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Appendix to Volume 5

Useful facts

For this volume, the most substantial ideas demanded are, naturally enough, in set theory. Fragments
of general set theory are in §5A1, with cardinal arithmetic and infinitary combinatorics. §5A2 contains
results from Shelah’s pcf theory, restricted to those which are actually used in this book. §5A3 describes
the language I will use when I discuss forcing constructions; in essence, I follow Kunen 80, but with some
variations which need to be signalled.

As usual, some bits of general topology are needed; I give these in §5A4, starting with a list of cardinal
functions to complement the definitions in §511. There is a tiny piece of real analysis in §5A5. In §5A6 are
notes on a few undecidable propositions, mostly standard.

Version of 3.9.20

5A1 Set theory

As usual, I begin with set theory, continuing from §§2A1 and 4A1. I start with definitions and elementary
remarks filling some minor gaps in the deliberately sketchy accounts in the earlier volumes (5A1A-5A1E). I
give a relatively solid paragraph on cardinal arithmetic (5A1F), including an account of cofinalities of ideals
[κ]≤λ. 5A1H-5A1K are devoted to infinitary combinatorics, with the Erdős-Rado theorem and Hajnal’s Free
Set Theorem. 5A1L-5A1P deal with the existence of ‘transversals’ of various kinds in spaces of functions,
that is, large sets of functions which are well separated on some combinatorial criterion. 5A1Q is a fragment
of finite combinatorics, 5A1R-5A1S introduce ‘stationary families’ of sets and 5A1T is a remarkable property
of the ordering of ω1.

5A1A Order types (a) If X is a well-ordered set, its order type otpX is the ordinal order-isomorphic
to X (2A1Dg).

If S is a set of ordinals, an ordinal-valued function f with domain S is regressive if f(ξ) < ξ for every
ξ ∈ S (cf. 4A1Cc).

(b) The non-stationary ideal on a cardinal κ of uncountable cofinality is (cfκ)-additive, because the
intersection of fewer than cfκ closed cofinal sets is a closed cofinal set (4A1Bd).

(c) If κ is a cardinal, λ < cfκ is an infinite regular cardinal and C ⊆ κ is a closed cofinal set, then
S = {ξ : ξ < κ, cf(ξ ∩ C) = λ} is stationary in κ. PPP If C ′ ⊆ κ is a closed cofinal set, let 〈γξ〉ξ<otp(C∩C′) be
the increasing enumeration of C ∩C ′. Then otp(C ∩C ′) ≥ cfκ > λ, so γλ is defined and belongs to S ∩C ′.
QQQ

(d) If α is an ordinal and C ⊆ α has closure C for the order topology of α, then #(C) = #(C). PPP If
C is finite this is trivial. Otherwise, for any β ∈ C \ {supC} set f(β) = min(C \ β). If β, β′ ∈ C and
β < β′ < supC there must be a γ ∈ C such that β ≤ γ < β′ and f(β) ≤ γ < f(β′) (4A2S(a-ii)); thus f is
injective. So

#(C) = #(C \ {supC}) ≤ #(C) ≤ #(C). QQQ

(e) If α is an ordinal, there is a closed cofinal set C ⊆ α such that otpC = cfα. PPP If cfα is finite then
α is either 0 or a successor ordinal and the result is trivial. Otherwise, let C0 be a cofinal subset of α with
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2 Appendix 5A1Ae

cardinality cfα. Then its closure C in the order topology of α is cofinal and #(C) = cfα by (d). Since any
cofinal subset of C is also cofinal with α,

cfα ≤ cfC ≤ #(C) = cfα

and C has cofinality cfα. QQQ

5A1B Ordinal arithmetic (a) For ordinals ξ, η their ordinal sum ξ + η is defined inductively by
saying that

ξ + 0 = ξ,
ξ + (η + 1) = (ξ + η) + 1,
ξ + η = supζ<η ξ + ζ for non-zero limit ordinals η.

Ordinal addition is associative, and if ξ ≤ ζ < ξ + η there is a unique ζ ′ < η such that ζ = ξ + ζ ′. (Kunen

80, I.7.18; Jech 78, p. 18; Jech 03, 2.18; Just & Weese 97, §10.2.) If we identify N with ω, then the
ordinal sum of two finite ordinals corresponds to ordinary addition on N.

(b) For ordinals ξ, η their ordinal product ξ · η is defined inductively by saying

ξ · 0 = 0,
ξ · (η + 1) is the ordinal sum ξ · η + ξ,
ξ · η = supζ<η ξ · ζ for non-zero limit ordinals η

(Kunen 80, I.7.20; Jech 78, p. 19; Jech 03, 2.19). Note that 0 · η = 0 and 1 · η = η for every η, and
that supζ∈A ξ · ζ = ξ · (supA) for every ξ and every non-empty set A of ordinals. Ordinal multiplication is
associative (Kunen 80, I.7.20; Jech 03, 2.21).

(c) For ordinals ξ, η the ordinal power ξη is defined inductively by saying that

ξ0 = 1,
ξη+1 is the ordinal product ξη · ξ,
ξη = supζ<η ξ

ζ for non-zero limit ordinals η

(Kunen 80, I.9.5; Jech 03, 2.20). Warning! If ξ and η happen to be cardinals, this is quite different from
the ‘cardinal power’ of 5A1F below.

If ξ, η are ordinals, η 6= 0 and η is greater than or equal to the ordinal product ξ · η, then η is at least
the ordinal power ξω. PPP Note first that as multiplication is associative, we can induce on n to show that
ξ · ξn = ξn+1 for every n. Now we are supposing that η ≥ 1 = ξ0. If n ∈ N and η ≥ ξn, then

η ≥ ξ · η ≥ ξ · ξn = ξn+1.

So η ≥ ξn for every n and η ≥ ξω. QQQ

5A1C Concatenation It will perhaps be helpful if I describe in detail a semi-standard notation which I
have already used, in special cases, at many points in Volumes 3 and 4. Suppose that σ, τ are two functions
with domains α, β respectively which are ordinals (e.g., initial segments of N, if we think of non-negative
integers as finite ordinals). Then we can form their concatenation σaτ , setting

dom(σaτ) = α+ β

(the ordinal sum),

(σaτ)(ξ) = σ(ξ) if ξ < α,

(σaτ)(α+ η) = τ(η) if η < β.

The operator a is associative, that is, if σ, τ , υ have ordinal domains, then (σaτ)aυ = σa(τaυ), so we
can omit brackets and speak of σaτaυ. The empty function ∅ is an identity in the sense that

∅aσ = σa∅ = σ

whenever domσ is an ordinal.
In this context, it will often be helpful to have a special notation for functions with domain the singleton

set {0} = 1; I will write <t> for the function with domain {0} and value t.
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5A1Eb Set theory 3

We can also have infinite concatenations. If 〈σn〉n∈N is a sequence of functions with ordinal domains, we
can form the concatenations

σa
0 σ1, σa

0 σ
a
1 σ2, σa

0 σ
a
1 σ

a
2 σ3, . . .

to get a sequence of functions each extending its predecessors. The union will be a function with domain

the ordinal supn∈N domσ0 + . . .+ domσn. I will generally denote it σa
0 σ

a
1 σ

a
2 . . . or in some similar form.

5A1D Well-founded sets(a) A partially ordered set P is well-founded if every non-empty A ⊆ P
has a minimal element, that is, a p ∈ A such that q 6< p for every q ∈ A.

(b) If P is a well-founded partially ordered set, we have a rank function r : P → On defined by saying
that

r(p) = sup{r(q) + 1 : q < p}

for every p ∈ P (Kunen 80, III.5.7; Jech 78, p. 21; Jech 03, 2.27). The height of P is the least ordinal
ζ such that r(p) < ζ for every p ∈ P .

(c) A partially ordered set P is well-founded iff there is no sequence 〈pn〉n∈N in P such that pn+1 < pn
for every n ∈ N. (If A ⊆ P is non-empty and has no minimal element, we can choose inductively a strictly
decreasing sequence in A.)

(d) If P is a well-founded partially ordered set with height ζ, #(ζ) ≤ #(P ). PPP Let r : P → On be the
rank function of P . Set Aξ = {p : r(p) ≥ ξ} for ordinals ξ. If Aξ 6= ∅, then Aξ has a minimal element p;
now r(q) < ξ whenever q < p, so r(p) = ξ. The height of P is the least ordinal ζ such that r[P ] ⊆ ζ; now
Aξ 6= ∅ for ξ < ζ, so ζ = r[P ] and #(ζ) ≤ #(P ). QQQ

(e) The next result really belongs with the descriptive set theory of Chapter 42, but I had no reason to
call on it in that volume, so I set it out here. If X is a Polish space and ≤ is a well-founded relation on X
such that {(x, y) : x < y} is analytic, then the height of ≤ is countable. (Kechris 95, Theorem 31.1. This
is a form of the ‘Kunen-Martin theorem’.)

5A1E Trees In §421 I introduced trees of sequences. For this volume a more abstract approach is useful.

(a) A tree is a partially ordered set T such that {s : s ∈ T , s ≤ t} is well-ordered for every t ∈ T ;
alternatively, a well-founded partially ordered set such that {s : s ∈ T , s ≤ t} is totally ordered for every
t ∈ T . In particular, T has a rank function r : T → On defined by saying that

r(t) = otp{s : s < t} = min{ξ : r(s) < ξ whenever s < t}

for every t ∈ T (5A1D). (Try to avoid using this terminology in the same sentence as that of 421Ne and
562A.)

The levels of T are now the sets {t : r(t) = ξ} for ξ ∈ On. A branch of T is a maximal totally ordered
subset. A tree is well-pruned if it has at most one minimal element and whenever s, t ∈ T and r(s) < r(t),
there is an s′ ≥ s such that r(s′) = r(t). If T is a tree, a subtree of T is a set T ′ ⊆ T such that s ∈ T ′

whenever s ≤ t ∈ T ′; in this case, the rank function of T ′ is the restriction to T ′ of the rank function of T .

(b)(i) Let T be a tree in which every level is finite. Then T has a branch meeting every level. PPP If T
is empty, this is trivial. Otherwise, let r be the rank function of T , and ζ > 0 the height of T ; let F an
ultrafilter on T containing {t : r(t) ≥ ξ} for every ξ < ζ. Set C = {t : [t,∞[ ∈ F}. Any two elements of C
are upwards-compatible, so C is totally ordered, and C meets every level of T ; so C is a branch of the kind
we seek. QQQ

(ii) Let (T,4′) be a tree of height ω1 in which every level is countable. Then there is an ordering 4 of
ω1, included in the usual ordering ≤ of ω1, such that (T,4′) is isomorphic to (ω1,4). PPP Let 〈Tξ〉ξ<ω1

be
the levels of T . Let ≤′

ξ be a well-ordering of Tξ for each ξ < ω1, and define ≤′ on T by saying that s ≤′ t if

either r(s) < r(t) or r(s) = r(t) = ξ and s ≤′
ξ t; then ≤′ is a well-ordering of T of order type ω1. Now the

order-isomorphism between (T,≤′) and (ω1,≤) copies 4′ onto a tree ordering of ω1, isomorphic to 4′, and
included in the usual ordering. QQQ
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4 Appendix 5A1Ec

(c) An Aronszajn tree is a tree T of height ω1 in which every branch and every level is countable. An
Aronszajn tree T is special if it is expressible as

⋃
n∈NAn where no two elements of any An are comparable,

that is, every An is an up-antichain.

(d)(i) A Souslin tree is a tree T of height ω1 in which every branch and every up-antichain is countable.
(ii) Every Souslin tree is a non-special Aronszajn tree.
(iii) If T is a Souslin tree, it has a subtree which is a well-pruned Souslin tree. (Kunen 80, II.5.11;

Jech 78, p. 218; Jech 03, 9.13.)
(iv) Souslin’s hypothesis is the assertion

(SH) There are no Souslin trees.

5A1F Cardinal arithmetic(a)(i) An infinite cardinal which is not regular (4A1Aa) is singular. A
cardinal κ is a successor cardinal if it is of the form λ+ (2A1Fc, 2A1Kb); otherwise it is a limit cardinal.
κ is a strong limit cardinal if it is uncountable and 2λ < κ for every λ < κ. It is weakly inaccessible
if it is a regular uncountable limit cardinal; it is strongly inaccessible if moreover it is a strong limit
cardinal.

(ii) If κ is a cardinal, define κ(+ξ), for ordinals ξ, by setting

κ(+0) = κ, κ(+ξ) = supη<ξ(κ(+η)+) if ξ > 0,

that is, κ(+ξ) = ωζ+ξ if κ = ωζ .

(b)(i) If 〈κi〉i∈I is a family of cardinals, its cardinal sum is #({(i, ξ) : i ∈ I, ξ < κi}), which is at most
max(ω,#(I), supi∈I κi).

(ii) For cardinals κ and λ, the cardinal product κ · λ is #(κ× λ) ≤ max(ω, κ, λ).

(iii) If κ and λ are cardinals there are two natural interpretations of the formula κλ: (i) the set of
functions from λ to κ (ii) the cardinal of this set. In this volume the latter will be the usual one, but I
will try to signal this by using the phrase cardinal power. Of course 2λ is always the cardinal power; the
corresponding set of functions will be denoted by {0, 1}λ. We could also think of κ and λ as ordinals, and
look at the ordinal power κλ as described in 5A1Bc; but I think I do this exactly three times, all at the end
of §539.

(c)(i) The cardinal power κλ is at most 2max(ω,κ,λ) for any cardinals κ and λ. (The set of functions from
λ to κ is a subset of P(λ× κ).)

(ii) cω= #((({0, 1})N)N) = #({0, 1}N×N) = #({0, 1}N) = c.

(d) cf 2κ > κ for every infinite cardinal κ. (Jech 03, 5.11; Jech 78, p. 46; Erdős Hajnal Máté &

Rado 84, 6.9; Kunen 80, 10.41; Just & Weese 97, 11.2.24. Compare (e-v) below.)

(e)(i) If κ and λ are infinite cardinals, then, defining [κ]≤λ as in 3A1J,

cf[κ]≤λ = 1 if λ ≥ κ,

≥ κ if λ < κ.

(ii) Let κ, λ and θ be infinite cardinals such that θ ≤ λ ≤ κ. Then cf[κ]≤θ ≤ max(cf[κ]≤λ, cf[λ]≤θ). PPP
Let A ⊆ [κ]λ be a cofinal set with cardinal cf[κ]λ = cf[κ]≤λ. Then [κ]≤θ =

⋃
A∈A[A]≤θ, so

cf[κ]≤θ ≤ max(#(A), supA∈A cf[A]≤θ) ≤ max(cf[κ]≤λ, cf[λ]≤θ). QQQ

(iii) Let κ and λ be infinite cardinals. Then the cardinal power κλ is max(2λ, cf[κ]≤λ). PPP κλ ≥ 2λ

because κ ≥ 2; κλ ≥ #([κ]≤λ) ≥ cf[κ]≤λ because f 7→ f [λ] is a surjection from the family F of functions
from λ to κ onto [κ]≤λ \ {∅}. In the other direction, if κ ≤ λ then F ⊆ P(λ× κ) so

κλ = #(F ) ≤ 2λ = max(2λ, cf[κ]≤λ).

Measure Theory



5A1Fh Set theory 5

If λ < κ let A ⊆ [κ]≤λ be a cofinal family with cardinal cf[κ]≤λ; then F =
⋃

A∈AA
λ so

#(F ) ≤ max(#(A), supA∈A #(Aλ)) = max(cf[κ]≤λ, 2λ). QQQ

Putting this together with (i) and (c-ii) above,

cf[c]≤ω = max(c, cf[c]≤ω) = max(2ω, cf[c]≤ω) = cω = c.

(iv) If λ is an infinite cardinal and λ ≤ κ < λ(+ω), then cf[κ]≤ω ≤ max(κ, cf[λ]≤ω), with equality if
κ > ω. PPP Induce on n to see that cf[λ(+n)]≤ω ≤ max(λ(+n), cf[λ]≤ω) for every n ∈ N. At the inductive step
to n > 0,

cf([λ(+n)]≤ω) = cf(
⋃

ξ<λ(+n)

[ξ]≤ω) ≤ max(λ(+n), sup
ξ<λ(+n)

cf[ξ]≤ω)

≤ max(λ(+n), λ(+(n−1)), cf[λ]≤ω) = max(λ(+n), cf[λ]≤ω). QQQ

If κ is uncountable, then cf[κ]≤ω ≥ κ, so cf[κ]≤ω = max(κ, cf[λ]≤ω). Consequently the cardinal power κω is
max(c, κ, cf[λ]≤ω) = max(κ, λω).

In particular, if ω1 ≤ κ < ωω then cf[κ]≤ω = κ and κω = max(c, κ). Similarly, (c+)ω = max(c+, c) = c+,
(c++)ω = c++.

(v) If κ is a singular infinite cardinal, then cf([κ]≤cfκ) > κ. PPP Set λ = cfκ, and let 〈κξ〉ξ<λ be a
strictly increasing family of cardinals with supremum κ. If 〈Aη〉η<κ is a family in [κ]≤λ, then for each ξ < λ
take αξ ∈ κ \

⋃
η<κξ

Aη; set A = {αξ : ξ < λ} ∈ [κ]≤λ; then A 6⊆ Aη for every η < κ. QQQ

(f) If λ is a regular uncountable cardinal, θ ≥ 2 is a cardinal and κ = supδ<λ θ
δ, where θδ is the cardinal

power, then

#([κ]<λ) = supδ<λ κ
δ = κ.

PPP Of course κ ≤ #([κ]<λ) because λ ≥ 2, while

#([κ]<λ) = #(
⋃

δ<λ[κ]δ) ≤ max(λ, ω, supδ<λ #([κ]δ)) ≤ supδ<λ κ
δ

because λ ≤ supδ<λ 2δ ≤ κ. If δ < λ then, because λ is regular,

κδ = (supζ<λ θ
ζ)δ = supζ<λ(θζ)δ ≤ supζ<λ θ

max(ω,ζ,δ) ≤ κ. QQQ

In particular, if κ is strongly inaccessible then κδ ≤ κ for every δ < κ. (Take λ = κ and θ = 2.)

(g) Let X, Y and Z be sets, with #(X) ≤ 2#(Z) and 0 < #(Y ) ≤ #(Z). Then there is a function
f : X × ZN → Y such that whenever 〈xn〉n∈N is a sequence of distinct elements of X and 〈yn〉n∈N is
a sequence in Y there is a z ∈ ZN such that f(xn, z) = yn for every n ∈ N. PPP We can suppose that
X ⊆ PZ and Y ⊆ Z; moreover, the case of finite X is trivial, so we can suppose that Z is infinite. For each
countably infinite set I ⊆ Z, (c-ii) above tells us that there is a surjection gI : IN → (PI)N × IN. Now let
f : X × ZN → Y be such that

whenever z ∈ ZN is such that I = z[N] is infinite, gI(z) = (〈an〉n∈N, 〈yn〉n∈N) and x ∈ X is such
that there is just one n for which an = x ∩ I, then f(x, z) = yn.

In this case, if 〈xn〉n∈N is a sequence of distinct members of X and 〈yn〉n∈N is a sequence in Y , let I be a
countably infinite subset of Z containing every yn and such that xm ∩ I 6= xn ∩ I for m < n; let z ∈ IN be
such that gI(z) = (〈xn ∩ I〉n∈N, 〈yn〉n∈N); we shall have f(xn, z) = yn for every n. QQQ

(h) If κ is an infinite cardinal, then 2κ is at most the cardinal power (supλ<κ 2λ)cfκ. PPP Let 〈αξ〉ξ<cfκ be
a family in κ with supremum κ. Set D =

⋃
α<κ Pα; then

#(D) ≤ max(κ, supα<κ 2#(α)) = supλ<κ 2λ.

Let F be the set of functions from cfκ to D; we have an injection A 7→ 〈A ∩ αξ〉ξ<cfκ from Pκ to F , so
2κ ≤ #(F ). QQQ

If ω ≤ λ < κ and 2θ = 2λ for λ ≤ θ < κ but 2κ > 2λ then κ is regular. PPP 2κ ≤ (2λ)cfκ = 2max(λ,cfκ). QQQ
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6 Appendix 5A1G

5A1G Three fairly simple facts (a) There is a family 〈aI〉I⊆N of infinite subsets of N such that aI ∩aJ
is finite whenever I, J ⊆ N are distinct.

(b) Let X be a set, f : [X]<ω → [X]≤ω a function, and Y ⊆ X. Then there is a Z ⊆ X such that Y ⊆ Z,
f(I) ⊆ Z for every I ∈ [Z]<ω, and #(Z) ≤ max(ω,#(Y )).

(c) Let κ ≥ c be a cardinal and A a family of countable subsets of κ such that #(A) is less than the
cardinal power κω. Then there is a countably infinite K ⊆ κ such that I ∩K is finite for every I ∈ A.

proof (a) For each n ∈ N, set Kn = {i : 2n ≤ i < 2n+1}, and let fn : Pn → Kn be a bijection; set
aI = {fn(I ∩ n) : n ∈ N}. (Or apply 5A1Nc below with κ = ω.)

(b) Define 〈Zn〉n∈N inductively by setting Z0 = Y and Zn+1 = Zn ∪
⋃
{f(I) : I ∈ [Zn]<ω} for each n.

Then #(Zn) ≤ max(ω,#(Y )) for each n, so setting Z =
⋃

n∈N Zn we still have #(Z) ≤ max(ω,#(Y )), while
f(I) ⊆ Z for every I ∈ [Z]<ω.

(c) If #(A) < κ this is trivial, as we can take K ⊆ κ \
⋃
A. Otherwise, let λ ≤ κ be the least cardinal

such that #(A) < λω. Then cfλ = ω. PPP??? Otherwise,

λω = max(λ, supθ<λ θ
ω) ≤ #(A). XXXQQQ

Let 〈λn〉n∈N be a strictly increasing sequence of cardinals with supremum λ, starting from λ0 = 0 and
λ1 = ω (of course λ > ω because #(A) ≥ c). For n ∈ N let φn : [n × λn]<ω → λn+1 \ λn be an injective
function. For f : N → λ define Cf ⊆ λ by setting

Cf = {φn(f ∩ (n× λn)) : n ∈ N}.

If f , g ∈ λN are distinct, then there are an i ∈ N such that f(i) 6= g(i) and an m > i such that both f(i) and
g(i) are less than λm, so that f ∩ (n× λn) 6= g ∩ (n× λn) for every n ≥ m and Cf ∩ Cg is finite. It follows
that for any I ∈ A the set BI = {f : f ∈ λN, Cf ∩I is infinite} has cardinal at most c. Since c ≤ #(A) < λω,
there must be an f ∈ λN such that Cf ∩ I is finite for every I ∈ A, and we can set K = Cf .

5A1H Partition calculus (a) The Erdős-Rado theorem Let κ be an infinite cardinal. Set κ1 = κ,

κn+1 = 2κn for n ≥ 1. If n ≥ 1, #(B) ≤ κ, #(A) > κn and f : [A]n → B is a function, there is a C ∈ [A]κ
+

such that f is constant on [C]n. (Erdős Hajnal Máté & Rado 84, 16.5; Kanamori 03, 7.3; Just &

Weese 97, 15.13.)

(b) Let κ be a cardinal of uncountable cofinality, and Q ⊆ [κ]2. Then either there is a stationary A ⊆ κ
such that [A]2 ⊆ Q or there is an infinite closed B ⊆ κ such that [B]2 ∩ Q = ∅. PPP (Cf. Erdős Hajnal

Máté & Rado 84, 11.3.) Let C ⊆ κ be a closed cofinal set with otp(C) = cfκ (5A1Ae). Let S0 be
{α : α ∈ C, cfα = ω}, so that S0 is stationary (5A1Ac). For each α ∈ S0 let 〈fα(n)〉n∈N be a strictly
increasing sequence in α with supremum α. Set

Iα = {I : I ⊆ α ∩ C, [I ∪ {α}]2 ∩Q = ∅, #(I ∩ fα(n)) ≤ n for every n ∈ N}.

Let Iα be a maximal member of Iα. If there is any α such that Iα is infinite, we have the second alternative,
witnessed by B = Iα ∪ {α}, and we can stop. Otherwise, there is an n ∈ N such that S1 = {α : α ∈ S0,
Iα ⊆ fα(n)} is stationary. As fα(n) < α for every α ∈ S1, the Pressing-Down Lemma (4A1Cc) tells us that
there is a γ < κ such that S2 = {α : α ∈ S1, fα(n) = γ} is stationary. Because

#([γ ∩ C]<ω) ≤ max(ω,#(γ ∩ C)) < cfκ,

there is an I ⊆ γ ∩ C such that A = {α : α ∈ S2, Iα = I} is stationary.
??? Suppose, if possible, that [A]2 6⊆ Q. Take α, β ∈ A such that α < β and {α, β} /∈ Q. We know that

[I ∪ {α}]2 and [I ∪ {β}]2 are both disjoint from Q. So [J ∪ {β}]2 is disjoint from Q, where J = I ∪ {α}. If
m ≤ n,

fβ(m) ≤ fβ(n) = γ = fα(n) < α,

so #(J ∩ fβ(m)) = #(Iβ ∩ fβ(m)) ≤ m; while if m > n then

#(J ∩ fβ(m)) ≤ #(I) + 1 = #(Iα) + 1 = #(Iα ∩ fα(n)) + 1 ≤ n+ 1 ≤ m.

So J ∈ Iβ ; but J properly includes I = Iβ , so this is impossible. XXX
Thus [A]2 ⊆ Q and we have the first alternative. QQQ

Measure Theory



5A1Jb Set theory 7

5A1I ∆-systems and free sets: Proposition Let κ and λ be infinite cardinals and 〈Iξ〉ξ<κ a family
of sets with cardinal less than λ.

(a) If cfκ > λ, there are a Γ ∈ [κ]κ and a set J of cardinal less than κ such that Iξ ∩Iη ⊆ J for all distinct
ξ, η ∈ Γ.

(b) If κ > λ is regular and the cardinal power θδ is less than κ whenever θ < κ and δ < λ, then there is
a Γ′ ∈ [κ]κ such that 〈Iξ〉ξ∈Γ′ is a ∆-system (definition: 4A2A).

(c) If κ > λ there is a Γ′′ ∈ [κ]κ such that η /∈ Iξ for any distinct ξ, η ∈ Γ′′.

proof (a) ??? Otherwise, choose 〈Γα〉α<λ and 〈Jα〉α<λ as follows. Jα =
⋃

β<α

⋃
ξ∈Γβ

Iξ. Given Jα, let Γα ⊆ κ

be maximal subject to the requirement that Iξ∩Iη ⊆ Jα for all distinct ξ, η ∈ Γα. Then we see by induction
that #(Jα) < κ so #(Γα) < κ for every α < λ; because cfκ > λ,

⋃
α<λ Γα cannot be the whole of κ.

Take any ξ ∈ κ \
⋃

α<λ Γα. As #(Iξ) < λ, there must be an α < λ such that Iξ ∩ Jα = Iξ ∩ Jα+1. As
ξ /∈ Γα, there is an η ∈ Γα such that Iξ ∩ Iη 6⊆ Jα; but now Iξ ∩ Iη \ Jα ⊆ Iξ ∩ Jα+1 \ Jα. XXX

(b) Let J and Γ be as in (a). Because cfκ > λ, there must be some cardinal δ < λ such that Γ1 = {ξ :
ξ ∈ Γ, #(Iξ ∩ J) ≤ δ} has cardinal κ. Now #([J ]≤δ) ≤ max(2,#(J)δ) < cfκ, so there must be a K ⊆ J
such that Γ′ = {ξ : ξ ∈ Γ1, Iξ ∩ J = K} has cardinal κ; and 〈Iξ〉ξ∈Γ′ is a ∆-system with root K.

(c) It is enough to consider the case in which ξ ∈ Iξ for every ξ < κ.

(i) If cfκ > λ, take Γ and J from (a). Then we can choose 〈ξδ〉δ<κ inductively so that

ξδ ∈ Γ \ (J ∪
⋃

β<δ Iξβ )

for every δ < κ; and {ξδ : δ < κ} will serve for Γ′′.

(ii) If cfκ = θ ≤ λ, let 〈κα〉α<θ be a strictly increasing family of regular cardinals with supremum κ,
starting from κ0 ≥ λ++. For each α < θ, (i) tells us that there is an Aα ∈ [κα]κα such that η /∈ Iξ for any
distinct ξ, η ∈ Aα. Set

Bα = Aα \
⋃

β<α(Bβ ∪
⋃

ξ∈Aβ
Iξ);

then #(Bα) = κα for each α < θ. Choose 〈Cαγ〉α<θ,γ<λ+ and 〈ζα〉α<θ inductively, as follows. Given that
〈Cβγ〉β<α,γ<λ+ is disjoint, then for each ξ ∈ Bα there is a ζ < λ+ such that Iξ ∩

⋃
β<α Cβγ is empty for

every γ ≥ ζ; because λ+ < cfκα, there is a ζα < λ+ such that

B′
α = {ξ : ξ ∈ Bα, Iξ ∩ Cβγ = ∅ whenever β < α and ζα ≤ γ < λ+}

has cardinal κα. Let 〈Cαγ〉γ<λ+ be a partition of B′
α into sets with cardinal κα, and continue.

At the end of the induction, γ = supα<θ ζα is less than λ+. Set Γ′′ =
⋃

α<θ Cαγ . Then #(Γ′′) = κ. If ξ,
η are distinct members of Γ′′, let α, β < θ be such that ξ ∈ Cαγ and η ∈ Cβγ . If α < β then ξ ∈ Aα and
η ∈ Bβ so η /∈ Iξ. If α = β then both ξ and η belong to Aα so η /∈ Iξ. If β < α then η ∈ Cβγ while γ ≥ ζα
and ξ ∈ B′

α, so η /∈ Iξ. So Γ′′ will serve.

Remark (c) above is Hajnal’s Free Set Theorem.

5A1J Remarks (a) I spell out the applications of these results which are used in this volume. Let κ be
an infinite cardinal and 〈Iξ〉ξ<κ a family of countable sets.

(i) If cfκ ≥ ω2, there are a Γ ∈ [κ]κ and a set J with cardinal less than κ such that Iξ ∩ Iη ⊆ J for all
distinct ξ, η ∈ Γ.

(ii) If κ is regular and the cardinal power λω is less than κ for every λ < κ, there is a Γ′ ∈ [κ]κ such
that 〈Iξ〉ξ∈Γ′ is a ∆-system. (Of course κ cannot be ω1, so we can apply 5A1Ib with λ = ω1.)

(iii) If κ ≥ ω2 there is a Γ′′ ∈ [κ]κ such that η /∈ Iξ for any distinct ξ, η ∈ Γ′′.

(b) If, in 5A1Ic, we are willing to settle for a weaker result, there is an easier proof which generalizes to
more complex systems. Let λ be an infinite cardinal. Then there is a κ0 such that for every cardinal κ ≥ κ0,

every n ∈ N and every function f : [κ]n → [κ]<λ there is an A ∈ [κ]λ
+

such that ξ /∈ f(I) whenever I ∈ [A]n

and ξ ∈ A \ I. PPP By the Erdős-Rado theorem (5A1Ha), there is a κ0 such that for every κ ≥ κ0, n ≥ 1 and

function g : [κ]n → N there is an A ∈ [κ]λ
+

such that g is constant on [A]n. Now, given n ∈ N, κ ≥ κ0 and
f : [κ]n → [κ]<λ, define g : [κ]n+1 → N by saying that if J = {ξ0, . . . , ξn} with ξ0 < ξ1 < . . . < ξn, then

D.H.Fremlin



8 Appendix 5A1Jb

g(J) = min({n+ 1} ∪ {j : j ≤ n, ξj ∈ f(J \ {ξj})}. Let A ∈ [κ]λ
+

be such that g is constant on [A]n+1. We
can suppose that A has order type λ+. ??? Suppose that the constant value of g in [A]n+1 is j ≤ n. Let B
be the set of the first λ members of A, I0 the set of the first j members of A and I1 the set of the first n− j
members of A \B. Then we have g(I0 ∪ {ξ} ∪ I1) = j for every ξ ∈ B \ I0, so that B \ I0 ⊆ f(I0 ∪ I1); but
#(f(I0 ∪ I1)) < λ. XXX So the constant value of g on [A]n+1 is n+ 1, and A satisfies the required condition.
QQQ

(c) In the same complex of ideas, we have an elementary fact about the case λ < κ = ω. If n ∈ N and
〈Ki〉i∈N is a sequence in [N]≤n, there is an infinite Γ ⊆ N such that 〈Ki〉i∈Γ is a ∆-system. PPP Let K ⊆ N

be a maximal set such that I = {i : K ⊆ Ki} is infinite; then {i : i ∈ I, Ki ∩L 6= ∅} is finite for every finite
L ⊆ N \K, so we can choose Γ inductively by saying that Γ = {i : i ∈ I, Ki ∩Kj = K whenever j ∈ Γ ∩ i}.
QQQ

(d) In 5A1Ic, and in (a-iii) here, we have a system 〈Iξ〉ξ<κ of sets and are looking for large sets Γ′′ which
are ‘free’ in the sense that η /∈ Iξ for distinct ξ, η ∈ Γ′′. If we identify 〈Iξ〉ξ<κ with the set R = {(ξ, η) : ξ < κ,
η ∈ Iξ} then we are asking that (ξ, η) should not belong to R for distinct ξ, η ∈ Γ′′. It will be useful to
apply the same idea to other kinds of relation. In particular, if R ⊆ X ×X is an equivalence relation on a
set X I will say that a set A ⊆ X is R-free if (x, y) /∈ R for all distinct x, y ∈ A, that is, if A meets each
equivalence class for R in at most one point.

(e) Concerning free sets for equivalence relations it will help to have some elementary facts in quotable
form. Let X be a set and R an equivalence relation on X.

(i) For any cardinal κ, there is a partition 〈Xξ〉ξ<κ of X into R-free sets iff every R-equivalence class
has cardinal at most κ. PPP Write K for the set of equivalence classes under R. If 〈Xξ〉ξ<κ is a partition
of X into R-free sets and K ∈ K, then #(K ∩ Xξ) ≤ 1 for every ξ < κ and #(K) ≤ κ. If #(K) ≤ κ for
every K ∈ K, then for each K ∈ K choose an injective function hK : K → κ; set h(x) = hK(x) whenever
x ∈ K ∈ K; then 〈h−1[{ξ}]〉ξ<κ is a partition of X into R-free sets. QQQ

(ii) If A ⊆ X is R-free then R[B]∩R[C] = ∅ whenever B, C ⊆ A are disjoint. PPP??? If x ∈ R[B]∩R[C]
there are b ∈ B, c ∈ C such that (b, x) ∈ R and (c, x) ∈ R, so (b, c) ∈ R; but b and c are distinct members
of A, which is supposed to be R-free. XXXQQQ

5A1K Lemma Suppose that θ, λ and κ are cardinals, with θ < λ < cfκ, and that S is a stationary
subset of κ. Let 〈Iξ〉ξ∈S be a family in [λ]≤θ. Then there is a set M ⊆ λ such that cf(#(M)) ≤ θ and
{ξ : ξ ∈ S, Iξ ⊆M} is stationary in κ.

proof For M ⊆ λ, set SM = {ξ : ξ ∈ S, Iξ ⊆ M}. Let M ⊆ λ be a set of minimal cardinality such that
SM is stationary in κ. Set δ = #(M). ??? If cf δ > θ, enumerate M as 〈αη〉η<δ. For each ξ ∈ SM , set
βξ = sup{η : αη ∈ Iξ}; because #(Iξ) ≤ θ < cf δ, βξ < δ. Because δ ≤ λ < cfκ, there is a β < δ such that
S′ = {ξ : ξ ∈ SM , βξ = β} is stationary in κ (5A1Ab). Consider M ′ = {αη : η ≤ β}; then #(M ′) < #(M)
but SM ′ ⊇ S′ so is stationary in κ, contrary to the choice of M . XXX

Thus M will serve.

5A1L Lemma Let 〈Xi〉i∈I be a non-empty family of infinite sets, with product X. Then there is a set
Y ⊆ X, with #(Y ) = #(X), such that for every finite L ⊆ Y there is an i ∈ I such that x(i) 6= y(i) for any
distinct x, y ∈ L.

proof Set κ = #(X).

(a) We can well-order I in such a way that #(Xi) ≤ #(Xj) whenever i ≤ j in I. It will therefore be
enough to deal with the case in which I = δ is an ordinal and #(Xα) ≤ #(Xβ) whenever α ≤ β < δ. I
proceed by induction on δ.

(b) If δ is finite then κ = maxα<δ #(Xα) and the result is trivial, since we can take the xξ to be all
different at a single coordinate.

(c) Suppose there is a γ < δ such that #(δ \ γ) < #(δ). Then, in particular, the order type of δ \ γ is
less than the order type of δ. Set I0 = γ, I1 = δ \ γ and Yj =

∏
α∈Ij

Xα for both j. Then X ∼= Y0 × Y1,

Measure Theory



5A1N Set theory 9

so κ = max(#(Y0),#(Y1)); say κ = #(Yj). By the inductive hypothesis, there is a family 〈yξ〉ξ<κ in Yj
such that for any L ∈ [κ]<ω there is an α ∈ Ij such that ξ 7→ yξ(α) : L → Xα is injective. Taking xξ to be
any member of X extending yξ, for each ξ < κ, we have a suitable family 〈xξ〉ξ<κ in X, and the induction
proceeds.

(d) Suppose that δ is infinite and that #(δ \γ) = #(δ) = λ for every γ < δ. Enumerate [δ]<ω as 〈Jζ〉ζ<λ,
and choose 〈αζ〉ζ<λ such that

Jζ ⊆ αζ ∈ δ \ {αη : η < ζ}

for each α < λ. We have

#(Xαζ
) ≥ max(ω, supβ∈Jζ

#(Xβ)) ≥ #(
∏

β∈Jζ
Xβ),

so there is an injective function fζ :
∏

β∈Jζ
Xβ → Xαζ

for each ζ < λ. Let 〈zξ〉ξ<κ be any enumeration of

X. Because all the αζ are distinct, we can find xξ ∈ X, for each ξ < κ, such that xξ(αζ) = fζ(zξ↾Jζ) for
every ζ. Now if L ∈ [κ]<ω there must be a ζ < λ such that zξ↾Jζ 6= zη↾Jζ for any distinct ξ, η ∈ L; so that
ξ 7→ xξ(αζ) is injective on L. Thus 〈xξ〉ξ<κ is a suitable family in X and the induction proceeds in this case
also.

5A1M Definitions(a) Let X and Y be sets and I an ideal of subsets of X. Write TrI(X;Y ) for the
transversal number

sup{#(F ) : F ⊆ Y X , {x : f(x) = g(x)} ∈ I for all distinct f, g ∈ F}.

(b) Let κ be a cardinal. Write Tr(κ) for

Tr[κ]<κ(κ;κ) = sup{#(F ) : F ⊆ κκ, #(f ∩ g) < κ for all distinct f, g ∈ F}.

5A1N Lemma (a) For any infinite cardinal κ,

κ+ ≤ Tr(κ) ≤ 2κ.

(b) For any infinite cardinal κ,

max(Tr(κ), supδ<κ 2δ) ≥ min(2κ, κ(+ω)).

(c) If κ is such that 2δ ≤ κ for every δ < κ, then Tr(κ) = 2κ, and in fact there is an F ⊆ κκ such that
#(F ) = 2κ and #(f ∩ g) < κ for all distinct f, g ∈ F .

(d) If X and Y are sets and I is a maximal proper ideal of PX, then there is an F ⊆ Y X such that
#(F ) = TrI(X;Y ) and {x : f(x) = g(x)} ∈ I for all distinct f, g ∈ F .

proof (a) We can build inductively a family 〈fα〉α<κ+ in κκ, as follows. Given 〈fα〉α<β , where β < κ+, let
θ : β → κ be any injection. Now choose fβ : κ→ κ so that

fβ(ξ) 6= fα(ξ) whenever α < β and θ(α) ≤ ξ.

This will mean that if α < β, then

{ξ : fα(ξ) = fβ(ξ)} ⊆ θ(α)

has cardinal less than κ. So at the end of the induction, F = {fα : α < κ+} will witness that Tr(κ) ≥ κ+.
On the other hand, Tr(κ) ≤ #(κκ) = 2κ.

(b)??? If not, then take λ = max(Tr(κ), supδ<κ 2δ) < min(2κ, κ(+ω)). For each ξ < κ take an injective
function φξ : Pξ → λ. Because λ < 2κ, we have an injective function h : λ+ → Pκ. For α < λ+ set
gα(ξ) = φξ(h(α) ∩ ξ) for every ξ < κ; then 〈gα〉α<λ+ is a family in λκ such that #(gα ∩ gβ) < κ whenever
α 6= β.

Apply 5A1K with S = λ+, Iα = gα[κ] to see that there is a set M ⊆ λ with cf(#(M)) ≤ κ and
S1 = {α : α < λ+, gα[κ] ⊆ M} stationary in λ+. Because λ < κ(+ω), we must have #(M) ≤ κ. If
f : M → κ is any injection, 〈fgα〉α∈S1

will witness that Tr(κ) ≥ #(S1) = λ+; which is impossible. XXX
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(c) For each ξ < κ, let φξ : Pξ → κ be injective. For A ⊆ κ, define fA ∈ κκ by writing

fA(ξ) = φξ(A ∩ ξ) for every ξ < κ.

Then F = {fA : A ⊆ κ} has the required property, and Tr(κ) ≥ 2κ; by (a), we have equality.

(d) Take any maximal set F ⊆ Y X such that {x : f(x) = f ′(x)} ∈ I for all distinct f , f ′ ∈ F .
Then #(F ) = TrI(X;Y ). PPP Of course #(F ) ≤ TrI(X;Y ). Suppose that G ⊆ Y X is such that {x :
g(x) = g′(x)} ∈ I for all distinct g, g′ ∈ G. For each g ∈ G, there must be an fg ∈ F such that
{x : g(x) = fg(x)} /∈ I; because I is maximal, {x : g(x) 6= fg(x)} ∈ I. If g, h ∈ G are distinct, then

{x : fg(x) = fh(x)} ⊆ {x : fg(x) 6= g(x)} ∪ {x : g(x) = h(x)} ∪ {x : h(x) 6= fh(x)}

∈ I

so fg 6= fh. Thus we have an injective function from G to F and #(G) ≤ #(F ). As G is arbitrary,
TrI(X;Y ) ≤ #(F ) and we have equality. QQQ

5A1O Almost-square-sequences: Lemma Let λ, κ be regular infinite cardinals, with κ > max(ω1, λ).
Then we can find a stationary set S ⊆ κ+ and a family 〈Cα〉α∈S of sets such that

(i) for each α ∈ S, Cα is a closed cofinal set in α of order type λ;
(ii) if α, β ∈ S and γ is a limit point of both Cα and Cβ then Cα ∩ γ = Cβ ∩ γ.

Remark Compare the axiom �κ of 5A6D below.

proof (a) For each γ < κ+ fix an injection fγ : γ → κ. Let S0 be the set of ordinals α < κ+ of cofinality λ;
then S0 is stationary in κ+ (5A1Ac). For each α ∈ S0 choose a non-decreasing family 〈Nαδ〉δ<κ of subsets
of κ+ such that

(α) Nα0 is a cofinal subset of α with cardinal λ;
(β) if δ < κ then

Nα,δ+1 =
⋃
{fγ [Nαδ] ∪ f−1

γ [δ] : γ ∈ Nαδ} ∪Nαδ ∪ δ

(taking the closure Nαδ in the order topology of κ+);
(γ) if δ < κ is a non-zero limit ordinal then Nαδ =

⋃
δ′<δ Nαδ′ .

Then #(Nαδ) ≤ max(λ,#(δ)) < κ for each δ < κ (using 5A1Ad). Because κ is regular, sup(Nαδ ∩ κ) < κ
for every δ. It follows that {δ : δ < κ, Nαδ ∩ κ = δ} is a closed cofinal set in κ, and in particular contains
an ordinal of cofinality ω1, for every α ∈ S0. Let δ < κ be such that cf δ = ω1 and

S1 = {α : α ∈ S0, Nαδ ∩ κ = δ}

is stationary in κ+. For α ∈ S1, set C∗
α = α ∩Nαδ; then C∗

α is a closed cofinal set in α and #(C∗
α) < κ so

otp(C∗
α) < κ. Let ζ < κ be such that

S = {α : α ∈ S1, otp(C∗
α) = ζ}

is stationary in κ+. Observe that as cfC∗
α = cfα = λ for each α ∈ S, cf ζ = λ.

(b) Take any closed cofinal set C ⊆ ζ of order type λ and for each α ∈ S let Cα be the image of C in C∗
α

under the order-isomorphism between ζ and C∗
α. Then Cα will be a closed cofinal subset of α of order type

λ.
I claim that if α, β ∈ S and γ is a common limit point of Cα, Cβ then Cα ∩ γ = Cβ ∩ γ.
PPP case 1 Suppose λ = ω. In this case the only limit point of Cα will be α itself, and similarly for β, so

that in this case we have α = β and there is nothing more to do.
case 2 Suppose cf γ = ω < λ. Then γ is a limit point of Cα ⊆ C∗

α ⊆ Nαδ, so there is an increasing
sequence in Nαδ with supremum γ; as Nαδ =

⋃
δ′<δ Nαδ′ and cf δ = ω1, this sequence lies entirely within

Nαδ′ for some δ′ < δ, and γ ∈ Nαδ′ ⊆ Nα,δ′+1. Now, for δ′ + 1 ≤ ξ < δ, Nα,ξ+1 ⊇ f−1
γ [ξ] ∪ fγ [Nαξ];

consequently

Nαδ ∩ γ = f−1
γ [Nαδ ∩ κ] = f−1

γ [δ].

Similarly, Nβδ ∩ γ = f−1
γ [δ]. Now
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C∗
α ∩ γ = Nαδ ∩ γ = f−1

γ [δ] ∩ γ = C∗
β ∩ γ.

Accordingly the increasing enumerations of C∗
α and C∗

β must agree on C∗
α∩γ = C∗

β ∩γ, and Cα∩γ = Cβ ∩γ.

case 3 Suppose that cf γ > ω and λ > ω. Because γ = sup(Cα ∩ γ) = sup(Cβ ∩ γ),

D = {γ′ : γ′ < γ is a limit point of both Cα and Cβ , cf γ′ = ω}

is cofinal with γ, and

Cα ∩ γ =
⋃

γ′∈D Cα ∩ γ′ = Cβ ∩ γ,

using case 2. QQQ
Thus S and 〈Cα〉α∈S have the required properties.

5A1P Corollary Let κ, λ be regular infinite cardinals with λ > max(ω1, κ). Then we can find a
stationary subset S of λ+ and a family 〈gα〉α∈S of functions from κ to λ+ such that, for all distinct α,
β ∈ S,

(i) gα[κ] ⊆ α,
(ii) #(gα ∩ gβ) < κ,
(iii) if θ < κ is a limit ordinal and gα(θ) = gβ(θ) then gα↾θ = gβ↾θ.

proof Take 〈Cα〉α∈S from 5A1O and let gα be the increasing enumeration of Cα.

5A1Q A fragment of finite combinatorics turns out to be a basis for some interesting measure theory
(546I).

Lemma Let I and J be non-empty finite sets, and R ⊆ I × J a relation such that R[I] = J . Set

k = maxx∈I #(R[{x}]), l = miny∈J #(R−1[{y}]).

Then there is a K ⊆ I such that R[K] = J and #(K) ≤
1+ln k

l
#(I).

proof (Bartoszyński & Judah 95, 3.3.10) (a) Choose 〈Ij〉j<k, 〈Jj〉j≤k inductively, as follows. For each
j ≤ k, set Jj = J \R[

⋃
i<j Ii], and if j < k take a maximal set Ij ⊆ I such that

#(R[{x}] ∩ Jj) = k − j

for every x ∈ Ij ,

R[{x}] ∩R[{x′}] ∩ Jj = ∅

whenever x, x′ ∈ Ij are distinct. At the end of the induction set K =
⋃

i<k Ii.
Now #(R[{x}] ∩ Jj) ≤ k − j for every j ≤ k and x ∈ I. PPP Induce on j. Start with J0 = J and

#(R[{x}]) ≤ k for every x, by the definition of k. For the inductive step to j + 1 ≤ k, if x ∈ I then

#(R[{x}] ∩ Jj+1) ≤ #(R[{x}] ∩ Jj) ≤ k − j

by the inductive hypothesis, and if #(R[{x}] ∩ Jj) = k − j then there is an x′ ∈ Ij such that R[{x}] ∩
R[{x′}] ∩ Jj is non-empty, so that R[{x}] ∩ Jj+1 is strictly smaller than R[{x}] ∩ Jj and cannot have more
than k − j − 1 members. QQQ

In particular, R[{x}] ∩ Jk = ∅ for every x ∈ I, so

R[I] = R[I] \ Jk = J \ Jk = R[K].

(b) For each j < k, 〈R[{x}] ∩ Jj〉x∈Ij is a partition of Jj \ Jj+1 into sets with cardinal k − j, so that
#(Jj) − #(Jj+1) = (k − j)#(Ij). Next, if we set Rj = R ∩ (I × Jj) we see that

#(Rj [{x}]) = #(Rj [{x}] ∩ Jj) ≤ k − j, #(R−1
j [{y}]) = #(R−1[{y}]) ≥ l

whenever x ∈ I and y ∈ Jj , so

l#(Jj) ≤ #(Rj) ≤ (k − j)#(I)

and #(Jj) ≤
k−j

l
#(I). Accordingly
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#(K) ≤
k−1∑

j=0

#(Ij) =
k−1∑

j=0

1

k−j
(#(Jj) − #(Jj+1))

=

k−1∑

j=1

#(Jj)(
1

k−j
−

1

k−(j−1)
) +

1

k
#(J0) − #(Jk)

≤
1

k
#(J0) +

k−1∑

j=1

#(Jj)

(k−j)(k−j+1)
≤

#(I)

l
(1 +

k−1∑

j=1

k−j

(k−j)(k−j+1)
)

=
#(I)

l
(1 +

k−1∑

j=1

1

k−j+1
) =

#(I)

l
(1 +

k∑

j=2

1

j
) ≤

1+ln k

l
#(I)

as required.

5A1R Stationary families of sets For the sake of a calculation which will be needed in §547, I introduce
a kind of generalization of the idea of ‘stationary’ subset of an ordinal.

Definition If I is a set and A is a family of sets, I will say that A is stationary over I if for every function
f : [I]<ω → [I]≤ω there is an A ∈ A such that f(J) ⊆ A for every J ∈ [A ∩ I]<ω.

5A1S Elementary remarks (a) If A is stationary over I, then {A ∩ I : A ∈ A} is stationary over I.

(b) If A is stationary over I, and for every A ∈ A we are given a family BA which is stationary over A,
then

⋃
A∈A BA is stationary over I.

(c) If ζ is an ordinal of uncountable cofinality, and S ⊆ ζ is stationary in the ordinary sense of 4A1C, then
S is stationary over ζ in the sense of 5A1R. PPP Let f : [ζ]<ω → [ζ]≤ω be a function. Consider Cf = {ξ : ξ < ζ,
f(J) ⊆ ξ for every J ∈ [ξ]<ω}. Because cf ζ > ω, Cf is closed and cofinal in ζ (cf. 4A1B(c-iii)), so meets S.
As f is arbitrary, S is stationary over ζ. QQQ

5A1T In §539 we shall need an important property of ω1.

Theorem (a) There is a family 〈eξ〉ξ<ω1
such that eξ : ξ → N is an injective function for each ξ < ω1 and

eη△(eξ↾η) is finite whenever η < ξ < ω1.
(b) There is a sequence 〈≤n〉n∈N of partial orders on ω1 such that

(ω1,≤n) is a tree of height at most n+ 1 for each n ∈ N,
η ≤0 ξ iff η = ξ,
≤n ⊆≤n+1 for every n ∈ N,⋃

n∈N ≤n is the usual well-ordering of ω1.

proof1(a) Choose 〈eξ〉ξ<ω1
inductively; as well as the obvious inductive hypothesis that eη△(eξ↾η) is finite

whenever η < ξ, we need to ensure that N \ eξ[ξ] is always infinite.
Start the induction with e0 the empty function. For the inductive step to ξ + 1, where ξ < ω1, take

any k ∈ N \ eξ[ξ] and set eξ+1 = eξ ∪ {(ξ, k)}. For the inductive step to a non-zero limit ordinal ξ < ω1,
choose a strictly increasing sequence 〈ηn〉n∈N of ordinals with supremum ξ and define 〈e′n〉n∈N, 〈kn〉n∈N

inductively as follows. Start with e′0 = eη0
and k0 ∈ N \ eη0

[η0]. Given e′n and k0, . . . , kn ∈ N such that
e′n : ηn → N \ {k0, . . . , kn} is injective and e′n△eηn

is finite, we see that

e′n△(eηn+1
↾ηn) ⊆ (e′n△eηn

) ∪ (eηn
△(eηn+1

↾ηn))

is finite while eηn+1
is injective and N \ eηn+1

[ηn+1] is infinite. We therefore have room to adjust eηn+1

at finitely many points to obtain an injective function e′n+1 : ηn+1 → N \ {k0, . . . , kn}, extending e′n,
such that e′n+1△eηn+1

is finite. Because e′n+1△eηn+1
is finite, N \ e′n+1[ηn+1] is infinite and we can find

kn+1 ∈ N \ ({k0, . . . , kn} ∪ e
′
n+1[ηn+1]) before continuing this internal induction. Finally set eξ =

⋃
n∈N e

′
n;

1I regret that I cannot recall where I saw this proof.

Measure Theory
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then eξ : ξ → N \ {ki : i ∈ N} is injective and eηn
△(eξ↾ηn) = eηn

△e′n is finite for every n ∈ N. Now if η is
any ordinal less than ξ, there is an n ∈ N such that η < ηn, so that

eη△(eξ↾η) ⊆ (eη△(eηn
↾η)) ∪ (eηn

△(eξ↾ηn))

is finite. Thus the outer induction continues and we get a suitable family 〈eξ〉ξ<ω1
.

(b) Take a family 〈eξ〉ξ<ω1
as in (a). For n ∈ N and ξ, η < ω1, say that η ≤n ξ iff either η = ξ or

η < ξ, eξ(η) < n, eη△(eξ↾η) ⊆ ω1 × n.

We need to check the following.

(i) If ζ ≤n η ≤n ξ then ζ ≤n ξ. PPP If either ζ = η or η = ξ this is trivial. Otherwise, ζ < η < ξ and

eζ△(eξ↾ζ) ⊆ (eζ△(eη↾ζ)) ∪ (eη△(eξ↾η)) ⊆ ω1 × n.

Of course ζ < ξ. If eξ(ζ) = eη(ζ), then eξ(ζ) < n because eη(ζ) < n; otherwise, eξ(ζ) < n because
eη△(eξ↾η) ⊆ ω1 × n. So ζ ≤n ξ. QQQ

Thus ≤n is transitive; the definition ensured that it would be reflexive; and it is antisymmetric because
≤ is.

(ii) If ζ ≤n ξ and η ≤n ξ then either ζ ≤n η or η ≤n ζ. PPP We can suppose that ζ ≤ η. If ζ = η or
η = ξ then of course ζ ≤n η. If ζ < η < ξ, then

eζ△(eη↾ζ) ⊆ (eζ△(eξ↾ζ)) ∪ (eη△(eξ↾η)) ⊆ n.

If eη(ζ) = eξ(ζ) then eη(ζ) < n because eξ(ζ) < n; otherwise eη(ζ) < n because eη△(eξ↾η) ⊆ ω1 × n. So
ζ ≤n η. QQQ

(iii) Thus {η : η ≤n ξ} is totally ordered by ≤n, for every ξ. Moreover, {η : η ≤n ξ} ⊆ {ξ}∪{η : η < ξ,
eξ(η) < n} has at most n+ 1 members, because eξ is injective. So ≤n is well-founded and is a tree ordering
with height at most n.

(iv) It is also immediate from the definition that 〈≤n〉n∈N is non-decreasing. Finally, if η < ξ, there is
an n ∈ N such that eξ(η) < n and eη△(eξ↾η) ⊆ ω1 × n, because eη△(eξ↾η) is itself finite. So ≤=

⋃
n∈N ≤n.

Version of 25.2.21

5A2 Pcf theory

In §542 I call on some results from Shelah’s pcf theory. As I have still not come across an elementary
textbook for this material, I copy out part of the appendix of Fremlin 93, itself drawn largely from Burke

& Magidor 90.

5A2A Reduced products We need the following elementary generalization of the construction in 351M.
Let 〈Pi〉i∈I be a family of partially ordered sets with product P .

(a) Let F be a filter on I. We have an equivalence relation ≡F on P , given by saying that f ≡F g if
{i : f(i) = g(i)} ∈ F . I write P |F for the set of equivalence classes under this relation, the partial order
reduced product of 〈Pi〉i∈I modulo F . Now P |F is again a partially ordered set, writing

f• ≤ g• ⇐⇒ f ≤F g ⇐⇒ {i : f(i) ≤ g(i)} ∈ F .

Observe that if every Pi is totally ordered and F is an ultrafilter, then P |F is totally ordered.

(b) For any filter F on I we have

min
i∈I

addPi = addP ≤ sup
F∈F

add(
∏

i∈F

Pi) = sup
F∈F

min
i∈F

addPi

≤ add(P |F),

c© 2007 D. H. Fremlin

D.H.Fremlin



14 Appendix 5A2Ab

cf(P |F) ≤ minF∈F cf(
∏

i∈F Pi) ≤ cfP .

PPP By 511Hg, add(
∏

i∈F Pi) = mini∈F addPi for any F ∈ F , and in particular when F = I. For p ∈ P |F
choose fp ∈ P such that f•

p = p. If F ∈ F then p 7→ fp↾F is a Tukey function from P |F to
∏

i∈F Pi,
so P |F 4T

∏
i∈F Pi and 513Ee tells us that add(

∏
i∈F Pi) ≤ add(P |F) and cf(P |F) ≤ cf(

∏
i∈F Pi). Also

f 7→ f↾F is a dual Tukey function from P to
∏

i∈F Pi, so
∏

i∈F Pi 4T P and cf(
∏

i∈F Pi) ≤ cfP . QQQ

(c) Note that if F , G are filters on I and F ⊆ G, then add(P |F) ≤ add(P |G) and cf(P |F) ≥ cf(P |G). PPP
If f ≤F g then f ≤G g. So we have a canonical surjective order-preserving map ψ : P |F → P |G given by
saying that ψ(πF (f)) = πG(f) for every f ∈ P , where πF (f), πG(f) are the equivalence classes of f in P |F
and P |G respectively. By 513E(b-iii), ψ is a dual Tukey function, so P |G 4T P |F and we can use 513Ee
again. QQQ

5A2B Theorem Let λ > 0 be a cardinal and 〈θζ〉ζ<λ a family of regular infinite cardinals, all greater
than λ. Set P =

∏
ζ<λ θζ . For any filter F on λ, let P |F be the corresponding reduced product and

πF : P → P |F the canonical map. For any cardinal δ set

Fδ = {F : F is an ultrafilter on λ, cf(P |F) = δ},

F∗
δ =

⋃
δ′≥δ Fδ′ ;

if F∗
δ 6= ∅, let Gδ be the filter

⋂
F∗
δ . Now

(a) if F∗
δ 6= ∅, then add(P |Gδ) ≥ δ;

(b) for every δ there is a set F ∈ [P ]≤δ such that πF [F ] is cofinal with P |F for every F ∈ Fδ;
(c) FcfP 6= ∅.

proof The case of finite λ is trivial throughout, as then

cfP = maxζ<λ θζ ,

Fδ = {F : there is a ζ < λ such that {ζ} ∈ F and θζ = δ},

F∗
δ = {F : {ζ : θζ ≥ δ} ∈ F},

Gδ = {G : {ζ : θζ ≥ δ} ⊆ G ⊆ λ}.

So henceforth let us take it that λ is infinite.
If F is an ultrafilter on λ, then P |F is a non-empty totally ordered set with no greatest member, so its

additivity and cofinality are the same; thus

Fδ = {F : F is an ultrafilter on λ, add(P |F) = δ}

for every δ, and

minζ∈F θζ ≤ δ ≤ cf(
∏

ζ∈F θζ)

whenever F ∈ F ∈ Fδ, by 5A2Ab.
Write L = {ζ : ζ < λ, θζ = λ+}, M = λ\L. If F is an ultrafilter on λ and L ∈ F , then cf(

∏
ζ∈L θζ) = λ+,

because the set of constant functions is cofinal with
∏

ζ∈L θζ , so cf(P |F) must be λ+; otherwise, M ∈ F

and cf(P |F) > λ+.

(a) Set δ′ = add(P |Gδ).

(i) δ′ is a regular infinite cardinal (513C(a-i)) and

δ′ ≥ minζ<λ θζ > λ

by 5A2Ab again. If δ = λ+ then of course δ′ ≥ δ; so suppose that δ > λ+. In this case L /∈ F for any
F ∈ F∗

δ , so M ∈ Gδ and δ′ ≥ minζ∈M θζ > λ+.

(ii) ??? If δ′ < δ then (translating 513C(a-i) into a statement about the pre-order ≤Gδ
) there is a family

〈fα〉α<δ′ in P such that fα ≤Gδ
fβ whenever α ≤ β < δ′ but there is no f ∈ P such that fα ≤Gδ

f for every
α < δ′. Choose hξ ∈ P , αξ < δ′ inductively, for ξ < λ+, as follows. h0 = f0. Given hξ, set

Measure Theory
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Bξα = {ζ : ζ ∈M, hξ(ζ) ≥ fα(ζ)}

for each α < δ′; let αξ < δ′ be such that fαξ
6≤Gδ

hξ, so that Bξα /∈ Gδ when αξ ≤ α < δ′. Choose Fξ ∈ F∗
δ

such that Bξ,αξ
/∈ Fξ. Now, because cf(P |Fξ) ≥ δ > δ′, there is an hξ+1 ∈ P such that fα ≤Fξ

hξ+1 for
every α < δ′; we may take hξ+1 ≥ hξ.

For non-zero limit ordinals ξ < λ+ take hξ(ζ) = supη<ξ hη(ζ) for every ζ < λ.

Set α = supξ<λ+ αξ < δ′. Then 〈Bξα〉ξ<λ+ is a non-decreasing family in Pλ. So there must be a ξ < λ+

such that Bξα = Bξ+1,α.
By the choice of hξ+1, Bξ+1,α ∈ Fξ. So Bξα ∈ Fξ and fα ≤Fξ

hξ. Because α ≥ αξ, fαξ
≤Gδ

fα, so

fαξ
≤Fξ

fα ≤Fξ
hξ

and Bξ,αξ
∈ Fξ; contrary to the choice of Fξ. XXX

(b)(i) If Fδ = ∅, we can take F = ∅; so suppose that Fδ is non-empty. As in (a-i) above, we must have
δ ≥ minζ<λ θζ > λ, and the case δ = λ+ is again elementary. PPP Take F ⊆ P to be the set of constant
functions with values less than λ+. If F ∈ Fδ then M /∈ F and L ∈ F . So for any h ∈ P we have
α = supζ∈L h(ζ) < λ+, and there is an f ∈ F such that f(ζ) = α for every ζ, in which case h ≤F f ; thus
πF [F ] is cofinal with P |F , as required. QQQ

So suppose from now on that δ > λ+, so that M ∈ F for every F ∈ Fδ. Of course δ, being the cofinality
of a non-empty totally ordered set with no greatest member, is regular (511He-511Hf, 513C(a-i)). For each
F ∈ Fδ, choose a family 〈gFβ〉β<δ in P such that {πF (gFβ) : β < δ} is cofinal with P |F .

(ii) ??? Suppose, if possible, that there is no F of the required type. In this case, we can find families
〈fξα〉ξ<λ+,α<δ in P and 〈Fξ〉ξ<λ+ in Fδ such that

(α) fηα ≤Fξ
fξ0 whenever α < δ, η < ξ < λ+;

(β) {πFξ
(fξα) : α < δ} is cofinal with P |Fξ for every ξ < λ+;

(γ) fηα ≤ fξα whenever α < δ, η ≤ ξ < λ+;
(δ) if ξ < λ+, α < δ and cfα = λ+ then

fξα(ζ) = min{supβ∈C fξβ(ζ) : C is a closed cofinal set in α}

for every ζ ∈M ;
(ǫ) fξβ ≤Fξ

fξα whenever ξ < λ+, β ≤ α < δ.

PPP Construct 〈fξα〉ξ<λ+,α<δ inductively, taking λ+ × δ with its lexicographic well-ordering (that is, (ξ, α) ≤
(η, β) if either ξ < η or ξ = η and α < β). Given that 〈fηβ〉(η,β)<(ξ,α) satisfies the inductive hypothesis so
far, proceed according to the nature of α, as follows.

Zero If α = 0, then, because #(ξ × δ) ≤ δ, the counter-hypothesis tells us that there is an Fξ ∈ Fδ such
that {πFξ

(fηβ) : η < ξ, β < δ} is not cofinal with P |Fξ. Accordingly we can find fξ0 ∈ P such that

fηα ≤Fξ
fξ0 whenever η < ξ and α < δ,

and because addP ≥ λ+ > #(ξ), we can also insist that

fη0 ≤ fξ0 whenever η < ξ.

Successor If α = β + 1 is a successor ordinal, set

fξα(ζ) = max(fξβ(ζ), gFξβ(ζ), supη<ξ fηα(ζ)) for every ζ < λ;

this is acceptable because cf θζ > λ for every ζ.
Cofinality λ+ If cfα = λ+, set

fξα(ζ) = sup
η<ξ

fηα(ζ) if ζ ∈ L,

= min{sup
β∈C

fξβ(ζ) : C is a closed cofinal set in α} if ζ ∈M.

This time, note that if ζ ∈ M , then fξα(ζ) < θζ because there is a closed cofinal set in α with cardinal
λ+ < θζ .

Otherwise If α is a non-zero limit ordinal and cfα 6= λ+, choose fξα such that

fηα ≤ fξα for every η < ξ,

D.H.Fremlin
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fξβ ≤Fξ
fξα for every β < α;

this is possible because addP and add(P |Fξ) are both at least λ+ > max(#(ξ),#(α)).
Now let us work through the list of conditions to be satisfied.
(α) is written into the case α = 0 of the induction.
(β) Because gFξα ≤ fξ,α+1 for every α and {πFξ

(gFξα) : α < δ} is cofinal with P |Fξ, {πFξ
(fξα) : α < δ}

is cofinal with P |Fξ.
(γ) The construction ensures that we shall have fηα(ζ) ≤ fξα(ζ) in all the required cases except possibly

when cfα = λ+ and ζ ∈ M . But in this case, taking η < ξ and a closed cofinal set C ⊆ α such that
fξα(ζ) = supβ∈C fξβ(ζ), the inductive hypothesis will assure us that

fηα(ζ) ≤ supβ∈C fηβ(ζ) ≤ supβ∈C fξβ(ζ) = fξα(ζ),

so there is no problem.
(δ) is written into the formula for the inductive step when cfα = λ+.
(ǫ) We certainly have fξα ≤ fξ,α+1, so fξα ≤Fξ

fξ,α+1, for every α. If cfα = λ+, then because the
intersection of fewer than cfα closed cofinal subsets of α is again a closed cofinal set in α (4A1Bd), there
will be a closed cofinal set C ⊆ α such that fξα(ζ) = supβ∈C fξβ(ζ) for every ζ ∈ M . So fξβ ≤Fξ

fξα for
every β ∈ C; by the inductive hypothesis, fξβ ≤Fξ

fξα for every β < α. For other limit ordinals α, we have
fξβ ≤Fξ

fξα for every β < α directly from the choice of fξα.
So the procedure works. QQQ

(iii) The next step is to choose a non-decreasing family 〈hη〉η<λ+ in P and a strictly increasing family
〈γ(η)〉η<λ+ in δ such that

γ(η) = supη′<η γ(η′) whenever η < λ+ is a limit ordinal (in particular, γ(0) = 0);

fξ,γ(η)(ζ) < hη(ζ) whenever ξ, η < λ+ and ζ ∈M (choosing hη);

hη ≤Fξ
fξ,γ(η+1) whenever ξ, η < λ+ (choosing γ(η + 1)).

Set h(ζ) = supη<λ+ hη(ζ) for ζ ∈ M , h(ζ) = 0 for ζ ∈ L, α = supη<λ+ γ(η) < δ (because δ = cf δ > λ+);

then cfα = λ+ and {γ(η) : η < λ+} is a closed cofinal set in α. Thus

fξα(ζ) ≤ supη<λ+ fξ,γ(η)(ζ) ≤ h(ζ)

for every ξ < λ+ and ζ ∈M , by (ii-δ). So if we set

Aξ = {ζ : ζ ∈M, fξα(ζ) = h(ζ)}

for each ξ < λ+, we shall have Aη ⊆ Aξ whenever η ≤ ξ < λ+, by (ii-γ).

(iv) As #(M) ≤ λ, there must be some ξ < λ+ such that Aξ = Aξ+1. Let C ⊆ α be a closed cofinal
set such that

fξ+1,α(ζ) = supβ∈C fξ+1,β(ζ)

for every ζ ∈ M . Set C ′ = γ−1[C]. Then C ′ is a closed cofinal subset of λ+. PPP It is closed because
γ : λ+ → α is order-continuous, therefore continuous (4A2Ro). Next, γ[λ+] is closed and cofinal in α, while
cfα = λ+ is uncountable, so C ∩ γ[λ+] is cofinal with α and γ[λ+] (4A1Bd again), and C ′ is cofinal with
λ+. QQQ

For each η ∈ C ′ write η′ for the next member of C ′ greater than η; then

hη ≤Fξ+1
fξ+1,γ(η+1) ≤Fξ+1

fξ+1,γ(η′),

fξα ≤Fξ+1
fξ+1,0 = fξ+1,γ(0)

so there is a ζη ∈M such that

hη(ζη) ≤ fξ+1,γ(η′)(ζη), fξα(ζη) ≤ fξ+1,γ(0)(ζη) < h0(ζη) ≤ h(ζη).

Let ζ ∈M be such that

B = {η : η ∈ C ′, ζη = ζ}

is cofinal with λ+. Then fξα(ζ) < h(ζ) so ζ /∈ Aξ. On the other hand,

fξ+1,α(ζ) = supβ∈C fξ+1,β(ζ) ≥ supη∈B fξ+1,γ(η′)(ζ) ≥ supη∈B hη(ζ) = h(ζ)

Measure Theory
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because 〈hη〉η<λ+ is non-decreasing. So ζ ∈ Aξ+1; which is impossible. XXX
This contradiction completes the proof of (b).

(c)(i) Set ∆ = {δ : Fδ 6= ∅}, G =
⋃

δ∈∆ Gδ. Since Gδ ⊆ Gδ′ for δ ≤ δ′ in ∆, G is a filter on λ and there is
an ultrafilter H on λ including G. For any δ ∈ ∆, H ⊇ Gδ, so

cf(P |H) = add(P |H) ≥ add(P |Gδ) ≥ δ > λ,

using 5A2Ac and (a) above. Consequently δ∗ = cf(P |H) is the greatest element of ∆.

(ii) For each δ ≤ δ∗ choose a set Fδ ∈ [P ]≤δ such that πF [Fδ] is cofinal with P |F for every F ∈ Fδ

(using (b) above). Set F =
⋃

δ∈∆ Fδ and

G = {sup I : I ∈ [F ]<ω} ⊆ P .

Then #(G) ≤ δ∗. I claim that G is cofinal with P . PPP??? Suppose otherwise; take h ∈ P such that h 6≤ g for
every g ∈ G. Write

Ag = {ζ : h(ζ) > g(ζ)}

for each g ∈ G. Because G is upwards-directed, {Ag : g ∈ G} is a filter base, and there is an ultrafilter F
on λ containing every Ag. Now there is a δ ∈ ∆ such that F ∈ Fδ, so that πF [Fδ] is cofinal with P |F , and
there is an f ∈ Fδ such that h ≤F f . But in this case A = {ζ : h(ζ) ≤ f(ζ)} and Af = λ \ A both belong
to F . XXXQQQ

(iii) Accordingly cfP ≤ #(G) ≤ δ∗. But also of course δ∗ = cf(P |H) ≤ cfP , so δ∗ = cfP . Now we
have H ∈ Fδ∗ = FcfP .

5A2C Theorem Let λ > 0 be a cardinal and 〈θζ〉ζ<λ a family of regular infinite cardinals, all greater
than λ. Set P =

∏
ζ<λ θζ . Let F be an ultrafilter on λ and κ a regular infinite cardinal with λ < κ ≤ cf(P |F).

(In the language of 5A2B, F ∈ F∗
κ.) Then there is a family 〈θ′ζ〉ζ<λ of regular infinite cardinals such that

λ < θ′ζ ≤ θζ for every ζ < λ and cf(P ′|F) = κ, where P ′ =
∏

ζ<λ θ
′
ζ .

proof (a) If λ is finite, there is a ζ < λ such that {ζ} ∈ F , cf(P |Fζ) = θζ and we just have to take θ′ζ = κ;

if κ = λ+ we may take θ′ζ = λ+ for every ζ; if κ = cf(P |F) we may take θ′ζ = θζ ; so let us assume that

ω1 ≤ λ+ < κ < cf(P |F). In this case {ζ : ζ < λ, θζ = λ+} /∈ F , by 5A2Ab, so M = {ζ : ζ < λ, θζ > λ+}
belongs to F .

(b) For each ordinal γ < κ choose a relatively closed cofinal set Cγ ⊆ γ with otp(Cγ) = cf γ. Choose
families 〈fα〉α<κ, 〈gαγ〉α,γ<κ in P inductively, as follows. Given 〈fβ〉β<α, where α < κ, and γ < κ, define
gαγ ∈ P by setting

gαγ(ζ) = sup{fβ(ζ) : β ∈ Cγ ∩ α} + 1 if this is less than θζ ,

= 0 otherwise.

Now choose fα ∈ P such that

fβ ≤F fα ∀ β < α, gαγ ≤F fα ∀ γ < κ;

this is possible because κ < cf(P |F). Observe that if α = β + 1 then Cα = {β} so that gαα = fβ + 1 and
fα 6≤F fβ . Continue.

(c) Suppose that for each ζ < λ we are given a set Sζ ⊆ θζ with #(Sζ) ≤ λ. Then there is an α < κ such
that

for every h ∈
∏

ζ<λ Sζ , if fα ≤F h then fβ ≤F h for every β < κ.

PPP??? If not, then (because κ is regular) we can find a family 〈hξ〉ξ<κ in
∏

ζ<λ Sζ and a strictly increasing

family 〈φ(ξ)〉ξ<κ in κ such that

fφ(ξ) ≤F hξ ≤F fφ(ξ+1) for all ξ < κ,

φ(ξ) = supη<ξ φ(η) for limit ordinals ξ < κ.

D.H.Fremlin
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Set

C = {ξ : ξ < κ, φ(ξ) = ξ},

so that C is a closed cofinal set in κ. Let α ∈ C be such that α = sup(C ∩α) and cfα = λ+. Then (because
λ+ ≥ ω1) C ∩ Cα is cofinal with α.

For β ∈ C ∩ Cα and ζ < λ we have

#(Cα ∩ β) ≤ otp(Cα ∩ β) < otp(Cα) = λ+ ≤ θζ ,

so

θζ > supξ∈Cα∩β fξ(ζ) + 1 = gβα(ζ).

Now

gβα ≤F fβ = fφ(β) ≤F hβ ≤F fφ(β+1) ≤F fβ′ ,

where β′ is the next member of C ∩ Cα greater than β. So there is a ζβ < λ such that

gβα(ζβ) ≤ hβ(ζβ) ≤ fβ′(ζβ).

Because λ < cfα there is a ζ < λ such that

B = {β : β ∈ C ∩ Cα, ζβ = ζ}

is cofinal with α. But now observe that if β, γ ∈ B and β′ < γ then β′ ∈ C ∩ Cα ∩ γ so

hβ(ζ) ≤ fβ′(ζ) < gγα(ζ) ≤ hγ(ζ).

It follows that

λ+ = #(B) = #({hβ(ζ) : β ∈ B}) ≤ #(Sζ) ≤ λ,

which is absurd. XXXQQQ

(d) Consequently E = {f•

α : α < κ} has a least upper bound in P |F . PPP??? If not, choose a family
〈hξ〉ξ<λ+ in P inductively, as follows. Because κ < cf(P |F), there is an h0 ∈ P such that fα ≤F h0 for
every α < κ. Given hξ such that h•ξ = πF (hξ) is an upper bound for E in P |F , then h•ξ cannot be the least
upper bound of E, so there is an hξ+1 ∈ P such that h•ξ+1 is an upper bound of E strictly less than h•ξ . For

non-zero limit ordinals ξ < λ+, set

Sξζ = {hη(ζ) : η < ξ} ⊆ θζ

for each ζ < λ. By (c) above, there is an αξ < κ such that

for every h ∈
∏

ζ<λ Sξζ either fαξ
6≤F h or fα ≤F h ∀ α < κ.

Set

hξ(ζ) = min({η : η ∈ Sξζ , fαξ
(ζ) ≤ η} ∪ {h0(ζ)}) ∈ Sξζ

for each ζ < λ. Then fαξ
≤F hξ (because fαξ

(ζ) ≤ hξ(ζ) whenever fαξ
(ζ) ≤ h0(ζ)) and hξ ∈

∏
ζ<λ Sξζ , so

fα ≤F hξ for every α < κ and h•ξ is an upper bound for E. Also, if η < ξ, then hξ(ζ) ≤ hη(ζ) whenever

fαξ
(ζ) ≤ hη(ζ), so hξ ≤F hη. Continue.
Having got the family 〈hξ〉ξ<λ+ , set

Sζ =
⋃

ξ<λ+ Sξζ = {hξ(ζ) : ξ < λ+} ⊆ θζ

for each ζ < λ. For each α < κ, ζ < λ set

gα(ζ) = min({η : fα(ζ) ≤ η ∈ Sζ} ∪ {h0(ζ)}) ∈ Sζ .

Then, by the same arguments as above,

fα ≤F gα ≤F hξ for every α < κ, ξ < λ+.

For each α < κ there is a non-zero limit ordinal ξ < λ+ such that gα(ζ) ∈ Sξζ for every ζ < λ, because
〈Sξζ〉ξ<λ+ is non-decreasing for each ζ. Because λ+ < κ there is a non-zero limit ordinal ξ < λ+ such that

A = {α : gα(ζ) ∈ Sξζ ∀ ζ < λ}
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is cofinal with κ. In particular, there is an α ∈ A such that α ≥ αξ. In this case

fαξ
≤F fα ≤F gα ≤F hξ+1 ≤F hξ 6≤F hξ+1,

so there is a ζ < λ such that

fαξ
(ζ) ≤ fα(ζ) ≤ gα(ζ) ≤ hξ+1(ζ) < hξ(ζ).

But now observe that

fαξ
(ζ) ≤ gα(ζ) ∈ Sξζ

so hξ(ζ) ≤ gα(ζ) < hξ(ζ), which is absurd. XXXQQQ

(e) Let g ∈ P be such that g• = supE in P |F and g(ζ) > 0 for every ζ < λ. For each ζ < λ set

θ̂ζ = cf(g(ζ)) < θζ and choose a cofinal set Dζ ⊆ g(ζ) of order type θ̂ζ . For α < κ and ζ < λ set

ĝα(ζ) = min{η : fα(ζ) ≤ η ∈ Dζ}

if fα(ζ) < g(ζ), minDζ otherwise. Then ĝα ≤F ĝβ whenever α ≤ β < κ. Also if h ∈ Q =
∏

ζ<λDζ then

h• < g• so there is an α < κ such that h• < f•α ≤ ĝ•α. Thus {ĝ•α : α < κ} is a cofinal subset of {h• : h ∈ Q}.

(f) Because each Dζ is order-isomorphic to θ̂ζ , we can identify Q with P̂ =
∏

ζ<λ θ̂ζ . Now if α < κ, then

there is a β < κ such that ĝα ≤F fβ while fβ+1 6≤F fβ (see (b) above), so ĝβ+1 6≤F gα. Because κ is regular,

cf(P̂ |F) = cf({h• : h ∈ Q}) = cf({ĝ•α : α < κ}) = κ.

(g) It may be that some of the θ̂ζ are less than or equal to λ. But taking I = {ζ : θ̂ζ ≤ λ}, we have

I /∈ F . PPP??? If I ∈ F , then for each ζ ∈ I set Ŝζ = Dζ and for ζ ∈ λ \ I set Ŝζ = {0}. Then #(Ŝζ) ≤ λ for
every ζ < λ. By (c), there is an α < κ such that

for every h ∈
∏

ζ<λ Ŝζ , if fα ≤F h then fβ ≤F h ∀ β < κ.

But as fα+1 ≤F g, and I ∈ F , there must be an h ∈
∏

ζ<λ Ŝζ such that fα ≤F h, and now g ≤F h because

g• is the least upper bound of E; but h(ζ) < g(ζ) for every ζ ∈ I, so this is impossible. XXXQQQ

So {ζ : θ̂ζ > λ} ∈ F . But this means that if we set

θ′ζ = θ̂ζ when θ̂ζ > λ,

= θζ when θ̂ζ ≤ λ

and P ′ =
∏

ζ<λ θ
′
ζ , then P ′|F ∼= P̂ |F so cf(P ′|F) = κ, as required.

5A2D Definitions (a) Let α, β, γ and δ be cardinals. Following Shelah 92 and Shelah 94, I write

covSh(α, β, γ, δ)

for the least cardinal of any family E ⊆ [α]<β such that for every A ∈ [α]<γ there is a D ∈ [E ]<δ with
A ⊆

⋃
D. In the trivial cases in which there is no such family E I write covSh(α, β, γ, δ) = ∞.

(b) For cardinals α, γ write Θ(α, γ) for the supremum of all cofinalities

cf(
∏

ζ<λ θζ)

for families 〈θζ〉ζ<λ such that λ < γ is a cardinal, every θζ is a regular infinite cardinal and λ < θζ < α for
every ζ < λ. (This carries some of the same information as the cardinal ppκ(α) of Shelah 94, p. 41.)

Remarks (i) Immediately from the definitions, we see that

covSh(α, β′, γ, δ′) ≤ covSh(α′, β, γ′, δ), Θ(α, γ) ≤ Θ(α′, γ′)

whenever α ≤ α′, β ≤ β′, γ ≤ γ′ and δ ≤ δ′.

(ii) The definition of Θ demands a moment’s thought in trivial cases. If γ = 0 there is no λ < γ, so
we are taking the supremum of an empty set of cofinalities, and Θ(α, 0) = 0 for every α. If γ > 0 then
we are allowed λ = 0 and

∏
ζ<λ θζ = {∅}, so Θ(α, γ) ≥ 1 for every α. If γ > 1 we are allowed λ = 1, so

Θ(α+, γ) ≥ α for every infinite α.
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5A2E Lemma Let α, β, γ, γ′ and δ be cardinals.
(a) If γ ≤ γ′ ≤ β and δ ≥ 2 then

covSh(α, β, γ, δ) ≤ cf([α]<γ′

) ≤ #([α]<γ′

).

(b) If either ω ≤ γ ≤ cfα or ω ≤ cfα < cf δ then

covSh(α, β, γ, δ) ≤ max(α, supθ<α covSh(θ, β, γ, δ)).

proof (a) If E is a cofinal subset of [α]<γ′

of cardinal cf([α]<γ′

), then E witnesses that covSh(α, γ′, γ′, δ) ≤

cf([α]<γ′

). Now

covSh(α, β, γ, δ) ≤ covSh(α, γ′, γ′, δ) ≤ cf([α]<γ′

).

(b) Set κ = max(α, supθ<α covSh(θ, β, γ, δ)) and λ = cfα. Let 〈ζξ〉ξ<λ enumerate a cofinal subset of α.
For each ξ < λ, let Eξ ⊆ [ζξ]<β be a set with cardinal at most κ such that for every A ∈ [ζξ]<γ there is a
D ∈ [Eξ]<δ such that A ⊆

⋃
D. Set E =

⋃
ξ<λ Eξ, so that E ⊆ [α]<β has cardinal at most κ. Take A ∈ [α]<γ .

If ω ≤ γ ≤ λ then supA < α and there is a ξ < λ such that A ⊆ ζξ. Now there is a D ∈ [Eξ]<δ ⊆ [E ]<δ

such that A ⊆
⋃
D.

If ω ≤ λ < cf δ, then for each ξ < λ there is a Dξ ∈ [Eξ]<δ such that A ∩ ζξ ⊆
⋃

Dξ. Set D =
⋃

ξ<λ Dξ;

because λ < cf δ, D ∈ [E ]<δ, while

A =
⋃

ξ<λA ∩ ζξ ⊆
⋃
D.

Thus in either case E witnesses that covSh(α, β, γ, δ) ≤ κ.

5A2F Lemma Let α, γ be cardinals. If α ≤ 2γ , then Θ(α, γ) ≤ 2γ .

proof If γ ≤ ω then Θ(α, γ) ≤ max(1, α) ≤ 2γ . If γ > ω, λ < γ and θζ < 2γ for every ζ < λ, then

cf(
∏

ζ<λ θζ) ≤ #(
∏

ζ<λ θζ) ≤ (2γ)γ = 2γ .

5A2G Theorem For any cardinals α and γ,

covSh(α, γ, γ, ω1) ≤ max(ω, α,Θ(α, γ)).

proof (a) To begin with (down to the end of (f) below) let us suppose that we have α ≥ γ = γ+0 > cfα > ω,
and set κ = max(α,Θ(α, γ)).

Take a family E ⊆ [α]≤γ0 such that

(i) E contains all singleton subsets of α;
(ii) E contains a cofinal subset of α;
(iii) If E ∈ E then {ξ : ξ + 1 ∈ E} ∈ E ;
(iv) if E ∈ E then there is an F ∈ E such that sup(F∩ξ) = ξ whenever ξ ∈ E and ω ≤ cf ξ ≤ γ0;
(v) if E ∈ E then {ξ : ξ ∈ E, cf ξ > γ0} ∈ E ;
(vi) if E ∈ E and cf(

∏
η∈E η) ≤ κ, then {g : g ∈

∏
η∈E η, g[E] ∈ E} is cofinal with

∏
η∈E η;

(vii) #(E) ≤ κ.

To see that this can be done, observe that whenever E ∈ [α]≤γ0 there is an F ∈ [α]≤γ0 such that sup(F∩ξ) = ξ
whenever ξ ∈ E and ω ≤ cf ξ ≤ γ0; thus condition (iv) can be achieved, like conditions (iii) and (v), by
ensuring that E is closed under suitable functions from [α]≤γ0 to itself; while condition (vi) requires that for
each E ∈ E we have an appropriate family with cardinal at most κ included in E .

Write J for the σ-ideal of Pα generated by E . Note that if A ∈ J then {ξ : ξ + 1 ∈ A} belongs to J , by
(iii).

(b) ??? If covSh(α, γ, γ, ω1) > κ, there must be a set in [α]≤γ0 not covered by any sequence from E ,
that is, not belonging to J ; that is, there is a function f : γ0 → α such that f [γ0] /∈ J . Accordingly
I = {f−1[E] : E ∈ J } is a proper σ-ideal of Pγ0. By condition (a-i), I contains all singletons in Pγ0.

Let H be the set of all functions h : γ0 → α such that f(ξ) ≤ h(ξ) for every ξ < γ0 and h[γ0] ∈ J .
Because E contains a cofinal set C ⊆ α (condition (a-ii)), we can find an h ∈ H; just take h : γ0 → C such
that f(ξ) ≤ h(ξ) for every ξ.

Measure Theory



5A2G Pcf theory 21

(c) Because I is a proper σ-ideal, there cannot be any sequence 〈hn〉n∈N in H such that {ξ : hn+1(ξ) ≥
hn(ξ)} ∈ I for every n ∈ N. Consequently there is an h∗ ∈ H such that

{ξ : h(ξ) ≥ h∗(ξ)} /∈ I for every h ∈ H.

We know that h∗[γ0] ∈ J ; let 〈En〉n∈N be a sequence in E covering h∗[γ0]. For ξ < γ0 write θξ = cf(h∗(ξ)),
so that each θξ is 0 or 1 or a regular infinite cardinal less than α. Set

I = {ξ : ξ < γ0, f(ξ) = h∗(ξ)},

I ′ = {ξ : ξ < γ0, f(ξ) < h∗(ξ), θξ = 1},

In = {ξ : ξ < γ0, f(ξ) < h∗(ξ), ω ≤ θξ ≤ γ0, h∗(ξ) ∈ En} for n ∈ N,

Jn = {ξ : ξ < γ0, f(ξ) < h∗(ξ), γ0 < θξ, h∗(ξ) ∈ En} for n ∈ N.

Note that if θξ = 0 then h∗(ξ) = 0 = f(ξ), so I, I ′, 〈In〉n∈N and 〈Jn〉n∈N constitute a cover of γ0.

(d) For each n ∈ N set Gn = {η : η ∈ En, cf η > γ0} ∈ E ; note that h∗(ξ) ∈ Gn for ξ ∈ Jn. Then
cf(

∏
η∈Gn

η) ≤ Θ(α, γ). PPP For η ∈ Gn set θ′η = cf η; then θ′η is a regular cardinal and #(Gn) ≤ γ0 < θ′η < α

for each η ∈ Gn. If for each η ∈ Gn we choose a cofinal set Cη ⊆ η of order type θ′η, then

cf(
∏

η∈Gn
η) = cf(

∏
η∈Gn

Cη) = cf(
∏

η∈Gn
θ′η) ≤ Θ(α, γ)

by the definition of Θ(α, γ). QQQ
Consequently, by (a-vi),

{g : g ∈
∏

η∈Gn
η, g[Gn] ∈ E}

is cofinal with
∏

η∈Gn
η.

(e) Define h : γ0 → α as follows.
(i) If ξ ∈ I set h(ξ) = h∗(ξ).
(ii) If ξ ∈ I ′ let h(ξ) be the predecessor of h∗(ξ).
(iii) For each n ∈ N take Fn ∈ E such that η = sup(Fn ∩ η) whenever η ∈ En and ω ≤ cf η ≤ γ0. If

ξ ∈ In \
⋃

m<n Im, take h(ξ) ∈ Fn such that f(ξ) ≤ h(ξ) < h∗(ξ).
(iv) For each n ∈ N and η ∈ Gn set

g∗(η) = sup{f(ξ) : ξ < γ0, f(ξ) < h∗(ξ) = η}.

Then g∗(η) < η, because γ0 < cf η. By (d), there is a gn ∈
∏

η∈Gn
η such that gn[Gn] ∈ E and g∗(η) ≤ gn(η)

for every η ∈ Gn. So for ξ ∈ Jn \
⋃

m<n Jm we may set h(ξ) = gn(h∗(ξ)) and see that h∗(ξ) ∈ Gn and

f(ξ) ≤ g∗h∗(ξ) ≤ gnh
∗(ξ) = h(ξ) < h∗(ξ),

while h(ξ) ∈ gn[Gn].

(f) Now we see that

h[γ0] ⊆ h∗[γ0] ∪ {η : η + 1 ∈ h∗[γ0]} ∪
⋃

n∈N Fn ∪
⋃

n∈N gn[Gn] ∈ J ,

while f(ξ) ≤ h(ξ) for every ξ < γ0, so h ∈ H. Consequently

I = {ξ : h(ξ) ≥ h∗(ξ)} /∈ I.

But also

f [I] ⊆ h∗[γ0] ∈ J ,

so I ∈ I, which is absurd. XXX

(g) Thus the special case described in (a) is dealt with, and we may return to the general case. I proceed
by induction on α for fixed γ.

(i) To start the induction, observe that if either α ≤ ω or γ ≤ ω or α < γ, then

covSh(α, γ, γ, ω1) ≤ cf([α]<γ) ≤ max(α, ω).
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(ii) For the inductive step to α when either cfα ≥ γ ≥ ω or cfα = ω, 5A2Eb tells us that

covSh(α, γ, γ, ω1) ≤ max(α, sup
α′<α

covSh(α′, γ, γ, ω1))

≤ max(ω, α, sup
α′<α

Θ(α′, γ)) ≤ max(ω, α,Θ(α, γ))

by the inductive hypothesis.

(iii) For the inductive step to α when ω < cfα < γ ≤ α, observe that

[α]<γ =
⋃

δ<γ [α]≤δ.

For each cardinal δ < γ we have a set Eδ ⊆ [α]≤δ such that #(Eδ) ≤ covSh(α, δ+, δ+, ω1) and every member
of [α]≤δ can be covered by a sequence from Eδ. Set E =

⋃
cfα≤δ<γ Eδ; then E ⊆ [α]<γ and every member of

[α]<γ can be covered by a sequence from E . So

covSh(α, γ, γ, ω1) ≤ #(E) ≤ max(γ, sup
cfα≤δ<γ

covSh(α, δ+, δ+, ω1))

≤ max(γ, α, sup
cfα≤δ<γ

Θ(α, δ+))

(by (a)-(f) above)

≤ max(α,Θ(α, γ)).

This completes the proof.

Remark This is taken from Shelah 94, Theorem II.5.4, where a stronger result is proved, giving an exact
description of many of the numbers covSh(α, β, γ, δ) in terms of cofinalities of reduced products

∏
ζ<λ θζ |F .

5A2H Lemma Let γ be an infinite regular cardinal and α ≥ Θ(γ, γ) a cardinal. Then Θ(Θ(α, γ), γ) ≤
Θ(α, γ).

proof (a) The case γ = ω is elementary, since Θ(α, ω) ≤ α for every cardinal α. So we may suppose that γ
is uncountable.

(b) ??? Suppose, if possible, that Θ(α, γ) < Θ(Θ(α, γ), γ).

(i) Θ(γ, γ) ≤ α < Θ(α, γ) so γ < α and Θ(α, γ) is infinite.

(ii) There is a family 〈θζ〉ζ<λ of regular infinite cardinals such that λ < γ, λ < θζ < Θ(α, γ) for every
ζ < λ and cf(

∏
ζ<λ θζ) > Θ(α, γ). As Θ(α, γ) 6= 0, λ 6= 0. By 5A2Bc, there is an ultrafilter F on λ such

that cf(
∏

ζ<λ θζ |F) > Θ(α, γ).

(iii) Set L = {ζ : ζ < λ, θζ < α}; as

#(L) ≤ λ < min(γ, θζ), θζ < α

for every ζ ∈ L,

cf(
∏

ζ∈L θζ) ≤ Θ(α, γ) < cf(
∏

ζ<λ θζ |F)

and L /∈ F (5A2Ab). Set M = λ \ L ∈ F . Let F ′ = F ∩ PM be the induced ultrafilter on M , so that∏
ζ<λ θζ |F

∼=
∏

ζ∈M θζ |F
′, and cf(

∏
ζ∈M θζ |F

′) > Θ(α, γ).

(iv) For each ζ ∈ M , we have θζ < Θ(α, γ), so there must be a family 〈θζη〉η<λζ
of regular infinite

cardinals with λζ < γ, λζ < θζη < α for every η < λζ and θζ ≤ cf(
∏

η<λζ
θζη). Again by 5A2Bc, there is an

ultrafilter Fζ on λζ such that θζ ≤ cf(
∏

η<λζ
θζη|Fζ). Because

λζ < γ ≤ α ≤ θζ ,

5A2C tells us that there is a family 〈θ′ζη〉η<λζ
of regular infinite cardinals such that λζ < θ′ζη ≤ θζη for every

η and θζ = cf(
∏

η<λζ
θ′ζη|Fζ).
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(c)(i) Set

I = {(ζ, η) : ζ ∈M, η < λζ},

H = {H : H ⊆ I, {ζ : {η : (ζ, η) ∈ H} ∈ Fζ} ∈ F ′},

P =
∏

(ζ,η)∈I θ
′
ζη.

Then H is an ultrafilter on I, and cf(P |H) ≥ cf(
∏

ζ∈M θζ |F
′). PPP Let F ⊆ P be a set with cardinal cf(P |H)

such that {f• : f ∈ F} is cofinal with P |H. For f ∈ P and ζ ∈ M , define fζ ∈
∏

η<λζ
θ′ζη by setting

fζ(η) = f(ζ, η) for each η < λζ , and let f•ζ be the image of fζ in
∏

η<λζ
θ′ζη|Fζ . For each ζ ∈ M let

〈uζξ〉ξ<θζ be a strictly increasing cofinal family in the totally ordered set
∏

η<λζ
θ′ζη|Fζ . Now, for f ∈ F ,

take a function gf ∈
∏

ζ∈M θζ such that f•ζ ≤ uζ,gf (ζ) for every ζ ∈M .

If g ∈
∏

ζ∈M θζ , then we can find an h ∈ P such that h•ζ = uζ,g(ζ) for each ζ ∈ M . Let f ∈ F be such
that h ≤H f . Then

{ζ : g(ζ) ≤ gf (ζ)} ⊇ {ζ : h•ζ ≤ f•ζ } ∈ F ′,

so g ≤F ′ gf . Accordingly {gf : f ∈ F} is cofinal with
∏

ζ∈M θζ |F
′ and cf(

∏
ζ∈M θζ |F

′) ≤ #(F ) = cf(P |H),
as claimed. QQQ

(ii) Note that as #(M) ≤ λ < γ, λζ < γ for every ζ ∈M and γ is uncountable and regular,

#(I) ≤ max(ω,#(M), supζ∈M λζ) < γ.

(d)(i) Putting (c-i) and (b-iii) together, cf(P |H) > Θ(α, γ). Set J = {(ζ, η) : (ζ, η) ∈ I, θ′ζη ≥ γ}. Since

#(J) ≤ #(I) < γ

((c-ii) just above)

≤ θ′ζη ≤ θζη < α

whenever (ζ, η) ∈ J ,

cf(
∏

(ζ,η)∈J θ
′
ζη) ≤ Θ(α, γ) < cf(P |H)

and J /∈ H by 5A2Ab once more. It follows that K = I \ J ∈ H. Set M ′ = {ζ : ζ ∈ M, {η : (ζ, η) ∈ K} ∈
Fζ} ∈ F ′.

(ii) If ζ ∈M ′, then F = {η : η < λζ , θ′ζη < γ} belongs to Fζ . Now

θζ = cf(
∏

η<λζ

θ′ζη|F
′) ≤ cf(

∏

η∈F

θ′ζη) ≤ Θ(γ, γ)

(because #(F ) ≤ λζ < θ′ζη < γ for every η ∈ F )

≤ α ≤ θζ

because ζ ∈M . . So in fact θζ = α for ζ ∈M ′ and we have

Θ(α, γ) < cf(
∏

ζ∈M θζ |F
′) ≤ cf(

∏
ζ∈M ′ θζ) = cf(

∏
ζ<δ α),

where δ = #(M ′), while at the same time α is infinite and regular.

(iii) But if α is infinite and regular and 1 ≤ δ < α, cf(
∏

ζ<δ α) = α. Accordingly Θ(α, γ) < α; which

contradicts (b-i) above. XXX
This contradiction completes the proof.

5A2I Lemma Let α and γ be cardinals. Set δ = supα′<α Θ(α′, γ).
(a) If cfα ≥ γ then Θ(α, γ) ≤ max(α, δ).
(b) If cfα < γ then Θ(α, γ) ≤ max(α, δcfα), where δcfα is the cardinal power.
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proof Let 〈θζ〉ζ<λ be a family of regular infinite cardinals with λ < θζ < α for each ζ and λ < γ.

case 1 If α′ = supζ<λ θζ is less than α, set

I = {ζ : ζ < λ, θζ < α′},

J = {ζ : ζ < λ, θζ = α′}.

Then

cf(
∏

ζ∈I θζ) ≤ Θ(α′, γ) ≤ δ, cf(
∏

ζ∈J θζ) ≤ max(1, α′) ≤ α.

If λ = 0 then cf(
∏

ζ<λ θζ) = 1 ≤ α; if λ > 0 then α is infinite and

cf(
∏

ζ<λ θζ) ≤ max(ω, cf(
∏

ζ∈I θζ), cf(
∏

ζ∈J θζ)) ≤ max(α, δ).

This is enough to deal with (a).

case 2 If α′ = α = 0 then λ = 0 = δ, so

cf(
∏

ζ<λ θζ) = 1 = δcfα.

So (b) is true if α = 0.

case 3 If α′ = α > 0 and cfα < γ, then λ > 0 and α is a supremum of strictly smaller infinite cardinals, so
must be uncountable. Let 〈αξ〉ξ<cfα be a strictly increasing family of cardinals with supremum α, starting
from α0 = 0 and α1 = ω and with αξ = supη<ξ αη for non-zero limit ordinals ξ < cfα. Set

Pξ =
∏

ζ<λ,αξ≤θζ<αξ+1
θζ

for each ξ < cfα. Then

cfPξ ≤ Θ(αξ+1, γ) ≤ δ

for each ξ < cfα, so

cf(
∏

ζ<λ θζ) = cf(
∏

ξ<cfα Pξ) ≤ δcfα.

Putting this together with case 1, we have a proof of (b) when α > 0.

Version of 20.5.23

5A3 Forcing

My discussion of forcing is based on Kunen 80; in particular, I start from pre-ordered sets rather than
Boolean algebras, and the class V P of terms in a forcing language will consist of subsets of V P × P . I find
however that I wish to diverge almost immediately from standard formulations in a technical respect, which
I describe in 5A3A, introducing what I call ‘forcing notions’. I do not refer to generic filters or models
of ZFC, preferring to express all results in terms of the forcing relation (5A3C). I give some space to the
interpretation of names (5A3E, 5A3F) and, in particular, to names for real numbers derived from elements
of L0(RO(P)) (5A3L).

5A3A Forcing notions (a) A forcing notion is a quadruple P = (P,≤, 11, ↑) or P = (P,≤, 11, ↓) where
(P,≤) is a pre-ordered set (that is, ≤ is a transitive reflexive relation on P ), 11 ∈ P , and

if P = (P,≤, 11, ↑) then 11 ≤ p for every p ∈ P ,
if P = (P,≤, 11, ↓) then p ≤ 11 for every p ∈ P .

In this context members of P are commonly called conditions.

(b) I had better try to explain what I am doing here. The problem is the following. Consider two of the
standard examples of pre-ordered set in this context. For a set I, Fn<ω(I; {0, 1}) is the set of functions from
finite subsets of I to {0, 1}; for a non-trivial Boolean algebra A, A+ is the set of non-zero elements of A. In
each case, we have a relevant direction. In Fn<ω(I; {0, 1}), a condition p is stronger than a condition q if p
extends q, that is, if p ⊇ q; in A+, p is stronger than q if p ⊆ q. So the forcing notions, in the terminology I
have chosen, are
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(Fn<ω(I; {0, 1}),⊆, ∅, ↑), (A+,⊆, 1A, ↓).

Generally, I will say that a forcing notion (P,≤, 11, ↑) is active upwards, while (P,≤, 11, ↓) is active down-
wards.

(c) Of course this is unconventional. It is much more usual to take all forcing notions to be active in the
same direction (usually downwards) and to use local definitions (e.g., saying that ‘p ≤ q if p extends q’) to
ensure that this will be appropriate.

However the great majority of forcing notions, like the two examples in (b) above, come with structures
which strongly suggest a natural interpretation of ‘≤’; and these structures are not arbitrary, but are essential
to our intuitive conception of the pre- or partial order we are studying. I prefer, therefore, to maintain the
notation I would use for the same objects in any other context, and to indicate separately the orientation
which is relevant when using them to build a forcing language.

(d) This approach demands further changes in the language. It will no longer be helpful to talk about
conditions in P being ‘larger’ or ‘less than’ others. Instead, I will use the word ‘stronger’: if P = (P,≤, 11, ↑),
then p ∈ P will be stronger than q ∈ P if p ≥ q; if P = (P,≤, 11, ↓), then p ∈ P will be stronger than q ∈ P
if p ≤ q. (So p will be stronger than 11 for every p ∈ P .)

Similarly, the words ‘cofinal’ and ‘coinitial’ are now inappropriate, and I will turn to the word ‘dense’,
as favoured by most authors discussing forcing; if P = (P,≤, 11, ↑↓) is a forcing notion, a subset Q of P is
dense if for every p ∈ P there is a q ∈ Q such that q is stronger than p. In the same way, I can say that
two conditions p, q in P are ‘compatible’ if there is an r ∈ P stronger than both. We shall have a standard
topology on P generated by sets of the form {q : q is stronger than p}, and a corresponding regular open
algebra RO(P), as in 514M. An antichain for P will be a set A ⊆ P such that any two distinct conditions in
A are incompatible, and P will be ccc if every antichain for P is countable. The ‘saturation’ satP of P will
be the least cardinal κ such that there is no antichain with cardinal κ.

5A3B Forcing languages Let P = (P,≤, 11, ↑↓) be a forcing notion.

(a) The class of P-names, that is, terms of the forcing language defined by P, is

V P = {A : A is a set and A ⊆ V P × P}

(Kunen 80, VII.2.5)2. In this context, I will say that the domain of a name A ∈ V P is the set domA ⊆ V P

of first members of elements of A.

(b) For any set X, X̌ will be the P-name {(x̌, 11) : x ∈ X} ∈ V P (Kunen 80, VII.2.10).

5A3C The Forcing Relation (Kunen 80, VII.3.3) Suppose that P = (P,≤, 11, ↑↓) is a forcing notion,
p ∈ P , φ, ψ are formulae of set theory, and ẋ0, . . . , ẋn ∈ V P.

(a) p P ẋ0 = ẋ1 iff

whenever (ẏ, q) ∈ ẋ0 and r ∈ P is stronger than both p and q, there are a (ẏ′, q′) ∈ ẋ1 and an
r′ stronger than both r and q′ such that r′ P ẏ = ẏ′,

whenever (ẏ, q) ∈ ẋ1 and r ∈ P is stronger than both p and q, there are a (ẏ′, q′) ∈ ẋ0 and an
r′ stronger than both r and q′ such that r′ P ẏ = ẏ′.

Note that p P ẋ = ẋ for every P-name ẋ and every p ∈ P (induce on the rank of ẋ).

(b) p P ẋ0 ∈ ẋ1 iff

whenever q ∈ P is stronger than p there are a (ẏ, q′) ∈ ẋ1 and an r stronger than both q and
q′ such that r P ẋ0 = ẏ.

(c) p P φ(ẋ0, . . . , ẋn) &ψ(ẋ0, . . . , ẋn) iff

p P φ(ẋ0, . . . , ẋn) and p P ψ(ẋ0, . . . , ẋn).

2In this section, we need the Axiom of Foundation (‘for any non-empty set A, there is an a ∈ A such that a∩A = ∅’); here,

to determine whether a set A belongs to V P, we need to induce on the rank of A.
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(d) p P ¬φ(ẋ0, . . . , ẋn) iff

there is no q stronger than p such that q P φ(ẋ0, . . . , ẋn).

(e) p P ∃ x, φ(x, ẋ0, . . . , ẋn) iff

for every q stronger than p there are an r stronger than q and a ẏ ∈ V P

such that r P φ(ẏ, ẋ0, . . . , ẋn).3

(f) You will see that if p P φ and q is stronger than p then q P φ.

(g) In this context I will write P for 11 P.

5A3D The Forcing Theorem If φ is any theorem of ZFC, and P is any forcing notion, then P φ.
(Kunen 80, VII.4.2.)

5A3E Names for functions Let P be a forcing notion, P its set of conditions, and R ⊆ V P × V P × P
a set. Consider the P-names

ḟ = {((ẋ, ẏ), p) : (ẋ, ẏ, p) ∈ R},

Ȧ = {(ẋ, p) : (ẋ, ẏ, p) ∈ R}, Ḃ = {(ẏ, p) : (ẋ, ẏ, p) ∈ R}.

(a) The following are equiveridical:

(i) P ḟ is a function;
(ii) whenever (ẋ0, ẏ0, p0), (ẋ1, ẏ1, p1) belong to R, p ∈ P is stronger than both p0 and p1 and p P ẋ0 =

ẋ1, then p P ẏ0 = ẏ1.
(b) In this case,

p P ḟ(ẋ) = ẏ

whenever (ẋ, ẏ, p) ∈ R,

P dom ḟ = Ȧ and ḟ [Ȧ] = Ḃ,

and the following are equiveridical:
(i) P ḟ is injective;
(ii) whenever (ẋ0, ẏ0, p0), (ẋ1, ẏ1, p1) belong to R, p ∈ P is stronger than both p0 and p1 and p P ẏ0 =

ẏ1, then p P ẋ0 = ẋ1.

Remark In the formula for ḟ here, brackets take different meanings at different points. In the expression
((ẋ, ẏ), p), the inner brackets must be interpreted in the forcing language, while the outer brackets, like the
brackets in the expression (ẋ, ẏ, p) ∈ R, are interpreted in the ordinary universe; Kunen 80 might write

ḟ = {(op(ẋ, ẏ), p) : (ẋ, ẏ, p) ∈ R}.

proof Elementary.

5A3F More notation In 5A3C I took it for granted that every formula of set theory would have a
version in V P. I should perhaps explain some of the versions I have in mind. Let P = (P,≤, 11, ↑↓) be a
forcing notion.

(a) If ẏ0, ẏ1 ∈ V P then ẋ = {(ẏ0, 11), (ẏ1, 11)} ∈ V P, and

P ẋ = {ẏ0, ẏ1};

so we have a suitable formal expression for pair sets in V P. Similarly, if we think of the formula (x, y) as
being an abbreviation for {{x}, {x, y}}, we get a P-name

3This formulation is appropriate if we wish to explore forcing without using the axiom of choice. Subject to AC, we have

an alternative condition: p P ∃ x, φ(x, ẋ0, . . . , ẋn) iff there is a ẏ ∈ V P such that p P φ(ẏ, ẋ0, . . . , ẋn).
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ż = {({(ẏ0, 11)}, 11), ({(ẏ0, 11), (ẏ1, 11)}, 11)}

such that

P ż = (ẏ0, ẏ1).

(b) Now let 〈ẋi〉i∈I be a family of P-names, and set

ḟ = {((̌ı , ẋi), 11) : i ∈ I}.

As in 5A3E,

P ḟ is a function with domain Ǐ,

and

P ḟ (̌ı) = ẋi

for every i ∈ I. For obvious reasons I do not wish to spell this procedure out every time, and I will use the
rather elliptic formula

〈ẋi〉i∈Ǐ

to signify the P-name ḟ .

(c) Similarly, Ṫ = {(ẋi, 11) : i ∈ I} is a P-name such that P ẋi ∈ Ṫ for every i ∈ I, and whenever p ∈ P

and ẋ is a P-name such that p P ẋ ∈ Ṫ , there are an i ∈ I and a q stronger than p such that q P ẋ = ẋi; I

will write {ẋi : i ∈ Ǐ} for Ṫ .

(d) In the same spirit, if I have a family 〈ẋi〉i∈I of P-names for real numbers between 0 and 1, I will allow
myself to write ‘supi∈Ǐ ẋi’ to signify a P-name such that

P supi∈Ǐ ẋi = sup{ẋi : i ∈ Ǐ},

without taking the trouble to spell out any exact formula to represent the supremum. I will do the same
for limits of sequences; if 〈ẋn〉n∈N is a sequence of P-names for real numbers, and

P 〈ẋn〉n∈N is convergent,

then I will write ‘limn→∞ ẋn’ to mean a P-name ẋ such that

P 〈ẋn〉n∈N → ẋ ∈ R.

Of course this is tolerable only because it is possible to set out a general rule for devising a suitable name
ẋ ∈ V P from the given sequence 〈ẋn〉n∈N. See 5A3L below.

5A3G Boolean truth values Let P be a forcing notion and P its set of conditions.

(a) If φ is a formula of set theory, and ẋ0, . . . , ẋn ∈ V P, then

{p : p ∈ P , p P φ(ẋ0, . . . , ẋn)}

is a regular open set in P (use 514Md); I will denote it [[φ(ẋ0, . . . , ẋn)]].

(b) If φ and ψ are formulae of set theory and ẋ0, . . . , ẋn ∈ V P, then

[[φ(ẋ0, . . . , ẋn) &ψ(ẋ0, . . . , ẋn)]] = [[φ(ẋ0, . . . , ẋn)]] ∩ [[ψ(ẋ0, . . . , ẋn)]]

and

[[¬φ(ẋ0, . . . , ẋn)]] = P \ [[φ(ẋ0, . . . , ẋn)]],

the complement of [[φ(ẋ0, . . . , ẋn)]] in RO(P).

(c) If φ is a formula of set theory, A is a set, and ẋ0, . . . , ẋn are P-names, then

[[∃x ∈ Ǎ, φ(x, ẋ0, . . . , ẋn)]] = int
⋃

a∈A [[φ(ǎ, ẋ0, . . . , ẋn)]],

the supremum of {[[φ(ǎ, ẋ0, . . . , ẋn]] : a ∈ A} in RO(P). (Use 5A3Ce.)
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5A3H Concerning ˇ̌̌s (a) The reader is entitled to an attempt at consistency on the following point
of notation, among others. For any set X and any forcing notion P there is a corresponding P-name X̌
(5A3Bb). We start with ∅̌ = ∅. If 1 = {∅} is the next von Neumann ordinal, we get a name

1̌ = {(∅̌, 11)} = {(∅, 11)};

and we can check directly from 5A3C that

P 1̌ = {∅},

that is, if you like,

P 1̌ = 1,

where in this formula the first 1 is interpreted in the ordinary universe and the second is interpreted in the
forcing language. Similarly, if we take ‘2’ to be an abbreviation for ‘{∅, {∅}}’, we have

P 2̌ = 2,

and so on. Indeed we get

P ω̌ is the first infinite ordinal,

P Q̌ is the set of rational numbers,

so the same convention would lead to

P ω̌ = ω, Ň = N, Q̌ = Q.

(This formula does not depend on which construction of the set of rational numbers we use, provided that
we use the same method both in the ordinary universe and in the forcing language.) Of course it is not the
case (except for forcing notions of particular types) that

P ω̌1 is the first uncountable ordinal, P Ř is the set of real numbers.

(b) For ‘absolute’ objects, therefore, like ω+ 7 or 22
7 , appearing in sentences of a forcing language, I shall

have a choice between formulations

(ω + 7)̌ , ( 22
7 )̌

(working directly from 5A3Bb),

ω + 7, 22
7

(regarding the phrases ‘ω+ 7’ and ‘ 227 ’ as abbreviations for expressions in set theory which can be evaluated
either in the ordinary universe or in the forcing language), or

ω̌ +̌ 7̌, 22̌ ÷̌7̌

(regarding ω, +, 7, 22 and ÷ as sets to which the rule of 5A3Bb can be applied, and then interpreting the
combination in the forcing language). The least cluttered versions, ω+ 7 and 22

7 , look better, and these will
ordinarily be my choice. But it means that when you see the symbol Q in a sentence of the forcing language,
it is likely to mean two things at once, a superposition of ‘the set of rational numbers’ and ‘the P-name Q̌’,
with algebraic operations and relations attached correspondingly.

(c) ‘Absoluteness’ is treated properly in Kunen 80, §IV.3. I shall not attempt to even sketch the concept
here. But we shall need a couple of basic examples. Let P be a forcing notion and P its set of conditions.

(i) If A and B are sets, p ∈ P and p P Ǎ ⊆ B̌ then A ⊆ B. PPP Induce on the rank of B. If a ∈ A then
(ǎ, 11) ∈ Ǎ so P ǎ ∈ Ǎ and p P ǎ ∈ B̌. Now there must be a P-name ẏ, a q ∈ P and an r stronger than
both p and q such that (ẏ, q) ∈ B̌ and r P ǎ = ẏ; in which case ẏ must be of the form b̌ where b ∈ B, and
r P ǎ = b̌. By the inductive hypothesis a = b and a ∈ B. QQQ

(ii) If α, β ∈ Q and p P α̌ ≤ β̌ then α ≤ β. PPP I leave the proof as an exercise, since the details
necessarily depend on the precise construction you use for Q. But they resolve quickly into a handful of
similar statements concerning arithmetic in N, and (i) here, together with 5A3Eb, should be enough to deal
with these. QQQ
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5A3I Regular open algebras If P = (P,≤, 11, ↑↓) is a forcing notion with regular open algebra RO(P),
then we have a natural map ι : P → RO(P)+ defined by saying that

ι(p) = int {q : q is stronger than p}

for p ∈ P (Kunen 80, II.3.3); and (allowing for the possible reversal of the direction of P) ι is a dense
embedding of the pre-ordered set (P,≤) in the partially ordered set (RO(P)+,⊆), in the sense of Kunen

80, §VII.7. Consequently, taking P̂ to be the forcing notion (RO(P)+,⊆, P, ↓), we shall have

P φ if and only if
P̂
φ

for every sentence φ of set theory (Kunen 80, VII.7.11). It follows that if two forcing notions have isomorphic
regular open algebras, then they force exactly the same theorems of set theory.

5A3J The following technical device will be useful at one point.

Definition Let P be a forcing notion. I will say that a P-name Ẋ is discriminating if whenever (ẋ, p) and

(ẏ, q) are distinct members of Ẋ, and r is stronger than both p and q, then r P ẋ 6= ẏ.

5A3K Lemma Let P be a forcing notion, and P its set of conditions.
(a) For any P-name Ẋ, there is a discriminating P-name Ẋ1 such that P Ẋ1 = Ẋ.

(b) Let Ẋ be a discriminating P-name, and f : Ẋ → V P a function. Let ġ be the P-name

{((ẋ, f(ẋ, p)), p) : (ẋ, p) ∈ Ẋ}.4

Then

P ġ is a function with domain Ẋ.

proof (a)(i) Set

Ẋ0 = {(ẋ, q) : there is some p ∈ P such that (ẋ, p) ∈ Ẋ and q ∈ P is stronger than p}.

Then P Ẋ = Ẋ0. PPP Because Ẋ ⊆ Ẋ0, P Ẋ ⊆ Ẋ0. In the other direction, if ẋ is a P-name and p is such

that p P ẋ ∈ Ẋ0, there are an (ẋ1, p1) ∈ Ẋ0 and a q, stronger than both p and p1, such that q P ẋ = ẋ1.

Now there is a p2 such that (ẋ1, p2) ∈ Ẋ and p1 is stronger than p2. In this case, q is stronger than p2 and

p2 P ẋ1 ∈ Ẋ, so q P ẋ = ẋ1 ∈ Ẋ, while q is stronger than p. As ẋ and p are arbitrary, P Ẋ0 ⊆ Ẋ. QQQ

Let Ẋ1 ⊆ Ẋ0 be a maximal discriminating name.

(ii) Because Ẋ1 ⊆ Ẋ0, P Ẋ1 ⊆ Ẋ0 = Ẋ. But we also have P Ẋ ⊆ Ẋ1. PPP Suppose that ẋ is a

P-name and p ∈ P is such that p P ẋ ∈ Ẋ. Then there must be an (ẋ1, p1) ∈ Ẋ and a q stronger than both

p and p1 such that q P ẋ = ẋ1. In this case, (ẋ1, q) ∈ Ẋ0. By the maximality of Ẋ1, there are a (ẏ, q′) ∈ Ẋ1

and an r stronger than both q and q′ such that r P ẋ1 = ẏ. Now r is stronger than p and

r P ẋ = ẋ1 = ẏ ∈ Ẋ1.

As ẋ and p are arbitrary, P Ẋ ⊆ Ẋ1. QQQ

So P Ẋ1 = Ẋ, as required.

(b) Consider

{(ẋ, f(ẋ, p), p) : (ẋ, p) ∈ Ẋ} ⊆ V P × V P × P .

If (ẋ0, p0) and (ẋ1, p1) belong to Ẋ, p is stronger than both p0 and p1, and p P ẋ0 = ẋ1, then (ẋ0, p0) =

(ẋ1, p1), because Ẋ is a discriminating name; so p P f(ẋ0, p0) = f(ẋ1, p1). By 5A3E,

P ġ is a function and dom ġ = Ẋ.

5A3L Real numbers in forcing languages Let P be any forcing notion, and P its set of conditions.

4Once again I present a formula in which some ordered pairs are to be interpreted in the ordinary universe, but another is
to be interpreted in the forcing language.
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(a) I have tried to avoid committing myself to any declaration of what a real number actually ‘is’; in fact
I believe that at the deepest level this should be regarded as an undefined concept, and that the descriptions
offered by Weierstrass and Dedekind are essentially artificial. But if we are to make sense of real analysis in
forcing models we must fix on some formulation, so I will say that a real number is the set of strictly smaller
rational numbers. (I leave it to you to decide whether a rational number is an equivalence class of pairs of
integers, or a coprime pair (m,n) where m ∈ Z and n ∈ N \ {0}, or something else altogether, provided only
that you fix on a construction expressible by a formula of set theory.) Observe that this has the desirable
effect that

P α̌ is a real number

for every real number α.

(b) Consider the Dedekind complete Boolean algebra RO(P) and the corresponding space L0 = L0(RO(P))
as defined in 364A.

(i) For every u ∈ L0, set

~u = {(α̌, p) : α ∈ Q, p ∈ [[u > α]]}.

Then

P ~u is a real number.

PPP Asw P Q̌ = Q, P ~u ⊆ Q. If p ∈ P , there are an n ∈ Z and a q stronger than p such that q ∈ [[u > n]],
in which case (ň, q) ∈ ~u and q P ~u 6= ∅; accordingly P ~u 6= ∅. Again, if p ∈ P , there are an n ∈ N and a q
stronger than p such that q ∈ [[u ≤ n]], in which case α ≤ n whenever (α̌, r) ∈ ~u and r is stronger than q, so
that

q P ň is an upper bound for ~u;

accordingly P ~u is bounded above.

If p ∈ P and α̇ is a P-name such that

p P α̇ ∈ ~u,

then for any q stronger than p there are an r stronger than q and an α ∈ Q such that r P α̇ = α̌ and
r ∈ [[u > α]]. Now there are a β ∈ Q and an r′ stronger than r such that β > α and r′ ∈ [[u > β]]; in which
case r′ P α̇ < β̌ ∈ ~u. As q is arbitrary,

p P α̇ is not the greatest member of ~u;

as p and α̇ are arbitrary,

P ~u has no greatest member.

If p ∈ P and α̇, β̇ are P-names such that

p P α̇ ∈ Q, α̇ ≤ β̇ ∈ ~u,

then for any q stronger than p there are an r stronger than q and α, β ∈ Q such that (β̌, r) ∈ ~u and

r P α̇ = α̌, β̇ = β̌, α̌ ≤ β̌.

In this case, α ≤ β (5A3H(c-ii)), r ∈ [[u > β]] ⊆ [[u > α]], (α̌, r) ∈ ~u and r P α̇ = α̌ ∈ ~u. As q is arbitrary,

p P α̇ ∈ ~u;

as p, α̇ and β̇ are arbitrary,

P α ∈ ~u whenever α ∈ Q and α ≤ β ∈ ~u, so ~u is a real number. QQQ

(ii) Observe next that [[~u > α̌]] = [[u > α]] for every α ∈ Q. PPP For p ∈ P ,
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p ∈ [[~u > α̌]] ⇐⇒ p P α̌ < ~u

⇐⇒ p P α̌ ∈ ~u

⇐⇒ for every q stronger than p there are q′ ∈ P, β ∈ Q

and an r stronger than both q and q′

such that (β̌, q′) ∈ ~u and r P β̌ = α̌

⇐⇒ for every q stronger than p there is an r stronger than q

such that (α̌, r) ∈ ~u

⇐⇒ for every q stronger than p there is an r stronger than q

such that r ∈ [[u > α]]

⇐⇒ p ∈ [[u > α]]

(514Md, because [[u > α]] is a regular open subset of P ). QQQ

(iii) In the other direction, if we have a P-name ẋ for a real number (that is, a P-name such that P ẋ
is a real number), then there is a unique u ∈ L0 such that P ẋ = ~u. PPP For every α ∈ Q we have a Boolean
value [[ẋ > α̌]] belonging to RO(P) (5A3G). It is easy to see that

[[ẋ > α̌]] = supβ∈Q,β>α [[ẋ > β̌]]

for every α ∈ Q,

infn∈Z [[ẋ > ň]] = 0, supn∈Z [[ẋ > ň]] = 1.

We therefore have a unique u ∈ L0 such that

[[u > α]] = [[ẋ > α̌]]

for every α ∈ R (364Ae). Now [[~u > α̌]] = [[ẋ > α̌]] for every α ∈ Q, that is,

p P ~u > α̌ iff p P ẋ > α̌

for every α ∈ Q and p ∈ P , that is,

p P α̌ ∈ ~u iff p P α̌ ∈ ẋ

for every α ∈ Q and p ∈ P , that is (since both ~u and ẋ are P-names for subsets of Q),

P ~u = ẋ. QQQ

(iv) It follows that if ẋ is a P-name and p ∈ P is such that p P ẋ ∈ R, then there is a u ∈ L0 such
that p P ẋ = ~u. (For there is a P-name ẏ such that P ẏ ∈ R and p P ẋ = ẏ.)

(v) If α ∈ R, then (αχ1)~ = α̌. PPP For any β ∈ Q and p ∈ P ,

[[(αχ1)~ > β̌]] = [[αχ1 > β]] = 1 if β < α, 0 otherwise

= [[α̌ > β̌]] in either case. QQQ

(c) Suppose that u, v ∈ L0.

(i) [[~u < ~v]] = [[v − u > 0]]. PPP

[[~u < ~v]] = [[∃ α ∈ Q, ~u ≤ α < ~v]]

= sup
α∈Q

[[~u ≤ α̌ < ~v]]

(taking the supremum in RO(P), 5A3Gc)

= sup
α∈Q

([[~v > α̌]] \ [[~u > α̌]])

(taking the relative complements in RO(P))
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= sup
α∈Q

([[v > α]] \ [[u > α]]) = [[v − u > 0]]. QQQ

(ii) In particular, if u ≤ v in L0, then

P ~u ≤ ~v in R

since [[~v < ~u]] = 0, and [[~u = ~v]] = [[u− v = 0]] for any u, v ∈ L0.

(iii) P (u+ v)~ = ~u+ ~v. PPP For any α ∈ Q,

[[~u+ ~v > α̌]] = [[∃ β ∈ Q, ~u > β, ~v > α̌− β]]

= sup
β∈Q

[[~u > β̌, ~v > α̌− β̌]]

= sup
β∈Q

([[~u > β̌]] ∩ [[~v > (α− β)̌ ]])

= sup
β∈Q

([[u > β]] ∩ [[v > α− β]])

= [[u+ v > α]]

(364D)

= [[(u+ v)~ > α̌]]. QQQ

(iv) P (u× v)~ = ~u~v. PPP If u, v ≥ 0 in L0 and α ≥ 0 in Q,

[[~u~v > α̌]] = [[∃ β ∈ Q, β > 0, ~u > β, ~v >
α̌

β
]]

= sup
β∈Q,β>0

[[~u > β̌, ~v >
α̌

β̌
]]

= sup
β∈Q,β>0

[[~u > β̌]] ∩ [[~v > (
α

β
)̌ ]]

= sup
β∈Q,β>0

[[u > β]] ∩ [[v >
α

β
]]

= [[u× v > α]]

= [[(u× v)~ > α̌]].

So in this case

P (u× v)~ = ~u~v.

Since we have an appropriate distributive law in L0 (364D), it follows from (iii) that the same is true for
general u, v ∈ L0. QQQ

(v) If α ∈ R, then P (αu)~ = α̌~u. (Put (iv) and (b-v) together.)

(d)(i) Suppose that 〈ui〉i∈I is a non-empty family in L0 with supremum u ∈ L0. Then

P ~u = supi∈Ǐ ~ui in R.

PPP By (c-ii),

P ~ui ≤ ~u

for every i ∈ I, so

P supi∈Ǐ ~ui ≤ ~u.

In the other direction, ??? suppose, if possible, that
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6 P ~u is the least upper bound of {~ui : i ∈ Ǐ}.

Then there are a p ∈ P and an α ∈ Q such that

p P α̌ < ~u is an upper bound for {~ui : i ∈ Ǐ}.

In this case,

p ∈ [[~u > α̌]] = [[u > α]] = supi∈I [[ui > α]] = int
⋃

i∈I [[ui > α]]

(364L(a-ii), 314P). There are therefore a q stronger than p and an i ∈ I such that q ∈ [[ui > α]]; but in this
case q P ~ui > α̌, which is impossible, because p P ~ui ≤ α̌. XXX So

P ~u = supi∈Ǐ ~ui. QQQ

(ii) And if 〈ui〉i∈I is a non-empty family in L0 with infimum u ∈ L0, then

P ~u = infi∈Ǐ ~ui in R

because P (−u)~ = −~u (using (c)).

(e) Suppose that 〈un〉n∈N is a sequence in L0, order*-convergent (in the sense of §367) to u ∈ L0. Then

P ~u = limn→∞ ~un.

PPP By 367Gb,

u = supn∈N infm≥n um = infn∈N supm≥n um

so (d) tells us that

P ~u = supn∈Ň infm≥n ~um = infn∈Ň supm≥n ~um,

that is,

P ~u = limn→∞ ~un. QQQ

5A3M Forcing with Boolean algebras Suppose that A is a Dedekind complete Boolean algebra, not
{0}. As noted in 5A3Ab, P = (A+,⊆, 1A, ↓) is a forcing notion. We have a natural isomorphism between
RO(P) and A, matching each G ∈ RO(P) with supG ∈ A (514Sb); by 514M(d-ii), supG, taken in (A+, ⊆ ),
will belong to G unless G = ∅. In this context, I will usually identify the two algebras, so that [[φ]] becomes
sup{a : a ∈ A+, a P φ}, and we shall have [[φ]] P φ except when P ¬φ. Note that [[¬φ]] = 1 \ [[φ]] (5A3Gb).

The identification of RO(P) with A itself simplifies some of the discussion in 5A3L. We have a P-name ~u
associated with each u ∈ L0(A), and the formula

[[~u = ~v]] = [[u− v = 0]] in RO(P) when u, v ∈ L0(RO(P))

of 5A3L(c-ii) turns into

whenever u, v ∈ L0(A) and a ∈ A+, u× χa = v × χa ⇐⇒ a P ~u = ~v.

PPP

a P ~u = ~v ⇐⇒ a ∈ [[~u = ~v]] interpreted in RO(P)

⇐⇒ a ∈ [[u− v = 0]] interpreted in RO(P)

(here thinking of u and v as members of L0(RO(P)))

⇐⇒ a ⊆ [[u− v = 0]] interpreted in A

(now thinking of u and v as members of L0(A))

⇐⇒ (u− v) × χa = 0 in L0(A)

⇐⇒ u× χa = v × χa. QQQ
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5A3N Ordinals and cardinals Let P be a forcing notion, and P its set of conditions.

(a) For any ordinal α,

P α̌ is an ordinal;

moreover, if p ∈ P and ẋ is a P-name such that

P ẋ is an ordinal,

there are a q stronger than p and an ordinal α such that

q P ẋ = α̌

(Jech 03, 14.23; see Kunen 80, IV.3.14).

(b) If P is ccc, then

P κ̌ is a cardinal

for every cardinal (that is, initial ordinal) κ (Kunen 80, VII.5.6; Jech 03, 14.34). In particular,

P ω̌1 is a cardinal, so is the first uncountable cardinal,

and we can write

P ω1 = ω̌1, ω2 = ω̌2

etc., if we are sure of being understood.

(c) Again suppose that P is ccc, and that we have a set A, a P-name Ẋ and a cardinal κ such that

P Ẋ ⊆ Ǎ and #(Ẋ) ≤ κ̌.

Then there is a set B ⊆ A such that #(B) ≤ max(ω, κ) and

P Ẋ ⊆ B̌.

PPP Let ḟ be a P-name such that

P ḟ is an injective function with domain Ẋ and ḟ [Ẋ] ⊆ κ̌.

For ξ < κ set

Bξ = {a : a ∈ A and there is a p ∈ P such that p P ǎ ∈ Ẋ & ḟ(ǎ) = ξ̌}.

For each a ∈ Bξ, choose pξa ∈ P such that

pξa P ǎ ∈ Ẋ and ḟ(ǎ) = ξ̌;

then if a, b ∈ Bξ and q is stronger than both pξa and pξb, we have

q P ḟ(ǎ) = ḟ(b̌) so ǎ = b̌

and a = b (5A3Hc). Thus 〈pξa〉a∈Bξ
is an antichain in P and Bξ must be countable; setting B =

⋃
ξ<κBξ,

B ⊆ A and #(B) ≤ max(ω, κ).

Now suppose that p ∈ P and that ẋ is a P-name such that p P ẋ ∈ Ẋ. Then

p P ẋ ∈ Ǎ and ḟ(ẋ) ∈ κ̌,

so there are a q stronger than p, an a ∈ A and a ξ < κ such that

q P ẋ = ǎ and ḟ(ẋ) = ξ̌.

Now a ∈ Bξ ⊆ B, so q P ẋ ∈ B̌. As p and ẋ are arbitrary,

P Ẋ ⊆ B̌,

as required. QQQ

(d) If P is ccc, then
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P cf[Ǐ]≤ω = (cf[I]≤ω )̌

for every set I. PPP Write κ for cf[I]≤ω. (i) Let K ⊆ [I]≤ω be a cofinal family with #(K) = κ. Then P κ̌ is
a cardinal, so

P Ǩ ⊆ [Ǐ]≤ω and #(Ǩ) = κ̌.

If J̇ is a P-name such that

P J̇ ∈ [Ǐ]≤ω,

then by (c) there is a countable set K ⊆ I such that P J̇ ⊆ Ǩ; now there is an L ∈ K such that K ⊆ L,
and

P J̇ ⊆ Ǩ ⊆ Ľ ∈ Ǩ.

As J̇ is arbitrary,

P Ǩ is cofinal with [Ǐ]≤ω and cf[Ǐ]≤ω ≤ κ̌.

(ii) ??? If

¬ P κ̌ ≤ cf[Ǐ]≤ω,

then there are a p ∈ P and an ordinal δ such that

p P cf[Ǐ]≤ω = δ̌ < κ̌.

Now there must be a family 〈J̇ξ〉ξ<δ of P-names such that

p P {J̇ξ : ξ < δ̌} is cofinal with [Ǐ]≤ω.

By (c) again, there must be for each ξ < κ a countable Kξ ⊆ I such that p P J̇ξ ⊆ Ǩξ. Because δ < cf[I]≤ω,
there is a K ∈ [I]≤ω such that K 6⊆ Kξ for every ξ < δ. In this case,

p P Ǩ ∈ [Ǐ]≤ω so there is a ξ < δ̌ such that Ǩ ⊆ J̇ξ,

and there must be a ξ < δ and a q stronger than p such that

q P Ǩ ⊆ J̇ξ ⊆ Ǩξ.

But this implies that K ⊆ Kξ, which isn’t so. XXX
We conclude that

P κ̌ ≤ cf[Ǐ]≤ω and κ̌ = cf[Ǐ]≤ω. QQQ

5A3O Iterated forcing (Kunen 80, VIII.5.2) If P is a forcing notion and P its set of conditions, and

we have a quadruple Q̇ = (Q̇, ≤̇, 1̇, ǫ̇) of P-names such that (1̇, 11P) ∈ Q̇ and

P ≤̇ is a pre-order on Q̇, ǫ̇ is a direction of activity and every member of Q̇ is stronger
than 1̇,

then P ∗ Q̇ is the forcing notion defined by saying that its conditions are objects of the form (p, q̇) where

p ∈ P , q̇ ∈ dom Q̇, p P q̇ ∈ Q̇,

and that (p, q̇) is stronger than (p′, q̇′) if p is stronger than p′ and

p P q̇ is stronger than q̇′.

(Strictly speaking, I should add that 11P∗Q̇ = (11P, 1̇).)5

5A3P Martin’s axiom Let κ be a regular uncountable cardinal such that 2λ ≤ κ for every λ < κ. Then
there is a ccc forcing notion P such that

P m = c = κ̌.

5This formulation gives us the freedom to take ǫ̇ to be non-trivial. I do not mean to suggest that it would be reasonable to
take advantage of this.
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(Kunen 80, VIII.6.3; Jech 03, 16.13).

5A3Q Countably closed forcings (a) Let P be a forcing notion, and P its set of conditions. P is
countably closed if whenever 〈pn〉n∈N is a sequence in P such that pn+1 is stronger than pn for every n,
there is a p ∈ P which is stronger than every pn.

(b) If P is a countably closed forcing notion, then P PN = (PN)̌ . PPP Let P be the set of conditions of
P. If p ∈ P and ẋ is a P-name such that p P ẋ ⊆ N, choose 〈pn〉n∈N inductively in P such that p0 = p and,
for each n ∈ N, pn+1 is stronger than pn and either pn+1 P ň ∈ ẋ or pn+1 P ň /∈ ẋ. Let q ∈ P be stronger
than every pn, and set A = {n : q P ň ∈ ẋ}. Then q P ň /∈ ẋ for every n ∈ N \A, so q P ẋ = Ǎ ∈ (PN)̌ .
As p and ẋ are arbitrary, P PN ⊆ (PN)̌ . For the reverse inequality, we have (PX )̌ ⊆ PX̌ for any
forcing notion and set X, so here we have P (PN)̌ ⊆ PŇ = PN. QQQ

Consequently P R = Ř. PPP The argument just above shows that P PQ = (PQ)̌ , and now it is easy
to see that

P R = {A : ∅ 6= A ⊆ Q, A is bounded above and has no greatest element,

q ∈ A whenever q ≤ q′ ∈ A}

= Ř. QQQ

Similarly, P [0, 1] = [0, 1]̌ .

5A3 Notes and comments In terms of the discussion in Kunen 80, §VII.9, you will see that I follow
an extreme version of the ‘syntactical’ approach to forcing. In the first place, this is due to a philosophical
prejudice; I do not believe in models of ZF. But it seems to me that quite apart from this there is a
fundamental difference between the sentences

m = c

and

P m = c

associated with the fact that the symbols m, c and even = must be reinterpreted in the second version.
I have tried in this section to develop a language which can express and accommodate the difference. It
puts a substantial burden on the reader, especially in such formulae as supi∈Ǐ ẋi (5A3F) and ((ẏ, f(ẏ, p)), p)
(5A3K), where you may have to read quite carefully to determine which parts of the formulae are supposed
to be in the forcing language, and which are in the ordinary language of set theory. There is an additional
complication in 5A3L, where I use the same symbol [[ ]] for two quite different functions; but here at least
the objects [[u > α]], [[~u > α̌]] belong to the same set RO(P), even if the formulae inside the brackets have to
be parsed by very different rules. I hope that the clue of a superscripted letter ẋ or Ǐ or ~u will alert you to
the need for thought. Once we have grasped this nettle, however, we are in a position to move between the
two languages, as in 5A3K; and statements of results such as 5A3P can be shortened by taking it for granted
that the preamble ‘2λ ≤ κ for every λ < κ’ refers to the ground universe, while the conclusion ‘m = c = κ̌’
is to be interpreted in the forcing universe.

Of course a large number of different types of forcing notion have been described and investigated. In
5A3N I mention some basic facts about ccc forcings. Another important class is that of countably closed
forcings (5A3Q).

Version of 20.7.24

5A4 General topology

The principal new topological concepts required in this volume are some of the standard cardinal functions
of topology (5A4A-5A4B). As usual, there are particularly interesting phenomena involving compact spaces
(5A4C). For special purposes in §513, we need to know some non-trivial facts about metrizable spaces
(5A4D). The rest of the section is made up of scraps which are either elementary or standard.
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5A4A Definitions Let (X,T) be a topological space.

(a) The weight of X, w(X), is the least cardinal of any base for T.

(b) The π-weight of X is π(X) = ci(T \ {∅}), the smallest cardinal of any π-base for T.

(c) The density d(X) of X is the smallest cardinal of any dense subset of X.

(d) The cellularity of X is

c(X) = c↓(T \ {∅}) = sup{#(G) : G ⊆ T \ {∅} is disjoint}.

The saturation of X is

sat(X) = sat↓(T \ {∅}) = sup{#(G)+ : G ⊆ T \ {∅} is disjoint},

that is, the smallest cardinal κ such that there is no disjoint family of κ non-empty open sets.

(e) The tightness of X, t(X), is the smallest cardinal κ such that whenever A ⊆ X and x ∈ A there is
a B ∈ [A]≤κ such that x ∈ B. (Recall that [A]≤κ = {B : B ⊆ A, #(B) ≤ κ}.)

(f) The Novák number n(X) is the smallest cardinal of any family of nowhere dense subsets of X
covering X; or ∞ if there is no such family.

(g)(i) The Lindelöf number L(X) is the least cardinal κ such that every open cover of X has a subcover
with cardinal at most κ.

(ii) The hereditary Lindelöf number hL(X) is supY⊆X L(Y ).

(h)(i) If x ∈ X, the character of x in X, χ(x,X), is the smallest cardinal of any base of neighbourhoods
of x.

(ii) The character of X is χ(X) = supx∈X χ(x,X).

(i) The network weight of X, nw(X), is the smallest cardinal of any network for T.

Remark Recall that X is called ‘second-countable’ iff w(X) ≤ ω, ‘separable’ iff d(X) ≤ ω, ‘ccc’ iff c(X) ≤ ω
(that is, sat(X) ≤ ω1), ‘Lindelöf’ if L(X) ≤ ω, ‘hereditarily Lindelöf’ if hL(X) ≤ ω, ‘first-countable’ if
χ(X) ≤ ω and ‘countably tight’ iff t(X) ≤ ω.

5A4B Proposition Let (X,T) be a topological space.
(a)

c(X) ≤ d(X) ≤ π(X) ≤ w(X) ≤ #(T) ≤ 2nw(X),

t(X) ≤ χ(X) ≤ w(X) ≤ max(#(X), χ(X)).

sat(X) = c(X)+ unless sat(X) is weakly inaccessible, in which case sat(X) = c(X).
(b) If Y is a subspace of X, then w(Y ) ≤ w(X), t(Y ) ≤ t(X), nw(Y ) ≤ nw(X) and χ(y, Y ) ≤ χ(y,X)

for every y ∈ Y .
(c) If a topological space Y is a continuous image of X, then d(Y ) ≤ d(X), c(Y ) ≤ c(X), t(Y ) ≤ t(X),

L(Y ) ≤ L(X) and nw(Y ) ≤ nw(X).
(d) If G is a family of open subsets of X, then there is a subfamily H ⊆ G such that #(H) < sat(X) and⋃
H =

⋃
G.

(e) Let 〈Xi〉i∈I be a family of non-empty topological spaces with product X, and λ a cardinal such that
#(I) ≤ 2λ. Then

d(X) ≤ max(ω, λ, supi∈I d(Xi)), c(X) = supJ⊆I is finite c(
∏

i∈J Xi).

(f) If G is any family of open subsets of X, there is an H ⊆ G such that #(H) ≤ hL(X) and
⋃
H =

⋃
G.

(g) If X is Hausdorff then #(X) ≤ 2max(c(X),χ(X)).
(h) Suppose that X is metrizable.

(i) d(X) = w(X).
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(ii) d(Y ) ≤ d(X) for every Y ⊆ X. So any discrete subset of X has cardinal at most d(X).
(iii) Let ρ be a metric on X defining its topology. Then X is separable iff there is no uncountable

A ⊆ X such that infx,y∈A,x 6=y ρ(x, y) > 0.

proof (a) Let D ⊆ X be a dense set with cardinal d(X). If G ⊆ T \ {∅} is disjoint, we have a surjection
from D ∩

⋃
G to G, so #(G) ≤ d(X); as G is arbitrary, c(X) ≤ d(X).

Let U be a π-base for T with cardinal π(X). Then there is a set D ⊆ X, with cardinal at most #(U),
meeting every non-empty member of U ; now D is dense, so d(X) ≤ #(D) ≤ π(X).

Any base for T is a π-base for T, so π(X) ≤ w(X). Of course w(X) ≤ #(T).
Let E be a network for T with cardinal nw(X); then T ⊆ {

⋃
E ′ : E ′ ⊆ E}, so #(T) ≤ 2#(E) = 2nw(X).

If A ⊆ X and x ∈ A, there are a base V of neighbourhoods of X with #(V) ≤ χ(X) and a set B ∈ [A]≤χ(X)

meeting every member of V, so that x ∈ B. Thus t(X) ≤ χ(X).
If U is a base for T with cardinal w(X), and x ∈ X, then Ux = {U : x ∈ U ∈ U} is a base of neighbourhoods

of x, so χ(x,X) ≤ #(Ux) ≤ w(X); as x is arbitrary, χ(X) ≤ w(X).
If X is finite, every point x of X has a smallest neighbourhood Vx, and {Vx : x ∈ X} is a base for T,

so w(X) ≤ #(X). If X is infinite, then for each x ∈ X choose a base Ux of neighbourhoods of x with
#(Ux) = χ(x,X) ≤ χ(X). Set U = {intU : U ∈

⋃
x∈X Ux}; then U is a base for T so

w(X) ≤ #(U) ≤ max(ω,#(X), χ(X)) = max(#(X), χ(X)).

Taking P to be the partially ordered set (T \ {∅},⊆), c(X) = c↓(P ) and sat(X) = sat↓(P ), so 513B,
inverted, tells us that sat(X) = c(X)+ unless sat(X) is weakly inaccessible, in which case sat(X) = c(X).

(b) If U is a base for T, then {U ∩Y : U ∈ U} is a base for the topology of Y , so w(Y ) ≤ w(X). If A ⊆ Y
and y ∈ Y belongs to the closure of A in Y it belongs to the closure of A in X so there is a B ∈ [A]≤t(X)

such that y ∈ B taken either in X or in Y ; thus t(Y ) ≤ t(X). If E is a network for T, then {E ∩ Y : E ∈ E}
is a network for the topology of Y , so nw(Y ) ≤ nw(X). If y ∈ Y and V is a base of neighbourhoods of y in
X, then {V ∩ Y : V ∈ V} is a base of neighbourhoods of y in Y , so χ(y, Y ) ≤ χ(y,X).

(c) Let f : X → Y be a continuous surjection. If D ⊆ X is dense, then f [D] is dense in Y (3A3Eb), and
d(Y ) ≤ #(f [D]) ≤ #(D); as D is arbitrary, d(Y ) ≤ d(X).

If H is a disjoint family of non-empty open sets in Y , then G = {f−1[H] : H ∈ H} is a disjoint family of
non-empty open sets in X, so #(H) = #(G) ≤ c(X); as H is arbitrary, c(Y ) ≤ c(X).

If B ⊆ Y and y ∈ B there is an x ∈ X such that f(x) = y. Now x ∈ f−1[B] ⊆ f−1[B] so there is a

C ⊆ [f−1[B]]≤t(X) such that x ∈ C and y ∈ f [C] while f [C] ∈ [B]≤t(X). So t(Y ) ≤ t(X).
If H is an open cover of Y , then G = {f−1[H] : H ∈ H} is an open cover of X; let G0 ∈ [G]≤L(X) be a

subcover; choose H0 ⊆ H such that #(H0) = #(G0) and G0 = {f−1[H] : H ∈ H0}; then H0 covers Y . As
H is arbitrary, L(Y ) ≤ L(X).

If A is a network for T, then {f [A] : A ∈ A} is a network for the topology of Y , so nw(Y ) ≤ nw(X).

(d) Let V be a maximal disjoint family of non-empty open sets included in members of G. Then #(V) <
sat(X). Let H ⊆ G be such that #(H) ≤ #(V) and every member of V is included in a member of H. If

G ∈ G then G \
⋃
H meets no member of V, so must be empty; so this H serves.

(e)(i) By Engelking 89, 2.3.15, d(X) ≤ max(ω, λ, supi∈I d(Xi)).

(ii) Set κ = supJ⊆I is finite c(
∏

i∈J Xi). All the finite products
∏

i∈J Xi are continuous images of X, so
c(X) ≥ κ, by (c). ??? Suppose, if possible, that c(X) > κ. Let V be the usual base for the topology of X,
consisting of sets of the form

∏
i∈I Gi where Gi ⊆ Xi is open for every i and {i : Gi 6= Xi} is finite. Let

〈Wξ〉ξ<κ+ be a disjoint family of non-empty open sets in X. For each ξ < κ let W ′
ξ ⊆ Wξ be a non-empty

member of V, so that W ′
ξ is determined by a coordinates in a finite subset Iξ of I. By the ∆-system Lemma

(4A1Db) there is a set A ⊆ κ+, with cardinal κ+, such that 〈Iξ〉ξ∈A is a ∆-system with root J say. For
ξ ∈ A express W ′

ξ as Uξ∩Vξ where Uξ is determined by coordinates in J and Vξ is determined by coordinates

in Iξ \ J . Now for distinct ξ, η ∈ A,

∅ = W ′
ξ ∩W

′
η = Uξ ∩ Uη ∩ Vξ ∩ Vη.

Since Vξ and Vη and Uξ∩Uη are determined by coordinates in the disjoint sets Iξ\J , Iη\J and J respectively,
one of them must be empty, and this can only be Uξ ∩ Uη. Thus 〈Uξ〉ξ∈A is disjoint. But now observe that
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each Uξ is of the form π−1
J [Hξ] where Hξ ⊆

∏
i∈J Xi is a non-empty open set and πJ(x) = x↾J for every

x ∈ X. So 〈Hξ〉ξ∈A witnesses that c(
∏

i∈J Xi) ≥ κ+, which contradicts the definition of κ. XXX
Thus c(X) = supJ⊆I is finite c(

∏
i∈J Xi).

(f) This is just because L(
⋃

G) ≤ hL(X).

(g) If X is finite, c(X) = #(X) and the result is trivial. Otherwise, set κ = max(c(X), χ(X)) and for each
x ∈ X let 〈Uξ(x)〉ξ<κ run over a base of neighbourhoods of x consisting of open sets. Let f : [X]2 → [κ]2

be such that whenever x, y ∈ X are distinct then there are ξ, η ∈ f({x, y}) such that Uξ(x) and Uη(y) are
disjoint. ??? If #(X) > 2κ then by the Erdős-Rado theorem (5A1Ha) there is a C ⊆ X such that #(C) > κ
and f is constant on [C]2; let {ξ, η} be the constant value. For x ∈ C set Gx = Uξ(x)∩Uη(x); then 〈Gx〉x∈C

is a disjoint family of non-empty open sets, so c(X) ≥ #(C) > κ. XXX

(h) Fix a metric ρ on X defining its topology.

(i) If d(X) < ω then X is finite and the result is trivial. Otherwise, let D be a dense subset of X
with cardinal d(X); setting U(x, ǫ) = {y : ρ(y, x) < ǫ}, {U(x, 2−n) : x ∈ D, n ∈ N} is a base for T, so
w(X) ≤ max(#(D), ω) = d(X). Since we know from (a) above that d(X) ≤ w(X), we have equality.

(ii) Put (i) together with (b) above to see that d(Y ) ≤ d(X). If Y is discrete, then #(Y ) = d(Y ) ≤
d(X).

(iii)(α) If there is an uncountable A ⊆ X such that infx,y∈A,x 6=y ρ(x, y) > 0, then A is not separable
in its subspace topology, so X is not separable, by (ii). (β) If there is no such A, then for each n ∈ N let An

be a maximal subset of X such that ρ(x, y) ≥ 2−n for all distinct x, y ∈ An. In this case
⋃

n∈NAn is dense,
so d(X) ≤ max(ω, supn∈N #(An)) = ω and X is separable.

5A4C Compactness Let X be a compact Hausdorff space.

(a)(i) nw(X) = w(X). (Engelking 89, 3.1.19.)

(ii) There is a set Y ⊆ X, with cardinal at most the cardinal power d(X)ω, which meets every non-
empty Gδ subset of X. PPP Let D ⊆ X be a dense set with cardinal d(X). For each sequence ω ∈ DN choose
a cluster point xω of 〈ω(n)〉n∈N; set Y = {xω : ω ∈ DN}. Then #(Y ) ≤ #(DN) = d(X)ω. If 〈Gn〉n∈N

is a sequence of open sets in X with non-empty intersection, take x ∈
⋂

n∈NGn and choose inductively a

sequence 〈Hn〉n∈N of open sets such that x ∈ Hn and Hn+1 ⊆ Hn ∩ Gn for every n. Let ω ∈ DN be such
that ω(n) ∈ Hn for every n; then

xω ∈ Y ∩
⋂

n∈NHn ⊆
⋂

n∈NGn.

As 〈Gn〉n∈N is arbitrary, Y is a suitable set. QQQ

(b) If X is perfectly normal it is first-countable. (Every singleton set in X is a zero set (4A2Fi), so is a
Gδ set; by 4A2Kf, X is first-countable.)

(c) If w(X) ≤ κ, X is homeomorphic to a closed subspace of [0, 1]κ. (Engelking 89, 3.2.5.)

(d)(i) If Y is a Hausdorff space and f : X → Y is a continuous irreducible surjection, then d(X) = d(Y ).
PPP We know that d(Y ) ≤ d(X) (5A4Bc). In the other direction, let D ⊆ Y be a dense set with cardinal
d(Y ), and C ⊆ X a set with cardinal #(D) such that f [C] = D. If G ⊆ X is open and not empty, f [X \G]
is a closed proper subset of Y (because f is irreducible), so D 6⊆ f [X \G] and C 6⊆ X \G. As G is arbitrary,
C is dense, and witnesses that d(X) ≤ d(Y ). QQQ

(ii) If f : X → {0, 1}κ is a continuous irreducible surjection, where κ ≥ ω, then χ(x,X) ≥ κ for
every x ∈ X. PPP Let V be a base of neighbourhoods of x with cardinal χ(x,X). For each ξ < κ, set
Gξ = {y : y ∈ X, f(y)(ξ) = f(x)(ξ)}. For V ∈ V, set IV = {ξ : ξ < κ, V ⊆ Gξ}; then f [V ] ⊆ {z : z ∈ {0, 1}κ,
z↾IV = f(x)↾IV }; but f [X \V ] is a closed proper subset of {0, 1}κ, so int f [V ] is non-empty and IV is finite.
As V is a base of neighbourhoods of x, κ =

⋃
V ∈V IV . As κ is infinite, V is infinite, and κ ≤ #(V) = χ(x,X).

QQQ
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(iii) So if there is a continuous surjection from a closed subset of X onto {0, 1}κ, there is a non-empty
closed K ⊆ X such that χ(x,K) ≥ κ for every x ∈ K. PPP Let f : F → {0, 1}κ be a continuous surjection,
where F ⊆ X is closed. By 4A2G(i-i), there is a closed K ⊆ F such that f↾K is an irreducible surjection
onto {0, 1}κ, and we can use (ii). QQQ

(iv) If Y and Z are Hausdorff spaces and f : X → Y , g : Y → Z are continuous irreducible surjections
then gf : X → Z is irreducible. (If F ⊆ X is a closed proper subset, then f [F ] is a closed proper subset of
Y and g[f [F ]] 6= Z.)

(e) If 〈xn〉n∈N is a sequence in X with at most one cluster point in X, then 〈xn〉n∈N is convergent. PPP
Because X is compact, 〈xn〉n∈N has at least one cluster point; let x be such a point. ??? If 〈xn〉n∈N does not
converge to x, let G be an open set containing x such that J = {n : n ∈ N, xn /∈ G} is infinite. Then there

must be a point y in
⋂

n∈N {xi : i ∈ J \ n}; and now y is a cluster point of 〈xn〉n∈N in X \G, so cannot be
equal to x. XXXQQQ

(f) Let Y be a Hausdorff space and f : X → Y a continuous function. If E is a non-empty downwards-
directed family of closed subsets of X, then f [

⋂
E ] =

⋂
F∈E f [F ]. PPP Of course f [

⋂
E ] ⊆

⋂
F∈E f [F ]. If

y ∈
⋂

F∈E f [F ], then {F ∩ f−1[{y}] : F ∈ E} is a downwards-directed family of closed subsets of X, so has
non-empty intersection; and any point of the intersection witnesses that y ∈ f [

⋂
E ]. QQQ

5A4D Vietoris topologies: Proposition Let X be a separable metrizable space and K the set of
compact subsets of X with the topology induced by the Vietoris topology on the set of closed subsets of X
(4A2T).

(a) K is second-countable.
(b) If Y is a topological space and R ⊆ Y × X is usco-compact, then y 7→ R[{y}] : Y → K is Borel

measurable.
(c) There is a sequence 〈fn〉n∈N of Borel measurable functions from K\{∅} to X such that {fn(K) : n ∈ N}

is a dense subset of K for every K ∈ K \ {∅}.

proof (a) Let U be a countable base for the topology of X. Let V be the family of sets of the form

{K : K ∈ K, K ∩ Ui 6= ∅ for i < n, K ⊆
⋃

i<n Ui}

where n ∈ N and Ui ∈ U for i < n; then V is a countable family of open sets in K and is a base for the
topology of K.

(b) If G ⊆ X is open, then

{y : y ∈ Y , R[{y}] ⊆ G} = Y \R−1[X \G]

is open. Also G can be expressed as
⋃

n∈N Fn where every Fn is closed, so

{y : R[{y}] ∩G 6= ∅} =
⋃

n∈NR
−1[Fn]

is Fσ, therefore Borel. Thus

W = {W : W ⊆ K, {y : R[{y}] ∈W} is Borel}

includes a subbase for the topology of K. It therefore includes a base; because K is second-countable,
therefore hereditarily Lindelöf, every open set is a countable union of members of W and belongs to W, that
is, y 7→ R[{y}] is Borel measurable.

(c)(i) Note first that if G ⊆ X is open, then K 7→ K ∩G : K → K is Borel measurable. PPP If H ⊆ X is
open, then

{K : K ∩G ∩H 6= ∅} = {K : K ∩ (G ∩H) 6= ∅}

is open. Next, we can express H as the union
⋃

n∈NHn of a non-decreasing sequence of open sets such that

Hn ⊆ H for every n, so

{K : K ∩G ⊆ H} =
⋃

n∈N{K : K ∩G ⊆ Hn} =
⋃

n∈N{K : K ∩ (G \Hn) = ∅}

is Fσ, therefore Borel. As in (b), this is enough. QQQ
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(ii) Let 〈Un〉n∈N run over a base for the topology of X. For each n ∈ N define gn : K → K by setting

gn(K) = K ∩ Un if K ∩ Un 6= ∅,

= K otherwise.

Since {K : K ∩Un 6= ∅} is open, (i) tells us that gn is Borel measurable. Set hn = gn . . . g1g0; then hn also is
Borel measurable, for each n. Now, for each K ∈ K \ {∅}, 〈hn(K)〉n∈N is a non-increasing sequence of non-
empty compact sets, so has non-empty intersection. Morover, for each n, hn(K) is either disjoint from Un or
included in Un; so

⋂
n∈N hn(K) has exactly one point; call this point f(K). Of course f(K) ∈ h0(K) ⊆ K.

Now f : K \ {∅} → X is Borel measurable. PPP If F ⊆ X is closed, then

f−1[F ] =
⋂

n∈N{K : F ∩ hn(K) 6= ∅}

is a Borel set because every hn is Borel measurable and {K : F ∩K = ∅} is open. QQQ

(iii) Set fn = fgn for each n. Then fn(K) ∈ K for every n ∈ N and K ∈ K \ {∅}, fn : K \ {∅} → X is
Borel measurable for each n, and fn(K) ∈ K ∩ Un whenever K ∩ Un 6= ∅; so {fn(K) : n ∈ N} is dense in K
for every K ∈ K \ {∅}.

5A4E Category and the Baire property Let X be a topological space; write B̂(X) for its Baire-
property algebra (4A3R6).

(a) Suppose that 〈Gi〉i∈I is a disjoint family of open sets and 〈Ei〉i∈I is a family of nowhere dense sets.
Then

⋃
i∈I Gi ∩ Ei is nowhere dense. (Elementary; see (a-i) of the proof of 4A3S7.)

(b) Let Y be another topological space.

(i) If A ⊆ X is nowhere dense in X, then A× Y is nowhere dense in X × Y . (A× Y = A× Y .) So if
A ⊆ X is meager in X, then A× Y is meager in X × Y .

(ii) B̂(X)⊗̂B̂(Y ) ⊆ B̂(X × Y ). PPP If E ∈ B̂(X), let G ⊆ X be such that E△G is meager; then

E × Y = (G× Y )△((E△G) × Y ) ∈ B̂(X × Y ).

Similarly, X × F ∈ B̂(X × Y ) for every F ∈ B̂(Y ). Because B̂(X × Y ) is a σ-algebra of sets, it includes

B̂(X)⊗̂B̂(Y ). QQQ

(iii) If Y is compact, Hausdorff and not empty, then a set A ⊆ X is meager in X iff A× Y is meager
in X × Y . PPP We saw in (i) that if A is meager then A × Y is meager. In the other direction, if A × Y is
meager in X × Y , let 〈Wn〉n∈N be a sequence of dense open subsets of X × Y such that

⋂
n∈NWn is disjoint

from A×Y . Choose 〈Vn〉n∈N inductively, as follows. V0 = X×Y . Given that Vn is an open subset of X×Y
such that π1[Vn] is dense in X, where π1 is the projection from X × Y onto X, then π1[Vn ∩Wn] is dense
in X. Set

Vn = {G×H : G ⊆ X is open, H ⊆ Y is open, G×H ⊆ Vn ∩Wn}.

Observe that if V ∈ Vn and x ∈ π1[V ] then π1[V ] × V [{x}] ⊆ Wn. Because Y is regular,
⋃
Vn is dense in

Vn ∩Wn and π1[
⋃

Vn] is dense in X. Let V ′
n ⊆ Vn be a maximal family such that π1[V ] ∩ π1[V ′] is empty

whenever V , V ′ ∈ V ′
n are disjoint; because G′ ×H ∈ Vn whenever G×H ∈ Vn and G′ is an open subset of

G, π1[
⋃

V ′
n] is dense in X. Set Vn+1 =

⋃
V ′
n, and continue.

If x ∈
⋂

n∈N π1[Vn], 〈Vn[{x}]〉n∈N is a non-increasing sequence of non-empty closed subsets of Y , so there

is a y ∈
⋂

n∈N Vn[{x}], because Y is compact. For each n, x ∈ π1[Vn+1] and there is a V ∈ V ′
n such that

x ∈ π1[V ], so Vn+1[{x}] = V [{x}], y ∈ V [{x}] and (x, y) ∈ Wn. Thus x ∈ π1[
⋂

n∈NWn] and x /∈ A. As x is
arbitrary, A is disjoint from

⋂
n∈N π1[Vn] and is meager. QQQ

(c) Suppose that X is completely regular and ccc.

6Formerly 4A3Q.
7Later editions only.
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(i) Every nowhere dense subset of X is included in a nowhere dense zero set. PPP If E ⊆ X is nowhere
dense, let G be a maximal disjoint family of cozero sets included in X \E. Because X is ccc, G is countable,
and G =

⋃
G is a cozero set. Because X is completely regular, X \ (G ∪ E) is nowhere dense and X \G is

a nowhere dense zero set including E. QQQ

(ii) Every meager subset of X is included in a meager Baire set. (By (i), it is included in the union of
a sequence of nowhere dense zero sets.)

(iii) Every subset of X with the Baire property is expressible as G△M where G is a cozero set and M

is meager. PPP If E ∈ B̂(X), express it as G0△M0 where G0 is open and M0 is meager. Let H be a maximal
disjoint family of cozero subsets of G0; as X is ccc, H is countable and G =

⋃
H is a cozero set; as X is

completely regular, G0 ⊆ G and G0 \G is nowhere dense. So M = (G0 \G)△M0 is meager and E = G△M
is in the required form. QQQ

5A4F Normal and paracompact spaces (a) For a normal space X and an infinite set I, the following
are equiveridical: (i) there is a continuous surjection from X onto [0, 1]I ; (ii) there is a continuous surjection
from a closed subset of X onto {0, 1}I . PPP (i)⇒(ii) is elementary, as {0, 1}I is a closed subset of [0, 1]I .
So suppose that (ii) is true. The map x 7→

∑∞
n=0 2−n−1 is a continuous surjection from {0, 1}N onto

[0, 1]; there is therefore a continuous surjection from {0, 1}I×N onto [0, 1]I ; but I is infinite, so {0, 1}I is
homeomorphic to {0, 1}I×N. We therefore have a continuous surjection from {0, 1}I onto [0, 1]I . Accordingly
there is a continuous surjection f from a closed subset F of X onto [0, 1]I . Set fi(x) = f(x)(i) for x ∈ F
and i ∈ I; by Tietze’s theorem (4A2F(d-ix)), there is a continuous gi : X → [0, 1] extending fi; now
x 7→ 〈gi(x)〉i∈I : X → [0, 1]I is a continuous surjection, and (i) is true. QQQ

(b) Suppose that X is a paracompact normal space and G is an open cover of X. Then there is a
continuous pseudometric ρ : X ×X → [0,∞[ such that whenever ∅ 6= A ⊆ X and supx,y∈A ρ(x, y) ≤ 1 there
is a G ∈ G such that A ⊆ G. PPP If X is empty this is trivial; suppose otherwise. There is a locally finite
open cover H of X refining G. Enumerate H as 〈Hξ〉ξ<κ. By 4A2F(d-vi), there is a family 〈Uξ〉ξ<κ of open

sets, covering X, such that U ξ ⊆ Hξ for every ξ < κ.

Now for each ξ < κ there is a continuous function fξ : X → [0, 1] such that fξ(x) = 1 for x ∈ U ξ and
fξ(x) = 0 for x ∈ X \ Hξ (4A2F(d-i)). Set ρ(x, y) = 2

∑
ξ<κ |fξ(x) − fξ(y)| for x, y ∈ X. Then ρ is a

pseudometric on X, and is continuous because 〈f−1
ξ [ ]0, 1] ]〉ξ<κ is locally finite. If A ⊆ X is a non-empty

set such that ρ(x, y) ≤ 1 for all x, y ∈ A, take any x ∈ A. There is a ξ < κ such that x ∈ Uξ. If y ∈ A,
1 − fξ(y) = |fξ(x) − fξ(y)| ≤ 1

2 so y ∈ Hξ. Let G ∈ G be such that Hξ ⊆ G; then A ⊆ G, as required. QQQ

5A4G Baire σ-algebras (a) Let X be a topological space. Write Ba0(X) for the set of cozero sets in
X and for ordinals α > 0 set

Baα(X) = {
⋃

n∈N(X \ En) : 〈En〉n∈N is a sequence in
⋃

β<α Baβ(X)}.

Then the Baire σ-algebra Ba(X) of X is
⋃

α<ω1
Baα(X). PPP Inducing on α, we see that Baα(X) is included

in the Baire σ-algebra of X for every α; and
⋃

α<ω1
Baα(X) is a σ-algebra of sets containing every cozero

set, so includes the Baire σ-algebra. QQQ

(b)(i) If 〈Xi〉i∈I is a family of separable metrizable spaces with productX, then #(Ba(X)) ≤ max(c,#(I)ω).

PPP By 4A3Na, Ba(X) =
⊗̂

i∈IB(Xi), where B(Xi) is the Borel σ-algebra of Xi for each i. By 4A3Fa,
#(B(Xi)) ≤ c for each i, so

E = {{x : x ∈ X, x(i) ∈ E} : i ∈ E, E ∈ B(Xi)}

has cardinal at most max(c,#(I)) and the σ-algebra Ba(X) it generates has cardinal at most max(c,#(I))ω =
max(c,#(I)ω) (4A1O). QQQ

(ii) If κ ≥ 2 is a cardinal, then the set F of Baire measurable functions from {0, 1}κ to {0, 1}ω has
cardinal κω. PPP The map

f 7→ 〈{x : f(x)(i) = 1}〉i∈N : F → Ba({0, 1}κ)N

is bijective, so
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#(F ) = #(Ba({0, 1}κ))ω ≤ (max(c, κ)ω)ω = κω.

Of course #(Ba({0, 1})κ) ≥ κ so #(F ) = κω. QQQ

5A4H Proposition If X is a compact metrizable space and (Y, ρ) a complete separable metric space,
then C(X;Y ), with the topology of uniform convergence, is Polish. (Engelking 89, 4.3.13 and 4.2.18.)

5A4I Compact-open topologies We shall need a couple of elementary facts concerning some spaces
of continuous functions.

(a) Let X and Y be topological spaces and F a set of functions from X to Y . The compact-open
topology on F is the topology generated by sets of the form {f : f ∈ F , f [K] ⊆ H} where K ⊆ X is
compact and H ⊆ Y is open. (Cf. Engelking 89, §3.4.)

(b) Let X be a topological space and 〈Yi〉i∈I a family of regular spaces, with product Y . Set πiy = y(i)
for i ∈ I and y ∈ Y . Then g 7→ 〈πig〉i∈I : C(X;Y ) →

∏
i∈I C(X;Yi) is a homeomorphism for the compact

open topologies on C(X;Y ) and the C(X;Yi). PPP (α) A function g : X → Y is continuous iff πig is
continuous for every i ∈ I (3A3Ib), so g 7→ 〈πig〉i∈I : C(X;Y ) →

∏
i∈I C(X;Yi) is a bijection; write

φ :
∏

i∈I C(X;Yi) → C(X;Y ) for its inverse. (β) If j ∈ I, K ⊆ X is compact and H ⊆ Yj is open, then {g :

(πjg)[K] ⊆ H} = {g : g[K] ⊆ π−1
j [H]} is open in C(X;Y ). By 4A2B(a-ii), g 7→ πjg : C(X;Y ) → C(X;Yj)

is continuous. As j is arbitrary, g 7→ 〈πig〉i∈I is continuous. (γ) Now suppose that K ⊆ X is compact and
W ⊆ Y is open, and consider U = {ggg : ggg ∈

∏
i∈I C(X;Yi), φ(ggg)[K] ⊆W}. Take any hhh = 〈hi〉i∈I in U . Set

H = {
∏

i∈I

Hi : Hi ⊆ Yi is open for every i ∈ I, {i : Hi 6= Yi} is finite,

there is a family 〈Gi〉i∈I such that Gi is an open subset of Yi

including Hi for every i ∈ I and
∏

i∈I

Gi ⊆W}.

Then H is a family of open subsets of Y and because every Yi is regular we have W =
⋃
H. Now φ(hhh)[K]

is a compact subset of W so there are H(0), . . . , H(n) ∈ H covering φ(hhh)[K]. Set Kk = K ∩ φ(hhh)−1[H(k)]
for k ≤ n; then K0, . . . ,Kn are compact subsets of X with union K.

For each k ∈ K take 〈Hki〉i∈I , 〈Gki〉i∈I such that

H(k) =
∏

i∈I Hki,

Hki, Gki are open subsets of Yi and Hki ⊆ Gki for each i ∈ I,

Jk = {i : Hki 6= Yi} is finite,
∏

i∈I Gki ⊆W .

We have

φ(hhh)[Kk] ⊆ H(k) ⊆
∏

i∈I Gki,

so πi[φ(hhh)[Kk]] ⊆ Gki for every i ∈ I. Consider the set

V = {〈gi〉i∈I : 〈gi〉i∈I ∈
∏

i∈I C(X;Yi), gi[Kk] ⊆ Gki whenever k ≤ n and i ∈ Jk}.

Then V is an open subset of
∏

i∈I C(X;Yi) containing hhh. If ggg = 〈gi〉i∈I belongs to V and k ≤ n, then

φ(ggg)[Kk] ⊆
∏

i∈I gi[Kk] ⊆
∏

i∈I Gki ⊆W

because Gki = Yi for i ∈ I \ Jk. So φ(ggg)[K] =
⋃

k≤n φ(ggg)[Kk] is included in W and ggg ∈ U . Thus we have

hhh ∈ V ⊆ U and U is a neighbourhood of hhh. As hhh is arbitrary, U is open. As K and W are arbitrary, φ is
continuous and g 7→ 〈πig〉i∈I is a homeomorphism. QQQ

(c) Let X be a compact space, and write E for the algebra of open-and-closed subsets of X. Then
f 7→ f−1[{1}] is a bijection between C(X; {0, 1}) and E , and the compact-open topology on C(X; {0, 1}) is
discrete. PPP (α) f 7→ f−1[{1}] : {0, 1}X → PX is a bijection, and a function f : X → {0, 1} is continuous
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iff f−1[{0}] and f−1[{1}] are open, that is, iff f−1[{1}] ∈ E . So we have a bijection f 7→ f−1[{1}] :
C(X; {0, 1}) → E . (β) If g ∈ C(X; {0, 1}) then K0 = g−1[{0}] and K1 = g−1[{1}] are closed, therefore
compact, and

{g} = {f : f ∈ C(X; {0, 1}), f [K0] ⊆ {0}, f [K1] ⊆ {1}}

is open; accordingly the compact-open topology on C(X; {0, 1}) is discrete. QQQ

5A4J In §547 we shall need a bound on the uniformities of certain meager ideals.

Proposition Let X be a set and A a family of countable sets which is stationary over X (definition: 5A1R).
Then nonM(XN) ≤ max(#(A), nonM).

Notation Here X is given its discrete topology and XN the associated product topology. M(XN) is its
meager ideal and nonM(XN) the corresponding uniformity, the smallest cardinal of any non-meager subset
of XN. M is M(R).

proof (a) We can suppose that ∅ 6= A ⊆ X for every A ∈ A. For each A ∈ A, let FA ⊆ AN be a non-meager
set with cardinal at most nonM. (If A is a singleton, take FA = AN; otherwise, nonM(AN) = nonM(R) =
nonM by 522Wb.) Set F =

⋃
A∈A FA; then #(F ) ≤ max(#(A), nonM).

(b) F is non-meager in XN. PPP Let 〈Gn〉n∈N be a sequence of dense open subsets of XN. For each
z ∈

⋃
k∈NX

k and n ∈ N choose wzn ∈
⋃

k∈NX
k such that z ⊆ wzn and {x : wzn ⊆ x ∈ XN} ⊆ Gn. For each

I ∈ [X]<ω set f(I) =
⋃
{wzn[N] : z ∈

⋃
k∈N I

k, n ∈ N}. Let A ∈ A be such that f(I) ⊆ A for every finite
I ⊆ A.

Take any n ∈ N. If z ∈
⋃

k∈NA
k, set I = z[dom z] ∈ [A]<ω; then wzn ∈

⋃
k∈N f(I)k ⊆

⋃
k∈NA

k and

x ∈ Gn whenever wzn ⊆ x ∈ AN. So Gn ∩ AN is dense in AN. Also, of course, Gn ∩ AN is open in AN. As
this is true for every n ∈ N,

∅ 6= FA ∩
⋂

n∈NGn ⊆ F ∩
⋂

n∈NGn.

As 〈Gn〉n∈N is arbitrary, F is non-meager. QQQ
So F witnesses that nonM(XN) ≤ max(#(A), nonM).

5A4K Irreducible surjections: Lemma (a) Let Q be a topological space and K, L closed subsets of

Q such that K ⊆ Q \ L, L ⊆ Q \K and K∪L = Q. Set Z = {(x, 1) : x ∈ K}∪{(x, 0) : x ∈ L} ⊆ Q×{0, 1},
and write φ : Z → Q for the first-coordinate map. Then φ is an irreducible continuous surjection.

(b) Let θ be an ordinal, 〈Qξ〉ξ<θ a family of compact Hausdorff spaces, and 〈φηξ〉η≤ξ<θ a family such
that φηξ : Qξ → Qη is a continuous surjection whenever η ≤ ξ < θ. Suppose that

φζξ = φζηφηξ whenever ζ ≤ η ≤ ξ < θ,

the topology of Qξ is generated by {φ−1
ηξ [U ] : η < ξ, U ⊆ Qη is open} for every non-zero limit

ordinal ξ < θ,
φξ,ξ+1 is irreducible whenever ξ + 1 < θ. (*)

Then φηξ is irreducible whenever η ≤ ξ < θ.

proof (a) φ is a surjection because K ∪L = Q, and is continuous by the definition of the product topology
on Q× {0, 1}. Suppose that W ⊆ Z is open and not empty.

If x ∈ K and (x, 1) ∈ W , then there is an open set U ⊆ Q such that (x, 1) ∈ U × {1} ⊆ W . In this

case, x ∈ U ∩K ⊆ Q \ L and U \ L is not empty. But φ[Z \W ] does not meet U \ L. PPP??? Otherwise, take
z ∈ Z \W such that φ(z) ∈ U \L. Then z must be equal to (φ(z), 1) and z ∈ U ×{1} ⊆W , which is absurd.
XXXQQQ So φ[Z \W ] 6= Q.

Similarly, φ[Z \W ] 6= Q if W ∩ {(y, 0) : y ∈ L} 6= ∅. But as K ∪ L = Q, this means that φ[Z \W ] can
never be Q.

Thus φ[F ] 6= Q for any closed proper subset F of Z, and φ : Z → Q is irreducible.

(b) Fixing η < θ, induce on ξ. As φηη = φ2ηη : Qη → Qη is surjective, φηη is the identity map on Qη

and the case ξ = η is trivial. For the inductive step to a successor ordinal ξ + 1, φη,ξ+1 = φη,ξφξ,ξ+1 is the
composition of two irreducible continuous surjections, by the inductive hypothesis and (*), so is irreducible
by 5A4C(d-iv). For the inductive step to a limit ordinal ξ ∈ ]η, θ[, take a non-empty open set G ⊆ Qξ; then
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there must be η0, . . . , ηn ∈ [η, ξ[ and open sets Gi ⊆ Qηi
, for i ≤ n, such that ∅ 6=

⋂
i≤n φ

−1
ηiξ

[Gi] ⊆ G. We

can take it that η0 ≤ . . . ≤ ηn. Setting H =
⋂

i≤n φ
−1
ηiηn

[Gi] ⊆ Qηn
,

φ−1
ηnξ

[H] =
⋂

i≤n φ
−1
ηnξ

[φ−1
ηiηn

[Gi]] =
⋂

i≤n φ
−1
ηiξ

[Gi]

is a non-empty open subset of G. So

φηξ[Qξ \G] = φηηn
[φηnξ[Qξ \G]] ⊆ φηηn

[Qηn
\H] 6= Qη

because φηηn
is irreducible. As G is arbitrary, φηξ is irreducible and the induction continues.

5A4L Old friends (a) The weight of the Stone-Čech compactification βN is c. (Engelking 89, 3.6.11.)

(b)(i) For any infinite I, there is a continuous surjection from {0, 1}I onto [0, 1]I . (Immediate from
5A4Fa, or otherwise.)

(ii) There is a continuous surjection from [0, 1] onto [0, 1]N. (The Cantor set C ⊆ [0, 1] is homeomorphic
to {0, 1}N (4A2Uc), so again 5A4Fa gives the result. Or see 416Yi.)

(iii) For any infinite κ, t({0, 1}κ) = κ. PPP t({0, 1}κ) ≤ w({0, 1}κ) ≤ κ (5A4Ba, 4A2D(a-ii))). In the
other directon, set A = {χI : I ∈ [κ]<ω}; then χκ ∈ A \B for every B ∈ [A]<κ, so κ ≤ t({0, 1}κ). QQQ

(c) If X is a non-empty zero-dimensional compact metrizable space without isolated points, it is homeo-
morphic to {0, 1}N. PPP Let B be the algebra of open-and-closed subsets of X. By 311J, X is homeomorphic
to the Stone space of B. Because X has no isolated points, B is atomless (316Lb). We know that X is
second-countable (4A2P(a-ii)); let U be a countable base for its topology; then every member of B is open,
so expressible as a union of members of U , and compact, so expressible as the union of a finite subset of
U . Accordingly B is countable; and as X 6= ∅, B 6= {0}. By 316M, B is isomorphic to the algebra of
open-and-closed subsets of {0, 1}N; by 311J again, X and {0, 1}N are homeomorphic. QQQ

(d) Let X be a non-empty zero-dimensional Polish space in which no non-empty open set is compact.
Then X is homeomorphic to NN with its usual topology. PPP Let ρ be a complete metric on X defining
its topology. (i) If U ⊆ X is a non-empty open set and ǫ > 0, there is a partition 〈Un〉n∈N of U into
non-empty open-and-closed sets of diameter at most ǫ. To see this, note that as U is not compact, there
is a sequence 〈xn〉n∈N in U with no cluster point in U (4A2Le). Let V be the family of subsets of U , of
diameter at most ǫ, which are open-and-closed in X and contain xi for at most finitely many i. Because X
is zero-dimensional, V is a base for the subspace topology of U . Because U is Lindelöf (4A2P(a-iii)), there is
a sequence 〈Vn〉n∈N in V covering U ; set V ′

n = Vn \
⋃

i<n Vi for each n, so that 〈V ′
n〉n∈N is a disjoint sequence

in V covering U . Because no V ′
n can contain infinitely many of the xi, I = {n : V ′

n 6= ∅} is infinite, and we
can re-enumerate 〈V ′

n〉n∈I as 〈Un〉n∈N to get an appropriate sequence. (ii) Now set S =
⋃

n∈N Nn and define
〈Uσ〉σ∈S inductively in such a way that U∅ = X and

〈Uσa<n>〉n∈N is a partition of Uσ into non-empty open-and-closed sets of diameter at most
2−k whenever k ∈ N and σ ∈ Nk.

For α ∈ NN, 〈Uα↾k〉k∈N is a non-increasing sequence of non-empty closed sets and diamUα↾k ≤ 2−k+1 for
every k ≥ 1, so there is exactly one point in

⋂
k∈N Uα↾k; let f(α) be this point. This defines a function

f : NN → X. (iii) Because 〈Uσa<n>〉n∈N is a partition of Uσ for every σ, f is a bijection. (iv) If G ⊆ X is
open, then

f−1[G] = {α : there is some k ∈ N such that Uα↾k ⊆ G}

is open, so f is continuous. (v) If H ⊆ NN is open, then

f [H] =
⋃
{Uσ : σ ∈ S, {α : σ ⊆ α ∈ NN} ⊆ H}

is open, so f is a homeomorphism. QQQ

(e) If X is a non-empty Polish space without isolated points, then it has a dense Gδ set which is
homeomorphic to NN with its usual topology. PPP Let U be a countable base for the topology of X, and D a
countable dense subset of X; set

Y = X \ (D ∪
⋃

U∈U ∂U)
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where ∂U = U \U is the boundary of U . Then Y is a Gδ set in X, so is Polish (4A2Qd). Because X has no
isolated points, Y is comeager in X and is dense and not empty. Because {U ∩ Y : U ∈ U} is a base for the
topology of Y consisting of relatively open-and-closed sets, Y is zero-dimensional. If V ⊆ Y is a non-empty
relatively open set, let G ⊆ X be an open set such that G ∩ Y = V ; then D ∩ G is non-empty, so there is
a sequence in V converging (in X) to a point in D ∩ G ⊆ X \ V , and V cannot be compact. By (d), Y is
homeomorphic to NN. QQQ

(f) If X is any zero-dimensional Polish space there is a closed subspace of NN homeomorphic to X. PPP
Let ρ be a complete metric on X defining its topology. For each n ∈ N, Vn = {V : V ⊆ X is open-
and-closed, diam(V ) ≤ 2−n} is an open cover of X; let 〈Vni〉i∈N be a sequence in Vn covering X; set
Uni = Vni \

⋃
j<i Vnj for i ∈ N, so that 〈Uni〉i∈N is a partition of X into open-and-closed sets of diameter

at most 2−n. For n ∈ N and x ∈ Uni, set f(x)(n) = i; then f is a continuous function from X to NN. If
x, y ∈ X, n ∈ N and f(x)(n) = f(y)(n) = i, then ρ(x, y) ≤ diamUni ≤ 2−n, so f is injective. Because
{f [Uni] : n, i ∈ N} = {f [X]∩{α : α(n) = i} : n, i ∈ N} is a subbase for the topology of f [X], while {Uni : n,
i ∈ N} is a subbase for the topology of X, f is a homeomorphism between X and f [X]. Finally, to see that
f [X] is a closed subset of NN, take a sequence 〈xm〉m∈N in X such that 〈f(x(m))〉m∈N → α in NN. For any
n ∈ N there is a k ∈ N such that f(x(m))(n) = α(n) for every m ≥ k, so that x(m) ∈ Un,α(n) for m ≥ k,

and ρ(x(m), x(k)) ≤ 2−n for m ≥ k. Thus 〈x(m)〉m∈N is a Cauchy sequence in X with a limit x ∈ X, and
α = f(x) belongs to f [X]. QQQ

Version of 3.10.13

5A5 Real analysis

For the sake of an argument in §534 I sketch a fragment of theory.

5A5A Entire functions A real function f is real-analytic if its domain is an open subset G of R and
for every a ∈ G there are a δ > 0 and a real sequence 〈cn〉n∈N such that f(x) =

∑∞
n=0 cn(x− a)n whenever

|x− a| < δ. It is real-entire if in addition its domain is the whole of R.
We need the following facts: (i) if f and g are real-entire functions so is f − g; (ii) if 〈cn〉n∈N is a real

sequence such that f(x) =
∑∞

n=0 cnx
n is defined in R for every x ∈ R, then f is real-entire; (iii) if in this

expression not every cn is zero, then every point of F = {x : x ∈ R, f(x) = 0} is isolated in F , so that F
is countable. If you have done a basic course in complex functions you should recognise this. If either you
missed this out, or you are not sure you understood the proof of Cauchy’s theorem, the following is a sketch
of a real-variable argument.

(i) is elementary. For (ii), observe first that if 〈cnx
n〉n∈N is summable then limn→∞ cnx

n = 0 so∑∞
n=0 |cn|t

n is finite whenever 0 ≤ t < |x|. In the present case,
∑∞

n=0 |cn|t
n < ∞ for every t ≥ 0. So

if a, x ∈ R,

∞∑

n=0

n∑

k=0

|
n!

k!(n−k)!
cnx

kan−k| ≤
∞∑

n=0

n∑

k=0

n!

k!(n−k)!
|cn|R

n

(where R = max(|x|, |a|))

=

∞∑

n=0

|cn|(2R)n <∞.

We therefore have

f(x+ a) =
∑∞

n=0 cn(x+ a)n =
∑∞

n=0

∑n
k=0

n!

k!(n−k)!
cnx

kan−k =
∑∞

k=0 cakx
k

where cak =
∑∞

n=k

n!

k!(n−k)!
cna

n−k for each k. Turning this round, f(x) =
∑∞

k=0 cak(x − a)k for every x.

This shows that f is real-entire. As for (iii), if not every cn is zero, there must be some neighbourhood of 0 in
which the first non-zero term cnx

n dominates, so f is not identically zero. (The point is that
∑∞

k=0 |ck| <∞,
so there is some δ > 0 such that

∑∞
k=n+1 |ckδ

k+1| < |cnδ
n|.) In this case, if a ∈ R, not every cak can be

zero, and there must be some neighbourhood of a in which the first non-zero term cak(x − a)k dominates,
so that there can be no zeroes of f in that neighbourhood except perhaps a itself.
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Version of 13.2.17

5A6 Special axioms

This section contains very brief accounts of some of the undecidable propositions and special axioms
which are used in this volume, with a few of their most basic consequences: the generalized continuum
hypothesis, the axiom of constructibility, Jensen’s Covering Lemma, square principles, Chang’s transfer
principle, Todorčević’s p-ideal dichotomy and the filter dichotomy.

5A6A The generalized continuum hypothesis (a) The generalized continuum hypothesis is the
assertion

(GCH) 2κ = κ+ for every infinite cardinal κ.

(b) If GCH is true, then for infinite cardinals κ, λ

cf[κ]≤λ = 1 if κ ≤ λ,

= κ if λ < cfκ,

= κ+ otherwise.

PPP If κ ≤ λ, use 5A1F(e-i). If λ < κ then

cf[κ]≤λ ≤ #([κ]≤λ) ≤ #(Pκ) = 2κ = κ+.

If λ < θ = cfκ, then [κ]≤λ =
⋃

ξ<κ[ξ]≤λ so

cf[κ]≤λ ≤ max(κ, supξ<κ cf[ξ]≤λ) ≤ max(κ, supξ<κ #(ξ)+) = κ

and we have equality (using the other part of 5A1F(e-i)). If λ = θ then 5A1F(e-v) tells us that cf[κ]λ is
greater than κ, so must be κ+. If θ < λ < κ then, by 5A1F(e-ii),

κ < cf[κ]≤θ ≤ max(cf[κ]≤λ, cf[λ]≤θ) ≤ max(cf[κ]≤λ, λ+) ≤ max(cf[κ]≤λ, κ),

so again cf[κ]≤λ = κ+. QQQ

(c) If GCH is true, then for infinite cardinals κ and λ, the cardinal power κλ is 2λ if κ ≤ λ, κ if λ < cfκ,
κ+ otherwise. (Put (b) and 5A1F(e-iii) together.)

5A6B L, 0♯ and Jensen’s Covering Lemma (a)(i) Let L be the class of constructible sets (Jech
03, §13; Jech 78, §12; Kanamori 03, §3; Kunen 80, chap. VI). The axiom of constructibility is

(V=L) Every set is constructible.

V=L implies GCH (Jech 03, 13.20; Jech 78, Theorem 34; Kunen 80, §VI.4).

(ii) I will call on the following three properties of L in the remarks below. To make sense of them
you will of course need to look at the proper definition. Only the third has any real content. Every ordinal
belongs to L; if A, B ∈ L then A ∩B ∈ L; if κ is a cardinal, then #(L ∩ Pκ) ≤ κ+.

(b) 0♯, if it exists, is a set of sentences in a countable formal language (Jech 03, §18; Kanamori 03,
§9). I will not attempt to explain further; I mention 0♯ only so that you will be able to explore the literature
for proofs of the assertions below. I will write ‘∃0♯’ for the assertion ‘0♯ exists’.

Jensen’s Covering Lemma is the assertion

(CL) for every uncountable set A of ordinals, there is a constructible set of the same
cardinality including A.

Now Jensen’s Covering Theorem is

CL iff not-∃0♯

(Jech 03, Theorem 18.30.)

c© 2009 D. H. Fremlin
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(c) The importance to us of 0♯ is that there are relatively direct proofs that V=L implies not-∃0♯ (Jech
03, §18), and that not-∃0♯ is true in any set forcing extension of a model of not-∃0♯; see Jech 03, Exercise
18.2 or Jech 78, Exercise 30.2. So CL implies that P CL for every forcing notion P of the kind considered
in §5A3.

5A6C Theorem Assume that CL is true.
(a) For infinite cardinals κ and λ,

cf[κ]≤λ = 1 if κ ≤ λ,

= κ if λ < cfκ,

= κ+ otherwise.

(b) If κ and λ are infinite cardinals, then the cardinal power κλ is 2λ if κ ≤ 2λ, κ if λ < cfκ and 2λ ≤ κ,
and κ+ otherwise.

proof (a)(i) If ω1 ≤ λ < κ then cf[κ]≤λ ≤ κ+. PPP By CL, every A ∈ [κ]λ is included in a B ∈ [L]λ; now
κ ∈ L so B∩κ ∈ L and A ⊆ B∩κ ∈ [κ]λ. Thus L∩ [κ]λ is cofinal with [κ]λ and [κ]≤λ. But #(L∩Pκ) ≤ κ+

(5A6B(a-ii)), so cf[κ]≤λ ≤ κ+. QQQ

(ii) It follows that cf[κ]≤λ ≤ κ+ for all infinite cardinals κ and λ. PPP The case λ ≥ κ is trivial, so only
the case λ = ω < κ remains. But

cf[κ]≤ω ≤ max(cf[κ]ω1 , cf[ω1]≤ω) ≤ max(κ+, ω1) = κ+

by 5A1F(e-ii) and (i). QQQ

(iii) If λ < cfκ then cf[κ]≤λ ≤ κ. PPP [κ]≤λ =
⋃

ξ<κ[ξ]≤λ, so

cf[κ]≤λ ≤ max(κ, supξ<κ cf[ξ]≤λ) ≤ max(κ, supξ<κ #(ξ)+) = κ. QQQ

(iv) If cfκ ≤ λ < κ then cf[κ]≤λ > κ. PPP Set θ = cfκ. Then

κ < cf[κ]≤θ ≤ max(cf[κ]≤λ, cf[λ]≤θ)

≤ max(cf[κ]≤λ, λ+) ≤ max(cf[κ]≤λ, κ)

(5A1F(e-v), 5A1F(e-ii), (ii) above), so cf[κ]≤λ > κ. QQQ
Putting this together with 5A1F(e-i), (ii) and (iii) we have the result.

(b) As 5A6Ac.

5A6D Square principles (a)(i) Let Sing be the class of non-zero limit ordinals which are not regular
cardinals. Global Square is the statement

there is a family 〈Cξ〉ξ∈Sing such that
for every ξ ∈ Sing, Cξ is a closed cofinal set in ξ;
otpCξ < ξ for every ξ ∈ Sing;
if ξ ∈ Sing and ζ > 0 is such that ζ = sup(ζ ∩ Cξ), then ζ ∈ Sing and Cζ = ζ ∩ Cξ.

(ii) For an infinite cardinal κ, let �κ be the statement

there is a family 〈Cξ〉ξ<κ+ of sets such that

for every ξ < κ+, Cξ ⊆ ξ is a closed cofinal set in ξ;
if cf ξ < κ then #(Cξ) < κ;
whenever ξ < κ+ and ζ < ξ is such that ζ = sup(ζ ∩ Cξ), then Cζ = ζ ∩ Cξ.

(b) V=L implies Global Square (Friedman & Koepke 97). Global Square implies that �κ is true for
every infinite cardinal κ (Devlin 84, VI.6.2). CL implies that �κ is true for every singular infinite cardinal
κ (Devlin 84, V.5.6).
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(c) If κ is an uncountable cardinal and 〈Cξ〉ξ<κ+ is a family as in (a-ii), then otpCξ ≤ κ for every ξ < κ+.
PPP If cf ξ < κ this is immediate from the second clause of �κ. Otherwise, κ is regular, and cfCξ = κ. ??? If
otpCξ > κ then otpCξ > κ + ω so there is a ζ ∈ Cξ such that otp(ζ ∩ Cξ) = κ + ω; but now cf ζ = ω < κ
and Cζ = ζ ∩ Cξ has cardinal κ, which is not allowed. XXXQQQ

5A6E Lemma Suppose that κ is an uncountable cardinal with countable cofinality such that �κ is true.
Then there is a family 〈Iξ〉ξ<κ+ of countably infinite subsets of κ such that

Iξ ∩ Iη is finite whenever η < ξ < κ+,
{ξ : ξ < κ+, I ∩ Iξ is infinite} is countable for every countable I ⊆ κ.

proof Let 〈Cξ〉ξ<κ+ be a family as in 5A6D(a-ii). Let 〈κn〉n∈N be a non-decreasing sequence of infinite
cardinals less than κ with supremum κ. Define 〈fξ〉ξ<κ+ in

∏
n∈N κ

+
n as follows. f0(n) = 0 for every n.

Given fξ, set fξ+1(n) = fξ(n) + 1 for every n. Given 〈fη〉η<ξ, where ξ < κ+ is a non-zero limit ordinal, set

fξ(n) = sup{fη(n) : η ∈ Cξ, #(η ∩ Cξ) < κn}

for each n; because {η : η ∈ Cξ, #(η ∩ Cξ) < κn} has cardinal at most κn, fξ(n) < κ+n . Continue.
We find that if η < ξ < κ+ then {n : fξ(n) ≤ fη(n)} is finite. PPP Induce on ξ. If ξ = 0 there is nothing

to prove. If ξ = ζ + 1 then {n : fξ(n) ≤ fη(n)} = {n : fζ(n) < fη(n)} is finite. If ξ is a non-zero limit
ordinal, let ζ ∈ Cξ be such that η < ζ. Because otpCξ ≤ κ (5A6Dc), #(ζ ∩ Cξ) < κm for some m. Now
fξ(n) ≥ fζ(n) for every n ≥ m, so {n : fξ(n) ≤ fη(n)} ⊆ m ∪ {n : fζ(n) ≤ fη(n)} is finite. QQQ

If I ⊆ N × κ is countable, then B = {ξ : ξ < κ+, I ∩ fξ is infinite} is countable, where in this formula I
am identifying fξ with its graph, as usual. PPP??? Otherwise, let B′ ⊆ B be a set with order type ω1, and set
ξ = supB′ < κ+. Set

I ′ = {(n, α) : (n, α) ∈ I, α ≤ fη(n) for some η ∈ Cξ}.

Because I and I ′ are countable, while cfCξ = cf ξ = ω1, there is a ζ ∈ Cξ such that ζ = sup(ζ ∩ Cξ) and

I ′ = {(n, α) : (n, α) ∈ I, α ≤ fη(n) for some η ∈ ζ ∩ Cξ}.

Take η ∈ B′ such that η > ζ, and ζ ′ ∈ Cξ such that ζ ′ > η. Then there is an m ∈ N such that #(ζ∩Cξ) < κm
and fζ(n) < fη(n) < fζ′(n) for every n ≥ m. As η ∈ B, there is an n ≥ m such that (n, fη(n)) ∈ I; as
fη(n) < fζ′(n), (n, fη(n)) ∈ I ′ and there is an η′ ∈ ζ ∩ Cξ such that fη(n) ≤ fη′(n). But now we have
η′ ∈ Cζ and #(η′ ∩ Cζ) ≤ #(Cζ) < κn and fζ(n) < fη′(n), contrary to the choice of fζ . XXXQQQ

Thus if we set Iξ = fξ for ξ < κ+ we have an appropriate family of sets in N×κ+ which can be transferred
to κ+ by any bijection.

5A6F Chang’s transfer principle (a) If λ0, λ1, κ0 and κ1 are cardinals, then (κ1, λ1) →→ (κ0, λ0)
means

whenever f : [κ1]<ω → λ1 is a function, there is an A ∈ [κ1]κ0 such that #(f [ [A]<ω]) ≤ λ0.

For the original model-theoretic version of this principle, and the proof that it comes to the same thing, see
Kanamori 03, 8.1. For various combinatorial consequences, see ‘Chang’s conjecture’ in Erdős Hajnal

Máté & Rado 84.
In this book, I write CTP(κ, λ) for the statement

(κ, λ) →→ (ω1, ω).

What is commonly called ‘Chang’s conjecture’ is CTP(ω2, ω1). For a model of GCH + CTP(ωω+1, ωω), see
Levinski Magidor & Shelah 90.

(b) Suppose that CTP(κ, λ) is true.

(i) If f : [κ]<ω → [λ]≤ω is a function, then there is an uncountable A ⊆ κ such that
⋃
{f(I) : I ∈ [A]<ω}

is countable. PPP Enumerate N×N as 〈(kn,mn)〉n∈N in such a way that mn ≤ n for every n ∈ N. For I ∈ [κ]<ω

let 〈fk(I)〉k∈N be a sequence running over f(I) ∪ {0}. (I am passing over the trivial case λ = 0.) Now, for
n ∈ N and I ∈ [κ]n, enumerate I in ascending order as 〈ξi〉i<n and set g(I) = fkn

({ξi : i < mn}). There
is an uncountable A ⊆ κ such that B = {g(I) : I ∈ [A]<ω} is countable; we may suppose that A has order
type ω1. If J ∈ [A]<ω and k ∈ N, let n ∈ N be such that kn = k and mn = #(J); let I ∈ [A]n be such
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that J consists of the first mn elements of I; then fk(J) = g(I) belongs to B. As J and k are arbitrary,⋃
{f(I) : I ∈ [A]<ω} ⊆ B is countable. QQQ

(ii) If 〈Aξ〉ξ<κ is any family of countable subsets of λ, then there is a countable A ⊆ λ such that
{ξ : Aξ ⊆ A} is uncountable. PPP In (i), take f(I) =

⋃
ξ∈I Aξ for I ∈ [κ]<ω. QQQ

(c) CL implies that CTP(κ, λ) is false except when λ ≤ ω (Kanamori 03, 8.3, 21.1 and 21.4).

5A6G Todorčević’s p-ideal dichotomy (a) Let X be a set and I an ideal of subsets of X. Then I
is a p-ideal if for every sequence 〈In〉n∈N in I there is an I ∈ I such that In \ I is finite for every n ∈ N.
(Compare 538Ab.)

(b) Now Todorčević’s p-ideal dichotomy is the statement

(TPID) whenever X is a set and I ⊆ [X]≤ω is a p-ideal of countable subsets of X, then
either there is a B ∈ [X]ω1 such that [B]≤ω ⊆ I or X is expressible as

⋃
n∈NXn where

I ∩ PXn ⊆ [Xn]<ω for every n ∈ N.

This is a consequence of the Proper Forcing Axiom, and implies that �κ is false for every κ ≥ ω1

(Todorčević 00).

*5A6H Analytic p-ideals: Theorem Suppose that the Proper Forcing Axiom is true. Take a non-

empty set D ⊆ [0,∞[
N

and set

I = {I : I ⊆ N, limn→∞ supz∈D

∑
i∈I\n z(i) = 0},

so that I is an ideal of subsets of N. Let A be the quotient Boolean algebra PN/I. Then for every π ∈ AutA
there are sets I, J ∈ I and a bijection h : N \ I → N \ J representing π in the sense that π(A•) = (h−1[A])•

for every A ⊆ N. (Farah 00, 3.4.6.)

5A6I u, g and the filter dichotomy: Definitions (a) The ultrafilter number u is the least cardinal
of any filter base generating a free ultrafilter on N, that is, min{ciF : F is a free ultrafilter on N}.

(b)(i) A family A of infinite subsets of N is groupwise dense if

(α) whenever a ∈ A, a′ ∈ [N]ω and a′ \ a is finite, then a′ ∈ A,
(β) whenever φ : N → N is finite-to-one, there is an infinite c ⊆ N such that φ−1[c] ∈ A.

(A function f : X → Y is ‘finite-to-one’ if f−1[{y}] is finite for every y ∈ Y .)

(ii) The groupwise density number g is the least cardinal of any collection A of groupwise dense
subsets of [N]ω such that

⋂
A = ∅.

(iii) For a model in which ω1 = u < g see Blass & Laflamme 89.

(c) For filters F on X and G on Y , say that F ≤RB G if there is a finite-to-one φ : Y → X such that
F = φ[[G]]. (This is the Rudin-Blass ordering of filters.) Note that F ≤RB F for every filter F , and if
F ≤RB G and G ≤RB H then F ≤RB H (and F ≤RK G, of course).

(d) The filter dichotomy is the statement

(FD) For every free filter F on N either FFr ≤RB F , where FFr is the Fréchet filter, or
there is an ultrafilter G on N such that G ≤RB F .

*5A6J Proposition (Blass & Laflamme 89) If u < g then the filter dichotomy is true.

proof Let F be a free filter on N such that FFr 6≤RB F , where FFr is the Fréchet filter.

(a) For subsets a, b, c of N I will say that b interpolates between a and c, and write (a(b)c), if
whenever i ∈ a, k ∈ c and i ≤ k then there is a j ∈ b such that i ≤ j ≤ k. Now if b ⊆ N is infinite,

Ab = {a : a ∈ [N]ω, (a(b)c) for some c ∈ F}
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is groupwise dense. PPP (α) If a ∈ Ab, a
′ ∈ [N]ω and a′ \ a is finite, let c ∈ F be such that (a(b)c). Let j0 ∈ b

be such that a′ \ a ⊆ j0, and set c′ = c \ j0 ∈ F . If i ∈ a′, k ∈ c′ and i ≤ k, either i ≤ j0 and i ≤ j0 ≤ k, or
i ∈ a and there is a j ∈ b such that i ≤ j ≤ k; thus (a′(b)c′) and a′ ∈ Ab. (β) If φ : N → N is finite-to-one,
we can choose strictly increasing sequences 〈lr〉r∈N, 〈mr〉r∈N in N such that

l0 ∈ φ[N],
given lr, mr ∈ b and i < mr whenever φ(i) = lr,
given mr, lr+1 ∈ φ[N] and i ≥ mr whenever φ(i) = lr+1.

Set ψ(i) = #({r : mr ≤ i}) for i ∈ N; then ψ : N → N is finite-to-one. As F is free, FFr ⊆ ψ[[F ]]; as
FFr 6≤RB F , ψ[[F ]] 6= FFr and there is an infinite set d ⊆ N such that d′ = N \ d ∈ ψ[[F ]]. Of course we can
suppose that 0 /∈ d.

If i ∈ ψ−1[d], k ∈ ψ−1[d′] and i ≤ k, then ψ(i) ∈ d, ψ(k) ∈ d′ and ψ(i) ≤ ψ(k), so ψ(i) < ψ(k); setting
r = ψ(i), we have i < mr ≤ k, while mr ∈ b. This shows that (ψ−1[d](b)ψ−1[d′]), so that ψ−1[d] ∈ Ab.
Next, setting c = {lr : r ∈ d}, c is infinite; and if i ∈ φ−1[c], we have an r ∈ d such that φ(i) = lr, in which
case (as r > 0) mr−1 ≤ i < mr and ψ(i) = r. So φ−1[c] ⊆ ψ−1[d]; also φ−1[c] is infinite (because lr ∈ φ[N]
for every r), so φ−1[c] ∈ Ab. As φ is arbitrary, Ab is groupwise dense. QQQ

(b)(i) Now let G be a non-principal ultrafilter on N which has a filter base B with cardinal u. Because
u < g, there is an a ∈

⋂
b∈B Ab. This time, set φ(i) = #(a∩(i+1)) for i ∈ N; as a is infinite, φ is finite-to-one.

Set m = min a. If b ∈ B, c ⊆ N and (a(b)c), then φ[c \m] ⊆ φ[b]. PPP If k ∈ c \m, set i = max(a ∩ (k + 1));
then i ≤ k so there is a j ∈ b such that i ≤ j ≤ k, and now a ∩ (j + 1) = a ∩ (k + 1) = a ∩ (i + 1) so
φ(k) = φ(j) ∈ φ[b]. QQQ

(ii) It follows that φ[[G]] ⊆ φ[[F ]]. PPP If G ∈ φ[[G]] there is a b ∈ B such that b ⊆ φ−1[G]. Now a ∈ Ab

so there is a c ∈ F such that (a(b)c); in this case, setting m = min a, c \m ∈ F and φ[c \m] ∈ φ[[F ]]. By
(i) just above, φ[c \m] ⊆ φ[b], while φ[b] ⊆ G. So G ∈ φ[[F ]]. As G is arbitrary, φ[[G]] ⊆ φ[[F ]]. QQQ

(iii) We supposed that G was an ultrafilter, so φ[[G]] is an ultrafilter (2A1N) and must be equal to
φ[[F ]] ≤RB F . Thus we have the second alternative in the statement of FD. As F is arbitrary, FD is true.
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Dow A. & Steprāns J. [94] ‘The σ-linkedness of the measure algebra’, Canad. Math. Bulletin 37 (1994)

42-45. [524L.]
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