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Chapter 55
Possible worlds

In my original plans for this volume, I hoped to cover the most important consistency proofs relating to
undecidable questions in measure theory. Unhappily my ignorance of forcing means that for the majority
of results I have nothing useful to offer. I have therefore restricted my account to the very narrow range of
ideas in which I feel I have achieved some understanding beyond what I have read in the standard texts.

For a measure theorist, by far the most important forcings are those of ‘adding random reals’. 1 give
three sections (§§552-553 and 555) to these. Without great difficulty, we can determine the behaviour of
the cardinals in Cichoni’s diagram (552B, 552C, 552F-552I), at least if many random reals are added. Going
deeper, there are things to be said about outer measure and Sierpiriski sets (552D, 552E), and extensions of
Radon measures (552N). In the same section I give a version of the fundamental result that simple iteration
of random real forcings gives random real forcings (552P). In §553 I collect results which are connected
with other topics dealt with above (Rothberger’s property, precalibers, ultrafilters, cellularity, trees, medial
limits, universally measurable sets) and in which the arguments seem to me to develop properties of measure
algebras which may be of independent interest. In preparation for this work, and also for §554, I start with a
section (§551) devoted to a rather technical general account of forcings with quotients of o-algebras of sets,
aiming to find effective representations of names for points, sets, functions, measure algebras and filters.

Very similar ideas can also take us a long way with Cohen real forcing (§554). Here I give little more than
obvious parallels to the first part of §552, with an account of Freese-Nation numbers sufficient to support
Carlson’s theorem that a Borel lifting for Lebesgue measure can exist when the continuum hypothesis is
false (554I).

One of the most remarkable applications of random reals is in Solovay’s proof that if it is consistent to
suppose that there is a two-valued-measurable cardinal, then it is consistent to suppose that there is an
atomlessly-measurable cardinal (555D). By taking a bit of trouble over the lemmas, we can get a good deal
more, including the corresponding theorem relating supercompact cardinals to the normal measure axiom
(555N); and similar techniques show the possibility of interesting power set o-quotient algebras (555G,
555K).

I end the chapter with something quite different (§556). A familiar phenomenon in ergodic theory is that
once one has proved a theorem for ergodic transformations one can expect, possibly at the cost of substantial
effort, but without having to find any really new idea, a corresponding result for general measure-preserving
transformations. There is more than one way to look at this, but here I present a method in which the key
step, in each application, is an appeal to the main theorem of forcing. A similar approach gives a description
of the completion of the asymptotic density algebra. The technical details take up a good deal of space, but
are based on the same principles as those in §551, and are essentially straightforward.

Version of 2.12.13

551 Forcing with quotient algebras

In preparation for the discussion of random real forcing in the next two sections, I introduce some
techniques which can be applied whenever a forcing notion is described in terms of a Loomis-Sikorski
representation of its regular open algebra. The first step is just a translation of the correspondence between
names for real numbers in the forcing language and members of L°(RO(PP)), as described in 5A3L, when
L°(RO(P)) can be identified with a quotient of a space LY(X) of measurable functions. More care is needed,
but we can find a similar formulation of names for members of {0,1}! for any set I (551C). Going a step
farther, it turns out that there are very useful descriptions of Baire subsets of {0,1}! (551D-551F), Baire
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2 Possible worlds 8551 intro.

measurable functions (551N), the usual measure on {0,1}! (5511-551J) and its measure algebra (551P). In
some special cases, these methods can be used to represent iterated forcing notions (551Q). I end with a
construction for a forcing extension of a filter on a countable set (551R).

551 A Definition (a) A measurable space with negligibles is a triple (2,3, 7) where Q is a set, X is
a o-algebra of subsets of Q and 7 is a o-ideal of subsets of 2 generated by X NZ. In this case A =X/XNT
is a Dedekind o-complete Boolean algebra (314C).

In this context I will use the phrase ‘Z-almost everywhere’ to mean ‘except on a set belonging to Z°.

(b) I will say that (Q,%,7) is non-trivial if Q ¢ 7, so that 2 # {0}. In this case, the forcing notion P
associated with (,%,7) is (AT, <,Q°,]) (5A3M). If 2 is Dedekind complete we can identify 21 with the
regular open algebra RO(P) (514Sb, 5A3M).

(c) T will say that (Q,%,7) is wi-saturated if ¥ NZ is wy-saturated in ¥ in the sense of 541A, that is,
if there is no uncountable disjoint family in X\ Z, that is, if 2 and P are ccc. In this case, 2 is Dedekind
complete (316Fa, 541B).

(d) T will say that (©,%,7) is complete if Z C ¥ (cf. 2114A).

Remark For an account of the general theory of measurable spaces with negligibles, see FREMLIN 87.

551B Definition Let (£2,%,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra %A, and P its associated forcing notion. Recall from 364Ib that L°(2A) can be
regarded as a quotient of the space of Y-measurable functions from € to R. If A : Q — R is 3-measurable,
write i = (h*)” where h* is the equivalence class of h in LO(2), identified with LO(RO(P)), and (h*)™ is the
P-name for a real number as defined in 5A3L. Then

e & is a real number,
and for any a € Q
[h>a] =[(h)” >d] = [h* >a] = {w: h(w) > al*.
From 5A3Lc, we see that if hg, hy are X-measurable real-valued functions on €2, then
IFp (ho + h1)” = ho + b1, (ho X hi)™ = ho X hi,
and that if (h,),en is a sequence of measurable functions with limit A,

|Fe h = lim,, o Ay, in R.

551C Definition Let (2,%,7Z) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2, and P its associated forcing notion.

(a) If f:Q — {0,1} is S-measurable, let f be the P-name
{(@, 7 {a3]) si e {0, 1}, fH{a}] ¢ I}
Then |Fpf € {0,1} and [f=14] = f~'[{i}]* for both i. (I will try always to make it clear when this
definition of f is intended to overrule the definition in 551B; but we see from 551Xf that any confusion is
unlikely to matter.)

Observe that if a P-name & and p € A" are such that p|Fp& € {0,1}, then there is a measurable
f:9Q —{0,1} such that p|Fpz = f; take f = xE where E € ¥ is such that E* = [¢ = 1] in 2.

(b) Now let I be any set, and f : X — {0,1}! a (X, Bas)-measurable function, where Ba; = Ba({0,1}{)
is the Baire o-algebra of {0,1}!, that is, the o-algebra of subsets of {0,1}! generated by sets of the form
{x : x € {0,1}], (i) = 1} for i € I (4A3Na). For each i € I, set fi(w) = f(w)(i) for w € Q; then
fi + @ — {0,1} is measurable, so we have a P-name f; as in (a). Let f be the P-name {((ﬁ)id,]l)}
(interpreting the subformula (...);.; in the forcing language, of course, by the convention of 5A3Fb). Then
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551E Forcing with quotient algebras 3

”_]P’ JFE {0’ 1}j>

and for every ¢ € 1

—

e £(z) = fi.

() In the other direction, if a P-name & and p € AT are such that p|-pa € {0,1}, then for each i € T
we have a P-name #(7) and a measurable f; : Q@ — {0,1} such that p |Fp @(7) = f;; setting f(w) = (fi(w))ier
for w e Q, fis (¥, Bay)-measurable and p |Fp f = &.

(d) T ought to remark that there is a problem with equality for the P-names f If, in the context of
(b)-(c) above, we have two (X, Bas)-measurable functions f and g, and if p € A, then

plref=§ & foreveryicl plrefi=3g
< foreveryiel, pC{w: fi(w) =gi(w)}* in 2.

In particular, ||—[pf: g iff f; = g; Z-a.e. for every i € I. If I is uncountable we can easily have ||—Pf: g
while f(w) # g(w) for every w € 2. But if I is countable then we shall have

plhef=3 < pc{w: flw) =g}

For a context in which these considerations are vital, see (a-ii) of the proof of 551E.

(e) Suppose that z is any point of {0,1}!. Then we have a corresponding P-name #, and |-p & € {0, 1}j.
Foreach i € I, |Fp2(7) = x(i)” € {0,1}. If we set e, (w) = z for every w € Q, then e, (w)(i) = x(4) for every
ie€land weQ, so |Fpé, (i) =x(i)” for every i € I, and |Fpé, = Z.

551D Definition Let (Q,%,7Z) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra, and PP its associated forcing notion. Let I be any set. If W C Q x {0,1}!, let W
be the P-name

{(f.E*): E€2\I, f:Q—{0,1} is (, Ba;)-measurable,
(w, f(w)) € W for every w € E},

interpreting f as in b51C. I give the definition for arbitrary sets W, but it is useful primarily when W €
>®Bay, as in most of the next proposition. Perhaps I can note straight away that

”_]P’ W c {07 1}j
and that if W = Q x {0,1}! then

”_]P7 W = {07 1}j
(using 551Cb-551Cc).

551E Proposition Let (£2,X,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2, IP its associated forcing notion, and I a set.

(a) If W € ©®&Ba; and f: Q — {0,1} is (2, Ba)-measurable, then {w : (w, f(w)) € W} belongs to ¥,
and [f € W] = {w: (w, f(w)) € W}*.

(b) If V, W € £®Ba; then

FeVAW=(VnW), VUW = (VUW)", V\W = (V\ W) and VAW = (VAW)".
() IV, W CQx{0,1} and V C W then

eV CW.
(d) If (W,)nen is a sequence in $@Bay with union W and intersection V, then

IFe Upen Wn = W and (e Wa = V.
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4 Possible worlds 551E

(e) Suppose that J C I is countable, z € {0,1}/, E € ¥ and
W= {(w,z):weE, xe{0,1}, 2] =2}
Then
E =W ={z:xec{0,1}, 2 C ],

1\E* =W =]

proof (a)(i) Let W be the family of subsets of  x {0,1}! such that Fyy = {w : (w, f(w)) € W} € £. Then
W is a Dynkin class of subsets of Q x {0,1}, just because ¥ is a o-algebra. If H € ¥, J C [ is finite,
z€{0,1}Y and W = {(w,z) :w € H, 2 Cx € {0,1}'} then Fyy = H N {w : f(w)(i) = z(4) for every i € J}
belongs to ¥ because f is (X, Bay)-measurable, so W € W. By the Monotone Class Theorem (136B), W
includes the o-algebra generated by sets of this form, which is just Y®Ba;.

(ii) Now suppose that W € $®Ba;. If Fyy € T then surely Fy, = 0C [f€ W]. If Fy ¢ T then

(f,Fgy) € W, Fyy |Fe f € W and again Fy, € [f € W].

? 1 wish to apply 5A3E. If Fyy, # [f € W], set p = [f € W]\ Fyy,. Since p|Fp f € W there must be a
g € A" and a P-name & and an r stronger than both p and ¢ such that

rlpi = f and (i,q) € W.

Now there must be a (X, Baj)-measurable function g and an E € ¥\ Z such that £ = §, ¢ = E* and
(w,g(w)) € W for every w € E. In this case, r = G* for some G C E\ Fyy, and r|fp f =g

Because W € Y®Bay, there is a countable set J C T such that W factors through Q x {0,1}7. For each
i € J, we have r|Fp f(7) = (i), that is,

rC [f(0) = §(0)] = {w: fw)(E) = g(w)(@)}*.

So f(w)(i) = g(w)(i) for Z-almost every w € G. This is true for every i € J, so f(w)[J =g
Z-almost every w € G. But this means that, for Z-almost every w € G, (w, f(w)) € W iff (w, g(
However, G C E'\ Fy, so (w,g(w)) € W and (w, f(w)) ¢ W for every w € G. X

So we must have Fy, = [ f e W], as claimed.

(w)lJ for
w)) € W.

(b) These are now elementary. The point is that if a P-name & and p € A" are such that p |Fpd € Vnw,
then p||—]px € {0,1}, so there is a (2, Ba;)-measurable f : © — {0,1} such that p|Fpi = f, and
plFef eV NW. Now (a) shows that

[fe(VAW)]={w: (w flw) e VAW}*
={w: (w, fw)) eV} n{w: (w, f(w)) € W}*
=[feV]nlfeW]2p

and

plFed=fe(Vnw).
As p and & are arbitrary,

Fe VAW C (VW)

The other seven inequalities are equally straightforward.
(c) This is immediate from the definition in 551D, since we actually have VCwW.

(d) We can repeat the method of (b). If a P-name & and p € AF are such that p|Fpd € (),,cy W,,, then
there is a (2, Bas)-measurable f : Q — {0,1}! such that p|Fpd = f, and p|Fp f € W, for every n. Now
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551F Forcing with quotient algebras 5

[FeVl={w: (W fw) e [ Wa}*

neN
= ((Mw: (@, f(@) eWn})* = inf {w: (w, f(w)) € Wa}*
neN
(because XN T is a o-ideal of X, so E — E* is sequentially order-continuous, by 313Qb)
2p
and
plrei=feV.

As p and T are arbitrary,
IFe Muex W € V.
On the other hand, (c) tells us that
e VC MNhen Wi, so we have equality.
Putting this together with (b) (and recalling that |Fp (2 x {0,1})" = {0,1}!), we get
e Unen W = W

(e)(i) Suppose that p € AT and that & is a P-name such that p|Fpa € W. Let f: Q@ — {0,1} be a

(3, Bay)-measurable function such that p|Fp2 = f (551Cc). Then
pclfeW]={w:wekb, 2C flw)}
by (a) above; that is, p € E* and

for every i € J, so
As p and £ are arbitrary,

and
e W C{z:2Caxe{0,1}}.

(ii) If E € Z then |Fp W = 0 and we can stop. Otherwise, suppose that p € At is stronger than E*
and that ¢ is a P-name such that

plFez C i e {0,1}.

Let f be a (X, Bay)-measurable function such that p|-pi = f. Then p|Fp f; = 2(i)” for each i € J, where
filw) = f(w)(i) for every w, so p C {w: 2z C f(w)}*. But also p C E*, so

pci{wiweE, 2C fw)}* =[fe W],
and p|Fpa € W. As p and & are arbitrary,
[{z:2Ca} CW]2E"
and we have

Hz:2Cay=W]=E, [0=W]=1\E".

551F Proposition Let (2,3,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2, IP its associated forcing notion, and I a set.
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6 Possible worlds 551F

(a) If W € ©®Bay then

lFp W € Ba;.
(b) Suppose that (Q, 2, 7) is wi-saturated, p € A+, and that W is a P-name such that
plFe W € Baj.
Then there is a W € ¥®Ba; such that
plFe W =W.

proof (a) Let W be the family of those W € Y®Ba; such that |-p W € Ba;. 551Eb and 551Ed tell us
that W is a o-subalgebra of Y®Ba;, and 551Ee tells us that E x H € W whenever E € ¥ and H is a basic
cylinder set in {0,1}/. So W must be the whole of Y®Ba;.

(b) (i) Suppose that p € At and that W is a P-name such that
p|Fp W is a basic cylinder set in {0,1}.
Then there is a W € ¥®Ba; such that p |Fe W = W. P We know that
plFe there is a z € Fn,(I;{0,1}) such that W = {z: 2 C z € {0, 1M}
So there is a P-name 2 such that
plrez € Fney(I;{0,1}) and W = {z : 2 C z};
adjusting z if necessary, we can suppose that
e 2 € Fnew(1;{0,1}).

But this means that there is a maximal antichain (that is, a partition of unity) C' C A" and a family (z.)ccc
in Fne,(I;{0,1}) such that

C”—PZ}:ZC

for every ¢ € C. Because 7 is wi-saturated, 2 is ccc and C' is countable. We can therefore find a partition
(Ec)eec of © into members of ¥ such that E2 = ¢ for every ¢ € C. Consider

We=FE;x{z:2,Caxe{0,1}}forceC, W =U.cWe..
Of course W € ®Ba;. By 551Ee,
C”—]pWC ={z:% Cz}={x:2Cuz}, C”—[PWd =0
whenever ¢, d € C are distinct. Because C' is countable, 551Ed tells us that
clreW = Ugee Wa = {z: 2 C 2}

for every ¢ € C'; because C' is a maximal antichain,

e W ={z:2Ca}
and

plFeW =W. Q

(ii) Suppose that p € At and that W is a P-name such that
plFe W is a cozero set in {0,1}/.

Then there is a W € $&Bay such that p|Fp W = W. P Set p/ = [W =0]. If p C p’ we can take W = ()
and stop. Otherwise, let F € ¥ be such that F* =1\ p'. We have
p\P |Fp W is the union of a sequence of basic cylinder sets,

so there is a sequence (W,,)nen of P-names such that

p\ P |Fp W, is a basic cylinder set for every n and W = Unen W,.
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551F Forcing with quotient algebras 7

By (i), we have for each n € N a W,, € £&Ba; such that p\ p |Fp W, = W, now V = Unen Wn belongs to
Y®Bas and |FpV = Unen Wi, so p\p|FpV = W. Finally, setting W = (E x {0,1}) NV, plrp W = W.
Q

(iii) Suppose that p € A", o < w; and that W is a P-name such that
plre W € Bas({0,1}7),

defining Ba, as in 5A4Ga. Then there is a W € ©®Bay such that p|Fp W = W. P Induce on a. The case
a =0 is (ii) above. For the inductive step to a > 0, we have

plre W € Bas({0,1}7),
S0
p|f-e there is a sequence (Wy)nen in Us- 4 Bag({0, 1}) such that W = UnendO, AW,
let (W, )nen be a sequence of P-names such that
plFe W, € Up<a Bas({0, 1}) for every n € N and W = Unent0, 1\ W,
Forn e N, 8 < a set
bug = [Wa € Baz ({0, 137) \ U, <5 Ba, ({0, 1}7)],

and choose Eys € X such that E}, 5 = bng. Writing A, = {8 : 8 < a, bug # 0}, p C supgeq, bng. I B € Ay,
then

bug |Fe Wi € Baz({0,1}7),
so by the inductive hypothesis there is a W,z € Y®Ba; such that bns |Fp W, = an. For g € a\ A, set
Wy = 0.
Set Wi, = Ug<o(Ens x {0, 1}) N W,5. Then
Fe W = Upes(Bng x {0, 1}1)7 N W,
soif g€ A,
bug e W = Weg = W,
because
bng e (Eny x {0,1}1)7 =0
if v < @ and v # 3, and
bug e (Eng x {0,131)” = {0,1}.
As p C supgea, bns,
plFe Wn = Wn~
This is true for every n € N. So if we set W = [J,,cn (2 % {0,1}) \ W, we shall have W € Y®Ba; and

(iv) Finally, suppose that p € At and that W is a P-name such that
plFe W € Baj;.
Then there is a W € ©&Ba; such that p |z W = W. P Because P is ccc,
|Fe s is the first uncountable ordinal

(5A3NDb), so
e Ba({0,1})) = U, s, Baa({0,1}).

For v < wy set

D.H.FREMLIN



8 Possible worlds 551F

by = [W € Bas({0,1}1)].
Then p C sup, ., ba- Again because 2 is ccc, there is a v < wy such that p C sup,., bo. If @ <y and
Ca = ba \ SUpg., bp is non-zero, choose W, € Y®Ba; such that ¢, IFe W, = W'; for other o < v set Wy, = 0.

Choose F,, € ¥ such that F = ¢, for each a. Set W = F,x{0,1}/)NnW, € S®Bas. As in (iii) just
above,

o¢<’y(

colFeW =W, =W
whenever ¢, # 0, so

p||—]pW=W. Q

551G I noted above that there are difficulties in computing ﬂf: G] for functions f, g : ¥ — {0,1}.
For W, V € ¥®Ba the corresponding question about [W = V] turns out to be simpler, at least in some
important cases.

Proposition Let (2,%,Z) be a non-trivial measurable space with negligibles with a Dedekind complete
quotient algebra 2(, P the associated forcing notion and I a set. Suppose that ¥ is closed under Souslin’s
operation.

(a) If W € ©®Ba; then F = {w: W[{w}] # 0} belongs to ¥ and [W # ] = F* in A = RO(P).

(b) If W, V € ©®Ba; then [W = V] = {w: W[{w}] = V[{w}]}*.
proof (a)(i) The point is that there is a ¥-measurable function f :  — {0,1} such that (w, f(w)) € W
for every w € F.

P(a) Suppose first that I is countable. Let V be the family of subsets of  x {0,1}/ obtainable by
Souslin’s operation S from {E x H : E € ¥, H C {0,1} is closed}. The family W = {V : V € V,
(2 x {0,1})\ V € V} is a o-algebra and contains E x H whenever E € ¥ and H C {0,1}! is open-and-
closed, so W D ®Ba; and W € W C V. By 423N, there is a selector g for W which is measurable for the
o-algebra T of subsets of © generated by S(X); but we are supposing that this is just . Also F = domg
belongs to T = X. If f is any extension of g to a ¥-measurable function from Q to {0,1}!, then f has the
required property.

(B) For the general case, note that W € Y®Ba; factors through Q x {0,1}” for some countable
J C I, that is, there is a W, € ®Bay such that

W= {(w,z):weQ,ze{0,1}, (w,z]J) € W;}.

Now (a) tells us that Fy = {w : Wi [{w}] # 0} belongs to ¥ and that there is a X-measurable f; : Q — {0,1}/
such that (w, f1(w)) € W for every w € Fy. Of course F; = F, and if we set

fw)(@) = fi(w)(i) for w € Q, i € J,
=0forweQ,iel\J,
then f is (X, Bay)-measurable and (w, f(w)) € W for every w € F. Q
(ii) Using 551Ea, it follows that
W £ 0]20f € W] = {w: (w, f(w)) € W}* = F*.

On the other hand, if a = [W # ] is non-zero, then there is a P-name & such that a |Fp & € W. By 551Cc,
there is a (X, Baj)-measurable g such that a|Fp2 = g, in which case

aclfeW]={w:(wgw)eW} cF
So [W # 0] = F* exactly.
(b) Apply (a) to WAV (using 551Eb, as usual).

551H Examples Cases in which a o-algebra is closed under Souslin’s operation, so that the conditions
of 551G can be satisfied, include the following.
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551J Forcing with quotient algebras 9

(a) If (X, X, 1) is a complete locally determined measure space, then ¥ is closed under Souslin’s operation
(4314).

(b) If (2,%,7) is a complete w;-saturated measurable space with negligibles, then ¥ is closed under
Souslin’s operation (431G).

(c) If X is any topological space, then its Baire-property algebra Bi (X) is closed under Souslin’s operation
(431FD).

5511 Theorem Let (€, 3, 7) be a non-trivial measurable space with negligibles with a D(idekind complete
quotient algebra, [P its associated forcing notion, and I a set. Let W be any member of ¥®Ba;. Then

(i) h(w) = viW[{w}] is defined for every w € 2, where vy is the usual measure of {0,1}/;

(i) h: Q — [0,1] is E-measurable;

(iii) |Fpv;W = h,
where in this formula £ is the P-name for a real number defined from & as in 551B, and v; is an abbreviation
for ‘the usual measure on {0,1}7".

proof I follow the method of 551Ea and 551Fa.

(a) Suppose that W is of the form E x {z : 2 C = € {0,1}!}, where 2 € {0,1}” for some finite J C I.
Then (using 551Ee)

E*=[W={2:2Cxe{0,1}}] C[v;W =2 #],

1\ E* = [W =0] C [1;W =0];
while also h = 2= #())yE so
E*=[h=2"#], 1\E*=[h=0].
So in this case

g ;W = h.

(b) Now 551E shows that the set of those W € Ba; for which (i)-(iii) are true is a Dynkin class, so by
the Monotone Class Theorem once more we have the result.

551J Corollary Let (Q2,%,7) be a non-trivial wq-saturated measurable space with negligibles, P its
associated forcing notion, P = (X/X NZ)" the partially ordered set underlying P, and I a set. If p € P and
W is a P-name such that

plFe W C {0,1} is v;-negligible,
then there is a W € ¥®Bay such that v;W[{w}] = 0 for every w €  and
D ”—[[» 174 - W

proof Because
| the usual measure on {0,1}! is a completion regular Radon measure,
we know that
p|Fp there is a vj-negligible member of Ba; including W.
Let V be a P-name such that
plreW CV € Ba;j and v;V = 0.
By 551Fb, there is a V € S®Ba; such that p|FpV = V. Set h(w) = v;V[{w}] for w € Q; then
plFeh=v;V =0

D.H.FREMLIN



10 Possible worlds 551J
(5511), so p € E*, where E = h~'[{0}]. Set W = (E x {0,1}/)NV. Then W € ¥&Bay, viW[{w}] = 0 for
every w, and (using 551Gb)

plleW =V =V2W,

as required.

551K We have been looking here at general sets W € ©®Ba;. A special case of obvious importance is
when W is of the form Q x H where H € Baj. For these it is worth refining the results slightly.

Proposition Let (£2,%,Z) be a non-trivial measurable space with negligibles with a Dedekind complete
quotient algebra, P the associated forcing notion, and I a set. For H C {0,1}! set H = (Q x H)™ as defined
in 551D.

(a) If H={z:2zCxze{0,1}!}, where z € Fn,(I;{0,1}), then

FpH ={z:Cxe{0,1}}.

(b)(i) If G, H € Bay then
FeGUH=(GUH)",GNH=(GNH)",
G\H=(G\H),GAH = (GAH)".
(ii) If (Hp)nen is any sequence in Bay then
ke Unex Hn = Unen Ha) ™, Nyen Hn = (Myer Ha) ™
(c) If @ < wy and H € Ba,({0,1}!), once again defining Ba, as in 5A4Ga, then
e H € Bas({0,1}7).
(d) If H is measured by the usual measure v; of {0,1}, then
FeviH = (v H).

proof (a) This is covered by 551Ee.
(b) This is a special case of parts (b) and (d) of 551E.

(c) A subset of {0,1} is a cozero set iff it is empty or expressible as the union of a sequence of basic
cylinder sets, so if H is a cozero set then (a) and (b-ii) tell us that

|Fp H is a cozero set in {0,1}.
Now an induction on « shows that if H € Ba, ({0, 1}) then
e H € Bas({0,1}).
(d) We have Hy, Hy € Baj such that Hy C H C Hy and v;Hy = viH = vyHy. Applying 5511(iii) to
Q x Hy and Q x Hy,
|Fe ijfo = ij{l = (viH)",
while of course |Fp HyC HCH, (551Ec), so
|Fe Vjﬁ = (viH)".

551L Remark If T ask you to think of your favourite Baire set in {0,1}!, it is likely to come with a
definition; for instance, the set H of those z € {0,1}" such that lim,, %H Yo a(i) = % The point of
551K is that we shall automatically get

r7 . 1 n . 1
e H = {z: 2 € {0, 1}, lim,, nT_lZi:l z(i) = 5}.

P
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H = Npen Unmen ﬂkzm UZELHIQ{Z iz Cae{0,1}N},

where

1 k 1 1
Lnk = {Z Lz E {0,1}k+1, ‘mzizo Zi — §| S TH}

So 551K tells us that
”_IPIEI = nnGN UmEN ﬂkZm UzELnk {.’E rzCrwe {0’ 1}N}7

and of course

1
E+1

SE st <—1.Q

P, k+1
”—]}»Lnk—{Z.ZE{O,l} ,| 2! =

What I am trying to say here is that the process H — (Q x H)” = H builds a P-name for the ‘right’
subset of {0,1}!, in the sense that any adequately concrete definition of H will also, when interpreted in
VP be a definition of H.

551M We can go still farther.

Definition Let (£2,%,Z) be a non-trivial measurable space with negligibles, and P its associated forcing
notion. Let I be any set. If ¥ : Q x {0,1}! — R is (2®Bas)-measurable, let ¥ be the P-name

{((f,h),1) : fis a (¥, Ba;)-measurable function from Q to {0,1},
h:Q — R is X-measurable, h(w) = ¥ (w, f(w)) for every w € Q},

where in this formula fis to be interpreted as a P-name for a member of {0, l}i, as in 551C, and h as a
P-name for a real number, as in 551B.

551N Proposition Let (€2,3,7) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra 2, P its associated forcing notion, and I a set. Suppose that 1 : Q x {0,1} — R

is (S®Bay)-measurable, and define 9 as in 551M.
(a) |Fp is a real-valued function on {0,1} .
(b) If ¢ : Q x {0,1} — R is another (X®Bay)-measurable function, and o € R, then

e (6 +4)" = b+, (ap)” = ag.

(¢) If (¢hn)nen is a sequence of (¥®Bay)-measurable real-valued functions on Q x {0,1}! and ¥ (w,z) =
lim,, 00 ¥ (w, x) for every w € Q and z € {0,1}!, then

IFp ¥ (2) = limy_ o0 thn (z) for every z € {0,1}1.
(d) If W € ©®Bar, then
Fe (xW)™ = xW.

(e) |Fe¢ is Baj-measurable.
(f) If h(w) = [Y(w,z)vr(dz) is defined for every w € €, then

|Fe f@/jdyi is defined and equal to h.

proof (a)(i) Suppose that we have two members ((fo, ko), 1) and ((f1, k1), 1) of 4, and that E € $\ T is
such that E* |Fp fo = fi. Then E* |Fpho = hy. P Let J C I be a countable set such that 1 factors through
Q% {0,1}”, in the sense that ¥ (w,z) = ¥ (w,y) whenever w € Q and x, y € {0,1}! are such that x[J = y[J.
For each ¢ € J,

E* |Fe fo(1) = fi(3),
so that fo(w)(i) = f1(w)(4) for Z-almost every w € E. Consequently fo(w)[J = f1(w)[J and
ho(w) = ¥ (w, fo(w)) = Y(w, fi(w)) = hi(w)
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12 Possible worlds 551N
for Z-almost every w € E; that is, E* |Fp ho = h1. Q
It follows that
e is a function
(5A3Ea).
(ii) By the constructions in 551Cb and 551B,

Fe € {0,1}7 xR.

(iii) If & is a P-name and p € AT is such that p|Fpi € {0,1}!, then there is a (¥, Bas)-measurable
f:Q — {0,1} such that p|Fpi = f (551Cc again). Setting h(w) = ¥(w, f(w)) for w € Q, ((f,h),1) € 1,
S0

plret = f and (f,f_i) €1, 50 & € dom(z/?).
As p and & are arbitrary,
ke dom()) = {0,1}.
(b) This is easy. If p € 2T and & is a P-name such that p|-pi € {0,1}, take a (X, Ba;)-measurable
f:9Q —{0,1} such that p|Fpi = f; set
ho(w) = d(w, f(w)), Mi(w)=1(w, f(w))
for w € €Q; then

by 5A3Lc. As p and & are arbitrary,

-

Fe(6+¢)" =6+, (ad)” = ad.
(c) In the same way, if p € 2" and & is a P-name such that p |Fp 4 € {0, 1}j, take a (X, Bay)-measurable
f:9Q—{0,1} such that p|Fpi = f. Set
hn(w) = wn(w7 f(w))7 h(”) = Z/J(w’ f(w)>
for w € Q and n € N; then h = lim,, o Ay, SO

(d) Take p € A" and a P-name & such that p |Fp & € {0,1}. Let f : © — {0, 1} be a (£, Ba;)-measurable
function such that p|Fp& = f; set h(w) = xW(w, f(w)) for w € €, so that
Feh=0OW)(f), plkeh=OW)"().
If p=E* where E € ¥\ Z,

plhe (W) (@) = 1
pleh=1

h(w) =1 for Z-almost every w € E

(w, f(w)) € W for Z-almost every w € F

pclfew]

[

(551Ea)
plFpt € W;

!
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551P Forcing with quotient algebras 13

similarly,

plre W) (&) = 0
<= h(w) = 0 for Z-almost every w € F
— (w, f(w)) ¢ W for Z-almost every w € E

— plpi¢W.

As p and T are arbitrary,
Fe (xW)™ = xW.

(e) Assembling (a)-(d), and recalling 551Fa, we see that the result is true when % is a linear multiple of
the indicator function of a set in X®Ba;, whenever ¢ is a sum of such functions, and whenever v is the
limit of a sequence of such sums; that is, whenever v is (2®Ba;)-measurable.

(f) Similarly, (d) and 5511 tell us that the result is true for the indicator function of a member of Y®Baj.
Once again, we can move to a linear combination of such functions, using (b), and thence to a non-negative
(S®Baj)-measurable function, using (c); finally, with (b) again, we get the general case.

5510 Measure algebras With a little more effort we can get a representation of the standard measure
algebras in the same style. Let I be a set, v7 the usual measure on {0,1}! and (B, 7;) its measure algebra.
It will be important to appreciate that these are abbreviations for formulae in set theory with a single
parameter I; so that if we have a forcing notion P and a P-name 7, we shall have P-names 8, and v,
uniquely defined as soon as we have settled on the exact formulations we wish to apply when interpreting
the basic constructions {...}, P in the forcing language. Similarly, if we write P; = (B}, c,1,]) for the
forcing notion based on the Boolean algebra B, this also is a formula which can be interpreted in forcing
languages.

551P Theorem Let (Q2,X,7) be a non-trivial wy-saturated measurable space with negligibles such that
3 is closed under Souslin’s operation. Let P be the associated forcing notion, P = (X/X N Z)7 its underlying
partially ordered set, and I a set. Set

A=%®Ba;, J={W:W €A, viW[{w}] =0 for Z-almost every w € Q};

then J is a o-ideal of A (cf. 527B); let € be the quotient algebra A/J. For W € A and w € Q set
hw (w) = viW[{w}]. For a € € let @ be the P-name

{(W,1): W e A, W* =a}
where the P-names W are defined as in 551D. Consider the P-names
D={(@1):acc}, 7= {((W)"(W)),1): W eA}.
(a) |Fp7 is a bijection between © and B;.
(b)Ifa,be € Ve A and V* = a, then
Fpi(anb)”=rantb, #(anb)”=xanxb, v;(rd)=hy,

defining hy and l_iv as in 5511.

(¢) Let € : ¥/ NZ — € be the canonical map defined by the formula

e(E*) = (E x {0,1}1)* for E € X.
Ifpe(X/ENI)" and a, b € €, then
plreid=7b

iff ane(p) =bne(p).

Remarks Note that in the formula

D.H.FREMLIN



14 Possible worlds 551P

{(((W=)7,(W)*), 1) : W € A}

the first ® is interpreted in the ordinary universe as the canonical map from A to €, and the second is
interpreted in the forcing language as the canonical map from Ba; to B;; while among the brackets (... ),
some are just separators, some are to be interpreted as an ordered-pair construction in the ordinary universe,
and some are to be interpreted as and ordered-pair construction in the forcing language. Similarly, in the
formula

Fpi(anb)y” =7dnwb
the first A is to be interpreted in the ordinary universe as symmetric difference in the algebra €, while the
second is to be interpreted in the forcing language as symmetric difference in B ;.
proof (a)(i) |Fp7 is a function with domain © and #[9] = B.
P? Suppose, if possible, that V, W € A and E € ¥\ Z are such that

E* e (V)" = (W*)7, Vo £ W
By 5511(iii) and 551Eb,

E* |Fphyaw = vi(VAW)™ £ 0.
On the other hand,

E* |V € (V) = (W*),

so there must be a Wi € A and an F € ¥\ Z such that F* is stronger than E*, Wi AW € J and
F*|FpV = W,. Now, calculating in £/¥NZ,

Frcw: V[{w}] = Mi{w}]}
(551Gb)
cH{w: w(V{wlAW {w}]) = 0} = {w : v (V{w}HAW [{w}]) = 0}*
(because WAW; € J, so vi(W[{w}]AW1[{w}]) = 0 for Z-almost every w)
= [hvaw = 0]

(551B); which is impossible, because E* C [y aw # 0]. X So 5A3E tells us that
|- 7 is a function with domain ® and 7[9] = B,
where B is the P-name {(W*,1): W € A}.

(ii) Now |Fp7 is injective. B T aim to use the condition (i) in 5A3Eb. I take the argument in two
bites.

(a)? Suppose, if possible, that V, W € A and p € P are such that p|p Ve=W*butp e (V)" C
(W*)~. Then there are a ¢ € P, stronger than p, and a P-name & such that

qlFepd e (Vo)7\ (W*)™
By the definition in 5A3Cb, there are an r € P, stronger than ¢, and a V; € A such that V;* = V* and
rlkpd = V1. Let E € £\ T be such that E* = r, and set

Wi =(Vin(Ex{0,1})u(Wn(Q\E)x{0,1})) € A.
Then E* C [W; = V4] (551Gb again). At the same time,
E* C[Ve=W*] = [hvaw =0]

as in (i) just above. Now
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{w:w e Q, vV [{w}AW[{w}]) > 0}

={w:weE, viVh[{w}AW[{w}]) > 0}

C{w:iwe D m({wHAV[w)]) > 0} U{w:w € E, hyaw(w) > 0}

el
But this means that Wy = W* and (Wi, 1) € (W*)~, so that

Fe Wi e (W)™, rlpi=V=We (W)
but r is stronger than ¢ and
qlFed & (W*)7,

so we have a contradiction. X

(B) Thus if V, W € A and p € P are such that p|FpV* = W*, we must have p|Fp (V*)” C (W*)".
Similarly, p|Fp (W*)” C (V*)” and p|Fp (W*)” = (V*)". Accordingly the condition 5A3EDb(ii) is satisfied
and |Fp 7 is injective. Q

(iii) We need to check that
e B =3;.

P(a) Suppose that £ € ¥\ Z and a P-name & are such that E*|-p& € B. Then there must be an

F e X\Z and a W € A such that F* is stronger than E* and F* |-pi = We e By, as £* and & are
arbitrary,

e B < %B;.

(B) Suppose that £ € ¥\ Z and a P-name & are such that E* |Fp2 € B;. Then there must be a
P-name W such that

E*|FpW € Baj and & = W*.
By 551FD, there is a W € A such that
E* s W =W, s0 & =W* e B;
as E and & are arbitrary,

”—[p%i gBandB:%i. Q

(iv) Putting these together,

e 7 is a bijection between ® and B;.

(b) This is now easy. If V, W € A, a =V* and b = W*, then

e (a8 b)” = #(VAW))" = (VAW))* = (VAW)*
(551EDb)

and similarly
Finally,

by 5511(iii) again.
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16 Possible worlds 551P

(c) Let F€ ¥ \Z and V, W € A be such that E* = p, V* =a and W* =b. Then (b) tells us that

lFp 7;(7d@ & 77b) = vpic(a ab)” = Dp((V AW)*)” = by aw.

So
plFpid=7b < plrpuj(7aaib) =0
= pllehvaw =0
< hyaw(w) =0 for Z-almost every w € FE
(551B)

— vi(V[{w}]AW[{w}]) = 0 for Z-almost every w € E
— (Ex{0o,1})n(vaw)e T
<~ e(p)n(anrbd) =0 < ane(p) =bne(p).

551Q Iterated forcing The machinery just developed can be used to establish one of the most important
properties of random real forcing.

Theorem Let (2, X, 7) be a non-trivial wy-saturated measurable space with negligibles such that X is closed
under Souslin’s operation, P its associated forcing notion, and I a set. As in 551P, set A = X ®Bay,

T ={W:W e A, vyiW[{w}] = 0 for Z-almost every w € 2}
and € = A/J. Then
¢ =2 RO(P« Py),
where the P-name P; is defined as in 5510, and P % P; is the iterated forcing notion defined in 5A30.

proof (a) Since I wish to follow KUNEN 80 as closely as possible, I should perhaps start with a remark on
the interpretation of names for forcing notions. There is, strictly speaking, a distinction to be made between
a name for a forcing notion, which is a name for a quadruplet of the form (P, <,1,4}), and a quadruplet of
names, the first for a set, the second for a pre-order on that set, and so on; and the latter is easier to work
with (KuNEN 80, §VIIL5, and 5A30). In the present case, we do not need any new manoeuvres, since the
construction of the name P; is based on P-names for B, Cy, and 1g,.

As usual in this section, I will write 2 for /3 NZ.

(b) Now P % P; is based on the set P of pairs (p, b) where p € AT, b € B and p||—pb € %}r; here B is
the domain of the P-name %}f (5A3Ba). If we say that (p,b) < (p/,0') if p C p/ and p|Fpb C V', then P is
pre-ordered by < and P * [P; is active downwards.

We have a unique function § : P — €+ such that

0(p.b) Ce(p), plerd(p,b)” =0,

whenever (p, b) € P, where ¢, 7 and @, for a € €, are defined as in 551P. P If (p, b) € P, so that p ”—[Pi) € By,
there is a P-name by such that

e b1 € B,
pl-e by = b.
Next, there is an ag € € such that |-p#dy = by (551Pa). Set a = ag ne(p). Then 551Pc tells us that
plp#d=rdy =b =b#0,

and a # 0. To see that a is unique, observe that if ¢ € € is such that p|Fp ¢ = b, then cne(p) = ane(p),

by 551Pc again; so if ¢ C £(p), ¢ = a. We therefore can, and must, take a for 6(p,b). Q
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(c)(i) If (p,b), (¢, V') € P and (p,b) is stronger than (p/, '), then p C p’ and p|Fpb C ¥'. In this case,
plFed(p',0')” = and 7(6(p,b) N O(p',0'))” = 70(p,b)" N7l (p,b')" = bn b =b,
while 6(p,b) n6(p,b') C e(p), so 8(p,b) nO(Y',b') = O(p,b) and O(p,b)  O(p', V).
(i) If (p, b) and (p/,b') € P are incompatible, then 8(p,b) n0(p/,b') = 0. P? Otherwise, writing a for
0(p,b) n0(p', "),
e(pnp’) =elp)ne(p’)2a#0
sopnp #0 and
pnp |Feprd C 7(p,b)” 7P, b)" =bnb =0;
as a C e(pnp’), a must be 0; which is absurd. XQ

(iii) If a € €7, there is a (p,b) € P such that 6(p,b) € a. P By 551Pc, [f-p7d = 0, that is, there is
a pp € €T such that pg |Fp7d # 0. Now there must .be a p € €T, stronger than py, and a b € B such that
p|Fpb = 7d, in which case (p,b) € P and p|Fp 70(p,b)” = 7d. Accordingly

6(p,b) = 8(p.b) ne(p) =anc(p) c a. Q

(d) Observe now that € is ccc (527L), therefore Dedekind complete, and (c) tells us that § : P — €+
satisfies the conditions of 514Sa. So RO(P * P;) = RO¥(P) is isomorphic to €.

551R Extending filters The following device will be useful in §553.

Proposition Let (2,X,7) be a non-trivial w;-saturated measurable space with negligibles, 2 its quotient
algebra, IP the associated forcing notion, I a countable set and F a filter on I.
(a) For H € X®PI, write H for the P-name {(7, H '[{i}]*) :i € I, H '[{i}] ¢ T}.
(i) |FeH S 1. o R
(i) If F is a P-name and p € AT is such that p|Fp F' C I, then there is an H € Y®PI such that
P ”—Ip F=H. ~
(b) Write F for the P-name
{(H,E*): H € Y&PI, E € ¥\ Z, H[{w}] € F for every w € E}.
Then
e F is a filter on I.

proof (a)(i) is elementary, just because
”—]p 1€ f
for every i € I.

(ii) Because (2, %,7) is wy-saturated, 2 is Dedekind complete and can be identified with RO(P). We
therefore have, for each ¢ € I, an E; € ¥ such that Ef can be identified with [i € F]. Set H = J,; E; x {i}.
Then

iel

[eFl=H[{i}]' =

,A,
=
m
aa]]

I—]

for every i € I, so
pleF=Fni=HnI=H.
(b)(i) By (a-i), [Fe F C 1.

(ii) Since (2 x I)~,1) € F and

(551D), we have
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18 Possible worlds 551R
el e F.

(iii) If (H,p) € F then p|Fp H # 0. P Express p as E* where E € ¥ and H[{w}] € F for every
w e E. Then E C (J;c; H '[{i}]. Soif ¢ € AT is stronger than p, there must be an i € I such that
r =qn H-1[{i}]* is non-zero; in which case r is stronger than ¢ and

rlei e H, so H #0.

As q is arbitrary, p ||—pﬁ +0.Q
It follows at once that |Fp0 ¢ F.

(iv) If Fy, F} are P-names and p € AT is such that
P||-1P>F07 Fye -7?»
then
p||—H»F0ﬂF1 GJ_::.

P If ¢ € AT is stronger than p there must be (Hy, EY), (Hy, Ey) € F and an r stronger than ¢, E§ and E}
such that

7“||—PF0 = Hy and Fy = H;.
Now ((HoNHy)" (EgNEy)*) € F and
rleFon Fy = Hyn Hy = (Hyn Hy)” € F.
As q is arbitrary,
plreFonFie 7. Q
Accordingly
| F is closed under N.

(v) Suppose that Fy, F} are P-names and p € A7 is such that
pleFo CF CI, FyeF.

By (a-ii), there is an H; € S®PI such that p|-p Fy = Hy. If ¢ is stronger than p, there are an (ﬁo, Ej) € F
and an r stronger than both ¢ and E§ such that

Tll—]pﬁo =y CF =H,.

Expressing r as E* where F € ¥\ Z, we have
EnHy {3\ Hy'[{i}] € Z
for every i € I. Set
Ey = E\Use, (Hg '[{i})\ Hy ' [{i});

then (Hy, E?) € F, so

r=EFE;|pF=H € F.
As q is arbitrary,

pleFi € F.
As p, Fy and Fy are arbitrary,
|Fp F is a filter on I.

551X Basic exercises (a) Let (Q,%,7) be any measurable space with negligibles. Set ¥ = {EAF :
E € X, F € T}. (i) Show that (©,%,7) is a complete measurable space with negligibles; we may call it
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the completion of (2, %, 7). (i) Show that the algebras ¥/% N Z and 3/Z are canonically isomorphic (cf.
322Da). (iii) Show that (2,3, 7) is w;-saturated iff (Q, %, Z) is.

(b) Let (9,3, 1) be a measure space and N (u) the null ideal of u. (i) Show that (2, X,N(u)) is a
measurable space with negligibles. (ii) Show that if the completion of (2,%, ) (212C) is (2,%, i), then
(Q,%, N (1)) is the completion of (2,3, N (1)).

(c) Let X be a topological space, B(X) the Borel g-algebra of X, E(X) the Baire-property algebra of X
and M the ideal of meager subsets of X. (i) Show that (X, B(X), M) is a measurable space with negligibles.
(ii) Show that its completion is (X, B(X), M).

(d) Let (22,%,7) be a non-trivial measurable space with negligibles, and P the associated forcing notion.
(i) Show that the regular open algebra of P can be identified with the Dedekind completion of £/ NZ. (ii)
Show that if £ is any coinitial subset of ¥ \ Z containing €2, then the forcing notion &, active downwards,
has regular open algebra isomorphic to RO(P).

(e) Let (Q,%,7) and (Y, T, J) be measurable spaces with negligibles. Show that (2x T, Z&T, Ixsgrd)s
as defined in 527Bc, is a measurable space with negligibles.

(f) Let (©2,%,7) be a non-trivial measurable space with negligibles, and P the associated forcing notion.
Let f:Q — {0,1} be a measurable function, and define P-names &, ¢ by saying that & is the P-name for a
real number as defined from f in 551B, while ¢ is the P-name for a member of {0,1} as defined in 551Ca.
Show that

|Fe regarding 0 and 1 as real numbers, & = 3.

(g) Let (92,X,7) be a non-trivial measurable space with negligibles, P the associated forcing notion, and
I a set. Suppose that f: Q — {0,1} is a (X, Bas)-measurable function, and that I'y C Q x {0,1} is its

graph (for once, I distinguish between f and I'y). Let fand T + be the P-names for a point of {0, 1} and a
subset of {0,1}! defined by the formulae in 551C and 551D respectively. Show that |-p ff = {f}

(h) Let (©,%,7) be a non-trivial measurable space with negligibles, and (€2, XA),I) its completion; write
P, P for the associated forcing notions, so that P and PP are canonically isomorphic. Let I be a set, W a
member of &{0,1} C ®{0,1}! and W the P-name, W the P-name defined by the formula in 551D.

Explain what it ought to mean to say that |-z W= V_V, and why this is true.

(1) Let (£2,%,7) be a non-trivial w;-saturated measurable space with negligibles with a Dedekind complete
quotient algebra, P the associated forcing notion, and I a set. Suppose that W € »®@Ba({0,1}) is such
that |Fe W € Bag({0,1}), where a < w. Show that W[{w}] € Ba,({0,1}!) for Z-almost every w € Q.

551Y Further exercises (a) Investigate the difficulties which arise if we try to represent names for
Borel subsets of {0,1}! as members of £&{0,1}!, when I is uncountable. Show that some of these are
resolvable if  is actually the Stone space of RO(P).

(b) Let (©2,%,Z) be a non-trivial measurable space with negligibles, P the associated forcing notion and
P the partially ordered set underlying P. (i) Let p € P and a P-name G be such that
p|Fp G is a dense open subset of {0,1}.

Show that there is a W € ®Bay,, such that every vertical section of W is a dense open set and p |Fe G=W.
(ii) Let p € P and a P-name A be such that

p|Fp A is a meager subset of {0,1}.
Show that there is a W € ©®Ba,, such that every vertical section of W is a meager set and p |Fe ACW.
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551 Notes and comments There are real metamathematical difficulties in forcing, and we need to find
new compromises between formal rigour and intuitive accessibility. In the formulae of this section I am
taking a path with rather more explicit declarations than is customary. The definitions of & in 5A3L, f in
551Ca and W in 551D are supposed to be P-names in the exact sense used in KUNEN 80. This leads to
rather odd sentences of the form

(fip) EWsoplefeWw

(as in (a-ii) of the proof of 551E, for example), in which the symbol € is being used in different ways in the
two halves; but it has the advantage that we can move from W to W without further explanation, as in
the statements of 551E-551J. But you will observe that elsewhere I allow such terms as Ba and v to enter
sentences in the forcing language, since these correspond to definitions which can be expanded there. Note
that I am being less strict than usual in requiring formulae to be unambiguous (see 551Xf and 551Xg).

There is always room for variation in the matter of which terms should be decorated with “s when they
appear in expressions of the forcing language, and I have tried to be reasonably consistent; but there are
particular difficulties with transferring names for families (5A3Fb), which appear here in such formulae as
‘e limy oo Ry = limy, s Jn(x)’ (part (c) of the proof of 551N).

I hope that it is not too confusing to have the formula [...] used in two different ways, not infrequently
in the same sentence: sometimes as a ‘Boolean value’ in the forcing sense, and sometimes in the sense of
Chapter 36. If you look back at the definitions in §364 you will see that the expression f* also shifts in
interpretation as we move between the formally distinct algebras 20 and RO(P). There are some particularly
difficult formulae to parse in 551P; following the statement of the theorem I offer a remark on the expression
((W*)~,(W)*), 1), and some of the same difficulties arise in the line

e #(aab)” = #(VAW))" = (VAW))* = (VAW)®

in part (b) of the proof, where as well as the ambiguities in ® and (...) we have the symbols A and A
being used first for an operation in the ground-model Boolean algebra €, then for symmetric difference in
the ordinary universe, and finally for symmetric difference in the forcing language.

Version of 29.1.14
552 Random reals I

From the point of view of a measure theorist, ‘random real forcing’ has a particular significance. Because
the forcing notions are defined directly from the central structures of measure theory (552A), they can
be expected to provide worlds in which measure-theoretic questions are answered. Thus we find ourselves
with many Sierpiniski sets (552E), information on cardinal functions (552C, 552F-552J), and theorems on
extension of measures (552N). But there is a second reason why any measure theorist or probabilist should
pay attention to random real forcing. Natural questions in the forcing language, when translated into
propositions about the ground model, are likely to hinge on properties of measure algebras, giving us a new
source of challenging problems. Perhaps the deepest intuitions are those associated with iterated random
real forcing (552P).

552A Notation (a) As usual, if p is a measure then N(u) will be its null ideal. It will be conve-
nient to have a special notation for certain sets of finite functions: if I is a set, Fn,(I;{0,1}) will be
Uken<-{0, 1}

For any set I I will write v; for the usual completion regular Radon probability measure on {0, 1}1,
T; for its domain and (%B7,7;) for its measure algebra; Ba; = Ba({0,1}!) will be the Baire o-algebra of
{0,1}f. (It will sometimes be convenient, when applying the results of §551, to regard B; as the quotient
Bay/Bar NN (vr).) In this context, I will write (e;);cs for the standard generating family in B, (525A). Py
will be the forcing notion B; = B\ {0}, active downwards. For a formula ¢ in the corresponding forcing
language I will write [¢] for the truth value of ¢, interpreted as a member of B; (5A3M). Note that as Py
is ccc (cf. 511DDb), it preserves cardinals (5A3Nb).

As in §551, the formulae v;, B, etc. are to be regarded as formulae of set theory with one free variable
into which the parameter I has been substituted, so that we have corresponding names v;, 95 ; in any forcing
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language, and in particular (once the context has established a forcing notion P) we have P-names vy, B;
for any ground-model set 1.

(b) A great deal of the work of this chapter will involve interpretations of names for standard objects
(in particular, for cardinals) in forcing languages. Reflecting suggestions in 5A3H and 5A3N, I will try to
signal intended interpretations by using the superscript ~. Thus ¢ will always be an abbreviation for ‘the
initial ordinal equipollent with the set of subsets of the natural numbers’, whether I am using the ordinary
language of set theory or speaking in a forcing language; and ¢, in a forcing language, will refer to the name
{(£,1) : £ < ¢}, where it is to be understood that the symbol ¢ must now be interpreted in the ordinary
universe. As I shall avoid arguments involving more than one forcing notion (and, in particular, iterated
forcing), there will I hope be little scope for confusion, even in such sentences as

e, b=0

(552C). The leading |Fp, declares that the rest of the sentence is in the language of P,.-forcing; the first b,
and the 7, are therefore to be interpreted in that language; but the second b, being subject to the 7, is to
be interpreted in the ground model. (Many authors would write b"" at this point.) Similarly, in

e, 20 = (+Y)

(552B), the subformula x* is to be interpreted in the ordinary universe, but A = #(PA) is to be interpreted
in the forcing language. I hope that the resulting gains in directness and conciseness will not be at the
expense of leaving you uncertain of the meaning.

552B Theorem Suppose that A and k are infinite cardinals. Then
ke, 2> = (5Y)7,
where £ is the cardinal power (interpreted in the ordinary universe, of course).
proof (a) Recall that #(B,) = k* (524Ma), so that
#(B) = # ().

If A is a P.-name for a subset of A, then we have a corresponding family (In € A])n< » of truth values;
and if A, B are two such names, and [ € A] = [ € B] for every n < A, then

Fe.i€A < neB
for every n < A, so
be A= B
So
ke, 2% = #(PX) < #((BY)") = (+Y)".

(b) In the other direction, consider first the case in which A < k. Let F' be the set of all functions from
A to k, so that #(F) = x*. Then there is a set G C F such that #(G) = &* and {n:n < X, f(n) # g(n)}
is infinite whenever f, g € G are distinct. P If k = x* we can take G to be the set of constant functions.
Otherwise, for f, g € F, say that f =* g if {n: f(n) # g(n)} is finite; this is an equivalence relation. Let
G C F be a set meeting each equivalence class in just one element. Then we have #({g: g =* f}) = k < &*
for every f € I, so #(G) = k*, as required. Q

Let (e¢n)e<r,n<r be a stochastically independent family in 9B,; of elements of measure % For f € G let
Af be a P.-name for a subset of A such that

[ € Af]] =€t
for every n < \. If f, g € G are distinct, set I = {n: f(n) # g(n)}; then

[Af # Ag] = supycx €5(n)n D €g(n)n = SUPyer €f(n),n L €g(n)n = 1

because (ef(y),n A €g(n).n)ner is an infinite stochastically independent family of elements of measure %
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Thus in the forcing language we have a name for an injective function from G to P, corresponding to
the map f — Ay from G to names of subsets of A. So

e, 2% > #(G) = (=)
Putting this together with (a), we have
e, 2t = ()",
(c) If A > &, then (in the ordinary universe) 2* = &
IFe. (PA)” S PA,

SO

and again we have

e, 2 = ().

552C Theorem Let k be any cardinal. Then
|Fp.b=0band 0o =2.

proof (a) The point is that iff is any P.-name for a member of NV, then there is an 2 € NV such that
e, f<*h

where I write f <* g to mean that {n : g(n) < f(n)} is finite, as in 522C. B For n, i € Nset a,; = [f(7) = i].
Then D,, = {an; : i € N} is a partition of unity in B, for each n € N. Because B,, is weakly (o, 00)-
distributive (322F), there is a partition of unity D such that {i : a,; nd # 0} is finite for each n and each
d € D. Let {d)ren be a sequence running over D and take h(n) such that a,,; nd, = 0 whenever m < n
and ¢ > h(n). Now

[h(m) < f0i)] = [h(m)” < f@i)] = supfan; i > h(m)} € 1\d,

whenever n < m. So

[A(n) < f(n) for infinitely many n] = inf sup [h(m)” < f(1m)]

neN m>n

C inf 1\d,, =0,

neN
that is,

e, f <" h Q
(b)(i) Let (fe)e<x be a family of P,-names for members of NN, where A < b. Then for each £ < A we

can find an he € NN such that |Fp, fe <* he. As X < b, there is an b € NN such that he <* h for every
€ <\ Now |Fp, he <* h for every &, so |Fp, fg <* h for every £&. As \ and <f§>5<>\ are arbitrary,

”_]Pn b Z b'

(ii) Let (h¢)e<p be a family in NY which has no <*-upper bound in N¥. Then
e, {he : € < b} has no <*-upper bound.
P? Otherwise, there are a P,-name f for a member of N¥ and an a € B+ such that
alFp, he <* f for every € < b.

Now there is an h € NN such that |Fp, f <* h. There must be a £ < b such that he £* h. We have
alkFp, he <* f <* h, so there are an d, stronger than a, and an n € N such that

a|e, hg( ) < h(i) for every i > n.
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However, there is an 4 > n such that h(i) < he(4), in which case
e, @ > 7 and h(7) < he(i);

which is impossible. XQ
So

|Fe, b < b, therefore b = b.
(c)(i) Let (fe)e<x be a family of P -names for members of N¥ where A < 9. Then for each £ < A we can

find an he € NY such that |Fp, fg <* he. As A <0, there is an h € NN such that h £* he for every &€ < \.
Now

e, b £* he for every & < A,
SO
IFp, b £ fe for every € < A.
As A and ( f,;->5< A are arbitrary,
|Fp.0>0.

(ii) Let (h¢)e<p be a family in NY which is <*-cofinal with N¥. Then
e, {he : € <} is <*-cofinal with NV,

P Let f be a P,-name for a member of NN, There are an h € NN such that |Fe, f <* iL, and a & < 0 such
that h <* he. In this case,

e, f<*h<*he Q
So

552D Lemma Let A and x be infinite cardinals, and A any subset of {0,1}*. Then
e, v5(A) = (53A)".

proof (a) ? Suppose, if possible, that

“lFe. (13A)” < vi(A).
Then there are an a € B} and a ¢ € Q such that ¢ < v} A and

alFe, vi(A) < q.
Let E be a P,.-name such that
alFp, AC E, E € Bas and v5 F < §.
Of course we can arrange that 1\ a|Fp, £ = 0, so that |-p, E € Bas and there is a W € T,®Bay such that
Fe. E =W (551Fb). Setting h(z) = vaxW[{z}] for z € {0,1}*,
Fe, b= vsW

(5511(iii)), so

alp, h=vsE < g

and a C {x : h(z) < q}*. Take F € T, such that F* = q; then h(xz) < ¢ for almost every € F and
(Ve x vA) (W N (F x {0,1}")) < qu, F.

For each y € A, let e, : {0,1}* — {0,1}* be the constant function with value y. Then |fFp, &, = ¥
(551Ce), so
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and (z,y) € W for almost every x € F. But if we set
H={y: (z,y) € W for v,-almost every x € F},
HeTy,, ACH and
Ve F - vAH < (v, x 1) (W N (F x {0,1}*)) < qu,. F.
It follows that
A< wuH <q,
contrary to hypothesis. X So
e, (3A)” < v5(A).
(b) In the other direction, let ' € Bay be such that A C E and vy E = v; A, and consider W = {0, 1}" < E.
Then
|Fp. A C W and l//‘\V_[} = (nE)",
0

e 3A < (3A)".

552E Theorem Let x and A be infinite cardinals, with x > max(w;, A). Then
|Fe, there is a strongly Sierpiriski set for v5 with cardinal &.
proof (a) As k > A, P, is isomorphic to P = P, . For each & < &, let f¢ : {0,1}*** — {0,1}* be given by

setting fe(x)(n) = x(&,n) for every x € {0,1}*** and 7 < \; then, taking fé to be the P-name defined by
the process of 551Cb,

ke fe € {0,1}*.
If &, ¢ < k are distinct, then for any finite set T C A

[fe(n) = fer(n) for every n € I] = {a : fe(2)(n) = fe () (n) for every n € I}*
= {z:2(§n) = x(¢,n) for every n € I}*
has measure 2-#() | so, because A is infinite, 17[[]”2 = f_é/]] =0 and
ke fe # fer-
So, taking A to be the P-name {(f_,;-, 1) : € < Kk}, we have
|Fp A C {0,1}* has cardinal & > w1, so is uncountable.
(As remarked in 5A3Nb, we do not need to distinguish between w; and @y in the last formula.)
(b) Let r > 1 be an integer and W a P-name such that

e W is a subset of ({0,1}*)” which is negligible for the usual measure.

Then there is a Baire subset W of {0,1}*** x ({0,1}*)", negligible for the usual measure on this space, such
that

e W C W

, applied to {0, = , . Let C Kk be a countable set such that actors throug
551J lied 0, 1} A" 0,13M7). Let J b bl h that W f h h
{0,1}7%* x ({0,1}*)7, that is, there is a negligible Baire set W; C {0,1}7** x ({0,1}*)" such that W =
{(z,y) : (&[T x A\,y) € Wi} If &, ... ,&—1 are distinct elements of x \ J, then

”_]P’ (fﬁov s 7f57-71) ¢ w.
P Applying 551Ea to the function x — (fe, (), ..., fe,_,(x)), we have
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[(fes--- s fery) € Wl = {2 (2, (feo (2), .- , fer_, (x))) € W}

Set K = JU{&,...,&_1} and for w € {0,1}E** i < r n < X set gi(w)(n) = w(&,n). Then w
(wJIxA, (go(w), ..., gr—1(w)) is a measure space isomorphism between {0, 1}5>** and {0, 1}/**x ({0, 1}*)",
S0

Wo = {w:w € {0, 1} (w[J x \, (go(w),...,g—1(w)) € Wy}
is negligible. Consequently

{x : (SL’, (on(x)v s 7f§T_1(x))) € W} - {:L' : (er X )\7 (f{o($)7 s 7f£r_1(x))) € Wl}
={z:z[K x A € Wa}

is negligible and [[(fz-o, . ,f;grfl) € W] =0, that is,

”_]P’ (fzo"" 7-]?&71) ¢ w. Q
Now if we set B = {(fé,]l) : & € J}, we have

|Fe B is a countable subset of A and (o, -y Xp1) & W whenever zq, . .. , z,_1 are distinct
members of A\ B.

As W is arbitrary,
e A is a strongly Sierpinski set with cardinal &.
As P is isomorphic to Py,

|Fe, there is a strongly Sierpiriski set for v5 with cardinal &.

552F Theorem Let x and A be infinite cardinals.
(a) If either k or A is uncountable,

[Fp, add N (vs5) = wi.

(b) |Fp, add N (v,) = (add N (v,))".

proof (a)(i) If A is uncountable, then
[Fe, A is uncountable, so add NV (v5) = wy
(5A3Nb, 521Jb/523E).
(ii) If » is uncountable, then
|Fe, there is a Sierpiriski set for v, so wy < addN (vy) < addN(v,) = wq

(552E, 523B, 537B(a-i)).

(b)(i) Let (He)e<adan(w,) be a family of negligible Borel sets in {0,1}* such that A = U ,qq a(0,) He
is not negligible. Then 552D tells us that
e, He is negligible for every ¢ < (add N (v,))”, but A = U< (add M (vo)) H¢ is not, so
add NV (v,) < (add N (vy))".
(i) 7 If
=kp, add N (v,) > (add N (v,))7,
then there are an a € B and a 6§ < add N (v,,) such that
alFp, add N (v,) = 6.
Now there is a family (W¢)¢<p of P,-names such that
alFe, We € N(v,) V € < 6, Ue<s We ¢ N ().

By 551J, there is for each { < 0 a W¢ € T,®Ba, such that
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alke, We C We

and all the vertical sections of every W, are negligible. But this means that W¢ is negligible for the product
measure v, X v,. Because

0 < add N (v,) = add N (v, x 1),

Ug<p We also is negligible, and there is a negligible W € T, ®Ba, including every We. In this case, 5511(iii)
tells us that

e, oW =0,
S0
alke, Ue<s We C Ue<o We C W is negligible. X
Putting this together with (i),
e, add N (1) = (add N (1))

552G Theorem Let x and A be infinite cardinals.

(a) |Fe, covN(vy) > max(k,cov N (vy))".

(b) (PAWLIKOWSKI 86) |Fp, covN (1) > b.

(c) (MILLER 82) If k > ¢ then |p, covN(v,)=rc.!

(d) (MILLER 82) Suppose that x and A are uncountable. Then

IFe. covN(vx) < (supsc, 6°)7,
where each 0% is the cardinal power.
proof (a)(i) If kK = w then of course |Fp, cov N (v5) > k. If k is uncountable, then
|Fp, cov N (vz) > &
by 552E and 537B(a-1), so by 523F we have
|Fp. cov N (vy) > k.
(i) ? 1f
ke, cov N (v5) > (cov N (vy))”
then we have an a € B, a cardinal § < covN (vy) and a family (We)e<p of P,-names such that
alFp, {We : € < 8} is a cover of {0, 1}* by negligible sets.
By 551J again, we have for each £ < 6 a (v, x vy)-negligible set W such that a |5, We C Wg. Set
Ve ={y:y€{0,1}, ng[{y}] is not v,;-negligible};

then v, Ve = 0 for every £ < 0, so there is a y € {0, 1}* \ Ug<p Ve. In this case, let e, : {0,1}" — {0, 1}* be
the constant function with value y. Then we have a P,-name €, for a member of {0, 1}*, and for each & < 6

[, € Wel = (s (w,0,(2) € W} = W [{w}]* =0
(551Ea). So
-5, & ¢ We for every € < 6,
and
alre, € € {0,132\ Upog We. X
We conclude that
[Fp, covN(vg) > (cov N (vy))".

IRemember that the final ¢ here is to be interpreted in the forcing language.
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(b)(i) Set S2 = U,,en10,1}" and let (0, Tn, kn))nen enumerate Sz x Sz x N with cofinal repetitions.
Let D be the set of those a € NY such that
(ka(n))nen is strictly increasing,
#(0am)) < a(n) whenever n € N and m < kq(n41),

k —
Zi:(nﬂ) Lo—#(0a)—#(Tai) < 47" for every n € N.

a(n)

For ao € D set
GOt = nneN UmZn{(uay) U,y € {05 1}w, u 2 Oa(m), Y ) Ta(m)}~

(ii) For every a € D, G, is negligible for the product measure on {0,1}* x {0,1}*. ¥ For any n € N,
the measure of G, is at most

ka+1—1
27#(00(7‘@))7#(7—&(7)1))

NE

Z 27#(6a(7n))7#(7—a(m)) S

m:ka(n)

=

n m=

.
Il

a(d)

477 %-4*". Q

M

n

(iii) If G C {0,1}* x {0,1}* is negligible, there is an a € D such that G C G,. P For each i € N,
let H; 2 G be an open set such that (v, x v,)(H;) < 2% we can suppose that H; is not open-and-closed.
H; can be expressed as the union of a sequence of open-and-closed sets; it can therefore be expressed as
the union of a disjoint sequence of open-and-closed sets; each of these is expressible as the union of a
disjoint family of sets of the form {u : ¢ C a} x {y : 7 C y} where o, 7 € Sy; so H; is expressible as

UjeN{u : U;j Cup x{y: Ti/j C y}, with

5 jen 2 HODH) <9

.
Il

Re-indexing <(O’Z/-j,7'i/j)>i’j€N as (o, 7)) men, we have

G S MuenUnzsnl(uy) 107, Cu, 7 Syt
and
S men o—#(om)—#(m) < 2,27 < 0.
Let v: N — N be a strictly increasing function such that
Z:Tfii(lg;l 9= #(on)—#(T) < 4—n
for every n € N. Now choose (a(n))nen so that
ko) =7(n),  Oam) = 0ny  Tam) =Ty, a(n) > #(o,,) whenever m < y(n + 1)

for eachn € N. Then a € D and G C G,,. Q

(iv) Define h : N — NN by setting h(8)(n) = n+ > ;_, B(i) for 3 € N¥ and n € N. For 8 € NV define
f5:{0,1}* — {0,1}* by setting f5(u)(n) = u(h(B)(n)) for 8 € NN and n € N; note that fz is continuous.
For a, 8 € NN say that a <* B if {n: B(n) < a(n)} is finite.

(v) If o€ D, B € NN and o <* 3, then C = {u:u € {0,1}, (u, f5(u)) € Go} is v,-negligible. P Let
no be such that a(n) < B(n) for n > ng. C'is just N, ey U,,>, Om where

Cm ={u: Oa(m) € U, Ta(m) © fa(u)}
for each m. We know that (k,(;))jen is strictly increasing; if m > kq(ny), let 7 > ng be such that ko) <
m < kq(j+1), and set
Cry =A{u: 0aim) S U, Tam) (i) = f3(u)(i) for j <i < #(Ta@m))}
= {u:u(i) = 0 (m) (i) for i < #(0aim)),
w(h(B) (i) = Ta(m) (i) for j <i < #(Ta(m))}
D Cp.
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We know that
#(Ua(m)) < Oé(]) < ﬂ(]) < h(ﬁ)@)

whenever i > j and that h(g8) is a strictly increasing function, so

V(AJC':n < 9= #(0a(m)) —#(Ta(m)) i

But this means that

oo oo Kag+n—1
Z v,Cp = Z Z v,Cnm
M=Ka(ng) j=no m=ka(j
) kag+1)—1 oo
< Z Y Z 2= #(Tam)) —#(Ta(m)) < Z 97 . 4=
j=no  m=ka() j=no

is finite, and C is negligible. Q

(vi) Let ® be the set of all continuous functions from {0,1}" to {0,1}*, and & the set of (v, X v,)-
negligible sets in T,,®Ba,; let R be the relation

{W.9): Weé& ged {:(xg(x) e W}eNw}
Then (&, R, ®) <cr (NY, <* NN). P For W € € set

VW = {(U,y) U,y € {07 1}0.}7
{fv:ve{0,1}"\* (wUwv,y) € W} is not Vi\w-negligible}.

Then Viy is (v, X v,)-negligible; by (iii), we can find ¢(W) € D such that Viy C Ggw). In the other
direction, given 3 € NN, define 1(3) € ® by saying that ¢(3)(x) = fs(z|w) for z € {0,1}".

If W e & and 8 € N¥ are such that ¢(W) <* 3, we have 1,C = 0 where C = {u : (u, f3(u)) € Gy},
by (v). But if " = {x: (z,9(8)(z)) € W}, and v € {0,1}* \ C, then

{v:vef{0,1}"\* wUveC'}={v:ve{0,1}*\% (uUwv, fs(u)) € W}

must be v\ -negligible, since (u, fg(u)) ¢ Viy. So C’ is negligible and (W, (8)) € R. As W and /3 are
arbitrary, (¢,v) is a Galois-Tukey connection and (&, R, ®) a7 (NV, <* NV). Q
Consequently add(&, R, ®) > b (522C(i), 512Ea, 512Db).

(vii) By 552C, we do not need to distinguish between the interpretations of b in the ordinary universe
and in the forcing language. Suppose that a € B and that A is a P,-name such that

alFp, A C N(v,) and #(A) < b.
Then there are a b € B, stronger than a, a cardinal § < b and a family (W§>§<9 of P,-names such that
b”—]pNAZ {Wg €< é}

For each & < 0, we have a (v, x y,)-negligible W, € T,&Ba,, such that b|-p, We C Wg (551J, as usual).
Each W belongs to £. Since § < b < add(&, R, ®), there is a g € ® such that (We, g) € R for every £ < 6,
that is, {z : (x, g(x)) € W¢} is negligible for every £ < 6. But this means that

IFe. g € {013\ We
for every £ < 6. So
blFp, §¢ |JA and A does not cover {0,1}*.
As a and A are arbitrary,

IFe,. covN(v,) > b.

(c) Write € for the cardinal power x“, so that |Fp, c =6 (552B). ? If
= ke, cov N (vy,) =,
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then there must be an a € B}, a cardinal § < 6 and a family <W§>5<5 of P.,-names such that
alFp, {We : € <4} is a cover of {0,1}* by negligible sets.

For each ¢ < 4, let W € T.®Ba, be a (v, x v,)-negligible set such that a|-p, We C Wg; expanding it
if necessary, we can suppose that W is a Baire set. Let I C x be a countable set such that (u,y) € We
whenever (z,y) € We, u € {0,1}" and u|l¢ = z[I¢. Set

Wi={(v,y) : (u,y) € We, v € {0,1}", {n:n <k, u(n) #v(n)} € [L]~“}.
Then Wy is still (v, X v,)-negligible.

Because © > ¢ and § < x“, there is a countably infinite K C & such that K N I is finite for every
¢ <6 (5A1Gc). Enumerate K as (n,)nen and define f: {0,1}* — {0,1}* by setting f(u) = (u(nn))nen for
u e {0,1}".

For each £ < k, {u : (u, f(u)) € We} is vy-negligible. B Set J = &\ K, so that {0,1}" can be identified
with {0,1}7 x {0,1}%. Because I¢ \ J is finite, W is equal to

{(v,9) : (u,y) € We, v €{0,1}%, {n 1 <k, u(n) #v(n)} € [J N L]~}

and can be expressed as {(u,y) : (ulJ,y) € V} where V C {0,1}” x {0,1}* must be negligible. Now the
map u — (ulJ, f(u)) : {0,1}® — {0,1}7 x {0,1}¥ is just a copy of the map u +— (u]J, u[K), so is a measure
space isomorphism between {0,1}* and {0,1}7 x {0,1}¥, and V' = {u : u € {0,1}*, (ulJ, f(u)) € V} is
negligible. But observe now that

{u:(u, fu) € We} S{u: (u, f(u) € Wit =A{u: (ulJ, f(u)) e V=V’
is negligible. Q

Turn now to 551E. In the language there, we have [f € Wg]] =0, that is, |p, f¢ Wg and a |Fp, f¢ We.
So

a ”'IP’N U§<5 W€ 7& {Oa 1]’)\’
which is impossible. X
So we have the result claimed.

(d)(d) If cf k > w then sups., 0 = £*; but this means that
[Fe, covN; < ¢ = (k)" = (sups., 0“)".
So henceforth suppose that cfx = w. By 523B, we may also assume that A = w;.

(ii) Let D be the set of all pairs (£, y) where € € w)' is one-to-one and y is a Baire measurable function
from {0,1}° to {0,1}* for some cardinal § < k. Then #(D) = sups_,, 0 (use 5A4G(b-ii)). For (£,y) € D,
let We,, C {0,1}" x {0,1}** be the set

1

{(u,0) s timg oo ~# ({0 < m, 0(&) = y(ula)(@D}) = 3},

where § = (&)ien and domy = {0,1}*. Then Wg, is a Baire set; also the vertical section We,[{u}] is
V,, -conegligible for almost every u € {0,1}*. I* The set

V= {22 € {0, 1, limp oo~ ({i 11 < m, 2(i) = y(ul)(i)}) = 3}

is conegligible in {0, 1}, by the strong law of large numbers (273F). But W, [{u}] is the inverse image of
V under the inverse-measure-preserving map v — (v(&;))ien, S0 i v, -conegligible. Q

(iii) Consequently
-p, We, is conegligible in {0, 1}
whenever (§,y) € D (5511(iii)). Now
IFe. Ne.yep Wey is empty.

P? Otherwise, there are an a € B, and a P,-name & such that
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a ”—[PH T S m(€7y)eb Wgy

Let f: {0,1}* — {0,1}*' be a (T\, Ba,,, )-measurable function such that a |-p_ f = i@ (551Cc). Set € = Li.a
and for each £ < wy let E¢ be an open-and-closed subset of {0,1}" such that v, (EeA{u : f(u)(§) =1}) <e.
Let a¢ < k be such that E¢ is determined by coordinates less than a¢. Because cf K = w, there is a cardinal
d < k such that A = {£ : ¢ < 6} is infinite; let § = (§;);en enumerate a subset of A. For each i € N let
F; C {0,1}° be an open-and-closed set such that F¢, = {u : u[é € F;}. Define y : {0,1}° — {0,1} by
saying that y(v)(i) = xF;(v) for v € {0,1}° and i € N; then y is Baire measurable, so W, is defined and
alke, f € Wey.
Set H={u: (u, f(u)) € Wg,}. Then

~

ag[[fevr/&y]]:H.

so v, H > v.a = 4e.
But consider the sets

Hi = {u: f(u)(&) = y(uld)(i)}

={0,1}"\ ({u: f(u)(&) = 1} A{u : y(ul0)(i) = 1})

={0,1}"\ (B¢, Mu: f(u)(&) =1})
for ¢ € N. These all have measure at least 1 —e. For n > 1 set

Yo =ve{u: #{i:i<n,ue H}) < %n},
then
n(]' - E) < Zi<n VKHi = f#({Z AN n, u € Hl})yﬁ(du) < 2?71777, + Tl(]. - "YTL)

and 7, < 3e. So

H={u: lim “#({i:i<n ueH}) =1}

n—oo n 2

C U ﬂ{u:#({i:i<n,u€Hi})§§}

meNn>m
has measure at most 3¢; which is impossible. XQ
(iv) Thus
|Fe. ﬂ(g,y)eb Wéy is empty and {0,1}** can be covered by (sup;_, “)” negligible sets,

which is what we needed to know.

552H Theorem Let x and A be infinite cardinals.
(a) |Fp, non N(vy5) < (nonN(vy))".
(b) If kK > max(A, w1 ) then

|Fe, non N (vy) = ws.
(¢) (PAWLIKOWSKI 86)

[Fe, non N (1) <o.

proof (a) Let A C {0,1}* be a non-negligible set of size non /(). Then 552D tells us that
|z, A is a non-negligible set with cardinal (nonN'(vy))”, so non N'(v5) < (non N (vy))".

(b) Put 552E and 537Ba together again, as in part (a) of the proof of 552F.

(c) Continue the argument from the end of (b-vi) of the proof of 552G above. We have (£, R, ®) <aT
(NN, <* NN), so cov(&, R, ®) < 0 (522C(i), 512Ea, 512Da). So there is a family (g¢)e<p in @ such that for
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every W € & there is a { < 0 such that (W, g¢) € R, that is, {z : (z,g:(x)) € W} is negligible, that is,
IFe. ge ¢ W. Now

[Fe,. {Gc : £ < 0} is not negligible.
P? Otherwise, there are an a € B and a P,-name W such that
alFp, W is a negligible set containing g for every £ < d.

By 551J once again, there is a W € &£ such that a|-p, W C W. But now we have a £ < 0 such that
e, ge ¢ W, which is impossible. XQ So |, non N (v,) <.

5521 Theorem Let x and A be infinite cardinals. Set 8y = max(cf N (v,,), cf[x]<, cf[A\]=%). Then
||—[p>N CfN(V;\) = éo.

proof (a) |Fp, cfN(v,) > cf[#]S¢ = (cf[x]=¥)". P If k = w this is trivial. Otherwise it follows from 552E,
537B(a-ii) and 5A3Nd. Q

(b) Set
01 = cf N'(vy) = max(cf N (v,), cf[\]5%)

(523N). Then |-p, cfN(v5) > 6;. P? Otherwise, there are a € By, 6 < 6, and a family (We)eey of
P.-names such that

alFp, {We : € < 0} is a cofinal family in NV (vy).
For each £ choose a (v, X vy)-negligible W € T,.®Bay such that a IFe. WE - WE- Then
Ve={y:ye{0,1}*, ng[{y}] is not v,;-negligible}

is vy-negligible. Because 6 < cf N (vy), there is a V € N (vy) such that V' & Vg for every £ < 6, and
(enlarging V slightly if necessary) we can arrange that V' € Ba,.

Set W ={0,1}* x V. Then W € T,.&Bay and every vertical section of W is negligible, so 5511 tells us
that

lFe. W is negligible in {0, 1};\.
Accordingly
a|-p, thereis a & < 6 such that W C We C Wg,

and there must be a b € B, stronger than a, and a £ < 6 such that b|}-p, W C Wg. But now take any point
y of V'\ V¢ and consider the constant function e, on {0,1}" with value y. Then {z : (z,e,(z)) € W\ W¢}
is conegligible, so 551E tells us that

e, & € W\ We, s0o W £ W,
contrary to the choice of £&. XQ
(c) Now
e, cfN(v5) > max(cfN (1), 01) > max(cf[R]<¥,0;) = bp.
(d) In the other direction, let ;1 = v, X v be the product measure on {0,1}" x {0, 1}*. Again by 523N,
cEN (1) = 0o; let (We)ecp, be a cofinal family in N(u) consisting of sets in T,®Bay. By 551J,
e, {We : € < 6,} is cofinal with N (v5), so cfN (v3) < fo.
Putting this together with (c),
e cEN(v5) = o,

and the proof is complete.
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552J Theorem Let x and \ be infinite cardinals; set 8y = shr A/(vy) and let 6; be the cardinal power
A¥. Then
||—]1:>N éo < shrN(V;\) < 91.

proof (a) ? Suppose, if possible, that
= e, G0 < shr N (vy).
Then there are an a € B} and a cardinal §’ < 6 such that
alFp, shrN(vg) =0

Of course ¢’ is infinite. Let A C {0,1}* be such that v{A > 0 but B € N(vy) for every B € [A]<?". By
552D,

e, v5(A) > 0.

There must therefore be a P,-name B for a subset of A with cardinal at most 6’ such that
alkFe, I/;(B) > 0.

By 5A3Nc there is a B C A such that #(B) < max(w,0’) = 60" and

alFp, B C B.
By 552D, in the other direction,

albe, 0 < vi(B) <vi(B) = (1B)
and vy B > 0, contrary to the choice of A. X
(b) (In this part of the proof it will be convenient to regard 9B, as the measure algebra of v, [Ba,.)
(i) ? Suppose, if possible, that
ke, shr N (vy) < 6.

Then there are an a € B, and a P,,-name A such that

a ”—P’EA is a non-negligible subset of {0,1}* and every subset of A with cardinal at most
0, is negligible.

(ii) Let (e¢)¢<, be the standard generating family in B,. Choose <f5>€<0;r7 <J5>€<9f” <K’5>€<9f”
<W§>€<9;r and <V§>£<0;r inductively, as follows. K¢ =J, ¢ Jy. Given that § < 0 and that, for each n < ¢,
[y :{0,1}% — {0,1}* is a (Bay, Ba,)-measurable function such that a |F-p, f;, € A (where ﬁ is the P,-name
for a member of {0,1}* as defined in 551Cb), then

alFp, {fn : n < £} is negligible,
so by 551J there is a set W¢ € Ba,®Bay, negligible for the product measure on {0,1}* x {0,1}*, such that
alkFe, f;, € Wg for every n < &.
Set
Ve ={(z,) : 2 € {0,1}", y € {0,1}",
{t:te{0,1}"\Ke (x| K¢) Ut,y) € We} is not v\ K -negligible}.
Then V; € Ba,®Ba, is negligible, so |-p, ‘75 € N(vs) and a|p, A € \75; let fe: {0,1}* — {0,1}* be a

(Bay, Bay)-measurable function such that a |Fp, fé e A\ ‘_/'g (551Cc). Let Je C k be a set with cardinal at
most A such that {x : f¢(2)(¢) = 1} is determined by coordinates in Je for every ¢ < A, and continue.

(iii) If n < &€ < 6F then a|Fp, f, € Ve. P As J, C K¢, we have a function g : {0,1}%¢ — {0,1}* such
that f,(z) = g(z K¢) for every x € {0,1}*. Now, for any s € {0,1}%¢ and y € {0,1}*, the set

{t:te{0,1}"\Ke (sUt,y) € We\ Ve}
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is v\ k. -negligible, so
E={(s,1): (sUt,g(s)) € We \ Ve}
is (Vk, X ve\k,)-negligible. (E € Bag, @)Ba,.i\Ks because We and V¢ belong to Ba,®Bay and g is (Bag,,

Bay)-measurable.) But if we identify {0, 1}/ x {0,1}*\X¢ with {0,1}*, then E becomes {x : (z, f,(z)) €
Wg \ Vg} Now

(551Ea)

and a|-p, f, € Ve. Q
(iv) For each € < 6, V¢ factors through {0, 1}%¢ x {0, 1}* and belongs to Ba,&Bay. There is therefore
a countable set L¢ C K¢ such that Vi factors through {0,1}%¢ x {0,1}*. Let S be the set {¢ : £ < 67,
cf¢ > w}. Because ; > wi, S is stationary in 6] (5A1Ac). For each ¢ € S, let g(£) < £ be such that
L¢ C Ky¢). By the Pressing-Down Lemma there is a v < 6 such that S = {{ : £ € S, g(&) =~} is
stationary.
For £ € S’, we have a Vf’ € BaKVQ?)Ba)\ such that

va = {(x’y) HEUS {Oa 1}&7 Yy € {Oa 1}A7 (er’Yay) € Vgl}
But #(K,) < A, so
#(Bax, ®Bay) < A = 0; < #(S5"),
and there are £, n € 5" such that n < § and V;; = V/ and V;, = V. But also
alre. fr € Ve\ Vo,

so this is impossible. X

552K Lemma Let I be a set. Let ¢ : Fn,(I;{0,1}) — [0, 00[ be a function such that ¢() = 1 and
4(2) = q(zU{(5,0)}) + q(z U {(i, )})

whenever z € Fn.,(I;{0,1}) and i € I \ dom 2. Then there is a unique Radon measure p on {0,1} such
that

p{r 2z Cx e {0,1}} =q(z)
for every z € Fn.,(I;{0,1}).

proof (a) For each K € [I]<%, let ux be the measure on the finite set {0,1}X defined by saying that
prA =3, c4q(2) for every A C {0,1}F. For K C L € [I]< set fxr(z) = 2K for z € {0,1}*; then
fxr is inverse-measure-preserving for ux and pr. PP It is enough to consider the case L = K U {i} where
i€ I\ K. In this case, for A C {0, 1}¥,

pef A= Y aw) = a(zU{(E,00}) + g(z U {(i,1)})

wef-1[A] Z€A
= q(2) =nxA Q
zEA

(b) Let & be the algebra of open-and-closed sets in {0,1}, that is, the family {f;'[A] : K € [I]<¥,
A C{0,1}%}, where fx(z) = 2| K for z € {0,1}!. Then we can define a functional v : £ — [0, 1] by setting

v [A] = px A whenever K € [I]<%, A C {0,1}%;
by (a), this is well-defined. By 416Qa, there is a unique Radon measure y on {0,1}! extending v, so that
o2 C oy = vl 2 C o} = prcle} = a(2)
whenever K C T is finite and z € {0, 1}.
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552L Lemma Let 0 be a regular infinite cardinal such that the cardinal power §“ is less than 6 for every
d <0, and S C 0 a stationary set such that cf& > w for every £ € S. Let (M¢)e<g be a family of sets with
cardinal less than 6, and I a set with cardinal less than 6; suppose that for each i € I we are given a function
fi with domain S such that f;(£) € U, My for every £ € S. Then there is an wi-complete filter 7 on 6,
containing every closed cofinal subset of 8, such that for every ¢ € I there is a D € F such that D C S and
fi is constant on D.

proof (a) Set M = J; 4 Me, so that #(M) < 0; let (z¢)e<p run over M. Set
Fr={6:£<0, U,ce My ={zy :n <&}

then F™* is a closed cofinal subset of 6, because 6 is regular and uncountable. Set S; = S N F*, so that Sy
is stationary. For & € Sy and i € I let he(i) < & be such that fi(§) = @y, ;). For J € [I]<¥, £ € S set

Dey={n:neSNF* hylJ=helJ}.

(b) There is a & € Sy such that D¢y N F # @ for every closed cofinal set ' C 6 and every J € [[]S¥.
P? Otherwise, for each £ € Sy choose J¢ € [I]=% and a closed cofinal set F¢ not meeting Dej,. Let F
be the diagonal intersection {{ : £ < 6, { € F,, whenever n € Sy N¢}, so that F' is a closed cofinal set
(4A1B(c-ii)) and Sy = S1 N F is stationary. For £ € Sy let g(&) < € be such that he[Je] C g(§). Then there
is a v < 0 such that S5 = {£: £ € Sa, g(§) = 7} is stationary, by the Pressing-Down Lemma (4A1Cc). Now
helJe € [I x ]S for every € € Sy, and #([I x 7]=%) < max(#(I),v,w)” < 0, so there are £, n € S3 such
that he[Je = hylJy and n < &. But in this case we have { € F;) N Dy, , which is supposed to be impossible.
xXQ

<w

(c) If now (F))nen is any sequence of closed cofinal sets in 6, and (J,)nen is any sequence in [[]=%,
Mpen Pes, NFy = DeyNF
is non-empty, where J = J,,cjy Jn and F' = [,y . So we have an wi-complete filter F on ¢ generated by
{D¢y:J €IS} U{F : F C 0 is closed and cofinal}.
If i € I then f; is constant on D¢ (4, € F, so we're done.

552M Proposition Let x and A be infinite cardinals. Then the following are equiveridical:

(i) if A C P({0,1}") and #(A) < X then there is an extension of v, to a measure measuring every
member of A;

(ii) for every function f : {0,1}* — {0,1}(*+M\% there is a Baire measure x on {0, 1}** such that u{y :
y € {0, 1} 2 C y} = 27#(K) whenever K € []<¥ and z € {0,1}%, and p*{z U f(z) : x € {0,1}*} = 1;

(i) if (X, %, ) is a locally compact (definition: 342Ad) semi-finite measure space with Maharam type
at most k, A C PX and #(A) < ), then there is an extension of p to a measure measuring every member

of A.

proof (i)=(ii) Assume (i). If £ : {0,1}* — {0,1}(#+V\% is a function, set A = {{z : f(2)(&) =1} : & <
¢ < K+ A}, so that A is a family of subsets of {0,1}" and #(A) < A. Let v be a measure on {0,1}",
extending v,, and measuring every member of A. Then {z : (x U f(z))(§) = 1} € domv for every £ € k + A,
so we have a Baire measure p on {0, 1}*** defined by saying that uE = v{z : x U f(x) € E} for Baire sets
E C{0,1}** If K € [k]<¥ and 2 € {0,1}", then

ply:zCyy=v{z:2Ca2Uf(a)=v{z:2Ca} =vfo: 2 Cax}=2"#K),

while if E € Bayx and 2 U f(z) € E for every « € {0,1}%, then pE = v{0,1}* =1, so p*{z U f(z) : x €
{0,1}%} = 1. Thus (ii) is true.

(ii)=(i) Assume (ii). Let A be a family of subsets of {0, 1}" with #(A) < . Let (A,)),<x run over AU{(}.
Define f : {0,1}"* — {0, 1}("+M\% by saying that f(x)(k + 1) = (xA,)(r) whenever n < A and = € {0, 1}".
Let 11 be a Baire measure on {0,1}*** satisfying the conditions of (ii). Set g(z) = z U f(x) for x € {0,1}*.
Because g[{0, 1}*] has full outer measure for z1, we have a measure v on {0,1}" such that vg~![E] = puE for
every Baire set E C {0,1}%+* (234F); let © be the completion of v. Now 4, = g~ [{y : y(k +n) = 1}] is
measured by v and ». Also
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Hr:zCay=v{z:2Ca}=v{z:2Cg)}=p{y: 2z Cy} =2"#U&K)

whenever K € [k]<“ and z € {0,1}", so ¥ extends v, (254G) and is an extension of v,, measuring every
member of A.

(i)=-(iii) Suppose that (i) is true.

(a) Let (X, 3, 1) be a compact probability space of Maharam type at most x, and A a family of subsets
of X with cardinal at most A. Then there is a function A : {0,1}" — X which is inverse-measure-preserving
for v, and p. B By 332P, the measure algebra of i can be embedded into 9B ,; by 343B, this embedding can
be realized by an inverse-measure-preserving function from {0,1}* to X. Q Now C = {h™'[A] : A € A} has
cardinal at most A, so there is an extension v of v,, measuring every member of C; and the image measure
vh™! extends p and measures every member of A.

(B) Tt follows at once that if (X, X, u) is a compact totally finite measure space with Maharam type at
most x, and A a family of subsets of X with cardinal at most A, then u can be extended to every member
of A. (If pX = 0 this is trivial, and otherwise we can apply («) to a scalar multiple of p.)

() Now suppose that (X, X, 1) is a locally compact semi-finite measure space with Maharam type at
most x, and A a family of subsets of X with cardinal at most A. In the measure algebra (2, i) of u, let D
be a partition of unity consisting of elements of finite measure; for d € D choose E4 € ¥ such that ES = d.
If G € ¥ then

pG = pG* =3 4ep idnG*) =3 4ep H(Ea N G).
For each d € D, the subspace measure pp, on Eg is compact and totally finite and has Maharam type at
most # (put 331Hc and 322Ja together), so by () can be extended to a measure ', measuring AN Fy for
every A € A. Set p'F =) cp g, (F N Eg) whenever F' C X is such that the sum is defined; then y is a
measure on X, extending p and measuring every set in 4, as required.

(iii)=(i) is trivial.

552N Theorem (CARLSON 84) Let x and A be infinite cardinals such that x is greater than the cardinal
power A“. Then

IFe. if A C P({0,1}%) and #(A) < A, there is an extension of vz to a measure measuring
every member of A.

proof (a) Let (ecc)¢,c<x be a re-indexing of the standard generating family in B,,. For J C k x k let €; be
the closed subalgebra of B, generated by {egc : (§,() € J}. Recall that #(L>(€;)) < max(w, #(J)“) for
every J (524Ma, 515Mb); we shall also need to know that every element of 9B, belongs to €; for a smallest
J C k X Kk, and this J is countable (254Rc, 531Jb).

Set I = (k4 \) \ K, where & 4 X is the ordinal sum, so that I is disjoint from s and #(I) = \. Let f be
a P,-name for a function from {0,1}% to {0, 1}{.

For each £ < & let @¢ be a P.-name for a member of {0,1}% such that [#¢({) = 1] = egc for every ¢ < &.
For z € Fnc,(k + A;{0,1}) and £ < &, set

ag. = [2 C e U f(ie)]
and let Je, C Kk x k be the smallest set such that a¢, € €;,,. Note that
Agz = g 211 N infeennz-11{1)) €ec \ SUPcernz—1[{0}] €ECH
so that
Jez © Je.z11 U ({€} x dom 2).

Set § = (A)" < k. For £ < 0 let Lo(§) C k be the smallest set such that & C Lo(&) and J,

Lo(€) X Lo(€) for every i < & and w € Fieu(1;{0,1}); set L(E) = Lo(€) x Lo(€). Then #(L(€))
max(w, A, #(§)) < 0 for every § < 0, and L(§) = U, . L(n) for limit § < 6. Set

D* = {¢: ¢ < 0 is a limit ordinal, £ > sup(8 N Ly(n)) for every n < &};
then D* is a closed cofinal subset of 6, and £ ¢ Ly(&) for every £ € D*. So

IAIN
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S={(:£eD* cf(¢ND*) > wi}
is stationary in 6.

(b) For J C k x K, let Py : L'(B,,) — L'(€;) C L'(B,) be the conditional expectation operator defined
by saying that Pyu € L*(¢;) and [ Pyu = [ u whenever ¢ € €; and u € L'(B,) (2564R, 365Q). We need
to know that Pjny = Py Py for all J, J' C k (254Ra), and that Py(u x v) = u X Pyv whenever u € L*(€),
v € LY(B,) and u x v € L} (B,;) (242L). It follows that if J, J', J”" C k x k, u € L (€;) and JNJ' = JNJ",
then

PJ/('LL) = PJ/PJ('LI,) = PJQJ/(U) = PJQJ//('U;) = PJ//(U).

If h: k X Kk — K X K is any permutation, then we have a corresponding measure-preserving automorphism
7 B, — B, defined by saying that meee = egr¢r if (€7,¢") = h(£,(), and a Banach lattice automorphism
T : L'(B,) — L'(B,) defined by saying that T'(xa) = y7a for a € B, (see 365N?); note that T[L>(B,)
is multiplicative (compare the formulae in 365Nb and 364Pa).

If J C kxkandue LY(C)), then Tu € L'(Cyy)). P By 314H, €5 = 7[¢€;]; now use the fact that
[Tu > o] = w]u > o] for every a € R. Q If h[J is the identity, then ma = a for every a € €; and Tv = v
for every v € L*(€;). Consequently P;T = P;. P If u € L'(®B,.) and ¢ € €; then

/P_]Tu:/Tu:/Tuxxc:/T_l(Tuxxc)
Z/UXT_l)(C:/uxxc:/u;

as PyTu certainly belongs to L'(€;), it must be equal to Pyu. Q

(c) Fix £ € S and w € Fne,(I;{0,1}) for the moment. Because £ N D* has uncountable cofinality
and Jg,, is countable, there is a g,,(§) € £ N D* such that Jg, N L(§) C L(gw(§)) and {n : n € Ly(§),
(&,1) € Jew} € Lo(gw(§)). Let hey : k X & — k X k be the involution defined by saying that

hew(,¢) = (9w(§), Q) if n =&,
(57 C) lf N=9Guw (5)
= (n, () otherwise;
note that

hew[Jew] N L(E) € L(gw(£)) U ({gw(§)} X Lo(gw(£)) € L(gw(€) + 1),
while hg,, is the identity on L(g.,(€)), since neither € nor g,,(£) belongs to Lo(gw(€)). Let Ty : L'(B,) —
L'(B,) be the corresponding Banach lattice isomorphism defined as in (b) above. Then (b) tells us that

Prg,€)Tew = Pr(g,(¢))-
Set,

ugw = Prg,©)+1)Tew(Xagw) € L2 (CL(g, e)41))-
(d) Setting M (n) =n x L>(€r,) for n < 0, we see that

#(M(n)) < #(n)” <A <0

whenever 7 > 2 (see (a) above), while (gu/(§), uew) € U, <¢ M(n) whenever £ € S and w € Fnc.,(I;{0,1}).
Since #(Fn<,(I;{0,1})) = X < 6, 552L tells us that there is an wy-complete filter F on 6, containing 6 \ ¢
for every ¢ < 6, such that for every w € Fn.,(I;{0,1}) there is a D € F such that D C S and g,, and
£ — ug, are constant on D.

(e) For z € Fne,(k + A;{0,1}) and £ < 60, set Ves = Pr¢)(xaez). Then there is a D € F such that
D C S and & — ve, is constant on D. P Set 2l = z[Lo(0), 2" = z[Kk \ Lo(f) and w = z[I, so that

2Formerly 365R.
3Formerly 3650.
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Az = Qe NGger NAgy. Set m = #(2"), so that ag,n = [2” C d¢] has measure 27" for every £ Also
ag.r € €y (k\Lo(0)) is stochastically independent of € (g), so Prg)(xac.~) = 27™x1; while ae.r and agy
belong to €4y, so, using the formulae in (b),

vex = Priey(xaez) = Pre)Prio)(xae:)
= Prie)Prio)(xagz X Xagzr X Xagw)
= Pre)(Xagzr X Xagw X Prp)(xagz))
= 27" Pre) (xagsr X Xgw)-
Let & < 0 be such that domz" C Ly(&). By (d), there are Dy € F, ¢ < 6 and u € L>®(*B,;) such that

Dy C S and g, (§) = ¢ and ug,, = u for every & € Dy. For £ € Dy \ & take hegy,, and Tg,, as in (c¢). Then,
writing ¢, for the measure-preserving automorphism defined from he¢,, as in (b),

Tewagz = Mew( Inf gy sup Oe§n> = inf meween \ Sup Teween
= 2/ (n)= = z'(n)=

= inf ecy\ sup egp =acy;
#(m)=1 2 (n)=0

consequently Tg,,(xaes) = xac.. Now

Pre)(Xagz X Xagw) = Pr(e)(xagzr X Xagw)
(because xac * Xaew € L (€ ey« Lafeoten )» and ({6} Lo(€)) UJen) 1 L(E) = JewNL(E) € L(C) € L(E))
= Pr)Tew(xags X Xaguw)
(see (c) above)
= Pr(o)(Tewxaez X TewXagw)
(because Tg,, is multiplicative on L>(B,))
= PL(C) (XaCz’ X Tgwxagw)
= Pr)Prie)(xacer X TewXacw)
(because L(¢) C L(£))
= Pr¢)(xace X Prg)TewXagw)
(because a¢.r € Cieyxroe) € €rie))
= Proy(xacer X Pr+nTewXaew)
(because Tey Xagw € LOO(Qﬁhgw[sz]) and hey [Jew) NL(E) € L(C+ 1))
= PL(C) (XCLCZ/ X u5w) = PL(C) (Xagz/ X u)

Finally, we get
Ve = 27" Prg) (Xagar X Xagw) = 27" Pp¢)(xacs X u)
for every £ € D = Dy \ &, so we have the required constant value. Q

(f) For each z € Fn,,(k + A; {0,1}) set v, = limg_, 7 vg,, the limit being defined in the strong sense that
{£:€£€ S, ve; = v.} belongs to F. Observe that 0 < v, < x1 and that vy = x1, because agp = 1 for every
£e€S. If z€ Fney(k+ A {0,1}) and n € (k + ) \ dom 2, then a¢ g0} and ag .ugey,1)} are disjoint and
have union ag., so

vez = Prie)(xagz) = Prie)(Xag,z0((n,0)} + Xe,20{(n.1)}) = Ve,20{(n,0)} + Ve, 20{(m.1)}

for every § € S, and v, = v.u{(5,0)} + V2u{(n,1)}- Let T, be the P;-name for a real number corresponding to
v, as defined in 5A3L.

(g) We have a P.-name /i for a Baire probability measure on {0,1}*** such that

Fe, ife: 2 Ca e {0,1}53} =7,
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for every z € Fno, (k + A;{0,1}). PP Start by setting
fio = {((2,02), 1) : 2 € Fney (s + A:{0,1})},

so that fig is a P.-name for a function from Fn, (% + X; {0,1}) to [0, 1] and

e, f102 = U.
for every z € Fn.,(k + A;{0,1}); note that

e, &+ A= (k+ )" and Fne, (% + A;{0,1}) = (Fnew(k + A {0,1}))".

Now (f) tells us that

IFe, 100 =1,

IFe. f10(2) = f1o(z U {(n,0)}) + fio(z U {(n, 1)})
whenever z € Fn,(k + A;{0,1}) and n € (& + \) \ dom z.

By 552K, copied into VFx,

|Fe. there is a Radon measure p on {0, 1}'”5‘ such that
p{z 2 Cal = fig(2) for every z € Fno, (i + ; {0,1}).

In fact we don’t really want the Radon measure here, but its restriction to the Baire o-algebra. Let (i be a
P,-name for a Baire measure on {0, 1}%* such that

Fe, w2 C w € {0,133} = jig(2) = 0.
for every z € Fn,(k + A;{0,1}); this is what we have been looking for. Q
(h) I had better check that
e, e 2 C o} = (27#0)°

whenever z € Fnoy(s;{0,1}). P If 2 € Fno,(x;{0,1}) and £ € S, then ae. belongs to ¢}y, so is
stochastically independent of €, and

ve. = Prey(xae.) = (Prag.)x1 = 2-#(2) 1.
Accordingly v, = 2=#()y1 and
e, o2 Ca) =7 = 2 #C)). Q

(i) Finally, we come to the key fact:
e, {@c U f(ie) : € < 6} has full outer measure for .

P? Otherwise, there are a non-zero b € B, a rational number ¢ < 1 and a sequence (C,,)nen of Pr-names
for basic cylinder sets in {0, 1}%** such that

ble, de U f(de) € Upen Cn
for every £ < 6, while also
blke. oo iCn < d.

Because B is cce, we can find for each n € N a partition (b,;);en of unity in B, and a sequence (z,;)ien

in Fne,(k+ A;{0,1}), such that by; |Fp, Cn = {z : Z,; C x} for each i. Now
[Ee U f(:Eg) € O] = sup;en bni N [Zni € dni U f(:cg]] = SUpP;en bni N Qe 2.,
so we must have
b C SUDP; peN bni Nag 2,

for every £. At the same time,
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bni ”’PK NCn = U,
for each n and i, so fiC,, is represented by > ien Xbni X vz, in L°(B,;) and min(1,>"7 (1Cy) is represented
by X1 A2, ien Xbni X ¥s,,,. Since [3277 i1Cp < ] includes b,

> mien Xb X Xbni X v, < gxb.

Let J C k X k be a countable set such that bnb,; € €; for every n, ¢ € N. Then, because F is wy-complete
and contains S\ ¢ for every ¢ < 0, there is a £ € S such that

V¢z,; = Vs,; Whenever n, ¢ € N,

JNLO)=JNLE), Jn{ xk)=0.
Set L =L(O)U ({¢} x k). If n, i € N, then

/Xb X Xbni X v, = /Xb X Xbni X PL(¢)X0g,20:
= / Prey(xb X Xbni X Pr(e)X0¢,2,:)
= /PL(g)(Xb X Xbni) X Pre)Xag,z,,
— /PL(g)(Xb X Xbni) X Xa¢,z,,;

= / Pr(xb x xbni) X Xz,
(because J N L = JNL(E))

= /PL(Xb X Xbni X X0¢ z,.)
(because Je ., € Je o1 U({E} x k) € L, s0 ag ., € €r)

= /Xb X anz X XA 25

Summing over n and ¢, we have

8

oo

b < ZZ (brbninaes,,) =

=0 n=

Xb X anz X XA, 2,

M8
—

I
<

7

0
ii/xwxbmxvzm /qxb:
04=0

n=

which is impossible. XQ
(j) What all this shows is that
e, for every f : {0,1}% — {0,1}(*FV\% there is a Baire measure p on {0, 1} such
that p{y : y € {0, 1}"”‘)‘ 2 C y} = 27#) whenever K € [£]<* and z € {0,1}%, a
pwH{z U f(z):z e {0,1}F} = 1.
By 552M, copied into VFx,
|Fe. if AC P({0,1}%) and #(A) < A, there is an extension of vz to a measure measuring
every member of A,

as required.

5520 Proposition Suppose that (X, 3, ) is a probability space such that for every countable family .4
of subsets of X there is a measure on X extending p and measuring every member of A.
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(a) If Y is a universally negligible (definition: 439B) second-countable T space, then #(Y) < cov N ().
(b) cov N (i) > non N (v,).

proof (a) 7 Otherwise, let (Ey),cy be a cover of X by p-negligible sets, and f : X — Y a function such
that » € Ey(,) for every x € X. Let U be a countable base for the topology of Y and A = {f~U]: U eU};
let i be a measure on X extending 1 and measuring every member of A. Consider the image measure jif '
on Y. This measures every member of i so measures every Borel set in Y; let v be its restriction to the
Borel g-algebra of Y. Then v is a Borel probability measure on Y. Take any y € Y. Because Y has a T
topology, U must separate the points of Y and {y} is a Borel set; now

vy} =af ' {y}] < By < p*E, = 0.
So v is zero on singletons and witnesses that Y is not universally negligible. X

(b) By Grzegorek’s theorem (439Fc), there is a universally negligible set Y C [0,1] with cardinal
non N (v,). (Recall that the Lebesgue null ideal is isomorphic to A (v,), as noted in 522W (a-i).)

552P Theorem Let s and A be infinite cardinals. Then the iterated forcing notion P, * P5 has regular
open algebra isomorphic t0 B ax(k,2)-

Remark Here P5 represents a standard P,-name for random real forcing; see 5510.

proof In Theorem 551Q), take Q = {0,1}"*, ¥ = T,, Z = N (v,) and I = X. If we identify {0,1}* x {0,1}*
with {0,1}*** where x + ) is the ordinal sum, then A = Y®Bay becomes a o-algebra intermediate between
BCI.K+A and T,g_;,_)\, while

J ={W:W e A, vaW[{z}] = 0 for vi-almost every z € {0,1}*}

is just ANN(ve4a)- It follows at once that the algebra 20 = A/J is isomorphic to B, ; and 551Q tells us
that RO(P * P5) is isomorphic to 2. Since we are supposing that x and X are infinite, B,y x = Brax(e,n)
and we’re done.

552X Basic exercises (a) Let x be an infinite cardinal. Show that |Fp, &% = (k*)7, where these are
all cardinal powers.
(b) (MILLER 82) Suppose that ¢ < w,,. Show that
IFe., cov N (ve,) = we < cov N (1y).

(¢) Suppose that the continuum hypothesis is true. Show that
||—]p>w2 ¢ is a precaliber of every measurable algebra.

(Hint: 525K.)

(d) Describe Cichoti’s diagram in the forcing universe V2 (i) if we start with ¢ = wy (i) if we start with
m = ¢ = wy. Locate the shrinking number of Lebesgue measure in each case.

(e) Suppose that the continuum hypothesis is true. Show that
[Fe,, ci(P({0,1}*) \ N(1,)) = ¢, so there is a family (v¢)e<. of additive functionals on
P([0,1]) such that sup,_, v¢ A is the Lebesgue outer measure of A for every A C [0, 1].
(See LipECKI 09.)

(f) Suppose that the continuum hypothesis is true. Show that there is a sequence (A, ),en of subsets of
[0, 1] such that there is no measure extending Lebesgue measure which measures every A,. (Hint: there is
a sequence (fn)nen of functions from w to itself such that {f,(§) : n € N} = {n:n < &} for every £ < wy.)

552Y Further exercises (a) Let x and A be infinite cardinals, and p a Baire measure on {0, 13 ()
Show that there is a P,.-name i for a Baire measure on {0, 1}* such that e, i{z: 2 Ca} = (p{z: 2 Ca})”
for every z € Fn.,(\;{0,1}). (ii) Show that if A C {0,1}*, then |Fp, *(A) = (u*A)”.
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COV

(b)(i) Show that for any non-zero cardinals k, A there are cardinals and 673" such that

e, cov N (v5) =0, mnonN(vg)=0m".

(Hint: if k is infinite, B, is homogeneous.) (ii) Show that #¢3" increases with x and decreases with A, while
0" decreases with x and increases with \. (Hint: 552P.)

552 Notes and comments In any forcing model, all the open questions of ZFC re-present themselves for
our attention. The first and most important question concerns the continuum hypothesis, and in most cases
we can say something useful. So I start with 552B: ‘if you add x random reals, then the continuum rises
to k¥’. Any mnemonic of this kind has to come with footnotes concerning the interpretation of the terms,
because we cannot rely on the formula ‘k“’ meaning the same thing in the universe we start from and the
forcing model we move to. Indeed, in general forcing models, the symbol ‘x’ has to be watched, since I
normally reserve it for cardinals, and cardinals sometimes collapse; but here, at least, we have a ccc forcing
notion, and cardinals are preserved (5A3ND). Actually, ‘k“’ also is safe in the present context (552Xa); but
we find this out afterwards.

One of the central properties of random real forcing concerns iteration: if you do it twice, you still have
random real forcing. Of course ‘iterated forcing’, in a vast variety of forms, is an indispensable technique,
and two-stage forcing, as in 552P, is the easiest kind. I do not expect to quote this result very often in this
book, but that is because (for random reals) I am interested as much in the forcing notions themselves, and
the measure algebras which are their regular open algebras, as in the propositions which are true in the
forcing models. So when I see a proof which depends on repeated random real forcing my first impulse is
to examine the relevant properties of measure algebras, and this generally leads to a direct proof in terms
of single-stage forcing. Note the form of Theorem 552P: as in 551Q), it does not claim that the iteration
P, %P5 is isomorphic t0 Prax(x,x), but only that they have isomorphic regular open algebras, and therefore
lead to the same mathematical worlds (5A3I).

A typical example is in 552J. Random real forcing does not change outer measures (552D). If we think
of P, as an iteration Py, ; * 7, and we have a P,,-name E for a ‘new’ negligible set, then, thinking in VF7,
the set of members of {0,1}* contained in E will have to be negligible. Back in the ordinary universe, we
shall have a Pj-name for a neghglble set containing every member of {0, 1}’\ with a Py-name which belongs
to E. In 552J, the idea is that if A is a set in VP~ and every small subset of A is negligible in VF=, then at
every stage the set of members of A which have been named so far must be negligible in VF#, just because
there are not very many names yet available, and therefore is also negligible in the intermediate universe
of the forcing notion Pg,. This must be witnessed by a countable structure in the intermediate universe,
and the Pressing-Down Lemma tells us that there is a stationary set of levels for which the same countable
structure will serve; it follows easily that we have a name in V'~ for a negligible set including A. T invite
you to seek out the elements of the formal exposition in 552J which correspond to this sketch.

552E can also be approached as a result about iterated random real forcing. Here, Ais just the set of
‘random reals’ #¢ built directly from the regular open algebra B,.. To see that this is a Sierpinski set, we
need to look at a negligible set. A negligible set in V¥~ is included in one which has a name C in V¥ for
some countable J C k. Thinking in VF7, all but countably many of the Z¢ are still random, because they
are the ‘random reals’ of VF=\7, and therefore do not belong to C. The proof of 552E is no more than a
formal elaboration of this idea, with the extra technical device necessary to reach ‘strongly Sierpinski’.

In 552C all we need to know is that P, is weakly o-distributive, and the key fact is that for every name
f for a member of NY there is an h in the ordinary universe such that |-p, f <* h; this is why such partial
orders are sometimes called ‘w“-bounding’. The rest of the argument is based on the same ideas as part (d)
of the proof of 5A3N.

In 552F-552J I list the results known to me about the additivity, covering number, uniformity, cofinality
and shrinking number of the ideals N(vy) after random real forcing. Covering number, uniformity and
shrinking number are the difficult ones, and even the most basic case, when A = w and we are forcing with
P,,, seems not to have been completely sorted out. 552Gb and 552Hc show that there is room for surprises.
My method throughout is to use the results of §551 to relate N'(vy) in VE= to N(v, x vy) in the original
universe. Given a P,-name W for a negligible set in {0,1}*, we have a negligible W C {0,1}* x {0,1}*
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such that |p, W C W, and then a negligible V' C {0,1}*, corresponding to the non-negligible horizontal
sections of W, such that ({0,1}* \ V)" is disjoint from W and W in V=,

In 552K-552M I give some lemmas which apparently have nothing to do with forcing. The intention is to
express as much as possible of the argument of Carlson’s theorem 552N as results in ZFC. In this section I
am taking forcing arguments particularly laboriously; but even when you have got to the point where they
seem elementary to you, I believe that it is still worth while minimising the regions in which one has to deal
with more than one model of set theory at a time. In 552M the parts (ii) and (iii) contrast oddly. Part (ii)
is there to serve as a combinatorial form of (i) which will be accessible for the purposes of 552N. Part (iii) is
there to give a notion of the scope of 552N, and in particular to show that in random real models we have
extension theorems for many measures not obviously similar to the basic measures v,. I have already noted
a similar result in 543G.

In §439 I described a number of examples of probability spaces (X, X, 1) with a countable family A C PX
such that p has no extension to a measure measuring every member of A. In particular, as observed in
439Xk, Grzegorek’s theorem 439Fc gives us an example of a subspace of [0, 1] for which the subspace measure
fails to be extendable to some countably-generated o-algebra. These are ZFC examples; we really do need
something like ‘compactness’ in 552M(iii).

Note that CARLSON 84 gives a rather sharper form of Theorem 552N, carrying information about the
covering numbers of the measures constructed in VP,

Version of 3.5.14
553 Random reals I1

In this section I collect some further properties of random real models which seem less directly connected
with the main topics of this book than those treated in §552. The first concerns strong measure zero or
‘Rothberger’s property’ (534C*) and gives a bound for the sizes of sets with this property. The second
relates perfect sets in V' to negligible F, sets in the original universe; it shows that a random real model
can have properties relevant to a question in §531 (553F). Following these, I discuss properties of ultrafilters
and partially ordered sets which are not obviously connected with measure theory, but where the arguments
needed to establish the truth of sentences in V¥~ involve interesting properties of measure algebras (553G-
553M). I conclude with notes on medial limits (553N) and universally measurable sets (5530).

553A Notation I repeat some formulae from 552A. For any set I, v; will be the usual measure on {0, 1}/,
Ty its domain, A (vy) its null ideal and (B, 7) its measure algebra. Bajy will be the Baire o-algebra of
{0,1}f. For a cardinal x, P, will be the forcing notion B}, active downwards.

553B Lemma If A € Rbg({0,1}"), then for any f : N — N there is a sequence (z,)nen such that
zn € {0,1}1/(™ for each n and A C ),,cx Umnsni{z :2m C 2 € {0, 1

proof By 534Eb®, A has strong measure zero with respect to the metric p on {0, 1} defined by saying that

p(z,y) = 27" if z[n = yIn and x(n) # y(n).
So for each n € N we can find a sequence (A,;);en of subsets of {0,1}" such that A C Uien Ani and
diam A,,; < 2=/@"(24D) for each i. Take xn; € Ap; if A,y is non-empty, any member of {0, 1}Y otherwise,
and set 2, = i [ f(27(2i+1)) if m = 27(2i+1); take 2o to be any member of {0, 1}(®). Then z,, € {0,1}/(™)
for every m, and if n € N then

AC U Ani C U{x G ) I aACH G

1€N 1€N
= J{z:22mm@un} € (J{z:i222m),
€N m>n

as required.
(©) 2005 D. H. Fremlin

4Formerly 534C, 534E.
5Formerly 534Fd.
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553C Proposition Let xk be any cardinal. Then
IFp, #(A) < ¢ for every A € Rbg({0,1}Y).

proof (See BARTOSZYNSKI & JUDAH 95, 8.2.11.)

(a) Let A be a P,-name for a member of Rbg({0,1}Y). Take any f € NN. Applying 553B in the forcing
language, we must have

|Fe, there is a sequence (z,)nen such that z, € {O,l}f(”) for every n € N and A C
mnEN Umzn{x ., Zn}
Let (2;(n))nen be a sequence of P,-names such that

e, 2 (n) € {0,1}/™ for every n € N,

Fe. A € MpenUpsnfz : 2 2 25(n)}.

(b) Let (e¢)e<w be the standard generating family in B, (525A). Let J C & be a set with cardinal at
most ¢ such that [(n) = #] belongs to the closed subalgebra € ; generated by {e¢ : £ € J} for every f € NV
and 2 € |J,,cn{0, 1}7(™). Let P;: L>(B,) — L>=(€;) be the conditional expectation operator (365QF).

Observe that €; and €' have cardinal at most ¢ = ¢. So we have a family (,),<. of P,-names for
members of {0, 1} such that whenever (d,),en is a sequence in € there is an n < ¢ such that [y, (1) = 1] =
d,, for every n € N.

(c) Let & be a Py,-name for a member of {0,1}", and suppose that a = [i € A] is non-zero. For
2 € U,ent0, 1} set b, = [ D Z]. For m, n € N, set

Cnm = SUP,¢cgo,13m [Pr(x(anb,)) >27"] € €.
Note that if K < m and z € {0,1}" then b, C b,1, so
[Pr(x(anb.)) >27"] € [Ps(x(anb:x)) >27"],

and cpym C Cpp; set ¢, = inf,en Cum. T Suppose, if possible, that ¢, = 0 for every n. Let f € NN be such
that > 7 UkCn, f(n) < Vxa, and set

d = sup,en(SUp.c 0,130 [Pr(x(anby)) >27"]) € €.
Then 7.d < DUga, so a\ d # 0; while

ve(la\d)n[z 22 m]) = Y welanbn[zn) =2]\d)

2€{0,1}/(n)
(because |Fp_f(n) € {0,117 ™)
-y / Py(x(@nb.))
ZE{O,l}f(") [z (n)=2]\d
<27 Y wlE(n) =4
2€{0,1}7(
(because d includes [Py(x(anb.)) > 27"] for every z € {0,1}/(™)
—9
for every n. Consequently
(a\d)n inf,ensup,,s, [# 2 Zf(m)] =0,
that is,
a\d|Fp,& 2 Z;(n) for only finitely many n.

SFormerly 365R.
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But this implies that
a\d|e,i ¢ A,
contrary to hypothesis. X
(d) Continuing from (c), we find that there are an o’ € B}

a |e, & = gy
P Let n € N be such that ¢, as defined in (c), is non-zero. For m € N and w € {0,1}™, set

stronger than a, and an n < ¢ such that

dy = infi>m SUP g0 13k 200w [Pr(x(anb;)) > 27"] € €.
Then
SUPye{0,1}m dy = infr>m, SUP.e{0,1}* [Pr(x(anb.)) >27"] =c,
because
(SuP.e(0,13% 20w [Pr(x(anbz)) > 27" [)rzm

is non-increasing for each w. In particular, dy = c,. Also dy, = dyug(m,0)} Y dwui(m,1)} for every w € {0,1}™.
So if we set

Dm0y} = B N Awlf(m0)}s  Dopugm,yy = b \ dwif(m.0)}

for every m € N and w € {0,1}™, d!, € €; and d,, = d}, N ¢, for every w, and there must be an 7 < ¢ such
that

[95(72) = 1] = supyeq0,13n+1 w(n)=1 o
for every n € N, in which case
[w C yy] = d, for every w € J,,510,1}".
If m € N, then

velan[élm =gylm]) = > wulanb,nd,)
we{0,1}™

/ Py(x(anby) > Y 2 "B(cand,)
we{0,1}m Y dw we{0,1}m
(because ¢, nd,, = dy C [Py(x(anby)) > 27"] for every w)

=2""D.cp.
So if we set a’ = an [& = g,], then
vpa' = v (inf an[&]m = g, m])
meN

= inf v.(an[E]m =y,lm]) > 27" "ee, >0,
meN

and a’ # 0, while ¢’ C a and @’ |Fp, & = 7. So we have a suitable pair a’, 7. Q
(e) Putting (c) and (d) together, we see that for any name & for a member of {0, 1}",
[i € A] sup, < [ = 4]
But this means that
e AC (g :n <

and
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553D Remark If x > ¢ then

|Fe, for any countable family of subsets of {0,1}* there is an extension of v, measuring
every member of the family

(552N). By 5520a and 552Gc we see that in this case

|Fp, any universally negligible subset of {0,1}* has cardinal less than ¢.
The proposition here tells us that

|Fe. any subset of {0,1}* with strong measure zero has cardinal at most ¢
without restriction on .

553E Proposition Let x and A be infinite cardinals, and K a PP,-name such that
e, K is a compact subset of {0,1}* which is not scattered.
Then there is a negligible F, set G C {0,1}* such that
Fe. KNG #0
where G = ({0,1}* x G)” is the P,-name for an F, set in {0,1}* corresponding to G as described in 551K.
proof (a) If a € B, A is a P,-name such that
alFp, A is an infinite subset of {0, 1A

and e > 0, then there is an open-and-closed subset H of {0,1}* such that vy H < e and 7, (a n[AN H = 0]) <
¢. P We may suppose that ¢ = 27% for some k € N. Let (9;);en be a sequence of P,-names such that

alFp, 9 € A and ; # 5
whenever i, j € N are distinct. Let N € N be so large that e~V < %e. Then
albp, there is a finite J C A such that ;[ J # ¢;|J whenever i < j < N,
that is,
SUP je[x]<w [9:1J # 9;1J whenever i < j < N| Da,
and there is a finite set J C X such that

Uo(a\ [9i]J # 9;]J whenever i < j < N]) < %6;

enlarging J if necessary, we can suppose that m = #(J) is such that m > k and (1 — %)Tﬂf < %e.

For each i € N, let f; : {0,1}* — {0,1}* be a (T, Bay)-measurable function such that (in the language
of 551Cc¢) a|Fp, v: = fi - Set

E={z: fi(x)[J # fj(z)]J whenever i < j < N};
then
E* = [4;]J # v;]J whenever i < j < NJ,
and 7 (a\ E*) < Le.

Let L be a subset of {0,1}’ obtained by a stochastic process in which we pick 2% = 2™¢ points
independently with the uniform distribution, and take L to be the set of these points. For any = € E,

Pr(fi(@)lJ ¢ LV i< N)=Pe(LO{fi(@)]] i < N}) =0) = (1 - )*" < Ze.
By Fubini’s theorem, there must be an L C {0,1}7 such that #(L) < 2™¢ and
vi{r:x €E, fi(x)[J¢ LVi< N} < %EZ/HE < %e.

Set H={y:y e {0,1}",y|J € LY and b= [AN H = (]. Then H is open-and-closed, vy H = 27" #(L) <
€ and

D.H.FREMLIN



46 Possible worlds 553E

anbCanfy ¢ HVi< N]=an{z: fi(zx) ¢ HYi < N}*
=an{z: fi(x)]J ¢ L for every i < N}*
Cla\E)u{x:xz€E, fi(x)]J ¢ L for every i < N}*
has measure at most ¢, as required. Q

(b) Because every non-scattered space has a non-empty closed subset with no isolated points, we may
suppose that

e, K has no isolated points.
For any € € ]0, 1] there is a compact negligible set £ C {0,1}* such that
T JKNF#0]>1—e
P Choose (an)neN, (Hn)nen and <Kn>neN inductively, as follows. ag = 1 and Ky = K. Given that
an |Fp, K, is a non-empty compact set in {0, 1}* without isolated points

and D,a, > 1 —¢, let H, C {0,1}* be an open-and-closed set of measure at most 2~" such that a,; =
Gp N ﬂKn N H, # (] has measure greater than 1 —e. Now let K41 be a P.-name such that |Fep. Kpi =
Kn N ﬁn Because
an+1 e, Kn is a compact set without isolated points, ﬁn is open-and-closed and Knﬂf{n #+
0, so Knﬂ is a non-empty compact set without isolated points,

the induction continues.
At the end of the induction, set F' =

mnGN ﬁn’ SO

alFp, F N K is the intersection of the non-increasing sequence (K, ),en of non-empty
compact sets, so is not empty.

neny Hn and @ = inf,enay,. Then 7ea > 1 — € and |Fp, F =

So
U[FNK #0] > va>1—e
Also, of course, v, F = 0, as required. Q
(c) Finally, let (F},)nen be a sequence of compact negligible sets such that
T JKNE, #0]>1—-2""

for every n, and set G = |J,,cy Fn; this works.

553F Corollary Suppose that ¢f A (v,,) = w; and that k > ws is a cardinal. Then
|Fp, w1 is a precaliber of every measurable algebra but does not have Haydon’s property.

proof By 523N,
cf N (vy,) = max(cf N (1), cf[w1]S%) = w;

let (He)ecw, be a cofinal family in NV (v, ). Now 552Ga and 525J tell us that

|Fe. cov N (vy) > wi for every infinite cardinal A, so w; is a precaliber of every measurable
algebra.

Next, defining ﬁIg from H¢ as in 551K and 553E,
e, He € N(v,,) for every € < wy
(551K d; remember that in this context we do not need to distinguish between wy and @y, by 5A3NDb), while
e, if K C {0,1}** is a non-scattered compact set then K meets |J,_,, He.

P Suppose that a € B and K is a P.-name such that

alFp, K C{0,1}*' is a non-scattered compact set.
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If a = 1 set K’ = K; otherwise let K’ be a P,.-name such that
albe, K' =K, 1\a|p, K' ={0,1}*1.
By 553E, there is a negligible set G C {0,1}** such that |-p, K’ NG # (. Now there is a & < w; such that
G C Hg, so that
albs, KNS KOG 0. Q
By 531V,
|Fp, w1 does not have Haydon’s property.

553G Lemma Let (21, i) be a probability algebra, € a subalgebra of 2[, and (e,),en & sequence in 2
stochastically independent of each other and of €. Let I C 2 be a finite set and &; the subalgebra of 2
generated by €U I. Then for every e > 0 there is an ng € N such that |a(bne,) — b - fie,| < efib whenever
be € and n > ng.

proof (a) The first step is to show that if u € L1(2, i) then

for every e > 0 there is an ng € N such that | [, . u — fie, - [, u| < € [ [u] whenever b € € and

n > ng.
P Consider the set U of those u € L'(, j1) for which this true. This is a linear subspace of L' (%, ji). Also it
is || [[1-closed, because if [ Jv—u| < § [|u|and | [, v—fie,- [, o] < je [|v|then | [, u—fie,- [, ul <e [|ul.
If we take ©,, to be the subalgebra of 2 generated by €U {e,, : n < m}, then fi(anbne,) = G(anbd) - fie,
whenever a € ©,,, b € € and n > m, so xa € U for every a € ©,,. Consequently ya € U for every a € D,
where ® is the metric closure of | J,, .y ©m in 2. Identifying LY (D, i]®) with the closed linear subspace of
LY (2, i) generated by {xa : a € D} (365Q, 365F), we see that U D L}(D, 1] ®). Now suppose that u is any
member of L' (%A, ji). Then we have a conditional expectation Pu of v in L'(D, i D) (365Q), and

|fbmen u-— ﬂb ’ fbu‘ = |fbmen Pu— ﬂen ) fb Pul
for every b € € and n € N, while |Pu| < Plu|, so v € U because Pu e U. Q
(b) I show now, by induction on #(I), that if a € 2 then
for every € > 0 there is an ng € N such that |i(anbne,) — G(anbd) - fie,| < epa whenever b € €;
and n > ng.

P If T is empty, we can apply (a) with u = xa. For the inductive step to #(I) = k+ 1, express I as JU{c}
where #(J) = k. Take a € 2. Let ng € N be such that

f(anc)nbre,) - illanc)nb) - fies] < eplanc),

A((a\c) nbrien) — (@) &) nd) - fea] < epa(ar 0
whenever b € €; and n > ng. Now take b € €; and n > ng. There are ¢/, b € €; such that b =
(' ne)u (b \ ¢), so that
)Nt nen) —a((anc)nd’) - ey,

(a\c)nb"ney) —pa((a\e)nb”) - ey,
)Nt nen) —a((anc)nd’) - fie,|

+a(a\e)nb" ne,) — a((a\e)nb”) - fien|
<ei(anc) +enla\c) = ena.

lp(anbnen) — p(and) - fie| = Iu((aﬂc
+ i
anc

< |a((

Thus the induction proceeds. Q
(c) Now the result as stated is just the case a =1 in (b).

553H Theorem If k > ¢, then

|Fp, there are no rapid p-point ultrafilters, therefore no Ramsey filters on N.
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proof (See JECH 78, §38.)

(a) Let (e¢n)e<n,nen be a re-indexing of the standard generating family in B,. Let F be a P.-name for
an ultrafilter, and set @ = [F is a rapid p-point ultrafilter]. ? Suppose, if possible, that @ # 0. For each
fenn,

a|Fp, thereis a D € F such that #(D N f(k)) < k for every k
(538Ad); let D be a P,-name for a subset of N such that
ale,Dy € F
and
ale #(Dy 0 f(R)) <

for every k € N. Let J C k be a set with cardinal at most ¢ such that [n € Df]] belongs to the closed
subalgebra € generated by {eg; : £ € J, i € N} for every f € NV and every n € N, and a also belongs to €.

(b) Let ¢ < k be such that the ordinal sum ¢ + k& does not belong to J for any k € N. For each k € N
let Ck. be a P,.-name for a subset of N such that [n e Ck]] = ectk,n for every n € N. Set ¢, = [[C’k ¢ .7:]] and
let Ay, be a P,-name for a subset of N such that

ke, A =N\Cr € F, 1\ck|p Ax=Cr € F.
Then ||—pmAk e F for every k, and [n e Akﬂ = ¢ A ¢t for every n e N.
(c) For k, n € N set
ben = [0 € i<k Ai]] =inf; [0 € AZ]] =inf,cp ¢ A ecyin.

Then we have a non-decreasing f : N — N such that #,(cnbg,) < (2751 —272K)5, c whenever c € €, k € N
and n > f(k). P Define f inductively, as follows. If k = 0 then (interpreting inf () as 1) we have by, = 1
for every n so we can take f(0) = 0. For the inductive step to k + 1, let € be the closed subalgebra of B,
generated by €U {ecy;n 1 i < k, n € N} and D), the subalgebra generated by €, U {¢; : i < k}. Then €
and (ecyrn)nen are stochastically independent, so Lemma 553G tells us that there is an f(k + 1) > f(k)
such that

[T (dnectin) — %Dmd| < i -27%5,.d whenever d € ®j, and n > f(k +1).

Take n > f(k+ 1) and ¢ € €. Then

DK(CO kaan) = ﬁ,i(c N by N (C]€ A 6§+k,n))
= DE(C N by N Ck) — 2DK(CI’W b, Nep N 6<+k,n) + DH(CO brn N 6(+k,n)

_ 1_
<2l (cnben Nk Nectrn) — 5%(00 bin N k)]
_ 1_ 1_
+ |De(cnben Nectirn) — iun(cm ben)| + Euﬁ(cm bin)

< 2*kﬂ,ﬁ(cﬂbknﬂck)—|—2ﬁl4 27k 5 (e nbrn) +%17,§(cmb1m)

1.

12

(because all the elements ¢ n by, and ¢n by, Nc belong to Dy)
<(27F 3 4+ %)ﬂﬂ(cn bin)

< (2—19—3 + %)(2—k+1 _ 2_2k)17KC

(because n > f(k))
<@ F—27% e

So the construction proceeds. Q
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(d) Because
a|Fp, F is a p-point ultrafilter and Ay € F for every k,
there are a P.-name A for a subset of N and a P,-name § for a function from N to itself such that
alFp A e Fand A\ A; C g(k) whenever i < k € N.
Let g (in the ordinary universe) be a non-decreasing function such that f(k) < g(k) and . ([g(k) > g(k)"])

<27k=2p,_a for every k. Set a; = an [§ < g]; then v.a; > 30,a.

(€) Take the function g from (d) and the name D, from (a), and set d,, = an [ € D,] € € for every n.
Then

o Paldn brn) < 2R (R + 1)

for every k € N. P Set K = g(k+ 1) \ g(k). We have

g(k+1)—1
> Oaldanbrn) =Y Ouldn nbgn n[I = Dy N K])
n=g(k) neK ICK
= Z Zﬂn(dnnbknm[[f: D, NKJ)
ICK nel

(because d, N[I = Dy N K] C [ € Dy n[I = Dy N K] is zero if n ¢ I)
= Z Zﬂn(dnmbknm[[f:l')gﬂf(}])

I€[K]Sk+1 nel
(because d, N[I = Dy N K] Can[l € DyNg(k+ 1) is zero if #(I) > k + 1)
<27 N N ni(den [T = Dy N K])

Te[K]Sk+1nel
(because d,, N [I = Dy N K] € € for every n and I, and we are looking only at n > g(k) > f(k))

<27M(k+1) Y w[l=DyNK]
I€[K]Sk+1
<27k 4+1). Q

(f) As a#0, a1 # 0. Let m be such that "= 27%"1(k + 1) is less than 7,a;; then
g = a1\ SUPg>m SUPg(k)§n<g(k+1)(dn N bn)

is non-zero. Let B be a P,-name for a subset of N such that |p, B = AnD,\ g(m)". Then a|-p, B € F.
But as |Fp.B = 0. P Take any n € N. If n < g(m) then |Fp.n ¢ B. If k > m and g(k) < n < g(k + 1),
then

a1 e g(k) < g(k)", alFe. A\ A; C g(k) for every i < k,
0

ainfneB]canlie A\ gk)] C [ € Nyei Ai] = bin-
Also, of course, IFe.B C Dg,.so ay N[ € B] € dy, Nby, is disjoint from dy. But this means that s [Fp, 7 ¢
B. As n is arbitrary, az |Fp, B = 0. Q Now

as e 0 € F,
which is impossible. X
(g) So a =0, that is,
e, F is not a rapid p-point ultrafilter.
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As F is arbitrary,

|Fp, there are no rapid p-point ultrafilters.

(h) Finally, by 538Fa,

|Fe, there are no Ramsey ultrafilters.

5531 Lemma Suppose that S C w? is a set such that whenever n € N and (I¢)¢<,, is a family in [w]”
such that Ie N ¢ = 0 for every { < wy, there are { < wy and n < & such that I¢ x I;, € S. Let P be the set

{I:1€[w]<¥, INEC S[{¢}] for every € € T},
ordered by C. Then P is upwards-ccc.

proof Let (Je)ecw, be any family in P. Then there are distinct £, n < w; such that J: U J,, € P. P By
the A-system Lemma (4A1Db), there is an uncountable set Ay C wy such that (Jg)eca, is a A-system with
root J say; next, there is an n € N such that A, = {{ : £ € Ao, #(J¢ \ J) = n} is uncountable. If n =0
then Je U J, = J belongs to P for any &, n € A; and we can stop. Otherwise, there is an uncountable
Ay C Ay such that whenever &, n € Ay and 1 < £ then max J, < min(J¢ \ J). Re-enumerate (J¢ \ J)eca,
in increasing order to get a family (I¢)e<w, in [w1]™ such that min I, > & for every {. Our hypothesis tells
us that there are nn < & such that Ir x I, CS. Let ¢, ¥ < wy be such that Iz = Jo \ J and I), = Jpy \ J,
and consider I = JUI:Ul,. Ifaeland € lNq,

—— either a, B both belong to J,» so (o, 3) € S

—— or «,  both belong to Jg so (o, 8) € S

—ora€land f €I, 50 (o, 3) € S.
So Jer U J,y = I belongs to S. Q

Thus P has no uncountable up-antichains and is upwards-ccc.

553J Theorem Let s be an infinite cardinal. Then

|Fp, there are two upwards-cce partially ordered sets whose product is not upwards-ccc.

Remark If x > w this is immediate from 552E, 537F and 537G. So we have a new result only if x = w.

proof (a) Let (e¢)cc, be the standard generating family in B,. For J C & let €; be the closed subalgebra
of B, generated by {e¢ : £ € J}. For £ < w;y let he : £ — N be an injective function.

(b) Let Sy be a P.-name for a subset of w? such that

[[(ga 77) € SO]] = €he(n) if n< 57

= 0 otherwise.

Then
|Fe, whenever n € N and (I¢)¢<y, is a family in [w1]™ such that Ir NE = @ for every £ < wy,
there are £ < w; and 7 < ¢ such that Iz x I,, C Sp.
P? Suppose, if possible, otherwise. Then we have an n € N, an a € B/ and a family (f5>5<wl of P,-names
such that

alFe, I, € [wi \ 7)™ and I x I,y Z Sy whenever n < £ < w;.

K

525Tc¢ we can find an uncountable set Ay C wy and an e > 0 such that 7, (ag Na;,) > € whenever £, n € Ay.
Next, there is an uncountable set A; C Ay such that I,, C £ whenever £ € A; and n € { N Ay; consequently

I, N I¢ = () whenever &, n € A; are distinct, and Dﬁﬂfg X jn C S’O]] =92 ",
Let § > 0 be such that 2*”2(6 —26) —26 > 0. For each £ € A; we can find a finite set J: C k and an
a; € €, such that v (ag & ag) < 6. Let m € N be such that

Ay ={£: £ €A, JeNw Cm}

For each ¢ < w; there are ag € B}, stronger than a, and I¢ € [w; \ &]" such that ag |Fe, I¢ = Ic. By
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is uncountable. Let { € Ay be such that Ay N ¢ is infinite. In this case, (h¢[l])nea,ne is disjoint for
each ( € I¢, so we have an n € Ay N & such that he[l,] N m = ( for every ¢ € I.. It follows that

[[fg X 1:,] C 5] e C\m» while a’g Nnay, € Cou(r\w), SO

v (ag nayn[Ie x I, € So]) = vu(ag nal) - ve[Le x I, € So]

2

If we set b = ag na, n[Ie x I, € Sol,

27" D (ag nay).

Deb > 27" B (ak naly) — 20 > 27 (D (ag nay) — 28) — 26

> 27" (e — 26) — 26 > 0.
But now we have b C a and
blke, j& X jn = j{ X jn C So,
which is supposed to be impossible. XQ

(c) Let Py be a P,.-name for a partially ordered set defined from Sy by the process of 553I, so that for a

finite set I C w;
III € Po]] = inf£7n€[7n<§ eh&(n)'
By 5531 and (b) above,
IFe. Py is upwards-cce.

(d) Similarly, if S; is a P,-name for a subset of w? such that

[[(§777) € Sl]] = 1\eh5(77) 1f77 < 57

= 0 otherwise,

and Py is a P.-name for a partially ordered set defined from S; by the process of 5531, then

[, P1 is upwards-ccc.

(The point is just that (1\ e¢)¢<, also is a stochastically independent family of elements of measure 3. 1) But

now observe that if n < & < ws then

[{E. 1} € Pon Pi] = [(€, ) € So N S1] = engiy N (1\ eng() = 0.

So

IFe, {{{&},{€}} : € < wi} is an up-antichain in Py x Py, and Py x Py is not upwards-ccc.

Thus we have the required example.

553K I extract an elementary step from the proof of the next lemma.

Lemma Let 2 be a Boolean algebra and v : 2l — [0, co[ a non-negative additive functional. Then

Do Vai S v(supic, i) + 3 i<, V(ai N ay)

whenever ag, ... ,a, € 2.

proof Let d be any atom of the subalgebra of 21 generated by ag,...

d C a;}) =m. Then

v(dn supa;) + Zu(dmaina] ZV (dna;)
1=0

isn i<j<n
—0ifm <1,

=1+ ™70 = L - 1) (m -

2 2

Summing over d, we have the result.

,Gpn. Suppose that #({i : i < n,

2) > 0 otherwise.
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553L Lemma Let (2, i) be a probability algebra, I an uncountable set, X a non-empty set and F an
ultrafilter on X. Let (a;z)icr.cex be a family in 2 such that inf;c;lim,_, 7 fia;z > 0. Then there are an
uncountable set S C I and a family (b;);cs in 2\ {0} such that

biNbj C SUP,cp Qix N Ajz

forallz, j € Sand F € F.

proof (a) We can suppose that I = w;. For each £ < w; set ug = lim,_, 7 xa¢z, the limit being taken for
the weak topology on L%(2L, ji) (§366), so that

fa ue = lim,, r fi(a N ags)

for every a € 2. In particular, [ue > €, where € = infec, lim,_, 7 fiag, > 0; set b’5 = Jue > %e]], so that
b, # 0.
€

(b) For &, n < wy set
Cen = INfpeF SUPcp Qg Ny
For K C w; set
dx = infeek b} \ SUP¢ ek are distinet C€n-

If dx # 0 then e#(K) < 3. P We may suppose that K is finite and not empty; set n = #(K). We have
de ug > efidy for every £ € K, so

Fo={z:2€ X, ji(dg nag;) > tefidg for every £ € K}

belongs to F. Let F' € F be such that, setting c’&7 = SUP,cp Qex N Uy, ﬂ(c’én \ Cen) < ﬂ:f—f for all &, n € K.
Take any x € F N Fy. If £, n € K are distinct,

~ -~ fid
A(dx N Q¢ man:r) < ,u(c'&? \ 0571) < nf7
S0
%ﬂdK < Z Aldr Nagg) < fidg + Z A(dr Nage Nay:)

EEK ENEK E<n
(553K)

_ n(n—1) pdx _ 3 _

< pdi + —5 2 < 2,UdK

and ne < 3. Q

(c) For each infinite { < w; there is therefore a maximal subset K¢ of £ such that b = dr.u{ey 1s non-zero.
Every K¢ is finite, so there is a K € [w]<¥ such that S = {{ : w < § < wi, K¢ = K} is stationary. P By
the Pressing-Down Lemma (4A1Cc), there is a ¢ < w; such that {{ : & < wy, sup K¢ = (} is stationary. As
[C + 1)< is countable, there will be a K C ¢ + 1 such that {¢ : K¢ = K} is stationary. @ Now suppose that
n, &€ S and n <& Then

by 1be \ ene = di,ufn}y Ndr ugey \ Cen = drufne =0
because K U {n} is a subset of £ properly including K¢. So we have an appropriate family (b¢)ecs.

553M Proposition (LAVER 87) If m > w; and & is any infinite cardinal, then

|Fp, every Aronszajn tree is special, so Souslin’s hypothesis is true.

proof (a) By 5A1E(b-ii) and 5A1E(d-ii), it is enough to show that

|Fp. every Aronszajn tree ordering of wy included in the usual ordering is special.
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Let < be a P,-name for an Aronszajn tree ordering of wy included in the usual ordering of w;. For «, § < wyq
set agg = [[ddﬂv]], note that ¢aa =1, aap =0 if 8 < o and aap 2 aay Nagy whenever o < f <y < wy.

If F is an ultrafilter on wy containing wy \ ¢ for every ¢ < wy, then lim¢_, 7 ¥.aqe = 0 for all but countably
many a < wy. P2 Otherwise, there is an € > 0 such that I = {a : @ < wy, limg_, 7 flaqe > €} is uncountable.
By 553L, there are an uncountable S C I and a family (b, )acs in 2\ {0} such that

ba Nbg C SUPe>g Gag Nage C Aap
whenever a, § € S and o < 3. Set ¢ = infa<q, SUPgeg\q bs, SO that ¢ # 0. Let Y be a P,-name for a subset
of wy such that [& € Y] = b, for a € S, [« € Y] = 0 for other a. Then
e, < 8 whenever o, B €Y and o < f3,

c|Fp,Y is uncountable;
0
¢|Fp,Y is an uncountable branch in the Aronszajn tree,

which is impossible. XQ

(b) Let (e¢)e<x be the standard generating family in 9B,. Choose inductively a non-decreasing family
(Ja)a<w, of countably infinite subsets of s such that ag, belongs to the closed subalgebra € of B,
generated by {eg : € € J,} whenever § < a < ws.

Let P be the partially ordered set of functions f such that

dom f is a finite subset of wy X w,

for every (o, n) € dom f, f(a,n) € €, and vy f(a,n) > 3,

f(a,n)n f(B,n) nage = 0 whenever (a,n), (8,n) € dom f and § < a.
Say that f < g if dom f C domg and g(a,n) C f(a,n) for every (a,n) € dom f. Then < is a partial order
on P.

P is upwards-ccc. PP Let (fe)e<w, be a family in P. Let Ay C wy be an uncountable set such that
(dom fe)eeca, is a A-system with root K say; let € > 0, m € N be such that

A1 = {E : f S Ao, #(domfg) =m + #(K)7
U fe(a,n) > % + 2e whenever (o, n) € dom f¢}
is uncountable. Let A; C A; be an uncountable set such that a(f,(a,n) A fe(a,n)) < e whenever &,
n € Ay and (a,n) € K; such a set exists because € is metrically separable for each . Let A3 C Az be an
uncountable set such that § < a whenever n € Az, £ € A3, n < &, (8, m) € dom f;, and (a,n) € (dom fe)\ K.
For ¢ € Ag, enumerate (dom f¢) \ K as ((agi, nei))icm. Let F be an ultrafilter on w; containing As \ ¢

for every ¢ < wq, and for ¢ < m let F; be the ultrafilter {F : F C w1, {{: ag; € F'} € F}. By (a), we have
an uncountable A4 C A3 such that

lime 7, Vpaa,,;c =0
for every i, 7 < m and every n € Ay; that is,
lime_, 7 UkQapae; =0
whenever ¢, j < m and n € Ay. But this means that we can find n € A4 and £ € A3 such that n < £ and

UkQa,; oe < mL-s-l for all 4, j < m. Now consider the function g with domain dom f,, U dom f¢ such that
g(a,n) = fpla,n)n fe(a,n) if (a,n) € K,
= fu(o,n) if (a,n) € dom f;, \ K,

= fe(ag, ng)\ SUP Qo e if i <m and (a,n) = (ag, ne).
<m

Then g(a,n) € €, and v.g(a,n) > 1 + € for every (o, n) € domg. If (o, n) and (B, n) belong to dom g and
B < «a, then
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—— if both (8,n) and (a,n) belong to dom f;;, then

g(ﬁ7n) ﬂg(a,n) Naga Cc fn(ﬂ7n) N fn(a7 n) Naga = 0;
—— if both (8,n) and (a, n) belong to dom f¢, then
9(B,n)ng(a,n)naga C fe(B,n) N fe(a,n) Naga = 0;
—if (B,n) = (ayj,ny;) and (o, n) = (agi, ng;) then g(a, n) is disjoint from aq,; .o, = @ga S0
9(B;n) ngla,n) naga = 0.
So g € P and is an upper bound for f, and fe. Thus (f¢)e<w, is not an up-antichain in P; as (fe)ecw, is
arbitrary, P is upwards-ccc. Q

(c) For each a < wy let C,, be a countable metrically dense subset of {c:c € €;_, Dc < %} For a < wy
and ¢ € C,, set
Qac = {f : f € P and there is some n € N such that (o, n) € dom f,

¢ C fla,n) and 7, f(a,n) = % + %DK,C}'

Then @, is cofinal with P. I Because J,, is infinite, € is atomless and there is an a € €;_ such that ¢ C a
and v,a = & + .. Now take n so large that ¢ < n whenever («, i) € dom f, and set g = f U {((a,n),a)};
then f < g € Qac. Q

(d) Because m > wy, there is an upwards-directed set R C P meeting Q.. whenever a < w; and ¢ € C,.
Now, for n € N, let A,, be a P,-name for a subset of w; such that, for every o < wy,

[6 € Ay] = inf{f(e,n) : f € R, (a,n) € dom f} if (a,n) € ] dom f,
fER
= 0 otherwise
Then A,, is a name for an up-antichain for the tree order <. P If 8 < a < wy, then either [5e An]] =0or

[a € An]] = 0 or there are f, g € R such that (a,n) € dom f and (8,n) € domg. In this case, because R is
upwards-directed, there is an h € R such that both (a,n) and (8,n) belong to dom h, so that

[a € A,Jn[B € A,]n[B=ad] € h(a,n)nh(B,n) Nage = 0.
Thus
|-e, if a, B € A, then they are <-incompatible upwards.
As «a and B are arbitrary,
e, A, is an up-antichain. Q
(e) Finally,

”']P’N UneN Ap = w1

P? Otherwise, there is an a < wy such that @ = 1\ sup,¢y[& € An]] # 0. Observe at this point that
[a € A,] € ¢ . for every n. Soa € €5, . Let o’ € € . be such that o’ C a and 0 < Dpa’ < 1, and let c € C,
be such that 7,(a’ Ac) < iﬁma’, so that ¢ # 0 and 7(c\a') < %f/ﬁc. Since R meets Qq., there are n € N,
f € R such that ¢ C f(a,n) and 7, f(a,n) = % + %17,{6.

If g€ P and f < g, then g(a,n) C f(a,n) and vxg(a,n) > %, so

(e gla,m) < 7o f (@) = Puglonm) < Soec.

Because R is upwards-directed, {g(a,n) : g € R, (a,n) € dom g} is downwards-directed, and
7\ [6 € An]) = sup{Fu(c\ glaym)) < g € R, (a,m) € dom g}

=sup{vx(c\g(a,n)): g€ R, f < g} < %ﬂmc.
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Accordingly

(a' n[a € An]) > tulena € Ap]) — e\ a)) > gﬂnc - %Dnc > 0;

but @’ C a is supposed to be disjoint from [& € An]] XQ
So (A, )nen is a name for a sequence of antichains covering wy, and

IFp, (w1, <) is special,

as required.

553N Proposition Suppose that there is a medial limit (definition: 538Q), and that k is a cardinal.
Then

|Fp. there is a medial limit.
proof (a) Let 6 : PN — [0, 1] be a medial limit. Let @ be the rationally convex hull of the usual basis of

', that is, the set of functions v : N — QN [0, 1] such that {n : v(n) # 0} is finite and Y- ,v(n) = 1. Note
that @ is absolute in the sense that

| @ is the rationally convex hull of the usual basis of ¢!

for every forcing notion P. Let F be the filter on @ which is the trace of the weak™® neighbourhood filter of
0, that is, the filter generated by sets of the form

{viveQ X gv(nu(n) — fu(n)f(dn)| < e}

where u € /> and € > 0. (Identifying Q@ C ¢! with its image in (£>°)* = (£1)**, the weak™ closure of Q is
convex, so is equal to its bipolar (4A4Eg) and is the set of positive linear functionals on ¢*° taking the value
1 on the order unit yN. See 363L and 538P for the notation f...6(dn).) Let F be the P,-name derived
from F and ({0,1}*, Ty, N,) by the method of 551Rb, so that

e, F is a filter on Q.

Let © be a P,.-name such that

[Fp. 7 is a bounded additive functional on PN, and identifying Q with a subset of (£°°)*,
itself identified with the space M (PN) of bounded additive functionals on PN, v is a

cluster point of F for the weak* topology.

(b) Suppose that a € B} and that ¢ is a P,-name such that
a|Fp, ¢ is a sequence of Borel subsets of {0, 1}".
By 551Fb, we have for each n € N a set W,, € T,.®Bay such that
a -, &(i) = W,

where W, is defined as in 551D. Let A = v, X v, be the product measure on {0,1}* x {0, 1}. Because
6 is a medial limit, [fxW,(z,y)0(dn)A(d(z,y)) is defined and equal to fAW,,0(dn); that is, there are a
conegligible Baire set W C {0,1}* x {0,1}" and a Baire measurable function 1 : {0,1}* x {0,1} — [0, 1]
such that

U(z,y) = fon(a:, y)0(dn) = lim, 7 Y " v(n)xWy(z,y)
whenever (z,y) € W, and
[ dx = fAW,0(dn) = limy_ 7 > o0 g v(n)AW,.
Let W and 1E be the corresponding P,-names, as in 551D and 551M, so that
ke, W € Bay and 4 : {0,1}Y — R is Baire measurable.
Moreover, since v,-almost every vertical section of W must be v,,-conegligible,

I-e. VUJVT/ =1
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(551I).
(c) Now suppose that $ is a P,-name and that b € B} is stronger than a and such that
ble, 5€W.

(i) By 551Cc, there is a T,-measurable f : {0,1}* — {0, 1}" such that

blke, $=f.

Expressing b as E* where FE € T, \ N, (z, f(z)) € W for v.-almost every z € E, by 551Ea.
For each m € N, consider

Com ={(z,v): 2 €{0,1}*, v € Q, (z, f(x)) € W,

o0

[, f(2)) = D v(n)xWa(z, f(2))] < 27"},

n=0
Then C,, € T,&PQ; and if = € {0,1}* is such that (z, f(z)) € W, C,,[{z}] € F. Consequently
blFe, C € F,
where in this formula C,, is the P.-name defined by the method of 551Ra. At the same time,
ble, [¥(5) — Sos s v(n)x(é(n))($)] < 27™ for every v € Ch,.

P Suppose we have a ¢ stronger than b and a Py-name ¢ such that c|fp, 0 € C,,. Then there are a
GeT,\ N, and a v € Q such that G* C ¢, G* |Fp, v = ¥, and (z,v) € Cy, for every z € G. Setting

h(z) =¢(z, f(x)), hal(z) =xWa(z, f(z))
for z € {0,1}" and n € N, and interpreting fz fz as in 551B,

‘i

ble, i £ =14(3),

and

blle, i = (XW)7(3) = (XWn)(3)
(551Nd)

= (xe(n))(5)
for n € N. For z € G, moreover, |h(z) — > 7 v(n)h,(z)] <27™, so
G* | [9(3) = oo 0(n)x () (3)] = [h = oy 0(n)hn| <27,
As c and v are arbitrary, we have the result. Q

(ii) As m is arbitrary,

blle, {v: v € Q, [5(3) = 2% v(n)x(é(n))(5)] < €} € F for every e >0,
that is,

blp, $(8) = lim, = 3707 g o(n)x(é(n))(3)-

As b and $ are arbitrary,
alkp, ¥(y) =1lim, #3207 6 o(n)x(é(n)(y) for every y € W
since |Fp, W is conegligible,
alre, ¥ =ae lim, #3502 v(n)x(é(n)).

Looking back at the choice of ©, we see that

alFe, ¥(y f x(¢ v(dn) for v,-almost every y.
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(d) As for the integral of 1/7, 551Nf tells us that

”'IP’- fi/_;dyw = }_i
where I now set h(z) = [ (z,y)v,(dy) for x € {0,1}*. Similarly, setting hy,(z) = v, W,[{z}], we have

—

”‘P V() = I
Set
H = {x:x € {0,1}*, W[{z}] is conegligible in {0, 1}};

then H is conegligible in {0,1}". Now remember that 6 is a medial limit. If 2 € H we have ¢(z,y) =
FxXWo(z,y)0(dn) for every y in the conegligible set W[{z}], so

— [wlematay) = [fxWaep)otanv.ay)
:][/ XW (2, y)v, (dy)f(dn) :][Van[{m}]H(dn) = Uh_I)I}:Z’U(n)h (z)
n=0
So if, for m € N, we set
Chy = {(00): 2 € 0170 €. o) ~ ST ()] <277,

we shall again have |-p, C7, € F; and if G € T, \ N, and v € Q are such that G* is stronger than p and
G* |z, v € C',, then

G* ”’IFD |f¢d’/w_zn o? o(n)vye(n)| <27,
So
albe, {v: ][ ¥dv, — S0 6(n)ueé(n)| <27} € F

for every m, and
alkp, fl/)duw =lim _ z> 7,0 fl/w

(e) As p and ¢ are arbitrary, we see that
|Fe,. © satisfies condition (iv) of 538P, so is a medial functional.
It is now easy to check that
|Fe. 7 >0, N =1 and &{n} = 0 for every n € N, so ¥ is a medial limit.

This completes the proof.

5530 For the most familiar classes of ‘small’ set — the Lebesgue null ideal, or the meager ideal of R, for
instance — it is easy to calculate the number of sets in the class; because there is a nowhere dense Lebesgue
negligible set with cardinal ¢, there must be exactly 2° meager Lebesgue negligible sets, and therefore there
are just 2° Lebesgue measurable subsets of R” for any r > 1. But when we come to the ideal Nygiversal << PR
of universally negligible sets, or the algebra 3>,,, C PR of universally measurable sets, the position is much
less clear. In general, since by Grzegorek’s theorem (439F) we know that there is a universally negligible
subset of R of cardinal non M (v,), we can say that

¢ < 2nonN V) < #( unlvergal) < #( ) < 2°.

It turns out that in random real models these inequalities may well collapse to the lower bound, as in (b) of
the next theorem.

Theorem (LARSON NEEMAN & SHELAH 10) Let x be an infinite cardinal.
) |Fp, every universally measurable subset of {0, 1} is expressible as the union of at most
¢ Borel sets.

(b) If the cardinal power k° is equal to &, then

|Fp, there are exactly ¢ universally measurable subsets of {0, 1}.
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proof (a)(i) It will save a moment later if I note at once that we need consider only the case x > ¢. P If
Kk < ¢, then k¥ = ¢, so

e, c=¢
by 552B. But since we surely have

|Fe, every universally measurable subset of {0,1}" is expressible as the union of at most
¢ singleton sets,

we get the result. Q

So henceforth I will take it that x > ¢. It will save time to have a local notation: if M C x and
V C{0,1}* x {0, 1}, T will say that V is M- if (&,w’) € V whenever (w,w’) € V and @ € {0,1}* is such
that O] M = w|[M.

(ii) (The testing measures.) If E € Ba, \ N (v), g : {0,1}* — {0,1}"V is a Ba,-measurable function,
and I C & is a set, write Qrg, for the set of pairs (V,h) where V € Ba,®Bay and h : {0,1}* — [0,1] is
defined by saying that

hw) = v {w': (Wl Uw' € B, (w,g((wlT)Uw')) € V}
for every w € {0,1}". Then h is Ba,-measurable for every (V,h) € Qrg4. P The function
(w,w) = (@I Uw = {0,1}% x {0,1}"\ — {0,1}"
is (Ba,Q@BaK\I, Ba,)-measurable, because Ba, = @HP({O, 1}) (4A3Na). So
{(w,') : (WU € E, (w,g((w]I)Uw")) eV} e Ban(@BaH\]

and we can apply 252P. Q
We can therefore set

frpg = {((V.h). 1) : (V. h) € Qrrg},
and fiypg will be a P.-name, subject to the conventions I use concerning the interpretation of the brackets
in the formula ((V,h),1).

(iii) If I, E, g and fi1g,4 are as in (ii), then
|Fe, £ is a [0, 1]-valued function with domain Bay.
P Suppose that (Vy, ho), (Vi,h1) € Qrrg and p € P, are such that p|-p, Vo = V4. Express p as F'* where
F € Ba,. By 551Gb, F' = F \ {w: V[{w}] = Vi[{w}]} is negligible. But for w € F'\ F”,
{W: (WU € B, (w,g((wlI)Uw)) € Vo}
={w:(wlHUuw € E, (w,g((wlT)Uw)) € V;}

and ho(w) = hy(w). So plFs, ho = hy.
Thus fi1 g4 satisfies the condition (ii) of 5A3Ea, and

|Fe, ftrEg is a function with domain {(17, 1):V € Ba,®Bay} = Bay
where the second Bay is interpreted in the forcing language (551F). Since
e, b€ [0,1]
whenever h : {0,1}* — [0, 1] is a Ba,-measurable function (551B),
|Fe. fi1Eg takes values in [0,1]. Q
Next,
|Fe. firEy is countably additive, so is a Borel measure on {0, 1}.
P (Compare 551M-551N.) Use the formulae of 551E. If G is a P.-name such that
[Fe, G is a disjoint sequence in Bay,

then there is a sequence (W),)pen in Ba,.®Bay such that
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”'IF"K, G = <Wn>n€N~
If m # n, then
e (W 0 W)™ = W N Wy, = 0,

50 ve{w : Wi [{w}] N W, [{w}] # 0} = 0 (551Ga); accordingly (W, [{w}])nen is disjoint for v,-almost every
w. Setting W = {J,,cy Wa,

hp(w) = v {w' s (W) UW' € E, (w,g((wlI)Uw')) € Wy},
h(w) = v fw' s (Wl Uw' € B, (w,g((wll)Uw')) € W}
for w € {0,1}* and n € N, we see that whenever (W,,[{w}])nen is disjoint then
{w': (WU € F, (w,g((wlI)Uw)) € Wp}nen
is disjoint, with union
{w (W HUw €E, (w,g((wlT)Uw)) e W},
0 h(w) = >0 o hn(w). Accordingly

-,

e, fireg(|J W) = i, W

neN
(551Ed)
n=0
(5A3L(c-iii), 5A3Ld)
= Z p/IEan
n=0

As G is arbitrary,
e, firEg is countably additive. @
(iv) Still supposing that I, E, g and fi;g, are as in (ii), let J, M C k be such that E and g are

determined by coordinates in J, and JNM = I. If V € Ba,.®Bay is M-determined in the sense of (1)
above, and

ke, firmg (V) =0,
then
E*lbp. G2 V.
P We can suppose that J U M = k, so that (I,J\ I,M \ I) is a partition of x. Identifying {0,1}"

with {0,1} x {0,1}’\ x {0,1}M\ | we can find E' € BaIQ%BaJ\I, a Ba1®BaJ\I—measurable function
g {0, 1} x {0,1}"M — {0,1}" and a set V' € Ba;®Bay ;@Bay such that

F = {(wo,wl,wg) : (wo,wl) S E’, Wy € {0, ].}M\I},
g(wo, w1, ws) = g (wo,w) for all wy € {0,1}, wy € {0,1}7M | wy € {0, 1}M\

V = {((wo,w1,ws),x) : (wo,ws),2) € V', wy € {0,1}/\},
The hypothesis
IFe, ftrmg(V) =0
translates into ‘h = 0 v-a.e.’, where

h(w) = v fw' s (WlUw' € B, (w,g((wlI)Uw)) € V},
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that is, identifying {0,1}*\! with {0,1}’\ x {0, 1}M\],
h(wo, w1, w2) = vy r{(wi,wp) = (wo,wi) € B, ((wo,w2), g'(wo,wi)) € V'
So we see that
vinr{(wi, wp) : (wo,wh) € B, ((wo,w2), g'(wo,wi)) € VI =0
for v-almost every (wg, w1, ws). It follows that
vp{wi : (wo,wi) € B, ((wo,w2), g (wo,w)) €V} =0

for v,-almost every (wg,ws,ws), and therefore for vj-almost every (wp,ws), here identifying {0,1}* with
{0,1} x {0,1}M\. Consequently

W = {(wo,w],w2) : (wo,w)) € E', ((wo,w2), g (wo,w})) € V'}
is v,-negligible. But W is also

{(wo, w1, w2) : (wo, w1, ws) € E, ((wo,w1,ws), g(wo,wr,ws)) € V}
={w:weEFE, (wgw) eV}

By 551Ea, [§ € V] = {w: (w,g(w)) € V}*; we have just seen that this is disjoint from E* in B, so
E*lbp. G2V,
as required. Q

(v) (The key.) Once again taking I, E, g and fi;gg as in (ii), let J, M C x be such that J is
countable, E and g are determined by coordinates in J, JN M =TI and M \ I is infinite. Then there are an
E' € Ba, \N(v.) and a Ba,-measurable function ¢’ : {0,1}"* — {0, 1}, both determined by coordinates in
M, such that

e, firEg = f11Eg -

P Because J is countable, I C M and M \ I is infinite, there is a permutation « of x such that a(§) = ¢
for every £ € I and af[J] C M. Set

EF ={w:we{0,1}", wa€E}, ¢ w)=g(wa)foreveryw e {0,1}N.

Because w — wa is an autohomeomorphism of {0,1}*, E’ is a Baire set and ¢’ is Baire measurable. If w,
w' € {0,1}* and w|M = W' M, then walJ = w'alJ; so E' and g’ are both determined by coordinates in
M.

Take any V € Ba,.®Bay and set

h(w) =vo{w' : (Wl Uw' € B, (w,g((wl)Uw')) € V},
P (w) = v {w' : (W UW € B, (w, g (w[I)Uw')) €V}

for w € {0,1}*. Consider the permutation 8 = alx\ I of x\ I, and set fw’ = w’'f for w’ € {0,1}*\]. Then,
for any w,

{W: (WU € F, (w,g(wlT)Uw')) € V}
={w (W) UBW') € E, (w,g((wI) UBW))) € V}
={w' (W)U € E, (w,g((wI)Uw)) eV}

As 3 is an automorphism of ({0, 13"\ v 1), {w' : (W) UwW € E', (w,¢((wI)Uw')) € V} and {o’ :
(wlHUw € E, (w,g((w[I)Uw')) € V} have the same measure. Thus h = &/, and

e, itrpg(V) =h =1 = jipy (V).
As V is arbitrary,
IFe, ftreg = firErg -

So we have an appropriate pair E’, ¢’. Q
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(vi) T come at last to universally measurable sets. Let A be a P.-name such that
[z, A is a universally measurable subset of {0, 1},

Then there is a set M C x with cardinal ¢ such that whenever I € [M]=*, E € Ba, \ N(v.) and a Baire
measurable g : {0,1}* — {0, 1} are determined by coordinates in M, then there are M-determined sets F,
V € Ba,,®Bay such that

|Fe. AAF CV and /uEgV =0.
P If I € [k]<*, E € Ba, \N(v,) and g : {0,1}* — {0,1}" is Baire measurable, then
|Fe. @he completion of fi1p, measures A, so there are Borel sets G, H C {0, 1} such that
AAG C H and fiypsH = 0.
By 551F, as usual, there must be F, V € Ba,.&Bay such that
IFe. AAF C V and [LIEQV' =0.

Now there will be a countable set K(I,F,g) C x such that F and V are both K (I, E, g)-determined. If

we build inductively a non-decreasing family (M¢)e<,,, of subsets of x with cardinal ¢ such that whenever

€ <wiy, I €M%, E' € Ba, \ N(v,;) and a Baire measurable ¢’ : {0,1}* — {0,1}" are determined by

coordinates in Mg, then K(I,E,g) C M1, (which is possible because if # (M) = ¢ then there are just ¢

possibilities for I, E and g), we shall be able to set M = M,, to get a set of the type we need. Q
Enumerate

{W:We Ba.®Bay, W is M-determined }
as (We)e<. Then
e, A=U{We: € <& We C A}
P Suppose that E € Ba, \ N (v,;) and a P,-name & are such that
E*|Fp, @€ A.
Then there is a Baire measurable function g : {0,1}* — {0, 1} such that
o

(551Cc). Let J € [k]=“ be such that E and g are both determined by coordinates in .J, and set I = J N M.
By (v) above, there are E’ and ¢’, both determined by coordinates in M, such that

;e firmg = frprg -
We therefore have M-determined F, V € Ba,.®Bay such that
e, AAF CV and firpgV = iy gV = 0.
Let £ < ¢ be such that F'\ V = W¢. By (iv),
E'||—png'¢\7and:t=§’€W5§A.

As FE and & are arbitrary, we have the result. Q
Thus

|-, A is expressible as the union of ¢ Borel sets.
As A is arbitrary, (a) is proved.
(b) Now all we have to do is count. We surely have
|Fe, there are at least ¢ universally measurable subsets of {0, 1}
just because singletons are universally measurable. In the other direction, because k* = &,
e = @0 =2 =R = (n)" =
(552B), while (a) tells us that

|Fe. the number of universally measurable subsets of {0, 1}" is at most c*.
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553X Basic exercises (a)(i) Suppose that A C {0, 1} has strong measure zero, and that « is a cardinal.
Show that

|Fp. A has strong measure zero in {0, 1}
(ii) Repeat with R in place of {0, 1}". (iii) Suppose that m = ¢ > w;. Show that

‘hpwl there is a set of strong measure zero in R with cardinal greater than mcountable-

(b) Let W C {0,1}* x {0,1}* be the set
{(z,y) : z(2n) = y(2n) for every n € N}.
Show that, for every y € {0,1}%,
ke, W is homeomorphic to {0,1}* and i ¢ W.

(¢)(i) Suppose that F is a p-point filter on N, and that P is a ccc forcing notion. Show that
|Fe the filter on N generated by F is a p-point filter.
(i) Suppose that F is a rapid filter on N, and that x is a cardinal. Show that
|, the filter on N generated by F is a rapid filter.

(d) Let 2 be a Boolean algebra and v : 2l — [0, 00[ a non-negative additive functional. Show that if
{(a;)ier is a finite family in 2 then

v(sup;erai) < Z;nzl(*l)k+1ZJe[1]k v(infieya;) if m > 1 is odd,

v(supser ai) > Y0, (1) e v(infie s ;) if m > 1is even.

(e) Let P be a forcing notion which satisfies Knaster’s condition. (i) Show that if (P, <) is an upwards-ccc
partially ordered set then

IFe (P, <) is upwards-ccc.
(if) Show that if (T, <) is a Souslin tree then

|Fe (T, <) is a Souslin tree.

553Y Further exercises (a) Let  be a cardinal, G a P,-name and a € B, such that
a|Fp, G is a dense open subset of {0,1}*.
Show that there is a W € T,&Ba,, such that every vertical section of IW is a dense open set and a |Fp, G = W.
(b) Let » be a cardinal and W € T,&Ba, a set such that every vertical section of W is a dense open set.
Let C be the space of continuous functions from {0,1}" to {0,1}* with the compact-open topology. Show
that {f: f € C, {x: (=, f(z)) € W} is conegligible} is comeager in C.
(c) Show that

”_]P’m Mecountable 2 (mcountable)v-

(Hint: work with the ideal of meager sets in the Polish space of continuous functions from {0, 1}* to itself.)

(d) Let K be the family of compact well-ordered subsets of QN [0, oo containing 0. For s, ¢ € K say that
s=xtif s =tNJ[0,7] for some v € R; for s € K and v € Q, set A(s,y) = {t : t € K, maxt = v, s < t}.
(i) Show that (I, %) is a tree, and that otp(t) = r(t) + 1 for every t € K. (ii) Choose (K¢)ecw,s (Te)e<w,
inductively so that Ko = Ty = {{0}} and for 0 < £ < wy

Ke={t:te K, r(t)=¢ s €U, T, whenever s < ¢},
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T: C K¢ is countable,
ifn <&, se€T, and v € Q are such that v > max s and A(s,v) meets K¢, then A(s,~y) meets
Te.
Show that if n < £ <wy, s € Ty, v € Q and v > max s, there is a ¢t € T¢ such that maxt = and s < t. (iii)
Show that T' = |J,,,, T¢ is a special Aronszajn tree.

(e) Show that |Fp, P > (Mootinked)” -

553Z Problem Suppose that the generalized continuum hypothesis is true. Is it the case that
[, there is a Borel lifting for Lebesgue measure?

(Compare 5541.)

553 Notes and comments To my mind, the chief interest of the results of this section is that they force
us to explore aspects of the structures considered in new ways. We know, for instance, that if a set has
Rothberger’s property (in a separable metrizable space) this can be witnessed by a family of d sequences.
The point of 553C is that (in random real models) any family of d sequences is associated with a set Y with
cardinal at most the cardinal power 0¥ = ¢ (taken in the ordinary universe V'), such that Y must include
the given set with Rothberger’s property. Remember that

[Fp, (NY)” is cofinal with N¥

(see the proof of 552C), so there is no point in looking at ‘new’ members of N¥ in part (a) of the proof.
In 553E, we need to distinguish between the P,-names G and G. It is quite possible to have

e, K N ({0,1}})" = 0;

that is, we might have |Fp, K = W where W C {0,1}* x {0,1}* has negligible horizontal sections (553XDb).
The name G refers not to a copy of the set G but to a re-interpretation of one (or any) of its descriptions
as an F, set.

In 553H and 553M, we have to look quite deeply into the structure of measure algebras. Lemmas 553G and
553L are already not obvious, and the combinatorial measure theory of the proof of 553H is delicate. 553J
is easier. The idea here is to ‘randomize’ a construction from GALVIN 80, where the continuum hypothesis
was used to build complementary sets Sy, S1 with the property of 553I.

I give a bit of space to ‘Aronszajn trees’ because the results here express yet another contrast between
random and Cohen forcing. Cohen forcing creates Souslin trees (554Yc). Random forcing preserves old
Souslin trees (553Xe) but does not necessarily produce new ones (553M).

Version of 2.9.14

554 Cohen reals

Parallel to the theory of random reals as described in §§552-553, we have a corresponding theory based
on category algebras rather than measure algebras. I start with the exactly matching result on cardinal
arithmetic (554B), and continue with Lusin sets (balancing the Sierpiriski sets of 552E) and the cardinal
functions of the meager ideal of R (554C-554E, 554F). In the last third of the section I use the theory of
Freese-Nation numbers (§518) to prove Carlson’s theorem on Borel liftings (554I).

554 A Notation For any set I, I will write l§1 for the Baire-property algebra of {0,1}!, Bay for the Baire
o-algebra of {0,1}, M for the meager ideal of {0,1}!, &; = B;/M for the category algebra of {0,1},
and Q7 for the forcing notion &} = &7\ {0} active downwards. Cr will be the family of basic cylinder sets
{x:2 Cxe{0,1}} for 2 € Fn.,(I;{0,1}), and C; the corresponding set {C* : C € C;} C &; then C;
is order-dense in &; (because Cj is a m-base for the topology of {0,1}!). It follows that 7(&;) < (&) <
max(w, #(I)). (These inequalities are of course equalities if I is infinite.)

(©) 2006 D. H. Fremlin
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554B Theorem Suppose that A and k are infinite cardinals. Then
Fa. 2 = (x*)".
proof (Compare 552B.)

(a) Since &, is ccc and has an order-dense subset C,, with cardinal k, #(®,) is at most the cardinal
power k“.

If A is a Q,-name for a subset of A, then we have a corresponding family (7} € A]]>n< » of truth values;
and if A, B are two such names, and [1j € A] = [) € B] for every n < , then

Fo. A= B.
So
Fo, 28 = #(PX) < #((62)) = (5*)".

(b) Consider first the case in which A < k. Let F' be the set of all functions from A to &, so that
#(F) = x*. As in part (b) of the proof of 552B, there is a set G C F such that #(G) = x* and {n:n < A,
f(n) # g(n)} is infinite whenever f, g € G are distinct. Let ((¢p)ecr,ner be a family of distinct elements of

# and set Eg, = {2 : 2 € {0,1}%, 2(Cey) = 1} for € < k and ) < \. For f € G let A; be a Q,-name for a
subset of A such that

i€ Agl = Bl
for every n < A\. I f, g € G are distinct, set I = {n: f(n) # g(n)}; then
[Ay # 44 = SUPp <A E}(n),n A Es;(n),n =1

because J, c; Ef(n)nAEq(n),n is a dense open set in {0, 1}".

nel
Thus in the forcing language we have a name for an injective function from G to PA, corresponding to
the map f — Ay from G to names of subsets of A\. So

k. 24 > #(G) = (+)".
Putting this together with (a), we have
Fo. 2% = (s*)".
(c) If A > &, then 2* = k*. Now
Fa. (PA)” S PA,
s0

Fa. (%) = #((PA)7) < #(PA) = 2%,

and again we have

Fo. 2% = (s*)".

554C Definition If X is a topological space, a subset of X is a Lusin set if it is uncountable but meets
every meager set in a countable set; equivalently, if it is uncountable but meets every nowhere dense set in
a countable set.

554D Proposition Let x be a cardinal such that R has a Lusin set with cardinal «.

(a) Writing M for the ideal of meager subsets of R, non M = w; and Meountable > K-

(b) There is a point-countable family A of Lebesgue-conegligible subsets of R with #(A) = k.

(c) If (2, 1) is a semi-finite measure algebra which is not purely atomic, (k,w;) is not a precaliber pair
of 2.

proof Let B C R be a Lusin set with cardinal k.
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(a) By 522Sa, Mcountable = cov. M. Any uncountable subset of B is non-meager, so non M = w;. If £ is
a cover of R by meager sets, then each member of £ meets B in a countable set, so

k= #(B) < max(w, #(£))
and #(&) > k; thus cov. M > k.
(b) Let E C R be a conegligible meager set containing 0, and set A = {z + E : z € B}. Then Ais a
family of conegligible sets. If y € R, then y — F is meager so {x : x € B,y € x + E} = BN (y— E) is

countable; thus A is point-countable. Also, each member of A is meager, so meets B in a countable set, and
(because B C |JA)

K = #(B) < max(w, #(A)) < #(A) < #(B),
so #(A) = k.

(c) Let K C E be a compact set of non-zero measure. If I' C B is uncountable, (|, .z + K = 0,
{z + K : x € T'} does not have the finite intersection property and {(z + K)* : © € T'} is not centered in
the measure algebra 2, of Lebesgue measure. Thus ((z + K)*),cp witnesses that (k,w1) is not a precaliber
pair of 2Ap.

Since (2, i) is semi-finite and not purely atomic, there is a subalgebra of a principal ideal of 2 which is
isomorphic to 2y, and (k,w;) is not a precaliber pair of 2, by 516Sa.

554E Theorem Let x be an uncountable cardinal. Then

|Fo, there is a Lusin set A C R with cardinal k.

proof (a) (Compare 552E.) Write P for Q, .. For each ¢ < &, let fe : {0,1}**% — {0,1}* be given by
setting fe(x)(n) = x(€,n) for every z € {0,1}"** and n < w; then, taking f:é to be the P-name defined by
the process of 551Cb,

”_lP’JF& € {07 l}w'
If £, ¢ < k are distinct, then, by 551Cd,

[fe = fel = {o: felw) = felo)}"
={z:x(&n) =z(,n) for every n}* =0

because {x : (&, n) = x(¢',n) for every n} is closed and nowhere dense. So, taking A to be the |Fp-name
{(fe,;1) : £ < Kk}, we have

e A C {0,1}* has cardinal &.

(b) Now suppose that W is a P-name such that

- W is a nowhere dense zero set in {0, 1},

By 551FDb there is a W € gKXw®Baw such that, in the language of 551D, |Fp W = W. Now W is meager
in {0,1}**“, P For z € Fn.,(w;{0,1}) set V, = {(x,y) : x € {0,1}**¥ 2 Cy € {0,1}*}. By 551Ee,

FeVe={y:zCyef{o1}}
and as Bj,x, is closed under Souslin’s operation (431Fb),
WAV, =0]={e: WH{z}]n{y:y 22} =0}
(551Ga). Now we have
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1 = [W is nowhere dense]

= inf sup wn y:2 Cyl=10
z€Fn<q (w;{0,1}) z'€Fncy, (w;{0,1}),2' Dz [[ { } ]]

inf sup z:WHzYn{y:yD2} =0}
ZEFH<W(“’?{071})z’EFn<w(w§{O,1})7z’22{ oo b=0}

- N U {e: Wz} n{y:y22}=0})"

z€Fn<, (w;{0,1}) 2’€Fnc,, (w;{0,1}),2' Dz
= {z : W[{z}] is nowhere dense}"*.

So {z : W[{x}] is meager} is comeager. Because W has the Baire property in {0, 1}"*“ x {0,1}* (5A4E(b-
ii)), it must be meager, by the Kuratowski-Ulam theorem (527D). Q

(c) Continuing from (b), there is a meager Baire set W’ O W (5A4E(c-ii)). Let J C & be a countable
set such that W’ is determined by coordinates in (J x w) U w, that is, if (z,y) € W', 2’ € {0,1}**“ and
[ J xw=alJ xwthen («',y) € W’. Take any £ € K\ J. Set L = (k\ {{}) x w and

V={(@ILy): (z,y) € W'}
then V C {0,1}F x {0, 1} is meager (applying 527D to
V x {0, 1H{&xw € 10,1} x {0, 1w = [0, 13195 x {0,1}*).

Now consider the map ¢ : {0,1}*** — {0,1} x {0,1}* defined by setting ¢(z) = (x|L, fe(z)) for
x € {0,1}"*“. Looking back at the definition of f¢, we see that this is a homeomorphism. So ¢~*[V] must
be meager, and

[fe e Wl C [fe e W] ={z: (=, fe(x)) € W'}*
(551Ea)

={z: (@I, fe(2)) € V}* = (67 [V])* =0,

that is, |Fp fe ¢ W.

This is true for every £ € k\ J. So

Fe ANW C {fé : &€ € J} is countable.
As W is arbitrary,
|Fe A has countable intersection with every nowhere dense zero set.
It follows at once that
[F& A has countable intersection with every nowhere dense set, and is a Lusin set.
As P and Q, are isomorphic,
|Fo. {0,1}* has a Lusin set with cardinal &.
(d) The statement of the proposition referred to R rather than to {0,1}*. But, writing M for the ideal

of meager subsets of R and M, for the ideal of meager subsets of {0,1}*, (R, M) and ({0,1}*, M,,) are
isomorphic (522Wb), and one will have Lusin sets iff the other does. So

|Fo. R has a Lusin set with cardinal &.

554F Corollary Let  be a cardinal which is equal to the cardinal power k“. Write M for the ideal of
meager subsets of R. Then

||_Qn non M = w1 and Mcountable = €.

proof By 554B, |lq, ¢ = &; so we have only to put 554E and 554Da together.
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554G Theorem Let x be an infinite cardinal such that FN(®,;) = w;. Then
|Fo. FN(PN) = w;.

proof (a) We need to know that &, is isomorphic to the simple power algebra &Y. P The algebra £ of
open-and-closed subsets of {0, 1}" is isomorphic to a free product of two-element algebras, so is homogeneous
(316Q); &, is isomorphic to the Dedekind completion of £, so is homogeneous (316P). Now we have a
partition of unity (p,)nen in &, consisting of non-zero elements, so that &, is isomorphic to the simple
product of the corresponding principal ideals (315F) and to &Y. @ There is therefore a Freese-Nation
function 6 : &Y — [BY]=w.

For £ < k, set Ee = {x : x € {0,1}", z(§) = 1}; for J C &, let €; be the order-closed subalgebra of &,
generated by {Eg' : £ € J}, and let C; be the set of elements of €; of the form infec E2\ supec, Ef where
K, L are disjoint finite subsets of J.

For v € &Y let ¥ be the Q,-name {(7,v(n)) : n € N, v(n) # 0}; then |Fq, ¥ C N, and [ € 9] = v(n) for
every n € N.

For any Q,-name 1, let J(i) be a countable subset of s such that [0 € u] € € (4 for every n € N.

(b) Let X be a discriminating Q,-name such that |Fo, X = PN (5A3Ka). For o = (u,p) € X set
02(0) = Uscy, 0T € i1 €))ner) U, ,, 00T € 01U (1) €)hnen) € [61]2,
02(c) = {(¥,p) : v € b1(0)},
so that 62(0) is a Q-name and

|Fo. 62(0) is a countable subset of PN.

(c) Set
0 = {((@. 021, p)).p) - (i, p) € X}.
By 5A3Kb,
Fao. 0 is a function with domain X = PN.
Next,

IFo, 6 takes values in [PN]=«.
P Suppose that  is a Q,-name and p € & is such that
plFo, i is a value of 6.
Then there are a (i, q) € X and a p’ stronger than both p and ¢ such that
P |Fo. @ = (i,02(i1, q)) has second member 05 (i, q) € [PN]=«.
As p and £ are arbitrary,

|Fo,. every value of 0, being the second member of an element of 6, is a countable subset

of PN. Q

(d) In fact,
lFo, 0 is a Freese-Nation function on PN.
P Suppose that A;, Ay are Q,-names and p € & is such that
plro. A1 C A CN.

Because |Fg, X = PN, there must be (i1, q;) and (i, ¢2) € X and a p; stronger than p, ¢; and ga such
that

P1 ”_Qr.-, 7..L1 = Al and 7..1,2 = AQ.

In this case, for both 4, ((4;,02(;,¢:)), ) € 0, so we have
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p1 lFa. 0(A:) = 0(i;) = 02 (5, ;).
Let e C p; be a member of Cj, that is, a member of &, which is the equivalence class of a basic cylinder
set. We have

ellq. i1 = Ar € Ay = s,

so en[n € ui] C [0 € U] for every n € N. Express e as e; neznes where e; € Cjyy), €2 € Cjy,) and
e3 € C\k, where K = J(11) U J(uz). For each n € N,

e1nexn[n € u]\ [ € us
belongs to €x and is disjoint from e3 € €\ i \ {0}, so must be zero; we therefore have
exn[n €] C[n€us]u(l\es)
for every n, that is,
([n € i) ner)nen C ([ € d2] U(1\ €2))nen
in &Y. Because 6 is a Freese-Nation function, there is a sequence
(an)nen € O(([71 € W] ner)nen) NO(([R € tz] U (1\ e2))nen)
such that
[n€di]ner Ca, C 0 €t]u(les)
for every n. Now v = (a,)nen belongs to 61 (1, p1) N 61 (2, p2), so (T,p;) € O2(4;,p;) and
pilka, T € 02(ii, pi) = 0(i;)
for both i. Returning to e, we have
ennem] Cena, Cenln € us
for every n, because e C e; Nney. So
elFq, w1 C T C .
Also e is stronger than p and
elbo, ¥ € 0(i1) NO(is) = 6(A1) NO(As).
As p, Ay and A, are arbitrary,
|Fo,. for any A, B C N there is a C' € (A) N (B) such that A C C C B; that is, 0 is a
Freese-Nation function. Q
(e) Putting (c) and (d) together, we have
IFo. FN(PN) < w;

and since the Freese-Nation number of PN is surely uncountable (522U), this is enough.

554H Corollary Suppose that FN(PN) = w; and that & is an infinite cardinal such that
(a) cf[A\]S% < AT for every cardinal \ < &,
(8) Oy is true for every uncountable cardinal A < k of countable cofinality.
Then |Fg, FN(PN) = w;.

proof Any countably generated order-closed subalgebra € of &, is (in the language of part (a) of the proof
of 554G) included in €; for some countable J C k, which has a countable m-base Cj; so €; and € are
o-linked, and FN(€) < FN(PN) = wy, by 518D. By 5181, the conditions («) and (3), together with the fact
that 7(®,) < k, now ensure that FN(&,) < wy, so 554G gives the result.

5541 Theorem (CARLSON FRANKIEWICZ & ZBIERSKI 94) Suppose that the continuum hypothesis is
true. Then

IFq., ¢ = wa and Lebesgue measure has a Borel lifting.
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proof Of course the cardinal power w4 (in the ordinary universe) is equal to max(c, cf[ws]=%) = wa. From
554H and 554B we see that

IFq., FN(PN) =w; and ¢ = ws.
So 535E(b-ii) tells us that

[Fq., Lebesgue measure has a Borel lifting.

554X Basic exercises (a) Show that #(&,) = k* for every infinite cardinal &.
(b) Show that if T is any set, every regular uncountable cardinal is a precaliber of &;.

(c) Let I be any set. (i) Show that (Cr, D) is isomorphic to (Fnc,(I;{0,1}),C) (definition: 552A). (ii)

Show that &; can be identified with the regular open algebra ROT(Fn,(I;{0,1})).

(d) Let k be an infinite cardinal such that R has a Lusin set with cardinal x. Show that there is a
first-countable compact Hausdorff space X such that x € Mahg(X). (Hint: 531N.)

(e) Devise a definition of ‘strongly Lusin’ set to match 537Ab, and state and prove a result corresponding
to 552E. (Hint: 527Xf.)

(f) Describe Cichoti’s diagram in the forcing universe V@2 (i) if we start with ¢ = wy (ii) if we start with
m=¢=wa2.

554Y Further exercises (a) For how many of the results of 552F-552J can you find equivalents with
respect to Cohen real forcing? (Hint: BARTOSZYNSKI & JUDAH 95.)

(b)(i) Show that there is a family (es)e<w, such that («) for each &, e C ¢ x N is an injective function
from £ to N (8) if n < € < wy then e, \ e¢ is finite. (Hint: choose the e¢ inductively, taking care that N\ e¢[¢]
is infinite for every &.) (ii) Set T' = {e¢[n : 1, £ < wy are successor ordinals}. Show that T'U {0}, ordered by
C, is a special Aronszajn tree. (Hint: for any n € N, {t : t(max(domt)) = n} is an antichain.)

¢) (TODORCEVIC 87) Let k be an infinite cardinal. Take (e¢)e<,,, as in 554YDb. Let < be the Q,-name
§/6<wi

{((71,€),p) :n <€ <wi, p € Qu, p C {w: we, Cwee)).
Show that |-, (w1, =) is a Souslin tree.

554 Notes and comments The original theories of Cohen and random reals were developed in parallel;
see KUNEN 84 for an account of the special properties of null and meager ideals which made this possible.
Thus the Sierpinski sets of random real models become Lusin sets in Cohen real models, and the horizontal
gap which appears in Cichoni’s diagram if we add random reals becomes a vertical gap if we add Cohen reals
(552F-5521, 554F). I give a very much briefer account of Cohen reals because I am restricting attention to
results which have consequences in measure theory, as in 554Dc and 5541, and (except in 554Yc/553M) 1
make no attempt to look for reflections of the patterns in §553, which are mostly there for the illumination
they throw on the structure of measure algebras. But I do not seek out the shortest route in every case.
In particular, I spell out some of the theory of Freese-Nation numbers (554G-554H) for its own sake as well
as to provide a proof of Carlson’s theorem 5541. Let me remind you that ws has a very special place in the
arguments here; see 518Rb and 535Zb.

I have written this section in terms of forcing with category algebras, partly in order to emphasize the
connexion with random reals, and partly to be able to quote from §551. But of course it can equally be
regarded as a fragment of the theory of forcing with partially ordered sets Fn.,(I;{0,1}) (554Xc), and
there are many places (e.g. 554Y¢) where this simplifies the details.
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Version of 23.10.14

555 Solovay’s construction of real-valued-measurable cardinals

While all the mathematical ideas of Chapter 54 were expressed as arguments in ZFC, many would be of
little interest if it appeared that there could be no atomlessly-measurable cardinals. In this section I present
R.M.Solovay’s theorem that if there is a two-valued-measurable cardinal in the original universe, then there
is a forcing notion P such that

|Fp there is an atomlessly-measurable cardinal

(555D). Varying P we find that we can force models with other kinds of quasi-measurable cardinal (555G,
555K); starting from a stronger hypothesis we can reach the normal measure axiom (555N).

555A Notation As in §§552-553, I will write (B, 7,) for the measure algebra of the usual measure
on {0,1}*, and P, for the forcing notion B, = B, \ {0}, active downwards. In this context, as in 525A,
(en)n<w Will be the standard generating family in B,.

As in §554, T will write &, for the category algebra of {0,1}*, and Q, for the forcing notion &, active
downwards. Recall that &, is isomorphic to the regular open algebra RO({0,1}*) (514If).

555B Theorem Suppose that X is a set, and 7 a proper o-ideal of subsets of X containing singletons.
Let P = (P, <,1,1) be a ccc forcing notion, and Z a P-name such that

||—pf ={J : thereisan I € 7 such that J C I}.

Then
(a)(i) If J is a P-name and p € P is such that p|-pJ € Z, there is an I € Z such that p|FpJ C I.
(if)
|Fe 7 is the ideal of subsets of X generated by 7; it is a proper o-ideal containing singletons.

(b) |Fp addZ = (add Z)".
(c) If Z is wq-saturated in PX, then

lFe T is wi-saturated in PX, so PX/Z is ccc and Dedekind complete.
(d) If X = )\ is a regular uncountable cardinal and Z is a normal ideal on A, then

[FeZ is a normal ideal on A.

proof (a)(i) We have
p |l there is an I € T such that J C I.
Set
A= {q: there is an I € T such that q|FpJ C I}.

If p’ is stronger than p, there is a ¢ € A stronger than p’. Let A" C A be a maximal antichain. Then A’
is countable and for each ¢ € A’ there is an I; € T such that q|-pJ C I;. Set I = (J 4 1y; because T

is a o-ideal, I € Z. Now q|Fp.J C I for every q € A’. If p/ is stronger than p there is a ¢ € A’ which is
compatible with p’, so p|FpJ C I, as required.

(ii) Because
|FeZ is a family of subsets of X closed under finite unions,
we have
”—]pj is an ideal of subsets of X.
Because
FelecZ

(©) 2005 D. H. Fremlin
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whenever I € Z,
||‘]P’j - 7 and 7 is the ideal generated by 7.
Since X ¢ Z, (i) tells us that
FeX ¢ 1.
Since {z} € T for every x € X,
e {z} € T for every z € X.
Thus
|FpZ is a proper ideal of PX containing singletons.

I defer the final step to (b-i) below.

(b) Set § = add Z.

(i) Suppose that p € P and that A is a P-name such that
plrp A C T and #(A) < 6.
Then there are a ¢ stronger than p, a 6 < 6 and a family <A5>§<5 of P-names such that
qlFp A= {Ag: € <5}
For each £ < 4, q|Fp Ag € 7, so we have an I¢ € Z such that g |Fp Ag C I Set I = Ug<s Ie € Z. Then
q”—]pA§ C I for every € < 4, so UA C T and UA e
As p and A are arbitrary,
e addZ > 6.
In particular, since we certainly have 6 > wy,
lFeZ is a o-ideal.
(ii) In the other direction, there is a family (I¢)¢<g in Z with no upper bound in Z. Now |Fpls € T
for every £ < 0. 7 If p € P is such that
PlFe Ueo I e,
then there is an I € Z such that
plreUecsle C 1
and ey Ie C T €Z. X So
IFe Ueeg e ¢ Z and add T < 6.

(c) Let p € P and a family (A,),<., of P-names be such that
plFp (Ay)y<w, is a disjoint family of subsets of X.
For each z € X, (pn[i € A,])y<e, is a disjoint family in RO(P), where

p =int {q : ¢ is stronger than p}

is the regular open set corresponding to p. So there is an «, < w; such that pn [z € An]] = 0 for every
n > ag, that is, p|Fp & ¢ A, for every n > . Because 7 is wq-saturated, therefore wy-additive (542B-542C),
there is an o < wy such that I = {z : 2 € X, a, > a} belongs to Z. Now pl|FpZ ¢ A, for every z € X \ I,
that is,

p”‘IP’Aa C [ and A, € 1.

As p and (A,), <., are arbitrary, |FpZ is wi-saturated.

D.H.FREMLIN



72 Possible worlds 555B

Thus |FpPX/Z is ccc. But since we know from (b) that |FpZ is a o-ideal, and of course |FpPX is
Dedekind complete, we have

e PX /T is Dedekind o-complete, therefore Dedekind complete.

(d) Suppose that p € P and that (A¢)ecy is a P-name such that
plFe Ag € T for every £ < A.
For each £ < A we have an I € Z such that p|}p Ag C fg; let I be the diagonal union
{€: <N EelU,ce In}
Because 7 is a normal ideal on A\, I € Z. Now suppose that ¢ is stronger than p and that £ < X is such that
qlFpé € Uyce A
Then
q ||‘IP’£ € Un<£ jnv
s0§ €U,y and £ € I and ¢ € €. As g and ¢ are arbitrary,
p|Fp the diagonal union of (A5>£<; is included in I and belongs to Z.

As p and (A5>§< » are arbitrary,

e Z is normal.

555C Theorem Let (X,PX, u) be a probability space such that u{z} = 0 for every z € X, and N the
null ideal of y. Let kK > 0 be a cardinal. Then we can find a P,-name £ such that

(i) |Fp,. /2 is a probability measure with domain PX, zero on singletons;

(i) if N is a P.-name for the ideal of subsets of X generated by A, as in 555B, then

e, N is the null ideal of f.

proof (a) For each function o : X — B,;, write ¢ for the P,-name
{(@,0(x)) : x € X, o(x) # 0}.
Then
Fe.oC X
and [# € 0] = o(x) for every € X. Moreover, if Ais any P.-name such that |Fp, A C X, then |p, A =4,
where o(z) = [& € A] for z € X.

(b) For o € BX, the functional

ar— f U (o(z)na) p(de)
is additive and dominated by 7, so there is a unique u, € L*°(B,) such that
fa Uy AUy, = f U (o(z) na)u(dx)

for every a € B, (365E, 365D (d-ii)), and 0 < u, < x1. Observe that if o, 7 € BX, a € B and a|fp, 7 = 7,
then ano(z) = an7(z) for every x € X, so that u, X xa = u, X xa.

(c) For uw € L>(*B,,) let @ be the corresponding P.-name for a real number (5A3L-5A3M, identifying B,
with RO(P,) as usual). Consider the P,-name

p= {((57 ﬁa)? ]1) 10 € sBmX}
Then
|-e, /i is a function from PX to [0, 1].
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P Because 0 < u, < x1, |Fp, @, € [0,1] for each o, and |Fp, it € PX x [0,1]. If o, 7 € BX and a € B}

are such that a|f-p, & = 7, then u, X xa = u; X xa, by (b); but this means that a ”—[p Uy = U, (BA3M). So

e, & is a function (5A3Ea). If @ € P and A are such that a|Fp, A C X, then there is a o € BX such that
alFp, A= 7, sothat |Fp, domp=PX (5A3Eb). Q

(d) Now we have to check the properties of f.

(i) |Fe,. /2 is countably additive. B Suppose that (A,)nen is a sequence of P.-names and a € B is
such that

alFp, (Ap)nen is a dlSJOlIlt sequence of subsets of X.

For each n € N, let o,, € BX be such that a|Fp, A, = &,; then (an o, (z)),en is a disjoint sequence in
B, for each x € X. Set o(x) = sup, ey on(x) for each x. Then [Z € &] = sup,,cy [Z € &,,] for each z, so
IFe. & = U, cn @n- Now for any b C a,

/bugdﬂ,i = /uﬁ(bmo p(dx) /ZV“ bnop(z))u(dx)
- nfjo / P (b o (2))u(der) = nz:% /b Uy, AT,

So
X@ X Uy = SUPp ey XA X Y i Ug,
in LY(B,), and
alre, lUnen An) = ilUpen Gn) = UG) = T = 3070 T, = Dopg Al An).
As a and (A,)nen are arbitrary, |Fp, i is countably additive. Q

(ii) Suppose that ¢ is a P,-name and a € B is such that a|Fp, y € X. Take any b stronger than a
and y € X such that b|lp, y = 7. Set o(y) =1 and o(x) =0 for z € X \ {y}. Then

fuadpm = p{y} =0,

SO

bl p({9}) = p({5}) =

v
|
&
|
o

Thus

|Fp, £ is zero on singletons.
(iii) If o(x) = 1 for every z € X, then u, = x1 so
e, a(X) =x1=1.

) |Fp, N = {A A =0} P Leta E B+ and a P,-name A be such that a|-p, A C X. Let 0 € BX
be such that a |fp, A = &; then alp, 1(A) = U,.

(i) If a|Fp, A € N, then there is an I € N such that a|Fp, & C I (555B(a-i)), that is, ano(z) = 0 for
every € X \ I. But this means that

fa Ugdly = IDK(U(.Q?) na)u(dr) < pul =0,
and ya X u, = 0. So

alre, (A) = Gy = 0.

(ii) If a |Fp, 1(A) = 0, then xa X uy = 0, so

f U (o(z) na)u(de) = fa Uedl), = 0.

Set I = {z:ano(x) # 0}; then I =0 and
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alp, ACTso AeN.
Putting these together we have what we need. Q

555D Corollary (SOLOVAY 71) Suppose that A is a two-valued-measurable cardinal and that xk > X is
a cardinal. Then

[Fe, A is atomlessly-measurable.

proof Putting 555C and 555B together,
|Fp, there is a probability measure p with domain P, zero on singletons, such that the
null ideal of p is A-additive.

By 552B and 543Bc,

lFe. A < ¢ is a real-valued-measurable cardinal, so is atomlessly-measurable.

555E Theorem Let A be a two-valued-measurable cardinal, and 7 a A-additive maximal proper ideal of
P containing singletons; let p be the {0, 1}-valued probability measure on A with null ideal Z. Let x > A
be a cardinal, and define & from p as in Theorem 555C. Set § = Trz(\; k) (definition: 5A1Ma). Then

|Fp, £ is Maharam-type-homogeneous with Maharam type 0.

proof (a) Let (ga)a<e be a family in k* such that {£ : g, (&) = gs(€)} € T whenever a < 8 < 6 (541F).
Because A < k, we can suppose that all the g, are injective. (Just arrange that g, (§) always belongs to
some J¢ € [k]" where (J¢)e<y is disjoint.) For v < 6 and £ < A set 04(§) = €, (¢). For 0 € B let & be the
corresponding P,-name for a subset of A as in the prood of 555C. Then for any non-empty finite K C 0 we
have

e, i(Naek da) = (27#EO).
P Set 0(§) = infoex 04 (€) for each &, so that
IFe. & = Nack a
Set
I= Ua,BEK are dif‘ferent{g : g < )‘7 ga(ﬁ) = gﬂ(f)}’

then I € T. If a € B, let J € [k]=“ be such that a belongs to the closed subalgebra of B, generated by
{en :n € J}. Then

{€: €<\ (0@ na)#27#P5(a)} STUU e 92 1] €T,
SO
fz/,.€ p(d€) = 2=#F)p, (a).
This means that u,, as defined in the proof of 555C, is just 2-#U)y1 and |Fp_ @, = (27 #(5))", that is,
e, ilNaei Fa) = 27#H). Q
Thus

|Fe, (Ga)o<q is a stochastically independent family in PA of elements of measure 5, and

every principal ideal of the measure algebra of i has Maharam type at least 6
(3317Ja).

(b) In the other direction, suppose that a € B, § is a cardinal, ¢ > 0 is a rational number and (A a)a<5
is a family of P,-names such that

alFp, A, C A, ,u(AaAAg) > 3{ whenever a < 3 < 4.
For each a < § let 0, € B be such that a|Fp, #o = Au; then
[ 2@ (9(€) & 05(€))u(de) = 3tiga
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whenever a < 5 < 6. Let D C 9B, be a set with cardinal k which is dense for the measure-algebra topology
(521E(a-ii)), and for o < §, £ < k take do(§) € D such that 7,,(do(§) & 04()) < tv,(a). Then

J 7(da(€) & ds(€))u(d€) > 0

and {¢€ : do(§) # dg(§)} ¢ Z whenever o < f < §; as Z is a maximal ideal, {€ : do(§) = dg(€)} € T whenever
a < B <9, and (dy)a<s Witnesses that

§ < Trz(A\; D) = Trz (A ) = 0.
As a, t and (Aa)a<5 are arbitrary,
[, the Maharam type of ji is at most 6;
with (a), this means that

[Fe, /1 is Maharam-type-homogeneous with Maharam type 6.

555F Proposition Let A be a two-valued-measurable cardinal and x > 0. Let p be a normal witnessing
probability on A and £ the corresponding P,-name for a measure on A, as in 555C. Then

[Fp. the covering number of the null ideal of the product measure i on AV is .

proof (a) It may save a moment’s thought later on if I remark now that if (Y, T,r) is any measure space
and W C YN is negligible for the product measure ", then there is a family (Fij)j<ien in T such that

WCMenUisnly:y € YN y(j) € Fy; for every j <i}, Yoo, H;:O vF,; <1.

P For each k € N, let (Chi)ien be a sequence of measurable cylinders such that W C J;c Cri and
Yico MO < 27%= 1 Jet (C))ien be a re-listing of the double family (Cy;)x ;en With enough copies of the
empty set interleaved to ensure that C; is determined by coordinates less than or equal to i for each i;
express each C; as {y : y(j) € F;; for j <i}. Q

(b) It will also help to be able to do some calculations with sequences of P,-names for subsets of A. For
J C k let €5 be the closed subalgebra of B,; generated by {e, : n € J}, and Py : L>(B,) — L>(&;) the
corresponding conditional expectation operator; see 242J, 254R and 365Q7 for the basic manipulations of
these operators. Let F be the normal ultrafilter {F : uF = 1}.

(i) Let (A;j)j<ien be a family of P.-names such that
IFe. Aij CA

whenever j <4 € N. For j <i € N and £ < X set 0;;(€) = [€ € A;;]. Then there is a countable set Iz C &
such that 0;;(¢) € €;, whenever j <i € N. By 541Rb, there are an Fy € F and a countable set I C x such
that I NI C I for all distinct &, §' € Fy.

(ii) Set wije = Pr(x0i;(§)) for £ < A. Because #(L™(€;)) < ¢ < A and F is a A-complete ultrafilter,
there are u;; € L>(€r) such that {€ : u;j¢ = u;;} belongs to F whenever j <1i € N. Set

F = Fyn{¢: u;je = u;j whenever j <i e N},
so that F' € F.
(iii) We have
e, fAi; = ii;;
whenever j <i € N. PP If a € B, there is a countable J C x such that a belongs to the closed subalgebra

¢ generated by {e, : n € J}; we may suppose that I C J. Now (I¢ \ I)¢cr is disjoint, so {{ : £ € F,
IcNJ & I} is countable, and F' = {{: { € F, Ic N J C I} belongs to F. For £ € F' we have

P;(x0ij(§)) = PrPr(x0i;(§)) = Pinic(xoi;(§)) € &
so that

"Formerly 365R.
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Py(x0i;(§)) = PrP;(x0i;(§)) = Pr(xoi;(§)) = ui;
consequently
fa wi;dv,, = fa x0i;(§)dv, = ve(ano;;i(€)).

Because F’ is u-conegligible,

fa udv, = f U(an oy (§))u(dE).
As this is true for every a € B, the construction in 555C gives |}-p, ,[J,Aij =1u;. Q

(iv) Note also that if i € N and &, ... ,§; € F are distinct, then

[ Tl wijdz, = D (infj<; 045(£5)).-

P The algebras €y, for n € w\ I, are relatively stochastically independent over €; in the sense of

458L; by 458H/458Le, the algebras €;yy,, for § € F, are relatively stochastically independent over €;; but,
disentangling the definitions, this is exactly what we need to know. Q

(c) We are now ready for the central idea of the proof. Suppose that W is a P.-name such that
IFe, W € AN and ZNW = 0.
Then there is an F' € F such that
p, W is disjoint from (FN\ A)”
where A = J,_penfz 2 € AN 2(j) = 2(k)}. P By (a), we have a family (A;;)j<ien of P,-names such that

e, Aij € X whenever j <i €N,
e, W C MnenUisplz iz € AN 2(4) € Ay for every j < i},

||‘IP’H Zio H;’:O ﬂAij <L

Take 0;;(£), I € [k|=¥, u;; € € and F € F as in (b). Suppose that z € FN and z(j) # z(k) for distinct 7,
k € N. Then

[z € W]] C inf,ensup;s, inf<; [2(4)” € AZJ]] = infpensup;s,, infj<; 045 (2(5)).
So
Ve[t € W] < infren 3052, Ua(infjci 03 (2(4))) = infpen Y52, [ T1;<; wijdos
by (b-iv). On the other hand, setting v; = [];, u; for i € N and w = sup, ey >_i— vi, we have
e, @ =370 0 = Yoo [j—g 1Ai; < 1.
So w < x1 and
Z?iofnjgi wijdi, = fwdﬂn <1.
Putting these together, we see that 7.[Z € W] =0 and |Fp, & ¢ W. As x is arbitrary,
e, W is disjoint from (FN\ A)". Q
(d) We are nearly home. Suppose that a € B} and that W is a P,-name such that
alFp, W is a family of negligible sets in AN and #(W) < .
Take any b stronger than a, # < A and family <W<><<9 of P,-names such that
blFe. W = {W¢: ¢ <6},
For each ¢ < 0 let WC, be a P,-name such that
e, W, C AV is negligible, b |-p, W/ =WW,.
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By (c), we have an Fy € F such that
IFe. WC/ N (FF \A)" =0.
Because 0 < A, (4 F¢ belongs to F and is infinite, and there is an x € (), FF \ A. But now
e & Ueeq W
and
blFp, & ¢ W, so W does not cover AV.
As b is arbitrary,
alFp, W does not cover AN;

as a and W are arbitrary,

[, the covering number of the null ideal of the product measure on AV is at least .
The reverse inequality is trivial, since

e, 1{€} =0

for every £ < A; so the proposition is proved.

555G Cohen forcing If we allow ourselves to start from a measurable cardinal, we can find forcing
constructions for a variety of power set o-quotient algebras besides the probability algebras provided by
Theorem 555C. In view of §554, an obvious construction is the following.

Theorem Let A\ be a two—valued—measurable cardinal and x > \ a cardinafl. Let Z be a /\—Vadditive maximal
proper ideal of subsets of A\, and Z a Q4-name for the ideal of subsets of A generated by Z, as in 555B. Set
6 = Trz(X\; k). Then

Fa. PA/Z = &
proof (a) For n < k let e, € &, be the equivalence class of {z : x € {0,1}", 2(n) = 1}; for L C k let €, be
the closed subalgebra of &, generated by {e, : 7 € L}. For ¢ € &) let & be the P,-name {(&,0(£)) : £ < A,

o(€) # 0}, so that |-g, & C A, and [ € &] = o(€) for any £ < \.
Write F = {A\I:I €I} =PA\Z, so that F is a A-complete ultrafilter on .

(b) For z € Fn,(k;{0,1}) set
v,={x:2Cxe{0,1}"} € B,.
Then {v, : 2 € Fn,(k;{0,1})} is order-dense in &,. For A C X and 7 € Fnc,,(k; {0, 1})%, set 0, (£) = vy (e
if¢e A 0if £ € A\ A. Note that
|Fo,. dr € (domT)".
Now if a € & and C is a Q.-name such that a |-g, C' C A, there is a countable set T C Uacx Fncw(r; {0, 1hHA
such that a|Fq, C = U, c70-. P Set D ={{: & <A, |Fg.& ¢ C}. For each £ € A\ D, choose a sequence

T€T B .
(Tn(&))nen in Fne,(#;{0,1}) such that [§ € C = sup,,cy vr, ¢)- If € € D, then £ ¢ dom 7, and o, () =0
for every n; accordingly

[€ € C] =0=sup,y[¢ €7,
While if € € A\ D,

[€ € C] = supyen vr, (6) = SUPpen 07,y (€) = suppe [€ € 77,
So

a ”_Qm C = UnEN 67—71
and we can set T = {7, : n € N}. Q
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(c) There is a family Gy C x*, with cardinal 0, such that {£ : g(¢) = ¢'(€)} € Z whenever g, ¢’ € G are
distinct (541F again), and we can suppose that every member of Gy is injective (see part (a) of the proof of
555E). Let G D Gg be a maximal family such that {£ : g(§) = ¢’(£)} belongs to Z whenever g, ¢’ € G are
distinct. Then #(G) < 6, by the definition of Trz(A; ), so in fact #(G) = 6. Enumerate G as (g )a<o, and
for a <0, & < X set po(§) = eg, (e) € B

(d) Suppose that o < 6 and a € & are such that
alkFq, 72 is neither 0 nor 1 in PA/Z.

Then g, '[{n}] ¢ F for every n < . T Otherwise, take b to be one of ane,, a\ e, and non-zero, and any

€€ g [{n}]. b Ce, then b C pa(E) and b, € € Pa- If bne, =0 then po(§)nb =0 and b|-q, £ & Pa
So

blFo. 95 [{n}]" is either included in or disjoint from f,, and §? is either 1 or 0 in PA/Z.
But this contradicts the assumption on a. XQ

(e) |Fo, {F2: < 8}\{0,1} is a Boolean-independent family in PA/Z.
P? Otherwise, there must be disjoint finite sets J, K C 6 and a € & such that

alkFq, 72 is neither 0 nor 1 in PA\/Z
for every a € JU K, but
alFq, infoeyis\ suP,ei Ao = 0.
In this case,
I ={£:& < A there are distinct «, 8 € JU K such that g,(§) = g5(€)}
belongs to Z. For £ < \ define o(§) € &, by saying that
o) =1if¢ e,

= infe sup e otherwise.
22 Caa(€) \ SUD €ga(e)

For a € Jand £ € A\ I, 0(§) C pa(€); so
lFq, @\ P is included in I and belongs to Z, that is, &* C 2.
On the other hand, if @ € K and £ € A\ I, 0(§) npa(§) = 0; so
lFo,. @ N fa is included in I and belongs to Z, that is, &* N g2 = 0.
So we have
lFo. 7° C infoe 703\ SUPLer P
and
=

Let I’ € T be such that a|Fq, & C I’ (see part (a) of the proof of 555B), and L € [k]=* such that a € €.
By (d), g5 [{n}] € Z for every a € JUK and 7 < &, so there must be a £ € A\ (I’ UT) such that g, (&) ¢ L
for every a € J U K. In this case, 0(£) € €1, s0 ano(€) is non-zero. But o(¢) = [€ € 7] and a|lq, € ¢ 7,
so this is impossible. XQ

(f) |Fo, the subalgebra of PA/Z generated by {72 : a < 6} is order-dense in PX/Z.
P If a € &} and ¢ is a Q4-name such that

alrq,. ¢ € (PA/T)\ {0},
there is a Q,-name C such that
alFo.CC\ C¢Tandéc=C".

Take a countable set T' C (J 4y Fnc, (s {0, 1})4 such that a|-q, C = U, e Fr, as described in (b). Since

IFo, Z is a o-ideal, there are a b stronger than a and a 7 € T such that b|Fq, &, ¢ Z. Set Fy = dom 7; since
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o, & C Fo, Fy ¢ Z.. Since T is a o-ideal, there is an n € N such that Fy = {£: & € Fy, #(7(£)) =n} ¢ T,
and F; € F.
Let (h;);<n be a finite sequence of functions from A to x such that dom7(£) = {h;(£) : i < n} for every
¢ € F1. As G was maximal, there is for each ¢ < n an a; < 6 such that {£ : ga, (&) = h;(§)} belongs to F;
set Fp = {£: £ € F1, ga,(§) = hi(&) for every i < n}. Note that if i < j < n then gq,(§) # ga, (§) for any
& € I1, so a; # aj. Next, there must be an L C n such that
Fy={¢:§ € Fy, 7(§)(90,(§)) = 1 for every i € L,
T(€)(ga; (§)) = 0 for every i € n\ L}
belongs to F. Set J = {a; : ¢ € L} and K = {a; : ¢ € n\ L}; of course J N K = ), because all the «; are
different. Then, for { € F3, dom7¢ = {gq,(§) : ¢ <n} and
[€ € 7] = 02(&) = vrie) = inf ey, )\ sUP €4, (6)
S ien\L = '
= inf ey (¢)\ sup eg (¢) = inf [€ € Fa]\ sup [€ € fa].
acJ acK aeJ aEK
Accordingly
Fo. & A(Nae Pa \Une i Pa) is disjoint from F3 and belongs to 7,
S0
blrq, infoe s pa\ supsei Ao = 07 C ¢
As a and ¢ are arbitrary, this proves the result. Q
(g) If a < 0 is such that g, € Go, then
IFo. s # 0.
P? Otherwise, there is a non-zero a € &, such that
a ”_QK ﬁa: = 07
that is,
albo, {€: 7a(6) # 0} €1,
and there is an I € Z such that
alrq {€: 7al§) £ 0} C L.
In this case, for £ € A\ I,
a ||_P,<, ﬁa(g) =0,
that is,

0=anpa(§) =aneg, (-

But A\ I is infinite and g, is injective, so {go(£) : £ € A\ I} is infinite and a = 0. XQ
Similarly,

”_Qn ﬁc: 7é 1'
As this is true whenever g, € Gy, and #(Gp) = 0, we see that

Fo. #({e: 5x ¢ {0,13}) = 6.

(h) Putting (e)-(g) together, and using 555Bc, 515N¢ and 5141Th,

o, PA/Z has a Boolean-independent family with cardinal 6 generating an order-dense
subalgebra; being Dedekind complete, it is isomorphic to RO({0, 1}%) = &;.

555H Corollary Suppose that \ is a two-valued-measurable cardinal and x = 2*. Then
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|Fo. there is a non-trivial atomless o-centered power set o-quotient algebra.
proof (a) Note first that {0, 1}¢ is separable (4A2B(e-ii)), so &, = RO({0,1}°) is o-centered (514H(b-iii));
also, of course, it is atomless.
(b) Taking Z and 7 as in 555G, we have
Fo. PA/Z =&

where § = Trz(\; k). But since @ lies between k and the cardinal power k* = k* = k, we have
Fo.0=F/=c
(554B), and
Fo, PA/Z = &, is o-centered and atomless
by (a).

5551 The next example relies on some interesting facts which I have not yet had any compelling reason
to spell out. I must begin with a definition which has so far been confined to the exercises.

Definition A Boolean algebra 2 has the Egorov property if whenever (A,),cn is a sequence of countable
partitions of unity in 2 then there is a countable partition B of unity such that {a : a € A4, anb # 0} is
finite for every b € B and n € N.

555J Lemma (a) Suppose that X is a set and #(X) < b. Then PX has the Egorov property.

(b) Let 2 be a Dedekind o-complete Boolean algebra with the Egorov property and I a o-ideal of 2.
Then 2(/T has the Egorov property.

(¢) A ccc Boolean algebra has the Egorov property iff it is weakly (o, co)-distributive.

proof (a) Let (A,)nen be a sequence of countable partitions of X; enumerate each A,, as (an;)i<n, where
N, € NU {w} for each n. For each x € X and n € N, let f.(n) < N, be such that € a, ¢, (n)-
Because #(X) < b, there is an f : N — N such that {n : f(n) < f.(n)} is finite for every x € X (522C);
set g(x) = sup{n : f(n) < fz(n)}. Now set b, = {z : * € X, n = maxp<y(,) f=(k)} for each n, and
B = {b, : n € N}; then B is a partition of X, and for any m, n € N we have b, N a,,; = ) whenever
max(n, f(m)) <i < Np,. So {a:a € Ay, byNa # 0} is finite for all m, n € N. As (A,)nen is arbitrary,
PX has the Egorov property.

(b) Let (C),)nen be a sequence of countable partitions of unity in 2/I. For each n € N, we can choose
a countable disjoint family A, C 2 such that C,, = {a* : a € A,}; set A, = A, U {1\ supA4,}, so
that A/, is a countable partition of unity in 2. Let B be a countable partition of unity in 2 such that
{a:a€ Al, anb # 0} is finite for every n € N. Then D = {b* : b € B} is a countable partition of unity in
A/I and {c:c € C,, cnd # 0} is finite for every d € D and n € N.

(c) This is elementary, because every partition of unity in 2 is countable, so the Egorov property exactly
matches (ii) of 316H.

555K Gléwczynski’s example (GLOWCZYNSKI 91, BALCAR JECH & PAzAK 05, GLOWCZYNSKI 08)
Let A be a two-valued-measurable cardinal, and P a ccc forcing notion such that

||—]p>;\<m

(5A3P). Then, taking Z to be the null ideal of a witnessing measure on A, and 7 to be a P-name for the
ideal of subsets of \ generated by Z, as in 555B,

|Fe PN/T is cce, atomless, Dedekind complete, weakly (o, 0o)-distributive, has Maharam
type w and is not a Maharam algebra.

proof We know from 555B that
||—Pf is a o-ideal, and the quotient P\ /I is ccec and Dedekind complete.
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By 541P, because m < ¢,
|Fe 775\/1' is atomless.

By 555J, because m < b,
[ PA has the Egorov property, so PA/Z has the Egorov property and is weakly (o, 00)-
distributive.
Moreover, because m < p, 517Rc tells us that
|Fe P is o-generated by a countable set, so PA /I is o-generated by a countable set and
has countable Maharam type.
Finally, since we certainly have
Fp A < m < Meountable < ¢, 50 there is a separable metrizable topology on A,
5391 shows that

|Fp there is no non-zero Maharam submeasure on PA/Z.

555L Supercompact cardinals and the normal measure axiom If we allow ourselves to go a good
deal farther than ‘measurable cardinal’ we can use similar techniques to find a forcing language in which
NMA is true.

Definition An uncountable cardinal k is supercompact if for every set X there is a k-additive maximal
proper ideal Z of subsets of S = [X]|<" such that
() {s:s€S,x¢s}eTforevery x € X,
(B)itAC S, A¢ T and f: A— X is such that f(s) € s for every s € A, then there is an
x € X such that {s:s€ A, f(s) =z} ¢T.
(Compare 545D.)

555M Proposition A supercompact cardinal is two-valued-measurable.

proof If k is supercompact, let Z be a x-additive maximal ideal of subsets of S = []<" satisfying («) of
555L. Define f : S — & by setting f(s) = min(k \ s) for s € S. Then J = {J :J C k, f1[J] €L} isa
k-additive maximal ideal of subsets of k. If £ < k, then

e =1{s: f(s) =& C{s: ¢ ¢ st eT

so {¢} € J. Thus J contains all singletons, and witnesses that  is two-valued-measurable.

555N Theorem (PRIKRY 75, FLEISSNER 91) Suppose that x is a supercompact cardinal. Then

|Fp, the normal measure axiom and the product measure extension axiom are true.

proof (a) Life will be a little easier if I start by pointing out that we can work with a variation of NMA as
stated in 545D. First, for a set X and an uncountable cardinal A let (X, \) be the statement
there is a A-additive probability measure v on S = [X]<*, with domain PS, such that
() {s:z €seS}t=1forevery z € X,
(8) if g: S\ {0} — X is such that g(s) € s for every s € S\ {0}, then there is a countable set
K C X such that vg~'[K] = 1.
Now the point is that if £(¢, ¢) is true for every ordinal a, then the normal measure axiom is true. I Let X
be any set. Since, as always, we are working with the axiom of choice, X is equipollent with some ordinal
and $(X,¢) is true; let v be a measure on S = [X]|<° as above. Given A C S and a function f: A — X
which is regressive in the sense of (3) in 545D, then we can extend f to a function g : S\ {#} — X which
is regressive in the sense of (3) here. If K is a countable set such that g~![K] is conegligible, and A is not
negligible, then there must be a ¢ € K such that AN g 1[{¢}] = f1[{¢}] is not negligible, as required in
545D. Q

(b) For the time being (down to the end of (d) below), fix an ordinal a.. Let Z be a k-additive maximal
ideal of subsets of S = [a@]<" as in 555L, and v the corresponding measure on S, setting vA = 0 and
v(S\A)=1if AeZ. By 555C, we have a corresponding P,-name » for a measure on S. Now
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”_]P’n S c [d]<kv
so we have a P,-name f such that
[Fp. /1 is a measure with domain P([@]<*) and (D) = (D N S) for every D C [a]<*.
By 555C,

|Fe, v is a &-additive probability measure, so fi is a k-additive probability measure.

() ke, i{s: € €s€a]<F} =1 for every £ < a. ’

P If a € B and £ are such that a |5 € < &, take any b stronger than a and € < « such that b|-p,_ € = €.
Now I={s:se€S,{¢s}e€Tso

bllrp, 0=0l=v{s:s€ S, ¢ s} =h{s:sec[a]"" £¢s}
and 1 = j{s:s € [a]<F, €€ s}
As b and ¢ are arbitrary,
albe, i{s:E€sela]<F} =1

as a and f are arbitrary,

|Fep.i{s:£€se[a]~F}=1forevery £ <. Q

(d) Suppose that a € B and that f is a P,-name such that
alFp, f:[a]<F\ {0} — & is a function and f(s) € s whenever ) # s € [d]<F.
For each s € S\ {0}, we have
al-p, f(3) € 5

because Py is ccc, there is a non-empty countable set J, C s such that a |, f(3) € J, (5A3Nc). Let
(hn(8))nen be a sequence running over Js. For each n € N, we have a 8, < a such that {s: s € S\ {0},
hn(s) # Bn} € Z. Set K = {8, : n € N}; since Z is a o-ideal containing {0}, I = {s : s € S\ {0},
Js € K} U {0} belongs to Z. But in this case, |Fp, il = I =0 and

alFp, f(3) € J, C K
whenever s € S\ I, so
alre, a(f K] = (SN K] = o(S\ 1) =1,
while of course |, K is countable.
(e) What this means is that
e, (k)
for every ordinal «; since forcing adds no new ordinals (5A3Na),
|Fe. I (a, &) for every ordinal c.
But 552B, with 555M and 5A1Fc, tells us that
|Fe, ¢ = &, so t(a,¢) for every ordinal «;

with (a) above and 545E, we get

|Fp. NMA and PMEA.

5550 All forcing constructions of quasi-measurable cardinals start from two-valued-measurable cardinals,
and there is a reason for this.

Theorem (SOLOVAY 71) If £ is an uncountable cardinal and Z is a proper s-saturated x-additive ideal of
Pk containing singletons, then

L(Z) E k is two-valued-measurable and the generalized continuum hypothesis is true.
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Remarks The proof employs techniques not used elsewhere in this treatise, so I omit it entirely, to the
point of not explaining what L(Z) is or what the symbol F means; I remark only that L(Z) is a proper class
containing every ordinal and the set Z, and that the theorem says that the axioms of ZFC, together with ‘x is
two-valued-measurable’ and the generalized continuum hypothesis, are true when relativized appropriately
to the class L(Z). For more, see JECH 78, p. 416, Theorem 82a.

555X Basic exercises (a) Suppose that A is a real-valued-measurable cardinal with witnessing proba-
bility v, and x a cardinal. Let ;i be the P;-name for a measure on A\ as defined in 555C. Show that

e, 1A = (vA)
for any A C .

b) Suppose that A is a two-valued-measurable cardinal. Set x = 2*. Show that
(

p_ A is an atomless y-measurable cardinal with a witnessing probability wi aharam
A tomlessl bl dinal with t babilit th Mah
type ¢ = 2*.

(c) Suppose that X is a two-valued-measurable cardinal and that x = (2*)+*). Show that

[Fp. A is an atomlessly-measurable cardinal with a witnessing probability with Maharam
type less than .

(d) Suppose that A is a two-valued-measurable cardinal and x = 2*. Show that
|Fp, there is a non-trivial atomless o-linked power set o-quotient algebra.
(e) Let 2 be a Dedekind o-complete Boolean algebra. Show that 2 has the Egorov property iff for

every sequence (up)nen in L0 = LO(2A) there is a sequence {a,)nen in ]0, 00 such that {anu, : n € N} is
order-bounded in L.

555Y Further exercises (a) Suppose that X is a set, and Z a proper ideal of subsets of X containing
singletons. Let I’ be a forcing notion such that sat P < addZ, and Z a P-name for the ideal of subsets of X
generated by Z, as in 555B. (i) Show that

IFp addZ = (add Z)".
(ii) Suppose that sat(PX/Z) < addZ. Set § = max(satP,sat(PX/Z)). Show that
e 6 is a cardinal, 7 is f-saturated in PX and PX/Z is Dedekind complete.
(iii) Show that if X = A is a regular uncountable cardinal and Z is a normal ideal on A, then
e Z is a normal ideal on A.
(b) In 555B, show that if Z is f-saturated in PX, where @ is an uncountable cardinal such that cf[§]=¢ <
addZ, then
[FeZ is f-saturated in PX.
(c) Suppose that A is a two-valued-measurable cardinal, and that P is a forcing notion with #(P) < A.
Show that |Fp A is a two-valued-measurable cardinal.

(d) Suppose that k is a two-valued-measurable cardinal, and that m = ¢. Show that

|Fe, ¢ is real-valued-measurable, b = 9 = ¢ and the shrinking number of the Lebesgue null
ideal is at least ¢.

(e) Let x be a cardinal. Suppose that for every set X there is a xk-additive maximal proper ideal Z of
subsets of S = [X]<" such that
(@) {s:s€S,x¢s} el forevery x € X,
(B)if ACS, A¢ T and f: A— X is such that f(s) € s for every s € A, then there is an
x € X such that {s:s€ A, f(s) =z} ¢T.

Show that k is supercompact.
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(f) Let & be a supercompact cardinal. Show that O, is false for every A > k.

(g) Suppose that A is a two-valued-measurable cardinal, and x > A a cardinal. Show that

|Fp, there is a probability measure on w; with Maharam type greater than the least atom-
lessly-measurable cardinal.

(h) In 555C, suppose that X = x and that p witnesses that s is two-valued-measurable, that is, p
is a k-additive {0,1}-valued measure with domain Pk. For J C k let Py : L>®(B,) — L>(B,) be the
corresponding conditional expectation as in part (b) of the proof of 555F. Show that for every o € B% there
is a countable set J C & such that u{¢: & < K, us = Py(xo(§))} = 1.

5557 Problems (a) In 555B, what can we say about the m-weight of PX /Z?

(b) Suppose that A is an atomlessly-measurable cardinal with a normal witnessing probability. Let
(Ap)n<w, be a family of non-negligible subsets of A\. Must there be a countable set meeting every A,? (See
555F and 521Xi.)

555 Notes and comments The point of Solovay’s theorems 555D and 5550 is that they are relative
consistency results. Continuing the discussion in the notes to §541, write ‘d2vimmc’, ‘dqmc’, ‘Jamc’ for the
sentences ‘there is a two-valued-measurable cardinal’, ‘there is a quasi-measurable cardinal’ and ‘there is
an atomlessly-measurable cardinal’. I have already noted that there are fundamental metamathematical
reasons why we cannot have a proof, in ZFC, that

if ZFC is consistent then ZFC + Jqmc is consistent
unless ZFC is actually inconsistent. But 555D tells us that
if ZFC 4 32vmc is consistent, then ZFC + Jamc is consistent
and 5550 that
if ZFC 4 Jqmc is consistent, then ZFC 4+ J2vmc is consistent.
Since dgmc is actually a consequence of both 32vmc and Jamc, we see that
if one of ZFC + 32vmc, ZFC + Jamc, ZFC 4+ Jdgmc is consistent, so are the others;

that is, 32vmc, Jamc and dqmce are equiconsistent in ZFC. Of course they are not in general equiveridical
(unless all are disprovable); as noted in 5550, if we start from a universe in which Jqmc is true, we can
move to one in which 32vmc and CH are both true, so that Jamc is false, and there are easier arguments to
show that if we start with Jamc, we can move to

Jamc + ‘there are no strongly inaccessible cardinals’,

so that we have Jamc true but 32vmc false.

The reason for working through these equiconsistency results is to show that assertions like NMA, PMEA
and Jamc, which are of interest in measure theory and general topology, are no more dangerous than appro-
priate assertions about large cardinals which have been explored in depth (JECH 78, chap. 6; KANAMORI
03, §22; JECH 03, §20), and for which we can have corresponding confidence that either they are consistent
with ZFC, or that an eventual contradiction would lead to an earthquake, and rescue (if it came) would be
from outside measure theory.

In §544 T examined some of the consequences of supposing that there is an atomlessly-measurable cardinal;
for instance, that there are many Sierpiniski sets (544G). It is not an accident that we get similar properties
of random real models (552E). If we want to know if something might be implied by the existence of an
atomlessly-measurable cardinal, the first step is to look at what can be determined in the forcing models of
555C. This is often straightforward; for instance, since 0 is not changed by random real forcing, and since
0 must be much lower than any two-valued-measurable cardinal, it must be much lower than any atom-
lessly-measurable cardinal created by random real forcing. But it is quite unclear that the same can be said
about atomlessly-measurable cardinals in general (544Zd). T offer 555F as another example of a phenomenon
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which appears in Solovay’s models but which is not known to be true for all atomlessly-measurable cardinals
(555Zb).

In §8546-547 I gave some of the Gitik-Shelah results showing that non-trivial ‘simple’ algebras cannot be
power set o-quotient algebras. Of course this depends a good deal on what we mean by ‘simple’. Looking
at the basic cardinal functions, we see that (at least if there can be measurable cardinals) then there can
be non-trivial ccc power set o-quotient algebras which are o-centered or have countable Maharam type
(555H, 555K). But they are still very far away from any algebra which can be specified without (perhaps
implicitly) using a two-valued-measurable cardinal at some stage. We cannot have a non-trivial power set
o-quotient algebra with countable m-weight (547Xa), but I do not see how to rule out ‘small’ w-weight in
general (547Zb, 555Za).

Version of 3.1.15

556 Forcing with Boolean subalgebras

I propose now to describe a completely different way in which forcing can be used to throw light on
problems in measure theory. Rather than finding forcing models of new mathematical universes, we look
for models which will express structures of the ordinary universe in new ways. The problems to which this
approach seems to be most relevant are those centered on invariant algebras: in ergodic theory, fixed-point
algebras; in the theory of relative independence, the core o-algebras.

Most of the section is taken up with development of basic machinery. The strategic plan is straightforward
enough: given a specific Boolean algebra € which seems to be central to a question in hand, force with €\ {0},
and translate the question into a question in the forcing language. In order to do this, we need an efficient
scheme for automatic translation. This is what 556A-556L and 5560 are setting up. The translation has to
work both ways, since we need to be able to deduce properties of the ground model from properties of the
forcing model.

There are four actual theorems for which I offer proofs by these methods. The first three are 556M (a
strong law of large numbers), 556N (Dye’s theorem on orbit-isomorphic measure-preserving transformations)
and 556P (Kawada’s theorem on invariant measures). In each of these, the aim is to prove a general form
of the theorem from the classical special case in which the algebra € is trivial. In the final example 5565
(I.Farah’s description of the Dedekind completion of the asymptotic density algebra 3), we have a natural
subalgebra € of 3 and a structure in the corresponding forcing universe to which we can apply Maharam’s
theorem.

556 A Forcing with Boolean subalgebras Let 2 be a Boolean algebra, not {0}, and € a subalgebra
of 2. Let P be the forcing notion € = €\ {0}, active downwards.

(a) If a € A, the forcing name for a over € will be the P-name

a={(b,p) :pect,becA pnbCal.

(b) If B is a Boolean subalgebra of 2 including €, then the forcing name for B over € will be the
P-name {(b,1) : b € B}, where here 1 = 1y = 1y = 1¢.

(¢) For each of the binary operations O = n, U, A, \ on 2, the forcing name for O over ¢ will be
the P-name

O ={(((a,b), (a0b)"),1) : a, b € A}.

(d) The forcing name for C over € will be the P-name

¢ ={((a,b),1):a,be A acb}

(©) 2007 D. H. Fremlin
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(e) Let 7 : 2 — 2 be a ring homomorphism such that 7¢ C ¢ for every ¢ € €. In this case, I will say that
the forcing name for 7 over € is the P-name {((a, (7a)"),1) : a € A}.

(f) Now suppose that 2 is Dedekind o-complete. For v € L°(2(), the forcing name for u over € will
be the P-name {((&, [u > a]),1) : @ € Q}.

Remark We shall need to agree on what it is that the formula L°(2l) abbreviates. The primary definition
in 364Aa speaks of functions from R to 2. Because R is inadequately absolute this is not convenient here,
and I will move to the alternative version in 364Af: a member u of L(2) is a family ([u > a])aecg in 2 such
that

[u > a] = supgeg gsa [u > B] for every a € Q,

infren [u>n] =0, sup,cyu>—-n] =1

556B Theorem Let 2 be a Boolean algebra, not {0}, and € a subalgebra of 2. Let PP be the forcing
notion €1, active downwards, and 2 the forcing name for 2 over €.
(a) If p€ €1, a, b€ 2 and a, b are the forcing names of a, b over €, then

p”—dei)

iff upr(pn(aab),€) = 0, that is, for every ¢ stronger than p there is an r stronger than ¢ such that
rna =rnb. In particular,

P ”—]}» a= b
whenever pna =pnb.
(b) Writing O for the forcing name for O over €,

[ © is a binary operation on 2 and ¢ O b = (aOb)"

for each of the binary operations O = n, u, A and \ and all a, b € .
(c) All the standard identities translate. For instance,

Fexn(yhz) = (xAy)A(znz) foral z, y, z € A
(d)

e 2, with the operations A, A, U and \, is a Boolean algebra, with zero 0 and identity
1.

(e)(i) Writing C for the forcing name for C over €,
|[Fp < is the inclusion relation in the Boolean algebra 9.
(ii) For a, b€ A and p € €T,
plFra C b

iff upr(pna\b,€) =0.
(f) If B is a Boolean subalgebra of 2 including €, then

|F» B is a Boolean subalgebra of 2.
proof (a)(i) Recall that upr(a, €) = inf{c: a C ¢ € €} if the infimum is defined in € (313S). So upr(a, ) =0
iff for every non-zero ¢ € € there is a ¢ € € such that a C ¢ and ¢ ¢ ¢/; that is, for every non-zero ¢ € €

there is a non-zero ¢’ € € such that ¢’ C ¢\ a. In the present context, we see that for p € €+ and a, b € ,
upr(pn (a Ab),€) = 0 iff for every ¢ stronger than p there is an r stronger than ¢ such that rn(a Ab) = 0.

(ii) Suppose that pna = pnb, that ¢ € € is stronger than p, and that & is a P-name such that
q|Fp2 € a. Then there are an r € €, a d € 2 such that (d,r) € a, and an s stronger than both r and ¢
such that s|fp4 = d. In this case

sndCpnrndCpnaCbh,
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so (d,s) € b and
slpd=deb.

As g and z are arbitrary,

p|Fpa is a subset of b;
similarly,

p|Fepbis a subset of ¢ and b = a.
(iii) If upr(pn (a & b).7 ¢) = 0, then for every ¢ stronger than p there is an 7 stronger than ¢ such that

rna=rnband r|-pa=0>, by (ii). As ¢ is arbitrary, p|Fpa = b.

(iv) Now suppose that p|-pa = b and that ¢ is stronger than p. Then (d,q) € @, so q|Fpd € a@ = b.
There must therefore be a (d,r) € b and an s stronger than both r and ¢ such that s |Fp @ = d; in this case
d=a,snacrndCband sna\b=0.

As ¢ is arbitrary, upr(pn(a\ b),€) = 0. Similarly, upr(pn (b\ a),€) = 0. By 313Sb, upr(pn (a2 b),€) =
0.

(b) Of course
FpO C (2 x A) x 2,
just because
IFpa €A

for every a € 2. To see that O is a name for a function with domain Ax A, use 5A3Ea. If (a1, b1), (a10by)*), 1)
and (((az,ba), (a20b2)*),1) are two members of O, and p € €T is such that

plke (a1, b1) = (a2,bs),
then
upr(pn ((a10b1) & (a20b2))) € upr(pn ((a1 & az) U (by A bs)))
=upr(pn (a1 Aaz))uupr(pn(by b)) =0
by (a) above and 313Sb again. So
plFe (a10b1)" = (a20b2)"
by (a) in the other direction. Thus the condition of 5A3E(a-ii) is satisfied, and
[Fe O is a function,
while of course
e aOb = (aOb)-
for all a, b € 2. Moreover, setting A = {((a,b),1) : a, b € A}, 5A3ED tells us that
Fp dom O = A=A x92, s0 O is a binary operation on 2.
(c) T work through only the given example. Suppose that p € €T and that &, § and 2 are P-names such
that
plred, g, 2 € 9L
If q is stronger than p, there are an r stronger than ¢ and a, b, ¢ € 2 such that
rlpd=a,y=band = ¢
Then
rlFepgiz=bAé=(bac),

rlpin(@az) =(anbac) =((anb) alanc)) = (EAg) A (En2).
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As ¢ is arbitrary,
plein(yaz) = (&ng) AEn);
as p, &, y and Z are arbitrary,

Fezn(yaz)=(xAy)A(xaz) forall z, y, z € A

(d) This is now elementary, amounting to repeated use of the technique in (c).
(e)(i) It will be enough to show that
Fpforallz, ye A,z Cy <= zAy=ux.
P Suppose that p € €1 and that &, ¢ are P-names such that
pled, g€t

() Suppose that p|Fpd € §. If ¢ is stronger than p, there are an r stronger than ¢ and a, b € 2 such that
a C band

rlpd =aand § = b.
Now
riFpiny =(anb) =a=z;

as ¢ is arbitrary, p|Fp2 gy = @. (8) Conversely, suppose that p|Fpi "y = &. If ¢ is stronger than p there
are r stronger than ¢ and a, b € 2 such that

rlbpd =a, 9 =>b, (anb) =g
now (((anb),b),1) € ¢, s0 |Fp(anb) ¢ band
rlred=a=(anb) Cb=y.

As q is arbitrary. p|Fp C 9.
As p, & and g are arbitrary,

Fpforz,yed, zCy <= zrny=x Q
(ii) Now, for a, b€ 2 and p € €T,
plreach
iff plFpanb=a
iﬁ’p”—p(aﬂb)' =a
iff upr(pn(aa (and)),€) =0
iff upr(pna\b, &) =0.
(f) This should now be easy. As BCA |FpB CA If pe € and &, § are P-names such that p|Fp i,

¥ € B, then for every ¢ stronger than p there are r stronger than ¢ and a, b € B such that r |Fp& = @ and
1y = b. In this case

rlFpicy=(anb) € B,z Ay=(anb) cB;
as q is arbitrary,
plredny, & Ay e B.
As p, & and ¢ are arbitrary,
e B is a subring of 2;
as we also have |Fpi € B, we get

|Fe B is a subalgebra of 2.
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556C Theorem Let 2 be a Boolean algebra, not {0}, and € a subalgebra of 2. Let P be the forcing
notion €+, active downwards, 2 the forcing name for 2 over €, and 7 : % — 2 a ring homomorphism such
that wc C ¢ for every ¢ € €; write 7 for the forcing name for 7 over €.

(a)(i)
|Fe 7 is a ring homomorphism from 2 to itself
and
e (@) = (wa)

for every a € 2.

(ii) If 7 is injective, |Fp 7 is injective.

(iii) If ¢ : A — 2 is another ring homomorphism such that ¢c C ¢ for every ¢ € €, with corresponding
forcing name (ﬁ, then

”—]p Tl'¢ = 7T¢)
Now suppose that 7 is a Boolean homomorphism.
)

i) we = ¢ for every c € €.

(b)
(i
(ii) |Fp7 is a Boolean homomorphism.
(
(

iii) If 7 is surjective, ||p7 is surjective.
iv) If 7 € Aut 2 then
|Fe 7 is a Boolean automorphism and (7) =t = (771)-.
(v) If the fixed-point subalgebra of 7 is € exactly, then
|Fp the fixed-point subalgebra of 7 is {0, 1}.
proof (a)(i)(e) It will help to note straight away that m¢ = ¢nnl for every ¢ € €. P The hypothesis is
that mc C ¢; because 7 is a ring homomorphism, wc C 71, so mc C ¢n7l. Since also
me=7l\7m(1\¢c)27ml\ (1\¢c) =cnml,
we have equality. @ Consequently
cnma=cnm(lna) =cnwlnma =mcnma=m(cna)

whenever ¢ € € and a € 2.

B) ||—]12>7T is a function from 2 to itself. P Of course |Fp7 C 2 x A. Suppose that p € ¢t and that
((a, (a)*), 1), ((b, (wb)*),1) are two members of 7 such that p|Fpa = b. Then for every g stronger than p
there is an r stronger than ¢ such that rna =rnb (556Ba), in which case

roma=mw(rna) =n(rnb) =rnmbh.

This shows that p |Fp (ma)" = (7b)*, by 556Ba in the other direction. As a and b are arbitrary, the condition
of 5A3Ea is satisfied, with A there exactly equal to 2 here, and

|- 7 is a function with domain 2. Q
If a € A then ((a, (7a)*),1) € 7 so
IFr (a ) € 7 and 7(a) = (wa)".

() |Fp7 is a ring homomorphism. B Writing O for either n or A,

e 7(a O b) = #(aOb)* = (m(aOb))" .
= (raO7b)" = (7a) O (wb) = (7va) O (7b)

for all @, b € A. If now p € €+ and &, y are P-names such that
p ”_]P’ ia y S Q.l7
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then for any ¢ stronger than p there are r stronger than ¢ and a, b €  such that
rlpi =aand g =b,
in which case
rlea(@Ob) = 7(aOb) = 7(a) O#(b) = 7(i) O #(y).
As q is arbitrary,
plre (O ) = 7(&) O 7(5);
as p, £ and g are arbitrary,
Fer(zOy) = (7z) O (7y) for all z, y € 2.
As this is true for both O = 1 and O = A,

|Fp 7 is a ring homomorphism. Q

(ii) Let p € €t and a P-name & be such that
plpd e A and i = 0.
For any q stronger than p, there are an r stronger than ¢ and an a € 2 such that
r|Fpa = &, therefore 0 = 7a = (wa)".

By 556Ba, there is an s stronger than r such that snma = 0; since ws C s, m(sna) = 0. As 7 is injective,
sna =0 and (using 556Ba again)

slpid =a=0.
As ¢ is arbitrary, p |Fp# = 0; as p and & are arbitrary, |Fp 7 is injective.

(iii) Suppose that p € €+ and that i is a P-name such that p|lpd € 9. For any q stronger than p,
there are an r stronger than ¢ and an a € 2 such that r |Fp & = a, so that

rlre 7 (6(2)) = 7(6(a) = 7((da)) = (r¢a) = (r¢)(a) = (7o) (&).
As ¢ is arbitrary,
plFe(d(2)) = (7¢)(@);
as p and & are arbitrary, |Fp7¢ = (7¢)".

(b)(i) I observed in (a-i-a) above that me¢ = cnml for every ¢ € €, so if 71 = 1 we shall have m¢ = ¢ for
every c € €.

(ii) I pointed out in 556Bd that
[Fe 1 is the identity of 2,
and we now have
|Fe7(1) = (71): = 1, so 7 is a Boolean homomorphism.
(iii) Let p € €t and a P-name & be such that p|fpz € 2. For any ¢ stronger than p, there are an r
stronger than ¢ and an a € 2 such that r |Fpa = ©. Now there is a b € 2 such that a = 7b, in which case
rlred =a=wbe x[.
As ¢ is arbitrary, p |Fp @ € 7[2l]; as p and & are arbitrary, |-p7 is surjective.
(iv) By (a-iii),
Fei(n) = (i = i
where ¢ : 2 — 2 is the identity automorphism. But

[ i is the identity on 2.
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P If p € €' and a P-name & are such that p|fpa € Ql, then for any ¢ stronger than p there are an r stronger
than ¢ and an a € 2 such that

rlFpd=a= (ta) =ia=it.
As q is arbitrary, p |Fp i@ = #; as p and & are arbitrary, |Fp¢ is the identity. @ Putting these together,

|Fe (7=1)" is the inverse of 7.

(v) Suppose that p € €t and a P-name & are such that
plpi € A and 7d = 7.
For any q stronger than p there are an r stronger than g and an a € 2 such that
rlbpa =i = #i =#a = (ra),
and an s stronger than r such that sna = snma. Now sna = w(sna) and sna € €. If sna = 0, set
s’ = s; then ¢ |Fpi = 0. Otherwise, set s’ = sna; then ¢’ |Fp# = 1. Thus in either case we have an s

stronger than ¢ such that s’ |Fpd € {0,1}. As g is arbitrary, p|Fp& € {0,1}; as p and & are arbitrary, |Fp7
has fixed-point subalgebra {0, 1}.

556D Regularly embedded subalgebras I am trying to set these results out in maximal generality,
as usual. However it seems that we need to move almost at once to the case in which our subalgebra is
regularly embedded, and we have more effective versions of 556Ba and 556B(e-ii).

Proposition Let 2 be a Boolean algebra, not {0}, and € a regularly embedded subalgebra of . Let P be
the forcing notion €%, active downwards, and for a € 2 let @ be the forcing name for a over €.
(a) For pe €t and a, b € L,

p”—[Pd:i)

iff pna=pnb.
(b) Let € be the forcing name for C over €. Then for p € € and a, b € 2,

plrea ch
iff pnacCb.
proof The point is just that upr(a,®) = 0 only when a = 0, because infima in € are also infima in 2

(313N); so that upr(pna\b,€) =0iff pna C b, and upr(pn(a 2b),&) =0iff pna=pnb.

556E Proposition Let 2 be a Boolean algebra, not {0}, € a regularly embedded subalgebra of 2, P the
forcing notion €+, active downwards, and 2 the forcing name for 2 over €; for a € 2, write @ for the forcing
name for a over €.

(a) Let A be a P-name, and set

B={qna:qect aec q|pac A}
Then for d € 2 and p € €7,
p|Fed is an upper bound for A N2
iff pnd C d for every b € B, and
plred =sup(AN2A)

iff pnd =sup,cppnb.
(b)(1) If {(a;)ier is a family in A with supremum a, then

Fea = sup;egai.®
(ii) If (a;)ier is a family in 2 with infimum a, then
”—]p a= infief al

8See 5A3F for a note on the interpretation of formulae of this kind.
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(@) [Fer(

(c) |Fp sat(2A) < sat(2A)".?2
) < T(A)”
proof (a)(i) ? Suppose, if possible, that b € B, pnb ¢ d and

(2A)".

plFed is an upper bound for A N <.
Let ¢ € €t a € A be such that b= gna and ¢|Fpa € A. Then png #0,s0 pnqg € €+ and
prglFpa e AN, therefore a C d.

It follows that pngna € d (556Db); but this contradicts the choice of p and b. X
Thus pnb € d whenever b € B and p|Fpd is an upper bound for A N 2.

(ii) Next, suppose that p € € and d € 2 are such that pnb C d for every b € B. Suppose that g is
stronger than p and that & is a P-name such that g|Fpt € ANQA. If r is stronger than ¢, there are an s
stronger than r and an a € 2 such that s|Fp& = a. In this case, sna € Band sna=pnsna Cd, so

slrpié=a=(sna) Cd.
As 7 is arbitrary, q|Fp i C d; as ¢ and & are arbitrary,

plFed is an upper bound for A.

(iii) Putting these together, we see that pnbd C d for every b € B iff p|p d is an upper bound for AN%.

(iv) Now suppose that p|pd = sup(A N A). We know that d, and therefore pnd, is an upper bound
of {pnb:be B}. If e is any other upper bound of {pnb: b € B}, then

p|Feé is an upper bound of A, so d € ¢
and pnd C e, by 556Db again; thus pnd = sup,cgpnb.

(v) Finally, suppose that p nd = sup,cp p nb. Suppose that ¢ is stronger than p and that & is a P-name
such that

q|Fp i € 2 is an upper bound of AN

If r is stronger than g, there are a s stronger than r and a ¢ € 2 such that s |fp& = ¢. In this case, by (i),
we must have snb C ¢ for every b € B; accordingly snd C ¢ (313Ba), so that

slpd € é= .
As r is arbitrary,
qlbed ¢
as q and & are arbitrary,

plFpd =sup(AN2A).

(b) (i) Of course
e €
for every i € I, so that
|Fe @ is an upper bound for {a; : i € I}.

(Formally speaking: if p € € and & is a P-name such that p|Fp@ € {a; : 4 € I}, then for any g stronger
than p there are an r stronger than ¢ and an ¢ € I such that r |Fp® = a; € @; hence plFp2 € a.) In the
other direction, suppose that p € €+ and that & is a P-name such that

plFpa; C @ € A for every i € I.

90f course T am not asserting here that ¢ |-p sat(2)” is a cardinal’, only that ‘ |-p sat(2) is a cardinal and sat(2)” is an
ordinal’.
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For any ¢ stronger than p there are an r stronger than ¢ and a b € 2 such that r |fFpd = b. Now, for any
1el,

r||—p>i€f,di§j::i)

and therefore rna; Cb. As i is arbitrary, rna Cb and r|Fpa € &. As ¢ is arbitrary, p|Fpa € &; as p and
T are arbitrary,

|Fe @ is the least upper bound of {a; : i € I}.

(ii) Now
IFp infa; = 1\ sup(1\a;) = 1\ sup(1\ a;)°
el iel iel
=1\ (sup(1\ @;))" = (1\ (sup(1\ a;)))" = (inf a;)".
i€l iel el

(c) 7 Otherwise, there are a p € € and a family (Z¢)e<,, where £ = sat(2), such that
plFpie € AT for every € < & and d¢ A &, = 0 whenever £ < 7 < &.

For each { < k choose g¢ stronger than p and a¢ € A such that g¢ |Fpde = ae. Then g¢ |Fpae # 0, so
be = g¢ Nag is non-zero. As sat(A) = k, there must be £ < 7 < & such that bg N b, # 0. Set r = g¢ N gy; then
r € €1 is stronger than p and

7””—[9‘@5('1.@77 = dgﬁdn = (CLE ﬂan)' # 0
by 556Da, because rnag na, # 0. X

(d) Let A C 2 be a set with cardinal k = 7(2) which 7-generates 2. Let A be the P-name {(a,1) : a € A};
then

e A T-generates A and #(A) < &.
P (i) Suppose that p € €T and z, B are P-names such that
plFe B is an order-closed subalgebra of 2 including A, and & € 2.

Consider ® = {a:a €, p|Fpa € B}. Then D is a subalgebra of A, by 556Bb, and is order-closed by (b)
here; also A €D, so © = 2. Next, for any ¢ stronger than p there are an r stronger than ¢ and an a € 2
such that r |Fp& = a; since a € D, plFpa € B and

r|p i € B.
As p, @ and B are arbitrary,
e A T-generates 2.
(ii) If (@e)e<s enumerates A, then
e A = {ac: € < i} and #(A) < #(#) < . Q
Accordingly

e 7(2A) < &

556F Quotient forcing In 556A-556B I have gone to pains to describe names A, A, n,0,1 constituting
a Boolean algebra. Of course we also have much simpler names 2, A, 7,0, 1 also constituting a Boolean
algebra in the forcing language, and these must obviously be related in some way to the construction here.
I think the details are worth bringing into the open.

Proposition Let 2 be a Boolean algebra, not {0}, and € a subalgebra of 2. Let P be the forcing notion
€1, active downwards, and 2 the forcing name for A over €.
(a) Consider the P-names

wz{((@,d),l):aeﬂ}, f:{(d,p) :pe€t aeA pna=0}
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Then
|Fe 1 is a Boolean homomorphism from 2l onto 2, and its kernel is Z.

(b) Now suppose that € is regularly embedded in 21 Set Q= (AT, ¢, 1,]) and let P x Q be the iterated
forcing notion (5A30). Then RO(P x Q) is isomorphic to the Dedekind completion of 2.
(¢) Suppose that € is regularly embedded in 2 and that 8 is a Boolean algebra such that

”—]pgl ~ R

Then the Dedekind completion A of A is isomorphic to the Dedekind completion €& of the free product
C® B of € and B.

proof (a)(i) It is elementary that
|Fp o : A — A is a surjective function
just because A = {(a,1) : a € A}. By 556Bb,
[ ¢ is a ring homomorphism; being surjective, it is a Boolean homomorphism.
(ii) (@) If p € €1 and 7 is a P-name such that p|Fpd € 7, then there are a ¢ € €, an a € 2, and an r
stronger than both p and ¢ such that
gna=0, rl|pt=a.
In this case, 7 na = 0 so, by 556Ba,
rle0=a = () = P(&).
As p and ¢ are arbitrary,

||—]pi is included in the kernel of ).

(B) If p € €" and # is a P-name such that
plpd e A and ¢(z) = 0,

then there are an a € 2 and a ¢ stronger than p such that

glFpi=aand a=1v(a)=¢(x)=0.
Now there is an r stronger than ¢ such that r na = 0, so that (a,r) € 7 and
rlrepd=acT.
As p and & are arbitrary,
e the kernel of 1) is included in Z, so they coincide.
(b)(i) In order to use the description of iterated forcing in 5A30, we need to set out an exact P-name

for AT, If we say that AT abbreviates {z : z € 2, 2 # 0}, and use the formulation of Comprehension in
KUNEN 80, Theorem 4.2, we get

At = {(i,p) : & € dom2, p € €, plpz € A and & # 0}.
Now 556Ab specifies dom 2l to be {a: a € A}, so we get

Q‘[Jr

{(a,p):a €A, pec plpacAand a0}
{(a,p):ac U, pec plra#0},

domAt ={a:aec, fpa=0}={a:aecAT}

by 556Da.
(ii) 5A30 now tells us that the underlying set of P % Q is to be
P={(p,a):pe €t acAt, pllpa#0}.
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Forpe ¢t and a € Y,

plFpa#0 < for every ¢ stronger than p, ¢ fFpa =0
<= for every non-zero q C p, gna # 0

(556Da). So P is just
{(p,a):pe €t aec gna#0 whenever g € € and 0 # q C p}.
Next, for (p,a), (¢,b) € P,

(p,a) is stronger than (¢,b) <= p C qand p|Fpa C b
< pCqgandpnacCbd
(556DDb).
(iii) We can define a function f: P — A" by setting
f(p,a) =pna
whenever (p,a) € P. P If you look at the definition of @ in 556A, you will see that ((b,1),1) = (b, 1) belongs

to a iff b C a, so that @ = b only when a = b; thus f is a function from P to 2. And the definition of P
ensures that f(p,a) # 0 whenever (p,a) € P. Q

(iv)(e) If (p,a) is stronger than (¢,b) in P, then p € g and pna C b, so f(p,a) C f(q,b).

(B) If a € AT, then (because € is regularly embedded) C = {q: a C ¢ € €} does not have infimum 0
in €; let p € €T be a lower bound for C. Then (p,a) € P, and f(p,a) C a. Thus f[P] is order-dense in 2.

(7) If (p,a), (g,b) are incompatible in P, then f(p,a)n f(g,b) = 0. P2 Otherwise, c = pnangnb
is non-zero. Let r € €1 be such that (r,¢) € P. Since r\ (pnq) |Fpé =0, r Cpng; since ¢c C anb, (r,¢) is
stronger than both (p,a) and (g,b), which is supposed to be impossible. XQ

(v) Thinking of A" as an order-dense subset of ‘51, and of f as a function from P to §l+, 514Sa tells us
that

RO(P * Q) = RO(P) = ,
as claimed.

(c) For free products of Boolean algebras, see §315; for Dedekind completions, see §314. This part can
be regarded as a corollary of (b) (see 556Ya-556Yb), but can also be approached directly, as follows.

(i) Let 6 be a P-name such that
ke : 2 — B is an isomorphism.
Set
R={(p,ba):pece€t,be Bt acAt, acpandpl|pba)=>},
and give R the ordering induced by the product partial ordering of €+ x B+ x AT,
(ii) ROY(R) = ¢®%. P Define f : R — (¢®9B)* by setting f(p,b,a) = p @ b.
(@) Of course f(p,b,a) C f(p',b,a") whenever (p,b,a) < (p/,b,d’).

(.B) If (p07b07a0) and (plvblaal) belong to R and f(po»b()aao)mf(phblaal) 7& 07 set P = PonNpi,
b=0bynby and a =agna;. Thenpc €t bec B+, aCpand

plFe6(a) = 6(ao i) = 0(ao) M6(ar) = bo by = b.
As p|Fpé(a) # 0, a cannot be 0, and (p,b,a) € R; so (po, bo, ag) and (p1,b1,a;) are downwards compatible
in R.
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(y) If d € (€®B)™*, there are pg € €+, b € B+ such that py ® b C d. Now there is a P-name i such
that

IFp @ € A and 6(i) = b.
Let p stronger than py and ag € A be such that p|Fpao = &, and set a = pn ag; then
plFpa = ag so 8(a) = 0(ay) = b.

As iri (8), it follows that a # 0, so that (p,b,a) € R; now f(p,b,a) C d. As d is arbitrary, f[R] is order-dense
in €RB.

(6) Thus f satisfies the conditions of 514Sa and RO%(R) = ¢R%5. Q

(iii) ROY(R) = 2A. P Define g : R — AT by setting g(p,b,a) = a for (p,b,a) € R.
(a) Of course g(p,b,a) C g(p',V',a’) whenever (p,b,a) < (p/,b',a’) in R.

(B) Suppose that (po,bo,a0), (p1,b1,41) € R and that a = agna; # 0. Set p = pgnp; and
b=0bynb;. Then pDa #0 and

plhed(a) =b

as in (ii-f). Sincepna # 0, p frpa = 0 (556Da), so p J-pb = 0 and b # 0. Thus (p,b,a) € R and (po, bo, ao),
(p1,b1,a1) are compatible downwards in R.

(v) Ifd e 2F, there is an ag € A+ such that ag C d. In this case, Jpao = 0 so there is a py € €+
such that po |Fpao # 0. Now po|Frf(ag) € B so there are a p stronger than py and a b € B such that
p|Fef(ao) =b. Set a = pnap; then

plFpa=ao #0 and b= 6(a) # 0.
Consequently @ and b are both non-zero and (p,b,a) € R, while g(p,b,a) C d.
(8) Thus g satisfies the conditions of 514Sa and RO*(R) ~ 2. Q

(iv) Putting these together, €2 and 2 are isomorphic.

556G Proposition Let 2 be a Dedekind complete Boolean algebra, not {0}, € a regularly embedded
subalgebra of A, P the forcing notion €+, active downwards, and 2 the forcing name for 2 over €.
(a) Whenever p € € and # is a P-name such that

p ”—]p T € Q-[,
there is an a € 2 such that
p ”—[P.’L' = av

where a is tche forcing name for a over €.
(b) |Fp 2 is Dedekind complete.

proof (a) Set
B={gqnb:qe " is stronger than p, b € 2, q||—]1»b =4}, a=supB.
Then 556Ea tells us that
pled = supli} = &.
(b) Suppose that p € ¢+ and that A is a P-name such that p|Fp A C 2. Set

B={qna:aeA, geCt and q|pac A}, d=supB.

Then pnd = sup,cppnb, so pl-p d=supA, by 556Ea. As p and A are arbitrary,
[Fe 2 is Dedekind complete.
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556H L°(A): Proposition Let A be a Dedekind complete Boolean algebra, not {0}, € a regularly
embedded subalgebra of 2, P the forcing notion €+, active downwards, and 2l the forcing name for 2 over

€. For a € A let a be the forcing name for a over €.
(a)(i) For every u € LO(2A),

|Fpa e LO(2)
where 4 is the forcing name for u over €.

(ii) If u, v € LO(A) and |Fpi = v, then u = v.
(b) For u, v € LO(2A) and « € R,

If u < w, then |Fpu < 0.
() If {u;)ier is a family in LO(A) with supremum u € L°(2(), then

”—]pll = SUP;cf u; in Lo(ﬂ).
(d) If p € €* and 1 is a P-name such that p[-pw € L(2), then there is a u € LO(2A) such that
plkpd/:iﬂ.
(e) If (un)nen is a sequence in L2(2A), then the following are equiveridical:

(i) (un)nen is order*-convergent to 0 (definition: 367A),
(i) |Fp (@n)nen is order*-convergent to 0.

proof (a)(i) Examining the definition in 556Af, we see that we have
e @ is a function from Q to A and @(&) = [u > o]

for every a € Q. Now 556ED tells us that, for every a € Q,

Fei(@) =[u>al =( sup [u>p])= sup [u>p]= sup (),
BeQ,f>a BeQ,f>a BeQ,B>a
0= G le> = g o> nl = T u),

1= (supfu> —n]) =sup[u > —n] = supa(—n),
neN neN neN

S0
e e LO(A),
and I can write [4 > &] for the P-name @(&), so that
IFe[e>a] = [u> ol
for every a € Q.
(ii) For any a € Q,

Felu>a] =[u>a)=[v>a] =[u>af.

By 556Da, [u > o] = [v > a]. As « is arbitrary, u = v.
(b)(i) Suppose u, v € L°(21). By 364D, we have

[u+v>a] =supgequ>B]nv>a—p]

for every a € Q. If o, 8 € Q,
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el > Blale>a—pl=[u> Bl Ao >a— 6l =([u>pln[v>a-p])
Taking the supremum over 3, as in 556E(b-i),

Fele+0>a]=sup[a>B)n[o>da—p] =supa>B]n[o>a-—[]
peQ BeQ

=(supfu>B]nv>a—-4]) =ut+v>a] =[(u+v) >d]
BeQ
for every a € Q, and
Fpi+v=(u+v).
(ii) Concerning u V v, we have
Fel(uvo) >a]l=[uve>a] =[u>a] Uv>af
=[e>aufo>a]=[aVvo>d]
for every u, v € L°(2) and a € Q, so
Fpa Vo= (uVo);
it follows that if w > 0 then |Fpa =4V 0 > 0.
(iii) If u, v € L°(A)*, o € Q and « > 0, then, just as in (i),

Felixo>a]l= sup [o>Blafo>S]=( sup [u>B]nv>2]);
BEQ,5>0 B BEQ,B>0 B

=[uxv>a] =[uxuv)>df;
so |Fpi x © = (u x v). Using the distributive law we see that the same is true for all u, v € L°().
(iv) Take o € R and set w = axl € LO(A). If 3 € Q and B < «, then
Felaxt > Bl =1=1=[w> g = [ > f];
while if 5 > «,
e [axl > B) =0=0=[w> 8] = [w > F].
So
|Fe [ax1 > 8] = [w > G] for every 8 € Q, and axl = w = (axl)".
Putting this together with (iii), we have
|Fpat = (axl) x &= (axl) x 4= (axl x u) = (au)’
for every u € LO(21). In particular, taking o = —1, |Fp — 1 = (—u)".
(v) Finally, if u < v then u Vv = v, so
FpaVo=1vand u < 9.
(c)(i) Tt will help to note that the criterion in 364L(a-ii)
if A C L°2A) is non-empty, then v € L°(2A) is the supremum of A in LO(A) iff [v > o] =
sup,ca [u > af in 2A for every a € R
can be replaced by
if A C L°%A) is non-empty, then v € L°(2) is the supremum of A in LO(A) iff [v > o] =

Sup,c4 [u > a] in A for every o € Q.
P If the weaker condition is satisfied, and « € R, then

[v>a]= sup [v>p]= sup suplu>p]
BEQ,B>a BEQ,F>aucA
=sup sup [u>fB]=supfu>a] Q
u€A BEQ,B>x u€eA
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(ii) Now 556E(b-i) tells us that
e [@ > a] = sup;e; [ > d]
for every a € Q, so
e = sup,c

(d) For each a € Q we have an a,, € 2 such that p|Fpas = [w > &] (556Ga); since p|Fpa = (anp)" for
every a € 2, we can suppose that a, C p for every a. Now we find that if « € Q and by = Supgeg g>a da;
then

pleba = SUPgeg,p>a [0 > Bl = da,

SO @ = by. Similarly, if b = inf, ey ay, and ¢ = sup,, ey @—n,
b= inf [u =0
plreb = inf [ >n] =0,

¢=supfw>-n]=1
neN

and b =0, ¢ = p. It is now easy to check that there is a u € L%(2) such that

[u>a] =aqif @ €Qand a >0,
= aq U (1\p) for other o € Q,
and that p |Fpu = w.

(e) Recall that (u,)nen order*-converges to 0 iff (u,)nen is order-bounded and 0 = inf,,en sup,,>,, |tn|
(367G); and we shall have a similar formulation in the forcing language. So if (u,)nen order*-converges to
0, then

- sup,, >4 [tm| = (SUPp>p [um])*
for every n € N, and
|Fp inf,en SUPy>p |tm| = (inf,en SUPm>n [um])* =0, 80 (ln)nen —* 0.

Conversely, if |Fp (i )nen order*-converges to 0, then |Fp (tn)nen is order-bounded, and there is a P-name
w such that

e e LOA), |i,| < w for every n € N.
By (d), there is a v € L°(2l) such that |Fp1w = ¥, so that
Fp(vV|upl) =wV |u,| =0 for every n € N
and |u,| < v for every n (use (a-ii)). We can therefore repeat the calculation just above to see that
[Fe (infpen SUD,, >, [Uum|) = infren Sup,, s, [im| = 0,

so that inf,,ensup,,,>,, |um| = 0 and (up)nen order*-converges to 0.

5561 Proposition Let 2 be a Boolean algebra, not {0}, and € a regularly embedded subalgebra of 2.
Let P be the forcing notion €%, active downwards, and 7 : 2l — 2 a Boolean homomorphism fixing every
point of &; let 7 be the forcing name for = over €.

(a) 7 is injective iff |Fp 7 is injective.

(b) If 7 is order-continuous, then

|Fe 7 is order-continuous.
(c) If 7 has a support supp 7 (definition: 381Bb), then
|Fe (supp ) is the support of 7.

proof (a) We saw in 556C(a-ii) that if 7 is injective then |Fp 7 is injective. Now suppose that 7 is not
injective; let a € AT be such that ma = 0. Then |Fp7a =0. 1na #0, so fpa =0, by 556Da, and
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JFe 7 is injective.
(b) Take p € €T and a P-name A such that

pll—pA C 9 and sup A = 1.

Set B = {qna:qe et ac qllpa € A}. Then supyczpnb = pnl = p, by 556Ea. Because 7 is
order-continuous,

pnl=p=7p=supycpm(pnb) =sup,cgpnmd.
Consider
C={gqna:qect ac q|pacr[A]}.
Then 7[B] CC. P If g€ €, a € Aand ¢|pa € A, then
q e (a) = 7a € 7[A]
SO
m(gna) =gnma e C. Q
Accordingly
{pnc:ceC} D {pnnb:bec B}

must have supremum p, and p |-p sup 7[A] = 1.
As p and A are arbitrary,

|Fe sup 7[A] = 1 whenever A C 2 and sup A = 1, so 7 is order-continuous
(313L(b-iii)).
(c)(i) |Fp if z € A and z A (supp )" = 0 then 7z = z. P Take p € €t and a P-name # such that
plFpi € 2 and @A (supp ) = 0.
For any q stronger than p there are an r stronger than ¢ and an a € 2 such that
r|Fpd =a, (an suppm) = 0;
now rnan suppw = 0 (556Da). In this case,
rlFp7i =a(rna) = (r(rna)) = (rna) = .

As ¢ is arbitrary, p |Fp 7@ = @; as p and 2 are arbitrary, we have the result. Q
Now 381Ei, applied in the forcing language, tells us that

|Fp (supp 7)* supports 7.

(ii) |Feifz € 2 supports 7, then x> (supp ). P Take p € €+ and a P-name # such that
pled € 92l supports 7.

Then for any ¢ stronger than p we have an r stronger than ¢ and an a € 2 such that r |Fp& = a. Set
b=au(l\r); then r|-pb= a supports 7. T If b does not support 7, then there is a non-zero d C 1\ b such
that d nmd = 0 (381Ei again). Since rnd = d # 0, there is an s stronger than r such that s|Fpd # 0. Now

s ||-Pdm'rd = (dnnd)* =0, while dra =0 and @ supports 7,

which is impossible. X
So b2 supp 7 and

rlFpd = b2 (supp ).
As ¢ is arbitrary,
plrpd > (supp )

as p and & are arbitrary, we have the result. Q
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Putting this together with (i),
|Fp (supp 7)* is the least element of 2A supporting 7, and is the support of .

556J Theorem Let 2 be a Dedekind complete Boolean algebra, not _{0}7 and € a regularly embedded
subalgebra of . Let P be the forcing notion €1, active downwards, and 2 the forcing name for A over €.
(a) If 0 is a P-name such that

|- 6 is a ring homomorphism from 2 to itself,
then there is a unique ring homomorphism 7 : % — 2A such that wc C ¢ for every ¢ € € and
e = 7,
where 7 is the forcing name for 7 over €.
(b)(i) If
|2 0 is a Boolean homomorphism,
then 7 is a Boolean homomorphism, and ¢ = ¢ for every ¢ € €.
(ii) If
e 6 is a Boolean automorphism,
that 7 is a Boolean automorphism.
proof (a)(i) For each a € 2, 556Ga tells us that there is a b € 2 such that
e 6(a) = b
by 556Da, this defines b uniquely, so we have a unique function 7 : 2 — 2 defined by the rule
for every a € A, |Fpé(a) = (ma)".

(ii) Now, for O = A or O = n, and a, b € 2,

I (m(@0b)): = ((a0b)) = ()
=000 b = (ra) O (wb)* = (raOTb)"
and 7(aOb) = maO7b. So 7 is a ring homomorphism.
(iii) If ¢ € € then mc C ¢. P If ¢ = 1 this is trivial. Otherwise,
I\clFeé=0, (me) =60 =0,
so (I\¢)nmc=0and mc C c. Q

(iv) We can therefore speak of the forcing name 7 (556Ae, 556C). If p € €* and # is a P-name such
that p|Fpd € 2, let a € A be such that p|Fpz = & (556Ga again); then

plreb(d) = 6(a) = (na) = (a) = 7().
As p and T are arbitrary,
e = 7.
(b)(i) If |# 6 is a Boolean homomorphism, then
e (x1) =61 =1
and 71 = 1. Now
meCe=1\(1\¢c) C1\7(1\¢c) =71\ (7l \7c) =mc

so mc = ¢ for every c € €.
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(ii) If ||—]p9 is a Boolean automorphism, then the same arguments tell us that there is a Boolean
homomorphism ¢ : 2 — 2 such that ¢c = ¢ for every ¢ € € and |Fp ¢ = 6!, But in this case

e (rg) = tp =60~ =i

where ¢ is the identity automorphism on 2{; by the uniqueness of the representing homomorphisms of A,
m¢ = ¢. Similarly, ¢ = ¢ and ¢ = 7!, so that 7 is an automorphism.

556K Theorem Let (2, i) be a probability algebra, and € a closed subalgebra of 2; let P be the forcing
notion €71, active downwards, and 2 the forcing name for 2 over €. We can identify € with the regular open
algebra RO(P) (514Sb). For u € LY(€) write @ for the corresponding P-name for a real number as described
in 5A3L.
(a)(i) For each a € 2 there is a u, € L'(€, i] €) defined by saying that [ u, = fi(anc) for every c € €.
(ii) If p € €* and a, b € A are such that

plepa=>0

(where a, b are the forcing names for a, b over €), then
p e ta = Up.
(b) There is a P-name i such that
IFe (2, i) is a probability algebra,

and

IFp o = i,
whenever a € 2l and a is the corresponding forcing name over €.

(c) If m : A — 2 is a measure-preserving Boolean homomorphism such that e = ¢ for every ¢ € €, and
7 the corresponding forcing name over €, then

e : 2 — 21 is measure-preserving.
(d) If ¢ is a P-name such that
||—pq5 A > Ais a measure-preserving Boolean automorphism
then there is a measure-preserving Boolean automorphism 7 : 2 — 2 such that mc = ¢ for every ¢ € € and
e = .
(e) If v € LY (2, i) and u € L*(€, u] €) is its conditional expectation on €, then
oo € LY, /i) and [0 dfi = .

proof (a)(i) This is just the Radon-Nikodym theorem (365E).

(ii) If p|Fp @ = b, then pna = pnb (556Da). Consequently

fcuaxxp: ua:/j(cmpma)zﬂ(cmpmb):fcubxxp

cnp
whenever ¢ € €, and u, X xp = up X xp; by 5A3M,
p e e = .
(b) (i) Note first the elementary properties of the conditional expectation a +— u, : 2 — LY(€, a] €): it is
additive and positive and order-continuous, and 0 < u, < x1 for every a. (To extract these facts efficiently

from the presentation in §365, note that u, = P(xa), where P : L*(, i) — L*(€, ji] €) is the conditional
expectation operator of 365Q'°.) In particular,

|Fp i, € [0,1]
0Formerly 365R.
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for every a € . It is also worth observing that if ¢ € € and a € 2 then u,.. = u, x xc (see 3650c!t).
(ii) Now consider the P-name
fi=A{((a,ia),1) : a € A}
We have quite a lot to check, of course. First, fi is a name for a function with domain 2. P If ((a,1,),1)

and ((b, @), 1) are two members of ji, and p € €+ is such that p e a = b, then pna =pnb, sop|rp i, = i,
by (a-ii) above. By 5A3E, |Fp i is a function. Also |Fp dom i = A, where A = {(a,1):a €A} =2. Q

(iii) We have
|Fp iia = i, € [0,1]
for every a € U, so
[ fi is a function from 2A to [0, 1].
Since u; = x1,
|Fp il = = 1.

(iv) Next, |Fpfiis additive. B Suppose that p € €T and &, y are P-names such that
plFe i, v € 2 are disjoint.
By 556Ga there are a, b € 2 such that
plled =a,y=0b, (anb) =ingy=0.
Sopnanb=0 and
XP X Uauh = Upn(avb) = Upna + Upnb = XP X Ua + XD X Up = XP X (Ug + Up);

it follows that

plre i 0g) = fila0b) = filaub) = Gaup = (uq +up)”
(5A3M)
= iy + U = fid + ji).

As p, © and g are arbitrary,

|Fe 12 is additive. Q

(v) Suppose that p € €* and that A is a P-name such that
p|Fp A € Ais closed under U and has supremum 1.
Then for every rational number o < 1 there are an r € €1, stronger than p, and a d € 2 such that
rlpd € A and jid > a.
P Set
B={qna:qect ac q|pac A},

so that p C sup B (556Ea). Because i is completely additive, there are bg,...,b,—1 € B such that
A(pnsup;, b;) > amp. Express each b; as ¢;na; where ¢; is stronger than p and ¢;|Fpa; € A. For
J Cn set

cy=pninfics i\ supicp\ g Gis  dy = Ssup;e; as;
then (cs)scy, is disjoint and
PN SUP; <, bi = Supgycp, €y N dy.

HFormerly 365Pc.
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Accordingly
Z(Z);éjgn ﬂ(CJ N dJ) > aup

and there must be a non-empty J C n such that ¢; # 0 and

apicy < plegndy) = f U -
So r = cyn[ua, > o] is non-zero. Set d = dy; then

r|Fea; € A for every i € J, therefore d = SUp;cjGi € A,
and
rlejid =14, > d Q
(vi) It follows that

|Fp 1 is completely additive.

P Suppose that p € ¢t and that A is a P-name such that
plre A C 2 is closed under U and has supremum 1.
Then for every rational o < 1 and every ¢ stronger than p there is an r stronger than ¢ such that
r |Fp there is an = € A such that [T >
as q is arbitrary,
p|Fe there is an z € A such that jix > &;
as « is arbitrary,
plFp sup, 4 iz = 1.
As p and A are arbitrary,
|Fp sup,c 4 jiz = 1 whenever A C 2 is closed under U and has supremum 1.

We know that

|Fp i is additive and jil = 1,

so we can turn this over to get

|Fe infieca jix = 0 whenever A C 9l is closed under A and has infimum 0, therefore ji is
completely additive. Q

(vii) Since we already know that
e 2 is Dedekind complete
(556Gb), we have all the elements needed for
lFe (2, i) is a probability algebra.
(c) The point is that if a € 2 then u,, = u,. B For any c € €,

fumf (cnma) = p(r(cna)) = a(cna) fua

Now suppose that p € €+ and & is a P-name such that p|Fpd € 2. Then there is an a € U such that
plFpa =2 (556Ga again), and

—

p”_P la(ﬂ-x) = ﬂ(ﬂa) - ﬁ(ﬂ'a). = Urq = Ug = ﬁJZ

1

As p and & are arbitrary,

|Fp 7 is measure-preserving.

(d) By 556J, there is a unique m € Aut 2 such that mc = ¢ for every ¢ € € and |Fp¢ = 7. In this case,
for any a € 2,
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et = pa = ﬂ(¢a) = i(ra) = ji(ra) = Urq.
S0 ug = Ure (HA3M again) and
fia = fua = fum = f(ma).
Thus 7 is measure-preserving.

(e) Let P: LY(A, i) — L*(€, i] €) be the conditional expectation operator, and let U be the set of those
v € L' (2, i) such that

lFeo € LY, /i) and [ o dji = Pv.

By (a), xa € U for every a € ; by 556Hb, U is closed under addition and rational multiplication; by 556Hc
SUp,,en vn, € U for every non-decreasing sequence (vy,)nen in U. So U = L' (2, 1), as required.

556L Relatively independent subalgebras Let (2, i) be a probability algebra and € a closed subal-
gebra, of 2; let P be the forcing notion €T, active downwards. Let ji be the forcing name for i described in
556K, so that |p (2, i) is a probability algebra.

(a) For a subalgebra B of 2 including €, let B be the forcing name for B over €. If (B;)iers is a family
of subalgebras of 2 including €, then (9B;),;cs is relatively independent over € (definition: 458La) iff

IFp (B,),c 7 is stochastically independent in 2.
(b) If {v;)ies is a family in LY(2) which is relatively independent over €, then
|Fe (0:);c; is stochastically independent

(writing v; for the forcing name for v; over €).

: be P-names

proof (a)(i) Suppose that (3B;);c; is relatively independent over €. Let p € ¢* and J, () ;e

such that
plFpJ € [I]<¥ is non-empty, i; € B; for every j € J.

Then for every ¢ stronger than p there are an r stronger than ¢ and a family (b;);jes such that J is a
non-empty finite subset of I, b; € B, for every j € J, and

rleJ =J and &; = b; for every j € J.
Set a = infjc;b;. For each j € J let up, € LY (€, 1] €) be the conditional expectation of xb; on €, as in
556Ka; then u, = [[;c; us,, because (B;)ic is relatively stochastically independent. But this means that
r e i(inf &) = fi(inf b;) = fia = i,
jed jed
=[], =[] b = [ 7,
jeJ jeJ jeJ

As q is arbitrary,

plepling g @) = I1;cj idj;
as p and <ij>jej are arbitrary,

- (Bi),c; is independent.
(ii) Now suppose that

e (B:);c; is independent.

Take a finite set J C I and (bj)jes € [[;c;B;. Again set a = infjec;b; and let uy; be the conditional
expectation of xb; on € for each j. Then
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e (] w,)™ =[] @, = [] it;

JjeJ jeJ jeJ
= f(inf b;) = a(inf b;) = @y,
u(jej ) 'u(jeJ ;)

80 [[jc s up; = tua. As (bj)jey is arbitrary, (B;);cs is relatively independent over €.

(b) For each i € I, let 2; be the closed subalgebra of 2 generated by {[v; > o] : @ € Q}, and B; the
closed subalgebra of 2 generated by 2; U €. Then (%B;);es is relatively independent over € (458Ld), so
e (Bi),c; is independent, by (a) here. Now we have

e [6: > o] = [vi > o] € B;
whenever a € Q and ¢ € I, so

e [0 > o] € B; for every a € Q and i € I, and (0;);; is independent.

556M Laws of large numbers As an elementary example to show that we can use this machinery to
extend a classical result, I give the following. Consider the two statements
(1) Let (X,%, ) be a probability space, T a o-subalgebra of X, and (f,)nen a sequence in
L£2(p) such that (f,)nen is relatively independent over T and [}, fodp = 0 for every n € N and
every F' € T. Suppose that (8,)nen is a non-decreasing sequence in |0, oo|, diverging to co, such
1

oo 1 . n
that Y7, B—sznH% < 0o. Then lim,, o En St ofi=0ae.

and
(1) Let (X, X, ) be a probability space and (f,)nen an independent sequence in £2(u) such

that [ fndu = 0 for every n € N. Suppose that (8,)nen is a non-decreasing sequence in 0, oo,

diverging to oo, such that > é”an% < 0o. Then lim,, 6% Srofi=0ae.
In 273D 1 presented (1) as the basic strong law of large numbers from which the other standard forms could
be derived. (1) may be found in Volume 4 as an exercise (458Ye). What I propose to do is to show how (1)
can be deduced, not exactly from (}), but from (}) in a forcing model; relying on the fundamental theorem
of forcing to confirm that if (}) is true in its ordinary sense, then its interpretation in any forcing language

will again be true.

proof (a) In order to avoid explanations involving names for real numbers, it seems helpful to re-word ().
Consider the version
(1)1 Let (X, X, u) be a probability space, T a o-subalgebra of X, and (f,)nen a sequence in
L2(n) such that (f,)nen is relatively independent over T and J fadp = 0 for every n € N and
every F' € T. Suppose that (8, )nen is a non-decreasing sequence in Q N0, co|, diverging to oo,

such that Y% 5*12||fn||§ < 00. Then lim,,_, N S ofi=0ae.

/Bn
Then (f); implies (). B Given the structure of (f), with general 8, > 0, let §,, € Q N]0, 8,] be such that

1 1 _
Il < Al + 27
for every n. Set 7, = sup,,<,, 0y for each n; then (y,)nen is a non-decreasing sequence in Q N]0, co[ and

> W%anﬂg is finite, so (1)1 tells us that

limy, o0 =50 fi = limy oo 22 23" f; =0 ae. Q
Bn Bn In
(b) Now formulate the assertions (1); and () in terms of measure algebras; we get
(1) Let (A, i) be a probability algebra, € a closed subalgebra of 2, and (v,)nen a sequence
in L2(2, i) such that (v,),ey is relatively independent over € and Pv, = 0 for every n € N,
where P : LY(A, 1) — L*(€, 1] €) is the conditional expectation operator. Suppose that (3, )nen
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is a non-decreasing sequence in Q N0, oo, diverging to oo, such that > B%anH% < 00. Then

(

ﬁi Z?:o Vi )nen is order*-convergent to 0.
and
(1)" Let (2, 71) be a probability algebra and (v,)nen an independent sequence in L2(2, i)
such that [v,di = 0 for every n. Suppose that (53, )nen is a non-decreasing sequence in 0, oo,

[ee] 1

"0 EH%”% < 00. Then <L > o Vidnen is order*-convergent to 0.

Bn
(As usual, the conversions are just a matter of applying the Loomis-Sikorski theorem, with 367F to translate
order*-convergence in L into almost-everywhere convergence of functions.)

diverging to oo, such that >

(c) Assuming (1)’, take a structure (A, fi, €, (U )nen, (Bn)nen) as in ()’, let P be the forcing notion €,
active downwards, and consider the corresponding forcing names 21, ji and (0,)nen. Let P : LY(2A, i) —
L'(€, ji] €) be the conditional expectation operator. For each n € N,

lFpn X 00 = (vn X 0n) € LY ), |0nll3 = [ondi= (P(v7))”
by 556Hb and 556Ke. Now

Yoo g PORAEID) < 3o o lenll} < oo,
S0
v=2Z, 5 P()
is defined in L°(€), and
e 32020 51913 < s finite.
At the same time,
e fvndﬁ = Pv, = 0 for every n € N,
and by 556Lb
|Fp (0n)nen is independent.

Applying (1)’ in the forcing language,

|Fe <(572i:0 Vi) YneN = <B—nzi:0 Ui)nen order*-converges to 0 in LO(2A),

SO <ﬂ% S o Vi)nen order*-converges to 0 in L°(2), by 556He.

Thus (1)’ is true, and we’re home.

556N Dye’s theorem Now for something from Volume 3. Let me state two versions of Dye’s theorem
(388L): the ‘full’ version
(1) Let (U, ) be a probability algebra of countable Maharam type, € a closed subalgebra of 2,
and 71, T3 two measure-preserving automorphisms of 2 with fixed-point algebra €. Then there is
a measure-preserving automorphism ¢ of 2 such that ¢c = c for every ¢ € € and 7, and ¢mye~?
generate the same full subgroups of Aut2l.
and the ‘simple’ version
() Let (2, 1) be a probability algebra of countable Maharam type, and 1, w2 two ergodic
measure-preserving automorphisms of 2. Then there is a measure-preserving automorphism ¢ of
2 such that 7 and ¢ma¢p~! generate the same full subgroups of Aut 2.
Here also the machinery of this section provides a proof of (1) from (7).

proof (a) Assume (f). Take (2, i), €, 71 and 72 as in (f). Let P be the forcing notion ¢, active downwards,
and let 2, 771 and 72 be the forcing names for 2, w1 and w5 over €. By 556C(b-iv), 556C(b-v), 556Gb, 556Kb
and 556Kc, and using 372Pc,
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|Fp there is a measure on 2 with respect to which it is a probability measure and m; and
79 are measure-preserving automorphisms with fixed-point subalgebra {0,1}, so are
ergodic, because 2 is Dedekind complete.

By 556Ed,
[ 2 has countable Maharam type.
By (1), applied in the forcing universe,

|Fp there is a measure-preserving automorphism 6 of 2 such that 71 and 0720~ generate
the same full subgroups of Aut 2.

Let § be a P-name such that

Pé is a measure-preserving automorphism of 2 such that 71 and 9.7%26.7*1 enerate the
I p g p g
same full subgroups of Aut 2.

By 556Kd, there is a ¢ € Autz 2 such that ¢c = c for every ¢ € € and Fe6 = ¢, so that, setting
T3 = ¢magp” !,

|Fp 71 and 73 generate the same full subgroups of Aut A
(using 556C(a-iii) and 556C(b-iv)).
(b) Since
& 73 belongs to the full subgroup of Aut 2l generated by 71,
we can apply 381I(c-iv) in the forcing language to get
|- inf,ez supp(#{7s) = 0.
Now by 556Ic we know that
e supp(#'7ts) = (supp(mi'ms))-

for every n € Z (of course we need to check that |Fp77ms = (7]m3)"; but this is easily deduced from
556C(a-iii), an induction on n for n > 0, and 556C(b-iv)). So

I (inf supp(r7s))" = in (supp(rfms))

(556E(b-ii))

—f n :f N . =0.
inf supp(my'ms)" = inf supp(#y's)

By 556Da, as usual, inf,,cz supp(n]ms) = 0; by 381I(c-iv), in the other direction and in the ordinary universe,
73 belongs to the full subgroup of Aut 2l generated by 7. Similarly, w1 belongs to the full subgroup generated
by 3, so w1 and 73 generate the same full subgroups, as required by (1).

5560 For the next result, I prepare the ground with a note on ‘full local semigroups’ as defined in §395.

Lemma Let 2 be a Dedekind complete Boolean algebra, not {0}, and € a regularly embedded subalgebra
of 2; let P be the forcing notion €+, active downwards. Let 2l be the forcing name for 2 over €, and for
a ring homomorphism 7 : 2 — 2 such that wc C ¢ for every ¢ € € let @ be the forcing name for 7 over €.
Let G be a subgroup of Aut®l such that every point of € is fixed by every member of G, and G the P-name
{(7,1) : m € G}.

(a) |Fp G is a subgroup of Aut 2.

(b) If ¢ : A — A is a ring homomorphism such that ¢c C ¢ for every ¢ € €, and

||—pq5 belongs to the full local semigroup generated by G‘,
then ¢ belongs to the full local semigroup generated by G.
proof (a)(i) If p € ¢* and g is a P-name such that p|Fp & € G, then for every ¢ stronger than p there must

be an r stronger than ¢ and a m € G such that
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rlpid =7 € Aut 2.
(556C(b-iv)). As q is arbitrary, p|Fp4 € Aut2l; as p and & are arbitrary,
”—11» G g Aut Q[

(ii) Writing ¢ for the identity automorphism of 2,
|Fpi € G is the identity automorphism of 2

(see part (b-iv) of the proof of 556C). If p € €+ and &, y are P-names such that p|Fp, § € G, then for
every ¢ stronger than p there are r stronger than ¢ and m;, T3 € G such that

rlpd =, § =t -y =i = (mm) €G, i = (i) = (r') €qG
(556C(a-iii), 556C(b-iv)), because mmy and 7, ! belong to G. As ¢ is arbitrary,
plFe -9 and -1 belong to G;
as p, £ and gy are arbitrary,

e G is a subgroup of Aut 2.

(b) Take any non-zero a € 2. Then there is a p € € such that p|Fpa # 0 (556Da). Since
P ||—]p></3 belongs to the full local semigroup generated by G,
there must be P-names &, 6 such that
plrpi e A\ {0}, & € a, 6 € G, By = ¢y whenever y C i
(395B(a-ii)). Now there are a ¢ stronger than p and b € A, 7 € G such that
qlFpb=a 7 =94.

Since ¢|Fpb # 0, gnb # 0. Suppose that d € ¢nb. Then

qlFpd € &, so (wd) = 7d = 0d = ¢d = (¢d)*

and

md =qnmnd
(see (a-i-a) of the proof of 556C)
=qnod
(556Da, because ¢d C ¢q C q)
— &d.

Thus 7 and ¢ agree on the principal ideal 2,3, while gnb C @ is non-zero. As a is arbitrary, ¢ belongs to
the full local semigroup generated by G, by 395B(a-ii) in the other direction.

556P Kawada’s theorem In the same way as in 556M and 556N, we have two versions of 395P:
(1) Let 2 be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of Aut®l, with fixed-point subalgebra €, such that € is a measurable algebra. Then there is a
strictly positive G-invariant countably additive real-valued functional on 2.
and
(1) Let 2 be a Dedekind complete Boolean algebra such that Aut 2 has a subgroup G which is
ergodic and fully non-paradoxical. Then there is a strictly positive G-invariant countably additive
real-valued functional on 2.
Once again, I claim that we can prove (1) from (7).

proof (a) Take R, G and € as in (). If 2 = {0}, the result is trivial; so let us suppose from now on that
2 # {0}. Let A be a functional such that (€, \) is a probability algebra. Let P be the forcing notion €*,
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active downwards, and let 2 be the forcing name for A over €; for 7 € Aut2 let 7 be the forcing name for
7 over €. Let G be the P-name {(7,1) : 7 € G}.

(b) |Fp G is an ergodic subgroup of Aut2. P I noted in 5560a that
lFe G is a subgroup of Aut 2.
For its ergodicity, copy the argument of 556C(b-v). Suppose that p € €+ and % is a P-name such that
plFpd € A and 6(i) = i for every 6 € G.
For any ¢ stronger than p there are an r stronger than ¢ and an a € 2 such that r|fFp4 = a. Take any
m € G. Then
rlren € G, (ma) = 7d = & = a,
SO
m(rna) =rnma=rna

(556Da). As m is arbitrary, rna € €. If rna # 0, then rnalfpa = 1; if rna = 0, then r|fFpa = 0. In
either case, we have an s stronger than r such that s|fpd € {0,1}. As ¢ is arbitrary, p|Fp& € {0,1}; as p
and & are arbitrary,

[Fe G has fixed-point subalgebra {0,1}, so is ergodic, because 2 is Dedekind complete
(556Gb, 395Gf). Q
(c) |FpG is fully non-paradoxical.
P (i) 7 Otherwise,
|- G satisfies condition (i) of 395D,
and there must be a p € €+ and P-names 0 Z such that

plret € Ql\ {1}, 6 is a Boolean homomorphism from 2 to the prmc1pal ideal generated
by &, and 6 belongs to the full local semigroup generated by G.

In order to apply 556J and 5560 as stated we need a P-name 6, such that |Fe 6, is a ring homomorphism.
If p =1, take 91 = 0 otherwise, take 91 such that
plFefy =6, 1\p|-pb is the identity automorphism.
Then
|Fp 6, : A > Ais a ring homomorphism belonging to the full local semigroup generated

by G.
(ii) By 556J there is a unique ring homomorphism ¢ : 2 — 2 such that ¢c C ¢ for every ¢ € € and
(83 01 = ¢. By 5560b, ¢> belongs to the full local semi-group generated by G. Since G is fully non-paradoxical,
pl=1and |Fpfil=¢l =1 Butplfpbil =i #1. XQ
(d) Applying () in the forcing language, we see that
|Fe there is a strictly positive G—invariant. countably additive functional on %, therefore
there is a there is a strictly positive G-invariant countably additive functional on 2(
taking values in [0, 1].
Let © be a P-name such that
e is a strictly positive G-invariant [0, 1]-valued countably additive functional on 2.
For each a € 2, |Fpva € [0,1], so there is a unique u, € L°(€)* such that
Fepra =i,
(5A3M once more), and 0 < u, < x1. Set pa = fuad/_\ for a € 2.

(e) p is a strictly positive G-invariant countably additive functional on 2.

P (i) If a, b € A are disjoint,
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Fpanb=0,s0 @y + i = va+ b =v(aVb) = raub) = Gap
using ; 1t follows that ug 4+ up = uqup and pa + = u(aub). us p 1s additive.
ing 556Bb); it foll h d pa+ pub=p b). Thus p is additi
(ii) If (an)nen is a non-decreasing family in 21 with supremum a, then, by 556Be and 556Eb,
|Fe {@n)nen is a non-decreasing sequence in 2 with supremum @, so (g, )neN = (Pan)neN
is a non-decreasing sequence in [0, 1] with supremum @, = va.
Now (ug, )nen is a non-decreasing sequence in LY(€) with supremum wu, (5A3Ld), so pa = sup,cy Han.
Thus p is countably additive.
(iii) Because ug > 0, pa > 0 for every a € 2. If pua = 0, then u, = 0 so
|Fera = @, = 0, therefore a = 0, because v is strictly positive,
and a = 0 (556Da). Thus p is strictly positive.
(iv) Suppose that 7 € G and a € A. Then
lFp7 € G and v is G-invariant, so @yq = v(7a)" = (70) = Vi = i,

S0 Urq = uq and p(mwa) = pa. Thus p is G-invariant. Q
Accordingly p is a functional as required by (1).

556Q For the final application of the methods of this section, I turn to a result of a quite different kind.
Here the structure under consideration, the asymptotic density algebra 3, is off the main line of this treatise,
but has some important measure-theoretic properties (see §491); and it turns out that there is a remarkable
identification of its Dedekind completion (556S) which can be established by applying Maharam’s theorem
in a suitable forcing universe of the kind considered here. I start with a couple of easy lemmas, one just
a restatement of ideas from Volume 3, and the other a straightforward property of a basic class of forcing
notions.

Lemma (a) Let 2 be a Boolean algebra and fi : 2 — [0, 1] a strictly positive additive functional such that
il = 1. Suppose that whenever (a,)nen is a non-increasing sequence in 2, there is an a € 2 such that
a C a, for every n and fia = inf, cy fia,. Then (2 1) is a probability algebra.

(b) Let (A, &) be a probability algebra. Suppose that £ > 7() is an infinite cardinal and that (e¢)e<x
is a family in 2 such that f(infecx e¢) = 27#5) for every finite K C I. Then (2, i) is isomorphic to the
measure algebra (B, 7,;) of the usual measure on {0,1}".

proof (a) Let A C 2 be a non-empty countable set. Let {a,)nen be a sequence running over A, and set
b, = inf,<, a; for each n. There is a b € A, a lower bound for {b,, : n € N} and therefore for A, such that
b = inf,, ey @ib,. If ¢ € A is any lower bound for A, then buc C b, for every n, so

b+ p(c\ b) = i(buc) < infpew fiby, = fib,

and i(c\ b) = 0; as fu is strictly positive, ¢ C b. Thus b = inf A. As A is arbitrary, 2 is Dedekind o-complete.
But this is the only clause missing from the definition of ‘probability algebra’.

(b) By 331Ja, 7(214) > k for every non-zero d € 2. So 2 is Maharam-type-homogeneous, with Maharam
type &, and (U, ) = (B, i) (3311).

556R Proposition Let P be a countably closed forcing notion. Then, for any set I, writing (B, 7y) for
the measure algebra of the usual measure on {0, 1},

IFe (B, 7p) = (Br, vn).

proof If I is finite, this is elementary (and does not rely on P being countably closed), so I shall suppose
that I is infinite.

(a)
|Fp if (zn)nen is a non-increasing sequence in %1, there is an z € %1 such that z C x,, for
every n and Ur(z) = inf,en Ur(my).
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P Let p be a condition of P and (&,),en a sequence of P-names such that
plrpin € B and i,y € iy,
for every n. If ¢ is stronger than p, we can choose (qn>n§N, (bn)nen inductively so that go = ¢ and, for each
N, gnt1 18 stronger than ¢y, b, € B and gn41 |Fp n = by. In this case,
Gn1 |FPbnt1 = Eny1 € &y = by,
S0 bp41 C by, for each n. Setting b = inf, en by, U1b = inf,en Urb,. Also, because P is countably closed, there
is a condition r stronger than any g,. So
r ||—p5 ¢ by, = iy, for every n € N, 51(5) = infpenUr(2y).

As q is arbitrary,

p|Fp there is an 2 € B such that = € &, for every n and 77(x) = inf ey 7 (2y).
As p and (&) nen are arbitrary,

”—]p if {(x,,)nen is a non-increasing sequence in %1, there is an z € %1 such that z C x,, for

every n and vy(x) = infpen V1 (zy). Q
Since we certainly have

|FpB; is a Boolean algebra and & : B; — [0,1] is a strictly positive additive functional
such that v;1 =1,

556Qa, applied in the forcing universe, tells us that
[Fe (B, 1) is a probability algebra.
Ay . ; Ov i 5 Gt ) — 9—#(K) i
1/1€ . () i) —
(b) Let (e;);cr be the standard generating family in %B;. Then 7;(inf;cx e;) = 2 for every finite
set K C 1, s0
|Fpor(infick ;) = 2-#(K) for every finite set K C I.

Next, if © is the subalgebra of ®B; generated by {e; : ¢ € I}, then D is dense in B, for the measure metric.
Now
[Fp® is the subalgebra of B; generated by {¢; : i € I} and ® is metrically dense in By,
so 7(Br) < #(I). By 556Q, (Br, 1) = (B iy Pur) = (B1,71),
as required.

556S Theorem (FARAH 06) Let Z be the ideal of subsets of N with asymptotic density 0 and 3 the
asymptotic density algebra PN/Z. Then the Dedekind completion of 3 is isomorphic to the Dedekind
completion of the free product (PN/[N]<“) @ B, .

proof (a) Forn € N, set I, = {i : 2" <i < 2"} so that (I,,),en is a partition of N\ {0}, and #(I,,) = 2"
for every n € N. Recall that
Z={J:JCN, lim,, 27 "#(JNI,) =0}

(491AD). The notation of this proof will be slightly less appalling if T write b; for J* € 3 when J C N and
ci for (U, cx In)® when K C N.
Set

¢ ={cx : K CN}.

Because K — ck : PN — 3 is a Boolean homomorphism, € is a subalgebra of 3. Now € = PN/[N|<¥. P If
K CN, then

ck =0 <= Unex In € 2 <= K is finite.

So the Boolean homomorphism K +— ¢k induces a Boolean isomorphism 7 : PN/[N]<¥ — € defined by
setting w(K*) = cx for every K CN. Q
For p € €1, set

Fp={K:KCN,pcCecg},
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so that F,, is a filter on N containing every cofinite set. Note that if p C ¢ then 7, is finer than 7.

(b) € is regularly embedded in 3. P Suppose that A C € has infimum 0 in €, and that b € 37. Let
Jo € PN\ Z be such that b = by,. Then limsup,,_,., 27 "#(Jo N I,) > 0, so there is an € > 0 such that
K ={n:#(JoNI,) > 2"} is infinite. cx cannot be a lower bound of A in €, so there is an L C N such that
cr € A and ci € cr, that is, K \ L is infinite. Set J = UneK\L Jo N I,; then #(J N I,) > 2" for infinitely
many n, so J ¢ Z and 0 # by C b. On the other hand, bynecr, = 0. So bZ ¢, and b is not a lower bound of
Ain 3. As b is arbitrary, A has infimum 0 in 3; as A is arbitrary, the embedding € & 3 is order-continuous
(313L(b-v)), and € is regularly embedded in 3. Q.

(c) Let P be the forcing notion €+, active downwards. Then P is countably closed. P Let (py,)men be
a non-increasing sequence in €. For each m € N, let K,, C N be such that p,, = cg,.. Then K11\ K,
is finite for each m. Let (ng)ren be a strictly increasing sequence such that ny € K,, whenever m < k € N|
and set K = {ny : k € N}; then cx belongs to €+, and cx C p,, for every m € N. Q

(d)(i) Let 3 be the forcing name for 3 over €, and for b € 3 let b be the forcing name for b over €. Let
v be the P-name

{((iu,o?),p) cpeCh, JCN, lim,, 7, 27"#(J N1,) is defined and equal to a}.

(ii) |Fpv is a function. P Suppose that (Jo, o, po) and (J1,1,p1) € PN x R x € are such that
lim, 7, 27"#(JoN1,) = ap, lim,r, 27"#(1N1,) = a,

and that p € €t, p C ponpy and p|Fpby, = by,. Then pnby, = pnby, (556Da). Express p as cx, where
K CN;then J,,c i In N (JoAJ1) € Z, 50 liMpe g nsoo 27" #( L, N (JoAJ1)) = 0, that is, lim, , 7, 27" #(I,, N
(JoAJy)) = 0. But this means that

oy = hmn_)]:p 2—n#([n n Jo) = limn_>]:p Q_n#(ln N Jl) = o1,
and surely p|p g = &;. Thus the condition of 5A3Ea is satisfied and

|Fp# is a function. Q

(iii) |Fp domw = 3. P Setting
A={(bs,p):pe€t, JCN, lim,_,x 27"#(J N I,) is defined},

5A3E tells us that |Fp dom» = A. Of course |FpA C 3 just because |Fpby € 3 for every J C N. In the
other direction, if p € €T and & is a P-name such that p|fpd € 3, there are a ¢ stronger than p and a
b € 3 such that ¢|fpd = b. Express q as cx and b as by where K C N is infinite and J C N. Then there
is an infinite L C K such that lim,er, n—oo 27"#(J N I,) is defined, that is, (b, r) € A, where r = ¢;. So
rlFei=be A. As p and i are arbitrary,

||—]p3 C Aand domv =3. Q

(iv) Of course lim,,_, 7, 27"#(J N I,), if it is defined, must belong to [0, 1]. So
|-p ¥ is a function from 3 to [0, 1].
Next, ((1,1),1) € ¥ (if you can work out how to interpret each 1 in this formula), so |Fpol =1 = 1.
(v) |Fev is additive. B Suppose that p € €t and that 2, #; are P-names such that
plFp o, i1 € 3 are disjoint.
If py is stronger than p there are qo, ¢, q1, 7 € P, Jo, J1 C N and ap, a1 € R such that
((bs,, ), q0) € , ¢} is stronger than both ¢o and p1, ¢} |Fp by, = o,

((bs,,@1),q1) € v, 7 is stronger than both ¢ and ¢, 7 |Fpby, = ;.

As 7|kp (bs, nby,) =0, rnbs,nby, = 0. Express r as cx, where K € [N]“. Then JoNJ1 N, cx In € Z,
so lim,,z 27"#(Jo N Jy N I,) = 0. At the same time,
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lim, 7, 274 (Jo N 1) = lim, 7, 27 "#(Jo N 1,) = ao,

lim,,_, 7, Q_H#(Jl n In) = limn_>_7.‘ql Z_H#(Jl n In) =1,

SO

lim 27"#((Jo U J1) N I,)

n—Fr
= lim 27"#(JoN 1) + lim 27"#(J, N 1) — lim 27"#(JoNJiN 1)
n—Fy n—Fp n—Fr
=ap+ o

and (((by,ur,, (0 + a1)7),7) € . Accordingly
7l o(do Ud) = (biyus) = (a0 + 1) = do + . = (i) + v(d1),
while r C p;. As p; is arbitrary,
p ”‘IP’ I/(JZO U 331) = V(l‘o) + l/(.rl)
As p, ©o and £, are arbitrary,
|Fp 2 is additive. Q
(vi) |Fp v is strictly positive. B Let p € € and a P-name & be such that p|Fp& € 3 and & # 0. If ¢ is
stronger than p there are a ¢’ stronger than ¢ and a J C N such that ¢’ |Fp& = by. Express ¢’ as cx where
K € N*. Asq'|Fpbs #0,¢ nby #0and U, crc InNJ ¢ Z. Accordingly imsup, ¢ g o0 2 "#([,NJ) > 0
and there is an infinite L C K such that a = lim,cr, n—oo 27 "# (I, N J) is defined and greater than 0. Set
r = cp; then ((by,&),r) € v, so
rleo(z) = v(bs) = a >0,
while r is stronger than ¢. As q is arbitrary, p |Fp () > 0; as p and & are arbitrary, |Fp o is strictly positive.
Q
(vii)
|- if (zx)ren is a non-increasing sequence in 3

there is an x € 3 such that = C x, for every k and v(z) = ]inlf\l v(x).
€

P Let p € €7 and a sequence (i) ren of P-names be such that
p|Fp (Zn)nen is a non-increasing sequence in 3.

Let ¢ be stronger than p. Then we can choose (qx)ken, (q))ken, (@5 )keN, (Jk)ken and (ax)ren inductively
so that ¢ = ¢ and

gy is stronger than ¢, Ji C N and ¢}/ |Fp & = b,

qx is stronger than ¢}/, oy € [0, 1], lim,, 7, 27 (T, N 1) = ay
(compare (iii) above),
Qo1 = Qk
for every k € N.

Because P is countably closed, there is an r € €T stronger than every gi. In this case, ((Bjk,dk), r)EV
for every k, so

7|Fp infren 7(3x) = infren dui = &
where a = infrey ap. Express r as cx where K C N is infinite. For each k € N,
rlFpbs, = Ter1 € Tx = by,

sornby,_, \bs, =0and
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limye g noo 27" F#(Ln N Jkt1 \ Ji) =0,
while
it K nsoo 2" # (I N ) = limuyz, 27741, N J) = a2 a
We can therefore find a strictly increasing sequence {ny)ren in K such that
27 H (I, NJ)) > a—27F
for every k, where Ji = ;4 Jj. Set 7' = (Uyen In,)® and J = Uy Iny, N J;. Then J\ Ji is finite, so
' |Febs C &y for every k. Also ((bs,&),r") € v, so
v e o(by) = & = infren ().
Thus

r"|Fp there is a lower bound x for {iy : k € N} such that v(x) = infren (dg).
As ¢ is arbitrary,

p|Fe there is a lower bound z for {iy : k € N} such that o(z) = infen v(2k).

As p and (@)ken are arbitrary,
|Fp if (zx)ren is a non-increasing sequence in 3 there is an € 3 such that z ¢ z, for
every k and v(x) = infren (k). Q
(viii)
|Fe there is a family (z1)repy in 2 such that v(infreps xp) = 27#5) for every finite set
L C PN.
P Let (M) Lepn be an almost disjoint family of infinite subsets of N (5A1Ga). For each n € N, let (K,;)i<n
be a family of subsets of I,, such that #((;c; Kni) = 2n=#(J) for every non-empty set J C n; such a family
exists because #([,,) = 2™. For L C N, set
AL = UnEN,n>min My, Kn,max(nﬁ]\/IL)7 ar = bAL € 3

If £ C PN is finite and not empty, let ng € N be such that My N My, C ng whenever L, L' € L are distinct,
and my > ng such that My Nny \ ng # 0 for every L € £. Then max(n N My) # max(n N M[,) whenever L,
L’ € L are distinct and n > n;. So

Jim 27 (1, 0 () Az) = lim 27" (I 0 () Ko max(noa)
LeL LeLl
= lim 27" #(E) = 9= #(£),

n—oo

Of course the same formula is valid when £ = 0.
It follows that

e o (inf e ar) = 27#4)
for every finite £ C PN. Accordingly
IFp(infrer ar) = 2=#5) for every finite set £ C (PN)".
But we know also that
|Fe PN = (PN)”

(5A3Qb). So the family (ar)repn of P-names, when interpreted as a P-name (ar)pepny- as in 5A3Fb, can
also be regarded as a P-name for a function defined on the whole power set of the set of natural numbers.
If we do this, we get

IFpo(infree ar) = 27#5) for every finite set £ C PN,
witnessing the truth of the result we seek. Q

(ix) |Fp#(2) < c. P Since
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3={(a,1):a €3} ={(bs,1):J € PN}
(556AD), we get
k3 = {bs: J € (PN)}, s0 #(3) < #((PN)") < #(PN) = ¢. Q

(e) Assembling the facts in (d), we see that
IFe (3, 7) satisfies the conditions of 556Q with & = ¢, so 3 = B, .
But we also have
[Fp B, is isomorphic to By = Bpny = (Bpn)”
by 556R. As € is regularly embedded in 3, we can apply 556Fc to see that 3 is isomorphic to the Dedekind

completed free product €&Bpy and therefore to (PN/[N]<¥)@%B, , by (a).
This completes the proof.

556X Basic exercises (a) Let 2 be a Boolean algebra, not {0}, and € a Boolean subalgebra of 2 which
is not regularly embedded; let P be the forcing notion €7, active downwards, and let 2 be the forcing name

for 2 over €. Show that there is an @ € A\ {0} such that |Fpa = 0, where a is the forcing name for a over
c.

(b) Let P be a countably closed forcing notion. (i) Show that [Fpwi = ;. (ii) Show that |Fp (1= =
([I]=%) for every set I. (iii) Let 2 be a Dedekind o-complete Boolean algebra. Show that |-p 2 is Dedekind
o-complete. (iv) Let (X, p) be a complete metric space. Show that |Fp (X, 5) is a complete metric space.

(c) Show that the Dedekind completion 3 of the asymptotic density algebra is a homogeneous Boolean
algebra. (Hint: 316Q, 316P.)

556Y Further exercises (a) Let P be a forcing notion, and Q1, Qs two P-names for forcing notions
such that

e RO(Q1) = RO(Q).
Show that RO(P % Q;) = RO(P % Q5).
(b) Let P and Q be forcing notions. Show that RO(P % Q) = RO(P)®RO(Q).
(c) Give an example of a Dedekind o-complete Boolean algebra 2 with an order-closed subalgebra € such
that
|Fp 2 is not Dedekind o-complete,

where PP is the forcing notion €%, active downwards, and 2 is the forcing name for 2 over €.

(d) Show that the argument of 556Q is sufficient to take us from (f) there to Theorem 395N, as well as
to 395P.

(e) Show that if the Proper Forcing Axiom is true then the asymptotic density algebra 3 is not homoge-
neous. (Hint: 5A6H.)

(f) Let (A, i) be a probability algebra, € a closed subalgebra and P the forcing notion €* active down-
wards. Set q(t) = —tInt for t > 0, 0 for t < 0 (cf. 385A). Let A be a finite partition of unity in 2, and A the
P-name {(a,1) : a € A}. (i) Confirm that the definition of ¢ can be interpreted in the forcing universe V*.
(ii) Show that if u € L(€) then |Fp (q(u))” = q(@). (iii) Set v = >, 4 @(Pxa) where P is the conditional
expectation associated with € (cf. 385D). Show that

|-z A is a partition of unity in (2, /i) and its entropy is 7.

(iv) Re-examine Lemma 385Ga in the light of this.
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556 Notes and comments I did not positively instruct you to do so in the introduction to this section,
but I expect that most readers will have passed rather quickly over the nineteen "-infested pages up to
556L, and looked at the target theorems from 556M on. In each of the first three we have a pair (f), () of
propositions, () being the special case of () in which an algebra T or € is trivial. If, as I hope, you are
already acquainted with at least one of the assertions (1), you will know that it can be proved by essentially
the same methods as the corresponding (f), but with some non-trivial technical changes. These technical
changes, already incorporated in the proofs of 388L /556N and 395P/556P in Volume 3, and indicated in
8458 for 458Ye/556M, certainly do not amount to nineteen pages of mathematics in total; moreover, they
explore ideas which are of independent interest. So I cannot on this evidence claim that the approach gives
quick proofs of otherwise inaccessible results.

What I do claim is that the general method gives a way of looking at a recurrent phenomenon. Throughout
the theory of measure-preserving transformations, ergodic transformations have a special place; and one
comes to expect that once one has answered a question for ergodic transformations, the general case will
be easy to determine. Similarly, every theorem about independent random variables ought to have a form
applying to relatively independent variables. Indeed there are standard techniques for developing such
extensions, based on disintegrations, as in §§458-459. What I have tried to do here is to develop a completely
different approach, and in the process to indicate a new aspect of the theory of forcing. I note that the
method demands preliminary translations into the language of measure algebras, which suits my prejudices
as already expressed at length in Volume 3.

The message is that everything works. There are no royal roads in mathematics, and to use this one you
will have to master some non-trivial machinery. But perhaps just knowing that a machine exists will give
you the confidence to attack similar problems in your own way. I offer an example in 556Yf. Note that
this depends on the fact that the ordinary functions of elementary calculus have definitions which can be
interpreted in any forcing universe.

The great bulk of the work of this section consists of routine checks that natural formulae are in fact valid.
You will see that some simple ideas recur repeatedly, but the details demand a certain amount of attention.
At the very beginning, in finding a forcing name a for an element of a Boolean algebra, we have to take care
that we are exactly following our preferred formulation of what a name ‘is’. (If my preferred formulation is
not yours, you have some work to do, but it should not be difficult, and might be enlightening.) It is not
surprising that regularly embedded subalgebras have a special status (556D); it is worth taking a moment to
think about why it matters so much (556Xa). In 556H, I do not think it is obvious that 2 must be Dedekind
complete, rather than just Dedekind o-complete, to make the ideas work in the straightforward way that
they do (556Yc). When we come to measure algebras (556K), we need to be sure that we have a description
of forcing names for real numbers which is compatible with the apparatus here. Again and again, we have
sentences with clauses in both the forcing language and in ordinary language, and we must keep the pieces
properly segregated in our minds.

The last fifth of the section (556Q-556S) is quite hard work for the result we get, but I think it is partic-
ularly instructive, in that it cannot be regarded as a technical extension of a simpler and more important
result. It is a good example of a theorem proved by a method unavoidably dependent on the Forcing The-
orem (5A3D), and for which it is not at all clear that a proof avoiding forcing can be made manageably
simple. Such a proof must exist, but the obvious route to it involves teasing out the requisite parts of the
proof of Maharam’s theorem, and translating them into properties of the set

{(J,o, K) : K € [N]*, J C N, limpes oo 27 "#(J N 1,) = a}

as in part (d) of the proof of 556S, but going very much farther. My own experience is that facing up to such
challenges is often profitable, but for the moment I am happy to present an adaptation of Farah’s original
proof.

An easy corollary of Theorem 556S is that 3 is homogeneous (556Xc). This is striking in view of the
fact that 3 itself may or may not be homogeneous. If the continuum hypothesis is true, then 3 is indeed
homogeneous (FARAH 03); but if the Proper Forcing Axiom is true, then 3 is not homogeneous (556Ye),
even though its completion is.
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