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Chapter 55
Possible worlds

In my original plans for this volume, I hoped to cover the most important consistency proofs relating to
undecidable questions in measure theory. Unhappily my ignorance of forcing means that for the majority
of results I have nothing useful to offer. I have therefore restricted my account to the very narrow range of
ideas in which I feel I have achieved some understanding beyond what I have read in the standard texts.

For a measure theorist, by far the most important forcings are those of ‘adding random reals’. 1 give
three sections (§§552-553 and 555) to these. Without great difficulty, we can determine the behaviour of
the cardinals in Cichoni’s diagram (552B, 552C, 552F-552I), at least if many random reals are added. Going
deeper, there are things to be said about outer measure and Sierpiriski sets (552D, 552E), and extensions of
Radon measures (552N). In the same section I give a version of the fundamental result that simple iteration
of random real forcings gives random real forcings (552P). In §553 I collect results which are connected
with other topics dealt with above (Rothberger’s property, precalibers, ultrafilters, cellularity, trees, medial
limits, universally measurable sets) and in which the arguments seem to me to develop properties of measure
algebras which may be of independent interest. In preparation for this work, and also for §554, I start with a
section (§551) devoted to a rather technical general account of forcings with quotients of o-algebras of sets,
aiming to find effective representations of names for points, sets, functions, measure algebras and filters.

Very similar ideas can also take us a long way with Cohen real forcing (§554). Here I give little more than
obvious parallels to the first part of §552, with an account of Freese-Nation numbers sufficient to support
Carlson’s theorem that a Borel lifting for Lebesgue measure can exist when the continuum hypothesis is
false (554I).

One of the most remarkable applications of random reals is in Solovay’s proof that if it is consistent to
suppose that there is a two-valued-measurable cardinal, then it is consistent to suppose that there is an
atomlessly-measurable cardinal (555D). By taking a bit of trouble over the lemmas, we can get a good deal
more, including the corresponding theorem relating supercompact cardinals to the normal measure axiom
(555N); and similar techniques show the possibility of interesting power set o-quotient algebras (555G,
555K).

I end the chapter with something quite different (§556). A familiar phenomenon in ergodic theory is that
once one has proved a theorem for ergodic transformations one can expect, possibly at the cost of substantial
effort, but without having to find any really new idea, a corresponding result for general measure-preserving
transformations. There is more than one way to look at this, but here I present a method in which the key
step, in each application, is an appeal to the main theorem of forcing. A similar approach gives a description
of the completion of the asymptotic density algebra. The technical details take up a good deal of space, but
are based on the same principles as those in §551, and are essentially straightforward.

Version of 2.12.13

551 Forcing with quotient algebras

In preparation for the discussion of random real forcing in the next two sections, I introduce some
techniques which can be applied whenever a forcing notion is described in terms of a Loomis-Sikorski
representation of its regular open algebra. The first step is just a translation of the correspondence between
names for real numbers in the forcing language and members of L°(RO(PP)), as described in 5A3L, when
L°(RO(P)) can be identified with a quotient of a space LY(X) of measurable functions. More care is needed,
but we can find a similar formulation of names for members of {0,1}! for any set I (551C). Going a step
farther, it turns out that there are very useful descriptions of Baire subsets of {0,1}! (551D-551F), Baire
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2 Possible worlds 8551 intro.

measurable functions (551N), the usual measure on {0,1}! (5511-551J) and its measure algebra (551P). In
some special cases, these methods can be used to represent iterated forcing notions (551Q). I end with a
construction for a forcing extension of a filter on a countable set (551R).

551 A Definition (a) A measurable space with negligibles is a triple (2,3, 7) where Q is a set, ¥ is
a o-algebra of subsets of Q and 7 is a o-ideal of subsets of 2 generated by X NZ. In this case A =X/XNZT
is a Dedekind o-complete Boolean algebra.

(b) (©,%,7) is non-trivial if Q ¢ Z, so that 2 # {0}. In this case, the forcing notion P associated
with (Q,%,7) is (AT, <, Q°,]). If A is Dedekind complete we can identify 2 with the regular open algebra
RO(P).

(c) (2,%,7) is wy-saturated if ¥ N7 is wy-saturated in X. In this case, 2 is Dedekind complete.

(d) (£2,%,7) is complete if Z C 3.

551B Definition Let (Q2,%X,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2, and P its associated forcing notion. L°(2) can be regarded as a quotient of

the space of ¥-measurable functions from Q to R. If h : Q2 — R is ¥-measurable, write h= (h*)” where h*
is the equivalence class of h in L°(2), identified with L°(RO(P)), and (h*)” is the P-name for a real number
as defined in 5A3L. Then

e & is a real number,
and for any a € Q
[h>a] =[(h)" >da] =[h >a] ={w: h(w) >al*.
From 5A3Lc, we see that if hg, hy are Y-measurable real-valued functions on €, then
IFe (ho 4+ h1)™ = ho + ha, (ho X h1)™ = ho X hy,
and that if (h,),en is a sequence of measurable functions with limit A,

|Fe h = lim,, o Ay, in R.

551C Definition Let (©2,%,Z) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2, and P its associated forcing notion.

(a) If £ : Q — {0,1} is S-measurable, let f be the P-name
{(@ = {a}]) i e {0,1}, f7H{a}] ¢ 7).

e f € {0,1} and [f = ] = f~[{i}]* for both i.

Observe that if a P-name & and p € A" are such that p|Fpd& € {0,1}, then there is a measurable
f:9Q —{0,1} such that p|Fpz = f.

(b) Now let I be any set, and f : ¥ — {0,1} a (X, Bas)-measurable function, where Ba; = Ba({0,1})

is the Baire o-algebra of {0,1}!. For each i € I, set f;(w) = f(w)(i) for w € Q; then we have a P-name f;.
Let f be the P-name {((fi);c;, 1)}.

”_]P’ JFE {07 1}j7

and for every i €

— —

e £(7) = fi.
(c) In the other direction, if a P-name & and p € A" are such that p|p 2 € {0, 1}Iv7 then for each i € T
we have a P-name (%) and a measurable f; : Q — {0, 1} such that p|Fp2(7) = fi; setting f(w) = (fi(w))ier

for w € Q, f is (X, Ba;)-measurable and p |5 f = i.

MEASURE THEORY (abridged version)



551G Forcing with quotient algebras 3

(e) Suppose that z is any point of {0,1}!. Then we have a corresponding P-name #, and |-p & € {0, 1M,
For each i € I, |Fp (i) = z(i)” € {0,1}. If we set e, (w) = x for every w € Q, then ||—pem =i

551D Definition Let (2,%,Z) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra, and PP its associated forcing notion. Let I be any set. If W C Q x {0,1}!, let W
be the P-name

{(f,E):E€x\Z, f:Q—{0,1} is (%, Ba;)-measurable,
(w, f(w)) € W for every w € E},
interpreting fas in 551C.
”_]137 W - {Ov 1}j

and if W = Q x {0,1} then

”’IPW = {O’ 1}j'

551E Proposition Let (£2,3,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra, PP its associated forcing notion, and I a set.
(a) If W € S®Bay and f: Q — {0,1}! is (¥, Bas)-measurable, then {w : (w, f(w)) € W} belongs to %,
and [f € W] ={w: (w, f(w)) € W}*.
(b) fV, W € ¥®Ba; then
FeVAW =(VAW), VUW = (VUW)", V\W = (V\ W) and VAW = (VAW)".
() IV, W CQx{0,1} and V C W then
eV CW.
(d) If (W,)pen is a sequence in ¥®&Ba; with union W and intersection V, then
IFe Unen Wn = W and (), Wa = V.
(e) Suppose that J C I is countable, z € {0,1}7, F € ¥ and
W= {(w,z):weE, ze{0,1}, z]] =z}
Then
E* =W ={z:xec{0,1}, 2 C ],

1\E* =[W =0].
551F Proposition Let (£2,%,7) be a non-trivial measurable space with negligibles with a Dedekind

complete quotient algebra, P its associated forcing notion, and I a set.
(a) f W € X®Baj then

ke W € Baj;.
(b) Suppose that (Q, 2, 7) is wi-saturated, p € A+, and that W is a P-name such that
plFe W € Ba;.
Then there is a W € Y®Ba; such that
plreW =W.

551G Proposition Let (2,3,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2A, P the associated forcing notion and I a set. Suppose that X is closed under
Souslin’s operation.

(a) If W € S®Ba; then F = {w: W[{w}] # 0} belongs to ¥ and [W # 0] = F* in A =~ RO(P).

(b) If W, V € ©®Bay then [W = V] = {w: W[{w}] = V[{w}]}*.

D.H.FREMLIN



4 Possible worlds 551H

551H Examples (a) If (X, X, 1) is a complete locally determined measure space, then 3 is closed under
Souslin’s operation.

(b) If (2,%,7) is a complete wi-saturated measurable space with negligibles, then X is closed under
Souslin’s operation.

(c) If X is any topological space, then its Baire-property algebra E(X ) is closed under Souslin’s operation.

5511 Theorem Let (€, 3, 7) be a non-trivial measurable space with negligibles with a D(idekind complete
quotient algebra, IP its associated forcing notion, and I a set. Let W be any member of ¥®Ba;. Then

(i) h(w) = viW[{w}] is defined for every w € 2, where vy is the usual measure of {0,1}/;

(i) h : Q@ — [0,1] is X-measurable;

(iii) |Fpv;W = h,
where £ is the P-name for a real number defined from h as in 551B, and vy is an abbreviation for ‘the usual
measure on {0, 1}7".

551J Corollary Let (2,X,7) be a non-trivial wi-saturated measurable space with negligibles, P its
associated forcing notion, P the partially ordered set underlying P, and I a set. If p € P and W is a P-name
such that

plFe W C {0,1} is vy-negligible,
then there is a W € ©®&Bay such that v;W[{w}] = 0 for every w € Q and
plreW CW.

551K Proposition Let (Q,3,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra, P the associated forcing notion, and I a set. For H C {0,1}! set H = (Q x H)".
() If H={z:2zCze{0,1}!}, where z € Fn_,(I;{0,1}), then

e H = {z:Cze{0,1}}.

(b)(i) If G, H € Bay then
FeGUH=(GUH)",GNH=(GNH)",
G\H=(G\H)", GAH = (GAH)".
(ii) If (Hp)nen is any sequence in Baj then
ke Unen n = (Unen Ha) ™, Nuer Hn = (Muer Ha) ™
(¢) If @ < w; and H € Ba,({0,1}!), then
e # € Baa({0,1}).
(d) If H is measured by the usual measure v; of {0,1}, then
FeviH = (viH).

551M Definition Let (2, X,7) be a non-trivial measurable space with negligibles, and P its associated
forcing notion. Let I be any set. If 1 : Q x {0,1} — R is (X®Ba;)-measurable, let ¢ be the P-name

{((f,h), 1) : fis a (%, Bar)-measurable function from Q to {0,1},
h:Q — R is ¥-measurable, h(w) = ¥ (w, f(w)) for every w € Q},

where in this formula fis to be interpreted as a P-name for a member of {0, 1}f, as in 551C, and h as a
P-name for a real number, as in 551B.

MEASURE THEORY (abridged version)



551Q Forcing with quotient algebras 5

551N Proposition Let (€2,3,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra A, P its associated forcing notion, and I a set. Suppose that 1 : Q x {0,1}/ — R
is (X®Bay)-measurable, and define 1) as in 551M.

(a) |Fp) is a real-valued function on {0,1} .

(b) If ¢ : Q x {0,1} — R is another (X®Bay)-measurable function, and o € R, then

e (6 +4)" =6+, (a)” = a¢.

(¢) If () nen is a sequence of (¥®Bay)-measurable real-valued functions on Q x {0,1}! and ¥ (w,z) =

lim,, s o ¥ (w, 7) for every w € Q and x € {0,1}{, then

e ¢(x) = lim, o0 $n (@) for every o € {0,1}.
(d) If W € ¥®Bay, then
e (XW)™ = xW.

(e) |Fp is Baj-measurable.
(f) If h(w) = [Y(w,z)vi(dz) is defined for every w € €, then

|Fe f’l;dl/j is defined and equal to h.

5510 Measure algebras Let I be a set, v; the usual measure on {0,1}! and (B, ;) its measure
algebra. It will be important to appreciate that these are abbreviations for formulae in set theory with a
single parameter [; so that if we have a forcing notion P and a P-name 7, we shall have P-names B and v,
uniquely defined as soon as we have settled on the exact formulations we wish to apply when interpreting
the basic constructions {...}, P in the forcing language. Similarly, if we write P; = (B}, C,1,]) for the
forcing notion based on the Boolean algebra %, this also is a formula which can be interpreted in forcing
languages.

551P Theorem Let (2, X, 7) be a non-trivial w;-saturated measurable space with negligibles such that
Y is closed under Souslin’s operation. Let P be the associated forcing notion, P its underlying partially
ordered set, and I a set. Set

A=%®Ba;, J={W:W €A, vyiW[{w}] =0 for Z-almost every w € Q};

then J is a o-ideal of A; let € be the quotient algebra A/J. For W € A and w € Q set hy (w) = vy W[{w}].
For a € € let @ be the P-name

{(W,1): W e A, W* =a}
where the P-names W are defined as in 551D. Consider the P-names
D = {(@1):acc}, a={((W*), (W)‘), 1): W e A}

(a) |Fp7 is a bijection between © and 9B ;.
(b) Ifa, be €, V € A and V* = a, then

Fpi(anb)”=rantb, w(anb)”=xanxb, v;(zd)=hy,

defining hy and hy as in 5511

(c) Let e : ¥/¥ NZ — € be the canonical map defined by the formula

e(E*) = (E x {0,1}1)* for E € X.
Ifpe (Z/ENI)*T and a, b € €, then
plFp#d =7b

iff ane(p) =bne(p).

551Q Iterated forcing: Theorem Let (2,%,7) be a non-trivial wy-saturated measurable space with

negligibles such that ¥ is closed under Souslin’s operation, P its associated forcing notion, and I a set. As
in 551P,; set A = X ®Bay,

D.H.FREMLIN



6 Possible worlds 551Q

J={W:WeA, viW[{w}]| =0 for Z-almost every w € 1}
and € = A/J. Then
¢ 2 RO(P = P;),
where the P-name Pj is defined as in 5510.

551R Extending filters: Proposition Let (Q,%,7) be a non-trivial w;-saturated measurable space
with negligibles, 2 its quotient algebra, P the associated forcing notion, I a countable set and F a filter on
I

(a) For H € S®PI, write H for the P-name {(i, H*[{i}]*) : i € I, H '[{i}] ¢ T}.
(1 ”—]pH - I
(if) If F is a P-name and p € AT is such that p|-p £ C I, then there is an H € ©&PI such that
plreF =
(b)

.7? for the P-name

{(H,E*): H € Y&PI, E € £\ Z, H[{w}] € F for every w € E}.
Then
Fp F is a filter on I.

Version of 29.1.14
552 Random reals I

From the point of view of a measure theorist, ‘random real forcing’ has a particular significance. Because
the forcing notions are defined directly from the central structures of measure theory (552A), they can
be expected to provide worlds in which measure-theoretic questions are answered. Thus we find ourselves
with many Sierpiniski sets (552E), information on cardinal functions (552C, 552F-552J), and theorems on
extension of measures (552N). But there is a second reason why any measure theorist or probabilist should
pay attention to random real forcing. Natural questions in the forcing language, when translated into
propositions about the ground model, are likely to hinge on properties of measure algebras, giving us a new
source of challenging problems. Perhaps the deepest intuitions are those associated with iterated random
real forcing (552P).

552A Notation (a) As usual, if p is a measure then N (u) will be its null ideal. It will be conve-
nient to have a special notation for certain sets of finite functions: if I is a set, Fn,(I;{0,1}) will be
Urepn<e10, 137

For any set I I write v7 for the usual completion regular Radon probability measure on {0, 1}!, T; for its
domain and (B, 7;) for its measure algebra; Ba; will be the Baire o-algebra of {0,1}f. T write (e;)ics
for the standard generating family in %B;. P; will be the forcing notion B7 = B; \ {0}, active downwards.
For a formula ¢ in the corresponding forcing language I write [¢] for the truth value of ¢, interpreted as a
member of B;. P; preserves cardinals.

As in §551, the formulae vy, 9B, etc. are to be regarded as formulae of set theory with one free variable
into which the parameter I has been substituted, so that we have corresponding names v;, 95 ; in any forcing
language, and in particular (once the context has established a forcing notion P) we have P-names vy, B;
for any ground-model set 1.

(b) A great deal of the work of this chapter will involve interpretations of names for standard objects in
forcing languages. I try to signal intended interpretations by using the superscript ~

552B Theorem Suppose that A and k are infinite cardinals. Then

Fe, 2% = (=),

where £” is the cardinal power.

MEASURE THEORY (abridged version)



552K Random reals I 7

552C Theorem Let k be any cardinal. Then
||—[p>mb=EandD=6.

552D Lemma Let A and  be infinite cardinals, and A any subset of {0,1}*. Then
b, v5(4) = (14)".

552E Theorem Let x and A be infinite cardinals, with x > max(w;, A). Then

|Fp, there is a strongly Sierpinski set for v5 with cardinal &.

552F Theorem Let x and A\ be infinite cardinals.
(a) If either k or A is uncountable,

||_]P>K, addN(V;\) = wi.
(b) |Fe, addN (1) = (add N (v,))".

552G Theorem Let x and A be infinite cardinals.
(a) |Fp. covN(vs) > max(k,cov N (vy))".

(b) |Fp, covN(v,) > b.

(c) If k > ¢ then |Fp, cov N (v,) = c.

(d) Suppose that x and A are uncountable. Then

”_]P’n COVN(VX) < (Sup6<ﬁ 5w)v7

where each 0% is the cardinal power.

552H Theorem Let « and A be infinite cardinals.
(a) |Fp, nonN(v5) < (nonN(vy))™.
(b) If k > max(A,wq) then

IFp. non N (v5) = wi.
(c)
[Fp. non NV () <.

5521 Theorem Let x and A be infinite cardinals. Set 8y = max(cf N (v,), cf[x]=%, cf[\]=%). Then
Fe. cEN(v5) = bo.

552J Theorem Let x and A be infinite cardinals; set 6y = shr A'(vy) and let 6; be the cardinal power
A¥. Then

||—]p>N éo < ShI‘N(Z//\) < 91.

552K Lemma Let I be a set. Let ¢ : Fn,(I;{0,1}) — [0, 00[ be a function such that ¢(f) = 1 and

9(2) = q(zU{(5,0)}) +q(z U {(i, )})

whenever z € Fn,,(I;{0,1}) and i € I \ dom z. Then there is a unique Radon measure x on {0,1}! such
that

ple:z C o e {0,111} = q(z)
for every z € Fn,(1;{0,1}).

D.H.FREMLIN



8 Possible worlds 552L

552L Lemma Let 0 be a regular infinite cardinal such that the cardinal power §“ is less than 6 for every
d <0, and S C 0 a stationary set such that cf& > w for every £ € S. Let (M¢)c<g be a family of sets with
cardinal less than 6, and I a set with cardinal less than 6; suppose that for each i € I we are given a function
fi with domain S such that f;(£) € U, My for every £ € S. Then there is an w;-complete filter F on 6,
containing every closed cofinal subset of 8, such that for every ¢ € I there is a D € F such that D C S and
fi is constant on D.

552M Proposition Let « and A be infinite cardinals. Then the following are equiveridical:

(i) if A C P({0,1}*) and #(A) < X then there is an extension of v, to a measure measuring every
member of A;

(ii) for every function f : {0,1}* — {0, 1}(#+V\% there is a Baire measure g on {0, 1}*** such that u{y :
y € {0,1}" 2 C y} = 27#K) whenever K € [k]<% and z € {0,1}*, and p*{z U f(x): 2 € {0,1}"} = 1;

(i) if (X, %, p) is a locally compact semi-finite measure space with Maharam type at most x, A C PX
and #(A) < )\, then there is an extension of u to a measure measuring every member of A.

552N Theorem Let x and A be infinite cardinals such that x is greater than the cardinal power \“.
Then

Iz, if A C P({0,1}%) and #(A) < A, there is an extension of v to a measure measuring
every member of A.

5520 Proposition Suppose that (X, X, 1) is a probability space such that for every countable family .4
of subsets of X there is a measure on X extending p and measuring every member of A.

(a) If Y is a universally negligible second-countable T space, then #(Y) < cov N (p).

(b) cov N (i) > non N (v,).

552P Theorem Let s and A be infinite cardinals. Then the iterated forcing notion P, * P5 has regular
open algebra isomorphic to B ax(k,2)-

Version of 3.5.14
553 Random reals 11

In this section I collect some further properties of random real models which seem less directly connected
with the main topics of this book than those treated in §552. The first concerns strong measure zero or
‘Rothberger’s property’ and gives a bound for the sizes of sets with this property. The second relates perfect
sets in VP to negligible F, sets in the original universe; it shows that a random real model can have
properties relevant to a question in §531 (553F). Following these, I discuss properties of ultrafilters and
partially ordered sets which are not obviously connected with measure theory, but where the arguments
needed to establish the truth of sentences in V¥~ involve interesting properties of measure algebras (553G-
553M). I conclude with notes on medial limits (553N) and universally measurable sets (5530).

553A Notation For any set I, v; will be the usual measure on {0,1}!, T; its domain, A'(vr) its null
ideal and (B7,7;) its measure algebra. Bay will be the Baire o-algebra of {0,1}!. For a cardinal &, P, will
be the forcing notion B}, active downwards.

553B Lemma If A € Rbg({0,1}"), then for any f : N — N there is a sequence (z,)nen such that
zn € {0,1}1(™ for each n and A C ),,cy Uizt 2m € 2 € {0, 1.

553C Proposition Let x be any cardinal. Then
[Fp, #(A) < ¢ for every A € Rbg({0,1}Y).

(©) 2005 D. H. Fremlin
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5530 Random reals 11 9

553E Proposition Let x and A be infinite cardinals, and K a P,.-name such that
. K is a compact subset of {0,1}* which is not scattered.
Then there is a negligible F, set G C {0,1}* such that
e, KNG #0

where G is the P,-name for an F, set in {0, 1};\ corresponding to G.

553F Corollary Suppose that ¢f N (1) = w; and that k > ws is a cardinal. Then
|Fe, w1 is a precaliber of every measurable algebra but does not have Haydon’s property.

553G Lemma Let (2, i) be a probability algebra, € a subalgebra of 2, and (e, )nen a sequence in 2
stochastically independent of each other and of €. Let I C 2 be a finite set and € the subalgebra of 2
generated by €U I. Then for every € > 0 there is an ng € N such that |a(bne,) — b - fie,| < efib whenever
be € and n > ng.

553H Theorem If k > ¢, then

|Fp, there are no rapid p-point ultrafilters, therefore no Ramsey filters on N.

5531 Lemma Suppose that S C w? is a set such that whenever n € N and (I¢)¢<,, is a family in [w]”
such that Ie N ¢ = 0 for every { < wy, there are { < wy and n < & such that I x I,, € S. Let P be the set

{I:1€[w]<¥, INEC S[{¢}] for every € € T},
ordered by C. Then P is upwards-ccc.

553J Theorem Let k be an infinite cardinal. Then
|Fp, there are two upwards-cce partially ordered sets whose product is not upwards-ccc.

553K Lemma Let 2 be a Boolean algebra and v : 2l — [0, 0o[ a non-negative additive functional. Then
E?:o va; < V(supign a;) + Zi<j§n via; naj)
whenever ag, ... ,a, € 2.
553L Lemma Let (2(,z) be a probability algebra, I an uncountable set, X a non-empty set and F an

ultrafilter on X. Let (a;z)icrzex be a family in 2 such that inf;c;lim,_, 7 fia;; > 0. Then there are an
uncountable set S C I and a family (b;);cs in 2\ {0} such that

biNb; C SUPLcp Qiz N Ajy

foralli, j € Sand F € F.

553M Proposition If m > w; and « is any infinite cardinal, then

|Fp, every Aronszajn tree is special, so Souslin’s hypothesis is true.

553N Proposition Suppose that there is a medial limit, and that x is a cardinal. Then

|Fp, there is a medial limit.

5530 Theorem Let x be an infinite cardinal.
(a) |Fp. every universally measurable subset of {0, 1}" is expressible as the union of at most
¢ Borel sets.

(b) If the cardinal power k° is equal to k, then

|Fp, there are exactly ¢ universally measurable subsets of {0, 1}.

D.H.FREMLIN



10 Possible worlds 553Z

553Z Problem Suppose that the generalized continuum hypothesis is true. Is it the case that

|-, there is a Borel lifting for Lebesgue measure?

Version of 2.9.14
554 Cohen reals

Parallel to the theory of random reals as described in §§552-553, we have a corresponding theory based
on category algebras rather than measure algebras. I start with the exactly matching result on cardinal
arithmetic (554B), and continue with Lusin sets (balancing the Sierpiriski sets of 552E) and the cardinal
functions of the meager ideal of R (554C-554E, 554F). In the last third of the section I use the theory of
Freese-Nation numbers (§518) to prove Carlson’s theorem on Borel liftings (554I).

554A Notation For any set I, I will write B} for the Baire-property algebra of {0,1}, M for the
meager ideal of {0,1}/, &; = Br/M; for the category algebra of {0,1}!, and Q; for the forcing notion
&5 =&;\ {0} active downwards.

554B Theorem Suppose that A and k are infinite cardinals. Then

. 2% = ()",

554C Definition If X is a topological space, a subset of X is a Lusin set if it is uncountable but meets
every meager set in a countable set.

554D Proposition Let x be a cardinal such that R has a Lusin set with cardinal k.

(a) Writing M for the ideal of meager subsets of R, non M = w; and Meountable > K-

(b) There is a point-countable family A of Lebesgue-conegligible subsets of R with #(A) = k.

(c) If (A, @) is a semi-finite measure algebra which is not purely atomic, (x,w;) is not a precaliber pair
of 2.

554E Theorem Let x be an uncountable cardinal. Then

|Fo, there is a Lusin set A C R with cardinal k.

554F Corollary Let  be a cardinal which is equal to the cardinal power k“. Write M for the ideal of
meager subsets of R. Then

||_Qn non M = w1 and Mcountable = €.

554G Theorem Let x be an infinite cardinal such that FN(®,,) = w;. Then
|Fo., FN(PN) = w;.

554H Corollary Suppose that FN(PN) = w; and that & is an infinite cardinal such that
(a) cf[A\]S% < AT for every cardinal \ < &,
(8) O, is true for every uncountable cardinal A < & of countable cofinality.
Then |Fg, FN(PN) = w;.

5541 Theorem Suppose that the continuum hypothesis is true. Then

IFq., ¢ = w2 and Lebesgue measure has a Borel lifting.

(©) 2006 D. H. Fremlin
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Version of 23.10.14

555 Solovay’s construction of real-valued-measurable cardinals

While all the mathematical ideas of Chapter 54 were expressed as arguments in ZFC, many would be of
little interest if it appeared that there could be no atomlessly-measurable cardinals. In this section I present
R.M.Solovay’s theorem that if there is a two-valued-measurable cardinal in the original universe, then there
is a forcing notion P such that

|Fp there is an atomlessly-measurable cardinal

(555D). Varying P we find that we can force models with other kinds of quasi-measurable cardinal (555G,
555K); starting from a stronger hypothesis we can reach the normal measure axiom (555N).

555A Notation I will write (B, 7,) for the measure algebra of the usual measure on {0,1}*, and P,
for the forcing notion B, = B, \ {0}, active downwards. (e,),<, will be the standard generating family
in B,.

I will write &,, for the category algebra of {0,1}*, and Q,, for the forcing notion &7, active downwards.
&, is isomorphic to the regular open algebra RO({0,1}*).

555B Theorem Suppose that X is a set, and Z a proper o-ideal of subsets of X containing singletons.
Let P = (P, <,1,1) be a ccc forcing notion, and Z a P-name such that

e Z = {J : there is an I € Z such that J C I}.

Then
(a)(i) If J is a P-name and p € P is such that p|FpJ € Z, there is an I € Z such that p|FpJ C I.
(i)
IFe 7 is the ideal of subsets of X generated by Z; it is a proper o-ideal containing singletons.

(b) e addZ = (add Z)".
(c) If 7 is wy-saturated in PX, then

lFe T is wi-saturated in PX, so PX/Z is ccc and Dedekind complete.
(d) If X = )\ is a regular uncountable cardinal and Z is a normal ideal on A, then

||—]p>f is a normal ideal on A.

555C Theorem Let (X,PX, u) be a probability space such that u{z} = 0 for every z € X, and NV the
null ideal of p. Let kK > 0 be a cardinal. Then we can find a P,-name £ such that

(i) |Fp, f is a probability measure with domain PX, zero on singletons;

(ii) if N is a P.-name for the ideal of subsets of X generated by A, then

|Fe. N is the null ideal of /.

555D Corollary Suppose that A is a two-valued-measurable cardinal and that k > A is a cardinal. Then

[Fe. A is atomlessly-measurable.

555E Theorem Let A\ be a two-valued-measurable cardinal, and 7 a A-additive maximal proper ideal of
P containing singletons; let u be the {0, 1}-valued probability measure on A with null ideal Z. Let k > A
be a cardinal, and define i from p as in 555C. Set § = Trz(A; k). Then

[Fe, /1 is Maharam-type-homogeneous with Maharam type 6.

(©) 2005 D. H. Fremlin
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555F Proposition Let A be a two-valued-measurable cardinal and x > 0. Let p be a normal witnessing
probability on A and i the corresponding P,-name for a measure on A, as in 555C. Then

|z, the covering number of the null ideal of the product measure N on AV is \.

555G Cohen forcing: Theorem Let A be a two-valued-measurable cardinal and £ > A a cardinalv.
Let 7 be a A-additive maximal proper ideal of subsets of A, and 7 a Q,-name for the ideal of subsets of A
generated by Z. Set 6 = Trz(A; k). Then

Fo. PN/ = &;.

555H Corollary Suppose that \ is a two-valued-measurable cardinal and x = 2*. Then

|Fo. there is a non-trivial atomless o-centered power set o-quotient algebra.

5551 Definition A Boolean algebra 2 has the Egorov property if whenever (A, ),en is a sequence
of countable partitions of unity in 2 then there is a countable partition B of unity such that {a : a € A,,
anb # 0} is finite for every b € B and n € N.

555J Lemma (a) Suppose that X is a set and #(X) < b. Then PX has the Egorov property.

(b) Let A be a Dedekind o-complete Boolean algebra with the Egorov property and I a o-ideal of 2.
Then 2(/1 has the Egorov property.

(¢) A ccc Boolean algebra has the Egorov property iff it is weakly (o, co)-distributive.

555K Glowczynski’s example Let A be a two-valued-measurable cardinal, and PP a ccc forcing notion
such that

”—]p 5\ <m.
Then, taking Z to be the null ideal of a witnessing measure on A, and 7 to be a P-name for the ideal of
subsets of A\ generated by Z,

|Fe 735\/1. is ccc, atomless, Dedekind complete, weakly (o, co)-distributive, has Maharam
type w and is not a Maharam algebra.

555L Supercompact cardinals and the normal measure axiom: Definition An uncountable
cardinal x is supercompact if for every set X there is a k-additive maximal proper ideal Z of subsets of
S = [X]<" such that
() {s:s€S,x¢s} T for every x € X,
(BYUACS, A¢Tand f: A— X is such that f(s) € s for every s € A, then there is an
x € X such that {s:s€ A, f(s) =z} ¢T.

555M Proposition A supercompact cardinal is two-valued-measurable.

555N Theorem Suppose that x is a supercompact cardinal. Then

|Fp, the normal measure axiom and the product measure extension axiom are true.

5550 Theorem If k is an uncountable cardinal and Z is a proper k-saturated x-additive ideal of Pk
containing singletons, then

L(Z) E k is two-valued-measurable and the generalized continuum hypothesis is true.

555Z Problems (a) In 555B, what can we say about the m-weight of PX /Z?

MEASURE THEORY (abridged version)
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(b) Suppose that A is an atomlessly-measurable cardinal with a normal witnessing probability. Let
(Ap)n<w, be a family of non-negligible subsets of A. Must there be a countable set meeting every A,?

Version of 3.1.15

556 Forcing with Boolean subalgebras

I propose now to describe a completely different way in which forcing can be used to throw light on
problems in measure theory. Rather than finding forcing models of new mathematical universes, we look
for models which will express structures of the ordinary universe in new ways. The problems to which this
approach seems to be most relevant are those centered on invariant algebras: in ergodic theory, fixed-point
algebras; in the theory of relative independence, the core o-algebras.

Most of the section is taken up with development of basic machinery. The strategic plan is straightforward
enough: given a specific Boolean algebra € which seems to be central to a question in hand, force with €\ {0},
and translate the question into a question in the forcing language. In order to do this, we need an efficient
scheme for automatic translation. This is what 556A-556L and 5560 are setting up. The translation has to
work both ways, since we need to be able to deduce properties of the ground model from properties of the
forcing model.

There are four actual theorems for which T offer proofs by these methods. The first three are 556M (a
strong law of large numbers), 556N (Dye’s theorem on orbit-isomorphic measure-preserving transformations)
and 556P (Kawada’s theorem on invariant measures). In each of these, the aim is to prove a general form
of the theorem from the classical special case in which the algebra € is trivial. In the final example 5565
(I.Farah’s description of the Dedekind completion of the asymptotic density algebra 3), we have a natural
subalgebra € of 3 and a structure in the corresponding forcing universe to which we can apply Maharam’s
theorem.

556A Forcing with Boolean subalgebras Let 2 be a Boolean algebra, not {0}, and € a subalgebra
of 2. Let P be the forcing notion € = €\ {0}, active downwards.

(a) If a € A, the forcing name for a over € will be the P-name
a={(b,p) :pect,beA pnbcal.
(b) If B is a Boolean subalgebra of 2 including €, then the forcing name for 9B over € will be the
P-name {(b,1) : b € B}, where here 1 = 1y = 1y = 1¢.

(c) For each of the binary operations O = n, U, A, \ on %, the forcing name for O over € will be
the P-name

O = {(((a,b), (a0b)"),1) : a, b € A}.

(d) The forcing name for C over € will be the P-name
¢ ={((a,b),1):a,be A, acb}.
(e) Let m : A — A be a ring homomorphism such that e C ¢ for every ¢ € €. In this case, I will say that
the forcing name for 7 over € is the P-name {((a, (ra)"),1) : a € A}.

(f) Now suppose that 2 is Dedekind o-complete. For u € L°(2), the forcing name for u over € will
be the P-name {((&, [u > o]"),1) : « € Q}.

Remark The primary definition in 364Aa speaks of functions from R to 1. Because R is inadequately
absolute this is not convenient here, and I will move to the alternative version: a member u of L°(A) is a
family ([u > a])aeq in 2 such that

[u > a] = supgeq gsa [u > B] for every a € Q,

infpen [u>n] =0, sup,eyu>—n]=1.
(©) 2007 D. H. Fremlin
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14 Forcing 556B

556B Theorem Let 2 be a Boolean algebra, not {0}, and € a subalgebra of 2. Let P be the forcing
notion €T, active downwards, angl 2 the forcing name for 2 over €.
(a) If p e €%, a, b € A and a, b are the forcing names of a, b over €, then

plkea="0
iff upr(pn(a2b),€) = 0, that is, for every ¢ stronger than p there is an r stronger than ¢ such that
rna=rnb. In particular,

p”—[[»d:i)

whenever pna =pnb.
(b) Writing O for the forcing name for O over €,

[Fe O is a binary operation on 9 and @ O b = (aOb)*

for each of the binary operations O = n, u, A and \ and all a, b € .
(c) All the standard identities translate. For instance,

Fezn(yhz) = (xAy)A(znz) foral z, y, z € A

(d)
|Fe Q[, with the operations A, A, U and \, is a Boolean algebra, with zero 0 and identity
i

(e)(i) Writing C for the forcing name for C over €,
|[Fp C is the inclusion relation in the Boolean algebra A
(ii) For a, be A and p € €T,
plreach
iff upr(pna\b,€) =0.
(f) If B is a Boolean subalgebra of 2 including €, then
[F& B is a Boolean subalgebra of 2.

556C Theorem Let 2 be a Boolean algebra, not {0}, and € a subalgebra of 2. Let P be the forcing
notion €+, active downwards, 2 the forcing name for 2 over €, and 7 : % — 2 a ring homomorphism such
that wc C ¢ for every ¢ € €; write 7 for the forcing name for 7 over €.

(a)(1)
e 7 is a ring homomorphism from 2 to itself

and
e #(a) = (wa)-
for every a € 2.
(ii) If 7 is injective, |Fp 7 is injective.
(iii) If ¢ : A — 2l is another ring homomorphism such that ¢c C ¢ for every ¢ € €, with corresponding
forcing name ¢, then

e ¢ = (r¢)"
Now suppose that 7 is a Boolean homomorphism.
)

i) mc = ¢ for every c € €.

(b)
(
(ii) |Fp7 is a Boolean homomorphism.
(
(

iii) If 7 is surjective, |Fp7 is surjective.
iv) If m € Aut 2 then
1

|Fp 7 is a Boolean automorphism and (7)~1 = (771) .

(v) If the fixed-point subalgebra of 7 is € exactly, then

MEASURE THEORY (abridged version)
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|Fp the fixed-point subalgebra of 7 is {0, 1}.

556D Regularly embedded subalgebras: Proposition Let 2 be a Boolean algebra, not {0}, and €
a regularly embedded subalgebra of 2. Let P be the forcing notion €%, active downwards, and for a € 2 let

a be the forcing name for a over €.
(a) For pe €t and a, b € L,

plra=b

iff pna=pnb.
(b) Let < be the forcing name for C over €. Then for p € € and a, b € 2,

p||-Pti§5
iff pna Cb.

556E Proposition Let 2 be a Boolean algebra, not {0}, € a regularly embedded subalgebra of A, P the
forcing notion €7, active downwards, and 2l the forcing name for 2 over €; for a € 2, write a for the forcing
name for a over €.

(a) Let A be a P-name, and set

B={qna:qeCt ac q|pac A}.
Then for d € 2 and p € €7,
plFed is an upper bound for AN 2A
iff pnb C d for every b € B, and
plFpd=sup(AN2A)
iff pnd =sup,cppnb.
(b)(i) If (ai)ier is a family in 2 with supremum a, then
|Fe G = sup;c; a;.!
(ii) If (a;)ier is a family in 2 with infimum a, then
lFea = inf, ;.

(c) |Fp sat(

() < sat(2A)".2
(d) |Fer(R) <7(

2A)".

556F Quotient forcing: Proposition Let 2 be a Boolean algebra, not {0}, and € a subalgebra of 2.
Let P be the forcing notion €1, active downwards, and 2 the forcing name for 2l over €.
(a) Consider the P-names

v={((@a)):acA}, T={(ap):pceacpna=0}
Then
||—Ip>¢ is a Boolean homomorphism from 2 onto 2, and its kernel is 7.

(b) Now suppose that € is regularly embedded in 2f. Set Q=tci [,]) and let P % Q be the iterated
forcing notion. Then RO(P x Q) is isomorphic to the Dedekind completion of 2.
(¢) Suppose that € is regularly embedded in 2 and that 98 is a Boolean algebra such that
”—]p A2 RB.
Then the Dedekind completion A of 2 is isomorphic to the Dedekind completion €X%B of the free product
C® B of € and B.

1See 5A3F for a note on the interpretation of formulae of this kind.
20f course I am not asserting here that ‘|Fp sat(2)” is a cardinal’, only that ‘|Fp sat(2) is a cardinal and sat(R()” is an
ordinal’.
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556G Proposition Let 2 be a Dedekind complete Boolean algebra, not {0}, € a regularly embedded
subalgebra of A, P the forcing notion €+, active downwards, and 2 the forcing name for 2 over €.
(a) Whenever p € € and # is a P-name such that
p ”—]p T e Q.[,
there is an a € 2 such that
plre®=a,

where a is the forcing name for a over €.
(b) |Fep 2l is Dedekind complete.

556H L°(A): Proposition Let 2 be a Dedekind complete Boolean algebra, not {0}, € a regularly
embedded subalgebra, of 2, P the forcing notion €1, active downwards, and 2l the forcing name for 2l over

€. For a € A let a be the forcing name for a over €.
(a)(i) For every u € LO(2A),

|Fe i€ LO(2A)
where 4 is the forcing name for u over €.

(i) If u, v € L°(A) and |fpu = v, then u = v.
(b) For u, v € L°(2A) and o € R,

Fpia+o=(u+wv),
—u = (—u),
wVo=(uVuv),
X 0=(uxwv),
at = (ou)

If u < w, then |Fpu < 0.
(c) If (u;)iers is a family in LO(2A) with supremum u € L°(2), then

e it = sup,cj; in LO().
(d) If p € €* and 1 is a P-name such that p[-pw € LO(2), then there is a u € LO(2A) such that
P ”—]p w = 1.

(e) If {(un)nen is a sequence in LO(2A), then the following are equiveridical:
(1) (un)nen is order*-convergent to 0,
(i) |Fp {(@n)nen is order*-convergent to 0.

5561 Proposition Let 2 be a Boolean algebra, not {0}, and € a regularly embedded subalgebra of 2.
Let P be the forcing notion €T, active downwards, and 7 : 2l — 2 a Boolean homomorphism fixing every
point of &; let 7 be the forcing name for 7 over €.

(a) 7 is injective iff |7 is injective.

(b) If 7 is order-continuous, then

|Fe 7 is order-continuous.
(c) If m has a support supp 7, then
|Fe (supp ) is the support of 7.

556J Theorem Let 2 be a Dedekind complete Boolean algebra, not '{O}7 and € a regularly embedded
subalgebra of . Let P’ be the forcing notion ¢t active downwards, and 2 the forcing name for A over €.
(a) If 6 is a P-name such that

||—[p>9 is a ring homomorphism from 2 to itself,
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then there is a unique ring homomorphism 7 : 20 — 2 such that mc¢ C ¢ for every ¢ € € and
p b = 7,
where 7 is the forcing name for 7 over €.
(b)(1) If
[ 6 is a Boolean homomorphism,
then 7 is a Boolean homomorphism, and w¢ = ¢ for every ¢ € €.
(ii) If
5 6 is a Boolean automorphism,
that 7 is a Boolean automorphism.
556K Theorem Let (2, i) be a probability algebra, and € a closed subalgebra of 2; let P be the forcing
notion €1, active downwards, and 2 the forcing name for 2l over €. We can identify € with the regular
open algebra RO(P). For u € L°(€) write @ for the corresponding P-name for a real number as described in
5A3L.

(a)(i) For each a € A there is a u, € L'(€, i[ €) defined by saying that [ u, = ji(anc) for every ¢ € €.
(i) If p € €* and a, b € A are such that

plFpa="0

(where a, b are the forcing names for a, b over €), then
p e ta = .
(b) There is a P-name /i such that
IFe (2, i) is a probability algebra,

and

e fia = ia
whenever a € 2 and @ is the corresponding forcing name over €.

(c) If 7 : A — 2A is a measure-preserving Boolean homomorphism such that m¢ = ¢ for every ¢ € €, and
7 the corresponding forcing name over €, then

[Fe 7 : 2 — 2 is measure-preserving.
(d) If ¢ is a P-name such that
||—p¢5 : 9 — 2l is a measure-preserving Boolean automorphism
then there is a measure-preserving Boolean automorphism 7 : 2l — 2l such that mc = ¢ for every ¢ € € and
e ¢ = 7.
(e) If v e LY (A, i) and u € LY(€, u] €) is its conditional expectation on €, then
oo € L', i) and [0 dfi = @.

556L Relatively independent subalgebras Let (2, 1) be a probability algebra and € a closed subal-
gebra, of 2; let P be the forcing notion €T, active downwards. Let ji be the forcing name for i described in
556K, so that |-p (2, /i) is a probability algebra.

(a) For a subalgebra B of 2 including €, let B be the forcing name for B over €. If (B;);cs is a family
of subalgebras of 2 including €, then (B;);c; is relatively independent over € iff

|Fe (B:);c; is stochastically independent in 2.
(b) If (v;)ies is a family in LY(21) which is relatively independent over €, then
|Fe (0:);c; is stochastically independent

(writing ©; for the forcing name for v; over €).
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556M Laws of large numbers Consider the two statements
(1) Let (X,%, u) be a probability space, T a o-subalgebra of X, and (f,)nen a sequence in
L£2(p) such that (f,)nen is relatively independent over T and [}, fodp = 0 for every n € N and

every F' € T. Suppose that (8,)nen is a non-decreasing sequence in |0, oo[, diverging to oo, such

that Y7, B%Hf},”% < co. Then lim,, o B% Yoo fi=0ae.
and
(1) Let (X, X, 1) be a probability space and (f,)nen an independent sequence in £2(u) such
that [ f,du = 0 for every n € N. Suppose that (8,,),en is a non-decreasing sequence in 0, oo,
diverging to oo, such that > é”an% < 0o. Then lim,,_, 5% Yo fi=0ae.
Then if there is a proof of (1), there must be a proof of (1).

556N Dye’s theorem Let me state two versions of Dye’s theorem: the ‘full’ version
(1) Let (2, i) be a probability algebra of countable Maharam type, € a closed subalgebra of 2,
and 71, o two measure-preserving automorphisms of 2 with fixed-point algebra €. Then there is
a measure-preserving automorphism ¢ of 2 such that ¢c = c for every ¢ € € and 7, and ¢ma¢~?
generate the same full subgroups of Aut (.
and the ‘simple’ version
() Let (A, z) be a probability algebra of countable Maharam type, and 71, m2 two ergodic
measure-preserving automorphisms of 2. Then there is a measure-preserving automorphism ¢ of
2 such that m; and ¢ma¢p~! generate the same full subgroups of Aut L.
Here the machinery of this section provides a proof of (f) from (7).

5560 Lemma Let 2 be a Dedekind complete Boolean algebra, not {0}, and € a regularly embedded
subalgebra of 2I; let P be the forcing notion €%, active downwards. Let 2 be the forcing name for 2 over €,
and for a ring homomorphism 7 : 2 — 2 such that 7wc C ¢ for every ¢ € € let 7 be the forcing name for 7
over €. Let G be a subgroup of Aut2 such that every point of € is fixed by every member of G, and G the
P-name {(7,1) : 7 € G}.

(a) |Fp G is a subgroup of Aut 2.

(b) If ¢ : A — A is a ring homomorphism such that ¢c¢ C ¢ for every ¢ € €, and

e ¢ belongs to the full local semigroup generated by G,
then ¢ belongs to the full local semigroup generated by G.

556P Kawada’s theorem In the same way as in 556M and 556N, we have two versions of 395P:
(1) Let 2 be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of Aut®, with fixed-point subalgebra €, such that € is a measurable algebra. Then there is a
strictly positive G-invariant countably additive real-valued functional on 2.
and
(T) Let 2 be a Dedekind complete Boolean algebra such that Aut 2l has a subgroup G which is
ergodic and fully non-paradoxical. Then there is a strictly positive G-invariant countably additive
real-valued functional on 2.
Once again, we can prove (I) from (7).

556Q Lemma (a) Let 2 be a Boolean algebra and fi : 2l — [0,1] a strictly positive additive functional
such that il = 1. Suppose that whenever (a,)nen is a non-increasing sequence in 2, there is an a € 2 such
that a C a, for every n and fia = inf, ey fia,. Then (2, i) is a probability algebra.

(b) Let (A, ) be a probability algebra. Suppose that £ > 7(2) is an infinite cardinal and that (e¢)e<x
is a family in 2 such that fa(infecx ee) = 2-#(K) for every finite K C I. Then (2, i) is isomorphic to the
measure algebra (9B, 7,;) of the usual measure on {0,1}".
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556R Proposition Let P be a countably closed forcing notion. Then, for any set I, writing (B, vy) for
the measure algebra of the usual measure on {0, 1},

e (B, o) = (Br, 1)

556S Theorem Let Z be the ideal of subsets of N with asymptotic density 0 and 3 the asymptotic
density algebra PN/Z. Then the Dedekind completion of 3 is isomorphic to the Dedekind completion of
the free product (PN/[N]<*) @ B, .
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