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Chapter 62
Martingales

The centre of the theory of stochastic integration, since ITO 44, has been integrals [wdv where v
is a martingale. In §621 I give a number of inequalities involving finite martingales which will make it
possible to go straight to the general case in §622. In §622 we have to check some algebra concerning
conditional expectations in order to make sense of the idea of ‘fully adapted martingale’, but the theorem
that martingales are local integrators (622G) is a straightforward consequence of 621Hf.

It is not in general the case that an indefinite integral with respect to a martingale is again a martingale.
For a full-strength theorem in this direction I think we need to turn to ‘virtually local’ martingales and
do some hard work (6230). To use Ito’s formula (619C) in its original form, in which the integrator was
Brownian motion, we need of course to know the quadratic variation of Brownian motion, which I come to
at last in 624F.

The next three sections are directed towards a structure theory for integrators in §627. This volume
is devoted to structures based on probability algebras (2, ). The concepts of Chapter 61 are generally
law-independent in the sense that while the existence of the functional i is essential, its replacement by
another functional 7 such that (2, 7) is still a probability algebra makes no difference. However nearly
everything involving martingales is shaken up by a change in law. §625 examines such changes, and we find,
remarkably, that we do not change the semi-martingales (625F). In §626 I introduce submartingales and
previsible variations, with the Doob-Meyer theorem on the expression of submartingales as semi-martingales.
In §627 I apply this to supermartingales, and show that local integrators are semi-martingales.

The essential inequality in 621Hf is proved by ordinary martingale methods in §621. There is an alternative
route, incidentally yielding a better constant, which depends on a kind of interpolation; I present this in
§628.
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621 Finite martingales

I have to justify my repeated assertion that martingales are integrators. This, together with the develop-
ments it leads to, will need some non-trivial facts about finite martingales which are most easily described in
advance of their applications. However, the complexity of some of the lemmas below may be more bearable
if you can see what they’re for. So you may wish to treat this section as an appendix, and disentangle the
ideas when you find them being called on in §§622, 624 and 626.

621 A Notation This section will be almost independent of the work in Chapter 61, and will be based
rather on the ideas of §275, interpreted as always in the language of Chapter 36. Once again, (2, i) will
be a probability algebra, and for 1 < p < oo, LE = LP(2, i) C L°(A) will be the associated LP-space
{w:we L°R), [|wll, < oo} (§366), while E refers to the integral on L% (613Aa).

621B Uniform integrability We are going to need the following results from Volumes 2 and 3.

(a) Recall that a set A C L,l1 is uniformly integrable if for every ¢ > 0 there is an M > 0 such that
E((Ju| — Mx1)T) < e for every u € A (246Ab, 354P, 365T!); equivalently, if A is || ||;-bounded and for every
€ > 0 there is a § > 0 such that E(|u| x xa) < e whenever u € A, a € 2 and fia < § (246Ca, 246G).
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2 Martingales 621Bb

(b) A non-empty set A C L° = LO(2l) is uniformly integrable iff
limg—s o0 SUp,e 4 E(Ju| x x[Jul > o]) =0
(2461).

(c) Suppose that A, B C L}1 are uniformly integrable.

(i) Every subset of A is uniformly integrable; oA is uniformly integrable for every v € R; A + B is
uniformly integrable; the solid hull of A is uniformly integrable (246C, 354Ra).

(ii) The T-closure A of A is uniformly integrable, where ¥ is the topology of convergence in measure
on L° (613B), and ¥ agrees with the norm topology of L}, on A (246J).

(d) A subset of L}L is uniformly integrable iff it is relatively compact for the weak topology T (L}L, L ()
(243Gb and 247C, or 365T(a-v)).

(e) The following useful fact was left in the exercises for §246. If p > 1, then any || ||,-bounded subset A
of LY is uniformly integrable. P Suppose that |lu||, < v for u € A. Given € > 0, there is an M > 0 such
that v? < eMP~!. Now for any u € A,

1

Mr—1

ulp,  E((ju| - MyD)*t) < L <e.

(lul ~ Mx1)* < <2<

As € is arbitrary, A is uniformly integrable. Q

621C Conditional expectations Of course we cannot talk about martingales without speaking of
conditional expectations, and this volume will call on the full resources developed in Volumes 2 and 3, which
I now recapitulate.

(a) Following the definitions in §365, we find that if B is a closed subalgebra of 2 then L°(B) N L}, =
LY (B, 1] B) (365Qa?), and we have a unique positive linear operator Py : L}L — L°(B) N L%L such that
E(Pyu x xb) = E(u x xb) whenever u € L}, and b € B (365Q). Counting ||ull,, as oo if u € LO(A) \ LP(, i),
| Psull, < |lull, for every u € L}, and p € [1,00] (366J).

(b) If B and € are closed subalgebras of 2 and B C €, then

Py Py — PePy — Pa.
P (Cf. 458M.) Take any u € L. (i) PyPeu € L°(B) and
E(PyPeu x xb) = E(Peu x xb) = E(u x xb) = E(Pgu x xb)
for every b € B C €, so Py Peu = Pygu. (ii) Pyu € L°(B) C L°(¢) so P¢Pyu = Pyu. Q

(c) If B is a closed subalgebra of 2, u € L), v € L°(B) and u x v € L}, then Py(u x v) = Pyu x v

(233K, 365Qa). So if u, v, u X Pgyv and Pgu X v all belong to L}H
PsB(u X PsB’U) = P%u X P%U = PsB(P(Bu X ’U)
and E(u x Pyv) = E(Pgu X v).

(d) (‘Jensen’s i{lequality’) Let h : R — R be a convex function and h: L° — L° the corresponding map
612Ac). If u and h(u) both belong to L1, h(Pyu) < P(hg(u)) for every closed subalgebra B of 2 (365Qb).
I

(e) When p = 2, we have a sharper result: if u € L7 and B is a closed subalgebra of 2, then [ju|[3 =
[|Pgull3 + lu — Pyul/*. B In the Hilbert space L2,

(Psulu) = E(u x Pgu) = E(Pg(u X Pgu)) = E(Pgu X Pyu)

lu — Pyull3 = [[ull3 — 2(u|Psu) + || Pyull3 = [[ull3 — || Psull3. Q
2Formerly 365Ra.
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621F Finite martingales 3

() If A C L}L is uniformly integrable, then {Pyu : u € A, 9B is a closed subalgebra of 2} is uniformly
integrable (246D, 365Tb).

g)(1 1s a non-empty downwards-directed family of closed subalgebras o with intersection €, an
i) IfBi d ds-di d family of closed subalgeb f A with i ion €, and
ue L= Lllj, then Peuw is the || [|1-limit Llimg; g Peu (367Qa).

(ii) If B is a non-empty upwards-directed family of closed subalgebras of 2, € is the closed subalgebra
generated by [ JB and u € L', then Pgu is the || ||1-limit Uimpgp Pau (367Qb).

621D Definitions For the rest of this section, we shall be looking at a non-decreasing finite sequence
(2(;)i<n of closed subalgebras of ; that is, a filtration in the sense of 611A in which the totally ordered set
T is {0,... ,n} for some integer n. In this context, I will write P; : Lll2 — Lll2 for the conditional expectation
operator associated with ;. Note that P;P; = Ppin(; ) for all 4, j < n, by 621Cb. Let v = (v;)i<n be a
finite sequence in Lll-t.

(a) v is a martingale adapted to (2;);<,, if v; = Pv; whenever i < j < n; equivalently, if v,, € LY(2,,)
and v; = Pjv;41 for every i < n.

(b) v is a submartingale adapted to (2;);<, if v; € L%(2;) and v; < Pyv; whenever i < j < n;
equivalently, if v; € L°(2;) for every i < n and v; < Pyv; 1 for every i < n.
(Cf. 275A, 275Yg, 626B.)

621E Doob’s maximal inequality If (v;);<, is a martingale adapted to (A;)i<n, and v = sup,<,, |vil,
then

tpfo > ] <E(jon| x x[v > ]) < [[onll,

ta[o > t] < E(lva| x x[o > 1]) < [lvnll
for every t > 0.

proof (This is a small modification of 275D.) Set a = [0 > t], b7 = [v; > 1], ¢ = b \ sup,_; bj+ fori <n

and a™ = sup,,, b = [sup,<,, v; > t] (364La). Then

n

tiat = itﬂc;" < il@(vZ x xcf) = Z]E(vn x xcj)

i=0 i=0 i=0
(because cj € 2; and v; is the conditional expectation of v, on v;)
=E(v, x xat) <E((v, vV 0) x xa).

Similarly, setting = = sup;<,, [-v-, > t] = [infi<, v; <], we have tfia~ < E(((~v,) V 0) x xa). Since
atua™,
tpa <E(((vn V 0) + ((=vn) V 0)) x xa) = E(jva| x xa) < E(jva]) = [lvnll1,

as claimed.
For the second version, the result is trivial if ¢ = 0, and for ¢ > 0 we have [0 > t] = info<s<; [V > 5], s0

tpfo > t] = 151%1 spfv > s]

< BmE(|joa] x X[ > s1) = E(fon] x x[7 > €))

621F Lemma Suppose that (u;)i<, and (v;);<, are such that u; € L*(2(;) and ||u;]|cc < 1 for every
i <n and (v;);<n is a martingale adapted to (A;);<n. Set z = E?:_ol u; X (vig1 — v;). Then ||z]l2 < ||vn]2
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4 Martingales 621F

proof If v, is not square-integrable, that is, ||v,||2 = oo, this is trivial. So let us suppose that v,, € L%. In
this case v; is square-integrable for every ¢ (621Cd), so u; X (v;+1 — v;) is square-integrable for every i < n.
Now if 1 < j < n,
E(ui x (vig1 —vi) X uj x (vj1 — v;))
= E(Pj(ui x (vig1 — vi) X uj X (vj41 = v;5)))
::E(uix @%+14*U” X Uuj; X P}@5+14—vj» =0

by 621Cc. At the same time, of course, E((viy1 — v;) X (vj41 —v;)) = 0. So

n—1 n—1 n—1

E(2%) = Y E(uf x (viy1 —v:)*) <> B((vigr —v:)*) = > E(v}, —v7)
1=0 1=0 =0
(621Ce)
< E(vy)

and [2]l2 < [[onle.

621G Proposition Suppose that v = (v;);<, is a submartingale adapted to (;);<,. Then there are
a non-decreasing process v# = (vz#ﬁgn and a martingale © adapted to (2;);<, such that v = v# + % and
v = 0. If —x1 < w; <0 for every i < n, |[0,]|3 < [lonlls + 2]|vo]l1-
proof (a) Set w; = Pjvj41 —vj, so that w; € L°(2;) and w; > 0 for j < n; set v}# = S w; for j < n, so
that vf € LO(2;) for each j, v = 0 andv# = (V7

7)i<n is non-decreasing. Set ¥ = (0;);<, where 0; = vi—vl#

for each i, so that v = v# + 9 and ¥; € L°(2;) for each i. Also, of course, vz# and ?; belong to Lll1 for every
i.

(b) For i < n,
Vip1 — 0 = vig1 —v; — vfil + UZ# =vi41 — v; — Bvgp1 + v = vip1 — Biogya,
SO
Piviy1 — 05 = Pi(Vip1 — 03) = Pi(vig1 — Piviy1) = 0;
thus © is a martingale adapted to (2;);<.

(c) Now suppose that —x1 < v; < 0 for ¢ < n. In this case all the v;, Pvj, vl# and ?¥; belong to
L>(A) € L2. If i < n then

E(07, — 07) = E(871 — (Pibiy1)?) = E((diy1 — Pibiy1)?)
(621Ce)
=E((dit1 — 9:)%) = E((vig1 — Pivig1)?)
(by (b))
=E(v}; — (Pvis1)?)
(621Ce again)
=E(v},, —v}) +E(v] — HU?—H)
=K}, —v]) + E((v; — Pvit1) X (v; + Pviga)))
< E(vi1; —v]) + 2E(Jvi — Pivita])
(because v; and P;v;4+1 both lie between —x1 and 0)
=E(vj11 — v7) + 2E(Pwig1 — vi) = B(v}1 — v7) + 2E(vit1 — vs).

Summing over 1,
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621H Finite martingales 5

E(07,) < E(65) + E(v;) — E(vg) + 2E(va) — 2E(vo)
< E(fonl) — 2E(vo)
(because v¥ = 0 so 99 = vy, while v2 < |v,| and v, < 0)

= [[onlls + 2l[voll1-

621H Lemma Let v = (v;)i<, be a finite sequence in L}L such that v; € L%(2;) for i < n. Suppose that
<aj>j§m7 <uji>j§m,i<n are such that

a; >0 for j <m, Z;-nzoajzl,

Uj; € LO(Qli), HuﬂHOC <lfori< n,j <m.

Set z = Z;n=0 Oéj| Z?z_ol Ujq X (Ui—l-l — ’Uz)|

a) If v is non-negative and non-decreasing, then fifz > 1] < ||vy]|1-

b) If v is a martingale adapted to (;);<,, then ji[z > 1] < ||lv,||3.
) If v is a submartingale adapted to (;);<, and —x1 < v; < 0 for every i < n, then [z > 2] < 3|lvo]|;.
) If v is a non-negative martingale adapted to (2;);<p, then ffz > 2] < 4E(vy,).

e) If v is a martingale adapted to (;);<p, then ffz > 4] < 4||v,||1-

(
(
(c
(d
(
(

f)(cf. BURKHOLDER 66 and 628D below) If v is a martingale adapted to (2;);<n, then iz > 7] < 176”%”1
for every v > 0.
(g) If v is a submartingale adapted to (2;);<,, then iz > ] < %””n”l - %E(vo) for every v > 0.

Remark For most applications (there is an important exception in 627M) it will be enough to consider the
case m = 0, so that we are looking at z = |Z?;01 u; X (vi41 — v;)| where u; € LO(2;) and [|u;]joo < 1 for
every 1; this simplifies the formulae, but seems to make no difference to the ideas required.

proof (a)

m n—1
Al > 1 SE(2) =Y 0y 3 Elfujil x (vigs —v2))
j=0 =0
m n—1
SZaj E(vit1 — v;) ZaJ n — Vo)

(b) For j <mn,set z; = | > iy uji X (vig1 — v;)|. Then [|z;2 < ||vnll2, by 621F. Accordingly
20l = 122750 aj2ille < 37700 ajllzsll2 < lloalle,
and

Alz > 1] <E(2%) = [12[13 < [lvnll3.

c , we can express v as v¥ + ¥ where v¥ = (v");<, is non-decreasing, ¥ = (0;)i<, is a
By 621G # + 9 where v# Ficn i d ing, ¥ = (0;)i<y i
martingale, v = 0 and ||0,[23 < [Jon |1 + 2||vo]l1-

Set

1 R -1 . .
2= oYy wg x (v — v =3 g S i X (Biga — ).

Then z < 2% + 2,50 [z > 2] € [¢# > 1Ju[2 > 1] and

D.H.FREMLIN



6 Martingales 621H

Ale > 2] < ple# > 1] + e > 1] < ol + [[9n]3
(by (a) and (b) above)
< E(vff —vff) + 2llvolls + [lonlly = E(vn —v0) + 2lfvoll1 + o]
(because v — v¥ is a martingale)

= 3lvol1-

(d) Set ¥ = (¥;)i<pn, where ©; = —(v; A x1) for each i. Then ¥ is a submartingale adapted to (;);<,. P
For each i, ©; belongs to L°(2;) because v; does. If i < n, then

"Di = 7(111' A\ X].) = 7(PZ"U7;+1 A\ X].) S Pi(f(vﬂ_l A\ X].))
(621Cd, with h(a) = —min(a, 1) = max(—a, —1) for a € R)
= Pivi11. Q

Of course —x1 < v; < 0 for each i because v; > 0. Set

~ —1 ~ ~ —1 ~ ~
2= 0l isg ugi X (Bigr — )| = 2070 Dy ugi X (—Digr + )]

Then

gz > 2] < 3||vo]|1 ((c) above)
< 3|lvoll1-

On the other hand,

[2 # 2] € supi<,, [vi # —0:] = sup;<,, [vi > 1] = [sup;<,, |vif > 1],

S0
alz > 2] < plz > 2] + plz # =2'] < 3llvollx + Alsupi<, [vil > 1]
< lvnlly + 3llvolls = E(vn + 3vo) = 4E(vn)
by Doob’s maximal inequality (621E).
(e) This time, set

1 1
’U,E :EPZ'(|U7L|+U'IL)7 U'E/ :§PL(|UVL| _U")

for i <n, and

—1 —1
2 =30 oylnie wi x (Vi — vl 2 =g gl 30y wi x (viy — o))

Then (v});<, is a martingale adapted to (2;);<n, because

1 1
Pivz/‘Jrl = 5PiPi+1(‘Un| +n) = §Pz(|vn| +op) = Uz/‘

for every i < n, and of course v] > 0 for every ¢ < n. Similarly, (v)');<, is a non-negative martingale adapted

to (As)i<n. Since v} — v = Pv, = v; for every i, 2 < 2/ +2". So [z > 4] € [¢' > 2]u[” > 2] and
Alz > 4] < plz' > 2] + plz” > 2] < 4E(v), +vl)) ((d) above)
= 4E(vy) = 4|lvn|1,
as claimed.
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6211 Finite martingales 7
(f) We now have
_ _rd 4 16
> =pl-z> 4] <4|-= =—
Al > 2] = 2z > 41 < 420l = 2 fonl
for every v > 0.

(g) Again using 621G, express v as v# + @ where v# = (v7),<,, is non-decreasing, ¥ = (0;)i<n is a
martingale and v# =0. Set

5 -1 . . -1
z= E;‘n:o aj 35050 wi X (Vi1 —05)],  2# = Z;‘H:O a3y wi % (Uzﬁl - Uz#)|
Applying (a) to %v# and %z#, we see that u[z# > 14] < %Hv#”h while (f) tells us that g2 > 7] <

%H@ﬂh Since z < z# + 2,

Alz > ) < lz# > 390+ Ale > 391 < 2ol + il
Now we know that
[l = E(vff) = E(vn) ~E(80) = E(vn) ~E(vn) < [Jonlls ~ E(wo)
while
2l < loalls + ol < 2lloalls — E(vo).

So we get

_ 66 34
ilz > 71 < Loall - LE(wo).

6211 Lemma Suppose that (v;);<, is a non-negative martingale adapted to (2;);<,, and that M > 0 is
such that [v; > M] C [v; = v,] whenever i < j < n. Suppose that u; € L>(2;) and ||ui]|s < 1 for ¢ < n,
and set z = Z?:_Ol u; X (vip1 — v;). Take any & > 0.

(a) z is expressible as 2’ + 2" where 2/, 2"’ € L°(2,,) and

M
121y < (2 4+ )l (vn — Mx1)* |1,

127113 < 62 + [lon A Mx1]3.
M
(b) l[z[lr <6+ (24 )llvnlly + v/ Mllvnllr

proof (a) Induce on n.

(i) The case n = 0 is trivial. For the inductive step to n > 1, set § = 2 + % and zg = Z?:_OQ u; X

(vit1 — v;); since
[vi > M] C [v; = vp] N [vn-1 =v,] C [vj = vp_1]

whenever ¢ < j < n — 1, the inductive hypothesis tells us that we can express zg as z{ + 2z where z(,
2y € LO(A,,—1) and

Izoll1 < Bll(vn—1 — Mx1)¥ ||,
12418 < 82 + o1 A MR
Write P for P, and ¢ for (v, — Mx1)™ — (vhp_1 — Mx1)". Because
[(vn—1 = Mx1)* #0] = [vn—1 > M] C [vn—1 =va] C [0 =0],
= (v, — Mx1)*t x x[op—1 < M] >0, and
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8 Martingales 6211

Vpo1 AMx1 — P, AMx1) =v, 1 — (v_1 — Mx1)* — Pv, + P(v, — Mx1)*"
= P(v, — Mx1)" — (v,_1 — Mx1)" = P9 > 0.

125113 < 6% + || P(vn A Mx1)||3, set 2 = 2{. Otherwise, the function

(ii) There is a Z € L%(A,,_1) such that ||Z]|3 < 62 + ||P(v, A Mx1)|3 and |25 — Z||; < %||17||1 P If

v = [ med(—yxL, 2g, yx 1|3
is continuous, so there is a v > § such that ||Z]|3 = 6% + || P(v, A Mx1)||3 where Z = med(—vx1, 2, 7x1). In
this case,

25113 — 11213 = E((20] + 12]) x (|z6] — 2])) = 20E(|2g] — |2]) = 20]|26 — 21
because |z{j| = |Z| + |2 — Z| and
[0 # 2] = llz6] > 71 < [l=6] = o n [IZ] = 4],
and similarly
[vn-1 A MX1|[3 = [P (v A MX1)II3
=E((vn—1 A Mx1+ P(vy A Mx1)) X (vp—1 A Mx1 — P(v, A Mx1)))
< 2M||vp—1 A Mx1 — P(v, A Mx1)||y = 2M||Pd|; = 2M |91

because © > 0. So

IS8

120 —

1 ~

Il < 55 (l=0 13 — 11Z113)

1 /e 2 2 2 M
< (8 + lons AMXLE = 8 — [Plow A MxD)R) < 2

o)1 Q

(iii) Set 2" = Z4+up_1 X (v, A Mx1— P(v, AMx1)). Since Z X u,,_1 € LO(an_l)ﬂL% and v, AMx1—
P(v, AN Mx1) € L (1),

0=E(Z X up—1 X (v, A Mx1 — P(v, A Mx1)))
=E(P(vn A Mx1) x (v, A Mx1 — P(v, A Mx1)))

and
127113 = 11213 + llun—1 X (v A MX1 — P(v, A Mx1))|I3
< 67+ [[P(vn A MXDE + [[om A MY = P(vn A MXDII3 = 6%+ [lon A M3,
(iv) Set
2 =22
=20+ Un—1 X (Vn —Up_1) — Z — Up—1 X (U, A Mx1 — P(v, A Mx1))
=z +2) —Z
+tp—1 X (vn — Mx1)T = (vp—1 — Mx1)T —v,1 A Mx1 + P(v, A Mx1))

=20+ 20 —Z+uUp_1 x (0 — PDd),

so that

12l < llzoll + 1126 — Zllx + 9]l + [ Po]lx
M« N
< Bll(vn-1 = Mx1) ¥l + = [19]l1 + 2[18]a

= B(l(vn—1 = Mx1) ¥l + [[0]l1) = Bll (vn — MxD)" |1,
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621J Finite martingales 9

and the induction proceeds.
(b) follows at once, because

1211} < (12”115 < 6% + [lon A MX1|[3 < 6% + Mjvn]y
and |21 < 6 + /MJva]1.

621J Lemma Suppose that (v;);<, is a non-negative submartingale adapted to (2;)i<, and z =
Sy Pwiv1 — vi. Then oE(z x x[z > 2a]) < 3(BE(v,) + aE((v, — Bx1)")) whenever a, 8 > 0.
proof (see KARATZAS & SHREVE 91, 1.4.10) (a) For £k <n and v > 0, set
uy = Py, —vg, 2p = Zf:_ol Pty — v,
(note that zp; € LO(A) if & < n),
by = [[Z > 'Y]]»

Ay = [zk41 > Y\ [z > 7] € Ap ifk <n, ay, =1\[2>7] €Ay
Because v is a submartingale, 0 = 29 < ... < 2, = 2, (@yk)k<n is & partition of unity in A and b, =

SUPy < py (k-
Observe that if £ < j then

Py(Pjvjt1 —v;) = PpPj(vj41 — vj) = Pe(vjs1 — vj),
so if K < n then

n—1

n—1
sz — Zk = Pk(z PjUj+1 — 'Ui) = Pk(z Vj+1 — Ui)
j=k j=k

= Py(v, —vg) = ug.
(b) For any v > 0 and k < n.
E(Xayk X 2) = Yty < E(Xayk X up) < Bhayk + E(xayk x (vp — Bx1)7).
P
Xyl X Uk = XAk X (P2 — 21) > Xayi X (Prz —yx1)

because a,x N [z > ] = 0. So

E(Xayk X 2) = Yiayk = E(xayk X Ppz) — yiiaqy,
(because ayx € Ay)

= E(xayk x Pp(z —vx1)) < E(xayi X ug)
< E(xayi X Pyon) = E(xaye X vp)
= E(Xa"yk X (Un A ﬂXl)) + E(Xa'yk X (Un - 6X1)+)
< E(xam x Ax1) + E(xayr x (vn — fx1)")
= ﬁia'yk + E(Xa'yk X (Un - 5X1)+)- Q
(¢) Now we see that
n—1
E(xby x 2) = yjiby = Y E(xayk X 2) = Viiayk
k=0
n—1
<> Bay, + E(xaqr x (vn — Bx1)T)
k=0

= Biiby + E(xby x (v, — Bx1)T)
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10 Martingales 621J

for every v > 0. Next,
afibag < E(xbas X (z — axl)) < E(xba x (z —axl)) = E(xbs X z) — iy,
because bay C [z — axl > ] C b,. It follows that

< (20 + B)fibza + E(xbza x (v, — Bx1)T)
< 2(E(xba X 2) — ajiby) + Biibs + E(xba x (v, — Bx1)™)
< 3(Bhibe + E(xba % (vn — BX1)+))'

(d) On the other hand,

afiby = afifz > o] <E(z) = Z E(Pwiy1) — E(v;)
i=0
n—1
= S E(vi41) — Evr) = E(vn) — E(vsy) < E(v)
=0

and

aE(z x x[z > 2a]) = aE(xbaa x 2) < 3(BE(v,) + aE((v, — Bx1)T))

- 3(ﬂE(vmax I) + aE((vmaXI - ﬁX1)+))7
as required.

621X Basic exercises (a) Suppose that we think of 621D-621J as applying to a stochastic integration
structure (2, &, T, (A eer, T, (A:)re7) such that T = {0,... ,n}. Show that if v = (v,)se7 is any fully
adapted process, then

n—1
Q7 (dv) = {Z u; X (V1) — Vi) f U € LO(2A,), [Juilleo < 1 for every i < n}.
i=0

(b) In the context of Lemma 621H, show that, given M > 0, there are n, v and (u;);<, such that v is a
martingale and ||z||; > M||v,|l1. (Hint: v; = v'xa;, u; = (—1)*x1 where 1 =ag2 ... Day.)

621 Notes and comments There are some curious formulae here, which is why I think readers may wish
to look ahead to see what they are supposed to do. But 621H, 6211 and 621J, as well as 621E, are of the same
kind; they seek to bound quantities calculated from sequences (u;);<, and (v;);<, in terms of a quantity
determined by the final term v,, alone. The same is true of the fundamental inequalities 275D and 275F.

The constant 16 in 621Hf is far from best possible; in fact it is the case there that gf|z] > ~] < g||vn||1
v

(628D). (I do not know whether the inequality can be improved further.) However the proof in §628 is
substantially longer than that in 621G-621H and demands techniques from measure theory which I do not
think we shall need elsewhere in this volume. The argument above is a better preparation for what will come
later. For instance, the idea in 621G will reappear, in much more general form, in the ‘previsible variations’
of §626.

The formulae in 6211-621J are bound to seem odd. In 6211 we are presented with M but anticipate that
0 and ||v,||1 can be forced to be small, so that ||z||; is small; this will be used in one of the main results
of the chapter (6230). In 621J we see that lima_,oo f(2E(v,)) = 0, while a bound on E(z x x[z > a]) is
something we look for if we want to prove that a set is uniformly integrable. See part (b) of the proof of
626 M.

The notation of this section is a little clumsier than it might be, because from 621F onwards I repeatedly
speak of elements z = Z;:Ol u; X (vi41 — v;) without making the obvious association with Qs(dv) (621Xa).
I am in fact avoiding any appeal to the ideas introduced in Chapter 61; the material here can be regarded
as a development of §275 in the language of Chapter 36, quite apart from its applications to stochastic
integration, even though it is manifestly directed to those applications.

MEASURE THEORY



622B Fully adapted martingales 11

Version of 29.7.20
622 Fully adapted martingales

I come now to the promised central fact of the theory: martingales are local integrators. The first step is to
establish a concept of ‘martingale’ for fully adapted processes (622C), which involves us in the properties of
conditional expectations with respect to stopping-time algebras (622B). Elementary facts about martingales
are in 622D-622F. The theorem that every martingale is a local integrator is now easy (622H); of course it
depends on non-trivial ideas from §621. In 622L I check that Brownian motion, as defined in 612T, is a
local martingale. The rest of the section is a miscellany of results which will be needed later.

622A Notation As in Chapter 61, (U, i, T, (UAs)ter, T, (Ar)re7) will be a stochastic integration struc-
ture, with 7; and 7T the corresponding lattices of finite and bounded stopping times. For ¢ € T, { is the
constant stopping time at t. As before, I write 6(w) = E(|w| A x1) for w € L°(A). For a sublattice S of T,
Z(S) will be the set of finite sublattices of S.

For 7 € T, P; : L, — L°(2,) N L}, where L}, = L'(2, 1), will be the conditional expectation operator

associated with the closed subalgebra A, of 2 (621C).

622B We need something to match the familiar rule on composition of conditional expectation operators
in 621Cb.

Proposition Suppose that o, 7 € T.
(a) P,P; = Pypr.
(b) [0 = 7] € [Pou = Pru] for every u € L.

proof (a)(i) Set a = [o < 7], so that a € Aspn, = A, N A, (611H(c-ii)), and u € L°(A,r,) whenever
ue L°(Ay) and u = u x xa (612C). Now if u € L}, and u = u x xa, we see that

(P, P.u) x xa = Py(Pyu x xa) = P,P-(u x xa) = P,P;u € L°(A,)
so that P, Pru € L°(™A,4,). And if b € A, 1, we surely have
E(P,P;u x xb) = E(P,(Pru x xb)) = E(Pru x xb) = E(u x xb).
So P, Pru = Pypru.

(ii) Next, setting a’ = [t < o], we have u € L°(2,,) whenever u € L°(2;) and u = u x xa’. So now,
ifue L}-L and v = u x ya’, we have P,u = Pru x xa' € L°(yp,) and P, Pru = Pru € LY p-). As in (i),

E(P,Pru x xb) = E(Pyu x xb) =E(u x xb)
whenever b € A nr. So Py, Pru = Pya-u in this case also.
(iii) Assembling these, and noting that 1\ a C d/,
P,Pru= P,P-(u x xa)+ P, P-(u x x(1\ a))
= Popr(u X xa) + Popr(u X x(1\ @) = Pyaru
for every u € L}L, and P, P, = P ar.

(b) Set c=ana’ =[o =7]. Then ¢ € Ao, and (u X xc) X xa’ = u X xc, so

Pru x xec = Pr(u x x¢) = P, P-(u X xc)
(see (a-ii) above)

= PO'/\T(u X XC)'

Similarly,
Pyu x xc = Prao(u X x¢) = Popr(u x xc) = Pru X xe.
So [Pyu = Pru] Dc.
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12 Martingales 622C
622C Fully adapted martingales Let S be a sublattice of 7 and v = (v, ),es a fully adapted process.

(a) v is an L'-process if v, € Lll1 for every 0 € S. Generally, v is an LP-process, for 1 < p < oo, if
ve € LP(2A, 1) (366A) for every o € S, and an L>-process if v, € L (2) (363A, 364J) for every o € S.

For 1 <p < oo, v is |||,-bounded if sup, s ||vs||, is finite (counting the supremum as 0 if S is empty).
Note that v is || ||co-bounded iff it is order-bounded and sup |v|, as defined in 614Ea, is in L ().

(b) v is a martingale if it is an L'-process and v, = P,v, whenever ¢ < 7 in S.

(c) v is a local martingale if there is a covering ideal S’ of S (611N) such that v|S’ is a martingale.

Taking S’ = S we see that every martingale is a local martingale. For classic examples of local martingales
which are not martingales, see 622Xe and 632N.

Note that I do not say ‘v is a local martingale if ¥[S A 7 is a martingale for every 7 € S’; the ‘local’ in
‘local martingale’ is not the same as the ‘local’ in ‘local integrator’ or ‘locally order-bounded’ or ‘locally of
bounded variation’ or ‘locally moderately oscillatory’.

(e)(i) v is uniformly integrable if it is an L!-process and {v, : ¢ € S} is uniformly integrable.

(ii) It will be convenient to use the phrase ‘LP-martingale’ to mean a martingale which is also an
LP-process.

622D Proposition Let S be a sublattice of T and Mg, = M, (S) the Riesz space of fully adapted
processes with domain S. Let S’ be a sublattice of S.

(a) For any p € [1, 00|, the set of LP-processes with domain S is a solid linear subspace of Mg,, and v[S’
is an LP-process whenever v € My, is an LP-process.

(b)(i) The set of martingales with domain S is a linear subspace of Mg,.

(ii) If v € My, is a martingale then v[S’ is a martingale.

(c) The set of local martingales with domain S is a linear subspace of Mg,. If &’ is an ideal of S, then
v|S8’ is a local martingale for every local martingale v € Mj,.

(d) The set of uniformly integrable processes with domain § is a solid linear subspace of Mg,, and v[S’
is uniformly integrable whenever v € Mg, is uniformly integrable.

proof (a) This is immediate from the definitions (622Ca).
(b)(i)-(ii) These too are immediate from the definitions.

(¢) Applying (b-i) to appropriate ideals S A 7, we see that the set of local martingales with domain S is
a linear subspace of Mp,. Concerning ideals of S, we need to know that if &’ is an ideal of S and S; is a
covering ideal of S, then S; NS’ is a covering ideal of §’. P If 7 € &', then

SUPyes ns [T = 0] 2 supges, [T =T A0] 2 sup,cs, [T=0]=1. Q

(d) All we need to know is that subsets, sums and scalar multiples and solid hulls of uniformly integrable
sets are uniformly integrable, as declared in 621B(c-i).

622E Elementary facts Let S be a sublattice of 7 and u = (u,),es a fully adapted process.

1

(a) If u is constant with a value in L,

then w is a uniformly integrable martingale.

(b)(i) If 7 € S, then w is a martingale iff u[S A 7 and u[S V 7 are martingales. P If u is a martingale
then u[S A7 and 4S8 V 7 are martingales by 622Db. If u[S A7 and u[S V T are martingales, then we have
Ug = Ugyr + Usnr — Ur € L}

for every o € S (612Df). So u is an L'-process. If 0 < ¢’ in S then
Porrugrve = PoPrugrv: = Pous

(using 622Ba for the first equality), so
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622F Fully adapted martingales 13

[oc<t]=[o=0cAT]|noc=0Ad"AT]
N [Potioivr = Poprtioryr] N [Potiornr = Popo/ artior ar]
(611E(a-ii-3, 622Bb)
Clo=0nd AT|n[Prugvr = Prus]
N [Potio'nr = Ugno'ar] N [Ue = Uons A T]
[Pstiorvre = Prtr] 0 [Potiginr = U]

c
- H:PO'(U‘D'//\T + Uorvr — UT) = ucr]] = HPO'U‘D'/ = uaﬂ~

On the other hand,

[r<o]clo=cVr]no' AT=7]
Cle=oVvr])nlo' AT=7]n[Psus = Pryrur]
N [Potiorvr = Povrtorye] N [Potio'nr = Povrlorns]
Cle=oVvr]no' AT =71]n[Prur = u;]
N [Potiorvr = Ugyr] N [Potio/nr = o/ nr]

[[Po’ur = UT]] N IIPUUJ’\/T = ua]] n [[Paua’/\r = UT]] c [[Po’ua’ = UU]]-

N

So in fact [P,us = us] =1 and Pyu, = u,. As o and ¢’ are arbitrary, u is a martingale. Q
(ii) If 7 € S, u|S A7 is a martingale and u[S V 7 is constant, then u is a martingale. (For the constant

value of 4[S V 7 must be u,, which is a value of u[S A 7 so is in L}-L)

(c) If for every e > 0 there is a martingale v = (v,)scs such that ||u, — vs||1 < € for every o € S, then
u is a martingale. I Note first that as there is an L'-process v such that u — v is an L'-process, u also
is an L!-process. Now suppose that 7 < 7/ in S and € > 0. Let v = (v,),es be a martingale such that
us — vo 1 < € for every o € S. Then

HPTUT’ - uTHl < ||P7'u7" - PTUT’Hl + HPTUT/ - UTHl + HUT - uTHl <e
using a to see that F(urr — vl < ||urr — vrr||1). As € 1s arbitrary, Pru,s = ur; as 7 and 7' are
ing 621C h P, < A i bi P, d 7

arbitrary, w is a martingale. Q

(d) If u is a martingale and A C S is non-empty and downwards-directed, then the |||;-limit z =
llimg | 4 u, is defined and is the limit lim, 4 u, for the topology of convergence in measure; and if 7 € A
then z is the conditional expectation of u, on ﬂgeA A,. P By 367Qa, llimy 4 vy = llim, 4 Pyu, is defined
and is the conditional expectation of u, on [, 4 2. By 613B(d-i), this is also the limit lim, 4 u,. Q

In particular, if S is non-empty, then the starting value lim, s ¢, is defined and belongs to L}i.

622F Proposition Take any u € Lll-l.
(a) Pu = (P;u),e7 is a uniformly integrable martingale.
(b) Suppose that o, 7 € T and [u # 0] C [o = 7]. Then P,u = P u.

proof (a) By 622Bb, Pu is fully adapted; by 622Ba, it is a martingale; by 621Cf, it is uniformly integrable.
(b) As in the proof of 622Ba, set a = [o < 7]. Then v = u X xa and a € A, so
P,u = P,(u x xa) = Pyu X xa;
since P,u € L°(A,), P,u € L°(2A;) (612C again) and
P,u= P, P,u= P;r,u.
Similarly,
Pou= Popru = Prpou = Pyu,

as claimed.

D.H.FREMLIN



14 Martingales 622G

622G I have a great deal more to say about both martingales and local martingales. But I will move
directly to the most important result in this section.

Theorem Let S be a sublattice of T and v = (vy)secs a || ||1-bounded martingale. Then v is an integrator,
therefore moderately oscillatory and order-bounded.

proof If § is empty, this is trivial, so let us suppose that S # (). Then Qs(dv) is topologically bounded.
P Let € > 0. Let § > 0 be such that dsup,cg ||vs]1 < €2. Take z € Qs(dv). Then there are a non-empty
finite sublattice I of S and a fully adapted process u = (uy)ser With ||¢|lec < 1 such that z = S;(u, dv).
Let (19,... ,7T) linearly generate the I-cells (611L). Then z = Z?;ol Ur, X (Vry, — r,). Now (vr,)i<p is a
martingale in the classical sense of 621Da. So

0(62) < e+ aldlz] > ] < e+ Allel > 5] < e+,

1

(621HI)
< 17e.

As € is arbitrary, Qs(dv) is topologically bounded. Q
Thus v is an integrator. By 616Ib, it is moderately oscillatory and order-bounded.

622H Theorem Let S be a sublattice of 7. If v = (v,)secs is a local martingale, then it is a local
integrator, therefore locally moderately oscillatory.

proof Let 8’ be a covering ideal of S such that v[S’ is a martingale. Suppose that 7 € S and ¢ > 0. Then

there is a 7y € 8’ such that ¢ = [r < 71] has measure at least 1 — e (611Mh). Set v’ = Pv,, [SAT. As Pu,,

is a uniformly integrable martingale (622Fa), it is an integrator (622G), so v’ is an integrator (616P(b-ii)).
Now if 0 € SA T,

[vo = v5] = [ve = Povr,] = [vo = PoPrvr,] = [vo = Popryvr, ]| = [vs = vonr,]
(because o A 71 belongs to 8" and ¥[8’ is a martingale)
DQfonmi=c]=[c<n]or<n]=c
So
[v" # vIS A 7] = supgesnr [vs # V5]

is disjoint from ¢ and has measure at most €. As € is arbitrary, ]S A 7 is an integrator (616P (b-iii)). As 7
is arbitrary, v is a local integrator. Q

6221 The principal martingale theorems (see §275) take slightly different forms in the present context,
so I take the space to spell one of them out.

Doob’s maximal inequality (second form) Let S be a sublattice of T, and v = (v,),es a martingale.
Then v is locally order-bounded, and

_ _ 1
B(sup,esar [[vo] > 7)) = A([sup,esar [vo| > 9]) < ;EOUTD
for every 7 € S and v > 0.
proof If A C S AT is a non-empty finite set, then

Alsupges vo] > 1) < TE(Ju-|).

P Let I be the sublattice of S generated by A, and take 79 < ... < 7, linearly generating the I-cells (611L
again). Then (v,,,...,vr, ,v,) is a finite martingale adapted to (2,,,...,2. ,2), so

_ 1
pllsupi<, lon| > 21) < 2E(o)
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by 621E. Write v for sup,<,, |vr,|. If 0 € A, then

llvg| < 0] 2 sup;<;, [ = vr] 2 sUpic,, [0 = 7] =1
by 611Ke. So v, < wv. Thus [sup,c4 [vs| > 7] € [v > 7] has measure at most %]E(|UT|) Q

Accordingly ¢, = sup,cgns [|Uo]| > 7] has measure at most %E(‘UTD, by 321D. Since this tends to 0 as ~

increases to 0o, {|vy|: ¢ € S A7} is bounded above in L°(2(), and

,a([[supJES/\r Vg | > ’7/]]) = pcy <

for every v > 0 (364L(a-ii)), as required.

622J Proposition Let S be a non-empty sublattice of 7 and v = (v,),cs a uniformly integrable
martingale.

(a) The || |j1-limit v = llim,4s v, is defined in L
convergence in measure.

(b) v = Pu[S is order-bounded, and inf;cs sup,cgy- |V — vo| = 0.

1

5 and v is also the limit lim,4s v, for the topology of

proof (a)(i) {v, : 0 € S} is relatively weakly compact in L) (621Bd). Let F be an ultrafilter on S
containing S V o for every 0 € §. Then the limit v = wllim,_, r u, for the weak topology on Lll1 is defined
(2A3R). If 7 € S, then P, : L}, — L, is a norm-continuous linear operator, so is weakly continuous (3A5Ec),
and

Pru=wllim,_, 5 Prv, = v,
because S V7 € F and P,v, = v, for every 7 € SV o. So v = Pu|S.
(ii) Let € be the closed subalgebra of 2 generated by |J,.s %, and set v = Peu. By 621C(g-ii),
v = llimg1s Pou = llimeys v,
By 613B(d-i) again, v = limy4s v,.
(b) If 7 € S, then
Prv = llimgys Prve = vr

accordingly v = Pv[S. Being uniformly integrable, v is || ||1-bounded, so 622G tells us that it is moderately
oscillatory; by 615Ga, inf,cssup,egy, [V — vo| = 0.

622K Lemma Let S be a finitely full sublattice of 7, and 4 = (uy)ses an L'-process such that
E(u,) = E(u,) for all 0, 7 € S. Then u is a martingale.

proof Takeo < 7€ Sanda € A, CA,. Then thereisa 7’ € T such that a C [ =7] and 1\ a C [’ = 7]
(6111). Now we have

E(us x xa) + E(u, x x(1\a)) = E(uy,) = E(u.)
(urr x xa) + E(urr x x(1\ a))

E
E(u, X xa) + E(us, x x(1\ a))

S0
E(us X xa) = E(u, X xa).

As a is arbitrary and u, € L}L N L%(€,), u, is the conditional expectation of u, on €,. As ¢ and T are
arbitrary, u is a martingale.

622L Brownian motion: Theorem Let w be Brownian motion, and ¢ the corresponding identity
process. Then w and w? — ¢ are local martingales, and w[7; is a martingale.
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proof As in 612T and 612F, I regard w = (w,)oe7; and ¢ = (t5)oe7; as processes on the real-time
stochastic integration structure (&, 7,[0,00[, (€)¢>0,T,(€r)rc7), Where (&, ) is the measure algebra of
(Q,%,v), Q= C([0,00])o, v is one-dimensional Wiener measure and ¥ is its domain.

(a) For n € N, let h,, : Q — [0, 00] be the Brownian exit time from |—n, n[ (4771I), so that h,, is a stopping
time; write 7, for the corresponding stopping time in 7 (612H). Because h is finite v-almost everywhere
(478Ma), 7, € T;. Now E(w,) = E(w? — 1,) = 0 for every 7 € T A 7,. PP I use Dynkin’s formula (478K).
Express 7 as h* where h < h,, is a stopping time. By 478Jd?, there is a smooth function f : R — R with
compact support such that f(z) = z for € [-n — 1,n + 1]. In the language of 612H and 478K,

E(w;) = E(Xp) = E(f(Xa))
(because h(w) < hp(w), so | Xn(w)| = |w(h(w))] < n for almost every w € )

1 h
= 10)+3E( [ (x5 =0

because V2f(£) = 0 for |¢] < n, while | X (w)| = |w(s)] < n whenever s € h(w). Similarly,

E(w? — 1r) = B(X} — h) = E(2(Xa) ~ h)
h
= PO+ 3E([ (T7(X,) ~2ds =0

because (V2 f2)(£) =2 for [£] <n. Q

(b) By 622K, w|T A 7, and (w? —¢)|T A 7, are martingales for each n € N. Since (7,)nen is non-
decreasing, w|S and (w® —¢)|S are martingales, where S = |J,,cy 7T A 7, is an ideal in T;. If 7 is any
member of Ty, it can be represented as h* where h is a finite-valued stopping time; now w is bounded on
[0, h(w)] for every w € Q, so Q = (J,cnyiw @ h(w) < hp(w)} and sup,, ey [7 < 7] = 1. Accordingly S is a
covering ideal of 77 and w and w? — ¢ are local martingales.

(c) To see that w|7, is a martingale, take any ¢t > 0. If 0 € S A £,

E(w?) =E(wo) = E(o) <t,

so w[S At is || ||2-bounded, therefore uniformly integrable, as well as being a martingale. By 622J, it is of the
form Pv[S At for some v € L}. But S covers Ty, so SAt covers Ty At (611M(g-ii)) and w| Ty At = Pu[ Ty At
is a martingale. As ¢ is arbitrary, w|7, = w| J,>, 7y A € is a martingale.

Remark It is also the case that (w? —¢)[T; is a martingale; see 632Xe.
622M You will find various more or less elementary facts about martingales in the exercises. One which
will be useful later in this chapter is the following.

Lemma Let S be a sublattice of T, and v = (v, )ses a fully adapted process. Then &' = {7: 7€ S, v[SAT
is a martingale} is an ideal in S, and v[S’ is a martingale.

proof (a) If 7 € S, then 7 € §’ iff v, = P,v, whenever c € Sand o < 7. P

T€S < v, = P,v, whenever 0,0’ € Sand o <o’ <7
— v, = Pyv,; whenever c € S and o < 7

= vy = Pyv; = Py Pov, = Pyvg whenever 0, 0’ € Sand o <o’ < 7. Q

M)IfreSandT7 <7 €8 then7e€S. PlfoeSando <7 then
UU:PUUT’:PG'PTUT,:PUUT'Q

3Later editions only.
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622N Fully adapted martingales 17
Ifr, 7 eSS oceSand <o <7V7 then v, = P,v,y. P Set a=[o < 7'] € A, (611H(c-1)). We
have
a=[r<o]nfoe<7)cr<)=[r"=7V7]C v =vrvs]
(using 611E(c-iv-a) and (a-ii-g)) and
0 =lo =0 AT] € [Pyvr = Porerop] 0 [oones = v,

(611E(a-ii-3) again and 622Bb) so

Py (vryr X xa) = Py(v X xa) = Pyvyr X Xa = Poprivzr X xQ
= Ugpr X XA = Vg X Xa.

Next, setting

d=[r"<o)cr<rvr]=[<7]ulr <]
(611ED)
=[r<rlclr <tl=[rvr=7][clo<t]=[oVvT=7]=[0c="7]
C [vrvr = v ] 0 [Povy = Proc] n [or = 5],

we see that
Py (vryr X xa') = Py(vr X xa') = Py(v, X xa') = v, X xa'.
Adding, we have P,v,y; = vy, as claimed. Q

() Ifr,7"eS oceSand o <7V7' then v, = Pyvsy,. P Set

a=Jo<t]=Jovr=1]=JoAT=0]
c H:UO'\/T :Ua]]mﬂpa'/\‘rvf :PUUT]]mH,UO’/\T :,UO']]'

Then

P,y (vovr X xa) = Py(vy X xa) = P,v; X xa = P, Prus X xa
= PoarUr X XA = Ugpr X XA = Uy X Xa.

And setting

o =[r<o]CloVrT=0]Cvevr =vs],
we have

Py(voyr x xa') = Py (vy x xa') = vy x xd,
80 Pyvgvr =vs. Q

Now we have 7 < o V7 <7V 7/, s0 (c) tells us that
Vo = Povovr = PoPovrvrvr = Povryrr.

As o is arbitrary, 7 V7' € §’. As 7 and 7 are arbitrary, (a) tells us that S’ is an ideal of S.

(e) Finally, we have v, = Pyv, whenever o, 7 € §’ and o < 7, so v[S§’ is a martingale.

622N Extensions to covered envelopes: Proposition Let S be a sublattice of T with covered
envelope S, and u = (uy)ses a fully adapted process with fully adapted extension & = (4, )

(a) If w is a martingale then u is a martingale.

(b) If u is a local martingale then 4 is a local martingale.

(c) w is a uniformly integrable martingale iff u is a uniformly integrable martingale.

oe8*

proof (a) This is a special case of 622Db.
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18 Martingales 622NN

(b) Take 7 € S and € > 0. We know that Sup,cs [T = o] = 1, so there is a non-empty finite subset I of
S such that fia > 1 — €, where a = sup,; [T = o]. Set 7 =supl € S. Then
[r <7]osup,e;[r=0c]nfo <7]=a

so 7 < 7] < e. Because u is a local martingale, there is a 7/ € S such that ]S A 7/ is a martingale and
A" < 7] <e. Consider the martingale Pu,, (622F). This is defined everywhere on 7 and agrees with  on
SAT'. Now SAT' is the covered envelope of SAT (611M(e-i)), while Pu,/ [SA7’ is fully adapted and extends
u]S A7/, so must be equal to @S A 7. Thus @S A 7/ is a martingale, while [7/ < 7] € [+ < FJu[F < 7]
has measure at most 2e. As 7 and € are arbitrary, @ is a local martingale.

(c) If @ is a uniformly integrable martingale then u = @[S must be a uniformly integrable martingale. If
u is a uniformly integrable martingale, it is of the form Pu[S for some u € L}, (622J), and now PulS is a

uniformly integrable martingale. But Pu|S is a fully adapted process extending %, so must be 4, and 4 is
a uniformly integrable martingale.

6220 Proposition Let S be a sublattice of T and v = (uy)scs a martingale.
(a) If S; is the ideal of T generated by S, there is a unique martingale v = (v, ),cs, extending u.
(b) If Ss is the full ideal of T generated by S, there is a local martingale ¥ = (9, ),cs, extending u.

proof (a) Since S is upwards-directed, | J,.s 7 A0 is an ideal of 7 and must be S;. If 7 € S; and 0, 0’ € S
are such that 7 < o and 7 < ¢/, then

P‘ruo’ = PTPUUUVJ’ = PTUUVJ’ = P‘ruo’a

so we can define v, € L°(2A) by saying that v, = P,v, whenever 7 <o € S. If 7 <7/ € S, thereisac € S
such that 7/ < ¢ and

Pv. = P.Pouy = Prvy, = vy,
In particular, Prv, = v, and v, € L°(2;). Also
[r=7] C [Prvs = Prvg] = [ur = v]
by 622Bb. So v is fully adapted (612Db) and is a martingale. If o € S then v, = Pyu, = u,, so v extends
“ As for uniqueness, if v/ = (v]),cs, is another martingale with domain &; extending u, then
vl = Pl = Pruy, = v,

whenever 7 <o € S, s0 v =w.

(b) The covered envelope S is an ideal of 7. B We know that it is a full sublattice (611M(b-i), 611M(c-
ii)). 7 €T and 7 < 7’ € &1, then

sup [r=0]2 sup [t =0 AT]
S oES)

(because o A T € §; for every o € S1)

= sup [t <o]2 sup [r <o]nfo=17]
0€S: 0c€S

sup [t <7']ne=7]=sup [oc=7]=1
0€S 0€S

and 7€ S;. Q

So 31 is a full ideal of 7, and of course it includes S; while any full ideal including & must include &;
and &;. Thus S» = S;. Now the fully adapted extension ¥ of v has domain Sy, extends u and is a local
martingale (622Nb).

622P Proposition Let S be a non-empty sublattice of T, u = (uy)scs a moderately oscillatory process
and v = (vs)ses a martingale. Then || [gudv|s < [[u]le sup, cs (Vs |2
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622R Fully adapted martingales 19

proof The formulae here depend on my conventions for the use of co, so perhaps I should restate these.
0-00 =0, so if either u or v is 0, the result is trivial. Otherwise, if u is not || ||-bounded, then |[u||s = oo;
if v is not || ||2-bounded, then sup, g ||vs||2 = 00; both cases are trivial. So we can suppose that M = ||u|/s
and M’ = sup,cs ||v||2 are both finite and non-zero.

Asw is || [|2-bounded it is || ||;-bounded, therefore an integrator (622G), and [gu dv is defined. The point
is that if I € Z(S) then ||S;(u,dv)|ls < MM'. P If I = () or M = 0 this is trivial. Otherwise, take
(10, --- ,7n) linearly generating the I-cells. Then

n—1
1
1St (u, dv)la = M| Y rur X (vryy = vr)ll2 < Mo, |2
i=0
(by 621F, applied to the martingale (vr,,...,vr,))
<MM'. Q

Since || [|2-balls are closed in L°(2() (613Bc),
| [sudvlls = |[limpyzes) Si(u, dv)lls < MM,

as claimed.

622Q Proposition Let S be a sublattice of T, and 4 = (us)ses, ¥ = (Vs )oes fully adapted processes
such that u is locally moderately oscillatory and v is a martingale. Then || [g, wdv|l2 < [[u]S A 7|[oo[vr |2
for every 7 € S, and if the right-hand side is always finite, the indefinite integral ii, (u) is a martingale.

proof (a) We know from 622H that v is a local integrator so the process ii,(u) is defined everywhere
on §. For 7 € S write z; for [g, udv. If 7 € S and 0 € S AT, then [Jvs]l2 < [lvr]l2 by 366J, so
622P tells us that [|z-||2 < [[u]S A T||loo||r|l2- At the same time, we see from the argument in 622P that
{Sr(u,dv) : I € Z(S A1)} is || ||2-bounded, therefore uniformly integrable (621Be).

(b) Now suppose that [|u] SAT|| o ||vr||2 is finite for every 7 € S. Take 7 < 7/in . Because {Sy(u,dv) : I €
Z(SAT")}U{z — 2, } is uniformly integrable, and 2z, —z, = me[T,r'] w dv is the limit limy7(sn[r,+) S1(u, dv)

for the topology of convergence in measure, it is also the limit for || ||; (621B(c-ii)). As P; is || ||1-continuous,
this means that

Przrr — 2z = P(2p — 2:) = limpyg (7,7 PrS1(u, dv) =0

because if 7 < 0 < ¢’ < 7' then

Pr (s X (Vgr —g)) = PrPy(tug X (Vgr — 05)) = Pr(ttg X Py(Ver — v5))
= P (uy X (Pyver — v,)) = 0.

So Prz;r = z;; as 7 and 7' are arbitrary, ii,(u) is a martingale.

622R Law-independence I remarked in 613I that the Riemann-sum integral, like the topology of
convergence in measure on L°(2A), does not depend on the measure i assigned to 2; if ¥ is any strictly positive
totaly finite countably additive functional on 2, the stochastic integration structure (2,7, T, (A;)ter) will
behave exactly like the original structure (2, i, T, (U¢)rer). This is the case for most of the rest of Chapter
61. In a formal sense there are a great many definitions to check. Already in 615B I defined the ucp topology
on a space My (S) in terms of an F-norm 6 defined in terms of the standard F-norm 6 on L°(2(), and 6
does depend on the measure. But if we take this into account, and speak of 6; and 65 giving rise to é\ﬁ and

~

0, then we know that
for every € > 0 there is a ¢ > 0 such that 7(a) < e whenever [i(b) <
and consequently

for every e > 0 there is a § > 0 such that 05 (u) < e whenever 0;(u) <4,
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20 Martingales 622R

for every € > 0 there is a § > 0 such that 8, (u) < € whenever tz)\ﬂ (u) < 0.

Since this works equally well with & and 7 exchanged, the fi-ucp topology and uniformity on M, (S) are
the same as the D-ucp topology and uniformity.

Continuing through ‘moderately oscillatory’ processes (615E), ‘integrating interval functions’ and ‘inte-
grators’ (616F), these are defined in terms of the topology of L°(2A), so are the same in both structures.
‘Bounded variation’ (614K), ‘cumulative variation’ (6140) and ‘(residual) oscillation’ (618B) can, with a
little care, be defined in ways which do not call on the measure at all, but only on the Riesz space structure of
LO(2A), so the same is true of ‘jump-free process’. ‘Covariations’ and ‘quadratic variations’ (617H) are based
on the Riemann-sum integral which doesn’t change. So the way to It6’s formula (§619) is clear throughout.

Of course the examples, Brownian motion (612T, 622L) and Poisson processes (612U), are based on
explicitly defined measures, and make no sense without them. But it is only in the present section that we
have come to a general class of processes for which we really need to know which measure we are using.
We do not expect anything to do with L7, or |||, for p < oo, to be stable in the way that LO(2A), L>(A)
and || || are. In particular, conditional expectations (621C) and martingales (622C) are dependent on the
exact measure we have in hand. So in the present chapter our expectations are reversed. I will return to an
occasion in which, surprisingly, we do have law-independence, in 625F.

622X Basic exercises >(a) Let S be a sublattice of 7 and v = (v,)scs a martingale. Let 7 € T and
set 8" ={0:0€T,oAT €S} Show that 0 — vyn, : S — LY(2) is a martingale.

(b) Let S be a sublattice of 7, u a process with domain S, and z an element of L°((, .5 2,). Show that
if u is a martingale and zu is an L'-process then zu is a martingale.

(c) Let v be a local martingale defined on a sublattice S of 7. Show that ]S V 7 is a local martingale
for every T € S.

(d) Suppose that T' = [0,00[ and A = {0,1}, as in 613W, 616Xa and 615Xf. Let f : [0,00] — R be a
function. (i) Show that f corresponds to a martingale with domain 77 iff it corresponds to a local martingale
iff it is constant. (ii) Show that f corresponds to a uniformly integrable process iff it is bounded.

>(e) Let (AU, @) be the measure algebra of Lebesgue measure on [0,1]. (i) Set 7= [0, 1] and for ¢ € T set
ar = [t,1]* € A, Ay = {a : anay is either 0 or a;}; show that (As):er is a filtration in the sense of 611B. (ii)
Let T be the associated family of stopping times. Show that for any 7 € T there is a least s, € [0, 1] such
that [T > s;]nas, =0, and that 7 — s, : T — [0,1] is a lattice homomorphism. (iii) Show that there is a
7* € T defined by saying that [7* > ¢] = a; for every ¢ € [0, 1], and that s,» = 1. (iv) Set S = {7 : 7 < 7%},
S ={r:7<71* s, <1}; show that &’ = S\ {7*} is a covering ideal of S. (v) Set u, = 1—13 xas, forT e 8,
ur+ = 0; show that u = (u;),cs is jump-free, that u[S’ is a martingale, and that u is a local martingale
which is not a martingale. *(vi) Show that (2;):cr is right-continuous in the sense of 632B below.

(f) Let ¢ : [0,1] — [0, 00 be such that lims| g ¢(0) = 0. Let S be a sublattice of T and Mmart,¢ the set of
martingales 4 = (uy)ses such that E(|us| X xa) < ¢(fia) for every o € S and a € A. Show that Mpare ¢ is
a subset of the space M, 1,(S) of order-bounded processes and is closed in the ucp topology.

>(g) Let S be a sublattice of T and v = (v, )scs a family in L}] such that P,v, = v, whenever o, 7 € S
and o < 7. Show that v is fully adapted.

(h) Let S be a sublattice of T, and v a local martingale with domain S. Set &' = {7 : 7 € T,
infyes [o < 7] = 0. Show (i) that &’ is the full ideal of T generated by & (ii) that there is a unique local
martingale on &’ extending u.

(i) Let S be a non-empty sublattice of T, and v = (uy)pes, ¥ = (Us)ses fully adapted processes such
that v is a martingale and z = [su dv is defined. Show that [|z]|2 < |[u]|oc SUP,cs [|vo|2-

>(j) Let (2,3, u) be the interval ]0,1] with Lebesgue measure, and T' = [1,00[. For t > 1, set ¥; =
{E : E € %, either [0,] N E or [0,1] \ E is negligible}. Set X;(w) = % if wt > 1, 2/t if wt < 1, and
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Koo(w) = % for every w € Q. Set Zy(w) = =2 if wt > 1, 2t — 2 if wt < 1, and Z(w) = —2 for every

w € Q. Let (A, ) be the measure algebra of u, and ();>1 the filtration corresponding to (X:);>1. In
LO(2A), set v = X2, and let v be the uniformly integrable martingale Pv; let z = (2, ),¢7 be the indefinite
integral iiy(v). (i) Set h(w) = L for w € ]0,1]; show that & is a stopping time adapted to (¢);>1. (ii) Let
7 € T be the stopping time associated with h. Show that T A7 = { A7 :¢t > 1} U {r}. (iii) Show that
P = X} for every t > 1. (iv) Show that z; = Z; for every t > 1. (v) Show that zmax7 = Z3. (vi) Show
that z is a jump-free local martingale and an L'-process but not a martingale. *(vii) Show that (A);>1 is
right-continuous.

(k) Give an example of a stochastic integration structure (2, i, T, () ter, T, (Ar)reT), a sublattice S
of T and a uniformly integrable process with domain S such that its fully adapted extension to the covered
envelope of S is not an L'-process.

622Y Further exercises (a) Let w = (ws)oc7; be Brownian motion. Show that there is a sublattice
S of Ty, with covered envelope S . such that w|S is a local martingale, but w|S is not.

622 Notes and comments Compared with the martingales of §275 and §621, the point of ‘fully adapted’
martingales is that they are defined on a lattice which is not totally ordered in any case in which the theory
here is appropriate. So we have some new questions to ask. In particular, it is not quite obvious that P, P,
will be Pya, (458M, 622Ba), or that every element of L}i will generate a fully adapted martingale (622Fa).
622M is another result which is easy in the totally ordered case, but demands finesse in the general context.

If you look at 612H and 632L below, you will see that some measure-theoretic considerations enter the
argument, in particular the notion of progressive measurability, which have no direct parallel in the theory of
stochastic processes in L°. When eventually we come to applications of the theory here, they will generally
be based on such processes as those examined in §455, where the measure theory is essential. But for the
moment we can leave this to look after itself.

Innumerable variations on the concept of ‘martingale’ have been investigated. Here I have looked only
at ‘local’ martingales; ‘approximately local’ and ‘virtually local’ martingales will come in the next section.
Submartingales will reappear in §626, and supermartingales and quasimartingales in §627.

By far the most important martingale in mathematics is Brownian motion, which here appears in 622L.
In the proof I appeal to Dynkin’s formula, a fundamental result in the theory of harmonic functions in §478.
I did warn you, in the introduction to this volume, that applications might depend on ‘further non-trivial
ideas’. But I ought to confess at once that there is an alternative proof, not dependent on anything in §478,
using ideas in §632 below.

Once we have observed that martingales are local integrators (622H), it is clear that we should try to
understand indefinite integrals with respect to martingales, which is indeed where stochastic integration
began, with It&’s formula for integrals with respect to Brownian motion. Most of the rest of this chapter
will be about integration with respect to martingales. Here I begin with a couple of baby steps, 622P-622Q),
about L2-martingales. Since jump-free processes will often (subject to an appropriate interpretation of the
word ‘locally’) be locally || ||co-bounded, 622Q) will take us a long way with jump-free martingales.

Version of 10.12.21/21.8.23

623 Approximately and virtually local martingales

I have presented a number of contexts in which an indefinite integral ii,(u) can be expected to share
properties with the integrator v (614D, 614T, 616J, 618Q). In contrast with this pattern, we can have a
martingale with a corresponding indefinite integral which is not a martingale (622Xj), and this occurs in
some of the central examples of the theory (631Ya). However the indefinite integral is often ‘almost’ a
martingale in some sense. In this section I give what I think is the most important result in this direction
for the Riemann-sum indefinite integral (6230). In the generality here, we need to go a good deal deeper
than in §622, with what I call ‘virtually local’ martingales (623J). These depend, in turn, on a special class
of operators on spaces of locally moderately oscillatory processes (623B).

(©) 2018 D. H. Fremlin
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623A Notation (2, i, T, (As)ier, T, (Ar)re7) will be a stochastic integration structure. If S is a sub-
lattice of T, Ma(S), Mob(S), Mmo(S) and My, (S) will be the spaces of fully adapted, order-bounded,
moderately oscillatory and locally moderately oscillatory processes with domain S, My (S) C Mg, (S) will
be the space of processes with bounded variation, and Z(S) will be the set of finite sublattices of S. If
h : R — R is a Borel function, h will denote either of the corresponding operators on L°(2) or My (S)
(612Ac, 612Ia, 615Fb). L' will be L'(2,z). For 7 € T, P, : L' — L' N L°%(2L,) will be the conditional
expectation associated with the closed subalgebra 21, and if z € L' Pz will be the martingale (P, z),c7.

623B The operators R4: Proposition Let S be a sublattice of 7 and A C S a non-empty downwards-
directed set.
(a) We have an f-algebra homomorphism R4 : Mimo(S) = Mimo(S) defined by setting
RA(<UU><7€S) = <hmpJ,A Ucf/\p>0€$

whenever (us)secs € Mimo(S), and if u € My, (S) then Ra(u) € Mo (S).
(b) hR4 = Rah : Mimo(S) — Mimo(S) for every continuous function h : R — R.
(c) Take 4 = (Uy)res € Mimo(S) and express u' = Ra(u) as (u))yes.
(i) The starting values lim, s u/, and lim, s u, are defined and equal.
(ii) If w is || [[1-bounded then u’ is || ||1-bounded and sup,cg ||u || < sup,es ||to|:-

(d) Write S for the covered envelope of S. If u € My, (S) has fully adapted extension @ to S, then R (i)
is the fully adapted extension of R4(u) to S.

proof (a)(i) If v = (uy)ses is locally moderately oscillatory, lim,j 4 usp, is defined (615Gb) and belongs
to L%(2,) for every o € S (613Bj). If o, 7 € S then

[o =7] C infyca [tuonp = Urnp] C [limppa tonp = limy 4 wrp,],
S0 RA('U,) S Mfa(S)

(ii) Because addition, multiplication and modulus are continuous functions on L°(2), R4 : Mo (S) —
M, (S) is an f-algebra homomorphism.

(iii) If v = (us)oes is moderately oscillatory, then |usn,| < sup Ju| whenever ¢ € S and p € A, so
|lim, 4 uonp| < sup [u| whenever o € S, and Ra(u) is order-bounded, with sup |[Ra(u)| < sup |u]. So we
have an operator R4 : My,o(S) — Mo, (S) which is continuous for the ucp topology.

(iv) If u = (uy)ses is non-decreasing, non-negative and order-bounded, then whenever o < 7 in § we
shall have

0 < Ugpp < Urpp < sUP [u
for every p € A, so
0 <limpya tonp < limppa urp, < sup |ul.
Thus R4 (u) is also non-decreasing, non-negative and order-bounded.

(v) It follows that if u € My (S), that is, u is expressible as the difference of two non-decreasing non-
negative order-bounded processes. then Ra(u) € My, (S). Now as R4 : Myo(S) = Mo (S) is continuous,

RA[MmO(S)] = RA[MbV(S)} C Ry [Mbv(s)] c MbV(S) = Mmo(s)a

and R4 (u) is moderately oscillatory whenever u € My, (S).

(vi) Generally, if 4 € Mio(S), take any 7 € S. Then AAT = {p AT :p € A} is a non-empty
downwards-directed subset of S A 7, and u|S A 7 is moderately oscillatory, so Raa,(u]S A7) is moderately
oscillatory, by (i)-(v) above. And if ¢ € S A 7 then

liInpiA Uonp = 11rnpiA UsATAp = liIan,A/\‘r U Avy

$0 Ra(u)[S AT = Ranr(u]S A7) is moderately oscillatory. As 7 is arbitrary, R4 (u) is locally moderately
oscillatory, as claimed.

(b) If A : R — R is continuous, h o LO(2A) — LO(A) is continuous (613Bb) and h(limp 4 urs,) =
limp 4 h(urnp) for every locally moderately oscillatory 4 = (uy)ses and 7 € S.
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(c)(i) By 615Gb, u = lim, s u, is defined. Now if € > 0, there is a 7 € S such that 6(u, —u}) < € for
every 0 € S A 7. In this case, if 0 € SAT, O(usp, —uy) < € for every p € A, so §(ul, —uy) < e Aseis
arbitrary, lim, s ul, = u;.

(i) Writing ~y for sup,cs [|uo |1, {z : @ € LO(A), ||z||; <~} is closed (613Bc), so contains lim,| 4 uyn,
for every o € S.

(d) We know that @ is locally moderately oscillatory (615F(a-vi)), while of course A is a non-empty
downwards-directed subset of S, so we can speak of R4(t). Looking at the formula in (a), we see that if we
express U as (Uy)oes and @ as (Uy) g, then we have Ra(u) = (u})ses and Ra(@) = (i), . s where

u, = lim,) 4 ugp, for o €S,

a,, = lim,y 4 Ugp, for o €S,

so that 4/ = u/ for 0 € S and R4 () extends R(u). Since R4(u) is fully adapted ((a-i) above), it must be
the fully adapted extension of R4 (u)
Remark The elementary case in which A = {p} is a singleton, so that Rs(u) = (tusrp)oes (612Ib), will be

a useful guide. But I introduce the idea here primarily for the sake of applications based on the construction
in 6231 below.

623C Proposition Let S be a sublattice of 7. For a non-empty downwards-directed set A C S let
Ry @ Mino(S) = Mimo(S) be the operator described in 623B. Let A, B C S be non-empty downwards-
directed sets.

(a) Setting AVB = {pVp' :pc A, p' € Bland AAB = {pAp' :p€ A, p' € B}, Rayp+Rarp = Ra+Rp.

(b) Ranp = RARp = RgRa.

(c) If B C A, then RaRp = Ry; in particular, R% = Ra.

(d) If B is a coinitial subset of A, then Rp = R4.

proof (a) Of course both AV B and A A B are non-emptu downwards-directed sets, so we can speak of
Ravp and Raap. Take a moderately oscillatory process u = (uy)ses. If 0 € S, then

lim w / lim  wpp, = lim w / U /
(g VAT T B ereAe = I 5 eV na) F pra) A Ao)

(because T is a distributive lattice, by 611Ca)

- (pﬁp’l)i?zlﬁleupM T UpAa
(612D (1))

= M tene F et no
As o is arbitrary, Rayp(u) + Rarp(u) = Ra(u) + Rp(u); as u is arbitrary, Ravp + Ranp = Ra + Rp.
(b) Take 4 = (Us)oes € Mimo(S) and o € S, and set

Vo = liMp AnB Uonp, Wo = lim, alim, g U(aAp)Ap! -

Let € > 0. Then there are p € A, p' € B such that 8(v, — ugrpr,) < € Whenever p € A, p' € B, p < p and
p < p'. Next, there are 7 € A, 7 € B such that

T< ﬁ7 e(wa - liInp’\LB ua/\T/\p’) < €,

7_/

IN

ﬁla 0(“0/\7’/\7" - liInp"I,B ua/\'r/\p’) S €.
<

Since we also have 0(v, — Uonrar) < €, we see that (v, — wy) < 3e. As € is arbitrary, v, = w,. As o is

arbitrary,

RA/\B(U) = <U0>cr€$ = <wcr>cr€$ = RARB('U')

As u is arbitrary, Raap = RaRp. Similarly, RgRa = Rpra = RanB-
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(c) If BC A, consider A* ={p:peS, p <pforsome p € A}. Then A* is closed under A and A is
coinitial with A*; as B C A, AANB C A* is also coinitial with A*. Now if 4 = (u,)ses is locally moderately
oscillatory, lim,| 4 Ugnp, limyy a4« Usnp, and lim,) anB Usp, are all defined and equal for every o € S. As u
and o are arbitrary, R4 = Rax = RanB-

d) If B is a coinitial subset of A then of course lim,| g usn, = lim,; 4 usA, Wwhenever the latter is defined.
Pl P P P

623D Proposition Let S be a sublattice of 7 and A C S a non-empty downwards-directed set. Let
R4 : Mino(S) = Mimo(S) be the operator described in 623B. If v = (v, ),cs is a (local) integrator, R4 (v)
is a (local) integrator.

proof Express v/ = Ra(v) as (v))oes.
(a) Consider first the case in which v is an integrator.

(i) If p € A then Qs(d(Ryp3(v))) € Qs(dv). P Take z € Qs(dRyp(v)). If S = () then surely
z =0 € Qs(dv). Otherwise, 616C(iii) tells us that there are a fully adapted process & = (i,)scs such that
[#]loo <1 and 79 < ... <7, such that

z= Z?:_ol Ur, X (U7i+1 Ap UnAp) = Z?:_Ol Ursnp X (vn+1/\p - vn/\p)
because if i < n then
[I:ﬂTj,/\p 7é aTl]] g IITl A p < TZ]] g IITL A p = Ti-’rl /\pﬂ g IIUT7;+1/\p - UT¢/\[)I|'
So z € Qs(v), by 616C(ii). Q

(i) Qs(dv’) € Qs(u,dv). P If z € Qs(dv')\{0}, express it as St (u, dv") where I € Z(S), u = (uy)per €
Mz, (I) and ||u)|eo < 1. Let (70,...,7y) linearly generate the I-cells. Then

Z_ZUTI ﬂ+1_ v —hmZuT (Vripinp — Vrap)
pLA 4
= Llfg S[(U, dR{p} (’I))) € Qs (uﬂ d’l))

by (i). Q
(iii) Since Qs(dv) is topologically bounded, so is its closure (613B(f-iii)), and v’ is an integrator.
(b) Now suppose that v is a local integrator. Take 7 € S. Set B = {7 Ap: p € A}; then B is a non-empty
downwards-directed subset of S A 7, so we have a corresponding operator Rg on Mno(SAT). Aswvis a

local integrator, v[S A T is an integrator and Rp(v[S A7) is an integrator, by (a). Express Rg(v[S A7) as
(W )oesnr- o €SAT,

P s s oy,
v, = limp 4 Vonp = limp 4 Vonrnp = limy B Von, = Wy,

Sov'|S AT =Rp(v[SAT)is an integrator. As 7 is arbitrary, v’ is a local integrator.

623E Proposition Let S be a sublattice of 7 and A C S a non-empty downwards-directed set. Let
R4 i Mimo(S) = Mimo(S) be the operator described in 623B. If 4 = (uy),cs is a martingale, R4 (u) is a
martingale.

proof wu is locally moderately oscillatory (622H) so R4(u) is defined; express it as (u]),es. The point is
that if o € S then /) is the limit 1lim,| 4 P,u, for the norm topology of L*. I For p € A,

Uonp = Popplie = PyPyuy = Pyug

(622Ba). Next, 1lim, 4 P,z is defined for every z € L°(2), by 621Cg, and this must also be the limit
lim, 4 P,z for the topology of convergence in measure (613B(d-i)). So we have

ul = lm,) 4 uonp, = lim, 4 Pyue = Uim,| 4 Pyu,,
as claimed. Q

If now o <7in S,
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Pyul. = P;(llim Pyu,) = lim P, Pyu,
pLA pLA

(because P, : L' — L' is || ||;-continuous)

= Uim P,Pyu, = llim P,u, = u.,
pLA pLA
and Ra(u) = (ul)scs is a martingale.

623F Proposition Let S be a sublattice of 7, A C S a non-empty downwards-directed set and Ry4 :
Mino(S) = Mimo(S) the operator described in 623B. Suppose that 4 = (u,)secs is locally moderately
oscillatory.

(a) If u is order-bounded, the residual oscillation Osclln(R4(u)) is at most Osclln(u).

(b) If u is (locally) jump-free, then R4 (u) is (locally) jump-free.

proof Express u’' = R4(u) as (ul)scs.
(a)(d) As
|, | < SUPpea [ugnp| < sup |ul
for every o € S, v’ is order-bounded and Osclln(u’) is defined.
(ii) If I € Z(S) then, in the language of 618B, Osclln;(u') < Oscllnj(u). P If I is empty, this is trivial.
Otherwise, take (79, ... ,7,) linearly generating the I-cells. Take p € A and i < n. Then
[[p < Ti]] c [[Ti Np= p]] n [[Ti+1 ANp= P]] c [[uTi+1AP — Urinp = 0]]
c [[|u7'i+1/\P - uTi/\P| § OSCHI];(U)]],
[7i <plnlp < mipi] € [mi Ap =7l nlriss A p=med(7i, p, it1)]

- [[Un_,_l/\p — Ur;Ap = Umed(Ti,p,7i11) — un]]

€ [[wriianp = trinpl < Oscling(u)]

(618Ca),
[rivs <pl S lmiAp=m]0lrips A p=Tita]
C [urinp = trinp =ty — un] € [lur,inp = trnp| < Oscllng (w)].
So in fact [ur,,,np = Urnp| < Osclln(u). Taking the limit as p | A, [u], = —uf,| < Oscllnj(u). Asiis
arbitrary, Osclln;(u') < Osclln}(u) (618Ba). Q
(iii) Now

Osclln(u') = inf  sup Oscllny(u')
I€1(S) cIez(S)

< inf su Osclln® (u
B IEI(S)IgJeg(S) sw)

= inf sup Osclln (u)
1€Z(S) rIcJCKeZ(S)

= inf sup  Oscllng (u) = Osclln(u).
1€Z(S) ICKeZ(S)

(b)(i) If uw is jump-free, then it is order-bounded (618B(b-ii)) and Osclln(u) = 0, so Osclln(u’) = 0 and
o’ is jump-free.

(ii) If u is locally jump-free, then we can apply (i) toul|SATand AAT={pAT:p€ A} to see that
u'|S A 7 is jump-free for every 7 € S, so that ' is locally jump-free.

D.H.FREMLIN



26 Martingales 623G

623G Proposition Let S be a sublattice of 7 and A C S a non-empty downwards-directed set. Let
R4t Mimo(S) = Mimo(S) be the operator described in 623B. If u = (u,),es is locally moderately oscillatory
and v = (v,)ses is a local integrator,

Ra(iiy(w)) = iR, v) (@) = TR, ) (Ra(w)-

proof (a) Since u' = R4(u) is locally moderately oscillatory (623Ba) and v’ = R4(v) is a local integrator
(623D), all the indefinite integrals are defined everywhere on S; while i, (1) also, being a local integrator
(616Q(c-1)), is locally moderately oscillatory (616Ib), so we can speak of w’ = R4 (i, (u)).

For I € Z(S) and p € S write IAp for {oAp: 0 € I}. Expressu’, v, w’ and 2’ = iiy (u') = dig, (v)(Ra(u))
as (U Yoecs, (V)oes, (W))ses and (2] ),cs respectively.

(b)Ifo<rtinSandpeS,

Ugnp X ('U'r/\p - va’/\p) =Us X (UT/\p - 'Ua/\p)~
P
[uone # usl Clp <ol CloAp=T1NAp]C[vony = vrnpl,

80 (Ugnp — Us) X (Urpp — Uonp) =0. Q
Letting p | A, we see that

Ug X (U7 = Ug) = ug X (V. — V).
It follows at once that
Sr(u',dv’) = Sy(u,dv’)
for every I € Z(S), and therefore that iy (u) = iy (u') = 2’
(c) Take 7 € S and € > 0. Thereis a Jy € Z(SAT) such that §(Siarn,(u, dv) —fs/\ﬂ\pud'v) < e whenever
p € Sand I € Z(SAT) includes Jo (613V(ii-3)), and a J; € Z(SAT) such that 6(S;(u', dv") — [, w' dv') < e
whenever I € Z(S A7) includes Ji. Let I be the sublattice generated by Jo U J; U {7}. Let (70,...,75)

linearly generate the I-cells. If p € A, then (179 A p,... , 7, A p) linearly generates the (I A p)-cells (611Kg),
while of course I Ap =1 AT A p because 7 = max I. Accordingly

SI/\T/\p(uv d’U) = Z?;Ol Ur; Ap X (vri+1Ap - Un/\p)
SO
1
0310 Urinp X (Vriyinp — Vrinp) — fSATApudv) <e

Taking the limit as p | A,

that is,
O(Sr(u,dv’") —wl) <e.

Since we also have J; C I € Z(S A T), 0(Sp(u/,dv’) — z.) < € and we conclude that O(w, — 2 ) < 2e. As T
and e are arbitrary,

w' = 2" = ity (W),

and we know from (b) that the last is equal to 74y (u). So we have R4 (iiy(u)) = iig, () (Ra(®)) = iig, v)(u),
as claimed.

623H Corollary Let S be a sublattice of 7, A C S a non-empty downwards-directed set and R4 :
Mimo(S) = Mimo(S) the operator described in 623B. If v = (v,),es is a local integrator with quadratic
variation v*, then R4(v*) is the quadratic variation of R4 (v).

proof We know that v is locally moderately oscillatory (616Ib again). Writing v’ for R4(v), 623D and
623G tell us that v’ is a local integrator and R4 (i, (v)) = @i, (v'). Now
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(W) = @) = 2iiy (v') — (v])*1
(where v] is the starting value of v')
= Ra(v?) — 2R 4 (iiy(v)) — v]1
(623Ba, 623B(c-i))
= Ra(v® — 2iiy(v) — v71)
(because R4(1]S) = 1[S)
=Ra(v)".

6231 Lemma Let S be a finitely full sublattice of T (definition: 6110). Suppose that u = (u,)ses is a
moderately oscillatory process, 7* € S and M > 0.
(a) Set
A={p:peS [p<7]c[lu,| = M]}.
Then 7" € A and p A p’ € A whenever p, p' € A.
(b) Let Rg : Mimo(S) = Mimo(S) be the operator described in 623B. Suppose that v = (vs),es is a

moderately oscillatory process such that R4 (v) = v.
(i) [lug| = M] C [vs = v;] whenever o < 7in S A 7.

(ii) Expressing Ra(u) as (u))ses, [[u,| > M] C [vy = v+] for every o € S. In particular, [lu| > M] C [u, = u

proof (a) 7" € A just because [7* < 7*] = 0. To see that A is downwards-directed, repeat the formula in
the proof of 615Ma: if p, p’ € A, then

([p<Alnlp<mDully <plnlp <77
c(lp=<plnflupl = M) u (e < pln[luy| = M])

(Ip < T llupnp | = M) U ([P < p] N [lupnp | = M])
[lupnp | = M]

[onp <7']

and pAp' € A.

)G If o < 7in SAT* set a = [|ug] > M]. Then a € A, C A+ so there is a p € T such that
aClp=oc]and 1\a C [p=7*]. As S is finitely full, p € S. Now

lp<7lca=1lo=olnllusl > M] C [Ju,| > M]

and p € A.
If p/ € A and p’ < p, then

aclp=onplclp=cnplclrip <onp]=[rAp =cA/p]
(because we are supposing that o < 7)
C [vrap = vonp]-
As p is arbitrary,
0 € My yaveny = limygavong] = [or = v,]
because R4(v) = v.

(ii) For any p € AAT*, 0 A p < 7% 50 [|uonp| > M] C [vopp = vr+]. But we are supposing that

v = RA(’U) = R{p}RA(’U)
(623Cc, with B = {p})
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= Ry (v),

SO Vgpp = Vo and [|ugp,| > M] C [vs = v+]. Now

[lugl > M] = [[Timyya ugnp| > MJ € sup [lugn,| > M]
PEANT*

(because 7* € A, so AAT* is coinitial with A)

C [ve = vr+]-

As Rg(Ra(u)) = Ra(u), we can apply this with v = R4(u) and get [Jul| > M] C [ul, = ul.].

623J Definition Let S be a sublattice of 7 and u a locally moderately oscillatory process. Let S be
the covered envelope of S and 4 = (i), ¢ the fully adapted extension of u to S. Recall that @ is locally
moderately oscillatory (615F (b-v)). I will say that u is an approximately local martingale if for every
o € § and € > 0 there is a non-empty downwards-directed set A C & such that sup,¢c 4 Aflp < o] < e and
R4 (u), as defined in 623B, is a martingale; while u is a virtually local martingale if 4 is an approximately
local martingale.

Remarks Note that as the covered envelope of S is itself, u is a virtually local martingale iff % is. And if
S has a greatest element we can drop the ‘for every ¢’; u will be an approximately local martingale iff for
every € > 0 there is a non-empty downwards-directed set A C S such that sup ¢ 4 ifp < max S| < € and
R4 (u) is a martingale.

In the context here, since A is downwards-directed, {[p < 7] : p € A} is upwards-directed, so that
sup e 4 fifp < o] will always be fi(sup,e 4 [p < o]) (321C).

623K Proposition Let S be a sublattice of 7.
(a)(i) The space Maim(S) of approximately local martingales on S is a linear subspace of Mipyo(S).
(ii) The space My (S) of virtually local martingales on § is a linear subspace of Mo (S).
(b)(i) A local martingale on S is an approximately local martingale.
(ii) An approximately local martingale on S is a virtually local martingale.
(iii) If S is finitely full, a virtually local martingale on S is an approximately local martingale.
(¢) Ifu € Myn(S) and A C S is a non-empty downwards-directed set, R4(u), as defined in 623B, is a
virtually local martingale.
(d) Every virtually local martingale on S is a local integrator, therefore locally moderately oscillatory.
(e)(i) If w € Mg, (S), then u is an approximately local martingale iff u[S A 7 is an approximately local
martingale for every 7 € S.
(ii) If w € Mg, (S), then u is a virtually local martingale iff u|S A 7 is a virtually local martingale for
every T € S.
(f) A uniformly integrable approximately local martingale on S is a martingale.
(g) If S # 0 and u = (uy),es is a virtually local martingale, then lim, s u, is defined and belongs to L.
(h) f u = (up)oes € Mym(S) and 7 € S then (v — u,1)[S V 7 is a virtually local martingale.

proof Let S be the covered envelope of S; for a fully adapted process u with domain S, write @ = (t,),, cé
for its fully adapted extension to S.

(a)(i) It is built into the definition in 623J that a virtually local martingale is locally moderately oscil-
latory. If u, v € Myn(S), 7 € S and € > 0, let A, B C S be non-empty downwards-directed sets such
that sup,c 4 i[p < 7] < 3¢, Ra(u) is a martingale, sup 5 filp < 7] < € and Rp(v) is a martingale. Then
A A B is a non-empty downwards-directed subset of S and Rarp(u) = RpRa(u), Raap(v) = RaRp(v) are
martingales (623Cb, 623E). So Rarp(u + v) is a martingale (622Db), while

sup ffp < 7] = sup plpAp <7] = sup a(f[p<7julp <7]) <e
pEANB pEA peA
p'eB p'eB

As 7 and € are arbitrary, u 4+ v is an approximately local martingale.
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Ifu € Myw(S) and a € R, then for any 7 € S and € > 0, we have a non-empty downwards-directed set
A C S such that sup,c 4 fi[p < 7] < € and Ra(u) is a martingale. Now Ra(au) = aRa(u) is a martingale.
So au € Mo (S).

(i) By definition, My (S) = {u : u € Mino(S), @ € Malm(S‘)}, where S is the covered envelope of
S and @ is the fully adapted extension of u to S. Since Muy,(S) is a linear subspace of My (S), by (i),
and u — @ : Mimo(S) = Mimo(S) is a linear operator (615F (b-v), 612Qb), My (S) is a linear subspace of

Mino(S).

(b) (i) Suppose that u = (u,)scs is a local martingale. Take any 7 € S and € > 0. Then there is a 7/ € S
such that u[SA7’ is a martingale and 7’ < 7] < e. Of course A = {7’} is a non-empty downwards-directed
subset of S and sup,c 4 [p < 7] = [7" < 7] has measure at most e. Now

RA('&) = <hmpJ,A uo’/\p>0’€5 = <UUAT’>U€S

agrees with 4 on S A 7 and is constant on S V 7, so is a martingale (622E(b-ii)). As € is arbitrary, u is an
approximately local martingale.

(ii) Now suppose that u is an approximately local martingale. Take 7 € S and € > 0. As in part (b) of
the proof of 622N, there is a 7 € S such that a[7 < 7] < e. Now there is a non-empty downwards-directed
set A C & such that sup, e 4 fifp < 7] < € and Ra(u) is a martingale. Of course A A 7 is now a non-empty
downwards-directed subset of S and

sup fifp < 7] =supplp AT < 7] <supp([p <7Ju[r <7])

PEANT pEA pEA
<sup(afp < 7] + &[T < 7]) < 2,
peEA

while Ranz(u) = Rzy Ra(u) (623Cb) is a martingale (623E) and Ranz(@) is the fully adapted extension of
Ranz(u) (623Bd) and is therefore a local martingale (622Nb). Accordingly Raaz(@)[S A7 is a martingale.
On the other side of 7,
Ran:(@)[SVF=RyR(z(@)[S V7
is constant, so Raa7 (@) is a martingale (622E(b-ii) again).
(iii) This time, suppose that u is a virtually local martingale, so that 4 is an approximately local

martingale, and that § is finitely full. Take 7 € § and € > 0. Then there is a non-empty downwards-
directed set A C S such that Ra(u) is a martingale and sup,c 4 fi[p < 7] < €. As we can replace A with

A AT we can suppose that A C SA 7. Set B = Upealo 0 €S, p <o} Then B is a downwards-directed
subset of S and

Supyep o < 7] < sup,eq plo < 7] < e
The point is that Rp(u) = Ra(u)[S. P Express 4, Ra(@) and Rp(u) as (iq),c g, (Uy),cs and (Uy)oes
respectively.

Take any o € S and 1 > 0; then 4, = limpy 4 gnp and Uy = limgyy g usn,. Let p € B be such that
0(to — usnp) < n whenever p € B and p < p. As there is a p € A such that p < p, we can find a p € A such
that p < p and (@, — ii,p,) < 7. Because p € S, sup,cg [p = v] = 1 and there is a finite set I C S such
that a > 1 —n where a = sup,¢; [p = v]. Now a € A; C A; so there is a p* € T such that a C [p* = g]
and 1\ a C [p* = 7] (6111). We have

sup,eru(ry [P* = v] 2 sup,er([p* = plnlp=vl)ulp” =] 2au(1\a) = 1;
as S is finitely full, p* € S. Consider p = p* Ap. As p=pAT < p* (611]), p < p and p € B. Also
aclpr=pl=[p"=pN
=)
aclp=plclonp=0np]cuocny = tiorp]

and
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9(“0‘/\p - i)’U/\[)) < ﬁ(l \ a) < 1.
But since also §(ly — usnp) < 1 because p € B and p < p, while 6(u, — t,55) < 1 by the choice of p, we see
that
9('&0 - ﬂ;) < 0(710 - ua/\p) + 6(“0/\/} - ﬂo’/\[)) + a(ﬂ:; - ﬂa/\ﬁ) < 377'

As o and 7 are arbitrary, R4(4)[S = Rp(u). Q
Consequently Rp(u) is a martingale (622D(b-ii)). As 7 and € are arbitrary, u is an approximately local
martingale.

(c) As observed in (a-i) of the proof of 623B, we can regard Ry4 either as an operator on My, (S) or as
an operator on Mlmo(g). Again take T € Sand € > 0, and let B C S be a non-empty downwards-directed
set such that sup,cp fifp < 7] < € and Rp(w) is a martingale. Then RpR4(4) = RaRp(a) (623Cb) is a
martingale (623E). As 7 and € are arbitrary, R4(u) is a martingale.

(d) If u = (ug)oes is a virtually local martingale and 7 € S, let € > 0. Then there is a non-empty
downwards-directed set A C S such that Ra(t) is a martingale and jia < e, where a = sup,c4 [p < 7].
Express the martingale R4(@) as v’ = (uj), .s. This is a local integrator (622H), so WS AT is an

integrator. If o € S AT, then
Nac[r<plclo<p]clonp=o]clion =iol
for every p € A, so
up x x(1\a) =limppa Gonp X x(1\ @) =lim, 4 Gy X x(1\a) = us x x(1\a).

But this means that [u) # 4,] C a; as o is arbitrary, [u’ ISAT 4SS A 7] C a has measure at most €. As e
is arbitrary, @[S A 7 is an integrator (616P(b-iii)); as 7 is arbitrary, @ is a local integrator. Now 616Q(b-i)
tells us that u is a local integrator, therefore locally moderately oscillatory (616Ib once more).

(e)(i)(e) If u is an approximately local martingale and 7 € S, let € > 0. Then there is a non-empty
downwards-directed A C S such that fp < 7] < € for every p € A and R4(u) is a martingale. We have

alonT<tl=plp<t] <e

for every p € A. Write AAT for {p A7 :p € A}; then AA 7 is a non-empty downwards-directed subset of
SATand fifp < 7] < € for every p € AAT. Now

RA/\T(U'TS A T) < hm uo/\p>o€8/\7’ <11H1 uo’/\p/\T>UES/\T
pLA pLA
= (limuoprp)oesnr = Ra(u)[SAT
pLA

is a martingale. As € is arbitrary, u[S A 7 is an approximately virtually local martingale (see the remarks
in 623J).

(B) If u|S A 7 is an approximately local martingale for every 7 € S, take 7 € S and € > 0. Then
there is a non-empty downwards-directed set A C S A 7 such that sup, ¢ 4 fi[p < 7] < € and Ra(u[S A7) is
a martingale. As 7 and € are arbitrary, u is an approximately local martingale.

(11) (a) If w is a virtually local martingale and 7 € S, then @ is an approximately local martingale. By
(1), @]S A 7 is an approximately local martingale. But @[S A 7 is the fully adapted extension of ]S A T to
the covered envelope of S A 7, so u[S A T is a virtually local martingale.

(B) f ulSAT is a virtually local martingale for every T € 8, that is, | SAT is an approximately local
martingale for every 7 € S, take any o € S and € > 0. Let 7 € S be such that ar < U]] < 1€ (611Mh). Then
there is a non-empty downwards-directed set A C & A7 such that sup,e4 filp < 7] < 26 and R4 (u[S AT) is
a martingale. By 623Cb, Raponr ('&[S AT) = Rioary Ra ('&[S‘ AT) is a martingale and Ranonr ('&[S ANo AT)
is a martingale; as Ranonr (@[S V (o0 A 7)) is constant, Ranenr (@) is a martingale (622E(b-ii) once more).
Now

glphonT <o <plp<oAT]+a[r <o] <e
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for every p € A, that is, ifp < o] < e for every p € AN AT. As o and € are arbitrary, @ is an approximately
local martingale and u is a virtually local martingale.

(f) Let u = (uy)yes be a uniformly integrable approximately local martingale. Set C' = {u, : 0 € S},
so that C is uniformly integrable. Then its closure C (for the topology of convergence in measure) is also
uniformly integrable (621B(c-ii)). Take 7 < 7" in S and € > 0. Let 6 > 0 be such that ||ux xa|; < € whenever
u e C and fia < § (621Ba). Then there is a downwards-directed set A C S such that sup,c 4 ip < 7] <8

and R4 (u) = (u)),ecs is a martingale. For 0 € S, we have u), = lim,| 4 usn, € C and if 0 < 7’/ then
a=[uy # U] C sup,cqoAp# o] Csup,eqlp <]
has measure at most §, so
[ufy = ol = flug X xa — us x xally < 2e.

Consequently

| Pyt —urlls < |[Prays = Praly |l + | Pyl = + ot = ur s

<y — w1 + 0+ 2€ < 4e.
As € is arbitrary, Pru,s = u,; as 7 and 7’ are arbitrary, u is a martingale.

(g) By 615H, limy s ue = lim 18 fiy. Because S is non-empty. there is a non-empty downwards-directed
A C 8 such that (uy),cs = Ra(@) is a martingale. Take any 7 € S. By 623B(c-i), lim | s ug is defined and
equal to limgis iy = lim, s Uuy; by 622Ed, this common value belongs to L!.

(h)(i) To begin with, suppose that S is full. If 7/ € SV 7 and € > 0, then there is a non-empty
downwards-directed set A C S such that n[p < 7'] < € for every p € A and R4(u) is a martingale. Now
Ririna(u) = Ry Ra(u) is a martingale, by 623Cc and 623D, so Riryva(u) — Ry (u) = Ra(u) — Rirypa(u)
(623Ca) is a difference of martingales, therefor a martingale (622D(b-i)).

It follows at once that Rg;3va(u)[SV T — R (u)[SV 7 is a martingale. But as {7} V A and {7} are
non-empty downwards-directed subsets of SV 7, we can speak of Ry 3y a(u[SV 1) and Ry (u[SV T). Now
R{T}vA(u[S \Y 7') = R{T}VA('U') [SV T and

Ripy(ulSVT) =u 1[IV T = Riryva(u1[S V).

So we see that Ry-yva((w—u,1)[SVT) is a martingale. And of course fifp < 7'] < ¢ for every p € {7}V A.
As 7/ and € are arbitrary, (u — u,1)[S V 7 is a virtually local martingale.

(ii) For the general case, given that u € My,(S) and 7 € S, we know that & € My (S), so (i)
tells us that (@ — 4,1) ISV risa virtually local martingale; but this is just the fully adapted extension of
(w —u,1)]SV 7 to the covered envelope SV 7 of SV 7 (611M(e-1)), so (u — u,1)]S V 7 is a virtually local
martingale.

623L Theorem Let S be a non-empty sublattice of T, and v = (v,)ses a || ||1-bounded approximately
local martingale. Write « for sup,cs ||vs1-

(a) v is an integrator, therefore moderately oscillatory, and lim,¢s v, is defined.

(b) ¥ = sup,cs |vo| is defined in LO(A), and 6(v) < 2,/7.

proof (a) If 2 € Qs(dv), then 6(5z) < § + 17:/57 for every § > 0. P Express z as Y1 u; X (Vripy — Vry)
where 79 < ... < 7, in S and u,, € L°(2A,,), ||ur,[lo < 1 for each i < n. Then there is a non-empty,
downwards-directed A C S such that sup,c4 fifp < 7] < ¢ and (v}),es = Ra(v) is a martingale. Now
[lvr]ls <« for every 7 € S, just because the ball {z : ||z]|1 <~} is closed for the topology of convergence in
measure (613Bc once more) and v], = lim, 4 v, belongs to {v, : 0 € S}.

1

Setting 2" = > ui x (v],,, —vl), [ # 2] C sup,e4 [p < 7] has measure at most §, so (0z) <

0(6z") + §. But we see from 621Hf that

06') < VBY + AldlZ'| > VO] < VBT + 2o, [l < 17V
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and 0(0z) <0+ 17/6v. Q
As 0 is arbitrary, Qs(dv) is bounded and v is an integrator. Accordingly it is moderately oscillatory
(616Ib, as always) and lim,+s v, is defined (615Ga).

(b) If B C § is a finite set, then

Allsupoc s os > B1) <3
for every 8 > 0. P If B is empty, this is trivial. Otherwise, let § > 0. Write I for the sublattice of
S generated by B, and take 79 < ... < 7, linearly generating the I-cells (611L). Let A C S be a non-

empty downwards-directed set such that sup ¢ 4 filp < 7,] < ¢ and (v} ),es = Ra(v) is a martingale. Then
!/

(vl ,...,v. ) is a finite martingale adapted to (2,,...,2. ), so

70 Y ¥ Th

> B]) < Ll |

by 621E, while ||v} || <, asin (a) above. Again, [vr, # v].] C sup,e4 [p < 7] for each i, so i([sup; <, [vr,

> f]) <

% + 6. But if we write v for sup,,, |vr, |, then

llvg| <0 2 sup;<;, [ = vr] 2 sUpic,, [0 = 7] =1
for any o € B, by 611Ke. So sup,¢p |[vs| < v and [sup,cp|ve| > B] € [v > 7] has measure at most % +9.
As 0 is arbitrary, fisup,cp |ve| > B] < % Q

Accordingly ¢y = sup,¢s [|vs| > 7] has measure at most %, by 321D. Since this tends to 0 as 8 increases

to 00, U = sup,cg |vo| is defined in LO(2), and
ﬂ[[17>l3]]:ﬂ67§%
for every 5 > 0 (364L(a-ii)). Consequently

0(v) <7+ a[o > /7] <27

623M Doob’s quadratic maximal inequality: Proposition If S is a non-empty sublattice of T,
v = (Us)oes is an approximately local martingale, and v = sup,cg ||vo||2 is finite, then v is order-bounded
and || sup |vl]]2 < 2.

proof (a) It will simplify things if we note at once that as || ||2-bounded sets are uniformly integrable
(621Be), v is a uniformly integrable approximately local martingale and is actually a martingale (623Kf).

(b)(i) Let us suppose to begin with that S is finite and totally ordered; let (7)<, be its increasing
enumeration. Write o for sup |v| and v, for v, ; set a; = [v > ¢] for ¢ > 0. Then tfa; < E(|v,| X xat) for
every t, by 621E.

(i) We need to know that if u > 0 in LO(2) then E(u x ©) = [;" E(u x xa;)dt, where [...dt is
integration with respect to Lebesgue measure. P If u = x¢, then

E(uxv):/ooou[[uxv>t]]dt

(by the definition of integration in L*(2, 1), see 365A and 365Da)
= / plenay)dt = / E(u x xa)dt.
0 0

Because E is a linear functional, E(u x v) = [ E(u x xa;)dt for every u in S(2) as defined in §361.
Generally, given u € L°(2()*, there is a non-decreasing sequence (u,)nen in S(A)T with supremum u, and
now {u, x v:w € S(A)T, n € N} is a non-decreasing sequence with supremum u x v (353Pa%), so

4Formerly 3530a.
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E(u x 0) = sup,,cy E(u, X 0) = sup,cn fooo E(u, X xa)dt = fooo E(u x xay)dt
because E(u x xa¢) = sup, ey E(u, X xa;) for every ¢, so we can use B.Levi’s theorem at the last step. Q

(iii) Note also that v2 < P;(v2) for every i < n, where P; is the conditional expectation associated
with 2, by Jensen’s inequality (621Cd). So E(vZ,) < E(v}?) is finite for every i.

(iv) We see now that

o||2 = E(?) = 00‘172 slds = OO‘T) slds = - i[v
o]z = E?) / Alo? > s]d / Ao > ald / 2t > fdt

= 2/ tiagdt < 2/ E(|vn| x xai)dt = 2E(|v,| X ©)
0 0

(by (i) and (i)
< 2flvallo |17l

by Cauchy’s inequality (244EDb). Since we know that

[9]]2 < Z?:o [|vr

2 < (n+1)y
is finite, ||7]l2 < 2||vp]|2.

(c) If § is any non-empty finite sublattice of T, let (0y, ... ,0,) linearly generate the S-cells; then v =
SUp; <, |vo,| (612Dd) and we can apply (b) to see that [|0]|2 < 2[[vmax sl2- In general, setting o7 = sup, ¢ v, |
when I € Z(S), starting with oy = 0, [|v;|2 < 2 for every I, while (07)c7(s) is upwards-directed, so

E(o?) =E( sup 97) = sup E(o?)
I€Z(S) I€Z(S)

(365Df)

< sup 4%
1€1(S)

taking square roots, we have the result in the general case.

Remark See 275Yd.

623N Theorem Let S be a non-empty sublattice of 7 and v = (v,)scs an approximately local martin-
gale.

(a) v is a martingale iff v[S A 7 is uniformly integrable for every 7 € S.
(b) The following are equiveridical:

(i) v is uniformly integrable;

(ii) there is a z € L! such that v = Pz[S;

(iii) {vs : 0 € S} is || [|1-bounded and ||v4|l1 > sup,es ||ve |1, where vy = limyts Vo5

(iv) v is a martingale and the limit llim,+s v, is defined in L!.

proof (a)(i) If v is a martingale and 7 € S, then v[S A7 = Pv,|S A 7 is uniformly integrable by 622Fa.

(ii) Now suppose that v[S A 7 is uniformly integrable for every 7 € S. If 0 < 7 in S, v[SA T is a
uniformly integrable approximately local martingale (623Ke) so is a martingale (623Kf) and v, = Pyv,. As
o and T are arbitrary, v is a martingale.

(b)(i)=(iv) If (i) is true, then (a) tells us that v is a martingale. Of course A = {v, : 0 € S} is
|| [li-bounded, so 623La tells us that z = lim,4s v, is defined and belongs to L'. Now A U {z} is uniformly
integrable, so the topology of convergence in measure and the topology defined by |||1 agree on A U {z},
and z = llimy4s ve. Thus (iv) is true.

(iv)=-(iii) Suppose that (iv) is true. Observe first that
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[volls = [[Povrlls < l[orllx

whenever ¢ < 7 in S. Now we are supposing that z = llim,qsv,. Because the embedding Lt S LY is
continuous (613B(d-i)), z is also lim,+s v,. Moreover,

[12l1 = Uimors [vo 1 = supges [|voll
because o — ||v,]|1 : S = R is non-decreasing. So (iii) is true.

(iii)=-(ii) Suppose that (iii) is true. Set v = sup,cs ||vs]l1. By 623La, the limit vy is defined; we
are supposing that |jur]z > 7. In fact we must have equality, because || ||1-balls are closed; in particular,
vy € L/}—t

() v is a martingale. I Take 09 < 01 in S, and € > 0. Since vy € {v;:T €SV}, |lvpi <
SUP,csve, [|Ur]l1 and there is a 7 € S such that oy <7 and |Jv-[[1 > [lop]i —€ >y —e.

Let 6 > 0 be such that E(|jv, X xa|1) < € whenever o € {0g,01,7} and fia < §. Let A C S be a
non-empty downwards-directed set such that sup,c 4 fi[p < 7] < § and (v ),es = Ra(v) is a martingale.
Set a = sup,c 4 [p < 7], so that fia < 4. Since v = lim,| 4 vy,

[o7lln < suppea llvrnpllt <.
On the other hand, 1\ a C [v], = v,], so
E(lvr x x(1\a)]) = E(jor x x(1\ a)]) = [[or[ls = E(Jvr x xal) 2 v —2e.
So E(|vl. x xal) < 2e. Next, for ¢ either 0 or 1,
a; = Hvzlri 7& Udi]] ¢ a, pa; < d
and a; € Xy,. So

E(|vg,| x xa:) = E(|Po,vf] x xa:) < E(Po, 7] X xa:)
= E(Py, (V7] x xa:)) = E([v7] x xa:) < 2¢,

while also E(|vo,| % xai) <€, 50 |lvg, — vy, |l1 < 3e.
Now we see that

||U170 - Pffovcfl ”1 < 6e + ||U£_O - Pffovérl ”1 = Ge.
As 0¢, 01 and € are arbitrary, v is a martingale. Q

(B) Now note that v = llim,qsv,. I Let € > 0. By 613D(b-iv), there is a § > 0 such that
Iz — v4]l1 < € whenever ||z|l1 < |lvg|l1 and 6(z — v4) < . But there is a 7 € S such that 0(v, —vy) <6
whenever o € SV 7, 50 ||[v, — v4][1 < € for every 0 € SV 7. Q But now we see that

Ve = lim,4s Povy = Py (limqs v,) = Pyvp
for every o € S. So (ii) is true.

(ii)=-(i) As in (a-i), this is immediate from 622Fa.

6230 Theorem Let S be a sublattice of T, u = (uy),es a locally moderately oscillatory process and
v = (Vy)ses a virtually local martingale. Then ii,(u) is a virtually local martingale.

proof It is worth noting straight away that because u is locally moderately oscillatory and v is a local
integrator (623Kd), ii,(u) is certainly defined everywhere on S. If A C § is non-empty and downwards-
directed, R4 : Mimo(S) = Mimo(S) will be the corresponding operator as described in 623B.

part A Suppose for the time being that S is full and has a greatest element, v is a martingale, and
| sup [u|||ooc < 1. Then v = Pupaxs|S is an integrator and is order-bounded.

(a) Let € > 0. Consider the || ||;-bounded martingale ¥ = (U5)s,es Where Uy = Py|Umaxs| for o € S. This
is order-bounded (622G); let M > 0 be such that fia < € where a = [sup [9| > M]. Set

A={p:peS8, [p<maxS] C [|v,| > M]}
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as in 623I. Note that
[w# Ra(w)] € sup,c4 [p < maxS] C a
for every w € Mimo(S). Express v/ = R4(v) as (v))secs and 9" = Ra () as (7))ses-
(b) Now iy (u) is a martingale.

P(i) Let 6 > 0. Then there is an 5 > 0 such that (24 %)y + /Mn < 6. Let M’ > M be such
that ||(Jvmaxs| — M'xD)T|l1 < 5. Set w = med(—M'x1, vmax s, M'x1), w1 = (Vmaxs — M'x1)" and we =

(=0l axs — M'x1)T; then vpmaxs = w + w1 — wa, w is square-integrable, wy > 0, wy > 0, |Jw1]l1 < n and

lwa]l1 < n. Consider the martingales w = (P,w)scs, W1 = {Prw1)ses, Wa2 = (Pyws2)ses and the associated
martingales w' = Ra(w) = (W )pes, W) = Ra(wy) = (W), )secs and wh = Ra(wsz) = (wh,)ses.

(ii) We have | Pow||2 < |Jw]l2 < M for every o (244M, 366H (b-iii)), so ||[w |2 = || lim,j a4 Poppwll2 < M’
for every o0 € § (613Bc). Thus w' is a || ||o-bounded martingale, while we are supposing that u is moderately
oscillatory, so ¢, (u) is a martingale (622Q).

(iii) Observe that
0 < wllg = }){B} Pcr/\pwl < Llfg Pcr/\p"UmaxS‘

= lim VoAp = U/
P o
pJ,A

for every 0 € S. Now R4(w}) = w) (623Cc), soif o <7in S,
[wl, > M] € [7, > M] < [}, = w},]
by 623I(b-i). It follows that if 7o <... <7, in S, then (w},,,...,w}, ) is a non-negative martingale and
[wh, > MI € [wh,, = i, In [l = w1 € [, = ), ]

whenever i < j <n. So (Ur,,...,Ar,), (Wi,,... i, ) and (ur,... ,ur,) satisfy the conditions of 6211I.
Moreover,

[wir, 1 < sup || Prw:
ocES
(623B(c-ii))

< willr <.

So 6211 tells us that

n—1
M
1D x (Wi, = i)l <6+ 2+ F)llwir, [l + 4/ Mwl,
=0

§5+(2+%)n+\/Mn§25

by the choice of 7.
Re-expressing this in the standard form I am using for Riemann sums, we have

157 (u, dwy)|[1 < 26

for every finite sublattice I of S. Again because ||||;-balls are closed for the topology of convergence in
measure, it follows that || [, wdw||; <26 for every 7 € S.

(iv) Similarly. || [, wdwhl[y < 26 for every 7 € S. But now recall that vmaxs = w + w1 — w2 s0
Punaxs = Pw+ Pwy; — Pwy, v =w +w; —ws, v =w +w) —w), and

! __ / / /
fSMudv —fSATudw +f$/\Twa1_fS/\7-wa2
for every 7 € S. So
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||f8/\7_’ll:d’0/ o \]“S'/\'rudlwln1 S 49
for every 7 € S. Since iiy (u) is a martingale, by (ii) above, and § is arbitrary, i, (u) is a martingale
(622Ec). Q
(c) Recall now that
ity () = FiRp, (v) (w) = Ra(iiy(u))
by 623G. So R (iiy(u)) is a martingale. Since e was arbitrary, ii,(u) is a virtually local martingale (see the
remarks in 623J).
part B I set out to strip away the extra hypotheses demanded in part A.

(a) Of course it will be enough to suppose that S is full and has a greatest element, v is a martingale
and || sup |u|||« is finite, since then we can apply (A) to a non-zero multiple of w.

(b) Now suppose that S is full and has a greatest element and that v is a martingale. In this case, u is
still moderately oscillatory and order-bounded. Let € > 0, and take M > 0 such that fisup |u| > M] < le.
Set

A={p:peS, [p<maxS] C [lu,| = M[}

as in 6231. Then A is non-empty and downwards-directed and sup,c 4 fifp < maxS] < %e‘ Set u' =
(u)oes = Ra(u), v/ = (V)oes = Ra(v) and @& = (Uy)pes = med(—M1,u', M1). Then v’ and @ are

moderately oscillatory, v is an integrator (623D) and || sup |@||| o < M is finite. If ¢ < 7 in &, then
[ao # u5] € [lugl > M] < [vy = v/]

(6231(b-1) again), so @, X (v, —v.) = ul x (v —v.). Accordingly S;(&,dv’) = S;(u', dv’) for every I € Z(S)
and i4, (u') = ity (@). But v’ is a martingale (623E again), so (a) just above tells us that i, (@) is a virtually
local martingale and accordingly i, (u’) is a virtually local martingale.

Let B C S be a non-empty downwards-directed set such that sup ¢ 5 filp < max S| < e and Rp (iiy (')
is a martingale. Setting v = Rp(v’) and v’ = Rp(u’), 623G tells us that iiy (u”’) = Rp(iiy (u')) is a
martingale. But v = RpR4(v) = Raarp(v) (623Cb) and similarly u” = Raap(u). Applying 623G again,
we see that

Rapp(iin(w)) = iR, .5 w) (Rans(w)) = iy (u”)

is a martingale. And for any ¢ € § we have

sup ffp < o] < sup [fp < maxS] = sup fp A p’ < maxS]

PEANB pEANB pEA
p'EB
= sup f([p < maxSJu[p’ < maxS])
peEA
p'eB
< sup (afp < max S| + afp < maxS]) <e.
€A
Jen

As € is arbitrary, i, (u) is a virtually local martingale.

(¢) Thirdly, consider the case in which S is full and has a greatest element but v is only a virtually
local martingale. Take ¢ > 0. Then we have a non-empty downwards-directed set A C S such that
ilp < maxS] < e for every p € A and Ra(v) is a martingale. By (b), i, () (u) is a virtually local
martingale. Let B C S be a non-empty downwards-directed set such that sup,cp ifp < maxS] < %e and

Rp(iig, @) (w)) is a martingale. By 623G and 623Cb once more,
Rapnp(iin(w)) = iR, pw) (@) = lirgra@w) (@) = BB (iR, @) ()

is a martingale. As in (b), we have sup,c 4, p fifp < maxS] < e. As € is arbitrary, i, (u) is a virtually local
martingale.

(d) If we suppose only that S is full, then for each 7 € S we have a moderately oscillatory process u[SAT
and a virtually local martingale v[S A 7 (623Ke again), while S A 7 is full and has a greatest element. By
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(¢), ilyrsar(W[S A T) is a virtually local martingale. But this is just i, (u)[S A 7. So #4,(u) is a virtually
local martingale, by 623Ke in the other direction.

(e) Finally, in the general case, the covered envelope S of S is full, the fully adapted extension @ of u
to & is locally moderately oscillatory (615F(b-v)) and the fully adapted extension @ of v is a virtually local
martingale (623J). So (d) tells us that ii; (@) is a virtually local martingale. But #i3 (@) is the fully adapted
extension of iiy(u) (apply 613Uc to S A7 for 7 € S), so i, (u) itself is a virtually local martingale (623J
again).

This completes the proof.

623X Basic exercises (a) Let S be a sublattice of T, A C S a non-empty downwards-directed set
and u a locally moderately oscillatory process with domain S. (i) Show that if u is order-bounded then
R4 (u) is order-bounded and sup |R(u)| < sup |ul, (ii) Show that if w is locally order-bounded then R4 (u)
is locally order-bounded, (iii) Show that if u is of bounded variation, then R4 (u) is of bounded variation and
JsldRA(u)] < [ |dul. (iv) Show that if w is locally of bounded variation, then R4 (u) is locally of bounded
variation. (v) Show that if 1 < p < 0o and u is || ||,-bounded (622Ca), then R4(u) is | ||,-bounded.

(b) Let S be a sublattice of T and A C S a non-empty downwards-directed set. Let R4 : Mimo(S) —
Mimo(S) be the operator described in 623B. Show that if 4 = (us)ses is a local martingale then R4(u) is
a local martingale.

(c) Show that Brownian motion w on 7T, as described in 6127, is not an L'-process, and that there is a
T € T¢ such that w[7; V 7 is not a virtually local martingale.

(e) Let S be a sublattice of T and 4 = (u,)ses a virtually local martingale. Show that u[S’ is a virtually
local martingale for any ideal S’ of S.

(f) Let S be a sublattice of 7 and 4 = (u,)scs a virtually local martingale. Show that u, = u, whenever
o, 7€ S and A, =2A,.

(g) Let S be a sublattice of T and u = (u,),es a fully adapted process. Show that the following are
equiveridical: (a) u is a virtually local martingale and u, € L; (8) u[S A7 and u[S V 7 are virtually local
martingales.

(h) Let S be a sublattice of 7. Suppose that u € M, (S) and for every 7 € S and € > 0 there is a
o € S such that fifo < 7] < € and u|S A o is a virtually local martingale. Show that u is a virtually local
martingale.

623Y Further exercises (a) Let S be a sublattice of T and u = (uy)ses a virtually local martingale.
Suppose that A C S is non-empty and downwards-directed, inf A € S and A4 = ﬂae 4 2As. Show that
Uinf A = th\LA Ug -

623 Notes and comments At the price of a substantial effort, we have a theorem on indefinite integrals
with respect to virtually local martingales which matches the form of the corresponding results on processes
of bounded variation (614T), integrators (616J) and jump-free integrators (618Q). But 6230 is especially
important because martingales, and in particular Brownian motion, are central to any theory of stochastic
integration. And its difficulty lies largely in the fact that an indefinite integral with respect to a martingale
is not necessarily a martingale (631Ya). In the framework I have settled on for this volume so far, ‘virtually
local martingale’ is the best I can do. I ought to tell you that in the more conventional framework of
right-continuous filtrations (§632), virtually local martingales on ideals of T are actually local martingales
(632Ib), and that the corresponding special case of 6230 is a good deal easier to prove, while being a
sufficient foundation for the standard theory.

Observe that 623La covers Doob’s martingale convergence theorem (275G, 367Ja). If we have a || ||1-
bounded virtually local martingale (ve)ses, it is moderately oscillatory, so limy4s v, = v¢ is defined, and
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inf,essup,csyy Vo — v4| = 0 (615Ga), corresponding to order*-convergence in L° as defined in 367A, that
is, to almost-everywhere pointwise convergence of sequences of measurable functions (367F).

The main theorems of this section (623L-6230) involve awkward shifts between ‘approximately local’ and
‘virtually local’, which will have echoes later. As long as we restrict ourselves to finitely full lattices, there is
no difference (623K(b-iii)). I am reluctant to impose such a restriction generally because the Riemann-sum
integral does not insist on it (613T), and many of the ideas of this volume can be effectively expressed in
terms of lattices of constant stopping times. Indeed applications often begin with processes defined on such
a lattice, as in 612H. When we come to the structure theory of integrators, the concept of ‘virtually local’
martingale will provide a particularly striking formulation of the main theorem (627Q).

Version of 21.2.23/22.8.23

624 Quadratic variation

We are at last ready to determine the quadratic variation of Brownian motion (624F). I take the oppor-
tunity to tidy up some simple consequences of results in §§617 and 623 (624B-624E), and to give useful facts
about L?-martingales (624G-6241I).

624A Notation (2, ji, T, (A¢)ier, T, (A, )re7) will be a stochastic integration structure. I write L, L2,
L% for LY(A, 1), L*(2A, i) and L>°(2A) respectively. E will be the integral on L' and 6 will be the F-norm
defining the topology of convergence in measure on L°(2l), as in 613B. If v and w are local integrators with
the same domain, [v]w] will be their covariation (617H); v* = [v]v] is the quadratic variation of v.

624B Theorem Let S be a non-empty sublattice of 7 and v = (v,)ses, W = (Wy)ses virtually local
martingales such that v, x w; € L' where v, = lim,|sv, and w; = lim,|sw,. Then v x w — [’UT’U)] is a
virtually local martingale.

proof We know that v and w are local integrators (623Kd), so the covariance [v]w] is defined everywhere
on S (617Hb). We have

v X w — [V ]w] = iy (v) + iy (w) + 21

where z = vy x wy € L°((,csUo); as z € L', 21 is a martingale. But 4y (v) and iy (w) are virtually local

martingales, by 6230, so v X w — ['va] is a virtually local martingale.

624C Proposition Let S be a sublattice of 7 and v = (vy)scs, W = (Wy)oes local integrators. If one
of them is locally jump-free and one is locally of bounded variation, then ['va] = 0. In particular, if v is
locally jump-free and locally of bounded variation, then v* = 0.

proof (a) Suppose that v is locally jump-free and w is locally of bounded variation. Take any 7 € S. Set
W =[5, |dw|. Take any € > 0. Let 6 > 0 be such that §(z x @) < € whenever 0(z) <. Let I € Z(S A T)
be such that 6(Oscllnj(w|SAT)) <6 (618B). If J € Z(SAT), J 2 I and e is a J-cell, express e as c(o, T)
where o < 7 in J; then

A (1, dv dw)| = |vr — vy| X |wr — wy| < Oscllny(v) x Aq(1,|dw|).
Summing over the J-cells,
|Ss(1, dv dw)| < Oscllny(v) x Sy(1,|dw|) < Osclln;(v|SAT) X
and 0(S;(1,dvdw)) <e. As € is arbitrary,
J o, B dw =lim 17577 S (1, dv dw)) = 0.

This is true for every 7 € S, so [v]w] = 0.
Of course the same arguments will apply if v is locally of bounded variation and w is locally jump-free.

(b) If v is both locally jump-free and locally of bounded variation, then (a) tells us that v* = [v]v] = 0.

By 617M, it follows that [vT'w] = 0. Similarly, [’va] = 0 if w is locally jump-free and locally of bounded
variation.
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624D Lemma Let S be a sublattice of 7, and v = (v,)secs a virtually local martingale. Then the
following are equiveridical:

(i) v is constant;

(ii) v is locally jump-free and locally of bounded variation;

(iii) the quadratic variation of v is zero.

[ For 624E/653G, want [v # v 1] C [v* # 0]]

proof (i)=-(ii) is trivial.
(ii)=(iii) is immediate from 624C.

(iii)=(i) The result is trivial if S is empty, so let us suppose otherwise. By 623Kd again, v is locally
integrable, so its quadratic variation is defined everywhere on §. By 623Kg, v; = lim,|s v, is defined and
belongs to L!(2A, ji).

(o) Suppose to begin with that S is full and that v; = 0. Because the quadratic variation of v is
zero, v? = 2ii,(v) is a virtually local martingale (6230 again). Take 7 € S and ¢ > 0. Let A C S
be a non-empty downwards-directed set such that sup,c4 fi[p < 7] < € and z = Ra(v?), as defined in
623B, is a martingale. Express z as (2,)0ecs. Then lim, sz, = lim, svZ = 0 (623B(c-i)). The set
{26 10 € SAT} ={Pyz; : 0 € S A7} is uniformly integrable (621Cf), so the || ||;-limit Wim, s 2z, is zero
(621B(c-ii)) and

E(z,) =lim, s E(P,z;) = lim, s E(2,) = 0.

As 2z =limy a0vZ,, >0, z- = 0.
Now note that
[vr # O] = [v7 # 2] C sup,ea [v7 # v7,,] € sup,cap < 7]
has measure at most e (because A is downwards-directed). As € is arbitrary, v, = 0; as 7 is arbitrary, v = 0
is constant.

(B) Next, suppose just that S is full. Set w, = v,—v for 0 € S and w = (w,),ecs. Since vy € L'(A, 1),
v, 1 is a martingale and w =v—ul is a virtually local martingale. Next, (w, —w,)? = (v, —v,)? whenever
oc<7in§, so fS/\T (dw)? fSAT (dv)? for every 7 € S, and the quadratic variation of w is equal to v* = 0.
By (o), w =0 and v is constant

() Finally, for the general case, let S be the covered envelope of S and © the fully adapted extension
of v to §. As noted in 623J, v is a virtually local martingale. Its quadratic variation is the fully adapted
extension of v* (617N) so is zero. By (8),  is constant, so v is.

624E Corollary Let S be a sublattice of T and v = (v, ),es a virtually local martingale with quadratic
variation (v}),es. If 7, 7/ € § are such that vX = v, then v is constant on SN [T A7/, 7V 7'].
we need vy # v] C [vf # vi ] for 653G

proof (a) To begin with, suppo&e that 7 < 7/. Write S for S N [7,7']. As v* is non-decreasing, v¥ = vZ,
that is, [5, (dv)? = [, (dv)?, for every o € SN [r,7]. By 623Kh and 623K(e-ii), (v — v,1)[S V 7 and
w = (v —v,1)[Sp are virtually local martingales. Now Aw = Av[S; 2T so

fS /\O’ dw fS /\O’ d’U fS/\ d’U fS’

for every o € S, that is, the quadratic variation of w is zero. By 624D, w and v = w + v, 1 are constant on
So-

(b) This deals with the case 7 < 7/. But for the general case, given that v} = v¥,, we have
[r<r]crAT =7]n[rvr =7]
< [[’U:/\‘r’ = U;k']] n [[Ui\/‘r’ = ’U:’]] < [[’Ui/\‘r’ = U:\/T’]]

and similarly [7/ < 7] C [v¥,,, = v*
7'].

rvrl- So vk, =wvk,, and (a) shows that v is constant on SN [T AT/, TV
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624F Theorem Let w = (w;),c7; be Brownian motion. Then its quadratic variation w* is the identity
process .

proof By 622L, w and w? —¢ are local martingales. Next, w? —w* = 2ii, (w) is a virtually local martingale,
by 624B, so w* —¢ is a virtually local martingale. Because both w* and ¢ are non-decreasing, w* —¢ is locally
of bounded variation. Now recall that w is locally jump-free (618Jc), so w* is locally jump-free (618T), while
of course ¢ is locally jump-free (618Ja). So w* —¢ is a virtually local martingale, locally jump-free and locally
of bounded variation, and must be constant (624D). Since it starts from 0 at min 7, it is zero everywhere
and w* =, as claimed.

624G We saw in 622Q that indefinite integrals with respect to L2-martingales are particularly easy to
analyze. Here I give a characterization and a striking property of such martingales.

Lemma Let S be a sublattice of T, v = (v,)yes an L?>-martingale and v* = (v%),es its quadratic variation.
Then E(v?) < E(v2) for every 7 € S.

proof As before, v* is defined everywhere on S. Now E(S(1, (dv)?)) < E(v?
I €Z(S). P Take (79,... ,7y) linearly generating the I-cells. If i < n, then

V7 .. 7) for every non-empty

PTi(vTi X (UTH»I - UTi)) = U X PTi(UTH»l - UTi) = 07

0
E(Uﬂ X (UTH»I - UTi)) = E(Pﬂ (vTi X (U7i+1 - UT-L))) =0.
Consequently
n—1
(S1(1,(dv)*)) = E(Y_ (vr,y — v7,)%)
i=0
n—1
= E(UTH»I) - E<UTL) ) - QE(UT (U7i+1 - UTi))
i=0
:E'Uzn)*]E( )<]E( maxl) Q
Now if 7 € S,
vy = limpzsar Sr(1, (dv)?) € {z : [|lz[i <E(v?)}.
Bu || ||1-balls are closed for the topology of convergence in measure (613Bc), so E(vZ) = [[vi]|; < E(v2), as
clsimed.

624H Proposition Let S be a non-empty sublattice of T, v = (v,)secs a virtually local martingale with
starting value 0, and v* = (v¥),es its quadratic variation.
a) |lvrll2 < v/|jvils for every T € S.
(b) If moreover v is an approximately local martingale and v* is an L'-process, then v and ii,(v) are
martingales, and ||v,|2 = v/||vi]]1 for every 7 € S.

Remark Recall that I count ||v,||2 as co if v, € L is not square-integrable, and |[v}||; as oo if v: € (L%)*
does not have finite expectation; while of course y/oco is to be interpreted as oo.

proof (a) (i) To begin with, suppose that S is full. Asin 624B v* is well-defined and v*—v? is a virtually local
martingale. Take 7 € § and € > 0. Then there is a non-empty downwards-directed subset A of S such that
a = SUp ¢ 4 [p < 7] has measure at most € and R4 (v* —v?) is a martingale, where R : Mipmo(S) — Mimo(S)
is defined as in 623B. Now R4 (v)* = Ra(v*), by 623H, so 2 = Ra(v*)— Ra(v)? is a martingale. The starting
value of R4 (v) is 0, by 623B(c-i), as is the starting value of R (v*), so the starting value of z is 0; expressing
z as (zo)oes, 0 is the conditional expectation of z, on ) A, (622Ed), so 0 = E(z,;) = E(v}, —v%,),
where v, = lim,| 4 voar and v} = lim, 4 v

ceS

oar- Accordingly

WAl = E(A,) = E(wh,) = [vi,lh < [lvzlh

because 0 < v, < vk
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Now observe that

(03, # 021 € [oar # 0,1 € suppes [ipnr £ 07 € suppenllp < 7l = a
so 0(v2 —v?,) <e. As € is arbitrary, v2 belongs to the closure of {z : ||z|; < ||vf]|1}. But this is a closed
set for the topology of convergence in measure (613Bc again), so ||v2]|1 < ||vX||1, that is, ||vr|l2 < v/|lvX]1-

(i) For the general case, let S be the covered envelope of S and  the fully adapted extension of v to
S, Then S is full and  is a virtually local martingale (623J) with starting value 0 (615H, as v and ¥ are
locally moderately oscillatory). Express @ as (05),.¢ and its quadratic variation 9" as (0})_ .¢. By 617N,
0" extends v*. So (a) tells us that

[vrllz = l9-ll2 < V1102 = vzl

for every 7 € S.

(b) Now suppose that v is an approximately local martingale and v* is an L!-process, that is, [Jv*||; and
therefore ||v-||2 are finite for every 7 € S.

(i) If 7 € S, then

lvall2 < vzl < Vvzlh

for every 0 € SA T, and {v, : 0 € S AT} is ||||2-bounded, therefore uniformly integrable (621Be), that is,
v[S A T is uniformly integrable. By 623Na, v is a martingale.
As v is also an L%-process, 624G tells us that /|[v||1 < ||v.|2 for every 7 € S, so we have equality.

(ii) As for iiy(v), take 7 < 7" in S and c € A,. For 0 € SV 7 set
Wy = Py((vrr — vr) X xC)
so that w = (w,)sesvr is a martingale. Write w* = (w}),csv- for its quadratic variation. We see that if
o € SV T then c € A, so
Wy = Py(vr —v7) X xc = (v, — v;) X xC

because v is a martingale; in particular, the starting value w, of w is 0. As (v, —v,) x xc € L%, w is
an L%-martingale and E(w?) < E(w?) is finite for every 0 € SV 7, by 624G. But from (a) we know that
E(w?2) < E(w}), so we have equality.

*

Now wk, —wk = (v —vi) xxc. Pl <...<7,in SN,

Z;L:O(wﬂurl - wﬂ)Q = Z?:O(U7i+l - UT@)Q X Xe.
So Sr(1, (dw)?) = S7(1,(dv)?) x xc for every finite sublattice I of S N [r,7/]. Taking the limit as I 1
Zsnir ),

wr = dw)? = lim  S;(1, (dw)?
i /Sm[mq( = a8 51 (@0))

= lim  S;(1,(dw)?) x xc
ITZ(Sn[r,7']) I( ( ) ) X

= / (dv)? x xc = (vi, —vF) x xc. Q
SN[r,7']
Turning to expectations, we have

E((vt - v) x x¢) = E(w}) = E(w?) = E((v, — v,)? x x0)

= E((v3 —v2) x xc) + 2E(vy x (v — vy) X xC).
But

E(vr X (v7r — vr) X x¢) = E(Pr(vr X (07 — v) X XC))
=E(v; x Pr(vy —v;) X x¢) =0

SO
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E((0f, — v2) X x¢) = B((22, —42) x x0),
that is to say,
E((v —v2) x xc) = E((v: — v2) x xc).

7_
2

!

As c is arbitrary, P (v}, —v%) = vf —v2. As 7 and 7’ are arbitrary, v* — v?

7./ is a martingale. But as v has
starting value 0,

is a martingale, and the proof is complete.

6241 Corollary Let S be a sublattice of T, v = (Us)oes a || ||2-bounded martingale with quadratic
variation v*, and ¥ = (us)ses a || [|oo-bounded moderately oscillatory process. Then E((fsudv)?) and
E([su?dv*) are finite and equal.

proof By 622Q, z = iiy(u) is a || ||o-bounded martingale, and of course its starting value is 0 (613J(f-1)).
Writing 2* = (2%),es for its quadratic variation, and expressing z as (z,)scs, we have E(z¥) = E(z2) for
every T € S, by 624G and 624Hb. We know also that

Z;k = fS/\T dz* = fS/\T U2dv*
for every 7 € S, by 617Qb.
If S has a greatest member, we just take 7 = maxS. In general, we need to check the limits as 7 T S.
By 622Q) again, E(22) < |lu||% E(v2) for every 7 € S. Since v is || ||2-bounded,

8 = sup, s E(2) = sup, s E(2)

is finite. Now z* is non-decreasing, so

F( / u’dv*) = E(lim u?dv*) = E(lim 27)
S TTS

™S JSar
=E(supz;) =supE(z}) =0
TES TES

(613B(d-iii)). On the other side, we know that if ¢ < 7 in S then
E((2r — 20)%) = E((27 — 22 — 225 % (2r — 25)) = E(27) — E(23)

I =

as in (a-1) of the proof of 624H. Generally, for o, 7 € S,

|2 = 20]12 = B((2r — 20)%) = E((Zovr — Zonr)?)
(612D(f-ii))
=E(z2,,) —E(22,,) <B—E(22,,) =0

oVT ONT

as o, 7 T S. So the || [|2-limit 2lim 4s 2, is defined and must be equal to the limit lim s 2, = fsudv for
the topology of convergence in measure (613B(d-i)); moreover,

B(( [ wd®) = | [ udol} = | 2t =
S S TTS

=lim||z||%? = :]E/ugcl'v*7
lim 2[5 = 5 = B( | w?dv")

as claimed.

624X Basic exercises (a) (i) Let S be a sublattice of 7 and v = (v,),cs @ martingale. Suppose that
7, 7" € § are such that v, = v,/. Show that v is constant on SN[r A7/, 7V 7']. (ii) Give an example in which
there is a local martingale v = (v,),ec7, With quadratic variation v* = (v%),ec7, such that Vmax T = Umin T

but U:aaxT 7& U:ﬂin T
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(b) Let S be a finitely full sublattice of 7 and v, w L?-martingales on S. Show that v x w — [vT'w] is a
martingale. (Hint: 624B, 624G, 623K (b-iii), 623K.)

(c) Let S be a sublattice of T, v a || ||2-bounded martingale with domain S, and u a locally moderately
osciallatory process with domain S. Write v* for the quadratic variation of v. Show that E(([sudv)?) =
E( [ u?dv*) if either is finite.

624 Notes and comments Nothing in this section is surprising, but to get complete arguments I think
a little care is needed. It is easy to believe that |lv,]|2 and ||vZ||; in 624Ha are related, but not so simple
to find exact conditions on the process v which will ensure this in the cases we might encounter. Of course
there are many paths through the forest. In 624Xb, for instance, I sketch an alternative route to the result
of 6221, not relying on Dynkin’s formula.

Version of 6.3.24
625 Changing the measure

I give essential formulae for calculating the effect of replacing a given probability measure g with an

equivalent probability measure 7 (625B-625C). Semi-martingales (625D) remain semi-martingales under
any such change (625F).

625A Notation I continue in the framework developed in Chapter 61. (2, i, T, (Us)ter, T, (Ar)re) will
be a stochastic integration structure, and E; the integral corresponding to fi. For 7 € T, P; : L}L — L}] will
be the conditional expectation operator associated with 2, ; if z € L}], Pz = (P, z);c7 will be the martingale

derived from z (622F). If S is a sublattice of T, Mg, (S) will be the space of fully adapted processes with
domain S, and M), (S) the space of locally moderately oscillatory processes with domain S.

625B Change of law: Theorem Let 7 be a second functional such that (2, 7) is a probability algebra;
write E; and L? for the corresponding integral and L!-space.
(a)(i) There is a unique z € L, such that va = Eg(z x xa) for every a € 2.
ii) [z > 0] =1 and z has a multiplicative inverse 1 in L.
iii) For w € LY, E;(w) = E;(w x z) if either is defined in [—oc, 00].
iv) 1 € L} and fia = E; (L x xa) for every a € 2.
v) For w € L?,

(
(
(
(

well < wxzel},, wel), < wxiell.

(vi) [Prz > 0] =1 for every 7 € T.
(vii) If 7 € T and w € L°(,), then w € L} iff w x P,z € L.

(viii) We have a fully adapted process u = (u,)rc7 defined by saying that u, = PL is the multiplicative

"z

inverse of P,z for every 7 € T.
(b) For 7 € T, let Q, : LL — LL N L°(2A;) be the conditional expectation operator with respect to the
closed subalgebra 2L, for the probability o.
() Ifwe L, Pr(wx2)=Q,w x Prz.
(ii) If w € Lll-“ Qr(w x %) = Pw X QT(%)
(i) Pr(2) x @+() = x1.
(c) Let S be a sublattice of 7, and w = (w,)ses a fully adapted process. Write Q(2) for the 7-martingale
<QT(%)>T€T‘
(i) w is is a v-martingale iff w x Pz is a g-martingale. In particular, w in (a-viii) is a -martingale.
(ii) w is is a local p-martingale iff w x Pz is a local i-martingale.

proof (a) Parts (i)-(iii) are in 3655°. Now (iv) and (v) follow immediately.

(©) 2012 D. H. Fremlin
5Formerly 365T.
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For (vi), we just have to note that

Es(Prz x xa) =Ey(z X xa) = va >0

for every non-zero a € 2., because [z > 0] = 1. It follows at once that u, = Pl is defined for every

r

(364N). We see also that P,z is the Radon-Nikodym derivative of 7[2(, with respect to i[2(.. So, just as
in (iii), given w € L°(A,), Ez(w) = Ez(w x Pyz) if either is defined, and w € L} iff w x Prz € L}. This
deals with (vii).

Forany 7 € T, u, € L°(2;) because P,z € L°(2,). Ifo, 7 € T and ¢ = [0 = 7], then P,2x yc = P,z x xc
(622Bb), so

Uy X XC = Ug X Uy X Prz X xc=1uy X ur X Pyz X xC=1u,; X XC
and ¢ C [uy = u,]. Thus u is fully adapted and (viii) is true.

(b)(i) We know from (a-v) that w x z € L} so P-(w X z) is defined. Take any a € .. We know
that Q-w € L} so Q:w x z € Lj,. Since Q;w x xa € L°(A,), 621Cc tells us that Pr(Qrw X xa x z) =
Qrw X xa X P.z. But this means that

Ez(Pr(w x 2) x xa) = Ez(w X 2z x xa) = Ex(w x xa) = Ez(Q-w x xa)
=Eu(Qrw x z x xa) = Ez(Pr(Qrw X z X xa))
=Ez(Qrw x Prz X xa).
As a is arbitrary, and P (w x z) € ;11 N LO°(2A,), while Q,w x Pyz € LO(,), Pr(w X 2) = Q;w x Prz.

(ii) Exchange i and 7 in (i).

(iii) Set w = z in (ii).

(c)(i) By (a-vii), w is an L;-process iff w x Pz is an L}-process. So we can suppose that both of these

are the case. Now, for 0 < 7in S,

Wy = Qow; <= Wy X Pyz = Qow; X P,z

(because [P,z > 0] = 1)

<= wy X Pyz = Py(w, X 2)
(by (b-i))

< w, X Pyz = PPy (w; X 2)
(because P, P, = P,, by 622Ba)

< wy X Ppz = Py(w; X Prz)
by 621Cc again. So

w is a U-martingale <— w, = Q,w, whenever 0 < 7in S
<= w, X Pyz = Py(w; X P;z) whenever 0 < 7in S
<= w X Pz is a g-martingale.
(ii)
w is a local 7-martingale <= there is a covering ideal S’ of S
such that w|S’ is a v-martingale
<= there is a covering ideal S’ of S
such that (w]8") x Pz is a i-martingale
<= there is a covering ideal S’ of S
such that (w x Pz)|S’ is a i-martingale

<= w X Pz is a local fi-martingale.
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625C The next fact belongs with 625Bc, but the proof demands new ideas, as well as being rather long,
so I have separated it out.

Proposition As in 625B, let 7 be such that (2, 7) is a probability algebra; write E; and L} for the
corresponding integral and L'-space, and let z € L%L be such that va = Ej;(z x xa) for every a € 2. Let S be
a sublattice of T, and w = (w,)ses a fully adapted process. Then w is an approximately local 7-martingale
iff w x Pz is an approximately local fi-martingale, and w is a virtually local v-martingale iff w x Pz is a
virtually local fi-martingale.

proof (a)(i) For a non-empty downwards-directed set A C S, write 24 for (), 4 2o and Pa : L, — LL N
L°(A,) for the corresponding conditional expectation. If w € L}, then Pyw = lim, 4 Pyw = lim, 4 P,w
is the limit for the norm topology of L}L (621C(g-1) again). Consequently
P, Pyw = llim P, P,w = 1lim P- = llim P; = Panr
= U PPy = W P = i P = Py
— 1lim P, Pyw = PP,
Ui Py = PAPw

for any 7 € S. Thus P, Py = P4P, = Pya,. Similarly, writing Q4 : LY — L1 N L°(™A4) for the conditional
expectation corresponding to A4 with respect to the probability measure 7, Q;Qa = QaQ, = Qan, for
every T € S.

(i) Qaw x Pyz = Pa(w x z) whenever w € L}, that is, whenever w x z € L. I

Qa(w) x Pyz =1lim Q,w x P,z = lim P,(w X z) (625B(b-1))
pLA pLA
=Py(wxz) Q

(b) Let B be a closed subalgebra of 2 and P : L, — L; N L°(B) = L],y the associated conditional
expectation. Then

vb=E;(z x xb) = Ez(P(z x xb)) = Egs(Pz x xb),
for every b € B, that is, Pz is the conditional expectation of 7|8 on ji[B. So for w € L°(B)
wel, < welyy < wxPzeLly < wxPzeLj
Also [Pz > 0] =1, just as in 625B(a-ii).

(c) Suppose that A C S is a non-empty downwards-directed set. Let Ra : Mimo(S) = Mimo(S) be the
corresponding operator defined in 623B. Then R4 (w) is a 7-martingale iff R4 (w x Pz) is a fi-martingale.
P Express Ra(w) as (w)),cs. We have

RA(PZ) = <1imp,|,A Pcr/\pz>d€S = <PA/\U(Z)>U€S~
So

Ra(w x Pz) = Ra(w) X Ra(P2) (623Ba)
= (w,, X Papo2)oes-
If 7 € S, then
w) = limy| 4wy, = limp anr w, € LY (Aans)

by 613Bj. So w/. € L} iff w) x Parrz € L}, by (b) above. Thus Ra(w) is an L}-process iff Ra(w x Pz) is
an L}Tprocess.
Suppose that this is the case. If 0 < 7 in S,

Q(T(w;—) X PA/\O'Z = QaQA(ws—) X PA/\O'Z
(because w!. € L°(Aan,) C LO(AA))
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= QA/\a(wfr) X PA/\UZ = PA/\U(U};— X Z)

(by (a))

= Paponr (W, X 2) = P, Paps(wl X 2) = Py(w) X Paprz).

But now we see that

Ra(w) is a v-martingale <= Q,w. = w/ whenever 0 < 7
= Q,w. X Papnoz = W), X Papnyz whenever o < 7
(because [Papsz > 0] = 1, as noted in (b))
< P,(w) X Paprz) = w), X Papoz whenever o < 7
<= Ra(w x Pz) is a i-martingale

which is what I set out to prove. Q

(d)(i) If w is an approximately local p-martingale then w x Pz is an approximately local i-martingale.
P If 7 € S and € > 0, there is a § > 0 such that ia < € whenever ¢ € 2 and va < §. Now there is
a non-empty downwards-directed set A C S such that sup,c 4 7[p < 7] < § and Ra(w) is a r-martingale
(623J). By (c), Ra(w x Pz) is a i-martingale, while sup ¢ 4 fi[p < 7] < ¢; as 7 and € are arbitrary, w x Pz
is an approximately local ji-martingale. Q

(i) If w x Pz is an approximately local fi-martingale then w x Pz x Q(%) is an approximately local -
martingale, where Q(%) = <Qr(%)>re7’ as in 625Bc. P Apply (i) with (@, 7, %,w x Pz) in place of (7, fi, z, w).

Q But Pz x Q(%) =1, by 625B(b-iii), so w is an approximately local 7-martingale.
(iii) Thus w is an approximately local r-martingale iff w x Pz is an approximately local f-martingale.

(e) As for virtually local martingales, let S be the covered envelope of S and 1 the fully adapted extension
of w to S. Recalling that I interpret w x Pz to be defined on domw NdomPz = SNT = &, so that it is
w X (Pz]S), then it is clear that Pz [S, being fully adapted, must be the fully adapted extension of Pz[S
to S, and that @ x Pz is the extension of w x Pz (612Qb). Now we have

w is a virtually local D-martingale
<= W is an approximately local D-martingale (623J)
<= w x Pz is an approximately local fi-martingale ((d) above)

<= w X Pz is a virtually local g-martingale.

This completes the proof.

625D Definition Let S C 7 be a sublattice. A process with domain § is a semi-martingale if it is
expressible as the sum of a virtually local martingale and a process which is locally of bounded variation
(both, of course, with domain S).

Warning! The standard definition of ‘semimartingale’ (no hyphen) is a process which is the sum of a local
martingale, in the sense of 622Cc, and a process which is locally of bounded variation. Most presentations
of the theory take it for granted that the conditions of 632Ib below will be satisfied, so that the distinction
vanishes. Nevertheless, to limit the opportunities for confusion, I will try to be consistent in hyphenating
‘semi-martingale’ when I have the ‘virtually local martingale’ form in mind.

625E Proposition Let S be a sublattice of 7. The set of semi-martingales with domain S is a linear
subspace of the space of local integrators with domain S. In particular, every semi-martingale is locally
moderately oscillatory.
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proof Since every virtually local martingale and every process of locally bounded variation is a local
integrator (623Kd, 616Ra) and the sum of two local integrators is a local integrator (616Qa), every semi-
martingale is a local integrator. Since sums and scalar multiples of virtually local martingales are virtually
local martingales (623K(a-ii)) and sums and scalar multiples of processes which are locally of bounded
variation are again locally of bounded variation (614Q(b-iii)), the set of semi-martingales is a linear subspace
of LO(A)<.

625F Theorem A semi-martingale remains a semi-martingale under any change of law.

proof Let & be a functional such that (2(, 7) is a probability algebra. Suppose that v is a P-semi-martingale.
Express it as v; + vo where vy is a virtually local v-martingale and vs is locally of bounded variation.
Let z € Lll1 be the Radon-Nikodym derivative of ¥ with respect to i, as in 625B. As in 625B, write
Q. : Lt — LI N LO°(A,) for the conditional expectation associated with 21, with respect to 7, and Q(%) for
the v-martingale (Q-(1))-c7. As in (d-ii) of the proof of 625C, Q(2) x Pz = 1.

Set w = vy X Q(%) Applying 625C with (f, 7, z, P) replaced by (7, fi, %,Q), we see that w is a virtually
local fi-martingale and

v1 =v; xQ(2) x Pz =w x Pz.

Writing w) and P,z for the starting values of the local integrators w (625E) and Pz|S, and [w ] Pz] for the
covariation of w and Pz,

v=w X Pz+v,
= [w ]| Pz] + iip. (w) + i (Pz) + (w) x P2)1 + v,

by 617Ka. But iip,(w) and ii,(Pz) are virtually local f-martingales, by 6230, while [wTPz] is locally of
bounded variation (617L). Thus v is the sum of three processes which are locally of bounded variation and
two virtually local ji-martingales, so is a ji-semi-martingale.

Similarly, any ji-semi-martingale is a v-semi-martingale.

625X Basic exercises (a) Suppose that 7' = [0,00[ and % = {0,1}, as in 613W, 615Xf, 616Xa and
622Xd. Let f : [0,00[ — R be a function. Show that f corresponds to a semi-martingale iff f[[0,¢] is of
bounded variation for every ¢ > 0.

(b) Let S be a sublattice of T and v = (vs)ses a semi-martingale. Show that v[S’ is a semi-martingale
for any ideal S’ of S.

(c) Let S be a sublattice of T, u a process with domain S, and z an element of L((, g2, ). Show that
if u is a semi-martingale then zu is a semi-martingale.

(d) Let S be a sublattice of T, u a locally moderately oscillatory process and v a semi-martingale, both
with domain . Show that i, (u) is a semi-martingale.

(e) Let v, w be semi-martingales with the same domain. Show that v x w is a semi-martingale.

625 Notes and comments [ have said repeatedly that stochastic integration is law-independent. At
the same time it is intimately entwined with the theory of martingales, which are emphatically not law-
independent. 625B is a brisk run through the formulae we need if we are to move freely between different
probability measures on a fixed algebra. In 625F we find that the concept of ‘semi-martingale’ again turns
out, remarkably, to be law-independent. The ideas on stochastic processes required to state the result are not
trivial, but they do not mention any kind of integration; while the proof depends on an excursion through
most of the theory of the Riemann-sum integral so far developed. I do not know whether there is anything
one could call an ‘elementary’ proof of 625F.

There is a great deal more to be said about semi-martingales. In 625X I offer a handful of tasters. But
these will be dramatically upstaged by 627Q below.
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Version of 21.1.25

626 Submartingales and previsible variations

Turning to submartingales, I start with the elementary theory (626B-626G). Serious work begins with
what I call ‘previsible variations’ (626J-626K), based on a new adapted interval function PAv (626H-6261).
Now the final formula of §621 gives us the celebrated Doob-Meyer decomposition theorem (626M, 6260).
The computation of previsible variations can be difficult, but I give some basic special cases (626Q, 6265
and 6267T).

626A Notation (2, /i, T, (As)ier, T, (A )re7) is a stochastic integration structure. For t € T, f is the
constant stopping time at ¢ (611A(b-ii)). If S is a sublattice of T, Z(S) is the set of finite sublattices of S.
If o <7in T, ¢(o,7) is the corresponding stopping time interval (611J).

On the L-space L}L = L' (2, i) we have the integral E defined by ji, giving rise to the functional 6(w) =
E(Jw| A x1) for w € LY(2), so that 6 defines the topology of convergence in measure on L°(2). For 7 € T,
P, is the conditional expectation associated with 21.. If w € L}L, Puw is the martingale (Pyw),c7.

If S is a sublattice of T, M, (S) will be the space of fully adapted processes with domain S, and
Mimo(S) C M. (S) the space of locally moderately oscillatory processes.

We shall need to look at the norm and weak topologies on L}L as well as the topology of convergence in
measure on L°(2A). Tt will therefore be helpful to have a notation which distinguishes between the three
corresponding notions of limit. I will use ‘lim’ for limits in L°(2A) for the topology of convergence in measure,
‘1lim’ for limits in L;lz for the norm topology defined by || ||1, and ‘w1lim’ for limits in L}L for the weak topology
SS(L/%,LOO(%)) (365LcY).

626B Definition (Compare 621Db.) Let S be a sublattice of T and v = (v,)scs a fully adapted process.
v is a submartingale if it is an L'-process (definition: 622Ca) and v, < P,v, whenever ¢ < 7 in S.

Clearly every martingale is a submartingale, and every non-decreasing L'-process is a submartingale
(because if 0 < 7 and v, < v, then Pyv, — v, = P,(v; —vs) > 0).

626C Elementary facts Let S be a sublattice of 7 and v = (v,),cs a submartingale.
(a) E(vy) < E(P,v,) = E(v;) whenever ¢ < 7in S.
(b) If &’ is a sublattice of S, then v|S’ is a submartingale. (Immediate from 626B.)

(¢c) If h: R — R is a convex function, hv = (h(vy))ses (612B) is an L'-process and either h is non-
decreasing or v is a martingale, then hv is a submartingale. P If ¢ < 7 in S then h(P,v,) < Py(h(v,))
by Jensen’s inequality (621Cd). If h is non-decreasing, then h(v,) < h(P,v,) because v, < P,v,; if v is a
martingale, then h(v,) = h(P,v,). So in either case we have h(v,) < P,(h(v,)). Q

In particular, aw is a submartingale for every a > 0.

(d) If u = (U )ses is another submartingale, u + v is a submartingale. (Immediate from 6268, because
conditional expectations are linear operators.)

626D Theorem Let S be a sublattice of T and v = (v, ),es a submartingale.

(a) If v is || |[1-bounded, it is an integrator.

(b) If S has a greatest element and {E(v,) : o € S} is bounded below, v is || ||;-bounded.
(¢) If {E(v,) : 0 € S} is bounded below, v is a local integrator.

proof (a) (Cf. 622G) If S is empty, this is trivial. Otherwise, set 8 = sup,cs |[vo|l1. If 2 € Qs(v), it is
expressible as Y7 ' u; x (vr,,, — v,,) where 79 < ... < 7, in S and u; € LO(2,,) and |ju;[|oe < 1 for every
i <n (616C(ii)). By 621Hg,

34
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1= 7E<’U7—0) S -
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llsl > 71 < Z o,
SFormerly 365Mc.
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So

infy508UP.eqs ) Allz[ > 7] =0
and Qs(v) is topologically bounded (613B(f-ii)), that is, v is an integrator.
(b) If @ = inf,es E(vy), and o € S, then
Vo < Prvmaxs, V3 < (Povmaxs)’ < Povl o < Polvmaxs|

and

[velly = E(vy) + E(v;) = 2E(vg) — E(vs) < 2E(Ps|vmaxs|) — o = 2E(|vmaxs]) — o

g

(c) Take 7 € S. Since of course v[SAT is a submartingale (626Cb), (b) tells us that v[SAT is || ||1-bounded
and (a) tells us that ¥]|S A 7 is an integrator. As 7 is arbitrary, v is a local integrator.

626E From 626D we see that a submartingale v will often be moderately oscillatory (616Ib), so will
have limits along directed sets (615G). But for downwards-directed sets we can look for more.

Proposition Let S be a sublattice of T, v = (v,),cs a submartingale and A C S a non-empty downwards-
directed set such that {E(v,) : 0 € A} is bounded below. Then the || [|1-limit llim,| 4 v, is defined and equal
to the limit lim, 4 v, for the topology of convergence in measure.

proof Let ¢ > 0. Then there is a 7 € A such that v, — v,]1 < 3¢ whenever 0 € A and 0 < 7. P Set
v = infyca E(v,). Let 79 € A be such that E(v,,) <y +e€. Then llim,| 4 Pyv,, is defined (621C(g-1)); let
T € A be such that 7 < 19 and ||Pyvs, — Prvg,|l1 < € whenever o € A and o < 7. In this case, if 0 € A and
o < T, we have
[ve = vrllt < Jvo — Povryllt + | Povry — Prosy |1 + | Prvn, — ve |l
< E(P,vry — v5) + € + E(Pros, —v;)
=E(vry — o) + €+ E(vr, —vr) <2(E(vr,) —7) +€<3e. Q

As L}, is complete under || ||1, the limit 1lim,| 4 v, is defined. As the embedding L}, S L°(2) is continuous,
this is also the limit lim,| 4 v,.

626F Proposition Let S be a sublattice of T, and v = (v, ),cs a submartingale such that {E(v,) : o € S}
is bounded below. Let A C S be a non-empty downwards-directed set and R4 : Mino(S) = Mimo(S) the
corresponding operator as described in 623B. Then R4 (v) is defined and is a submartingale.

proof Because v is a local integrator (626Dc), it is locally moderately oscillatory (616Ib) and Ra(v) is
defined; express it as (Vas)pes. f o <7inSand pe€ A, 0 Ap <7 Apand

Vonp < Pa/\pUT/\p = PoPpUr/\p = LaVUrpp-
Now (because {E(vy) : 0 € §} is bounded below) 626E tells us that
VAo = limp g Vonp = Mimp a4 vonp, var = Uimypa vrp,
and therefore
Pyvar = lim,y 4 Pyvrpp.
Accordingly
Pyvar —vae = limypa PoVrpnp — Vopnp = 0

and va, < P,var. As 0 and 7 are arbitrary, R4(v) is a submartingale.

626G Lemma Let S be a sublattice of 7 and v = (vy)ses a submartingale. Let ¥ = () g be the
fully adapted extension of v to the covered envelope Sof S , and S ¢ the finitely-covered envelope of S.

(a) 'f)[gf is a submartingale.

(b) If v is || ||1-bounded then ¥ is || ||;-bounded.
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(c) If S has a greatest element and {E(v,) : 0 € S} is bounded below, then v is a submartingale.
proof (a)(i) ]S is an L'-process. P If 7 € Sy, there is a finite set J C S such that
1= sup,e; [1 = 0] C supye; [0r = 5] € -] < sUPyey [vo]]
so [|o-]l1 <> ses llvoll1 is finite. Q

(i) If 7 € S‘f, o9 < ... <0y, in S and sup,., [T = 0i] =1, then 955, < Popr 0y for every 0 € S. P
Induce on n. The induction starts with n = 0 and 7 = g¢ and vops, < PrrcyVoy-

(a) For the inductive step to n > 1, set 7/ = 7 Aop—1 and d = Jo,—1 < 7] = [7/ <7]. Then
deU,, _,and d C [ =o,_1]n[r =0,]. Now

sup; ., [7" = 0;] 2 sup,;,, [t = o] ud = 1.

So the inductive hypothesis assures us that U, < Pyar0rr. Next,

Py, 07 —0r = Py, (0r —07) = Py, _, (07 — 0rr) X xd)
= Pgn—l((van - Uﬂn—l) X Xd) = Pgw,—l(von - Ugn—l) X Xd
= (Po'nflvo'n - ,Uo'n—l) X Xd Z O
and

PU/\T"UT - Pcr/\‘r’/\an_lv‘r - Po‘/\‘r’Pan_lv‘r Z Pa'/\r’vr’ Z Vonr!-

(B) Set b=[o < 0p—1]. Then

bCloAT=0Aon 1 AT]=[c AT =0NT]
C [tonr = Vonr' ] N [Porrir = Popri7] C [0onr = Donr] N [Porrls > Donr]
(using the last formula in («))
C [Ponrtr 2 Dopr]-

(7) Set
b =lop-1<o]nfo <] €Us.
Then

Poprr X XU = Py Pty x XB = Pyioy x X0 = Py x xb)
(because b’ € )
= Pﬂ(van X Xb/)
(because b C d C [T = 0,])
= P,v,, X xb' = P, P, v, xxV

/ / A /
= Fone, Vo, X xb" > VoAoy, X Xb' = Oopnr X xb

because b’ C [o Ao, =0 AT].
(6) Set V" = [t < o]. Then
b = [[0 AT = TH C [[ﬁﬂ'/\T = QA}TH N [[PU/\T@T = PTT/)T]] C H@O'/\T = U/\T@TII'
(€) Now observe that bud’ ub” = 1. So [0onr < Porrr] = 1, 9oar < Pyar0r and the induction
proceeds. Q
(iii) With 611Pd, this tells us that 9,0 < Pyar0, whenever o € S and 7 € Sf. Now suppose that
7' <7in S; and 0 € S. Then
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[T'=0c] conT=1]
- II{)G‘/\T - @T’]] N [[Pa/\'rﬁr - 7',7-/)7']] C [[{)‘r’ S PT’@Tﬂ'

Taking the supremum over o, [v.s < Prouy] = 1 and vyr < Pow,. As 7/ and 7 are arbitrary, 'ﬁ[S’f is a
submartingale.

(b)(i) Set v = sup,cg ||[voll1. Then |0, ||y < 3y for every 7 € Sy. P If 7 € S, there are o, 0’ € S such
that 0 <7 < o', by 611Pe. Now 9, < P,v,/, by (a) above, so

E(0F) < [|Prvgr[ln < llvorls-
On the other side, v, < P,0, so
E(0;) = E(Py0;) > E(v,)
and
[0rll1 = 2E(07) — E(vr) < 2jvor[l1 — E(ve) < 2[verfl1 + oo < 37. Q

ii) Since {v, : T € S C {v,: 7€ S 613B(g-ii)), and 1-balls are closed in L°(2A) (613Bc),
f
sup_ g [[0-[[1 < 37 is finite and @ is || [|1-bounded.

(c)(i) We know from 626Db and (b) here that # is an L'-process. Suppose that 7 € S and o € S. Then
Vrno < PraoOr. PP Let € > 0. Then there is a § € ]0, €] such that E(|vmaxs — 0| X xa) < € whenever jia < 6.
As sup,es [T = p] = 1, there is a finite set J C S such that a = 1\ sup,¢; [7 = p] has measure at most 4.
Since a € A, C Anaxs, there is a 7 € T such that

INac[r'=7], ac][r=max5].
Now
[vr —vrllt SE(xa X [Vmaxs — v7]) <€
and 7' € S‘f, S0 Vgpnrr < Pyprity and
1\a C [bonr < Poprtr],  0((0gnr — Poprr)™) < fla < e
On the other hand,
O(PoprV7r — Popr¥r) < ||Poprlpr — Poprr |t < |07 — 0r][1 < e,
SO
O((Dgnr — Porr07)1) < 0((0onr — Ponr0r)t 4 |PoprUrr — Popr0]) < 2.
As € is arbitrary, Uoar < Popr0r. Q
(ii) Repeating the argument of (a-iii), we now see that if 7/ € S and 7/ < 7 then [r/ = 0] C [0 < Ppo,]

for every 0 € § and v+ < Py/0,. So v is a submartingale.

626H Proposition Suppose that S is a sublattice of 7 and v = (v, )ses is an L'-process. Then we
have an adapted interval function (definition: 613C) PAv defined by saying that (PAv)(o,7) = Pyv, — vs
whenever ¢ < 7in S.

proof Of course P,v, — v, € L°(,) C A, whenever ¢ < 7 in S, and P,v, — v, = 0 for every o € S.
Suppose that o, o/, 7, 7" € S, 0 < ¢’ < 7/ < 7 and b € 2, is such that b C [o =o' n[r' =7]. Then
b C [P,vr = Pyv,] by 622Bb. At the same time,

xb X P,v, = Py(xb x v;) = Py(xb X v7/) = xb X Pyvp

$0b C [Pyv; = Pyvy ] and b C [Pyvy = Pyivpr]. Since we also have b C v, = vo/] N [urr = v,], b C [Povr — Vo = Porvg —
So the conditions of 613C(a-i) are satisfied by PAw.

6261 Definitions Corresponding to the interval functions PAw of 626H, I will write A, (u, Pdv), St (u, Pdv)
and Qs(Pdv) for A (u,d(PAv)) Sr(u,d(PAv)) and Qs(d(PAv)) respectively, as in 613F and 616B. Simi-
larly, A.(u, |Pdvl|), Sr(u,|Pdv|) and Qs(|Pdv|) will mean A.(u,d|PAv|), S;(u,d|PAv|) and Qs(d|PAv]).
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Note that an L!'-process v is a submartingale iff PAv > 0.

626J Previsible variations Let S be a sublattice of 7 and v = (v,)ses an L'-process. If the weak
limit
127# = WlhmITI(sAT) S'I(].7 Pd’U)

is defined in L}, for every 7 € S, I will say that v# = (v)ses is the previsible variation of v.

626K Proposition Let S be a sublattice of 7. Write Mp.y = Mp.m(S) for the set of L-processes with
domain S which have previsible variations.
(a) If v € Mp.\ then v# is an L'-process (in particular, it is fully adapted) and v — v# is a martingale.
(b) Mp.y is a linear subspace of Mg, (S), and the map v + v# : Mp.\; — M, (S) is linear.
(c) If v is a martingale with domain S, then v € Mp.y and v# = 0.
(d) Suppose that v € Mp_m.
(i) v is locally moderately oscillatory iff v# is locally moderately oscillatory.
(ii) v is a local integrator iff v* is a local integrator.
(iii) v is a submartingale iff v# is a submartingale.
(iv) v is a martingale iff v# is a martingale.
(e) If v € Mp_y then PAv# = PAw, v# € Mp.y and (v#)# = v#.
(f) Suppose that v € Mp_\ and p € S. Express v# as (v¥),es.
(i) v[S A p has a previsible variation, which is v#[S A p.
(ii) [ S V p has a previsible variation, which is (V¥ — v¥)scsv,.
(g) If v € M¢,(S) is such that v[S A p has a previsible variation for every p € S, then v € Mp_y;.

proof (a) Express v# as (v7),¢s.

(i) If 0 < 0’ < 7in S then Pyv,r — v, € LO(R,), so S;(1, Pdv) € L°(2,) whenever I € Z(S A 7).
Since LO(2A(,) N L}L = LY'(2A,,1]2,) is a norm-closed subspace of L}“ therefore weakly closed, it contains
WllimITI(S/\T) S](]_, Pd’v) = U,f#.

Suppose that 7 < 7/ in § and a = [t = 7']. Then a € A, and a C [o = ¢'] whenever 7 < 0 < o’ < 7.
Accordingly
Xa X Pr(Pyvgr — v5) = xa X Pr(vor —v,) = Pr(xa X (V5r —v4)) =0
whenever 7 < 0 < ¢’ < 7/. But this means that xa x S;(1, Pdv) = 0 whenever I € Z(S N [r,7']). Now if
I € Z(S A 7') contains 7, we shall have
xa x (S7(1, Pdv) — Sia-(1, Pdv)) = xa X Spy-(1, Pdv) =0
(613G(a-i)). Asur— xa X u: L}1 — L, is linear and norm-continuous, therefore weakly continuous,
# .
) —Ur) = 11 1, Pdv) — Sia-(1, Pd
xax (v~ vr) = xax wllin (Si(1,Pdo) ~ Sinr(1, Pdo)
= wlli x (S1(1, Pdv) — Sia-(1, Pdv)) =0
wllim, xa x (S1(1, Pdv) — S15,(L, Pio))
and a C [v# = v7].
Thus v# is fully adapted. Since v¥ is defined as a weak limit in L}L for every 7, v# is an L'-process.

(i) If7r <o <o’ <7'in S, then Pr(Pyvy —vs) = Pr(ver—v;); consequently PrSy(1, Pdv) = Pruy —v,
whenever I € Z(S N [r,7']) contains 7 and 7/. Since P, : L), — L} is norm-continuous, therefore weakly
continuous, P, (v¥; —v#) = P (v, —v,), that is, P (v, —v7) = v, —v#. As 7 and 7’ are arbitrary, v — v#
is a martingale.

(b) If u, v € Mp.yv and o € R, u + v and au are L'-processes. So if I € Z(S), S;(1, Pd(u + v)) and
S1(1, Pd(om)) belong to L}, and are equal to S7(1, Pdu) 4+ S;(1, Pdv) and St (1, Pdu) respectively. As the
weak topology on L}] is a linear space topology. the weak limits

wllimzsar S1(1, Pd(u +v)), wllimpsar Si(1, Pd(au))
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are defined and equal to
Wllim]TS/\T S[(l, Pd'u,) + Wllim”\g/\.,— S[(]_, PCZ’U)7 o Wlhm[mgA-,— S[(l, Pd’ll,)
for every 7 € S.

(¢) f v = (vy)ses is a martingale, then P,v, — v, = 0 whenever o < 7 in S, so S;(1, Pdv) = 0 for every
I € Z(S) and v¥ is defined and zero for every T € S.

(d) We know that v# — v is a martingale, therefore a local integrator and locally moderately oscillatory
(622H), and v# — v is a submartingale. Accordingly v# = v + (v# — v) will have any of these properties iff
v does (615F (b-iii), 616Qa, 626Cd, 622Db).

(e) Take o, 7 € S such that ¢ < 7. As v —v¥ is a martingale,
Py (v; —v¥) = v, — v,
and
(PAv#)(0,7) = Pov# — v} = P,v, — v, = (PAv)(0, 7).

So PAv# = PAw. Putting (b) and (c) together, (v#)# = v# — (v —v#)# is defined and equal to v*.

(£)(i) If 0 € S A p then the calculation

v# = wllimjyz(sa0) S1(1, Pdv)

yields the same result if we interpret the right-hand side as

wllimpz(sap)ne) S1(1, Pd(v[S A p)).

(i) If 0 € SV p then for any I € Z(S A o) containing p we have

v# = wllim S;(1, Pdv) = wllim SI/\p(l Pdv) + wlhm vap(l Pdv)
ITZ(SAc) ITZ(SA

(613G(a-i) again)

= wllim S;(1,Pdv)+ wllim S;(1, Pdv)
ITI(S/\p IMZ((SAo)Vp)

(613K)

=7 1li Sr(1,Pd(w[SV p)).
Y +ITI‘(YS\}LI)I/\U) 11, Pd©]S V p)

(g) As with (f-i), this is immediate from the definition in 626J.

626L In this context, it is worth having an elementary fact set out in quotable form.
Lemma Let S be a sublattice of T, v = (v,)ses an L!-process and z a member of L>°(2(). Then
E(z x S;(1, Pdv)) = E(S;(Pz,dv))
for every I € Z(S).
proof If o <7in S,
E(z x (Pyv; —v5)) =E(2 X Py(vr — 05)) = E(Pyz X (7 — vg))

by 621Cb; that is, E(z x A.(1, Pdv)) = E(A.(Pz,dv)) for every stopping-time interval e with endpoints in
S. Summing over the I-cells, E(z x S7(1, Pdv)) = E(S;(Pz,dv))

626M The Doob-Meyer theorem: first form Let S be a sublattice of 7 and v = (v, ),es a non-
negative submartingale. Then v € Mp.\(S) and the previsible variation »# is non-negative and non-
decreasing, with starting value 0.

proof (a) If 0 < o’ in S, then (in the language of 613C and 613E)
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Ac(o,a/)(l,Pd/U) = Povyr —v5 20
so S;(1, Pdv) > 0 for every I € Z(S). For 7 € S, set A, = {S;(1,Pdv) : 1€ I e Z(SAT)}.
(b) Take any 7 € S.

(i) E(z x x[z > 2B%] < 3(%]]3(117) +E((vy — Bx1)")) whenever z € A, and 3> 0. P Let I € Z(SAT)
be such that 7 € I and z = S;(1, Pdv). Take o9 < ... < 0, linearly generating the I-cells. Then (v,,)i<n

is a non-negative submartingale in the sense of 621Db adapted to (Us,)i<n, and z = Z?;OI P, v5, , — Vg,
By Lemma 621J, B2E(z x x[z > 28%] < 3(BE(v,,) + B*E((vs, — Bx1)T)), that is, E(z x x[z > 28°] <
3(3E(vr) +E((vr — Bx1)7))-Q

(ii) The closure A, of A, for the weak topology & of L}L is compact for . I» We can estimate

limsup sup E(|z| x x[|z| > a]) = limsup sup E(z x x[z > «])

a—00 zEA, a—00 zEA,

= limsup sup E(z x x[z > 25?%])
B—o0 zEA,

< limsup3(SE(vr) + E((v; — Bx1)")) = 0
B—00

so A, is uniformly integrable by 621Bb. By 247C, A, is weakly compact. Q
(c) Let F be an ultrafilter on Z(S) such that {I : o € I € Z(S)} belongs to F for every o € S.

(i) For 7 € S and I € Z(S) write I AT for {oc AT :0 € I} € Z(S A 7). Because {S;(1,Pdv) : 7€ I €

Z(S A7)} is relatively weakly compact in L}L, the weak limit vﬁT = wllim;_, 7 Sia- (1, Pdv) is defined in L}L

(3A3De).

11 e arguments of the proof o a now show that v7 = (v _),cs 1s an L -process and that
(ii) The arg f the proof of 626K how that v% = (v% ), cs is an L'-p d th
v — vff_— is a martingale.
(iii) If o < 7in S and I € Z(S) contains both ¢ and 7, then
Sinr(1, Pdv) = Siaqe(1, Pdv) + Sinje,7)(1, Pdv) > Sias(1, Pdv)
(613G(a-i) once more). Taking the limit,
vji = W].limjﬁ_]: S]/\T(]., Pd’l)) Z Wllim]%f S]/\T(]., Pd'v) = ’Uﬁg

because the weak topology of L}L is a linear space topology for which the positive cone {u : u > 0} is closed.

Similarly, vﬁT > 0 for every 7 € S. Thus 'vﬁ is non-negative and non-decreasing.

(d) Now take any z € L () and consider the martingale Pz = (P,2)scs.
(i) If I € Z(S) then

E(z x S;(1, Pdv)) = E(S;(Pz, dv)) = E(S;(Pz, dv%))
PlIfo<7in S then

P, (v, — vﬁT) = Vg — vﬁo, Pov, —v, = ngﬁT — vﬁg
because v — v#_- is a martingale. So PAv = PA'vf’f_- and

E(S;(Pz,dv)) = E(z x S;(1, Pdv)) = E(z x S;(1, Pdv’%)) = E(S;(Pz, dv%))

by 626L. Q

(ii) Suppose that 7 € S. Taking the limit as I — F,
# _ .
E(z x vZ ) =E(z x vx;l_lg}_nSMT(l,Pdv))

_ 7 _ 1 #
= IIEI}:E(Z X Siar(1, Pdv)) = IlgI}__IE(SI/\T(PZ,dv]_-)).
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Butifog <...<o0,<7inS,

n—1 n—1

> Pz x vk, —vE <P 2l v, — v,
i=0 =0
n—1
< elloo (v, — k)
1=0

(because vﬁ is non-decreasing)

= |l2lloe (v, — vE,,) < ll2lloov,.

This shows that {Sia,(Pz, d'vj’f_-) : I € Z(S)} is order-bounded in LY, therefore uniformly integrable. Now
we know also that Pz is moderately oscillatory (622G), while 'vff_- is a local integrator (616Ra), so

Jop. Pz =limpsz(snr) Si(Pz, dv%) = limpyz(s) Siar (P2, dv’f)

(see 613K) is defined, and must be equal to 1lim47(s) Srar(Pz, d'vj"f), by 621B(c-ii). As F includes the filter
generated by {{I : 0 € I € Z(S)} : 0 € S}, this is also Wlim;_, r SMT(Pz,d'ujf). Accordingly

E(z x v%) = lim E(S7,-(Pz, dvt)) = E(llim S7a- (P2, dvt))
=E( 1lj Pz dv%) = lim E Pz, dv
(IT%%) SI/\T( 2, d’U]_-)) ITIII(I}S') (SI/\T( D d’U]_—))

= lim E(S;n-(Pz,dv)) = lim E Siar (1, Pd
1m) (Star(Pz, dv)) ITIII&) (z x Star( v))

ITZ(S
= lim E(S;(Pzdv))= lim E(zx S;(1, Pdv)).
TS A (S1(P, dv)) (A7) (2 x 51, Pdv)

Since this is true for every z € L>(2A) = (L}),

’Uﬁ_r = WllimITI(S/\'r) S[(l, Pd’l))

Thus vﬁ is the previsible variation of v as defined in 626J.

(e) To find the starting value vf =lim,;s vﬁa (613Bk), consider the case z = x1 in the formula of (c-i)
above. We have Pz =1 so E(S;(1, Pdv)) = E(S1(1, dv)) for every I € Z(S). Taking the limit as in 626J,
E )= li E 1.d = li E max ] — Umin
() ITIHS'H/\T) (511, dv)) I’rzgsnm) (Va1 = Vimin 1)

= li E 7 — Umin =E T —limE o
11y LU~ Vi) = BLve) =y Bee)

for every 7 € S. But this means that lim,s E(vﬁT) = 0, and as vj’i_-i > 0 for every 7 € S and vﬁ is

non-decreasing, lim, s v_ﬁT =inf,cs v_ﬁT =0.

626N Lemma Let S be a sublattice of 7, A C S a non-empty downwards-directed set, and R4 :
Mimo(S) = Mimo(S) the associated operator. If v = (v,)secs is a non-negative submartingale with domain
S and previsible variation v#, then the previsible variation Ra(v)* of Ra(v) is Ra(v¥).

proof (a) By 626F, R4 (v) is defined and a submartingale and by 623Ba it is non-negative. By 626M, v
and Ra(v)* are defined and are non-negative, non-decreasing and start at 0. Express v, v¥#, R4 (v), Ra(v)*

and Ra(v?) as (v, )ges, (V7 )oes, (Vao)oes, (vi,)ges and (z,)ses. As v is a non-negative non-decreasing
L'-process, it is a submartingale, and z, = limyyanr v# = llim, | anr vf for every 7 € S, as in 626E.

(b) Consider first the case in which A = {p} is a singleton, so that va, = vop, and z, = vf,\p for every
o € S. In this case, v|S A p = Ry, (v)[S A p and

Ry ()#1SAp=v#SAp= Ry (w#)SAp
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by 626K (f-i). In particular, ’u?;}p = z,. On the other side, Ry,}(v)[SV p is constant so (R, (v)[SVp)# =0
and R,y (v)#]S V p is constant with value v?;}p (626K (f-ii)). At the same time, Ry,y(v¥) is constant with

value z, = v?;}p on SV p. Thus Ry, (v)# and Ry,)(v*) agree on both S A p and SV p; as they are fully
adapted processes, they agree on S and are identical.

(c) Still supposing that A = {p}, take 7 € S and I € Z(S A7) such that 7 Ap € I. Then ||S;(1, Pdv#) —
S1(1, Pd(Rypy (v#))|l1 < [JoF — vf/\le. P Let (0g,...,0,) be a sequence linearly generating the I-cells

such that 7 A p = o for some k < n. Fori <k, 0,01 < pso

# o = # _ .
PUaniJrl ’Uo'i - P(Tivo'i+1/\p Uo‘i/\pa

summing over i < k, Syarap(1, Pdv#) = Siarn,(1, Pd(R,3(v#))). On the other side, if k < i < n, we have
TAp<oc;<Tsoog; Ap=T1Ap. Nowif k <i<mn,

# _ # o H#H
Paivai+1Ap - Po’iv'r/\p - U'r/\p - Uai/\pv

it follows that Spy(rap) (1, Pd(Ry,)(v*))) = 0. So

|S7(1, Pdv?) — S[(].,Pd(R{p}('U#))”l
= ||SIV(T/\p)(17Pdv#) - SI\/(T/\p)(]-aPd(R{p}(v#))Hl

n—1
= 1S1v(rap) (1, Pdv#)|s = | Y Pof,, —Z)h
i=k
n—1 n—1
= E(Pgivﬁﬂ—vﬁ):ZE(vfiﬂ—vfi)
i=k i=k
=E@# —vf) <E@¥ —vf,,) = v — ol Q

(d) Returning to the case of general A, we have |[v¥ — vﬁT 1 < ||v# — 2|1 for every 7 € S. P Whenever
c<d inSAT,
Povas = Pr(limvgyin,) = Py (llim v,y
VA (plja}v Ap) (pf}x“] Ap)
(626E)
= llim P, v,
pld "7

because P, : L,lz — Lll-l is || ||1-continuous. Since va,r = WMimppa Vorpp, Poagr — vae = Mimpa(Pyrvorn, —
Uonp). Another way of expressing this is to say that if e is a stopping time interval with endpoints in S A 7,

Ae(l,PdRA(’U)) = HimplA Ae(l,PdR{p}(’U)).
It follows that if I € Z(S A7) then

S1(1, PdRa(v)) = Wim S;(1, PdRyyy(v)) = Uim S1(1, Pd(Ry,) (v)7))
p p

(626Kh)
— 17 #
%irlel(l,PdR{p}(v )

by (b). Consequently
|S7(1, Pdv#) — S;(1, PARA(v))||1 < sup 181 (1, Pdv#) — S;(1, PdRy,y (v¥)) |1
pE

< sup [|[of —of,lh
pEA

(by (c))
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= v — 21

because {v¥ —vf,\p : p € A} is non-negative and upwards-directed, as in 613B(d-iii), and z; = lim, 4 Upr =
1lim,; 4 v¥, ,, by 626E again. Q
(e) Now take 7 € S and € > 0. Then there is a p € A such that ||vap — zr[1 < e Write v = Ry, (v);
since v is a non-negative submartingale, everything above can be applied to v. Expressing 9%, Ra (¥)* and
Ra(@%) as (0#),cs, (0% )oes and (Z,)qes, (d) just above tells us that
lo# — 5% I < 5% — 2. *)
Since RaRy,y = Ra (623Cc), Ra(d) = Ra(v), Ra(®)* = Ra(v)# and %, = v% . From (b) we see

that 9% = Ry, (v*) and therefore R4(9%) is equal to Ra(v#), so 2, = z, and 0# = vf/\p. Translating the
formula (*), we see that

67, = of I < Hlofi, =zl S e lof, = 2l < 26

As 7 and € are arbitrary, Ra(v)* = Ra(v¥).

6260 The Doob-Meyer theorem: second form Let S be a sublattice of 7 and v = (v,)pecs a
submartingale such that {E(v,) : ¢ € S} is bounded below. Then v is expressible as the sum of a non-
negative non-decreasing fully adapted process and a virtually local martingale.

proof (a) For the time being (down to the end of (d) below), suppose that S is finitely full.
(i) For 7 € S and M > 0 set
Apr ={p:p €S, [p <] C[lv| =2 M]}.

Then 7 € Aprr and Ay, is closed under A (see part (a) of the proof of 6231). Set A = {Apr : 7 € S,
M > 0}.

() fr<7inSand 0 <M < M’ then
Aagrer =Ap+ [ < )0 llopl = MT =1} € {p [r < plUTIopl = M] = 1} = Aurs
so A is downwards-directed.
(iii) By 626F, R4 (v) is defined and is a submartingale for every A € A.

(iv) If 7 € S and € > 0, there is an A € A such that sup,c 4 fi[p < 7] < e. P Because v is a local
integrator (626Dc), v|S AT is order-bounded; set ¥ = sup,cgna- || Let M > 0 be such that gfo > M] <,
and set A = Ap-. If p € A, then

[p < 7] < [lvol = M) [vpnr = v,] € [Jvpar| = M] € [0 > M]
has measure at most €. Q

(b) Take any A € A, and express R4 (v) as (Vae)oes-

(i) There is a martingale w such that Ra(v) +w > 0. P Express A as Ay, where M > 0 and
7 € S. As noted in (a-iii), Ra(v) is a submartingale, in particular an L'-process, and va, € L}. Set
Wy = Pylvar| + Mx1 for o € S, so that w = (ws)ses is a martingale.
If o € S and a = [vae < —M], then a € A, and a C [vas = va,] (6231(b-ii)), so
aC [[PO'UAO' = PO'UAT]] c [[UAU + P0'|UA7'| > 0]] - [[UAJ + weo > 0]]7

while of course 1\ a also is included in [va, + Mx1 > 0] C [vas + ws > 0]. Thus R (v)+w is non-negative.
Q

(ii) Ra(v) € Mp.(S) and its previsible variation R4 (v)# is non-negative and non-decreasing, with
starting value 0. P R4(v) + w is a submartingale (626Cd) and we have just seen that it is non-negative.

By 626M, it has a previsible variation (R (v) 4+ w)# which is non-negative and non-decreasing, therefore a
submartingale, and starts at 0. But now Ra(v)¥ is defined and equal to (Ra(v) +w)#, by 626Kb-626Kc.

Q Express Ra(v)? as <Ujg>aes-
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(iii) Writing v for inf,es E(v, ), E(vf’;) <E(v;) —vyforeveryr€S. P ForoeS,
VAo = limp 4 Vonp = Uimyp 4 von,
(626E) so
E(vas) = limpga E(von,) = inf,ca E(von,)
(626Ca) and v < E(va,) < E(vs). Next,
lim, s v% = lim, sv% =0
so limy s E(vﬁo) =0. Now Ra(v)* — Rs(v) is a martingale (626Ka), so
E(v},) = limg s E(v}, —v},) = limy s E(var —vas) <E(v;) —7. Q

(iv) If now B C S is non-empty and downwards-directed, RgRA(v) € Mp_.m(S) and (RpRa(v))* =
Rp(Ra(v)#). P By 626N,

Rp(Ra(v)*) = Rp((Ra(v) +w)*) = (Rp(Ra(v) +w))*
= (RpRa(v) + Rp(w))* = (RpRa(v))*
because Rp(w) is a martingale (623E). Q

(c) Thus we have a family (Ra(v)#)aca of previsible variations, all non-decreasing and non-negative,
and Rp(v)# = (RpRa(v))* = Rp(Ra(v)#) whenever A, B € Aand A C B.

(i) f o € S and A C B in A then
Vo = limp 5 v} 40, < 05,
for every . We know also that vfg > 0 and E(vﬁa) < E(v,) — 7y for every A € A. As A is downwards-
directed, {vﬁg : A € A} is upwards-directed and || ||;-bounded, so 1lim4; 4 vﬁg =SUPgcy vﬁa is defined for
every o € §; I will call it v/.
(il) v’ = (V)ses is a fully adapted process. P If ¢ € S, Uﬁg € L°,) for every A € A, so
V) = SUpycq vffg belongs to L°(2l,) (612A(e-i)). If o, 7 € S and a = [o = 7], then xa x vﬁa = xa X vf;

for every A € A, so xa X v/l = xa x v, that is, a C [v’ =v!]. Q

(iii) I am not claiming that v"" = (v//),es is actually a previsible variation in the sense of 626.J, or even

an L'-process. But surely it is non-negative and non-decreasing, because 0 < vﬁg < vﬁT whenever A € A
and o0 < 7, 80 0 < v < v whenever o < 7 in S. Consequently it is locally moderately oscillatory (616Ra
again).

(iv) If 7 € S and € > 0, there are an a € A and a B € A such that fia < e and [v]] # vﬁg]] C a whenever
c€SAT,Ac Aand AC B. P By (a-iv), there is a B € A such that a = sup,c 5 [p < 7] has measure at

most . If A€ A, AC Band o <7in S, then Rp(v)# = Rg(Ra(v¥)) so vﬁa = lim, 5 Uﬁﬂ/\p' But for
each p € B,

Hvﬁ,o‘/\p 7& Uﬁoﬂ < IIp < U]] < IIp < Tﬂ ¢ a,

so [v%, # v ] C a. Taking the limit as A | A, [[vgo # 0] C a. But now returning to an arbitrary A € A
included in B, we also have [[vﬁa #Zvl]Ca Q

(v) If B € A, then Rp(v") = Rp(v)#. P Take 7 € S. For any € > 0 there are an a € 2 and an
A* € A such that fia < € and v/ # vﬁa]] C a whenever 0 € SAT, A€ Aand A C A*; take A € A such
that A C BN A*. Since Rp(0)# = Ry (Ra(v")),

[lim,, Upr # gl = })ifg [[Uv#/\p 7 limy, vﬁ,T/\p]]

c sup [vf,, # v A Ca
pEB
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has measure at most €. As € is arbitrary, lim,| g vf,\p = ng; as 7T is arbitrary, Rp(v”) = Rp(v)¥#. Q

(d) Set w =v —v”. Because v and v” are locally moderately oscillatory, so is w. For every A € A,
RA(’U)) = RA(’U) — RA(’UH) = RA(’U) — RA(’U)#

is a martingale. Note that R4(w) is actually a uniformly integrable martingale, because if p € A then
R4(w) is constant on SV p. It follows that w is a virtually local martingale. I The definition in 623J
referred to the fully adapted extension @ of w to the covered envelope SofS , and our assumption here
is only that S is finitely full, that is, that it is equal to its finitely-covered envelope S . But each A € A
is a non-empty downwards-directed subset of S, so we can speak of Ry as an operator from My, (5‘) to
itself, and w is locally moderately oscillatory (615F(b-v)), so R4 (@) is defined as a fully adapted process on
S. But R, (w) extends Ra(w), so must be the fully adapted extension of R4(w), and is again a uniformly
integrable martingale (622Nc).

Suppose now that 7 € S and € > 0. Then there is a 0 € Sy such that fifo = 7] > 1 — € (613B(q-i)).
There is an A € A such that sup,c 4 fifp < o] < €. But now sup ¢ 4 fi[p < 7] < 2¢. As 7 and € are arbitrary,
{R4 : A € A} is a sufficient family of operators to ensure that w is a virtually local martingale. Q

Accordingly v = v” 4+ w is expressed as the sum of a non-negative non-decreasing fully adapted process
and a virtually local martingale, as required.

(e) This deals with the case in which S is finitely full. For the general case, writing v for the fully
adapted extension of v to the covered envelope S of S, and S + for the finitely-covered envelope of S, ¥ 1S t is
a submartingale (626Ga). By (a)-(d) above, #]S; is expressible in the form v” 4w where v is non-negative
and non-decreasing and w is a virtually local martingale. Now v = (v"'[S) + (w]S). v”[S is surely non-
negative and non-decreasing. But w and w[S have the same fully adapted extension @ to S, and @ and
w|S will be virtually local martingales, as noted in 623J. Thus we have a decomposition of v of the type
claimed.

626P Corollary If S is a sublattice of 7 and v = (v, ),es is a submartingale such that {E(v,) : 0 € S}
is bounded below, then v is a semi-martingale.

proof We just have to look at the definition in 625D and remember that non-negative non-decreasing
processes are locally of bounded variation (614Ic-6141d).

626Q We know that the previsible variation of a martingale is always zero. Otherwise, it seems that
the calculation of previsible variations is not a trivial matter, even in the most basic cases. I go through the
argument for one of my leading examples.

Proposition Suppose that 7' = [0, 00[ and that ¢ = (1;)¢7; is the identity process as described in 612F.
Then the previsible variation of ¢[ 7y is itself.

proof (a) Take 7 € T, and € > 0. Let m € N be such that 7 is less than or equal to the constant stopping
time (me)” and let J be the finite sublattice of 75 generated by {7 A (ke)” : £ < m}. Note that 7 = max J
and 0 = min7, = minJ. Suppose that I € Z(T, A7) and J C I. If e € Stig(I A7), there is a k < m
such that e is included in the stopping-time interval c¢(r A (ke)",7 A ((k + 1)e)7) and e = ¢(o,0’) where
TA(ke)" <o <o <TA((k+1)e)7, so that t,r — ts < exl.

(b) Let (0;)i<yn linearly generate the (I A7)-cells. Then 0 < ¢y, — to, < €x1 for every i < n, o9 = 0 and
on, =T. Set
i—1
Ui:Z;:OPUjLUj+1_LU]'7 wi:[/ai_vi
for i < n. Then vy =0, v;11 € LY(®R,,) and v; < v;41 for i < n. So, for i < n,

Poiwi—i-l = Po',i (Lo'i+1 — U — PO'iLO'i+1 + Po’ﬂfai) = Lo#i — U = Wy;

thus (w;)i<p is an L*°-martingale adapted to (U,,)i<n, starting from wy = t,,. We have

i
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n—1 n—1

E(Y " (vis1 = v1)?) =B _(vi1 — 01) X Po, (o, — o))
=0 =0
n—1 n—1
<SEQD (g1 —vi) X ex1) = €B(D_ vig1 — v)
=0 =0

n—1 n—1
= EE(Z PUiLUH—l - LUi) = EE(Z loip1 — Ldi)
=0 =0

=eE(tr — 1) = €E(er),
and similarly

E(Z;:ol(bcriﬂ - Lai)2) < E(Z?;ol(bawrl — ;) X ex1) < eE(er).
So

E((er — S1(1, Pde))?) = E((tr —v0)?) = E(w}) = Y E(wig1 — wi)?)
i=0
(because (w;);<n is a martingale, so E((w;4+1 — w;) X (wj+1 —wj)) = 0 when i # j)

n—1
<2 ZE((LJi+1 - La'i)2 + (viJrl - 'Ui)2) < 46E(LT)'
i=0

(c) This is true whenever I € Z(T,A7) includes J. As € is arbitrary, ¢, is the limit 2limzyz¢7; ar) Sta7(1, Pdt)
for the norm topology of L/%' It is therefore also the limit wllimzyz(7, Ar) S1(1, Pde) for the weak topology
of LL.

I

(d) As 7 is arbitrary, the previsible variation (¢|7;)# agrees with ¢ on 7j.

626R Lemma Let S be a full sublattice of 7 with greatest and least members, and 4 = (Uy)recs
non-decreasing non-negative jump-free L'-process. Then for every ¢ > 0 there is an I € Z(S), containing
min S and max S, such that ||S7(1, Pdu) — tmaxs + Umin slj1 < €
proof By 618Gb, u is moderately oscillatory. Since 0 < u, < Upaxs € L}L for every o € S, u is uniformly
integrable. Set § = %e. Construct (D;)ien, (Yidien and (d;)ieny from uw and ¢ as in 615M. Note that
min Dy = minS 0 Yo = Umins (615Ma). If i € N, then D; C S is closed under A and y; = lim, | p, Uo,
while d;1+1 € d; N [|yi+1 — yi| > 9] (615Mc) and |y;41 — vi| < 0x1 (618N, because u is jump-free). Because
0 < ¥; < Umaxs, or otherwise, y; € L}-L. Set B, = ﬂJGDi A, and write Q; : L}] — L}] N LY(B;) for the
associated conditional expectation. As y; € L°(B;) (615Mb), Q;y; = y;. Because u is uniformly integrable,
y; = limy | p, us (621B(c-ii) again).

If i € Nand 0 € D;yq, there is a ¢’ € D; such that ¢/ < o (615Ma); now ¢” < o’ and usr < Uy
for every o’ € D; A o', so y; < uy; as o is arbitrary, y; < ;1. So in fact d;11 € d; N [y;+1 — yi = 0] and
Yi < Yir1 < yi +0xd;. Now

Yi = Qiyi < Qiyir1 < Qi(yi + 0xdi) = yi + oxd;
(because d; € B;), and (Q;yi+1 — Yi+1) X x(1\d;) =0. At the same time, y;11 > y; + 0xdit1, SO

(Qiyitr — vir1)T < ((yi + 0xdi) — (yi + 0xdiy1))T = ox(di \ dig1)

and

1Qivit1 — Yir1llh = 2E((Qivit1 — Yir1)") — E(Qiyiv1 — yit1) < 207i(d; \ digr).

Summing over 4,

Yoo 1Qiyiv1 — yivrllr < 20.
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By 615M(c-ii), there is an m > 1 such that E(umaxs X xdm) < 0. Set n = %(5. Again because every

member of D;;1 dominates some member of D;, we can choose o, 04—1,... ,00 € S such that o, € Dy,
Huam - ymHl <nand

0, € Diy  0i <o0oir1,  uo, —%illi <0y |Poyitr — Qivitall <

for ¢ < m (using 621C(g-i) for the last clause), while o9 = min S. Since [o,,, < maxS] C d,, and 0 < u,,,, <
Umax S

”umaxS - uo'm”l S E(umaxs X de) S J.
Set I ={o; : 4 <m}U{maxS}. Then

||SI<1anu) — Umax S T uminSHl

m—1
= ”Pomumaxs — Ug,, — UmaxS + Ug,, T Z (Po'iugi+1 — Ug; — Ugyyy T Uai) |1
=0
m—1
< ”Pom(umaxs - uffm)”l + ||umax5 - uom,Hl + Z HPUiuUH—l — Ug;qy Hl
i=0
m—1
< 2||umaxs = Uo,, |1 + Z 1Qiyi+1 — yiv1lh
1=0
m—1
+ Z | Poithoryy — Uoryy — QiYir1 + Yitall
i=0
m—1 m—1
<20+26+ Z | Pty — Poyyitilln + Z | P, vit1 — Qv+l
i=0 =0

m—1
+ Z Hyi-‘rl - u0i+1||1
=0

<45 +mn+mn+mn=e.

626S Proposition Let S be a non-empty full sublattice of T, and v = (v, ),cs a non-decreasing locally
jump-free L'-process starting from 0. Then it is equal to its previsible variation.

proof (a) Because v is moderately oscillatory (618Gb), its starting value v, is well-defined (615Gb). We
are supposing that v| is zero; as v is a non-decreasing L!-process it is a non-negative submartingale and has
a previsible variation v# = (v#),cs. I need to show that v¥ = v, for every 7 € S. Clearly it is enough to
consider the case in which § = S A 7. Take w € L>®(2) and € > 0.

(b) If J € Z(S) is non-empty, there is an I € Z(S) such that J C I and ||.S7(1, Pdv) —vmax J +Vmin s |1 < €.
P If J is a singleton, set I = J. Otherwise, take (79,...,7x) linearly generating the J-cells, so that
70 = minJ and 7, = maxJ. If j < k, v|S N [75,7j41] is a non-decreasing non-negative L'-process, and
is jump-free by 618Gc, while S N [7;,7j41] is full (see 611Md and 611Me). So 626R tells us that there is
a finite sublattice I; of S N [}, 7;41], containing 7; and 7;1, such that ||Sy, (1, Pdv) — v, ., + v, ]l1 < %e.
Let I be the sublattice of S generated by Uj<,C I;. Then min/ = 79 = minJ, max/ = 7, = maxJ and
IN[7j,7j41] = I; for each j. So

SI(]-de'U) = Zf;é SIj(17Pdv)7 UmaxI — Uminl = 25:0 ’UTJ'+1 - 'U‘rj
and

1S1(1, Pdv) = vinax s + Vmin sl < 32520 150, (1, Pdv) —vr,, +vr |l < e Q

(c) If J € Z(S) is non-empty, there is an I € Z(S) such that J C I and ||S;(1, Pdv) — v, |1 < 2¢. P As
in the proof of 626R, v here is uniformly integrable, so 0 = 1lim, s v,. Let 0 € S be such that 0 < minJ
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and ||vy||1 < e. By (b), there is an I € Z(S) such that I D JU {o,7} and ||S1(1, Pdv) — v: + v,||1 < €, s0
that ||S7(1, Pdv) — v, |1 < 2. Q

(d) As v# = wllimrys S7(1, Pdv), there is a non-empty J € Z(S) such that |E(w x (S7(1, Pdv) —v#))| < €
whenever I € Z(S) includes J. By (c), there is such an I with ||S;(1, Pdv) — v,|j1 < 2, so that |]E(w
(S1(1, Pdv) —v,))| < 2¢||lw||oo and |E(w x (v# —v,))| < €(1+2||w||s)- As € and w are arbitrary, v# = v,

626T Proposition Let S be a full sublattice of 7, and v = (v,),es a locally jump-free L?-martingale.
Then the quadratic variation v* = (v*),es of v is the previsible variation (v?)# of the submartingale v?.

proof If S is empty, this is trivial; suppose otherwise. By 622H again, v is locally moderately oscillatory, so
its starting value vy is defined (615Gb again). Note that v, € L?. P Take any 7 € S. Then {z : z € LO(2),
[lz]l2 < |lvrll2} is closed (613Bc) and includes {v, : 0 € S AT} (621Ce) so contains v;. Q

(a) Suppose to begin with that v; = 0. By Jensen’s inequality (621Cd again), v? is a submartingale

and has a previsible variation (626M). Also v* is an Ll-process (624G) so v? — v* = 2ii,(v) (617Ka) is a
martingale (624Hb) and (v?)# = (v*)# (626Kc). Now v* is an L!-process, non-decreasing and starting from
0 (617Jb), while v? and ii,(v) are locally jump-free (618Ga, 618R). By 626S, v* = (v*)* = (v?)*.

(b) For the general case, set w = v — vy 1. Then w is a locally jump-free martingale and an L?-process
starting at 0, so (w?)# = w*. Now, expressing w* as (w}),cs,

wi:/ dw* :/ (dw)?
SAT SAT
— [y
SAT

(because the interval functions Aw, Av are equal)

(617T)

_ *
_/UT

for every 7 € S. At the same time,

v?

—w® =20 — v}l
is a martingale, so

(W) = (w)* = w* =v*.

626X Basic exercises (a) Suppose that 7' = [0, 00[ and 2 = {0,1}, as in 613W, 615X{, 616Xa, 617Xb,
618Xa and 622Xd. Let f : [0,00[ — R be a function and u the corresponding process on T;. (i) Show that u
is a submartingale iff f is non-decreasing. (ii) Show that this case the previsible variation of 4 corresponds
to the function ¢t — f(¢t) — f(0).

(b) Let S be a sublattice, v a fully adapted process with domain & and 7 € S. Show that v is a
submartingale iff v[S A7 and v[S V 7 are both submartingales.

(c) Let S be a sublattice of T and v = (v, )ses a submartingale such that {E(v,) : ¢ € S} is bounded
below. Show that v is locally moderately oscillatory. (Hint: 626Gc.)

(d) Let S be a sublattice of 7, v a non-negative submartingale with domain S, and z a non-negative
member of L°(,cs Ao). Show that if zv (612D (e-ii)) is an L'-process then it is a submartingale, and that
2v# is the previsible variation of zv.

(e) Suppose that T = N and that 2 is atomless. Let u € L°() be such that ji[u >1—a] = « for
a € [0, 1], and suppose that
A, ={a:a€eW anfu>1-2""]€{0,Ju>1-27"]} for every n € N}.
Show that the martingale Pu is of bounded variation. (Hint: 611Xh.)
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626 Notes and comments The previsible variations of 626J-626K can be thought of as indefinite integrals
of interval functions Pdv based on the weak topology of L% instead of the topology of convergence in measure
on L°(2A). T do not really wish to go farther along this route. But there are obvious questions to ask about
the applicability of the ideas of §613 in this context.

In both 626M and 6260, we start with a submartingale v and seek to express it as v# + w where v
is non-decreasing and w is more or less a martingale. In 626M we have an explicit formula, with v# the
‘previsible variation’ as defined in 626J, so that we have picked out a particular solution. In 6260 the
statement of the theorem makes no claim that the solution is unique, and of course it is not, because a
constant process can always be added to one term and subtracted from the other. Indeed it is not difficult
to show that there are non-trivial martingales of bounded variation (626Xe) and therefore that there are
many non-negative non-decreasing processes which are not their own previsible variations. The construction
in the proof of 6260 gives rise to a particular pair v#, w but I have not seen a simple characterization of
the processes v which can arise in this way.

The calculation in 626Q is rather elaborate, but I do not know of an essentially more direct method.
Concerning the other two examples in §612, Brownian motion has previsible variation 0 just because it is a
martingale, and the Poisson process turns out to have previsible variation ¢; but for a proof of this we shall
have to wait for some more of the general theory (632Mb).

Version of 27.3.21

627 Integrators and semi-martingales

This section is devoted to a kind of structure theory for integrators (6271-627J, 627L, 627Q); I take a
route which passes some further important classes of stochastic process (627B) and ideas from the theory
of linear topological spaces (627F-627G).

627A Notation As always, (U, a, T, (At)eer, T, (Ar)reT) is a stochastic integration structure. For a
sublattice S of T, Z(S) is the set of finite sublattices of S; Mg, (S) and Mimo(S) are the spaces of fully
adapted and locally moderately oscillatory processes with domain S. If u = (u,)ses is order-bounded,
sup |u| = sup({0} U {|us| : 0 € S}) (614E).

1 is the constant process with value x1. For I C T and 7 € T, IATand I VT are {c AT :0 € I},
{o VT :0 € I} respectively. E is the standard integral on L}, = L'(2, i), and 6(w) = E(Jw| A x1) for
we L’ =L°A). For 7 €T, Pr: L — L, N L°2A;) is the associated conditional expectation. If z € L],
Pz= (P 2);cT.

627B Definitions Let S be a sublattice of 7 and v a fully adapted process with domain S.

(a) v is a supermartingale if —v is a submartingale (626B), that is, v is an L!-process and P,v, < v,
whenever o < 7 in §. (Mnemonic: Pdv < 0.)

(b) v is a quasimartingale if v is an L!'-process and {E(w) : w € Qs(dv)} (definition: 616B) is bounded
in R,

(c) I will say that v is a strong integrator if whenever € > 0 there are a uniformly integrable martingale
w and a fully adapted process w’ of bounded variation, both with domain S, such that v # w + w'] <e.

627C Elementary facts (a)(i) If v is a supermartingale, so is v[S’ for any sublattice S’ of domw. If v
and w are supermartingales, so is v + w. (Immediate from the definition.)

(ii) If h : R — R is concave and non-decreasing, v = (v5)scs is a supermartingale and hv is an L'-
process, then hv is a supermartingale. B Set g(z) = —h(—x) for z € R. Then g is convex and non-decreasing,
so go(—v) is a submartingale (626Cc) and hv = —go(—v) is a supermartingale. Q

(iii) A supermartingale (v, ),es is a martingale iff E(v,) = E(v,) whenever o < 7 in §. (For in this
case we have P,v, < v, while E(P,v,;) = E(v;) = E(v,), so P,v, = v,.)
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(b) Every martingale (v,)scs is a quasimartingale. B If 0 € 7 in S and u € L (2, ), then
E(u x (v; —v5)) = E(Py(u X (v; —v5))) = E(u x (Pyvy —v,)) =0,
so E(w) = 0 for every w € Qs(dv). Q

(c)(i) A strong integrator is an integrator. P By 622G, 616Ra and 616Pa, the sum of a uniformly
integrable martingale and a fully adapted process of bounded variation is an integrator. Now 616P(b-iii)
shows that a strong integrator is an integrator. Q

(ii) A linear combination of strong integrators is a strong integrator. (We just have to recall that sums
and scalar multiples of martingales are martingales, sums and scalar multiples of uniformly integrable sets
are uniformly integrable and sums and scalar multiples of processes of bounded variation have bounded
variation.)

(iii) If v is a strong integrator with domain & and &’ is a sublattice of S, then v[S’ is a strong
integrator. P Given € > 0, there are a uniformly integrable martingale w and a process w’ of bounded
variation, both with domain S, such that [v # w + w’] has measure at most e. Now w[S’ is a uniformly
integrable martingale (622Dd), w[S’ is of bounded variation (614Lb) and [v]S’ # w]S’ + w’[S’] is included
in v # w + w'], so has measure at most €. Q

(iv) If v is a fully adapted process with domain S and for every € > 0 there is a strong integrator v’
with domain &, such that [v # v’] has measure at most €, then v is a strong integrator. (Immediate from the
definition of ‘strong integrator’ and from the fact that v # v"] C Jv # v'] U v’ # v”'] for any fully adapted
processes v, v' and v with domain §.)

627D Proposition Let S be a sublattice of 7 and v a non-negative fully adapted process with domain
S.

(a) If v is a virtually local martingale, it is a || ||;-bounded supermartingale.

(b) If v is a || ||;-bounded supermartingale it is order-bounded.

proof If § is empty, both parts are trivial, so let us suppose that S # 0. Express v as (vg)scs-

(a)(i) The fully adapted extension & = (9,)_.¢ of v to the covered envelope S of S is an approximately
local martingale (623J). Let A be the family of non-empty downwards-directed subsets A of S such that
R4 (0), as defined in 623B, is a martingale, and for A € A express R4 () as (Das),cg-

(ii) If A € A, the starting values of R4(0) and ¢ are the same (623B(c-i)); so we have a common
starting value v) = lim, s va, for all the R4(v). Now v, is always the [| ||;-limit 1lim_ s 94, (626E, since
R4 (v) is a submartingale, as noted in 626F). Since all the expectations E(94,), for ¢ € S, must be the
same, this is also E(v,). This is so for every A € A, so we have E(04,) = E(v,) for every A € Aand o € S.

(iii) Since v, > 0 for every o € S, 0, > 0 for every o € S, ta, > 0 for every A € Aand o € S, and
vy > 0. So in fact we have |04 (|1 = ||vy |1 for every A € Aand o € S.

Consequently [|05]1 < ||vy]|1 for every o € S. I Because 9 is a virtually local martingale, there is for
every € > 0 an A € A such that f[das # 05] < €. So v, belongs to the closure {04, : A € A} for the
topology of convergence in measure. Because || ||1-balls are closed for this topology (613Bc),

10 ]lr < supca llPasl = vyl Q
In particular, ¥ is an L'-process.
(iv) ? Suppose, if possible, that ¥ is not a supermartingale. Then there are ¢ < 7 in S such that

P,o; £ 0y, that is, ¢ = [0, < P,0,] is non-zero. For each n € N we can find an A, € A such that
apn = SUp e 4 [p < 7] has measure at most 27"~ 2fic. Setting b, = sup,c 4 [p < o] for each n, b, € A, and

Z;.Lo:o [iby, < ZZO:O fan < [ic,

so ¢ = ¢\ sup, ey by is a non-zero member of 2,. Consider E(v, x xc’). For each n € N,

G(UT - 'UAn‘r) < ﬂ[[v‘r 7é vAnT]] < Han — 0

MEASURE THEORY



627E Integrators and semi-martingales 65

as n — 00, 80 vy = lim, oo v4,» and v, X X =lim, 00 V4, X xv'. Now

E(vy x xc') < E(P,v, x x)
(because 0 # ¢’ C vy < Pyvr])
=E(P,(v; x xc))
(because ¢’ € ;)
=E(vr x x¢') = Jlr x xlli < sup o, x x|l
(because || ||1-balls are closed for the topology of convergence in measure)
=supE(va,r x xc).

neN

There is therefore an n € N such that E(va, . x x¢') > E(v, X xc’). But ¢ is disjoint from b, so v, x x¢’ =
v4, o X x¢ and
E(va,o x x¢') <E(va,r x xc') = E(Py(va,r x X))
=E(P,va,» x x¢) =E(va,o x x)

because R4, (v) is a martingale. But this is absurd. X

(v) Thus 9 is a supermartingale. But it follows at once that v = 9[S is a supermartingale. And we
saw in (iii) that @ is || ||1-bounded, so v also is || ||;-bounded.

(b)(i) Set v = sup,es |lvol1. If 70 <71 < ... < 7, in S there is a v > 0 such that P,v > v,, for
every ¢ < n and E(v) < . P Induce on n. If n = 0 we can set v = v,,. For the inductive step to
n+1 >0, take v' > 0 such that E(v') < v and Pr,v" > vy, for i < n. Then P v, ., < vr, < Ppv';set
v =0r,, + P v — P v . In this case,

while
P,

g1V =0 > 07, >0
and for i <n
— /
Pv=PLvu; +Pv' —Prv,  >v,. Q

So if w = sup,<,, vr,,

lw > M] < lsup,, Prv > M] < || Prvfi < 2

for every M > 0, by Doob’s maximal inequality (621E).

(ii) If A C S is finite and not empty and z4 = sup,c4 Vo, then ffza > M] < ﬁ for every M > 0.
P Let I be the sublattice of S generated by A, and 79 < ... < 7, a sequence in [ linearly generating the
I-cells as in 611L. Set 2’ = sup, <, vr,. Because sup,<,, [t =] =1, v, <2/ for every 7 € I, 24 < 2’ and

Alza > M] < gl > M] < -
by (i). Q@

(iii) For n € N, set ¢, = sup{[za > n] : 0 # A € [S|<“}. Then fic, < I for every n > 1. By 364L(a-i),
{24 :minS € A € [S§]<*} is bounded above in L%, that is, {v, : ¢ € S} is bounded above. Since it is also
bounded below, v is order-bounded.

627E Lemma Let S be a sublattice of T and v = (v, ),es a quasimartingale.
(a) There is a non-negative || ||;-bounded supermartingale w such that v +w is a supermartingale.
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(b) If S has a greatest element then v is expressible as the difference of two non-negative supermartingales.
(c) If v is || ||1-bounded then it is a semi-martingale (definition: 625D).

proof (a)(i) Set v = sup{E(w) : w € Qs(dv)}. Then E(w) < v for every w € Qs(Pdv). P If w = 0 this
is trivial, as 0 € Qs(dv), so v > 0. Otherwise, there are a non-empty I € Z(S) and a fully adapted process
U = (Ug)ser such that ||u|le < 1 and w = Sy(u, Pdv). Let (7;);<n be a sequence linearly generating the
I-cells. Then

n—1 n—1
E(’UJ) = E(Z Ur; X Pﬂ' (UTiJrl - UTi)) = ]E(Z PT{, (’U"f‘i X (U7'11+1 - UTz‘)))
i=0 =0

—E(3 tr, % (0rys — 0r)) = E(Ss (. o)) <
1=0

because Sy(u,dv) € Qs(dv). Q

(ii) If I € Z(S), then S;(1,|Pdv|) € Qs(Pdv). P If I is empty this is trivial. Otherwise, let 7o < ... <
T, linearly generate the I-cells. For each ¢ < n, set

a; = [Prvr,, —vr, 2 0], wi =xa; — x(1\ as).
Then a; € A, u; € L>®(2A;,) and |Ju;]je < 1. So
S1(1, [Pdv]) = 3210 [Privri s = vm| = 2050 i X (Prvey, — vr,) € Qs(Pdv)
by 616C(ii). Q
(iii) For 7 € S set
A ={P;S;(1,|Pdv|): I e Z(SV 7)}.

(@) Ifr<0p<01<02inS,

|P00(v02 - UUO)' = |Ptfo(v01 - UUO) +P00P01(v02 - UUl)‘
< |P<70(U<71 _UUO| +P00‘P01(U<72 _’Utfl)‘v
Pr|Poy(Voy = Voy)| < Pr|Poy (Voy = Voo)| + Pr|Poy (Voy — v,

Soifr<7mp<...<7,inS,

n—1
Pr|Pry(vr, —vr)| < Proig |Pri(Uryy — vry)

P Induce on n. The case n = 1 is trivial. For the inductive step to n + 1 > 1, we have

PT‘P‘ro(UTnH — vry)| < Pr|Pry(vr, — vg,)] +PT‘PT7L(,UT7L+1 — vz, )]

n—1

<P Z |Pr, (Ur;y — vr)[ + Pr|Pr, (vr, ) — vry,)
=0

= P‘FZ |PTi(vTi+1 _’U‘Fi) - Q
=0

B) If 1 € Sand I € Z(S V 1) is non-empty, then P;|Pyin 1Vmax1 — Umin1| < PrSi(1,|Pdv]). P
Apply («) with 79, ... , 7, a sequence linearly generating the I-cells. Q

WIreS I, JeZ(SvVvr)and J C I, then P.S;(1,|Pdv]) < P;Si(1,|Pdv|). B If J is empty
this is trivial. Otherwise, let 7 < ... < 7, be a sequence linearly generating the J-cells; set 79 = min I and
Tn+1 = max . For j <nset I; = I N[7j,7j41]. Then
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n—1 n
P.S;(1,|Pdv]) =Y Pi|Prv. ., — v | <Y PrlPrus,, —vr|
j=1 j=0

<> P.S;(1,|Pdv|) = P,y Sy (1,|Pdv|) = P,S;(1,|Pdv)

§=0 §=0
by 613G(a-ii). Q

(6) Thus A, is upwards-directed. If w € A, then w = P,w’ for some w’ € Qs(Pdv), by (ii); in
which case
lwlly = E(w) = E(w') <.

It follows that w, = sup A, is defined in L}, and belongs to the || ||;-closure of A, (613B(d-iii)). As
A; C LA, ), wy € LO(Ay). Also [Jw, |1 < SUPyeA., wlr <7.

(€) Suppose that 7, 7/ € S and [r=7"] = a. If w € A;, then w X xa < wr x xa. P Let
70 < ... < 7, in SV 7 be such that w = S0 Pr|Py, (vr,, — vy)]; set 7/ = 7 V7' for i < n, and

w = Z?;OI Pro|Pry(vgy, =07 )|, so that w' € Az, Now, for i <n,
[fl=mr]=[nVT =nVT]2a

by 611E(c-v-$), so [v./ = vr,] 2 aand [Prrv = Py v] 2 a for every v € L}, (622Bb); also, of course [Prv = Prv] 2 a
for every v € L],. Moreover, a € 2,pr (611H(c-i)). Accordingly

n—1 n—1
w X xa = Z xa X Pr|Py (vr,,, —vr,)| = Z xa X P |Pr (v, — vr,)
i=0 1=0
n—1
= Z PT'(Xa X |P7'i(7‘}7'11+1 - rUTi)D
i=0

(because xa € L= (2,))
n—1 n—1

= ZP‘F"X@ X PT{,(rUTiJA 7’07'1')‘ = ZPT/|XQ X PT,L{(IUTi+1 71}7’i)|
=0 =0

n—1
= Z P‘F"P‘F{(Xa x (UT1‘+1 - vTi))'
(because xa € L>(2,,) for ;;;er i)
n—1
= Z Pr|Pry(xa % (vr, —vy))| = w' X xa
(following a parallel path bag{;
<w, X xa. Q

As w is arbitrary, w,; x xa < w, x xa. Similarly, w. x xa < w; X xa and a C Jw, = w,/]. As 7, 7/ are
arbitrary, w = (w;),es is a fully adapted process. From (9), we know that it is || ||;-bounded.

(iv)(a) If r <7 in S and I € Z(SV 7'), then
P.,—PT/S[(]_, |Pd’UD = PTS](]., |Pdv|) < Wr;

that is, Prw < w, for every w € A,/. As P; is || ||1-continuous, and w,s belongs to the | ||;-closure of A,
P.w, also is less than or equal to w,. Thus w is a supermartingale and of course it is non-negative.

B)Ir<7'inSand I €Z(SV7'), then
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Py(vr + PS1(L,|Pdv])) < v, + [Py (or — )| + PrSi(1, | Pda]))
= v, + PrS1ug-y (1, |[Pdv|)) < vr +w,.
So Pr(vy + wr) < vy +w,. This shows that v + w is a supermartingale.
(b) If S has a greatest element, set
U=0+W+ Plomaxs|, o =w+ Plopaxs|

Then u and %’ are sums of supermartingales, therefore themselves supermartingales. As their final values
Umax S + Wmax S+ |Vmax S|, Wmax S+ |Vmax s| are both greater than or equal to 0, » and ' are both non-negative,
and their difference v is expressed in the required form.

(c) Since w is a | ||;-bounded supermartingale, —w is a || ||;-bounded submartingale, so is a semi-
martingale, by 626P. Thus w is a semi-martingale. Also we are now supposing that v is || ||;-bounded,
so v +w is a || ||;-bounded supermartingale, and it too is a semi-martingale. Accordingly v = (v +w) —w
is a difference of semi-martingales and is a semi-martingale.

627F For the next step, we need a couple of facts from the theory of linear topological spaces.

Lemma Let U be a Banach space, C' a convex subset of U and K a non-empty weak*-compact convex
subset of the dual U* of U. Suppose that v > 0 is such that for every u € C there is an f € K such that
f(u) <~. Then there is a g € K such that g(u) < v for every u € C.

proof (a) For each finite I C C set K; = {f : f € K, f(u) < 7 for every u € I}. Then K; # 0. P?
Otherwise, I is certainly non-empty. Set T'f = (f(u))yer for f € U*. Then T : U* — R is a linear operator
which is continuous for the weak* topology on U*, so T[K] is a convex compact subset of R'; and as K7 is
empty, T[K] does not meet the closed convex set F' = {v:v € RY, v(u) < v for every u € I}.

The set D = T[K] — F is convex (2A5Ea) and closed (4A5Ef) and does not contain 0. We therefore have
a linear functional h : RT — R such that inf,ep h(v) > 0 (3A5CD), that is, sup,ep h(v) < inf, erpx) (V).
For u € I write e, for the corresponding unit vector in R, and set c, = h(e,,), so that h(v) = 3, ; o v(u)
for every v € RY. Because F contains Be, for every 8 < 0, and sup,cp h(v) is finite, a,, is at least 0, for
every u € I. Also h cannot be zero, so not every «,, is zero. Set o = Zuel a,, and consider 1 = é Zuel QU

so that @ € C and there is a f € K such that f(@) <. In this case, Tf € T[K] and

WTF) = Y per auf () = F(Cer aun) = af (@) < av = h(X ,er veu)-
But >, .;veu € F, so this is impossible, by the choice of h. XQ

(b) Now {K; : I € [C]<*} is a downwards-directed family of non-empty closed subsets of the compact
set K, so has non-empty intersection, and any member of the intersection will serve for g.

627G Lemma Suppose that C' C L}L is a non-empty topologically bounded convex set. Then there is a
w € L™ = L*°(2A) such that Jw > 0] =1 and sup, ¢ E(u x w) is finite.

proof (a) For any € € |0,1] there is a w € L™ such that 0 < w < x1, gfw = 0] < € and sup,cc E(u x w)
is finite. P Let K be the set {w : 0 < w < x1, E(w) > 1 — €}. Then K is convex and is closed for
the topology T,(L>, L},), so can be regarded as a convex subset of (L})* which is compact for the weak*
topology (365Lc”). Let v > 1 be such that 0(%11) < € for every u € C; then fiJu > v] < € for every u € C.
So for every u € C there is a w € K such that E(u x w) < v (we can take w = x[u < v]). By 627F, there
is a w € K such that E(u x w) < for every u € C. As E(w) >1—¢, aJw=0]<e Q

(b) We can therefore find sequences (wp)neny in L and (v, )nen in [0, 00] such that 0 < w, < x1,

oo
n=0

aJw, =0] < 27" and E(u X w,) < v, for every n € Nand u € C. Now w = )
L, [w>0]=1and E(u x w) <2 for every u € C.

2" . .
———w,, is defined in
Ynt1

n

"Formerly 365Mc.
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627H Lemma Let S be a sublattice of 7 and v a fully adapted process with domain S.

(a) I € Z(S), u € Mg, (I) and |[ul|o < 1, then there is a w € Mg, (S) such that ||w]|e < 1 and
Sy(w,dv) = S;(u,dv) whenever I C .J € Z(S), so that [gw dv is defined and equal to S (u, dv).

(b) Qs(dv) is convex.

proof (a) (The key.) Express u as (uy)oer. If I is empty then of course we can take w to be the zero
process with domain S§. Otherwise, let 79 < ... < 7, linearly generate the I-cells. By 612Ka, applied to
(Urgy -+ yUr,_,,0) and u, = 0, there is a simple fully adapted process w = (w,)ses such that

[we =ur] 2[m < o]nfo < 7it1],
for i < n, while

[we =0] 2o < 1] U [ < o],

for every o € S. Evidently |lw||oc < sup,;<,, [[ur]|cc < 1. Now suppose that I C J € Z(S). Then, expressing

v as (Us)ses,

Sy(w,dv) = Z A (w, dv)

eGStio(J)
= Z Ae(w, dv) + Z A (w, dv)

eestig(J/\T()) EEStiQ(J\/Tn)

n—1
+ Z Z A, (w, dv)
=0 eEStio(Jﬂ[Ti,T7j+1])
(611J (e-iii))
n—1

:0+O—|—Z Z Uy, X Ag(1, dv)

i=0 e€Stio(JN[7i,Tit1])
(because for o < 7 in J, if 7 < 79 then [vs # v;] C [0 < 70] C [w, = 0]; if 7, < o then w, = 0; and if
7 <0 <7 < Tiqq, then [v, #v.] C [1i <o]nfo < Tip1] € [we = un])

n—1
= Zuﬂ' x (U7i+1 - UTi)
=0

(613L(b-1))
= S;(u, dv)
(613Ec).
Taking the limit as J increases through Z(S), [¢w dv = S;(u, dv).

(b) Suppose that z, 2’ € Qs(dv) and « € [0, 1]. Then there are I, I’ € Z(S) and u € Mg, (I), u' € Mg, (I')
such that ||ulleo < 1, [[t']|ec < 1, 2z = Sr(u,dv) and 2’ = Sp (v, dv). Let w, w' € M, (S) be as in (a),
starting from u, u’ respectively. Set w = aw + (1 — a)w’; then |[w||o < 1. If J =T U I’ is the sublattice
generated by T U I,

az+ (1 —a)z = aSi(u,dv) + (1 — a)Sp (u, dv)
=aS;(w,dv) + (1 — a)Sy(w,dv) = S;(w,dv) € Qs(dv).

As z, 2/ and « are arbitrary, Qs(dv) is convex.

6271 Theorem (BICHTELER 79, DELLACHERIE & MEYER 82, §VIII.4) Let S be a sublattice of 7 and v
an integrator with domain S. Then there is a 7 such that (2, 7) is a probability algebra and v is a uniformly
integrable quasimartingale with respect to v.

proof (a) Express v as (U,)ses. v is order-bounded, by 616Ib; set @ = sup |v|.
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(b) Suppose to begin with that w € L}L. Set C' = Qs(dv), so that C is topologically bounded in L°.
By 627H, C is convex. Of course 0 € C, and C C L}L because u X (v, — vy,) € Lll2 whenever o < 7 in
S and u € L*=(2,). Let C’ be the linear sum C + [—w,w]; then C’ is convex, non-empty, topologically
bounded and included in L}, By 627G, there is a w € L>(2) such that [w > 0] =1 and sup, ¢ Ex(z x w)
is finite. Adjusting w by a scalar factor if necessary, we can arrange that E;(w) = 1. In this case, we have
a strictly positive probability 7 on 2 defined by saying that va = Ez(w x xa) for every a € 2, and now
Ey(z) = Ez(w x z) for every z € L? for which either expectation is defined (625B(a-iii)).

It follows that sup,co Ep(2) is finite. Since —z € Qs(dv) whenever z € Qs(dv), —z € C whenever
z € C. So sup,cc [Ez(2)] is finite, and v is a quasimartingale with respect to 7. At the same time,
Ey(w) = Ez(w x w) is finite, so v is actually order-bounded in L} and is surely uniformly integrable.

(c) In general, let w’ be a scalar multiple of such that E;(w') = 1, and set Aa = Ez(w’ x xa) for

@+xl

a € 2. Then (21, \) is a probability algebra, and @ € L%\. By (b), we now have a 7 of the kind required.

627J Corollary Let S be a sublattice of 7, and v an integrator with domain S§. Then v is a semi-
martingale.

proof By 6271, there is a probability measure ¥ such that v is a U-uniformly integrable p-quasimartingale.
By 627Ec, v is a v-semi-martingale. By 625F, v is a ji-semi-martingale.

627K Lemma Let S be a sublattice of 7, and v an integrator with domain S. Set &' = S U
{min 7, max 7 }. Then there is an integrator v’ with domain &’ extending v.

proof (a) Express v as (vy)qcs, and set o = sup |v]. Let w = (w;)rc7 be an extension of v to a fully
adapted process defined on the whole of T as described in 612P. Then

el < 2] 2 [wr = 0w sup(fwr = won fwe = vo] N {lvo| < 7))

OJw,=0Jusupfo=7] =1,
c€eS

so |w,| <, for every 7 € T.
Of course &’ is a sublattice of T. Set v/ = w[S’; then v’ is fully adapted and extends v.

(b) Now Qs (dv') € Qs(dv) + [—47,40]. P Take z € Qg (dv’). Express z as S;(u, dv’) where I € Z(S'),
u = (ug)ges is fully adapted and ||ul|oo < 1. If I = () then 2z = 0 certainly belongs to Qs(dv) + [—4v, 47].
Otherwise, let (7;)i<n be the increasing enumeration of a maximal totally ordered subset of I. If n = 0 then
again z = 0 belongs to Qs(dv) + [—49,40]. If n = 1 then

|Z| = |u7'0 X (le _wTo)l <2v
and z € Qs(dv) + [—47,47]. If n = 2 then
|Z‘ = ‘uTo X (wﬁ 7’[0.,—0) +U7-1 X (’LU7-2 7’LU7-1)| < 4v

and z € Qs(dv) + [—4v,4v]. If n > 3 then, because 7o <71 < ... < 7,—1 < 7, are all different, 71,... , 71
must all belong to S, 50 S0 2y, X (W, — W) = S0 tr, X (vr,,, — vr,) belongs to Qs(dv), while

uTo X (w"’l _wTo) +U’Tn71 X (an - anfl) € [_47774@]7

SO

n—2
Z=Ury X (Wr, — Wr,) + Z Ur, X (Wripy — Wr,) + Un—1 X (W, = Wr,,_,)
=1

€ Qs(dv) + [—4v,47]. Q

Since Qs(dv) and [—47, 49] are topologically bounded and the sum of topologically bounded sets is topolog-
ically bounded, Qs (dv’) is topologically bounded and v’ is an integrator.
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627L Theorem Let S be a sublattice of T and v a fully adapted process with domain S.
(a) If S has a greatest element and v is a non-negative submartingale, v is a strong integrator.
(b) If S has greatest and least elements and v is a non-negative supermartingale, v is a strong integrator.
(c) If S has greatest and least elements and v is a quasimartingale, v is a strong integrator.
(d) The following are equiveridical:
(i) v is an integrator;
(ii) there is a functional ¥ such that (2(,7) is a probability algebra and v is a strong integrator with
respect to v.

proof (a) By the Doob-Meyer theorem (626M), v has a previsible variation v# which is non-negative and
non-decreasing, therefore of bounded variation (because S has a greatest element). Now w = v —v* is a
martingale (626Ka); again because S has a greatest element, w is uniformly integrable. So v is a strong
integrator.

(b) Express v as (vy)secs. For any o € S,
va”l = E(UO‘) - E(PminSUJ) < E(vminS);

so v is || |[1-bounded, therefore order-bounded (627Db). Write @ for sup |v|.

Take any € > 0. Let M > 0 be such that a[v > M] <e. Then M1 Awv is a supermartingale (627C(a-ii))
and u = M1 — M1 Awv is a non-negative submartingale, therefore a strong integrator, by (a). It follows that
v' = M1 — u is a strong integrator. But

[v' #v] c [v > M]
has measure at most €. As ¢ is arbitrary, v is a strong integrator, by 627C(c-iv).
(c) follows at once from 627Eb, (b) here and 627C(c-ii).

(d)(ii)=(i) is immediate from 627C(c-i) and the definition 616Fc, which shows that the property of
being an integrator depends only on the linear space topology of L°, not on the measure.

(ii)=(i) Suppose that v is an integrator. By 627K, there is an integrator v’ with domain S U
{min7,max T} extending v. 627I tells us that there is a probability measure 7 such that v’ is a -

quasimartingale, therefore a D-strong integrator, by (c) just above. Consequently v is a ¥-strong integrator,
by 627C(c-iii).

627M Corollary Let S be a sublattice of 7, and v an integrator with domain S. Then the solid convex
hull of Qs(dv) is topologically bounded.

proof If S is empty, this is trivial, so I suppose otherwise.

(a) T should begin by noting that the set of those z € L° for which there are ag,...,a,, > 0 and
20, -+ s Zm € Qs(dv) such that 377" gy = 1 and [2] < 377 ajlz] is a solid convex set including Qs (dv);
moreover, as noted in 613B(f-iv), the solid hull of a topologically bounded set in LY is topologically bounded.
It will therefore be enough to show that

Cldv) = {375, ajlzj] - a; > 0, 25 € Qs(dv) for every j <m, >0 a; =1}

is topologically bounded. Moreover, for this it will be enough to show that inf,~osup,ccaw) [z > 7] =0
(613B(f-ii)).

Next, if 2 € C(dv), there are ag,... ,am >0, 09 < ... <0, in S and a family (u;;)j<m,i<n in L° such
that uj; € L°(A,,) and [Jujiflec <1 forall j and 4, 327 o = Land z = Y7 o S i X (Vo — Vo)
P Let ag,... ,0um, 20, .. ,2m be such that a; > 0 and z; € Qs(dv) for every j, while Z;ﬁ:o a; =1 and

z= Z;n:() ajlzj|. For each j < m, let I; € Z(S) be such that z; € Qr,(dv) (616Da). Let I be a non-empty
finite sublattice of S including | J I;. Then z; € Q;(dv) for every j (616Dd). Let (0;)i<n linearly generate
the I-cells. Then for each j we can find ujo, ... ,u;j,,—1 such that uj; € L°(2,,) and ||uj;[c < 1 for each
i <nandz = E?;Ol uj; X (Vg,., — Vg,) (616C(ii) again). Now z = E;n:o o Z:.:Ol Ui X (Vo py — Vo, )], S
required. Q

j<m
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(b) Suppose that v is a uniformly integrable martingale. Then C(dw) is topologically bounded. P By
621Ba, § = sup,cg ||vo||1 is finite. Take z € C(dv) and v > 0. Take ag,... , 0 > 0,00 < ... <0, in S
and a family (ui)j<m,i<n in LY such that uj; € LO(RA,,) and [[ujilleo < 1 for all j and i, 377, a; = 1 and
z =00yl S0 wji X (Vgy,, — V,,)|. By 621HF, in its full strength,

_ _ 16 16
Allel > A1 = Al > A < v, | < 2.

As z is arbitrary,
. _ . 168
inf >0 SUP,ec(aw) £l12] > 7] < infyso - = 0

and C(dv) is topologically bounded. Q
(c) Suppose that v is order-bounded and non-decreasing. Then C(dv) is topologically bounded. I Set

U = SUPges Vo and v = infoes vy If 2 € C(dv), express it as 37" aj] S i X (Vgrsy — Vo,)| where
g, ...,y > 0,00 < ... <0, inS and (uj;)j<m,i<n are such that Z;”:O aj =1 and uj; € LY(2A,,) and

lwjilloo < 1 for all j and i. Then

m n—1
z < E :aj E |uﬂ| X ('Uffi,+1 - U”i)
j=0 =0
m n—1
< § :aj Voir1 = Vo = Vo, — Voyg < vp — vy
j=0 =0

Thus C(dv) C [0,v4 — v}] is order-bounded, therefore topologically bounded. Q

(d) Suppose that v is a strong integrator. Then C(dv) is topologically bounded. I Let ¢ > 0. Then there
are a uniformly integrable martingale w and non-decreasing, order-bounded processes w’, w”’, all with domain
S, such that fifv # w +w’ —w”’] <e. By (b)-(c), C(dw), C(dw’) and C(dw") are all topologically bounded,
so their algebraic sum is topologically bounded and there is a v > 0 such that gz + 2 + 2" > 7] < €
whenever z € C(dw), 2/ € C(dw') and 2" € C(dw”). Now suppose that z* € C(dv). Express z* as
Z;ﬁ:o | Z?:_()l wji X (Vo — Vo,)| Where ag, ..., >0, 00 < ... < 0y in S and (uj;)j<m,i<n are such
that 337" gy =1 and uy; € LO(As,) and ||ujil|oc < 1 for all j and i. Set v = w +w' —w”,

z = Z;n:O aj|2?:_01 uji X (w0i+1 - wUz‘,)| € O(dw)a
7= g oyl iy wii x (W), —wy)| € C(dw),

2 =Y e[Sy wg x (wl, | —wh )| € Cdw")

Ti41

and

~ m n—1 ~ ~

Z= Zj:O aj'Zi:O Uji X (vo'i+1 - UUz‘)'
where v = (v,)ses, etc. Then

E<z+2 472, [F#Z]cCv#0],
S0

allz*| > 7] = plz" > 7] < a2 > ] + Bl # 9]
<Alz+ 2 +2" >]+ €< 2e

As e is arbitrary, C(dv) is topologically bounded. By (a), the solid convex hull of Qs(dv) is topologically
bounded. Q

(e) For the general case, we know from 627Ld that v is a strong integrator with respect to an alternative
law, which gives the same topologically bounded sets in L, so the solid convex hull of Qs(dv) is topologically
bounded in this case also.
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*627N I star the next couple of lemmas because I am sure that most readers will be interested primarily

in the case T = [0, oo, for which they are essentially irrelevant, in view of 627R.

Lemma Let S be a non-empty finitely full sublattice of T and u = (uy),es a fully adapted process such
that limg14 ue is defined in L°(2A) for every non-empty upwards-directed set A C S with an upper bound
in §. Then there are a non-decreasing sequence (7,)nen in S and a non-decreasing sequence {(dy,)nen in A

such that
dn €7,  dn C[Tny1 = 7]
for every n € N, and
sup,en(dn U [T < 7)) =1,  ur =limy o0 Urps,
for every 7 € S.
proof (a) For o € S and k € N, set
Aok = SUD esve [|Uur — u| > 275

for o € S set

by = SUDPLeN Gok = SUDrcsve H“T i Ucfﬂa co = 1\ upr(by,2As).

(Here upr(by,2,) = inf{a : a € Ay, b, C a}, the upper envelope of b, in A, as in 313S.) Set d = sup,¢g Co-

(b) If 0 € S and k € N, then inf,csvey ii(aok \ [Jur —us| >27%]) = 0. P For 7 € SV o set e, =

llur — o] > 274, 50 that ak = sup, sy, er-

(i) If r, 7’ € SV o then

ernr=77=[lur —uo| 227 n[r =71]

= [Jur —us| > 27 F]n[r=7] =ern]r =11,

e;nNfr<t)=e,n[r=7AT]Cernr,

e,nr <tl=e;nr=7V7]Cervr,

and e, C e;nr Ueryy. Similarly, e;r C erprr Ueryrr.
Now e,nr € Arprr € Arvyr, so there is a 7”7 € T such that

ernr Cl" =7 AT], 1\erpr Clr" =7V 7]
(6111). Because S is finitely full, 77 € S, and of course 0 < 7 A7/ < 7. Now
ern 21" =T AT Nernr = erpr
and also
ern 2" =7V T Nervr 2erver \ ernr,
SO

€rrr Derarr Uelryrr D€rUerr.

(ii) Thus {e, : 7 € S A o} is upwards-directed and
SUD,esno Her = [(SUD cspo €r) = flgk-
Taking complements in a,,
infresno fi(ag, \er) =0,

as required. Q

(c)(d) For any 0 € S, ¢, € A, and ¢, Nay = 0 for every k € N, so ¢, C [ur = u,] for every 7 € SV o.

Generally, for 7 € S,
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[ur =turpo] 2 [T =T Ac]U([r =7 Vo] n[us = urvo])

O[r<oJu(fe <7]ncy) 2c,.

(i) fo<o <7in§,
[ur # o] € [r # o] U Tutor # ] € b
taking the supremum over 7,
byr C by C upr(by,As) € Ay € Ay
and
upr(bor, Aor) < upr(by, Asg),
that is, ¢, C cyr.
(d)(i) There is a non-empty countable subset Ag C S such that d = sup,¢ 4, ¢;. Now there is a countable

sublattice Sy of S, including Ay, such that whenever o € Sg and k € N then inf,cs,ve fi(aok \ [[ur — us| > 27F]) =

0. P For k € Nand o € S there is a sequence (T,4;)ien in SVo such that inf;en fi(ags \ [|tr, ., — Uo| > 27%]) =
0, by (b). Set Sy =, . An Where

Apy1={oNnd 10,0/ € Ay} U{oVo' 10,0 € A,y U{rokiio € A, k, i € N}
for each n € N. Q

neN

(ii) Let (0, )nen be a sequence running over Sy and set o, = sup;<,, 0; for n € N; then (0,)nen is a
non-decreasing sequence in Sy and {0, : n € N} is cofinal with Sy. Set d,, = ¢,, for n € N; by (c),

d = 8Up,c 4, Co C SUP,eN Cor, © SUD,en Co,, = SUPp ey dn € d

and d = sup,,cy dy,. Note that d, C [ur = urps, ] for every n € Nand 7 € S, by (c-i) above, while d,, C dp11
for every n by (c-ii).

(e) If 7 € S then inf,es, [0 < 7] C ¢r. P? Otherwise,
upr(b,, ;) N inf,cs, [o < 7] # 0.
Because inf,es, [0 < 7] € 2,
b N infees, [o < 7] #0
and there is a k£ > 1 such that
ar -1 N infoes, [o < 7] # 0;
finally, there is a 7/ € S V 7 such that
a = [Juy —ur| > 275 ninf,es, [0 < 7]

1S non-zero.

If 0 € Sy then
ac (o <7)nlur —ur| >27F1])
C ([o <7lnflur —us| > 27}6]]) u(lo <7ln[lur — uo| > 27k]])
c [“uo\/T’ - uo" Z Z_k]]) U IHUUVT - uo" Z Q_k]]) C Ggk-
Consequently

inprSo\/a ﬁ(a\ [Hup - ua| > 27’6]]) < inprSU\/a ﬂ(aak \ [“up - Uz7| > 27]6]]) =0.

We can therefore choose inductively a non-decreasing sequence (p,)nen in Sy such that

_ _ 1_
H(a\ [[|upn+1 - upn‘ Z 2 kﬂ) S i,ua

for every n € N. But this means that
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2_kl‘7’[[‘uTApn+l - U‘T/\pn| Z 2_k]])
27 i([pnta < 70 [lup,s — wp,| > 274))
2_kﬂ(a’ n [[|upn+1 - U’Pn' 2 Q_k]]) Z 2_k_1/j‘a

e(uT/\anrl - uT/\pn) 2

AVARAYS

for every mn; which contradicts our hypothesis that lim,t4 4, is defined in L°(2A) for every non-empty
upwards-directed set A C S with an upper bound in §. XQ

(f) So for any 7 € S

sup(d, U[r <o,]) =du(1\ inf Jo, <7]) =du(1\ inf [o < 7])
neN neN g€So

(because if o € Sy there is an n € N such that o < ¢y, and [o,, < 7] C [0 < 7])
=1

because inf,es, [0 < 7] C ¢ Cd.

(g) We have most of what we want. But as there is no reason why d,, should be included in [o,4+1 = 7,],
we have to make a further adjustment.

(i) We can define a non-decreasing sequence (7, )nen in S inductively by saying that 7o = o and that
dp C [The1 =1a], 1\dn C [Ths1 = on1]
for n € N. P The point is that 7, < o, and d,, € 2, for every n. To see this, we know that we have
70 < 09 and
do = Coy € Uy = Ury -

At the inductive step, given that 7,, < o, and d,, € 2, 6111 tells us that 7,41 is well-defined in 7 and that
Tn < Tng1 < Ong1; Tatl € S because S is finitely full. To see that d,41 € %L, ,, note first that, because
On S On+1,

dn = Co,, c Copi1 — dnJrl

by (c-ii) again. We know that d,, € A, C . ., while d,11\d, belongs to A, and is included in
[Th+1 = ont1], so belongs to A by 611H(c-iii). Accordingly d,,+1 = dy, U (dpt1 \ dr) belongs to 2A
So the induction proceeds. Q

Tn41) Tn+1"°

(ii) We now certainly have d,, € 2. and d,, C [r,41 = 7] for every n. If 7 € S,

1 =sup(d, u[r < a,])
neN

(by (f))

N

sup(dy U [T < opy1]) = sup(dn U ([7 < 0ng1] \dn))
neN neN

Sug(dn U([r € onsilnlonsr = Tns1]))
ne

sup(dp+1 U [T < Thy1]) € sup(dy u[r < 7))
neN neN

N

N

(iii) If n e Nand 7 € S, then d,, C [ur = urar,]. B Induce on n. If n = 0 we just have to recall from
(d-ii) that dy C [ur = Urpae,]. For the inductive step to n+ 1 > 1, we have

dn C [[Tn - Tn+1]] n ﬂu'r - u‘l‘/\‘l‘n]] C HT NTp =TN Tn+1ﬂ n [[u'r - u‘l’/\‘l'n]]
(611E(c-v-av))

c [[UT = uT/\Tn+1:[|?
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while dp11 C [ur = Uurpo,.,] by (d-ii), so
dnt1\dp C [tr = Urpo, ] 0 [Tng1 = Ong1] € [ur = trnr, |-
Putting these together, dy, 11 C [ur = trpr,.,], as required to continue the induction. Q
(iv) Tt follows that w, = lim, e Urar, for every 7 € S. P By (iii), we have
dpur <1 ] =dpult =7AT] C [ur = trar,],
while (d,, U [T < 7,])nen is a non-decreasing sequence in 2l with supremum 1, so
O0(ur — urpr,) < B\ (dn U[r < 7])) = 0

as n — 00. Q So (d,)nen and (7,,)nen have all the listed properties.

*6270 Lemma Suppose that we are given a sublattice S of T, a non-decreasing sequence (7,,)pen in S
and a non-decreasing sequence (d,)nen in 2 such that

dn S 9177,,7 dn - [[Tn—l-l = Tnﬂ
for every n € N, and
1 =sup,endn U [T < 7]

for every 7 € S. Set So = |U,,c S A T and suppose that u = (us)ses, is a fully adapted process.
(a) There is a fully adapted process 4 = (i,)rcs such that
(1) @y = limp 00 Urps, for every 7 € S,
(ii) dpu [T < 7] C [tr = trps,] for every 7 € S and n € N,
(iii) u extends u.
(b) Write S for the covered envelope of S, S for Unen

SAT, and &4 = (tig),c &, for the fully adapted
extension of u to Sp. Set @, = limy, o Urpr, for every 7 € S. Then u = <1:LT>T€$ is the fully adapted

extension of & to S.
(¢) If u is locally moderately oscillatory, @ is locally moderately oscillatory.
(d) If w is a virtually local martingale, @ is a virtually local martingale.
(e) If u is locally of bounded variation, @ is locally of bounded variation.
(f) If wis locally order-bounded and @ = sup,, ¢y Osclln(u|SoAT,) is defined, then @ > sup, g Osclln(a[S A 7).
(g) If uw is a semi-martingale, @ is a semi-martingale.

proof (a)(i)(a) If 7 € S and k <n € N, then
di € [tk = 7] € [urnr, = urar,]
while similarly
[r<m] Clr AT =7ATa] C [trar, = Urar,]-
Soif k <m <ninN, dyuftau < 7] C [trar,, = Urar,] and
O(urnry, = trnr,) < BN (dp U [T < 7])) = 0

as k — oo. Thus (urpr, Ynen is a Cauchy sequence and @, = lim, o Urar, is defined in LO(2A). Moreover,
since u,nr, € LO(Arpr,) € LO(A,) for every n, 4, € LO(2L,).

B)Ifr, 7" €S and c=[r =7'], then ¢ C [t A7, = 7' AT,] for every n, so
Ur X XC€ = 1My 00 Urar, X XC = liMy_y00 Ur/ar, X XC = Us X XC
and ¢ C [u, = 4,/]. As 7 and 7/ are arbitrary, @ is fully adapted.
(ii) Set d!, = d,, u [T < 7,]. For any k > n,
d, C([re=m]u(r <m]nlr <7]) ST AT =T AT] C [Urar, = Urar,]-
So

~ / : U !
Ur X xd, = limg_yo0 Urar, X XA, = Urar, X X,
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and d), C [tr = urpr,]-
(iii) If 7 € Sp then 7 A 7, = 7 for all n large enough, so @, = limy,_,c0 Urar, = Ur.
(b) We just have to note that o is fully adapted, by (a-i) applied to S and @, and extends .

(c)(i) Consider first the case in which S is full. Suppose that 7 € S and (0;);en is a monotonic sequence
in SAT. For n € Nset d,, =d,u[r <7,]. Then

d{n c dn ) [[Ui < Tn]] c [[ua'i = UUi/\Tn]]
for every i € N, and
(g, X xdy)ien = (Uo,Ar, X Xdy)ieN

is convergent. Since 0(ty, — Uy, X xd,,) < p(1\d}) for all ¢ and n, and lim,_,« G(1\ d),) = 0, (i, )ien is
convergent. As (0;);en 18 arbltrary, #[SAT is moderately oscillatory; as 7 is arbitrary, @ is locally moderately
oscillatory.

(i) In general, take S, Sy, @ and @ as in (b). For each n € N, 50 AT, =S ATy, is the covered envelope
of S AT, (611M(e-i)), and u[S A 7,, is moderately oscillatory, so @[S AT, is moderately oscillatory (615F (a-
i)); as {7, : n € N} is cofinal with Sy, @ is locally moderately oscillatory. By (i), @ is locally moderately
oscillatory, so 4 is locally moderately oscillatory (615F (b-v)).

(d) We know from (c) that @ is locally moderately oscillatory.
(i) Consider first the case in which S is full.

(a) Take 7 € § and € > 0. Then there is an n € N such that f(d, u[r < 7,]) > 1 —e. By 623Ke,
ulS A1, =ul[Sy A 7, is a virtually local martingale. Let A C S A 7, be a non-empty downwards-directed
set such that sup,c 4 fi[p < 7] < € and Ra(u[S A 7,), as defined in 623B, is a martingale. If p € A, then
a, = dy N[, < p A 7] belongs to Apnr, by 611H(c-iii) again. So we have a p’ € T such that

Wap, c o =pn7l, apclp=1],
and p' € S. If po < p1 in A then pj < pj. P a,, C a,,. Now

o C oo =7]nlpt =71 < [t < p1],
ap, \ ap, C [pg=po AT [P} =
Way, g =poAT]n[pr =
So py < pi- Q
B)Ifpe Aand 0 €S, Ugnp = Usrrnp- B By (a-ii), dy, C [Ue = Usnr,] for every o € S. So

a, Cdyn[r <TApIN[p =7] C [tony = Gonpnr, ] N lp=m]n[p =7]
c IIao'/\p’ = ﬁa/\'r/\p]] = [[ﬂ/cr/\p’ = ua/\'r/\p]]
because c ATAp € S AT, CSp. On the other hand,
1\ ap < [[p =TAN P]] c [[UO'/\p’ = ua/\T/\p]] [[ﬂcr/\p’ = ua/\'r/\p]]~
Putting these together, we have the result. Q
(7) Set A" = {p’ : p € A}; then A’ C S is downwards-directed and not empty. Now sup ¢ 4, iifp < 7] =
sup e 4 fi[p" < 7] is at most 2¢. B If p € A, then
o <tl=lpArT<7t]\a,=[p <]\ (dnn]rn < pAT])
clp<mlu(lp=mlnlm <7\ (dnn[m < pAT]))
=[p<m]u(lp=m]n[m <7]\dn)
Clp<m]u@\(@nulr <m]))

has measure at most 2¢. Q
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(8) Because w is locally moderately oscillatory, R4/ (@) is defined. Furthermore, it is a martingale. I
Express the martingale Ra(u[SAT,) as (u),)sesnr,, so that u), = lim,; 4 usn, belongs to Lll2 foro € SAT,,
and P,u, = u/ whenever 0 < ¢’ in S A 7,.

For o € S, write v/, for
limpar Gopp = limy 4 Gony = Hmppa tioprnp = liMppa Ugnr, Arnp = Uppr, ars

this belongs to L;lz- Andif o <o’ in S,

!/ _ / _ !/ . / 7
PU (UO'/) - PUua“/\Tn/\T = LonruAtUsinronr = Yonronr = Vo

So (v.)oes = Ra/ (@) is a martingale. Q
(€) Since 7 and € are arbitrary, @ is a virtually local martingale.
(ii) Generally, take S, Sy, @ and @ as in (b) and (c-ii). Because @[Sy AT, is the fully adapted extension
of u[S A T,, it is a virtually local martingale for every n € N; because {7, : n € N} is cofinal with Sp, @ is a

virtually local martingale; by (i) here, @is a virtually local martingale; it follows that @ is a virtually local
martingale.

(e) Take 7 € S. Forn € N, z, = fs/wn |du| is defined in L°(2A). Set d’; = 0, d!, = d, u[r < 7,] for
n >0 and
2 =30 o(Zn X x(d \ d}, 1)) € LO.

Now suppose that o9 < ... <o <7in S, and set z = Zi:ol |tig,,, — Ug,|- Then

d;, € ZIISI£ [to, = tonr,]

< [[Z = Zfz_ol |u0i+1/\7'n - uo"i/\Tn”] c [[Z < 271]]
SO
dy\dp_y Sz <Z]n[zn < 2] c[2 < 7]

for every n € N. Since (d],)nen is non-decreasing and has supremum 1, z < Z. As oy,... ,0 are arbitrary,
u[S A T is of bounded variation.

(f) Take 7* € S. I need to show that Osclln(a[S A 7*) < @w. We know from (c) that @[S A 7* is
order-bounded; set @’ = Osclln(a[S A7*). Take any n € N and € > 0. Set 7 = 7* A 7,. Note that by 618Da,

Osclln(u[S A7) < Osclln(ufS A 1) < w.
Suppose that ] CJ € Z(SAT*). U7 <7< <7*in S, then 1A7,=7=7" ATy, 80
dn U [[7—* S Tn]] - [[ﬂ'r - u‘l’/\‘l'n]] n ﬂﬁ'r’ - u'r’/\‘rnﬂ - [[717 - 'a‘r’]]~

As 7 and 7’ are arbitrary,

dp U[m* < 7,] € [Oscllnyyz(@) = 0] C [Oscllny (@) = Oscllnjaz(@)]

= [Oscllny (&) = Osclln a7 (u)]
(because w|SAT =u|SAT)

C [Oscllny (@) < Osclin}(u]S A 7)].
As J is arbitrary,

dp U[r* < 7,] € [Osclinj(a[S A 7*) < Osclln}(ulS A 7)]
C [@" < Oscllnj(u[S A 7)].
As [ is arbitrary,
dpum* < 7,] C [0 < Osclln(ulS AT)] C [@ < w].
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As n is arbitrary, Osclln(a[S A 7*) = @’ < w, as required.

(g) Express u as v + w where v = (v,)qcs, is a virtually local martingale and w = (w,)ses, is locally
of bounded variation. Let ¥ = (¥,;),ecs and w = (W, )rcs be the corresponding extensions, so that v is a
virtually local martingale and @ is locally of bounded variation ((d) and (e) above). Then

Ur = limy, o0 Urpr, = limy, o0 Vr AT, T limy, o0 Wrpar, = Ur + Wy

for every 7 € S, so that u = v + w is a semi-martingale.

627P Corollary Let S be a sublattice of 7, 7 a member of S, and 4 = (Ug)oes, W = (Wo)oecSAr tWO
fully adapted processes. Set

Vg = Ug — Ugpar T Wonr

for 0 € S. Then v = (vU,)ses is fully adapted, and is locally of bounded variation, or a virtually local
martingale, or locally moderately oscillatory, or a semi-martingale if w and w both are, while

Vg =Wy ifc ESAT, Vog=uUs—ur +w;ifceSVrT.

proof Apply 6270 with d,, = 1, 7, = 7 for every n € N, so that Sy = S A7 and 0 = Usar, O — Wonr
are the extensions #, w of u[S A 7 and w as described in 6270. Now for each of the four properties listed,
u[S AT will have the property if u does; see 623Ke for virtually local martingales, and the others are almost
immediate. So 6270 tells us that u and w also have the property considered, so that v = u — 4 + w also
does, using 614Q(b-iii), 615F (b-iii) or 623Ka.

627Q Theorem A fully adapted process is a semi-martingale iff it is a local integrator.

proof (a) We saw in 625E that a semi-martingale is a local integrator. So it will be enough to show that if
S is a sublattice of T and u = (u,)secs is a local integrator, then it is a semi-martingale.

(b) To begin with, suppose that S is full. Since u is locally moderately oscillatory (616Ib), the hypotheses
of 627N are satisfied; let (d,)nen and (7,)nen be as described there. For each n € N, u[S A 7, is an
integrator, therefore a semi-martingale (627J); let v,, = (Uno)oesar, be a virtually local martingale and
Wy, = (Wne)oesar, @ process of bounded variation such that v, +w, = u,[S A7,. Define v/, = (V). )ocsar,

and w), = (W), )sesnr, inductively by saying that

/ /
’UO - ’vo, wo - w(),
/ _ _ + !
vn+1,o’ = Un+l,0 Un+1,0ATh Un,a/\‘rn7

! _ /
wn-i—l,a = Wn+1l,0 — Wntl,0AT, + wn,a/\Tn

forn € Nand o0 € SAT,41. We see by induction, using 627P, that v/, is a virtually local martingale and w!,
is of bounded variation, while v}, ,; extends v;,, w;, ,; extends w], and v;, + w;, = u,, for every n € N. We
therefore have processes v = |J,,cyv;, and w = |J,,cywy,, both with domain Sy = |J,,cjy S A 7n, such that
v is a virtually local martingale (623Ke again) and w is locally of bounded variation, while v +w = u[Sy.
Thus u[Sp is a semi-martingale. But as the construction in 627N arranges that u, = lim,_ o Uras, for
every T € §, u itself is a semi-martingale, by 6270g.

(c) For general S, let S be the covered envelope of S, and write @ for the fully adapted extension of u
to S. By 6161a, @ is a local integrator, By (b) here, 4 is a semi-martingale, and is expressible as the sum of
a virtually local martingale ¥ and a process w which is locally of bounded variation. Setting v = ¢S and
w = w[S, u = v+ w, while v is a virtually local martingale (623J) and w is locally of bounded variation
(614L(b-ii)). So w is a semi-martingale, which is what we need to know.

627R In the cases we really care about we can escape most of the work in Lemmas 627N and 6270 by
using the following.

Proposition Suppose that T is separable in its order topology. If S is any sublattice of 7, there is a
non-decreasing sequence (7,)nen in S such that sup, oy [0 < 7,] = 1 for every o € S.
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proof (a) Set 7* = sup S in 7. Then there is a countable set Ty C T such that [7* > t] = sup,ep, > [7* > 5]
for every t € T. I* Take T3 to be a countable dense subset of T" and set
To={t: 7" >t] #supys, [T > s]} = {t: g[r* > t] > supyo, £[7* > s]},
T3 ={t:inf{s: s>t} € Tv},

so that Ty and T5 are countable; then Ty = T7 U Ty U T3 is countable. If ¢ € T then of course [7* > t] =
SUpser, s>¢ [7° > 8]. Ift € T\ Ty and € > 0, then t ¢ T} so there is an so > ¢ such that g[r* > ¢] <
a[m* > so] +¢; as t ¢ T3, we can suppose that so ¢ To, so that there is an s1 > sg such that g[7* > so] <
a[m* > s1] + €. Now the open interval |7*, s1[ is non-empty, so meets 77, and there is an s € T} such that
plr* > t] < pfr* > s] + 2¢e. As € is arbitrary, [7* > t] = sup,eq, ¢ [7" > s] in this case also. Q

(b) Set a = sup,cs [0 = 7*]. Then we have a countable C' C § such that a = sup, ¢ [r = 7*]. Next,
for each t € Tpy, let D; be a countable subset of S such that

sup,ep, [7 > t] =sup,cs [0 > t] = [t > 1]
(611Cb). Set D =C U UtGTo D, € [S]=~.
(c)supD=71*. PForanyteT,

[7*>t] = sup [7* >s]= sup [r>s]C sup [r>¢t] C[supD >{]

s€Ty s€Ty s€Tp
s>t s>t T€D
TED

so 7 < sup D; and of course supD < 7*. Q
(d) Take any 0 € S. We have
l[o < 7] =[o <supD] =sup,cp [0 < 7],
while [o = 7*] = sup,¢p [0 = 7] because C' C D. Consequently

supreplo <7l =[o <=1

(e) Let (7,,)nen be a sequence running over D and set 7,, = sup;<,, 7{ for n € N. Then sup,,cy [0 < 7,] =
sup,cp [0 < 7] =1, as required.

Remark Accordingly we have the result of 627N in a much stronger form, with every d, equal to 0, and
with the sequence (7,,)nen independent of the process u.

627X Basic exercises (a) Suppose that 7' = [0, 00[ and 2 = {0, 1}, as in 613W, 615X{, 616Xa, 617Xb,
618Xa, 622Xd and 626Xa, Let f : [0,00[ — R be a function and u the corresponding process on 7. (i) Show
that w is a supermartingale iff f is non-increasing. (ii) Show that w is a quasimartingale iff it is a strong
integrator iff f is of bounded variation.

(b) Let S be a sublattice of T and v = (v,),cs a supermartingale. Write ¢ for the fully adapted extension

of v to the covered envelope S of S, and S + for the finitely-covered envelope of S. Show that

(i) if v is || ||1-bounded, it is an integrator;

(ii) if S has a greatest element and {E(v,) : 0 € S} is bounded above, v is || ||;-bounded:

(iii) if A C § is non-empty and downwards-directed and {E(v,) : ¢ € A} is bounded above, then («)
limy 4 v, and llim,| 4 v, are defined and equal (8) Ra(v) is defined and is a supermartingale;

(iv) () 98y is a supermartingale (3) if v is || ||;-bounded then @ is || ||;-bounded (7) if S has a greatest
element and {E(v,) : 0 € S} is bounded above, then v is a supermartingale;

(v) if v has a previsible variation v# (definition: 626J), then v# is non-increasing, therefore a super-
martingale;

(vi) if {E(v,) : 0 € S} is bounded above, then v is expressible as the sum of a non-increasing fully
adapted process and a virtually local martingale.

(c) Show that sums and scalar multiples of quasimartingales are quasimartingales.
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(d) Let v be an L'-process defined on a sublattice S of T. (i) Show that Qs(|Pdv|) € Qs(Pdv). (ii)
Show that the following are equiveridical: (&) v is a quasimartingale; (5) Qs(Pdv) is || ||1-bounded; (7)
Qs(|Pdv|) is || ||1-bounded; (§) {E(S;(1,|Pdv|)) : I € Z(S)} is bounded. (Hint: for (a) = (), recall that
weakly bounded sets in Banach spaces are bounded.)

(e) Let S be a sublattice of T with greatest and least elements. Show that a submartingale with domain
S is a quasimartingale.

627 Notes and comments The target of this section is Theorem 627Q. The traditional approach to
stochastic integration has been integration with respect to semi-martingales, typically in contexts which
ensure that they can be described in terms of local martingales rather than virtually local martingales. so
that PROTTER 05, for instance, uses the word ‘semimartingale’ for what I call ‘integrators’, and the phrase
‘classical semimartingale’ for a sum of a process of bounded variation and a local martingale. Protter’s
Theorem 47 corresponds to my 627J. The first steps are to prove that a semi-martingale is a local integrator
(625E) and that an integrator is a semi-martingale. To show that every local integrator is a semi-martingale
we need some more technique, using 627N-6270 or 627R.

Clearly supermartingales are going to be like submartingales in many ways. But it does not at all follow
that non-negative supermartingales, as in 627D-627E, are going to behave like non-negative submartingales,
as in 626M. The idea of quasimartingales is to get back to something symmetric, like integrators and semi-
martingales.

The principal results here (6271, 627J, 627L) depend on the theory of convex sets in locally convex
linear topological spaces (627F-627G), and our difficulty is that the topology of convergence in measure
is not locally convex in the interesting cases. So we have to negotiate carefully to ensure that we have
topologically bounded convex sets. If v is an integrator, Qs(dv) is convex, by 627Hb, and its solid hull is
topologically bounded by 613B(f-iv). But it does not seem to follow directly that the convex hull of its solid
hull will be bounded. So for 627M we need to refer back to the methods used in 621H, and these work best
on what I am calling ‘strong integrators’. In fact 627L-627M will be used rarely in this volume. But I think
we need them to get a proper idea of what an integrator is.

I remarked in the notes to §625 that the law-independence of the class of semi-martingales (625F) was sur-
prising. Using that independence, we have come to a law-independent characterization of semi-martingales
as local integrators (627Q). There are no coincidences in mathematics. But there are many deep structures
with unexpected outcrops.

Version of 31.12.17

*628 Refining a martingale inequality

I remarked in §621 that the constant 16 in the inequality 621Hf can be reduced to 2 if we are willing to
use some rather more advanced measure theory. This treatise is not about finding best constants. But 2 is
a much prettier number than 16 and the method I have devised passes through a construction (628C) which
may have other uses, as in 628F-628G, so I present it here.

628A Lemma Let (2, i) be a probability algebra, and 2 a closed subalgebra of 2; write P : L}-L — Li—t
for the corresponding conditional expectation operator. Suppose that v € L,lj. Set vg = Pyv. Then there
are a probability algebra (*B,7), closed subalgebras By C B; C B, and a measure-preserving Boolean
homomorphism 7 : 2 — B such that 7[%y] = By and if T = T : Lll1 — L1 is the associated embedding
(365N®) and w; is the conditional expectation of Tv on 9B; for both 7, then

wo = T’Uo,

[lwi| = 1] n [lwo| < 1] = [lwi| > 1] n [lwo| < 1]
O [ITv| = 1] n[Jwo| < 1].

(©) 2017 D. H. Fremlin
8Formerly 3650.
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proof (a) Let (', ’) be a homogeneous probability algebra of infinite Maharam type at least equal to
the relative Maharam type of 2 over 2y (333Aa). Let (€, \) be the probability algebra free product of
(o, i[Ao) and (A', ") (325K). Then there is a measure-preserving homomorphism my : 2 — € extending
the canonical homomorphism a — a®1 : 2y — @A = € (333Fa). Set € = mo[Ao] = {a @1 :a € Ap}; let
To : L), — L§ be the embedding associated with my, and Qo : Lt — Ly the conditional expectation operator
corresponding to €y. Then QoTy = Tp Py, by 365Qd”.

(b) Let (Q,%, u) and (2,3, 1’) be probability spaces with measure algebras isomorphic to (2o, &%)
and (', i) respectively (321J). Let A be the product measure on 2 x . Then the measure algebra of A
is isomorphic to (€, ) (3251), and if E € X then (E x ©')* corresponds to E* ® 1, so that m[ 2y : Ap — €
corresponds to the map E — E x ) and € to the c-algebra {E x Q' : E € X}. Accordingly the
conditional expectation operator Qo can be defined by saying that if g € £1(\) then Qo(g°) = f*, where
f(w,&") = [ g(w,w’)dw’ whenever this is defined (253H), the integral here being with respect to p'.

(c) Let g € £LY(\) be such that g* = Tyv; we may suppose that g is defined everywhere on Q x €’ and
is X®Y/-measurable (because A is the completion of its restriction to YRY, by 251K). Moreover, adjusting
g on a negligible set of the form E x ' if necessary, we can arrange that [ g(w,w’)dw’ is defined for every
w € Q(252B). Set E ={w: -1 < [g(w,w)dw’ < 1}; by 252P, FE € X.

(d) For w € E set
Fo={w"1gw,u) < -1}, F ={': g(w,w) 2 1}.

Let me explain where I think T am going. I seek to define measurable sets G, G/, C ' x [0,1] with the
properties that

G,.NGL, =0, G,UG, D (F,UF!)x0,1],
ffG (w,wdw'dw" = —(p' x ") (G.),

Sy 9wt d” = (1 % 1) (GL),

where 1/’ is Lebesgue measure on [0, 1] and the integrals [ ...dw” are taken with respect to u'; moreover,
I wish to do this in such a way that

G={(w,w, ") wekE (W w)eqG,},
G ={(w,,W"):wekE, (V,w')eqG,}
belong to S®X/®X", where X is the Borel g-algebra of [0, 1].
(e) Set
Ey={w:weE, F,=uF,=0},

Ey ={w:we E\ Ey, fF upr 9w, wdw’ < —p! (Fy, UF)},
By ={w:we B\ By, [, . glww)do’ > p/(FaUFL)},

Es={w:weFE\Ey, —p/(F,UF)) < fF upr 9w, w)dw’ < (F, U F)}.

Because w — ('F,, w — p'F,, w = [, g(w,w)dw and w — [}, g(w,w')dw’ are X-measurable (252P
again), (Eo, E1, Eo, F3) is a partition of F into members of 3.

(£)(i) f w € Ey, set G, = F,, x [0,1] and G], = F/, x [0,1].
(ii) If w € By, then (because [, g(w,w’)dw’ > —1) there is exactly one o, € [0,1[ such that
(1-— aw)wauF; g(w,w)dw' + Ozwfg, g(w,wdw' = —(1 — a,)y' (F, UF!) — ay;

9Formerly 365Rd.
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set
Go=((Fu UF,) x [0,1)) U(Q x [0,04]), Gl =0.
Then
// g(w,w)dw'dw” = (1 - aw)/ g(w,w)dw' + aw/ g(w,w’)dw’
G )

F,UF, /
—(1 = o)y (Fu UF)) — a = —(u x ") (Gu),

ffG, w,w)dw'dw"” = 0= (i x ") (G).

Because w — «, is expressible as a rational combination of measurable functions, it is ¥-measurable and

{(w,w,w"):w e Ey, (W,w") € G,}

belongs to X®X'®%", while of course
{(w,,w"):we E, (W,w)eG, }=0

also does.

(iii) Similarly, if w € E9, then there is exactly one a, € |0, 1] such that
(1- a“)wauFL g(w,w’)dw’ + ozwfﬂ, glw,wdw' = (1 — ay,)u/ (Fy UE) + oy,
and we can set

Gu=0, G, =((F,UF,)x%[0,1])U(Q x [0,a]).

(iv) Now consider the case in which w € E3. In this case, because
fF (w,wW)dw < —p'F,, wa g(w,w")dw’ +fFJu g(w,wdw' > —p/'F,, — W' F),
there is a unique «,, € [0, 1] such that
fF w,w)dw’ —&—awa, w,wdw' = —p'F, — a, (/' F.
Next, because

(1- aw)fF, glw,wdw > (1 — oy, )W F.,

Jr, 9, + [, glew, ) < /B + ' FL,

there is a unique 5, € ]0,1] such that

(1-4.) /F 9w, ) + (1 — ) / 9(w )

’

= (1= Bu)/'Fo+ (1 — auBu)i'F..

w

So if we set

G = (F, x [0, 8,]) U (F, x [0, o, o)),

Gl = (Fu x B, 1]) U (F, X JawfBu, 1)),
we shall have G, NG., =0, G, UG, = (F,UF/) x [0,1],

// g(w,w)dw'dw” = Bw/ g(w,w)dw'’ —I—awﬁw/ g(w,w)dw'’
Go F, &

- ﬁw(/F g(w,w)dw' + ozw// g(w,w")dw")

w

= _Bw(ﬂle + aw,U//FLL) = _(MI X MN>(GW>7

D.H.FREMLIN



84 Martingales 628A

and

Il

g(w,w)dw' dw" = (1 — Bw)/F g(w,w)dw’ + (1 — a,B.) /F/ g(w,w)dw’

=(1- Bw)ﬂ/Fw + (1 - awﬂw):u/Fu/; = (MI X /L”)(Gi)).

’
w

Once again, w — «a, and w +— B, are Y-measurable, so {(w,w,w") : w € E3, (W,w") € G,} and
{(w,w,w") 1w € E3, (W,w") € G} belong to TRL' L.

(g) Thus the project set out in (d) has been accomplished. We need one more refinement: define G, and
Yw, for w € E, by setting

Go = (2 xQ)\ (G, UG,

Yo = 0if (1 x N//)(éw) =0,

= m// g(w,w")dw'dw” otherwise.
w G.

Note that as —1 < g(w,w’) < 1 whenever (w',w") € G, 7w € ]—1, 1] for every w; and by the same arguments
as in (), G = {(w,w’,w") 1w € E, (W', w") € G} belongs to TRY'®Y” and w r+ 7, is L-measurable. (Of

course G = (Ex Q' x Q")\ (GUG").)

(h) Now, in Q x Q' x Q"] consider the product measure v = u x ' x u”, the o-algebras T = dom v and
Ty ={E x Q' x[0,1] : E € X}, and the o-algebra T generated by To U {G,G’'}. For w € Q, v’ € ' and
w"” €10,1] set

hw,w,w") = glw,w’),

ho(w,w’,w") = fg(w,w')dw’ = ff h(w,w’, w")dw' dw",

hi(w,w’, ") = -1 if (w,’,w") € G,
=1if (w,u,w") € G,

=7, if (w,w,w") € G,

= /g(w,w’)dw’ ifwe\E.

Then hg is a conditional expectation of h on Ty, by 253H again. The point is that h; is a conditional
expectation of h on Tq. B Of course h; is Ti-measurable because G, G’ and G belong to T and Ty C T;.
Now any element of Ty is of the form W* = W U W' UW U W, where

W=(HxYxU)VNG, W =Hxx)NE,
W=(HxYxUV)NG, Wy=HyxQ xQ",
H, H', H and Hy belong to &, and Hy N E = (). Now
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e ff otrran
f—/HﬂE(,uxu)(G) w=—vIW = /hdu

/ hd / // (w, w")dw' dw" dw
W HNE 2

*/ (0" x ") GL)dw = vW' = / hidv,
HNE '

/ V*/ // (w,w")dw'dw" dw
W HNE
- / Yo (i X ") (Go)dw = / hady,
HNE w
/ hdz/:/ /g(w,w’)dw’dw:/ hydv.
Wo Hy Wo

Adding, fW* hdv = fW* hidv; as W* is arbitrary, h; is a conditional expectation of h on T;. Q
Just because Ty C T4, it follows at once that hg is a conditional expectation of h; on Ty.

(i) We are almost home. Let (98, 7) be the measure algebra of v, By = {W*: W € Ty} and B, = {W*:
W € Ty}, so that By C 9B, are closed subalgebras of B. Set w = h*, wy = h§ and w; = h}; then wp, w;
are the conditional expectations of w on B, B respectively. Next,

[lwo] < 1] = (Ex Q¥ x Q") = (GUG' UG)*,

[lwi| = 1] = {(w, 0", w") : |1 (w,w’,w")| > 1},
SO
[lwi] > 1] N [Jwo| < 1] = [Jwi] = 1] n [Jwo] < 1] = (GU G")*.
Moreover, if we set

F={(w,w,w"):we€E, hw,w,w") < -1},

F' = {(w,w,w") :w € E, h(w,w,w") > 1},
then FUF’ C GUG because (F, UF])x[0,1] C G, UG, for every w € E. So
[lwl = 1] n[lwo| < 1] = (FUF’)*  [lws| = 1] n [Jwo| < 1].

(j) To complete the pattern demanded in the statement of the lemma, I must describe the homomor-
phism 7. Let € : € — B be the canonical map corresponding to the inverse-measure-preserving function
(w,w,w") = (w,w), and m = emp : A — B, so that 7 is a measure-preserving Boolean homomorphism; let
T : LO() — L°(B) be the associated embeddmg, corresponding to the inverse-measure-preserving function
(w,w,w") = w. Because g* = Tyv, w = h* = Tv; and 7[Ap] = [€o] = B, while wy = Tvg.

This ends the proof.

628B Lemma Suppose that (2, 1) is a probability algebra and (u;);<» is a martingale adapted to a non-
decreasing finite sequence (2(;);<, of closed subalgebras of A. Then there are a probability algebra (%8,7),
closed subalgebras By C ... C By, of B, a martingale (w;) <2, adapted to (B;);<2, and a measure-
preserving Boolean homomorphism 7 : A — 9B such that if T = T} : L}-L — LY is the associated embedding
then

w[2A;] C Bo;, wo; = T, for i < n,

[lw;l = 1] n [Jwj—1| < 1] = [lwy| > 1] n[lwj—1| < 1]
D [lwja| > 1] nflwj—1| < 1]
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for odd j < 2n.
proof Induce on n. If n = 0 the result is trivial (we can take By = Ay, B = A).

(a) For the inductive step to n+1, we suppose that we have a probability algebra (2, ii), closed subalgebras
Ao C ... CAyqq, and a martingale (u;);<n+1 adapted to (A;)i<ns1. The inductive hypothesis tells us that
there are a probability algebra (€, \), closed subalgebras €y C ... C &y, of €, a martingale (v;);<2, adapted
to (€;)j<an, and a measure-preserving Boolean homomorphism ¢ : 2 — € such that, writing T}, for the
associated embedding of L°(2l) into L°(€),

D[R] C Ca4, vo; = Tyu; for i < n,

[lvjl = 1] n [lvj-1] <1] = [lvj| = 1] n [Jvj-1| < 1]
D [lvjs1l = 1 nflvj—1] < 1]

for every odd j < 2n.

(b) Let (D,(,e1,e2) be the relative free product of (2, fi,¢) and (€, X, ¢) over (A, i[A,) in the sense
of 458N-4580, where ¢ : 2, S 2 is the identity map; so that (D, ¢) is a probability algebra, e : 2 — ©
and g9 : € — D are measure-preserving homomorphisms, €1 [, = e2¢[2,, and 1 [2], €2[€] are relatively
independent over

D' = e1[An] = e2(0[An]] C ea[Can.

It follows that T, u, is the conditional expectation of Ty, up41 on €2(Csy]. B Ty, u, is certainly the con-
ditional expectation of T, u,+; on ©’, by 365Qd again. By 458Fb or 458M, T., u, is the conditional
expectation of Ty, u,11 on €3][€a,], just because £1[2A] and e3[Ca,] C £2[€] are relatively independent over
D' Cer[Ca]. Q

Note that as £ and e2¢ agree on Uy, Tr,u = Tr,gu = T., Tyu (364Pe) for every u € L°(2,,); in particular,
T, u; = T,,v9; for every i < n.

(c) Apply 628A to (D,(), the closed subalgebra e5[€s,] of ® and the element 7., u, 1 of Lé— to find

a probability algebra (B,7), a measure-preserving Boolean homomorphism ¢ : © — 9B, and a closed
subalgebra B, 41 of B such that Bo, = [e2[Copn]] € Bopyr and if wonio = TyTr Upt1, Wway is the
conditional expectation of wa, 42 on Bs, and ws, 41 is the conditional expectation of woy, 12 on Bo,, 41, then

Wan = TwTsl Un,

[lwani1| = 1] n [lwen| < 1] = [lwens1| > 1] [Jwzn] < 1]
D [lwant2| > 1] n [lwazn| < 1].

For j < 2n, set B; = 1e2[¢;] and w; = Ty.,v;. By 365Qd once more, w; is the conditional expectation
of

Type,Von = TyTe,von = TyTe up = woy,
on B;. So if we set Bop1o =B, (w;)j<2n+2 is a martingale adapted to (B;) j<ant2.
(d) Set m = pe; : A — B. Then
T[] = Yle1[]] = Ple20[Ai]] € ver€a] = By,
Tru; = TyTo u; = TyT,, v = wo;
for i < n. Next, for odd j < 2n,

[lw;| = 1 allwj ] < 1] = pea(llv;]| = U 0 [lvj] <1])
= e2([loj| = 1] [lvj-1] < 1])
= [lw;[ = 1] 0 [lw;— | < 1],
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[lwjl = 1] n [lwj-1] < 1] 2¥e2([lvj41] > 1 n [Jvj-1] < 1])
= [lwjs1| > 1] n[lwj-1| < 1].
At the last step,
T[An41] TB = Boyyo,

Won+2 = Tl/JTelunJrl = Tﬂ'un+1;

[lwant1] = 1] n [Jwan| < 1] = [Jlwant1] = 1] 0 [Jwan| < 1]
2 [lwan2| > 1] n [Jwan| < 1]

by the choice of B, wa,, wan4+1 and wopyo. So B, U, Bo,... ,Bo, o and 7 witness that the induction
proceeds.

628C Corollary Suppose that (2, i) is a probability algebra and (u;);<, is a martingale adapted to
a non-decreasing finite sequence (2;)i<, of closed subalgebras of 2. Then there are a probability algebra
(B, 7), closed subalgebras €y C ... C €, of B, a martingale (v;);<, adapted to (€;);<, and a measure-
preserving Boolean homomorphism 7 : 2l — B such that

TR C &y villee <1, loilln < Jluilla
for every i < n, and

v(sup;<y, [vi # Trui]) < llunllr.

proof (a) Let B, 7, Bo,... ,Ban, wo, ..., W, and 7 be as in 628B. For j < 2n write @; for the conditional
expectation operator associated with B, and set ¢; = infi<; [|wi| < 1] € B,; for 1 < j < 2n set

bj = ¢j—1\¢; = [Jw;| = 1] 0 inf [lwi| <1]
k<j
=0if 0 < j <2n and j is even,
C [lwj] =1] if j < 2n is odd.
Now set
Wy = wj X x¢j + S0 wp, x xby € LO(B;).
Then () <2n is a martingale adapted to (B;);j<2n. B If j < 2n,
Qi (i1 — ;) = Qj(wj1 X x¢5 — wj X x¢;) = Qj(wjr1 —w;) X x¢; =0. Q

Observe that because b; C [Jw;| = 1] for 0 < j < 2n, while ¢; C [Jw;| < 1] for every j, we have [|i; o <1
for every j. We also see that w; x xc2, = w; X xca, for every j.

(b) This means that if we set €; = By; and v; = w9, for i < n, we shall have a martingale (v;);<, adapted
to <¢i>i§n with

TR € ¢y uifle <1
for each ¢ < n, while
Sup; <, [Trwi # vi] = sup, <, [wa; # Wai] € 1\ can = sup;<y, [lw;| > 1]
has measure at most ||wap|1 = ||unl|1, by 621E.

(c) Note also that ||w;]|1 < ||w;|l1 for j < 2n. PP Since ¢; € B; and b, € By, for 1 < k < 7,
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i i
E(j;]) = E(Jw;| x xe;) + D> E(lwi| x xbx) = E(jw;| x x¢;) + > E(|Qxw;| x xb)
k=1 k=1

j
< E(Jw;| x x¢j) + > E(Qx|wj] x xbr)
k=1
j
= E(|lwj| x x¢;) + Y E(Jw;| x xbx) < E(jw;]). Q
k=1

So
[villr = [l 1 < [Jwailly = fluillx

for every i < n.

628D Proposition Suppose that (2, i) is a probability algebra and (v;)i<, is a martingale adapted to
a non-decreasing finite sequence (2;);<, of closed subalgebras of 2. Let (c;)j<m, (¥ji)j<m,i<n be such that

aj > 0 for j <m, Z;.”:Oaj =1,
wj; € LO(A;), | lujilloo <1 fori <mn, j <m.
Set 2z =311, aj S i X (i1 — vi)|. Then iz > ] < %an”l for every v > 0.

proof (a) By 628C, applied to the martingale (v;);<,, there are a probability algebra (B, 7), closed subal-
gebras By C ... C B, of B, a martingale (w;);<, adapted to (%B;);<, and a measure-preserving Boolean
homomorphism 7 : 2l — 8 such that

2] € By, [willee <1
for every i < n, and
v(sup; <, [wi # Trvi]) < [lvally

where Ty : L°(21) — L°(B) is the f-algebra homomorphism corresponding to 7. Now

Trz =300 053000 Trtts X (vig1 — v3)]
and if we set

7= g a0y Tewgi X (wiry —wi)l.
then [2 # Trz] C sup,; <, [wi # Trvi] and v[z" # Trz] < [[valf1-

For 7 < m, set z; = Z;:Ol Truji X (Wit1 — w;). Because ||Trujillooc = ||ujilloc < 1 and w[2;] € B; so

Truji € L°(%B;) for every i, 621F tells us that ||25[|2 < [wpll2. As 2" = E?:o a2l
12'll2 < 32720 ajllwallz = [lwallz < llwnllsollwnlly < lwnlly = flvn s
Now we see that

iz > 1] = v[Trz > 1] < 02" > 1] + v[2' # Trz] < ||vnll1 + llvnlli = 2||lvall1-

(b) For the general case, observe that
1 -1 1 1
= Do oDy i % (;viﬂ - ;vi)|7

while <%vi>i§n is a martingale. So (a) tells us that

_ _ 2
7le > 9] = o[22 > 1] < 2 2vally = 2wl

MEASURE THEORY



628G Refining a martingale inequality 89

628E Corollary Let (2, i, T, ()i, T, (A )re7) be a stochastic integration structure, S a non-empty
sublattice of T, and v = (v, ),es @ martingale. Then
_ 1
Alllzl > 71 < - supges [vols
whenever z € Qs(v) and vy > 0.
proof z is expressible as Z?;(} u; X (V7 — vy,) where 79 < ... < 7, in S and u; € A, for every i < n.
Now apply 628D to the martingale (v, );<, adapted to (U, )i<n-
628F An argument along the same lines as that in 628D gives a similar result for quadratic variations.

Proposition Suppose that (2, i) is a probability algebra and (u;)i<, is a martingale adapted to a non-
decreasing finite sequence (2;);<y, of closed subalgebras of 2. Set u* = E?:_Ol (wir1—u;)%. Then fifu* > ~?] <

%HunHl for every v > 0.
proof (a) If |[u,]|e < 1, then |[u*|; < |lu,||3. P This is a greatly simplified version of 624G. For a direct

argument, note that every u; is square-integrable and (u;y1 —u;)?* = u?, | — uf — 2(ui41 — w;) X u;; take the
expectation of both sides and sum over i. Q

(b) Take B, 7, €, ..., &y, (Vi)i<n, m: A = B and T+ LOA) — LO(B) as in 628C. Setting v* =
Z?:_ol(vi+1 —v;)?, we see that

v[v* # Tru*] < v(supic,, [vi # Tr]) < [lunlh
because T is an f-algebra homomorphism. Now
o > 1] < [v*]lr < llvall® < flonlls < llunllr
Accordingly
afu* > 1] = v[Tru* > 1] < po* > 1] + v[v* # Tru*] < 2||upl1-

(c) This deals with the case v = 1. For the general case, look at the martingale (;);<, where 4; = %ui

for ¢ < n. Setting

N 1/ N 1
u* = Z?:Ol(ui_,_l — ui)Q = $U*,
we have

5 * — .~ * ~ 2
Al > 7] = pla* > 1] < 2{janll = Zllualh,

as claimed.

628G Proposition Let (2, i1, T, (As)ier, T, () re7) be a stochastic integration structure, S a sublattice
of T, and v = (s )ses a martingale. Let v* = (v,)y,es be its quadratic variation. Then

s 2
Alo; > 771 < 2o

whenever v >0 and 7 € S.

proof If I belongs to Z(S A 7), the set of finite sublattices of S bounded above by 7, and (oq,... ,0,)
linearly generates the I-cells, then

alS1(1, (dv)?) > 7?] = Bl (Vo4 = v0)? > 7*] < ~llvo i
(by 612F applied to the martingale (v,,)i<n adapted to (s, )i<n)

2
< Zllor -
~
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Now {u: ifu > ~?] < %HUTHl} is closed for the topology of convergence in measure, by 613Bo, and
vy = fSAT(dU)Q = limpz(sar) S1(1, (dv)?),

so we have fifv: > 2] < %H’UTHL

628X Basic exercises (a) Suppose that (u;);<, is a martingale, and a < 8 in R. Show that there is
a martingale (w;)i<2, (possibly on a different probability algebra) such that (wg, w2, wa,... ,ws,) has the
same joint distribution as (ug,... ,uy) (definition: 364Yo, 653B) and

[or <wjr < PIN [ <wy < B] = [ < wjr < B0 ([w; = o] uw; = f])
Dfa<wi—1 < B]\ o <wjyr < B]
for odd j < 2n.

(b) Let (A, i, T, (As)rer, T, (A )re7) be a stochastic integration structure, S a non-empty sublattice of
T, and v = (vy)ees a virtually local martingale. Show that ff|z] > v] < %Supges |lve|l1 whenever v > 0
and z € Qs(v).

628 Notes and comments Both 628C and 6211 are addressed to the same question. We have a martingale
(u;)i<n and would very much rather it was || ||so-bounded, with —x1 < u; < x1 for every i. The natural
approach is to stop it as soon as it leaves the interval ]—1,1[. In 6211 this has been done, and we are
looking at the stopped martingale. Here a crude, if complex, inequality is enough for the application in
6230. In 622G, however, we need something more like 621Hf or 628C. For the latter, I offer a method of
approximating the given martingale by a martingale which really never leaves the interval [—1,1]. I have no
application in mind for 628F-628G, but I include them as a further motive for mastering the technique of
628A-628C.

The proof I give of 628C depends on 628B, which is a kind of interpolation theorem. Given a martingale
(ui)i<n and the interval ]—1,1[, we can interpolate terms to convert (u;);<, into the even terms of a
martingale (w;);<2, in which the first exit from this interval takes one of the end-point values. We shall
now have a stopping time 7 such that the martingale (w,;);j<2n either starts outside ]—1, 1] or runs to full
time inside |—1,1[ or stops at +1 precisely, which is something we expect of a continuous martingale but
not of a discrete martingale. To achieve this, of course, we have to enlarge our probability algebra. You will
see that the proof I give of 628B depends on the one-step case 628A, and that here I abandon the abstract
formulation in terms of probability algebras and move to ordinary probability spaces, for which the key
calculations in part (f) of the proof of 628A are elementary and reasonably natural.
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