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Chapter 61

The Riemann-sum integral

I begin with an attempt to give a coherent and complete description of the principal form of stochastic
integration which will be investigated in this volume.

As elsewhere in probability theory, it is customary to set this material out in terms of ordinary random
variables, that is, measurable functions defined on probability spaces. We find immediately, however, that
while integrands and integrators may well present themselves most naturally in this form, the integrals we
construct are defined, in the cases for which this theory has been developed, in terms of convergence in
‖ ‖1 or ‖ ‖2 or in measure, and therefore correspond not to explicit functions, but to equivalence classes
of functions. Moreover, integrands and integrators can be changed on negligible sets without affecting the
values of the corresponding integrals. I believe that the theory becomes clearer and cleaner if we move
directly to operations on evolving families in L0. While this demands an initial investment by the reader
in a more abstract framework for the ideas of elementary probability theory, the translation is not difficult,
and a full exposition can be found in Chapter 36.

Again, stochastic processes are usually expressed as families 〈Xt〉t∈T of random variables, indexed by
a set T of ‘times’. There are very good reasons for this. However, to describe the stochastic integral in
reasonable generality we need, as a first step, to discuss the random variable Xτ for a stopping time τ . The
measure theory to make this possible (the notion of ‘progressively measurable’ process) is well understood
and has been described in §455. When we come, following my principle above, to look at 〈X•

t 〉t∈T , we find
that we can have X•

t = Y •

t , that is, Xt =a.e. Yt, for every t, while X•

τ 6= Y •

τ . This is just a nuisance. For
our purposes here, it makes better sense to start from a family 〈uτ 〉τ∈S where S is a set of stopping times
and uτ ∈ L0 for every τ ∈ S. The construction of such families from processes 〈Xt〉t∈T is important and
interesting, but has nothing to do with the very substantial difficulties of the basic theory of stochastic
integration.

Of course I now have to look at filtrations and stopping times, and these too are not best described in
terms of σ-algebras of sets and real-valued functions. In the formulation I wish to use here, we don’t even
have a probability space for the functions to be defined on. Instead of thinking of a filtration as a family
〈Σt〉t∈T of σ-subalgebras of the domain Σ of a probability measure µ, I look at the corresponding family
of subalgebras of the measure algebra A of µ. This is easy (at least, if you have read Chapter 32; and this
is my last apology for insisting that you know something of Volume 3). A stopping time τ now becomes
defined in terms of elements [[τ > t]] ∈ A, ‘the region where τ > t’. We need to develop a theory of regions
[[σ < τ ]], [[σ = τ ]] in A, and subalgebras Aτ of A, for stopping times σ, τ ; and now the processes 〈uτ 〉τ∈S
we work with must be such that ‘uσ = uτ whenever σ = τ ’, that is, [[σ = τ ]] ⊆ [[uσ = uτ ]]. Setting up these
structures takes the greater part of §§611-612, which come to about a quarter of the chapter. It happens
that nearly everything in these two sections can be done without mentioning ‘measure’ at all.

I say again that none of this is difficult, but it does take quite a long time; there are some new kinds
of algebra to get a solid basis in, particularly the theory of stopping-time intervals (611E, 611J-611K) and
fully adapted processes (612D). With this established, however, we are within reach of a direct definition
of a stochastic integral as a limit of Riemann sums (§613). As long as we do not enquire about when the
integral is actually defined, this is very straightforward and can be done in great generality. The next three
sections are devoted to finding the basic cases of processes uuu, vvv for which we shall have a well-defined integral∫
uuu dvvv. Concerning uuu, we have ‘simple’ and ‘moderately oscillatory’ processes (612J, 615E). Concerning vvv, we

have the concept of ‘integrator’ (616Fc), which is well adapted to the basic theorem 616K, but is otherwise
obscure. It is easy enough to find a definition of ‘bounded variation’ for stochastic processes (614J) and to
show that processes of bounded variation are integrators (616R), but this is not what the stochastic integral
is for; in this case we have much more direct methods available.
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2 The Riemann-sum integral Chap. 61 intro.

Now we are ready, at least in a formal sense, for some proper stochastic calculus in §§617 and 619. Here I
set out useful general manipulations. Some of them reproduce patterns familiar from the ordinary Riemann
integral (616J), but others are radically different (617I, 619C). On the way to the latter (‘Itô’s formula’) we
need to understand ‘jump-free’ processes, corresponding to processes with continuous sample paths (§618).

The theory here involves a large number of constructions. Many of these have no short descriptions in
terms of the concepts developed in Volumes 1-4, and correspondingly require new terminology and notation.
I have tried to arrange the material in such a way that, within any individual section, substantial parts
of the basic framework can be taken to be constant. From §614 on, these are indicated in introductory
paragraphs headed ‘Notation’. These paragraphs are highly repetitive. But until you are very familiar with
my language, it is likely that opening at a random page, and scanning for the next ‘Theorem’, will lead you
to something totally mysterious. Sometimes a check in the index for terminology will help. But sometimes
there will be a baffling symbol, and then it will be worth while turning to the beginning of the section to see
if the symbol appears there. It seems to me that while this expands the volume by several pages in total, it
is kinder than referring you each time to a complete list of the terminological quirks of this presentation.

Version of 11.12.17/16.1.25

611 Stopping times

The first step is to describe the structures within which the work of this volume will proceed. While
everything really important will have to be based on probability algebras, I start with ideas which can be
applied to arbitrary Dedekind complete Boolean algebras. This section introduces filtrations of subalgebras,
the lattice of stopping times, the algebras associated with stopping times, stopping-time intervals and covered
envelopes.

611A Filtrations Throughout this volume, A will denote a Dedekind complete Boolean algebra (defini-
tions: 311A, 314A), with Boolean operations △ , ∩ , ∪ and \ , zero 0 and multiplicative identity 1.

(a) Let T be a non-empty totally ordered set. A filtration of order-closed subalgebras of A will be
a non-decreasing family 〈At〉t∈T of order-closed subalgebras of A (definition: 313D).

(b)(i) A stopping time τ adapted to 〈At〉t∈T is a family 〈[[τ > t]]〉t∈T such that

[[τ > t]] ∈ At for every t ∈ T ,
if s ≤ t in T then [[τ > t]] ⊆ [[τ > s]],
if t ∈ T is not isolated on the right, that is, t is neither the greatest element of T nor

the lower endpoint of a gap in T , that is, {s : s > t} is non-empty and has infimum t, then
[[τ > t]] = sups>t [[τ > s]].

(Compare 364A.)

(ii) It will be worth checking each concept against the constant stopping times, where for t ∈ T the
constant stopping time at t, ť, is given by setting

[[ť > s]] = 1 if s < t,

= 0 if s ≥ t.

(iii) I will say that a stopping time τ is

—– finite-valued if inft∈T [[τ > t]] = 0,
—– bounded if there is a t ∈ T such that [[τ > t]] = 0.

Constant stopping times are bounded, and bounded stopping times are finite-valued.

(iv) I will write T for the set of stopping times adapted to 〈At〉t∈T , Tf ⊆ T for the set of finite-valued
stopping times, and Tb ⊆ Tf for the set of bounded stopping times.

(c) It is convenient to think of a stopping time τ ∈ T as the element 〈[[τ > t]]〉t∈T of the simple product
algebra

∏
t∈T At (definition: 315A). But a warning! while this represents T as a sublattice of

∏
t∈T At

(611Ca-611Cc) below), T is not as a rule order-closed (see 611F and 632C(a-i)).
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611C Stopping times 3

(d) We are going to have to think of T as disjoint from T (see, for instance, 611G below). Subject to
the Axiom of Foundation (Kunen 80, §III.4), and on any ordinary formalization of the concepts of ‘ordered
pair’ and ‘function’, T and

∏
t∈T At will automatically be disjoint. I will therefore suppose without further

comment that this is always the case.

611B The partial ordering of stopping times If σ, τ ∈ T , say that σ ≤ τ if [[σ > t]] ⊆ [[τ > t]] for
every t ∈ T , that is, σ ⊆ τ in

∏
t∈T At. This defines a partial order on T .

611C Proposition (a) T is a Dedekind complete distributive lattice. Consequently any finite subset of
T is included in a finite sublattice of T .

(b) If C ⊆ T is non-empty, then supC is defined by saying that

[[supC > t]] = supτ∈C [[τ > t]]

for every t ∈ T , that is, the supremum of C in T is the same as the supremum of C in
∏
t∈T At.

(c) If σ, τ ∈ T , then σ ∧ τ is defined by saying that

[[σ ∧ τ > t]] = [[σ > t]] ∩ [[τ > t]]

for every t ∈ T , that is, σ ∧ τ in T corresponds to σ ∩ τ in
∏
t∈T At.

(d) If C, C ′ ⊆ T are non-empty, then supC ∧ supC ′ = sup{σ ∧ σ′ : σ ∈ C, σ′ ∈ C ′}.
(e) Writing ť for the constant stopping time at t, the map t 7→ ť : T → T is an order-continuous lattice

homomorphism, which is injective if A 6= {0}.
(f) T has greatest and least elements defined by saying that

[[max T > t]] = 1, [[min T > t]] = 0

for every t ∈ T , that is, they correspond to the greatest and least elements 1 and 0 of
∏
t∈T At. If T has a

least element minT , then min T is the constant stopping time at minT .
(g) Tf and Tb are ideals1 in T .
(h) The function σ 7→ σ ∧ τ : T → T is order-continuous (definition: 313Ha) for every τ ∈ T .

proof (a)(i) I start with a direct verification of (b). Setting at = supτ∈C [[τ > t]] for t ∈ T , we see that

at ∈ At for every t ∈ T , because At is order-closed in A,
if s ≤ t in T then at ⊆ as,
if t ∈ T is not isolated on the right then

at = supτ∈C [[τ > t]] = supτ∈C,s>t [[τ > s]] = sups>t as.

So we have a stopping time σ defined by writing [[σ > t]] = at for every t. Now it is easy to see that τ ≤ σ
for every τ ∈ C and that σ is the least such stopping time. Thus our formula defines supC in the partially
ordered set T .

(ii) This is enough to show that T is a Dedekind complete lattice (314Aa, 314Bb).

(iii) Similarly, we can check the formula in (c). Set bt = [[σ > t]] ∩ [[τ > t]] for t ∈ T . Then

bt ∈ At for every t ∈ T ,
if s ≤ t then bt ⊆ bs,
if t ∈ T is not isolated on the right, then

sup
s>t

bs = sup
s>t

[[σ > s]] ∩ [[τ > s]] = sup
s,s′>t

[[σ > s]] ∩ [[τ > s′]]

= sup
s>t

[[σ > s]] ∩ sup
s′>t

[[τ > s′]]

(313Bc)

= [[σ > t]] ∩ [[τ > t]] = bt.

1If P is a lattice, an ideal of P is a set Q ⊆ P such that p ∨ q ∈ Q for all p, q ∈ Q and p ∈ Q whenever q ∈ Q and p ≤ q in
P . In this context I do not insist that Q should be non-empty.
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4 The Riemann-sum integral 611C

So we have a stopping time υ such that [[υ > t]] = [[σ > t]] ∩ [[τ > t]] for every t. But now it is easy to see
that υ = σ ∧ τ .

(iv) Putting these formulae together, we see that σ 7→ [[σ > t]] : T → A is a lattice homomorphism for
every t ∈ T , so σ 7→ 〈[[σ > t]]〉t∈T is an injective lattice homomorphism from T into the distributive lattice∏
t∈T At, and identifies T with a sublattice of

∏
t∈T At, which must be distributive. And it is true in any

distributive lattice that finitely-generated sublattices are finite (3A1I(c-iii)).

(b)-(c) have been dealt with in (a-i) and (a-iii) above.

(d) Translated into
∏
t∈T At, as in (b)-(c) just above, this becomes

supC ∩ supC ′ = sup{σ ∩ σ′ : σ ∈ C, σ′ ∈ C ′},
which is 313Bc.

(e)(i) Concerning constant stopping times, we see at once from the formulae in 611B-611B that š ≤ ť
when s ≤ t, so that t 7→ ť is order-preserving; because T is totally ordered, it is a lattice homomorphism.

(ii) If A ⊆ T is a non-empty set with supremum t in T , then

[[ť > t′]] = 0 = sups∈A [[š > t′]]

whenever t′ ≥ t, while if t′ < t there is an s′ ∈ A such that t′ < s′, so that

[[ť > t′]] = 1 = [[š′ > t′]] = sups∈A [[š > t′]].

By (b), ť is the supremum sups∈A š in T .

(iii) If ∅ 6= A ⊆ T and t = inf A, then ť ≤ š for every s ∈ A, as noted in (i). Now suppose that τ ∈ T
and ť ≤ τ ≤ š for every s ∈ A. If t is isolated on the right in T , then t ∈ A so surely τ = ť. Otherwise,

[[τ > t]] = sups>t [[τ > s]] = sups∈A [[τ > s]] ⊆ sups∈A [[š > s]] = 0.

Of course we now have

[[τ > s]] ⊆ [[τ > t]] = 0 = [[ť > s]]

for s ≥ t, while

[[τ > s]] ⊇ [[ť > s]] = 1

for s < t, so τ = ť. As τ is arbitrary, ť = infs∈A š.
Thus t 7→ ť is order-continuous.

(iv) If A 6= {0}, that is, 0 6= 1 in A, and s < t in T , then

[[š > s]] = 0 6= 1 = [[ť > s]]

so š 6= ť; thus t 7→ ť is injective.

(f) The formulae offered for max T and min T describe stopping times corresponding to 1 and 0 in∏
t∈T At, so give us the greatest and least elements of T . If minT is defined, the formula for min T agrees

with that for the constant stopping time (minT )ˇ.

(g)(i) If σ, τ ∈ T f ,

inf
t∈T

[[σ ∨ τ > t]] = inf
t∈T

[[σ > t]] ∪ [[τ > t]] = inf
s,t∈T

[[σ > s]] ∪ [[τ > t]]

= inf
s∈T

[[σ > s]] ∪ inf
t∈T

[[τ > t]]

(313Bd)

= 0.

So σ ∨ τ ∈ Tf . If σ ≤ τ in T and τ ∈ Tf , then
inft∈T [[σ > t]] ⊆ inft∈T [[τ > t]] = 0,
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611E Stopping times 5

so σ ∈ Tf . Thus Tf is an ideal in T .

(ii) As for Tb, observe that τ ∈ T is bounded iff there is a constant stopping time ť such that τ ≤ ť.
Now we have just seen that the set of constant stopping times is totally ordered, so Tb is an ideal in T .

(h)(i) If A ⊆ T is a non-empty downwards-directed set, then

infσ∈A τ ∧ σ = inf({τ} ∪A) = τ ∧ inf A.

(ii) If A ⊆ T is a non-empty upwards-directed with supremum σ∗, and σ∗
1 = supσ∈A σ ∧ τ , then, for

any t ∈ T ,

[[σ∗
1 > t]] = sup

σ∈A
[[τ ∧ σ > t]]

(by (b))

= sup
σ∈A

[[τ > t]] ∩ [[σ > t]]

(by (c))

= [[τ > t]] ∩ sup
σ∈A

[[σ > t]]

(313Bc again)

= [[τ > t]] ∩ [[σ∗ > t]] = [[τ ∧ σ∗ > t]],

so σ∗
1 = τ ∧ σ∗.

Remark (The following applies in any lattice.) If A ⊆ T and τ ∈ T , I will write A ∨ τ for {σ ∨ τ : σ ∈ A}
and A ∧ τ for {σ ∧ τ : σ ∈ A}. Note that if S is a sublattice of T and τ ∈ S, then

S ∨ τ = {σ : σ ∈ S, τ ≤ σ}, S ∧ τ = {σ : σ ∈ S, σ ≤ τ}.
So if S is a sublattice of T , τ , τ ′ ∈ S and τ ≤ τ ′,

S ∩ [τ, τ ′] = {σ : σ ∈ S, τ ≤ σ ≤ τ ′} = {σ : σ ∈ S ∨ τ, σ ≤ τ ′} = (S ∨ τ) ∧ τ ′

because S ∨ τ = {σ : σ ∈ S, τ ≤ σ} is a sublattice of T .

611D The region where σ < τ If σ, τ ∈ T set

[[σ < τ ]] = supt∈T ([[τ > t]] \ [[σ > t]]),

[[σ ≤ τ ]] = 1 \ [[τ < σ]] = inft∈T ([[τ > t]] ∪ (1 \ [[σ > t]])),

[[σ = τ ]] = [[σ ≤ τ ]] ∩ [[τ ≤ σ]] = 1 \ supt∈T ([[σ > t]]△ [[τ > t]]).

611E Analysts commonly think of algebra as trivial, and so it is. But the algebra of stopping times and
regions [[σ < τ ]] is a very rich structure, with a large number of elementary identities; and as the definition
of [[σ < τ ]] includes the supremum of an infinite set, there is room for surprises. Consequently the fluency
necessary for effective use of these ideas requires a good deal of practice. In the next theorem I have collected
a more or less comprehensive list of facts which will be useful in one way or another. It is a very long list, and
correspondingly few readers will be inclined to work through it systematically. I recommend rather that you
treat it as a running buffet, to be sampled from time to time. I hope that there are enough cross-references
later for you to know when you have to return for another fragment.

Theorem (a) Let σ, τ ∈ T .
(i)(α) ([[σ < τ ]], [[σ = τ ]], [[τ < σ]]) is a partition of unity in A.

(β) [[σ > t]] ∩ [[σ = τ ]] = [[τ > t]] ∩ [[σ = τ ]] for every t ∈ T .
(γ) [[σ < τ ]] = 0 iff [[τ ≤ σ]] = 1 iff τ ≤ σ; [[σ = τ ]] = 1 iff σ = τ .
(δ) Writing ť for the constant stopping time at t, [[ť < τ ]] = [[τ > t]] for every t ∈ T .

D.H.Fremlin



6 The Riemann-sum integral 611E

(ǫ) [[min T < max T ]] = 1.

(ζ) If s < t in T , then [[š < ť]] = 1; [[š < max T ]] = 1 for every s ∈ T .

(ii)(α) [[σ < τ ]] = [[σ ∧ τ < τ ]] = [[σ < σ ∨ τ ]].
(β) [[σ ≤ τ ]] = [[σ = σ ∧ τ ]] = [[τ = σ ∨ τ ]].
(γ) [[σ ∧ τ = σ]] ∪ [[σ ∧ τ = τ ]] = [[σ ∨ τ = σ]] ∪ [[σ ∨ τ = τ ]] = 1.

(b) If σ ∈ T and C ⊆ T is non-empty then [[σ < supC]] = supτ∈C [[σ < τ ]] and [[supC ≤ σ]] = infτ∈C [[τ ≤ σ]].

(c) Let σ, τ , υ ∈ T .

(i)(α) [[σ ∧ τ < υ]] = [[σ < υ]] ∪ [[τ < υ]], [[υ ≤ σ ∧ τ ]] = [[υ ≤ σ]] ∩ [[υ ≤ τ ]].

(β) [[υ < σ ∧ τ ]] = [[υ < σ]] ∩ [[υ < τ ]], [[σ ∧ τ ≤ υ]] = [[σ ≤ υ]] ∪ [[τ ≤ υ]].

(ii)(α) [[σ ∨ τ < υ]] = [[σ < υ]] ∩ [[τ < υ]], [[υ ≤ σ ∨ τ ]] = [[υ ≤ σ]] ∪ [[υ ≤ τ ]].

(β) [[υ < σ ∨ τ ]] = [[υ < σ]] ∪ [[υ < τ ]], [[σ ∨ τ ≤ υ]] = [[σ ≤ υ]] ∩ [[τ ≤ υ]].

(iii)(α) [[σ < υ]] ⊆ [[σ < τ ]] ∪ [[σ ∨ τ < υ]] ⊆ [[σ < τ ]] ∪ [[τ < υ]].

(β) [[σ ≤ υ]] ⊆ [[σ ≤ τ ]] ∪ [[τ < υ]].

(γ) [[σ < υ]] ∩ [[υ ≤ τ ]] ⊆ [[σ < τ ]], [[σ ≤ υ]] ∩ [[υ < τ ]] ⊆ [[σ < τ ]].

(iv)(α) [[σ ≤ τ ]] ∩ [[τ ≤ υ]] ⊆ [[σ ≤ υ]].

(β) [[σ ≤ τ ]] ∩ [[τ < υ]] ⊆ [[σ < υ]].

(γ) [[σ = τ ]] ∩ [[τ = υ]] = [[σ = τ ]] ∩ [[σ = υ]] ⊆ [[σ = υ]].

(v)(α) [[σ ∧ υ = τ ∧ υ]] ⊇ [[σ = τ ]].

(β) [[σ ∨ υ = τ ∨ υ]] ⊇ [[σ = τ ]].

(vi) If σ ≤ τ ≤ υ, then [[σ < υ]] = [[σ < τ ]] ∪ [[τ < υ]], [[σ = υ]] = [[σ = τ ]] ∩ [[τ = υ]].

(d) If τ0 ≤ . . . ≤ τn in T and σ ∈ T , then

([[σ < τ0]], [[τ0 ≤ σ]] ∩ [[σ < τ1]], . . . , [[τn−1 ≤ σ]] ∩ [[σ < τn]], [[τn ≤ σ]])

is a partition of unity in A.

proof (a)(i)(ααα) We have only to check that [[σ < τ ]] ∩ [[τ < σ]] = 0. But

([[τ > t]] \ [[σ > t]]) ∩ ([[σ > s]] \ [[τ > s]]) ⊆ [[τ > t]] \ [[τ > s]] = 0 if s ≤ t,

⊆ [[σ > s]] \ [[σ > t]] = 0 if t ≤ s,

so

[[σ < τ ]] ∩ [[τ < σ]] = sup
t∈T

([[τ > t]] \ [[σ > t]]) ∩ sup
s∈T

([[σ > s]] \ [[τ > s]])

= sup
s,t∈T

([[τ > t]] \ [[σ > t]]) ∩ ([[σ > s]] \ [[τ > s]]) = 0.

(βββ)-(γγγ) are immediate from the definitions in 611B and 611D.

(δδδ) [[ť < τ ]] = sups∈T [[τ > s]] \ [[ť > s]] = sups≥t [[τ > s]] = [[τ > t]].

(ǫǫǫ) Recall that we are assuming that T is not empty. And [[max T > t]] \ [[min T > t]] = 1 for any
t ∈ T .

(ζζζ) [[š < ť]] ⊇ [[ť > s]] \ [[š > s]] = 1; [[š < max T ]] ⊇ [[max T > s]] \ [[š > s]] = 1.

(ii)(ααα)

[[σ ∧ τ < τ ]] = sup
t∈T

[[τ > t]] \ [[σ ∧ τ > t]]

= sup
t∈T

[[τ > t]] \ ([[σ > t]] ∩ [[τ > t]])

(611Cc)
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611E Stopping times 7

= sup
t∈T

[[τ > t]] \ [[σ > t]] = [[σ < τ ]],

[[σ < σ ∨ τ ]] = sup
t∈T

[[σ ∨ τ > t]] \ [[σ > t]]

= sup
t∈T

([[σ > t]] ∪ [[τ > t]]) \ [[σ > t]]

(611Cb)

= sup
t∈T

[[τ > t]] \ [[σ > t]] = [[σ < τ ]].

(βββ)

[[σ = σ ∧ τ ]] = [[σ ≤ σ ∧ τ ]] ∩ [[σ ∧ τ ≤ σ]] = (1 \ [[σ ∧ τ < σ]]) ∩ 1

(by (i-γ))

= 1 \ [[τ < σ]]

(by (α) just above)

= [[σ ≤ τ ]],

and similarly

[[τ = σ ∨ τ ]] = [[τ ≤ σ ∨ τ ]] ∩ [[σ ∨ τ ≤ τ ]] = 1 \ [[τ < σ ∨ τ ]] = 1 \ [[τ < σ]] = [[σ ≤ τ ]].

(γγγ) Using both parts of (β), we have

[[σ ∧ τ = σ]] ∪ [[σ ∧ τ = τ ]] = [[τ ≤ σ]] ∪ [[σ ≤ τ ]] = 1

= [[σ ∨ τ = σ]] ∪ [[σ ∨ τ = τ ]].

(b)

sup
t∈T

[[supC > t]] \ [[σ > t]] = sup
t∈T

(sup
τ∈C

[[τ > t]]) \ [[σ > t]]

(611Cb again)

= sup
t∈T

sup
τ∈C

([[τ > t]] \ [[σ > t]]) = sup
τ∈C

[[σ < τ ]].

Taking complements,

[[supC ≤ σ]] = infτ∈C [[τ ≤ σ]].

(c)(i)(ααα) [[σ ∧ τ > t]] = [[σ > t]] ∩ [[τ > t]] for every t, so

[[σ ∧ τ < υ]] = sup
t∈T

[[υ > t]] \ ([[σ > t]] ∩ [[τ > t]])

= sup
t∈T

([[υ > t]] \ [[σ > t]]) ∪ ([[υ > t]] \ [[τ > t]]) = [[σ < υ]] ∪ [[τ < υ]].

Taking complements,

[[υ ≤ σ ∧ τ ]] = [[υ ≤ σ]] ∩ [[υ ≤ τ ]].

(βββ)

D.H.Fremlin



8 The Riemann-sum integral 611E

[[υ < σ]] ∩ [[υ < τ ]] = (sup
s∈T

[[σ > s]] \ [[υ > s]]) ∩ (sup
t∈T

[[τ > t]] \ [[υ > t]])

= sup
s,t∈T

([[σ > s]] \ [[υ > s]]) ∩ ([[τ > t]] \ [[υ > t]])

= sup
s,t∈T

[[σ > s]] ∩ [[τ > t]] \ ([[υ > s]] ∪ [[υ > t]])

= sup
s,t∈T

[[σ > s]] ∩ [[τ > t]] \ [[υ > min(s, t)]]

= sup
t′∈T

sup
s≥t′,t≥t′

[[σ > s]] ∩ [[τ > t]] \ [[υ > t′]]

= sup
t′∈T

[[σ > t′]] ∩ [[τ > t′]] \ [[υ > t′]]

= sup
t′∈T

[[σ ∧ τ > t′]] \ [[υ > t′]] = [[υ < σ ∧ τ ]].

Taking complements,

[[σ ∧ τ ≤ υ]] = [[σ ≤ υ]] ∪ [[τ ≤ υ]].

(ii)

[[σ < υ]] ∩ [[τ < υ]] = (sup
s∈T

[[υ > s]] \ [[σ > s]]) ∩ (sup
t∈T

[[υ > t]] \ [[τ > t]])

= sup
s,t∈T

([[υ > s]] \ [[σ > s]]) ∩ ([[υ > t]] \ [[τ > t]])

= sup
s,t∈T

[[υ > s]] ∩ [[υ > t]] \ ([[σ > s]] ∪ [[τ > t]])

= sup
s,t∈T

[[υ > max(s, t)]] \ ([[σ > s]] ∪ [[τ > t]])

= sup
t′∈T

sup
s≤t′,t≤t′

[[υ > t′]] \ ([[σ > s]] ∪ [[τ > t]])

= sup
t′∈T

[[υ > t′]] \ ([[σ > t′]] ∪ [[τ > t′]])

= sup
t′∈T

[[υ > t′]] \ [[σ ∨ τ > t′]] = [[σ ∨ τ < υ]].

Taking complements,

[[υ ≤ σ ∨ τ ]] = [[υ ≤ σ]] ∪ [[υ ≤ τ ]].

(iii)(ααα) For every t ∈ T ,

[[υ > t]] \ [[σ > t]] ⊆ ([[υ > t]] \ [[τ > t]]) ∪ ([[τ > t]] \ [[σ > t]]).

So [[σ < υ]] ⊆ [[σ < τ ]] ∪ [[τ < υ]]. But equally we must also have

[[σ < υ]] ⊆ [[σ < σ ∨ τ ]] ∪ [[σ ∨ τ < υ]] = [[σ < τ ]] ∪ [[σ ∨ τ < υ]]

by (a-ii-α). And [[σ < τ ]] ∪ [[σ ∨ τ < υ]] ⊆ [[σ < τ ]] ∪ [[τ < υ]] by (ii-α) just above.

(βββ) Now

1 = [[σ ≤ τ ]] ∪ [[τ < σ]] ⊆ [[σ ≤ τ ]] ∪ [[τ < υ]] ∪ [[υ < σ]]

by (α), so

[[σ ≤ υ]] = 1 \ [[υ < σ]] ⊆ [[σ ≤ τ ]] ∪ [[τ < υ]].

(γγγ) Using (α) twice,

[[σ < υ]] ∩ [[υ ≤ τ ]] ⊆ ([[σ < τ ]] ∪ [[τ < υ]]) ∩ [[υ ≤ τ ]] ⊆ [[σ < τ ]],

Measure Theory



611E Stopping times 9

[[σ ≤ υ]] ∩ [[υ < τ ]] ⊆ [[σ ≤ υ]] ∩ ([[υ < σ]] ∪ [[σ < τ ]]) ⊆ [[σ < τ ]].

(iv)(ααα) Take complements in (iii-α) and exchange the names σ, υ.

(βββ) Take complements in (iii-β) and exchange the names σ, υ.

(γγγ) Use (α) twice to prove the first equality; the second is trivial.

(v)(ααα)

[[σ ∧ υ < τ ∧ υ]] = [[σ < τ ∧ υ]] ∪ [[υ < τ ∧ υ]] ⊆ [[σ < τ ]]

by (i) above. Similarly, [[τ ∧ υ < σ ∧ υ]] ⊆ [[τ < σ]], and both are disjoint from [[σ = τ ]].

(βββ) As (α), but starting from

[[σ ∨ υ < τ ∨ υ]] = [[σ ∨ υ < τ ]] ∩ [[σ ∨ υ < υ]] ⊆ [[σ < τ ]].

(vi) In this case, for every t ∈ T ,

[[σ > t]] ⊆ [[τ > t]] ⊆ [[υ > t]],

so [[υ > t]] \ [[σ > t]] = ([[υ > t]] \ [[τ > t]]) ∪ ([[τ > t]] \ [[σ > t]]); taking the supremum over t, [[σ < υ]] = [[σ < τ ]] ∪ [[τ < υ]].
Taking complements,

[[σ = υ]] = 1 \ [[σ < υ]]

(because [[υ < σ]] = 0, by (a-i-γ))

= (1 \ [[σ < τ ]]) ∩ (1 \ [[τ < υ]]) = [[σ = τ ]] ∩ [[τ = υ]].

(d) Induce on n. If n = 0 the list reduces to

([[σ < τ0]], [[τ0 ≤ σ]])

which is a partition of unity by the definition in 611D.
For the inductive step to n+ 1 > 1, we know that

([[σ < τ0]], [[τ0 ≤ σ]] ∩ [[σ < τ1]], . . . , [[τn−1 ≤ σ]] ∩ [[σ < τn]], [[τn ≤ σ]])

and

([[σ < τn+1]], [[τn+1 ≤ σ]])

are partitions of unity. So

([[σ < τ0]], [[τ0 ≤ σ]] ∩ [[σ < τ1]], . . . , [[τn−1 ≤ σ]] ∩ [[σ < τn]],

[[τn ≤ σ]] ∩ [[σ < τn+1]], [[τn ≤ σ]] ∩ [[τn+1 ≤ σ]])

is a partition of unity. And

[[τn ≤ σ]] ∩ [[τn+1 ≤ σ]] = [[τn ∨ τn+1 ≤ σ]] = [[τn+1 ≤ σ]]

by (c-ii-γ). So our partition of unity reduces to

([[σ < τ0]], [[τ0 ≤ σ]] ∩ [[σ < τ1]], . . . , [[τn−1 ≤ σ]] ∩ [[σ < τn]],

[[τn ≤ σ]] ∩ [[σ < τn+1]], [[τn+1 ≤ σ]])

as required for the inductive step.

Remark I have taken the trouble to spell out direct proofs based on the definitions in 611A, 611B and 611D.
But you will observe that every formula here corresponds to the case in which σ, τ and υ are real-valued
functions defined on [0, 1], with A = P[0, 1],

(σ ∧ τ)(x) = min(σ(x), τ(x)), (σ ∨ τ)(x) = max(σ(x), τ(x))

for x ∈ [0, 1], and

D.H.Fremlin



10 The Riemann-sum integral 611E

[[σ < τ ]] = {x : σ(x) < τ(x)},

[[σ = τ ]] = {x : σ(x) = τ(x)}, [[σ ≤ τ ]] = {x : σ(x) ≤ τ(x)}.
In (b) we have a bit of luck – the formulae for infima are more complicated (see 632C(a-ii)). Elsewhere,
with only finitely many stopping times involved, we are perfectly safe, though I do not attempt to state and
prove an appropriate metatheorem.

611F Infima in T : Proposition Let A ⊆ T be a non-empty set such that

sups>t infσ∈A [[σ > s]]

belongs to At whenever t ∈ T is not isolated on the right.
(a)

[[inf A > t]] = inf
σ∈A

[[σ > t]] if t ∈ T is isolated on the right

= sup
s>t

inf
σ∈A

[[σ > s]] for other t ∈ T.

(b) [[inf A < τ ]] = supσ∈A [[σ < τ ]] for every τ ∈ T .

proof (a) For t ∈ T , set

at = infσ∈A [[σ > t]] ∈ At,

bt = at if t ∈ T is isolated on the right,

= inf
s>t

as for other t ∈ T.

By hypothesis, bt ∈ At for every t ∈ T . Now as ⊆ at whenever t ≤ s, so bs ⊆ bt whenever t ≤ s. If t ∈ T is
not isolated on the right,

inf{bs : s > t} inf{as′ : there is an s such that s′ > s > t}
= inf{as′ : s′ > t} = bt.

Accordingly there is a τ0 ∈ T such that [[τ0 > t]] = bt for every t ∈ T .
If σ ∈ A,

[[τ0 > t]] = bt ⊆ at ⊆ [[σ > t]]

for every t ∈ T , so τ0 ≤ σ; as σ is arbitrary, τ0 ≤ inf A. On the other hand, for any t ∈ T , [[inf A > t]] ⊆ [[σ > t]]
for every σ ∈ A, so [[inf A > t]] ⊆ at; and if t is not isolated on the right,

[[inf A > t]] = sups>t [[inf A > s]] ⊆ sups>t as = bt.

Thus [[inf A > t]] ⊆ bt = [[τ0 > t]] for every t, and inf A ≤ τ0.
Accordingly inf A = τ0 satisfies the formula claimed.

(b) If σ ∈ A, [[σ < τ ]] ⊆ [[inf A < τ ]] by 611E(c-iv-β); so supσ∈A [[σ < τ ]] ⊆ [[inf A < τ ]]. In the other
direction, take any t ∈ T . If t is isolated on the right, then

[[τ > t]] \ [[inf A > t]] = [[τ > t]] \ inf
σ∈A

[[σ > t]]

= sup
σ∈A

[[τ > t]] \ [[σ > t]] ⊆ sup
σ∈A

[[σ < τ ]];

otherwise,

[[τ > t]] \ [[inf A > t]] = sup
s>t

([[τ > s]] \ sup
s′>t

inf
σ∈A

[[σ > s′]])

⊆ sup
s>t

([[τ > s]] \ inf
σ∈A

[[σ > s]])

= sup
s>t

sup
σ∈A

([[τ > s]] \ [[σ > s]]) ⊆ sup
σ∈A

[[σ < τ ]].

Measure Theory
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So

[[inf A < τ ]] = supt∈T [[τ > t]] \ [[inf A > t]] ⊆ supσ∈C [[σ < τ ]]

and we have equality.

611G The algebra defined by a stopping time: Definition If τ ∈ T , write Aτ for

{a : a ∈ A, a \ [[τ > t]] ∈ At for every t ∈ T}.
Then Aτ is an intersection of order-closed subalgebras, so is itself an order-closed subalgebra of A.

611H Proposition (a) Suppose that τ ∈ T and t ∈ T .
(i) If b ∈ ⋂

s>t As and b ⊆ [[τ > t]], then b ∈ Aτ . In particular, [[τ > t]] and therefore 1 \ [[τ > t]] belong
to Aτ .

(ii) If b ∈ At and b ⊆ [[τ > s]] for every s < t, then b ∈ Aτ .
(iii) If b ∈ Aτ and b ∩ [[τ > t]] = 0, then b ∈ At.

(b) If ť is the constant stopping time at t, then Ať = At.
(c) Suppose that σ, τ ∈ T .

(i) [[σ < τ ]], [[σ = τ ]] and [[τ < σ]] belong to Aσ ∩ Aτ .
(ii) Aσ∧τ = Aσ ∩ Aτ ; in particular, Aσ ⊆ Aτ if σ ≤ τ .
(iii) If a ∈ Aτ then a ∩ [[τ ≤ σ]] = a \ [[σ < τ ]] ∈ Aσ∧τ .
(iv) Aσ∨τ is the subalgebra of A generated by Aσ ∪ Aτ .

proof (a)(i) If s ≤ t,

b \ [[τ > s]] ⊆ [[τ > t]] \ [[τ > s]] = 0

and b \ [[τ > s]] ∈ As. If s > t then b and [[τ > s]] both belong to As, so b \ [[τ > s]] ∈ As.

(ii) If s < t, b \ [[τ > s]] = 0 ∈ As. If s ≥ t then b and [[τ > s]] both belong to As, so b \ [[τ > s]] ∈ As.

(iii) b = b \ [[τ > t]].

(b) Use (a-ii) and (a-iii).

(c)(i) For every t ∈ T , [[τ > t]] \ [[σ > t]] belongs to At and therefore to Aτ , by (a-i) or (a-ii); now the
supremum of these, [[σ < τ ]], will also belong to Aτ . Moreover, for every t,

[[σ < τ ]] \ [[σ > t]] = sup
s∈T

([[τ > s]] \ [[σ > s]]) \ [[σ > t]]

= sup
s≥t

([[τ > s]] \ [[σ > t]]) ∪ sup
s≤t

([[τ > s]] \ [[σ > s]])

= ([[τ > t]] \ [[σ > t]]) ∪ sup
s≤t

([[τ > s]] \ [[σ > s]])

= sup
s≤t

[[τ > s]] \ [[σ > s]] ∈ At.

So [[σ < τ ]] also belongs to Aσ.
In the same way, [[τ < σ]] ∈ Aσ ∩ Aτ ; by 611E(a-i-α), [[σ = τ ]] ∈ Aσ ∩ Aτ .

(ii)(ααα) If σ ≤ τ , a ∈ Aσ and t ∈ T , then

a \ [[τ > t]] = (a \ [[σ > t]]) \ [[τ > t]] ∈ At

because a \ [[σ > t]] and [[τ > t]] both belong to At. As a and t are arbitrary, Aσ ⊆ Aτ .

(βββ) So for any σ, τ ∈ T we shall have Aσ∧τ ⊆ Aσ ∩ Aτ . Conversely, if a ∈ Aσ ∩ Aτ and t ∈ T , then

a \ [[σ ∧ τ > t]] = a \ ([[σ > t]] ∩ [[τ > t]])

(611Cc)

= (a \ [[σ > t]]) ∪ (a \ [[τ > t]]) ∈ At

D.H.Fremlin



12 The Riemann-sum integral 611H

because both a \ [[σ > t]] and a \ [[τ > t]] belong to At. As a and t are arbitrary, Aσ ∩ Aτ ⊇ Aσ∧τ and we
have equality.

(iii) If t ∈ T , then [[τ > t]] \ [[σ > t]] ⊆ [[σ < τ ]], so [[τ > t]] ⊆ [[σ > t]] ∪ [[σ < τ ]]. Since a \ [[τ > t]], [[σ > t]],
[[τ > t]] and [[σ < τ ]] \ [[τ > t]] all belong to At (put (a-i), (a-iii) and (i) just above together for the last), so
do [[σ < τ ]] ∪ [[τ > t]], [[σ < τ ]] ∪ [[τ > t]] ∪ [[σ > t]] and

(a \ [[τ > t]]) \ ([[σ < τ ]] ∪ [[σ > t]] ∪ [[τ > t]])

= a \ ([[σ < τ ]] ∪ [[τ > t]] ∪ [[σ > t]])

= a \ ([[σ < τ ]] ∪ [[σ > t]]) = (a \ [[σ < τ ]]) \ [[σ > t]].

As t is arbitrary, a \ [[σ < τ ]] ∈ Aσ. But also a and [[σ < τ ]] belong to Aτ , so

a \ [[σ < τ ]] ∈ Aσ ∩ Aτ = Aσ∧τ

by (i) again.

(iv) Let B be the subalgebra generated by Aσ ∪ Aτ . By (i), B ⊆ Aσ∨τ . On the other hand, suppose
that a ∈ Aσ∨τ . Then

a \ [[σ < τ ]] = a \ [[σ < σ ∨ τ ]] ∈ Aσ ⊆ B

by 611E(a-ii-α) and (iii). Similarly a \ [[τ < σ]] ∈ B. As [[σ < τ ]] and [[τ < σ]] are disjoint, a ∈ B. As a is
arbitrary, Aσ∨τ ⊆ B and we have equality.

611I Lemma Suppose that 〈τi〉i∈I is a family in T and 〈ai〉i∈I is a partition of unity in A such that
ai ∈ Aτi for every i ∈ I. Then there is a unique σ ∈ T such that [[σ = τi]] ⊇ ai for every i ∈ I, and
infi∈I τi ≤ σ ≤ supi∈I τi.

proof For t ∈ T , set bt = supi∈I ai ∩ [[τi > t]]. Because 〈ai〉i∈I is a partition of unity,

1 \ bt = supi∈I ai \ bt = supi∈I ai \ [[τi > t]]

belongs to At, so bt ∈ At. If t is not isolated on the right, then

sups>t bs = supi∈I,s>t ai ∩ [[τi > s]] = supi∈I ai ∩ [[τi > t]] = bt.

So 〈bt〉t∈T satisfies the conditions of 611A(b-i) and we have a stopping time σ ∈ T such that [[σ > t]] = bt
for every t. Now, for i ∈ I and t ∈ T , [[σ > t]] ∩ ai = [[τi > t]] ∩ ai, so [[σ < τi]] and [[τi < σ]] are both disjoint
from ai, and ai ⊆ [[σ = τi]].

To see that σ is unique, suppose that σ′ ∈ T has the same property; then

[[σ > t]] ∩ ai = [[τi > t]] ∩ ai = [[σ′ > t]] ∩ ai

for every i ∈ I, so [[σ > t]] = [[σ′ > t]] for every t ∈ T , and σ′ = σ.
To see that infi∈I τi ≤ σ, observe that

[[infi∈I τi ≤ σ]] ⊇ [[infi∈I τi ≤ τj ]] ∩ [[τj ≤ σ]] ⊇ aj

for every j ∈ I, so [[infi∈I τi ≤ σ]] = 1 and infi∈I τi ≤ σ. Similarly, σ ≤ supi∈I τi.

611J Dissections by stopping times (a) Recall from 611B-611C that if we regard a stopping time
τ = 〈[[τ > t]]〉t∈T as a member of the algebra

∏
t∈T At, then the partial order ≤ and the lattice operations

∨, ∧ on T correspond to the Boolean relation and operations ⊆ , ∪ , ∩ on
∏
t∈T At, and moreover that

arbitrary suprema in T correspond to suprema in
∏
t∈T At (611Cb), though there can be complications for

general infima (632C(a-i)).
In view of this representation it is natural to consider other Boolean operations on members of T , in

particular, set difference. I will in fact prefer the notation

c(σ, τ) = 〈[[τ > t]] \ [[σ > t]]〉t∈T ,
rather than writing τ \σ, as perhaps leaving less scope for confusion, and carrying the notion of an ‘interval’
from σ to τ . I will say that c(σ, τ) is the stopping time interval with endpoints σ, τ . (Warning! the
endpoints are not uniquely defined; but see (d) here, and also 613Cc below.)
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If S is a sublattice of T , Sti(S) will be the set of stopping-time intervals expressible as c(σ, τ) where σ ≤ τ
in S.

(b) However, the Boolean interpretation of c(σ, τ), combined with the formulae in 611C and the distribu-
tive laws of Boolean algebra, leads us directly to such elementary facts as

c(σ, τ) ∩ c(σ′, τ ′) = c(σ ∨ σ′, τ ∧ τ ′)
for all σ, σ′, τ , τ ′ ∈ T , corresponding to the formula

(b \ a) ∩ (b′ \ a′) = (b ∩ b′) \ (a ∪ a′)

of Boolean algebra, and

c(σ ∧ τ, σ ∧ τ ′) ⊆ c(τ, τ ′),

corresponding to (a ∩ b′) \ (a ∩ b) ⊆ b′ \ b. Similarly,

c(σ, supC) = supτ∈C c(σ, τ), c(σ ∧ σ′, τ) = c(σ, τ) ∪ c(σ′, τ)

for σ, σ′, τ ∈ T and C ⊆ T , and if σ ≤ υ ≤ τ , then

c(σ, υ) ∪ c(υ, τ) = c(σ, τ), c(σ, υ) ∩ c(υ, τ) = 0.

Of course c(σ, τ) = 0 iff τ ≤ σ.

(c) We can now interpret [[σ < τ ]], as defined in 611D, as a kind of projection of c(σ, τ), so that,
for instance, [[σ < τ ]] ⊆ [[σ′ < τ ′]] whenever c(σ, τ) ⊆ c(σ′, τ ′). More precisely, if σ, τ , σ′, τ ′ ∈ T then
c(σ, τ) ⊆ c(σ′, τ ′) iff

[[σ < τ ]] ⊆ [[σ′ ≤ σ]] ∩ [[τ ≤ τ ′]].

PPP We have

[[σ < τ ]] ⊆ [[σ′ ≤ σ]] ⇐⇒ 0 = [[σ < τ ]] ∩ [[σ < σ′]] = [[σ < τ ∧ σ′]]

(611E(c-i-β))

⇐⇒ τ ∧ σ′ ≤ σ,

[[σ < τ ]] ⊆ [[τ ≤ τ ′]] ⇐⇒ 0 = [[σ < τ ]] ∩ [[τ ′ < τ ]] = [[σ ∨ τ ′ < τ ]]

(611E(c-ii))

⇐⇒ τ ≤ σ ∨ τ ′.

Next, for elements a, b, a′, b′ of any Boolean algebra,

b \ a ⊆ b′ \ a′ ⇐⇒ b \ a ⊆ b′ and (b \ a) ∩ b′ ∩ a′ = 0

⇐⇒ b \ a ⊆ b′ and (b \ a) ∩ a′ = 0

⇐⇒ b ⊆ a ∪ b′ and b ∩ a′ ⊆ a.

Translating this into terms of c(σ, τ) = τ \ σ and c(σ′, τ ′) = τ ′ \ σ′ in
∏
t∈T At,

c(σ, τ) ⊆ c(σ′, τ ′) ⇐⇒ τ ⊆ σ ∪ τ ′ and τ ∩ σ′ ⊆ σ

⇐⇒ τ ≤ σ ∨ τ ′ and τ ∧ σ′ ≤ σ

(translating into terms of ≤, ∧ and ∨ in the lattice T )

⇐⇒ [[σ < τ ]] ⊆ [[τ ≤ τ ′]] and [[σ < τ ]] ⊆ [[σ′ ≤ σ]]

⇐⇒ [[σ < τ ]] ⊆ [[σ′ ≤ σ]] ∩ [[τ ≤ τ ′]]. QQQ
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14 The Riemann-sum integral 611Jd

(d) Similarly, if σ, τ , σ′, τ ′ ∈ T then c(σ, τ) = c(σ′, τ ′) iff

[[σ < τ ]] = [[σ′ < τ ′]] ⊆ [[σ′ = σ]] ∩ [[τ = τ ′]].

PPP If the condition is satisfied, then (c) shows at once that c(σ, τ) = c(σ′, τ ′). Conversely, if c(σ, τ) = c(σ′, τ ′)
then the first remark in (c) tells us that [[σ < τ ]] = [[σ′ < τ ′]], and now both are included in

[[σ′ ≤ σ]] ∩ [[τ ′ ≤ τ ]] ∩ [[σ ≤ σ′]] ∩ [[τ ≤ τ ′]] = [[σ′ = σ]] ∩ [[τ = τ ′]]. QQQ

(e)(i) For a finite sublattice I of T , an I-cell will be a minimal non-zero stopping time interval of the
form c(σ, τ) where σ, τ ∈ I. (If I is non-empty and we think of it as a sublattice of

∏
t∈T At, then an I-cell

is an atom of the subalgebra of
∏
t∈T At generated by I which is included in c(min I,max I).)

(ii) Let I be a finite sublattice of T , Sti0(I) the set of I-cells, and τ ∈ I. If we write

I ∧ τ = {σ ∧ τ : σ ∈ I}, I ∨ τ = {σ ∨ τ : σ ∈ I},
then Sti0(I ∧ τ), Sti0(I ∨ τ) are disjoint sets with union Sti0(I). PPP We can think of τ and 1 \ τ as comple-
mentary elements of

∏
t∈T At, and if σ, σ′ ∈ T , then

c(σ, σ′) ∩ τ = c(σ ∧ τ, σ′ ∧ τ), c(σ, σ′) \ τ = c(σ ∨ τ, σ′ ∨ τ)
are stopping time intervals determined by endpoints in I. So if c(σ, σ′) ∈ Sti0(I), it must be equal either to
c(σ ∧ τ, σ′ ∧ τ) or c(σ ∨ τ, σ ∨ τ ′), and belong to Sti0(I ∧ τ) or Sti0(I ∨ τ) accordingly. QQQ

(iii) More generally, if I is a non-empty finite sublattice of T and τ0 ≤ . . . ≤ τn in I, then setting

I−1 = I ∧ τ0, Ij = I ∩ [τj , τj+1] for j < n, In = I ∨ τn,
〈Sti0(Ij)〉−1≤j≤n is a partition of Sti0(I). (Induce on n, noting that (I ∨ τn−1) ∧ τn = I ∩ [τn−1, τn],
(I ∨ τn−1) ∨ τn = I ∨ τn if n > 0.)

611K The following facts will be extremely useful.

Lemma Let I ⊆ T be a non-empty finite sublattice, and Sti0(I) the set of I-cells. Let I0 be a maximal
totally ordered subset of I, and 〈τi〉i≤n the increasing enumeration of I0.

(a) τ0 = min I, τ1 = max I.
(b) If i < n then I ∩ [τi, τi+1] = {τi, τi+1}.
(c) Sti0(I) = {c(τi, τi+1) : i < n}.
(d) [[τi < τ ]] ∩ [[τ < τi+1]] = 0 whenever i < n and τ ∈ I.
(e) supi≤n [[τ = τi]] = 1 for every τ ∈ I.
*(f) If σ ∈ T then

J0 = {σ ∧ τ0, τ0,med(τ0, σ, τ1), τ1,med(τ1, σ, τ2),

. . . , τn−1,med(τn−1, σ, τn), τn, σ ∨ τn}
is a maximal totally ordered subset of the sublattice I ⊔ {σ} of T generated by I ∪ {σ}.2

*(g) If σ ∈ T , then I ∧ σ = {τ ∧ σ : τ ∈ I} is a sublattice of T , and {τ0 ∧ σ, . . . , τn ∧ σ} is a maximal
totally ordered subset of I ∧ σ.

*(h) If τ0 ≤ σ0 ≤ . . . ≤ σm ≤ τn in T , and K is the sublattice of T generated by I ∪ {σ0, . . . , σm}, then
Jj = {med(σj , τi, σj+1) : i ≤ n} is a maximal totally ordered subset of K ∩ [σj , σj+1], for every j < m.

proof (a) I0 ∪ {min I,max I} is a totally ordered subset of I so must be equal to I0.

(b) If i < n, τ ∈ I and τi ≤ τ ≤ τi+1, then I0 ∪ {τ} is totally ordered and τ ∈ I0; thus I ∩ [τi, τi+1] =
{τi, τi+1} for every i < n.

(c) Writing

I ∧ τi = {σ ∧ τi : σ ∈ I} = {σ : σ ∈ I, σ ≤ τi}
as in 611Je above, we see that

2In a distributive lattice, med(p, q, r) = (p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r); see 3A1Ic.
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Sti0(I ∧ τi+1) = Sti0(I ∧ τi) ∪ Sti0((I ∧ τi+1) ∨ τi) = Sti0(I ∧ τi) ∪ Sti0(I ∩ [τi, τi+1])

for each i < n. Since I ∧ τ0 is the singleton {τ0}, Sti0(I ∧ τ0) = ∅; since I ∩ [τi, τi+1] = {τi, τi+1},
Sti0(I ∩ [τi, τi+1]) = {c(τi, τi+1)} for each i < n. Inducing on m, Sti0(I ∧ τm) = {c(τi, τi+1) : i < m} for each
m ≤ n, and

Sti0(I) = Sti0(I ∧ τn) = {c(τi, τi+1) : i < n}.

(d) Set

τ ′ = med(τi, τ, τi+1) = τi ∨ (τ ∧ τi+1) = (τi ∨ τ) ∧ τi+1.

Then τi ≤ τ ′ ≤ τi+1 and I0∪{τ ′} is a totally ordered subset of I, so either τi = τ ′ or τ ′ = τi+1. Accordingly

0 = [[τi < τ ′]] ∩ [[τ ′ < τi+1]] = [[τi < τi ∨ (τ ∧ τi+1)]] ∩ [[(τi ∨ τ) ∧ τi+1 < τi+1]]

= ([[τi < τi]] ∪ ([[τi < τ ]] ∩ [[τi < τi+1]])) ∩ (([[τi < τi+1]] ∩ [[τ < τi+1]]) ∪ [[τi+1 < τi+1]])

(611E(c-i) and (c-ii))

= [[τi < τ ]] ∩ [[τi < τi+1]] ∩ [[τ < τi+1]] = [[τi < τ ]] ∩ [[τ < τi+1]]

(611C(c-iii-γ)), as required.

(e) If τ ∈ I then [[τ ≤ τm]] = supi≤m [[τ = τi]] for every m ≤ n. PPP Induce on m. If m = 0 we have τ0 ≤ τ
so [[τ ≤ τ0]] = [[τ ∧ τ0 = τ0]] = [[τ = τ0]]. For the inductive step to m+ 1 ≤ n,

[[τ ≤ τm+1]] = ([[τ ≤ τm]] ∩ [[τ ≤ τm+1]]) ∪ ([[τm < τ ]] ∩ [[τ ≤ τm+1]])

(611E(a-i-α))

= [[τ ≤ τm ∧ τm+1]] ∪ ([[τm < τ ]] ∩ [[τ < τm+1]]) ∪ ([[τm < τ ]] ∩ [[τ = τm+1]])

(611E(c-i-α))

⊆ [[τ ≤ τm]] ∪ [[τ = τm+1]]

((d) above)

⊆ sup
i≤m

[[τ = τi]] ∪ [[τ = τm+1]]

(by the inductive hypothesis)

= sup
i≤m+1

[[τ = τi]]. QQQ

At the end of the induction,

1 = [[τ ≤ τn]] = supi≤n [[τ = τi]]

for every τ ∈ I.

(f) The set

{τ : τ ∈ T , τ ∧ τ0 ∈ {σ ∧ τ0, τ0}, τ ∨ τn ∈ {τn, σ ∨ τn},
med(τi, τ, τi+1) ∈ {τi,med(τi, σ, τi), τi+1} for every i < n}

is a sublattice of T (because all the operations τ 7→ τ ∧ τ0, τ 7→ med(τi, τ, τi+1), τ 7→ τ ∨ τn are lattice
homomorphisms), containing σ (obviously) and including I (because I ∧ τ0 = {τ0}, I ∨ τn = {τn} and
I ∩ [τi, τi+1] = {τi, τi+1} for i < n); so it includes I ⊔ {σ}. But this means that there is no member of
I ⊔ {σ} lying strictly between any two terms of the string defining J0, while min(I ⊔ {σ}) = σ ∧ τ0 is the
first member of J0 and max(I ⊔ {σ}) = σ ∨ τn is the last. Thus J0 is a maximal totally ordered subset of
I ⊔ {σ}, as claimed.

(g) I ∧ σ is a sublattice of T because T is a distributive lattice. Since τ0 = min I and τn = max I,
τ0 ∧ σ and τn ∧ σ are the least and greatest members of I ∧ σ. Suppose that τ ∈ I and i < n are such that
τi ∧ σ ≤ τ ∧ σ ≤ τi+1 ∧ σ. Then τ ′ = med(τi, τ, τi+1) ∈ I and
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τ ∧ σ = ((τ ∨ τi) ∧ τi+1) ∧ σ = ((τ ∧ σ) ∨ (τi ∧ σ)) ∧ τi+1) ∧ σ = τ ′ ∧ σ.
But as τ ′ ∈ I ∩ [τi, τi+1] and I0 is a maximal totally ordered subset of I, τ ′ ∈ {τi, τi+1} and τ ∧ σ ∈
{τi ∧ σ, τi+1 ∧ σ}. So {τi ∧ σ : i ≤ n} is a maximal totally ordered subset of I ∧ σ.

(h) As Jj ⊆ K and

σj = med(σj , τ0, σj+1) ≤ med(σj , τ1, σj+1) ≤ . . . ≤ med(σj , τn, σj+1) = σj+1,

Jj is a totally ordered subset of K ∩ [σj , σj+1] containing σj and σj+1. As in (f), the set

{ρ : ρ ∈ T , med(σj , ρ, σj+1) ∈ {med(σj , τ, σj+1) : τ ∈ I}}
is a sublattice of T including {σ0, . . . , σm}∪I and therefore includes K. Now suppose that ρ ∈ K∩[σj , σj+1]
and Jj ∪ {ρ} is totally ordered. Then there is an i < n such that

med(σj , τi, σj+1) ≤ ρ ≤ med(σj , τi+1, σj+1).

Let τ ∈ I be such that med(σj , ρ, σj+1) = med(σj , τ, σj+1) and consider τ ′ = med(τi, τ, τi+1). Then

med(σj , τ
′, σj+1) = med(med(σj , τi, σj+1),med(σj , τ, σj+1),med(σj , τi+1, σj+1))

(because σ 7→ med(σj , σ, σj+1) is a lattice homomorphism)

= med(med(σj , τi, σj+1),med(σj , ρ, σj+1),med(σj , τi+1, σj+1))

= med(med(σj , τi, σj+1), ρ,med(σj , τi+1, σj+1))

(because σj ≤ med(σj , τi, σj+1) ≤ ρ ≤ med(σj , τi+1, σj+1) ≤ σj+1)

= ρ.

But as τ ′ ∈ I and {τk : k ≤ n} is a maximal totally ordered subset of I, either τ ′ = τi and ρ =
med(σj , τi, σj+1) or τ ′ = τi+1 and ρ = med(σj , τi+1, σj+1); in either case ρ ∈ Jj . Thus Jj is a maximal
totally ordered subset of K ∩ [σj , σj+1], as claimed.

611L Definition If I is a finite sublattice of T , I will say that a sequence 〈τi〉i≤n in I linearly generates
the I-cells if it is non-decreasing and {τi : i ≤ n} is a maximal totally ordered subset of I. (It will be
convenient not to insist that the sequence be strictly increasing. But we shall always have τ0 = min I, τn =
max I, I ∩ [τi, τi+1] = {τi, τi+1} for every i < n, Sti0(I) = {c(τi, τi+1) : i < n, τi 6= τi+1}, supi≤n [[σ = τi]] = 1
for every σ ∈ I, [[τi < σ]] ∩ [[σ < τi+1]] = 0 whenever σ ∈ I and i < n, and

(σ ∧ τ0, τ0,med(τ0, σ, τ1), τ1, . . . , τn−1,med(τn−1, σ, τn), τn, σ ∨ τn)
will linearly generate the (I ⊔ {σ})-cells for every σ ∈ T .)

611M Covering and full sublattices (a)(i) IfA, B ⊆ T , I will say thatA covers B if supσ∈A [[τ = σ]] =
1 for every τ ∈ B. (The formula is to be interpreted as including a promise that, except in the trivial cases
A = {0} and B = ∅, A is non-empty, following the rule that sup ∅ = 0 in any Boolean algebra.)

(ii) If A ⊆ T , the covered envelope of A will be the set {τ : τ ∈ T , supσ∈A [[τ = σ]] = 1}, that is, the
largest subset of T covered by A. Of course A covers itself, that is, the covered envelope of A includes A.

(b)(i) If A ⊆ T and a ∈ A, the set

S = {τ : τ ∈ T , a ⊆ supσ∈A [[σ = τ ]]}
is a sublattice of T . PPP If τ , τ ′ ∈ S, then

sup
σ∈A

[[τ ∨ τ ′ = σ]] ⊇ sup
σ∈A

([[τ ∨ τ ′ = τ ]] ∩ [[τ = σ]]) ∪ sup
σ∈A

([[τ ∨ τ ′ = τ ]] ∩ [[τ ′ = σ]])

(611E(c-iv-γ))

⊇ (a ∩ [[τ ′ ≤ τ ]]) ∪ (a ∩ [[τ ≤ τ ′]])

(611E(a-ii-β))
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= a

(611D). Similarly

sup
σ∈A

[[τ ∧ τ ′ = σ]] ⊇ sup
σ∈A

([[τ ∧ τ ′ = τ ]] ∩ [[τ = σ]]) ∪ sup
σ∈A

([[τ ∧ τ ′ = τ ]] ∩ [[τ ′ = σ]])

⊇ (a ∩ [[τ ≤ τ ′]]) ∪ (a ∩ [[τ ′ ≤ τ ]]) = a.

So τ ∨ τ ′ and τ ∧ τ ′ belong to S. As τ and τ ′ are arbitrary, S is a sublattice of T . QQQ

In particular, the covered envelope Â of A is a sublattice of T .

(ii) If ρ is an upper bound for A in T , then ρ is an upper bound for Â. PPP If τ ∈ Â, then

[[τ ≤ ρ]] ⊇ supσ∈A [[τ = σ]] ∩ [[σ ≤ ρ]] ⊇ supσ∈A [[τ = σ]] = 1

and τ ≤ ρ. QQQ Similarly, if ρ is a lower bound for A, it is a lower bound for Â.

(iii) Since A ⊆ Â, it follows that if A has a greatest member then this is also the greatest member of

Â, and that if A has a least member then this is also the least member of Â.

(iv) Note that if σ, τ ∈ T then {σ, τ} covers {σ ∧ τ, σ ∨ τ} (by (i) above) and also {σ ∧ τ, σ ∨ τ} covers
{σ, τ} (because

[[σ ≤ τ ]] ⊆ [[σ = σ ∧ τ ]] ∩ [[τ = σ ∨ τ ]], [[τ ≤ σ]] ⊆ [[σ = σ ∨ τ ]] ∩ [[τ = σ ∧ τ ]]).

(c) I will say that a sublattice of T is full if it is equal to its covered envelope.

(i) The intersection of any non-empty family of full sublattices of T is full. PPP If S is a non-empty
family of full sublattices of T , and τ belongs to the covered envelope of S∗ =

⋂
S, then for any S ∈ S we

have

supσ∈S [[τ = σ]] ⊇ supσ∈S∗ [[τ = σ]] = 1

so τ ∈ S. As S is arbitrary, τ ∈ S∗; as τ is arbitrary, S∗ is full. QQQ

(ii) If A ⊆ T , its covered envelope Â is full. PPP If ρ belongs to the covered envelope of Â then

supσ∈A [[ρ = σ]] ⊇ supσ∈A,τ∈S [[ρ = τ ]] ∩ [[τ = σ]] = supτ∈S [[ρ = τ ]] = 1

and ρ ∈ Â. QQQ

(d) For any ρ ∈ T , T ∧ ρ is full. PPP If τ belongs to the covered envelope of T ∧ ρ, then

[[τ ≤ ρ]] ⊇ sup
σ∈T ∧ρ

[[τ = σ]] ∩ [[σ ≤ ρ]]

(611E(c-iv-α))

= sup
σ∈T ∧ρ

[[τ = σ]] = 1,

so τ ∈ T ∧ ρ (611E(a-i-γ)). QQQ Similarly, T ∨ ρ is full. Putting these together, [ρ, ρ′] = (T ∧ ρ′) ∩ (T ∨ ρ) is
full whenever ρ ≤ ρ′ in T .

(e)(i) If S is a sublattice of T with covered envelope Ŝ, and ρ ∈ S, then Ŝ ∧ ρ is the covered envelope of

S ∧ ρ and Ŝ ∨ ρ is the covered envelope of S ∨ ρ. PPP Since Ŝ is a sublattice of T ((b-i) above) and ρ ∈ Ŝ,
Ŝ ∧ ρ = {τ : τ ∈ Ŝ, τ ≤ ρ} = Ŝ ∩ (T ∧ ρ)

(see the remark following 611C) and is full (putting (c) and (d) together). As it includes S ∧ ρ, it includes
the covered envelope of S ∧ ρ. In the other direction, if τ ∈ Ŝ ∧ ρ, then
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18 The Riemann-sum integral 611Me

sup
σ∈S∧ρ

[[τ = σ]] = sup
σ∈S

[[τ = σ ∧ ρ]]

(because S ∧ ρ = {σ ∧ ρ : σ ∈ S})
= sup
σ∈S

[[τ ∧ ρ = σ ∧ ρ]]

(because τ = τ ∧ ρ)
⊇ sup
σ∈S

[[τ = σ]]

(611E(c-v-α))

= 1

because ρ ∈ Ŝ and Ŝ is a sublattice of T , so τ ∈ Ŝ. Thus τ belongs to the covered envelope of S ∧ ρ, and
this is the whole of Ŝ ∧ ρ.

Replacing every ∧ above by ∨, we see that Ŝ ∨ ρ is the covered envelope of S ∨ ρ. QQQ
(ii) If S is a sublattice of T , ρ, ρ′ ∈ S and ρ ≤ ρ′, then the covered envelope of

S ∩ [ρ, ρ′] = (S ∨ ρ) ∧ ρ′ = {med(ρ, σ, ρ′) : σ ∈ S}
is (Ŝ ∨ ρ) ∧ ρ′ = Ŝ ∩ [ρ, ρ′]. (Because T is a distributive lattice, S ∨ ρ is a sublattice of T , so we can apply
(i) twice.)

(f) If S is a sublattice of T with covered envelope Ŝ, then ⋂
τ∈Ŝ Aτ =

⋂
σ∈S Aσ. PPP Write B for

⋂
σ∈S Aσ.

Then
⋂
τ∈Ŝ Aτ ⊆ B just because S ⊆ Ŝ. In the other direction, if b ∈ B and τ ∈ Ŝ, then for any σ ∈ S we

have b ∈ aσ so b ∩ [[τ = σ]] ∈ Aτ (611H(c-iii)); accordingly b = supσ∈S b ∩ [[τ = σ]] belongs to Aτ . As b and τ
are arbitrary, B ⊆ ⋂

τ∈Ŝ Aτ and we have equality. QQQ

(g) Suppose that A, B ⊆ T and A covers B.

(i) A covers the covered envelope of B, because A covers its own covered envelope which is a full
sublattice including B.

(ii) If τ ∈ T , then A ∧ τ = {σ ∧ τ : σ ∈ A} covers B ∧ τ = {σ ∧ τ : σ ∈ B}. PPP If σ ∈ B, then

1 = supσ′∈A [[σ = σ′]] ⊆ supσ′∈A [[σ ∧ τ = σ′ ∧ τ ]]
by 611E(c-v-α). QQQ

611N Covering ideals Let S be a sublattice of T .

(a) Definition I will say that a covering ideal of S is an ideal S ′ of S which covers S in the sense of
611M.

(b)(i) If τ ∈ S and S ′ is an ideal of S, then {[[σ = τ ]] : σ ∈ S ′} is upwards-directed. PPP If σ, σ′ ∈ S ′ then
υ = (σ ∨ σ′) ∧ τ belongs to S ′, and [[υ = τ ]] ⊇ [[σ = τ ]] ∪ [[σ′ = τ ]]. QQQ

(ii) If τ ∈ S and S ′ is an ideal of S, then supσ∈S′ [[σ = τ ]] = supσ∈S′ [[τ ≤ σ]]. PPP For any σ ∈ S ′,
σ ∧ τ ∈ S ′ and

[[σ = τ ]] ⊆ [[τ ≤ σ]] = [[τ = σ ∧ τ ]]. QQQ

(c) If S is a sublattice of T and S1, S2 are two covering ideals of S, then S0 = S1 ∩S2 is a covering ideal
of S.

PPP Certainly S0 is an ideal of S. Take τ ∈ S and a ∈ A \ {0}. Then there is a σ1 ∈ S1 such that
a1 = a ∩ [[τ = σ1]] 6= 0. Next, there is a σ2 ∈ S2 such that a2 = a1 ∩ [[τ = σ2]] 6= 0. In this case, σ = σ1 ∧ σ2
belongs to S0, a

[[τ = σ]] ⊇ [[τ = σ1]] ∩ [[τ = σ2]] ⊇ a2

meets a. As a and τ are arbitrary, S0 is a covering ideal of S. QQQ
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(d) If S ′ is a covering ideal of S and S ′′ is a covering ideal of S ′, then S ′′ is a covering ideal of S. PPP
It is elementary to check that S ′′ is an ideal of S. If τ ∈ S and a ∈ A \ {0}, there is a σ ∈ S ′ such that
b = a ∩ [[σ = τ ]] is not 0. Now there is an υ ∈ S ′′ such that c = b ∩ [[υ = σ]] is non-zero. But now c ⊆ [[υ = τ ]],
so a ∩ [[υ = τ ]] 6= 0. As a is arbitrary, supυ∈S′′ [[υ = τ ]] = 0; as τ is arbitrary, S ′′ is covering in S. QQQ

(e)(i) Tf is full. PPP If τ ∈ T and supσ∈Tf
[[τ = σ]] = 1, take any non-zero a ∈ A. Then there are a σ ∈ Tf

such that a ∩ [[τ = σ]] 6= 0 and a t ∈ T such that

a ∩ [[τ = σ]] 6⊆ [[σ > t]] ∩ [[τ = σ]] = [[τ > t]] ∩ [[τ = σ]]

(611E(i-β)), so a 6⊆ [[τ > t]]. As a is arbitrary, inft∈T [[τ > t]] = 0 and τ ∈ Tf . Thus Tf is its own covered
envelope and is full. QQQ

(ii) Tb is a covering ideal of Tf . PPP I observed in 611Cg that Tb is an ideal in T and therefore in Tf . If
τ ∈ Tf and t ∈ T , then ť and τ ∧ ť belong to Tb, while

[[τ = τ ∧ ť]] = 1 \ [[ť < τ ]]

(611E(a-ii-α))

= 1 \ sup
s∈T

[[τ > s]] \ [[ť > s]] = 1 \ sup
s≥t

[[τ > s]] = 1 \ [[τ > t]].

So

supσ∈Tf
[[τ = σ]] ⊇ supt∈T [[τ = τ ∧ ť]] = 1 \ inft∈T [[τ > t]] = 1

because τ ∈ Tf . As τ is arbitrary, Tb is covering in Tf . QQQ

*611O Definitions A variation on the concept of ‘full’ sublattice will be relevant in §615, and important
in §626.

(a) If A, B ⊆ T , I will say that A finitely covers B if for every τ ∈ B there is a finite J ⊆ A such that
supσ∈J [[τ = σ]] = 1.

(b) If A ⊆ T , the finitely-covered envelope of A is the set of those τ ∈ T for which there is a finite
subset J ⊆ A such that supσ∈J [[τ = σ]] = 1, that is, the largest subset of T finitely covered by A. Of course
A finitely covers itself, so is included in its finitely-covered envelope.

(c) A subset of T is finitely full if it is equal to its finitely-covered envelope.

*611P Lemma Suppose that A 6= {0}.
(a) Let A be a subset of T and Âf its finitely-covered envelope.

(i) Âf is finitely full.

(ii) Âf is a sublattice of the covered envelope Â of A.

(iii) Âf is the intersection of all the finitely full subsets of T including A.
(b) The intersection of any non-empty family S of finitely full sublattices of T is finitely full.
(c) If S is a sublattice of T which is order-convex (that is, τ ∈ S whenever σ ≤ τ ≤ σ′ in T and σ,

σ′ ∈ S), then S is finitely full.

(d) If S is a sublattice of T and τ ∈ Ŝf , there are σ0 ≤ . . . ≤ σn in S such that supi≤n [[τ = σi]] = 1.

(e) If S is a sublattice of T then S is both coinitial and cofinal with Ŝf .

proof (a)(i) If τ ∈ T and {τ} is covered by a finite subset I of Âf , then for each σ ∈ I there is a finite
subset Jσ of A covering {σ}; now J =

⋃
σ∈I Jσ is a finite subset of A, and

1 = supσ∈I [[σ = τ ]] = supσ∈I supρ∈Jσ [[σ = τ ]] ∩ [[ρ = σ]] ⊆ supρ∈J [[ρ = σ]]

(using 611E(c-iv-γ) so τ ∈ Âf .
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(ii) From the definitions in 611Ma and 611O we see at once that Âf ⊆ Â. If σ and τ belong to Âf ,
there are finite sets J , K ⊆ A such that σ is covered by J and τ is covered by K; now {σ ∧ τ, σ ∨ τ} is

covered by {σ, τ}, by 611M(b-i), and therefore by J ∪K. So Âf is a sublattice of Â.

(iii) If B is a finitely full subset of T including A, then Âf ⊆ B̂f = B; since Âf itself is finitely full, it
is the intersection of all the finitely full sets including it.

(b) (Cf. 611M(c-i).) If I is a finite subset of
⋂
S then its covered envelope is included in every member

of S so is included in
⋂

S.

(c) If τ ∈ T and there is a finite set I ⊆ S such that supσ∈I [[τ = σ]] = 1, then (as A 6= {0}) I is
non-empty, so we can speak of inf I and sup I, which both belong to S. Now

[[inf I ≤ τ ]] ⊆ supσ∈I [[inf I ≤ σ]] ∩ [[τ = σ]] = supσ∈I [[τ = σ]] = 1

so inf I ≤ τ ; similarly, τ ≤ sup I. As S is order-convex, τ ∈ S.
(d) There is a finite subset J of S covering {τ}, and as A is not {0}, J cannot be empty. Now the

sublattice I of T generated by J is finite (611Ca) and not empty, so there is a finite sequence (σ0, . . . , σn)
linearly generating the I-cells (611K-611L). Now {σ0, . . . , σn} covers I and therefore covers {τ}.

(e) If τ ∈ Ŝf , there is a finite set J ⊆ S such that supσ∈J [[σ = τ ]] = 1. As A 6= {0}, J is not empty, and
we can speak of min J and max J , which both belong to S. Now

1 = supσ∈J [[σ = τ ]] ⊆ supσ∈J [[σ ≤ τ ]] ∩ [[min J ≤ σ]] ⊆ [[min J ≤ τ ]]

(611E(c-iv-α)), so min J ≤ τ . Similarly, τ ≤ max J .

611X Basic exercises >>>(a) Suppose that T = [0,∞[. (i) Show that Tf can be identified with a
sublattice of L0(A)+ which is closed under addition and multiplication by scalars greater than or equal to
1. (See §364 or 612A for the space L0 = L0(A).) (ii) Show that Tb becomes identified with Tf ∩ L∞(A).
(iii) Show that a set C ⊆ Tf is bounded above in Tf iff it is bounded above in L0, and that in this case its
supremum taken in Tf is the same as its supremum taken in L0.

>>>(b) Show that Amax T = A and that Amin T =
⋂
t∈T At.

>>>(c) In 611J, let Z be the Stone space of A, so that A can be identified with the algebra E of open-and-
closed subsets of Z, and AT with the family

{W :W ⊆ Z × T , W−1[{t}] ∈ E for every t ∈ T}.
(i) Show that a stopping time τ ∈ T corresponds to an ordinate set Wτ ⊆ Z × T such that (z, t) ∈ Wτ

whenever (z, s) ∈Wτ and t ≤ s. (ii) Show that if σ, τ ∈ T , then c(σ, τ) corresponds to a subset W of Z ×T
in which all vertical sections are intervals, and [[σ < τ ]] is now the interior of the closure of the projection
W−1[T ] of W onto Z.

(d) Let S be a sublattice of T . Show that S is order-convex (4A2A) iff med(τ, σ, τ ′) belongs to S whenever
τ , τ ′ ∈ S and σ ∈ T .

(e) Suppose that I is a non-empty sublattice of T , and that (τ0, . . . , τn) linearly generates the I-cells.
Show that if σ ∈ T then

(τ0 ∧ σ, . . . , τn ∧ σ, σ, τ0 ∨ σ, . . . , τn ∨ σ)
linearly generates the (I ⊔ {σ})-cells, where I ⊔ {σ} is the sublattice of T generated by I ∪ {σ}.

(h) Suppose that T = N. (i) Show that if σ ∈ T and n ∈ N then [[σ > n]] cannot meet [[(n+ 1)̌ > σ]], so
that [[σ > ň]] = [[σ ≥ (n+ 1)̌ ]]. (ii) Show that T is the covered envelope of {ň : n ∈ N} ∪ {max T }.

(g) In 611M(b-i), show that I = {τ : a ⊆ supσ∈A [[τ = σ]]} is a full sublattice of T .

(f) Let S be a finitely full sublattice of T and S0 an ideal of S. Show that S0 is finitely full.
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611Y Further exercises (a) Suppose that A is ccc (definition: 316A). Show that if A ⊆ T is non-empty,
there is a countable B ⊆ A such that supB = supA in T . (Hint : remember to cover the case T = ω1.)

(b) Let A = {0, a, 1 \ a, 1} be a four-element Boolean algebra, and take T = [0,∞[. Set A0 = {0, 1}
and At = A for t > 0. Show that for s > 0 there is a stopping time τs, adapted to 〈At〉t≥0, defined
by saying that [[τs > t]] = a if t ≥ s, 1 if t < s. (i) Show that infs>0 τs is the constant stopping time
0̌ = min T , and is not defined by the formula in 611F. (ii) Show that

⋂
s>0 Aτs 6= A0̌. (iii) Show that

sups>0 [[τs < max T ]] 6= [[0̌ < max T ]].

(c) Show that if A ⊆ T is finite then the covered envelope of A is order-closed in T .

(d) Let S be a sublattice of T , and write I for the set of totally ordered finite subsets of S. For I, J ∈ I
say that I ⊑ J if J covers I. Show that ⊑ is a pre-order on I (511A) under which I is upwards-directed.

611 Notes and comments Stochastic calculus is ordinarily presented in terms of probability spaces and
random variables. I followed this line myself in the brief introduction to stochastic processes in §455. To
go farther, however, I believe that (as with the ergodic theory of Chapter 38) the essential ideas can be
expressed more clearly in terms of probability algebras (A, µ̄) and processes in the associated spaces L0(A),
L1(A, µ̄) and L2(A, µ̄). The machinery for this has already been developed in Chapter 36, so we can go
directly to the new ideas in 611B, 611G and 612D. I give a translation from the standard framework in
612H.

In this context, let me recall what I wrote in the introduction to Chapter 27. The primary concept of
probability theory is not a measure space of measure 1. Rather, it is ‘random variable’ with its associated
distribution. ‘Probability spaces’, as I use the phrase in this treatise, can be regarded as models for a theory
of random variables. But in any statistical question, it is the variable itself which we try to measure and
make predictions for. If we knew where it came from, we’d study that. Now ‘probability algebras’, in my
terminology, provide a perfectly adequate model for distributions, including joint distributions (see 653B
and 653Xc below), while evading some of the technical problems associated with the arbitrary nature of any
choice of probability space. I ought of course to admit that they simultaneously obscure some important
sources of intuition.

Again, it is normal to think of filtrations and stochastic processes as based on real-valued times, so that
the totally ordered set T of 611A is [0,∞[ or something very like it. (See 611Xa for a note on how to look at
this case.) I have nothing interesting to say about other cases, but there is very little extra work involved in
the shift to an arbitrary totally ordered set, and this enables me to avoid an occasional shuffle when ]0,∞[ or
[0, 1] seems a more appropriate parameter space. In fact the extra steps needed in the general case, dealing
with gaps in the parameter space (see the last clause in the definition 611B(b-i)), are already needed in the
relatively elementary case T = N. But it will become plain in Chapter 63 that some of the most important
ideas of the theory apply only in contexts essentially excluding or erasing gaps in time.

I have deliberately cast the principal definitions in forms which make them applicable in such cases as
T = Z or T = R. But I note that the phrases ‘finite-valued’ and ‘bounded’ in 611A(b-iii) could be misleading
when T has no least member. Of course we always have the option of adding a least member −∞ to T and
setting A−∞ =

⋂
t∈T At. And then we might be tempted to add yet another element −∞′ < −∞ to T and

set A−∞′ = {0, 1}. Such manoeuvres can make no difference to the mathematical content of the work here,
but they will sometimes smooth the task of adapting general results to specific applications.

The calculations in 611C, 611E and 611H are elaborate but fundamentally elementary. I ought to offer
a word on the intuition behind the concept of ‘stopping time’. The requirement ‘[[τ > t]] ∈ At’ (or, if you
prefer, ‘[[τ ≤ t]] ∈ At’) is a declaration that the decision whether to continue beyond time t must be based
on what can be observed at that time, the potential observations being those which can be represented by
members of At. In 611I we have a direct expression of this idea: the stopping time σ corresponds to waiting
until we reach a stopping time τ ∈ A, checking whether we are in the region aτ , and if so halting. This
can be done only if the decision is based on something which will be observable when we reach τ , that is, if
aτ ∈ Aτ .

The point at which I think an imaginative effort is required is in 611J-611K. Here I expect that most
people will find the expression in 611Xc useful in visualizing the sets Sti0(I) of I-cells for finite sublattices
I; they look like patchwork quilts. The same formulation can be used to help with 611C-611E.

D.H.Fremlin



22 The Riemann-sum integral

Version of 24.12.16/21.10.22

612 Fully adapted processes

The next step is to introduce the processes which this volume is devoted to studying. These are an
abstract version of the real-valued stochastic processes 〈Xt〉t≥0 of §§455 and 477. Instead of starting from
Σt-measurable functions Xt : Ω → R and then showing that it is possible to define Σh-measurable functions
Xh for stopping times h : Ω → [0,∞[, I move directly to families uuu = 〈uσ〉σ∈S of equivalence classes
of measurable functions where S is a sublattice of the lattice T of stopping times discussed in §611. A
‘fully adapted process’ is one satisfying the essential measurability and consistency requirements of 612D.
Among these, the ‘simple’ processes (612J), those which are constant between finitely many break points,
are particularly important. I end with descriptions of Brownian motion (612T) and the standard Poisson
process (612U) in this language.

612A A and L0(A) (a) Given a Dedekind complete Boolean algebra, we have a Dedekind complete
f -algebra L0 = L0(A) as described in §364. (For exact statements of the algebraic relationships between
linear structure, lattice structure and multiplication which go to make an ‘f -algebra’, see 351A, 352A, 352D
and 352W.) §364 was dedicated to setting up a coherent description of L0(A) from A in logically primitive
terms, so that, in particular, it would be visibly free of any dependence on the axiom of choice. But if you
are willing to relax this discipline, then I think that the easiest way to approach these formulae is to think
of A as a quotient Σ/I, where Σ is a σ-algebra of subsets of a set Ω and I is a σ-ideal of Σ (314M), and to
recall that L0 can now be regarded as a space of equivalence classes of Σ-measurable functions (364C), with
the natural definitions of addition, multiplication and lattice operations.

(b) In §364 I introduced the formulae [[u > α]], [[u ∈ E]], where u ∈ L0, α ∈ R and E ⊆ R is a Borel
set, to represent ‘the region where u is greater than α’ or ‘the region where u lies in E’ (364A, 364G). I
mentioned formulae [[u ≥ α]], [[u < 0]] and [[u 6= 0]], and in the exercise 364Yb, I suggested a way of interpreting
[[(u1, . . . , un) ∈ E]] when E is a Borel subset of Rn. Here it will be convenient to extend the notation to
such formulae as [[u 6= v]], meaning, if you like, [[|u− v| > 0]]. In terms of the representation of L0 as a space
of equivalence classes of functions, we have

[[(f•

1 , . . . , f
•

n) ∈ E]] = {ω : (f1(ω), . . . , fn(ω)) ∈ E}•

for all Σ-measurable functions f1, . . . , fn : Ω → R. Similarly, [[f•

1 6= f•

2 ]] can be interpreted as {x : f1(ω) 6=
f2(ω)}•, and while this interpretation skates over some technical issues, it gives clear signposts to such basic
identities as

[[u = v]] ∩ [[v = w]] ⊆ [[u = w]]

without any real danger of your being led astray.

(c) Let E ⊆ R be a Borel set and h : E → R a Borel measurable function. Set

QE = {u : u ∈ L0, [[u ∈ E]] = 1} = {f• : f : Ω → E is measurable}.
If u ∈ QE ,we have an h̄(u) ∈ L0 defined by saying that [[h̄(u) ∈ F ]] = [[u ∈ h−1[F ]]] for every Borel set
F ⊆ R (364H). If u, u′ ∈ QE then [[u = u′]] ⊆ [[h̄(u) = h̄(u′)]]. Observe that if h1, h2 : R → R are both Borel
measurable, we now have h1h2(u) = h̄1(h̄2(u)) for all h1, h2 and u ∈ L0, because

[[u ∈ (h1h2)
−1[F ]]] = [[u ∈ h−1

2 [h−1
1 [F ]]]] = [[h̄2(u) ∈ h−1

1 [F ]]] = [[h̄1(h̄2(u)) ∈ F ]]

for every Borel set F . Also, of course, h̄(u) = u if E = R and h(α) = α for every α ∈ R, that is, h
is the identity of the semigroup H of Borel measurable functions from R to itself under the operation of
composition of functions. So we have a semigroup action • of H on L0 defined by saying that h•u = h̄(u)
for h ∈ H and u ∈ L0.

(d)(i) The following elementary facts are easy to check.

(α) If γ ∈ R and h(α) = γα for α ∈ R, then h̄(u) = γu for every u ∈ L0.
(β) If h(α) = |α| for α ∈ R, then h̄(u) = |u| for every u ∈ L0.
(γ) If h(α) = α2 for α ∈ R, then h̄(u) = u× u = u2 for every u ∈ L0.
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(δ) If h(α) = 1 for α ∈ R, then h̄(u) = χ1 is the multiplicative identity of L0 for every u ∈ L0.

(ǫ) If h : R → R is non-decreasing, then h̄(u) ≤ h̄(v) whenever u ≤ v in L0.

(ii) It follows that if V ⊆ L0 is such that u + v ∈ V for all u, v ∈ V and h̄(u) ∈ V for every convex
function h : R → R such that h(0) = 0, then V is an f-subalgebra of L0, that is, a Riesz subspace closed
under multiplication. PPP By (i-α), it is closed under scalar multiplication so is a linear subspace. By (i-β),
|u| ∈ V for every u ∈ V , so V is a Riesz subspace (352Ic). If u, v ∈ V then u × v = 1

2 ((u + v)2 − u2 − v2)
belongs to V by (i-γ), so V is closed under multiplication and is an f -subalgebra. QQQ A fortiori, if V is such
that u+ v ∈ V for all u, v ∈ V and h̄(u) ∈ V for every continuous function h : R → R such that h(0) = 0,
then V is an f -subalgebra of L0.

(iii) Continuing from (c) above, it will be important also to note that, for any u, v ∈ QE , [[u ≤ v]] ⊆ [[h̄(u) ≤ h̄(v)]].
PPP Identifying QE with a set of equivalence classes of real-valued measurable functions from Ω to E, we find
that h̄(f•) = (hf)• for all such functions f (364Ib), so that

[[h̄(f•) ≤ h̄(g•)]] = [[(hf)• ≤ (hg)•]] = {ω : hf(ω) ≤ hg(ω)}•

⊇ {ω : f(ω) ≤ g(ω)}• = [[f• ≤ g•]]

for all measurable f , g : Ω → R. QQQ It follows at once that [[u = v]] ⊆ [[h̄(u) = h̄(v)]].

(iv) Take any u ∈ L0. Again writing H for the space of Borel measurable functions from R to itself,
H is an f -subalgebra of the f -algebra RR as well as a sub-semigroup under composition. Treating H as an
f -algebra, the map h 7→ h̄(u) : H → L0 is a multiplicative Riesz homomorphism. PPP It is not especially
hard to prove this directly from the formula in (c), but you may prefer to use the alternative description of
h̄ in 364Ib: expressing A with Σ/I, where Σ is a σ-algebra of subsets of a set Ω and I is a σ-ideal of Σ, as
in (a), so that u can be thought of as the equivalence class of a Σ-measurable function f : Ω → R and h̄(u)
becomes the equivalence class of the composition hf , then h 7→ hf is a multiplicative Riesz homomorphism,
so h 7→ (hf)• = h̄(u) also is. QQQ

(v) It will happen more than once that we have two Dedekind complete Boolean algebras A and
B, f -subalgebras V , W of L0(A) and L0(B) respectively, and a linear operator Q : V → W such that
Q|v| = |Qv| and Q(v2) = (Qv)2 for all v ∈ V . In this case, Q will be an f-algebra homomorphism, that
is, a multiplicative Riesz homomorphism. (Use the ideas of (ii).)

(e)(i) Now suppose that B is an order-closed subalgebra of A. In this case we can think of L0(B) as
being the subspace

{u : u ∈ L0(A), [[u > α]] ∈ B for every α ∈ R}.
The arguments of 364F show that this is equal to

{u : u ∈ L0(A), [[u ∈ E]] ∈ B for every Borel set E ⊆ R}
and therefore that h̄(u) ∈ L0(B) whenever h ∈ H and u ∈ L0(B). Looking at this a little more deeply, we
see that if h ∈ H we have two different functions h̄A : L0(A) → L0(A) and h̄B : L0(B) → L0(B), but that
h̄B = h̄A↾L

0(B), so that we can fairly safely use the same symbol h̄ for either.
Note also that if A ⊆ L0(B) is non-empty and has a supremum v in L0(A), then v ∈ L0(B). PPP For

any α ∈ R, [[v > α]] = supu∈A [[u > α]], by 364L(a-ii), and this belongs to B because B is order-closed in
A. QQQ It follows that if A ⊆ L0(B) is non-empty and has an infimum v in L0(A), then v ∈ L0(B) (because
−v = sup(−A)). So L0(B) is an order-closed sublattice of L0(A).

(ii) If 〈Bi〉i∈I is a non-empty family of order-closed subalgebras of A with intersection B, then B is
an order-closed subalgebra of A and

L0(B) = {u ∈ L0(A), [[u > α]] ∈ B for every α ∈ R}
= {u ∈ L0(A), [[u > α]] ∈ Bi for every α ∈ R and i ∈ I} =

⋂

i∈I
L0(Bi).

(iii) For any u ∈ L0(A), the set {[[u ∈ E]] : E ⊆ R is Borel} is a σ-subalgebra of A, the smallest
σ-subalgebra B of A such that u ∈ L0(B); it is the σ-subalgebra generated by {[[u > α]] : α ∈ R}. Following
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272C, I will say that it is the σ-subalgebra of A defined by uuu. Similarly, if A ⊆ L0(A), I will say that the
σ-subalgebra of A generated by {[[u > α]] : u ∈ A, α ∈ R} is the σ-subalgebra defined by A.

(f) Let C be another Dedekind complete Boolean algebra, and φ : A → C an order-continuous Boolean
homomorphism. Then we have a unique order-continuous f -algebra homomorphism Tφ : L0(A) → L0(C)
such that

[[Tφu > α]] = φ[[u > α]] for every u ∈ L0(A) and α ∈ R,
Tφ(χa) = χ(φa) for every a ∈ A,
[[Tφu ∈ E]] = φ[[u ∈ E]] for every Borel set E ⊆ R,
Tφh̄A = h̄CTφ for every Borel measurable h : R → R,
Tφ is injective or surjective iff φ is

(364P).

612B Products and processes For the rest of this section, and indeed for nearly all the rest of the
volume, A will be a Dedekind complete Boolean algebra, T a totally ordered set, 〈At〉t∈T a filtration of
closed subalgebras of A, T the associated lattice of stopping times, and 〈Aτ 〉τ∈T the corresponding family
of order-closed subalgebras (611B-611C, 611G). For σ, τ ∈ T , [[σ < τ ]], [[σ ≤ τ ]] [[σ = τ ]] will be the regions
defined in 611D.

(a) If S is a sublattice of T , we can form the family 〈L0(Aσ)〉σ∈S . If we take the natural product linear
space, lattice and multiplicative structures, we get an f -algebra

∏
σ∈S L

0(Aσ) (364R). Moreover, writing H
for the semigroup of Borel measurable functions from R to itself as in 612Ac, we have a natural action of H
on

∏
σ∈S L

0(Aσ) defined by setting

h•〈uσ〉σ∈S = 〈h•uσ〉σ∈S

whenever h ∈ H and uσ ∈ L0(Aσ) for every σ ∈ S.
Writing h̄(u) for h•u, as in 612Ac, and thinking of uuu = 〈uσ〉σ∈S as a function from S to L0, we find

ourselves with a composition h̄uuu = h̄◦uuu : S → L0.

(b) Another way of looking at
∏
σ∈S L

0(Aσ) is to identify it with L0(C), where C is the simple Boolean

algebra product
∏
σ∈S Aσ (315A, 364R). Once again, it is easy to see that if h ∈ H then h̄C : L0(C) → L0(C)

matches the function uuu 7→ h̄uuu :
∏
σ∈S L

0(Aσ) →
∏
σ∈S L

0(Aσ) described in (a).

(c) From (b) and 612A(d-ii), or otherwise, we now see that if V is a subset of
∏
σ∈S L

0(Aσ) such that

uuu+ vvv ∈ V and h̄uuu ∈ V whenever uuu, vvv ∈ V , h : R → R is convex and h(0) = 0, then V is an f -subalgebra of∏
σ∈S L

0(Aσ).

612C Before going farther, I give the following fragment complementing the results of §611.
Lemma If σ, τ ∈ T and u ∈ L0(Aτ ) then u × χ[[τ ≤ σ]] and u × χ[[τ = σ]] and u × χ[[τ < σ]] belong to
L0(Aσ∧τ ).

proof It is enough to consider the case u ≥ 0. In this case, for α ∈ R,

[[u× χ[[τ ≤ σ]] > α]] = [[u > α]] ∩ [[τ ≤ σ]] = [[u > α]] \ [[σ < τ ]] ∈ Aσ∧τ if α ≥ 0

(611H(c-iii)))

= 1 ∈ Aσ∧τ if α < 0,

so u× χ[[τ ≤ σ]] ∈ L0(Aσ∧τ ). As for the other parts, [[τ = σ]] belongs to Aσ∧τ so

u× χ[[τ = σ]] = u× χ[[τ ≤ σ]]× χ[[τ = σ]]

belongs to L0(Aσ∧τ ); while u× χ[[τ < σ]] is the difference of the other two.

612D Fully adapted processes To continue the real work of this section, let S be a sublattice of T
and uuu = 〈uσ〉σ∈S a family in L0(A).
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(a) Definition I will say that uuu is fully adapted to 〈At〉t∈T if uσ ∈ L0(Aσ) and [[σ = τ ]] ⊆ [[uσ = uτ ]]
whenever σ, τ ∈ S.

(b) Note that if uτ ∈ L0(Aτ ) and [[σ = τ ]] ⊆ [[uσ = uτ ]] whenever σ ≤ τ ∈ S, then uuu is fully adapted. PPP
For general σ, τ ∈ S we now have

[[σ = τ ]] ⊆ [[σ = σ ∧ τ ]] ∩ [[τ = σ ∧ τ ]]
(611E(a-ii-β))

⊆ [[uσ = uσ∧τ ]] ∩ [[uτ = uσ∧τ ]] ⊆ [[uσ = uτ ]]. QQQ

(c) If uuu is fully adapted and S ′ is a sublattice of S, then of course uuu↾S ′ is still a fully adapted process.

(d) If uuu is fully adapted, I is a finite sublattice of S, and (τ0 . . . , τn) linearly generates the I-cells as in
611K-611L, then for any σ ∈ I we have

supi≤n [[uσ = uτi ]] ⊇ supi≤n [[σ = τi]] = 1

by 611Ke. So, for instance, if ū = supi≤n uτi ,

[[uσ ≤ ū]] ⊇ supi≤n [[uσ = uτi ]] = 1

and uσ ≤ ū; thus ū = supσ∈I uσ. Similarly, supσ∈I |uσ| = supi≤n |uτi |.

(e)(i) Note that if uuu is constant, say uσ = z for every σ ∈ S, then uuu is fully adapted iff z ∈ ⋂
σ∈S L

0(Aσ);

if S has a least element, this will be so iff z ∈ L0(AminS). For any z ∈ L0(A), I will write z1 for the fully
adapted process 〈z〉σ∈S where S is the sublattice {σ : σ ∈ T , z ∈ L0(Aσ)}. When z = χ1 and S = T I will
write just 1; similarly, 0 will be the constant process with value 0 ∈ L0(A).

(ii) Generally, if z ∈ L0(A), I will write zuuu for the process z1×uuu = 〈z×uσ〉σ∈S′ , where S ′ = {σ : σ ∈ S,
z ∈ L0(Aσ)}. Then S ′ is a sublattice of S and zuuu is fully adapted. PPP If σ, τ ∈ S ′ then Aσ∧τ = Aσ ∩ Aτ

and Aσ∨τ ⊇ Aσ (611H(c-ii)), so L0(Aσ∧τ ) = L0(Aσ) ∩ L0(Aτ ) and L0(Aσ∨τ ) ⊇ L0(Aσ) (612A(e-ii)) both
contain z, and σ ∧ τ and σ ∨ τ belong to S ′; thus S ′ is a sublattice of S. If σ ∈ S ′, then z and uσ both
belong to L0(Aσ), so z × uσ ∈ L0(Aσ). If σ, τ ∈ S ′, then

[[z × uσ = z × uτ ]] = [[z = 0]] ∪ [[uσ = uτ ]] ⊇ [[σ = τ ]],

so zuuu is fully adapted. QQQ

(f) Suppose that uuu is fully adapted.

(i) uσ∧τ + uσ∨τ = uσ + uτ and uσ∧τ ∨ uσ∨τ = uσ ∨ uτ for all σ, τ ∈ S. PPP

[[σ ≤ τ ]] = [[σ ∧ τ = σ]] ∩ [[σ ∨ τ = τ ]]

(611E(a-ii-β))

⊆ [[uσ∧τ = uσ]] ∩ [[uσ∨τ = uτ ]]

⊆ [[uσ∧τ + uσ∨τ = uσ + uτ ]] ∩ [[uσ∧τ ∨ uσ∨τ = uσ ∨ uτ ]],

and similarly

[[τ ≤ σ]] ⊆ [[uσ∧τ + uσ∨τ = uσ + uτ ]] ∩ [[uσ∧τ ∨ uσ∨τ = uσ ∨ uτ ]];
accordingly

[[uσ∧τ + uσ∨τ = uσ + uτ ]] ∩ [[uσ∧τ ∨ uσ∨τ = uσ ∨ uτ ]] ⊇ [[σ ≤ τ ]] ∪ [[τ ≤ σ]] = 1
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and uσ∧τ + uσ∨τ = uσ + uτ , uσ∧τ ∨ uσ∨τ = uσ ∨ uτ . QQQ
(ii) |uτ − uσ| = |uσ∨τ − uσ∧τ | for all σ, τ ∈ S. PPP

[[σ ≤ τ ]] ⊆ [[uσ∧τ = uσ]] ∩ [[uσ∨τ = uτ ]]

⊆ [[uσ∨τ − uσ∧τ = uτ − uσ]] ⊆ [[|uσ∨τ − uσ∧τ | = |uτ − uσ|]]
and similarly

[[τ ≤ σ]] ⊆ [[|uσ∨τ − uσ∧τ | = |uσ − uτ |]] = [[|uσ∨τ − uσ∧τ | = |uτ − uσ|]]
so [[|uσ∨τ − uσ∧τ | = |uτ − uσ|]] = 1 and |uτ − uσ| = |uσ∨τ − uσ∧τ |. QQQ

(iii) |uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ | for all ρ, σ, τ ∈ S. PPP

[[ρ ≤ τ ]] ∩ [[σ ≤ τ ]] ⊆ [[|uσ − uρ| = |uσ∧τ − uρ∧τ |]]
⊆ [[|uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |]],

[[τ ≤ ρ]] ∩ [[τ ≤ σ]] ⊆ [[|uσ − uρ| = |uσ∨τ − uρ∨τ |]]
⊆ [[|uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |]],

[[ρ ≤ τ ]] ∩ [[τ ≤ σ]] ⊆ [[|uτ − uρ|+ |uσ − uτ | = |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |]]
⊆ [[|uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |]],

and similarly

[[σ ≤ τ ]] ∩ [[ρ ≤ σ]] ⊆ [[|uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |]].
Assembling these,

[[|uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |]] ⊇ 1,

that is, |uσ − uρ| ≤ |uσ∧τ − uρ∧τ |+ |uσ∨τ − uρ∨τ |. QQQ

612E Where fully adapted processes come from In applications, one commonly starts from a family
〈Xt〉t∈T of random variables, corresponding to a family 〈ut〉t∈T ∈ ∏

t∈T L
0(At). In Chapter 63 I will look at

general rules for converting such families into fully adapted processes. For the moment, I describe a couple
of special cases. Another of the same kind is in 612R.

(a) If T is finite and not empty, with least value minT , then for τ ∈ T and t ∈ T set

aτt = (infs<t [[τ > s]]) \ [[τ > t]]

(counting inf ∅ as 1, as usual, so that aτ,minT = 1 \ [[τ > minT ]]). Then 〈aτt〉t∈T is a partition of unity in A,
and aτt ∈ At for every t. Now set

u′τ =
∑
t∈T ut × χaτt.

If t ∈ T and α ∈ R then

[[u′τ > α]] \ [[τ > t]] = sup
s∈T

[[us > α]] ∩ aτs \ [[τ > t]] = sup
s≤t

[[us > α]] ∩ aτs \ [[τ > t]]

(because aτs ⊆ [[τ > t]] if s > t)

∈ At

because [[τ > t]] ∈ At and [[us > α]] ∩ aτs ∈ As ⊆ At for s ≤ t. As t is arbitrary, [[u′τ > α]] ∈ Aτ ; as α is
arbitrary, u′τ ∈ L0(Aτ ).

If σ, τ ∈ T and [[σ = τ ]] = a, then a ∩ [[σ > t]] = a ∩ [[τ > t]] for every t (611E(a-i-β), a ∩ aσt = a ∩ aτt for
every t, u′σ × χa = u′τ × χa and a ⊆ [[u′σ = u′τ ]]. So we have a fully adapted family.

If τ = ť then ať,t = 1 so u′
ť
= ut, and we have the required correspondence between 〈u′τ 〉τ∈T and 〈ut〉t∈T .
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(b) If T is well-ordered and not empty, we can use essentially the same formulae for τ ∈ Tf . We need to
check that 〈aτt〉t∈T is a partition of unity. PPP Certainly it is disjoint. If a ∈ A \ {0}, then there is a t ∈ T
such that a′ = a \ [[τ > t]] is non-zero, because τ is finite-valued; because T is well-ordered, we may suppose
that t is minimal; now 0 6= a′ ⊆ a ∩ aτt. QQQ

In defining u′τ , if you do not like an infinite sum, simply declare that [[u′τ > α]] = supt∈T [[ut > α]] ∩ aτt
for every α ∈ R; then the rest of the argument proceeds as before.

612F The identity process In the leading special cases of this theory, in which T = [0,∞[, we have
special processes based on the similarity between the formula defining ‘stopping time’ in 611A and that
defining L0 in 364A.

(a) Suppose that T = [0,∞[. For τ ∈ Tf , we can define ιτ ∈ L0(A) by saying that, for t ∈ R,

[[ιτ > t]] = [[τ > t]] if t ≥ 0,

= 1 if t < 0.

PPP Since no member of T is isolated on the right, the conditions of 611A(b-i) imply that

[[ιτ > t]] ∈ A for every t ∈ R,
[[ιτ > t]] = sups>t [[ιτ > s]] for every t ∈ R,
supt∈R [[ιτ > t]] = 1.

Since τ ∈ Tf , we also have

inft∈R [[ιτ > t]] = 0.

So all the conditions (α)-(γ) of 364Aa are satisfied, and ιτ ∈ L0(A). QQQ

(b) ιιι = 〈ιτ 〉τ∈Tf
is a fully adapted process. PPP If τ ∈ Tf ,

[[ιτ > s]] = 1 ∈ Aτ if s < 0,

= [[τ > s]] ∈ Aτ if s ≥ 0,

so ιτ ∈ L0(Aτ ). If σ, τ ∈ Tf and a = [[σ = τ ]], then

[[χa× ισ > t]] = a ∩ [[ιτ > t]] = a ∩ [[τ > t]] = a ∩ [[σ > t]] = [[χa× ισ > t]] if t ≥ 0,

= 1 = [[χa× ισ > t]] if t < 0,

so χa× ισ = χa× ιτ and a ⊆ [[ισ = ιτ ]]. QQQ

(c) ιť = tχ1 for every t ≥ 0. PPP If s ≥ 0,

[[ιť > s]] = [[ť > s]] = χ1 = [[tχ1 > s]] if t > s,

= 0 = [[tχ1 > s]] otherwise. QQQ

I will call ιιι the identity process for the structure (A, 〈At〉t≥0).

612G However, the fully adapted families of greatest importance to us will be those which can be
constructed in the following way. I repeat some definitions from 455L.

Definitions Let (Ω,Σ, µ) be a probability space.

(a) A family 〈Σt〉t≥0 of σ-subalgebras of Σ is a filtration if Σs ⊆ Σt whenever 0 ≤ s ≤ t.

(b) A function h : Ω → [0,∞] is a stopping time (adapted to the filtration 〈Σt〉t≥0) if {ω : h(ω) ≤ t} ∈
Σt for every t ≥ 0. In this case, I will write Σh for the σ-algebra

{E : E ∈ Σ, E ∩ {ω : h(ω) ≤ t} ∈ Σt for every t ≥ 0}
(see 455L(c-iii)).

(c) A family 〈Xt〉t≥0 of real-valued functions on Ω is a progressively measurable process (with

respect to the filtration 〈Σt〉t≥0) if (s, ω) 7→ Xs(ω) : [0, t] × Ω → Y is B([0, t])⊗̂Σt-measurable for every
t ≥ 0, where B([0, t]) is the Borel σ-algebra of [0, t] for each t.
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612H Theorem Let (Ω,Σ, µ) be a complete probability space, and 〈Σt〉t≥0 a filtration of σ-subalgebras
of Σ such that every µ-negligible set belongs to every Σt. Let (A, µ̄) be the measure algebra of µ and set
At = {E• : E ∈ Σt} for each t ≥ 0; then 〈At〉t≥0 is a filtration in the sense of 611Aa. Let T be the associated
family of stopping times.

(a)(i) If h : Ω → [0,∞] is a stopping time, we have a stopping time τ ∈ T defined by saying that
[[τ > t]] = {ω : h(ω) > t}• for every t ≥ 0; in this case, I will say that h represents τ .

(ii) Conversely, if τ ∈ T , there is a stopping time h : Ω → [0,∞] representing τ .
(iii) If h represents τ , then Σh = {E : E ∈ Σ, E• ∈ Aτ} and Aτ = {E• : E ∈ Σh}.
(iv) If g, h : Ω → [0,∞] are stopping times representing σ, τ ∈ T , then

[[σ < τ ]] = {ω : g(ω) < h(ω)}•,

[[σ ≤ τ ]] = {ω : g(ω) ≤ h(ω)}•, [[σ = τ ]] = {ω : g(ω) = h(ω)}•.

So g and h represent the same member of T iff they are equal almost everywhere.
(v) If h represents τ , then τ ∈ Tf iff h(ω) < ∞ for almost every ω; so τ ∈ Tf iff it can be represented

by a stopping time h : Ω → [0,∞[.
(vi) If t ≥ 0, then the constant function with value t represents the constant stopping time at t.

(b) Now suppose that 〈Xt〉t≥0 is a progressively measurable process on Ω.
(i) For every τ ∈ Tf we have an xτ ∈ L0(A) ∼= L0(µ) defined by saying that xτ is the equivalence class

of the function Xh, where Xh(ω) = Xh(ω)(ω) for ω ∈ h−1[ [0,∞[ ], whenever h represents τ in the sense of
(a-ii).

(ii) The family 〈xτ 〉τ∈Tf
is fully adapted to 〈At〉t≥0.

proof (a)(i) If h : Ω 7→ [0,∞] is a stopping time, and t ≥ 0, then {ω : h(ω) > t}• belongs to At and is equal
to

(
⋃

s∈Q,s>t

{ω : h(ω) > s})• = sup
s∈Q,s>t

{ω : h(ω) > s}•

= sup
t′>t

{ω : h(ω) > t′}•.

So t 7→ {ω : h(ω) > t}• satisfies the conditions of 611A(b-i), and defines a member of T .

(ii) Write Q+ for Q ∩ [0,∞[. Take any τ ∈ T . For each s ∈ Q+, [[τ > s]] ∈ As, so we can choose
Es ∈ Σs such that E•

s = [[τ > s]]. Next, for s ∈ Q+ set Fs =
⋂
s′∈Q∩[0,s]Es′ ; because Q is countable,

F •

s = infs′∈Q∩[0,s] [[τ > s′]] = [[τ > s]], while 〈Fs〉s∈Q+ is non-increasing. Now, for ω ∈ Ω, set h(ω) = sup{s :
s ∈ Q+, ω ∈ Fs}, counting sup ∅ as 0. Then, for any t ≥ 0,

{ω : h(ω) > t}• = (
⋃

s∈Q+,s>t

Fs)
• = sup

s∈Q+,s>t

F •

s

= sup
s∈Q+,s>t

[[τ > s]] = sup
s>t

[[τ > s]] = [[τ > t]] ∈ At.

So there is an E ∈ Σt such that {ω : h(ω) > t}△E is negligible; as Σt contains every negligible set,
{ω : h(ω) > t} and {ω : h(ω) ≤ t} belong to Σt. This is true for every t ≥ 0, so h is a stopping time in the
conventional sense; and as {ω : h(ω) > t}• = [[τ > t]] for every t, h represents τ in the sense here.

(iii) If E ∈ Σh, then

E \ {ω : h(ω) > t} = E ∩ {ω : h(ω) ≤ t} ∈ Σt,

E• \ [[τ > t]] = (E \ {ω : h(ω) > t})• ∈ At

for every t ≥ 0, and E• ∈ Aτ . Conversely, if a ∈ Aτ , take E ∈ Σ such that E• = a. Then, for any t ≥ 0,

(E ∩ {ω : h(ω) ≤ t})• = E• \ [[τ > t]] ∈ At

so there is an F ∈ Σt such that µ((E ∩ {ω : h(ω) > t})△F ) = 0; again because Σt contains all negligible
sets, E ∩ {ω : h(ω) > t} belongs to Σt. As t is arbitrary, E ∈ Σh and we have a suitable representative of a.
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(iv) The point is that [[σ < τ ]] ⊆ sups∈Q+ [[τ > s]] \ [[σ > s]]. PPP For any t ≥ 0, t = inf{s : s ∈ Q, s ≥ t},
so

[[τ > t]] \ [[σ > t]] ⊆ sups∈Q,s≥t [[τ > s]] \ [[σ > t]] ⊆ sups∈Q+ [[τ > s]] \ [[σ > s]]. QQQ

So

[[σ < τ ]] = sup
t≥0

[[τ > t]] \ [[σ > t]] = sup
s∈Q+

[[τ > s]] \ [[σ > s]]

= sup
s∈Q+

({ω : h(ω) > s} \ {ω : g(ω) > s})•

= (
⋃

s∈Q+

{ω : h(ω) > s} \ {ω : g(ω) > s})• = {ω : g(ω) < h(ω)}•.

It follows at once that

[[σ ≤ τ ]] = 1 \ [[τ < σ]] = ({ω : g(ω) ≤ h(ω)})•

and therefore that

[[σ = τ ]] = ({ω : g(ω) = h(ω)})•,
so that

σ = τ ⇐⇒ [[σ = τ ]] = 1 ⇐⇒ g =a.e. h.

(v)

τ ∈ Tf ⇐⇒ inf
t≥0

[[τ > t]] = 0

⇐⇒ inf
s∈Q+

[[τ > s]] = 0

⇐⇒
⋂

s∈Q+

{ω : h(ω) > s} is negligible,

⇐⇒ {ω : h(ω) = ∞} is negligible.

In this case, because we are supposing that negligible sets belong to Σt for every t, we can adjust h on the
negligible set Ω \ h−1[ [0,∞[ ], if necessary, to get a stopping time with finite values which represents τ .

(vi) Immediate from the definition of ‘constant stopping time’ in 611A(b-ii).

(b) For the identification of L0(A) with L0(µ), see 364Ic. Note that as we are assuming that every
negligible set belongs to every Σt, (Ω,Σt, µ↾Σt) is a complete probability space and Σt is closed under
Souslin’s operation (431A), for every t ≥ 0.

(i) By (a-v), every τ ∈ Tf can be represented by a stopping time which takes finite values. If h : Ω →
[0,∞[ represents τ , then Xh is defined everywhere; because the process is progressively measurable, Xh is
Σh-measurable (455Le), and X•

h is defined in L0(µ↾Σh) ∼= L0(Aτ ) ((a-iii) above).
We note also from (a-iv) that if g, h are stopping times both representing τ , then g =a.e. h so Xg =a.e. Xh

and X•

g = X•

h. So we have a well-defined member xτ of L0(A).

(ii) We have already seen that xτ ∈ L0(Aτ ) for every τ ∈ Tf . If σ, τ ∈ Tf are represented by stopping
times g and h, then by (a-iv)

[[σ = τ ]] = {ω : g(ω) = h(ω)}• ⊆ {ω : Xg(ω) = Xh(ω)}• = [[X•

g = X•

h]] = [[xσ = xτ ]].

So both conditions of 612Da are satisfied and 〈xτ 〉τ∈Tf
is fully adapted to 〈At〉t≥0.

Remarks There will be a variation on this result in 649H.
Note that the representation of stopping times in (a) above corresponds to an identification of Tf with

the set

{u : u ≥ 0, [[u > t]] ∈ At for every t ≥ 0} ⊆ L0(A),

and that the lattice operations ∨, ∧ on Tf agree with those on L0(A), as do arbitrary suprema (611C(b)-(c),
364L(a-ii) and 364L(b-i)).
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612I We do not need to spend much time on general fully adapted processes, but the following elementary
facts are fundamental.

Proposition Let S be a sublattice of T , and Mfa(S) ⊆ ∏
σ∈S L

0(Aσ) the set of fully adapted processes
with domain S.

(a)Mfa(S) is an order-closed f -subalgebra of the f -algebra L0(A)S , and if h : R → R is a Borel measurable
function then h̄uuu ∈ Mfa(S) for every uuu ∈ Mfa(S). Regarded as a Riesz space in its own right, Mfa(S) is
Dedekind complete.

(b) Suppose that 〈uσ〉σ∈S ∈ Mfa(S) and τ ∈ T . Set S ′ = {σ : σ ∈ T , σ ∧ τ ∈ S}. Then 〈uσ∧τ 〉σ∈S′ ∈
Mfa(S ′).

proof (a)(i) If uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S belong to Mfa(S), then
—– uσ + vσ ∈ L0(Aσ) for every σ ∈ S,
—– if σ, τ ∈ S, then

[[uσ + vσ = uτ + vτ ]] ⊇ [[uσ = vσ]] ∩ [[uτ = vτ ]] ⊇ [[σ = τ ]].

So uuu+ vvv = 〈uσ + vσ〉σ∈S ∈Mfa(S).
Similarly, if h : R → R Borel measurable,

[[h̄(uσ) = h̄(uτ )]] ⊇ [[σ = τ ]]

for all σ, τ ∈ S. PPP Set c = [[uσ = uτ ]], and write Ac for the principal ideal of A generated by c. Setting φa =
a ∩ c for a ∈ A, we have an order-continuous Boolean homomorphism from A to Ac, and the corresponding
Riesz homomorphism Tφ from L0(A) to L0(Ac) is defined by saying that [[Tφw > α]] = [[w > α]] ∩ c for every
w ∈ L0(A) (364P). But this means that Tφuσ = Tφuτ , so

Tφh̄(uσ) = h̄(Tφuσ) = h̄(Tφuτ ) = Tφh̄(uτ )

(612Af), and

[[h̄(uσ) = h̄(uτ )]] ⊇ c ⊇ [[σ = τ ]]. QQQ

Thus h̄uuu ∈Mfa(S) for every uuu ∈Mfa(S).
Putting these together, Mfa(S) is an f -subalgebra of

∏
σ∈S L

0(Aσ), by 612Bc.

(ii) To see that Mfa(S) is order-closed in L0(A)S , take a non-empty set A ⊆Mfa(S) with a supremum
vvv = 〈vσ〉σ∈S in L0(A)S . For each σ ∈ S, vσ = supuuu∈A uσ belongs to L0(Aσ) (612Ae). If σ, τ ∈ S, set
a = [[σ = τ ]]; then uσ × χa = uτ × χa for every uuu ∈ A (taking uuu to be 〈uσ〉σ∈S for every uuu). Because
multiplication by χa is order-continuous in L0(A) (353Pa),

vσ × χa = supuuu∈A uσ × χa = supuuu∈A uτ × χa = vτ × χa,

and [[vσ = vτ ]] ⊇ a. As σ and τ are arbitrary, vvv ∈Mfa(S).
Similarly, or applying the argument above to {−uuu : uuu ∈ A}, inf A ∈ Mfa(S) whenever A is a non-empty

subset of Mfa(S) with an infimum in L0(A)S . So Mfa(S) is order-closed in L0(A)S in the sense of 313Da.

(iii) We know that L0(A) is Dedekind complete. For every σ ∈ S, L0(Aσ) is order-closed in L0(A)
(612Ae), so in itself is Dedekind complete (353K(b-ii)). So the product

∏
σ∈S L

0(Aσ) is Dedekind complete
(315D(e-i)) and its order-closed subspace Mfa(S) is Dedekind complete.

(b) Because T is a distributive lattice, S ′ is a sublattice of T . For any σ ∈ S ′, uσ∧τ ∈ L0(Aσ∧τ ) ⊆ L0(Aσ)
(611H(c-ii)). If σ, σ′ ∈ S ′, then by 611E(c-v-α)

[[σ = σ′]] ⊆ [[σ ∧ τ = σ′ ∧ τ ]] ⊆ [[uσ∧τ = uσ′∧τ ]].

So 〈uσ∧τ 〉σ∈S′ is fully adapted.

612J Simple processes (a) Definition Let S be a sublattice of T . A fully adapted process 〈uσ〉σ∈S is
simple if either S is empty or there are τ0 ≤ . . . ≤ τn in S and u∗ ∈ L0(

⋂
σ∈S Aσ) such that for every σ ∈ S

[[σ < τ0]] ⊆ [[uσ = u∗]], [[τn ≤ σ]] ⊆ [[uσ = uτn ]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[uσ = uτi ]] for every i < n.

In this case I will say that (τ0, . . . , τn) is a breakpoint string for uuu.
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(b) As a particularly elementary example, if S is a sublattice of T and τ ∈ S, then uuu = 〈χ[[τ ≤ σ]]〉σ∈S
is a simple process. PPP Setting uσ = χ[[τ ≤ σ]] for σ ∈ S and u∗ = 0, we have uτ = χ1 and

[[σ < τ ]] = [[uσ = 0]] = [[uσ = u∗]], [[τ ≤ σ]] = [[uσ = χ1]] = [[uσ = uτ ]]

for every σ ∈ S, so (τ) is a breakpoint string for uuu. QQQ

Warning! most authors use the phrase ‘simple process’ for what I call a ‘previsibly simple process’; see
612Ye. As we shall see shortly, a simple process will normally have many breakpoint strings. The following
ideas will be useful.

612K Lemma Let S be a non-empty sublattice of T . Write B for
⋂
σ∈S Aσ.

(a) Suppose that τ0 ≤ . . . ≤ τn in S, ui ∈ L0(Aτi) for i ≤ n and u∗ ∈ L0(B). Then there is a unique
simple fully adapted process vvv = 〈vσ〉σ∈S such that whenever σ ∈ S then

[[vσ = ui]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]],

for i < n, while

[[vσ = u∗]] ⊇ [[σ < τ0]], [[vσ = un]] ⊇ [[τn ≤ σ]];

and (τ0, . . . , τn) is a breakpoint string for vvv.
(b) Suppose that I is a non-empty finite sublattice of S and (τ0, . . . , τn) linearly generates the I-cells. If

a simple process uuu with domain S has a breakpoint string in I, then (τ0, . . . , τn) is a breakpoint string for
uuu.

(c) Suppose that K is a finite set and uuuk is a simple process with domain S for each k ∈ K. Then there
is a single string (τ0, . . . , τn) in S which is a breakpoint string for every uuuk.

(d) Suppose that uuu = 〈uσ〉σ∈S is a simple process with breakpoint string (τ0, . . . , τn) in S, and τ ∈ S.
(i) (τ0 ∧ τ, . . . , τ0 ∧ τn, τ, τ0 ∨ τ, . . . , τn ∨ τ) is a breakpoint string for uuu.
(ii) Writing S ∧ τ for {σ ∧ τ : σ ∈ S} = S ∩ [min T , τ ], uuu↾S ∧ τ is simple, with breakpoint string

(τ0 ∧ τ, . . . , τn ∧ τ, τ).
(iii) Writing S ∨ τ for {σ ∨ τ : σ ∈ S} = S ∩ [τ,max T ], uuu↾S ∨ τ is simple, with breakpoint string

(τ0 ∨ τ, . . . , τn ∨ τ).
(e) Suppose that uuu is a fully adapted process with domain S, and that τ ∈ S. If uuu↾S ∧ τ and uuu↾S ∨ τ are

simple processes with breakpoint strings (τ0, . . . , τm) and (τ ′0, . . . , τ
′
n) respectively, then uuu is simple, with

breakpoint string (τ0, . . . , τm, τ, τ
′
0, . . . , τ

′
n).

proof (a) Set τ−1 = min T , u−1 = u∗. For σ ∈ S, set bσi = [[τi ≤ σ]] ∩ [[σ < τi+1]] for −1 ≤ i < n, and
bσn = [[τn ≤ σ]]; by 611H(c-i), bσi ∈ Aσ for each i. Set

vσ =
∑n
i=−1 ui × χbσi.

Then vσ ∈ L0(Aσ). PPP For each i, ui × χ[[τi ≤ σ]] ∈ L0(Aσ) (612C), so ui × χ([[τi ≤ σ]] ∩ [[σ < τi+1]]) belongs
to L0(Aσ) if i < n, while also un × χ[[τn ≤ σ]] belongs to L0(Aσ). QQQ

If σ, σ′ ∈ S and a = [[σ = σ′]], then a ∩ bσi = a ∩ bσ′i for each i (611E(c-iv-α) and (c-iv-β) twice), so

vσ × χa =
∑n
i=−1 ui × χ(a ∩ bσi) = vσ′ × χa.

Thus a ⊆ [[vσ = vσ′ ]]. As σ and σ′ are arbitrary, vvv is fully adapted.
The definition of vvv makes it plain that, for any σ ∈ S,

[[τn ≤ σ]] = bσn
⊆ [[vσ = un]],

while for −1 ≤ i < n,

[[τi ≤ σ]] ∩ [[σ < τi+1]] = bσi ⊆ [[vσ = ui]].

Now we see that [[τi < τi+1]] = bτi,i ⊆ [[vτi = ui]] for −1 ≤ i < n, while bτn,n = 1 and vτn = un. So for any
σ ∈ S,

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[vσ = ui]] ∩ [[τi < τi+1]]

(611E(c-iii-γ))
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⊆ [[vσ = ui]] ∩ [[vτi = ui]] ⊆ [[vσ = vτi ]]

whenever −1 ≤ i < n, while

[[τn ≤ σ]] ⊆ [[vσ = un]] = [[vσ = vτn ]].

So vvv is a simple process and (τ0, . . . , τn) is a breakpoint string for vvv.
Concerning the uniqueness of vvv, we just have to note that for every σ ∈ S, sup−1≤i≤n bσi = 1, so that

the given formula defines vσ uniquely.

(b) Express uuu as 〈uσ〉σ∈S . Let (σ0, . . . , σm) be a breakpoint string for uuu in I, and take u∗ ∈ L0(B) as in
612J.

Set τ−1 = σ−1 = min T , τn+1 = σm+1 = max T . Take any σ ∈ S. Since τ0 ≤ σ0 and σm ≤ τn,

[[uσ = u∗]] ⊇ [[σ < σ0]] ⊇ [[σ < τ0]],

[[uσ = uτn ]] ⊇ [[uσ = uσm
]] ∩ [[uτn = uσm

]] ⊇ [[σm ≤ σ]] ∩ [[σm ≤ τn]]

= [[σm ≤ σ]] ⊇ [[τn ≤ σ]].

Next, suppose that i < n. Then the stopping-time interval c(τi, τi+1) is either 0 or an I-cell; taking J to be
{σi : −1 ≤ i ≤ m+1}, c(τi, τi+1) must be included in a J-cell, which must be of the form c(σj , σj+1) where
−1 ≤ j ≤ m. In this case [[τi < τi+1]] ⊆ [[σj ≤ τi]] ∩ [[τi+1 ≤ σj+1]] (611Jc). So

[[τi ≤ σ]] ∩ [[σ < τi+1]] = [[τi ≤ σ]] ∩ [[σ < τi+1]] ∩ [[τi < τi+1]]

(611E(c-iii-γ))

= [[τi ≤ σ]] ∩ [[σ < τi+1]] ∩ [[τi < τi+1]] ∩ [[σj ≤ τi]] ∩ [[τi+1 ≤ σj+1]]

⊆ [[σj ≤ σ]] ∩ [[σ < σj+1]] ∩ [[σj ≤ τi]] ∩ [[τi < σj+1]]

(611E(c-iv-α), 611E(c-iii-γ))

⊆ [[uσ = uσj
]] ∩ [[uτi = uσj

]] ⊆ [[uσ = uτi ]].

So u∗, τ0, . . . , τn satisfy the definition in 612J and τ0, . . . , τn is a breakpoint string for uuu.

(c) Because breakpoint strings are finite, there is a finite set A ⊆ S such that every uuuk has a breakpoint
string in A. Let I be the sublattice of S generated by A, so that I is finite (611Ca) and there is a sequence
(τ0, . . . , τn) linearly generating the I-cells. By (b), (τ0, . . . , τn) is a breakpoint string for uuuk, for any k ∈ K.

(d)(i) Of course τ0 ∧ τ ≤ . . . ≤ τn ∧ τ ≤ τ ≤ τ0 ∨ τ ≤ . . . ≤ τn ∨ τ . Let u∗ ∈ L0(B) be such that
[[σ < τ0]] ⊆ [[uσ = u∗]] for every σ ∈ S.

Take any σ ∈ S. Then
[[σ < τ0 ∧ τ ]] ⊆ [[σ < τ0]] ⊆ [[uσ = u∗]].

If i < n,

[[τi ∧ τ ≤ σ]] ∩ [[σ < τi+1 ∧ τ ]] = ([[τi ≤ σ]] ∪ [[τ ≤ σ]]) ∩ [[σ < τi+1]] ∩ [[σ < τ ]]

(611E(c-i-β))

= [[τi ≤ σ]] ∩ [[σ < τi+1]] ∩ [[σ < τ ]]

⊆ [[uσ = uτi ]] ∩ [[τi < τ ]] ∩ [[τi < τi+1]]

(611E(c-iii-γ))

⊆ [[uσ = uτi ]] ∩ [[τi = τi ∧ τ ]] ∩ [[τi < τi+1 ∧ τ ]]
(611E(a-ii-α))

⊆ [[uσ = uτi ]] ∩ [[τi = τi ∧ τ ]] ∩ [[τi ∧ τ < τi+1]]

⊆ [[uσ = uτi ]] ∩ [[utaui∧τ = uτi ]] ⊆ [[uσ = uτi∧τ ]].
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Next,

[[τn ∧ τ ≤ σ]] ∩ [[σ < τ ]] = ([[τn ≤ σ]] ∪ [[τ ≤ σ]]) ∩ [[σ < τ ]]

= [[τn ≤ σ]] ∩ [[σ < τ ]]

⊆ [[uσ = uτn ]] ∩ [[τn ≤ τ ]]

= [[uσ = uτn ]] ∩ [[τn ≤ τn ∧ τ ]]
⊆ [[uσ = uτn ]] ∩ [[uτn∧τ = uτn ]] ⊆ [[uσ = uτn∧τ ]]

and

[[τ ≤ σ]] ∩ [[σ < τ0 ∨ τ ]] = [[τ ≤ σ]] ∩ ([[σ < τ0]] ∪ [[σ < τ ]])

(611Eb)

= [[τ ≤ σ]] ∩ [[σ < τ0]]

⊆ [[τ < τ0]] ∩ [[σ < τ0]]

⊆ [[uσ = u∗]] ∩ [[uτ = u∗]] ⊆ [[uσ = uτ ]].

Continuing, if i < n then

[[τi ∨ τ ≤ σ]] ∩ [[σ < τi+1 ∨ τ ]] = [[τi ≤ σ]] ∩ [[τ ≤ σ]] ∩ ([[σ < τi+1]] ∪ [[σ < τ ]])

= [[τi ≤ σ]] ∩ [[τ ≤ σ]] ∩ [[σ < τi+1]]

⊆ [[uσ = uτi ]] ∩ [[τ < τi+1]] ∩ [[τi < τi+1]]

= [[uσ = uτi ]] ∩ [[τi ∨ τ < τi+1]]

⊆ [[uσ = uτi ]] ∩ [[uτi∨τ = uτi ]] ⊆ [[uσ = uτi∨τ ]].

And finally

[[τn ∨ τ ≤ σ]] ⊆ [[uσ = uτn ]] ∩ [[uτn∨τ = uτn ]] ⊆ [[uσ = uτn∨τ ]].

So the string (τ0 ∧ τ, . . . , τ0 ∧ τn, τ, τ0 ∨ τ, . . . , τn ∨ τ) passes the test.

(ii) The formulae in (i) tell us that, for any σ ∈ S ∧ τ ,
[[σ < τ0]] ⊆ [[uσ = u∗]], [[τn ∧ τ ≤ σ]] ∩ [[σ < τ ]] ⊆ [[uσ = uτn∧τ ]],

[[τi ∧ τ ≤ σ]] ∩ [[σ < τi+1 ∧ τ ]] ⊆ [[uσ = uτi∧τ ]] for every i < n;

and of course

[[τ ≤ σ]] = [[τ = σ]] ⊆ [[uσ = uτ ]].

Also u∗ ∈ L0(
⋂
σ∈S∧τ Aσ). So u∗, τ0∧ τ, . . . , τn∧ τ, τ) witness that uuu↾S ∧ τ is simple, with breakpoint string

(τ0 ∧ τ, . . . , τn ∧ τ, τ).
(iii) Similarly, for any σ ∈ S ∨ τ ,

[[σ < τ0 ∨ τ ]] ⊆ [[uσ = uτ ]], [[τn ∨ τ ≤ σ]] ⊆ [[uσ = uτn∨τ ]],

[[τi ∨ τ ≤ σ]] ∩ [[σ < τi+1 ∨ τ ]] ⊆ [[uσ = uτi∨τ ]] for every i < n.

So uuu↾S ∨ τ is simple, with breakpoint string (τ0 ∨ τ, . . . , τn ∨ τ).
(e) Of course

τ0 ≤ . . . ≤ τm ≤ τ ≤ τ ′0 ≤ . . . ≤ τ ′m.

Let u∗ ∈ L0(
⋂
σ∈S∧τ Aσ) be such that [[σ < τ0]] ⊆ [[uσ = u∗]] for every σ ∈ S∧τ . Then u∗ ∈ L0(

⋂
σ∈S Aσ∧τ ) ⊆

L0(
⋂
σ∈S Aσ). Now, for σ ∈ S, i < m and j < n,
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[[σ < τ0]] ⊆ [[σ ∧ τ = σ]] ∩ [[σ ∧ τ < τ0]]

⊆ [[uσ = uσ∧τ ]] ∩ [[uσ∧τ = u∗]] ⊆ [[uσ = u∗]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[σ ∧ τ = σ]] ∩ [[τi ≤ σ ∧ τ ]] ∩ [[σ ∧ τ < τi+1]]

⊆ [[uσ = uσ∧τ ]] ∩ [[uσ∧τ = uτi ]] ⊆ [[uσ = uτi ]],

[[τm ≤ σ]] ∩ [[σ < τ ]] ⊆ [[σ ∧ τ = σ]] ∩ [[τm ≤ σ ∧ τ ]]
⊆ [[uσ∧τ = uσ]] ∩ [[uσ∧τ = uτm ]] ⊆ [[uσ = uτm ]],

[[τ ≤ σ]] ∩ [[σ < τ ′0]] ⊆ [[τ ∨ σ = σ]] ∩ [[τ ∨ σ < τ ′0]] ∩ [[τ < τ ′0]]

⊆ [[uτ∨σ = uσ]] ∩ [[uτ∨σ = uτ ]] ⊆ [[uσ = uτ ]],

[[τ ′j ≤ σ]] ∩ [[σ < τ ′j+1]] ⊆ [[σ ∨ τ = σ]] ∩ [[τ ′j ≤ σ ∨ τ ]] ∩ [[σ ∨ τ < τ ′j+1]]

⊆ [[uσ = uσ∨τ ]] ∩ [[uσ∨τ = uτ ′
j
]] ⊆ [[uσ = uτ ′

j
]],

[[τ ′n ≤ σ]] ⊆ [[σ ∨ τ = σ]] ∩ [[τ ′n ≤ σ ∨ τ ]]
⊆ [[uσ∨τ = uσ]] ∩ [[uσ∨τ = uτ ′

n
]] ⊆ [[uσ = uτ ′

n
]].

So (τ0, . . . , τm, τ, τ
′
0, . . . , τ

′
m) is indeed a breakpoint string for uuu and witnesses that uuu is simple.

612L Proposition Let S be a sublattice of T . Write Msimp = Msimp(S) for the set of simple processes
with domain S.

(a) If h : R → R is a Borel measurable function and uuu ∈ Msimp, then h̄uuu ∈ Msimp and any breakpoint
string for uuu is a breakpoint string for h̄uuu.

(b) Msimp is an f -subalgebra of
∏
σ∈S L

0(Aσ).

(c) If z ∈ L0(A ∩⋂
σ∈S Aσ) and uuu ∈Msimp, then zuuu ∈Msimp.

proof If S is empty, this is trivial; suppose otherwise. Set B =
⋂
σ∈S Aσ.

(a) Express uuu as 〈uσ〉σ∈S ; let (τ0, . . . , τn) be a breakpoint string for uuu, and take u∗ ∈ L0(B) such that
[[σ < τ0]] ⊆ [[uσ = u∗]] for every σ ∈ S. Then h̄(u∗) ∈ L0(B). If σ ∈ S then

[[σ < τ0]] ⊆ [[uσ = u∗]] ⊆ [[h̄(uσ) = h̄(u∗)]], [[τn ≤ σ]] ⊆ [[uσ = uτn ]] ⊆ [[h̄(uσ) = h̄(uτn)]],

and for i < n

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[uσ = uτi ]] ⊆ [[h̄(uσ) = h̄(uτi)]].

So h̄(u∗), τ0, . . . , τn witness that h̄uuu is simple.

(b) If uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S are simple processes, then there is a string (τ0, . . . , τn) in S which
is a breakpoint string for both, by 612Kc. As above, take u∗, v∗ ∈ L0(B) such that

[[σ < τ0]] ⊆ [[uσ = u∗]], [[σ < τ0]] ⊆ [[vσ = v∗]]

for every σ ∈ S. Now u∗ + v∗ ∈ L0(B) and

[[uσ + vσ = u∗ + v∗]] ⊇ [[uσ = u∗]] ∩ [[vσ = v∗]] ⊇ [[σ < τ0]],

[[uσ + vσ = uτi + vτi ]] ⊇ [[uσ = uτi ]] ∩ [[vσ = vτi ]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]]

for i < n, and

[[uσ + vσ = uτn + vτn ]] ⊇ [[uσ = uτn ]] ∩ [[vσ = vτn ]] ⊇ [[τn ≤ σ]].

So uuu+ vvv is a simple process with a breakpoint string (τ0, . . . , τn).
By 612Bc this, together with (a), implies that the set of simple processes with domain S is an f -subalgebra

of
∏
σ∈S L

0(Aσ).

(c) Follow the argument of (a) above, but with z × u∗, z × uσ in place of h̄(u∗), h̄(uσ), etc.

612M Lemma Let S = [minS,maxS] be a closed interval in T , and uuu a simple process with domain
S. Then there is a breakpoint string (τ0, . . . , τn) for uuu such that τ0 = minS, τn = maxS and [[τi < τi+1]] =
[[τi < maxS]] for every i < n.
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proof Applying 612K(d-i) twice, we see that uuu has a breakpoint string (σ0, . . . , σm) starting with σ0 = minS
and ending with σm = maxS. I seek to show by induction on m that the result is true in this case. If m = 0
then we can (and must) take n = 0 and τ0 = minS = maxS.

For the inductive step to m ≥ 1, set

ai = [[minS < σi]] for i ≤ m,

so that

0 = a0 ⊆ . . . ⊆ am = [[minS < maxS]]
and ai ∈ AminS for every i. Now set bm = 1 \ am and

bi = ai+1 \ ai = [[minS < σi+1]] ∩ [[minS = σi]] for i < m,

so that 〈bi〉i≤m is a partition of unity in A and bi ∈ AminS for i ≤ m. By 611I, there is a τ ∈ T such that
bi ⊆ [[τ = σi+1]] for i < m and bm ⊆ [[τ = σm]], while σ1 ≤ τ ≤ maxS, so τ ∈ S. Now

[[minS < τ ]] ⊇ sup
i<m

[[τ = σi+1]] ∩ [[minS < σi+1]]

⊇ sup
i<m

bi ∩ ai+1 = sup
i<m

bi = am = [[minS < maxS]].

Also, for any σ ∈ S and i < m,

bi ∩ [[σ < τ ]] ⊆ [[minS = σi]] ∩ [[τ = σi+1]] ∩ [[σ < τ ]]

⊆ [[minS = σi]] ∩ [[σi ≤ σ]] ∩ [[σ < σi+1]]

⊆ [[minS = σi]] ∩ [[uσ = uσi
]] ⊆ [[uσ = uminS ]],

while

bm ∩ [[σ < τ ]] = [[minS = maxS]] ∩ [[σ < τ ]] = 0.

So

[[σ < τ ]] = supi≤m bi ∩ [[σ < τ ]] ⊆ [[uσ = uminS ]].

Next, as σ1 ≤ τ , (σ1 ∨ τ, . . . , σm ∨ τ) is a breakpoint string for uuu↾S ∨ τ (612K(d-iii)) of length m. By
the inductive hypothesis, uuu↾S ∨ τ = uuu↾[τ,maxS] has a breakpoint string (τ0, . . . , τn) starting with τ0 = τ ,
ending with τn = maxS, and such that [[τi < τi+1]] = [[τi < maxS]] for every i < n.

We now find that (minS, τ0, . . . , τn) is a breakpoint sequence for uuu. PPP Surely we have minS ≤ τ0 ≤
. . . ≤ τn. If σ ∈ S, then

[[minS ≤ σ]] ∩ [[σ < τ0]] = [[σ < τ ]] ⊆ [[uσ = uminS ]],

while

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[uσ = uτi ]]

for i < n, and

[[τn ≤ σ]] = [[τn = σ]] ⊆ [[uσ = uτn ]]. QQQ

And as [[minS < τ ]] = [[minS < maxS]], (minS, τ0, . . . , τn) is a breakpoint string of the right kind for uuu,
and the induction proceeds.

612P The next lemma is a bit of a sledgehammer, and in the form given here will be used only at the
end of Chapter 22; but most of the ideas are required for the important result 612Qa.

Lemma Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process. Then there is a fully adapted
process vvv = 〈vτ 〉τ∈T , extending uuu, such that

[[vτ 6= 0]] ⊆ supσ∈S [[σ = τ ]]

for every τ ∈ T .

proof (a) For τ ∈ T , α ∈ R set
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aτ = 1 \ supσ∈S [[σ = τ ]], bτα = supσ∈S [[τ = σ]] ∩ [[uσ > α]].

Then bτα = supβ>α bτβ for every α ∈ R. PPP

sup
β>α

sup
σ∈S

[[τ = σ]] ∩ [[uσ > β]] = sup
σ∈S

([[τ = σ]] ∩ sup
β>α

[[uσ > β]])

= sup
σ∈S

[[τ = σ]] ∩ [[uσ > α]]. QQQ

Next, infα≥0 bτα = 0. PPP If a ∈ A \ {0}, either a ∩ aτ 6= 0 and a 6⊆ bτ0, or there are a σ0 ∈ S such that
c = a ∩ [[τ = σ0]] is non-zero and an α ∈ R such that d = c \ [[uσ0

> α]] is non-zero. Now

d ∩ sup
σ∈S

[[τ = σ]] ∩ [[uσ > α]] ⊆ d ∩ sup
σ∈S

[[σ0 = σ]] ∩ [[uσ > α]]

⊆ d ∩ [[uσ0
> α]] = 0.

Thus in either case a \ infα≥0 bτα is non-zero. As a is arbitrary, infα≥0 bτα = 0. QQQ
On the other side,

supα<0 bτα = supσ∈S([[τ = σ]] ∩ supα<0 [[uσ > α]]) = supσ∈S [[τ = σ]] = 1 \ aτ .

(b) This means that if τ ∈ T and we set

b′τα = bτα if α ≥ 0,

= aτ ∪ bτα if α < 0,

we shall have

sup
β>α

b′τβ = sup
β>α

bτβ = bτα = b′τα if α ≥ 0,

= sup
β>α

aτ ∪ bτβ = aτ ∪ bτα = b′τα if α < 0,

while

infα∈R b
′
τα ⊆ infα≥0 bτα = 0,

supα∈R b
′
τα ⊇ aτ ∪ supα<0 bτα = 1.

So α 7→ b′τα satisfies all the conditions of 364Aa, and we have an element vτ of L0 defined by saying that
[[vτ > α]] = b′τα for every α ∈ R.

(c) vτ ∈ L0(Aτ ) for every τ ∈ T . PPP For any α ∈ R and σ ∈ S, [[uσ > α]] ∈ Aσ so [[τ = σ]] ∩ [[uσ > α]] ∈
Aτ , by 612C. Accordingly bτα = supσ∈S [[τ = σ]] ∩ [[uσ > α]] belongs to Aτ . On the other hand, because
[[σ = τ ]] ∈ Aτ for every σ (611H(c-i) again), aτ ∈ Aτ . So [[vτ > α]] = b′τα belongs to Aτ for every α, and
vτ ∈ L0(Aτ ). QQQ

(d) If τ ∈ T and σ ∈ S then [[vτ = uσ]] ⊇ [[τ = σ]]. PPP If α ∈ R then

[[τ = σ]] ∩ [[uσ > α]] ⊆ [[τ = σ]] ∩ bτα = [[τ = σ]] ∩ [[vτ > α]]

(because aτ ∩ [[τ = σ]] = 0)

= sup
σ′∈S

[[τ = σ]] ∩ [[τ = σ′]] ∩ [[uσ′ > α]]

⊆ sup
σ′∈S

[[σ = σ′]] ∩ [[uσ′ > α]]

⊆ sup
σ′∈S

[[uσ = uσ′ ]] ∩ [[uσ′ > α]] ⊆ [[uσ > α]],

so in fact

[[τ = σ]] ∩ [[uσ > α]] = [[τ = σ]] ∩ [[vτ > α]].
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As α is arbitrary, [[τ = σ]] ⊆ [[vτ = uσ]]. QQQ
In particular, if σ ∈ S then vσ = uσ.

(e) If τ , τ ′ ∈ T then [[τ = τ ′]] ⊆ [[vτ = vτ ′ ]]. PPP For any α ∈ R,

[[τ = τ ′]] ∩ bτα = sup
σ∈S

[[τ = τ ′]] ∩ [[τ = σ]] ∩ [[uσ > α]]

= sup
σ∈S

[[τ = τ ′]] ∩ [[τ ′ = σ]] ∩ [[uσ > α]] = [[τ = τ ′]] ∩ bτ ′α.

At the same time,

[[τ = τ ′]] ∩ supσ∈S [[τ = σ]] = supσ∈S [[τ = τ ′]] ∩ [[τ = σ]] ⊆ supσ∈S [[τ ′ = σ]],

so in fact

[[τ = τ ′]] ∩ supσ∈S [[τ = σ]] = [[τ = τ ′]] ∩ supσ∈S [[τ ′ = σ]]

and [[τ = τ ′]] ∩ aτ = [[τ = τ ′]] ∩ aτ ′ . Accordingly

[[τ = τ ′]] ∩ [[vτ > α]] = [[τ = τ ′]] ∩ bτα = [[τ = τ ′]] ∩ bτ ′α

= [[τ = τ ′]] ∩ [[vτ ′ > α]] if α ≥ 0,

= [[τ = τ ′]] ∩ (aτ ∪ bτα) = [[τ = τ ′]] ∩ (aτ ′ ∪ bτ ′α)

= [[τ = τ ′]] ∩ [[vτ ′ > α]] if α < 0.

As α is arbitrary, [[τ = τ ′]] ⊆ [[vτ = vτ ′ ]]. QQQ As τ and τ ′ are arbitrary, vvv = 〈vτ 〉τ∈T is fully adapted, and we
have already seen that it extends uuu.

(f) Observe that, for any τ ∈ T ,

[[vτ > 0]] = bτ0 ⊆ supσ∈S [[σ = τ ]] = 1 \ aτ ,

while

[[vτ > α]] = b′τα ⊇ aτ

for every α < 0. But this means that aτ ⊆ [[vτ = 0]], that is, that [[vτ 6= 0]] ⊆ supσ∈S [[σ = τ ]], as required.

612Q Proposition Suppose that S is a sublattice of T , Ŝ its covered envelope (611M) and uuu = 〈uσ〉σ∈S
a fully adapted process.

(a) uuu has a unique extension to a fully adapted process ûuu = 〈ûσ〉σ∈S with domain Ŝ.
(b) The map uuu 7→ ûuu is an isomorphism from the f -algebra Mfa(S) of fully adapted processes with domain

S to the f -algebra Mfa(Ŝ), and h̄ûuu = (h̄uuu)ˆ whenever uuu ∈Mfa(S) and h : R → R is Borel measurable.

(c) If τ ∈ S, then ûuu↾Ŝ ∧ τ is the fully adapted extension of uuu↾S ∧ τ to the covered envelope of S ∧ τ .
(e) If z ∈ L0(A ∩⋂

σ∈S Aσ) then zûuu is the fully adapted extension of zuuu.

(f) If uuu is simple, with a witnessing string (u∗, τ0, . . . , τn) as in 612Ja, and S ′ is a sublattice of Ŝ including
S, then ûuu↾S ′ is simple, with the same witnessing string.

(g) If uuu is non-decreasing, so is ûuu.

proof (a) By 612P, there is a fully adapted process vvv = 〈vτ 〉τ∈T extending uuu; set ûτ = vτ for τ ∈ Ŝ, so that

ûuu = 〈ûτ 〉τ∈Ŝ is a fully adapted process with domain Ŝ extending uuu. If 〈wτ 〉τ∈Ŝ is any fully adapted process
extending 〈uσ〉σ∈S , then

[[ûτ = wτ ]] ⊇ [[ûτ = uσ]] ∩ [[wτ = uσ]]

= [[ûτ = ûσ]] ∩ [[wτ = wσ]] ⊇ [[τ = σ]]

for every σ ∈ S, so ûτ = wτ , for every τ ∈ Ŝ. Thus the extension is unique.

(b) The point is just that uuu 7→ ûuu is the inverse of vvv 7→ vvv↾S : Mfa(Ŝ) → Mfa(S), which has the declared
properties.
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(c) We saw in 611M(e-i) that Ŝ ∧ τ is the covered envelope of S ∧ τ . Now ûuu↾Ŝ ∧ τ is fully adapted and
extends uuu↾S ∧ τ , so must be the fully adapted extension of uuu↾S ∧ τ , by the uniqueness noted in (a) above.

(e) Because
⋂
τ∈Ŝ Aτ =

⋂
σ∈Ŝ Aσ (611Mf), zûuu is defined in Mfa(Ŝ), and of course it extends zuuu.

(f) Again because
⋂
τ∈Ŝ Aτ =

⋂
σ∈S Aσ, u∗ ∈ L0(

⋂
τ∈Ŝ Aτ ). Now if τ ∈ Ŝ,

[[τ < τ0]] = sup
σ∈S

[[τ < τ0]] ∩ τ = σ = sup
σ∈S

[[σ < τ0]] ∩ τ = σ

⊆ sup
σ∈S

[[uσ = u∗]] ∩ [[ûτ = uσ]] ⊆ [[uτ = u∗]],

[[τn ≤ τ ]] = sup
σ∈S

[[τn ≤ τ ]] ∩ τ = σ = sup
σ∈S

[[τn ≤ σ]] ∩ τ = σ

⊆ sup
σ∈S

[[uσ = uτn ]] ∩ [[ûτ = uσ]] ⊆ [[ûτ = uτn ]] = [[ûτ = ûτn ]],

and for i < n

[[τi ≤ τ ]] ∩ [[τ < τi+1]] = sup
σ∈S

[[τi ≤ τ ]] ∩ [[τ < τi+1]] ∩ [[τ = σ]]

= sup
σ∈S

[[τi ≤ σ]] ∩ [[σ < τi+1]] ∩ τ = σ

⊆ sup
σ∈S

[[uσ = uτi ]] ∩ [[ûτ = uσ]] ⊆ [[ûτ = ûτi ]].

So ûuu is simple, with the declared witnessing string.
As for ûuu↾S ′, we have

⋂
τ∈Ŝ Aτ ⊆

⋂
σ∈S′ Aσ, so u∗ ∈ L0(

⋂
τ∈S′ Aτ ), while τ0, . . . , τn belong to S ′. Now

the formulae of 612Ja show immediately that (u∗, τ0, . . . , τn) witnesses that ûuu↾S ′ is simple.

(g) If τ ≤ τ ′ in Ŝ and a ∈ A \ {0}, there are σ, σ′ ∈ S such that b = a ∩ [[τ = σ]] and c = b ∩ [[τ ′ = σ′]] are
non-zero. Now

c ⊆ [[τ = σ]] ∩ [[τ ′ = σ′]] ∩ [[τ ≤ τ ′]] ⊆ [[ûτ = uσ]] ∩ [[ûτ ′ = uσ′ ]] ∩ [[σ ≤ σ′]]

⊆ [[ûτ = uσ]] ∩ [[ûτ ′ = uσ′ ]] ∩ [[σ = σ ∧ σ′]] ∩ [[σ′ = σ ∨ σ′]]

⊆ [[ûτ = uσ∧σ′ ]] ∩ [[ûτ ′ = uσ∨σ′ ]] ⊆ [[ûτ ≤ ûτ ′ ]]

because uσ∧σ′ ≤ uσ∨σ′ , while 0 6= c ⊆ a. Thus a ∩ [[ûτ ≤ ûτ ′ ]] 6= 0; as a is arbitrary, [[ûτ ≤ ûτ ′ ]] = 1 and
ûτ ≤ ûτ ′ ; as τ and τ ′ are arbitrary, ûuu is non-decreasing.

612R Corollary Suppose that S is a sublattice of T and S ′ is a sublattice of S covering S. Then any
fully adapted process uuu = 〈uσ〉σ∈S′ has a unique extension to a fully adapted process vvv = 〈vτ 〉τ∈S .

proof Let ûuu be the fully adapted extension of uuu to the covered envelope Ŝ ′ of S ′; then vvv = ûuu↾S is fully
adapted and extends uuu. To see that vvv is unique, repeat the argument of part (a-iii) of the proof of 612Q; if
〈v′τ 〉τ∈S is any fully adapted process extending 〈uσ〉σ∈S′ , then

[[vτ = v′τ ]] ⊇ [[vτ = uσ]] ∩ [[v′τ = uσ]]

= [[vτ = vσ]] ∩ [[v′τ = v′σ]] ⊇ [[τ = σ]]

for every σ ∈ S ′, so vτ = v′τ , for every τ ∈ S. Thus the extension is unique.

612S Two more definitions We shall have uses for the following ideas. Let S be a sublattice of T .

(a) For a fully adapted process uuu = 〈uσ〉σ∈S , write ‖uuu‖∞ = supσ∈S ‖uσ‖∞; counting the supremum as
0 if S is empty, and ‖uσ‖∞ as ∞ if uσ does not belong to L∞(A) when this is identified as a subspace of
L0(A) as in 364J.

(b) For fully adapted processes uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S , write [[uuu 6= vvv]] for supσ∈S [[uσ 6= vσ]], and
[[uuu 6= 0]] = supσ∈S [[uσ 6= 0]].
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(c) Suppose that uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S are fully adapted processes.

(i) If h : R → R is Borel measurable, then [[h̄uuu 6= h̄vvv]] ⊆ [[uuu 6= vvv]]. (Use 612A(d-iii).)

(ii) If Ŝ is the covered envelope of S and ûuu = 〈ûτ 〉τ∈Ŝ , v̂vv = 〈v̂τ 〉τ∈Ŝ are the fully adapted extensions of

uuu, vvv to Ŝ (612Q), then [[ûuu 6= v̂vv]] = [[uuu 6= vvv]]. PPP If τ ∈ Ŝ then

[[ûτ 6= v̂τ ]] = sup
σ∈S

[[τ = σ]] ∩ [[ûτ 6= v̂τ ]]

= sup
σ∈S

[[ûτ = ûσ]] ∩ [[v̂τ = v̂σ]] ∩ [[ûτ 6= v̂τ ]]

= ⊆ sup
σ∈S

[[ûσ 6= v̂σ]] = sup
σ∈S

[[uσ 6= vσ]] = [[uuu 6= vvv]];

as τ is arbitrary, [[ûuu 6= v̂vv]] ⊆ [[uuu 6= vvv]]; and of course

[[uuu 6= vvv]] = supσ∈S [[ûσ 6= v̂σ]] ⊆ [[ûuu 6= v̂vv]],

so we have equality. QQQ

612T The construction in 612H gives us direct routes to some of the leading examples of stochastic
process, and most sections of this volume will introduce concepts which should be tested against these
examples.

Example: Brownian motion (a) Let Ω = C([0,∞[)0 be the set of continuous functions ω : [0,∞[ → R

such that ω(0) = 0, and ν one-dimensional Wiener measure on Ω (477D), with Σ its domain. Recall that
ν is a Radon measure with respect to the topology Tc of uniform convergence on compact sets (477B). Let
(C, ν̄) be the measure algebra of ν. For t ≥ 0, write Σt for

{F : F ∈ Σ, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t]},
and let Σ̂t be {F△A : F ∈ Σt, νA = 0} (cf. 477H); set Ct = {F • : F ∈ Σ̂t} = {F • : F ∈ Σt} and
Xt(ω) = ω(t) for t ≥ 0 and ω ∈ Ω. Then (s, ω) 7→ Xs(ω) : [0, t] × Ω → R is continuous, therefore

B([0, t])⊗̂Σt-measurable and B([0, t])⊗̂Σ̂t-measurable (4A3Q(c-i)), for every t ≥ 0, and 〈Xt〉t≥0 is progres-

sively measurable with respect to 〈Σ̂t〉t≥0. We can therefore apply 612H to see that we have a process
www = 〈wτ 〉τ∈Tf

fully adapted to 〈Ct〉t≥0. In this volume I will use the phrase Brownian motion to mean the
process www, rather than the process 〈Xt〉t≥0 as in Chapter 47; I hope that this will not lead to any confusion.

(d) It will be important to know that www determines C and 〈Ct〉t≥0, in that

(i) C is the closed subalgebra D of itself generated by {[[wť > α]] : t ≥ 0, α ∈ R},
(ii) Ct is the closed subalgebra generated by {[[wš > α]] : s ∈ [0, t], α ∈ R} for every t ≥ 0.

PPP(i) If t ≥ 0 and α ∈ R, [[wť > α]] = {ω : ω(t) > α}•, so D = {E• : E ∈ T[0,∞[} where T[0,∞[ is the
σ-algebra of subsets of Ω = C([0,∞[)0 generated by {{ω : ω(t) > α} : t ≥ 0, α ∈ R}.

Consider the family V = Tc∩T[0,∞[. This is closed under union and intersection and the topology on Ω it
generates is Hausdorff. It follows that if K, L are disjoint Tc-compact sets, then there are disjoint U , V ∈ V
such that K ⊆ U and L ⊆ V . But ν is inner regular with respect to the Tc-compact sets, so if E ∈ dom ν
and ǫ > 0 there is a V ∈ V such that ν(E△V ) ≤ ǫ. Consequently D is dense in C for the measure-algebra
topology; as it is also closed, it is the whole of C, as claimed.

(ii) Now take any t ≥ 0; write T[0,t] for the σ-algebra of subsets of Ω generated by {{ω : ω(s) > α} :
s ∈ [0, t], α ∈ R}, and Dt for the closed subalgebra generated by {[[wš > α]] : s ∈ [0, t], α ∈ R}, so that
Dt = {E• : E ∈ T[0,t]}. Consider Σt as defined in (a) above. Of course T[0,t] ⊆ Σt, so Dt ⊆ Ct. On the other
hand, given F ∈ Σt and ǫ > 0, there are Tc-compact sets K ⊆ F and L ⊆ Ω \ F such that ν(K ∪ L) ≥ ǫ. If
we set Vt = Tc ∩ Tt, then for any ω ∈ K, ω′ ∈ L there is an s ≤ t such that ω(s) 6= ω′(s), so that there are
disjoint U , V ∈ Vt such that ω ∈ U and ω′ ∈ V ; because Vt is closed under finite unions and intersections,
there are disjoint U , V ∈ Vt such that K ⊆ U and L ⊆ V , so that ν(F△U) ≤ ǫ, while U ∈ Tt. As ǫ is
arbitrary, F • ∈ Dt; as F is arbitrary, Ct ⊆ Dt. QQQ
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(e) In order to apply 612H directly, I have cast the discussion above in terms of stopping times adapted

to the filtration 〈Σ̂t〉t≥0. However it will make it easier to call on further results from §477 if I remark that
every member of Tf can be represented by a stopping time adapted to 〈Σ+

t 〉t≥0, where Σ+
t =

⋂
s>t Σs for

t ≥ 0. PPP Recall that 〈Σ+
t 〉t≥0 is a filtration of σ-algebras (455L) and that

Σ+
t ⊆ Σ̂t = Σ̂+

t =
⋂
s>t Σ̂s

for every t (477Hc). If τ ∈ Tf there is an h : Ω → [0,∞[ representing τ which is adapted to 〈Σ̂t〉t≥0 =

〈Σ̂+
t 〉t≥0; by 455L(e-iii), there is a stopping time g, adapted to 〈Σ+

t 〉t≥0, which is equal to h almost every-

where. Of course g is now adapted to 〈Σ̂t〉t≥0 so represents a stopping time in Tf in the sense here, and by
612H(a-iv) g represents τ . QQQ

612U Example: the Poisson process (a) For t > 0 let λt be the Poisson distribution with expectation
t, that is, the Radon probability measure on R such that λt{n} = e−ttn/n! for every n ∈ N (495Aa). Then
the convolution λs ∗ λt is equal to λs+t whenever s, t > 0 (495Ab), and limt↓0 λtG = 1 for every open set
G ⊆ R including 0. So 455Pc tells us that we have an associated probability measure µ̈ on the space Cdlg of
càdlàg real-valued functions defined on [0,∞[. This measure is described in 455P as the subspace measure
on Cdlg induced by a complete measure on R[0,∞[ defined in terms of transitional probabilities, following
455E. The formula of 455E tells us that if 0 = t0 < . . . < tn in R and 0 = k0 ≤ . . . ≤ kn in N, then the
measure of {ω : ω(ti) = ki for i ≤ n} is

∏n
i=1 λti−ti−1

{ki − ki−1} = e−tn
∏n
i=1

(ti−ti−1)
ki−ki−1

(ki−ki−1)!
.

(b) As in 455K, µ̈ is a completion regular quasi-Radon measure on Cdlg if we give Cdlg the topology of

pointwise convergent inherited from R[0,∞[. Now the set

Ω = {ω : ω ∈ Cdlg is non-decreasing, ω(t) ∈ N for every t and ω(0) = 0}
is the support of µ̈. PPP Ω is a closed subset of Cdlg. The formula in (a) tells us that µ̈{ω : ω(0) = 0} = 1 and

µ̈{ω : ω(t) ∈ N} =
∑∞
k=0 e

−t tk

k!
= 1

for every t > 0, while

µ̈{ω : ω(s) ≤ ω(t)} = e−t
∑∞
k0=0

∑∞
k1=0

sk0

k0!

(t−s)k1

k1!
= 1

whenever 0 < s < t. Thus Ω is expressible as the intersection of a family of conegligible closed sets and is
itself a conegligible closed set. If G ⊆ Cdlg is an open set meeting Ω, there are a ω̃ ∈ G∩Ω and t0 < . . . < tn
such that t0 = 0 and {ω : ω(ti) = ω̃(ti) for every i ≤ n} ⊆ G; in this case µ̈(Ω∩G) > 0. So Ω is the support
of µ̈. QQQ

(c) Let µ be the subspace measure on Ω induced by µ̈ and Σ its domain, so that µ is a quasi-Radon
probability measure on Ω (415B). For t ≥ 0, set

Σ̈t = {F : F ∈ dom µ̈, ω′ ∈ F whenever ω′ ∈ Cdlg, ω ∈ F and ω′↾[0, t] = ω↾[0, t]}
(see 455O) and

ˆ̈Σt = {F△A : F ∈ Σ̈t, µ̈A = 0}.

Then ˆ̈Σt =
⋂
s>t

ˆ̈Σs for every t (455T). So if we set

Σt = {F : F ⊆ Ω, F ∈ ˆ̈Σt}
for t ≥ 0, 〈Σt〉t≥0 will be a filtration of σ-algebras. Consequently, if we take (A, µ̄) to be the measure algebra
of µ, and set At = {F • : F ∈ Σt} for each t, 〈At〉t≥0 will be a filtration of closed subalgebras of A.

(d) For ω ∈ Ω and t ≥ 0 set Xt(ω) = ω(t). Then Xt has a Poisson distribution with expectation t. Now
〈Xt〉t≥0 is progressively measurable (4A3Q(c-i) again). We therefore have a corresponding fully adapted
process vvv = 〈vτ 〉τ∈Tf

defined as in 612Hb; in this volume I will call this the standard Poisson process.
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(e)(i) For each n ∈ N and ω ∈ Ω, set

gn(ω) = inf{t : t ∈ [0,∞[, ω(t) ≥ n},
counting inf ∅ as ∞. Then g0(ω) = 0 for every ω. If gn(ω) is finite, then ω(gn(ω)) ≥ n, because ω is càdlàg.
Note that

µ{ω : gn(ω) > t} ≤ Pr(Xt < n) = e−t
∑n−1
i=0

ti

i!
→ 0

as t → ∞, so gn is finite a.e. Of course gn ≤ gn+1 for every n. In fact, for almost every ω, 〈gn(ω)〉n∈N is
strictly increasing. PPP If 0 ≤ s < t, then

µ{ω : ω(t)− ω(s) ≥ 2} ≤ 1− e−(t−s)(1 + t− s) ≤ (t− s)2.

Suppose that γ > 0, n ∈ N, m ≥ 1 and ω ∈ Ω are such that gn(ω) = gn+1(ω) ≤ γ. Set ti =
iγ

m
for i ≤ m.

Then there is a first i ≤ m such that gn(ω) ≤ ti, that is, ω(ti) ≥ n. Since gn+1(ω) ≤ ti, ω(ti) ≥ n + 1. By
the definition of Ω, ω(t0) = 0, so i > 0 and we can speak of ω(ti−1), which must be less than n. But ω(ti−1)
is an integer, so it is at most n− 1, and ω(ti) ≥ ω(ti−1) + 2.

This shows that

µ{ω : gn(ω) = gn+1(ω) ≤ γ}
≤ µ{ω : there is an i such that 1 ≤ i ≤ m and ω(ti)− ω(ti−1) ≥ 2}

≤ m(
γ

m
)2 =

γ2

m
.

Letting m→ ∞, we see that {ω : gn(ω) = gn+1(ω) ≤ γ} is negligible; letting γ → ∞, {ω : gn(ω) = gn+1(ω)}
is negligible and its complement is conegligible. QQQ

Observe that, for any n ∈ N, ω(gn(ω)) = n for almost every ω. PPP If gn(ω) < gn+1(ω), then n ≤
ω(gn(ω)) < n+ 1 so ω(gn(ω)) = n; and this is the case for almost every ω. QQQ

(ii) For n ∈ N and t > 0,

{ω : gn(ω) < t} = {ω : there is a rational q < t such that ω(q) ≥ n} ∈ Σt,

so gn is a stopping time adapted to 〈Σ+
t 〉t≥0 (455Lb), which here is just 〈Σt〉t≥0. Let τn = g•

n be the
corresponding stopping time in Tf . Since limn→∞ gn(ω) = ∞ for every ω, supn∈N [[τn > t]] = 1 for every t,
and supn∈N τn = max T . Since Xgn(ω)(ω) = n for almost every ω, vτn = nχ1, for every n ∈ N.

I will call 〈τn〉n∈N the sequence of jump times for the process vvv.

(f) If τ ∈ Tf , then
[[vτ ∈ N]] = 1, [[vτ = vτn ]] = [[vτ = n]] = [[τn ≤ τ ]] ∩ [[τ < τn+1]] for every n ∈ N.

PPP As in 612H, we have a stopping time h : Ω → [0,∞[ representing τ , and vτ = X•

h. Now Xh(ω)(ω) =
ω(h(ω)) ∈ N for every ω, so [[vτ ∈ N]] = 1. For any particular n ∈ N,

[[vτ = n]] = {ω : ω(h(ω)) = n}•

= {ω : gn(ω) ≤ h(ω) < gn+1(ω)}• = [[τn ≤ τ ]] ∩ [[τ < τn+1]]. QQQ

(g) Because every ω is non-negative and non-decreasing, 0 ≤ Xg ≤ Xh whenever g, h are stopping times
and g ≤ h, and 0 ≤ vσ ≤ vτ whenever σ ≤ τ in Tf . It follows immediately that vvv is locally order-bounded.

612X Basic exercises (a) In 612A(d-iv), show that if u ≥ 0 then h 7→ h̄(u) : H → L0 is order-preserving
and sequentially order-continuous.

(b) Suppose that S is a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process. Show that

uσ + uτ + uυ = uσ∧τ∧υ + umed(σ,τ,υ) + uσ∨τ∨υ

for all σ, τ , υ ∈ S.
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(c) In 612Hb, show that we can have a progressively measurable family 〈Xt〉t≥0 such that Xt =a.e. 0 for
every τ , but there is a τ ∈ Tb such that uτ 6= 0.

(d) Let S be a sublattice of T and uuu a simple process with domain S. Show that uuu↾S∨τ = uuu↾S∩[τ,max T ]
and uuu↾S ∩ [τ, τ ′] are simple processes whenever τ ≤ τ ′ in S.

>>>(e) Let I be a finite sublattice of T and uuu a fully adapted process with domain I. Show that there is
a simple process with domain T extending uuu and with a breakpoint string in I. How far is this extension
unique?

(i) Let A ⊆ T be any set, and S its covered envelope (611Mb). (i) Show that if A is an ideal of T then
S is an ideal of T . (ii) Show that if uuu = 〈uσ〉σ∈A ∈ ∏

σ∈A L
0(Aσ) is such that [[uσ = uτ ]] ⊇ [[σ = τ ]] for all

σ, τ ∈ A, then there is a unique fully adapted process ûuu with domain S extending uuu. (iii) In (ii), show that
‖ûuu‖∞ = supσ∈A ‖uσ‖∞, [[ûuu 6= 0]] = supσ∈A [[uσ 6= 0]] and that {ûσ : σ ∈ S} is and order-bounded subset of
L0 iff {uσ : σ ∈ A} is.

(j) Suppose that S is a sublattice of T , Ŝ is its covered envelope, and that uuu is a fully adapted process

with domain S with corresponding extension ûuu to a fully adapted process with domain Ŝ. Show that if uuu is
simple then ûuu is simple.

(k) Show that if τ ∈ T then 〈χ[[σ = τ ]]〉σ∈T is a fully adapted process.

(l) Show that if S is a sublattice of T with covered envelope Ŝ, and uuu is a non-decreasing fully adapted

process with domain S, then its fully adapted extension to Ŝ is non-decreasing.

>>>(m) Let S be a sublattice of T , and τ a member of S. Suppose that uuu = 〈uσ〉σ∈S∧τ and vvv = 〈vσ〉σ∈S∨τ
are fully adapted processes such that uτ = vτ . Show that there is a unique fully adapted process with
domain S extending both uuu and vvv.

612Y Further exercises (a) Show that the ideas of 612H can be applied to any totally ordered set T
which is Polish in its order topology, in place of [0,∞[. (First tackle the case T = N to establish rules when
T has gaps. You may have to use T or T ∪ {−∞} or T ∪ {−∞,∞} in place of [0,∞].)

(c) Let 〈uσ〉σ∈S be a simple fully additive process, and τ ∈ S. Show that 〈uσ∧τ 〉σ∈S is a simple fully
additive process.

(e) I will say that a fully adapted process uuu = 〈uσ〉σ∈S on a non-empty sublattice S of T is previsibly
simple if there are τ0 ≤ . . . ≤ τn in S, ui ∈ L0(Aτi) for i ≤ n and a u∗ ∈ L0(

⋂
σ∈S Aσ) such that, for every

τ ∈ S,
infσ∈S [[τ ≤ σ]] ⊆ [[uτ = 0]], [[σ < τ ]] ∩ [[τ ≤ τ0]] ⊆ [[uτ = u∗]] for every σ ∈ S,

[[τi < τ ]] ∩ [[τ ≤ τi+1]] ⊆ [[uτ = ui]] for every i < n, [[τn < τ ]] ⊆ [[uτ = un]].

Formulate and prove results for previsibly simple processes corresponding to the facts listed in 612K.

(f) Give an example in which S is a sublattice of T and uuu is a fully adapted process with domain S such
that the fully adapted extension of uuu to the covered envelope of S is simple, but uuu is not simple.

612 Notes and comments In 612H, I look at filtrations of σ-algebras of measurable sets which are
supposed all to contain every negligible set. In the most natural representations of the most important
stochastic processes, the filtrations don’t have this property; see 477H. An incidental advantage of working
with measure algebras is that such questions disappear until we turn to specific examples.

Many special spaces of fully adapted processes will be important in the work below; here I mention only
the simple processes (612J, 612Xd), as those which have descriptions accessible from our present position.
More interesting is the use of ‘covering ideals’ (611N, 612R). We shall have many cases in which a restriction
to an appropriate covering ideal will render a process more amenable – e.g., by making it a martingale.

Measure Theory



613Ab Definition of the integral 43

You may have noticed that there is no mention of ‘measure’ or ‘probability’ in this section except in
the construction described in 612H, and there is no ‘ǫ > 0’ anywhere. We are still working through the
foothills, with essentially algebraic arguments. There are some suprema of infinite sets, but in so far as there
is anything non-trivial here, it is a reflection of the work in §364 and §611. ‘Simple’ processes, however,
demand a bit of attention. They are supposed to be a stochastic representation of step-functions on R

(226Xb, 242O) and will play a similar role when we come to the theory of integration (see §614), but the
extra complication of working on a lattice rather than on a totally ordered set makes some essential points
(e.g., 612Kc) trickier.

If you have spent any time with Volumes 1-5 of this treatise, you will know that I consider a function to
be inadequately defined if there is any doubt about its domain. This is a demanding discipline which is more
important in some places than others. A point at which we can be relatively relaxed is in the definition of
integration in 613Hb, where I shall insist only that domuuu and domψ should be large enough for SI(uuu, dψ) to
be defined for every finite sublattice I of S. A point at which we have to be more careful is in the definition
of ‘simple process’ in 612J, where we have to know the exact domain of a process uuu before we can confirm
that the proposed breakpoints belong to that domain. Manoeuvres like the proof of 612Qf will often be
required.

Referring you to §455 in the course of 612U is unkind. It ought to be much easier than this, and indeed it
is. You should have no real difficulty in finding your own way to a proof of the really important bit, which is
that the formula in 612Ua defines a probability measure on the space Ω of non-decreasing càdlàg functions
from [0,∞[ to N starting at 0. But we are going to need the fact that the filtration 〈Σt〉t≥0 is right-continuous
(632Da below), and this seems to demand thought. More generally, the processes considered in §455 furnish
many other important examples for the theory here.

The construction zuuu of 612De will be one of the leitmotivs of this volume. For the theory here, we can
expect zuuu to behave like a scalar multiple of uuu; in effect, if S is a non-empty sublattice of T , the f -algebra∏
σ∈S L

0(Aσ) can be thought of as an L0(
⋂
σ∈S Aσ)-module. The idea is that a fully adapted process with

domain S is supposed to represent the evolution of a system over time, and that
⋂
σ∈S Aσ is the algebra

of events observable from the beginning of the process; so that if we think of z as a function rather than
a member of L0, its values are determinate scalars, and any feature of the process preserved by scalar
multiplication ought to be preserved by multiplication by z. I shall give a fair bit of space, in total, to such
calculations as 612Lc, but they will nearly always be elementary adaptations of ideas already indicated.

Version of 15.7.20/16.1.25

613 Definition of the integral

I come now to the definition of a stochastic integral which will be used for the next three chapters. We are

looking for an effective way to interpret the formula
∫ τ ′

τ
uuu dvvv where τ ≤ τ ′ are stopping times and uuu, vvv are

fully adapted processes defined on an interval [τ, τ ′] in T . I will define this as a kind of Riemann-Stieltjes
integral, a limit of ‘Riemann sums’ of the form

∑n
i=0 uτi × (vτi+1

− vτi) where τ = τ0 ≤ . . . ≤ τn = τ ′.
For this we need a notion of convergence, for which ‘convergence in measure’ (§§245, 367) turns out to be
suitable, and a particular limiting process, to be described in 613Hb. Because our processes are defined on
a lattice T of stopping times, rather than a totally ordered set, there are some technical obstacles to clear
out of the way; I aim to do this in 613C-613G. The rest of the section is devoted to elementary properties
of this new integral.

613A Probability algebras (a) For the rest of this volume, (A, µ̄) will denote a probability algebra.
L1(A, µ̄) or L1

µ̄ will be its L1 space as described in §365, a linear subspace of L0(A). For w in L0 = L0(A),

I will write E(w) = Eµ̄(w) = E(w+)− E(w−) for its integral with respect to µ̄ as defined in 365D, provided
that at most one of E(w+), E(w−) is infinite. (I am reserving the symbol

∫
for the stochastic integral to be

defined in 613H.)

(b) As in §§611-612, T will be a totally ordered set and 〈At〉t∈T a filtration of order-closed subalgebras of
A. Recall from 316Fb and 323H that in this context a subalgebra of A is order-closed iff it is a σ-subalgebra
of A iff it is topologically closed in the measure-algebra topology of A, which is that of the measure metric
(a, b) 7→ µ̄(a△ b); so we can safely call such subalgebras ‘closed’ without specifying which aspect we have
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primarily in mind. T will be the set of stopping times adapted to 〈At〉t∈T . For τ ∈ T , Aτ will be the closed
subalgebra corresponding to τ (611G). When I say that a process is ‘fully adapted’ I shall always mean that
it is ‘fully adapted to 〈At〉t∈T ’.

613B Convergence in measure I begin with notes on two fundamental concepts from probability
theory. The first is essential for the notion of ‘integral’ to be defined in this section.

(a) Recall that L0 = L0(A) now has a topology T of convergence in measure which can be defined by
the F-norm θ where

θ(w) = E(|w| ∧ χ1) for every w ∈ L0

(245Da, 2A5B, 367L). This is a complete Hausdorff linear space topology for which multiplication and the
lattice operations ∨, ∧ and | | are continuous (367M). Because (A, µ̄) is always isomorphic to the measure
algebra of some probability space (321J), we can apply all the results proved in §§245-246 for the topology
of convergence in measure on spaces L0(µ), as well as those spelt out in §367. In particular, the positive
cone (L0)+ is closed.

Concerning the functional θ, it is subadditive (that is,

θ(w1 + w2) = E(|w1 + w2| ∧ χ1) ≤ E((|w1|+ |w2|) ∧ χ1)
≤ E(|w1| ∧ χ1 + |w2| ∧ χ1) = θ(w1) + θ(w2)

for all w1, w2 ∈ L0). It is not a seminorm except in trivial cases, but it does have the property that
θ(αw) ≤ αθ(w) if w ∈ L0 and α ≥ 1. PPP E(α|w| ∧ χ1) ≤ E(α|w| ∧ αχ1) = αE(|w| ∧ χ1). QQQ Also, of course,
θ(v) ≤ θ(w) whenever |v| ≤ |w| (cf. 354A). Finally, because E is order-continuous (365Da; cf. 354Dc),
limw↓A θ(w) = 0 whenever A ⊆ L0 is a non-empty downwards-directed family with infimum 0 (367Na), so

that supA ∈ A and limw↑A θ(w) = θ(supA) whenever A ⊆ L0 is a non-empty upwards-directed set with an
upper bound in L0; similarly, if A ⊆ L0 is a non-empty downwards-directed set with a lower bound in L0,
limw↓A θ(w) = θ(inf A).

(b) If E ⊆ R is a Borel set and QE = {u : u ∈ L0, [[u ∈ E]] = 1}, then for any continuous h : E → R the
corresponding function h̄ : QE → L0 is continuous (367S).

(c) If 1 ≤ p ≤ ∞, all the ‖ ‖p-balls {u : u ∈ L0, ‖u‖p ≤ α} are T-closed (245J(b-i), 245Xk). Consequently
the T-closure of a ‖ ‖p-bounded set is again ‖ ‖p-bounded, and ‖ ‖p : L0 → [0,∞] is lower semi-continuous
(4A2A).

(d)(i) For any p ∈ [1,∞], the embedding Lpµ̄ ⊂→ L0 is continuous for the norm topology of Lpµ̄ and T

(245G).

(ii) If A ⊆ L1
µ̄ is non-empty and downwards-directed and inf A = 0 in L1

µ̄, then infu∈A ‖u‖1 =
limu↓A ‖u‖1 = 0 (365C).

(iii) If A ⊆ (L1
µ̄)

+ is non-empty and upwards-directed and γ = supu∈A ‖u‖1 is finite, then A is bounded

above in L1
µ̄, supA belongs to the ‖ ‖1-closure of A and ‖ supA‖1 = γ (365C again).

(iv) If u ∈ L1
µ̄ and ǫ > 0, there is a δ > 0 such that ‖u − v‖1 ≤ ǫ whenever v ∈ L1

µ̄, ‖v‖1 ≤ ‖u‖1 + δ
and θ(u− v) ≤ δ (245H(b-i)).

(e) IfA ⊆ L0 and v ∈ A then [[v > α]] ⊆ supu∈A [[u > α]] for every α ∈ R. PPP Setting a = 1 \ supu∈A [[u > α]]
we see that u× χa ≤ αχa for every u ∈ A, so v × χa ≤ αχa and [[v > α]] does not meet a. QQQ

(f)(i) Because T is a linear space topology, there is a corresponding notion of bounded set (3A5N). I will
say that a set A ⊆ L0 is topologically bounded if for every neighbourhood G of 0 in L0 there is an n ∈ N

such that A ⊆ nG; equivalently, if for every ǫ > 0 there is a δ > 0 such that θ(δu) ≤ ǫ for every u ∈ A.

(ii) If A ⊆ L0 is non-empty, then A is topologically bounded iff infγ>0 supu∈A µ̄[[|u| > γ]] = 0. PPP(ααα) If
A is topologically bounded and 0 < ǫ ≤ 1, let δ > 0 be such that θ(δu) ≤ ǫ2 for every u ∈ A. If u ∈ A then
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ǫµ̄[[|u| > 1
δ ]] = ǫµ̄[[|δu| > 1]] ≤ θ(δu) ≤ ǫ2

so µ̄[[|u| > 1
δ ]] ≤ ǫ. As ǫ is arbitrary, infγ>0 supu∈A µ̄[[|u| > γ]] = 0. (βββ) If infγ>0 supu∈A µ̄[[|u| > γ]] = 0, take

ǫ > 0. Let γ > 0 be such that µ̄[[|u| > γ]] ≤ ǫ for every u ∈ A, and set δ =
ǫ

γ
. If u ∈ A, then

θ(δu) ≤ ǫ+ µ̄[[|δu| > ǫ]] ≤ ǫ+ µ̄[[|u| > γ]] ≤ 2ǫ.

As ǫ is arbitrary, A is topologically bounded. QQQ

(iii) If A, B ⊆ L0 are topologically bounded, so are A+ B and αA for any α ∈ R, the closure A of A
for the topology of convergence in measure (3A5Nb), and any subset of A.

(iv) If A ⊆ L0 is topologically bounded, so is its solid hull {u : u ∈ L0, ∃ v ∈ A, |u| ≤ |v|}. (For if
|u| ≤ |v|, then θ(δu) ≤ θ(δv).) In particular, an order-bounded subset of L0 is topologically bounded.

(v) An upwards-directed topologically bounded set is bounded above. PPP If A ⊆ L0 is an upwards-
directed set which is not bounded above, then c = infn∈N supu∈A [[u > n]] is non-zero (364La). If n ∈ N,
then {c ∩ [[u > n]] : u ∈ A} is upwards-directed and has supremum c, so there is a un ∈ A such that
µ̄(c \ [[un > n]]) ≤ 2−n−2µ̄c. Set d = c \ supn∈N [[un > n]]; then µ̄d > 0. But now observe that θ(δun+1) ≥ µ̄d
whenever n ∈ N and δ ≥ 1

n+1 , so A is not topologically bounded. QQQ

(vi) If A ⊆ L0 is solid, so is A. PPP If v ∈ A, |u| ≤ |v| and ǫ > 0, there is a v′ ∈ A such that θ(v′−v) ≤ ǫ;
now u′ = med(−|v′|, u, |v′|) belongs to A, while u = med(−|v|, u, |v|), so |u−u′| ≤ |v− v′| and θ(u−u′) ≤ ǫ.
As ǫ is arbitrary, u ∈ A; as u and v are arbitrary, A is solid. QQQ

(g) If ν̄ : A → [0, 1] is any functional such that (A, ν̄) is a probability algebra, then µ̄ and ν̄ are mutually
absolutely continuous, that is,

—– for every ǫ > 0 there is a δ > 0 such that max(µ̄a, ν̄a) ≤ ǫ whenever a ∈ A and
min(µ̄a, ν̄a) ≤ δ (393F).

(Compare 232Ba.) Consequently T is still the topology of convergence in measure on L0 if we apply
the formulae of (a) with the integral Eν̄ defined from ν̄ in place of E = Eµ̄ (see 367T), and if we set
θν̄(w) = Eν̄(|w| ∧ χ1) for w ∈ L0, then

—– for every ǫ > 0 there is a δ > 0 such that max(θµ̄(w), θν̄(w)) ≤ ǫ whenever min(θµ̄(w), θν̄(w)) ≤
δ.

This will be a recurring theme in the rest of this volume, so I introduce a code phrase here: the topology
of convergence in measure is law-independent, since replacing the ‘law’ µ̄ by the law ν̄ leaves it unchanged.

(h) (L0, θ) is a complete metric space; that is, L0 is complete when regarded as a linear topological space
(367Mc).

(i) Now suppose that B is a closed subalgebra of A.

(i) L0(B), regarded as a subset of L0(A) (612Ae), is closed for the topology of convergence in measure
(367Rc).

(ii) As the embedding L1
µ̄
⊂→ L0(A) is continuous for the norm topology of L1

µ̄ ((d-i) above), L1
µ̄∩L0(B)

is ‖ ‖1-closed in L1
µ̄; being a linear subspace, it is also closed for the weak topology of L1

µ̄ (4A4Ed).

(j) The following is a useful consequence of (i). Suppose that S is a sublattice of T , uuu = 〈uσ〉σ∈S is a
fully adapted process, and A ⊆ S is a non-empty downwards-directed set such that the limit u∗ = limσ↓A uσ
is defined. Then u∗ ∈ ⋂

σ∈A L
0(Aσ) = L0(

⋂
σ∈A Aσ). PPP If σ ∈ A, then u∗ belongs to the closure of

{uσ′ : σ′ ∈ A, σ′ ≤ σ} ⊆ L0(Aσ); as L
0(Aσ) is closed, u∗ ∈ L0(Aσ). As σ is arbitrary, u∗ ∈ ⋂

σ∈A L
0(Aσ).

For the other expression, write B for
⋂
σ∈AAσ; being the intersection of closed subalgebras of A, B is a

closed subalgebra of A. Now, for v ∈ L0,

v ∈ L0(B) ⇐⇒ [[v > α]] ∈ B for every α ∈ R

⇐⇒ [[v > α]] ∈ Aσ for every α ∈ R and σ ∈ A

⇐⇒ v ∈ L0(Aσ) for every σ ∈ A,

so L0(B) =
⋂
σ∈A L

0(Aσ), and in particular contains u∗. QQQ

D.H.Fremlin



46 The Riemann-sum integral 613Bk

(k) A particular manifestation of the idea in (j) above appears often enough to be given a name. If S
is non-empty and uuu = 〈uσ〉σ∈S is a fully adapted process such that the topological limit u↓ = limσ↓S uσ is
defined in L0(A), I will call u↓ ∈ L0(

⋂
σ∈S Aσ) the starting value of uuu.

(l) If S is a sublattice of T , then we can give (L0)S its product topology, under which it is a linear
topological space (4A4Bb). Now the space Mfa(S) of fully adapted processes with domain S is a closed
subspace of (L0)S . PPP

Mfa(S) = (L0)S ∩
⋂

τ,τ ′∈S
{〈uσ〉σ∈S : 〈uσ〉σ∈S ∈ (L0)S ,

uτ ∈ L0(Aτ ), [[τ = τ ′]] ⊆ [[uτ = uτ ′ ]]}.
Accordingly L0(Aτ ) is closed in L0 for every τ , by (i-i) above. Moreover, if τ , τ ′ ∈ S and a ∈ A, then

{(u, v) : u, v ∈ L0, a ⊆ [[u = v]]} = {(u, v) : u, v ∈ L0, u× χa = v × χa}
is closed in (L0)2 because multiplication in L0 is continuous and the topology of L0 is Hausdorff. So Mfa(S)
is an intersection of closed sets and is closed. QQQ

(m) Because the lattice operations on L0 are continuous, and the topology is Hausdorff, sets of the form
{|u| : u ≤ ū} = {u : |u| ∨ ū = ū} are closed for any ū ∈ L0. Consequently, in a product space (L0)S , sets of
the form {uuu : uuu ∈ (L0)S , |uuu| ≤ ūuu}, where ūuu ∈ (L0)S , are closed for the product topology.

(n) Now suppose that (B, ν̄) is another probability algebra, and φ : A → B is a measure-preserving
Boolean homomorphism. Then φ is order-continuous (324Kb), so we have a corresponding injective f -algebra
homomorphism Tφ : L0(A) → L0(B) (612Af). Writing Eµ̄, Eν̄ for expectations in L1

µ̄, L
1
ν̄ respectively, and

θµ̄, θν̄ for the corresponding functionals on L0(A) and L0(B), Eν̄(Tφu) = Eµ̄(u) for every u ∈ L1
µ̄ (365Nb3);

as Tφ is a Riesz homomorphism and Tφ(χ1A) = χ1B, θν̄(Tφu) = θµ̄(u) for every u ∈ L0(A), and Tφ is
continuous for the topologies of convergence in measure.

(o) For any α ∈ R, the function u 7→ µ̄[[u > α]] : L0 → [0, 1] is lower semi-continuous. PPP Suppose that
u ∈ L0 = L0(A) and µ̄[[u > α]] > t. Then there is a δ ∈ ]0, 1] such that µ̄[[u > α+ δ]] > t+ δ. Suppose that
v ∈ L0 is such that θ(v − u) ≤ δ2. Then µ̄[[|v − u| ≥ δ]] ≤ δ. Now

[[v > α]] ⊇ [[u > α+ δ]] ∩ [[v − u ≥ −δ]],

µ̄[[v > α]] ≥ µ̄[[u > α+ δ]]− µ̄[[|v − u| > δ]] > t.

This shows that {u : µ̄[[u > α]] > t} is open; as t is arbitrary, u 7→ µ̄[[u > α]] : L0 → [0, 1] is lower semi-
continuous. QQQ

(p)(i) Suppose that A ⊆ L0 and that for every ǫ > 0 there is an a ∈ A such that {u×χa : u ∈ A} is order-
bounded in L0 and µ̄a ≥ 1−ǫ. Then A is order-bounded in L0. PPP For each n ∈ N set cn = supu∈A [[|u| > n]].
Then 〈cn〉n∈N is a non-increasing sequence in A. Given ǫ > 0, there is an a ∈ A such that µ̄a ≥ 1− 1

2ǫ and

ū = supu∈A |u× χa| is defined. Let n ∈ N be such that b = [[ū > n]] has measure at most 1
2ǫ. If u ∈ A,

[[|u| > n]] ⊆ (1 \ a) ∪ [[|u× χa| > n]] ⊆ (1 \ a) ∪ b.

So if m ≥ n,

cm ⊆ cn ⊆ (1 \ a) ∪ b, µ̄cm ≤ (1− µ̄a) + µ̄b ≤ ǫ.

As ǫ is arbitrary, limn→∞ µ̄cn = 0.
Consequently infn∈N cn = 0 and {|u| : u ∈ A} is bounded above in L0 (364L(a-i)), that is, A is order-

bounded in L0. QQQ

(ii) If uuu = 〈uσ〉σ∈S is a fully adapted process and for every ǫ > 0 there is an order-bounded process
vvv = 〈vσ〉σ∈S such that µ̄[[uuu 6= vvv]] ≤ ǫ, then uuu is order-bounded. PPP Set A = {uσ : σ ∈ S}. If ǫ > 0, there is
an order-bounded process vvv = 〈vσ〉σ∈S such that µ̄[[uuu 6= vvv]] ≤ ǫ. Set a = 1 \ [[uuu 6= vvv]]. Then µ̄a ≥ 1− ǫ and

3Formerly 365Ob.
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|uσ × χa| = |vσ × χa| ≤ sup |vvv|
for every σ ∈ S; so {u × χa : u ∈ A} is order-bounded in L0. By (i) just above, A is order-bounded in L0,
that is, uuu is order-bounded. QQQ

(q)(i) If A ⊆ T , τ belongs to the covered envelope Â of A (611Ma) and ǫ > 0, there is a τ ′ in the

finitely-covered envelope Âf of A (611Ob) such that µ̄[[τ = τ ′]] ≥ 1−ǫ. PPP We know that supσ∈A [[σ = τ ]] = 1
in A, so there is a non-empty finite J ⊆ A such that µ̄(supσ∈J [[σ = τ ]]) ≥ 1 − ǫ. Let I be the sublattice

of T generated by J ; then I is finite (611Ca) and included in Âf (611Pa). Take a sequence (σ0, . . . , σn)
linearly generating the I-cells (611K-611L). Set ak = [[σk = τ ]] for k ≤ n, a = supk∈N ak, bk = ak \ supi<k ai
for k < n and bn = 1 \ supk<n ak. Then ak, bk ∈ Aσk

for k ≤ n and 〈bk〉k≤n is a partition of unity in A.
Observe that if σ ∈ J then supk≤n [[σ = σk]] = 1 (611Ke), so

[[σ = τ ]] = supk≤n [[σ = τ ]] ∩ [[σ = σk]] ⊆ supk≤n [[σk = τ ]];

taking the supremum over σ, a ⊆ supk≤n [[σk = τ ]].
By 611I there is a τ ′ ∈ T such that bk ⊆ [[τ ′ = σk]] for k ≤ n. Next, for k ≤ n let Kk be a finite subset of

A such that supσ∈Kk
[[σ = σk]] = 1, and set K =

⋃
k≤nKk. Then K is a finite subset of A,

sup
σ∈K

[[σ = τ ′]] = sup
k≤n,σ∈K

bk ∩ [[σ = τ ′]]

= sup
k≤n,σ∈Kk

bk ∩ [[σ = σk]] = sup
k≤n

bk = 1

and τ ′ ∈ Âf .
Moreover,

[[τ = τ ′]] = sup
k≤n

bk ∩ [[τ = τ ′]] = sup
k≤n

bk ∩ [[τ = σk]]

= sup
k≤n

bk ∩ ak = sup
k≤n

(ak \ sup
i<k

ai) = sup
k≤n

ak ⊇ a

has measure at least 1− ǫ, as required. QQQ

(ii) If S is a sublattice of T with covered envelope Ŝ and finitely covered envelope Ŝf , uuu = 〈uτ 〉τ∈Ŝ
is a fully adapted process and τ ∈ Ŝ, then uτ belongs to the closure of {uσ : σ ∈ Ŝf} for the topology of

convergence in measure. PPP For any ǫ > 0 there is a σ ∈ Ŝf such that µ̄[[σ − τ ]] ≥ 1 − ǫ, by (i) just above;
now

θ(uτ − uσ) = E(|uτ − uσ| ∧ χ1) ≤ µ̄[[uτ 6= uσ]]

= 1− µ̄[[uτ = uσ]] ≤ 1− µ̄[[τ = σ]] ≤ ǫ.

As ǫ > 0 is arbitrary, uτ ∈ {uσ : σ ∈ Ŝf}. QQQ

613C Interval functions Now for a new idea.

(a) Let S be a sublattice of T . I will write S2↑ for {(σ, τ) : σ, τ ∈ S, σ ≤ τ}.
(i) I say that a function ψ : S2↑ → L0(A) is an adapted interval function on S if

ψ(σ, τ) ∈ L0(Aτ ), ψ(σ, σ) = 0, b ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]]

whenever σ ≤ σ′ ≤ τ ′ ≤ τ in S, b ∈ Aσ and b ⊆ [[σ = σ′]] ∩ [[τ ′ = τ ]].

(ii) In this case, I say that ψ is a strictly adapted interval function if

[[σ = σ′]] ∩ [[τ ′ = τ ]] ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]]

whenever σ ≤ σ′ ≤ τ ′ ≤ τ in S.
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(b) Let S be a sublattice of T and ψ : S2↑ → L0(A) an adapted interval function.

(i) [[σ = τ ]] ⊆ [[ψ(σ, τ) = 0]] whenever σ ≤ τ in S. PPP Setting σ′ = τ ′ = σ, we have

[[σ = τ ]] = [[σ = σ′]] ∩ [[τ ′ = τ ]] ∈ Aσ

so

[[σ = τ ]] ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]] ⊆ [[ψ(σ, τ) = 0]]. QQQ

Taking complements, [[ψ(σ, τ) 6= 0]] ⊆ [[σ < τ ]] whenever σ ≤ τ in S.
(ii) ψ(σ, σ ∨ τ) = ψ(σ ∧ τ, τ) for all σ, τ ∈ S. PPP [[σ ≤ τ ]] ∈ Aσ∧τ (611Hc) and

[[σ ≤ τ ]] = [[σ ∧ τ = σ]] ∩ [[τ = σ ∨ τ ]]
⊆ [[ψ(σ ∧ τ, σ ∨ τ) = ψ(σ, σ ∨ τ)]] ∩ [[ψ(σ ∧ τ, σ ∨ τ) = ψ(σ ∧ τ, τ)]]
⊆ [[ψ(σ, σ ∨ τ) = ψ(σ ∧ τ, τ)]],

[[τ ≤ σ]] = [[σ ∧ τ = τ ]] ∩ [[σ = σ ∨ τ ]]
⊆ [[ψ(σ ∧ τ, τ) = 0]] ∩ [[ψ(σ, σ ∨ τ) = 0]] ⊆ [[ψ(σ, σ ∨ τ) = ψ(σ ∧ τ, τ)]];

putting these together, [[ψ(σ, σ ∨ τ) = ψ(σ ∧ τ, τ)]] = 1 and ψ(σ, σ ∨ τ) = ψ(σ ∧ τ, τ). QQQ

(iii) If S0 is any sublattice of S, then ψ↾S2↑
0 is an adapted interval function on S0, and is strictly

adapted if ψ is. (Immediate from the definitions in (a).)

(iv) If ψ is strictly adapted then [[σ = σ′]] ∩ [[τ ′ = τ ]] ⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]] whenever σ ≤ τ and σ′ ≤ τ ′

in S. PPP

[[σ = σ′]] ∩ [[τ ′ = τ ]] = [[σ ∧ σ′ = σ]] ∩ [[τ = τ ∨ τ ′]] ∩ [[σ ∧ σ′ = σ′]] ∩ [[τ ′ = τ ∨ τ ′]]
⊆ [[ψ(σ, τ) = ψ(σ ∧ σ′, τ ∨ τ ′)]] ∩ [[ψ(σ′, τ ′) = ψ(σ ∧ σ′, τ ∨ τ ′)]]
⊆ [[ψ(σ, τ) = ψ(σ′, τ ′)]]. QQQ

(c) Much the most important examples of such functions are the following. If S ⊆ T is a sublattice and
vvv = 〈vσ〉σ∈S is a fully adapted process, we have a function ∆vvv : S2↑ → L0(A) defined by saying that

(∆vvv)(σ, τ) = vτ − vσ

whenever σ ≤ τ in S, and ∆vvv is a strictly adapted interval function on S. PPP If σ ≤ σ′ ≤ τ ′ ≤ τ in S, then
vτ − vσ ∈ L0(Aτ ) because σ ≤ τ , [[vτ − vσ 6= 0]] ⊆ [[σ 6= τ ]] = [[σ < τ ]], and

[[σ = σ′]] ∩ [[τ = τ ′]] ⊆ [[vσ = vσ′ ]] ∩ [[vτ ′ = vτ ]] ⊆ [[vτ − vσ = vτ ′ − vσ′ ]]. QQQ

613D Constructions for interval functions Let S be a sublattice of T and ψ, ψ′ (strictly) adapted
interval functions on S.

(a) ψ + ψ′ and ψ × ψ′ are (strictly) adapted interval functions.
(b) If h : R → R is a Borel measurable function, then the composition h̄ψ is a (strictly) adapted interval

function.
(c) In particular, ψ2 and |ψ| and αψ, for any α ∈ R, are (strictly) adapted interval functions; the space

of (strictly) adapted interval functions on S is an f -subalgebra of L0(A)S
2↑

.
(d) If uuu = 〈uσ〉σ∈S is a fully adapted process, then we have a (strictly) adapted interval function uuuψ on

S defined by setting (uuuψ)(σ, τ) = uσ × ψ(σ, τ) whenever σ ≤ τ in S.
proof (a)-(c) are immediate consequences of the definitions in 613Ca.

(d) Write ψ′(σ, τ) = uσ × ψ(σ, τ). If σ ≤ τ in S, then ψ′(σ, τ) ∈ L0(Aτ ) because uσ and ψ(σ, τ) both
belong to L0(Aτ ); and

[[σ = τ ]] ⊆ [[ψ(σ, τ) = 0]] ⊆ [[ψ′(σ, τ) = 0]].
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Next, as in 613Cc, take σ, τ , σ′, τ ′ ∈ S such that σ ≤ σ′ ≤ τ ′ ≤ τ and b ∈ Aσ such that b ⊆ [[σ = σ′]] ∩ [[τ ′ = τ ]].
Then

b ⊆ [[uσ = uσ′ ]] ∩ [[ψ(σ, τ) = ψ(σ′, τ ′)]] ⊆ [[ψ′(σ, τ) = ψ′(σ′, τ ′)]].

If ψ is strictly adapted, then the same formula will be valid with b = [[σ = σ′]] ∩ [[τ ′ = τ ]]

Remark Another class of adapted interval functions will be based on conditional expectations; see 626H.

613E Riemann sums Let S ⊆ T be a sublattice, ψ an adapted interval function on S, and uuu = 〈uσ〉σ∈S
a fully adapted process. For σ ≤ τ in S set

c(σ, τ) = 〈[[τ > t]] \ [[σ > t]]〉t∈T
as in 611J.

(a) For a stopping-time interval e ∈ Sti(S), we can define ∆e(uuu, dψ) by saying that ∆e(uuu, dψ) = uσ ×
ψ(σ, τ) whenever e = c(σ, τ) with σ ≤ τ in S. PPP I need to confirm that if e = c(σ, τ) = c(σ′, τ ′) then
uσ × ψ(σ, τ) = uσ′ × ψ(σ′, τ ′).

(i) Consider first the case in which σ ≤ σ′ ≤ τ ′ ≤ τ . Set b = [[σ < τ ]] ∈ Aσ. Then

b = [[σ′ < τ ′]] ⊆ [[σ = σ′]] ∩ [[τ = τ ′]]

(611Jd), so

b ⊆ [[uσ = uσ′ ]] ∩ [[ψ(σ, τ) = ψ(σ′, τ ′)]] ⊆ [[uσ × ψ(σ, τ) = uτ ′ × ψ(σ′, τ ′)]].

On the other hand,

1 \ b ⊆ [[ψ(σ, τ) = 0]] ∩ [[ψ(σ′, τ ′) = 0]] ⊆ [[uσ × ψ(σ, τ) = 0]] ∩ [[uτ ′ × ψ(σ′, τ ′) = 0]]

⊆ [[uσ × ψ(σ, τ) = uτ ′ × ψ(σ′, τ ′)]].

So uσ × ψ(σ, τ) = uτ ′ × ψ(σ′, τ ′).

(ii) Generally, if c(σ, τ) = c(σ′, τ ′) then

[[σ < τ ]] = [[σ′ < τ ′]] ⊆ [[σ = σ′]] ∩ [[τ = τ ′]]

so

[[σ ∧ σ′ < τ ∨ τ ′]] = [[σ < τ ]] ⊆ [[σ ∧ σ′ = σ]] ∩ [[τ = τ ∨ τ ′]]
and c(σ ∧ σ′, τ ∨ τ ′) = c(σ, τ). By (i), uσ′∧τ ′ × ψ(σ ∧ σ′, τ ∨ τ ′) = uσ × ψ(σ, τ). But the same argument
shows that uσ′∧τ ′ × ψ(σ ∧ σ′, τ ∨ τ ′) = uσ′ × ψ(σ′, τ ′), so uσ × ψ(σ, τ) = uσ′ × ψ(σ′, τ ′), as required. QQQ

(b) If I ⊆ S is a finite sublattice and Sti0(I) ⊆ Sti(S) is the set of I-cells (611Je), write

SI(uuu, dψ) =
∑
e∈Sti0(I)

∆e(uuu, dψ).

(c) In this context, I will repeatedly use 611L, in the following way. If I ⊆ S is a non-empty finite
sublattice, then there is a string (τ0, . . . , τn) in I linearly generating the I-cells. In this case SI(uuu, dψ) will

be
∑n−1
i=0 uτi × ψ(τi, τi+1). It will not be necessary to check that the sequence 〈τi〉i≤n is strictly increasing,

because if τi = τi+1 then ψ(τi, τi+1) will be 0.

(d) Now suppose that ψ = ∆vvv for some fully adapted process vvv = 〈vσ〉σ∈S . If I ⊆ S is any non-empty
sublattice, then SI(1, d(∆vvv)) = vmax I − vmin I . PPP (Recall from 612D that 1 is the constant process with
value χ1.) Take (τ0, . . . , τn) linearly generating the I-cells. Then

SI(1, d(∆vvv)) =

n−1∑

i=0

χ1× (∆vvv)(c(τi, τi+1)) =

n−1∑

i=0

vτi+1
− vτi

= vτn − vτ0 = vmax I − vmin I . QQQ
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(e) If ψ = uuuψ′, where ψ′ is another adapted interval function with domain S2↑ and uuu = 〈uσ〉σ∈S is a fully
adapted process (613Dd), then SI(1, dψ) = SI(uuu, dψ

′) for every finite sublattice I of S. PPP
∆e(1, dψ) = ψ(σ, τ) = uσ × ψ′(σ, τ) = ∆e(uuu, dψ

′)

whenever e = c(σ, τ) is a stopping-time interval with endpoints σ, τ in S. So
SI(1, dψ) =

∑
e∈Sti0(I)

∆e(1, dψ) =
∑
e∈Sti0(I)

∆e(uuu, dψ
′) = SI(uuu, dψ

′). QQQ

613F Notation I will use abbreviations for some of the most important interval functions. Let S be a
sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S and www = 〈wσ〉σ∈S fully adapted processes.

(a) If σ ≤ τ in S and e = c(σ, τ), then I write

∆e(uuu, dvvv) = ∆e(uuu, d(∆vvv)) = uσ × (vτ − vσ),

∆e(uuu, dvvvdwww) = ∆e(uuu, d(∆vvv ×∆www)) = uσ × (vτ − vσ)× (wτ − wσ),

∆e(uuu, |dvvv|) = ∆e(uuu, d|∆vvv|) = uσ × |vτ − vσ|.

(b) Now if I ⊆ S is a finite sublattice and Sti0(I) is the set of I-cells, write

SI(uuu, dvvv) = SI(uuu, d(∆vvv)) =
∑
e∈Sti0(I)

∆e(uuu, dvvv),

SI(uuu, dvvvdwww) = SI(uuu, d(∆vvv ×∆www)) =
∑
e∈Sti0(I)

∆e(uuu, dvvvdwww),

SI(uuu, |dvvv|) = SI(uuu, d|∆vvv|) =
∑
e∈Sti0(I)

∆e(uuu, |dvvv|).
I hope that these expressions will make the formulae below more appealing, and perhaps offer some hints
of the manipulations which will be possible.

613G Proposition Suppose that I is a finite sublattice of T , ψ : I2↑ → L0(A) is an adapted interval
function and uuu = 〈uτ 〉τ∈I is a fully adapted process.

(a)(i) If τ ∈ I and we set I∨τ = {σ∨τ : σ ∈ I} = {σ : τ ≤ σ ∈ I} and I∧τ = {σ∧τ : σ ∈ I} = {σ : σ ∈ I,
σ ≤ τ}, then SI(uuu, dψ) = SI∧τ (uuu, dψ) + SI∨τ (uuu, dψ).

(ii) If τ0, . . . , τn ∈ I and min I = τ0 ≤ τ1 ≤ . . . ≤ τn = max I, then SI(uuu, dψ) =
∑n−1
i=0 SI∩[τi,τi+1](uuu, dψ).

(b) For τ ∈ I set zτ = SI∧τ (uuu, dψ). Then 〈zτ 〉τ∈I is a fully adapted process.
(c) If τ , τ ′ ∈ I then SI∧τ (uuu, dψ) + SI∧τ ′(uuu, dψ) = SI∧(τ∨τ ′)(uuu, dψ) + SI∧(τ∧τ ′)(uuu, dψ).
(d) [[SI(uuu, dψ) 6= 0]] ⊆ [[uuu 6= 0]] ∩ [[min I < max I]].
(e) If vvv = 〈vτ 〉τ∈I is another fully adapted process, then SI(uuu, d(vvvψ)) = SI(uuu× vvv, dψ).

proof (a)(i) We have only to recall that Sti0(I) is the disjoint union of Sti0(I∧τ) and Sti0(I∨τ) (611J(e-ii)).
(ii) Use 611J(e-iii).

(b)(i) If τ ∈ I and e ∈ Sti0(I ∧ τ) then e is expressible as c(σ, σ′) where σ ≤ σ′ ≤ τ , in which case

uσ × ψ(σ, σ′) ∈ L0(Aσ′) ⊆ L0(Aτ ).

So zτ ∈ L0(Aτ ).

(ii) Suppose that τ ≤ τ ′ ∈ I. Then

zτ ′ = SI∧τ ′(uuu, dψ) = S(I∧τ ′)∧τ (uuu, dψ) + S(I∧τ ′)∨τ (uuu, dψ)

= SI∧τ (uuu, dψ) + SI∩[τ,τ ′](uuu, dψ) = zτ + SI∩[τ,τ ′](uuu, dψ).

Now if e ∈ Sti0(I ∩ [τ, τ ′]) there are σ, σ′ such that τ ≤ σ ≤ σ′ ≤ τ ′ and e = c(σ, σ′). In this case

[[τ = τ ′]] ⊆ [[σ = σ′]] ⊆ [[ψ(σ, σ′) = 0]] ⊆ [[∆e(uuu, dψ) = 0]]

(using 613C(b-i)). So

[[τ = τ ′]] ⊆ [[
∑
e∈Sti0(I∩[τ,τ ′]) ∆e(uuu, dψ) = 0]] = [[SI∩[τ,τ ′](uuu, dψ) = 0]] = [[zτ = zτ ′ ]].

Measure Theory



613I Definition of the integral 51

By 612Db, 〈zτ 〉τ∈I is fully adapted.

(c) Put (b) and 612D(f-i) together.

(d)(i) Setting a = [[uuu 6= 0]] = supσ∈I [[uσ 6= 0]], we have

∆e(uuu, dψ) = uσ × ψ(σ, τ) = uσ × χa× ψ(σ, τ) = ∆e(uuu, dψ)× χa

whenever e = c(σ, τ) is an I-cell, so SI(uuu, dψ) = SI(uuu, dψ)× χa and [[SI(uuu, dψ) 6= 0]] ⊆ a.

(ii) On the other hand, if e = c(σ, τ) is an I-cell,

[[∆e(uuu, dψ) 6= 0]] ⊆ [[ψ(σ, τ) 6= 0]] ⊆ [[σ < τ ]] ⊆ [[min I < max I]],

by 613Cb, and

[[SI(uuu, dψ) 6= 0]] ⊆ supe∈Sti0 [[∆e(uuu, dψ) 6= 0]] ⊆ [[min I < max I]].

(e) We have only to note that if σ ≤ τ in I and e = c(σ, τ), then

∆e(uuu, d(vvvψ)) = uσ × vσ × ψ(σ, τ) = ∆e(uuu× vvv, dψ);

summing over e ∈ Sti0(I), we get the result.

613H Definitions (a) For a lattice S, write I(S) for the family of finite sublattices of S.

(b) Let S be a sublattice of T , uuu a fully adapted process with domain including S and ψ an adapted
interval function defined (at least) on S2↑. Then I define the integral of uuu over S with respect to ψ to be∫

S uuu dψ = limI↑I(S) SI(uuu, dψ)

if the limit is defined for the topology of convergence in measure, that is, z =
∫
S uuu dψ if for every ǫ > 0 there

is a J ∈ I(S) such that θ(SI(uuu, dψ)− z) ≤ ǫ whenever I ∈ I(S) includes J .

(c) Note that if, in (b), we set ψ′ = uuuψ, as in 613Dd, then 613Ee tells us that∫
S dψ

′ =
∫
S 1 dψ′ = limI↑I(S) SI(1, dψ

′) = limI↑I(S) SI(uuu, dψ) =
∫
S uuu dψ

if either integral is defined.

(d) Remarks (i) I see that I am writing ‘limI↑I(S)’ where in Volume 3 I might have written ‘limI→F(I(S)↑)’.

(ii) The notation
∫
S uuu dψ is supposed to convey the fact that the existence and value of the integral

depend only on uuu↾S and ψ↾S2↑. But a warning! regarded as a function of S, it does not behave like an
indefinite integral except in special circumstances. as in 613O below.

(iii) In this volume, the integral defined in (b) above will be the basic concept of ‘stochastic integral’,
and

∫
S should always be interpreted in the way described here unless there is some clear indication to the

contrary. But in §§645-646 I will introduce a different integral, the ‘S-integral’, and it will then sometimes
be helpful to be able to declare explicitly that I mean the integral I have just defined; so I will keep the
phrase Riemann-sum integral in reserve to signify the integral of this chapter.

(iv) Of course a Riemann sum SI(uuu, dψ) can also be thought of as
∫
I
uuu dψ.

613I Invariance under change of law The following point is perfectly elementary, but it is so important
that I give it a numbered paragraph to itself. The integral

∫
S uuu dψ depends, of course, on the process uuu,

the interval function ψ and the lattice S; behind these declared variables lie the undeclared structure
(A, T, 〈At〉t∈T ) and the derived objects L0 = L0(A) and T . But we do not really need the measure µ̄. What
we use is the topology of convergence in measure on L0. Now this topology (though not the functionals E

and θ of 613Aa) can be defined in terms of the Riesz space structure of L0, which in turn depends only on
the Boolean algebra structure of A (613Bg). In place of introducing (A, µ̄) as a probability algebra, I could
just as well have said that in this section A would be a measurable algebra in the sense of 391Ba. (Indeed,
the ideas so far would work perfectly if I asked only that A should be a Maharam algebra in the sense of
393Ea. But this extension would fail when we came to the real meat of the theory in §622.)
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So the Riemann-sum integral is law-independent, and we shall always be at liberty to replace the measure
(or ‘law’) µ̄ by another strictly positive countably additive functional on A, if that seems to make calculations
easier. As I have arranged my exposition, this will remain the case throughout this chapter. I will return to
the issue in 622R.

613J Theorem Let S be a sublattice of T , uuu = 〈uσ〉σ∈domuuu a fully adapted process with S ⊆ domuuu,
and ψ an adapted interval function defined (at least) on S2↑.

(a) Suppose that for every ǫ > 0 there are a z ∈ L0(A) and a J ∈ I(S) such that θ(SI(uuu, dψ) − z) ≤ ǫ
whenever J ⊆ I ∈ I(S). Then

∫
S uuu dψ is defined.

(b) If uuu′ is another fully adapted process defined on S, ψ′ is another adapted interval function defined on
S↑2, and

∫
S uuu dψ,

∫
S uuu

′ dψ and
∫
S uuu dψ

′ are all defined, then
∫
S uuu+uuu

′ dψ and
∫
S uuu d(ψ+ψ′) are defined and

∫
S uuu+ uuu′ dψ =

∫
S uuu dψ +

∫
S uuu

′ dψ,
∫
S uuu d(ψ + ψ′) =

∫
S uuu dψ +

∫
S uuu dψ

′.

Similarly, for any α ∈ R,
∫
S αuuu dψ and

∫
S uuu d(αψ) are defined and equal to α

∫
S uuu dψ.

(c)(i) Suppose that τ ∈ S. Then ∫
S uuu dψ =

∫
S∧τ uuu dψ +

∫
S∨τ uuu dψ

if either side is defined.
(ii) Suppose that τ0 ≤ . . . ≤ τn in S. Then∫

S uuu dψ =
∫
S∧τ0

uuu dψ +
∑n−1
i=0

∫
S∩[τi,τi+1]

uuu dψ +
∫
S∨τn

uuu dψ

if either side is defined.
(d) If z =

∫
S uuu dψ is defined, then

[[z 6= 0]] ⊆ sup
σ∈S

[[uσ 6= 0]] ∩ sup
(σ,τ)∈S2↑

[[ψ(σ, τ) 6= 0]]

⊆ sup
σ,τ∈S

([[uσ 6= 0]] ∩ [[σ < τ ]]) ⊆ [[uuu 6= 0]].

(e) Set S ′ = {τ : τ ∈ S,
∫
S∧τ uuu dψ is defined}.

(i) S ′ is an ideal of S.
(ii) Setting zτ =

∫
S∧τ uuu dψ for τ ∈ S ′, 〈zτ 〉τ∈S′ is fully adapted.

(iii) If τ ∈ S and supτ ′∈S′ [[τ ′ = τ ]] = 1, then τ ∈ S ′.
(f) Suppose that S 6= ∅ and z =

∫
S uuu dψ is defined. Set zτ =

∫
S∧τ uuu dψ for τ ∈ S.

(i) The starting value limτ↓S zτ is 0.
(ii) limτ↑S

∫
S∨τ uuu dψ = 0, limτ↑S zτ = z.

(g) Let vvv be another fully adapted process with domain S. Then
∫
S uuu d(vvvψ) =

∫
S uuu × vvv dψ in the sense

that if one is defined so is the other, and they are then equal.

proof (a) For J ∈ I(S) set CJ = {SI(uuu, dψ) : J ⊆ I ∈ I(S)}. The hypothesis guarantees that the filter
F on L0(A) generated by {CJ : J ∈ I(S)} is Cauchy for the uniformity of convergence in measure; since
L0(A) is complete (367Mc again), F is convergent, and its limit is

∫
S uuu dψ.

(b) All we need to know is that the operators SI are bilinear and that the linear space operations on
L0(A) are continuous (367Ma).

(c)(i)(ααα) Suppose that z0 =
∫
S∧τ uuu dψ and z1 =

∫
S∨τ uuu dψ are defined. For any ǫ > 0, there are

J0 ∈ I(S ∧ τ) and J1 ∈ I(S ∨ τ) such that

θ(SI(uuu, dψ)− z0) ≤ ǫ whenever J0 ⊆ I ∈ I(S ∧ τ),

θ(SI(uuu, dψ)− z1) ≤ ǫ whenever J1 ⊆ I ∈ I(S ∨ τ).
Set J = J0 ∪ {τ} ∪ J1, so that J ∈ I(S). Suppose that J ⊆ I ∈ I(S). Set

I ∧ τ = {σ ∧ τ : σ ∈ I} = I ∩ [min T , τ ],

I ∨ τ = {σ ∨ τ : σ ∈ I} = I ∩ [τ,max T ],
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so that J0 ⊆ I ∧ τ ∈ I(S ∧ τ) and J1 ⊆ I ∨ τ ∈ I(S ∨ τ). By 613Ga, SI(uuu, dψ) = SI∧τ (uuu, dψ) +SI∨τ (uuu, dψ),
while θ(SI∧τ (uuu, dψ) − z0) ≤ ǫ and θ(SI∨τ (uuu, dψ) − z1) ≤ ǫ. Accordingly θ(SI(uuu, dψ) − (z0 + z1)) ≤ 2ǫ; and
this is true whenever J ⊆ I ∈ I(S). As ǫ is arbitrary,

∫
S uuu dψ is defined and equal to z0 + z1.

(βββ) Now suppose that z =
∫
S uuu dψ is defined. Let ǫ > 0. Then there is a finite sublattice J of S

such that θ(SI(uuu, dψ) − z) ≤ ǫ whenever J ⊆ I ∈ I(S). Of course we can suppose that τ ∈ J . Take any
K ∈ I(S ∧ τ) including J ∧ τ . Let I be the (finite) sublattice of S generated by J ∪K. Since

{σ : σ ∈ S, σ ∧ τ ∈ K, σ ∨ τ ∈ J}
is a sublattice of S including J ∪K, it includes I, so that I ∈ I(S), I ∧ τ = K and I ∨ τ = J ∨ τ . Now

θ(SK(uuu, dψ)− SJ∧τ (uuu, dψ)) = θ(SI∧τ (uuu, dψ)− SJ∧τ (uuu, dψ))

= θ(SI(uuu, dψ)− SI∨τ (uuu, dψ)− SJ(uuu, dψ) + SJ∨τ (uuu, dψ))

= θ(SI(uuu, dψ)− SJ(uuu, dψ))

≤ θ(SI(uuu, dψ)− z) + θ(z − SJ(uuu, dψ)) ≤ 2ǫ.

By (a) above,
∫
S∧τ uuu dψ is defined.

(γγγ) For
∫
S∨τ uuu dψ we can repeat the argument, inverted. Again suppose that z =

∫
S uuu dψ is defined,

and take ǫ > 0 and J ∈ I(S) such that τ ∈ J and θ(SI(uuu, dψ)− z) ≤ ǫ whenever J ⊆ I ∈ I(S). This time,
take any K ∈ I(S ∨ τ) including J ∨ τ . Let I be the (finite) sublattice of S generated by J ∪K. Since

{σ : σ ∈ S, σ ∨ τ ∈ K, σ ∧ τ ∈ J}
is a sublattice of S including J ∪K, it includes I, so that I ∈ I(S), I ∨ τ = K and I ∧ τ = J ∧ τ . Now

θ(SK(uuu, dψ)− SJ∨τ (uuu, dψ)) = θ(SI∨τ (uuu, dψ)− SJ∨τ (uuu, dψ))

= θ(SI(uuu, dψ)− SI∧τ (uuu, dψ)− SJ(uuu, dψ) + SJ∧τ (uuu, dψ))

= θ(SI(uuu, dψ)− SJ(uuu, dψ)) ≤ 2ǫ.

So
∫
S∨τ uuu dψ is defined.

(ii) Induce on n, using (i) for the inductive step.

[[z 6= 0]] ⊆ supσ∈S [[uσ 6= 0]] ∩ sup(σ,τ)∈S2↑ [[ψ(σ, τ) 6= 0]] ⊆ supσ,τ∈S([[uσ 6= 0]] ∩ [[σ < τ ]]).

(d) Setting

a = 1 \ (supσ∈S [[uσ 6= 0]] ∩ sup(σ,τ)∈S2↑ [[ψ(σ, τ) 6= 0]]),

a ⊆ [[∆e(uuu, dψ) = 0]] for every stopping-time interval e with endpoints in S, so SI(uuu, dψ)× χa = 0 for every
I ∈ I(S); because multiplication in L0(A) is continuous, z × χa = 0, that is,

[[z 6= 0]] ⊆ 1 \ a = supσ∈S [[uσ 6= 0]] ∩ sup(σ,τ)∈S2↑ [[ψ(σ, τ) 6= 0]].

For the second inequality, observe just that [[ψ(σ, τ) 6= 0]] ⊆ [[σ < τ ]] whenever σ ≤ τ in S, by 613C(b-i); and
the third inequality is immediate from the definition in 612Sb.

(e)(i)(ααα) If τ ∈ S ′, σ ∈ S and σ ≤ τ then∫
S∧σ uuu dψ =

∫
(S∧τ)∧σ uuu dψ

is defined, by (c).

(βββ) Suppose that τ , τ ′ ∈ S ′. Then zτ =
∫
S∧τ uuu dψ and zτ ′ =

∫
S∧τ ′ uuu dψ and zτ∧τ ′ =

∫
S∧(τ∧τ ′)

uuu dψ

are defined. We know also that if I is a sublattice of S ∧ (τ ∨ τ ′) containing both τ and τ ′, then

SI(uuu, dψ) = SI∧τ (uuu, dψ) + SI∧τ ′(uuu, dψ)− SI∧τ∧τ ′(uuu, dψ)

by 613Gc. Looking at the limits as I ↑ I(S ∧ (τ ∨ τ ′)), we see that

limI↑I(S∧(τ∨τ ′)) SI∧τ (uuu, dψ) = limI↑I(S∧τ) SI(uuu, dψ) = zτ ,
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limI↑I(S∧(τ∨τ ′)) SI∧τ ′(uuu, dψ) = limI↑I(S∧τ ′) SI(uuu, dψ) = zτ ′ ,

limI↑I(S∧(τ∨τ ′) SI∧(τ∧τ ′)(uuu, dψ) = limI↑I(S∧(τ∧τ ′) SI(uuu, dψ) = zτ∧τ ′ ,

and therefore that ∫
S∧(τ∨τ ′)

uuu dvvv = limI↑I(S∧(τ∨τ ′)) SI(uuu, dψ) = zτ + zτ ′ − zτ∧τ ′

is defined. In particular, τ ∨ τ ′ ∈ S ′. With (α), this shows that S ′ is an ideal of S.
(ii) If σ ≤ σ′ in S, then uσ ∈ L0(Aσ) and ψ(σ, σ

′) ∈ L0(Aσ′), so ∆c(σ,σ′)(uuu, dψ) ∈ L0(Aσ′); consequently

SI(uuu, dψ) ∈ L0(Aτ ) whenever τ ∈ S and I ∈ I(S ∧ τ). Since L0(Aτ ) is closed in L0(A) for the topology of
convergence in measure (367Rc again), the limiting value zτ belongs to L0(Aτ ), for every τ ∈ S ′.

If σ ≤ τ in S ′, then

zτ − zσ =
∫
(S∧τ)∨σ uuu dψ

∫
S∩[σ,τ ]

uuu dψ,

by (c). This time, for any finite sublattice I of S ∩ [σ, τ ],

[[SI(uuu, dψ) 6= 0]] ⊆ sup
ρ≤ρ′ in S∩[σ,τ ]

[[ψ(ρ, ρ′) 6= 0]]

⊆ sup
ρ≤ρ′ in S∩[σ,τ ]

[[ρ < ρ′]] ⊆ [[σ < τ ]].

Taking the limit as I increases, [[zσ 6= zτ ]] ⊆ [[σ < τ ]], that is, [[zσ = zτ ]] ⊇ [[σ = τ ]]. By 612Db again, this
shows that 〈zσ〉σ∈S′ is fully adapted.

(iii) Let ǫ > 0. Then there is a τ ′ ∈ S ′ such that µ̄[[τ = τ ′]] ≥ 1 − 1
2ǫ; as τ ′ ∧ τ ∈ S and

[[τ = τ ′ ∧ τ ]] ⊇ [[τ = τ ′]], we may suppose that τ ′ ≤ τ . We have µ̄[[τ ′ < τ ]] ≤ 1
2ǫ. There is a J ′ ∈ I(S ∧ τ ′)

such that θ(zτ ′ − SI′(uuu, dψ)) ≤ 1
2ǫ whenever J

′ ⊆ I ′ ∈ I(S ∧ τ ′); we may suppose that τ ′ ∈ J ′. Now take
any I ∈ I(S ∧ τ) such that J ′ ⊆ I. In this case J ′ ⊆ I ∧ τ ′ ∈ I(S ∧ τ ′) and

θ(zτ ′ − SI(uuu, dψ)) = θ(zτ ′ − SI∧τ ′(uuu, dψ)− SI∨τ ′(uuu, dψ))

(613Ga)

≤ θ(zτ ′ − SI∧τ ′(uuu, dψ)) + θ(SI∨τ ′(uuu, dψ))

≤ 1

2
ǫ+ µ̄[[SI∨τ ′(uuu, dψ) 6= 0]] ≤ 1

2
ǫ+ µ̄[[τ ′ < sup I]]

(613Gd)

≤ 1

2
ǫ+ µ̄[[τ ′ < τ ]] ≤ ǫ.

By (a) above,
∫
S∧τ uuu dψ is defined and τ ∈ S ′, as claimed.

(f) Of course (c-i) assures us that zτ is defined for every τ ∈ S.
(i) Let ǫ > 0. Then there is a non-empty J ∈ I(S) such that θ(SI(uuu, dψ)− z) ≤ ǫ whenever J ⊆ I ∈ S.

Take any τ ∈ S such that τ ≤ min J . Then θ(SK(uuu, dψ)) ≤ 2ǫ whenever τ ∈ K ∈ I(S ∧ τ). PPP I = K ∪ J
and I ′ = {τ} ∪ J are both finite sublattices of S including J . So

θ(SK(uuu, dψ)) = θ(SI∧τ (uuu, dψ)) = θ(SI(uuu, dψ)− SI∨τ (uuu, dψ))

(613Ga)

= θ(SI(uuu, dψ)− SI′(uuu, dψ)) ≤ 2ǫ. QQQ

As K is arbitrary,

θ(zτ ) = limK↑I(S∧τ) θ(SK(uuu, dψ)) ≤ 2ǫ.

As ǫ is arbitrary, limτ↓S zτ = 0.
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(ii) The argument is essentially the same. Let ǫ > 0. Again, there is a non-empty J ∈ I(S) such
that θ(SI(uuu, dψ) − z) ≤ ǫ whenever J ⊆ I ∈ S. This time, take τ ∈ S such that max J ≤ τ . Then
θ(SK(uuu, dψ)) ≤ 2ǫ whenever τ ∈ K ∈ I(S ∨ τ). PPP I = K ∪ J and I ′ = {τ} ∪ J are both finite sublattices of
S including J . So

θ(SK(uuu, dψ)) = θ(SI∨τ (uuu, dψ)) = θ(SI(uuu, dψ)− SI∧τ (uuu, dψ))

(613Ga)

= θ(SI(uuu, dψ)− SI′(uuu, dψ)) ≤ 2ǫ. QQQ

As K is arbitrary, ∫
S∨τ uuu dψ = limK↑I(S∨τ) θ(SK(uuu, dψ)) ≤ 2ǫ.

As ǫ is arbitrary, limτ↑S
∫
S∨τ uuu dψ = 0. By (c-i),

limτ↑S zτ = limτ↑S(z −
∫
S∨τ uuu dψ) = z.

(g) Immediate from 613Ge.

613K Remark The key step in the proof of 613Jc is that if τ∗ ∈ J ∈ I(S) and J ∧ τ∗ ⊆ I ∈ I(S ∧ τ∗),
then there is a K ∈ I(S) such that K ⊇ J and K ∧ τ∗ = I ∧ τ∗. It follows that if φ is any function
from I(S ∧ τ∗) to a Hausdorff topological space Y , limI↑I(S∧τ∗) φ(I) = limI↑I(S) φ(I ∧ τ∗) if either limit is
defined. The same argument applies with ∨ in the place of ∧, so that if φ is any function from I(S ∨ τ∗)
to a Hausdorff topological space Y , then limI↑I(S∨τ∗) φ(I) = limI↑I(S) φ(I ∨ τ∗) if either limit is defined.

Mostly we shall be dealing with the case in which Y is L0 with the topology of convergence in measure, but
I shall also have an application in which Y = L1

µ̄ with the weak topology (626J).

613L More easy bits (a) If S is a sublattice of T and uuu, vvv and www are fully adapted processes defined
on S, I will write ∫

S uuu dvvv =
∫
S uuu d(∆vvv) = limI↑I(S) SI(uuu, dvvv),

∫
S uuu dvvvdwww =

∫
S uuu d(∆vvv ×∆www) = limI↑I(S) SI(uuu, dvvvdwww),

∫
S uuu |dvvv| =

∫
S uuu d|∆vvv| = limI↑I(S) SI(uuu, |dvvv|)

when the limits exist in L0(A).

(b) Three trivial calculations: if vvv = 〈vσ〉σ∈S and uuu are fully adapted processes with domain a sublattice
S of T , then

(i) SI(1, dvvv) = vmax I − vmin I for every non-empty finite sublattice I of S (613Ed), so
∫
S∩[τ,τ ′]

1 dvvv =

vτ ′ − vτ whenever τ ≤ τ ′ in S;
(ii) if vvv is constant then SI(uuu, dvvv) = 0 for every I ∈ I(S), so

∫
S uuu dvvv is defined and equal to 0;

(iii) if z ∈ L0(
⋂
σ∈S Aσ), then (in the language of 612De) SI(zuuu, dvvv) = SI(uuu, d(zvvv)) = z × SI(uuu, dvvv) for

every I ∈ I(S), so
∫
S zuuu dvvv and

∫
S uuu d(zvvv) are defined and equal to z×

∫
S uuu dvvv if the last integral is defined.

(c) The following straightforward fact, refining 613Jd, will frequently be useful. Suppose that I is a finite
sublattice of T and uuu = 〈uσ〉σ∈I , uuu′ = 〈u′σ〉σ∈I , vvv = 〈vσ〉σ∈I and vvv′ = 〈v′σ〉σ∈I are fully adapted processes.
Set d = supσ∈I [[uσ 6= u′σ]] ∪ [[vσ 6= v′σ]]. For any stopping-time interval e = c(σ, τ) where σ ≤ τ in I,

[[∆e(uuu, dvvv) 6= ∆e(uuu
′, dvvv′)]] ⊆ [[uσ 6= u′σ]] ∪ [[vσ 6= v′σ]] ∪ [[vτ 6= v′τ ]] ⊆ d,

so [[SI(uuu, dvvv) 6= SI(uuu
′, dvvv′)]] ⊆ d.

Similarly, of course,

[[SI(uuu, (dvvv)
2) 6= SI(uuu

′, (dvvv′)2)]] ⊆ d, [[SI(uuu, |dvvv|) 6= SI(uuu
′, |dvvv′|)]] ⊆ d.
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Indeed, if ψ, ψ′ are any adapted interval functions defined on I2↑, and we set

d = supσ∈I [[uσ 6= u′σ]] ∪ supσ≤τ in I [[ψ(σ, τ) 6= ψ′(σ, τ)]],

then [[SI(uuu, dψ) 6= SI(uuu
′, dψ′)]] ⊆ d.

(d) It follows that if S is any sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S are fully adapted processes
such that z =

∫
S uuu dvvv is defined, then

[[z 6= 0]] ⊆ sup
I∈I(S)

[[SI(uuu, dvvv) 6= 0]] ⊆ sup
σ∈S

[[uσ 6= 0]] ∩ sup
σ,τ∈S

[[vσ 6= vτ ]]

⊆ [[uuu 6= 0]] ∩ [[vvv 6= 0]].

613M The next calculation is perfectly elementary, but will be helpful more than once below, and is a
useful exercise in the definitions here.

Lemma Let S be a sublattice of T and uuu, vvv, www fully adapted processes defined on S. Then

SI(uuu, dvvvdwww) = SI(uuu, d(vvv ×www))− SI(uuu× vvv, dwww)− SI(uuu×www, dvvv)

=
1

2

(
SI(uuu, (d(vvv +www))2)− SI(uuu, (dvvv)

2)− SI(uuu, (dwww)
2)
)

for every finite sublattice I of S. Consequently∫
S uuu dvvvdwww =

∫
S uuu d(vvv ×www)−

∫
S uuu× vvv dwww −

∫
S uuu×www dvvv

if any three of the four integrals are defined, and
∫
S uuu dvvvdwww =

1

2

(∫
S uuu (d(vvv +www))2 −

∫
S uuu (dvvv)

2 −
∫
S uuu (dwww)

2
)

if any three of the integrals are defined.

proof (a) Express uuu, vvv and www as 〈uσ〉σ∈domuuu, etc.

If σ ≤ τ in S then

uσ × (vτ − vσ)× (wτ − wσ) = uσ × (vτ × wτ − vσ × wσ)

− uσ × vσ × (wτ − wσ)− uσ × wσ × (vτ − vσ)

=
1

2

(
uσ × (vτ + wτ − vσ − wσ)

2

− uσ × (vτ − vσ)
2 − uσ × (wτ − wσ)

2
)
,

that is,

∆e(uuu, dvvvdwww) = ∆e(uuu, d(vvv ×www))−∆e(uuu× vvv, dwww)−∆e(uuu×www, dvvv)

=
1

2

(
∆e(uuu, (d(vvv +www))2)−∆e(uuu, (dvvv)

2)−∆e(uuu, (dwww)
2)
)

for every e ∈ Sti(S). So, writing Sti0(I) for the set of I-cells, as usual,
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SI(uuu, dvvvdwww) =
∑

e∈Sti0(I)

∆e(uuu, dvvvdwww)

=
∑

e∈Sti0(I)

∆e(uuu, d(vvv ×www))−
∑

e∈Sti0(I)

∆e(uuu× vvv, dwww)

−
∑

e∈Sti0(I)

∆e(uuu×www, dvvv)

=
1

2

( ∑

e∈Sti0(I)

∆e(uuu, (d(vvv +www))2)−
∑

e∈Sti0(I)

∆e(uuu, (dvvv)
2)

−
∑

e∈Sti0(I)

∆e(uuu, (dwww)
2)
)

=
1

2

(
SI(uuu, (d(vvv +www))2)− SI(uuu, (dvvv)

2)− SI(uuu, (dwww)
2)
)
.

(b) Taking limits as I ↑ I(S), we get the corresponding identities for the integrals, as long as all but one
is defined.

613N Proposition Let S be a non-empty sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted process.
Interpreting

∫
S dvvv as

∫
S 1 dvvv where 1 is the constant process with value χ1,

∫
S dvvv is defined iff v↓ = limσ↓S vσ

and v↑ = limσ↑S vσ are defined, and in this case
∫
S dvvv = v↑ − v↓.

proof (a) Suppose that z =
∫
S dvvv is defined. For τ ∈ S set zτ =

∫
S∧τ dvvv; by 613Jc, this is defined. If τ ≤ τ ′

in S,

zτ ′ − zτ =

∫

S∧τ ′

dvvv −
∫

S∧τ ′∧τ
dvvv =

∫

(S∧τ ′)∨τ
dvvv

(613J(c-i) again)

=

∫

S∩[τ,τ ′]

dvvv = vτ ′ − vτ

by 613Lb. Now we know that limτ↓S zτ = 0 and limτ↑S zτ = z (613Jf). So, starting from any τ∗ ∈ S,

v↓ = lim
τ↓S

vτ = vτ∗ − lim
τ↓S

(vτ∗ − vτ )

= vτ∗ − lim
τ↓S

(zτ∗ − zτ ) = vτ∗ − zτ∗

and

v↑ = lim
τ ′↑S

vτ ′ = vτ∗ + lim
τ ′↑S

vτ ′ − vτ∗

= vτ∗ + lim
τ ′↑S

zτ ′ − zτ∗ = vτ∗ + z − zτ∗

are defined, and v↑ − v↓ = z.

(b) Now suppose that the limits v↑ and v↓ are defined. Let ǫ > 0. Then there are τ0, τ1 ∈ S such that
θ(vτ ′ − v↑) + θ(vτ ′ − v↓) ≤ ǫ whenever τ , τ ′ ∈ S, τ ≤ τ0 and τ1 ≤ τ ′. Now suppose that I ∈ I(S) includes
{τ0 ∧ τ1, τ0 ∨ τ1}. Then

θ(v↑ − v↓ − SI(1, dvvv)) = θ(v↑ − v↓ − vmax I + vmin I)

(613Lb again)

≤ θ(v↑ − vmax I) + θ(v↓ − vmin I) ≤ ǫ.

As ǫ is arbitrary,
∫
S dvvv =

∫
S 1 dvvv is defined and equal to v↑ − v↓.
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613O Indefinite integrals (a) Definition Let S be a sublattice of T , uuu a fully adapted process
with domain S, and ψ an adapted interval function with domain S2↑. Set S ′ = {τ : τ ∈ S,

∫
S∧τ uuu dψ is

defined}; by 613J(e-i), S ′ is an ideal of S. The indefinite integral of uuu with respect to ψ is the process
iiψ(uuu) = 〈

∫
S∧τ uuu dψ〉τ∈S′ ; by 613J(e-ii), this is a fully adapted process.

When ψ is of the form ∆vvv for a fully adapted process vvv, I will write iivvv(uuu) = 〈
∫
S∧τ uuu dvvv〉τ∈S′ for the

indefinite integral of uuu with respect to vvv.

(b)(i) Note that if
∫
S uuu dψ is defined, the domain S ′ of iiψ(uuu) is the whole of S, by 613J(c-i).

(ii) It is obvious from the definition, but perhaps it is worth stating formally that if τ ∈ S and
∫
S∧τ uuu dψ

is defined then

iiψ(uuu)↾S ∧ τ = 〈
∫

S∧σ
uuu dψ〉σ∈S∧τ = 〈

∫

S∧σ
(uuu↾S ∧ τ)d(ψ↾(S ∧ τ)2↑)〉σ∈S∧τ

= iiψ↾(S∧τ)2↑(uuu↾S ∧ τ).

(iii) On the other side, if S ′ = S and τ ∈ S, then iiψ↾(S∨τ)2↑(uuu↾S ∨ τ) is defined on the whole of

S ∨ τ and is equal to (iiψ(uuu)↾S ∨ τ)− (
∫
S∧τ uuu dψ)1. PPP Expanding the definitions, all this is saying is that if

τ ′ ∈ S ∨ τ then
∫
(S∨τ)∧τ ′ uuu dψ is defined and equal to

∫
S∧τ ′ uuu dψ−

∫
S∧τ uuu dψ; since (S ∨ τ)∧ τ ′ = (S ∧ τ ′)∨ τ ,

this is immediate from 613J(c-i). QQQ

(c) I have put the definition in (a) in a form which can accommodate cases in which S ′ = dom iiψ(uuu) is
not the whole of S, leaving open the possibility that S ′ is actually empty. But we know that S ′ is an ideal
of S, and from 613Jf that if S ′ is non-empty then

limτ↓S
∫
S∧τ uuu dψ = limτ↓S′

∫
S∧τ uuu dψ = 0.

In particular, if S has a least element minS, then minS ∈ S ′ and the value of iiψ(uuu) there is equal to 0.

613R Proposition Let S be a sublattice of T and uuu, vvv fully adapted processes with domain S. Then
(in the notation of 612Sb) [[iivvv(uuu) 6= 0]] ⊆ [[uuu 6= 0]] ∩ [[vvv 6= 0]].

proof Setting c = 1 \ ([[uuu 6= 0]] ∩ [[vvv 6= 0]]), we see from 613Lc that χc × SI(uuu, dvvv) = 0 for every finite
sublattice I of S; because multiplication in L0(A) is continuous, χc×

∫
S∧τ uuu dvvv = 0 whenever τ ∈ S and the

integral is defined, that is,

[[iivvv(uuu) 6= 0]] ⊆ 1 \ c ⊆ [[uuu 6= 0]] ∩ [[vvv 6= 0]].

613S It is a striking and very convenient fact that we can often approach an integral
∫
S 1 dψ over a

general sublattice S through an integral over the covered envelope of S, which is a full sublattice of T .

Lemma Let S be a sublattice of T and ψ : S2↑ → L0(A) a strictly adapted interval function. Suppose
that I, J ∈ I(S), J ⊆ I and a ⊆ supσ∈J [[τ = σ]] for every τ ∈ I. Then a ⊆ [[SI(1, dψ) = SJ(1, dψ)]]. In
particular, if J covers I (definition: 611Ma) then SI(1, dψ) = SJ(1, dψ).

proof (a) The case a = 0 is trivial; so is the case a 6= 0 and J = ∅, as then I also must be empty and

SI(1, dψ) = SJ(1, dψ) = 0.

So suppose otherwise. Let (σ0, . . . , σn) linearly generate the J-cells. If τ ∈ I then

a ⊆ sup
σ∈J

[[τ = σ]] = sup
σ∈J

sup
j≤n

([[τ = σ]] ∩ [[σ = σj ]])

(611Ke)

⊆ sup
j≤n

[[τ = σj ]] ⊆ [[σ0 ≤ τ ]] ∩ [[τ ≤ σn]].

Set I−1 = I ∧ σ0, Ij = I ∩ [σj , σj+1] for 0 ≤ j < n, In = I ∨ σn.
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(b) If τ ≤ τ ′ in I−1, then

a ∩ [[ψ(τ, τ ′) 6= 0]] ⊆ a ∩ [[τ < τ ′]]

(613C(b-i))

⊆ a ∩ [[τ < σ0]] = 0,

so

a ∩ [[∆e(1, dψ) 6= 0]] = 0

for every I−1-cell e. Summing over e, SI−1
(1, dψ)× χa = 0.

(c) In the same way, if τ ≤ τ ′ in In, then

a ∩ [[ψ(τ, τ ′) 6= 0]] ⊆ a ∩ [[τ < τ ′]] ⊆ a ∩ [[σn < τ ′]] = 0,

so

SIn(1, dψ)× χa = 0.

(d) If 0 ≤ j < n, a ⊆ [[SIj (1, dψ) = ψ(σj , σj+1)]]. PPP For every τ ∈ Ij ,

a ∩ [[σj < τ ]] ∩ [[τ < σj+1]] ⊆ sup
k≤n

([[τ = σk]] ∩ [[σj < τ ]] ∩ [[τ < σj+1]])

⊆ sup
k≤n

([[σj < σk]] ∩ [[σk < σj+1]])

⊆ (sup
k≤j

[[σj < σk]]) ∪ ( sup
j+1≤k

[[σk < σj+1]]) = 0.

Take (τ0, . . . , τm) linearly generating the Ij-cells; then σj = τ0 ≤ . . . ≤ τm = σj+1. For i < m, set
bi = [[τi < τi+1]], so that supi<m bi = [[σj < σj+1]]. For i < m,

a ∩ bi = a ∩ [[τi < τi+1]] = a ∩ [[σj < τi+1]] ∩ [[τi < σj+1]] ∩ [[τi < τi+1]]

⊆ a ∩ [[τi+1 = σj+1]] ∩ [[τi = σj ]] ∩ [[τi < τi+1]]

⊆ [[ψ(τi, τi+1) = ψ(σj , σj+1)]] ∩ inf
k<i

[[τk = τk+1]] ∩ inf
i<k<m

[[τk = τk+1]] ∩ [[uτi = uσj
]]

(because ψ is strictly adapted)

⊆ [[ψ(τi, τi+1) = ψ(σj , σj+1)]] ∩ inf
k<m
k 6=i

[[ψ(τk, τk+1) = 0]] ∩ [[uτi = uσj
]]

(using 613C(b-i))

⊆ [[ψ(τi, τi+1) = ψ(σj , σj+1)]] ∩ [[SIj (1, dψ) = ψ(τi, τi+1)]]

⊆ [[SIj (1, dψ) = ψ(σj , σj+1]].

Taking the supremum over i,

a ∩ [[σj < σj+1]] ⊆ [[SIj (1, dψ) = ψ(σj , σj+1)]].

But

[[σj = σj+1]] = inf
k<m

[[τk = τk+1]] ∩ [[σj = σj+1]]

⊆ [[SIj (1, dψ) = 0]] ∩ [[ψ(σj , σj+1) = 0]]

⊆ [[SIj (1, dψ) = ψ(σj , σj+1)]],

so a ⊆ [[SIj (1, dψ) = ψ(σj , σj+1)]]. QQQ

(e) Assembling these,
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SI(1, dψ)× χa =

n∑

j=−1

SIj (1, dψ)× χa

=
n−1∑

j=0

uσj
× ψ(σj , σj+1)× χa = SJ(1, dψ)× χa

and a ⊆ [[SI(1, dψ) = SJ(1, dψ)]].

(f) If J actually covers I then we can take a = 1 and conclude that SI(1, dψ) = SJ(1, dψ).

613T Theorem Let S be a sublattice of T , S ′ a sublattice of S which covers S, ψ : S2↑ → L0(A) a
strictly adapted interval function and uuu : S → L0(A) a fully adapted process. If

∫
S uuu dψ is defined, so is∫

S′ uuu dψ, and the integrals are equal.

proof (a) Consider first the case in which uuu = 1, so that z =
∫
S dψ̂ is defined. Let ǫ > 0. Let J ∈ I(S)

be such that θ(z − SI(1, dψ̂)) ≤ ǫ whenever J ⊆ I ∈ I(S). Let A ⊆ S ′ be a finite set such that a =
infτ∈J supσ∈A [[σ = τ ]] has measure at least 1 − ǫ. Let J0 be the sublattice of S ′ generated by A, so that
a ⊆ supσ∈J0 [[τ = σ]] for every τ ∈ J0. If J0 ⊆ K ∈ I(S ′), consider the sublattice J ⊔K of S generated by
J ∪K. Since a ⊆ supσ∈K [[τ = σ]] for every τ ∈ J , a ⊆ supσ∈K [[τ = σ]] for every τ ∈ J ∪K and therefore

for every τ ∈ J ⊔K, by 611M(b-i). By 613S, [[SK(1, dψ̂) = SJ⊔K(1, dψ̂)]] ⊇ a.
Consequently

θ(z − SK(1, dψ)) = θ(z − SK(1, dψ̂)) ≤ θ(z − SJ⊔K(1, dψ̂)) + µ̄(1 \ a) ≤ 2ǫ.

And this is true whenever J0 ⊆ K ∈ I(S ′).
As ǫ is arbitrary,

∫
S′ dψ is defined and equal to z.

(b) For the general case, apply (i) to uuuψ, using 613Jg to see that∫
S′
uuu dψ =

∫
S′
d(uuuψ) =

∫
S d((uuuψ)̂ ) =

∫
S ûuu dψ̂.

613P Example If T = [0,∞[, (A, µ̄) is the measure algebra of Lebesgue measure on [0, 1] and At = A

for every t ≥ 0, then there are a sublattice S of T and fully adapted processes uuu, vvv with domain S such that∫
S uuu dvvv is defined but

∫
Ŝ ûuu dv̂vv is not, where Ŝ is the covered envelope of S and ûuu, v̂vv are the fully adapted

extensions of uuu and vvv to Ŝ.
Construction (a) For integers k ∈ N and i, j < 2k write Qkij for the half-open square

[
2−ki, 2−k(i+ 1)

[
×[

2−kj, 2−k(j + 1)
[
, so that {Qkij : i, j < 2k} is a partition of Q000 = [0, 1[

2
. For k ≥ 1 set

Qk = {Qk,2i,2i+1 : i < 2k−1} ∪ {Qk,2i+1,2i : i < 2k − 1}
⊆

⋃

i<2k−1

Qk−1,i,i \
⋃

i<2k

Qkii.

Then

if Q, Q′ ∈ Qk are distinct, their horizontal projections are disjoint and their vertical projections
are disjoint,

the horizontal and vertical projections of
⋃Qk are both [0, 1[,⋃Qj ∩

⋃Qk = ∅ whenever j 6= k.

So Q =
⋃
k≥1 Qk is a disjoint family.

(b) Next, for Q ∈ Q, take the k ≥ 1 and i, j < 2k such that Q = Qkij and set

R(Q) =
[
2−ki, 2−k(i+ 1)

[
×
[
2−k(j + 3

4 , 2
−k(j + 1)

[
,

Rl(Q) =
[
2−k(i+ 2−kl), 2−k(i+ 2−k(l + 1))

[

×
[
2−k(j + 2−k−2l), 2−k(j + 2−k−2(l + 1))

[
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for l < 2k, so that R(Q) is the top quarter of Q and the Rl(Q) are rectangles stepping up along the diagonal
of the bottom quarter of Q. Now for ω ∈ [0, 1[ and t ≥ 0 define

Xt(ω) =
1√
k
if k ≥ 1, Q ∈ Qk, l < 2−k are such that (ω, t) ∈ Rl(Q),

= 0 otherwise,

Yt(ω) =
1√
k
if k ≥ 1, Q ∈ Qk are such that (ω, t) ∈ R(Q),

= 0 otherwise.

(c) Taking (Ω,Σ, µ) to be Lebesgue measure on [0, 1[ and Σt to be Σ for every t ≥ 0, (Ω, µ, 〈Σt〉t≥0) repre-
sents (A, µ̄, 〈At〉t≥0 is the manner of Theorem 612H, while 〈Xt〉t≥0 and 〈Yt〉t≥0 are progressively measurable,
so we have corresponding fully adapted processes uuu = 〈uσ〉σ∈Tf

and vvv = 〈vσ〉σ∈Tf
(612Hb).

(d)(i) Since Q is disjoint, Yt(ω) = 0 whenever Xt(ω) > 0, and SI(uuu, dvvv) ≥ ∆e(uuu, dvvv) ≥ 0 whenever I is
a finite sublattice of Tf and e is an I-cell.

(ii) Suppose that m ≥ 1, Q ∈ Qm, (ω, s) ∈ Q, 0 ≤ s ≤ t and Xs(ω)(Yt(ω) − Ys(ω)) 6= 0. Then we

must have Xs(ω) =
1√
m]

and Yt(ω) > 0. In this case, there are i, j, l < 2m such that Q = Qmij and

(ω, s) ∈ Rl(Qmij), that is,

2−m(i+ 2−ml) ≤ ω < 2−m(i+ 2−m(l + 1),

2−m(j + 2−m−2l) ≤ s < 2−m(j + 2−m−2(l + 1)).

Now Yt′(ω) = 0 whenever (ω, t′) belongs to the bottom three-quarters of Q, that is, whenever 2−mj ≤ t′ <
2−m(j + 3

4 ), and t must be at least 2−m(j + 3
4 ), while s < 2−m(j + 1

4 ). Accordingly t− s > 2−m−1. Also, of
course, t < 1.

(e)(i) Now suppose that 0 ≤ s0 < . . . < sn and k ≥ 1 is such that sp+1 − sp ≤ 2−k for every p < n. For
m ≥ 1 and Q ∈ Qm, set

EmQ =
⋃
p<n{ω : (ω, sp) ∈ Q, Xsp(ω)Ysp+1

(ω) > 0}.

(ii) If m < k then EmQ = ∅ for every Q ∈ Qm. PPP If p < n then sp+1 − sp ≤ 2−m+1, so by (d-ii) there
can be no (ω, sp) such that Xsp(ω)Ysp+1

(ω) > 0. QQQ

(iii) If m ≥ k and Q ∈ Qm then µEmQ ≤ 2−2m. PPP We have Q = Qmij where i, j < 2−m. If p < n and
there is any ω such that (ω, sp) ∈ Q and Xsp(ω)Ysp+1

(ω) > 0, then sp < 2−m(j+ 1
4 ) and 2−m(j+ 3

4 ) ≤ sp+1,
by (d-ii). Now there can be at most one such p. So if EmQ 6= ∅ there is a p < n such that

EmQ = {ω : (ω, sp) ∈ Q, Xsp(ω)Ysp+1
(ω) > 0} ⊆ {ω : (ω, sp) ∈ Rl(Q)}

where l = ⌊22m+1(sp − 2−mj)⌋ < 2m. Accordingly, in this case, µEmQ ≤ 2−2m, as required. QQQ

(iv) Putting (ii) and (iii) together,

{ω :

n−1∑

p=0

Xsp(ω)(Ysp+1
(ω)− Ysp(ω)) 6= 0}

=
⋃

p<n

{ω : Xsp(ω)Ysp+1
(ω) > 0}

=
⋃

m≥1,Q∈Qm

EmQ =
⋃

m≥k,Q∈Qm

EmQ

has measure at most
∑∞
m=k 2

−2m#(Qm) =
∑∞
m=k 2

−m = 2−k+1.
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(f)Writing Tc for the set {ť : t ≥ 0} of constant stopping times,
∫
Tc
uuu dvvv is defined and equal to 0. PPP Given

ǫ > 0, take k ≥ 1 such that 2−k+1 ≤ ǫ, and let I ∈ I(Tc) be such that (2−ki)ˇ ∈ I for every i < 2k. Enumerate
I in increasing order as (š0, . . . , šn). If p < n and sp ≥ 1 then certainly Xsp(ω)(Ysp+1

(ω) − Ysp(ω)) = 0 for
every ω. So if n′ is such that sn′ = 1,

{ω :
n−1∑

p=0

Xsp(ω)(Ysp+1
(ω)− Ysp(ω)) 6= 0}

= {ω :
n′−1∑

p=0

Xsp(ω)(Ysp+1
(ω)− Ysp(ω)) 6= 0}

has measure at most 2−k+1 ≤ ǫ, and

θ(SI(uuu,vvv)) ≤ µ̄[[SI(uuu, dvvv) 6= 0]]

= µ{ω :

n−1∑

p=0

Xsp(ω)(Ysp+1
(ω)− Ysp(ω)) > 00} ≤ ǫ.

And this is true whenever I ∈ I(Tc) includes {(2−ki)ˇ : i < 2k}. As ǫ is arbitrary,
∫
Tc
uuu dvvv = 0.

(g) I turn now to the covered envelope T̂c of Tc.
(i) For each k ≥ 1 define stopping times hk, h

′
k : [0, 1[ → [0,∞[ by setting

hk(ω) = 2−k(j + 2−k−2l), h′k(ω) = 2−k(j + 3
4 )

if i, j, l < 2k are such that Qkij ∈ Qk and 2−k(i + 2−kl) ≤ ω < 2−k(i + 2−k(l + 1)). Then we have
hk(ω) < h′k(ω) and

Xhk
(ω) = Xhk(ω)(ω) = Yh′

k
(ω) =

1√
k
, Xhk

(ω)(Yh′
k
(ω)− Yhk

(ω)) =
1

k

for every ω. If k, m ≥ 1 are different, then for every ω there is a Q ∈ Qk such that

[hk(ω), h
′
k(ω)] ⊆ {s : (ω, s) ∈ Q} ⊆ {s : (ω, s) ∈ ⋃Qk};

as
⋃Qk is disjoint from

⋃Qm, [hk(ω), h
′
k(ω)] ∩ [hm(ω), h′m(ω)] = ∅.

(ii) For k > 1, write τk, τ
′
k for the stopping times in Tf associated with hk and h′k. Since all the values

of hk and h′k belong to the countable set I = {2−k(j + 2−k−2l) : j, l < 2k} ∪ {2−k(j + 3
4 ) : j < 2k},

supt∈I [[τk = ť]] = supt∈I{ω : h(ω) = t}• = {ω : hk(ω) ∈ I}• = 1

and τk ∈ T̂c; similarly, τ ′k ∈ T̂c;
Next, for each k, 612Hb tells us that

[[τk < τ ′k]] = 1, uτk = X•

hk
=

1√
k
χ1, vτ ′

k
= Y •

h′
k
=

1√
k
χ1, vτk = Y •

hk
= 0,

so uτk × (vτ ′
k
− vτk) =

1

k
χ1; moreover, if k 6= m, then for every ω ∈ [0, 1[ either h′k(ω) < hm(ω) or

h′m(ω) < hk(ω), so [[τ ′k < τm]] ∪ [[τ ′m < τk]] = 1.
It follows that if σ ∈ Tf then

([[τk < σ]] ∩ [[σ < τ ′k]]) ∩ ([[τm < σ]] ∩ [[σ < τ ′m]]) = 0

whenever k, m are distinct.

(h)(i) Now suppose that I ∈ I(T̂c). Let n > #(I) + 1 be so large that
∑n
k=#(I)+2

1

k
≥ 1. Let J be

the sublattice of T̂c generated by I ∪ {τk : 1 ≤ k ≤ n} ∪ {τ ′k : 1 ≤ k ≤ n}, and B the set of atoms of the
subalgebra B of A generated by {[[σ < τ ]] : σ, τ ∈ J}. Take any b ∈ B. If σ, τ ∈ J then b is either included
in or disjoint from [[σ < τ ]]. Now if σ ∈ I, there can be at most one k ≤ n such that b ⊆ [[τk < σ]] ∩ [[σ < τ ′k]],
so the set
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K = {k : ∃ σ ∈ I, b ⊆ [[τk < σ]] ∩ [[σ < τ ′k]]}
= {k : ∃ σ ∈ I, b ∩ [[τk < σ]] ∩ [[σ < τ ′k]] 6= 0}

has at most #(I) members. Set K ′ = {k : 1 ≤ k ≤ n, k /∈ K}, so that
∑
k∈K′

1

k
≥ 1. Now

{σ : b ∩ [[τk < σ]] ∩ [[σ < τk]] = 0 for every k ∈ K ′}
is a sublattice of T including I ∪ {τk : 1 ≤ k ≤ n} ∪ {τ ′k : 1 ≤ k ≤ n} and therefore including J .

(ii) Fix k ∈ K ′ for the moment. If we think of intervals c(σ, τ), for σ ≤ τ in T , as members of∏
t≥0 At = A[0,∞[, as in 611J, then we see that

c(τk, τ
′
k) = sup{e : e ∈ Sti0(J), e ⊆ c(τk, τ

′
k)}

where Sti0(J) is the set of J-cells (611J(e-i)). Consequently

1 = [[τk, τ
′
k]] = sup

t≥0
c(τk, τ

′
k)(t) = sup

t≥0
sup

e∈Sti0(J)
e⊆c(τk,τ

′
k)

e(t)

and there must be an ek ∈ Sti0(J) such that ek ⊆ c(τk, τ
′
k) and b ∩ supt≥0 ek(t) 6= 0. Expressing ek as

c(σ, τ) where σ ≤ τ in J , we have supt≥0 ek(t) = [[σ < τ ]]. As this belongs to B and meets b, it includes b,
and b ⊆ [[σ < τ ]]. At the same time, [[σ < τ ]] ⊆ [[τk ≤ σ]] ∩ [[τ ≤ τ ′k]] (611Jc) so b ⊆ [[σ ∨ τk < τ ′k]]; as k ∈ K ′,
b ∩ [[τk < σ ∨ τk]] = 0 and b ⊆ [[σ = τk]]. Similarly, b ⊆ [[τ = τk+1]]. But this means that

b ⊆ [[uσ × (vτ − vσ) = uτk × (vτ ′
k
− vτk)]] ⊆ [[∆ek(uuu, dvvv) =

1

k
]].

(iii) This is true for every k ∈ K ′. If k, m ∈ K ′ are distinct, then either τ ′m ≤ τk or τ ′k ≤ τm, and in

either case c(τk, τ
′
k) ∩ c(τm, τ

′
m) = 0 in A[0,∞[ and ek 6= em. As we also know that ∆e(uuu, dvvv) ≥ 0 for every

stopping-time interval with endpoints in Tf ((d-i) above), we have

SJ(uuu, dvvv) =
∑
e∈Sti0(J)

∆e(uuu, dvvv) ≥
∑
k∈K′ ∆ek(uuu, dvvv)

and

b ⊆ [[SJ (uuu, dvvv) ≥
∑
k∈K′

1

k
]] ⊆ [[SJ (uuu, dvvv) ≥ 1]].

(iv) As b is arbitrary, 1 ⊆ [[SJ (uuu, dvvv) ≥ 1]] and SJ(uuu, dvvv) ≥ χ1, while I ⊆ J ∈ I(T̂c). As I is arbitrary,
limJ↑I(T̂c)

SJ(uuu, dvvv) either does not exist or exists and is not equal to 0. But the latter is impossible, by

613T, because we saw in (f) that
∫
Tc
uuu dvvv = 0. So we find that limJ↑I(T̂c)

SJ(uuu, dvvv) is undefined, that is,

that
∫
T̂c
uuu dvvv is undefined.

Remark The processes uuu and vvv have a number of special properties which will be discussed in this volume;
see in particular 615Yc and 618Yd.

613U Theorem Let S be a sublattice of T , and Ŝ its covered envelope (611M).
(a) For every strictly adapted interval function ψ : S↑2 → L0 = L0(A) there is a unique extension of ψ to

a strictly adapted interval function ψ̂ : Ŝ2↑ → L0.

(b)(i) The function ψ 7→ ψ̂ is an f -algebra homomorphism from the space of strictly adapted interval

functions on S to the space of strictly adapted interval functions on Ŝ.
(ii) If ψ is a strictly adapted interval function on S and h : R → R is Borel measurable, then (h̄ψ)̂ = h̄ψ̂.
(iii) If ψ is a strictly adapted interval function on S and uuu is a fully adapted process with domain S,

then (uuuψ)̂ = ûuuψ̂, where ûuu is the fully adapted extension of uuu to Ŝ.
proof (Compare 612Q.)

(a)(i) The first thing to note is that if (σ, τ) ∈ Ŝ2↑ and c = sup(σ′,τ ′)∈S2↑([[σ = σ′]] ∩ [[τ = τ ′]]) then c = 1.

PPP If a ∈ A is non-zero, there is a σ′′ ∈ S such that a′ = a ∩ [[σ = σ′′]] 6= 0, and now there is a τ ′ ∈ S such
that a′′ = a′ ∩ [[τ = τ ′]] 6= 0. Set σ′ = σ′′ ∧ τ ′; then (σ′, τ ′) ∈ S2↑ and
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a′′ ⊆ [[σ = σ′′]] ∩ [[τ = τ ′]] ∩ [[σ ≤ τ ]] ⊆ [[σ = σ′′]] ∩ [[τ = τ ′]] ∩ [[σ′′ ≤ τ ′]]

⊆ [[σ = σ′′]] ∩ [[τ = τ ′]] ∩ [[σ′′ = σ′]] ⊆ [[σ = σ′]] ∩ [[τ = τ ′]] ⊆ c.

So a ∩ c ⊇ a′′ is non-zero; as a is arbitrary, c = 1. QQQ

(ii) Take (σ, τ) ∈ Ŝ2↑. For α ∈ R, set

Aστα = {[[ψ(σ′, τ ′) > α]] ∩ [[σ = σ′]] ∩ [[τ = τ ′]] : σ′ ≤ τ ′ in S}, aστα = supAστα.

Then

aστα = sup
(σ′,τ ′)∈S2↑

([[ψ(σ′, τ ′) > α]] ∩ [[σ = σ′]] ∩ [[τ = τ ′]])

= sup
(σ′,τ ′)∈S2↑

β>α

([[ψ(σ′, τ ′) > β]] ∩ [[σ = σ′]] ∩ [[τ = τ ′]]) = sup
β>α

aστβ .

Moreover, if a ∈ A \ {0}, there are a pair (σ′, τ ′) ∈ S2↑ such that a′ = a ∩ [[σ = σ′]] ∩ [[τ = τ ′]] is non-zero, by
(i), and α, β ∈ R such that a′′ = a′ ∩ [[ψ(σ′, τ ′) > α]] ∩ [[ψ(σ′, τ ′) ≤ β]] is non-zero; in which case, whenever
(σ′′, τ ′′) ∈ S2↑,

a′′ ∩ [[ψ(σ′′, τ ′′) > β]] ∩ [[σ′′ = σ]] ∩ [[τ ′′ = τ ]]

⊆ [[ψ(σ′′, τ ′′) 6= ψ(σ′, τ ′]] ∩ [[σ′′ = σ′]] ∩ [[τ ′′ = τ ′]] = 0.

But this means that a′′ ∩ aστβ = 0, while on the other hand a′′ ⊆ aστα. As a is arbitrary, infβ∈R aστβ = 0
and supα∈R aστα = 1.

Accordingly we have a ψ̂(σ, τ) ∈ L0(A) such that [[ψ̂(σ, τ) > α]] = aστα for every α ∈ R. Observe next

that Aστα ⊆ Aτ for every α ∈ R (use 611H(c-iii)), so aστα ∈ Aτ for every α, and ψ̂(σ, τ) ∈ L0(Aτ ).

(iii) ψ̂ extends ψ. PPP If (σ, τ) ∈ S2↑ and α ∈ R, then [[ψ(σ, τ) > α]] ∈ Aστα so [[ψ(σ, τ) > α]] ⊆ aστα. If
(σ′, τ ′) ∈ S2↑ then

[[ψ(σ′, τ ′) > α]] ∩ [[σ = σ′]] ∩ [[τ = τ ′]]

= [[ψ(σ, τ) > α]] ∩ [[σ = σ′]] ∩ [[τ = τ ′]] ⊆ [[ψ(σ, τ) > α]],

so aστα ⊆ [[ψ(σ, τ) > α]]. Thus [[ψ̂(σ, τ) > α]] = [[ψ(σ, τ) > α]]. As α is arbitrary, ψ̂(σ, τ) = ψ(σ, τ). QQQ

(iv) If (σ, τ), (σ̃, τ̃) ∈ Ŝ2↑, c = [[σ = σ̃]] ∩ [[τ = τ̃ ]] and α ∈ R, then c ∩ aστα ⊆ aσ̃τ̃α. PPP If a ∈ Aστα,
express it as [[ψ(σ′, τ ′) > α]] ∩ [[σ = σ′]] ∩ [[τ = τ ′]] where (σ′, τ ′) ∈ S2↑. Then c ∩ a ⊆ [[σ̃ = σ′]] ∩ [[τ̃ = τ ′]]
(611E(c-iv-γ)), so c ∩ a ⊆ aσ̃τ̃α. It follows that

c ∩ aστα = c ∩ supAστα = supa∈Aστα
c ∩ a ⊆ aσ̃τ̃α. QQQ

Similarly, c ∩ aσ̃,τ̃ ,α ⊆ aστα, so c ∩ [[ψ̂(σ, τ) > α]] = c ∩ [[ψ̂(σ̃, τ̃) > α]]. As this is true for every α, c ⊆ [[ψ̂(σ, τ) = ψ̂(σ̃, τ̃)]].

(v) If σ ∈ Ŝ then ψ̂(σ, σ) = 0. PPP If σ′ ∈ S then

[[σ = σ′]] ⊆ [[ψ̂(σ, σ) = ψ(σ′, σ′)]] ⊆ [[ψ̂(σ, σ) = 0]];

since σ ∈ Ŝ, supσ′∈S [[σ = σ′]] = 1 and ψ̂(σ, σ) = 0. QQQ

It follows that ψ̂ is a strictly adapted interval function. PPP I have already checked that ψ̂(σ, τ) ∈ L0(Aτ )

whenever (σ, τ) ∈ Ŝ2↑. Now (iv) tells us that ψ̂ is a strictly adapted interval function. QQQ

(vi) Finally, if ψ′ : Ŝ2↑ → L0(A) is any strictly adapted interval function process extending ψ, and

(σ, τ) ∈ Ŝ2↑, we shall have

[[ψ̂(σ, τ) = ψ′(σ, τ)]] ⊇ sup
(σ′,τ ′)∈S2↑

[[ψ̂(σ, τ) = ψ̂(σ′, τ ′)]] ∩ [[ψ′(σ, τ) = ψ′(σ′, τ ′)]]

⊇ sup
(σ′,τ ′)∈S2↑

[[σ = σ′]] ∩ [[τ = τ ′]] = 1
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by (i) again, so ψ̂(σ, τ) = ψ′(σ, τ). Thus ψ̂ = ψ′ and ψ̂ is the unique strictly adapted interval function
extending ψ.

(b) Really this is immediate from the definitions and the fact that ψ̂ is always the unique strictly adapted
extension of ψ, just as (in (iii)) ûuu is the unique fully adapted extension of uuu. Of course we do need to know

that ψ̂ + ψ̂′, ψ̂ × ψ̂′, h̄ψ̂ and ûuuψ̂ are always strictly adapted, as noted in 613D.

Remark Note that if vvv is a fully adapted process with domain S and fully adapted extension v̂vv to Ŝ, then
(∆vvv)̂ = ∆v̂vv.

613V The definition of the integral means that we shall always be able to approximate an integral∫
S uuu dψ by Riemann sums SI(uuu, dψ). There will be occasions when it is very useful to have simultaneous
approximations for integrals over parts of S.
Lemma Let S be a sublattice of T , uuu a fully adapted process with domain S, and ψ an adapted interval
function with domain S2↑ such that

∫
S uuu dψ is defined. Let I ∈ I(S) and ǫ > 0 be such that θ(SJ(uuu, dψ)−

SK(uuu, dψ)) ≤ ǫ whenever J , K ∈ I(S) include I.
(i) If τ0 ≤ τ ′0 ≤ τ1 ≤ τ ′1 ≤ . . . ≤ τn ≤ τ ′n in I, then

θ(
∑n
i=0(SI∩[τi,τ ′

i ]
(uuu, dψ)−

∫
S∩[τi,τ ′

i ]
uuu dψ)) ≤ ǫ.

(ii)(α) If τ ∈ I then θ(SI∧τ (uuu, dψ)−
∫
S∧τ uuu dψ) ≤ ǫ.

(β) For any τ ∈ S, θ(SI∧τ (uuu, dψ)−
∫
S∧τ uuu dψ) ≤ 2ǫ.

proof (a) Note straight away that by 613Jc all the integrals
∫
S∩[τi,τ ′

i ]
uuu dψ,

∫
S∧τ uuu dψ will be defined.

Observe also that

θ(SJ(uuu, dψ)−
∫
S uuu dψ) = limK↑I(S) θ(SJ(uuu, dψ)− SK(uuu, dψ)) ≤ ǫ

whenevever I ⊆ J ∈ I(S).
(b) For the time being, suppose that uuu is the constant process 1.

(i) Take any η > 0. Then we have J0, . . . , Jn+1 such that

J0 ∈ I(S ∧ τ0),

θ(SK(1, dψ)−
∫

S∧τ0
dψ) ≤ η whenever J0 ⊆ K ∈ I(S ∧ τ0),

Ji ∈ I(S ∩ [τ ′i−1, τi]),

θ(SK(1, dψ)−
∫

S∩[τ ′
i−1,τi]

dψ) ≤ η whenever Ji ⊆ K ∈ I(S ∩ [τ ′i−1, τi])

for 1 ≤ i ≤ n,

Jn+1 ∈ I(S ∨ τ ′n),

θ(SK(1, dψ)−
∫

S∨τ ′
n

dψ) ≤ η whenever Jn+1 ⊆ K ∈ I(S ∨ τn).

Now take K to be the sublattice generated by I ∪ ⋃
i≤n+1 Ji. Observe that if i ≤ n then {σ : σ ∈ S,

med(τi, σ, τ
′
i) ∈ I} is a sublattice of S including I ∪⋃

i≤n+1 Ji so includes K, and K ∩ [τi, τ
′
i ] = I ∩ [τi, τ

′
i ].

We see also that

θ(SK(1, dψ)−
∫
S dψ) = limL↑I(S) θ(SK(1, dψ)− SL(1, dψ)) ≤ ǫ

because K ⊇ I. Now

SK(1, dψ) = SK∧τ0(1, dψ) +
n∑

i=0

SK∩[τi,τ ′
i ]
(1, dψ)

+
n∑

i=1

SK∩[τ ′
i−1,τi]

(1, dψ) + SK∨τ ′
n
(1, dψ)
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(613G(a-ii)), ∫
S dψ =

∫
S∧τ0

dψ +
∑n
i=0

∫
S∩[τi,τ ′

i ]
dψ +

∑n
i=1

∫
S∩[τ ′

i−1,τi]
dψ +

∫
S∨τ ′

n

dψ

(613J(c-ii)). So

θ(

n∑

i=0

SI∩[τi,τ ′
i ]
(1, dψ)−

∫

S∩[τi,τ ′
i ]

dψ)

≤ θ(SK(1, dψ)−
∫

S
dψ) + θ(SK∧τ0(1, dψ)−

∫

S∧τ0
dψ)

+

n∑

i=1

θ(SK∩[τ ′
i−1,τi]

(1, dψ)−
∫

S∩[τ ′
i−1,τi]

dψ)

+ θ(SK∨τ ′
n
(1, dψ)−

∫

S∨τ ′
n

dψ)

≤ ǫ+ (n+ 2)η.

As η is arbitrary,

θ(
∑n
i=0 SI∩[τi,τ ′

i ]
(1, dψ)−

∫
S∩[τi,τ ′

i ]
dψ) ≤ ǫ,

as claimed.

(ii)(ααα) The argument is the same as that of (i), but simpler. For any η > 0, there is a J ∈ I(S ∨ τ)
such that θ(SK(1, dψ)−

∫
S∨τ dψ) ≤ η whenever K ∈ I(S ∨ τ) includes J . Let K be the sublattice generated

by I ∪ J . Since I ∪ J is included in the sublattice {σ : σ ∧ τ ∈ I}, K ∧ τ = I ∧ τ , while K ∨ τ ⊇ J . So

θ(SI∧τ (1, dψ)−
∫

S∧τ
dvvv) = θ(SK∧τ (1, dvvv)−

∫

S∧τ
dvvv)

≤ θ(SK(1, dvvv)−
∫

S
dvvv)) + θ(SK∨τ (1, dvvv)−

∫

S∨τ
dvvv)

≤ ǫ+ η;

as η is arbitrary, θ(SI∧τ (1, dvvv)−
∫
S∧τ dvvv) ≤ ǫ.

(βββ) If I is empty, then θ(SJ(1, dψ)) ≤ ǫ for every J ∈ I(S), so
θ(SI∧τ (1, dψ)−

∫
S∧τ dψ) = θ(

∫
S∧τ dψ) ≤ ǫ.

Otherwise, let J be the sublattice of S generated by I ∪ {τ}, and write τ∗ for max I. Then

I ∧ τ = I ∧ τ ∧ τ∗ ⊆ J ∧ τ ∧ τ∗,
while {σ : σ ∧ τ ∧ τ∗ ∈ I ∧ τ} is a sublattice of S including I ∪ {τ}, so includes J , and I ∧ τ = J ∧ τ ∧ τ∗.
Next, θ(SL(1, dψ)− SL′(1, dψ)) ≤ ǫ whenever L, L′ ∈ I(S) include J , so

θ(SI∧τ (1, dψ)−
∫
S∧τ∧τ∗

dψ) = θ(SJ∧τ∧τ∗(1, dψ)−
∫
S∧τ∧τ∗

dψ) ≤ ǫ

by (α). Because σ 7→
∫
S∧σ dψ is fully adapted (613J(e-ii)),

∫

S∩[τ∧τ∗,τ ]

dψ =

∫

S∧τ
dψ −

∫

S∧τ∧τ∗

dψ =

∫

S∧(τ∨τ∗)

dψ −
∫

S∧τ∗

dψ

(612D(f-i))

=

∫

S∩[τ∗,τ∨τ∗]

dψ = lim
K↑I(S∩[τ∗,τ∨τ∗])

SK(1, dψ).

But if K ∈ I(S ∩ [τ∗, τ ∨ τ∗]) contains τ∗, then I ∪K ∈ I(S),
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SK(1, dψ) =S(I∪K)∨τ∗(1, dψ)

= SI∪K(1, dψ)− S(I∪K)∧τ∗(1, dψ) = SI∪K(1, dψ)− SI(1, dψ)

and

θ(SK(1, dψ)) = θ(SI∪K(1, dψ)− SI(1, dψ)) ≤ ǫ;

as K is arbitrary, θ(
∫
S∩[τ∧τ∗,τ ]

dψ) ≤ ǫ. Accordingly

θ(SI∧τ (1, dψ)−
∫

S∧τ
dψ) = θ(SI∧τ (1, dψ)−

∫

S∧τ∧τ∗

dψ −
∫

S∩[τ∧τ∗,τ ]

dψ)

≤ θ(SI∧τ (1, dψ)−
∫

S∧τ∧τ∗

dψ) + θ(

∫

S∩[τ∧τ∗,τ ]

dψ)

≤ 2ǫ,

as required.

(c) For the general case, recall that uuuψ, as defined in 613Dd, is an adapted interval function, and that
every sum or integral SJ(uuu, dψ) or

∫
S′ uuu dψ can be interpreted as SJ(1, d(uuuψ)) or

∫
S′ d(uuuψ) (613Ee, 613Hc).

So we get the general result at once.

613W The one-dimensional case (a) There are real difficulties in the theory of stochastic integration,
and it will be a long time before you can expect it to feel natural and familiar. For the rest of this chapter
we shall be teasing out more or less special cases in which the integral of 613H is defined. But there is a
particular special case which we can approach immediately. Suppose that (A, µ̄) is the trivial probability
algebra in which A = {0, 1}. Then L0(A) = {αχ1 : α ∈ R} can be identified, as f -algebra, with R; of course
we have θ(αχ1) = min(1, |α|) for every α, so the topology of convergence in measure on L0(A) corresponds
to the usual topology of R. Necessarily, At = A for every t ∈ T , so the filtration is trivial. If it is also the case
that T has no points isolated on the right, then every stopping time except max T and possibly min T will be
a constant stopping time as described in 611A(b-ii), every subset of T is a sublattice, and every real-valued
function f defined on a subset S of T corresponds to a fully adapted process {(š, f(s)χ1) : s ∈ S}.

(b) If also T has a least element, we can identify Tf with T and Mfa(Tf ) = (L0)Tf with RT . Under
this identification, if f : T → R and g : T → R represent processes uuu, vvv with domain Tf , and I ⊆ Tf is a
non-empty finite set, there are t0 ≤ . . . ≤ tn in T such that I = {ťi : i ≤ n}, and

SI(uuu, dvvv) =
(∑n−1

i=0 f(ti)(g(ti+1)− g(ti))
)
χ1.

(d) What this amounts to is that we have a kind of Riemann-Stieltjes integral on T , I spell this out
in detail here partly because there are well-known Stieltjes integrals on the real line, of which the most
important, from the point of view of my treatise as a whole, is integration with respect to Lebesgue-Stieltjes
measures described in exercises from 114Xa onwards. Here we suppose that g : R → R is non-decreasing,
so that there is a Radon measure νg on R with νg [a, b[ = limx↑b g(x) − limx↑a g(x) whenever a < b in R.
Now the point I need to make here is that if S = {š : s ∈ R} then the integral

∫
S uuu dvvv is not the same

as the Lebesgue-Stieltjes integral
∫
f dνg, even in some of the most elementary situations. Consider, for

instance, the case in which f = g = χ [0,∞[. In this case, νg is the Dirac measure concentrated at 0, so that∫
f dνg = f(0) = 1. But when we look at sums SI(uuu, dvvv) where I = {ť0, . . . , ťn} is a finite subset of S, and

supposing that t0 ≤ . . . ≤ tn, we get

f(ti)(g(ti+1)− g(ti)) = 0(g(ti+1)− g(ti)) = 0 if ti < 0,

= f(ti)(1− 1) = 0 if ti ≥ 0,

so SI(f, dg) = 0; as this is true for every I,
∫
S f dg = 0. In effect, the jump in g at the time 0 is necessarily

applied to a value of f calculated before the time 0; in the language of Lebesgue-Stieltjes integration, we
are calculating

∫
f− dνg where f−(x) = limy↑x f(y) for each x.
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In my view, there are excellent reasons (especially in view of its applications to financial mathematics)
why a theory of stochastic integration should insist on calculating integrals

∫
uuu dvvv in terms of products

uσ × (vτ − vσ) where σ ≤ τ (rather than uτ × (vτ − vσ), for instance). We are going to have to return to
this point from time to time, because it is one on which my presentation of the theory differs from that of
most authors.

613X Basic exercises (a) Let S be a sublattice of T and vvv a fully adapted process defined on S. Show
that

∫
S vvv dvvv is defined whenever

∫
S dvvv and

∫
S(dvvv)

2 are defined, and that in this case

2
∫
S vvv dvvv +

∫
S(dvvv)

2 = limτ↑S v2τ − limτ↓S v2τ .

(c) Let S be a full sublattice of T , uuu a fully adapted process with domain S, and ψ an adapted interval
function with domain S2↑. Write S ′ for the domain of the indefinite integral iiψ(uuu). Show that S ′ is full.

(d) In 613V, show that if τ , τ ′ ∈ I and I ⊆ J ∈ I(S) then θ(SJ∧τ (uuu, dψ)−
∫
S∧τ uuu dψ), θ(SJ∨τ ′(uuu, dψ)−∫

S∨τ ′ uuu dψ) and θ(SJ∩[τ,τ ′](uuu, dψ)−
∫
S∩[τ,τ ′]

uuu dψ) are all at most ǫ.

(e) Let S be a sublattice of T and It the set of finite totally ordered subsets of S. Suppose that uuu is a
fully adapted process with domain S, ψ is an adapted interval function with domain S2↑ and z is a member
of L0(A). Show that

∫
S uuu dψ = z iff for every ǫ > 0 and I ∈ It there is a J ∈ It, including I, such that

θ(SK(uuu, dψ)− z) ≤ ǫ whenever K ∈ It includes J .

613Y Further exercises (a) Let S be a sublattice of T , uuu a fully adapted process defined on S and ψ
an adapted interval function on S2↑. Show that if τ , τ ′ ∈ S, then

∫
S∨(τ∧τ ′)

uuu dψ is defined iff both
∫
S∨τ uuu dψ

and
∫
S∨τ ′ uuu dψ are defined, and in this case

∫
S∨(τ∧τ ′)

uuu dψ +
∫
S∨τ∨τ ′

uuu dψ =
∫
S∨τ uuu dψ +

∫
S∨τ ′

uuu dψ.

(b) Suppose that S is a sublattice of T and S ′ a covering ideal of S. Let uuu be a fully adapted process
defined on S and ψ an adapted interval function defined on S2↑. Show that

∫
S uuu dψ is defined iff

∫
S′ uuu dψ is

defined, and the integrals are then equal.

(c) Let C be the set of all bounded intervals in R, and T ∗ the straightforward set of tagged partitions
generated by Q = {(a,C) : C ∈ C \ {∅}, a = inf C} (see 481B). For a finite set I ⊆ R, let δI be the set
{ttt : ttt ∈ T ∗, I ∩ intC = ∅ whenever (a,C) ∈ ttt}; for a ≤ b in R, let Rab be {∅} ∪ {R \ [c, d] : c ≤ a, b ≤ d}.
Set ∆ = {δI : I ∈ [R]<ω} and R = {Rab : a ≤ b} (see 481K). (i) Show that (R, T ∗,∆,R) is a tagged-
partition structure allowing subdivisions, witnessed by C (see 481G). (ii) For a function g : [0,∞[ → R

define νg : C → R by saying that νg∅ = 0, νgC = g(supC)− g(inf C) for non-empty C ∈ C. Let F(T ∗,∆,R)
be the filter on T ∗ defined from ∆ and R as in 481F, and for f : R → R set Iνg (f) = limttt→F(T∗,∆,R) Sttt(f, νg)

when this is defined, as in 481C. Next, for functions f , g : R → R, define
∫
S f dg as in 613W, taking S to

be the set of constant stopping times when A = {0, 1} and T = R, and f and g are interpreted as functions
from S to L0(A). Show that Iνg (f) =

∫
S f dg when either is defined.

(d) In 613P, show that
∫
S uuu dvvv is undefined for any sublattice S of Tf including T̂c.

(e) Give an example of a strictly adapted interval function ψ on a sublattice S such that
∫
S dψ is defined,

but
∫
Ŝ dψ̂ is not, where ψ̂ is the strictly adapted extension of ψ on the covered envelope Ŝ of S.

(f) Show that for strictly adapted interval functions ψ we can re-work this section in terms of a def-
inition of SI(uuu, dψ) restricted to finite totally ordered sets I, as in 613Ec, taking

∫
S uuu dψ to be the limit

limI↑It(S) SI(uuu, dψ) where It(S) is the set of finite totally ordered subsets of S with the pre-order ⊑ of
611Yd. (Begin by showing that SI(uuu, dψ) = SJ(uuu, dψ) whenever I ⊑ J and J ⊑ I.)
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613 Notes and comments My objective in this section has been to reach a formally adequate definition
of a stochastic integral as quickly as possible, with just enough of its properties to serve as a foundation for
the rest of the volume.

The definition in 613H is a ‘gauge integral’ of the type examined in §§481-482. I cannot quote the results
there because it is a vector-valued, rather than scalar-valued integral; and even on the basis of a vector-
valued version of the material, which is easy to develop (there is a hint in 613Yc), the ideas of §482 do not
directly illuminate the theory here. (Though there is an echo of the Saks-Henstock Lemma, 482B, in 613V.)
The disadvantage of this headlong approach is that we have no real idea of which pairs uuu, vvv will combine to
give integrals

∫
S uuu dvvv. The case of simple processes (614B-614D below) is plainly elementary, and 613C-613G

don’t belong to the topological theory at all, and could have been expressed in the context of §§611-612,
with an arbitrary Dedekind complete algebra A rather than a probability algebra. The integral

∫
S |dvvv| in

614J below can also be expressed in terms of a notion of convergence which does not involve the topology
of convergence in measure, but is off the line of the main argument, as well as being elementary. The centre
of the theory is really occupied by martingale integrators vvv, and we have a fair amount of work to do before
these become accessible in §622.

All the main work of this chapter will be done with strictly adapted interval functions, starting with the
basic examples ∆vvv as in 613Cc. I include the more general formulation of ‘adapted interval function’ in
613C(a-i) only because the language of 613E will be useful in §626 when talking about a quite different kind
of integral.

While I have, I hope, given an exact definition of the integration process which will dominate the next
three chapters, this section suffers from a singular lack of calculation of particular examples. In fact it is by
no means trivial to show that even in the cases of our three leading examples (the identity process, Brownian
motion and the Poisson process) we have a full set of indefinite integrals. There is an effective description
of indefinite integrals of simple processes in 614Xb, but for other integrands, even when integrating with
respect to simple processes as in 614D, we aren’t yet in a position to get a formula. One will appear in 641J.

I ought to remark that the integral I have defined does not coincide with everyone’s. I will return to this
point in Chapter 64, in the course of defining what I call the ‘S-integral’. Commonly the primary definition
of the integral is based on what I call ‘previsibly simple’ processes, and the formula of 641Yd(ii) is used to
define

∫
[τ,τ ′]

uuu dvvv. As will be noted in 641Yd, this in itself won’t affect the principal cases.

I will present a large number of results showing that processes share properties with their fully adapted
extensions to the covered envelopes of their domains. In those cases in which we have a good match between
properties of uuu and ûuu, starting with the isomorphism between Mfa(S) and Mfa(Ŝ) (612Qb), we shall have a
similar match between properties of uuu and of its alternative realisation ûuu↾S ′ on any sublattice S ′ with the
same covered envelope, that is, such that S covers S ′ and S ′ covers S. These offer powerful methods for
reducing problems to questions in which processes are defined on full sublattices of T . It is correspondingly

important to recognise cases in which the correspondence may not be exact. One is in 613T: if
∫
Ŝ ûuu dψ̂ is

defined, then
∫
S uuu dψ is defined, with the same value; but the converse is not universally true (613P). (In

the opposite direction we have 612Xj and 612Yf.) I have starred 613P because the construction is hard
work and the methods I use do not seem to contribute much to our toolkit. Ordinarily I would leave it as a
‘further exercise’. But like a rocky outcrop in the bank of a river it affects the flow of the arguments in this
volume, so I have taken three pages to include a detailed solution.

Nearly everything in the rest of this volume will be expressed in terms of structures (A, µ̄, T, 〈At〉t∈T )
where (A, µ̄) is a probability algebra, T is a non-empty totally ordered set, and 〈At〉t∈T is a filtration of
closed subalgebras of A; for definiteness, it will often be useful to simultaneously declare names for the lattice
of stopping times adapted to 〈At〉t∈T and the associated family of closed subalgebras of A to get a sextuple
(A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ). I will call such quadruples or sextuples stochastic integration structures.
When T = [0,∞[, as in 612F and 612H, so that we have a structure (A, µ̄, [0,∞[ , 〈At〉t≥0) or (A, µ̄, [0,∞[ ,
〈At〉t≥0, T , 〈Aτ 〉τ∈T ), I will call it a real-time stochastic integration structure.

Perhaps I should note explicitly that a stochastic integration structure (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T )
carries a lot of undeclared baggage. The symbol A involves not just the set A but its Boolean operations
△ , ∩ , ∪ and \ , with the induced relation ⊆ , and its greatest and least elements 1 and 0. The symbol
T is accompanied by its total ordering ≤ and the associated relation <. With T we have the functions
(σ, τ) 7→ [[σ < τ ]], [[σ ≤ τ ]] and [[σ = τ ]]. We are all well used to such things being omitted from hypotheses,
but in the rest of this volume we shall have to be ready for a richer hidden substructure than is usual.
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In the introduction to this volume I said I would try to explain why I am working with structures (A, µ̄)
and L0(A) rather than with probability spaces and measurable functions. The move from (Ω,Σ, µ, 〈Σt〉t≥0)
to (A, µ̄, 〈At〉t∈T ) is really no more than a change in notation. Every probability algebra, in the sense here,
can be represented by a classical probability space (321J), and while the move from [0,∞[ to an arbitrary
non-empty totally ordered space is a generalisation, I shall have nothing significant to say about the new
cases. But the move from real-valued measurable functions to their equivalence classes in L0 is forced on
us by the definition of the integral in 613H. The integral is defined as a limit in L0 for the topology of
convergence in measure; and as this is a Hausdorff topology, the limit, when it exists, is unique. There are
variations of the theory using different topologies – in §626, for instance, there will be limits for the weak
topology on L1 – but none of them give functions as limits; they all provide members of L0 or L1 or L2,
corresponding to equivalence classes of functions. Starting in Chapter 62, conditional expectations will be
enormously important, and if we want to speak of well-defined conditional expectation operators, we again
need to work in L1, not in an associated space of functions.

Of course, we could set up a theory in which we accepted that an integral
∫
Xt dYt would belong to L0,

while all the Xt, Yt were real-valued functions. But when we get to stochastic calculus in §617 we shall
want to look at integration with respect to indefinite integrals. So our theory needs to be able to deal with
integrals

∫
dvvv where vvv is a process taking values in L0.

Concerning stopping times, the argument takes a different form. Since the values of a process 〈uσ〉σ∈S are
going to be in L0, and changing σ on a set of measure zero must not affect uσ, it is to my mind more natural
to define a stopping time σ ∈ T in such a way that it corresponds to an equivalence class of stopping times
h : X → [0,∞], even if this complicates the definition of the region [[σ < τ ]] in 611D and renders the algebra
of 611E less transparent. And there is another issue. If you look at the leading examples in 612T-612U, or
at the general formulations in 612H and 615P, you will see that I appeal to results in Volume 4 at several
points. The intuitions behind Brownian motion and the Poisson process naturally lead to processes 〈Xt〉t≥0,
and in order to go farther we need to look at the corresponding processes 〈Xh〉h is a stopping time. This step
demands deeper ideas than anything else in the present chapter. By going directly to processes 〈uσ〉σ∈S ,
where S may be any sublattice of T , I can skate over these difficulties while still giving you something to
cut your teeth on. Moreover, there are technical advantages; because T is Dedekind complete, I can speak
uninhibitedly of infima, in such results as 611Ch and 618C, without needing any formula for calculating
them.

Version of 29.10.24

614 Simple and order-bounded processes and bounded variation

In §613 I gave a definition of an integral with no very useful indication of where it might be applicable.
This section and the next two will be devoted to teasing out the basic case in which a Riemann-sum integral∫
S uuu dvvv is defined: uuu should be ‘moderately oscillatory’ (615E) and vvv should be an ‘integrator’ (616K).
Before we come to either of these notions, however, it will be helpful to have a firm grasp of three easier
concepts: ‘simple’ processes (614B), ‘order-bounded’ processes (614E) and processes ‘of bounded variation’
(614J-614K).

614A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure, as described in
the notes to §613, with regions [[σ < τ ]], [[σ ≤ τ ]] and [[σ = τ ]] (611D) for stopping times σ, τ ∈ T . If σ ≤ τ
in T , c(σ, τ) will be the corresponding stopping-time interval (611J). If S is a sublattice of T , then Sti(S)
will be the set of stopping-time intervals with endpoints in S and when I is a finite sublattice of T Sti0(I)
will be the set of I-cells (611Je). If S is a sublattice of T and τ ∈ S, then S ∧ τ = {σ ∧ τ : σ ∈ S},
S ∨ τ = {σ ∨ τ : σ ∈ S}, I(S) is the upwards-directed set of finite sublattices of S and S2↑ = {(σ, τ) : σ,
τ ∈ S, σ ≤ τ}. Mfa(S) will be the space of fully adapted processes with domain S (612I). I write 1 for the
constant process with value χ1, and if z ∈ L0 then z1 will be the constant process with value z, defined on
{σ : z ∈ L0(Aσ) (612De).
L0 = L0(A) (612A), and if uuu = 〈uσ〉σ∈S ∈ (L0)S , I write sup |uuu| for supσ∈S |uσ| if this is defined in L0.

θ will be the standard F-seminorm defining the topology of convergence in measure on L0 (613Ba), and

c© 2019 D. H. Fremlin
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614B Simple and order-bounded processes and bounded variation 71

limits will be taken with respect to this topology. If S is a sublattice of T , e ∈ Sti(S), I ∈ I(S), uuu and vvv
are processes defined on S and ψ is an interval function defined on S2↑, we shall have ∆e(uuu, dψ), ∆e(uuu, dvvv),
∆e(uuu, |dvvv|) and the Riemann sums SI(uuu, dψ), SI(uuu, dvvv) and SI(uuu, |dvvv|) as defined in 613E-613F, with the
Riemann-sum integrals

∫
S uuu dψ,

∫
S uuu dvvv and

∫
S uuu |dvvv| (when they are defined) as in 613H.

614B If either uuu or vvv is a simple process, then
∫
uuu dvvv is particularly straightforward.

Proposition Suppose that S is a non-empty sublattice of T and uuu = 〈uσ〉σ∈S a simple fully adapted process
with a breakpoint string (τ0, . . . , τn) (612J).

(a) The starting value u↓ = limσ↓S uσ is defined, and [[σ < τ0]] ⊆ [[uσ = u↓]] for every σ ∈ S.
(b) Suppose that ψ : S2↑ → L0 = L0(A) is an adapted interval function such that

∫
S dψ =

∫
S 1 dψ is

defined. Then
∫
S uuu dψ is defined and equal to

u↓ × vτ0 +
∑n−1
i=0 uτi × (vτi+1

− vτi) + uτn × (v↑ − vτn)

where vτ =
∫
S∧τ dψ for τ ∈ S, and v↑ =

∫
S dψ.

proof (a) For σ ∈ S, set aσ = [[σ < τ0]]; set a = supσ∈S aσ. Note that aσ ⊇ aτ if σ ≤ τ in S, so a is the
limit limσ↓S aσ for the measure-algebra topology of A (323D(b-ii)), and χa = limσ↓S χaσ for the topology of
convergence in measure (367Ra). Next, we know that there is a u∗ ∈ L0(

⋂
σ∈S Aσ) such that aσ ⊆ [[uσ = u∗]]

for every σ ∈ S. If σ ∈ S and σ ≤ τ0, then 1 \ aσ = [[σ = τ0]] ⊆ [[uσ = uτ0 ]], so

uσ = u∗ × χaσ + uτ0 × (χ1− χaσ).

But this means that

u↓ = lim
σ↓S

uσ = lim
σ↓S

(u∗ × χaσ + uτ0 × (χ1− χaσ))

= u∗ × χa+ uτ0 × (χ1− χa).

Finally, for any σ ∈ S,

[[σ < τ0]] ⊆ a ∩ [[uσ = u∗]] ⊆ [[u∗ = u↓]] ∩ [[uσ = u∗]]

(because u∗ × χa = u↓ × χa)

⊆ [[uσ = u↓]].

(b)(i) By 613J(c-i), vτ is defined for every τ ∈ S.
(ii)

∫
S∧τ0 uuu dψ = u↓ × vτ0 . PPP If σ, τ ∈ S and σ ≤ τ ≤ τ0, then

[[σ = τ0]] ⊆ [[σ = τ ]] ⊆ [[ψ(σ, τ) = 0]]

(611E(c-vi), 613C(b-i)), so ψ(σ, τ) = χ[[σ < τ0]]× ψ(σ, τ) and

uσ × ψ(σ, τ) = uσ × χ[[σ < τ0]]× ψ(σ, τ)

= u↓ × χ[[σ < τ0]]× ψ(σ, τ) = u↓ × ψ(σ, τ).

So ∆e(uuu, dψ) = u↓ ×∆e(1, dψ) for every stopping-time interval with endpoints in S ∧ τ0, and SI(uuu, dψ) =
u↓ × SI(1, dψ) for every I ∈ I(S ∧ τ0). Accordingly

∫

S∧τ0
uuu dψ = lim

I↑I(S∧τ0)
SI(uuu, dψ) = lim

I↑I(S∧τ0)
u↓ × SI(1, dψ)

= u↓ × lim
I↑I(S∧τ0)

SI(1, dψ) = u↓ × vτ0 . QQQ

(iii) If i < n, then
∫
S∩[τi,τi+1]

uuu dψ = uτi × (vτi+1
− vτi). PPP If σ, τ ∈ S and τi ≤ σ ≤ τ ≤ τi+1, then

[[σ = τi+1]] ⊆ [[σ = τ ]] ⊆ [[ψ(σ, τ) = 0]],
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uσ × ψ(σ, τ) = uσ × χ[[σ < τi+1]]× ψ(σ, τ)

= uτi × χ[[σ < τi+1]]× ψ(σ, τ) = uτi × ψ(σ, τ).

So ∆e(uuu, dψ) = uτi × ∆e(1, dψ) for every stopping-time interval with endpoints in S ∩ [τi, τi+1], and
SI(uuu, dψ) = uτi × SI(1, dψ) for every I ∈ I(S ∩ [τi, τi+1]). Accordingly

∫

S∩[τi,τi+1]

uuu dψ = lim
I↑I(S∩[τi,τi+1])

SI(uuu, dψ) = lim
I↑I(S∩[τi,τi+1])

uτi × SI(1, dψ)

= uτi × lim
I↑I(S∩[τi,τi+1])

SI(1, dψ) = uτi ×
∫

S∩[τi,τi+1]

dψ

= uτi × (

∫

S∧τi+1

dψ −
∫

S∧τi
dψ)

(using 613J(c-i) again)

= uτi × (vτi+1
− vτi). QQQ

(iv)
∫
S∨τn uuu dψ = uτn × (v↑ − vτn). PPP If σ, τ ∈ S and τn ≤ σ ≤ τ , then uσ × ψ(σ, τ) = uτn × ψ(σ, τ).

So ∆e(uuu, dψ) = uτn × ∆e(1, dψ) for every stopping-time interval with endpoints in S ∨ τn, SI(uuu, dψ) =
uτn × SI(1, dψ) for every I ∈ I(S ∨ τn) and

∫

S∨τn
uuu dψ = lim

I↑I(S∨τn)
SI(uuu, dψ) = lim

I↑I(S∨τn)
uτn × SI(1, dψ)

= uτn × lim
I↑I(S∨τn)

SI(1, dψ) = uτi ×
∫

S∨τn
dψ

= uτi × (

∫

S
dψ −

∫

S∧τn
dψ) = uτi × (v↑ − vτn). QQQ

(v) Assembling these, as in 613J(c-ii),
∫
S uuu dψ is defined and equal to

∫

S∧τ0
uuu dψ +

n−1∑

i=0

∫

S∩[τi,τi+1]

uuu dψ +

∫

S∨τn
uuu dψ

= u↓ × vτ0 +
n−1∑

i=0

uτi × (vτi+1
− vτi) + uτn × (v↑ − vτn),

as claimed.

Remark I didn’t have to say so in the course of the proof above, but of course
∫
S dψ = limτ↑S vτ (613J(f-ii)),

so the formula v↑ here matches the usage in 613N.

614C Corollary Suppose that S is a non-empty sublattice of T , uuu = 〈uσ〉σ∈S is a simple fully adapted
process with starting value u↓ and a breakpoint string (τ0, . . . , τn), and vvv = 〈vτ 〉τ∈S is a fully adapted
process such that v↑ = limτ↑S vτ and v↓ = limσ↓S vσ are defined. Then

∫
S uuu dvvv is defined and equal to

u↓ × (vτ0 − v↓) +
∑n−1
i=0 uτi × (vτi+1

− vτi) + uτn × (v↑ − vτn).

proof Apply 614B with ψ = ∆vvv; the point being just that
∫
S∧τ dvvv = vτ − v↓ for every τ ∈ S, by 613N

applied to vvv↾S ∧ τ , while
∫
S dvvv = v↑ − v↓.

614D Proposition Let S be a sublattice of T , vvv = 〈vσ〉σ∈S a simple process, and uuu = 〈uσ〉σ∈S a fully
adapted process such that

∫
S uuu dvvv is defined. Then iivvv(uuu) is simple.
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proof (a) If vvv is constant, this is trivial, as ∆vvv = 0 and iivvv(uuu) is constant with value 0. Otherwise, let
(τ0, . . . , τn) be a breakpoint string for vvv, and v↓ the starting value of vvv. For τ ∈ S write wτ for

∫
S∧τ uuu dvvv,

so that 〈wτ 〉τ∈S = iivvv(uuu).

(b) If τ ∈ S ∧ τ0 then [[τ < τ0]] ⊆ [[wτ = 0]]. PPP By 613Ld,

[[wτ 6= 0]] ⊆ sup
σ,σ′∈S∧τ

[[vσ 6= vσ′ ]] ⊆ sup
σ∈S∧τ

[[vσ 6= v↓]]

⊆ sup
σ∈S∧τ

[[σ = τ0]] ⊆ [[τ = τ0]]

so [[τ < τ0]] ⊆ [[wτ = 0]]. QQQ Generally, if τ ∈ S,

[[τ < τ0]] ⊆ [[τ = τ ∧ τ0]] ∩ [[τ ∧ τ0 < τ0]]

⊆ [[wτ = wτ∧τ0 ]] ∩ [[wτ∧τ0 = 0]] ⊆ [[wτ = 0]]

because iivvv(uuu) is fully adapted (613Oa).

(c) If i ≤ n and τ ∈ S ∩ [τi, τi+1] then [[τ < τi+1]] ⊆ [[wτ = wτi ]]. PPP

[[wτ 6= wτi ]] = [[
∫
S∩[τi,τ ]

uuu dvvv 6= 0]]

(613Jc)

⊆ sup
σ,σ′∈S∩[τi,τ ]

[[vσ 6= vσ′ ]] ⊆ sup
σ∈S∩[τi,τ ]

[[vσ 6= vτi ]]

⊆ sup
σ∈S∩[τi,τ ]

[[σ = τi+1]] ⊆ [[τ = τi+1]],

so [[τ < τi+1]] ⊆ [[wτ = wτi ]]. QQQ Generally, if τ ∈ S,

[[τi ≤ τ ]] ∩ [[τ < τi+1]] ⊆ [[τ = med(τi, τ, τi+1)]] ∩ [[med(τi, τ, τi+1) < τi+1)]]

⊆ [[wτ = wmed(τi,τ,τi+1)]] ∩ [[wmed(τi,τ,τi+1) = wτi ]]

⊆ [[wτ = wτi ]].

(d) If τ ∈ S ∨ τn then wτ = wτn . PPP

[[wτ 6= wτn ]] = [[
∫
S∩[τn,τ ]

uuu dvvv 6= 0]]

⊆ sup
σ,σ′∈S∩[τn,τ ]

[[vσ 6= vσ′ ]] ⊆ sup
σ∈S∨τn

[[vσ 6= vτn ]] = 0. QQQ

Generally, if τ ∈ S,
[[τn ≤ τ ]] ⊆ [[τ = τ ∨ τn]] ⊆ [[wτ = wτ∨τn ]] ⊆ [[wτ = wτn ]].

Thus iivvv(uuu) is simple, with breakpoint string (τ0, . . . , τn).

614E Order-bounded processes Now for a much larger class of processes.

Definitions Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process.

(a) uuu is order-bounded if {uσ : σ ∈ S} is bounded above and below in L0. In this case, if S 6= ∅,
supσ∈S |uσ| is defined in L0, because L0 is Dedekind complete. It will be convenient to write sup |uuu| =
supσ∈S |uσ|, taking the supremum in (L0)+, so that sup |uuu| = 0 if S = domuuu is empty.

(b) uuu is locally order-bounded if uuu↾S ∧ τ = 〈uσ〉σ∈S,σ≤τ is order-bounded for every τ ∈ S.

(c) Suppose that S is non-empty and that uuu is simple, with breakpoint string (τ0, . . . , τn) and starting
value u↓. Then uuu is order-bounded and sup |uuu| = |u↓| ∨ supi≤n |uτi |. PPP Write ū for |u↓| ∨ supi≤n |uτi |. If
σ ∈ S, then
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[[|uσ| ≤ ū]] ⊇ [[uσ = u↓]] ∪ sup
i≤n

[[uσ = uτi ]]

⊇ [[σ < τ0]] ∪ sup
i<n

([[τi ≤ σ]] ∩ [[σ < τi+1]]) ∪ [[τn ≤ σ]] = 1

and |uσ| ≤ ū. As σ is arbitrary, uuu is order-bounded and sup |uuu| ≤ ū. On the other hand,

|u↓| = limσ↓S |uσ| ≤ sup |uuu|
so ū ≤ sup |uuu| and we have equality. QQQ

614F Proposition Let S be a sublattice of T .
(a)(i) If uuu is an order-bounded process with domain S, then uuu↾S ′ is order-bounded for any sublattice S ′

of S; in particular, uuu is locally order-bounded.
(ii) If uuu is a locally order-bounded process with domain S, then uuu↾S ′ is locally order-bounded for any

sublattice S ′ of S.
(b) Suppose that uuu = 〈uσ〉σ∈S is a locally order-bounded process. Set vτ = supσ∈S∧τ |uσ| for τ ∈ S.

Then vvv = 〈vτ 〉τ∈S is a non-decreasing fully adapted process.
(c) Write Mo-b =Mo-b(S) for the set of order-bounded fully adapted processes with domain S.
(i) If h : R → R is a Borel measurable function which is bounded on every bounded interval in R, then

h̄uuu ∈Mo-b for every uuu ∈Mo-b.
(ii) Mo-b is an f -subalgebra of

∏
σ∈S L

0(Aσ).

(iii) If z ∈ L0(A ∩⋂
σ∈S Aσ) then zuuu ∈Mo-b, with sup |zuuu| = |z| × sup |uuu|, for every uuu ∈Mo-b.

(d) Write Mlob =Mlob(S) for the set of locally order-bounded fully adapted processes with domain S.
(i) If h : R → R is a Borel measurable function which is bounded on every bounded interval in R, then

h̄uuu ∈Mlob for every uuu ∈Mlob.
(ii) Mlob is an f -subalgebra of

∏
σ∈S L

0(Aσ).

proof (a) Immediate from the definitions.

(b) For each τ ∈ S, {|uσ| : σ ∈ S ∧ τ} is bounded above in the Dedekind complete lattice L0(A), so vτ
is defined. Moreover, |uσ| ∈ L0(Aσ) ⊆ L0(Aτ ) for every σ ∈ S ∧ τ ; as L0(Aτ ) is an order-closed sublattice
of L0(A) (612A(e-i)), vτ ∈ L0(Aτ ). Of course vτ ≤ vτ ′ whenever τ ≤ τ ′ in S, just because S ∧ τ ⊆ S ∧ τ ′.

Now suppose that τ , τ ′ ∈ S and c = [[τ = τ ′]]. If σ ∈ S ∧ τ , then σ ∧ τ ′ ∈ S ∧ τ ′ and
c ⊆ [[σ ≤ τ ′]] = [[σ = σ ∧ τ ′]] ⊆ [[|uσ| = |uσ∧τ ′ |]] ⊆ [[|uσ| ≤ vτ ′ ]].

So |uσ| × χc ≤ vτ ′ . Since u 7→ u× χc : L0(A) → L0(A) is an order-continuous lattice homomorphism,

vτ × χc = supσ∈S∧τ |uσ| × χc ≤ vτ ′ × χc,

and c ⊆ [[vτ ≤ vτ ′ ]]. Similarly, c ⊆ [[vτ ′ ≤ vτ ]] and [[τ = τ ′]] = c ⊆ [[vτ = vτ ′ ]]. As τ and τ ′ are arbitrary, vvv is
fully adapted.

(c)(i) For x ∈ R, set g(x) = sup|y|≤|x| |h(y)|. Then g is monotonic on each of ]−∞, 0] and [0,∞[, so

is Borel measurable, and |h̄(v)| ≤ ḡ(|u|) whenever u, v ∈ L0 and |v| ≤ u. If uuu = 〈uσ〉σ∈S is an order-
bounded fully adapted process, and u is an upper bound of {|uσ| : σ ∈ S}, ḡ(u) will be an upper bound of
{|h̄(uσ)| : σ ∈ S}, and h̄uuu is order-bounded.

(ii) If uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S are order-bounded, let u, v be upper bounds of {|uσ| : σ ∈ S},
{|vσ| : σ ∈ S} respectively; then u+ v is an upper bound of {|uσ + vσ| : σ ∈ S} and uuu+vvv is order-bounded.
Thus Mo-b is closed under addition. By 612Bc as usual, Mo-b is an f -subalgebra of

∏
σ∈S L

0(Aσ).

(iii) The map u 7→ |z| × u : L0 → L0 is an order-continuous Riesz homomorphism, so if uuu = 〈uσ〉σ∈S
belongs to Mo-b we shall have

|z| × sup |uuu| = |z| × supσ∈S |uσ| = supσ∈S |z| × |uσ| = supσ∈S |z × uσ|
and zuuu is order-bounded, with sup |zuuu| = |z| × sup |uuu|.

(d) Apply (c) to uuu↾S ∧ τ for each τ ∈ S.
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614G Proposition Suppose that S is a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process.
(a) If A, B ⊆ S, A covers B and {uσ : σ ∈ A} is order-bounded, then {uσ : σ ∈ B} is order-bounded and

supσ∈B |uσ| ≤ supσ∈A |uσ|.
(b) If S ′ is a sublattice of S which covers S

(i) uuu is order-bounded iff uuu↾S ′ is order-bounded, and in this case sup |uuu| = sup |uuu↾S ′|,
(ii) uuu is locally order-bounded iff uuu↾S ′ is locally order-bounded.

proof (a) Write ū for supσ∈A |uσ|, counting the supremum of the empty set as 0. If τ ∈ B then

[[|uτ | ≤ ū]] ⊇ supσ∈A [[uτ = uσ]] ∩ [[|uσ| ≤ ū]] ⊇ supσ∈A [[τ = σ]] = 1,

so |uτ | ≤ ū. As τ is arbitrary, uuu↾B is order-bounded and sup |uuu↾B| ≤ ū = sup |uuu↾A|.
(b)(i) Immediate from (a), as each of S, S ′ covers the other.

(ii) If uuu is locally order-bounded and σ∗ ∈ S ′, {uσ : σ ∈ S ′ ∧ σ∗} ⊆ {uτ : τ ∈ S ∧ σ∗} is order-bounded
in L0(A), so uuu↾S ′ is locally order-bounded.

Now suppose that uuu is locally order-bounded, τ∗ ∈ S and a ∈ A is non-zero. Since supσ∈S′ [[τ∗ = σ]] = 1,
there is a σ ∈ S ′ such that a′ = a ∩ [[τ∗ = σ]] is non-zero. Now S ∧ σ is covered by S ′ ∧ σ (611M(e-i)) and
uuu↾S ′ ∧ σ is order-bounded, so uuu↾S ∧ σ is order-bounded, by (i) above. There is therefore a α ≥ 0 such that
a′ = a \ supτ∈S∧σ [[|uτ | > α]] is non-zero. But in this case

a′ ∩ [[|uτ∧τ∗ | > α]] = a′ ∩ [[|uτ∧τ∗ | > α]] ∩ [[τ∗ = σ]]

⊆ a′ ∩ [[|uτ∧σ| > α]] = 0

for every τ ∈ S, that is, a′ ∩ [[|uτ | > α]] = 0 for every τ ∈ S ∧ τ∗. So supτ∈S∧τ∗ [[|uτ | > α]] does not include
a; as a is arbitrary, infγ>0 supτ∈S∧τ∗ [[|uτ | > γ]] = 0 and {uτ : τ ∈ S ∧ τ∗} is bounded above in L0(A)
(364L(a-ii)). As τ∗ is arbitrary, uuu is locally order-bounded.

614H Proposition Brownian motion, as described in 612T, is locally order-bounded.

proof I follow the notation of 612T. If τ ∈ Tf , let h : Ω → [0,∞[ be a stopping time representing τ . Then
f(ω) = supt∈[0,h(ω)] |ω(t)| is finite for every ω ∈ Ω, because ω is continuous. Moreover, again because every

ω is continuous, f(ω) = supq∈Q fq(ω) for every ω, where fq(ω) = |ω(q)| if q ≤ h(ω), 0 otherwise; as every
fq is measurable, so is f . Now we see that if σ ≤ τ in Tf there is a stopping time g : Ω → [0,∞[ such
that g represents σ and g ≤ h, so that |Xg| ≤ f and |wσ| = |X•

g | ≤ f• in L0(C). Thus {wσ : σ ≤ τ} is
order-bounded; as τ is arbitrary, www is locally order-bounded.

614I Non-decreasing processes I pause for some nearly trivial remarks. Let S be a sublattice of T
and vvv = 〈vσ〉σ∈S a non-decreasing fully adapted process.

(a) vvv is a lattice homomorphism. PPP If σ, τ ∈ S, then vσ∧τ ≤ vσ∨τ and

[[σ ≤ τ ]] = [[σ = σ ∧ τ ]] ∩ [[τ = σ ∨ τ ]]
(611E(a-ii-β))

⊆ [[vσ = vσ∧τ ]] ∩ [[vτ = vσ∨τ ]] ⊆ [[vσ ∧ vτ = vσ∧τ ]] ∩ [[vσ ∨ vτ = vσ∨τ ]]

and similarly

[[τ ≤ σ]] ⊆ [[vσ ∧ vτ = vσ∧τ ]] ∩ [[vσ ∨ vτ = vσ∨τ ]],

so vσ ∧ vτ = vσ∧τ and vσ ∨ vτ = vσ∨τ . As σ and τ are arbitrary, vvv is a lattice homomorphism. QQQ

(b) As in the proof of (a) just above,

[[σ ≤ τ ]] ⊆ [[vσ = vσ∧τ ]] ∩ [[vτ = vσ∨τ ]] ⊆ [[vσ ≤ vτ ]]

for all σ, τ ∈ S.
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(c) If vvv is non-negative it is locally order-bounded. PPP If τ ∈ S then 0 ≤ vσ ≤ vτ for every σ ∈ S ∧ τ . QQQ

(d) If S 6= ∅ and vvv is order-bounded, then∫
S |dvvv| =

∫
S dvvv = v↑ − v↓

where v↑ = supσ∈S vσ = limσ↑S vσ and v↓ = infσ∈S vσ = limσ↓S vσ. PPP To identify infσ∈S vσ with limσ↓S vσ
and supσ∈S vσ with limσ↑S vσ, use the last sentence of 613Ba. Now 613N tells us that

∫
S dvvv = v↑ − v↓, and

since the interval functions ∆vvv and |∆vvv| (613Cc) are equal, this is also
∫
S |dvvv|. QQQ

(e) There is a special kind of non-decreasing process which it is sometimes useful to remember. Suppose
that w ∈ (L0)+. For each σ ∈ S, set wσ = sup{x : x ∈ L0(Aσ, x ≤ w}. Now www = 〈wσ〉σ∈S is a non-negative
non-decreasing fully adapted process. PPP If σ ∈ S, then L0(Aσ) is order-closed in L0 = L0(A) (612A(e-i)),
so wσ ∈ L0(Aσ), and of course 0 ≤ wσ. If σ ≤ τ in S then Aσ ⊆ Aτ so L0(Aσ) ⊆ L0(Aτ ) and wσ ≤ wτ .
Finally, if σ, τ ∈ S then wτ × χ[[σ = τ ]] ∈ L0(Aσ) (612C) and wτ × χ[[σ = τ ]] ≤ w so wτ × χ[[σ = τ ]] ≤ wσ;
similarly, wσ × χ[[σ = τ ]] ≤ wτ , so wτ × χ[[σ = τ ]] = wσ × χ[[σ = τ ]], that is, [[σ = τ ]] ⊆ [[wσ = wτ ]]. Thus
〈wσ〉σ∈S is fully adapted. QQQ

Observe also that |uuu| ≤ www whenever uuu = 〈uσ〉σ∈S is fully adapted and | supuuu| ≤ w, just because |uσ| ∈
L0(Aσ) and |uσ| ≤ w for every σ ∈ S.

(f) If h : R → R is non-decreasing, then h̄vvv is non-decreasing. (Use 612A(d-i-ǫ).)

(g) If uuu = 〈uσ〉σ∈S is non-negative and fully adapted and
∫
S uuu dvvv is defined, then

∫
S uuu dvvv ≥ 0 and iivvv(uuu)

is non-decreasing. PPP For any finite sublattice I of S, SI(uuu, dvvv) is either 0 or expressible in the form∑n−1
i=0 uτi × (vτi+1

− vτi) where τi ≤ τi+1 for every i < n; in the latter case uτi and vτi+1
− vτi and

uτi × (vτi+1
− vτi) are non-negative for every i, so SI(uuu, dvvv) ≥ 0. Now

∫
S uuu dvvv = limI↑I(S) SI(uuu, dvvv) must be

positive because the cone (L0)+ is closed (613Ba).

As for the indefinite integral, we see now that if σ ≤ τ in S then uuu↾S∩[σ, τ ] is non-negative and vvv↾S∩[σ, τ ]
is non-decreasing, so

∫
S∩[σ,τ ]

uuu dvvv ≥ 0 and
∫
S∧σ uuu dvvv ≤

∫
S∧σ uuu dvvv +

∫
S∩[σ,τ ]

uuu dvvv =
∫
S∧τ uuu dvvv

by 613K(c-i). QQQ

614J Bounded variation The third class of processes I wish to discuss is intermediate between the
other two.

Theorem Let S be a sublattice of T and vvv = 〈vσ〉σ∈S a fully adapted process. Then the following are
equiveridical:

(i) vvv is expressible as the difference of two order-bounded non-negative non-decreasing fully
adapted processes,

(ii) {∑n−1
i=0 |vτi+1

− vτi | : τ0 ≤ . . . ≤ τn in S} is bounded above in L0,

(iii)
∫
S |dvvv| is defined;

and in this case ∫
S |dvvv| = sup{∑n−1

i=0 |vτi+1
− vτi | : τ0 ≤ . . . ≤ τn in S}

if we count sup ∅ as 0.

proof If S is empty, then (interpreting sup ∅ as 0 in the last clause) the result is true for trivial reasons, so
let us suppose that S 6= ∅.

(i)⇒(ii) If vvv = vvv′ − vvv′′ where vvv′ = 〈v′σ〉σ∈S and vvv′′ = 〈v′′σ〉σ∈S are non-decreasing, non-negative and
order-bounded, set v̄ = supσ∈S v

′
σ + supσ∈S v

′′
σ . Then
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n−1∑

i=0

|vτi+1
− vτi | ≤

n−1∑

i=0

|v′τi+1
− v′τi |+

n−1∑

i=0

|v′′τi+1
− v′′τi |

=

n−1∑

i=0

v′τi+1
− v′τi +

n−1∑

i=0

v′′τi+1
− v′′τi

= v′τn − v′τ0 + v′′τn − v′τ0 ≤ v̄

whenever τ0 ≤ . . . ≤ τn in S. So (ii) is true.

(ii)⇒(iii)(ααα) The key fact is that SJ(1, |dvvv|) ≤ SI(1, |dvvv|) whenever J ⊆ I in I(S). PPP If J is empty this
is trivial. Otherwise, let (τ0, . . . , τn) linearly generate the J-cells, so that

SJ(1, |dvvv|) =
∑n−1
i=0 |vτi+1

− vτi |
(613Ec),

SI(1, |dvvv|) = SI∩[min I,τ0](1, |dvvv|) +
∑n−1
i=0 SI∩[τi,τi+1](1, |dvvv|) + SI∩[τn,max I](1, |dvvv|)

(613G(a-ii)). Now for any stopping-time interval e = c(σ, τ) with endpoints in S,
∆e(1, |dvvv|) = |vτ − vσ| = |∆e(1, dvvv)|,

so for any K ∈ I(S)

|SK(1, dvvv)| = |
∑

e∈Sti0(K)

∆e(1, dvvv)| ≤
∑

e∈Sti0(K)

|∆e(1, dvvv)|

=
∑

e∈Sti0(K)

∆e(1, |dvvv|) = SK(1, |dvvv)|.

In particular, for i < n,

|vτi+1
− vτi | = |SI∩[τi,τi+1](1, dvvv)|

(613Ed)

≤ SI∩[τi,τi+1](1, |dvvv|).

Summing over i,

SJ(1, |dvvv|) =
∑n−1
i=0 |vτi+1

− vτi | ≤
∑n−1
i=0 SI∩[τi,τi+1](1, |dvvv|) ≤ SI(1, |dvvv|). QQQ

(βββ) Setting A = {∑n−1
i=0 |vτi+1

− vτi | : τ0 ≤ . . . ≤ τn in S}, A′ = {SI(1, |dvvv|) : I ∈ I(S)}, we have
A′ ⊆ A, and we know from (α) that A′ is upwards-directed; moreover,∫

S |dvvv| = limI↑I(S) SI(1, |dvvv|) = limz↑A′ z = supA′

if any of these is defined in L0. If we assume that (ii) is true, so that A and A′ are bounded above, then
supA′ is defined and (iii) is true.

In fact, of course, A ⊆ A′, because if τ0 ≤ . . . ≤ τn in S then
∑n−1
i=0 |vτi+1

− vτi | = SI(1, |dvvv|) where
I = {τ0, . . . , τn}. So we must have supA =

∫
S |dvvv|, as claimed in the final clause of the statement of this

theorem.

(iii)⇒(i) Suppose that
∫
S |dvvv| is defined.

(ααα) v↓ = limσ↓S vσ is defined. PPP Let ǫ > 0. Then there is a non-empty J ∈ I(S) such that
θ(SI(1, |dvvv|)− SJ(1, |dvvv|)) ≤ ǫ whenever I ∈ I(S) includes J . If σ ∈ S ∧min J , set I = J ∪ {σ}; then

ǫ ≥ θ(SI(1, |dvvv|)− SJ(1, |dvvv|)) = θ(∆c(σ,min J)(1, |dvvv|))
= θ(|vmin J − vσ|) = θ(vmin J − vσ).
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Because L0 is complete, this is enough to ensure that v↓ is defined. QQQ

(βββ) v↑ = limσ↑S vσ is defined. PPP Argue as in (α). Let ǫ > 0. Then there is a non-empty J ∈ I(S) such
that θ(SI(1, |dvvv|)− SJ(1, |dvvv|)) ≤ ǫ whenever I ∈ I(S) includes J . Now

θ(vσ − vmax J) = θ(SJ∪{σ}(1, |dvvv|)− SJ(1, |dvvv|) ≤ ǫ

whenever max J ≤ σ ∈ S. Because L0 is complete, this is enough to ensure that v↑ is defined. QQQ

(γγγ) Set v′τ = v+↓ +
∫
S∧τ |dvvv| for τ ∈ S. Because v↓ ∈ L0(Aτ ) for every τ ∈ S (613Bj), vvv′ = 〈v′τ 〉τ∈S

is fully adapted. If σ ≤ τ in S, v′τ − v′σ =
∫
S∩[σ,τ ]

|dvvv| ≥ 0, so vvv′ is non-decreasing. Because v+↓ ≥ 0, vvv′ is

non-negative. As limτ↑S v′τ = v+↓ +
∫
S |dvvv| is defined (613J(f-ii)), this is supτ∈S v

′
τ and vvv′ is order-bounded.

(δδδ) Set v′′τ = v′τ − vτ for τ ∈ S, so that vvv′′ = 〈v′′τ 〉τ∈S is fully adapted. If σ ≤ τ in S,

v′′τ − v′′σ =

∫

S∧τ
|dvvv| −

∫

S∧σ
|dvvv| − vτ + vσ

=

∫

S∩[σ,τ ]

|dvvv| − vτ + vσ ≥ |vτ − vσ| − vτ + vσ

(as in (α) of (ii)⇒(iii) above)

≥ 0.

So vvv′′ is non-decreasing. We have

lim
τ↓S

v′′τ = v+↓ + lim
τ↓S

∫

S∧τ
|dvvv| − v↓ = v+↓ − v↓

(613J(f-i))

≥ 0,

so vvv′′ is non-negative. At the other end,

limτ↑S v′′τ = v+↓ + limτ↑S
∫
S∧τ |dvvv| − limτ↑S vτ = v+↓ +

∫
S |dvvv| − v↑

is defined, so this must be an upper bound of {v′′τ : τ ∈ S}, and vvv′′ is order-bounded.
(ǫǫǫ) Accordingly vvv′ − vvv′′ = vvv witnesses that (i) is true.

614K Definitions Let S be a sublattice of T and vvv a fully adapted process with domain S.

(a) vvv is of bounded variation if it satisfies the conditions of Theorem 614J.

(b) vvv is locally of bounded variation if vvv↾S ∧ τ is of bounded variation for every τ ∈ S.

614L Proposition Let S be a sublattice of T and vvv a fully adapted process with domain S.
(a) If vvv is (locally) of bounded variation it is (locally) order-bounded.
(b)(i) If vvv is of bounded variation and S ′ is a sublattice of S, then vvv↾S ′ is of bounded variation and∫

S′ |dvvv| ≤
∫
S |dvvv|.

(ii) If vvv is locally of bounded variation and S ′ is a sublattice of S, then vvv↾S ′ is locally of bounded
variation.

(c) If τ ∈ S, then vvv is (locally) of bounded variation iff vvv↾S ∧ τ and vvv↾S ∨ τ are both (locally) of bounded
variation.

proof (a) Since Mo-b(S) is closed under subtraction (614F(c-ii)), it follows at once from 614J(i) that if vvv is
of bounded variation then it is order-bounded. Applying this to S ∧ τ for τ ∈ S, we see that if vvv is locally
of bounded variation it is locally order-bounded.
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(b)(i) vvv satisfies condition (i) of 614J, so vvv↾S ′ also does, and
∫
S′ |dvvv| ≤

∫
S′ |dvvv| by the last formula in

614J.

(ii) If vvv is locally of bounded variation and τ ∈ S ′, then vvv↾S ∧ τ is of bounded variation and S ′ ∧ τ is a
sublattice of S ∧ τ , so vvv↾S ′∧ τ is of bounded variation; as τ is arbitrary, vvv↾S ′ is locally of bounded variation.

(c) If vvv is (locally) of bounded variation, then vvv↾S ∧ τ and vvv↾S ∨ τ are (locally) of bounded variation
because S ∧ τ and S ∨ τ are sublattices of S.

If vvv↾S ∧ τ and vvv↾S ∨ τ are of bounded variation then
∫
S∧τ |dvvv| and

∫
S∨τ |dvvv| are defined, so

∫
S |dvvv| is

defined (613J(c-i) once more) and vvv is of bounded variation.
If vvv↾S ∧ τ and vvv↾S ∨ τ are locally of bounded variation and σ ∈ S, then vvv↾(S ∧σ)∧ τ = vvv↾(S ∧ τ)∧σ and

vvv↾(S ∧σ)∨ τ = vvv↾(S ∨ τ)∧ (σ ∨ τ) are of bounded variation, so vvv↾S ∧σ is of bounded variation; accordingly
vvv is locally of bounded variation.

614M Proposition The Poisson process, as described in 612U, is locally of bounded variation.

proof It is non-negative and non-decreasing, so 614Ic applies.

614N Lemma Let S be a sublattice of T and ū ∈ (L0)+. Then {vvv : vvv ∈Mfa(S) is of bounded variation,∫
S |dvvv| ≤ ū} is closed in (L0)S for its product topology.

proof The point is just that if I ∈ I(S), then vvv 7→ SI(1, |dvvv|) : (L0)S → L0 is continuous, so

A = {vvv : vvv ∈ (L0)S , SI(1, |dvvv|) ≤ ū for every I ∈ I(S)}
is closed in (L0)S . Now the set Mfa(S) of fully adapted processes with domain S is closed in (L0)S (613Bl),
so {vvv : vvv ∈Mbv(S),

∫
S |dvvv| ≤ ū} = A ∩Mfa(S) is closed.

614O Cumulative variation Let S be a sublattice of T , and vvv a process with domain S which is locally
of bounded variation. Then v↑τ =

∫
S∧τ |dvvv| is defined for every τ ∈ S (614J-614K), and vvv↑ = 〈

∫
S∧τ v

↑
τ 〉τ∈S

is fully adapted (613J(e-ii)). I will call vvv↑ the cumulative variation of vvv.

614P Proposition Let S be a sublattice of T , vvv = 〈vσ〉σ∈S a process which is locally of bounded
variation, and vvv↑ = 〈v↑τ 〉τ∈S its cumulative variation.

(a)(i) If σ ≤ τ in S, then
v↑τ − v↑σ =

∫
S∩[σ,τ ]

|dvvv| ≥ |vτ − vσ| ≥ 0.

(ii) vvv↑ is non-negative and non-decreasing and has starting value 0 if S is not empty.
(iii) vvv↑ + vvv and vvv↑ − vvv are non-decreasing.
(iv) If S is non-empty, vvv has a starting value.
(v) vvv is of bounded variation iff limτ↑S v↑τ = sup |vvv↑| is defined, and in this case the limit is

∫
S |dvvv|.

(b) If τ ∈ S then, writing (vvv↾S ∧ τ)↑ and (vvv↾S ∨ τ)↑ for the cumulative variations of vvv↾S ∧ τ and vvv↾S ∨ τ ,
(vvv↾S ∧ τ)↑ = vvv↑↾S ∧ τ , (vvv↾S ∨ τ)↑ = vvv↑↾S ∨ τ − v↑τ1.

(c) Suppose that I ∈ I(S) is not empty and (τ0, . . . , τn) linearly generates the I-cells (611L).
(i)

v↑τi+1
− v↑τi ≤ |vτi+1

− vτi |+ v↑max I − v↑min I − SI(1, |dvvv|)
for every i < n.

(ii) If vvv is of bounded variation, write w for
∫
S |dvvv| − SI(1, |dvvv|), and let v↓ be the starting value of vvv.

(α) If τ ∈ S ∧ τ0, then v↑τ ≤ |vτ − v↓|+ w.
(β) If i < n and τ ∈ S ∩ [τi, τi+1] then v

↑
τ − v↑τi ≤ |vτ − vτi |+ w.

(γ) If τ ∈ S ∨ τn then v↑τ − v↑τn ≤ |vτ − vτn |+ w.

proof (a)(i) Immediate from 613J(c-i) and 614J.

(ii) By 614J, vvv↑ is non-negative; by (i) here, it is non-decreasing; by 613J(f-i) again its starting value
is 0 if S 6= ∅.
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(iii) If σ ≤ τ in S, then
(v↑τ ± vτ )− (v↑σ ± vσ) = v↑τ − v↑σ ∓ (vτ − vσ) ≥ v↑τ − v↑σ − |vτ − vσ| ≥ 0

by (i) above.

(iv) Suppose to begin with that vvv is non-negative and non-decreasing. Take any τ ∈ S. Then vvv↾S ∧ τ
is order-bounded (614Ic) so has a starting value, as noted in 614Id, and this will also be the starting value
of vvv.

Generally, vvv is expressible as vvv′ − vvv′′ where vvv′ = 〈v′σ〉σ∈S and vvv′′ = 〈v′′σ〉σ∈S are non-negative and non-
decreasing. Now

limσ↓S vσ = limσ↓S v′σ − v′′σ = limσ↓S v′σ − limσ↓S v′′σ

is defined and is the starting value of vvv.

(v) Because vvv↑ is non-negative and non-decreasing, limτ↑S v↑τ = sup |vvv↑| if either is defined in L0(A).
If vvv is of bounded variation, ∫

S |dvvv| = v↑τ +
∫
S∨τ |dvvv| ≥ v↑τ

for every τ ∈ S, so sup |vvv↑| is defined and less than or equal to
∫
S |dvvv|. If sup |vvv↑| is defined, then whenever

τ0 ≤ . . . ≤ τn in S,
∑n−1
i=0 |vτi+1

− vτi | ≤
∫
S∧τn

|dvvv| ≤ sup |vvv↑|,

so
∫
S |dvvv| is defined and is at most sup |vvv↑|. Thus in either case we have equality.

(b) Of course

(vvv↾S ∧ τ)↑ = 〈
∫
S∧σ |dvvv|〉σ∈S∧τ = vvv↑↾S ∧ τ .

On the other hand, for σ ∈ S ∨ τ ,

v↑σ =

∫

S∧σ
|dvvv| =

∫

(S∧σ)∧τ
|dvvv|+

∫

(S∧σ)∨τ
|dvvv|

(613G(a-i))

= v↑τ +

∫

(S∨τ)∧σ
|dvvv|,

so

vvv↑↾S ∨ τ = v↑τ1+ (vvv↾S ∨ τ)↑.

(c)(i)

SI(1, |dvvv|) = |vτi+1
− vτi |+

∑

j<n
j 6=i

|vτj+1
− vτj | ≤ |vτi+1

− vτi |+
∑

j<n
j 6=i

v↑τj+1
− v↑τj

= |vτi+1
− vτi |+ SI(1, dvvv

↑)− v↑τi+1
+ v↑τi

= |vτi+1
− vτi |+ v↑max I − v↑min I − v↑τi+1

+ v↑τi ;

rearranging, we have the result.

(ii)(ααα) If σ ∈ S ∧ τ then v↑τ − v↑σ ≤ |vτ − vσ| + w. PPP Set J = {σ, τ, τ0, . . . , τn}. Then J ∈ I(S) and
(σ, τ, τ0, . . . , τn) linearly generates the J-cells, so

v↑τ − v↑σ ≤ |vτ − vσ|+ v↑τn − v↑σ − SJ(1, |dvvv|) ≤ |vτ − vσ|+
∫

S
|dvvv| −

n−1∑

i=0

|vτi+1
− vτi |

= |vτ − vσ|+
∫

S
|dvvv| − SI(1, |dvvv|) = |vτ − vσ|+ w. QQQ
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Now

v↑τ = limσ↓S v↑τ − v↑σ ≤ limσ↓S |vτ − vσ|+ w = |vτ − v↓|+ w.

(βββ) Set J = {τ0, . . . , τi, τ, τi+1, . . . , τn}. Then
v↑τ − v↑τi ≤ |vτ − vτi |+ v↑τn − v↑τ0 − SJ(1, |dvvv|) ≤ |vτ − vτi |+ w.

(γγγ) This time, set J = {τ0, . . . , τn, τ}, so that

v↑τ − v↑τn ≤ |vτ − vτn |+ v↑τ − v↑τ0 − SJ(1, |dvvv|) ≤ |vτ − vτn |+ w.

614Q Proposition Let S be a sublattice of T , and Ŝ its covered envelope.
(a) Write Mbv =Mbv(S) for the set of fully adapted processes of bounded variation with domain S.

(i) h̄vvv ∈Mbv whenever vvv ∈Mbv and h : R → R is Lipschitz on every bounded interval.
(ii) Mbv is an f -subalgebra of Mo-b(S).
(iii) The space Msimp of simple processes with domain S is an f -subalgebra of Mbv closed under h̄ for

every Borel measurable h : R → R.
(iv) If vvv ∈Mfa(S) and v̂vv is its fully adapted extension to Ŝ, then

(α) vvv is non-decreasing iff v̂vv is non-decreasing,
(β) vvv is of bounded variation iff v̂vv is of bounded variation, and in this case

∫
Ŝ |dv̂vv| =

∫
S |dvvv| and the

cumulative variation v̂vv↑ of v̂vv is the fully adapted extension of the cumulative variation vvv↑ of vvv.
(b) Write Mlbv = Mlbv(S) for the set of fully adapted processes with domain S which are locally of

bounded variation.
(i) If vvv ∈Mlbv(S) then vvv↾S ′ is locally of bounded variation for every sublattice S ′ of S.
(ii) h̄vvv ∈Mlbv whenever vvv ∈Mlbv and h : R → R is Lipschitz on every bounded interval.
(iii) Mlbv is an f -subalgebra of Mlob(S).
(iv) If vvv ∈ Mfa(S) then vvv is locally of bounded variation iff it is expressible as the difference of two

non-negative non-decreasing fully adapted processes.
(v) If vvv ∈ Mfa(S), then vvv is locally of bounded variation iff its fully adapted extension to Ŝ is locally

of bounded variation, and in this case the cumulative variation of v̂vv is the fully adapted extension of the
cumulative variation of vvv.

proof If S is empty, this is trivial. So suppose otherwise.

(a)(i) Define g : R → R by setting g(0) = 0 and

g(x) = sup−|x|≤y<y′≤|x|
|h(y′)−h(y)|

y′−y

for x 6= 0. Then g is monotonic on both ]−∞, 0] and [0,∞[, so is Borel measurable. As

|h(y′)− h(y)| ≤ g(x)|y′ − y| whenever |y|, |y′| ≤ x in R,

we shall have

|h̄(v′)− h̄(v)| ≤ ḡ(u)× |v′ − v| whenever |v|, |v′| ≤ u in L0.

Now suppose that vvv = 〈vσ〉σ∈S is of bounded variation. By 614La, it is order-bounded; let u be an upper
bound of {vσ : σ ∈ S}. If τ0 ≤ . . . ≤ τn in S, then

n−1∑

i=0

|h̄(vτi+1
)− h̄(vτi)| ≤

n−1∑

i=0

ḡ(u)× |vτi+1
− vτi |

= ḡ(u)×
n−1∑

i=0

|vτi+1
− vτi | ≤ ḡ(u)×

∫

S
|dvvv|

(614J). Thus h̄vvv satisfies (ii) of 614J and is of bounded variation.

(ii) If vvv, vvv′ are non-negative non-decreasing processes defined on S, then of course vvv+vvv′ is non-negative
and non-decreasing. Condition (i) of 614J now makes it plain that the sum of processes of bounded variation
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is of bounded variation. From (i) we see that h̄vvv ∈ Mbv whenever vvv ∈ Mbv and h : R → R is convex, so
612Bc tells us that Mbv is an f -subalgebra of

∏
σ∈S L

0(Aσ) and therefore of Mo-b.

(iii) Let vvv = 〈vσ〉σ∈S be a simple process. If vvv is constant, then surely it is of bounded variation.
Otherwise, let (τ0, . . . , τn) be a breakpoint sequence for vvv and v∗ its starting value. Consider the simple
process www = 〈wσ〉σ∈S with the same breakpoint sequence defined by saying that

[[σ < τ0]] ⊆ [[wσ = v∗]], [[τn ≤ σ]] ⊆ [[wσ = v∗ + |vτ0 − v∗|+
∑n−1
i=0 |vτi+1

− vτi |]],

[[τj ≤ σ]] ∩ [[σ < τj+1]] ⊆ [[wσ = v∗ + |vτ0 − v∗|+
∑j−1
i=0 |vτi+1

− vτi |]]
for 0 ≤ j < n. Since (v∗, wτ0 , . . . , wτn) and (0, wτ0 − vτ0 , . . . , wτn − vτn) are both non-decreasing, www and
www − vvv are both non-decreasing, so their difference vvv is of bounded variation.

Thus Msimp ⊆Mbv. Now refer to 612L for its other properties.

(iv) Express vvv and v̂vv as 〈vσ〉σ∈S and 〈v̂σ〉σ∈Ŝ .

(ααα) If v̂vv is non-decreasing then of course vvv = v̂vv↾S is non-decreasing. If vvv is non-decreasing and τ0 ≤ τ1
in Ŝ, take any non-zero a ∈ A. Then there are a σ0 ∈ S such that a0 = a ∩ [[τ0 = σ0]] is non-zero, and a
σ1 ∈ S such that a1 = a0 ∩ [[τ1 = σ1]] is non-zero. Now

a1 ⊆ [[v̂τ0 = vσ0
]] ∩ [[v̂τ1 = vσ1

]] ∩ [[σ0 ≤ σ1]]

⊆ [[v̂τ0 = vσ0
]] ∩ [[v̂τ1 = vσ0∨σ1

]] ⊆ [[v̂τ0 ≤ v̂τ1 ]].

As a is arbitrary, v̂′τ0 ≤ v̂′τ1 . So v̂vv is non-decreasing.

(βββ) If v̂vv is of bounded variation then vvv = v̂vv↾S is of bounded variation, by 614L(b-i) above. If vvv is
of bounded variation, express it as vvv′ − vvv′′ where vvv′ = 〈v′σ〉σ∈S , vvv′′ are order-bounded non-negative non-

decreasing fully adapted processes. Let v̂vv′, v̂vv′′ be their fully adapted extensions to Ŝ, so that v̂vv = v̂vv′ − v̂vv′′

(612Qb). By (α), v̂vv′ and v̂vv′′ are non-decreasing; by 614G(b-i) they are order-bounded; and by 612Qb again
they are non-negative. So they witness that v̂vv is of bounded variation.

Now 613T, with uuu = 1 and ψ(σ, τ) = |v̂τ − v̂σ| for σ ≤ τ in Ŝ, tells us that
∫
S |dvvv| =

∫
Ŝ |dv̂vv|. And if τ ∈ S

then Ŝ ∧ τ is the covered envelope of S ∧ τ (611M(e-i)) and
∫
S∧τ |dvvv| =

∫
Ŝ∧τ |dv̂vv|, so vvv↑ = v̂vv↑↾S and v̂vv↑ is

the fully adapted extension of vvv↑.

(b)(i)-(iii) These follow immediately from 614L and (a-i).

(iv)(ααα) If vvv = 〈vσ〉σ∈S is non-negative and non-decreasing and τ ∈ S, then vvv↾S ∧ τ takes all its values
in [0, vτ ] so is order-bounded and of bounded variation; as τ is arbitrary, vvv is locally of bounded variation.
By (iii), if vvv is the difference of two non-negative non-decreasing processes then it is locally of bounded
variation.

(βββ) Conversely, if vvv is locally of bounded variation, then it has a cumulative variation vvv↑ = 〈v↑σ〉σ∈S
(614O), which is non-negative and non-decreasing and has starting value 0 (614P(a-ii)). By 614P(a-iv),
v↓ = limσ↓S vσ is defined. We have

v↑τ = limσ↓S v↑τ − v↑σ ≥ limσ↓S |vτ − vσ| = |vτ − v↓| ≥ vτ − v↓

so v↑τ + v+↓ ≥ vτ , for every τ ∈ S. Now if we set www = vvv↑ + v+↓ 1, both www and www − vvv will be non-negative and

non-decreasing, and vvv = www − (www − vvv) is expressed as a difference of non-negative non-decreasing processes.

(v) We can follow the proof of (a-iv-β) to show that v̂vv is locally of bounded variation iff vvv is. In this

case, v̂↑τ =
∫
Ŝ∧τ |dv̂vv| is defined for every τ ∈ Ŝ, and will be equal to

∫
S∧τ |dvvv| = v↑τ if τ ∈ S, by 613T. So v̂vv↑

extends vvv↑ and must be the fully adapted extension of vvv↑.

614R Lemma If I ∈ I(T ) is non-empty and uuu = 〈uσ〉σ∈I , vvv = 〈vσ〉σ∈I are fully adapted processes, then

|SI(uuu, dvvv)| ≤ min(sup |uuu| ×
∫
I
|dvvv|, sup |vvv| × (

∫
I
|duuu|+ 2 sup |uuu|).

proof If #(I) ≤ 1 this is trivial. Otherwise, take (τ0, . . . , τn) linearly generating the I-cells. Then
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|SI(uuu, dvvv)| = |
n−1∑

i=0

uτi × (vτi+1
− vτi)| ≤

n−1∑

i=0

|uτi × (vτi+1
− vτi)|

≤ sup |uuu| ×
n−1∑

i=0

|vτi+1
− vτi | = sup |uuu| ×

∫

I

|dvvv|

and also

|SI(uuu, dvvv)| = |
n−1∑

i=0

(uτi − uτi+1
)× vτi+1

+ uτn × vτn − uτ0 × vτ0 |

≤ sup |vvv| × (

∫

I

|duuu|+ |uτn |+ |uτ0 |) ≤ sup |vvv| × (

∫

I

|duuu|+ 2 sup |uuu|).

614S Proposition Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S two processes of bounded
variation with domain S. Then

∫
S uuu dvvv is defined and

|
∫
S uuu dvvv| ≤ min(sup |uuu| ×

∫
S |dvvv|, sup |vvv| × (

∫
S |duuu|+ 2 sup |uuu|)).

proof Note first that uuu and vvv are order-bounded (614La), so sup |uuu| and sup |vvv| are defined.

(a) To begin with, consider the case in which both uuu and vvv are non-decreasing and non-negative.

(i) If I ∈ I(S) is non-empty and (τ0, . . . , τn) linearly generate the I-cells, then

0 ≤ uτ0 × (vτn − vτ0) = uτ0 ×
n−1∑

i=0

(vτi+1
− vτi) ≤

n−1∑

i=0

uτi × (vτi+1
− vτi)

= SI(uuu, dvvv) ≤
n−1∑

i=0

uτn × (vτi+1
− vτi) = uτn × (vτn − vτ0) ≤ sup |uuu| × sup |vvv|.

(ii) If I ⊆ J in I(S), then SI(uuu, dvvv) ≤ SJ(uuu, dvvv). PPP If I is empty this is trivial. Otherwise, take
(τ0, . . . , τn) linearly generating the I-cells. Then

SJ(uuu, dvvv) = SJ∩[min J,τ0](uuu, dvvv) +
n−1∑

i=0

SJ∩[τi,τi+1](uuu, dvvv) + SJ∩[τn,max J](uuu, dvvv)

(613G(a-ii))

≥ 0 +
n−1∑

i=0

uτi × (vτi+1
− vτi) + 0

(by (i) above)

= SI(uuu, dvvv). QQQ

(iii) Thus {SI(uuu, dvvv) : I ∈ I(S)} is upwards-directed. As it is also bounded above in L0, by (i), it has
a supremum, which is limI↑I(S) SI(uuu, dvvv) =

∫
S uuu dvvv.

(c) Thus the integral is defined when both uuu and vvv are non-negative and non-decreasing; as integration
is bilinear (613Jb), the integral is defined for all processes uuu, vvv of bounded variation. Concerning the bound
for |

∫
S uuu dvvv|, we see from 614R that if I ∈ I(S) then

|SI(uuu, dvvv)| ≤ min
(
sup |uuu↾I| ×

∫

I

|dvvv|, sup |vvv↾I| × (

∫

I

|duuu|+ 2 sup |uuu↾I|)
)

≤ min
(
sup |uuu| ×

∫

S
|dvvv|, sup |vvv| × (

∫

S
|duuu|+ 2 sup |uuu|)

)
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(using 614L(b-i)). Accordingly

|
∫

S
uuu dvvv| = | lim

I↑S
SI(uuu, dvvv)| = lim

I↑S
|SI(uuu, dvvv)|

≤ min
(
sup |uuu| ×

∫

S
|dvvv|, sup |vvv| × (

∫

S
|duuu|+ 2 sup |uuu|)

)
.

614T Proposition Let S be a sublattice of T , and uuu, vvv fully adapted processes with domain S such
that uuu is order-bounded, vvv is of bounded variation and

∫
S uuu dvvv is defined. Then the indefinite integral iivvv(uuu)

(613O) is of bounded variation, and
∫
S |d(iivvv(uuu))| ≤ sup |uuu| ×

∫
S |dvvv|.

proof Set zτ =
∫
S∧τ uuu dvvv for τ ∈ S. As noted in 613Oa and 613O(b-i), iivvv(uuu) = 〈zτ 〉τ∈S is fully adapted

and has domain S. Now suppose that τ0 ≤ . . . ≤ τn in S. For i < n write Si for S∩ [τi, τi+1] = (S∧τi+1)∨τi.
Then

n−1∑

i=0

|zτi+1
− zτi | =

n−1∑

i=0

|
∫

Si

uuu dvvv| ≤
n−1∑

i=0

sup |u↾Si| ×
∫

Si

|dvvv|

(614S)

≤ sup |uuu| × (

∫

S∧τ0
|dvvv|+

n−1∑

i=0

∫

Si

|dvvv|+
∫

S∨τn
|dvvv|)

= sup |uuu| ×
∫

S
|dvvv|

(613J(c-ii)). Thus iivvv(uuu) satisfies the condition 614J(ii) and is of bounded variation, with
∫
S |d(iivvv(uuu))| ≤

sup |uuu| ×
∫
S |dvvv|.

614U Following on from 612H, I give a result on the construction of order-bounded processes and
processes of bounded variation.

Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Σt〉t≥0 a filtration of σ-subalgebras of Σ
such that every µ-negligible set belongs to every Σt. Let (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) be the associated
stochastic integration structure as in 612H; for a stopping time h : Ω → [0,∞] let h• be the corresponding
member of T . Suppose that 〈Xt〉t≥0 is a progressively measurable process on Ω, with associated fully
adapted process xxx = 〈xτ 〉τ∈Tf

.
(a) If {Xs(ω) : s ≥ 0} is bounded for almost every ω ∈ Ω, then xxx is order-bounded.
(b) If s 7→ Xs(ω) : [0,∞[ → R is of bounded variation for almost every ω ∈ Ω, then xxx is of bounded

variation.

proof (a)(i) We need the following fact which was left as an exercise in §364. Suppose that V : Ω → [0,∞[
is any function. Let F be the set of Σ-measurable functions f : Ω → R such that f ≤ V . Then A = {f• :
f ∈ F} is bounded above in L0. PPP For n ∈ N set cn = supu∈A [[u > n]]. A is ccc (322G) so there is a
countable set In ⊆ A such that cn = supu∈In [[u > n]] (316E). Let 〈fn〉n∈N be a sequence in F such that⋃
n∈N In = {f•

n : n ∈ N}. Set f(x) = supn∈N fn(x) for x ∈ X; then f ∈ F and f•

n ≤ f• for every n ∈ N.

Setting v = f• ∈ L0, u ≤ v for every u ∈ ⋃
n∈N In, so cn ⊆ [[v > n]] for every n, and infn∈N cn = 0. By

364L(a-ii) again, A is bounded above in L0. QQQ

(ii) Set Ω′ = {ω : {Xs(ω) : s ≥ 0} is bounded}, and define

V (ω) = sup
s≥0

|Xs(ω)| if ω ∈ Ω′,

= 0 if ω ∈ Ω \ Ω′.
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Let A be the corresponding order-bounded subset of L0 as defined in (i). If h : Ω → [0,∞[ is a stopping
time, then Xh is measurable and |Xh(ω)| = |Xh(ω)(ω)| ≤ V (ω) for every ω ∈ Ω′, so |X•

h| ∈ A. But this
means that |xτ | ∈ A for every τ ∈ Tf and xxx is order-bounded.

(b) Set

Ω′′ = {ω : s 7→ Xs(ω) : [0,∞[ → R is of bounded variation},
so that Ω′′ is conegligible. For ω ∈ Ω let V (ω) ∈ [0,∞[ be the total variation of s 7→ Xs(ω) : [0,∞[ → R

(224A) if ω ∈ Ω′′, and zero otherwise. As in (a-i), let F be the set of Σ-measurable functions f : Ω → R

such that f ≤ V , and A = {f• : f ∈ F}; then A is bounded above in L0.
Suppose that τ0 ≤ . . . ≤ τn in Tf . Then there are stopping times h0, . . . , hn : Ω → [0,∞[ such that

h•

i = τi for i ≤ n (612H(a-ii)), and hi ≤a.e. hi+1 for i < n; replacing each hi by supj≤i hj × χΩ′′ if
necessary, we can arrange that h0 ≤ . . . ≤ hn and hi(ω) = 0 whenever i ≤ n and ω ∈ Ω \ Ω′′. In this case,∑n−1
i=0 |Xhi+1(ω)(ω)−Xhi(ω)(ω)| ≤ V (ω) for each ω ∈ Ω. But this means that

∑n−1
i=0 |xτi+1

− xτi | ∈ A. Thus

{∑n−1
i=0 |xτi+1

− xτi | : τ0 ≤ . . . ≤ τn in Tf} ⊆ A

is bounded above in L0(A) and xxx is of bounded variation.

614X Basic exercises (a) Suppose that A = {0, 1}. Let S be a non-empty subset of T , f : S → R a
function and uuu = {(ť, f(t)χ1) : t ∈ S} the corresponding process with domain S = {ť : t ∈ S}, as in 613W.

(i) Show that uuu is a simple process with breakpoint string (ť0, . . . , ťn) iff f is constant on each of the
intervals

S ∩ ]−∞, t0[, S ∩ [ti, ti+1[ for i < n, S ∩ [tn,∞[.

(ii) Now suppose that g : S → R is another function such that g↓ = lims↓S g(s) and g↑ = lims↑S g(s)
are defined. Let vvv be the process corresponding to g. Show that∫

S uuu dvvv =
(
f↓(g(t0)− g↓) +

∑n−1
i=0 f(ti)(g(ti+1)− g(ti)) + f(tn)(g↑ − g(tn))

)
χ1

(b) Suppose that S is a non-empty sublattice of T , uuu = 〈uσ〉σ∈S is a simple fully adapted process with
a breakpoint string (τ0, . . . , τn), and vvv = 〈vσ〉σ∈S is a fully adapted process such that v↓ = limσ↓S vσ is
defined. Show that

∫
S∧τ uuu dvvv is defined and equal to

u↓ × (vτ0∧τ − v↓) +
∑n−1
i=0 uτi × (vτi+1∧τ − vτi∧τ ) + uτn × (vτ − vτn∧τ )

for every τ ∈ S.

(c) In 614Fb, show that if uuu is simple then vvv is simple.

(d) Suppose that A = {0, 1}, as in 613W and 614Xa, and that T is not empty. Let f : T → R be a
function. Show that f represents an order-bounded process iff it is bounded, and a process of bounded
variation iff it is of bounded variation.

(e) Suppose that T = [0,∞[. Show that the identity process (612F) and the standard Poisson process
(612U) are locally of bounded variation, and that Brownian motion (612T) is locally order-bounded, but
that none of these is order-bounded.

>>>(f) Suppose that S is a sublattice of T , uuu = 〈uσ〉σ∈S is a fully adapted process, and z ∈ L0(A∩⋂σ∈S Aσ).
(i) Show that if uuu is order-bounded then zuuu is order-bounded and sup |zuuu| = |z| × sup |uuu|. (ii) Show that if
uuu is of bounded variation then zuuu is of bounded variation and

∫
S |d(zuuu)| = |z| ×

∫
S |duuu|.

(g) Let S be a sublattice of T and uuu a simple process with domain S. (i) Show that uuu is of bounded
variation. (ii) Show that the cumulative variation of uuu is simple.

(h) In 614Ub, show that if we set fω(s) = Xs(ω) for s ≥ 0 and ω ∈ Ω, then (t, ω) 7→ Var[0,t] fω represents
the cumulative variation of xxx.
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614Y Further exercises (a) Show that previsibly simple processes (612Ye) are of bounded variation.

(b) Show that Brownian motion is not locally of bounded variation. (Hint : for n ≥ 1, i < n set

tin = i/n; for i < n set zni = |wťi+1,n
− wťin |, zn =

∑n−1
i=0 zni. Show that zni has expectation

2√
2nπ

and

variance
1

n
(1− 2

π
), and hence, using Lindeberg’s theorem (274F), that limn→∞ µ̄[[zn ≥ 2n√

2nπ
]] =

1

2
.)

(c) In the construction described in 613P, show that uuu and vvv are order-bounded but not of bounded
variation.

614 Notes and comments This volume is supposed to be about stochastic integration. However a very
large part of the work we need to do will concern the structure of various types of stochastic process.
Necessarily I started with fully adapted processes (§612). These were sufficient for the definition of the
Riemann-sum integral in §613. Now we have three further classes. Integration of, and with respect to,
simple processes really is simple (614B-614D). From 614E to 614R, ‘integration’ hardly appears except in
the formula

∫
S |dvvv|, which is really just an abbreviation for

sup{∑n−1
i=0 |vτi+1

− vτi | : τ0 ≤ . . . ≤ τn in S}
(614J). Again, in §615, to follow, the bulk of the section will be devoted to properties of the space of
‘moderately oscillatory’ processes. Only in §616 will integration again move to front centre stage. But as
we go through the foundations of the theory, I will drip-feed results about integrals involving the special
classes of stochastic process being examined, as in 614S-614T.

The point of 614Ba is that in the formula of 612J defining ‘simple process’ there is a canonical choice
of the starting value u∗ definable from the process uuu. I delayed the result to this point because it speaks
of ‘limits’, and it seems convenient to treat this as a limit for the topology of convergence in measure; but
if you look at the proof you will see that the limit required is really an order-limit, and could have been
described in the context of an arbitrary Dedekind complete Boolean algebra A, as in §612.

I hope that you will recognise 614J(i)⇔(ii) as an elaborate form of the classical result 224D concerning
real functions of bounded variation. The difference now is that I have set up a definition of an integral∫
|dvvv|. We shall find that there are many reasons why Brownian motion is not locally of bounded variation.

But the fact is of such importance that in 614Yb I suggest a method of proof based on ideas already covered
in Volume 2.

It will transpire that often an indefinite integral inherits properties of the integrator. So far we have two
cases: an indefinite integral with respect to a simple process is simple (614D) and an indefinite integral of an
order-bounded process with respect to a process of bounded variation is again of bounded variation (614T).
In both cases the hypothesis has to include a clause ‘

∫
uuu dvvv is defined’ because we are far away from any

clear idea of which processes uuu can be expected to appear in applications.
In 614R you will see that a key step is an equality

∑n−1
i=0 uτi × (vτi+1

− vτi) = −∑n−1
i=0 vτi+1

× (uτi+1
− uτi)− vτ0 × uτ0 + vτn × uτn ,

which is a manipulation which I expect you have seen before. But this is not a relationship between SI(uuu, dvvv)

and SI(vvv, duuu), because the latter would have to look at
∑n−1
i=0 vτi×(uτi+1

−uτi); the Riemann-sum integral of
§613 insists on taking tags at the left-hand ends of intervals rather than the right-hand ends. The difference
is of the form

∑n−1
i=0 (vτi+1

− vτi)× (uτi+1
− uτi), which will appear in §617 associated with the ‘covariation’

of uuu and vvv, and need not vanish in the limit.
This volume is devoted to the thesis that stochastic processes, at least in respect to stochastic integration,

are best regarded as abstract fully adapted processes in the sense of §612. But most of the ideas of the
theory were of course developed in the context of classical processes 〈Xt〉t≥0 of real-valued functions on
probability spaces. I have therefore given a couple of results (612H, 614U and 614Xa(i)) showing that the
types of process I have introduced here correspond, in some sense, to natural conditions on sample paths
t 7→ Xt(ω), as in 614Xd. You will see that all the non-trivial results are one-way; given a property of typical
sample paths, we can deduce a property of the corresponding abstract process. There are theorems in the
other direction (e.g., 633R below), but they need different techniques, starting with the Stone representation
of measure algebras (321J).
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Version of 28.10.21/9.8.22

615 Moderately oscillatory processes

I come now to the class of integrands in the basic theorem 616K, the ‘moderately oscillatory’ processes.
I have chosen a path which starts with a natural linear space topology on the space of order-bounded
processes, the ucp topology (615B). This gives a straightforward definition of the space of moderately
oscillatory processes (615E) with their elementary properties (615F-615H). When the domain is finitely full,
we have an alternative definition in terms of convergence along monotonic sequences of stopping times (615I-
615N). Classical stochastic processes with càdlàg sample paths give rise to locally moderately oscillatory
processes (615P).

615A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure, as defined in the
notes to §613. ForA ⊆ T and τ ∈ T , A∧τ = {σ∧τ : σ ∈ A} andA∨τ = {σ∨τ : σ ∈ A}. For w ∈ L0 = L0(A),
θ(w) = E(|w| ∧ χ1) as in 613Ba; limits in L0 will be taken with respect to the topology of convergence in
measure. If S is a sublattice of T , Mfa(S) is the space of fully adapted processes with domain S (612I),
Mo-b(S) ⊆ Mfa(S) is the space of order-bounded processes (614F) and Mbv(S) ⊆ Mo-b(S) is the space of
processes of bounded variation (614Q). For an order-bounded process === 〈uσ〉σ∈S , sup |uuu| = supσ∈S |uσ|. 1
will be the process with constant value χ1.

615B The ucp topology Let S be a sublattice of T .

(a) For uuu ∈Mo-b(S), set
θ̂(uuu) = θ(sup |uuu|).

(b) θ̂ is an F-norm on Mo-b(S). PPP The point is that

sup |uuu+ vvv| ≤ sup |uuu|+ sup |vvv|, sup |αuuu| = |α| sup |uuu|
for all uuu, vvv ∈ Mo-b = Mo-b(S). Since θ is an F-norm on L0, and θ(u) ≤ θ(v) whenever |u| ≤ |v|, it follows
at once that

θ̂(uuu+ vvv) ≤ θ̂(uuu) + θ̂(vvv), θ̂(αuuu) ≤ θ̂(uuu)

whenever uuu, vvv ∈Mo-b and |α| ≤ 1, and that

limα→0 θ̂(αuuu) = 0

for every uuu ∈Mo-b. Finally, if θ̂(uuu) = 0, then θ(uσ) = 0 and uσ = 0 for every σ ∈ S, so uuu = 0. QQQ

(c) Accordingly θ̂ defines a metrizable linear space topology (2A5B). I will call this the ucp topology
on Mo-b(S) and the associated uniformity the ucp uniformity on Mo-b(S).

Warning! The phrase ‘ucp topology’ is commonly used to mean something closer to the local ucp
topology described in 615Xb.

615C Proposition Let S be a sublattice of T , and give Mo-b =Mo-b(S) its ucp topology.
(a) If h : R → R is continuous, then h̄uuu ∈ Mo-b for every uuu ∈ Mo-b, and uuu 7→ h̄uuu : Mo-b → Mo-b is

continuous.
(b)(i) (uuu,vvv) 7→ uuu× vvv :Mo-b ×Mo-b →Mo-b is continuous.

(ii) uuu 7→ sup |uuu| :Mo-b → L0 is uniformly continuous.
(c) Mo-b is complete as linear topological space.

proof (a) If S = ∅ then Mo-b = {∅} and the result is trivial. So let us suppose that S is non-empty.

(i) For x ∈ R, set g(x) = sup{|h(y)| : |y| ≤ |x|}; then g is continuous, and |h̄(v)| ≤ g(w) whenever v,
w ∈ L0 and |v| ≤ w.

c© 2018 D. H. Fremlin
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Suppose that uuu = 〈uσ〉σ∈S belongs to Mo-b. Set ū = supσ∈S |uσ|. Then |h̄(uσ)| ≤ g(ū) for every σ ∈ S,
so {h̄(uσ) : σ ∈ S} is order-bounded in L0, and h̄uuu ∈Mo-b.

(ii) Now take vvv = 〈vσ〉σ∈S ∈ Mo-b and ǫ > 0. Set v̄ = supσ∈S |vσ|, and let M ≥ 0 be such that
µ̄[[v̄ > M ]] ≤ ǫ. Let δ ∈ ]0, 1] be such that |h(x)− h(y)| ≤ ǫ whenever y ∈ [−M − 1,M + 1] and |x− y| ≤ δ.
Then for any w, w′ ∈ L0,

[[|h̄(w)− h̄(w′)| > ǫ]] ⊆ [[|w| > M ]] ∪ [[|w − w′| > δ]].

Take any uuu ∈ Mo-b such that θ̂(vvv − uuu) ≤ δǫ. Set ū = supσ∈S |vσ − uσ| and w̄ = supσ∈S |h̄(vσ) − h̄(uσ)|.
Then µ̄[[ū > δ]] ≤ ǫ, so

[[w̄ > ǫ]] = sup
σ∈S

[[|h̄(vσ)− h̄(uσ)| > ǫ]]

⊆ sup
σ∈S

[[|vσ| > M ]] ∪ sup
σ∈S

[[|vσ − uσ| > δ]] = [[v̄ > M ]] ∪ [[ū > δ]]

has measure at most 2ǫ, and

θ̂(h̄uuu− h̄vvv) = θ(w̄) ≤ 3ǫ.

As vvv and ǫ are arbitrary, h̄ :Mo-b →Mo-b is continuous.

(b)(i) As the ucp topology is a linear space topology, addition and subtraction are certainly continuous.
By (a), the operation uuu 7→ uuu2 is continuous. But this means that

(uuu,vvv) 7→ 1

2
((uuu+ vvv)2 − uuu2 − vvv2) = uuu× vvv

is continuous.

(ii) If uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S belong to Mo-b, then

|uσ| ≤ |vσ|+ |uσ − vσ| ≤ sup |vvv|+ sup |uuu− vvv| = sup |vvv|+ sup |vvv − uuu|
for every σ ∈ S, so sup |uuu| ≤ sup |vvv|+sup |uuu−vvv|; similarly, sup |vvv| ≤ sup |uuu|+sup |uuu−vvv| and | sup |vvv|−sup |uuu|| ≤
sup |uuu− vvv|. So

θ(sup |uuu| − sup |vvv|) ≤ θ(sup |uuu− vvv|) = θ̂(uuu− vvv).

As θ, θ̂ are F-norms defining the linear space topologies of L0 andMo-b, uuu 7→ sup |uuu| is uniformly continuous.

(c) Again, if S = ∅ this is trivial, so suppose otherwise. Let F be a filter on Mo-b which is Cauchy for
the ucp topology.

(i) For each σ ∈ S, define Tσ :Mo-b → L0 by saying that Tσuuu = uσ whenever uuu = 〈uσ〉σ∈S ∈Mo-b; then

Tσ is linear, and it is also continuous, because θ(Tσuuu) ≤ θ̂(uuu) for every uuu ∈ Mo-b. Tσ is therefore uniformly
continuous for the uniformities associated with the linear space topologies here (3A4Cf4). Accordingly the
image filter Tσ[[F ]] (2A1Ib) is Cauchy (4A2Ji), and has a limit wσ say in L0, because L0 is complete as
linear topological space (613Bh).

(ii)www = 〈wσ〉σ∈S is fully adapted. PPP Suppose that σ, τ ∈ S and a = [[σ = τ ]]. Then Tσuuu×χa = Tτuuu×χa
for every uuu ∈Mo-b. As u 7→ u× χa : L0 → L0 is continuous,

wσ × χa = ( lim
uuu→F

Tσuuu)× χa = lim
uuu→F

(Tσuuu× χa)

= lim
uuu→F

Tτuuu× χa = wτ × χa,

and a ⊆ [[wσ = wτ ]]. As σ and τ are arbitrary, www is fully adapted. QQQ

(iii) www is order-bounded. PPP For n ∈ N set cn = supσ∈S [[|wσ| > n]]. Given ǫ > 0, there is a set A ⊆ F
such that θ̂(uuu − vvv) ≤ ǫ for all uuu, vvv ∈ A. Fix vvv ∈ A, and set v̄ = supσ∈S |Tσvvv|; let n ∈ N be such that
µ̄[[v̄ ≥ n]] ≤ ǫ. For uuu ∈Mo-b, set v̄uuu = supσ∈S |Tσuuu− Tσvvv|, so that

4Later editions only.
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θ(v̄uuu) = θ̂(uuu− vvv) ≤ ǫ

for uuu ∈ A.
Let I be any finite subset of S. Then

supσ∈I |wσ| = limuuu→F supσ∈I |Tσ(uuu)|
because the lattice operations on L0 are continuous (613Ba), so 〈yσ〉σ∈I 7→ supσ∈I |yσ| is a continuous
function from (L0)I to L0. There is therefore a uuu ∈ A such that θ(supσ∈I |wσ| − supσ∈I |Tσuuu|) ≤ ǫ and

µ̄[[supσ∈I |wσ| ≥ n+ 2]] ≤ µ̄[[supσ∈I |wσ| − supσ∈I |Tσuuu| ≥ 1]]

+ µ̄[[supσ∈I |Tσuuu− Tσvvv| ≥ 1]] + µ̄[[supσ∈I |Tσvvv| ≥ n]]

≤ θ(sup
σ∈I

|wσ| − sup
σ∈I

|Tσuuu|) + µ̄[[v̄uuu ≥ 1]] + µ̄[[v̄ ≥ n]]

≤ ǫ+ θ(v̄uuu) + ǫ = 2ǫ+ θ̂(uuu− vvv) ≤ 3ǫ.

As I is arbitrary, µ̄cn+2 ≤ 3ǫ. As ǫ is arbitrary, infn∈N cn = 0 and {wσ : σ ∈ S} is order-bounded. QQQ

(iv) Thus www ∈Mo-b. Now, given ǫ > 0, again take A ∈ F such that θ̂(uuu−vvv) ≤ ǫ for all uuu, vvv ∈ A. Then

θ̂(www − vvv) ≤ ǫ for all vvv ∈ A. PPP For any finite I ⊆ S,
supσ∈I |wσ − Tσvvv| = limuuu→F supσ∈I |Tσuuu− Tσvvv|

and

θ(sup
σ∈I

|wσ − Tσvvv|) = lim
uuu→F

θ(sup
σ∈I

|Tσuuu− Tσvvv|)

≤ sup
uuu∈A

θ̂(uuu− vvv) ≤ ǫ.

So

θ̂(www − vvv) = θ(sup
σ∈S

|wσ − Tσvvv|) = sup
I∈[S]<ω

θ(sup
σ∈I

|wσ − Tσvvv|)

(613Ba)

≤ ǫ. QQQ

As ǫ is arbitrary, www = limF for the ucp topology. As F is arbitrary, Mo-b is complete.

615D When we have a finitely full lattice, there is an alternative approach to the ucp topology.

Lemma Let S be a non-empty finitely full sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process.
(a) If γ > 0 then

µ̄(supτ∈S [[|uτ | > γ]]) = supτ∈S µ̄[[|uτ | > γ]].

(b) If uuu is order-bounded, θ(sup |uuu|) ≤ 2
√

supσ∈S θ(uσ).

proof (a) If γ > 0 then

µ̄[[sup |uuu| > γ]] = supτ∈S µ̄[[|uτ | > γ]].

PPP We have

µ̄[[sup |uuu| > γ]] = µ̄(sup
σ∈S

[[|uσ| > γ]])

(364L(a-ii))

= sup
I∈[S]<ω

µ̄(sup
σ∈I

[[|uσ| > γ]]) = sup
I∈I(S)

µ̄(sup
σ∈I

[[|uσ| > γ]]).
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Take any α < µ̄[[sup |uuu| > γ]]. Let I ∈ I(S) be such that µ̄(supσ∈I [[|uσ| > γ]]) > α; as S is non-empty, we
can arrange that I should be non-empty. Let (τ0, . . . , τn) be a maximal totally ordered subset of I. Then

[[|uσ| > γ]] ⊆ supi≤n [[σ = τi]] ∩ [[|uτi | > γ]] ⊆ supi≤n [[|uτi | > γ]]

for every σ ∈ I (611Ke), so α < µ̄(supi≤n [[|uτi | > γ]]).
For i ≤ n, set ai = [[|uτi | > γ]] and bi = ai \ supj<i aj ; set b

′ = 1 \ supi≤n ai. Then ai and bi belong to
Aτi for every i ≤ n, and b′ ∈ Aτn . So there is a τ ∈ T such that

bi ⊆ [[τ = τi]] for i ≤ n, b′ ⊆ [[τ = τn]]

(611I), and τ ∈ S because S is finitely full. Now

[[|uτ | > γ]] ⊇ sup
i≤n

bi ∩ [[|uτi | > γ]] = sup
i≤n

bi = sup
i≤n

ai

= sup
i≤n

[[|uτi | > γ]] = sup
σ∈I

[[|uσ| > γ]]

and α < µ̄[[|uτ | > γ]]. As α is arbitrary, this gives the result. QQQ

(b) Write α for supτ∈S θ(|uτ |). If γ < 1
2θ(sup |uuu|) we must have µ̄[[sup |uuu| > γ]] > γ, so there is a τ ∈ S

such that µ̄[[|uτ | > γ]] > γ, γ2 < θ(|uτ |) ≤ α and γ ≤ √
α. As γ is arbitrary, θ(sup |uuu|) ≤ 2

√
α, as claimed.

Remark What this means is that the F-norm

uuu 7→ supσ∈S θ(uσ) :Mo-b(S) → [0, 1]

also defines the ucp topology on Mo-b(S), since of course supσ∈S θ(uσ) ≤ θ̂(uuu). For a general sublattice S,
we could use the isomorphism uuu 7→ ûuu :Mo-b(S) →Mo-b(Ŝ) and the F-norm

uuu 7→ supσ∈Ŝ θ(ûσ) :Mo-b(S) → [0, 1],

since

θ̂(ûuu) = θ(sup |ûuu|) = θ(sup |uuu|) = θ̂(uuu)

for every uuu ∈Mo-b(S).

615E Definition Let S be a sublattice of T .

(a) I will call a process with domain S moderately oscillatory if it is in the closure of Mbv(S) in
Mo-b(S) for the ucp topology.

(b) A process uuu with domain S is locally moderately oscillatory if uuu↾S ∧ τ is moderately oscillatory
for every τ ∈ S.
Remark The definitions imply directly that (locally) moderately oscillatory processes are (locally) order-
bounded. Of course processes of bounded variation (e.g., simple processes, 614Q(a-iii), and in particular
constant processes) are moderately oscillatory, and processes which are locally of bounded variation are
locally moderately oscillatory.

615F Proposition Let S be a sublattice of T , and Ŝ its covered envelope.
(a) Write Mmo =Mmo(S) for the set of moderately oscillatory processes with domain S.
(i) If S ′ is a sublattice of S then uuu↾S ′ is moderately oscillatory for every uuu ∈Mmo.
(ii) If h : R → R is continuous, then h̄uuu ∈Mmo for every uuu ∈Mmo.
(iii) Mmo is an f -subalgebra of Mo-b =Mo-b(S).
(iv) Mmo is closed in Mo-b(S) for the ucp topology, so is complete for the ucp uniformity.
(v) If τ ∈ S, then a fully adapted process uuu with domain S is moderately oscillatory iff uuu↾S ∧ τ and

uuu↾S ∨ τ are both moderately oscillatory.
(vi) If uuu ∈Mmo, then its fully adapted extension to Ŝ is moderately oscillatory.

(b) Write Mlmo =Mlmo(S) for the set of locally moderately oscillatory processes with domain S.
(i) Mmo ⊆Mlmo.
(ii) If h : R → R is continuous, then h̄uuu ∈Mlmo for every uuu ∈Mlmo.
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(iii) Mlmo is an f -subalgebra of the space Mlob = Mlob(S) of locally order-bounded processes with
domain S.

(iv) If τ ∈ S, then a fully adapted process uuu with domain S is locally moderately oscillatory iff uuu↾S ∧ τ
and uuu↾S ∨ τ are both locally moderately oscillatory.

(v) If uuu ∈Mlmo, then its fully adapted extension ûuu to Ŝ is locally moderately oscillatory.

proof (a)(i) For any ǫ > 0 there is a process vvv ∈ Mbv(S) such that θ(sup |uuu − vvv|) ≤ ǫ. Now uuu↾S ′ is
order-bounded (614F(a-i)), vvv↾S ∧ τ is of bounded variation (614Lb) and sup |uuu↾S ′−vvv↾S ′| ≤ sup |(uuu−vvv)↾S ′|,
so

θ(sup |uuu↾S ′ − vvv↾S ′|) ≤ θ(sup |(uuu− vvv)↾S ′|) ≤ ǫ.

As ǫ is arbitrary, uuu↾S ′ ∈Mmo(S ′).

(ii)(ααα) The point is that if M ≥ 0 and ǫ > 0, there is a Lipschitz function g : R → R such that
|h(x)− g(x)| ≤ ǫ whenever |x| ≤M . PPP h↾[−M,M ] is continuous, therefore uniformly continuous, and there
is an m ≥ 1 such that |h(x)− h(y)| ≤ 1

2ǫ whenever −M ≤ x ≤ y ≤M and y ≤ x+ M
m . Set xk =Mk/m for

−m ≤ k ≤ m, and define g by saying that

g(x) = h(−M) if x ≤ −M,

= h(M) if x ≥M,

=
m

M
((x− xk)h(xk+1) + (xk+1 − x)h(xk))

if −m ≤ k ≤ m− 1 and xk ≤ x ≤ xk+1.

Then g is Lipschitz and

|h(x)− g(x)| ≤ |h(x)− h(xk)|+ |g(x)− h(xk)|
≤ |h(x)− h(xk)|+ |h(xk+1)− h(xk)| ≤ ǫ

whenever −m ≤ k ≤ m− 1 and xk ≤ x ≤ xk+1. So |h(x)− g(x)| ≤ ǫ whenever |x| ≤M . QQQ

(βββ) Now h is Borel measurable and bounded on bounded subsets of R, so h̄uuu is order-bounded
(614F(c-i)). Take ǫ > 0. Set η = min(1, ǫ4 ). Then there is an M ≥ 0 such that µ̄[[sup |uuu| > M ]] ≤
η. By (α), there is a Lipschitz function g : R → R such that |h(x) − g(x)| ≤ η whenever |x| ≤ M .
Expressing uuu as 〈uσ〉σ∈S and setting a = [[sup |uuu| ≤M ]], a ⊆ [[|h̄(uσ)− ḡ(uσ)| ≤ ηχ1]] for every σ ∈ S, so
a ⊆ [[sup |h̄uuu− ḡuuu| ≤ ηχ1]]. But this means that

θ(sup |h̄uuu− ḡuuu|) ≤ η + µ̄(1 \ a) ≤ 2η,

Let γ ≥ 1 be such that g is γ-Lipschitz. Because uuu is moderately oscillatory, there is a process vvv = 〈vσ〉σ∈S
such that θ(sup |uuu − vvv|) ≤ η2/γ, so that µ̄[[sup |uuu− vvv| ≥ η

γ ]] ≤ η. Setting b = [[sup |uuu− vvv| ≤ η
γ ]], we have

|ḡ(uσ)− g(vσ)| ≤ γ|uσ − vσ| for every σ ∈ S, so sup |ḡuuu− ḡvvv| ≤ γ sup |uuu− vvv|, b ⊆ [[sup |ḡuuu− ḡvvv| ≤ η]] and

θ(sup |ḡuuu− ḡvvv|) ≤ η + µ̄(1 \ b) ≤ 2η, θ(sup |h̄uuu− ḡvvv|) ≤ 4η ≤ ǫ.

And we know from 614Q(a-i) that ḡvvv is of bounded variation. As ǫ is arbitrary, h̄uuu is moderately oscillatory,

(iii) As Mbv = Mbv(S) is an f -subalgebra of Mo-b (614Q(a-ii)) and the operations (uuu,vvv) → uuu + vvv,
(α,uuu) 7→ αuuu, (uuu,vvv) 7→ uuu × vvv and uuu 7→ |uuu| are continuous for the ucp topology on Mo-b (615Ca, 615Cb),
Mmo =Mbv must be closed under these operations, that is, is an f -subalgebra of Mo-b.

(iv) Mmo is defined as the closure of Mbv(S), so is surely closed. Being a closed subspace of the
complete linear topological space Mo-b (615Cc), Mmo is complete (3A4Fd5).

(v) Write S ′ for S ∧ τ and S ′′ for S ∨ τ . If uuu is moderately oscillatory, so are uuu′ = uuu↾S ′ and uuu′′ = uuu↾S ′′,
by (i) above. If uuu′ and uuu′′ are moderately oscillatory, take any ǫ > 0. Then there are processes vvv′ = 〈v′σ〉σ∈S′

and vvv′′ = 〈v′′σ〉σ∈S′′ , both of bounded variation, such that θ(sup |vvv′ − uuu′|) and θ(sup |vvv′′ − uuu′′|) are both at
most ǫ

3 . Define vvv = 〈vσ〉σ∈S by saying that

5Later editions only.
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vσ = v′σ∧τ × χ[[σ ≤ τ ]] + (v′′σ∨τ − v′′τ + v′τ )× χ[[τ < σ]]

for σ ∈ S. Using 611E, 611Hc and 612C, it is easy to check that vvv is fully adapted, while vvv↾S ′ = vvv′ and
vvv↾S ′′ = vvv′′ + (vτ − v′′τ )1 are both of bounded variation, so vvv ∈Mbv (614Lc). Now

|uσ − vσ| = |uσ − v′σ| ≤ sup |vvv′ − uuu′| if σ ∈ S ∧ τ,
≤ |uσ − v′′σ |+ |v′′τ − uτ |+ |uτ − v′τ | ≤ sup |vvv′ − uuu′|+ 2 sup |vvv′′ − uuu′′| if σ ∈ S ′′,

and

supσ∈S′∪S′′ |uσ − vσ| ≤ sup |vvv′ − uuu′|+ 2 sup |vvv′′ − uuu′′|.
As S ′ ∪ S ′′ covers S (611M(b-iv)),

θ(sup |uuu− vvv|) = θ( sup
σ∈S′∪S′′

|uσ − vσ|)

(614Ga)

≤ θ(sup |vvv′ − uuu′|) + 2θ(sup |vvv′′ − uuu′′|) ≤ ǫ.

As ǫ is arbitrary, uuu is moderately oscillatory.

(vi) For uuu ∈ Mfa(S), let ûuu be its fully adapted extension to Ŝ. Then uuu 7→ ûuu : Mfa(S) → Mfa(Ŝ) is

linear, while ûuu ∈ Mo-b(Ŝ) and sup |ûuu| = sup |uuu| for every uuu ∈ Mo-b (614Ga); so uuu 7→ ûuu : Mo-b → Mo-b(Ŝ) is
continuous for the ucp topologies. Also ûuu ∈ Mbv(Ŝ) for every uuu ∈ Mbv (614Q(a-iv)), so if uuu ∈ Mmo = Mbv

then ûuu ∈Mbv(Ŝ) =Mmo(Ŝ).
(b)(i) Immediate from (a-i).

(ii) follows from (a-ii) because (h̄uuu)↾S ∧ τ = h̄(uuu↾S ∧ τ).
(iii) Similarly, restriction respects the algebraic and lattice operations onMmo(S), so we czn use (a-iii).

(iv)(ααα) If uuu is locally moderately oscillatory, then uuu↾S ∧ τ is moderately oscillatory, therefore locally
moderately oscillatory. Also, if τ ′ ∈ S ∨ τ ,

(uuu↾S ∨ τ)↾(S ∨ τ) ∧ τ ′ = (uuu↾S ∧ τ ′)↾(S ∧ τ ′) ∨ τ
is moderately oscillatory, so uuu↾(S ∨ τ) is locally moderately oscillatory.

(βββ) Suppose that uuu↾S ∧ τ and uuu↾S ∨ τ are locally moderately oscillatory. Take any τ ′ ∈ S ∨ τ . Then
(uuu↾S ∧ τ ′)↾(S ∧ τ ′) ∧ τ = (uuu↾S ∧ τ)↾(S ∧ τ) ∧ τ ′ and (uuu↾S ∨ τ ′)↾(S ∧ τ ′) ∨ τ = (uuu↾S ∨ τ)↾(S ∨ τ) ∧ τ ′ are
moderately oscillatory, so uuu↾S ∧ τ ′ is moderately oscillatory.

In general, if τ ′ is an arbitrary member of S,
uuu↾S ∧ τ ′ = (uuu↾S ∧ (τ ′ ∨ τ))↾(S ∧ (τ ′ ∨ τ)) ∧ τ ′

is moderately oscillatory, so uuu is locally moderately oscillatory.

(v) Take any τ∗ ∈ Ŝ and ǫ ∈ ]0, 1]. Then ûuu↾Ŝ ∧ τ∗ is order-bounded (614Gb) and there is a finite

I ⊆ S such that µ̄(supσ∈I [[τ
∗ = σ]]) ≥ 1 − 1

2ǫ; setting σ∗ = sup I, µ̄[[σ∗ < τ∗]] ≤ 1
2ǫ. As Ŝ ∧ σ∗ is the

covered envelope of S ∧ σ∗ (611M(e-i)), (a-vi) tells us that ûuu↾Ŝ ∧ σ∗ is moderately oscillatory, and there is

a process vvv = 〈vτ 〉τ∈Ŝ∧σ∗ of bounded variation such that θ(ū) ≤ 1
2ǫ, where ū = sup |vvv − ûuu↾Ŝ ∧ σ∗|. Setting

v̂vv = 〈vτ∧σ∗〉τ∈Ŝ , v̂vv is fully adapted (612Ib), v̂vv↾Ŝ ∧ σ∗ = vvv is of bounded variation, and v̂vv↾Ŝ ∨ σ∗ is constant;

so v̂vv is of bounded variation (614Lc). Now if τ ∈ Ŝ ∧ τ∗

[[τ∗ ≤ σ∗]] ⊆ [[τ ≤ σ∗]]

⊆ [[v̂τ = vτ ]] ∩ [[|ûτ − v̂τ | ≤ ū]]

so

[[τ∗ ≤ σ∗]] ⊆ [[sup |v̂vv − ûuu↾Ŝ ∧ τ∗| ≤ ū]]
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and

θ(sup |v̂vv − ûuu↾Ŝ ∧ τ∗|) ≤ θ(ū) + µ̄(1 \ [[τ∗ ≤ σ∗]] ≤ ǫ.

As ǫ is arbitrary, ûuu↾Ŝ ∧ τ∗ is moderately oscillatory; as τ∗ is arbitrary, ûuu is locally moderately oscillatory.

615G Theorem Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process.
(a) Suppose that uuu is moderately oscillatory and A ⊆ S is non-empty and upwards-directed. Then

w = limσ↑A uσ is defined. Setting A∗ = {ρ : ρ ∈ S, supσ∈A [[ρ ≤ σ]] = 1},
limσ↑A supρ∈A∗∨σ |uρ − w| = 0.

(b) Suppose that uuu is locally moderately oscillatory and A ⊆ S is non-empty and downwards-directed.
Then w = limσ↓A uσ is defined. Setting A∗ = {ρ : ρ ∈ S, supσ∈A [[σ ≤ ρ]] = 1},

limσ↓A supρ∈A∗∧σ |uρ − w| = 0.

proof (a)(i) To begin with, consider the case in which uuu is non-negative, non-decreasing and order-bounded.
In this case, B = {uσ : σ ∈ A} ⊆ (L0)+ is upwards-directed and bounded above, so has a supremum w in
L0, and

w = limx↑B x = limσ↑A uσ

(613Ba). If σ ∈ A and ρ ∈ A∗ ∨ σ, uσ ≤ uρ so w − uρ ≤ w − uσ and

1 = sup
σ′∈A

[[ρ ≤ σ′]] = sup
σ≤σ′∈A

[[ρ ≤ σ′]]

(because A is upwards-directed)

= sup
σ≤σ′∈A

[[ρ = σ′ ∧ ρ]] ⊆ sup
σ≤σ′∈A

[[uρ = uσ′∧ρ]]

⊆ sup
σ≤σ′∈A

[[uρ ≤ uσ′ ]] ⊆ [[uρ ≤ w]] ⊆ [[|w − uρ| ≤ w − uσ]]

and supρ∈A∗∨σ |uρ−w| ≤ w−uσ; as σ ∈ A∗∨σ, we have equality. So limσ↑A supρ∈A∗∨σ = limσ∈A w−uσ = 0.

(ii) Now suppose that uuu is of bounded variation. Then it can be expressed as uuu′ − uuu′′ where uuu′ =
〈u′σ〉σ∈S and uuu′′ = 〈u′′σ〉σ∈S are non-negative, non-decreasing and order-bounded. Using (i), we see that
w′ = limσ↑A u′σ and w′′ = limσ↑A u′′σ are defined, so that w = w′ − w′′ is limσ↑A uσ and

supρ∈A∗∨σ |uρ − w| ≤ supρ∈A∗∨σ(|u′ρ − w′|+ |u′′ρ − w′′|),

θ(supρ∈A∗∨σ |uρ − w|) ≤ θ(supρ∈A∗∨σ |u′ρ − w′|) + θ(supρ∈A∗∨σ |u′′ρ − w′′|) → 0

as σ ↑ A.
(iii) Now suppose just that uuu is moderately oscillatory.

(ααα) w = limσ↑A uσ is defined, PPP Given ǫ > 0, there is a process vvv = 〈vσ〉σ∈S of bounded variation
such that θ(ū) ≤ 1

3ǫ where ū = sup |uuu−vvv|. There is a σ ∈ A such that θ(vτ − vσ) ≤ 1
3ǫ whenever σ ≤ τ ∈ A;

now θ(uτ − uσ) ≤ ǫ whenever σ ≤ τ ∈ A, As L0 is complete, limσ↑A uσ is defined. QQQ

(βββ) Now take any ǫ > 0 and a process vvv = 〈vσ〉σ∈S of bounded variation such that θ(ū) ≤ 1
2ǫ where

ū = sup |uuu− vvv|. We know from (ii) that w′ = limσ↑A vσ is defined and that limσ∈A supρ∈A∗∨σ |vρ −w′| = 0.
Now

|w − w′| = limσ↑A |uσ − vσ| ≤ sup |uuu− vvv|,
and if σ ∈ A then

sup
ρ∈A∗∨σ

|uρ − w| ≤ sup
ρ∈A∗∨σ

|uρ − vρ|+ |vρ − w′|+ |w′ − w|

≤ 2 sup |uuu− vvv|+ sup
ρ∈A∗∨σ

|vρ − w′|

D.H.Fremlin



94 The Riemann-sum integral 615G

so

lim sup
σ↑A

θ( sup
ρ∈A∗∨σ

|uρ − w|) ≤ 2θ(sup |uuu− vvv|) + lim sup
σ↑A

θ( sup
ρ∈A∗∨σ

|vρ − w′|)

≤ ǫ.

As ǫ is arbitrary, limσ↑A θ(supρ∈A∗∨σ |uρ − w|) = 0.

(b)(i) If uuu is actually moderately oscillatory, we can follow the same argument, inverted at the right
points; for instance, the key sentence in (a-i) becomes

If σ ∈ A and ρ ∈ A∗ ∧ σ, uρ ≤ uσ so uρ − w ≤ uσ − w and

1 = sup
σ′∈A

[[σ′ ≤ ρ]] = sup
σ′∈A,σ′≤σ

[[σ′ ≤ ρ]]

= sup
σ′∈A,σ′≤σ

[[ρ = σ′ ∨ ρ]] ⊆ sup
σ′∈A,σ′≤σ

[[uρ = uσ′∨ρ]]

⊆ sup
σ′∈A,σ′≤σ

[[uσ′ ≤ uρ]] ⊆ [[w ≤ uρ]] ⊆ [[|uρ − w| ≤ uσ − w]]

and supρ∈A∗∧σ |uρ − w| ≤ uσ − w; as σ ∈ A∗ ∧ σ, we have equality.

(ii) For the general case, in which uuu is just locally moderately oscillatory, we can take any τ ∈ A and
apply (i) here to uuu↾A ∧ τ and {σ : σ ∈ A, σ ≤ τ}.

615H Corollary Let S be a non-empty sublattice of T , Ŝ its covered envelope, uuu = 〈uσ〉σ∈S a locally

moderately oscillatory process, and ûuu = 〈ûσ〉σ∈Ŝ its fully adapted extension to Ŝ. Then uuu and ûuu have
starting values, which are the same.

proof (a) By 615F(b-v), ûuu is locally moderately oscillatory. So 615Gb tells us that

w = limσ↓Ŝ∧τ ûσ = limσ↓Ŝ ûσ

is defined and is the starting value of ûuu.

(b) To see that w is also the starting value of uuu, take any ǫ > 0. Then there is a τ ∈ Ŝ such that

θ(ûσ − w) ≤ ǫ whenever σ ∈ Ŝ ∧ τ . Next, µ̄(supσ∈S [[τ = σ]]) = 1, so there is a non-empty finite set I ⊆ S
such that µ̄(supσ∈I [[τ = σ]]) ≥ 1− ǫ and µ̄[[τ < min I]] ≤ ǫ. Now if σ ∈ S and σ ≤ min I, θ(ûσ∧τ − w) ≤ ǫ;
but

[[ûσ∧τ 6= ûσ]] ⊆ [[τ < σ]] ⊆ [[τ < min I]]

has measure at most ǫ, so θ(ûσ − ûσ∧τ ) ≤ ǫ and

θ(uσ − w) = θ(ûσ − w) ≤ 2ǫ.

As ǫ is arbitrary, w is also the starting value of uuu.

615I Definition Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process. I will say that uuu
is´

´
-convergent if

(́
´
) limn→∞ uσn

is defined whenever 〈σn〉n∈N is a sequence in S which is either non-

increasing or non-decreasing.

615J Lemma Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process. Then uuu is
´
´
-convergent.

proof 615G.

615K Lemma Let S be a finitely full sublattice of T and uuu = 〈uσ〉σ∈S an ´
´
-convergent process. Then

uuu is order-bounded.
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proof I will work towards the contrapositive, that is, assuming that uuu is not order-bounded I will show
that it is not´

´
-convergent.

(a) To begin with (down to the end of (d) below) I will take it that uσ ≥ 0 for every σ ∈ S. A couple of
preliminary remarks will be useful.

(i) For any α ∈ R, {[[uσ > α]] : σ ∈ S} is upwards-directed. PPP (This is where we need to know
that S is finitely full.) Given σ, τ ∈ S, set b = [[uσ∧τ > α]], take ρ ∈ S such that b ⊆ [[ρ = σ ∧ τ ]] and
1 \ b ⊆ [[ρ = σ ∨ τ ]] (611I again); then

[[uρ > α]] = b ∪ ([[uσ∨τ > α]] \ b) = [[uσ∧τ > α]] ∪ [[uσ∨τ > α]]

⊇ ([[σ ≤ τ ]] ∩ [[uσ > α]]) ∪ ([[τ ≤ σ]] ∩ [[uσ > α]]) = [[uσ > α]],

and similarly [[uρ > α]] ⊇ [[uτ > α]]. QQQ

(ii) For any α ∈ R and b ∈ A, {σ : σ ∈ S, b ⊆ [[uσ ≤ α]]} is a sublattice of S. PPP If σ, τ ∈ S, b ⊆ [[uσ ≤ α]]
and b ⊆ [[uτ ≤ α]], then

[[uσ∨τ ≤ α]] = ([[σ ≤ τ ]] ∩ [[uτ ≤ α]]) ∪ ([[τ ≤ σ]] ∩ [[uσ ≤ α]]) ⊇ b

and

[[uσ∧τ ≤ α]] = ([[σ ≤ τ ]] ∩ [[uσ ≤ α]]) ∪ ([[τ ≤ σ]] ∩ [[uτ ≤ α]]) ⊇ b. QQQ

(iii) Similarly, {σ : σ ∈ S, b ⊆ [[uσ ≥ α]]} is a sublattice of S for any α ∈ R and b ∈ A.

(b) We are supposing that uuu is not order-bounded, so S is surely not empty, and {uσ : σ ∈ S} has no
upper bound in L0(A). By 364L(a-i), a = infn∈N supσ∈S [[uσ > n]] is non-zero. If n ∈ N and ǫ > 0, there
must be a finite set K ⊆ S such that µ̄(supσ∈K [[uσ > n]]) ≥ µ̄a − ǫ; by (a-i) above, there is a single σ ∈ S
such that µ̄[[uσ > n]] ≥ µ̄a− ǫ. We can therefore choose 〈mn〉n∈N, 〈σn〉n∈N inductively such that

m0 = 0,

σn ∈ S, µ̄[[uσn
> mn + 1]] ≥ (1− 2−n−2)µ̄a,

mn+1 > mn,
∑n
i=0 µ̄([[uσi

> mn+1]]) ≤ 2−n−2µ̄a.

Set

b = infn∈N [[uσn
> mn + 1]] \ supi<n∈N [[uσi

> mn]]

so that µ̄b ≥ 1
2 µ̄a > 0 and b ⊆ [[uσi

≤ mn]] ∩ [[uσj
≥ mn + 1]] whenever i < n ≤ j. By (a-ii) and (a-iii),

b ⊆ [[uσ ≤ mn]] ∩ [[uτ ≥ mn + 1]]

whenever σ is in the lattice generated by {σi : i ≤ n} and τ is in the lattice generated by {σj : j > n}.
(c) case 1 Suppose that there are k ∈ N and ǫ > 0 such that for every l > k

µ̄(b ∩ supj>l [[σj > supk<i≤l σi]]) > ǫ.

Then we can choose inductively a strictly increasing sequence 〈kr〉r∈N in N such that k0 = k + 1 and

µ̄(b ∩ supkr<j≤kr+1
[[σj > supk<i≤kr σi]]) > ǫ

for every r. For each r, set τ ′r = supkr<i≤kr+1
σi and τr = supk<i≤kr σj for each i; then we always have

τr+1 = τr ∨ τ ′r, so
[[τr+1 = τ ′r]] ⊇ [[τ ′r > τr]] ⊇ supkr<j≤kr+1

[[σj > τr]]

and µ̄(b ∩ [[τr+1 = τ ′r]]) ≥ ǫ.
On the other hand,

b ⊆ [[uτr ≤ mkr ]] ∩ [[uτ ′
r
≥ mkr + 1]] ⊆ [[uτ ′

r
− uτr ≥ 1]].

So
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θ(uτr+1
− uτr ) ≥ µ̄[[uτr+1

− uτr ≥ 1]] ≥ µ̄([[uτ ′
r
− uτr ≥ 1]] ∩ [[τr+1 = τ ′r]]

≥ µ̄(b ∩ [[τr+1 = τ ′r]]) ≥ ǫ

for every r, and 〈uτr 〉r∈N is not convergent, while 〈τr〉r∈N is a non-decreasing sequence in S. So in this case
uuu is not moderately oscillatory.

(d) case 2 Suppose that for every k ∈ N and ǫ > 0 there is an l > k such that

µ̄(b ∩ supj>l [[σj > supk<i≤l σi]]) ≤ ǫ.

Then we can choose a strictly increasing sequence 〈kr〉r∈N such that

µ̄(b ∩ supj>kr+1
[[σj > supkr<i≤kr+1

σi]]) ≤ 2−r−1µ̄b

for each r. Set τ ′r = supkr<i≤kr+1
σi for each r; then µ̄(b ∩ [[τ ′r+1 > τ ′r]]) ≤ 2−r−1µ̄b for each r, and c =

b \ supr∈N [[τ ′r+1 > τ ′r]] is non-zero. Now c ⊆ [[τ ′r+1 ≤ τ ′r]] for every r, so if we set τr = infi≤r τ ′i , we shall have
c ⊆ [[τr = τ ′r]] for every r. PPP Induce on r; for the inductive step to r + 1 we have

c ∩ [[τr+1 = τ ′r+1]] = c ∩ [[τr ∧ τ ′r+1 = τ ′r+1]] = c ∩ [[τ ′r+1 ≤ τr]] = c ∩ [[τ ′r+1 ≤ τ ′r]]

(by the inductive hypothesis)

= c. QQQ

On the other hand,

b ⊆ [[uτ ′
r
≥ mkr+1]] ∩ [[uτ ′

r
≤ mkr+1

]]

for each r, so

c ⊆ [[uτ ′
r
≤ mkr+1

]] ∩ [[uτ ′
r+1

≥ mkr+1+1]] ⊆ [[uτ ′
r+1

− uτ ′
r
≥ 1]];

consequently c ⊆ [[uτr+1−uτr
≥ 1]] and θ(uτr+1

− uτr ) ≥ µ̄c for every r, while 〈τr〉r∈N is non-increasing. So in
this case also uuu is not moderately oscillatory.

(e) Since case 1 and case 2 are exhaustive, this deals with the case in which uσ ≥ 0 for every σ. If uuu is
not necessarily positive. then |uuu| is not order-bounded, so cannot be´

´
-convergent, and there is a monotonic

sequence in S such that limn→∞ |uσn
| is undefined. But | | : L0(A) → L0(A) is continuous (613Ba), so

limn→∞ uσn
must be undefined, and uuu also is not´

´
-convergent.

615L Lemma Let S be a non-empty finitely full sublattice of T and uuu = 〈uσ〉σ∈S an ´
´
-convergent

process. Suppose that A ⊆ S is non-empty and downwards-directed. Then w = limσ↓A uσ is defined.
Setting A∗ = {ρ : ρ ∈ S, supσ∈A [[σ ≤ ρ]] = 1},

limσ↓A supρ∈A∗∧σ |uρ − w| = 0.

proof (a) Note first that A∗ is finitely full. PPP Suppose that τ ∈ T and that {τ} is covered by a finite
subset of A∗. Take any a ∈ A \ {0}. As S is finitely full, τ ∈ S. There are ρ ∈ A∗ and σ ∈ A such that
b = a ∩ [[τ = ρ]] and c = b ∩ [[ρ ≤ σ]] are non-zero. Now 0 6= c ⊆ a ∩ [[τ ≤ σ]]. As a is arbitrary, τ ∈ A∗; as τ is
arbitrary, A∗ is finitely full. QQQ

(b) In particular, A∗ is closed under ∧. Consequently w = limσ↓A∗ uσ is defined. PPP??? Otherwise, there
is an ǫ > 0 such that for every σ ∈ A∗ there is a τ ∈ A∗ ∧ σ such that θ(uτ − uσ) ≥ ǫ. Now we can choose a
sequence 〈σn〉n∈N in A∗ such that

σn+1 ≤ σn, θ(uσn+1
− uσn

) ≥ ǫ

for every n ∈ N, and 〈σn〉n∈N is a monotonic sequence in S ⊆ Ŝ such that 〈ûσn
〉n∈N is not convergent. XXXQQQ

(c) limσ↓A supρ∈A∗∧σ θ(uρ − w) = 0. PPP Let ǫ > 0. Then there is a τ ′ ∈ A∗ such that θ(uρ − w) ≤ ǫ
whenever ρ ∈ A∗ ∨ τ ′. Next, supσ∈A [[σ ≤ τ ′]] = 1 and A is downwards-directed, so there is a σ0 ∈ A such
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that µ̄[[σ0 ≤ τ ]] ≥ 1− ǫ. If we now take σ ∈ A and ρ ∈ A∗ such that ρ ≤ σ ≤ σ0, we see that θ(uτ ′∧ρ−w) ≤ ǫ
and

θ(uρ − uτ ′∧ρ) ≤ µ̄[[τ ′ < ρ]] ≤ µ̄[[τ ′ < σ0]] ≤ ǫ,

so θ(uρ − w) ≤ 2ǫ. QQQ
Of course it follows that limσ↓A supρ∈A,ρ≤σ θ(uρ − w) = 0, and w = limσ↓A uσ.

(d) In fact limσ↓A θ(supρ∈A∗∧σ |uρ − w|) = 0. PPP Again take ǫ > 0. By (iii), there is a σ ∈ A such that

θ(uρ − w) ≤ min(
1

2
ǫ,

1

16
ǫ2) for every ρ ∈ A∗ ∧ σ. Set vρ = uρ − uσ for ρ ∈ A∗ ∧ σ, so that

vvv = 〈vρ〉ρ∈A∗∧σ = (uuu− uσ1)↾A
∗ ∧ σ

is a fully adapted process on the finitely full sublattice A∗ ∨ σ and θ(vρ) ≤ 1

16
ǫ2 for every ρ ∈ A∗ ∨ σ. Also

uuu is order-bounded (615K), so vvv also is. By 615Db, θ(sup |vvv|) ≤ 1
2ǫ. Now

supρ∈A∗∨σ |uρ − w| ≤ supρ∈A∗∨σ |uρ − uσ|+ |uσ − w| = sup |vvv|+ |uσ − w|,
so

θ(supρ∈A∗∨σ |uρ − w|) ≤ θ(sup |vvv|) + θ(uσ − w) ≤ 1

2
ǫ+

1

2
ǫ = ǫ,

and this is true whenever σ ∈ A and σ ≥ σ0. QQQ

615M Construction Let S be a finitely full sublattice of T with a greatest member, uuu = 〈uσ〉σ∈S an
´
´
-convergent process, and δ > 0. Then there are sequences 〈Di〉i∈N, 〈yi〉i∈N, 〈di〉i∈N, a family 〈ciσ〉i∈N,σ∈S

and a process ũuu = 〈ũσ〉σ∈S with the following properties.
(a) D0 = S; for every i ∈ N, maxS ∈ Di ⊆ S, Di is closed under ∧, yi = limσ↓Di

uσ and

Di+1 = {σ : σ ∈ S, [[σ < maxS]] ⊆ [[|uσ − yi| ≥ δ]]

and there is a σ′ ∈ Di such that σ′ ≤ σ}.

(b) yi ∈
⋂
σ∈Di

L0(Aσ) for every i ∈ N.

(c)(i) For every i ∈ N,

di = supσ∈Di
[[σ < maxS]],

di ∈
⋂
σ∈Di

Aσ,
di+1 ⊆ di,
di+1 ⊆ [[|yi+1 − yi| ≥ δ]],
1 \ di ⊆ [[yi = umaxS ]] ∩ [[yi = yi+1]].

(ii) infi∈N di = 0.
(d)(i) If σ ∈ S and i ∈ N,

ciσ = supτ∈Di
[[τ ≤ σ]], ci+1,σ ⊆ ciσ, [[σ = maxS]] ⊆ ciσ ⊆ [[σ = maxS]] ∪ di.

(ii) If i ∈ N and σ ∈ Di then ciσ = 1; in particular, c0σ = 1 for every σ ∈ S.
(iii) If σ, σ′ in S then [[σ ≤ σ′]] ∩ ciσ ⊆ ciσ′ for every i ∈ N.
(iv) infi∈N ciσ = [[σ = maxS]] for every σ ∈ S.
(v) If σ ∈ S and i ∈ N then ciσ \ ci+1,σ ⊆ [[|uσ − yi| < δ]].

(e) If σ ∈ S then

ciσ \ ci+1,σ ⊆ [[ũσ = yi]]

for every i ∈ N, and [[σ = maxS]] ⊆ [[ũσ = umaxS ]].
(f) ũuu is fully adapted, sup |ũuu| ≤ sup |uuu| and sup |uuu− ũuu| ≤ δχ1.
(g) ũuu is of bounded variation.

proof (a) We start the induction with D0 = S. The inductive hypothesis we need is just that Di is non-
empty and closed under ∧. Given this, yi = limσ↓Di

uσ is defined (615L). Looking at the formula for Di+1

we see at once that maxS ∈ Di+1. If σ, τ ∈ Di+1, then
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[[σ ∧ τ < maxS]] = ([[σ ≤ τ ]] ∩ [[σ < maxS]]) ∪ ([[τ ≤ σ]] ∩ [[τ < maxS]])
⊆ ([[σ ≤ τ ]] ∩ [[|uσ − yi| ≥ δ]]) ∪ ([[τ ≤ σ]] ∩ [[|uτ − yi| ≥ δ]])

⊆ ([[σ ≤ τ ]] ∩ [[|uσ∧τ − yi| ≥ δ]]) ∪ ([[τ ≤ σ]] ∩ [[|uσ∧τ − yi| ≥ δ]])

⊆ [[|uσ∧τ − yi| ≥ δ]];

at the same time, there are σ′, τ ′ ∈ Di such that σ′ ≤ σ and τ ′ ≤ τ , so that σ′ ∧ τ ′ ∈ Di and σ
′ ∧ τ ′ ≤ σ∧ τ .

Thus σ ∧ τ ∈ Di+1; as σ and τ are arbitrary, Di+1 is closed under ∧ and the induction proceeds.

(b) For every i ∈ N, 613Bj tells us that yi ∈ L0(
⋂
σ∈Di

Aσ).

(c)(i)(ααα) Define di as the supremum supσ∈Di
[[σ < maxS]] for each i. Since Di is closed under ∧,

di = supτ∈Di∧σ [[τ < maxS]] ∈ Aσ

for every σ ∈ Di, and di ∈
⋂
σ∈Di

Aσ.

(βββ) For any i ∈ N and σ ∈ Di+1, there is a σ
′ ∈ Di such that σ′ ≤ σ, in which case [[σ < maxS]] ⊆ [[σ′ < maxS]] ⊆ di

taking the supremum over such σ, di+1 ⊆ di.

(γγγ) Whenever τ ≤ σ in Di+1,

[[σ < maxS]] ⊆ [[τ < maxS]] ⊆ [[|uτ − yi| ≥ δ]].

So

[[σ < maxS]] ⊆ infτ∈Di+1,τ≤σ [[|uτ − yi| ≥ δ]] ⊆ [[|yi+1 − yi| ≥ δ]]

for every σ ∈ Di+1; taking the supremum, di+1 ⊆ [[|yi+1 − yi| ≥ δ]].

(δδδ) For any σ ∈ Di,

1 \ di ⊆ [[σ = maxS]] ⊆ [[uσ = umaxS ]],

so 1 \ di ⊆ [[yi = umaxS ]]. Now we also have

1 \ di ⊆ 1 \ di+1 ⊆ [[yi+1 = umaxS ]],

so 1 \ di ⊆ [[yi = yi+1]].

(ii) For i ∈ N, write D∗
i =

⋃
σ∈Di

S ∨ σ; now for σ ∈ Di, set

aiσ = infτ∈D∗
i ,τ≤σ [[|uτ − yi| ≤ 1

3δ]].

Of course aiσ′ ⊆ aiσ whenever σ ≤ σ′ inDi, because aiσ′ is the infimum of a larger set. Also supσ′∈Di
aiσ′ = 1.

PPP Given η > 0, there is a σ ∈ Di such that θ(supτ∈D∗
i ∧σ |uτ − yi|) ≤ 3ηmin(δ, 1) (615L again). So

b = [[supτ∈D∗
i ∧σ |uτ − yi| > 1

3δ]] has measure at most η. But [[|uτ − yi| ≤ 1
3δ]] ∪ b = 1 whenever τ ∈ D∗

i and
τ ≤ σ, so aiσ ⊇ b. Thus supσ′∈Di

aiσ′ has measure at least 1− η; as η is arbitrary, supσ′∈Di
aiσ′ = 1. QQQ

??? If d = infi∈N di is non-zero, choose σi ∈ Di, for each i ∈ N, such that

µ̄(di \ (aiσi
∩ [[σi < maxS]])) ≤ 2−i−2µ̄d.

(Any element far enough down Di will serve.) Then

a = infi∈N [[σi < maxS]] ∩ aiσi

has measure at least 1
2 µ̄d and is non-zero. For each i ∈ N, σi ∧ σi+1 ∈ D∗

i (because there is some member
of Di less than or equal to σi+1) and

a ∩ [[σi+1 ≤ σi]] ⊆ [[σi+1 < maxS]] ∩ [[uσi+1
= uσi∧σi+1

]]

∩ [[|uσi∧σi+1
− yi| ≤ 1

3δ]] ∩ [[|yi+1 − yi| ≥ δ]]

(because aiσi
⊆ [[|uσi∧σi+1

− yi| ≤ 1
3δ]] and [[σi+1 < maxS]] ⊆ [[|yi+1 − yi| ≥ δ]])

⊆ [[|uσi+1
− yi| ≤ 1

3δ]] ∩ [[|uσi+1
− yi+1| ≤ 1

3δ]] ∩ [[|yi+1 − yi| ≥ δ]] = 0.
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Set ρi = supj≤i σj for each i ∈ N. Then

a ⊆ infj<i [[σj < σj+1]] ⊆ [[σi = ρi]] ⊆ [[uρi = uσi
]]

for every i ∈ N. But we also have

a ⊆ [[|uσi
− yi| ≤ 1

3δ]] ∩ [[|yi+1 − yi| ≥ δ]]

for each i, so a ⊆ [[|uρi+1
− uρi | ≥ 1

3δ]] for each i and limi→∞ uρi is not defined. XXX
Thus infi∈N di = 0.

(d)(i)As every member ofDi+1 dominates a member ofDi, ci+1,σ ⊆ ciσ. As maxS ∈ Di, [[σ = maxS]] ⊆ ciσ.
If τ ∈ Di,

[[τ ≤ σ]] ⊆ ([[τ = maxS]] ∩ [[τ ≤ σ]]) ∪ [[τ < maxS]] ⊆ [[σ = maxS]] ∪ di;
taking the supremum over τ , ciσ ⊆ [[σ = maxS]] ∪ di.

(ii) If σ ∈ Di then ciσ ⊇ [[σ ≤ σ]] = 1. As D0 = S, c0σ = 1 for every σ ∈ S.
(iii)

[[σ ≤ σ′]] ∩ ciσ = supτ∈Di
[[σ ≤ σ′]] ∩ [[τ ≤ σ]] ⊆ supτ∈Di

[[τ ≤ σ′]] = ciσ′ .

(iv) By (i),

[[σ = maxS]] ⊆ infi∈N ciσ ⊆ [[σ = maxS]] ∪ infi∈N di = [[σ = maxS]]
by (c-iii).

(v) Suppose that τ ∈ Di. Then

b = [[|uσ − yi| ≥ δ]] ∩ [[τ ≤ σ]] ∩ [[σ < maxS]]
belongs to Aσ, because yi × χ[[τ ≤ σ]] ∈ Aσ, as observed in (i) above. We therefore have a τ ′ ∈ T such that

b ⊆ [[τ ′ = σ]], 1 \ b ⊆ [[τ ′ = maxS]]
and τ ′ ∈ S because S is finitely full. Now

b ⊆ [[τ ′ = σ]] ∩ [[τ ≤ σ]] ⊆ [[τ ≤ τ ′]], b ⊆ [[τ ′ = maxS]] ∩ [[τ ≤ maxS]] ⊆ [[τ ≤ τ ′]]

so τ ≤ τ ′; and

[[τ ′ < maxS]] ⊆ b ⊆ [[τ ′ = σ]] ∩ [[|uσ − yi| ≥ δ]] ⊆ [[|uτ ′ − yi| ≥ δ]]

so τ ′ ∈ Di+1. But this means that

ci+1,σ ⊇ [[τ ′ ≤ σ]] ⊇ b = [[|uσ − yi| ≥ δ]] ∩ [[τ ≤ σ]] ∩ [[σ < maxS]].
As τ is arbitrary,

ci+1,σ ⊇ [[|uσ − yi| ≥ δ]] ∩ ciσ ∩ [[σ < maxS]]
and

ciσ \ ci+1,σ ⊆ ciσ ∩ [[σ < maxS]] \ ci+1,σ

⊆ [[|uσ − yi| < δ]] ∩ [[ũσ = yi]] ⊆ [[|uσ − ũσ| < δ]].

(e) Since 〈ciσ \ ci+1,σ〉i∈N is disjoint with supremum 1 \ [[σ = maxS]] ((d-iv) above), the formula here
defines a member ũσ of L0(A).

(f)(i) Take σ ∈ S. Then [[τ ≤ σ]] ∈ Aσ for every τ ∈ S, so ciσ ∈ Aσ for every i ∈ N; also, of course,
[[σ = maxS]] ∈ Aσ. Next, yi ∈ L0(Aτ ) for every τ ∈ Di, so yi × χ[[τ ≤ σ]] ∈ L0(Aσ) for every τ ∈ Di (612C)
and yi × χciσ = limτ↓Di

yi × χ[[τ ≤ σ]] belongs to L0(Aσ) for every i ∈ N. Finally, umaxS × χ[[σ = maxS]] ∈
L0(Aσ). So ũσ ∈ L0(Aσ).

(ii) Suppose that σ, σ′ ∈ S and b = [[σ = σ′]]. Then b ∩ [[τ ≤ σ]] = b ∩ [[τ ≤ σ′]] for every τ ∈ S
(611E(c-iv-α)) so b ∩ ciσ = b ∩ ciσ′ for every i ∈ N and b ∩ [[σ = maxS]] = a ∩ [[σ′ = maxS]]. Accordingly
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b ∩ (ciσ \ ci+1,σ) ⊆ [[ũσ = yi]] ∩ [[ũσ′ = yi]] ⊆ [[ũσ = ũσ′ ]]

for every i ∈ N, and

b ∩ [[σ = maxS]] ⊆ [[ũσ = umaxS ]] ∩ [[ũσ′ = umaxS ]] ⊆ [[ũσ = ũσ′ ]].

So b ⊆ [[ũσ = ũσ′ ]]. Thus ũ is fully adapted.

(iii) From (d-v) we see that

ciσ \ ci+1,σ ⊆ [[|uσ − yi| < δ]] ∩ [[ũσ = yi]] ⊆ [[|uσ − ũσ| ≤ δ]]

for each i. At the top end, we surely have

[[σ = maxS]] ⊆ [[uσ = umaxS ]] ∩ [[ũσ = umaxS ]] ⊆ [[|uσ − ũσ| ≤ δ]].

Once again, these parts assemble into

[[|uσ − ũσ| ≤ δ]] = 1

and |uσ − ũσ| ≤ δχ1. As σ is arbitrary, sup |uuu− ũuu| ≤ δχ1.

(iv) Writing ū for sup |uuu|, we have

|yi| = | limσ↓Di
uσ| = limσ↓Di

|uσ| ≤ ū

for every i ∈ N. So if σ ∈ S,

[[|ũσ| ≤ ū]] ⊇ [[ũσ = umaxS ]] ∪ sup
i∈N

[[ũσ = yi]] ⊇ [[σ = maxS]] ∪ sup
i∈N

(ciσ \ ci+1,σ)

(by (e))

⊇ (inf
i∈N

ciσ) ∪ (c0σ \ inf
i∈N

ciσ)

(by (d-iv))

= 1

by (d-ii). As σ is arbitrary, sup |ũuu| ≤ ū.

(g)(i) For n ∈ N set xn =
∑n−1
i=0 |yi+1 − yi| + supi<n |umaxS − yi|, and write x for x0 × χ(1 \ d0) ∨

supn∈N xn+1 × χ(dn \ dn+1); this is defined because 〈dn〉n∈N is non-increasing (c-i), so 〈dn \ dn+1〉n∈N is
disjoint. Take σ0 ≤ . . . ≤ σm in S such that σm = maxS.

(ii) Let n ∈ N. Then

[[1 \ dn]] ⊆ [[
∑m−1
j=0 |ũσj+1

− ũσj
| ≤ xn]].

PPP Let B be the (finite) subalgebra of A generated by

{ciσj
: i ≤ n, j ≤ m} ∪ {[[σj < σj+1]] : j < m} ∪ {dn},

and b an atom of B disjoint from dn. For j < m either

b ⊆ [[σj = maxS]] ⊆ [[ũσj
= ũσj+1

]]

or there is just one i < n such that b ⊆ ciσj
\ ci+1,σj

. So if we set

K = {j : j < m, b ∩ [[ũσj
6= ũσj+1

]] 6= 0}
= {j : j < m, b ∩ [[σj < σj+1]] 6= 0} = {j : j < m, b ⊆ [[σj < σj+1]]}

there is for each j ∈ K an ij < n such that

b ⊆ cijσj
\ cij+1,σj

⊆ [[ũσj
= yij ]]

and we must have ij < ik whenever j, k ∈ K and j < k. For j ∈ K let j′ be the next member of K ∪ {m}
above j; then ij′ > ij for every j ∈ K \ {maxK}, so
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m−1∑

j=0

|ũσj+1
− ũσj

| × χb =
∑

j∈K
|ũσj+1

− ũσj
| × χb =

∑

j∈K
|ũσj′

− ũσj
| × χb

≤
∑

j∈K\{maxK}
|yij′ − yij |+ |umaxS − yimaxK

| ≤ xn.

As b is arbitrary, we have the result. QQQ

(iii) Writing w for
∑m−1
j=0 |ũj+1 − ũj |, we have

w = w × χ(1 \ d0) ∨ sup
n∈N

w × χ(dn \ dn+1)

(because 〈dn〉n∈N is non-increasing and infn∈N dn = 0, by 615Mc)

≤ x0 × χ(1 \ d0) ∨ sup
n∈N

xn+1 × χ(dn \ dn+1) = x.

As σ0, . . . , σm are arbitrary, ũ is of bounded variation.

615N Theorem Let S be a finitely full sublattice of T , and uuu = 〈uσ〉σ∈S a fully adapted process. Then
the following are equiveridical:

(i) uuu is moderately oscillatory;
(ii) uuu is ´

´
-convergent;

(iii) 〈uσn
〉n∈N is Cauchy for every monotonic sequence 〈σn〉n∈N in S;

(iv) for every ǫ > 0 there is an m ≥ 1 such that whenever σ0 ≤ . . . ≤ σm in S there is a j < m such that
θ(uσj

− uσj+1
) ≤ ǫ.

proof (i)⇒(iv) Suppose that uuu is moderately oscillatory. Take ǫ > 0 and set η = ǫ
4 . Let vvv = 〈vσ〉σ∈S be a

process of bounded variation such that θ(sup |uuu − vvv|) ≤ η. Write v̄ for
∫
S |dvvv|, and let γ ≥ 0 be such that

µ̄(v̄ > γ) ≤ η. Set m = ⌈γ/η⌉. If σ0 ≤ . . . ≤ σm in S, then ∑m−1
i=0 |vσi+1

− vσi
| ≤ v̄ (614J). If b = [[v̄ ≤ γ]],∑m−1

i=0 E(|vσi+1
− vσi

| × χb) ≤ γ so there is a j < m such that

γ

m
≥ E(|vσj+1

− vσj
| × χb) ≥ θ(|vσj+1

− vσj
| × χb).

Now

θ(|uσj+1
− uσj

|) ≤ θ(|vσj+1
− vσj

|) + 2θ(sup |uuu− vvv|)

≤ θ(|vσj+1
− vσj

| × χb) + µ̄(1 \ b) + 2η ≤ γ

m
+ 3η ≤ 4η = ǫ.

As ǫ is arbitrary, (ii) is true.

(iv)⇒(iii) Suppose that (iv) is true. If 〈τn〉n∈N is a sequence in S such that 〈uτn〉n∈N is not Cauchy,
there are an ǫ > 0 and a strictly increasing sequence 〈nk〉k∈N in N such that θ(τnk+1

− τnk
) > ǫ for every

k ∈ N. By (iv), we have an m ≥ 1 such that whenever σ0 ≤ . . . ≤ σm in S there is a j < m such that
θ(uσj

− uσj+1
) ≤ ǫ. So we cannot have either τn0

≤ . . . ≤ τnm
or τnm

≤ . . . ≤ τn0
, and 〈τn〉n∈N is not

monotonic. Turning this round, 〈uσn
〉n∈N is convergent whenever 〈σn〉n∈N is a monotonic sequence in S,

and uuu is ´
´
-convergent.

(iii)⇒(ii) because L0 is a complete linear topological space.

(ii)⇒(i)(ααα) To begin with, suppose that S has a greatest member. Then 615M tells us that for every
δ > 0 there is a process ũuu such that sup |uuu − ũuu| ≤ δχ1, while ũuu is of bounded variation (615Mg). So uuu is
moderately oscillatory.

(βββ) In general, the result is trivial if S is empty, so suppose otherwise. Given ǫ > 0, there is a
τ ∈ S such that θ(uσ − uτ ) ≤ ǫ for every σ ∈ S ∨ τ . PPP??? Otherwise, starting from any τ0 ∈ S, we can
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choose a non-decreasing sequence 〈τn〉n∈N in S such that θ(uτn+1
− uτn) > ǫ for every n ∈ N, in which case

〈uτn〉n∈N cannot be convergent. XXXQQQ Now consider uuu′ = 〈uσ∧τ 〉σ∈S . This is fully adapted (612Ib). Since uuu
is order-bounded (615K), so are uuu′ and uuu−uuu′, while uuu′↾S ∧ τ = uuu↾S ∧ τ is´

´
-convergent therefore moderately

oscillatory, by (α) just above, and uuu′↾S ∨ τ is constant, so also moderately oscillatory. By 615F(a-v), uuu′ is
moderately oscillatory. Now the choice of τ ensures that

θ(uσ − uσ∧τ ) = θ(uσ∨τ − uτ )

(612D(f-i))

≤ ǫ

for every σ ∈ S, As S is finitely full, θ(sup |uuu− uuu′|) ≤ 2
√
ǫ (615Db). But uuu′ ∈Mmo(S) and ǫ was arbtirary,

so uuu belongs to the closure of Mmo(S) for the ucp topology on Mo-b(S), and is itself moderately oscillatory
(615F(a-iv)).

615O Proposition Suppose that S is a sublattice of T , uuu ∈ Mmo(S) and ǫ > 0. Then there is a
uuu′ ∈Mbv(S) such that θ(sup |uuu′ − uuu|) ≤ ǫ and sup |uuu′| ≤ sup |uuu|.
proof (a) If S is full and has a greatest member, this follows immediately from 615M. We know that uuu
is ´

´
-convergent; taking δ = ǫ in 615M, we get a process ũuu of bounded variation which will serve for uuu′, by

615Mf and 615Mg.

(b) If we just know that S has a greatest member, consider the fully adapted extension ûuu of uuu to

the covered envelope Ŝ of S. By 615F(a-vi), ûuu is moderately oscillatory; by (a) here, there is a process

ûuu′ ∈ Mbv(Ŝ) such that θ(sup |ûuu′ − ûuu|) ≤ ǫ and sup |ûuu′| ≤ sup |ûuu|; now uuu′ = ûuu′↾S is of bounded variation
(614L(b-i)), sup |uuu′ − uuu| ≤ sup |ûuu′ − ûuu| so θ(sup |uuu′ − uuu|) ≤ θ(sup |ûuu′ − ûuu|) ≤ ǫ; and

sup |uuu′| ≤ sup |ûuu′| ≤ sup |ûuu| = sup |uuu|
by 614Ga.

(c) For the general case, if S is empty the result is trivial. Otherwise, express uuu as 〈uσ〉σ∈S . By
615Ga, u↑ = limσ↑S uσ is defined, and there is a τ ∈ S such that θ(supσ∈S∨τ |uσ − u↑|) ≤ 1

4ǫ; now

θ(supσ∈S∨τ |uσ − uτ |) ≤ 1
2ǫ. Of course uuu↾S ∧ τ is moderately oscillatory (615F(a-i)); by (b), we have a

process vvv = 〈vσ〉σ∈S∧τ of bounded variation such that θ(supσ∈S∧τ |vσ−uσ|) ≤ 1
4ǫ and sup |vvv| ≤ sup |uuu↾S∧τ .

It follows that θ(supσ∈S∨τ |uσ − vτ | ≤ 3
4ǫ.

Write S ′ for (S ∧ τ) ∪ (S ∨ τ). Since σ ≤ σ′ whenever σ ∈ S ∧ τ and σ′ ∈ S ∨ τ , S ′ is a sublattice of S.
If σ ∈ S, then

[[σ = σ ∧ τ ]] ∪ [[σ = σ ∨ τ ]] ⊇ [[σ ≤ τ ]] ∪ [[τ ≤ σ]] = 1,

so S ′ covers S. Because (S ∧ τ) ∩ (S ∨ τ) = {τ}, we have a family 〈u′σ〉σ∈S′ defined by setting u′σ = vσ for
σ ∈ S ∧ τ and u′σ = vτ for σ ∈ S ∨ τ . If σ ∈ S ∧ τ and σ′ ∈ S ∨ τ , then σ ≤ τ ≤ σ′ so

[[σ = σ′]] = [[σ = τ ]] ∩ [[τ = σ′]] ⊆ [[u′σ = u′tau]] ∩ [[u′τ = u′σ′ ]];

now it is easy to check that 〈u′σ〉σ∈S′ is fully adapted, and therefore has a unique fully adapted extension
uuu′ = 〈u′σ〉σ∈S (612R).

Now uuu′↾S ∧ τ = vvv is of bounded variation, uuu′↾S ∨ τ is constant, and

sup |uuu′ − uuu| = sup
σ∈S′

|u′σ − uσ|

(614Ga)

= sup
σ∈S∧τ

|vσ − uσ| ∨ sup
σ∈S∨τ

|uσ − vτ |.

Accordingly uuu′ is of bounded variation (614Lc), θ(sup |uuu′ − uuu|) ≤ 3
4ǫ+

1
4ǫ = ǫ, and

sup |uuu′| = sup |vvv| ≤ sup |uuu|,
as required.
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615P Where moderately oscillatory processes come from There is an easy condition on the
structure in 612H which will ensure that the process generated there is moderately oscillatory.

Proposition Let (Ω,Σ, µ) be a complete probability space, and 〈Σt〉t≥0 a filtration of σ-subalgebras of
Σ such that every µ-negligible set belongs to every Σt. Let (A, µ̄) be the measure algebra of µ and
set At = {E• : E ∈ Σt} for each t ≥ 0; then we have a real-time stochastic integration structure
(A, µ̄, [0,∞[ , 〈Ar〉t≥0, T , 〈Aτ 〉τ∈T ). Let 〈Xt〉t≥0 be a progressively measurable process on Ω, and xxx =
〈xτ 〉τ∈Tf

the corresponding fully adapted process as described in 612H. Suppose that limn→∞Xtn(ω) is
defined in R for every bounded monotonic sequence 〈tn〉n∈N in [0,∞[ and every ω ∈ Ω. Then xxx is locally
moderately oscillatory.

proof Take any σ ∈ Tf .
(a) We have a stopping time h : Ω → [0,∞[ adapted to 〈Σt〉t≥0 which represents σ in the sense that

[[σ > t]] = {ω : h(ω) > t}• for every t ≥ 0 (612H(a-v)). Now {Xt(ω) : t ≤ h(ω)} is bounded for every
ω ∈ Ω. PPP??? Otherwise, there is a sequence 〈tn〉n∈N in [0, h(ω)] such that limn→∞ |Xtn(ω)| = ∞. Setting
s0 = sup{s : s ≥ 0, {n : tn ≤ s} is finite}, there is a a monotonic subsequence 〈t′n〉n∈N of 〈tn〉n∈N converging
to s, and 〈Xt′n(ω)〉n∈N has no limit in R. XXXQQQ

(b) Next, setting f(ω) = supt≤h(ω) |Xt(ω)| for ω ∈ Ω, f : Ω → R is measurable. PPP For any α ∈ R and
n ∈ N,

{(t, ω) : t ≤ n, |Xt(ω)| > α} ∈ B([0, n])⊗̂Σn ⊆ B([0,∞[)⊗̂Σ

where B([0, n]) is the Borel σ-algebra of [0, n] and B([0,∞[) is the Borel σ-algebra of [0,∞[. Because h is
Σ-measurable,

{(t, ω) : t ≤ h(ω)} =
⋃
q∈Q[0, q]× {ω : q ≤ h(ω)} ∈ B([0,∞[)⊗̂Σ

and

W ={(t, ω) : t ≤ h(ω), |Xt(ω)| > α}
=

⋃

n∈N

{(t, ω) : t ≤ h(ω)} ∩ {(t, ω) : t ≤ n, |Xt(ω)| > α}

belongs to B([0,∞[)⊗̂Σ. Since µ is complete, Σ is closed under Souslin’s operation (431A) and contains the
projection of W onto Ω (423O6). But this is just {ω : f(ω) > α}. As α is arbitrary, f is Σ-measurable. QQQ

It follows that xxx↾T ∧ σ is order-bounded. PPP If τ ∈ T and τ ≤ σ, there is a stopping time g : Ω →
[0,∞[ representing τ (612H(a-v) again) and g ≤a.e. h (612H(a-iv)), so min(g, h) still represents τ . Since
|Xmin(g(ω),h(ω))(ω)| ≤ f(ω) for every ω ∈ Ω, xτ ≤ f• in L0(A). Thus sup |xxx↾T ∧ σ| is defined and at most
f•. QQQ

(c) Suppose that 〈τn〉n∈N is a non-decreasing sequence in T ∧ σ. Choose gn : Ω → [0,∞[ representing τn
for each n, and set g′n = min(h, supi≤n gi) for n ∈ N; then g′n represents τn for each n, and 〈g′n(ω)〉n∈N is a
non-decreasing sequence in [0, h(ω)] for each ω ∈ Ω, so g(ω) = limn→∞Xg′n(ω)

(ω) is defined in R for every

ω ∈ Ω. But now g• = limn→∞ xτn in L0(A) (245Ca). So limn→∞ xτn is defined.
Similarly, if 〈τn〉n∈N is a non-increasing sequence in T ∧ σ, gn : Ω → [0,∞[ represents τn for each n, and

g′n = min(h, infi≤n gi) for n ∈ N, then g′n represents τn for each n, 〈g′n(ω)〉n∈N is a non-increasing sequence
in [0, h(ω)] for each ω ∈ Ω, and g(ω) = limn→∞Xg′n(ω)

(ω) is defined in R for every ω ∈ Ω. Once again,
limn→∞ xτn is defined and equal to g•.

Putting these together with (b), xxx↾T ∧ σ is´
´
-convergent, therefore moderately oscillatory, since T ∧ σ is

(finitely) full; as σ is arbitrary, xxx is locally moderately oscillatory on Tf .

615Q Proposition The identity process (as described in 612F), Brownian motion (612T) and the Poisson
process (612U) are all locally moderately oscillatory.

proof In the case of the identity process ιιι = 〈ιτ 〉τ∈Tf
and the Poisson process vvv = 〈vτ 〉τ∈Tf

it is enough to
know that they start at 0 and are non-decreasing, so that if τ ∈ Tf and 〈σn〉n∈N is a monotonic sequence

6Later editions only.
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in Tf ∧ τ , 〈ισn
〉n∈N and 〈vσn

〉n∈N are monotonic sequences in [0, ιτ ] and [0, vτ ] respectively, and must be
convergent in L0 (613Ba). (Of course Tf ∧ τ is full, so we can work directly from 614O.) As for Brownian
motion, I based this on Ω = C([0,∞[)0 and Xt(ω) = ω(t) for t ≥ 0 and ω ∈ Ω. So the sample paths
t 7→ Xt(ω) are continuous, and 615P gives the result at once.

615R Proposition Let S be a sublattice of T and uuu a process of bounded variation with domain S.
(a) If vvv ∈Mmo =Mmo(S) then

∫
S uuu dvvv is defined and |

∫
S uuu dvvv| ≤ (

∫
S |duuu|+ 2 sup |uuu|)× sup |vvv|.

(b) iivvv(uuu) ∈ Mmo for every vvv ∈ Mmo, and vvv 7→ iivvv(uuu) : Mmo → Mmo is continuous for the ucp topology
on Mmo.

proof Write w for
∫
S |duuu|+ 2 sup |uuu|.

(a) Let ǫ > 0. Then there is a δ > 0 such that θ(x× w) ≤ ǫ whenever θ(x) ≤ δ. Next, there is a process
vvv′ of bounded variation such that θ(sup |v − v′|) ≤ δ. By 614S,

∫
S uuu dvvv

′ is defined. Let I ∈ I(S) be such
that θ(SI(uuu, dvvv

′)− SJ(uuu, dvvv
′)) ≤ ǫ whenever I ⊆ J ∈ I(S). Now for any J ∈ I(S)

|SJ (uuu, dvvv)− SJ(uuu, dvvv
′))| = |SJ (uuu, d(vvv − vvv′))|

≤ sup(|vvv − vvv′|↾J)× (

∫

J

|duuu|+ 2 sup(|uuu↾J |))

(614R)

≤ sup(|vvv − vvv′|)× (

∫

S
|duuu|+ 2 sup(|uuu|))

(using 614Lb)

= sup(|vvv − vvv′| × w),

so

θ(SJ(uuu, dvvv)− SJ(uuu, dvvv
′)) ≤ ǫ.

By the choice of I, θ(SI(uuu, dvvv) − SJ(uuu, dvvv)) ≤ 3ǫ whenever I ⊆ J ∈ I(S). As ǫ is arbitrary,
∫
S uuu dvvv =

limI↑I(S) SI(uuu, dvvv) is defined.
At the same time, we see that |SJ(uuu, dvvv)| ≤ sup |vvv| × w for every J ∈ I(S), so in the limit we have

|
∫
S uuu dvvv| ≤ sup |vvv| × w.

(b) If vvv ∈ Mmo then
∫
S uuu dvvv is defined, by (a), so iivvv(uuu) is defined everywhere on S. Applying (a) to

uuu↾S ∧ τ and vvv↾S ∧ τ for τ ∈ S, we see that

sup |iivvv(uuu)| = sup
τ∈S

|
∫

S∧τ
uuu dvvv|

≤ sup
τ∈S

(
(

∫

S∧τ
|duuu|+ 2 sup |uuu↾S ∧ τ |)× sup |vvv↾S ∧ τ |

)

≤ (

∫

S
|duuu|+ 2 sup |uuu|)× sup |vvv|,

so iivvv(uuu) is order-bounded. The same formula shows that vvv 7→ iivvv(uuu) :Mmo →Mo-b =Mo-b(S) is continuous
for the ucp topologies on Mmo and Mo-b. We know that iivvv(uuu) ∈ Mbv whenever vvv ∈ Mbv (614T), so
iivvv(uuu) ∈Mbv =Mmo whenever vvv ∈Mmo, and vvv 7→ iivvv(uuu) :Mmo →Mmo is continuous.

615X Basic exercises (a) Let ν̄ : A → [0, 1] be any functional such that (A, ν̄) is a probability algebra.
Show that the ucp topology and uniformity on Mo-b(S) defined from the associated F-norm θν̄ (613Bg) are
the same as those defined from µ̄ and θ = θµ̄.

(b) Let S be a sublattice of T . WriteMlob =Mlob(S) for the space of locally order-bounded fully adapted

processes with domain S (615Fb). For τ ∈ S and uuu ∈ Mlob set θ̂τ (uuu) = θ(supσ∈S∧τ |uσ|). (i) Show that

{θ̂τ : τ ∈ S} defines a complete Hausdorff linear space topology on Mlob for which multiplication and the
operations ∨, ∧ are continuous; I will call this the local ucp topology on Mlob. (ii) Show that Mlmo(S) is
closed for the local ucp topology on Mlob.
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(c) Let S be a sublattice of T and z a member of L0(
⋂
σ∈S Aσ). Show that, in the language of 612D(e-ii),

uuu 7→ zuuu :Mo-b(S) →Mo-b(S) is continuous for the ucp topology.

(d) Let S be a finitely full sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process such that {uσ : σ ∈ S}
is topologically bounded in the sense of 613Bf. Show that uuu is order-bounded.

(e) Give examples of (i) an ´
´
-convergent fully adapted process which is not order-bounded (ii) an ´

´
-

convergent order-bounded process which is not moderately oscillatory. (Hint : S = {ň : n ∈ N}.)

(f) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W. Write C̃´´ for the set of functions f : [0,∞[ → R

such that lims↓t f(s) is defined for every t ≥ 0 and lims↑t f(s) is defined for every t > 0 (cf. 438P-438Q). Let
f : [0,∞[ → R be a function and xxx ∈Mfa(Tf ) the corresponding process. (i) Show that the ucp topology on
Mo-b(Tf ) corresponds to the norm topology on ℓ∞([0,∞[). (ii) Show that xxx is locally moderately oscillatory

iff f ∈ C̃´´, and moderately oscillatory iff f ∈ C̃´´ and limt→∞ f(t) is defined in R.

(g) Let S be a sublattice of T , uuu a process of bounded variation, and vvv a moderately oscillatory process,
both with domain S. Show that iivvv(uuu) is moderately oscillatory.

(h) Let S be a finitely full sublattice of T and uuu = 〈uσ〉σ∈S a fully adapted process such that {uσ : σ ∈ S}
is topologically bounded (613Bf). Show that uuu is order-bounded.

615Y Further exercises (a) Let S be a sublattice of T . Show that the ucp topology on the Riesz space
Mo-b(S) is locally solid in the sense that for every neighbourhood G of 0 there is a solid neighbourhood
H of 0 included in G.

(b) Let S be a sublattice of T . For uuu, vvv ∈ Mfa(S) set ρ(uuu,vvv) = min(1, ‖uuu− vvv‖∞) (612Sa). Show that ρ
is a metric on Mfa(S) under which Mfa(S) is complete and addition is continuous. Show that if S is finitely
full then Mmo(S) is the closure of Mbv(S) for the topology defined by ρ.

(c) In the construction described in 613P, show that the processes uuu and vvv are moderately oscillatory.

615 Notes and comments Note that the concepts of ‘ucp topology’, ‘ucp uniformity’ and ‘moderately
oscillatory process’, like that of ‘Riemann-sum integral’ (613I), depend on the structure (A, L0, T , 〈Aτ 〉τ∈T )
and on the topology of convergence in measure on L0, but otherwise are independent of the measure µ̄
(615Xa).

So many processes turn out to be locally moderately oscillatory that we can quite happily regard them as
the norm, at least to begin with. In Theorem 455G I showed that the most important real-valued Markov
processes on [0,∞[ have representations in which all paths are càdlàg functions, and 615P shows that these
correspond to locally moderately oscillatory processes. There are enough examples (see 612T-612U) and
preservation results (e.g., 615F) to ensure that we can hope to remain in this territory for a long time.

The words ‘local’ and ‘locally’ are going to appear repeatedly in this volume. The point is that basic
theorems are often most simply expressed in terms of ‘global’ concepts, as in 614F, 614G, 614Q, 615C,
615Fa, 615G and 616R. But the most important applications tend to present themselves in ‘local’ terms;
thus Brownian motion is locally order-bounded (614H) and the Poisson process is locally of bounded variation
(614M).

From Theorem 615N we see that, at least if the sublattice S is finitely full, we have two possible definitions
of ‘moderately oscillatory process’; one in terms of approximation by processes of bounded variation, as in
615E, and one in terms of a kind of sequential convergence, as in 615I. The former is easier to handle
(compare 615G and 615L), but the latter gives a path to a fundamental fact (616Ib). In particular, 615M
can be regarded as a method of constructing a process ũuu from a given moderately oscillatory process uuu
which is not only of bounded variation but approximates uuu in a much finer topology than the ucp topology
(615Yb). 615O looks like an insignificant variation on the definition in 615E, but I do not see a quicker way
to it, and it will be useful later.

As in §614, I conclude the section with a note on a special type of integral, providing another case in
which an indefinite integral inherits a property from an integrator. It looks esoteric, but happens to be a
useful step towards one of the principal theorems of the next section (616K).
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Version of 31.1.23/3.2.23

616 Integrating interval functions

In this section I present a fundamental theorem on the existence of Riemann-sum integrals (616M),
dealing with the case of moderately oscillatory integrands and integrating interval functions (616F). The
most important integrating interval functions are those defined by integrators (616Fc, 616I). The integrators
on a lattice S form an f -subalgebra of the space of moderately oscillatory processes with domain S (616P).

616A Notation (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. For a sublattice
S of T , I(S) is the set of finite sublattices of S, and if τ ∈ T , S∧τ = {σ∧τ : σ ∈ S} and S∨τ = {σ∨τ : σ ∈
S}. If uuu and vvv are fully adapted processes defined (at least) on a finite sublattice I of T and ψ is an adapted
interval function defined (at least) on I2↑ = {(σ, τ) : σ, τ ∈ I, σ ≤ τ}, then SI(uuu, dψ) and SI(uuu, dvvv) will
be the Riemann sums defined in 613Eb and 613Fb. For w ∈ L0 = L0(A), θ(w) = E(|w| ∧ χ1) as in 613Ba.
If S is a sublattice of T , Mfa(S), Mo-b(S), Mlob(S), Mbv(S) and Mmo(S) are the spaces of fully adapted
processes, order-bounded processes, locally order-bounded processes, processes of bounded variation and
moderately oscillatory processes with domain S. For uuu ∈ Mo-b(S), sup |uuu| = supσ∈S |uσ|. 1 will be the
process with constant value χ1. If uuu = 〈uσ〉σ∈S and vvv = 〈vσ〉σ∈S are fully adapted processes with the same
domain S, [[uuu 6= vvv]] = supσ∈S [[uσ 6= vσ]].

616B Definition Let S be a sublattice of T . If ψ is an adapted interval function (613C) defined (at
least) on S2↑, the capped-stake variation set of ψ over S is the set QS(dψ) of Riemann sums SI(uuu, dψ)
where I ∈ I(S), uuu is a fully adapted process with domain I and sup |uuu| ≤ χ1.

If vvv,www are fully adapted processes defined (at least) on S then, corresponding to the basic interval functions
of 613F, I will write QS(dvvv), QS(dvvvdwww), QS(|dvvv|) for QS(d(∆vvv)), QS(d(∆vvv ×∆www)) and QS(d|∆vvv|).

616C The following elementary facts will be useful.

Lemma Let S be a non-empty sublattice of T , ψ an adapted interval function defined on S2↑, and z an
element of L0(A). Then the following are equiveridical:

(i) z ∈ QS(dψ);
(ii) there are τ0 ≤ . . . ≤ τn in S and u0, . . . , un−1 such that ui ∈ L∞(Aτi) and |ui| ≤ χ1 for every i < n

and z =
∑n−1
i=0 ui × ψ(τi, τi+1);

(iii) there are τ0 ≤ . . . ≤ τn in S and an order-bounded process uuu = 〈uσ〉σ∈S such that sup |uuu| ≤ χ1

and z =
∑n−1
i=0 uτi × ψ(τi, τi+1).

proof (i)⇒(ii) If z = 0 we can take n = 0 and any τ0 ∈ S. Otherwise, let I ∈ I(S) and uuu = 〈uσ〉σ∈I ∈Mfa(I)
be such that sup |uuu| ≤ χ1 and z = SI(uuu, dψ). Take a sequence (τ0, . . . , τn) linearly generating the I-cells.
Then

z = SI(uuu, dψ) =
∑n−1
i=0 uτi × ψ(τi, τi+1)

(613Ec), while τ0 ≤ . . . ≤ τn and uτi ∈ L0(Aτi) and |uτi | ≤ χ1 for every i < n.

(ii)⇒(iii) By 612Ka, there is a fully adapted process uuu′ = 〈u′σ〉σ∈S such that, for σ ∈ S,
[[u′σ = ui]] ⊇ [[τi ≤ σ]] ∩ [[σ < τi+1]],

for every i < n, while

[[u′σ = 0]] ⊇ [[σ < τ0]], [[u′σ = uτn ]] ⊇ [[τn ≤ σ]].

Observe that |u′σ| ≤ χ1 for every σ (because

[[σ < τ0]] ∪ [[τn ≤ σ]] ∪ supi<n [[τi ≤ σ]] ∩ [[σ < τi+1]] = 1),

so uuu is order-bounded and sup |uuu| ≤ χ1. Now if we set I = {τ0, . . . , τn},

c© 2019 D. H. Fremlin
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z =

n−1∑

i=0

ui × ψ(τi, τi+1) =

n−1∑

i=0

ui × χ([[τi < τi+1]])× ψ(τi, τi+1)

=

n−1∑

i=0

u′τi × χ([[τi < τi+1]])× ψ(τi, τi+1) =

n−1∑

i=0

u′τi × ψ(τi, τi+1).

(iii)⇒(i) Setting I = {τ0, . . . , τn}, z = SI(uuu↾I, dψ).

616D Lemma Let S be a sublattice of T and ψ, ψ′ adapted interval functions defined on S2↑.
(a) QS(dψ) =

⋃
I∈I(S)QI(dψ).

(b) QS(d(αψ)) = αQS(dψ) for every α ∈ R.
(c) QS(d(ψ + ψ′)) ⊆ QS(dψ) +QS(dψ′).
(d) If S ′ is a sublattice of S then QS′(dψ) ⊆ QS(dψ).
(e) If w ∈ QS(dψ), z ∈ L0(A ∩⋂

σ∈S Aσ) and |z| ≤ χ1, then z × w ∈ QS(ψ).
(f) If τ ∈ S then QS∧τ (dψ) +QS∨τ (dψ) ⊆ QS(dψ).

proof (a) Immediate from the definition.

(b) SI(uuu, αψ) = αSI(uuu, dψ) for all I and uuu.

(c) SI(uuu, d(ψ + ψ′)) = SI(uuu, dψ) + SI(uuu, dψ
′) for all I and uuu.

(d) I(S ′) ⊆ I(S).
(e) We can express w as SI(uuu, dψ) where I ∈ I(S), uuu ∈ Mfa(I) and sup |uuu| ≤ χ1. Now zuuu ∈ Mfa(I)

(612D(e-ii)) and sup |zuuu| ≤ |z| × sup |uuu| ≤ χ1, so QS(dψ) contains SI(zuuu, dψ) = z × w (613L(b-iii)).

(f) If w ∈ QS∧τ (dψ) + QS∨τ (dψ), then by 616C(ii) there are τ ′0 ≤ . . . ≤ τ ′n′ in S ∧ τ , τ ′′0 ≤ . . . ≤ τ ′′n′′ in
S ∨ τ , u′i ∈ L0(Aτ ′

i
) such that |u′i| ≤ χ1 for i < n′, u′′j ∈ L0(Aτ ′

j
) such that |u′′j | ≤ χ1 for j < n′′. such that

w =
∑n′−1
i=0 u′i × ψ(τ ′i , τ

′
i+1) +

∑n′′−1
j=0 u′′i × ψ(τ ′′i , τ

′′
i+1).

Set n = n′ + n′′ + 1,

τk = τ ′k for k ≤ n′,

= τ ′′k−n′−1 for n′ < k ≤ n′ + n′′ + 1,

uk = u′k for k < n′,

= 0 for k = n′,

= u′′k−n′−1 for n′ < k ≤ n′ + n′′.

Then τ0 ≤ . . . ≤ τn in S while uτk ∈ L0(Aτk) and |uτk | ≤ χ1 for k < n and w =
∑n−1
k=0 uk × ψ(τk, τk+1), so

w ∈ QS(dψ).

616E Lemma Let S be a sublattice of T , and ψ an adapted interval function on S. Then the following
are equiveridical:

(i) QS(dψ) is topologically bounded;
(ii) for every ǫ > 0 there is a δ > 0 such that θ(SI(uuu, dψ)) ≤ ǫ whenever I ∈ I(S), uuu ∈ Mfa(I) and

θ(sup |uuu|) ≤ δ;
(iii) for every ǫ > 0 there is a δ > 0 such that θ(SI(uuu, dψ)) ≤ ǫ whenever I ∈ I(S), uuu ∈ Mo-b(S) and

θ(sup |uuu|) ≤ δ.

proof (i)⇒(ii) Suppose that QS(dψ) is topologically bounded and ǫ > 0. Let η > 0 be such that
θ(ηSI(uuu, dψ)) ≤ 1

2ǫ whenever I ∈ I(S), uuu ∈ Mfa(I) and sup |uuu| ≤ χ1. Set δ = 1
2ǫη. If I ∈ I(S), uuu ∈ Mfa(I)

and θ(sup |uuu|) ≤ δ, set uuu′ = med(−1, 1ηuuu,1). Then
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[[SI(uuu, dψ) 6= ηSI(uuu
′, dψ)]] = [[SI(uuu− ηuuu′, dψ) 6= 0]] ⊆ [[uuu 6= ηuuu′]]

(613Gd)

= [[sup |uuu| > η]]

has measure at most δ
η = 1

2ǫ. So

θ(SI(uuu, dψ)) ≤ 1

2
ǫ+ θ(ηSI(uuu

′, dψ)) ≤ ǫ.

Thus δ witnesses that (ii) is true.

(ii)⇒(iii) If (ii) is true and ǫ > 0, take δ as in (ii). If I ∈ I(S), uuu ∈ Mo-b(S) and θ(sup |uuu|) ≤ δ, then
uuu↾I ∈Mfa(I) and sup |uuu↾I| ≤ sup |uuu|, so θ(sup |uuu↾I|) ≤ δ and θ(SI(uuu, dψ)) = θ(SI(uuu↾I, dψ)) ≤ ǫ.

(iii)⇒(i) Suppose that (iii) is true. If S is empty then QS(dψ) = {0} is certainly topologically bounded.
Otherwise, given ǫ > 0, take δ as in (iii). Then for any z ∈ QS(dψ) there are τ0 ≤ . . . ≤ τn in S and

uuu = 〈uσ〉σ∈S ∈ Mo-b(S) such that sup |uuu| ≤ χ1 and z =
∑n−1
i=0 uτi × ψ(τi, τi+1) (616C(ii)). But now

z = SI(uuu, dψ) where I = {τ0, . . . , τn}, while θ(sup |δuuu|) ≤ θ(δχ1) ≤ δ so θ(δz) = θ(SI(δuuu, dψ)) ≤ ǫ. As ǫ
and z are arbitrary, QS(dψ) is topologically bounded.

616F Definition Let S be a sublattice of T and ψ : S2↑ → L0 a function.

(a) I will say that ψ is an integrating interval function on S if

(α) ψ is a strictly adapted interval function;

(β) writing Ŝ for the covered envelope of S and ψ̂ : Ŝ2↑ → L0 for the strictly adapted extension

of ψ (613U),
∫
Ŝ dψ̂ =

∫
Ŝ 1 dψ̂ is defined in the sense of 613H;

(γ) QŜ(dψ̂) is topologically bounded in L0.

(b) ψ is a locally integrating interval function if ψ↾(S ∧ τ)2↑ is an integrating interval function for
every τ ∈ S.

(c) A fully adapted process vvv defined on S is an integrator if QS(dvvv) is topologically bounded in L0,
and a local integrator if vvv↾S ∧ τ is an integrator for every τ ∈ S.

I will writeMigtr(S) for the set of integrators with domain S, andMligtr(S) for the set of local integrators
with domain S.
Remarks Evidently a strictly adapted interval function ψ on a sublattice S is an integrating interval
function iff its adapted extension on the covered envelope of S is an integrating interval function.

I have given a definition of ‘integrator’ which does not obviously correspond directly to the definition
of ‘integrating interval function’. We shall see in 616I that in fact it matches exactly, but it is convenient
to work with the simpler formulation here for the moment. Of course we can see already that if vvv is fully
adapted and ∆vvv is a (locally) integrating interval function, then vvv is a (local) integrator.

616G Proposition Let S be a sublattice of T and ψ, ψ′ integrating interval functions on S.
(a) ψ + ψ′ and αψ are integrating interval functions on S for every α ∈ R.
(b) ψ is a locally integrating interval function.

proof (a) ψ + ψ′ and αψ are strictly adapted interval functions (613D) and∫
S d(ψ + ψ′) =

∫
S dψ +

∫
S dψ

′,
∫
S d(αψ) = α

∫
S dψ

are defined (613Jb). Next, writing ψ̂ and ψ̂′ for the strictly adapted extensions of ψ and ψ′, as in 616Fa,

ψ̂ + ψ̂′ is a strictly adapted interval function extending ψ + ψ′, so is equal to (ψ + ψ′)̂ , and∫
Ŝ d((ψ + ψ′)̂ ) =

∫
Ŝ d(ψ̂ + ψ̂′) =

∫
Ŝ dψ̂ +

∫
Ŝ dψ̂

′

is defined, while
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QŜ(d(ψ + ψ′)̂ ) = QŜ(d(ψ̂ + ψ̂′)) ⊆ QŜ(dψ̂) +QŜ(dψ̂
′)

(616Dc) is topologically bounded (613B(f-iii)). So ψ + ψ′ is an integrating interval function.
Similarly, ∫

Ŝ d((αψ)̂ ) = α
∫
Ŝ dψ̂, QŜ(d(αψ)̂ ) = QŜ(d(αψ̂)) = αQŜ(dψ̂)

is topologically bounded and αψ is an integrating interval function.

(b) If τ ∈ S, then the covered envelope of S∧τ is Ŝ ∧τ (611M(e-i)). ψ′ = ψ↾(S∧τ)2↑ is a strictly adapted

interval function (613C(b-iii)) and its strictly adapted extension ψ̂′ to (Ŝ ∧ τ)2↑ must be ψ̂↾(Ŝ ∧ τ)2↑. Now∫
Ŝ∧τ dψ̂

′ =
∫
Ŝ∧τ dψ̂ is defined, by 613J(c-i), and

Q(S∧τ )̂ (dψ̂
′) = QŜ∧τ (dψ̂

′) = QŜ∧τ (dψ̂) ⊆ QŜ(dψ̂)

(616Dd) is topologically bounded (613B(f-iii) again).

616H The next theorem depends on some machinery.

Lemma Suppose that

ǫ > 0, γ ≥ 0, m ≥ 1, mǫ ≥ 2γ,

r ≥ m, 1− r!

rm(r−m)!
≤ 1

2ǫ
m, k ≥ 1, 2kǫm ≥ ǫ, n = rk.

Let S be a sublattice of T and ψ an adapted interval function with domain S2↑.
(a) Let 〈ai〉i<r be a family in A such that µ̄ai ≥ ǫ for every i < r. Then there is a J ∈ [r]m such that

µ̄(infi∈J ai) ≥ 1
2ǫ
m.

(b) Let τ0 ≤ . . . ≤ τr in S be such that sup{θ(w) : w ∈ QS∩[τi,τi+1](dψ)} > 4ǫ for every i < r, while z ∈
L0(Aτ0) is such that µ̄[[|z| ≥ γ]] ≤ ǫ. Then there is a w ∈ QS(dψ) such that µ̄[[|z + w| ≥ γ]] ≥ µ̄[[|z| ≥ γ]]+ 1

2ǫ
m.

(c) Let τ0 ≤ . . . ≤ τn in S be such that sup{θ(w) : w ∈ QS∩[τi,τi+1](dψ)} > 4ǫ for every i < n. Then there
is a w ∈ QS(dψ) such that µ̄[[|w| ≥ γ]] ≥ ǫ.

(d) Let τ0 ≤ . . . ≤ τn in S be such that θ(ψ(τi, τi+1)) > 4ǫ for every i < n. Then there is a w ∈ QS(dψ)
such that µ̄[[|w| ≥ γ]] ≥ ǫ.

proof (a) The case m = 1 is trivial. Otherwise, set u =
1

r

∑r−1
i=0 χai and q =

m

m−1
. Then

(
∫
um)1/m = ‖u‖m‖χ1‖q ≥

∫
u ≥ ǫ

by Hölder’s inequality (244Eb), so if F is the set of injective functions from m to r,

rmǫm ≤ rm
∫
um =

∑

f∈rm

∫ ∏

i<m

χaf(i) =
∑

f∈rm
µ̄( inf
i<m

af(i))

≤ rm −#(F ) +
∑

f∈F
µ̄( inf
i<m

af(i)) ≤ rm −#(F ) + #(F ) sup
f∈F

µ̄( inf
i<m

af(i))

and there is a J ∈ [r]m such that

µ̄(inf
i∈J

ai) ≥ 1

#(F )
(rmǫm − rm +#(F ))

=
rm

#(F )
(ǫm − (1− #(F )

rm
)) ≥ ǫm − (1− r!

rm(r−m)!
) ≥ 1

2
ǫm,

as required.

(b) Set c = [[|z| ≥ γ]] ∈ Aτ0 ; we are supposing that µ̄c ≤ ǫ. For each i < r, let wi ∈ QS∩[τi,τi+1](dψ) be
such that θ(wi) ≥ 4ǫ; then

µ̄([[wi ≥ ǫ]] \ c) + µ̄([[wi ≤ −ǫ]] \ c) ≥ µ̄[[|wi| ≥ ǫ]]− µ̄c

≥ θ(wi)− ǫ− ǫ ≥ 2ǫ;
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set

K = {i : i < r, µ̄([[wi ≥ ǫ]] \ c) ≥ ǫ}, K ′ = r \K,

ai = [[wi ≥ ǫ]] \ c for i ∈ K,

= [[−wi ≥ ǫ]] \ c for i ∈ K ′,

so that µ̄ai ≥ ǫ for every i < r.

By (a), there is a set J ∈ [r]m such that µ̄(infi∈J ai) ≥ 1

2
ǫm. Set d = infi∈J ai,

w′
i = wi × χ(1 \ c) for i ∈ J ∩K,
= −wi × χ(1 \ c) for i ∈ J ∩K ′,

= 0 for i ∈ r \ J.

Then w′
i ∈ QS∩[τi,τi+1](dψ) for every i (616De) so w =

∑r−1
i=0 w

′
i belongs to QS(dψ) (use 616Df repeatedly).

Next,

w′
i × χd ≥ ǫχd for i ∈ J,

= 0 for i ∈ r \ J,
so w × χd ≥ mǫχd ≥ 2γχd while w × χc = 0. But this means that

[[|w + z| ≥ γ]] ⊇ ([[w = 0]] ∩ [[|z| ≥ γ]]) ∪ ([[|w| ≥ 2γ]] \ [[|z| ≥ γ]]) ⊇ c ∪ d,

and

µ̄[[|w + z| ≥ γ]] ≥ µ̄c+ µ̄d ≥ µ̄[[|z| ≥ γ]] +
1

2
ǫm,

as required.

(c) For j < k set Sj = S ∩ [τjr, τ(j+1)r]. Choose 〈zj〉j≤k, 〈wj〉j<k as follows. z0 = 0. Given that j < k,

zj ∈ L0(Aτjr ) and that µ̄[[|zj | ≥ γ]] ≥ min(ǫ, 12jǫ
m), (b) tells us that if µ̄[[|zj | ≥ γ]] ≤ ǫ there is a wj ∈ QSj

(dψ)

such that µ̄[[|zj + wj | ≥ γ]] ≥ 1
2 (j + 1)ǫm. If µ̄[[|zj | ≥ γ]] > ǫ take wj = 0. Of course wj ∈ L0(Aτj+1

) and

[[|zj + wj | ≥ γ]] ≥ min(ǫ, 12 (j + 1)ǫm) in either case, so we can set zj+1 = zj + wj , and continue. At the end
of the induction, set w = zk.

Inducing on j, using 616Df again for the inductive step, we see that zj ∈ QS∧τjr (dψ) for every j ≤ k. So

w ∈ QS(dψ), while µ̄[[|w| ≥ γ]] ≥ min(ǫ, 12kǫ
m) = ǫ, as required.

(d) Since ψ(τi, τi+1) ∈ QS∩[τi,τi+1](dψ) for every i < n, this is a special case of (c).

616I Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a (local) integrator.
(a) The fully adapted extension of vvv to the covered envelope of S is a (local) integrator.
(b) vvv is (locally) moderately oscillatory, therefore (locally) order-bounded.
(c) ∆vvv is a (locally) integrating interval function.

proof (a)(i) The point is that QŜ(dv̂vv) is included in the topological closure of QS(dvvv). PPP Take z ∈ QŜ(dv̂vv).

Express z as SI(yyy, dv̂vv) where I ∈ I(Ŝ), yyy = 〈yτ 〉τ∈I ∈Mfa(I) and sup |yyy| ≤ χ1. If I = ∅ then z = 0 ∈ QS(dvvv).
Otherwise, let (τ0, . . . , τn) enumerate a maximal totally ordered subset of I. Let www = 〈wτ 〉τ∈Ŝ be the simple

process defined by saying that if τ ∈ Ŝ then

[[τ < τ0]] ∪ [[τn ≤ τ ]] ⊆ [[wτ = 0]],

[[τi ≤ τ ]] ∩ [[τ < τi+1]] ⊆ [[wτ = yτi ]] for i < n

(612Ka once more). Then
∫
Ŝ∧τ0 www dv̂vv = 0 because

wτ × (v̂τ ′ − v̂τ ) = wτ × (v̂τ ′ − v̂τ )× χ[[τ < τ ′]] = 0

whenever τ ≤ τ ′ ≤ τ0, and
∫
Ŝ∨τn www dv̂vv = 0 because wτ = 0 whenever τn ≤ τ . Accordingly
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∫

Ŝ
www dv̂vv =

∫

Ŝ∧τ0
www dv̂vv +

∫

Ŝ∩[τ0,τn]

www dv̂vv +

∫

Ŝ∨τn
www dv̂vv

(613J(c-ii))

=

∫

Ŝ∩[τ0,τn]

www dv̂vv =
n−1∑

i=0

yτi × (v̂τi+1
− v̂τi)

(614Bb)

= SI(yyy, dv̂vv)

(613Ec)

= z.

Consequently
∫
S(www↾S)dvvv is defined and equal to z (613T). So

z = limJ↑I(S) SJ(www, dvvv).

But sup |www| ≤ supi≤n |yτi | ≤ χ1, so SJ(www, dvvv) ∈ QS(dvvv) for every J ∈ I(S) and z ∈ QS(dvvv). As z is
arbitrary, we have the result. QQQ

(ii) If vvv is an integrator, then QS(dvvv) is topologically bounded, so its closure is also topologically
bounded (613B(f-iii)) and v̂vv is an integrator.

(iii) If vvv is a local integrator and τ ∈ Ŝ, take any ǫ > 0. Then there is a σ ∈ S such that µ̄[[σ < τ ]] ≤ 1
2ǫ.

We are supposing that vvv↾S ∧ σ is an integrator, so v̂vv↾Ŝ ∧ σ is an integrator, and there is a δ > 0 such that
θ(δz) ≤ 1

2ǫ whenever z ∈ QŜ∧σ(dv̂vv). Now take z ∈ QŜ∧τ (dv̂vv). By 616C(iii), there is a fully adapted process

uuu = 〈uσ〉σ∈Ŝ∧τ with breakpoint string (τ0, . . . , τn) such that sup |uuu| ≤ χ1 and z =
∑n−1
i=0 uτi × (v̂τi+1

− v̂τi).
Consider

z′ =
∑n−1
i=0 uτi∧σ × (v̂τi+1∧σ − v̂τi∧σ).

By 616C(ii), z′ ∈ QŜ∧σ(dv̂vv), while

[[z 6= z′]] ⊆ sup
i<n

[[uτi 6= uτi∧σ]] ∪ sup
i≤n

[[v̂τi 6= v̂τi∧σ]]

⊆ sup
i≤n

[[τi ∧ σ < τi]] ⊆ [[σ < τ ]]

has measure at most 1
2ǫ. So

θ(δz) ≤ θ(δz′) + θ(δ(z − z′)) ≤ 1

2
ǫ+

1

2
ǫ = ǫ.

As ǫ is arbitrary, QŜ∧τ (dv̂vv) is topologically bounded; as τ is arbitrary, v̂vv is a local integrator.

(b)(i) Suppose to begin with that vvv is an integrator. By (a), v̂vv is an integrator. The idea is to use 616Hd
with ψ = ∆v̂vv, knowing that QŜ(dψ) = QŜ(dv̂vv) is topologically bounded. Express v̂vv as 〈v̂σ〉σ∈Ŝ . Let ǫ > 0.
Then there is a γ > 0 such that µ̄[[|w| ≥ γ]] < ǫ for every w ∈ QS(dv̂vv) (613B(f-ii)). Take m, r, k ≥ 1 such

that mǫ ≥ 2γ, r ≥ m, 1− r!

rm(r−m)!
≤ 1

2
ǫm and 2kǫm ≥ ǫ, and set n = rk. Then whenever τ0 ≤ . . . ≤ τn in

Ŝ, there is an i < n such that θ(v̂τi+1
− v̂τi) ≤ 4ǫ, by 616Hd. Thus v̂vv satisfies condition (iv) of 615N and is

moderately oscillatory. It follows at once that vvv is moderately oscillatory (615F(a-i)).

(ii) If vvv is a local integrator, then we can apply (i) to vvv↾S ∧ τ , for τ ∈ S, to see that vvv is locally
moderately oscillatory.

(c)(i) Again, suppose to begin with that vvv is an integrator. If S is full, ∆vvv is certainly an integrating
interval function, because we know that QS(dvvv) = QS(d(∆vvv)) is topologically bounded, and from (b) we
know that v↑ = limσ↑S vσ and v↓ = limσ↓S vσ are defined (615G), so∫

S d(∆vvv) =
∫
S dvvv = v↑ − v↓
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(613N) is defined. In general, (a) tells us that v̂vv is an integrator, so ∆v̂vv is an integrating interval function;

but ∆v̂vv extends ∆vvv, so is the strictly adapted extension of ∆vvv to Ŝ2↑, and ∆vvv is an integrating interval
function, as remarked in 616F.

(ii) As in (b), it follows at once that if vvv is a local integrator then ∆vvv is a locally integrating interval
function.

616J Theorem Let S be a sublattice of T and ψ an integrating interval function with domain S2↑. Set

Mψ = {uuu : uuu ∈Mo-b(S),
∫
S uuu dψ is defined}.

Then Mψ is a closed linear subspace of Mo-b(S) and we have an indefinite integral operator iiψ : Mψ →
Migtr(S) which is linear and continuous for the ucp topology on Mo-b(S).
proof (a) Take any uuu ∈Mψ.

(i) Setting yσ =
∫
S∧σ uuu dψ for σ ∈ S, and yyy = 〈yσ〉σ∈S , yyy is defined everywhere on S and is fully

adapted (613O(b-i)). Let ǫ > 0. Then there is a δ > 0 such that θ(SI(www, dψ)) ≤ ǫ whenever I ∈ I(S),
www ∈ Mfa(I) and θ(sup |www|) ≤ δ (616E). We are supposing that uuu is order-bounded; write ū for sup |uuu|. Let
η > 0 be such that θ(ū× w) ≤ δ whenever w ∈ L0(A) and θ(w) ≤ η (613Ba).

(ii) Suppose that I ∈ I(S), www ∈ Mfa(I) and θ(w̄) ≤ η, where w̄ = sup |www|. Then θ(SI(www, dyyy)) ≤ ǫ. PPP
If I = ∅ this is trivial.

(ααα) If I is non-empty, let (τ0, . . . , τn) be the increasing enumeration of a maximal totally ordered

subset of I, so that SI(www, dyyy) =
∑n−1
i=0 wτi × (yτi+1

− yτi). We know that yτ ′ = yτ +
∫
S∩[τ,τ ′]

uuu dψ whenever

τ ≤ τ ′ in S (613Jc), so

SI(www, dyyy) =
∑n−1
i=0 wτi ×

∫
S∩[τi,τi+1]

uuu dψ.

Let w̃ww = 〈w̃σ〉σ∈S be the simple process with domain S defined by saying that

[[σ < τ0]] ⊆ [[w̃σ = 0]], [[τn ≤ σ]] ⊆ [[w̃σ = wτn ]],

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[w̃σ = wτi ]]

for σ ∈ S and i < n (612Ka again); then w̃ww extends www and sup |w̃ww| = supi≤n |wτi | = w̄. Consequently
sup |uuu× w̃ww| ≤ ū× w̄, θ(sup |uuu× w̃ww|) ≤ δ and θ(SJ(uuu× w̃ww), dψ) ≤ ǫ for every J ∈ I(S).

(βββ) For each i < n let Ji be a finite sublattice of S ∩ [τi, τi+1] containing τi and τi+1. Let
(σi0, . . . , σimi

) be the increasing enumeration of a maximal totally ordered subset of Ji. Then

uσij
× w̃σij

× ψ(σij , σi,j+1) = uσij
× wτi × ψ(σij , σi,j+1)

for every j < mi, because

[[ψ(σij , σi,j+1) 6= 0]] ⊆ [[σij < σi,j+1]] ⊆ [[σij < τi+1]] ⊆ [[w̃σij
= wτi ]].

Now

SJi(uuu× w̃ww, dψ) =

mi−1∑

j=0

uσij
× w̃σij

× ψ(σij , σi,j+1)

=

mi−1∑

j=0

uσij
× wτi × ψ(σij , σi,j+1) = wτi × SJi(uuu, dψ).

Set J =
⋃
i<n Ji, so that J ∈ I(S) and J ∩ [τi, τi+1] = Ji for each i. Then

∑n−1
i=0 wτi × SJi(uuu, dψ) =

∑n−1
i=1 SJi(uuu× w̃ww, dψ) = SJ(uuu× w̃ww, dψ)

(613Ga) and θ(
∑n−1
i=0 wτi × SJi(uuu, dψ)) ≤ ǫ. Taking the limit as Ji ↑ I(S ∩ [τi, τi+1]) for each i,
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θ(SI(www, dyyy)) = θ(
∑n−1
i=0 wτi ×

∫
S∩[τi,τi+1]

uuu dψ) ≤ ǫ. QQQ

(iii) As ǫ is arbitrary, QS(dyyy) is topologically bounded, by 616E(iii)⇒(i), and yyy is an integrator.
Thus iiψ is a function from Mψ to Migtr(S). By 613Jb, Mψ is a linear subspace of Mo-b(S) and iiψ is a

linear operator. Recall from 616Ib that Migtr(S) ⊆Mo-b(S).
(b) Suppose that uuu ∈ Mo-b(S) belongs to the closure of Mψ for the ucp topology. Let ǫ > 0. By 616E,

there is a δ > 0 such that θ(SI(uuu
′, dψ)) ≤ ǫ whenever I ∈ I(S), uuu′ ∈Mo-b(S) and θ(sup |uuu′|) ≤ δ. Now there

are a uuu′ ∈Mψ such that θ(sup |uuu−uuu′|) ≤ δ, and a J ∈ I(S) such that θ(SI(uuu
′, dψ)−

∫
S uuu

′dψ) ≤ ǫ whenever
J ⊆ I ∈ I(S). Suppose now that I ∈ I(S) includes J ; then

θ(SI(uuu, dψ)−
∫
S uuu

′dψ) ≤ θ(SI(uuu, dψ)− SI(uuu
′, dψ)) + θ(SI(uuu

′, dψ)−
∫
S uuu

′dψ)

≤ ǫ+ ǫ = 2ǫ.

As ǫ is arbitrary,
∫
S uuu dψ is defined (613Ja), and uuu ∈ Mψ. As uuu is arbitrary, Mψ is closed for the ucp

topology.

(c)(i) Let ǫ > 0. Because ψ is an integrating interval function there is a δ > 0 such that θ(SI(uuu, dψ)) ≤ ǫ2

whenever I ∈ I(S), uuu ∈ Mfa(I) and θ(sup |uuu|) ≤ δ (616E). It follows that µ̄[[|SI(uuu, dψ)| > ǫ]] ≤ ǫ whenever
I ∈ I(S), uuu ∈Mfa(I) and θ(sup |uuu|) ≤ δ.

(ii) (The key.) Suppose that I ∈ I(S) is non-empty. Let uuu = 〈uσ〉σ∈I ∈ Mfa(I) be such that
θ(sup |uuu|) ≤ δ. Then µ̄[[supσ∈I |SI∧σ(uuu, dψ)| > ǫ]] ≤ ǫ.

PPP(ααα) Take (τ0, . . . , τn) linearly generating the I-cells. For i ≤ n write zi for SI∧τi(uuu, dψ). Since τ0, . . . , τi)
linearly generates the I ∧ τi-cella (611Kg), zi =

∑i−1
j=0 uτj × ψ(τj , τj+1) (613Ec). Next, set ai = [[|zi| > ǫ]],

yi = uτi × χ(1 \ supj≤i aj) and bi = ai \ supj<i aj for i ≤ n. Then zi ∈ L0(Aτi) (613Gb), ai ∈ Aτi ,

yi ∈ L0(Aτi) and bi ∈ Aτi for all i ≤ n, while supi≤n |yi| ≤ supσ∈I |uσ| so θ(supi≤n |yi|) ≤ δ. By 612Ka
again, there is a fully adapted process www = 〈wσ〉σ∈I such that

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[wσ = yi]] for i < n, [[τn = σ]] ⊆ [[wσ = τn]]

for every σ ∈ I. (The point here is that τ0 ≤ σ ≤ τn for every σ ∈ I.) Set

z = SI(www, dψ) =
n−1∑

j=0

wτj × ψ(τj , τj+1)

(613Ec again)

=
n−1∑

j=0

yj × ψ(τj , τj+1)

because [[ψ(τj , τj+1) 6= 0]] ⊆ [[τj < τj+1]] for each j, by 613C(b-i).
Now if σ ∈ I then |wσ| ≤ supi≤n |yi| so θ(sup |www|) ≤ δ and µ̄[[|z| > ǫ]] ≤ ǫ.

(βββ) If i ≤ n,

bi ⊆ inf
i≤j<n

[[yj = 0]] ∩ inf
j<i

[[yj = uτj ]]

⊆ [[
∑n−1
j=0 yj × ψ(τj , τj+1) =

∑i−1
j=0 uτj × ψ(τj , τj+1)]] = [[z = zi]];

as bi ⊆ [[|zi| > ǫ]], bi ⊆ [[|z| > ǫ]]. Next, 〈SI∧σ(uuu, dψ)〉σ∈I is fully adapted (613Gb again). If σ ∈ I then
supi≤n [[σ = τi]] = 1 (611Ke), so

[[|SI∧σ(uuu, dψ)| > ǫ]] = sup
i≤n

[[σ = τi]] ∩ [[|SI∧σ(uuu, dψ)| > ǫ]]

⊆ sup
i≤n

[[|SI∧τi(uuu, dψ)| > ǫ]] = sup
i≤n

ai = sup
i≤n

bi ⊆ [[|z| > ǫ]].
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Accordingly

[[supσ∈I |SI∧σ(uuu, dψ)| > ǫ]] = sup
σ∈I

[[|SI∧σ(uuu, dψ)| > ǫ]]

(364L(a-ii))

⊆ [[|z| > ǫ]]

has measure at most ǫ. QQQ

(iii) Take uuu ∈ Mψ such that θ(sup |uuu|) ≤ δ. Then θ(supσ∈I |SI∧σ(uuu, dψ)|) ≤ 2ǫ for every I ∈ I(S), if
we interpret the supremum as zero if I is empty. Write wσ for

∫
S∧σ uuu dψ.

(ααα) If I ∈ I(S) then θ(supσ∈I |wσ|) ≤ 2ǫ. PPP Let η > 0. For each σ ∈ I let Jσ ∈ I(S ∧ σ) be such
that θ(SK(uuu, dψ) − wσ) ≤ η whenever Jσ ⊆ K ∈ I(S ∧ σ). Let K be the sublattice of S generated by
I ∪⋃

σ∈I Jσ. Then Jσ ⊆ K ∧ σ ∈ I(S ∧ σ) for every σ ∈ I. So

θ(sup
σ∈I

|wσ|) ≤ θ(sup
σ∈I

|SK∧σ(uuu, dψ)|+ sup
σ∈I

|wσ − SK∧σ(uuu, dψ)|)

≤ θ( sup
σ∈K

|SK∧σ(uuu, dψ)|) +
∑

σ∈I
θ(wσ − SK∧σ(uuu, dψ)) ≤ 2ǫ+ η#(I).

As η is arbitrary, θ(supσ∈I |wσ|) ≤ 2ǫ. QQQ

(βββ) We know that iiψ(uuu) is order-bounded, so w̄ = supσ∈S |wσ| is defined in L0(A). Now

θ(sup |iiψ(uuu)|) = θ(w̄) = sup
I⊆S is finite

θ(sup
σ∈I

|wσ|)

= sup
I∈I(S)

θ(sup
σ∈I

|wσ|) ≤ 2ǫ.

As ǫ was arbitrary, iiψ : Mψ → Mo-b(S) is continuous at 0; being a linear operator, it is continuous
everywhere on Mψ, as claimed.

616K Theorem Let S be a sublattice of T , uuu a moderately oscillatory process with domain S, and vvv an
integrator with domain S. Then

∫
S uuu dvvv is defined, and iivvv(uuu) is an integrator.

proof By 616I, vvv is moderately oscillatory and ∆vvv is an integrating interval function. By 615Ra,
∫
S uuu dvvv

is defined if uuu is of bounded variation. In the language of 616J, Mbv(S) ⊆ M∆vvv, while M∆vvv is closed in
Mo-b(S) for the ucp topology. But Mmo(S) is just the closure of Mbv(S) in Mo-b(S). so is included in M∆vvv,
that is,

∫
S uuu dvvv is defined. As for the indefinite integral iivvv(uuu), this is an integrator by 616J.

616L Corollary Let S be a sublattice of T . If uuu is a locally moderately oscillatory process and vvv a fully
adapted process which is locally of bounded variation, both with domain S, then iivvv(uuu) is locally of bounded
variation.

proof Apply 614T to uuu↾S ∧ τ and vvv↾S ∧ τ for each τ ∈ S.

616M Theorem Let S be a sublattice of T and ψ an integrating interval function on S. Write vvv for
iiψ(1) = 〈

∫
S∧τ dψ〉τ∈S . Then

∫
S uuu dψ is defined and equal to

∫
S uuu dvvv whenever uuu is a moderately oscillatory

process with domain S.
proof (a) I start by noting that vvv is well-defined and is an integrator, by 616J. If S is empty the result is
trivial, so suppose otherwise. For the time being, I will suppose that vvv = 0 and S is full. Note that the
definition 616Fa requires

∫
S dψ to be defined, and we now have

∫
S dψ = limτ↑S

∫
S∧τ dψ = 0 by 613J(f-ii).

Write M ′
ψ for

{uuu : uuu ∈Mo-b(S),
∫
S uuu dψ is defined and equal to 0}.
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Then M ′
ψ is a linear subspace of Mo-b = Mo-b(S), and by 616J it is closed for the ucp topology. Note that

the constant process 1 with domain S belongs to M ′
ψ.

(b) To begin with, suppose that S is full, that vvv = 0, that uuu = 〈uσ〉σ∈S is non-increasing and that uuu is
{0, 1}-valued, that is, [[uσ ∈ {0, 1}]] = 1 for every σ ∈ S.

(i) If I ∈ I(S) is non-empty, there is a τ ∈ S such that SI(uuu, dψ) = SI∧τ (1, dψ). PPP

(ααα) Take (τ0, . . . , τn) linearly generating the I-cells; note that τn = max I. For i < n, set ai =
[[uτi = 0]] and bi = ai \ supj<i aj ; set bn = 1 \ an−1. Because uuu is non-increasing, a0 ⊆ a1 ⊆ . . . ⊆ an−1 and
〈bi〉i≤n is a partition of unity in A. Also ai and bi belong to Aτi for i < n and bn ∈ Aτn . By 611I there is a
τ ∈ T such that bi ⊆ [[τ = τi]] for i ≤ n; because S is full, τ ∈ S.

(βββ) If j < i < n then

bi ⊆ [[τ = τi]] ⊆ [[τ ∧ τj = τj ]] ∩ [[τ ∧ τj+1 = τj+1]]

⊆ [[ψ(τ ∧ τj , τ ∧ τj+1) = ψ(τj , τj+1)]]

because ψ is strictly adapted, and if i ≤ j < n then

bi ⊆ [[τ = τi]] ⊆ [[τ ∧ τj = τ ]] ∩ [[τ ∧ τj+1 = τ ]]

⊆ [[ψ(τ ∧ τj , τ ∧ τj+1) = ψ(τ, τ)]] ⊆ [[ψ(τ ∧ τj , τ ∧ τj+1) = 0]].

(γγγ) If i < n then

χbi × SI(uuu, dψ) =

n−1∑

j=0

χbi × uτj × ψ(τj , τj+1) =

i−1∑

j=0

χbi × uτj × ψ(τj , τj+1)

(because if i ≤ j then bi ⊆ ai ⊆ aj and bi ⊆ [[uτj = 0]])

=

i−1∑

j=0

χbi × ψ(τ ∧ τj , τ ∧ τj+1)

(as in (β) just above)

=
n−1∑

j=0

χbi × ψ(τ ∧ τj , τ ∧ τj+1)

(because if i ≤ j < n then bi ⊆ [[ψ(τ ∧ τj , τ ∧ τj+1) = 0]], by the other half of (β))

= χbi × SI∧τ (1, dψ)

because (τ ∧ τ0, . . . , τ ∧ τn) linearly generates the (I ∧ τ)-cells (611Kg). Also

bn ⊆ [[τ = τn]] ∩ inf
i<n

[[uτi = 1]]

⊆ [[SI∧τ (1, dψ) = SI(1, dψ)]] ∩ [[SI(uuu, dψ) = SI(1, dψ)]]

⊆ [[SI(uuu, dψ) = SI∧τ (1, dψ)]],

so in fact SI(uuu, dψ) = SI∧τ (1, dψ). QQQ

(ii) Consequently uuu ∈ M ′
ψ. PPP Let ǫ > 0. Then there is an I0 ∈ I(S), containing maxS, such that

θ(SJ(1, dψ)− θ(SK(1, dψ)) ≤ ǫ whenever J , K ∈ I(S) include I0. If I ∈ I(S) includes I0, there is a τ ∈ S
such that SI(uuu, dψ) = SI∧τ (1, dψ), by (i). At the same time, of course, θ(SJ(1, dψ) − θ(SK(1, dψ)) ≤ ǫ
whenever J , K ∈ I(S) include I. By 613V(ii-β),

2ǫ ≥ θ(SI∧τ (1, dψ)−
∫

S∧τ
dψ) = θ(SI∧τ (1, dψ))

(because vvv = 0)
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= θ(SI(uuu, dψ)),

and this is true whenever I includes I0. As ǫ is arbitrary,
∫
S uuu dψ = 0 and uuu ∈M ′

ψ. QQQ

(c) Still supposing that S is full and vvv = 0, I explore M ′
ψ.

(i) If uuu ∈Mfa =Mfa(S) is {0, 1}-valued and non-decreasing, then uuu ∈M ′
ψ. PPP 1−uuu is {0, 1}-valued and

non-increasing, so (b) tells us that it belongs to M ′
ψ; as noted in (a), 1 ∈ M ′

ψ; as M
′
ψ is a linear subspace,

uuu ∈M ′
ψ. QQQ

(ii) If n ≥ 1 and uuu ∈ Mfa is non-decreasing and takes values in {0, 1, . . . , n}, then uuu ∈ M ′
ψ. PPP Induce

on n. If n = 1 this is just (i) above. For the inductive step, if uuu takes values in {0, . . . , n + 1} then
uuu∧n1 is non-decreasing and takes values in {0, . . . , n}, so belongs to M ′

ψ by the inductive hypothesis, while

uuu−uuu ∧ n1 = (uuu− n1)+ is non-decreasing and takes values in {0, 1}; so their sum uuu belongs to M ′
ψ and the

induction continues. QQQ
It follows at once that if n ≥ 1, δ > 0 and uuu ∈ Mfa is non-decreasing and takes values in {0, δ, . . . , nδ}

then uuu ∈M ′
ψ.

(iii) If uuu ∈Mo-b is non-negative and non-decreasing it belongs toM ′
ψ. PPP Write ū for sup |uuu|, Let ǫ > 0.

Then there is an n ≥ 1 such that µ̄[[ū > nǫ]] ≤ ǫ. Define h : R → R by saying that

h(α) = nǫ if α ≥ nǫ,

= iǫ if i ≤ n and iǫ ≤ α < (i+ 1)ǫ,

= α if α ≤ 0.

Then h is non-decreasing and Borel measurable, h(α) ≤ α for every α and α ≤ h(α)+ǫ if α ≤ nǫ. So uuu′ = h̄uuu
is fully adapted and non-decreasing; uuu′ ≤ uuu; because uuu is non-negative, uuu′ takes values in {0, ǫ, . . . , nǫ}; and
[[uuu ≤ nǫ]] ⊆ [[uuu ≤ uuu′ + ǫ1]]. By (ii) just above, uuu′ ∈M ′

ψ. And

0 ≤ uuu− uuu′ ≤ ǫ1+ χ[[ū > nǫ]]× ū, θ(sup |uuu− uuu′|) ≤ ǫ+ µ̄[[ū > nǫ]] ≤ 2ǫ.

As ǫ is arbitrary and M ′
ψ is closed, uuu ∈M ′

ψ. QQQ

(iv) Because M ′
ψ is a closed linear subspace of Mo-b, it includes Mbv = Mbv(S) and its closure

Mmo =Mmo(S). Thus we have the required result if S is full and vvv = 0.

(d) Still supposing that S is full, take uuu ∈ Mmo and any integrating interval function ψ on S, and set
vτ =

∫
S∧τ dψ for τ ∈ S, Then vvv = 〈vσ〉σ∈S is an integrator (616J) and ∆vvv is an integrating interval function

(616Ic), so ψ′ = ψ −∆vvv also is (616Ga). For τ ∈ S,

∫

S∧τ
dψ′ =

∫

S∧τ
dψ −

∫

S∧τ
d(∆vvv) = vτ −

∫

S∧τ
dvvv = vτ − vτ + lim

σ↓S
vσ

(613N)

= 0

(613J(f-i)). So S and ψ′ satisfy the conditions of (a)-(c), and
∫
S uuu dψ

′ is defined and equal to 0. But we know

already from 616K that
∫
S uuu dvvv is defined, so

∫
S uuu dψ is defined and equal to

∫
S uuu dψ

′ +
∫
S uuu dvvv =

∫
S uuu dvvv.

(e) Finally, if S is not full, write Ŝ for its covered envelope, ûuu for the fully adapted extension of uuu ∈Mmo

to Ŝ, and ψ̂ for the strictly adapted extension of ψ to Ŝ2↑. Then ψ̂ is an integrating interval function (616F)

and ûuu is moderately oscillatory (615F(a-vi)). Write v̂vv for the indefinite integral iiψ̂(1). If τ ∈ S, Ŝ ∧ τ is

the covered envelope of S ∧ τ and
∫
Ŝ∧τ 1 dψ̂ is defined, so is equal to

∫
S∧τ 1 dψ (613T again); thus vvv = v̂vv↾S

is the indefinite integral iiψ(1). Now
∫
Ŝ ûuu dψ̂ is defined and equal to

∫
Ŝ ûuu dv̂vv, by (d); by 613T once more,∫

S uuu dψ and
∫
S uuu dvvv are defined and equal. So we have the general result.

616N So far, I have been working almost entirely with general integrating interval functions. But 616M
makes it plain that we can expect that usually it will be enough to look at integration with respect to
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integrators, which is what most of the rest of this volume will be devoted to. As we have already seen in
616I, integrators have some special properties, which I will now set out to describe.

Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a (local) integrator. If f : R → R is convex, then f̄vvv
is a (local) integrator.

proof (a) To begin with (down to the end of (c) below) suppose that vvv is an integrator. Note straight
away that f is continuous (6A1Aa), so that f̄ : L0 → L0 is continuous (613Bb). As vvv is moderately oscil-
latory, therefore order-bounded (616I), we see from 615G that limσ↓S f̄(vσ) = f̄(limσ↓S vσ), limσ↑S f̄(vσ) =
f̄(limσ↑S vσ) are defined, while f̄vvv is order-bounded (614F(c-i)).

Write Q for QS(dvvv) and Q∗ for QS(d(f̄vvv)). We know that Q is topologically bounded, and we need to
show that Q∗ is topologically bounded.

Let g be the right derivative of f , so that g is non-decreasing and (y − x)g(x) ≤ f(y) − f(x) for all x,
y ∈ R (6A1Ab). Consequently

ḡ(vσ)× (vσ′ − vσ) ≤ f̄(vσ′)− f̄(vσ)

for all σ, σ′ ∈ S.
By 616Ib and 614F(c-i), f̄vvv is order-bounded; set w = sup |f̄vvv| ∨ sup |vvv|.
(b) Suppose for the moment that |g(x)| ≤ M for every x ∈ R, where M ≥ 0. Because the solid hull

of a topologically bounded set is topologically bounded, a scalar multiple of a topologically bounded set
is topologically bounded and the algebraic sum of two topologically bounded sets is topologically bounded
(613Bf), A0 = [−2w, 2w] +MQ, the solid hull A1 of A0 and A = A1 +MQ are topologically bounded. Now
Q∗ ⊆ A. PPP Take z ∈ Q∗. Then there are a finite sublattice I of S and a fully adapted family uuu = 〈uσ〉σ∈I
such that |uσ| ≤ χ1 for σ ∈ I and z = SI(uuu, d(f̄vvv)). If I = ∅ then z = 0 surely belongs to A. Otherwise, let
τ0 ≤ . . . ≤ τn linearly generate the I-cells. For i ≤ n set

wi = f̄(vτi)− f̄(vτ0)−
∑i−1
j=0 ḡ(vτj )× (vτj+1

− vτj ) ∈ [−2w, 2w] +MQ = A0

because |f̄(vτi)| ≤ w, |f̄(vτ0)| ≤ w and |ḡ(vτj | ≤Mχ1 for every j.
For i < n,

wi+1 − wi = f̄(vτi+1
)− f̄(vτi)− ḡ(vτi)× (vτi+1

− vτi) ≥ 0.

Now we have

z =

n−1∑

i=0

uτi × (f̄(vτi+1
)− f̄(vτi))

(613Ec)

=

n−1∑

i=0

uτi × (wi+1 − wi) +

n−1∑

i=0

uτi × ḡ(vτi)× (vτi+1
− vτi).

But

|
n−1∑

i=0

uτi × (wi+1 − wi)| ≤
n−1∑

i=0

|uτi | × |wi+1 − wi| ≤
n−1∑

i=0

|wi+1 − wi|

=
n−1∑

i=0

wi+1 − wi = wn − w0 = wn ∈ A0,

so
∑n−1
i=0 uτi × (wi+1 − wi) ∈ A1; while

∑n−1
i=0 uτi × ḡ(vτi)× (vτi+1

− vτi) ∈MQ

because |uτi × ḡ(vτi)| ≤Mχ1 for every i. So z ∈ A1 +MQ = A. As z is arbitrary, Q∗ ⊆ A. QQQ
Thus in this case Q∗ is topologically bounded.

(c) For general g, take ǫ > 0. Let M ≥ 0 be such that µ̄[[w > M ]] ≤ ǫ. Define f1 : R → R by setting
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f1(x) = f(x) if |x| ≤M,

= f(−M) + (−M − x)g(−M) if x ≤ −M,

= f(M) + (M − x)g(M) if x ≥M.

Then f1 is convex and its right derivative takes values in [g(−M), g(M)] so is bounded.
By (b), there is a δ > 0 such that θ(δz1) ≤ ǫ for every z1 ∈ QS(f̄1vvv). Now take z ∈ Q∗. Express z as

SI(uuu, d(f̄vvv)) where I is a finite sublattice of S and uuu = 〈uσ〉σ∈I is a fully adapted family such that |uσ| ≤ χ1
for σ ∈ I. Set z1 = SI(uuu, d(f̄1vvv)). Then z1 ∈ QS(f̄1vvv) and θ(δz1) ≤ ǫ. But

[[z1 6= z]] ⊆ sup
σ∈S

[[f̄1(vσ) 6= f̄(vσ)]] ⊆ sup
σ∈S

[[|vσ| > M ]]

(because f1(x) = f(x) if |x| ≤M)

⊆ [[w > M ]]

has measure at most ǫ, and

θ(δz) ≤ θ(δz1) + µ̄[[z1 6= z]] ≤ 2ǫ.

This is true for every z ∈ Q∗. As ǫ is arbitrary, Q∗ is topologically bounded, and f̄vvv is an integrator.

(d) If vvv is a local integrator, (a)-(c) show that (f̄vvv)↾S ∧ τ = f̄(vvv↾S ∧ τ) is an integrator for every τ ∈ S,
so f̄vvv is a local integrator.

616O Corollary If vvv is a (local) integrator and f : R → R is a function, absolutely continuous on every
bounded interval in R, such that its derivative f ′ has bounded variation on every bounded interval, then f̄vvv
is a (local) integrator.

proof f is expressible as a difference of two convex functions (6A1B), so f̄vvv is the difference of two (local)
integrators and is a (local) integrator.

616P Theorem Let S be a sublattice of T .
(a) Migtr(S) is an f -subalgebra of the space Mmo(S) of moderately oscillatory processes with domain S.
(b)(i) Constant processes are integrators.
(ii) If vvv ∈Migtr(S) then vvv↾S ′ ∈Migtr(S ′) for any sublattice S ′ of S. In particular, vvv is a local integrator.
(iii) Suppose that vvv ∈ Mfa(S) and for every ǫ > 0 there is a vvv′ ∈ Migtr(S) such that µ̄[[vvv 6= vvv′]] ≤ ǫ.

Then vvv ∈Migtr(S).
(iv) If vvv = 〈vσ〉σ∈S ∈Migtr(S) and z ∈ L0(A ∩⋂

σ∈S Aσ), then zvvv = 〈z × vσ〉σ∈S ∈Migtr(S).
(v) If vvv ∈Mfa(S) then vvv ∈Migtr(S) iff vvv↾S ∧ τ ∈Migtr(S ∧ τ) and vvv↾S ∨ τ ∈Migtr(S ∨ τ).

proof (a) We saw in 616Ib that Migtr(S) ⊆ Mmo(S). Since a sum of topologically bounded sets is topo-
logically bounded, 616Dc shows that Migtr(S) is closed under addition. By 616N, h̄vvv ∈ Migtr(S) whenever
h : R → R is convex and vvv ∈Migtr(S), so Migtr(S) is an f -subalgebra of Mmo(S) (612Bc).

(b)(i) If vvv is constant then QS(dvvv) = {0}.
(ii) As in 616Dd, QS(d(vvv↾S ′)) ⊆ QS(dvvv).

(iii) Let ǫ > 0. Then there are a vvv′ ∈ Migtr(S) such that µ̄[[vvv 6= vvv′]] ≤ 1
2ǫ, and a δ > 0 such that

θ(δz) ≤ 1
2ǫ for every z ∈ QS(dvvv′). Now suppose that z ∈ QS(dvvv). Then there is an I ∈ I(S) such that

z = SI(1, dvvv). In this case, expressing vvv and vvv′ as 〈vσ〉σ∈S and 〈v′σ〉σ∈S ,

[[SI(1, dvvv
′) 6= z]] ⊆ supσ∈I [[v

′
σ 6= vσ]] ⊆ [[vvv′ 6= vvv]]

and

θ(δz) ≤ θ(δz − δSI(1, dvvv
′)) + θ(δSI(1, dvvv

′))

≤ µ̄[[SI(1, dvvv
′) 6= z]] +

1

2
ǫ ⊆ µ̄[[vvv′ 6= vvv]] +

1

2
ǫ ≤ ǫ.
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Accordingly QS(dvvv) is topologically bounded and vvv ∈Migtr(S).
(iv)

QS(d(zvvv)) = {SI(uuu, d(zvvv)) : I ∈ I(S), uuu ∈Mfa(I), sup |uuu| ≤ χ1}
= {z × SI(uuu, dvvv) : I ∈ I(S), uuu ∈Mfa(I), sup |uuu| ≤ χ1}

(613L(b-iii))

= {z × w : w ∈ QS(dvvv)}.

As QS(dvvv) is topologically bounded, and w 7→ z×w : L0 → L0 is a continuous linear operator, QS(d(zvvv)) =
{z × w : w ∈ QS(dvvv)} is topologically bounded (3A5N(b-v)) and zvvv is an integrator.

(v) If vvv is an integrator, then vvv↾S ∧ τ and vvv↾S ∨ τ are integrators, by (ii) above. On the other hand,

QS(dvvv) ⊆ QS∧τ (dvvv) + QS∨τ (dvvv). PPP Take z ∈ QS(dvvv). Then z is expressible as
∑n−1
i=0 uτi × (vτi+1

− vτi)
where τ0 ≤ . . . ≤ τn in S and uuu = 〈uσ〉σ∈S is a ful;ly adapted process such that sup |uuu| ≤ χ1 (616C(iii)).
Now for each i ≤ n, vτi = vτi∧τ + vτi∨τ − vτ (612D(f-i)). So if i < n then

vτi+1
− vτi = vτi+1∧τ − vτi∧τ + vτi+1∨τ − vτi∨τ .

Define u′i, u
′′
i by saying that

u′i = uτi × χ[[τi ≤ τ ]], u′′i = uτi × χ[[τ < τi+1]].

Evidently |u′i| ≤ χ1 and |u′′i | ≤ χ1. By 612C, u′i ∈ L0(Aτi∧τ ); and since [[τ < τi+1]] ∈ Aτ ⊆ Aτi∨τ , u
′′
i ∈

L0(Aτi∨τ ). Next,

[[τ < τi]] ⊆ [[u′i = 0]] ∩ [[τi ∨ τ = τi]] ∩ [[τi+1 ∨ τ = τi+1]] ∩ [[u′′i = uτi ]]

⊆ [[u′i = 0]] ∩ [[u′′i × (vτi+1∨τ − vτi∨τ ) = uτi × (vτi+1
− vτi)]]

⊆ [[u′i × (vτi+1∧τ − vτi∧τ ) + u′′i × (vτi+1∨τ − vτi∨τ ) = uτi × (vτi+1
− vτi)]],

[[τi ≤ τ ]] ∩ [[τ < τi+1]] ⊆ [[u′i × (vτi+1∧τ − vτi∧τ ) + u′′i × (vτi+1∨τ − vτi∨τ )

= uτi × (vτi+1∧τ − vτi∧τ + vτi+1∨τ − vτi∨τ )]]

= [[u′i × (vτi+1∧τ − vτi∧τ ) + u′′i × (vτi+1∨τ − vτi∨τ ) = uτi × (vτi+1
− vτi)]],

[[τi+1 ≤ τ ]] ⊆ [[u′i = uτi ]] ∩ [[τi ∧ τ = τi]] ∩ [[τi+1 ∧ τ = τi+1]] ∩ [[u′′i = 0]]

⊆ [[u′i × (vτi+1∧τ − vτi∧τ ) = uτi × (vτi+1
− vτi)]] ∩ [[u′′i = 0]]

⊆ [[u′i × (vτi+1∧τ − vτi∧τ ) + u′′i × (vτi+1∨τ − vτi∨τ ) = uτi × (vτi+1
− vτi)]],

so

u′i × (vτi+1∧τ − vτi∧τ ) + u′′i × (vτi+1∨τ − vτi∨τ ) = uτi × (vτi+1
− vτi).

Now if we write

z′ =
∑n−1
i=0 u

′
i × (vτi+1∧τ − vτi∧τ ),

z′′ =
∑n−1
i=0 u

′′
i × (vτi+1∨τ − vτi∨τ ),

we have z′ ∈ QS∧τ (dvvv) (616C(ii)), z′′ ∈ QS∨τ (dvvv) and z = z′ + z′′. As z is arbitrary, QS(dvvv) ⊆ QS∧τ (dvvv) +
QS∨τ (dvvv). QQQ

If vvv↾S ∧ τ and vvv↾S ∨ τ are integrators, QS∧τ (dvvv) and QS∧τ (dvvv) are topologically bounded, so QS(dvvv) is
topologically bounded (613B(f-iii) once more) and vvv is an integrator.

616Q Corollary Let S be a sublattice of T .
(a) Mligtr(S) is an f -subalgebra of the space Mlmo(S) of locally moderately oscillatory processes with

domain S.
(b)(i) If vvv ∈Mligtr(S) then vvv↾S ′ ∈Mligtr(S ′) for any sublattice S ′ of S.
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(ii) If vvv ∈Mligtr(S) and z ∈ L0(A ∩⋂
σ∈S Aσ), then zvvv ∈Mligtr(S).

(c) Suppose that uuu ∈Mlmo(S) and vvv ∈Mligtr(S).
(i) The indefinite integral iivvv(uuu) belongs to Mligtr(S).
(ii) Let Ŝ be the covered envelope of S, and ûuu, v̂vv the fully adapted extensions of uuu, vvv to Ŝ. Then

iivvv(uuu) = iiv̂vv(ûuu)↾S.
(d) Suppose that vvv ∈ Mfa(S) and S ′ is a covering ideal of S such that vvv↾S ′ ∈ Mligtr(S ′). Then vvv ∈

Mligtr(S).
proof (a)-(b) We just have to apply 616P to vvv↾S ∧ τ for τ ∈ S.

(c)(i) Apply 616J to uuu↾S ∧ τ and ψ = ∆(vvv↾S ∧ τ) for τ ∈ S.
(ii) By 615F(b-v) and 616Ia, ûuu ∈ Mlmo(Ŝ) and v̂vv ∈ Mligtr(Ŝ), so iiv̂vv(ûuu) is well-defined on Ŝ. Now if

τ ∈ S, ∫
S∧τ uuu dvvv =

∫
Ŝ∧τ ûuu dv̂vv

as in 613T.

(d) If τ ∈ S and ǫ > 0, there is a σ ∈ S ′ such that σ ≤ τ and µ̄[[σ < τ ]] ≤ ǫ. Consider the process
vvv′ = 〈vρ∧σ〉ρ∈S∧τ . By 612Ib, this is fully adapted, while

vvv′↾S ∧ σ = vvv↾S ∧ σ = vvv↾S ′ ∧ σ
is an integrator, and vvv′↾(S ∧ τ) ∨ σ is constant, therefore an integrator. So vvv′ ∈ Migtr(S ∧ τ) (616P(b-v)),
while

[[vvv′ 6= vvv↾S ∧ τ ]] = supρ∈S∧τ [[vρ∧σ 6= vρ]] ⊆ supρ∈S∧τ [[ρ ∧ σ < ρ]] = [[σ < τ ]]

has measure at most ǫ. As ǫ is arbitrary, 616P(b-iii) tells us that vvv↾S ∧ τ ∈Migtr(S ∧ τ). As τ is arbitrary,
vvv ∈Mligtr(S).

616R Proposition Suppose that S is a sublattice of T , and that a fully adapted process vvv with domain
S is (locally) of bounded variation.

(a) vvv is a (local) integrator.
(b) Now suppose that vvv is non-decreasing and that uuu is a non-negative moderately oscillatory process

with domain S.
(i) If vvv is of bounded variation then

∫
S uuu dvvv ≥ 0.

(ii) If vvv is locally of bounded variation then iivvv(uuu) is non-decreasing.

proof (a)(i) Suppose that vvv = 〈vσ〉σ∈S is of bounded variation. Then {SI(1, |dvvv|) : I ∈ I(S)} has an upper
bound z̄ say. If I is a finite sublattice of S and uuu = 〈uσ〉σ∈I is a fully adapted process with sup |uuu| ≤ χ1,
then

|uσ × (vσ′ − vσ)| ≤ |vσ′ − vσ|
whenever σ ≤ σ′ in I, so |SI(uuu, dvvv)| ≤ SI(1, |dvvv|) ≤ z̄. Thus QS(dvvv) is order-bounded in L0 and must be
bounded for the topology of convergence in measure. So vvv is an integrator. By 616Ib, or otherwise, vvv is
moderately oscillatory and order-bounded.

(ii) If vvv is locally of bounded variation, apply (a) to vvv↾S∧τ , for τ ∈ S, to see that vvv is a local integrator
and therefore locally moderately oscillatory and locally order-bounded.

(b) Recall that by 616K the integral
∫
S uuu dvvv is defined.

(i) All the sums SI(uuu, dvvv), for I ∈ I(S), are non-negative, so the limit
∫
S uuu dvvv also is.

(ii) If τ , τ ′ ∈ S and τ ≤ τ ′, then∫
S∧τ ′

uuu dvvv −
∫
S∧τ uuu dvvv =

∫
S∩[τ,τ ′]

uuu dvvv ≥ 0.

616S Theorem Let S be a sublattice of T and vvv a process of bounded variation with domain S. Then
|∆vvv| is an integrating interval function.
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proof (a) By 613Cc and 613Db, |∆vvv| is a strictly adapted interval function on S. We know that v̄ =∫
S |∆vvv| =

∫
S |dvvv| is defined and an upper bound of {∑n−1

i=0 |vτi+1
− vτi | : τ0 ≤ . . . ≤ τn in S} (614J). But

now we see that QS(|dvvv|) ⊆ [−v̄, v̄]. PPP Take z ∈ QS(|dvvv|). If z = 0 then surely z ∈ [−v̄, v̄]. Otherwise, there
are a non-empty I ∈ I(S) and a uuu ∈Mfa(I) such that sup |uuu| ≤ χ1 and z = SI(uuu, |dvvv|). Take τ0 ≤ . . . ≤ τn
linearly generating the I-cells. Then

|z| = |
n−1∑

i=0

uτi × |vτi+1
− vτi ||

≤
n−1∑

i=0

|uτi | × |vτi+1
− vτi | ≤

n−1∑

i=0

|vτi+1
− vτi | ≤ v̄

and again z ∈ [−v̄, v̄]. QQQ So QS(|dvvv|) is order-bounded, therefore topologically bounded.

(b) If S is full, this is already enough to check that |∆vvv| is an integrating interval function. If S is not

full, then by 614Q(a-iv) the adapted extension v̂vv of vvv to the covered envelope Ŝ of S is of bounded variation,

and |∆v̂vv| must be the adapted extension of |∆vvv| to Ŝ2↑. Since |∆v̂vv| is an integrating interval function, so is
|∆vvv| (616F).

616T Corollary Let S be a sublattice of T , and uuu, vvv fully adapted processes with domain S.
(a) If uuu is moderately oscillatory and vvv is of bounded variation, then

∫
S uuu |dvvv| is defined and equal to∫

S uuu dvvv
↑, where vvv↑ is the cumulative variation of vvv.

(b) If uuu is locally moderately oscillatory and vvv is locally of bounded variation, then the indefinite integrals
ii|∆vvv|(uuu) and iivvv↑(uuu) are equal.

proof (a) By the definition 614O, vvv↑ = ii|∆vvv|(1), so we can apply 616M with ψ = |∆vvv|.
(b) Apply (a) to uuu↾S ∧ τ and vvv↾S ∧ τ for τ ∈ S.

Mnemonic |dvvv| ∼ dvvv↑.

616X Basic exercises (a) Suppose that T = [0,∞[ and that A = {0, 1}, as in 613W, 614Xd and 615Xf.
(i) Show that if f : [0,∞[ → R is interpreted as a fully adapted process vvv with domain Tf , then QTf

(dvvv)
can be identified with either ]−Var(f),Var(f)[ or [−Var(f),Var(f)] where Var(f) is the total variation of f
(224A). (ii) Show that f : [0,∞[ → R corresponds to an integrator iff it corresponds to a process of bounded
variation iff it is itself of bounded variation in the sense of 224A.

(b) Let S be a sublattice of T . Show that any simple process with domain S is an integrator.

(c) Let S be a sublattice of T and vvv a fully adapted process with domain S. Show that vvv is of
bounded variation iff QS(dvvv) is bounded above iff QS(|dvvv|) is bounded above, and that in this case∫
S |dvvv| = supQS(dvvv) = supQS(|dvvv|). (Hint : 351Dc.)

616Y Further exercises >(a) Let www = 〈wσ〉σ∈Tf
be Brownian motion as described in 612T, based on

the real-time stochastic integration structure (C, ν̄, 〈Ct〉t≥0, T , 〈Cτ 〉τ∈T ). (i) Show that wσ ∈ L2(ν̄) for every
σ ∈ Tb (hint : 477A). (ii) Show that whenever σ ≤ τ in Tb and u ∈ L2(ν̄)∩L0(Cσ) then E(u× (wτ −wσ)) = 0
(hint : 477G). (iii) Show that if σ0 ≤ . . . ≤ σn in Tb and ui ∈ L∞(Cσi

) and |ui| ≤ χ1 for i ≤ n, then (α)
E(ui × uj × (wσi+1

− wσi
)× (wτj+1

− wτj ) = 0 whenever i < j < n (β)

E((

n−1∑

i=0

ui × (wσi+1
− wσi

))2) = E(

n−1∑

i=0

u2i × (wσi+1
− wσi

)2) ≤
n−1∑

i=0

E((wσi+1
− wσi

)2)

=

n−1∑

i=0

E(w2
σi+1

− w2
σi
) ≤ ‖wσn

‖22.

(iv) Show that if τ ∈ Tb then QT ∧τ (dwww) is ‖ ‖2-bounded. (v) Show that www↾Tb is a local integrator (hint :
613B(f-ii)). (vi) Show that www is a local integrator (hint : 616Qd).
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(b) Find an example in which S is a sublattice of T , ψ : S2↑ → L0 is a strictly adapted interval

function and QS(dψ) is topologically bounded but QŜ(dψ̂) is not, where Ŝ is the covered envelope of S and

ψ̂ : Ŝ2↑ → L0 is the strictly adapted extension of ψ.

(c) Let S be a sublattice of T , uuu a previsibly simple process with domain S, and vvv an integrator with
domain S. Show that

∫
S uuu dvvv is defined.

(d) In the construction described in 613P, show that the process vvv is moderately oscillatory but not an
integrator.

616 Notes and comments You will have noticed that I have given practically no examples in this section.
It is in fact the case that all three of the central examples in §612 (the identity process, Brownian motion
and Poisson processes) are local integrators. The first and third are easy (614Xe). Brownian motion, as
usual, is more interesting and much more important. Its natural place in the structure of this volume is
in Chapter 62 below (see 622L). But as Itô’s formula (§619 below) would be of no importance without
Brownian motion, or at least something very like it, I have sketched an argument in 616Ya, which I hope
you will tackle straight away. Even if parts are too difficult at the moment, it should be instructive.

We shall be spending a great deal of time teasing out the nature of integrators and integrating interval
functions. An elementary class of integrators, the processes of bounded variation, was treated in §614. This
will take us to the statement and proof of Itô’s formula, if not to its most important applications. There will
be some much deeper results about integrators in §622 and §627. But from the abstract definition, we can
see immediately that whether an adapted interval function is ‘integrating’, or a process is an ‘integrator’,
depends on the topology of L0, but not on the measure inducing this topology; as with integration (613I)
and ‘moderately oscillatory’ processes (615E), the property is law-independent.

In 616K-616M, we have the central case in which we can be sure that a Riemann-sum integral
∫
S uuu dψ

or
∫
S uuu dvvv is defined; it will be sufficient to suppose that uuu is moderately oscillatory and ψ or ∆vvv is an

integrating interval function. Compared with 614C and 614S, we have a condition on uuu which allows very
much more variety, balanced by a strong new condition on vvv.

In 616M, we have a first example of a phenomenon which will be important on many occasions. Here
we start with an integrating interval function ψ, construct an integrator vvv = iiψ(1), and observe that∫
S uuu dψ =

∫
S uuu dvvv for every moderately oscillatory process uuu with domain S. So in this sense dψ and dvvv are

interchangeable. This is not at all because the interval functions ψ and ∆vvv are the same. For (σ, τ) ∈ S2↑,
we have ∆vvv(σ, τ) =

∫
S∩[σ,τ ]

dψ, which only in special cases will be equal to ψ(σ, τ). But in the formulae of

this theory of integration, dψ and dvvv are equivalent, and I will write dψ ∼ dvvv as an aide-memoire.
Let me try to explain the phrase ‘capped-stake variation set’. One of the ways of interpreting a stochastic

integral
∫
S uuu dψ is as the net gain of a gambler who at any stopping time σ chooses to wager a stake uσ, and

whose winnings over an interval [σ, τ ] are uσ × ψ(σ, τ). (So if ψ = ∆vvv, he gets uσ × (vτ − vσ), representing
the gain on betting uσ units in a stock whose value changes from vσ to vτ .) On this formulation, a simple
strategy for uuu is one which involves only finitely many stopping times declared in advance, like a stop-
loss order. A Riemann sum SI(uuu, dψ) represents his winnings if he adjusts his stake to follow his strategy
uuu whenever a stopping time in I is reached; and we count the integral as defined if all sufficiently fine
readjustment schedules give about the same result with high probability. The terms SI(uuu, dψ) calculated in
the formula for QS(dψ) are those corresponding to stakes (positive or negative) capped by ±1.7

Version of 10.11.21

617 Integral identities and quadratic variations

We come now to proper calculus, with change-of-variable theorems. 617D-617E is a stochastic-calculus
version of the result that if ν = fµ is an indefinite-integral measure, then

∫
g dν =

∫
g × f dµ (235K).

Similar formulae describe the cumulative variation of an indefinite integral with respect to a process of

7I see that the metaphor is creaking at this point, because few investors cap their investments by the number of shares

they hold, rather than the value of those shares, which would correspond to a bound on uσ × vσ . The Dow-Jones index is
exceptional in this respect.
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bounded variation (617G). The next theme is ‘quadratic variation’ (617H). Given two integrators vvv and www,
the interval function corresponding to dvvvdwww gives the same integrals as a process [vvv

∗
www] (617I) which is locally

of bounded variation. In particular, (dvvv)2 mimics dvvv∗ where the quadratic variation vvv∗ is a non-decreasing
process. Based on this, we have a second change-of-variable theorem (617P-617Q), using approximations of
moderately oscillatory processes by simple processes (617B).

617A Notation As before, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. L0 =
L0(A) will be given its topology of convergence in measure, with corresponding F-norm θ (613Ba). If A ⊆ T
and τ ∈ T , A∧ τ = {σ ∧ τ : σ ∈ A} and A∨ τ = {σ ∨ τ : σ ∈ A}. If S is a sublattice of T , I(S) is the set of
finite sublattices of S,Mfa(S) is the space of fully adapted processes with domain S,Mo-b(S) ⊆Mfa(S) is the
space of order-bounded processes and Mmo(S) ⊆ Mo-b(S) is the space of moderately oscillatory processes.
If uuu = 〈uσ〉σ∈S ∈Mo-b(S), sup |uuu| = supσ∈S |uσ|. 1 will denote the constant process with value χ1.

617B Lemma Let S be a finitely full sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process.

(a) For each non-empty I ∈ I(S) there is a unique simple process uuuI = 〈uIσ〉σ∈S such that uuuI has a
breakpoint string in I, uuuI and uuu agree on I, and [[σ < min I]] ⊆ [[uIσ = 0]] for every σ ∈ S.

(b) Complete the definition in (a) by setting u∅σ = 0 for every σ ∈ S. For every integrator vvv with domain
S,

(i) the indefinite integral iivvv(uuu) is the limit limI↑I(S) iivvv(uuuI) for the ucp topology,

(ii)
∫
S uuu dvvv = limI↑I(S)

∫
S uuuIdvvv in L0.

proof (a) Take (τ0, . . . , τn) linearly generating the I-cells, and let uuuI = 〈uIσ〉σ∈S be the simple process
defined by the formulae of 612Ka applied to τ0, . . . , τn, uτ0 , . . . , uτn and u∗ = 0. Then uIτn = uτn . For
i < n,

[[uIτi = uτi ]] ⊇ [[τi < τi+1]] ∪ ([[τi = τi+1]] ∩ [[uIτi+1
= uτi ]])

= [[τi < τi+1]] ∪ ([[τi = τi+1]] ∩ [[uIτi+1
= uτi+1

]])

so a downwards induction shows that [[uIτi = uτi ]] = 1 for every i ≤ n. Since {τi : i ≤ n} covers I (611Ke),
uuuI agrees with uuu on I. Also

[[σ < min I]] = [[σ < τ0]] ⊆ [[uIσ = 0]]

by the choice of u∗.
To see that uuuI is unique, use 612Kb to see that (τ0, . . . , τn) must be a breakpoint string for any process

satisfying the conditions.

(b)(i) If S is empty, the result is trivial; suppose otherwise. Let ǫ > 0. Let δ ∈ ]0, 1] be such that 4
√
δ ≤ ǫ.

By 615F(a-iii), uuu is order-bounded and sup |uuu| is defined in L0; let η > 0 be such that θ(x × sup |uuu|) ≤ δ
whenever x ∈ L0 and θ(x) ≤ η. As vvv is moderately oscillatory (616Ib), limσ↑S vσ is defined; let τ∗ ∈ S be
such that θ(vσ − vσ′) ≤ η whenever σ, σ′ ∈ S ∨ τ∗. Since

∫
S uuu dvvv = limI↑I(S) SI(uuu, dvvv) is defined (616K),

there is a K ∈ I(S) such that τ∗ ∈ K and θ(SI(uuu, dvvv)− SJ(uuu, dvvv)) ≤ δ whenever I, J ∈ I(S) include K.

Take I ∈ I(S) such that K ⊆ I, and τ ∈ S. Then θ(SI∧τ (uuu, dvvv) −
∫
S∧τ uuu dvvv) ≤ 2δ (613V(ii-β)). Also

θ(SI∧τ (uuu, dvvv)−
∫
S∧τ uuuI dvvv) ≤ δ. PPPWrite uI↓, v↓ for limσ↓S uIσ, limσ↓S vσ respectively, If (τ0, . . . , τn) linearly

generates I, then (τ0 ∧ τ, . . . , τn ∧ τ) linearly generates the (I ∧ τ)-cells (611Kg) and (τ0 ∧ τ, . . . , τn ∧ τ, τ)
is a breakpoint string for uuuI↾S ∧ τ (612K(d-ii)), so we have

SI∧τ (uuu, dvvv) =
∑n−1
i=0 uτi∧τ × (vτi+1∧τ − vτi∧τ ),

∫

S∧τ
uuuIdvvv = uI↓ × (vτ0∧τ − v↓) +

n−1∑

i=0

uI,τi∧τ × (vτi+1∧τ − vτi∧τ )

+ uI,τn∧τ × (vτ − vτn∧τ )

(613Ec, 614C). Now
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uI↓ × (vτ0∧τ − v↓) = lim
σ↓S

uIσ × (vτ0∧τ − vσ) = lim
σ↓S∧τ0∧τ

uIσ × (vτ0∧τ − vσ)

= lim
σ↓S∧τ0∧τ

uIσ × (vτ0∧τ − vσ)× χ[[σ < τ0]] = 0

because we chose u∗ to be 0 in the definition of uuuI . Next, for each i < n,

[[τi < τ ]] ⊆ [[uI,τi∧τ = uIτi ]] ∩ [[uτi∧τ = uτi ]] ⊆ [[uI,τi∧τ = uτi∧τ ]],

[[τ ≤ τi]] ⊆ [[τi+1 ∧ τ = τi ∧ τ ]] ⊆ [[vτi+1∧τ − vτi∧τ = 0]],

so uτi∧τ × (vτi+1∧τ − vτi∧τ ) = uI,τi∧τ × (vτi+1∧τ − vτi∧τ ). Accordingly∫
S∧τ uuuIdvvv − SI∧τ (uuu, dvvv) = uI,τn∧τ × (vτ − vτn∧τ ) = uI,τn∧τ × (vτ∨τn − vτn)

(612D(f-i)), and

θ(
∫
S∧τ uuuIdvvv − SI∧τ (uuu, dvvv)) ≤ θ(sup |uuu| × |vτ∨τn − vτn |) ≤ δ

because τ∗ ≤ τn ≤ τ ∨ τn and θ(vτ∨τn − vτ ) ≤ η. QQQ
Consequently

θ(

∫

S∧τ
(uuu− uuuI)dvvv) ≤ θ(SI∧τ (uuu, dvvv)−

∫

S∧τ
uuu dvvv) + θ(SI∧τ (uuu, dvvv)−

∫

S∧τ
uuuI dvvv)

≤ 4δ.

We know that iivvv(uuu−uuuI) is fully adapted and order-bounded (613J(e-ii), 616J, 616Ib). We are assuming
that S is finitely full, so if we set

z̄I = supτ∈S |
∫
S∧τ (uuu− uuuI)dvvv|

then θ(z̄I) ≤ 2
√
4δ ≤ ǫ (615Db).

This is true whenever K ⊆ I ∈ I(S). So
lim supI↑S θ(sup |iivvv(uuu)− iivvv(uuuI)|) = lim supI↑S θ(z̄I) ≤ ǫ.

Bu ǫ was arbitrary, so iivvv(uuu) = limI↑S iivvv(uuuI).

(ii) Here we have only to intercept the argument of (i) to see that

θ(

∫

S
(uuu− uuuI)dvvv) = lim

τ↑S
θ(

∫

S∧τ
(uuu− uuuI)dvvv)

(613J(f-ii))

≤ 4
√
δ ≤ ǫ

whenever K ⊆ I ∈ I(S). So limI↑I(S)

∫
S uuuIdvvv =

∫
S uuu dvvv.

617D Theorem Let S be a sublattice of T , ψ an integrating interval function on S, and uuu, zzz moderately
oscillatory processes with domain S.

(a) zzzψ, as defined in 613D, is an integrating interval function on S.
(b) Set www = iiψ(zzz). Then www is an integrator and∫

S uuu d(zzzψ) =
∫
S uuu× zzz dψ =

∫
S uuu dwww.

proof (a)(i) Suppose to begin with that S is full. Then zzzψ is strictly adapted (613D). Now SI(yyy, d(zzzψ)) =
SI(yyy × zzz, dψ) whenever I ∈ I(S) and yyy = 〈yσ〉σ∈I is fully adapted. PPP If e = c(σ, τ) is a stopping-time
interval with endpoints σ ≤ τ in I, then

∆e(yyy, d(zzzψ)) = yσ × (zzzψ)(σ, τ) = yσ × zσ × ψ(σ, τ) = ∆e(yyy × zzz, dψ);

summing over the I-cells, we have the result. QQQ

Measure Theory



617F Integral identities and quadratic variations 125

In particular, SI(1, d(zzzψ)) = SI(zzz, dψ) for every I ∈ I(S), and∫
S d(zzzψ) = limI↑I(S) SI(1, d(zzzψ)) = limI↑I(S) SI(zzz, dψ) =

∫
S zzz dψ

is defined. Write z̄ for sup |zzz|. Given ǫ > 0, there is a δ > 0 such that θ(SI(yyy, dψ)) ≤ δ whenever I ∈ I(S),
yyy ∈ Mfa(I) and θ(sup |yyy|) ≤ δ. Now there is an η > 0 such that θ(z̄ × x) ≤ ǫ whenever x ∈ L0(A) and
θ(x) ≤ η. If we now take I ∈ I(S) and yyy ∈Mfa(I) such that θ(sup |yyy|) ≤ η, we have sup |yyy×zzz| ≤ ū× sup |yyy|,
so

θ(sup |yyy × zzz|) ≤ θ(z̄ × sup |yyy|) ≤ δ

and

θ(SI(yyy, d(zzzψ))) = θ(SI(yyy × zzz, dψ)) ≤ ǫ.

Thus QS(d(zzzψ)) is topologically bounded, and zzzψ is an integrating interval function.

(ii) Generally, we have the adapted extension ψ̂ on the covered envelope Ŝ and the fully adapted

extension ẑzz to Ŝ; as ψ̂ is an integrating interval function and ẑzz is moderately oscillatory, (i) tells us that ẑzzψ̂

is an integrating interval function. But ẑzzψ̂ extends zzzψ, so is the adapted extension of zzzψ to Ŝ2↑, and zzzψ
also is an integrating interval function.

(b)(i) As noted in (a-i), we have SI(uuu, d(zzzψ)) = SI(uuu × zzz, dψ) for every finite sublattice I of S; taking
the limit as I ↑ I(S),

∫
S uuu d(zzzψ) =

∫
S uuu× zzz dψ. Applying this to S ∧ τ with uuu = 1,

∫
S∧τ zzz dψ =

∫
S∧τ d(zzzψ)

for every τ ∈ S.
(ii) By 616J again, www is an integrator, so 616K assures us that

∫
S uuu dwww is defined. Expressing www as

〈wσ〉σ∈S , we see that w↓ = limσ↓S wσ is 0 (613J(f-ii)) so∫
S∧τ dwww = wτ − w↓ = wτ =

∫
S∧τ zzz dψ =

∫
S∧τ d(zzzψ)

for every τ ∈ S. By 616M, ∫
S uuu dwww =

∫
S uuu d(zzzψ).

Mnemonic d(iiψ(zzz)) ∼ d(zzzψ).

617E Corollary Let S be a sublattice of T , uuu, zzz moderately oscillatory processes with domain S, and
vvv an integrator with domain S. Set www = iivvv(zzz). Then

∫
S uuu dwww =

∫
S uuu× zzz dvvv.

Mnemonic d(iivvv(zzz)) ∼ zzz dvvv.

617F Lemma Let S be a sublattice of T , zzz a moderately oscillatory process and vvv a process of bounded
variation, both with domain S. Write www for iivvv(zzz). Then www is of bounded variation and

∫
S |dwww| =

∫
S |zzz||dvvv|.

proof (a) If S is empty, this is trivial, so let us suppose otherwise. Express vvv, zzz as 〈vσ〉σ∈S and 〈zσ〉σ∈S .
We know that vvv is an integrator (616Ra), so www is well-defined; for τ ∈ S, write wτ =

∫
S∧τ zzz dvvv. By

616T,
∫
S |zzz||dvvv| is defined. To get started, note that if zzz is non-negative and vvv is non-decreasing, www will be

non-decreasing (616R(b-ii)), and we shall have∫
S |dwww| =

∫
S dwww =

∫
S zzz dvvv =

∫
S |zzz||dvvv|

by 617E.

(b) We need a couple of elementary formulae.

(i) If U is a Riesz space and u, v ∈ U , then, using identities in 352D,

u+ v = u ∧ v + (u− v)+ + u ∧ v + (v − u)+ = 2(u ∧ v) + |u− v|,

|u− v| ≤ |u|+ |v| = 2(|u| ∧ |v|) + ||u| − |v|| ≤ 2(|u| ∧ |v|) + |u− v|.

(ii) If xxx, yyy are processes of bounded variation with domain S, then applying (i) in the Riesz space

(L0)S
2↑

,
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∆xxx ∧∆yyy =
1

2
(∆xxx+∆yyy − |∆xxx−∆yyy|).

Now xxx − yyy is of bounded variation (614Q(a-ii)) so ∆xxx, ∆yyy and ∆xxx −∆yyy are integrating interval functions
(616Ra, 616Ic). By 616S, |∆xxx−∆yyy| is an integrating interval function so ∆xxx∧∆yyy = 1

2 (∆xxx+∆yyy−|∆xxx−∆yyy|)
also is (352D, 616Ga).

Writing dxxx ∧ dyyy for d(∆xxx ∧∆yyy), in the spirit of 613F and 613I,

SI(1, d(xxx+ yyy)) = SI(1, |d(xxx− yyy)|) + 2SI(1, dxxx ∧ dyyy)

for every finite sublattice I of S, and
∫
S dxxx ∧ dyyy is defined and equal to

1

2
(
∫
S dxxx+

∫
S dyyy −

∫
S |d(xxx− yyy)|).

Similarly,

|∆(xxx− yyy)| ≤ |∆xxx|+ |∆yyy| ≤ |∆(xxx− yyy)|+ 2(|∆xxx| ∧ |∆yyy|)

and

SI(1, |d(xxx− yyy)|) ≤ SI(1, |dxxx|) + SI(1, |dyyy|) ≤ SI(1, |d(xxx− yyy)|) + 2SI(1, |dxxx| ∧ |dyyy|)

for every I ∈ I(S), so if
∫
S |dxxx| ∧ |dyyy| = 0 then

∫
S |d(xxx− yyy)| =

∫
S |dxxx|+

∫
S |dyyy|.

(c) Next, suppose that S is full and vvv is non-negative and non-decreasing.

(i) Writing zzz+ = 〈z+σ 〉σ∈S for zzz ∨ 0 and zzz− = 〈z−σ 〉σ∈S for (−zzz) ∨ 0, both
∫
S zzz

+dvvv and
∫
S zzz

−dvvv are

defined. Set xxx = iivvv(zzz
+) and yyy = iivvv(zzz

−); then www = xxx − yyy while xxx and yyy are of bounded variation. Now∫
S dxxx ∧ dyyy = 0. PPP Let ǫ > 0. Then there is an I ∈ I(S) such that

θ(SJ(zzz
+, dvvv)− SK(zzz+, dvvv)) ≤ ǫ, θ(SJ(zzz

−, dvvv)− SK(zzz−, dvvv)) ≤ ǫ

whenever I ⊆ J , K ∈ I(S). Take any non-empty J ∈ I(S) including I, and a sequence (τ0, . . . , τn) linearly
generating the J-cells. For each i < n, ai = [[zτi ≥ 0]] belongs to Aτi ⊆ Aτi+1

, so we have a τ ′i ∈ T such that

ai ⊆ [[τ ′i = τi]], 1 \ ai ⊆ [[τ ′i = τi+1]]

(611I); as S is full, τ ′i ∈ S, while τi ≤ τ ′i ≤ τi+1. Let K be the (finite) sublattice of S generated by
J ∪ {τ ′i : i < n}; then K is included in the sublattice

{σ : med(τi, σ, τi+1) ∈ {τi, τ ′i , τi+1} for every i < n},

so {τ0, τ ′0, τ1, . . . , τ ′n−1, τn} is a maximal totally ordered subset of K and (τ0, τ
′
0, τ1, . . . , τ

′
n−1, τn) linearly

generates the K-cells.

For each i < n,

[[vτ ′
i
6= vτi ]] ⊆ [[τi < τ ′i ]] ⊆ ai ⊆ [[z−τi = 0]],

[[vτi+1
6= vτ ′

i
]] ⊆ [[τ ′i < τi+1]] ⊆ (1 \ ai) ∩ [[τ ′i = τi]] ⊆ [[z+τ ′

i
= 0]].

So we have

0 ≤ SJ(1, dxxx ∧ dyyy) = SK(1, dxxx ∧ dyyy)

(because J ⊆ K and J covers K, see 613S)
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=

n−1∑

i=0

∆c(τi,τ ′
i)
(1, dxxx ∧ dyyy) + ∆c(τ ′

i ,τi+1)(1, dxxx ∧ dyyy)

≤
n−1∑

i=0

∆c(τi,τ ′
i)
(1, dyyy) + ∆c(τ ′

i ,τi+1)(1, dxxx)

=

n−1∑

i=0

∫

S∩[τi,τ ′
i ]

zzz−dvvv +

∫

S∩[τ ′
i ,τi+1]

zzz+dvvv

=
n−1∑

i=0

∫

S∩[τi,τ ′
i ]

zzz−dvvv − z−τi × (vτ ′
i
− vτi)

+

∫

S∩[τ ′
i ,τi+1]

zzz+dvvv − z+τ ′
i
× (vτi+1

− vτ ′
i
)

=

n−1∑

i=0

∫

S∩[τi,τ ′
i ]

zzz−dvvv − SK∩[τi,τ ′
i ]
(zzz−, dvvv)

+

∫

S∩[τi,τ ′
i ]

zzz+dvvv − SK∩[τi,τ ′
i ]
(zzz+, dvvv)

and

θ(SJ(1, dxxx ∧ dyyy)) ≤ θ(

n−1∑

i=0

∫

S∩[τi,τ ′
i ]

zzz−dvvv − SK∩[τi,τ ′
i ]
(zzz−, dvvv))

+ θ(
n−1∑

i=0

∫

S∩[τ ′
i ,τi+1]

zzz+dvvv − SK∩[τi,τ ′
i ]
(zzz+, dvvv))

≤ 2ǫ

(613V(i)). This is true whenever I ⊆ J in I(S); as ǫ is arbitrary,
∫
S dxxx ∧ dyyy = 0. QQQ

(ii) By (b),

∫

S
|dwww| =

∫

S
dxxx+

∫

S
dyyy − 2

∫

S
dxxx ∧ dyyy

=

∫

S
zzz+dvvv +

∫

S
zzz−dvvv =

∫

S
|zzz|dvvv =

∫

S
|zzz||dvvv|,

and we have the required result when S is full and vvv is non-decreasing.

(d) Next suppose only that S is full.

(i) Let vvv↑ be the cumulative variation of vvv (614O) and set

vvv1 = 1
2 (vvv

↑ + vvv), xxx = iivvv1(zzz), vvv2 = 1
2 (vvv

↑ − vvv), yyy = iivvv2(zzz).

Then vvv1 and vvv2 are non-decreasing (614P(a-iii)), and

vvv1 − vvv2 = vvv, www = xxx− yyy, vvv1 + vvv2 = vvv↑.

Express vvv1 and xxx as 〈v1σ〉σ∈S , 〈xσ〉σ∈S respectively.

(ii) By (b) above and 616Ta,

2

∫

S
dvvv1 ∧ dvvv2 =

∫

S
dvvv1 +

∫

S
dvvv2 −

∫

S
|dvvv|

=

∫

S
dvvv↑ −

∫

S
|dvvv| = 0.

Set z̄ = sup |zzz|. If σ ≤ τ in S and e = c(σ, τ) is the corresponding stopping-time interval, then
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|∆e(zzz, dvvv1)| = |zσ| × (v1τ − v1σ) ≤ z̄ ×∆e(1, vvv1).

So |SI(zzz, dvvv1)| ≤ z̄ × SI(1, dvvv1) for every I ∈ I(S). Again, if e = c(σ, τ) is a stopping-time interval with
endpoints in S,

|∆e(1, dxxx)| = |xτ − xσ| = |
∫

S∩[σ,τ ]

zzz dvvv1|

≤ z̄ ×
∫

S∩[σ,τ ]

dvvv1 = z̄ × (v1τ − v1σ) = z̄ ×∆e(1, dvvv1).

Thus |∆xxx| ≤ z̄ × ∆vvv1. Similarly, |∆yyy| ≤ z̄ × ∆vvv2. But this means that |∆xxx| ∧ |∆yyy| ≤ z̄ × (∆vvv1 ∧ ∆vvv2).
Consequently

0 ≤ SI(1, |dxxx| ∧ |dyyy|) ≤ z̄ × SI(1, dvvv1 ∧ dvvv2)
for every I ∈ I(S), and in the limit

0 ≤
∫
S |dxxx| ∧ |dyyy| ≤ z̄ ×

∫
S dvvv1 ∧ dvvv2 = 0.

(iii) Returning to the formulae of (b), we see now that

∫

S
|dwww| =

∫

S
|dxxx|+

∫

S
|dyyy| =

∫

S
|zzz|dvvv1 +

∫

S
|zzz|dvvv2

(by (c))

=

∫

S
|zzz|dvvv↑ =

∫

S
|zzz||dvvv|

by 616Ta again in its full strength.

(e) Finally, if S is not full, let Ŝ be its covered envelope and ẑzz, v̂vv the fully adapted extensions of zzz and

vvv to Ŝ. Then ẑzz is moderately oscillatory (615F(a-vi)) and v̂vv is of bounded variation (614Q(a-iv-β)), while
the fully adapted extension ŵww of www is iiv̂vv(ẑzz) (616Q(c-ii)). Since ∆v̂vv is the strictly adapted extension of
the interval function ∆vvv, |∆v̂vv| is the strictly adapted extension of |∆vvv| (613U(b-ii)); similarly, |∆ŵww| is the
extension of |∆www|. Now

∫

S
|dwww| =

∫

S
d|∆www| =

∫

Ŝ
d|∆ŵww|

(613T)

=

∫

Ŝ
|dŵww| =

∫

Ŝ
|ẑzz||dv̂vv|

((d) above)

=

∫

S
|zzz||dvvv|,

and we have the result in the general case.

617G Theorem Let S be a sublattice of T , uuu and zzz moderately oscillatory processes and vvv a process of
bounded variation, all with domain S. Write www for iivvv(zzz), and vvv

↑, www↑ for the cumulative variations of vvv and
www. Then ∫

S uuu dwww
↑ =

∫
S uuu |dwww| =

∫
S uuu× |zzz| |dvvv| =

∫
S uuu× |zzz| dvvv↑.

proof By 617F, www is of bounded variation. Let vvv↑, www↑ be the cumulative variations of vvv and www. If τ ∈ S,
then
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∫

S∧τ
dwww↑ =

∫

S∧τ
|dwww|

(616Ta once more)

=

∫

S∧τ
|zzz||dvvv|

(617F)

=

∫

S∧τ
|zzz|dvvv↑.

So www↑ = iivvv↑(|zzz|). By 617E,
∫
S uuu dwww

↑ =
∫
S uuu × |zzz| dvvv↑, while

∫
S uuu |dwww| =

∫
S uuu dwww

↑ and
∫
S uuu × |zzz| |dvvv| =∫

S uuu× |zzz| dvvv↑ by 616Ta yet again.

Mnemonic d(iivvv(zzz)
↑) ∼ |zzz|dvvv↑.

617H Quadratic variation Let S be a sublattice of T , and vvv, www local integrators with domain S.

(a)(i) If vvv and www are integrators, then the strictly adapted interval function ∆vvv ×∆www on S (613Da) is
an integrating interval function. PPP As observed in part (a) of the proof of 613M,

∆vvv ×∆www = ∆(vvv ×www)− vvv∆www −www∆vvv.

Now vvv×www is an integrator (616Pa), so ∆(vvv×www) is an integrating interval function (616Ic), while vvv∆www and
www∆vvv are integrating interval functions by 617Da. So ∆vvv ×∆www also is, by 616Ga. QQQ

(ii) In any case, ∆vvv ×∆www is a locally integrating interval function (apply (i) to vvv↾S ∧ τ , www↾S ∧ τ for
τ ∈ S).

(b) The covariation of vvv and www is the indefinite integral

[vvv
∗
www] = ii∆vvv×∆www(1).

When www = vvv, we say that vvv∗ = [vvv
∗
vvv] = ii(∆vvv)2(1) is the quadratic variation of vvv.

(c) Note that as

(vvv,www) 7→ ∆vvv ×∆www

is bilinear, so is (vvv,www) 7→ [vvv
∗
www].

617I Theorem Let S be a sublattice of T , vvv, www two integrators and uuu a moderately oscillatory process,
all with domain S. Then [vvv

∗
www] is an integrator and

∫
S uuu d[vvv

∗
www],

∫
S uuu d(vvv ×www)−

∫
S uuu× vvv dwww −

∫
S uuu×www dvvv,

∫
S uuu dvvvdwww

are defined and equal.

proof Because ∆vvv ×∆www is an integrating interval function (617H(a-i)), its indefinite integral [vvv
∗
www] is an

integrator (616J once more). Now∫
S uuu d(vvv∆www) =

∫
S uuu× vvv d(∆www) =

∫
S uuu× vvv dwww

by 617Db. Similarly,
∫
S uuu d(www∆vvv) =

∫
S uuu×www dvvv, while

∫
S uuu d[vvv

∗
www] =

∫
S uuu d(∆vvv ×∆www) by the other part of

617Db. Of course
∫
S uuu d(vvv ×www) =

∫
S uuu d(∆(vvv ×www)) and

∫
S uuu dvvvdwww =

∫
S uuu d(∆vvv ×∆www) by the definitions in

613L. Since

∆vvv ×∆www = ∆(vvv ×www)− vvv∆www −www∆vvv,

∫
S uuu d[vvv

∗
www] =

∫
S uuu d(vvv ×www)−

∫
S uuu× vvv dwww −

∫
S uuu×www dvvv =

∫
S uuu dvvvdwww.

Mnemonic d[vvv
∗
www] ∼ d(vvv ×www)− vvv dwww −www dvvv = dvvvdwww.
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617J Corollary Let S be a non-empty sublattice of T and vvv an integrator with domain S. Let vvv∗ be
the quadratic variation of vvv.

(a) vvv∗ is an integrator, and if uuu is a moderately oscillatory process with domain S then∫
S uuu dvvv

∗,
∫
S uuu d(vvv

2)− 2
∫
S uuu× vvv dvvv,

∫
S uuu (dvvv)

2

are defined and equal.
(b)(i) Expressing vvv∗ as 〈v∗τ 〉τ∈S , limτ↓S v∗τ = 0.
(ii) vvv∗ is non-negative, non-decreasing and order-bounded.

(c) If www is another integrator with domain S, then [vvv
∗
www] is of bounded variation.

proof (a) This is immediate from 617I and the definition of vvv∗ as [vvv
∗
vvv].

(b)(i) Immediate from 613J(f-i).

(ii) Express vvv as 〈vσ〉σ∈S . If τ ≤ τ ′ in S, then
v∗τ ′ − v∗τ =

∫
S∩[τ,τ ′]

dvvv∗ =
∫
S∩[τ,τ ′]

(dvvv)2.

But looking back at the definitions in §613, we see that

(∆vvv)2(c(σ, σ′)) = (vσ′ − vσ)
2 ≥ 0

for every stopping time interval c(σ, σ′) with endpoints in S, so SI(1, (dvvv)2) ≥ 0 for every I ∈ I(S) and∫
S∩[τ,τ ′]

(dvvv)2 ≥ 0. So v∗τ ≤ v∗τ ′ . As τ and τ ′ are arbitrary, vvv∗ is non-decreasing.

As vvv∗ is an integrator, v∗↑ = limτ↑S v∗τ is defined; as vvv∗ is non-decreasing, v∗↓ ≤ vτ ≤ v∗↑ for every τ ∈ S
and vvv∗ is non-negative and order-bounded.

(c) By 614J(i), vvv∗ is of bounded variation. Similarly, www∗ and (vvv +www)∗ are of bounded variation. Since
covariation is bilinear (617Hc),

[vvv
∗
www] =

1

2
([vvv +www

∗
vvv +www]− [vvv

∗
vvv]− [www

∗
www]) =

1

2
((vvv +www)∗ − vvv∗ −www∗)

is a linear combination of processes of bounded variation and is of bounded variation (614Q(a-ii)).

Mnemonic (dvvv)2 = d(vvv2)− 2vvv dvvv ∼ dvvv∗.

617K Remarks Let S be a sublattice of T and vvv, www local integrators with domain S.

(a) Applying 617I to S ∧ τ , for τ ∈ S, we see that

ii[vvv ∗
www](uuu) = iivvv×www(uuu)− iiwww(uuu× vvv)− iivvv(uuu×www)

for every locally moderately oscillatory uuu with domain S. Taking uuu = 1,

[vvv
∗
www] = ii[vvv ∗

www](1)

(using 613N and 617J(b-i))

= iivvv×www(1)− iiwww(vvv)− iivvv(www);

taking vvv = www,

vvv∗ = iivvv2(1)− 2iivvv(vvv).

If S is not empty,

[vvv
∗
www] = vvv ×www − (v↓ × w↓)1− iiwww(vvv)− iivvv(www), vvv∗ = vvv2 − v2↓1− 2iivvv(vvv),

where v↓ and w↓ are the starting values of vvv and www, by 613N again.

(b) Immediately from the definition in 617H, [vvv↾S ∧ τ ∗
www↾S ∧ τ ] = [vvv

∗
www]↾S ∧ τ for every τ ∈ S. We also

have a formula for [vvv↾S ∨ τ ∗
www↾S ∨ τ ]; if τ ′ ∈ S ∨ τ , then
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∫
(S∨τ)∧τ ′

dvvvdwww =
∫
S∩[τ,τ ′]

dvvvdwww =
∫
S∧τ ′

dvvvdwww −
∫
S∧τ dvvvdwww,

so

[vvv↾S ∨ τ ∗
www↾S ∨ τ ] = ([vvv

∗
www]↾S ∨ τ)− z1

where z =
∫
S∧τ dvvvdwww ∈ L0(Aτ ) is the final value of [vvv

∗
www]↾S ∧ τ . When www = vvv, this becomes

vvv∗↾S ∨ τ = v∗τ1+ (vvv↾S ∨ τ)∗

where v∗τ =
∫
S∧τ (dvvv)

2.

(c) A perfectly elementary fact which it is worth having out in the open is that if vvv −uuu is constant then
the interval functions ∆uuu and ∆vvv are equal, so (∆uuu)2 = (∆vvv)2 and uuu∗ = vvv∗.

617L Corollary Let S be a sublattice of T and vvv a local integrator with domain S. Let vvv∗ be the
quadratic variation of vvv. Then vvv∗ is non-negative, non-decreasing and locally of bounded variation. If www is
another local integrator with domain S, then [vvv

∗
www] is locally of bounded variation.

proof Apply 617J to vvv↾S ∧ τ for τ ∈ S.

617M Proposition Let S be a sublattice of T and vvv, www local integrators with domain S. Then [vvv
∗
www]2 ≤

vvv∗ ×www∗.

proof Of course this is just a form of Cauchy’s inequality. I think it relies, however, on something not spelt
out in Volume 3.

(a)(i) Suppose that α, β, γ ∈ R are such that ξ2α+ 2ξηβ + η2γ ≥ 0 for all real ξ, η. Then α ≥ 0, γ ≥ 0
and β2 ≤ αγ. PPP Taking ξ = 1, η = 0 we see that α ≥ 0. If α = 0 then η2γ ± 2ηβ ≥ 0 for every η > 0, so
|β| ≤ 1

2ηγ for every η > 0 and β2 = αγ = 0. Similarly, γ ≥ 0 and if γ = 0 then β2 = αγ.

If α, γ > 0 then, taking ξ =
√
γ and η = ±√

α, we have 2αγ ± 2
√
α
√
γβ ≥ 0, so |√αγβ| ≤ αγ and

β2 ≤ αγ, as required. QQQ

(ii) If (Ω,Σ, µ) is a probability space and f , g, h : Ω → R are measurable functions such that, for any
ξ, η ∈ R, ξ2f + 2ξηg + η2h ≥ 0 almost everywhere, then f ≥ 0 a.e., h ≥ 0 a.e. and g2 ≤ f × h a.e. PPP The
set Ω0 of ω ∈ Ω such that ξ2f(ω) + 2ξηg(ω) + η2h(ω) ≥ 0 for all rational ξ and η is conegligible. Now, for
ω ∈ Ω0, ξ

2f(ω) + 2ξηg(ω) + η2h(ω) ≥ 0 for all real ξ and η, so (i) tells us that f(ω) ≥ 0, h(ω) ≥ 0 and
g(ω)2 ≤ f(ω)h(ω). As Ω0 is conegligible, f ≥ 0, h ≥ 0 and g2 ≤ f × h almost everywhere. QQQ

(iii) If u, v, w ∈ L0 are such that ξ2u + 2ξηv + η2w ≥ 0 for all real ξ, η, then u ≥ 0, w ≥ 0 and
v2 ≤ u×w. PPP Express A as the measure algebra of a probability space (Ω,Σ, µ), identify L0(A) with L0(µ),
take measurable functions f , g, h such that f• = u, g• = v and h• = w, and apply (ii). QQQ

(b) Now the proposition follows at once from (a-iii) if we observe that, for any τ ∈ S and ξ, η ∈ R,

ξ2
∫
S∧τ (dvvv)

2 + 2ξη
∫
S∧τ dvvv dwww + η2

∫
S∧τ (dwww)

2 =
∫
S∧τ (dzzz)

2 ≥ 0 in L0

where zzz = ξvvv + ηwww is a local integrator.

617N Proposition Let S be a sublattice of T , and vvv, www local integrators with domain S. Let v̂vv, ŵww be
their fully adapted extensions to the covered envelope Ŝ of S. Then [v̂vv

∗
ŵww] is the fully adapted extension of

[vvv
∗
www] to Ŝ. In particular, the quadratic variation of v̂vv is the fully adapted extension to Ŝ of the quadratic

variation of vvv.

proof By 616Ia, v̂vv and ŵww are local integrators. Of course ∆v̂vv×∆ŵww extends ∆vvv×∆www just because v̂vv extends
vvv and ŵww extends www. If τ ∈ S, then

∫
Ŝ∧τ d(∆v̂vv ×∆ŵww) is defined, so is equal to

∫
S∧τ d(∆vvv ×∆www) (613T, as

Ŝ ∧ τ is the covered envelope of S ∧ τ). Thus [vvv ∗
www] = [v̂vv

∗
ŵww]↾S and [v̂vv

∗
ŵww] is the fully adapted extension of

[vvv
∗
www] to Ŝ.

617O Examples Suppose that T = [0,∞[.
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(a) Let ιιι = 〈ιτ 〉τ∈Tf
be the identity process (612F). Then its quadratic variation ιιι∗ is zero. PPP ιιι is

non-negative and non-decreasing, therefore locally order-bounded (614Ic) and locally of bounded variation
(614Id) and a local integrator (616Ra). So ιιι∗ is well-defined; express it as 〈ι∗τ 〉τ∈Tf

. Take t > 0 and m ≥ 1,

and set τi =
ǐt
m , the constant stopping time at it

m , for i ≤ m; let I be any sublattice of T ∧ ť containing τi
for every i ≤ m. If e is an I-cell, then e is expressible as c(σ, τ) where τi ≤ σ ≤ τ ≤ τi+1 for some i. Now

∆e(1, (dιιι)
2) = (ιτ − ισ)

2 ≤ t

m
(ιτ − ισ) =

t

m
∆e(1, dιιι).

Summing over e,

SI(1, (dιιι)
2) ≤ t

m
SI(1, dιιι) =

t

m
ιť.

Taking the limit as I ↑ I(T ∧ ť),

ι∗
ť
=
∫
T ∧ť(dιιι)

2 ≤ t

m
ιť.

As t and m are arbitrary, ι∗τ = 0 for every constant stopping time τ . Since ιιι∗ is non-decreasing, ι∗τ = 0 for
every τ ∈ Tb. As Tb is a covering ideal of Tf (611Ne), ιιι∗ must be the zero process (612R). QQQ

(b) Let vvv = 〈vτ 〉τ∈Tf
be the standard Poisson process, based on the structure (Ω,Σ, µ,A, µ̄, 〈At〉t≥0)

described in 612U. Then vvv is equal to its quadratic variation vvv∗. PPP vvv is non-negative and non-decreasing,
so vvv∗ is well-defined. Express vvv∗ as 〈v∗τ 〉τ∈Tf

. Let 〈τn〉n∈N be the sequence of jump times of vvv, as in
612Ue-612Uf, so that τ0 = min T , supn∈N τn = max T and

[[vσ = n]] = [[τn ≤ σ]] ∩ [[σ < τn+1]]

for every n ∈ N and σ ∈ Tf .
Given τ ∈ Tf and ǫ > 0, there is an n ∈ N such that a = [[τ > τn]] has measure at most ǫ. Set

J = {τ ∧ τi : i ≤ n} and take any sublattice I of T ∧ τ including J . If e is an I-cell, e is expressible as
c(σ, σ′) where either τi ∧ τ ≤ σ ≤ σ′ ≤ τi+1 ∧ τ for some i < n, or τn ∧ τ ≤ σ ≤ σ′ ≤ τ . In the first case,

[[vσ 6= vσ′ ]] ⊆ [[σ < σ′]] ⊆ [[τi ≤ σ]] ∩ [[σ < τi+1]] ∩ [[σ′ ≤ τi+1]]

⊆ [[vσ = i]] ∩ [[vσ′ ≤ i+ 1]] ⊆ [[vσ′ − vσ ∈ {0, 1}]] = [[(vσ′ − vσ)
2 = vσ′ − vσ]].

But this means that we actually have (vσ′ − vσ)
2 = vσ′ − vσ and ∆e(1, (dvvv)

2) = ∆e(1, dvvv). In the second
case,

[[vσ 6= vσ′ ]] ⊆ [[τn < τ ]] = a

and

[[∆e(1, (dvvv)
2) 6= ∆e(1, dvvv)]] ⊆ a.

Thus we have

[[∆e(1, (dvvv)
2) 6= ∆e(1, dvvv)]] ⊆ a

for every I-cell e, and consequently

[[SI(1, (dvvv)
2) 6= SI(1, dvvv)]] ⊆ a.

Taking the limit as I ↑ I(T ∧ τ),
[[v∗τ 6= vτ ]] = [[

∫
T ∧τ (dvvv)

2 6=
∫
T ∧τ dvvv]] ⊆ a

has measure at most ǫ. As ǫ is arbitrary, v∗τ = vτ ; as τ is arbitrary, vvv∗ = vvv. QQQ

617P A more elaborate result of the same kind as 617E can be proved by the methods here.

Lemma Let S be a full sublattice of T with a greatest element, zzz a moderately oscillatory process and vvv,
vvv′ integrators, all with domain S. Set www = iivvv(zzz). Then

∫
S dwww dvvv

′ =
∫
S zzz dvvv dvvv

′.

proof Express zzz, vvv, vvv′, www as 〈zσ〉σ∈S , 〈vσ〉σ∈S , 〈v′σ〉σ∈S , 〈wσ〉σ∈S .
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(a) Consider first the case in which zzz is simple, with starting value z↓ and breakpoint string (τ0, . . . , τn)
where τn = maxS. Then

wσ = z↓ × (vσ − v↓) for σ ≤ τ0,

= wτi + zτi × (vσ − vτi) for i < n and τi ≤ σ ≤ τi+1,

so if σ ≤ τ in S,

(∆www ×∆vvv′)(σ, τ) = z↓ × (∆vvv ×∆vvv′)(σ, τ) = zσ × (∆vvv ×∆vvv′)(σ, τ) if τ ≤ τ0,

= zτi × (∆vvv ×∆vvv′)(σ, τ) = zσ × (∆vvv ×∆vvv′)(σ, τ)

if i < n and τi ≤ σ ≤ τ ≤ τi+1.

Consequently ∫
S∧τ0

dwww dvvv′ =
∫
S∧τ0

zzz dvvv dvvv′,

∫
S∩[τi,τi+1]

dwww dvvv′ =
∫
S∩[τi,τi+1]

zzz dvvv dvvv′

for i < n, and ∫
S dwww dvvv

′ =
∫
S zzz dvvv dvvv

′.

(b) Generally, for I ∈ I(S), let zzzI = 〈zIσ〉σ∈S be the simple process with breakpoints in I agreeing with
zzz on I as in 617B, and set wwwI = iivvv(zzzI). Then we know from 617I and (a) here that∫

S d(wwwI × vvv′)−
∫
S wwwIdvvv

′ −
∫
S vvv

′dwwwI =
∫
S dwwwIdvvv

′ =
∫
S zzzIdvvv dvvv

′.

(c)(i) Since 0 is the starting value of wwwI and therefore of wwwI × vvv′,
∫
S d(wwwI × vvv′) = wImaxS × v′maxS for

each I ∈ I(S), and

lim
I↑I(S)

∫

S
d(wwwI × vvv′) = v′maxS × lim

I↑I(S)
wImaxS = v′maxS × lim

I↑I(S)

∫

S
zzzIdvvv

= v′maxS ×
∫

S
zzz dvvv = v′maxS × wmaxS =

∫

S
d(www × vvv′).

by 617B(b-ii).

(ii) Next, we know from 617B(b-i) that www = iivvv(zzz) is the limit ucplimI↑I(S) iivvv(zzzI) for the ucp topology

on Mo-b(S). Consequently
∫
S www dvvv

′ = limI↑I(S)

∫
S wwwIdvvv

′ (616J).

(iii) By 617E, ∫
S vvv

′dwwwI =
∫
S vvv

′d(iivvv(zzzI)) =
∫
S vvv

′ × zzzI dvvv =
∫
S zzzId(iivvv(vvv

′)),

and similarly
∫
S vvv

′dwww =
∫
S zzz d(iivvv(vvv

′)). But this means that

limI↑I(S)

∫
S vvv

′dwwwI =
∫
S vvv

′dwww

by 617B(b-ii) again.

(iv) On the other side, using the other part of 617I,

limI↑I(S)

∫
S zzzIdvvv dvvv

′ = limI↑I(S)

∫
S zzzId[vvv

∗
vvv′] =

∫
S zzzd[vvv

∗
vvv′] =

∫
S zzz dvvv dvvv

′.

(d) Assembling these, we find that

∫

S
dwww dvvv′ =

∫

S
d(www × vvv′)−

∫

S
www dvvv′ −

∫

S
vvv′dwww

= lim
I↑I(S)

(∫

S
d(wwwI × vvv′)−

∫

S
wwwIdvvv

′ −
∫

S
vvv′dwwwI

)

= lim
I↑I(S)

∫

S
zzzIdvvv dvvv

′ =

∫

S
zzz dvvv dvvv′,
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as claimed.

617Q Theorem Let S be a sublattice of T , uuu, zzz and zzz′ locally moderately oscillatory processes with
domain S, and vvv, vvv′ local integrators with domain S. Set www = iivvv(zzz), www

′ = iivvv′(zzz
′).

(a)(i) [www
∗
vvv′] = ii[vvv ∗

vvv′](zzz), ii[www ∗
vvv′](uuu) = ii[vvv ∗

vvv′](uuu× zzz).

(ii) [www
∗
www′] = ii[vvv ∗

vvv′](zzz × zzz′), ii[www ∗
www′](uuu) = ii[vvv ∗

vvv′](uuu× zzz × zzz′).

(iii) www∗ = iivvv∗(zzz
2), iiwww∗(uuu) = iivvv∗(uuu× zzz2).

(b) If uuu, zzz and zzz′ are moderately oscillatory and vvv, vvv′ are integrators,∫
S uuu dwww dwww

′ =
∫
S uuu× zzz × zzz′dvvv dvvv′,

∫
S uuu dwww

∗ =
∫
S uuu× zzz2dvvv∗.

proof (a)(i)(ααα) Suppose to begin with that S is full. Take any τ ∈ S. Then 617P tells us that∫
S∧τ dwww dvvv

′ =
∫
S∧τ zzz dvvv dvvv

′ =
∫
S∧τ zzz d[vvv

∗
vvv′].

But this means that the indefinite integrals [www
∗
vvv′], ii[vvv ∗

vvv′](zzz) are equal.

(βββ) In general, take Ŝ to be the covered envelope of S and ẑzz, v̂vv, v̂vv′ and ŵww the fully adapted extensions

of zzz, vvv, vvv′ and www to Ŝ. Then ŵww = iiv̂vv(ẑzz) (616Q(c-ii)), so

[ŵww
∗
v̂vv′] = ii[v̂vv ∗

v̂vv′](ẑzz)

and

[www
∗
vvv′] = [ŵww

∗
v̂vv′]↾S

(617N)

= ii[v̂vv ∗
v̂vv′](ẑzz)↾S = ii[v̂vv ∗

v̂vv′]↾S(zzz)

(613T again)

= ii[vvv ∗
vvv′](zzz).

(γγγ) By 617Db, ∫
S∧τ uuu d[www

∗
vvv′] =

∫
S∧τ uuu d(ii[vvv

∗
vvv′](zzz)) =

∫
S∧τ uuu× zzz d[vvv

∗
vvv′])

for every τ ∈ S, that is, ii[www ∗
vvv′](uuu) = ii[vvv ∗

vvv′](uuu× zzz).

(ii) By (i),

[www
∗
www′] = [www′ ∗www] = ii[vvv′ ∗

www](zzz
′) = ii[www ∗

vvv′](zzz
′)

= ii[vvv ∗
vvv′](zzz

′ × zzz) = ii[vvv ∗
vvv′](zzz × zzz′).

It follows, just as in (i-γ) above, that

ii[www ∗
www′](uuu) = ii[vvv ∗

vvv′](uuu× zzz × zzz′).

(iii) This is now just the special case vvv′ = vvv, zzz′ = zzz of (ii).

(b) Since [vvv
∗
vvv′], www, www′, [www ∗

www′], vvv∗ and www∗ are all integrators (616J yet again, 617I), all the integrals are
defined and

∫

S
uuu dwww dwww′ =

∫

S
uuu d[www

∗
www′] = lim

τ↑S

∫

S∧τ
uuu d[www

∗
www′] = lim

τ↑S

∫

S∧τ
uuu× zzz × zzz′ d[vvv

∗
vvv′]

=

∫

S
uuu× zzz × zzz′ d[vvv

∗
vvv′] =

∫

S
uuu× zzz × zzz′ dvvv dvvv′.
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Taking vvv′ = vvv, zzz′ = zzz and www′ = www the formulae simplify to
∫
S uuu dwww

∗ =
∫
S uuu× zzz2dvvv∗.

Mnemonic d[www
∗
www′] ∼ dwww dwww′ ∼ (zzz dvvv)(zzz′dvvv′) ∼ zzz × zzz′ dvvv dvvv′ ∼ zzz × zzz′ d[vvv ∗

vvv′].

617R Proposition Let S be a sublattice of T and vvv a process with domain S which is locally of bounded
variation. Then vvv and its cumulative variation have the same quadratic variation.

proof (a) I begin with an elementary fact about f -algebras which was left as an exercise in §3528. Suppose
that u, v ∈ L0. Then u× v = (u ∧ v)× (u ∨ v). PPP

u× v = ((u ∧ v) + (u− v)+)× ((u ∧ v) + (v − u)+)

(352D)

= (u ∧ v)× (u ∧ v + (u− v)+ + (v − u)+)

(because (u− v)+ ∧ (v − u)+ = 0, by 352D again, so (u− v)+ × (v − u)+ = 0, by 352W(b-i))

= (u ∧ v)× (u ∨ v)

(352D once more). QQQ

(b) Suppose for the moment that vvv is actually of bounded variation. Express vvv as 〈vσ〉σ∈S and its
cumulative variation as vvv↑ = 〈v↑σ〉σ∈S . Set

vvv1 = 1
2 (vvv

↑ + vvv), vvv2 = 1
2 (vvv

↑ − vvv),

so that vvv1 and vvv2 are both non-decreasing processes (614P(a-iii)), vvv = vvv1 − vvv2 and vvv↑ = vvv1 + vvv2. Let ψ be
the interval function ∆vvv↑ − |∆vvv| with domain S2↑; then

∫
S∧τ dψ =

∫
S∧τ dvvv

↑ −
∫
S∧τ |dvvv| = v↑τ −

∫
S∧τ |dvvv| = 0

for every τ ∈ S (614O). Note that if σ ≤ τ in S then

ψ(σ, τ) = v↑τ − v↑σ − |vτ − vσ| ≥ 0

(614P(a-i)) and, expressing vvv1 as 〈v1σ〉σ∈S and vvv2 as 〈v2σ〉σ∈S ,

ψ(σ, τ) = (v↑τ − v↑σ + vτ − vσ) ∧ (v↑τ − v↑σ − vτ + vσ) = (2v1τ − 2v1σ) ∧ (2v2τ − 2v2σ);

consequently

(v1τ − v1σ)× (v2τ − v2σ) = ((v1τ − v1σ) ∧ (v2τ − v2σ))× ((v1τ − v1σ) ∨ (v2τ − v2σ))

(by (a))

≤ ((v1τ − v1σ) ∧ (v2τ − v2σ))× 2v̄ = v̄ × ψ(σ, τ)

where v̄ = 1
2 (sup |vvv1|+ sup |vvv2|). But this means that

0 ≤ SI(1, dvvv1dvvv2) ≤ v̄ × SI(1, dψ) for every I ∈ I(S),

0 ≤
∫
S∧τ dvvv1dvvv2 ≤ v̄ ×

∫
S∧τ dψ = 0 for every τ ∈ S

and [vvv1
∗
vvv2] = 0. Accordingly the quadratic variations

(vvv↑)∗ = [vvv↑
∗
vvv↑] = [vvv1 + vvv2

∗
vvv1 + vvv2] = [vvv1

∗
vvv1] + 2[vvv1

∗
vvv2] + [vvv2

∗
vvv2]

= [vvv1
∗
vvv1]− 2[vvv1

∗
vvv2] + [vvv2

∗
vvv2] = vvv∗

are equal.

8Later editions only.
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(c) Now the general result follows at once because

(vvv↑)∗↾S ∧ τ = (vvv↑↾S ∧ τ)∗
(617Kb)

= ((vvv↾S ∧ τ)↑)∗
(614Pb)

= (vvv↾S ∧ τ)∗
(by (b))

= vvv∗↾S ∧ τ

for every τ ∈ S.
Mnemonic |dvvv|2 = dvvv2.

617X Basic exercises (a) Let zzz be a locally moderately oscillatory process and vvv a process locally of
bounded variation with the same domain. Show that iivvv(zzz)

↑ = iivvv↑(|zzz|).

(b) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf and 616Xa. Let f : [0,∞[ → R be a
càdlàg function such that f↾[0, t] is of bounded variation for every t ≥ 0. Let vvv be the corresponding process
on Tf and vvv∗ its quadratic variation. Show that vvv∗ corresponds to the function g : R → R defined by saying
that g(t) =

∑
0<s≤t(f(s)− lims′↑s f(s′))2.

(c) Let S be a non-empty sublattice of T , vvv an integrator with domain S, and z a member of L0(
⋂
σ∈S Aσ).

Show that if vvv∗ is the quadratic variation of vvv, then (using the language of 612D(e-ii)) z2vvv∗ is the quadratic
variation of zvvv.

(d) Supposing that T = [0,∞[, take ιιι = 〈ιτ 〉τ∈Tf
to be the identity process. Show that

∫
T ∧τ ιιι dιιι =

1

2
ι2τ

for every τ ∈ Tf .

>>>(e) Let vvv = 〈vτ 〉τ∈Tf
be the standard Poisson process. Show that

∫
T ∧τ vvv dvvv =

1

2
(v2τ − vτ )

for every τ ∈ Tf .

617 Notes and comments There is a lot of meat in this section. We have already seen the relatively
straightforward, but obviously fundamental, fact that indefinite integrals are commonly local integrators
(616J, 616Q(c-i)). It is a general principle, of which we shall see many examples, that an indefinite integral
iivvv(uuu) is likely to share any special properties of the (local) integrator vvv; as a first step, iivvv(uuu) will be locally
of bounded variation if vvv is (616L). And we know that an indefinite integral operator iivvv with respect to an
integrator vvv is continuous for the ucp topology (616J).

In fact there is nothing here as difficult as the basic theorem on existence of Riemann-sum integrals
(616M). Once we know that the integrals (with respect to integrating interval functions, as well as with
respect to integrators) are defined, the analysis in §613 takes us a long way; if you like, Riemann-sum
integrability is a very restrictive condition which we shall not escape until we come to the S-integral in
Chapter 64.

In the ‘mnemonics’ offered in this section, we have to distinguish between ∼ and =. When I wrote

(dvvv)2 = d(vvv2)− 2vvv dvvv ∼ dvvv∗

(617J), the equality corresponds to a pair of interval functions being equal; writing vvv∆vvv for the interval
function c(σ, τ) 7→ vσ × (vτ − vσ), I am saying that
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(vτ − vσ)
2 = v2τ − v2σ − 2vσ × (vτ − vσ)

and therefore that

(∆vvv)2 = ∆(vvv2)− 2vvv∆vvv,

∆e(uuu, (dvvv)
2) = ∆e(uuu, d(vvv

2))− 2∆e(uuu× vvv, dvvv),

SI(uuu, (dvvv)
2) = SI(uuu, d(vvv

2))− 2SI(uuu× vvv, dvvv),

∫
S uuu (dvvv)

2 =
∫
S uuu d(vvv

2)− 2
∫
S uuu× vvv dvvv

for all e, I, uuu and S for which these are defined. We have to pause for a moment to decide when the integrals
exist, but everything else is elementary algebra. But ‘dvvv∗ ∼ (dvvv)2’ does not assert that v∗τ − v∗σ is related
to (vτ − vσ)

2 for any particular σ and τ . It is in the first place a claim that
∫
S dvvv

∗ =
∫
S(dvvv)

2, and then

a claim that
∫
S uuu dvvv

∗ =
∫
S uuu (dvvv)

2. The point is that the interval function ∆vvv∗ is additive, but (∆vvv)2 is
not. The exposition in Chapter 48 of Volume 4 tacitly assumes that when forming gauge integrals we rather
expect our measures to be at least finitely additive. In the present volume we are dealing with integrals
with respect to ‘measures’ which in some cases are most definitely not additive.

I introduced ‘adapted interval functions’ in §613 partly in order to have a direct definition for such
expressions as

∫
S uuu|dvvv| and

∫
S uuu dvvvdvvv

′. In the contexts here, they give what turn out to be useful suggestions:
if www = iivvv(zzz), then we have mnemonics dwww ∼ zzz dvvv for 617E, |dwww| ∼ |zzz||dvvv| for 617G and dwwwdvvv′ ∼ zzz dvvvdvvv′

for 617Q. But these simple-minded formulae give no hint of the pages of detailed calculations in 617F and
617P between the two expressions. The problem lies in the fact that ∆www is not quite equal to zzz∆vvv, so we
cannot immediately relate |∆www| to |zzz||∆vvv| or ∆www ×∆vvv′ to zzz∆vvv ×∆vvv′.

Of course all the work of the second half of the section is dependent on being able to move between dvvvdvvv′

and d[vvv
∗
vvv′], where [vvv

∗
vvv′] is not merely a local integrator but actually locally of bounded variation; you will

see that from 617P on I am repeatedly employing whichever expression is most immediately convenient.
In both parts of 617O, we find that the calculation of the quadratic variation from the formula

v∗τ =
∫
S∧τ (dvvv)

2

(617Hb) is elementary in the sense that we just have to work carefully through the definitions, looking at

very natural sublattices { ˇit/m : i ≤ m} in 617Oa and {τ ∧ τi : i ≤ n} in 617Ob. Of course we could
use the same ideas to give us direct calculations of the indefinite integrals iiιιι(ιιι) and iivvv(vvv) (617Xd-617Xe),
but these would necessarily be a touch more complex. In 617Xe we have a first outright declaration of a
difference between the formulae of elementary calculus and the corresponding formulae of stochastic calculus,
a foretaste of Itô’s formula (§619).

You will note that 617O omits any description of the quadratic variation of Brownian motion. As has
happened before in this chapter, Brownian motion seems to be essentially more difficult and more interesting,
as well as more important, than the Poisson process. Like the identity process, Brownian motion has no
jumps (618J), but even so its quadratic variation is non-zero (624F); the argument I will give in 622L depends
on Dynkin’s formula in harmonic analysis (478K).

617R is based on an elementary manipulation, but I think it requires validation using ideas from §352.

Version of 8.9.12/26.8.22

618 Oscillations and jump-free processes

For the work so far, moderately oscillatory processes have been sufficiently regular for our needs. But
for the next development (Itô’s formula, 619C), we are going to need a new concept. In 618B I formulate a
notion of ‘jump-free’ process corresponding to the idea of ‘process with continuous sample paths’ (618H).

618A Notation As previously, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure.
For a sublattice S of T , Mo-b(S) will be the space of order-bounded processes with domain S (614Fc) and
I(S) the set of finite sublattices of S. For an order-bounded process uuu = 〈uσ〉σ∈S , sup |uuu| will be supσ∈S |uσ|
(614Ea). L∞ will be L∞(A) with its norm ‖ ‖∞ as defined in §363. L0(A) (§364) will be endowed with
its topology and uniformity of convergence in measure, with the defining F-norm θ (613Ba). 1 will be the

D.H.Fremlin



138 The Riemann-sum integral 618A

constant process with value χ1. If h : R → R is a continuous function, I will write h̄ for any of the derived
functions from L0(A) to itself or from a space of fully adapted processes to itself (612A, 612Ia).

618B Definitions (a) Let I be a finite sublattice of T , and uuu a fully adapted process defined (at least)
on I. The I-oscillation of uuu is

OscllnI(uuu) = supe∈Sti0(I) ∆e(1, |duuu|),
where Sti0(I) is the set of I-cells (611Je) and for a stopping-time interval e = c(σ, τ) I write ∆e(1, |duuu|) =
|uτ − uσ| (613Fa). Take the supremum in (L0(A))+, so that if #(I) ≤ 1 and Sti0(I) is empty, then
OscllnI(uuu) = 0.

Note that if (τ0, . . . , τn) linearly generates the I-cells, then OscllnI(uuu) = supi<n |uτi+1
−uτi |, just because

Sti0(I) is the set of stopping-time intervals {c(τi, τi+1) : i < n, τi 6= τi+1} (611L).

(b) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S an order-bounded process (definition: 614E). Set
ū = sup |uuu|.

(i) ∆e(1, |duuu|) ≤ 2ū for every e in the set Sti(S) of stopping-time intervals with endpoints in S, so
OscllnJ(uuu) ≤ 2ū for every J ∈ I(S). We can therefore set

Osclln∗I(uuu) = supJ∈I(S),J⊇I OscllnJ(uuu) ≤ 2ū

for every I ∈ I(S).
(ii) The residual oscillation Osclln(uuu) is infI∈I(S) Osclln∗I(uuu) ≤ 2ū. I will say that uuu is jump-free if

Osclln(uuu) = 0. For definiteness, I add that if, in the rest of this volume, I say that a process is jump-free, I
mean to imply that it is order-bounded.

(iii) I will say that uuu is locally jump-free if uuu↾S ∧ τ is jump-free for every τ ∈ S.
(iv)

Osclln∗∅(uuu) = sup
J∈I(S)

OscllnJ(uuu) = sup{|uσ′ − uσ| : σ, σ′ ∈ S and σ ≤ σ′}

= sup{|uσ′∨σ − uσ′∧σ| : σ, σ′ ∈ S} = sup{|uσ′ − uσ| : σ, σ′ ∈ S}
by 612D(f-ii).

(v) Remarks (ααα) Note that I 7→ Osclln∗I(uuu) : I(S) → L0(A) is non-increasing, so Osclln(uuu) is the
limit limI↑I(S) Osclln∗I(uuu) for the topology of convergence in measure, and uuu is jump-free iff

infI∈I(S) θ(Osclln∗I(uuu)) = limI↑I(S) θ(Osclln∗I(uuu)) = 0.

(βββ) In the formula

OscllnI(uuu) = supe∈Sti0(I) ∆e(1, |duuu|),
the arguments I and uuu are explicit in the term OscllnI(uuu). In the formula

Osclln∗I(uuu) = supJ∈I(S),J⊇I OscllnJ (uuu),

the lattice S is not declared overtly in the expression Osclln∗I(vvv); a purist would prefer

Osclln∗I(uuu) = supJ∈I(domuuu),J⊇I OscllnJ (uuu),

just as

Osclln(uuu) = infI∈I(domuuu) Osclln∗I(uuu).

(γγγ) Observe that we have OscllnI(uuu) = Osclln(uuu↾I) for every I ∈ I(S).

(c) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S , vvv = 〈vσ〉σ∈S order-bounded processes.

(i) For any α ∈ R,

OscllnI(αuuu) = |α|OscllnI(uuu) for every I ∈ I(S),
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Osclln∗I(αuuu) = |α|Osclln∗I(uuu) for every I ∈ I(S),

Osclln(αuuu) = |α|Osclln(uuu).

(ii)

OscllnI(uuu+ vvv) ≤ OscllnI(uuu) + OscllnI(vvv) for every I ∈ I(S),

Osclln∗I(uuu+ vvv) ≤ Osclln∗I(uuu) + Osclln∗I(vvv) for every I ∈ I(S),

Osclln(uuu+ vvv) ≤ Osclln(uuu) + Osclln(vvv).

(iii) Writing ū, v̄ for sup |uuu| and sup |vvv|,
OscllnI(uuu× vvv) ≤ v̄ ×OscllnI(uuu) + ū×OscllnI(vvv) for every I ∈ I(S),

Osclln∗I(uuu× vvv) ≤ v̄ ×Osclln∗I(uuu) + ū×Osclln∗I(vvv) for every I ∈ I(S),

Osclln(uuu× vvv) ≤ v̄ ×Osclln(uuu) + ū×Osclln(vvv).

618C We shall not need them immediately, but the following descriptions of Osclln∗ will be useful later
on.

Lemma Let S be a sublattice of T and uuu = 〈uσ〉σ∈S an order-bounded fully adapted process. Let I be a
non-empty finite sublattice of S; suppose that (τ0, . . . , τn) linearly generates the I-cells.

(a) Set τ−1 = inf S and τn+1 = supS and

w = sup{|uσ′ − uσ| : σ, σ′ ∈ S and there is an i

such that − 1 ≤ i ≤ n and τi ≤ σ ≤ σ′ ≤ τi+1},
w′ = sup{|uσ′ − uσ| : σ, σ′ ∈ S and there is an i

such that − 1 ≤ i ≤ n and σ, σ′ ∈ [τi, τi+1]}.
Then w = w′ = Osclln∗I(uuu).

(b) Now suppose that uuu is non-decreasing. Set u↓ = infσ∈S uσ and u↑ = supσ∈S uσ. Then

Osclln∗I(uuu) = (uτ0 − u↓) ∨ supi<n(uτi+1
− uτi) ∨ (u↑ − uτn).

proof (a)(i) Suppose that J ∈ I(S), I ⊆ J and e ∈ Sti0(J). Then there is an i such that −1 ≤ i ≤ n
and e ∈ Sti0(J ∩ [τi, τi+1]), by 611J(e-iii). In this case, the stopping-time interval e is expressible as c(σ, σ′)
where τi ≤ σ ≤ σ′ ≤ τi+1 and σ, σ′ ∈ S. Accordingly

∆e(1, |duuu|) = |uσ′ − uσ| ≤ w′.

As e is arbitrary, OscllnJ(uuu) ≤ w′; as J is arbitrary, Osclln∗I(uuu) ≤ w.

(ii) Suppose that −1 ≤ i ≤ n and τi ≤ σ ≤ σ′ ≤ τi+1. Then |uσ′ − uσ| ≤ Osclln∗I(uuu). PPP If
σ = σ′ this is trivial. Otherwise, set J = I ∪ {σ, σ′}. If τ ∈ I then med(τi, τ, τi+1) belongs to I (because
τ ∨ τ−1 = τ ∧ τn+1 = τ ∈ I), and must be either τi or τi+1; so either τ ≤ σ or σ′ ≤ τ . It follows that J is a
sublattice of S including I and c(σ, σ′) is a J-cell. So

|uσ′ − uσ| ≤ OscllnJ(uuu) ≤ Osclln∗I(uuu). QQQ

Thus w ≤ Osclln∗I(uuu) and the two are equal.

(iii) Of course w ≤ w′. On the other hand, if σ, σ′ both belong to S ∩ [τi, τi+1] for some i, then so do
σ ∧ σ′ and σ ∨ σ′, and

w ≥ |uσ∨σ′ − uσ∧σ′ | = |uσ − uσ′ |
(612D(f-ii)). So w ≥ w′ and we have equality.

(b) This is now elementary, because
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sup{|uσ′ − uσ| : σ, σ′ ∈ S, τi ≤ σ ≤ σ′ ≤ τi+1} = uτ0 − u↓ if i = −1,

= uτi+1
− uτi if 0 ≤ i < n,

= u↑ − uτn if i = n.

618D Proposition Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a locally order-bounded process.

(a) Set vτ = Osclln(uuu↾S ∧ τ) for τ ∈ S. Then vvv = 〈vτ 〉τ∈S is a non-decreasing fully adapted process.

(b) If uuu is order-bounded, then

(i) Osclln(uuu) = Osclln(uuu↾S ∧ τ) ∨Osclln(uuu↾S ∨ τ) for every τ ∈ S,
(ii) Osclln(uuu↾S ∩ [τ, τ ′]) ≤ Osclln(uuu) whenever τ ≤ τ ′ in S.

proof (a)(i) Looking at the definitions in 618B, we see that, for any τ ∈ S,
OscllnI(uuu↾S ∧ τ) ∈ L0(Aτ ) for every I ∈ I(S ∧ τ),

so that

Osclln∗I(uuu↾S ∧ τ) ∈ L0(Aτ ) for every I ∈ I(S ∧ τ)
(because L0(Aτ ) is an order-closed sublattice of L0(A), by 612Ae) and

vτ = infI∈I(S∧τ) Osclln∗I(uuu↾S ∧ τ) ∈ L0(Aτ ).

(ii) If τ ≤ τ ′ in S, then
OscllnI(uuu) = OscllnI∧τ (uuu) ∨OscllnI∨τ (uuu) whenever τ ∈ I ∈ I(S)

(use 611J(e-ii)). Suppose that τ ∈ I ∈ I(S ∧ τ ′) and that I ∧ τ ⊆ J ∈ I(S ∧ τ). Let K be the sublattice
generated by I ∪ J ; then K ∧ τ = J , so

OscllnJ(uuu) ≤ OscllnK(uuu) ≤ Osclln∗I(uuu↾S ∧ τ ′).
As J is arbitrary,

vτ = Osclln(uuu↾S ∧ τ) ≤ Osclln∗I∧τ (uuu↾S ∧ τ) ≤ Osclln∗I(uuu↾S ∧ τ ′).
As I is arbitrary,

vτ ≤ Osclln(uuu↾S ∧ τ ′) = vτ ′ .

Thus vvv is non-decreasing.

(iii) If τ ≤ τ ′ in S and c = [[τ = τ ′]], then χc × |vσ′ − vσ| = 0 whenever τ ≤ σ ≤ σ′ ≤ τ ′, so
χc×OscllnI∨τ (uuu) = 0 and χc×OscllnI∧τ (uuu) = χc×OscllnI(uuu) whenever τ ∈ I ∈ I(S ∧ τ ′). Consequently

χc× vτ = χc× inf
τ∈I∈I(S)

sup
J∈I(S)
J⊇I

OscllnJ∧τ (uuu)

= inf
τ∈I∈I(S)

sup
J∈I(S)
J⊇I

χc×OscllnJ∧τ (uuu)

= inf
τ∈I∈I(S)

sup
J∈I(S)
J⊇I

χc×OscllnJ(uuu) = χc× vτ ′

and [[τ = τ ′]] ⊆ [[vτ = vτ ′ ]]. As noted in 612Db, this is enough to show that vvv is fully adapted.

(b)(i) If τ ∈ J ∈ I(S) then (as noted in (a-ii) above)

OscllnJ(uuu) = OscllnJ∧τ (uuu) ∨OscllnJ∨τ (uuu).

So if τ ∈ I ∈ I(S) then
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Osclln∗I(uuu) = sup
I⊆J∈I(S)

OscllnJ(uuu) = sup
I⊆J∈I(S)

OscllnJ∧τ (uuu) ∨OscllnJ∨τ (uuu)

= sup
I∧τ⊆K∈I(S∧τ)
I∨τ⊆L∈I(S∨τ)

OscllnK(uuu) ∨OscllnL(uuu)

= Osclln∗I∧τ (uuu↾S ∧ τ) ∨Osclln∗I∨τ (uuu↾S ∨ τ).
Taking the infimum over I (using the distributive law 352Eb),

Osclln(uuu) = Osclln(uuu↾S ∧ τ) ∨Osclln(uuu↾S ∨ τ)
as claimed.

(ii) Now

Osclln(uuu↾S ∩ [τ, τ ′]) = Osclln(uuu↾(S ∧ τ ′) ∨ τ) ≤ Osclln(uuu↾S ∧ τ ′) ≤ Osclln(uuu).

*618E An elementary fact will turn out to be useful in Chapter 64.

Lemma Let S be a finitely full sublattice of T with a greatest element, uuu = 〈uσ〉σ∈S a jump-free process,
τ ∈ S and ǫ > 0. Then there is a τ ′ ∈ S∨τ such that [[τ < τ ′]] = [[τ < maxS]] and θ(supσ∈S∩[τ,τ ′] |uσ−uτ |) ≤
ǫ.

proof By 618D(b-i), uuu′ = uuu↾S ∨ τ is jump-free. Let I be a finite sublattice of S ∨ τ containing τ and
maxS and such that θ(Osclln∗I(uuu

′)) ≤ ǫ. Take (τ0, . . . , τn) linearly generating the I-cells. For i < n set
bi = [[τ < τi+1]] \ [[τ < τi]]; set bn = [[τ = maxS]]. Then 〈bi〉i≤n is disjoint and has supremum 1, bi ∈ Aτi+1

for
i < n, and bn ∈ AmaxS . By 611I there is a τ ′ ∈ T such that bi ⊆ [[τ ′ = τi+1]] for i < n and bn ⊆ [[τ ′ = maxS]].
Because S is finitely full, τ ′ ∈ S, while τ ≤ τ ′ and [[τ < τ ′]] = supi<n bi = [[τ < maxS]]. If σ ∈ S and
τ ≤ σ ≤ τ ′, then for i < n

bi ⊆ [[τ = τi]] ∩ [[τi ≤ σ]] ∩ [[σ ≤ τi+1]] ⊆ [[τ = τi]] ∩ [[σ = med(τi, σ, τi+1)]]

⊆ [[|uσ − uτ | = |umed(τi,σ,τi+1) − uτi |]] ⊆ [[|uσ − uτ | ≤ Osclln∗I(uuu
′)]]

by 618Ca. At the same time,

bn ⊆ [[τ = σ]] ⊆ [[|uσ − uτ | = 0]].

So |uσ − uτ | ≤ Osclln∗I(uuu
′). As σ is arbitrary,

θ(supσ∈S∩[τ,τ ′] |uσ − uτ |) ≤ θ(Osclln∗I(uuu
′)) ≤ ǫ.

618F Proposition Let S be a sublattice of T .
(a) If uuu, vvv are order-bounded processes with domain S, then |Osclln(uuu)−Osclln(vvv)| ≤ 2 sup |uuu− vvv|.
(b) Osclln :Mo-b(S) → L0(A) is uniformly continuous if Mo-b(S) is given its ucp uniformity.

proof (a) By 618B(c-ii) and 618B(b-ii),

Osclln(uuu) ≤ Osclln(vvv) + Osclln(uuu− vvv) ≤ Osclln(vvv) + 2 sup |uuu− vvv|
and similarly Osclln(vvv) ≤ Osclln(uuu) + 2 sup |uuu− vvv|.

(b) Consequently

θ(Osclln(vvv)−Osclln(uuu)) ≤ 2θ(sup |uuu− vvv|) = 2θ̂(uuu− vvv)

where θ̂ is the F-norm defining the ucp linear space topology on Mo-b(S) (615B). So Osclln : Mo-b(S) →
L0(A) is uniformly continuous.

618G Proposition Let S be a sublattice of T . Write Mj-f(S) for the set of jump-free fully adapted
processes with domain S.

(a) The set Mj-f(S) of jump-free fully adapted processes with domain S is a topologically closed f -
subalgebra of Mo-b(S), and h̄vvv ∈Mj-f(S) whenever vvv ∈Mj-f(S) and h : R → R is continuous.
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(b) A (locally) jump-free fully adapted process on S is (locally) moderately oscillatory.

(c) If vvv ∈ Mj-f(S), then vvv↾S ∨ τ , vvv↾S ∧ τ ′ and vvv↾S ∩ [τ, τ ′] are jump-free whenever τ ≤ τ ′ in S. In
particular, vvv is locally jump-free.

proof (a)(i) If uuu, vvv ∈ Mj-f = Mj-f(S), then Osclln(uuu + vvv) ≤ Osclln(uuu) + Osclln(vvv) = 0 (618B(c-ii)) so
uuu+ vvv ∈Mj-f.

(ii) Since {0} is closed in L0(A) and Osclln : Mo-b(S) → L0(A) is continuous (618Fb), Mj-f(S) = {uuu :
uuu ∈Mo-b(S), Osclln(uuu) = 0} is closed in Mo-b(S).

(iii) If uuu ∈ Mj-f and h : R → R is uniformly continuous, then h̄uuu ∈ Mj-f. PPP By 614F(c-i), h̄uuu is
order-bounded. For x ∈ R, set g(x) = sup{|h(y) − h(y′)| : |y − y′| ≤ |x|}; then g is Borel measurable,
limx→0 g(x) = 0 and |h(x) − h(y)| ≤ g(|x − y|) for all x, y ∈ R, so |h̄(u) − h̄(v)| ≤ ḡ(|u − v|) for all u,
v ∈ L0(A). Accordingly ∆e(1, |dh̄uuu|) ≤ ḡ(∆e(1, |duuu|)) for every e ∈ Sti(S), OscllnJ(h̄uuu) ≤ ḡ(OscllnJ(uuu)) for
every J ∈ I(S) and Osclln∗I(h̄uuu) ≤ ḡ(Osclln∗I(uuu)) for every I ∈ I(S). Since infI∈I(S) Osclln∗I(uuu) = 0 and

limx↓0 g(x) = 0, infI∈I(S) ḡ(Osclln∗I(uuu)) = 0 and infI∈I(S) Osclln∗I(h̄uuu) = 0 and h̄uuu is jump-free. QQQ

(iv) If uuu = 〈uσ〉σ∈S is jump-free and h̄ : R → R is continuous, then h̄uuu is jump-free. PPP Again, h̄uuu is
order-bounded. Set ū = supσ∈S |uσ|. Given ǫ > 0, let M ≥ 0 be such that a = [[ū ≥M ]] has measure at
most ǫ. Set

h1(x) = h(−M) if x ≤ −M,

= h(x) if |x| ≤M,

= h(M) if x ≥M.

Then h1 is uniformly continuous so h̄1(uuu) ∈Mj-f, by (ii). But

[[h̄uuu 6= h̄1uuu]] = supσ∈S [[h̄(uσ) 6= h̄1(uσ)]] ⊆ supσ∈S [[|uσ| > M ]] = [[ū > M ]] ⊆ a,

so

θ̂(h̄uuu− h̄1uuu) ≤ µ̄a ≤ ǫ.

As ǫ is arbitrary and Mj-f is closed, h̄uuu ∈Mj-f. QQQ

(v) Putting (i) and (iv) together, Mj-f is an f -subalgebra of Mo-b(S), by 612Bc as usual.

(b)(i) Suppose that uuu = 〈uσ〉σ∈S is jump-free. If S is empty, uuu is certainly moderately oscillatory;
suppose otherwise.

(ααα) Set B =
⋂
σ∈S Aσ. Then the starting value u↓ = limσ↓S uσ is defined and belongs to L0(B).

PPP Let ǫ > 0. Let I ∈ I(S) be non-empty and such that θ(Osclln∗I(uuu)) ≤ ǫ. If σ ∈ S and σ ≤ min I, then
J = I ∪{σ} ∈ I(S) and |umin I−uσ| ≤ OscllnJ (uuu) ≤ Osclln∗I(uuu), so θ(uσ−umin I) ≤ ǫ. As L0(A) is complete
in the linear space topology of convergence in measure, this is enough to show that u↓ is defined. By 613Bj,
u↓ ∈ L0(B). QQQ

(βββ) If I ∈ I(S) is non-empty, there is a simple process uuu′ such that sup |uuu − uuu′| ≤ Osclln∗I(uuu). PPP
Write w for Osclln∗I(uuu). Let τ0 ≤ . . . ≤ τn linearly generate the I-cells (611L). Let uuu′ = 〈u′σ〉σ∈S be the
simple process defined on S by the formulae of 612Ka from τ0, . . . , τn and u↓, uτ0 , . . . , uτn .

If σ′ ≤ σ ∈ S ∧ τ0, then
|uσ − uσ′ | ≤ OscllnI∪{σ′,σ}(uuu) ≤ w;

taking the limit as σ ↓ S, |uσ − u↓| ≤ w. If i < n and σ ∈ S ∩ [τi, τi+1], then

|uσ − uτi | ≤ OscllnI∪{σ}(uuu) ≤ w;

similarly, if σ ∈ S ∨ τn then

|uσ − uτn | ≤ OscllnI∪{σ}(uuu) ≤ w.

For any σ ∈ S we see now that
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[[σ < τ0]] ⊆ [[uσ = uσ∧τ0 ]] ∩ [[u′σ = u↓]]

⊆ [[|uσ − u′σ| = |uσ∧τ0 − u↓|]] ⊆ [[|uσ − u′σ| ≤ w]],

[[τn ≤ σ]] ⊆ [[uσ = uσ∨τn ]] ∩ [[u′σ = uτn ]]

⊆ [[|uσ − u′σ| = |uσ∨τn − uτn |]] ⊆ [[|uσ − u′σ| ≤ w]],

and for any i < n

[[τi ≤ σ]] ∩ [[σ < τi+1]] ⊆ [[uσ = umed(τi,σ,τi+1
]] ∩ [[u′σ = uτi ]]

⊆ [[|uσ − u′σ| = |umed(τi,σ,τi+1) − uτi |]] ⊆ [[|uσ − u′σ| ≤ w]].

Since

[[σ < τ0]] ∪ [[τn ≤ σ]] ∪ supi<n([[τi ≤ σ]] ∩ [[σ < τi+1]]) = 1,

|uσ − u′σ| ≤ w. As σ is arbitrary, sup |uuu− uuu′| ≤ w, as claimed. QQQ

(γγγ) Now take any ǫ > 0. As uuu is jump-free, there is a non-empty I ∈ I(S) such that θ(Osclln∗I(uuu)) ≤ ǫ.
By (β), there is a simple process uuu′ such that θ(sup |uuu − uuu′|) ≤ ǫ. But we know that simple processes are
moderately oscillatory (615E). As ǫ is arbitrary, uuu belongs to the closure of the set Mmo(S) of moderately
oscillatory processes for the ucp topology on Mo-b(S). But Mmo(CalS) is closed (615F(a-iv)), so uuu is
moderately oscillatory.

(ii) If uuu is locally jump-free, then applying (i) we see that uuu↾S ∧ τ is moderately oscillatory for every
τ ∈ S, so uuu is locally moderately oscillatory.

(c)(i) Given I ∈ I(S), let I ′ be the sublattice generated by I ∪ {τ, τ ′}. Then Osclln∗I′∨τ (vvv↾S ∨ τ) ≤
Osclln∗I(vvv). PPP If I ′ ∨ τ ⊆ J ∈ I(S ∨ τ), and K is the sublattice generated by I ′ ∪ J , we shall have
I ⊆ K ∈ I(S), K ∨ τ = J and Sti0(J) ⊆ Sti0(K), so

OscllnJ(vvv) ≤ OscllnK(vvv) ≤ Osclln∗I(vvv).

As J is arbitrary,

Osclln∗I′∨τ (vvv↾S ∨ τ) ≤ Osclln∗I(vvv). QQQ

Consequently

infI∈I(S∨τ) Osclln∗I(vvv↾S ∨ τ) ≤ infI∈I(S) Osclln∗I(vvv) = 0

and vvv↾S ∨ τ is jump-free.

(ii) Replacing ‘∨τ ’ by ‘∧τ ′’ throughout the argument above, we see that vvv↾S ∧ τ ′ is jump-free. Putting
these together, vvv↾S ∩ [τ, τ ′] = (vvv↾S ∨ τ)↾S ∧ τ ′ is jump-free. And as τ ′ is arbitrary, vvv is locally jump-free.

618H Where jump-free processes come from: Proposition Let (Ω,Σ, µ) be a complete probability
space and 〈Σt〉t≥0 a family of σ-subalgebras of Σ, all containing every negligible subset of Ω. Suppose that
we are given a family 〈Xt〉t≥0 of real-valued functions on Ω such that Xt is Σt-measurable for every t ≥ 0
and t 7→ Xt(ω) : [0,∞[ → R is continuous for every ω ∈ Ω. Then 〈Xt〉t≥0 is progressively measurable, and
if (A, µ̄, 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) and 〈xσ〉σ∈Tf

are defined as in 612H, xxx = 〈xσ〉σ∈Tf
is locally jump-free.

proof The idea is to combine the approaches of 612H and 615P.

(a) I start by showing that we have a progressively measurable process. PPP Take any t ≥ 0 and α ∈ R.
Set Q = {qt : q ∈ Q ∩ [0, 1]}. Then

{(s, ω) : s ≤ t, Xs(ω) > α} = {(s, ω) : s ≤ t, lim sup
q↓Q∩[s,t]

Xq(ω) > α}

=
⋃

k∈N

⋂

q∈Q

⋃

q′∈Q
q′≤q

{(s, ω) : s ≤ t, s > q or s ≤ q′ and Xq′(ω) ≥ α+ 2−k}

∈ B([0, t])⊗̂Σt
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where B([0, t]) is the Borel σ-algebra of [0, t]. QQQ
We can therefore apply the method of 612H to define, for each stopping time h : Ω → [0,∞[, the σ-

algebra Σh and the Σh-measurable function Xh, and we find ourselves with a real-time stochastic integration
structure (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ) and a fully adapted process xxx = 〈xσ〉σ∈Tf

such that xh• = X•

h

for every h.

(b) The main part of the argument depends on the idea of ‘hitting time’ in a form similar to that of
445M. Let h : Ω → [0,∞[ be a stopping time, and ǫ > 0. For ω ∈ Ω set

f(ω) = min({h(ω)} ∪ {t : t ≥ 0, |Xt(ω)| ≥ ǫ}).
(I can write min rather than inf because t 7→ Xt(ω) is continuous, so if {t : |Xt(ω)| ≥ ǫ} is non-empty it
contains its infimum.) Then f is a stopping time. PPP For any t ≥ 0, Σt contains every µ-negligible set, so
(Ω,Σt, µ↾Σt) is a complete probability space and Σt is closed under Souslin’s operation (431A). Next,

{(s, ω) : s ≤ t, |Xs(ω)| ≥ ǫ} =
⋂
k∈N{(s, ω) : s ≤ t, |Xs(ω)| > ǫ− 2−k}

belongs to B([0, t])⊗̂Σt, by (a) applied to the process (s, ω) 7→ |Xs(ω)|. So its projection E = {ω : ∃ s ∈ [0, t],
|Xs(ω)| ≥ ǫ} belongs to Σt (423O

9). Now

{ω : f(ω) ≤ t} = {ω : h(ω) ≤ t} ∪ E ∈ Σt.

As t is arbitrary, f is a stopping time adapted to 〈Σt〉t≥0. QQQ

(c) Again suppose that h : Ω → [0,∞[ is a stopping time and ǫ > 0. Define gn and X
(n)
t , for n ∈ N and

t ≥ 0, by setting

g0(ω) = 0 for every ω ∈ Ω

and

X
(n)
t (ω) = 0 if gn(ω) > t,

= Xt(ω)−Xgn(ω) if gn(ω) ≤ t,

gn+1(ω) = inf({h(ω)} ∪ {t : t ≥ 0, |X(n)
t (ω)| ≥ ǫ}

for n ∈ N, t ≥ 0 and ω ∈ Ω, We see immediately that t 7→ X
(n)
t (ω) is always continuous. Also we can see by

induction on n that every gn is a stopping time and every X
(n)
t is Σt-measurable. PPP For n = 0 this is trivial,

since of course Xt −X0 is Σt-measurable and t 7→ Xt(ω) −X0(ω) is always continuous. For the inductive

step to n ≥ 1, gn is a stopping time, by (b) applied to 〈X(n−1)
t 〉t≥0. Next, setting F = {ω : gn(ω) ≤ t}, we

have

F ∩ {ω : gn(ω) ≤ s} = {ω : gn(ω) ≤ s} ∈ Σs ⊆ Σt if s ≤ t,

= F ∈ Σt if t ≤ s

so F ∈ Σgn . If E ∈ Σgn then E ∩ F ∈ Σt, so Xgn × χF is Σt-measurable; while F ∈ Σt so Xt × χF is

Σt-measurable. Consequently X
(n)
t = (Xt −Xgn)× χF is Σt-measurable, and the induction continues. QQQ

We therefore have a non-decreasing sequence 〈gn〉n∈N of stopping times such that, for any n ∈ N and
ω ∈ Ω,

—– if n = 0 then gn(ω) = 0,
—– gn(ω) ≤ h(ω),
—– |Xt(ω)−Xgn(ω)| ≤ ǫ whenever gn(ω) ≤ t ≤ gn+1(ω)

because t 7→ Xt(ω) −Xgn(ω) is continuous, so if |Xt(ω) −Xgn(ω)| > ǫ there is an s ∈ [gn(ω), t[ such that
|Xs(ω)−Xgn(ω)| ≥ ǫ and gn+1(ω) ≤ s < t.

Moreover, for any ω, 〈gn(ω)〉n∈N is a non-decreasing sequence bounded above by h(ω), so

limn→∞Xgn(ω) = limn→∞Xgn(ω)(ω)

is defined and finite, in which case there must be some n such that gn+1(ω) = h(ω).

9Later editions only.
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(d) Translating (c) into the language of the stochastic integration structure (A, µ̄, [0,∞[ , 〈At〉t≥0, T , 〈Aτ 〉τ∈T ),
we see that given any τ ∈ Tf and ǫ > 0 we have a non-decreasing sequence 〈τn〉n∈N in Tf such that for every
n ∈ N,

—– τn ≤ τ ,
—– [[τn ≤ σ]] ∩ [[σ ≤ τn+1]] ⊆ [[|xσ − xτn | ≤ ǫ]] for every σ ∈ Tf ,

and

τ0 = 0̌ = min Tf , supn∈N [[τn = τ ]] = 1.

But this means that if we take n ∈ N such that c = 1 \ [[τn = τ ]] has measure at most ǫ, and set I =
{τ0, . . . , τn, τ} ∈ I(Tf ∧ τ), then

Osclln∗I(xxx↾Tf ∧ τ) ≤ sup
i<n

sup{|xσ′ − xσ| : τi ≤ σ ≤ σ′ ≤ τi+1}

∨ sup{|xσ′ − xσ| : τn ≤ σ ≤ σ′ ≤ τ}
(618Ca)

≤ 2ǫχ1 ∨ (2 sup |xxx↾Tf ∧ τ | × χc)

and

θ(Osclln∗I(xxx↾Tf ∧ τ)) ≤ 2ǫ+ µ̄c ≤ 3ǫ.

As ǫ is arbitrary, xxx↾Tf ∧ τ is jump-free; as τ is arbitrary, xxx is locally jump-free.

618I Lemma Let S be a sublattice of T , and uuu = 〈uσ〉σ∈S a locally jump-free fully adapted process. If
A ⊆ S is non-empty and upwards-directed and supA ∈ S, then usupA = limσ↑A uσ.

proof It is enough to consider the case in which supA = maxS, so that uuu is actually jump-free.

(a) (The key.) Suppose that I ∈ I(S), that τ0 ≤ . . . ≤ τn linearly generate the I-cells, that σ ≤ σ′ ∈ S,
and that

a ∩ [[σ ≤ τi]] = a ∩ [[σ′ ≤ τi]]

for every i ≤ n. Then |uσ − uσ′ | × χa ≤ Osclln∗I(uuu). PPP Set ū = Osclln∗I(uuu),

b0 = [[σ ≤ τ0]], bi = [[τi−1 < σ]] ∩ [[σ ≤ τi]] for 1 ≤ i ≤ n, bn+1 = [[τn < σ]].

Then 〈bi〉i≤n+1 is a partition of unity in A. Next, set

σ0 = σ ∧ τ0, σ′
0 = σ′ ∧ τ0, σn+1 = σ ∨ τn, σ′

n+1 = σ′ ∨ τn,

σi = med(τi−1, σ, τi), σ′
i = med(τi−1, σ

′, τi) for 1 ≤ i ≤ n.

If i ≤ n+1 and σi 6= σ′
i, the stopping-time interval c(σi, σ

′
i) is a Ji-cell, where Ji is the sublattice generated

by I ∪ {σ, σ′}, so
|uσi

− uσ′
i
| ≤ OscllnJ(uuu) ≤ ū.

Next, bi ⊆ [[σi = σ]] and a ∩ bi ⊆ [[σ′
i = σ′]] for each i, so

a = supi≤n+1 a ∩ bi ⊆ supi≤n+1 [[uσi
= uσ]] ∩ [[uσ′

i
= uσ′ ]] ⊆ [[|uσ − uσ′ | ≤ ū]]

and |uσ − uσ′ | × χa ≤ ū. QQQ

(b) Take any ǫ > 0, and let I ∈ I(S) be such that θ(ū) ≤ ǫ where ū = Osclln∗I(uuu). Let (τ0, . . . , τn)
linearly generate the I-cells. For each i ≤ n, [[supA ≤ τi]] = infσ∈A [[σ ≤ τi]] for each i (611Eb), so there is a
σ0 ∈ A such that c = supi≤n [[σ0 ≤ τi]] \ [[supA ≤ τi]] has measure at most ǫ. If now σ ∈ A and σ0 ≤ σ, (a)
tells us that

|usupA − uσ| × χ(1 \ c) ≤ ū, θ(usupA − uσ) ≤ θ(ū) + µ̄c ≤ 2ǫ.

As ǫ is arbitrary, limσ↑A uσ = usupA.
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618J Examples Let us look again at our three standard examples. Take T = [0,∞[.

(a) The identity process ιιι = 〈ιτ 〉τ∈Tf
(612F) is locally jump-free. PPP We know that it is locally order-

bounded (615Q, or otherwise). Take τ ∈ Tf and ǫ > 0. Let m ∈ N be such that a = [[τ > mǫ]] has measure
at most ǫ. Set I = {τ ∧ ǐǫ : i ≤ m}, where ǐǫ is the constant stopping time at iǫ. If J is a sublattice of T ∧ τ
including I and e is a J-cell, then

either there is an i < m such that e can be expressed as c(σ, σ′) where τ ∧ ǐǫ ≤ σ ≤ σ′ ≤
τ ∧ ˇ(i+ 1)ǫ, in which case

[[σ < σ′]] ⊆ [[ǐǫ ≤ σ]] ∩ [[σ′ ≤ ˇ(i+ 1)ǫ]]

and ∆e(1, |dιιι|) = ι′σ − ισ ≤ ǫχ1,
or e can be expressed as c(σ, σ′) where τ ∧ m̌ǫ ≤ σ ≤ σ′ ≤ τ , in which case [[σ < σ′]] ⊆ a and

∆e(1, |dιιι|) = ι′σ − ισ ≤ ιτ × χa.

Thus Osclln∗I(ιιι) ≤ ǫχ1 + ιτ × χa and θ(Osclln∗I(ιιι)) ≤ ǫ+ µ̄a ≤ 2ǫ. As ǫ is arbitrary, ιιι↾T ∧ τ is jump-free; as
τ is arbitrary, ιιι is jump-free. QQQ

(b) The standard Poisson process vvv = 〈vτ 〉τ∈Tf
(612U) is not locally jump-free. PPP Let τ1 be the first

jump time of vvv, as in 612Ue-612Uf, so that

[[σ < τ1]] = [[vσ = 0]], [[τ1 ≤ σ]] = [[vσ ≥ 1]]

for every σ ∈ Tf . If I is any sublattice of T ∧ τ1, set J = I ∪ {min T , τ1} and let σ0 ≤ . . . ≤ σn linearly
generate the J-cells; then

Osclln∗I(vvv) ≥ OscllnJ(vvv) ≥ sup
i<n

|vσi+1
− vσi

|

≥ sup
i<n

χ([[σi+1 = τ1]] ∩ [[σi < τ1]])

= χ(sup
i<n

[[σi+1 = τ1]] \ [[σi = τ1]]) = χ[[τ1 > 0]] = χ1

and θ(Osclln∗I(vvv)) = 1. As I is arbitrary, vvv↾T ∧ τ1 is not jump-free and vvv is not locally jump-free. QQQ

(c) Brownian motion www = 〈wτ 〉τ∈Tf
(612T) is locally jump-free. PPP This is immediate from 618H and the

continuity of Brownian sample paths, built into the description in 612Ta. QQQ

618K Lemma Let S be a sublattice of T . If I, J ∈ I(S) and a ∈ A are such that J ⊆ I and
a ⊆ supσ∈J [[τ = σ]] for every τ ∈ I, then a ⊆ [[OscllnI(uuu) = OscllnJ(uuu)]] for every fully adapted process
uuu = 〈uσ〉σ∈S .

proof The argument is essentially identical to that for 613S.

(a) The case a = 0 is trivial; so is the case a 6= 0 and J = ∅, as then I must also be empty and

OscllnI(uuu) = OscllnJ(uuu) = 0.

So suppose otherwise. Let (σ0, . . . , σn) linearly generate the J-cells. If τ ∈ I then

a ⊆ sup
σ∈J

[[τ = σ]] = sup
σ∈J

sup
j≤n

[[τ = σ]] ∩ [[σ = σj ]]

⊆ sup
j≤n

[[τ = σj ]] ⊆ [[σ0 ≤ τ ]] ∩ [[τ ≤ σn]].

Set I−1 = I ∧ σ0, Ij = I ∩ [σj , σj+1] for 0 ≤ j < n, In = I ∨ σn.
(b) If τ ≤ τ ′ in I−1, then

a ∩ [[uτ ′ 6= uτ ]] ⊆ a ∩ [[τ < τ ′]] ⊆ a ∩ [[τ < σ0]] = 0,

so

a ∩ [[|∆e(1, duuu)| 6= 0]] = 0
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for every I−1-cell e. Taking the supremum over e, OscllnI−1
(uuu)× χa = 0.

(c) In the same way, if τ ≤ τ ′ in In, then

a ∩ [[uτ ′ 6= uτ ]] ⊆ a ∩ [[τ < τ ′]] ⊆ a ∩ [[σn < τ ′]] = 0,

so

OscllnIn(uuu)× χa = 0.

(d) If 0 ≤ j < n, a ⊆ [[OscllnIj (uuu) = |uσj+1
− uσj

|]]. PPP For every τ ∈ Ij ,

a ∩ [[σj < τ ]] ∩ [[τ < σj+1]] ⊆ sup
k≤n

[[τ = σk]] ∩ [[σj < τ ]] ∩ [[τ < σj+1]]

⊆ sup
k≤n

∩ [[σj < σk]] ∩ [[σk < σj+1]]

⊆ (sup
k≤j

∩ [[σj < σk]]) ∪ ( sup
j+1≤k

[[σk < σj+1]]) = 0.

Take (τ0, . . . , τm) linearly generating the Ij-cells; then σj = τ0 ≤ . . . ≤ τm = σj+1. For i < m, set
bi = [[τi < τi+1]], so that supi<m bi = [[σj < σj+1]]. Now

a ∩ bi = a ∩ [[τi < τi+1]] = a ∩ [[σj < τi+1]] ∩ [[τi < σj+1]] ∩ [[τi < τi+1]]

⊆ a ∩ [[τi+1 = σj+1]] ∩ [[τi = σj ]] ∩ [[τi < τi+1]]

⊆ [[|uτi+1
− uτi | = |uσj+1

− uσj
|]] ∩ inf

k<i
[[τk = τk+1]] ∩ inf

i<k<m
[[τk = τk+1]]

⊆ [[|uτj+1
− uτj | = |uσj+1

− uσj
|]] ∩ inf

k<m
k 6=i

[[uτk = uτk+1
]]

⊆ [[|uτj+1
− uτj | = |uσj+1

− uσj
|]] ∩ [[OscllnIj (uuu) = |uτj+1

− uτj |]]
⊆ [[OscllnIj (uuu) = |uσj+1

− uσj
|]].

Taking the supremum over i,

a ∩ [[σj < σj+1]] ⊆ [[OscllnIj (uuu) = |uσj+1
− uσj

|]].
Since [[σj = σj+1]] ⊆ [[OscllnIj (uuu) = 0]], a ⊆ [[OscllnIj (uuu) = |uσj+1

− uσj
|]]. QQQ

(e) Assembling these,

OscllnI(uuu)× χa = sup
−1≤j≤n

OscllnIj (uuu)× χa

(618D(b-i))

= sup
0≤j<n

|uσj+1
− uσj

| × χa = OscllnJ(uuu)× χa

and a ⊆ [[OscllnI(uuu) = OscllnJ(uuu)]].

618L Proposition Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a fully adapted process, Ŝ the covered

envelope of S, and ûuu = 〈ûσ〉σ∈Ŝ the fully adapted extension of uuu to Ŝ.
(a) If either uuu or ûuu is order-bounded, so is the other, and in this case Osclln(ûuu) = Osclln(uuu).
(b) In particular, uuu is jump-free iff ûuu is jump-free.

(c) If either supσ∈S Osclln(uuu↾S ∧ σ) or supτ∈Ŝ Osclln(ûuu↾Ŝ ∧ τ) is defined in L0(A), so is the other, and
they are equal.

proof If S is empty, this is trivial; suppose otherwise.

(a)(i) Suppose that uuu is order-bounded; it follows that ûuu is order-bounded (614G(b-i)). Let ǫ > 0. Then
there is a non-empty finite sublattice I of S such that θ(Osclln∗I(uuu) − Osclln(uuu)) ≤ ǫ. As in 618C, take a
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sequence (τ0, . . . , τn) linearly generating the I-cells, and set τ−1 = inf S = inf Ŝ and τn+1 = supS = sup Ŝ.
??? Suppose that there are an i such that −1 ≤ i ≤ n and ρ, ρ′ ∈ Ŝ such that τi ≤ ρ ≤ ρ′ ≤ τi+1

and |ûρ′ − ûρ| 6≤ Osclln∗I(uuu). Set c = [[|ûρ′ − ûρ| > Osclln∗I(uuu)]], so that c 6= 0. Take σ ∈ S such that
c ∩ [[ρ = σ]] 6= 0, and σ′ ∈ S such that c′ = c ∩ [[ρ = σ]] ∩ [[ρ′ = σ′]] is non-zero. Then

c′ ⊆ [[med(τi, σ, τi+1) = med(τi, ρ, τi+1)]] ⊆ [[med(τi, σ, τi+1) = ρ]]

and similarly c′ ⊆ [[med(τi, σ
′, τi+1) = ρ′]], so

c′ ⊆ [[|umed(τi,σ′,τi+1) − umed(τi,σ,τi+1)| > Osclln∗I(uuu)]];

but |umed(τi,σ′,τi+1) −umed(τi,σ,τi+1)| ≤ Osclln∗I(uuu), by the second formula in 618Ca. So this is impossible. XXX
As ρ and ρ′ are arbitrary, 618Ca tells us that Osclln∗I(ûuu) ≤ Osclln∗I(uuu) and

θ((Osclln(ûuu)−Osclln(uuu))+) ≤ θ((Osclln∗I(ûuu)−Osclln(uuu))+) ≤ ǫ.

As ǫ is arbitrary, Osclln(ûuu) ≤ Osclln(uuu).
It follows at once that if Osclln(uuu) = 0 then Osclln(ûuu) = 0, that is, if uuu is jump-free then ûuu is jump-free.

(ii) Suppose that ûuu is order-bounded; it follows that uuu is order-bounded (614G(b-i), in the other

direction). Let ǫ > 0. Then there is a non-empty finite sublattice I of Ŝ such that θ(Osclln∗I(ûuu)−Osclln(ûuu)) ≤
ǫ. Let J ∈ I(S) be such that a = infτ∈I supσ∈J [[τ = σ]] has measure at least 1 − ǫ. Suppose K ∈ I(S)
includes J , and write K ⊔ I for the sublattice generated by K ∪ I. Then a ⊆ supσ∈K [[τ = σ]] for every
τ ∈ K ∪ I and therefore for every τ ∈ K ⊔ I (611M(b-i)). By 618K,

a ⊆ [[OscllnK(ûuu) = OscllnK⊔I(ûuu)]]

⊆ [[OscllnK(ûuu) ≤ Osclln∗I(ûuu)]] = [[OscllnK(uuu) ≤ Osclln∗I(ûuu)]],

and

OscllnK(uuu) ≤ Osclln∗I(ûuu) + 2 sup |uuu| × χ(1 \ a).

As K ⊇ J is arbitrary,

Osclln(uuu) ≤ Osclln∗J(uuu) ≤ Osclln∗I(ûuu) + 2 sup |uuu| × χ(1 \ a)

and

θ((Osclln(uuu)−Osclln(ûuu))+) ≤ θ(Osclln∗I(ûuu)−Osclln(ûuu) + 2 sup |uuu| × χ(1 \ a))

≤ θ(Osclln∗I(ûuu)−Osclln(ûuu)) + θ(2 sup |uuu| × χ(1 \ a))

≤ ǫ+ µ̄(1 \ a) ≤ 2ǫ.

As ǫ is arbitrary, θ((Osclln(uuu)−Osclln(ûuu))+) = 0 and Osclln(uuu) ≤ Osclln(ûuu).

(b) It follows immediately that if ûuu is jump-free, so is uuu.

(c)(i) If w = supσ∈S Osclln(uuu↾S ∧ σ) is defined, then, in particular, uuu is locally order-bounded, so ûuu is

locally order-bounded (614G(b-ii)). If σ ∈ S then ûuu↾Ŝ ∧ σ is the fully adapted extension of uuu↾S (612Qc), so

Osclln(ûuu↾Ŝ ∧ σ) = Osclln(uuu↾S ∧ σ) ≤ w, by (a). But 〈Osclln(ûuu↾Ŝ ∧ τ)〉τ∈Ŝ is fully adapted (618Da), so

supτ∈Ŝ Osclln(ûuu↾Ŝ ∧ τ) = supσ∈S Osclln(ûuu↾Ŝ ∧ σ) ≤ w

by 614G(b-i).

(ii) If w = supσ∈S Osclln(ûuu↾S ∧ σ) is defined, then ûuu is locally order-bounded, so uuu is locally order-
bounded, by 614G(b-ii) again. And now

supσ∈S Osclln(uuu↾S ∧ σ) = supσ∈S Osclln(ûuu↾Ŝ ∧ σ) ≤ w.

618M Theorem Let S be a sublattice of T and uuu = 〈uσ〉σ∈S a moderately oscillatory process. Then
Osclln(uuu) = limI↑I(S) OscllnI(uuu).

proof We know that uuu is order-bounded (615F(a-iii)), so Osclln(uuu) is defined. If S = ∅ the result is trivial;
suppose otherwise.
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(a) To begin with, suppose that uuu is of bounded variation.

(i) The first thing to note is that if S ′ is a sublattice of S, then OscllnJ(uuu↾S ′) ≤
∫
S′ |duuu| for every

J ∈ I(S). PPP Of course

Osclln∅(uuu↾S ′) = 0 ≤
∫
S′

|duuu|.
If J ∈ I(S ′) is non-empty and (τ0, . . . , τn) linearly generates the J-cells, then

OscllnJ(uuu) = supi<n |uτi+1
− uτi | ≤

∑n−1
i=0 |uτi+1

− uτi | ≤
∫
S′

|duuu|
as in 614J. QQQ

(ii) Now, for any non-empty I ∈ I(S), set zI =
∫
S |duuu| − SI(1, |duuu|). Then zI ≥ 0 and Osclln∗I(uuu) ≤

OscllnI(uuu)+zI . PPP Take (τ0, . . . , τn) linearly generating the I-cells, so that OscllnI(uuu) = supi<n |uτi+1
−uτi |

and

SI(1, |duuu|) =
∑n
i=0 |uτi+1

− uτi | ≤
∫
S |duuu|.

If J ∈ I(S) includes I, then

OscllnJ(uuu) = Osclln(uuu↾J)

(618B(b-v-γ))

= Osclln(uuu↾J ∧ τ0) ∨ sup
i<n

Osclln(uuu↾J ∩ [τi, τi+1]) ∨Osclln(uuu↾J ∨ τn)

(618D(b-i))

= OscllnJ∧τ0(uuu) ∨ sup
i<n

OscllnJ∩[τi,τi+1](uuu) ∨OscllnJ∨τn(uuu)

≤
∫

S∧τ0
|duuu| ∨ sup

i<n

∫

S∩[τi,τi+1]

|duuu| ∨
∫

S∨τn
|duuu|

(using (i) above)

≤
∫

S∧τ0
|duuu|+

n−1∑

i=0

(

∫

S∩[τi,τi+1]

|duuu| − |uτi+1
− uτi |)

+ sup
i<n

|uτi+1
− uτi |+

∫

S∨τn
|duuu|

= zI +OscllnI(uuu).

So

Osclln∗I(uuu) = supI⊆J∈I(S) OscllnJ(uuu) ≤ zI +OscllnI(uuu). QQQ

Since we always have OscllnI(uuu) ≤ Osclln∗I(uuu), we see that |OscllnI(uuu)−Osclln∗I(uuu)| ≤ zI .

(iii) Now we know that

limI↑I(S) Osclln∗I(uuu) = Osclln(uuu), limI↑I(S) SI(1, |duuu|) =
∫
S |duuu|,

so limI↑I(S) zI = 0 and limI↑I(S) OscllnI(uuu) = Osclln(uuu),

(b) In general, if uuu is just moderately oscillatory, let ǫ > 0. Then there is a process vvv of bounded variation,
with domain S, such that θ(z) ≤ ǫ, where z = sup |uuu− vvv|. Now

|OscllnI(uuu)−OscllnI(vvv)| ≤ OscllnI(uuu− vvv) ≤ z for every I ∈ I(S),

|Osclln(uuu)−Osclln(vvv)| ≤ Osclln(uuu− vvv) ≤ z

(618B(c-ii)). So

|OscllnI(uuu)−Osclln(uuu)| ≤ |OscllnI(vvv)−Osclln(vvv)|+ 2z

for every I, and
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lim sup
I↑I(S)

θ(OscllnI(uuu)−Osclln(uuu))

≤ lim sup
I↑I(S)

θ(OscllnI(vvv)−Osclln(vvv)) + 2θ(z) ≤ 2ǫ.

As ǫ is arbitrary, limI↑S OscllnI(uuu) = Osclln(uuu).

618N The difference between a ‘jump-free’ process and a ‘moderately oscillatory’ process can be described
in terms of the construction in 615M.

Lemma Let S be a full sublattice of T with a greatest element, uuu = 〈uσ〉σ∈S a moderately oscillatory
process, and δ > 0. Let 〈yi〉i∈N be the sequence constructed from uuu and δ as in 615M. Then |yi+1 − yi| ≤
Osclln(uuu) + δχ1 for every i ∈ N.

proof By 618Gb, uuu is moderately oscillatory, therefore ´
´
-convergent (615N), so we can indeed apply the

method of 615M. Write w for Osclln(uuu). Take the sequence 〈Di〉i∈N of downwards-directed subsets of S
constructed from uuu and δ there. ??? Suppose that a = [[|yi+1 − yi| − w > δ]] is non-zero. Then there is an
η > 0 such that

a1 = [[|yi+1 − yi| − w > δ + 2η]]

has measure at least 4η. Let τ ∈ Di+1 be such that

θ(supτ ′∈Di+1,τ ′≤τ |uτ ′ − yi+1|) ≤ η2

(615Gb), so that µ̄a2 ≥ 3η where

a2 = a1 \ [[supτ ′∈Di+1,τ ′≤τ |uτ ′ − yi+1| > η]].

Let σ ∈ Di be such that σ ≤ τ and θ(|uσ − uyi |) ≤ δη, so that µ̄a3 ≥ 2η where

a3 = a2 \ [[|uσ − yi| ≥ δ]].

We have a finite sublattice I of S, containing σ and τ , such that θ(w − Osclln∗I(uuu)) ≤ η2; write w′ for
Osclln∗I(uuu). Then µ̄a4 ≥ η, where

a4 = a3 \ [[|w − w′| ≥ η]].

In particular, a4 6= 0. Let (ρ0, . . . , ρn) linearly generate the (I ∩ [σ, τ ])-cells and define b0, . . . , bn by saying
that

bj = [[|uρj − yi| ≥ δ]] \ supj′<j bj′

for j ≤ n, and b∗ = 1 \ supj≤n bj . Then bj ∈ Aρj for each j ≤ n and b∗ ∈ Aρn , so there is a τ ′ ∈ T such that
bj ⊆ [[τ ′ = ρj ]] ⊆ bj for j ≤ n and b∗ ⊆ [[τ ′ = ρn]]. Now τ ′ ∈ S, σ ≤ τ ′ ≤ τ and

[[|uτ ′ − yi| < δ]] ⊆ b∗ ∩ [[|uτ − yi| < δ]] ⊆ [[τ ′ = maxS]]
so τ ′ ∈ Di+1.

Since a4 ⊆ a3 ⊆ 1 \ b0, there is a j ≥ 1 such that b = a4 ∩ [[τ ′ = ρj ]] is non-zero. Now |uρj − uρj−1
| ≤

w′, but at the same time b ⊆ [[|uρj−1
− yi| < δ]] and b ⊆ a2 ⊆ [[|uρj − yi+1| ≤ η]] and b ⊆ [[|w − w′| ≤ η]], so

b ⊆ [[|yi+1 − yi| − w ≤ δ + 2η]], which is impossible, as b ⊆ a1. XXX
So a = 0 and |yi+1 − yi| ≤ w + δχ1, as claimed.

618O Definition Let S be a sublattice of T and ψ : S2↑ → L0(A) an adapted interval function which
is order-bounded in the sense that {ψ(σ, τ) : (σ, τ) ∈ S2↑} is bounded above and below in L0(A). Following
618B, set

OscllnI(ψ) = supe∈Sti0(I) ∆e(1, |dψ|)
for I ∈ I(S) (counting sup ∅ as 0),

Osclln∗I(ψ) = supJ∈I(S),J⊇I OscllnJ(ψ)

for I ∈ I(S), and
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Osclln(ψ) = infI∈I(S) Osclln∗I(ψ).

Note that as Osclln∗I′(ψ) ≤ Osclln∗I(ψ) whenever I ⊆ I ′ in I(S), Osclln(ψ) = limI↑I(S) Osclln∗I(ψ). Moreover,
if uuu is an order-bounded fully adapted process and ψ = ∆uuu the corresponding interval function, OscllnI(ψ) =
OscllnI(uuu) for every I ∈ I(S) and Osclln(ψ) = Osclln(uuu).

618P Lemma Let S be a sublattice of T and ψ : S2↑ → L0(A) a strictly adapted interval function. For
I ∈ I(S), set wwwI = 〈wIτ 〉τ∈S where wIτ = SI∧τ (1, dψ) for τ ∈ S.

(a) For any I ∈ I(S), wwwI is fully adapted.
(b) Suppose that S is finitely full, ψ is order-bounded and

∫
S dψ is defined. Then iiψ(1) is order-bounded

and Osclln(iiψ(1)) ≤ 2Osclln(ψ).

(c) Suppose tht ψ is order-bounded and
∫
Ŝ dψ̂ is defined, where Ŝ is the covered envelope of S and ψ̂ is the

adapted extension of ψ to Ŝ↑ (613U). If iiψ(1) is moderately oscillatory, then Osclln(iiψ(1)) ≤ Osclln(ψ).
(d) If ψ is an order-bounded integrating interval function, then Osclln(iiψ(1)) ≤ Osclln(ψ).

proof All four parts are trivial if S is empty, so suppose otherwise.

(a) If I is empty this is trivial, since I ∧ τ = {σ∧ τ : σ ∈ I} is empty for every τ . Otherwise, take a string
(τ0, . . . , τn) linearly generating the I-cells. If τ ∈ S, (τ0 ∧ τ, . . . , τn ∧ τ) linearly generates the (I ∧ τ)-cells
(611Kg), and wIτ =

∑n−1
i=0 ψ(τi ∧ τ, τi+1 ∧ τ) (613Ec). Since ψ(τi ∧ τ, τi+1 ∧ τ) ∈ L0(Aτi+1∧τ ) ⊆ L0(Aτ ) for

each i, wIτ ∈ L0(Aτ ). Now if σ, τ ∈ S,

[[σ = τ ]] ⊆ inf
i≤n

[[τi ∧ σ = τi ∧ τ ]] ⊆ inf
i<n

[[ψ(τi ∧ σ, τi+1 ∧ σ) = ψ(τi ∧ τ, τi+1 ∧ τ)]]

(because ψ is strictly adapted)

⊆ [[wIσ = wIτ ]].

Thus τ 7→ wIτ : S → L0(A) is fully adapted.

(b)(i) Write ū for sup(σ,τ)∈S2↑ |ψ(σ, τ)|. By 613O(b-i), vvv = iiψ(1) is defined everywhere on S and is

fully adapted; set vτ =
∫
S∧τ dψ and wIτ = wIτ for τ ∈ S, and wwwI = 〈wIτ 〉τ∈S , If I ∈ I(S) and τ ∈ S,

|wIτ | ≤ #(Sti0(I))ū; so 〈wIτ 〉τ∈S is order-bounded.
Let ǫ > 0. Then there is an I ∈ I(S) such that θ(SJ(1, dψ) − SK(1, dψ)) ≤ ǫ whenever J , K ∈ I(S)

include I. Now if J ∈ I(S) includes I0, 613V(ii-β) tells us that θ(wJτ − vτ ) ≤ 2ǫ for every τ ∈ S; so if J ,
K ∈ I(S) include I, θ(wJτ − wKτ ) ≤ 4ǫ. Now (a) tells us that τ 7→ wJτ − wKτ is fully adapted, and we
have just seen that it is order-bounded, so 615Db tells us that

θ(sup |wwwJ −wwwK |) = θ(supτ∈S |wJτ − wKτ |) ≤ 2
√
4ǫ = 4

√
ǫ.

As ǫ is arbitrary, this shows that the filter on the space Mo-b =Mo-b(S) generated by

{{wwwJ : I ⊆ J ∈ I(S)} : I ∈ I(S)}
is a Cauchy filter; by 615Cc, it has a limit in Mo-b. But as limI↑I(S) wIτ = vτ for every τ ∈ S, this limit
must be vvv, and vvv is order-bounded.

(ii) Now 618Fb tells us that Osclln(vvv) = limI↑I(S) Osclln(wwwI). If I ∈ I(S) is non-empty, take
(τ0, . . . , τn) linearly generating the I-cells. If J ∈ I(S) includes I and e is a J-cell, then we can ex-
press e as c(σ, σ′) where either σ ≤ σ′ ≤ τ0 or τn ≤ σ ≤ σ′ or there is an i < n such that τi ≤ σ ≤ σ′ ≤ τi+1.
Now

wIσ′ − wIσ =

n−1∑

j=0

ψ(τj ∧ σ′, τj+1 ∧ σ′)− ψ(τj ∧ σ, τj+1 ∧ σ)

= 0 if σ′ ≤ τ0 or τn ≤ σ,

= ψ(τi ∧ σ′, τi+1 ∧ σ′)− ψ(τi ∧ σ, τi+1 ∧ σ) if τi ≤ σ ≤ σ′ ≤ τi+1

and in any case |wIσ′ −wIσ| ≤ 2Osclln∗I(ψ). So OscllnJ(wwwI) ≤ 2Osclln(ψ). As J is arbitrary, Osclln∗I(wwwI) ≤
2Osclln∗I(ψ) and
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θ((Osclln(wwwI)− 2Osclln(ψ))+) ≤ θ((Osclln∗I(wwwI)− 2Osclln(ψ))+)

≤ θ(2Osclln∗I(ψ)− 2Osclln(ψ)).

Taking the limit as I increases through I(S),
θ((Osclln(www)− 2Osclln(ψ))+) ≤ 2 limI↑I(S) θ(Osclln∗I(ψ)−Osclln(ψ)) = 0,

and Osclln(www) ≤ 2Osclln(ψ), as claimed.

(c)(i) Suppose to begin with that S is full, so that we are in the situation of (b), but knowing that
vvv is moderately oscillatory, so that Osclln(vvv) = limI↑I(S) OscllnI(vvv) (618K). As observed in (b-i) above,
limI↑I(S) supτ∈S θ(wIτ − vτ ) = 0, and because S is finitely full, it follows that limI↑I(S) zI = 0, where
zI = sup |wwwI − vvv| Next, if I ∈ I(S and (τ0, . . . , τn) linearly generate the I-cells,

wIτi+1
− wIτi =

n−1∑

j=0

ψ(τj ∧ τi+1, τj+1 ∧ τi+1)−
n−1∑

j=0

ψ(τj ∧ τi, τj+1 ∧ τi)

=

i∑

j=0

ψ(τj ∧ τi+1, τj+1 ∧ τi+1)−
i−1∑

j=0

ψ(τj ∧ τi, τj+1 ∧ τi)

= ψ(τi, τi+1),

so

|vτi+1
− vτi | ≤ |wIτi+1

− wIτi |+ 2zI ≤ |ψ(τi, τi+1|+ 2zI

for every i < n. Acccordingly

OscllnI(vvv) = sup
i<n

|vτi+1
− vτi | ≤ sup

i<n
|wIτi+1

− wIτi |+ 2zI

≤ sup
i<n

|ψ(τi, τi+1)|+ 2zI = OscllnI(ψ) + 2zI ≤ Osclln∗I(ψ) + 2zI

and

Osclln(vvv) ≤ limI↑I(S) Osclln∗I(ψ) + limI↑I(S) zI = Osclln(ψ).

(ii) For the general case, we have the adapted extension ψ̂ of ψ to the covered envelope Ŝ of S.
(ααα) ψ̂ is order-bounded. PPP Write w̄ for sup(σ,σ′)∈S2↑ |ψ(σ, σ′)|. If τ ≤ τ ′ in Ŝ,

[[|ψ̂(τ, τ ′)| ≤ w̄]] ⊇ sup
σ,σ′∈S

[[σ = τ ′]] ∩ [[σ ∨ σ′ = τ ′]] ∩ [[|ψ(σ, σ ∨ σ′)| ≤ w̄]]

⊇ sup
σ,σ′∈S

[[σ = τ ′]] ∩ [[σ′ = τ ′]] = 1

and |ψ̂(τ, τ ′)| ≤ w̄. QQQ

(βββ) Osclln(ψ̂) ≤ Osclln(ψ). PPP Follow parts (i) and (ii) of the proof of 618Ca and part (a) of the

proof of 618L, replacing every ûρ′ − ûρ with ψ̂(ρ, ρ′) and every uσ′ − uσ with ψ(σ, σ′), to see that

—– if I ∈ I(S), (τ0, . . . , τn) linearly generates the I-cells. τ−1 = inf S and τn+1 = supS then

Osclln∗I(ψ) = sup{|ψ(σ, σ′)| : σ, σ′ ∈ S and there is an i

such that − 1 ≤ i ≤ n and τi ≤ σ ≤ σ′ ≤ τi+1},

—– Osclln∗I(ψ̂) ≤ Osclln∗I(ψ) for every I ∈ I(S)
and therefore Osclln(ψ̂) ≤ Osclln(ψ). QQQ

(γγγ) Now recall that the fully adapted extension v̂vv of vvv is iiψ̂(1) (616Q(c-ii)) and is moderately

oscillatory (615F(a-i)). So, using 618L itself and (b) above, we see that

Osclln(vvv) = Osclln(v̂vv) ≤ Osclln(ψ̂) ≤ Osclln(ψ),
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as required.

(d) vvv is an integrator (616J) therefore moderately oscillatory (616Ib), and
∫
Ŝ dψ̂ exists by the definition

in 616Fa, so this is a consequence of (c).

618Q Theorem Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a moderately oscillatory process, and vvv =
〈vσ〉σ∈S an integrator. Then Osclln(iivvv(uuu)) ≤ sup |uuu| ×Osclln(vvv). In particular, iivvv(uuu) is jump-free if vvv is.

proof Consider the integrating interval functions ∆vvv and ψ = uuu∆vvv (617Da). Write ū for sup |uuu|. Comparing
618O with 618B, we see that ∆vvv is order-bounded because vvv is (616Ib), and that Osclln(∆vvv) = Osclln(vvv).
Next, if σ ≤ σ′ in S,

|ψ(σ, σ′)| = |uσ × (vσ′ − vσ)| ≤ ū× |vσ′ − vσ|,
so if I ∈ I(S)

OscllnI(ψ) = sup
e∈Sti0(I)

∆e(1, |dψ|)

≤ ū× sup
e∈Sti0(I)

∆e(1, |dvvv|) = ū×OscllnI(vvv).

Accordingly Osclln∗I(ψ) ≤ ū×Osclln∗I(vvv) for every I ∈ IS) and Osclln(ψ) ≤ ū×Osclln(vvv). But now 617Db
tells us that iivvv(uuu) = iiψ(1) and 618Pc tells us that

Osclln(iivvv(uuu)) ≤ Osclln(ψ) ≤ ū×Osclln(vvv).

In particular, Osclln(iivvv(uuu)) will be zero if Osclln(vvv) is.

618R Corollary Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a locally moderately oscillatory process, and
vvv = 〈vσ〉σ∈S a locally jump-free local integrator. Then the indefinite integral iivvv(uuu) is locally jump-free.

proof Apply 618Q to uuu↾S ∧ τ and vvv↾S ∧ τ for τ ∈ S, using 615F(a-i), 616P(b-ii), 618Gc and 613O(b-ii).

618S Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S two integrators.
(a) Osclln([vvv

∗
www]) ≤ Osclln(vvv)×Osclln(www).

(b) Osclln(vvv∗) = (Osclln(vvv))2.

proof (a) Being integrators, vvv and www are order-bounded, while [vvv
∗
www] is of bounded variation (617Jc)

therefore also order-bounded. Thus all three residual oscillations are well-defined.
Consider the integrating interval function ψ = ∆vvv ×∆www (617Ha). We have |ψ| = |∆vvv| × |∆www| so

∆e(1, |dψ|) = ∆e(1, |dvvv|)×∆e(1, |dwww|)
for every stopping-time interval e with endpoints in S,

OscllnI(ψ) = sup
e∈Sti0(I)

∆e(1, |dψ|) ≤ sup
e∈Sti0(I)

∆e(1, |dvvv|)× sup
e∈Sti0(I)

∆e(1, |dwww|)

= OscllnI(vvv)×OscllnI(www)

for every I ∈ I(S),

Osclln∗I(ψ) = sup
I⊆J∈I(S)

OscllnJ (ψ) ≤ sup
I⊆J∈I(S)

OscllnJ(dvvv)× sup
I⊆J∈I(S)

OscllnJ(dwww)

= Osclln∗I(vvv)×Osclln∗I(www)

for every I ∈ I(S),

Osclln(ψ) = lim
I↑I(S)

Osclln∗I(ψ) ≤ lim
I↑I(S)

Osclln∗I(dvvv)×Osclln∗I(dwww)

= lim
I↑I(S)

Osclln∗I(dvvv)× lim
I↑I(S)

Osclln∗I(dwww) = Osclln(vvv)×Osclln(www)

and
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Osclln([vvv
∗
www]) = Osclln(iiψ(1)) ≤ Osclln(ψ) ≤ Osclln(vvv)×Osclln(www).

(b) From (a) we see at once that Osclln(vvv∗) ≤ Osclln(vvv)2. But for the reverse inequality it seems that
we need a further idea from §613.

(i) To begin with (down to the end of (v) below), suppose that S is full and not empty. Express vvv, vvv∗

as 〈vσ〉σ∈S and 〈v∗σ〉σ∈S . We know that

Osclln(vvv) = limI↑I(S) OscllnI(vvv), Osclln(vvv∗) = limI↑I(S) OscllnI(vvv
∗)

(618M), ∫
S(dvvv)

2 = limI↑I(S) SI(1, (dvvv)
2) is defined, v∗τ =

∫
S∧τ (dvvv)

2 for τ ∈ S
(617H). Now Osclln(vvv)2 = limI↑I(S) OscllnI(vvv)

2, and given ǫ > 0 there is a non-empty I ∈ I(S) such that

θ(Osclln(vvv)2 −OscllnI(vvv)
2) ≤ ǫ, θ(Osclln(vvv∗)−OscllnI(vvv

∗)) ≤ ǫ,

θ(SJ(1, (dvvv)
2)− SK(1, (dvvv)2)) ≤ ǫ whenever J , K ∈ I(S) include I.

From 613V(ii-β) we see that θ(v∗τ − SI∧τ (1, (dvvv)2)) ≤ 2ǫ for every τ ∈ S.
(ii) Let (τ0, . . . , τn) be a sequence linearly generating the I-cells. Translating the formulae above with

the aid of the last remark in 618Ba, we have

θ(Osclln(vvv)2 − supi<n(vτi+1
− vτi)

2) = θ(Osclln(vvv)2 − (supi<n |vτi+1
− vτi |)2) ≤ ǫ

and

θ(Osclln(vvv∗)− supi<n |v∗τi+1
− v∗τi |) ≤ ǫ,

while

θ(v∗τ −
∑
i<n(vτi+1∧τ − vτi∧τ )

2) ≤ 2ǫ for every τ ∈ S
because (τ0 ∧ τ, . . . , τn ∧ τ) linearly generates the (I ∧ τ)-cells (611Kg).

(iii) The next thing to note is that

τ 7→ v∗τ −
∑
i<n(vτi+1∧τ − vτi∧τ )

2 : S → L0(A)

is fully adapted and order-bounded, just because τ 7→ v∗τ and τ 7→ vτi∧τ are fully adapted and order-bounded

for every i ≤ n (612Ib). Since S is supposed to be full, θ(w) ≤ 2
√
2ǫ where

w = supτ∈S |v∗τ −
∑
i<n(vτi+1∧τ − vτi∧τ )

2|
(615Db). Now if j ≤ n,

w ≥ |v∗τj −
∑
i<n(vτi+1∧τj − vτi∧τj )

2| = |v∗τj −
∑
i<j(vτi+1

− vτi)
2|,

so if j < n

2w ≥ |v∗τj+1
−
∑

i≤j
(vτi+1

− vτi)
2|+ |v∗τj −

∑

i<j

(vτi+1
− vτi)

2|

≥ |v∗τj+1
− v∗τj − (vτj+1

− vτj )
2|.

(iv) Assembling these, we have

θ(Osclln(vvv∗)−Osclln(vvv)2) ≤ θ(Osclln(vvv∗)− sup
i<n

(v∗τi+1
− v∗τi))

+ θ(sup
i<n

(v∗τi+1
− v∗τi)− sup

i<n
(vτi+1

− vτi)
2)

+ θ(Osclln(vvv)2 − sup
i<n

(vτi+1
− vτi)

2)

≤ ǫ+ θ(sup
i<n

|v∗τi+1
− v∗τi − (vτi+1

− vτi)
2|) + ǫ

≤ 2ǫ+ θ(2w) ≤ 2ǫ+ 4
√
2ǫ.
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(v) As ǫ was arbitrary, Osclln(vvv∗) = Osclln(vvv)2, at least if S is full and not empty.

(vi) In general, the case S = ∅ is trivial. Otherwise, taking Ŝ to be the covered envelope of S and v̂vv,

v̂vv∗ to be the fully adapted extensions of vvv, vvv∗ to Ŝ, we see that v̂vv∗ is the quadratic variation of vvv (617N),
while Osclln(vvv) = Osclln(v̂vv) and Osclln(vvv∗) = Osclln(v̂vv∗) (618La). So

Osclln(vvv∗) = Osclln(v̂vv∗) = Osclln(v̂vv)2 = Osclln(vvv)2

in all cases.

618T Corollary Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S , www = 〈wσ〉σ∈S two (local) integrators with
domain S of which vvv is (locally) jump-free. Then the covariation [vvv

∗
www] and the quadratic variation vvv∗ are

(locally) jump-free.

proof If vvv and vvv are integrators and vvv is jump-free then Osclln(vvv) = 0 so Osclln([vvv
∗
www]) = 0 and the

covariation is jump-free. If they are local integrators and vvv is locally jump-free then we apply this to their
restrictions to S ∧ τ , for τ ∈ S, to see that [vvv

∗
www] is locally jump-free. Taking www = vvv we have the results for

vvv∗.

618U Theorem Let S be a sublattice of T , and vvv = 〈vσ〉σ∈S a process of bounded variation. Let
vvv↑ = 〈v↑τ 〉τ∈S be its cumulative variation. Then Osclln(vvv↑) is equal to Osclln(vvv); in particular, vvv is jump-free
iff vvv↑ is jump-free.

proof Consider the interval functions ψ = ∆vvv and ψ′ = |∆vvv|. Then vvv = iiψ(1) + v↓1, where v↓ is the
starting value of vvv, and vvv↑ = iiψ′(1). As ∆vvv = ∆iiψ(1),

Osclln(vvv) = Osclln(iiψ(1) = Osclln(ψ)

as remarked in 618O; as |ψ| = |ψ′|, Osclln(ψ′) = Osclln(ψ); and by 618M, Osclln(vvv↑) ≤ Osclln(ψ′), so
Osclln(vvv↑) ≤ Osclln(vvv).

In the other direction, because |vτ − vσ| ≤ v↑τ − v↑σ whenever σ ≤ τ in S (614P(a-i)), we see that

OscllnI(vvv) ≤ OscllnI(vvv
↑), Osclln∗I(vvv) ≤ Osclln∗I(vvv

↑)

for every I ∈ I(S), so that Osclln(vvv) ≤ Osclln(vvv↑). Thus the residual oscillations are equal. Now

vvv↑ is jump-free ⇐⇒ Osclln(vvv↑) = 0 ⇐⇒ Osclln(vvv) = 0 ⇐⇒ vvv is jump-free.

618V Corollary Let S be a sublattice of T and vvv a fully adapted process with domain S. Then vvv is
jump-free and of bounded variation iff it is expressible as the difference of two non-negative non-decreasing
order-bounded jump-free processes.

proof Given that vvv = 〈vσ〉σ∈S is of bounded variation and jump-free, let vvv↑ be its cumulative variation
and set v↓ = limσ↓S vσ (using 614Id); then vvv↑ + |v↓|1 and vvv↑ − vvv + |v↓|1 are order-bounded non-negative
non-decreasing processes with difference vvv, and are jump-free if vvv is. In the other direction, given that
vvv = vvv1 − vvv2 where vvv1 and vvv2 are non-negative order-bounded jump-free non-decreasing processes, then vvv
is of bounded variation by 614J and jump-free if vvv1 and vvv2 are by 618Ga. Of course I am asking you to
remember that jump-free processes are order-bounded (618B).

618X Basic exercises (a) Suppose that T = [0,∞[ and A = {0, 1}, as in 613W, 615Xf, 616Xa and
617Xb. Let f : [0,∞[ → R be a function and uuu the corresponding process on Tf . (i) Show that if f is
bounded, then Osclln(uuu) can be identified with max(supt≥0 lim sups↓t |f(s)− f(t)|, supt>0 lim sups↑t |f(s)−
f(t)|, inft≥0 lim sups→∞ |f(s) − f(t)|). (ii) Show that uuu is jump-free iff f is continuous and limt→∞ f(t) is
defined.

(b) Let S be a sublattice of T , uuu an order-bounded fully adapted process with domain S, and z a
member of L0(

⋂
σ∈S Aσ). Show that, in the language of 612D(e-ii), Osclln(zuuu) = |z| ×Osclln(uuu), so that zuuu

is jump-free if uuu is.
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(d) Let S be a sublattice of T and uuu, vvv order-bounded processes with domain S. Show that [[Osclln(uuu) 6= Osclln(vvv)]] ⊆ [[uuu

(e) Let S be a sublattice of T and uuu = 〈uσ〉σ∈S an order-bounded process. Set vvv = 〈Osclln(uuu↾S ∧ τ)〉τ∈S ,
as in 618Da. Show that Osclln(vvv) = Osclln(uuu).

(f) Give an example of a jump-free fully adapted process vvv with domain S and a sublattice S ′ of S such
that vvv↾S ′ is not jump-free. (Hint : try #(S ′) = 2.)

(g) Let S be a sublattice of T , uuu = 〈uσ〉σ∈S a simple process with starting value u↓, and I a sublattice
of S including a breakpoint string for uuu. Show that Osclln(uuu) = OscllnI(uuu) ∨ |umin I − u↓|.

(h) Let S be a sublattice of T , and uuu a moderately oscillatory process with domain S. Show that
Osclln(uuu) = supτ∈S Osclln(uuu↾S ∧ τ), so that if uuu is locally jump-free then it is jump-free.

(i) Let S be a full sublattice of T with a greatest element and uuu = 〈uσ〉σ∈S a moderately oscillatory
process. For δ > 0 let 〈yδi〉i∈N be the sequence constructed from uuu and δ as in 615M. Show that Osclln(uuu) =
limδ↓0 supi∈N |yδ,i+1 − yδ|.

618Y Further exercises (a) Let S be a sublattice of T and S ′ a sublattice of S which is order-convex
in S. Let uuu = 〈uσ〉σ∈S be an order-bounded process. Show that Osclln(uuu↾S ′) ≤ Osclln(uuu).

(b) Suppose that T = [0,∞[ and there is a t ≥ 0 such that At 6= ⋂
s>t As. Let ιιι = 〈ισ〉σ∈Tf

be the
identity process. Show there is a non-empty downwards-directed set A ⊆ Tf such that limσ↓A ισ 6= ιinf A.

(c) Let S be a finitely full sublattice of T , and uuu = 〈uσ〉σ∈S an order-bounded fully adapted process.
Show that uuu is jump-free iff limI↑I(S) OscllnI(uuu) = 0 in L0(A).

(d) Show that with a modification of the construction in 613P, we can find jump-free processes uuu and vvv
with domain Tc such that

∫
Tc
uuu dvvv is defined but the integral

∫
T̂c
ûuu dv̂vv is not.

618 Notes and comments In fact rather little of the work of this section is directly necessary for Itô’s
lemma as it will be stated in §619; only the definition is really essential, though of course it makes no
sense without 618H. And since we shall need to know when an integrator is jump-free, results like 618G,
618L, 618R, 618T and 618U are worth establishing. I have taken a bit of extra trouble to calculate residual
oscillations; I think that these give us a clearer notion of what is really going on. And the heavy labour of
618M leads to a fact which is not only remarkable in itself but goes to the heart of the concept of ‘moderately
oscillatory’ process. If uuu = 〈uσ〉σ∈S is a simple process, then a straightforward calculation (618Xg) tells us
that Osclln(uuu) = limI↑I(S) OscllnI(uuu). Similarly, it is easy to see that processes of bounded variation are
integrators (616R). The point of 616K-616M and 618M is that moderately oscillatory processes are ‘nearly’
of bounded variation.

Note that ‘jump-free’, like ‘simple’ but for different reasons, is another property which is not automatically
inherited by restrictions to sublattices (618Xf). But observe that once again we have a property of stochastic
processes which is independent of the measure chosen on the underlying Boolean algebra.

618zO Lemma Let S be a sublattice of T , and ψ : S2↑ → L0(A) an order-bounded integrating interval
function with indefinite integral vvv = iiψ(1). Then

Osclln(vvv) ≤ Osclln(ψ).

proof The result is trivial if S is empty, so suppose otherwise.

(a) To begin with, consider the case in which S is full. Let ǫ > 0.

(i) Since

limI↑I(S) SI(1, dψ) =
∫
S dψ, limI↑I(S) Osclln∗I(ψ) = Osclln(ψ),
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there is a non-empty I0 ∈ S such that whenever I ∈ I(S) includes I0 then

(α) θ(SJ(1, dψ)− SK(1, dψ)) ≤ ǫ whenever J , K ∈ I(S) include I
(β) θ(Osclln∗I(ψ)−Osclln(ψ)) ≤ ǫ.

Take any such I.

(ii) By 613V(ii-β), θ(wIτ−vτ ) ≤ 2ǫ for every τ ∈ S. Now τ 7→ wIτ : S → L0 is fully adapted and order-
bounded. PPP If I is empty, this is trivial. Otherwise, take a string (τ0, . . . , τn) linearly generating the I-cells.

If τ ∈ S, (τ0 ∧ τ, . . . , τn ∧ τ) linearly generates the (I ∧ τ)-cells (611Kg), and wIτ =
∑n−1
i=0 ψ(τi ∧ τ, τi+1 ∧ τ)

(613Ec). Since ψ(τi ∧ τ, τi+1 ∧ τ) ∈ L0(Aτi+1∧τ ) ⊆ L0(Aτ ) for each i, wIτ ∈ L0(Aτ ). Now if σ, τ ∈ S,

[[σ = τ ]] ⊆ inf
i≤n

[[τi ∧ σ = τi ∧ τ ]] ⊆ inf
i<n

[[ψ(τi ∧ σ, τi+1 ∧ σ) = ψ(τi ∧ τ, τi+1 ∧ τ)]]

(because ψ is strictly adapted)

⊆ [[SI∧σ(1, dψ) = wIτ ]].

Thus τ 7→ wIτ : S → L0 is fully adapted. As for order-boundedness, it is the sum of the n order-bounded
functions (σ, τ) 7→ ψ(σ ∧ τi, τ ∧ τi) for i < n, so is order-bounded. QQQ

(iii) It follows that τ 7→ wIτ−vτ is fully adapted and order-bounded, so that, writing w for supτ∈S |wIτ−
vτ |, θ(w) ≤ 2

√
2ǫ. Now take (τ0, . . . , τn) linearly generating the I-cells. Then

OscllnI(vvv) = sup
i<n

|vτi+1
− vτi | ≤ w + sup

i<n
|SI∧τi+1

(1, dψ)− SI∧τi(1, dψ)|

≤ w + sup
i<n

|
i∑

j=0

ψ(τj , τj+1)−
i−1∑

j=0

ψ(τj , τj+1)|

= w + sup
i<n

|ψ(τi, τi+1)| = w +OscllnI(ψ) ≤ w +Osclln∗I(ψ)

and

θ((OscllnI(vvv)−Osclln(ψ))+) ≤ θ(w) + θ(Osclln∗I(ψ)−Osclln(ψ)) ≤ 2
√
2ǫ+ ǫ.

(iv) This is true whenever I0 ⊆ I ∈ I(S). As ǫ is arbitrary, limI↑I(S)(OscllnI(vvv)−Osclln(ψ))+ = 0. But
because vvv is an integrator (616J), therefore moderately oscillatory (616Ib), limI↑I(S) OscllnI(vvv) = Osclln(vvv)

(618K). So (Osclln(vvv)−Osclln(ψ))+ = 0 and Osclln(vvv) ≤ Osclln(ψ).

(b) For the general case, we have the adapted extension ψ̂ of ψ to the covered envelope Ŝ of S, which is
again an integrating interval function (616F).

(i) ψ̂ is order-bounded. PPP Write w̄ for sup(σ,σ′)∈S2↑ |ψ(σ, σ′)|. If τ ≤ τ ′ in Ŝ,

[[|ψ̂(τ, τ ′)| ≤ w̄]] ⊇ sup
σ,σ′∈S

[[σ = τ ′]] ∩ [[σ ∨ σ′ = τ ′]] ∩ [[|ψ(σ, σ ∨ σ′)| ≤ w̄]]

⊇ sup
σ,σ′∈S

[[σ = τ ′]] ∩ [[σ′ = τ ′]] = 1

and |ψ̂(τ, τ ′)| ≤ w̄. QQQ

(ii) Osclln(ψ̂) ≤ Osclln(ψ). PPP Follow parts (i) and (ii) of the proof of 618Ca and part (a) of the proof

of 618L, replacing every ûρ′ − ûρ with ψ̂(ρ, ρ′) and every uσ′ − uσ with ψ(σ, σ′), to see that

(ααα) if I ∈ I(S), (τ0, . . . , τn) linearly generates the I-cells. τ−1 = inf S and τn+1 = supS then

Osclln∗I(ψ) = sup{|ψ(σ, σ′)| : σ, σ′ ∈ S and there is an i

such that − 1 ≤ i ≤ n and τi ≤ σ ≤ σ′ ≤ τi+1},

(βββ) Osclln∗I(ψ̂) ≤ Osclln∗I(ψ) for every I ∈ I(S)
and therefore Osclln(ψ̂) ≤ Osclln(ψ). QQQ
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158 Continuous processes and Itô’s formula 618zO

(iii) Now recall that the fully adapted extension v̂vv of vvv is iiψ̂(1) (616Q(c-ii)). So, using 618L itself and

(a) above, we see that

Osclln(vvv) = Osclln(v̂vv) ≤ Osclln(ψ̂) ≤ Osclln(ψ),

as required.
Version of 13.3.17/29.7.19

619 Itô’s formula

I give three versions of Itô’s formula (619C, 619D and 619J). The last depends on elementary facts about
the action of functions of more than one real variable on strings of processes (619E-619G).

619A Notation As usual, (A, µ̄, T, 〈At〉t∈T , T , 〈Aτ 〉τ∈T ) will be a stochastic integration structure. L∞

will be L∞(A) with its norm ‖ ‖∞. L0 will be L0(A) endowed with its topology of convergence in measure,
and E will be the integral defined from µ̄; for w ∈ L0, θ(w) will be E(|w| ∧ χ1). If y ∈ L0, then y1 will
denote the constant process on {σ : σ ∈ T , y ∈ L0(Aσ)} with value y. For local integrators vvv and www, [vvv

∗
www]

will be their covariation (617Hb); vvv∗ will be the quadratic variation of vvv. For a sublattice S of T , Mfa(S)
will be the space of fully adapted processes with domain S.

619B Lemma Let S be a sublattice of T and vvv = 〈vσ〉σ∈S an integrator. Then for every ǫ > 0 there is
a δ > 0 such that θ(SI(uuu, (dvvv)

2) ≤ ǫ whenever I ∈ I(S), uuu ∈Mfa(I) and θ(sup |uuu|) ≤ δ.

proof As vvv is an integrator, it is order-bounded (616Ib) and there is a δ0 > 0 such that

θ(SI(uuu, dvvv)) ≤ 1
3ǫ whenever I ∈ I(S), uuu ∈Mfa(I) and θ(sup |uuu|) ≤ δ0

(616E). Also vvv2 is an integrator (616Pa), so there is a δ > 0 such that

θ(SI(uuu, d(vvv
2))) ≤ 1

3ǫ whenever I ∈ I(S), uuu ∈Mfa(I) and θ(sup |uuu|) ≤ δ

and θ(x × sup |vvv|) ≤ δ0 whenever θ(x) ≤ δ. Now suppose that I ∈ I(S), uuu ∈ Mfa(I) and θ(sup |uuu|) ≤ δ. If
σ ≤ τ in I,

uσ × (vτ − vσ)
2 = uσ × (v2τ − v2σ)− 2uσ × vσ × (vτ − vσ).

Working through the definitions in §613, we see that

SI(uuu, (dvvv)
2) = SI(uuu, d(vvv

2))− 2SI(uuu× vvv, dvvv)

while

θ(sup |uuu× vvv|) ≤ θ(sup |uuu| × sup |vvv|) ≤ δ0,

so

θ(SI(uuu, (dvvv)
2)) ≤ θ(SI(uuu, d(vvv

2))) + 2θ(SI(uuu× vvv, dvvv)) ≤ 1

3
ǫ+

2

3
ǫ = ǫ,

as required.

619C Itô’s Formula, first form Let S be a sublattice of T , vvv = 〈vτ 〉τ∈S a jump-free integrator, and
vvv∗ its quadratic variation. If h : R → R is a twice-differentiable function with continuous second derivative,
then

∫
S h̄

′vvv dvvv +
1

2

∫
S h̄

′′vvv dvvv∗

is defined and equal to h̄(v↑)− h̄(v↓), where

v↑ = limσ↑S vσ, v↓ = limσ↓S vσ.

Remark In the formula above, h̄′ : L0 → L0 and h̄′′ : L0 → L0 should be read as h′ and h′′.

proof (a) We can note straight away that vvv is moderately oscillatory (616Ib), so h̄′vvv and h̄′′vvv are moderately
oscillatory (615F(a-ii)), while h̄vvv and vvv∗ are integrators (616O, 617I), so that the integrals

∫
S d(h̄vvv),

∫
S h̄

′vvv dvvv
and

∫
S h̄

′′vvv dvvv∗ are defined (616K); moreover,
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619C Itô’s formula 159

∫
S d(h̄vvv) = limσ↑S h̄(vσ)− limσ↓S h̄(vσ) = h̄(v↑)− h̄(v↓)

(613N, 613Bb), and ∫
S h̄

′′vvv dvvv∗ =
∫
S h̄

′′vvv (dvvv)2

(617I again).

(b) For the time being (down to the end of (c)), suppose that h′′ is uniformly continuous. Let ǫ > 0.
Let η > 0 be such that θ(SI(uuu, (dvvv)

2)) ≤ ǫ whenever I ∈ I(S), uuu ∈ Mfa(I) and θ(sup |uuu|) ≤ η. Then there
is a δ > 0 such that |h′′(α) − h′′(β)| ≤ η whenever |α − β| ≤ 2δ. Now take any such α and β. By Taylor’s
theorem with remainder, there is a γ lying between α and β such that

h(β) = h(α) + (β − α)h′(α) +
1

2
(β − α)2h′′(γ),

so that

|h(β)− h(α)− (β − α)h′(α)− 1

2
(β − α)2h′′(α)| ≤ η(β − α)2.

It follows that if w, w′ ∈ L0 then [[|w′ − w| ≤ δ]] is included in

[[|h̄(w′)− h̄(w)− h̄′(w)× (w′ − w)− 1

2
h̄′′(w)× (w′ − w)2| ≤ η(w′ − w)2]].

(c) Let J ∈ I(S) be such that θ(z) ≤ δǫ, where z = Osclln∗J(vvv) (618Bb). Take any I ∈ I(S) such that
I ⊇ J . Then OscllnI(vvv) ≤ z, and a = [[z ≤ δ]] has measure at least 1 − ǫ. Now if e = c(σ, σ′) is an I-cell,
and we set

ye = ∆e(111, d(h̄vvv))−∆e(h̄
′vvv, dvvv)− 1

2
∆e(h̄

′′vvv, (dvvv)2)

= h̄(vτ )− h̄(vσ)− h̄′(vσ)× (vτ − vσ)− 1

2
h̄′′(vσ)× (vτ − vσ)

2,

we have

|vτ − vσ| = ∆e(1, |dvvv|) ≤ OscllnI(vvv) ≤ z

and

a ⊆ [[|vτ − vσ| ≤ δ]] ⊆ [[|ye| ≤ η(vτ − vσ)
2]] = [[|ye| ≤ ∆e(η1, (dvvv)

2]].

Summing over e,

a ⊆ [[
∑
e∈Sti0(I)

|ye| ≤
∑
e∈Sti0(I)

∆e(η1, (dvvv)
2)]]

⊆ [[|∑e∈Sti0(I)
ye| ≤

∑
e∈Sti0(I)

∆e(η1, (dvvv)
2)]]

= [[|SI(1, d(h̄vvv))− SI(h̄
′vvv, dvvv)− SI(h̄

′′vvv, (dvvv)2| ≤ SI(η1, (dvvv)
2)]],

and

θ
(
SI(1, d(h̄vvv))− SI(h̄

′vvv, dvvv)− SI(h̄
′′vvv, (dvvv)2)

)
≤ µ̄(1 \ a) + θ̄(ηSI(1, (dvvv)

2)) ≤ 2ǫ

by the choice of J and η. And this is true whenever I ⊇ J . Accordingly, taking the limit as I ↑ I(S), we
have

h̄(v↑)− h̄(v↓)−
∫

S
h̄′vvv dvvv − 1

2

∫

S
h̄′′vvv), (dvvv)2

=

∫

S
d(h̄vvv)−

∫

S
h̄′vvv dvvv − 1

2

∫

S
h̄′′vvv (dvvv)2

= lim
I↑I(S)

SI(1, d(h̄vvv))− SI(h̄
′vvv, dvvv)− SI(h̄

′′vvv, (dvvv)2)

= 0,

and
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160 Continuous processes and Itô’s formula 619C

∫
S h̄

′vvv dvvv +
1

2

∫
S h̄

′′vvv dvvv∗ =
∫
S h̄

′vvv dvvv +
1

2

∫
S h̄

′′vvv (dvvv)2 = h̄(v↑)− h̄(v↓),

as required.

(d) This deals with the case in which h′′ is uniformly continuous. For the general case, recall that there
is a v̄ ∈ L0(A) such that |vσ| ≤ v̄ for every σ ∈ S (616Ib). Take any M ≥ 0. There is a smooth function
f : R → R with compact support such that f(x) = 1 for every x ∈ [−M,M ]. PPP By 473Eb there is a smooth

function h̃0 : R → R such that h̃0(x) = 0 if |x| ≥ 1 and the Lebesgue integral
∫ 1

−1
h̃0(t)dt is equal to 1. Take

f to be the convolution h̃0 ∗ χ[−M − 1,M + 1]; by 473De, f is smooth, while f(x) =
∫ 1

−1
h̃0(t)dt = 1 if

|x| ≤M and f(x) = 0 if |x| ≥M + 2. QQQ
Consider g = f × h. Then g is twice differentiable with continuous second derivative, while g′(x) = h′(x)

and g′′(x) = h′′(x) whenever |x| < M . Since g′′, like f and g, has compact support, it is uniformly continuous
(4A2Jf). Accordingly

ḡ(v↑)− ḡ(v↓) =
∫
S ḡ

′vvv dvvv +
1

2

∫
S ḡ

′′vvv dvvv∗.

So

[[h̄(v↑)− h̄(v↓) 6=
∫
S h̄

′vvv dvvv +
1

2

∫
S h̄

′′vvv dvvv∗]]

⊆ [[h̄(v↑) 6= ḡ(v↑)]] ∪ [[h̄(v↓) 6= ḡ(v↓)]] ∪ [[
∫
S h̄

′vvv dvvv 6=
∫
S ḡ

′vvv dvvv]]

∪ [[
∫
S h̄

′′vvv dvvv∗ 6=
∫
S ḡ

′′vvv dvvv∗]]

⊆ [[h̄vvv 6= ḡvvv]] ∪ [[h̄′vvv 6= ḡ′vvv]] ∪ [[h̄′′vvv 6= ḡ′′vvv]]

(613Jd twice)

⊆ sup
σ∈S

[[|vσ| ≥M ]] ⊆ [[v̄ ≥M ]].

Letting M → ∞,

[[h̄(v↑)− h̄(v↓) 6=
∫
S h̄

′vvv dvvv +
1

2

∫
S h̄

′′vvv dvvv∗]] ⊆ infM≥0 [[v̄ ≥M ]] = 0

and

h̄(v↑)− h̄(v↓) =
∫
S h̄

′vvv dvvv +
1

2

∫
S h̄

′′vvv dvvv∗

in this case also.

619D Itô’s Formula, second form Let S be a sublattice of T , and vvv a jump-free integrator with
domain S and quadratic variation vvv∗. If uuu is a moderately oscillatory process with domain S, and h : R → R

is a twice-differentiable function with continuous second derivative, then
∫
S uuu d(h̄vvv) =

∫
S uuu× h̄′vvv dvvv +

1

2

∫
S uuu× h̄′′vvv dvvv∗.

proof Applying 619C to S ∧ τ , we have

h̄(vτ )− h̄(v↓) =
∫
S∧τ h̄

′vvv dvvv +
1

2

∫
S∧τ h̄

′′vvv dvvv∗

for every τ ∈ S; that is, setting

zzz = h̄vvv − iivvv(h̄
′vvv)− 1

2
iivvv∗(h̄

′′vvv),

zzz = h̄(v↓)1↾S. But recalling that

h̄vvv, iivvv(h̄
′vvv), iivvv∗(h̄

′′vvv)

are all integrators (616O, 616J), it follows that
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619E Itô’s formula 161

∫
S uuu d(h̄vvv)−

∫
S uuu d(iivvv(h̄

′vvv))− 1

2

∫
S uuu d(iivvv∗(h̄

′′vvv)) =
∫
S uuu dzzz = 0.

Now applying 617E this becomes

∫

S
uuu d(h̄vvv) =

∫

S
uuu d(iivvv(h̄

′vvv)) +
1

2

∫

S
uuu d(iivvv∗(h̄

′′vvv))

=

∫

S
uuu× h̄′vvv dvvv +

1

2

∫

S
uuu× h̄′′vvv dvvv∗,

as claimed.

619E Of course Itô’s formula also has a multidimensional version. There are no really new ideas needed,
and ordinarily I leave such adaptations to the exercises, but there are points below where we can use two-
dimensional formulae to tell us interesting things about one-dimensional processes, so I spell things out here.
The first step will have to be to establish an interpretation of h̄(v1, . . . , vk) where h : Rk → R is a Borel
measurable function and v1, . . . , vk ∈ L0. Since I did leave this to the exercises in §364, I give the details
now.

Proposition Let k ≥ 1 be an integer.
(a) Suppose that u1, . . . , uk ∈ L0. Let Bk be the Borel σ-algebra of Rk. Then there is a unique sequentially

order-continuous Boolean homomorphism φ : Bk → A such that φ{(ξ1, . . . , ξk) : ξi > α} = [[ui > α]]
whenever 1 ≤ i ≤ k and α ∈ R.

In this context, write [[(u1, . . . , uk) ∈ E]] for φE, for every Borel set E ⊆ Rk.
(b) Suppose that h : Rk → R is a Borel measurable function. Then there is a unique operator h̄ :

(L0)k → L0 such that [[h̄(u1, . . . , uk) ∈ F ]] = [[(u1, . . . , uk) ∈ h−1[F ]]] whenever F ⊆ R is a Borel set and
u1, . . . , uk ∈ L0.

(c) If u1, . . . , uk, v1, . . . , vk ∈ L0, then

inf1≤i≤k [[ui = vi]] ⊆ [[h̄(u1, . . . , uk) = h̄(v1, . . . , vk)]].

(d) If h : Rk → R is continuous, then h̄ : (L0)k → L0 is continuous for the topology of convergence in
measure.

(e) Suppose that Ω is a set, Σ is a σ-algebra of subsets of Ω, N is a σ-ideal of Σ, and A is isomorphic to
the quotient Boolean algebra Σ/N . Write L

0 for the f -algebra of real-valued Σ-measurable functions on Ω,
and W for the ideal

{f : f ∈ L
0, {ω : f(ω) 6= 0} ∈ N},

so that L0 can be identified with the f -algebra quotient L
0/W (364Ib). Write E 7→ E• : Σ → A and

f 7→ f• : L0 → L0 for the homomorphisms corresponding to the identifications A ∼= Σ/N and L0 ∼= L
0/W.

Then if h : Rk → R is a Borel measurable function,

h̄(f•

1 , . . . , f
•

k) = (h(f1, . . . , fk))
•

for all f1, . . . , fk ∈ L
0, defining the composition h(f1, . . . , fk) by setting (h(f1, . . . , fk))(ω) = h(f1(ω), . . . , fk(ω))

for every ω ∈ Ω.
(f) Suppose that 〈hn〉n∈N is a non-decreasing sequence of Borel measurable functions from Rk to R, and

that h(x) = supn∈N hn(x) is finite for every x ∈ Rk. Then 〈h̄n(u1, . . . , uk)〉n∈N is a non-decreasing sequence
in L0 with supremum h̄(u1, . . . , uk), for all u1, . . . , uk ∈ L0.

(g) Now suppose that (C, ν) is another probability algebra and φ : A → C is an order-continuous Boolean
homomorphism. Let Tφ : L0(A) → L0(C) be the corresponding f -algebra homomorphism (612Bf). Take
u1, . . . , uk ∈ L0(A).

(i) If E ∈ Bk is a Borel set, then [[(Tφu1, . . . , Tφuk) ∈ E]] = φ[[(u1, . . . , uk) ∈ E]].

(ii) If h : Rk → R is Borel measurable, then h̄(Tφu1, . . . , Tφuk) = Tφh̄(u1, . . . , uk).

proof Since there is a measurable space with negligibles (Ω,Σ,N ), as in (e), such that A ∼= Σ/N (314M),
we can suppose from the beginning that A is actually such a quotient; at some point, of course, we shall
have to check that it won’t matter which such representation is chosen.
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162 Continuous processes and Itô’s formula 619E

(a)(i) If u1, . . . , uk ∈ L0, let f1, . . . , fk ∈ L
0 be such that f•

i = ui for 1 ≤ i ≤ k. If E ∈ Bk, then
{ω : (f1(ω), . . . , fk(ω)) ∈ E} ∈ Σ (121K). So we can set φE = {ω : (f1(ω), . . . , fk(ω)) ∈ E}• ∈ A.

Clearly E 7→ {ω : (f1(ω), . . . , fk(ω)) ∈ E} : Bk → Σ is a sequentially order-continuous Boolean homo-
morphism, so φ also is. And if 1 ≤ i ≤ k and α ∈ R,

φ{(ξ1, . . . , ξk) : ξi > α} = {ω : fi(ω) > α}• = [[ui > α]]

(364Ib again).

(ii) Now suppose that φ′ : Bk → A is another homomorphism of the same kind. Let J be the family

of sets of the form F =
∏k
i=1 ]αi,∞[ where αi ∈ R for every i. For such a set,

φF = {ω : fi(ω) > αi for 1 ≤ i ≤ k}• = inf
1≤i≤k

{ω : fi(ω) > αi}• = inf
1≤i≤k

[[ui > αi]]

= inf
1≤i≤k

φ′{(ξ1, . . . , ξk) : ξi > αi} = φ′(
⋂

1≤i≤k
{(ξ1, . . . , ξk) : ξi > αi}) = φ′F.

So φ and φ′ agree on J and therefore on J ′ = J ∪ {Rk}. Set A = {E : E ∈ Bk, φE = φ′E}. Then J ′ ⊆ A.
If E, F ∈ A then

φ(E \ F ) = φE \ φF = φ′E \ φ′F = φ′(E \ F )
and E \ F ∈ A; if 〈En〉n∈N is a non-decreasing sequence in A with union E,

φE = φ(
⋃
n∈NEn) = supn∈N φEn = supn∈N φ

′En = φ′E

and E ∈ A. Since J ′ is closed under intersections, the Monotone Class Theorem in the form 313Gb tells
us that A must include the σ-subalgebra of Bk generated by J . But this is the whole of Bk, by 121J. So
φ′ = φ.

This shows that φ is unique.

(b)(i)Write B for the Borel σ-algebra of R. Suppose u1, . . . , uk ∈ L0. The function F → h−1[F ] : B → Bk
is a sequentially order-continuous Boolean homomorphism, so F 7→ [[(u1, . . . , uk) ∈ h−1[F ]]] also is. By
364F, there is a unique member of L0, which we may call h̄(u1, . . . , uk), such that [[h(u1, . . . , uk) ∈ F ]] =
[[(u1, . . . , uk) ∈ h−1[F ]]] for every F ∈ B.

(ii) In the present context, we have an alternative expression for h̄, as follows. If f1, . . . , fk ∈ L
0, then

g = h(f1, . . . , fk) belongs to L
0 (121Kb). If F ∈ B and ui = f•

i for each i, then

[[h̄(u1, . . . , uk) ∈ F ]] = [[(u1, . . . , uk) ∈ h−1[F ]]]

= {ω : (f1(ω), . . . , fk(ω)) ∈ h−1[F ]}•

(by the construction in (a))

= {ω : g(ω) ∈ F}• = [[g• ∈ F ]].

So h̄(f•

1 , . . . , f
•

k) = g• = (h(f1, . . . , fk))
•.

(c) Take fi, gi ∈ L
0 such that f•

i = ui and g•

i = vi for 1 ≤ i ≤ k. Set f = h(f1, . . . , fk) and
g = h(g1, . . . , gk). Then, using the expression for h̄ in (b-ii),

[[h̄(u1, . . . , uk) = h̄(v1, . . . , vk)]] = [[f• = g•]] = {ω : f(ω) = g(ω)}•

⊇ (
⋂

1≤i≤k
{ω : fi(ω) = gi(ω)})•

= inf
1≤i≤k

{ω : fi(ω) = gi(ω)}• = inf
1≤i≤k

[[ui = vi]].

(d) Take U = (u1, . . . , uk) ∈ (L0)k and ǫ > 0. Let M ≥ 0 be such that [[|ui| ≥M ]] has measure at most
ǫ for each i. Because h↾[−M − 1,M + 1]k must be uniformly continuous, there is a δ ∈ ]0, 1] such that
|h(y)− h(x)| ≤ ǫ whenever x, y ∈ [−M − 1,M + 1]k and y − x ∈ [−δ, δ]k.
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Suppose that V = (v1, . . . , vk) ∈ (L0)k is such that θ(vi−ui) ≤ δǫ for every i ≤ k. Let f1, . . . , fk, g1, . . . , gk ∈
L

0 be such that f•

i = ui and g
•

i = vi for each i. Then

δµ{ω : |gi(ω)− fi(ω)| ≥ δ} ≤ E(χΩ ∧ |gi − fi|) = E(χ1 ∧ |vi − ui|)
= θ(vi − ui) ≤ δǫ,

so {ω : |gi(ω)− fi(ω)| ≥ δ} has measure at most ǫ, for each i. Set

H =
⋂

1≤i≤k{ω : |fi(ω)| ≤M , |gi(ω)− fi(ω)| ≤ δ}.
Then µH ≥ 1 − 2kǫ. For ω ∈ H, both x = (f1(ω), . . . , fk(ω)) and y = (g1(ω), . . . , gk(ω)) belong to
[−M − 1,M + 1]k (because δ ≤ 1), and y − x ∈ [−δ, δ]k, so |h(x)− h(y)| ≤ ǫ. But this means that

θ(h̄(V )− h̄(U)) = E(χΩ ∧ |h(f1, . . . , fk)− h(g1, . . . , gk)|)
≤ ǫ+ µ(Ω \H) ≤ (2k + 1)ǫ.

As U and ǫ are arbitrary, h̄ is continuous.

(e) To see that any other isomorphism A ∼= Σ′/N ′, where (Ω′,Σ′,N ′) is another measurable space with
negligibles, would lead to the same operators h̄ : (L0)k → L0, note that φE = [[(u1, . . . , uk) ∈ E]], for E ∈ Bk
and u1, . . . , uk ∈ L0, is determined from the values [[ui > α]] for 1 ≤ i ≤ k and α ∈ R, as shown in (a).
Since (following 364A) each ui is neither more nor less than the family 〈[[ui > α]]〉α∈R, these are necessarily
independent of representations of A. Similarly, (b) above also provides a representation-invariant description
of h̄.

(f) Taking f1, . . . , fk ∈ L
0 such that f•

i = ui for each i, we have 〈hn(f1, . . . , fk)〉n∈N ↑ h(f1, . . . , fk) in
L

0, so 〈h̄n(f1, . . . , fk)〉n∈N ↑ h̄(f1, . . . , fk) in L0.

(g)(i) Set E = {E : E ∈ Bk, [[(Tφu1, . . . , Tφuk) ∈ E]] = φ[[(u1, . . . , uk) ∈ E]]}. If Ei ⊆ R is a Borel set for
i ≤ k, and E =

∏
1≤i≤k Ei, then

[[(Tφu1, . . . , Tφuk) ∈ E]] = inf
1≤i≤k

[[Tφui ∈ Ei]] = inf
1≤i≤k

φ[[ui ∈ Ei]]

(612Af)

= φ( inf
1≤i≤k

[[ui ∈ Ei]]) = φ[[(u1, . . . , uk) ∈ E]]

and E ∈ E . Because E 7→ [[(u1, . . . , uk) ∈ E]] : Bk → A, E 7→ [[(Tφu1, . . . , Tφuk) ∈ E]] : Bk → C and
E 7→ φ[[(u1, . . . , uk) ∈ E]]} : E → C are all sequentially order-continuous Boolean homomorphisms, E is
a Dynkin class. So the Monotone Class Theorem (136B) tells us that E includes the σ-subalgebra of Bk
generated by products of Borel subsets of R, and is the whole of Bk, as claimed.

(ii) For any Borel set E ⊆ R,

[[h̄(Tφu1, . . . , Tφuk) ∈ E]] = [[(Tφu1, . . . , Tφuk) ∈ h−1[E]]]

(612Ac)

= φ[[(u1, . . . , uk) ∈ h−1[E]]]

((i) just above)

= φ[[h̄(u1, . . . , uk) ∈ E]] = [[Tφh̄(u1, . . . , uk) ∈ E]];

as E is arbitrary, h̄(Tφu1, . . . , Tφuk) = Tφh̄(u1, . . . , uk).

619F Definition Let uuu1, . . . ,uuuk be fully adapted processes defined on sublattices S1, . . . ,Sk of T and
h : Rk → R a Borel measurable function. Regarding UUU = (uuu1, . . . ,uuuk) as the function σ 7→ (u1σ, . . . , ukσ) :
S → (L0)k, where uuui = 〈uiσ〉σ∈Si

for each i and S =
⋂

1≤i≤k Si, we have a composition

h̄UUU = 〈h̄(u1σ, . . . , ukσ)〉σ∈S .
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619G Proposition Let uuu1, . . . ,uuuk be fully adapted processes all with the same domain S, and h : Rk → R

a Borel measurable function. Write UUU for (uuu1, . . . ,uuuk).
(a) h̄UUU is fully adapted.
(b) If every uuui is order-bounded and h is locally bounded, that is, bounded on bounded subsets of Rk,

then h̄UUU is order-bounded.
(c) If every uuui is (locally) moderately oscillatory and h is continuous, then h̄UUU is (locally) moderately

oscillatory.
(d) If every uuui is (locally) jump-free and h is continuous, then h̄UUU is (locally) jump-free.
*(e) If zzz is a fully adapted process with domain S and zzz2 = zzz, then

(i) zzz × h̄(zzz × uuu1, . . . , zzz × uuuk) = zzz × h̄UUU ,
(ii) and if h(0, . . . , 0) = 0, then h̄(zzz × uuu1, . . . , zzz × uuuk) = zzz × h̄UUU .

proof If S is empty, all these are trivially true; suppose that S 6= ∅. Express each uuui as 〈uiσ〉σ∈S and set
Uσ = (u1σ, . . . , ukσ) for σ ∈ S.

(a) If σ, τ ∈ S,

[[σ = τ ]] ⊆ inf
1≤i≤k

[[uiσ = uiτ ]] ⊆ [[h̄(u1σ, . . . , ukσ) = h̄(u1τ , . . . , ukτ )]]

(619Ec)

= [[h̄(Uσ) = h̄(Uτ )]].

So h̄UUU = 〈h̄(Uσ)〉σ∈S is fully adapted.

(b) (Cf. 614F(c-i).) For x ∈ Rk, set g(x) = sup‖y‖≤‖x‖ |h(y)|. Then g is Borel measurable. If ūi =

supσ∈S |uiσ| for 1 ≤ i ≤ k, then ḡ(ū1, . . . , ūk) is an upper bound for {h̄(Uσ) : σ ∈ S}.

(c) (Cf. 615F(a-ii)) Write Ŝ for the covered envelope of S, and for 1 ≤ i ≤ k let ûuui = 〈ûiτ 〉τ∈Ŝ be the fully

adapted extension of uuui to Ŝ. If every uuui is moderately oscillatory and 〈τn〉n∈N is a monotonic sequence in

Ŝ, then limn→∞ ûiτn exists for every i; since h̄ : (L0)k → L0 is continuous (619Ec), limn→∞ h̄(Ûτn) exists,

where Ûτ = (û1τ , . . . , ûkτ ) for τ ∈ Ŝ. By 615N, h̄ÛUU = 〈h̄(Ûiτ )〉τ∈Ŝ is moderately oscillatory. But h̄ÛUU extends

h̄UUU , so h̄UUU is moderately oscillatory, by 615F(a-i).
The result for locally moderately oscillatory processes follows at once.

(d)(i) (Cf. 618Ga.) Suppose first that every uuui is jump-free. We know from (b) that h̄UUU is order-bounded.
Set

w̄ = supσ∈S sup1≤i≤k |uiσ|

w̄′ = supσ∈S |h̄(Uσ)|.
Let ǫ > 0. Let M ≥ 0 be such that µ̄[[w̄ ≥M ]] ≤ ǫ, and δ > 0 such that |h(y) − h(x)| ≤ ǫ whenever x,

y ∈ [−M,M ]k and x− y ∈ [−δ, δ]k. For 1 ≤ i ≤ k, let Ii ∈ I(S) be such that θ(Osclln∗Ii(uuui)) ≤ ǫδ; set

a = [[w̄ ≥M ]] ∪ sup1≤i≤k [[Osclln∗Ii(uuui)) ≥ δ]],

so that µ̄a ≤ (k+1)ǫ. Let I be the sublattice generated by
⋃

1≤i≤k Ii. Then Osclln∗I(h̄UUU) ≤ ǫχ1+2w̄′ ×χa.

PPP Suppose that J ∈ I(S) and J ⊇ I. Take e = c(σ, τ) ∈ Sti0(J). Then

[[|h̄(Uτ )− h̄(Uσ)| > ǫ]] ⊆ [[w̄ ≥M ]] ∪ sup
1≤i≤k

[[|uiτ − uiσ| ≥ δ]]

⊆ [[w̄ ≥M ]] ∪ sup
1≤i≤k

[[OscllnJ(uuui) ≥ δ]]

⊆ [[w̄ ≥M ]] ∪ sup
1≤i≤k

[[Osclln∗I(uuui) ≥ δ]] = a,

and

|h̄(Uτ )− h̄(Uσ)| ≤ ǫχ1 + 2w̄′ × χa.
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As e is arbitrary, Osclln∗J(h̄UUU) ≤ ǫχ1 + 2w̄′ × χa; as J is arbitrary, Osclln∗I(h̄UUU) ≤ ǫχ1 + 2w̄′ × χa. QQQ
It follows that

θ(Osclln∗I(h̄UUU)) ≤ ǫ+ µ̄a ≤ (k + 2)ǫ.

As ǫ is arbitrary, h̄UUU is jump-free.

(ii) As in (c), it follows at once that if every uuui is locally jump-free, then h̄UUU is locally jump-free.

(e)(i) Express zzz as 〈zσ〉σ∈S . Setting dσ = [[zσ = 1]], we see that that 1 \ dσ = [[zσ = 0]] for each σ ∈ S. If
σ ∈ S,

1 \ dσ ⊆ [[h̄(u1σ × zσ, . . . , ukσ × zσ)× zσ = 0]] ∩ [[h̄(u1σ, . . . , ukσ)× zσ = 0]]

⊆ [[h̄(u1σ × zσ, . . . , ukσ × zσ)× zσ = h̄(u1σ, . . . , ukσ)× zσ]],

dσ ⊆ inf
1≤i≤k

[[uiσ × zσ = uiσ]]

⊆ [[h̄(u1σ × zσ, . . . , ukσ × zσ) = h̄(u1σ, . . . , ukσ)]].

So h̄(u1σ × zσ, . . . , ukσ × zσ) × zσ = h̄(u1σ, . . . , ukσ) × zσ; as σ is arbitrary, zzz × h̄(zzz × uuu1, . . . , zzz × uuuk) =
zzz × h̄(uuu1, . . . ,uuuk).

(ii) Now suppose in addition that h(0, . . . , 0) = 0. Then for each σ ∈ S we have

1 \ dσ = [[zσ = 0]] ∩ inf
1≤i≤k

[[uiσ × zσ = 0]]

= [[zσ = 0]] ∩ [[h̄(u1σ × zσ, . . . , ukσ × zσ) = 0]]

⊆ [[h̄(u1σ × zσ, . . . , ukσ × zσ) = h̄(u1σ, . . . , ukσ)× zσ]]

and

dσ ⊆ [[zσ = χ1]] ∩ [[h̄(u1σ × zσ, . . . , ukσ × zσ) = h̄(u1σ, . . . , ukσ)]]

⊆ [[h̄(u1σ × zσ, . . . , ukσ × zσ) = h̄(u1σ, . . . , ukσ)× zσ]],

so that h̄(zzz × uuu1, . . . , zzz × uuuk) = zzz × h̄(uuu1, . . . ,uuuk).

619H Proposition Let S be a sublattice of T , k ≥ 1 an integer and h : Rk → R a continuous function.
Then h̄ : Mo-b(S)k → Mo-b(S) is continuous when Mo-b(S) is given the ucp topology and Mo-b(S)k the
corresponding product topology.

proof (Cf. 615Ca.) Take VVV = (vvv1, . . . , vvvk) ∈ Mk
o-b, where Mo-b = Mo-b(S), and ǫ > 0. Set v̄ =

sup1≤i≤k sup |vvvi|, and let M ≥ 0 be such that µ̄[[v̄ > M ]] ≤ ǫ. Let δ ∈ ]0, 1] be such that |h(x) − h(y)| ≤ δ

whenever x, y ∈ Rk, ‖x‖∞ ≤M + 1, ‖y‖∞ ≤M + 1 and ‖x− y‖∞ ≤ δ. Take any UUU = (uuu1, . . . ,uuuk) ∈Mk
o-b

such that θ(sup |uuui − vvvi|) ≤ ǫδ for every i. Set ū = sup1≤i≤k sup |uuui − vvvi| and w̄ = sup |h̄UUU − h̄VVV |. Then

µ̄[[ū > δ]] ≤ ∑k
i=1 µ̄[[sup |uuui − vvvi| > δ]] ≤ kǫ,

so, expressing uuui as 〈uiσ〉σ∈S and vvvi as 〈viσ〉σ∈S for each i.

[[w̄ > ǫ]] = sup
σ∈S

[[|h̄(u1σ, . . . , ukσ)− h̄(v1σ, . . . , vkσ)| > ǫ]]

⊆ sup
1≤i≤k
σ∈S

[[|viσ| > M ]] ∪ [[|uiσ − viσ| > δ]] = [[v̄ > M ]] ∪ [[ū > δ]]

has measure at most (k + 1)ǫ. and

θ(sup |h̄UUU − h̄VVV |) = θ(w̄) ≤ (k + 2)ǫ.

As VVV and ǫ are arbitrary, h̄ :Mk
o-b →Mo-b is continuous.

619I Theorem Let h : Rk → R be a differentiable function; write h1, . . . , hk for its partial derivatives.
Suppose that every hi is Lipschitz on every bounded set in Rk. Let vvv1, . . . , vvvk be integrators, all with the
same domain S. Then h̄(vvv1, . . . , vvvk) is an integrator.
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proof (a) Suppose that M , K ≥ 0 are such that |hi(x) − hi(y)| ≤ K‖x − y‖ whenever 1 ≤ i ≤ k and x,
y ∈ [−M,M ]k. Then

|h(y)− h(x)−∑k
i=1(ηi − ξi)hi(x)| ≤ K

√
k‖y − x‖2

whenever x = (ξ1, . . . , ξk), y = (η1, . . . , ηk) ∈ [−M,M ]k. PPP Set g(t) = h(ty+ (1− t)x) for t ∈ R. Then g is
differentiable with

g′(t) =
∑k
i=1(ηi − ξi)hi(ty + (1− t)x)

for every t. By the Mean Value Theorem there is a t ∈ [0, 1] such that g(1) − g(0) = g′(t), that is,

h(y)− h(x) =
∑k
i=1(ηi − ξi)hi(z) where z = ty + (1− t)x. So

|h(y)− h(x)−
k∑

i=1

(ηi − ξi)hi(x)| = |
k∑

i=1

(ηi − ξi)(hi(z)− hi(x))|

≤

√√√√
k∑

i=1

(ηi − ξi)2

√√√√
k∑

i=1

(hi(z)− hi(x))2

≤
√
k‖y − x‖ max

1≤i≤k
|hi(z)− hi(x)|

≤ K
√
k‖y − x‖‖z − x‖ ≤ K

√
k‖y − x‖2. QQQ

(b) Consequently, using 619Ee or otherwise,

|h̄(w′
1, . . . , w

′
k)− h̄(w1, . . . , wk)−

k∑

i=1

(w′
i − wi)× h̄i(w1, . . . , wk)|

≤ K
√
k

k∑

i=1

|w′
i − wi|2

whenever w1, . . . , wk, w
′
1, . . . , w

′
k belong to L∞ and ‖wi‖∞ ≤M , ‖w′

i‖∞ ≤M for every i.
If now I is a finite sublattice of T and uuu = 〈uσ〉σ∈I , wwwi = 〈wiσ〉σ∈I are fully adapted processes with

‖wwwi‖∞ ≤M for 1 ≤ i ≤ k, and we set WWW = (www1, . . . ,wwwk), Wσ = (w1σ, . . . , wkσ) for σ ∈ I, then

|∆e(uuu, d(h̄WWW ))−
k∑

i=1

∆e(uuu× h̄iWWW,dwwwi)|

= |uσ ×
(
(h̄(Wτ )− h̄(Wσ))−

k∑

i=1

h̄i(Wσ)× (wiτ − wiσ)
)
|

≤ K
√
k|uσ| ×

k∑

i=1

(wiτ − wiσ)
2 = K

√
k

k∑

i=1

∆e(|uuu|, (dwwwi)2)

whenever σ ≤ τ in I and e is the stopping-time interval c(σ, τ). Summing over the I-cells,

|SI(uuu, d(h̄WWW ))−∑k
i=1 SI(uuu× h̄iWWW,dwwwi)| ≤ K

√
k
∑k
i=1 SI(|uuu|, (dwwwi)2).

(c) Now suppose that ǫ > 0. Set v̄ = supσ∈S,1≤i≤k |viσ| and let M ≥ 0 be such that µ̄c ≤ ǫ where
c = [[v̄ ≥M ]]. Set wwwi = med(−M1, vvvi,M1) for each i, so that ‖wwwi‖∞ ≤M and [[wwwi 6= vvvi]] ⊆ c for 1 ≤ i ≤ k;
write VVV = (vvv1, . . . , vvvk) and WWW = (www1, . . . ,wwwk).

Let K ≥ 0 be such that hi↾[−M,M ]k is K-Lipschitz for each i, and M ′ > 0 such that |hi(x)| ≤ M ′

whenever x ∈ [−M.M ]k and 1 ≤ i ≤ k; then sup | 1

M ′
h̄iWWW | ≤ χ1 for each i. Take δ > 0 such that

M ′θ(SI(uuu, dvvvi)) ≤ ǫ, K
√
k θ(SI(uuu, (dwwwi))

2) ≤ ǫ

whenever 1 ≤ i ≤ k, I ∈ I(S), uuu ∈Mfa(I) and θ(sup |uuu|) ≤ δ (using 619B again).
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Take a finite sublattice I of S and uuu ∈Mfa(I) such that θ(uuu) ≤ δ. Using 613Lc repeatedly, we have

[[SI(uuu, d(h̄VVV )) 6= SI(uuu, d(h̄WWW )]] ⊆ c,

[[SI(uuu× h̄i(WWW ), dvvvi) 6= SI(uuu× h̄iWWW,dwwwi)]] ⊆ c,

[[SI(|uuu|, (dvvvi)2) 6= SI(|uuu|, (dwwwi)2)]] ⊆ c

for every i, so

[[|SI(uuu, d(h̄VVV ))−∑k
i=1 SI(uuu× h̄iWWW,dvvvi)| > K

√
k
∑k
i=1 SI(|uuu|, (dvvvi)2)]]

⊆ c ∪ [[|SI(uuu, d(h̄WWW ))−∑k
i=1 SI(uuu× h̄iWWW,dwwwi)| > K

√
k
∑k
i=1 SI(|uuu|, (dwwwi)2)]]

= c,

and

θ(SI(uuu, d(h̄VVV ))) ≤
k∑

i=1

M ′θ(SI(uuu× 1

M ′
h̄iWWW,dvvvi))

+

k∑

i=1

K
√
kθ(SI(|uuu|, (dvvvi)2)) + µ̄c

≤ (1 + 2k)ǫ

by the choice of δ, because θ(sup |uuu× 1

M ′
h̄iWWW |) ≤ θ(sup |uuu|) ≤ δ for each i. And this is true for every finite

sublattice I of S.
As ǫ is arbitrary, h̄VVV is an integrator.

619J Itô’s Formula, third form Let k ≥ 1 be an integer, and h : Rk → R a twice-differentiable
function with continuous second derivative. Denote its first partial derivatives by h1, . . . , hk and its second
partial derivatives by h11, . . . , hkk. Let S be a sublattice of T , and vvv1, . . . , vvvk jump-free integrators with
domain S; let uuu be a moderately oscillatory process with domain S. Write VVV = (vvv1, . . . , vvvk). Then

∫
S uuu d(h̄VVV ) =

∑k
i=1

∫
S uuu× h̄iVVV dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S uuu× h̄ijVVV d[vvvi

∗
vvvj ].

proof We can follow exactly the same lines as in 619C-619D.

(a) We know that all the vvvi and h̄iVVV and h̄ijVVV are fully adapted and moderately oscillatory (618Gb,
619Gc), while h̄VVV and every [vvvi

∗
vvvj ] is an integrator (619I, 617I); so all the integrals are well-defined.

Moreover, ∫
S uuu× h̄ijVVV d[vvvi

∗
vvvj ] =

∫
S uuu× h̄ijVVV dvvvidvvvj

for 1 ≤ i, j ≤ k (617I, as before). Express each vvvi as 〈viσ〉σ∈S , and set Vσ = (v1σ, . . . , vkσ) for σ ∈ S.
(b) For the time being (down to the end of (d)) suppose that all the hij are uniformly continuous. Let

ǫ > 0. Let δ0 > 0 be such that θ(SI(zzz, (dvvvi)
2)) ≤ ǫ whenever 1 ≤ i ≤ k, I ∈ I(S), zzz ∈ Mfa(I) and

θ(sup |zzz|) ≤ δ0. Then there is a δ > 0 such that

|h(y)− h(x)−
k∑

i=1

(ηi − ξi)hi(x)− 1

2

k∑

i=1

k∑

j=1

(ηi − ξi)(ηj − ξj)hij(x)|

≤ δ0

k∑

i=1

(ηi − ξi)
2

whenever x = (ξ1, . . . , ξk), y = (η1, . . . , ηk) belong to Rk and y − x ∈ [−δ, δ]k.
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PPP Take δ such that |hij(y)− hij(x)| ≤ 2δ0

k
whenever 1 ≤ i, j ≤ k and y− x ∈ [−δ, δ]k. Now suppose that

x = (ξ1, . . . , ξk), y = (η1, . . . , ηk) belong to Rk and y − x ∈ [−δ, δ]k. Set g(t) = h(ty + (1 − t)x) for t ∈ R.
Then g is twice differentiable with

g′(t) =
k∑

i=1

(ηi − ξi)hi(ty + (1− t)x),

g′′(t) =
k∑

i=1

k∑

j=1

(ηi − ξi)(ηj − ξj)hij(ty + (1− t)x)

for every t. By Taylor’s theorem, there is a t ∈ ]0, 1[ such that

g(1) = g(0) + g′(0) +
1

2
g′′(t).

Setting z = ty + (1− t)x, we get

|h(y)− h(x)−
k∑

i=1

(ηi − ξi)hi(x)− 1

2

k∑

i=1

k∑

j=1

(ηi − ξi)(ηj − ξj)hij(x)|

=
1

2
|
k∑

i=1

k∑

j=1

(ηi − ξi)(ηj − ξj)(hij(z)− hij(x))| ≤ δ0

k

k∑

i=1

k∑

j=1

|ηi − ξi||ηj − ξj |

(because ‖z − x‖∞ = t‖y − x‖∞ ≤ δ)

≤ δ0

2k

k∑

i=1

k∑

j=1

((ηi − ξi)
2 + (ηj − ξj)

2) = δ0

k∑

i=1

(ηi − ξi)
2,

as required. QQQ
It follows that if w1, . . . , wk, w

′
0, . . . , w

′
k ∈ L0 then, setting W = (w1, . . . , wk), W

′ = (w′
1, . . . , w

′
k),

z̄ = h̄(W ′)− h̄(W )−
k∑

i=1

(w′
i − wi)× h̄i(W )

− 1

2

k∑

i=1

k∑

j=1

(w′
i − wi)× (w′

j − wj)× h̄ij(W ),

we shall have

[[|z̄| > δ0
∑k
i=1(w

′
i − wi)

2]] ⊆ sup1≤i≤k [[|w′
i − wi| > δ]].

(c) For 1 ≤ i ≤ k let Ji ∈ I(S) be such that θ(Osclln∗Ji(vvvi)) ≤ δǫ, and take J to be the sublattice
generated by

⋃
1≤i≤k Ji. Set a = sup1≤i≤k [[Osclln∗Ji(vvvi) ≥ δ]], so that µ̄a ≤ kǫ. If I ∈ I(S), set

z̄I = SI(1, d(h̄VVV ))−∑k
i=1 SI(h̄iVVV , dvvvi)−

1

2

∑k
i=1

∑k
j=1 SI(h̄ijVVV , dvvvidvvvj).

Then

[[|z̄I | > δ0
∑k
i=1 SI(111, (dvvvi)

2)]] ⊆ a

whenever J ⊆ I ∈ I(S).
PPP If e = c(σ, τ) is an I-cell and we set

z̄e = ∆e(1, d(h̄VVV ))−∑k
i=1 ∆e(h̄iVVV , dvvvi)− 1

2

∑k
i=1

∑k
j=1 ∆e(h̄ijVVV , dvvvidvvvj),

then
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z̄e = h̄(Vτ )− h̄(Vσ)−
k∑

i=1

h̄i(Vσ)× (viσ′ − viσ)

− 1

2

k∑

i=1

k∑

j=1

h̄ij(Vσ)× (viτ − viσ)× (vjτ − vjσ)

and

[[|z̄e| > δ0
∑k
i=1 ∆e(1, (dvvvi)

2)]] = [[|z̄e| > δ0
∑k
i=1(viτ − viσ)

2]]

⊆ sup
1≤i≤k

[[|viτ − viσ| > δ]] ⊆ sup
1≤i≤k

[[OscllnI(vvvi) > δ]]

⊆ sup
1≤i≤k

[[Osclln∗J(vvvi) > δ]] ⊆ a.

Summing,

[[|z̄I | > δ0
∑k
i=1 SI(1, (dvvvi)

2)]] ⊆ sup
e∈Sti0(I)

[[|z̄e| > δ0
∑k
i=1 ∆e(1, (dvvvi)

2)]]

⊆ a. QQQ

Consequently

θ(z̄I) ≤ θ(
∑k
i=1 SI(δ01, (dvvvi)

2)) + µ̄a ≤ 2kǫ

because θ(sup |δ01|) = θ(δ0χ1) ≤ δ0. And this is true whenever I ∈ I(S) includes J .
(d) As ǫ is arbitrary,

0 = lim
I↑I(S)

z̄I =

∫

S
d(h̄VVV )−

k∑

i=1

∫

S
h̄iVVV dvvvi − 1

2

k∑

i=1

k∑

j=1

∫

S
h̄ijVVV dvvvidvvvj

=

∫

S
d(h̄VVV )−

k∑

i=1

∫

S
h̄iVVV dvvvi − 1

2

k∑

i=1

k∑

j=1

∫

S
h̄ijVVV d[vvvi

∗
vvvj ],

and the formula is valid when uuu = 1 and the hij are all uniformly continuous.

(e) As for the case in which not all the hij are uniformly continuous, let v̄ be an upper bound for
{|viσ| : 1 ≤ i ≤ k, σ ∈ S}. Take any ǫ > 0. Let M ≥ 0 be such that b = [[v̄ ≥M ]] has measure at most
ǫ. There is a smooth function f : Rk → R with compact support such that f(x) = 1 whenever ‖x‖∞ ≤ M .
PPP Take a smooth function f0 : R → R with compact support such that f0(ξ) = 1 for every ξ ∈ [−M,M ],

and set f(ξ1, . . . , ξk) =
∏k
i=1 f0(ξi) for ξ1, . . . , ξk ∈ R. QQQ Now set g = f × h. Writing gi, gij for the partial

derivatives of g, these are all uniformly continuous and
∫
S d(ḡVVV ) =

∑k
i=1

∫
S ḡiVVV dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S ḡijVVV dvvvidvvvj .

At the same time, g(x) = h(x), gi(x) = hi(x) and gij(x) = hij(x) whenever 1 ≤ i, j ≤ k and x ∈ ]−M,M [
k
,

so

[[ḡ(Vσ) 6= h̄(Vσ)]] ⊆ sup1≤i≤k [[|viσ| ≥M ]] ⊆ b

for every σ ∈ S, and similarly

[[ḡi(Vσ) 6= h̄i(Vσ)]] ⊆ b, [[ḡij(Vσ) 6= h̄ij(Vσ)]] ⊆ b

whenever 1 ≤ i, j ≤ k and σ ∈ S. Consequently

[[
∫
S d(h̄VVV ) 6= ∑k

i=1

∫
S h̄iVVV dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S h̄ijVVV dvvvidvvvj ]] ⊆ b

has measure at most ǫ. As ǫ is arbitrary,
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∫
S d(h̄VVV ) =

∑k
i=1

∫
S h̄iVVV dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S h̄ijVVV dvvvidvvvj

in this case also. Translating into terms of covariations, we have
∫
S d(h̄VVV ) =

∑k
i=1

∫
S h̄iVVV dvvvi +

1

2

∑k
i=1

∑k
j=1

∫
S h̄ijVVV d[vvvi

∗
vvvj ].

(f) This deals with the case uuu = 1. For other uuu, we can use the same method as in 619D, because the
components of the formula can be translated into terms of the integrators

h̄VVV , iivvvi(h̄iVVV ), ii[vvvi ∗
vvvj ]

(h̄ijVVV ).

So we get the general result as before.

619K Applying this to S ∧ τ for τ ∈ S, we get the following version.

Corollary Let k ≥ 1 be an integer, and h : Rk → R a twice-differentiable function with continuous second
derivative. Let S be a sublattice of T , and vvv1, . . . , vvvk locally jump-free local integrators with domain S; let
uuu be a locally moderately oscillatory process with domain S. Write VVV = (vvv1, . . . , vvvk). Then

iih̄VVV (uuu) =
∑k
i=1 iivvvi(uuu× h̄iVVV ) +

1

2

∑k
i=1

∑k
j=1 ii[vvvi ∗

vvvj ]
(uuu× h̄ijVVV ).

619X Basic exercises (a) Suppose that h1, h2 are Borel measurable functions from Rk → R. Show that
if u1, . . . , uk ∈ L0 then [[h̄1(u1, . . . , uk) ≤ h̄2(u1, . . . , uk)]] = [[(u1, . . . , uk) ∈ E]], where E = {x : x ∈ Rk,
h1(x) ≤ h2(x)}.

(b) Suppose that l ≥ 1, that h1, . . . , hl are Borel measurable functions from Rk to R, that h : Rl → R

is Borel measurable, and that g(x) = h(h1(x), . . . , hl(x)) for x ∈ Rk. Show that ḡ(u) = h̄(h̄1(u), . . . , h̄l(u))
for u ∈ L0.

619Y Further exercises (a) Let S be a sublattice of T , vvv = 〈vτ 〉τ∈S a jump-free integrator, and vvv∗

its quadratic variation. Suppose that G ⊆ R is an open set such that [[vτ ∈ G]] = 1 for every τ ∈ S, and
h : G→ R is a twice-differentiable function with continuous second derivative. Show that

∫
S uuu d(h̄vvv) =

∫
S uuu× h̄′vvv dvvv +

1

2

∫
S uuu× h̄′′vvv dvvv∗

whenever uuu is a moderately oscillatory process with domain S.

(b) Let uuu1, . . . ,uuuk be simple processes all with the same domain S, and h : Rk → R a continuous function.
Write UUU for (uuu1, . . . ,uuuk). Show that h̄UUU is simple.

(c)(i) Suppose that I is a finite sublattice of T and vvv ∈Mfa(I). Show that SI(1, |(dvvv)3|) ≤ OscllnI(vvv)×
SI(1, (dvvv)

2). (ii) Suppose that S is a sublattice of T and vvv is a jump-free integrator with domain S. Show
that

∫
S uuu (dvvv)

3 = 0 for every order-bounded process uuu with domain S.

619 Notes and comments In the ordinary theory of the Riemann-Stieltjes integral, we are well accustomed

to the formula h(v(b))− h(v(a)) =
∫ b
a
h′(v)dv for continuous functions v of bounded variation. In 619C we

see that we have a correction term, which would correspond to a term 1
2

∫ b
a
h′′(v)(dv)2. In the real-variable

case we expect the term (dv)2 to count as zero, as it must do if
∫ b
a
|dv| is finite and v is continuous. The

point of stochastic integration is that we integrating with respect to integrators which are not of bounded
variation (e.g., Brownian motion), but for which we can use

∫
S(dvvv)

2 =
∫
S dvvv

∗ to give a general formula
which will be the basis of almost every application of the theory to jump-free processes. In the proof of
619C we see that this comes from the second-order Taylor expansion

h(β) ≏ h(α) + (β − α)h′(α) +
1

2
(β − α)2h′′(α)
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just as the familiar identity comes from the first-order expansion

h(β) ≏ h(α) + (β − α)h′(α).

The analysis is very much harder, and the welcome simplicity of the formula depends on concepts (‘mod-
erately oscillatory process’, ‘jump-free integrator’ and ‘quadratic variation’) which are far from elementary.
But in Chapter 65 we shall find that, taking proper care, we can go a long way with formal manipulations.

If you look back at 617H, you will see that it amounts to a special case of 619J: we use the formula
∫
S d(vvv ×www) =

∫
S vvv dwww +

∫
S www dvvv +

1

2
(
∫
S d[vvv

∗
www] +

∫
S d[www

∗
vvv])

to tell us what [vvv
∗
www] should be, at least if covariation is to be symmetric. What is remarkable is that this

approach extends so dramatically from multiplication to general twice-continuously-differentiable functions.
In 619Yc I offer a sort of explanation of the fact that we don’t have to examine third derivatives in this
context.

You can see why most textbooks leave the proof of 619J to their readers. I have to admit that my
formulation introduces extra obstacles in the proofs of 619I and 619J, where we need to turn inequalities
concerning a function h : Rk → R into corresponding inequalities for h̄ : (L0)k → L0. If we allow ourselves
to think of h̄ as being defined by the formula h̄(f•

1 , . . . , f
•

k) = h(f1, . . . , fk)
•, as in 619Ee, this step becomes

elementary. In §364 I went to a good deal of trouble to describe the f -algebra structure of L0 in terms
which did not depend on representations of this kind. In the context of the present volume this self-denial
seems unnecessary, since in the great majority of applications our probability algebra is explicitly derived
from some probability space. I hope however that even if you are impatient with measure algebras, and
have been more or less frankly translating everything into expressions concerning conventional stochastic
processes (as in 612H and elsewhere), you will agree that it is important to remember that trivial changes
to the probability space can’t affect the results we are looking at, and that it might be helpful to remember
that ‘trivial’ can, for many of our purposes here, be interpreted as ‘not affecting the measure algebra’. But
to safely continue with this assumption, we have to check from time to time that our manipulations really
are invariants of the measure algebras. And this is what I am trying to do in 619E-619G.

For those interested in the logical status of the theorems here, which in my view ought to include those
concerned with their application to questions arising in the real world, there is another reason to have qualms
about the proof of 619E given here: it depends on the Loomis-Sikorski theorem 314M, which requires a strong
form of the axiom of choice. But there are no new problems beyond those already considered in §364 and
Chapter 56.

Of course there is a more important problem facing us. I have offered no effective means of calculating vvv∗

for any of the important processes vvv of the theory. In 617O I looked at the identity process, which is almost
trivial, and the Poisson process, which is irrelevant because it’s not locally jump-free. We don’t seem to be
ready for Brownian motion (624F), and this will be one of the aims of the next chapter.
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