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Chapter 61

The Riemann-sum integral

I begin with an attempt to give a coherent and complete description of the principal form of stochastic
integration which will be investigated in this volume.

As elsewhere in probability theory, it is customary to set this material out in terms of ordinary random
variables, that is, measurable functions defined on probability spaces. We find immediately, however, that
while integrands and integrators may well present themselves most naturally in this form, the integrals we
construct are defined, in the cases for which this theory has been developed, in terms of convergence in
‖ ‖1 or ‖ ‖2 or in measure, and therefore correspond not to explicit functions, but to equivalence classes
of functions. Moreover, integrands and integrators can be changed on negligible sets without affecting the
values of the corresponding integrals. I believe that the theory becomes clearer and cleaner if we move
directly to operations on evolving families in L0. While this demands an initial investment by the reader
in a more abstract framework for the ideas of elementary probability theory, the translation is not difficult,
and a full exposition can be found in Chapter 36.

Again, stochastic processes are usually expressed as families 〈Xt〉t∈T of random variables, indexed by
a set T of ‘times’. There are very good reasons for this. However, to describe the stochastic integral in
reasonable generality we need, as a first step, to discuss the random variable Xτ for a stopping time τ . The
measure theory to make this possible (the notion of ‘progressively measurable’ process) is well understood
and has been described in §455. When we come, following my principle above, to look at 〈X•

t 〉t∈T , we find
that we can have X•

t = Y •

t , that is, Xt =a.e. Yt, for every t, while X•

τ 6= Y •

τ . This is just a nuisance. For
our purposes here, it makes better sense to start from a family 〈uτ 〉τ∈S where S is a set of stopping times
and uτ ∈ L0 for every τ ∈ S. The construction of such families from processes 〈Xt〉t∈T is important and
interesting, but has nothing to do with the very substantial difficulties of the basic theory of stochastic
integration.

Of course I now have to look at filtrations and stopping times, and these too are not best described in
terms of σ-algebras of sets and real-valued functions. In the formulation I wish to use here, we don’t even
have a probability space for the functions to be defined on. Instead of thinking of a filtration as a family
〈Σt〉t∈T of σ-subalgebras of the domain Σ of a probability measure µ, I look at the corresponding family
of subalgebras of the measure algebra A of µ. This is easy (at least, if you have read Chapter 32; and this
is my last apology for insisting that you know something of Volume 3). A stopping time τ now becomes
defined in terms of elements [[τ > t]] ∈ A, ‘the region where τ > t’. We need to develop a theory of regions
[[σ < τ ]], [[σ = τ ]] in A, and subalgebras Aτ of A, for stopping times σ, τ ; and now the processes 〈uτ 〉τ∈S

we work with must be such that ‘uσ = uτ whenever σ = τ ’, that is, [[σ = τ ]] ⊆ [[uσ = uτ ]]. Setting up these
structures takes the greater part of §§611-612, which come to about a quarter of the chapter. It happens
that nearly everything in these two sections can be done without mentioning ‘measure’ at all.

I say again that none of this is difficult, but it does take quite a long time; there are some new kinds
of algebra to get a solid basis in, particularly the theory of stopping-time intervals (611E, 611J-611K) and
fully adapted processes (612D). With this established, however, we are within reach of a direct definition
of a stochastic integral as a limit of Riemann sums (§613). As long as we do not enquire about when the
integral is actually defined, this is very straightforward and can be done in great generality. The next three
sections are devoted to finding the basic cases of processes uuu, vvv for which we shall have a well-defined integral∫
uuu dvvv. Concerning uuu, we have ‘simple’ and ‘moderately oscillatory’ processes (612J, 615E). Concerning vvv, we

have the concept of ‘integrator’ (616Fc), which is well adapted to the basic theorem 616K, but is otherwise
obscure. It is easy enough to find a definition of ‘bounded variation’ for stochastic processes (614J) and to
show that processes of bounded variation are integrators (616R), but this is not what the stochastic integral
is for; in this case we have much more direct methods available.
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2 The Riemann-sum integral Chap. 61 intro.

Now we are ready, at least in a formal sense, for some proper stochastic calculus in §§617 and 619. Here I
set out useful general manipulations. Some of them reproduce patterns familiar from the ordinary Riemann
integral (616J), but others are radically different (617I, 619C). On the way to the latter (‘Itô’s formula’) we
need to understand ‘jump-free’ processes, corresponding to processes with continuous sample paths (§618).

The theory here involves a large number of constructions. Many of these have no short descriptions in
terms of the concepts developed in Volumes 1-4, and correspondingly require new terminology and notation.
I have tried to arrange the material in such a way that, within any individual section, substantial parts
of the basic framework can be taken to be constant. From §614 on, these are indicated in introductory
paragraphs headed ‘Notation’. These paragraphs are highly repetitive. But until you are very familiar with
my language, it is likely that opening at a random page, and scanning for the next ‘Theorem’, will lead you
to something totally mysterious. Sometimes a check in the index for terminology will help. But sometimes
there will be a baffling symbol, and then it will be worth while turning to the beginning of the section to see
if the symbol appears there. It seems to me that while this expands the volume by several pages in total, it
is kinder than referring you each time to a complete list of the terminological quirks of this presentation.

Version of 11.12.17/16.1.25

611 Stopping times

The first step is to describe the structures within which the work of this volume will proceed. While
everything really important will have to be based on probability algebras, I start with ideas which can be
applied to arbitrary Dedekind complete Boolean algebras. This section introduces filtrations of subalgebras,
the lattice of stopping times, the algebras associated with stopping times, stopping-time intervals and covered
envelopes.

611A Filtrations Throughout this volume, A will denote a Dedekind complete Boolean algebra, with
Boolean operations △ , ∩ , ∪ and \ , zero 0 and multiplicative identity 1.

(a) Let T be a non-empty totally ordered set. A filtration of order-closed subalgebras of A will be
a non-decreasing family 〈At〉t∈T of order-closed subalgebras of A.

(b)(i) A stopping time τ adapted to 〈At〉t∈T is a family 〈[[τ > t]]〉t∈T such that

[[τ > t]] ∈ At for every t ∈ T ,
if s ≤ t in T then [[τ > t]] ⊆ [[τ > s]],
if t ∈ T is not isolated on the right then [[τ > t]] = sups>t [[τ > s]].

(ii) It will be worth checking each concept against the constant stopping times, where for t ∈ T the
constant stopping time at t, ť, is given by setting

[[ť > s]] = 1 if s < t,

= 0 if s ≥ t.

(iii) I will say that a stopping time τ is

—– finite-valued if inft∈T [[τ > t]] = 0,
—– bounded if there is a t ∈ T such that [[τ > t]] = 0.

Constant stopping times are bounded, and bounded stopping times are finite-valued.

(iv) I will write T for the set of stopping times adapted to 〈At〉t∈T , Tf ⊆ T for the set of finite-valued
stopping times, and Tb ⊆ Tf for the set of bounded stopping times.

(c) It is convenient to think of a stopping time τ ∈ T as the element 〈[[τ > t]]〉t∈T of the simple product
algebra

∏
t∈T At.

611B The partial ordering of stopping times If σ, τ ∈ T , say that σ ≤ τ if [[σ > t]] ⊆ [[τ > t]] for
every t ∈ T , that is, σ ⊆ τ in

∏
t∈T At. This defines a partial order on T .

Measure Theory (abridged version)



611E Stopping times 3

611C Proposition (a) T is a Dedekind complete distributive lattice. Consequently any finite subset of
T is included in a finite sublattice of T .

(b) If C ⊆ T is non-empty, then supC is defined by saying that

[[supC > t]] = supτ∈C [[τ > t]]

for every t ∈ T , that is, the supremum of C in T is the same as the supremum of C in
∏
t∈T At.

(c) If σ, τ ∈ T , then σ ∧ τ is defined by saying that

[[σ ∧ τ > t]] = [[σ > t]] ∩ [[τ > t]]

for every t ∈ T , that is, σ ∧ τ in T corresponds to σ ∩ τ in
∏
t∈T At.

(d) If C, C ′ ⊆ T are non-empty, then supC ∧ supC ′ = sup{σ ∧ σ′ : σ ∈ C, σ′ ∈ C ′}.
(e) Writing ť for the constant stopping time at t, the map t 7→ ť : T → T is an order-continuous lattice

homomorphism, which is injective if A 6= {0}.
(f) T has greatest and least elements defined by saying that

[[max T > t]] = 1, [[min T > t]] = 0

for every t ∈ T , that is, they correspond to the greatest and least elements 1 and 0 of
∏
t∈T At. If T has a

least element minT , then min T is the constant stopping time at minT .
(g) Tf and Tb are ideals1 in T .
(h) The function σ 7→ σ ∧ τ : T → T is order-continuous for every τ ∈ T .

Remark If A ⊆ T and τ ∈ T , I will write A ∨ τ for {σ ∨ τ : σ ∈ A} and A ∧ τ for {σ ∧ τ : σ ∈ A}. Note
that if S is a sublattice of T and τ ∈ S, then

S ∨ τ = {σ : σ ∈ S, τ ≤ σ}, S ∧ τ = {σ : σ ∈ S, σ ≤ τ}.

So if S is a sublattice of T , τ , τ ′ ∈ S and τ ≤ τ ′,

S ∩ [τ, τ ′] = {σ : σ ∈ S, τ ≤ σ ≤ τ ′} = {σ : σ ∈ S ∨ τ, σ ≤ τ ′} = (S ∨ τ) ∧ τ ′

because S ∨ τ = {σ : σ ∈ S, τ ≤ σ} is a sublattice of T .

611D The region where σ < τ If σ, τ ∈ T set

[[σ < τ ]] = supt∈T ([[τ > t]] \ [[σ > t]]),

[[σ ≤ τ ]] = 1 \ [[τ < σ]] = inft∈T ([[τ > t]] ∪ (1 \ [[σ > t]])),

[[σ = τ ]] = [[σ ≤ τ ]] ∩ [[τ ≤ σ]] = 1 \ supt∈T ([[σ > t]]△ [[τ > t]]).

611E Theorem (a) Let σ, τ ∈ T .
(i)(α) ([[σ < τ ]], [[σ = τ ]], [[τ < σ]]) is a partition of unity in A.

(β) [[σ > t]] ∩ [[σ = τ ]] = [[τ > t]] ∩ [[σ = τ ]] for every t ∈ T .
(γ) [[σ < τ ]] = 0 iff [[τ ≤ σ]] = 1 iff τ ≤ σ; [[σ = τ ]] = 1 iff σ = τ .
(δ) Writing ť for the constant stopping time at t, [[ť < τ ]] = [[τ > t]] for every t ∈ T .
(ǫ) [[min T < max T ]] = 1.
(ζ) If s < t in T , then [[š < ť]] = 1; [[š < max T ]] = 1 for every s ∈ T .

(ii)(α) [[σ < τ ]] = [[σ ∧ τ < τ ]] = [[σ < σ ∨ τ ]].
(β) [[σ ≤ τ ]] = [[σ = σ ∧ τ ]] = [[τ = σ ∨ τ ]].
(γ) [[σ ∧ τ = σ]] ∪ [[σ ∧ τ = τ ]] = [[σ ∨ τ = σ]] ∪ [[σ ∨ τ = τ ]] = 1.

(b) If σ ∈ T and C ⊆ T is non-empty then [[σ < supC]] = supτ∈C [[σ < τ ]] and [[supC ≤ σ]] = infτ∈C [[τ ≤ σ]].
(c) Let σ, τ , υ ∈ T .
(i)(α) [[σ ∧ τ < υ]] = [[σ < υ]] ∪ [[τ < υ]], [[υ ≤ σ ∧ τ ]] = [[υ ≤ σ]] ∩ [[υ ≤ τ ]].
(β) [[υ < σ ∧ τ ]] = [[υ < σ]] ∩ [[υ < τ ]], [[σ ∧ τ ≤ υ]] = [[σ ≤ υ]] ∪ [[τ ≤ υ]].

(ii)(α) [[σ ∨ τ < υ]] = [[σ < υ]] ∩ [[τ < υ]], [[υ ≤ σ ∨ τ ]] = [[υ ≤ σ]] ∪ [[υ ≤ τ ]].

1If P is a lattice, an ideal of P is a set Q ⊆ P such that p ∨ q ∈ Q for all p, q ∈ Q and p ∈ Q whenever q ∈ Q and p ≤ q in
P . In this context I do not insist that Q should be non-empty.
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4 The Riemann-sum integral 611E

(β) [[υ < σ ∨ τ ]] = [[υ < σ]] ∪ [[υ < τ ]], [[σ ∨ τ ≤ υ]] = [[σ ≤ υ]] ∩ [[τ ≤ υ]].
(iii)(α) [[σ < υ]] ⊆ [[σ < τ ]] ∪ [[σ ∨ τ < υ]] ⊆ [[σ < τ ]] ∪ [[τ < υ]].

(β) [[σ ≤ υ]] ⊆ [[σ ≤ τ ]] ∪ [[τ < υ]].
(γ) [[σ < υ]] ∩ [[υ ≤ τ ]] ⊆ [[σ < τ ]], [[σ ≤ υ]] ∩ [[υ < τ ]] ⊆ [[σ < τ ]].

(iv)(α) [[σ ≤ τ ]] ∩ [[τ ≤ υ]] ⊆ [[σ ≤ υ]].
(β) [[σ ≤ τ ]] ∩ [[τ < υ]] ⊆ [[σ < υ]].
(γ) [[σ = τ ]] ∩ [[τ = υ]] = [[σ = τ ]] ∩ [[σ = υ]] ⊆ [[σ = υ]].

(v)(α) [[σ ∧ υ = τ ∧ υ]] ⊇ [[σ = τ ]].
(β) [[σ ∨ υ = τ ∨ υ]] ⊇ [[σ = τ ]].

(vi) If σ ≤ τ ≤ υ, then [[σ < υ]] = [[σ < τ ]] ∪ [[τ < υ]], [[σ = υ]] = [[σ = τ ]] ∩ [[τ = υ]].
(d) If τ0 ≤ . . . ≤ τn in T and σ ∈ T , then

([[σ < τ0]], [[τ0 ≤ σ]] ∩ [[σ < τ1]], . . . , [[τn−1 ≤ σ]] ∩ [[σ < τn]], [[τn ≤ σ]])

is a partition of unity in A.

611F Infima in T : Proposition Let A ⊆ T be a non-empty set such that

sups>t infσ∈A [[σ > s]]

belongs to At whenever t ∈ T is not isolated on the right.
(a)

[[inf A > t]] = inf
σ∈A

[[σ > t]] if t ∈ T is isolated on the right

= sup
s>t

inf
σ∈A

[[σ > s]] for other t ∈ T.

(b) [[inf A < τ ]] = supσ∈A [[σ < τ ]] for every τ ∈ T .

611G The algebra defined by a stopping time: Definition If τ ∈ T , write Aτ for

{a : a ∈ A, a \ [[τ > t]] ∈ At for every t ∈ T}.

Then Aτ is an order-closed subalgebra of A.

611H Proposition (a) Suppose that τ ∈ T and t ∈ T .
(i) If b ∈

⋂
s>t As and b ⊆ [[τ > t]], then b ∈ Aτ . [[τ > t]] and 1 \ [[τ > t]] belong to Aτ .

(ii) If b ∈ At and b ⊆ [[τ > s]] for every s < t, then b ∈ Aτ .
(iii) If b ∈ Aτ and b ∩ [[τ > t]] = 0, then b ∈ At.

(b) If ť is the constant stopping time at t, then Ať = At.
(c) Suppose that σ, τ ∈ T .

(i) [[σ < τ ]], [[σ = τ ]] and [[τ < σ]] belong to Aσ ∩ Aτ .
(ii) Aσ∧τ = Aσ ∩ Aτ ; in particular, Aσ ⊆ Aτ if σ ≤ τ .
(iii) If a ∈ Aτ then a ∩ [[τ ≤ σ]] = a \ [[σ < τ ]] ∈ Aσ∧τ .
(iv) Aσ∨τ is the subalgebra of A generated by Aσ ∪ Aτ .

611I Lemma Suppose that 〈τi〉i∈I is a family in T and 〈ai〉i∈I is a partition of unity in A such that
ai ∈ Aτi for every i ∈ I. Then there is a unique σ ∈ T such that [[σ = τi]] ⊇ ai for every i ∈ I, and
infi∈I τi ≤ σ ≤ supi∈I τi.

611J Dissections by stopping times (a) Recall that if we regard a stopping time τ = 〈[[τ > t]]〉t∈T as
a member of the algebra

∏
t∈T At, then the partial order ≤ and the lattice operations ∨, ∧ on T correspond

to the Boolean relation and operations ⊆ , ∪ , ∩ on
∏
t∈T At, and moreover that arbitrary suprema in T

correspond to suprema in
∏
t∈T At.

In view of this representation it is natural to consider set difference. I will in fact prefer the notation

c(σ, τ) = 〈[[τ > t]] \ [[σ > t]]〉t∈T ,

rather than writing τ \ σ. I will say that c(σ, τ) is the stopping time interval with endpoints σ, τ .
If S is a sublattice of T , Sti(S) will be the set of stopping-time intervals expressible as c(σ, τ) where σ ≤ τ

in S.

Measure Theory (abridged version)



611K Stopping times 5

(b)

c(σ, τ) ∩ c(σ′, τ ′) = c(σ ∨ σ′, τ ∧ τ ′)

for all σ, σ′, τ , τ ′ ∈ T , and

c(σ ∧ τ, σ ∧ τ ′) ⊆ c(τ, τ ′).

Similarly,

c(σ, supC) = supτ∈C c(σ, τ), c(σ ∧ σ′, τ) = c(σ, τ) ∪ c(σ′, τ)

for σ, σ′, τ ∈ T and C ⊆ T , and if σ ≤ υ ≤ τ , then

c(σ, υ) ∪ c(υ, τ) = c(σ, τ), c(σ, υ) ∩ c(υ, τ) = 0.

c(σ, τ) = 0 iff τ ≤ σ.

(c) [[σ < τ ]] ⊆ [[σ′ < τ ′]] whenever c(σ, τ) ⊆ c(σ′, τ ′). More precisely, if σ, τ , σ′, τ ′ ∈ T then c(σ, τ) ⊆ c(σ′, τ ′)
iff

[[σ < τ ]] ⊆ [[σ′ ≤ σ]] ∩ [[τ ≤ τ ′]].

(d) Similarly, if σ, τ , σ′, τ ′ ∈ T then c(σ, τ) = c(σ′, τ ′) iff

[[σ < τ ]] = [[σ′ < τ ′]] ⊆ [[σ′ = σ]] ∩ [[τ = τ ′]].

(e)(i) For a finite sublattice I of T , an I-cell will be a minimal non-zero stopping time interval of the
form c(σ, τ) where σ, τ ∈ I.

(ii) Let I be a finite sublattice of T , Sti0(I) the set of I-cells, and τ ∈ I. If we write

I ∧ τ = {σ ∧ τ : σ ∈ I}, I ∨ τ = {σ ∨ τ : σ ∈ I},

then Sti0(I ∧ τ), Sti0(I ∨ τ) are disjoint sets with union Sti0(I).

(iii) More generally, if I is a non-empty finite sublattice of T and τ0 ≤ . . . ≤ τn in I, then setting

I−1 = I ∧ τ0, Ij = I ∩ [τj , τj+1] for j < n, In = I ∨ τn,

〈Sti0(Ij)〉−1≤j≤n is a partition of Sti0(I).

611K Lemma Let I ⊆ T be a non-empty finite sublattice, and Sti0(I) the set of I-cells. Let I0 be a
maximal totally ordered subset of I, and 〈τi〉i≤n the increasing enumeration of I0.

(a) τ0 = min I, τ1 = max I.
(b) If i < n then I ∩ [τi, τi+1] = {τi, τi+1}.
(c) Sti0(I) = {c(τi, τi+1) : i < n}.
(d) [[τi < τ ]] ∩ [[τ < τi+1]] = 0 whenever i < n and τ ∈ I.
(e) supi≤n [[τ = τi]] = 1 for every τ ∈ I.

*(f) If σ ∈ T then

J0 = {σ ∧ τ0, τ0,med(τ0, σ, τ1), τ1,med(τ1, σ, τ2),

. . . , τn−1,med(τn−1, σ, τn), τn, σ ∨ τn}

is a maximal totally ordered subset of the sublattice I ⊔ {σ} of T generated by I ∪ {σ}.2

*(g) If σ ∈ T , then I ∧ σ = {τ ∧ σ : τ ∈ I} is a sublattice of T , and {τ0 ∧ σ, . . . , τn ∧ σ} is a maximal
totally ordered subset of I ∧ σ.

*(h) If τ0 ≤ σ0 ≤ . . . ≤ σm ≤ τn in T , and K is the sublattice of T generated by I ∪ {σ0, . . . , σm}, then
Jj = {med(σj , τi, σj+1) : i ≤ n} is a maximal totally ordered subset of K ∩ [σj , σj+1], for every j < m.

2In a distributive lattice, med(p, q, r) = (p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r); see 3A1Ic.
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6 The Riemann-sum integral 611L

611L Definition If I is a finite sublattice of T , I will say that a sequence 〈τi〉i≤n in I linearly generates
the I-cells if it is non-decreasing and {τi : i ≤ n} is a maximal totally ordered subset of I.

611M Covering and full sublattices (a)(i) If A, B ⊆ T , A covers B if supσ∈A [[τ = σ]] = 1 for
every τ ∈ B.

(ii) If A ⊆ T , the covered envelope of A will be the set {τ : τ ∈ T , supσ∈A [[τ = σ]] = 1}. Of course
A covers itself, that is, the covered envelope of A includes A.

(b)(i) If A ⊆ T and a ∈ A, the set

S = {τ : τ ∈ T , a ⊆ supσ∈A [[σ = τ ]]}

is a sublattice of T .
In particular, the covered envelope Â of A is a sublattice of T .

(ii) If ρ is an upper bound for A in T , then ρ is an upper bound for Â. Similarly, if ρ is a lower bound

for A, it is a lower bound for Â.

(iii) Since A ⊆ Â, it follows that if A has a greatest member then this is also the greatest member of

Â, and that if A has a least member then this is also the least member of Â.

(iv) Note that if σ, τ ∈ T then {σ, τ} covers {σ ∧ τ, σ ∨ τ} and also {σ ∧ τ, σ ∨ τ} covers {σ, τ} .

(c) I will say that a sublattice of T is full if it is equal to its covered envelope.

(i) The intersection of any non-empty family of full sublattices of T is full.

(ii) If A ⊆ T , its covered envelope Â is full.

(d) For any ρ ∈ T , T ∧ρ is full. Similarly, T ∨ρ is full. Putting these together, [ρ, ρ′] = (T ∧ρ′)∩ (T ∨ρ)
is full whenever ρ ≤ ρ′ in T .

(e)(i) If S is a sublattice of T with covered envelope Ŝ, and ρ ∈ S, then Ŝ ∧ ρ is the covered envelope of

S ∧ ρ and Ŝ ∨ ρ is the covered envelope of S ∨ ρ.

(ii) If S is a sublattice of T , ρ, ρ′ ∈ S and ρ ≤ ρ′, then the covered envelope of

S ∩ [ρ, ρ′] = (S ∨ ρ) ∧ ρ′ = {med(ρ, σ, ρ′) : σ ∈ S}

is (Ŝ ∨ ρ) ∧ ρ′ = Ŝ ∩ [ρ, ρ′].

(f) If S is a sublattice of T with covered envelope Ŝ, then
⋂
τ∈Ŝ Aτ =

⋂
σ∈S Aσ.

(g) Suppose that A, B ⊆ T and A covers B.

(i) A covers the covered envelope of B.

(ii) If τ ∈ T , then A ∧ τ = {σ ∧ τ : σ ∈ A} covers B ∧ τ = {σ ∧ τ : σ ∈ B}.

611N Covering ideals Let S be a sublattice of T .

(a) Definition I will say that a covering ideal of S is an ideal S ′ of S which covers S.

(b)(i) If τ ∈ S and S ′ is an ideal of S, then {[[σ = τ ]] : σ ∈ S ′} is upwards-directed.

(ii) If τ ∈ S and S ′ is an ideal of S, then supσ∈S′ [[σ = τ ]] = supσ∈S′ [[τ ≤ σ]].

(c) If S is a sublattice of T and S1, S2 are two covering ideals of S, then S0 = S1 ∩S2 is a covering ideal
of S.

Measure Theory (abridged version)



612Ac Fully adapted processes 7

(d) If S ′ is a covering ideal of S and S ′′ is a covering ideal of S ′, then S ′′ is a covering ideal of S.

(e)(i) Tf is full.

(ii) Tb is a covering ideal of Tf .

*611O Definitions

(a) If A, B ⊆ T , I will say that A finitely covers B if for every τ ∈ B there is a finite J ⊆ A such that
supσ∈J [[τ = σ]] = 1.

(b) If A ⊆ T , the finitely-covered envelope of A is the set of those τ ∈ T for which there is a finite
subset J ⊆ A such that supσ∈J [[τ = σ]] = 1.

(c) A subset of T is finitely full if it is equal to its finitely-covered envelope.

*611P Lemma Suppose that A 6= {0}.

(a) Let A be a subset of T and Âf its finitely-covered envelope.

(i) Âf is finitely full.

(ii) Âf is a sublattice of the covered envelope Â of A.

(iii) Âf is the intersection of all the finitely full subsets of T including A.
(b) The intersection of any non-empty family S of finitely full sublattices of T is finitely full.
(c) If S is a sublattice of T which is order-convex, then S is finitely full.

(d) If S is a sublattice of T and τ ∈ Ŝf , there are σ0 ≤ . . . ≤ σn in S such that supi≤n [[τ = σi]] = 1.

(e) If S is a sublattice of T then S is both coinitial and cofinal with Ŝf .

Version of 24.12.16/21.10.22

612 Fully adapted processes

The next step is to introduce the processes which this volume is devoted to studying. These are an
abstract version of the real-valued stochastic processes 〈Xt〉t≥0 of §§455 and 477. Instead of starting from
Σt-measurable functions Xt : Ω → R and then showing that it is possible to define Σh-measurable functions
Xh for stopping times h : Ω → [0,∞[, I move directly to families uuu = 〈uσ〉σ∈S of equivalence classes
of measurable functions where S is a sublattice of the lattice T of stopping times discussed in §611. A
‘fully adapted process’ is one satisfying the essential measurability and consistency requirements of 612D.
Among these, the ‘simple’ processes (612J), those which are constant between finitely many break points,
are particularly important. I end with descriptions of Brownian motion (612T) and the standard Poisson
process (612U) in this language.

612A A and L0(A) (a) Given a Dedekind complete Boolean algebra, we have a Dedekind complete
f -algebra L0 = L0(A) as described in §364.

(b) In §364 I introduced the formulae [[u > α]], [[u ∈ E]], where u ∈ L0, α ∈ R and E ⊆ R is a Borel set. I
mentioned formulae [[u ≥ α]], [[u < 0]] and [[u 6= 0]], and [[(u1, . . . , un) ∈ E]] when E is a Borel subset of Rn.
Here it will be convenient to extend the notation to such formulae as [[u 6= v]], meaning [[|u− v| > 0]]. In
terms of the representation of L0 as a space of equivalence classes of functions, we have

[[(f•

1 , . . . , f
•

n) ∈ E]] = {ω : (f1(ω), . . . , fn(ω)) ∈ E}•

for all Σ-measurable functions f1, . . . , fn : Ω → R. [[f•

1 6= f•

2 ]] can be interpreted as {x : f1(ω) 6= f2(ω)}
•.

(c) Let E ⊆ R be a Borel set and h : E → R a Borel measurable function. Set

QE = {u : u ∈ L0, [[u ∈ E]] = 1} = {f• : f : Ω → E is measurable}.

If u ∈ QE ,we have an h̄(u) ∈ L0 defined by saying that [[h̄(u) ∈ F ]] = [[u ∈ h−1[F ]]] for every Borel set F ⊆ R.
If u, u′ ∈ QE then [[u = u′]] ⊆ [[h̄(u) = h̄(u′)]]. Observe that if h1, h2 : R → R are both Borel measurable, we
now have h1h2(u) = h̄1(h̄2(u)) for all h1, h2 and u ∈ L0. h̄(u) = u if E = R and h(α) = α for every α ∈ R.
So we have a semigroup action • of H on L0 defined by saying that h•u = h̄(u) for h ∈ H and u ∈ L0.

D.H.Fremlin
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(d)(i)

(α) If γ ∈ R and h(α) = γα for α ∈ R, then h̄(u) = γu for every u ∈ L0.
(β) If h(α) = |α| for α ∈ R, then h̄(u) = |u| for every u ∈ L0.
(γ) If h(α) = α2 for α ∈ R, then h̄(u) = u× u = u2 for every u ∈ L0.
(δ) If h(α) = 1 for α ∈ R, then h̄(u) = χ1 is the multiplicative identity of L0 for every u ∈ L0.

(ǫ) If h : R → R is non-decreasing, then h̄(u) ≤ h̄(v) whenever u ≤ v in L0.

(ii) It follows that if V ⊆ L0 is such that u + v ∈ V for all u, v ∈ V and h̄(u) ∈ V for every convex
function h : R → R such that h(0) = 0, then V is an f-subalgebra of L0, that is, a Riesz subspace closed
under multiplication. A fortiori, if V is such that u + v ∈ V for all u, v ∈ V and h̄(u) ∈ V for every
continuous function h : R → R such that h(0) = 0, then V is an f -subalgebra of L0.

(iii) Continuing from (c) above, it will be important also to note that, for any u, v ∈ QE , [[u ≤ v]] ⊆ [[h̄(u) ≤ h̄(v)]].
[[u = v]] ⊆ [[h̄(u) = h̄(v)]].

(iv) Take any u ∈ L0. Again writing H for the space of Borel measurable functions from R to itself,
H is an f -subalgebra of the f -algebra R

R as well as a sub-semigroup under composition. Treating H as an
f -algebra, the map h 7→ h̄(u) : H → L0 is a multiplicative Riesz homomorphism.

(v) It will happen more than once that we have two Dedekind complete Boolean algebras A and
B, f -subalgebras V , W of L0(A) and L0(B) respectively, and a linear operator Q : V → W such that
Q|v| = |Qv| and Q(v2) = (Qv)2 for all v ∈ V . In this case, Q will be an f-algebra homomorphism, that
is, a multiplicative Riesz homomorphism.

(e)(i) Now suppose that B is an order-closed subalgebra of A. In this case we can think of L0(B) as
being the subspace

{u : u ∈ L0(A), [[u > α]] ∈ B for every α ∈ R}.

The arguments of 364F show that this is equal to

{u : u ∈ L0(A), [[u ∈ E]] ∈ B for every Borel set E ⊆ R}

and that h̄(u) ∈ L0(B) whenever h ∈ H and u ∈ L0(B). Looking at this a little more deeply, we see
that if h ∈ H we have two different functions h̄A : L0(A) → L0(A) and h̄B : L0(B) → L0(B), but that
h̄B = h̄A↾L

0(B), so that we can use the same symbol h̄ for either.
L0(B) is an order-closed sublattice of L0(A).

(ii) If 〈Bi〉i∈I is a non-empty family of order-closed subalgebras of A with intersection B, then B is
an order-closed subalgebra of A and L0(B) =

⋂
i∈I L

0(Bi).

(iii) For any u ∈ L0(A), the set {[[u ∈ E]] : E ⊆ R is Borel} is a σ-subalgebra of A, the smallest
σ-subalgebra B of A such that u ∈ L0(B); it is the σ-subalgebra generated by {[[u > α]] : α ∈ R}. I will
say that it is the σ-subalgebra of A defined by uuu. Similarly, if A ⊆ L0(A), I will say that the σ-subalgebra
of A generated by {[[u > α]] : u ∈ A, α ∈ R} is the σ-subalgebra defined by A.

(f) Let C be another Dedekind complete Boolean algebra, and φ : A → C an order-continuous Boolean
homomorphism. Then we have a unique order-continuous f -algebra homomorphism Tφ : L0(A) → L0(C)
such that

[[Tφu > α]] = φ[[u > α]] for every u ∈ L0(A) and α ∈ R,
Tφ(χa) = χ(φa) for every a ∈ A,
[[Tφu ∈ E]] = φ[[u ∈ E]] for every Borel set E ⊆ R,
Tφh̄A = h̄CTφ for every Borel measurable h : R → R,
Tφ is injective or surjective iff φ is.

612B Products and processes For the rest of this section A will be a Dedekind complete Boolean
algebra, T a totally ordered set, 〈At〉t∈T a filtration of closed subalgebras of A, T the associated lattice of
stopping times, and 〈Aτ 〉τ∈T the corresponding family of order-closed subalgebras. For σ, τ ∈ T , [[σ < τ ]],
[[σ ≤ τ ]] [[σ = τ ]] will be the regions defined in 611D.

Measure Theory (abridged version)
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(a) If S is a sublattice of T , we can form the family 〈L0(Aσ)〉σ∈S . If we take the natural product linear
space, lattice and multiplicative structures, we get an f -algebra

∏
σ∈S L

0(Aσ). Moreover, writing H for the

semigroup of Borel measurable functions from R to itself, we have a natural action of H on
∏
σ∈S L

0(Aσ)
defined by setting

h•〈uσ〉σ∈S = 〈h•uσ〉σ∈S

whenever h ∈ H and uσ ∈ L0(Aσ) for every σ ∈ S.
Writing h̄(u) for h•u, as in 612Ac, and thinking of uuu = 〈uσ〉σ∈S as a function from S to L0, we find

ourselves with a composition h̄uuu = h̄◦uuu : S → L0.

(b) Another way of looking at
∏
σ∈S L

0(Aσ) is to identify it with L0(C), where C is the simple Boolean

algebra product
∏
σ∈S Aσ. Once again, it is easy to see that if h ∈ H then h̄C : L0(C) → L0(C) matches the

function uuu 7→ h̄uuu :
∏
σ∈S L

0(Aσ) →
∏
σ∈S L

0(Aσ) described in (a).

(c) From (b) and 612A(d-ii) we now see that if V is a subset of
∏
σ∈S L

0(Aσ) such that uuu + vvv ∈ V and

h̄uuu ∈ V whenever uuu, vvv ∈ V , h : R → R is convex and h(0) = 0, then V is an f -subalgebra of
∏
σ∈S L

0(Aσ).

612C Lemma If σ, τ ∈ T and u ∈ L0(Aτ ) then u×χ[[τ ≤ σ]] and u×χ[[τ = σ]] and u×χ[[τ < σ]] belong
to L0(Aσ∧τ ).

612D Fully adapted processes To continue the real work of this section, let S be a sublattice of T
and uuu = 〈uσ〉σ∈S a family in L0(A).

(a) Definition I will say that uuu is fully adapted to 〈At〉t∈T if uσ ∈ L0(Aσ) and [[σ = τ ]] ⊆ [[uσ = uτ ]]
whenever σ, τ ∈ S.

(b) Note that if uτ ∈ L0(Aτ ) and [[σ = τ ]] ⊆ [[uσ = uτ ]] whenever σ ≤ τ ∈ S, then uuu is fully adapted.

(c) If uuu is fully adapted and S ′ is a sublattice of S, then uuu↾S ′ is still a fully adapted process.

(d) If uuu is fully adapted, I is a finite sublattice of S, and (τ0 . . . , τn) linearly generates the I-cells, then
for any σ ∈ I we have

supi≤n [[uσ = uτi ]] ⊇ supi≤n [[σ = τi]] = 1

So if ū = supi≤n uτi , ū = supσ∈I uσ. supσ∈I |uσ| = supi≤n |uτi |.

(e)(i) Note that if uuu is constant, say uσ = z for every σ ∈ S, then uuu is fully adapted iff z ∈
⋂
σ∈S L

0(Aσ);

if S has a least element, this will be so iff z ∈ L0(AminS). For any z ∈ L0(A), I will write z1 for the fully
adapted process 〈z〉σ∈S where S is the sublattice {σ : σ ∈ T , z ∈ L0(Aσ)}. When z = χ1 and S = T I will
write just 1; similarly, 0 will be the constant process with value 0 ∈ L0(A).

(ii) Generally, if z ∈ L0(A), I will write zuuu for the process z1×uuu = 〈z×uσ〉σ∈S′ , where S ′ = {σ : σ ∈ S,
z ∈ L0(Aσ)}. Then S ′ is a sublattice of S and zuuu is fully adapted.

(f) Suppose that uuu is fully adapted.

(i) uσ∧τ + uσ∨τ = uσ + uτ and uσ∧τ ∨ uσ∨τ = uσ ∨ uτ for all σ, τ ∈ S.

(ii) |uτ − uσ| = |uσ∨τ − uσ∧τ | for all σ, τ ∈ S.

(iii) |uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ | for all ρ, σ, τ ∈ S.

612E Where fully adapted processes come from In applications, one commonly starts from a family
〈Xt〉t∈T of random variables, corresponding to a family 〈ut〉t∈T ∈

∏
t∈T L

0(At).

(a) If T is finite and not empty, with least value minT , then for τ ∈ T and t ∈ T set

aτt = (infs<t [[τ > s]]) \ [[τ > t]]

D.H.Fremlin
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(counting inf ∅ as 1, as usual, so that aτ,minT = 1 \ [[τ > minT ]]). Then 〈aτt〉t∈T is a partition of unity in A,
and aτt ∈ At for every t. Now set

u′τ =
∑
t∈T ut × χaτt.

(b) If T is well-ordered and not empty, we can use essentially the same formulae for τ ∈ Tf .

612F The identity process (a) Suppose that T = [0,∞[. For τ ∈ Tf , we can define ιτ ∈ L0(A) by
saying that, for t ∈ R,

[[ιτ > t]] = [[τ > t]] if t ≥ 0,

= 1 if t < 0.

(b) ιιι = 〈ιτ 〉τ∈Tf
is a fully adapted process.

(c) ιť = tχ1 for every t ≥ 0.
I will call ιιι the identity process for the structure (A, 〈At〉t≥0).

612H Theorem Let (Ω,Σ, µ) be a complete probability space, and 〈Σt〉t≥0 a filtration of σ-subalgebras
of Σ such that every µ-negligible set belongs to every Σt. Let (A, µ̄) be the measure algebra of µ and set
At = {E• : E ∈ Σt} for each t ≥ 0; then 〈At〉t≥0 is a filtration. Let T be the associated family of stopping
times.

(a)(i) If h : Ω → [0,∞] is a stopping time, we have a stopping time τ ∈ T defined by saying that
[[τ > t]] = {ω : h(ω) > t}• for every t ≥ 0; I will say that h represents τ .

(ii) Conversely, if τ ∈ T , there is a stopping time h : Ω → [0,∞] representing τ .
(iii) If h represents τ , then Σh = {E : E ∈ Σ, E• ∈ Aτ} and Aτ = {E• : E ∈ Σh}.
(iv) If g, h : Ω → [0,∞] are stopping times representing σ, τ ∈ T , then

[[σ < τ ]] = {ω : g(ω) < h(ω)}•,

[[σ ≤ τ ]] = {ω : g(ω) ≤ h(ω)}•, [[σ = τ ]] = {ω : g(ω) = h(ω)}•.

g and h represent the same member of T iff they are equal almost everywhere.
(v) If h represents τ , then τ ∈ Tf iff h(ω) <∞ for almost every ω; τ ∈ Tf iff it can be represented by

a stopping time h : Ω → [0,∞[.
(vi) If t ≥ 0, then the constant function with value t represents the constant stopping time at t.

(b) Now suppose that 〈Xt〉t≥0 is a progressively measurable process on Ω.
(i) For every τ ∈ Tf we have an xτ ∈ L0(A) ∼= L0(µ) defined by saying that xτ is the equivalence class

of the function Xh, where Xh(ω) = Xh(ω)(ω) for ω ∈ h−1[ [0,∞[ ], whenever h represents τ .
(ii) The family 〈xτ 〉τ∈Tf

is fully adapted to 〈At〉t≥0.

612I Proposition Let S be a sublattice of T , and Mfa(S) ⊆
∏
σ∈S L

0(Aσ) the set of fully adapted
processes with domain S.

(a)Mfa(S) is an order-closed f -subalgebra of the f -algebra L0(A)S , and if h : R → R is a Borel measurable
function then h̄uuu ∈Mfa(S) for every uuu ∈Mfa(S). Mfa(S) is Dedekind complete.

(b) Suppose that 〈uσ〉σ∈S ∈ Mfa(S) and τ ∈ T . Set S ′ = {σ : σ ∈ T , σ ∧ τ ∈ S}. Then 〈uσ∧τ 〉σ∈S′ ∈
Mfa(S

′).

612J Simple processes (a) Definition Let S be a sublattice of T . A fully adapted process 〈uσ〉σ∈S is
simple if either S is empty or there are τ0 ≤ . . . ≤ τn in S and u∗ ∈ L0(

⋂
σ∈S Aσ) such that for every σ ∈ S

[[σ < τ0]] ⊆ [[uσ = u∗]], [[τn ≤ σ]] ⊆ [[uσ = uτn ]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[uσ = uτi ]] for every i < n.

In this case I will say that (τ0, . . . , τn) is a breakpoint string for uuu.
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(b) As a particularly elementary example, if S is a sublattice of T and τ ∈ S, then uuu = 〈χ[[τ ≤ σ]]〉σ∈S

is a simple process.

612K Lemma Let S be a non-empty sublattice of T . Write B for
⋂
σ∈S Aσ.

(a) Suppose that τ0 ≤ . . . ≤ τn in S, ui ∈ L0(Aτi) for i ≤ n and u∗ ∈ L0(B). Then there is a unique
simple fully adapted process vvv = 〈vσ〉σ∈S such that whenever σ ∈ S then

[[vσ = ui]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]],

for i < n, while

[[vσ = u∗]] ⊇ [[σ < τ0]], [[vσ = un]] ⊇ [[τn ≤ σ]];

and (τ0, . . . , τn) is a breakpoint string for vvv.
(b) Suppose that I is a non-empty finite sublattice of S and (τ0, . . . , τn) linearly generates the I-cells. If

a simple process uuu with domain S has a breakpoint string in I, then (τ0, . . . , τn) is a breakpoint string for
uuu.

(c) Suppose that K is a finite set and uuuk is a simple process with domain S for each k ∈ K. Then there
is a single string (τ0, . . . , τn) in S which is a breakpoint string for every uuuk.

(d) Suppose that uuu = 〈uσ〉σ∈S is a simple process with breakpoint string (τ0, . . . , τn) in S, and τ ∈ S.
(i) (τ0 ∧ τ, . . . , τ0 ∧ τn, τ, τ0 ∨ τ, . . . , τn ∨ τ) is a breakpoint string for uuu.
(ii) Writing S ∧ τ for {σ ∧ τ : σ ∈ S} = S ∩ [min T , τ ], uuu↾S ∧ τ is simple, with breakpoint string

(τ0 ∧ τ, . . . , τn ∧ τ, τ).
(iii) Writing S ∨ τ for {σ ∨ τ : σ ∈ S} = S ∩ [τ,max T ], uuu↾S ∨ τ is simple, with breakpoint string

(τ0 ∨ τ, . . . , τn ∨ τ).
(e) Suppose that uuu is a fully adapted process with domain S, and that τ ∈ S. If uuu↾S ∧ τ and uuu↾S ∨ τ are

simple processes with breakpoint strings (τ0, . . . , τm) and (τ ′0, . . . , τ
′
n) respectively, then uuu is simple, with

breakpoint string (τ0, . . . , τm, τ, τ
′
0, . . . , τ

′
n).

612L Proposition Let S be a sublattice of T . Write Msimp = Msimp(S) for the set of simple processes
with domain S.

(a) If h : R → R is a Borel measurable function and uuu ∈ Msimp, then h̄uuu ∈ Msimp and any breakpoint
string for uuu is a breakpoint string for h̄uuu.

(b) Msimp is an f -subalgebra of
∏
σ∈S L

0(Aσ).

(c) If z ∈ L0(A ∩
⋂
σ∈S Aσ) and uuu ∈Msimp, then zuuu ∈Msimp.

612M Lemma Let S = [minS,maxS] be a closed interval in T , and uuu a simple process with domain
S. Then there is a breakpoint string (τ0, . . . , τn) for uuu such that τ0 = minS, τn = maxS and [[τi < τi+1]] =
[[τi < maxS]] for every i < n.

612P Lemma Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process. Then there is a
fully adapted process vvv = 〈vτ 〉τ∈T , extending uuu, such that

[[vτ 6= 0]] ⊆ supσ∈S [[σ = τ ]]

for every τ ∈ T .

612Q Proposition Suppose that S is a sublattice of T , Ŝ its covered envelope and uuu = 〈uσ〉σ∈S a fully
adapted process.

(a) uuu has a unique extension to a fully adapted process ûuu = 〈ûσ〉σ∈S with domain Ŝ.
(b) The map uuu 7→ ûuu is an isomorphism from the f -algebra Mfa(S) of fully adapted processes with domain

S to the f -algebra Mfa(Ŝ), and h̄ûuu = (h̄uuu)ˆ whenever uuu ∈Mfa(S) and h : R → R is Borel measurable.

(c) If τ ∈ S, then ûuu↾Ŝ ∧ τ is the fully adapted extension of uuu↾S ∧ τ to the covered envelope of S ∧ τ .
(e) If z ∈ L0(A ∩

⋂
σ∈S Aσ) then zûuu is the fully adapted extension of zuuu.

(f) If uuu is simple, with a witnessing string (u∗, τ0, . . . , τn) as in 612Ja, and S ′ is a sublattice of Ŝ including
S, then ûuu↾S ′ is simple, with the same witnessing string.

(g) If uuu is non-decreasing, so is ûuu.
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612R Corollary Suppose that S is a sublattice of T and S ′ is a sublattice of S covering S. Then any
fully adapted process uuu = 〈uσ〉σ∈S′ has a unique extension to a fully adapted process vvv = 〈vτ 〉τ∈S .

612S Two more definitions Let S be a sublattice of T .

(a) For a fully adapted process uuu = 〈uσ〉σ∈S , write ‖uuu‖∞ = supσ∈S ‖uσ‖∞.

(b) For fully adapted processes uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S , write [[uuu 6= vvv]] for supσ∈S [[uσ 6= vσ]], and
[[uuu 6= 0]] = supσ∈S [[uσ 6= 0]].

(c) Suppose that uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S are fully adapted processes.

(i) If h : R → R is Borel measurable, then [[h̄uuu 6= h̄vvv]] ⊆ [[uuu 6= vvv]].

(ii) If Ŝ is the covered envelope of S and ûuu = 〈ûτ 〉τ∈Ŝ , v̂vv = 〈v̂τ 〉τ∈Ŝ are the fully adapted extensions of

uuu, vvv to Ŝ, then [[ûuu 6= v̂vv]] = [[uuu 6= vvv]].

612T Example: Brownian motion (a) Let Ω = C([0,∞[)0 be the set of continuous functions ω :
[0,∞[ → R such that ω(0) = 0, and ν one-dimensional Wiener measure on Ω, with Σ its domain. Recall
that ν is a Radon measure with respect to the topology Tc of uniform convergence on compact sets. Let
(C, ν̄) be the measure algebra of ν. For t ≥ 0, write Σt for

{F : F ∈ Σ, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t]},

and let Σ̂t be {F△A : F ∈ Σt, νA = 0}; set Ct = {F • : F ∈ Σ̂t} = {F • : F ∈ Σt} and Xt(ω) = ω(t)
for t ≥ 0 and ω ∈ Ω. Then (s, ω) 7→ Xs(ω) : [0, t] × Ω → R is continuous for every t ≥ 0, and 〈Xt〉t≥0 is

progressively measurable with respect to 〈Σ̂t〉t≥0. We have a process www = 〈wτ 〉τ∈Tf
fully adapted to 〈Ct〉t≥0.

In this volume I will use the phrase Brownian motion to mean the process www.

(d) www determines C and 〈Ct〉t≥0, in that

(i) C is the closed subalgebra D of itself generated by {[[wť > α]] : t ≥ 0, α ∈ R},
(ii) Ct is the closed subalgebra generated by {[[wš > α]] : s ∈ [0, t], α ∈ R} for every t ≥ 0.

(e) Every member of Tf can be represented by a stopping time adapted to 〈Σ+
t 〉t≥0, where Σ

+
t =

⋂
s>t Σs

for t ≥ 0.

612U Example: the Poisson process (a) For t > 0 let λt be the Poisson distribution with expectation
t, that is, the Radon probability measure on R such that λt{n} = e−ttn/n! for every n ∈ N. Then the
convolution λs ∗λt is equal to λs+t whenever s, t > 0, and limt↓0 λtG = 1 for every open set G ⊆ R including
0. So we have an associated probability measure µ̈ on the space Cdlg of càdlàg real-valued functions defined

on [0,∞[. This measure is the subspace measure on Cdlg induced by a complete measure on R
[0,∞[ defined

in terms of transitional probabilities. The formula of 455E tells us that if 0 = t0 < . . . < tn in R and
0 = k0 ≤ . . . ≤ kn in N, then the measure of {ω : ω(ti) = ki for i ≤ n} is

∏n
i=1 λti−ti−1

{ki − ki−1} = e−tn
∏n
i=1

(ti−ti−1)
ki−ki−1

(ki−ki−1)!
.

(b) µ̈ is a completion regular quasi-Radon measure on Cdlg if we give Cdlg the topology of pointwise

convergent inherited from R
[0,∞[.

Ω = {ω : ω ∈ Cdlg is non-decreasing, ω(t) ∈ N for every t and ω(0) = 0}

is the support of µ̈.

(c) Let µ be the subspace measure on Ω induced by µ̈ and Σ its domain, so that µ is a quasi-Radon
probability measure on Ω. For t ≥ 0, set

Σ̈t = {F : F ∈ dom µ̈, ω′ ∈ F whenever ω′ ∈ Cdlg, ω ∈ F and ω′↾[0, t] = ω↾[0, t]}
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(see 455O) and

ˆ̈Σt = {F△A : F ∈ Σ̈t, µ̈A = 0}.

Then ˆ̈Σt =
⋂
s>t

ˆ̈Σs for every t. So if

Σt = {F : F ⊆ Ω, F ∈ ˆ̈Σt}

for t ≥ 0, 〈Σt〉t≥0 will be a filtration of σ-algebras. Consequently, if we take (A, µ̄) to be the measure algebra
of µ, and set At = {F • : F ∈ Σt} for each t, 〈At〉t≥0 will be a filtration of closed subalgebras of A.

(d) For ω ∈ Ω and t ≥ 0 set Xt(ω) = ω(t). Then Xt has a Poisson distribution with expectation t. Now
〈Xt〉t≥0 is progressively measurable. We have a corresponding fully adapted process vvv = 〈vτ 〉τ∈Tf

; in this
volume I will call this the standard Poisson process.

(e)(i) For each n ∈ N and ω ∈ Ω, set

gn(ω) = inf{t : t ∈ [0,∞[, ω(t) ≥ n},

counting inf ∅ as ∞. Then g0(ω) = 0 for every ω. If gn(ω) is finite, then ω(gn(ω)) ≥ n. gn is finite a.e.
gn ≤ gn+1 for every n. In fact, for almost every ω, 〈gn(ω)〉n∈N is strictly increasing.

Observe that, for any n ∈ N, ω(gn(ω)) = n for almost every ω.

(ii) For n ∈ N, gn is a stopping time adapted to 〈Σt〉t≥0. Let τn = g•

n be the corresponding stopping
time in Tf . supn∈N τn = max T . vτn = nχ1, for every n ∈ N.

I will call 〈τn〉n∈N the sequence of jump times for the process vvv.

(f) If τ ∈ Tf , then

[[vτ ∈ N]] = 1, [[vτ = vτn ]] = [[vτ = n]] = [[τn ≤ τ ]] ∩ [[τ < τn+1]] for every n ∈ N.

(g) vvv is locally order-bounded.

Version of 15.7.20/16.1.25

613 Definition of the integral

I come now to the definition of a stochastic integral which will be used for the next three chapters. We are

looking for an effective way to interpret the formula
∫ τ ′

τ
uuu dvvv where τ ≤ τ ′ are stopping times and uuu, vvv are

fully adapted processes defined on an interval [τ, τ ′] in T . I will define this as a kind of Riemann-Stieltjes
integral, a limit of ‘Riemann sums’ of the form

∑n
i=0 uτi × (vτi+1

− vτi) where τ = τ0 ≤ . . . ≤ τn = τ ′.
For this we need a notion of convergence, for which ‘convergence in measure’ turns out to be suitable, and
a particular limiting process, to be described in 613Hb. Because our processes are defined on a lattice T
of stopping times, rather than a totally ordered set, there are some technical obstacles to clear out of the
way; I aim to do this in 613C-613G. The rest of the section is devoted to elementary properties of this new
integral.

613A Probability algebras (a) For the rest of this volume, (A, µ̄) will denote a probability algebra.
L1(A, µ̄) or L1

µ̄ will be its L1 space. For w in L0 = L0(A), I will write E(w) = Eµ̄(w) = E(w+)− E(w−) for

its integral with respect to µ̄, provided that at most one of E(w+), E(w−) is infinite.

(b) T will be a totally ordered set and 〈At〉t∈T a filtration of order-closed subalgebras of A. T will be
the set of stopping times adapted to 〈At〉t∈T . For τ ∈ T , Aτ will be the closed subalgebra corresponding to
τ . When I say that a process is ‘fully adapted’ I shall always mean that it is ‘fully adapted to 〈At〉t∈T ’.

613B Convergence in measure (a) L0 now has a topology T of convergence in measure which can
be defined by the F-norm θ where

θ(w) = E(|w| ∧ χ1) for every w ∈ L0.

D.H.Fremlin



14 The Riemann-sum integral 613B

This is a complete Hausdorff linear space topology for which multiplication and the lattice operations ∨, ∧
and | | are continuous. In particular, the positive cone (L0)+ is closed.
θ(αw) ≤ αθ(w) if w ∈ L0 and α ≥ 1. θ(v) ≤ θ(w) whenever |v| ≤ |w|. limw↓A θ(w) = 0

whenever A ⊆ L0 is a non-empty downwards-directed family with infimum 0, so that supA ∈ A and
limw↑A θ(w) = θ(supA) whenever A ⊆ L0 is a non-empty upwards-directed set with an upper bound in L0;
similarly, if A ⊆ L0 is a non-empty downwards-directed set with a lower bound in L0, limw↓A θ(w) = θ(inf A).

(b) If E ⊆ R is a Borel set and QE = {u : u ∈ L0, [[u ∈ E]] = 1}, then for any continuous h : E → R the
corresponding function h̄ : QE → L0 is continuous.

(c) If 1 ≤ p ≤ ∞, all the ‖ ‖p-balls {u : u ∈ L0, ‖u‖p ≤ α} are T-closed. Consequently the T-closure of a
‖ ‖p-bounded set is again ‖ ‖p-bounded, and ‖ ‖p : L

0 → [0,∞] is lower semi-continuous.

(d)(i) For any p ∈ [1,∞], the embedding Lpµ̄ ⊂→ L0 is continuous for the norm topology of Lpµ̄ and T.

(ii) If A ⊆ L1
µ̄ is non-empty and downwards-directed and inf A = 0 in L1

µ̄, then infu∈A ‖u‖1 =
limu↓A ‖u‖1 = 0.

(iii) If A ⊆ (L1
µ̄)

+ is non-empty and upwards-directed and γ = supu∈A ‖u‖1 is finite, then A is bounded

above in L1
µ̄, supA belongs to the ‖ ‖1-closure of A and ‖ supA‖1 = γ.

(iv) If u ∈ L1
µ̄ and ǫ > 0, there is a δ > 0 such that ‖u − v‖1 ≤ ǫ whenever v ∈ L1

µ̄, ‖v‖1 ≤ ‖u‖1 + δ
and θ(u− v) ≤ δ.

(e) If A ⊆ L0 and v ∈ A then [[v > α]] ⊆ supu∈A [[u > α]] for every α ∈ R.

(f)(i) I will say that a set A ⊆ L0 is topologically bounded if for every neighbourhood G of 0 in L0

there is an n ∈ N such that A ⊆ nG; equivalently, if for every ǫ > 0 there is a δ > 0 such that θ(δu) ≤ ǫ for
every u ∈ A.

(ii) If A ⊆ L0 is non-empty, then A is topologically bounded iff infγ>0 supu∈A µ̄[[|u| > γ]] = 0.

(iii) If A, B ⊆ L0 are topologically bounded, so are A+ B and αA for any α ∈ R, the closure A of A
for the topology of convergence in measure, and any subset of A.

(iv) If A ⊆ L0 is topologically bounded, so is its solid hull {u : u ∈ L0, ∃ v ∈ A, |u| ≤ |v|}. In
particular, an order-bounded subset of L0 is topologically bounded.

(v) An upwards-directed topologically bounded set is bounded above.

(vi) If A ⊆ L0 is solid, so is A.

(g) If ν̄ : A → [0, 1] is any functional such that (A, ν̄) is a probability algebra, then µ̄ and ν̄ are mutually
absolutely continuous, that is,

—– for every ǫ > 0 there is a δ > 0 such that max(µ̄a, ν̄a) ≤ ǫ whenever a ∈ A and
min(µ̄a, ν̄a) ≤ δ.

T is still the topology of convergence in measure on L0 if we apply the formulae of (a) with the integral Eν̄
defined from ν̄ in place of E = Eµ̄, and if we set θν̄(w) = Eν̄(|w| ∧ χ1) for w ∈ L0, then

—– for every ǫ > 0 there is a δ > 0 such that max(θµ̄(w), θν̄(w)) ≤ ǫ whenever min(θµ̄(w), θν̄(w)) ≤
δ.

I introduce a code phrase: the topology of convergence in measure is law-independent, since replacing
the ‘law’ µ̄ by the law ν̄ leaves it unchanged.

(h) (L0, θ) is a complete metric space; that is, L0 is complete when regarded as a linear topological space.

(i) Now suppose that B is a closed subalgebra of A.

(i) L0(B), regarded as a subset of L0(A), is closed for the topology of convergence in measure.

(ii) L1
µ̄ ∩ L0(B) is ‖ ‖1-closed in L1

µ̄; it is also closed for the weak topology of L1
µ̄.

Measure Theory (abridged version)



613Cb Definition of the integral 15

(j) Suppose that S is a sublattice of T , uuu = 〈uσ〉σ∈S is a fully adapted process, and A ⊆ S is a non-
empty downwards-directed set such that the limit u∗ = limσ↓A uσ is defined. Then u∗ ∈

⋂
σ∈A L

0(Aσ) =

L0(
⋂
σ∈A Aσ).

(k) If S is non-empty and uuu = 〈uσ〉σ∈S is a fully adapted process such that the topological limit u↓ =
limσ↓S uσ is defined in L0(A), I will call u↓ the starting value of uuu.

(l) If S is a sublattice of T , then we can give (L0)S its product topology, under which it is a linear
topological space. Now the space of fully adapted processes with domain S is a closed subspace of (L0)S .

(m) Because the lattice operations on L0 are continuous, and the topology is Hausdorff, sets of the form
{|u| : u ≤ ū} = {u : |u| ∨ ū = ū} are closed for any ū ∈ L0. Consequently, in a product space (L0)S , sets of
the form {uuu : uuu ∈ (L0)S , |uuu| ≤ ūuu}, where ūuu ∈ (L0)S , are closed for the product topology.

(n) Now suppose that (B, ν̄) is another probability algebra, and φ : A → B is a measure-preserving
Boolean homomorphism. Then we have a corresponding injective f -algebra homomorphism Tφ : L0(A) →
L0(B). Writing Eµ̄, Eν̄ for expectations in L1

µ̄, L
1
ν̄ respectively, and θµ̄, θν̄ for the corresponding functionals

on L0(A) and L0(B), Eν̄(Tφu) = Eµ̄(u) for every u ∈ L1
µ̄; θν̄(Tφu) = θµ̄(u) for every u ∈ L0(A), and Tφ is

continuous for the topologies of convergence in measure.

(o) For any α ∈ R, the function u 7→ µ̄[[u > α]] : L0 → [0, 1] is lower semi-continuous.

(p)(i) Suppose that A ⊆ L0 and that for every ǫ > 0 there is an a ∈ A such that {u × χa : u ∈ A} is
order-bounded in L0 and µ̄a ≥ 1− ǫ. Then A is order-bounded in L0.

(ii) If uuu = 〈uσ〉σ∈S is a fully adapted process and for every ǫ > 0 there is an order-bounded process
vvv = 〈vσ〉σ∈S such that µ̄[[uuu 6= vvv]] ≤ ǫ, then uuu is order-bounded.

(q)(i) If A ⊆ T , τ belongs to the covered envelope Â of A and ǫ > 0, there is a τ ′ in the finitely-covered

envelope Âf of A such that µ̄[[τ = τ ′]] ≥ 1− ǫ.

(ii) If S is a sublattice of T with covered envelope Ŝ and finitely covered envelope Ŝf , uuu = 〈uτ 〉τ∈Ŝ

is a fully adapted process and τ ∈ Ŝ, then uτ belongs to the closure of {uσ : σ ∈ Ŝf} for the topology of
convergence in measure.

613C Interval functions (a) Let S be a sublattice of T . I will write S2↑ for {(σ, τ) : σ, τ ∈ S, σ ≤ τ}.

(i) I say that a function ψ : S2↑ → L0(A) is an adapted interval function on S if

ψ(σ, τ) ∈ L0(Aτ ), ψ(σ, σ) = 0, b ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]]

whenever σ ≤ σ′ ≤ τ ′ ≤ τ in S, b ∈ Aσ and b ⊆ [[σ = σ′]] ∩ [[τ ′ = τ ]].

(ii) In this case, I say that ψ is a strictly adapted interval function if

[[σ = σ′]] ∩ [[τ ′ = τ ]] ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]]

whenever σ ≤ σ′ ≤ τ ′ ≤ τ in S.

(b) Let S be a sublattice of T and ψ : S2↑ → L0(A) an adapted interval function.

(i) [[σ = τ ]] ⊆ [[ψ(σ, τ) = 0]] whenever σ ≤ τ in S.
[[ψ(σ, τ) 6= 0]] ⊆ [[σ < τ ]] whenever σ ≤ τ in S.

(ii) ψ(σ, σ ∨ τ) = ψ(σ ∧ τ, τ) for all σ, τ ∈ S.

(iii) If S0 is any sublattice of S, then ψ↾S2↑
0 is an adapted interval function on S0, and is strictly

adapted if ψ is.

(iv) If ψ is strictly adapted then [[σ = σ′]] ∩ [[τ ′ = τ ]] ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]] whenever σ ≤ τ and σ′ ≤ τ ′

in S.
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16 The Riemann-sum integral 613Cc

(c) If S ⊆ T is a sublattice and vvv = 〈vσ〉σ∈S is a fully adapted process, we have a function ∆vvv : S2↑ →
L0(A) defined by saying that

(∆vvv)(σ, τ) = vτ − vσ

whenever σ ≤ τ in S, and ∆vvv is a strictly adapted interval function on S.

613D Constructions for interval functions Let S be a sublattice of T and ψ, ψ′ (strictly) adapted
interval functions on S.

(a) ψ + ψ′ and ψ × ψ′ are (strictly) adapted interval functions.
(b) If h : R → R is a Borel measurable function, then the composition h̄ψ is a (strictly) adapted interval

function.
(c) ψ2 and |ψ| and αψ, for any α ∈ R, are (strictly) adapted interval functions; the space of (strictly)

adapted interval functions on S is an f -subalgebra of L0(A)S
2↑

.
(d) If uuu = 〈uσ〉σ∈S is a fully adapted process, then we have a (strictly) adapted interval function uuuψ on

S defined by setting (uuuψ)(σ, τ) = uσ × ψ(σ, τ) whenever σ ≤ τ in S.

613E Riemann sums Let S ⊆ T be a sublattice, ψ an adapted interval function on S, and uuu = 〈uσ〉σ∈S

a fully adapted process.

(a) For a stopping-time interval e ∈ Sti(S), we can define ∆e(uuu, dψ) by saying that ∆e(uuu, dψ) = uσ ×
ψ(σ, τ) whenever e = c(σ, τ) with σ ≤ τ in S.

(b) If I ⊆ S is a finite sublattice and Sti0(I) ⊆ Sti(S) is the set of I-cells, write

SI(uuu, dψ) =
∑
e∈Sti0(I)

∆e(uuu, dψ).

(c) If I ⊆ S is a non-empty finite sublattice, then there is a string (τ0, . . . , τn) in I linearly generating

the I-cells. SI(uuu, dψ) will be
∑n−1
i=0 uτi × ψ(τi, τi+1).

(d) Now suppose that ψ = ∆vvv for some fully adapted process vvv = 〈vσ〉σ∈S . If I ⊆ S is any non-empty
sublattice, then SI(1, d(∆vvv)) = vmax I − vmin I .

(e) If ψ = uuuψ′, where ψ′ is another adapted interval function with domain S2↑ and uuu = 〈uσ〉σ∈S is a fully
adapted process, then SI(1, dψ) = SI(uuu, dψ

′) for every finite sublattice I of S.

613F Notation Let S be a sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S and www = 〈wσ〉σ∈S fully
adapted processes.

(a) If σ ≤ τ in S and e = c(σ, τ), then I write

∆e(uuu, dvvv) = ∆e(uuu, d(∆vvv)) = uσ × (vτ − vσ),

∆e(uuu, dvvvdwww) = ∆e(uuu, d(∆vvv ×∆www)) = uσ × (vτ − vσ)× (wτ − wσ),

∆e(uuu, |dvvv|) = ∆e(uuu, d|∆vvv|) = uσ × |vτ − vσ|.

(b) Now if I ⊆ S is a finite sublattice and Sti0(I) is the set of I-cells, write

SI(uuu, dvvv) = SI(uuu, d(∆vvv)) =
∑
e∈Sti0(I)

∆e(uuu, dvvv),

SI(uuu, dvvvdwww) = SI(uuu, d(∆vvv ×∆www)) =
∑
e∈Sti0(I)

∆e(uuu, dvvvdwww),

SI(uuu, |dvvv|) = SI(uuu, d|∆vvv|) =
∑
e∈Sti0(I)

∆e(uuu, |dvvv|).

613G Proposition Suppose that I is a finite sublattice of T , ψ : I2↑ → L0(A) is an adapted interval
function and uuu = 〈uτ 〉τ∈I is a fully adapted process.

Measure Theory (abridged version)



613J Definition of the integral 17

(a)(i) If τ ∈ I then SI(uuu, dψ) = SI∧τ (uuu, dψ) + SI∨τ (uuu, dψ).

(ii) If τ0, . . . , τn ∈ I and min I = τ0 ≤ τ1 ≤ . . . ≤ τn = max I, then SI(uuu, dψ) =
∑n−1
i=0 SI∩[τi,τi+1](uuu, dψ).

(b) For τ ∈ I set zτ = SI∧τ (uuu, dψ). Then 〈zτ 〉τ∈I is a fully adapted process.
(c) If τ , τ ′ ∈ I then SI∧τ (uuu, dψ) + SI∧τ ′(uuu, dψ) = SI∧(τ∨τ ′)(uuu, dψ) + SI∧(τ∧τ ′)(uuu, dψ).
(d) [[SI(uuu, dψ) 6= 0]] ⊆ [[uuu 6= 0]] ∩ [[min I < max I]].
(e) If vvv = 〈vτ 〉τ∈I is another fully adapted process, then SI(uuu, d(vvvψ)) = SI(uuu× vvv, dψ).

613H Definitions (a) For a lattice S, write I(S) for the family of finite sublattices of S.

(b) Let S be a sublattice of T , uuu a fully adapted process with domain including S and ψ an adapted
interval function defined on S2↑. Then I define the integral of uuu over S with respect to ψ to be∫

S
uuu dψ = limI↑I(S) SI(uuu, dψ)

if the limit is defined for the topology of convergence in measure.

(c) Note that if, in (b), we set ψ′ = uuuψ, then∫
S
dψ′ =

∫
S
1 dψ′ =

∫
S
uuu dψ

if either integral is defined.

613I Invariance under change of law The integral
∫
S uuu dψ depends on the process uuu, the interval

function ψ and the lattice S; behind these declared variables lie the undeclared structure (A, T, 〈At〉t∈T )
and the derived objects L0 = L0(A) and T . But we do not really need the measure µ̄. What we use is
the topology of convergence in measure on L0. Now this topology can be defined in terms of the Boolean
algebra structure of A.

So the Riemann-sum integral is law-independent, and we shall always be at liberty to replace the measure
µ̄ by another strictly positive countably additive functional on A.

613J Theorem Let S be a sublattice of T , uuu = 〈uσ〉σ∈domuuu a fully adapted process with S ⊆ domuuu,
and ψ an adapted interval function defined on S2↑.

(a) Suppose that for every ǫ > 0 there are a z ∈ L0(A) and a J ∈ I(S) such that θ(SI(uuu, dψ) − z) ≤ ǫ
whenever J ⊆ I ∈ I(S). Then

∫
S uuu dψ is defined.

(b) If uuu′ is another fully adapted process defined on S, ψ′ is another adapted interval function defined on
S↑2, and

∫
S uuu dψ,

∫
S uuu

′ dψ and
∫
S uuu dψ

′ are all defined, then
∫
S uuu+uuu

′ dψ and
∫
S uuu d(ψ+ψ′) are defined and

∫
S
uuu+ uuu′ dψ =

∫
S
uuu dψ +

∫
S
uuu′ dψ,

∫
S
uuu d(ψ + ψ′) =

∫
S
uuu dψ +

∫
S
uuu dψ′.

Similarly, for any α ∈ R,
∫
S αuuu dψ and

∫
S uuu d(αψ) are defined and equal to α

∫
S uuu dψ.

(c)(i) Suppose that τ ∈ S. Then ∫
S
uuu dψ =

∫
S∧τ

uuu dψ +
∫
S∨τ

uuu dψ

if either side is defined.
(ii) Suppose that τ0 ≤ . . . ≤ τn in S. Then∫

S
uuu dψ =

∫
S∧τ0

uuu dψ +
∑n−1
i=0

∫
S∩[τi,τi+1]

uuu dψ +
∫
S∨τn

uuu dψ

if either side is defined.
(d) If z =

∫
S uuu dψ is defined, then

[[z 6= 0]] ⊆ sup
σ∈S

[[uσ 6= 0]] ∩ sup
(σ,τ)∈S2↑

[[ψ(σ, τ) 6= 0]]

⊆ sup
σ,τ∈S

([[uσ 6= 0]] ∩ [[σ < τ ]]) ⊆ [[uuu 6= 0]].

(e) Set S ′ = {τ : τ ∈ S,
∫
S∧τ uuu dψ is defined}.

(i) S ′ is an ideal of S.
(ii) Setting zτ =

∫
S∧τ uuu dψ for τ ∈ S ′, 〈zτ 〉τ∈S′ is fully adapted.
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18 The Riemann-sum integral 613J

(iii) If τ ∈ S and supτ ′∈S′ [[τ ′ = τ ]] = 1, then τ ∈ S ′.
(f) Suppose that S 6= ∅ and z =

∫
S uuu dψ is defined. Set zτ =

∫
S∧τ uuu dψ for τ ∈ S.

(i) The starting value limτ↓S zτ is 0.
(ii) limτ↑S

∫
S∨τ uuu dψ = 0, limτ↑S zτ = z.

(g) Let vvv be another fully adapted process with domain S. Then
∫
S uuu d(vvvψ) =

∫
S uuu × vvv dψ in the sense

that if one is defined so is the other, and they are then equal.

613L More easy bits (a) If S is a sublattice of T and uuu, vvv and www are fully adapted processes defined
on S, I will write ∫

S
uuu dvvv =

∫
S
uuu d(∆vvv) = limI↑I(S) SI(uuu, dvvv),

∫
S
uuu dvvvdwww =

∫
S
uuu d(∆vvv ×∆www) = limI↑I(S) SI(uuu, dvvvdwww),

∫
S
uuu |dvvv| =

∫
S
uuu d|∆vvv| = limI↑I(S) SI(uuu, |dvvv|)

when the limits exist in L0(A).

(b) Three trivial calculations: if vvv = 〈vσ〉σ∈S and uuu are fully adapted processes with domain a sublattice
S of T , then

(i) SI(1, dvvv) = vmax I − vmin I for every non-empty finite sublattice I of S, so
∫
S∩[τ,τ ′]

1 dvvv = vτ ′ − vτ
whenever τ ≤ τ ′ in S;

(ii) if vvv is constant then SI(uuu, dvvv) = 0 for every I ∈ I(S), so
∫
S uuu dvvv is defined and equal to 0;

(iii) if z ∈ L0(
⋂
σ∈S Aσ), then SI(zuuu, dvvv) = SI(uuu, d(zvvv)) = z×SI(uuu, dvvv) for every I ∈ I(S), so

∫
S zuuu dvvv

and
∫
S uuu d(zvvv) are defined and equal to z ×

∫
S uuu dvvv if the last integral is defined.

(c) Suppose that I is a finite sublattice of T and uuu = 〈uσ〉σ∈I , uuu
′ = 〈u′σ〉σ∈I , vvv = 〈vσ〉σ∈I and vvv

′ = 〈v′σ〉σ∈I
are fully adapted processes. Set d = supσ∈I [[uσ 6= u′σ]] ∪ [[vσ 6= v′σ]]. [[SI(uuu, dvvv) 6= SI(uuu

′, dvvv′)]] ⊆ d.
Similarly,

[[SI(uuu, (dvvv)
2) 6= SI(uuu

′, (dvvv′)2)]] ⊆ d, [[SI(uuu, |dvvv|) 6= SI(uuu
′, |dvvv′|)]] ⊆ d.

Indeed, if ψ, ψ′ are any adapted interval functions defined on I2↑, and we set

d = supσ∈I [[uσ 6= u′σ]] ∪ supσ≤τ in I [[ψ(σ, τ) 6= ψ′(σ, τ)]],

then [[SI(uuu, dψ) 6= SI(uuu
′, dψ′)]] ⊆ d.

(d) It follows that if S is any sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S are fully adapted processes
such that z =

∫
S uuu dvvv is defined, then [[z 6= 0]] ⊆ [[uuu 6= 0]] ∩ [[vvv 6= 0]].

613M Lemma Let S be a sublattice of T and uuu, vvv, www fully adapted processes defined on S. Then

SI(uuu, dvvvdwww) = SI(uuu, d(vvv ×www))− SI(uuu× vvv, dwww)− SI(uuu×www, dvvv)

=
1

2

(
SI(uuu, (d(vvv +www))2)− SI(uuu, (dvvv)

2)− SI(uuu, (dwww)
2)
)

for every finite sublattice I of S. Consequently∫
S
uuu dvvvdwww =

∫
S
uuu d(vvv ×www)−

∫
S
uuu× vvv dwww −

∫
S
uuu×www dvvv

if any three of the four integrals are defined, and
∫
S
uuu dvvvdwww =

1

2

(∫
S
uuu (d(vvv +www))2 −

∫
S
uuu (dvvv)2 −

∫
S
uuu (dwww)2

)

if any three of the integrals are defined.

613N Proposition Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted process.
Interpreting

∫
S dvvv as

∫
S 1 dvvv where 1 is the constant process with value χ1,

∫
S dvvv is defined iff v↓ = limσ↓S vσ

and v↑ = limσ↑S vσ are defined, and in this case
∫
S dvvv = v↑ − v↓.
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613O Indefinite integrals (a) Definition Let S be a sublattice of T , uuu a fully adapted process with
domain S, and ψ an adapted interval function with domain S2↑. Set S ′ = {τ : τ ∈ S,

∫
S∧τ uuu dψ is defined};

S ′ is an ideal of S. The indefinite integral of uuu with respect to ψ is the process iiψ(uuu) = 〈
∫
S∧τ uuu dψ〉τ∈S′ ;

this is a fully adapted process.
When ψ is of the form ∆vvv for a fully adapted process vvv, I will write iivvv(uuu) = 〈

∫
S∧τ uuu dvvv〉τ∈S′ for the

indefinite integral of uuu with respect to vvv.

(b)(i) Note that if
∫
S uuu dψ is defined, the domain S ′ of iiψ(uuu) is the whole of S.

(ii) It is obvious from the definition, but perhaps it is worth stating formally that if τ ∈ S and
∫
S∧τ uuu dψ

is defined then

iiψ(uuu)↾S ∧ τ = 〈

∫

S∧σ

uuu dψ〉σ∈S∧τ = 〈

∫

S∧σ

(uuu↾S ∧ τ)d(ψ↾(S ∧ τ)2↑)〉σ∈S∧τ

= iiψ↾(S∧τ)2↑(uuu↾S ∧ τ).

(iii) On the other side, if S ′ = S and τ ∈ S, then iiψ↾(S∨τ)2↑(uuu↾S ∨ τ) is defined on the whole of S ∨ τ

and is equal to (iiψ(uuu)↾S ∨ τ)− (
∫
S∧τ uuu dψ)1.

613R Proposition Let S be a sublattice of T and uuu, vvv fully adapted processes with domain S. Then
[[iivvv(uuu) 6= 0]] ⊆ [[uuu 6= 0]] ∩ [[vvv 6= 0]].

613S Lemma Let S be a sublattice of T and ψ : S2↑ → L0(A) a strictly adapted interval function.
Suppose that I, J ∈ I(S), J ⊆ I and a ⊆ supσ∈J [[τ = σ]] for every τ ∈ I. Then a ⊆ [[SI(1, dψ) = SJ(1, dψ)]].
In particular, if J covers I then SI(1, dψ) = SJ(1, dψ).

613T Theorem Let S be a sublattice of T , S ′ a sublattice of S which covers S, ψ : S2↑ → L0(A) a
strictly adapted interval function and uuu : S → L0(A) a fully adapted process. If

∫
S uuu dψ is defined, so is∫

S′ uuu dψ, and the integrals are equal.

613P Example If T = [0,∞[, (A, µ̄) is the measure algebra of Lebesgue measure on [0, 1] and At = A

for every t ≥ 0, then there are a sublattice S of T and fully adapted processes uuu, vvv with domain S such that∫
S uuu dvvv is defined but

∫
Ŝ ûuu dv̂vv is not, where Ŝ is the covered envelope of S and ûuu, v̂vv are the fully adapted

extensions of uuu and vvv to Ŝ.

613U Theorem Let S be a sublattice of T , and Ŝ its covered envelope.
(a) For every strictly adapted interval function ψ : S↑2 → L0 there is a unique extension of ψ to a strictly

adapted interval function ψ̂ : Ŝ2↑ → L0.

(b)(i) The function ψ 7→ ψ̂ is an f -algebra homomorphism from the space of strictly adapted interval

functions on S to the space of strictly adapted interval functions on Ŝ.
(ii) If ψ is a strictly adapted interval function on S and h : R → R is Borel measurable, then (h̄ψ)̂ = h̄ψ̂.
(iii) If ψ is a strictly adapted interval function on S and uuu is a fully adapted process with domain S,

then (uuuψ)̂ = ûuuψ̂, where ûuu is the fully adapted extension of uuu to Ŝ.

613V Lemma Let S be a sublattice of T , uuu a fully adapted process with domain S, and ψ an adapted
interval function with domain S2↑ such that

∫
S uuu dψ is defined. Let I ∈ I(S) and ǫ > 0 be such that

θ(SJ(uuu, dψ)− SK(uuu, dψ)) ≤ ǫ whenever J , K ∈ I(S) include I.
(i) If τ0 ≤ τ ′0 ≤ τ1 ≤ τ ′1 ≤ . . . ≤ τn ≤ τ ′n in I, then

θ(
∑n
i=0(SI∩[τi,τ ′

i ]
(uuu, dψ)−

∫
S∩[τi,τ ′

i ]
uuu dψ)) ≤ ǫ.

(ii)(α) If τ ∈ I then θ(SI∧τ (uuu, dψ)−
∫
S∧τ uuu dψ) ≤ ǫ.

(β) For any τ ∈ S, θ(SI∧τ (uuu, dψ)−
∫
S∧τ uuu dψ) ≤ 2ǫ.
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20 The Riemann-sum integral 613W

613W The one-dimensional case (a) Suppose that (A, µ̄) is the trivial probability algebra in which
A = {0, 1}. Then L0(A) = {αχ1 : α ∈ R} can be identified, as f -algebra, with R; of course we have
θ(αχ1) = min(1, |α|) for every α, so the topology of convergence in measure on L0(A) corresponds to the
usual topology of R. Necessarily, At = A for every t ∈ T , so the filtration is trivial. If it is also the case that
T has no points isolated on the right, then every stopping time except max T and possibly min T will be a
constant stopping time as described in 611A(b-ii), every subset of T is a sublattice, and every real-valued
function f defined on a subset S of T corresponds to a fully adapted process {(š, f(s)χ1) : s ∈ S}.

(b) If also T has a least element, we can identify Tf with T and Mfa(Tf ) = (L0)Tf with R
T . Under

this identification, if f : T → R and g : T → R represent processes uuu, vvv with domain Tf , and I ⊆ Tf is a
non-empty finite set, there are t0 ≤ . . . ≤ tn in T such that I = {ťi : i ≤ n}, and

SI(uuu, dvvv) =
(∑n−1

i=0 f(ti)(g(ti+1)− g(ti))
)
χ1.

(d) What this amounts to is that we have a kind of Riemann-Stieltjes integral on T , I spell this out
in detail here partly because there are well-known Stieltjes integrals on the real line, of which the most
important, from the point of view of my treatise as a whole, is integration with respect to Lebesgue-Stieltjes
measures described in exercises from 114Xa onwards. Here we suppose that g : R → R is non-decreasing, so
that there is a Radon measure νg on R with νg [a, b[ = limx↑b g(x)− limx↑a g(x) whenever a < b in R. Now
the point I need to make here is that if S = {š : s ∈ R} then the integral

∫
S uuu dvvv is not the same as the

Lebesgue-Stieltjes integral
∫
f dνg. Consider the case in which f = g = χ [0,∞[. νg is the Dirac measure

concentrated at 0, so that
∫
f dνg = f(0) = 1. But when we look at sums SI(uuu, dvvv) where I = {ť0, . . . , ťn}

is a finite subset of S, and supposing that t0 ≤ . . . ≤ tn, we get

f(ti)(g(ti+1)− g(ti)) = 0(g(ti+1)− g(ti)) = 0 if ti < 0,

= f(ti)(1− 1) = 0 if ti ≥ 0,

so SI(f, dg) = 0; as this is true for every I,
∫
S f dg = 0. In the language of Lebesgue-Stieltjes integration,

we are calculating
∫
f− dνg where f−(x) = limy↑x f(y) for each x.

In my view, a theory of stochastic integration should insist on calculating integrals
∫
uuu dvvv in terms of

products uσ × (vτ − vσ) where σ ≤ τ (rather than uτ × (vτ − vσ), for instance). We are going to have to
return to this point from time to time, because it is one on which my presentation of the theory differs from
that of most authors.

Version of 29.10.24

614 Simple and order-bounded processes and bounded variation

In §613 I gave a definition of an integral with no very useful indication of where it might be applicable.
This section and the next two will be devoted to teasing out the basic case in which a Riemann-sum integral∫
S uuu dvvv is defined: uuu should be ‘moderately oscillatory’ (615E) and vvv should be an ‘integrator’ (616K).
Before we come to either of these notions, however, it will be helpful to have a firm grasp of three easier
concepts: ‘simple’ processes (614B), ‘order-bounded’ processes (614E) and processes ‘of bounded variation’
(614J-614K).

614B Proposition Suppose that S is a non-empty sublattice of T and uuu = 〈uσ〉σ∈S a simple fully
adapted process with a breakpoint string (τ0, . . . , τn).

(a) The starting value u↓ = limσ↓S uσ is defined, and [[σ < τ0]] ⊆ [[uσ = u↓]] for every σ ∈ S.
(b) Suppose that ψ : S2↑ → L0 is an adapted interval function such that

∫
S dψ is defined. Then

∫
S uuu dψ

is defined and equal to

u↓ × vτ0 +
∑n−1
i=0 uτi × (vτi+1

− vτi) + uτn × (v↑ − vτn)

where vτ =
∫
S∧τ dψ for τ ∈ S, and v↑ =

∫
S dψ.

c© 2019 D. H. Fremlin
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614Ib Simple and order-bounded processes and bounded variation 21

614C Corollary Suppose that S is a non-empty sublattice of T , uuu = 〈uσ〉σ∈S is a simple fully adapted
process with starting value u↓ and a breakpoint string (τ0, . . . , τn), and vvv = 〈vτ 〉τ∈S is a fully adapted
process such that v↑ = limτ↑S vτ and v↓ = limσ↓S vσ are defined. Then

∫
S uuu dvvv is defined and equal to

u↓ × (vτ0 − v↓) +
∑n−1
i=0 uτi × (vτi+1

− vτi) + uτn × (v↑ − vτn).

614D Proposition Let S be a sublattice of T , vvv = 〈vσ〉σ∈S a simple process, and uuu = 〈uσ〉σ∈S a fully
adapted process such that

∫
S uuu dvvv is defined. Then iivvv(uuu) is simple.

614E Order-bounded processes: Definitions Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully
adapted process.

(a) uuu is order-bounded if {uσ : σ ∈ S} is bounded above and below in L0. In this case, sup |uuu| =
supσ∈S |uσ|, taking the supremum in (L0)+, so that sup |uuu| = 0 if S = domuuu is empty.

(b) uuu is locally order-bounded if uuu↾S ∧ τ = 〈uσ〉σ∈S,σ≤τ is order-bounded for every τ ∈ S.

(c) Suppose that S is non-empty and that uuu is simple, with breakpoint string (τ0, . . . , τn) and starting
value u↓. Then uuu is order-bounded and sup |uuu| = |u↓| ∨ supi≤n |uτi |.

614F Proposition Let S be a sublattice of T .
(a)(i) If uuu is an order-bounded process with domain S, then uuu↾S ′ is order-bounded for any sublattice S ′

of S; in particular, uuu is locally order-bounded.
(ii) If uuu is a locally order-bounded process with domain S, then uuu↾S ′ is locally order-bounded for any

sublattice S ′ of S.
(b) Suppose that uuu = 〈uσ〉σ∈S is a locally order-bounded process. Set vτ = supσ∈S∧τ |uσ| for τ ∈ S.

Then vvv = 〈vτ 〉τ∈S is a non-decreasing fully adapted process.
(c) Write Mo-b =Mo-b(S) for the set of order-bounded fully adapted processes with domain S.
(i) If h : R → R is a Borel measurable function which is bounded on every bounded interval in R, then

h̄uuu ∈Mo-b for every uuu ∈Mo-b.
(ii) Mo-b is an f -subalgebra of

∏
σ∈S L

0(Aσ).

(iii) If z ∈ L0(A ∩
⋂
σ∈S Aσ) then zuuu ∈Mo-b, with sup |zuuu| = |z| × sup |uuu|, for every uuu ∈Mo-b.

(d) Write Mlob =Mlob(S) for the set of locally order-bounded fully adapted processes with domain S.
(i) If h : R → R is a Borel measurable function which is bounded on every bounded interval in R, then

h̄uuu ∈Mlob for every uuu ∈Mlob.
(ii) Mlob is an f -subalgebra of

∏
σ∈S L

0(Aσ).

614G Proposition Suppose that S is a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process.
(a) If A, B ⊆ S, A covers B and {uσ : σ ∈ A} is order-bounded, then {uσ : σ ∈ B} is order-bounded and

supσ∈B |uσ| ≤ supσ∈A |uσ|.
(b) If S ′ is a sublattice of S which covers S

(i) uuu is order-bounded iff uuu↾S ′ is order-bounded, and in this case sup |uuu| = sup |uuu↾S ′|,
(ii) uuu is locally order-bounded iff uuu↾S ′ is locally order-bounded.

614H Proposition Brownian motion, as described in 612T, is locally order-bounded.

614I Non-decreasing processes Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a non-decreasing fully
adapted process.

(a) vvv is a lattice homomorphism.

(b)

[[σ ≤ τ ]] ⊆ [[vσ = vσ∧τ ]] ∩ [[vτ = vσ∨τ ]] ⊆ [[vσ ≤ vτ ]]

for all σ, τ ∈ S.
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(c) If vvv is non-negative it is locally order-bounded.

(d) If S 6= ∅ and vvv is order-bounded, then∫
S
|dvvv| =

∫
S
dvvv = v↑ − v↓

where v↑ = supσ∈S vσ = limσ↑S vσ and v↓ = infσ∈S vσ = limσ↓S vσ.

(e) Suppose that w ∈ (L0)+. For each σ ∈ S, set wσ = sup{x : x ∈ L0(Aσ, x ≤ w}. Now www = 〈wσ〉σ∈S

is a non-negative non-decreasing fully adapted process.
|uuu| ≤ www whenever uuu = 〈uσ〉σ∈S is fully adapted and | supuuu| ≤ w.

(f) If h : R → R is non-decreasing, then h̄vvv is non-decreasing.

(g) If uuu is non-negative and fully adapted and
∫
S uuu dvvv is defined, then

∫
S uuu dvvv ≥ 0 and iivvv(uuu) is non-

decreasing.

614J Bounded variation: Theorem Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted
process. Then the following are equiveridical:

(i) vvv is expressible as the difference of two order-bounded non-negative non-decreasing fully
adapted processes,

(ii) {
∑n−1
i=0 |vτi+1

− vτi | : τ0 ≤ . . . ≤ τn in S} is bounded above in L0,
(iii)

∫
S |dvvv| is defined;

and in this case ∫
S
|dvvv| = sup{

∑n−1
i=0 |vτi+1

− vτi | : τ0 ≤ . . . ≤ τn in S}

if we count sup ∅ as 0.

614K Definitions Let S be a sublattice of T and vvv a fully adapted process with domain S.

(a) vvv is of bounded variation if it satisfies the conditions of Theorem 614J.

(b) vvv is locally of bounded variation if vvv↾S ∧ τ is of bounded variation for every τ ∈ S.

614L Proposition Let S be a sublattice of T and vvv a fully adapted process with domain S.
(a) If vvv is (locally) of bounded variation it is (locally) order-bounded.
(b)(i) If vvv is of bounded variation and S ′ is a sublattice of S, then vvv↾S ′ is of bounded variation and∫

S′ |dvvv| ≤
∫
S |dvvv|.

(ii) If vvv is locally of bounded variation and S ′ is a sublattice of S, then vvv↾S ′ is locally of bounded
variation.

(c) If τ ∈ S, then vvv is (locally) of bounded variation iff vvv↾S ∧ τ and vvv↾S ∨ τ are both (locally) of bounded
variation.

614M Proposition The Poisson process, as described in 612U, is locally of bounded variation.

614N Lemma Let S be a sublattice of T and ū ∈ (L0)+. Then {vvv : vvv ∈Mfa(S) is of bounded variation,∫
S |dvvv| ≤ ū} is closed in (L0)S for its product topology.

614O Cumulative variation Let S be a sublattice of T , and vvv a process with domain S which is
locally of bounded variation. Then v↑τ =

∫
S∧τ |dvvv| is defined for every τ ∈ S, and vvv↑ = 〈

∫
S∧τ v

↑
τ 〉τ∈S is fully

adapted. I will call vvv↑ the cumulative variation of vvv.

614P Proposition Let S be a sublattice of T , vvv = 〈vσ〉σ∈S a process which is locally of bounded
variation, and vvv↑ = 〈v↑τ 〉τ∈S its cumulative variation.

(a)(i) If σ ≤ τ in S, then
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614T Simple and order-bounded processes and bounded variation 23

v↑τ − v↑σ =
∫
S∩[σ,τ ]

|dvvv| ≥ |vτ − vσ| ≥ 0.

(ii) vvv↑ is non-negative and non-decreasing and has starting value 0 if S is not empty.
(iii) vvv↑ + vvv and vvv↑ − vvv are non-decreasing.
(iv) If S is non-empty, vvv has a starting value.
(v) vvv is of bounded variation iff limτ↑S v

↑
τ = sup |vvv↑| is defined, and in this case the limit is

∫
S |dvvv|.

(b) If τ ∈ S then, writing (vvv↾S ∧ τ)↑ and (vvv↾S ∨ τ)↑ for the cumulative variations of vvv↾S ∧ τ and vvv↾S ∨ τ ,

(vvv↾S ∧ τ)↑ = vvv↑↾S ∧ τ , (vvv↾S ∨ τ)↑ = vvv↑↾S ∨ τ − v↑τ1.

(c) Suppose that I ∈ I(S) is not empty and (τ0, . . . , τn) linearly generates the I-cells.
(i)

v↑τi+1
− v↑τi ≤ |vτi+1

− vτi |+ v↑max I − v↑min I − SI(1, |dvvv|)

for every i < n.
(ii) If vvv is of bounded variation, write w for

∫
S |dvvv| − SI(1, |dvvv|), and let v↓ be the starting value of vvv.

(α) If τ ∈ S ∧ τ0, then v↑τ ≤ |vτ − v↓|+ w.

(β) If i < n and τ ∈ S ∩ [τi, τi+1] then v
↑
τ − v↑τi ≤ |vτ − vτi |+ w.

(γ) If τ ∈ S ∨ τn then v↑τ − v↑τn ≤ |vτ − vτn |+ w.

614Q Proposition Let S be a sublattice of T , and Ŝ its covered envelope.
(a) Write Mbv =Mbv(S) for the set of fully adapted processes of bounded variation with domain S.

(i) h̄vvv ∈Mbv whenever vvv ∈Mbv and h : R → R is Lipschitz on every bounded interval.
(ii) Mbv is an f -subalgebra of Mo-b(S).
(iii) The space Msimp of simple processes with domain S is an f -subalgebra of Mbv closed under h̄ for

every Borel measurable h : R → R.

(iv) If vvv ∈Mfa(S) and v̂vv is its fully adapted extension to Ŝ, then
(α) vvv is non-decreasing iff v̂vv is non-decreasing,
(β) vvv is of bounded variation iff v̂vv is of bounded variation, and in this case

∫
Ŝ |dv̂vv| =

∫
S |dvvv| and the

cumulative variation v̂vv↑ of v̂vv is the fully adapted extension of the cumulative variation vvv↑ of vvv.
(b) Write Mlbv = Mlbv(S) for the set of fully adapted processes with domain S which are locally of

bounded variation.
(i) If vvv ∈Mlbv(S) then vvv↾S ′ is locally of bounded variation for every sublattice S ′ of S.
(ii) h̄vvv ∈Mlbv whenever vvv ∈Mlbv and h : R → R is Lipschitz on every bounded interval.
(iii) Mlbv is an f -subalgebra of Mlob(S).
(iv) If vvv ∈ Mfa(S) then vvv is locally of bounded variation iff it is expressible as the difference of two

non-negative non-decreasing fully adapted processes.

(v) If vvv ∈ Mfa(S), then vvv is locally of bounded variation iff its fully adapted extension to Ŝ is locally
of bounded variation, and in this case the cumulative variation of v̂vv is the fully adapted extension of the
cumulative variation of vvv.

614R Lemma If I ∈ I(T ) is non-empty and uuu = 〈uσ〉σ∈I , vvv = 〈vσ〉σ∈I are fully adapted processes, then

|SI(uuu, dvvv)| ≤ min(sup |uuu| ×
∫
I
|dvvv|, sup |vvv| × (

∫
I
|duuu|+ 2 sup |uuu|).

614S Proposition Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S two processes of bounded
variation with domain S. Then

∫
S uuu dvvv is defined and

|
∫
S
uuu dvvv| ≤ min(sup |uuu| ×

∫
S
|dvvv|, sup |vvv| × (

∫
S
|duuu|+ 2 sup |uuu|)).

614T Proposition Let S be a sublattice of T , and uuu, vvv fully adapted processes with domain S such
that uuu is order-bounded, vvv is of bounded variation and

∫
S uuu dvvv is defined. Then the indefinite integral iivvv(uuu)

is of bounded variation, and
∫
S |d(iivvv(uuu))| ≤ sup |uuu| ×

∫
S |dvvv|.
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614U Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Σt〉t≥0 a filtration of σ-subalgebras
of Σ such that every µ-negligible set belongs to every Σt. Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be the as-
sociated stochastic integration structure as in 612H; for a stopping time h : Ω → [0,∞] let h• be the
corresponding member of T . Suppose that 〈Xt〉t≥0 is a progressively measurable process on Ω, with associ-
ated fully adapted process xxx = 〈xτ 〉τ∈Tf

.
(a) If {Xs(ω) : s ≥ 0} is bounded for almost every ω ∈ Ω, then xxx is order-bounded.
(b) If s 7→ Xs(ω) : [0,∞[ → R is of bounded variation for almost every ω ∈ Ω, then xxx is of bounded

variation.

Version of 28.10.21/9.8.22

615 Moderately oscillatory processes

I come now to the class of integrands in the basic theorem 616K, the ‘moderately oscillatory’ processes.
I have chosen a path which starts with a natural linear space topology on the space of order-bounded
processes, the ucp topology (615B). This gives a straightforward definition of the space of moderately
oscillatory processes (615E) with their elementary properties (615F-615H). When the domain is finitely full,
we have an alternative definition in terms of convergence along monotonic sequences of stopping times (615I-
615N). Classical stochastic processes with càdlàg sample paths give rise to locally moderately oscillatory
processes (615P).

615B The ucp topology Let S be a sublattice of T .

(a) For uuu ∈Mo-b(S), set

θ̂(uuu) = θ(sup |uuu|).

(b) θ̂ is an F-norm on Mo-b(S).

(c) θ̂ defines a metrizable linear space topology. I will call this the ucp topology on Mo-b(S) and the
associated uniformity the ucp uniformity on Mo-b(S).

615C Proposition Let S be a sublattice of T , and give Mo-b =Mo-b(S) its ucp topology.
(a) If h : R → R is continuous, then h̄uuu ∈ Mo-b for every uuu ∈ Mo-b, and uuu 7→ h̄uuu : Mo-b → Mo-b is

continuous.
(b)(i) (uuu,vvv) 7→ uuu× vvv :Mo-b ×Mo-b →Mo-b is continuous.

(ii) uuu 7→ sup |uuu| :Mo-b → L0 is uniformly continuous.
(c) Mo-b is complete as linear topological space.

615D Lemma Let S be a non-empty finitely full sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted
process.

(a) If γ > 0 then

µ̄(supτ∈S [[|uτ | > γ]]) = supτ∈S µ̄[[|uτ | > γ]].

(b) If uuu is order-bounded, θ(sup |uuu|) ≤ 2
√

supσ∈S θ(uσ).

615E Definition Let S be a sublattice of T .

(a) I will call a process with domain S moderately oscillatory if it is in the closure of Mbv(S) in
Mo-b(S) for the ucp topology.

(b) A process uuu with domain S is locally moderately oscillatory if uuu↾S ∧ τ is moderately oscillatory
for every τ ∈ S.

Remark The definitions imply directly that (locally) moderately oscillatory processes are (locally) order-
bounded. Of course processes of bounded variation (e.g., simple processes, 614Q(a-iii), and in particular
constant processes) are moderately oscillatory, and processes which are locally of bounded variation are
locally moderately oscillatory.

c© 2018 D. H. Fremlin
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615F Proposition Let S be a sublattice of T , and Ŝ its covered envelope.
(a) Write Mmo for the set of moderately oscillatory processes with domain S.
(i) If S ′ is a sublattice of S then uuu↾S ′ is moderately oscillatory for every uuu ∈Mmo.
(ii) If h : R → R is continuous, then h̄uuu ∈Mmo for every uuu ∈Mmo.
(iii) Mmo is an f -subalgebra of Mo-b =Mo-b(S).
(iv) Mmo is closed in Mo-b(S) for the ucp topology, so is complete for the ucp uniformity.
(v) If τ ∈ S, then a fully adapted process uuu with domain S is moderately oscillatory iff uuu↾S ∧ τ and

uuu↾S ∨ τ are both moderately oscillatory.
(vi) If uuu ∈Mmo, then its fully adapted extension to Ŝ is moderately oscillatory.

(b) Write Mlmo for the set of locally moderately oscillatory processes with domain S.
(i) Mmo ⊆Mlmo.
(ii) If h : R → R is continuous, then h̄uuu ∈Mlmo for every uuu ∈Mlmo.
(iii) Mlmo is an f -subalgebra of the space Mlob = Mlob(S) of locally order-bounded processes with

domain S.
(iv) If τ ∈ S, then a fully adapted process uuu with domain S is locally moderately oscillatory iff uuu↾S ∧ τ

and uuu↾S ∨ τ are both locally moderately oscillatory.
(v) If uuu ∈Mlmo, then its fully adapted extension ûuu to Ŝ is locally moderately oscillatory.

615G Theorem Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process.
(a) Suppose that uuu is moderately oscillatory and A ⊆ S is non-empty and upwards-directed. Then

w = limσ↑A uσ is defined. Setting A∗ = {ρ : ρ ∈ S, supσ∈A [[ρ ≤ σ]] = 1},

limσ↑A supρ∈A∗∨σ |uρ − w| = 0.

(b) Suppose that uuu is locally moderately oscillatory and A ⊆ S is non-empty and downwards-directed.
Then w = limσ↓A uσ is defined. Setting A∗ = {ρ : ρ ∈ S, supσ∈A [[σ ≤ ρ]] = 1},

limσ↓A supρ∈A∗∧σ |uρ − w| = 0.

615H Corollary Let S be a non-empty sublattice of T , Ŝ its covered envelope, uuu = 〈uσ〉σ∈S a locally

moderately oscillatory process, and ûuu = 〈ûσ〉σ∈Ŝ its fully adapted extension to Ŝ. Then uuu and ûuu have
starting values, which are the same.

615I Definition Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process. I will say that uuu
is´

´
-convergent if

(́
´
) limn→∞ uσn

is defined whenever 〈σn〉n∈N is a sequence in S which is either non-

increasing or non-decreasing.

615J Lemma Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process. Then uuu is
´
´
-convergent.

615K Lemma Let S be a finitely full sublattice of T and uuu = 〈uσ〉σ∈S an ´
´
-convergent process. Then

uuu is order-bounded.

615L Lemma Let S be a non-empty finitely full sublattice of T and uuu = 〈uσ〉σ∈S an ´
´
-convergent

process. Suppose that A ⊆ S is non-empty and downwards-directed. Then w = limσ↓A uσ is defined.
Setting A∗ = {ρ : ρ ∈ S, supσ∈A [[σ ≤ ρ]] = 1},

limσ↓A supρ∈A∗∧σ |uρ − w| = 0.

615M Construction Let S be a finitely full sublattice of T with a greatest member, uuu = 〈uσ〉σ∈S an
´
´
-convergent process, and δ > 0. Then there are sequences 〈Di〉i∈N, 〈yi〉i∈N, 〈di〉i∈N, a family 〈ciσ〉i∈N,σ∈S

and a process ũuu = 〈ũσ〉σ∈S with the following properties.
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26 The Riemann-sum integral 615M

(a) D0 = S; for every i ∈ N, maxS ∈ Di ⊆ S, Di is closed under ∧, yi = limσ↓Di
uσ and

Di+1 = {σ : σ ∈ S, [[σ < maxS]] ⊆ [[|uσ − yi| ≥ δ]]

and there is a σ′ ∈ Di such that σ′ ≤ σ}.

(b) yi ∈
⋂
σ∈Di

L0(Aσ) for every i ∈ N.

(c)(i) For every i ∈ N,

di = supσ∈Di
[[σ < maxS]],

di ∈
⋂
σ∈Di

Aσ,
di+1 ⊆ di,
di+1 ⊆ [[|yi+1 − yi| ≥ δ]],
1 \ di ⊆ [[yi = umaxS ]] ∩ [[yi = yi+1]].

(ii) infi∈N di = 0.
(d)(i) If σ ∈ S and i ∈ N,

ciσ = supτ∈Di
[[τ ≤ σ]], ci+1,σ ⊆ ciσ, [[σ = maxS]] ⊆ ciσ ⊆ [[σ = maxS]] ∪ di.

(ii) If i ∈ N and σ ∈ Di then ciσ = 1; c0σ = 1 for every σ ∈ S.
(iii) If σ, σ′ in S then [[σ ≤ σ′]] ∩ ciσ ⊆ ciσ′ for every i ∈ N.
(iv) infi∈N ciσ = [[σ = maxS]] for every σ ∈ S.
(v) If σ ∈ S and i ∈ N then ciσ \ ci+1,σ ⊆ [[|uσ − yi| < δ]].

(e) If σ ∈ S then

ciσ \ ci+1,σ ⊆ [[ũσ = yi]]

for every i ∈ N, and [[σ = maxS]] ⊆ [[ũσ = umaxS ]].
(f) ũuu is fully adapted, sup |ũuu| ≤ sup |uuu| and sup |uuu− ũuu| ≤ δχ1.
(g) ũuu is of bounded variation.

615N Theorem Let S be a finitely full sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process. Then
the following are equiveridical:

(i) uuu is moderately oscillatory;
(ii) uuu is ´

´
-convergent;

(iii) 〈uσn
〉n∈N is Cauchy for every monotonic sequence 〈σn〉n∈N in S;

(iv) for every ǫ > 0 there is an m ≥ 1 such that whenever σ0 ≤ . . . ≤ σm in S there is a j < m such that
θ(uσj

− uσj+1
) ≤ ǫ.

615O Proposition Suppose that S is a sublattice of T , uuu ∈ Mmo(S) and ǫ > 0. Then there is a
uuu′ ∈Mbv(S) such that θ(sup |uuu′ − uuu|) ≤ ǫ and sup |uuu′| ≤ sup |uuu|.

615P Where moderately oscillatory processes come from There is an easy condition on the
structure in 612H which will ensure that the process generated there is moderately oscillatory.

Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Σt〉t≥0 a filtration of σ-subalgebras of
Σ such that every µ-negligible set belongs to every Σt. Let (A, µ̄) be the measure algebra of µ and
set At = {E• : E ∈ Σt} for each t ≥ 0; then we have a real-time stochastic integration structure
(A, µ̄, [0,∞[ , 〈Ar〉t≥0, T , 〈Aτ 〉τ∈T ). Let 〈Xt〉t≥0 be a progressively measurable process on Ω, and xxx =
〈xτ 〉τ∈Tf

the corresponding fully adapted process as described in 612H. Suppose that limn→∞Xtn(ω) is
defined in R for every bounded monotonic sequence 〈tn〉n∈N in [0,∞[ and every ω ∈ Ω. Then xxx is locally
moderately oscillatory.

615Q Proposition The identity process, Brownian motion and the Poisson process are all locally mod-
erately oscillatory.

615R Proposition Let S be a sublattice of T and uuu a process of bounded variation with domain S.
(a) If vvv ∈Mmo =Mmo(S) then

∫
S uuu dvvv is defined and |

∫
S uuu dvvv| ≤ (

∫
S |duuu|+ 2 sup |uuu|)× sup |vvv|.

(b) iivvv(uuu) ∈ Mmo for every vvv ∈ Mmo, and vvv 7→ iivvv(uuu) : Mmo → Mmo is continuous for the ucp topology
on Mmo.
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Version of 31.1.23/3.2.23

616 Integrating interval functions

In this section I present a fundamental theorem on the existence of Riemann-sum integrals (616M),
dealing with the case of moderately oscillatory integrands and integrating interval functions (616F). The
most important integrating interval functions are those defined by integrators (616Fc, 616I). The integrators
on a lattice S form an f -subalgebra of the space of moderately oscillatory processes with domain S (616P).

616B Definition Let S be a sublattice of T . If ψ is an adapted interval function defined on S2↑, the
capped-stake variation set of ψ over S is the set QS(dψ) of Riemann sums SI(uuu, dψ) where I ∈ I(S),
uuu is a fully adapted process with domain I and sup |uuu| ≤ χ1.

If vvv, www are fully adapted processes defined on S then, corresponding to the basic interval functions of
613F, I will write QS(dvvv), QS(dvvvdwww), QS(|dvvv|) for QS(d(∆vvv)), QS(d(∆vvv ×∆www)) and QS(d|∆vvv|).

616C Lemma Let S be a non-empty sublattice of T , ψ an adapted interval function defined on S2↑,
and z an element of L0(A). Then the following are equiveridical:

(i) z ∈ QS(dψ);
(ii) there are τ0 ≤ . . . ≤ τn in S and u0, . . . , un−1 such that ui ∈ L∞(Aτi) and |ui| ≤ χ1 for every i < n

and z =
∑n−1
i=0 ui × ψ(τi, τi+1);

(iii) there are τ0 ≤ . . . ≤ τn in S and an order-bounded process uuu = 〈uσ〉σ∈S such that sup |uuu| ≤ χ1

and z =
∑n−1
i=0 uτi × ψ(τi, τi+1).

616D Lemma Let S be a sublattice of T and ψ, ψ′ adapted interval functions defined on S2↑.
(a) QS(dψ) =

⋃
I∈I(S)QI(dψ).

(b) QS(d(αψ)) = αQS(dψ) for every α ∈ R.
(c) QS(d(ψ + ψ′)) ⊆ QS(dψ) +QS(dψ

′).
(d) If S ′ is a sublattice of S then QS′(dψ) ⊆ QS(dψ).
(e) If w ∈ QS(dψ), z ∈ L0(A ∩

⋂
σ∈S Aσ) and |z| ≤ χ1, then z × w ∈ QS(ψ).

(f) If τ ∈ S then QS∧τ (dψ) +QS∨τ (dψ) ⊆ QS(dψ).

616E Lemma Let S be a sublattice of T , and ψ an adapted interval function on S. Then the following
are equiveridical:

(i) QS(dψ) is topologically bounded;
(ii) for every ǫ > 0 there is a δ > 0 such that θ(SI(uuu, dψ)) ≤ ǫ whenever I ∈ I(S), uuu ∈ Mfa(I) and

θ(sup |uuu|) ≤ δ;
(iii) for every ǫ > 0 there is a δ > 0 such that θ(SI(uuu, dψ)) ≤ ǫ whenever I ∈ I(S), uuu ∈ Mo-b(S) and

θ(sup |uuu|) ≤ δ.

616F Definition Let S be a sublattice of T and ψ : S2↑ → L0 a function.

(a) ψ is an integrating interval function on S if

(α) ψ is a strictly adapted interval function;

(β) writing Ŝ for the covered envelope of S and ψ̂ : Ŝ2↑ → L0 for the strictly adapted extension

of ψ,
∫
Ŝ dψ̂ =

∫
Ŝ 1 dψ̂ is defined;

(γ) QŜ(dψ̂) is topologically bounded in L0.

(b) ψ is a locally integrating interval function if ψ↾(S ∧ τ)2↑ is an integrating interval function for
every τ ∈ S.

(c) A fully adapted process vvv defined on S is an integrator if QS(dvvv) is topologically bounded in L0,
and a local integrator if vvv↾S ∧ τ is an integrator for every τ ∈ S.

c© 2019 D. H. Fremlin
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28 The Riemann-sum integral 616Fc

I will writeMigtr(S) for the set of integrators with domain S, andMligtr(S) for the set of local integrators
with domain S.

Remarks Evidently a strictly adapted interval function ψ on a sublattice S is an integrating interval
function iff its adapted extension on the covered envelope of S is an integrating interval function.

616G Proposition Let S be a sublattice of T and ψ, ψ′ integrating interval functions on S.
(a) ψ + ψ′ and αψ are integrating interval functions on S for every α ∈ R.
(b) ψ is a locally integrating interval function.

616H Lemma Suppose that

ǫ > 0, γ ≥ 0, m ≥ 1, mǫ ≥ 2γ,

r ≥ m, 1−
r!

rm(r−m)!
≤ 1

2ǫ
m, k ≥ 1, 2kǫm ≥ ǫ, n = rk.

Let S be a sublattice of T and ψ an adapted interval function with domain S2↑.
(a) Let 〈ai〉i<r be a family in A such that µ̄ai ≥ ǫ for every i < r. Then there is a J ∈ [r]m such that

µ̄(infi∈J ai) ≥
1
2ǫ
m.

(b) Let τ0 ≤ . . . ≤ τr in S be such that sup{θ(w) : w ∈ QS∩[τi,τi+1](dψ)} > 4ǫ for every i < r, while z ∈

L0(Aτ0) is such that µ̄[[|z| ≥ γ]] ≤ ǫ. Then there is a w ∈ QS(dψ) such that µ̄[[|z + w| ≥ γ]] ≥ µ̄[[|z| ≥ γ]]+ 1
2ǫ
m.

(c) Let τ0 ≤ . . . ≤ τn in S be such that sup{θ(w) : w ∈ QS∩[τi,τi+1](dψ)} > 4ǫ for every i < n. Then there
is a w ∈ QS(dψ) such that µ̄[[|w| ≥ γ]] ≥ ǫ.

(d) Let τ0 ≤ . . . ≤ τn in S be such that θ(ψ(τi, τi+1)) > 4ǫ for every i < n. Then there is a w ∈ QS(dψ)
such that µ̄[[|w| ≥ γ]] ≥ ǫ.

616I Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a (local) integrator.
(a) The fully adapted extension of vvv to the covered envelope of S is a (local) integrator.
(b) vvv is (locally) moderately oscillatory, therefore (locally) order-bounded.
(c) ∆vvv is a (locally) integrating interval function.

616J Theorem Let S be a sublattice of T and ψ an integrating interval function with domain S2↑. Set

Mψ = {uuu : uuu ∈Mo-b(S),
∫
S
uuu dψ is defined}.

Then Mψ is a closed linear subspace of Mo-b(S) and we have an indefinite integral operator iiψ : Mψ →
Migtr(S) which is linear and continuous for the ucp topology on Mo-b(S).

616K Theorem Let S be a sublattice of T , uuu a moderately oscillatory process with domain S, and vvv an
integrator with domain S. Then

∫
S uuu dvvv is defined, and iivvv(uuu) is an integrator.

616L Corollary Let S be a sublattice of T . If uuu is a locally moderately oscillatory process and vvv a fully
adapted process which is locally of bounded variation, both with domain S, then iivvv(uuu) is locally of bounded
variation.

616M Theorem Let S be a sublattice of T and ψ an integrating interval function on S. Write vvv for
iiψ(1) = 〈

∫
S∧τ dψ〉τ∈S . Then

∫
S uuu dψ is defined and equal to

∫
S uuu dvvv whenever uuu is a moderately oscillatory

process with domain S.

616N Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a (local) integrator. If f : R → R is convex,
then f̄vvv is a (local) integrator.

616O Corollary If vvv is a (local) integrator and f : R → R is a function, absolutely continuous on every
bounded interval in R, such that its derivative f ′ has bounded variation on every bounded interval, then f̄vvv
is a (local) integrator.
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616P Theorem Let S be a sublattice of T .
(a) Migtr(S) is an f -subalgebra of the space Mmo(S) of moderately oscillatory processes with domain S.
(b)(i) Constant processes are integrators.
(ii) If vvv ∈Migtr(S) then vvv↾S

′ ∈Migtr(S
′) for any sublattice S ′ of S. In particular, vvv is a local integrator.

(iii) Suppose that vvv ∈ Mfa(S) and for every ǫ > 0 there is a vvv′ ∈ Migtr(S) such that µ̄[[vvv 6= vvv′]] ≤ ǫ.
Then vvv ∈Migtr(S).

(iv) If vvv = 〈vσ〉σ∈S ∈Migtr(S) and z ∈ L0(A ∩
⋂
σ∈S Aσ), then zvvv ∈Migtr(S).

(v) If vvv ∈Mfa(S) then vvv ∈Migtr(S) iff vvv↾S ∧ τ ∈Migtr(S ∧ τ) and vvv↾S ∨ τ ∈Migtr(S ∨ τ).

616Q Corollary Let S be a sublattice of T .
(a) Mligtr(S) is an f -subalgebra of the space Mlmo(S) of locally moderately oscillatory processes with

domain S.
(b)(i) If vvv ∈Mligtr(S) then vvv↾S ′ ∈Mligtr(S ′) for any sublattice S ′ of S.
(ii) If vvv ∈Mligtr(S) and z ∈ L0(A ∩

⋂
σ∈S Aσ), then zvvv ∈Mligtr(S).

(c) Suppose that uuu ∈Mlmo(S) and vvv ∈Mligtr(S).
(i) The indefinite integral iivvv(uuu) belongs to Mligtr(S).

(ii) Let Ŝ be the covered envelope of S, and ûuu, v̂vv the fully adapted extensions of uuu, vvv to Ŝ. Then
iivvv(uuu) = iiv̂vv(ûuu)↾S.

(d) Suppose that vvv ∈ Mfa(S) and S ′ is a covering ideal of S such that vvv↾S ′ ∈ Mligtr(S ′). Then vvv ∈
Mligtr(S).

616R Proposition Suppose that S is a sublattice of T , and that a fully adapted process vvv with domain
S is (locally) of bounded variation.

(a) vvv is a (local) integrator.
(b) Now suppose that vvv is non-decreasing and that uuu is a non-negative moderately oscillatory process

with domain S.
(i) If vvv is of bounded variation then

∫
S uuu dvvv ≥ 0.

(ii) If vvv is locally of bounded variation then iivvv(uuu) is non-decreasing.

616S Theorem Let S be a sublattice of T and vvv a process of bounded variation with domain S. Then
|∆vvv| is an integrating interval function.

616T Corollary Let S be a sublattice of T , and uuu, vvv fully adapted processes with domain S.
(a) If uuu is moderately oscillatory and vvv is of bounded variation, then

∫
S uuu |dvvv| is defined and equal to∫

S uuu dvvv
↑, where vvv↑ is the cumulative variation of vvv.

(b) If uuu is locally moderately oscillatory and vvv is locally of bounded variation, then the indefinite integrals
ii|∆vvv|(uuu) and iivvv↑(uuu) are equal.

Mnemonic |dvvv| ∼ dvvv↑.

Version of 10.11.21

617 Integral identities and quadratic variations

We come now to proper calculus, with change-of-variable theorems. 617D-617E is a stochastic-calculus
version of the result that if ν = fµ is an indefinite-integral measure, then

∫
g dν =

∫
g × f dµ (235K).

Similar formulae describe the cumulative variation of an indefinite integral with respect to a process of
bounded variation (617G). The next theme is ‘quadratic variation’ (617H). Given two integrators vvv and www,
the interval function corresponding to dvvvdwww gives the same integrals as a process [vvv

∗
www] (617I) which is locally

of bounded variation. In particular, (dvvv)2 mimics dvvv∗ where the quadratic variation vvv∗ is a non-decreasing
process. Based on this, we have a second change-of-variable theorem (617P-617Q), using approximations of
moderately oscillatory processes by simple processes (617B).

617B Lemma Let S be a finitely full sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process.
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30 The Riemann-sum integral 617B

(a) For each non-empty I ∈ I(S) there is a unique simple process uuuI = 〈uIσ〉σ∈S such that uuuI has a
breakpoint string in I, uuuI and uuu agree on I, and [[σ < min I]] ⊆ [[uIσ = 0]] for every σ ∈ S.

(b) Complete the definition in (a) by setting u∅σ = 0 for every σ ∈ S. For every integrator vvv with domain
S,

(i) the indefinite integral iivvv(uuu) is the limit limI↑I(S) iivvv(uuuI) for the ucp topology,

(ii)
∫
S uuu dvvv = limI↑I(S)

∫
S uuuIdvvv in L0.

617D Theorem Let S be a sublattice of T , ψ an integrating interval function on S, and uuu, zzz moderately
oscillatory processes with domain S.

(a) zzzψ, as defined in 613D, is an integrating interval function on S.
(b) Set www = iiψ(zzz). Then www is an integrator and∫

S
uuu d(zzzψ) =

∫
S
uuu× zzz dψ =

∫
S
uuu dwww.

617E Corollary Let S be a sublattice of T , uuu, zzz moderately oscillatory processes with domain S, and
vvv an integrator with domain S. Set www = iivvv(zzz). Then

∫
S uuu dwww =

∫
S uuu× zzz dvvv.

617F Lemma Let S be a sublattice of T , zzz a moderately oscillatory process and vvv a process of bounded
variation, both with domain S. Write www for iivvv(zzz). Then www is of bounded variation and

∫
S |dwww| =

∫
S |zzz||dvvv|.

617G Theorem Let S be a sublattice of T , uuu and zzz moderately oscillatory processes and vvv a process of
bounded variation, all with domain S. Write www for iivvv(zzz), and vvv

↑, www↑ for the cumulative variations of vvv and
www. Then ∫

S
uuu dwww↑ =

∫
S
uuu |dwww| =

∫
S
uuu× |zzz| |dvvv| =

∫
S
uuu× |zzz| dvvv↑.

Mnemonic d(iivvv(zzz)
↑) ∼ |zzz|dvvv↑.

617H Quadratic variation Let S be a sublattice of T , and vvv, www local integrators with domain S.

(a)(i) If vvv andwww are integrators, then the strictly adapted interval function ∆vvv×∆www on S is an integrating
interval function.

(ii) In any case, ∆vvv ×∆www is a locally integrating interval function.

(b) The covariation of vvv and www is the indefinite integral

[vvv
∗
www] = ii∆vvv×∆www(1).

When www = vvv, vvv∗ = [vvv
∗
vvv] = ii(∆vvv)2(1) is the quadratic variation of vvv.

(c) Note that as

(vvv,www) 7→ ∆vvv ×∆www

is bilinear, so is (vvv,www) 7→ [vvv
∗
www].

617I Theorem Let S be a sublattice of T , vvv, www two integrators and uuu a moderately oscillatory process,
all with domain S. Then [vvv

∗
www] is an integrator and

∫
S
uuu d[vvv

∗
www],

∫
S
uuu d(vvv ×www)−

∫
S
uuu× vvv dwww −

∫
S
uuu×www dvvv,

∫
S
uuu dvvvdwww

are defined and equal.

617J Corollary Let S be a non-empty sublattice of T and vvv an integrator with domain S. Let vvv∗ be
the quadratic variation of vvv.

(a) vvv∗ is an integrator, and if uuu is a moderately oscillatory process with domain S then
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∫
S
uuu dvvv∗,

∫
S
uuu d(vvv2)− 2

∫
S
uuu× vvv dvvv,

∫
S
uuu (dvvv)2

are defined and equal.
(b)(i) Expressing vvv∗ as 〈v∗τ 〉τ∈S , limτ↓S v

∗
τ = 0.

(ii) vvv∗ is non-negative, non-decreasing and order-bounded.
(c) If www is another integrator with domain S, then [vvv

∗
www] is of bounded variation.

617K Remarks Let S be a sublattice of T and vvv, www local integrators with domain S.

(a)

ii[vvv ∗
www](uuu) = iivvv×www(uuu)− iiwww(uuu× vvv)− iivvv(uuu×www)

for every locally moderately oscillatory uuu with domain S.

[vvv
∗
www] = iivvv×www(1)− iiwww(vvv)− iivvv(www);

vvv∗ = iivvv2(1)− 2iivvv(vvv).

If S is not empty,

[vvv
∗
www] = vvv ×www − (v↓ × w↓)1− iiwww(vvv)− iivvv(www), vvv∗ = vvv2 − v2↓1− 2iivvv(vvv),

where v↓ and w↓ are the starting values of vvv and www.

(b) [vvv↾S ∧ τ ∗
www↾S ∧ τ ] = [vvv

∗
www]↾S ∧ τ for every τ ∈ S.

[vvv↾S ∨ τ ∗
www↾S ∨ τ ] = ([vvv

∗
www]↾S ∨ τ)− z1

where z =
∫
S∧τ dvvvdwww ∈ L0(Aτ ).

vvv∗↾S ∨ τ = v∗τ1+ (vvv↾S ∨ τ)∗

where v∗τ =
∫
S∧τ (dvvv)

2.

(c) A perfectly elementary fact is that if vvv − uuu is constant then uuu∗ = vvv∗.

617L Corollary Let S be a sublattice of T and vvv a local integrator with domain S. Let vvv∗ be the
quadratic variation of vvv. Then vvv∗ is non-negative, non-decreasing and locally of bounded variation. If www is
another local integrator with domain S, then [vvv

∗
www] is locally of bounded variation.

617M Proposition Let S be a sublattice of T and vvv, www local integrators with domain S. Then [vvv
∗
www]2 ≤

vvv∗ ×www∗.

617N Proposition Let S be a sublattice of T , and vvv, www local integrators with domain S. Let v̂vv, ŵww be
their fully adapted extensions to the covered envelope Ŝ of S. Then [v̂vv

∗
ŵww] is the fully adapted extension of

[vvv
∗
www] to Ŝ. In particular, the quadratic variation of v̂vv is the fully adapted extension to Ŝ of the quadratic

variation of vvv.

617O Examples Suppose that T = [0,∞[.

(a) Let ιιι be the identity process. Then its quadratic variation ιιι∗ is zero.

(b) Let vvv be the standard Poisson process. Then vvv is equal to its quadratic variation vvv∗.

617P Lemma Let S be a full sublattice of T with a greatest element, zzz a moderately oscillatory process
and vvv, vvv′ integrators, all with domain S. Set www = iivvv(zzz). Then

∫
S dwww dvvv

′ =
∫
S zzz dvvv dvvv

′.

617Q Theorem Let S be a sublattice of T , uuu, zzz and zzz′ locally moderately oscillatory processes with
domain S, and vvv, vvv′ local integrators with domain S. Set www = iivvv(zzz), www

′ = iivvv′(zzz
′).
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(a)(i) [www
∗
vvv′] = ii[vvv ∗

vvv′](zzz), ii[www ∗
vvv′](uuu) = ii[vvv ∗

vvv′](uuu× zzz).

(ii) [www
∗
www′] = ii[vvv ∗

vvv′](zzz × zzz′), ii[www ∗
www′](uuu) = ii[vvv ∗

vvv′](uuu× zzz × zzz′).

(iii) www∗ = iivvv∗(zzz
2), iiwww∗(uuu) = iivvv∗(uuu× zzz2).

(b) If uuu, zzz and zzz′ are moderately oscillatory and vvv, vvv′ are integrators,∫
S
uuu dwww dwww′ =

∫
S
uuu× zzz × zzz′dvvv dvvv′,

∫
S
uuu dwww∗ =

∫
S
uuu× zzz2dvvv∗.

617R Proposition Let S be a sublattice of T and vvv a process with domain S which is locally of bounded
variation. Then vvv and its cumulative variation have the same quadratic variation.

Mnemonic |dvvv|2 = dvvv2.

Version of 8.9.12/26.8.22

618 Oscillations and jump-free processes

For the work so far, moderately oscillatory processes have been sufficiently regular for our needs. But
for the next development (Itô’s formula, 619C), we are going to need a new concept. In 618B I formulate a
notion of ‘jump-free’ process corresponding to the idea of ‘process with continuous sample paths’ (618H).

618B Definitions (a) Let I be a finite sublattice of T , and uuu a fully adapted process defined (at least)
on I. The I-oscillation of uuu is

OscllnI(uuu) = supe∈Sti0(I) ∆e(1, |duuu|).

Note that if (τ0, . . . , τn) linearly generates the I-cells, then OscllnI(uuu) = supi<n |uτi+1
− uτi |.

(b) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S an order-bounded process. Set ū = sup |uuu|.

(i) OscllnJ(uuu) ≤ 2ū for every J ∈ I(S). We set

Osclln∗I(uuu) = supJ∈I(S),J⊇I OscllnJ(uuu) ≤ 2ū

for every I ∈ I(S).

(ii) The residual oscillation Osclln(uuu) is infI∈I(S) Osclln∗I(uuu) ≤ 2ū. uuu is jump-free if Osclln(uuu) = 0.

(iii) uuu is locally jump-free if uuu↾S ∧ τ is jump-free for every τ ∈ S.

(iv) Osclln∗∅(uuu) = sup{|uσ′ − uσ| : σ, σ
′ ∈ S}.

(v) Osclln(uuu) is the limit limI↑I(S) Osclln∗I(uuu) and uuu is jump-free iff

infI∈I(S) θ(Osclln∗I(uuu)) = limI↑I(S) θ(Osclln∗I(uuu)) = 0.

(c) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S order-bounded processes.

(i) For any α ∈ R,

OscllnI(αuuu) = |α|OscllnI(uuu) for every I ∈ I(S),

Osclln∗I(αuuu) = |α|Osclln∗I(uuu) for every I ∈ I(S),

Osclln(αuuu) = |α|Osclln(uuu).

(ii)

OscllnI(uuu+ vvv) ≤ OscllnI(uuu) + OscllnI(vvv) for every I ∈ I(S),

Osclln∗I(uuu+ vvv) ≤ Osclln∗I(uuu) + Osclln∗I(vvv) for every I ∈ I(S),

Osclln(uuu+ vvv) ≤ Osclln(uuu) + Osclln(vvv).

Measure Theory (abridged version)



618I Oscillations and jump-free processes 33

(iii) Writing ū, v̄ for sup |uuu| and sup |vvv|,

OscllnI(uuu× vvv) ≤ v̄ ×OscllnI(uuu) + ū×OscllnI(vvv) for every I ∈ I(S),

Osclln∗I(uuu× vvv) ≤ v̄ ×Osclln∗I(uuu) + ū×Osclln∗I(vvv) for every I ∈ I(S),

Osclln(uuu× vvv) ≤ v̄ ×Osclln(uuu) + ū×Osclln(vvv).

618C Lemma Let S be a sublattice of T and uuu = 〈uσ〉σ∈S an order-bounded fully adapted process. Let
I be a non-empty finite sublattice of S; suppose that (τ0, . . . , τn) linearly generates the I-cells.

(a) Set τ−1 = inf S and τn+1 = supS and

w = sup{|uσ′ − uσ| : σ, σ
′ ∈ S and there is an i

such that − 1 ≤ i ≤ n and τi ≤ σ ≤ σ′ ≤ τi+1},

w′ = sup{|uσ′ − uσ| : σ, σ
′ ∈ S and there is an i

such that − 1 ≤ i ≤ n and σ, σ′ ∈ [τi, τi+1]}.

Then w = w′ = Osclln∗I(uuu).
(b) Now suppose that uuu is non-decreasing. Set u↓ = infσ∈S uσ and u↑ = supσ∈S uσ. Then

Osclln∗I(uuu) = (uτ0 − u↓) ∨ supi<n(uτi+1
− uτi) ∨ (u↑ − uτn).

618D Proposition Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a locally order-bounded process.
(a) Set vτ = Osclln(uuu↾S ∧ τ) for τ ∈ S. Then vvv = 〈vτ 〉τ∈S is a non-decreasing fully adapted process.
(b) If uuu is order-bounded, then
(i) Osclln(uuu) = Osclln(uuu↾S ∧ τ) ∨Osclln(uuu↾S ∨ τ) for every τ ∈ S,
(ii) Osclln(uuu↾S ∩ [τ, τ ′]) ≤ Osclln(uuu) whenever τ ≤ τ ′ in S.

*618E Lemma Let S be a finitely full sublattice of T with a greatest element, uuu = 〈uσ〉σ∈S a jump-
free process, τ ∈ S and ǫ > 0. Then there is a τ ′ ∈ S ∨ τ such that [[τ < τ ′]] = [[τ < maxS]] and
θ(supσ∈S∩[τ,τ ′] |uσ − uτ |) ≤ ǫ.

618F Proposition Let S be a sublattice of T .
(a) If uuu, vvv are order-bounded processes with domain S, then |Osclln(uuu)−Osclln(vvv)| ≤ 2 sup |uuu− vvv|.
(b) Osclln :Mo-b(S) → L0(A) is uniformly continuous if Mo-b(S) is given its ucp uniformity.

618G Proposition Let S be a sublattice of T . Write Mj-f(S) for the set of jump-free fully adapted
processes with domain S.

(a) The set Mj-f(S) of jump-free fully adapted processes with domain S is a topologically closed f -
subalgebra of Mo-b(S), and h̄vvv ∈Mj-f(S) whenever vvv ∈Mj-f(S) and h : R → R is continuous.

(b) A (locally) jump-free fully adapted process on S is (locally) moderately oscillatory.
(c) If vvv ∈ Mj-f(S), then vvv↾S ∨ τ , vvv↾S ∧ τ ′ and vvv↾S ∩ [τ, τ ′] are jump-free whenever τ ≤ τ ′ in S. In

particular, vvv is locally jump-free.

618H Where jump-free processes come from: Proposition Let (Ω,Σ, µ) be a complete probability
space and 〈Σt〉t≥0 a family of σ-subalgebras of Σ, all containing every negligible subset of Ω. Suppose that
we are given a family 〈Xt〉t≥0 of real-valued functions on Ω such that Xt is Σt-measurable for every t ≥ 0
and t 7→ Xt(ω) : [0,∞[ → R is continuous for every ω ∈ Ω. Then 〈Xt〉t≥0 is progressively measurable, and
if (A, µ̄, 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) and 〈xσ〉σ∈Tf

are defined as in 612H, xxx = 〈xσ〉σ∈Tf
is locally jump-free.

618I Lemma Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S a locally jump-free fully adapted process. If
A ⊆ S is non-empty and upwards-directed and supA ∈ S, then usupA = limσ↑A uσ.
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618J Examples Take T = [0,∞[.

(a) The identity process is locally jump-free.

(b) The standard Poisson process is not locally jump-free.

(c) Brownian motion is locally jump-free.

618K Lemma Let S be a sublattice of T . If I, J ∈ I(S) and a ∈ A are such that J ⊆ I and
a ⊆ supσ∈J [[τ = σ]] for every τ ∈ I, then a ⊆ [[OscllnI(uuu) = OscllnJ(uuu)]] for every fully adapted process
uuu = 〈uσ〉σ∈S .

618L Proposition Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a fully adapted process, Ŝ the covered

envelope of S, and ûuu = 〈ûσ〉σ∈Ŝ the fully adapted extension of uuu to Ŝ.
(a) If either uuu or ûuu is order-bounded, so is the other, and in this case Osclln(ûuu) = Osclln(uuu).
(b) In particular, uuu is jump-free iff ûuu is jump-free.

(c) If either supσ∈S Osclln(uuu↾S ∧ σ) or supτ∈Ŝ Osclln(ûuu↾Ŝ ∧ τ) is defined in L0(A), so is the other, and
they are equal.

618M Theorem Let S be a sublattice of T and uuu a moderately oscillatory process. Then Osclln(uuu) =
limI↑I(S) OscllnI(uuu).

618N Lemma Let S be a full sublattice of T with a greatest element, uuu = 〈uσ〉σ∈S a moderately
oscillatory process, and δ > 0. Let 〈yi〉i∈N be the sequence constructed from uuu and δ as in 615M. Then
|yi+1 − yi| ≤ Osclln(uuu) + δχ1 for every i ∈ N.

618O Definition Let S be a sublattice of T and ψ : S2↑ → L0(A) an adapted interval function which is
order-bounded. Following 618B, set

OscllnI(ψ) = supe∈Sti0(I) ∆e(1, |dψ|)

for I ∈ I(S) (counting sup ∅ as 0),

Osclln∗I(ψ) = supJ∈I(S),J⊇I OscllnJ(ψ)

for I ∈ I(S), and

Osclln(ψ) = infI∈I(S) Osclln∗I(ψ).

Osclln(ψ) = limI↑I(S) Osclln∗I(ψ). Moreover, if uuu is an order-bounded fully adapted process and ψ = ∆uuu the
corresponding interval function, OscllnI(ψ) = OscllnI(uuu) for every I ∈ I(S) and Osclln(ψ) = Osclln(uuu).

618P Lemma Let S be a sublattice of T and ψ : S2↑ → L0(A) a strictly adapted interval function. For
I ∈ I(S), set wwwI = 〈wIτ 〉τ∈S where wIτ = SI∧τ (1, dψ) for τ ∈ S.

(a) For any I ∈ I(S), wwwI is fully adapted.
(b) Suppose that S is finitely full, ψ is order-bounded and

∫
S dψ is defined. Then iiψ(1) is order-bounded

and Osclln(iiψ(1)) ≤ 2Osclln(ψ).

(c) Suppose tht ψ is order-bounded and
∫
Ŝ dψ̂ is defined, where Ŝ is the covered envelope of S and ψ̂ is

the adapted extension of ψ to Ŝ↑. If iiψ(1) is moderately oscillatory, then Osclln(iiψ(1)) ≤ Osclln(ψ).
(d) If ψ is an order-bounded integrating interval function, then Osclln(iiψ(1)) ≤ Osclln(ψ).

618Q Theorem Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a moderately oscillatory process, and vvv =
〈vσ〉σ∈S an integrator. Then Osclln(iivvv(uuu)) ≤ sup |uuu| ×Osclln(vvv). iivvv(uuu) is jump-free if vvv is.

618R Corollary Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a locally moderately oscillatory process, and
vvv = 〈vσ〉σ∈S a locally jump-free local integrator. Then iivvv(uuu) is locally jump-free.
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619E Itô’s formula 35

618S Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S two integrators.
(a) Osclln([vvv

∗
www]) ≤ Osclln(vvv)×Osclln(www).

(b) Osclln(vvv∗) = (Osclln(vvv))2.

618T Corollary Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S two (local) integrators with
domain S of which vvv is (locally) jump-free. Then the covariation [vvv

∗
www] and the quadratic variation vvv∗ are

(locally) jump-free.

618U Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a process of bounded variation. Let vvv↑ be
its cumulative variation. Then Osclln(vvv↑) is equal to Osclln(vvv); vvv is jump-free iff vvv↑ is jump-free.

618V Corollary Let S be a sublattice of T and vvv a fully adapted process with domain S. Then vvv is
jump-free and of bounded variation iff it is expressible as the difference of two non-negative non-decreasing
order-bounded jump-free processes.

618zO Lemma Let S be a sublattice of T , and ψ : S2↑ → L0(A) an order-bounded integrating interval
function with indefinite integral vvv = iiψ(1). Then

Osclln(vvv) ≤ Osclln(ψ).

Version of 13.3.17/29.7.19

619 Itô’s formula

I give three versions of Itô’s formula (619C, 619D and 619J). The last depends on elementary facts about
the action of functions of more than one real variable on strings of processes (619E-619G).

619B Lemma Let S be a sublattice of T and vvv = 〈vσ〉σ∈S an integrator. Then for every ǫ > 0 there is
a δ > 0 such that θ(SI(uuu, (dvvv)

2) ≤ ǫ whenever I ∈ I(S), uuu ∈Mfa(I) and θ(sup |uuu|) ≤ δ.

619C Itô’s Formula, first form Let S be a sublattice of T , vvv = 〈vτ 〉τ∈S a jump-free integrator, and
vvv∗ its quadratic variation. If h : R → R is a twice-differentiable function with continuous second derivative,
then

∫
S
h̄′vvv dvvv +

1

2

∫
S
h̄′′vvv dvvv∗

is defined and equal to h̄(v↑)− h̄(v↓), where

v↑ = limσ↑S vσ, v↓ = limσ↓S vσ.

Remark In the formula above, h̄′ : L0 → L0 and h̄′′ : L0 → L0 should be read as h′ and h′′.

619D Itô’s Formula, second form Let S be a sublattice of T , and vvv a jump-free integrator with
domain S and quadratic variation vvv∗. If uuu is a moderately oscillatory process with domain S, and h : R → R

is a twice-differentiable function with continuous second derivative, then
∫
S
uuu d(h̄vvv) =

∫
S
uuu× h̄′vvv dvvv +

1

2

∫
S
uuu× h̄′′vvv dvvv∗.

619E Proposition Let k ≥ 1 be an integer.
(a) Suppose that u1, . . . , uk ∈ L0. Let Bk be the Borel σ-algebra of R

k. Then there is a unique sequentially
order-continuous Boolean homomorphism φ : Bk → A such that φ{(ξ1, . . . , ξk) : ξi > α} = [[ui > α]]
whenever 1 ≤ i ≤ k and α ∈ R.

In this context, write [[(u1, . . . , uk) ∈ E]] for φE, for every Borel set E ⊆ R
k.
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(b) Suppose that h : R
k → R is a Borel measurable function. Then there is a unique operator h̄ :

(L0)k → L0 such that [[h̄(u1, . . . , uk) ∈ F ]] = [[(u1, . . . , uk) ∈ h−1[F ]]] whenever F ⊆ R is a Borel set and
u1, . . . , uk ∈ L0.

(c) If u1, . . . , uk, v1, . . . , vk ∈ L0, then

inf1≤i≤k [[ui = vi]] ⊆ [[h̄(u1, . . . , uk) = h̄(v1, . . . , vk)]].

(d) If h : Rk → R is continuous, then h̄ : (L0)k → L0 is continuous for the topology of convergence in
measure.

(e) Suppose that Ω is a set, Σ is a σ-algebra of subsets of Ω, N is a σ-ideal of Σ, and A is isomorphic to
the quotient Boolean algebra Σ/N . Write L

0 for the f -algebra of real-valued Σ-measurable functions on Ω,
and W for the ideal

{f : f ∈ L
0, {ω : f(ω) 6= 0} ∈ N},

so that L0 can be identified with the f -algebra quotient L
0/W. Write E 7→ E• : Σ → A and f 7→ f• :

L
0 → L0 for the homomorphisms corresponding to the identifications A ∼= Σ/N and L0 ∼= L

0/W. Then if
h : Rk → R is a Borel measurable function,

h̄(f•

1 , . . . , f
•

k) = (h(f1, . . . , fk))
•

for all f1, . . . , fk ∈ L
0, defining the composition h(f1, . . . , fk) by setting (h(f1, . . . , fk))(ω) = h(f1(ω), . . . , fk(ω))

for every ω ∈ Ω.
(f) Suppose that 〈hn〉n∈N is a non-decreasing sequence of Borel measurable functions from R

k to R, and
that h(x) = supn∈N hn(x) is finite for every x ∈ R

k. Then 〈h̄n(u1, . . . , uk)〉n∈N is a non-decreasing sequence
in L0 with supremum h̄(u1, . . . , uk), for all u1, . . . , uk ∈ L0.

(g) Now suppose that (C, ν) is another probability algebra and φ : A → C is an order-continuous Boolean
homomorphism. Let Tφ : L0(A) → L0(C) be the corresponding f -algebra homomorphism. Take u1, . . . , uk ∈
L0(A).

(i) If E ∈ Bk is a Borel set, then [[(Tφu1, . . . , Tφuk) ∈ E]] = φ[[(u1, . . . , uk) ∈ E]].
(ii) If h : Rk → R is Borel measurable, then h̄(Tφu1, . . . , Tφuk) = Tφh̄(u1, . . . , uk).

619F Definition Let uuu1, . . . ,uuuk be fully adapted processes defined on sublattices S1, . . . ,Sk of T and
h : Rk → R a Borel measurable function. Regarding UUU = (uuu1, . . . ,uuuk) as the function σ 7→ (u1σ, . . . , ukσ) :
S → (L0)k, where uuui = 〈uiσ〉σ∈Si

for each i and S =
⋂

1≤i≤k Si, we have a composition

h̄UUU = 〈h̄(u1σ, . . . , ukσ)〉σ∈S .

619G Proposition Let uuu1, . . . ,uuuk be fully adapted processes all with the same domain S, and h : Rk → R

a Borel measurable function. Write UUU for (uuu1, . . . ,uuuk).
(a) h̄UUU is fully adapted.
(b) If every uuui is order-bounded and h is locally bounded, that is, bounded on bounded subsets of Rk,

then h̄UUU is order-bounded.
(c) If every uuui is (locally) moderately oscillatory and h is continuous, then h̄UUU is (locally) moderately

oscillatory.
(d) If every uuui is (locally) jump-free and h is continuous, then h̄UUU is (locally) jump-free.
*(e) If zzz is a fully adapted process with domain S and zzz2 = zzz, then

(i) zzz × h̄(zzz × uuu1, . . . , zzz × uuuk) = zzz × h̄UUU ,
(ii) and if h(0, . . . , 0) = 0, then h̄(zzz × uuu1, . . . , zzz × uuuk) = zzz × h̄UUU .

619H Proposition Let S be a sublattice of T , k ≥ 1 an integer and h : Rk → R a continuous function.
Then h̄ : Mo-b(S)k → Mo-b(S) is continuous when Mo-b(S) is given the ucp topology and Mo-b(S)k the
corresponding product topology.

619I Theorem Let h : Rk → R be a differentiable function; write h1, . . . , hk for its partial derivatives.
Suppose that every hi is Lipschitz on every bounded set in R

k. Let vvv1, . . . , vvvk be integrators, all with the
same domain S. Then h̄(vvv1, . . . , vvvk) is an integrator.
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Itô’s formula 37

619J Itô’s Formula, third form Let k ≥ 1 be an integer, and h : Rk → R a twice-differentiable
function with continuous second derivative. Denote its first partial derivatives by h1, . . . , hk and its second
partial derivatives by h11, . . . , hkk. Let S be a sublattice of T , and vvv1, . . . , vvvk jump-free integrators with
domain S; let uuu be a moderately oscillatory process with domain S. Write VVV = (vvv1, . . . , vvvk). Then

∫
S
uuu d(h̄VVV ) =

∑k
i=1

∫
S
uuu× h̄iVVV dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S
uuu× h̄ijVVV d[vvvi

∗
vvvj ].

619K Corollary Let k ≥ 1 be an integer, and h : Rk → R a twice-differentiable function with continuous
second derivative. Let S be a sublattice of T , and vvv1, . . . , vvvk locally jump-free local integrators with domain
S; let uuu be a locally moderately oscillatory process with domain S. Write VVV = (vvv1, . . . , vvvk). Then

iih̄VVV (uuu) =
∑k
i=1 iivvvi(uuu× h̄iVVV ) +

1

2

∑k
i=1

∑k
j=1 ii[vvvi ∗

vvvj ]
(uuu× h̄ijVVV ).
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