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Chapter 61
The Riemann-sum integral

I begin with an attempt to give a coherent and complete description of the principal form of stochastic
integration which will be investigated in this volume.

As elsewhere in probability theory, it is customary to set this material out in terms of ordinary random
variables, that is, measurable functions defined on probability spaces. We find immediately, however, that
while integrands and integrators may well present themselves most naturally in this form, the integrals we
construct are defined, in the cases for which this theory has been developed, in terms of convergence in
[[l1 or || ||z or in measure, and therefore correspond not to explicit functions, but to equivalence classes
of functions. Moreover, integrands and integrators can be changed on negligible sets without affecting the
values of the corresponding integrals. I believe that the theory becomes clearer and cleaner if we move
directly to operations on evolving families in L. While this demands an initial investment by the reader
in a more abstract framework for the ideas of elementary probability theory, the translation is not difficult,
and a full exposition can be found in Chapter 36.

Again, stochastic processes are usually expressed as families (X;);er of random variables, indexed by
a set T of ‘times’. There are very good reasons for this. However, to describe the stochastic integral in
reasonable generality we need, as a first step, to discuss the random variable X, for a stopping time 7. The
measure theory to make this possible (the notion of ‘progressively measurable’ process) is well understood
and has been described in §455. When we come, following my principle above, to look at (X} ):er, we find
that we can have X; = Y}*, that is, X; =, Y, for every ¢, while X? # Y*. This is just a nuisance. For
our purposes here, it makes better sense to start from a family (u,)rcs where S is a set of stopping times
and u, € LY for every 7 € S. The construction of such families from processes (X;);er is important and
interesting, but has nothing to do with the very substantial difficulties of the basic theory of stochastic
integration.

Of course I now have to look at filtrations and stopping times, and these too are not best described in
terms of o-algebras of sets and real-valued functions. In the formulation I wish to use here, we don’t even
have a probability space for the functions to be defined on. Instead of thinking of a filtration as a family
(34)ter of o-subalgebras of the domain ¥ of a probability measure p, I look at the corresponding family
of subalgebras of the measure algebra 21 of u. This is easy (at least, if you have read Chapter 32; and this
is my last apology for insisting that you know something of Volume 3). A stopping time 7 now becomes
defined in terms of elements [T > t] € 2, ‘the region where 7 > t’. We need to develop a theory of regions
[o < 7], [o =7] in 2, and subalgebras 2, of A, for stopping times o, 7; and now the processes (u.)res
we work with must be such that ‘u, = u, whenever o = 77, that is, [o = 7] C [u, = u,]. Setting up these
structures takes the greater part of §§611-612, which come to about a quarter of the chapter. It happens
that nearly everything in these two sections can be done without mentioning ‘measure’ at all.

I say again that none of this is difficult, but it does take quite a long time; there are some new kinds
of algebra to get a solid basis in, particularly the theory of stopping-time intervals (611E, 611J-611K) and
fully adapted processes (612D). With this established, however, we are within reach of a direct definition
of a stochastic integral as a limit of Riemann sums (§613). As long as we do not enquire about when the
integral is actually defined, this is very straightforward and can be done in great generality. The next three
sections are devoted to finding the basic cases of processes u, v for which we shall have a well-defined integral
Judv. Concerning u, we have ‘simple’ and ‘moderately oscillatory’ processes (612J, 615E). Concerning v, we
have the concept of ‘integrator’ (616Fc), which is well adapted to the basic theorem 616K, but is otherwise
obscure. It is easy enough to find a definition of ‘bounded variation’ for stochastic processes (614J) and to
show that processes of bounded variation are integrators (616R), but this is not what the stochastic integral
is for; in this case we have much more direct methods available.
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2 The Riemann-sum integral Chap. 61 intro.

Now we are ready, at least in a formal sense, for some proper stochastic calculus in §§617 and 619. Here I
set out useful general manipulations. Some of them reproduce patterns familiar from the ordinary Riemann
integral (616J), but others are radically different (6171, 619C). On the way to the latter (‘It6’s formula’) we
need to understand ‘jump-free’ processes, corresponding to processes with continuous sample paths (§618).

The theory here involves a large number of constructions. Many of these have no short descriptions in
terms of the concepts developed in Volumes 1-4, and correspondingly require new terminology and notation.
I have tried to arrange the material in such a way that, within any individual section, substantial parts
of the basic framework can be taken to be constant. From §614 on, these are indicated in introductory
paragraphs headed ‘Notation’. These paragraphs are highly repetitive. But until you are very familiar with
my language, it is likely that opening at a random page, and scanning for the next ‘Theorem’; will lead you
to something totally mysterious. Sometimes a check in the index for terminology will help. But sometimes
there will be a baffling symbol, and then it will be worth while turning to the beginning of the section to see
if the symbol appears there. It seems to me that while this expands the volume by several pages in total, it
is kinder than referring you each time to a complete list of the terminological quirks of this presentation.

Version of 11.12.17/16.1.25
611 Stopping times

The first step is to describe the structures within which the work of this volume will proceed. While
everything really important will have to be based on probability algebras, I start with ideas which can be
applied to arbitrary Dedekind complete Boolean algebras. This section introduces filtrations of subalgebras,
the lattice of stopping times, the algebras associated with stopping times, stopping-time intervals and covered
envelopes.

611A Filtrations Throughout this volume, 2 will denote a Dedekind complete Boolean algebra, with
Boolean operations A, n, u and \, zero 0 and multiplicative identity 1.

(a) Let T be a non-empty totally ordered set. A filtration of order-closed subalgebras of 2 will be
a non-decreasing family (;);er of order-closed subalgebras of 2.

(b)(i) A stopping time 7 adapted to (2;):cr is a family ([7 > ¢])ter such that
[T >t] € AU for every t € T,
if s <tin T then [r > t] C [T > 5],
if t € T is not isolated on the right then [r > t] = sup -, [T > s].

(ii) It will be worth checking each concept against the constant stopping times, where for ¢ € T the
constant stopping time at ¢, {, is given by setting
[t>s]=1ifs<t,
=0if s>t

(iii) I will say that a stopping time 7 is
—— finite-valued if inf;cr [T > ¢] = 0,
—— bounded if there is a ¢t € T such that [r > ¢] = 0.
Constant stopping times are bounded, and bounded stopping times are finite-valued.

(iv) I will write T for the set of stopping times adapted to (%;)ier, Ty C T for the set of finite-valued
stopping times, and T, C T for the set of bounded stopping times.

(c) It is convenient to think of a stopping time 7 € T as the element ([T > t]):er of the simple product
algebra [[,cp s

611B The partial ordering of stopping times If o, 7 € T, say that o < 7 if [o > t] C [r > ¢] for
every t € T', that is, o C 7 in [],., ;. This defines a partial order on 7.

MEASURE THEORY (abridged version)



611E Stopping times 3

611C Proposition (a) 7 is a Dedekind complete distributive lattice. Consequently any finite subset of
T is included in a finite sublattice of T.
(b) If C C T is non-empty, then sup C' is defined by saying that

[supC > t] =sup,cc [T > 1]

for every t € T', that is, the supremum of C' in 7" is the same as the supremum of C in [[, ., 2.
(¢) If o, 7 € T, then o A 7 is defined by saying that

[eAnT>t]=[o>tn][r>1]

for every t € T', that is, 0 A7 in T corresponds to o n7 in [[,.p 2.

(d) If C, ¢ C T are non-empty, then supC AsupC’' =sup{oc Ao’ :0 € C, o’ € C'}.

(e) Writing £ for the constant stopping time at ¢, the map t + £ : T — T is an order-continuous lattice
homomorphism, which is injective if A # {0}.

(f) T has greatest and least elements defined by saying that

[max7 >t] =1, [min7 >t]=0

for every t € T that is, they correspond to the greatest and least elements 1 and 0 of [[,., ;. If T has a
least element min T, then min 7 is the constant stopping time at min 7.

(g) Ty and Ty are ideals’ in 7.

(h) The function o — o A7 :T — T is order-continuous for every 7 € 7.

Remark If AC 7 and 7 € 7, I will write AV 7 for {oV7:0€ A} and AAT for {oc AT:0 € A}. Note
that if S is a sublattice of 7 and 7 € S, then

SVr={o:0eS8,7<0}, SAT={0:0€S8,0<7}
So if S is a sublattice of T, 7, 7 € S and 7 < 7/,
Snir,l={c:0€e8,7<o<7}={0:0€SVT,0 <7} =(SVT)AT
because SV 7T ={o:0 €S8, 7 <o} is a sublattice of T.

611D The region where 0 <7 If o, 7 € T set

[o < 7] = suprer([r > t]\ [o > #]),
[o < 7] =1\[r < o] = infrer([r > tJu@\[o > 1])),

[c=71]=[0c <7ln[r < o] =1\ super(lo > t] & [r > {]).

611E Theorem (a) Let o, 7 € T.

(i)(a) ([o < 7], [o = 7], [T < o]) is a partition of unity in 2L
B)le>tlnfeo=71]=[r>t]n]o =7] for every t € T'.
No<r]=0iff [r<o]=1if r<o;o=7]=1if 0 =7.
§) Writing ¢ for the constant stopping time at ¢, [{ < 7] = [r > t] for every ¢ € T
€) [min7 < max 7] = 1.
()Ifs<tinT,then [§ <{] =1;[§ <maxT] =1 for every s € T.
(@) Jo<t]=lcAnT<T]=]0 <oVT].
B)lo<t]=Jc=cAT]=[r=0VT].
Y [oAT=0]uloAnT=7]=[ocVT=0]ulovT=17]=1.
(b)Ifo € T and C C T is non-empty then [0 < sup C] = sup, <o [0 < 7] and [supC < 0] = inf,cc [T < o].
(¢c)Let o, 7,0 €T.

(i)(a) [onT<v]=]oc<v]ulr<v],[v<oAt]=[v<o]n]v<T].
B)v<onT]=v<o]no<T], [ocAT<v]=[oc <v]u]r <v].
(ii)(o) [ovT <v] =[o <v]n[r<v], [v<oVvr]=[v<o]ulv<T].

(
(
(
(
(
(i)
(
(
f

LIf P is a lattice, an ideal of P is a set Q C P such that pV g € Q for all p, ¢ € Q and p € Q whenever ¢ € Q and p < ¢ in
P. In this context I do not insist that @ should be non-empty.
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4 The Riemann-sum integral 611E

B)v<ovr]=v<oluv<T],[ovT <v]=[oc <v]n[r <v].
(iii)(a) [o <v] C o <7]uovT <v] C o <T]ulr <]
B) e <v] clo<7]ulr <]
('y) [o<vlnv<r]clo<7], o <v]n]v<T]Clo<T].
)
)

[e <7]n[r <v] <o <]
[ec=71n[r=v]=[Jo=7]n]o =] C[o="1].

(V)(@) [o Av=TAv]2[o =T].

B) [eovv=rVv]2]o=r].

(vi) fo<7<vthen[[a<v] [o<t]ulr <], J[o=v]=]oc=1]n]r=1].
(d) If = .<7,in7T and o € T, then

(e <m0, [ro <alnfo<n],. .., [tm-1 <o]nfo < 7], [tn < 0])

(B
(v
)«

is a partition of unity in 2.

611F Infima in 7: Proposition Let A C 7 be a non-empty set such that
SUp,s, infoea o > s]

belongs to ; whenever ¢t € T is not isolated on the right.

(a)
[inf A >{] = injf4 [o >t] if t € T is isolated on the right
[eAS]

=sup inf [o > s] for other ¢t € T.
s>t 0EA

(b) [inf A < 7] = sup, ¢4 [o < 7] for every 7 € T.

611G The algebra defined by a stopping time: Definition If 7 € T, write 2L for
{a:aeU a\[r>t] € for every t € T'}.

Then 2, is an order-closed subalgebra of 2.

611H Proposition (a) Suppose that 7 € T and ¢t € T.
(i) IfbeNyoy™Us and b C [ > t], then b € A, [7 > t] and 1\ [7 > t] belong to .
(ii) If b € Ay and b C [7 > s] for every s < t, theanQl
(iii) If b € A, and bn |7 > t] = 0, then b € A,.
(b) If £ is the constant stopping time at ¢, then 2(; = 2;.
(c) Suppose that o, 7 € T.
(i) [o < 7], [o = 7] and [7 < o] belong to A, NA.
(ii) Aonr = A, N2A; in particular, A, C A, if o < 7.
(i) If a € A; then anr < o] =a\ o < 7] € Asnr-
(iv) Agvr is the subalgebra of 2 generated by A, U 2.

6111 Lemma Suppose that (7;);er is a family in 7 and (a;);cs is a partition of unity in 2 such that
a; € 2., for every ¢ € I. Then there is a unique o € T such that [0 = 7;] Da; for every i € I, and
infierm < o <supier 7

611J Dissections by stopping times (a) Recall that if we regard a stopping time 7 = ([T > t])ter as
a member of the algebra [ [,c, 2l¢, then the partial order < and the lattice operations V, A on T correspond
to the Boolean relation and operations C, U, n on [[,c, %, and moreover that arbitrary suprema in 7
correspond to suprema in [ [, o 2As.

In view of this representation it is natural to consider set difference. I will in fact prefer the notation

clo,m) =t > t]\ [o > t])ter,

rather than writing 7\ 0. I will say that ¢(o, 7) is the stopping time interval with endpoints o, 7.
If S is a sublattice of T, Sti(S) will be the set of stopping-time intervals expressible as ¢(o, 7) where o < 7
in S.

MEASURE THEORY (abridged version)



611K Stopping times 5

(b)
clo,T)ne(o’, 7)Y =clo Vo', 7T AT
forall o, o/, 7, 7 € T, and
clonT,a NT") C (T, T).
Similarly,
c(o,supC) =sup ¢ c(o,7), cloNa',7)=c(o,T)uc(o’,T)
foro,0', 7€T and C C T, and if 0 < v < 7, then
c(o,v)uc(v, 1) =c(o,7), c(o,v)nc(v,T)=0.

clo,7)=0iff 7 <o.

(c) [o < 7] € [0’ < 7'] whenever ¢(o,7) C ¢(o’,7"). More precisely, if o, 7, ¢/, 7/ € T then ¢(o,7) C ¢(o’,7")
iff

[e<t]clo’ <a]nfr<7].

(d) Similarly, if o, 7, ¢/, 7/ € T then c(o,7) = c(o’,7') iff
[e<t]=[c"<7]clo’ =c]n][r=71].

(e)(i) For a finite sublattice I of T, an I-cell will be a minimal non-zero stopping time interval of the
form ¢(o, T) where o, 7 € I.

(ii) Let I be a finite sublattice of T, Stig(I) the set of I-cells, and 7 € I. If we write
INtT={oAT:0€l}, IVT={oVT:0€l},
then Stig(I A7), Stig({ V 7) are disjoint sets with union Stig(7).

(iii) More generally, if I is a non-empty finite sublattice of T and 79 < ... < 7, in I, then setting
1_111/\7'07 [j:Im[Tj,Tj+1] fOI‘j<7’L, In:I\/Tn7
(Stig(1;))—1<j<n is a partition of Stig([).

611K Lemma Let I C 7 be a non-empty finite sublattice, and Stig(I) the set of I-cells. Let Iy be a
maximal totally ordered subset of I, and (7;);<, the increasing enumeration of Ij.

(a) o =minl, 71 = max[.

b) If i <nthen IN [Ti77i+1] = {Ti77i+1}-

(¢) Stig(1) = {c(7i, Tit1) 1 4 < n}.

(@) [ri < 7] n[r < Ti41] = 0 whenever i < n and 7 € I.

e) sup,<, [t =] =1 for every 7 € I.

*(f) If o € T then

Jo = {o A 10,70, med (70,0, 71), 71, med(11, 0, T2),
-y Tn—1; med(Tn—la g, Tn)a Tn, 0V Tn}
is a maximal totally ordered subset of the sublattice I LI {o} of T generated by I U {c}.2
*g)IfoeT,then IANo={rAo:7¢€l}isasublattice of T, and {79 A0o,... ,7, Ao} is a maximal
totally ordered subset of I A o.

*h)Ifro<op<...<om <7, in T, and K is the sublattice of T generated by I U {oq,...,om}, then
J; = {med(o;,7,0j41) : i < n}is a maximal totally ordered subset of K N [o;,0;11], for every j < m.

2In a distributive lattice, med(p,q,7) = (p Aq) V (p A7) V (¢ A T); see 3Allc.
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6 The Riemann-sum integral 611L

611L Definition If ] is a finite sublattice of 7, I will say that a sequence (7;)i<, in I linearly generates
the I-cells if it is non-decreasing and {7; : ¢ < n} is a maximal totally ordered subset of I.

611M Covering and full sublattices (a)(i) If A, B C 7, A covers B if sup,c4[r=0] =1 for
every T € B.

(ii) If A C T, the covered envelope of A will be the set {7 : 7 € T, sup,¢ 4 [T = o] = 1}. Of course
A covers itself, that is, the covered envelope of A includes A.

(b)(i) If AC T and a € A, the set
S={r:7€T,acC sup,cyfo=r]}

is a sublattice of T.
In particular, the covered envelope A of A is a sublattice of 7.

(ii) If p is an upper bound for A in T, then p is an upper bound for A. Similarly, if p is a lower bound
for A, it is a lower bound for A.

(iii) Since A C /1, it follows that if A has a greatest member then this is also the greatest member of
A, and that if A has a least member then this is also the least member of A.

(iv) Note that if o, 7 € T then {o,7} covers {oc A 7,0V 7} and also {o A T,0 V 7} covers {o,7} .

(c) I will say that a sublattice of T is full if it is equal to its covered envelope.
(i) The intersection of any non-empty family of full sublattices of T is full.

(ii) If A C T, its covered envelope A is full.

(d) Forany p € T, T Apis full. Similarly, 7V p is full. Putting these together, [p, p'| = (T Ap )N (T Vp)
is full whenever p < p’ in T.

(e)(i) If S is a sublattice of 7" with covered envelope S, and p € S, then S A p is the covered envelope of
S A pand SV p is the covered envelope of SV p.

(ii) If S is a sublattice of T, p, p' € S and p < p/, then the covered envelope of
SNp,p'1=(8Vp)Ap' ={med(p,0,p') : 0 € S}

is(SVp)Ap =8N]p, o).
(f) If S is a sublattice of 7 with covered envelope S, then Nresr = Nyes Ao
(g) Suppose that A, B C T and A covers B.
(i) A covers the covered envelope of B.
(i) f 7 €T, then ANT={ocAT:0€ A} covers BAT={c AT:0 € B}.
611N Covering ideals Let S be a sublattice of T.
(a) Definition I will say that a covering ideal of S is an ideal &’ of S which covers S.

(b)(i) If 7 € S and &' is an ideal of S, then {Jo = 7] : 0 € §’} is upwards-directed.

(ii) If 7 € S and S’ is an ideal of S, then sup,cg [0 = 7] = sup,cgs [T < o].

(c) If S is a sublattice of T and S;, Sy are two covering ideals of S, then Sy = & NSy is a covering ideal
of S.
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612Ac Fully adapted processes 7

(d) If §’ is a covering ideal of S and §” is a covering ideal of S, then §” is a covering ideal of S.

(e)(d) Ty is full.
(ii) 7 is a covering ideal of Ty.

*6110 Definitions

(a) If A, B C T, 1 will say that A finitely covers B if for every 7 € B there is a finite J C A such that
sup,cs[r=0] =1

(b) If A C T, the finitely-covered envelope of A is the set of those 7 € T for which there is a finite
subset J C A such that sup,c; [7 = o] = 1.

(c) A subset of T is finitely full if it is equal to its finitely-covered envelope.

*611P Lemma Suppose that 2 # {0}.
(a) Let A be a subset of 7 and Ay its finitely-covered envelope.
(i) Ay is finitely full.
(ii) Ay is a sublattice of the covered envelope A of A.
(iii) A ¢ is the intersection of all the finitely full subsets of 7 including A.
(b) The intersection of any non-empty family S of finitely full sublattices of T is finitely full.
(c) If S is a sublattice of T which is order-convex, then S is finitely full.
(d) If S is a sublattice of 7 and 7 € S, there are 0y < ... < 0, in S such that sup; <, [r = oi] = 1.
(e) If S is a sublattice of T then S is both coinitial and cofinal with S’f.

Version of 24.12.16/21.10.22
612 Fully adapted processes

The next step is to introduce the processes which this volume is devoted to studying. These are an
abstract version of the real-valued stochastic processes (X;);>o of §§455 and 477. Instead of starting from
Y¢;-measurable functions X; : 2 — R and then showing that it is possible to define Xj,-measurable functions
X}, for stopping times h : Q@ — [0,00[, I move directly to families 4 = (u,)ses of equivalence classes
of measurable functions where § is a sublattice of the lattice 7 of stopping times discussed in §611. A
‘fully adapted process’ is one satisfying the essential measurability and consistency requirements of 612D.
Among these, the ‘simple’ processes (612J), those which are constant between finitely many break points,
are particularly important. I end with descriptions of Brownian motion (612T) and the standard Poisson
process (612U) in this language.

612A 2 and L°(2) (a) Given a Dedekind complete Boolean algebra, we have a Dedekind complete
f-algebra LY = L°(2l) as described in §364.

(b) In §364 I introduced the formulae [u > «], [u € E], where u € L°, o € R and E C R is a Borel set. I
mentioned formulae [u > «f, [u < 0] and [u # 0], and [(u1,...,u,) € E] when E is a Borel subset of R™.
Here it will be convenient to extend the notation to such formulae as [u # v], meaning [|u —v| > 0]. In
terms of the representation of LY as a space of equivalence classes of functions, we have

[(f5 o £3) € Bl = {0 (@), . fulw)) € B}
for all ¥-measurable functions fi,...,f, : Q@ = R. [fr # f3] can be interpreted as {z : f1(w) # fa(w)}*.
(c) Let E C R be a Borel set and h : E — R a Borel measurable function. Set
Qr={u:ue Ll Juec E] =1} ={f*: f:Q — E is measurable}.

If u € Qp,we have an h(u) € L° defined by saying that [h(u) € F] = [u € h=![F]] for every Borel set F' C R.
If u, v’ € Qg then [u = '] C [h(u) = h(u')]. Observe that if hy, hy : R — R are both Borel measurable, we
now have hiha(u) = hq(he(u)) for all hy, hy and u € L°. h(u) = u if E =R and h(a) = « for every a € R.

So we have a semigroup action « of H on L° defined by saying that heu = h(u) for h € H and u € L°.

D.H.FREMLIN



8 The Riemann-sum integral 612Ad

(d) ()
() If vy € R and h(a) = ya for a € R, then h(u) = yu for every u € L°.
(B) If h(a) = || for a € R, then h(u) = |u| for every u € L°.
If h(e) = o2 for o € R, then h(u) = u x u = u? for every u € L°.
() n Y
(0) If h(a) = 1 for o € R, then h(u) = x1 is the multiplicative identity of LY for every u € L°.
(€) If h: R — R is non-decreasing, then h(u) < h(v) whenever u < v in L°.

(ii) Tt follows that if V' C LY is such that u + v € V for all u, v € V and h(u) € V for every convex
function h : R — R such that h(0) = 0, then V is an f-subalgebra of L°, that is, a Riesz subspace closed
under multiplication. A fortiori, if V is such that w + v € V for all u, v € V and h(u) € V for every
continuous function h : R — R such that h(0) = 0, then V is an f-subalgebra of L°.

(iii) Continuing from (c) above, it will be important also to note that, for any u, v € Qp, [u < v] C [h(u)
[u =] € [A(u) = h(v)].

(iv) Take any u € L°. Again writing H for the space of Borel measurable functions from R to itself,
H is an f-subalgebra of the f-algebra RE as well as a sub-semigroup under composition. Treating H as an
f-algebra, the map h — h(u) : H — L° is a multiplicative Riesz homomorphism.

(v) Tt will happen more than once that we have two Dedekind complete Boolean algebras 2 and
B, f-subalgebras V, W of L°(2) and L°(B) respectively, and a linear operator Q : V — W such that
Qlv| = |Qu| and Q(v?) = (Qu)? for all v € V. In this case, Q will be an f-algebra homomorphism, that
is, a multiplicative Riesz homomorphism.

(e)(i) Now suppose that B is an order-closed subalgebra of 2l. In this case we can think of LY(B) as
being the subspace

{u:ue L°A), [u > a] € B for every a € R}.
The arguments of 364F show that this is equal to
{u:ue L°Q), [u € E] € B for every Borel set E C R}

and that h(u) € L°(B) whenever h € H and u € L°(®8). Looking at this a little more deeply, we see
that if h € H we have two different functions hg : LO(A) — LO(A) and hey : L°(B) — L°(B), but that
hes = ho[ L°(®B), so that we can use the same symbol h for either.

LO(%B) is an order-closed sublattice of L°(2l).

(ii) If (B;)ier is a non-empty family of order-closed subalgebras of 2 with intersection B, then 9B is
an order-closed subalgebra of 2 and L°(B) = (;c; L°(B:).

(iii) For any u € L°(2), the set {[u€ E] : E C R is Borel} is a o-subalgebra of 2l, the smallest
o-subalgebra B of A such that u € L°(B); it is the o-subalgebra generated by {[u > a] : a € R}. 1 will
say that it is the o-subalgebra of 2 defined by w. Similarly, if A C L°(2(), I will say that the o-subalgebra
of A generated by {Ju > o] : u € A, a € R} is the o-subalgebra defined by A.

(f) Let @ be another Dedekind complete Boolean algebra, and ¢ : 2l — € an order-continuous Boolean
homomorphism. Then we have a unique order-continuous f-algebra homomorphism T, : L°(2l) — L%(¢)
such that

[Tyu > a] = ¢pJu > af for every u € LY(2) and « € R,
Ty(xa) = x(¢a) for every a € 2,

[Tyu € E] = ¢[u € E] for every Borel set E C R,
TJ“LQ[ = B¢T¢ for every Borel measurable h : R — R,
Ty is injective or surjective iff ¢ is.

612B Products and processes For the rest of this section 2 will be a Dedekind complete Boolean
algebra, T a totally ordered set, (2;);cr a filtration of closed subalgebras of 2, T the associated lattice of
stopping times, and (2(;),c7 the corresponding family of order-closed subalgebras. For o, 7 € T, [o < 7],
[o < 7] [o = 7] will be the regions defined in 611D.
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(a) If S is a sublattice of T, we can form the family (L°(2,)),es. If we take the natural product linear
space, lattice and multiplicative structures, we get an f-algebra [] . L°(2A,). Moreover, writing H for the
semigroup of Borel measurable functions from R to itself, we have a natural action of H on []__s L°(2,)
defined by setting

ceS

he(ug)oes = (hous)oes

whenever h € H and u, € L°(2,) for every o € S.
Writing h(u) for heu, as in 612Ac, and thinking of u = (us)ses as a function from S to L, we find
ourselves with a composition hu = hou : S — LO.

(b) Another way of looking at [],.s L°(2,) is to identify it with L°(€), where € is the simple Boolean
algebra product [],.s . Once again, it is easy to see that if h € H then he : L°(€) — L°(¢) matches the
function w — hw : [] . L°(As) — [1,es5 L (o) described in (a).

(c) From (b) and 612A(d-ii) we now see that if V is a subset of [],.s L"(2,) such that u +v € V and

hu € V whenever u, v € V, h: R — R is convex and h(0) = 0, then V is an f-subalgebra of [les LO(2A,).

612C Lemma If o, 7 € T and u € L°(2;) then u x x[7 < o] and u x x[7 = o] and u x x[7 < o] belong
to LO(Q[U/\T).

612D Fully adapted processes To continue the real work of this section, let S be a sublattice of T
and 4 = (Uy)yes a family in LO(21).

(a) Definition I will say that u is fully adapted to (;)er if u, € L°(2A,) and [o = 7] C [uy, = u,]
whenever o, 7 € S.

(b) Note that if u, € L°(2,) and [o = 7] C [u, = u,] whenever o < 7 € S, then u is fully adapted.
(c) If w is fully adapted and &’ is a sublattice of S, then u[S’ is still a fully adapted process.

(d) If u is fully adapted, I is a finite sublattice of S, and (79 ... ,7,) linearly generates the I-cells, then
for any o € I we have

Sup;<y, [Uo = ur] 2 sup;c, [o =] =1

So if u = SUpP; <y Ut U= SUPseg Uo- SUDger |u0" = SUDP;<p |u7'i

(e)(i) Note that if u is constant, say u, = z for every o € S, then u is fully adapted iff z € (), cg L°(2s);
if S has a least element, this will be so iff z € LY(™pins). For any 2z € LO(A), I will write 21 for the fully
adapted process (2),cs where S is the sublattice {o: 0 € T, 2 € L°(,)}. When 2z = x1 and S = T I will
write just 1; similarly, O will be the constant process with value 0 € L(2().

(ii) Generally, if z € LO(), I will write zu for the process z1 xu = (2 X Uy )gesr, Where S’ = {0 : 0 € S,
z € L°(A,)}. Then &' is a sublattice of S and zu is fully adapted.

(f) Suppose that u is fully adapted.
(1) uonr + Upvr = Uy + ur and upnr V Ugyr = Ug V u, for all o, 7 € S.
(i) |ur — uo| = |uovr — Uons| for all o, 7 € S.
(iil) Jue — up| < |Uonr — Upar| + |Uovr — upy-| for all p, o, T € S.

612E Where fully adapted processes come from In applications, one commonly starts from a family
(Xi)ter of random variables, corresponding to a family (u)ier € [T, L° ().

(a) If T is finite and not empty, with least value min 7', then for 7 € T and ¢t € T set

are = (nfocy [T > s))\ [7 > 1]

D.H.FREMLIN



10 The Riemann-sum integral 612Ea

(counting inf @) as 1, as usual, so that ar min = 1\ [ > minT]). Then (a,¢)er is a partition of unity in 2,
and a,; € 2; for every t. Now set

U= X X Y.
(b) If T is well-ordered and not empty, we can use essentially the same formulae for 7 € 7.

612F The identity process (a) Suppose that T' = [0,00[. For 7 € T}, we can define ¢, € LO(A) by
saying that, for t € R,

[er >t)=[r>t]ift >0,
=1ift<O0.

(b) ¢ = (t7)re7; is a fully adapted process.

(c) ¢ty =tx1 for every ¢t > 0.
I will call ¢ the identity process for the structure (2, (2;);>0)-

612H Theorem Let (2, X, 1) be a complete probability space, and (X;);>¢ a filtration of o-subalgebras
of 3 such that every p-negligible set belongs to every ¥;. Let (2, &) be the measure algebra of u and set
A, = {E*: E € X,} for each t > 0; then (A;);>0 is a filtration. Let T be the associated family of stopping
times.
(a)(i) If h : Q — [0,00] is a stopping time, we have a stopping time 7 € T defined by saying that
[t >t] ={w: h(w) > t}* for every t > 0; I will say that h represents .
(ii) Conversely, if 7 € T, there is a stopping time h : Q@ — [0, o0] representing 7.
(iii) If h represents 7, then ¥, = {EF: E€ X, E* € U} and A, = {E*: E € X, }.
(iv) If g, h : Q — [0, 00] are stopping times representing o, 7 € T, then

[o < 7] ={w:g(w) < h(w)}*,

[o<7]={w:g(w) <hw)}, [o=7]={w:gw)=h(w)}"

g and h represent the same member of 7 iff they are equal almost everywhere.

(v) If h represents 7, then 7 € Ty iff h(w) < oo for almost every w; 7 € Ty iff it can be represented by
a stopping time h : Q — [0, oo].

(vi) If t > 0, then the constant function with value ¢ represents the constant stopping time at t.

(b) Now suppose that (X;);>0 is a progressively measurable process on €.

(i) For every 7 € Ty we have an @, € L%() = LY(u) defined by saying that x, is the equivalence class
of the function Xj,, where Xp,(w) = X,y (w) for w € h™*[[0, 00[], whenever h represents 7.

(ii) The family (z;)re7; is fully adapted to (U)¢>0.

6121 Proposition Let S be a sublattice of T, and M, (S) C [],es L°(2o) the set of fully adapted
processes with domain S.

(a) M, (S) is an order-closed f-subalgebra of the f-algebra L°(2)S, and if h : R — R is a Borel measurable
function then hu € Mg, (S) for every u € M, (S). Mi,(S) is Dedekind complete.

(b) Suppose that (us)eecs € Me(S) and 7 € T. Set ' ={o:0 € T, o AT € S}. Then (ugrr)ocs €
M. (S').

612J Simple processes (a) Definition Let S be a sublattice of 7. A fully adapted process (uy)ses is
simple if either S is empty or there are 79 < ... < 7, in S and u, € L°((, o5 Ao) such that for every o € S

[o <7l € [ue =u], [ <0]Cus=us],
[ri <o)nfo < 7it1] € [ue = ur,] for every i < n.
In this case I will say that (7o,...,7,) is a breakpoint string for u.
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(b) As a particularly elementary example, if S is a sublattice of 7 and 7 € S, then u = ([T < 0])ses
is a simple process.

612K Lemma Let S be a non-empty sublattice of 7. Write B for [, s Ao
(a) Suppose that 79 < ... < 7, in S, u; € LY(2L,,) for i < n and u, € L°(B). Then there is a unique
simple fully adapted process v = (v,)scs such that whenever o € S then

[vo = wi] 2 [r < o] n[o < 7iga],
for i < n, while

[ve =u] 2o <70], [vo=1un]2[m <o];

and (79,... ,7,) is a breakpoint string for v.
(b) Suppose that I is a non-empty finite sublattice of S and (79, ... ,7,) linearly generates the I-cells. If
a simple process 4 with domain S has a breakpoint string in I, then (7q,...,7,) is a breakpoint string for
u.
(c) Suppose that K is a finite set and uy is a simple process with domain S for each k € K. Then there
is a single string (7o,... ,7,) in S which is a breakpoint string for every uy.
(d) Suppose that 4 = (u,)ses is a simple process with breakpoint string (79,... ,7,) in S, and 7 € S.
i) (o ATy.o. ;TONTR, T, T0 V' T, ... ,Tn V T) is a breakpoint string for u.
(ii) Writing SA T for {oc A7 :0 € 8} = SN [minT,7], ]S A 7 is simple, with breakpoint string
(ToAT, oo, T AT, T).
(iii) Writing SV 7 for {o V71 :0 € §} = SN [r,maxT], u[S V 7 is simple, with breakpoint string
(ToVTyoo. ,Tn V. T).
(e) Suppose that u is a fully adapted process with domain S, and that 7 € S. If u[SA T and u[S V T are
simple processes with breakpoint strings (79,...,7m) and (79,... ,7,,) respectively, then w is simple, with
breakpoint string (7o, ..., Tiny T Ty - -+ 5 Thy)-

612L Proposition Let S be a sublattice of T. Write Mgimp = Msimp(S) for the set of simple processes
with domain S.

(a) If h : R — R is a Borel measurable function and w € Mgy, then hu € Mgimp and any breakpoint
string for u is a breakpoint string for hu.

(b) Mgimp is an f-subalgebra of [] . L°(As).

() If z € LOANN, e Uo) and u € Myimp, then zu € Mimp.

612M Lemma Let S = [min S, max ] be a closed interval in 7, and u a simple process with domain
S. Then there is a breakpoint string (79, ... ,7,) for u such that 79 = min S, 7, = maxS and [r; < 7;41] =
[7: < max 8] for every i < n.

612P Lemma Let S be a sublattice of T, and 4 = (u,)scs a fully adapted process. Then there is a
fully adapted process v = (v;),re7, extending u, such that

[vr # 0] € sup,es [0 = 7]
for every T € T.

612Q Proposition Suppose that S is a sublattice of T, S its covered envelope and u = (u,)ysecs a fully
adapted process.

(a) u has a unique extension to a fully adapted process & = (i,)scs With domain S.

(b) The map u — 4 is an isomorphism from the f-algebra Mg, (S) of fully adapted processes with domain
S to the f-algebra Mg, (S), and hit = (hu)” whenever u € Mg, (S) and h : R — R is Borel measurable.
(c) If 7 € S, then @S A 7 is the fully adapted extension of u[S A 7 to the covered envelope of S A 7.
(e) If z € LO(AN(,csAo) then za is the fully adapted extension of zu.

(f) If u is simple, with a witnessing string (u, 79, ... ,T») as in 612Ja, and S’ is a sublattice of S including
S, then 4|8’ is simple, with the same witnessing string.

(g) If u is non-decreasing, so is u.
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612R Corollary Suppose that S is a sublattice of 7 and S’ is a sublattice of S covering S. Then any
fully adapted process 4 = (uy),es has a unique extension to a fully adapted process v = (v;),es-

612S Two more definitions Let S be a sublattice of 7.
(a) For a fully adapted process u = (uq)oecs, Write ||| o = sup,cs |[to/oo-

(b) For fully adapted processes 4 = (ug)ocs and v = (vo)ses, write [u # v] for sup,cg [us # vs], and
[u # 0] = sup, s [us # 0].
(c) Suppose that u = (uy)res and v = (vy),es are fully adapted processes.

(i) If o : R — R is Borel measurable, then [hu # hv] C [u # v].

(i) If S is the covered envelope of S and & = (i)
u, v to S, then [t # 9] = [u # v].

reér U = (D7) g are the fully adapted extensions of

612T Example: Brownian motion (a) Let Q = C([0,00[)o be the set of continuous functions w :
[0,00[ — R such that w(0) = 0, and v one-dimensional Wiener measure on €2, with 3 its domain. Recall
that v is a Radon measure with respect to the topology ¥. of uniform convergence on compact sets. Let
(¢, 7) be the measure algebra of v. For ¢ > 0, write X; for

{F:FeX o eF whenever w € F, w' € Q and w'[[0,t] = w[[0, ]},
and let 3, be {FAA : F € %, vA = 0}; set €&, = {F* : F € 3,} = {F* : F € %;} and X,(w) = w(t)
for t > 0 and w € Q. Then (s,w) — X (w) : [0,2] x @ — R is continuous for every ¢t > 0, and (Xy);>¢ is

progressively measurable with respect to (f]t>t20. We have a process w = (w;),c7; fully adapted to (&);>0.
In this volume I will use the phrase Brownian motion to mean the process w.

(d) w determines € and (€;);>0, in that
(i) € is the closed subalgebra ® of itself generated by {Jw; > a] : t > 0, a € R},
(ii) € is the closed subalgebra generated by {[w; > a] : s € [0,t], € R} for every ¢ > 0.

(e) Every member of 7} can be represented by a stopping time adapted to (3;);>0, where X = _, ¥
for t > 0.

612U Example: the Poisson process (a) For ¢ > 0 let A; be the Poisson distribution with expectation
t, that is, the Radon probability measure on R such that \;{n} = e~ 't"/n! for every n € N. Then the
convolution Ag* ) is equal to g1+ whenever s, ¢ > 0, and lim; o A\+G' = 1 for every open set G C R including
0. So we have an associated probability measure ji on the space Cqgjg of cadlag real-valued functions defined
on [0, 00[. This measure is the subspace measure on Cgjs induced by a complete measure on R0 defined
in terms of transitional probabilities. The formula of 455E tells us that if 0 = ¢t < ... < ¢, in R and
0="Fko<...<k,inN, then the measure of {w : w(t;) = k; for i <n} is

kg —hs_
i—tiqy)iTNi-1

n - n (&
Il At (b = kia} = e 1L, ((kﬁ

(b) ji is a completion regular quasi-Radon measure on Cqj, if we give Cqiz the topology of pointwise
convergent inherited from R[>,

2 = {w: w € Cqyg is non-decreasing, w(t) € N for every ¢t and w(0) = 0}
is the support of ji.
(c) Let u be the subspace measure on 2 induced by ji and ¥ its domain, so that p is a quasi-Radon
probability measure on ). For ¢ > 0, set
Y, = {F :F e€domji, w € F whenever w' € Cqjg, w € F' and w'[[0,t] = w[[0, ]}
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(see 4550) and
Then it =Nyt is for every t. So if

S, ={F:FCQ Fe3,)

for t > 0, (3;)1>0 will be a filtration of o-algebras. Consequently, if we take (2, i) to be the measure algebra
of pu, and set A, = {F* : F € ¥;} for each t, (;);>0 will be a filtration of closed subalgebras of 2.

(d) For w € Q and t > 0 set X;(w) = w(t). Then X; has a Poisson distribution with expectation t. Now
(Xit)e>0 is progressively measurable. We have a corresponding fully adapted process v = (v;),e7;; in this
volume I will call this the standard Poisson process.

(e)(i) For each n € N and w € €, set
gn(w) =inf{t : t € [0,00[, w(t) > n},

counting inf () as co. Then go(w) = 0 for every w. If g,(w) is finite, then w(g,(w)) > n. g, is finite a.e.
In < gn41 for every n. In fact, for almost every w, (g,(w))nen is strictly increasing.
Observe that, for any n € N, w(gn(w)) = n for almost every w.

(ii) For n € N, g, is a stopping time adapted to (X;)¢>0. Let 7, = g, be the corresponding stopping
time in Ty. sup,cy7n = max7T. wv,, =nxl, for every n € N.
I will call (7,,)nen the sequence of jump times for the process v.

(f) If 7 € Ty, then
[ eNl=1, [vr=v.]=[vr=n]=][r <7]n[r < 7Hh1] for every n € N.

(g) v is locally order-bounded.

Version of 15.7.20/16.1.25
613 Definition of the integral

I come now to the definition of a stochastic integral Wthh will be used for the next three chapters. We are

looking for an effective way to interpret the formula f v u dv where 7 < 7/ are stopping times and u, v are
fully adapted processes defined on an interval [7,7'] in 7. I will define this as a kind of Rlemann—StleltJes
integral, a limit of ‘Riemann sums’ of the form Y7 jur, x (vr,, —vy) where 7 =70 < ... < 7, = 7.
For this we need a notion of convergence, for which ‘convergence in measure’ turns out to be suitable, and
a particular limiting process, to be described in 613Hb. Because our processes are defined on a lattice T
of stopping times, rather than a totally ordered set, there are some technical obstacles to clear out of the
way; I aim to do this in 613C-613G. The rest of the section is devoted to elementary properties of this new
integral.

613A Probability algebras (a) For the rest of this volume, (2, i) will denote a probability algebra.
L' (A, i) or L}, will be its L' space. For w in L = LO(A), T will erte E(w) = Ez(w) = E(wt) — E(w™) for
its integral with respect to ji, provided that at most one of E(w™), E(w™) is infinite.

(b) T will be a totally ordered set and (;):c7 a filtration of order-closed subalgebras of 2. 7 will be
the set of stopping times adapted to (2;)¢cr. For 7 € T, 2, will be the closed subalgebra corresponding to
7. When I say that a process is ‘fully adapted’ I shall always mean that it is ‘fully adapted to ()ier’.

613B Convergence in measure (a) L° now has a topology T of convergence in measure which can
be defined by the F-norm 6 where

O(w) = E(|w| A x1) for every w € L.
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This is a complete Hausdorff linear space topology for which multiplication and the lattice operations V, A
and | | are continuous. In particular, the positive cone (L) is closed.
O(aw) < af(w) if w € L% and o > 1. O(v) < 6(w) whenever |v| < |w|.  limy46(w) = 0

whenever A C L° is a non-empty downwards-directed family with infimum 0, so that supA € A and
limt4 O(w) = O(sup A) whenever A C L° is a non-empty upwards-directed set with an upper bound in LY;
similarly, if A C LY is a non-empty downwards-directed set with a lower bound in LY, lim,, 4 8(w) = 0(inf A).

(b) If E C R is a Borel set and Qg = {u: u € L?, [u € E] = 1}, then for any continuous h : E — R the
corresponding function h : Qg — L° is continuous.

(c) If 1 < p < oo, all the || ||,-balls {u: u € L?, |lu||, < a} are T-closed. Consequently the T-closure of a
|| |l,-bounded set is again || ||,-bounded, and || ||, : L® — [0, 00] is lower semi-continuous.

(d)(i) For any p € [1,00], the embedding LY S L° is continuous for the norm topology of LY and ¥.

(ii) If A C L}, is non-empty and downwards-directed and inf A = 0 in L}, then inf,ca [lul, =
limy, 4 |Julj1 = 0.

(iii) If A C (L})" is non-empty and upwards-directed and v = sup,,¢ 4 [|ul[1 is finite, then A is bounded
above in L, sup A belongs to the || |[1-closure of A and | sup A, = 7.

(iv) If uw € L}, and € > 0, there is a § > 0 such that [lu — v, < e whenever v € L, ||lv|l1 < [[ully +6
and 0(u —v) < 6.

(e) If AC LY and v € A then [v > o] C sup,c [u > a] for every a € R.

(£)(i) T will say that a set A C L° is topologically bounded if for every neighbourhood G of 0 in L°
there is an n € N such that A C nG; equivalently, if for every ¢ > 0 there is a 6 > 0 such that 6(ou) < € for
every u € A.

(ii) If A C L is non-empty, then A is topologically bounded iff inf. o sup, ¢ 4 ff|u| > ~] = 0.

(iii) If A, B C LY are topologically bounded, so are A + B and aA for any o € R, the closure A of A
for the topology of convergence in measure, and any subset of A.

(iv) If A C L is topologically bounded, so is its solid hull {u : v € L°, 3 v € A, Ju] < |v|]}. In
particular, an order-bounded subset of L° is topologically bounded.

(v) An upwards-directed topologically bounded set is bounded above.
(vi) If A C LY is solid, so is A.

(g) If v : A — [0, 1] is any functional such that (2, 7) is a probability algebra, then i and 7 are mutually
absolutely continuous, that is,
—— for every ¢ > 0 there is a § > 0 such that max(fia,v7a) < € whenever a € 2 and
min(fia, va) < 0.
T is still the topology of convergence in measure on L° if we apply the formulae of (a) with the integral E;
defined from 7 in place of E = E, and if we set 0, (w) = Ey(|w| A x1) for w € L, then
—— for every € > 0 thereis a 6 > 0 such that max(0;(w), 05(w)) < e whenever min(0;(w), 05 (w)) <
0.
I introduce a code phrase: the topology of convergence in measure is law-independent, since replacing
the ‘law’ i by the law v leaves it unchanged.

(h) (L%, ) is a complete metric space; that is, LY is complete when regarded as a linear topological space.

(i) Now suppose that 9B is a closed subalgebra of 2.
(i) L°(B), regarded as a subset of L°(2), is closed for the topology of convergence in measure.

(ii) Ly N L°(B) is || [1-closed in L; it is also closed for the weak topology of Lj,.
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(j) Suppose that S is a sublattice of T, u = (us)s,es is a fully adapted process, and A C S is a non-
empty downwards-directed set such that the limit u, = lim,| 4 u, is defined. Then u, € ﬂgeA LO(QIU) =

L(Nyea 2Ao)-

(k) If S is non-empty and 4 = (u,)ses is a fully adapted process such that the topological limit u) =
limy s u, is defined in LO(2A), I will call u; the starting value of u.

(1) If S is a sublattice of 7, then we can give (L°)® its product topology, under which it is a linear
topological space. Now the space of fully adapted processes with domain S is a closed subspace of (L%).

(m) Because the lattice operations on L% are continuous, and the topology is Hausdorff, sets of the form
{lu| :u <@} = {u: |u| Va=au} are closed for any @ € LY. Consequently, in a product space (L°)®, sets of
the form {u :u € (L°)S, |u| < 4}, where @ € (L°)S, are closed for the product topology.

(n) Now suppose that (2B,7) is another probability algebra, and ¢ : 2 — B is a measure-preserving
Boolean homomorphism. Then we have a corresponding injective f-algebra homomorphism Ty : LO(2A) —
LO(B). Writing Ej, E; for expectations in L}L, L} respectively, and 60, 6; for the corresponding functionals
on LO(2A) and L°(B), Ey(Tyu) = Eg(u) for every u € LL; 05(Tyu) = 0 (u) for every u € LO(A), and T, is
continuous for the topologies of convergence in measure.

(o) For any « € R, the function u — jifu > o] : LY — [0, 1] is lower semi-continuous.

(p) (i) Suppose that A C L° and that for every € > 0 there is an a € 2 such that {u x ya : u € A} is
order-bounded in L° and jia > 1 — €. Then A is order-bounded in L°.

(ii) If u = (uy)oes is a fully adapted process and for every € > 0 there is an order-bounded process
v = (Vg )oes such that fifu # v] < ¢, then u is order-bounded.
(q)(i) If A C T, 7 belongs to the covered envelope A of A and € > 0, there is a 7/ in the finitely-covered
envelope Ay of A such that gfr =7]>1—e.

(ii) If S is a sublattice of T with covered envelope S and finitely covered envelope S £ U= (Ur)_cg

is a fully adapted process and 7 € &, then u, belongs to the closure of {u, : 0 € S'f} for the topology of
convergence in measure.

613C Interval functions (a) Let S be a sublattice of T. I will write S?' for {(0,7) :0, 7€ S, 0 < 7}.
(i) I say that a function ¢ : S* — LO(2) is an adapted interval function on S if
P(o,7) € LOAr), (0,0) =0, bC[v(o,T) =1, )]
whenever 0 <o’ <7 <7in S, b€ WU, and b C [o =’ n[r' = 7].
(ii) In this case, I say that 1 is a strictly adapted interval function if
o = oIl = 7] < [b(o, ) = ¥(o', )]
whenever 0 <o’ <7/ <7inS.
(b) Let S be a sublattice of T and ¢ : S*T — LO(2A) an adapted interval function.

(i) [e = 7] € [¥(o,7) = 0] whenever o < 7 in S.
[(o,7) # 0] C [o < 7] whenever 0 < 7 in S.

(ii) Y(o,o V1) =(o AT, 7) for all o, T € S.

(iii) If Sy is any sublattice of S, then w[SgT is an adapted interval function on Sy, and is strictly
adapted if 1 is.

(iv) If ¢ is strictly adapted then o = o’ n[7' = 7] C [¢)(0,7) = ¥(0’,7')] whenever o0 < 7 and ¢’ < 7/
in S.
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(c) If S C T is a sublattice and v = (v,)ses is a fully adapted process, we have a function Av : S?T —
L°(2A) defined by saying that

(Av)(o,7) = vy — Vs

whenever o < 7 in S, and Aw is a strictly adapted interval function on S.

613D Constructions for interval functions Let S be a sublattice of T and v, ¢’ (strictly) adapted
interval functions on S.

(a) ¥+ 1" and ¥ x ¢’ are (strictly) adapted interval functions.

(b) If h : R — R is a Borel measurable function, then the composition hi is a (strictly) adapted interval
function.

(c) ¥? and || and a@p, for any o € R, are (strictly) adapted interval functions; the space of (strictly)

adapted interval functions on S is an f-subalgebra of L° (Ql)sm.
(d) If u = (uy)pes is a fully adapted process, then we have a (strictly) adapted interval function uy) on
S defined by setting (u)(o,7) = uy X (0, 7) whenever o < 7 in S.

613E Riemann sums Let S C T be a sublattice, ¢ an adapted interval function on S, and 4 = (uy)cs
a fully adapted process.

(a) For a stopping-time interval e € Sti(S), we can define A.(u,dy) by saying that A.(u,dy) = u, X
(o, 7) whenever e = ¢(o,7) with 0 < 7in S.

(b) If I C S is a finite sublattice and Stip(I) C Sti(S) is the set of I-cells, write
Si(u, d) = 3 cgiio(ry e (u, dv)).

(¢) If I C S is a non-empty finite sublattice, then there is a string (79,... ,7,) in I linearly generating
the I-cells. Sy(u,dy) will be S0 wr, X (73, Tis1)-

(d) Now suppose that ¢ = Aw for some fully adapted process v = (v,)pes. If I C S is any non-empty
sublattice, then S7(1,d(Av)) = UmaxI — VminI-

(e) If 1 = uy)’, where ¢ is another adapted interval function with domain S*" and u = (u,),es is a fully
adapted process, then S7(1,dvy) = Sr(u,dy’) for every finite sublattice I of S.

613F Notation Let S be a sublattice of T and 4 = (us)ses, ¥ = (Vg)oecs and w = (w,)ses fully
adapted processes.

(a) If c < 7in S and e = ¢(o, 7), then I write
Ac(u,dv) = Ag(u, d(Av)) = ug X (U — Uy),

A (u, dvdw) = A (u, d(Av X Aw)) = u, X (V; — V5) X (Wr — Wy ),
Ac(u, |dv]) = Ag(u, d|Av|) = uy X |vr — vs].
(b) Now if I C S is a finite sublattice and Stig([) is the set of I-cells, write
SI (’U,, d’U) = SI (U, d(A’U)) = ZeEStiO(I) Ae(uv d’l)),
Sr(u, dvdw) = Sr(u, d(Av x Aw)) = 3 cqii (1) De(w, dvdw),

Si(u, |dv]) = Si(w, d|Av]) = 3 csiiy (1) De (U, |dv]).

eEStig

613G Proposition Suppose that I is a finite sublattice of 7, ¢ : I?T — L°(2) is an adapted interval
function and u = (u, )¢y is a fully adapted process.

MEASURE THEORY (abridged version)
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(a)(i) If 7 € I then Sy(u,dyp) = Siar(u, dy)) + Srv-(u, dy).
(i) Ifro,... ,7n € Tandminl =79 <71 < ... < 7, = max [, then Sy(u,dy) = Z?:_ol StAfr i) (W, di).
b) For 7 € I set z, = Sta-(u,d)). Then (z;),¢s is a fully adapted process.
YIf T, 7 E I then Synr(u,d)) + Siar (u,dy) = SI/\(T\/T/)(’U,, dy) + S[/\(.,-/\.,-/)(u, du).
) [S ( diy) # 0] C [u # 0] N [min I < max I].
e) If v = (v;)-¢s is another fully adapted process, then S;(u,d(vy))) = Sr(u x v, dy).

(
(c
(d
(

613H Definitions (a) For a lattice S, write Z(S) for the family of finite sublattices of S.

(b) Let S be a sublattice of T, u a fully adapted process with domain including S and ¢ an adapted
interval function defined on S?*. Then I define the integral of u over S with respect to 1 to be

fs udy) = limpyzs) St(u, di)

if the limit is defined for the topology of convergence in measure.
(c) Note that if, in (b), we set 1)’ = ut), then

fs dy' = fs ldy' = fsu‘w
if either integral is defined.

613I Invariance under change of law The integral |, sudy depends on the process u, the interval
function v and the lattice S; behind these declared variables lie the undeclared structure (A, T, (s )ieT)
and the derived objects L = L°(2) and 7. But we do not really need the measure ji. What we use is
the topology of convergence in measure on L°. Now this topology can be defined in terms of the Boolean
algebra structure of 2I.

So the Riemann-sum integral is law-independent, and we shall always be at liberty to replace the measure
i by another strictly positive countably additive functional on 2.

613J Theorem Let S be a sublattice of T, 4 = (Ug)oedomw a fully adapted process with S C domu,
and 1 an adapted interval function defined on S2'.

(a) Suppose that for every € > 0 there are a z € L°() and a J € Z(S) such that 6(Sr(u,dy)) — 2) < €
whenever J C I € Z(S). Then [sudy is defined.

(b) If ' is another fully adapted process defined on S, ¢’ is another adapted interval function defined on
ST, and [qudy, [¢u' dy and [qudy’ are all defined, then [(u+u'dip and [qud(y 4 ¢') are defined and

Jsu+wdp= [judp+ [udp,  [jud+y) = [jud)+ [judy.

Similarly, for any o € R, [¢audy and [qud(at)) are defined and equal to a [ udi.
(c)(i) Suppose that 7 € S. Then

fSUdz/} = fS/\Twa + fS\/‘rUd
if either side is defined.
(ii) Suppose that 79 < ... <7, in S. Then

fSwa fS/\ wa+z fSﬂ[‘r JTig1) d¢+f3\/7'n w

if either side is defined.
(d) If z = [gudi is defined, then

= # 0]

N

sup [us #0]n  sup [¥(o,7) # 0]
cES (o,7)ES?T

sup (Jus # 0] nfo < 7]) C [u # 0].
o,TES
(e) Set S'={7:7€S, [5,, ud is defined}.

(i) 8’ is an ideal of S.

(i) Setting z, = [5,, udi for 7 € &', (27)res is fully adapted.

N
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18 The Riemann-sum integral 613J

(iti) If 7 € S and sup, g [7' =7] =1, then 7 € S'.
(f) Suppose that § # 0 and z = [gudy is defined. Set z, = [, udy for 7 € S,

(i) The starting value lim, s 2 is 0.

(i) limrys [g,, wdy =0, limr4s 2r = 2.

(g) Let v be another fully adapted process with domain S. Then [ud(vy) = [su x vdy in the sense
that if one is defined so is the other, and they are then equal.

613L More easy bits (a) If S is a sublattice of T and u, v and w are fully adapted processes defined
on S, I will write

fsudv = fsud(Av) = limpz(s) S1(u, dv),
fsudvdw = fsud(Av x Aw) = limpz(s) S1(u, dvdw),

f8u|dv\ = fsud|Av| = limp7(s) S1(u, |dv|)
when the limits exist in LO(2A).

(b) Three trivial calculations: if v = (vy)scs and u are fully adapted processes with domain a sublattice
S of T, then
(i) S1(1,dv) = Umax1 — Umin1 for every non-empty finite sublattice I of S, so me[T’T,] ldv =v — v,
whenever 7 < 7/ in S;
(i) if v is constant then S;(u,dv) = 0 for every I € Z(S), so [qudv is defined and equal to 0;
(iii) if z € L%, cs Ao ), then S7(zu, dv) = S;(u,d(2v)) = 2 x S;(u, dv) for every I € I(S), so [ zudv
and fsud(zv) are defined and equal to z x fsudv if the last integral is defined.

(c) Suppose that I is a finite sublattice of T and u = (ug)oer, u
are fully adapted processes. Set d = sup,¢; [us # u,] U [vs # v,]
Similarly,

= <u:7->061a v = <UG'>0'€I andv' = <U(II>U€I
Sr(u,dv) # Sr(u, dv’)] C d.

/

[Sr(u, (dv)?) # Sr(w/, (@")*)] c d.  [Sr(u,|dv]) # Sr(w', |dv'])] € d.
Indeed, if ¢, 1’ are any adapted interval functions defined on Z?", and we set

d= SUPgser Huff 7& U;.]] U Supog'r in [ [[1/)(0’, 7_) 7{ 1//(0’ T)]]v
then [Sy(u, dv) # S;(u', dy')] C d.

(d) It follows that if S is any sublattice of T and u = (uy)ses, ¥ = (Vs)ses are fully adapted processes
such that z = [sudv is defined, then [z # 0] C [u # 0] n Jv # 0].

613M Lemma Let S be a sublattice of 7 and u, v, w fully adapted processes defined on S. Then
Sr(u, dvdw) = Si(u,d(v x w)) — Sr(u x v,dw) — S;(u x w,dv)
1
= 2 (SI(’UH (d(’U + w))Q) - S[(’LL, (dv)Q) - S[(U, (dw)Q))

for every finite sublattice I of S. Consequently
fsudvdw = fsud(v X W) —fsu X vdw — fsu X w dv

if any three of the four integrals are defined, and

1
fsud'vdw = 5(fsu(d(v +w))? — fsu(d'v)2 - fs'u,(dw)Q)
if any three of the integrals are defined.
613N Proposition Let S be a non-empty sublattice of T and v = (v,),ecs a fully adapted process.
Interpreting [ dv as [ 1 dv where 1 is the constant process with value x1, [ dv is defined iff vy = lim, s v,

and vy = limg4s v, are defined, and in this case [gdv = vy —vy.
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613V Definition of the integral 19

6130 Indefinite integrals (a) Definition Let S be a sublattice of T, u a fully adapted process with
domain &, and 1 an adapted interval function with domain S?'. Set S’ = {7 : 7 € S, fS/\T wdy is defined};
&’ is an ideal of S. The indefinite integral of u with respect to ¢ is the process i, (u fS/\T wd) resr;
this is a fully adapted process.

When 9 is of the form Aw for a fully adapted process v, I will write ii,(u) = <f$ATudv>T€5/ for the
indefinite integral of u with respect to v.

(b) (i) Note that if [sudy is defined, the domain S” of 7iy(u) is the whole of S.

(ii) It is obvious from the definition, but perhaps it is worth stating formally that if 7 € S and |, sarudy
is defined then

tiy(u)[SAT = </

SAo

wdb)oesne = / (]S AT)AWI(S ATV oesnr

Sho
= iiw[(s/\T)ZT (u {S A T).

(iii) On the other side, if S =8 and 7 € S, then diy(syr)2r (]S V 7) is defined on the whole of SV 7
and is equal to (iiy(u)[SV T) — ([, wdy)l

613R Proposition Let S be a sublattice of T and u, v fully adapted processes with domain S. Then
Jiio (u) # 0] € [u # 0] n [ # 0.

613S Lemma Let S be a sublattice of 7 and ¢ : ST — L°(A) a strictly adapted interval function.
Suppose that I, J € Z(S), J C I and a C sup,¢; [T = o] forevery 7 € I. Thena C [S;(1,dy) = S;(1,dy)].
In particular, if J covers I then S7(1,dvy) = S;(1,dy).

613T Theorem Let S be a sublattice of 7, S’ a sublattice of S which covers S, ¥ : ST — LY(2) a
strictly adapted interval function and u : & — L°(2) a fully adapted process. If [ sudy is defined, so is
f o wdy, and the integrals are equal.

613P Example If T' = [0, 00[, (2, ) is the measure algebra of Lebesgue measure on [0,1] and 2 = 2
for every t > 0, then there are a sublattice S Qf T and fully adapted processes u, v with domain S such that
/. sudv is defined but /. $dv is not, where S is the covered envelope of S and 4, ¥ are the fully adapted

extensions of u and v to S.

613U Theorem Let S be a sublattice of 7', and S its covered envelope.
(a) For every strictly adapted interval function v : ST — L° there is a unique extension of 1 to a strictly
adapted interval function 1& 1821 IO,
(b)(i) The function ¢ ¥ is an f-algebra homomorphism from the space of strictly adapted interval
functions on S to the space of strictly adapted interval functions on S.
(ii) If 1 is a strictly adapted interval function on S and h : R — R is Borel measurable, then (ht))” = ha.
(iii) If v is a strictly adapted interval function on S and w is a fully adapted process with domain S,
then (u)” = 111/37 where 4 is the fully adapted extension of u to S.

613V Lemma Let S be a sublattice of T, u a fully adapted process with domain S, and @ an adapted
interval function with domain S?' such that [qudy is defined. Let I € Z(S) and € > 0 be such that
0(Sy(u,dyp) — Sk (u,dy)) < e whenever J, K € Z(S) include I.

U<t <mn<r<...<7, <7/ in I, then

H(Zz O(SIO[T“T u d’ll) fSﬂ[T 7_ 'u'dlb))

(ii)(a) If 7 € I then O(Star(u,dip) — [, wdy) <e.
(8) For any 7 € S, 0(Siar(u,dyp) — fSATudw) < 2e.
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613W The one-dimensional case (a) Suppose that (2, ) is the trivial probability algebra in which
20 = {0,1}. Then L°(2A) = {axl : @ € R} can be identified, as f-algebra, with R; of course we have
O(ax1) = min(1, |a|) for every a, so the topology of convergence in measure on L°(2() corresponds to the
usual topology of R. Necessarily, 2; = 2 for every t € T, so the filtration is trivial. If it is also the case that
T has no points isolated on the right, then every stopping time except max 7 and possibly min 7 will be a
constant stopping time as described in 611A(b-ii), every subset of 7 is a sublattice, and every real-valued
function f defined on a subset S of T' corresponds to a fully adapted process {(3, f(s)x1) : s € S}.

(b) If also T has a least element, we can identify 7; with 7' and M, (7;) = (L°)77 with RT. Under
this identification, if f : T — R and g : T' — R represent processes u, v with domain 7y, and I C 7Ty is a
non-empty finite set, there are tg < ... <t, in T such that I = {f; : i < n}, and

Si(u,dv) = (372) f(t:)(9(tis1) — g(t:))x1.

(d) What this amounts to is that we have a kind of Riemann-Stieltjes integral on 7', I spell this out
in detail here partly because there are well-known Stieltjes integrals on the real line, of which the most
important, from the point of view of my treatise as a whole, is integration with respect to Lebesgue-Stieltjes
measures described in exercises from 114Xa onwards. Here we suppose that g : R — R is non-decreasing, so
that there is a Radon measure v, on R with v, [a, b] = limygp g(2) — limg4q g(2) whenever a < b in R. Now
the point I need to make here is that if S = {3 : s € R} then the integral fS'u,d'v is not the same as the
Lebesgue-Stieltjes integral [ f dv,. Consider the case in which f =g = x[0,00[. v, is the Dirac measure
concentrated at 0, so that [ fdv, = f(0) = 1. But when we look at sums Sy (u,dv) where I = {{o,...,%,}
is a finite subset of S, and supposing that to < ... < t,, we get

f:)(g(tive) —g(t:))

0(g(ti+1) —g(t:i)) = 01if t; <0,
ft)(1=1)=0ift; >0,

so S7(f,dg) = 0; as this is true for every I, fs fdg = 0. In the language of Lebesgue-Stieltjes integration,
we are calculating [ f_ dv, where f_(x) = limyq, f(y) for each z.

In my view, a theory of stochastic integration should insist on calculating integrals [udv in terms of
products u, X (v; — vy) where o < 7 (rather than u, x (v, — v,), for instance). We are going to have to
return to this point from time to time, because it is one on which my presentation of the theory differs from
that of most authors.

Version of 29.10.24

614 Simple and order-bounded processes and bounded variation

In §613 I gave a definition of an integral with no very useful indication of where it might be applicable.
This section and the next two will be devoted to teasing out the basic case in which a Riemann-sum integral
Jsudv is defined: u should be ‘moderately oscillatory’ (615E) and v should be an ‘integrator’ (616K).
Before we come to either of these notions, however, it will be helpful to have a firm grasp of three easier
concepts: ‘simple’ processes (614B), ‘order-bounded’ processes (614E) and processes ‘of bounded variation’
(614J-614K).

614B Proposition Suppose that S is a non-empty sublattice of 7 and u = (uy)ses a simple fully
adapted process with a breakpoint string (79, ... , 7).
(a) The starting value uy = lim,|s u, is defined, and [o < 79] C [us = u,] for every o € S.
(b) Suppose that 1 : S> — L° is an adapted interval function such that fs dvy is defined. Then fsudw
is defined and equal to
up X Upy + Z;:Ol Ur, X (Vryy — V) + Ur, X (04 —vr,)

where v; = [g . dy for 7 € S, and vy = [5dy.
(© 2019 D. H. Fremlin
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614C Corollary Suppose that S is a non-empty sublattice of T, 4 = (u,)ses is a simple fully adapted
process with starting value u; and a breakpoint string (79,...,7,), and v = (v;),ecs is a fully adapted
process such that vy = lim;4s v, and vy = lim, s v, are defined. Then f sudv is defined and equal to

uy X (vr, —v)) + Z?;ol Ur, X (Uryy — V) + U, X (V4 —vr,).

614D Proposition Let S be a sublattice of T, v = (vs)ses a simple process, and u = (u,)scs a fully
adapted process such that |, sudv is defined. Then iiy(u) is simple.

614E Order-bounded processes: Definitions Let S be a sublattice of T and u = (uy)scs a fully
adapted process.

(a) u is order-bounded if {u, : ¢ € S} is bounded above and below in L°. In this case, sup Ju| =
Sup,cs |uo|, taking the supremum in (L°), so that sup [u| = 0 if S = domu is empty.

(b) u is locally order-bounded if u[|S AT = (Us)ses,0<- is order-bounded for every T € S.

(c) Suppose that S is non-empty and that u is simple, with breakpoint string (79, ... ,7,) and starting
value uy. Then u is order-bounded and sup |u| = |uy| V sup,,, [ur,

614F Proposition Let S be a sublattice of 7.
(a)(i) If w is an order-bounded process with domain S, then 4|8’ is order-bounded for any sublattice S’
of §; in particular, u is locally order-bounded.
(ii) If w is a locally order-bounded process with domain S, then ]S’ is locally order-bounded for any
sublattice " of S.
(b) Suppose that 4 = (us)secs is a locally order-bounded process. Set v, = sup,egpy, [Us] for 7 € S.
Then v = (v, )recs is a non-decreasing fully adapted process.
(c) Write My, = Mo(S) for the set of order-bounded fully adapted processes with domain S.
(i) If A : R — R is a Borel measurable function which is bounded on every bounded interval in R, then
hu € M.y, for every u € M,.,.
(ii) Mo.p, is an f-subalgebra of [, s L°(As).
(iii) If z € L°(AN N, es Ao) then zu € My, with sup |zu| = |z| x sup |u], for every u € M.y
(d) Write Miop = Miop(S) for the set of locally order-bounded fully adapted processes with domain S.
(i) If A : R — R is a Borel measurable function which is bounded on every bounded interval in R, then
hu € M, for every u Mio,.
(ii) Miob is an f-subalgebra of [] g L°(2s).

614G Proposition Suppose that S is a sublattice of T and u = (u,)ses a fully adapted process.
(a) If A, BC S, A covers B and {u, : 0 € A} is order-bounded, then {u, : o € B} is order-bounded and

SUPseB "LL(7| < SUPseca |u<7|'
(b) If &’ is a sublattice of S which covers &

(i) u is order-bounded iff u[S’ is order-bounded, and in this case sup |u| = sup |u[S’|,
(ii) u is locally order-bounded iff u[S’ is locally order-bounded.

614H Proposition Brownian motion, as described in 612T, is locally order-bounded.

6141 Non-decreasing processes Let S be a sublattice of 7 and v = (v,)scs a non-decreasing fully
adapted process.

(a) v is a lattice homomorphism.
(b)

[o < 7] € [ve = vorr] N [vr = Vovs] C Vs < vr]

forall o, 7 € S.
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(c) If v is non-negative it is locally order-bounded.
(d) If S # () and v is order-bounded, then

fs\d'v| :fsd'":UT_Ui
where v4 = suUp,cs Vo = limyys Vo and v, = infoes vy = limg s V6.

(e) Suppose that w € (L°)*. For each o € S, set w, = sup{z : x € L°(A,, < w}. Now w = (w,)res
is a non-negative non-decreasing fully adapted process.
|u| < w whenever u = (uy)cs is fully adapted and |supu| < w.

(f) If h: R — R is non-decreasing, then hv is non-decreasing.

(g) If u is non-negative and fully adapted and [sudv is defined, then [qudv > 0 and 7iy(u) is non-
decreasing.

614J Bounded variation: Theorem Let S be a sublattice of T and v = (vy)scs a fully adapted
process. Then the following are equiveridical:
(i) v is expressible as the difference of two order-bounded non-negative non-decreasing fully
adapted processes,
(11) {Z?;Ol |U7'i+1 — Ur;
(iil) [ |dv| is defined;
and in this case

179 < ... <7, in 8} is bounded above in L,

79 < ... <7, in S}

-1
fS |d’l)‘ = Sup{Z?:O ‘v7i+1 — Uy

if we count sup ) as 0.

614K Definitions Let S be a sublattice of 7 and v a fully adapted process with domain S.
(a) v is of bounded variation if it satisfies the conditions of Theorem 614J.

(b) v is locally of bounded variation if v[S A 7 is of bounded variation for every 7 € S.

614L Proposition Let S be a sublattice of 7 and v a fully adapted process with domain S.

(a) If v is (locally) of bounded variation it is (locally) order-bounded.

(b)(i) If v is of bounded variation and S’ is a sublattice of S, then v[S’ is of bounded variation and
S o] < [ |dol.

(ii) If v is locally of bounded variation and S’ is a sublattice of S, then v[S

variation.

(c) If 7 € S, then v is (locally) of bounded variation iff u[S A7 and v[S V 7 are both (locally) of bounded
variation.

/

is locally of bounded

614M Proposition The Poisson process, as described in 612U, is locally of bounded variation.

614N Lemma Let S be a sublattice of 7 and @ € (L°)™. Then {v : v € Mg, (S) is of bounded variation,
[s |dv| <} is closed in (L°)® for its product topology.

6140 Cumulative variation Let S be a sublattice of 7, and v a process with domain S which is
locally of bounded variation. Then vl = [ |dv| is defined for every 7 € S, and v" = ([, _v])res is fully
adapted. I will call vT the cumulative variation of v.

614P Proposition Let S be a sublattice of T, v = (vs)ses a process which is locally of bounded
variation, and v = (v]),cs its cumulative variation.
(a)(i) If o < 7in S, then
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(i) v" is non-negative and non-decreasing and has starting value 0 if S is not empty.

(iii) vT + v and v" — v are non-decreasing.

(iv) If S is non-empty, v has a starting value.

(v) v is of bounded variation iff lim s v} = sup [v"] is defined, and in this case the limit is [ |dv|.
)

(b) If 7 € S then, writing (w[SA7)"T and (v[SV 7)" for the cumulative variations of v[|SA T and v[SV T,
WISAT)I =vT[SAT, @SV =v"[SVT—0ll.

(c) Suppose that I € Z(S) is not empty and (79,... ,7,) linearly generates the I-cells.
(i)

UT - ’Uli < ‘Uﬂ'+1 - UT@" + UT UT Sl(la |d’U|)

Tit1 max I~ Yminl ~
for every i < n.
(ii) If v is of bounded variation, write w for [¢|dv| — S7(1,|dv|), and let vy be the starting value of v.
() If 7 € S A 7o, then v < |v, —vy| + w.
(B) If i <n and T € SN [73, Tig1]) then v] — vl < v, — vy, |+ w.
(N IfreSVT, then vl —vl < |v; —v, |+ w.

614Q Proposition Let S be a sublattice of T, and S its covered envelope.
(a) Write My, = My, (S) for the set of fully adapted processes of bounded variation with domain S.
(i) hv € My, whenever v € My, and h : R — R is Lipschitz on every bounded interval.
(ii) Myy is an f-subalgebra of M, (S).
(iii) The space Mgimp of simple processes with domain S is an f-subalgebra of My, closed under h for
every Borel measurable h: R — R.
(iv) If v € M, (S) and 9 is its fully adapted extension to S, then
(a) v is non-decreasing iff ¥ is non-decreasing,
(8) v is of bounded variation iff © is of bounded variation, and in this case [4|dd| = [ |dv| and the
cumulative variation 91 of ¥ is the fully adapted extension of the cumulative variation vT of v.
(b) Write M,y = My (S) for the set of fully adapted processes with domain S which are locally of
bounded variation.
(i) If v € My (S) then v]S’ is locally of bounded variation for every sublattice S of S.
(ii) hv € My,, whenever v € My, and h : R — R is Lipschitz on every bounded interval.
(iii) Mypy is an f-subalgebra of Mo (S).
(iv) If v € Mg, (S) then v is locally of bounded variation iff it is expressible as the difference of two
non-negative non-decreasing fully adapted processes.
(v) If v € Mg, (S), then v is locally of bounded variation iff its fully adapted extension to & is locally
of bounded variation, and in this case the cumulative variation of ¥ is the fully adapted extension of the
cumulative variation of v.

614R Lemma If I € Z(T) is non-empty and © = (uy)oer, ¥ = (Vs )ses are fully adapted processes, then
|S7(u, dv)| < min(sup |u| x f] |dv|, sup |v| x (fl |du| + 2 sup |u|).

614S Proposition Let S be a sublattice of T, and u = (uy)scs, ¥ = (Vs)ses two processes of bounded
variation with domain S. Then f sudv is defined and

|f5ud'v\ < min(sup |u| X fs |dv|, sup |[v| x (fs |du| + 2sup |u])).

614T Proposition Let S be a sublattice of T, and u, v fully adapted processes with domain S such
that u is order-bounded, v is of bounded variation and [¢udwv is defined. Then the indefinite integral ii, (u)
is of bounded variation, and [ |d(iiy (u))| < sup Ju| x [q|dv|.
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614U Proposition Let (€2, X, i) be a complete probability space, and (£;);>0 a filtration of o-subalgebras
of ¥ such that every u-negligible set belongs to every ¥;. Let (2, i, [0, 00, (Us)t>0, T, (Ar)re7) be the as-
sociated stochastic integration structure as in 612H; for a stopping time h : Q@ — [0,00] let h* be the
corresponding member of 7. Suppose that (X;);>¢ is a progressively measurable process on 2, with associ-
ated fully adapted process = (r+)re7; -

(a) If {Xs(w) : s > 0} is bounded for almost every w € €2, then z is order-bounded.

(b) If s = Xs(w) : [0,00[ — R is of bounded variation for almost every w € €, then z is of bounded
variation.

Version of 28.10.21,/9.8.22

615 Moderately oscillatory processes

I come now to the class of integrands in the basic theorem 616K, the ‘moderately oscillatory’ processes.
I have chosen a path which starts with a natural linear space topology on the space of order-bounded
processes, the ucp topology (615B). This gives a straightforward definition of the space of moderately
oscillatory processes (615E) with their elementary properties (615F-615H). When the domain is finitely full,
we have an alternative definition in terms of convergence along monotonic sequences of stopping times (6151-
615N). Classical stochastic processes with cadlag sample paths give rise to locally moderately oscillatory
processes (615P).

615B The ucp topology Let S be a sublattice of 7.
(a) For u € M, 1(S), set
B(u) = 0(sup u]).

(b) 6 is an F-norm on Mob(S).

(c) 0 defines a metrizable linear space topology. I will call this the ucp topology on M, (S) and the
associated uniformity the ucp uniformity on M, (S).

615C Proposition Let S be a sublattice of T, and give M1, = M,1,(S) its ucp topology.
(a) If h : R — R is continuous, then hu € M,y for every u € Moy, and u — hu : Moy, — Mgy, is
continuous.
(b)) (u,v) —uxv: My, X Moy, = M,y is continuous.
(i) u > sup |u| : My, — LY is uniformly continuous.
(¢) Moy, is complete as linear topological space.

615D Lemma Let S be a non-empty finitely full sublattice of 7, and u = (uy),es a fully adapted
process.
(a) If v > 0 then

fi(sup,es [lur| > 7)) = sup,es allur| > 7]
(b) If w is order-bounded, O(sup [u]) < 24/sup,cs 0(Uo).
615E Definition Let S be a sublattice of T .

(a) T will call a process with domain S moderately oscillatory if it is in the closure of My (S) in
Moy.1(S) for the ucp topology.

(b) A process u with domain S is locally moderately oscillatory if u|S A 7 is moderately oscillatory
for every 7 € S.

Remark The definitions imply directly that (locally) moderately oscillatory processes are (locally) order-
bounded. Of course processes of bounded variation (e.g., simple processes, 614Q(a-iii), and in particular
constant processes) are moderately oscillatory, and processes which are locally of bounded variation are
locally moderately oscillatory.

(©) 2018 D. H. Fremlin
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615F Proposition Let S be a sublattice of 7, and S its covered envelope.
(a) Write My, for the set of moderately oscillatory processes with domain S.
(i) If 8’ is a sublattice of S then u[S’ is moderately oscillatory for every u € Mp,,.
(ii) If h: R — R is continuous, then hu € M,,, for every u € My,,.
(iii) Mo is an f-subalgebra of M1, = M1, (S).
(iv) My is closed in M, (S) for the ucp topology, so is complete for the ucp uniformity.
(v) If 7 € S, then a fully adapted process u with domain S is moderately oscillatory iff u[S A 7 and
u[S V 7 are both moderately oscillatory.
(vi) If w € My, then its fully adapted extension to S is moderately oscillatory.
(b) Write My, for the set of locally moderately oscillatory processes with domain S.

(1) Mmo - Mlmo

(i) If h : R — R is continuous, then hu € My, for every u € Miy,.

(iii) Mimo is an f-subalgebra of the space Mo, = Miob(S) of locally order-bounded processes with
domain S.

(iv) If 7 € S, then a fully adapted process u with domain S is locally moderately oscillatory iff u[S AT
and u[S V 7 are both locally moderately oscillatory.

(v) If u € My, then its fully adapted extension @ to S is locally moderately oscillatory.

615G Theorem Let S be a sublattice of T and u = (u,),es a fully adapted process.
(a) Suppose that u is moderately oscillatory and A C S is non-empty and upwards-directed. Then
w = limy44 uo is defined. Setting A, = {p:p € S, sup, e [p < 0] =1},
limy14 SUP e 4, vo |8y — w| = 0.
(b) Suppose that u is locally moderately oscillatory and A C S is non-empty and downwards-directed.
Then w = limy | 4 uy is defined. Setting A* = {p:p €S, sup,c4 [0 < p] = 1},

limy | 4 SUP e g« pp |1y — w| = 0.

615H Corollary Let S be a non-empty sublattice of T, S its covered envelope, 4 = (uy)y,es a locally
moderately oscillatory process, and 4 = (iy), ¢ its fully adapted extension to S. Then w and % have
starting values, which are the same.

6151 Definition Let S be a sublattice of 7 and u = (uy)ses a fully adapted process. I will say that u
is l-convergent if

(1) limy,— 0 uy, is defined whenever (o,)nen is a sequence in S which is either non-

increasing or non-decreasing.

615J Lemma Let S be a sublattice of 7 and u = (u,),ecs a moderately oscillatory process. Then u is
l-convergent.

615K Lemma Let S be a finitely full sublattice of 7 and u = (uy)ses an |-convergent process. Then

u is order-bounded.

615L Lemma Let S be a non-empty finitely full sublattice of 7 and 4 = (uy),es an l-convergent

process. Suppose that A C S is non-empty and downwards-directed. Then w = limy 4 u, is defined.
Setting A* = {p:p €S, sup,e4 [0 < p] =1},

limy | A SUP e g« p o |1 — w| = 0.

615M Construction Let S be a finitely full sublattice of 7 with a greatest member, u = (uy)scs an
{l-convergent process, and § > 0. Then there are sequences (D;)ien, (¥i)ien, (di)ien, a family (cis)ien,ces

and a process & = (Uy),cs with the following properties.
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(a) Do = S; for every i € N, maxS € D; C S, D; is closed under A, y; = lim,|p, u, and

Dit1={0:0¢€S8, o <maxS] C [|us — y:i| > 9]
and there is a ¢’ € D; such that o’ < o},

(b) yi € Nyep, L’ (As) for every i € N.
(c)(i) For every i € N,

d; = sup,¢p, [0 < max S,

d; € mO'EDi A

diy1 C d;,

dit1 C [[yi+1 — yil = 9],

INd; € [yi = Umaxs] 0 [yi = yir1]

(11) infieN dz =0.

(d)(i) f o € Sand i € N,

Cio =Sup,ep, [T < 0], cit10 CCio, [0 =maxS] C ¢ip C [0 = maxSJud;.

(ii) If i e N and o € D; then ¢;, =1; cgp = 1 for every o € S.
(iii) If o, 0’ in S then [o < '] n¢iy C ¢ipr for every ¢ € N.
(iv) inf;en ¢ip = [o = max S] for every o € S.
(v) If 0 € S and i € N then ¢;o \ ¢it1,6 C [Jue — yi| < 0].
(e) If o € S then

Cio \ Ci+1,0 C [Uo = Uil
for every i € N, and [o = maxS] C [o = Umaxs]-

(f) @ is fully adapted, sup |&| < sup |u| and sup |u — @| < dx1.
(g) @ is of bounded variation.

615N Theorem Let S be a finitely full sublattice of T, and u = (u,)ses a fully adapted process. Then
the following are equiveridical:
i) u is moderately oscillatory;
ii) u is Y-convergent;
iil) (e, )nen is Cauchy for every monotonic sequence (o’n>neN in S;

v) for every € > 0 there is an m > 1 such that whenever o9 < ... < 0y, in S there is a j < m such that
O(to; — Ug;,,) < €

(
(
(
(i

6150 Proposition Suppose that S is a sublattice of T, u € My,,(S) and € > 0. Then there is a
u' € My, (S) such that O(sup |u’ — u|) < e and sup |[u'| < sup |u|.

615P Where moderately oscillatory processes come from There is an easy condition on the
structure in 612H which will ensure that the process generated there is moderately oscillatory.

Proposition Let (2, %, 1) be a complete probability space, and (¥;);>0 a filtration of o-subalgebras of
Y such that every p-negligible set belongs to every ¥;. Let (2, 2) be the measure algebra of p and
set Ay = {E* : E € %;} for each ¢ > 0; then we have a real-time stochastic integration structure
(A, 11, [0, 00[, (A0, T, (Ar)re7). Let (Xi)i>0 be a progressively measurable process on 2, and x =
(z7)re7; the corresponding fully adapted process as described in 612H. Suppose that lim, o X;, (w) is
defined in R for every bounded monotonic sequence (t,)nen in [0,00[ and every w € . Then z is locally
moderately oscillatory.

615Q Proposition The identity process, Brownian motion and the Poisson process are all locally mod-
erately oscillatory.

615R Proposition Let S be a sublattice of 7 and u a process of bounded variation with domain S.

(a) If v € Mo = Mio(S) then [gudv is defined and | [gudv| < ([ |du| 4 2sup |u]|) x sup [v].

(b) iiy(u) € Mo for every v € My, and v +— diy(u) : Mo — My, is continuous for the ucp topology
on M.
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Version of 31.1.23/3.2.23

616 Integrating interval functions

In this section I present a fundamental theorem on the existence of Riemann-sum integrals (616M),
dealing with the case of moderately oscillatory integrands and integrating interval functions (616F). The
most important integrating interval functions are those defined by integrators (616Fc, 6161). The integrators
on a lattice S form an f-subalgebra of the space of moderately oscillatory processes with domain S (616P).

616B Definition Let S be a sublattice of 7. If ¢ is an adapted interval function defined on S?, the
capped-stake variation set of ¢ over S is the set Qs(dv) of Riemann sums Sy(u,dy)) where I € Z(S),
u is a fully adapted process with domain I and sup |u| < x1.

If v, w are fully adapted processes defined on S then, corresponding to the basic interval functions of

613F, I will write Qs(dv), Qs(dvdw), Qs(|dv|) for Qs(d(Av)), Qs(d(Av x Aw)) and Qs(d|Av|).

616C Lemma Let S be a non-empty sublattice of 7, ¢ an adapted interval function defined on ST,
and z an element of L%(2l). Then the following are equiveridical:

(i) z € Qs(dy);

(ii) there are 79 < ... < 7, in S and uyg, . .. , up—1 such that u; € L= (A,,) and |u;| < x1 for every i <n
and z = Y1 uy x w(ﬁ, Tit1);
(iii) there are 79 < ... < 7, in S and an order-bounded process u = (u,)scs such that sup |u| < 1

and z = Z?;Ol Ur; X w(TivTiJrl)'

616D Lemma Let S be a sublattice of 7 and v, 1’ adapted interval functions defined on S2.
a) Qs(dip) = Uzez (S) Qr(dy).
b) Qs(d(ay)) = aQs(dy) for every a € R.

(
(
(c) @s(d(¥ +1")) € Qs(dy) + Qs(dy).

(d) If &' is a sublattice of S then Qs (dq/)) C Qs(dy).

(e) fw e Qs(dy), z € LO(AN(,csUo) and |z| < x1, then z x w € Qs(¥).
( ) If 7 € S then QS/\T(dw) + QSVT(dw) - QS(d¢)

616E Lemma Let S be a sublattice of 7, and 1 an adapted interval function on S. Then the following
are equiveridical:

(i) Qs(dy) is topologically bounded;

(ii) for every € > 0 there is a 6 > 0 such that 0(Sr(u,dv)) < € whenever I € Z(S), u € M, (I) and
(sup ful) < 5

(iii) for every € > 0 there is a § > 0 such that 8(S;(u,dy)) < e whenever I € Z(S), u € M,(S) and
O(sup |u]) < 4.

616F Definition Let S be a sublattice of 7 and v : S?T — L a function.

(a) 9 is an integrating interval function on S if
() ¢ is a strlctly adapted interval function;
(B) writing S for the covered envelope of S and ¢ : $2T — L0 for the strictly adapted extension
of ¥, [s dip = s 1di) is defined;
(7) Q4(de) is topologically bounded in L.

(b) ¢ is a locally integrating interval function if 1/[(S A 7)?T is an integrating interval function for
every T € S.

(c) A fully adapted process v defined on S is an integrator if Qs(dv) is topologically bounded in L°,
and a local integrator if ]S A 7 is an integrator for every 7 € S.

(©) 2019 D. H. Fremlin
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I will write Mg, (S) for the set of integrators with domain S, and Mijg.(S) for the set of local integrators
with domain S.

Remarks Evidently a strictly adapted interval function ¢ on a sublattice & is an integrating interval
function iff its adapted extension on the covered envelope of § is an integrating interval function.

616G Proposition Let S be a sublattice of T and 1, ¢’ integrating interval functions on S.
(a) ¥ + ¢ and ap are integrating interval functions on S for every o € R.
(b) ¢ is a locally integrating interval function.

616H Lemma Suppose that
e>0, 20, m=>1, me2>2y,

r>m, 1l—— <3, k>1, 2ké™>¢ n=rk.
rm(r—m)! 2

Let S be a sublattice of 7 and v an adapted interval function with domain S3'.

(a) Let (a;)i<, be a family in 2 such that fa; > € for every ¢ < r. Then there is a J € [r]™ such that
ia(inf;cya;) > %em.

(b) Let 79 < ... < 7 in S be such that sup{f(w) : w € Qsnr, .., (d0)} > 4e for every i < r, while z €
LO(2A,,) is such that iif|z| > 7] < e. Then thereis aw € Qs(di) such that fi[|z + w| > ~] > af|z| > v]+3e™.

(c) Let 7o < ... < 7, in S be such that sup{f(w) : w € Qsnir,,r,,)(d)} > 4e for every i < n. Then there
is a w € Qs(dep) such that af|lw| > ~] > e.

(d) Let 79 < ... <7, in S be such that 8(¥(7;, 7511)) > 4e for every i < n. Then there is a w € Qs(dv)
such that aflw| > ~v] > e.

6161 Theorem Let S be a sublattice of 7T, and v = (v,)secs a (local) integrator.

(a) The fully adapted extension of v to the covered envelope of S is a (local) integrator.
(b) v is (locally) moderately oscillatory, therefore (locally) order-bounded.

(c) Av is a (locally) integrating interval function.

616J Theorem Let S be a sublattice of 7 and ¢ an integrating interval function with domain ST. Set
My = {u:u € Myy(S), [judi is defined}.

Then M, is a closed linear subspace of M,.1,(S) and we have an indefinite integral operator i, : My —
Mig: (S) which is linear and continuous for the ucp topology on M, (S).

616K Theorem Let S be a sublattice of 7, u a moderately oscillatory process with domain S, and v an
integrator with domain S. Then [gudv is defined, and ii, (u) is an integrator.

616L Corollary Let S be a sublattice of 7. If u is a locally moderately oscillatory process and v a fully
adapted process which is locally of bounded variation, both with domain S, then i, (u) is locally of bounded
variation.

616M Theorem Let S be a sublattice of 7 and v an integrating interval function on S. Write v for
iiy(1) = ([s,, d¥)res. Then [qudy is defined and equal to [su dv whenever u is a moderately oscillatory
process with domain S.

616N Theorem Let S be a sublattice of 7, and v = (vs)ses a (local) integrator. If f : R — R is convex,
then fv is a (local) integrator.

6160 Corollary If v is a (local) integrator and f : R — R is a function, absolutely continuous on every
bounded interval in R, such that its derivative f’ has bounded variation on every bounded interval, then fv
is a (local) integrator.
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616P Theorem Let S be a sublattice of 7.
(a) Migr(S) is an f-subalgebra of the space Muo(S) of moderately oscillatory processes with domain S.
(b)(i) Constant processes are integrators.
(if) fv € Migr(S) thenv[S’ € Mg, (S’) for any sublattice S’ of S. In particular, v is a local integrator.
(iii) Suppose that v € My, (S) and for every € > 0 there is a v/ € Mg, (S) such that afv #v'] < e.
Then v € Mig:(S).

(iv) If v = (Vo) ges € Mig:(S) and z € LO(AN ), cs Ao), then 2v € Mig,(S).

(v) If v € M (S) then v € Mg, (S) iff u]SAT € Mg (SAT) and v[SV 7 € Mgy (S V 7).

616Q Corollary Let S be a sublattice of 7.
(a) Miigr(S) is an f-subalgebra of the space Mimo(S) of locally moderately oscillatory processes with
domain S.
(b)(i) If v € Mijger(S) then v[S’ € Mijgir(S’) for any sublattice S’ of S.
(ii) If v € Myjgi(S) and z € LO(AN [, cs Ao ), then 20 € My (S).
(c) Suppose that 4 € Mimo(S) and v € Mg (S).
(i) The indefinite integral ii, (u) belongs to Miig.(S).
(ii) Let S be the covered envelope of S, and @, 9 the fully adapted extensions of u, v to S. Then
iy (u) = 5 () [S
(d) Suppose that v € Mg, (S) and S’ is a covering ideal of S such that v[S" € Mg (S’). Then v €
Miiger(S)-

616R Proposition Suppose that S is a sublattice of 7, and that a fully adapted process v with domain
S is (locally) of bounded variation.
(a) v is a (local) integrator.
(b) Now suppose that v is non-decreasing and that u is a non-negative moderately oscillatory process
with domain S.
(i) If v is of bounded variation then [gudv > 0.
(ii) If v is locally of bounded variation then ii,(u) is non-decreasing.

616S Theorem Let S be a sublattice of 7 and v a process of bounded variation with domain S§. Then
|Av| is an integrating interval function.

616T Corollary Let S be a sublattice of T, and u, v fully adapted processes with domain S.

(a) If u is moderately oscillatory and v is of bounded variation, then |, suldv] is defined and equal to
f s udv’, where v' is the cumulative variation of v.

(b) If w is locally moderately oscillatory and v is locally of bounded variation, then the indefinite integrals
11| av| () and di,+ (u) are equal.

Mnemonic |dv| ~ dv’.

Version of 10.11.21

617 Integral identities and quadratic variations

We come now to proper calculus, with change-of-variable theorems. 617D-617E is a stochastic-calculus
version of the result that if v = fyu is an indefinite-integral measure, then [gdv = [g x fdu (235K).
Similar formulae describe the cumulative variation of an indefinite integral with respect to a process of
bounded variation (617G). The next theme is ‘quadratic variation’ (617H). Given two integrators v and w,
the interval function corresponding to dvdw gives the same integrals as a process [v T'w] (6171) which is locally
of bounded variation. In particular, (dv)? mimics dv* where the quadratic variation »* is a non-decreasing
process. Based on this, we have a second change-of-variable theorem (617P-617Q), using approximations of
moderately oscillatory processes by simple processes (617B).

617B Lemma Let S be a finitely full sublattice of T and 4 = (u,)scs & moderately oscillatory process.
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(a) For each non-empty I € Z(S) there is a unique simple process u; = (urs)secs such that u; has a
breakpoint string in I, uy and u agree on I, and [o < min ] C [ur, = 0] for every o € S.
(b) Complete the definition in (a) by setting ug, = 0 for every o € S. For every integrator v with domain
S,
(i) the indefinite integral iiy(u) is the limit limj47(s) 74y (1) for the ucp topology,
(ii) [qudv =lim;yzs) [surdv in L.

617D Theorem Let S be a sublattice of T, 1 an integrating interval function on S, and u, z moderately
oscillatory processes with domain S.

(a) z1), as defined in 613D, is an integrating interval function on S.

(b) Set w = 4iy(2). Then w is an integrator and

fsud(qu) = fsu x zdp = fsudw.

617E Corollary Let S be a sublattice of 7, u, 2 moderately oscillatory processes with domain S, and
v an integrator with domain S. Set w = iiy(2). Then [qudw = [u x z dv.

617F Lemma Let S be a sublattice of T, z a moderately oscillatory process and v a process of bounded
variation, both with domain S. Write w for i, (2). Then w is of bounded variation and [4 [dw| = [4 |2||dv|.

617G Theorem Let S be a sublattice of T, 4 and z moderately oscillatory processes and v a process of
bounded variation, all with domain S. Write w for #i,(2), and v*, w' for the cumulative variations of v and
w. Then

fsualwT = fsu\dw\ = fsu X |z||dv| = fs" X |z| dv'.
Mnemonic d(iiy(2)") ~ |z|dvT.

617H Quadratic variation Let S be a sublattice of T, and v, w local integrators with domain S.

(a) (i) If v and w are integrators, then the strictly adapted interval function Avx Aw on § is an integrating
interval function.

(ii) In any case, Av x Aw is a locally integrating interval function.

(b) The covariation of v and w is the indefinite integral
[ w] = 7iayxaw(1).

When w = v, v* = [v]v] = 7i(ay)2(1) is the quadratic variation of v.

(c) Note that as

(v,w) — Av X Aw

is bilinear, so is (v, w) — [v]w].

6171 Theorem Let S be a sublattice of 7, v, w two integrators and u a moderately oscillatory process,
all with domain S. Then [vjw] is an integrator and

fsud[va], fsud(vxw)—fsuxvdw—fsuxwdv, fsudvdw

are defined and equal.

617J Corollary Let S be a non-empty sublattice of 7 and v an integrator with domain S. Let v* be
the quadratic variation of v.
(a) v* is an integrator, and if u is a moderately oscillatory process with domain S then
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fsudv*, fsud('UQ)—QfSuxvdv, fsu(d'v)2
are defined and equal.
(b)(i) Expressing v* as (v}),es, lim, s vl =0.
(ii) v* is non-negative, non-decreasing and order-bounded.
(c) If w is another integrator with domain S, then [v]w] is of bounded variation.

617K Remarks Let S be a sublattice of 7 and v, w local integrators with domain S.
(a)
Wy ) (W) = Gy xaw (W) — Ty (U X V) — diy(u X w)
for every locally moderately oscillatory 4 with domain S.
[vT'w] = Gy sean (1) — Ty (V) — diy (w);
V¥ = Giy2 (1) — 24y (v).
If S is not empty,
wiw] =v xw — (v X w1 = diy(v) — iiy(w), v =v>—v]1— 2iiy(v),

where v and w, are the starting values of v and w.

(b) pISATIWIS AT] = [w]w]|S AT for every T € S.

WISV TiwSV 7] = (jw]|SVT) - 21
where z = [, dvdw € L°(2A;).
v ISVT =014+ (v[SVT)*

where v} = [ (dv)?.

(c) A perfectly elementary fact is that if v — u is constant then u* = v*.

617L Corollary Let S be a sublattice of 7 and v a local integrator with domain §. Let v* be the
quadratic variation of v. Then v* is non-negative, non-decreasing and locally of bounded variation. If w is
another local integrator with domain S, then ['UT'w] is locally of bounded variation.

617M Proposition Let S be a sublattice of T and v, w local integrators with domain S. Then [v TwP <
v* X wr.

617N Proposition Let S be a sublattice of T, and v, w local integrators with domain S. Let v, w be
their fully adapted extensions to the covered envelope S of S. Then [0 Tﬁ)] is the fully adapted extension of

['va] to S. In particular, the quadratic variation of ¥ is the fully adapted extension to S of the quadratic
variation of v.

6170 Examples Suppose that T = [0, co].
(a) Let ¢ be the identity process. Then its quadratic variation ¢* is zero.

(b) Let v be the standard Poisson process. Then v is equal to its quadratic variation v*.

617P Lemma Let S be a full sublattice of 7 with a greatest element, z a moderately oscillatory process
and v, v’ integrators, all with domain S. Set w = 74y (2). Then [qdw dv' = [z dvdv'.

617Q Theorem Let S be a sublattice of T, u, 2 and 2’ locally moderately oscillatory processes with
domain S, and v, v’ local integrators with domain S. Set w = i1, (2), w' = i1y (2').
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(@)(0) [w o] = dig 141(2), iy 7y (W) = dig, 1y (W X 2).

i) wjw] = (2 x 2'), ii[wTw/](u) = ii[vTv,](u X zx2z).

)
( ii[‘vT‘l)/
(iii) w* = diy~(22), iy~ (U) = iy~ (u x 22).
u, z and 2’ are moderately oscillatory and v, v’ are integrators,
b) If dz deratel illat d ! int t

fsudwdw’:fsuxzxz’dvdv’, fsudw*:fSuXZde*.

617R Proposition Let S be a sublattice of 7 and v a process with domain S which is locally of bounded
variation. Then v and its cumulative variation have the same quadratic variation.

Mnemonic |dv|? = dv?.

Version of 8.9.12/26.8.22

618 Oscillations and jump-free processes

For the work so far, moderately oscillatory processes have been sufficiently regular for our needs. But
for the next development (Itd’s formula, 619C), we are going to need a new concept. In 618B I formulate a
notion of ‘jump-free’ process corresponding to the idea of ‘process with continuous sample paths’ (618H).

618B Definitions (a) Let I be a finite sublattice of T, and u a fully adapted process defined (at least)
on I. The I-oscillation of u is

Oscllns(u) = sup,egyiy (1) Ae(1, |dul).

Note that if (79,... ,7,) linearly generates the I-cells, then Oscllns(u) = sup,_,, [tr,,, — Ur,

(b) Let S be a sublattice of T and u = (u,)ses an order-bounded process. Set @ = sup |u|.
(i) Oscllny(u) < 24 for every J € Z(S). We set
Oscllnj(u) = sup jez(s),sor Oscllny (u) < 2u
for every I € Z(S).
(ii) The residual oscillation Osclln(u) is inf;c7(s) Osclln}(u) < 2u. u is jump-free if Osclln(u) = 0.
(iii) u is locally jump-free if u[S A 7 is jump-free for every 7 € S.
(iv) Oscllng(u) = sup{|us’ — us| : 0, 0’ € S}.
(v) Osclln(u) is the limit lim47(s) Osclln}(u) and u is jump-free iff

ianEI(S) H(OSCHD; (U)) = lim]TI(s) G(OSCHH? ('u.)) =0.

(c) Let S be a sublattice of T and u = (uy)oes, ¥ = (Us)ses order-bounded processes.
(i) For any a € R,
Osclln; (au) = |a] Oscllng (u) for every I € Z(S),

Osclln}(au) = |a| Oscllnj (u) for every I € Z(S),
Osclln(ou) = |a] Osclln(u).
(ii)
Oscllny(u +v) < Oscllng(u) 4+ Oscllng (v) for every I € Z(S),
Osclln(u +v) < Osclln}(u) + Osclln} (v) for every I € Z(S),

Osclln(u + v) < Osclln(u) + Osclln(v).
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(iii) Writing u, o for sup |u| and sup |v],

Oscllny(u x v) < ¥ x Oscllng(u) + @ x Oscllng(v) for every I € Z(S),
Osclln} (u x v) < ¥ x Osclln}(u) + @ x Oscllnj(v) for every I € Z(S),

Osclln(u x v) < @ x Osclln(u) 4+ @ x Osclln(v).

618C Lemma Let S be a sublattice of 7 and u = (u,),es an order-bounded fully adapted process. Let
I be a non-empty finite sublattice of S; suppose that (7o, ... ,7,) linearly generates the I-cells.
(a) Set 7_1 = inf S and 7,41 = sup S and

w = sup{|uys — uy| : 0, o’ €S and there is an i
such that —1<i<mnand 7, <o <o’ <71},
w' = sup{|uys — uy| : 0, 0’ €S and there is an i

such that —1 <4 <n and o, 0’ € [, Ti11]}-

Then w = w’ = Osclln} (u).
(b) Now suppose that u is non-decreasing. Set u| = inf,esu, and w4 = sup,cs to. Then

Osclln () = (1, — 1)V SUD; o (ttr 1, — ) V (1 — 7).

618D Proposition Let S be a sublattice of 7 and u = (u,),ecs a locally order-bounded process.
(a) Set v, = Osclln(u[S A7) for 7 € S. Then v = (v, ),es is a non-decreasing fully adapted process.
(b) If u is order-bounded, then

(i) Osclln(u) = Osclln(u|S A7) V Osclln(u[S V 7) for every 7 € S,

(ii) Osclln(ulS N [r,7']) < Osclln(u) whenever 7 < 7’ in S.

*618E Lemma Let S be a finitely full sublattice of T with a greatest element, u = (uy)ses & jump-
free process, 7 € S and € > 0. Then there is a 7/ € S V 7 such that [t <7'] = [r < maxS] and
0(supP,esnpr, lue — ur|) < e

618F Proposition Let S be a sublattice of 7.
(a) If u, v are order-bounded processes with domain S, then | Osclln(u) — Osclln(v)| < 2sup |u — v|.
(b) Osclln : M,,(S) — L°(21) is uniformly continuous if M, ,(S) is given its ucp uniformity.

618G Proposition Let S be a sublattice of 7. Write Mj(S) for the set of jump-free fully adapted
processes with domain S.

(a) The set Mj¢(S) of jump-free fully adapted processes with domain S is a topologically closed f-
subalgebra of M, ,(S), and hv € M;¢(S) whenever v € M;¢(S) and h : R — R is continuous.

(b) A (locally) jump-free fully adapted process on S is (locally) moderately oscillatory.

(c) If v € M;¢(S), then v|S V 7, v|S A 7" and v|S N [1,7'] are jump-free whenever 7 < 7/ in §. In
particular, v is locally jump-free.

618H Where jump-free processes come from: Proposition Let (2, X, 1) be a complete probability
space and (X;);>0 a family of o-subalgebras of 3, all containing every negligible subset of 2. Suppose that
we are given a family (X;);>o of real-valued functions on € such that X, is ¥;-measurable for every ¢ > 0
and ¢t — X;(w) : [0,00] = R is continuous for every w € . Then (X;);>¢ is progressively measurable, and
if (2, 1, (At) 10, T, (Ar)re7) and (z4)se7; are defined as in 612H, = (v4),e7; is locally jump-free.

6181 Lemma Let S be a sublattice of T, and u = (u,)scs a locally jump-free fully adapted process. If
A C § is non-empty and upwards-directed and sup A € S, then usyp 4 = limypa us.
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618J Examples Take T = [0, oo|.
(a) The identity process is locally jump-free.
(b) The standard Poisson process is not locally jump-free.

(c) Brownian motion is locally jump-free.

618K Lemma Let S be a sublattice of 7. If I, J € Z(S) and a € 2 are such that J C I and
a C sup,c;[r = o] for every 7 € I, then a C [Osclln;(u) = Osclln;(u)] for every fully adapted process
u = <ua>cr€8~

618L Proposition Let S be a sublattice of T, u = (uy)oes a fully adapted process, S the covered
envelope of S, and 4 = (i,),.¢ the fully adapted extension of u to S.

(a) If either u or @ is order-bounded, so is the other, and in this case Osclln(@) = Osclln(u).

(b) In particular, u is jump-free iff @ is jump-free.

(c) If either sup,.s Osclln(u[S A o) or sup_.g Osclln(@|S A 7) is defined in LO(2A), so is the other, and
they are equal.

618M Theorem Let S be a sublattice of 7 and u a moderately oscillatory process. Then Osclln(u) =
lim7y7(s) Oscllng (u).

618N Lemma Let S be a full sublattice of T with a greatest element, 4 = (uy),ecs a moderately
oscillatory process, and § > 0. Let (y;)i;en be the sequence constructed from w and ¢ as in 615M. Then
lyir1 — yi| < Osclln(u) + dx1 for every i € N.

6180 Definition Let S be a sublattice of 7 and 9 : S*" — L%(2l) an adapted interval function which is
order-bounded. Following 618B, set
Oscllng () = SUPeeStig (1) Ac(1,]dy])

for I € Z(S) (counting sup () as 0),
Oscllnj(v) = sup jez(s),sor Osclln ()
for I € Z(S), and
Osclln(v) = infcz(s) Oscllng(v)).

Osclln(v) = lim47(sy Oscllng(zp). Moreover, if u is an order-bounded fully adapted process and 1) = Au the
corresponding interval function, Oscllny (1)) = Oscllng (u) for every I € Z(S) and Osclln(y) = Osclln(u).

618P Lemma Let S be a sublattice of 7 and 1 : S?T — L°(2) a strictly adapted interval function. For
I €I(S), set w; = (wrr)res where wp, = Syar(1,dy) for 7 € S.

(a) For any I € Z(S), wy is fully adapted.

(b) Suppose that S is finitely full, ¢ is order-bounded and [ s v is defined. Then i, (1) is order-bounded
and Osclln(7i, (1)) < 2 Osclln(v).

(c) Suppose tht 1 is order-bounded and |, $ d@/AJ is defined, where S is the covered envelope of S and 1& is

the adapted extension of ¢ to ST. If 44, (1) is moderately oscillatory, then Osclln(iiy (1)) < Osclln(4)).
(d) If ¢ is an order-bounded integrating interval function, then Osclln(éiy (1)) < Osclln(e)).

618Q Theorem Let S be a sublattice of T, u = (uy)scs a moderately oscillatory process, and v =
(Vs)ses an integrator. Then Osclln(ii, (u)) < sup |u| x Osclln(v). iy (u) is jump-free if v is.

618R Corollary Let S be a sublattice of T, u = (us)ses a locally moderately oscillatory process, and
v = (Vy)ses a locally jump-free local integrator. Then iy (u) is locally jump-free.
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618S Theorem Let S be a sublattice of T, and v = (v, )res, W = (Ws)res two integrators.
(a) Osclin([v jw]) < Osclln(v) x Osclin(w).
(b) Osclln(v*) = (Osclln(v))?.

618T Corollary Let S be a sublattice of T, and v = (vs)ses, W = (Ws)ses two (local) integrators with
domain S of which v is (locally) jump-free. Then the covariation ['UT'w] and the quadratic variation v* are
(locally) jump-free.

618U Theorem Let S be a sublattice of T, and v = (v,)ses a process of bounded variation. Let vT be
its cumulative variation. Then Osclln(v") is equal to Osclln(v); v is jump-free iff T is jump-free.

618V Corollary Let S be a sublattice of 7 and v a fully adapted process with domain S. Then v is
jump-free and of bounded variation iff it is expressible as the difference of two non-negative non-decreasing
order-bounded jump-free processes.

618z0 Lemma Let S be a sublattice of 7, and 9 : S?T — L°%(2) an order-bounded integrating interval
function with indefinite integral v = 4i,(1). Then

Osclln(v) < Osclln(v)).
Version of 13.3.17/29.7.19

619 Ito’s formula

I give three versions of It&’s formula (619C, 619D and 619J). The last depends on elementary facts about
the action of functions of more than one real variable on strings of processes (619E-619G).

619B Lemma Let S be a sublattice of T and v = (vs),es an integrator. Then for every € > 0 there is
a 6 > 0 such that 6(S;(u, (d)?) < e whenever I € Z(S), u € Mg, (Z) and 6(sup |u|) < 4.

619C 1t6’s Formula, first form Let S be a sublattice of 7T, v = (v;)-cs a jump-free integrator, and
v* its quadratic variation. If h : R — R is a twice-differentiable function with continuous second derivative,
then

fsﬁ’vdv+%fsﬁ”vdv*
is defined and equal to h(vt) — h(v,), where

Uy = thTS Vo, v, = limgis Vo -

Remark In the formula above, &' : L® — L% and A" : L° — L should be read as h/ and A".

619D It6’s Formula, second form Let S be a sublattice of 7, and v a jump-free integrator with
domain S and quadratic variation v*. If u is a moderately oscillatory process with domain S, and h: R — R
is a twice-differentiable function with continuous second derivative, then

fsud(fw) = fsu X E’vd’u—k%fsu x h''v dv*.

619E Proposition Let £ > 1 be an integer.

(a) Suppose that u1, ... ,ux € L°. Let By, be the Borel o-algebra of R¥. Then there is a unique sequentially
order-continuous Boolean homomorphism ¢ : B — 2 such that ¢{(&1,...,&) : & > a} = [u; > o]
whenever 1 <7 <k and o € R.

In this context, write [(u1,... ,us) € E] for ¢E, for every Borel set £ C RF.
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(b) Suppose that h : RF — R is a Borel measurable function. Then there is a unique operator h :
(L%)* — LY such that [A(u,...,ux) € F] = [(u1,... ,ux) € h"}[F]] whenever ' C R is a Borel set and
UL, ..., u; € L0,

(¢) If uy,... ,up,v1,..., 0, € LY, then

infi<;<k Jus = v;] C [[i_L(ul, cooyu) = h(vy,. .. ,vi)]-

(d) If h : R* — R is continuous, then & : (L°)* — L° is continuous for the topology of convergence in
measure.

(e) Suppose that €2 is a set, X is a g-algebra of subsets of 2, N is a o-ideal of ¥, and 2 is isomorphic to
the quotient Boolean algebra ¥/N. Write £° for the f-algebra of real-valued Y-measurable functions on €,
and W for the ideal

{f:fel’ {w: flw) #0} e N},
so that L% can be identified with the f-algebra quotient £°/W. Write E + E* : ¥ — A and f — f* :

L% — L0 for the homomorphisms corresponding to the identifications 2 = ¥/A and L° = £°/W. Then if
h:R* — R is a Borel measurable function,

}_L(fl.a 7fI;) = (h(fla 7fk)).

forall fi,..., fr € £°, defining the composition h(f1,. .., fi) by setting (h(f1, ..., fr))(w) = h(fi(w), ..., fr(w))
for every w € Q.

(f) Suppose that (h,)nen is a non-decreasing sequence of Borel measurable functions from R* to R, and
that h(z) = sup,,cy hy () is finite for every € R¥. Then (h,(u1,... ,ux))nen is a non-decreasing sequence
in L with supremum h(us, ... ,u), for all uy,... ,us € L°.

(g) Now suppose that (€, ) is another probability algebra and ¢ : 2l — € is an order-continuous Boolean
homomorphism. Let Ty : L°(2) — LY(€) be the corresponding f-algebra homomorphism. Take u1, ... ,u) €
LO(2A).

(i) If E € By is a Borel set, then [(Tyu1,...,Tpux) € E] = ¢[(u1, ... ,ux) € EJ.
(ii) If b : R* — R is Borel measurable, then h(Tyus, ..., Tyur) = Tyh(us, ... ,ug).

619F Definition Let uq,... ,u; be fully adapted processes defined on sublattices Sy,...,S; of 7 and
h : R* — R a Borel measurable function. Regarding U = (u1, ... ,ux) as the function o — (uis, ... , Ury) :
S — (L°)*, where u; = (u;,)oes, for each i and S = m1gigk S;, we have a composition

TZU = <B(ulg’ e 7ukg)>geg.

619G Proposition Let uy, . .. ,u;, be fully adapted processes all with the same domain S, and h : RF — R
a Borel measurable function. Write U for (uq, ... ,ux).
(a) hU is fully adapted.
(b) If every u; is order-bounded and h is locally bounded, that is, bounded on bounded subsets of R¥,
then AU is order-bounded.
(c) If every u; is (locally) moderately oscillatory and h is continuous, then AU is (locally) moderately
oscillatory.
(d) If every u; is (locally) jump-free and h is continuous, then AU is (locally) jump-free.
*(e) If z is a fully adapted process with domain S and 22 = z, then
(i) 2 X h(z X uy,... 2 xug) =2 x hU,
(ii) and if A(0,...,0) = 0, then h(z X uy,... ,2 X ux) = 2 x hU.

619H Proposition Let S be a sublattice of 7, k > 1 an integer and h : R* — R a continuous function.
Then h : My ,(S)* — Myp(S) is continuous when M, 1,(S) is given the ucp topology and M, 1,(S)* the
corresponding product topology.

6191 Theorem Let h : R¥ — R be a differentiable function; write hq, ... , hy for its partial derivatives.
Suppose that every h; is Lipschitz on every bounded set in R*. Let v1,... ,v; be integrators, all with the
same domain S. Then h(vy,... ,v;) is an integrator.
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619J It6’s Formula, third form Let & > 1 be an integer, and h : R* — R a twice-differentiable

function with continuous second derivative. Denote its first partial derivatives by hq, ... , hi and its second
partial derivatives by hi1,...,hgk. Let S be a sublattice of T, and v1,... ,vx jump-free integrators with
domain S; let u be a moderately oscillatory process with domain S. Write V' = (vy,... ,v%). Then

T k T 1 —k k T *
JsudhV) =320, [sux iV dv+ 3570, 500 [gux higV dlv; o).

619K Corollary Let k£ > 1 be an integer, and h : R¥ — R a twice-differentiable function with continuous
second derivative. Let S be a sublattice of T, and vy, ... , vy locally jump-free local integrators with domain
S; let u be a locally moderately oscillatory process with domain S. Write V' = (vy,... ,v%). Then

.. c .. T 1 .. T
iy () = 20 i, (X BV) 4 5300, S0 iy, ) (u X i V).
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