈N

[[σn < τ ]]) = d ∪ (1 \ inf
σ∈S0

[[σ < τ ]])

(because if σ ∈ S0 there is an n ∈ N such that σ ≤ σn and [[σn < τ ]] ⊆ [[σ < τ ]])

= 1

because infσ∈S0
[[σ < τ ]] ⊆ cτ ⊆ d.

(g) We have most of what we want. But as there is no reason why dn should be included in [[σn+1 = σn]],
we have to make a further adjustment.

(i) We can define a non-decreasing sequence 〈τn〉n∈N in S inductively by saying that τ0 = σ0 and that

dn ⊆ [[τn+1 = τn]], 1 \ dn ⊆ [[τn+1 = σn+1]]

for n ∈ N. PPP The point is that τn ≤ σn and dn ∈ Aτn for every n. To see this, we know that we have
τ0 ≤ σ0 and

d0 = cσ0
∈ Aσ0

= Aτ0 .

At the inductive step, given that τn ≤ σn and dn ∈ Aτn , 611I tells us that τn+1 is well-defined in T and that
τn ≤ τn+1 ≤ σn+1; τn+1 ∈ S because S is finitely full. To see that dn+1 ∈ Aτn+1

, note first that, because
σn ≤ σn+1,

dn = cσn
⊆ cσn+1

= dn+1

by (c-ii) again. We know that dn ∈ Aτn ⊆ Aτn+1
, while dn+1 \ dn belongs to Aσn+1

and is included in
[[τn+1 = σn+1]], so belongs to Aτn+1

, by 611H(c-iii). Accordingly dn+1 = dn ∪ (dn+1 \ dn) belongs to Aτn+1
.

So the induction proceeds. QQQ

(ii) We now certainly have dn ∈ Aτn and dn ⊆ [[τn+1 = τn]] for every n. If τ ∈ S,

1 = sup
n∈N

(dn ∪ [[τ ≤ σn]])

(by (f))

⊆ sup
n∈N

(dn ∪ [[τ ≤ σn+1]]) = sup
n∈N

(dn ∪ ([[τ ≤ σn+1]] \ dn))

⊆ sup
n∈N

(dn ∪ ([[τ ≤ σn+1]] ∩ [[σn+1 = τn+1]]))

⊆ sup
n∈N

(dn+1 ∪ [[τ ≤ τn+1]]) ⊆ sup
n∈N

(dn ∪ [[τ ≤ τn]]).

(iii) If n ∈ N and τ ∈ S, then dn ⊆ [[uτ = uτ∧τn ]]. PPP Induce on n. If n = 0 we just have to recall from
(d-ii) that d0 ⊆ [[uτ = uτ∧σ0

]]. For the inductive step to n+ 1 ≥ 1, we have

dn ⊆ [[τn = τn+1]] ∩ [[uτ = uτ∧τn ]] ⊆ [[τ ∧ τn = τ ∧ τn+1]] ∩ [[uτ = uτ∧τn ]]

(611E(c-v-α))

⊆ [[uτ = uτ∧τn+1
]],
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while dn+1 ⊆ [[uτ = uτ∧σn+1
]] by (d-ii), so

dn+1 \ dn ⊆ [[uτ = uτ∧σn+1
]] ∩ [[τn+1 = σn+1]] ⊆ [[uτ = uτ∧τn+1

]].

Putting these together, dn+1 ⊆ [[uτ = uτ∧τn+1
]], as required to continue the induction. QQQ

(iv) It follows that uτ = limn→∞ uτ∧τn for every τ ∈ S. PPP By (iii), we have

dn ∪ [[τ ≤ τn]] = dn ∪ [[τ = τ ∧ τn]] ⊆ [[uτ = uτ∧τn ]],

while 〈dn ∪ [[τ ≤ τn]]〉n∈N is a non-decreasing sequence in A with supremum 1, so

θ(uτ − uτ∧τn) ≤ µ̄(1 \ (dn ∪ [[τ ≤ τn]])) → 0

as n→ ∞. QQQ So 〈dn〉n∈N and 〈τn〉n∈N have all the listed properties.

*627O Lemma Suppose that we are given a sublattice S of T , a non-decreasing sequence 〈τn〉n∈N in S
and a non-decreasing sequence 〈dn〉n∈N in A such that

dn ∈ Aτn , dn ⊆ [[τn+1 = τn]]

for every n ∈ N, and

1 = supn∈N dn ∪ [[τ ≤ τn]]

for every τ ∈ S. Set S0 =
⋃
n∈N

S ∧ τn and suppose that uuu = 〈uσ〉σ∈S0
is a fully adapted process.

(a) There is a fully adapted process ũuu = 〈ũτ 〉τ∈S such that
(i) ũτ = limn→∞ uτ∧τn for every τ ∈ S,
(ii) dn ∪ [[τ ≤ τn]] ⊆ [[ũτ = uτ∧τn ]] for every τ ∈ S and n ∈ N,
(iii) ũuu extends uuu.

(b) Write Ŝ for the covered envelope of S, Ŝ0 for
⋃
n∈N

Ŝ ∧ τn and ûuu = 〈ûσ〉σ∈Ŝ0
for the fully adapted

extension of uuu to Ŝ0. Set ˜̂uτ = limn→∞ ûτ∧τn for every τ ∈ Ŝ. Then ˜̂uuu = 〈 ˜̂uτ 〉τ∈Ŝ is the fully adapted

extension of ũuu to Ŝ.
(c) If uuu is locally moderately oscillatory, ũuu is locally moderately oscillatory.
(d) If uuu is a virtually local martingale, ũuu is a virtually local martingale.
(e) If uuu is locally of bounded variation, ũuu is locally of bounded variation.
(f) If uuu is locally order-bounded and w̄ = supn∈N Osclln(uuu↾S0∧τn) is defined, then w̄ ≥ supτ∈S Osclln(ũuu↾S ∧ τ).
(g) If uuu is a semi-martingale, ũuu is a semi-martingale.

proof (a)(i)(ααα) If τ ∈ S and k ≤ n ∈ N, then

dk ⊆ [[τk = τn]] ⊆ [[uτ∧τk = uτ∧τn ]]

while similarly

[[τ ≤ τk]] ⊆ [[τ ∧ τk = τ ∧ τn]] ⊆ [[uτ∧τk = uτ∧τn ]].

So if k ≤ m ≤ n in N, dk ∪ [[tau ≤ τk]] ⊆ [[uτ∧τm = uτ∧τn ]] and

θ(uτ∧τm − uτ∧τn) ≤ µ̄(1 \ (dk ∪ [[τ ≤ τk]])) → 0

as k → ∞. Thus 〈uτ∧τn〉n∈N is a Cauchy sequence and ũτ = limn→∞ uτ∧τn is defined in L0(A). Moreover,
since uτ∧τn ∈ L0(Aτ∧τn) ⊆ L0(Aτ ) for every n, ũτ ∈ L0(Aτ ).

(βββ) If τ , τ ′ ∈ S and c = [[τ = τ ′]], then c ⊆ [[τ ∧ τn = τ ′ ∧ τn]] for every n, so
ũτ × χc = limn→∞ uτ∧τn × χc = limn→∞ uτ ′∧τn × χc = ũτ ′ × χc

and c ⊆ [[ũτ = ũτ ′ ]]. As τ and τ ′ are arbitrary, ũuu is fully adapted.

(ii) Set d′n = dn ∪ [[τ ≤ τn]]. For any k ≥ n,

d′n ⊆ ([[τk = τn]] ∪ ([[τ ≤ τn]] ∩ [[τn ≤ τk]]) ⊆ [[τ ∧ τk = τ ∧ τn]] ⊆ [[uτ∧τk = uτ∧τn ]].

So

ũτ × χd′n = limk→∞ uτ∧τk × χd′n = uτ∧τn × χd′n
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and d′n ⊆ [[ũτ = uτ∧τn ]].

(iii) If τ ∈ S0 then τ ∧ τn = τ for all n large enough, so ũτ = limn→∞ uτ∧τn = uτ .

(b) We just have to note that ˜̂uuu is fully adapted, by (a-i) applied to Ŝ and ûuu, and extends ũuu.

(c)(i) Consider first the case in which S is full. Suppose that τ ∈ S and 〈σi〉i∈N is a monotonic sequence
in S ∧ τ . For n ∈ N set d′n = dn ∪ [[τ ≤ τn]]. Then

d′n ⊆ dn ∪ [[σi ≤ τn]] ⊆ [[uσi
= uσi∧τn ]]

for every i ∈ N, and

〈ũσi
× χd′n〉i∈N = 〈uσi∧τn × χd′n〉i∈N

is convergent. Since θ(ũσi
− ũσi

× χd′n) ≤ µ̄(1 \ d′n) for all i and n, and limn→∞ µ̄(1 \ d′n) = 0, 〈ũσi
〉i∈N is

convergent. As 〈σi〉i∈N is arbitrary, ũuu↾S∧τ is moderately oscillatory; as τ is arbitrary, ũuu is locally moderately
oscillatory.

(ii) In general, take Ŝ, Ŝ0, ûuu and ˜̂uuu as in (b). For each n ∈ N, Ŝ0 ∧ τn = Ŝ ∧ τn is the covered envelope

of S ∧ τn (611M(e-i)), and uuu↾S ∧ τn is moderately oscillatory, so ûuu↾Ŝ ∧ τn is moderately oscillatory (615F(a-

i)); as {τn : n ∈ N} is cofinal with Ŝ0, ûuu is locally moderately oscillatory. By (i), ˜̂uuu is locally moderately
oscillatory, so ũuu is locally moderately oscillatory (615F(b-v)).

(d) We know from (c) that ũuu is locally moderately oscillatory.

(i) Consider first the case in which S is full.

(ααα) Take τ ∈ S and ǫ > 0. Then there is an n ∈ N such that µ̄(dn ∪ [[τ ≤ τn]]) ≥ 1 − ǫ. By 623Ke,
uuu↾S ∧ τn = uuu↾S0 ∧ τn is a virtually local martingale. Let A ⊆ S ∧ τn be a non-empty downwards-directed
set such that supρ∈A µ̄[[ρ < τn]] < ǫ and RA(uuu↾S ∧ τn), as defined in 623B, is a martingale. If ρ ∈ A, then
aρ = dn ∩ [[τn ≤ ρ ∧ τ ]] belongs to Aρ∧τ , by 611H(c-iii) again. So we have a ρ′ ∈ T such that

1 \ aρ ⊆ [[ρ′ = ρ ∧ τ ]], aρ ⊆ [[ρ′ = τ ]],

and ρ′ ∈ S. If ρ0 ≤ ρ1 in A then ρ′0 ≤ ρ′1. PPP aρ0 ⊆ aρ1 . Now

aρ0 ⊆ [[ρ′0 = τ ]] ∩ [[ρ′1 = τ ]] ⊆ [[ρ′0 ≤ ρ′1]],

aρ1 \ aρ0 ⊆ [[ρ′0 = ρ0 ∧ τ ]] ∩ [[ρ′1 = τ ]] ⊆ [[ρ′0 ≤ ρ′1]],

1 \ aρ1 ⊆ [[ρ′0 = ρ0 ∧ τ ]] ∩ [[ρ′1 = ρ1 ∧ τ ]] ⊆ [[ρ′0 ≤ ρ′1]].

So ρ′0 ≤ ρ′1. QQQ

(βββ) If ρ ∈ A and σ ∈ S, ũσ∧ρ′ = uσ∧τ∧ρ. PPP By (a-ii), dn ⊆ [[ũσ = uσ∧τn ]] for every σ ∈ S. So

aρ ⊆ dn ∩ [[τn ≤ τ ∧ ρ]] ∩ [[ρ′ = τ ]] ⊆ [[ũσ∧ρ′ = ũσ∧ρ′∧τn ]] ∩ [[ρ = τn]] ∩ [[ρ′ = τ ]]

⊆ [[ũσ∧ρ′ = ũσ∧τ∧ρ]] = [[ũσ∧ρ′ = uσ∧τ∧ρ]]

because σ ∧ τ ∧ ρ ∈ S ∧ τn ⊆ S0. On the other hand,

1 \ aρ ⊆ [[ρ′ = τ ∧ ρ]] ⊆ [[ũσ∧ρ′ = ũσ∧τ∧ρ]] = [[ũσ∧ρ′ = uσ∧τ∧ρ]].

Putting these together, we have the result. QQQ

(γγγ) SetA′ = {ρ′ : ρ ∈ A}; thenA′ ⊆ S is downwards-directed and not empty. Now supρ∈A′ µ̄[[ρ < τ ]] =
supρ∈A µ̄[[ρ

′ < τ ]] is at most 2ǫ. PPP If ρ ∈ A, then

[[ρ′ < τ ]] = [[ρ ∧ τ < τ ]] \ aρ = [[ρ < τ ]] \ (dn ∩ [[τn ≤ ρ ∧ τ ]])
⊆ [[ρ < τn]] ∪ ([[ρ = τn]] ∩ [[τn < τ ]] \ (dn ∩ [[τn ≤ ρ ∧ τ ]]))
= [[ρ < τn]] ∪ ([[ρ = τn]] ∩ [[τn < τ ]] \ dn)

⊆ [[ρ < τn]] ∪ (1 \ (dn ∪ [[τ ≤ τn]]))

has measure at most 2ǫ. QQQ
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(δδδ) Because ũuu is locally moderately oscillatory, RA′(ũuu) is defined. Furthermore, it is a martingale. PPP
Express the martingale RA(uuu↾S ∧ τn) as 〈u′σ〉σ∈S∧τn , so that u′σ = limρ↓A uσ∧ρ belongs to L1

µ̄ for σ ∈ S ∧ τn,
and Pσu

′
σ′ = u′σ whenever σ ≤ σ′ in S ∧ τn.

For σ ∈ S, write v′σ for

limρ↓A′ ũσ∧ρ = limρ↓A ũσ∧ρ′ = limρ↓A uσ∧τ∧ρ = limρ↓A uσ∧τn∧τ∧ρ = u′σ∧τn∧τ ;

this belongs to L1
µ̄. And if σ ≤ σ′ in S,

Pσ(v
′
σ′) = Pσu

′
σ′∧τn∧τ = Pσ∧τn∧τu

′
σ′∧τn∧τ = u′σ∧τn∧τ = v′σ.

So 〈v′σ〉σ∈S = RA′(ũuu) is a martingale. QQQ

(ǫǫǫ) Since τ and ǫ are arbitrary, ũuu is a virtually local martingale.

(ii) Generally, take Ŝ, Ŝ0, ˜̂uuu and ûuu as in (b) and (c-ii). Because ûuu↾Ŝ0∧ τn is the fully adapted extension

of uuu↾S ∧ τn, it is a virtually local martingale for every n ∈ N; because {τn : n ∈ N} is cofinal with Ŝ0, ûuu is a

virtually local martingale; by (i) here, ˜̂uuu is a virtually local martingale; it follows that ũuu is a virtually local
martingale.

(e) Take τ ∈ S. For n ∈ N, z̄n =
∫
S∧τn

|duuu| is defined in L0(A). Set d′−1 = 0, d′n = dn ∪ [[τ ≤ τn]] for

n ≥ 0 and

z̄ =
∑∞
n=0(z̄n × χ(d′n \ d′n−1)) ∈ L0.

Now suppose that σ0 ≤ . . . ≤ σk ≤ τ in S, and set z =
∑k−1
i=0 |ũσi+1

− ũσi
|. Then

d′n ⊆ inf
i≤k

[[ũσi
= uσi∧τn ]]

⊆ [[z =
∑k−1
i=0 |uσi+1∧τn − uσi∧τn |]] ⊆ [[z ≤ z̄n]]

so

d′n \ d′n−1 ⊆ [[z ≤ z̄n]] ∩ [[z̄n ≤ z̄]] ⊆ [[z ≤ z̄]]

for every n ∈ N. Since 〈d′n〉n∈N is non-decreasing and has supremum 1, z ≤ z̄. As σ0, . . . , σk are arbitrary,
ũuu↾S ∧ τ is of bounded variation.

(f) Take τ∗ ∈ S. I need to show that Osclln(ũuu↾S ∧ τ∗) ≤ w̄. We know from (c) that ũuu↾S ∧ τ∗ is
order-bounded; set w̄′ = Osclln(ũuu↾S ∧ τ∗). Take any n ∈ N and ǫ > 0. Set τ̃ = τ∗∧ τn. Note that by 618Da,

Osclln(uuu↾S ∧ τ̃) ≤ Osclln(uuu↾S ∧ τn) ≤ w̄.

Suppose that I ⊆ J ∈ I(S ∧ τ∗). If τ̃ ≤ τ ≤ τ ′ ≤ τ∗ in S, then τ ∧ τn = τ̃ = τ ′ ∧ τn, so
dn ∪ [[τ∗ ≤ τn]] ⊆ [[ũτ = uτ∧τn ]] ∩ [[ũτ ′ = uτ ′∧τn ]] ⊆ [[ũτ = ũτ ′ ]].

As τ and τ ′ are arbitrary,

dn ∪ [[τ∗ ≤ τn]] ⊆ [[OscllnJ∨τ̃ (ũuu) = 0]] ⊆ [[OscllnJ(ũuu) = OscllnJ∧τ̃ (ũuu)]]

= [[OscllnJ (ũuu) = OscllnJ∧τ̃ (uuu)]]

(because ũuu↾S ∧ τ̃ = uuu↾S ∧ τ̃)
⊆ [[OscllnJ (ũuu) ≤ Osclln∗I(uuu↾S ∧ τ̃)]].

As J is arbitrary,

dn ∪ [[τ∗ ≤ τn]] ⊆ [[Osclln∗I(ũuu↾S ∧ τ∗) ≤ Osclln∗I(uuu↾S ∧ τ̃)]]
⊆ [[w̄′ ≤ Osclln∗I(uuu↾S ∧ τ̃)]].

As I is arbitrary,

dn ∪ [[τ∗ ≤ τn]] ⊆ [[w̄′ ≤ Osclln(uuu↾S ∧ τ̃)]] ⊆ [[w̄′ ≤ w̄]].
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As n is arbitrary, Osclln(ũuu↾S ∧ τ∗) = w̄′ ≤ w̄, as required.

(g) Express uuu as vvv +www where vvv = 〈vσ〉σ∈S0
is a virtually local martingale and www = 〈wσ〉σ∈S0

is locally
of bounded variation. Let ṽvv = 〈ṽτ 〉τ∈S and w̃ww = 〈w̃τ 〉τ∈S be the corresponding extensions, so that ṽvv is a
virtually local martingale and w̃ww is locally of bounded variation ((d) and (e) above). Then

ũτ = limn→∞ uτ∧τn = limn→∞ vτ∧τn + limn→∞ wτ∧τn = ṽτ + w̃τ

for every τ ∈ S, so that ũuu = ṽvv + w̃ww is a semi-martingale.

627P Corollary Let S be a sublattice of T , τ a member of S, and uuu = 〈uσ〉σ∈S , www = 〈wσ〉σ∈S∧τ two
fully adapted processes. Set

vσ = uσ − uσ∧τ + wσ∧τ

for σ ∈ S. Then vvv = 〈vσ〉σ∈S is fully adapted, and is locally of bounded variation, or a virtually local
martingale, or locally moderately oscillatory, or a semi-martingale if uuu and www both are, while

vσ = wσ if σ ∈ S ∧ τ , vσ = uσ − uτ + wτ if σ ∈ S ∨ τ .

proof Apply 627O with dn = 1, τn = τ for every n ∈ N, so that S0 = S ∧ τ and σ 7→ uσ∧τ , σ 7→ wσ∧τ
are the extensions ũuu, w̃ww of uuu↾S ∧ τ and www as described in 627O. Now for each of the four properties listed,
uuu↾S ∧ τ will have the property if uuu does; see 623Ke for virtually local martingales, and the others are almost
immediate. So 627O tells us that ũuu and w̃ww also have the property considered, so that vvv = uuu − ũuu + w̃ww also
does, using 614Q(b-iii), 615F(b-iii) or 623Ka.

627Q Theorem A fully adapted process is a semi-martingale iff it is a local integrator.

proof (a) We saw in 625E that a semi-martingale is a local integrator. So it will be enough to show that if
S is a sublattice of T and uuu = 〈uσ〉σ∈S is a local integrator, then it is a semi-martingale.

(b) To begin with, suppose that S is full. Since uuu is locally moderately oscillatory (616Ib), the hypotheses
of 627N are satisfied; let 〈dn〉n∈N and 〈τn〉n∈N be as described there. For each n ∈ N, uuu↾S ∧ τn is an
integrator, therefore a semi-martingale (627J); let vvvn = 〈vnσ〉σ∈S∧τn be a virtually local martingale and
wwwn = 〈wnσ〉σ∈S∧τn a process of bounded variation such that vvvn+wwwn = uuun↾S ∧ τn. Define vvv′n = 〈v′nσ〉σ∈S∧τn

and www′
n = 〈w′

nσ〉σ∈S∧τn inductively by saying that

vvv′0 = vvv0, www′
0 = www0,

v′n+1,σ = vn+1,σ − vn+1,σ∧τn + v′n,σ∧τn ,

w′
n+1,σ = wn+1,σ − wn+1,σ∧τn + w′

n,σ∧τn

for n ∈ N and σ ∈ S ∧ τn+1. We see by induction, using 627P, that vvv′n is a virtually local martingale and www′
n

is of bounded variation, while vvv′n+1 extends vvv′n, www
′
n+1 extends www′

n and vvv′n +www′
n = uuun, for every n ∈ N. We

therefore have processes vvv =
⋃
n∈N

vvv′n and www =
⋃
n∈N

www′
n, both with domain S0 =

⋃
n∈N

S ∧ τn, such that
vvv is a virtually local martingale (623Ke again) and www is locally of bounded variation, while vvv +www = uuu↾S0.
Thus uuu↾S0 is a semi-martingale. But as the construction in 627N arranges that uτ = limn→∞ uτ∧τn for
every τ ∈ S, uuu itself is a semi-martingale, by 627Og.

(c) For general S, let Ŝ be the covered envelope of S, and write ûuu for the fully adapted extension of uuu

to Ŝ. By 616Ia, ûuu is a local integrator, By (b) here, ûuu is a semi-martingale, and is expressible as the sum of
a virtually local martingale v̂vv and a process ŵww which is locally of bounded variation. Setting vvv = v̂vv↾S and
www = ŵww↾S, uuu = vvv +www, while vvv is a virtually local martingale (623J) and www is locally of bounded variation
(614L(b-ii)). So uuu is a semi-martingale, which is what we need to know.

627R In the cases we really care about we can escape most of the work in Lemmas 627N and 627O by
using the following.

Proposition Suppose that T is separable in its order topology. If S is any sublattice of T , there is a
non-decreasing sequence 〈τn〉n∈N in S such that supn∈N [[σ ≤ τn]] = 1 for every σ ∈ S.
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proof (a) Set τ∗ = supS in T . Then there is a countable set T0 ⊆ T such that [[τ∗ > t]] = sups∈T0,s≥t [[τ
∗ > s]]

for every t ∈ T . PPP Take T1 to be a countable dense subset of T and set

T2 = {t : [[τ∗ > t]] 6= sups>t [[τ
∗ > s]]} = {t : µ̄[[τ∗ > t]] > sups>t µ̄[[τ

∗ > s]]},

T3 = {t : inf{s : s > t} ∈ T2},
so that T2 and T3 are countable; then T0 = T1 ∪ T2 ∪ T3 is countable. If t ∈ T0 then of course [[τ∗ > t]] =
sups∈T0,s≥t [[τ

∗ > s]]. If t ∈ T \ T0 and ǫ > 0, then t /∈ T2 so there is an s0 > t such that µ̄[[τ∗ > t]] ≤
µ̄[[τ∗ > s0]] + ǫ; as t /∈ T3, we can suppose that s0 /∈ T2, so that there is an s1 > s0 such that µ̄[[τ∗ > s0]] ≤
µ̄[[τ∗ > s1]] + ǫ. Now the open interval ]τ∗, s1[ is non-empty, so meets T1, and there is an s ∈ T1 such that
µ̄[[τ∗ > t]] ≤ µ̄[[τ∗ > s]] + 2ǫ. As ǫ is arbitrary, [[τ∗ > t]] = sups∈T0,s≥t [[τ

∗ > s]] in this case also. QQQ

(b) Set a = supσ∈S [[σ = τ∗]]. Then we have a countable C ⊆ S such that a = supτ∈C [[τ = τ∗]]. Next,
for each t ∈ T0, let Dt be a countable subset of S such that

supτ∈Dt
[[τ > t]] = supσ∈S [[σ > t]] = [[τ∗ > t]]

(611Cb). Set D = C ∪⋃
t∈T0

Dt ∈ [S]≤ω.
(c) supD = τ∗. PPP For any t ∈ T ,

[[τ∗ > t]] = sup
s∈T0

s≥t

[[τ∗ > s]] = sup
s∈T0

s≥t
τ∈Ds

[[τ > s]] ⊆ sup
s∈T0

τ∈Ds

[[τ > t]] ⊆ [[supD > t]]

so τ∗ ≤ supD; and of course supD ≤ τ∗. QQQ

(d) Take any σ ∈ S. We have

[[σ < τ∗]] = [[σ < supD]] = supτ∈D [[σ < τ ]],

while [[σ = τ∗]] = supτ∈D [[σ = τ ]] because C ⊆ D. Consequently

supτ∈D [[σ ≤ τ ]] = [[σ ≤ τ∗]] = 1.

(e) Let 〈τ ′n〉n∈N be a sequence running over D and set τn = supi≤n τ
′
i for n ∈ N. Then supn∈N [[σ ≤ τn]] =

supτ∈D [[σ ≤ τ ]] = 1, as required.

Remark Accordingly we have the result of 627N in a much stronger form, with every dn equal to 0, and
with the sequence 〈τn〉n∈N independent of the process uuu.

627X Basic exercises (a) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa, 617Xb,
618Xa, 622Xd and 626Xa, Let f : [0,∞[ → R be a function and uuu the corresponding process on Tf . (i) Show
that uuu is a supermartingale iff f is non-increasing. (ii) Show that uuu is a quasimartingale iff it is a strong
integrator iff f is of bounded variation.

(b) Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a supermartingale. Write v̂vv for the fully adapted extension

of vvv to the covered envelope Ŝ of S, and Ŝf for the finitely-covered envelope of S. Show that
(i) if vvv is ‖ ‖1-bounded, it is an integrator;
(ii) if S has a greatest element and {E(vσ) : σ ∈ S} is bounded above, vvv is ‖ ‖1-bounded:
(iii) if A ⊆ S is non-empty and downwards-directed and {E(vσ) : σ ∈ A} is bounded above, then (α)

limσ↓A vσ and 1limσ↓A vσ are defined and equal (β) RA(vvv) is defined and is a supermartingale;

(iv)(α) v̂vv↾Ŝf is a supermartingale (β) if vvv is ‖ ‖1-bounded then v̂vv is ‖ ‖1-bounded (γ) if S has a greatest
element and {E(vσ) : σ ∈ S} is bounded above, then v̂vv is a supermartingale;

(v) if vvv has a previsible variation vvv# (definition: 626J), then vvv# is non-increasing, therefore a super-
martingale;

(vi) if {E(vσ) : σ ∈ S} is bounded above, then vvv is expressible as the sum of a non-increasing fully
adapted process and a virtually local martingale.

(c) Show that sums and scalar multiples of quasimartingales are quasimartingales.
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(d) Let vvv be an L1-process defined on a sublattice S of T . (i) Show that QS(|Pdvvv|) ⊆ QS(Pdvvv). (ii)
Show that the following are equiveridical: (α) vvv is a quasimartingale; (β) QS(Pdvvv) is ‖ ‖1-bounded; (γ)
QS(|Pdvvv|) is ‖ ‖1-bounded; (δ) {E(SI(1, |Pdvvv|)) : I ∈ I(S)} is bounded. (Hint : for (α) ⇒ (β), recall that
weakly bounded sets in Banach spaces are bounded.)

(e) Let S be a sublattice of T with greatest and least elements. Show that a submartingale with domain
S is a quasimartingale.

627 Notes and comments The target of this section is Theorem 627Q. The traditional approach to
stochastic integration has been integration with respect to semi-martingales, typically in contexts which
ensure that they can be described in terms of local martingales rather than virtually local martingales. so
that Protter 05, for instance, uses the word ‘semimartingale’ for what I call ‘integrators’, and the phrase
‘classical semimartingale’ for a sum of a process of bounded variation and a local martingale. Protter’s
Theorem 47 corresponds to my 627J. The first steps are to prove that a semi-martingale is a local integrator
(625E) and that an integrator is a semi-martingale. To show that every local integrator is a semi-martingale
we need some more technique, using 627N-627O or 627R.

Clearly supermartingales are going to be like submartingales in many ways. But it does not at all follow
that non-negative supermartingales, as in 627D-627E, are going to behave like non-negative submartingales,
as in 626M. The idea of quasimartingales is to get back to something symmetric, like integrators and semi-
martingales.

The principal results here (627I, 627J, 627L) depend on the theory of convex sets in locally convex
linear topological spaces (627F-627G), and our difficulty is that the topology of convergence in measure
is not locally convex in the interesting cases. So we have to negotiate carefully to ensure that we have
topologically bounded convex sets. If vvv is an integrator, QS(dvvv) is convex, by 627Hb, and its solid hull is
topologically bounded by 613B(f-iv). But it does not seem to follow directly that the convex hull of its solid
hull will be bounded. So for 627M we need to refer back to the methods used in 621H, and these work best
on what I am calling ‘strong integrators’. In fact 627L-627M will be used rarely in this volume. But I think
we need them to get a proper idea of what an integrator is.

I remarked in the notes to §625 that the law-independence of the class of semi-martingales (625F) was sur-
prising. Using that independence, we have come to a law-independent characterization of semi-martingales
as local integrators (627Q). There are no coincidences in mathematics. But there are many deep structures
with unexpected outcrops.

Version of 31.12.17

*628 Refining a martingale inequality

I remarked in §621 that the constant 16 in the inequality 621Hf can be reduced to 2 if we are willing to
use some rather more advanced measure theory. This treatise is not about finding best constants. But 2 is
a much prettier number than 16 and the method I have devised passes through a construction (628C) which
may have other uses, as in 628F-628G, so I present it here.

628A Lemma Let (A, µ̄) be a probability algebra, and A0 a closed subalgebra of A; write P0 : L1
µ̄ → L1

µ̄

for the corresponding conditional expectation operator. Suppose that v ∈ L1
µ̄. Set v0 = P0v. Then there

are a probability algebra (B, ν̄), closed subalgebras B0 ⊆ B1 ⊆ B, and a measure-preserving Boolean
homomorphism π : A → B such that π[A0] = B0 and if T = Tπ : L1

µ̄ → L1
ν̄ is the associated embedding

(365N8) and wi is the conditional expectation of Tv on Bi for both i, then

w0 = Tv0,

[[|w1| = 1]] ∩ [[|w0| < 1]] = [[|w1| ≥ 1]] ∩ [[|w0| < 1]]

⊇ [[|Tv| ≥ 1]] ∩ [[|w0| < 1]].

c© 2017 D. H. Fremlin
8Formerly 365O.
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proof (a) Let (A′, µ̄′) be a homogeneous probability algebra of infinite Maharam type at least equal to
the relative Maharam type of A over A0 (333Aa). Let (C, λ̄) be the probability algebra free product of
(A0, µ̄↾A0) and (A′, µ̄′) (325K). Then there is a measure-preserving homomorphism π0 : A → C extending
the canonical homomorphism a 7→ a⊗ 1 : A0 → A0⊗̂A′ = C (333Fa). Set C0 = π0[A0] = {a⊗ 1 : a ∈ A0}; let
T0 : L1

µ̄ → L1
λ̄
be the embedding associated with π0, and Q0 : L1

λ̄
→ L1

λ̄
the conditional expectation operator

corresponding to C0. Then Q0T0 = T0P0, by 365Qd9.

(b) Let (Ω,Σ, µ) and (Ω′,Σ′, µ′) be probability spaces with measure algebras isomorphic to (A0, µ̄↾A0)
and (A′, µ̄′) respectively (321J). Let λ be the product measure on Ω × Ω′. Then the measure algebra of λ
is isomorphic to (C, λ̄) (325I), and if E ∈ Σ then (E × Ω′)• corresponds to E• ⊗ 1, so that π0↾A0 : A0 → C

corresponds to the map E 7→ E × Ω′, and C0 to the σ-algebra {E × Ω′ : E ∈ Σ}. Accordingly the
conditional expectation operator Q0 can be defined by saying that if g ∈ L

1(λ) then Q0(g
•) = f•, where

f(ω, ω̃′) =
∫
g(ω, ω′)dω′ whenever this is defined (253H), the integral here being with respect to µ′.

(c) Let g ∈ L
1(λ) be such that g• = T0v; we may suppose that g is defined everywhere on Ω × Ω′ and

is Σ⊗̂Σ′-measurable (because λ is the completion of its restriction to Σ⊗̂Σ′, by 251K). Moreover, adjusting
g on a negligible set of the form E × Ω′ if necessary, we can arrange that

∫
g(ω, ω′)dω′ is defined for every

ω ∈ Ω (252B). Set E = {ω : −1 <
∫
g(ω, ω′)dω′ < 1}; by 252P, E ∈ Σ.

(d) For ω ∈ E set

Fω = {ω′ : g(ω, ω′) ≤ −1}, F ′
ω = {ω′ : g(ω, ω′) ≥ 1}.

Let me explain where I think I am going. I seek to define measurable sets Gω, G
′
ω ⊆ Ω′ × [0, 1] with the

properties that

Gω ∩G′
ω = ∅, Gω ∪G′

ω ⊇ (Fω ∪ F ′
ω)× [0, 1],

∫∫
Gω

g(ω, ω′)dω′dω′′ = −(µ′ × µ′′)(Gω),

∫∫
G′

ω

g(ω, ω′)dω′dω′′ = (µ′ × µ′′)(G′
ω),

where µ′′ is Lebesgue measure on [0, 1] and the integrals
∫
. . . dω′′ are taken with respect to µ′′; moreover,

I wish to do this in such a way that

G = {(ω, ω′, ω′′) : ω ∈ E, (ω′, ω′′) ∈ Gω},

G′ = {(ω, ω′, ω′′) : ω ∈ E, (ω′, ω′′) ∈ G′
ω}

belong to Σ⊗̂Σ′⊗̂Σ′′, where Σ′′ is the Borel σ-algebra of [0, 1].

(e) Set

E0 = {ω : ω ∈ E, µ′Fω = µ′F ′
ω = 0},

E1 = {ω : ω ∈ E \ E0,
∫
Fω∪F ′

ω

g(ω, ω′)dω′ ≤ −µ′(Fω ∪ F ′
ω)},

E2 = {ω : ω ∈ E \ E0,
∫
Fω∪F ′

ω

g(ω, ω′)dω′ ≥ µ′(Fω ∪ F ′
ω)},

E3 = {ω : ω ∈ E \ E0, −µ′(Fω ∪ F ′
ω) <

∫
Fω∪F ′

ω

g(ω, ω′)dω′ < µ′(Fω ∪ F ′
ω)}.

Because ω 7→ µ′Fω, ω 7→ µ′F ′
ω, ω 7→

∫
Fω
g(ω, ω′)dω′ and ω 7→

∫
F ′

ω
g(ω, ω′)dω′ are Σ-measurable (252P

again), (E0, E1, E2, E3) is a partition of E into members of Σ.

(f)(i) If ω ∈ E0, set Gω = Fω × [0, 1] and G′
ω = F ′

ω × [0, 1].

(ii) If ω ∈ E1, then (because
∫
Ω′ g(ω, ω

′)dω′ > −1) there is exactly one αω ∈ [0, 1[ such that

(1− αω)
∫
Fω∪F ′

ω

g(ω, ω′)dω′ + αω
∫
Ω′
g(ω, ω′)dω′ = −(1− αω)µ

′(Fω ∪ F ′
ω)− αω;

9Formerly 365Rd.
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set

Gω = ((Fω ∪ F ′
ω)× [0, 1]) ∪ (Ω′ × [0, αω]), G′

ω = ∅.
Then

∫∫

Gω

g(ω, ω′)dω′dω′′ = (1− αω)

∫

Fω∪F ′
ω

g(ω, ω′)dω′ + αω

∫

Ω′

g(ω, ω′)dω′

= −(1− αω)µ
′(Fω ∪ F ′

ω)− αω = −(µ′ × µ′′)(Gω),

∫∫
G′

ω

g(ω, ω′)dω′dω′′ = 0 = (µ′ × µ′′)(G′
ω).

Because ω 7→ αω is expressible as a rational combination of measurable functions, it is Σ-measurable and

{(ω, ω′, ω′′) : ω ∈ E1, (ω
′, ω′′) ∈ Gω}

belongs to Σ⊗̂Σ′⊗̂Σ′′, while of course

{(ω, ω′, ω′′) : ω ∈ E1, (ω
′, ω′′) ∈ G′

ω} = ∅
also does.

(iii) Similarly, if ω ∈ E2, then there is exactly one αω ∈ ]0, 1] such that

(1− αω)
∫
Fω∪F ′

ω

g(ω, ω′)dω′ + αω
∫
Ω′
g(ω, ω′)dω′ = (1− αω)µ

′(Fω ∪ F ′
ω) + αω,

and we can set

Gω = ∅, G′
ω = ((Fω ∪ F ′

ω)× [0, 1]) ∪ (Ω′ × [0, αω]).

(iv) Now consider the case in which ω ∈ E3. In this case, because∫
Fω
g(ω, ω′)dω′ ≤ −µ′Fω,

∫
Fω
g(ω, ω′)dω′ +

∫
F ′

ω

g(ω, ω′)dω′ > −µ′Fω − µ′F ′
ω,

there is a unique αω ∈ [0, 1[ such that∫
Fω
g(ω, ω′)dω′ + αω

∫
F ′

ω

g(ω, ω′)dω′ = −µ′Fω − αωµ
′F ′
ω.

Next, because

(1− αω)
∫
F ′

ω

g(ω, ω′)dω′ ≥ (1− αω)µ
′F ′
ω,

∫
Fω
g(ω, ω′)dω′ +

∫
F ′

ω

g(ω, ω′)dω′ < µ′Fω + µ′F ′
ω,

there is a unique βω ∈ ]0, 1] such that

(1− βω)

∫

Fω

g(ω, ω′)dω′ + (1− αωβω)

∫

F ′
ω

g(ω, ω′)dω′

= (1− βω)µ
′Fω + (1− αωβω)µ

′F ′
ω.

So if we set

Gω = (Fω × [0, βω]) ∪ (F ′
ω × [0, αωβω]),

G′
ω = (Fω × ]βω, 1]) ∪ (F ′

ω × ]αωβω, 1]),

we shall have Gω ∩G′
ω = ∅, Gω ∪G′

ω = (Fω ∪ F ′
ω)× [0, 1],

∫∫

Gω

g(ω, ω′)dω′dω′′ = βω

∫

Fω

g(ω, ω′)dω′ + αωβω

∫

F ′
ω

g(ω, ω′)dω′

= βω(

∫

Fω

g(ω, ω′)dω′ + αω

∫

F ′
ω

g(ω, ω′)dω′)

= −βω(µ′Fω + αωµ
′F ′
ω) = −(µ′ × µ′′)(Gω),
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and

∫∫

G′
ω

g(ω, ω′)dω′dω′′ = (1− βω)

∫

Fω

g(ω, ω′)dω′ + (1− αωβω)

∫

F ′
ω

g(ω, ω′)dω′

= (1− βω)µ
′Fω + (1− αωβω)µ

′F ′
ω = (µ′ × µ′′)(G′

ω).

Once again, ω 7→ αω and ω 7→ βω are Σ-measurable, so {(ω, ω′, ω′′) : ω ∈ E3, (ω′, ω′′) ∈ Gω} and
{(ω, ω′, ω′′) : ω ∈ E3, (ω

′, ω′′) ∈ G′
ω} belong to Σ⊗̂Σ′⊗̂Σ′′.

(g) Thus the project set out in (d) has been accomplished. We need one more refinement: define G̃ω and
γω, for ω ∈ E, by setting

G̃ω = (Ω′ × Ω′′) \ (Gω ∪G′
ω),

γω = 0 if (µ′ × µ′′)(G̃ω) = 0,

=
1

(µ′×µ′′)(G̃ω)

∫∫

G̃ω

g(ω, ω′)dω′dω′′ otherwise.

Note that as −1 < g(ω, ω′) < 1 whenever (ω′, ω′′) ∈ G̃ω, γω ∈ ]−1, 1[ for every ω; and by the same arguments

as in (f), G̃ = {(ω, ω′, ω′′) : ω ∈ E, (ω′, ω′′) ∈ G̃ω} belongs to Σ⊗̂Σ′⊗̂Σ′′ and ω 7→ γω is Σ-measurable. (Of

course G̃ = (E × Ω′ × Ω′′) \ (G ∪G′).)

(h) Now, in Ω× Ω′ × Ω′′, consider the product measure ν = µ× µ′ × µ′′, the σ-algebras T = dom ν and
T0 = {E × Ω′ × [0, 1] : E ∈ Σ}, and the σ-algebra T1 generated by T0 ∪ {G,G′}. For ω ∈ Ω, ω′ ∈ Ω′ and
ω′′ ∈ [0, 1] set

h(ω, ω′, ω′′) = g(ω, ω′),

h0(ω, ω
′, ω′′) =

∫
g(ω, ω′)dω′ =

∫∫
h(ω, ω′, ω′′)dω′dω′′,

h1(ω, ω
′, ω′′) = −1 if (ω, ω′, ω′′) ∈ G,

= 1 if (ω, ω′, ω′′) ∈ G′,

= γω if (ω, ω, ω′′) ∈ G̃,

=

∫
g(ω, ω′)dω′ if ω ∈ Ω \ E.

Then h0 is a conditional expectation of h on T0, by 253H again. The point is that h1 is a conditional
expectation of h on T1. PPP Of course h1 is T1-measurable because G, G′ and G̃ belong to T1 and T0 ⊆ T1.
Now any element of T1 is of the form W ∗ =W ∪W ′ ∪ W̃ ∪W0 where

W = (H × Ω′ × Ω′′) ∩G, W ′ = (H ′ × Ω′ × Ω′′) ∩G′,

W̃ = (H̃ × Ω′ × Ω′′) ∩ G̃, W0 = H0 × Ω′ × Ω′′,

H, H ′, H̃ and H0 belong to Σ, and H0 ∩ E = ∅. Now
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∫

W

h dν =

∫

H∩E

∫∫

Gω

g(ω, ω′)dω′dω′′dω

= −
∫

H∩E

(µ′ × µ′′)(Gω)dω = −νW =

∫

W

h1dν,

∫

W ′

h dν =

∫

H∩E

∫∫

G′
ω

g(ω, ω′)dω′dω′′dω

=

∫

H∩E

(µ′ × µ′′)(G′
ω)dω = νW ′ =

∫

W ′

h1dν,

∫

W̃

h dν =

∫

H∩E

∫∫

G̃ω

g(ω, ω′)dω′dω′′dω

=

∫

H∩E

γω(µ
′ × µ′′)(G̃ω)dω =

∫

W

h1dν,

∫

W0

h dν =

∫

H0

∫
g(ω, ω′)dω′dω =

∫

W0

h1dν.

Adding,
∫
W∗ h dν =

∫
W∗ h1dν; as W

∗ is arbitrary, h1 is a conditional expectation of h on T1. QQQ
Just because T0 ⊆ T1, it follows at once that h0 is a conditional expectation of h1 on T0.

(i) We are almost home. Let (B, ν̄) be the measure algebra of ν, B0 = {W • :W ∈ T0} and B1 = {W • :
W ∈ T1}, so that B0 ⊆ B1 are closed subalgebras of B. Set w = h•, w0 = h•

0 and w1 = h•

1; then w0, w1

are the conditional expectations of w on B0, B1 respectively. Next,

[[|w0| < 1]] = (E × Ω′ × Ω′′)• = (G ∪G′ ∪ G̃)•,

[[|w1| ≥ 1]] = {(ω, ω′, ω′′) : |h1(ω, ω′, ω′′)| ≥ 1}•,

so

[[|w1| ≥ 1]] ∩ [[|w0| < 1]] = [[|w1| = 1]] ∩ [[|w0| < 1]] = (G ∪G′)•.

Moreover, if we set

F = {(ω, ω′, ω′′) : ω ∈ E, h(ω, ω′, ω′′) ≤ −1},

F ′ = {(ω, ω′, ω′′) : ω ∈ E, h(ω, ω′, ω′′) ≥ 1},
then F ∪ F ′ ⊆ G ∪G′ because (Fω ∪ F ′

ω)× [0, 1] ⊆ Gω ∪G′
ω for every ω ∈ E. So

[[|w| ≥ 1]] ∩ [[|w0| < 1]] = (F ∪ F ′)• ⊆ [[|w1| = 1]] ∩ [[|w0| < 1]].

(j) To complete the pattern demanded in the statement of the lemma, I must describe the homomor-
phism π. Let ε : C → B be the canonical map corresponding to the inverse-measure-preserving function
(ω, ω′, ω′′) 7→ (ω, ω′), and π = επ0 : A → B, so that π is a measure-preserving Boolean homomorphism; let
T : L0(A) → L0(B) be the associated embedding, corresponding to the inverse-measure-preserving function
(ω, ω′, ω′′) → ω. Because g• = T0v, w = h• = Tv; and π[A0] = ε[C0] = B0, while w0 = Tv0.

This ends the proof.

628B Lemma Suppose that (A, µ̄) is a probability algebra and 〈ui〉i≤n is a martingale adapted to a non-
decreasing finite sequence 〈Ai〉i≤n of closed subalgebras of A. Then there are a probability algebra (B, ν̄),
closed subalgebras B0 ⊆ . . . ⊆ B2n of B, a martingale 〈wj〉j≤2n adapted to 〈Bj〉j≤2n and a measure-
preserving Boolean homomorphism π : A → B such that if T = Tπ : L1

µ̄ → L1
ν̄ is the associated embedding

then

π[Ai] ⊆ B2i, w2i = Tui for i ≤ n,

[[|wj | = 1]] ∩ [[|wj−1| < 1]] = [[|wj | ≥ 1]] ∩ [[|wj−1| < 1]]

⊇ [[|wj+1| ≥ 1]] ∩ [[|wj−1| < 1]]
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for odd j < 2n.

proof Induce on n. If n = 0 the result is trivial (we can take B0 = A0, B = A).

(a) For the inductive step to n+1, we suppose that we have a probability algebra (A, µ̄), closed subalgebras
A0 ⊆ . . . ⊆ An+1, and a martingale 〈ui〉i≤n+1 adapted to 〈Ai〉i≤n+1. The inductive hypothesis tells us that
there are a probability algebra (C, λ̄), closed subalgebras C0 ⊆ . . . ⊆ C2n of C, a martingale 〈vj〉j≤2n adapted
to 〈Cj〉j≤2n, and a measure-preserving Boolean homomorphism φ : A → C such that, writing Tφ for the
associated embedding of L0(A) into L0(C),

φ[Ai] ⊆ C2i, v2i = Tφui for i ≤ n,

[[|vj | = 1]] ∩ [[|vj−1| < 1]] = [[|vj | ≥ 1]] ∩ [[|vj−1| < 1]]

⊇ [[|vj+1| ≥ 1]] ∩ [[|vj−1| < 1]]

for every odd j < 2n.

(b) Let (D, ζ̄, ε1, ε2) be the relative free product of (A, µ̄, ι) and (C, λ̄, φ) over (An, µ̄↾An) in the sense
of 458N-458O, where ι : An ⊂→ A is the identity map; so that (D, ζ̄) is a probability algebra, ε1 : A → D

and ε2 : C → D are measure-preserving homomorphisms, ε1↾An = ε2φ↾An, and ε1[A], ε2[C] are relatively
independent over

D′ = ε1[An] = ε2[φ[An]] ⊆ ε2[C2n].

It follows that Tε1un is the conditional expectation of Tε1un+1 on ε2[C2n]. PPP Tε1un is certainly the con-
ditional expectation of Tε1un+1 on D′, by 365Qd again. By 458Fb or 458M, Tε1un is the conditional
expectation of Tε1un+1 on ε2[C2n], just because ε1[A] and ε2[C2n] ⊆ ε2[C] are relatively independent over
D′ ⊆ ε2[C2n]. QQQ

Note that as ε1 and ε2φ agree on An, Tε1u = Tε2φu = Tε2Tφu (364Pe) for every u ∈ L0(An); in particular,
Tε1ui = Tε2v2i for every i ≤ n.

(c) Apply 628A to (D, ζ̄), the closed subalgebra ε2[C2n] of D and the element Tε1un+1 of L1
ζ̄
to find

a probability algebra (B, ν̄), a measure-preserving Boolean homomorphism ψ : D → B, and a closed
subalgebra B2n+1 of B such that B2n = ψ[ε2[C2n]] ⊆ B2n+1 and if w2n+2 = TψTε1un+1, w2n is the
conditional expectation of w2n+2 on B2n and w2n+1 is the conditional expectation of w2n+2 on B2n+1, then

w2n = TψTε1un,

[[|w2n+1| = 1]] ∩ [[|w2n| < 1]] = [[|w2n+1| ≥ 1]] ∩ [[|w2n| < 1]]

⊇ [[|w2n+2| ≥ 1]] ∩ [[|w2n| < 1]].

For j < 2n, set Bj = ψε2[Cj ] and wj = Tψε2vj . By 365Qd once more, wj is the conditional expectation
of

Tψε2v2n = TψTε2v2n = TψTǫ1un = w2n

on Bj . So if we set B2n+2 = B, 〈wj〉j≤2n+2 is a martingale adapted to 〈Bj〉j≤2n+2.

(d) Set π = ψε1 : A → B. Then

π[Ai] = ψ[ε1[Ai]] = ψ[ε2φ[Ai]] ⊆ ψε2[C2i] = B2i,

Tπui = TψTε1ui = TψTε2v2i = w2i

for i ≤ n. Next, for odd j < 2n,

[[|wj | = 1]] ∩ [[|wj−1| < 1]] = ψε2([[|vj | = 1]] ∩ [[|vj−1| < 1]])

= ψε2([[|vj | ≥ 1]] ∩ [[|vj−1| < 1]])

= [[|wj | ≥ 1]] ∩ [[|wj−1| < 1]],
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[[|wj | = 1]] ∩ [[|wj−1| < 1]] ⊇ ψε2([[|vj+1| ≥ 1]] ∩ [[|vj−1| < 1]])

= [[|wj+1| ≥ 1]] ∩ [[|wj−1| < 1]].

At the last step,

π[An+1] ⊆ B = B2n+2,

w2n+2 = TψTε1un+1 = Tπun+1,

[[|w2n+1| = 1]] ∩ [[|w2n| < 1]] = [[|w2n+1| ≥ 1]] ∩ [[|w2n| < 1]]

⊇ [[|w2n+2| ≥ 1]] ∩ [[|w2n| < 1]]

by the choice of B, w2n, w2n+1 and w2n+2. So B, ν̄, B0, . . . ,B2n+2 and π witness that the induction
proceeds.

628C Corollary Suppose that (A, µ̄) is a probability algebra and 〈ui〉i≤n is a martingale adapted to
a non-decreasing finite sequence 〈Ai〉i≤n of closed subalgebras of A. Then there are a probability algebra
(B, ν̄), closed subalgebras C0 ⊆ . . . ⊆ Cn of B, a martingale 〈vi〉i≤n adapted to 〈Ci〉i≤n and a measure-
preserving Boolean homomorphism π : A → B such that

π[Ai] ⊆ Ci, ‖vi‖∞ ≤ 1, ‖vi‖1 ≤ ‖ui‖1
for every i ≤ n, and

ν̄(supi≤n [[vi 6= Tπui]]) ≤ ‖un‖1.

proof (a) Let B, ν̄, B0, . . . ,B2n, w0, . . . , w2n and π be as in 628B. For j ≤ 2n write Qj for the conditional
expectation operator associated with Bj , and set cj = infk≤j [[|wk| < 1]] ∈ Bj ; for 1 ≤ j ≤ 2n set

bj = cj−1 \ cj = [[|wj | ≥ 1]] ∩ inf
k<j

[[|wk| < 1]]

= 0 if 0 < j ≤ 2n and j is even,

⊆ [[|wj | = 1]] if j < 2n is odd.

Now set

ŵj = wj × χcj +
∑j
k=1 wk × χbk ∈ L0(Bj).

Then 〈ŵj〉j≤2n is a martingale adapted to 〈Bj〉j≤2n. PPP If j < 2n,

Qj(ŵj+1 − ŵj) = Qj(wj+1 × χcj − wj × χcj) = Qj(wj+1 − wj)× χcj = 0. QQQ

Observe that because bj ⊆ [[|wj | = 1]] for 0 < j ≤ 2n, while cj ⊆ [[|wj | < 1]] for every j, we have ‖ŵj‖∞ ≤ 1
for every j. We also see that ŵj × χc2n = wj × χc2n for every j.

(b) This means that if we set Ci = B2i and vi = ŵ2i for i ≤ n, we shall have a martingale 〈vi〉i≤n adapted
to 〈Ci〉i≤n with

π[Ai] ⊆ Ci, ‖vi‖∞ ≤ 1

for each i ≤ n, while

supi≤n [[Tπui 6= vi]] = supi≤n [[w2i 6= ŵ2i]] ⊆ 1 \ c2n = supj≤2n [[|wj | ≥ 1]]

has measure at most ‖w2n‖1 = ‖un‖1, by 621E.

(c) Note also that ‖ŵj‖1 ≤ ‖wj‖1 for j ≤ 2n. PPP Since cj ∈ Bj and bk ∈ Bk for 1 ≤ k ≤ j,
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E(|ŵj |) = E(|wj | × χcj) +

j∑

k=1

E(|wk| × χbk) = E(|wj | × χcj) +

j∑

k=1

E(|Qkwj | × χbk)

≤ E(|wj | × χcj) +

j∑

k=1

E(Qk|wj | × χbk)

= E(|wj | × χcj) +

j∑

k=1

E(|wj | × χbk) ≤ E(|wj |). QQQ

So

‖vi‖1 = ‖ŵ2i‖1 ≤ ‖w2i‖1 = ‖ui‖1
for every i ≤ n.

628D Proposition Suppose that (A, µ̄) is a probability algebra and 〈vi〉i≤n is a martingale adapted to
a non-decreasing finite sequence 〈Ai〉i≤n of closed subalgebras of A. Let 〈αj〉j≤m, 〈uji〉j≤m,i<n be such that

αj ≥ 0 for j ≤ m,
∑m
j=0 αj = 1,

uji ∈ L0(Ai), ‖uji‖∞ ≤ 1 for i < n, j ≤ m.

Set z =
∑m
j=0 αj |

∑n−1
i=0 uji × (vi+1 − vi)|. Then µ̄[[z > γ]] ≤ 2

γ
‖vn‖1 for every γ > 0.

proof (a) By 628C, applied to the martingale 〈vi〉i≤n, there are a probability algebra (B, ν̄), closed subal-
gebras B0 ⊆ . . . ⊆ Bn of B, a martingale 〈wi〉i≤n adapted to 〈Bi〉i≤n and a measure-preserving Boolean
homomorphism π : A → B such that

π[Ai] ⊆ Bi, ‖wi‖∞ ≤ 1

for every i ≤ n, and

ν̄(supi≤n [[wi 6= Tπvi]]) ≤ ‖vn‖1
where Tπ : L0(A) → L0(B) is the f -algebra homomorphism corresponding to π. Now

Tπz =
∑m
j=0 αj |

∑n−1
i=0 Tπuji × (vi+1 − vi)|

and if we set

z′ =
∑m
j=0 αj |

∑n−1
i=0 Tπuji × (wi+1 − wi)|.

then [[z′ 6= Tπz]] ⊆ supi≤n [[wi 6= Tπvi]] and ν̄[[z
′ 6= Tπz]] ≤ ‖vn‖1.

For j ≤ m, set z′j =
∑n−1
i=0 Tπuji × (wi+1 − wi). Because ‖Tπuji‖∞ = ‖uji‖∞ ≤ 1 and π[Ai] ⊆ Bi so

Tπuji ∈ L0(Bi) for every i, 621F tells us that ‖z′j‖2 ≤ ‖wn‖2. As z′ =
∑n
j=0 αj |z′j |,

‖z′‖2 ≤ ∑m
j=0 αj‖wn‖2 = ‖wn‖2 ≤ ‖wn‖∞‖wn‖1 ≤ ‖wn‖1 = ‖vn‖1.

Now we see that

µ̄[[z > 1]] = ν̄[[Tπz > 1]] ≤ ν̄[[z′ > 1]] + ν̄[[z′ 6= Tπz]] ≤ ‖vn‖1 + ‖vn‖1 = 2‖vn‖1.

(b) For the general case, observe that

1

γ
z =

∑m
j=0 αj |

∑n−1
i=0 uji × (

1

γ
vi+1 − 1

γ
vi)|,

while 〈 1
γ
vi〉i≤n is a martingale. So (a) tells us that

ν̄[[z > γ]] = ν̄[[ 1
γ
z > 1]] ≤ 2‖ 1

γ
vn‖1 =

2

γ
‖vn‖1.
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628E Corollary Let (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) be a stochastic integration structure, S a non-empty
sublattice of T , and vvv = 〈vσ〉σ∈S a martingale. Then

µ̄[[|z| > γ]] ≤ 1

γ
supσ∈S ‖vσ‖1

whenever z ∈ QS(vvv) and γ > 0.

proof z is expressible as
∑n−1
i=0 ui × (vτi+1

− vτi) where τ0 ≤ . . . ≤ τn in S and ui ∈ Aτi for every i < n.
Now apply 628D to the martingale 〈vτi〉i≤n adapted to 〈Aτi〉i≤n.

628F An argument along the same lines as that in 628D gives a similar result for quadratic variations.

Proposition Suppose that (A, µ̄) is a probability algebra and 〈ui〉i≤n is a martingale adapted to a non-

decreasing finite sequence 〈Ai〉i≤n of closed subalgebras of A. Set u∗ =
∑n−1
i=0 (ui+1−ui)2. Then µ̄[[u∗ > γ2]] ≤

2

γ
‖un‖1 for every γ > 0.

proof (a) If ‖un‖∞ ≤ 1, then ‖u∗‖1 ≤ ‖un‖22. PPP This is a greatly simplified version of 624G. For a direct
argument, note that every ui is square-integrable and (ui+1 − ui)

2 = u2i+1 − u2i − 2(ui+1 − ui)× ui; take the
expectation of both sides and sum over i. QQQ

(b) Take B, ν̄, C0, . . . ,Cn, 〈vi〉i≤n, π : A → B and Tπ : L0(A) → L0(B) as in 628C. Setting v∗ =∑n−1
i=0 (vi+1 − vi)

2, we see that

ν̄[[v∗ 6= Tπu
∗]] ≤ ν̄(supi≤n [[vi 6= Tπ]]) ≤ ‖un‖1

because Tπ is an f -algebra homomorphism. Now

ν̄[[v∗ > 1]] ≤ ‖v∗‖1 ≤ ‖vn‖2 ≤ ‖vn‖1 ≤ ‖un‖1.
Accordingly

µ̄[[u∗ > 1]] = ν̄[[Tπu
∗ > 1]] ≤ ν̄[[v∗ > 1]] + ν̄[[v∗ 6= Tπu

∗]] ≤ 2‖un‖1.

(c) This deals with the case γ = 1. For the general case, look at the martingale 〈ûi〉i≤n where ûi =
1

γ
ui

for i ≤ n. Setting

û∗ =
∑n−1
i=0 (ûi+1 − ûi)

2 =
1

γ2
u∗,

we have

µ̄[[u∗ > γ2]] = µ̄[[û∗ > 1]] ≤ 2‖ûn‖1 =
2

γ
‖un‖1,

as claimed.

628G Proposition Let (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) be a stochastic integration structure, S a sublattice
of T , and vvv = 〈vσ〉σ∈S a martingale. Let vvv∗ = 〈vσ〉σ∈S be its quadratic variation. Then

µ̄[[v∗τ > γ2]] ≤ 2

γ
‖vτ‖1

whenever γ > 0 and τ ∈ S.
proof If I belongs to I(S ∧ τ), the set of finite sublattices of S bounded above by τ , and (σ0, . . . , σn)
linearly generates the I-cells, then

µ̄[[SI(1, (dvvv)
2)) > γ2]] = µ̄[[

∑n−1
i=0 (vσi+1

− vσi
)2 > γ2]] ≤ 2

γ
‖vσn

‖

(by 612F applied to the martingale 〈vσi
〉i≤n adapted to 〈Aσi

〉i≤n)

≤ 2

γ
‖vτ‖1.
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Now {u : µ̄[[u > γ2]] ≤ 2

γ
‖vτ‖1} is closed for the topology of convergence in measure, by 613Bo, and

v∗τ =
∫
S∧τ

(dvvv)2 = limI↑I(S∧τ) SI(1, (dvvv)
2),

so we have µ̄[[v∗τ > γ2]] ≤ 2

γ
‖vτ‖1.

628X Basic exercises (a) Suppose that 〈ui〉i≤n is a martingale, and α < β in R. Show that there is
a martingale 〈wi〉i≤2n (possibly on a different probability algebra) such that (w0, w2, w4, . . . , w2n) has the
same joint distribution as (u0, . . . , un) (definition: 364Yo, 653B) and

[[α < wj−1 < β]] \ [[α < wj < β]] = [[α < wj−1 < β]] ∩ ([[wj = α]] ∪ [[wj = β]])

⊇ [[α < wj−1 < β]] \ [[α < wj+1 < β]]

for odd j < 2n.

(b) Let (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) be a stochastic integration structure, S a non-empty sublattice of

T , and vvv = 〈vσ〉σ∈S a virtually local martingale. Show that µ̄[[|z| > γ]] ≤ 1

γ
supσ∈S ‖vσ‖1 whenever γ > 0

and z ∈ QS(vvv).

628 Notes and comments Both 628C and 621I are addressed to the same question. We have a martingale
〈ui〉i≤n and would very much rather it was ‖ ‖∞-bounded, with −χ1 ≤ ui ≤ χ1 for every i. The natural
approach is to stop it as soon as it leaves the interval ]−1, 1[. In 621I this has been done, and we are
looking at the stopped martingale. Here a crude, if complex, inequality is enough for the application in
623O. In 622G, however, we need something more like 621Hf or 628C. For the latter, I offer a method of
approximating the given martingale by a martingale which really never leaves the interval [−1, 1]. I have no
application in mind for 628F-628G, but I include them as a further motive for mastering the technique of
628A-628C.

The proof I give of 628C depends on 628B, which is a kind of interpolation theorem. Given a martingale
〈ui〉i≤n and the interval ]−1, 1[, we can interpolate terms to convert 〈ui〉i≤n into the even terms of a
martingale 〈wj〉j≤2n in which the first exit from this interval takes one of the end-point values. We shall
now have a stopping time τ such that the martingale 〈wτ∧j〉j≤2n either starts outside ]−1, 1[ or runs to full
time inside ]−1, 1[ or stops at ±1 precisely, which is something we expect of a continuous martingale but
not of a discrete martingale. To achieve this, of course, we have to enlarge our probability algebra. You will
see that the proof I give of 628B depends on the one-step case 628A, and that here I abandon the abstract
formulation in terms of probability algebras and move to ordinary probability spaces, for which the key
calculations in part (f) of the proof of 628A are elementary and reasonably natural.
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