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Chapter 55

Possible worlds

In my original plans for this volume, I hoped to cover the most important consistency proofs relating to
undecidable questions in measure theory. Unhappily my ignorance of forcing means that for the majority
of results I have nothing useful to offer. I have therefore restricted my account to the very narrow range of
ideas in which I feel I have achieved some understanding beyond what I have read in the standard texts.

For a measure theorist, by far the most important forcings are those of ‘adding random reals’. I give
three sections (§§552-553 and 555) to these. Without great difficulty, we can determine the behaviour of
the cardinals in Cichoń’s diagram (552B, 552C, 552F-552I), at least if many random reals are added. Going
deeper, there are things to be said about outer measure and Sierpiński sets (552D, 552E), and extensions of
Radon measures (552N). In the same section I give a version of the fundamental result that simple iteration
of random real forcings gives random real forcings (552P). In §553 I collect results which are connected
with other topics dealt with above (Rothberger’s property, precalibers, ultrafilters, cellularity, trees, medial
limits, universally measurable sets) and in which the arguments seem to me to develop properties of measure
algebras which may be of independent interest. In preparation for this work, and also for §554, I start with a
section (§551) devoted to a rather technical general account of forcings with quotients of σ-algebras of sets,
aiming to find effective representations of names for points, sets, functions, measure algebras and filters.

Very similar ideas can also take us a long way with Cohen real forcing (§554). Here I give little more than
obvious parallels to the first part of §552, with an account of Freese-Nation numbers sufficient to support
Carlson’s theorem that a Borel lifting for Lebesgue measure can exist when the continuum hypothesis is
false (554I).

One of the most remarkable applications of random reals is in Solovay’s proof that if it is consistent to
suppose that there is a two-valued-measurable cardinal, then it is consistent to suppose that there is an
atomlessly-measurable cardinal (555D). By taking a bit of trouble over the lemmas, we can get a good deal
more, including the corresponding theorem relating supercompact cardinals to the normal measure axiom
(555N); and similar techniques show the possibility of interesting power set σ-quotient algebras (555G,
555K).

I end the chapter with something quite different (§556). A familiar phenomenon in ergodic theory is that
once one has proved a theorem for ergodic transformations one can expect, possibly at the cost of substantial
effort, but without having to find any really new idea, a corresponding result for general measure-preserving
transformations. There is more than one way to look at this, but here I present a method in which the key
step, in each application, is an appeal to the main theorem of forcing. A similar approach gives a description
of the completion of the asymptotic density algebra. The technical details take up a good deal of space, but
are based on the same principles as those in §551, and are essentially straightforward.

Version of 2.12.13

551 Forcing with quotient algebras

In preparation for the discussion of random real forcing in the next two sections, I introduce some
techniques which can be applied whenever a forcing notion is described in terms of a Loomis-Sikorski
representation of its regular open algebra. The first step is just a translation of the correspondence between
names for real numbers in the forcing language and members of L0(RO(P)), as described in 5A3L, when
L0(RO(P)) can be identified with a quotient of a space L0(Σ) of measurable functions. More care is needed,
but we can find a similar formulation of names for members of {0, 1}I for any set I (551C). Going a step
farther, it turns out that there are very useful descriptions of Baire subsets of {0, 1}I (551D-551F), Baire
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2 Possible worlds §551 intro.

measurable functions (551N), the usual measure on {0, 1}I (551I-551J) and its measure algebra (551P). In
some special cases, these methods can be used to represent iterated forcing notions (551Q). I end with a
construction for a forcing extension of a filter on a countable set (551R).

551A Definition (a) A measurable space with negligibles is a triple (Ω,Σ, I) where Ω is a set, Σ is
a σ-algebra of subsets of Ω and I is a σ-ideal of subsets of Ω generated by Σ ∩ I. In this case A = Σ/Σ ∩ I
is a Dedekind σ-complete Boolean algebra (314C).

In this context I will use the phrase ‘I-almost everywhere’ to mean ‘except on a set belonging to I’.

(b) I will say that (Ω,Σ, I) is non-trivial if Ω /∈ I, so that A 6= {0}. In this case, the forcing notion P

associated with (Ω,Σ, I) is (A+,⊆,Ω•, ↓) (5A3M). If A is Dedekind complete we can identify A with the
regular open algebra RO(P) (514Sb, 5A3M).

(c) I will say that (Ω,Σ, I) is ω1-saturated if Σ ∩ I is ω1-saturated in Σ in the sense of 541A, that is,
if there is no uncountable disjoint family in Σ \ I, that is, if A and P are ccc. In this case, A is Dedekind
complete (316Fa, 541B).

(d) I will say that (Ω,Σ, I) is complete if I ⊆ Σ (cf. 211A).

Remark For an account of the general theory of measurable spaces with negligibles, see Fremlin 87.

551B Definition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra A, and P its associated forcing notion. Recall from 364Ib that L0(A) can be
regarded as a quotient of the space of Σ-measurable functions from Ω to R. If h : Ω → R is Σ-measurable,

write ~h = (h•)~ where h• is the equivalence class of h in L0(A), identified with L0(RO(P)), and (h•)~ is the
P-name for a real number as defined in 5A3L. Then

P
~h is a real number,

and for any α ∈ Q

[[~h > α̌]] = [[(h•)~ > α̌]] = [[h• > α]] = {ω : h(ω) > α}•.

From 5A3Lc, we see that if h0, h1 are Σ-measurable real-valued functions on Ω, then

P (h0 + h1)~ = ~h0 + ~h1, (h0 × h1)~ = ~h0 × ~h1,

and that if 〈hn〉n∈N is a sequence of measurable functions with limit h,

P
~h = limn→∞

~hn in R.

551C Definition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra A, and P its associated forcing notion.

(a) If f : Ω → {0, 1} is Σ-measurable, let ~f be the P-name

{(̌ı , f−1[{i}]•) : i ∈ {0, 1}, f−1[{i}] /∈ I}.

Then P
~f ∈ {0, 1} and [[~f = ı̌ ]] = f−1[{i}]• for both i. (I will try always to make it clear when this

definition of ~f is intended to overrule the definition in 551B; but we see from 551Xf that any confusion is
unlikely to matter.)

Observe that if a P-name ẋ and p ∈ A+ are such that p P ẋ ∈ {0, 1}, then there is a measurable

f : Ω → {0, 1} such that p P ẋ = ~f ; take f = χE where E ∈ Σ is such that E• = [[ẋ = 1]] in A.

(b) Now let I be any set, and f : Σ → {0, 1}I a (Σ,BaI)-measurable function, where BaI = Ba({0, 1}I)
is the Baire σ-algebra of {0, 1}I , that is, the σ-algebra of subsets of {0, 1}I generated by sets of the form
{x : x ∈ {0, 1}I , x(i) = 1} for i ∈ I (4A3Na). For each i ∈ I, set fi(ω) = f(ω)(i) for ω ∈ Ω; then

fi : Ω → {0, 1} is measurable, so we have a P-name ~fi as in (a). Let ~f be the P-name {(〈~fi〉i∈Ǐ , 11)}
(interpreting the subformula 〈. . . 〉i∈Ǐ in the forcing language, of course, by the convention of 5A3Fb). Then
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551E Forcing with quotient algebras 3

P
~f ∈ {0, 1}Ǐ ,

and for every i ∈ I

P
~f (̌ı) = ~fi.

(c) In the other direction, if a P-name ẋ and p ∈ A+ are such that p P ẋ ∈ {0, 1}Ǐ , then for each i ∈ I

we have a P-name ẋ(̌ı) and a measurable fi : Ω → {0, 1} such that p P ẋ(̌ı) = ~fi; setting f(ω) = 〈fi(ω)〉i∈I

for ω ∈ Ω, f is (Σ,BaI)-measurable and p P
~f = ẋ.

(d) I ought to remark that there is a problem with equality for the P-names ~f . If, in the context of
(b)-(c) above, we have two (Σ,BaI)-measurable functions f and g, and if p ∈ A+, then

p P
~f = ~g ⇐⇒ for every i ∈ I, p P

~fi = ~gi

⇐⇒ for every i ∈ I, p ⊆ {ω : fi(ω) = gi(ω)}• in A.

In particular, P
~f = ~g iff fi = gi I-a.e. for every i ∈ I. If I is uncountable we can easily have P

~f = ~g
while f(ω) 6= g(ω) for every ω ∈ Ω. But if I is countable then we shall have

p P
~f = ~g ⇐⇒ p ⊆ {ω : f(ω) = g(ω)}•.

For a context in which these considerations are vital, see (a-ii) of the proof of 551E.

(e) Suppose that x is any point of {0, 1}I . Then we have a corresponding P-name x̌, and P x̌ ∈ {0, 1}Ǐ .
For each i ∈ I, P x̌(̌ı) = x(i)̌ ∈ {0, 1}. If we set ex(ω) = x for every ω ∈ Ω, then ex(ω)(i) = x(i) for every
i ∈ I and ω ∈ Ω, so P ~ex(̌ı) = x(i)̌ for every i ∈ I, and P ~ex = x̌.

551D Definition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind

complete quotient algebra, and P its associated forcing notion. Let I be any set. If W ⊆ Ω × {0, 1}I , let ~W
be the P-name

{(~f,E•) : E ∈ Σ \ I, f : Ω → {0, 1}I is (Σ,BaI)-measurable,

(ω, f(ω)) ∈W for every ω ∈ E},

interpreting ~f as in 551C. I give the definition for arbitrary sets W , but it is useful primarily when W ∈
Σ⊗̂BaI , as in most of the next proposition. Perhaps I can note straight away that

P
~W ⊆ {0, 1}Ǐ

and that if W = Ω × {0, 1}I then

P
~W = {0, 1}Ǐ

(using 551Cb-551Cc).

551E Proposition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra A, P its associated forcing notion, and I a set.

(a) If W ∈ Σ⊗̂BaI and f : Ω → {0, 1}I is (Σ,BaI)-measurable, then {ω : (ω, f(ω)) ∈ W} belongs to Σ,

and [[~f ∈ ~W ]] = {ω : (ω, f(ω)) ∈W}•.
(b) If V , W ∈ Σ⊗̂BaI then

P
~V ∩ ~W = (V ∩W )~ , ~V ∪ ~W = (V ∪W )~ , ~V \ ~W = (V \W )~ and ~V△ ~W = (V△W )~ .

(c) If V , W ⊆ Ω × {0, 1}I and V ⊆W then

P
~V ⊆ ~W .

(d) If 〈Wn〉n∈N is a sequence in Σ⊗̂BaI with union W and intersection V , then

P

⋃
n∈N

~Wn = ~W and
⋂

n∈N
~Wn = ~V .

D.H.Fremlin



4 Possible worlds 551E

(e) Suppose that J ⊆ I is countable, z ∈ {0, 1}J , E ∈ Σ and

W = {(ω, x) : ω ∈ E, x ∈ {0, 1}I , x↾J = z}.

Then

E• = [[ ~W = {x : x ∈ {0, 1}Ǐ , ž ⊆ x}]],

1 \E• = [[ ~W = ∅]].

proof (a)(i) Let W be the family of subsets of Ω×{0, 1}I such that FW = {ω : (ω, f(ω)) ∈W} ∈ Σ. Then
W is a Dynkin class of subsets of Ω × {0, 1}I , just because Σ is a σ-algebra. If H ∈ Σ, J ⊆ I is finite,
z ∈ {0, 1}J and W = {(ω, x) : ω ∈ H, z ⊆ x ∈ {0, 1}I} then FW = H ∩ {ω : f(ω)(i) = z(i) for every i ∈ J}
belongs to Σ because f is (Σ,BaI)-measurable, so W ∈ W. By the Monotone Class Theorem (136B), W
includes the σ-algebra generated by sets of this form, which is just Σ⊗̂BaI .

(ii) Now suppose that W ∈ Σ⊗̂BaI . If FW ∈ I then surely F •

W = 0 ⊆ [[~f ∈ ~W ]]. If FW /∈ I then

(~f, F •

W ) ∈ ~W , F •

W P
~f ∈ ~W and again F •

W ⊆ [[~f ∈ ~W ]].

??? I wish to apply 5A3E. If F •

W 6= [[~f ∈ ~W ]], set p = [[~f ∈ ~W ]] \ F •

W . Since p P
~f ∈ ~W there must be a

q ∈ A+ and a P-name ẋ and an r stronger than both p and q such that

r P ẋ = ~f and (ẋ, q) ∈ ~W .

Now there must be a (Σ,BaI)-measurable function g and an E ∈ Σ \ I such that ẋ = ~g, q = E• and

(ω, g(ω)) ∈W for every ω ∈ E. In this case, r = G• for some G ⊆ E \ FW , and r P
~f = ~g.

Because W ∈ Σ⊗̂BaI , there is a countable set J ⊆ I such that W factors through Ω × {0, 1}J . For each

i ∈ J , we have r P
~f (̌ı) = ~g(̌ı), that is,

r ⊆ [[~f (̌ı) = ~g(̌ı)]] = {ω : f(ω)(i) = g(ω)(i)}•.

So f(ω)(i) = g(ω)(i) for I-almost every ω ∈ G. This is true for every i ∈ J , so f(ω)↾J = g(ω)↾J for
I-almost every ω ∈ G. But this means that, for I-almost every ω ∈ G, (ω, f(ω)) ∈ W iff (ω, g(ω)) ∈ W .
However, G ⊆ E \ FW , so (ω, g(ω)) ∈W and (ω, f(ω)) /∈W for every ω ∈ G. XXX

So we must have F •

W = [[~f ∈ ~W ]], as claimed.

(b) These are now elementary. The point is that if a P-name ẋ and p ∈ A+ are such that p P ẋ ∈ ~V ∩ ~W ,

then p P ẋ ∈ {0, 1}Ǐ , so there is a (Σ,BaI)-measurable f : Ω → {0, 1}I such that p P ẋ = ~f , and

p P
~f ∈ ~V ∩ ~W . Now (a) shows that

[[~f ∈ (V ∩W )~ ]] = {ω : (ω, f(ω)) ∈ V ∩W}•

= {ω : (ω, f(ω)) ∈ V }•
∩ {ω : (ω, f(ω)) ∈W}•

= [[~f ∈ ~V ]] ∩ [[~f ∈ ~W ]] ⊇ p

and

p P ẋ = ~f ∈ (V ∩W )~ .

As p and ẋ are arbitrary,

P
~V ∩ ~W ⊆ (V ∩W )~ .

The other seven inequalities are equally straightforward.

(c) This is immediate from the definition in 551D, since we actually have ~V ⊆ ~W .

(d) We can repeat the method of (b). If a P-name ẋ and p ∈ A+ are such that p P ẋ ∈
⋂

n∈N
~Wn, then

there is a (Σ,BaI)-measurable f : Ω → {0, 1}I such that p P ẋ = ~f , and p P
~f ∈ ~Wn for every n. Now
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551F Forcing with quotient algebras 5

[[~f ∈ ~V ]] = {ω : (ω, f(ω)) ∈
⋂

n∈N

Wn}
•

= (
⋂

n∈N

{ω : (ω, f(ω)) ∈Wn})• = inf
n∈N

{ω : (ω, f(ω)) ∈Wn}
•

(because Σ ∩ I is a σ-ideal of Σ, so E 7→ E• is sequentially order-continuous, by 313Qb)

⊇ p

and

p P ẋ = ~f ∈ ~V .

As p and ẋ are arbitrary,

P

⋂
n∈N

~Wn ⊆ ~V .

On the other hand, (c) tells us that

P
~V ⊆

⋂
n∈N

~Wn, so we have equality.

Putting this together with (b) (and recalling that P (Ω × {0, 1}I)~ = {0, 1}Ǐ), we get

P

⋃
n∈N

~Wn = ~W .

(e)(i) Suppose that p ∈ A+ and that ẋ is a P-name such that p P ẋ ∈ ~W . Let f : Ω → {0, 1}I be a

(Σ,BaI)-measurable function such that p P ẋ = ~f (551Cc). Then

p ⊆ [[~f ∈ ~W ]] = {ω : ω ∈ E, z ⊆ f(ω)}•

by (a) above; that is, p ⊆ E• and

p P
~f (̌ı) = z(i)̌ = ž(̌ı)

for every i ∈ J , so

p P ž ⊆ ~f .

As p and ẋ are arbitrary,

[[ ~W 6= ∅]] ⊆ E•

and

P
~W ⊆ {x : ž ⊆ x ∈ {0, 1}Ǐ}.

(ii) If E ∈ I then P
~W = ∅ and we can stop. Otherwise, suppose that p ∈ A+ is stronger than E•

and that ẋ is a P-name such that

p P ž ⊆ ẋ ∈ {0, 1}Ǐ .

Let f be a (Σ,BaI)-measurable function such that p P ẋ = ~f . Then p P
~fi = z(i)̌ for each i ∈ J , where

fi(ω) = f(ω)(i) for every ω, so p ⊆ {ω : z ⊆ f(ω)}•. But also p ⊆ E•, so

p ⊆ {ω : ω ∈ E, z ⊆ f(ω)}• = [[~f ∈ ~W ]],

and p P ẋ ∈ ~W . As p and ẋ are arbitrary,

[[{x : ž ⊆ x} ⊆ ~W ]] ⊇E•

and we have

[[{x : ž ⊆ x} = ~W ]] = E•, [[∅ = ~W ]] = 1 \E•.

551F Proposition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra A, P its associated forcing notion, and I a set.

D.H.Fremlin



6 Possible worlds 551F

(a) If W ∈ Σ⊗̂BaI then

P
~W ∈ BaǏ .

(b) Suppose that (Ω,Σ, I) is ω1-saturated, p ∈ A+, and that Ẇ is a P-name such that

p P Ẇ ∈ BaǏ .

Then there is a W ∈ Σ⊗̂BaI such that

p P Ẇ = ~W .

proof (a) Let W be the family of those W ∈ Σ⊗̂BaI such that P
~W ∈ BaǏ . 551Eb and 551Ed tell us

that W is a σ-subalgebra of Σ⊗̂BaI , and 551Ee tells us that E ×H ∈ W whenever E ∈ Σ and H is a basic
cylinder set in {0, 1}I . So W must be the whole of Σ⊗̂BaI .

(b)(i) Suppose that p ∈ A+ and that Ẇ is a P-name such that

p P Ẇ is a basic cylinder set in {0, 1}Ǐ .

Then there is a W ∈ Σ⊗̂BaI such that p P Ẇ = ~W . PPP We know that

p P there is a z ∈ Fn<ω(Ǐ; {0, 1}) such that Ẇ = {x : z ⊆ x ∈ {0, 1}Ǐ}.

So there is a P-name ż such that

p P ż ∈ Fn<ω(Ǐ; {0, 1}) and Ẇ = {x : ż ⊆ x};

adjusting ż if necessary, we can suppose that

P ż ∈ Fn<ω(Ǐ; {0, 1}).

But this means that there is a maximal antichain (that is, a partition of unity) C ⊆ A+ and a family 〈zc〉c∈C

in Fn<ω(I; {0, 1}) such that

c P ż = žc

for every c ∈ C. Because I is ω1-saturated, A is ccc and C is countable. We can therefore find a partition
〈Ec〉c∈C of Ω into members of Σ such that E•

c = c for every c ∈ C. Consider

Wc = Ec × {x : zc ⊆ x ∈ {0, 1}I} for c ∈ C, W =
⋃

c∈C Wc.

Of course W ∈ Σ⊗̂BaI . By 551Ee,

c P
~Wc = {x : žc ⊆ x} = {x : ż ⊆ x}, c P

~Wd = ∅

whenever c, d ∈ C are distinct. Because C is countable, 551Ed tells us that

c P
~W =

⋃
d∈Č

~Wd = {x : ż ⊆ x}

for every c ∈ C; because C is a maximal antichain,

P
~W = {x : ż ⊆ x}

and

p P
~W = Ẇ . QQQ

(ii) Suppose that p ∈ A+ and that Ẇ is a P-name such that

p P Ẇ is a cozero set in {0, 1}Ǐ .

Then there is a W ∈ Σ⊗̂BaI such that p P Ẇ = ~W . PPP Set p′ = [[Ẇ = ∅]]. If p ⊆ p′ we can take W = ∅
and stop. Otherwise, let E ∈ Σ be such that E• = 1 \ p′. We have

p \ p′ P Ẇ is the union of a sequence of basic cylinder sets,

so there is a sequence 〈Ẇn〉n∈N of P-names such that

p \ p′ P Ẇn is a basic cylinder set for every n and Ẇ =
⋃

n∈N Ẇn.
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551F Forcing with quotient algebras 7

By (i), we have for each n ∈ N a Wn ∈ Σ⊗̂BaI such that p \ p′ P Ẇn = ~Wn; now V =
⋃

n∈NWn belongs to

Σ⊗̂BaI and P
~V =

⋃
n∈N

~Wn, so p \ p′ P
~V = Ẇ . Finally, setting W = (E × {0, 1}I) ∩ V , p P

~W = Ẇ .
QQQ

(iii) Suppose that p ∈ A+, α < ω1 and that Ẇ is a P-name such that

p P Ẇ ∈ Baα̌({0, 1}Ǐ),

defining Baα as in 5A4Ga. Then there is a W ∈ Σ⊗̂BaI such that p P Ẇ = ~W . PPP Induce on α. The case
α = 0 is (ii) above. For the inductive step to α > 0, we have

p P Ẇ ∈ Baα̌({0, 1}Ǐ),

so

p P there is a sequence 〈Wn〉n∈N in
⋃

β<α̌ Baβ({0, 1}Ǐ) such that Ẇ =
⋃

n∈N{0, 1}Ǐ \Wn;

let 〈Ẇn〉n∈N be a sequence of P-names such that

p P Ẇn ∈
⋃

β<α̌ Baβ({0, 1}Ǐ) for every n ∈ N and Ẇ =
⋃

n∈N{0, 1}Ǐ \ Ẇn.

For n ∈ N, β < α set

bnβ = [[Ẇn ∈ Baβ̌({0, 1}Ǐ) \
⋃

γ<β̌ Baγ({0, 1}Ǐ)]],

and choose Enβ ∈ Σ such that E•

nβ = bnβ . Writing An = {β : β < α, bnβ 6= 0}, p ⊆ supβ∈An
bnβ . If β ∈ An,

then

bnβ P Ẇn ∈ Baβ̌({0, 1}Ǐ),

so by the inductive hypothesis there is a Wnβ ∈ Σ⊗̂BaI such that bnβ P Ẇn = ~Wnβ . For β ∈ α \ An set
Wnβ = ∅.

Set Wn =
⋃

β<α(Enβ × {0, 1}I) ∩Wnβ . Then

P
~Wn =

⋃
β<α̌(Enβ × {0, 1}I)~ ∩ ~Wnβ ,

so if β ∈ An

bnβ P
~Wn = ~Wnβ = Ẇn

because

bnβ P (Enγ × {0, 1}I)~ = ∅

if γ < α and γ 6= β, and

bnβ P (Enβ × {0, 1}I)~ = {0, 1}Ǐ .

As p ⊆ supβ∈An
bnβ ,

p P
~Wn = Ẇn.

This is true for every n ∈ N. So if we set W =
⋃

n∈N(Ω × {0, 1}I) \Wn, we shall have W ∈ Σ⊗̂BaI and

p P
~W =

⋃
n∈N{0, 1}Ǐ \ ~Wn =

⋃
n∈N{0, 1}Ǐ \ Ẇn = Ẇ . QQQ

(iv) Finally, suppose that p ∈ A+ and that Ẇ is a P-name such that

p P Ẇ ∈ BaǏ .

Then there is a W ∈ Σ⊗̂BaI such that p P Ẇ = ~W . PPP Because P is ccc,

P ω̌1 is the first uncountable ordinal

(5A3Nb), so

P Ba({0, 1}Ǐ) =
⋃

α<ω̌1
Baα({0, 1}Ǐ).

For α < ω1 set

D.H.Fremlin



8 Possible worlds 551F

bα = [[Ẇ ∈ Baα̌({0, 1}Ǐ)]].

Then p ⊆ supα<ω1
bα. Again because A is ccc, there is a γ < ω1 such that p ⊆ supα<γ bα. If α < γ and

cα = bα \ supβ<α bβ is non-zero, choose Wα ∈ Σ⊗̂BaI such that cα P
~Wα = Ẇ ; for other α < γ set Wα = ∅.

Choose Fα ∈ Σ such that F •
α = cα for each α. Set W =

⋃
α<γ(Fα ×{0, 1}I)∩Wα ∈ Σ⊗̂BaI . As in (iii) just

above,

cα P
~W = ~Wα = Ẇ

whenever cα 6= 0, so

p P
~W = Ẇ . QQQ

551G I noted above that there are difficulties in computing [[~f = ~g ]] for functions f , g : Σ → {0, 1}I .

For W , V ∈ Σ⊗̂BaI the corresponding question about [[ ~W = ~V ]] turns out to be simpler, at least in some
important cases.

Proposition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind complete
quotient algebra A, P the associated forcing notion and I a set. Suppose that Σ is closed under Souslin’s
operation.

(a) If W ∈ Σ⊗̂BaI then F = {ω : W [{ω}] 6= ∅} belongs to Σ and [[ ~W 6= ∅]] = F • in A ∼= RO(P).

(b) If W , V ∈ Σ⊗̂BaI then [[ ~W = ~V ]] = {ω : W [{ω}] = V [{ω}]}•.

proof (a)(i) The point is that there is a Σ-measurable function f : Ω → {0, 1}I such that (ω, f(ω)) ∈ W
for every ω ∈ F .

PPP(ααα) Suppose first that I is countable. Let V be the family of subsets of Ω × {0, 1}I obtainable by
Souslin’s operation S from {E × H : E ∈ Σ, H ⊆ {0, 1}I is closed}. The family W = {V : V ∈ V,
(Ω × {0, 1}I) \ V ∈ V} is a σ-algebra and contains E ×H whenever E ∈ Σ and H ⊆ {0, 1}I is open-and-
closed, so W ⊇ Σ⊗̂BaI and W ∈ W ⊆ V. By 423N, there is a selector g for W which is measurable for the
σ-algebra T of subsets of Ω generated by S(Σ); but we are supposing that this is just Σ. Also F = dom g
belongs to T = Σ. If f is any extension of g to a Σ-measurable function from Ω to {0, 1}I , then f has the
required property.

(βββ) For the general case, note that W ∈ Σ⊗̂BaI factors through Ω × {0, 1}J for some countable
J ⊆ I, that is, there is a W1 ∈ Σ⊗̂BaJ such that

W = {(ω, x) : ω ∈ Ω, x ∈ {0, 1}I , (ω, x↾J) ∈W1}.

Now (α) tells us that F1 = {ω : W1[{ω}] 6= ∅} belongs to Σ and that there is a Σ-measurable f1 : Ω → {0, 1}J

such that (ω, f1(ω)) ∈W1 for every ω ∈ F1. Of course F1 = F , and if we set

f(ω)(i) = f1(ω)(i) for ω ∈ Ω, i ∈ J,

= 0 for ω ∈ Ω, i ∈ I \ J,

then f is (Σ,BaI)-measurable and (ω, f(ω)) ∈W for every ω ∈ F . QQQ

(ii) Using 551Ea, it follows that

[[ ~W 6= ∅]] ⊇ [[~f ∈ ~W ]] = {ω : (ω, f(ω)) ∈W}• = F •.

On the other hand, if a = [[ ~W 6= ∅]] is non-zero, then there is a P-name ẋ such that a P ẋ ∈ ~W . By 551Cc,
there is a (Σ,BaI)-measurable g such that a P ẋ = ~g, in which case

a ⊆ [[~g ∈ ~W ]] = {ω : (ω, g(ω)) ∈W}• ⊆ F •.

So [[ ~W 6= ∅]] = F • exactly.

(b) Apply (a) to W△V (using 551Eb, as usual).

551H Examples Cases in which a σ-algebra is closed under Souslin’s operation, so that the conditions
of 551G can be satisfied, include the following.

Measure Theory
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(a) If (X,Σ, µ) is a complete locally determined measure space, then Σ is closed under Souslin’s operation
(431A).

(b) If (Ω,Σ, I) is a complete ω1-saturated measurable space with negligibles, then Σ is closed under
Souslin’s operation (431G).

(c) If X is any topological space, then its Baire-property algebra B̂(X) is closed under Souslin’s operation
(431Fb).

551I Theorem Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind complete
quotient algebra, P its associated forcing notion, and I a set. Let W be any member of Σ⊗̂BaI . Then

(i) h(ω) = νIW [{ω}] is defined for every ω ∈ Ω, where νI is the usual measure of {0, 1}I ;
(ii) h : Ω → [0, 1] is Σ-measurable;

(iii) P νǏ
~W = ~h,

where in this formula ~h is the P-name for a real number defined from h as in 551B, and νǏ is an abbreviation

for ‘the usual measure on {0, 1}Ǐ ’.

proof I follow the method of 551Ea and 551Fa.

(a) Suppose that W is of the form E × {x : z ⊆ x ∈ {0, 1}I}, where z ∈ {0, 1}J for some finite J ⊆ I.
Then (using 551Ee)

E• = [[ ~W = {x : ž ⊆ x ∈ {0, 1}Ǐ}]] ⊆ [[νǏ
~W = 2−#(J̌)]],

1 \ E• = [[ ~W = ∅]] ⊆ [[νǏ
~W = 0]];

while also h = 2−#(J)χE so

E• = [[~h = 2−#(J̌)]], 1 \E• = [[~h = 0]].

So in this case

P νǏ
~W = ~h.

(b) Now 551E shows that the set of those W ∈ BaI for which (i)-(iii) are true is a Dynkin class, so by
the Monotone Class Theorem once more we have the result.

551J Corollary Let (Ω,Σ, I) be a non-trivial ω1-saturated measurable space with negligibles, P its
associated forcing notion, P = (Σ/Σ ∩ I)+ the partially ordered set underlying P, and I a set. If p ∈ P and

Ẇ is a P-name such that

p P Ẇ ⊆ {0, 1}Ǐ is νǏ -negligible,

then there is a W ∈ Σ⊗̂BaI such that νIW [{ω}] = 0 for every ω ∈ Ω and

p P Ẇ ⊆ ~W .

proof Because

P the usual measure on {0, 1}Ǐ is a completion regular Radon measure,

we know that

p P there is a νǏ -negligible member of BaǏ including Ẇ .

Let V̇ be a P-name such that

p P Ẇ ⊆ V̇ ∈ BaǏ and νǏ V̇ = 0.

By 551Fb, there is a V ∈ Σ⊗̂BaI such that p P V̇ = ~V . Set h(ω) = νIV [{ω}] for ω ∈ Ω; then

p P
~h = νǏ

~V = 0

D.H.Fremlin
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(551I), so p ⊆ E•, where E = h−1[{0}]. Set W = (E × {0, 1}I) ∩ V . Then W ∈ Σ⊗̂BaI , νIW [{ω}] = 0 for
every ω, and (using 551Gb)

p P
~W = ~V = V̇ ⊇ Ẇ ,

as required.

551K We have been looking here at general sets W ∈ Σ⊗̂BaI . A special case of obvious importance is
when W is of the form Ω ×H where H ∈ BaI . For these it is worth refining the results slightly.

Proposition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind complete

quotient algebra, P the associated forcing notion, and I a set. For H ⊆ {0, 1}I set H̃ = (Ω×H)~ as defined
in 551D.

(a) If H = {x : z ⊆ x ∈ {0, 1}I}, where z ∈ Fn<ω(I; {0, 1}), then

P H̃ = {x : ž ⊆ x ∈ {0, 1}Ǐ}.

(b)(i) If G, H ∈ BaI then

P G̃ ∪ H̃ = (G ∪H)
∼
, G̃ ∩ H̃ = (G ∩H)

∼
,

G̃ \ H̃ = (G \H)
∼
, G̃△H̃ = (G△H)

∼
.

(ii) If 〈Hn〉n∈N is any sequence in BaI then

P

⋃
n∈N H̃n = (

⋃
n∈NHn)

∼
,
⋂

n∈N H̃n = (
⋂

n∈NHn)
∼
.

(c) If α < ω1 and H ∈ Baα({0, 1}I), once again defining Baα as in 5A4Ga, then

P H̃ ∈ Baα̌({0, 1}Ǐ).

(d) If H is measured by the usual measure νI of {0, 1}I , then

P νǏH̃ = (νIH )̌ .

proof (a) This is covered by 551Ee.

(b) This is a special case of parts (b) and (d) of 551E.

(c) A subset of {0, 1}I is a cozero set iff it is empty or expressible as the union of a sequence of basic
cylinder sets, so if H is a cozero set then (a) and (b-ii) tell us that

P H̃ is a cozero set in {0, 1}Ǐ .

Now an induction on α shows that if H ∈ Baα({0, 1}I) then

P H̃ ∈ Baα̌({0, 1}Ǐ).

(d) We have H0, H1 ∈ BaI such that H0 ⊆ H ⊆ H1 and νIH0 = νIH = νIH1. Applying 551I(iii) to
Ω ×H0 and Ω ×H1,

P νǏH̃0 = νǏH̃1 = (νIH )̌ ,

while of course P H̃0 ⊆ H̃ ⊆ H̃1 (551Ec), so

P νǏH̃ = (νIH )̌ .

551L Remark If I ask you to think of your favourite Baire set in {0, 1}I , it is likely to come with a

definition; for instance, the set H of those x ∈ {0, 1}N such that limn→∞
1

n+1

∑n
i=1 x(i) =

1

2
. The point of

551K is that we shall automatically get

P H̃ = {x : x ∈ {0, 1}N, limn→∞
1

n+1

∑n
i=1 x(i) =

1

2
}.

PPP
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551N Forcing with quotient algebras 11

H =
⋂

n∈N

⋃
m∈N

⋂
k≥m

⋃
z∈Lnk

{x : z ⊆ x ∈ {0, 1}N},

where

Lnk = {z : z ∈ {0, 1}k+1, |
1

k+1

∑k
i=0 zi −

1

2
| ≤

1

n+1
}.

So 551K tells us that

P H̃ =
⋂

n∈N

⋃
m∈N

⋂
k≥m

⋃
z∈Ľnk

{x : z ⊆ x ∈ {0, 1}N},

and of course

P Ľnk = {z : z ∈ {0, 1}ǩ+1, |
1

ǩ+1

∑ǩ
i=0 zi −

1

2
| ≤

1

ň+1
}. QQQ

What I am trying to say here is that the process H 7→ (Ω × H)~ = H̃ builds a P-name for the ‘right’
subset of {0, 1}I , in the sense that any adequately concrete definition of H will also, when interpreted in

V P, be a definition of H̃.

551M We can go still farther.

Definition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, and P its associated forcing

notion. Let I be any set. If ψ : Ω × {0, 1}I → R is (Σ⊗̂BaI)-measurable, let ~ψ be the P-name

{((~f,~h), 11) : f is a (Σ,BaI)-measurable function from Ω to {0, 1}I ,

h : Ω → R is Σ-measurable, h(ω) = ψ(ω, f(ω)) for every ω ∈ Ω},

where in this formula ~f is to be interpreted as a P-name for a member of {0, 1}Ǐ , as in 551C, and ~h as a
P-name for a real number, as in 551B.

551N Proposition Let (Ω,Σ, I) be a non-trivial measurable space with negligibles with a Dedekind
complete quotient algebra A, P its associated forcing notion, and I a set. Suppose that ψ : Ω×{0, 1}I → R

is (Σ⊗̂BaI)-measurable, and define ~ψ as in 551M.

(a) P
~ψ is a real-valued function on {0, 1}Ǐ .

(b) If φ : Ω × {0, 1}I → R is another (Σ⊗̂BaI)-measurable function, and α ∈ R, then

P (φ+ ψ)~ = ~φ+ ~ψ, (αφ)~ = α̌~φ.

(c) If 〈ψn〉n∈N is a sequence of (Σ⊗̂BaI)-measurable real-valued functions on Ω × {0, 1}I and ψ(ω, x) =
limn→∞ ψn(ω, x) for every ω ∈ Ω and x ∈ {0, 1}I , then

P
~ψ(x) = limn→∞

~ψn(x) for every x ∈ {0, 1}Ǐ .

(d) If W ∈ Σ⊗̂BaI , then

P (χW )~ = χ ~W .

(e) P
~ψ is BaǏ -measurable.

(f) If h(ω) =
∫
ψ(ω, x)νI(dx) is defined for every ω ∈ Ω, then

P

∫
~ψ dνǏ is defined and equal to ~h.

proof (a)(i) Suppose that we have two members ((~f0,~h0), 11) and ((~f1,~h1), 11) of ~ψ, and that E ∈ Σ \ I is

such that E•
P
~f0 = ~f1. Then E•

P
~h0 = ~h1. PPP Let J ⊆ I be a countable set such that ψ factors through

Ω×{0, 1}J , in the sense that ψ(ω, x) = ψ(ω, y) whenever ω ∈ Ω and x, y ∈ {0, 1}I are such that x↾J = y↾J .
For each i ∈ J ,

E•
P
~f0(̌ı) = ~f1(̌ı),

so that f0(ω)(i) = f1(ω)(i) for I-almost every ω ∈ E. Consequently f0(ω)↾J = f1(ω)↾J and

h0(ω) = ψ(ω, f0(ω)) = ψ(ω, f1(ω)) = h1(ω)

D.H.Fremlin
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for I-almost every ω ∈ E; that is, E•
P
~h0 = ~h1. QQQ

It follows that

P
~ψ is a function

(5A3Ea).

(ii) By the constructions in 551Cb and 551B,

P
~ψ ⊆ {0, 1}Ǐ × R.

(iii) If ẋ is a P-name and p ∈ A+ is such that p P ẋ ∈ {0, 1}Ǐ , then there is a (Σ,BaI)-measurable

f : Ω → {0, 1}I such that p P ẋ = ~f (551Cc again). Setting h(ω) = ψ(ω, f(ω)) for ω ∈ Ω, ((~f,~h), 11) ∈ ~ψ,
so

p P ẋ = ~f and (~f,~h) ∈ ~ψ, so ẋ ∈ dom(~ψ).

As p and ẋ are arbitrary,

P dom(~ψ) = {0, 1}Ǐ .

(b) This is easy. If p ∈ A+ and ẋ is a P-name such that p P ẋ ∈ {0, 1}Ǐ , take a (Σ,BaI)-measurable

f : Ω → {0, 1}I such that p P ẋ = ~f ; set

h0(ω) = φ(ω, f(ω)), h1(ω) = ψ(ω, f(ω))

for ω ∈ Ω; then

p P (φ+ ψ)~(ẋ) = (φ+ ψ)~(~f ) = (h0 + h1)~

= ~h0 + ~h1 = ~φ(~f ) + ~ψ(~f ) = ~φ(ẋ) + ~ψ(ẋ),

(αφ)~(ẋ) = (αh0)~ = α̌~h0 = α̌~φ(ẋ)

by 5A3Lc. As p and ẋ are arbitrary,

P (φ+ ψ)~ = ~φ+ ~ψ, (αφ)~ = α̌~φ.

(c) In the same way, if p ∈ A+ and ẋ is a P-name such that p P ẋ ∈ {0, 1}Ǐ , take a (Σ,BaI)-measurable

f : Ω → {0, 1}I such that p P ẋ = ~f . Set

hn(ω) = ψn(ω, f(ω)), h(ω) = ψ(ω, f(ω))

for ω ∈ Ω and n ∈ N; then h = limn→∞ hn, so

p P
~ψ(ẋ) = ~h = limn→∞

~hn = limn→∞
~ψn(ẋ).

(d) Take p ∈ A+ and a P-name ẋ such that p P ẋ ∈ {0, 1}Ǐ . Let f : Ω → {0, 1}I be a (Σ,BaI)-measurable

function such that p P ẋ = ~f ; set h(ω) = χW (ω, f(ω)) for ω ∈ Ω, so that

P
~h = (χW )~(~f ), p P

~h = (χW )~(ẋ).

If p = E• where E ∈ Σ \ I,

p P (χW )~(ẋ) = 1

⇐⇒ p P
~h = 1

⇐⇒ h(ω) = 1 for I-almost every ω ∈ E

⇐⇒ (ω, f(ω)) ∈W for I-almost every ω ∈ E

⇐⇒ p ⊆ [[~f ∈ ~W ]]

(551Ea)

⇐⇒ p P ẋ ∈ ~W ;

Measure Theory
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similarly,

p P (χW )~(ẋ) = 0

⇐⇒ h(ω) = 0 for I-almost every ω ∈ E

⇐⇒ (ω, f(ω)) /∈W for I-almost every ω ∈ E

⇐⇒ p P ẋ /∈ ~W.

As p and ẋ are arbitrary,

P (χW )~ = χ ~W .

(e) Assembling (a)-(d), and recalling 551Fa, we see that the result is true when ψ is a linear multiple of
the indicator function of a set in Σ⊗̂BaI , whenever ψ is a sum of such functions, and whenever ψ is the
limit of a sequence of such sums; that is, whenever ψ is (Σ⊗̂BaI)-measurable.

(f) Similarly, (d) and 551I tell us that the result is true for the indicator function of a member of Σ⊗̂BaI .
Once again, we can move to a linear combination of such functions, using (b), and thence to a non-negative
(Σ⊗̂BaI)-measurable function, using (c); finally, with (b) again, we get the general case.

551O Measure algebras With a little more effort we can get a representation of the standard measure
algebras in the same style. Let I be a set, νI the usual measure on {0, 1}I and (BI , ν̄I) its measure algebra.
It will be important to appreciate that these are abbreviations for formulae in set theory with a single
parameter I; so that if we have a forcing notion P and a P-name τ , we shall have P-names Bτ and ν̄τ ,
uniquely defined as soon as we have settled on the exact formulations we wish to apply when interpreting
the basic constructions {. . . }, P in the forcing language. Similarly, if we write PI = (B+

I ,⊆, 1, ↓) for the
forcing notion based on the Boolean algebra BI , this also is a formula which can be interpreted in forcing
languages.

551P Theorem Let (Ω,Σ, I) be a non-trivial ω1-saturated measurable space with negligibles such that
Σ is closed under Souslin’s operation. Let P be the associated forcing notion, P = (Σ/Σ ∩ I)+ its underlying
partially ordered set, and I a set. Set

Λ = Σ⊗̂BaI , J = {W : W ∈ Λ, νIW [{ω}] = 0 for I-almost every ω ∈ Ω};

then J is a σ-ideal of Λ (cf. 527B); let C be the quotient algebra Λ/J . For W ∈ Λ and ω ∈ Ω set
hW (ω) = νIW [{ω}]. For a ∈ C let ~a be the P-name

{( ~W, 11) : W ∈ Λ, W • = a}

where the P-names ~W are defined as in 551D. Consider the P-names

Ḋ = {(~a, 11) : a ∈ C}, π̇ = {(((W •)~, ( ~W )•), 11) : W ∈ Λ}.

(a) P π̇ is a bijection between Ḋ and BǏ .
(b) If a, b ∈ C, V ∈ Λ and V • = a, then

P π̇(a△ b)~ = π̇~a△ π̇~b, π̇(a ∩ b)~ = π̇~a ∩ π̇~b, ν̄Ǐ(π̇~a) = ~hV ,

defining hV and ~hV as in 551I.
(c) Let ε : Σ/Σ ∩ I → C be the canonical map defined by the formula

ε(E•) = (E × {0, 1}I)• for E ∈ Σ.

If p ∈ (Σ/Σ ∩ I)+ and a, b ∈ C, then

p P π̇~a = π̇~b

iff a ∩ ε(p) = b ∩ ε(p).

Remarks Note that in the formula

D.H.Fremlin
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{(((W •)~, ( ~W )•), 11) : W ∈ Λ}

the first • is interpreted in the ordinary universe as the canonical map from Λ to C, and the second is
interpreted in the forcing language as the canonical map from BaǏ to BǏ ; while among the brackets (. . . ),
some are just separators, some are to be interpreted as an ordered-pair construction in the ordinary universe,
and some are to be interpreted as and ordered-pair construction in the forcing language. Similarly, in the
formula

P π̇(a△ b)~ = π̇~a△ π̇~b

the first △ is to be interpreted in the ordinary universe as symmetric difference in the algebra C, while the
second is to be interpreted in the forcing language as symmetric difference in BǏ .

proof (a)(i) P π̇ is a function with domain Ḋ and π̇[Ḋ] = Ḃ.

PPP??? Suppose, if possible, that V , W ∈ Λ and E ∈ Σ \ I are such that

E•
P (V •)~ = (W •)~ , ~V • 6= ~W •.

By 551I(iii) and 551Eb,

E•
P
~hV△W = νǏ(V△W )~ 6= 0.

On the other hand,

E•
P
~V ∈ (V •)~ = (W •)~ ,

so there must be a W1 ∈ Λ and an F ∈ Σ \ I such that F • is stronger than E•, W1△W ∈ J and

F •
P
~V = ~W1. Now, calculating in Σ/Σ ∩ I,

F •
⊆ {ω : V [{ω}] = W1[{ω}]}•

(551Gb)

⊆ {ω : νI(V [{ω}]△W1[{ω}]) = 0}• = {ω : νI(V [{ω}]△W [{ω}]) = 0}•

(because W△W1 ∈ J , so νI(W [{ω}]△W1[{ω}]) = 0 for I-almost every ω)

= [[~hV△W = 0]]

(551B); which is impossible, because E• ⊆ [[~hV△W 6= 0]]. XXX So 5A3E tells us that

P π̇ is a function with domain Ḋ and π̇[Ḋ] = Ḃ,

where Ḃ is the P-name {( ~W •, 11) : W ∈ Λ}.

(ii) Now P π̇ is injective. PPP I aim to use the condition (ii) in 5A3Eb. I take the argument in two
bites.

(ααα)??? Suppose, if possible, that V , W ∈ Λ and p ∈ P are such that p P
~V • = ~W • but p 6 P (V •)~ ⊆

(W •)~ . Then there are a q ∈ P , stronger than p, and a P-name ẋ such that

q P ẋ ∈ (V •)~ \ (W •)~ .

By the definition in 5A3Cb, there are an r ∈ P , stronger than q, and a V1 ∈ Λ such that V •
1 = V • and

r P ẋ = ~V1. Let E ∈ Σ \ I be such that E• = r, and set

W1 = (V1 ∩ (E × {0, 1}I)) ∪ (W ∩ ((Ω \ E) × {0, 1}I)) ∈ Λ.

Then E• ⊆ [[ ~W1 = ~V1]] (551Gb again). At the same time,

E• ⊆ [[~V • = ~W •]] = [[~hV△W = 0]]

as in (i) just above. Now

Measure Theory



551P Forcing with quotient algebras 15

{ω : ω ∈ Ω, νI(W1[{ω}]△W [{ω}]) > 0}

= {ω : ω ∈ E, νI(V1[{ω}]△W [{ω}]) > 0}

⊆ {ω : ω ∈ Ω, νI(V1[{ω}]△V [{ω}]) > 0} ∪ {ω : ω ∈ E, hV△W (ω) > 0}

∈ I.

But this means that W •
1 = W • and ( ~W1, 11) ∈ (W •)~ , so that

P
~W1 ∈ (W •)~ , r P ẋ = ~V1 = ~W1 ∈ (W •)~ ;

but r is stronger than q and

q P ẋ /∈ (W •)~ ,

so we have a contradiction. XXX

(βββ) Thus if V , W ∈ Λ and p ∈ P are such that p P
~V • = ~W •, we must have p P (V •)~ ⊆ (W •)~ .

Similarly, p P (W •)~ ⊆ (V •)~ and p P (W •)~ = (V •)~ . Accordingly the condition 5A3Eb(ii) is satisfied
and P π̇ is injective. QQQ

(iii) We need to check that

P Ḃ = BǏ .

PPP(ααα) Suppose that E ∈ Σ \ I and a P-name ẋ are such that E•
P ẋ ∈ Ḃ. Then there must be an

F ∈ Σ \ I and a W ∈ Λ such that F • is stronger than E• and F •
P ẋ = ~W • ∈ BǏ ; as E• and ẋ are

arbitrary,

P Ḃ ⊆ BǏ .

(βββ) Suppose that E ∈ Σ \ I and a P-name ẋ are such that E•
P ẋ ∈ BǏ . Then there must be a

P-name Ẇ such that

E•
P Ẇ ∈ BaǏ and ẋ = Ẇ •.

By 551Fb, there is a W ∈ Λ such that

E•
P
~W = Ẇ , so ẋ = ~W • ∈ Ḃ;

as E and ẋ are arbitrary,

P BǏ ⊆ Ḃ and Ḃ = BǏ . QQQ

(iv) Putting these together,

P π̇ is a bijection between Ḋ and BǏ .

(b) This is now easy. If V , W ∈ Λ, a = V • and b = W •, then

P π̇(a△ b)~ = π̇((V△W )•)~ = ((V△W )~)• = (~V△ ~W )•

(551Eb)

= ~V •
△ ~W • = π̇~a△ π̇~b,

and similarly

P π̇(a ∩ b)~ = π̇~a ∩ π̇~b.

Finally,

P ν̄Ǐ(π̇~a) = ν̄Ǐ
~V • = νǏ

~V = ~hV

by 551I(iii) again.
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(c) Let E ∈ Σ \ I and V , W ∈ Λ be such that E• = p, V • = a and W • = b. Then (b) tells us that

P ν̄Ǐ(π̇~a△ π̇~b) = ν̄Ǐ π̇(a△ b)~ = ν̄Ǐ π̇((V △W )•)~ = ~hV△W .

So

p P π̇~a = π̇~b ⇐⇒ p P ν̄Ǐ(π̇~a△ π̇~b) = 0

⇐⇒ p P
~hV△W = 0

⇐⇒ hV△W (ω) = 0 for I-almost every ω ∈ E

(551B)

⇐⇒ νI(V [{ω}]△W [{ω}]) = 0 for I-almost every ω ∈ E

⇐⇒ (E × {0, 1}I) ∩ (V△W ) ∈ J

⇐⇒ ε(p) ∩ (a△ b) = 0 ⇐⇒ a ∩ ε(p) = b ∩ ε(p).

551Q Iterated forcing The machinery just developed can be used to establish one of the most important
properties of random real forcing.

Theorem Let (Ω,Σ, I) be a non-trivial ω1-saturated measurable space with negligibles such that Σ is closed
under Souslin’s operation, P its associated forcing notion, and I a set. As in 551P, set Λ = Σ⊗̂BaI ,

J = {W : W ∈ Λ, νIW [{ω}] = 0 for I-almost every ω ∈ Ω}

and C = Λ/J . Then

C ∼= RO(P ∗ PǏ),

where the P-name PǏ is defined as in 551O, and P ∗ PǏ is the iterated forcing notion defined in 5A3O.

proof (a) Since I wish to follow Kunen 80 as closely as possible, I should perhaps start with a remark on
the interpretation of names for forcing notions. There is, strictly speaking, a distinction to be made between
a name for a forcing notion, which is a name for a quadruplet of the form (P,≤, 11, ↑↓), and a quadruplet of
names, the first for a set, the second for a pre-order on that set, and so on; and the latter is easier to work
with (Kunen 80, §VIII.5, and 5A3O). In the present case, we do not need any new manoeuvres, since the
construction of the name PǏ is based on P-names for BǏ , ⊆BǏ

and 1BǏ
.

As usual in this section, I will write A for Σ/Σ ∩ I.

(b) Now P ∗ PǏ is based on the set P of pairs (p, ḃ) where p ∈ A+, ḃ ∈ B and p P ḃ ∈ B+
Ǐ

; here B is

the domain of the P-name B+
Ǐ

(5A3Ba). If we say that (p, ḃ) ≤ (p′, ḃ′) if p ⊆ p′ and p P ḃ ⊆ ḃ′, then P is
pre-ordered by ≤ and P ∗ PǏ is active downwards.

We have a unique function θ : P → C+ such that

θ(p, ḃ) ⊆ ε(p), p P π̇θ(p, ḃ)~ = ḃ,

whenever (p, ḃ) ∈ P , where ε, π̇ and ~a, for a ∈ C, are defined as in 551P. PPP If (p, ḃ) ∈ P , so that p P ḃ ∈ BǏ ,

there is a P-name ḃ1 such that

P ḃ1 ∈ BǏ ,

p P ḃ1 = ḃ.

Next, there is an a0 ∈ C such that P π̇~a0 = ḃ1 (551Pa). Set a = a0 ∩ ε(p). Then 551Pc tells us that

p P π̇~a = π̇~a0 = ḃ1 = ḃ 6= 0,

and a 6= 0. To see that a is unique, observe that if c ∈ C is such that p P π̇~c = ḃ, then c ∩ ε(p) = a ∩ ε(p),

by 551Pc again; so if c ⊆ ε(p), c = a. We therefore can, and must, take a for θ(p, ḃ). QQQ
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(c)(i) If (p, ḃ), (p′, ḃ′) ∈ P and (p, ḃ) is stronger than (p′, ḃ′), then p ⊆ p′ and p P ḃ ⊆ ḃ′. In this case,

p P π̇θ(p
′, ḃ′)~ = ḃ′ and π̇(θ(p, ḃ) ∩ θ(p′, ḃ′))~ = π̇θ(p, ḃ)~ ∩ π̇θ(p′, ḃ′)~ = ḃ ∩ ḃ′ = ḃ,

while θ(p, ḃ) ∩ θ(p′, ḃ′) ⊆ ε(p), so θ(p, ḃ) ∩ θ(p′, ḃ′) = θ(p, ḃ) and θ(p, ḃ) ⊆ θ(p′, ḃ′).

(ii) If (p, ḃ) and (p′, ḃ′) ∈ P are incompatible, then θ(p, ḃ) ∩ θ(p′, ḃ′) = 0. PPP??? Otherwise, writing a for

θ(p, ḃ) ∩ θ(p′, ḃ′),

ε(p ∩ p′) = ε(p) ∩ ε(p′) ⊇ a 6= 0

so p ∩ p′ 6= 0 and

p ∩ p′ P π̇~a ⊆ π̇θ(p, ḃ)~ ∩ π̇θ(p′, ḃ′)~ = ḃ ∩ ḃ′ = 0;

as a ⊆ ε(p ∩ p′), a must be 0; which is absurd. XXXQQQ

(iii) If a ∈ C+, there is a (p, ḃ) ∈ P such that θ(p, ḃ) ⊆ a. PPP By 551Pc, 6 Pπ̇~a = 0, that is, there is

a p0 ∈ C+ such that p0 P π̇~a 6= 0. Now there must be a p ∈ C+, stronger than p0, and a ḃ ∈ B such that

p P ḃ = π̇~a, in which case (p, ḃ) ∈ P and p P π̇θ(p, ḃ)~ = π̇~a. Accordingly

θ(p, ḃ) = θ(p, ḃ) ∩ ε(p) = a ∩ ε(p) ⊆ a. QQQ

(d) Observe now that C is ccc (527L), therefore Dedekind complete, and (c) tells us that θ : P → C+

satisfies the conditions of 514Sa. So RO(P ∗ PǏ) = RO↓(P ) is isomorphic to C.

551R Extending filters The following device will be useful in §553.

Proposition Let (Ω,Σ, I) be a non-trivial ω1-saturated measurable space with negligibles, A its quotient
algebra, P the associated forcing notion, I a countable set and F a filter on I.

(a) For H ∈ Σ⊗̂PI, write ~H for the P-name {(̌ı , H−1[{i}]•) : i ∈ I, H−1[{i}] /∈ I}.

(i) P
~H ⊆ Ǐ.

(ii) If Ḟ is a P-name and p ∈ A+ is such that p P Ḟ ⊆ Ǐ, then there is an H ∈ Σ⊗̂PI such that

p P Ḟ = ~H.

(b) Write ~F for the P-name

{( ~H,E•) : H ∈ Σ⊗̂PI, E ∈ Σ \ I, H[{ω}] ∈ F for every ω ∈ E}.

Then

P
~F is a filter on Ǐ.

proof (a)(i) is elementary, just because

P ı̌ ∈ Ǐ

for every i ∈ I.

(ii) Because (Ω,Σ, I) is ω1-saturated, A is Dedekind complete and can be identified with RO(P). We

therefore have, for each i ∈ I, an Ei ∈ Σ such that E•
i can be identified with [[̌ı ∈ Ḟ ]]. Set H =

⋃
i∈I Ei×{i}.

Then

[[̌ı ∈ Ḟ ]] = H−1[{i}]• = [[̌ı ∈ ~H]]

for every i ∈ I, so

p P Ḟ = Ḟ ∩ Ǐ = ~H ∩ Ǐ = ~H.

(b)(i) By (a-i), P
~F ⊆ Ǐ.

(ii) Since ((Ω × I)~, 11) ∈ ~F and

P (Ω × I)~ = Ǐ

(551D), we have
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P Ǐ ∈ ~F .

(iii) If ( ~H, p) ∈ ~F then p P
~H 6= ∅. PPP Express p as E• where E ∈ Σ and H[{ω}] ∈ F for every

ω ∈ E. Then E ⊆
⋃

i∈I H
−1[{i}]. So if q ∈ A+ is stronger than p, there must be an i ∈ I such that

r = q ∩H−1[{i}]• is non-zero; in which case r is stronger than q and

r P ı̌ ∈ ~H, so ~H 6= ∅.

As q is arbitrary, p P
~H 6= ∅. QQQ

It follows at once that P ∅ /∈ ~F .

(iv) If Ḟ0, Ḟ1 are P-names and p ∈ A+ is such that

p P Ḟ0, Ḟ1 ∈ ~F ,

then

p P Ḟ0 ∩ Ḟ1 ∈ ~F .

PPP If q ∈ A+ is stronger than p there must be ( ~H0, E
•
0), ( ~H1, E

•
1) ∈ ~F and an r stronger than q, E•

0 and E•
1

such that

r P Ḟ0 = ~H0 and Ḟ1 = ~H1.

Now ((H0 ∩H1)~, (E0 ∩ E1)•) ∈ ~F and

r P Ḟ0 ∩ Ḟ1 = ~H0 ∩ ~H1 = (H0 ∩H1)~ ∈ ~F .

As q is arbitrary,

p P Ḟ0 ∩ Ḟ1 ∈ ~F . QQQ

Accordingly

P
~F is closed under ∩.

(v) Suppose that Ḟ0, Ḟ1 are P-names and p ∈ A+ is such that

p P Ḟ0 ⊆ Ḟ1 ⊆ Ǐ, Ḟ0 ∈ ~F .

By (a-ii), there is an H1 ∈ Σ⊗̂PI such that p P Ḟ1 = ~H1. If q is stronger than p, there are an ( ~H0, E
•
0) ∈ ~F

and an r stronger than both q and E•
0 such that

r P
~H0 = Ḟ0 ⊆ Ḟ1 = ~H1.

Expressing r as E• where E ∈ Σ \ I, we have

E ∩H−1
0 [{i}] \H−1

1 [{i}] ∈ I

for every i ∈ I. Set

E1 = E \
⋃

i∈I(H−1
0 [{i}] \H−1

1 [{i}]);

then ( ~H1, E
•
1) ∈ ~F , so

r = E•
1 P Ḟ1 = ~H1 ∈ ~F .

As q is arbitrary,

p P Ḟ1 ∈ ~F .

As p, Ḟ0 and Ḟ1 are arbitrary,

P
~F is a filter on Ǐ.

551X Basic exercises (a) Let (Ω,Σ, I) be any measurable space with negligibles. Set Σ̂ = {E△F :

E ∈ Σ, F ∈ I}. (i) Show that (Ω, Σ̂, I) is a complete measurable space with negligibles; we may call it

Measure Theory
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the completion of (Ω,Σ, I). (ii) Show that the algebras Σ/Σ ∩ I and Σ̂/I are canonically isomorphic (cf.

322Da). (iii) Show that (Ω, Σ̂, I) is ω1-saturated iff (Ω,Σ, I) is.

(b) Let (Ω,Σ, µ) be a measure space and N (µ) the null ideal of µ. (i) Show that (Ω,Σ,N (µ)) is a

measurable space with negligibles. (ii) Show that if the completion of (Ω,Σ, µ) (212C) is (Ω, Σ̂, µ̂), then

(Ω, Σ̂,N (µ̂)) is the completion of (Ω,Σ,N (µ)).

(c) Let X be a topological space, B(X) the Borel σ-algebra of X, B̂(X) the Baire-property algebra of X
and M the ideal of meager subsets of X. (i) Show that (X,B(X),M) is a measurable space with negligibles.

(ii) Show that its completion is (X, B̂(X),M).

(d) Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, and P the associated forcing notion.
(i) Show that the regular open algebra of P can be identified with the Dedekind completion of Σ/Σ∩I. (ii)
Show that if E is any coinitial subset of Σ \ I containing Ω, then the forcing notion E , active downwards,
has regular open algebra isomorphic to RO(P).

(e) Let (Ω,Σ, I) and (Υ,T,J ) be measurable spaces with negligibles. Show that (Ω×Υ,Σ⊗̂T, I⋉Σ⊗̂TJ ),
as defined in 527Bc, is a measurable space with negligibles.

(f) Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, and P the associated forcing notion.
Let f : Ω → {0, 1} be a measurable function, and define P-names ẋ, ẏ by saying that ẋ is the P-name for a
real number as defined from f in 551B, while ẏ is the P-name for a member of {0, 1} as defined in 551Ca.
Show that

P regarding 0 and 1 as real numbers, ẋ = ẏ.

(g) Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, P the associated forcing notion, and
I a set. Suppose that f : Ω → {0, 1}I is a (Σ,BaI)-measurable function, and that Γf ⊆ Ω × {0, 1}I is its

graph (for once, I distinguish between f and Γf ). Let ~f and ~Γf be the P-names for a point of {0, 1}Ǐ and a

subset of {0, 1}Ǐ defined by the formulae in 551C and 551D respectively. Show that P
~Γf = {~f }.

(h) Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, and (Ω, Σ̂, I) its completion; write

P, P̂ for the associated forcing notions, so that P and P̂ are canonically isomorphic. Let I be a set, W a

member of Σ⊗̂{0, 1}I ⊆ Σ̂⊗̂{0, 1}I and ~W the P-name, ~̂W the P̂-name defined by the formula in 551D.

Explain what it ought to mean to say that
P̂
~̂W = ~W , and why this is true.

(i) Let (Ω,Σ, I) be a non-trivial ω1-saturated measurable space with negligibles with a Dedekind complete
quotient algebra, P the associated forcing notion, and I a set. Suppose that W ∈ Σ⊗̂Ba({0, 1}I) is such

that P
~W ∈ Baα̌({0, 1}Ǐ), where α < ω1. Show that W [{ω}] ∈ Baα({0, 1}I) for I-almost every ω ∈ Ω.

551Y Further exercises (a) Investigate the difficulties which arise if we try to represent names for

Borel subsets of {0, 1}Ǐ as members of Σ⊗̂{0, 1}I , when I is uncountable. Show that some of these are
resolvable if Ω is actually the Stone space of RO(P).

(b) Let (Ω,Σ, I) be a non-trivial measurable space with negligibles, P the associated forcing notion and

P the partially ordered set underlying P. (i) Let p ∈ P and a P-name Ġ be such that

p P Ġ is a dense open subset of {0, 1}ω.

Show that there is a W ∈ Σ⊗̂Baω such that every vertical section of W is a dense open set and p P Ġ = ~W .

(ii) Let p ∈ P and a P-name Ȧ be such that

p P Ȧ is a meager subset of {0, 1}ω.

Show that there is a W ∈ Σ⊗̂Baω such that every vertical section of W is a meager set and p P Ȧ ⊆ ~W .
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551 Notes and comments There are real metamathematical difficulties in forcing, and we need to find
new compromises between formal rigour and intuitive accessibility. In the formulae of this section I am

taking a path with rather more explicit declarations than is customary. The definitions of ~u in 5A3L, ~f in

551Ca and ~W in 551D are supposed to be P-names in the exact sense used in Kunen 80. This leads to
rather odd sentences of the form

(~f, p) ∈ ~W so p P
~f ∈ ~W

(as in (a-ii) of the proof of 551E, for example), in which the symbol ∈ is being used in different ways in the

two halves; but it has the advantage that we can move from W to ~W without further explanation, as in
the statements of 551E-551J. But you will observe that elsewhere I allow such terms as Ba and ν... to enter
sentences in the forcing language, since these correspond to definitions which can be expanded there. Note
that I am being less strict than usual in requiring formulae to be unambiguous (see 551Xf and 551Xg).

There is always room for variation in the matter of which terms should be decorated with š when they
appear in expressions of the forcing language, and I have tried to be reasonably consistent; but there are
particular difficulties with transferring names for families (5A3Fb), which appear here in such formulae as

‘ P limn→∞
~hn = limn→∞

~ψn(ẋ)’ (part (c) of the proof of 551N).
I hope that it is not too confusing to have the formula [[. . . ]] used in two different ways, not infrequently

in the same sentence: sometimes as a ‘Boolean value’ in the forcing sense, and sometimes in the sense of
Chapter 36. If you look back at the definitions in §364 you will see that the expression f• also shifts in
interpretation as we move between the formally distinct algebras A and RO(P). There are some particularly
difficult formulae to parse in 551P; following the statement of the theorem I offer a remark on the expression

(((W •)~, ( ~W )•), 11), and some of the same difficulties arise in the line

P π̇(a△ b)~ = π̇((V△W )•)~ = ((V△W )~)• = (~V△ ~W )•

in part (b) of the proof, where as well as the ambiguities in • and (. . . ) we have the symbols △ and △
being used first for an operation in the ground-model Boolean algebra C, then for symmetric difference in
the ordinary universe, and finally for symmetric difference in the forcing language.

Version of 29.1.14

552 Random reals I

From the point of view of a measure theorist, ‘random real forcing’ has a particular significance. Because
the forcing notions are defined directly from the central structures of measure theory (552A), they can
be expected to provide worlds in which measure-theoretic questions are answered. Thus we find ourselves
with many Sierpiński sets (552E), information on cardinal functions (552C, 552F-552J), and theorems on
extension of measures (552N). But there is a second reason why any measure theorist or probabilist should
pay attention to random real forcing. Natural questions in the forcing language, when translated into
propositions about the ground model, are likely to hinge on properties of measure algebras, giving us a new
source of challenging problems. Perhaps the deepest intuitions are those associated with iterated random
real forcing (552P).

552A Notation (a) As usual, if µ is a measure then N (µ) will be its null ideal. It will be conve-
nient to have a special notation for certain sets of finite functions: if I is a set, Fn<ω(I; {0, 1}) will be⋃

K∈[I]<ω{0, 1}K .

For any set I I will write νI for the usual completion regular Radon probability measure on {0, 1}I ,
TI for its domain and (BI , ν̄I) for its measure algebra; BaI = Ba({0, 1}I) will be the Baire σ-algebra of
{0, 1}I . (It will sometimes be convenient, when applying the results of §551, to regard BI as the quotient
BaI/BaI ∩N (νI).) In this context, I will write 〈ei〉i∈I for the standard generating family in BI (525A). PI

will be the forcing notion B+
I = BI \ {0}, active downwards. For a formula φ in the corresponding forcing

language I will write [[φ]] for the truth value of φ, interpreted as a member of BI (5A3M). Note that as PI

is ccc (cf. 511Db), it preserves cardinals (5A3Nb).
As in §551, the formulae νI , BI etc. are to be regarded as formulae of set theory with one free variable

into which the parameter I has been substituted, so that we have corresponding names νİ , Bİ in any forcing
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language, and in particular (once the context has established a forcing notion P) we have P-names νǏ , BǏ

for any ground-model set I.

(b) A great deal of the work of this chapter will involve interpretations of names for standard objects
(in particular, for cardinals) in forcing languages. Reflecting suggestions in 5A3H and 5A3N, I will try to
signal intended interpretations by using the superscript .̌ Thus c will always be an abbreviation for ‘the
initial ordinal equipollent with the set of subsets of the natural numbers’, whether I am using the ordinary
language of set theory or speaking in a forcing language; and č, in a forcing language, will refer to the name
{(ξ̌, 11) : ξ < c}, where it is to be understood that the symbol c must now be interpreted in the ordinary
universe. As I shall avoid arguments involving more than one forcing notion (and, in particular, iterated
forcing), there will I hope be little scope for confusion, even in such sentences as

Pκ
b = b̌

(552C). The leading Pκ
declares that the rest of the sentence is in the language of Pκ-forcing; the first b,

and the ,̌ are therefore to be interpreted in that language; but the second b, being subject to the ,̌ is to
be interpreted in the ground model. (Many authors would write bV at this point.) Similarly, in

Pκ
2λ̌ = (κλ)̌

(552B), the subformula κλ is to be interpreted in the ordinary universe, but 2λ̌ = #(Pλ̌) is to be interpreted
in the forcing language. I hope that the resulting gains in directness and conciseness will not be at the
expense of leaving you uncertain of the meaning.

552B Theorem Suppose that λ and κ are infinite cardinals. Then

Pκ
2λ̌ = (κλ)̌ ,

where κλ is the cardinal power (interpreted in the ordinary universe, of course).

proof (a) Recall that #(Bκ) = κω (524Ma), so that

#(Bλ
κ) = #(κω×λ).

If Ȧ is a Pκ-name for a subset of λ̌, then we have a corresponding family 〈[[η̌ ∈ Ȧ]]〉η<λ of truth values;

and if Ȧ, Ḃ are two such names, and [[η̌ ∈ Ȧ]] = [[η̌ ∈ Ḃ]] for every η < λ, then

Pκ
η̌ ∈ Ȧ ⇐⇒ η̌ ∈ Ḃ

for every η < λ, so

Pκ
Ȧ = Ḃ.

So

Pκ
2λ̌ = #(Pλ̌) ≤ #((Bλ

κ)̌ ) = (κλ)̌ .

(b) In the other direction, consider first the case in which λ ≤ κ. Let F be the set of all functions from
λ to κ, so that #(F ) = κλ. Then there is a set G ⊆ F such that #(G) = κλ and {η : η < λ, f(η) 6= g(η)}
is infinite whenever f , g ∈ G are distinct. PPP If κ = κλ we can take G to be the set of constant functions.
Otherwise, for f , g ∈ F , say that f =∗ g if {η : f(η) 6= g(η)} is finite; this is an equivalence relation. Let
G ⊆ F be a set meeting each equivalence class in just one element. Then we have #({g : g =∗ f}) = κ < κλ

for every f ∈ F , so #(G) = κλ, as required. QQQ
Let 〈eξη〉ξ<κ,η<λ be a stochastically independent family in Bκ of elements of measure 1

2 . For f ∈ G let

Ȧf be a Pκ-name for a subset of λ̌ such that

[[η̌ ∈ Ȧf ]] = ef(η),η

for every η < λ. If f , g ∈ G are distinct, set I = {η : f(η) 6= g(η)}; then

[[Ȧf 6= Ȧg]] = supη<λ ef(η),η △ eg(η),η = supη∈I ef(η),η △ eg(η),η = 1

because 〈ef(η),η △ eg(η),η〉η∈I is an infinite stochastically independent family of elements of measure 1
2 .
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Thus in the forcing language we have a name for an injective function from Ǧ to Pλ̌, corresponding to
the map f 7→ Ȧf from G to names of subsets of λ. So

Pκ
2λ̌ ≥ #(Ǧ) = (κλ)̌ .

Putting this together with (a), we have

Pκ
2λ̌ = (κλ)̌ .

(c) If λ > κ, then (in the ordinary universe) 2λ = κλ. Now

Pκ
(Pλ)̌ ⊆ Pλ̌,

so

Pκ
(κλ)̌ = #((Pλ)̌ ) ≤ #(Pλ̌) = 2λ̌,

and again we have

Pκ
2λ̌ = (κλ)̌ .

552C Theorem Let κ be any cardinal. Then

Pκ
b = b̌ and d = ď.

proof (a) The point is that if ḟ is any Pκ-name for a member of NN, then there is an h ∈ NN such that

Pκ
ḟ ≤∗ ȟ,

where I write f ≤∗ g to mean that {n : g(n) < f(n)} is finite, as in 522C. PPP For n, i ∈ N set ani = [[ḟ(ň) = ı̌ ]].
Then Dn = {ani : i ∈ N} is a partition of unity in Bκ for each n ∈ N. Because Bκ is weakly (σ,∞)-
distributive (322F), there is a partition of unity D such that {i : ani ∩ d 6= 0} is finite for each n and each
d ∈ D. Let 〈dk〉k∈N be a sequence running over D and take h(n) such that ami ∩ dn = 0 whenever m ≤ n
and i > h(n). Now

[[ȟ(m̌) < ḟ(m̌)]] = [[h(m)̌ < ḟ(m̌)]] = sup{ami : i > h(m)} ⊆ 1 \ dn

whenever n ≤ m. So

[[ȟ(n) < ḟ(n) for infinitely many n]] = inf
n∈N

sup
m≥n

[[h(m)̌ < ḟ(m̌)]]

⊆ inf
n∈N

1 \ dn = 0,

that is,

Pκ
ḟ ≤∗ ȟ. QQQ

(b)(i) Let 〈ḟξ〉ξ<λ be a family of Pκ-names for members of NN, where λ < b. Then for each ξ < λ we

can find an hξ ∈ NN such that Pκ
ḟξ ≤∗ ȟξ. As λ < b, there is an h ∈ NN such that hξ ≤∗ h for every

ξ < λ. Now Pκ
ȟξ ≤∗ ȟ for every ξ, so Pκ

ḟξ ≤∗ ȟ for every ξ. As λ and 〈ḟξ〉ξ<λ are arbitrary,

Pκ
b ≥ b̌.

(ii) Let 〈hξ〉ξ<b be a family in NN which has no ≤∗-upper bound in NN. Then

Pκ
{ȟξ : ξ < b̌} has no ≤∗-upper bound.

PPP??? Otherwise, there are a Pκ-name ḟ for a member of NN and an a ∈ B+
κ such that

a Pκ
ȟξ ≤∗ ḟ for every ξ < b̌.

Now there is an h ∈ NN such that Pκ
ḟ ≤∗ ȟ. There must be a ξ < b such that hξ 6≤∗ h. We have

a Pκ
ȟξ ≤∗ ḟ ≤∗ ȟ, so there are an a′, stronger than a, and an n ∈ N such that

a′ Pκ
ȟξ(i) ≤ ȟ(i) for every i ≥ ň.
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However, there is an i ≥ n such that h(i) < hξ(i), in which case

Pκ
ı̌ ≥ ň and ȟ(̌ı) < ȟξ (̌ı);

which is impossible. XXXQQQ
So

Pκ
b ≤ b̌, therefore b = b̌.

(c)(i) Let 〈ḟξ〉ξ<λ be a family of Pκ-names for members of NN where λ < ď. Then for each ξ < λ we can

find an hξ ∈ NN such that Pκ
ḟξ ≤∗ ȟξ. As λ < d, there is an h ∈ NN such that h 6≤∗ hξ for every ξ < λ.

Now

Pκ
ȟ 6≤∗ ȟξ for every ξ < λ̌,

so

Pκ
ȟ 6≤∗ ḟξ for every ξ < λ̌.

As λ and 〈ḟξ〉ξ<λ are arbitrary,

Pκ
d ≥ ď.

(ii) Let 〈hξ〉ξ<d be a family in NN which is ≤∗-cofinal with NN. Then

Pκ
{ȟξ : ξ < ď} is ≤∗-cofinal with NN.

PPP Let ḟ be a Pκ-name for a member of NN. There are an h ∈ NN such that Pκ
ḟ ≤∗ ȟ, and a ξ < d such

that h ≤∗ hξ. In this case,

Pκ
ḟ ≤∗ ȟ ≤∗ ȟξ. QQQ

So

Pκ
d ≤ ď.

552D Lemma Let λ and κ be infinite cardinals, and A any subset of {0, 1}λ. Then

Pκ
ν∗
λ̌
(Ǎ) = (ν∗λA)̌ .

proof (a) ??? Suppose, if possible, that

¬ Pκ
(ν∗λA)̌ ≤ ν∗

λ̌
(Ǎ).

Then there are an a ∈ B+
κ and a q ∈ Q such that q < ν∗λA and

a Pκ
ν∗
λ̌
(Ǎ) < q̌.

Let Ė be a Pκ-name such that

a Pκ
Ǎ ⊆ Ė, Ė ∈ Baλ̌ and νλ̌Ė < q̌.

Of course we can arrange that 1 \ a Pκ
Ė = ∅, so that Pκ

Ė ∈ Baλ̌ and there is a W ∈ Tκ⊗̂Baλ such that

Pκ
Ė = ~W (551Fb). Setting h(x) = νλW [{x}] for x ∈ {0, 1}κ,

Pκ
~h = νλ̌

~W

(551I(iii)), so

a Pκ
~h = νλ̌Ė < q̌

and a ⊆ {x : h(x) < q}•. Take F ∈ Tκ such that F • = a; then h(x) < q for almost every x ∈ F and
(νκ × νλ)(W ∩ (F × {0, 1}λ)) < qνκF .

For each y ∈ A, let ey : {0, 1}κ → {0, 1}λ be the constant function with value y. Then Pκ
~ey = y̌

(551Ce), so

a Pκ
~ey ∈ Ǎ ⊆ ~W
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and (x, y) ∈W for almost every x ∈ F . But if we set

H = {y : (x, y) ∈W for νκ-almost every x ∈ F},

H ∈ Tλ, A ⊆ H and

νκF · νλH ≤ (νκ × νλ)(W ∩ (F × {0, 1}λ)) < qνκF .

It follows that

ν∗λA ≤ νλH < q,

contrary to hypothesis. XXX So

Pκ
(ν∗λA)̌ ≤ ν∗

λ̌
(Ǎ).

(b) In the other direction, let E ∈ Baλ be such that A ⊆ E and νλE = ν∗λA, and consider W = {0, 1}κ×E.
Then

Pκ
Ǎ ⊆ ~W and νλ̌

~W = (νλE)̌ ,

so

Pκ
ν̇∗λǍ ≤ (ν∗λA)̌ .

552E Theorem Let κ and λ be infinite cardinals, with κ ≥ max(ω1, λ). Then

Pκ
there is a strongly Sierpiński set for νλ̌ with cardinal κ̌.

proof (a) As κ ≥ λ, Pκ is isomorphic to P = Pκ×λ. For each ξ < κ, let fξ : {0, 1}κ×λ → {0, 1}λ be given by

setting fξ(x)(η) = x(ξ, η) for every x ∈ {0, 1}κ×λ and η < λ; then, taking ~fξ to be the P-name defined by
the process of 551Cb,

P
~fξ ∈ {0, 1}λ̌.

If ξ, ξ′ < κ are distinct, then for any finite set I ⊆ λ

[[~fξ(η) = ~fξ′(η) for every η ∈ Ǐ]] = {x : fξ(x)(η) = fξ′(x)(η) for every η ∈ I}•

= {x : x(ξ, η) = x(ξ′, η) for every η ∈ I}•

has measure 2−#(I), so, because λ is infinite, ν̄[[~fξ = ~fξ′ ]] = 0 and

P
~fξ 6= ~fξ′ .

So, taking Ȧ to be the P-name {(~fξ, 11) : ξ < κ}, we have

P Ȧ ⊆ {0, 1}λ̌ has cardinal κ̌ ≥ ω1, so is uncountable.

(As remarked in 5A3Nb, we do not need to distinguish between ω1 and ω̌1 in the last formula.)

(b) Let r ≥ 1 be an integer and Ẇ a P-name such that

P Ẇ is a subset of ({0, 1}λ̌)ř which is negligible for the usual measure.

Then there is a Baire subset W of {0, 1}κ×λ× ({0, 1}λ)r, negligible for the usual measure on this space, such
that

P Ẇ ⊆ ~W

(551J, applied to {0, 1}λ×r ∼= ({0, 1}λ)r). Let J ⊆ κ be a countable set such that W factors through
{0, 1}J×λ × ({0, 1}λ)r, that is, there is a negligible Baire set W1 ⊆ {0, 1}J×λ × ({0, 1}λ)r such that W =
{(x, y) : (x↾J × λ, y) ∈W1}. If ξ0, . . . , ξr−1 are distinct elements of κ \ J , then

P (~fξ0 , . . . ,
~fξr−1

) /∈ ~W .

PPP Applying 551Ea to the function x 7→ (fξ0(x), . . . , fξr−1
(x)), we have
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[[(~fξ0 , . . . ,
~fξr−1

) ∈ ~W ]] = {x : (x, (fξ0(x), . . . , fξr−1
(x))) ∈W}•.

Set K = J ∪ {ξ0, . . . , ξr−1} and for w ∈ {0, 1}K×λ, i < r, η < λ set gi(w)(η) = w(ξi, η). Then w 7→
(w↾J×λ, (g0(w), . . . , gr−1(w)) is a measure space isomorphism between {0, 1}K×λ and {0, 1}J×λ×({0, 1}λ)r,
so

W2 = {w : w ∈ {0, 1}K×λ, (w↾J × λ, (g0(w), . . . , gr−1(w)) ∈W1}

is negligible. Consequently

{x : (x, (fξ0(x), . . . , fξr−1
(x))) ∈W} = {x : (x↾J × λ, (fξ0(x), . . . , fξr−1

(x))) ∈W1}

= {x : x↾K × λ ∈W2}

is negligible and [[(~fξ0 , . . . ,
~fξr−1

) ∈ ~W ]] = 0, that is,

P (~fξ0 , . . . ,
~fξr−1

) /∈ ~W . QQQ

Now if we set Ḃ = {(~fξ, 11) : ξ ∈ J}, we have

P Ḃ is a countable subset of Ȧ and (x0, . . . , xr−1) /∈ Ẇ whenever x0, . . . , xr−1 are distinct

members of Ȧ \ Ḃ.

As Ẇ is arbitrary,

P Ȧ is a strongly Sierpiński set with cardinal κ̌.

As P is isomorphic to Pκ,

Pκ
there is a strongly Sierpiński set for νλ̌ with cardinal κ̌.

552F Theorem Let κ and λ be infinite cardinals.
(a) If either κ or λ is uncountable,

Pκ
addN (νλ̌) = ω1.

(b) Pω
addN (νω) = (addN (νω))̌ .

proof (a)(i) If λ is uncountable, then

Pκ
λ̌ is uncountable, so addN (νλ̌) = ω1

(5A3Nb, 521Jb/523E).

(ii) If κ is uncountable, then

Pκ
there is a Sierpiński set for νω, so ω1 ≤ addN (νλ̌) ≤ addN (νω) = ω1

(552E, 523B, 537B(a-i)).

(b)(i) Let 〈Hξ〉ξ<addN (νω) be a family of negligible Borel sets in {0, 1}ω such that A =
⋃

ξ<addN (νω)Hξ

is not negligible. Then 552D tells us that

Pω
Ȟξ is negligible for every ξ < (addN (νω))̌ , but Ǎ =

⋃
ξ<(addN (νω))ˇȞξ is not, so

addN (νω) ≤ (addN (νω))̌ .

(ii) ??? If

¬ Pω
addN (νω) ≥ (addN (νω))̌ ,

then there are an a ∈ B+
κ and a θ < addN (νω) such that

a Pω
addN (νω) = θ̌.

Now there is a family 〈Ẇξ〉ξ<θ of Pκ-names such that

a Pω
Ẇξ ∈ N (νω) ∀ ξ < θ̌,

⋃
ξ<θ̌ Ẇξ /∈ N (νω).

By 551J, there is for each ξ < θ a Wξ ∈ Tω⊗̂Baω such that
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a Pω
Ẇξ ⊆ ~Wξ

and all the vertical sections of every Wξ are negligible. But this means that Wξ is negligible for the product
measure νω × νω. Because

θ < addN (νω) = addN (νω × νω),
⋃

ξ<θWξ also is negligible, and there is a negligible W ∈ Tω⊗̂Baω including every Wξ. In this case, 551I(iii)
tells us that

Pω
νω ~W = 0,

so

a Pω

⋃
ξ<θ̌ Ẇξ ⊆

⋃
ξ<θ̌

~Wξ ⊆ ~W is negligible. XXX

Putting this together with (i),

Pω
addN (νω) = (addN (νω))̌ .

552G Theorem Let κ and λ be infinite cardinals.
(a) Pκ

covN (νλ̌) ≥ max(κ, covN (νλ))̌ .
(b) (Pawlikowski 86) Pκ

covN (νω) ≥ b.
(c) (Miller 82) If κ ≥ c then Pκ

covN (νω) = c.1

(d) (Miller 82) Suppose that κ and λ are uncountable. Then

Pκ
covN (νλ̌) ≤ (supδ<κ δ

ω )̌ ,

where each δω is the cardinal power.

proof (a)(i) If κ = ω then of course Pκ
covN (νλ̌) ≥ κ̌. If κ is uncountable, then

Pκ
covN (νκ̌) ≥ κ̌

by 552E and 537B(a-i), so by 523F we have

Pκ
covN (νλ̌) ≥ κ̌.

(ii) ??? If

¬ Pκ
covN (νλ̌) ≥ (covN (νλ))̌

then we have an a ∈ B+
κ , a cardinal θ < covN (νλ) and a family 〈Ẇξ〉ξ<θ of Pκ-names such that

a Pκ
{Ẇξ : ξ < θ̌} is a cover of {0, 1}λ̌ by negligible sets.

By 551J again, we have for each ξ < θ a (νκ × νλ)-negligible set Wξ such that a Pκ
Ẇξ ⊆ ~Wξ. Set

Vξ = {y : y ∈ {0, 1}λ, W−1
ξ [{y}] is not νκ-negligible};

then νλVξ = 0 for every ξ < θ, so there is a y ∈ {0, 1}λ \
⋃

ξ<θ Vξ. In this case, let ey : {0, 1}κ → {0, 1}λ be

the constant function with value y. Then we have a Pκ-name ~ey for a member of {0, 1}λ, and for each ξ < θ

[[~ey ∈ ~Wξ]] = {x : (x, ey(x)) ∈Wξ}
• = W−1

ξ [{y}]• = 0

(551Ea). So

Pκ
~ey /∈ ~Wξ for every ξ < θ̌,

and

a Pκ
~ey ∈ {0, 1}λ̌ \

⋃
ξ<θ̌ Ẇξ. XXX

We conclude that

Pκ
covN (νλ̌) ≥ (covN (νλ))̌ .

1Remember that the final c here is to be interpreted in the forcing language.
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(b)(i) Set S2 =
⋃

n∈N{0, 1}n and let 〈(σn, τn, kn)〉n∈N enumerate S2 × S2 × N with cofinal repetitions.

Let D be the set of those α ∈ NN such that

〈kα(n)〉n∈N is strictly increasing,
#(σα(m)) ≤ α(n) whenever n ∈ N and m < kα(n+1),∑kα(n+1)−1

i=kα(n)
2−#(σα(i))−#(τα(i)) ≤ 4−n for every n ∈ N.

For α ∈ D set

Gα =
⋂

n∈N

⋃
m≥n{(u, y) : u, y ∈ {0, 1}ω, u ⊇ σα(m), y ⊇ τα(m)}.

(ii) For every α ∈ D, Gα is negligible for the product measure on {0, 1}ω × {0, 1}ω. PPP For any n ∈ N,
the measure of Gα is at most

∞∑

m=kα(n)

2−#(σα(m))−#(τα(m)) ≤
∞∑

j=n

kα(j+1)−1∑

m=kα(j)

2−#(σα(m))−#(τα(m))

≤
∞∑

j=n

4−j =
4

3
· 4−n. QQQ

(iii) If G ⊆ {0, 1}ω × {0, 1}ω is negligible, there is an α ∈ D such that G ⊆ Gα. PPP For each i ∈ N,
let Hi ⊇ G be an open set such that (νω × νω)(Hi) ≤ 2−i; we can suppose that Hi is not open-and-closed.
Hi can be expressed as the union of a sequence of open-and-closed sets; it can therefore be expressed as
the union of a disjoint sequence of open-and-closed sets; each of these is expressible as the union of a
disjoint family of sets of the form {u : σ ⊆ x} × {y : τ ⊆ y} where σ, τ ∈ S2; so Hi is expressible as⋃

j∈N{u : σ′
ij ⊆ u} × {y : τ ′ij ⊆ y}, with

∑
j∈N 2−#(σ′

ij)−#(τ ′
ij) ≤ 2−i.

Re-indexing 〈(σ′
ij , τ

′
ij)〉i,j∈N as 〈(σ′′

m, τ
′′
m)〉m∈N, we have

G ⊆
⋂

n∈N

⋃
m≥n{(u, y) : σ′′

m ⊆ u, τ ′′m ⊆ y},

and
∑

m∈N 2−#(σ′′
m)−#(τ ′′

m) ≤
∑∞

i=0 2−i <∞.

Let γ : N → N be a strictly increasing function such that
∑γ(n+1)−1

m=γ(n) 2−#(σ′′
m)−#(τ ′′

m) ≤ 4−n

for every n ∈ N. Now choose 〈α(n)〉n∈N so that

kα(n) = γ(n), σα(n) = σ′′
n, τα(n) = τ ′′n , α(n) ≥ #(σ′′

m) whenever m < γ(n+ 1)

for each n ∈ N. Then α ∈ D and G ⊆ Gα. QQQ

(iv) Define h : NN → NN by setting h(β)(n) = n+
∑n

i=0 β(i) for β ∈ NN and n ∈ N. For β ∈ NN define
fβ : {0, 1}ω → {0, 1}ω by setting fβ(u)(n) = u(h(β)(n)) for β ∈ NN and n ∈ N; note that fβ is continuous.
For α, β ∈ NN say that α ≤∗ β if {n : β(n) < α(n)} is finite.

(v) If α ∈ D, β ∈ NN and α ≤∗ β, then C = {u : u ∈ {0, 1}ω, (u, fβ(u)) ∈ Gα} is νω-negligible. PPP Let
n0 be such that α(n) ≤ β(n) for n ≥ n0. C is just

⋂
n∈N

⋃
m≥n Cm where

Cm = {u : σα(m) ⊆ u, τα(m) ⊆ fβ(u)}

for each m. We know that 〈kα(j)〉j∈N is strictly increasing; if m ≥ kα(n0), let j ≥ n0 be such that kα(j) ≤
m < kα(j+1), and set

C ′
m = {u : σα(m) ⊆ u, τα(m)(i) = fβ(u)(i) for j ≤ i < #(τα(m))}

= {u : u(i) = σα(m)(i) for i < #(σα(m)),

u(h(β)(i)) = τα(m)(i) for j ≤ i < #(τα(m))}

⊇ Cm.
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We know that

#(σα(m)) ≤ α(j) ≤ β(j) ≤ h(β)(i)

whenever i ≥ j and that h(β) is a strictly increasing function, so

νωC
′
m ≤ 2−#(σα(m))−#(τα(m))+j .

But this means that

∞∑

m=kα(n0)

νωCm =
∞∑

j=n0

kα(j+1)−1∑

m=kα(j)

νωCm

≤
∞∑

j=n0

2j
kα(j+1)−1∑

m=kα(j)

2−#(σα(m))−#(τα(m)) ≤
∞∑

j=n0

2j · 4−j

is finite, and C is negligible. QQQ

(vi) Let Φ be the set of all continuous functions from {0, 1}κ to {0, 1}ω, and E the set of (νκ × νω)-
negligible sets in Tκ⊗̂Baω; let R be the relation

{(W, g) : W ∈ E , g ∈ Φ, {x : (x, g(x)) ∈W} ∈ N (νκ)}.

Then (E , R,Φ) 4GT (NN,≤∗,NN). PPP For W ∈ E set

VW = {(u, y) : u, y ∈ {0, 1}ω,

{v : v ∈ {0, 1}κ\ω, (u ∪ v, y) ∈W} is not νκ\ω-negligible}.

Then VW is (νω × νω)-negligible; by (iii), we can find φ(W ) ∈ D such that VW ⊆ Gφ(W ). In the other

direction, given β ∈ NN, define ψ(β) ∈ Φ by saying that ψ(β)(x) = fβ(x↾ω) for x ∈ {0, 1}κ.
If W ∈ E and β ∈ NN are such that φ(W ) ≤∗ β, we have νωC = 0 where C = {u : (u, fβ(u)) ∈ Gφ(W )},

by (v). But if C ′ = {x : (x, ψ(β)(x)) ∈W}, and u ∈ {0, 1}ω \ C, then

{v : v ∈ {0, 1}κ\ω, u ∪ v ∈ C ′} = {v : v ∈ {0, 1}κ\ω, (u ∪ v, fβ(u)) ∈W}

must be νκ\ω-negligible, since (u, fβ(u)) /∈ VW . So C ′ is negligible and (W,ψ(β)) ∈ R. As W and β are

arbitrary, (φ, ψ) is a Galois-Tukey connection and (E , R,Φ) 4GT (NN,≤∗,NN). QQQ
Consequently add(E , R,Φ) ≥ b (522C(i), 512Ea, 512Db).

(vii) By 552C, we do not need to distinguish between the interpretations of b in the ordinary universe

and in the forcing language. Suppose that a ∈ B+
κ and that Ȧ is a Pκ-name such that

a Pκ
Ȧ ⊆ N (νω) and #(Ȧ) < b.

Then there are a b ∈ B+
κ , stronger than a, a cardinal θ < b and a family 〈Ẇξ〉ξ<θ of Pκ-names such that

b Pκ
Ȧ = {Ẇξ : ξ < θ̌}.

For each ξ < θ, we have a (νκ × νω)-negligible Wξ ∈ Tκ⊗̂Baω such that b Pκ
Ẇξ ⊆ ~Wξ (551J, as usual).

Each Wξ belongs to E . Since θ < b ≤ add(E , R,Φ), there is a g ∈ Φ such that (Wξ, g) ∈ R for every ξ < θ,
that is, {x : (x, g(x)) ∈Wξ} is negligible for every ξ < θ. But this means that

Pκ
~g ∈ {0, 1}ω \ ~Wξ

for every ξ < θ. So

b Pκ
~g /∈

⋃
Ȧ and Ȧ does not cover {0, 1}ω.

As a and Ȧ are arbitrary,

Pκ
covN (νω) ≥ b.

(c) Write θ for the cardinal power κω, so that Pκ
c = θ̌ (552B). ??? If

¬ Pκ
covN (νω) = c,
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then there must be an a ∈ B+
κ , a cardinal δ < θ and a family 〈Ẇξ〉ξ<δ of Pκ-names such that

a Pκ
{Ẇξ : ξ < δ̌} is a cover of {0, 1}ω by negligible sets.

For each ξ < δ, let Wξ ∈ Tκ⊗̂Baω be a (νκ × νω)-negligible set such that a Pκ
Ẇξ ⊆ ~Wξ; expanding it

if necessary, we can suppose that Wξ is a Baire set. Let Iξ ⊆ κ be a countable set such that (u, y) ∈ Wξ

whenever (x, y) ∈Wξ, u ∈ {0, 1}κ and u↾Iξ = x↾Iξ. Set

W ′
ξ = {(v, y) : (u, y) ∈Wξ, v ∈ {0, 1}κ, {η : η < κ, u(η) 6= v(η)} ∈ [Iξ]<ω}.

Then W ′
ξ is still (νκ × νω)-negligible.

Because κ ≥ c and δ < κω, there is a countably infinite K ⊆ κ such that K ∩ Iξ is finite for every
ξ < δ (5A1Gc). Enumerate K as 〈ηn〉n∈N and define f : {0, 1}κ → {0, 1}ω by setting f(u) = 〈u(ηn)〉n∈N for
u ∈ {0, 1}κ.

For each ξ < κ, {u : (u, f(u)) ∈ Wξ} is νκ-negligible. PPP Set J = κ \K, so that {0, 1}κ can be identified
with {0, 1}J × {0, 1}K . Because Iξ \ J is finite, W ′

ξ is equal to

{(v, y) : (u, y) ∈Wξ, v ∈ {0, 1}κ, {η : η < κ, u(η) 6= v(η)} ∈ [J ∩ Iξ]<ω}

and can be expressed as {(u, y) : (u↾J, y) ∈ V } where V ⊆ {0, 1}J × {0, 1}ω must be negligible. Now the
map u 7→ (u↾J, f(u)) : {0, 1}κ → {0, 1}J ×{0, 1}ω is just a copy of the map u 7→ (u↾J, u↾K), so is a measure
space isomorphism between {0, 1}κ and {0, 1}J × {0, 1}ω, and V ′ = {u : u ∈ {0, 1}κ, (u↾J, f(u)) ∈ V } is
negligible. But observe now that

{u : (u, f(u)) ∈Wξ} ⊆ {u : (u, f(u)) ∈W ′
ξ} = {u : (u↾J, f(u)) ∈ V } = V ′

is negligible. QQQ

Turn now to 551E. In the language there, we have [[~f ∈ ~Wξ]] = 0, that is, Pκ
~f /∈ ~Wξ and a Pκ

~f /∈ Ẇξ.
So

a Pκ

⋃
ξ<δ̌ Ẇξ 6= {0, 1}λ̌,

which is impossible. XXX

So we have the result claimed.

(d)(i) If cfκ > ω then supδ<κ δ
ω = κω; but this means that

Pκ
covNλ̌ ≤ c = (κω )̌ = (supδ<κ δ

ω )̌ .

So henceforth suppose that cfκ = ω. By 523B, we may also assume that λ = ω1.

(ii) Let D be the set of all pairs (ξξξ, y) where ξξξ ∈ ωN
1 is one-to-one and y is a Baire measurable function

from {0, 1}δ to {0, 1}ω for some cardinal δ < κ. Then #(D) = supδ<κ δ
ω (use 5A4G(b-ii)). For (ξξξ, y) ∈ D,

let Wξξξy ⊆ {0, 1}κ × {0, 1}ω1 be the set

{(u, v) : limn→∞
1

n
#({i : i < n, v(ξi) = y(u↾α)(i)}) =

1

2
},

where ξξξ = 〈ξi〉i∈N and dom y = {0, 1}α. Then Wξξξy is a Baire set; also the vertical section Wξξξy[{u}] is
νω1

-conegligible for almost every u ∈ {0, 1}κ. PPP The set

V = {x : x ∈ {0, 1}N, limn→∞
1

n
#({i : i < n, x(i) = y(u↾α)(i)}) =

1

2
}

is conegligible in {0, 1}N, by the strong law of large numbers (273F). But Wξξξy[{u}] is the inverse image of
V under the inverse-measure-preserving map v 7→ 〈v(ξi)〉i∈N, so is νω1

-conegligible. QQQ

(iii) Consequently

Pκ
~Wξξξy is conegligible in {0, 1}ω1

whenever (ξξξ, y) ∈ D (551I(iii)). Now

Pκ

⋂
(ξξξ,y)∈Ď

~Wξξξy is empty.

PPP??? Otherwise, there are an a ∈ B+
κ and a Pκ-name ẋ such that
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a Pκ
ẋ ∈

⋂
(ξξξ,y)∈Ď

~Wξξξy.

Let f : {0, 1}κ → {0, 1}ω1 be a (Tκ,Baω1
)-measurable function such that a Pκ

~f = ẋ (551Cc). Set ǫ = 1
4 ν̄κa

and for each ξ < ω1 let Eξ be an open-and-closed subset of {0, 1}κ such that ν̄κ(Eξ△{u : f(u)(ξ) = 1}) ≤ ǫ.
Let αξ < κ be such that Eξ is determined by coordinates less than αξ. Because cfκ = ω, there is a cardinal
δ < κ such that A = {ξ : αξ ≤ δ} is infinite; let ξξξ = 〈ξi〉i∈N enumerate a subset of A. For each i ∈ N let
Fi ⊆ {0, 1}δ be an open-and-closed set such that Eξi = {u : u↾δ ∈ Fi}. Define y : {0, 1}δ → {0, 1}N by
saying that y(v)(i) = χFi(v) for v ∈ {0, 1}δ and i ∈ N; then y is Baire measurable, so Wξξξy is defined and

a Pκ
~f ∈ ~Wξξξy.

Set H = {u : (u, f(u)) ∈Wξξξy}. Then

a ⊆ [[~f ∈ ~Wξξξy]] = H•

so νκH ≥ ν̄κa = 4ǫ.
But consider the sets

Hi = {u : f(u)(ξi) = y(u↾δ)(i)}

= {0, 1}κ \ ({u : f(u)(ξi) = 1}△{u : y(u↾δ)(i) = 1})

= {0, 1}κ \ (Eξi△{u : f(u)(ξi) = 1})

for i ∈ N. These all have measure at least 1 − ǫ. For n ≥ 1 set

γn = νκ{u : #({i : i < n, u ∈ Hi}) ≤
2n

3
};

then

n(1 − ǫ) ≤
∑

i<n νκHi =
∫

#({i : i < n, u ∈ Hi})νκ(du) ≤
2n

3
γn + n(1 − γn)

and γn ≤ 3ǫ. So

H = {u : lim
n→∞

1

n
#({i : i < n, u ∈ Hi}) =

1

2
}

⊆
⋃

m∈N

⋂

n≥m

{u : #({i : i < n, u ∈ Hi}) ≤
2

3
}

has measure at most 3ǫ; which is impossible. XXXQQQ

(iv) Thus

Pκ

⋂
(ξξξ,y)∈Ď

~Wξξξy is empty and {0, 1}ω1 can be covered by (supδ<κ δ
ω )̌ negligible sets,

which is what we needed to know.

552H Theorem Let κ and λ be infinite cardinals.
(a) Pκ

nonN (νλ̌) ≤ (nonN (νλ))̌ .
(b) If κ ≥ max(λ, ω1) then

Pκ
nonN (νλ̌) = ω1.

(c) (Pawlikowski 86)

Pκ
nonN (νω) ≤ d.

proof (a) Let A ⊆ {0, 1}λ be a non-negligible set of size nonN (νλ). Then 552D tells us that

Pκ
Ǎ is a non-negligible set with cardinal (nonN (νλ))̌ , so nonN (νλ̌) ≤ (nonN (νλ))̌ .

(b) Put 552E and 537Ba together again, as in part (a) of the proof of 552F.

(c) Continue the argument from the end of (b-vi) of the proof of 552G above. We have (E , R,Φ) 4GT

(NN,≤∗,NN), so cov(E , R,Φ) ≤ d (522C(i), 512Ea, 512Da). So there is a family 〈gξ〉ξ<d in Φ such that for
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every W ∈ E there is a ξ < d such that (W, gξ) ∈ R, that is, {x : (x, gξ(x)) ∈ W} is negligible, that is,

Pκ
~gξ /∈ ~W . Now

Pκ
{~gξ : ξ < d} is not negligible.

PPP??? Otherwise, there are an a ∈ B+
κ and a Pκ-name Ẇ such that

a Pκ
Ẇ is a negligible set containing ~gξ for every ξ < d.

By 551J once again, there is a W ∈ E such that a Pκ
Ẇ ⊆ ~W . But now we have a ξ < d such that

Pκ
~gξ /∈ ~W , which is impossible. XXXQQQ So Pκ

nonN (νω) ≤ d.

552I Theorem Let κ and λ be infinite cardinals. Set θ0 = max(cfN (νω), cf[κ]≤ω, cf[λ]≤ω). Then

Pκ
cfN (νλ̌) = θ̌0.

proof (a) Pκ
cfN (νω) ≥ cf[κ̌]≤ω = (cf[κ]≤ω )̌ . PPP If κ = ω this is trivial. Otherwise it follows from 552E,

537B(a-ii) and 5A3Nd. QQQ

(b) Set

θ1 = cfN (νλ) = max(cfN (νω), cf[λ]≤ω)

(523N). Then Pκ
cfN (νλ̌) ≥ θ̌1. PPP??? Otherwise, there are a ∈ Bκ, θ < θ1 and a family 〈Ẇξ〉ξ<θ of

Pκ-names such that

a Pκ
{Ẇξ : ξ < θ̌} is a cofinal family in N (νλ̌).

For each ξ choose a (νκ × νλ)-negligible Wξ ∈ Tκ⊗̂Baλ such that a Pκ
Ẇξ ⊆ ~Wξ. Then

Vξ = {y : y ∈ {0, 1}λ, W−1
ξ [{y}] is not νκ-negligible}

is νλ-negligible. Because θ < cfN (νλ), there is a V ∈ N (νλ) such that V 6⊆ Vξ for every ξ < θ, and
(enlarging V slightly if necessary) we can arrange that V ∈ Baλ.

Set W = {0, 1}κ × V . Then W ∈ Tκ⊗̂Baλ and every vertical section of W is negligible, so 551I tells us
that

Pκ
~W is negligible in {0, 1}λ̌.

Accordingly

a Pκ
there is a ξ < θ̌ such that ~W ⊆ Ẇξ ⊆ ~Wξ,

and there must be a b ∈ Bκ, stronger than a, and a ξ < θ such that b Pκ
~W ⊆ ~Wξ. But now take any point

y of V \ Vξ and consider the constant function ey on {0, 1}κ with value y. Then {x : (x, ey(x)) ∈ W \Wξ}
is conegligible, so 551E tells us that

Pκ
~ey ∈ ~W \ ~Wξ, so ~W 6⊆ ~Wξ,

contrary to the choice of ξ. XXXQQQ

(c) Now

Pκ
cfN (νλ̌) ≥ max(cfN (νω), θ̌1) ≥ max(cf[κ̌]≤ω, θ̌1) = θ̌0.

(d) In the other direction, let µ = νκ × νλ be the product measure on {0, 1}κ × {0, 1}λ. Again by 523N,
cfN (µ) = θ0; let 〈Wξ〉ξ<θ0 be a cofinal family in N (µ) consisting of sets in Tκ⊗̂Baλ. By 551J,

Pκ
{ ~Wξ : ξ < θ̌1} is cofinal with N (νλ̌), so cfN (νλ̌) ≤ θ̌0.

Putting this together with (c),

Pκ
cfN (νλ̌) = θ̌0,

and the proof is complete.
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552J Theorem Let κ and λ be infinite cardinals; set θ0 = shrN (νλ) and let θ1 be the cardinal power
λω. Then

Pκ
θ̌0 ≤ shrN (νλ̌) ≤ θ̌1.

proof (a) ??? Suppose, if possible, that

¬ Pκ
θ̌0 ≤ shrN (νλ̌).

Then there are an a ∈ B+
κ and a cardinal θ′ < θ0 such that

a Pκ
shrN (νλ̌) = θ̌′.

Of course θ′ is infinite. Let A ⊆ {0, 1}λ be such that ν∗λA > 0 but B ∈ N (νλ) for every B ∈ [A]≤θ′

. By
552D,

Pκ
ν∗
λ̌
(Ǎ) > 0.

There must therefore be a Pκ-name Ḃ for a subset of Ǎ with cardinal at most θ̌′ such that

a Pκ
ν∗
λ̌
(Ḃ) > 0.

By 5A3Nc there is a B ⊆ A such that #(B) ≤ max(ω, θ′) = θ′ and

a Pκ
Ḃ ⊆ B̌.

By 552D, in the other direction,

a Pκ
0 < ν∗

λ̌
(Ḃ) ≤ ν∗

λ̌
(B̌) = (ν∗λB)̌

and ν∗λB > 0, contrary to the choice of A. XXX

(b) (In this part of the proof it will be convenient to regard Bκ as the measure algebra of νκ↾Baκ.)

(i) ??? Suppose, if possible, that

¬ Pκ
shrN (νλ̌) ≤ θ̌1.

Then there are an a ∈ B+
κ and a Pκ-name Ȧ such that

a Pκ
Ȧ is a non-negligible subset of {0, 1}λ̌ and every subset of Ȧ with cardinal at most

θ̌1 is negligible.

(ii) Let 〈eξ〉ξ<κ be the standard generating family in Bκ. Choose 〈fξ〉ξ<θ+
1

, 〈Jξ〉ξ<θ+
1

, 〈Kξ〉ξ<θ+
1

,

〈Wξ〉ξ<θ+
1

and 〈Vξ〉ξ<θ+
1

inductively, as follows. Kξ =
⋃

η<ξ Jη. Given that ξ < θ+1 and that, for each η < ξ,

fη : {0, 1}κ → {0, 1}λ is a (Baκ,Baλ)-measurable function such that a Pκ
~fη ∈ Ȧ (where ~fη is the Pκ-name

for a member of {0, 1}λ̌ as defined in 551Cb), then

a Pκ
{~fη : η < ξ̌} is negligible,

so by 551J there is a set Wξ ∈ Baκ⊗̂Baλ, negligible for the product measure on {0, 1}κ ×{0, 1}λ, such that

a Pκ
~fη ∈ ~Wξ for every η < ξ.

Set

Vξ = {(x, y) : x ∈ {0, 1}κ, y ∈ {0, 1}λ,

{t : t ∈ {0, 1}κ\Kξ , ((x↾Kξ) ∪ t, y) ∈Wξ} is not νκ\Kξ
-negligible}.

Then Vξ ∈ Baκ⊗̂Baλ is negligible, so Pκ
~Vξ ∈ N (νλ̌) and a Pκ

Ȧ 6⊆ ~Vξ; let fξ : {0, 1}κ → {0, 1}λ be a

(Baκ,Baλ)-measurable function such that a Pκ
~fξ ∈ Ȧ \ ~Vξ (551Cc). Let Jξ ⊆ κ be a set with cardinal at

most λ such that {x : fξ(x)(ζ) = 1} is determined by coordinates in Jξ for every ζ < λ, and continue.

(iii) If η < ξ < θ+1 then a Pκ
~fη ∈ ~Vξ. PPP As Jη ⊆ Kξ, we have a function g : {0, 1}Kξ → {0, 1}λ such

that fη(x) = g(x↾Kξ) for every x ∈ {0, 1}λ. Now, for any s ∈ {0, 1}Kξ and y ∈ {0, 1}λ, the set

{t : t ∈ {0, 1}κ\Kξ , (s ∪ t, y) ∈Wξ \ Vξ}
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is νκ\Kξ
-negligible, so

E = {(s, t) : (s ∪ t, g(s)) ∈Wξ \ Vξ}

is (νKξ
× νκ\Kξ

)-negligible. (E ∈ BaKξ
⊗̂Baκ\Kξ

because Wξ and Vξ belong to Baκ⊗̂Baλ and g is (BaKξ
,

Baλ)-measurable.) But if we identify {0, 1}Kξ × {0, 1}κ\Kξ with {0, 1}κ, then E becomes {x : (x, fη(x)) ∈
Wξ \ Vξ}. Now

a ⊆ [[~fη ∈ ~Wξ]] = {x : (x, fη(x)) ∈Wξ}
•

(551Ea)

⊆ {x : (x, fη(x)) ∈ Vξ}
• = [[~fη ∈ ~Vξ]],

and a Pκ
~fη ∈ ~Vξ. QQQ

(iv) For each ξ < θ+1 , Vξ factors through {0, 1}Kξ×{0, 1}λ and belongs to Baκ⊗̂Baλ. There is therefore
a countable set Lξ ⊆ Kξ such that Vξ factors through {0, 1}Lξ × {0, 1}λ. Let S be the set {ξ : ξ < θ+1 ,
cf ξ > ω}. Because θ1 ≥ ω1, S is stationary in θ+1 (5A1Ac). For each ξ ∈ S, let g(ξ) < ξ be such that
Lξ ⊆ Kg(ξ). By the Pressing-Down Lemma there is a γ < θ+1 such that S′ = {ξ : ξ ∈ S, g(ξ) = γ} is
stationary.

For ξ ∈ S′, we have a V ′
ξ ∈ BaKγ

⊗̂Baλ such that

Vξ = {(x, y) : x ∈ {0, 1}κ, y ∈ {0, 1}λ, (x↾Kγ , y) ∈ V ′
ξ}.

But #(Kγ) ≤ λ, so

#(BaKγ
⊗̂Baλ) ≤ λω = θ1 < #(S′),

and there are ξ, η ∈ S′ such that η < ξ and V ′
η = V ′

ξ and Vη = Vξ. But also

a Pκ
~fη ∈ ~Vξ \ ~Vη,

so this is impossible. XXX

552K Lemma Let I be a set. Let q : Fn<ω(I; {0, 1}) → [0,∞[ be a function such that q(∅) = 1 and

q(z) = q(z ∪ {(i, 0)}) + q(z ∪ {(i, 1)})

whenever z ∈ Fn<ω(I; {0, 1}) and i ∈ I \ dom z. Then there is a unique Radon measure µ on {0, 1}I such
that

µ{x : z ⊆ x ∈ {0, 1}I} = q(z)

for every z ∈ Fn<ω(I; {0, 1}).

proof (a) For each K ∈ [I]<ω, let µK be the measure on the finite set {0, 1}K defined by saying that
µKA =

∑
z∈A q(z) for every A ⊆ {0, 1}K . For K ⊆ L ∈ [I]<ω set fKL(z) = z↾K for z ∈ {0, 1}L; then

fKL is inverse-measure-preserving for µK and µL. PPP It is enough to consider the case L = K ∪ {i} where
i ∈ I \K. In this case, for A ⊆ {0, 1}K ,

µLf
−1[A] =

∑

w∈f−1[A]

q(w) =
∑

z∈A

q(z ∪ {(i, 0)}) + q(z ∪ {(i, 1)})

=
∑

z∈A

q(z) = µKA. QQQ

(b) Let E be the algebra of open-and-closed sets in {0, 1}I , that is, the family {f−1
K [A] : K ∈ [I]<ω,

A ⊆ {0, 1}K}, where fK(x) = x↾K for x ∈ {0, 1}I . Then we can define a functional ν : E → [0, 1] by setting

νf−1
K [A] = µKA whenever K ∈ [I]<ω, A ⊆ {0, 1}K ;

by (a), this is well-defined. By 416Qa, there is a unique Radon measure µ on {0, 1}I extending ν, so that

µ{x : z ⊆ x} = ν{x : z ⊆ x} = µK{z} = q(z)

whenever K ⊆ I is finite and z ∈ {0, 1}K .
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552L Lemma Let θ be a regular infinite cardinal such that the cardinal power δω is less than θ for every
δ < θ, and S ⊆ θ a stationary set such that cf ξ > ω for every ξ ∈ S. Let 〈Mξ〉ξ<θ be a family of sets with
cardinal less than θ, and I a set with cardinal less than θ; suppose that for each i ∈ I we are given a function
fi with domain S such that fi(ξ) ∈

⋃
η<ξMη for every ξ ∈ S. Then there is an ω1-complete filter F on θ,

containing every closed cofinal subset of θ, such that for every i ∈ I there is a D ∈ F such that D ⊆ S and
fi is constant on D.

proof (a) Set M =
⋃

ξ<θMξ, so that #(M) ≤ θ; let 〈xξ〉ξ<θ run over M . Set

F ∗ = {ξ : ξ < θ,
⋃

η<ξMη = {xη : η < ξ}};

then F ∗ is a closed cofinal subset of θ, because θ is regular and uncountable. Set S1 = S ∩ F ∗, so that S1

is stationary. For ξ ∈ S1 and i ∈ I let hξ(i) < ξ be such that fi(ξ) = xhξ(i). For J ∈ [I]≤ω, ξ ∈ S1 set

DξJ = {η : η ∈ S ∩ F ∗, hη↾J = hξ↾J}.

(b) There is a ξ ∈ S1 such that DξJ ∩ F 6= ∅ for every closed cofinal set F ⊆ θ and every J ∈ [I]≤ω.
PPP??? Otherwise, for each ξ ∈ S1 choose Jξ ∈ [I]≤ω and a closed cofinal set Fξ not meeting DξJξ

. Let F
be the diagonal intersection {ξ : ξ < θ, ξ ∈ Fη whenever η ∈ S1 ∩ ξ}, so that F is a closed cofinal set
(4A1B(c-ii)) and S2 = S1 ∩ F is stationary. For ξ ∈ S2 let g(ξ) < ξ be such that hξ[Jξ] ⊆ g(ξ). Then there
is a γ < θ such that S3 = {ξ : ξ ∈ S2, g(ξ) = γ} is stationary, by the Pressing-Down Lemma (4A1Cc). Now
hξ↾Jξ ∈ [I × γ]≤ω for every ξ ∈ S1, and #([I × γ]≤ω) ≤ max(#(I), γ, ω)ω < θ, so there are ξ, η ∈ S3 such
that hξ↾Jξ = hη↾Jη and η < ξ. But in this case we have ξ ∈ Fη ∩DηJη

, which is supposed to be impossible.
XXXQQQ

(c) If now 〈Fn〉n∈N is any sequence of closed cofinal sets in θ, and 〈Jn〉n∈N is any sequence in [I]≤ω,
⋂

n∈NDξJn
∩ Fn = DξJ ∩ F

is non-empty, where J =
⋃

n∈N Jn and F =
⋂

n∈N Fn. So we have an ω1-complete filter F on θ generated by

{DξJ : J ∈ [I]≤ω} ∪ {F : F ⊆ θ is closed and cofinal}.

If i ∈ I then fi is constant on Dξ,{i} ∈ F , so we’re done.

552M Proposition Let κ and λ be infinite cardinals. Then the following are equiveridical:
(i) if A ⊆ P({0, 1}κ) and #(A) ≤ λ then there is an extension of νκ to a measure measuring every

member of A;
(ii) for every function f : {0, 1}κ → {0, 1}(κ+λ)\κ, there is a Baire measure µ on {0, 1}κ+λ such that µ{y :

y ∈ {0, 1}κ+λ, z ⊆ y} = 2−#(K) whenever K ∈ [κ]<ω and z ∈ {0, 1}K , and µ∗{x ∪ f(x) : x ∈ {0, 1}κ} = 1;
(iii) if (X,Σ, µ) is a locally compact (definition: 342Ad) semi-finite measure space with Maharam type

at most κ, A ⊆ PX and #(A) ≤ λ, then there is an extension of µ to a measure measuring every member
of A.

proof (i)⇒(ii) Assume (i). If f : {0, 1}κ → {0, 1}(κ+λ)\κ is a function, set A = {{x : f(x)(ξ) = 1} : κ ≤
ξ < κ + λ}, so that A is a family of subsets of {0, 1}κ and #(A) ≤ λ. Let ν be a measure on {0, 1}κ,
extending νκ and measuring every member of A. Then {x : (x ∪ f(x))(ξ) = 1} ∈ dom ν for every ξ ∈ κ+ λ,
so we have a Baire measure µ on {0, 1}κ+λ defined by saying that µE = ν{x : x ∪ f(x) ∈ E} for Baire sets
E ⊆ {0, 1}κ+λ. If K ∈ [κ]<ω and z ∈ {0, 1}κ, then

µ{y : z ⊆ y} = ν{x : z ⊆ x ∪ f(x)} = ν{x : z ⊆ x} = νκ{x : z ⊆ x} = 2−#(K);

while if E ∈ Baκ+λ and x ∪ f(x) ∈ E for every x ∈ {0, 1}κ, then µE = ν{0, 1}κ = 1, so µ∗{x ∪ f(x) : x ∈
{0, 1}κ} = 1. Thus (ii) is true.

(ii)⇒(i) Assume (ii). Let A be a family of subsets of {0, 1}κ with #(A) ≤ λ. Let 〈Aη〉η<λ run over A∪{∅}.

Define f : {0, 1}κ → {0, 1}(κ+λ)\κ by saying that f(x)(κ + η) = (χAη)(x) whenever η < λ and x ∈ {0, 1}κ.
Let µ be a Baire measure on {0, 1}κ+λ satisfying the conditions of (ii). Set g(x) = x ∪ f(x) for x ∈ {0, 1}κ.
Because g[{0, 1}κ] has full outer measure for µ, we have a measure ν on {0, 1}κ such that νg−1[E] = µE for
every Baire set E ⊆ {0, 1}κ+λ (234F); let ν̂ be the completion of ν. Now Aη = g−1[{y : y(κ + η) = 1}] is
measured by ν and ν̂. Also
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ν̂{x : z ⊆ x} = ν{x : z ⊆ x} = ν{x : z ⊆ g(x)} = µ{y : z ⊆ y} = 2−#(K)

whenever K ∈ [κ]<ω and z ∈ {0, 1}κ, so ν̂ extends νκ (254G) and is an extension of νκ measuring every
member of A.

(i)⇒(iii) Suppose that (i) is true.

(ααα) Let (X,Σ, µ) be a compact probability space of Maharam type at most κ, and A a family of subsets
of X with cardinal at most λ. Then there is a function h : {0, 1}κ → X which is inverse-measure-preserving
for νκ and µ. PPP By 332P, the measure algebra of µ can be embedded into Bκ; by 343B, this embedding can
be realized by an inverse-measure-preserving function from {0, 1}κ to X. QQQ Now C = {h−1[A] : A ∈ A} has
cardinal at most λ, so there is an extension ν of νκ measuring every member of C; and the image measure
νh−1 extends µ and measures every member of A.

(βββ) It follows at once that if (X,Σ, µ) is a compact totally finite measure space with Maharam type at
most κ, and A a family of subsets of X with cardinal at most λ, then µ can be extended to every member
of A. (If µX = 0 this is trivial, and otherwise we can apply (α) to a scalar multiple of µ.)

(γγγ) Now suppose that (X,Σ, µ) is a locally compact semi-finite measure space with Maharam type at
most κ, and A a family of subsets of X with cardinal at most λ. In the measure algebra (A, µ̄) of µ, let D
be a partition of unity consisting of elements of finite measure; for d ∈ D choose Ed ∈ Σ such that E•

d = d.
If G ∈ Σ then

µG = µ̄G• =
∑

d∈D µ̄(d ∩G•) =
∑

d∈D µ(Ed ∩G).

For each d ∈ D, the subspace measure µEd
on Ed is compact and totally finite and has Maharam type at

most κ (put 331Hc and 322Ja together), so by (β) can be extended to a measure µ′
Ed

measuring A∩Ed for
every A ∈ A. Set µ′F =

∑
d∈D µ

′
Ed

(F ∩ Ed) whenever F ⊆ X is such that the sum is defined; then µ′ is a
measure on X, extending µ and measuring every set in A, as required.

(iii)⇒(i) is trivial.

552N Theorem (Carlson 84) Let κ and λ be infinite cardinals such that κ is greater than the cardinal
power λω. Then

Pκ
if A ⊆ P({0, 1}κ̌) and #(A) ≤ λ̌, there is an extension of νκ̌ to a measure measuring

every member of A.

proof (a) Let 〈eξζ〉ξ,ζ<κ be a re-indexing of the standard generating family in Bκ. For J ⊆ κ× κ let CJ be
the closed subalgebra of Bκ generated by {eξζ : (ξ, ζ) ∈ J}. Recall that #(L∞(CJ )) ≤ max(ω,#(J)ω) for
every J (524Ma, 515Mb); we shall also need to know that every element of Bκ belongs to CJ for a smallest
J ⊆ κ× κ, and this J is countable (254Rc, 531Jb).

Set I = (κ+ λ) \ κ, where κ+ λ is the ordinal sum, so that I is disjoint from κ and #(I) = λ. Let ḟ be

a Pκ-name for a function from {0, 1}κ̌ to {0, 1}Ǐ .
For each ξ < κ let ẋξ be a Pκ-name for a member of {0, 1}κ̌ such that [[ẋξ(ζ̌) = 1]] = eξζ for every ζ < κ.

For z ∈ Fn<ω(κ+ λ; {0, 1}) and ξ < κ, set

aξz = [[ž ⊆ ẋξ ∪ ḟ(ẋξ)]]

and let Jξz ⊆ κ× κ be the smallest set such that aξz ∈ CJξz
. Note that

aξz = aξ,z↾I ∩ infζ∈κ∩z−1[{1}] eξζ \ supζ∈κ∩z−1[{0}] eξζ ,

so that

Jξz ⊆ Jξ,z↾I ∪ ({ξ} × dom z).

Set θ = (λω)+ ≤ κ. For ξ ≤ θ let L0(ξ) ⊆ κ be the smallest set such that ξ ⊆ L0(ξ) and Jηw ⊆
L0(ξ) × L0(ξ) for every η < ξ and w ∈ Fn<ω(I; {0, 1}); set L(ξ) = L0(ξ) × L0(ξ). Then #(L(ξ)) ≤
max(ω, λ,#(ξ)) < θ for every ξ < θ, and L(ξ) =

⋃
η<ξ L(η) for limit ξ ≤ θ. Set

D∗ = {ξ : ξ < θ is a limit ordinal, ξ > sup(θ ∩ L0(η)) for every η < ξ};

then D∗ is a closed cofinal subset of θ, and ξ /∈ L0(ξ) for every ξ ∈ D∗. So
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S = {ξ : ξ ∈ D∗, cf(ξ ∩D∗) ≥ ω1}

is stationary in θ.

(b) For J ⊆ κ× κ, let PJ : L1(Bκ) → L1(CJ) ⊆ L1(Bκ) be the conditional expectation operator defined
by saying that PJu ∈ L1(CJ ) and

∫
c
PJu =

∫
c
u whenever c ∈ CJ and u ∈ L1(Bκ) (254R, 365Q2). We need

to know that PJ∩J ′ = PJPJ ′ for all J , J ′ ⊆ κ (254Ra), and that PJ(u× v) = u×PJv whenever u ∈ L1(CJ ),
v ∈ L1(Bκ) and u×v ∈ L1(Bκ) (242L). It follows that if J , J ′, J ′′ ⊆ κ×κ, u ∈ L1(CJ ) and J ∩J ′ = J ∩J ′′,
then

PJ ′(u) = PJ ′PJ(u) = PJ∩J ′(u) = PJ∩J ′′(u) = PJ ′′(u).

If h : κ×κ→ κ×κ is any permutation, then we have a corresponding measure-preserving automorphism
π : Bκ → Bκ defined by saying that πeξζ = eξ′ζ′ if (ξ′, ζ ′) = h(ξ, ζ), and a Banach lattice automorphism
T : L1(Bκ) → L1(Bκ) defined by saying that T (χa) = χπa for a ∈ Bκ (see 365N3); note that T ↾L∞(Bκ)
is multiplicative (compare the formulae in 365Nb and 364Pa).

If J ⊆ κ × κ and u ∈ L1(CJ ), then Tu ∈ L1(Ch[J]). PPP By 314H, Ch[J] = π[CJ ]; now use the fact that
[[Tu > α]] = π[[u > α]] for every α ∈ R. QQQ If h↾J is the identity, then πa = a for every a ∈ CJ and Tv = v
for every v ∈ L∞(CJ ). Consequently PJT = PJ . PPP If u ∈ L1(Bκ) and c ∈ CJ then

∫

c

PJTu =

∫

c

Tu =

∫
Tu× χc =

∫
T−1(Tu× χc)

=

∫
u× T−1χc =

∫
u× χc =

∫

c

u;

as PJTu certainly belongs to L1(CJ), it must be equal to PJu. QQQ

(c) Fix ξ ∈ S and w ∈ Fn<ω(I; {0, 1}) for the moment. Because ξ ∩ D∗ has uncountable cofinality
and Jξw is countable, there is a gw(ξ) ∈ ξ ∩ D∗ such that Jξw ∩ L(ξ) ⊆ L(gw(ξ)) and {η : η ∈ L0(ξ),
(ξ, η) ∈ Jξw} ⊆ L0(gw(ξ)). Let hξw : κ× κ→ κ× κ be the involution defined by saying that

hξw(η, ζ) = (gw(ξ), ζ) if η = ξ,

= (ξ, ζ) if η = gw(ξ),

= (η, ζ) otherwise;

note that

hξw[Jξw] ∩ L(ξ) ⊆ L(gw(ξ)) ∪ ({gw(ξ)} × L0(gw(ξ)) ⊆ L(gw(ξ) + 1),

while hξw is the identity on L(gw(ξ)), since neither ξ nor gw(ξ) belongs to L0(gw(ξ)). Let Tξw : L1(Bκ) →
L1(Bκ) be the corresponding Banach lattice isomorphism defined as in (b) above. Then (b) tells us that

PL(gw(ξ))Tξw = PL(gw(ξ)).

Set

uξw = PL(gw(ξ)+1)Tξw(χaξw) ∈ L∞(CL(gw(ξ)+1)).

(d) Setting M(η) = η × L∞(CL(η)) for η < θ, we see that

#(M(η)) ≤ #(η)ω ≤ λω < θ

whenever η ≥ 2 (see (a) above), while (gw(ξ), uξw) ∈
⋃

η<ξM(η) whenever ξ ∈ S and w ∈ Fn<ω(I; {0, 1}).

Since #(Fn<ω(I; {0, 1})) = λ < θ, 552L tells us that there is an ω1-complete filter F on θ, containing θ \ ζ
for every ζ < θ, such that for every w ∈ Fn<ω(I; {0, 1}) there is a D ∈ F such that D ⊆ S and gw and
ξ 7→ uξw are constant on D.

(e) For z ∈ Fn<ω(κ + λ; {0, 1}) and ξ < θ, set vξz = PL(ξ)(χaξz). Then there is a D ∈ F such that
D ⊆ S and ξ 7→ vξz is constant on D. PPP Set z′ = z↾L0(θ), z′′ = z↾κ \ L0(θ) and w = z↾I, so that

2Formerly 365R.
3Formerly 365O.
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aξz = aξz′ ∩ aξz′′ ∩ aξw. Set m = #(z′′), so that aξz′′ = [[ž′′ ⊆ ẋξ]] has measure 2−m for every ξ. Also
aξz′′ ∈ Cκ×(κ\L0(θ)) is stochastically independent of CL(θ), so PL(θ)(χaξz′′) = 2−mχ1; while aξz′ and aξw
belong to CL(θ), so, using the formulae in (b),

vξz = PL(ξ)(χaξz) = PL(ξ)PL(θ)(χaξz)

= PL(ξ)PL(θ)(χaξz′ × χaξz′′ × χaξw)

= PL(ξ)(χaξz′ × χaξw × PL(θ)(χaξz′′))

= 2−mPL(ξ)(χaξz′ × χaξw).

Let ξ0 < θ be such that dom z′ ⊆ L0(ξ0). By (d), there are D0 ∈ F , ζ < θ and u ∈ L∞(Bκ) such that
D0 ⊆ S and gw(ξ) = ζ and uξw = u for every ξ ∈ D0. For ξ ∈ D0 \ ξ0 take hξw and Tξw as in (c). Then,
writing πξw for the measure-preserving automorphism defined from hξw as in (b),

πξwaξz′ = πξw( inf
z′(η)=1

eξη \ sup
z′(η)=0

eξη) = inf
z′(η)=1

πξweξη \ sup
z′(η)=0

πξweξη

= inf
z′(η)=1

eζη \ sup
z′(η)=0

eζη = aζz′ ;

consequently Tξw(χaξz′) = χaζz′ . Now

PL(ξ)(χaξz′ × χaξw) = PL(ζ)(χaξz′ × χaξw)

(because χaξz′ ×χaξw ∈ L∞(C({ξ}×L0(ξ))∪Jξw
), and ({ξ}×L0(ξ))∪Jξw)∩L(ξ) = Jξw ∩L(ξ) ⊆ L(ζ) ⊆ L(ξ))

= PL(ζ)Tξw(χaξz′ × χaξw)

(see (c) above)

= PL(ζ)(Tξwχaξz′ × Tξwχaξw)

(because Tξw is multiplicative on L∞(Bκ))

= PL(ζ)(χaζz′ × Tξwχaξw)

= PL(ζ)PL(ξ)(χaζz′ × Tξwχaξw)

(because L(ζ) ⊆ L(ξ))

= PL(ζ)(χaζz′ × PL(ξ)Tξwχaξw)

(because aζz′ ∈ C{ζ}×L0(ξ) ⊆ CL(ξ))

= PL(ζ)(χaζz′ × PL(ζ+1)Tξwχaξw)

(because Tξwχaξw ∈ L∞(Chξw[Jξw]) and hξw[Jξw] ∩ L(ξ) ⊆ L(ζ + 1))

= PL(ζ)(χaζz′ × uξw) = PL(ζ)(χaζz′ × u).

Finally, we get

vξz = 2−mPL(ξ)(χaξz′ × χaξw) = 2−mPL(ζ)(χaζz′ × u)

for every ξ ∈ D = D0 \ ξ0, so we have the required constant value. QQQ

(f) For each z ∈ Fn<ω(κ+λ; {0, 1}) set vz = limξ→F vξz, the limit being defined in the strong sense that
{ξ : ξ ∈ S, vξz = vz} belongs to F . Observe that 0 ≤ vz ≤ χ1 and that v∅ = χ1, because aξ∅ = 1 for every
ξ ∈ S. If z ∈ Fn<ω(κ+ λ; {0, 1}) and η ∈ (κ+ λ) \ dom z, then aξ,z∪{(η,0)} and aξ,z∪{(η,1)} are disjoint and
have union aξz, so

vξz = PL(ξ)(χaξz) = PL(ξ)(χaξ,z∪{(η,0)} + χaξ,z∪{(η,1)}) = vξ,z∪{(η,0)} + vξ,z∪{(η,1)}

for every ξ ∈ S, and vz = vz∪{(η,0)} + vz∪{(η,1)}. Let ~vz be the Pκ-name for a real number corresponding to
vz as defined in 5A3L.

(g) We have a Pκ-name µ̇ for a Baire probability measure on {0, 1}κ+λ such that

Pκ
µ̇{x : ž ⊆ x ∈ {0, 1}κ̌+λ̌} = ~vz
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for every z ∈ Fn<ω(κ+ λ; {0, 1}). PPP Start by setting

µ̇0 = {((ž, ~vz), 1Bκ
) : z ∈ Fn<ω(κ+ λ; {0, 1})},

so that µ̇0 is a Pκ-name for a function from Fn<ω(κ̌+ λ̌; {0, 1}) to [0, 1] and

Pκ
µ̇0ž = ~vz

for every z ∈ Fn<ω(κ+ λ; {0, 1}); note that

Pκ
κ̌+ λ̌ = (κ+ λ)̌ and Fn<ω(κ̌+ λ̌; {0, 1}) = (Fn<ω(κ+ λ; {0, 1}))̌ .

Now (f) tells us that

Pκ
µ̇0∅ = 1,

Pκ
µ̇0(z) = µ̇0(z ∪ {(η, 0)}) + µ̇0(z ∪ {(η, 1)})

whenever z ∈ Fn<ω(κ̌+ λ̌; {0, 1}) and η ∈ (κ̌+ λ̌) \ dom z.

By 552K, copied into V Pκ ,

Pκ
there is a Radon measure µ on {0, 1}κ̌+λ̌ such that

µ{x : z ⊆ x} = µ̇0(z) for every z ∈ Fn<ω(κ̌+ λ̌; {0, 1}).

In fact we don’t really want the Radon measure here, but its restriction to the Baire σ-algebra. Let µ̇ be a

Pκ-name for a Baire measure on {0, 1}κ̌+λ̌ such that

Pκ
µ̇{x : ž ⊆ x ∈ {0, 1}κ̌+λ̌} = µ̇0(ž) = ~vz

for every z ∈ Fn<ω(κ+ λ; {0, 1}); this is what we have been looking for. QQQ

(h) I had better check that

Pκ
µ̇{x : ž ⊆ x} = (2−#(z))̌

whenever z ∈ Fn<ω(κ; {0, 1}). PPP If z ∈ Fn<ω(κ; {0, 1}) and ξ ∈ S, then aξz belongs to C{ξ}×κ, so is
stochastically independent of CL(ξ), and

vξz = PL(ξ)(χaξz) = (ν̄κaξz)χ1 = 2−#(z)χ1.

Accordingly vz = 2−#(z)χ1 and

Pκ
µ̇{x : ž ⊆ x} = ~vz = (2−#(z))̌ . QQQ

(i) Finally, we come to the key fact:

Pκ
{ẋξ ∪ ḟ(ẋξ) : ξ < θ̌} has full outer measure for µ̇.

PPP??? Otherwise, there are a non-zero b ∈ Bκ, a rational number q < 1 and a sequence 〈Ċn〉n∈N of Pκ-names

for basic cylinder sets in {0, 1}κ̌+λ̌ such that

b Pκ
ẋξ ∪ ḟ(ẋξ) ∈

⋃
n∈N Ċn

for every ξ < θ, while also

b Pκ

∑∞
n=0 µ̇Ċn ≤ q̌.

Because Bκ is ccc, we can find for each n ∈ N a partition 〈bni〉i∈N of unity in Bκ, and a sequence 〈zni〉i∈N

in Fn<ω(κ+ λ; {0, 1}), such that bni Pκ
Ċn = {x : žni ⊆ x} for each i. Now

[[ẋξ ∪ ḟ(ẋξ) ∈ Ċn]] = supi∈N bni ∩ [[žni ⊆ ẋni ∪ ḟ(ẋξ]] = supi∈N bni ∩ aξ,zni

so we must have

b ⊆ supi,n∈N bni ∩ aξ,zni

for every ξ. At the same time,
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bni Pκ
µ̇Ċn = ~vzni

for each n and i, so µ̇Ċn is represented by
∑

i∈N χbni×vzni
in L∞(Bκ) and min(1,

∑∞
n=0 µ̇Ċn) is represented

by χ1 ∧
∑

n,i∈N χbni × vzni
. Since [[

∑∞
n=0 µ̇Ċn ≤ q̌]] includes b,
∑

n,i∈N χb× χbni × vzni
≤ qχb.

Let J ⊆ κ×κ be a countable set such that b ∩ bni ∈ CJ for every n, i ∈ N. Then, because F is ω1-complete
and contains S \ ζ for every ζ < θ, there is a ξ ∈ S such that

vξzni
= vzni

whenever n, i ∈ N,

J ∩ L(θ) = J ∩ L(ξ), J ∩ ({ξ} × κ) = ∅.

Set L = L(θ) ∪ ({ξ} × κ). If n, i ∈ N, then

∫
χb× χbni × vzni

=

∫
χb× χbni × PL(ξ)χaξ,zni

=

∫
PL(ξ)(χb× χbni × PL(ξ)χaξ,zni

)

=

∫
PL(ξ)(χb× χbni) × PL(ξ)χaξ,zni

=

∫
PL(ξ)(χb× χbni) × χaξ,zni

=

∫
PL(χb× χbni) × χaξ,zni

(because J ∩ L = J ∩ L(ξ))

=

∫
PL(χb× χbni × χaξ,zni

)

(because Jξ,zni
⊆ Jξ,zni↾I ∪ ({ξ} × κ) ⊆ L, so aξ,zni

∈ CL)

=

∫
χb× χbni × χaξ,zni

.

Summing over n and i, we have

ν̄κb ≤
∞∑

n=0

∞∑

i=0

ν̄κ(b ∩ bni ∩ aξ,zni
) =

∞∑

n=0

∞∑

i=0

∫
χb× χbni × χaξ,zni

=

∞∑

n=0

∞∑

i=0

∫
χb× χbni × vzni

≤

∫
qχb = qν̄κb,

which is impossible. XXXQQQ

(j) What all this shows is that

Pκ
for every f : {0, 1}κ̌ → {0, 1}(κ̌+λ̌)\κ̌ there is a Baire measure µ on {0, 1}κ̌+λ̌ such

that µ{y : y ∈ {0, 1}κ̌+λ̌, z ⊆ y} = 2−#(K) whenever K ∈ [κ̌]<ω and z ∈ {0, 1}K , and
µ∗{x ∪ f(x) : x ∈ {0, 1}κ̌} = 1.

By 552M, copied into V Pκ ,

Pκ
if A ⊆ P({0, 1}κ̌) and #(A) ≤ λ̌, there is an extension of νκ̌ to a measure measuring

every member of A,

as required.

552O Proposition Suppose that (X,Σ, µ) is a probability space such that for every countable family A
of subsets of X there is a measure on X extending µ and measuring every member of A.
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(a) If Y is a universally negligible (definition: 439B) second-countable T0 space, then #(Y ) < covN (µ).
(b) covN (µ) > nonN (νω).

proof (a) ??? Otherwise, let 〈Ey〉y∈Y be a cover of X by µ-negligible sets, and f : X → Y a function such
that x ∈ Ef(x) for every x ∈ X. Let U be a countable base for the topology of Y and A = {f−1[U ] : U ∈ U};

let µ̃ be a measure on X extending µ and measuring every member of A. Consider the image measure µ̃f−1

on Y . This measures every member of U so measures every Borel set in Y ; let ν be its restriction to the
Borel σ-algebra of Y . Then ν is a Borel probability measure on Y . Take any y ∈ Y . Because Y has a T0

topology, U must separate the points of Y and {y} is a Borel set; now

ν{y} = µ̃f−1[{y}] ≤ µ̃∗Ey ≤ µ∗Ey = 0.

So ν is zero on singletons and witnesses that Y is not universally negligible. XXX

(b) By Grzegorek’s theorem (439Fc), there is a universally negligible set Y ⊆ [0, 1] with cardinal
nonN (νω). (Recall that the Lebesgue null ideal is isomorphic to N (νω), as noted in 522W(a-i).)

552P Theorem Let κ and λ be infinite cardinals. Then the iterated forcing notion Pκ ∗ Pλ̌ has regular
open algebra isomorphic to Bmax(κ,λ).

Remark Here Pλ̌ represents a standard Pκ-name for random real forcing; see 551O.

proof In Theorem 551Q, take Ω = {0, 1}κ, Σ = Tκ, I = N (νκ) and I = λ. If we identify {0, 1}κ × {0, 1}λ

with {0, 1}κ+λ, where κ+λ is the ordinal sum, then Λ = Σ⊗̂Baλ becomes a σ-algebra intermediate between
Baκ+λ and Tκ+λ, while

J = {W : W ∈ Λ, νλW [{x}] = 0 for νκ-almost every x ∈ {0, 1}κ}

is just Λ ∩N (νκ+λ). It follows at once that the algebra A = Λ/J is isomorphic to Bκ+λ; and 551Q tells us
that RO(Pκ ∗ Pλ̌) is isomorphic to A. Since we are supposing that κ and λ are infinite, Bκ+λ

∼= Bmax(κ,λ)

and we’re done.

552X Basic exercises (a) Let κ be an infinite cardinal. Show that Pκ
κ̌ω = (κω )̌ , where these are

all cardinal powers.

(b) (Miller 82) Suppose that c < ωω. Show that

Pωω
covN (νω1

) = ωω < covN (νω).

(c) Suppose that the continuum hypothesis is true. Show that

Pω2
c is a precaliber of every measurable algebra.

(Hint : 525K.)

(d) Describe Cichoń’s diagram in the forcing universe V Pω2 (i) if we start with c = ω1 (ii) if we start with
m = c = ω2. Locate the shrinking number of Lebesgue measure in each case.

(e) Suppose that the continuum hypothesis is true. Show that

Pω2
ci(P({0, 1}ω) \ N (νω)) = c, so there is a family 〈νξ〉ξ<c of additive functionals on

P([0, 1]) such that supξ<c νξA is the Lebesgue outer measure of A for every A ⊆ [0, 1].

(See Lipecki 09.)

(f) Suppose that the continuum hypothesis is true. Show that there is a sequence 〈An〉n∈N of subsets of
[0, 1] such that there is no measure extending Lebesgue measure which measures every An. (Hint : there is
a sequence 〈fn〉n∈N of functions from ω1 to itself such that {fn(ξ) : n ∈ N} = {η : η ≤ ξ} for every ξ < ω1.)

552Y Further exercises (a) Let κ and λ be infinite cardinals, and µ a Baire measure on {0, 1}λ. (i)

Show that there is a Pκ-name µ̇ for a Baire measure on {0, 1}λ̌ such that Pκ
µ̇{x : ž ⊆ x} = (µ{x : z ⊆ x})̌

for every z ∈ Fn<ω(λ; {0, 1}). (ii) Show that if A ⊆ {0, 1}λ, then Pκ
µ̇∗(Ǎ) = (µ∗A)̌ .
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(b)(i) Show that for any non-zero cardinals κ, λ there are cardinals θcovκλ and θnonκλ such that

Pκ
covN (νλ̌) = θ̌covκλ , nonN (νλ̌) = θ̌nonκλ .

(Hint : if κ is infinite, Bκ is homogeneous.) (ii) Show that θcovκλ increases with κ and decreases with λ, while
θnonκλ decreases with κ and increases with λ. (Hint : 552P.)

552 Notes and comments In any forcing model, all the open questions of ZFC re-present themselves for
our attention. The first and most important question concerns the continuum hypothesis, and in most cases
we can say something useful. So I start with 552B: ‘if you add κ random reals, then the continuum rises
to κω’. Any mnemonic of this kind has to come with footnotes concerning the interpretation of the terms,
because we cannot rely on the formula ‘κω’ meaning the same thing in the universe we start from and the
forcing model we move to. Indeed, in general forcing models, the symbol ‘κ’ has to be watched, since I
normally reserve it for cardinals, and cardinals sometimes collapse; but here, at least, we have a ccc forcing
notion, and cardinals are preserved (5A3Nb). Actually, ‘κω’ also is safe in the present context (552Xa); but
we find this out afterwards.

One of the central properties of random real forcing concerns iteration: if you do it twice, you still have
random real forcing. Of course ‘iterated forcing’, in a vast variety of forms, is an indispensable technique,
and two-stage forcing, as in 552P, is the easiest kind. I do not expect to quote this result very often in this
book, but that is because (for random reals) I am interested as much in the forcing notions themselves, and
the measure algebras which are their regular open algebras, as in the propositions which are true in the
forcing models. So when I see a proof which depends on repeated random real forcing my first impulse is
to examine the relevant properties of measure algebras, and this generally leads to a direct proof in terms
of single-stage forcing. Note the form of Theorem 552P: as in 551Q, it does not claim that the iteration
Pκ ∗ Pλ̌ is isomorphic to Pmax(κ,λ), but only that they have isomorphic regular open algebras, and therefore
lead to the same mathematical worlds (5A3I).

A typical example is in 552J. Random real forcing does not change outer measures (552D). If we think

of Pκ as an iteration Pκ\J ∗ PJ̌ , and we have a Pκ-name Ė for a ‘new’ negligible set, then, thinking in V PJ̌ ,

the set of members of {0, 1}λ̌ contained in Ė will have to be negligible. Back in the ordinary universe, we

shall have a PJ -name for a negligible set containing every member of {0, 1}λ̌ with a PJ -name which belongs

to Ė. In 552J, the idea is that if Ȧ is a set in V Pκ and every small subset of Ȧ is negligible in V Pκ , then at
every stage the set of members of Ȧ which have been named so far must be negligible in V Pκ , just because
there are not very many names yet available, and therefore is also negligible in the intermediate universe
of the forcing notion PKξ

. This must be witnessed by a countable structure in the intermediate universe,
and the Pressing-Down Lemma tells us that there is a stationary set of levels for which the same countable
structure will serve; it follows easily that we have a name in V Pκ for a negligible set including Ȧ. I invite
you to seek out the elements of the formal exposition in 552J which correspond to this sketch.

552E can also be approached as a result about iterated random real forcing. Here, Ȧ is just the set of
‘random reals’ ẋξ built directly from the regular open algebra Bκ. To see that this is a Sierpiński set, we

need to look at a negligible set. A negligible set in V Pκ is included in one which has a name Ċ in V PJ for
some countable J ⊆ κ. Thinking in V PJ , all but countably many of the ẋξ are still random, because they

are the ‘random reals’ of V Pκ\J , and therefore do not belong to Ċ. The proof of 552E is no more than a
formal elaboration of this idea, with the extra technical device necessary to reach ‘strongly Sierpiński’.

In 552C all we need to know is that Pκ is weakly σ-distributive, and the key fact is that for every name
ḟ for a member of NN there is an h in the ordinary universe such that Pκ

ḟ ≤∗ ȟ; this is why such partial
orders are sometimes called ‘ωω-bounding’. The rest of the argument is based on the same ideas as part (d)
of the proof of 5A3N.

In 552F-552J I list the results known to me about the additivity, covering number, uniformity, cofinality
and shrinking number of the ideals N (νλ) after random real forcing. Covering number, uniformity and
shrinking number are the difficult ones, and even the most basic case, when λ = ω and we are forcing with
Pω, seems not to have been completely sorted out. 552Gb and 552Hc show that there is room for surprises.
My method throughout is to use the results of §551 to relate N (νλ) in V Pκ to N (νκ × νλ) in the original

universe. Given a Pκ-name Ẇ for a negligible set in {0, 1}λ̌, we have a negligible W ⊆ {0, 1}κ × {0, 1}λ
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such that Pκ
Ẇ ⊆ ~W , and then a negligible V ⊆ {0, 1}λ, corresponding to the non-negligible horizontal

sections of W , such that ({0, 1}λ \ V )̌ is disjoint from ~W and Ẇ in V Pκ .
In 552K-552M I give some lemmas which apparently have nothing to do with forcing. The intention is to

express as much as possible of the argument of Carlson’s theorem 552N as results in ZFC. In this section I
am taking forcing arguments particularly laboriously; but even when you have got to the point where they
seem elementary to you, I believe that it is still worth while minimising the regions in which one has to deal
with more than one model of set theory at a time. In 552M the parts (ii) and (iii) contrast oddly. Part (ii)
is there to serve as a combinatorial form of (i) which will be accessible for the purposes of 552N. Part (iii) is
there to give a notion of the scope of 552N, and in particular to show that in random real models we have
extension theorems for many measures not obviously similar to the basic measures νκ. I have already noted
a similar result in 543G.

In §439 I described a number of examples of probability spaces (X,Σ, µ) with a countable family A ⊆ PX
such that µ has no extension to a measure measuring every member of A. In particular, as observed in
439Xk, Grzegorek’s theorem 439Fc gives us an example of a subspace of [0, 1] for which the subspace measure
fails to be extendable to some countably-generated σ-algebra. These are ZFC examples; we really do need
something like ‘compactness’ in 552M(iii).

Note that Carlson 84 gives a rather sharper form of Theorem 552N, carrying information about the
covering numbers of the measures constructed in V Pκ .

Version of 3.5.14

553 Random reals II

In this section I collect some further properties of random real models which seem less directly connected
with the main topics of this book than those treated in §552. The first concerns strong measure zero or
‘Rothberger’s property’ (534C4) and gives a bound for the sizes of sets with this property. The second
relates perfect sets in V Pκ to negligible Fσ sets in the original universe; it shows that a random real model
can have properties relevant to a question in §531 (553F). Following these, I discuss properties of ultrafilters
and partially ordered sets which are not obviously connected with measure theory, but where the arguments
needed to establish the truth of sentences in V Pκ involve interesting properties of measure algebras (553G-
553M). I conclude with notes on medial limits (553N) and universally measurable sets (553O).

553A Notation I repeat some formulae from 552A. For any set I, νI will be the usual measure on {0, 1}I ,
TI its domain, N (νI) its null ideal and (BI , ν̄I) its measure algebra. BaI will be the Baire σ-algebra of
{0, 1}I . For a cardinal κ, Pκ will be the forcing notion B+

κ , active downwards.

553B Lemma If A ∈ Rbg({0, 1}N), then for any f : N → N there is a sequence 〈zn〉n∈N such that
zn ∈ {0, 1}f(n) for each n and A ⊆

⋂
n∈N

⋃
m≥n{x : zm ⊆ x ∈ {0, 1}N}.

proof By 534Eb5, A has strong measure zero with respect to the metric ρ on {0, 1}N defined by saying that

ρ(x, y) = 2−n if x↾n = y↾n and x(n) 6= y(n).

So for each n ∈ N we can find a sequence 〈Ani〉i∈N of subsets of {0, 1}N such that A ⊆
⋃

i∈NAni and

diamAni ≤ 2−f(2n(2i+1)) for each i. Take xni ∈ Ani if Ani is non-empty, any member of {0, 1}N otherwise,
and set zm = xni↾f(2n(2i+1)) ifm = 2n(2i+1); take z0 to be any member of {0, 1}f(0). Then zm ∈ {0, 1}f(m)

for every m, and if n ∈ N then

A ⊆
⋃

i∈N

Ani ⊆
⋃

i∈N

{x : ρ(x, xni) ≤ 2−f(2n(2i+1))}

=
⋃

i∈N

{x : x ⊇ z2n(2i+1)} ⊆
⋃

m≥n

{x : x ⊇ zm},

as required.

c© 2005 D. H. Fremlin
4Formerly 534C, 534E.
5Formerly 534Fd.
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553C Proposition Let κ be any cardinal. Then

Pκ
#(A) ≤ č for every A ∈ Rbg({0, 1}N).

proof (See Bartoszyński & Judah 95, 8.2.11.)

(a) Let Ȧ be a Pκ-name for a member of Rbg({0, 1}N). Take any f ∈ NN. Applying 553B in the forcing
language, we must have

Pκ
there is a sequence 〈zn〉n∈N such that zn ∈ {0, 1}f̌(n) for every n ∈ N and Ȧ ⊆⋂
n∈N

⋃
m≥n{x : x ⊇ zn}.

Let 〈żf (n)〉n∈N be a sequence of Pκ-names such that

Pκ
żf (n) ∈ {0, 1}f̌(n) for every n ∈ N,

Pκ
Ȧ ⊆

⋂
n∈N

⋃
m≥n{x : x ⊇ żf (n)}.

(b) Let 〈eξ〉ξ<κ be the standard generating family in Bκ (525A). Let J ⊆ κ be a set with cardinal at
most c such that [[żf (n) = ž]] belongs to the closed subalgebra CJ generated by {eξ : ξ ∈ J} for every f ∈ NN

and z ∈
⋃

n∈N{0, 1}f(n). Let PJ : L∞(Bκ) → L∞(CJ ) be the conditional expectation operator (365Q6).

Observe that CJ and CN
J have cardinal at most cω = c. So we have a family 〈ẏη〉η<c of Pκ-names for

members of {0, 1}N such that whenever 〈dn〉n∈N is a sequence in CJ there is an η < c such that [[ẏη(ň) = 1]] =
dn for every n ∈ N.

(c) Let ẋ be a Pκ-name for a member of {0, 1}N, and suppose that a = [[ẋ ∈ Ȧ]] is non-zero. For
z ∈

⋃
n∈N{0, 1}n set bz = [[ẋ ⊇ ž]]. For m, n ∈ N, set

cnm = supz∈{0,1}m [[PJ (χ(a ∩ bz)) > 2−n]] ∈ CJ .

Note that if k ≤ m and z ∈ {0, 1}m then bz ⊆ bz↾k, so

[[PJ(χ(a ∩ bz)) > 2−n]] ⊆ [[PJ (χ(a ∩ bz↾k)) > 2−n]],

and cnm ⊆ cnk; set cn = infm∈N cnm. ??? Suppose, if possible, that cn = 0 for every n. Let f ∈ NN be such
that

∑∞
n=0 ν̄κcn,f(n) < ν̄κa, and set

d = supn∈N(supz∈{0,1}f(n) [[PJ (χ(a ∩ bz)) > 2−n]]) ∈ CJ .

Then ν̄κd < ν̄κa, so a \ d 6= 0; while

ν̄κ((a \ d) ∩ [[ẋ ⊇ żf (n)]]) =
∑

z∈{0,1}f(n)

ν̄κ(a ∩ bz ∩ [[żf (n) = ž]] \ d)

(because Pκ
żf (n) ∈ {0, 1}f(n)ˇ)

=
∑

z∈{0,1}f(n)

∫

[[żf (n)=ž]]\d

PJ(χ(a ∩ bz))

≤ 2−n
∑

z∈{0,1}f(n)

ν̄κ[[żf (n) = ž]]

(because d includes [[PJ(χ(a ∩ bz)) > 2−n]] for every z ∈ {0, 1}f(n))

= 2−n

for every n. Consequently

(a \ d) ∩ infn∈N supm≥n [[ẋ ⊇ żf (m)]] = 0,

that is,

a \ d Pκ
ẋ ⊇ żf (n) for only finitely many n.

6Formerly 365R.
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But this implies that

a \ d Pκ
ẋ /∈ Ȧ,

contrary to hypothesis. XXX

(d) Continuing from (c), we find that there are an a′ ∈ B+
κ , stronger than a, and an η < c such that

a′ Pκ
ẋ = ẏη.

PPP Let n ∈ N be such that cn, as defined in (c), is non-zero. For m ∈ N and w ∈ {0, 1}m, set

dw = infk≥m supz∈{0,1}k,z⊇w [[PJ(χ(a ∩ bz)) > 2−n]] ∈ CJ .

Then

supw∈{0,1}m dw = infk≥m supz∈{0,1}k [[PJ(χ(a ∩ bz)) > 2−n]] = cn

because

〈supz∈{0,1}k,z⊇w [[PJ(χ(a ∩ bz)) > 2−n]]〉k≥m

is non-increasing for each w. In particular, d∅ = cn. Also dw = dw∪{(m,0)} ∪ dw∪{(m,1)} for every w ∈ {0, 1}m.
So if we set

d′∅ = 1,

d′w∪{(m,0)} = d′w ∩ dw∪{(m,0)}, d′w∪{(m,1)} = d′w \ dw∪{(m,0)}

for every m ∈ N and w ∈ {0, 1}m, d′w ∈ CJ and dw = d′w ∩ cn for every w, and there must be an η < c such
that

[[ẏη(ň) = 1]] = supw∈{0,1}n+1,w(n)=1 d
′
w

for every n ∈ N, in which case

[[w̌ ⊆ ẏη]] = d′w for every w ∈
⋃

n∈N{0, 1}n.

If m ∈ N, then

ν̄κ(a ∩ [[ẋ↾m̌ = ẏη↾m̌]]) =
∑

w∈{0,1}m

ν̄κ(a ∩ bw ∩ d′w)

=
∑

w∈{0,1}m

∫

d′
w

PJ(χ(a ∩ bw)) ≥
∑

w∈{0,1}m

2−nν̄κ(cn ∩ d′w)

(because cn ∩ d′w = dw ⊆ [[PJ (χ(a ∩ bw)) > 2−n]] for every w)

= 2−nν̄κcn.

So if we set a′ = a ∩ [[ẋ = ẏη]], then

ν̄κa
′ = ν̄κ( inf

m∈N
a ∩ [[ẋ↾m̌ = ẏη↾m̌]])

= inf
m∈N

ν̄κ(a ∩ [[ẋ↾m̌ = ẏη↾m̌]]) ≥ 2−nν̄κcn > 0,

and a′ 6= 0, while a′ ⊆ a and a′ Pκ
ẋ = ẏη. So we have a suitable pair a′, η. QQQ

(e) Putting (c) and (d) together, we see that for any name ẋ for a member of {0, 1}N,

[[ẋ ∈ Ȧ]] ⊆ supη<c [[ẋ = ẏη]].

But this means that

Pκ
Ȧ ⊆ {ẏη : η < č}

and

Pκ
#(Ȧ) ≤ č.
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553D Remark If κ > c then

Pκ
for any countable family of subsets of {0, 1}ω there is an extension of νω measuring

every member of the family

(552N). By 552Oa and 552Gc we see that in this case

Pκ
any universally negligible subset of {0, 1}ω has cardinal less than č.

The proposition here tells us that

Pκ
any subset of {0, 1}ω with strong measure zero has cardinal at most č

without restriction on κ.

553E Proposition Let κ and λ be infinite cardinals, and K̇ a Pκ-name such that

Pκ
K̇ is a compact subset of {0, 1}λ̌ which is not scattered.

Then there is a negligible Fσ set G ⊆ {0, 1}λ such that

Pκ
K̇ ∩ G̃ 6= ∅

where G̃ = ({0, 1}κ ×G)~ is the Pκ-name for an Fσ set in {0, 1}λ̌ corresponding to G as described in 551K.

proof (a) If a ∈ B+
κ , Ȧ is a Pκ-name such that

a Pκ
Ȧ is an infinite subset of {0, 1}λ̌

and ǫ > 0, then there is an open-and-closed subset H of {0, 1}λ such that νλH ≤ ǫ and ν̄κ(a ∩ [[Ȧ ∩ H̃ = ∅]]) ≤
ǫ. PPP We may suppose that ǫ = 2−k for some k ∈ N. Let 〈ẏi〉i∈N be a sequence of Pκ-names such that

a Pκ
ẏi ∈ Ȧ and ẏi 6= ẏj

whenever i, j ∈ N are distinct. Let N ∈ N be so large that e−ǫN < 1
2ǫ. Then

a Pκ
there is a finite J ⊆ λ̌ such that ẏi↾J 6= ẏj↾J whenever i < j < Ň ,

that is,

supJ∈[λ]<ω [[ẏi↾J̌ 6= ẏj↾J̌ whenever i < j < Ň ]] ⊇ a,

and there is a finite set J ⊆ λ such that

ν̄κ(a \ [[ẏi↾J̌ 6= ẏj↾J̌ whenever i < j < Ň ]]) ≤
1

2
ǫ;

enlarging J if necessary, we can suppose that m = #(J) is such that m ≥ k and (1 −
N

2m
)2

mǫ ≤
1

2
ǫ.

For each i ∈ N, let fi : {0, 1}κ → {0, 1}λ be a (Tκ,Baλ)-measurable function such that (in the language

of 551Cc) a Pκ
ẏi = ~fi . Set

E = {x : fi(x)↾J 6= fj(x)↾J whenever i < j < N};

then

E• = [[ẏi↾J̌ 6= ẏj↾J̌ whenever i < j < Ň ]],

and ν̄κ(a \E•) ≤ 1
2ǫ.

Let L be a subset of {0, 1}J obtained by a stochastic process in which we pick 2m−k = 2mǫ points
independently with the uniform distribution, and take L to be the set of these points. For any x ∈ E,

Pr(fi(x)↾J /∈ L ∀ i < N) = Pr((L ∩ {fi(x)↾J : i < N}) = ∅) = (1 −
N

2m
)2

mǫ ≤
1

2
ǫ.

By Fubini’s theorem, there must be an L ⊆ {0, 1}J such that #(L) ≤ 2mǫ and

νκ{x : x ∈ E, fi(x)↾J /∈ L ∀ i < N} ≤
1

2
ǫνκE ≤

1

2
ǫ.

Set H = {y : y ∈ {0, 1}λ, y↾J ∈ L} and b = [[Ȧ ∩ H̃ = ∅]]. Then H is open-and-closed, νλH = 2−m#(L) ≤
ǫ and
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a ∩ b ⊆ a ∩ [[ẏi /∈ H̃ ∀ i < Ň ]] = a ∩ {x : fi(x) /∈ H ∀ i < N}•

= a ∩ {x : fi(x)↾J /∈ L for every i < N}•

⊆ (a \E•) ∪ {x : x ∈ E, fi(x)↾J /∈ L for every i < N}•

has measure at most ǫ, as required. QQQ

(b) Because every non-scattered space has a non-empty closed subset with no isolated points, we may
suppose that

Pκ
K̇ has no isolated points.

For any ǫ ∈ ]0, 1[ there is a compact negligible set F ⊆ {0, 1}λ such that

ν̄κ[[K̇ ∩ F̃ 6= ∅]] ≥ 1 − ǫ.

PPP Choose 〈an〉n∈N, 〈Hn〉n∈N and 〈K̇n〉n∈N inductively, as follows. a0 = 1 and K̇0 = K̇. Given that

an Pκ
K̇n is a non-empty compact set in {0, 1}λ̌ without isolated points

and ν̄κan > 1 − ǫ, let Hn ⊆ {0, 1}λ be an open-and-closed set of measure at most 2−n such that an+1 =

an ∩ [[K̇n ∩ H̃n 6= ∅]] has measure greater than 1 − ǫ. Now let K̇n+1 be a Pκ-name such that Pκ
K̇n+1 =

K̇n ∩ H̃n. Because

an+1 Pκ
K̇n is a compact set without isolated points, H̃n is open-and-closed and K̇n∩H̃n 6=

∅, so K̇n+1 is a non-empty compact set without isolated points,

the induction continues.
At the end of the induction, set F =

⋂
n∈NHn and a = infn∈N an. Then ν̄κa ≥ 1 − ǫ and Pκ

F̃ =⋂
n∈N H̃n, so

a Pκ
F̃ ∩ K̇ is the intersection of the non-increasing sequence 〈K̇n〉n∈N of non-empty

compact sets, so is not empty.

So

ν̄κ[[F̃ ∩ K̇ 6= ∅]] ≥ ν̄κa ≥ 1 − ǫ.

Also, of course, νκF = 0, as required. QQQ

(c) Finally, let 〈Fn〉n∈N be a sequence of compact negligible sets such that

ν̄κ[[K̇ ∩ F̃n 6= ∅]] ≥ 1 − 2−n

for every n, and set G =
⋃

n∈N Fn; this works.

553F Corollary Suppose that cfN (νω) = ω1 and that κ ≥ ω2 is a cardinal. Then

Pκ
ω1 is a precaliber of every measurable algebra but does not have Haydon’s property.

proof By 523N,

cfN (νω1
) = max(cfN (νω), cf[ω1]≤ω) = ω1;

let 〈Hξ〉ξ<ω1
be a cofinal family in N (νω1

). Now 552Ga and 525J tell us that

Pκ
covN (νλ) > ω1 for every infinite cardinal λ, so ω1 is a precaliber of every measurable

algebra.

Next, defining H̃ξ from Hξ as in 551K and 553E,

Pκ
H̃ξ ∈ N (νω1

) for every ξ < ω1

(551Kd; remember that in this context we do not need to distinguish between ω1 and ω̌1, by 5A3Nb), while

Pκ
if K ⊆ {0, 1}ω1 is a non-scattered compact set then K meets

⋃
ξ<ω1

H̃ξ.

PPP Suppose that a ∈ B+
κ and K̇ is a Pκ-name such that

a Pκ
K̇ ⊆ {0, 1}ω1 is a non-scattered compact set.
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If a = 1 set K̇ ′ = K̇; otherwise let K̇ ′ be a Pκ-name such that

a Pκ
K̇ ′ = K̇, 1 \ a Pκ

K̇ ′ = {0, 1}ω1 .

By 553E, there is a negligible set G ⊆ {0, 1}ω1 such that Pκ
K̇ ′ ∩ G̃ 6= ∅. Now there is a ξ < ω1 such that

G ⊆ Hξ, so that

a Pκ
K̇ ∩ H̃ξ ⊇ K̇ ′ ∩ G̃ 6= ∅. QQQ

By 531Vb,

Pκ
ω1 does not have Haydon’s property.

553G Lemma Let (A, µ̄) be a probability algebra, C a subalgebra of A, and 〈en〉n∈N a sequence in A

stochastically independent of each other and of C. Let I ⊆ A be a finite set and CI the subalgebra of A

generated by C ∪ I. Then for every ǫ > 0 there is an n0 ∈ N such that |µ̄(b ∩ en) − µ̄b · µ̄en| ≤ ǫµ̄b whenever
b ∈ CI and n ≥ n0.

proof (a) The first step is to show that if u ∈ L1(A, µ̄) then

for every ǫ > 0 there is an n0 ∈ N such that |
∫
b∩en

u − µ̄en ·
∫
b
u| ≤ ǫ

∫
|u| whenever b ∈ C and

n ≥ n0.

PPP Consider the set U of those u ∈ L1(A, µ̄) for which this true. This is a linear subspace of L1(A, µ̄). Also it
is ‖ ‖1-closed, because if

∫
|v−u| ≤ 1

3

∫
|u| and |

∫
b∩en

v−µ̄en·
∫
b
v| ≤ 1

4ǫ
∫
|v| then |

∫
b∩en

u−µ̄en·
∫
b
u| ≤ ǫ

∫
|u|.

If we take Dm to be the subalgebra of A generated by C ∪ {en : n ≤ m}, then µ̄(a ∩ b ∩ en) = µ̄(a ∩ b) · µ̄en
whenever a ∈ Dm, b ∈ C and n ≥ m, so χa ∈ U for every a ∈ Dm. Consequently χa ∈ U for every a ∈ D,
where D is the metric closure of

⋃
m∈N Dm in A. Identifying L1(D, µ̄↾D) with the closed linear subspace of

L1(A, µ̄) generated by {χa : a ∈ D} (365Q, 365F), we see that U ⊇ L1(D, µ̄↾D). Now suppose that u is any
member of L1(A, µ̄). Then we have a conditional expectation Pu of u in L1(D, µ̄↾D) (365Q), and

|
∫
b∩en

u− µ̄b ·
∫
b
u| = |

∫
b∩en

Pu− µ̄en ·
∫
b
Pu|

for every b ∈ C and n ∈ N, while |Pu| ≤ P |u|, so u ∈ U because Pu ∈ U . QQQ

(b) I show now, by induction on #(I), that if a ∈ A then

for every ǫ > 0 there is an n0 ∈ N such that |µ̄(a ∩ b ∩ en)− µ̄(a ∩ b) · µ̄en| ≤ ǫµa whenever b ∈ CI

and n ≥ n0.

PPP If I is empty, we can apply (a) with u = χa. For the inductive step to #(I) = k+ 1, express I as J ∪ {c}
where #(J) = k. Take a ∈ A. Let n0 ∈ N be such that

|µ̄((a ∩ c) ∩ b ∩ en) − µ̄((a ∩ c) ∩ b) · µ̄en| ≤ ǫµ(a ∩ c),

|µ̄((a \ c) ∩ b ∩ en) − µ̄((a \ c) ∩ b) · µ̄en| ≤ ǫµ(a \ c)

whenever b ∈ CJ and n ≥ n0. Now take b ∈ CI and n ≥ n0. There are b′, b′′ ∈ CJ such that b =
(b′ ∩ c) ∪ (b′′ \ c), so that

|µ̄(a ∩ b ∩ en) − µ̄(a ∩ b) · µ̄en| = |µ̄((a ∩ c) ∩ b′ ∩ en) − µ̄((a ∩ c) ∩ b′) · µ̄en

+ µ̄((a \ c) ∩ b′′ ∩ en) − µ̄((a \ c) ∩ b′′) · µ̄en|

≤ |µ̄((a ∩ c) ∩ b′ ∩ en) − µ̄((a ∩ c) ∩ b′) · µ̄en|

+ |µ̄((a \ c) ∩ b′′ ∩ en) − µ̄((a \ c) ∩ b′′) · µ̄en|

≤ ǫµ̄(a ∩ c) + ǫµ̄(a \ c) = ǫµ̄a.

Thus the induction proceeds. QQQ

(c) Now the result as stated is just the case a = 1 in (b).

553H Theorem If κ > c, then

Pκ
there are no rapid p-point ultrafilters, therefore no Ramsey filters on N.
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proof (See Jech 78, §38.)

(a) Let 〈eξn〉ξ<κ,n∈N be a re-indexing of the standard generating family in Bκ. Let Ḟ be a Pκ-name for

an ultrafilter, and set â = [[Ḟ is a rapid p-point ultrafilter]]. ??? Suppose, if possible, that â 6= 0. For each
f ∈ NN,

â Pκ
there is a D ∈ Ḟ such that #(D ∩ f̌(k)) ≤ k for every k

(538Ad); let Ḋf be a Pκ-name for a subset of N such that

â Pκ
Ḋf ∈ Ḟ

and

â Pκ
#(Ḋf ∩ f(k)̌ ) ≤ ǩ

for every k ∈ N. Let J ⊆ κ be a set with cardinal at most c such that [[ň ∈ Ḋf ]] belongs to the closed
subalgebra C generated by {eξi : ξ ∈ J , i ∈ N} for every f ∈ NN and every n ∈ N, and â also belongs to C.

(b) Let ζ < κ be such that the ordinal sum ζ + k does not belong to J for any k ∈ N. For each k ∈ N

let Ċk be a Pκ-name for a subset of N such that [[ň ∈ Ċk]] = eζ+k,n for every n ∈ N. Set ck = [[Ċk /∈ Ḟ ]] and

let Ȧk be a Pκ-name for a subset of N such that

ck Pκ
Ȧk = N \ Ċk ∈ Ḟ , 1 \ ck Pκ

Ȧk = Ċk ∈ Ḟ .

Then Pκ
Ȧk ∈ Ḟ for every k, and [[ň ∈ Ȧk]] = ck △ eζ+k,n for every n ∈ N.

(c) For k, n ∈ N set

bkn = [[ň ∈
⋂

i<ǩ Ȧi]] = infi<k [[ň ∈ Ȧi]] = infi<k ci △ eζ+i,n.

Then we have a non-decreasing f : N → N such that ν̄κ(c ∩ bkn) ≤ (2−k+1− 2−2k)ν̄κc whenever c ∈ C, k ∈ N

and n ≥ f(k). PPP Define f inductively, as follows. If k = 0 then (interpreting inf ∅ as 1) we have bkn = 1
for every n so we can take f(0) = 0. For the inductive step to k + 1, let Ck be the closed subalgebra of Bκ

generated by C ∪ {eζ+i,n : i < k, n ∈ N} and Dk the subalgebra generated by Ck ∪ {ci : i ≤ k}. Then Ck

and 〈eζ+k,n〉n∈N are stochastically independent, so Lemma 553G tells us that there is an f(k + 1) ≥ f(k)
such that

|ν̄κ(d ∩ eζ+k,n) −
1

2
ν̄κd| ≤

1

24
· 2−kν̄κd whenever d ∈ Dk and n ≥ f(k + 1).

Take n ≥ f(k + 1) and c ∈ C. Then

ν̄κ(c ∩ bk+1,n) = ν̄κ(c ∩ bkn ∩ (ck △ eζ+k,n))

= ν̄κ(c ∩ bkn ∩ ck) − 2ν̄κ(c ∩ bkn ∩ ck ∩ eζ+k,n) + ν̄κ(c ∩ bkn ∩ eζ+k,n)

≤ 2|ν̄κ(c ∩ bkn ∩ ck ∩ eζ+k,n) −
1

2
ν̄κ(c ∩ bkn ∩ ck)|

+ |ν̄κ(c ∩ bkn ∩ eζ+k,n) −
1

2
ν̄κ(c ∩ bkn)| +

1

2
ν̄κ(c ∩ bkn)

≤
1

12
· 2−kν̄κ(c ∩ bkn ∩ ck) +

1

24
· 2−kν̄κ(c ∩ bkn) +

1

2
ν̄κ(c ∩ bkn)

(because all the elements c ∩ bkn and c ∩ bkn ∩ ck belong to Dk)

≤ (2−k−3 +
1

2
)ν̄κ(c ∩ bkn)

≤ (2−k−3 +
1

2
)(2−k+1 − 2−2k)ν̄κc

(because n ≥ f(k))

≤ (2−k − 2−2k−2)ν̄κc.

So the construction proceeds. QQQ
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(d) Because

â Pκ
Ḟ is a p-point ultrafilter and Ȧk ∈ Ḟ for every k,

there are a Pκ-name Ȧ for a subset of N and a Pκ-name ġ for a function from N to itself such that

â Pκ
Ȧ ∈ Ḟ and Ȧ \ Ȧi ⊆ ġ(k) whenever i < k ∈ N.

Let g (in the ordinary universe) be a non-decreasing function such that f(k) ≤ g(k) and ν̄κ([[ġ(ǩ) > g(k)̌ ]])
≤ 2−k−2ν̄κâ for every k. Set â1 = â ∩ [[ġ ≤ ǧ]]; then ν̄κâ1 ≥ 1

2 ν̄κâ.

(e) Take the function g from (d) and the name Ḋg from (a), and set dn = â ∩ [[ň ∈ Ḋg]] ∈ C for every n.
Then

∑g(k+1)−1
n=g(k) ν̄κ(dn ∩ bkn) ≤ 2−k+1(k + 1)

for every k ∈ N. PPP Set K = g(k + 1) \ g(k). We have

g(k+1)−1∑

n=g(k)

ν̄κ(dn ∩ bkn) =
∑

n∈K

∑

I⊆K

ν̄κ(dn ∩ bkn ∩ [[Ǐ = Ḋg ∩ Ǩ]])

=
∑

I⊆K

∑

n∈I

ν̄κ(dn ∩ bkn ∩ [[Ǐ = Ḋg ∩ Ǩ]])

(because dn ∩ [[Ǐ = Ḋg ∩ Ǩ]] ⊆ [[ň ∈ Ḋg]] ∩ [[Ǐ = Ḋg ∩ Ǩ]] is zero if n /∈ I)

=
∑

I∈[K]≤k+1

∑

n∈I

ν̄κ(dn ∩ bkn ∩ [[Ǐ = Ḋg ∩ Ǩ]])

(because dn ∩ [[Ǐ = Ḋg ∩K]] ⊆ â ∩ [[Ǐ ⊆ Ḋg ∩ g(k + 1)̌ ]] is zero if #(I) > k + 1)

≤ 2−k+1
∑

I∈[K]≤k+1

∑

n∈I

ν̄κ(dn ∩ [[Ǐ = Ḋg ∩ Ǩ]])

(because dn ∩ [[Ǐ = Ḋg ∩ Ǩ]] ∈ C for every n and I, and we are looking only at n ≥ g(k) ≥ f(k))

≤ 2−k+1(k + 1)
∑

I∈[K]≤k+1

ν̄κ[[Ǐ = Ḋg ∩ Ǩ]]

≤ 2−k+1(k + 1). QQQ

(f) As â 6= 0, â1 6= 0. Let m be such that
∑∞

k=m 2−k+1(k + 1) is less than ν̄κâ1; then

â2 = â1 \ supk≥m supg(k)≤n<g(k+1)(dn ∩ bkn)

is non-zero. Let Ḃ be a Pκ-name for a subset of N such that Pκ
Ḃ = Ȧ ∩ Ḋg \ g(m)̌ . Then â Pκ

Ḃ ∈ Ḟ .

But â2 Pκ
Ḃ = ∅. PPP Take any n ∈ N. If n < g(m) then Pκ

n /∈ Ḃ. If k ≥ m and g(k) ≤ n < g(k + 1),
then

â1 Pκ
ġ(ǩ) ≤ g(k)̌ , â Pκ

Ȧ \ Ȧi ⊆ ġ(ǩ) for every i < ǩ,

so

â1 ∩ [[ň ∈ Ḃ]] ⊆ â ∩ [[ň ∈ Ȧ \ ġ(ǩ)]] ⊆ [[ň ∈
⋂

i<ǩ Ȧi]] = bkn.

Also, of course, Pκ
Ḃ ⊆ Ḋg, so â1 ∩ [[ň ∈ Ḃ]] ⊆ dn ∩ bkn is disjoint from â2. But this means that â2 Pκ

ň /∈

Ḃ. As n is arbitrary, â2 Pκ
Ḃ = ∅. QQQ Now

â2 Pκ
∅ ∈ Ḟ ,

which is impossible. XXX

(g) So â = 0, that is,

Pκ
Ḟ is not a rapid p-point ultrafilter.
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As Ḟ is arbitrary,

Pκ
there are no rapid p-point ultrafilters.

(h) Finally, by 538Fa,

Pκ
there are no Ramsey ultrafilters.

553I Lemma Suppose that S ⊆ ω2
1 is a set such that whenever n ∈ N and 〈Iξ〉ξ<ω1

is a family in [ω1]n

such that Iξ ∩ ξ = ∅ for every ξ < ω1, there are ξ < ω1 and η < ξ such that Iξ × Iη ⊆ S. Let P be the set

{I : I ∈ [ω1]<ω, I ∩ ξ ⊆ S[{ξ}] for every ξ ∈ I},

ordered by ⊆. Then P is upwards-ccc.

proof Let 〈Jξ〉ξ<ω1
be any family in P . Then there are distinct ξ, η < ω1 such that Jξ ∪ Jη ∈ P . PPP By

the ∆-system Lemma (4A1Db), there is an uncountable set A0 ⊆ ω1 such that 〈Jξ〉ξ∈A0
is a ∆-system with

root J say; next, there is an n ∈ N such that A1 = {ξ : ξ ∈ A0, #(Jξ \ J) = n} is uncountable. If n = 0
then Jξ ∪ Jη = J belongs to P for any ξ, η ∈ A1 and we can stop. Otherwise, there is an uncountable
A2 ⊆ A1 such that whenever ξ, η ∈ A2 and η < ξ then max Jη < min(Jξ \ J). Re-enumerate 〈Jξ \ J〉ξ∈A2

in increasing order to get a family 〈Iξ〉ξ<ω1
in [ω1]n such that min Iξ ≥ ξ for every ξ. Our hypothesis tells

us that there are η < ξ such that Iξ × Iη ⊆ S. Let ξ′, η′ < ω1 be such that Iξ = Jξ′ \ J and Iη = Jη′ \ J ,
and consider I = J ∪ Iξ ∪ Iη. If α ∈ I and β ∈ I ∩ α,

—– either α, β both belong to Jη′ so (α, β) ∈ S
—– or α, β both belong to Jξ′ so (α, β) ∈ S
—– or α ∈ Iξ and β ∈ Iη so (α, β) ∈ S.

So Jξ′ ∪ Jη′ = I belongs to S. QQQ
Thus P has no uncountable up-antichains and is upwards-ccc.

553J Theorem Let κ be an infinite cardinal. Then

Pκ
there are two upwards-ccc partially ordered sets whose product is not upwards-ccc.

Remark If κ > ω this is immediate from 552E, 537F and 537G. So we have a new result only if κ = ω.

proof (a) Let 〈eξ〉ξ∈κ be the standard generating family in Bκ. For J ⊆ κ let CJ be the closed subalgebra
of Bκ generated by {eξ : ξ ∈ J}. For ξ < ω1 let hξ : ξ → N be an injective function.

(b) Let Ṡ0 be a Pκ-name for a subset of ω2
1 such that

[[(ξ̌, η̌) ∈ Ṡ0]] = ehξ(η) if η < ξ,

= 0 otherwise.

Then

Pκ
whenever n ∈ N and 〈Iξ〉ξ<ω1

is a family in [ω1]n such that Iξ∩ξ = ∅ for every ξ < ω1,

there are ξ < ω1 and η < ξ such that Iξ × Iη ⊆ Ṡ0.

PPP??? Suppose, if possible, otherwise. Then we have an n ∈ N, an a ∈ B+
κ and a family 〈İξ〉ξ<ω1

of Pκ-names
such that

a Pκ
İη ∈ [ω1 \ η]ň and İξ × İη 6⊆ Ṡ0 whenever η < ξ < ω1.

For each ξ < ω1 there are aξ ∈ B+
κ , stronger than a, and Iξ ∈ [ω1 \ ξ]n such that aξ Pκ

İξ = Ǐξ. By
525Tc we can find an uncountable set A0 ⊆ ω1 and an ǫ > 0 such that ν̄κ(aξ ∩ aη) ≥ ǫ whenever ξ, η ∈ A0.
Next, there is an uncountable set A1 ⊆ A0 such that Iη ⊆ ξ whenever ξ ∈ A1 and η ∈ ξ ∩A1; consequently

Iη ∩ Iξ = ∅ whenever ξ, η ∈ A1 are distinct, and ν̄κ[[Ǐξ × Ǐη ⊆ Ṡ0]] = 2−n2

.

Let δ > 0 be such that 2−n2

(ǫ − 2δ) − 2δ > 0. For each ξ ∈ A1 we can find a finite set Jξ ⊆ κ and an
a′ξ ∈ CJξ

such that ν̄κ(aξ △ a′ξ) ≤ δ. Let m ∈ N be such that

A2 = {ξ : ξ ∈ A1, Jξ ∩ ω ⊆ m}
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is uncountable. Let ξ ∈ A2 be such that A2 ∩ ξ is infinite. In this case, 〈hζ [Iη]〉η∈A2∩ξ is disjoint for
each ζ ∈ Iξ, so we have an η ∈ A2 ∩ ξ such that hζ [Iη] ∩ m = ∅ for every ζ ∈ Iξ. It follows that

[[Ǐξ × Ǐη ⊆ Ṡ0]] ∈ Cω\m, while a′ξ ∩ a′η ∈ Cm∪(κ\ω), so

ν̄κ(a′ξ ∩ a′η ∩ [[Ǐξ × Ǐη ⊆ Ṡ0]]) = ν̄κ(a′ξ ∩ a′η) · ν̄κ[[Ǐξ × Ǐη ⊆ Ṡ0]]

= 2−n2

ν̄κ(a′ξ ∩ a′η).

If we set b = aξ ∩ aη ∩ [[Ǐξ × Ǐη ⊆ Ṡ0]],

ν̄κb ≥ 2−n2

ν̄κ(a′ξ ∩ a′η) − 2δ ≥ 2−n2

(ν̄κ(aξ ∩ aη) − 2δ) − 2δ

≥ 2−n2

(ǫ− 2δ) − 2δ > 0.

But now we have b ⊆ a and

b Pκ
İξ × İη = Ǐξ × Ǐη ⊆ Ṡ0,

which is supposed to be impossible. XXXQQQ

(c) Let Ṗ0 be a Pκ-name for a partially ordered set defined from Ṡ0 by the process of 553I, so that for a
finite set I ⊆ ω1

[[Ǐ ∈ Ṗ0]] = infξ,η∈I,η<ξ ehξ(η).

By 553I and (b) above,

Pκ
Ṗ0 is upwards-ccc.

(d) Similarly, if Ṡ1 is a Pκ-name for a subset of ω2
1 such that

[[(ξ̌, η̌) ∈ Ṡ1]] = 1 \ ehξ(η) if η < ξ,

= 0 otherwise,

and Ṗ1 is a Pκ-name for a partially ordered set defined from Ṡ1 by the process of 553I, then

Pκ
Ṗ1 is upwards-ccc.

(The point is just that 〈1 \ eξ〉ξ<κ also is a stochastically independent family of elements of measure 1
2 .) But

now observe that if η < ξ < ω2 then

[[{ξ̌, η̌} ∈ Ṗ0 ∩ Ṗ1]] = [[(ξ̌, η̌) ∈ Ṡ0 ∩ Ṡ1]] = ehξ(η) ∩ (1 \ ehξ(η)) = 0.

So

Pκ
{{{ξ}, {ξ}} : ξ < ω1} is an up-antichain in Ṗ0 × Ṗ1, and Ṗ0 × Ṗ1 is not upwards-ccc.

Thus we have the required example.

553K I extract an elementary step from the proof of the next lemma.

Lemma Let A be a Boolean algebra and ν : A → [0,∞[ a non-negative additive functional. Then
∑n

i=0 νai ≤ ν(supi≤n ai) +
∑

i<j≤n ν(ai ∩ aj)

whenever a0, . . . , an ∈ A.

proof Let d be any atom of the subalgebra of A generated by a0, . . . , an. Suppose that #({i : i ≤ n,
d ⊆ ai}) = m. Then

ν(d ∩ sup
i≤n

ai) +
∑

i<j≤n

ν(d ∩ ai ∩ aj) −
n∑

i=0

ν(d ∩ ai)

= 0 if m ≤ 1,

= 1 +
m(m−1)

2
−m =

1

2
(m− 1)(m− 2) ≥ 0 otherwise.

Summing over d, we have the result.
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553L Lemma Let (A, µ̄) be a probability algebra, I an uncountable set, X a non-empty set and F an
ultrafilter on X. Let 〈aix〉i∈I,x∈X be a family in A such that infi∈I limx→F µ̄aix > 0. Then there are an
uncountable set S ⊆ I and a family 〈bi〉i∈S in A \ {0} such that

bi ∩ bj ⊆ supx∈F aix ∩ ajx

for all i, j ∈ S and F ∈ F .

proof (a) We can suppose that I = ω1. For each ξ < ω1 set uξ = limx→F χaξx, the limit being taken for
the weak topology on L2(A, µ̄) (§366), so that∫

a
uξ = limx→F µ̄(a ∩ aξx)

for every a ∈ A. In particular,
∫
uξ ≥ ǫ, where ǫ = infξ<ω1

limx→F µ̄aξx > 0; set b′ξ = [[uξ >
1
2ǫ]], so that

b′ξ 6= 0.

(b) For ξ, η < ω1 set

cξη = infF∈F supx∈F aξx ∩ aηx.

For K ⊆ ω1 set

dK = infξ∈K b′ξ \ supξ,η∈K are distinct cξη.

If dK 6= 0 then ǫ#(K) < 3. PPP We may suppose that K is finite and not empty; set n = #(K). We have∫
dK
uξ >

1
2ǫµ̄dK for every ξ ∈ K, so

F0 = {x : x ∈ X, µ̄(dK ∩ aξx) ≥ 1
2ǫµ̄dK for every ξ ∈ K}

belongs to F . Let F ∈ F be such that, setting c′ξη = supx∈F aξx ∩ aηx, µ̄(c′ξη \ cξη) ≤
µ̄dK

n2
for all ξ, η ∈ K.

Take any x ∈ F ∩ F0. If ξ, η ∈ K are distinct,

µ̄(dK ∩ aξx ∩ aηx) ≤ µ̄(c′ξη \ cξη) ≤
µ̄dK

n2
,

so

nǫ

2
µ̄dK ≤

∑

ξ∈K

µ̄(dK ∩ aξx) ≤ µ̄dK +
∑

ξ,η∈K,ξ<η

µ̄(dK ∩ aξx ∩ aηx)

(553K)

≤ µ̄dK +
n(n−1)

2
·
µ̄dK

n2
<

3

2
µ̄dK

and nǫ < 3. QQQ

(c) For each infinite ξ < ω1 there is therefore a maximal subset Kξ of ξ such that bξ = dKξ∪{ξ} is non-zero.

Every Kξ is finite, so there is a K ∈ [ω1]<ω such that S = {ξ : ω ≤ ξ < ω1, Kξ = K} is stationary. PPP By
the Pressing-Down Lemma (4A1Cc), there is a ζ < ω1 such that {ξ : ξ < ω1, supKξ = ζ} is stationary. As
[ζ + 1]<ω is countable, there will be a K ⊆ ζ + 1 such that {ξ : Kξ = K} is stationary. QQQ Now suppose that
η, ξ ∈ S and η < ξ. Then

bη ∩ bξ \ cηξ = dKη∪{η} ∩ dKξ∪{ξ} \ cξη = dK∪{η,ξ} = 0

because K ∪ {η} is a subset of ξ properly including Kξ. So we have an appropriate family 〈bξ〉ξ∈S .

553M Proposition (Laver 87) If m > ω1 and κ is any infinite cardinal, then

Pκ
every Aronszajn tree is special, so Souslin’s hypothesis is true.

proof (a) By 5A1E(b-ii) and 5A1E(d-ii), it is enough to show that

Pκ
every Aronszajn tree ordering of ω1 included in the usual ordering is special.
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Let 4̇ be a Pκ-name for an Aronszajn tree ordering of ω1 included in the usual ordering of ω1. For α, β < ω1

set aαβ = [[α̌4̇β̌]]; note that aαα = 1, aαβ = 0 if β < α and aαβ ⊇ aαγ ∩ aβγ whenever α ≤ β ≤ γ < ω1.
If F is an ultrafilter on ω1 containing ω1 \ζ for every ζ < ω1, then limξ→F ν̄κaαξ = 0 for all but countably

many α < ω1. PPP??? Otherwise, there is an ǫ > 0 such that I = {α : α < ω1, limξ→F µ̄aαξ ≥ ǫ} is uncountable.
By 553L, there are an uncountable S ⊆ I and a family 〈bα〉α∈S in A \ {0} such that

bα ∩ bβ ⊆ supξ≥β aαξ ∩ aβξ ⊆ aαβ

whenever α, β ∈ S and α < β. Set c = infα<ω1
supβ∈S\α bβ , so that c 6= 0. Let Ẏ be a Pκ-name for a subset

of ω1 such that [[α̌ ∈ Ẏ ]] = bα for α ∈ S, [[α̌ ∈ Ẏ ]] = 0 for other α. Then

Pκ
α 4̇ β whenever α, β ∈ Ẏ and α < β,

c Pκ
Ẏ is uncountable;

so

c Pκ
Ẏ is an uncountable branch in the Aronszajn tree,

which is impossible. XXXQQQ

(b) Let 〈eξ〉ξ<κ be the standard generating family in Bκ. Choose inductively a non-decreasing family
〈Jα〉α<ω1

of countably infinite subsets of κ such that aβα belongs to the closed subalgebra CJα
of Bκ

generated by {eξ : ξ ∈ Jα} whenever β ≤ α < ω1.
Let P be the partially ordered set of functions f such that

dom f is a finite subset of ω1 × ω,
for every (α, n) ∈ dom f , f(α, n) ∈ CJα

and ν̄κf(α, n) > 1
2 ,

f(α, n) ∩ f(β, n) ∩ aβα = 0 whenever (α, n), (β, n) ∈ dom f and β < α.

Say that f ≤ g if dom f ⊆ dom g and g(α, n) ⊆ f(α, n) for every (α, n) ∈ dom f . Then ≤ is a partial order
on P .
P is upwards-ccc. PPP Let 〈fξ〉ξ<ω1

be a family in P . Let A0 ⊆ ω1 be an uncountable set such that
〈dom fξ〉ξ∈A0

is a ∆-system with root K say; let ǫ > 0, m ∈ N be such that

A1 = {ξ : ξ ∈ A0, #(dom fξ) = m+ #(K),

ν̄κfξ(α, n) ≥
1

2
+ 2ǫ whenever (α, n) ∈ dom fξ}

is uncountable. Let A2 ⊆ A1 be an uncountable set such that µ̄(fη(α, n) △ fξ(α, n)) ≤ ǫ whenever ξ,
η ∈ A2 and (α, n) ∈ K; such a set exists because CJα

is metrically separable for each α. Let A3 ⊆ A2 be an
uncountable set such that β < α whenever η ∈ A3, ξ ∈ A3, η < ξ, (β,m) ∈ dom fη and (α, n) ∈ (dom fξ)\K.

For ξ ∈ A3, enumerate (dom fξ) \K as 〈(αξi, nξi)〉i<m. Let F be an ultrafilter on ω1 containing A3 \ ζ
for every ζ < ω1, and for i < m let Fi be the ultrafilter {F : F ⊆ ω1, {ξ : αξi ∈ F} ∈ F}. By (a), we have
an uncountable A4 ⊆ A3 such that

limξ→Fi
ν̄κaαηj ,ξ = 0

for every i, j < m and every η ∈ A4; that is,

limξ→F ν̄κaαηj ,αξi
= 0

whenever i, j < m and η ∈ A4. But this means that we can find η ∈ A4 and ξ ∈ A3 such that η < ξ and

ν̄κaαηj ,αξi
≤

ǫ

m+1
for all i, j < m. Now consider the function g with domain dom fη ∪ dom fξ such that

g(α, n) = fη(α, n) ∩ fξ(α, n) if (α, n) ∈ K,

= fη(α, n) if (α, n) ∈ dom fη \K,

= fξ(αξi, nξi) \ sup
j<m

aαηj ,αξi
if i < m and (α, n) = (αξi, nξi).

Then g(α, n) ∈ CJα
and ν̄κg(α, n) ≥ 1

2 + ǫ for every (α, n) ∈ dom g. If (α, n) and (β, n) belong to dom g and
β < α, then
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—– if both (β, n) and (α, n) belong to dom fη, then

g(β, n) ∩ g(α, n) ∩ aβα ⊆ fη(β, n) ∩ fη(α, n) ∩ aβα = 0;

—– if both (β, n) and (α, n) belong to dom fξ, then

g(β, n) ∩ g(α, n) ∩ aβα ⊆ fξ(β, n) ∩ fξ(α, n) ∩ aβα = 0;

—– if (β, n) = (αηj , nηj) and (α, n) = (αξi, nξi) then g(α, n) is disjoint from aαηj ,αξi
= aβα so

g(β, n) ∩ g(α, n) ∩ aβα = 0.

So g ∈ P and is an upper bound for fη and fξ. Thus 〈fξ〉ξ<ω1
is not an up-antichain in P ; as 〈fξ〉ξ<ω1

is
arbitrary, P is upwards-ccc. QQQ

(c) For each α < ω1 let Cα be a countable metrically dense subset of {c : c ∈ CJα
, ν̄κc ≤

1
2}. For α < ω1

and c ∈ Cα, set

Qαc = {f : f ∈ P and there is some n ∈ N such that (α, n) ∈ dom f,

c ⊆ f(α, n) and ν̄κf(α, n) =
1

2
+

1

3
ν̄κc}.

Then Qαc is cofinal with P . PPP Because Jα is infinite, CJα
is atomless and there is an a ∈ CJα

such that c ⊆ a
and ν̄κa = 1

2 + 1
3 ν̄κc. Now take n so large that i < n whenever (α, i) ∈ dom f , and set g = f ∪ {((α, n), a)};

then f ≤ g ∈ Qαc. QQQ

(d) Because m > ω1, there is an upwards-directed set R ⊆ P meeting Qαc whenever α < ω1 and c ∈ Cα.

Now, for n ∈ N, let Ȧn be a Pκ-name for a subset of ω1 such that, for every α < ω1,

[[α̌ ∈ Ȧn]] = inf{f(α, n) : f ∈ R, (α, n) ∈ dom f} if (α, n) ∈
⋃

f∈R

dom f,

= 0 otherwise

Then Ȧn is a name for an up-antichain for the tree order 4̇. PPP If β < α < ω1, then either [[β̌ ∈ Ȧn]] = 0 or

[[α̌ ∈ Ȧn]] = 0 or there are f , g ∈ R such that (α, n) ∈ dom f and (β, n) ∈ dom g. In this case, because R is
upwards-directed, there is an h ∈ R such that both (α, n) and (β, n) belong to domh, so that

[[α̌ ∈ Ȧn]] ∩ [[β̌ ∈ Ȧn]] ∩ [[β̌4̇α̌]] ⊆ h(α, n) ∩ h(β, n) ∩ aβα = 0.

Thus

Pκ
if α, β ∈ Ȧn then they are 4̇-incompatible upwards.

As α and β are arbitrary,

Pκ
Ȧn is an up-antichain. QQQ

(e) Finally,

Pκ

⋃
n∈N Ȧn = ω1.

PPP??? Otherwise, there is an α < ω1 such that a = 1 \ supn∈N [[α̌ ∈ Ȧn]] 6= 0. Observe at this point that

[[α̌ ∈ Ȧn]] ∈ CJα
for every n. So a ∈ CJα

. Let a′ ∈ CJα
be such that a′ ⊆ a and 0 < ν̄κa

′ ≤ 1
2 , and let c ∈ Cα

be such that ν̄κ(a′ △ c) ≤ 1
4 ν̄κa

′, so that c 6= 0 and ν̄κ(c \ a′) ≤ 1
3 ν̄κc. Since R meets Qαc, there are n ∈ N,

f ∈ R such that c ⊆ f(α, n) and ν̄κf(α, n) = 1
2 + 1

3 ν̄κc.

If g ∈ P and f ≤ g, then g(α, n) ⊆ f(α, n) and ν̄κg(α, n) > 1
2 , so

ν̄κ(c \ g(α, n)) ≤ ν̄κf(α, n) − ν̄κg(α, n) ≤
1

3
ν̄κc.

Because R is upwards-directed, {g(α, n) : g ∈ R, (α, n) ∈ dom g} is downwards-directed, and

ν̄κ(c \ [[α̌ ∈ Ȧn]]) = sup{ν̄κ(c \ g(α, n)) : g ∈ R, (α, n) ∈ dom g}

= sup{ν̄κ(c \ g(α, n)) : g ∈ R, f ≤ g} ≤
1

3
ν̄κc.
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Accordingly

ν̄κ(a′ ∩ [[α̌ ∈ Ȧn]]) ≥ ν̄κ(c ∩ [[α̌ ∈ Ȧn]]) − ν̄κ(c \ a′) ≥
2

3
ν̄κc−

1

3
ν̄κc > 0;

but a′ ⊆ a is supposed to be disjoint from [[α̌ ∈ Ȧn]]. XXXQQQ

So 〈Ȧn〉n∈N is a name for a sequence of antichains covering ω1, and

Pκ
(ω1, 4̇) is special,

as required.

553N Proposition Suppose that there is a medial limit (definition: 538Q), and that κ is a cardinal.
Then

Pκ
there is a medial limit.

proof (a) Let θ : PN → [0, 1] be a medial limit. Let Q be the rationally convex hull of the usual basis of
ℓ1, that is, the set of functions v : N → Q∩ [0, 1] such that {n : v(n) 6= 0} is finite and

∑∞
n=0 v(n) = 1. Note

that Q is absolute in the sense that

P Q̌ is the rationally convex hull of the usual basis of ℓ1

for every forcing notion P. Let F be the filter on Q which is the trace of the weak* neighbourhood filter of
θ, that is, the filter generated by sets of the form

{v : v ∈ Q, |
∑∞

n=0 v(n)u(n) −
∫
u(n)θ(dn)| ≤ ǫ}

where u ∈ ℓ∞ and ǫ > 0. (Identifying Q ⊆ ℓ1 with its image in (ℓ∞)∗ ∼= (ℓ1)∗∗, the weak* closure of Q is
convex, so is equal to its bipolar (4A4Eg) and is the set of positive linear functionals on ℓ∞ taking the value

1 on the order unit χN. See 363L and 538P for the notation
∫
. . . θ(dn).) Let ~F be the Pκ-name derived

from F and ({0, 1}κ,Tκ,Nκ) by the method of 551Rb, so that

Pκ
~F is a filter on Q̌.

Let ν̇ be a Pκ-name such that

Pκ
ν̇ is a bounded additive functional on PN, and identifying Q̌ with a subset of (ℓ∞)∗,
itself identified with the space M(PN) of bounded additive functionals on PN, ν̇ is a

cluster point of ~F for the weak* topology.

(b) Suppose that a ∈ B+
κ and that ė is a Pκ-name such that

a Pκ
ė is a sequence of Borel subsets of {0, 1}N.

By 551Fb, we have for each n ∈ N a set Wn ∈ Tκ⊗̂BaN such that

a Pκ
ė(ň) = ~Wn,

where ~Wn is defined as in 551D. Let λ = νκ × νω be the product measure on {0, 1}κ × {0, 1}N. Because
θ is a medial limit,

∫∫
χWn(x, y)θ(dn)λ(d(x, y)) is defined and equal to

∫
λWnθ(dn); that is, there are a

conegligible Baire set W ⊆ {0, 1}κ × {0, 1}N and a Baire measurable function ψ : {0, 1}κ × {0, 1}N → [0, 1]
such that

ψ(x, y) =
∫
χWn(x, y)θ(dn) = limv→F

∑∞
n=0 v(n)χWn(x, y)

whenever (x, y) ∈W , and ∫
ψ dλ =

∫
λWnθ(dn) = limv→F

∑∞
n=0 v(n)λWn.

Let ~W and ~ψ be the corresponding Pκ-names, as in 551D and 551M, so that

Pκ
~W ∈ BaN and ~ψ : {0, 1}N → R is Baire measurable.

Moreover, since νκ-almost every vertical section of W must be νω-conegligible,

Pκ
νω ~W = 1
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(551I).

(c) Now suppose that ṡ is a Pκ-name and that b ∈ B+
κ is stronger than a and such that

b Pκ
ṡ ∈ ~W .

(i) By 551Cc, there is a Tκ-measurable f : {0, 1}κ → {0, 1}N such that

b Pκ
ṡ = ~f .

Expressing b as E• where E ∈ Tκ \ Nκ, (x, f(x)) ∈W for νκ-almost every x ∈ E, by 551Ea.
For each m ∈ N, consider

Cm = {(x, v) : x ∈ {0, 1}κ, v ∈ Q, (x, f(x)) ∈W,

|ψ(x, f(x)) −
∞∑

n=0

v(n)χWn(x, f(x))| ≤ 2−m}.

Then Cm ∈ Tκ⊗̂PQ; and if x ∈ {0, 1}κ is such that (x, f(x)) ∈W , Cm[{x}] ∈ F . Consequently

b Pκ
~Cm ∈ ~F ,

where in this formula ~Cm is the Pκ-name defined by the method of 551Ra. At the same time,

b Pκ
|~ψ(ṡ) −

∑∞
n=0 v(n)χ(ė(n))(ṡ)| ≤ 2−m̌ for every v ∈ ~Cm.

PPP Suppose we have a c stronger than b and a Pκ-name v̇ such that c Pκ
v̇ ∈ ~Cm. Then there are a

G ∈ Tκ \ Nκ and a v ∈ Q such that G• ⊆ c, G•
Pκ
v̇ = v̌, and (x, v) ∈ Cm for every x ∈ G. Setting

h(x) = ψ(x, f(x)), hn(x) = χWn(x, f(x))

for x ∈ {0, 1}κ and n ∈ N, and interpreting ~h, ~hn as in 551B,

b Pκ
~h = ~ψ(~f) = ~ψ(ṡ),

and

b Pκ
~hn = (χWn)~(ṡ) = (χ ~Wn)(ṡ)

(551Nd)

= (χė(ň))(ṡ)

for n ∈ N. For x ∈ G, moreover, |h(x) −
∑∞

n=0 v(n)hn(x)| ≤ 2−m, so

G•
Pκ

|~ψ(ṡ) −
∑∞

n=0 v̇(n)χ(ė(n))(ṡ)| = |~h−
∑∞

n=0 v̌(n)~hn| ≤ 2−m̌.

As c and v̇ are arbitrary, we have the result. QQQ

(ii) As m is arbitrary,

b Pκ
{v : v ∈ Q̌, |~ψ(ṡ) −

∑∞
n=0 v(n)χ(ė(n))(ṡ)| ≤ ǫ} ∈ ~F for every ǫ > 0,

that is,

b Pκ
~ψ(ṡ) = lim

v→ ~F

∑∞
n=0 v(n)χ(ė(n))(ṡ).

As b and ṡ are arbitrary,

a Pκ
~ψ(y) = lim

v→ ~F

∑∞
n=0 v(n)χ(ė(n))(y) for every y ∈ ~W ;

since Pκ
~W is conegligible,

a Pκ
~ψ =a.e. lim

v→ ~F

∑∞
n=0 v(n)χ(ė(n)).

Looking back at the choice of ν̇, we see that

a Pκ
~ψ(y) =

∫
χ(ė(n))(y)ν̇(dn) for νω-almost every y.
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(d) As for the integral of ~ψ, 551Nf tells us that

Pκ

∫
~ψ dνω = ~h,

where I now set h(x) =
∫
ψ(x, y)νω(dy) for x ∈ {0, 1}κ. Similarly, setting hn(x) = νωWn[{x}], we have

a Pκ
νω ė(ň) = ~hn.

Set

H = {x : x ∈ {0, 1}κ, W [{x}] is conegligible in {0, 1}N};

then H is conegligible in {0, 1}κ. Now remember that θ is a medial limit. If x ∈ H we have ψ(x, y) =∫
χWn(x, y)θ(dn) for every y in the conegligible set W [{x}], so

h(x) =

∫
ψ(x, y)νω(dy) =

∫
−

∫
χWn(x, y)θ(dn)νω(dy)

= −

∫∫
χWn(x, y)νω(dy)θ(dn) = −

∫
νωWn[{x}]θ(dn) = lim

v→F

∞∑

n=0

v(n)hn(x).

So if, for m ∈ N, we set

C ′
m = {(x, v) : x ∈ {0, 1}κ, v ∈ Q, |h(x) −

∑∞
n=0 v(n)hn(x)| ≤ 2−m},

we shall again have Pκ
~C ′
m ∈ ~F ; and if G ∈ Tκ \ Nκ and v ∈ Q are such that G• is stronger than p and

G•
Pκ
v̌ ∈ ~C ′

m, then

G•
Pκ

|
∫
~ψ dνω −

∑∞
n=0 v̌(n)νω ė(n)| ≤ 2−m̌.

So

a Pκ
{v : |

∫
~ψ dνω −

∑∞
n=0 v̌(n)νω ė(n)| ≤ 2−m̌} ∈ ~F

for every m, and

a Pκ

∫
~ψ dνω = lim

v→ ~F

∑∞
n=0 v̌(n)νω ė(n) =

∫
νω ė(n)ν̇(dn).

(e) As p and ė are arbitrary, we see that

Pκ
ν̇ satisfies condition (iv) of 538P, so is a medial functional.

It is now easy to check that

Pκ
ν̇ ≥ 0, ν̇N = 1 and ν̇{n} = 0 for every n ∈ N, so ν̇ is a medial limit.

This completes the proof.

553O For the most familiar classes of ‘small’ set – the Lebesgue null ideal, or the meager ideal of R, for
instance – it is easy to calculate the number of sets in the class; because there is a nowhere dense Lebesgue
negligible set with cardinal c, there must be exactly 2c meager Lebesgue negligible sets, and therefore there
are just 2c Lebesgue measurable subsets of Rr for any r ≥ 1. But when we come to the ideal Nuniversal ⊳ PR

of universally negligible sets, or the algebra Σum ⊆ PR of universally measurable sets, the position is much
less clear. In general, since by Grzegorek’s theorem (439F) we know that there is a universally negligible
subset of R of cardinal nonN (νω), we can say that

c ≤ 2nonN (νω) ≤ #(Nuniversal) ≤ #(Σum) ≤ 2c .

It turns out that in random real models these inequalities may well collapse to the lower bound, as in (b) of
the next theorem.

Theorem (Larson Neeman & Shelah 10) Let κ be an infinite cardinal.
(a) Pκ

every universally measurable subset of {0, 1}N is expressible as the union of at most
č Borel sets.

(b) If the cardinal power κc is equal to κ, then

Pκ
there are exactly c universally measurable subsets of {0, 1}N.
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proof (a)(i) It will save a moment later if I note at once that we need consider only the case κ > c. PPP If
κ ≤ c, then κω = c, so

Pκ
c = č

by 552B. But since we surely have

Pκ
every universally measurable subset of {0, 1}N is expressible as the union of at most
c singleton sets,

we get the result. QQQ
So henceforth I will take it that κ > c. It will save time to have a local notation: if M ⊆ κ and

V ⊆ {0, 1}κ × {0, 1}N, I will say that V is M- if (ω̃, ω′) ∈ V whenever (ω, ω′) ∈ V and ω̃ ∈ {0, 1}κ is such
that ω̃↾M = ω↾M .

(ii) (The testing measures.) If E ∈ Baκ \ N (νκ), g : {0, 1}κ → {0, 1}N is a Baκ-measurable function,
and I ⊆ κ is a set, write QIEg for the set of pairs (V, h) where V ∈ Baκ⊗̂BaN and h : {0, 1}κ → [0, 1] is
defined by saying that

h(ω) = νκ\I{ω
′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V }

for every ω ∈ {0, 1}κ. Then h is Baκ-measurable for every (V, h) ∈ QIEg. PPP The function

(ω, ω′) 7→ (ω↾I) ∪ ω′ : {0, 1}κ × {0, 1}κ\I → {0, 1}κ

is (Baκ⊗̂Baκ\I ,Baκ)-measurable, because Baκ =
⊗̂

κP({0, 1}) (4A3Na). So

{(ω, ω′) : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V } ∈ Baκ⊗̂Baκ\I

and we can apply 252P. QQQ
We can therefore set

µ̇IEg = {((~V ,~h), 11) : (V, h) ∈ QIEg},

and µ̇IEg will be a Pκ-name, subject to the conventions I use concerning the interpretation of the brackets

in the formula ((~V ,~h), 11).

(iii) If I, E, g and µ̇IEg are as in (ii), then

Pκ
µ̇ is a [0, 1]-valued function with domain BaN.

PPP Suppose that (V0, h0), (V1, h1) ∈ QIEg and p ∈ Pκ are such that p Pκ
~V0 = ~V1. Express p as F • where

F ∈ Baκ. By 551Gb, F ′ = F \ {ω : V0[{ω}] = V1[{ω}]} is negligible. But for ω ∈ F \ F ′,

{ω′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V0}

= {ω′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V1}

and h0(ω) = h1(ω). So p Pκ
~h0 = ~h1.

Thus µ̇IEg satisfies the condition (ii) of 5A3Ea, and

Pκ
µ̇IEg is a function with domain {(~V , 11) : V ∈ Baκ⊗̂BaN} = BaN

where the second BaN is interpreted in the forcing language (551F). Since

Pκ
~h ∈ [0, 1]

whenever h : {0, 1}κ → [0, 1] is a Baκ-measurable function (551B),

Pκ
µ̇IEg takes values in [0, 1]. QQQ

Next,

Pκ
µ̇IEg is countably additive, so is a Borel measure on {0, 1}N.

PPP (Compare 551M-551N.) Use the formulae of 551E. If ĠGG is a Pκ-name such that

Pκ
ĠGG is a disjoint sequence in BaN,

then there is a sequence 〈Wn〉n∈N in Baκ⊗̂BaN such that
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Pκ
ĠGG = 〈 ~Wn〉n∈N.

If m 6= n, then

Pκ
(Wm ∩Wn)~ = ~Wm ∩ ~Wn = ∅,

so νκ{ω : Wm[{ω}] ∩Wn[{ω}] 6= ∅} = 0 (551Ga); accordingly 〈Wn[{ω}]〉n∈N is disjoint for νκ-almost every
ω. Setting W =

⋃
n∈NWn,

hn(ω) = νκ\I{ω
′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈Wn},

h(ω) = νκ\I{ω
′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈W}

for ω ∈ {0, 1}κ and n ∈ N, we see that whenever 〈Wn[{ω}]〉n∈N is disjoint then

〈{ω′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈Wn}〉n∈N

is disjoint, with union

{ω′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈W},

so h(ω) =
∑∞

n=0 hn(ω). Accordingly

Pκ
µ̇IEg(

⋃

n∈N

~Wn) = µ̇IEg
~W

(551Ed)

= ~h =

∞∑

n=0

~hn

(5A3L(c-iii), 5A3Ld)

=

∞∑

n=0

µ̇IEg
~Wn.

As ĠGG is arbitrary,

Pκ
µ̇IEg is countably additive. QQQ

(iv) Still supposing that I, E, g and µ̇IEg are as in (ii), let J , M ⊆ κ be such that E and g are

determined by coordinates in J , and J ∩M = I. If V ∈ Baκ⊗̂BaN is M -determined in the sense of (i)
above, and

Pκ
µ̇IEg(~V ) = 0,

then

E•
Pκ
~g /∈ ~V .

PPP We can suppose that J ∪ M = κ, so that (I, J \ I,M \ I) is a partition of κ. Identifying {0, 1}κ

with {0, 1}I × {0, 1}J\I × {0, 1}M\I , we can find E′ ∈ BaI⊗̂BaJ\I , a BaI⊗̂BaJ\I -measurable function

g′ : {0, 1}I × {0, 1}J\I → {0, 1}N and a set V ′ ∈ BaI⊗̂BaM\I⊗̂BaN such that

E = {(ω0, ω1, ω2) : (ω0, ω1) ∈ E′, ω2 ∈ {0, 1}M\I},

g(ω0, ω1, ω2) = g′(ω0, ω1) for all ω0 ∈ {0, 1}I , ω1 ∈ {0, 1}J\I , ω2 ∈ {0, 1}M\I ,

V = {((ω0, ω1, ω2), x) : ((ω0, ω2), x) ∈ V ′, ω1 ∈ {0, 1}J\I}.

The hypothesis

Pκ
µ̇IEg(~V ) = 0

translates into ‘h = 0 νκ-a.e.’, where

h(ω) = νκ\I{ω
′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V },
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that is, identifying {0, 1}κ\I with {0, 1}J\I × {0, 1}M\I ,

h(ω0, ω1, ω2) = νκ\I{(ω′
1, ω

′
2) : (ω0, ω

′
1) ∈ E′, ((ω0, ω2), g′(ω0, ω

′
1)) ∈ V ′}.

So we see that

νκ\I{(ω′
1, ω

′
2) : (ω0, ω

′
1) ∈ E′, ((ω0, ω2), g′(ω0, ω

′
1)) ∈ V ′} = 0

for νκ-almost every (ω0, ω1, ω2). It follows that

νJ\I{ω
′
1 : (ω0, ω

′
1) ∈ E′, ((ω0, ω2), g′(ω0, ω

′
1)) ∈ V ′} = 0

for νκ-almost every (ω0, ω1, ω2), and therefore for νM -almost every (ω0, ω2), here identifying {0, 1}M with
{0, 1}I × {0, 1}M\I . Consequently

W = {(ω0, ω
′
1, ω2) : (ω0, ω

′
1) ∈ E′, ((ω0, ω2), g′(ω0, ω

′
1)) ∈ V ′}

is νκ-negligible. But W is also

{(ω0, ω1, ω2) : (ω0, ω1, ω2) ∈ E, ((ω0, ω1, ω2), g(ω0, ω1, ω2)) ∈ V }

= {ω : ω ∈ E, (ω, g(ω)) ∈ V }.

By 551Ea, [[~g ∈ ~V ]] = {ω : (ω, g(ω)) ∈ V }•; we have just seen that this is disjoint from E• in Bκ, so

E•
Pκ
~g /∈ ~V ,

as required. QQQ

(v) (The key.) Once again taking I, E, g and µ̇IEg as in (ii), let J , M ⊆ κ be such that J is
countable, E and g are determined by coordinates in J , J ∩M = I and M \ I is infinite. Then there are an
E′ ∈ Baκ \N (νκ) and a Baκ-measurable function g′ : {0, 1}κ → {0, 1}N, both determined by coordinates in
M , such that

Pκ
µ̇IEg = µ̇IE′g′ .

PPP Because J is countable, I ⊆ M and M \ I is infinite, there is a permutation α of κ such that α(ξ) = ξ
for every ξ ∈ I and α[J ] ⊆M . Set

E′ = {ω : ω ∈ {0, 1}κ, ωα ∈ E}, g′(ω) = g(ωα) for every ω ∈ {0, 1}N.

Because ω 7→ ωα is an autohomeomorphism of {0, 1}κ, E′ is a Baire set and g′ is Baire measurable. If ω,
ω′ ∈ {0, 1}κ and ω↾M = ω′↾M , then ωα↾J = ω′α↾J ; so E′ and g′ are both determined by coordinates in
M .

Take any V ∈ Baκ⊗̂BaN and set

h(ω) = νκ\I{ω
′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V },

h′(ω) = νκ\I{ω
′ : (ω↾I) ∪ ω′ ∈ E′, (ω, g′((ω↾I) ∪ ω′)) ∈ V }

for ω ∈ {0, 1}κ. Consider the permutation β = α↾κ \ I of κ \ I, and set β̂ω′ = ω′β for ω′ ∈ {0, 1}κ\I . Then,
for any ω,

{ω′ : (ω↾I) ∪ ω′ ∈ E′, (ω, g′((ω↾I) ∪ ω′)) ∈ V }

= {ω′ : (ω↾I) ∪ β̂(ω′) ∈ E, (ω, g((ω↾I) ∪ β̂(ω′))) ∈ V }

= β̂−1[{ω′ : (ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V }].

As β̂ is an automorphism of ({0, 1}κ\I , νκ\I), {ω′ : (ω↾I) ∪ ω′ ∈ E′, (ω, g′((ω↾I) ∪ ω′)) ∈ V } and {ω′ :
(ω↾I) ∪ ω′ ∈ E, (ω, g((ω↾I) ∪ ω′)) ∈ V } have the same measure. Thus h = h′, and

Pκ
µ̇IEg(~V ) = ~h = ~h′ = µ̇IE′g′(~V ).

As V is arbitrary,

Pκ
µ̇IEg = µ̇IE′g′ .

So we have an appropriate pair E′, g′. QQQ
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(vi) I come at last to universally measurable sets. Let Ȧ be a Pκ-name such that

Pκ
Ȧ is a universally measurable subset of {0, 1}N.

Then there is a set M ⊆ κ with cardinal c such that whenever I ∈ [M ]≤ω, E ∈ Baκ \ N (νκ) and a Baire
measurable g : {0, 1}κ → {0, 1}N are determined by coordinates in M , then there are M -determined sets F ,
V ∈ Baκ⊗̂BaN such that

Pκ
Ȧ△~F ⊆ ~V and µ̇IEg

~V = 0.

PPP If I ∈ [κ]≤ω, E ∈ Baκ \ N (νκ) and g : {0, 1}κ → {0, 1}N is Baire measurable, then

Pκ
the completion of µ̇IEg measures Ȧ, so there are Borel sets G, H ⊆ {0, 1}N such that

Ȧ△G ⊆ H and µ̇IEgH = 0.

By 551F, as usual, there must be F , V ∈ Baκ⊗̂BaN such that

Pκ
Ȧ△~F ⊆ ~V and µ̇IEg

~V = 0.

Now there will be a countable set K(I, E, g) ⊆ κ such that F and V are both K(I, E, g)-determined. If
we build inductively a non-decreasing family 〈Mξ〉ξ≤ω1

of subsets of κ with cardinal c such that whenever
ξ < ω1, I ∈ [Mξ]≤ω, E′ ∈ Baκ \ N (νκ) and a Baire measurable g′ : {0, 1}κ → {0, 1}N are determined by
coordinates in Mξ, then K(I, E, g) ⊆ Mξ+1 (which is possible because if #(Mξ) = c then there are just c

possibilities for I, E and g), we shall be able to set M = Mω1
to get a set of the type we need. QQQ

Enumerate

{W : W ∈ Baκ⊗̂BaN, W is M -determined}

as 〈Wξ〉ξ<c. Then

Pκ
Ȧ =

⋃
{ ~Wξ : ξ < č, ~Wξ ⊆ Ȧ}.

PPP Suppose that E ∈ Baκ \ N (νκ) and a Pκ-name ẋ are such that

E•
Pκ
ẋ ∈ Ȧ.

Then there is a Baire measurable function g : {0, 1}κ → {0, 1}N such that

E•
Pκ
ẋ = ~g

(551Cc). Let J ∈ [κ]≤ω be such that E and g are both determined by coordinates in J , and set I = J ∩M .
By (v) above, there are E′ and g′, both determined by coordinates in M , such that

Pκ
µ̇IEg = µ̇IE′g′ .

We therefore have M -determined F , V ∈ Baκ⊗̂BaN such that

Pκ
Ȧ△~F ⊆ ~V and µ̇IEg

~V = µ̇IE′g′ ~V = 0.

Let ξ < c be such that F \ V = Wξ. By (iv),

E•
Pκ
~g /∈ ~V and ẋ = ~g ∈ ~Wξ ⊆ Ȧ.

As E and ẋ are arbitrary, we have the result. QQQ
Thus

Pκ
Ȧ is expressible as the union of č Borel sets.

As Ȧ is arbitrary, (a) is proved.

(b) Now all we have to do is count. We surely have

Pκ
there are at least c universally measurable subsets of {0, 1}N

just because singletons are universally measurable. In the other direction, because κc = κ,

Pκ
cč = (2ω)č = 2č = κ̌ = (κω )̌ = c

(552B), while (a) tells us that

Pκ
the number of universally measurable subsets of {0, 1}N is at most cč.
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553X Basic exercises (a)(i) Suppose that A ⊆ {0, 1}N has strong measure zero, and that κ is a cardinal.
Show that

Pκ
Ǎ has strong measure zero in {0, 1}N.

(ii) Repeat with R in place of {0, 1}N. (iii) Suppose that m = c > ω1. Show that


Pω1
there is a set of strong measure zero in R with cardinal greater than mcountable.

(b) Let W ⊆ {0, 1}ω × {0, 1}ω be the set

{(x, y) : x(2n) = y(2n) for every n ∈ N}.

Show that, for every y ∈ {0, 1}ω,

Pω
~W is homeomorphic to {0, 1}ω and y̌ /∈ ~W .

(c)(i) Suppose that F is a p-point filter on N, and that P is a ccc forcing notion. Show that

P the filter on N generated by F̌ is a p-point filter.

(ii) Suppose that F is a rapid filter on N, and that κ is a cardinal. Show that

Pκ
the filter on N generated by F̌ is a rapid filter.

(d) Let A be a Boolean algebra and ν : A → [0,∞[ a non-negative additive functional. Show that if
〈ai〉i∈I is a finite family in A then

ν(supi∈I ai) ≤
∑m

k=1(−1)k+1
∑

J∈[I]k ν(infi∈J ai) if m ≥ 1 is odd,

ν(supi∈I ai) ≥
∑m

k=1(−1)k+1
∑

J∈[I]k ν(infi∈J ai) if m ≥ 1 is even.

(e) Let P be a forcing notion which satisfies Knaster’s condition. (i) Show that if (P,≤) is an upwards-ccc
partially ordered set then

P (P̌ , ≤̌) is upwards-ccc.

(ii) Show that if (T,≤) is a Souslin tree then

P (Ť , ≤̌) is a Souslin tree.

553Y Further exercises (a) Let κ be a cardinal, Ġ a Pκ-name and a ∈ B+
κ such that

a Pκ
Ġ is a dense open subset of {0, 1}ω.

Show that there is aW ∈ Tκ⊗̂Baω such that every vertical section ofW is a dense open set and a Pκ
Ġ = ~W .

(b) Let κ be a cardinal and W ∈ Tκ⊗̂Baω a set such that every vertical section of W is a dense open set.
Let C be the space of continuous functions from {0, 1}κ to {0, 1}ω with the compact-open topology. Show
that {f : f ∈ C, {x : (x, f(x)) ∈W} is conegligible} is comeager in C.

(c) Show that

Pω
mcountable ≥ (mcountable)̌ .

(Hint : work with the ideal of meager sets in the Polish space of continuous functions from {0, 1}ω to itself.)

(d) Let K be the family of compact well-ordered subsets of Q∩ [0,∞[ containing 0. For s, t ∈ K say that
s 4 t if s = t ∩ [0, γ] for some γ ∈ R; for s ∈ K and γ ∈ Q, set A(s, γ) = {t : t ∈ K, max t = γ, s 4 t}.
(i) Show that (K,4) is a tree, and that otp(t) = r(t) + 1 for every t ∈ K. (ii) Choose 〈Kξ〉ξ<ω1

, 〈Tξ〉ξ<ω1

inductively so that K0 = T0 = {{0}} and for 0 < ξ < ω1

Kξ = {t : t ∈ K, r(t) = ξ, s ∈
⋃

η<ξ Tη whenever s ≺ t},
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Tξ ⊆ Kξ is countable,
if η < ξ, s ∈ Tη and γ ∈ Q are such that γ > max s and A(s, γ) meets Kξ, then A(s, γ) meets

Tξ.

Show that if η < ξ < ω1, s ∈ Tη, γ ∈ Q and γ > max s, there is a t ∈ Tξ such that max t = γ and s 4 t. (iii)
Show that T =

⋃
ξ<ω1

Tξ is a special Aronszajn tree.

(e) Show that Pω
p ≥ (mσ-linked)̌ .

553Z Problem Suppose that the generalized continuum hypothesis is true. Is it the case that

Pω2
there is a Borel lifting for Lebesgue measure?

(Compare 554I.)

553 Notes and comments To my mind, the chief interest of the results of this section is that they force
us to explore aspects of the structures considered in new ways. We know, for instance, that if a set has
Rothberger’s property (in a separable metrizable space) this can be witnessed by a family of d sequences.

The point of 553C is that (in random real models) any family of d sequences is associated with a set Ẏ with

cardinal at most the cardinal power dω = c (taken in the ordinary universe V ), such that Ẏ must include
the given set with Rothberger’s property. Remember that

Pκ
(NN)̌ is cofinal with NN

(see the proof of 552C), so there is no point in looking at ‘new’ members of NN in part (a) of the proof.

In 553E, we need to distinguish between the Pκ-names G̃ and Ǧ. It is quite possible to have

Pκ
K̇ ∩ ({0, 1}λ)̌ = ∅;

that is, we might have Pκ
K̇ = ~W where W ⊆ {0, 1}κ ×{0, 1}λ has negligible horizontal sections (553Xb).

The name G̃ refers not to a copy of the set G but to a re-interpretation of one (or any) of its descriptions
as an Fσ set.

In 553H and 553M, we have to look quite deeply into the structure of measure algebras. Lemmas 553G and
553L are already not obvious, and the combinatorial measure theory of the proof of 553H is delicate. 553J
is easier. The idea here is to ‘randomize’ a construction from Galvin 80, where the continuum hypothesis
was used to build complementary sets S0, S1 with the property of 553I.

I give a bit of space to ‘Aronszajn trees’ because the results here express yet another contrast between
random and Cohen forcing. Cohen forcing creates Souslin trees (554Yc). Random forcing preserves old
Souslin trees (553Xe) but does not necessarily produce new ones (553M).

Version of 2.9.14

554 Cohen reals

Parallel to the theory of random reals as described in §§552-553, we have a corresponding theory based
on category algebras rather than measure algebras. I start with the exactly matching result on cardinal
arithmetic (554B), and continue with Lusin sets (balancing the Sierpiński sets of 552E) and the cardinal
functions of the meager ideal of R (554C-554E, 554F). In the last third of the section I use the theory of
Freese-Nation numbers (§518) to prove Carlson’s theorem on Borel liftings (554I).

554A Notation For any set I, I will write B̂I for the Baire-property algebra of {0, 1}I , BaI for the Baire

σ-algebra of {0, 1}I , MI for the meager ideal of {0, 1}I , GI = B̂I/MI for the category algebra of {0, 1}I ,
and QI for the forcing notion G+

I = GI \ {∅} active downwards. CI will be the family of basic cylinder sets
{x : z ⊆ x ∈ {0, 1}I} for z ∈ Fn<ω(I; {0, 1}), and CI the corresponding set {C• : C ∈ CI} ⊆ GI ; then CI

is order-dense in GI (because CI is a π-base for the topology of {0, 1}I). It follows that τ(GI) ≤ π(GI) ≤
max(ω,#(I)). (These inequalities are of course equalities if I is infinite.)

c© 2006 D. H. Fremlin
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554B Theorem Suppose that λ and κ are infinite cardinals. Then

Qκ
2λ̌ = (κλ)̌ .

proof (Compare 552B.)

(a) Since Gκ is ccc and has an order-dense subset Cκ with cardinal κ, #(Gκ) is at most the cardinal
power κω.

If Ȧ is a Qκ-name for a subset of λ̌, then we have a corresponding family 〈[[η̌ ∈ Ȧ]]〉η<λ of truth values;

and if Ȧ, Ḃ are two such names, and [[η̌ ∈ Ȧ]] = [[η̌ ∈ Ḃ]] for every η < λ, then

Qκ
Ȧ = Ḃ.

So

Qκ
2λ̌ = #(Pλ̌) ≤ #((Gλ

κ )̌ ) = (κλ)̌ .

(b) Consider first the case in which λ ≤ κ. Let F be the set of all functions from λ to κ, so that
#(F ) = κλ. As in part (b) of the proof of 552B, there is a set G ⊆ F such that #(G) = κλ and {η : η < λ,
f(η) 6= g(η)} is infinite whenever f , g ∈ G are distinct. Let 〈ζξη〉ξ<κ,η<λ be a family of distinct elements of

κ and set Eξη = {x : x ∈ {0, 1}κ, x(ζξη) = 1} for ξ < κ and η < λ. For f ∈ G let Ȧf be a Qκ-name for a
subset of λ such that

[[η̌ ∈ Ȧf ]] = E•

f(η),η

for every η < λ. If f , g ∈ G are distinct, set I = {η : f(η) 6= g(η)}; then

[[Ȧf 6= Ȧg]] = supη<λE
•

f(η),η △E•

g(η),η = 11

because
⋃

η∈I Ef(η),η△Eg(η),η is a dense open set in {0, 1}κ.

Thus in the forcing language we have a name for an injective function from Ǧ to Pλ, corresponding to
the map f 7→ Ȧf from G to names of subsets of λ. So

Qκ
2λ̌ ≥ #(Ǧ) = (κλ)̌ .

Putting this together with (a), we have

Qκ
2λ̌ = (κλ)̌ .

(c) If λ > κ, then 2λ = κλ. Now

Qκ
(Pλ)̌ ⊆ Pλ̌,

so

Qκ
(κλ)̌ = #((Pλ)̌ ) ≤ #(Pλ̌) = 2λ̌,

and again we have

Qκ
2λ̌ = (κλ)̌ .

554C Definition If X is a topological space, a subset of X is a Lusin set if it is uncountable but meets
every meager set in a countable set; equivalently, if it is uncountable but meets every nowhere dense set in
a countable set.

554D Proposition Let κ be a cardinal such that R has a Lusin set with cardinal κ.
(a) Writing M for the ideal of meager subsets of R, nonM = ω1 and mcountable ≥ κ.
(b) There is a point-countable family A of Lebesgue-conegligible subsets of R with #(A) = κ.
(c) If (A, µ̄) is a semi-finite measure algebra which is not purely atomic, (κ, ω1) is not a precaliber pair

of A.

proof Let B ⊆ R be a Lusin set with cardinal κ.
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(a) By 522Sa, mcountable = covM. Any uncountable subset of B is non-meager, so nonM = ω1. If E is
a cover of R by meager sets, then each member of E meets B in a countable set, so

κ = #(B) ≤ max(ω,#(E))

and #(E) ≥ κ; thus covM ≥ κ.

(b) Let E ⊆ R be a conegligible meager set containing 0, and set A = {x + E : x ∈ B}. Then A is a
family of conegligible sets. If y ∈ R, then y − E is meager so {x : x ∈ B, y ∈ x + E} = B ∩ (y − E) is
countable; thus A is point-countable. Also, each member of A is meager, so meets B in a countable set, and
(because B ⊆

⋃
A)

κ = #(B) ≤ max(ω,#(A)) ≤ #(A) ≤ #(B),

so #(A) = κ.

(c) Let K ⊆ E be a compact set of non-zero measure. If Γ ⊆ B is uncountable,
⋂

x∈Γ x + K = ∅,
{x + K : x ∈ Γ} does not have the finite intersection property and {(x + K)• : x ∈ Γ} is not centered in
the measure algebra AL of Lebesgue measure. Thus 〈(x+K)•〉x∈B witnesses that (κ, ω1) is not a precaliber
pair of AL.

Since (A, µ̄) is semi-finite and not purely atomic, there is a subalgebra of a principal ideal of A which is
isomorphic to AL, and (κ, ω1) is not a precaliber pair of A, by 516Sa.

554E Theorem Let κ be an uncountable cardinal. Then

Qκ
there is a Lusin set A ⊆ R with cardinal κ̌.

proof (a) (Compare 552E.) Write P for Qκ×ω. For each ξ < κ, let fξ : {0, 1}κ×ω → {0, 1}ω be given by

setting fξ(x)(n) = x(ξ, n) for every x ∈ {0, 1}κ×λ and n < ω; then, taking ~fξ to be the P-name defined by
the process of 551Cb,

P
~fξ ∈ {0, 1}ω.

If ξ, ξ′ < κ are distinct, then, by 551Cd,

[[~fξ = ~fξ′ ]] = {x : fξ(x) = fξ′(x)}•

= {x : x(ξ, n) = x(ξ′, n) for every n}• = 0

because {x : x(ξ, n) = x(ξ′, n) for every n} is closed and nowhere dense. So, taking Ȧ to be the P-name

{(~fξ, 11) : ξ < κ}, we have

P Ȧ ⊆ {0, 1}ω has cardinal κ̌.

(b) Now suppose that Ẇ is a P-name such that

P Ẇ is a nowhere dense zero set in {0, 1}ω.

By 551Fb there is a W ∈ B̂κ×ω⊗̂Baω such that, in the language of 551D, P Ẇ = ~W . Now W is meager
in {0, 1}κ×ω. PPP For z ∈ Fn<ω(ω; {0, 1}) set Vz = {(x, y) : x ∈ {0, 1}κ×ω, z ⊆ y ∈ {0, 1}ω}. By 551Ee,

P
~Vz = {y : ž ⊆ y ∈ {0, 1}ω};

and as B̂κ×ω is closed under Souslin’s operation (431Fb),

[[ ~W ∩ ~Vz = ∅]] = {x : W [{x}] ∩ {y : y ⊇ z} = ∅}•

(551Ga). Now we have
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1 = [[ ~W is nowhere dense]]

= inf
z∈Fn<ω(ω;{0,1})

sup
z′∈Fn<ω(ω;{0,1}),z′⊇z

[[ ~W ∩ {y : ž′ ⊆ y} = ∅]]

= inf
z∈Fn<ω(ω;{0,1})

sup
z′∈Fn<ω(ω;{0,1}),z′⊇z

{x : W [{x}] ∩ {y : y ⊇ z′} = ∅}•

=
( ⋂

z∈Fn<ω(ω;{0,1})

⋃

z′∈Fn<ω(ω;{0,1}),z′⊇z

{x : W [{x}] ∩ {y : y ⊇ z′} = ∅}
)•

= {x : W [{x}] is nowhere dense}•.

So {x : W [{x}] is meager} is comeager. Because W has the Baire property in {0, 1}κ×ω × {0, 1}ω (5A4E(b-
ii)), it must be meager, by the Kuratowski-Ulam theorem (527D). QQQ

(c) Continuing from (b), there is a meager Baire set W ′ ⊇ W (5A4E(c-ii)). Let J ⊆ κ be a countable
set such that W ′ is determined by coordinates in (J × ω) ∪̇ ω, that is, if (x, y) ∈ W ′, x′ ∈ {0, 1}κ×ω and
x′↾J × ω = x↾J × ω then (x′, y) ∈W ′. Take any ξ ∈ κ \ J . Set L = (κ \ {ξ}) × ω and

V = {(x↾L, y) : (x, y) ∈W ′};

then V ⊆ {0, 1}L × {0, 1}ω is meager (applying 527D to

V × {0, 1}{ξ}×ω ⊆ {0, 1}L × {0, 1}{ξ}×ω ∼= {0, 1}κ×ω × {0, 1}ω).

Now consider the map φ : {0, 1}κ×ω → {0, 1}L × {0, 1}ω defined by setting φ(x) = (x↾L, fξ(x)) for
x ∈ {0, 1}κ×ω. Looking back at the definition of fξ, we see that this is a homeomorphism. So φ−1[V ] must
be meager, and

[[~fξ ∈ ~W ]] ⊆ [[~fξ ∈ ~W ′]] = {x : (x, fξ(x)) ∈W ′}•

(551Ea)

= {x : (x↾L, fξ(x)) ∈ V }• = (φ−1[V ])• = 0,

that is, P
~fξ /∈ ~W .

This is true for every ξ ∈ κ \ J . So

P Ȧ ∩ Ẇ ⊆ {~fξ : ξ ∈ J̌} is countable.

As Ẇ is arbitrary,

P Ȧ has countable intersection with every nowhere dense zero set.

It follows at once that

P Ȧ has countable intersection with every nowhere dense set, and is a Lusin set.

As P and Qκ are isomorphic,

Qκ
{0, 1}ω has a Lusin set with cardinal κ̌.

(d) The statement of the proposition referred to R rather than to {0, 1}ω. But, writing M for the ideal
of meager subsets of R and Mω for the ideal of meager subsets of {0, 1}ω, (R,M) and ({0, 1}ω,Mω) are
isomorphic (522Wb), and one will have Lusin sets iff the other does. So

Qκ
R has a Lusin set with cardinal κ̌.

554F Corollary Let κ be a cardinal which is equal to the cardinal power κω. Write M for the ideal of
meager subsets of R. Then

Qκ
nonM = ω1 and mcountable = c.

proof By 554B, Qκ
c = κ̌; so we have only to put 554E and 554Da together.
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554G Theorem Let κ be an infinite cardinal such that FN(Gκ) = ω1. Then

Qκ
FN(PN) = ω1.

proof (a) We need to know that Gκ is isomorphic to the simple power algebra GN
κ . PPP The algebra E of

open-and-closed subsets of {0, 1}κ is isomorphic to a free product of two-element algebras, so is homogeneous
(316Q); Gκ is isomorphic to the Dedekind completion of E , so is homogeneous (316P). Now we have a
partition of unity 〈pn〉n∈N in Gκ consisting of non-zero elements, so that Gκ is isomorphic to the simple
product of the corresponding principal ideals (315F) and to GN

κ . QQQ There is therefore a Freese-Nation
function θ : GN

κ → [GN
κ ]≤ω.

For ξ < κ, set Eξ = {x : x ∈ {0, 1}κ, x(ξ) = 1}; for J ⊆ κ, let CJ be the order-closed subalgebra of Gκ

generated by {E•

ξ : ξ ∈ J}, and let CJ be the set of elements of CJ of the form infξ∈K E•

ξ \ supξ∈LE
•

ξ where
K, L are disjoint finite subsets of J .

For v ∈ GN
κ let ~v be the Qκ-name {(ň, v(n)) : n ∈ N, v(n) 6= 0}; then Qκ

~v ⊆ N, and [[ň ∈ ~v]] = v(n) for
every n ∈ N.

For any Qκ-name u̇, let J(u̇) be a countable subset of κ such that [[ň ∈ u̇]] ∈ CJ(u̇) for every n ∈ N.

(b) Let Ẋ be a discriminating Qκ-name such that Qκ
Ẋ = PN (5A3Ka). For σ = (u̇, p) ∈ Ẋ set

θ1(σ) =
⋃

e∈CJ(u̇)
θ(〈[[ň ∈ u̇]] ∩ e)〉n∈N) ∪

⋃
e∈CJ(u̇)

θ(〈[[ň ∈ u̇]] ∪ (1 \ e)〉n∈N) ∈ [GN
κ ]≤ω,

θ2(σ) = {(~v, p) : v ∈ θ1(σ)},

so that θ2(σ) is a Qκ-name and

Qκ
θ2(σ) is a countable subset of PN.

(c) Set

θ̇ = {((u̇, θ2(u̇, p)), p) : (u̇, p) ∈ Ẋ}.

By 5A3Kb,

Qκ
θ̇ is a function with domain Ẋ = PN.

Next,

Qκ
θ̇ takes values in [PN]≤ω.

PPP Suppose that ẋ is a Qκ-name and p ∈ G+
κ is such that

p Qκ
ẋ is a value of θ̇.

Then there are a (u̇, q) ∈ Ẋ and a p′ stronger than both p and q such that

p′ Qκ
ẋ = (u̇, θ2(u̇, q)) has second member θ2(u̇, q) ∈ [PN]≤ω.

As p and ẋ are arbitrary,

Qκ
every value of θ̇, being the second member of an element of θ̇, is a countable subset

of PN. QQQ

(d) In fact,

Qκ
θ̇ is a Freese-Nation function on PN.

PPP Suppose that Ȧ1, Ȧ2 are Qκ-names and p ∈ G+
κ is such that

p Qκ
Ȧ1 ⊆ Ȧ2 ⊆ N.

Because Qκ
Ẋ = PN, there must be (u̇1, q1) and (u̇2, q2) ∈ Ẋ and a p1 stronger than p, q1 and q2 such

that

p1 Qκ
u̇1 = Ȧ1 and u̇2 = Ȧ2.

In this case, for both i, ((u̇i, θ2(u̇i, qi)), qi) ∈ θ̇, so we have
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p1 Qκ
θ̇(Ȧi) = θ̇(u̇i) = θ2(u̇i, qi).

Let e ⊆ p1 be a member of Cκ, that is, a member of Gκ which is the equivalence class of a basic cylinder
set. We have

e Qκ
u̇1 = Ȧ1 ⊆ Ȧ2 = u̇2,

so e ∩ [[ň ∈ u̇1]] ⊆ [[ň ∈ u̇2]] for every n ∈ N. Express e as e1 ∩ e2 ∩ e3 where e1 ∈ CJ(u̇1), e2 ∈ CJ(u̇2) and
e3 ∈ Cκ\K , where K = J(u̇1) ∪ J(u̇2). For each n ∈ N,

e1 ∩ e2 ∩ [[ň ∈ u̇1]] \ [[ň ∈ u̇2]]

belongs to CK and is disjoint from e3 ∈ Cκ\K \ {0}, so must be zero; we therefore have

e1 ∩ [[ň ∈ u̇1]] ⊆ [[ň ∈ u̇2]] ∪ (1 \ e2)

for every n, that is,

〈[[ň ∈ u̇1]] ∩ e1〉n∈N ⊆ 〈[[ň ∈ u̇2]] ∪ (1 \ e2)〉n∈N

in GN
κ . Because θ is a Freese-Nation function, there is a sequence

〈an〉n∈N ∈ θ(〈[[ň ∈ u̇1]] ∩ e1〉n∈N) ∩ θ(〈[[ň ∈ u̇2]] ∪ (1 \ e2)〉n∈N)

such that

[[ň ∈ u̇1]] ∩ e1 ⊆ an ⊆ [[ň ∈ u̇2]] ∪ (1 \ e2)

for every n. Now v = 〈an〉n∈N belongs to θ1(u̇1, p1) ∩ θ1(u̇2, p2), so (~v, pi) ∈ θ2(u̇i, pi) and

pi Qκ
~v ∈ θ2(u̇i, pi) = θ̇(u̇i)

for both i. Returning to e, we have

e ∩ [[ň ∈ u̇1]] ⊆ e ∩ an ⊆ e ∩ [[ň ∈ u̇2]]

for every n, because e ⊆ e1 ∩ e2. So

e Qκ
u̇1 ⊆ ~v ⊆ u̇2.

Also e is stronger than p and

e Qκ
~v ∈ θ̇(u̇1) ∩ θ̇(u̇2) = θ̇(Ȧ1) ∩ θ̇(Ȧ2).

As p, Ȧ1 and Ȧ2 are arbitrary,

Qκ
for any A, B ⊆ N there is a C ∈ θ̇(A) ∩ θ̇(B) such that A ⊆ C ⊆ B; that is, θ̇ is a

Freese-Nation function. QQQ

(e) Putting (c) and (d) together, we have

Qκ
FN(PN) ≤ ω1;

and since the Freese-Nation number of PN is surely uncountable (522U), this is enough.

554H Corollary Suppose that FN(PN) = ω1 and that κ is an infinite cardinal such that

(α) cf[λ]≤ω ≤ λ+ for every cardinal λ ≤ κ,
(β) �λ is true for every uncountable cardinal λ ≤ κ of countable cofinality.

Then Qκ
FN(PN) = ω1.

proof Any countably generated order-closed subalgebra C of Gκ is (in the language of part (a) of the proof
of 554G) included in CJ for some countable J ⊆ κ, which has a countable π-base CJ ; so CJ and C are
σ-linked, and FN(C) ≤ FN(PN) = ω1, by 518D. By 518I, the conditions (α) and (β), together with the fact
that τ(Gκ) ≤ κ, now ensure that FN(Gκ) ≤ ω1, so 554G gives the result.

554I Theorem (Carlson Frankiewicz & Zbierski 94) Suppose that the continuum hypothesis is
true. Then

Qω2
c = ω2 and Lebesgue measure has a Borel lifting.
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proof Of course the cardinal power ωω
2 (in the ordinary universe) is equal to max(c, cf[ω2]≤ω) = ω2. From

554H and 554B we see that

Qω2
FN(PN) = ω1 and c = ω2.

So 535E(b-ii) tells us that

Qω2
Lebesgue measure has a Borel lifting.

554X Basic exercises (a) Show that #(Gκ) = κω for every infinite cardinal κ.

(b) Show that if I is any set, every regular uncountable cardinal is a precaliber of GI .

(c) Let I be any set. (i) Show that (CI ,⊇) is isomorphic to (Fn<ω(I; {0, 1}),⊆) (definition: 552A). (ii)
Show that GI can be identified with the regular open algebra RO↑(Fn<ω(I; {0, 1})).

(d) Let κ be an infinite cardinal such that R has a Lusin set with cardinal κ. Show that there is a
first-countable compact Hausdorff space X such that κ ∈ MahR(X). (Hint : 531N.)

(e) Devise a definition of ‘strongly Lusin’ set to match 537Ab, and state and prove a result corresponding
to 552E. (Hint : 527Xf.)

(f) Describe Cichoń’s diagram in the forcing universe V Qω2 (i) if we start with c = ω1 (ii) if we start with
m = c = ω2.

554Y Further exercises (a) For how many of the results of 552F-552J can you find equivalents with
respect to Cohen real forcing? (Hint : Bartoszyński & Judah 95.)

(b)(i) Show that there is a family 〈eξ〉ξ<ω1
such that (α) for each ξ, eξ ⊆ ξ × N is an injective function

from ξ to N (β) if η ≤ ξ < ω1 then eη \eξ is finite. (Hint : choose the eξ inductively, taking care that N\eξ[ξ]
is infinite for every ξ.) (ii) Set T = {eξ↾η : η, ξ < ω1 are successor ordinals}. Show that T ∪{∅}, ordered by
⊆, is a special Aronszajn tree. (Hint : for any n ∈ N, {t : t(max(dom t)) = n} is an antichain.)

(c) (Todorčević 87) Let κ be an infinite cardinal. Take 〈eξ〉ξ<ω1
as in 554Yb. Let 4̇ be the Qκ-name

{((η̌, ξ̌), p) : η ≤ ξ < ω1, p ∈ Qκ, p ⊆ {x : xeη ⊆ xeξ}
•}.

Show that Qκ
(ω1, 4̇) is a Souslin tree.

554 Notes and comments The original theories of Cohen and random reals were developed in parallel;
see Kunen 84 for an account of the special properties of null and meager ideals which made this possible.
Thus the Sierpiński sets of random real models become Lusin sets in Cohen real models, and the horizontal
gap which appears in Cichoń’s diagram if we add random reals becomes a vertical gap if we add Cohen reals
(552F-552I, 554F). I give a very much briefer account of Cohen reals because I am restricting attention to
results which have consequences in measure theory, as in 554Dc and 554I, and (except in 554Yc/553M) I
make no attempt to look for reflections of the patterns in §553, which are mostly there for the illumination
they throw on the structure of measure algebras. But I do not seek out the shortest route in every case.
In particular, I spell out some of the theory of Freese-Nation numbers (554G-554H) for its own sake as well
as to provide a proof of Carlson’s theorem 554I. Let me remind you that ω2 has a very special place in the
arguments here; see 518Rb and 535Zb.

I have written this section in terms of forcing with category algebras, partly in order to emphasize the
connexion with random reals, and partly to be able to quote from §551. But of course it can equally be
regarded as a fragment of the theory of forcing with partially ordered sets Fn<ω(I; {0, 1}) (554Xc), and
there are many places (e.g. 554Yc) where this simplifies the details.
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Version of 23.10.14

555 Solovay’s construction of real-valued-measurable cardinals

While all the mathematical ideas of Chapter 54 were expressed as arguments in ZFC, many would be of
little interest if it appeared that there could be no atomlessly-measurable cardinals. In this section I present
R.M.Solovay’s theorem that if there is a two-valued-measurable cardinal in the original universe, then there
is a forcing notion P such that

P there is an atomlessly-measurable cardinal

(555D). Varying P we find that we can force models with other kinds of quasi-measurable cardinal (555G,
555K); starting from a stronger hypothesis we can reach the normal measure axiom (555N).

555A Notation As in §§552-553, I will write (Bκ, ν̄κ) for the measure algebra of the usual measure
on {0, 1}κ, and Pκ for the forcing notion B+

κ = Bκ \ {0}, active downwards. In this context, as in 525A,
〈eη〉η<κ will be the standard generating family in Bκ.

As in §554, I will write Gκ for the category algebra of {0, 1}κ, and Qκ for the forcing notion G+
κ , active

downwards. Recall that Gκ is isomorphic to the regular open algebra RO({0, 1}κ) (514If).

555B Theorem Suppose that X is a set, and I a proper σ-ideal of subsets of X containing singletons.
Let P = (P,≤, 11, ↑↓) be a ccc forcing notion, and İ a P-name such that

P İ = {J : there is an I ∈ Ǐ such that J ⊆ I}.

Then
(a)(i) If J̇ is a P-name and p ∈ P is such that p P J̇ ∈ İ, there is an I ∈ I such that p P J̇ ⊆ Ǐ.

(ii)

P İ is the ideal of subsets of X̌ generated by Ǐ; it is a proper σ-ideal containing singletons.

(b) P add İ = (add I )̌ .
(c) If I is ω1-saturated in PX, then

P İ is ω1-saturated in PX̌, so PX̌/İ is ccc and Dedekind complete.

(d) If X = λ is a regular uncountable cardinal and I is a normal ideal on λ, then

P İ is a normal ideal on λ̌.

proof (a)(i) We have

p P there is an I ∈ Ǐ such that J̇ ⊆ I.

Set

A = {q : there is an I ∈ I such that q P J̇ ⊆ Ǐ}.

If p′ is stronger than p, there is a q ∈ A stronger than p′. Let A′ ⊆ A be a maximal antichain. Then A′

is countable and for each q ∈ A′ there is an Iq ∈ I such that q P J̇ ⊆ Ǐq. Set I =
⋃

q∈A Iq; because I

is a σ-ideal, I ∈ I. Now q P J̇ ⊆ Ǐ for every q ∈ A′. If p′ is stronger than p there is a q ∈ A′ which is

compatible with p′, so p P J̇ ⊆ Ǐ, as required.

(ii) Because

P Ǐ is a family of subsets of X̌ closed under finite unions,

we have

P İ is an ideal of subsets of X̌.

Because

P Ǐ ∈ İ

c© 2005 D. H. Fremlin
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whenever I ∈ I,

P Ǐ ⊆ İ and İ is the ideal generated by Ǐ.

Since X /∈ I, (i) tells us that

P X̌ /∈ İ.

Since {x} ∈ I for every x ∈ X,

P {x} ∈ İ for every x ∈ X̌.

Thus

P İ is a proper ideal of PX̌ containing singletons.

I defer the final step to (b-i) below.

(b) Set θ = add I.

(i) Suppose that p ∈ P and that Ȧ is a P-name such that

p P Ȧ ⊆ İ and #(Ȧ) < θ̌.

Then there are a q stronger than p, a δ < θ and a family 〈Ȧξ〉ξ<δ of P-names such that

q P Ȧ = {Ȧξ : ξ < δ̌}.

For each ξ < δ, q P Ȧξ ∈ İ, so we have an Iξ ∈ I such that q P Ȧξ ⊆ Ǐξ. Set I =
⋃

ξ<δ Iξ ∈ I. Then

q P Ȧξ ⊆ Ǐ for every ξ < δ̌, so
⋃
Ȧ ⊆ Ǐ and

⋃
Ȧ ∈ İ.

As p and Ȧ are arbitrary,

P add İ ≥ θ̌.

In particular, since we certainly have θ ≥ ω1,

P İ is a σ-ideal.

(ii) In the other direction, there is a family 〈Iξ〉ξ<θ in I with no upper bound in I. Now P Ǐξ ∈ İ
for every ξ < θ. ??? If p ∈ P is such that

p P

⋃
ξ<θ Ǐξ ∈ İ,

then there is an I ∈ I such that

p P

⋃
ξ<θ̌ Ǐξ ⊆ Ǐ

and
⋃

ξ<θ Iξ ⊆ I ∈ I. XXX So

P

⋃
ξ<θ̌ Ǐξ /∈ İ and add İ ≤ θ̌.

(c) Let p ∈ P and a family 〈Ȧη〉η<ω1
of P-names be such that

p P 〈Ȧη〉η<ω1
is a disjoint family of subsets of X̌.

For each x ∈ X, 〈p̂ ∩ [[x̌ ∈ Ȧη]]〉η<ω1
is a disjoint family in RO(P), where

p̂ = int {q : q is stronger than p}

is the regular open set corresponding to p. So there is an αx < ω1 such that p̂ ∩ [[x̌ ∈ Ȧη]] = 0 for every

η ≥ αx, that is, p P x̌ /∈ Ȧη for every η ≥ αx. Because I is ω1-saturated, therefore ω2-additive (542B-542C),

there is an α < ω1 such that I = {x : x ∈ X, αx ≥ α} belongs to I. Now p P x̌ /∈ Ȧα for every x ∈ X \ I,
that is,

p P Ȧα ⊆ Ǐ and Ȧα ∈ İ.

As p and 〈Ȧη〉η<ω1
are arbitrary, P İ is ω1-saturated.
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Thus P PX̌/İ is ccc. But since we know from (b) that P İ is a σ-ideal, and of course P PX̌ is
Dedekind complete, we have

P PX̌/İ is Dedekind σ-complete, therefore Dedekind complete.

(d) Suppose that p ∈ P and that 〈Ȧξ〉ξ<λ is a P-name such that

p P Ȧξ ∈ İ for every ξ < λ̌.

For each ξ < λ we have an Iξ ∈ I such that p P Ȧξ ⊆ Ǐξ; let I be the diagonal union

{ξ : ξ < λ, ξ ∈
⋃

η<ξ Iη}.

Because I is a normal ideal on λ, I ∈ I. Now suppose that q is stronger than p and that ξ < λ is such that

q P ξ̌ ∈
⋃

η<ξ̌ Ȧη.

Then

q P ξ̌ ∈
⋃

η<ξ̌ Ǐη,

so ξ ∈
⋃

η<ξ Iη and ξ ∈ I and q P ξ̌ ∈ Ǐ. As q and ξ are arbitrary,

p P the diagonal union of 〈Ȧξ〉ξ<λ̌ is included in Ǐ and belongs to İ.

As p and 〈Ȧξ〉ξ<λ are arbitrary,

P İ is normal.

555C Theorem Let (X,PX,µ) be a probability space such that µ{x} = 0 for every x ∈ X, and N the
null ideal of µ. Let κ > 0 be a cardinal. Then we can find a Pκ-name µ̇ such that

(i) Pκ
µ̇ is a probability measure with domain PX̌, zero on singletons;

(ii) if Ṅ is a Pκ-name for the ideal of subsets of X̌ generated by Ň , as in 555B, then

Pκ
Ṅ is the null ideal of µ̇.

proof (a) For each function σ : X → Bκ, write ~σ for the Pκ-name

{(x̌, σ(x)) : x ∈ X, σ(x) 6= 0}.

Then

Pκ
~σ ⊆ X̌

and [[x̌ ∈ ~σ]] = σ(x) for every x ∈ X. Moreover, if Ȧ is any Pκ-name such that Pκ
Ȧ ⊆ X̌, then Pκ

Ȧ = ~σ,

where σ(x) = [[x̌ ∈ Ȧ]] for x ∈ X.

(b) For σ ∈ BX
κ , the functional

a 7→
∫
ν̄κ(σ(x) ∩ a)µ(dx)

is additive and dominated by ν̄κ, so there is a unique uσ ∈ L∞(Bκ) such that∫
a
uσ dν̄κ =

∫
ν̄κ(σ(x) ∩ a)µ(dx)

for every a ∈ Bκ (365E, 365D(d-ii)), and 0 ≤ uσ ≤ χ1. Observe that if σ, τ ∈ BX
κ , a ∈ B+

κ and a Pκ
~σ = ~τ ,

then a ∩ σ(x) = a ∩ τ(x) for every x ∈ X, so that uσ × χa = uτ × χa.

(c) For u ∈ L∞(Bκ) let ~u be the corresponding Pκ-name for a real number (5A3L-5A3M, identifying Bκ

with RO(Pκ) as usual). Consider the Pκ-name

µ̇ = {((~σ, ~uσ), 11) : σ ∈ BX
κ }.

Then

Pκ
µ̇ is a function from PX̌ to [0, 1].
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PPP Because 0 ≤ uσ ≤ χ1, Pκ
~uσ ∈ [0, 1] for each σ, and Pκ

µ̇ ⊆ PX̌ × [0, 1]. If σ, τ ∈ BX
κ and a ∈ B+

κ

are such that a Pκ
~σ = ~τ , then uσ × χa = uτ × χa, by (b); but this means that a Pκ

~uσ = ~uτ (5A3M). So

Pκ
µ̇ is a function (5A3Ea). If a ∈ P and Ȧ are such that a Pκ

Ȧ ⊆ X̌, then there is a σ ∈ BX
κ such that

a Pκ
Ȧ = ~σ, so that Pκ

dom µ̇ = PX̌ (5A3Eb). QQQ

(d) Now we have to check the properties of µ̇.

(i) Pκ
µ̇ is countably additive. PPP Suppose that 〈Ȧn〉n∈N is a sequence of Pκ-names and a ∈ B+

κ is
such that

a Pκ
〈Ȧn〉n∈N is a disjoint sequence of subsets of X̌.

For each n ∈ N, let σn ∈ BX
κ be such that a Pκ

Ȧn = ~σn; then 〈a ∩ σn(x)〉n∈N is a disjoint sequence in
Bκ for each x ∈ X. Set σ(x) = supn∈N σn(x) for each x. Then [[x̌ ∈ ~σ]] = supn∈N [[x̌ ∈ ~σn]] for each x, so

Pκ
~σ =

⋃
n∈N ~σn. Now for any b ⊆ a,

∫

b

uσdν̄κ =

∫
ν̄κ(b ∩ σ(x))µ(dx) =

∫ ∞∑

n=0

ν̄κ(b ∩ σn(x))µ(dx)

=

∞∑

n=0

∫
ν̄κ(b ∩ σn(x))µ(dx) =

∞∑

n=0

∫

b

uσn
dν̄κ.

So

χa× uσ = supn∈N χa×
∑n

i=0 uσi

in L0(Bκ), and

a Pκ
µ̇(
⋃

n∈N Ȧn) = µ̇(
⋃

n∈N ~σn) = µ̇(~σ) = ~uσ =
∑∞

n=0 ~uσn
=

∑∞
n=0 µ̇(Ȧn).

As a and 〈Ȧn〉n∈N are arbitrary, Pκ
µ̇ is countably additive. QQQ

(ii) Suppose that ẏ is a Pκ-name and a ∈ B+
κ is such that a Pκ

ẏ ∈ X̌. Take any b stronger than a
and y ∈ X such that b Pκ

ẏ = y̌. Set σ(y) = 1 and σ(x) = 0 for x ∈ X \ {y}. Then∫
uσdν̄κ = µ{y} = 0,

so

b Pκ
µ̇({ẏ}) = µ̇({y̌}) = µ̇(~σ) = ~uσ = 0.

Thus

Pκ
µ̇ is zero on singletons.

(iii) If σ(x) = 1 for every x ∈ X, then uσ = χ1 so

Pκ
µ̇(X̌) = ~χ1 = 1.

(e) Pκ
Ṅ = {A : µ̇A = 0}. PPP Let a ∈ B+

κ and a Pκ-name Ȧ be such that a Pκ
Ȧ ⊆ X̌. Let σ ∈ BX

κ

be such that a Pκ
Ȧ = ~σ; then a Pκ

µ̇(Ȧ) = ~uσ.

(i) If a Pκ
Ȧ ∈ Ṅ , then there is an I ∈ N such that a Pκ

~σ ⊆ Ǐ (555B(a-i)), that is, a ∩ σ(x) = 0 for
every x ∈ X \ I. But this means that∫

a
uσdν̄κ =

∫
ν̄κ(σ(x) ∩ a)µ(dx) ≤ µI = 0,

and χa× uσ = 0. So

a Pκ
µ̇(Ȧ) = ~uσ = 0.

(ii) If a Pκ
µ̇(Ȧ) = 0, then χa× uσ = 0, so∫

ν̄κ(σ(x) ∩ a)µ(dx) =
∫
a
uσdν̄κ = 0.

Set I = {x : a ∩ σ(x) 6= 0}; then µI = 0 and
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a Pκ
Ȧ ⊆ Ǐ so Ȧ ∈ Ṅ .

Putting these together we have what we need. QQQ

555D Corollary (Solovay 71) Suppose that λ is a two-valued-measurable cardinal and that κ ≥ λ is
a cardinal. Then

Pκ
λ̌ is atomlessly-measurable.

proof Putting 555C and 555B together,

Pκ
there is a probability measure µ with domain Pλ̌, zero on singletons, such that the

null ideal of µ is λ̌-additive.

By 552B and 543Bc,

Pκ
λ̌ ≤ c is a real-valued-measurable cardinal, so is atomlessly-measurable.

555E Theorem Let λ be a two-valued-measurable cardinal, and I a λ-additive maximal proper ideal of
Pλ containing singletons; let µ be the {0, 1}-valued probability measure on λ with null ideal I. Let κ ≥ λ
be a cardinal, and define µ̇ from µ as in Theorem 555C. Set θ = TrI(λ;κ) (definition: 5A1Ma). Then

Pκ
µ̇ is Maharam-type-homogeneous with Maharam type θ̌.

proof (a) Let 〈gα〉α<θ be a family in κλ such that {ξ : gα(ξ) = gβ(ξ)} ∈ I whenever α < β < θ (541F).
Because λ ≤ κ, we can suppose that all the gα are injective. (Just arrange that gα(ξ) always belongs to
some Jξ ∈ [κ]κ where 〈Jξ〉ξ<λ is disjoint.) For α < θ and ξ < λ set σα(ξ) = egα(ξ). For σ ∈ Bλ

κ let ~σ be the
corresponding Pκ-name for a subset of λ as in the prood of 555C. Then for any non-empty finite K ⊆ θ we
have

Pκ
µ̇(
⋂

α∈Ǩ ~σα) = (2−#(K))̌ .

PPP Set σ(ξ) = infα∈K σα(ξ) for each ξ, so that

Pκ
~σ =

⋂
α∈Ǩ ~σα.

Set

I =
⋃

α,β∈K are different{ξ : ξ < λ, gα(ξ) = gβ(ξ)};

then I ∈ I. If a ∈ Bκ, let J ∈ [κ]≤ω be such that a belongs to the closed subalgebra of Bκ generated by
{eη : η ∈ J}. Then

{ξ : ξ < λ, ν̄κ(σ(ξ) ∩ a) 6= 2−#(K)ν̄κ(a)} ⊆ I ∪
⋃

α∈K g−1
α [J ] ∈ I,

so ∫
ν̄κ(σ(ξ) ∩ a)µ(dξ) = 2−#(K)ν̄κ(a).

This means that uσ, as defined in the proof of 555C, is just 2−#(K)χ1 and Pκ
~uσ = (2−#(K))̌ , that is,

Pκ
µ̇(
⋂

α∈Ǩ ~σα) = (2−#(K))̌ . QQQ

Thus

Pκ
〈~σα〉α<θ̌ is a stochastically independent family in Pλ of elements of measure 1

2 , and

every principal ideal of the measure algebra of µ̇ has Maharam type at least θ̌

(331Ja).

(b) In the other direction, suppose that a ∈ B+
κ , δ is a cardinal, t > 0 is a rational number and 〈Ȧα〉α<δ

is a family of Pκ-names such that

a Pκ
Ȧα ⊆ λ̌, µ̇(Ȧα△Ȧβ) ≥ 3ť whenever α < β < δ̌.

For each α < δ let σα ∈ Bλ
κ be such that a Pκ

~σα = Ȧα; then∫
ν̄κ(a ∩ (σα(ξ) △ σβ(ξ)))µ(dξ) ≥ 3tν̄κa
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whenever α < β < δ. Let D ⊆ Bκ be a set with cardinal κ which is dense for the measure-algebra topology
(521E(a-ii)), and for α < δ, ξ < κ take dα(ξ) ∈ D such that ν̄κ(dα(ξ) △ σα(ξ)) ≤ tν̄κ(a). Then∫

ν̄κ(dα(ξ) △ dβ(ξ))µ(dξ) > 0

and {ξ : dα(ξ) 6= dβ(ξ)} /∈ I whenever α < β < δ; as I is a maximal ideal, {ξ : dα(ξ) = dβ(ξ)} ∈ I whenever
α < β < δ, and 〈dα〉α<δ witnesses that

δ ≤ TrI(λ;D) = TrI(λ;κ) = θ.

As a, t and 〈Ȧα〉α<δ are arbitrary,

Pκ
the Maharam type of µ̇ is at most θ̌;

with (a), this means that

Pκ
µ̇ is Maharam-type-homogeneous with Maharam type θ̌.

555F Proposition Let λ be a two-valued-measurable cardinal and κ > 0. Let µ be a normal witnessing
probability on λ and µ̇ the corresponding Pκ-name for a measure on λ̌, as in 555C. Then

Pκ
the covering number of the null ideal of the product measure µ̇N on λ̌N is λ̌.

proof (a) It may save a moment’s thought later on if I remark now that if (Y,T, ν) is any measure space
and W ⊆ Y N is negligible for the product measure νN, then there is a family 〈Fij〉j≤i∈N in T such that

W ⊆
⋂

n∈N

⋃
i≥n{y : y ∈ Y N, y(j) ∈ Fij for every j ≤ i},

∑∞
i=0

∏i
j=0 νFij ≤ 1.

PPP For each k ∈ N, let 〈Cki〉i∈N be a sequence of measurable cylinders such that W ⊆
⋃

i∈N Cki and∑∞
i=0 λ

NCki ≤ 2−k−1; let 〈Ci〉i∈N be a re-listing of the double family 〈Cki〉k,i∈N with enough copies of the
empty set interleaved to ensure that Ci is determined by coordinates less than or equal to i for each i;
express each Ci as {y : y(j) ∈ Fij for j ≤ i}. QQQ

(b) It will also help to be able to do some calculations with sequences of Pκ-names for subsets of λ. For
J ⊆ κ let CJ be the closed subalgebra of Bκ generated by {eη : η ∈ J}, and PJ : L∞(Bκ) → L∞(CJ) the
corresponding conditional expectation operator; see 242J, 254R and 365Q7 for the basic manipulations of
these operators. Let F be the normal ultrafilter {F : µF = 1}.

(i) Let 〈Ȧij〉j≤i∈N be a family of Pκ-names such that

Pκ
Ȧij ⊆ λ̌

whenever j ≤ i ∈ N. For j ≤ i ∈ N and ξ < λ set σij(ξ) = [[ξ̌ ∈ Ȧij ]]. Then there is a countable set Iξ ⊆ κ
such that σij(ξ) ∈ CIξ whenever j ≤ i ∈ N. By 541Rb, there are an F0 ∈ F and a countable set I ⊆ κ such
that Iξ ∩ Iξ′ ⊆ I for all distinct ξ, ξ′ ∈ F0.

(ii) Set uijξ = PI(χσij(ξ)) for ξ < λ. Because #(L∞(CI)) ≤ c < λ and F is a λ-complete ultrafilter,
there are uij ∈ L∞(CI) such that {ξ : uijξ = uij} belongs to F whenever j ≤ i ∈ N. Set

F = F0 ∩ {ξ : uijξ = uij whenever j ≤ i ∈ N},

so that F ∈ F .

(iii) We have

Pκ
µ̇Ȧij = ~uij

whenever j ≤ i ∈ N. PPP If a ∈ Bκ, there is a countable J ⊆ κ such that a belongs to the closed subalgebra
CJ generated by {eη : η ∈ J}; we may suppose that I ⊆ J . Now 〈Iξ \ I〉ξ∈F is disjoint, so {ξ : ξ ∈ F ,
Iξ ∩ J 6⊆ I} is countable, and F ′ = {ξ : ξ ∈ F , Iξ ∩ J ⊆ I} belongs to F . For ξ ∈ F ′ we have

PJ(χσij(ξ)) = PJPIξ(χσij(ξ)) = PJ∩Iξ(χσij(ξ)) ∈ CI

so that

7Formerly 365R.
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PJ(χσij(ξ)) = PIPJ(χσij(ξ)) = PI(χσij(ξ)) = uij ;

consequently ∫
a
uijdν̄κ =

∫
a
χσij(ξ)dν̄κ = ν̄κ(a ∩ σij(ξ)).

Because F ′ is µ-conegligible, ∫
a
uijdν̄κ =

∫
ν̄κ(a ∩ σij(ξ))µ(dξ).

As this is true for every a ∈ Bκ, the construction in 555C gives Pκ
µ̇Ȧij = ~uij . QQQ

(iv) Note also that if i ∈ N and ξ0, . . . , ξj ∈ F are distinct, then
∫ ∏i

j=0 uijdν̄κ = ν̄κ(infj≤i σij(ξj)).

PPP The algebras CI∪{η}, for η ∈ κ \ I, are relatively stochastically independent over CI in the sense of
458L; by 458H/458Le, the algebras CI∪Iξ , for ξ ∈ F , are relatively stochastically independent over CI ; but,
disentangling the definitions, this is exactly what we need to know. QQQ

(c) We are now ready for the central idea of the proof. Suppose that Ẇ is a Pκ-name such that

Pκ
Ẇ ⊆ λ̌N and µ̇NẆ = 0.

Then there is an F ∈ F such that

Pκ
Ẇ is disjoint from (FN \ ∆)̌

where ∆ =
⋃

j<k∈N{x : x ∈ λN, x(j) = x(k)}. PPP By (a), we have a family 〈Ȧij〉j≤i∈N of Pκ-names such that

Pκ
Ȧij ⊆ λ̌ whenever j ≤ i ∈ N,

Pκ
Ẇ ⊆

⋂
n∈N

⋃
i≥n{x : x ∈ λ̌N, x(j) ∈ Ȧij for every j ≤ i},

Pκ

∑∞
i=0

∏i
j=0 µ̇Ȧij ≤ 1.

Take σij(ξ), I ∈ [κ]≤ω, uij ∈ CI and F ∈ F as in (b). Suppose that x ∈ FN and x(j) 6= x(k) for distinct j,
k ∈ N. Then

[[x̌ ∈ Ẇ ]] ⊆ infn∈N supi≥n infj≤i [[x(j)̌ ∈ Ȧij ]] = infn∈N supi≥n infj≤i σij(x(j)).

So

ν̄κ[[x̌ ∈ Ẇ ]] ≤ infn∈N

∑∞
i=n ν̄κ(infj≤i σij(x(j))) = infn∈N

∑∞
i=n

∫ ∏
j≤i uijdν̄κ

by (b-iv). On the other hand, setting vi =
∏

j≤i uij for i ∈ N and w = supm∈N

∑m
i=0 vi, we have

Pκ
~w =

∑∞
i=0 ~vi =

∑∞
i=0

∏i
j=0 µ̇Ȧij ≤ 1.

So w ≤ χ1 and
∑∞

i=0

∫ ∏
j≤i uijdν̄κ =

∫
w dν̄κ ≤ 1.

Putting these together, we see that ν̄κ[[x̌ ∈ Ẇ ]] = 0 and Pκ
x̌ /∈ Ẇ . As x is arbitrary,

Pκ
Ẇ is disjoint from (FN \ ∆)̌ . QQQ

(d) We are nearly home. Suppose that a ∈ B+
κ and that Ẇ is a Pκ-name such that

a Pκ
Ẇ is a family of negligible sets in λ̌N and #(Ẇ) < λ̌.

Take any b stronger than a, θ < λ and family 〈Ẇζ〉ζ<θ of Pκ-names such that

b Pκ
Ẇ = {Ẇζ : ζ < θ̌}.

For each ζ < θ let Ẇ ′
ζ be a Pκ-name such that

Pκ
Ẇ ′

ζ ⊆ λ̌N is negligible, b Pκ
Ẇ ′

ζ = Ẇζ .
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By (c), we have an Fζ ∈ F such that

Pκ
Ẇ ′

ζ ∩ (FN
ζ \ ∆)̌ = ∅.

Because θ < λ,
⋂

ζ<θ Fζ belongs to F and is infinite, and there is an x ∈
⋂

ζ<θ F
N
ζ \ ∆. But now

Pκ
x̌ /∈

⋃
ζ<θ̌ Ẇ

′
ζ

and

b Pκ
x̌ /∈

⋃
Ẇ , so Ẇ does not cover λ̌N.

As b is arbitrary,

a Pκ
Ẇ does not cover λ̌N;

as a and Ẇ are arbitrary,

Pκ
the covering number of the null ideal of the product measure on λ̌N is at least λ̌.

The reverse inequality is trivial, since

Pκ
µ̇{ξ} = 0

for every ξ < λ̌; so the proposition is proved.

555G Cohen forcing If we allow ourselves to start from a measurable cardinal, we can find forcing
constructions for a variety of power set σ-quotient algebras besides the probability algebras provided by
Theorem 555C. In view of §554, an obvious construction is the following.

Theorem Let λ be a two-valued-measurable cardinal and κ ≥ λ a cardinal. Let I be a λ-additive maximal
proper ideal of subsets of λ, and İ a Qκ-name for the ideal of subsets of λ̌ generated by Ǐ, as in 555B. Set
θ = TrI(λ;κ). Then

Qκ
Pλ/İ ∼= Gθ̌.

proof (a) For η < κ let eη ∈ Gκ be the equivalence class of {x : x ∈ {0, 1}κ, x(η) = 1}; for L ⊆ κ let CL be

the closed subalgebra of Gκ generated by {eη : η ∈ L}. For σ ∈ Gλ
κ let ~σ be the Pκ-name {(ξ̌, σ(ξ)) : ξ < λ,

σ(ξ) 6= 0}, so that Qκ
~σ ⊆ λ̌, and [[ξ̌ ∈ ~σ]] = σ(ξ) for any ξ < λ.

Write F = {λ \ I : I ∈ I} = Pλ \ I, so that F is a λ-complete ultrafilter on λ.

(b) For z ∈ Fn<ω(κ; {0, 1}) set

vz = {x : z ⊆ x ∈ {0, 1}κ}• ∈ Gκ.

Then {vz : z ∈ Fn<ω(κ; {0, 1})} is order-dense in Gκ. For A ⊆ λ and τ ∈ Fn<ω(κ; {0, 1})A, set στ (ξ) = vτ(ξ)
if ξ ∈ A, 0 if ξ ∈ λ \A. Note that

Qκ
~στ ⊆ (dom τ )̌ .

Now if a ∈ G+
κ and Ċ is a Qκ-name such that a Qκ

Ċ ⊆ λ̌, there is a countable set T ⊆
⋃

A⊆λ Fn<ω(κ; {0, 1})A

such that a Qκ
Ċ =

⋃
τ∈Ť ~στ . PPP Set D = {ξ : ξ < λ, Qκ

ξ̌ /∈ Ċ}. For each ξ ∈ λ \D, choose a sequence

〈τn(ξ)〉n∈N in Fn<ω(κ; {0, 1}) such that [[ξ̌ ∈ Ċ]] = supn∈N vτn(ξ). If ξ ∈ D, then ξ /∈ dom τn and στn(ξ) = 0
for every n; accordingly

[[ξ̌ ∈ Ċ]] = 0 = supn∈N [[ξ̌ ∈ ~στn ]].

While if ξ ∈ λ \D,

[[ξ̌ ∈ Ċ]] = supn∈N vτn(ξ) = supn∈N στn(ξ) = supn∈N [[ξ̌ ∈ ~στn ]].

So

a Qκ
Ċ =

⋃
n∈N ~στn

and we can set T = {τn : n ∈ N}. QQQ
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(c) There is a family G0 ⊆ κλ, with cardinal θ, such that {ξ : g(ξ) = g′(ξ)} ∈ I whenever g, g′ ∈ G are
distinct (541F again), and we can suppose that every member of G0 is injective (see part (a) of the proof of
555E). Let G ⊇ G0 be a maximal family such that {ξ : g(ξ) = g′(ξ)} belongs to I whenever g, g′ ∈ G are
distinct. Then #(G) ≤ θ, by the definition of TrI(λ;κ), so in fact #(G) = θ. Enumerate G as 〈gα〉α<θ, and
for α < θ, ξ < λ set ρα(ξ) = egα(ξ) ∈ Gκ.

(d) Suppose that α < θ and a ∈ G+
κ are such that

a Qκ
~ρ •
α is neither 0 nor 1 in Pλ̌/İ.

Then g−1
α [{η}] /∈ F for every η < κ. PPP??? Otherwise, take b to be one of a ∩ eη, a \ eη and non-zero, and any

ξ ∈ g−1
α [{η}]. If b ⊆ eη then b ⊆ ρα(ξ) and b Qκ

ξ̌ ∈ ~ρα. If b ∩ eη = 0 then ρα(ξ) ∩ b = 0 and b Qκ
ξ̌ /∈ ~ρα.

So

b Qκ
g−1
α [{η}]̌ is either included in or disjoint from ~ρα, and ~ρ •

α is either 1 or 0 in Pλ̌/İ.

But this contradicts the assumption on a. XXXQQQ

(e) Qκ
{~ρ •

α : α < θ̌} \ {0, 1} is a Boolean-independent family in Pλ̌/İ.
PPP??? Otherwise, there must be disjoint finite sets J , K ⊆ θ and a ∈ G+

κ such that

a Qκ
~ρ •
α is neither 0 nor 1 in Pλ̌/İ

for every α ∈ J ∪K, but

a Qκ
infα∈J̌ ~ρ

•
α \ supα∈Ǩ ~ρ •

α = 0.

In this case,

I = {ξ : ξ < λ, there are distinct α, β ∈ J ∪K such that gα(ξ) = gβ(ξ)}

belongs to I. For ξ < λ define σ(ξ) ∈ Gκ by saying that

σ(ξ) = 1 if ξ ∈ I,

= inf
α∈J

egα(ξ) \ sup
α∈K

egα(ξ) otherwise.

For α ∈ J and ξ ∈ λ \ I, σ(ξ) ⊆ ρα(ξ); so

Qκ
~σ \ ~ρα is included in Ǐ and belongs to İ, that is, ~σ• ⊆ ~ρ •

α.

On the other hand, if α ∈ K and ξ ∈ λ \ I, σ(ξ) ∩ ρα(ξ) = 0; so

Qκ
~σ ∩ ~ρα is included in Ǐ and belongs to İ, that is, ~σ• ∩ ~ρ •

α = 0.

So we have

Qκ
~σ• ⊆ infα∈J̌ ~ρ

•
α \ supα∈Ǩ ~ρ •

α

and

a Qκ
~σ ∈ İ.

Let I ′ ∈ I be such that a Qκ
~σ ⊆ Ǐ ′ (see part (a) of the proof of 555B), and L ∈ [κ]≤ω such that a ∈ CL.

By (d), g−1
α [{η}] ∈ I for every α ∈ J ∪K and η < κ, so there must be a ξ ∈ λ \ (I ′ ∪ I) such that gα(ξ) /∈ L

for every α ∈ J ∪K. In this case, σ(ξ) ∈ Cκ\L so a ∩ σ(ξ) is non-zero. But σ(ξ) = [[ξ̌ ∈ ~σ]] and a Qκ
ξ̌ /∈ ~σ,

so this is impossible. XXXQQQ

(f) Qκ
the subalgebra of Pλ̌/İ generated by {~ρ •

α : α < θ̌} is order-dense in Pλ̌/İ.
PPP If a ∈ G+

κ and ċ is a Qκ-name such that

a Qκ
ċ ∈ (Pλ̌/İ) \ {0},

there is a Qκ-name Ċ such that

a Qκ
Ċ ⊆ λ̌, Ċ /∈ İ and ċ = Ċ•.

Take a countable set T ⊆
⋃

A⊆λ Fn<ω(κ; {0, 1})A such that a Qκ
Ċ =

⋃
τ∈Ť ~στ , as described in (b). Since

Qκ
İ is a σ-ideal, there are a b stronger than a and a τ ∈ T such that b Qκ

~στ /∈ İ. Set F0 = dom τ ; since
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Qκ
~στ ⊆ F̌0, F0 /∈ I.. Since I is a σ-ideal, there is an n ∈ N such that F1 = {ξ : ξ ∈ F0, #(τ(ξ)) = n} /∈ I,

and F1 ∈ F .
Let 〈hi〉i<n be a finite sequence of functions from λ to κ such that dom τ(ξ) = {hi(ξ) : i < n} for every

ξ ∈ F1. As G was maximal, there is for each i < n an αi < θ such that {ξ : gαi
(ξ) = hi(ξ)} belongs to F ;

set F2 = {ξ : ξ ∈ F1, gαi
(ξ) = hi(ξ) for every i < n}. Note that if i < j < n then gαi

(ξ) 6= gαj
(ξ) for any

ξ ∈ F1, so αi 6= αj . Next, there must be an L ⊆ n such that

F3 = {ξ : ξ ∈ F2, τ(ξ)(gαi
(ξ)) = 1 for every i ∈ L,

τ(ξ)(gαi
(ξ)) = 0 for every i ∈ n \ L}

belongs to F . Set J = {αi : i ∈ L} and K = {αi : i ∈ n \ L}; of course J ∩K = ∅, because all the αi are
different. Then, for ξ ∈ F3, dom τξ = {gαi

(ξ) : i < n} and

[[ξ̌ ∈ ~στ ]] = στ (ξ) = vτ(ξ) = inf
i∈L

egαi
(ξ) \ sup

i∈n\L
egαi

(ξ)

= inf
α∈J

egα(ξ) \ sup
α∈K

egα(ξ) = inf
α∈J

[[ξ̌ ∈ ~ρα]] \ sup
α∈K

[[ξ̌ ∈ ~ρα]].

Accordingly

Qκ
~στ△(

⋂
α∈J̌ ~ρα \

⋃
α∈Ǩ ~ρα) is disjoint from F̌3 and belongs to İ,

so

b Qκ
infα∈J̌ ~ρ

•
α \ supα∈Ǩ ~ρ •

α = ~σ•
τ ⊆ ċ.

As a and ċ are arbitrary, this proves the result. QQQ

(g) If α < θ is such that gα ∈ G0, then

Qκ
~ρ •
α 6= 0.

PPP??? Otherwise, there is a non-zero a ∈ Gκ such that

a Qκ
~ρ •
α = 0,

that is,

a Qκ
{ξ : ~ρα(ξ) 6= 0} ∈ İ,

and there is an I ∈ I such that

a Qκ
{ξ : ~ρα(ξ) 6= 0} ⊆ Ǐ.

In this case, for ξ ∈ λ \ I,

a Pκ
~ρα(ξ) = 0,

that is,

0 = a ∩ ρα(ξ) = a ∩ egα(ξ).

But λ \ I is infinite and gα is injective, so {gα(ξ) : ξ ∈ λ \ I} is infinite and a = 0. XXXQQQ
Similarly,

Qκ
~ρ •
α 6= 1.

As this is true whenever gα ∈ G0, and #(G0) = θ, we see that

Qκ
#({α : ~ρ •

α /∈ {0, 1}}) = θ̌.

(h) Putting (e)-(g) together, and using 555Bc, 515Nc and 514Ih,

Qκ
Pλ̌/İ has a Boolean-independent family with cardinal θ̌ generating an order-dense

subalgebra; being Dedekind complete, it is isomorphic to RO({0, 1}θ̌) ∼= Gθ̌.

555H Corollary Suppose that λ is a two-valued-measurable cardinal and κ = 2λ. Then
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Qκ
there is a non-trivial atomless σ-centered power set σ-quotient algebra.

proof (a) Note first that {0, 1}c is separable (4A2B(e-ii)), so Gc
∼= RO({0, 1}c) is σ-centered (514H(b-iii));

also, of course, it is atomless.

(b) Taking I and İ as in 555G, we have

Qκ
Pλ̌/İ ∼= Gθ̌

where θ = TrI(λ;κ). But since θ lies between κ and the cardinal power κλ = κω = κ, we have

Qκ
θ̌ = κ̌ = c

(554B), and

Qκ
Pλ̌/İ ∼= Gc is σ-centered and atomless

by (a).

555I The next example relies on some interesting facts which I have not yet had any compelling reason
to spell out. I must begin with a definition which has so far been confined to the exercises.

Definition A Boolean algebra A has the Egorov property if whenever 〈An〉n∈N is a sequence of countable
partitions of unity in A then there is a countable partition B of unity such that {a : a ∈ An, a ∩ b 6= 0} is
finite for every b ∈ B and n ∈ N.

555J Lemma (a) Suppose that X is a set and #(X) < b. Then PX has the Egorov property.
(b) Let A be a Dedekind σ-complete Boolean algebra with the Egorov property and I a σ-ideal of A.

Then A/I has the Egorov property.
(c) A ccc Boolean algebra has the Egorov property iff it is weakly (σ,∞)-distributive.

proof (a) Let 〈An〉n∈N be a sequence of countable partitions of X; enumerate each An as 〈ani〉i<Nn
where

Nn ∈ N ∪ {ω} for each n. For each x ∈ X and n ∈ N, let fx(n) < Nn be such that x ∈ an,fx(n).
Because #(X) < b, there is an f : N → N such that {n : f(n) < fx(n)} is finite for every x ∈ X (522C);
set g(x) = sup{n : f(n) < fx(n)}. Now set bn = {x : x ∈ X, n = maxk≤g(x) fx(k)} for each n, and
B = {bn : n ∈ N}; then B is a partition of X, and for any m, n ∈ N we have bn ∩ ami = ∅ whenever
max(n, f(m)) < i < Nm. So {a : a ∈ Am, bn ∩ a 6= ∅} is finite for all m, n ∈ N. As 〈An〉n∈N is arbitrary,
PX has the Egorov property.

(b) Let 〈Cn〉n∈N be a sequence of countable partitions of unity in A/I. For each n ∈ N, we can choose
a countable disjoint family An ⊆ A such that Cn = {a• : a ∈ An}; set A′

n = An ∪ {1 \ supAn}, so
that A′

n is a countable partition of unity in A. Let B be a countable partition of unity in A such that
{a : a ∈ A′

n, a ∩ b 6= 0} is finite for every n ∈ N. Then D = {b• : b ∈ B} is a countable partition of unity in
A/I and {c : c ∈ Cn, c ∩ d 6= 0} is finite for every d ∈ D and n ∈ N.

(c) This is elementary, because every partition of unity in A is countable, so the Egorov property exactly
matches (ii) of 316H.

555K G lówczyński’s example (G lówczyński 91, Balcar Jech & Pazák 05, G lówczyński 08)
Let λ be a two-valued-measurable cardinal, and P a ccc forcing notion such that

P λ̌ < m

(5A3P). Then, taking I to be the null ideal of a witnessing measure on λ, and İ to be a P-name for the
ideal of subsets of λ̌ generated by Ǐ, as in 555B,

P Pλ̌/İ is ccc, atomless, Dedekind complete, weakly (σ,∞)-distributive, has Maharam
type ω and is not a Maharam algebra.

proof We know from 555B that

P İ is a σ-ideal, and the quotient Pλ̌/İ is ccc and Dedekind complete.
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By 541P, because m ≤ c,

P Pλ̌/İ is atomless.

By 555J, because m ≤ b,

P Pλ̌ has the Egorov property, so Pλ̌/İ has the Egorov property and is weakly (σ,∞)-
distributive.

Moreover, because m ≤ p, 517Rc tells us that

P Pλ̌ is σ-generated by a countable set, so Pλ̌/İ is σ-generated by a countable set and
has countable Maharam type.

Finally, since we certainly have

P λ̌ < m ≤ mcountable ≤ c, so there is a separable metrizable topology on λ̌,

539I shows that

P there is no non-zero Maharam submeasure on Pλ̌/İ.

555L Supercompact cardinals and the normal measure axiom If we allow ourselves to go a good
deal farther than ‘measurable cardinal’ we can use similar techniques to find a forcing language in which
NMA is true.

Definition An uncountable cardinal κ is supercompact if for every set X there is a κ-additive maximal
proper ideal I of subsets of S = [X]<κ such that

(α) {s : s ∈ S, x /∈ s} ∈ I for every x ∈ X,
(β) if A ⊆ S, A /∈ I and f : A → X is such that f(s) ∈ s for every s ∈ A, then there is an

x ∈ X such that {s : s ∈ A, f(s) = x} /∈ I.

(Compare 545D.)

555M Proposition A supercompact cardinal is two-valued-measurable.

proof If κ is supercompact, let I be a κ-additive maximal ideal of subsets of S = [κ]<κ satisfying (α) of
555L. Define f : S → κ by setting f(s) = min(κ \ s) for s ∈ S. Then J = {J : J ⊆ κ, f−1[J ] ∈ I} is a
κ-additive maximal ideal of subsets of κ. If ξ < κ, then

f−1[{ξ}] = {s : f(s) = ξ} ⊆ {s : ξ /∈ s} ∈ I,

so {ξ} ∈ J . Thus J contains all singletons, and witnesses that κ is two-valued-measurable.

555N Theorem (Prikry 75, Fleissner 91) Suppose that κ is a supercompact cardinal. Then

Pκ
the normal measure axiom and the product measure extension axiom are true.

proof (a) Life will be a little easier if I start by pointing out that we can work with a variation of NMA as
stated in 545D. First, for a set X and an uncountable cardinal λ let ‡(X,λ) be the statement

there is a λ-additive probability measure ν on S = [X]<λ, with domain PS, such that
(α) ν{s : x ∈ s ∈ S} = 1 for every x ∈ X,
(β) if g : S \ {∅} → X is such that g(s) ∈ s for every s ∈ S \ {∅}, then there is a countable set

K ⊆ X such that νg−1[K] = 1.

Now the point is that if ‡(α, c) is true for every ordinal α, then the normal measure axiom is true. PPP Let X
be any set. Since, as always, we are working with the axiom of choice, X is equipollent with some ordinal
and ‡(X, c) is true; let ν be a measure on S = [X]<c as above. Given A ⊆ S and a function f : A → X
which is regressive in the sense of (β) in 545D, then we can extend f to a function g : S \ {∅} → X which
is regressive in the sense of (β) here. If K is a countable set such that g−1[K] is conegligible, and A is not
negligible, then there must be a ξ ∈ K such that A ∩ g−1[{ξ}] = f−1[{ξ}] is not negligible, as required in
545D. QQQ

(b) For the time being (down to the end of (d) below), fix an ordinal α. Let I be a κ-additive maximal
ideal of subsets of S = [α]<κ as in 555L, and ν the corresponding measure on S, setting νA = 0 and
ν(S \A) = 1 if A ∈ I. By 555C, we have a corresponding Pκ-name ν̇ for a measure on Š. Now
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Pκ
Š ⊆ [α̌]<κ̌,

so we have a Pκ-name µ̇ such that

Pκ
µ̇ is a measure with domain P([α̌]<κ̌) and µ̇(D) = ν̇(D ∩ Š) for every D ⊆ [α̌]<κ̌.

By 555C,

Pκ
ν̇ is a κ̌-additive probability measure, so µ̇ is a κ̌-additive probability measure.

(c) Pκ
µ̇{s : ξ ∈ s ∈ [α̌]<κ̌} = 1 for every ξ < α̌.

PPP If a ∈ B+
κ and ξ̇ are such that a P ξ̇ < α̌, take any b stronger than a and ξ < α such that b Pκ

ξ̇ = ξ̌.
Now I = {s : s ∈ S, ξ /∈ s} ∈ I so

b Pκ
0 = ν̇Ǐ = ν̇{s : s ∈ Š, ξ̌ /∈ s} = µ̇{s : s ∈ [α̌]<κ̌, ξ̌ /∈ s}

and 1 = µ̇{s : s ∈ [α̌]<κ̌, ξ̌ ∈ s}.

As b and ξ are arbitrary,

a Pκ
µ̇{s : ξ̇ ∈ s ∈ [α̌]<κ̌} = 1;

as a and ξ̇ are arbitrary,

Pκ
µ̇{s : ξ ∈ s ∈ [α̌]<κ̌} = 1 for every ξ < α̌. QQQ

(d) Suppose that a ∈ B+
κ and that ḟ is a Pκ-name such that

a Pκ
ḟ : [α̌]<κ̌ \ {∅} → α̌ is a function and ḟ(s) ∈ s whenever ∅ 6= s ∈ [α̌]<κ̌.

For each s ∈ S \ {∅}, we have

a Pκ
ḟ(š) ∈ š;

because Pκ is ccc, there is a non-empty countable set Js ⊆ s such that a Pκ
ḟ(š) ∈ J̌s (5A3Nc). Let

〈hn(s)〉n∈N be a sequence running over Js. For each n ∈ N, we have a βn < α such that {s : s ∈ S \ {∅},
hn(s) 6= βn} ∈ I. Set K = {βn : n ∈ N}; since I is a σ-ideal containing {∅}, I = {s : s ∈ S \ {∅},
Js 6⊆ K} ∪ {∅} belongs to I. But in this case, Pκ

µ̇Ǐ = ν̇Ǐ = 0 and

a Pκ
ḟ(š) ∈ J̌s ⊆ Ǩ

whenever s ∈ S \ I, so

a Pκ
µ̇(ḟ−1[Ǩ]) = ν̇(Š ∩ ḟ−1[Ǩ]) ≥ ν̇(Š \ Ǐ) = 1,

while of course Pκ
Ǩ is countable.

(e) What this means is that

Pκ
‡ (α̌, κ̌)

for every ordinal α; since forcing adds no new ordinals (5A3Na),

Pκ
‡ (α, κ̌) for every ordinal α.

But 552B, with 555M and 5A1Fc, tells us that

Pκ
c = κ̌, so ‡(α, c) for every ordinal α;

with (a) above and 545E, we get

Pκ
NMA and PMEA.

555O All forcing constructions of quasi-measurable cardinals start from two-valued-measurable cardinals,
and there is a reason for this.

Theorem (Solovay 71) If κ is an uncountable cardinal and I is a proper κ-saturated κ-additive ideal of
Pκ containing singletons, then

L(I) � κ is two-valued-measurable and the generalized continuum hypothesis is true.
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Remarks The proof employs techniques not used elsewhere in this treatise, so I omit it entirely, to the
point of not explaining what L(I) is or what the symbol � means; I remark only that L(I) is a proper class
containing every ordinal and the set I, and that the theorem says that the axioms of ZFC, together with ‘κ is
two-valued-measurable’ and the generalized continuum hypothesis, are true when relativized appropriately
to the class L(I). For more, see Jech 78, p. 416, Theorem 82a.

555X Basic exercises (a) Suppose that λ is a real-valued-measurable cardinal with witnessing proba-
bility ν, and κ a cardinal. Let µ̇ be the Pκ-name for a measure on λ̌ as defined in 555C. Show that

Pκ
µ̇Ǎ = (νA)̌

for any A ⊆ λ.

(b) Suppose that λ is a two-valued-measurable cardinal. Set κ = 2λ. Show that

Pκ
λ̌ is an atomlessly-measurable cardinal with a witnessing probability with Maharam

type c = 2λ̌.

(c) Suppose that λ is a two-valued-measurable cardinal and that κ = (2λ)(+ω). Show that

Pκ
λ̌ is an atomlessly-measurable cardinal with a witnessing probability with Maharam
type less than c.

(d) Suppose that λ is a two-valued-measurable cardinal and κ = 2λ. Show that

Pκ
there is a non-trivial atomless σ-linked power set σ-quotient algebra.

(e) Let A be a Dedekind σ-complete Boolean algebra. Show that A has the Egorov property iff for
every sequence 〈un〉n∈N in L0 = L0(A) there is a sequence 〈αn〉n∈N in ]0,∞[ such that {αnun : n ∈ N} is
order-bounded in L0.

555Y Further exercises (a) Suppose that X is a set, and I a proper ideal of subsets of X containing

singletons. Let P be a forcing notion such that satP ≤ add I, and İ a P-name for the ideal of subsets of X̌
generated by Ǐ, as in 555B. (i) Show that

P add İ = (add I )̌ .

(ii) Suppose that sat(PX/I) < add I. Set θ = max(satP, sat(PX/I)). Show that

P θ̌ is a cardinal, İ is θ̌-saturated in PX̌ and PX̌/İ is Dedekind complete.

(iii) Show that if X = λ is a regular uncountable cardinal and I is a normal ideal on λ, then

P İ is a normal ideal on λ̌.

(b) In 555B, show that if I is θ-saturated in PX, where θ is an uncountable cardinal such that cf[θ]≤ω <
add I, then

P İ is θ̌-saturated in PX̌.

(c) Suppose that λ is a two-valued-measurable cardinal, and that P is a forcing notion with #(P) < λ.
Show that P λ̌ is a two-valued-measurable cardinal.

(d) Suppose that κ is a two-valued-measurable cardinal, and that m = c. Show that

Pκ
c is real-valued-measurable, b = d = č and the shrinking number of the Lebesgue null
ideal is at least č.

(e) Let κ be a cardinal. Suppose that for every set X there is a κ-additive maximal proper ideal I of
subsets of S = [X]<κ such that

(α) {s : s ∈ S, x /∈ s} ∈ I for every x ∈ X,
(β) if A ⊆ S, A /∈ I and f : A → X is such that f(s) ∈ s for every s ∈ A, then there is an

x ∈ X such that {s : s ∈ A, f(s) = x} /∈ I.

Show that κ is supercompact.
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(f) Let κ be a supercompact cardinal. Show that �λ is false for every λ ≥ κ.

(g) Suppose that λ is a two-valued-measurable cardinal, and κ > λ a cardinal. Show that

Pκ
there is a probability measure on ω1 with Maharam type greater than the least atom-
lessly-measurable cardinal.

(h) In 555C, suppose that X = κ and that µ witnesses that κ is two-valued-measurable, that is, µ
is a κ-additive {0, 1}-valued measure with domain Pκ. For J ⊆ κ let PJ : L∞(Bκ) → L∞(Bκ) be the
corresponding conditional expectation as in part (b) of the proof of 555F. Show that for every σ ∈ Bκ

κ there
is a countable set J ⊆ κ such that µ{ξ : ξ < κ, uσ = PJ(χσ(ξ))} = 1.

555Z Problems (a) In 555B, what can we say about the π-weight of PX̌/İ?

(b) Suppose that λ is an atomlessly-measurable cardinal with a normal witnessing probability. Let
〈Aη〉η<ω1

be a family of non-negligible subsets of λ. Must there be a countable set meeting every Aη? (See
555F and 521Xi.)

555 Notes and comments The point of Solovay’s theorems 555D and 555O is that they are relative
consistency results. Continuing the discussion in the notes to §541, write ‘∃2vmc’, ‘∃qmc’, ‘∃amc’ for the
sentences ‘there is a two-valued-measurable cardinal’, ‘there is a quasi-measurable cardinal’ and ‘there is
an atomlessly-measurable cardinal’. I have already noted that there are fundamental metamathematical
reasons why we cannot have a proof, in ZFC, that

if ZFC is consistent then ZFC + ∃qmc is consistent

unless ZFC is actually inconsistent. But 555D tells us that

if ZFC + ∃2vmc is consistent, then ZFC + ∃amc is consistent

and 555O that

if ZFC + ∃qmc is consistent, then ZFC + ∃2vmc is consistent.

Since ∃qmc is actually a consequence of both ∃2vmc and ∃amc, we see that

if one of ZFC + ∃2vmc, ZFC + ∃amc, ZFC + ∃qmc is consistent, so are the others;

that is, ∃2vmc, ∃amc and ∃qmc are equiconsistent in ZFC. Of course they are not in general equiveridical
(unless all are disprovable); as noted in 555O, if we start from a universe in which ∃qmc is true, we can
move to one in which ∃2vmc and CH are both true, so that ∃amc is false, and there are easier arguments to
show that if we start with ∃amc, we can move to

∃amc + ‘there are no strongly inaccessible cardinals’,

so that we have ∃amc true but ∃2vmc false.
The reason for working through these equiconsistency results is to show that assertions like NMA, PMEA

and ∃amc, which are of interest in measure theory and general topology, are no more dangerous than appro-
priate assertions about large cardinals which have been explored in depth (Jech 78, chap. 6; Kanamori

03, §22; Jech 03, §20), and for which we can have corresponding confidence that either they are consistent
with ZFC, or that an eventual contradiction would lead to an earthquake, and rescue (if it came) would be
from outside measure theory.

In §544 I examined some of the consequences of supposing that there is an atomlessly-measurable cardinal;
for instance, that there are many Sierpiński sets (544G). It is not an accident that we get similar properties
of random real models (552E). If we want to know if something might be implied by the existence of an
atomlessly-measurable cardinal, the first step is to look at what can be determined in the forcing models of
555C. This is often straightforward; for instance, since d is not changed by random real forcing, and since
d must be much lower than any two-valued-measurable cardinal, it must be much lower than any atom-
lessly-measurable cardinal created by random real forcing. But it is quite unclear that the same can be said
about atomlessly-measurable cardinals in general (544Zd). I offer 555F as another example of a phenomenon
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which appears in Solovay’s models but which is not known to be true for all atomlessly-measurable cardinals
(555Zb).

In §§546-547 I gave some of the Gitik-Shelah results showing that non-trivial ‘simple’ algebras cannot be
power set σ-quotient algebras. Of course this depends a good deal on what we mean by ‘simple’. Looking
at the basic cardinal functions, we see that (at least if there can be measurable cardinals) then there can
be non-trivial ccc power set σ-quotient algebras which are σ-centered or have countable Maharam type
(555H, 555K). But they are still very far away from any algebra which can be specified without (perhaps
implicitly) using a two-valued-measurable cardinal at some stage. We cannot have a non-trivial power set
σ-quotient algebra with countable π-weight (547Xa), but I do not see how to rule out ‘small’ π-weight in
general (547Zb, 555Za).

Version of 3.1.15

556 Forcing with Boolean subalgebras

I propose now to describe a completely different way in which forcing can be used to throw light on
problems in measure theory. Rather than finding forcing models of new mathematical universes, we look
for models which will express structures of the ordinary universe in new ways. The problems to which this
approach seems to be most relevant are those centered on invariant algebras: in ergodic theory, fixed-point
algebras; in the theory of relative independence, the core σ-algebras.

Most of the section is taken up with development of basic machinery. The strategic plan is straightforward
enough: given a specific Boolean algebra C which seems to be central to a question in hand, force with C\{0},
and translate the question into a question in the forcing language. In order to do this, we need an efficient
scheme for automatic translation. This is what 556A-556L and 556O are setting up. The translation has to
work both ways, since we need to be able to deduce properties of the ground model from properties of the
forcing model.

There are four actual theorems for which I offer proofs by these methods. The first three are 556M (a
strong law of large numbers), 556N (Dye’s theorem on orbit-isomorphic measure-preserving transformations)
and 556P (Kawada’s theorem on invariant measures). In each of these, the aim is to prove a general form
of the theorem from the classical special case in which the algebra C is trivial. In the final example 556S
(I.Farah’s description of the Dedekind completion of the asymptotic density algebra Z), we have a natural
subalgebra C of Z and a structure in the corresponding forcing universe to which we can apply Maharam’s
theorem.

556A Forcing with Boolean subalgebras Let A be a Boolean algebra, not {0}, and C a subalgebra
of A. Let P be the forcing notion C+ = C \ {0}, active downwards.

(a) If a ∈ A, the forcing name for a over C will be the P-name

ȧ = {(b̌, p) : p ∈ C+, b ∈ A, p ∩ b ⊆ a}.

(b) If B is a Boolean subalgebra of A including C, then the forcing name for B over C will be the

P-name {(ḃ, 1) : b ∈ B}, where here 1 = 1A = 1B = 1C.

(c) For each of the binary operations © = ∩ , ∪ , △ , \ on A, the forcing name for © over C will be
the P-name

©̇ = {(((ȧ, ḃ), (a©b)�), 1) : a, b ∈ A}.

(d) The forcing name for ⊆ over C will be the P-name

⊆̇ = {((ȧ, ḃ), 1) : a, b ∈ A, a ⊆ b}.

c© 2007 D. H. Fremlin
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(e) Let π : A → A be a ring homomorphism such that πc ⊆ c for every c ∈ C. In this case, I will say that
the forcing name for π over C is the P-name {((ȧ, (πa)�), 1) : a ∈ A}.

(f) Now suppose that A is Dedekind σ-complete. For u ∈ L0(A), the forcing name for u over C will
be the P-name {((α̌, [[u > α]]�), 1) : α ∈ Q}.

Remark We shall need to agree on what it is that the formula L0(A) abbreviates. The primary definition
in 364Aa speaks of functions from R to A. Because R is inadequately absolute this is not convenient here,
and I will move to the alternative version in 364Af: a member u of L0(A) is a family 〈[[u > α]]〉α∈Q in A such
that

[[u > α]] = supβ∈Q,β>α [[u > β]] for every α ∈ Q,

infn∈N [[u > n]] = 0, supn∈N [[u > −n]] = 1.

556B Theorem Let A be a Boolean algebra, not {0}, and C a subalgebra of A. Let P be the forcing

notion C+, active downwards, and Ȧ the forcing name for A over C.

(a) If p ∈ C+, a, b ∈ A and ȧ, ḃ are the forcing names of a, b over C, then

p P ȧ = ḃ

iff upr(p ∩ (a△ b),C) = 0, that is, for every q stronger than p there is an r stronger than q such that
r ∩ a = r ∩ b. In particular,

p P ȧ = ḃ

whenever p ∩ a = p ∩ b.
(b) Writing ©̇ for the forcing name for © over C,

P ©̇ is a binary operation on Ȧ and ȧ ©̇ ḃ = (a©b)�

for each of the binary operations © = ∩ , ∪ , △ and \ and all a, b ∈ A.
(c) All the standard identities translate. For instance,

P x ∩̇ (y △̇ z) = (x ∩̇ y) △̇ (x ∩̇ z) for all x, y, z ∈ Ȧ.

(d)

P Ȧ, with the operations △̇ , ∩̇ , ∪̇ and \̇ , is a Boolean algebra, with zero 0̇ and identity
1̇.

(e)(i) Writing ⊆̇ for the forcing name for ⊆ over C,

P ⊆̇ is the inclusion relation in the Boolean algebra Ȧ.

(ii) For a, b ∈ A and p ∈ C+,

p P ȧ ⊆̇ ḃ

iff upr(p ∩ a \ b,C) = 0.
(f) If B is a Boolean subalgebra of A including C, then

P Ḃ is a Boolean subalgebra of Ȧ.

proof (a)(i) Recall that upr(a,C) = inf{c : a ⊆ c ∈ C} if the infimum is defined in C (313S). So upr(a,C) = 0
iff for every non-zero c ∈ C there is a c′ ∈ C such that a ⊆ c′ and c 6⊆ c′; that is, for every non-zero c ∈ C

there is a non-zero c′ ∈ C such that c′ ⊆ c \ a. In the present context, we see that for p ∈ C+ and a, b ∈ A,
upr(p ∩ (a△ b),C) = 0 iff for every q stronger than p there is an r stronger than q such that r ∩ (a△ b) = 0.

(ii) Suppose that p ∩ a = p ∩ b, that q ∈ C+ is stronger than p, and that ẋ is a P-name such that
q P ẋ ∈ ȧ. Then there are an r ∈ C+, a d ∈ A such that (ď, r) ∈ ȧ, and an s stronger than both r and q
such that s P ẋ = ď. In this case

s ∩ d ⊆ p ∩ r ∩ d ⊆ p ∩ a ⊆ b,
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so (ď, s) ∈ ḃ and

s P ẋ = ď ∈ ḃ.

As q and ẋ are arbitrary,

p P ȧ is a subset of ḃ;

similarly,

p P ḃ is a subset of ȧ and ḃ = ȧ.

(iii) If upr(p ∩ (a△ b),C) = 0, then for every q stronger than p there is an r stronger than q such that

r ∩ a = r ∩ b and r P ȧ = ḃ, by (ii). As q is arbitrary, p P ȧ = ḃ.

(iv) Now suppose that p P ȧ = ḃ and that q is stronger than p. Then (ǎ, q) ∈ ȧ, so q P ǎ ∈ ȧ = ḃ.

There must therefore be a (ď, r) ∈ ḃ and an s stronger than both r and q such that s P ǎ = ď; in this case
d = a, s ∩ a ⊆ r ∩ d ⊆ b and s ∩ a \ b = 0.

As q is arbitrary, upr(p ∩ (a \ b),C) = 0. Similarly, upr(p ∩ (b \ a),C) = 0. By 313Sb, upr(p ∩ (a△ b),C) =
0.

(b) Of course

P ©̇ ⊆ (Ȧ× Ȧ) × Ȧ,

just because

P ȧ ∈ Ȧ

for every a ∈ A. To see that ©̇ is a name for a function with domain Ȧ×Ȧ, use 5A3Ea. If (((ȧ1, ḃ1), (a1©b1)�), 1)

and (((ȧ2, ḃ2), (a2©b2)�), 1) are two members of ©̇, and p ∈ C+ is such that

p P (ȧ1, ḃ1) = (ȧ2, ḃ2),

then

upr(p ∩ ((a1©b1) △ (a2©b2))) ⊆ upr(p ∩ ((a1 △ a2) ∪ (b1 △ b2)))

= upr(p ∩ (a1 △ a2)) ∪ upr(p ∩ (b1 △ b2)) = 0

by (a) above and 313Sb again. So

p P (a1©b1)� = (a2©b2)�

by (a) in the other direction. Thus the condition of 5A3E(a-ii) is satisfied, and

P ©̇ is a function,

while of course

P ȧ©̇ḃ = (a©b)�

for all a, b ∈ A. Moreover, setting Ȧ = {((ȧ, ḃ), 1) : a, b ∈ A}, 5A3Eb tells us that

P dom ©̇ = Ȧ = Ȧ× Ȧ, so ©̇ is a binary operation on Ȧ.

(c) I work through only the given example. Suppose that p ∈ C+ and that ẋ, ẏ and ż are P-names such
that

p P ẋ, ẏ, ż ∈ Ȧ.

If q is stronger than p, there are an r stronger than q and a, b, c ∈ A such that

r P ẋ = ȧ, ẏ = ḃ and ż = ċ.

Then

r P ẏ △̇ ż = ḃ △̇ ċ = (b△ c)�,

r P ẋ ∩̇ (ẏ △̇ ż) = (a ∩ (b△ c))� = ((a ∩ b) △ (a ∩ c))� = (ẋ ∩̇ ẏ) △̇ (ẋ ∩̇ ż).
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As q is arbitrary,

p P ẋ ∩̇ (ẏ △̇ ż) = (ẋ ∩̇ ẏ) △̇ (ẋ ∩̇ ż);

as p, ẋ, ẏ and ż are arbitrary,

P x ∩̇ (y △̇ z) = (x ∩̇ y) △̇ (x ∩̇ z) for all x, y, z ∈ Ȧ.

(d) This is now elementary, amounting to repeated use of the technique in (c).

(e)(i) It will be enough to show that

P for all x, y ∈ Ȧ, x ⊆̇ y ⇐⇒ x ∩̇ y = x.

PPP Suppose that p ∈ C+ and that ẋ, ẏ are P-names such that

p P ẋ, ẏ ∈ Ȧ.

(α) Suppose that p P ẋ ⊆̇ ẏ. If q is stronger than p, there are an r stronger than q and a, b ∈ A such that
a ⊆ b and

r P ẋ = ȧ and ẏ = ḃ.

Now

r P ẋ ∩̇ ẏ = (a ∩ b)� = ȧ = ẋ;

as q is arbitrary, p P ẋ ∩̇ ẏ = ẋ. (β) Conversely, suppose that p P ẋ ∩̇ ẏ = ẋ. If q is stronger than p there
are r stronger than q and a, b ∈ A such that

r P ẋ = ȧ, ẏ = ḃ, (a ∩ b)� = ȧ;

now (((a ∩ b)�, ḃ), 1) ∈ ⊆̇ , so P (a ∩ b)� ⊆̇ ḃ and

r P ẋ = ȧ = (a ∩ b)� ⊆̇ ḃ = ẏ.

As q is arbitrary. p P ẋ ⊆̇ ẏ.
As p, ẋ and ẏ are arbitrary,

P for x, y ∈ Ȧ, x ⊆̇ y ⇐⇒ x ∩̇ y = x. QQQ

(ii) Now, for a, b ∈ A and p ∈ C+,

p P ȧ ⊆̇ ḃ

iff p P ȧ ∩̇ ḃ = ȧ

iff p P (a ∩ b)� = ȧ

iff upr(p ∩ (a△ (a ∩ b)),C) = 0

iff upr(p ∩ a \ b,C) = 0.

(f) This should now be easy. As Ḃ ⊆ Ȧ, P Ḃ ⊆ Ȧ. If p ∈ C+ and ẋ, ẏ are P-names such that p P ẋ,

ẏ ∈ Ḃ, then for every q stronger than p there are r stronger than q and a, b ∈ B such that r P ẋ = ȧ and

ẏ = ḃ. In this case

r P ẋ ∩̇ ẏ = (a ∩ b)� ∈ Ḃ, ẋ △̇ ẏ = (a△ b)� ∈ Ḃ;

as q is arbitrary,

p P ẋ ∩̇ ẏ, ẋ △̇ ẏ ∈ Ḃ.

As p, ẋ and ẏ are arbitrary,

P Ḃ is a subring of Ȧ;

as we also have P 1̇ ∈ Ḃ, we get

P Ḃ is a subalgebra of Ȧ.
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556C Theorem Let A be a Boolean algebra, not {0}, and C a subalgebra of A. Let P be the forcing

notion C+, active downwards, Ȧ the forcing name for A over C, and π : A → A a ring homomorphism such
that πc ⊆ c for every c ∈ C; write π̇ for the forcing name for π over C.

(a)(i)

P π̇ is a ring homomorphism from Ȧ to itself

and

P π̇(ȧ) = (πa)�

for every a ∈ A.
(ii) If π is injective, P π̇ is injective.
(iii) If φ : A → A is another ring homomorphism such that φc ⊆ c for every c ∈ C, with corresponding

forcing name φ̇, then

P π̇φ̇ = (πφ)�.

(b) Now suppose that π is a Boolean homomorphism.
(i) πc = c for every c ∈ C.
(ii) P π̇ is a Boolean homomorphism.
(iii) If π is surjective, P π̇ is surjective.
(iv) If π ∈ AutA then

P π̇ is a Boolean automorphism and (π̇)−1 = (π−1)�.

(v) If the fixed-point subalgebra of π is C exactly, then

P the fixed-point subalgebra of π̇ is {0, 1}.

proof (a)(i)(ααα) It will help to note straight away that πc = c ∩ π1 for every c ∈ C. PPP The hypothesis is
that πc ⊆ c; because π is a ring homomorphism, πc ⊆ π1, so πc ⊆ c ∩ π1. Since also

πc = π1 \ π(1 \ c) ⊇ π1 \ (1 \ c) = c ∩ π1,

we have equality. QQQ Consequently

c ∩ πa = c ∩ π(1 ∩ a) = c ∩ π1 ∩ πa = πc ∩ πa = π(c ∩ a)

whenever c ∈ C and a ∈ A.

(βββ) P π̇ is a function from Ȧ to itself. PPP Of course P π̇ ⊆ Ȧ× Ȧ. Suppose that p ∈ C+ and that

((ȧ, (πa)�), 1), ((ḃ, (πb)�), 1) are two members of π̇ such that p P ȧ = ḃ. Then for every q stronger than p
there is an r stronger than q such that r ∩ a = r ∩ b (556Ba), in which case

r ∩ πa = π(r ∩ a) = π(r ∩ b) = r ∩ πb.

This shows that p P (πa)� = (πb)�, by 556Ba in the other direction. As a and b are arbitrary, the condition

of 5A3Ea is satisfied, with Ȧ there exactly equal to Ȧ here, and

P π̇ is a function with domain Ȧ. QQQ

If a ∈ A then ((ȧ, (πa)�), 1) ∈ π̇ so

P (ȧ, (πa)�) ∈ π̇ and π̇(ȧ) = (πa)�.

(γγγ) P π̇ is a ring homomorphism. PPP Writing © for either ∩ or △ ,

P π̇(ȧ ©̇ ḃ) = π̇(a©b)� = (π(a©b))�

= (πa©πb)� = (πa)� ©̇ (πb)� = (π̇ȧ) ©̇ (π̇ḃ)

for all a, b ∈ A. If now p ∈ C+ and ẋ, ẏ are P-names such that

p P ẋ, ẏ ∈ Ȧ,
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then for any q stronger than p there are r stronger than q and a, b ∈ A such that

r P ẋ = ȧ and ẏ = ḃ,

in which case

r P π̇(ẋ ©̇ ḃ) = π̇(ȧ ©̇ ḃ) = π̇(ȧ) ©̇ π̇(ḃ) = π̇(ẋ) ©̇ π̇(ẏ).

As q is arbitrary,

p P π̇(ẋ ©̇ ẏ) = π̇(ẋ) ©̇ π̇(ẏ);

as p, ẋ and ẏ are arbitrary,

P π̇(x ©̇ y) = (π̇x) ©̇ (π̇y) for all x, y ∈ Ȧ.

As this is true for both ©̇ = ∩̇ and ©̇ = △̇ ,

P π̇ is a ring homomorphism. QQQ

(ii) Let p ∈ C+ and a P-name ẋ be such that

p P ẋ ∈ Ȧ and π̇ẋ = 0.

For any q stronger than p, there are an r stronger than q and an a ∈ A such that

r P ȧ = ẋ, therefore 0 = π̇ȧ = (πa)�.

By 556Ba, there is an s stronger than r such that s ∩ πa = 0; since πs ⊆ s, π(s ∩ a) = 0. As π is injective,
s ∩ a = 0 and (using 556Ba again)

s P ẋ = ȧ = 0.

As q is arbitrary, p P ẋ = 0; as p and ẋ are arbitrary, P π̇ is injective.

(iii) Suppose that p ∈ C+ and that ẋ is a P-name such that p P ẋ ∈ Ȧ. For any q stronger than p,
there are an r stronger than q and an a ∈ A such that r P ẋ = ȧ, so that

r P π̇(φ̇(ẋ)) = π̇(φ̇(ȧ)) = π̇((φa)�) = (πφa)� = (πφ)�(ȧ) = (πφ)�(ẋ).

As q is arbitrary,

p P π̇(φ̇(ẋ)) = (πφ)�(ẋ);

as p and ẋ are arbitrary, P π̇φ̇ = (πφ)�.

(b)(i) I observed in (a-i-α) above that πc = c ∩ π1 for every c ∈ C, so if π1 = 1 we shall have πc = c for
every c ∈ C.

(ii) I pointed out in 556Bd that

P 1̇ is the identity of Ȧ,

and we now have

P π̇(1̇) = (π1)� = 1̇, so π̇ is a Boolean homomorphism.

(iii) Let p ∈ C+ and a P-name ẋ be such that p P ẋ ∈ Ȧ. For any q stronger than p, there are an r
stronger than q and an a ∈ A such that r P ȧ = ẋ. Now there is a b ∈ A such that a = πb, in which case

r P ẋ = ȧ = π̇ḃ ∈ π̇[Ȧ].

As q is arbitrary, p P ẋ ∈ π̇[Ȧ]; as p and ẋ are arbitrary, P π̇ is surjective.

(iv) By (a-iii),

P π̇(π−1)� = (π−1)�π̇ = ι̇

where ι : A → A is the identity automorphism. But

P ι̇ is the identity on Ȧ.
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PPP If p ∈ C+ and a P-name ẋ are such that p P ẋ ∈ Ȧ, then for any q stronger than p there are an r stronger
than q and an a ∈ A such that

r P ẋ = ȧ = (ιa)� = ι̇ȧ = ι̇ẋ.

As q is arbitrary, p P ι̇ẋ = ẋ; as p and ẋ are arbitrary, P ι̇ is the identity. QQQ Putting these together,

P (π−1)� is the inverse of π̇.

(v) Suppose that p ∈ C+ and a P-name ẋ are such that

p P ẋ ∈ Ȧ and π̇ẋ = ẋ.

For any q stronger than p there are an r stronger than q and an a ∈ A such that

r P ȧ = ẋ = π̇ẋ = π̇ȧ = (πa)�,

and an s stronger than r such that s ∩ a = s ∩ πa. Now s ∩ a = π(s ∩ a) and s ∩ a ∈ C. If s ∩ a = 0, set
s′ = s; then s′ P ẋ = 0. Otherwise, set s′ = s ∩ a; then s′ P ẋ = 1. Thus in either case we have an s′

stronger than q such that s′ P ẋ ∈ {0, 1}. As q is arbitrary, p P ẋ ∈ {0, 1}; as p and ẋ are arbitrary, P π̇
has fixed-point subalgebra {0, 1}.

556D Regularly embedded subalgebras I am trying to set these results out in maximal generality,
as usual. However it seems that we need to move almost at once to the case in which our subalgebra is
regularly embedded, and we have more effective versions of 556Ba and 556B(e-ii).

Proposition Let A be a Boolean algebra, not {0}, and C a regularly embedded subalgebra of A. Let P be
the forcing notion C+, active downwards, and for a ∈ A let ȧ be the forcing name for a over C.

(a) For p ∈ C+ and a, b ∈ A,

p P ȧ = ḃ

iff p ∩ a = p ∩ b.
(b) Let ⊆̇ be the forcing name for ⊆ over C. Then for p ∈ C+ and a, b ∈ A,

p P ȧ ⊆̇ ḃ

iff p ∩ a ⊆ b.

proof The point is just that upr(a,C) = 0 only when a = 0, because infima in C are also infima in A

(313N); so that upr(p ∩ a \ b,C) = 0 iff p ∩ a ⊆ b, and upr(p ∩ (a△ b),C) = 0 iff p ∩ a = p ∩ b.

556E Proposition Let A be a Boolean algebra, not {0}, C a regularly embedded subalgebra of A, P the

forcing notion C+, active downwards, and Ȧ the forcing name for A over C; for a ∈ A, write ȧ for the forcing
name for a over C.

(a) Let Ȧ be a P-name, and set

B = {q ∩ a : q ∈ C+, a ∈ A, q P ȧ ∈ Ȧ}.

Then for d ∈ A and p ∈ C+,

p P ḋ is an upper bound for Ȧ ∩ Ȧ

iff p ∩ b ⊆ d for every b ∈ B, and

p P ḋ = sup(Ȧ ∩ Ȧ)

iff p ∩ d = supb∈B p ∩ b.
(b)(i) If 〈ai〉i∈I is a family in A with supremum a, then

P ȧ = supi∈Ǐ ȧi.
8

(ii) If 〈ai〉i∈I is a family in A with infimum a, then

P ȧ = infi∈Ǐ ȧi.

8See 5A3F for a note on the interpretation of formulae of this kind.
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(c) P sat(Ȧ) ≤ sat(A)̌ .9

(d) P τ(Ȧ) ≤ τ(A)̌ .

proof (a)(i) ??? Suppose, if possible, that b ∈ B, p ∩ b 6⊆ d and

p P ḋ is an upper bound for Ȧ ∩ Ȧ.

Let q ∈ C+, a ∈ A be such that b = q ∩ a and q P ȧ ∈ Ȧ. Then p ∩ q 6= 0, so p ∩ q ∈ C+ and

p ∩ q P ȧ ∈ Ȧ ∩ Ȧ, therefore ȧ ⊆̇ ḋ.

It follows that p ∩ q ∩ a ⊆ d (556Db); but this contradicts the choice of p and b. XXX

Thus p ∩ b ⊆ d whenever b ∈ B and p P ḋ is an upper bound for Ȧ ∩ Ȧ.

(ii) Next, suppose that p ∈ C+ and d ∈ A are such that p ∩ b ⊆ d for every b ∈ B. Suppose that q is

stronger than p and that ẋ is a P-name such that q P ẋ ∈ Ȧ ∩ Ȧ. If r is stronger than q, there are an s
stronger than r and an a ∈ A such that s P ẋ = ȧ. In this case, s ∩ a ∈ B and s ∩ a = p ∩ s ∩ a ⊆ d, so

s P ẋ = ȧ = (s ∩ a)� ⊆̇ ḋ.

As r is arbitrary, q P ẋ ⊆̇ ḋ; as q and ẋ are arbitrary,

p P ḋ is an upper bound for Ȧ.

(iii) Putting these together, we see that p ∩ b ⊆ d for every b ∈ B iff p P ḋ is an upper bound for Ȧ∩ Ȧ.

(iv) Now suppose that p P ḋ = sup(Ȧ ∩ Ȧ). We know that d, and therefore p ∩ d, is an upper bound
of {p ∩ b : b ∈ B}. If e is any other upper bound of {p ∩ b : b ∈ B}, then

p P ė is an upper bound of Ȧ, so ḋ ⊆̇ ė

and p ∩ d ⊆ e, by 556Db again; thus p ∩ d = supb∈B p ∩ b.

(v) Finally, suppose that p ∩ d = supb∈B p ∩ b. Suppose that q is stronger than p and that ẋ is a P-name
such that

q P ẋ ∈ Ȧ is an upper bound of Ȧ ∩ Ȧ.

If r is stronger than q, there are a s stronger than r and a c ∈ A such that s P ẋ = ċ. In this case, by (i),
we must have s ∩ b ⊆ c for every b ∈ B; accordingly s ∩ d ⊆ c (313Ba), so that

s P ḋ ⊆̇ ċ = ẋ.

As r is arbitrary,

q P ḋ ⊆̇ ẋ;

as q and ẋ are arbitrary,

p P ḋ = sup(Ȧ ∩ Ȧ).

(b)(i) Of course

P ȧi ⊆̇ ȧ

for every i ∈ I, so that

P ȧ is an upper bound for {ȧi : i ∈ Ǐ}.

(Formally speaking: if p ∈ C+ and ẋ is a P-name such that p P ẋ ∈ {ȧi : i ∈ Ǐ}, then for any q stronger
than p there are an r stronger than q and an i ∈ I such that r P ẋ = ȧi ⊆̇ ȧ; hence p P ẋ ⊆̇ ȧ.) In the
other direction, suppose that p ∈ C+ and that ẋ is a P-name such that

p P ȧi ⊆ ẋ ∈ Ȧ for every i ∈ Ǐ.

9Of course I am not asserting here that ‘ P sat(A)̌ is a cardinal’, only that ‘ P sat(Ȧ) is a cardinal and sat(A)̌ is an
ordinal’.
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For any q stronger than p there are an r stronger than q and a b ∈ A such that r P ẋ = ḃ. Now, for any
i ∈ I,

r P ı̌ ∈ Ǐ, ȧi ⊆̇ ẋ = ḃ

and therefore r ∩ ai ⊆ b. As i is arbitrary, r ∩ a ⊆ b and r P ȧ ⊆̇ ẋ. As q is arbitrary, p P ȧ ⊆̇ ẋ; as p and
ẋ are arbitrary,

P ȧ is the least upper bound of {ȧi : i ∈ Ǐ}.

(ii) Now

P inf
i∈Ǐ

ȧi = 1 \̇ sup
i∈Ǐ

(1 \̇ ai) = 1 \̇ sup
i∈Ǐ

(1 \ ai)
�

= 1 \̇ (sup
i∈I

(1 \ ai))
� = (1 \ (sup

i∈I

(1 \ ai)))
� = (inf

i∈I
ai)

�.

(c) ??? Otherwise, there are a p ∈ C+ and a family 〈ẋξ〉ξ<κ, where κ = sat(A), such that

p P ẋξ ∈ Ȧ+ for every ξ < κ̌ and ẋξ ∩̇ ẋη = 0 whenever ξ < η < κ̌.

For each ξ < κ choose qξ stronger than p and aξ ∈ A such that qξ P ẋξ = ȧξ. Then qξ P ȧξ 6= 0, so
bξ = qξ ∩ aξ is non-zero. As sat(A) = κ, there must be ξ < η < κ such that bξ ∩ bη 6= 0. Set r = qξ ∩ qη; then
r ∈ C+ is stronger than p and

r P ẋξ ∩̇ ẋη = ȧξ ∩̇ ȧη = (aξ ∩ aη)� 6= 0

by 556Da, because r ∩ aξ ∩ aη 6= 0. XXX

(d) Let A ⊆ A be a set with cardinal κ = τ(A) which τ -generates A. Let Ȧ be the P-name {(ȧ, 1) : a ∈ A};
then

P Ȧ τ -generates Ȧ and #(Ȧ) ≤ κ̌.

PPP (i) Suppose that p ∈ C+ and ẋ, Ḃ are P-names such that

p P Ḃ is an order-closed subalgebra of Ȧ including Ȧ, and ẋ ∈ Ȧ.

Consider D = {a : a ∈ A, p P ȧ ∈ Ḃ}. Then D is a subalgebra of A, by 556Bb, and is order-closed by (b)
here; also A ⊆ D, so D = A. Next, for any q stronger than p there are an r stronger than q and an a ∈ A

such that r P ẋ = ȧ; since a ∈ D, p P ȧ ∈ Ḃ and

r P ẋ ∈ Ḃ.

As p, ẋ and Ḃ are arbitrary,

P Ȧ τ -generates Ȧ.

(ii) If 〈aξ〉ξ<κ enumerates A, then

P Ȧ = {ȧξ : ξ < κ̌} and #(Ȧ) ≤ #(κ̌) ≤ κ̌. QQQ

Accordingly

P τ(Ȧ) ≤ κ̌.

556F Quotient forcing In 556A-556B I have gone to pains to describe names Ȧ, △̇ , ∩̇ , 0̇, 1̇ constituting
a Boolean algebra. Of course we also have much simpler names Ǎ, △̌ , ∩̌ , 0̌, 1̌ also constituting a Boolean
algebra in the forcing language, and these must obviously be related in some way to the construction here.
I think the details are worth bringing into the open.

Proposition Let A be a Boolean algebra, not {0}, and C a subalgebra of A. Let P be the forcing notion

C+, active downwards, and Ȧ the forcing name for A over C.
(a) Consider the P-names

ψ̇ = {((ǎ, ȧ), 1) : a ∈ A}, İ = {(ǎ, p) : p ∈ C+, a ∈ A, p ∩ a = 0}.
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Then

P ψ̇ is a Boolean homomorphism from Ǎ onto Ȧ, and its kernel is İ.

(b) Now suppose that C is regularly embedded in A. Set Q̇ = (Ȧ+, ⊆̇, 1̇, ↓̌) and let P ∗ Q̇ be the iterated

forcing notion (5A3O). Then RO(P ∗ Q̇) is isomorphic to the Dedekind completion of A.
(c) Suppose that C is regularly embedded in A and that B is a Boolean algebra such that

P Ȧ ∼= B̌.

Then the Dedekind completion Â of A is isomorphic to the Dedekind completion C⊗̂B of the free product
C⊗B of C and B.

proof (a)(i) It is elementary that

P ψ̇ : Ǎ → Ȧ is a surjective function

just because Ȧ = {(ȧ, 1) : a ∈ A}. By 556Bb,

P ψ̇ is a ring homomorphism; being surjective, it is a Boolean homomorphism.

(ii)(ααα) If p ∈ C+ and ẋ is a P-name such that p P ẋ ∈ İ, then there are a q ∈ C+, an a ∈ A, and an r
stronger than both p and q such that

q ∩ a = 0, r P ẋ = ǎ.

In this case, r ∩ a = 0 so, by 556Ba,

r P 0 = ȧ = ψ̇(ǎ) = ψ̇(ẋ).

As p and ẋ are arbitrary,

P İ is included in the kernel of ψ̇.

(βββ) If p ∈ C+ and ẋ is a P-name such that

p P ẋ ∈ Ǎ and ψ̇(ẋ) = 0,

then there are an a ∈ A and a q stronger than p such that

q P ẋ = ǎ and ȧ = ψ̇(ǎ) = ψ̇(ẋ) = 0.

Now there is an r stronger than q such that r ∩ a = 0, so that (ǎ, r) ∈ İ and

r P ẋ = ǎ ∈ İ.

As p and ẋ are arbitrary,

P the kernel of ψ̇ is included in İ, so they coincide.

(b)(i) In order to use the description of iterated forcing in 5A3O, we need to set out an exact P-name

for Ȧ+. If we say that Ȧ+ abbreviates {x : x ∈ Ȧ, x 6= 0}, and use the formulation of Comprehension in
Kunen 80, Theorem 4.2, we get

Ȧ+ = {(ẋ, p) : ẋ ∈ dom Ȧ, p ∈ C+, p P ẋ ∈ Ȧ and ẋ 6= 0}.

Now 556Ab specifies dom Ȧ to be {ȧ : a ∈ A}, so we get

Ȧ+ = {(ȧ, p) : a ∈ A, p ∈ C+, p P ȧ ∈ Ȧ and ȧ 6= 0}

= {(ȧ, p) : a ∈ A, p ∈ C+, p P ȧ 6= 0},

dom Ȧ+ = {ȧ : a ∈ A, 6 P ȧ = 0} = {ȧ : a ∈ A+}

by 556Da.

(ii) 5A3O now tells us that the underlying set of P ∗ Q̇ is to be

P = {(p, ȧ) : p ∈ C+, a ∈ A+, p P ȧ 6= 0}.
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For p ∈ C+ and a ∈ A,

p P ȧ 6= 0 ⇐⇒ for every q stronger than p, q 6 P ȧ = 0

⇐⇒ for every non-zero q ⊆ p, q ∩ a 6= 0

(556Da). So P is just

{(p, ȧ) : p ∈ C+, a ∈ A, q ∩ a 6= 0 whenever q ∈ C and 0 6= q ⊆ p}.

Next, for (p, ȧ), (q, ḃ) ∈ P ,

(p, ȧ) is stronger than (q, ḃ) ⇐⇒ p ⊆ q and p P ȧ ⊆̇ ḃ

⇐⇒ p ⊆ q and p ∩ a ⊆ b

(556Db).

(iii) We can define a function f : P → A+ by setting

f(p, ȧ) = p ∩ a

whenever (p, ȧ) ∈ P . PPP If you look at the definition of ȧ in 556A, you will see that ((b, 1), 1) = (b̌, 1) belongs

to ȧ iff b ⊆ a, so that ȧ = ḃ only when a = b; thus f is a function from P to A. And the definition of P
ensures that f(p, ȧ) 6= 0 whenever (p, ȧ) ∈ P . QQQ

(iv)(ααα) If (p, ȧ) is stronger than (q, ḃ) in P , then p ⊆ q and p ∩ a ⊆ b, so f(p, ȧ) ⊆ f(q, b).

(βββ) If a ∈ A+, then (because C is regularly embedded) C = {q : a ⊆ q ∈ C} does not have infimum 0
in C; let p ∈ C+ be a lower bound for C. Then (p, ȧ) ∈ P , and f(p, ȧ) ⊆ a. Thus f [P ] is order-dense in A.

(γγγ) If (p, ȧ), (q, ḃ) are incompatible in P , then f(p, ȧ) ∩ f(q, ḃ) = 0. PPP??? Otherwise, c = p ∩ a ∩ q ∩ b
is non-zero. Let r ∈ C+ be such that (r, ċ) ∈ P . Since r \ (p ∩ q) P ċ = 0, r ⊆ p ∩ q; since c ⊆ a ∩ b, (r, ċ) is

stronger than both (p, ȧ) and (q, ḃ), which is supposed to be impossible. XXXQQQ

(v) Thinking of A+ as an order-dense subset of Â, and of f as a function from P to Â+, 514Sa tells us
that

RO(P ∗ Q̇) = RO(P ) ∼= Â,

as claimed.

(c) For free products of Boolean algebras, see §315; for Dedekind completions, see §314. This part can
be regarded as a corollary of (b) (see 556Ya-556Yb), but can also be approached directly, as follows.

(i) Let θ̇ be a P-name such that

P θ̇ : Ȧ → B̌ is an isomorphism.

Set

R = {(p, b, a) : p ∈ C+, b ∈ B+, a ∈ A+, a ⊆ p and p P θ̇(ȧ) = b̌},

and give R the ordering induced by the product partial ordering of C+ ×B+ × A+.

(ii) RO↓(R) ∼= C⊗̂B. PPP Define f : R→ (C⊗̂B)+ by setting f(p, b, a) = p⊗ b.

(ααα) Of course f(p, b, a) ⊆ f(p′, b′, a′) whenever (p, b, a) ≤ (p′, b′, a′).

(βββ) If (p0, b0, a0) and (p1, b1, a1) belong to R and f(p0, b0, a0) ∩ f(p1, b1, a1) 6= 0, set p = p0 ∩ p1,
b = b0 ∩ b1 and a = a0 ∩ a1. Then p ∈ C+, b ∈ B+, a ⊆ p and

p P θ̇(ȧ) = θ̇(ȧ0 ∩̇ ȧ1) = θ̇(ȧ0) ∩̌ θ̇(ȧ1) = b̌0 ∩̌ b̌1 = b̌.

As p P θ̇(ȧ) 6= 0̌, a cannot be 0, and (p, b, a) ∈ R; so (p0, b0, a0) and (p1, b1, a1) are downwards compatible
in R.
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(γγγ) If d ∈ (C⊗̂B)+, there are p0 ∈ C+, b ∈ B+ such that p0 ⊗ b ⊆ d. Now there is a P-name ẋ such
that

P ẋ ∈ Ȧ and θ̇(ẋ) = b̌.

Let p stronger than p0 and a0 ∈ A be such that p P ȧ0 = ẋ, and set a = p ∩ a0; then

p P ȧ = ȧ0 so θ̇(ȧ) = θ̇(ȧ0) = b̌.

As in (β), it follows that a 6= 0, so that (p, b, a) ∈ R; now f(p, b, a) ⊆ d. As d is arbitrary, f [R] is order-dense
in C⊗̂B.

(δδδ) Thus f satisfies the conditions of 514Sa and RO↓(R) ∼= C⊗̂B. QQQ

(iii) RO↓(R) ∼= Â. PPP Define g : R→ Â+ by setting g(p, b, a) = a for (p, b, a) ∈ R.

(ααα) Of course g(p, b, a) ⊆ g(p′, b′, a′) whenever (p, b, a) ≤ (p′, b′, a′) in R.

(βββ) Suppose that (p0, b0, a0), (p1, b1, a1) ∈ R and that a = a0 ∩ a1 6= 0. Set p = p0 ∩ p1 and
b = b0 ∩ b1. Then p ⊇ a 6= 0 and

p P θ̇(ȧ) = b̌

as in (ii-β). Since p ∩ a 6= 0, p 6 P ȧ = 0̇ (556Da), so p 6 P b̌ = 0̌ and b 6= 0. Thus (p, b, a) ∈ R and (p0, b0, a0),
(p1, b1, a1) are compatible downwards in R.

(γγγ) If d ∈ Â+, there is an a0 ∈ A+ such that a0 ⊆ d. In this case, 6 P ȧ0 = 0̇ so there is a p0 ∈ C+

such that p0 P ȧ0 6= 0̇. Now p0 P θ̇(ȧ0) ∈ B̌ so there are a p stronger than p0 and a b ∈ B such that

p P θ̇(ȧ0) = b̌. Set a = p ∩ a0; then

p P ȧ = ȧ0 6= 0̇ and b̌ = θ̇(ȧ) 6= 0̌.

Consequently a and b are both non-zero and (p, b, a) ∈ R, while g(p, b, a) ⊆ d.

(δδδ) Thus g satisfies the conditions of 514Sa and RO↓(R) ∼= Â. QQQ

(iv) Putting these together, C⊗̂B and Â are isomorphic.

556G Proposition Let A be a Dedekind complete Boolean algebra, not {0}, C a regularly embedded

subalgebra of A, P the forcing notion C+, active downwards, and Ȧ the forcing name for A over C.
(a) Whenever p ∈ C+ and ẋ is a P-name such that

p P ẋ ∈ Ȧ,

there is an a ∈ A such that

p P ẋ = ȧ,

where ȧ is the forcing name for a over C.
(b) P Ȧ is Dedekind complete.

proof (a) Set

B = {q ∩ b : q ∈ C+ is stronger than p, b ∈ A, q P ḃ = ẋ}, a = supB.

Then 556Ea tells us that

p P ȧ = sup{ẋ} = ẋ.

(b) Suppose that p ∈ C+ and that Ȧ is a P-name such that p P Ȧ ⊆ Ȧ. Set

B = {q ∩ a : a ∈ A, q ∈ C+ and q P ȧ ∈ Ȧ}, d = supB.

Then p ∩ d = supb∈B p ∩ b, so p P ḋ = sup Ȧ, by 556Ea. As p and Ȧ are arbitrary,

P Ȧ is Dedekind complete.
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556H L0(A): Proposition Let A be a Dedekind complete Boolean algebra, not {0}, C a regularly

embedded subalgebra of A, P the forcing notion C+, active downwards, and Ȧ the forcing name for A over
C. For a ∈ A let ȧ be the forcing name for a over C.

(a)(i) For every u ∈ L0(A),

P u̇ ∈ L0(Ȧ)

where u̇ is the forcing name for u over C.
(ii) If u, v ∈ L0(A) and P u̇ = v̇, then u = v.

(b) For u, v ∈ L0(A) and α ∈ R,

P u̇+ v̇ = (u+ v)�,

−u̇ = (−u)�,

u̇ ∨ v̇ = (u ∨ v)�,

u̇× v̇ = (u× v)�,

α̌u̇ = (αu)�.

If u ≤ v, then P u̇ ≤ v̇.
(c) If 〈ui〉i∈I is a family in L0(A) with supremum u ∈ L0(A), then

P u̇ = supi∈Ǐ u̇i in L0(Ȧ).

(d) If p ∈ C+ and ẇ is a P-name such that p P ẇ ∈ L0(Ȧ), then there is a u ∈ L0(A) such that

p P ẇ = u̇.

(e) If 〈un〉n∈N is a sequence in L0(A), then the following are equiveridical:
(i) 〈un〉n∈N is order*-convergent to 0 (definition: 367A),
(ii) P 〈u̇n〉n∈N is order*-convergent to 0.

proof (a)(i) Examining the definition in 556Af, we see that we have

P u̇ is a function from Q to Ȧ and u̇(α̌) = [[u > α]]�

for every α ∈ Q. Now 556Eb tells us that, for every α ∈ Q,

P u̇(α̌) = [[u > α]]� = ( sup
β∈Q,β>α

[[u > β]])� = sup
β∈Q,β>α̌

[[u > β]]� = sup
β∈Q,β>α̌

u̇(β̌),

0 = ( inf
n∈N

[[u > n]])� = inf
n∈N

[[u > n]]� = inf
n∈N

u̇(ň),

1 = (sup
n∈N

[[u > −n]])� = sup
n∈N

[[u > −n]]� = sup
n∈N

u̇(−ň),

so

P u̇ ∈ L0(Ȧ),

and I can write [[u̇ > α̌]] for the P-name u̇(α̌), so that

P [[u̇ > α̌]] = [[u > α]]�

for every α ∈ Q.

(ii) For any α ∈ Q,

P [[u > α]]� = [[u̇ > α̌]] = [[v̇ > α̌]] = [[u > α]]�.

By 556Da, [[u > α]] = [[v > α]]. As α is arbitrary, u = v.

(b)(i) Suppose u, v ∈ L0(A). By 364D, we have

[[u+ v > α]] = supβ∈Q [[u > β]] ∩ [[v > α− β]]

for every α ∈ Q. If α, β ∈ Q,
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P [[u̇ > β̌]] ∩̇ [[v̇ > α̌− β̌]] = [[u > β]]� ∩̇ [[v > α− β]]� = ([[u > β]] ∩ [[v > α− β]])�.

Taking the supremum over β, as in 556E(b-i),

P [[u̇+ v̇ > α̌]] = sup
β∈Q

[[u̇ > β]] ∩̇ [[v̇ > α̌− β]] = sup
β∈Q̌

[[u̇ > β]] ∩̇ [[v̇ > α̌− β]]

= (sup
β∈Q

[[u > β]] ∩ [[v > α− β]])� = [[u+ v > α]]� = [[(u+ v)� > α̌]]

for every α ∈ Q, and

P u̇+ v̇ = (u+ v)�.

(ii) Concerning u ∨ v, we have

P [[(u ∨ v)� > α̌]] = [[u ∨ v > α]]� = [[u > α]]� ∪̇ [[v > α]]�

= [[u̇ > α̌]] ∪̇ [[v̇ > α̌]] = [[u̇ ∨ v̇ > α̌]]

for every u, v ∈ L0(A) and α ∈ Q, so

P u̇ ∨ v̇ = (u ∨ v)�;

it follows that if u ≥ 0 then P u̇ = u̇ ∨ 0 ≥ 0.

(iii) If u, v ∈ L0(A)+, α ∈ Q and α ≥ 0, then, just as in (i),

P [[u̇× v̇ > α̌]] = sup
β∈Q,β>0

[[u̇ > β]] ∩̇ [[v̇ >
α̌

β
]] = ( sup

β∈Q,β>0
[[u > β]] ∩ [[v >

α

β
]])�

= [[u× v > α]]� = [[(u× v)� > α̌]];

so P u̇× v̇ = (u× v)�. Using the distributive law we see that the same is true for all u, v ∈ L0(A).

(iv) Take α ∈ R and set w = αχ1 ∈ L0(A). If β ∈ Q and β < α, then

P [[α̌χ1 > β̌]] = 1 = 1̇ = [[w > β]]� = [[ẇ > β̌]];

while if β ≥ α,

P [[α̌χ1 > β̌]] = 0 = 0̇ = [[w > β]]� = [[ẇ > β̌]].

So

P [[α̌χ1 > β]] = [[ẇ > β]] for every β ∈ Q, and α̌χ1 = ẇ = (αχ1)�.

Putting this together with (iii), we have

P α̌u̇ = (α̌χ1) × u̇ = (αχ1)� × u̇ = (αχ1 × u)� = (αu)�

for every u ∈ L0(A). In particular, taking α = −1, P − u̇ = (−u)�.

(v) Finally, if u ≤ v then u ∨ v = v, so

P u̇ ∨ v̇ = v̇ and u̇ ≤ v̇.

(c)(i) It will help to note that the criterion in 364L(a-ii)

if A ⊆ L0(A) is non-empty, then v ∈ L0(A) is the supremum of A in L0(A) iff [[v > α]] =
supu∈A [[u > α]] in A for every α ∈ R

can be replaced by

if A ⊆ L0(A) is non-empty, then v ∈ L0(A) is the supremum of A in L0(A) iff [[v > α]] =
supu∈A [[u > α]] in A for every α ∈ Q.

PPP If the weaker condition is satisfied, and α ∈ R, then

[[v > α]] = sup
β∈Q,β≥α

[[v > β]] = sup
β∈Q,β≥α

sup
u∈A

[[u > β]]

= sup
u∈A

sup
β∈Q,β≥α

[[u > β]] = sup
u∈A

[[u > α]]. QQQ
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(ii) Now 556E(b-i) tells us that

P [[u̇ > α̌]] = supi∈Ǐ [[u̇i > α̌]]

for every α ∈ Q, so

P u̇ = supi∈Ǐ u̇i.

(d) For each α ∈ Q we have an aα ∈ A such that p P ȧα = [[ẇ > α̌]] (556Ga); since p P ȧ = (a ∩ p)� for
every a ∈ A, we can suppose that aα ⊆ p for every α. Now we find that if α ∈ Q and bα = supβ∈Q,β>α aα,
then

p P ḃα = supβ∈Q,β>α̌ [[ẇ > β]] = ȧα,

so aα = bα. Similarly, if b = infn∈N an and c = supn∈N a−n,

p P ḃ = inf
n∈N

[[ẇ > n]] = 0,

ċ = sup
n∈N

[[ẇ > −n]] = 1

and b = 0, c = p. It is now easy to check that there is a u ∈ L0(A) such that

[[u > α]] = aα if α ∈ Q and α > 0,

= aα ∪ (1 \ p) for other α ∈ Q,

and that p P u̇ = ẇ.

(e) Recall that 〈un〉n∈N order*-converges to 0 iff 〈un〉n∈N is order-bounded and 0 = infn∈N supm≥n |un|
(367G); and we shall have a similar formulation in the forcing language. So if 〈un〉n∈N order*-converges to
0, then

P supm≥ň |u̇m| = (supm≥n |um|)�

for every n ∈ N, and

P infn∈N supm≥n |u̇m| = (infn∈N supm≥n |um|)� = 0, so 〈u̇n〉n∈N →∗ 0.

Conversely, if P 〈u̇n〉n∈N order*-converges to 0, then P 〈u̇n〉n∈N is order-bounded, and there is a P-name
ẇ such that

P ẇ ∈ L0(Ȧ), |u̇n| ≤ ẇ for every n ∈ N.

By (d), there is a v ∈ L0(A) such that P ẇ = v̇, so that

P (v ∨ |un|)
� = ẇ ∨ |u̇n| = v̇ for every n ∈ N

and |un| ≤ v for every n (use (a-ii)). We can therefore repeat the calculation just above to see that

P (infn∈N supm≥n |um|)� = infn∈N supm≥n |u̇m| = 0,

so that infn∈N supm≥n |um| = 0 and 〈un〉n∈N order*-converges to 0.

556I Proposition Let A be a Boolean algebra, not {0}, and C a regularly embedded subalgebra of A.
Let P be the forcing notion C+, active downwards, and π : A → A a Boolean homomorphism fixing every
point of C; let π̇ be the forcing name for π over C.

(a) π is injective iff P π̇ is injective.
(b) If π is order-continuous, then

P π̇ is order-continuous.

(c) If π has a support suppπ (definition: 381Bb), then

P (suppπ)� is the support of π̇.

proof (a) We saw in 556C(a-ii) that if π is injective then P π̇ is injective. Now suppose that π is not
injective; let a ∈ A+ be such that πa = 0. Then P π̇ȧ = 0. 1 ∩ a 6= 0, so 6 P ȧ = 0, by 556Da, and
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6 P π̇ is injective.

(b) Take p ∈ C+ and a P-name Ȧ such that

p P Ȧ ⊆ Ȧ and sup Ȧ = 1.

Set B = {q ∩ a : q ∈ C+, a ∈ A, q P ȧ ∈ Ȧ}. Then supb∈B p ∩ b = p ∩ 1 = p, by 556Ea. Because π is
order-continuous,

p ∩ 1 = p = πp = supb∈B π(p ∩ b) = supb∈B p ∩ πb.

Consider

C = {q ∩ a : q ∈ C+, a ∈ A, q P ȧ ∈ π̇[Ȧ]}.

Then π[B] ⊆ C. PPP If q ∈ C+, a ∈ A and q P ȧ ∈ Ȧ, then

q P (πa)� = π̇ȧ ∈ π̇[Ȧ]

so

π(q ∩ a) = q ∩ πa ∈ C. QQQ

Accordingly

{p ∩ c : c ∈ C} ⊇ {p ∩ πb : b ∈ B}

must have supremum p, and p P sup π̇[Ȧ] = 1.

As p and Ȧ are arbitrary,

P sup π̇[Ȧ] = 1 whenever Ȧ ⊆ A and sup Ȧ = 1, so π̇ is order-continuous

(313L(b-iii)).

(c)(i) P if x ∈ Ȧ and x ∩̇ (suppπ)� = 0 then π̇x = x. PPP Take p ∈ C+ and a P-name ẋ such that

p P ẋ ∈ Ȧ and ẋ ∩̇ (suppπ)� = 0.

For any q stronger than p there are an r stronger than q and an a ∈ A such that

r P ẋ = ȧ, (a ∩ suppπ)� = 0;

now r ∩ a ∩ suppπ = 0 (556Da). In this case,

r P π̇ẋ = π̇(r ∩ a)� = (π(r ∩ a))� = (r ∩ a)� = ẋ.

As q is arbitrary, p P π̇ẋ = ẋ; as p and ẋ are arbitrary, we have the result. QQQ
Now 381Ei, applied in the forcing language, tells us that

P (suppπ)� supports π̇.

(ii) P if x ∈ Ȧ supports π̇, then x ⊇̇ (suppπ)�. PPP Take p ∈ C+ and a P-name ẋ such that

p P ẋ ∈ Ȧ supports π̇.

Then for any q stronger than p we have an r stronger than q and an a ∈ A such that r P ẋ = ȧ. Set

b = a ∪ (1 \ r); then r P ḃ = ȧ supports π̇. ??? If b does not support π, then there is a non-zero d ⊆ 1 \ b such

that d ∩ πd = 0 (381Ei again). Since r ∩ d = d 6= 0, there is an s stronger than r such that s P ḋ 6= 0. Now

s P ḋ ∩̇ π̇ḋ = (d ∩ πd)� = 0, while ḋ ∩̇ ȧ = 0 and ȧ supports π̇,

which is impossible. XXX
So b ⊇ suppπ and

r P ẋ = ḃ ⊇̇ (suppπ)�.

As q is arbitrary,

p P ẋ ⊇̇ (suppπ)�;

as p and ẋ are arbitrary, we have the result. QQQ
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Putting this together with (i),

P (suppπ)� is the least element of Ȧ supporting π̇, and is the support of π̇.

556J Theorem Let A be a Dedekind complete Boolean algebra, not {0}, and C a regularly embedded

subalgebra of A. Let P be the forcing notion C+, active downwards, and Ȧ the forcing name for A over C.
(a) If θ̇ is a P-name such that

P θ̇ is a ring homomorphism from Ȧ to itself,

then there is a unique ring homomorphism π : A → A such that πc ⊆ c for every c ∈ C and

P θ̇ = π̇,

where π̇ is the forcing name for π over C.
(b)(i) If

P θ̇ is a Boolean homomorphism,

then π is a Boolean homomorphism, and πc = c for every c ∈ C.
(ii) If

P θ̇ is a Boolean automorphism,

that π is a Boolean automorphism.

proof (a)(i) For each a ∈ A, 556Ga tells us that there is a b ∈ A such that

P θ̇(ȧ) = ḃ;

by 556Da, this defines b uniquely, so we have a unique function π : A → A defined by the rule

for every a ∈ A, P θ̇(ȧ) = (πa)�.

(ii) Now, for © = △ or © = ∩ , and a, b ∈ A,

P (π(a©b))� = θ̇((a©b)�) = θ̇(ȧ ©̇ ḃ)

= θ̇ȧ ©̇ θ̇ḃ = (πa)� ©̇ (πb)� = (πa©πb)�

and π(a©b) = πa©πb. So π is a ring homomorphism.

(iii) If c ∈ C then πc ⊆ c. PPP If c = 1 this is trivial. Otherwise,

1 \ c P ċ = 0, (πc)� = θ̇0 = 0,

so (1 \ c) ∩ πc = 0 and πc ⊆ c. QQQ

(iv) We can therefore speak of the forcing name π̇ (556Ae, 556C). If p ∈ C+ and ẋ is a P-name such

that p P ẋ ∈ Ȧ, let a ∈ A be such that p P ẋ = ȧ (556Ga again); then

p P θ̇(ẋ) = θ̇(ȧ) = (πa)� = π̇(ȧ) = π̇(ẋ).

As p and ẋ are arbitrary,

P θ̇ = π̇.

(b)(i) If P θ̇ is a Boolean homomorphism, then

P (π1)� = θ̇1̇ = 1̇

and π1 = 1. Now

πc ⊆ c = 1 \ (1 \ c) ⊆ 1 \ π(1 \ c) = π1 \ (π1 \ πc) = πc

so πc = c for every c ∈ C.
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(ii) If P θ̇ is a Boolean automorphism, then the same arguments tell us that there is a Boolean

homomorphism φ : A → A such that φc = c for every c ∈ C and P φ̇ = θ̇−1. But in this case

P (πφ)� = π̇φ̇ = θ̇θ̇−1 = ι̇

where ι is the identity automorphism on A; by the uniqueness of the representing homomorphisms of A,
πφ = ι. Similarly, φπ = ι and φ = π−1, so that π is an automorphism.

556K Theorem Let (A, µ̄) be a probability algebra, and C a closed subalgebra of A; let P be the forcing

notion C+, active downwards, and Ȧ the forcing name for A over C. We can identify C with the regular open
algebra RO(P) (514Sb). For u ∈ L0(C) write ~u for the corresponding P-name for a real number as described
in 5A3L.

(a)(i) For each a ∈ A there is a ua ∈ L1(C, µ̄↾C) defined by saying that
∫
c
ua = µ̄(a ∩ c) for every c ∈ C.

(ii) If p ∈ C+ and a, b ∈ A are such that

p P ȧ = ḃ

(where ȧ, ḃ are the forcing names for a, b over C), then

p P ~ua = ~ub.

(b) There is a P-name ˙̄µ such that

P (Ȧ, ˙̄µ) is a probability algebra,

and

P ˙̄µȧ = ~ua

whenever a ∈ A and ȧ is the corresponding forcing name over C.
(c) If π : A → A is a measure-preserving Boolean homomorphism such that πc = c for every c ∈ C, and

π̇ the corresponding forcing name over C, then

P π̇ : Ȧ → Ȧ is measure-preserving.

(d) If φ̇ is a P-name such that

P φ̇ : Ȧ → Ȧ is a measure-preserving Boolean automorphism

then there is a measure-preserving Boolean automorphism π : A → A such that πc = c for every c ∈ C and

P φ̇ = π̇.

(e) If v ∈ L1(A, µ̄) and u ∈ L1(C, µ̄↾C) is its conditional expectation on C, then

P v̇ ∈ L1(Ȧ, ˙̄µ) and
∫
v̇ d ˙̄µ = ~u.

proof (a)(i) This is just the Radon-Nikodým theorem (365E).

(ii) If p P ȧ = ḃ, then p ∩ a = p ∩ b (556Da). Consequently∫
c
ua × χp =

∫
c∩p

ua = µ̄(c ∩ p ∩ a) = µ̄(c ∩ p ∩ b) =
∫
c
ub × χp

whenever c ∈ C, and ua × χp = ub × χp; by 5A3M,

p P ~ua = ~ub.

(b)(i) Note first the elementary properties of the conditional expectation a 7→ ua : A → L1(C, µ̄↾C): it is
additive and positive and order-continuous, and 0 ≤ ua ≤ χ1 for every a. (To extract these facts efficiently
from the presentation in §365, note that ua = P (χa), where P : L1(A, µ̄) → L1(C, µ̄↾C) is the conditional
expectation operator of 365Q10.) In particular,

P ~ua ∈ [0, 1]

10Formerly 365R.
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for every a ∈ A. It is also worth observing that if c ∈ C and a ∈ A then ua∩c = ua × χc (see 365Oc11).

(ii) Now consider the P-name

˙̄µ = {((ȧ, ~ua), 1) : a ∈ A}.

We have quite a lot to check, of course. First, ˙̄µ is a name for a function with domain Ȧ. PPP If ((ȧ, ~ua), 1)

and ((ḃ, ~ub), 1) are two members of ˙̄µ, and p ∈ C+ is such that p P ȧ = ḃ, then p ∩ a = p ∩ b, so p P ~ua = ~ub,

by (a-ii) above. By 5A3E, P ˙̄µ is a function. Also P dom ˙̄µ = Ȧ, where Ȧ = {(ȧ, 1) : a ∈ A} = Ȧ. QQQ

(iii) We have

P ˙̄µȧ = ~ua ∈ [0, 1]

for every a ∈ A, so

P ˙̄µ is a function from Ȧ to [0, 1].

Since u1 = χ1,

P ˙̄µ1 = ~u1 = 1.

(iv) Next, P ˙̄µ is additive. PPP Suppose that p ∈ C+ and ẋ, ẏ are P-names such that

p P ẋ, ẏ ∈ Ȧ are disjoint.

By 556Ga there are a, b ∈ A such that

p P ẋ = ȧ, ẏ = ḃ, (a ∩ b)� = ẋ ∩̇ ẏ = 0.

So p ∩ a ∩ b = 0 and

χp× ua∪b = up∩(a∪b) = up∩a + up∩b = χp× ua + χp× ub = χp× (ua + ub);

it follows that

p P ˙̄µ(ẋ ∪̇ ẏ) = ˙̄µ(ȧ ∪̇ ḃ) = ˙̄µ(a ∪ b)� = ~ua∪b = (ua + ub)~

(5A3M)

= ~ua + ~ub = ˙̄µẋ+ ˙̄µẏ.

As p, ẋ and ẏ are arbitrary,

P ˙̄µ is additive. QQQ

(v) Suppose that p ∈ C+ and that Ȧ is a P-name such that

p P Ȧ ⊆ Ȧ is closed under ∪̇ and has supremum 1.

Then for every rational number α < 1 there are an r ∈ C+, stronger than p, and a d ∈ A such that

r P ḋ ∈ Ȧ and ˙̄µḋ ≥ α̌.

PPP Set

B = {q ∩ a : q ∈ C+, a ∈ A, q P ȧ ∈ Ȧ},

so that p ⊆ supB (556Ea). Because µ̄ is completely additive, there are b0, . . . , bn−1 ∈ B such that

µ̄(p ∩ supi<n bi) > αµ̄p. Express each bi as qi ∩ ai where qi is stronger than p and qi P ȧi ∈ Ȧ. For
J ⊆ n set

cJ = p ∩ infi∈J qi \ supi∈n\J qi, dJ = supi∈J ai;

then 〈cJ 〉J⊆n is disjoint and

p ∩ supi<n bi = sup∅6=J⊆n cJ ∩ dJ .

11Formerly 365Pc.
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Accordingly
∑

∅6=J⊆n µ̄(cJ ∩ dJ ) > αµ̄p

and there must be a non-empty J ⊆ n such that cJ 6= 0 and

αµ̄cJ < µ̄(cJ ∩ dJ ) =
∫
cJ
udJ

.

So r = cJ ∩ [[udJ
≥ α]] is non-zero. Set d = dJ ; then

r P ȧi ∈ Ȧ for every i ∈ J̌ , therefore ḋ = supi∈J̌ ȧi ∈ Ȧ,

and

r P ˙̄µḋ = ~udJ
≥ α̌. QQQ

(vi) It follows that

P ˙̄µ is completely additive.

PPP Suppose that p ∈ C+ and that Ȧ is a P-name such that

p P Ȧ ⊆ Ȧ is closed under ∪̇ and has supremum 1.

Then for every rational α < 1 and every q stronger than p there is an r stronger than q such that

r P there is an x ∈ Ȧ such that ˙̄µx ≥ α̌;

as q is arbitrary,

p P there is an x ∈ Ȧ such that ˙̄µx ≥ α̌;

as α is arbitrary,

p P supx∈Ȧ
˙̄µx = 1.

As p and Ȧ are arbitrary,

P supx∈A
˙̄µx = 1 whenever A ⊆ Ȧ is closed under ∪̇ and has supremum 1.

We know that

P ˙̄µ is additive and ˙̄µ1 = 1,

so we can turn this over to get

P infx∈A ˙̄µx = 0 whenever A ⊆ Ȧ is closed under ∩̇ and has infimum 0, therefore ˙̄µ is
completely additive. QQQ

(vii) Since we already know that

P Ȧ is Dedekind complete

(556Gb), we have all the elements needed for

P (Ȧ, ˙̄µ) is a probability algebra.

(c) The point is that if a ∈ A then uπa = ua. PPP For any c ∈ C,∫
c
uπa = µ̄(c ∩ πa) = µ̄(π(c ∩ a)) = µ̄(c ∩ a) =

∫
c
ua. QQQ

Now suppose that p ∈ C+ and ẋ is a P-name such that p P ẋ ∈ Ȧ. Then there is an a ∈ A such that
p P ȧ = ẋ (556Ga again), and

p P ˙̄µ(π̇ẋ) = ˙̄µ(π̇ȧ) = ˙̄µ(πa)� = ~uπa = ~ua = ˙̄µẋ.

As p and ẋ are arbitrary,

P π̇ is measure-preserving.

(d) By 556J, there is a unique π ∈ AutA such that πc = c for every c ∈ C and P φ̇ = π̇. In this case,
for any a ∈ A,
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P ~ua = ˙̄µȧ = ˙̄µ(φ̇ȧ) = ˙̄µ(π̇ȧ) = ˙̄µ(πa)� = ~uπa.

So ua = uπa (5A3M again) and

µ̄a =
∫
ua =

∫
uπa = µ̄(πa).

Thus π is measure-preserving.

(e) Let P : L1(A, µ̄) → L1(C, µ̄↾C) be the conditional expectation operator, and let U be the set of those
v ∈ L1(A, µ̄) such that

P v̇ ∈ L1(Ȧ, ˙̄µ) and
∫
v̇ d ˙̄µ = ~Pv.

By (a), χa ∈ U for every a ∈ A; by 556Hb, U is closed under addition and rational multiplication; by 556Hc
supn∈N vn ∈ U for every non-decreasing sequence 〈vn〉n∈N in U . So U = L1(A, µ̄), as required.

556L Relatively independent subalgebras Let (A, µ̄) be a probability algebra and C a closed subal-
gebra of A; let P be the forcing notion C+, active downwards. Let ˙̄µ be the forcing name for µ̄ described in
556K, so that P (Ȧ, ˙̄µ) is a probability algebra.

(a) For a subalgebra B of A including C, let Ḃ be the forcing name for B over C. If 〈Bi〉i∈I is a family
of subalgebras of A including C, then 〈Bi〉i∈I is relatively independent over C (definition: 458La) iff

P 〈Ḃi〉i∈Ǐ is stochastically independent in Ȧ.

(b) If 〈vi〉i∈I is a family in L0(A) which is relatively independent over C, then

P 〈v̇i〉i∈Ǐ is stochastically independent

(writing v̇i for the forcing name for vi over C).

proof (a)(i) Suppose that 〈Bi〉i∈I is relatively independent over C. Let p ∈ C+ and J̇ , 〈ẋj〉j∈J̇ be P-names
such that

p P J̇ ∈ [Ǐ]<ω is non-empty, ẋj ∈ Ḃj for every j ∈ J̇ .

Then for every q stronger than p there are an r stronger than q and a family 〈bj〉j∈J such that J is a
non-empty finite subset of I, bj ∈ Bj for every j ∈ J , and

r P J̇ = J̌ and ẋj = ḃj for every j ∈ J̌ .

Set a = infj∈J bj . For each j ∈ J let ubj ∈ L1(C, µ̄↾C) be the conditional expectation of χbj on C, as in
556Ka; then ua =

∏
i∈J ubj , because 〈Bi〉i∈I is relatively stochastically independent. But this means that

r P ˙̄µ( inf
j∈J̇

ẋj) = ˙̄µ( inf
j∈J̌

ḃj) = ˙̄µȧ = ~ua

=
∏

j∈J̌

~ubj =
∏

j∈J̌

˙̄µḃj =
∏

j∈J̇

˙̄µẋj .

As q is arbitrary,

p P ˙̄µ(infj∈J̇ ẋj) =
∏

j∈J̇
˙̄µẋj ;

as p and 〈ẋj〉j∈J̇ are arbitrary,

P 〈Ḃi〉i∈Ǐ is independent.

(ii) Now suppose that

P 〈Ḃi〉i∈Ǐ is independent.

Take a finite set J ⊆ I and 〈bj〉j∈J ∈
∏

j∈J Bj . Again set a = infj∈J bj and let ubj be the conditional
expectation of χbj on C for each j. Then
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P (
∏

j∈J

ubj )~ =
∏

j∈J̌

~ubj =
∏

j∈J̌

˙̄µḃj

= ˙̄µ( inf
j∈J̌

ḃj) = ˙̄µ( inf
j∈J

bj)
� = ~ua,

so
∏

j∈J ubj = ua. As 〈bj〉j∈J is arbitrary, 〈Bi〉i∈I is relatively independent over C.

(b) For each i ∈ I, let Ai be the closed subalgebra of A generated by {[[vi > α]] : α ∈ Q}, and Bi the
closed subalgebra of A generated by Ai ∪ C. Then 〈Bi〉i∈I is relatively independent over C (458Ld), so

P 〈Ḃi〉i∈Ǐ is independent, by (a) here. Now we have

P [[v̇i > α]] = [[vi > α]]� ∈ Ḃi

whenever α ∈ Q and i ∈ I, so

P [[v̇i > α]] ∈ Ḃi for every α ∈ Q and i ∈ Ǐ, and 〈v̇i〉i∈Ǐ is independent.

556M Laws of large numbers As an elementary example to show that we can use this machinery to
extend a classical result, I give the following. Consider the two statements

(‡) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈fn〉n∈N a sequence in
L

2(µ) such that 〈fn〉n∈N is relatively independent over T and
∫
F
fndµ = 0 for every n ∈ N and

every F ∈ T. Suppose that 〈βn〉n∈N is a non-decreasing sequence in ]0,∞[, diverging to ∞, such

that
∑∞

n=0
1

β2
n

‖fn‖
2
2 <∞. Then limn→∞

1

βn

∑n
i=0 fi = 0 a.e.

and

(†) Let (X,Σ, µ) be a probability space and 〈fn〉n∈N an independent sequence in L
2(µ) such

that
∫
fndµ = 0 for every n ∈ N. Suppose that 〈βn〉n∈N is a non-decreasing sequence in ]0,∞[,

diverging to ∞, such that
∑∞

n=0
1

β2
n

‖fn‖
2
2 <∞. Then limn→∞

1

βn

∑n
i=0 fi = 0 a.e.

In 273D I presented (†) as the basic strong law of large numbers from which the other standard forms could
be derived. (‡) may be found in Volume 4 as an exercise (458Ye). What I propose to do is to show how (‡)
can be deduced, not exactly from (†), but from (†) in a forcing model; relying on the fundamental theorem
of forcing to confirm that if (†) is true in its ordinary sense, then its interpretation in any forcing language
will again be true.

proof (a) In order to avoid explanations involving names for real numbers, it seems helpful to re-word (‡).
Consider the version

(‡)1 Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈fn〉n∈N a sequence in
L

2(µ) such that 〈fn〉n∈N is relatively independent over T and
∫
F
fndµ = 0 for every n ∈ N and

every F ∈ T. Suppose that 〈βn〉n∈N is a non-decreasing sequence in Q ∩ ]0,∞[, diverging to ∞,

such that
∑∞

n=0
1

β2
n

‖fn‖22 <∞. Then limn→∞
1

βn

∑n
i=0 fi = 0 a.e.

Then (‡)1 implies (‡). PPP Given the structure of (‡), with general βn > 0, let δn ∈ Q ∩ ]0, βn] be such that

1

δ2n
‖fn‖

2
2 ≤

1

β2
n

‖fn‖
2
2 + 2−n

for every n. Set γn = supm≤n δm for each n; then 〈γn〉n∈N is a non-decreasing sequence in Q ∩ ]0,∞[ and
∑∞

n=0
1

γ2
n

‖fn‖22 is finite, so (‡)1 tells us that

limn→∞
1

βn

∑n
i=0 fi = limn→∞

γn

βn

·
1

γn

∑n
i=0 fi = 0 a.e. QQQ

(b) Now formulate the assertions (‡)1 and (†) in terms of measure algebras; we get

(‡)′ Let (A, µ̄) be a probability algebra, C a closed subalgebra of A, and 〈vn〉n∈N a sequence
in L2(A, µ̄) such that 〈vn〉n∈N is relatively independent over C and Pvn = 0 for every n ∈ N,
where P : L1(A, µ̄) → L1(C, µ̄↾C) is the conditional expectation operator. Suppose that 〈βn〉n∈N
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is a non-decreasing sequence in Q∩ ]0,∞[, diverging to ∞, such that
∑∞

n=0
1

β2
n

‖vn‖22 <∞. Then

〈
1

βn

∑n
i=0 vi〉n∈N is order*-convergent to 0.

and

(†)′ Let (A, µ̄) be a probability algebra and 〈vn〉n∈N an independent sequence in L2(A, µ̄)
such that

∫
vndµ̄ = 0 for every n. Suppose that 〈βn〉n∈N is a non-decreasing sequence in ]0,∞[,

diverging to ∞, such that
∑∞

n=0
1

β2
n

‖vn‖
2
2 <∞. Then 〈

1

βn

∑n
i=0 vi〉n∈N is order*-convergent to 0.

(As usual, the conversions are just a matter of applying the Loomis-Sikorski theorem, with 367F to translate
order*-convergence in L0 into almost-everywhere convergence of functions.)

(c) Assuming (†)′, take a structure (A, µ̄,C, 〈vn〉n∈N, 〈βn〉n∈N) as in (‡)′, let P be the forcing notion C+,

active downwards, and consider the corresponding forcing names Ȧ, ˙̄µ and 〈v̇n〉n∈N. Let P : L1(A, µ̄) →
L1(C, µ̄↾C) be the conditional expectation operator. For each n ∈ N,

P v̇n × v̇n = (vn × vn)� ∈ L1(Ȧ, ˙̄µ), ‖v̇n‖
2
2 =

∫
v̇2nd ˙̄µ = (P (v2n))~

by 556Hb and 556Ke. Now

∑∞
n=0

1

βn

∫
P (v2n)d(µ̄↾C) ≤

∑∞
n=0

1

βn

‖vn‖22 <∞,

so

v =
∑∞

i=n

1

βn

P (v2n)

is defined in L0(C), and

P

∑∞
n=0

1

β̌n

‖v̇n‖
2
2 ≤ ~v is finite.

At the same time,

P

∫
v̇nd ˙̄µ = ~Pvn = 0 for every n ∈ N,

and by 556Lb

P 〈v̇n〉n∈N is independent.

Applying (†)′ in the forcing language,

P 〈(
1

β̌n

∑n
i=0 vi)

�〉n∈N = 〈
1

β̌n

∑n
i=0 v̇i〉n∈N order*-converges to 0 in L0(Ȧ),

so 〈
1

βn

∑n
i=0 vi〉n∈N order*-converges to 0 in L0(A), by 556He.

Thus (‡)′ is true, and we’re home.

556N Dye’s theorem Now for something from Volume 3. Let me state two versions of Dye’s theorem
(388L): the ‘full’ version

(‡) Let (A, µ̄) be a probability algebra of countable Maharam type, C a closed subalgebra of A,
and π1, π2 two measure-preserving automorphisms of A with fixed-point algebra C. Then there is
a measure-preserving automorphism φ of A such that φc = c for every c ∈ C and π1 and φπ2φ

−1

generate the same full subgroups of AutA.

and the ‘simple’ version

(†) Let (A, µ̄) be a probability algebra of countable Maharam type, and π1, π2 two ergodic
measure-preserving automorphisms of A. Then there is a measure-preserving automorphism φ of
A such that π1 and φπ2φ

−1 generate the same full subgroups of AutA.

Here also the machinery of this section provides a proof of (‡) from (†).

proof (a) Assume (†). Take (A, µ̄), C, π1 and π2 as in (‡). Let P be the forcing notion C+, active downwards,

and let Ȧ, π̇1 and π̇2 be the forcing names for A, π1 and π2 over C. By 556C(b-iv), 556C(b-v), 556Gb, 556Kb
and 556Kc, and using 372Pc,
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P there is a measure on Ȧ with respect to which it is a probability measure and π̇1 and
π̇2 are measure-preserving automorphisms with fixed-point subalgebra {0, 1}, so are

ergodic, because Ȧ is Dedekind complete.

By 556Ed,

P Ȧ has countable Maharam type.

By (†), applied in the forcing universe,

P there is a measure-preserving automorphism θ of Ȧ such that π̇1 and θπ̇2θ
−1 generate

the same full subgroups of Aut Ȧ.

Let θ̇ be a P-name such that

P θ̇ is a measure-preserving automorphism of Ȧ such that π̇1 and θ̇π̇2θ̇
−1 generate the

same full subgroups of Aut Ȧ.

By 556Kd, there is a φ ∈ Autµ̄ A such that φc = c for every c ∈ C and P θ̇ = φ̇, so that, setting
π3 = φπ2φ

−1,

P π̇1 and π̇3 generate the same full subgroups of Aut Ȧ

(using 556C(a-iii) and 556C(b-iv)).

(b) Since

P π̇3 belongs to the full subgroup of Aut Ȧ generated by π̇1,

we can apply 381I(c-iv) in the forcing language to get

P infn∈Z supp(π̇n
1 π̇3) = 0.

Now by 556Ic we know that

P supp(π̇n
1 π̇3) = (supp(πn

1 π3))�

for every n ∈ Z (of course we need to check that P π̇
n
1 π̇3 = (πn

1 π3)�; but this is easily deduced from
556C(a-iii), an induction on n for n ≥ 0, and 556C(b-iv)). So

P ( inf
n∈Z

supp(πn
1 π3))� = inf

n∈Z
(supp(πn

1 π3)�)

(556E(b-ii))

= inf
n∈Z

supp(πn
1 π3)� = inf

n∈Z
supp(π̇n

1 π̇3) = 0.

By 556Da, as usual, infn∈Z supp(πn
1 π3) = 0; by 381I(c-iv), in the other direction and in the ordinary universe,

π3 belongs to the full subgroup of AutA generated by π1. Similarly, π1 belongs to the full subgroup generated
by π3, so π1 and π3 generate the same full subgroups, as required by (‡).

556O For the next result, I prepare the ground with a note on ‘full local semigroups’ as defined in §395.

Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and C a regularly embedded subalgebra

of A; let P be the forcing notion C+, active downwards. Let Ȧ be the forcing name for A over C, and for
a ring homomorphism π : A → A such that πc ⊆ c for every c ∈ C let π̇ be the forcing name for π over C.
Let G be a subgroup of AutA such that every point of C is fixed by every member of G, and Ġ the P-name
{(π̇, 1) : π ∈ G}.

(a) P Ġ is a subgroup of Aut Ȧ.
(b) If φ : A → A is a ring homomorphism such that φc ⊆ c for every c ∈ C, and

P φ̇ belongs to the full local semigroup generated by Ġ,

then φ belongs to the full local semigroup generated by G.

proof (a)(i) If p ∈ C+ and ẋ is a P-name such that p P ẋ ∈ Ġ, then for every q stronger than p there must
be an r stronger than q and a π ∈ G such that
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r P ẋ = π̇ ∈ Aut Ȧ.

(556C(b-iv)). As q is arbitrary, p P ẋ ∈ Aut Ȧ; as p and ẋ are arbitrary,

P Ġ ⊆ Aut Ȧ.

(ii) Writing ι for the identity automorphism of A,

P ι̇ ∈ Ġ is the identity automorphism of Ȧ

(see part (b-iv) of the proof of 556C). If p ∈ C+ and ẋ, ẏ are P-names such that p P ẋ, ẏ ∈ Ġ, then for
every q stronger than p there are r stronger than q and π1, π2 ∈ G such that

r P ẋ = π̇1, ẏ = π̇2, ẋ · ẏ = π̇1π̇2 = (π1π2)� ∈ Ġ, ẋ−1 = (π̇1)−1 = (π−1
1 )� ∈ Ġ

(556C(a-iii), 556C(b-iv)), because π1π2 and π−1
1 belong to G. As q is arbitrary,

p P ẋ · ẏ and ẋ−1 belong to Ġ;

as p, ẋ and ẏ are arbitrary,

P Ġ is a subgroup of Aut Ȧ.

(b) Take any non-zero a ∈ A. Then there is a p ∈ C+ such that p P ȧ 6= 0 (556Da). Since

p P φ̇ belongs to the full local semigroup generated by Ġ,

there must be P-names ẋ, θ̇ such that

p P ẋ ∈ Ȧ \ {0}, ẋ ⊆̇ ȧ, θ̇ ∈ Ġ, θ̇y = φ̇y whenever y ⊆̇ ẋ

(395B(a-ii)). Now there are a q stronger than p and b ∈ A, π ∈ G such that

q P ḃ = ẋ, π̇ = θ̇.

Since q P ḃ 6= 0, q ∩ b 6= 0. Suppose that d ⊆ q ∩ b. Then

q P ḋ ⊆̇ ẋ, so (πd)� = π̇ḋ = θ̇ḋ = φ̇ḋ = (φd)�

and

πd = q ∩ πd

(see (a-i-α) of the proof of 556C)

= q ∩ φd

(556Da, because φd ⊆ φq ⊆ q)

= φd.

Thus π and φ agree on the principal ideal Aq∩b, while q ∩ b ⊆ a is non-zero. As a is arbitrary, φ belongs to
the full local semigroup generated by G, by 395B(a-ii) in the other direction.

556P Kawada’s theorem In the same way as in 556M and 556N, we have two versions of 395P:

(‡) Let A be a Dedekind complete Boolean algebra and G a fully non-paradoxical subgroup
of AutA, with fixed-point subalgebra C, such that C is a measurable algebra. Then there is a
strictly positive G-invariant countably additive real-valued functional on A.

and

(†) Let A be a Dedekind complete Boolean algebra such that AutA has a subgroup G which is
ergodic and fully non-paradoxical. Then there is a strictly positive G-invariant countably additive
real-valued functional on A.

Once again, I claim that we can prove (‡) from (†).

proof (a) Take A, G and C as in (‡). If A = {0}, the result is trivial; so let us suppose from now on that
A 6= {0}. Let λ̄ be a functional such that (C, λ̄) is a probability algebra. Let P be the forcing notion C+,
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active downwards, and let Ȧ be the forcing name for A over C; for π ∈ AutA let π̇ be the forcing name for
π over C. Let Ġ be the P-name {(π̇, 1) : π ∈ G}.

(b) P Ġ is an ergodic subgroup of Aut Ȧ. PPP I noted in 556Oa that

P Ġ is a subgroup of Aut Ȧ.

For its ergodicity, copy the argument of 556C(b-v). Suppose that p ∈ C+ and ẋ is a P-name such that

p P ẋ ∈ Ȧ and θ(ẋ) = ẋ for every θ ∈ Ġ.

For any q stronger than p there are an r stronger than q and an a ∈ A such that r P ẋ = ȧ. Take any
π ∈ G. Then

r P π̇ ∈ Ġ, (πa)� = π̇ẋ = ẋ = ȧ,

so

π(r ∩ a) = r ∩ πa = r ∩ a

(556Da). As π is arbitrary, r ∩ a ∈ C. If r ∩ a 6= 0, then r ∩ a P ȧ = 1; if r ∩ a = 0, then r P ȧ = 0. In
either case, we have an s stronger than r such that s P ẋ ∈ {0, 1}. As q is arbitrary, p P ẋ ∈ {0, 1}; as p
and ẋ are arbitrary,

P Ġ has fixed-point subalgebra {0, 1}, so is ergodic, because Ȧ is Dedekind complete

(556Gb, 395Gf). QQQ

(c) P Ġ is fully non-paradoxical.
PPP (i) ??? Otherwise,

6 P Ġ satisfies condition (i) of 395D,

and there must be a p ∈ C+ and P-names θ̇, ẋ such that

p P ẋ ∈ Ȧ \ {1}, θ̇ is a Boolean homomorphism from Ȧ to the principal ideal generated

by ẋ, and θ̇ belongs to the full local semigroup generated by Ġ.

In order to apply 556J and 556O as stated we need a P-name θ̇1 such that P θ̇1 is a ring homomorphism.

If p = 1, take θ̇1 = θ̇; otherwise, take θ̇1 such that

p P θ̇1 = θ̇, 1 \ p P θ̇1 is the identity automorphism.

Then

P θ̇1 : Ȧ → Ȧ is a ring homomorphism belonging to the full local semigroup generated

by Ġ.

(ii) By 556J there is a unique ring homomorphism φ : A → A such that φc ⊆ c for every c ∈ C and

P θ̇1 = φ̇. By 556Ob, φ belongs to the full local semi-group generated by G. Since G is fully non-paradoxical,

φ1 = 1 and P θ̇11 = φ̇1 = 1. But p P θ̇11 = ẋ 6= 1. XXXQQQ

(d) Applying (†) in the forcing language, we see that

P there is a strictly positive Ġ-invariant countably additive functional on Ȧ, therefore

there is a there is a strictly positive Ġ-invariant countably additive functional on Ȧ

taking values in [0, 1].

Let ν̇ be a P-name such that

P ν̇ is a strictly positive Ġ-invariant [0, 1]-valued countably additive functional on Ȧ.

For each a ∈ A, P ν̇ȧ ∈ [0, 1], so there is a unique ua ∈ L0(C)+ such that

P ν̇ȧ = ~ua

(5A3M once more), and 0 ≤ ua ≤ χ1. Set µa =
∫
uadλ̄ for a ∈ A.

(e) µ is a strictly positive G-invariant countably additive functional on A.

PPP (i) If a, b ∈ A are disjoint,
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P ȧ ∩̇ ḃ = 0, so ~ua + ~ub = ν̇ȧ+ ν̇ḃ = ν̇(ȧ ∪̇ ḃ) = ν̇(a ∪ b)� = ~ua∪b

(using 556Bb); it follows that ua + ub = ua∪b and µa+ µb = µ(a ∪ b). Thus µ is additive.

(ii) If 〈an〉n∈N is a non-decreasing family in A with supremum a, then, by 556Be and 556Eb,

P 〈ȧn〉n∈N is a non-decreasing sequence in Ȧ with supremum ȧ, so 〈~uan
〉n∈N = 〈ν̇ȧn〉n∈N

is a non-decreasing sequence in [0, 1] with supremum ~ua = ν̇ȧ.

Now 〈uan
〉n∈N is a non-decreasing sequence in L0(C) with supremum ua (5A3Ld), so µa = supn∈N µan.

Thus µ is countably additive.

(iii) Because ua ≥ 0, µa ≥ 0 for every a ∈ A. If µa = 0, then ua = 0 so

P ν̇ȧ = ~ua = 0, therefore ȧ = 0, because ν̇ is strictly positive,

and a = 0 (556Da). Thus µ is strictly positive.

(iv) Suppose that π ∈ G and a ∈ A. Then

P π̇ ∈ Ġ and ν̇ is Ġ-invariant, so ~uπa = ν̇(πa)� = ν̇(π̇ȧ) = ν̇ȧ = ~ua.

So uπa = ua and µ(πa) = µa. Thus µ is G-invariant. QQQ
Accordingly µ is a functional as required by (‡).

556Q For the final application of the methods of this section, I turn to a result of a quite different kind.
Here the structure under consideration, the asymptotic density algebra Z, is off the main line of this treatise,
but has some important measure-theoretic properties (see §491); and it turns out that there is a remarkable
identification of its Dedekind completion (556S) which can be established by applying Maharam’s theorem
in a suitable forcing universe of the kind considered here. I start with a couple of easy lemmas, one just
a restatement of ideas from Volume 3, and the other a straightforward property of a basic class of forcing
notions.

Lemma (a) Let A be a Boolean algebra and µ̄ : A → [0, 1] a strictly positive additive functional such that
µ̄1 = 1. Suppose that whenever 〈an〉n∈N is a non-increasing sequence in A, there is an a ∈ A such that
a ⊆ an for every n and µ̄a = infn∈N µ̄an. Then (A, µ̄) is a probability algebra.

(b) Let (A, µ̄) be a probability algebra. Suppose that κ ≥ τ(A) is an infinite cardinal and that 〈eξ〉ξ<κ

is a family in A such that µ̄(infξ∈K eξ) = 2−#(K) for every finite K ⊆ I. Then (A, µ̄) is isomorphic to the
measure algebra (Bκ, ν̄κ) of the usual measure on {0, 1}κ.

proof (a) Let A ⊆ A be a non-empty countable set. Let 〈an〉n∈N be a sequence running over A, and set
bn = infi≤n ai for each n. There is a b ∈ A, a lower bound for {bn : n ∈ N} and therefore for A, such that
µ̄b = infn∈N µ̄bn. If c ∈ A is any lower bound for A, then b ∪ c ⊆ bn for every n, so

µ̄b+ µ̄(c \ b) = µ̄(b ∪ c) ≤ infn∈N µ̄bn = µ̄b,

and µ̄(c \ b) = 0; as µ̄ is strictly positive, c ⊆ b. Thus b = inf A. As A is arbitrary, A is Dedekind σ-complete.
But this is the only clause missing from the definition of ‘probability algebra’.

(b) By 331Ja, τ(Ad) ≥ κ for every non-zero d ∈ A. So A is Maharam-type-homogeneous, with Maharam
type κ, and (A, µ̄) ∼= (Bκ, µ̄κ) (331I).

556R Proposition Let P be a countably closed forcing notion. Then, for any set I, writing (BI , ν̄I) for
the measure algebra of the usual measure on {0, 1}I ,

P (BǏ , ν̄Ǐ) ∼= (B̌I , ˇ̄νI).

proof If I is finite, this is elementary (and does not rely on P being countably closed), so I shall suppose
that I is infinite.

(a)

P if 〈xn〉n∈N is a non-increasing sequence in B̌I , there is an x ∈ B̌I such that x ⊆̌ xn for
every n and ˇ̄νI(x) = infn∈N ˇ̄νI(xn).
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PPP Let p be a condition of P and 〈ẋn〉n∈N a sequence of P-names such that

p P ẋn ∈ B̌I and ẋn+1 ⊆̌ ẋn

for every n. If q is stronger than p, we can choose 〈qn〉n∈N, 〈bn〉n∈N inductively so that q0 = q and, for each
n, qn+1 is stronger than qn, bn ∈ BI and qn+1 P ẋn = b̌n. In this case,

qn+1 P b̌n+1 = ẋn+1 ⊆̌ ẋn = b̌n,

so bn+1 ⊆ bn for each n. Setting b = infn∈N bn, ν̄Ib = infn∈N ν̄Ibn. Also, because P is countably closed, there
is a condition r stronger than any qn. So

r P b̌ ⊆̌ b̌n = ẋn for every n ∈ N, ˇ̄νI(b̌) = infn∈N ˇ̄νI(ẋn).

As q is arbitrary,

p P there is an x ∈ B̌I such that x ⊆̌ ẋn for every n and ˇ̄νI(x) = infn∈N ˇ̄νI(ẋn).

As p and 〈ẋn〉n∈N are arbitrary,

P if 〈xn〉n∈N is a non-increasing sequence in B̌I , there is an x ∈ B̌I such that x ⊆̌ xn for
every n and ˇ̄νI(x) = infn∈N ˇ̄νI(xn). QQQ

Since we certainly have

P B̌I is a Boolean algebra and ˇ̄ν : B̌I → [0, 1] is a strictly positive additive functional
such that ˇ̄νI1 = 1,

556Qa, applied in the forcing universe, tells us that

P (B̌, ˇ̄νI) is a probability algebra.

(b) Let 〈ei〉i∈I be the standard generating family in BI . Then ν̄I(infi∈K ei) = 2−#(K) for every finite
set K ⊆ I, so

P ˇ̄νI(infi∈K ěi) = 2−#(K) for every finite set K ⊆ Ǐ.

Next, if D is the subalgebra of BI generated by {ei : i ∈ I}, then D is dense in BI for the measure metric.
Now

P Ď is the subalgebra of B̌I generated by {ěi : i ∈ Ǐ} and Ď is metrically dense in B̌I ,
so τ(B̌I) ≤ #(Ǐ). By 556Q, (B̌I , ˇ̄νI) ∼= (B#(Ǐ), ν̄#(Ǐ))

∼= (BǏ , ν̄Ǐ),

as required.

556S Theorem (Farah 06) Let Z be the ideal of subsets of N with asymptotic density 0 and Z the
asymptotic density algebra PN/Z. Then the Dedekind completion of Z is isomorphic to the Dedekind
completion of the free product (PN/[N]<ω) ⊗Bc .

proof (a) For n ∈ N, set In = {i : 2n ≤ i < 2n+1}, so that 〈In〉n∈N is a partition of N \ {0}, and #(In) = 2n

for every n ∈ N. Recall that

Z = {J : J ⊆ N, limn→∞ 2−n#(J ∩ In) = 0}

(491Ab). The notation of this proof will be slightly less appalling if I write bJ for J• ∈ Z when J ⊆ N and
cK for (

⋃
n∈K In)• when K ⊆ N.

Set

C = {cK : K ⊆ N}.

Because K 7→ cK : PN → Z is a Boolean homomorphism, C is a subalgebra of Z. Now C ∼= PN/[N]<ω. PPP If
K ⊆ N, then

cK = 0 ⇐⇒
⋃

n∈K In ∈ Z ⇐⇒ K is finite.

So the Boolean homomorphism K 7→ cK induces a Boolean isomorphism π : PN/[N]<ω → C defined by
setting π(K•) = cK for every K ⊆ N. QQQ

For p ∈ C+, set

Fp = {K : K ⊆ N, p ⊆ cK},
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so that Fp is a filter on N containing every cofinite set. Note that if p ⊆ q then Fp is finer than Fq.

(b) C is regularly embedded in Z. PPP Suppose that A ⊆ C has infimum 0 in C, and that b ∈ Z+. Let
J0 ∈ PN \ Z be such that b = bJ0

. Then lim supn→∞ 2−n#(J0 ∩ In) > 0, so there is an ǫ > 0 such that
K = {n : #(J0∩In) ≥ 2nǫ} is infinite. cK cannot be a lower bound of A in C, so there is an L ⊆ N such that
cL ∈ A and cK 6⊆ cL, that is, K \ L is infinite. Set J =

⋃
n∈K\L J0 ∩ In; then #(J ∩ In) ≥ 2nǫ for infinitely

many n, so J /∈ Z and 0 6= bJ ⊆ b. On the other hand, bJ ∩ cL = 0. So b 6⊆ cL and b is not a lower bound of
A in Z. As b is arbitrary, A has infimum 0 in Z; as A is arbitrary, the embedding C ⊂→ Z is order-continuous
(313L(b-v)), and C is regularly embedded in Z. QQQ.

(c) Let P be the forcing notion C+, active downwards. Then P is countably closed. PPP Let 〈pm〉m∈N be
a non-increasing sequence in C+. For each m ∈ N, let Km ⊆ N be such that pm = cKm

. Then Km+1 \Km

is finite for each m. Let 〈nk〉k∈N be a strictly increasing sequence such that nk ∈ Km whenever m ≤ k ∈ N,
and set K = {nk : k ∈ N}; then cK belongs to C+, and cK ⊆ pm for every m ∈ N. QQQ

(d)(i) Let Ż be the forcing name for Z over C, and for b ∈ Z let ḃ be the forcing name for b over C. Let
ν̇ be the P-name

{((ḃJ , α̌), p) : p ∈ C+, J ⊆ N, limn→Fp
2−n#(J ∩ In) is defined and equal to α}.

(ii) P ν̇ is a function. PPP Suppose that (J0, α0, p0) and (J1, α1, p1) ∈ PN× R× C+ are such that

limn→Fp0
2−n#(J0 ∩ In) = α0, limn→Fp1

2−n#(J1 ∩ In) = α1,

and that p ∈ C+, p ⊆ p0 ∩ p1 and p P ḃJ0
= ḃJ1

. Then p ∩ bJ0
= p ∩ bJ1

(556Da). Express p as cK , where
K ⊆ N; then

⋃
n∈K In∩ (J0△J1) ∈ Z, so limn∈K,n→∞ 2−n#(In∩ (J0△J1)) = 0, that is, limn→Fp

2−n#(In∩
(J0△J1)) = 0. But this means that

α0 = limn→Fp
2−n#(In ∩ J0) = limn→Fp

2−n#(In ∩ J1) = α1,

and surely p P α̌0 = α̌1. Thus the condition of 5A3Ea is satisfied and

P ν̇ is a function. QQQ

(iii) P dom ν̇ = Ż. PPP Setting

Ȧ = {(ḃJ , p) : p ∈ C+, J ⊆ N, limn→Fp
2−n#(J ∩ In) is defined},

5A3E tells us that P dom ν̇ = Ȧ. Of course P Ȧ ⊆ Ż just because P ḃJ ∈ Ż for every J ⊆ N. In the

other direction, if p ∈ C+ and ẋ is a P-name such that p P ẋ ∈ Ż, there are a q stronger than p and a

b ∈ Z such that q P ẋ = ḃ. Express q as cK and b as bJ where K ⊆ N is infinite and J ⊆ N. Then there

is an infinite L ⊆ K such that limn∈L,n→∞ 2−n#(J ∩ In) is defined, that is, (ḃ, r) ∈ Ȧ, where r = cL. So

r P ẋ = ḃ ∈ Ȧ. As p and ẋ are arbitrary,

P Ż ⊆ Ȧ and dom ν̇ = Ż. QQQ

(iv) Of course limn→Fp
2−n#(J ∩ In), if it is defined, must belong to [0, 1]. So

P ν̇ is a function from Ż to [0, 1].

Next, ((1̇, 1̌), 1) ∈ ν̇ (if you can work out how to interpret each 1 in this formula), so P ν̇1̇ = 1̌ = 1.

(v) P ν̇ is additive. PPP Suppose that p ∈ C+ and that ẋ0, ẋ1 are P-names such that

p P ẋ0, ẋ1 ∈ Ż are disjoint.

If p1 is stronger than p there are q0, q′0, q1, r ∈ P, J0, J1 ⊆ N and α0, α1 ∈ R such that

((ḃJ0
, α̌0), q0) ∈ ν̇, q′0 is stronger than both q0 and p1, q′0 P ḃJ0

= ẋ0,

((ḃJ1
, α̌1), q1) ∈ ν̇, r is stronger than both q1 and q′0, r P ḃJ1

= ẋ1.

As r P (bJ0
∩ bJ1

)� = 0, r ∩ bJ0
∩ bJ1

= 0. Express r as cK , where K ∈ [N]ω. Then J0 ∩ J1 ∩
⋃

n∈K In ∈ Z,
so limn→Fr

2−n#(J0 ∩ J1 ∩ In) = 0. At the same time,
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limn→Fr
2−n#(J0 ∩ In) = limn→Fq0

2−n#(J0 ∩ In) = α0,

limn→Fr
2−n#(J1 ∩ In) = limn→Fq1

2−n#(J1 ∩ In) = α1,

so

lim
n→Fr

2−n#((J0 ∪ J1) ∩ In)

= lim
n→Fr

2−n#(J0 ∩ In) + lim
n→Fr

2−n#(J1 ∩ In) − lim
n→Fr

2−n#(J0 ∩ J1 ∩ In)

= α0 + α1

and (((ḃJ0∪J1
, (α0 + α1)̌ ), r) ∈ ν̇. Accordingly

r P ν̇(ẋ0 ∪̇ ẋ1) = ν̇(ḃJ0∪J1
) = (α0 + α1)̌ = α̌0 + α̌1 = ν̇(ẋ0) + ν̇(ẋ1),

while r ⊆ p1. As p1 is arbitrary,

p P ν̇(ẋ0 ∪̇ ẋ1) = ν̇(ẋ0) + ν̇(ẋ1).

As p, ẋ0 and ẋ1 are arbitrary,

P ν̇ is additive. QQQ

(vi) P ν̇ is strictly positive. PPP Let p ∈ C+ and a P-name ẋ be such that p P ẋ ∈ Ż and ẋ 6= 0̇. If q is

stronger than p there are a q′ stronger than q and a J ⊆ N such that q′ P ẋ = ḃJ . Express q′ as cK where

K ∈ [N]ω. As q′ P ḃJ 6= 0̇, q′ ∩ bJ 6= 0 and
⋃

n∈K In∩J /∈ Z. Accordingly lim supn∈K,n→∞ 2−n#(In∩J) > 0

and there is an infinite L ⊆ K such that α = limn∈L,n→∞ 2−n#(In ∩ J) is defined and greater than 0. Set

r = cL; then ((ḃJ , α̌), r) ∈ ν̇, so

r P ν̇(ẋ) = ν̇(ḃJ ) = α̌ > 0,

while r is stronger than q. As q is arbitrary, p P ν̇(ẋ) > 0; as p and ẋ are arbitrary, P ν̇ is strictly positive.
QQQ

(vii)

P if 〈xk〉k∈N is a non-increasing sequence in Ż

there is an x ∈ Ż such that x ⊆̇ xk for every k and ν̇(x) = inf
k∈N

ν̇(xk).

PPP Let p ∈ C+ and a sequence 〈ẋk〉k∈N of P-names be such that

p P 〈ẋn〉n∈N is a non-increasing sequence in Ż.

Let q be stronger than p. Then we can choose 〈qk〉k∈N, 〈q′k〉k∈N, 〈q′′k 〉k∈N, 〈Jk〉k∈N and 〈αk〉k∈N inductively
so that q′0 = q and

q′′k is stronger than q′k, Jk ⊆ N and q′′k P ẋk = ḃJk
,

qk is stronger than q′′k , αk ∈ [0, 1], limn→Fqk
2−n#(Jk ∩ In) = αk

(compare (iii) above),

q′k+1 = qk

for every k ∈ N.
Because P is countably closed, there is an r ∈ C+ stronger than every qk. In this case, ((ḃJk

, α̌k), r) ∈ ν̇
for every k, so

r P infk∈N ν̇(ẋk) = infk∈N α̌k = α̌

where α = infk∈N αk. Express r as cK where K ⊆ N is infinite. For each k ∈ N,

r P ḃJk+1
= ẋk+1 ⊆̇ ẋk = ḃJk

,

so r ∩ bJk+1
\ bJk

= 0 and
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limn∈K,n→∞ 2−n#(In ∩ Jk+1 \ Jk) = 0,

while

limn∈K,n→∞ 2−n#(In ∩ Jk) = limn→Fqk
2−n#(In ∩ Jk) = αk ≥ α.

We can therefore find a strictly increasing sequence 〈nk〉k∈N in K such that

2−nk#(Ink
∩ J ′

k) ≥ α− 2−k

for every k, where J ′
k =

⋂
j≤k Jj . Set r′ = (

⋃
k∈N Ink

)• and J =
⋃

k∈N Ink
∩ J ′

k. Then J \ Jk is finite, so

r′ P ḃJ ⊆̇ ẋk for every k. Also ((ḃJ , α̌), r′) ∈ ν̇, so

r′ P ν̇(ḃJ) = α̌ = infk∈N ν̇(ẋk).

Thus

r′ P there is a lower bound x for {ẋk : k ∈ N} such that ν̇(x) = infk∈N ν̇(ẋk).

As q is arbitrary,

p P there is a lower bound x for {ẋk : k ∈ N} such that ν̇(x) = infk∈N ν̇(ẋk).

As p and 〈ẋk〉k∈N are arbitrary,

P if 〈xk〉k∈N is a non-increasing sequence in Ż there is an x ∈ Ż such that x ⊆̇ xk for
every k and ν̇(x) = infk∈N ν̇(xk). QQQ

(viii)

P there is a family 〈xL〉L∈PN in Ȧ such that ν̇(infL∈L xL) = 2−#(L) for every finite set
L ⊆ PN.

PPP Let 〈ML〉L∈PN be an almost disjoint family of infinite subsets of N (5A1Ga). For each n ∈ N, let 〈Kni〉i<n

be a family of subsets of In such that #(
⋂

i∈J Kni) = 2n−#(J) for every non-empty set J ⊆ n; such a family
exists because #(In) = 2n. For L ⊆ N, set

AL =
⋃

n∈N,n>minML
Kn,max(n∩ML), aL = bAL

∈ Z.

If L ⊆ PN is finite and not empty, let n0 ∈ N be such that ML ∩ML′ ⊆ n0 whenever L, L′ ∈ L are distinct,
and n1 ≥ n0 such that ML ∩ n1 \ n0 6= ∅ for every L ∈ L. Then max(n∩ML) 6= max(n∩ML′) whenever L,
L′ ∈ L are distinct and n ≥ n1. So

lim
n→∞

2−n#(In ∩
⋂

L∈L

AL) = lim
n→∞

2−n#(In ∩
⋂

L∈L

Kn,max(n∩ML))

= lim
n→∞

2−n2n−#(L) = 2−#(L).

Of course the same formula is valid when L = ∅.
It follows that

P ν̇(infL∈Ľ ȧL) = 2−#(Ľ)

for every finite L ⊆ PN. Accordingly

P ν̇(infL∈L ȧL) = 2−#(L) for every finite set L ⊆ (PN)̌ .

But we know also that

P PN = (PN)̌

(5A3Qb). So the family 〈ȧL〉L∈PN of P-names, when interpreted as a P-name 〈ȧL〉L∈(PN)ˇ as in 5A3Fb, can

also be regarded as a P-name for a function defined on the whole power set of the set of natural numbers.
If we do this, we get

P ν̇(infL∈L ȧL) = 2−#(L) for every finite set L ⊆ PN,

witnessing the truth of the result we seek. QQQ

(ix) P #(Ȧ) ≤ c. PPP Since
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Ż = {(ȧ, 1) : a ∈ Z} = {(ḃJ , 1) : J ∈ PN}

(556Ab), we get

P Ż = {ḃJ : J ∈ (PN)̌ }, so #(Ż) ≤ #((PN)̌ ) ≤ #(PN) = c. QQQ

(e) Assembling the facts in (d), we see that

P (Ż, ν̇) satisfies the conditions of 556Q with κ = c, so Ż ∼= Bc .

But we also have

P Bc is isomorphic to BPN = B(PN)ˇ
∼= (BPN)̌

by 556R. As C is regularly embedded in Z, we can apply 556Fc to see that Ẑ is isomorphic to the Dedekind
completed free product C⊗̂BPN and therefore to (PN/[N]<ω)⊗̂Bc , by (a).

This completes the proof.

556X Basic exercises (a) Let A be a Boolean algebra, not {0}, and C a Boolean subalgebra of A which

is not regularly embedded; let P be the forcing notion C+, active downwards, and let Ȧ be the forcing name
for A over C. Show that there is an a ∈ A \ {0} such that P ȧ = 0, where ȧ is the forcing name for a over
C.

(b) Let P be a countably closed forcing notion. (i) Show that P ω1 = ω̌1. (ii) Show that P [Ǐ]≤ω =
([I]≤ω )̌ for every set I. (iii) Let A be a Dedekind σ-complete Boolean algebra. Show that P Ǎ is Dedekind
σ-complete. (iv) Let (X, ρ) be a complete metric space. Show that P (X̌, ρ̌) is a complete metric space.

(c) Show that the Dedekind completion Ẑ of the asymptotic density algebra is a homogeneous Boolean
algebra. (Hint : 316Q, 316P.)

556Y Further exercises (a) Let P be a forcing notion, and Q̇1, Q̇2 two P-names for forcing notions
such that

P RO(Q̇1) ∼= RO(Q̇2).

Show that RO(P ∗ Q̇1) ∼= RO(P ∗ Q̇2).

(b) Let P and Q be forcing notions. Show that RO(P ∗ Q̌) ∼= RO(P)⊗̂RO(Q).

(c) Give an example of a Dedekind σ-complete Boolean algebra A with an order-closed subalgebra C such
that

P Ȧ is not Dedekind σ-complete,

where P is the forcing notion C+, active downwards, and Ȧ is the forcing name for A over C.

(d) Show that the argument of 556Q is sufficient to take us from (†) there to Theorem 395N, as well as
to 395P.

(e) Show that if the Proper Forcing Axiom is true then the asymptotic density algebra Z is not homoge-
neous. (Hint : 5A6H.)

(f) Let (A, µ̄) be a probability algebra, C a closed subalgebra and P the forcing notion C+ active down-

wards. Set q(t) = −t ln t for t > 0, 0 for t ≤ 0 (cf. 385A). Let A be a finite partition of unity in A, and Ȧ the
P-name {(ȧ, 1) : a ∈ A}. (i) Confirm that the definition of q can be interpreted in the forcing universe V P.
(ii) Show that if u ∈ L0(C) then P (q̄(u))~ = q(~u). (iii) Set v =

∑
a∈A q̄(Pχa) where P is the conditional

expectation associated with C (cf. 385D). Show that

P Ȧ is a partition of unity in (Ȧ, ˙̄µ) and its entropy is ~v.

(iv) Re-examine Lemma 385Ga in the light of this.

Measure Theory



556 Notes Forcing with Boolean subalgebras 117

556 Notes and comments I did not positively instruct you to do so in the introduction to this section,
but I expect that most readers will have passed rather quickly over the nineteen �-infested pages up to
556L, and looked at the target theorems from 556M on. In each of the first three we have a pair (‡), (†) of
propositions, (†) being the special case of (‡) in which an algebra T or C is trivial. If, as I hope, you are
already acquainted with at least one of the assertions (‡), you will know that it can be proved by essentially
the same methods as the corresponding (†), but with some non-trivial technical changes. These technical
changes, already incorporated in the proofs of 388L/556N and 395P/556P in Volume 3, and indicated in
§458 for 458Ye/556M, certainly do not amount to nineteen pages of mathematics in total; moreover, they
explore ideas which are of independent interest. So I cannot on this evidence claim that the approach gives
quick proofs of otherwise inaccessible results.

What I do claim is that the general method gives a way of looking at a recurrent phenomenon. Throughout
the theory of measure-preserving transformations, ergodic transformations have a special place; and one
comes to expect that once one has answered a question for ergodic transformations, the general case will
be easy to determine. Similarly, every theorem about independent random variables ought to have a form
applying to relatively independent variables. Indeed there are standard techniques for developing such
extensions, based on disintegrations, as in §§458-459. What I have tried to do here is to develop a completely
different approach, and in the process to indicate a new aspect of the theory of forcing. I note that the
method demands preliminary translations into the language of measure algebras, which suits my prejudices
as already expressed at length in Volume 3.

The message is that everything works. There are no royal roads in mathematics, and to use this one you
will have to master some non-trivial machinery. But perhaps just knowing that a machine exists will give
you the confidence to attack similar problems in your own way. I offer an example in 556Yf. Note that
this depends on the fact that the ordinary functions of elementary calculus have definitions which can be
interpreted in any forcing universe.

The great bulk of the work of this section consists of routine checks that natural formulae are in fact valid.
You will see that some simple ideas recur repeatedly, but the details demand a certain amount of attention.
At the very beginning, in finding a forcing name ȧ for an element of a Boolean algebra, we have to take care
that we are exactly following our preferred formulation of what a name ‘is’. (If my preferred formulation is
not yours, you have some work to do, but it should not be difficult, and might be enlightening.) It is not
surprising that regularly embedded subalgebras have a special status (556D); it is worth taking a moment to
think about why it matters so much (556Xa). In 556H, I do not think it is obvious that A must be Dedekind
complete, rather than just Dedekind σ-complete, to make the ideas work in the straightforward way that
they do (556Yc). When we come to measure algebras (556K), we need to be sure that we have a description
of forcing names for real numbers which is compatible with the apparatus here. Again and again, we have
sentences with clauses in both the forcing language and in ordinary language, and we must keep the pieces
properly segregated in our minds.

The last fifth of the section (556Q-556S) is quite hard work for the result we get, but I think it is partic-
ularly instructive, in that it cannot be regarded as a technical extension of a simpler and more important
result. It is a good example of a theorem proved by a method unavoidably dependent on the Forcing The-
orem (5A3D), and for which it is not at all clear that a proof avoiding forcing can be made manageably
simple. Such a proof must exist, but the obvious route to it involves teasing out the requisite parts of the
proof of Maharam’s theorem, and translating them into properties of the set

{(J, α,K) : K ∈ [N]ω, J ⊆ N, limn∈K,n→∞ 2−n#(J ∩ In) = α}

as in part (d) of the proof of 556S, but going very much farther. My own experience is that facing up to such
challenges is often profitable, but for the moment I am happy to present an adaptation of Farah’s original
proof.

An easy corollary of Theorem 556S is that Ẑ is homogeneous (556Xc). This is striking in view of the
fact that Z itself may or may not be homogeneous. If the continuum hypothesis is true, then Z is indeed
homogeneous (Farah 03); but if the Proper Forcing Axiom is true, then Z is not homogeneous (556Ye),
even though its completion is.
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G lówczyński W. [91] ‘Measures on Boolean algebras’, Proc. Amer. Math. Soc. 111 (1991) 845-849. [555K.]
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