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Chapter 61
The Riemann-sum integral

I begin with an attempt to give a coherent and complete description of the principal form of stochastic
integration which will be investigated in this volume.

As elsewhere in probability theory, it is customary to set this material out in terms of ordinary random
variables, that is, measurable functions defined on probability spaces. We find immediately, however, that
while integrands and integrators may well present themselves most naturally in this form, the integrals we
construct are defined, in the cases for which this theory has been developed, in terms of convergence in
[[l1 or || ||z or in measure, and therefore correspond not to explicit functions, but to equivalence classes
of functions. Moreover, integrands and integrators can be changed on negligible sets without affecting the
values of the corresponding integrals. I believe that the theory becomes clearer and cleaner if we move
directly to operations on evolving families in L. While this demands an initial investment by the reader
in a more abstract framework for the ideas of elementary probability theory, the translation is not difficult,
and a full exposition can be found in Chapter 36.

Again, stochastic processes are usually expressed as families (X;);er of random variables, indexed by
a set T of ‘times’. There are very good reasons for this. However, to describe the stochastic integral in
reasonable generality we need, as a first step, to discuss the random variable X, for a stopping time 7. The
measure theory to make this possible (the notion of ‘progressively measurable’ process) is well understood
and has been described in §455. When we come, following my principle above, to look at (X} ):er, we find
that we can have X; = Y}*, that is, X; =, Y, for every ¢, while X? # Y*. This is just a nuisance. For
our purposes here, it makes better sense to start from a family (u,)rcs where S is a set of stopping times
and u, € LY for every 7 € S. The construction of such families from processes (X;);er is important and
interesting, but has nothing to do with the very substantial difficulties of the basic theory of stochastic
integration.

Of course I now have to look at filtrations and stopping times, and these too are not best described in
terms of o-algebras of sets and real-valued functions. In the formulation I wish to use here, we don’t even
have a probability space for the functions to be defined on. Instead of thinking of a filtration as a family
(34)ter of o-subalgebras of the domain ¥ of a probability measure p, I look at the corresponding family
of subalgebras of the measure algebra 21 of u. This is easy (at least, if you have read Chapter 32; and this
is my last apology for insisting that you know something of Volume 3). A stopping time 7 now becomes
defined in terms of elements [T > t] € 2, ‘the region where 7 > t’. We need to develop a theory of regions
[o < 7], [o =7] in 2, and subalgebras 2, of A, for stopping times o, 7; and now the processes (u.)res
we work with must be such that ‘u, = u, whenever o = 77, that is, [o = 7] C [u, = u,]. Setting up these
structures takes the greater part of §§611-612, which come to about a quarter of the chapter. It happens
that nearly everything in these two sections can be done without mentioning ‘measure’ at all.

I say again that none of this is difficult, but it does take quite a long time; there are some new kinds
of algebra to get a solid basis in, particularly the theory of stopping-time intervals (611E, 611J-611K) and
fully adapted processes (612D). With this established, however, we are within reach of a direct definition
of a stochastic integral as a limit of Riemann sums (§613). As long as we do not enquire about when the
integral is actually defined, this is very straightforward and can be done in great generality. The next three
sections are devoted to finding the basic cases of processes u, v for which we shall have a well-defined integral
Judv. Concerning u, we have ‘simple’ and ‘moderately oscillatory’ processes (612J, 615E). Concerning v, we
have the concept of ‘integrator’ (616Fc), which is well adapted to the basic theorem 616K, but is otherwise
obscure. It is easy enough to find a definition of ‘bounded variation’ for stochastic processes (614J) and to
show that processes of bounded variation are integrators (616R), but this is not what the stochastic integral
is for; in this case we have much more direct methods available.
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2 The Riemann-sum integral Chap. 61 intro.

Now we are ready, at least in a formal sense, for some proper stochastic calculus in §§617 and 619. Here I
set out useful general manipulations. Some of them reproduce patterns familiar from the ordinary Riemann
integral (616J), but others are radically different (6171, 619C). On the way to the latter (‘It6’s formula’) we
need to understand ‘jump-free’ processes, corresponding to processes with continuous sample paths (§618).

The theory here involves a large number of constructions. Many of these have no short descriptions in
terms of the concepts developed in Volumes 1-4, and correspondingly require new terminology and notation.
I have tried to arrange the material in such a way that, within any individual section, substantial parts
of the basic framework can be taken to be constant. From §614 on, these are indicated in introductory
paragraphs headed ‘Notation’. These paragraphs are highly repetitive. But until you are very familiar with
my language, it is likely that opening at a random page, and scanning for the next ‘Theorem’; will lead you
to something totally mysterious. Sometimes a check in the index for terminology will help. But sometimes
there will be a baffling symbol, and then it will be worth while turning to the beginning of the section to see
if the symbol appears there. It seems to me that while this expands the volume by several pages in total, it
is kinder than referring you each time to a complete list of the terminological quirks of this presentation.

Version of 11.12.17/16.1.25
611 Stopping times

The first step is to describe the structures within which the work of this volume will proceed. While
everything really important will have to be based on probability algebras, I start with ideas which can be
applied to arbitrary Dedekind complete Boolean algebras. This section introduces filtrations of subalgebras,
the lattice of stopping times, the algebras associated with stopping times, stopping-time intervals and covered
envelopes.

611A Filtrations Throughout this volume, 2 will denote a Dedekind complete Boolean algebra (defini-
tions: 311A, 314A), with Boolean operations A, n, u and \, zero 0 and multiplicative identity 1.

(a) Let T be a non-empty totally ordered set. A filtration of order-closed subalgebras of 2[ will be
a non-decreasing family (2;)er of order-closed subalgebras of 2 (definition: 313D).

(b)(i) A stopping time 7 adapted to (2;).cr is a family ([7 > ¢])ter such that
[t >t] € AUy for every t € T,
if s <tin T then [t >t] C [T > 5],
if t € T is not isolated on the right, that is, ¢ is neither the greatest element of T nor
the lower endpoint of a gap in T, that is, {s : s > t} is non-empty and has infimum ¢, then
[T > t] =sup,s, [T > 3]
(Compare 364A.)

(ii) Tt will be worth checking each concept against the constant stopping times, where for ¢t € T the
constant stopping time at ¢, 7, is given by setting

[t>s]=1ifs<t,
=0if s > t.

(iii) I will say that a stopping time 7 is
— finite-valued if inf;cr [T > ¢] = 0,
—— bounded if there is a ¢ € T such that [ > ¢] = 0.
Constant stopping times are bounded, and bounded stopping times are finite-valued.

(iv) I will write 7 for the set of stopping times adapted to (U;)ier, Ty C T for the set of finite-valued
stopping times, and 7, C Ty for the set of bounded stopping times.

(c) It is convenient to think of a stopping time 7 € T as the element ([T > t]);er of the simple product
algebra J[,c, 2 (definition: 315A). But a warning! while this represents 7 as a sublattice of [, .2
(611Ca-611Cc) below), T is not as a rule order-closed (see 611F and 632C(a-i)).
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611C Stopping times 3

(d) We are going to have to think of 7 as disjoint from T (see, for instance, 611G below). Subject to
the Axiom of Foundation (KUNEN 80, §II1.4), and on any ordinary formalization of the concepts of ‘ordered
pair’ and ‘function’, T" and [[, . 24; will automatically be disjoint. I will therefore suppose without further
comment that this is always the case.

611B The partial ordering of stopping times If o, 7 € T, say that ¢ < 7 if [o > t] C [r > ¢] for
every t € T', that is, o C 7 in [],., ;. This defines a partial order on 7.

611C Proposition (a) 7 is a Dedekind complete distributive lattice. Consequently any finite subset of
T is included in a finite sublattice of T .
(b) If C C T is non-empty, then sup C' is defined by saying that

[supC > t] =sup,c¢ [T > 1]

for every t € T', that is, the supremum of C' in 7" is the same as the supremum of C in [[, ., 2.

(¢) If o, 7 € T, then o A 7 is defined by saying that

[enT>t]=]o>tn]r>{]

for every t € T', that is, 0 A 7 in T corresponds to o n7 in [[,. 2.

(d) If C, ¢ C T are non-empty, then supC AsupC’' =sup{oc Ao’ :0 € C, o’ € C'}.

(e) Writing £ for the constant stopping time at ¢, the map t + £ : T — T is an order-continuous lattice
homomorphism, which is injective if 20 # {0}.

(f) T has greatest and least elements defined by saying that

[max7 >t] =1, [min7 >t]=0

for every t € T, that is, they correspond to the greatest and least elements 1 and 0 of [[,., ;. If T has a
least element min T, then min 7 is the constant stopping time at min 7.

(g) Ty and Ty are ideals® in 7.

(h) The function o — o A7 : T — T is order-continuous (definition: 313Ha) for every 7 € T.

proof (a)(i) I start with a direct verification of (b). Setting a; = sup, ¢ [T > t] for t € T', we see that

as € Ay for every t € T, because 2l; is order-closed in 2,
if s <tin T then a; C as,
if t € T is not isolated on the right then

ay = suprec [T > 1] = supreconr [T > 5] = supysi as.

So we have a stopping time o defined by writing [o > t] = a; for every ¢. Now it is easy to see that 7 < o
for every 7 € C and that o is the least such stopping time. Thus our formula defines sup C' in the partially
ordered set 7.

(ii) This is enough to show that T is a Dedekind complete lattice (314Aa, 314Bb).

(iii) Similarly, we can check the formula in (c). Set by = [o > t] n[r > t] for t € T. Then
by € A for every t € T,
if s <t then b; C by,
if t € T is not isolated on the right, then

supbs =supfo > s]nr > s] = sup Jo > s[n[r > 5]
s>t s>t s,8'>t

=sup o > s|n sup [t > §]
s>t s'>t

(313Bc)
=[o>t]n]r>t] =b;.

LIf P is a lattice, an ideal of P is a set Q C P such that pV g € Q for all p, ¢ € Q and p € Q whenever ¢ € Q and p < ¢ in
P. In this context I do not insist that @ should be non-empty.
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4 The Riemann-sum integral 611C

So we have a stopping time v such that [v > ¢] = [o > t]n [ > t] for every t. But now it is easy to see
that v =0 A T.

(iv) Putting these formulae together, we see that o — [o > ¢] : T — 2 is a lattice homomorphism for
every t € T, so 0 — ([o > t])ter is an injective lattice homomorphism from 7 into the distributive lattice
[I;cr 2, and identifies 7~ with a sublattice of [],., 2, which must be distributive. And it is true in any
distributive lattice that finitely-generated sublattices are finite (3A1I(c-iii)).

(b)-(c) have been dealt with in (a-i) and (a-iii) above.
(d) Translated into [],c, 2, as in (b)-(c) just above, this becomes
supCnsupC’ =sup{onc’ :0€C, o €C'},
which is 313Bc.

(e)(i) Concerning constant stopping times, we see at once from the formulae in 611B-611B that § <
when s < t, so that t — £ is order-preserving; because T is totally ordered, it is a lattice homomorphism.

(ii) If A C T is a non-empty set with supremum ¢ in 7', then
[t > ] =0=supseq[s>1]
whenever t' > t, while if ¢’ < ¢ there is an s’ € A such that ¢’ < s’, so that
[E>t]=1=[8 >t] =sup,cn[s>t].
By (b), £ is the supremum sup,c 4 § in 7.

(iii) If 0 # A C T and t = inf A, then £ < § for every s € A, as noted in (i). Now suppose that 7 € T
and £ < 7 < 5 for every s € A. If t is isolated on the right in T, then ¢ € A so surely 7 = . Otherwise,

[T > t] =supys, [T > s] =sup,cy [T > 8] € supyeq [5> 5] =0.
Of course we now have
[r>s]clr>t]=0=][f>s]
for s > t, while
[r>s]o[t>s]=1

for s < t,so 7 =*%. As T is arbitrary, f = inf,c4 3.
Thus t — t is order-continuous.

(iv) If A # {0}, that is, 0 # 1 in 2, and s < ¢t in T, then
[8>s]=0#£1=[t>s]
so § # t; thus ¢ — £ is injective.

(f) The formulae offered for max7 and min7 describe stopping times corresponding to 1 and 0 in
[I;cr 2, so give us the greatest and least elements of 7. If min T is defined, the formula for min 7" agrees
with that for the constant stopping time (minT")".

()G) Ifo, 7€ T,

inf [o VT >1]
teT

f _ it
ggT[[a>t]]u[[T>t]] s}){IET[[U>SHU[[T>t]]

s,Hel:fr [o > s]u ég:fr[[T > ]
(313Bd)

=0.
SooVvVTeTy Ifo<7inT and 7 € Ty, then

infier [o > t] C infier [r > ] =0,
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611E Stopping times 5

so o € Ty. Thus Ty is an ideal in 7.

(ii) As for Ty, observe that 7 € T is bounded iff there is a constant stopping time £ such that 7 < .
Now we have just seen that the set of constant stopping times is totally ordered, so 7, is an ideal in 7.

(h)(i) If A C T is a non-empty downwards-directed set, then
infoeaT™ Ao =inf({7} UA) =7 Ainf A.

(ii) If A C T is a non-empty upwards-directed with supremum ¢*, and o} = sup,c, o A 7, then, for
anyt €T,

[o; >t] =sup [t Ao >t]
o€EA

sup [t > t]nfo > ]
og€EA

[T > t]n sup Jo > 1]
oc€A

(313Bc again)
=[r>tlnfo* >t =[rAnc* >1],

soof =TAC".

Remark (The following applies in any lattice.) If A C T and 7 € T, I will write AV 7 for {oV 1 :0 € A}
and AAT for {o AT:0 € A}. Note that if S is a sublattice of 7 and 7 € S, then

SVvr={o:0eS,7<0}, SAT={0:0€S8,0<7}
So if S is a sublattice of T, 7, 7/ € S and 7 < 7/,
SNnir,fl={c:0€8,7<o<7}={0:0e8VT,0 <7} =(SVT)AT
because SV 7T ={o:0 €S, 7 <o} is asublattice of T.

611D The region where o <7 If o, 7 € T set
[o < 7] =supiep([r > ]\ [o >1]),
[o <7]=1\[r < o] =infier([r > tJu 1\ [o > t])),

lo=71]=[oc <7]n[r <o] =1\ sup;er(fo > t] AT > t]).

611E Analysts commonly think of algebra as trivial, and so it is. But the algebra of stopping times and
regions o < 7] is a very rich structure, with a large number of elementary identities; and as the definition
of [o < 7] includes the supremum of an infinite set, there is room for surprises. Consequently the fluency
necessary for effective use of these ideas requires a good deal of practice. In the next theorem I have collected
a more or less comprehensive list of facts which will be useful in one way or another. It is a very long list, and
correspondingly few readers will be inclined to work through it systematically. I recommend rather that you
treat it as a running buffet, to be sampled from time to time. I hope that there are enough cross-references
later for you to know when you have to return for another fragment.

Theorem (a) Let o, 7 € T.
(i)(a) ([o < 7],[o = 7], [T < o]) is a partition of unity in 2L
B) [e >tlnfo=7]=[r >t]nfo =7] for every t € T
Mle<r]=0iff [r<o]=1liff r<o;Jo=7]=1iff c =7.
(8) Writing f for the constant stopping time at ¢, [f < 7] = [r > t] for every t € T.
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6 The Riemann-sum integral 611E

€) [min7 < max7T] = 1.
()Ifs<tinT,then [§ <{]=1; [ <maxT] =1 for every s € T.
(@) Jo<t]=lcAnT<T]=]0 <oVT].
B)loe<t]=lc=cAT]=[r=0VT]
Y onT=0c]uloAnT=7]=[cVT=0]uovT=17] =1
(b)If o € T and C C T is non-empty then [0 < sup C] = sup, ¢ [0 < 7] and [supC < o] = inf,cc [7 < o].
(¢c) Let o, 7,0 ET.
()(a) [onT<v]=]oc<v]ulr<v],[v<oAnt]=[v<o]n]v<T].
B)v<ont]=v<olnv<Tt],[onT <v]=[o <v]ulr <v].
(i)() [ovT <v] =[o <v]n[r<v], [v<oVvrT]=[v<o]ulv<T].
B)v<ovr]=v<ojuv<Tt],[ovT <v]=[oc <v]n[r <v].
(iii)(a) [e <v] C o< 7]uovT <v] C o <T]ulr <]
B) e <v] clo<7]ulr <]
(W) [o<v]nv<t]clo<7], o <v]nfv<r7]Clo<T]
(iv)(a) [o <7]n]r <v] C o <.
B) o <t]n]r<v] Clo <]
Y lo=7r]n[r=v]=[o=7]n[o=v] C[o="1].
(@) [o Av=71Av]2]o =T].
B) [ovv=rVvv]2fo=r].
(vi)Ifo <7 <w,then o <v]=[oc <7]ur<v], [e=v]=[oc=7]n[r=1].
(d)Ifrg<...<7,inT and o € T, then

(e <m0, [ro <alnfo<n],.- -1 <o]nfe < 7], [tn < o])

(
(
(v)
(

is a partition of unity in 2I.

proof (a)(i)(a) We have only to check that [o < 7] n[7 < o] =0. But

[t >t]\[r>s]=0if s <t

([r >t]\[o >t))n([o > s]\[r > s]) c
Clo>s]\[e>t]=0ift <s,

S0
[o < 7]n[r < o] =sup([r > t]\ [o > t]) nsup(Jo > s]\ [r > s])
teT seT
= sup ([r > t]\[o >t])n(Je > s]\[r > s]) =0.
s,teT
(8)-(v) are immediate from the definitions in 611B and 611D.
@) [f<7]= sup,er [T > s]\ [t >s] = SUDg>¢ [r>s] =[r>t].
(€) Recall that we are assuming that T is not empty. And [max7 > ¢]\ [min7 > ¢] = 1 for any
teT.
@ [E<io[t>s]\[8>s]=1;[§ <maxT]2[maxT > s]\[5§>s] = 1.
(ii) ()
[onT <T]=sup[r >t]\[o AT >1]
teT
=sup[r > ¢\ (Jo >t]n[r >¢])
teT
(611Cc)
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611E Stopping times 7

:?EIT)[[T>t]]\[[J>t]]:[[U<T]]a

[c <ovr]=supoVvT>t]\[o>t{]
teT

=sup(fo > tJur > ¢t])\[o > {]

teT
(611Cb)
=§1611T)[[T>t]]\[[o>t]]:[[a<7]].
B)
[o=onr]=Jc<oAT]|nonT<o]=(1A\[ocAT<0o])n1

(by (i-7))

=1\[r < o]
(by () just above)

= [[U < Tﬂa

and similarly

[r=ovr]=[r<ovr]novr<7t]=1\[r<oV7r]=1\[r<o]=]c <]

() Using both parts of (3), we have

[onT=0c]uloAT=T1]=[r<oJufe<7]=1
=[ovr=o]juloVvT=r].

(b)

sup [sup C > t]\ [o > t] = sup(sup [r > ¢]) \ [o > {]
teT teT reC

(611Cb again)
=supsup([r > t]\ [o > t]) = sup [o < 7].
teT reC reC
Taking complements,
[supC < o] =inf,cc [r < o].
() (@) [o AT >t] =[o > t]n[r > t] for every t, so

[[o*/\7<v]]=§2¥[U>tﬂ\([[0>t]]m[[7>t]])

Zflelg([[v>t]]\[[0'>t]])U([[U>t]]\[[T>t]])=[[O’<’U]]U[[T<U]].

Taking complements,

[v<oAr]=[v<o]n]v<T].

(8)

D.H.FREMLIN



8 The Riemann-sum integral

[[v<o]]m[[v<7']]:(ilelg[[a>s}]\[[v>8]])0(?61713[[7'>t]]\[[v>t]])
:Ss)}lepT([[U>s]]\[[v>s]])m([[7'>t]]\[[v>t]])

= stue%[[a>s]]mﬂ7'>t]]\([[v>s]]uﬂv>t]])

= sup o > s|n[r > ]\ [v > min(s,t)]
s,teT

=sup sup [o>s]n[r>t]\[v>"?]
vET s>t 1>t/

=sup [o > | n[r > ']\ [v>t]
t'eT

=sup o AT >U]\[v>t]=[v<oAT].
teT

Taking complements,

[eoAnT <v]=[o <v]ulr <v].

(i)

[[cr<'u]]r1[[7'<v]]=(ilelg[[v>s]]\[[a>sﬂ)ﬂ(ig;)[[v>t]]\[[7'>t]])

Ss?epT([[U>3]]\[[U>5]])m([[v>t]]\[[7'>t]])

:Sszle%[[v>sﬂmﬂv>t]]\(ﬂa>s]u[[7>tﬂ)

= L}lepT [v > max(s, )]\ (J[o > s]ur > t])

S

=sup sup [v>t)\(Jo>s]ulr>t])
vET s<t/,t<t!

= tsllell% [o>¢]\ (e >t]ulr >1t])

=sup [vo>t|\[ovT>]=[oVvT <]
t'eT

Taking complements,

[v<ovr]=[v<o]ulv<T].

(iii) (o) For every t € T,

[o>t]\[o>t] € (Jo>t)\[r>t))u(r>]\][o > t]).
So [o < v] C o < TJu[r < v]. But equally we must also have

[o<v]clo<ovr]uovr<v]=Jo<t]uloVT <]
by (a-ii-a). And [o < 7jufo VT <v] C o <7]u[r < v] by (ii-a) just above.

(8) Now
l=Jo<7tjulr<o]clo<tjulr <v]ulv <]
by («), so
[o<v]=1\[v<o] o <7]ulr <]

(7) Using («) twice,
[o <v]nfo<r]c(o<r]ulr<v])nv<t]clo<r],

MEASURE THEORY
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611E Stopping times 9
[o <v]nv<r]cfo<v]n(v<o]ulo<T]) Clo<T].

(iv)(a) Take complements in (iii-ar) and exchange the names o, v.
(B) Take complements in (iii-3) and exchange the names o, v.
Use («) twice to prove the first equality; the second is trivial.
5
(V) (@)
[eAnv<TAv]=]oc<TAvV]U[v<TAV]C[o<T]
by (i) above. Similarly, [t Av < o Av] C [ < o], and both are disjoint from [o = 7].
As («), but starting from
B) ; g
[evv<tvou]=JocVo<t]noVv <] Clo<T].

(vi) In this case, for every t € T,
[o>t] cr>t] Clv>t],

sofv>t]\Jo>t]= v >t\[r > ) u([r >t]\[o > t]); taking the supremum over ¢, [c < v] = [o < 7] U [T < v].
Taking complements,

[ec=v]=1\]c <]
(because [v < o] =0, by (a-i-y))
=\[o<t)n(Q\[r <v])=[o =7]n]r =1].

(d) Induce on n. If n = 0 the list reduces to

([e < 70, [ro < o)

which is a partition of unity by the definition in 611D.
For the inductive step to n + 1 > 1, we know that

(Ie <m0], [ro <o]nfo<mi],...,[ta-1 <o]n]o <], [tn <o)
and

([o < o1l [Tnsa < )

are partitions of unity. So

(I[e <ol o <olnfo<ml],...,[t-1 <o]nfo < 7],
[rn <010 [0 < Tusal, I < 0] s < o)
is a partition of unity. And
[t < o]0 lrn <ol =[m Vg1 < 0] = [rngr < o]

by (c-ii-y). So our partition of unity reduces to

(e <m0l [0 <o]nfe<m],...,[tno1 <o]nfo <],
[tn < olnfo < Tnials [Tns1 < o)
as required for the inductive step.

Remark I have taken the trouble to spell out direct proofs based on the definitions in 611A, 611B and 611D.
But you will observe that every formula here corresponds to the case in which o, 7 and v are real-valued
functions defined on [0, 1], with 2 = P[0, 1],

(o A7)(2) = min(o(z),7(z)), (oV7)(z)=max(o(x),7(x))
for z € [0, 1], and

D.H.FREMLIN



10 The Riemann-sum integral 611E
[e <7]={z:0(x) <7(x)},

[oc=71]={x:0(x)=7(x)}, [o<7]={z:0(x)<71(x)}.
In (b) we have a bit of luck — the formulae for infima are more complicated (see 632C(a-ii)). Elsewhere,
with only finitely many stopping times involved, we are perfectly safe, though I do not attempt to state and
prove an appropriate metatheorem.

611F Infima in 7: Proposition Let A C 7 be a non-empty set such that

sup,~, infyeca [o > 5]
belongs to A; whenever ¢ € T' is not isolated on the right.
(a)

[inf A > t] = irelf/’1 [o >t] if t € T is isolated on the right

= sup inf [o > s] for other ¢t € T.
s>t OEA

(b) [inf A < 7] = sup, e 4 [o < 7] for every 7 € T.
proof (a) For t € T, set

a; = infyeq o > ] € Ay,

by = a; if t € T is isolated on the right,
= inf a4 for other ¢t € T.
s>t
By hypothesis, b; € 2, for every t € T. Now as C a; whenever t < s, so by C by whenever t < s. If t € T is
not isolated on the right,
inf{bs : s >t} inf{ay : there is an s such that s' > s > t}
= inf{ay : s >t} = b;.

Accordingly there is a 79 € T such that [rg > t] = b; for every t € T.
IfoeA,

[ro>t]=b; Ca C o>t

foreveryt € T, so 1y < o; as o is arbitrary, 79 < inf A. On the other hand, for any t € T, [inf A > t] C [o > {]
for every o € A, so [inf A > t] C as; and if ¢ is not isolated on the right,

[inf A > t] = sup,-, [inf A > s] C sup,., as = b;.

Thus [inf A > t] C by = [0 > t] for every ¢, and inf A < 79.
Accordingly inf A = 7y satisfies the formula claimed.

(b) If 0 € A, [o <7] C[infA<7] by 611E(c-iv-8); so sup,e [0 < 7] C [inf A < 7]. In the other
direction, take any t € T. If ¢ is isolated on the right, then
[7 > t]\[inf A > t] = [7 > t]\ in1f4[[a>t]]
[e4S]
=sup [r > t]\[o >t] C sup o < 7[;
oc€A o€EA
otherwise,

[7 > t]\ [inf A > t] = sup([7 > s]\ sup inf [o > §])
s>t s/>t0€A

N

i‘ilt)([[T > s]\ inf [o > s])

sup sup([7 > s]\ [o > s]) € sup o < 7].
s>t ocA o€A
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So
linf A < 7] = sup,eq [T > t]\ [inf A > ] C sup ¢ [0 < 7]

and we have equality.

611G The algebra defined by a stopping time: Definition If 7 € T, write 2. for
{a:aeU, a\[r>t] € for every t € T}.

Then 2(; is an intersection of order-closed subalgebras, so is itself an order-closed subalgebra of 2.

611H Proposition (a) Suppose that 7 € T and ¢t € T.

(i) If b€ Nyo, ™As and b C [ > t], then b € A;. In particular, [7 > t] and therefore 1\ [7 > t] belong
to A

(if) f b e A, and b C [T > s] for every s < ¢, then b € .
(iii) If b € A, and bn [r > ¢] = 0, then b € A,.

(b) If £ is the constant stopping time at t, then 2; = 2;.

(¢c) Suppose that o, 7 € T.
(i) [o < 7], [o = 7] and [7 < o] belong to A, N A.
(ii) Aynr = Ay N A5 in particular, A, C A, if o < 7.
(iii) fa € A, then an[r < o] =a\[o < 7] € Usnr.
(iv) Ayvr is the subalgebra of 2 generated by A, U 2.

proof (a)(i) If s <,
b\[r>s]cr>t\[r>s]=0
and b\ [r > s] € Us. If s >t then b and [7 > s] both belong to 2y, so b\ [1 > s] € Us.
(i) Ifs<t,b\[r>s] =0€A,. If s >t then b and [7 > s] both belong to A, so b\ [r > s] € As.
(iii) b= b\ [r > ¢].
(b) Use (a-ii) and (a-iii).

(c)(d) For every t € T, [t > t]\ [o > t] belongs to A, and therefore to 2., by (a-i) or (a-ii); now the
supremum of these, [o < 7], will also belong to 2l.. Moreover, for every t,

[e < 7]\ [o >t] =sup([r > s]\[c > s])\ [ >t]

= Ssgr;([[f > s[\[o>1])u itg;(ﬂf > s\ [o > s])
= (> I > Do sup(lr > 51\ T > o)
:sglzt)[[T>s]]\[[a> s] € AUs.

So [o < 7] also belongs to A,.
In the same way, [T < o] € A, NA;; by 611E(a-i-a), [o = 7] € A, N A,

(i)(@) If o <7,a €U, and t € T, then
a\[r>t]=(a\[o>th\[r >t] €A,
because a \ [o > t] and [7 > t] both belong to 2. As a and ¢ are arbitrary, A, C 2.
(B) So for any o, 7 € T we shall have U,rr C A, N2A.. Conversely, if a € A, N2 and t € T, then

a\[oAT>t]=a\([oc >t]n[r >1t])
(611Cc)
=(a\[o>thu(a\[r>1t]) A
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12 The Riemann-sum integral 611H

because both a\ [o > t] and a\ [r > t] belong to ;. As a and ¢ are arbitrary, 2, N2A; D A,r, and we
have equality.

(iii) If t € T, then [r > t]\[o > t] C [o < 7], s0 [t > t] C [o > t]ufo < 7]. Since a\ [7 > ], [o > ],
[t >t] and [o < 7]\ [r > t] all belong to A (put (a-i), (a-iii) and (i) just above together for the last), so
do [o <7]ur >t], [o <T]ur >tJufo > {] and
(a\[r>th\ (o < 7Jufe >tJulr >t])
=a\ (o <t]ulr>t]Jufo > t])
=a\(Jo<t]ulo>t]) = (a\][o < T])\[o > 1].
As t is arbitrary, a\ [o < 7] € 2,. But also a and [o < 7] belong to 2, so
a\[o <7] €A NAr = Apnr
by (i) again.
(iv) Let B be the subalgebra generated by 2, U2L.. By (i), B C A,y,. On the other hand, suppose
that a € A,v-. Then
a\[o<7t]=a\[c <oVvT]EA, CB

by 611E(a-ii-a) and (iii). Similarly a\ [7 < o] € B. As [o < 7] and [7 < o] are disjoint, a € B. As a is
arbitrary, A,y C B and we have equality.

6111 Lemma Suppose that (7;);cr is a family in 7 and (a;);cr is a partition of unity in 2 such that
a; € A, for every ¢ € I. Then there is a unique o € T such that [o = 7;] D a; for every i € I, and
infier 7 <o < super T

proof For ¢t € T, set by = sup,c; a; n[r; > t]. Because (a;);cs is a partition of unity,
1\b; = sup;era; \ by = sup;era; \ [1i > t]
belongs to 2y, so b, € ;. If ¢ is not isolated on the right, then
SUD, sy bs = SUP;er, o5y @i N1 > 8] = sup;e; a;n [ > t] = by
So (b:)ter satisfies the conditions of 611A(b-i) and we have a stopping time o € T such that [o > t] = b,
for every t. Now, fori € T and t € T, [o > t[na; = [7; > t] nay, so Jo < 7;] and [; < o] are both disjoint
from a;, and a; C Jo = 7;].
To see that o is unique, suppose that ¢’ € 7 has the same property; then
[[O' >t]]ﬂai = [[Ti >t]]mai = [[O'/ >t]]ﬁai
for every i € I, so o > t] = o’ > t] for every t € T, and ¢’ = 0.
To see that inf;c; 7; < o, observe that
ﬂinfiej 7 < 0‘]] o [[infie[ 7 < Tjﬂ N [[Tj < O’]] 2a;

for every j € I, so [inf,e; 73 < o] =1 and inf;e; 7 < 0. Similarly, o < sup;c; 7.

611J Dissections by stopping times (a) Recall from 611B-611C that if we regard a stopping time
T = ([7 > t])ter as a member of the algebra [[,., %, then the partial order < and the lattice operations
V, A on T correspond to the Boolean relation and operations €, U, n on [[,., %, and moreover that
arbitrary suprema in 7" correspond to suprema in [[,., 2l (611Cb), though there can be complications for
general infima (632C(a-i)).

In view of this representation it is natural to consider other Boolean operations on members of 7, in
particular, set difference. I will in fact prefer the notation

clo,) = ([t > t]\ [o > t])ter,

rather than writing 7\ o, as perhaps leaving less scope for confusion, and carrying the notion of an ‘interval’
from o to 7. I will say that ¢(o,7) is the stopping time interval with endpoints o, 7. (Warning! the
endpoints are not uniquely defined; but see (d) here, and also 613Cc below.)

MEASURE THEORY



611Jc Stopping times 13

If S is a sublattice of T, Sti(S) will be the set of stopping-time intervals expressible as ¢(o, 7) where o < 7
in S.

(b) However, the Boolean interpretation of ¢(o, 7), combined with the formulae in 611C and the distribu-
tive laws of Boolean algebra, leads us directly to such elementary facts as
clo,T)ne(o’, 7"y =cloVo', 7T AT
for all o, o/, 7, 7/ € T, corresponding to the formula
(b\a)n (B \d') = (bnb)\ (avd)
of Boolean algebra, and
cloNT,o NT') C (T, ),
corresponding to (and’)\ (anbd) € b’ \ b. Similarly,
c(o,supC) =sup, ¢ c(o,7), cloNo',7)=c(o,T)uc(o’,T)
foro,o', 7€T and C C T, and if 0 < v < 7, then
clo,v)uc(v,T) =c(o,7), clo,v)nc(v,T)=0.
Of course ¢(o,7) =0iff 7 < 0.
(c¢) We can now interpret [o < 7], as defined in 611D, as a kind of projection of c¢(o,7), so that,

for instance, [o < 7] C [0/ < 7'] whenever ¢(o,7) C ¢(o’,7"). More precisely, if o, 7, ¢/, 7/ € T then
c(o,T) Ce(o!, ") iff
[oc<t]Clo’ <oa]nfr<7].

P We have

[ec<t]clo’ <o] < 0=[oc<7]nfo<d]=]oc<TAN0]
(611E(c-i-8))
— 7A0 <o,

[o < 7]

N

[T<7] <= O=Jo<7]nr <7]=JoVvT <]
(611E(c-ii))
— 7<oVT.

Next, for elements a, b, a’, b’ of any Boolean algebra,

byacb\d < b\acb and (b\a)nb na =0
<= b\acb and (b\a)na =0
< bCaulb and bnd Ca.

Translating this into terms of ¢(o,7) = 7\ ¢ and ¢(o’,7") = 7'\ ¢’ in [, 2As,

clo,7)cc(o’,7) &= 7 Ccour’andTno’ Co
«— 7<oV7T andTA0 <o
(translating into terms of <, A and V in the lattice T)
— [o<r]cr
— [o<7] o

7'] and Jo < 7] C [o’ < o]

aln[r<7]. Q

<
<
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14 The Riemann-sum integral 611Jd

(d) Similarly, if o, 7, ¢/, 7/ € T then ¢(o,7) = c(o’, ') iff
[o<t]=[o" <7 o’ =c]n]r=7].

P If the condition is satisfied, then (c) shows at once that ¢(o, 7) = ¢(o’,7"). Conversely, if c(o,7) = c(o’,7")
then the first remark in (c) tells us that [o < 7] = [0/ < 7], and now both are included in

[0 <olnlr <7lnfo<olnlr<7]=[0'=0]n[r=7] Q

(e)(i) For a finite sublattice I of T, an I-cell will be a minimal non-zero stopping time interval of the
form c(o, 7) where o, 7 € I. (If I is non-empty and we think of it as a sublattice of [,., %, then an I-cell
is an atom of the subalgebra of [, . %4; generated by I which is included in ¢(min 7, max I).)

(ii) Let I be a finite sublattice of T, Stig(I) the set of I-cells, and 7 € I. If we write
INtT={oAT:0€l}, IVT={oVT:0€l},

then Stig(I A7), Stig(I V 7) are disjoint sets with union Stig(I). P We can think of 7 and 1\ 7 as comple-
mentary elements of [[, %, and if o, 0’ € T, then

clo,0')nT=cloAnT, 0’ ANT), c(o,0')\T=c(cVT,0'VT)

are stopping time intervals determined by endpoints in I. So if ¢(o,0”) € Stig(I), it must be equal either to
clc Ar,0' A1) or ¢(o V1,0V 7T'), and belong to Stig(I A7) or Stig(I V 7) accordingly. Q

(iii) More generally, if I is a non-empty finite sublattice of T and 79 < ... < 7, in I, then setting
I.=IAm, Ij=IN[r1ulforj<n, IL,=IVT,,

(Stig(Zj))—1<j<n is a partition of Stig(/). (Induce on n, noting that (I V 7,-1) A7, = I N [Th—1,Txl,
(IVTh_1)VT=1IVT7,ifn>0.)

611K The following facts will be extremely useful.

Lemma Let I C 7 be a non-empty finite sublattice, and Stip(I) the set of I-cells. Let Iy be a maximal
totally ordered subset of I, and (7;);<, the increasing enumeration of I.
(a) 9o =minl, 71 = max[.
(b) If i <nthen IN [Ti,’TZ‘+1] = {Ti,’TZ‘+1}.
(c) Stig(1) = {e(7i, Tig1) 1 4 < n}.
(@) [ < 7] n[r < Ti41] = 0 whenever i < n and 7 € I.
(e) sup,;<,, [t = =] =1 for every 7 € I.
*(f) If 0 € T then

Jo = {o A 79,70, med(19, 0, 71), 71, med(11, 0, T2),

. 77—n717med(7—n71; 07 T’n)aTnu g \/ T’I’L}

is a maximal totally ordered subset of the sublattice I LI {o} of T generated by I U {c}.2
*g)IfoeT,then IANo={rAo:7¢€l}isasublattice of T, and {79 A0,... ,7, Ao} is a maximal
totally ordered subset of I A o.
*h)If 1o <op<...<om <7, in T, and K is the sublattice of T generated by I U {oq,...,0m}, then
J; ={med(o;,7;,041) : 1 <n} is a maximal totally ordered subset of K N [o;,0,41], for every j < m.

proof (a) Ip U {min I, max I} is a totally ordered subset of I so must be equal to Iy.

(b) Ifi<n,7elandm <7 <741, then Iy U {7} is totally ordered and 7 € Iy; thus I N [1;, 7i41] =
{7, Tix1} for every i < n.

(c) Writing
IN,={oAT:0€l}={o:0€l,0<T1}

as in 611Je above, we see that

2In a distributive lattice, med(p,q,7) = (p Aq) V (p A7) V (¢ A T); see 3Allc.

MEASURE THEORY



611K Stopping times 15

Stlo(.[/\ Ti+1) = Stlo(] A\ Tl‘) U Stlo((.[/\ Ti+1) \/Ti) = Stlo([/\ Ti) U Stlo([ N [Ti,72-+1])

for each ¢ < m. Since I A 79 is the singleton {70}, Stig(I A 79) = 0; since I N [7;,Ti+1] = {7, Tit1}s
Stig(I N [7i, Tix1]) = {e(7i, Tix1)} for each i < n. Inducing on m, Stig( A7) = {c(74, Ti+1) 1 @ < m} for each
m < n, and

Stig(I) = Stig(I A 1p,) = {c(7i, Tit1) 1 1 < n}.

(d) Set
' =med(7;, 7, Tiy1) = 7 V(T ATig1) = (7 V.T) A Tigr

Then 7; < 7' < 7341 and Iy U {7’} is a totally ordered subset of I, so either 7; = 7/ or 7/ = 7;1. Accordingly

O=[rn<7]n[r <mp]=[rn<nVTAT)]n[(1iVT)ATip1 < Tigi]
=([ri <n]u(ln <7lnln <7ipa])) 0 ((In < mia] 07 < 7)) v [ < 7))
(611E(c-1) and (c-ii))
=[n<7ln[n <mplnlr <mgp] =[n <7]n[r < Tit1]

(611C(c-iii-y)), as required.

(e) If 7 € I then [7 < 7,,,] = sup,<,, [7 = 1] for every m < n. P Induce on m. If m = 0 we have 7o < 7
so [t < 1] =7 ATo=70] = [r = 710]. For the inductive step to m+1 < n,

[7 < il = (Ir < Tl 0 [7 < Ta ) U ([rn < 7] 0 [7 < T ])
(611E(a-i-a))
=[r <t AT ] U ([T < 7] 0 [7 < Tinp1) U ([7in < 7] 0 [T = Tnsa])
(611E(c-i-av))

N

[T <tm]ulr = Tmti]
((d) above)

C sup [r =] ulr = Ty
i<m

(by the inductive hypothesis)

= sup [r=7] Q
i<m+1

At the end of the induction,
l=[r<n]= sup; <, [r = 7]
for every T € I.

(f) The set

{r:reT,tAT0€{oAT0,70}, TV Tn € {Tn,o V 0},
med(7;, 7, Ti11) € {7, med(7;,0,7;), 711} for every i < n}

is a sublattice of T (because all the operations 7 — 7 A 79, 7 — med(7;, 7, Ti41), T — T V 7, are lattice
homomorphisms), containing o (obviously) and including I (because I A 79 = {79}, I V 7, = {7} and
INr,7ig1] = {7,741} for ¢ < n); so it includes I U {o}. But this means that there is no member of
I U{o} lying strictly between any two terms of the string defining Jy, while min(I U {c}) = o A 79 is the
first member of Jy and max(f U {oc}) = o V 7, is the last. Thus Jy is a maximal totally ordered subset of
I'U{c}, as claimed.

(g) I Ao is a sublattice of T because T is a distributive lattice. Since 79 = minI and 7, = max]I,
70 Ao and T, A o are the least and greatest members of I A 0. Suppose that 7 € I and i < n are such that
TiANo <T7Ao <Tiy1 Ao. Then 7/ = med(7;, 7, 7541) € I and
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16 The Riemann-sum integral 611K

TANo=((TVT)ATi1)ANo=((TAa)V(TiNa)) A1) Ao =1 Ao.

But as 7 € I N [r,7i41] and Iy is a maximal totally ordered subset of I, 7/ € {r, 741} and T Ao €
{ri No,Ti41 ANo}. So {r; Ao :i<n} is a maximal totally ordered subset of I A o.

(h) As J; C K and
o; =med(0;,70,0;41) < med(oj,71,0541) < ... <med(0j,Tn, 0j41) = 0jy1,
J; is a totally ordered subset of K N[0, 0,41] containing o; and o;41. As in (f), the set
{p:peT,med(o;,p,0j41) € {med(cj,7,0j41) : 7 € I}}

is a sublattice of 7 including {0y, ... , 0., } UI and therefore includes K. Now suppose that p € KN[o;,0;41]
and J; U {p} is totally ordered. Then there is an ¢ < n such that

med(oj,Ti,ajJrl) < 14 < med(oj,Ti+1,Uj+1).

Let 7 € I be such that med(o;, p,0j4+1) = med(o;,T,0j+1) and consider 7" = med(7;, 7, 7;11). Then

med(o;,7’,0j4+1) = med(med(oj,7;,0;41), med(cj,7,0,+1), med(cj, Ti41,05+1))
(because o — med(c;,0,0,41) is a lattice homomorphism)
= med(med(c;, 7, 0j41), med(o;, p,0j41), med(o;, Tit1,0541))
= med(med(o;, 7, 0j41), p, med(0j, Tit1,0;41))
(because 0; < med(o;,7,0,41) < p <med(oj,Tit1,041) < 0j41)
=p.
But as 7 € I and {7 : k < n} is a maximal totally ordered subset of I, either 7/ = 7; and p =

med(cj, i, 0541) or 7 = 741 and p = med(0j, Ti+1,0541); in either case p € J;. Thus J; is a maximal
totally ordered subset of K N [o;,0;41], as claimed.

611L Definition If ] is a finite sublattice of 7, I will say that a sequence (7;)i<, in I linearly generates
the I-cells if it is non-decreasing and {7; : ¢ < n} is a maximal totally ordered subset of I. (It will be
convenient not to insist that the sequence be strictly increasing. But we shall always have 7 = min I, 7,, =
max I, I N[7;, 7ip1] = {75, Tiy1} for every i < n, Stig(I) = {c(7i, Tix1) 4 < n, Ti # Tixa}, Sups<, [0 = 7] = 1
for every o € I, [1; < o] n]o < 7;+1] = 0 whenever o € I and ¢ < n, and
(o A 1o, 70, med(T0,0,71), T1s- -+ s Tne1, Med(Tr—1,0,Tn), Tn, 0 V Tn)

will linearly generate the (I U {o})-cells for every o € T.)

611M Covering and full sublattices (a)(i) If A, B C 7, I will say that A covers B ifsup,c, [T = o] =
1 for every 7 € B. (The formula is to be interpreted as including a promise that, except in the trivial cases
A ={0} and B =0, A is non-empty, following the rule that sup @ = 0 in any Boolean algebra.)

(ii) If A C T, the covered envelope of A will be the set {7 : 7 € T, sup,c4 [T = o] = 1}, that is, the
largest subset of T covered by A. Of course A covers itself, that is, the covered envelope of A includes A.
(b)(3) If AC T and a € 2, the set
S={r:7€T,acC sup,cyfo=r]}
is a sublattice of 7. P If 7, 7/ € S, then

sup [tV =c]osup([rVvr =7]n[r=0c])usup([r VT =7]n[r' =0])
c€A oc€A oc€A

(611E(c-iv-7))
S(an[r <thulan]r <7'])
(611E(a-ii-3))
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(611D). Similarly

sup [t AT =c]Dosup([rAT =7]n[r=c])usup([r AT =7]n[r' =0])
o€A o€A o€A

SD(anr < ulan|r <7]) =a.
So 7V 7 and 7 A7’ belong to S. As 7 and 7’ are arbitrary, S is a sublattice of 7. Q
In particular, the covered envelope A of A is a sublattice of 7.
(ii) If p is an upper bound for A in T, then p is an upper bound for A. P If € A, then
[ <pl2sup,ealr =0o]nlo <pl2sup,eqalr=0] =1
and 7 < p. Q Similarly, if p is a lower bound for A, it is a lower bound for A.

(iii) Since A C A, it follows that if A has a greatest member then this is also the greatest member of
A, and that if A has a least member then this is also the least member of A.

(iv) Note that if o, 7 € T then {0, 7} covers {oc A7,0V 7} (by (i) above) and also {o A7T,0V T} covers
{o,7} (because

[c<t]clo=cAT]nr=0VrT], [r<o]cCo=0cVT]n[r=0cAT]).

(c) I will say that a sublattice of T is full if it is equal to its covered envelope.

(i) The intersection of any non-empty family of full sublattices of T is full. P If S is a non-empty
family of full sublattices of T, and 7 belongs to the covered envelope of §* =[S, then for any S € S we
have

SUP,es [T = 0] 2 sup,eg- [T=0] =1
so 7 € S. As S is arbitrary, 7 € §*; as 7 is arbitrary, S* is full. Q
(ii) If A C T, its covered envelope Ais full. P If p belongs to the covered envelope of A then
Sup,eq [p=0]2 SUD,c A res [p=7]n[r=0] =sup,eslp=7]=1

andpEfl.Q

(d) For any p € T, T A p is full. P If 7 belongs to the covered envelope of T A p, then

[r<d2 sw [r=olnlo<pl
c€T Np

(611E(c-iv-av))
= sup [r=o0]=1,
oc€T Np

so T €T Ap (611E(a-i-y)). Q Similarly, 7 V p is full. Putting these together, [p, o'l = (T Ap")N(T Vp) is
full whenever p < p’ in 7.

(e)(i) If S is a sublattice of 7" with covered envelope S, and p € S, then S A p is the covered envelope of
S Apand SV p is the covered envelope of SV p. PP Since S is a sublattice of T ((b-1) above) and p € S,
SAp={r:7€8,7<p}=8SN(T Ap)
(see the remark following 611C) and is full (putting (c) and (d) together). As it includes S A p, it includes

the covered envelope of S A p. In the other direction, if 7 € S A p, then
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18 The Riemann-sum integral 611Me

sup [r=oc]=sup[r=0Ap]
gESAp ocES

(because SAp={oAp:0€S})

=sup[rAp=o0Ap]
o€S

(because 7 =T A p)

D sup [r = o]
oS

(611E(c-v-av))
=1
because p € S and S is a sublattice of T,soT € S. Thus 7 belongs to the covered envelope of S A p, and

this is the whole of & A p-
Replacing every A above by V, we see that S V p is the covered envelope of SV p. Q

(ii) If S is a sublattice of T, p, p’ € S and p < p/, then the covered envelope of
SNp,p'1=(8Vp)Ap' ={med(p,0,p') : 0 € S}
is (SVp)Ap =8N[p,p]. (Because T is a distributive lattice, SV p is a sublattice of T, so we can apply
(i) twice.)

(f) If S is a sublattice of T with covered envelope 3, then ﬂTGS A, = ﬂaeS A,. P Write B for ﬂUES Ay
Then ﬂreé A C B just because S C S. In the other direction, if b € B and 7 € 3, then for any o € § we
have b € a, so bn[r = o] € A, (611H(c-iii)); accordingly b = sup,cgbn [T = o] belongs to A;. As b and 7
are arbitrary, B C ﬂTe § ¥, and we have equality. Q

(g) Suppose that A, B C T and A covers B.

(i) A covers the covered envelope of B, because A covers its own covered envelope which is a full
sublattice including B.

(i) f 7€ T,then ANT={ocAT:0¢€ A} covers BAT={ocAT:0€ B}. PIf o € B, then
1=sup,icyslo=0"]1C supyicploANT=0"AT]
by 611E(c-v-a). Q

611N Covering ideals Let S be a sublattice of T.

(a) Definition I will say that a covering ideal of S is an ideal &’ of & which covers S in the sense of
611M.

(b)(i) If 7 € S and &' is an ideal of S, then {[o = 7] : 0 € §'} is upwards-directed. P If o, 0/ € S’ then
v=(oVo')AT belongs to S’,and [v=7] 2o =7]ufo’ =7]. Q

(i) If 7 € S and &’ is an ideal of S, then sup,cg [0 = T] = sup,cs [T < o]. P For any 0 € &,
o AT eS8 and

[c=7]clr<o]=[r=0AT]. Q

(c) If S is a sublattice of T and S;, S are two covering ideals of S, then Sp = §1 NSy is a covering ideal
of S.

P Certainly Sy is an ideal of S. Take 7 € S and a € 2\ {0}. Then there is a 01 € S; such that
a1 = an [t =o1] # 0. Next, there is a g9 € Sy such that as = a; n[r = 03] # 0. In this case, o0 = 01 A 09
belongs to Sy, a

[F=c]2[r=0ci]n[r=02]2as

meets a. As a and T are arbitrary, Sy is a covering ideal of S. Q
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(d) If S’ is a covering ideal of S and §” is a covering ideal of &', then S§” is a covering ideal of S. P
It is elementary to check that S” is an ideal of S. If 7 € S and a € A\ {0}, there is a 0 € S’ such that
b=an[o = 7] is not 0. Now there is an v € §” such that ¢ = bn v = o] is non-zero. But now ¢ C Ju = 7],
so an[v=7] #0. As a is arbitrary, sup,cg~ [v = 7] = 0; as 7 is arbitrary, " is covering in S. Q

(e)(i) Ty is full. P If 7 € T and sup,c7, [r = o] =1, take any non-zero a € 2. Then there are a o € T
such that an[r =o¢] # 0 and a ¢t € T such that
an[r=o]glo>tInr=c] =[r>t]n]r =]
1-5)), so aZ |t >t|. As a 1s arbitrary, infycr |7 >t = 0 and 7 € Ty. us 1S 1ts own covere
(611E(-8)), s0 ag [7 > t]. As a is arbitrary, infier [ > ¢] = 0 and 7 € 7. Thus Ty is i d
envelope and is full. Q

(ii) 7 is a covering ideal of Ty. I I observed in 611Cg that 7, is an ideal in 7 and therefore in 7. If
T€Trandt €T, then t and 7 A € belong to Ty, while

[r=rAf]l=1\[t < 7]
(611E(a-ii-av))
=1\supr > s]\ [t >s] =1\ sup[r >s] =1\[r >1].
seT s>t

So
super, [7 = 0] 2 super [r =7 AT =1\ infier [r > 1] =1

because 7 € T;. As 7 is arbitrary, 7T, is covering in 7;. Q

*6110 Definitions A variation on the concept of ‘full’ sublattice will be relevant in §615, and important
in §626.

(a) If A, B C T, 1 will say that A finitely covers B if for every 7 € B there is a finite J C A such that
sup,c; [T =0] = 1.
(b) If A C T, the finitely-covered envelope of A is the set of those 7 € T for which there is a finite

subset J C A such that sup,c; [T = o] = 1, that is, the largest subset of 7 finitely covered by A. Of course
A finitely covers itself, so is included in its finitely-covered envelope.

(c) A subset of T is finitely full if it is equal to its finitely-covered envelope.

*611P Lemma Suppose that 2 # {0}.

(a) Let A be a subset of 7 and Ay its finitely-covered envelope.
(i) Ay is finitely full.
(ii) Ay is a sublattice of the covered envelope A of A.

i
(iii) A ¢ is the intersection of all the finitely full subsets of 7 including A.
(b) The intersection of any non-empty family S of finitely full sublattices of T is finitely full.
(c) If S is a sublattice of 7 which is order-convex (that is, 7 € S whenever ¢ < 7 < ¢’ in 7 and o,
o' € 8), then S is finitely full.
(d) Tf S is a sublattice of T and 7 € Sy, there are 0y < ... < 7, in S such that sup; <, [r = o;] = 1.
(

e) If S is a sublattice of T then § is both coinitial and cofinal with S’f.

proof (a)(i) If 7 € T and {7} is covered by a finite subset I of Af, then for each ¢ € I there is a finite

subset J, of A covering {o}; now J = J,; J5 is a finite subset of A, and
L =sup,er [0 = 7] = supgersuppes, [0 =rln[p =] < sup,e; [p = o]

(using 611E(c-iv-y) so 7 € A;.
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(ii) From the definitions in 611Ma and 6110 we see at once that flf C A. If o and 7 belong to Af,
there are finite sets J, K C A such that o is covered by J and 7 is covered by K; now {o A 1,0 V 7} is
covered by {o, 7}, by 611M(b-i), and therefore by J U K. So Ay is a sublattice of A.

iii) If B is a finitely full subset of 7 including A, then A C By = B; since Ay itself is finitel full, it
Yy g f f f Yy
is the intersection of all the finitely full sets including it.

(b) (Cf. 611M(c-i).) If I is a finite subset of (]S then its covered envelope is included in every member
of S so is included in (S.

(c) If 7 € T and there is a finite set I C S such that sup,c; [T = o] = 1, then (as A # {0}) I is
non-empty, so we can speak of inf I and sup I, which both belong to S. Now

[inf I < 7] C supyer [InfI <o]nfr=0c] =sup,c;[r=0]=1
so inf I < 7; similarly, 7 < supI. As S is order-convex, 7 € S.

(d) There is a finite subset J of S covering {7}, and as 2 is not {0}, J cannot be empty. Now the
sublattice I of T generated by J is finite (611Ca) and not empty, so there is a finite sequence (o, ... ,0,)
linearly generating the I-cells (611K-611L). Now {oy,... ,0,} covers I and therefore covers {7}.

(e) If 7 € Sy, there is a finite set J C S such that sup,; [0 = 7] = 1. As A # {0}, J is not empty, and
we can speak of min J and max J, which both belong to §. Now

1=sup,c;lo=7] C sup,c;[o <7]n[minJ < o] C [minJ < 7]

(611E(c-iv-)), so min J < 7. Similarly, 7 < max J.

611X Basic exercises >(a) Suppose that T = [0,00[. (i) Show that 7; can be identified with a
sublattice of L°()* which is closed under addition and multiplication by scalars greater than or equal to
1. (See §364 or 612A for the space LY = LO(A).) (ii) Show that T, becomes identified with 77 N L>°(2A).
(iii) Show that a set C' C T is bounded above in T iff it is bounded above in L%, and that in this case its
supremum taken in 77 is the same as its supremum taken in L°.

>(b) Show that Ayax7 = A and that Ain 7 = (e As-
>(c) In 611J, let Z be the Stone space of 2, so that 2 can be identified with the algebra £ of open-and-
closed subsets of Z, and A7 with the family
{W W CZxT, W[{t}] € £ for every t € T'}.

(i) Show that a stopping time 7 € T corresponds to an ordinate set W, C Z x T such that (z,t) € W,
whenever (z,s) € W, and t < s. (ii) Show that if o, 7 € T, then ¢(o, 7) corresponds to a subset W of Z x T
in which all vertical sections are intervals, and [o < 7] is now the interior of the closure of the projection
WLT] of W onto Z.

(d) Let S be a sublattice of 7. Show that S is order-convex (4A2A) iff med(7, o, 7’) belongs to S whenever
7,7 eSandoeT.

(e) Suppose that I is a non-empty sublattice of T, and that (7,...,7,) linearly generates the I-cells.
Show that if o € T then

(toNoy... ;Tn Noyo,ToNV O,... , TV O)

linearly generates the (I U {o})-cells, where I Ll {c} is the sublattice of T generated by I U {c}.

(h) Suppose that T'=N. (i) Show that if 0 € T and n € N then [o > n] cannot meet [(n +1)” > o], so
that [o > 7] = [o > (n+1)7]. (ii) Show that T is the covered envelope of {# : n € N} U {max T }.

(g) In 611M(b-i), show that I = {7 : a C sup,c4 [T = o]} is a full sublattice of 7.

(f) Let S be a finitely full sublattice of T and Sy an ideal of S. Show that Sy is finitely full.
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611Y Further exercises (a) Suppose that 2 is ccc (definition: 316A). Show that if A C 7 is non-empty,
there is a countable B C A such that sup B =sup A in 7. (Hint: remember to cover the case T = wy.)

(b) Let &t = {0,a,1\a,1} be a four-element Boolean algebra, and take T' = [0,00[. Set Ay = {0,1}
and 2, = A for ¢ > 0. Show that for s > 0 there is a stopping time 74, adapted to (;);>0, defined
by saying that [rs >t] = aif t > s, 1 if t < s. (i) Show that infsso7, is the constant stopping time
0 = min7, and is not defined by the formula in 611F. (ii) Show that ()., # . (iii) Show that
Sup,g [7s < max 7] # [0 < max T].

(c) Show that if A C T is finite then the covered envelope of A is order-closed in 7.

(d) Let S be a sublattice of T, and write Z for the set of totally ordered finite subsets of S. For I, J € T
say that I C J if J covers I. Show that C is a pre-order on Z (511A) under which Z is upwards-directed.

611 Notes and comments Stochastic calculus is ordinarily presented in terms of probability spaces and
random variables. I followed this line myself in the brief introduction to stochastic processes in §455. To
go farther, however, I believe that (as with the ergodic theory of Chapter 38) the essential ideas can be
expressed more clearly in terms of probability algebras (2, ji) and processes in the associated spaces L°(2A),
LY(A, 1) and L*(2A, ji). The machinery for this has already been developed in Chapter 36, so we can go
directly to the new ideas in 611B, 611G and 612D. I give a translation from the standard framework in
612H.

In this context, let me recall what I wrote in the introduction to Chapter 27. The primary concept of
probability theory is not a measure space of measure 1. Rather, it is ‘random variable’ with its associated
distribution. ‘Probability spaces’, as I use the phrase in this treatise, can be regarded as models for a theory
of random variables. But in any statistical question, it is the variable itself which we try to measure and
make predictions for. If we knew where it came from, we’d study that. Now ‘probability algebras’, in my
terminology, provide a perfectly adequate model for distributions, including joint distributions (see 653B
and 653Xc below), while evading some of the technical problems associated with the arbitrary nature of any
choice of probability space. I ought of course to admit that they simultaneously obscure some important
sources of intuition.

Again, it is normal to think of filtrations and stochastic processes as based on real-valued times, so that
the totally ordered set T of 611A is [0, co[ or something very like it. (See 611Xa for a note on how to look at
this case.) I have nothing interesting to say about other cases, but there is very little extra work involved in
the shift to an arbitrary totally ordered set, and this enables me to avoid an occasional shuffle when ]0, oo[ or
[0, 1] seems a more appropriate parameter space. In fact the extra steps needed in the general case, dealing
with gaps in the parameter space (see the last clause in the definition 611B(b-i)), are already needed in the
relatively elementary case T'= N. But it will become plain in Chapter 63 that some of the most important
ideas of the theory apply only in contexts essentially excluding or erasing gaps in time.

I have deliberately cast the principal definitions in forms which make them applicable in such cases as
T =Zor T = R. But I note that the phrases ‘finite-valued’ and ‘bounded’ in 611A(b-iii) could be misleading
when T has no least member. Of course we always have the option of adding a least member —oo to T" and
setting A_ o = (,cr As- And then we might be tempted to add yet another element —oo0’ < —oo to T" and
set A_oor = {0,1}. Such manoeuvres can make no difference to the mathematical content of the work here,
but they will sometimes smooth the task of adapting general results to specific applications.

The calculations in 611C, 611E and 611H are elaborate but fundamentally elementary. I ought to offer
a word on the intuition behind the concept of ‘stopping time’. The requirement ‘[7 > ¢] € 2’ (or, if you
prefer, ‘[t <t] € Ay’) is a declaration that the decision whether to continue beyond time ¢ must be based
on what can be observed at that time, the potential observations being those which can be represented by
members of ;. In 6111 we have a direct expression of this idea: the stopping time o corresponds to waiting
until we reach a stopping time 7 € A, checking whether we are in the region a,, and if so halting. This
can be done only if the decision is based on something which will be observable when we reach 7, that is, if
ar €A,

The point at which I think an imaginative effort is required is in 611J-611K. Here I expect that most
people will find the expression in 611Xc useful in visualizing the sets Stig(I) of I-cells for finite sublattices
I; they look like patchwork quilts. The same formulation can be used to help with 611C-611E.
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Version of 24.12.16/21.10.22
612 Fully adapted processes

The next step is to introduce the processes which this volume is devoted to studying. These are an
abstract version of the real-valued stochastic processes (X;);>o of §§455 and 477. Instead of starting from
Y;-measurable functions X; : 2 — R and then showing that it is possible to define Xj,-measurable functions
X}, for stopping times h : Q — [0,00[, I move directly to families 4 = (u,)ses of equivalence classes
of measurable functions where S is a sublattice of the lattice 7 of stopping times discussed in §611. A
‘fully adapted process’ is one satisfying the essential measurability and consistency requirements of 612D.
Among these, the ‘simple’ processes (612J), those which are constant between finitely many break points,
are particularly important. I end with descriptions of Brownian motion (612T) and the standard Poisson
process (612U) in this language.

612A 2 and L°(2l) (a) Given a Dedekind complete Boolean algebra, we have a Dedekind complete
f-algebra L° = L°(2A) as described in §364. (For exact statements of the algebraic relationships between
linear structure, lattice structure and multiplication which go to make an ‘ f-algebra’, see 351A, 352A, 352D
and 352W.) §364 was dedicated to setting up a coherent description of L°(2) from 2 in logically primitive
terms, so that, in particular, it would be visibly free of any dependence on the axiom of choice. But if you
are willing to relax this discipline, then I think that the easiest way to approach these formulae is to think
of A as a quotient X/Z, where ¥ is a o-algebra of subsets of a set Q2 and 7 is a o-ideal of ¥ (314M), and to
recall that L can now be regarded as a space of equivalence classes of Y-measurable functions (364C), with
the natural definitions of addition, multiplication and lattice operations.

(b) In §364 I introduced the formulae [u > ], [u € E], where u € L°, a € R and E C R is a Borel
set, to represent ‘the region where u is greater than o’ or ‘the region where u lies in E’ (364A, 364G). I
mentioned formulae [u > of, [u < 0] and Ju # 0], and in the exercise 364Yb, I suggested a way of interpreting
[(ui,...,u,) € E] when E is a Borel subset of R”. Here it will be convenient to extend the notation to
such formulae as [u # v], meaning, if you like, [|u — v| > 0]. In terms of the representation of LY as a space
of equivalence classes of functions, we have

[[(fl.v i 7fr.L) € E]] = {W : (fl(w)7' . ,fn(OJ)) € E}.
for all ¥-measurable functions f1,..., f, : @ — R. Similarly, [f; # f3] can be interpreted as {z : fi(w) #
f2(w)}*, and while this interpretation skates over some technical issues, it gives clear signposts to such basic
identities as
[u=v]nfv=w] C u=w]

without any real danger of your being led astray.

(c) Let E C R be a Borel set and h : E — R a Borel measurable function. Set
Qr={u:ue Ll Jue E] =1} ={f*: f:Q — E is measurable}.
If u € Qg,we have an h(u) € L defined by saying that [h(u) € F] = [u € h™'[F]] for every Borel set
F CR (364H). If u, v’ € Qp then [u = u'] C [A(u) = h(u')]. Observe that if hi, ha : R — R are both Borel
measurable, we now have hyho(u) = hy(ho(u)) for all hy, he and u € L°, because
[u € (hih2) ' [F]] = [u € hy ' [hi [FI]] = [ha(u) € hy ' [F]] = [ha(ha(w) € F]

for every Borel set F. Also, of course, h(u) = u if E = R and h(a) = « for every a € R, that is, h
is the identity of the semigroup H of Borel measurable functions from R to itself under the operation of
composition of functions. So we have a semigroup action « of H on L° defined by saying that heu = h(u)
for h € H and u € L°.

(d)(i) The following elementary facts are easy to check.
() If v € R and h(a) = ya for a € R, then h(u) = yu for every u € L°.
(B) If h(a) = | for a € R, then h(u) = |u| for every u € L°.
(7) If h(a) = a? for a € R, then h(u) = u x u = u? for every u € L°.
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(8) If h(a) = 1 for o € R, then h(u) = x1 is the multiplicative identity of L° for every u € L°.
(€) If h: R — R is non-decreasing, then h(u) < h(v) whenever u < v in L°.

(ii) It follows that if V' C LY is such that u +v € V for all u, v € V and h(u) € V for every convex
function h : R — R such that h(0) = 0, then V is an f-subalgebra of L°, that is, a Riesz subspace closed
under multiplication. I By (i-«), it is closed under scalar multiplication so is a linear subspace. By (i-5),
lu| € V for every u € V, so V is a Riesz subspace (352Ic). If u, v € V then u x v = 1((u+v)? — u? — v?)
belongs to V' by (i-v), so V is closed under multiplication and is an f-subalgebra. Q A fortiori, if V is such
that u+v € V for all u, v € V and h(u) € V for every continuous function h : R — R such that h(0) = 0,
then V is an f-subalgebra of LY.

(iii) Continuing from (c) above, it will be important also to note that, for any u, v € Qg, [u < v] C [h(u)
P Identifying Qg with a set of equivalence classes of real-valued measurable functions from © to E, we find
that h(f*) = (hf)* for all such functions f (364Ib), so that

[n(f*) < h(g")] = [(hf)* < (hg)*] = {w: hf(w) < hg(w)}"
Hw: f(w) <gW)* =1/ <g°]
for all measurable f, g : Q — R. Q It follows at once that [u = v] C [h(u) = h(v)].

(iv) Take any u € L°. Again writing H for the space of Borel measurable functions from R to itself,
H is an f-subalgebra of the f-algebra RF as well as a sub-semigroup under composition. Treating H as an
f-algebra, the map h + h(u) : H — L° is a multiplicative Riesz homomorphism. P It is not especially
hard to prove this directly from the formula in (c), but you may prefer to use the alternative description of
h in 364Ib: expressing 2 with X/Z, where ¥ is a o-algebra of subsets of a set 2 and Z is a o-ideal of ¥, as
in (a), so that u can be thought of as the equivalence class of a ¥-measurable function f: Q — R and h(u)
becomes the equivalence class of the composition hf, then h — hf is a multiplicative Riesz homomorphism,
so h— (hf)* = h(u) also is. Q

(v) It will happen more than once that we have two Dedekind complete Boolean algebras 21 and
B, f-subalgebras V, W of L°(2A) and L°(B) respectively, and a linear operator @ : V — W such that
Qlv| = |Qu| and Q(v?) = (Qv)? for all v € V. In this case, @ will be an f-algebra homomorphism, that
is, a multiplicative Riesz homomorphism. (Use the ideas of (ii).)

(e)(i) Now suppose that B is an order-closed subalgebra of 2. In this case we can think of L°(8) as
being the subspace

{u:ue L), [u > a] € B for every a € R}.
The arguments of 364F show that this is equal to
{u:ue L°A), [u € E] € B for every Borel set E C R}

and therefore that h(u) € L°(%8) whenever h € H and u € L°(®8). Looking at this a little more deeply, we
see that if h € H we have two different functions hg : LO(A) — L°(21) and hg : LO(B) — L°(B), but that
hes = ho [ L°(%B), so that we can fairly safely use the same symbol & for either.

Note also that if A C L°(®8) is non-empty and has a supremum v in L°(2A), then v € L°(8). P For
any o € R, [v > a] = sup,c4 [u > af, by 364L(a-ii), and this belongs to B because B is order-closed in
2. Q It follows that if A C L9(B) is non-empty and has an infimum v in L°(2), then v € L°(B) (because
—v = sup(—A)). So L(B) is an order-closed sublattice of L°(2A).

(i) If (%B;)ics is a non-empty family of order-closed subalgebras of 2 with intersection B, then B is
an order-closed subalgebra of 20 and

LO(B) = {u € L°(A), [u > a] € B for every a € R}
={uec L°®), [u>a] € B, for every a € Rand i € [} = ﬂLO(%i).
iel
(iii) For any u € L°(2), the set {[u€ E] : E C R is Borel} is a o-subalgebra of 2l, the smallest
o-subalgebra B of 2 such that u € LY(B); it is the o-subalgebra generated by {[u > o] : « € R}. Following
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272C, T will say that it is the o-subalgebra of 2 defined by u. Similarly, if A C L°(2l), I will say that the
o-subalgebra of 2 generated by {Ju > a] : u € A, @ € R} is the o-subalgebra defined by A.

(f) Let € be another Dedekind complete Boolean algebra, and ¢ : 2l — € an order-continuous Boolean
homomorphism. Then we have a unique order-continuous f-algebra homomorphism 7j, : L°(2) — L°(€)
such that
[Tyu > o] = ¢p[u > a] for every u € LY(2) and « € R,
Ty(xa) = x(¢a) for every a € 2,
[Typu € E] = ¢Ju € E] for every Borel set E C R,
TJLQ[ = B¢T¢ for every Borel measurable h : R — R,
T is injective or surjective iff ¢ is

(364P).

612B Products and processes For the rest of this section, and indeed for nearly all the rest of the
volume, 2 will be a Dedekind complete Boolean algebra, T a totally ordered set, (2;);cr a filtration of
closed subalgebras of 2, T the associated lattice of stopping times, and (2(;),c7 the corresponding family
of order-closed subalgebras (611B-611C, 611G). For o, 7 € T, [o < 7], [o < 7] [o = 7] will be the regions
defined in 611D.

(a) If S is a sublattice of T, we can form the family (L°(2l,)),es. If we take the natural product linear
space, lattice and multiplicative structures, we get an f-algebra []_.g L°(2A,) (364R). Moreover, writing H
for the semigroup of Borel measurable functions from R to itself as in 612Ac, we have a natural action of H
on [[,cs L°(2,) defined by setting

he(ug)oes = (hoto)oes

whenever h € H and u, € L°(2,) for every o € S.
Writing h(u) for heu, as in 612Ac, and thinking of 4 = (uy)ses as a function from S to LY we find
ourselves with a composition hu = hou : S — L.

(b) Another way of looking at [], s L°(2,) is to identify it with L°(€), where € is the simple Boolean
algebra product [, . s s (315A, 364R). Once again, it is easy to see that if h € H then he : LO(€) — LO(€)
matches the function u — hw : [T, cs L°(As) — [],cs L°(2A,) described in (a).

(c) From (b) and 612A(d-ii), or otherwise, we now see that if V is a subset of [] . L°(2) such that
u+v €V and hu € V whenever u, v € V, h: R — R is convex and h(0) = 0, then V is an f-subalgebra of

HUES LO (Qltf)'
612C Before going farther, I give the following fragment complementing the results of §611.

Lemma If o, 7 € T and u € L°(2A;) then u x x[r < o] and u x x[r = ¢] and u x x[r < o] belong to
LO(Agnr).

proof It is enough to consider the case u > 0. In this case, for a € R,

[uxx[r<o]>a]l=[u>a]n[r<o]=[u>a]\[o <7] €Aonr if >0
(611H(c-iii)))
=1eA,n, if a <0,
sou x x[r < o] € L°(RA,x-). As for the other parts, [T = o] belongs to A,n, SO
ux x[r=0] =uxx[r <o] x x[r=0]
belongs to L°(™A,r-); while u x x[7 < o] is the difference of the other two.

612D Fully adapted processes To continue the real work of this section, let S be a sublattice of T
and 4 = (Uy)yes a family in LO(20).
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(a) Definition I will say that u is fully adapted to ()it if u, € LO(2,) and [o = 7] C [u, = u,]
whenever o, 7 € S.

(b) Note that if u, € L(2A;) and [o = 7] C [u, = u,] whenever ¢ < 7 € S, then u is fully adapted. P
For general o, 7 € S we now have

[ec=71]cle=cAT]n[r=0cAT]
(611E(a-ii-3))

- IIUU = uo/\'rﬂ n IIUT = UU/\T]] - [[uo' = uTﬂ' Q

(c) If u is fully adapted and S’ is a sublattice of S, then of course u[S’ is still a fully adapted process.

(d) If u is fully adapted, I is a finite sublattice of S, and (79 ... ,7,) linearly generates the I-cells as in
611K-611L, then for any o € I we have
SUp; <, [ue = ur,] 2 Sup; <, [e=n]=1
by 611Ke. So, for instance, if u = sup,,, ur,,

[us < a2 SUp;<p [ug =ur] =1

and u, < @; thus @ = sup,¢; u,. Similarly, sup,¢; [tue| = sup;<,, |,

(e)(i) Note that if u is constant, say u, = z for every o € S, then u is fully adapted iff z € (), g L° (2, );
if S has a least element, this will be so iff z € LY(ins). For any 2z € LO(A), I will write 21 for the fully
adapted process (z),ecs where S is the sublattice {o: 0 € T, z € L°(,)}. When 2z = x1 and S = T 1 will
write just 1; similarly, O will be the constant process with value 0 € L°(2().

(ii) Generally, if z € L), I will write zu for the process z1 xu = (2 X Uy )ges’, Where S’ = {0 : 0 € S,
z € L°(A,)}. Then &' is a sublattice of S and zu is fully adapted. P If o, 7 € S’ then A, rr = A, N A,
and A,y 2 Ay (611H(c-ii)), so LO(Apnr) = LO(™A,) N LO(A,) and LO(Ayy,) 2 LO(A,) (612A(e-ii)) both

contain z, and o A 7 and o V 7 belong to S’; thus &’ is a sublattice of S. If ¢ € &', then z and u, both
belong to L°(2,), so 2z x u, € L°(A,). If o, 7 € S’, then

[z X ug =2z X u] =[2=0]uus =u,] 2o =7],

so zu is fully adapted. Q

(f) Suppose that u is fully adapted.

(1) uonr + Upvr = Uy + Uy and Uppr V Ugyr = Us Vu, forallo, 7€ S. P

[oc<t]=JcAT=0]n[oVvT=r]

(611E(a-ii-8))
C [uonr = o] N [tovr = ur]
C [uonr + Uovr = Ug + ur] N [tonr V Ugyr = Uy V ur],
and similarly
[T < 0] C [uocar + tovr = U + Ur] N [uoar V Ugyr = Uy V ur];
accordingly

IIuO'/\T + Ugvr = Uy +U-,—]] n [[ua/\T V Ugyr = Ug \/UT]] 2 [[0- < T]] U IIT < U]] =1
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and Uonr + Uovr = Us + Ur, Uonr V Uovr = Ug V Ur. Q

(i) |ur — up| = |ugyr — Uonr| for allo, 7€ S. P

[[O' < T]] < [[ua/\r = Ua]] n [[ua\/r = UT]]

C [uovr — Uonr = ur — us] C [[Uovr — Uonr| = [Ur — U]
and similarly
[T <] C [luovr — tonr| = |ue — url] = [luovr — tonr| = |ur — uo|]
0 [|ugyr — Uonr| = [ur —us|] =1 and |ur — ug| = [ugyr — Ugnr|- Q

(iii) |uo — up| < Jugnr — Upnr| + |Uovr —upy-| for all p, o, 7€ S. P

Hp < T]] [[J < T]] - |UU - 7-lfp| = |u0'/\7' - up/\’r”]

|ua - up| S |u<7/\7' - up/\'r| + |u0'\/T - up\/TH]7

[y — up| = [uovs — UvaH]

[
<l
[r<plnlr<o]c]
<l

Uy — up| < Nuonr = Upnr| + [Uovr — upyr|]s
[p <71lnlr <o) € [lur — up| + [t — ur| = |tonr — Upnr| + |Uovr — Upyr]]
€ [luo = up| < Juonr = upnr| + [tiovr — upv=l;
and similarly
[o <7lnlp <ol € lluo — up| < ftonr = upnr| + ltiovr — upyr[]-
Assembling these,
llue — up| < [uonr — Upnr| + [Uovr —upy-|] 21,

that iSa |u0 - up‘ S |u0'/\7' - up/\‘r| + |ua\/7’ - upVTl' Q

612E Where fully adapted processes come from In applications, one commonly starts from a family
(X¢)ter of random variables, corresponding to a family (us)ier € [],ep L°(2:). In Chapter 63 T will look at
general rules for converting such families into fully adapted processes. For the moment, I describe a couple
of special cases. Another of the same kind is in 612R.

(a) If T is finite and not empty, with least value min 7', then for 7 € T and ¢t € T set
art = (infsey [T > s])\ [7 > 1]

(counting inf @ as 1, as usual, so that ar min = 1\ [7 > minT]). Then (a,¢)ter is a partition of unity in 2,
and a,; € 2; for every t. Now set

Uy =D e Ut X Xart.

If t € T and a € R then

[ul > a] \ [[T>t]]—sup[[us>a]]ma75\[[7>t]]—sup[[us>a]]ma75\[[7>t]]
s<t

(because a,s C [T > t] if s > t)
e Ay

because [r > t] € A and Jus > a]nars € As C A; for s < ¢. As t is arbitrary, [u, > a] € 2A;; as « is
arbitrary, u’. € L°(2A,).
Ifo,7€T and [o =7] =a, then ano > t] = an[r > t] for every ¢t (611E(a-i-83), a nast = anay for
" x xa and a C Jul, = u’]. So we have a fully adapted family.

every t, ul X ya = ul.
If 7 = { then ai; = 180 uy = uy, and we have the required correspondence between (u’).c7 and (ut)ier.

t
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(b) If T is well-ordered and not empty, we can use essentially the same formulae for 7 € 7T;. We need to
check that (ari)ier is a partition of unity. B Certainly it is disjoint. If @ € A\ {0}, then thereisat € T
such that @’ = a\ [7 > t] is non-zero, because 7 is finite-valued; because T is well-ordered, we may suppose
that ¢ is minimal; now 0 # a’ Cana. Q

In defining «/, if you do not like an infinite sum, simply declare that [u) > a] = sup,cp [ue > a] nare
for every o € R; then the rest of the argument proceeds as before.

612F The identity process In the leading special cases of this theory, in which 7" = [0, co[, we have
special processes based on the similarity between the formula defining ‘stopping time’ in 611A and that
defining L% in 364A.

(a) Suppose that T'= [0, 00[. For 7 € T}, we can define ¢, € L%() by saying that, for ¢ € R,

[er >t)=]r >t]ift >0,
=1lift<O.

P Since no member of T is isolated on the right, the conditions of 611A(b-i) imply that
[tr > t] € AU for every t € R,
[tr > t] = sup,sy [tr > 5] for every ¢t € R,
Supseg [tr > t] = 1.
Since T € Ty, we also have
infier [[LT > t]] = 0.
So all the conditions (a)-(7) of 364Aa are satisfied, and ¢, € L°(A). Q

(b) ¢ = (t7)re7; is a fully adapted process. P If 7 € Ty,
[t >s] =18 if s<O0,
=[r>s] e if s>0,
sotr € LO(A,). If o, 7 € T7 and a = [o = 7], then
[xa X ite >t]=an[tr >tf=an[r>tf=ano >1t] =[xa x 1, >t] if t >0,
=1=[xaxi >t]ift <0,
S0 xa Xty =xa Xty and a C [to = ¢7]. Q
(c) ty=txl for every t > 0. P If s >0,
[t; > s] =t >s] =x1=[txl>s]ift>s,
=0 = [tx1 > s] otherwise. Q
I will call ¢ the identity process for the structure (2, (2(;);>0)-
612G However, the fully adapted families of greatest importance to us will be those which can be
constructed in the following way. I repeat some definitions from 455L.
Definitions Let (2, X, 1) be a probability space.
(a) A family (X;);>0 of o-subalgebras of ¥ is a filtration if ¥, C ¥, whenever 0 < s <.

(b) A function h : Q — [0, 00] is a stopping time (adapted to the filtration (X;);>0) if {w : h(w) <t} €
3 for every t > 0. In this case, I will write X5, for the o-algebra

{E:Eec¥ En{w: h(w) <t} € 3 for every t > 0}
(see 455L(c-iii)).

(c) A family (X,;);>0 of real-valued functions on ) is a progressively measurable process (with
respect to the filtration (X;);>0) if (s,w) — X, (w) : [0,1] x Q@ = Y is B([0,1])®@%-measurable for every
t > 0, where B([0,t]) is the Borel o-algebra of [0, ¢] for each ¢.
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612H Theorem Let (€2, X, 1) be a complete probability space, and (X;);>¢ a filtration of o-subalgebras
of 3 such that every p-negligible set belongs to every ¥;. Let (2, &) be the measure algebra of u and set
A, = {E*: E € ¥} for each t > 0; then (A;);>0 is a filtration in the sense of 611Aa. Let T be the associated
family of stopping times.
(a)(i) If h : Q — [0,00] is a stopping time, we have a stopping time 7 € T defined by saying that
[ >t] ={w: h(w) > t}* for every t > 0; in this case, I will say that h represents 7.
(ii) Conversely, if 7 € T, there is a stopping time h : Q — [0, 00| representing 7.
(iii) If h represents 7, then Xy = {E: EF € X, E* € A} and A, = {E*: E € 53}
(iv) If g, h :  — [0, o0] are stopping times representing o, 7 € T, then

[o <7] ={w: g(w) <h(w)}*,

[o <7l ={w:g9(w) <h(@)}, [o=7]={w:g(w) =h(w)}
So g and h represent the same member of T iff they are equal almost everywhere.

(v) If h represents 7, then 7 € Ty iff h(w) < oo for almost every w; so 7 € Ty iff it can be represented
by a stopping time h : Q — [0, co].

(vi) If t > 0, then the constant function with value ¢ represents the constant stopping time at t.

(b) Now suppose that (X;);>¢ is a progressively measurable process on €.

(i) For every 7 € Ty we have an @, € LO() = L9(u) defined by saying that x, is the equivalence class
of the function Xj, where Xj(w) = Xp () (w) for w € h7[[0,00[], whenever h represents 7 in the sense of
(a-ii).

(ii) The family (z;)-e7; is fully adapted to (Us)¢>0.
proof (a)(i) If h: Q +— [0, 00] is a stopping time, and ¢ > 0, then {w : h(w) > t}* belongs to A; and is equal
to

(| {wihw) >s}) = sup {w:h(w)> s}

scQs>t S€EQ,s>t
= sup{w : h(w) > t'}".
>t
So t — {w : h(w) > t}* satisfies the conditions of 611A(b-i), and defines a member of 7.
(ii) Write Q* for Q N [0,00[. Take any 7 € 7. For each s € Q*, [r > s] € 2, so we can choose
Es € 3, such that B2 = [r > s]. Next, for s € Qt set Fs = ﬂs,eQﬂ[ms] Eg; because Q is countable,
F; = infycqno,s) [T > 8] = [7 > 5], while (F)scq+ is non-increasing. Now, for w € €, set h(w) = sup{s :
s € Qt, w € Fy}, counting sup ) as 0. Then, for any ¢ > 0,

{wih >ty =( |J F)= sup F

SEQT, s>t SEQT 5>t
= sup [r>s]=sup[r>s]=][r>t]e.
seQt,s>t s>t

So there is an E € ¥, such that {w : h(w) > t}AFE is negligible; as X; contains every negligible set,
{w: h(w) >t} and {w : h(w) <t} belong to ;. This is true for every ¢ > 0, so h is a stopping time in the
conventional sense; and as {w : h(w) > t}* = [r > t] for every ¢, h represents 7 in the sense here.

(iii) If £ € %, then
E\{w:h(w) >t} =En{w: h(w) <t} e,
E\[r>t]=(E\{w: h(w) >t})* €,
for every t > 0, and E* € .. Conversely, if a € 2, take F € ¥ such that E* = a. Then, for any ¢t > 0,
(EN{w:h(w) <t} =E\[r>t] e,
so there is an F' € ¥; such that u((E N {w : h(w) > t})AF) = 0; again because ¥; contains all negligible
sets, EN{w : h(w) > t} belongs to X;. As t is arbitrary, E € 3j, and we have a suitable representative of a.
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(iv) The point is that [0 < 7] C supgcg+ [T > s[\ [0 > s]. P Forany t >0, t = inf{s: 5 € Q, s > t},

[T > t[\[o > 1] € supseq s>¢ [T > 8]\ [0 > t] C supgeg+ [T > s[\ [0 > s]. Q
So
[[0<7']]:i1>118[[7'>t]]\[[0>t]]: selgzr[[T>s]]\[[o>s]]
= Selizg({w th(w) > st\{w:g(w) > s})°
= (U {w:hw) > s} \{w: g(w) > 5})* = {w: g(w) < h(w)}".
s€Qt

It follows at once that
[o <7t]=1\[r <o] = ({w: g(w) < h(w)})*
and therefore that
[o=71]=({w:gw)=h(w)})",
so that
o=T7 <= Jo=71]=1 <= g=a0 h

(v)
TET; < inf[r>t]=0
>0
<~ inf [r>s]=0
seQt
= ﬂ {w : h(w) > s} is negligible,
seQt
< {w: h(w) = oo} is negligible.
In this case, because we are supposing that negligible sets belong to 3; for every ¢, we can adjust h on the
negligible set  \ h~1[[0, co[], if necessary, to get a stopping time with finite values which represents 7.
(vi) Immediate from the definition of ‘constant stopping time’ in 611A (b-ii).

(b) For the identification of L°(A) with L°(u), see 364lc. Note that as we are assuming that every
negligible set belongs to every ¥, (Q,%;,u[%;) is a complete probability space and ¥, is closed under
Souslin’s operation (431A), for every t > 0.

(i) By (a-v), every 7 € T; can be represented by a stopping time which takes finite values. If h: Q —
[0, 0o[ represents 7, then X}, is defined everywhere; because the process is progressively measurable, X, is
Yj-measurable (455Le), and X}, is defined in L°(u]Xy) = LO(2,) ((a-iii) above).
We note also from (a-iv) that if g, h are stopping times both representing 7, then g =, . h s0 Xy =4.. X3
and X7 = X;. So we have a well-defined member 2, of L°(2).

(ii) We have already seen that z, € L°(2,) for every 7 € T;. If o, 7 € T; are represented by stopping
times g and h, then by (a-iv)

[o=7]={w:g9(w) = h(w)} c{w: Xy(w) = Xp(W)}* = [Xg = Xj] = [25 = 2-].
So both conditions of 612Da are satisfied and (x,) e, is fully adapted to (¢)s>o.

Remarks There will be a variation on this result in 649H.
Note that the representation of stopping times in (a) above corresponds to an identification of T with
the set

{u:u>0,[u>t] €A for every t > 0} C LO(2),
and that the lattice operations V, A on T agree with those on L°(2l), as do arbitrary suprema (611C(b)-(c),
364L(a-ii) and 364L(b-i)).
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6121 We do not need to spend much time on general fully adapted processes, but the following elementary
facts are fundamental.

Proposition Let S be a sublattice of 7, and M, (S) C [],cs L°(™Uo) the set of fully adapted processes
with domain .

(a) M, (S) is an order-closed f-subalgebra of the f-algebra LO(2A)S, and if o : R — R is a Borel measurable
function then hu € Mg, (S) for every u € M;,(S). Regarded as a Riesz space in its own right, Mg, (S) is
Dedekind complete.

(b) Suppose that (us)eecs € Mea(S) and 7 € T. Set ' ={o:0 € T, o0 AT € S}. Then (uprr)oecs €
M (S').
proof (a)(i) If u = (us)res and v = (v )oes belong to M, (S), then

— Uy + v, € LY(2,) for every o € S,
—if o, 7 € S, then

[te + vo = ur + 7] 2 [te = vo] N [ur =v,:] 2 [0 =7].

Sou+v = (Uy + V5)oes € Ma(S).
Similarly, if h : R — R Borel measurable,

[n(uo) = h(ur)] 2[0 = 7]

forall o, 7 € S. P Set ¢ = Ju, = u,], and write 2. for the principal ideal of 2 generated by c¢. Setting ¢a =
anc for a € A, we have an order-continuous Boolean homomorphism from 2 to 2., and the corresponding
Riesz homomorphism T} from L°(2) to L°(2l,.) is defined by saying that [Tyw > o] = [w > a] nc for every
w € LO(2A) (364P). But this means that Tyu, = Tpu,, so

T¢7L(UU> = iL(T¢UU) = E(TJL&-,—) = T¢B(UT)
(612Af), and
[h(ug) = h(u-)] 2c2[0 =] Q

Thus hu € Mg, (S) for every u € M, (S).
Putting these together, Me,(S) is an f-subalgebra of [] g L°(2,), by 612Bc.

(ii) To see that M, (S) is order-closed in LY(21)°, take a non-empty set A C M, (S) with a supremum
v = (Vs)pes in LO(A)S. For each o € S, v, = Sup,ec 4 uo belongs to LO(A,) (612Ae). If o, 7 € S, set
a = [o =7]; then u, X xa = u, x xa for every u € A (taking u to be (u,),ecs for every u). Because
multiplication by ya is order-continuous in L°(2l) (353Pa),
Vg X XQ = SUPye g Us X XU = SUDPye g4 Ur X X = Uy X XQ,

and [v, = v;] D a. As o and 7 are arbitrary, v € Mg, (S).
Similarly, or applying the argument above to {—u : u € A}, inf A € My, (S) whenever A is a non-empty
subset of M,(S) with an infimum in LO(A)S. So M, (S) is order-closed in L°(21)S in the sense of 313Da.

(iii) We know that LY(2l) is Dedekind complete. For every o € S, L%(2,) is order-closed in L°(2()

e), so 1n itself 1s Dedekind complete -11)). So the product o) 1s Dedekind complete
612A in itself is Dedekind 1 353K (b-ii)). So th d ves LP(Ay) is Dedekind 1
(315D(e-1)) and its order-closed subspace Mg, (S) is Dedekind complete.

(b) Because T is a distributive lattice, S’ is a sublattice of 7. For any 0 € &, ugn, € L°(Apnr) C LO(A,)
(611H(c-ii)). If 0, 0’ € &, then by 611E(c-v-«v)

[ec=d]cCoAnT=0"AT] C [ucar = Uo'rr]-
So (ugnr)oes is fully adapted.

612J Simple processes (a) Definition Let S be a sublattice of 7. A fully adapted process (uy)ses is

simple if either S is empty or there are 79 < ... < 7, in S and u, € L°(, o5 Ao) such that for every o € S

[o <70] € [ue =us], [ <0]C Jue =us,],

[ri <o)nfo < 7it1] € [ue = ur,] for every i < n.

In this case I will say that (7o,...,7,) is a breakpoint string for u.
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(b) As a particularly elementary example, if S is a sublattice of 7 and 7 € S, then u = ([T < 0])ses
is a simple process. P Setting u, = x[r < o] for o € S and u, = 0, we have u, = x1 and

[o < 7] =Jus =0] =us =u], [7<0]=][us=x1]=[us=1u]
for every o € S, so (7) is a breakpoint string for u. Q

Warning! most authors use the phrase ‘simple process’ for what I call a ‘previsibly simple process’; see
612Ye. As we shall see shortly, a simple process will normally have many breakpoint strings. The following
ideas will be useful.

612K Lemma Let S be a non-empty sublattice of 7. Write B for [, s o
(a) Suppose that 7o < ... < 7, in S, u; € L°(A,,) for i < n and u, € L°(B). Then there is a unique
simple fully adapted process v = (v, ),es such that whenever o € S then

[ve = wi] 2 [r < o] no < 7iga],
for i < n, while

[ve =u] 20 <m0], [vo=m1un]2[m <o];

and (79,...,7y) is a breakpoint string for v.

(b) Suppose that I is a non-empty finite sublattice of S and (79,... ,7,) linearly generates the I-cells. If
a simple process u with domain S has a breakpoint string in I, then (7g,...,7,) is a breakpoint string for
u.

(¢) Suppose that K is a finite set and uy is a simple process with domain S for each k € K. Then there
is a single string (79, ... ,7,) in S which is a breakpoint string for every wuy.

(d) Suppose that w = (us)secs is a simple process with breakpoint string (79,... ,7,) in S, and 7 € S.

(i) (o ATy oo yTO AT, T, TV Ty ... , T V T) is a breakpoint string for w.

(ii) Writing SA 7 for {oc A7 :0 € S8} = SN minT,7], u[S A 7 is simple, with breakpoint string
(ToAT, ..\ T AT, T).
(iii) Writing SV 7 for {o V71 :0 € §} = SN [r,maxT], u[S V 7 is simple, with breakpoint string
(ToVT,..., T VT).
(e) Suppose that u is a fully adapted process with domain S, and that 7 € S. If u[SA T and u[S V T are
simple processes with breakpoint strings (79,... ,7m) and (73,... ,7,) respectively, then w is simple, with
breakpoint String (7o, ... , Tim, Ty Ty« -« 5 T )-

r'n

proof (a) Set 7_1 = minT, u_1 = u,. For 0 € S, set by; = [1; < o]nfo < 7i41] for —1 < i < n, and
bon = [ < o]; by 611H(c-1), byi € 2, for each i. Set

n
Vo = Zi:_l U X Xbai-

Then v, € L°(2A,). P For each i, u; x x[r; < o] € LY(2,) (612C), so u; x x([r; < o] n[o < 74+1]) belongs
to LY(2,) if i < n, while also u,, x x[r, < o] belongs to L°(2,). Q
If o, 0’ € S and a = Jo = ¢’], then anb,; = anby; for each i (611E(c-iv-a) and (c-iv-8) twice), so

Ve X xa =Y i u; X x(@anby;) =ver X xa.

Thus a C [vy = ver]. As o and ¢’ are arbitrary, v is fully adapted.
The definition of v makes it plain that, for any o € S,

[[Tn < U]] = bon c [[UO' = un]]v
while for —1 < i < n,
[ri <o]nfo < Tit1] = boi € Vo = w].

Now we see that [7; < 7i41] = by, C [vr, = w;] for =1 <4 < n, while b,, , = 1 and v,, = u,. So for any
oe€S,

[[Ti < O']] [l [[O' < Ti+1]] - [[’UU = uZﬂ [l [[Ti < Ti—i—l]]
(611E(c-iii~y))
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C [ve = wil nvr, = w] € [ve = v5,]

whenever —1 < i < n, while
[t < 0] € [vo = un] = [vo = vs, ]

So v is a simple process and (7o, ... ,7,) is a breakpoint string for v.
Concerning the uniqueness of v, we just have to note that for every o € S, sup_;<,;<,, b,i = 1, so that
the given formula defines v, uniquely.

(b) Express u as (uy)ses. Let (09,...,0m,m) be a breakpoint string for w in I, and take u, € L°(B) as in
612J.
Set 71 =0_1 =min7T, Tp41 = 0pmq1 = max 7. Take any o € S. Since 79 < 0g and oy, < 7y,

[ue = us] 2o < o0] 2 [o < T0],

[uo = ur, 12 [ue = ug, [ N [ur, = s, ]2 [om < o] nfom < 7]
= [om < o] 2 [ < o]
Next, suppose that i < n. Then the stopping-time interval ¢(7;, 7;41) is either 0 or an I-cell; taking J to be

{o:: =1 < i <m+1}, c(ry, Ti41) must be included in a J-cell, which must be of the form ¢(cj,0j41) where
—1 < j <m. In this case [1; < 741] € [o; < 7] n[riq1 < 0j41] (611c). So

[ri <o]lnfo <mit1] =[rn <o]nfo <] nrn < 1ig1]
(611E(c-iii-y))
=[n <olnfo <miplnn < gl nlo; < mln[rig < o]
Cloj<olnfo<ojulnfo; <n]nln <ol
(611E(c-iv-r), 611E(c-iii-))

N

[uo = uo,] N [ur, = uq,] € [ue = ur].

So U4, T, ... ,Tn satisfy the definition in 612J and 79, ... ,7, is a breakpoint string for u.

(c) Because breakpoint strings are finite, there is a finite set A C S such that every uy has a breakpoint
string in A. Let I be the sublattice of S generated by A, so that I is finite (611Ca) and there is a sequence
(Toy ... ,7n) linearly generating the I-cells. By (b), (9,...,7,) is a breakpoint string for uy, for any k € K.

(d)(i) Of course 9 AT < ... < Ty AT <7< 7VT<...<7, V7. Let u, € L°(B) be such that
[o < 70] € [us = u] for every o € S.
Take any o € §. Then

[o <ToAT] C o <70]

N

[ue = ui]-

If i <n,

[inT<o]nfo<mpAT]=((n <cjulr<o])n]o < ris1]nfo < 7]
(611E(c-i-3))
=[n<olnfo<7gi]nlo <]
C [ue =ur]nlm < 7] nm < Tit1]
(611E(c-ifi-n))

Clue =ur]nm=nAT]0[1r < Tig1 AT]
(611E(a-ii-av))

Clue =ur]nn=nAT]0[r AT < Ti1]

C [uo = ur,] N [Utauar = ur,] € [to = urar].
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Next,
[tn AT <o]nfe<7]=(rm <o]ulr<o])n]o <]
= [, <0o]nfo < 7]
c [[Uo:ur ]]ﬁ[[Tn<T]]
= [ue = ur, | N[ <70 AT]
- IIU’O' = 'U/Tn]] N [[UT,L/\T = u‘rn] c [[uo' = uT”/\T]]
and
[r<o]nfoe<moVvr]=[r<o]n(Jec <m]uloc <]
(611Eb)

=[r<o]nfo < 7]
[T <] no < 7]

C
C [ue = us] N Jur = ui] C [t = ur].

Continuing, if ¢ < n then

[rivr<o]no <ty V7] =[r<o]n]r<o]n(Jo < rpi]ufo < 7])
=[rn <og]n[r <o]nfo < 1it1]
C [ue =ur]nr < Tig1] N7 < Tit1]
= [ue = ur, N[ VT < Ti41]
IIUO' = un]] [[u‘l'i\/‘l' = u‘ri]] - [[ua = un\/rﬂ~
And finally
[rn v T <o] Cue =ur]nur,vr =ur,] € [ue = ur,v-].
So the string (to A7,... ,To A Tn, T, T0 V. T, ... ,Tn V T) passes the test.

(ii) The formulae in (i) tell us that, for any 0 € S A T,

[o <70] € [uo =us], [mAT<0]n[o<7]C s =1rnrl

[inT <o]nfo <71 AT] C [ue = urar] for every i < m;
and of course
[t <o]=[r=0]C Jus =u:].

Also uy € LY, cspr Ao)- SO Us, o AT, ... , Ty AT, T) witness that u|S AT is simple, with breakpoint string
(ToATy oo yTn AT, T).

(iii) Similarly, for any c € SV T,
[o<moVT] Clus =u:], [mVT<o]Cus=m1urvr],
[rivr <o]n]o <741 V7] C g = tr,v-] for every i < n.
So u[S V 7 is simple, with breakpoint string (7o V. 7,... ,7n V T).
(e) Of course

<. . < <7< < <7

N

Let uy € L°(N,esnr Ao) be such that o < 79] € [us = u.] for every o € SAT. Then u, € LO((, cg Aonr)
LN, cs™Uo)- Now, for 0 € S, i <m and j <n,

D.H.FREMLIN



34 The Riemann-sum integral 612K

l[o<n]ClonT=0]n[oAT <]
C [ue = tonr] N [tonr = us] C [us = ui,
[i<olnfo<mqp] ClonT=0]n[n<oAT|n[o AT < Tit1]
C [ue = uonr] N [uonr = ur] € [ue = us],
[tm <o]nfo<t]CloAnT=0]n]tm <o AT]
C [uonr = us] N uosr = ur,] C [uo = ur, ],
[r<o]nfe<r]clrVveo=o]n]rVve<r]nr <]
C [trve = Us] N [trve = ur] C [us = ur],
[ <olnfo<tiy]lclovr=aln]r<ovr]nloVvT <7/,]
C [us = uov-] ntgyr = ur] C [us = ur],
[r, <ol clovrT=0]n[r, <oVrT]
C [tovr = Ue] N [tovr = ur ] C [uo = ur].
SO (T0s -+ s Tins Ty Ty - - - 5 Top) 18 indeed a breakpoint string for u and witnesses that u is simple.
612L Proposition Let S be a sublattice of T. Write Mgimp = Miimp(S) for the set of simple processes
with domain S. B
(a) If h: R — R is a Borel measurable function and u € Msimp, then hu € Mgimp and any breakpoint
string for u is a breakpoint string for hu.
(b) Mgimp is an f-subalgebra of [] . L°(As).
() If z € LOANN, e Uo) and u € Myimp, then zu € Mimp.

proof If S is empty, this is trivial; suppose otherwise. Set B = (1 _cs%s.

(a) Express u as (uq)qes; let (70,... ,7,) be a breakpoint string for u, and take u. € L°(B) such that
[o < 10] C [us = us] for every o € S. Then h(u,) € L°(%B). If 0 € S then

[o < 70] € [uo =u] C [[B(ua) = B(u*)]], [rn <o) C [uo =us] C [[B(ua) = B(UTTL)]]7
and for i <n
[ri <ol nlo < 7ita] € [ue = ur] < [A(us) = A(ur,)]-
So h(ux),To,- - , T witness that hu is simple.

(b) If u = (us)oes and v = (v, )ses are simple processes, then there is a string (7, ... ,7,) in S which
is a breakpoint string for both, by 612Kc. As above, take u., v. € L°(8) such that

[[U<T0]] < [[uazu*]], [[0'<To]] - [[Uaij*]]
for every o € S. Now u, + v, € L°(B) and

[to + Vo = ts + 0] 2 [uo = u] N [ve = vi] 2 o < 70],

[uo +vo = ur, +v5,] 2 [ue = ur[ nve = v, 21 < o] nfo < 7isd]
for i < n, and
[t +vo = tr, +v7,] 2 [us = ur, ] 0 [ve =vr,] 2 [ < 0]

So u + v is a simple process with a breakpoint string (79, ... ,7s).
By 612Bc this, together with (a), implies that the set of simple processes with domain S is an f-subalgebra
of [T,es L2(2As).

(c) Follow the argument of (a) above, but with z X u,, 2z X u, in place of h(u.), h(us), etc.
612M Lemma Let S = [min S, maxS] be a closed interval in 7, and u a simple process with domain
S. Then there is a breakpoint string (7, ... ,7,) for u such that 7 = min S, 7, = maxS and [r; < 7;41] =

[7: < max 8] for every i < n.

MEASURE THEORY



612P Fully adapted processes 35

proof Applying 612K(d-i) twice, we see that u has a breakpoint string (oo, ... , 0,,) starting with op = min S
and ending with 0, = maxS. I seek to show by induction on m that the result is true in this case. If m =0
then we can (and must) take n = 0 and 79 = min S = max S.

For the inductive step to m > 1, set

a; = [min S < ;] for i < m,
so that
0=apC ... Capy=[mnS < maxS§]
and a; € Anins for every i. Now set b,, = 1\ a,,, and
b = a;+1\a; = [minS < g;41] N [min S = o;] for i < m,
so that (b;)i<m is a partition of unity in 2 and b; € Amins for ¢ < m. By 6111, there is a 7 € T such that

b; C [t = 0i41] for i <m and by, C [T = o], while 07 <7 <maxS§, so 7 €S. Now

[minS < 7] 2 sup [7 = o441 N [min S < 0441]

<m

D supb; Na;+1 = sup b; = a,, = [MinS < max SJ.
i<m <m

Also, for any 0 € S and i < m,
binfo < 7] € [minS =o;]n[r=0i11]nfo < 7]
C [minS =o;]nfo; < o]nfo < oi41]
C [min S = o] N [uy = te,] € [t = Umins],
while
b No < 7] =[minS = maxS]no < 7] =0.
So
o < 7] =sup;<,, binfo < 7] C [to = Umins]-

Next, as 01 < 7, (61 V7,... ,0m, V T) is a breakpoint string for u[S V 7 (612K (d-iii)) of length m. By

the inductive hypothesis, u[S V 7 = u[[r, max S| has a breakpoint string (7o, ... ,7,) starting with 7o = 7,
ending with 7, = max S, and such that [r; < 7;41] = [z < maxS] for every i < n.
We now find that (minS,7g,...,7,) is a breakpoint sequence for u. I Surely we have minS < 75 <

. <1 If 0 €8, then
[minS < o]nfo < 7] =Jo < 7] € [te = Umins],
while
[ri <o]nfo < Tit1] € [ue = ur]
for ¢ < n, and
[tn <o) =[mm=0] Cfu,=u;] Q

And as [minS < 7] = [min § < maxS], (minS, 79, ... ,7,) is a breakpoint string of the right kind for u,
and the induction proceeds.

612P The next lemma is a bit of a sledgehammer, and in the form given here will be used only at the
end of Chapter 22; but most of the ideas are required for the important result 612Qa.

Lemma Let S be a sublattice of T, and u = (us),es a fully adapted process. Then there is a fully adapted
process v = (v, )7, extending u, such that

[vr # 0] € sup,es [0 = 7]
for every T € T.
proof (a) For 7 € T, o € R set
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ar =1\ sup,es [0 =7], bra =sup,cs [T =0]n[us, > af.

Then b, = supgs, brp for every a € R. P

sup sup [r = o] nJus > B] = sup([r = o] n sup [u, > G])

B>ac€S ceS B>
=sup[r=o]nfu, >a]. Q
o€S

Next, info>0brq = 0. P If a € A\ {0}, either ana, # 0 and a Z by, or there are a gy € S such that
¢ =an|r = o¢] is non-zero and an a € R such that d = ¢\ [us, > @] is non-zero. Now

dnsup [1r = o] nus > a] € dn sup Jog = o] N us > o]
c€ES ceS

Cdnfue, >a] =0.

Thus in either case a\ inf,>( bro is non-zero. As a is arbitrary, inf,>0 b =0. Q
On the other side,

SUP, < bra = sUPscs([7 = o] N sup, g [us > a]) = sup,cs [r =0] =1\ a,.
(b) This means that if 7 € T and we set
bl =bro if a>0,
=a;Ubr if <O,

we shall have

sup bl g = sup brg = bro = by, if @ >0,
B>« B>a

=supa, Ubyg = a, Ubro = b, if @ <0,
B>a

while

infthR b;—a - infazo bro =0,

SUDgeR Urq 2 Gr U SUD, g bra = 1.
So a +» b, satisfies all the conditions of 364Aa, and we have an element v, of L defined by saying that
[vr > a] = b, for every a € R.

(c) v € LOA,) for every 7 € T. P For any « € Rand 0 € S, [uy, > a] € A, so [t =] n[u, > o] €
2., by 612C. Accordingly bro = sup,es [T = o] N [us > ] belongs to .. On the other hand, because
[o =7] € A, for every o (611H(c-i) again), a, € A.. So [vr > a] = b, belongs to 2, for every «, and
v e LO,). Q

(d) If 7 €T and o € S then [vr = us] 2 [r =0]. P If @ € R then

[T =0a]n]us > a]

N

[r=0]nbro =[r=0c]n]v: > ]
(because a, n[r = o] =0)

=sup [r =o]n[r=0d]n[u, > ]

o’'eS

C sup [o =0d']n[us > ]
o’'eS

C sup [uy = upr] N ue > af C Jue > af,
o’eS

so in fact

[T =0]n[us >a] =[r=0o]n[v; > a].
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As « is arbitrary, [t = o] C [vr = us]. Q
In particular, if o € S then v, = u,.

(e) If 7, 7" € T then [r = 7'] C [ur =v]. P For any o € R,
[r=71nbra=supr=7]n][r=0c]nfu, > af
o€S
=sup[r=7]n[r" =0c]nfus >a] =[r=7]nbra.
oceS
At the same time,
[r =710 supses [r = o] = supyes [r = 7'l n[r = o] € supyes [7' = ],
so in fact
[r=7]nsup,es[r=0] =[r=7"]nsup,cs [ = 0]

and [t =7']na, = [r = 7] na,. Accordingly

[r=7]nv: >a]=[r=7]nbra =]t =7]Nbrqa
=[r=7]nv, >a]ifa>0,
=[r=7]n(a:ubs) =[r=7]n(ar Ubrq)
=[r=7]nv, >a]ifa<0.

As « is arbitrary, [ = 7] € [ur = v/]. Q As 7 and 7/ are arbitrary, v = (v, )7 is fully adapted, and we
have already seen that it extends wu.

(f) Observe that, for any 7 € T,
[vr > 0] =bro C sup,es o =7] =1\a-,
while
[vr >a]=b.,2a;

for every a < 0. But this means that a, C [v; = 0], that is, that [v; # 0] C sup,cg [0 = 7], as required.

612Q Proposition Suppose that S is a sublattice of T, S its covered envelope (611M) and u = (ug)oes
a fully adapted process.

(a) u has a unique extension to a fully adapted process & = (fiy)yes with domain S.

(b) The map u — 4 is an isomorphism from the f-algebra Mg, (S) of fully adapted processes with domain
S to the f-algebra Mg, (S), and hit = (hu)” whenever u € Mg, (S) and h : R — R is Borel measurable.
(¢) If 7 € S, then '&[3 A 7 is the fully adapted extension of u[S A 7 to the covered envelope of S A 7.
(e) If z € LO%(AN(, s Ao) then zi is the fully adapted extension of zu.

(f) If u is simple, with a witnessing string (u., 7o, ... , ) as in 612Ja, and &’ is a sublattice of S including
S, then @[S’ is simple, with the same witnessing string.

(g) If u is non-decreasing, so is u.

proof (a) By 612P, there is a fully adapted process v = (v;),c7 extending u; set 4, = v, for 7 € S, so that

U = (ir) ¢ is a fully adapted process with domain S extending u. If (w,) g is any fully adapted process
extending (u,)scs, then

[ir = w:] 2 ir = us] N wr = uy]
= [r = Go] N wr = w,] 2 [ = o]
for every o € S, so 4, = w,, for every T € S. Thus the extension is unique.

(b) The point is just that u + 4 is the inverse of v — v[S : M, (S) — Mg (S), which has the declared
properties.
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(c) We saw in 611M(e-i) that S A 7 is the covered envelope of S A 7. Now @[S A 7 is fully adapted and
extends u[S A 7, so must be the fully adapted extension of u[S A 7, by the uniqueness noted in (a) above.

(e) Because [, c¢2Ar = Nyeg Ao (611MF), 20 is defined in M;,(S), and of course it extends zu.
(f) Again because (), cgAr = Nyes Ao» s € LO(N,cgAr). Now if 7 € S,

[r<m]=sup[r<mn]nt=c=supo<n]nrt=0c
c€ES c€ES

C sup Jue = ue] N [y = ue] C Jur = ui],
cES

[t <7]=sup[rn <7]lnT=0=sup[r, <o]jnT=0

ceS o€eS
C sup [ue = ur, [ nlir =u,] C [4r = u,, ] = [0r = 47,],
o€S

and for i < n
[ri <7]nr < 7ig1] =sup[r < 7]nr < miga] n[r = o]
ogeS
=sup[r <o]nfo <mpi]nT=0

ceS

C sup [ue = ur, ] Nt = us] C [ty = Gr,].
oeS

So 4 is simple, with the declared witnessing string.
As for a[S’, we have () cs®%r € [, cs Ao 50 Us € LO(ﬂTGS, 2(.), while 7g,...,7, belong to §&’. Now
the formulae of 612Ja show immediately that (u., o, ... ,T,) witnesses that #[S’ is simple.

() If 7 < 7" in S and a € A\ {0}, there are o, o' € S such that b= an[r = o] and ¢ = bn [+’ = ] are
non-zero. Now

cClr=o]n[r =d]n[r <7'] C[ir =us] N[ =ug]n]o <0’]

N

[ir = us] N[ty =us]nfo=cAd]n]o’ =0 V]

N

II'&T = ua/\o”]] n [[ﬂ'r’ - roo”]] C II'&T S ar’]
because uspngs < Ugver, While 0 # ¢ C a. Thus an i, < ] # 0; as a is arbitrary, [4, < 4] = 1 and

iy < i,; as 7 and 7' are arbitrary, % is non-decreasing.

612R Corollary Suppose that S is a sublattice of 7 and S’ is a sublattice of S covering S. Then any
fully adapted process u = (u,),cs has a unique extension to a fully adapted process v = (v;)cs.

proof Let @4 be the fully adapted extension of u to the covered envelope S of &'; then v = @[S is fully
adapted and extends u. To see that v is unique, repeat the argument of part (a-iii) of the proof of 612Q); if
(v.)res is any fully adapted process extending (uy),es, then
[vr = vi] 2 [vr = us] [V} = uo]
= [vr =v]nfv; =v;] 2[r = 7]

for every o € &', so v, = v., for every 7 € S. Thus the extension is unique.

612S Two more definitions We shall have uses for the following ideas. Let S be a sublattice of 7.

(a) For a fully adapted process 4 = (Us)oes, Write ||u]|oc = SUPycs ||ts]lco; counting the supremum as
0 if S is empty, and ||uq||oo as 0o if u, does not belong to L (2l) when this is identified as a subspace of
LO(21) as in 364J.

(b) For fully adapted processes u = (ug)ocs and v = (vo)ses, Write [u # v] for sup,cs [us # vs], and
[u # 0] = sup, s [us # 0].
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(c) Suppose that 4 = (uy)res and v = (vy),es are fully adapted processes.
(i) If A : R — R is Borel measurable, then [hu # hv] C [u # v]. (Use 612A(d-iii).)

(ii) If S is the covered envelope of S and @ = (Ur) cg> 0= (0r), g are the fully adapted extensions of
u, v to S (612Q), then [& # 9] = [u #v]. P If 7 € S then

[[a'r 7& ﬁ'r]] = sup [[T = U]] n Ha'r 7é ﬁ'rﬂ
ceS

= sup [t, = te] N [0r = Vs N [Gr # 0/]
c€ES

= C sup i, # {)a]] = sup [uy # vo] = [u %v]h
gES ceS

as T is arbitrary, [@ # 9] C Ju # v]; and of course
[[’ll, # ’U]] = SUPses [[’LALU # {)a]] < [[ﬂ‘ # 'f)ﬂa

so we have equality. Q

612T The construction in 612H gives us direct routes to some of the leading examples of stochastic
process, and most sections of this volume will introduce concepts which should be tested against these
examples.

Example: Brownian motion (a) Let 2 = C([0, 00[)o be the set of continuous functions w : [0, 00[ = R
such that w(0) = 0, and v one-dimensional Wiener measure on Q (477D), with ¥ its domain. Recall that
v is a Radon measure with respect to the topology ¥, of uniform convergence on compact sets (477B). Let
(€, 7) be the measure algebra of v. For t > 0, write X; for

{F:FeX o eF whenever w € F, w' € Q and w'[[0,t] = w[[0, ]},

and let ¥, be {FAA : F € %, vA = 0} (cf. 477H); set €, = {F* : F € %,} = {F* : F € %} and
Xi(w) = w(t) for t > 0 and w € Q. Then (s,w) — X (w) : [0,t] x Q@ — R is continuous, therefore
B([0, 1)) ®%-measurable and B([0, {])&3;-measurable (4A3Q(c-i)), for every t > 0, and (X;);>¢ is progres-
sively measurable with respect to <2t>t20. We can therefore apply 612H to see that we have a process
w = (w;)re7; fully adapted to (€;)>0. In this volume I will use the phrase Brownian motion to mean the
process w, rather than the process (X;);>0 as in Chapter 47; I hope that this will not lead to any confusion.

(d) It will be important to know that w determines € and (€;);>0, in that

(i) € is the closed subalgebra ® of itself generated by {Jw; > a] : t > 0, a € R},
(ii) €, is the closed subalgebra generated by {[ws > a] : s € [0,t], « € R} for every ¢ > 0.

P@l)Ift>0and a € R, [w; > a] = {w:w(t) > a}*, 50D = {E*: E € Ty [} where Tjg [ is the
o-algebra of subsets of Q = C(]0, 0o[)o generated by {{w : w(t) > a}:t >0, o € R}.

Consider the family V = T.NT[g o[- This is closed under union and intersection and the topology on 2 it
generates is Hausdorff. It follows that if K, L are disjoint T .-compact sets, then there are disjoint U, V € V
such that K C U and L C V. But v is inner regular with respect to the ¥ .-compact sets, so if £ € domv
and € > 0 there is a V € V such that v(EAV) < e. Consequently © is dense in € for the measure-algebra
topology; as it is also closed, it is the whole of €, as claimed.

(ii) Now take any ¢ > 0; write T[4 for the o-algebra of subsets of {2 generated by {{w : w(s) > a} :
s € [0,t], a € R}, and D for the closed subalgebra generated by {Jws > ] : s € [0,t], & € R}, so that
Dy ={E*: E € Ty} Consider ¥ as defined in (a) above. Of course Tjg 4 C ¥y, so D; € &;. On the other
hand, given F' € ¥; and € > 0, there are ¥ .-compact sets K C F and L C Q\ F such that v(K UL) >e. If
we set Vy = T, N Ty, then for any w € K, w’ € L there is an s < ¢ such that w(s) # w’(s), so that there are
disjoint U, V' € V; such that w € U and w’ € V; because V; is closed under finite unions and intersections,
there are disjoint U, V' € V; such that K C U and L C V, so that v(FAU) < ¢, while U € T;. As € is
arbitrary, F'* € ©;; as F is arbitrary, €; C ©;. Q
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(e) In order to apply 612H directly, I have cast the discussion above in terms of stopping times adapted
to the filtration <flt>t20. However it will make it easier to call on further results from §477 if I remark that
every member of Ty can be represented by a stopping time adapted to (E?‘)QO, where Zj‘ = (N,o; Bs for
t > 0. P Recall that (X;);>0 is a filtration of o-algebras (455L) and that

s>t 'S

s>t

for every t (477Hc). If 7 € T} there is an h : Q — [0, 00[ representing 7 which is adapted to (£)¢>0 =
<f];r>t20; by 455L(e-iii), there is a stopping time g, adapted to (X, );>0, which is equal to h almost every-
where. Of course g is now adapted to <ﬁ]t>t20 so represents a stopping time in 77 in the sense here, and by
612H(a-iv) g represents 7. Q

612U Example: the Poisson process (a) For ¢ > 0 let A\; be the Poisson distribution with expectation
t, that is, the Radon probability measure on R such that A\ {n} = e~ " /n! for every n € N (495Aa). Then
the convolution A * A\; is equal to Asy; whenever s, ¢ > 0 (495Ab), and lim; o \;G = 1 for every open set
G C R including 0. So 455Pc tells us that we have an associated probability measure ji on the space Cqy, of
cadlag real-valued functions defined on [0, oo[. This measure is described in 455P as the subspace measure
on Cyjg induced by a complete measure on R0l defined in terms of transitional probabilities, following
455E. The formula of 455E tells us that if 0 = g < ... < t, inRand 0 = ky < ... < k, in N, then the
measure of {w: w(t;) = k; for i <n}is

Ty Mty {s — i} = et [T, Gt
s =1 (h—ki1)!

(b) As in 455K, ji is a completion regular quasi-Radon measure on Cyq, if we give Cyqg the topology of
pointwise convergent inherited from R1%>l. Now the set
) = {w: w € Cqyg is non-decreasing, w(t) € N for every ¢t and w(0) = 0}
is the support of ji. I 2 is a closed subset of Cyqjs. The formula in (a) tells us that ji{w : w(0) =0} =1 and

. o0 — tk
fi{w:w(t) eN} =37 ge tﬁ =1

for every t > 0, while

. L
fi{w :w(s) Sw(t)} =e Zkozo Zklzofol T 1

whenever 0 < s < t. Thus 2 is expressible as the intersection of a family of conegligible closed sets and is
itself a conegligible closed set. If G C Cyj, is an open set meeting €2, there area@ € GNQ and ty < ... < ¢y,
such that o = 0 and {w : w(t;) = @(t;) for every i < n} C G; in this case (2N G) > 0. So  is the support
of ji. Q

(c) Let u be the subspace measure on  induced by ji and ¥ its domain, so that p is a quasi-Radon
probability measure on Q (415B). For ¢ > 0, set

¥ ={F: F €domji, w' € F whenever «' € Cqg, w € F and w'[[0,] = w[[0,#]}
(see 4550) and
S, = {FAA:F e, jid=0.
Then it =Nest i)s for every t (455T). So if we set
S ={F:FCQ Fe3,)

for t > 0, (3;)1>0 will be a filtration of o-algebras. Consequently, if we take (2, i) to be the measure algebra
of u, and set A, = {F*: F € ¥;} for each t, (;);>0 will be a filtration of closed subalgebras of 2.

(d) For w € Q and t > 0 set X;(w) = w(t). Then X; has a Poisson distribution with expectation t. Now
(X4t)i>0 is progressively measurable (4A3Q(c-i) again). We therefore have a corresponding fully adapted
process v = (vr),¢c7; defined as in 612Hb; in this volume I will call this the standard Poisson process.
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612Xb Fully adapted processes

(e)(i) For each n € N and w € Q, set
gn(w) =inf{t:t € [0,00[, w

(t) = n},
counting inf @ as co. Then go(w) = 0 for every w. If g,(w) is finite, then w(g,(w)) > n, because w is cadlag

Note that
plw: gnlw) >t} <Pr(X, <n) = e Y01 E .

as t — 00, so ¢, is finite a.e. Of course g, < gny1 for every n. In fact, for almost every w, (gn(w))nen is

strictly increasing. B If 0 < s < ¢, then
plw:wlt) —w(s) >2} <1 —e (14t —5) <

Suppose that v > 0, n € N, m > 1 and w € Q are such that g, (w) = gny1(w) <. Set t; = Y fori <m

(t—s)%

Then there is a first ¢ < m such that g,(w) < t;, that is, w(t;) > n. Since gn11(w) < t;, w(t;) > n+ 1. By
w(to) =0, so i > 0 and we can speak of w(t;_1), which must be less than n. But w(#;—1)

the definition of €,
1) +2.

is an integer, so it is at most n — 1, and w(t;) > w(t;—
This shows that

{w 1 gn(w) = gn41(w) <7}
< p{w : there is an ¢ such that 1 <i <m and w(t;) — w(t;—1) > 2}

2
<nip -7

Letting m — oo, we see that {w : g, (w) = gn+1(w) < 7} is negligible; letting v — 00, {w : gn(w) = gnt1(w)}

is negligible and its complement is conegligible. Q
Observe that, for any n € N, w(g,(w)) = n for almost every w. P If g,(w) < gnt1(w), then n <

(gn(w)) <n+1 80 w(gn(w)) = n; and this is the case for almost every w. Q

(ii) For n € N and ¢t > 0,
{w: gn(w) <t} ={w: there is a rational ¢ < t such that w(q) > n} € Xy,
S0 gn is a stopping time adapted to (¥, );>0 (455Lb), which here is just (3;);>0. Let 7, = g5 be the
oo for every w, sup,, ey [7n > t] =1 for every t,

corresponding stopping time in 7;. Since lim, o0 gn(w)
and sup,,en 7, = max 7. Since X, () (w) = n for almost every w, v,, = nxl, for every n € N

I will call (7,,)nen the sequence of jump times for the process v

(f) If 7 € Ty, then
[v:eN]=1, [vr=v.,]=[vr=n]=[m<7]n

P As in 612H, we have a stopping time h : @ — [0, 00[ representing 7, and v, = X;. Now Xj(,)(w)
w(h(w)) € N for every w, so [v, € N] = 1. For any particular n € N

n] = {w: wlh(w)) =n}*

= {w: gn(w) < W) < gnp1(W)}* = [ < 7]

[T < Tny1] for every n € N.

[vr =
[l [[T < Tn-i—l]]- Q

(8) Because every w is non-negative and non-decreasing, 0 < X, < X} whenever g, h are stopping times
and g < h, and 0 < v, < v, whenever o < 7 in Ty. It follows 1mmed1ately that v is locally order-bounded.

612X Basic exercises (a) In 612A(d-iv), show that if u > 0 then h + h(u) : H — L° is order-preserving

and sequentially order-continuous.
(b) Suppose that S is a sublattice of T and u = (u,)ses a fully adapted process. Show that

Ug + Ur + Uy = Ugarav T+ Umed(o,T,v) + Uovrvo

forall o, 7, v ES.
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(c) In 612Hb, show that we can have a progressively measurable family (X;);>o such that X; =, 0 for
every T, but there is a 7 € T, such that u, # 0.

(d) Let S be a sublattice of T and u a simple process with domain S. Show that u[SVT = u[SN[r, max T]
and u[S N [r, 7] are simple processes whenever 7 < 7/ in S.

>(e) Let I be a finite sublattice of T and u a fully adapted process with domain I. Show that there is
a simple process with domain 7 extending u and with a breakpoint string in I. How far is this extension
unique?

(i) Let A C T be any set, and S its covered envelope (611Mb). (i) Show that if A is an ideal of 7 then
S is an ideal of T. (ii) Show that if u = (ug)oea € [ 4 L%(2s) is such that [u, = u.] 2 [0 = 7] for all
o, T € A, then there is a unique fully adapted process & with domain S extending u. (iii) In (ii), show that
1t]|co = supgyea l|tolloo, [t # 0] = sup,c4 [te # 0] and that {4, : ¢ € S} is and order-bounded subset of
LY iff {u, : 0 € A} is.

(j) Suppose that S is a sublattice of T, S is its covered envelope, and that w is a fully adapted process
with domain S with corresponding extension % to a fully adapted process with domain S. Show that if u is
simple then u is simple.

(k) Show that if 7 € T then (x[o = 7])se7 is a fully adapted process.

(1) Show that if S is a sublattice of T with covered envelope S,anduis a non-decreasing fully adapted
process with domain S, then its fully adapted extension to S is non-decreasing.

>(m) Let S be a sublattice of 7, and 7 a member of S. Suppose that 4 = (us)oesar and ¥ = (Vg )oesvr
are fully adapted processes such that u, = v,. Show that there is a unique fully adapted process with
domain S extending both u and v.

612Y Further exercises (a) Show that the ideas of 612H can be applied to any totally ordered set T
which is Polish in its order topology, in place of [0, c0[. (First tackle the case T = N to establish rules when
T has gaps. You may have to use T or T U {—oc} or T'U {—00, 0} in place of [0, o0].)

(c) Let (us)ses be a simple fully additive process, and 7 € S. Show that (usar)ses is a simple fully
additive process.

(e) I will say that a fully adapted process u = (u,),es on a non-empty sublattice S of T is previsibly
simple if there are 79 < ... < 7, in S, u; € L°(A,,) for i <n and a u. € L°(N 2,) such that, for every
TES,

ceS

infoes[r <ol Cur=0], [o<7]n[r <o) C [ur =u.] for every o € S,

[ <7]n[r < 7i4a] C [ur = w] for every i <n, [r < 7] C [ur = un]-

Formulate and prove results for previsibly simple processes corresponding to the facts listed in 612K.

(f) Give an example in which S is a sublattice of 7 and w is a fully adapted process with domain S such
that the fully adapted extension of u to the covered envelope of S is simple, but u is not simple.

612 Notes and comments In 612H, I look at filtrations of o-algebras of measurable sets which are
supposed all to contain every negligible set. In the most natural representations of the most important
stochastic processes, the filtrations don’t have this property; see 477H. An incidental advantage of working
with measure algebras is that such questions disappear until we turn to specific examples.

Many special spaces of fully adapted processes will be important in the work below; here I mention only
the simple processes (612J, 612Xd), as those which have descriptions accessible from our present position.
More interesting is the use of ‘covering ideals’ (611N, 612R). We shall have many cases in which a restriction
to an appropriate covering ideal will render a process more amenable — e.g., by making it a martingale.
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You may have noticed that there is no mention of ‘measure’ or ‘probability’ in this section except in
the construction described in 612H, and there is no ‘¢ > 0’ anywhere. We are still working through the
foothills, with essentially algebraic arguments. There are some suprema of infinite sets, but in so far as there
is anything non-trivial here, it is a reflection of the work in §364 and §611. ‘Simple’ processes, however,
demand a bit of attention. They are supposed to be a stochastic representation of step-functions on R
(226Xb, 2420) and will play a similar role when we come to the theory of integration (see §614), but the
extra complication of working on a lattice rather than on a totally ordered set makes some essential points
(e.g., 612Kc) trickier.

If you have spent any time with Volumes 1-5 of this treatise, you will know that I consider a function to
be inadequately defined if there is any doubt about its domain. This is a demanding discipline which is more
important in some places than others. A point at which we can be relatively relaxed is in the definition of
integration in 613Hb, where I shall insist only that domu and dom % should be large enough for Sy (u, dv) to
be defined for every finite sublattice I of S. A point at which we have to be more careful is in the definition
of ‘simple process’ in 612J, where we have to know the exact domain of a process u before we can confirm
that the proposed breakpoints belong to that domain. Manoeuvres like the proof of 612Qf will often be
required.

Referring you to §455 in the course of 612U is unkind. It ought to be much easier than this, and indeed it
is. You should have no real difficulty in finding your own way to a proof of the really important bit, which is
that the formula in 612Ua defines a probability measure on the space ) of non-decreasing cadlag functions
from [0, co[ to N starting at 0. But we are going to need the fact that the filtration (X;);>¢ is right-continuous
(632Da below), and this seems to demand thought. More generally, the processes considered in §455 furnish
many other important examples for the theory here.

The construction zu of 612De will be one of the leitmotivs of this volume. For the theory here, we can
expect zu to behave like a scalar multiple of u; in effect, if S is a non-empty sublattice of 7, the f-algebra
[T,es L°(As) can be thought of as an L°(),cg As)-module. The idea is that a fully adapted process with
domain § is supposed to represent the evolution of a system over time, and that [, .s%l, is the algebra
of events observable from the beginning of the process; so that if we think of z as a function rather than
a member of LY, its values are determinate scalars, and any feature of the process preserved by scalar
multiplication ought to be preserved by multiplication by z. I shall give a fair bit of space, in total, to such
calculations as 612Lc, but they will nearly always be elementary adaptations of ideas already indicated.

Version of 15.7.20/16.1.25
613 Definition of the integral

I come now to the definition of a stochastic integral which will be used for the next three chapters. We are

looking for an effective way to interpret the formula f:/ u dv where 7 < 7’ are stopping times and u, v are
fully adapted processes defined on an interval [7,7'] in 7. I will define this as a kind of Riemann-Stieltjes
integral, a limit of ‘Riemann sums’ of the form " jur, X (vr,,, — vy) where 7 =79 < ... < 7, = 7.
For this we need a notion of convergence, for which ‘convergence in measure’ (§§245, 367) turns out to be
suitable, and a particular limiting process, to be described in 613Hb. Because our processes are defined on
a lattice 7 of stopping times, rather than a totally ordered set, there are some technical obstacles to clear
out of the way; I aim to do this in 613C-613G. The rest of the section is devoted to elementary properties
of this new integral.

613A Probability algebras (a) For the rest of this volume, (2, ) will denote a probability algebra.
LY(A, z) or L}, will be its L' space as described in §365, a linear subspace of L°(2). For w in L° = LO(2A),
I will write E(w) = E;(w) = E(w") — E(w™) for its integral with respect to i as defined in 365D, provided
that at most one of E(w™), E(w™) is infinite. (I am reserving the symbol [ for the stochastic integral to be
defined in 613H.)

(b) As in §§611-612, T will be a totally ordered set and ()7 a filtration of order-closed subalgebras of
2. Recall from 316Fb and 323H that in this context a subalgebra of 2l is order-closed iff it is a o-subalgebra
of 21 iff it is topologically closed in the measure-algebra topology of 2, which is that of the measure metric
(a,b) — fi(a A b); so we can safely call such subalgebras ‘closed” without specifying which aspect we have
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primarily in mind. 7 will be the set of stopping times adapted to (;);cr. For 7 € T, 2 will be the closed
subalgebra corresponding to 7 (611G). When I say that a process is ‘fully adapted’ I shall always mean that
it is “fully adapted to (s)ier .

613B Convergence in measure I begin with notes on two fundamental concepts from probability
theory. The first is essential for the notion of ‘integral’ to be defined in this section.

(a) Recall that L° = L°(2A) now has a topology ¥ of convergence in measure which can be defined by
the F-norm 6 where

O(w) = E(|w| A x1) for every w € L°
(245Da, 2A5B, 367L). This is a complete Hausdorff linear space topology for which multiplication and the
lattice operations V, A and | | are continuous (367M). Because (2, i) is always isomorphic to the measure
algebra of some probability space (321J), we can apply all the results proved in §§245-246 for the topology
of convergence in measure on spaces L°(u1), as well as those spelt out in §367. In particular, the positive

cone (L%)* is closed.
Concerning the functional 6, it is subadditive (that is,

O(wy +wa) = E(|wi +wa| A x1) < E((Jwi| + [we]) A x1)
SE(Jwi| A X1+ [wz| A x1) = 0(wr) + O(ws)

for all wy, we € L°). Tt is not a seminorm except in trivial cases, but it does have the property that
f(aw) < af(w) if w € L? and a > 1. P E(a|w| A x1) < E(ajw| A axl) = aE(jw| A x1). Q Also, of course,
0(v) < O(w) whenever |v| < |w| (cf. 354A). Finally, because E is order-continuous (365Da; cf. 354Dc),
lim,, 4 O(w) = 0 whenever A C L° is a non-empty downwards-directed family with infimum 0 (367Na), so
that sup A € A and limy44 6(w) = O(sup A) whenever A C L is a non-empty upwards-directed set with an
upper bound in LY; similarly, if A C L° is a non-empty downwards-directed set with a lower bound in L°,
lim,,; 4 0(w) = O(inf A).

(b) If E C R is a Borel set and Qp = {u: u € L°, [u € E] = 1}, then for any continuous h : E — R the
corresponding function h : Qg — LY is continuous (367S).

(c) If 1 < p < o0, all the || ||,-balls {u : v € L, ||lull, < a} are T-closed (245](b-1), 245Xk). Consequently
the T-closure of a || ||,-bounded set is again || ||,-bounded, and || ||, : L® — [0,00] is lower semi-continuous
(4A24).

( (d))(l) For any p € [1,00], the embedding Lf, & L is continuous for the norm topology of L% and T
245@G).

(ii) If A C L, is non-empty and downwards-directed and inf A = 0 in L},

oo then infuca([ully =

(iii) If A C (L;11)+ is non-empty and upwards-directed and y = sup,,c 4 ||u||1 is finite, then A is bounded
above in L, sup A belongs to the || |[1-closure of A and | sup A, =~ (365C again).

(iv) If uw € L}, and € > 0, there is a § > 0 such that [lu — v, < e whenever v € L, ||[v|l1 < [[ully +6
and 0(u —v) < ¢ (245H(b-1)).

(e)If AC L% and v € Athen [v > o] C sup,c [u > a] for every a € R. P Setting a = 1\ sup,c 4 [u > o]
we see that u X ya < axa for every u € A, so v x xa < axa and [v > o] does not meet a. Q

(£) (1) Because ¥ is a linear space topology, there is a corresponding notion of bounded set (3A5N). T will
say that a set A C L? is topologically bounded if for every neighbourhood G of 0 in L° thereis an n € N
such that A C nGj; equivalently, if for every € > 0 there is a § > 0 such that 6(du) < € for every u € A.

(ii) If A C L° is non-empty, then A is topologically bounded iff inf,~osup,c 4 ii[Ju| > 7] = 0. P(a) If
A is topologically bounded and 0 < € < 1, let § > 0 be such that 6(du) < €2 for every u € A. If u € A then
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eillul > 1] = eqlloul > 1] < 0(6u) < &
so fiflul > 5] < e. As e is arbitrary, inf,~osup,c4 if|u| > ] = 0. (B) If inf~qsup,c 4 ifJul >~] =0, take
€ > 0. Let v > 0 be such that ia[|u] > ] < e for every u € A, and set § = % If u € A, then

0(ou) < e+ pf|du] > €] < e+ aflul > ~] < 2e.
As € is arbitrary, A is topologically bounded. Q

(iii) If A, B C LY are topologically bounded, so are A + B and aA for any o € R, the closure A of A
for the topology of convergence in measure (3A5Nb), and any subset of A.

(iv) If A C L is topologically bounded, so is its solid hull {u : v € L°, Fv € A, |u| < |v|}. (For if
|u| < |v], then 8(du) < §(dv).) In particular, an order-bounded subset of L° is topologically bounded.

(v) An upwards-directed topologically bounded set is bounded above. B If A C L° is an upwards-
directed set which is not bounded above, then ¢ = inf,eysup,c4 [u > n] is non-zero (364La). If n € N,
then {cnu>mn] : v € A} is upwards-directed and has supremum ¢, so there is a u, € A such that
a(e\ [un, >n]) <27 2fc. Set d = ¢\ sup, ey [un > n]; then id > 0. But now observe that (du,,+1) > fid

whenever n € N and 6 > n%_l, so A is not topologically bounded. Q

(vi) If A C L%is solid, sois A. P Ifv € A, |u| < |v| and € > 0, there is a v’ € A such that 8(v' —v) < ¢;
now u’ = med(—[v'],u, [v'|) belongs to A, while u = med(—|v|,u, |[v]), so [u—u'| <[|v—2'] and O(u—u') <.
As € is arbitrary, u € A; as u and v are arbitrary, A is solid. Q

(g) If v : A — [0, 1] is any functional such that (2, 7) is a probability algebra, then i and 7 are mutually
absolutely continuous, that is,
—— for every € > 0 there is a 6 > 0 such that max(fia,7a) < e whenever a € 2 and
min(fia, va) < 6 (393F).
(Compare 232Ba.) Consequently T is still the topology of convergence in measure on L° if we apply
the formulae of (a) with the integral E; defined from 7 in place of E = E; (see 367T), and if we set
05 (w) = Ey(|w| A x1) for w € LY, then
—— for every € > 0 thereis a § > 0 such that max(6;(w), 05 (w)) < € whenever min(6;(w), 05 (w)) <
0.
This will be a recurring theme in the rest of this volume, so I introduce a code phrase here: the topology
of convergence in measure is law-independent, since replacing the ‘law’ i by the law ¥ leaves it unchanged.

(h) (L°,0) is a complete metric space; that is, L° is complete when regarded as a linear topological space
(367Mc).

(i) Now suppose that 9B is a closed subalgebra of 2.

(i) L°(B), regarded as a subset of LY(21) (612Ae), is closed for the topology of convergence in measure
(367Rc).

(ii) As the embedding L}, € L°(2) is continuous for the norm topology of L}, ((d-i) above), L, NL%(B)
is || |1-closed in Lll-t; being a linear subspace, it is also closed for the weak topology of L}-L (4A4Ed).

(j) The following is a useful consequence of (i). Suppose that S is a sublattice of T, u = (uy)ses is a
fully adapted process, and A C S is a non-empty downwards-directed set such that the limit v, = lim,| 4 u,
is defined. Then u, € (N4 L2(As) = Lo, cxAUs). P If 0 € A, then u, belongs to the closure of
{ugr 10’ € A, 0/ <o} C L°(As); as LO(As) is closed, u, € L°(A,). As o is arbitrary, u, € (,c4 L°(™Ao).
For the other expression, write B for 2,; being the intersection of closed subalgebras of 2, B is a
closed subalgebra of 2. Now, for v € L9,

ocA

v e L'(B) < [v>a] €D for every a € R
<— [v>a] e, forevery « e Rand o € A
= v e LY*A,) for every o € A,
s0 LO(B) =N, L' (A,), and in particular contains u,. Q
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(k) A particular manifestation of the idea in (j) above appears often enough to be given a name. If S
is non-empty and ¥ = (u,)ses is a fully adapted process such that the topological limit u) = limy s us is
defined in L°(2A), I will call u; € L%(N, .5 Ao) the starting value of u.

(1) If S is a sublattice of 7, then we can give (L°)® its product topology, under which it is a linear
topological space (4A4Bb). Now the space Mg, (S) of fully adapted processes with domain S is a closed
subspace of (L°)S. P

M (S) = (L0 [ {{uo)oes : (uo)oes € (L),

T,7'ES
ur € LOA,), [r=1'] € [ur = u]}.
Accordingly L°(2,) is closed in L? for every 7, by (i-i) above. Moreover, if 7, 7/ € S and a € 2, then
{(u,v) :u, v € L% a C [u=v]} = {(u,v) :u, v € L, u x ya=v x xa}

is closed in (L°)? because multiplication in L° is continuous and the topology of L° is Hausdorff. So Mt,(S)
is an intersection of closed sets and is closed. @Q

(m) Because the lattice operations on L% are continuous, and the topology is Hausdorff, sets of the form
{lu| :u <a} ={u:|ul va=u} are closed for any @ € L°. Consequently, in a product space (L°)S, sets of
the form {u :u € (L°)S, |u| < u}, where 4 € (L°)®, are closed for the product topology.

(n) Now suppose that (B,7) is another probability algebra, and ¢ : 2 — B is a measure-preserving
Boolean homomorphism. Then ¢ is order-continuous (324Kb), so we have a corresponding injective f-algebra
homomorphism Ty : L°(2) — L°(B) (612Af). Writing Ej;, E; for expectations in L}, L, respectively, and
07, 0 for the corresponding functionals on L°(2) and L°(B), Ey(Tyu) = Ej(u) for every u € L, (365Nb?);
as Ty is a Riesz homomorphism and Ty (xly) = xlw, 05(Tpu) = 05(u) for every u € LO(A), and T} is
continuous for the topologies of convergence in measure.

(o) For any « € R, the function u + jiJu > ] : L% — [0,1] is lower semi-continuous. P Suppose that
uwe LY = L%®) and jifu > «] > ¢. Then there is a 6 € |0, 1] such that afu > o+ ] >t + 5. Suppose that
v € LY is such that 8(v — u) < §%. Then jif|v — u| > §] < 6. Now

[v>a]2[u>a+d]nv—u>—d],

afv > o] > glu > a+ ) — afjlv —u| > 8] > t.
This shows that {u : fifu > a] > t} is open; as t is arbitrary, u — fJu > «a] : L° — [0,1] is lower semi-

continuous. Q

(p) (i) Suppose that A C L° and that for every € > 0 there is an a € 2 such that {ux xa : u € A} is order-
bounded in L and jia > 1—e. Then A is order-bounded in L°. I For each n € N set ¢, = sup,¢ 4 [|u| > n].
Then (¢, )nen is a non-increasing sequence in 2. Given € > 0, there is an a € 2 such that ga > 1 — %e and
U = sup,e 4 |u X xal is defined. Let n € N be such that b = [a > n] has measure at most ze. If u € A,

[lul >n] € A\ a)u[lux xal >n] € (1\a)ub.
So if m > n,
em Cen € (ANa)ub, fcy, < (11— jga)+ ab<e.

As € is arbitrary, lim,,_, o, fic,, = 0.
Consequently inf,enc, = 0 and {|u| : u € A} is bounded above in L° (364L(a-i)), that is, A is order-
bounded in L°. Q

(ii) If u = (uy)oes is a fully adapted process and for every € > 0 there is an order-bounded process
v = (Vg )oes such that fiJu # v] < e, then u is order-bounded. P Set A = {u, : 0 € S§}. If € > 0, there is
an order-bounded process v = (v,)secs such that fiJu #v] <e. Set a =1\ [u #v]. Then fia > 1 — € and

3Formerly 3650b.
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|ug X xa| = vy x xa| < sup |v]

for every o € S; so {u x xa : u € A} is order-bounded in L°. By (i) just above, A is order-bounded in LY,
that is, u is order-bounded. Q

(qQ)(i) If A C T, 7 belongs to the covered envelope A of A (611Ma) and e > 0, there is a 7/ in the
finitely-covered envelope A of A (6110b) such that fi[r = 7'] > 1 —e. P We know that sup 4 [c = 7] = 1
in A, so there is a non-empty finite J C A such that fi(sup,c; [0 =7]) > 1 — €. Let I be the sublattice
of T generated by J; then I is finite (611Ca) and included in Af (611Pa). Take a sequence (og,... ,0n)
linearly generating the I-cells (611K-611L). Set ay = [or, = 7] for k < n, a = supyey Gk, bk = ax \ SUP; ., @;
for k < n and b, =1\ supy, ax. Then ag, by € A,, for k <n and (bi)r<n is a partition of unity in 2.

Observe that if o € J then supy<,, [0 = or] =1 (611Ke), so

[e=71]= SUPj<, [oc=71]nfo =0k C SUPy <,y lox = 7];

taking the supremum over o, a C supy<,, [ox = 7].
By 6111 there is a 7’ € T such that by C [’ = o] for k < n. Next, for k < n let Kj be a finite subset of
A such that sup,¢ g, [0 = ox] =1, and set K = J; ., Ki. Then K is a finite subset of A,

sup [o=7]= sup bpnfo=17]
oceK k<n,0eK
= sup bpnfo=ox] =supbp =1
k<n, 0K} k<n
and 7’ € flf.
Moreover,

[r=7]=supbpn[r=7"]=supbpn[r=o]
k<n k<n

= sup by Nap = sup(ag \ supa;) =supagda
k<n k<n i<k k<n

has measure at least 1 — ¢, as required. Q

(ii) If S is a sublattice of T with covered envelope S and finitely covered envelope S fr U= (Ur) cg

is a fully adapted process and 7 € S’, then wu, belongs to the closure of {u, : 0 € S'f} for the topology of

convergence in measure. B For any € > 0 there is a o € Sy such that Jo — 7] > 1 — ¢, by (i) just above;
now

O(ur — us) = E(|ur —ue| A x1) < fur # uo]
1

As € > 0 is arbitrary, u, € {u, : 0 € S¢}. Q

613C Interval functions Now for a new idea.
(a) Let S be a sublattice of 7. I will write S?' for {(0,7):0, 7€ S, 0 <7}
(i) I say that a function ¢ : S? — LO(2A) is an adapted interval function on S if
P(o,7) € LO&L,), (o,0) =0, bC[(o,1)=1(c",7)]
whenever 0 <o’ <7 <7in S, b€ U, and b C [o = n[r =1].
(ii) In this case, I say that 1 is a strictly adapted interval function if
[o =0 ln[r" =7] € [¥(o,7) = ¥(co’, 7]

whenever 0 < ¢’ <7/ <71in S.
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(b) Let S be a sublattice of T and ¢ : S*T — LO(2A) an adapted interval function.
(i) [o = 7] € [¥(o,7) = 0] whenever o < 7 in S. P Setting o/ = 7/ = o, we have
[o=1]=lc=d]n[r"=7] €U
o
[o =7l c (o) =", 7)] < [¥(o,7) =0]. Q

Taking complements, [¢)(o,7) # 0] C [0 < 7] whenever ¢ < 7 in S.
(i) Y(o,ovT)=¢(oAT,7) forall o, 7€ S. P [o < 7] € Ay (611Hc) and

[oc<t]=JcAT=0]n[r=0VT]
Cl(onr,ovT)=y(o,oVT)]nYlc AT,oVT)=1(c AT,T)]
C (o,oVvT)=2(cAT,T),

[r<o]l=JcAT=1]n]oc=0VT]
Cwont,7)=0]n[w(o,oVvT)=0] C [tb(o,0VT)=1(cAT,T)];
putting these together, [¢(o,0 V1) =¢(c A7, 7)] =1 and Y(o,0 V1) =¢(c AT,T). Q

(iii) If Sy is any sublattice of S, then 1/)[802T is an adapted interval function on &y, and is strictly
adapted if ¢ is. (Immediate from the definitions in (a).)

(iv) If ¢ is strictly adapted then o = o’ n[7' = 7] C [¢)(0,7) = ¥(0’,7')] whenever o < 7 and ¢’ < 7/
inS. P

[c=d]n[r'=7]=Joro =c]n[r=7Vr]nfond =d]n[r' =7VT]
€ [(o,m) =v(cnd, V) np(o’,7') = (o Ao’ 7V T')]
€ (o, m) =4(o",7)]. Q

(¢) Much the most important examples of such functions are the following. If S C T is a sublattice and
v = (U, )ges is a fully adapted process, we have a function Av : ST — L%(2A) defined by saying that

(Av)(o,7) = vr — Vs

whenever o < 7 in S, and Av is a strictly adapted interval function on S. P If 0 < ¢’ <7/ < 7in S, then
vy — vy € LO(2;) because o < 7, [v; —v, # 0] C [o # 7] = [0 < 7], and

[o=dln[r=7]C [ve =vo ] Nn[vr =v:] C [Ur — V6 =vr —vsr]. Q

613D Constructions for interval functions Let S be a sublattice of T and v, ¢’ (strictly) adapted
interval functions on S.

(a) ¥+ 1" and ¥ x ¢’ are (strictly) adapted interval functions.

(b) If h: R — R is a Borel measurable function, then the composition h is a (strictly) adapted interval
function.

(c) In particular, 12 and [¢| and a, for any o € R, are (strictly) adapted interval functions; the space
of (strictly) adapted interval functions on S is an f-subalgebra of LO(Q[)SQT.

(d) If u = {uy)pes is a fully adapted process, then we have a (strictly) adapted interval function ) on
S defined by setting (u))(o,7) = uy X (0, 7) whenever o < 7 in S.

proof (a)-(c) are immediate consequences of the definitions in 613Ca.

(d) Write ¢/(0,7) = uy, x (0, 7). If 0 < 7in S, then ¢/(0,7) € L°(2l,) because u, and (o, 7) both
belong to L°(2,); and

[o=7]cl¥lo,7)=0] € [¢'(o,7) = 0.
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Next, as in 613Cc, take o, 7, 0’, 7/ € Ssuchthat 0 < ¢/ <7/ < 7andb € 2, suchthatb C [o = '] n[r' = 7].
Then

b e fus =ug ] n[vo(o,7) =2(0", )] C [¥'(0,7) =4 (o", 7)].
If 4 is strictly adapted, then the same formula will be valid with b = [o = o' n [’ = 7]
Remark Another class of adapted interval functions will be based on conditional expectations; see 626H.

613E Riemann sums Let § C T be a sublattice, 1) an adapted interval function on S, and u = (us)secs
a fully adapted process. For ¢ < 7 in S set

c(o,7) = ([r > t]\[o > t])ier
as in 611J.

(a) For a stopping-time interval e € Sti(S), we can define A, (u,dy) by saying that A.(u,dy) = u, x
(o, 7) whenever e = ¢(o,7) with ¢ < 7 in S. P I need to confirm that if e = ¢(o,7) = ¢(0’,7’) then
Ug X P(0,T) = uyr X (o, 7).

(i) Consider first the case in which 0 < ¢’/ <7’ < 7. Set b = [o < 7] € A,. Then
b=[o' <7 clo=d]n][r="7]

(611Jd), so

b C [us =ug | n[(o,7) =(c’, )] C [ue X Y(o,7) = ur x (o', 7)].
On the other hand,

IN\NbC [¢(o,7) =0]n (o', 7") = 0] C [us X ¥(o,7) = 0] N [ur x P(c’,7') =0]
C [ue X (o, 7) = ur x (o', 7")].
So ue X (o, 7) = umr X P(o', 7).
(ii) Generally, if ¢(o,7) = ¢(o’,7’) then
[o<r]=[o" <] Co=0]n][r="7]
o
[ond <Tvr]=Jo<t]Clond =c]nr=7VT]
and c(o Ao, 7V 1) = c(o,7). By (i), ug'nr X (e Ao', 7V T') = u, x (o, 7). But the same argument
shows that usiar X V(o Ad!, 7V T') =ue X P(o/,7'), 80 us X (0, 7) = uy X (o', 7'), as required. Q
(b) If I C S is a finite sublattice and Stip(I) C Sti(S) is the set of I-cells (611Je), write
Sr(u, dp) = ZeGStio(I) Ac(u, dip).

(c) In this context, I will repeatedly use 611L, in the following way. If I C S is a non-empty finite
sublattice, then there is a string (79, ... ,7,) in I linearly generating the I-cells. In this case Sy(u, dy) will
be Y7 01 Uz, X P(Ti, Tig1)- It will not be necessary to check that the sequence (7;)i<y, is strictly increasing,
because if 7; = 7;41 then ¢(7;, 7;41) will be 0.

(d) Now suppose that ¢ = Aw for some fully adapted process v = (v,)ses. If I C S is any non-empty
sublattice, then S;(1,d(Av)) = Vmax7 — Uminz- P (Recall from 612D that 1 is the constant process with
value x1.) Take (79,...,7,) linearly generating the I-cells. Then

S[(].,d(A’U)) = ZX]- X (A'U) Tl)TZJrl ZUT7,+1 — Ur;

= Vr, — U1y = VUmaxI — UminI- Q
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(e) If » = uy)’, where ¥ is another adapted interval function with domain S and u = (u,),cs is a fully
adapted process (613Dd), then S7(1,dy) = Sr(u,dy’) for every finite sublattice I of S. P

Ae(L,dy) = (o, 7) = ue X YP'(0,7) = Ae(u, dv)’)

whenever e = ¢(o, 7) is a stopping-time interval with endpoints o, 7 in S. So

51(17 d"/)) = ZeeSti(,(I) Ae(l?dw) = ZeeStio(I) Ae(uvdwl) = Sf(uvdwl)' Q

613F Notation I will use abbreviations for some of the most important interval functions. Let S be a
sublattice of T and u = (uy)oes, ¥ = (Vs)oecs and w = (wy)ses fully adapted processes.

(a) If o < 7in S and e = ¢(o, 7), then I write

Ac(u, dv) = A (u, d(AV)) = uy X (V7 — Vs),
Ae(u, dvdw) = Ac(u, d(Av X Aw)) = us X (V7 — V5) X (Wr — Wy ),
A (u, |dv]) = Ac(u, d|Av]) = uy X |vr — vy
(b) Now if I C S is a finite sublattice and Stig([) is the set of I-cells, write
Sr(u, dv) = Sy(u, d(Av)) = 3 cqpio (1) De(u, dv),
Sr(u, dvdw) = Sr(u, d(Av x Aw)) = 3 cqhi (1) De(w, dvdw),

Si(u, |dv]) = Si(u,d|Av]) =

I hope that these expressions will make the formulae below more appealing, and perhaps offer some hints
of the manipulations which will be possible.

(n) De(u, |dvl).

eE€Stig

613G Proposition Suppose that I is a finite sublattice of 7, ¢ : I?T — LO(2) is an adapted interval
function and u = (u, )¢y is a fully adapted process.

(a)i)Ifr e Tandweset IVT ={oVT:0€l}={o:7<ocecllandINT={oAT:0€l}={0:0€],
o <1}, then Sy(u,dv) = Syar(u, dv)) + Spy,(u, d)).

(it) I 70,... ,7 € Tand min] = 79 <7 < ... < 7, = max [, then Sy(u, db) = S0 Sirpr resy) (u, d).

(b) For 7 € I set z, = Star(u,dy). Then (z;),¢r is a fully adapted process.

(c) If 7, 7" € I then Siar(u,dip) + Siar (w,dv)) = Sia(rvery (W, d) + Siarar (6, di).

(d) [Sr(u,dy) # 0] C Ju # 0] N [min I < max I].
(e) If v = (v, )r¢s is another fully adapted process, then S;(u, d(vy))) = Sr(u X v, dy).

proof (a) (i) We have only to recall that Stig() is the disjoint union of Stig(I A7) and Stig(I'V7) (611J(e-ii)).
(ii) Use 611J(e-iii).
(b)(i) If 7 € I and e € Stig(I A7) then e is expressible as ¢(g,0’) where o < ¢’ < 7, in which case
uy X P(o,0") € LO(Ay) C LO(2A,).
So z, € L°(2,).
(ii) Suppose that 7 < 7/ € I. Then

2 = Sipr (W, dp) = S(raryar (W, dY) + S(rarryvr (0, dy)
= Sinr(u, d¥) + Stz (4, dY) = 20 + Siapr ) (u, di).
Now if e € Stig(I N [r,7']) there are o, ¢’ such that 7 < o < ¢’ < 7’ and e = ¢(0,0’). In this case
[r=7]cClo=0]c[¢(o,0)=0] C[Ac(u,dy)=0]
(using 613C(b-i)). So
[7 =71 € [Xcestipunir.ry D d) = 0] = [Sinpr 1 (w, dip) = 0] = [z7 = 2]
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By 612Db, (z,),¢r is fully adapted.
(c) Put (b) and 612D(f-i) together.
(d) (i) Setting a = [u # 0] = sup,¢; [us # 0], we have
A (u,dY) = up X (0, 7) = ug X xa X Y(o,7) = Ac(u,dv)) X xa
whenever e = ¢(o, 7) is an I-cell, so St (u, d) = Sr(u,dy) x xa and [S;(u,dy) # 0] C a.
(ii) On the other hand, if e = ¢(0o, 7) is an I-cell,
[Ac(u,dp) # 0] C [(o,7) #0] C o < 7] C [minl < max I],
by 613Cb, and
[Sr(u,dy) # 0] € sup.egs, [Ae(u, dip) # 0] € [min I < max I].

(e) We have only to note that if o < 7in I and e = ¢(0o, 7), then
Ac(u, d(yY)) = us X vy X P(0,T) = Ac(u x v,dy));

summing over e € Stig([), we get the result.

613H Definitions (a) For a lattice S, write Z(S) for the family of finite sublattices of S.

(b) Let S be a sublattice of 7, u a fully adapted process with domain including S and ¢ an adapted
interval function defined (at least) on S?T. Then I define the integral of u over S with respect to v to be

fs udy) = limpyzs) St(u, di)

if the limit is defined for the topology of convergence in measure, that is, z = f sudy if for every € > 0 there
is a J € Z(S) such that 0(S;(u,dy) — z) < e whenever I € Z(S) includes J.

(c) Note that if, in (b), we set ¥’ = w1, as in 613Dd, then 613Ee tells us that

Jedv' = [(1dy" =limpzs) Sr(1,dy’) = limpyzes) Sr(u, dip) = [ udy
if either integral is defined.

(d) Remarks (i) I see that I am writing ‘lim47(s)’ where in Volume 3 I might have written ‘lim;_, 7(z(s)t)’-

(ii) The notation [ sudy is supposed to convey the fact that the existence and value of the integral
depend only on uS and ¥ [S?". But a warning! regarded as a function of S, it does not behave like an
indefinite integral except in special circumstances. as in 6130 below.

(iii) In this volume, the integral defined in (b) above will be the basic concept of ‘stochastic integral’,
and f s should always be interpreted in the way described here unless there is some clear indication to the
contrary. But in §§645-646 I will introduce a different integral, the ‘S-integral’, and it will then sometimes
be helpful to be able to declare explicitly that I mean the integral I have just defined; so I will keep the
phrase Riemann-sum integral in reserve to signify the integral of this chapter.

(iv) Of course a Riemann sum Sj(u, dy) can also be thought of as [, udy.

6131 Invariance under change of law The following point is perfectly elementary, but it is so important
that I give it a numbered paragraph to itself. The integral f sudy depends, of course, on the process u,
the interval function ¢ and the lattice S; behind these declared variables lie the undeclared structure
(2, T, (A4)ser) and the derived objects L® = L9(2) and 7. But we do not really need the measure ji. What
we use is the topology of convergence in measure on LY. Now this topology (though not the functionals E
and @ of 613Aa) can be defined in terms of the Riesz space structure of L°, which in turn depends only on
the Boolean algebra structure of 2 (613Bg). In place of introducing (2, i) as a probability algebra, I could
just as well have said that in this section 2 would be a measurable algebra in the sense of 391Ba. (Indeed,
the ideas so far would work perfectly if I asked only that 2 should be a Maharam algebra in the sense of
393Ea. But this extension would fail when we came to the real meat of the theory in §622.)
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So the Riemann-sum integral is law-independent, and we shall always be at liberty to replace the measure
(or ‘law’) i1 by another strictly positive countably additive functional on 2, if that seems to make calculations
easier. As I have arranged my exposition, this will remain the case throughout this chapter. I will return to
the issue in 622R.

613J Theorem Let S be a sublattice of T, 4 = (Uy)oedomu a fully adapted process with & C domu,
and 1) an adapted interval function defined (at least) on S2T.

(a) Suppose that for every € > 0 there are a z € L°() and a J € Z(S) such that 0(Sr(u,dy)) — 2) < €
whenever J C I € Z(S). Then [qudy is defined.

(b) If %’ is another fully adapted process defined on S, v’ is another adapted interval function defined on
8™ and [qudy, [su dy and [qudy’ are all defined, then [qu+u'dip and [gud(y + ¢') are defined and

Jeutwdp= [judp+ [judp,  [jud@+y) = [jud)+ [judy.

Similarly, for any o € R, [¢audy and [qud(at)) are defined and equal to a [ udi.
(c)(i) Suppose that 7 € S. Then

fsudd) - fsmudw + fsvfucw

if either side is defined.
(ii) Suppose that 70 < ... <7, in §. Then

fsudw = fS/\To 'U:d'l/) + Z?:_Ol fSﬁ[n,nJrl] Udd) + fS\/Tn wa

if either side is defined.
(d) If z = [gudi is defined, then

[z # 0]

N

sup [ug #0]n  sup [¢(o,7) # 0]

< (o,7)ES2T
sup ([ue #0]nfo < 7]) C [u # 0].

o,TES
(e) Set S'={r:7€S, [5,, ud is defined}.
(i) & is an ideal of S.
(ii) Setting z, = fSATudw for 7 € 8, (2:)recs is fully adapted.
(ili) If 7 € S and sup s [7' =7] =1, then 7 € S'.
(f) Suppose that § # ) and z = [gudy is defined. Set z, = [, udy for 7 € S,
(i) The starting value lim, s z, is 0.
(11) hm.,-'rg vaT’llld’(ﬁ = 07 limTTg Zr = Z.
(g) Let v be another fully adapted process with domain S. Then fSud(vw) = fsu X v di in the sense
that if one is defined so is the other, and they are then equal.

proof (a) For J € Z(S) set Cj = {Sr(u,dy) : J C I € Z(S)}. The hypothesis guarantees that the filter
F on LO°(2A) generated by {C : J € Z(S)} is Cauchy for the uniformity of convergence in measure; since
LO(2A) is complete (367Mc again), F is convergent, and its limit is [ w di).

N

(b) All we need to know is that the operators S; are bilinear and that the linear space operations on
LO(2A) are continuous (367Ma).

(c)(i)(a) Suppose that zp = [5, udy and z; = [, udy are defined. For any e > 0, there are
Jo € Z(SAT) and J; € Z(S V 7) such that

0(S;(u,dvp) — z9) < e whenever Jo CT € Z(SAT),

0(Sr(u,dyp) — z1) < e whenever J; CT €Z(SV ).
Set J = Jo U {7} U Jy, so that J € Z(S). Suppose that J C I € Z(S). Set
INt={oAT:0€l}=IN[minT,7],

Ivr={oVrt:0el}=IN[r,maxT],
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sothat Jo CIAT € Z(SAT)and J; CIVT e Z(SVT). By 613Ga, Si(u,dy) = Siar(u, dy) + Srv-(u, dy),
while 0(Star(u, dy)) — 20) < € and 6(Sryv-(u,dy) — z1) < €. Accordingly 0(St(u,dy)) — (20 + 21)) < 2¢; and
this is true whenever J C I € Z(S). As e is arbitrary, |, sudy is defined and equal to 2 + 21.

(B) Now suppose that z = fsud¢ is defined. Let € > 0. Then there is a finite sublattice J of S
such that 0(S;(u,dy) — z) < € whenever J C I € Z(S). Of course we can suppose that 7 € J. Take any
K € Z(S A7) including J A 7. Let I be the (finite) sublattice of S generated by J U K. Since

{o0:0eS,0NTeK, ovTEJ}
is a sublattice of S including J U K, it includes I, so that I € Z(S), INT=K and I V7T = JV 7. Now

O(Sk (u,d) — Syar(u,d))) = 0(Siar(u, dp) — Syar(u, dy)))
= 6(S;(u,dy) — Spyr(u,d) — Sy(u,d) + Syv-(u,dy))
=0(S1(u, dy) — Sy (u,di))
< 0(Sr(u,dyp) — 2) + 0(z — Sy(u,dy)) < 2e.

By (a) above, [s, wdi is defined.

(7) For [, wdy we can repeat the argument, inverted. Again suppose that z = [gudi) is defined,
and take € > 0 and J € Z(S) such that 7 € J and 0(S;(u,dy) — z) < € whenever J C I € Z(S). This time,
take any K € Z(S V 7) including J V 7. Let I be the (finite) sublattice of S generated by J U K. Since

{o:0eS,o0vreK, ocANTEJ}
is a sublattice of S including J U K, it includes I, so that I € Z(S), IV7T =K and I A7 = J A 7. Now

0(Sk (u, dyp) — Syvr(u,dy)) = 0(S1yr(u, dp) — Syy-(u, dy)))
= 0(Sr(u,d)) — Siar(uw, dip) — Sy(u, dip) + Syar(u, dip))
= 9(5[(’!1,, d’(/J) — SJ('U:, d’(/J)) < 2€.
So [, wdi is defined.

(ii) Induce on n, using (i) for the inductive step.

[z # 0] € supyes [us # 0] N sup(y ryes2r [¥(0,7) # 0] € sup, .cs([us # 0] N o < 7).
(d) Setting
a =1\ (sup,cs [t # 0] N sUp(y )es2t [(0, 7) # 0]),

[Ae(u, dip) = 0] for every stopping-time interval e with endpoints in S, so Sy(u, d)) x ya = 0 for every
A

aC
Ie ); because multiplication in L°(2l) is continuous, z x ya = 0, that is,
[ #0] C 1\a = sup,cs [us # 0] N sup(, ryeszt [¥(o, ) # 0]

For the second inequality, observe just that [i(o,7) # 0] C [o < 7] whenever o < 7 in S, by 613C(b-i); and
the third inequality is immediate from the definition in 612Sb.

(e)i)(a) If T €8, 0 €S and 0 < 7 then
fS/\JUd’L/) = LSAT)AJudw
is defined, by (c).

(B) Suppose that 7, 7/ € S’. Then 2z, = [, wdy and zpr = [, ,udi) and zrpr = fs/\(r/\r/)u‘w
are defined. We know also that if I is a sublattice of S A (7 V 7’) containing both 7 and 7/, then

SI (’U,, CW) = SI/\T(u7 d¢) + SI/\T’ (’U,, d¢) - SI/\T/\T’ (U, CW)
by 613Gc. Looking at the limits as I 1 Z(S A (7 V 7')), we see that

limyz(sa(rvey) Siar (W, d) = limpyzsar) Si(u, dy) = 2.,
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limpz(sa(rvey) Siar (w, dy) = limpzsarry Si(u, dip) = 271,

Hmpz(sa(rve) Siaar (W, d¥) = impzsaary S1(w, d) = zoa.,
and therefore that
fSA(TW,) wdv = limpyz(sa(rvry) S1(U, d) = 27 + 270 — 2epp
is defined. In particular, 7V 7/ € §’. With (), this shows that &’ is an ideal of S.
(if) If o < ¢’'inS, thenu, € L°(A,) and ¢ (0,0") € L%(As), 50 Ac(r,00) (u, dip) € L (A4 ); consequently
Sr(u,d) € L°(2,) whenever 7 € S and I € Z(S A 7). Since L(2,) is closed in L°(2A) for the topology of

convergence in measure (367Rc again), the limiting value z, belongs to L°(2l,), for every 7 € S'.
If o <7in &', then

Fr = %o = «f(S/\‘r)\/a u d,(/)fSﬂ[U,T] u d’(/),
by (c¢). This time, for any finite sublattice I of S N[0, 7],
[S1(u, dy) # 0] sup  [¥(p,p) # 0]
p<p’ in SN[o,7]

sup lp<p]clo<r]
p<p’ in SN[o,7]

N

N

Taking the limit as I increases, [z, # 2,] C [0 < 7], that is, [2o = z;] 2 [c = 7]. By 612Db again, this
shows that (z,),ecs is fully adapted.

(iii) Let ¢ > 0. Then there is a 7/ € & such that g[r=7] > 1 — 1¢ as 7/ A7 € S and
[t =7 A7]2[r =7'], we may suppose that 7/ < 7. We have fi[r' < 7] < 1e. Thereis a J' € Z(S A T/)
such that 6(z, — Sp(u,di)) < Le whenever J' C I' € Z(S A 7'); we may suppose that 7/ € J'. Now take

any I € Z(S A7) such that J' C I. In this case J' C T AT € Z(S A7) and

9(27’/ - SI(U7 dw)) = H(ZT’ - SI/\T/(’U') dw) - SIVT/(,U‘7 d¢))

(613Ga)

< Oz — Sinr (uy i) + O(Spr (u, i)

< et Sy (u, di) # 0] < Se+ ' < sup]
(613Gd)

<cetplr <t <e

By (a) above, [g, wdi is defined and 7 € &', as claimed.
(f) Of course (c-i) assures us that z, is defined for every 7 € S.

(i) Let € > 0. Then there is a non-empty J € Z(S) such that 6(S;(u,dy) — z) < e whenever J C I € S.
Take any 7 € S such that 7 < minJ. Then 6(Sk(u,dy))) < 2¢ whenever r € K € Z(SAT). PI=KUJ
and I’ = {7} U J are both finite sublattices of S including J. So

H(SK(’U,, d’(/J)) = Q(S[AT(U7dw)) = 9(5’[(’11,, d’t/]) — S[\/-,—(’ll,7d’(/)))
(613Ga)
= G(Sl(ua dl/)) - S[/(’U.,Ch/})) <2 Q

As K is arbitrary,
0(z7) = limgrz(sar) 0(Sk (u, dy)) < 2e.

As € is arbitrary, lim, s 2z, = 0.
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(ii) The argument is essentially the same. Let ¢ > 0. Again, there is a non-empty J € Z(S) such
that 6(Sr(u,dy) — z) < € whenever J C I € S. This time, take 7 € S such that maxJ < 7. Then
0(Sk(u,dy)) < 2e whenever € K € Z(SV ). PI=KUJ and I’ = {r} U J are both finite sublattices of
S including J. So

6(Sk (w. di))) = 6(Spyr (u, dip)) = B(Sr(w, i) — Siar (u, dih))
(613Ga)
— (S (u, dv)) — Spo(u, dip)) < 2¢. Q

As K is arbitrary,
Jo,, wdt = Timgzsyr) 0(Sk (u, dip)) < 2e.

As € is arbitrary, lim s [, wdy = 0. By (c-i),

lim4s zr = lim45(z — fswudw) = z.

(g) Immediate from 613Ge.

613K Remark The key step in the proof of 613Jc is that if 7* € J € Z(S) and JAT* C T € Z(S A T*),
then there is a K € Z(S) such that K O J and K A7* = I A 7*. It follows that if ¢ is any function
from Z(S A 7*) to a Hausdorff topological space Y, limyz(sar+) ¢(I) = limppz(s) ¢(1 A 7%) if either limit is
defined. The same argument applies with V in the place of A, so that if ¢ is any function from Z(S V 7*)
to a Hausdorff topological space Y, then limpz(sy,+) ¢(1) = limpyz(s)y ¢(1 V 7%) if either limit is defined.
Mostly we shall be dealing with the case in which Y is L? with the topology of convergence in measure, but
I shall also have an application in which Y = L}L with the weak topology (626J).

613L More easy bits (a) If S is a sublattice of T and u, v and w are fully adapted processes defined
on S, I will write

fsudv = fsud(Av) = limp7(s) S1(u, dv),
fsudvdw = fsud(Av x Aw) = limps) S1(u, dvdw),

f8u|dv\ = fsud|Av| = limpyz(s) S1(u, |dv|)
when the limits exist in L°(21).

(b) Three trivial calculations: if v = (vy)scs and u are fully adapted processes with domain a sublattice
S of T, then
(i) S1(1,dv) = Vmax1 — Ymin 1 for every non-empty finite sublattice I of S (613Ed), so me[r,r'] 1dv =
vy — vy whenever 7 < 7/ in S;
(i) if v is constant then S7(u,dwv) = 0 for every I € Z(S), so [sudv is defined and equal to 0;
(iii) if z € L°(N,es o), then (in the language of 612De) S;(zu, dv) = Si(u,d(z2v)) = z x Sy(u, dv) for
every I € Z(S), so [ zudv and [qud(zv) are defined and equal to z x [qudv if the last integral is defined.

(c) The following straightforward fact, refining 613Jd, will frequently be useful. Suppose that I is a finite
sublattice of T and u = (ug)oer, ¥ = (U )per, ¥ = (Vo)oer and v = (V)¢ are fully adapted processes.
Set d = sup,¢; [us # u,]U v, # v.]. For any stopping-time interval e = ¢(o,7) where o < 7 in I,

[Ac(u, dv) # Ac(w',dv')] € [uo # ug] U ve # vi]Uvr #v7] € d,
so [S1(u,dv) # Sr(v,dv")] C d.
Similarly, of course,

[S1(u, (dv)?) # Si(w', (d"))] € d,  [Si(w, |dv]) # S/, |dv'])] € d.
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Indeed, if ¢, ¢’ are any adapted interval functions defined on Z?T, and we set
d = SupUEI [[UU 7& uéf]] U SUPag-r in I W(‘L T) 7é 1//(0; T)]]v
then [Sy(u,dy) # Sy, dy’)] € d.

(d) It follows that if S is any sublattice of 7 and u = (us)ses, ¥ = (Vs )oes are fully adapted processes
such that z = [sudv is defined, then

[+ £0] € sup [Sy(u,dv) #0] € sup[us 0] sup [, £ vs]
I€Z(S) oc€ES o,TES

[u# 0] n v # 0].

N

613M The next calculation is perfectly elementary, but will be helpful more than once below, and is a
useful exercise in the definitions here.

Lemma Let S be a sublattice of T and u, v, w fully adapted processes defined on S. Then

Sr(u, dvdw) = Sy(u,d(v x w)) — Sr(u x v,dw) — Sr(u X w,dv)
= (81w, (A +w))?) — 51w, (dv)?) - Si(u, (dw)?))

for every finite sublattice I of S. Consequently
fsudvd'w = fsud(v X w) —fSu X vdw — fsu X w dv

if any three of the four integrals are defined, and

fsud'vdw :%(fsu(d('v—i—w))2 —fsu(d'u)2 - fsu(dw)Q)

if any three of the integrals are defined.

proof (a) Express u, v and w as (Ug)ocdomu, etC.
If o <7in S then

Ug X (Vr — Vo) X (Wr — Wg) = Uy X (Vr X Wy — Vg X W)
— Uy X Vg X (Wr — Wy) — Uy X Wy X (Vr — Vg)
1
:§(ug X (Uy + Wy — Vg — Wy )?

— Uy X (Vr = V5)? — Uy X (Wy — wg)2),
that is,

Ae(u, dvdw) = Ao (u,d(v x w)) — Ae(u X v, dw) — Ac(u X w,dv)

= L(Au(u, (A +w))?) — A, (d0)?) — Ao(u, (dw)?)

for every e € Sti(S). So, writing Stig(I) for the set of I-cells, as usual,
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Sr(u, dvdw) = Z A, (u, dvdw)

e€Stig (1)
= Z Ac(u,dv x w)) — Z Ac(u X v, dw)
e€Stig(I) e€Stig (1)
- Z Ae(u x w,dv)
e€Stig (1)
- %( > A, (dv+w)?) = > Acu, (dv)?)
e€Stio (1) e€Stio(I)
- Y Ay, (dw)?))
e€Stig (1)
= 2 (S1(u, (dw +w))?) — S (u, (dv)?) - Si (u, (dw)?)).

(b) Taking limits as I T Z(S), we get the corresponding identities for the integrals, as long as all but one
is defined.

613N Proposition Let S be a non-empty sublattice of T and v = (v,),ecs a fully adapted process.

Interpreting | sdvas i) s 1dv where 1 is the constant process with value x1, /. s Qv is defined iff v = limy s v,
and vy = limg4s v, are defined, and in this case [ dv = vy —vy.

proof (a) Suppose that z = fs dv is defined. For 7 € S set z, = fS/\T dv; by 613Jc, this is defined. If 7 < 7/

in S,
zT/—zT:/ d’u—/ d'v:/ dv
SAT! SAT'AT (SAT")VT

= / dv =v. — v,
SN[r,7’]

by 613Lb. Now we know that lim, sz, = 0 and lim 4+s 2, = z (613Jf). So, starting from any 7* € S,

(613J(c-1) again)

vy =limv; = v+ — lim(v« — v
Yoas T T ms(T )

= vrs — lim(zr« — 27) = U — 27
1S

and

v = lim v = v + lim v — Vs
T T'TST T T’TST T

= Vpx —|—E%z7_/ — 2k = Vpr + 2 — 2y
are defined, and vy — v = 2.

(b) Now suppose that the limits v+ and v are defined. Let € > 0. Then there are 79, 1 € S such that
O(vr —v3) + 0(vy —v)) < e whenever 7, 7/ € S, 7 < 19 and 7y < 7. Now suppose that I € Z(S) includes
{TO A 71,70 \Y Tl}. Then

G(UT — v — S](].,d’l])) = G(UT — VUl — UmaxI + Umin])
(613Lb again)
< OV — Vmax 1) + 0(v) — Vmin1) <€

As € is arbitrary, [¢dv = [41dv is defined and equal to vy — vy.
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6130 Indefinite integrals (a) Definition Let S be a sublattice of 7, u a fully adapted process
with domain S, and ¢ an adapted interval function with domain S?'. Set &’ = {7 : 7 € S, fSMudw is
defined}; by 613J(e-i), S’ is an ideal of S. The indefinite integral of u with respect to 1 is the process
iiy(u) = ([, wdip)res; by 613J(e-ii), this is a fully adapted process.

When 1 is of the form Av for a fully adapted process v, I will write ii,(u) = (fSATudv>T€5/ for the
indefinite integral of 4 with respect to v.

(b)(i) Note that if [sudy is defined, the domain §” of 44, (u) is the whole of S, by 613J(c-1).

(ii) It is obvious from the definition, but perhaps it is worth stating formally that if 7 € S and |, Sapudy
is defined then

tigy(u)[SAT = </

SAho

wdd)oesnr = / @IS AT)AWH(S AT))esnr

Sho
= iiw[(s/\T)ZT (U {S A T).

(iii) On the other side, if S’ = S and 7 € S, then iiy;(sy,y2r(u[S V 7) is defined on the whole of
SV 7 and is equal to (iiy(u)[SVT) = ([5,, wdy)1l. P Expanding the definitions, all this is saying is that if
7' € SVTthen [ g, udi is defined and equal to [g, , udy — [, udi;since (SVT)AT = (SAT)VT,
this is immediate from 613J(c-i). Q

(c) T have put the definition in (a) in a form which can accommodate cases in which &’ = dom éi,(u) is
not the whole of S, leaving open the possibility that S’ is actually empty. But we know that S’ is an ideal
of 8, and from 613Jf that if &’ is non-empty then

lim, s |, o, WY =lim, s /. o, wd=0.

In particular, if S has a least element min S, then min S € &’ and the value of 4y (u) there is equal to 0.

613R Proposition Let S be a sublattice of 7 and u, v fully adapted processes with domain S. Then
(in the notation of 612Sb) [iiy(u) # 0] C [u # 0] n [v # 0O].

proof Setting ¢ = 1\ (Ju # 0] n[v # 0]), we see from 613Lc that yc x Sr(u,dv) = 0 for every finite
sublattice I of S; because multiplication in L°(2) is continuous, xc x || snrWdv =0 whenever 7 € S and the
integral is defined, that is,

[iiy(u) # 0] € 1\ ¢ € [u# 0] n [v £ 0].

613S It is a striking and very convenient fact that we can often approach an integral |, s 1dy over a
general sublattice S through an integral over the covered envelope of S, which is a full sublattice of 7.

Lemma Let S be a sublattice of 7 and ¢ : 82" — L°(2A) a strictly adapted interval function. Suppose
that I, J € Z(S), J C I and a C sup,¢;[r = o] for every 7 € I. Then a C [S;(1,dy) = S;(1,dy)]. In
particular, if J covers I (definition: 611Ma) then S;(1,dy) = S, (1, dy).

proof (a) The case a = 0 is trivial; so is the case a # 0 and J = (), as then I also must be empty and

So suppose otherwise. Let (oq, ... ,0,) linearly generate the J-cells. If 7 € T then

a C sup [t = o] =supsup([r = o] n[o = ogj])
oeJ oeJ j<n

(611Ke)
C sup[r =o0j] C [oo < 7] [T < 05].
Jj<n

Set I_y =INog, [; =IN][0j,0541] for 0<j<n, I, =1Vo,.
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(b) If <7/ in I_q, then

any(r,7)#0] Canfr <7']
(613C(b-1))
Can|r < og] =0,

S0
an [A(1,de) £ 0] = 0
for every I_q-cell e. Summing over e, Sy_, (1,dvy) x xa = 0.
(¢) In the same way, if 7 < 7’ in I,,, then
anY(r,7)#0) Canr<7] canfo, < 7] =0,
S0

Sr, (1,dy) x xa = 0.
(d) If0<j<n,ac[S(1,dp) =1(05,0541)]. P For every 7 € I,

anfo; <7]n[r <oj41] C 222([[7’ =oi]nfo; < 7]n[r < 0j41])

¢ sup([o; < o] nfor < ;1)
k<n
C (supfoj < ox])u( sup [or < oj41]) =0.
k<j J+1<k
Take (70,...,7m) linearly generating the Ij-cells; then 0; = 70 < ... < 7, = 0j41. For i < m, set

b; = [1i < Ti41], so that sup,,, b; = [o; < 0j41]. For i < m,

anb;, =an [[Ti < Ti+1ﬂ =an [[O'j < Ti+1]] N [[Ti < O‘j+1]] N [[Ti < Ti+1]]

Can [[TiJrl = Jj+1]] n [[Ti = Jj]] n IITi < Ti+1ﬂ

C [¥(7i, Tit1) = Y(oj,0541)] N }Cgf; 7 = Trya] 0 72<il?£m [ = Trga] 0 [ur, = uo,]
(because v is strictly adapted)

C [¥(7i, Tix1) = Y(oj,0541)] N klgfn [V (7ks Tht1) = 0] N [ur, = uo,]

ki

(using 613C(b-i))

C [W(ri, Tig1) = w(oj, Uj+1)ﬂ n IISIj(]'ﬂ dip) = (7i, Tiv1)]

C [S1;,(1,dy) = (0, 0541].

Taking the supremum over 4,

anfo; < o] € [S1,(1,dy) = (o), 0541)].
But

loj =0l = [k = Trt1] n o = 0544

inf
k<m
[S1,(1,dy) = 0] n [1(0j, 0541) = 0]
[[Sfj (13 dlb) = 1/’(03‘, O—j+1)ﬂa

N N

so a < [[SI](17dw) = 1/}(0’j,(7j+1)]]. Q
(e) Assembling these,
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Sr(1,dv) x xa= > S (1,d) x xa
j=-1

n—1

= Z Ug; X P(0j,0541) X xa = Sy(1,d) x xa
§=0

and a C [S;(1,dy) = S;(1,dy)].
(f) If J actually covers I then we can take a = 1 and conclude that S;(1,dy) = S;(1,dy).

613T Theorem Let S be a sublattice of 7, S’ a sublattice of S which covers S, ¢ : ST — L°() a
strictly adapted interval function and u : S — L°(2) a fully adapted process. If f sudy is defined, so is
/. s wdi, and the integrals are equal.

proof (a) Consider first the case in which u = 1, so that z = [ dy is defined. Let € > 0. Let J € Z(S)
be such that 6(z — S;(1,dy))) < e whenever J C I € Z(S). Let A C &' be a finite set such that a =
inf cssup,e [0 = 7] has measure at least 1 —e. Let Jy be the sublattice of S’ generated by A, so that
a C sup,e, [T = o] for every 7 € Jo. If Jo C K € Z(S’), consider the sublattice J U K of S generated by
JUK. Since a C sup,c [7 = o] for every 7 € J, a C sup,c [T = o] for every 7 € JU K and therefore
for every 7 € JU K, by 611M(b-i). By 613S, [Sk(1,dy) = Sjux(1,dy)] 2 a.

Consequently

0(z — Sk (1,d)) = 0(z — Sk (1,dp)) < 0(z — Syuk(1,dh)) + a1\ a) < 2e.

And this is true whenever Jy C K € Z(S').

As € is arbitrary, [s, di is defined and equal to z.

(b) For the general case, apply (i) to ut, using 613Jg to see that
[ouwdy = [, duyp) = [(d(up)) = [ adp.

613P Example If T = [0,00[, (2, i) is the measure algebra of Lebesgue measure on [0,1] and 2; = 2
for every t > 0, then there are a sublattice S Qf T and fully adapted processes 4, v with domain S such that
J. sudv is defined but J. $dv is not, where § is the covered envelope of S and 4, v are the fully adapted

extensions of u and v to S.
Construction (a) For integers k € N and i, j < 2¥ write Qy;; for the half-open square [2_’% 27k (i 4+ 1) [ X
[27%5,27%(j + 1) [, so that {Qus; : i, j < 2F} is a partition of Qoo = [0, 1[*. For k > 1 set

Ok = {Qr2i2i+1:1 < 2" M U{Qr2i1,2i 11 < 2k — 1}
C U Qr—1,ii \ U Qris-
<2k -1 <2k
Then
if Q, Q' € Qy, are distinct, their horizontal projections are disjoint and their vertical projections
are disjoint,
the horizontal and vertical projections of | J Qy are both [0, 1],
UQ,; NU Qk = 0 whenever j # k.
So Q@ = >, 9k is a disjoint family.
(b) Next, for Q € Q, take the k > 1 and 7, j < 2* such that Q = Qg;; and set

R(Q) = 276274+ D[ x 274 + 327G + 1),

Ri(Q) =27 (i+27"),27 (i + 27 (1 +1))]
x 27FG+27F 2027 GG+ 27 R 21+ 1)
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for [ < 2%, so that R(Q) is the top quarter of @ and the R;(Q) are rectangles stepping up along the diagonal
of the bottom quarter of Q. Now for w € [0,1[ and ¢t > 0 define

Xi(w) = ﬁ if k>1,Q € Qg, | < 27" are such that (w,t) € R)(Q),

= 0 otherwise,

Yi(w) = % if k> 1, Q € Qy are such that (w,t) € R(Q),

= 0 otherwise.

(c) Taking (2, %, 1) to be Lebesgue measure on [0, 1[ and X, to be X for every t > 0, (€, s, (X4)¢>0) repre-
sents (A, &1, (A¢)¢>o0 is the manner of Theorem 612H, while (X;);>0 and (Y;);>¢ are progressively measurable,
so we have corresponding fully adapted processes u = (u,)se7; and v = (v,)se7; (612Hb).

(d)(i) Since Q is disjoint, Y;(w) = 0 whenever X;(w) > 0, and Sy(u,dv) > A.(u,dv) > 0 whenever I is
a finite sublattice of 7y and e is an I-cell.

(ii) Suppose that m > 1, Q € Q, (w,s) € @, 0 < s < t and X,(w)(Yi(w) — Ys(w)) # 0. Then we

must have X, (w) = L and Yi(w) > 0. In this case, there are ¢, j, I < 2™ such that Q = Q; and

Vm]
(w,s) € Ri(Qmij), that is,

27 (4 27M) < w < 27 (i 4+ 27 (1 + 1),

27 +27m72) < s < 27™(j + 277 2(1 4+ 1)).

Now Y3 (w) = 0 whenever (w,t’) belongs to the bottom three-quarters of @), that is, whenever 27" j <t/ <
27™(j + 3), and ¢ must be at least 27™(j + 2), while s < 27™(j 4+ 1). Accordingly t —s > 2"™~1. Also, of
course, t < 1.

(e)(i) Now suppose that 0 < 59 < ... < s, and k > 1 is such that s,41 — s, < 27 for every p < n. For
m>1and Q € Q,,, set

Eng =Upcn{w: (w,sp) € Q, Xs, (w)Ys,,, (w) >0}

ii) If m < k then E,,o = 0 for every Q € Q,,. P If p < n then 5,1 — 5, < 27™F! 50 by (d-ii) there
Q p 2
can be no (w, sp) such that X (w)Ys,,,(w) >0. Q

(iii) If m > k and Q € Q,, then uE,,o < 272™. P We have Q = Qn;; where i, j <27 ™. If p < n and
there is any w such that (w,s,) € Q and X, (w)Y;, , (w) > 0, then s, <27™(j+ 1) and 27™(j + 3) < sp 1,

Sp+1

by (d-ii). Now there can be at most one such p. So if E,,o # 0 there is a p < n such that
EmQ = {w : (wv'sp) € Qa Xsp (w)Y§p+1 (w) > O} g {w : (wvsp) S Rl(Q)}
where | = [22m+1(s, — 27™j)| < 2™. Accordingly, in this case, pEn,q < 272™, as required. Q

(iv) Putting (ii) and (iii) together,

(013 Xy ) (Vay () — Vi, (@) # 0)

= U {w: X, (W)Ys,,, (w) >0}

p<n

U Ewe= U Eme

m21,Q€Qm m2k,Q€Qm

has measure at most

Dok 272 ( Q) = Yy 27 =27
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(f) Writing 7. for the set {f : t > 0} of constant stopping times, fT. u dv is defined and equal to 0. P Given

€ > 0, take k > 1 such that 27%*! < ¢ and let I € Z(7.) be such that (27%i)” € I for every i < 2¥. Enumerate
I in increasing order as (3p,...,3,). If p <n and s, > 1 then certainly X, (.)(Ys,,,(w) =Y, (w)) = 0 for
every w. So if n’ is such that s, = 1,

n—1
{w: ) Xy (Yo (@) = Y, (w)) # 0}
p=0

’

= {w: Y Koy (Yopaa () = Y, () # 0}
p=0

has measure at most 27%1 < ¢, and

0(S1 (u,v)) < il Si (u, dv) # 0]
= pfw: Y Xy ) (Vey, (@) = Ve, (@) > 00} <e.
p=0

And this is true whenever I € Z(7.) includes {(27%i)" : 4 < 2¥}. As € is arbitrary, [ wdv = 0.

(g) I turn now to the covered envelope T of 7.
(i) For each k > 1 define stopping times hy, hj : [0,1] — [0, o[ by setting
hi(w) =278 + 275720, hj(w) =278 + 9)
if 4, j, < 2 are such that Qx;; € Qx and 27%(i + 27%]) < w < 27%(i + 27%(I + 1)). Then we have
hi(w) < hj(w) and

X (@) = Xy ) (@) = Yig (@) = 72, X () (¥ig (@) = Vi, @) = 5

for every w. If k, m > 1 are different, then for every w there is a Q € Qy such that
[he(w), hi(W)] S {s: (w,5) € Q} C{s: (w,s) € U}
as |J Q is disjoint from J Qn,, [hi(w), hf(w)] N [ (w), AL, (w)] = 0.
(ii) For k > 1, write 7, 7, for the stopping times in 7; associated with hy and hj. Since all the values
of hy, and hj, belong to the countable set I = {27%(j +27F720) : j, I <28} U{27F(j + 3) : j < 2F},
sup,es [ =] = supye{w : h(w) =t}* = {w: hy(w) € I}* =1

and 7, € Te; similarly, ], € Tz
Next, for each k, 612Hb tells us that

L ] 1 L] 1 L ]
e <m]=1, u, = X = —kxl, Uy = Yh; = —kxl, v, =Yg =0,

SO Un, X (Vry — Vp,) = %Xl; moreover, if k& # m, then for every w € [0,1] either A} (w) < hn,(w) or
hl, (W) < hg(w), so [1], < Tw] U7, < 7] = 1.
It follows that if o € T} then
(Ite < olnfo <) n([rm <o]nfe <7,])=0
whenever k, m are distinct.

(h) (i) Now suppose that I € Z(7;). Let n > #(I) + 1 be so large that ZZ:#(I)+2% > 1. Let J be
the sublattice of 7. generated by TU{r, : 1 <k <n}U{r, : 1 <k < n}, and B the set of atoms of the
subalgebra B of 2 generated by {[o < 7] : o, 7 € J}. Take any b € B. If o, 7 € J then b is either included
in or disjoint from [o < 7]. Now if o € I, there can be at most one k < n such that b C [r, < o] n[o < 7/],
so the set
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K={k:3cecl,bC[m<o]n[o <]}
={k:3oel,bn[m <o]nfo <] #0}

has at most #(I) members. Set K’ ={k:1 <k <mn, k ¢ K}, so that ZkeK,% > 1. Now

{o:bn[r <o]NJo <] =0 for every k € K'}
is a sublattice of 7 including T U {7 : 1 <k <n}U{7r] : 1 <k < n} and therefore including J.

(ii) Fix k € K’ for the moment. If we think of intervals ¢(o,7), for o < 7 in T, as members of
tho A, = A0l as in 611J, then we see that

ey, 74,) = sup{e : e € Stig(J), e C c(Tx, 7))}

where Stig(J) is the set of J-cells (611J(e-i)). Consequently

1= [k, 7] = supc(ri,7,)(t) =sup  sup  e(t)
>0 t>0 e€Stio(J)
ecCc(tk,7,)
and there must be an ej € Stig(J) such that ey C c(rx,7;) and bn sup;>qex(t) # 0. Expressing ey as
c¢(o,7) where o < 7 in J, we have sup,>q ex(t) = [0 < 7]. As this belongs to B and meets b, it includes b,
and b C [o < 7]. At the same time, [o < 7] C [1 < o]n[r < 7] (611Jc) sobC [o V1 < T7.]; as k € K',
bnry <o V1] =0and b C [o = 7). Similarly, b C [7 = 741]. But this means that

b C g X (vr = v5) = thr, X (v = v7)] € [Ay (u,dv) = 1],

(iii) This is true for every k € K'. If k, m € K’ are distinct, then either 7/, < 7 or 7, < 7,,, and in
either case ¢(mg, 7)) N (T, 7h,) = 0 in A<l and e; # e,,. As we also know that A, (u,dv) > 0 for every
stopping-time interval with endpoints in 77 ((d-i) above), we have

SJ("’? d’l)) = ZeeStio(J) Ae(u’ d’”) > ZkEK’ Aek (u7 d’l))

and

b C [Ssludv) > Ve 1) € [Ss (. dv) > 1.
(iv) As b is arbitrary, 1 € [Sy(u, dv) > 1] and S (u,dv) > x1, while I C J € Z(7;). As I is arbitrary,
lim JIT(T) Sy(u,dv) either does not exist or exists and is not equal to 0. But the latter is impossible, by
613T, because we saw in (f) that fTCudv = 0. So we find that hmJTz(i‘c) Sy(u,dv) is undefined, that is,
that [; udv is undefined.

Remark The processes 4 and v have a number of special properties which will be discussed in this volume;
see in particular 615Yc and 618Yd.

613U Theorem Let S be a sublattice of 7, and S its covered envelope (611M).
(a) For every strictly adapted interval function ¢ : ST — L® = LO(2A) there is a unique extension of 1 to
a strictly adapted interval function ’L/AJ 820 5 IO,
(b)(i) The function ¥ — ’(ZJ is an f-algebra homomorphism from the space of strictly adapted interval
functions on S to the space of strictly adapted interval functions on S.
(i) If ¢ is a strictly adapted interval function on S and h : R — R is Borel measurable, then (h1))" = ha).
(iii) If v is a strictly adapted interval function on S and w is a fully adapted process with domain S,
then (u)” = 111/37 where u is the fully adapted extension of u to S.

proof (Compare 612Q).)

(a)(i) The first thing to note is that if (5,7) € S?' and ¢ = SUp(y+ ryes2t ([0 = o'l n [t = 7']) then ¢ = 1.
P If a € A is non-zero, there is a ¢’ € S such that ¢’ = an[o = 0”] # 0, and now there is a 7/ € S such
that @’ = a’' n[r =77 #0. Set ¢/ = ¢” A7/; then (0/,7') € 2T and
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d' cllo=d"|n[r=7]nfo<r]co=0c"]n][r=7]n[o" <]
Cle=d"In[r=7]n[o"=d]ce=d]n[r=7]cec
So anc2a” is non-zero; as a is arbitrary, c= 1. Q
(i) Take (0,7) € S*'. For a € R, set

Agra ={[¥(0",7") > a]nfo=0c|n[r=7]:0'"<7"in S}, aora =5sup Asra-

Then
trra= s (W) > aln[o = o']nfr =)
(o/,77)€S?T
= sup  ([¢(o’,7") > B)nlo =d'In[r =7']) = sup asrs-
(o, 7)es?t B>a
B>a

Moreover, if a € A\ {0}, there are a pair (¢/,7") € S*' such that o’ = an [o = '] n[r = 7'] is non-zero, by
(i), and «, 8 € R such that o’ = o' n¢(c’,7') > o] n (o', 7") < B] is non-zero; in which case, whenever
(0,/177_//) c S2T,
a"nw(e”,7") > Blno” =o]n[r" =7]
c [w(a”, 7)) £, 7 nfe”" =d]n[r" =7]=0.

But this means that a” nay-g = 0, while on the other hand a¢” C agro. As a is arbitrary, infger agr5 =0
and sup,eg Gora = 1.

Accordingly we have a ¢)(o,7) € LO(2) such that [1)(c,7) > a] = agra for every a@ € R. Observe next
that A,ro C A, for every a € R (use 611H(c-iii)), 80 ayra € 2, for every a, and (o, 7) € LO(2L,).

(iii) ¥ extends . P If (o,7) € 8?T and a € R, then [¢(0,7) > a] € Agra 50 [Y(0,7) > a] C agra. If
(o', 7") € 82T then
[v(o',7") > a]no=d]n[r=7]
=[(o,7)>alnfo=0]n][r=7]c [¥(o,7) > o],
SO Ugra C [1h(0,7) > . Thus [ih(o,7) > a] = [1b(o,7) > . As a is arbitrary, (o, 7) = (0, 7). Q

(iv) If (0,7), (6,7) € ¥, ¢ = [o =] n[r =7] and a € R, then ¢Nagra C t57a. P If a € Agra,
express it as [(o’,7') > a]n]o =o' n[r =7'] where (¢/,7') € S*'. Then cna C [6=0o'|n[Ff=17]
(611E(c-iv-7)), so cna C ag7q. It follows that

CNAgra = CNSUP Agrq = SUPyca, . €NaC a57a- Q
Similarly, ¢ N a5 7.0 C Gora, 50 N (0, 7) > ] = en [(5,7) > a. Asthisis true for every o, ¢ C [¢)(0,7) = (5, 7)].
(v) If o € S then ¢(0,0) = 0. P If o’ € S then
[o = 0') < [¥(0,0) = (0".0")] < [$(0,0) = O]
since o € S, supaes[[a—a]]—landi(a 0)=0.Q

It follows that v is a strictly adapted interval function. P I have already checked that 1/)(0 T) € LO(A,)
whenever (0, 7) € 821, Now (iv) tells us that 1 is a strictly adapted interval function. Q

(vi) Finally, if ¢’ : S LO(2A) is any strictly adapted interval function process extending ¢, and
(0,7) € 8?1, we shall have

[[’IZJ(J, 7_) = 1//(@ 7_)]] 2 ( SI;pS N HJ)(Uv T) = ’l[J(O'/, 7_/)]] n [W]/(Uv T) = 7//(0"7 T/)]]
0./77./ e 2

> sup [o=d]nr=7]=1
(o, 7')ES2T
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by (i) again, so 1[)(0, 7) = ¢'(0,7). Thus ¢ = ¢’ and v is the unique strictly adapted interval function
extending .

(b) Really this is immediate from the definitions and the fact that @Z is always the unique strictly adapted
extension of w, JllSt as (1n (111)) u is the unique fully adapted extension of u. Of course we do need to know
that o + ¢/, 1 x ¢/, kb and @y are always strictly adapted, as noted in 613D.

Remark Note that if v is a fully adapted process with domain S and fully adapted extension ¥ to S, then
(Av)" = Av.

613V The definition of the integral means that we shall always be able to approximate an integral
f sudy by Riemann sums Sr(u,dy). There will be occasions when it is very useful to have simultaneous
approximations for integrals over parts of S.

Lemma Let S be a sublattice of 7, u a fully adapted process with domain S, and v an adapted interval
function with domain S* such that [sudi is defined. Let I € Z(S) and € > 0 be such that (S (u, dip) —
Sk (u,dy)) < e whenever J, K € Z(S) include I.

<7< <r<...<7, <7 in I, then

9(21 O(SIO[T“T u d'l/} me[T 7! Sﬁ

(ii)(a) If 7 € T then O(Siar(u, dip) — 5, wdip) < e.
(8) For any 7 € S, 0(Siar(u,dyp) — fs/\,rudw) < 2e.

proof (a) Note straight away that by 613Jc all the integrals fSﬂ[n T_,]udd), fSAT'u,dz/J will be defined.
Observe also that

0(S(u, dyp) — [ud) = limgerz(s) 0(Ss (u, dip) — Sk (u, dy)) < e
whenevever I C J € Z(S).
(b) For the time being, suppose that u is the constant process 1.

(i) Take any n > 0. Then we have Jy, ..., J,+1 such that

Jo € Z(S A 19),
0(Sx (1, du) — / di) < 7 whenever Jo C K € Z(S A o),
S e TSN [y, 7). o
0(Sic (1, d) — /Sm[ ) < whenever J, € K € T(S1[71,7)

for 1 <i<n,
Jn-‘,—l EI(S\/TT/I),

0(Sk(1,dy) — / d) < n whenever J,11 C K € Z(S V 1,).
Svr/

Now take K to be the sublattice generated by I U |J
med(7;,0,7]) € I} is a sublattice of S including I U
We see also that

Ji. Observe that if i < n then {0 : 0 € S,
J; so includes K, and K N [r;,7/] = I N [7,7]].

i<n+1
i<n+1

0(Sk(1,dy) — [ dv) = limpz(s) 0(Sk (1,dy) — Sp(1,dy)) < e
because K D I. Now

Sk(1,d) = Sxar, (1, dp) + Y Sicrpr,.rn (1, deb)

=0

+ZsKnT (L d) + Sy (1, dib)
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(613G (a-ii)),
fS dw = fs/\To d¢ + E?:O fSﬂ[n,Ti’] dw + E?:l fSﬁ[TiLhT,i] dw + L/‘S\/T,,/L dw
(613J(c-ii)). So

(S " Synin w1(1, dip) — d
(; 1, (1, d) /S V)

N[ri,7!]

< B(Skc(1,dip) — /S 00) + 0(Sxenr (1, i) — / )

SATo

3 0k (1) - / )

i=1 SN[r{_y,7i]

T 0(Siur (1, dv) — / a)

Svt),

<e+(n+2)n.
As 7 is arbitrary,
0( 0 Sinprry (L d¥) = g d¥) <,
as claimed.

(ii) (@) The argument is the same as that of (i), but simpler. For any n > 0, there is a J € Z(S V 1)
such that 0(Sk (1, dy) — [, dv) < n whenever K € Z(SV ) includes J. Let K be the sublattice generated
by I'UJ. Since I U J is included in the sublattice {c :c AT €I}, KAT=I1AT, while KV 7 2.J. So

0(Sipe(1, dy) —/

SAT

dv) = 6(Ska-(1,dv) —/ dv)

SAT

g9<5K(1,dv)—[de))+e(sKvT(1,dv)—[S dv)

VT
<e+n;
as 7 is arbitrary, 6(Sya.(1,dv) — [, dv) <e.
(B) If I is empty, then 0(S;(1,dy)) < e for every J € Z(S), so
0(Sin-(1,dv) = [ dp) =0( [, di) <e.
Otherwise, let J be the sublattice of S generated by I U {7}, and write 7* for max I. Then
INT=INTAT CJIANTATY,

while {o: o AT AT* € I AT} is a sublattice of S including I U {7}, so includes J, and I A7 =J AT AT*.
Next, 0(SL(1,dy) — Sp/(1,dy)) < € whenever L, L' € Z(S) include J, so

O(Sinr(L,dw) — [, di) = 0(Sypenee (Ldw) — [, di) <e
by (a). Because o — [5, dip is fully adapted (613J(e-ii)),

/ dp = / dip — dp = dp — i
SN[TAT*,7] SAT SATAT* SA(TVT*) SAT*
(612D(£1))

— dip = lim Sk (1, da).
/SF‘I[T*,T\/T*] w KAZ(SN[r*,7v7*]) K( ’(/J)

But if K € Z(S N [7*,7 V 7*]) contains 7*, then I UK € Z(S),
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Sk (1,d) =SruKyv-+ (1, dy)
= Srur (1, dY) = Siruryar~ (1, dp) = Siur (1, dy) — S1(1, dy)
and
0(Sk (1,dv)) = 0(S1uk (1,dv) — Si(1,dy)) < ¢;
as K is arbitrary, H(fsrw[r/\r*,r] dip) < e. Accordingly

0(S1nr (1, deS) — /

SAT

) = O(S1pr (L, des) — / - ap)

SATAT* SN[TAT*,7]

< Q(SIAT(]-’dw) _/

SATAT*

ap) + 6 / a)

SN[rAT*,7]
< 2e¢

9
as required.

(c) For the general case, recall that wi, as defined in 613Dd, is an adapted interval function, and that
every sum or integral S;(u, di) or [, wdy can be interpreted as S;(1,d(uv)) or [g, d(uy) (613Ee, 613Hc).
So we get the general result at once.

613W The one-dimensional case (a) There are real difficulties in the theory of stochastic integration,
and it will be a long time before you can expect it to feel natural and familiar. For the rest of this chapter
we shall be teasing out more or less special cases in which the integral of 613H is defined. But there is a
particular special case which we can approach immediately. Suppose that (2, ) is the trivial probability
algebra in which 21 = {0,1}. Then L°() = {ax1 : « € R} can be identified, as f-algebra, with R; of course
we have 0(ax1) = min(1,|al) for every a, so the topology of convergence in measure on L°(2l) corresponds
to the usual topology of R. Necessarily, 2; = 2 for every ¢t € T, so the filtration is trivial. If it is also the case
that T" has no points isolated on the right, then every stopping time except max 7T and possibly min 7 will be
a constant stopping time as described in 611A (b-ii), every subset of T is a sublattice, and every real-valued
function f defined on a subset S of T' corresponds to a fully adapted process {(3, f(s)x1): s € S}.

(b) If also T has a least element, we can identify 7; with 7' and M, (7;) = (L°)77 with RT. Under
this identification, if f : T — R and g : T' — R represent processes u, v with domain 7y, and I C Ty is a
non-empty finite set, there are ty < ... <t, in T such that I = {f; : i < n}, and

Sr(u,dv) = (X017 F(t)(g(tisr) — g(t:)))x1.

(d) What this amounts to is that we have a kind of Riemann-Stieltjes integral on T, I spell this out
in detail here partly because there are well-known Stieltjes integrals on the real line, of which the most
important, from the point of view of my treatise as a whole, is integration with respect to Lebesgue-Stieltjes
measures described in exercises from 114Xa onwards. Here we suppose that g : R — R is non-decreasing,
so that there is a Radon measure v, on R with v [a, b] = limg g(z) — limgy, g(2) whenever a < b in R.
Now the point I need to make here is that if S = {§ : s € R} then the integral fsud'v is not the same
as the Lebesgue-Stieltjes integral f fdvg, even in some of the most elementary situations. Consider, for
instance, the case in which f = g = x [0, 00[. In this case, v, is the Dirac measure concentrated at 0, so that
| fdvy = f(0) = 1. But when we look at sums S;(u,dv) where I = {{o,...,1,} is a finite subset of S, and
supposing that tg < ... <t,, we get

) (g(tiv1) — g(t:))

0(g(ti+1) —g(ti)) = 01if t; <0,
Ft)A=1)=0ift; >0,

so S;(f,dg) = 0; as this is true for every I, fs fdg = 0. In effect, the jump in g at the time 0 is necessarily
applied to a value of f calculated before the time 0; in the language of Lebesgue-Stieltjes integration, we
are calculating [ f_ dv, where f_(z) = limyq, f(y) for each z.
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In my view, there are excellent reasons (especially in view of its applications to financial mathematics)
why a theory of stochastic integration should insist on calculating integrals [udv in terms of products
g X (v; — vy) where o < 7 (rather than u, x (v, — v,), for instance). We are going to have to return to
this point from time to time, because it is one on which my presentation of the theory differs from that of
most authors.

613X Basic exercises (a) Let S be a sublattice of T and v a fully adapted process defined on S. Show
that [svdv is defined whenever [¢dv and [¢(dv)? are defined, and that in this case

Zvadv + fs(d'v)z = lim.,—Tg 1}72_ - limﬂ(s ’U72_.

(c) Let S be a full sublattice of T, u a fully adapted process with domain S, and ¢ an adapted interval
function with domain §?'. Write &’ for the domain of the indefinite integral iiy(u). Show that S’ is full.

(d) In 613V, show that if 7, 7/ € I and I C J € Z(S) then 0(Ssar(u, dv) — [5, wdip), (S v (u,dv) —
Jsywdip) and 0(S o (u, dip) — fSﬂ['r,T’] wdy) are all at most e.

(e) Let S be a sublattice of 7 and Z; the set of finite totally ordered subsets of S. Suppose that u is a
fully adapted process with domain S, 9 is an adapted interval function with domain S?' and z is a member
of L°(2). Show that [qudy = z iff for every e > 0 and I € Z; there is a J € Z;, including I, such that
0(Sk (u,dy) — z) < e whenever K € 7, includes J.

613Y Further exercises (a) Let S be a sublattice of T, u a fully adapted process defined on S and 1
an adapted interval function on S?'. Show that if 7, 7/ € S, then fS\/(‘r/\‘r’) u dip is defined iff both vaT u dy

and fsvT/ u dyp are defined, and in this case

fSV(T/\T’) wa + fS\/TVT’ wa = fSVTwa + fSVT’ wa

(b) Suppose that S is a sublattice of 7 and S’ a covering ideal of S. Let u be a fully adapted process
defined on S and t an adapted interval function defined on §?'. Show that [gudy is defined iff [, udi) is
defined, and the integrals are then equal.

(c) Let C be the set of all bounded intervals in R, and T* the straightforward set of tagged partitions
generated by @ = {(a,C) : C € C\ {0}, a = inf C} (see 481B). For a finite set I C R, let d; be the set
{t:teT* INintC = O whenever (a,C) € t}; for a < b in R, let Ry be {0} U{R\ [¢,d] : ¢ < a, b < d}.
Set A = {67 : I € [R]<*} and R = {Rap : a < b} (see 481K). (i) Show that (R,T™*, A, R) is a tagged-
partition structure allowing subdivisions, witnessed by C (see 481G). (ii) For a function g : [0,00[ — R
define v, : C — R by saying that v,0 = 0, v,C = g(sup C) — g(inf C) for non-empty C € C. Let F(T*, A,%R)
be the filter on 7 defined from A and R as in 481F, and for f : R — Rset I, (f) = lim_, (7~ A ) Se(f, vg)
when this is defined, as in 481C. Next, for functions f, g : R — R, define fs fdg as in 613W, taking S to
be the set of constant stopping times when 2 = {0,1} and T =R, and f and g are interpreted as functions
from S to L°(A). Show that I, (f) = [ f dg when either is defined.

(d) In 613P, show that [gudv is undefined for any sublattice S of 7y including 7.

(e) Give an example of a strictly adapted interval function t on a sublattice S such that [¢ di) is defined,
but [s g dd) is not, where z/; is the strictly adapted extension of i) on the covered envelope Sof S.

(f) Show that for strictly adapted interval functions ¢ we can re-work this section in terms of a def-
inition of S(u,dy) restricted to finite totally ordered sets I, as in 613Ec, taking fS’UdT/) to be the limit
limzy7, (s) S1(u, dy)) where Z;(S) is the set of finite totally ordered subsets of S with the pre-order C of
611Yd. (Begin by showing that S;(u,dv) = Sj(u,dy) whenever I C J and J C I.)
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613 Notes and comments My objective in this section has been to reach a formally adequate definition
of a stochastic integral as quickly as possible, with just enough of its properties to serve as a foundation for
the rest of the volume.

The definition in 613H is a ‘gauge integral’ of the type examined in §§481-482. I cannot quote the results
there because it is a vector-valued, rather than scalar-valued integral; and even on the basis of a vector-
valued version of the material, which is easy to develop (there is a hint in 613Yc¢), the ideas of §482 do not
directly illuminate the theory here. (Though there is an echo of the Saks-Henstock Lemma, 482B, in 613V.)
The disadvantage of this headlong approach is that we have no real idea of which pairs u, v will combine to
give integrals || s Wdv. The case of simple processes (614B-614D below) is plainly elementary, and 613C-613G
don’t belong to the topological theory at all, and could have been expressed in the context of §§611-612,
with an arbitrary Dedekind complete algebra 2 rather than a probability algebra. The integral f s ldv| in
614J below can also be expressed in terms of a notion of convergence which does not involve the topology
of convergence in measure, but is off the line of the main argument, as well as being elementary. The centre
of the theory is really occupied by martingale integrators v, and we have a fair amount of work to do before
these become accessible in §622.

All the main work of this chapter will be done with strictly adapted interval functions, starting with the
basic examples Av as in 613Cc. I include the more general formulation of ‘adapted interval function’ in
613C(a-i) only because the language of 613E will be useful in §626 when talking about a quite different kind
of integral.

While I have, I hope, given an exact definition of the integration process which will dominate the next
three chapters, this section suffers from a singular lack of calculation of particular examples. In fact it is by
no means trivial to show that even in the cases of our three leading examples (the identity process, Brownian
motion and the Poisson process) we have a full set of indefinite integrals. There is an effective description
of indefinite integrals of simple processes in 614Xb, but for other integrands, even when integrating with
respect to simple processes as in 614D, we aren’t yet in a position to get a formula. One will appear in 641J.

I ought to remark that the integral I have defined does not coincide with everyone’s. I will return to this
point in Chapter 64, in the course of defining what I call the ‘S-integral’. Commonly the primary definition
of the integral is based on what I call ‘previsibly simple’ processes, and the formula of 641Yd(ii) is used to
define f[T’T,] udv. As will be noted in 641Yd, this in itself won’t affect the principal cases.

I will present a large number of results showing that processes share properties with their fully adapted
extensions to the covered envelopes of their domains. In those cases in which we have a good match between
properties of u and 4, starting with the isomorphism between M, (S) and M, (S) (612Qb), we shall have a
similar match between properties of u and of its alternative realisation #[S’ on any sublattice S’ with the
same covered envelope, that is, such that S covers &’ and S’ covers S. These offer powerful methods for
reducing problems to questions in which processes are defined on full sublattices of 7. It is correspondingly
important to recognise cases in which the correspondence may not be exact. One is in 613T: if |, Sﬁdz[) is
defined, then f sudy is defined, with the same value; but the converse is not universally true (613P). (In
the opposite direction we have 612Xj and 612Yf.) I have starred 613P because the construction is hard
work and the methods I use do not seem to contribute much to our toolkit. Ordinarily I would leave it as a
‘further exercise’. But like a rocky outcrop in the bank of a river it affects the flow of the arguments in this
volume, so I have taken three pages to include a detailed solution.

Nearly everything in the rest of this volume will be expressed in terms of structures (A, i, T, (2t )ter)
where (21, z) is a probability algebra, T is a non-empty totally ordered set, and (2;);er is a filtration of
closed subalgebras of ; for definiteness, it will often be useful to simultaneously declare names for the lattice
of stopping times adapted to (2;);cr and the associated family of closed subalgebras of 2 to get a sextuple
&, o, T, (Apyeer, T, (A ) rer). Twill call such quadruples or sextuples stochastic integration structures.
When T = [0, 00[, as in 612F and 612H, so that we have a structure (2, i, [0, oo[, (2l;)¢>0) or (U, &, [0, oo,
(Ap)i>0, T, (Ar)re7), I will call it a real-time stochastic integration structure.

Perhaps I should note explicitly that a stochastic integration structure (A, g, T, (At)ter, T, (Ar)reT)
carries a lot of undeclared baggage. The symbol 2 involves not just the set 2 but its Boolean operations
A, n, u and \, with the induced relation C , and its greatest and least elements 1 and 0. The symbol
T is accompanied by its total ordering < and the associated relation <. With 7 we have the functions
(o,7) = o < 7], [o <7] and [o = 7]. We are all well used to such things being omitted from hypotheses,
but in the rest of this volume we shall have to be ready for a richer hidden substructure than is usual.
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70 The Riemann-sum integral 613 Notes

In the introduction to this volume I said I would try to explain why I am working with structures (2, 1)
and L°(2A) rather than with probability spaces and measurable functions. The move from (€2, %, u1, (£;);>0)
to (A, i, (As)rer) is really no more than a change in notation. Every probability algebra, in the sense here,
can be represented by a classical probability space (321J), and while the move from [0, co[ to an arbitrary
non-empty totally ordered space is a generalisation, I shall have nothing significant to say about the new
cases. But the move from real-valued measurable functions to their equivalence classes in L° is forced on
us by the definition of the integral in 613H. The integral is defined as a limit in L% for the topology of
convergence in measure; and as this is a Hausdorff topology, the limit, when it exists, is unique. There are
variations of the theory using different topologies — in §626, for instance, there will be limits for the weak
topology on L! — but none of them give functions as limits; they all provide members of L° or L' or L2,
corresponding to equivalence classes of functions. Starting in Chapter 62, conditional expectations will be
enormously important, and if we want to speak of well-defined conditional expectation operators, we again
need to work in L', not in an associated space of functions.

Of course, we could set up a theory in which we accepted that an integral [ X; dY; would belong to Lo,
while all the X, Y; were real-valued functions. But when we get to stochastic calculus in §617 we shall
want to look at integration with respect to indefinite integrals. So our theory needs to be able to deal with
integrals f dv where v is a process taking values in L°.

Concerning stopping times, the argument takes a different form. Since the values of a process (u,)ycs are
going to be in L, and changing o on a set of measure zero must not affect u,, it is to my mind more natural
to define a stopping time o € T in such a way that it corresponds to an equivalence class of stopping times
h: X — [0, 00], even if this complicates the definition of the region [o < 7] in 611D and renders the algebra
of 611E less transparent. And there is another issue. If you look at the leading examples in 612T-612U, or
at the general formulations in 612H and 615P, you will see that I appeal to results in Volume 4 at several
points. The intuitions behind Brownian motion and the Poisson process naturally lead to processes (X)¢>o,
and in order to go farther we need to look at the corresponding processes (X3 ) is a stopping time- Lhis step
demands deeper ideas than anything else in the present chapter. By going directly to processes (u,)ses,
where S may be any sublattice of T, I can skate over these difficulties while still giving you something to
cut your teeth on. Moreover, there are technical advantages; because T is Dedekind complete, I can speak
uninhibitedly of infima, in such results as 611Ch and 618C, without needing any formula for calculating
them.

Version of 29.10.24

614 Simple and order-bounded processes and bounded variation

In §613 I gave a definition of an integral with no very useful indication of where it might be applicable.
This section and the next two will be devoted to teasing out the basic case in which a Riemann-sum integral
fsud'u is defined: w should be ‘moderately oscillatory’ (615E) and v should be an ‘integrator’ (616K).
Before we come to either of these notions, however, it will be helpful to have a firm grasp of three easier
concepts: ‘simple’ processes (614B), ‘order-bounded’ processes (614E) and processes ‘of bounded variation’
(614J-614K).

614A Notation (U, i, T, (A)eer, T, (Ar)re7) will be a stochastic integration structure, as described in
the notes to §613, with regions [o < 7], [0 < 7] and [o = 7] (611D) for stopping times o, 7 € T. If 0 < 7
in 7, ¢(o,7) will be the corresponding stopping-time interval (611J). If S is a sublattice of T, then Sti(S)
will be the set of stopping-time intervals with endpoints in S and when I is a finite sublattice of T Stig([)
will be the set of I-cells (611Je). If S is a sublattice of 7 and 7 € S, then SAT = {oc AT : 0 € S},
SVT={oVT:0¢€S8} I(S) is the upwards-directed set of finite sublattices of S and S?T = {(o,7) : 0,
T €S, 0 <7} Mi,(S) will be the space of fully adapted processes with domain S (6121). I write 1 for the
constant process with value x1, and if z € L° then 21 will be the constant process with value z, defined on
{o:2€ L°(A,) (612De).

L0 = LO(A) (612A), and if u = (u,)ses € (L°)S, I write sup |u| for sup,cg |u,| if this is defined in L°.
6 will be the standard F-seminorm defining the topology of convergence in measure on L° (613Ba), and

(©) 2019 D. H. Fremlin
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614B Simple and order-bounded processes and bounded variation 71

limits will be taken with respect to this topology. If S is a sublattice of T, e € Sti(S), I € Z(S), u and v
are processes defined on S and 1 is an interval function defined on S?', we shall have A, (u,dv), Ac(u, dv),
A, (u,|dv]) and the Riemann sums Sy(u,dy), Sr(u,dv) and Sr(u,|dv|) as defined in 613E-613F, with the
Riemann-sum integrals [qudi), [qudv and [qu |dv| (when they are defined) as in 613H.

614B If either u or v is a simple process, then f u dv is particularly straightforward.

Proposition Suppose that S is a non-empty sublattice of T and u = (u,),es a simple fully adapted process
with a breakpoint string (7o, ... ,7,) (612J).

(a) The starting value uy = lim,|s u, is defined, and [o < 79] C [us = u,] for every o € S.

(b) Suppose that ¢ : §*' — L% = LO(2) is an adapted interval function such that [gdy = [¢1dy is
defined. Then [ sudy is defined and equal to

Uy X Vg + Z?gol Ur; X (Un+1 —Vr;) + Ur, X (vp —v7,)

where v, =[5, _dip for T € S, and vy = [5 di).
proof (a) For 0 € S, set a, = [0 < 7]; set a = sup,¢s as. Note that a, Da, if 0 < 7in S, so a is the
limit lim, s a, for the measure-algebra topology of 2 (323D(b-ii)), and xa = lim, s xa, for the topology of

convergence in measure (367Ra). Next, we know that there is a u, € L((,cg o) such that a, C [ue = u,]
for every 0 € S. If 0 € § and 0 < 79, then 1\ ay = [0 = 79] € [uo = U], so

Uy = Us X Xo + Ury X (X1 — x00).

But this means that

up = },lig Uy = },lfg(u* X XGo + Uz, X (X1 — x05))

= U X xa + try X (x1 = xa).
Finally, for any o € S,

[o <7m0] Canfus =us] C Jus =uy]nue = us]
(because u, X xa = uj X xa)

< [ue = uy].

(b)(i) By 613J(c-i), v, is defined for every 7 € S.
(ii) fSAToud1/) =u XUy, Plfo,7€8 and o <7 <719, then
o =m0] o =7] c[¢(o,7)=0]
(611E(c-vi), 613C(b-1)), so ¥(o,7) = x[o < 70] X ¥ (o, 7) and

g X Y(0,7) = uy X x[o < 0] X ¢(0o,7)
=uy X x[o < 10] X Y(o,7) =uy x Y(o, 7).

So Ag(u,dy) = up x A.(1,dy) for every stopping-time interval with endpoints in S A 7p, and Sy(u,dy) =
uy x Sp(1,dy) for every I € Z(S A 7). Accordingly
udyp = lim S;u,dyp)= Ilim wug xSr(1,d
/SMO v ITZ(SAT0) 1(u, dv) HI(SAm) © 1(1,dv)
= li 1 = .
uy X ITI(lg/l\TO)SI( ydY) =up X v, Q

(iii) If ¢ < n, then me[n, wd) =ur, X (Vr,,, —vr,). Plfo,7€Sand 7; <o <7 <741, then

lo =7ita] € [o =] c [¢(o,7) = 0],

Tit1]
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g X Y(0,7) = uy X X[o < Ti41] X (0, 7)
=, % X[0 < Ti11] X 9(0,7) = tr, X $(0,7).

So Ac(u,dyp) = ur, x A(1,dy) for every stopping-time interval with endpoints in S N [7;, 741], and
Sr(u,dy) = ur, x Sp(1,dy) for every I € Z(S N [7;, Ti+1]). Accordingly

udyp = lim Sr(u,dy) = lim Ur, X S1(1,d
/Sm[n,nﬂ] v ITZ(SN[Ti,Ti41]) 1, dy) MZ(SN[ri,migal) 1, d)
= U, X lim Sr(1,dy) = ur, x / d
IMZ(SN[7i,Ti+1]) I< 1/)) SN[ri,7mi41] w

—ux ([ dv- [ aw)
S/\Ti+1 SAT;

= Ur; X (UT1‘+1 _vﬂ)' Q

(using 613J(c-i) again)

(iv) [s,, wd =ur; x (v —v;). PIfo, 7€ S and 7, <o <7, then uy X (0, 7) = ur, X (0, 7).
So Ac(u,dyp) = ur, x A(1,dy) for every stopping-time interval with endpoints in S V 7,, Sr(u,dy) =
Ur, X Sp(1,dy) for every I € Z(S V 7,,) and

dp= Lim  Sp(w,dp)= i - % Si(1,d
/SVMU v 1Z(Svr) 1w, dy) ITI(lg‘r\l/Tn)u"X 1(L,dy)

=u, x lim Si(1,d¢) = u,, ></ dip

ITZ(SVTn) Svr,

= U, X (/de—/s/wn d) = us X (v —v,,). Q

(v) Assembling these, as in 613J(c-ii), [qudy is defined and equal to

n—1

/ udw+2/ udw—i—/ wdip
SATo i—0 Y SN[7i,7it1] SV,
n—1
= Uy X Ury + Zu‘ri X (UTi+1 — ) +ur, X (04 —r,),
=0

as claimed.

Remark I didn’t have to say so in the course of the proof above, but of course fs dyp = lim 45 v, (613J(f-ii)),
so the formula vy here matches the usage in 613N.

614C Corollary Suppose that S is a non-empty sublattice of T, 4 = (u,)ses is a simple fully adapted
process with starting value w; and a breakpoint string (7o,...,7,), and v = (v;),es is a fully adapted
process such that vy = lim 45 v, and v} = lim, s v, are defined. Then |, sudv is defined and equal to

u) X (UTO - UJ,) + Z?;Ol Ur; X (UT1‘+1 - UTi) + Ur, X (UT - U‘Fn)'

proof Apply 614B with ) = Aw; the point being just that fSAT dv = v, — v for every 7 € S, by 613N
applied to v[S A 7, while [¢dv = vy —vy.

614D Proposition Let S be a sublattice of T, v = (vs)ses a simple process, and u = (u,)secs a fully
adapted process such that |, sUdv is defined. Then iy (u) is simple.
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proof (a) If v is constant, this is trivial, as Av = 0 and éi,(u) is constant with value 0. Otherwise, let

To,--. ,Tn) be a breakpoint string for v, and v the starting value of v. For 7 € § write w, for u dv,
4 SAT

so that (w;)res = iiy(u).

(b) If 7 € S A 7p then [r < 70] € Jw, =0]. P By 613Ld,
[we#0]C swp [ £vslC sup [oo #v)]
0,0’ ESAT TESNAT

sup [o = 7o) C [r = 70]
OESNAT

N

so [t < 1] € [w, = 0]. Q Generally, if T € S,
[r<m]clr=7A7]n[r AT < 70]
C Hw‘r = wT/\TQH N IIwT/\T() = OH - [[wT = 0]]
because ii, (u) is fully adapted (6130a).
(¢) Ifi <nand 7 € SN 7, Tit1] then [7 < 7341] € [wr = w,,]. P

[wr #w:,] = [[fsn[n,r] udv # 0]

(613Jc)
c sp [eAudc s [ A
o,0’'eSN[r;,7] oceSN[r;,7]
c  sup [o=m7i41] € [r=Ti1],
oceSN[7;,7]

so [r < Tit1] € [wr = wy,]. Q Generally, if 7 € S,

[ri < 7] n[r < Tig1] € [ = med(7, 7, Ti41)] N [med(7i, 7, Tig1) < Tig1)]
c Hw‘r = wIIled(Ti,T,Ti+1)]] n meed(Ti,T,Ti+1) = wn]]

C [wr = ws,].

(d)IfreSVr, thenw, =w,, . P

[wr # w.,] = [[fsrw[m,r] udv # 0]
¢ sw  [wAuvlc swp [ A£v]=0Q

0,0’ €SN[Ty,T] oceSVTy,
Generally, if 7 € S,
[rn <7]clr=7Vvm] Clw: =wrvs,] € [wr =w,]

Thus i, (u) is simple, with breakpoint string (79, ... , 7).

614E Order-bounded processes Now for a much larger class of processes.
Definitions Let S be a sublattice of T and u = {u,)ses a fully adapted process.
(a) u is order-bounded if {u, : 0 € S} is bounded above and below in LY. In this case, if S # 0,

SUPyes |uo| is defined in LP, because LY is Dedekind complete. It will be convenient to write sup |u]
Sup,cs |uo|, taking the supremum in (L°)*, so that sup u| = 0 if S = domu is empty.

(b) u is locally order-bounded if 4[|S AT = (Us)ses,0<- is order-bounded for every 7 € S.

(c) Suppose that S is non-empty and that u is simple, with breakpoint string (79,...,7,) and starting
value uy. Then u is order-bounded and sup |Ju| = |uy| V sup,<,, |u-,|. B Write @ for |u,| V sup;<,, |ur,]. If
o €8, then a B
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[luo| < @] 2 [us = uy] U sup [us = ur,]
i<n

Do <mJusup([r <o]nfo < Tip1])ulm <o) =1
i<n
and |uy| < @. As o is arbitrary, u is order-bounded and sup |u| < @. On the other hand,
luy| = limyys |ue| < sup |u]

so @ < sup |u| and we have equality. Q

614F Proposition Let S be a sublattice of 7.
(a)(i) If u is an order-bounded process with domain S, then u[S’ is order-bounded for any sublattice &’
of §; in particular, u is locally order-bounded.
(ii) If u is a locally order-bounded process with domain S, then u[S’ is locally order-bounded for any
sublattice S’ of S.
(b) Suppose that u = (us)secs is a locally order-bounded process. Set v, = sup,csny [tuo| for 7 € S.
Then v = (v;)rcs is a non-decreasing fully adapted process.
(¢) Write Moy, = Mo(S) for the set of order-bounded fully adapted processes with domain S.
(i) If b : R — R is a Borel measurable function which is bounded on every bounded interval in R, then
hu € M.y, for every u € M,.y,.
(ii) Mo.p is an f-subalgebra of J], s L°(As).
(iii) If z € L°(AN N, es Ao) then zu € My, with sup |zu| = |z| x sup |u], for every u € M.y.
(d) Write Mjo, = Miop(S) for the set of locally order-bounded fully adapted processes with domain S.
(i) If A : R — R is a Borel measurable function which is bounded on every bounded interval in R, then
hu € My, for every u € Mygp.

(i) Myop is an f-subalgebra of [], s L(2,).

ceS

proof (a) Immediate from the definitions.

(b) For each 7 € S, {|us| : o € S AT} is bounded above in the Dedekind complete lattice L°(21), so v,
is defined. Moreover, |u,| € LO(2l,) C L2, ) for every o € S A 7; as L°(2,) is an order-closed sublattice
of L%(2A) (612A(e-i)), v, € L°(2L;). Of course v, < v,» whenever 7 < 7/ in S, just because SAT C S AT

Now suppose that 7, 7" € Sand c=[r =7]. o € SAT, then c AT € SAT' and

cClo<rl=lo=0n7]Clusl = [uorrl] C [luo| <vr].
So |uy| X xe < vpr. Since u — u x yc: LO(A) — LY(2A) is an order-continuous lattice homomorphism,
Uy X XC = SUPyesny |Uo| X xC < 0 X XC,

and ¢ C [v, < wv,]. Similarly, ¢ C [v <w.] and [t =7'] = ¢ C [vr = v]. As 7 and 7’ are arbitrary, v is
fully adapted.

(c)(d) For z € R, set g(z) = supjy <y [R(y)[. Then g is monotonic on each of ]—oc,0] and [0, 00[, so
is Borel measurable, and |h(v)| < g(Ju|) whenever u, v € L% and |[v] < u. If u = (u,)ses is an order-
bounded fully adapted process, and u is an upper bound of {|u,|: o € S}, g(u) will be an upper bound of
{|h(u,)| : o € 8}, and hu is order-bounded.

(ii) If u = (us)oes and v = (Vs )ses are order-bounded, let u, v be upper bounds of {|us| : 0 € S},
{Jvs| : o € S} respectively; then u + v is an upper bound of {|u, + v,| : 0 € S} and u + v is order-bounded.
Thus M., is closed under addition. By 612Bc as usual, M,.p, is an f-subalgebra of [], s LO(2,).

(iii) The map u + |z| x u: L® — L is an order-continuous Riesz homomorphism, so if u = (uy)ses
belongs to My, we shall have

|2 x sup |u| = |2 X supyes |us| = SUPges |2] X [Uuo| = sup,cs 2 X Ul
and zu is order-bounded, with sup |zu| = |z| X sup |u.

(d) Apply (c) to u|S AT for each 7 € S.
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614G Proposition Suppose that S is a sublattice of T and u = (u,)ses a fully adapted process.
(a) If A, BC S, A covers B and {u, : 0 € A} is order-bounded, then {u, : o € B} is order-bounded and

SUPgep |Uo| < SUP,ea [Uo].
(b) If &’ is a sublattice of S which covers S

(i) u is order-bounded iff u[S’ is order-bounded, and in this case sup |u| = sup [u]S’|,
(ii) u is locally order-bounded iff u[S’ is locally order-bounded.

proof (a) Write @ for sup,¢ 4 |ts|, counting the supremum of the empty set as 0. If 7 € B then
[lur| < ul 2 supyea [ur = uol O lus| <ul 2 supyeq[r =0l =1,
o0 |ur| < @. As 7 is arbitrary, u[ B is order-bounded and sup [u]B| < @ = sup |[u[ A|.
(b) (i) Immediate from (a), as each of S, &’ covers the other.

(ii) If u is locally order-bounded and ¢* € §', {u, : 0 € ' Ao*} C {u, : 7 € SAc*} is order-bounded
in LO(2A), so u[ S’ is locally order-bounded.

Now suppose that u is locally order-bounded, 7* € S and a € 2 is non-zero. Since sup,cgs [7* = o] =1,
there is a 0 € &’ such that o/ = an[r* = o] is non-zero. Now S A o is covered by &' A o (611M(e-i)) and
u[S’ A o is order-bounded, so u[S A ¢ is order-bounded, by (i) above. There is therefore a o > 0 such that
a’' =a\ sup,cgn, [|ur] > @] is non-zero. But in this case

a' n[lurars| > a] = d n[|urpnr| > ] n[r* = o]

ca nfurpe|l >a] =0
for every 7 € S, that is, a’ n[Ju,| > a] = 0 for every 7 € S A7*. So sup,cga,+ [|ur| > ] does not include
a; as a is arbitrary, inf,~osup,cgar- [Jur| >7] = 0 and {u, : 7 € S A 7*} is bounded above in L°(2A)
(364L(a-ii)). As 7* is arbitrary, u is locally order-bounded.

614H Proposition Brownian motion, as described in 612T, is locally order-bounded.

proof I follow the notation of 612T. If 7 € Ty, let h:  — [0, 00| be a stopping time representing 7. Then
f(w) = supye(o ()] lw(t)| is finite for every w € 2, because w is continuous. Moreover, again because every
w is continuous, f(w) = sup,ecq fq(w) for every w, where fq(w) = |w(q)| if ¢ < h(w), 0 otherwise; as every
fq is measurable, so is f. Now we see that if ¢ < 7 in Ty there is a stopping time g : & — [0, 00[ such
that g represents o and g < h, so that [X,| < f and |w,| = [X] < f* in L%(C). Thus {w, : 0 < 7} is
order-bounded; as T is arbitrary, w is locally order-bounded.

6141 Non-decreasing processes I pause for some nearly trivial remarks. Let S be a sublattice of T
and v = (v,)secs & non-decreasing fully adapted process.

(a) v is a lattice homomorphism. P If o, 7 € S, then vopr < vy and

[oc<t]=Jc=0cAT]n]r=0VT]
(611E(a-ii-3))

- [[UU = UO’/\T]] n IIUT = UO’\/T]] - [[UO' Nvy = UO’/\T]] N [[UU Vur = UO'VT]]

and similarly
IIT < U]] - IIUO' Nvr = UO’/\T]] N [[UU Vo, = UO’VT]]?

80 Vg AUy = Ugnr and vy V U; = Usy,. As o and 7 are arbitrary, v is a lattice homomorphism. Q

(b) As in the proof of (a) just above,
[[U < T]] - [[UO' = UO'/\T]] N [[UT = UO’\/T]] - IIUU < UTH

forall o, 7 € S.
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(c) If v is non-negative it is locally order-bounded. I If 7 € S then 0 < v, < v, for every 0 € SAT. Q

(d) If S # () and v is order-bounded, then

fs\dv| = deU:UT—U¢
where vt = sup,cs Vo = lilors Vo and vy = infyesvo = limg s vo. P To identify inf,cs v, With lims s ve
and sup,cs Vo With lim,+s v5, use the last sentence of 613Ba. Now 613N tells us that fs dv = vy — vy, and
since the interval functions Av and |Av| (613Cc) are equal, this is also [¢ |dv]. Q

(e) There is a special kind of non-decreasing process which it is sometimes useful to remember. Suppose
that w € (L°)*. For each o € S, set w, = sup{z : z € L%, * < w}. Now w = (w,),es is a non-negative
non-decreasing fully adapted process. P If o € S, then L°(2,) is order-closed in L° = LO(2l) (612A(e-i)),
so w, € LY(2,), and of course 0 < w,. If 0 < 7in S then A, C A, so LY(A,) C L°(A,) and w, < w;.
Finally, if o, 7 € S then w, x x[o = 7] € L°(,) (612C) and w, x xJo = 7] < w so w, x x[o = 7] < w,;
similarly, w, x x[o =7] < w,, s0 w; X x[o = 7] = wy X x[o = 7], that is, [o = 7] C [wy = w,]. Thus
(W) pes is fully adapted. Q

Observe also that Ju| < w whenever u = (u,)secs is fully adapted and |supu| < w, just because |uy| €
LO%(2,) and |u,| < w for every o € S.

(f) If h: R — R is non-decreasing, then hv is non-decreasing. (Use 612A(d-i-¢).)

(8) If u = (ug)oes is non-negative and fully adapted and [qudv is defined, then [qudv > 0 and iiy(u)
is non-decreasing. ¥ For any finite sublattice I of S, Sy(u,dv) is either 0 or expressible in the form
ZZ:Ol Ur, X (Ur,,, — vr,) where 7; < 7341 for every ¢ < n; in the latter case u,, and v, , — v, and
Uy, X (vr,,, — vr,) are non-negative for every i, so Sr(u,dv) > 0. Now [gudv = lim7(s) Sr(u, dv) must be
positive because the cone (L°)T is closed (613Ba).

As for the indefinite integral, we see now that if ¢ < 7 in S then u[SNJo, 7] is non-negative and v [SN|o, 7]
is non-decreasing, so me[a,r] udv >0 and

fS/\(rUdv < fS/\a’Uldv + fSﬂ[a’,T] udy = fS/\'rud’U
by 613K(c-i). Q

614J Bounded variation The third class of processes I wish to discuss is intermediate between the
other two.

Theorem Let S be a sublattice of 7 and v = (v,)scs a fully adapted process. Then the following are
equiveridical:

(i) v is expressible as the difference of two order-bounded non-negative non-decreasing fully
adapted processes,

.o n—1
(11> {Zizo |’UT1‘+1 — Ur;
(iii) [g |dv] is defined;

and in this case

179 < ... < 7, in 8} is bounded above in L,

fs |dv| = Sup{zz;_ol [Vrpy —Vr| 70 < ... <7y, in S}

if we count sup® as 0.

proof If S is empty, then (interpreting sup () as 0 in the last clause) the result is true for trivial reasons, so
let us suppose that S # ().

()=(ii) If v = v/ —v” where v/ = (v))ses and v = (v/),cs are non-decreasing, non-negative and
order-bounded, set ¥ = sup, s v, + sup,cs vy. Then

MEASURE THEORY
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n—1

n—1 n—1
Z |UT1'+1 - UTi' < Z |’U./,_1_+1 - ’U;—z| + Z |U;/¢+1 - ’U;'/i
=0 =0 =0

n—1 n—1
_2 : / o 2 : " /i
- vTH—l Uz, + UT1‘+1 Uz,
i=0 =0

/

v

/ 1 / —
—Vp, + Uz, — U, <0
whenever 79 < ... <7, in S. So (ii) is true.

(ii)=(iii) (@) The key fact is that S;(1, |dv|) < S;(1,|dv|) whenever J C I in Z(S). P If J is empty this
is trivial. Otherwise, let (g, ... ,7,) linearly generate the J-cells, so that

—1
SJ(17 ‘d’UD - Z?:O |UT7',+1 — Ur;

(613Ec),
Sr(1, [dv]) = Sinpmin 1.7 (1 1d0]) + 3120 Siapr, repn] (1, 180]) + Siapr, mas 1) (1, [dv])
(613G(a-ii)). Now for any stopping-time interval e = ¢(o, 7) with endpoints in S,
Ac(1,|dv]) = |vr — vo| = |Ac(1, dv)|,
so for any K € Z(S)

Sk(Ldo)| =] > Acdldo)| < Y |A(L,dv)|

e€Stig(K) e€Stig(K)
= > Al |dv]) = Sk(1,|dv)l.
eGStiO(K)
In particular, for i < n,
Uripqr — U‘Fri| = |Sfﬁ[‘ri,7'i+1](1’dv)|

(613Ed)
< SIQ[Ti,Ti+1] (17 |d’U|)

Summing over 4,

n—1 n—
SJ(]-? |d’l)|) = Zi:o "UTH»I - Ur; < Zi:ol SIFT[T,:,THH(IV Id’U|) < SI(]-? |d’U|) Q

(B) Setting A = {Z?;Ol |Ur ) —r| i 10 < .. <7 in S}, AT = {S1(1,|dv]) : I € I(S)}, we have
A’ C A, and we know from («) that A’ is upwards-directed; moreover,

fs |dv| = limpy7(s) S1(1, |dv]) = lim 44/ 2 = sup A’

if any of these is defined in LY. If we assume that (ii) is true, so that A and A’ are bounded above, then
sup A’ is defined and (iii) is true.

In fact, of course, A C A’, because if 9 < ... < 7, in S then Z?;(} |V, — vr,| = Sp(1,|dv|) where
I ={r,...,7x}. So we must have sup A = [ |dv], as claimed in the final clause of the statement of this
theorem.

(iii)=(i) Suppose that [ |dv| is defined.

(@) v, = limy sv, is defined. T Let € > 0. Then there is a non-empty J € Z(S) such that
0(Sr(1,|dv]) — S5(1,|dv|)) < e whenever I € Z(S) includes J. If 0 € S Amin J, set I = JU {o}; then

€= Q(SI(]-» |d’U|) - S.](lv ‘d’UD) = H(Ac(a,min J)(]-» |d’U|))

= 9(|UminJ - vo') = e(vminJ - vo)-
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Because L° is complete, this is enough to ensure that v, is defined. Q

(B) vy = limyqs vy is defined. I Argue as in («). Let € > 0. Then there is a non-empty J € Z(S) such
that 0(S7(1,|dv|) — S;(1,|dv|)) < € whenever I € Z(S) includes J. Now

0(Vs — Vmax ) = (S ufoy (1, [dv|) — S5 (1, |dv]) < €
whenever max J < o € S. Because L° is complete, this is enough to ensure that vy is defined. Q
(7) Set v = v + [, |dv| for T € S. Because v, € LO(2;) for every 7 € S (613Bj), v’ = (1] )res
is fully adapted. If ¢ < 7in S, v — ) = me[o— . |dv| > 0, so v’ is non-decreasing. Because vj' >0, is

non-negative. As lim 4sv. = vf + [s |dv] is defined (613J(f-ii)), this is sup, s v, and v’ is order-bounded.

(8) Set v = vl — v, for 7 € S, so that v" = (v/),cs is fully adapted. If 0 < 7 in S,

v;’—vj,’:/ |d’v|—/ |dv| — vy 4+ v,
SAT SAo

:/ |dv| — vy + vo > |Ur — V| — Ur + Vs
SN[o,7]

(as in () of (ii)=-(iii) above)
> 0.

So v” is non-decreasing. We have

limv” = vt + lim dv| —v, =vt —v
by LS S/\7'| ‘ 1 1 +

(613J(£-))
>0

)

so v” is non-negative. At the other end,
lim 45 vl = vir + limqs fS/\‘r |dv| — lim s vy = vj + fs |dv| — vy
is defined, so this must be an upper bound of {v” : 7 € S}, and v” is order-bounded.

() Accordingly v' —v"” = v witnesses that (i) is true.

614K Definitions Let S be a sublattice of 7 and v a fully adapted process with domain S.
(a) v is of bounded variation if it satisfies the conditions of Theorem 614J.

(b) v is locally of bounded variation if v[S A 7 is of bounded variation for every 7 € S.

614L Proposition Let S be a sublattice of 7 and v a fully adapted process with domain S.

(a) If v is (locally) of bounded variation it is (locally) order-bounded.

(b)(i) If v is of bounded variation and &’ is a sublattice of S, then v[S’ is of bounded variation and
o ldo| < [ ldo.

(ii) If v is locally of bounded variation and &’ is a sublattice of S, then v[S’ is locally of bounded

variation.

(¢) If 7 € S, then v is (locally) of bounded variation iff v]S A7 and v[S V 7 are both (locally) of bounded
variation.

proof (a) Since M, (S) is closed under subtraction (614F (c-ii)), it follows at once from 614J(i) that if v is
of bounded variation then it is order-bounded. Applying this to S A 7 for 7 € S, we see that if v is locally
of bounded variation it is locally order-bounded.

MEASURE THEORY
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(b)(i) v satisfies condition (i) of 614J, so v|S" also does, and [, |dv| < [, |dv| by the last formula in
614J.

(ii) If v is locally of bounded variation and 7 € &', then v[S A 7 is of bounded variation and S’ A7 is a
sublattice of SAT, so v[S’ AT is of bounded variation; as 7 is arbitrary, v[S’ is locally of bounded variation.

(c) If v is (locally) of bounded variation, then v[S A 7 and v[S V 7 are (locally) of bounded variation
because S AT and S V T are sublattices of S.

If y|S A7 and v[S V 7 are of bounded variation then [, _|dv| and [ _|dv| are defined, so [q |dv] is
defined (613J(c-i) once more) and v is of bounded variation.

If v[SA7T and v[S V7 are locally of bounded variation and o € S, then v[(SAc)AT =v[(SAT) Ao and
v[(SAc)VT =v[(SVT)A(cVT) are of bounded variation, so v|S A o is of bounded variation; accordingly
v is locally of bounded variation.

614M Proposition The Poisson process, as described in 612U, is locally of bounded variation.

proof It is non-negative and non-decreasing, so 614Ic applies.

614N Lemma Let S be a sublattice of 7 and @ € (L°)™. Then {v : v € Mg, (S) is of bounded variation,
[s |dv| <} is closed in (L°)® for its product topology.

proof The point is just that if I € Z(S), then v — S;(1, |dv|) : (L°)® — L° is continuous, so
A={v:ve (L% S;(1,|dv|) < u for every I € Z(S)}

is closed in (L°). Now the set M, (S) of fully adapted processes with domain S is closed in (L°)S (613Bl),
so {v:v € Mp(S), [g|dv] <u} = AN My (S) is closed.

6140 Cumulative variation Let S be a sublattice of 7, and v a process with domain S which is locally
of bounded variation. Then vl = [, _|dv| is defined for every 7 € S (614J-614K), and v" = ([, v])res
is fully adapted (613J(e-ii)). I will call v the cumulative variation of v.

614P Proposition Let S be a sublattice of T, v = (v,)secs a process which is locally of bounded
variation, and v = (v]),¢cs its cumulative variation.
(a)(i) If o < 7in S, then

vl — vl = me[a;] |dv| > v, — v,| > 0.

(i) v" is non-negative and non-decreasing and has starting value 0 if S is not empty.
(iii) T + v and v"T — v are non-decreasing.
(iv) If S is non-empty, v has a starting value.
(v) v is of bounded variation iff lim s v} = sup [v"] is defined, and in this case the limit is [ |dv|.
(b) If 7 € S then, writing (w[SAT)T and (v[SV 7)T for the cumulative variations of vy[SA T and v[SV T,

WISAT)I =vT[SAT, @SV =v"[SVT—0ll.
(c) Suppose that I € Z(S) is not empty and (7o, ... ,7,) linearly generates the I-cells (611L).

(i)

vl - Uli < ‘U7'11+1 - IUTi‘ + ’UT ’U;inl - Sl(la |d’U|)

Tit1 max ]
for every i < n.
(ii) If v is of bounded variation, write w for [ |dv| — S7(1,|dv|), and let v, be the starting value of v.
() If 7 € S A 79, then vl < |v; —v)| + w.
(B) If i <n and T € SN [73, Tig1) then v] — ol < v, — oy,
(v) If 7 € SV 7, then ol —vl <o — v |+ w.

proof (a)(i) Immediate from 613J(c-i) and 614J.

+ w.

(ii) By 614J, v is non-negative; by (i) here, it is non-decreasing; by 613J(f-i) again its starting value
is 0if S # 0.
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(iii) If o < 7in S, then
(vl £v,) — (0] £vg) =08 — 0] F (vy —v5) >0l — v — v, —v,| >0
by (i) above.
(iv) Suppose to begin with that v is non-negative and non-decreasing. Take any 7 € S. Then v[S A T
is order-bounded (614Ic) so has a starting value, as noted in 614Id, and this will also be the starting value
of v.

Generally, v is expressible as v/ — v where v/ = (V] ),es and v/ = (v
decreasing. Now

1"

" ses are non-negative and non-

limy s v, = limy s v, — v =lim, s v, — limg s v
is defined and is the starting value of v.

(v) Because v" is non-negative and non-decreasing, lim+s vl = sup [v"] if either is defined in L°(2A).
If v is of bounded variation,

Joldv| =vl+ [ |dv| > o]

for every 7 € S, so sup |v'| is defined and less than or equal to [ |dv|. If sup [v"] is defined, then whenever
70<...<T7,in S,

—1
Z?:O |UT«;+1 — Uy < fS/\Tn |dv| < sup |vT|7
s0 [ |dv| is defined and is at most sup [v"|. Thus in either case we have equality.
(b) Of course
@ISAT) = ([, |dv])sesrr =0 IS AT
On the other hand, for o € SV T,

ugz/ |dv|:/ |dv\+/ dv|
SAo (SAo)AT (SAo)VT

ol + / |,
(SVT)Ao

(613G (a-i))

SO

oISV =vl1+ WSV
(e) (i)

Sl(la |d’U|) = |’U7—i+1 - ,U'f"i| + Z |U7'j+1 - vTj| < |U7'i+1 - U7i| + Z ’U_,T_j+1 - U;[j

i<n J<n
Jj#i VE)
— T T T
= [Vry, — g | +S1(1,dv") — Vg, TV
_ T T T T.
- |U7'7‘,+1 —Ur |t Vmax 1~ VYmin1 — Urina +U7'7‘,’

rearranging, we have the result.

(ii)(a) If 0 € SA T then v! — v} < v, —v,| +w. P Set J = {0,7,70,... ,7}. Then J € Z(S) and
(0,7,70,--- ,Tn) linearly generates the J-cells, so
n—1
of = ol < Jor = vl + o], = u] = Sy(L1do)) < for — vl + [ ldo] = 3 [or, = v
S i=0

— oy — o] +/ ldv| — S1(L, |dv]) = [v, — ve] + w. Q
S
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Now
vl =lim, s vl — vl <lim, s |vr —vo| +w = v, — v | +w.
(B) Set J ={70,... ,Ti, Ty Tit1,--- ,Tn}. Then
vl —ol <o — v, |+ 0l =0l —S;(1,|dv]) < v — v, | +w.
() This time, set J = {79,... ,7n, 7}, so that

+ ol =l = S;(1,|dv]) < |vr —vp, |+ w.

T _
UT ’UT” S IUT UTn

614Q Proposition Let S be a sublattice of T, and S its covered envelope.
(a) Write My, = My, (S) for the set of fully adapted processes of bounded variation with domain S.
(i) hv € My, whenever v € My, and h: R — R is Lipschitz on every bounded interval.
(ii) My is an f-subalgebra of M, (S).
(iii) The space Mgy of simple processes with domain S is an f-subalgebra of My, closed under h for
every Borel measurable i : R — R.
(iv) If v € M, (S) and 9 is its fully adapted extension to S, then
() v is non-decreasing iff ¥ is non-decreasing,
(8) v is of bounded variation iff © is of bounded variation, and in this case [4|dd| = [ |dv| and the
cumulative variation &' of ¥ is the fully adapted extension of the cumulative variation v of v.
(b) Write M,y = My (S) for the set of fully adapted processes with domain S which are locally of
bounded variation.
(i) If v € Mpy(S) then v]S’ is locally of bounded variation for every sublattice S of S.
(ii) hv € My,, whenever v € My, and h : R — R is Lipschitz on every bounded interval.
(iii) My is an f-subalgebra of Min(S).
(iv) If v € Mg, (S) then v is locally of bounded variation iff it is expressible as the difference of two
non-negative non-decreasing fully adapted processes.
(v) If v € Mg, (S), then v is locally of bounded variation iff its fully adapted extension to & is locally
of bounded variation, and in this case the cumulative variation of ¥ is the fully adapted extension of the
cumulative variation of v.

proof If S is empty, this is trivial. So suppose otherwise.
(a)(i) Define g : R — R by setting ¢g(0) = 0 and

_ [h(y")—h(y)]
9(@) =SUP_ppj<cycy <ol o,
for x # 0. Then g is monotonic on both |]—o0,0] and [0, 0o, so is Borel measurable. As
h(y') = h(y)| < g(=)ly’ — y| whenever [y], |y'| <z in R,
we shall have
|h(v") — h(v)| < g(u) x [v" — v| whenever |v|, [v/| < u in LO.
)

Now suppose that v = (v,)ses is of bounded variation. By 614La, it is order-bounded; let u be an upper
bound of {v, : 0 € S}. If 7o < ... <7, in S, then

n—1 B _ n—1
Z ‘h(U7i+l) - h(UTi) < g(u) X |UTi+1 —Un
=0 =0

n—1
= g() X 3 Jomsy — vr] < 5(u) X /S ol
1=0

(614J). Thus hv satisfies (ii) of 614J and is of bounded variation.

(ii) If v, v’ are non-negative non-decreasing processes defined on S, then of course v+’ is non-negative
and non-decreasing. Condition (i) of 614J now makes it plain that the sum of processes of bounded variation
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is of bounded variation. From (i) we see that hv € Mbv whenever v € My, and h : R — R is convex, so
612Bc tells us that My, is an f-subalgebra of HUES 9(2,) and therefore of M,.,.

(iii) Let v = (v,)ses be a simple process. If v is constant, then surely it is of bounded variation.
Otherwise, let (7g,...,7,) be a breakpoint sequence for v and v, its starting value. Consider the simple
) ) ) p q g p
process w = (W, )secs With the same breakpoint sequence defined by saying that

[o <7o] € [woe =vi], [0 < 0] C [wo = vi + |7, — vi| + Z |UTL+1 Ur;

I,

[[Tj S 0']] n [[U < Tj+1]] C [[wff = Ux + |’U-,—0 - U*| + ZZ;Ol |v7'i+1 - U‘Fi”]

for 0 < j < m. Since (vi, Wy, .. ,ws,) and (0,wr, — Vry,... , Wy, — vy,) are both non-decreasing, w and
w — v are both non-decreasing, so their difference v is of bounded variation.
Thus Mgimp € Myy,. Now refer to 612L for its other properties.

(iv) Express v and 9 as (v,)ses and (9q), s

(a) If v is non-decreasing then of course v = 0[S is non-decreasing. If v is non-decreasing and 79 < 7

in &, take any non-zero a € 2. Then there are a oy € S such that ag = an [y = 0¢] is non-zero, and a
o1 € § such that a; = agn [ = 1] is non-zero. Now

ay < [[@To = UUO]] n [[7371 = UUl]] n [[UO < Ulﬂ
< [[ﬁ‘m = UO'O]] n [[67'1 = UUOVUI]] < [[@To < @Tl]]‘
As a is arbitrary, 0/ < 0! . So ® is non-decreasing.

(B) If v is of bounded variation then v = 'f)[S is of bounded variation, by 614L(b-i) above. If v is

of bounded variation, express it as v/ — v” Where v = (v )yes, v are order-bounded non- negatlve non-

decreasing fully adapted processes. Let #', 9" be their fully adapted extensions to S, so that & = o' — 9"

(612Qb). By (a), 2" and 9" are non- decreasmg, by 614G(b-i) they are order-bounded; and by 612Qb again
they are non—negative. So they witness that ¢ is of bounded variation.

Now 613T, with u = 1 and ¢(0,7) = |0, —9,| for ¢ < 7in S, tells us that [|dv| = [4|dd|. AndifT € S
then S A 7 is the covered envelope of S A7 (611M(e-i)) and [, _|dv| = [5,_|dd|, so vT = ]S and o'
the fully adapted extension of vT.

(b)(i)-(iii) These follow immediately from 614L and (a-i).

(iv)(a) If v = (vy)ses is non-negative and non-decreasing and 7 € S, then v[S A 7 takes all its values
in [0,v,] so is order-bounded and of bounded variation; as 7 is arbitrary, v is locally of bounded variation.
By (iii), if v is the difference of two non-negative non-decreasing processes then it is locally of bounded
variation.

(B) Conversely, if v is locally of bounded variation, then it has a cumulative variation v’ = (v]),¢cs
(6140), which is non-negative and non-decreasing and has starting value 0 (614P(a-ii)). By 614P(a-iv),
v, = limy s v, is defined. We have

I =limy s vl — vl > limyys vy — ve| = v, — v | > v, — v

so vl + v¢ > v, for every 7 € S. Now if we set w = v' + v+1 both w and w — v will be non-negative and
non-decreasing, and v = w — (w — v) is expressed as a dlfference of non-negative non-decreasing processes.

(v) We can follow the proof of (a-iv-8) to show that © is locally of bounded variation iff v is. In thls
case, 01 = [, |do] is defined for every T € S, and will be equal to Jsp, ldv] =l if 7 € S, by 613T. So o
extends v! and must be the fully adapted extension of vT.

614R Lemma If I € Z(T) is non-empty and u = (uy)ser, ¥ = (Vs )ser are fully adapted processes, then
|S1(u, dv)| < min(sup |u| x fl |dv|, sup |v| x (fl |du| + 2 sup |ul).

proof If #(I) <1 this is trivial. Otherwise, take (79, ... ,7,) linearly generating the I-cells. Then
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n—1 n—1
|S[(u,d'v)\ = ‘ Zuﬂ X (v7i+1 - ,U7'7’,)| < Z ‘uﬂ X (UT1‘+1 _vTi)
=0 =0

n—1

< sup |u| x Z [Vr,y, — Vr,| = sup |u| x /|d’v|
i=0 I

and also

n—1

|S](U,d’v)| = |Z(u7’1 - u7'1‘+1) X Uiy + Ur, X V7, = Ur, X v"’o|
=0

< sup|v| x (/ |du| + |ur, | + |ur]) < sup |v| x (/ |du| + 2 sup |u]).
I I

614S Proposition Let S be a sublattice of T, and 4 = (uy)secs, ¥ = (Vs)ses two processes of bounded
variation with domain S. Then [gudv is defined and

|f5ud'v\ < min(sup |u| x fs |dv], sup |v| x (fs |du| + 2 sup |u|)).
proof Note first that w and v are order-bounded (614La), so sup |u| and sup |v| are defined.

(a) To begin with, consider the case in which both 4 and v are non-decreasing and non-negative.

(i) If I € Z(S) is non-empty and (79, ... ,7,) linearly generate the I-cells, then

n—1 n—1
0< Ury X (UT"n, - UTO) = Ury X Z(Uﬂ+1 - v"’i) < Zuﬂ X (U‘D‘,+1 - UTi)
=0 =0

n—1

= Si(u,dv) < Z“m X (Vripy = Vr,) = U, X (Ur, = vr,) < sup |ul x supfv].
=0

(i) If I C J in Z(S), then S;(u,dv) < S;(u,dv). P If I is empty this is trivial. Otherwise, take
(10, ... ,7n) linearly generating the I-cells. Then

n—1

S ('UH d’U) = S.]ﬁ[min J,70] (’U,, d’U) + Z SJﬁ['ri,‘riJrl] (’U,7 d’U) + SJﬁ[Tn,max J] (U, d’l))
=0
(613G (a-ii))

n—1
zO—I—Zuﬂ. X (Vry —vr) +0
=0

(by (i) above)
= Si(u,dv). Q

(iii) Thus {S;(u,dv) : I € Z(S)} is upwards-directed. As it is also bounded above in LY, by (i), it has
a supremum, which is lim47(s) Sr(u, dv) = [qudv.

(c) Thus the integral is defined when both u and v are non-negative and non-decreasing; as integration
is bilinear (613Jb), the integral is defined for all processes u, v of bounded variation. Concerning the bound
for | [ udv]|, we see from 614R that if I € Z(S) then

11 (u, dv)| < min(sup ful]] x/|dv|, sup [v] 1] X (/ \du| + 2sup [ul T]))
I I
< min (sup [u] x/\dv|,sup 0| x(/ |du| + 2sup [ul)
S S
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(using 614L(b-1)). Accordingly
|/ud’u| = |lim St (u, dv)| = lim |St (u, dv)|
s 18 18

< min(sup |u| x / |dv|, sup |v| x (/ |du| + 2sup [u])).
s s

614T Proposition Let S be a sublattice of T, and u, v fully adapted processes with domain S such
that u is order-bounded, v is of bounded variation and |, sudv is defined. Then the indefinite integral iiy (u)
(6130) is of bounded variation, and [ |d(iiy(u))| < sup [u| x [ |dv|.

proof Set z; = [¢. udv for 7 € S. As noted in 6130a and 6130(b-i), iiy(u) = (zr)res is fully adapted
and has domain S. Now suppose that 79 < ... < 7, in S. For i < n write S; for SN[7;, Tir1] = (SATi41) VT
Then

n—1 n—1 n—1
> fores =zl = 2| [ udo| < Y suplulsi|x [ Jao
i=0 i=0 /Si i=0 Si

(614S)

n—1
< sup Ju| x (/ |dv\+Z/ |dv|+/ dv])
SATg i=0 S; SVTy

— sup [u] x / dv|
S

(613J(c-ii)). Thus #iy(u) satisfies the condition 614J(ii) and is of bounded variation, with [ [d(iiy(u))| <
sup [u| x [q|dv|.

614U Following on from 612H, I give a result on the construction of order-bounded processes and
processes of bounded variation.

Proposition Let (2,3, i) be a complete probability space, and (X;);>¢ a filtration of o-subalgebras of ¥
such that every p-negligible set belongs to every £;. Let (2, f, [0, 00[, (UAs)¢>0, T, (Ar)~e7) be the associated
stochastic integration structure as in 612H; for a stopping time h : Q — [0, 00| let h* be the corresponding
member of 7. Suppose that (X;);>¢ is a progressively measurable process on €, with associated fully
adapted process T = (2;)rc7;-

(a) If {Xs(w) : s > 0} is bounded for almost every w € €2, then « is order-bounded.

(b) If s = Xs(w) : [0,00[ — R is of bounded variation for almost every w € €, then z is of bounded
variation.

proof (a)(i) We need the following fact which was left as an exercise in §364. Suppose that V' :  — [0, 0]
is any function. Let F' be the set of X-measurable functions f : Q@ — R such that f < V. Then A = {f*:
[ € F} is bounded above in LY. P For n € N set ¢, = sup,c4 [u>n]. A is cce (322G) so there is a
countable set I, C A such that ¢, = sup,c; [u >n] (316E). Let (fn)nen be a sequence in F' such that
UnenIn = {f3 : n € N}. Set f(x) = sup,,ey fu(z) for z € X; then f € F and f3 < f* for every n € N.
Setting v = f* € L% u < v for every u € J, ey In, 50 ¢ C [v > n] for every n, and inf,enc, = 0. By
364L(a-ii) again, A is bounded above in L'. Q

(ii) Set Q' = {w : {Xs(w) : s > 0} is bounded}, and define
V(w) = sup | Xs(w)| if w € ',
s>0

—0ifwen\ Q.
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Let A be the corresponding order-bounded subset of L° as defined in (i). If h : © — [0, 00] is a stopping
time, then X}, is measurable and |Xp,(w)| = [Xp(w)(w)] < V(w) for every w € ', so |X;| € A. But this
means that |z,| € A for every T € Ty and « is order-bounded.

(b) Set

V' ={w:s+— Xs(w):]0,00[ = R is of bounded variation},
so that Q" is conegligible. For w € Q let V(w) € [0,00[ be the total variation of s — X,(w) : [0,00[ = R

(224A) if w € ', and zero otherwise. As in (a-i), let F' be the set of ¥-measurable functions f : @ — R
such that f <V, and A= {f*: f € F}; then A is bounded above in L°.

Suppose that 79 < ... < 7, in T;. Then there are stopping times hq,...,h, : @& — [0,00[ such that
hi = 7 for i < n (612H(a-ii)), and h; <a. hit1 for i < n; replacing each h; by sup;; h; x X if
necessary, we can arrange that hg < ... < h,, and h;(w) = 0 whenever i < n and w € Q\ Q”. In this case,

S X1 (w) (@) = Xp, ) (w)] < V(w) for each w € Q. But this means that S |7, — 27| € A. Thus

—1
{Z?:O |m7'i+1 — T

is bounded above in L°(2) and z is of bounded variation.

10 < ... <1, in T} C A

614X Basic exercises (a) Suppose that 2 = {0,1}. Let S be a non-empty subset of ', f : S — R a
function and u = {(Z, f(t)x1) : t € S} the corresponding process with domain S = {{ : t € S}, as in 613W.
(i) Show that u is a simple process with breakpoint string (fo, ... ,f,) iff f is constant on each of the
intervals
Sm]*OO,to[, Sﬂ[ti,t¢+1[fori<n, Sﬂ[tn,oo[

(ii) Now suppose that ¢ : S — R is another function such that g, = limy s g(s) and g3 = limsys g(s)
are defined. Let v be the process corresponding to g. Show that

Jswdv = (fulglt) — g) + X0 (1) (g(tin) — 9(t) + F(t) (g — g(t))xL

(b) Suppose that S is a non-empty sublattice of T, u = (us)ses is a simple fully adapted process with
a breakpoint string (79,... ,7,), and v = (v,)ses is a fully adapted process such that vy = lim,|s v, is
defined. Show that || sp, WA is defined and equal to

uy X (Vrgnr —vy) + Z?:_()l Ur, X (Ury Ar = Uryar) + Ur, X (U7 = Ur,nr)

for every 7 € S.
(¢) In 614Fb, show that if w is simple then v is simple.

(d) Suppose that 20 = {0,1}, as in 613W and 614Xa, and that T is not empty. Let f : T — R be a
function. Show that f represents an order-bounded process iff it is bounded, and a process of bounded
variation iff it is of bounded variation.

(e) Suppose that T' = [0, 00[. Show that the identity process (612F) and the standard Poisson process
(612U) are locally of bounded variation, and that Brownian motion (612T) is locally order-bounded, but
that none of these is order-bounded.

>(f) Suppose that S is a sublattice of T, u = (u,)ses is a fully adapted process, and z € Lo(ﬂﬂﬂges Ay ).
(i) Show that if u is order-bounded then zu is order-bounded and sup |zu| = |z| x sup |u|. (ii) Show that if
u is of bounded variation then zu is of bounded variation and [ |d(zu)| = |z| x [ |dul.

(g) Let S be a sublattice of T and u a simple process with domain S. (i) Show that u is of bounded
variation. (ii) Show that the cumulative variation of w is simple.

h) In 614Ub, show that if we set f,(s) = Xs(w) for s > 0 and w € €, then (¢,w) +— Varj 4 f,, represents
[0,¢]
the cumulative variation of x.
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614Y Further exercises (a) Show that previsibly simple processes (612Ye) are of bounded variation.

(b) Show that Brownian motion is not locally of bounded variation. (Hint: for n > 1, i < n set

) ) 1 . 2
tin = i/n; for i < n set zp; = |wy —wg, |, 2n = "y Zni- Show that z,; has expectation —— and

i+1n V2nm
. 1 2 . . ; . = on 7 _ 1
variance ;(1 - ;), and hence, using Lindeberg’s theorem (274F), that lim,_, o fifzn > \/ﬁ}] =3 )

(c) In the construction described in 613P, show that 4 and v are order-bounded but not of bounded
variation.

614 Notes and comments This volume is supposed to be about stochastic integration. However a very
large part of the work we need to do will concern the structure of various types of stochastic process.
Necessarily I started with fully adapted processes (§612). These were sufficient for the definition of the
Riemann-sum integral in §613. Now we have three further classes. Integration of, and with respect to,
simple processes really is simple (614B-614D). From 614E to 614R, ‘integration’ hardly appears except in
the formula [ [dv|, which is really just an abbreviation for

sup{ 37 [ory —0n| i 70 < ... <7 in S}

(614J). Again, in §615, to follow, the bulk of the section will be devoted to properties of the space of
‘moderately oscillatory’ processes. Only in §616 will integration again move to front centre stage. But as
we go through the foundations of the theory, I will drip-feed results about integrals involving the special
classes of stochastic process being examined, as in 614S-614T.

The point of 614Ba is that in the formula of 612J defining ‘simple process’ there is a canonical choice
of the starting value u, definable from the process u. I delayed the result to this point because it speaks
of ‘limits’, and it seems convenient to treat this as a limit for the topology of convergence in measure; but
if you look at the proof you will see that the limit required is really an order-limit, and could have been
described in the context of an arbitrary Dedekind complete Boolean algebra 2, as in §612.

I hope that you will recognise 614J(i)<(ii) as an elaborate form of the classical result 224D concerning
real functions of bounded variation. The difference now is that I have set up a definition of an integral
| |dv|. We shall find that there are many reasons why Brownian motion is not locally of bounded variation.
But the fact is of such importance that in 614Yb I suggest a method of proof based on ideas already covered
in Volume 2.

It will transpire that often an indefinite integral inherits properties of the integrator. So far we have two
cases: an indefinite integral with respect to a simple process is simple (614D) and an indefinite integral of an
order-bounded process with respect to a process of bounded variation is again of bounded variation (614T).
In both cases the hypothesis has to include a clause ‘[ u dv is defined’ because we are far away from any
clear idea of which processes u can be expected to appear in applications.

In 614R you will see that a key step is an equality

Z;:ol Ur; X (Uﬂ:+1 — V) = *Z;:ol Vripq X (u‘r71+1 —Ur;) = Vry X Uy + VU, X Up,,
which is a manipulation which I expect you have seen before. But this is not a relationship between S;(u, dv)
and S (v, du), because the latter would have to look at Z?;OI Uz, X (Ur, ., —Ur,); the Riemann-sum integral of
8613 insists on taking tags at the left-hand ends of intervals rather than the right-hand ends. The difference
is of the form Z;L:_Ol (Vr,y — V7)) X (Ur,y, — Uur,), which will appear in §617 associated with the ‘covariation’
of 4 and v, and need not vanish in the limit.

This volume is devoted to the thesis that stochastic processes, at least in respect to stochastic integration,
are best regarded as abstract fully adapted processes in the sense of §612. But most of the ideas of the
theory were of course developed in the context of classical processes (X;);>o of real-valued functions on
probability spaces. I have therefore given a couple of results (612H, 614U and 614Xa(i)) showing that the
types of process I have introduced here correspond, in some sense, to natural conditions on sample paths
t — X;(w), as in 614Xd. You will see that all the non-trivial results are one-way; given a property of typical
sample paths, we can deduce a property of the corresponding abstract process. There are theorems in the
other direction (e.g., 633R below), but they need different techniques, starting with the Stone representation
of measure algebras (321J).
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Version of 28.10.21/9.8.22
615 Moderately oscillatory processes

I come now to the class of integrands in the basic theorem 616K, the ‘moderately oscillatory’ processes.
I have chosen a path which starts with a natural linear space topology on the space of order-bounded
processes, the ucp topology (615B). This gives a straightforward definition of the space of moderately
oscillatory processes (615E) with their elementary properties (615F-615H). When the domain is finitely full,
we have an alternative definition in terms of convergence along monotonic sequences of stopping times (615I-
615N). Classical stochastic processes with cadlag sample paths give rise to locally moderately oscillatory
processes (615P).

615A Notation (A, i, T, (A)ier, T, (A )rc7) will be a stochastic integration structure, as defined in the
notes to §613. For AC T andT € T, AAT = {oAT :0 € A} and AVT = {oV7T:0 € A}. Forw € L° = L°(2),
O(w) = E(Jw| A x1) as in 613Ba; limits in L% will be taken with respect to the topology of convergence in
measure. If S is a sublattice of T, Mg, (S) is the space of fully adapted processes with domain S (6121),
Mo b(S) € Mg, (S) is the space of order-bounded processes (614F) and My, (S) € M,1,(S) is the space of
processes of bounded variation (614Q). For an order-bounded process = (uq)ses, Sup || = sup,cg |to]|. 1
will be the process with constant value x1.

615B The ucp topology Let S be a sublattice of 7.

(a) For u € M,1,(S), set
0(u) = 0(sup |ul).

(b) § is an F-norm on Moy (S). PP The point is that
sup |u +v| < sup |u| +sup jv|, sup]|ou| = |a|sup |u]

for all u, v € My, = Myp,(S). Since 6 is an F-norm on LY, and (u) < 0(v) whenever |u| < |v], it follows
at once that

o~ ~ o~ ~ o~

O(u+v) <O(u)+0(v), Olau)<06(u)

whenever u, v € My, and |o| < 1, and that
lima_y0 0(ow) =0

~

for every u € M, p. Finally, if 0(u) = 0, then 6(u,) = 0 and u, = 0 for every 0 € S, sou =0. Q

(c) Accordingly 0 defines a metrizable linear space topology (2A5B). I will call this the ucp topology
on M,1,(S) and the associated uniformity the ucp uniformity on M, (S).

Warning! The phrase ‘ucp topology’ is commonly used to mean something closer to the local ucp
topology described in 615Xb.

615C Proposition Let S be a sublattice of T, and give M1, = My.1,(S) its ucp topology.
(a) If h : R — R is continuous, then hu € M.y, for every u € My, and u — hu : Moy, — My, is
continuous.
(b)) (w,v) = u xv: Moy, X My, = Moy, is continuous.
(i) u > sup |u| : My, — LY is uniformly continuous.
(¢) Mo, is complete as linear topological space.

proof (a) If S = () then M1, = {0} and the result is trivial. So let us suppose that S is non-empty.

(i) For z € R, set g(z) = sup{|h(y)| : |y| < |z|}; then g is continuous, and |h(v)| < g(w) whenever v,
w e LY and |v| < w.

(©) 2018 D. H. Fremlin
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Suppose that u = (u,),es belongs to Myp,. Set & = sup,cg[us|. Then |h(uy)| < g(a) for every o € S,
so {h(uy) : 0 € S} is order-bounded in L°, and hu € M,.y,.

(ii) Now take v = (Uo)oecs € Mop, and € > 0. Set T = sup,eg |vs|, and let M > 0 be such that
Ao > M] <e. Let § €]0,1] be such that |h(z) — h(y)| < € whenever y € [-M — 1, M + 1] and |z — y| < 4.
Then for any w, w’ € L,
[1A(w) = h(w')] > €] < [lw] > M] U [lw —w'| > 6].

~

Take any u € M, 1, such that (v —u) < de. Set 4 = sup,cg [vo — Us| and @ = sup,cg |h(vs) — h(us)|.
Then afa > 8] < e, so
[w > €] = sup [|h(vy) — hus)| > €]
oceS

C sup [|ve| > MJuU sup [Jve — ue| > 0] = [0 > M]u[a > ]
og€S o€S

has measure at most 2¢, and

O(hu — hv) = 0(w) < 3e.
As v and e are arbitrary, h : My, — M, is continuous.

(b)(i) As the ucp topology is a linear space topology, addition and subtraction are certainly continuous.
By (a), the operation u + u? is continuous. But this means that
(u,v) %((u +v)2 —u?—v?)=uxv
is continuous.
(il) If u = (uy)oes, ¥ = (Vs)oes belong to My, then
lte| < |vo| + |tte — V| < sup Jv| + sup |u — v| = sup |v| + sup |v — u|

for every o € S, sosup |u| < sup |[v|+sup |u—v|; similarly, sup [v| < sup |u|+sup |u—v| and |sup [v|—sup |u|| <
sup |u — v|. So

0(sup [u| — sup [v]) < O(sup [u —v]) = O(u — v).
As 6, 9 are F-norms defining the linear space topologies of LY and M,_1,, u + sup |u| is uniformly continuous.

(c) Again, if S = () this is trivial, so suppose otherwise. Let F be a filter on M,_1, which is Cauchy for
the ucp topology.
(i) For each o € S, define T, : M,;, — L° by saying that T,u = u, whenever u = (uy)oecs € My.p,; then
T, is linear, and it is also continuous, because 6(T,u) < @\(u) for every u € My p. T, is therefore uniformly
continuous for the uniformities associated with the linear space topologies here (3A4Cf4). Accordingly the
image filter 7,[[F]] (2A1Ib) is Cauchy (4A2Ji), and has a limit w, say in L°, because L° is complete as
linear topological space (613Bh).

(ii) w = (w,)oes is fully adapted. B Suppose that o, 7 € S and @ = o = 7]. Then T,uxxa = Trux xa
for every w € Mop. As u— u x xa : L® — L? is continuous,
we X xa = (lim Tou) x xa = lim (T,u x xa)
u—F u—F

= lim T u X xa = w; X xa,
u—F

and a C Jw, = w;]. As o and 7 are arbitrary, w is fully adapted. Q

(iii) w is order-bounded. I For n € N set ¢, = sup,cs [|ws| > n]. Given € > 0, there is a set A C F

~

such that O(u —v) < € for all u, v € A. Fix v € A, and set 0 = sup,cs |Tov|; let n € N be such that
afv > n] <e. Foru € My, set Uy = sup,cs|Tou — Tov|, so that

4Later editions only.
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o~

O(Ty) =0(u—v) <e

for u € A.
Let I be any finite subset of S. Then

SUP,ef [wo| =limy— 7 sup, e [To (u)|

because the lattice operations on L° are continuous (613Ba), so (Y»)ser + SupP,cs|Yo| is a continuous
function from (L°)! to L°. There is therefore a u € A such that 6(sup,¢; |we| — sup,e; |Toul) < € and

Alsup,er [wo| > n + 2] < fifsupye; [wo| — supye [Toul > 1]
+ fifsupyer [Tou — Tov| > 1] + fifsup,e; [Tov] > n]
< O(sup |wy| — sup | Tyu|) + aty > 1] + g > n]
oel oel

~

<e+0(Ty) +e=2+0(u—v) < 3e

As I is arbitrary, fic,+2 < 3¢. As € is arbitrary, inf,en ¢, = 0 and {w, : 0 € S} is order-bounded. Q

~

(iv) Thus w € M,.1,. Now, given € > 0, again take A € F such that O(u —v) < e for all w, v € A. Then
O(w —v) < e for allv € A. P For any finite I C S,

SUpger W — Tov| = limy— 7 sup,er [Tou — T,v|

and
O(sup |lwy — Tyv|) = lim O(sup |Tou — T,v|)
o€l u=F el
< sup g(u —v) <e
ucA
So
g(w —v) =0(sup |lwy — T,v|) = sup O(sup|w, — Tyv|)
oeS Ie[S]<w o€l

(613Ba)

<e Q

As € is arbitrary, w = lim F for the ucp topology. As F is arbitrary, M., is complete.

615D When we have a finitely full lattice, there is an alternative approach to the ucp topology.

Lemma Let S be a non-empty finitely full sublattice of T, and u = (u,)ses a fully adapted process.
(a) If v > 0 then

fi(sup,es [[ur| > 1) = sup,es aflur| > 7]
(b) If w is order-bounded, f(sup [u]) < 24/sup,cs 0(Uo).
proof (a) If v > 0 then

fsup [u] > 7] = sup, s illur| > .
P We have

Alsup [u| > ~] = ﬂ(sug [luo| > A1)
oeE

(364L(a-ii))

— sup ju(sup[us] >71) = sup ji(sup [lus| > 7).
Ig[S|<w o€l IeZ(S) o€l
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Take any a < fifsup [u| > ~]. Let I € Z(S) be such that fi(sup,¢; [|us| > 7]) > o; as S is non-empty, we
can arrange that I should be non-empty. Let (79,...,7,) be a maximal totally ordered subset of I. Then

lluo| >~] € supi<, [0 =7l O [lur| > 21 € sup;<,, [lur| > 9]
for every o € I (611Ke), so a < fi(sup;<,, [|ur,| > 7]).
For i < m, set a; = [|ur,| > 7] and b; = a; \ sup,, a;; set b’ = 1\ sup,<,, a;. Then a; and b; belong to
2., for every i <n, and ¥’ € A, . So there is a 7 € T such that

biCr=n]fori<n, VC[r=m)]

(611I), and 7 € S because S is finitely full. Now

[lur] > ~] 2 supb; N [|ur,| > ] =supb; = supa;

= sup [Jur, | > 7] = sup [|ue| > 7]
i< oel

and o < ff|ur| > v]. As « is arbitrary, this gives the result. Q

(b) Write a for sup, ¢ 0(|u-|). If v < 26(sup [u|) we must have ifsup|u| >~] > 7, so there is a 7 € S
such that jif|u,| > ~] > v, v2 < 0(Ju,|) < o and v < \/a. As v is arbitrary, 6(sup |u|) < 2y/a, as claimed.

Remark What this means is that the F-norm
U = Sup,cs 0(us) 1 Moy (S) — [0,1]

also defines the ucp topology on M, 1 (S), since of course sup,cs 0(uy) < g(u) For a general sublattice S,
we could use the isomorphism u — @ : My 1,(S) = My (S) and the F-norm

u = sup, s 0(iy) : Mop,(S) — [0, 1],

since

~

0(@) = O(sup [a|) = O(sup [u]) = O(u)
for every u € My, (S).

615E Definition Let S be a sublattice of T .

(a) T will call a process with domain S moderately oscillatory if it is in the closure of My, (S) in
Moy.1,(S) for the ucp topology.

(b) A process u with domain S is locally moderately oscillatory if u[S A 7 is moderately oscillatory
for every 7 € S.

Remark The definitions imply directly that (locally) moderately oscillatory processes are (locally) order-
bounded. Of course processes of bounded variation (e.g., simple processes, 614Q(a-iii), and in particular
constant processes) are moderately oscillatory, and processes which are locally of bounded variation are
locally moderately oscillatory.

615F Proposition Let S be a sublattice of 7, and S its covered envelope.

(a) Write My, = Mo (S) for the set of moderately oscillatory processes with domain S.

(i) If &’ is a sublattice of S then u[S’ is moderately oscillatory for every u € M.

(ii) If h : R — R is continuous, then hu € My, for every u € My,,.

(iii) Mo is an f-subalgebra of M1, = M1, (S).

(iv) My is closed in M,.,(S) for the ucp topology, so is complete for the ucp uniformity.

(v) If 7 € S, then a fully adapted process u with domain S is moderately oscillatory iff u[S A 7 and

u[S V T are both moderately oscillatory.

(vi) If w € My, then its fully adapted extension to S is moderately oscillatory.

(b) Write Mimo = Mimo(S) for the set of locally moderately oscillatory processes with domain S.
(1) Mmo c Mlmo
(ii) If h : R — R is continuous, then hu € M, for every u € Miy,.
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(iii) Mimo is an f-subalgebra of the space Mo, = Mioh(S) of locally order-bounded processes with
domain S.

(iv) If 7 € S, then a fully adapted process u with domain S is locally moderately oscillatory iff u[S AT
and u[S V 7 are both locally moderately oscillatory.

(v) If u € My, then its fully adapted extension 4 to Sis locally moderately oscillatory.

proof (a)(i) For any € > 0 there is a process v € M, (S) such that 6(sup|u —v]) < e. Now ulS’ is
order-bounded (614F (a-i)), v[S A7 is of bounded variation (614Lb) and sup ju|S’ —v[S’| < sup|(u—v)[S'|,
S0
O(sup [ulS' — 0] ') < Blsup |(u — ) [S']) < e
As e is arbitrary, u[S" € My (S').
(ii) (@) The point is that if M > 0 and € > 0, there is a Lipschitz function g : R — R such that
|h(z) — g(z)| < e whenever || < M. P h[[-M, M] is continuous, therefore uniformly continuous, and there

is an m > 1 such that |h(z) — h(y)| < 3e whenever —M <2 <y < M and y < z+ 2. Set ), = Mk/m for
—m < k < m, and define g by saying that

g(z) =h(—M) if x < —M,

M) itz > M,
((z = zp)h(@es1) + (Trt1 — 2)h(2k))
if —m<k<m—1and 2 <z < xpyq.

Then g is Lipschitz and

|h(z) — g(x)| < |h(z) = h(zk)| + |g(x) — h(zk)]
< |h(z) = h(zp)| + |h(zk1) — h(ag)| < e

whenever —m < k <m —1 and a <z < xp41. So |h(x) — g(z)| < € whenever |z| < M. Q

(B) Now h is Borel measurable and bounded on bounded subsets of R, so hu is order-bounded
(614F(c-i)). Take € > 0. Set n = min(l, §). Then there is an M > 0 such that ffsup|u| > M] <
n. By (a), there is a Lipschitz function g : R — R such that |h(z) — g(z)| < 7 whenever [z| < M.
Expressing u as (uq)ses and setting a = [sup |[u| < M], a € [|h(us) — g(us)| < nx1] for every o € S, so
a C [sup |hu — gu| < nx1]. But this means that

O(sup [hu — gul) <n+ @1\ a) < 21,

Let v > 1 be such that g is y-Lipschitz. Because u is moderately oscillatory, there is a process v = (Vs )ses
such that O(sup [u — v|) < n?/v, so that ji[sup |u —v| > 2] < m. Setting b = [sup [u —v| < 2], we have
|5(us) — g(ve)| < ¥|ue — vy| for every o € S, so sup |gu — gv| < ysup|u —v|, b C [sup|gu — gv| < n] and

O(sup|gu — gol) <n+a(1\b) < 2n,  O(sup|hu — gv|) <4y <e.
And we know from 614Q(a-i) that gu is of bounded variation. As ¢ is arbitrary, hu is moderately oscillatory,
(iii) As My, = My, (S) is an f-subalgebra of M, (614Q(a-ii)) and the operations (u,v) — u + v,
(,u) — ow, (u,v) — u x v and u — |u| are continuous for the ucp topology on M, (615Ca, 615Ch),
Mo = My, must be closed under these operations, that is, is an f-subalgebra of M,_y,.

(iv) My, is defined as the closure of M, (S), so is surely closed. Being a closed subspace of the
complete linear topological space M., (615Cc), My, is complete (3A4Fd5).

(v) Write 8’ for SAT and §” for SV 7. If u is moderately oscillatory, so are u’ = u|S’ and v” = u|S”,
by (i) above. If u’ and u” are moderately oscillatory, take any € > 0. Then there are processes v/ = (V) )ycs/
and v” = (v)),es, both of bounded variation, such that 6(sup [v’ — «/|) and O(sup v’/ — w”|) are both at

most 5. Define v = (vs),cs by saying that
5Later editions only.
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Ve = U pr X Xl < 7]+ (hr — 0 +01) x X7 < o]

for 0 € S. Using 611E, 611Hc and 612C, it is easy to check that v is fully adapted, while v[S’ = v’ and
v[S8" =v" + (v; — v?)1 are both of bounded variation, so v € My, (614Lc). Now
[ug — V5| = Juy — v | <supfp’ —u'|if c € SAT,
< |ug — VI + |02 — ur| + |ur — 0| <sup v’ —u'| +2sup " —u"|if 0 € S,
and
SUPyesus [Ue — Vo| < sup v’ —u'| 4+ 2sup " —u”|.
As 8" US” covers S (611M(b-iv)),

O(sup|lu —v|) =0( sup |u, —vs,]|)
0e8'US"

(614Ga)
< O(sup [v" —u'|) + 20(sup v’ —u"']) <e.

As € is arbitrary, u is moderately oscillatory.

(vi) For u € M, (S), let w be its fully adapted extension to S. Then u +— 4 : M. (S) — Mfa(S) is

linear, while @ € M, ,(S) and sup |a| = sup |u| for every u € M,1, (614Ga); so u — @ : Moy, — Mo (S) is
continuous for the ucp topologies. Also & € My, (S) for every u € My, (614Q(a-iv)), so if u € My, = My

then @ € Myy(S) = Mumo(S).
(b) (i) Immediate from (a-i).
(ii) follows from (a-ii) because (hu)[S AT = h(u[S A T).

(iii) Similarly, restriction respects the algebraic and lattice operations on M, (S), so we czn use (a-iii).

(iv) (@) If u is locally moderately oscillatory, then u[S A 7 is moderately oscillatory, therefore locally
moderately oscillatory. Also, if 7/ € SV T,

WSV SEVT)AT =wlSAT(SAT)VT
is moderately oscillatory, so u[(S V 7) is locally moderately oscillatory.

(B) Suppose that u[S A7 and u[S V 7 are locally moderately oscillatory. Take any 7/ € SV 7. Then
WISATN(SEATIYAT=W[SAT(SAT)AT and WSV T)[(SAT)VT=@ISVTI(SVT)AT are
moderately oscillatory, so u[S A 7’ is moderately oscillatory.

In general, if 7 is an arbitrary member of S,

ulSAT =@ SAT' VNI SAFT V) AT
is moderately oscillatory, so u is locally moderately oscillatory.
(v) Take any 7* € S and € € ]0,1]. Then @[S A 7 is order-bounded (614Gb) and there is a finite
I C 8 such that ji(sup,¢; [T* =0]) > 1 — J¢; setting o = sup/, fifo* <7°] < 4e. As S Ao* is the
covered envelope of S A o* (611M(e-i)), (a-vi) tells us that @[S A o* is moderately oscillatory, and there is

a process v = (V7). g, Of bounded variation such that 6(i) < e, where @ = sup [v — @S A o*|. Setting

V= (Vrpo+) g O 18 fully adapted (612Ib), 9]S A o* = v is of bounded variation, and ]S V o* is constant;
50 is of bounded variation (614Lc). Now if 7 € S A 7*
[7* <o*] c[r <o*]
c [or = v n[la; — o7 < 4]
SO

[7* < o*] C [sup o —a]S A %] < 4]
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and
O(sup [o — ]S A T*]) < 0(a) + a(1\ [r+ < 0*] < e

As € is arbitrary, @]S A 7 is moderately oscillatory; as 7* is arbitrary, @ is locally moderately oscillatory.

615G Theorem Let S be a sublattice of T and u = (u,),es a fully adapted process.
(a) Suppose that u is moderately oscillatory and A C S is non-empty and upwards-directed. Then
w = limy44 U, is defined. Setting A, ={p:p €S, sup, e [p < o] =1},
limgy14 SUP e 4, vo |4y — w| = 0.
(b) Suppose that u is locally moderately oscillatory and A C S is non-empty and downwards-directed.
Then w = lim,| 4 u, is defined. Setting A* ={p:p € S, sup,c4 [0 < p] =1},

limg 4 SUP e g« po [Up — w| = 0.

proof (a)(i) To begin with, consider the case in which u is non-negative, non-decreasing and order-bounded.
In this case, B = {u, : 0 € A} C (L°)* is upwards-directed and bounded above, so has a supremum w in
L and

w = limypx = limepa Us

(613Ba). If c e Aand p€ A, Vo, us <u,sow—u, <w—u, and

l=sup [p<o]= sup [p<o]
o’€A oc<o’€A

(because A is upwards-directed)

= sup [p=0"Ap]C sup [u, = usnp]
o<o’'€A o<o’€A

c sup [u, <uer] Cu, <w] Clw—u, <w—uy]
o<o’€A

and Sup e 4. vo [Up —w| < wW—uy; as 0 € A, Vo, we have equality. So limgta Sup,e 4.y = limgea w—u, = 0.

(ii) Now suppose that u is of bounded variation. Then it can be expressed as v’ — u” where u’' =

(ul)oes and u’ = (ul))scs are non-negative, non-decreasing and order-bounded. Using (i), we see that

w' = limgyq44 ul, and w” = lim,q4 ul) are defined, so that w = w’ — w” is limy44 u, and

SUPpe A, v [Up = W] < 8UP,e v (U —w'[ + |ug —w")),

O(suppea,vo [ty = wl) < O(sUP,ca,vo ), — w'[) +0(sup,ea, vo lup —w”[) =0
as o T A.

(iii) Now suppose just that u is moderately oscillatory.

(@) w = limgy4a U, is defined, P Given € > 0, there is a process v = (v,)ses of bounded variation
such that 6(@) < fe where % = sup [u —v|. There is a 0 € A such that 6(v; —v,) < 2€ whenever 0 < 7 € 4;
now 0(u,; — u,) < € whenever o <7 € A, As L is complete, limy14 u, is defined. Q

(B) Now take any e > 0 and a process v = (Uy)qes of bounded variation such that 6(@) < e where

@ = sup |u — v|. We know from (ii) that w’ = lim,14 v, is defined and that limye4 sup e 4, vy [v, — w'| = 0.
Now

|lw — w'| = limypa [ue — vs| < suplu—v],

and if o € A then

sup |u, —w| < sup  fu, —vp| + [v, — w'| + Jw' —w
pEANO pEANO
<2suplu—v|+ sup |v, —w']
pEANO
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SO

limsup6( sup |u, — w|) < 26(sup |u —v|) + limsupf( sup |v, — w'|)
oTA pEANO oTA pEANo

<e.

As e is arbitrary, limg1a 0(Sup e 4, vo [ty — w|) = 0.

(b)(i) If u is actually moderately oscillatory, we can follow the same argument, inverted at the right
points; for instance, the key sentence in (a-i) becomes
IfoeAand pe A* Ao, u, < up sou, —w < Uy —w and

l=sup o' <p]= sup [o' <]
o’'€A o’'€A,0' <o
= sup [p=0'Vplc sup [u,=uev]
o'€A,0' <o o’'€A,0' <o

C sup e <upl € [w < upl € [y —w] < up — w]
o'€A,0'<o

and sup e 4« pp [Up — w| < uy —w; as 0 € A* Ao, we have equality.

(ii) For the general case, in which u is just locally moderately oscillatory, we can take any 7 € A and
apply (i) here tou[AAT and {o:0€ A, 0 < 7}.

615H Corollary Let S be a non-empty sublattice of T, S its covered envelope, 4 = (u,)secs a locally
moderately oscillatory process, and & = (i), ¢ its fully adapted extension to S. Then u and 4 have
starting values, which are the same.

proof (a) By 615F (b-v), @ is locally moderately oscillatory. So 615GDb tells us that
w = limgigm Uy = limgig Uy
is defined and is the starting value of u.

(b) To see that w is also the starting value of u, take any ¢ > 0. Then there is a 7 € S such that
0(iy — w) < € whenever 0 € S A7. Next, fi(sup,cs [T = o]) = 1, so there is a non-empty finite set 7 C S
such that fi(sup,c; [T =0]) > 1 —€and ]t <minl] <e. Now if 0 € S and 0 < minI, O(tiorr —w) < €
but

[tonr # o] C [T < o] C [T < minI]
has measure at most €, so 0(ly — tiynr) < € and
O(uy —w) = 6(t, — w) < 2e.
As € is arbitrary, w is also the starting value of u.
6151 Definition Let S be a sublattice of 7 and u = (uy),es a fully adapted process. I will say that u
is l-convergent if

(1) limy,—eo ttg, is defined whenever (o,)nen is a sequence in S which is either non-

increasing or non-decreasing.

615J Lemma Let S be a sublattice of 7 and u = (u,),cs a moderately oscillatory process. Then u is
|l-convergent.

proof 615G.

615K Lemma Let S be a finitely full sublattice of 7 and u = (uy),es an |-convergent process. Then

u is order-bounded.
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proof I will work towards the contrapositive, that is, assuming that u is not order-bounded I will show
that it is not |-convergent.

(a) To begin with (down to the end of (d) below) I will take it that u, > 0 for every o € S. A couple of
preliminary remarks will be useful.

(i) For any a € R, {[us > o] : ¢ € S} is upwards-directed. ¥ (This is where we need to know
that S is finitely full.) Given o, 7 € S, set b = Jusar > ], take p € S such that b C [p =0 A7T] and
1\b C [p=o0c V7] (6111 again); then

[up > a] =bu ([ugvr > a]\b) = [ugar > a] U [ueyr >
O([e <7]lnfus >a])u ([t <o]nfus > a]) = [us > a],
and similarly [u, > a] 2 [u- > a]. Q

(ii) Foranya € Randbe 2, {oc:0 € S,b C Jus, < o]} isasublatticeof S. P Ifo, 7€ S, b C Ju, < @]
and b C Ju, < af, then

[tovs < ol = (o < 7 [ur < al) U (I < o] N uy < a]) 2b
and

[uorr <a] = (o < 7] nus <a))u([r <o]nfu, <a])2b. Q

(iii) Similarly, {o:0 € S, b C [u, > o]} is a sublattice of S for any o € R and b € 2.

(b) We are supposing that u is not order-bounded, so S is surely not empty, and {u, : o € S} has no
upper bound in L°(A). By 364L(a-i), a = inf,ensup,cg [us > n] is non-zero. If n € N and € > 0, there
must be a finite set K C S such that f(sup,cx [ue > n]) > fia — €; by (a-i) above, there is a single o € S
such that fiJu, > n] > fia — e. We can therefore choose (M, )nen, (0n)nen inductively such that

mo = 07
on €8, jifus, >my+1] > (1 —27""%)a,

Mt > s Yo i, > mas]) < 27"
Set

b=inf,en [te, > My + 1]\ sup; ey [to; > Mn]
so that ib > 1fia > 0 and b C [u,, < m,] N [us, > m, + 1] whenever i <n < j. By (a-ii) and (a-iii),

b C [us < my]nur > my +1]
whenever o is in the lattice generated by {o; : ¢ <n} and 7 is in the lattice generated by {o; : j > n}.
(c) case 1 Suppose that there are k € N and € > 0 such that for every | > k
f(bn sup;s, [oj > sup, <, 0i]) > e
Then we can choose inductively a strictly increasing sequence (k;) ey in N such that kg = k + 1 and
(b supy, <j<k,,, [0 > suppcicy, 03]) > €

! X _ . ..
for every r. For each r, set 7, = supy, i<y, 05 and 7, = Sup,.;<y, 0, for each i; then we always have
Tr41 =T V7’1, 80

[rr1 =71 207 > 7] 2 supy, <j<n, ., loj > 7]

and i(bn 141 =7.]) > €.
On the other hand,

b [ur, <mi]nlur >my, +1] € [ury —ur, > 1]
So

D.H.FREMLIN



96 The Riemann-sum integral 615K

9(“n+1 —Ur,) > ﬂﬂu7r+1 —ur, > 1] > ﬁ([[uq-; —u;, >1]n [[7—7’+1 =]
> b a1 =71]) > e
for every r, and (ur,)ren is not convergent, while (7,),cy is a non-decreasing sequence in S. So in this case
u is not moderately oscillatory.
(d) case 2 Suppose that for every k € N and € > 0 there is an [ > k such that
f(bnsup;s, [oj > sup, <, 0i]) < e
Then we can choose a strictly increasing sequence (k..),en such that
ﬂ(bm Supj>kr+1 IIUJ > Supkr<i§kr+1 0-71]]) S 2_r_1lj‘b

for each r. Set 7, = supy, <y, ,, oi for each r; then a(bn[r/,, > 7/]) < 2777 'fb for each r, and ¢ =
b\ sup,cy [7)41 > 7] is non-zero. Now ¢ C 7], < 7] for every r, so if we set 7. = inf;<, 7/, we shall have
¢ C [r = 7/] for every r. P Induce on r; for the inductive step to r + 1 we have

cnlnp=nul=cnlnAri=rnal=cnln, <nl=cnlr, <7]
(by the inductive hypothesis)
=c. Q

On the other hand,

b < [urr > mp, 1] 0 fur <mg,,,]

for each r, so
¢ C [ury <my, I0fur,, = mpg, ] € ur,, —ug > 1]
consequently ¢ C [ur, ., > 1] and O(u,, _,, —u, ) > fic for every r, while (7,.),¢n is non-increasing. So in
this case also u is not moderately oscillatory.
(e) Since case 1 and case 2 are exhaustive, this deals with the case in which u, > 0 for every o. If u is
not necessarily positive. then |u| is not order-bounded, so cannot be ]-convergent, and there is a monotonic

sequence in S such that lim, . |u,, | is undefined. But | | : LO(2) — L°(2A) is continuous (613Ba), so
lim,, o0 Uy, must be undefined, and u also is not ||-convergent.

615L Lemma Let S be a non-empty finitely full sublattice of 7 and 4 = (uy)ses an l-convergent
process. Suppose that A C S is non-empty and downwards-directed. Then w = lim, 4 u, is defined.
Setting A* ={p:p €S, sup,e4 [0 < p] =1},
limgy | 4 SUP,c 4+ pp |1y — W] = 0.
proof (a) Note first that A* is finitely full. I Suppose that 7 € T and that {7} is covered by a finite
subset of A*. Take any a € 2\ {0}. As S is finitely full, 7 € S. There are p € A* and o € A such that

b=an|[r=p] and c=bn[p < o] are non-zero. Now 0 # ¢ C an [r < o]. As a is arbitrary, 7 € A*; as 7 is
arbitrary, A* is finitely full. Q

(b) In particular, A* is closed under A. Consequently w = lim, 4+ u, is defined. P? Otherwise, there
is an € > 0 such that for every o € A* there is a 7 € A* A ¢ such that 6(u, — u,) > €. Now we can choose a
sequence {0,)nen in A* such that

On+1 < On, 9(u0n+1 - uUn) > €
for every n € N, and (0, )nen is a monotonic sequence in S C S such that (liy, Ynen is not convergent. XQ
(c) limy) A SUp e pvpy O(up —w) = 0. P Let € > 0. Then there is a 7/ € A such that 0(u, — w) < €

whenever p € A* V 7/, Next, sup,c 4 [0 < 7] =1 and A is downwards-directed, so there is a g € A such
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that fifog < 7] > 1—e. If we now take o € A and p € A* such that p < o < gg, we see that §(u,r, —w) <€
and
0(up — urrnp) < Bl < p) < Al < o] < 6,
50 O(u, —w) <26 Q
Of course it follows that lim, |4 sup e 4 ,<, 0(u, —w) =0, and w = lim, | 4 u,.
(d) In fact limy |4 0(SUp,c a+pp |up — w|) = 0. P Again take € > 0. By (iii), there is a o € A such that

O(u, —w) < min(%e, 1—1662) for every p € A* Ao. Set v, = u, — u, for p € A* Ao, so that

v = (Up)peano = (U —u,1)[A" Ao

is a fully adapted process on the finitely full sublattice A* V o and 0(v,) < %62 for every p € A* V o. Also
u is order-bounded (615K), so v also is. By 615Db, f(sup [v]) < 3e. Now
SUPpea*veo lup —w| < SUPpeA*veo lup — tug| + |ty — w| = sup jv| + |uy —w),
S0
O(sup e g+ o [y — w|) < O(sup [v]) + O(us — w) < %e + %e =g,

and this is true whenever o € A and o > 0g. Q

615M Construction Let S be a finitely full sublattice of 7 with a greatest member, u = (uy),es an
Jl-convergent process, and 6 > 0. Then there are sequences (D;)ien, (Yi)ien, (di)ien, a family (¢io)ien ses

and a process 4 = (i, )ses With the following properties.
a) Dy =S8, for every i € N, maxS € D; C S, D; is closed under A, y; = lim, | p,. u, and
y Y 1D;

Diy1={o:0€S8, o <maxS8] C [|us — y:i| > I]
and there is a ¢’ € D; such that ¢’ < o}.

(b) yi € Nyep, L (As) for every i € N.
(¢)(i) For every i € N,
d; = sup,ep, [0 < max S,
di € ﬂo’EDi Qla"
diy1 C d;,
div1 C [lyiv1 — vil > 6],
1\ d; C [yi = Umaxs] N [yi = yis1].-
(11) infieN dz =0.
(d)(i) f c e Sand i € N,
Cioc =Sup,ep, [T < 0], cit1,0 CCio, [0 =maxS] C ¢y C [0 =maxSJud;.
(ii) If i € N and o € D; then ¢;, = 1; in particular, ¢y, = 1 for every o € S.
(iii) If o, 0’ in S then [o < '] n¢iy C cipr for every ¢ € N.
(iv) infsen ¢ip = [0 = max S] for every o € S.
(v) If 0 € S and ¢ € N then ¢, \ ¢it1,0 C [Jue — yil < 9]
(e) If o € S then

Cio \ Ci+1,0 C [Uo = Uil

for every i € N, and [o = maxS] C [o = Umaxs]-
(f) @ is fully adapted, sup |&| < sup |u| and sup |u — @| < Jx1.
(g) u is of bounded variation.

proof (a) We start the induction with Dy = §. The inductive hypothesis we need is just that D; is non-
empty and closed under A. Given this, y; = lim,|p, u, is defined (615L). Looking at the formula for D; 14
we see at once that maxS € D; ;. If o, 7 € D; 41, then
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[o AT <maxS] = (Jo < 7]n]o < maxS]) u ([r < o] n[r < maxS])

(lo < 7lnflue —wil 2 0]) v (I < ol n [lur —wil = 6])

([e < 7In(luonr —vil = 8D v ([r < ol nluonr — il > d])
< [[uonr —yil > 6;

N

N

at the same time, there are ¢/, 7/ € D; such that ¢/ < o and 7/ < 7, so that o’ A7 € D; and o’ AT < o AT.
Thus o A7 € D;y1; as 0 and 7 are arbitrary, D, is closed under A and the induction proceeds.

(b) For every i € N, 613Bj tells us that y; € Lo(ﬂgeDi Ay ).
(c)(i)(e) Define d; as the supremum sup,.p. [0 < maxS] for each 4. Since D; is closed under A,
di = SUp,ep,po [T < maxS] € Ay
for every o € D;, and d; € ,cp, Ao

(B) Forany i € Nand o € D; 1, thereisa o’ € D; such that ¢/ < o, in which case [o < maxS] C [/ < maxS] C d,
taking the supremum over such o, d;11 C d;.

(7) Whenever 7 < ¢ in D;41,
[o < max8] € [r < maxS] C [lur — yi| > 6].
So
[0 <maxS] € infrep,,, r<o [lur =il 2 0] € [|yis1 —uil = 4]
for every o € D;11; taking the supremum, d; 11 C [|yi+1 — vi| > 4]
(6) For any ¢ € D;,
1\d; C [o = max 8] C [uy = Umaxs],
so 1\ d; C [yi = tmaxs]- Now we also have
1\d; €1\ diy1 C [Yit1 = Umaxs],
so 1\ d; C [yi = yitl].
(ii) For ¢ € N, write D} = J

vep, SV o;now for o € D;, set

Ajg = infTED;‘,TSU [Hu‘r - yz| < %6]]
Of course a;, C a;, whenever o < ¢’ in D;, because a;,- is the infimum of a larger set. Also SUP, /¢ p, Gio' = 1.
P Given n > 0, there is a 0 € D; such that 6(sup,cp-po [ur — ¥i]) < 3nmin(6,1) (615L again). So
b= [sup,epspo lur — il > 6] has measure at most 7. But [|ur — y;| < £6]ub = 1 whenever 7 € D} and
7 < 0,80 aj; 2b. Thus sup,/¢p. a;o» has measure at least 1 —n; as ) is arbitrary, sup,/¢p. aicr = 1. Q
? If d = inf,;¢cn d; is non-zero, choose o; € D;, for each i € N, such that

i(d; \ (aio, N Jo; < max8])) < 272jid.
(Any element far enough down D; will serve.) Then
a = infen [o; < maxS] N ajq,

has measure at least %/jd and is non-zero. For each ¢ € N, 0; A 0,41 € D] (because there is some member
of D; less than or equal to o;41) and

anfoiyr < 03] € [oip1 < maxS] N [ug,; = Uoing,is ]
N [tosnoin = yil < 3010 [1Yig1 — vil > 0]
— il < 56] and [oi11 < maxS] € [lyir1 — il > 3])
< [luossy — il < 30) 0 [[uoiyy = yita] < 5010 [[yiv1 — wil > 6] = 0.

(because ais, C [|Uo;ncis

MEASURE THEORY



615M Moderately oscillatory processes 99

Set p; = sup;; 0; for each i € N. Then
a C infjcifo; <oji] € [oi = pi] € [up, = uo,]
for every i € N. But we also have
a C [luo, — yil < 36] 0 [lyiv1 — wil > 4]

for each i, so a C [Juy,,, —up,| > 3] for each i and lim;_,o u,, is not defined. X
Thus infieN dz =0.

(d) (i) As every member of D, dominates a member of D;, ¢;41.6 C ¢ip. AsmaxS € D;, [o = maxS] C ¢
If € Dy,

[t <o] ([t =maxS]|n[r <o) u[r < maxS] C [o = maxS] ud;;
taking the supremum over 7, ¢;, C [0 = maxSJud;.
(ii) If 0 € D; then ¢;o Do < o] =1. As Dy =S8, coo =1 for every o € S.
(iii)
[o <o'[ncic =sup,ep, [0 <o'[n]r <o] C sup,ep, [T <0'] = cior.
(iv) By (i),
[oc = maxS] C infiencip C o = maxS] U inf;end; = o = max S|
by (c-iii).
(v) Suppose that 7 € D;. Then
b=lus —yil > 0] n[r <o]n]o < maxS]
belongs to 2,, because y; x x[r < o] € A, as observed in (i) above. We therefore have a 7/ € T such that
bc[r'=0], 1\bc[r=maxS]
and 7/ € S because S is finitely full. Now
be[r'=o]n[r<oa]cr<7], bC[r=maxS|n]r <maxS] C[r <7]

so 7 < 7'; and

[r' < maxS] € b < [ = o]0 [l — 53] 2 6] € [luwr — ] 2 0]
so 7' € D;;1. But this means that
Cit1,0 27 < o] 2b=[luc —yi| > 0] n[r < o]n[o < maxS].
As 7 is arbitrary,
Cit1,0 2 [|ue — yil > 0] Nncip o < maxS]

and

Cio \ Ci+1,0 C Cio N0 < maxS)\ ¢it1.0

c [[lu(r _yi‘ < 6]]0[[110 = yi]] c [Huo _aa‘ < 6]

(e) Since (Cio \ Ci+1,0)ien is disjoint with supremum 1\ [ = maxS] ((d-iv) above), the formula here
defines a member 1, of LO(2).

(f)(i) Take 0 € S. Then [r < o] € A, for every 7 € S, s0 ¢;r € U, for every i € N; also, of course,
[o = maxS] € A,. Next, y; € LO(A,) for every 7 € D;, so y; x x[r < o] € LO(,,) for every 7 € D, (612C)
and y; X x¢i, = lim; | p, y; X x[r < o] belongs to L°(2,) for every i € N. Finally, umaxs X x[o = maxS] €
LO(Ay). So iy € LO(A,).

(ii) Suppose that o, ¢/ € S and b = o =¢’']. Then bn[r <o] = bn[r <] for every 7 € S
c-iv-ar)) 80 bn¢cip = b ¢y for every i € N and bn o = max S| = an [0’ = maxS]. Accordingly
611E(c-i b b f ;€ Nand b S ! S]. Accordingl
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b0 (Cio \ Cit1,0) € [to = gl N[ = ] C [t = o]
for every i € N, and
bn o =maxS] C [te = tUmaxs] N [tor = Umaxs] C [t = Uo]-
So b C [ty = o). Thus @ is fully adapted.
(iii) From (d-v) we see that
Cio \ Cit10 C [[to —vil < 8] [t =il € [lue — 0| < 0]
for each 7. At the top end, we surely have
[o = maxS] C [ue = tUmaxs] N [Ue = Umaxs] C [[te — U] < 0.
Once again, these parts assemble into
[lue — g < 6] =1
and |u, — tUy| < dx1. As o is arbitrary, sup |u — u| < dx1.
(iv) Writing @ for sup |u|, we have
lys| = |limyy p, Us| = limg | p, |us| < @

for every i € N. Soif o € S,

[lto| < 4] 2 [te = Umaxs] U sup [ty = y;] 2 [o = max S| U sup(cio \ Cit1,0)
i€N €N

(by (e))

2 (zlglg Cia') u (COU \ ;glg Cia)

(by (d-iv))
=1

by (d-ii). As o is arbitrary, sup |g| < 4.

(g)(i) For n € N set x,, = Z;:Ol [Yit1 — ¥il + Sup;cp [Umaxs — ¥i|, and write z for z¢ x x(1\dp) V
SUP, ey Tnt1 X X(dn \ dny1); this is defined because (d,)nen is non-increasing (c-i), so (dp \ dnt1)nen is
disjoint. Take o¢ < ... < o, in S such that o, = maxS.

(ii) Let n € N. Then
[1\d.] c [[Z;n:_ol |affj+1 - aaj‘ <]
P Let B be the (finite) subalgebra of 2 generated by
{cio, 1i <, j<m}pU{[o; <oja] 1 j <mpU{dy},
and b an atom of B disjoint from d,,. For j < m either
bc Jo; =maxS] C [iy; = T, ]

or there is just one i < n such that b C Cio; \ Cit1,0;- So if we set

K={j:j<m,bnli,, # o, ,]#0}
={j:ji<m bnlo; <ojp] #0} ={j:j<m,bc[o; <o}
there is for each j € K an ¢; < n such that
b < cijo;\Cijr1,0; € o, = yi,]
and we must have i; < i, whenever j, k € K and j < k. For j € K let j' be the next member of K U {m}
above j; then i, > i; for every j € K \ {max K}, so
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m—1
iy, — Ty | X X =Y i, — o, | X Xb="D iy, — o, | X xb
j=0 jEK JjEK
< Z |yi]~/ - yij| + |umax8 - yimaxK| < Zp.
jeEK\{max K}

As b is arbitrary, we have the result. Q

(iii) Writing w for Z;n;()l |t 41 — @;], we have

w=wx x(1\do) Vsupw x x(dn \ dn+1)
neN

(because (dy,)nen is non-increasing and inf, ey d,, = 0, by 615Mc)
<z x x(1\dp) V sugxn_‘_l X x(dp \dpt1) =2
ne

As og, ... ,0p, are arbitrary, @ is of bounded variation.

615N Theorem Let S be a finitely full sublattice of T, and u = (uy)scs a fully adapted process. Then
the following are equiveridical:

(i) w is moderately oscillatory;

(ii) w is Y-convergent;

(iil) (4o, )nen is Cauchy for every monotonic sequence (op,)nen in S;

(iv) for every € > 0 there is an m > 1 such that whenever gg < ... < oy, in S there is a j < m such that
O(to; — Ug,,,) < €

€

proof (i)=-(iv) Suppose that u is moderately oscillatory. Take € > 0 and set n = <. Let v = (v, )ses be a
process of bounded variation such that 6(sup [u —v|) < 7. Write o for [ |dv], and let v > 0 be such that
(o> ) <n. Set m = [v/n]. oo <...<ominS, then S0 vy, — vo,| <7 (614]). If b =[5 < 4],

—1
ZZO ]E(|vffi+1 — Vo,

x xb) <~ so there is a j < m such that

= E(|UU]‘+1 - ’UUJ‘| X Xb) > 0(|Uffj+1 - vUj| X Xb)

3=

Now

9(‘u0'j+1 - U‘Uj|) < 9(|UUJ'+1 — Vo, |) + 29(Sup |u - Ul)

0(|vo,1 — Vo, X Xb) + E(L\D) + 20 < L 43y < dn=e.

As € is arbitrary, (ii) is true.

(iv)=-(iii) Suppose that (iv) is true. If (7,)nen is a sequence in S such that (u,, )nen is not Cauchy,
there are an € > 0 and a strictly increasing sequence (ng)ren in N such that 0(7,,,, — 7,,) > € for every
k € N. By (iv), we have an m > 1 such that whenever oy < ... < g, in S there is a j < m such that
0(ty; — Ug,,,) < €. So we cannot have either 7,, < ... < 7, or 7, < ...< 7, and (T,)nen is not
monotonic. Turning this round, (u,, )nen is convergent whenever (o, ),cn iS & monotonic sequence in S,
and u is ||-convergent.

(iii)=-(ii) because L is a complete linear topological space.

(ii)=(i) () To begin with, suppose that S has a greatest member. Then 615M tells us that for every
d > 0 there is a process @ such that sup ju — @] < dx1, while @ is of bounded variation (615Mg). So u is
moderately oscillatory.

(B) In general, the result is trivial if S is empty, so suppose otherwise. Given € > 0, there is a
7 € 8§ such that O(u, — u,) < € for every 0 € SV 7. P? Otherwise, starting from any 75 € S, we can
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choose a non-decreasing sequence (7,)nen in S such that 6(ur,., —ur,) > € for every n € N, in which case
(tr, Ynen cannot be convergent. XQ Now consider ©’' = (uynr)ses. This is fully adapted (612Ib). Since u
is order-bounded (615K), so are 4’ and u —u/, while &'[S AT = u[S AT is |-convergent therefore moderately
oscillatory, by («) just above, and u'|S V 7 is constant, so also moderately oscillatory. By 615F(a-v), u’ is
moderately oscillatory. Now the choice of 7 ensures that

Oty — Ugnr) = O(tugyr — tr)
(612D (1))
<e

for every o € S, As S is finitely full, f(sup |u — u'|) < 24/e (615Db). But v’ € Mp,(S) and e was arbtirary,
so u belongs to the closure of M;,,(S) for the ucp topology on M,1,(S), and is itself moderately oscillatory
(615F (a-iv)).

6150 Proposition Suppose that S is a sublattice of T, u € My,,(S) and € > 0. Then there is a
u' € Myy(S) such that §(sup |u’ —u|) < e and sup [u'| < sup |u|.
proof (a) If S is full and has a greatest member, this follows immediately from 615M. We know that u
is |l-convergent; taking 0 = € in 615M, we get a process @ of bounded variation which will serve for ', by

615Mf and 615Mg.

(b) If we just know that S has a greatest member, consider the fully adapted extension @ of u to
the covered envelope S of S. By 615F (a-vi), w is moderately oscillatory; by (a) here, there is a process
@ € Mpy(S) such that f(sup &' — @|) < e and sup [&'| < sup |a&|; now w' = @S is of bounded variation
(614L(b-1)), sup |u’ —u| < sup |[@" — @] so O(sup [u’ —u|) < O(sup |&' —4|) < ¢ and

sup [u'| < sup [@'| < sup [&| = sup [u|
by 614Ga.

(c) For the general case, if S is empty the result is trivial. Otherwise, express u as (us)secs. By
615Ga, uy = limytsu, is defined, and there is a 7 € S such that 0(sup,cgsy, [uo — ut|) < 6 now
0(supyesyr U — ur|) < Le. Of course ulS A 7 is moderately oscillatory (615F(a-i)); by (b), we have a
process v = (Ug)sesar of bounded variation such that 6(sup,csa, [Vo —uo|) < € and sup [v| < sup [u]SAT.
It follows that O(sup,csy, [us — v-| < 3e.

Write &’ for (SAT)U (S V 7). Since 0 < ¢/ whenever 0 € SA7T and 0/ € SV 7, § is a sublattice of S.

If o € S, then
[co=cn7]ulo=cVr]2[oc <7]ur<o]=1,

so &' covers S. Because (SAT)N(SV 1) = {7}, we have a family (u]),es' defined by setting u) = v, for
ceSATandu, =v, forc e SVr. foeSATand o’ € SV T, then o <7 <0’ so

[o=0l=lo=7lnlr =0 clu; = wou] 0 ur = ui];

now it is easy to check that (u]),cs/ is fully adapted, and therefore has a unique fully adapted extension
u = (ul)yes (612R).
Now u/[|S A 7 = v is of bounded variation, '[S V 7 is constant, and

sup [u' —u| = sup |u, — u,|
oeS’

(614Ga)

= sup |V, —Us|V sup |u, — vl
TESNAT oESVT

Accordingly u’ is of bounded variation (614Lc), 6(sup [u' —u|) < 2€+ 1e¢ =¢, and
sup [u'| = sup [v] < sup [ul,

as required.
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615P Where moderately oscillatory processes come from There is an easy condition on the
structure in 612H which will ensure that the process generated there is moderately oscillatory.

Proposition Let (2,%, 1) be a complete probability space, and (X;);>0 a filtration of o-subalgebras of
3 such that every p-negligible set belongs to every ¥;. Let (2, /i) be the measure algebra of p and
set Ay = {E* : E € Y;} for each t > 0; then we have a real-time stochastic integration structure
(2, 11, [0, 000, (Ap)e>0, T, (Ar)re7). Let (Xi)i>0 be a progressively measurable process on ), and x =
(xr)re; the corresponding fully adapted process as described in 612H. Suppose that lim,, ;o X¢, (w) is
defined in R for every bounded monotonic sequence (t,)nen in [0, 00[ and every w € Q. Then z is locally
moderately oscillatory.

proof Take any o € T;.

(a) We have a stopping time h :  — [0, 00[ adapted to (¥;);>¢ which represents o in the sense that
[o >1t] = {w : h(w) > t}* for every t > 0 (612H(a~v)). Now {X;(w) : t < h(w)} is bounded for every
w € Q. P? Otherwise, there is a sequence (t,)nen in [0, h(w)] such that lim, o | X;, (w)| = co. Setting
so=sup{s:s >0, {n:t, < s} isfinite}, there is a a monotonic subsequence (¢} )nen of (t,)nen converging
to s, and (X (w))nen has no limit in R. XQ

(b) Next, setting f(w) = sup;<p (. [X¢(w)| for w € Q, f: @ — R is measurable. P For any a € R and
n €N,

{(t,w) : t < n, | Xt(w)| > a} € B([0,n])RE, C B([0,00))B%

where B([0,n]) is the Borel o-algebra of [0,n] and B([0, co|) is the Borel o-algebra of [0, 00[. Because h is
Y.-measurable,

{(t,w) 1t < h(w)} = Uyeql0dl ¥ {w: ¢ < h(w)} € B([0,00)@E

and
W ={(t,w) : t < h(w), | X¢(w)| > a}
= U {(t,w) : t < h(w)} N{(t,w) : t < n, | Xe(w)] > a}

neN

belongs to B([0, oo[)®X. Since u is complete, ¥ is closed under Souslin’s operation (431A) and contains the
projection of W onto 2 (4230°). But this is just {w : f(w) > a}. As « is arbitrary, f is Y-measurable. Q

It follows that [T A o is order-bounded. B If 7 € 7 and 7 < o, there is a stopping time g : Q —
[0, 00| representing 7 (612H(a-v) again) and g <,. h (612H(a-iv)), so min(g, h) still represents 7. Since
| Xmin(g(w),h(w)) (W)] < f(w) for every w € Q, z, < f* in L°(A). Thus sup |z[T A ol is defined and at most
I°Q

(c) Suppose that (7,)nen is a non-decreasing sequence in 7 A o. Choose g, : Q — [0, oo[ representing 7,
for each n, and set g/, = min(h, sup,.,, g;) for n € N; then ¢/, represents 7, for each n, and (g}, (w))nen is a
non-decreasing sequence in [0, h(w)] for each w € Q, s0 g(w) = limy, o0 Xy () (w) is defined in R for every
w € Q. But now g* = lim,, 00 @, in L°(2A) (245Ca). So lim,, o 7., is defined.

Similarly, if (7,,)nen is a non-increasing sequence in 7 A o, g, :  — [0, o[ represents 7,, for each n, and
g, = min(h, inf;<,, ¢;) for n € N, then g/, represents 7, for each n, (g,,(w))nen is a non-increasing sequence
in [0, h(w)] for each w € Q, and g(w) = limy, 00 Xy (o) (w) is defined in R for every w € . Once again,
lim,, 00 Z7, is defined and equal to g°.

Putting these together with (b), T A o is ||-convergent, therefore moderately oscillatory, since T A o is

(finitely) full; as o is arbitrary, & is locally moderately oscillatory on ;.

615Q Proposition The identity process (as described in 612F), Brownian motion (612T) and the Poisson
process (612U) are all locally moderately oscillatory.

proof In the case of the identity process ¢ = (tr),c7; and the Poisson process v = (v;),c7; it is enough to
know that they start at 0 and are non-decreasing, so that if 7 € Ty and (0,)nen is a monotonic sequence

SLater editions only.
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in Ty A7, (to,)nen and (v, )nen are monotonic sequences in [0,¢,] and [0, v;] respectively, and must be
convergent in L° (613Ba). (Of course T; A 7 is full, so we can work directly from 6140.) As for Brownian
motion, I based this on Q@ = C([0,00[)p and X;(w) = w(t) for t > 0 and w € Q. So the sample paths
t — X;(w) are continuous, and 615P gives the result at once.

615R Proposition Let S be a sublattice of 7 and u a process of bounded variation with domain S.

(a) If v € Mo = Mio(S) then [gudv is defined and | [gudv| < ([ |du| 4+ 2sup |u|) x sup [v].

(b) diy(u) € My, for every v € My, and v +— iy (u) : Myo — My is continuous for the ucp topology
on Mpy..

proof Write w for [ |du| + 2sup |ul.

(a) Let € > 0. Then there is a 6 > 0 such that 6(z x w) < € whenever (x) < §. Next, there is a process
v’ of bounded variation such that (sup [v — v'[) < 0. By 614S, [cudv’ is defined. Let I € Z(S) be such
that 6(Sr(u,dv’) — Sy(u,dv’)) < e whenever I C J € Z(S). Now for any J € Z(S)

15,5 (u, dv) — S, dv'))| =[S (s, d(w — v'))]
< sup(fv —v/|17) x ( /J du| + 2sup(u] J]))
(614R)

< sup(fv — v']) x (/ \du| + 2sup(|u))
(using 614LDb) s
= sup(jv — | x w),
S0
0(S;(u,dv) — Sy(u,dv’)) <e.

By the choice of I, §(S;(u,dv) — S;(u,dv)) < 3¢ whenever I C J € I(S). As e is arbitrary, [qudv =
limzy7(s) S1(u, dv) is defined.

At the same time, we see that [S;(u,dv)| < sup|v| x w for every J € Z(S), so in the limit we have
| Jsudv| < suplv| x w.

(b) If v € My, then [gudv is defined, by (a), so iiy(u) is defined everywhere on S. Applying (a) to
u[SATand v[S AT for T € S, we see that

sup |iiy (u)| = sup | u dv|
TES JSAT

Ssup((/ |du| + 2sup [u]S A 7|) X sup ]S A7)
TES SAT

< </ du| + 25up [u]) x sup|o],
S

S0 4y (u) is order-bounded. The same formula shows that v — i, (u) : Mo = Mo, = Mo (S) is continuous
for the ucp topologies on My, and M,1,. We know that ii,(u) € My, whenever v € My, (614T), so
iiy(u) € Myy = Mo whenever v € My,o, and v — ity (u) : Mo — Mo is continuous.

615X Basic exercises (a) Let 7 : 2 — [0, 1] be any functional such that (2, 7) is a probability algebra.
Show that the ucp topology and uniformity on M, (S) defined from the associated F-norm 6, (613Bg) are
the same as those defined from jz and 0 = 0;.

(b) Let S be a sublattice of 7. Write Miop = Mion(S) for the space of locally order-bounded fully adapted
processes with domain S (615Fb). For 7 € & and u € Mo}, set 0, (u) = O(sup,csar |Uo|). (1) Show that

{57 : 7 € S8} defines a complete Hausdorff linear space topology on My, for which multiplication and the
operations V, A are continuous; I will call this the local ucp topology on Mgp. (ii) Show that Mine(S) is
closed for the local ucp topology on M.
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(c) Let S be a sublattice of 7" and z a member of L°((, s 2,). Show that, in the language of 612D (e-ii),
u— 2u : My p(S) = Mop(S) is continuous for the ucp topology.

(d) Let S be a finitely full sublattice of 7 and u = (us)ces a fully adapted process such that {u, : 0 € S}
is topologically bounded in the sense of 613Bf. Show that u is order-bounded.

(e) Give examples of (i) an |l-convergent fully adapted process which is not order-bounded (ii) an 1-

convergent order-bounded process which is not moderately oscillatory. (Hint: S = {n : n € N}.)

(f) Suppose that T = [0, 00[ and 20 = {0, 1}, as in 613W. Write ¢V for the set of functions f:[0,00[ > R
such that limg; f(s) is defined for every ¢t > 0 and limgy; f(s) is defined for every ¢ > 0 (cf. 438P-438Q)). Let
f 110,00 = R be a function and £ € Mg, (Ty) the corresponding process. (i) Show that the ucp topology on
M1, (Ty) corresponds to the norm topology on £>°([0, oco[). (ii) Show that # is locally moderately oscillatory

iff feC “, and moderately oscillatory iff f € ¢V and lims—, oo f(¢) is defined in R.

(g) Let S be a sublattice of T, u a process of bounded variation, and v a moderately oscillatory process,
both with domain S. Show that di,(u) is moderately oscillatory.

(h) Let S be a finitely full sublattice of 7 and u = (us)ces a fully adapted process such that {u, : 0 € S}
is topologically bounded (613Bf). Show that w is order-bounded.

615Y Further exercises (a) Let S be a sublattice of 7. Show that the ucp topology on the Riesz space
M, (S) is locally solid in the sense that for every neighbourhood G of 0 there is a solid neighbourhood
H of 0 included in G.

(b) Let S be a sublattice of T. For u, v € Mg, (S) set p(u,v) = min(1, |[u — v||«) (612Sa). Show that p
is a metric on Mg, (S) under which M, (S) is complete and addition is continuous. Show that if S is finitely
full then My,0(S) is the closure of My, (S) for the topology defined by p.

(c) In the construction described in 613P, show that the processes u and v are moderately oscillatory.

615 Notes and comments Note that the concepts of ‘ucp topology’, ‘ucp uniformity’ and ‘moderately
oscillatory process’, like that of ‘Riemann-sum integral’ (613I), depend on the structure (2, L%, T, (), e7)
and on the topology of convergence in measure on L% but otherwise are independent of the measure j
(615Xa).

So many processes turn out to be locally moderately oscillatory that we can quite happily regard them as
the norm, at least to begin with. In Theorem 455G I showed that the most important real-valued Markov
processes on [0, oo[ have representations in which all paths are cadlag functions, and 615P shows that these
correspond to locally moderately oscillatory processes. There are enough examples (see 612T-612U) and
preservation results (e.g., 615F) to ensure that we can hope to remain in this territory for a long time.

The words ‘local’ and ‘locally’ are going to appear repeatedly in this volume. The point is that basic
theorems are often most simply expressed in terms of ‘global’ concepts, as in 614F, 614G, 614Q, 615C,
615Fa, 615G and 616R. But the most important applications tend to present themselves in ‘local’ terms;
thus Brownian motion is locally order-bounded (614H) and the Poisson process is locally of bounded variation
(614M).

From Theorem 615N we see that, at least if the sublattice S is finitely full, we have two possible definitions
of ‘moderately oscillatory process’; one in terms of approximation by processes of bounded variation, as in
615E, and one in terms of a kind of sequential convergence, as in 6151. The former is easier to handle
(compare 615G and 615L), but the latter gives a path to a fundamental fact (616Ib). In particular, 615M
can be regarded as a method of constructing a process u from a given moderately oscillatory process u
which is not only of bounded variation but approximates & in a much finer topology than the ucp topology
(615YDb). 6150 looks like an insignificant variation on the definition in 615E, but I do not see a quicker way
to it, and it will be useful later.

As in §614, T conclude the section with a note on a special type of integral, providing another case in
which an indefinite integral inherits a property from an integrator. It looks esoteric, but happens to be a
useful step towards one of the principal theorems of the next section (616K).
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616 Integrating interval functions

In this section I present a fundamental theorem on the existence of Riemann-sum integrals (616M),
dealing with the case of moderately oscillatory integrands and integrating interval functions (616F). The
most important integrating interval functions are those defined by integrators (616Fc, 6161). The integrators
on a lattice S form an f-subalgebra of the space of moderately oscillatory processes with domain S (616P).

616A Notation (2, 1, T, () ter, T, (A )re7) will be a stochastic integration structure. For a sublattice
S of T, Z(S) is the set of finite sublattices of S, and if 7 € T, SAT ={ocAT:0 € S} and SVTr ={oVT:0 €
S}. If w and v are fully adapted processes defined (at least) on a finite sublattice I of 7 and 4 is an adapted
interval function defined (at least) on I?T = {(0,7) : 0, 7 € I, 0 < 7}, then S7(u,dy) and S;(u, dv) will
be the Riemann sums defined in 613Eb and 613Fb. For w € L® = L%(2), O(w) = E(|w| A x1) as in 613Ba.
If S is a sublattice of T, M. (S), Mo (S), Mion(S), Muy(S) and My, (S) are the spaces of fully adapted
processes, order-bounded processes, locally order-bounded processes, processes of bounded variation and
moderately oscillatory processes with domain S. For u € M, (S), sup [u| = sup,cs |us|. 1 will be the
process with constant value x1. If u = (uy)yes and v = (v, ),es are fully adapted processes with the same
domain S, [u # v] = sup,cs [t # vo].

616B Definition Let S be a sublattice of 7. If ¢ is an adapted interval function (613C) defined (at
least) on ST, the capped-stake variation set of 1) over S is the set Qs (di) of Riemann sums S;(u, dv))
where I € Z(S), u is a fully adapted process with domain I and sup |u| < x1.

If v, w are fully adapted processes defined (at least) on S then, corresponding to the basic interval functions
of 613F, I will write Qs(dv), Qs(dvdw), Qs(|dv|) for Qs(d(Av)), Qs(d(Av x Aw)) and Qs(d|Av]).

616C The following elementary facts will be useful.

Lemma Let S be a non-empty sublattice of 7, 1) an adapted interval function defined on S?', and z an
element of L%(2). Then the following are equiveridical:

(i) z € Qs(dy);

(ii) there are 79 < ... < 7, in S and ug, . .. , un—1 such that u; € L= (A,,) and |u,;| < x1 for every i <n
and z = Z:-L:_Ol Ui X ¢(TiaTi+1);
(iii) there are 79 < ... < 7, in § and an order-bounded process u = (u,)secs such that sup |u| < x1

and z = Z?:_Ol Ur; X w(TiaTi-f-l)'

proof (i)=(ii) If z = 0 we can take n = 0 and any 79 € S. Otherwise, let I € Z(S) and v = (uy)oer € Mg (I)
be such that sup |u| < x1 and z = Sy(u,dy). Take a sequence (79,...,7,) linearly generating the I-cells.
Then

z=Si(u,dy) = Z?;ol Ur; X Y(Ti, Tit1)
(613Ec), while 79 < ... < 7, and u,, € L°(,,) and |u,,| < x1 for every i < n.
(ii)=-(iii) By 612Ka, there is a fully adapted process v’ = (u)),cs such that, for o € S,
[ul =u;] 2 < o] no < Tig1],
for every i < n, while
[u, =0]2[0 <m0l [uf =ur]2[m <ol
Observe that |ul| < x1 for every o (because

[o <mo]ulm <oJusup;, [1 <olnfo < Tipa] =1),

so u is order-bounded and sup |u| < x1. Now if we set I = {70,... ,7n},
(©) 2019 D. H. Fremlin
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n—1 n—1
z= Zuz X (Ti, Tig1) = Zui X x([ri < Tisa]) X (73, i)
i=0 i=0
n—1 n—1
= ub xx([mi < mipl) X (7, ign) = Y ul, X (7, Tiga)-
i=0 i=0

(iii)=(i) Setting I = {70,... ,Tn}, 2 = Sr(u|I,dy).

616D Lemma Let S be a sublattice of 7 and v, 1’ adapted interval functions defined on S2'.
a) QS(dT/J) Uzez (S) Qr(dy).
b) Qs(d(ay)) = aQs(dy) for every a € R.

Qs(d(¥ +v)) € Qs(dy) + Qs(dy).
If 8’ is a sublattice of S then Qs (dy) C Qs(dy).
If we Qs(dy), z€ LOANN,csAo) and |z| < x1, then z x w € Qs (V).

) If 7 € S then Qsar(dy) + Qsv-(dp) C Qs(dy).

proof (a) Immediate from the definition.
(b) Si(u, ) = aS;(u, i) for all I and u.
(c) Sr(u,d( + ")) = Sr(u,dy)) + Sy(u,dy’) for all I and w.
(d) Z(S') C 7(S).

(e) We can express w as Sy(u,dyp) where I € Z(S), u € Mg (I) and sup |u| < x1. Now zu € M, (1)
(612D (e-ii)) and sup |zu| < |z| x sup Ju| < x1, so Qs(dv) contains S;(zu,dy) = z x w (613L(b-iii)).

\—/\_/v\_/

(
(
(c
(d
(e
(f

f) fwe diy) + di), then by 616C(ii) there are 7) < ... <7/, n SA7, 1) < ... <7/, in
( ) SAT 1/} SVt '(/J y y 0 = = 'n
SV, uj € L°(A) such that |uj] < x1 for i <n’', uf € LO(QlT]() such that |u”| < x1 for j < n”. such that

_q 1
w= 0l x p(r ) + gl ) (el ).
Set n=n'+n"+1,

7 =75, for k <n/,

=1y forn <k<n +n"+1,
up, = uj, for k < n/,

=0 for k=n/,

=uy_,_q forn' <k<n +n".

Then 79 < ... < 7, in S while u,, € L°(2,,) and |u,,| < x1 for k < n and w = ZZ;S ug X (T, Tht1), SO

w e Qs(dw)

616E Lemma Let S be a sublattice of 7, and 1 an adapted interval function on S. Then the following
are equiveridical:

(i) Qs(dv) is topologically bounded;

(ii) for every € > 0 there is a 6 > 0 such that 0(S;(u,dvy)) < e whenever I € Z(S), u € M, (I) and
O(sup ful) < o;

(iii) for every € > 0 there is a § > 0 such that 0(S;(u,dvy)) < e whenever I € Z(S), u € My (S) and
O(sup |ul) <.

proof (i)=(ii) Suppose that Qs(dy) is topologically bounded and € > 0. Let n > 0 be such that
0(nSy(u,dv)) < e whenever I € Z(S), u € Mg, (I) and sup |u| < x1. Set § = Len. If I € Z(S), u € Mg (1)
and §(sup [u]) < 4, set ' = med(—1, ;u,1). Then
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[S1(u, d) #nSr(w', dp)] = [Si(u —nu', dip) # 0] C [u # nu']
(613Gd)

= [sup [u| > 7]

has measure at most % = %e. So

0(Sr(u, dip)) < *6+9(7751(U dy)) <
Thus § witnesses that (ii) is true.

(ii)=(iii) If (ii) is true and € > 0, take 6 as in (ii). If I € Z(S), u € M1, (S) and O(sup |u|) < §, then
ull € Mg, (I) and sup [u[I]| < sup|ul, so O(sup |ulI]) < 6 and 6(St(u,dv))) = 0(S(ull,dy)) <€

(iii)=-(i) Suppose that (iii) is true. If S is empty then Qs(dy) = {0} is certainly topologically bounded.
Otherwise, given e > 0, take ¢ as in (iii). Then for any z € Qs(dy) there are 79 < ... < 7, in § and
U = (Up)oes € Mop(S) such that suplu| < x1 and z = ZZZOI Ur, X (73, Tip1) (616C(ii)). But now
z = Sy(u,dy)) where I = {70,... ,7n}, while O(sup |du|) < 0(dx1) < § so 0(dz) = 0(Sr(du,dy)) < e Ase
and z are arbitrary, Qs(dv) is topologically bounded.

616F Definition Let S be a sublattice of 7 and v : S?" — L a function.

(a) T will say that 1 is an integrating interval function on S if
() ¢ is a strictly adapted interval function;
(8) writing S for the covered envelope of S and 1/} 82t — L9 for the strictly adapted extension
of 9 (613U), fs dip = Js1 di is defined in the sense of 613H;
() Qs(dd} is topologically bounded in L°.

(b) ¥ is a locally integrating interval function if /[ (S A 7)?T is an integrating interval function for
every T € S.

(c) A fully adapted process v defined on S is an integrator if Qs(dv) is topologically bounded in LY,
and a local integrator if ¥[S A 7 is an integrator for every 7 € S.

I will write Mg (S) for the set of integrators with domain S, and Mijgt.(S) for the set of local integrators
with domain S.

Remarks Evidently a strictly adapted interval function ¢ on a sublattice & is an integrating interval
function iff its adapted extension on the covered envelope of S is an integrating interval function.

I have given a definition of ‘integrator’ which does not obviously correspond directly to the definition
of ‘integrating interval function’. We shall see in 6161 that in fact it matches exactly, but it is convenient
to work with the simpler formulation here for the moment. Of course we can see already that if v is fully
adapted and Aw is a (locally) integrating interval function, then v is a (local) integrator.

616G Proposition Let S be a sublattice of T and 1, ¢’ integrating interval functions on S.
(a) ¥ + 19" and a) are integrating interval functions on S for every o € R.
(b) ¢ is a locally integrating interval function.

proof (a) ¥ + ¢’ and a) are strictly adapted interval functions (613D) and
fs Ay +9') = fs dip + fs ay, fs d(ay) = O‘fs dip

are defined (613Jb). Next, writing 77/} and 1[)’ for the strictly adapted extensions of 1 and 1)’, as in 616Fa,
¥ + 1) is a strictly adapted interval function extending ¥+, so is equal to (¢ +4')", and

Jod@+9)) = [gd@ + ) = [sdi+ [sdi
is defined, while
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Qs(d(@ +¢)") = Qs(d(d +¢)) € Qs(did) + Qs (di)
(616Dc) is topologically bounded (613B(f-iii)). So ¢ + ¢’ is an integrating interval function.
Similarly,

Jed((aw)) = afsdd,  Qgs(d(a))") = Qgld(ath)) = aQs(di))
is topologically bounded and a1 is an integrating interval function.

(b) If 7 € S, then the covered envelope of SAT is SAT (611M(e-i)). o' = ¢ [(SAT)?" is a strictly adapted
interval function (613C(b-iii)) and its strictly adapted extension 9’ to (S A 7)2T must be [ (S A 7)2T. Now
Jen, AV’ =[5, di is defined, by 613J(c-i), and

Qusnry () = Qs (dV') = Qg () C Qs(dd))
(616Dd) is topologically bounded (613B(f-iii) again).

616H The next theorem depends on some machinery.

Lemma Suppose that

r>m, 1—T7'§l , k>1, 2ke™>e€, n=rk.
rm(r—m)! 2

Let S be a sublattice of 7 and ¢ an adapted interval function with domain S?T.

(a) Let (a;)i<, be a family in 2 such that fa; > € for every ¢ < r. Then there is a J € [r]™ such that
a(inf;cya;) > %em.

(b) Let 79 < ... < 7 in S be such that sup{f(w) : w € Qsr, .., (d0)} > 4e for every i < r, while z €
LO(2A,,) is such that iif|z| > ] < e. Then thereis aw € Qs(di) such that fi[|z +w| > ~] > af|z| > v]+3e™.

(c) Let 7o < ... < 7, in S be such that sup{f(w) : w € Qsnir,,r,,)(d)} > 4e for every i < n. Then there
is a w € Qs(dyp) such that af|lw| > ] > e.

(d) Let 79 < ... <7, in S be such that 8((7;, 511)) > 4e for every i < n. Then there is a w € Qs(dv)
such that aflw| > ~v] > e.

proof (a) The case m =1 is trivial. Otherwise, set u = 1 Z:Ol xa; and ¢ = % Then
(Jum)Vm = Jullmlixtlly > [u>e

by Holder’s inequality (244EDb), so if F is the set of injective functions from m to r,

rm m<7. / mo__ Z /Hxaf(z = Z (Zlilf';af( ))

fermY i<m ferm
rmo_ f m f
+]; nf apq) <™ = #(F) + #(F )Supu(;gmaf(z))

and there is a J € [r]™ such that

(1125 ai) > #(IF) (r™e™ —r™ + #(F))
— " em g _ #E) m_ (g s lm
#(F) (¢ (1 rm )z € (1 rm(r—m)! )= 2¢

as required.

(b) Set ¢ = [|z| > 7] € 2,,; we are supposing that fic < e. For each i < r, let w; € Qsnyr,,7.,,](d?0) be
such that 6(w;) > 4e; then

lfws > ) + illw; < —e\ o)
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set

K={i:i<r, g(Jlw; >€e|\c)>¢€}, K =r\K,

a; = [w; > €] \cforie K,
=[—w; > €]\ cforie K,
so that fia; > € for every i < r.

By (a), there is a set J € [r|™ such that f(inf;cja;) > -€™. Set d = inf;c y a;,

N | =

w; =w; x x(1\¢) forie JNK,
=—w; x x(1\¢) fori e JNK’,
=0forier)\.J
Then w; € Qsnpr,,r,,,](dV) for every i (616De) so w = Z:;Ol w; belongs to Qs(dy) (use 616Df repeatedly).
Next,
w; x xd > exd for i € J,
=0forier)\J,
so w X xd > mexd > 2yxd while w x xyc = 0. But this means that
[lw+ 2l 2 y] 2 ([w = 0] n[lz[ = 1) v (Tlw] = 291\ [l2] 2 4]) 2 cud,
and
_ o .
illw + 2 =2 7] = fe + pd = Aflz) = 7] + 5€™,
as required.

(c) For j <k set S; = SN [7jr, T(j+1)r]. Choose (zj)j<k, (w;)j<r as follows. zg = 0. Given that j <k,
zj € L°(A,,) and that i[|z;| > 7] > min(e, $je™), (b) tells us that if fi|z;| > 7] < e thereis aw; € Qs, (dy))
such that af|z; +w;| > ] > $(j + 1)e™. If fif|z;| > ~] > € take w; = 0. Of course w; € L°(A,,,,) and
[lzj +w;| = ~] = min(e, 5(j + 1)€™) in either case, so we can set zj41 = z; + w;, and continue. At the end
of the induction, set w = zy.

Inducing on j, using 616Df again for the inductive step, we see that z; € Qsnr,, (di)) for every j < k. So
w € Qs(dip), while fi[|w| > +] > min(e, 1ke™) = €, as required.

(d) Since ¥(7i, Tiz1) € Qsry,riy1](d¥) for every i < n, this is a special case of (c).

6161 Theorem Let S be a sublattice of 7T, and v = (v,)secs a (local) integrator.

(a) The fully adapted extension of v to the covered envelope of S is a (local) integrator.
(b) v is (locally) moderately oscillatory, therefore (locally) order-bounded.

(¢) Aw is a (locally) integrating interval function.

proof (a)(i) The point is that Q¢(dv) is included in the topological closure of Qs(dv). I Take z € Q ¢(dv).

Express z as Sy (y, dv) where I € Z(S),y = (yr)rer € Mg (I) and sup Jy| < x1. If I = () then z = 0 € Qs(dv).
Otherwise, let (7o, ... ,7,) enumerate a maximal totally ordered subset of I. Let w = (w;) ¢ be the simple

process defined by saying that if 7 € S then
[r <7]ulm < 7] ¢ [w- =0],
[r: <707 < Tig1] C [wr =y, ] fori <n
(612Ka once more). Then fSATO w dd = 0 because
Wy X (Opr —07) = wy X (0p — 7)) X x[T <7T']=0

whenever 7 < 7/ < 79, and | Syr, W dv = 0 because w, = 0 whenever 7, < 7. Accordingly
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/wdﬁ:/ 'wd'ﬁ+/ wd’f)Jr/ w dv
S S/\TU Sﬂ[To,Tn] S\/Tn

n—1
= / wdv = Zyn X (ﬁTi+1 - 7A}‘rl)
=0

SN[70,7n]

(613 (c-ii))

(614Bb)
- SI (yv d’f))
(613Ec)

= Z.

Consequently [¢(w[S)dv is defined and equal to z (613T). So

z = hmJTI(S) SJ(’U), d’U)

But sup [w| < sup;<,, [y~| < x1, so Sy(w,dv) € Qs(dv) for every J € Z(S) and 2z € Qs(dv). As z is
arbitrary, we have the result. Q

(ii) If v is an integrator, then Qs(dv) is topologically bounded, so its closure is also topologically
bounded (613B(f-iii)) and ¢ is an integrator.

(iii) If v is a local integrator and 7 € S, take any € > 0. Then there is a o € S such that afo < 7] < %e.
We are supposing that ¥[S A ¢ is an integrator, so 'f)[S A o is an integrator, and there is a § > 0 such that
0(0z) < 1€ whenever z € Qg (dv). Now take z € Qg,, (dv). By 616C(iii), there is a fully adapted process
u = <u0>
Consider

seéar With breakpoint string (7o, ... ,7,) such that sup [u| < x1 and z = S s, X (V7 — Ory)-
/ n—1 ~ oA
Z = Zi:o Urino X (Oripine = Ornc)-
By 616C(ii), 2’ € Qg,,(dv), while
[z # 2'] € sup [ur, # trno] U sup [0r, # O7,00]

i<n i<n

IN

sup [ri Ao < 7] € [o < 7]

i<n
has measure at most %e. So

1

0(62) < 0(02') + 0(3(2 — 2')) < Je+se=c.

As € is arbitrary, Qg,, (dv) is topologically bounded; as 7 is arbitrary, o is a local integrator.

(b) (i) Suppose to begin with that v is an integrator. By (a), ¥ is an integrator. The idea is to use 616Hd
with ¢ = A®, knowing that Q¢(dy)) = Q¢(dv) is topologically bounded. Express 9 as (9,),.g. Let € > 0.
Then there is a v > 0 such that gflw| > 7] < € for every w € Qs(dv) (613B(f-ii)). Take m, r, k > 1 such

|
that me > 2y, r >m, 1 — = < %em and 2ke™ > ¢, and set n = rk. Then whenever 79 < ... < 7, in

rm(r—m)!
S, there is an i < n such that 0(0r,,, — Ur,) < 4€, by 616Hd. Thus 9 satisfies condition (iv) of 615N and is
moderately oscillatory. It follows at once that v is moderately oscillatory (615F(a-i)).

(ii) If v is a local integrator, then we can apply (i) to v[S A 7, for 7 € S, to see that v is locally
moderately oscillatory.

(¢)(i) Again, suppose to begin with that v is an integrator. If S is full, Aw is certainly an integrating
interval function, because we know that Qs(dv) = Qs(d(Av)) is topologically bounded, and from (b) we
know that vy = limyqs v, and vy, = lim, 5 v, are defined (615G), so

fsd(A’U):fsd’U:’UT—’Ui
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(613N) is defined. In general, (a) tells us that © is an integrator, so A9 is an integrating interval function;
but A® extends Aw, so is the strictly adapted extension of Av to S?', and Aw is an integrating interval
function, as remarked in 616F.

(ii) As in (b), it follows at once that if v is a local integrator then Aw is a locally integrating interval
function.

616J Theorem Let S be a sublattice of 7 and v an integrating interval function with domain S?'. Set
My = {u:u € Myy(S), [(udy is defined}.

Then M, is a closed linear subspace of M,.1,(S) and we have an indefinite integral operator iy : My —
Mig:(S) which is linear and continuous for the ucp topology on M, (S).

proof (a) Take any u € M.

(i) Setting yy = [s,,udi)p for 0 € S, and y = (ys)oes, y is defined everywhere on S and is fully
adapted (6130(b-1)). Let € > 0. Then there is a § > 0 such that 6(S;(w,dy)) < e whenever I € Z(S),
w € Mg, (I) and O(sup |w|) < § (616E). We are supposing that u is order-bounded; write @ for sup |u|. Let
n > 0 be such that §(@ x w) < § whenever w € L%(2) and #(w) <7 (613Ba).

(ii) Suppose that I € Z(S), w € M, (I) and 0(w) < n, where @ = sup |w|. Then 0(S;(w,dy)) <e. P
If I = () this is trivial.

(@) If I is non-empty, let (7o,...,7,) be the increasing enumeration of a maximal totally ordered
subset of I, so that Sy(w,dy) = Z;:Ol Wy, X (Yriyy — Yr)- We know that y. =y, + me[T,T'] u dip whenever
7<7"in S (613Jc), so

_ n—1
Sr(w, dy) = Zi:o Wr; X fSﬂ[ﬂ,n‘Jrl] udy.
Let w = (Wy)ses be the simple process with domain S defined by saying that

[ec <70 € [we =0], [ <0]C [y =mws],

[7i <olnlo < 7iga] € [Wo = wr]

for o € S and i < n (612Ka again); then w extends w and sup|w| = sup;<,, |w,,| = w. Consequently

sup |u X w| < @ x w, O(sup ju x w|) < § and O(S;(u x w),dy) < e for every J € Z(S).

(B) For each i < n let J; be a finite sublattice of & N [, 7;+1] containing 7; and 7;11. Let
(040, -+ yOim,) be the increasing enumeration of a maximal totally ordered subset of J;. Then

’ugij X ’lI}UI.j X ¢(Uij;0'i7j+l> = ugij X Wy, X w<0'ija0'i,j+l)
for every j < m;, because
[¥(0ij, 0i5+41) # 0] C [o3j < 04 541] € [o3j < Tita] € [Wo,; = wr ]

Now

’I’I’Li—l

Sy (wx i, dp) = Y ug, X, X (03,00 541)
=0
m7¢—1

= Z Ug;; X Wr; X w(aij7o—i:j+1) = Wr; X SJi (’ll,7d’(/1)

j=0
Ji, so that J € Z(S) and J N [y, 7i41] = J; for each i. Then

Z?:_Ol wr, X Sy, (u’ dy) = Z?:_ll S, (u X w, dw) = SJ(“‘ X ﬁ}’dw)
(613Ga) and 9(2?:_01 wy, X Sy, (u,dy)) < e. Taking the limit as J; T Z(S N [y, 7i41]) for each i,

Set J=J

<n
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—1
0(Sr(w, dy)) = 0(22;0 Wr; X fSﬁ[Ti7Ti+1] udy) < Q

(iii) As € is arbitrary, Qs(dy) is topologically bounded, by 616E(iii)=(i), and y is an integrator.
Thus ity is a function from My to Mig,(S). By 613Jb, M, is a linear subspace of M,.,(S) and iy, is a
linear operator. Recall from 616Ib that Mg, (S) € Mob(S).

(b) Suppose that u € M,.1,(S) belongs to the closure of My for the ucp topology. Let e > 0. By 616E,
there is a § > 0 such that 6(S;(u’, dv))) < e whenever I € Z(S), v’ € My,(S) and O(sup |u'|) < 6. Now there
are au’ € My such that f(sup [u —u'|) <, and a J € Z(S) such that (S (u',dy)) — [gu'dy) < € whenever
J C I eZ(S). Suppose now that I € Z(S) includes J; then

0(Sr(u, d) — [u'di) < 0(Si(u,dy) — Sr(u',dy)) + 0(Sr (', dy) — [ u'd)
<€+ e=2e.
As € is arbitrary, fsudw is defined (613Ja), and w € M,. As w is arbitrary, M, is closed for the ucp
topology.

(c)(i) Let € > 0. Because 9 is an integrating interval function there is a § > 0 such that 6(S;(u, di))) < €2
whenever I € Z(S), u € Mg, (I) and O(sup |u|) < 6 (616E). It follows that i[|S;(u,dy)| > €] < e whenever
I €Z(S), u € Mg (I) and O(sup |Ju|) < 4.

(ii) (The key.) Suppose that I € Z(S) is non-empty. Let v = (us)oer € Mp(Z) be such that
(sup u]) < 6. Then Alsupye; [Stno (1 di)| > ] < c.

P (a) Take (19, ... , ™) linearly generating the I-cells. For i < n write z; for Sy, (u, dy). Since 79, ... ,7;)
linearly generates the I A 7;-cella (611Kg), z; = Z; 10“7] X (7;,7j41) (613Ec). Next, set a; = [|z;| > €],
Yi = ur, x x(1\ sup;<; a;) and b; = a;\ sup;;a; for i < n. Then z € L°(A,,) (613Gb), a; € A,
yi € LO(2A;,) and b; € A, for all i < n, while sup;., |yi| < sup,c; |ug| so O(sup;<,, |yi|) < 4. By 612Ka
again, there is a fully adapted process w = (w, )5 such that

[ <olnfo < 7is1] € [we =y fori <n, [, =0] C [ws = 7]

for every o € I. (The point here is that 79 < o < 7, for every o € I.) Set

z = Sr(w,dy)) = Zwr X P(75, Tj+1)

7=0
(613Ec again)

n—1
=y X (75, 7i11)

=0
because [¢(7j,7j4+1) # 0] C [7; < Tj4+1] for each j, by 613C(b-i).
Now if o € I then |w,| < sup;<,, |yi| so O(sup [w|) < ¢ and ff[|z| > €] <e.
B) Ifi <mn,

byc inf [y; =0]n inf[y; = us,
_i<1§,1<n[[y I inf ly; = ux]

32020 uj X (7, mi41) = Yoo e, X (75, 7501)] = [2 = 2];

as b; C || > €], bi € [|2] > ¢€]. Next, (Siro(u,dy)))ser is fully adapted (613Gb again). If o € I then
sup;<,, [0 = 7] =1 (611Ke), so

[|S1a0(w, dp)| > €] = sup [o = ] N [|S1A0 (0, dip)| > €]

N

i<n
C sup[[Sin, (u,dv)| > e = supa; = supb; € [12] > ]
i<n i<n i<n
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Accordingly

[supoer [Sinc(u, dv)| > €] = sup [1S1no(u, dp)| > €]
[<AS

(364L(a-ii))

N

[I2] > €

has measure at most €. Q

(iii) Take w € My, such that 6(sup |u|) < 6. Then O(sup,c; |Sire(u, d)|) < 2€ for every I € Z(S), if
we interpret the supremum as zero if I is empty. Write w,, for f Spho Wdy.

(o) If I € Z(S) then O(sup,¢; |wy|) < 2¢. B Let n > 0. For each o0 € I let J, € Z(S A o) be such
that 0(Sk(u,dy) — w,) < n whenever J, C K € Z(S A o). Let K be the sublattice of S generated by
IUU,¢r Jo- Then J, € K Ao € I(S A o) for every o € I. So

0(sup |we|) < O(sup [Sk o (u, d)| + sup [wo — Skas(u, d)])
oel oel oel

< O(sup S, did))) + 3 B(we — Sicno(u. di)) < 2¢ + (D).

ceK oel

As n is arbitrary, 8(sup,c; |ws|) < 2¢. Q
(B) We know that ii,(u) is order-bounded, so w = sup, g |w,| is defined in L°(2A). Now

O(sup |éiy(w)]) = 0(w) =  sup  O(sup |ws|)
ICS is finite o€l

= sup O(sup|w,|) < 2e.
I1€Z(S) o€l
As e was arbitrary, iy : My — My,(S) is continuous at 0; being a linear operator, it is continuous
everywhere on My, as claimed.

616K Theorem Let S be a sublattice of T, u a moderately oscillatory process with domain S, and v an
integrator with domain S. Then [gudv is defined, and i, (u) is an integrator.

proof By 6161, v is moderately oscillatory and Awv is an integrating interval function. By 615Ra, || sudv
is defined if u is of bounded variation. In the language of 616J, My (S) C May, while Ma, is closed in
M, (S) for the ucp topology. But My,o(S) is just the closure of My, (S) in Mo, (S). so is included in May,
that is, [ sudv is defined. As for the indefinite integral i, (u), this is an integrator by 616J.

616L Corollary Let S be a sublattice of 7. If u is a locally moderately oscillatory process and v a fully
adapted process which is locally of bounded variation, both with domain S, then i, (u) is locally of bounded
variation.

proof Apply 614T to u[S A7 and v[S A T for each 7 € S.

616M Theorem Let S be a sublattice of 7 and v an integrating interval function on S. Write v for
ity (1) = ([5,, dp)res. Then [sudi is defined and equal to [ udv whenever u is a moderately oscillatory
process with domain S.

proof (a) I start by noting that v is well-defined and is an integrator, by 616J. If S is empty the result is
trivial, so suppose otherwise. For the time being, I will suppose that v = 0 and S is full. Note that the
definition 616Fa requires [g di) to be defined, and we now have [gdi) = lim4s [, dyp = 0 by 613J(f-ii).
Write M{/) for

{u:u e M, (S), fs'u,dt/) is defined and equal to 0}.
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Then M{b is a linear subspace of My, = Mo, (S), and by 616J it is closed for the ucp topology. Note that
the constant process 1 with domain S belongs to M{p

(b) To begin with, suppose that S is full, that v = 0, that u = (uy)scs is non-increasing and that u is
{0, 1}-valued, that is, [u, € {0,1}] =1 for every o € S.
(1) If I € Z(S) is non-empty, there is a 7 € § such that Sr(u,dv) = Sia-(1,dy). P
(@) Take (79,...,7,) linearly generating the I-cells; note that 7,, = maxI. For ¢ < n, set a; =
[ur, = 0] and b; = a; \ Sup,<; a;; set b, = 1\ a,_1. Because u is non-increasing, ag Ca; C ... C a1 and
bi)i<n is a partition of unity in 2. Also a; and b; belong to 2, for i < n and b, € 2. . By 611I there is a
7 € T such that b; C [r = 7;] for i < n; because S is full, 7 € S.

(B) If j <i < n then

biclr=nlclrnr=nlnlr AT = 7544]
C (T ATy T ATj41) = U(75, Tj41)]

because 1 is strictly adapted, and if ¢ < j < n then

biClr=n]clrAm=7]n[r ATjt1 =7]
C Wt ATj, 7 ATj) = (r,7)] € [W(T ATy 7 ATjpa) = 0]

(y) If i < n then

n—1 i—1

sz X S[(u,dﬁ)) = ZX@ X ’U,T]. X "LZ)(Tj,Tj_i_l) = ZX@ X uq-_]. X 1/}(7'j,7'j+1)
j=0 j=0
(because if i < j then b; C a; C a;j and b; C [u,, = 0])
i—1

= bei X WY(T ATj, T A Tjg1)
§=0
(as in (B) just above)
n—1
= Z Xbi X (T ANTj, T ATjg1)
3=0
(because if ¢ < j < n then b; C [¢)(7 A7;, 7 ATjq1) = 0], by the other half of (3))

= xbi X Sppr (1, de)
because (7 A 7g,...,T ATy,) linearly generates the (I A 7)-cells (611Kg). Also
by C [T = 7] n inf Ju,, = 1]
<n
c [[SI/\T(17 CW) = 51(17 dw)]] n [[S[(U, dw) = Sf(la d'(/])]]
C [Sr(u,dip) = Sia-(1,d)],
so in fact Sy(u,dy) = Sia-(1,dy). Q

(i) Consequently w € M,,. P Let € > 0. Then there is an Iy € Z(S), containing max S, such that
0(S;(1,dy) — 6(Sk(1,dy)) < e whenever J, K € Z(S) include Iy. If I € Z(S) includes I, thereisa T € S
such that Sy(u,dy) = Sia-(1,dvy), by (i). At the same time, of course, 0(S;(1,dy) — 0(Sk(1,dy)) < €
whenever J, K € Z(S) include I. By 613V (ii-3),

2> 0(Sinr (L) — [ du) = 8(Sinr(1,0)

SAT
(because v = 0)
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= 0(Sr(u, dy)),
and this is true whenever I includes Iy. As € is arbitrary, fSudd) =0andu € M{p Q
(c) Still supposing that S is full and v = 0, I explore M,

(i) fu € Mgy = Mg (S) is {0, 1}-valued and non-decreasing, then u € M,. P 1 —u is {0, 1}-valued and
non-increasing, so (b) tells us that it belongs to M;; as noted in (a), 1 € M ; as M), is a linear subspace,
u € M{Z) Q

(ii) If n > 1 and u € M, is non-decreasing and takes values in {0, 1,... ,n}, then u € M. P Induce
on n. If n = 1 this is just (i) above. For the inductive step, if w takes values in {0,...,n + 1} then
u Anl is non-decreasing and takes values in {0, ... ,n}, so belongs to M{p by the inductive hypothesis, while
u—uAnl=(u—nl)t is non-decreasing and takes values in {0, 1}; so their sum u belongs to M;, and the
induction continues. Q

It follows at once that if n > 1, 6 > 0 and u € Mg, is non-decreasing and takes values in {0,6,... ,nd}
then u € M,

(iii) If w € Mo, is non-negative and non-decreasing it belongs to M,,. P Write @ for sup [u|, Let € > 0.
Then there is an n > 1 such that g[a > ne] < e. Define h: R — R by saying that

h(a) = ne if a > ne,

=ieifi <nandie < a<(i+ 1)

=aifa<0.
Then h is non-decreasing and Borel measurable, h(a) < « for every o and a < h(a)+e¢if a < ne. Sou’ = hu
is fully adapted and non-decreasing; 4’ < u; because u is non-negative, u’ takes values in {0, ¢,... ,ne}; and
[u < ne] C [u <u' +€l]. By (i) just above, v’ € M. And

0<u-—u <el+x[u>ne xu, O(suplu—u|) <e+pnfa>ne <2e.

As € is arbitrary and Ml’/} is closed, u € M,,. Q

(iv) Because M{b is a closed linear subspace of My, it includes My, = My, (S) and its closure
Mo = Mino(8S). Thus we have the required result if S is full and v = 0.

(d) Still supposing that S is full, take u € M,,, and any integrating interval function ¢ on S, and set
vy = f5/\r dy for T € S, Then v = (v, )ses is an integrator (616J) and Aw is an integrating interval function
(6161c), so ' = 1) — Aw also is (616Ga). For 7 € S,

/ dy’ = drp — d(Av) = v, — / dv = v, — v, + limv,
SAT SAT SAT SAT olS
(613N)

=0

(613J(f-i)). So S and ¢’ satisfy the conditions of (a)-(c), and [gu di)’ is defined and equal to 0. But we know
already from 616K that [;udv is defined, so [sudy is defined and equal to [gudy’ + [qudv = [qudv.

(e) Flnally, if S is not full, write S for its covered envelope u for the fully adapted extension of w € M,
to S, and 1/) for the strictly adapted extension of ¥ to & 52T Then 7,/; is an integrating interval function (616F)
and @ is moderately oscillatory (615F(a-vi)). Write o for the indefinite integral ii;(1). If 7 € S, SATis
the covered envelope of S A 7 and fS/\r 1 dQZJ is defined, so is equal to fS/\T 1dy (613T again); thus v = 0[S
is the indefinite integral ii,(1). Now fs'fl,dz/; is defined and equal to fs'ﬁ,df), by (d); by 613T once more,
Jsudip and [sudv are defined and equal. So we have the general result.

616NN So far, I have been working almost entirely with general integrating interval functions. But 616M
makes it plain that we can expect that usually it will be enough to look at integration with respect to
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integrators, which is what most of the rest of this volume will be devoted to. As we have already seen in
6161, integrators have some special properties, which I will now set out to describe.

Theorem Let S be a sublattice of T, and v = (v,),es a (local) integrator. If f : R — R is convex, then fuv
is a (local) integrator.

proof (a) To begin with (down to the end of (c) below) suppose that v is an integrator. Note straight
away that f is continuous (6A1Aa), so that f: L® — LC is continuous (613Bb). As v is moderately oscil-
latory, therefore order-bounded (6161), we see from 615G that lim,|s f(v,) = f(limy|s vy ), limets f(ve) =
f(lim,1s v,) are defined, while fv is order-bounded (614F (c-i)).

Write Q for Qs(dv) and Q* for Qs(d(fv)). We know that Q is topologically bounded, and we need to
show that Q* is topologically bounded.

Let g be the right derivative of f, so that g is non-decreasing and (y — z)g(z) < f(y) — f(z) for all z,
y € R (6A1AD). Consequently

§(vs) X (Vg —vs) < f_(va/) - JF(UG)
for all o, 0’ € S. - B
By 616Ib and 614F(c-i), fv is order-bounded; set w = sup |fv| V sup |v|.

(b) Suppose for the moment that |g(z)] < M for every z € R, where M > 0. Because the solid hull
of a topologically bounded set is topologically bounded, a scalar multiple of a topologically bounded set
is topologically bounded and the algebraic sum of two topologically bounded sets is topologically bounded
(613Bf), Ag = [—2w, 2w] + M Q, the solid hull A4; of Ag and A = A; + MQ are topologically bounded. Now
Q* C A. P Take z € Q*. Then there are a finite sublattice I of S and a fully adapted family u = (us)yers
such that |u,| < x1 for o € I and z = S;(u,d(fv)). If I = () then z = 0 surely belongs to A. Otherwise, let
70 < ... < 7, linearly generate the I-cells. For ¢ < n set

w; = f_(vﬂ) - ]F(/UTO) - Z;;Bg(vﬂ) X (U"'j+l - UTJ‘) € [_2w72w] + MQ = Ay

because | f(vy,)| < w, |f(vs,)| < w and |g(v,,| < Mx1 for every j.
For ¢+ < n,

Wit1 — W = -f_(vTi+1) - f_(vﬂ') - g(vﬂ') X (U‘H+1 - UT’i) 2 0.

Now we have

z = Zun X (f(UTH»l) - ‘]F(’U-,—L))
=0

(613Ec)
n—1 n—1
= Zuﬂ x (wi-‘rl - wi) + Zuﬂ X g(vﬂ') X (vTi+1 - UTi)'
i=0 i=0
But
n—1 n—1 n—1
D X (wigr = wi)] < fur | X Jwipr — wi <D wigr — wjl
=0 =0 i=0
n—1
:Zwi+1_wi:wn_w02wn€A0a
i=0

S0 Z?;ol Ur, X (W41 — w;) € Ap; while

n—1 —
Zi:o Ur; X g(v‘l'i> X (UTH»I - UTi) € MQ
because |u,, x g(vs,)| < Mx1 for every i. So z € A1 + MQ = A. As z is arbitrary, Q* C A. Q
Thus in this case Q* is topologically bounded.

(c) For general g, take € > 0. Let M > 0 be such that iJw > M] < e. Define f; : R — R by setting
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fi(z) = f(z) if 2| < M,
J(=M) + (=M — z)g(=M) if 2 < =M,
=f(M)+ (M —x)g(M) if x > M.

Then f; is convex and its right derivative takes values in [g(—M), g(M)] so is bounded.

By (b), there is a § > 0 such that 0(621) < e for every 21 € Qs(f1v). Now take z € Q*. Express z as
Sr(u,d(fv)) where [ is a finite sublattice of S and u = (us)ser is a fully adapted family such that |u,| < x1
for o € I. Set z; = Sr(u,d(f1v)). Then 21 € Qs(f1v) and 6(dz1) < e. But

[21 # 2] € sup [f1(ve) # f(vo)] € sup [Jvg| > M]
cES g€eS

(because fi(x) = f(x) if |z| < M)
C [w > M]

has measure at most €, and
0(0z) < 0(dz1) + pfz1 # 2] < 2e.
This is true for every z € Q*. As € is arbitrary, Q* is topologically bounded, and fv is an integrator.

(d) If v is a local integrator, (a)-(c) show that (fo)[SAT = f(v]S AT) is an integrator for every 7 € S,
so fv is a local integrator.

6160 Corollary If v is a (local) integrator and f : R — R is a function, absolutely continuous on every
bounded interval in R, such that its derivative f’ has bounded variation on every bounded interval, then fv
is a (local) integrator.

proof f is expressible as a difference of two convex functions (6A1B), so fv is the difference of two (local)
integrators and is a (local) integrator.

616P Theorem Let S be a sublattice of T.
(a) Migr(S) is an f-subalgebra of the space My, (S) of moderately oscillatory processes with domain S.
(b)(i) Constant processes are integrators.
(ii) If v € Miger(S) then v[S’ € Migt(S’) for any sublattice S” of S. In particular, v is a local integrator.
(iii) Suppose that v € Mg, (S) and for every € > 0 there is a v/ € Mg, (S) such that v #v'] < e.
Then v € Mg (S).
(iv) If v = (Ug)ges € Mige(S) and 2z € LO(AN (N, cs Ao, then 2v = (2 X v5)pes € Migi:(S).
(v) If v € M (S) then v € Mg (S) iff S AT € Mg (SAT) and v[SV T € Migee (S V 7).
proof (a) We saw in 616Ib that Mg, (S) € Muno(S). Since a sum of topologically bounded sets is topo-
logically bounded, 616Dc shows that Mg, (S) is closed under addition. By 616N, hv € Migtr(S) whenever
h:R — R is convex and v € Mg, (S), S0 Mg, (S) is an f-subalgebra of My,o(S) (612Bc).

(b)(i) If v is constant then Qs(dv) = {0}.
(ii) As in 616Dd, Qs(d(v]S")) € Qs(dv).

(iii) Let € > 0. Then there are a v/ € Mg, (S) such that jifv #v'] < i, and a § > 0 such that
0(0z) < ie for every z € Qs(dv’). Now suppose that z € Qs(dv). Then there is an I € Z(S) such that
z = S1(1,dv). In this case, expressing v and v" as (v,)ses and (V) )ses,

[S:(1,dv") # 2] € supye; [v, # vo] € [ # v]

and
0(62) < 0(5z —6S(1,dv")) + 0(5S;(1, dv"))

< A[Sr(1,dv') # 2] + ée C iy’ £v] + %e <e.
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Accordingly Qs(dv) is topologically bounded and v € Mg, (S).
(iv)

Qs(d(zv)) = {Sr(u,d(zv)) : I € Z(S), u € Mg, (I), sup |u| < x1}
={zx Si(u,dv) : I € Z(S), u € Mg, (I), sup |u| < x1}
(613L(b-iii))
={zxw:we Qs(dv)}.

As Qs(dv) is topologically bounded, and w + z x w : LY — L° is a continuous linear operator, Qs(d(zv)) =
{z xw:w € Qs(dv)} is topologically bounded (3A5N(b-v)) and zv is an integrator.

(v) If v is an integrator, then v[|S A 7 and v[S V 7 are integrators, by (ii) above. On the other hand,
Qs(dv) C Qsar(dv) + Qsy-(dv). P Take z € Qs(dv). Then z is expressible as Z?:_Ol Ur, X (Vg — Vry)
where 79 < ... < 7, in § and u = (u,)ses is a ful;ly adapted process such that sup Ju| < x1 (616C(iii)).
Now for each i < n, v,, = Vrar + Vrvr — U7 (612D(f1)). So if i < n then

/U‘I'i+1 - /07'7; = /UTi+1/\’T - /UTi/\T + v‘l'i+1\/7' - ,U’Ti\/T‘
Define u}, u! by saying that

wp=ur, X X[ <7, uwl =un, x x[r < 7ig1]
Evidently |u}| < x1 and |u}| < x1. By 612C, u} € L%, A,); and since [7 < Tip1] € ™Ay C Apyyr, ull €
LO(QL,-Z.\/T). NeXt,

[r<m]clu,=0

Clu,=0

Nnvr=n]nlrig vV =mna]nu =u,]
N [ug X (Vrvr = Vrivr) = Up, X (Vry, — 0r,)]
C [uf X (Vryyyar = Vriar) + Ui X (Vryyvr = Vrvr) = gy X (Ur, = vr)]
[ri < 7]nr < 7iga] € [ug X (Vrisyar — Vriar) + 65 X (Uryyvr — Ur,vr)
= Uz, X (Uriy1Ar = Urgar + Ur v = Unvr)]
= [ui X (Vriyinr = Vrar) F U7 X (Ur, v = Vrivr) = Ury X (Vryy — 07)]
[riv:s < 7] € [u} = ur, 0 AT=n]0[rigs AT =Tip1] n [u = 0]
C [u] X (Vroinr — Vrinr) = Ury X (Vryy, — vg,)] 0 [ul = 0]
C [ui X (Va7 = Vrar) F Ui X (Vg ve — Vrvr) = Ur, X (Vr, — 0],
so
U; X (Vryyyar = Vriar) U7 X (Vriyvr = Urvr) = gy X (Ur,y, — Ury).

Now if we write

2 = Z?;Ol 'Ll,; X (UTi+1/\7' - sz‘/\T)v

Z// - Z?;Ol U;I X (vTi+1VT - 'UTiV‘r)a
we have 2/ € Qs (dv) (616C(ii)), 2" € Qsv,(dv) and z = 2’ + 2”. As z is arbitrary, Qs(dv) C Qsar(dv) +

QS\/T(dv)' Q
If v|S A7 and v[S V 7 are integrators, Qsa,(dv) and Qsa,(dv) are topologically bounded, so Qs(dv) is
topologically bounded (613B(f-iii) once more) and v is an integrator.

616Q Corollary Let S be a sublattice of 7.

(a) Miigr(S) is an f-subalgebra of the space Mimo(S) of locally moderately oscillatory processes with
domain S.

(b)(i) If v € Mijgtr(S) then v[S’ € Mijgir(S’) for any sublattice S’ of S.
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(ii) If v € Miigi(S) and z € LO(AN N, cs Ao), then 2v € My, (S).
(c) Suppose that u € Mimo(S) and v € Mg (S).
(i) The indefinite integral 74, (u) belongs to Mg (S).
(ii) Let S be the covered envelope of S, and @, ¥ the fully adapted extensions of u, v to S. Then
)

iy (u) = dip(n)[S
(d) Suppose that v € M, (S) and S’ is a covering ideal of S such that v[S" € Mg (S). Then v €
Mligtr<3)-

proof (a)-(b) We just have to apply 616P to v[S AT for 7 € S.
(c)(i) Apply 616J to u|S AT and ¢ = A(w|SAT) for T € S.
(ii) By 615F(b-v) and 616Ta, &t € Mino(S) and & € Mg (S), so iig (@) is well-defined on S. Now if

TES,
fS/\'rudv = fS/\Tﬂd’ﬁ
as in 613T.

(d) If 7 € S and € > 0, there is a ¢ € &’ such that ¢ < 7 and fiJo < 7] < e. Consider the process
v = (Vpno)pesar- By 612Ib, this is fully adapted, while
vV |SAoc=v|SANoc=v|S Ao
is an integrator, and v'[(S A7) V ¢ is constant, therefore an integrator. So v’ € Migi(S A7) (616P(b-v)),
while
[v' #vISAT] = SUPpesar [vone # vo] € SUPpesar [pANo<p]=]o<T]

has measure at most €. As € is arbitrary, 616P (b-iii) tells us that v[S A T € Mgt (S A 7). As 7 is arbitrary,
NS Mligtr(8)~

616R Proposition Suppose that S is a sublattice of 7, and that a fully adapted process v with domain
S is (locally) of bounded variation.
(a) v is a (local) integrator.
(b) Now suppose that v is non-decreasing and that w is a non-negative moderately oscillatory process
with domain S.
(i) If v is of bounded variation then [gudv > 0.
(ii) If v is locally of bounded variation then ii,(u) is non-decreasing.

proof (a)(i) Suppose that v = (v, )ses is of bounded variation. Then {S7(1,|dv|) : I € Z(S)} has an upper
bound Z say. If I is a finite sublattice of S and u = (u,)ser is a fully adapted process with sup |u| < x1,
then

[us X (Vor = v5)| < Vo7 — Vg

whenever o < ¢’ in I, so |Sr(u, dv)| < Sr(1,|dv|) < z. Thus Qs(dv) is order-bounded in L° and must be
bounded for the topology of convergence in measure. So v is an integrator. By 616Ib, or otherwise, v is
moderately oscillatory and order-bounded.

(ii) If v is locally of bounded variation, apply (a) to v[SAT, for 7 € S, to see that v is a local integrator
and therefore locally moderately oscillatory and locally order-bounded.

(b) Recall that by 616K the integral [ u dv is defined.
(i) All the sums S;(u,dv), for I € Z(S), are non-negative, so the limit [¢u dv also is.
(i) If 7, 7' € S and 7 < 7/, then

fSM,ud'v—fSM fs A ud'v>0

616S Theorem Let S be a sublattice of 7 and v a process of bounded variation with domain S§. Then
|Av| is an integrating interval function.
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proof (a) By 613Cc and 613Db, |Av| is a strictly adapted interval function on S. We know that v =
Js|Av| = [ |dv| is defined and an upper bound of {37~ |vr,,, — vr| : 70 < ... < 7, in S} (614J). But
now we see that Qs(|dv|) C [—7,7]. P Take z € Qs(|dv]). If z = 0 then surely z € [0, 9]. Otherwise, there
are a non-empty I € Z(S) and a u € Mg, (I) such that sup |u| < x1 and z = S;(u,|dv|). Take 79 < ... < 7,
linearly generating the I-cells. Then

n—1
|Z| = | Zuﬂ X IUTH»I — Uy
=0

n—1 n—1
< E |u7'i < § |UT7‘,+1 — Uz,
=0 =0

and again z € [—7,7]. Q So Qs(|dv]) is order-bounded, therefore topologically bounded.

X |UT7',+1 — Ur; <v

(b) If S is full, this is already enough to check that |Awv| is an integrating interval function. If S is not
full, then by 614Q(a-iv) the adapted extension ¥ of v to the covered envelope S of S is of bounded variation,

and |A9| must be the adapted extension of |Av| to ST, Since |A®| is an integrating interval function, so is
|Av| (616F).

616T Corollary Let S be a sublattice of 7, and u, v fully adapted processes with domain S.

(a) If u is moderately oscillatory and v is of bounded variation, then [qu|dv| is defined and equal to
f s wdv’, where vT is the cumulative variation of v.

(b) If w is locally moderately oscillatory and v is locally of bounded variation, then the indefinite integrals
i1|ap|(u) and i, (u) are equal.

proof (a) By the definition 6140, v’ = i1 ap|(1), s0 we can apply 616M with ¢ = |Awv]|.
(b) Apply (a) toulSATand v[SAT for 7 € S.

Mnemonic |dv| ~ dv'.

616X Basic exercises (a) Suppose that 7' = [0, oo and that 2 = {0, 1}, as in 613W, 614Xd and 615Xf.
(i) Show that if f : [0,00[ — R is interpreted as a fully adapted process v with domain 7, then Q7;(dv)
can be identified with either |— Var(f), Var(f)[ or [— Var(f), Var(f)] where Var(f) is the total variation of f
(224A). (ii) Show that f : [0, 00[ — R corresponds to an integrator iff it corresponds to a process of bounded
variation iff it is itself of bounded variation in the sense of 224A.

(b) Let S be a sublattice of 7. Show that any simple process with domain S is an integrator.

(c) Let S be a sublattice of 7 and v a fully adapted process with domain S. Show that v is of
bounded variation iff Qs(dv) is bounded above iff Qs(|dv|) is bounded above, and that in this case
Js ldv] = sup Qs (dv) = sup Qs(|dv]). (Hint: 351Dc.)

616Y Further exercises >(a) Let w = (w,),e7; be Brownian motion as described in 612T, based on
the real-time stochastic integration structure (€, 7, (€;)¢>0, T, (€;)re7). (i) Show that w, € L?(¥) for every
o € Ty (hint: 477A). (ii) Show that whenever o < 7 in T and u € L?(#) N L%(€,) then E(u x (w, —wy)) =0
(hint: 477G). (iii) Show that if o9 < ... < 0, in Tp and u; € L®(€,,) and |u;| < x1 for ¢ < n, then ()
E(u; X uj X (Wo,,, — Wo,) X (Wr;,, —wr;) =0 whenever i < j <n (B)

n—1 n—1 n—1
E((Z U; X (waiJrl - wai))Q) = E(Z u? X (w0i+1 - wdi)Q) < ZE((w0i+1 - in)Q)
=0 =0 =0

n—1
= E(wg,,, —w;,) < |ws, |3
1=0

(iv) Show that if 7 € T, then Q7a,(dw) is || ||2-bounded. (v) Show that w[7T, is a local integrator (hint:
613B(f-ii)). (vi) Show that w is a local integrator (hint: 616Qd).
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(b) Find an example in which S is a sublattice of 7, ¥ : ST — L° is a strictly adapted interval
function and Qs(dv)) is topologically bounded but Q¢ (d1)) is not, where S is the covered envelope of S and
1[) : 821 — L0 is the strictly adapted extension of .

(c) Let S be a sublattice of T, u a previsibly simple process with domain S, and v an integrator with
domain S. Show that [sudv is defined.

(d) In the construction described in 613P, show that the process v is moderately oscillatory but not an
integrator.

616 Notes and comments You will have noticed that I have given practically no examples in this section.
It is in fact the case that all three of the central examples in §612 (the identity process, Brownian motion
and Poisson processes) are local integrators. The first and third are easy (614Xe). Brownian motion, as
usual, is more interesting and much more important. Its natural place in the structure of this volume is
in Chapter 62 below (see 622L). But as Itd’s formula (§619 below) would be of no importance without
Brownian motion, or at least something very like it, I have sketched an argument in 616Ya, which I hope
you will tackle straight away. Even if parts are too difficult at the moment, it should be instructive.

We shall be spending a great deal of time teasing out the nature of integrators and integrating interval
functions. An elementary class of integrators, the processes of bounded variation, was treated in §614. This
will take us to the statement and proof of It6’s formula, if not to its most important applications. There will
be some much deeper results about integrators in §622 and §627. But from the abstract definition, we can
see immediately that whether an adapted interval function is ‘integrating’, or a process is an ‘integrator’,
depends on the topology of LY, but not on the measure inducing this topology; as with integration (613I)
and ‘moderately oscillatory’ processes (615E), the property is law-independent.

In 616K-616M, we have the central case in which we can be sure that a Riemann-sum integral |, sudy
or |, sudv is defined; it will be sufficient to suppose that u is moderately oscillatory and ¢ or Av is an
integrating interval function. Compared with 614C and 614S, we have a condition on w which allows very
much more variety, balanced by a strong new condition on v.

In 616M, we have a first example of a phenomenon which will be important on many occasions. Here
we start with an integrating interval function ¢, construct an integrator v = #i,(1), and observe that
f sudy = f s udv for every moderately oscillatory process u with domain §. So in this sense di) and dv are
interchangeable. This is not at all because the interval functions ¢ and Av are the same. For (o,7) € S?T,
we have Av(o,7) = ISO[U,T] di, which only in special cases will be equal to ¥ (o, 7). But in the formulae of
this theory of integration, di) and dv are equivalent, and I will write dy) ~ dv as an aide-memoire.

Let me try to explain the phrase ‘capped-stake variation set’. One of the ways of interpreting a stochastic
integral |, sudy is as the net gain of a gambler who at any stopping time o chooses to wager a stake u,, and
whose winnings over an interval [0, 7] are u, X ¥ (o, 7). (So if ¥ = Aw, he gets u, X (v; — v, ), representing
the gain on betting u, units in a stock whose value changes from v, to v;.) On this formulation, a simple
strategy for w is one which involves only finitely many stopping times declared in advance, like a stop-
loss order. A Riemann sum Sy(u,di)) represents his winnings if he adjusts his stake to follow his strategy
u whenever a stopping time in I is reached; and we count the integral as defined if all sufficiently fine
readjustment schedules give about the same result with high probability. The terms S;(u, dy) calculated in
the formula for Qs(d) are those corresponding to stakes (positive or negative) capped by 1.7

Version of 10.11.21

617 Integral identities and quadratic variations

We come now to proper calculus, with change-of-variable theorems. 617D-617E is a stochastic-calculus
version of the result that if v = fyu is an indefinite-integral measure, then [gdv = [g x fdu (235K).
Similar formulae describe the cumulative variation of an indefinite integral with respect to a process of

"I see that the metaphor is creaking at this point, because few investors cap their investments by the number of shares
they hold, rather than the value of those shares, which would correspond to a bound on us X vs. The Dow-Jones index is
exceptional in this respect.
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617B Integral identities and quadratic variations 123

bounded variation (617G). The next theme is ‘quadratic variation’ (617H). Given two integrators v and w,
the interval function corresponding to dvdw gives the same integrals as a process [v T'w] (6171) which is locally
of bounded variation. In particular, (dv)? mimics dv* where the quadratic variation v* is a non-decreasing
process. Based on this, we have a second change-of-variable theorem (617P-617Q)), using approximations of
moderately oscillatory processes by simple processes (617B).

617A Notation As before, (U, i, T, (%) er, T, (A, )re7) will be a stochastic integration structure. L° =
L°(2A) will be given its topology of convergence in measure, with corresponding F-norm 6 (613Ba). If A C T
andT €T, ANT={cAT:0€ At and AVT ={ocV7:0¢€ A}. If § is a sublattice of T, Z(S) is the set of
finite sublattices of S, M, (S) is the space of fully adapted processes with domain S, M ,(S) C M, (S) is the
space of order-bounded processes and My,o(S) € M,.1,(S) is the space of moderately oscillatory processes.
Ifu = (Uus)oecs € Mo (S), sup [u| = sup,eg |Us|- 1 will denote the constant process with value x1.

617B Lemma Let S be a finitely full sublattice of 7 and u = (u,)scs a moderately oscillatory process.

(a) For each non-empty I € Z(S) there is a unique simple process u; = (us,)ses such that u; has a
breakpoint string in I, u; and u agree on I, and [o < min ] C [ur, = 0] for every o € S.

(b) Complete the definition in (a) by setting ug, = 0 for every o € S. For every integrator v with domain

S,

(i) the indefinite integral iiy(w) is the limit limzqz(s) 74y (us) for the ucp topology,

(ii) [sudv =limpzs) [gurdv in L°.
proof (a) Take (79,...,7,) linearly generating the I-cells, and let u; = (ur,)scs be the simple process
defined by the formulae of 612Ka applied to 79,...,7Tp, Ury,... ,ur, and u, = 0. Then u;,, = u,,. For
i< n,

[[ufﬁ' = u”]] 2 [[Ti < Ti-‘rl]] U ([[Ti = Ti-‘rl]] n [[ulTiJrl = uﬂ]])
= [[Ti < Ti+1]] U ([[Ti = Ti+1]] N [[UITi+1 = u7i+1]])

so a downwards induction shows that [ur,, = u,,] = 1 for every ¢ < n. Since {; : ¢ < n} covers I (611Ke),
uy agrees with w on I. Also

[o <minl] = o < 70] C [urs = 0]

by the choice of u,.
To see that u; is unique, use 612Kb to see that (79,... ,7,) must be a breakpoint string for any process
satisfying the conditions.

(b)(i) If S is empty, the result is trivial; suppose otherwise. Let € > 0. Let 6 € ]0, 1] be such that 4v/§ < e.
By 615F (a-iii), u is order-bounded and sup |u| is defined in L% let n > 0 be such that (z x sup |u|) < &
whenever z € L and 6(x) < . As v is moderately oscillatory (616Ib), lim,+s v, is defined; let 7% € S be
such that 6(v, — v,r) < 1 whenever ¢, ¢’ € SV 7*. Since [gudv = limyz(s) S(u, dv) is defined (616K),
there is a K € Z(S) such that 7* € K and 6(S;(u,dv) — S;(u,dv)) < § whenever I, J € Z(S) include K.

Take I € Z(S) such that K C I, and 7 € S. Then 0(Sia-(u,dv) — [5, udv) < 26 (613V(ii-3)). Also
O(Sinr(u, dv)— [, urdv) < 6. B Write ugy, v, for limy s uss, limg s v, respectively, If (7o, ... ,7,) linearly
generates I, then (79 A7,...,7, A7) linearly generates the (I A 7)-cells (611Kg) and (7o AT,... ,7n AT, T)
is a breakpoint string for u;[S A7 (612K (d-ii)), so we have

SI/\T(IU') d’U) = Z?;ol Urnr X (vr,;+1AT - Un/\’r)a

n—1
/ U]d’l) =ur, X (UT()/\T - UL) + § UL A X (’UT,'+1/\T - 'U‘r,i/\T)
SAT i=0

+ UL, 1, AT X (UT - UTn/\T)

(613Ec, 614C). Now
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urp X (Vrgar —v)) = }Tlg Uro X (Vrgar — Vo) = ushAr?oM Uro X (Vrgar — Vo)

- aJ,«Sl'i/\r‘Irlo/\r Us X (UTO/\T - UU) X X[[U < TO]] =0

because we chose u, to be 0 in the definition of u;. Next, for each i < n,
[[Ti < T]] c IIUI,‘Q/\T = uITi]] N [[un/\T = un]] - [[ul,Ti/\T = uTi/\T]])
[r<n]clrigi AT=7AT] C [Ur,sinr — Vrnr = 0],
SO U ar X (UTi+1 AT T Un/\‘r) = ULmar X (U7i+1 AT T UT@/\T)' ACCOI‘diDgly
fS/\T urdv — Star (ua d’l)) =ULr AT X (UT - U‘rn/\‘r) = UL roAT X (vT\/Tn - UTn)
(612D(f-i)), and
a(fS/\r urdv — Siar(u, dv)) < O(sup |u| X [vryr, —vr,]) <9

because 7* < 7, < 7V 7, and O(vrvr, —vr) <. Q
Consequently

udv) + 0(Siar(u, dv) — / ur dv)

SAT

o( /S (u—u)dv) < O(Siar(u,do) - /S
< 4.

AT

We know that ii, (u —uy) is fully adapted and order-bounded (613J(e-ii), 616J, 616Ib). We are assuming
that S is finitely full, so if we set

Zr = SUP,cs |fSAT(u —uy)dv|

then 0(z;) < 2v/45 < € (615Db).
This is true whenever K C I € Z(S). So

lim sup 4. O(sup |4y (w) — 7iy (ur)|) = limsup45 0(2r) <.
Bu € was arbitrary, so i, (u) = limys iiy (ur).

(ii) Here we have only to intercept the argument of (i) to see that

0(/8(u —ujy)dv) = lTlTrgﬁ(/SA (u —uy)dv)
(613J(£-ii))

<4V/§<e

whenever K C I € Z(S). So limyz(s) [surdv = [sudv.

617D Theorem Let S be a sublattice of T, ¢ an integrating interval function on S, and u, z moderately
oscillatory processes with domain S.

(a) 21, as defined in 613D, is an integrating interval function on S.

(b) Set w = 4iy(2). Then w is an integrator and

fsud(qu)) = fs" x zdp = fsudw.

proof (a)(i) Suppose to begin with that S is full. Then 21 is strictly adapted (613D). Now S;(y, d(zv)) =
Sr(y x z,dy) whenever I € Z(S) and y = (Y, )oes is fully adapted. P If ¢ = ¢(o,7) is a stopping-time
interval with endpoints ¢ < 7 in I, then

Ac(y, d(z¢)) = yo x (20)(0,7) = Yo X 20 X Y(0,7) = Ac(y X 2, dV));

summing over the I-cells, we have the result. Q
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In particular, S;(1,d(2%)) = Si(z,dy) for every I € Z(S), and
[ d(z0) = limpyzs) Si(1, d(2¢)) = limpz(s) Si(z, dop) = [z dy

is defined. Write z for sup |z|. Given € > 0, there is a § > 0 such that 6(S;(y, dy)) < § whenever I € Z(S),
Yy € Mg, (I) and O(sup |y|) < 6. Now there is an n > 0 such that (z x =) < ¢ whenever z € L°(2) and
0(x) <n. If we now take I € Z(S) and y € My, (I) such that O(sup |y|) < n, we have sup |y x z| < @ x sup |y|,
S0

O(sup ly x z]) < 0(z x suply|) <6
and
0(Si(y, d(z¢))) = 0(S1(y x z,d¢)) < e.
Thus Qs(d(21)) is topologically bounded, and z1) is an integrating interval function.

(ii) Generally, we have the adapted extension 1& on the covered envelope S and the fully adapted
extension 2 to S; as 1/3 is an integrating interval function and % is moderately oscillatory, (i) tells us that 21&
is an integrating interval function. But 21[) extends zv, so is the adapted extension of 21 to S’”, and 21
also is an integrating interval function.

(b)(i) As noted in (a-i), we have Sy(u,d(2v)) = Sr(u x z,dy) for every finite sublattice I of S; taking
the limit as I 1+ Z(S), [qud(zv) = [gu x zdy. Applying this to SAT withu =1, [5, zdy = [, d(z1))
for every T € S.

(ii) By 616J again, w is an integrator, so 616K assures us that fs'u,d'w is defined. Expressing w as
(Wo)oecs, we see that w) = lim, s w, is 0 (613J(f-ii)) so

fS/\T dw = wr — Wy =wr = fS/\TZdw = fS/\T d(zw)
for every 7 € S. By 616M,
fsud'w = fsud(zw).

Mnemonic d(iiy(2)) ~ d(zv).

617E Corollary Let S be a sublattice of 7, u, z moderately oscillatory processes with domain S, and
v an integrator with domain S. Set w = iiy(2). Then [qudw = [qu X zdv.
Mnemonic d(iiy(2)) ~ z dv.

617F Lemma Let S be a sublattice of 7, z a moderately oscillatory process and v a process of bounded
variation, both with domain S. Write w for iiy(2). Then w is of bounded variation and [ |dw| = [ |z||dv|.

proof (a) If S is empty, this is trivial, so let us suppose otherwise. Express v, z as (Us)oes and (z,)ses-
We know that v is an integrator (616Ra), so w is well-defined; for 7 € S, write w, = fsmzd'v. By
616T, fs |z||dv] is defined. To get started, note that if z is non-negative and v is non-decreasing, w will be
non-decreasing (616R(b-ii)), and we shall have

fs|dw| = fsdw = fszdv = fs |z||dv|
by 617E.
(b) We need a couple of elementary formulae.
(i) If U is a Riesz space and u, v € U, then, using identities in 352D,
utv=uAv+(u—v)T+urv+(v—u)T =2uAv)+|u—1,
lu = <ful + o] = 2(lul A |o]) + [Jul = [ol] < 2(ju| A o)) + |u —o].

(ii) If &, y are processes of bounded variation with domain S, then applying (i) in the Riesz space
21
(L%)®

)
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Az AN Ay = = (Az + Ay — |Az — Ayl).

1
2

Now z — y is of bounded variation (614Q(a-ii)) so Az, Ay and Az — Ay are integrating interval functions
(616Ra, 616Ic). By 616S, |Az— Ayl is an integrating interval function so Az AAy = 1 (Az+Ay—|Az—Ay|)
also is (352D, 616Ga).

Writing dz A dy for d(Az A Ay), in the spirit of 613F and 6131,
S1(Ld(z +y)) = S1(1,[d(z —y)[) + 25:(1,dz A dy)

for every finite sublattice I of S, and [ dx A dy is defined and equal to %(fs dx + [gdy — [ |d(x —y)|).
Similarly,
Az —y)| < |Az| +|Ay| < [A(z —y)| + 2(|Az| A |Ay])
and
Si(1,]d(z —y)]) < Sr(1, |dz|) + Si(1, |dy|) < Si(1, |d(x —y)|) + 2511, [dz| A |dy|)

for every I € Z(S), so if [q|dz| A |dy| =0 then [q|d(x —y)| = [s|dx| + [5|dy|.
(¢) Next, suppose that S is full and v is non-negative and non-decreasing.

(i) Writing 27 = (2 )ses for 2V 0 and 27 = (2, )ses for (—2) V 0, both [;zTdv and [z~ dv are
defined. Set & = iiy(2T) and y = #iy(27); then w = z — y while  and y are of bounded variation. Now
Jsdx Ady=0. P Let € > 0. Then there is an I € Z(S) such that

O(Ss(zt,dv) — Sk(zT,dv)) <e, 0(S;(z7,dv) — Sk(z7,dv)) <e

whenever I C J, K € Z(S). Take any non-empty J € Z(S) including I, and a sequence (79, ... ,7,) linearly
generating the J-cells. For each i < n, a; = [z, > 0] belongs to A,, C A so we have a 7/ € T such that

Ti419

a; C[ri =7], 1\a; C[1] = Tit1]

(6111); as S is full, 7/ € S, while 7; < 7/ < 7;41. Let K be the (finite) sublattice of S generated by
JU{r! :i <n}; then K is included in the sublattice

{o :med(r;,0,7i41) € {7i, 7}, Tix1} for every i < n},

so {70,761y T} _1,Tn} i a maximal totally ordered subset of K and (79,7(,T1,... ,75_1,Tn) linearly
generates the K-cells.

For each ¢ < n,

[vry # o] € [mi < 7] Cai C [z, = 0],
[oriss # vl € I < 7ial € W\ ai) n[rf = 7] < [2], = 0].

So we have

0 < S;(1,dz A dy) = Sk(1,dx A dy)

(because J C K and J covers K, see 613S)
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n—1

= Z Ac(n,ri’)(l7 dz A dy) =+ AC(T,Z7TI'+1)(1? dx A dy)
=0
n—1

S Z Ac(‘ri,fi’)(lv dy) + AC(T{,Ti+1)(17 d.T)
=0

n—1

= Z/ z*dv—i—/ ztdv
i—0 Y SN[7i,7/] SN[r!,miy1]
n—1

= Z/ 27 dv — 2, X (v —vr,)
i—0 SNir;,7!]

+ +
+/ z27dy -z, % (Vi — 0r7)
SN[7},7iqa] ‘
n—1

= Z/ z dv — SKﬂ[n,‘r{] (27, d’l))
i—0 Y SN[7i,7]] )

+ / 2t dv — Sknpr, (21, dv)
Snlri,7!] ‘

and

n—1
0Ss(Ldendy) <03 [ 2 dv = S )
SN

1=0 [7—%7—{]
n—1
+ Q(Z / Z+d’l) - SKO[T,i,T{](z+7 d’U))
i=0 Sﬁ[‘l’{,‘l‘i+1]

< 2e¢

(613V(i)). This is true whenever I C .J in Z(S); as € is arbitrary, [¢dz Ady =0. Q

(ii) By (b),
/|dw|:/dm+/dy72/dm/\dy
s s s s
:/z+d'v+/z’dv:/|z|d'v:/ |z||dv],
s s s s

and we have the required result when S is full and v is non-decreasing.
(d) Next suppose only that S is full.
(i) Let v" be the cumulative variation of v (6140) and set
vi =30 +v), T=1iiy(2), va=30"—v), y=iiy(2).
Then vy and vy are non-decreasing (614P(a-iii)), and
v, —vo=v, w=x-—y, v +vy=0'
Express v1 and @ as (V15)0es, (To)oecs respectively.

(ii) By (b) above and 616Ta,

2/d’ul/\dv2:/dv1+/dvz—/|d”|
s s s s
s s

Set Zz=sup|z|. f 0 < 7in S and e = ¢(o, 7) is the corresponding stopping-time interval, then

127
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\Ae(z,dvl)| = |ZG| X (’UlT — Ulg) <ZzZx Ae(].,’l)l).
So |S1(z,dv1)| < Z x S;(1,dvy) for every I € Z(S). Again, if e = ¢(o,7) is a stopping-time interval with
endpoints in S,
[Ac(1,dx)| = |xr — 25| = | z dv |
SNlo,7]
SZX/ d'vl:2><(vh.—vlg):ZXAe(l,d'vl).
SN[o,7]

Thus |Az| < Z x Av;. Similarly, |Ay| < Z x Avy. But this means that |Az| A |Ay| < Z X (Avy A Avy).
Consequently

0< S](]., |d$| A ‘dy‘) <zZx S[(l,d’l)l /\d’l)g)
for every I € Z(S), and in the limit
0< f8|da:|/\|dy| <zZx fsd'ul/\dvg =0.

(iii) Returning to the formulae of (b), we see now that

/ dw| = / dz| + / dy| = / l2]dv, + / 2],
S S S S S
— [ Jzlao” = [ Jzlao]
S S

(e) Finally, if S is not full, let S be its covered envelope and 2z, ¥ the fully adapted extensions of z and
v to S. Then 2 is moderately oscillatory (615F(a-vi)) and # is of bounded variation (614Q(a-iv-43)), while
the fully adapted extension w of w is 4i3(2) (616Q(c-ii)). Since A is the strictly adapted extension of
the interval function Aw, |AD| is the strictly adapted extension of |Av| (613U(b-ii)); similarly, |Aw| is the

extension of |Aw|. Now
/|dw|:/d|Aw|:/d|Aﬁz|
S S S

— [ law| = | Jaljds
S S
— [ Izl

S

(by (c))

by 616Ta again in its full strength.

(613T)

((d) above)

and we have the result in the general case.

617G Theorem Let S be a sublattice of T, u and z moderately oscillatory processes and v a process of
bounded variation, all with domain S. Write w for #i,(2), and v', wT for the cumulative variations of v and
w. Then

fsudwT:fsu\dw\:fSux |z\|dv|:f3u>< |z| dv'.

proof By 617F, w is of bounded variation. Let T, w" be the cumulative variations of v and w. If 7 € S,
then
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/ dwT:/ |dw|
SAT SAT
— [ el
SAT
:/ |z|dvT.
SAT

So w' = iiyt(|2]). By 617E, [qudw’ = [qu x |z]dv?, while [qu|dw| = [qudw’ and [ju x |z||dv| =
Jsu x |z|dv" by 616Ta yet again.

(616Ta once more)

(617F)

Mnemonic d(iiy(2)") ~ |z|dvT.

617H Quadratic variation Let S be a sublattice of 7, and v, w local integrators with domain S.

(a)(i) If v and w are integrators, then the strictly adapted interval function Av x Aw on S (613Da) is
an integrating interval function. B As observed in part (a) of the proof of 613M,

Av x Aw = A(v X w) — vAw — wAwv.

Now v X w is an integrator (616Pa), so A(v x w) is an integrating interval function (616Ic), while vAw and
wAv are integrating interval functions by 617Da. So Av x Aw also is, by 616Ga. Q

(ii) In any case, Av x Aw is a locally integrating interval function (apply (i) to v[S A 7T, w[S A T for
TEeS).

(b) The covariation of v and w is the indefinite integral
[ w] = dinvxaw(1).
When w = v, we say that v* = [v]v] = ii(ay)2(1) is the quadratic variation of v.
(c) Note that as
(v,w) — Av x Aw
is bilinear, so is (v,w) — [v]w].

6171 Theorem Let S be a sublattice of T, v, w two integrators and u a moderately oscillatory process,
all with domain S. Then ['vT'w] is an integrator and

fsud[va], fsud(vxw)—fsuxvdw—fsuxwdv, fsud'vdw
are defined and equal.

proof Because Av x Aw is an integrating interval function (617H(a-i)), its indefinite integral [v[w] is an
integrator (616J once more). Now

fsud(vAw) = fSu x vd(Aw) = fsu X v dw

by 617Db. Similarly, [qud(wAv) = [su x wdv, while [gudfv[w] = [sud(Av x Aw) by the other part of
617Db. Of course [gud(v x w) = [qud(A(v x w)) and [qudvdw = [qud(Av x Aw) by the definitions in
613L. Since

Av x Aw = A(v x w) — vAw — wAv,
fsud[va]:fsud('vxw)—fsuxvdw—fsuxwdv:fsudvdw.
Mnemonic dfv [w] ~ d(v x w) — v dw — w dv = dvdw.
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617J Corollary Let S be a non-empty sublattice of 7 and v an integrator with domain S. Let v* be
the quadratic variation of v.
(a) v* is an integrator, and if u is a moderately oscillatory process with domain S then

fsudv*, fsud(UQ)—QfSuxvdv, fsu(d'v)2
are defined and equal.
(b)(i) Expressing v* as (v}),es, lim, s vi =0.
(i) v* is non-negative, non-decreasing and order-bounded.
(c) If w is another integrator with domain S, then [v]w] is of bounded variation.

proof (a) This is immediate from 6171 and the definition of v* as [vTv}.
(b) (i) Immediate from 613J(f-1).

(ii) Express v as (Vy)pes. If 7 < 7' in S, then

* * __ * __ 2
Vpr = V7 = fSﬁ[T,T’] dv* = fSﬁ[T,T’](dv) ’
But looking back at the definitions in §613, we see that
(Av)*(c(a,0")) = (vgr = v5)* > 0

for every stopping time interval ¢(o,0’) with endpoints in S, so S;(1, (dv)?) > 0 for every I € Z(S) and
fSﬂ[‘r ) (dv)? > 0. So v* <v. As 7 and 7/ are arbitrary, v* is non-decreasing.
As v* is an integrator, vi = lim;ys v} is defined; as v*

and v* is non-negative and order-bounded.

is non-decreasing, vj < vy < o} for every 7 € S

(c) By 614J(i), v* is of bounded variation. Similarly, w* and (v + w)* are of bounded variation. Since
covariation is bilinear (617Hc),

* 1 * * * 1 * * *
[v]w] 25([v+w‘v+w] —[v]v] = [ww]) :5((v+w) —v* —w*)
is a linear combination of processes of bounded variation and is of bounded variation (614Q(a-ii)).
Mnemonic (dv)? = d(v?) — 2v dv ~ dv*.
617K Remarks Let S be a sublattice of 7 and v, w local integrators with domain S.

(a) Applying 6171 to S A T, for 7 € S, we see that
Gy 1) (1) = Gy can () — g (10 X ¥) — Gy (10 X W)

for every locally moderately oscillatory 4 with domain S. Taking u =1,

v Tw] = Z.i['u Ik (1)

(using 613N and 617.J(b-i))

= iy xap (1) — digy (V) — iy (w);

taking v = w,
V* = diy2(1) — 2iiy (v).
If S is not empty,
wiw] =v xw — (v X wy)1 = iiy (V) — iiy(w), v =0>—v]1 = 2iiy(v),
where v; and w; are the starting values of v and w, by 613N again.

(b) Immediately from the definition in 617H, [v[S A TT'w[S AT = [vT'w] IS AT for every 7 € S. We also
have a formula for [v[S V TT'w[S V7l if 77 € SV 7, then
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f(S\/r)Ar dvdw = fSn d"’d'w fS/\T' dvdw — fS/\T dvdw,

0
WISV TiwSV 7] = (vjw]ISVT) - 21
where 2 =[5, dvdw € L°(2,) is the final value of [v]w][S A 7. When w = v, this becomes
v ISVt =014 (v[SVT)*

where v} = [, (dv)?.

(c) A perfectly elementary fact which it is worth having out in the open is that if v — u is constant then
the interval functions Au and Av are equal, so (Au)? = (Av)? and u* = v*.

617L Corollary Let S be a sublattice of 7 and v a local integrator with domain §. Let v* be the
quadratic variation of v. Then v* is non-negative, non-decreasing and locally of bounded variation. If w is
another local integrator with domain S, then ['va] is locally of bounded variation.

proof Apply 617J tov[S AT for 7 € S.

617M Proposition Let S be a sublattice of 7 and v, w local integrators with domain S. Then [v Tw}Q <
v X w*.

proof Of course this is just a form of Cauchy’s inequality. I think it relies, however, on something not spelt
out in Volume 3.

(a)(i) Suppose that a, 3, v € R are such that £2a + 2¢n8 + n?y > 0 for all real £, . Then o > 0, v > 0
and 82 < ay. P Taking € = 1, n = 0 we see that & > 0. If o = 0 then n?y £ 213 > 0 for every n > 0, so
18] < 3y for every n > 0 and 3% = ay = 0. Similarly, v > 0 and if v = 0 then 2 = .

If a, v > 0 then, taking £ = \/y and n = £\/a, we have 2oy = 2\/a,/78 > 0, so |\/ay3| < ay and
B2 < ay, as required. Q

(ii) If (9, X, p) is a probability space and f, g, h : @ — R are measurable functions such that, for any
&, neR, Ef +2tng +n?h > 0 almost everywhere, then f > 0 a.e., h > 0 a.e. and g2 < f x h a.e. P The
set Q of w € Q such that €2 f(w) + 2¢ng(w) + n*h(w) > 0 for all rational £ and 7 is conegligible. Now, for
w € Qq, E2f(w) + 2&ng(w) + n?h(w) > 0 for all real &€ and 7, so (i) tells us that f(w) > 0, h(w) > 0 and
g(w)? < f(w)h(w). As Qy is conegligible, f >0, h > 0 and ¢g? < f x h almost everywhere. Q

(iii) If u, v, w € L% are such that &2u + 2&nv + n?w > 0 for all real &, 1, then u > 0, w > 0 and
v? < uxw. P Express 2 as the measure algebra of a probability space (€2, %, ), identify LO(() with L°(u),
take measurable functions f, g, h such that f* =, ¢* = v and h* = w, and apply (ii). Q

(b) Now the proposition follows at once from (a-iii) if we observe that, for any 7 € S and £, n € R,
& [o, ()3 +26n [ dvdw+n?[, (dw)*= [, (dz)*>0in L°

where z = £v + nw is a local integrator.

617N Proposition Let S be a sublattice of 7, and v, w local integrators with domain S. Let 9, w be

their fully adapted extensions to the covered envelope S of S. Then [0 ‘w] is the fully adapted extension of
[v "w] to S. In particular, the quadratic variation of ¥ is the fully adapted extension to S of the quadratic
variation of v.

proof By 616Ia, v and w are local integrators. Of course Av x Aw extends Av x Aw just because v extends
v and w extends w. If 7 € S, then [g, d(A® x Aw) is defined, so is equal to [g, d(Av x Aw) (613T, as
S A7 is the covered envelope of S A 7). Thus [v ‘w] [0 ‘w} IS and [’f)Tﬁ)] is the fully adapted extension of
[vjw] to S.

6170 Examples Suppose that T = [0, co].
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(a) Let ¢ = (tr)re7; be the identity process (612F). Then its quadratic variation ¢* is zero. P ¢ is
non-negative and non-decreasing, therefore locally order-bounded (614Ic) and locally of bounded variation
(6141d) and a local integrator (616Ra). So ¢* is well-defined; express it as (.})re7,. Take t > 0 and m > 1,

and set 7; = %, the constant stopping time at %, for i < m; let I be any sublattice of T A f containing 7;
for every i < m. If e is an I-cell, then e is expressible as ¢(o,7) where 7; < 0 < 7 < 7311 for some i. Now

Ac(1,(de)?) = (tr = 15)? € (1 = 1g) = — A (1, o).

m

Summing over e,
t t
Sp(1, (de)?) < ;Sl(l,dl,) = i
Taking the limit as I 1 Z(7T A ),

— 2 1,
;= fTA{(dL) < i

As t and m are arbitrary, (X = 0 for every constant stopping time 7. Since ¢* is non-decreasing, ¢* = 0 for
every T € Tp. As Ty is a covering ideal of 7y (611Ne), ¢* must be the zero process (612R). Q

(b) Let v = (v;)re7; be the standard Poisson process, based on the structure (2,3, u, A, fi, (2A¢)1>0)
described in 612U. Then v is equal to its quadratic variation v*. I® v is non-negative and non-decreasing,
so v* is well-defined. Express v* as (v¥)rc7;. Let (Tn)nen be the sequence of jump times of v, as in
612Ue-612Uf, so that 79 = min 7T, sup,,cy 7n = max 7T and

[ve =n] = [mn < o] n o < Tnt1]
for every n € N and o € 7.
Given 7 € Ty and € > 0, there is an n € N such that a = [7 > 7,,] has measure at most €. Set
J ={r A7 :i<n} and take any sublattice I of T A 7 including J. If e is an I-cell, e is expressible as
¢(o,0’) where either 7; A7 <o <o’ <741 AT for some i <n, or 7, AT <o < ¢’ <7.In the first case,
[ve #vo] C o <] Cn<olnfo < mgi]nlo’ < 7]
C e =i]nve <i+1] C [ver — v € {0,1}] = [(vor — v5)? = Vor — V5]

But this means that we actually have (v, — v5)? = vor — v, and A.(1, (dv)?) = A.(1,dv). In the second
case,

[ve #vo] S <T]=ua

and

[Ac(1, (dv)?) # Ac(1, dv)] C a.

Thus we have

[Ac(1, (dv)?) # A(1,dv)] C a
for every I-cell e, and consequently

[S7(1, (dv)?) # S;(1,dv)] C a.
Taking the limit as I 1 Z(T A T),

[v; # o] = [f,, (w)* # [ _dv]ca

has measure at most €. As ¢ is arbitrary, vX = v,; as 7 is arbitrary, v* =v. Q

617P A more elaborate result of the same kind as 617E can be proved by the methods here.

Lemma Let S be a full sublattice of T with a greatest element, z a moderately oscillatory process and v,
v’ integrators, all with domain S. Set w = iiy(2). Then [gdwdv' = [szdvdv'.

pI'OOf Express Z, ’U, ’U/a w as <ZO'>O'ES; <UG'>U€37 <’U(/j'>0'€87 <w0'>0'68-
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a C()Ilsi(ieI fiIS( the case in WhiC}l z is SiIIl[)le, Wi(}l S(aI(iIlg Vallle z 311(1 bIeak[)()iIl( S‘Iillg T05 -+ yTn
+
where Tn, — INax S Then

We = 2 X (Ve —vy) for o < 7,
=w;, + 27, X (Vg —vy,) fori<mnand 7, <o < 7,
soif o <7in S,
(Aw x Av')(0,7) = 2| X (Av x Av')(0,7) = 2, X (Av x Av')(0,7) if T < 79,
= 2., X (Av X Av')(0,7) = 2, X (Av x Av')(0,T)
ifi<nand 7, <o <7< 7Ti41.

Consequently
! /
fSATO dwdv' = fs/\To zdvdv',

I = !
me[rimH] dw dv —fsm[7i77i+l]zdvdv

for i < n, and

fsdwdv’:fszdvdv’.

(b) Generally, for I € Z(S), let 21 = (21, )ses be the simple process with breakpoints in I agreeing with
zon I as in 617B, and set w; = 44y (27). Then we know from 6171 and (a) here that

fsd(wj xv’)—fswldv’—fsv’dwf:fsdwjdv’:fszfd'vdv’.

c)(i) Since 0 is the starting value of w; and therefore of w; x v’ dwr X V') = Wrmaxs X V' for
( )( ) g v JS max S
each I € Z(S), and

lim dwy xv') =/ X lim Wrmaxs = V. x lim zZrdv
nzs) Js ( I ) max S 1Z(S) I'max S max S nz(s) Js 1

= v;naxS X / zdv = v;naxs X Wmax S = / d(w X ’l)/).
S S
by 617B(b-ii).

(ii) Next, we know from 617B(b-i) that w = 7iy(2) is the limit ucplim (g 9iy (21) for the ucp topology
on My, (S). Consequently [¢w dv' = limyz(s) [gwrdv’ (6167).

(iii) By 617E,
fsv’dwl = fsv’d(iiv(zl)) = fsv’ X zrdv = szId(ii,,(v’)),
and similarly [¢v'dw = [¢zd(iiy(v')). But this means that
limzyz(s) fsv’d'wl :fs'v’d'w
by 617B(b-ii) again.
(iv) On the other side, using the other part of 6171,
limyy7(s) fszjd'vdv’ = limyy7(s) fs zrdp|v'] = fs zdfv V'] = fszdvdv’.

(d) Assembling these, we find that

/dwd'v’:/d(wxv’)—/wdv’—/v’dw
S S S S

lim (/ d(wlxv’)—/wfdv'—/'v'dwl)
nIs) Js S S

= lim zfdvdv’:/zdvdv’7
NZ(8) Js s

D.H.FREMLIN



134 The Riemann-sum integral 617P
as claimed.

617Q Theorem Let S be a sublattice of T, u, 2z and 2’ locally moderately oscillatory processes with
domain S, and v, v’ local integrators with domain S. Set w = i1, (2), W' = i1y (2').
(a)(l) [wT'U/] = ii[vTv’]( )’ 7;i['wTv’](u') = Z.i['vT'v’](’u' X Z).
(ii) [wiw'] =i [v‘v](z x 2'), ii['wT'w/]( ) = zz[v‘v](u x zx2z).
(iil) W* = @y~ ( 2), i (0) = diye (u X 22).
(b) If u, z and 2’ are moderately oscillatory and v, v’ are integrators,

fsudwdw’:fsuxzxz’dvdv’, fsudw*:fsuxz,'?dv*.
proof (a)(i)(a) Suppose to begin with that S is full. Take any 7 € S. Then 617P tells us that
fSAT dw dv' = fSAT zdvdv' = fSAT zdp|v'].

But this means that the indefinite integrals [wT'v'], ii[vTU,}(z) are equal.

(ﬂ) In general take S to be the covered envelope of S and 2, ©, ¥’ and @ the fully adapted extensions
of z, v, v and w to S. Then 1 = iig(2) (616Q(c-ii)), so

] K 1= ii[ﬁ"‘ﬁ'](é)
and
[wiov] = [wiv]1s
(617N)
Iy (2)[S = iigg ‘ 15 (%)

(613T again)

(v) By 617Db,

Jopwidtw (o) = [ wdiiyra(@) = [, ux zdpio)

for every 7 € S, that is, Ty o] (w) = q(u x 2).

(ii) By (i),

ZZ[’UT’I)

[’LU ‘w/] = [’wlT’w] = Z'Z.['u’ T’w] (zl) = ii[wTv’](z/)
= ’él’[v*“v/](zl X z) = ii[v"fv/] (z X Z/).
It follows, just as in (i) above, that

zz[wTw,](u) = Ty o) (uxzx2).

(iii) This is now just the special case v/ = v, 2’ = z of (ii).

(b) Since [v]v'], w, w’, [w]w'], v* and w* are all integrators (616J yet again, 6171), all the integrals are
defined and

/udwdw’:/ud[w\w} = lim udw [w'] = lim uxzxz dv|v
s s S Jsar ™S Jsar

:/uxzxz’d[vTv’]:/uxzxz’d'vdv’.
s S
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Taking v’ = v, 2/ = z and w’ = w the formulae simplify to [sudw* = [gu x z2dv*.
Mnemonic dw [w'] ~ dw dw’ ~ (z dv)(2'dv’) ~ z x 2’ dv dv’ ~ z x 2’ dlvv'].

617R Proposition Let S be a sublattice of 7 and v a process with domain S which is locally of bounded
variation. Then v and its cumulative variation have the same quadratic variation.

proof (a) I begin with an elementary fact about f-algebras which was left as an exercise in §352%. Suppose
that u, v € L°. Then u x v = (uAv) x (uVv). P

uxv=(uAv)+ @u—-v)")x(uAv)+ (v—u)h)
(352D)
=wAv) X (uAv+ (u—v)T +(v—u)t)
(because (u —v)T A (v —u)T =0, by 352D again, so (u —v)* x (v —u)T =0, by 352W(b-i))
= (uAv) x (uVo)

(352D once more). Q

(b) Suppose for the moment that v is actually of bounded variation. Express v as (v,)secs and its
cumulative variation as v = (v]),es. Set

vi =30 +v), ve=10"—0),

so that v; and vy are both non-decreasing processes (614P(a-iii)), v = v; — v and v" = v; +vy. Let ¢ be
the interval function Av" — |Av| with domain S2'; then

fS/\r dyp = fS/\‘r dv’ — fS/\-r |dv] = vt — fS/\T jdv] =0
for every 7 € § (6140). Note that if ¢ < 7 in S then
P(o,1) =vl — vl —|v, —v,] >0
(614P(a-i)) and, expressing v1 as (V15)secs and vz as (Vs )ses,
Yo, 1) = (vl — vl + v, —v,) A (V] — v — v Fu,) = (201, — 2v15) A (202, — 2va,);

consequently

(Ul‘r - vlo‘) X (U2T - v2o) = ((UIT - Ulo) A (U2T - UQU)) X ((UlT - vlo) \ (UZT - /UQO'))
(by (a))

< (('Ul-r - 'Ulo) A (var — U20)) X 20 =0 X Y(o,T)

where ¥ = 1 (sup |v1] + sup [vs]). But this means that
0 < Sr(1,dvidvy) < 0 x Sp(1,dy) for every I € Z(S),

0< fSMdvldvg <7 X fSde =0 for every T € S
and [vy T'vg} = 0. Accordingly the quadratic variations
(vT)* = [vTTvT} = vy +v2Tv1 + o] = [vg Tvl] + 2[4 Tvg] + [vQT'vg}
= [’UlT’Ul] - 2[’111T’l)2] + [vg |v2] =
are equal.

8Later editions only.
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(c) Now the general result follows at once because

(’UT)* [SAT = ('UT[S AT

(617Kb)

= (WIS AT
(614Pb)

= @W|SAT)"
(by (b))

=v*|SAT

for every 7 € S.

Mnemonic |dv|? = dv?.

617X Basic exercises (a) Let z be a locally moderately oscillatory process and v a process locally of
bounded variation with the same domain. Show that i, (2)" = 7iyt (|2]).

(b) Suppose that T' = [0,00[ and A = {0,1}, as in 613W, 615Xf and 616Xa. Let f : [0,00] — R be a
cadlag function such that f1]0,¢] is of bounded variation for every ¢ > 0. Let v be the corresponding process
on 7y and v* its quadratic variation. Show that »* corresponds to the function g : R — R defined by saying

that g(t) = > . o<, (f(s) — limyrss f(s))2.

(c) Let S be a non-empty sublattice of 7, v an integrator with domain S, and z a member of L°((, cs Ao )-
Show that if v* is the quadratic variation of v, then (using the language of 612D (e-ii)) z?v* is the quadratic
variation of zv.

(d) Supposing that T' = [0, 00|, take ¢ = (t;)re7; to be the identity process. Show that

_ 1o
fTATLdL— 5T

for every T € Ty.

>(e) Let v = (v;)re7; be the standard Poisson process. Show that

1
fTAT'vd'v = 5(@3 — ;)

for every T € Ty.

617 Notes and comments There is a lot of meat in this section. We have already seen the relatively
straightforward, but obviously fundamental, fact that indefinite integrals are commonly local integrators
(616J, 616Q(c-1)). It is a general principle, of which we shall see many examples, that an indefinite integral
11y (u) is likely to share any special properties of the (local) integrator v; as a first step, i, (u) will be locally
of bounded variation if v is (616L). And we know that an indefinite integral operator i, with respect to an
integrator v is continuous for the ucp topology (616J).

In fact there is nothing here as difficult as the basic theorem on existence of Riemann-sum integrals
(616M). Once we know that the integrals (with respect to integrating interval functions, as well as with
respect to integrators) are defined, the analysis in §613 takes us a long way; if you like, Riemann-sum
integrability is a very restrictive condition which we shall not escape until we come to the S-integral in
Chapter 64.

In the ‘mnemonics’ offered in this section, we have to distinguish between ~ and =. When I wrote

(dv)? = d(v?) — 2vdv ~ dv*
(617J), the equality corresponds to a pair of interval functions being equal; writing vAwv for the interval

function ¢(o,7) = vy X (vr — v, ), I am saying that
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(Vy —v5)? =2 — 02 — 2v, X (V; —V,)

and therefore that
(Av)? = A(v?) — 2vAw,

Ac(u, (dv)?) = Ac(u, d(v?)) — 2A(u x v, dv),
Sr(u, (dv)?) = Sr(u,d(®?)) — 257 (u x v, dv),

fsu(dv)2 = fsud(v2) - 2f5u X v dv

for all e, I, u and S for which these are defined. We have to pause for a moment to decide when the integrals
exist, but everything else is elementary algebra. But ‘dv* ~ (dv)?’ does not assert that v* — v* is related
to (vr — vg)? for any particular o and 7. It is in the first place a claim that [¢dv* = [4(dv)?, and then
a claim that [qudv* = [qu(dv)®. The point is that the interval function Aw* is additive, but (Aw)? is
not. The exposition in Chapter 48 of Volume 4 tacitly assumes that when forming gauge integrals we rather
expect our measures to be at least finitely additive. In the present volume we are dealing with integrals
with respect to ‘measures’ which in some cases are most definitely not additive.

I introduced ‘adapted interval functions’ in §613 partly in order to have a direct definition for such
expressions as |, s Uu|dv| and /. sWdvdv'. In the contexts here, they give what turn out to be useful suggestions:
if w = 4, (2), then we have mnemonics dw ~ z dv for 617E, |dw| ~ |z||dv]| for 617G and dwdv’ ~ z dvdv’
for 617Q. But these simple-minded formulae give no hint of the pages of detailed calculations in 617F and
617P between the two expressions. The problem lies in the fact that Aw is not quite equal to zAw, so we
cannot immediately relate |[Aw| to |z||Av| or Aw x Av’ to zAv x Av'.

Of course all the work of the second half of the section is dependent on being able to move between dvdv’
and d[v T'v’ ], where [v T'v’ ] is not merely a local integrator but actually locally of bounded variation; you will
see that from 617P on I am repeatedly employing whichever expression is most immediately convenient.

In both parts of 6170, we find that the calculation of the quadratic variation from the formula

,Ui = fS/\T(d’U)Q
(617HD) is elementary in the sense that we just have to work carefully through the definitions, looking at
very natural sublattices {it/m : i < m} in 6170a and {r A 7; : i < n} in 6170b. Of course we could
use the same ideas to give us direct calculations of the indefinite integrals #4,(¢) and ii,(v) (617Xd-617Xe),
but these would necessarily be a touch more complex. In 617Xe we have a first outright declaration of a
difference between the formulae of elementary calculus and the corresponding formulae of stochastic calculus,
a foretaste of Itd’s formula (§619).

You will note that 6170 omits any description of the quadratic variation of Brownian motion. As has
happened before in this chapter, Brownian motion seems to be essentially more difficult and more interesting,
as well as more important, than the Poisson process. Like the identity process, Brownian motion has no
jumps (618J), but even so its quadratic variation is non-zero (624F); the argument I will give in 6221 depends
on Dynkin’s formula in harmonic analysis (478K).

617R . is based on an elementary manipulation, but I think it requires validation using ideas from §352.

Version of 8.9.12/26.8.22

618 Oscillations and jump-free processes
For the work so far, moderately oscillatory processes have been sufficiently regular for our needs. But

for the next development (Ito’s formula, 619C), we are going to need a new concept. In 618B I formulate a
notion of ‘jump-free’ process corresponding to the idea of ‘process with continuous sample paths’ (618H).

618A Notation As previously, (U, &, T, (U¢)ter, T, (Ar)re7) will be a stochastic integration structure.
For a sublattice S of T, M,1,(S) will be the space of order-bounded processes with domain S (614Fc) and
Z(S) the set of finite sublattices of S. For an order-bounded process u = (uq)qes, sup [u| will be sup, ¢ s ||
(614Ea). L% will be L°°(2A) with its norm || ||« as defined in §363. L°(2A) (§364) will be endowed with
its topology and uniformity of convergence in measure, with the defining F-norm 6 (613Ba). 1 will be the
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constant process with value x1. If h : R — R is a continuous function, I will write i for any of the derived
functions from L°(2A) to itself or from a space of fully adapted processes to itself (612A, 6121a).

618B Definitions (a) Let I be a finite sublattice of T, and u a fully adapted process defined (at least)
on I. The I-oscillation of u is

Osclln; (u) = SUPesti (1) Ae(1, |du)),

where Stip(I) is the set of I-cells (611Je) and for a stopping-time interval e = ¢(o, 7) I write A (1, |du|) =
|ur — uy| (613Fa). Take the supremum in (L°(2A))*, so that if #(I) < 1 and Stig(I) is empty, then
Oscllng (u) = 0.

Note that if (g, ... ,7,) linearly generates the I-cells, then Osclln;(u) = sup;_,, |tr,,, —ur,|, just because
Stig(]) is the set of stopping-time intervals {c(7;, Tiy1) : ¢ <mn, 73 # Tit1} (611L).

(b) Let S be a sublattice of 7 and u = (uy)ses an order-bounded process (definition: 614E). Set
@ = sup |ul.

(i) Ac(1,|du]) < 2u for every e in the set Sti(S) of stopping-time intervals with endpoints in S, so
Oscllnj(u) < 24 for every J € Z(S). We can therefore set

Osclln}(u) = sup jez(s),sor Oscllng(u) < 2u
for every I € Z(S).

(ii) The residual oscillation Osclln(u) is inf;c7(sy Oscllny (u) < 2u. I will say that u is jump-free if
Osclln(u) = 0. For definiteness, I add that if, in the rest of this volume, I say that a process is jump-free, I
mean to imply that it is order-bounded.

(iii) I will say that u is locally jump-free if u[S A 7 is jump-free for every 7 € S.
(iv)

Oscllng(u) = sup Oscllny(u) = sup{|uyr — uy| : 0, 0’ € S and o < o'}
JEI(S)

= sup{|tsrve — Usrno| : 0, 0" € 8} = sup{|uy, — uy| : 0, 0’ € S}
by 612D(£i).

(v) Remarks (a) Note that I — Oscllnj(u) : Z(S) — L°(2l) is non-increasing, so Osclln(u) is the
limit lim;47(s) Oscllny(u) for the topology of convergence in measure, and u is jump-free iff

ianeI(S) H(OSCHD? ('U,)) = limmz(s) O(OSCHHT'(U)) =0.

(B) In the formula
Oscllng(u) = sup,esgio (1) De (1, [dul),
the arguments I and u are explicit in the term Oscllns(u). In the formula
Osclln}(u) = sup jez(s),sor Oscllng(u),
the lattice S is not declared overtly in the expression Osclln}(v); a purist would prefer
Oscllnj (u) = Sup jez(domu),so1 Osclln (u),

just as

Osclln(u) = inf;e7(domw) Oscllng (u).
() Observe that we have Oscllny(u) = Osclln(u|I) for every I € Z(S).

(c) Let S be a sublattice of T and u = (uy)ses, ¥ = (Us)ses order-bounded processes.
(i) For any o € R,
Oscllny(au) = |a| Oscllng (u) for every I € Z(S),
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Osclln(cau) = |a| Osclln}(u) for every I € Z(S),
Osclln(au) = |a| Osclln(u).

(ii)
Oscllny (u 4+ v) < Oscllng (u) + Oscllng (v) for every I € Z(S),

Osclln}(u +v) < Osclln(u) + Osclln} (v) for every I € Z(S),
Osclln(u + v) < Osclln(u) + Osclln(v).

(iii) Writing @, o for sup |u| and sup |v],

Oscllny(u x v) < ¥ x Oscllnz(u) + @ x Oscllng(v) for every I € Z(S),
Osclln}(u x v) < 7 x Osclln}(u) + @ x Osclln}(v) for every I € Z(S),

Osclln(u x v) < @ x Osclln(u) 4+ @ x Osclln(v).

618C We shall not need them immediately, but the following descriptions of Osclln™ will be useful later
on.

Lemma Let S be a sublattice of 7 and u = (uy)ses an order-bounded fully adapted process. Let I be a
non-empty finite sublattice of S; suppose that (7o, ... ,7,) linearly generates the I-cells.
(a) Set 7_1 = inf S and 7,41 = sup S and
w = sup{|u,s — uy| : 0, o' €S and there is an i
such that —1<i<mnand 7, <o <o’ <71},
w' = sup{|uyr — uy| : 0, 0’ €S and there is an i
such that — 1 <4 <n and o, 0’ € [, Ti11]}-
Then w = w’ = Oscllnj (u).
(b) Now suppose that u is non-decreasing. Set u| = inf,esu, and vy = sup,cs to. Then
Obcun?(u) = (uTo - ui) v Supi<n(un‘+1 - uﬂ') \ (UT - uTn)'
proof (a)(i) Suppose that J € Z(S), I C J and e € Stig(J). Then there is an ¢ such that —1 < i < n

)
and e € Stig(J N 74, Ti41]), by 611J(e-iii). In this case, the stopping-time interval e is expressible as ¢(o, o’
where 7, < o <o’ <741 and o, 0’ € S. Accordingly

A1, |du|) = |ug — uy| < W'
As e is arbitrary, Osclln;(u) < w'; as J is arbitrary, Osclln}(u) < w.

(ii) Suppose that —1 < i < nand ; < ¢ < ¢’ < 741. Then |uy — uy| < Oscllny(u). P If
o = o' this is trivial. Otherwise, set J = I U{o,0’}. If 7 € I then med(r;, 7, 7;41) belongs to I (because
TVT_1=7ATpt1 =7 € I), and must be either 7; or 7,11; so either 7 < o or ¢/ < 7. It follows that J is a
sublattice of S including I and ¢(o,0’) is a J-cell. So

|ugr — tug| < Oscllny (u) < Oscllny(u). Q
Thus w < Osclln}(u) and the two are equal.

(iii) Of course w < w’. On the other hand, if o, ¢’ both belong to S N [7;, Ti+1] for some i, then so do
o Ao’ and o Vo', and

w Z |uG'VO'/ - UU/\U’| = |ua - ua”|
(612D(f-ii)). So w > w’ and we have equality.

(b) This is now elementary, because
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sup{|uyr —us|: 0,0 €S, <o <o <Tij1} =uy —uyp ifi = —1,
=y, —un, f0<i<n,

=up — U, if i =n.

618D Proposition Let S be a sublattice of 7 and u = (u,)secs a locally order-bounded process.
(a) Set v, = Osclln(u[S A7) for 7 € S. Then v = (v;),es is a non-decreasing fully adapted process.
(b) If u is order-bounded, then
(i) Osclln(u) = Osclln(u[S A7) V Osclln(u[S V 1) for every 7 € S,
(ii) Osclln(ulS N[, 7]) < Osclln(u) whenever 7 < 7’ in S.
proof (a)(i) Looking at the definitions in 618B, we see that, for any 7 € S,
Oscllns (u[S A7) € LO(A,) for every I € Z(S A T),
so that
Oscllnj(u[S A7) € LO(A,) for every I € Z(S A T)
(because L°(2l,) is an order-closed sublattice of L°(2A), by 612Ae) and
vy = infrez(sar) Osclln(u[S A7) € LO(2,).

i1 T<7'in then
(ii) If "in S, th
Oscllny(u) = Oscllnga-(u) V Oscllngy - (u) whenever T € I € Z(S)

(use 611J(e-ii)). Suppose that 7 € I € Z(S A 7') and that I A7 C J € Z(S A 7). Let K be the sublattice
generated by I U J; then K A7 =J, so

Oscllnj(u) < Oscllng (u) < Oscllny(u[S A 7').
As J is arbitrary,
vy = Osclln(u]S A7) < Oscllnj - (u]S A7) < Oscllnj (u]S A T).
As [ is arbitrary,
vy < Osclln(u[S A7) = v,

Thus v is non-decreasing.

(iii) 7 < 7/ in S and ¢ = [r = 7], then xc X |vyr — v,| = 0 whenever 7 < ¢ < ¢’ < 7/, s0
xc % Oscllngy ., (u) = 0 and ye x Oscllnga-(u) = xe x Oscllny(u) whenever 7 € I € Z(S A 7'). Consequently

cX v, =xcx inf sup Osclln U
X T X TelIEZ(S) JEIFS) J/\T( )
J2I
= inf sup xc X Oscllnjar(u
Tel€L(S) jez(S) /\T( )
J2I
= inf sup xc X Oscllny(u) = xc X vy
TEIEL(S) jeI(S) ( ) T
J2I

and [r = 7] € [v; = v,/]. As noted in 612DDb, this is enough to show that v is fully adapted.

(b)(i) If 7 € J € Z(S) then (as noted in (a-ii) above)
Oscllny(u) = Oscllnja-(u) V Osclln yy . (u).
So if 7 € I € Z(S) then
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Oscllnj(u) = sup Oscllng(w) = sup Oscllngar(u) V Osclln gy, (u)
ICJET(S) ICJET(S)
= sup Oscllng (u) V Oscllng, (w)
INTCKEZ(SAT)
IVTCLELZ(SVT)

= Oscllnj . (w][S A7) V Oscllny,, (u[S V 7).
Taking the infimum over I (using the distributive law 352Eb),
Osclln(u) = Osclln(u[S A7) V Osclln(u[S V 7)
as claimed.
(ii) Now
Osclln(ulS N [r,7']) = Osclln(u[ (S A7) V1) < Osclln(u[S A 7') < Osclln(u).

*618E An elementary fact will turn out to be useful in Chapter 64.

Lemma Let S be a finitely full sublattice of 7 with a greatest element, 4 = (uy),ecs a jump-free process,
7 € Sand € > 0. Then thereis a 7" € SV 7 such that [ < 7'] = [r < maxS] and 0(sup,csnr, ) [to —ur|) <
€.

proof By 618D(b-i), v’ = u[S V 7 is jump-free. Let I be a finite sublattice of S V 7 containing 7 and
maxS and such that 6(Oscllnj(u')) < e. Take (79,...,7s) linearly generating the I-cells. For i < n set
b, = [1 < miqa1] \ [T < 7i]; set b, = [ = max S]. Then (b;)i<y is disjoint and has supremum 1, b; € 2 for

) Ti4+1
i <mn,and b, € Anaxs. By 6111 thereis a 7/ € T such that b; C [’ = 7;41] for i < n and b, C [7' = max S].
Because S is finitely full, 7/ € S, while 7 < 7/ and [7 < 7'] = sup,.,,b; = [r <maxS]. If 0 € S and
7 <0 <7, then for i <n

biclr=n]n[rn<o]|nloc < 7] € [r=7]n[o =med(r;,0,Tit1)]
c IHuU - ’LL7—| = |umed(7'i,tf,7'i+1) - uﬂ”] C [HUU - U,-,-| S OSCHD?(U/)]]
by 618Ca. At the same time,
by, C [T = 0] C [|ue —us| =0].

So |uy — u,| < Osclln}(u’). As o is arbitrary,

0(sup,esnpr,r |ue — url) < 0(Oscllnj(u')) <e.

618F Proposition Let S be a sublattice of 7.
(a) If u, v are order-bounded processes with domain S, then | Osclln(u) — Osclln(v)| < 2sup |u — v|.
(b) Osclln : M,,(S) — LO(21) is uniformly continuous if M, ,(S) is given its ucp uniformity.
proof (a) By 618B(c-ii) and 618B(b-ii),
Osclln(u) < Osclln(v) 4+ Osclln(u — v) < Osclln(v) 4 2sup [u — v
and similarly Osclln(v) < Osclln(u) + 2sup |u — v|.

(b) Consequently

6(Osclln(v) — Osclln(u)) < 26(sup [u —v|) = 20(u —v)

2
where  is the F-norm defining the ucp linear space topology on My b(S) (615B). So Osclln : My, (S) —
LO(21) is uniformly continuous.

618G Proposition Let S be a sublattice of 7. Write M;(S) for the set of jump-free fully adapted
processes with domain S.

(a) The set Mj¢(S) of jump-free fully adapted processes with domain S is a topologically closed f-
subalgebra of M,,(S), and hv € M;.(S) whenever v € M;(S) and h : R — R is continuous.
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(b) A (locally) jump-free fully adapted process on S is (locally) moderately oscillatory.
(c) If v € M;¢(S), then v|SV 7, v|S A 7" and v|S N [1,7'] are jump-free whenever 7 < 7/ in S§. In
particular, v is locally jump-free.

proof (a)(i) If u, v € My = M;(S), then Osclln(u + v) < Osclln(u) + Osclln(v) = 0 (618B(c-ii)) so
u+ve Mj_f.

(ii) Since {0} is closed in L°(2A) and Osclln : M, ,(S) — LO(2A) is continuous (618Fb), M;¢(S) = {u :
u € My, (S), Osclln(u) = 0} is closed in My, (S).

(iif) If w € Mj¢ and h : R — R is uniformly continuous, then hu € Ms. P By 614F(c-i), hu is
order-bounded. For z € R, set g(z) = sup{|h(y) — h(¥')| : ly — ¥'| < |z|}; then g is Borel measurable,
lim, 0 g(z) = 0 and |h(z) — h(y)| < g(|z — y|) for all z, y € R, so |h(u) — h(v)] < g(lu — v|) for all u,
v e LO(A). Accordingly A (1,|dhu|) < g(Ac(1,|dul)) for every e € Sti(S), Oscllny(hu) < g(Osclln;(u)) for
every J € Z(S) and Oscllnj(hu) < g(Oscllnj(u)) for every I € Z(S). Since infrez(s) Oscllnj(u) = 0 and
lim, o g(x) = 0, inf;c7(s) g(Oscllnj(u)) = 0 and inf;c7(s) Oscllnj(hu) = 0 and hu is jump-free. Q

(iv) If u = (uy)ges is jump-free and h : R — R is continuous, then hu is jump-free. P Again, hu is

order-bounded. Set @ = sup,cg |us|. Given € > 0, let M > 0 be such that a = [u > M] has measure at
most €. Set

hl (37)

h(=M) if 2 < —M,
(z) if [z < M,
(M) if x> M.

h
h

Then hy is uniformly continuous so hy(u) € M., by (ii). But
[hu # hau] = sup,cs [A(uo) # hi(uo)] € sup,es [lus| > M] = [a > M] ¢ a,
S0
g(ﬁu — hiu) < fia < e
As e is arbitrary and M;. is closed, hu € Mi;. Q
(v) Putting (i) and (iv) together, Mj is an f-subalgebra of M,.1,(S), by 612Bc as usual.

(b)(i) Suppose that u = (uy)ses is jump-free. If S is empty, u is certainly moderately oscillatory;
suppose otherwise.

() Set B =, csUo. Then the starting value u = limy|su, is defined and belongs to L°(B).
P Let € > 0. Let I € Z(S) be non-empty and such that #(Oscllnj(u)) < e If ¢ € S and 0 < min I, then
J=1U{o} € Z(S) and |umin1 — ts| < Oscllns(u) < Oscllnj(u), 50 0(ty — Umin 1) < €. As LO(2) is complete
in the linear space topology of convergence in measure, this is enough to show that u is defined. By 613Bj,
up € LY(B). Q

(B) If I € Z(S) is non-empty, there is a simple process «’ such that sup Ju — «'| < Osclln}(u). P

Write w for Oscllnj(u). Let 79 < ... < 7, linearly generate the I-cells (611L). Let w' = (ul)scs be the

simple process defined on S by the formulae of 612Ka from g, ..., 7, and uy, ur,,... ,Urs,.
If o/ <o €S8 AT, then

[tg — Ugr| < Oscllngygor oy (1) < w;
taking the limit as 0 | S, |uy —uy| <w. If i <n and 0 € SN [r, Ti+1], then
g — ur,| < Oscllngygey(u) < w;
similarly, if 0 € S V 7,, then
[ug — ur, | < Oscllngygn(u) < w.

For any o € S we see now that
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[o < 70] C [ue = vonr] N [uy, = ui]]

C [lug —ugy| = [Ugpry — ulH] C [lug — ug| < w],

[0 < 01 € [t = ttgvr, 10 [ty = ur, ]

< [lue —ui| = luovr, = ur, |l € [lus —ug| < w],

and for any ¢ < n

[[Ti S U]] N [[0‘ < T’iJrl]] g IIUU = umEd(Ti,U,Ti+1]] N [[u:r = uTi]]

c [“Ua - u:r‘ = |“med(n,a,n+1) — Ur; ]] c [[luo' - u/0'| < w]]-

Since
lo <m]ulm <oJusup,.,([1 <olnfo < Tita]) =1,
Uy —ul| < w. As o is arbitrary, sup |u —u/| < w, as claimed.
(e

() Now take any € > 0. Asu is jump-free, there is a non-empty I € Z(S) such that 6(Oscllnj (u)) < €.
By (B), there is a simple process u’ such that f(sup |u — u’|) < e. But we know that simple processes are
moderately oscillatory (615E). As € is arbitrary, u belongs to the closure of the set My,,(S) of moderately
oscillatory processes for the ucp topology on M, (S). But Mp,(CalS) is closed (615F(a-iv)), so u is
moderately oscillatory.

(ii) If u is locally jump-free, then applying (i) we see that u[S A 7 is moderately oscillatory for every
7 € 8, so u is locally moderately oscillatory.

(c)(i) Given I € Z(S8), let I’ be the sublattice generated by I U {7,7'}. Then Oscllny, . (v[|SV 7) <
Oscllnj(w). P IfI'vrT C J € Z(SV 1), and K is the sublattice generated by I' U J, we shall have
ICKeZ(S), KVt =Jand Stig(J) C Stig(K), so

Oscllny (v) < Oscllng (v) < Oscllng (v).
As J is arbitrary,
Osclln},,, (v[S V 7) < Osclln}(v). Q
Consequently
inf;cz(svr) Osclln7 (w[S V 1) < inf ez (s) Osclln(v) = 0
and v[S V 7 is jump-free.

(ii) Replacing ‘V7’ by ‘A" throughout the argument above, we see that v|S A7’ is jump-free. Putting
these together, v[SN[r, 7] = WISV 7)[S AT is jump-free. And as 7’ is arbitrary, v is locally jump-free.

618H Where jump-free processes come from: Proposition Let (2, X, 1) be a complete probability
space and (X;);>0 a family of o-subalgebras of ¥, all containing every negligible subset of 2. Suppose that
we are given a family (X;);>o of real-valued functions on € such that X, is ¥;-measurable for every ¢ > 0
and ¢t — X;(w) : [0,00] = R is continuous for every w € . Then (X;);>¢ is progressively measurable, and
if (2, 1, (At)e>0, T, (Ar)re7) and (z4)se7; are defined as in 612H, x = (v,),e7; is locally jump-free.

proof The idea is to combine the approaches of 612H and 615P.
(a) I start by showing that we have a progressively measurable process. B Take any ¢ > 0 and a € R.
Set Q@ ={qt:q€QnJ0,1]}. Then
{(s,w) 15 <t, Xs(w) >a} ={(s,w): s <t, limsup X,(w) > a}
g1 QN(s,1]

= U m U {(s,w):s<t,s>qors<q and X, (w)>a+27"}
keNqeQ ¢'€Q
a'<q

€ B([0, )&%
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where B([0,¢]) is the Borel o-algebra of [0,%]. Q

We can therefore apply the method of 612H to define, for each stopping time h : Q — [0, 00[, the o-
algebra X5, and the Xj-measurable function X}, and we find ourselves with a real-time stochastic integration
structure (%A, fz, [0, 00[, (A¢)>0, T, (Ar)re7) and a fully adapted process = (r5)se7; such that zpe = X
for every h.

(b) The main part of the argument depends on the idea of ‘hitting time’ in a form similar to that of
445M. Let h : Q — [0, 00[ be a stopping time, and € > 0. For w € Q set

fw)=min({h(w)}U{t:t >0, | X¢(w)| > €}).

(I can write min rather than inf because t — X;(w) is continuous, so if {t : | X¢(w)| > €} is non-empty it
contains its infimum.) Then f is a stopping time. I For any ¢ > 0, X; contains every p-negligible set, so
(Q, %, ulX;) is a complete probability space and X is closed under Souslin’s operation (431A). Next,

{(s,0) 15 <t, [Xo(w)| 2 €} = Mpen{(s:w) 5 <1, [Xo(w)| > e =275}

belongs to B([0,1])@%;, by (a) applied to the process (s,w) + | X,(w)|. So its projection E = {w :3 s € [0,1],
| Xs(w)| > €} belongs to ; (42309). Now

{w: flw) <t} ={w:h(w) <t}UE € %;.
As t is arbitrary, f is a stopping time adapted to (X¢)i>0. Q
(c) Again suppose that h : Q — [0, 00][ is a stopping time and € > 0. Define g,, and X , for n € N and
t > 0, by setting
go(w) = 0 for every w € 2

and

XM (w) = 0if ga(w) > t,
= X, (w) — Xy, (@) if gu(w) < t,

gns1(w) = mf({hW)} Ut t >0, [X™ ()] > €}

forn € N, t >0 and w € 2, We see immediately that ¢ — Xt(n)(w) is always continuous. Also we can see by

induction on n that every g, is a stopping time and every Xt(") is X;-measurable. I® For n = 0 this is trivial,
since of course X; — Xy is Xs-measurable and ¢ — X;(w) — Xo(w) is always continuous. For the inductive

step to n > 1, g, is a stopping time, by (b) applied to <Xt("_1)>t20. Next, setting F' = {w : g, (w) < t}, we
have

Fn{w:gho(w)<s}={w:gn(w) <s} e, C%if s <t

so e X, . If EeX, then ENF € X, so Xy, x xF is ¥;-measurable; while F' € 3, so X; x xF'is

Y- meaburable Conbequently X" (n) — = (Xy — X,, ) x xF is ¥;-measurable, and the induction continues. Q
We therefore have a non- decreasmg sequence (gn)nen of stopping times such that, for any n € N and
w € Q,
—— if n = 0 then g,(w) =0,

— gn(w )<h( );
— [Xi(w) = Xy, (w)| < € whenever g, (w) <t < gni1(w)

) =
because t »—> X¢(w) — Xy, (w) is continuous, so if | X¢(w) — X, (w)| > € there is an s € [gn(w), t] such that
[ Xs (W) = Xy, (w )| = € and g (@) <5 < t

Moreover for any w, (g,(w))nen is a non-decreasing sequence bounded above by h(w), so

limy, 00 Xy, (W) = limy, 00 Xy, () (W)

is defined and finite, in which case there must be some n such that g,4+1(w) = h(w).

9Later editions only.
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(d) Translating (c) into the language of the stochastic integration structure (2, f, [0, oo[, (U¢)i>0, T, (Ar)reT),
we see that given any 7 € 7; and € > 0 we have a non-decreasing sequence (7, ),cn in Ty such that for every
n €N,
— Tn S T,
— [ < a]no < 1] C [|ze — 27, | < €] for every o € Ty,
and

70=0=minT;, sup,ey[rn=7]=1

But this means that if we take n € N such that ¢ = 1\ [r,, = 7] has measure at most ¢, and set I =
{10, s Tn, 7} € Z(Ty A T), then

Osclln} (&[T A7) < supsup{|z, — 20| : 7 <o <0’ <71}
<n

Vsup{|tyr — o] 1 Th <o <o’ <7}
(618Ca)
<2ex1V (2sup|z[T; AT| X xc)

and
6(Oscllnz (2 Ty A 7)) < 2e+ fic < 3e.

As e is arbitrary, [Ty A 7 is jump-free; as 7 is arbitrary, z is locally jump-free.

6181 Lemma Let S be a sublattice of 7, and u = (u,)secs a locally jump-free fully adapted process. If
A C S is non-empty and upwards-directed and sup A € S, then ugup 4 = limypa Uo-

proof It is enough to consider the case in which sup A = max S, so that u is actually jump-free.

(a) (The key.) Suppose that I € Z(S), that 79 < ... < 7, linearly generate the I-cells, that o < o’ € S,
and that

anfo<n]=anfo’ <7
for every @ < n. Then |uy — uy/| X xa < Oscllnj(u). P Set @ = Oscllnj(u),
bo=[o <], bi=[rc1<o]ne<r]lorl1<i<n, by =][m <o
Then (b;)i<n+1 is a partition of unity in 2. Next, set

oo =0NTy, 04=0" ATy, Opg1=0VTy, Op1 =0 VTp,

o; =med(7,—1,0,7), o =med(r;_1,0",7;) for 1 <i<n.

If i <n+1 and o; # o}, the stopping-time interval ¢(o;, o}) is a J;-cell, where J; is the sublattice generated
by I'U{o,0'}, so
Uy, — ug| < Oscllny(u) < a.
Next, b; C [o; = o] and anb; C [0 = ¢'] for each 4, so
@ = 8UP;<p, 11 a@Nb; € SUP;< i [Uo, = Us] N [Uor = uor] C [Jug — upr| < 1]

and |uy — ugr| X xa < u. Q

(b) Take any € > 0, and let I € Z(S) be such that (@) < e where @ = Oscllnj(w). Let (79,...,7n)
linearly generate the I-cells. For each i < n, [sup A < 73] = inf,c4 [o < 75] for each i (611Eb), so there is a
oo € A such that ¢ = sup,,, [oo < 7]\ [sup A < 7;] has measure at most e. If now ¢ € A and oy < o, (a)
tells us that -

|USUPA - UU‘ X X(I\C) S ﬂa a(usupA - ug) S 9(1_14) +ﬂC S 26.

As € is arbitrary, limy44 e = Usup A-
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618J Examples Let us look again at our three standard examples. Take T = [0, col.

(a) The identity process ¢ = (ir)re7; (612F) is locally jump-free. I We know that it is locally order-
bounded (615Q, or otherwise). Take 7 € Ty and € > 0. Let m € N be such that a = [T > me] has measure
at most e. Set I = {7 Aie:i < m}, where ic is the constant stopping time at ie. If J is a sublattice of T AT
including I and e is a J-cell, then

either there is an i < m such that e can be expressed as ¢(o,0’) where T A ie<o <o <
7 A (i + 1)e, in which case
[o <o) Clie<o]n]o’ < (i+ 1)
and A.(1,|de]) =l — 1o < exl,
or e can be expressed as ¢(o,0’) where 7 A mie < 0 < ¢’ < 7, in which case [0 < ¢'] C a and
Ac(L,]de|) =t — 1o < tr X XG.
Thus Oscllnj(¢) < ex1 +¢r X xa and 6(Osclln}(¢)) < €+ fia < 2e. As € is arbitrary, ¢| T A 7 is jump-free; as
T is arbitrary, ¢ is jump-free. Q

b) The standard Poisson process v = (v;)re7, (612U) is not locally jump-free. B Let 71 be the first
¥
jump time of v, as in 612Ue-612Uf, so that
[oc <] =[ve=0], [rn<o]=][v,>1]
for every o € Ty. If I is any sublattice of T A7y, set J =TU{min7,7} and let o9 < ... < o, linearly
generate the J-cells; then

Osclln} (v) > Osclln s (v) > sup |vs,,, — Vo, |
i<n
> sup X([oi+1 =11 n[o; < 7))
<n
= x(sup [oi+1 = 1]\ [0y = 11]) = x[r1 > 0] = x1
<n

and 0(Osclln}(v)) = 1. As I is arbitrary, v|7 A 7y is not jump-free and v is not locally jump-free. Q

(c) Brownian motion w = (w;),c7; (612T) is locally jump-free. B This is immediate from 618H and the
continuity of Brownian sample paths, built into the description in 612Ta. Q

618K Lemma Let S be a sublattice of 7. If I, J € Z(S) and a € 2 are such that J C I and
a C sup,c; [t = o] for every 7 € I, then a C [Osclln;(u) = Osclln;(u)] for every fully adapted process
u = <uo’>068~

proof The argument is essentially identical to that for 613S.
(a) The case a = 0 is trivial; so is the case a # 0 and J = ), as then I must also be empty and
Osclln;(u) = Oscllny (u) = 0.

So suppose otherwise. Let (o, ... ,0,) linearly generate the J-cells. If 7 € T then

a C sup [t = o] =supsup [7 = o] n[o =]
oed oed j<n

Csup[r =o0;] C oo <71]n[r <o,].
i<n

Set I_4 :I/\O'Q, Ij :Iﬂ[O'j7O'j+1] f0r0§j<n, I, =1Vo,.
(b) If 7 < 7" in I_4, then
anfus #Zul] Canr<7]Can|r <o) =0,
)

an[lAc(1,du)| # 0] =0
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for every I_j-cell e. Taking the supremum over e, Osclln;_, (u) x ya = 0.
(c) In the same way, if 7 < 7/ in I,,, then
anfu #u] Canr <] canfo, <7']=0,
SO

Oscllny, (u) x xa = 0.
(d) If 0 < j <n, ac[Osclng,(u) = [uy,,, —uo,|]. P For every 7 € I},

anfo; <1]n[r <ojt1] € sup [t =ox]nfo; <7]n[r < 0j41]
k<n

N

sup N [o; < ox] nfor < oj41]
k<n

(sup nfoj < or])u( sup [ox < oj41]) =0.
k<j J+1<k

N

Take (79,...,7Tm) linearly generating the I;-cells; then o; = 79 < ... < 7, = 0j41. For i < m, set
b, = IITi < Ti+1]]7 so that SUpP; b; = [[Uj < Uj+1]]. Now

anb; =an [[Ti < Ti+1]] =an [[O'j < Ti+1ﬂ n [[Ti < O'j+1ﬂ n [[Ti < Ti+1]]
Can IITZ’+]_ = 0‘j+1ﬂ n [[Ti = O'jﬂ n [[Ti < Ti+1]]

< [[|u‘ri+1 = Ur | = |u0j+1 — Ug; H] n ]lcgf; HT/@ = TkJrl]] n i<il?<fm [[Tk = Tk+1ﬂ

< |Hu7'j+1 - UTJ| = |u€f]+1 - utTj”] N klggv, [U‘Tk = uﬂc+1ﬂ

ot
< [[|u7j+1 - ule = |u<7j+1 — Ug; |]] n [[OSCHan (U) = ‘u7j+l — Ugy H]
C [Oscllng, (u) = |ug,,, — uo,|]-

Taking the supremum over ¢,
anfo; < ojp1] € [Oscling, (u) = |ug,,, — uq;|]-
Since [o; = 0;41] € [Oscllng, (u) = 0], a € [Oscllng, (u) = |us,,, — us,|]. Q

(e) Assembling these,

Oscllny(u) x xa = sup Oscllng, (u) x xa
—1<j<n

(618D(b-i))
= sup |Ug,,, — Us,;| X xa = Oscllny(u) x xa
0<j<n

and a C [Oscllny(u) = Osclln s (u)].

618L Proposition Let S be a sublattice of T, u = (uy)ses a fully adapted process, S the covered
envelope of S, and 4 = (i,), ¢ the fully adapted extension of u to S.

(a) If either u or @ is order-bounded, so is the other, and in this case Osclln(#) = Osclln(u).

(b) In particular, u is jump-free iff @ is jump-free.

(c) If either sup,cs Osclln(u[S A o) or sup_ g Osclln(@|S A 7) is defined in LO(2), so is the other, and
they are equal.

proof If § is empty, this is trivial; suppose otherwise.
(a) (i) Suppose that u is order-bounded; it follows that @ is order-bounded (614G(b-i)). Let € > 0. Then
there is a non-empty finite sublattice I of S such that #(Osclin}(u) — Osclln(u)) < e. As in 618C, take a
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sequence (7o, ... ,T,) linearly generating the I-cells, and set 7_; = inf S = inf S and Tpt1 = Sup S = sup S.
? Suppose that there are an 4 such that —1 < ¢ < m and p, p’ € S such that 7, < p < p/ < 71
and |G, — 4,| £ Oscllnj(w). Set ¢ = [|t, — 1,| > Oscllnj(u)], so that ¢ # 0. Take o € S such that
cnfp=0]#0, and 0’ € S such that ¢ = cn[p = o] n[p = 0'] is non-zero. Then
¢ C [med(r;, 0, 7i41) = med(7;, p, 7i+1)] € [med(7;, 0, 7i11) = p]
and similarly ¢ € [med(r;, o', 7i41) = p'], so
d C [Humed(n,o",nurl) - umed(T,i,U,Ti+1)| > OSCHH?(U)]],

but [Umed(r; 07 741) = Umed(rs,0,m41)| < Oscllny(u), by the second formula in 618Ca. So this is impossible. X
As p and p’ are arbitrary, 618Ca tells us that Oscllny (@) < Oscllnj(u) and

6((Osclln(z) — Osclln(u))*) < 6((Osclln} (@) — Osclln(u))*) <e.

As € is arbitrary, Osclln(a) < Osclln(u).
It follows at once that if Osclln(u) = 0 then Osclln(@) = 0, that is, if u is jump-free then @ is jump-free.

(ii) Suppose that @ is order-bounded; it follows that w is order-bounded (614G(b-i), in the other
direction). Let € > 0. Then there is a non-empty finite sublattice I of S such that #(Osclln} (@) —Osclln(z)) <
e. Let J € Z(S) be such that a = inf;crsup,c; [T = o] has measure at least 1 —e. Suppose K € Z(S)
includes J, and write K U I for the sublattice generated by K U I. Then a C sup,cg [T = o] for every
7 € K UI and therefore for every 7 € K U (611M(b-i)). By 618K,

a C [Oscllng (@) = Oscllngr(w)]
C [Oscllng (&) < Osclin}(%)] = [Oscling (u) < Oscllny (@)],
and
Oscllng (u) < Osclln} (@) + 2sup |u| x x(1\ a).
As K D J is arbitrary,
Osclln(u) < Osclln’} (u) < Osclln} (@) 4+ 2sup |u| x x(1\ a)

and

0((Osclln(u) — Osclln(@))*) < 0(Osclin} (@) — Osclin(a) + 2sup [u| x x(1\ a))
6(Oscllnj (@) — Osclln(@)) + 6(2sup |u| x x(1\ a))
e+ p(l\a) < 2e.

As € is arbitrary, 6((Osclln(u) — Osclin(a))™) = 0 and Osclln(u) < Osclin(@).

<
<
<

(b) It follows immediately that if % is jump-free, so is u.

(c)(i) If w = sup,¢g Osclln(u|S A o) is defined, then, in particular, w is locally order-bounded, so @ is
locally order-bounded (614G (b-ii)). If 0 € S then @S Ao is the fully adapted extension of u|S (612Qc), so
Oscln(a[S A o) = Osclln(u[S A o) < w, by (a). But (Osclln(@[S A 7)) g is fully adapted (618Da), so

< Osclln(@] S A 7) = sup, g Osclln(@[S A o) < w

SUD, ¢ 5

by 614G (b-i).

(ii) If w = sup, 5 Osclln(a[S A o) is defined, then @ is locally order-bounded, so u is locally order-
bounded, by 614G(b-ii) again. And now

sup, cs Osclln(u[S A o) = sup, s Osclln(@[S A o) < w.

618M Theorem Let S be a sublattice of T and w = (uy)scs a moderately oscillatory process. Then
Osclln(u) = lim47(s) Oscllng (u).

proof We know that u is order-bounded (615F (a-iii)), so Osclln(u) is defined. If S = () the result is trivial;
suppose otherwise.
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(a) To begin with, suppose that u is of bounded variation.

(i) The first thing to note is that if §" is a sublattice of S, then Osclln;(u[S’) < [, |du| for every
J € Z(S). P Of course

Oscllng(u[8') = 0 < [, |dul.
If J € Z(S’) is non-empty and (79, ... ,7,) linearly generates the J-cells, then

OSCHHJ(“’) = SUP;<p ‘U’T'H»l —Ur| < Z?:_(Jl ‘U’T'H»l —Uug| < fS’ |du|
as in 614J. Q
(ii) Now, for any non-empty I € Z(S), set z; = [q |du| — S7(1, |du|). Then z; > 0 and Osclln(u) <
Oscllng(u) + z;. P Take (79, ... ,7,) linearly generating the I-cells, so that Oscllns(u) = sup;,,, |tur,,, —ur,|
and

51(17 |du|) = Z?:O |U’Ti+1 — Ur;

< fs |du|.
If J € Z(S) includes I, then

Oscllny(u) = Osclln(u[J)
(618B(b-v-y))
= Osclln(u[J A 79) V sup Osclln(u|J N [1, 7i41]) V Osclln(ul J V 7,,)

<n

(618D (b-i))

= Osclln spr, () V sup Osclln s, (u) V Osclln yy -, (u)

i<n

g/ |d’u,|\/sup/ |du|v/ du|
SATo 1<n JSN[ri,7i41] SVT1y

Ti+1]

(using (i) above)

n—1
<[ e jdul e, - )
SATo

i=0 Y SN[ri,7iq1]

+ sup |u7'i+1 — Ur; +/ |du|
i<n Svr,

= zr + Osclln; (u).

So
Osclln} (u) = sup;c jez(s) Oscllng(u) < 25 + Oscllnz (u). Q
Since we always have Osclln;(u) < Oscllnj(u), we see that | Oscllng(u) — Osclln}(u)| < z;.
(iii) Now we know that
lim17(s) Oscllnf(u) = Osclln(u),  limyz(s) Si(1, |dul) = [ |dul,
so limpyz(sy 27 = 0 and limj47(s) Oscllnz(u) = Osclln(u),

(b) In general, if w is just moderately oscillatory, let € > 0. Then there is a process v of bounded variation,
with domain &, such that 6(z) <€, where z = sup [u — v|. Now

| Oscllng (w) — Oscllny (v)| < Oscllny(u —v) < z for every I € Z(S),
| Osclln(u) — Osclln(v)| < Osclln(u —v) < z
(618B(c-ii)). So
| Oscllny(u) — Osclln(u)| < | Osclln(v) — Osclln(v)| + 2z

for every I, and
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lim sup (Oscllny (u) — Osclln(u))
1L(S)

< lim sup #(Oscllny (v) — Osclln(v)) + 26(z) < 2e.
I1Z(S)

As € is arbitrary, limr4s Oscllny (u) = Osclln(u).

618N The difference between a ‘jump-free’ process and a ‘moderately oscillatory’ process can be described
in terms of the construction in 615M.

Lemma Let & be a full sublattice of 7 with a greatest element, 4 = (u,),cs a moderately oscillatory
process, and § > 0. Let (y;);cn be the sequence constructed from u and 6 as in 615M. Then |y;+1 — y;| <
Osclln(u) + dx1 for every i € N.

proof By 618Gb, u is moderately oscillatory, therefore 1|-convergent (615N), so we can indeed apply the

method of 615M. Write w for Osclln(u). Take the sequence (D;);en of downwards-directed subsets of S
constructed from u and 0 there. ? Suppose that a = [|y;+1 — yi| — w > ¢] is non-zero. Then there is an
7 > 0 such that

a1 = [|yi+1 — yil —w > 6 + 2]
has measure at least 4n. Let 7 € D; ;1 be such that
O(supep, , rr<r [Ur = Yiral) <07
(615Gb), so that fas > 3n where
az = a1\ [sup.cp,,, ~<- U — Yir1] > n].
Let o € D; be such that o <7 and 0(Jus — uy,|) < 07, so that faz > 2n where
az = a2 \ [|ue — yi| = 4.

We have a finite sublattice I of S, containing ¢ and 7, such that §(w — Oscllnj(u)) < n?; write w’ for
Osclln}(u). Then fiay > n, where

as = a3\ [lw —w'| = 7].
In particular, ay # 0. Let (po,. .. , pn) linearly generate the (I N [o,7])-cells and define by, ... , b, by saying
that
bj = IHUPJ' —yil > ]\ sup;/ . by
for j <n, and b* =1\ sup,<, b;. Then b; € A, for each j < n and b* € A, , so there is a 7/ € T such that
b; C [ =p;] €bj for j <nand b* C [7' =p,]. Now 7" € S, 0 <7/ <7 and
[ur —yi| < 8] € b*nJlur —yi| < 0] C [r' = max S]
so T € Di+1.

Since a4 C az C 1\ by, there is a j > 1 such that b = a4 N [17" = p;] is non-zero. Now |u,, —u,, | <
w’, but at the same time b C [lu,,_, —vi| < 0] and b C as C [Juy, — yiy1| <] and b C [Jlw —w'| < 7], so
b C [lyi+1 — vi| —w < § + 2n], which is impossible, as b C a;. X

So a =0 and |y;+1 — yi| <w+ dxl, as claimed.

6180 Definition Let S be a sublattice of 7 and v : ST — L9(2) an adapted interval function which
is order-bounded in the sense that {1)(c,7) : (5,7) € 2T} is bounded above and below in L°(2). Following
618B, set

Oscllng (¢) = supeegyig (1) De (1, [dy])
for I € Z(S) (counting sup () as 0),

Osclln} () = sup jez(s),sor Osclln (¥)
for I € Z(S), and
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Osclln() = inf;e7(s) Oscllng (v).

Note that as Osclln}, () < Oscllnj () whenever I C I" in Z(S), Osclln(t)) = lim 7 (s) Osclln (). Moreover,
if u is an order-bounded fully adapted process and 1 = Aw the corresponding interval function, Osclln;(¢) =
Osclln; (u) for every I € Z(S) and Osclln(¢) = Osclln(u).

618P Lemma Let S be a sublattice of 7 and ¢ : S?T — L°(A) a strictly adapted interval function. For
I €Z(S), set w; = (wy,)res where wi, = Sia-(1,dy) for 7 € S.

(a) For any I € Z(S), wy is fully adapted.

(b) Suppose that S is finitely full, ¢ is order-bounded and [ s v is defined. Then iy (1) is order-bounded
and Osclln(7i, (1)) < 2 Osclln(v).

(c) Suppose tht ¢ is order-bounded and || $ di[} is defined, where S is the covered envelope of S and 1& is the

adapted extension of ¢ to ST (613U). If 4iy(1) is moderately oscillatory, then Osclln(iiy (1)) < Osclln(1)).
(d) If ¢ is an order-bounded integrating interval function, then Osclln(iiy (1)) < Osclln(e).

proof All four parts are trivial if S is empty, so suppose otherwise.

(a) If I is empty this is trivial, since IAT = {o AT : 0 € I} is empty for every 7. Otherwise, take a string
(Toy ... ,7n) linearly generating the I-cells. If 7 € S, (7o A T,...,7n A7) linearly generates the (I A 7)-cells
(611Kg), and wr, = S0 (i AT, Tis1 AT) (613Ec). Since ¢(r; AT, 741 AT) € LO(As,,,nr) C LO(A,) for
each i, wr, € L°(2A,). Now if o, 7 € S,

[o=7]c 1122 [ino=minT]C Zlgrfl [o(ri Ao, Tiv1 Ao) =¢(Ti AT, Tigr AT)]
(because v is strictly adapted)

- lea = wIT]]'
Thus 7 +— wy, : S — L°(2A) is fully adapted.

(b)(i) Write @ for sup(, ;yes2t [¥0(0,7)|. By 6130(b-i), v = iiy(1) is defined everywhere on & and is
fully adapted; set v, = fSM dy and wr, = wy, for 7 € S, and wr = (wrr)res, f I € Z(S) and 7 € S,
|wr-| < #(Stio(I))u; so (wrr)res is order-bounded.

Let € > 0. Then there is an I € Z(S) such that 0(S;(1,dy) — Sk (1,dy)) < e whenever J, K € Z(S)
include I. Now if J € Z(S) includes Iy, 613V(ii-3) tells us that 6(wy, — v;) < 2¢ for every T € S; so if J,
K € Z(S) include I, 0(wy, — wg,) < 4e. Now (a) tells us that 7 — wy, — wg, is fully adapted, and we
have just seen that it is order-bounded, so 615Db tells us that

f(suplwy —wi|) = 0(sup,es [wsr — wir|) < 2Vde = 46
As € is arbitrary, this shows that the filter on the space My, = M1, (S) generated by
{{w; :ICJTeZ(S)}:I€Z(S)}
is a Cauchy filter; by 615Cc, it has a limit in M,,. But as limpz(sy wrr = v, for every 7 € §, this limit
must be v, and v is order-bounded.

(ii) Now 618Fb tells us that Osclln(v) = limgs) Osclln(wy). If I € Z(S) is non-empty, take
(70, .. ,7n) linearly generating the I-cells. If J € Z(S) includes I and e is a J-cell, then we can ex-
press e as ¢(o, 0’) where either 0 < ¢/ < 79 or 7, < 0 < ¢’ or there is an i < n such that 7; <o < o’ < 7541
Now

n—1
Wier — Wi = z Y(ry Ao g Na') —(Tj No,Tjp1 A o)
=0
=0if o’ <719 orm <o,
=Y(m Ao g No)—Y(mNoy i Ao)if 1 <o <o’ <7
and in any case |wys —wrs| < 2O0sclln}(¢)). So Oscllny(wy) < 2 Osclln(v)). As J is arbitrary, Osclln} (wy) <
2 Oscllnj (¢) and
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6((Osclln(w;) — 2 Osclln(z)) ) < §((Oscllnf(wr) — 2 Osclln()) ™)
< 6(2 Oscllnj (¢) — 2 Osclln(2))).
Taking the limit as I increases through Z(S),
0((Osclln(w) — 2 Osclln(¢))) ™) < 2lim47(s) 6(Oscllnj(¢)) — Osclln(v))) = 0,
and Osclln(w) < 2 Osclln(y), as claimed.

(c)(i) Suppose to begin with that S is full, so that we are in the situation of (b), but knowing that
v is moderately oscillatory, so that Osclln(v) = limz(s) Oscllnz(v) (618K). As observed in (b-i) above,
lim47(s) sup, ¢s (wrr — v-) = 0, and because S is finitely full, it follows that limyz(sy2r = 0, where

zr = sup |wy —v| Next, if I € Z(S and (79,... ,7,) linearly generate the I-cells,
n—1 n—1
Wrr, — Wir, = Z¢(Tj A Tig1, Tj41 A Tig1) — (T N Tiy Tjgp1 A Ti)
3=0 §=0
i i—1
= (T ATip s Ty ATign) = D (T AT T AT)
§=0 §=0
= ¢(Ti,7i+1)v
SO

|UTi+1 - U7i| < IwITi+1 - wITi| + 227 < ‘w(Tini+1| + 221

for every i < n. Acccordingly

Oscllny(v) = sup|vr,,, — vr,| < sup |wrr,,, — wir,| + 221

<n <n
< sup |[Y(7i, Tiv1)| + 221 = Oscllng (v) + 227 < Oscliny () + 221
i<n

and

Osclln(v) < limj47(sy Oscllng (¥) + lim 475y 21 = Osclln(1).

(ii) For the general case, we have the adapted extension 1,2 of 1 to the covered envelope Sof S.

(@) ¥ is order-bounded. B Write @ for SUP(4,51yes2t |P(0,0"). Tf 7 < 7" in S,

[lp(r, ) < @] 2 sup [o=7]n[ove’=7]n[l¢(o,0Vd) <u]
o,0'eS

D sup [o=7]nfo’=7]=1
o,0'€S

and [ (r,7')] < w. Q

(B) Osclln(y) < Osclln(y). P Follow parts (i) and (ii) of the proof of 618Ca and part (a) of the
proof of 618L, replacing every 1, — u, with ¥(p, p') and every u,s — u, with 9(o,0’), to see that
—if I € Z(S), (70, ... ,Ts) linearly generates the I-cells. 71 = inf S and 7,41 = sup S then

Oscllnj (v)) = sup{|¢(c,0')| : 0, ¢’ € S and there is an i
such that —1<i<mnand 7; <o <o’ <71},

—— Osclln}(v)) < Osclln}(v)) for every I € Z(S)

and therefore Osclln()) < Osclln(y). Q

(v) Now recall that the fully adapted extension v of v is 4i;(1) (616Q(c-ii)) and is moderately
oscillatory (615F(a-1)). So, using 618L itself and (b) above, we see that

Osclln(v) = Osclln(9) < Osclln(y)) < Osclln(v)),
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as required.

(d) v is an integrator (616J) therefore moderately oscillatory (616Ib), and [s di) exists by the definition
in 616Fa, so this is a consequence of (c).

618Q Theorem Let S be a sublattice of T, u = (uy)ses a moderately oscillatory process, and v =
(Vs)oes an integrator. Then Osclln(iiy(u)) < sup Ju| x Osclln(v). In particular, i, (u) is jump-free if v is.

proof Counsider the integrating interval functions Av and ¢ = uAwv (617Da). Write @ for sup |u|. Comparing
6180 with 618B, we see that Av is order-bounded because v is (616Ib), and that Osclln(Av) = Osclln(v).
Next, if 0 < ¢’ in S,
[(o,0")| = lug X (vor —vo)| < U X |V — Vs,
so if I € Z(S)
Oscllng () = sup  A.(1,]|dv])
e€Stio(I)

<ux sup A.(1,]dv]) =@ x Oscllns(v).
e€Stio(1)

Accordingly Oscllnj (1) < @ x Oscllnj(v) for every I € ZS) and Osclln(y)) < @ x Osclln(v). But now 617Db
tells us that 4, (u) = iy (1) and 618Pc tells us that

Osclln(ity () < Osclln(y) < @ x Osclln(v).

In particular, Osclln(ii, (u)) will be zero if Osclln(v) is.

618R Corollary Let S be a sublattice of T, u = (u,)ses a locally moderately oscillatory process, and
v = (Vy)ses a locally jump-free local integrator. Then the indefinite integral i, (u) is locally jump-free.

proof Apply 618Q to u[S A7 and v[S A 7 for 7 € S, using 615F(a-i), 616P (b-ii), 618Gc and 6130(b-ii).

618S Theorem Let S be a sublattice of T, and v = (v, )res, W = (Wo)res two integrators.
(a) Osclin([v w]) < Osclln(v) x Osclin(w).
(b) Osclln(v*) = (Osclin(v))?.
proof (a) Being integrators, v and w are order-bounded, while [vjw] is of bounded variation (617Jc)

therefore also order-bounded. Thus all three residual oscillations are well-defined.
Consider the integrating interval function ¢ = Av x Aw (617Ha). We have |¢)| = |Av| x |Aw| so

Ac(1,|di]) = Ac(1, [dv]) x Ac(1, [dw])

for every stopping-time interval e with endpoints in S,

Oscllny () = sup A.(L,|dy]) < sup Al(1,|dv]) x sup A.(1,|dw|)
e€Stio(I) e€Stio(I) e€Stio (1)

= Oscllny(v) x Oscllny(w)
for every I € Z(S),

Oscllnj(¢) = sup Oscllng(v) < sup Oscllng(dv) x  sup Oscllny(dw)
ICTEL(S) ICIEL(S) ICTEL(S)

= Oscllnj (v) x Osclln (w)
for every I € Z(S),

Osclln(y) = ITliIr(r}S) Oscllnj(v) < ITliIr(I}S) Oscllnj (dv) x Oscllnj (dw)

= ITHII(I}S) Oscllnj (dv) x J%izr&) Oscllnj (dw) = Osclln(v) x Osclln(w)

and
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Osclln(['vT'w]) = Osclln(4iy (1)) < Osclln(?p) < Osclln(v) x Osclln(w).
(b) From (a) we see at once that Osclln(v*) < Osclln(v)?. But for the reverse inequality it seems that

we need a further idea from §613.

(i) To begin with (down to the end of (v) below), suppose that S is full and not empty. Express v, v*
as (Vg)oes and (v2)scs. We know that

Osclln(v) = lim47(s) Osclln(v),  Osclln(v*) = limy7(s) Oscllnz (v*)
(618M),
Js(@)? =limpyzs) Si(1, (dv)?) is defined, v; = [( (dv)* forT €S
(617H). Now Osclln(v)? = lim+7(s) Osclln;(v)?, and given e > 0 there is a non-empty I € Z(S) such that
0(Osclln(v)? — Oscllns (v)?) <€, 6(Osclln(v*) — Oscllns(v*)) < ¢,

0(Ss(1, (dv)?) — Sk (1, (dv)?)) < € whenever J, K € Z(S) include I.
From 613V (ii-B3) we see that O(v: — S, (1, (dv)?)) < 2¢ for every 7 € S.

(ii) Let (79, ... ,7) be a sequence linearly generating the I-cells. Translating the formulae above with
the aid of the last remark in 618Ba, we have
6(Osclln(v)? — sup; ., (vr,,, — v7,)?) = 6(Osclln(v)? — (sup;,, |vr,,, — vr])?) <€
and
0(Osclln(v*) — sup;, [v7,,, —v7]) <€,
while

O(vi — > i, (Vripinr — Vrar)?) < 2€ for every 7 €S

T

because (79 A T,...,T, A7) linearly generates the (I A 7)-cells (611Kg).
(iii) The next thing to note is that
T = vl — Zi<n(vﬂ+1/\f —vrar)? S — LO(R)

is fully adapted and order-bounded, just because 7 — v} and 7 — v, A are fully adapted and order-bounded
for every i < n (612Ib). Since S is supposed to be full, f(w) < 2v/2¢ where

W = SUPrcs |’l).7: - Ei<n(vﬂ'+1/\7’ - UTi/\T)Ql
(615DDb). Now if j < n,

w > |’U:i]‘ - Zi<n(v7'i+l/\7'j - vTi/\Tj)2| = |’U't]~ - Zi<j(v7i+1 - UTi)2‘7
soif j <n
2w > |U:j+1 - Z(UTH»I - UTi)Q‘ + |U:j - Z(U7i+1 - UTi)2|

1<j 1<y
* 2|

2 |UTJ+1 - /U:j - (U7j+1 - UTj)

(iv) Assembling these, we have

6(Osclln(v*) — Osclln(v)?) < 0(Osclln(v*) — sup(v} = —vr))

<n it i
+ Q(Sup(U:L+1 - U:L) - sup(U7i+1 - UTi)Q)
<n <n
+ 0(Osclin(v)? — sup(vr,,, — vr,)?)
<n

j;i+1 - /U:fk'i - (sz‘Jrl - v"’i)Ql) +e

< e+ O(sup|v
i<n
< 2¢ + 0(2w) < 26 + 4V 2.
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(v) As e was arbitrary, Osclln(v*) = Osclln(v)?, at least if S is full and not empty.

(vi) In general, the case S = () is trivial. Otherwise, taking S to be the covered envelope of S and 9,
9™ to be the fully adapted extensions of v, v* to S, we see that " is the quadratic variation of v (617N),
while Osclln(v) = Osclln(®) and Osclln(v*) = Osclln(¢*) (618La). So

Osclln(v*) = Osclln(*) = Osclln(9)? = Osclin(v)?

in all cases.

618T Corollary Let S be a sublattice of T, and v = (Vs )ses, W = (Wo)oes two (local) integrators with
domain S of which v is (locally) jump-free. Then the covariation ['UT'w] and the quadratic variation v* are
(locally) jump-free.

proof If v and v are integrators and v is jump-free then Osclln(v) = 0 so Osclln(['va]) = 0 and the
covariation is jump-free. If they are local integrators and v is locally jump-free then we apply this to their
restrictions to S A 7, for 7 € S, to see that [v Tw] is locally jump-free. Taking w = v we have the results for

*

v,

618U Theorem Let S be a sublattice of 7, and v = (vs),es a process of bounded variation. Let
v" = (v]),es be its cumulative variation. Then Osclln(vT) is equal to Osclln(v); in particular, v is jump-free
iff vT is jump-free.

proof Consider the interval functions ¢ = Av and ¢’ = |Av|. Then v = 4iy(1) + v;1, where v is the
starting value of v, and v = 7iy/ (1). As Av = Adiy(1),

Osclln(v) = Osclln(4i, (1) = Osclln(y))

as remarked in 6180; as || = [¢|, Osclln(x)’) = Osclln(z); and by 618M, Osclln(v') < Osclin(v)’), so
Osclln(v") < Osclln(v).
In the other direction, because v, — v,| < vl — v} whenever o < 7 in S (614P(a-i)), we see that

Oscllns(v) < Oscllns(v"),  Oscllnj(v) < Oscllnj (vT)
for every I € Z(S), so that Osclln(v) < Osclln(v"). Thus the residual oscillations are equal. Now
v! is jump-free <= Osclln(w') =0 <= Osclln(v) =0 <= v is jump-free.

618V Corollary Let S be a sublattice of 7 and v a fully adapted process with domain S. Then v is
jump-free and of bounded variation iff it is expressible as the difference of two non-negative non-decreasing
order-bounded jump-free processes.

proof Given that v = (v,),cs is of bounded variation and jump-free, let T be its cumulative variation
and set v, = lim,|sv, (using 6141d); then v’ + |v;|1 and v’ — v + |v)|1 are order-bounded non-negative
non-decreasing processes with difference v, and are jump-free if v is. In the other direction, given that
v = v; — v3 where v; and vo are non-negative order-bounded jump-free non-decreasing processes, then v
is of bounded variation by 614J and jump-free if v; and ve are by 618Ga. Of course I am asking you to
remember that jump-free processes are order-bounded (618B).

618X Basic exercises (a) Suppose that T = [0,00[ and 2 = {0,1}, as in 613W, 615X{, 616Xa and
617Xb. Let f : [0,00[ = R be a function and u the corresponding process on 7y. (i) Show that if f is
bounded, then Osclln(u) can be identified with max(sup,>q limsupg, [f(s) — f(t)], sup;~o limsupg, [ f(s) —
f@®)|,infy>0limsup,_, . |f(s) — f(¢)]). (ii) Show that u is jump-free iff f is continuous and lim; ,~ f(t) is
defined.

(b) Let S be a sublattice of 7, u an order-bounded fully adapted process with domain S, and z a
member of L(N),cs o). Show that, in the language of 612D (e-ii), Osclln(zu) = |z| x Osclln(u), so that zu

is jump-free if u is.
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(d) Let S be a sublattice of T and u, v order-bounded processes with domain S. Show that [Osclln(u) # Osclln(v)] C [u

(e) Let S be a sublattice of T and u = (u,)ses an order-bounded process. Set v = (Osclln(u[SAT))rcs,
as in 618Da. Show that Osclln(v) = Osclln(u).

(f) Give an example of a jump-free fully adapted process v with domain S and a sublattice S’ of S such
that v|S’ is not jump-free. (Hint: try #(S') = 2.)

(g) Let S be a sublattice of T, 4 = (u,)ses a simple process with starting value u|, and I a sublattice
of S including a breakpoint string for u. Show that Osclln(u) = Oscllns(u) V |tmin 1 — uy .

(h) Let S be a sublattice of 7, and u a moderately oscillatory process with domain S. Show that
Osclln(u) = sup, g Osclln(u[S A7), so that if u is locally jump-free then it is jump-free.

(i) Let S be a full sublattice of 7 with a greatest element and v = (u,)scs & moderately oscillatory
process. For 0 > 0 let (ys;)ien be the sequence constructed from u and § as in 615M. Show that Osclln(u) =

limg o sup;en [¥s,i+1 — Vsl

618Y Further exercises (a) Let S be a sublattice of 7 and S a sublattice of S which is order-convex
in S. Let u = (uy)ses be an order-bounded process. Show that Osclln(u[S’) < Osclln(u).

(b) Suppose that T = [0,00[ and there is a ¢ > 0 such that ; # (., 2As. Let ¢ = (t5)sc7; be the
identity process. Show there is a non-empty downwards-directed set A C 7¢ such that lim,| 4 o 7 tinf a-

(c) Let S be a finitely full sublattice of T, and v = (uy),es an order-bounded fully adapted process.
Show that w is jump-free iff lim47(s) Oscllng (u) = 0 in LO(2A).

(d) Show that with a modification of the construction in 613P, we can find jump-free processes u and v
with domain 7. such that [ udv is defined but the integral [+ 4 dd is not.

618 Notes and comments In fact rather little of the work of this section is directly necessary for Ito’s
lemma as it will be stated in §619; only the definition is really essential, though of course it makes no
sense without 618H. And since we shall need to know when an integrator is jump-free, results like 618G,
618L, 618R, 618T and 618U are worth establishing. I have taken a bit of extra trouble to calculate residual
oscillations; I think that these give us a clearer notion of what is really going on. And the heavy labour of
618M leads to a fact which is not only remarkable in itself but goes to the heart of the concept of ‘moderately
oscillatory’ process. If 4 = (u,)ses is a simple process, then a straightforward calculation (618Xg) tells us
that Osclln(u) = lim4z(s) Oscllng(u). Similarly, it is easy to see that processes of bounded variation are
integrators (616R). The point of 616K-616M and 618M is that moderately oscillatory processes are ‘nearly’
of bounded variation.

Note that ‘jump-free’, like ‘simple’ but for different reasons, is another property which is not automatically
inherited by restrictions to sublattices (618Xf). But observe that once again we have a property of stochastic
processes which is independent of the measure chosen on the underlying Boolean algebra.

61820 Lemma Let S be a sublattice of 7, and ¢ : ST — LO(2A) an order-bounded integrating interval
function with indefinite integral v = 74, (1). Then

Osclln(v) < Osclln(%)).

proof The result is trivial if S is empty, so suppose otherwise.
(a) To begin with, consider the case in which § is full. Let ¢ > 0.
(i) Since
limyzs) Sr(1,d¢p) = | s dv,  limpyz(s) Osclinf(y)) = Osclln(y)),
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there is a non-empty Iy € S such that whenever I € Z(S) includes Iy then
(o) 0(Ss(1,dy) — Sk (1,dyp)) < e whenever J, K € Z(S) include T
(8) 0(Oscllny(¢) — Osclln(¢)) < e.

Take any such I.

(ii) By 613V(ii-B), 0(w, —v,) < 2¢ for every 7 € S. Now 7+ wy, : S — L is fully adapted and order-
bounded. P If I is empty, this is trivial. Otherwise, take a string (79, ... ,7,) linearly generating the I-cells.

n—1

IfreS, (rgAT,..., 7, AT) linearly generates the (I A7)-cells (611Kg), and wr, = Y ;"5 (i AT, Tig1 AT)
(613Ec). Since ¢(m; AT, 741 AT) € LYy, ar) C© LY(A;) for each i, wi, € L°(A;). Now if o, 7 € S,

[o=7] c 111<1£ [rino=mNAT] C L11<1£ [(ri NoyTig1 ANo) = P(Ts AT, Tig1 AT)]

(because v is strictly adapted)
- [[SI/\J(ladw) = wI‘r]]~

Thus 7 — wy, : S — LY is fully adapted. As for order-boundedness, it is the sum of the n order-bounded
functions (o, 7) + (o A1, 7 AT;) for i < n, so is order-bounded. Q

(iii) It follows that 7 — wr,—v; is fully adapted and order-bounded, so that, writing w for sup, ¢ g |wr, —
vr|, O(w) < 2v/2¢. Now take (79, ... ,7,) linearly generating the I-cells. Then

Oscllng (v) = sup [Vr ey — V| S w A sup |Stari, (1, dyp) — Siar, (1, d0)]
<n <n

i 1—1
< w+sup| Zw(TjaTjH) - ZWTJ’TJHN
1< . i

7=0 j=0

= w + sup | (7, i+1)] = w + Oscllng(¢) < w + Oscllny ()
i<n

and
((Oscllns(v) — Osclln(z))*) < 6(w) + 0(Oscllnj (v) — Osclln(v))) < 24/2¢ + .

(iv) This is true whenever Iy C I € Z(S). As e is arbitrary, lim47(s)(Osclln; (v) —Osclln(¢)) " = 0. But
because v is an integrator (616J), therefore moderately oscillatory (616Ib), lim47(s) Osclln;(v) = Osclln(v)
(618K). So (Osclln(v) — Osclln(¢)))*t = 0 and Osclln(v) < Osclln()).

(b) For the general case, we have the adapted extension ﬁ of ¥ to the covered envelope S of S, which is
again an integrating interval function (616F).

(i) ¢ is order-bounded. P Write @ for SUP(g,01)es2t |P(0,0)]. If 7 < 7" in S,
[[0(r, ) <@w]2 sup [o=7]n]oVe =7]n]|(o,0Vd)| <w]
o,0'€S

D sup [o=7]no’=7]=1
o,0’€S

and [(r,7')] < w. Q

(ii) Osclln(v) < Osclin(v)). PP Follow parts (i) and (ii) of the proof of 618Ca and part (a) of the proof
of 618L, replacing every u, — 4, with ¥(p, p') and every u,» — u, with ¢(co,0’), to see that
() if I € Z(S), (70,... ,7s) linearly generates the I-cells. 7_; = inf S and 7,41 = sup S then

Oscllnj (v)) = sup{|v(c,0")| : 0, 0’ € S and there is an i
such that —1<i<mnand 7; <o <o’ <741},

(B) Osclln} () < Osclln (1)) for every I € Z(S)
and therefore Osclin(¢)) < Osclln(t)). Q
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(iii) Now recall that the fully adapted extension v of v is 4i; (1) (616Q(c-ii)). So, using 618L itself and
(a) above, we see that

Osclln(v) = Osclln(®) < Osclln(¢)) < Osclln(v)),

as required.
Version of 13.3.17/29.7.19

619 It6’s formula

I give three versions of It6’s formula (619C, 619D and 619J). The last depends on elementary facts about
the action of functions of more than one real variable on strings of processes (619E-619G).

619A Notation As usual, (A, i, T, (As)eer, T, (Ar)re7) will be a stochastic integration structure. L™
will be L% (1) with its norm || || . L will be L() endowed with its topology of convergence in measure,
and E will be the integral defined from fi; for w € LY, (w) will be E(Jw| A x1). If y € LY, then y1 will
denote the constant process on {0 : 0 € T, y € L°(2,)} with value y. For local integrators v and w, [v]w]
will be their covariation (617Hb); v* will be the quadratic variation of v. For a sublattice S of T, M, (S)
will be the space of fully adapted processes with domain S.

619B Lemma Let S be a sublattice of 7 and v = (v, ),cs an integrator. Then for every e > 0 there is
a § > 0 such that 6(S;(u, (d)?) < e whenever I € Z(S), u € Mg, (Z) and 6(sup |u|) < 4.

proof Asw is an integrator, it is order-bounded (616Ib) and there is a §y > 0 such that

(S (u,dv)) < e whenever I € Z(S), u € M (Z) and 6(sup u|) < &
(616E). Also v? is an integrator (616Pa), so there is a § > 0 such that

0(Sr(u,d(v?))) < +e whenever I € Z(S), u € M, (Z) and O(sup |u]) < &
and 0(z x sup |v]) < &y whenever 6(x) < 6. Now suppose that I € Z(S), u € Mg, (Z) and O(sup |u|) < 4. If
o<Tinl,

Uy X (Ur = V5)% = Uy X (V2 —02) = 2uy X V5 X (Vr — Vy).
Working through the definitions in §613, we see that
St (u, (dv)?) = Si(u,d(®?)) — 257 (u x v, dv)
while
O(sup |u x v|) < O(sup |u| x sup |v]) < do,
S0
0(S1(u, (dv)?)) < 0(S1(u, d(v?))) + 20(S1 (w x v,dv)) < e+ 2e = ¢,

as required.
619C 1t6’s Formula, first form Let S be a sublattice of T, v = (v;)rcs a jump-free integrator, and

v* its quadratic variation. If h : R — R is a twice-differentiable function with continuous second derivative,
then

fsﬁ’vdv+%fsﬁ”vdv*
is defined and equal to h(vt) — h(v;), where

vy = limps V6, v = limg s V.

Remark In the formula above, &' : L® — L% and A" : L° — L should be read as i/ and h".

proof (a) We can note straight away that v is moderately oscillatory (616Ib), so h'v and h''v are moderately
oscillatory (615F (a-ii)), while v and v* are integrators (6160, 6171), so that the integrals [sd(hw), [sh'vdv
and [ h'v dv* are defined (616K); moreover,
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fS d(?L’I)) = limng E(Ua) — limg\LS ;L(’Ug) = ;L(”UT) — ?L(U\L)
(613N, 613Bb), and
fs h'"v dv* = fs h'"v (dv)?
6171 again).
( gain)

(b) For the time being (down to the end of (c¢)), suppose that A" is uniformly continuous. Let € > 0.
Let > 0 be such that 0(S(u, (dv)?)) < € whenever I € Z(S), u € Mg, (I) and 6(sup [u|) < 7. Then there
is a & > 0 such that |h"(«a) — b (8)| < n whenever |a — 3| < 2§. Now take any such o and 8. By Taylor’s
theorem with remainder, there is a 7 lying between « and g such that

h(B) = h(a) + (8 = a)l'(a) + 5 (8 — @)2h"(5),
so that
1

h(8) = h(a) = (B — a)l’(a) = 5 (B — a)*h"(a)| < n(B — o).

It follows that if w, w’ € LY then [Jw’ — w| < §] is included in

[IA(w') = h(w) — b’ (w) x (W' —w) - %ﬁ”(w) x (w' —w)? < n(w' —w)?].

(c) Let J € Z(S) be such that 6(z) < de, where z = Osclln’;(v) (618Bb). Take any I € Z(S) such that
I O J. Then Osclln;(v) < z, and a = [z < §] has measure at least 1 — e. Now if e = ¢(0,0’) is an I-cell,
and we set

(1, d(hw)) = Ac(h'v,dv) — A (H"v, (dv)?)

|
>

Ye
= h(vy) = h(vy) = B (v5) X (vr —v5) = 2h"(v6) X (vr — v5)?,
we have
[vr — vo| = Ae(1,]dv|) < Oscllng(v) < z
and

a C [lvr —vel < 6] € [lyel < n(vr — UG)Q]] = [lyel < Ac(nl, (d”)2H~

Summing over e,

as [[ZeEStio(I) lye| < Zeestio(l) Ac(n1, (dv)?)]
cl ZeéStio(I) Ye| < destio(]) Ac(n, (d”)2)ﬂ
= [|S7(1,d(hv)) — S;(h'v, dv) — Sr(h"v, (dv)?| < S;(n1, (dv)?)],
and
0(S1(1,d(hv)) — Sr(h'v,dv) — S;(h'"v, (dv)?)) < i(1\a) 4+ 0(nSr(1, (dv)?)) < 2€

by the choice of J and 1. And this is true whenever T O J. Accordingly, taking the limit as I T Z(S), we
have

h(vt) — h(vy) — /SB"U dv — %/Sﬁ”'v), (dv)?

:/Sd(ﬁv)—/sﬁ’vdv—%/sil”” (dv)?

_ . 7 _ 7/ _ N/ 2
= ITIIII(I}S) S1(1,d(hv)) — Si(h'v, dv) — Si(h"v, (dv)*)

and
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— 1 — « — 1 — — —
Jshvdv+ 5f8 W'y dv* = [ h'vdv + 5fs h'v (dv)? = h(vy) — h(vy),
as required.

(d) This deals with the case in which A" is uniformly continuous. For the general case, recall that there
is a v € LO(2) such that |v,| < © for every o € S (616Ib). Take any M > 0. There is a smooth function
f: R = R with compact support such that f(z) =1 for every x € [-M, M]. P By 473ED there is a smooth

function ho : R — R such that ho(z) = 0 if || > 1 and the Lebesgue integral f ho t)dt is equal to 1. Take

f to be the convolution hg * X[—M — 1, M + 1]; by 473De, f is smooth, while f(z f ho t)dt = 1 if
|| < M and f(z)=0if || > M +2. Q
Consider g = f x h. Then g is twice differentiable with continuous second derivative, while ¢'(z) = h/(z)

and ¢’ (z) = h”(x) whenever |z| < M. Since ¢”, like f and g, has compact support, it is uniformly continuous
(4A2Jf). Accordingly

g(vr) = g(vy) = [ gvdv + [ g"vdv*.

So

[h(or) = h(v,) # [shvdv + 3 f5 B0 dv”]

c [A(vy) # glvp)] v h(vy) # glo)]u s Mo dv # [ 5'v dv]
Ulfs v dv* # [5g"vdv*]
[hv # gu] u [h'v # gv] U [R"v # §"v]

N

(613Jd twice)

N

sup [|ve| > M] C [o > M].
o€S

Letting M — o0,
= - = 1p 7 . _
[P(vy) = h(vy) # [ P'vdv + 5f8 h'v dv*] C infprso [0 > M] =0

and
— — — 1 — %
h(vt) = h(vy) = [ h'vdv + 5f8 h' dv
in this case also.
619D It6’s Formula, second form Let S be a sublattice of 7, and v a jump-free integrator with

domain § and quadratic variation v*. If u is a moderately oscillatory process with domain S, and h: R — R
is a twice-differentiable function with continuous second derivative, then

f ud(hv) f ux hvdo+ = f u X h''v dv*.

proof Applying 619C to S A 7, we have

— — — 1 — %
h(ve) = h(v) = [o hvdv+ 3 Jo, B vdv
for every T € §; that is, setting
2= hv — iy (h'v) — %iz’v* (h'"v),
z = h(v})1]S. But recalling that
hv, diy(h'v), iy (h"v)
are all integrators (6160, 616J), it follows that
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fsud(ﬁv) - fsud(iiv(ﬁ’v)) — %fsud(iiv*(ﬁ”v)) = fsudz =0.

Now applying 617E this becomes

as claimed.

619E Of course It6’s formula also has a multidimensional version. There are no really new ideas needed,
and ordinarily I leave such adaptations to the exercises, but there are points below where we can use two-
dimensional formulae to tell us interesting things about one-dimensional processes, so I spell things out here.

The first step will have to be to establish an interpretation of h(vy, ... ,v;) where h : R¥ — R is a Borel
measurable function and v1,... ,vx € L°. Since I did leave this to the exercises in §364, I give the details
now.

Proposition Let £ > 1 be an integer.

(a) Suppose that u1, ... ,ux € L°. Let By, be the Borel o-algebra of R¥. Then there is a unique sequentially
order-continuous Boolean homomorphism ¢ : By — 2l such that ¢{(&1,...,&) : & > a} = [u; > ]
whenever 1 <7 <k and o € R.

In this context, write [(u1,... ,ux) € E] for ¢E, for every Borel set E C R¥.

(b) Suppose that h : R¥ — R is a Borel measurable function. Then there is a unique operator A :
(L%% — LY such that [A(uy,...,ux) € F] = [(u1,... ,ux) € h~[F]] whenever ' C R is a Borel set and
Uy, ..., up € L.

(¢) If uy,... ,up,v1,..., 0, € LY, then

inflgigk [[ul = Ui]] - [[ﬁ(ul, - ,uk) = 71(’(}1, A ,Uk)]].

(d) If h : R* — R is continuous, then A : (L°)* — L° is continuous for the topology of convergence in
measure.

(e) Suppose that Q is a set, ¥ is a o-algebra of subsets of 2, N is a o-ideal of X, and 2l is isomorphic to
the quotient Boolean algebra ¥/N. Write £° for the f-algebra of real-valued Y-measurable functions on €,
and W for the ideal

{f:feld {w: flw) #0} e N},
so that L can be identified with the f-algebra quotient £°/W (364Ib). Write E + E* : ¥ — 2 and

f f*: L% — L° for the homomorphisms corresponding to the identifications 2 = ¥ /A and LY = £°/W.
Then if  : R* — R is a Borel measurable function,

B(fl.7 7f,1;) = (h(fla 7fk)).

forall f1,..., fr € £°, defining the composition h(f1, ... , f) by setting (h(f1, ..., fi))(w) = h(f1(w),... , fe(w))
for every w € Q.
(f) Suppose that (h,)nen is a non-decreasing sequence of Borel measurable functions from R¥ to R, and
that h(z) = sup,,cy ha () is finite for every € R¥. Then (hy,(u1,. .. ,ur))nen is a non-decreasing sequence
in LY with supremum h(uy, ... ,u), for all uy, ... ,us € LO.
(g) Now suppose that (€, ) is another probability algebra and ¢ : 2l — € is an order-continuous Boolean
homomorphism. Let Ty : L°(2A) — L°(€) be the corresponding f-algebra homomorphism (612Bf). Take
Uty .., up € LO(A).
(i) If E € By, is a Borel set, then [(Tyuq,... ,Tpur) € E] = @(w1,... ,ux) € E].
(ii) If h : R* — R is Borel measurable, then h(Tyus, ... , Tyur) = Tph(us, ... ,ug).

proof Since there is a measurable space with negligibles (2, X, \), as in (e), such that A = X /N (314M),
we can suppose from the beginning that 2 is actually such a quotient; at some point, of course, we shall
have to check that it won’t matter which such representation is chosen.
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(a)(d) If ug,...,up € LO let f1,..., fx € £Y be such that ff = u; for 1 < i < k. If E € By, then
{w: (filw),..., fr(w)) € E} € ¥ (121K). So we can set ¢F = {w : (f1i(w),..., fr(w)) € E}* € 2.

Clearly E — {w : (fi(w),..., fr(w)) € E} : By — X is a sequentially order-continuous Boolean homo-
morphism, so ¢ alsois. And if 1 <7<k and o € R,

(&1, k) & > a ={w: filw) > a}t = [u; > ]
(3641Ib again).
(ii) Now suppose that ¢’ : By — 2l is another homomorphism of the same kind. Let J be the family

of sets of the form F' = Hf;l Jei, 0o] where «; € R for every i. For such a set,

¢oF ={w: fi(w) > a; for 1 <i <k} :1££k{w:fi(w) > a;} :1£i1£k[[ui > oy

= inf ¢/{(§1,... 7£k)5§i>05i}:¢/( m {(61, 7§k)5§i>ai}):¢/F-

1<i<k
== 1<i<k

So ¢ and ¢’ agree on J and therefore on J' = J U{R*}. Set A= {E: E € By, 9E = ¢'E}. Then J' C A.
If E, F € A then
P(E\F)=¢E\¢F =¢'E\¢'F =¢'(E\ F)

and E\ F € A; if (E,)nen is a non-decreasing sequence in A with union F,

OE = (U, En) = sup,en ¢E, = sup, ey ¢'En = ¢'E

and E € A. Since J' is closed under intersections, the Monotone Class Theorem in the form 313Gb tells
us that A must include the o-subalgebra of By generated by J. But this is the whole of By, by 121J. So

¢ = ¢.
This shows that ¢ is unique.

(b) (i) Write B for the Borel o-algebra of R. Suppose us, ... ,u; € L. The function F — h=1[F] : B — B,
is a sequentially order-continuous Boolean homomorphism, so F' — [(u1,...,u;) € h"'[F]] also is. By
364F, there is a unique member of LY, which we may call h(ui,... ,uy), such that [h(ui,... ,ux) € F] =
[(u,...,ux) € h=1[F]] for every F € B.

(ii) In the present context, we have an alternative expression for h, as follows. If fi,... , fx € £°, then
g=h(f1,..., fr) belongs to £L° (121Kb). If F € B and u; = f; for each i, then

[h(us, ... ,u) € F] = [(u1,... ,ux) € h"1[F]]
={w: (i), felw) € AHFIY

(by the construction in (a))
={w:glw) e F}* =[g* € FJ.

So ﬁ(fl.a ’flg> =9 = <h<f17 afk)).'

(c) Take f;, g; € L° such that fr = u; and g; = v; for 1 <4 < k. Set f = h(fi,...,fx) and
g =nh(g1,...,9r). Then, using the expression for h in (b-ii),

[A(u, . suk) = h(vr, . ve)] = [f* = g°] = {w: f(w) = g(w)}*
2( ) {w: filw) = gi(w)})*

1<i<k
= of {w:filw) =giw)}* = nf fu =v].

(d) Take U = (uy, ... ,ux) € (L°)* and € > 0. Let M > 0 be such that [|u;| > M] has measure at most
¢ for each i. Because h[[—M — 1, M + 1]¥ must be uniformly continuous, there is a § € ]0,1] such that
|h(y) — h(x)| < € whenever z, y € [-M — 1, M +1]* and y — x € [, 6]".
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Suppose that V' = (v1,... ,v;) € (L°)¥ is such that 8(v;—u;) < e for every i < k. Let f1,..., fr,g1,--- , gk €
L0 be such that ff =wu; and gf = v; for each i. Then

o i)  £:@)] 2 8} <EGQA lgs — £l) = B A o — i)
=0(v; — u;) < Je,
50 {w : |g;(w) — fi(w)| > 0} has measure at most €, for each 7. Set
H =M {w: [filw)] <M, |gi(w) = filw)] < 6}

Then uH > 1 — 2ke. For w € H, both z = (fi1(w),..., fr(w)) and y = (¢1(w),... ,gx(w)) belong to
[-M — 1, M + 1]¥ (because § < 1), and y — x € [~6, 6], so |h(z) — h(y)| < e. But this means that

<e+pu(Q\H) <(2k+ 1)

As U and € are arbitrary, h is continuous.

(e) To see that any other isomorphism 2 = %/ /A” where (£/,%', A”') is another measurable space with
negligibles, would lead to the same operators h : (L°)¥ — L% note that ¢E = [(u1, ... ,ux) € E], for E € By,
and uq,...,ur € LY is determined from the values [u; > ] for 1 < i < k and a € R, as shown in (a).
Since (following 364A) each u; is neither more nor less than the family (Ju; > a])qcr, these are necessarily
independent of representations of 2. Similarly, (b) above also provides a representation-invariant description
of h.

(f) Taking f1,..., fr € £ such that f# = u; for each i, we have (h,(f1,..., f&))nen T R(f1,..., fr) in
LO, SO <hn(f1, SN afk)>n€N T h(fl7 N >fk) in LO.

(g)(i) Set E={E: E € By, [(Tpur,... ,Tpux) € E] = ¢[(u1,... ,ux) € E]}. If E; C R is a Borel set for
i <k,and E =[],.,., Ei, then

[[(T¢u1, . ,T¢uk) S E]] =

inf [Tyu; € E;]| = inf e B
1519[[ oti € Bi] 15’19(]5[[%6 il

(612Af)
= ¢( infk [u; € Ei]) = o[(u1,... ,ur) € E]

1<i<

and E € £. Because E — [(u1,...,ux) € E] : By = A, E — [(Tyus,...,Tpu) € E] : By — € and
E — ¢[(u1,... ,ux) € E]} : &€ — € are all sequentially order-continuous Boolean homomorphisms, & is
a Dynkin class. So the Monotone Class Theorem (136B) tells us that £ includes the o-subalgebra of B
generated by products of Borel subsets of R, and is the whole of By, as claimed.

(ii) For any Borel set F C R,

[h(Tyua, ... ,Tyug) € E] = [(Tpua, ... ,Tyur) € h~E]]
(612Ac)
= @[(u1,... ,ux) € hE]]
((i) just above)
= ¢[h(u1,... ,uy) € E] = [Tsh(us,... ,u) € E];

as F is arbitrary, h(T¢u1, v ,T¢Uk) = T¢B(U1, ve ,uk).

619F Definition Let uq,... ,u; be fully adapted processes defined on sublattices Sy,...,S; of 7 and
h : R*¥ — R a Borel measurable function. Regarding U = (u1, ... ,ux) as the function o — (uig,... , Ury) :
S — (L)%, where u; = (u;s)ses, for each i and S = (), ., Si, we have a composition

BU = <B(u10'7 e ,ukg»geg.
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619G Proposition Let u1, . .. ,u;, be fully adapted processes all with the same domain S, and h : R¥ — R
a Borel measurable function. Write U for (ug, ... ,uy).
(a) hU is fully adapted.
(b) If every u; is order-bounded and h is locally bounded, that is, bounded on bounded subsets of R¥,
then AU is order-bounded.
(c) If every u; is (locally) moderately oscillatory and h is continuous, then AU is (locally) moderately
oscillatory.
(d) If every u; is (locally) jump-free and h is continuous, then AU is (locally) jump-free.
*(e) If z is a fully adapted process with domain S and z? = 2, then
(i) 2 x h(z X uy,... 2 xuy) =2 x hU,
(ii) and if A(0,...,0) = 0, then h(z x uy,... ,2 X ux) = 2 x hU.

proof If S is empty, all these are trivially true; suppose that S # (). Express each u; as (uy)scs and set
Uy = (U145, ... ,Uke) for o € S.

(a) Ifo, 7 €S,

152;@ [wic = uir] € [M(uro, ... ,Uko) = h(U1r, ... ,ukr)]

=
Q
I
=
N

(619Ec)
= [1(Us) = h(U-)]-

So hU = (h(U,))ses is fully adapted.
(b) (Cf. 614F(c-i).) For x € RF, set g(z) = sup| (<« 7(¥)|. Then g is Borel measurable. If u; =
SUp,cs |tio| for 1 <i <k, then g(ay,... , 1) is an upper bound for {h(U,) : o € S}.

(c) (Cf. 615F (a-ii)) Write S for the covered envelope of S, and for 1 < i < k let #; = (tir) g be the fully
adapted extension of u; to S.If every u; is moderately oscillatory and (7,),en is a monotonic sequence in
S, then lim,, o @iy, exists for every i; since h : (L°)* — L9 is continuous (619Ec), lim,, o h(Us, ) exists,
where U, = (fi1r, ... ,dx,) for 7 € S. By 615N, hU = <71([A]i7)>765 is moderately oscillatory. But hU extends
hU, so hU is moderately oscillatory, by 615F (a-i).

The result for locally moderately oscillatory processes follows at once.

(d)(i) (Cf. 618Ga.) Suppose first that every u; is jump-free. We know from (b) that hU is order-bounded.
Set

W = SUP, ¢ s SUP| << |Uio]

W' = supy s [A(Us)]-

Let € > 0. Let M > 0 be such that gJw > M] <, and § > 0 such that |h(y) — h(x)| < € whenever z,
y € [-M,M]* and & — y € [—6,6]". For 1 <i <k, let I; € Z(S) be such that 6(Osclln} (u;)) < €d; set

a=[w > M]usup;<;<p [Oscllng, (u;)) > 6],
so that fia < (k+1)e. Let I be the sublattice generated by J;<;<, ;- Then Osclln} (hU) < ex1 4+ 2w’ x xa.
P Suppose that J € Z(S) and J D I. Take e = ¢(o,7) € Stip(J). Then

[“B(U'r) - B(U0)| >e] c[w>M]u sup [luir —uis| > d]

1<i<k

1<i<k

M
Cw>M]Ju sup [Oscllng(u;) > 4]
M

Ju sup [Oscllnj(u;) > 0] = a,
1<i<k

and

=
—
S
SN~—
|
>

(Us)] < exl + 2w x xa.
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As e is arbitrary, Osclln, (hU) < ex1 + 2@’ x xa; as J is arbitrary, Osclln}(hU) < ex1 + 2w’ x ya. Q
It follows that
0(Osclinj (hU)) < € + jia < (k + 2)e.
As € is arbitrary, hU is jump-free.
(ii) As in (c), it follows at once that if every u; is locally jump-free, then AU is locally jump-free.

(e)(i) Express z as (z5)ocs. Setting d, = [z = 1], we see that that 1\ d, = [z, = 0] for each 0 € S. If
oc€S,

INdy C[h(Uis X Zoy- - s Uko X 2Zg) X 2o = 0] N [M(t1g, . .. ,Uks) X 2o = 0]
C [h(u1e X 2oy - - Uk X 20) X 26 = h(Utgy - - Uko) X Zo],s
ds C 1%51;]9 [[ui(r X Zg = uia]]
C [h(u1o X 2y ko X 20) = h(U1q, - .., Uko)]-
S0 h(U1e X Zoy ... Uke X Zg) X 25 = h(Ulg, ... ,Ue) X Zg; as o is arbitrary, z X h(z X uy,...,2 X uy) =

z X h(uy,...,ug).

(ii) Now suppose in addition that h(0,...,0) = 0. Then for each o € S we have

1\d, =20 =0]n irzlgk[[uw X 25 = 0]

1<
=20 = 0] N [M(u1o X 2oy - s Uke X 25) = 0]
C [M(t1e X 2oy s Uk X 26) = h(Uies -+ 5 Ukg) X Zo]
and
dy C [26 = X1 N [P (10 X Zos -+ s Uk X 26) = h(Uig, - - - ;U )]
C [h(u1e X 2oy - s Uke X 20) = h(U1g, - -+ ,Uko) X Zo],
so that h(z X uy,...,2 xug) =z x h(uy,... ,up).

619H Proposition Let S be a sublattice of 7, k > 1 an integer and h : R¥ — R a continuous function.
Then h : Mo, (S)¥ — Myp,(S) is continuous when M, ,(S) is given the ucp topology and M, (S)* the
corresponding product topology.
proof (Cf. 615Ca.) Take V = (v1,...,v;) € MF,, where My, = My,(S), and € > 0. Set v =
SUP; <;<j SUp |vi|, and let M > 0 be such that iJo > M] < e. Let § € ]0,1] be such that |h(z) — h(y)] <
whenever z, y € R¥, ||z]loc <M + 1, [|yllee <M +1 and ||z — y|loo < J. Take any U = (uy,... ,u) € MF,
such that (sup [u; —v;|) < €6 for every i. Set @ = sup; ;< sup |[u; —v;| and w = sup |hU — hV|. Then

ala > 0] < S5 Alsup fu; —vi| > 0] < ke,
S0, expressing u; as (Ujr)oes and v; as (Vi )ecs for each i.

[ > €] = sug [[h (1o, - s Uuke) — M(Vis -+ s Vke)| > €]
ge
C sup [lvie| > M]U[|thie — vie| > 0] = [0 > M]u[a > ]
19’%1@
(eSS

has measure at most (k + 1)e. and
O(sup |hU — hV|) = 0(w) < (k + 2)e.

As V and e are arbitrary, h : MPF, — M, is continuous.

6191 Theorem Let h : R¥ — R be a differentiable function; write hy, ... , hy for its partial derivatives.
Suppose that every h; is Lipschitz on every bounded set in R”*. Let v1,... ,v; be integrators, all with the
same domain S. Then h(vy,... ,v;) is an integrator.
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proof (a) Suppose that M, K > 0 are such that |h;(z) — hi(y)| < K|l — y|| whenever 1 < i < k and =z,
y € [-M, M]*. Then

Ih(y) = h(@) = Y0y (n = &)hi(@)] < KVl — 2
whenever x = (&1,...,&), ¥y = (1,... ,mk) € [-M, M]*. P Set g(t) = h(ty + (1 —t)z) for t € R. Then g is
differentiable with

§'(6) = Sy (0 = E)hlty + (1= 1))

for every t. By the Mean Value Theorem there is a ¢ € [0,1] such that g(1) — g(0) = ¢'(¢), that is,
h(y) — h(z) = S35, (1 — &)hi(2) where z = ty + (1 — t)z. So

k k
[Ay) = k() = (0 = &)ha(w)| = | D (i — &) (hi(=2) — ha(w))|

=1 i=1

< KVE|y—afllz — =l < EVE|y —z|>. Q
(b) Consequently, using 619Ee or otherwise,

k
|h(w}, ... ,wy) — h(wy, ... ,wg) —Z(w; —w;) X hi(wy, ... ,wg)|

i=1

k
< K\/EZW}; —wy|?
i=1

whenever wy, ... ,wg, wi,... ,wy, belong to L™ and [|w;||ec < M, ||w}|e < M for every i.
If now [ is a finite sublattice of 7 and u = (uy)ser, Wi = (Wis)oer are fully adapted processes with
|lwillco < M for 1 <i<k,and we set W = (wy,... ,wg), Wo = (W10,... ,Wke) for o € I, then
k
[Ac(u, d(EW)) = >~ Ac(u x bW, dw;)|
i=1

k
= [ug x ((A(W;) = B(W,)) = > hi(Wo) x (wir — wig))|
=1

k k
< KEVklug| x Y (wir —wio)? = KVE Y Ac(ul, (dw;)?)

i=1 i=1
whenever o < 7 in I and e is the stopping-time interval ¢(o, 7). Summing over the I-cells,

1S (u, d(hW)) — S0, Sr(u x bW, dw;)| < KVEY, Si(lul, (dw;)?).

(c) Now suppose that € > 0. Set ¥ = sup,cs 1<;< |[Vis| and let M > 0 be such that fic < e where
¢ = [v > M]. Set w; = med(—M1,v;, M1) for each i, so that [|w;]|e.c < M and [w; # v;] C ¢ for 1 <i < k;
write V. = (vy,... ,v;) and W = (wq, ... ,wg).

Let K > 0 be such that h;[[-M, M]* is K-Lipschitz for each i, and M’ > 0 such that |h;(z)] < M’

whenever z € [-M.M]*¥ and 1 < i < k; then sup |ﬁﬁzW| < x1 for each i. Take § > 0 such that

M'O(S;(u,dv;)) < e, KVkO(Si(u,(dw;))?) < e
whenever 1 <i <k, I € Z(S), u € Mg, (I) and 0(sup |u|) < § (using 619B again).
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Take a finite sublattice I of S and u € Mg, (I) such that 8(u) < 6. Using 613Lc repeatedly, we have
[S1(u,d(hV)) # Si(u,d(hW)] C ¢
[Sr(u x hy(W), dv;) # Sr(u x h;W, dw;)] C c,
[S1(ul, (dvi)?) # Sr(|ul, (dw;)?)] c ¢

for every i, so
[1S1(u, d(RV)) = S, Si(u x bW, dvi)| > KVES I Si(|ul, (dvi)?)]
C cU[|Sr(u,d(hW)) — S5, Si(u x W, dw;)| > KVEYX"_| Si(|ul, (dw;)?)]

:C7

and

0(S;(u, d(hV)) ux ~hW, dv;))

HM;«

+ Z KVEI(St(Jul, (dv;)?)) + fic

< (1+2k)e

167

by the choice of d, because 6(sup |u x ﬁI@WD < O(sup Ju|) < 6 for each i. And this is true for every finite

sublattice I of S.
As € is arbitrary, hV is an integrator.

619J It6’s Formula, third form Let & > 1 be an integer, and h : R*¥ — R a twice-differentiable

function with continuous second derivative. Denote its first partial derivatives by hq, ... , hx and its second
partial derivatives by hq1,...,hie. Let S be a sublattice of 7, and v1,... ,vx jump-free integrators with
domain S; let u be a moderately oscillatory process with domain S. Write V = (vy,... ,v%). Then

T k T 1k k T *
JsudhV) =320, [sux iV dv+ 3570, 300 [oux higV dlv; o).

proof We can follow exactly the same lines as in 619C-619D.

(a) We know that all the v; and h;V and h;;V are fully adapted and moderately oscillatory (618Gb,
619Gc), while AV and every [vZ-T'vj] is an integrator (6191, 617I); so all the integrals are well-defined.

Moreover,
fs'u, X BijV d['UiT'Uj] = fsu X B”V d’Uid'Uj

for 1 <14,j <k (6171, as before). Express each v; as (vis)ocs, and set V, = (v15,... ,Vks) for o € S.

(b) For the time being (down to the end of (d)) suppose that all the h;; are uniformly continuous. Let
e > 0. Let 6y > 0 be such that 6(S;(z, (dv;)?)) < € whenever 1 < i < k, I € Z(S), 2 € M,(I) and

O(sup |z|) < dg. Then there is a § > 0 such that

k k k
Ih(y) = h(w) = > (0 = Eha(x) — 5 D D (i — &) — &)haj ()]

=1 =1 j5=1
k
<oy (i — &)
i=1

whenever z = (¢1,...,&), ¥y = (71,... ,m%) belong to R* and y — z € [-6, §]*.
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P Take § such that |h;;(y) — hij(2)] < % whenever 1 < i,j < k and y — x € [, 5]*. Now suppose that

r= (&, ,&), y = (n,... ,m) belong to R¥ and y — x € [-4,0]F. Set g(t) = h(ty + (1 — t)x) for t € R.
Then g is twice differentiable with

k
g'(t) = Z(m = &)hi(ty + (1 —t)z),
2

k&
= Z(m —&)(n; —&hij(ty + (1 —t)x)
=1 j=1

for every t. By Taylor’s theorem, there is a t € |0, 1[ such that

9(1) = g(0) + ¢'(0) + 5"(8).

k k k
|h(y) — h(z) - Z(m — &i)hi(x) — % Z Z(m = &)(nj — &)hij (@)

i=1 =1 j=1
k k k k
=§\lel<m—@>< —&)(h <>—hij(x>>|s‘ijzlzlm—mm—m
=1 j= i=1 j=

kE ok k
19
< 5e 2 (= &)+ (0 = §)°) = 80 (i — &),
i=1 j=1 pat
as required. Q
It follows that if wi, ... ,wg, w, ... ,w, € LY then, setting W = (wq,... ,wg), W' = (w},... ,w}),

k
=) (w) —w;) x hi(W)

i=1

INY
Il
>

kok
ZZ’U) — w;) wj—wj)xﬁij(W),

=1 j=1

N)M—A

we shall have

_ k
[z > 0323y (wi — wi)*] € supy ey, [Jwi —wil > ].

(c) For 1 < i < k let J; € Z(S) be such that §(Osclln}, (v;)) < de, and take J to be the sublattice
generated by U, ;<) Ji- Set a = sup;<;<;, [Osclln, (v;) > 0], so that fa < ke. If I € Z(S), set

zr = S/(1,d(hV)) — X S1(hV, dv,) — %zle Sk 81V, dvjdv;).
Then

[1z1] > 8032 S1(1, (d0i)*)] € @
whenever J C I € Z(S).
P If e = ¢(o,7) is an I-cell and we set

Ze = AL, d(RV)) = TiLy Ac(haV, dvs) = 200 Y5y Ac(hiV, dvidvy),

then
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=1
LN
-3 3D hii(Vo) X (vir = vie) X (vjr — vjo)
1=15=1
and
[lze] > 8 Sy Ac(L, (doi))] = [1Zel > b0 S (vir = vig)?]
C sup [|vir —vie| >8] € sup [Oscllns(v;) > 4]
1<i<k 1<i<h
¢ sup [Osclnj(v;) > 9] C a.
1<i<k
Summing,
[121] > 60 325, i (1, (dvi))] < s [1Ze] > 0 iy Ae(1, (dvi)?)]
e€eStig (I
Ca. Q
Consequently

0(z1) < 07, S1(601, (dw;)2)) + fia < 2ke
because O(sup |dp1|) = 0(dox1) < dp. And this is true whenever I € Z(S) includes J.
(d) As e is arbitrary,

ozl%lzn}s)zf_/dhv /thvz—fZZ/h”Vdv dv,

=1 j=1
= L) - Z/ BV dv; sz/ hisV dlo vs],
1=1 j=1
and the formula is valid when 4 = 1 and the h;; are all uniformly continuous.

(e) As for the case in which not all the h;; are uniformly continuous, let © be an upper bound for
{Jvie] : 1 < i <k, o € §}. Take any € > 0. Let M > 0 be such that b = [v > M] has measure at most
e. There is a smooth function f : R¥ — R with compact support such that f(z) = 1 whenever ||z|. < M.
P Take a smooth function fy : R — R with compact support such that fo(¢) = 1 for every £ € [—M, M],

and set f(&1,...,&) = Hle fo(&) for &1,... & € R. Q Now set g = f x h. Writing g;, g;; for the partial
derivatives of g, these are all uniformly continuous and

_ _ 1 _
Jsd@V) =30, [a:V dvi + 5500 35, [ 95V dvidv;.

At the same time, g(x) = h(x), gi(z) = hi(z) and g;;(x) = hi;(x) whenever 1 <4,j < k and = € |[-M, M[F,
S0

[9(Vo) # h(Vo)] € Sup <<y, [[vie| > M] Cb

for every o € S, and similarly

[[gi(vcr) 7& }_Lz(vcf)]] cb, [[gij(vo) 7& Eij(va)ﬂ cb

whenever 1 < 4,5 <k and 0 € §. Consequently
7 k 7 1k k T
[[odhV) # 30, [ hiV dv;i + EP DD D J hijV dvidv;] € b
has measure at most €. As € is arbitrary,
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T k 7 1k k T
JsdV) =320 [ghiV dvi+ 3570 305 [ higV dvidv;

in this case also. Translating into terms of covariations, we have
T k T 1k k T *
[od(V) =321, [V dv; + 520ie1 21 [s iV dfwi Tv;].

(f) This deals with the case u = 1. For other u, we can use the same method as in 619D, because the
components of the formula can be translated into terms of the integrators

WV, i, (RiV), i, 1y 1(higV).

So we get the general result as before.

619K Applying this to S AT for 7 € S, we get the following version.

Corollary Let k£ > 1 be an integer, and h : R¥ — R a twice-differentiable function with continuous second
derivative. Let S be a sublattice of T, and vy, ... ,vy locally jump-free local integrators with domain S; let
u be a locally moderately oscillatory process with domain S. Write V = (v1,... ,v;). Then

. koo = 1k koo =
fipy (W) = 22, fiv, (u X hiV) + 521':1 Zj:l Wy, ij]('”' X hi;V).

619X Basic exercises (a) Suppose that hq, hy are Borel measurable functions from R* — R. Show that
if wy,...,up € LY then [hy(ug,. .. ug) < ho(ug,... ux)] = [(u1,-.. ,ux) € E], where E = {z : z € R¥,
hi(z) < ha(z)}.

(b) Suppose that [ > 1, that hy,... ,h; are Borel measurable functions from R* to R, that A : R€—> R
is Borel measurable, and that g(x) = h(hy(x),... ,hi(z)) for € R*. Show that g(u) = h(hi(u),... , h(u))
for u € LO.

619Y Further exercises (a) Let S be a sublattice of 7, v = (v;);es a jump-free integrator, and v*
its quadratic variation. Suppose that G C R is an open set such that v, € G] = 1 for every 7 € S, and
h: G — R is a twice-differentiable function with continuous second derivative. Show that

— — 1 — «
fsud(hv) = fsu x h'v dv +5fsu x h'v dv
whenever u is a moderately oscillatory process with domain S.

(b) Let uy, ... ,ux be simple processes all with the same domain S, and h : R* — R a continuous function.
Write U for (uq, ... ,u). Show that AU is simple.

(c)(i) Suppose that I is a finite sublattice of T and v € Mg,(I). Show that S;(1,|(dv)3|) < Oscllns(v) x
S1(1, (dv)?). (ii) Suppose that S is a sublattice of 7 and v is a jump-free integrator with domain S. Show
that [su (dv)*® = 0 for every order-bounded process u with domain S.

619 Notes and comments In the ordinary theory of the Riemann-Stieltjes integral, we are well accustomed
to the formula h(v(b)) — h(v(a)) = f; h'(v)dv for continuous functions v of bounded variation. In 619C we
see that we have a correction term, which would correspond to a term % ff h"(v)(dv)?. In the real-variable
case we expect the term (dv)? to count as zero, as it must do if f; |dv| is finite and v is continuous. The
point of stochastic integration is that we integrating with respect to integrators which are not of bounded
variation (e.g., Brownian motion), but for which we can use [s(dv)? = [sdv* to give a general formula

which will be the basis of almost every application of the theory to jump-free processes. In the proof of
619C we see that this comes from the second-order Taylor expansion

h(B) = h(a) + (B — a)h'(a) + = (8 — a)2h”(a)

2
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just as the familiar identity comes from the first-order expansion

h(B) = h(a) + (8 — a)h' ().
The analysis is very much harder, and the welcome simplicity of the formula depends on concepts (‘mod-
erately oscillatory process’, ‘jump-free integrator’ and ‘quadratic variation’) which are far from elementary.

But in Chapter 65 we shall find that, taking proper care, we can go a long way with formal manipulations.
If you look back at 617H, you will see that it amounts to a special case of 619J: we use the formula

fsd(v><w):fsvdw—i—fswdv—&—%(fsd[ﬁw]—i—fsd[wTv])

to tell us what [vT'w] should be, at least if covariation is to be symmetric. What is remarkable is that this
approach extends so dramatically from multiplication to general twice-continuously-differentiable functions.
In 619Yc I offer a sort of explanation of the fact that we don’t have to examine third derivatives in this
context.

You can see why most textbooks leave the proof of 619J to their readers. I have to admit that my
formulation introduces extra obstacles in the proofs of 6191 and 619J, where we need to turn inequalities
concerning a function h : R¥ — R into corresponding inequalities for h : (L°)¥ — LC. If we allow ourselves
to think of h as being defined by the formula h(fs, ..., fr) = h(f1,..., fx)*, as in 619Ee, this step becomes
elementary. In §364 I went to a good deal of trouble to describe the f-algebra structure of L° in terms
which did not depend on representations of this kind. In the context of the present volume this self-denial
seems unnecessary, since in the great majority of applications our probability algebra is explicitly derived
from some probability space. I hope however that even if you are impatient with measure algebras, and
have been more or less frankly translating everything into expressions concerning conventional stochastic
processes (as in 612H and elsewhere), you will agree that it is important to remember that trivial changes
to the probability space can’t affect the results we are looking at, and that it might be helpful to remember
that ‘trivial’ can, for many of our purposes here, be interpreted as ‘not affecting the measure algebra’. But
to safely continue with this assumption, we have to check from time to time that our manipulations really
are invariants of the measure algebras. And this is what I am trying to do in 619E-619G.

For those interested in the logical status of the theorems here, which in my view ought to include those
concerned with their application to questions arising in the real world, there is another reason to have qualms
about the proof of 619E given here: it depends on the Loomis-Sikorski theorem 314M, which requires a strong
form of the axiom of choice. But there are no new problems beyond those already considered in §364 and
Chapter 56.

Of course there is a more important problem facing us. I have offered no effective means of calculating v*
for any of the important processes v of the theory. In 6170 I looked at the identity process, which is almost
trivial, and the Poisson process, which is irrelevant because it’s not locally jump-free. We don’t seem to be
ready for Brownian motion (624F), and this will be one of the aims of the next chapter.
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