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Chapter 53
Topologies and measures III

In this chapter I return to the concerns of earlier volumes, looking for results which can be expressed in the
language so far developed in this volume. In Chapter 43 I examined relationships between measure-theoretic
and topological properties. The concepts we now have available (in particular, the notion of ‘precaliber’)
make it possible to extend this work in a new direction, seeking to understand the possible Maharam types
of measures on a given topological space. §531 deals with general Radon measures; new patterns arise if
we restrict ourselves to completion regular Radon measures (§532). In §533 I give a brief account of some
further results depending on assumptions concerning the cardinals examined in Chapter 52, including notes
on uniformly regular measures and a description of the cardinals k for which R” is measure-compact (533J).

In §534 I set out the elementary theory of ‘strong measure zero’ ideals in uniform spaces, concentrating
on aspects which can be studied in terms of concepts already introduced. Here there are some very natural
questions which have not as far as I know been answered (5347Z). In the same section I run through elementary
properties of Hausdorff measures when examined in the light of the concepts in Chapter 52. In §535 I look
at liftings and strong liftings, extending the results of §§341 and 453; in particular, asking which non-
complete probability spaces have liftings. In §536 I run over what is known about Alexandra Bellow’s
problem concerning pointwise compact sets of continuous functions, mentioned in §463. With a little help
from special axioms, there are some striking possibilities concerning repeated integrals, which I examine in
§537. Moving into new territory, I devote a section (§538) to a study of special types of filter on N associated
with measure-theoretic phenomena, and to medial limits. In §539, I complete my account of the result of
B.Balcar, T.Jech and T.Pazdk that it is consistent to suppose that every Dedekind complete ccc weakly
(0, 00)-distributive Boolean algebra is a Maharam algebra, and work through applications of the methods
of Chapter 52 to Maharam submeasures and algebras.

Version of 27.2.24

531 Maharam types of Radon measures
In the introduction to §434 I asked

What kinds of measures can arise on what kinds of topological space?

In §8434-435, and again in §438, I considered a variety of topological properties and their relations with
measure-theoretic properties of Borel and Baire measures. I passed over, however, some natural questions
concerning possible Maharam types, to which I now return. For a given Hausdorff space X, the possible
measure algebras of totally finite Radon measures on X can be described in terms of the set Mahg(X)
of Maharam types of Maharam-type-homogeneous Radon probability measures on X (531F). For X # 0,
Mahg (X) is of the form {0} U [w, *[ for some infinite cardinal x* (531Ef). In 531E and 531G I give basic
results from which Mahg(X) can often be determined; for obvious reasons we are primarily concerned
with compact spaces X. In more abstract contexts, there are striking relationships between precalibers of
measure algebras, the sets Mahg (X) and continuous surjections onto powers of {0,1}, which I examine in
531L-531M, 531T and 531V. Intertwined with these, we have results relating the character of X to Mahg (X)
(531N-5310). The arguments here depend on an analysis of the structure of homogeneous measure algebras
(531J, 531K, 531R).

531A Proposition Let (X,%, %, 1) be a quasi-Radon measure space with measure algebra (2, ).
(a) The Maharam type 7(2() of 2 is at most the weight w(X) of X.
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2 Topologies and measures II11 531A

(b) The cellularity ¢() of 2 is at most the hereditary Lindel6f number hL(X) of X. If u is locally finite,
c(20) is at most the Lindel6f number L(X) of X.

(¢) #({a : a € A, fia < oo}) < max(l,w(X)“), where w(X)“ is the cardinal power.

(d) If X is Hausdorff and p is a Radon measure, then the Maharam type 7(2() of 2 is at most the network
weight nw(X) of X.

proof (a) Let U be a base for T with #(U) = w(X). Set B = {U* : U € U} and let B be the order-closed
subalgebra of 2 generated by B; set T={F : E € X, E* € B}. Then T is a o-subalgebra of ¥ containing
every negligible set.

If G C X is open, then G € T. P By 414Aa, G* = sup{U* : U € U, U C G} belongs to B. Q So every
Borel set belongs to T. If F € ¥ and puFE < oo, then, because p is inner regular with respect to the Borel
sets, there is a Borel subset F' of E with the same measure, so F, E\ F' and E belong to T. Thus {a : a € 2,
fia < oo} C B; because p is semi-finite, B = A and 7(A) < #(B) < #U) = w(X).

(b)(i) If L(X) = nis finite, and Fy, ... , F;, C X are disjoint closed sets, then at least one of them is empty.
P For i <n,set G; = X \ U, <, j» I then U, o, Gi = X, so there is some k < n such that {J,, Gi = X,
and now Fj, = 0. Q As p is inner regular with respect to the closed sets, ¢(A) <n = L(X) < hL(X).

(ii) Suppose that w < L(X) < hL(X). Let G be the family of open subsets of X of finite measure. Then
there is a set H C G, with cardinal at most hL(X), such that (JH = UG (5A4Bf). Now supycy H® =1,
because u is effectively locally finite.

If D C A\ {0} is disjoint, then for each d € D take Hy € H such that dnH) # 0. If H € H,
then {d : Hy = H} must be countable, since pH < oco. So #(D) < max(w,#(H)); as D is arbitrary,
c(2A) < max(w,hL(X)) = hL(X).

(iii) Finally, if w < L(X) and pu is locally finite, then in (ii) above we have X = |J G, so we can take
H to have size at most L(X), and continue as before, ending with ¢() < max(w, #(H)) = L(X).

(c) Again let U be a base for the topology of X with cardinal w(X). Let T be the o-subalgebra of
3 generated by U. If £ € ¥ and pFE < oo, then for each n € N we can find an open set G,, such that
w(Gp,AE) < 27" now there is an open set H,, a finite union of members of U, such that H,, C G,
and pu(Gy, \ H,) < 27" Setting F' = U,,en Ny>m Hn, we see that F' € T and EAF is negligible. Thus
{F*:FeT}2{a:fia <o} and N

#({a: o < oo}) < #(T) < max(1, #(U)*) = max(1, w(X)“).

(d) If a € A\ {0} and the principal ideal %, is Maharam-type-homogeneous, then 7(2,) < nw(X). P
There is a compact set K C X such that 0 # K* C 2,; let ux be the subspace measure on K. Then

7(Aa) = 7(ux) < w(K)
(by (a)
= nw(K)
(5A4C(a-i))
< nw(X)

(5A4Bb). Q
By (b), ¢(2) < #(%) < 22¥(X) (5A4Ba); so 3328 tells us that 7(2) < nw(X).

531B For strictly positive measures we have some easy inequalities in the other direction.

Proposition Let (X, X, u) be a measure space, with measure algebra 2[, and ¥ a topology on X such that
3 includes a base for ¥ and p is strictly positive.

(a) If X is regular, then w(X) < #(A).

(b) If X is Hausdorff, then #(X) < 2#().
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531E Maharam types of Radon measures 3

proof Set V =3¥NT, so that V is a base for T. If V, W € V and V* = W* in 2, then intz = int E
P (VW) <pu(V\W) =0, so (because p is strictly positive) V. C W and V C W and int V' C int W.
Similarly, int W C int V. Q So if we set W = {int V : V € V}, #(W) < #(2).

(a) If T is regular, W is a base for T, so w(X) < #(W) < #(2).

(b) If T is Hausdorff, then for any distinct =, y € X, there is a W € W containing x but not y. I Let G,
H be disjoint open sets containing x, y respectively. Take V € V such that z € V C G, and set W = int V.
Q So #(X) < 2#W) < 9#(),

531C Lemma Let (X;);c; be a family of topological spaces with product X, and p a totally finite

quasi-Radon measure on X with Maharam type . For each i € I, let u; be the marginal measure on X;,
and x; its Maharam type. Then & is at most the cardinal sum ), _; x;.

proof For each i € I, let (Eig)¢<y, be a family in dom p1; such that {Ef : £ < k;} T-generates the measure
algebra of ;. Consider W = {m; '[E;] 1 i € I, £ < 1;}, so that W C dom p and #(W) < 3, ki. Let B
be the closed subalgebra of the measure algebra 2 of 1 generated by {W*: W € W}.

For each i € I, the canonical map 7; : X — X, induces a measure-preserving homomorphism ¢; from the
measure algebra 2; of y; to 2 (324M). Now ¢; '[B] is a closed subalgebra of 2; containing E;, for every
& < K, 0 is the whole of 2;, that is, ¢;[2;] C %B. In particular, if G C X; is open, w;l[G]’ = ¢;(G*)
belongs to *B. Now the family V of open sets V' C X such that V* € B is closed under finite intersections
and contains wi_l[G] whenever ¢ € I and G C X is open, so V is a base for the topology of X. But also V is
closed under arbitrary unions, because B is closed and p is 7-additive (414Aa again). So V* € B for every
open set V C X, and therefore for every Borel set V' C X; as p is inner regular with respect to the Borel
sets, B = 2.

Thus {W* : W € W} witnesses that the Maharam type 7(2) of p is at most Y. _; k;, as claimed.

iel

531D Definition If X is a Hausdorff space, I write Mahg (X) for the set of Maharam types of Maharam-
type-homogeneous Radon probability measures on X. Note that 0 € Mahg (X) iff X is non-empty, and that
any member of Mahg (X)) is either 0 or an infinite cardinal.

531E Proposition Let X be a Hausdorff space.

(a) k < w(X) for every kK € Mahg(X).

(b) Mahg (Y) C Mahg(X) for every Y C X.

(¢) Mahg (X) = J{Mahg(K) : K C X is compact}.

(d) If X is K-analytic (in particular, if X is compact) and Y is a continuous image of X, Mahgr(Y) C
MahR (X) .

(e) w € Mahg(X) iff X has a compact subset which is not scattered.

(f) (HAYDON 77) If w < k' < k € Mahgr(X) then " € Mahg(X).

(g) If Y is another Hausdorff space, and neither X nor Y is empty, then Mahg (X x Y) = Mahg(X) U
Mahg (Y'); generally, for any non-empty finite family (X;);c; of non-empty Hausdorff spaces, Mahg (] ], ; Xs)
= Uie] Mahg (X;).
proof (a) This is immediate from 531Aa.

(b) If x € Mahg(Y), there is a Maharam-type-homogeneous Radon probability measure p on Y with
Maharam type k. Set

¥ ={F:FCX, yumeasures Y N E},

WE=uYNE)for E€X}.

It is easy to check that p is a Radon probability measure on X (see 416Xc and 418I), and that p' and p
have isomorphic measure algebras (cf. 322J). So p’ is Maharam-type-homogeneous and has Maharam type
k, and k € Mahg(X).

(c) By (b), Mahg (K) C Mahg(X) for every compact set K C X. In the other direction, if £ € Mahg (X),
there is a Maharam-type-homogeneous Radon probability measure pu on X with Maharam type . Let

D.H.FREMLIN



4 Topologies and measures II11 531E

K C X be a compact set with K > 0. Then the normalized subspace measure ' = (uK) ! ug is a Radon
probability measure on K, and its measure algebra is isomorphic to a principal ideal of the measure algebra
of p, so is Maharam-type-homogeneous with Maharam type k. Accordingly x € Mahg (K).

(d) Take x € Mahg(Y'). Then there is a Maharam-type-homogeneous Radon probability measure v on Y
with Maharam type k. Let f : X — Y be a continuous surjection. By 432G, there is a Radon measure p on
X such that f is inverse-measure-preserving for u and v. Let K C X be a compact set such that uK > 0.
Then f[K] CY is compact and

vfIK] = plfHfK]] > pK > 0.

Let vy = ﬁuﬂ k] be the normalized subspace measure on f[K]. Then v, is a Maharam-type-homoge-

neous Radon probability measure on f[K] with Maharam type . By 418L, there is a Radon measure p; on
K such that f[] K is inverse-measure-preserving for p; and v; and induces an isomorphism of their measure
algebras. So u; witnesses that x € Mahg (K); by (b), x € Mahg(X).

(e)(i) If X has a compact subset K which is not scattered, then there is a continuous surjection from K
onto [0,1] (4A2G(j-iv)). Of course Lebesgue measure witnesses that w € Mahg ([0, 1]), so (d) and (b) tell us
that w € MahR(K) - MahR(X)

(ii) If every compact subset of X is scattered and u is a Maharam-type-homogeneous Radon probability
measure on X, let K be a compact set of non-zero measure and Z C K a closed self-supporting set. Then
Z has an isolated point z say; in this case, u{z} > 0 so {z} is an atom for y and (because p is Maharam-
type-homogeneous) the Maharam type of u is 0. As p is arbitrary, w ¢ Mahg (X).

(£)(1) Suppose first that X is compact. Let p be a Maharam-type-homogeneous Radon probability
measure on X with Maharam type k. Let (E¢)e<, be a stochastically independent family in dom p with
uEe = % for every £. For each £ < k" and n € N, let fe, € C(X) be such that [ |fe, — xEe| < 27" (4161).
Define f: X — R* *N by setting f(z)(&,n) = fen(x) for z € X, € < &’ and n € N. Then f is continuous, so
by 418I the image measure v = uf ! on the compact set f[X] is a Radon measure. For each ¢ < &/, the set

Fe={w:w e f[X], lim, o w(§,n) =1}

is a Borel set, and f~![F¢]AFE; is p-negligible; so (F¢)e<, is a stochastically independent family of subsets

of f[X] with measure % If B is the measure algebra of v, and € the closed subalgebra of 9 generated by

{FE' : & <K'}, then € is Maharam-type-homogeneous, with Maharam type #’; at the same time,
7(%B) < w(f[X]) < wRN) =K.

By 332N, B can be embedded in €; by 332Q, B and € are isomorphic, that is, B is Maharam-type-
homogeneous with Maharam type ', and v witnesses that £’ € Mahg (f[X]). By (d), ' € Mahgr(X).

(ii) In general, (c) tells us that there is a compact set K C X such that k € Mahg(K), so &’ €
Mahg (K) C Mahg (X).

(g) Because neither Y nor X is empty, both X and Y are homeomorphic to subspaces of X x Y, so
(b) tells us that Mahgr(X x Y) D Mahg(X) UMahg(Y). In the other direction, given a Maharam-type-
homogeneous Radon probability measure p on X x Y, let uy, po be the marginal measures on X and Y
respectively, so that each py, is a Radon probability measure (4181 again). Let (E;);er, (F}) e be countable
partitions of X, Y into Borel sets such that all the subspace measures (u1)g, and (u2)r, are Maharam-type-
homogeneous. Then there must be ¢ € J, j € J such that u(E; x Fj) > 0. Let 1/ be the subspace measure
pE;xF;; then the Maharam type of y is s, because p is Maharam-type-homogeneous. Let ), py be the
marginal measures of y/ on E; and F}j respectively. Then p) is an indefinite-integral measure over (u1)g,
(4150a), so its measure algebra is isomorphic to a principal ideal of the measure algebra of (1), (322K),
and has the same Maharam type k; say. As in (b) above, k; € Mahg(X). Similarly, the Maharam type ko
of uh belongs to Mahgr(Y). Now 531C tells us that k < k1 + k2. Since & is either zero or infinite, it must
be less than or equal to at least one of them, and belongs to Mahg (X) U Mahg(Y) by (f) above.

The result for general finite products now follows easily by induction on #(I).
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531G Maharam types of Radon measures 5

531F Proposition Let X be a Hausdorff space. Then a totally finite measure algebra (2, f1) is isomorphic
to the measure algebra of a Radon measure on X iff (o) whenever 2/, is a non-trivial homogeneous principal
ideal of A then 7(2,) € Mahg(X) (8) ¢(A) < #(X).

proof (a) If p is a totally finite Radon measure on X with measure algebra 21 and the principal ideal 2,
generated by a € 2\ {0} is homogeneous, then there is an E € dom y such that E* = a. Let v be the
probability measure (uF)~*ulF, that is, vH = u(H N F)/uF whenever H C X is such that pu measures
HNF (234M). Then v is a Radon measure (416Sa), the measure algebra of v is isomorphic to a principal
ideal of 2, (322K) so is homogeneous with the same Maharam type, and v witnesses that 7(2,) € Mahg (X).
Thus A satisfies (a). As for (), if X is infinite this is trivial (because (2, i) is totally finite, so 2 is ccc),
and otherwise 2 is finite, with

c(A) =#{a:aeisan atom}) = #({z: z € X, p{z} > 0}) < #(X).

(b) Now suppose that (2, ) is a totally finite measure algebra satisfying the conditions. Express it as
the simple product of a countable family ((;, i;));cr of non-zero homogeneous measure algebras (332B);
we may suppose that I C N. For n € I, set k, = 7(U,) and v, = @}, 1y, . (B) tells us that #(I) < #(X);
let (x,)ner be a family of distinct elements of X.

Set J={n:n€l, k, > w}. For each n € J, (a) tells us that there is a Maharam-type-homogeneous
Radon probability measure u,, on X with Maharam type k,,. Now there is a disjoint family (E,,),cn of Borel
subsets of X \ {z,, : n € I'} such that p,FE, > 0 for every n € J. P Choose (E,)nen, (Fn)nen inductively,
as follows. Fy = X \ {z, : n € I}. Given that F,, is a Borel set and p;F, > 0 for every j € J \ n, then
ifné¢Jset E, =0 and F,11 = F,. Otherwise, for each j € J such that j > n, we can partition F, into
finitely many Borel sets of p,-measure less than 277, F,, because j,, is atomless; take one of these, Gnj

say, such that ;G > 0; now set Fiq1 = Ujer>n Gn; and E,, = F,, \ F,;41. Continue. @ Now set

pE = ZneI\J,mnEE Tn + Zn,eJ(F‘nEnern/‘n(E NEy,)

whenever £ C X is such that u,, measures ENFE,, for every n € J. Of course u is a measure. Because every
Iy 18 a topological measure, so is u; because every p,, is inner regular with respect to the compact sets, so
is p; because every u, is complete, so is p; thus p is a Radon measure. Because every subspace measure
(tn) B, is Maharam-type-homogeneous with Maharam type k,,, the measure algebra of p is isomorphic to

(21, 71).

531G Proposition Let (X;);c; be a family of non-empty Hausdorff spaces with product X. Then an
infinite cardinal & belongs to Mahg (X) iff either x < #({i : i € I, #(X;) > 2}) or s is expressible as
sup;c; ki where r; € Mahg(X;) for every i € I.

proof (a)(i) Suppose that x = sup,c; k; where k; € Mahg (X;) for each ¢ € I. For each ¢, let p; be a Maha-
ram-type-homogeneous Radon probability measure on X; with Maharam type x; and compact support (see
the proof of 531Ec). Let A be the ordinary product of the measures p;. By 3251, the measure algebra of A
can be identified with the probability algebra free product of the measure algebras of the u;. It is therefore
isomorphic to the measure algebra of the usual measure on {0, 1}"“/, where &' is the cardinal sum . _; k;;
in particular, it is homogeneous with Maharam type &’ (since we are supposing that x > w). By 417E(b-i)*,
the measure algebra of the 7-additive product p of {u;);e; can be identified with the measure algebra of A,
while p is a Radon measure (417Q). So p witnesses that k' € Mahg (X); by 531Ef, x € Mahg(X).

(ii) Suppose that w < k < #(I') where I' = {i : ¢ € I, #(X;) > 2}. For i € I, let z;, y; be distinct
points of X; and p; the point-supported probability measure on X; such that p;{z;} = p{y:} = %; for
i € I'\I', let u; be the unique Radon probability measure on X;. As in (i) above, the Radon measure

product of (u;);cr is Maharam-type-homogeneous, with Maharam type #(I'), so #(I') € Mahg(X); by
531Ef again, k € Mahg (X).

(b) Now suppose that w < k € Mahg(X) and that « > #(I'). For each i € I, let 6; be the least
cardinal greater than every member of Mahg (X;). Note that ' € Mahg (X;) whenever £’ is a cardinal and
w < K <0;. Set

!Formerly 417E(ii).

D.H.FREMLIN



6 Topologies and measures II11 531G
Ilz{iliEI,Ii<9i}, lenieIlXi,

L={i:iel, 0; <k, cth;>w}, Zo=][lcs, Xi

I3:{i:i€I,<9i:/~@7cf92-:w}7 23:H X

i€l )

I4:{i:i61,9,-<fi,cf0,-:w}, Z4:H X;

i€l <X

Ir={i:iel 0, =1, #(X;) >1}, Zs=]Les. X

i€l L

Io=f{iie L #(X) =1}, Zs=1Iles Xo-
Then X can be identified with [], ., . Zk, so 531Eg tells us that x € Mahg(Zy) for some k. As Zg is a
singleton, we actually have x € Mahg(Zy) for some k < 5.

case 1 Suppose k € Mahg(Z;). Then, in particular, I; # () and there is a j € I such that k < §;. In
this case, » € Mahg(X}), and we can set xj = s, x; = 0 for i # j to find a family in J],.; Mahg (X;) with
supremum k.

case 2 Suppose that x € Mahg(Z3). Let u be a Radon probability measure on Zs with Maharam type
k. For each i € Zy, let p} be the marginal measure on X;, and &} its Maharam type. By 531C,

RS er, ®i < max(w, #(12), supier #7)

(5A4F (b-1)); since @ # Iy C I', #(I2) < k < sup;¢;, max(w, £}); since & is infinite, it must be less than or
equal to sup,cz, max(w, #;). On the other hand, by 531F, each xj is either finite or the supremum of some
countable subset of Mahg (X;); because cf6; > w, £} < ; and max(w, x}) € Mahg (X;). Setting

k; = med(k},w, k) for i € Iy,
=0foriel\ I,

we have k; € Mahg(X;) for every ¢ € I and k = sup,¢; ;.

case 3 Suppose that k € Mahg(Z3). Because k = 6; ¢ Mahg(X;) for ¢ € I3, 531Eg tells us that I3
must be infinite. Let (i,,)nen be a sequence of distinct elements of I3. Of course k itself is uncountable and
has countable cofinality, so we can find a sequence &), of infinite cardinals less than x with supremum &.
Setting k;, = kl,, k; =0 for i € I'\ {i,, : n € N}, we have x; € Mahg(X;) for every ¢ and k = sup;c; ;.

n?

case 4 Suppose that k € Mahg(Z,). Following the scheme of case 2 above, let u be a Radon probability
measure on Zy with Maharam type x, and for each i € I let ) be the marginal measure on X; and &} its
Maharam type. Then, as before, < sup,c;, max(w, ;). At the same time, x; < 6; < & for every i, so
we must have k = sup;c, ;. Set § = cfx. Then we can choose (i¢)e<s inductively in Iy so that 0i, < 0;,
whenever 7 < § < § and supg50;, = x. Now define (x;);cr by saying

Kiey, = 0i, whenever § <4,
IiiZOifiEI\{i5+1 §<(5}
This gives r; € Mahg (X;) for every i and k = sup;¢; ;-

case 5 ? Suppose, if possible, that k € Mahg(Z5). Once again, we can find a Radon probability
measure f on Z with Maharam type x, and look at its marginal measures ) for ¢ € Is. This time, however,
every p; must be purely atomic and has Maharam type ;] < w; also #(I5) < x. So our formula k <, ; K]
becomes k < w. In this case Is must be finite and & € |J,. ;. Mahg(X;) = {0}, which is absurd. X
Thus this case evaporates and the proof is complete.

i€l

531H Remarks The results above already enable us to calculate Mahg (X) for many spaces. Of course
we begin with compact spaces (531Ec). If X is compact and Hausdorff, and {0, 1}* is a continuous image of a
closed subset of X, where £ is an infinite cardinal, then x € Mahg (X) (531Ed); so if {0, 1}*(X) is a continuous
image of a closed subset of X, then Mahg(X) is completely specified, being {0} U{x : w < k < w(X)}
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531K Maharam types of Radon measures 7

(531Ea, 531Ef). Of course it is not generally true that w(X) € Mahg(X) (531Xc). But it is quite often
the case that {0,1}" is a continuous image of a closed subset of X for every x € Mahg(X), and I will now
investigate this phenomenon.

5311 Notation For the rest of the section, I will use the following notation, mostly familiar from earlier
chapters of this volume. For any set I, let v; be the usual measure on {0,1}!, T; its domain, N7 its null
ideal and (B, 7y) its measure algebra. In this context, I will write (e;);cs for the standard generating family
in By (525A). For J C I let €; be the closed subalgebra of B generated by {e; : i € J}. Now for a new
idea. For each i € I, let ¢; : B — B be the measure-preserving involution corresponding to reversal of
the ith coordinate in {0, 1}, that is, ¢;(e;) = 1\ e; and ¢;(e;) = e; for j # .

531J Lemma Let I be a set, and take B, €;, for J C I, and ¢;, for i € I, as in 5311I.
a) J{€; : J € [I]<*} is dense in B for the measure-algebra topology of Bj.
b) For every a € By, there is a (unique) countable J*(a) C I such that, for J C I, a € €; iff J O J*(a).
¢) J*(1\ a) = J*(a) for every a € Bj.
d) di; = b;; for all i, j € 1.
e)If JCI,ae&;andicl,then ang;a, aup;a belong to €\ (3.
f) For a € B and i € I we have ¢;a = a iff i ¢ J*(a).
(g) ¢ia € €5 whenever JC I, i€l and a € €.
proof (a) See 254Fe.
(b) See 254Rd or 325Mb.
(c)For JCI,1\aeC€,iff a € ;.

(d) Because {ey : k € I} T-generates By, it is enough to check that ¢,¢jer = ¢;d;er for all 4, j, k € I,
and this is easy.

(
(
(
(
(
(

(e) The subalgebra {(cne;)u(c'\e;) : ¢, ¢ € €p 1} generated by €y ;3 U {e;} is closed (323K), so
includes € and contains a. If ¢, ¢’ € €\ ;3 are such that a = (cne;) U (¢’ \ e;), then ¢ja = (c\ e;) u(c ne;)
and an¢;a =cnc', au¢;a = cuc belong to € ().

(f) If i ¢ J*(a) then ¢;a = a because ¢;(e;) = e; for every j # i. If ¢;a = a then a = ang;a € €p\ g5y,
by (e), and J*(a) C I\ {i}, that is, i ¢ J*(a).

(g) € is the closed subalgebra of B; generated by {e; : j € J}, so ¢;[€;] is the closed subalgebra
generated by {¢ie; : j € J} C €; (324L).

531K Lemma Let £ > wy be a cardinal, and (e¢)¢<, the standard generating family in B,. Suppose
that we are given a family (a¢)e<, in B,. Then there are a set I € [k]" and a family (c¢)e<, in B, such
that

Ce - ag, VxCe > 2’7/@@5 —1

for every £, and

. . 1 _ .

Uk (infeer(ce neg) ninfye (e \ ey)) = Wyn(lnfﬁeluJ ce)
whenever I, J C T are disjoint finite sets.
proof Let eg, ¢¢, for { <k, €, for L C k, and J*(a), for a € B, be as in 5311-531J. Set L = J*(a¢) and
ce = ag N ¢eag for each &; then

UgCe = VO + 175((255&5) — 175(&5 u d)gag) > 20.a¢ — 1

and c¢ € €p,\(¢) (531Je). By Hajnal’s Free Set Theorem (5A1J(a-iii)), there is a set I' € [x]" such that
¢ ¢ L, whenever £, n are distinct members of I'. (This is where we use the hypothesis that £ > w,.) Now
suppose that I, J C I' are finite and disjoint. Then (L¢ \ {£}) N (F U J) = 0, so c¢ € €\ (ruy, for every

§ € IUJ. Accordingly ¢ = infeerug ce belongs to €\ (rus). This means that ¢ and the eg, for § € TU J, are
stochastically independent, and
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— . . — — — 1 —
Ue(cn infeer e N infpes(1\ ey)) = Unc - [eer Vnee - [1,c Uu(l\ €y) = 7105 VrCs

as claimed.

531L Theorem Let X be a Hausdorff space.

(a) (HAYDON 77) If w € Mahg(X) then {0,1}* is a continuous image of a compact subset of X.

(b) (HAYDON 77, PLEBANEK 97) If ¥ > wy belongs to Mahg (X) and A < & is an infinite cardinal such
that (x, ) is a measure-precaliber pair of every probability algebra, then {0,1}* is a continuous image of a
compact subset of X.

proof (a) If w € Mahg(X) then X has a compact subset K which is not scattered (531Ee) and there is a
continuous surjection from K onto [0,1] (4A2G(j-iv) again). As there is a continuous surjection from [0, 1]
onto [0,1]* (5A4I(b-ii)), there is a continuous surjection f : K — [0,1]*. Setting K’ = f~1[{0,1}*], K’ is a
compact subset of X and {0,1}* is a continuous image of K.

(b) Let p be a Maharam-type-homogeneous Radon probability measure on X with Maharam type k, %
its domain, and (2, i) its measure algebra, so that (2, i) is isomorphic to the measure algebra (B, 7, ) as
discussed in 531I-531K. Let {(eg¢)e<x be a stochastically independent 7-generating set of elements of measure
% in 2, so that (A, (e¢)e<x) is isomorphic to B, with its standard generating family. For each £ < &, let
E¢ € ¥ be such that Ef = e¢ in 2. Let Ké C Ee, Kg C X \ E¢ be compact sets of measure at least %7 and
set K¢ = K{ UK, a¢ = K{ for { < k. By 531K, copied into 2, there are (c¢)¢<, and I'g € [k]" such that
ce C ag and fice > 1 for each ¢, and

. . 1.
plinfeer(ce neg) ninfyes(cy \ey)) = Wﬂ(mfeaw ce)

whenever I, J C I'y are disjoint finite sets.

At this point, recall that (k,\) is supposed to be a measure-precaliber pair of every probability alge-
bra. So there is a I' € [[o]* such that infeesce # 0 for every finite I C T'. It follows at once that
infeer(ag neg) n infyey(ay \ €,) is non-zero for all disjoint finite sets I, J C I'. But this means that
xXn ﬂ&e K é N ﬂne 7 K is non-negligible, therefore non-empty, for all disjoint finite 7, J C T

Set K = (\eer Ke, so that K C X is compact. Then we have a continuous function f : K — {0, 1}
defined by setting

fl@)(§)=1ifze KNE; = KNK,
=0ifz e K\ E=KNK{.

Now f is surjective. P If w € {0,1}" and L C I is finite, then

Fr={z:z € X, z € K whenever ¢ € L and w(§) = 1,
z € K{ whenever ¢ € L and w(§) = 0}

is a non-empty closed set. The family {Fy, : L € [I']<“} is downwards-directed, so has non-empty intersection;
and if x is any point of the intersection, z € K and f(z) = w. Q
As #(T') = A, {0,1}* is a continuous image of a compact subset of X.

531M Proposition (PLEBANEK 97) If k is an infinite cardinal and {0,1}" is a continuous image of
a closed subset of X whenever X is a compact Hausdorff space such that k € Mahg(X), then « is a
measure-precaliber of every probability algebra.

proof It will be enough to show that x is a measure-precaliber of (B, 7.) (525I(a-i)). Let (a¢)e<. be a
family in %, such that inf¢c, Dwae = a > 0. Choose (b¢)e<y in B, inductively, as follows. Given (by),<e,
let ©¢ be the closed subalgebra of B, generated by {b, : 7 < £} U {a¢}. Because B,, is homogeneous with
Maharam type £ > 7(D¢), it is relatively atomless over D¢, and there is a b € B,; such that v, (bnc) = %ENC
for every ¢ € D¢ (331B). Set bg = b ag; then for any 7 < £ we have
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Uy (be A by) = Ube + Uyby — 20, (be N by)

1_ _ _ 1_
= S Vnllg + Dby — Ui (ag nby) > SVt >2

Continue.

Let € be the subalgebra of B, generated by {b¢ : { < k}, and X its Stone space. Then € is isomorphic
to the algebra of open-and-closed subsets of X, so we have a Radon measure p on X defined by saying that
¢ = pe for every ¢ € €, writing ¢ for the open-and-closed subset of X corresponding to ¢ (416Qa). Now
w is strictly positive and we can identify € with a topologically dense subalgebra of the measure algebra of
w. It follows that p has a Maharam-type- homogeneous component of type at least k. PP? Otherwise, there
would be a set £ C X, of measure at least 1 — 4oz such that the Maharam type of the subspace measure
pr was less than k. But

(EﬂbEAb ) (bEAb ) >

-
4 =4

whenever 7 < £ < k, so the topological density of the measure algebra of ug is at least x (5A4B(h-ii)) and
the Maharam type of ug is at least x (521E(a-ii)). XQ Thus x € Mahg (X).

Accordingly {0,1}" is a continuous image of a closed subset of X. By 5A4C(d-iii), there is a non-empty
closed subset K of X such that x(z,K) > k for every z € K. Let D C k be a maximal set such that
{K} U {/55 : £ € D} has the finite intersection property. Set Z = K N ﬂgeD/I;f? then Z contains a point z
say. Because {b¢ : £ € D} is centered, so is {a¢ : £ € D}.

If € X\ {z}, then there is a ¢ € € such that x € ¢and z ¢ ¢ accordlngly there is a ¢ < x such that one
of z, z belongs to bc and the other does not. If ¢ € D then z € bg and x ¢ bc, sox ¢ Z. If ( ¢ D then, by
the maximality of D, Z N bC = (), so that 2 ¢ bC, x € bg and again x ¢ Z.

Thus Z = {z}, and {z} can be expressed as the intersection of #(D) relatively open sets in K. By
4A2Gd, it follows that #(D) > x(z, K) > k, and we have already seen that {as : £ € D} is centered. As
(ag)e<s is arbitrary, k is a measure-precaliber of 9B,;, as required.

531N In 531M we have a space X out of which there is no surjection onto {0,1}" because every non-
empty closed set has a point of character less than x. From stronger properties of k we can get compact
spaces with stronger topological properties, as in the next two results.

Proposition Let k, " and A be infinite cardinals such that (k,’) is not a measure-precaliber pair of
(B, 7x). Then there is a compact Hausdorff space X such that x € Mahg(X) and x(z, X) < max(x’, A1)
for every z € X.

proof Let (a¢)e<y be a family in B, with no centered subfamily with cardinal «’, such that infe., fiae =
a > 0. Let ¥ : By — T be a lifting; for each £ < &, let K¢ C 1a¢ be a compact set of measure at least
%Oz. If D C k and #(D) = &/, then there is a finite set I C D such that infec;ae = 0, in which case
Neer Ke € NeerYae = 0. Thus {§ : z € K¢} has cardinal less than £’ for every z € {0, 1A
Set
X = ﬂ§<n’{(x’y) HE S {Oa 1}A7 y € {Oa 1}H7 S Kf or y(f) = 0}7

so that X is a compact subset of {0, 1}* x {0,1}*. Now x((z,y), X) < max(x’, \") for every (z,y) € X. P
Set D ={¢£:& <k, x € K¢}, so that #(D) < /. For I € [A]<¥ and J € [D]<¥ set

Vig= {(xlvyl) : (xlvy/) € X7 l‘/fI = JJU, ?/TJZ er}7

sothat V ={V;;: I € [\]<¥, J € [D]<¥} is a downwards-directed family of closed neighbourhoods of (z,y).
If («/,y) eV, then 2/ =z, s0 2’ ¢ K¢ for { € k\ D, and y/'(§) = y(§) =0 for £ ¢ D; also y'| D = y| D, so
(«',y") = (z,y). Thus NV = {(z,y)}; by 4A2Gd again, V is a base of neighbourhoods of (z,y), and

x((z,y), X) < #(V) < max(#(D),\) < max(x’,\"). Q
Define g : {0,1}* x {0,1}* — {0,1}* and h : {0,1}* x {0,1}* — X by setting
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9(x,y)(&) = y(§) if v € K¢,

= 0 otherwise,
h(z,y) = (z,9(z,y)),

for ¢ < K,z € {0,1}* and y € {0,1}". Write X for the domain of the product measure v = vy xv,; on {0, 1}* x
{0,1}%. Then the o-algebra {F : F C X, h™1[F] € £} contains all sets of the form {(z,y) : z(n) = 1} and
{(z,y) : y(§) = 1}, so includes a base for the topology of X and therefore contains every open-and-closed
set. Accordingly we have an additive functional U — vh~![U] on the algebra of open-and-closed subsets of
X, which extends to a Radon probability measure 1 on X (416Qa again). Set Fr = {(z,y) : (z,y) € X,
y(&) = 1} for each & < k; then for any n < £ < &,

n(Fe \ Fy) :Vh_l[FE\Fn}
> v{(2,y) :w € Ke, y(€) = L, y(n) = 0} = jnKe > Lo

As in the proof of 531M, this shows that the measure algebra of g must have a homogeneous principal ideal
with Maharam type at least x, and x € Mah(X).

5310 Putting these ideas together with 531L, we come to the following.

Proposition (KUNEN & MILL 95, PLEBANEK 95) Let x be a regular infinite cardinal. Then the following
are equiveridical:

(i) k is a measure-precaliber of every measurable algebra;

(ii) if X is a compact Hausdorff space such that x € Mahg(X), then x(z, X) > & for some z € X.

proof (a) Consider first the case k > ws.

(i)=(ii) If k € Mahg(X), then {0,1}" is a continuous image of a compact subset of X, by 531Lb. By
5A4C(d-iii) again and 5A4Bb, it follows at once that x(x, X) > & for many points z € X.

not-(i)=-not-(ii) By 525Ib there is a A <  such that x is not a precaliber of By, and therefore not a
measure-precaliber of (B, 7)) (525Db). Now 531N tells us that there is a compact Hausdorff space X such
that k € Mahg (X) and x(z, X) < max(x, A\") = & for every z € X.

(b) Now suppose that kK = wj.

(i)=-(ii) ? Suppose, if possible, that w; is a precaliber of every probability algebra, but that there is
a first-countable compact Hausdorff space X with wy; € Mahg(X). Let u be a Maharam-type-homogeneous
Radon probability measure on X with Maharam type wy, and (2, f) its measure algebra; let (c¢)e<w, be a
T-generating stochastically independent family of elements of measure % in 2. As in 531J, there is for each
a € 2 a countable J*(a) C wq such that a belongs to the closed subalgebra of 2 generated by {c¢ : £ € J*(a)}.

For each z € X, let U,, be a countable base of open neighbourhoods of z, and set A, = {U* : U € U, },
JH(2) = Uuea, J*(a). Then JT(z) is countable. For & < wy, set Dg = {z : JT(x) C £}; then (De)ecw, is a
non-decreasing family with union X. Now w; is supposed to be a precaliber of 2, so there must be a £ < w;
such that D¢ has full outer measure (525Cc).

Let G C X be open. Then G* belongs to the closed subalgebra €¢ of 2 generated by {c, : n < &}. P
For each € G N Dy, there is a U, € U, such that U, C G. Set H = |J{U, : ¢ € GN D¢}, so that H C G
is open and G N D¢ = H N Dy; as De has full outer measure, G \ H is negligible and H* = G*. But 414Aa
once more tells us that H* = sup,¢p, Uy, and this belongs to €, because Ji(z) C ¢ for every z € De. Q

It follows at once that F'* € € for every closed F' C X. Because p is inner regular with respect to the
closed sets, €¢ is order-dense in 2 and 2 = €; has Maharam type #(¢) <w;. X

Thus (i)=-(ii).

not-(i)=-not-(ii) Suppose that (i) is false.

(a) By 525J, cov N, = wy and there is a family (A¢)e<y, of negligible subsets of {0,1}“* covering
{0,1}#t. For each £ < wy, let A’E 2 A¢ be a negligible set determined by coordinates in a countable
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set Je C wy; set /15 = U4}, : n <& Jy €&} then flg is determined by coordinates less than £. Set
He = {yl€:y € A¢}, so that He is a ve-negligible subset of {0, 1}¥.
We see that (A¢)e<w, is non-decreasing, and

U£<w1 Af = U§<w1 A/g = {O? 1}WI‘
Consequently y[{ € He whenever n < & < wy, y € {0,1}** and y[n € H,), while for every y € {0,1}*" there
is a £ < wy such that y[¢ € He.

(B) Set Y = {0}u{2 " :n € N} C [0,1]. For £ < w; define ¢¢ : Y& — {0,1}¢ by setting

¢e(x)(n) =0if n <& and x(n) =0,
=1 for other n < &.

Observe that ¢¢ is Borel measurable for every & < wy. Choose (X¢)ecw,, and (Kep)e<w, nen inductively,
as follows. The inductive hypothesis will be that X, is a compact subset of Y¥¢, ¢¢[Xe] is ve-conegligible in
{0,135, ¢¢| X¢ is injective and z[n € X, whenever z € X¢ and ) < € < wy.

Start with Xo = Y? = {0} and ¢y : Xo — {0, 1} the identity map.

Given ¢ < w; and X¢ C Y€, then 433D tells us that there is a Radon measure g on X¢ such that ve is
the image measure ugqbf_l. Let (Ken)nen be a disjoint sequence of compact subsets of X \ qbf_l[Hg] with
pe-conegligible union. Set

Xepr ={z:x eV 26 € Xe, 2(€) =0}
U U {z:xe Y™ 2€ € Kep, 2(8) =277,
neN

It is easy to see that X¢ 1 is compact and ¢¢y1 [ Xey1 is injective, while surely x[n € X,, whenever v € X¢1
and n < £ + 1, just because x[§ € X¢. Also

Pe1[Xer1] 2 {y 1y € {0, 1354, yl€ € Uy delKenl}

is vgy1-conegligible because ¢¢[Ke,] must be analytic for every n and
Ve(Unen @[Ken]) = pte(Upen Ken) =1

because ¢¢[ X is injective.
Given that X, has been defined for n < £, where £ < w; is a non-zero limit ordinal, set
Xe={z:z €Y zlne X, for every n < £}.
Of course X is compact and ¢¢ [ X¢ is injective. To see that ¢¢[X¢] is conegligible, observe that

W=N,ly:y€{0 1}, yIn € o[ X))}

is conegligible. But if y € W and we choose z,, € X,, such that ¢, (z,) = y[7n for each n <, then we must
have x; = x,)[( whenever ( < n < £, because ¢¢| X, is injective; so there is an # € V¢ such that z,, = z|n
for every n < &, in which case © € X¢ and ¢¢(x) = y. Thus ¢¢[X¢] O W is conegligible.

() At the end of the induction, set
X={z:zeY¥, zl{ e X forevery { <wi}, ¢ =0, [X.

As in the limit stage of the construction in (8), we see that X is a closed subset of Y*!, so with the
subspace topology is a zero-dimensional compact Hausdorff space. This time, we do not expect that ¢[X]
should be conegligible in {0,1}**, but we find that it has full outer measure. P If K C {0,1}*! is a
non-negligible closed Gy set, there is a ¢ < w; such that K is determined by coordinates less than £. Set
K' ={yl¢:y € K}; then v¢K' = v, K > 0, so there is an ¢ € X¢ such that ¢¢(x¢) € K'. Extending zg
to x € Y¥! by setting x(n) = 0 for £ < n < w1, we see by induction on ¢ that z[¢ € X¢ for £ < { < wy, so
x € X; also ¢(z)[€ = ¢e(x0) € K', so ¢(z) € K and K meets ¢[X]. As v, is completion regular, ¢[X| has
full outer measure. Q

(6) X is first-countable. B If € X, { < w; and x(&) # 0, then z[({ + 1) belongs to X¢y1, and
there must be some n € N such that z(§) = 27" and z[{ € Kg¢y; in which case ¢¢(x]§) ¢ He. Now take
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any x € X. Then there is a £ < w; such that ¢(x) € fl{ and ¢¢(x) = ¢(x)[¢ belongs to He. In this
case, V = {2/ : 2/ € X, 2/|€ = x[&} is a G4 subset of X containing z. But if 2’ € V then, for any
n > ¢&, én(a'In) € Hy and 2/(n) = 0. Thus V = {z}. By 4A2Gd once more, = has a countable base of
neighbourhoods in X; as x is arbitrary, X is first-countable. Q

(€) By 234F, there is a measure A on X such that ¢ is inverse-measure-preserving for A and v,,,. Of
course A is a probability measure. Now for any £ < w; and n € N,

{z:2eX, 2(§) =0} ={z: o)) =0},

{z:rxeX, z(§)=2""}={z:9(x)(€) =1, 2] € Ken}
={z:6(x)(§) =1, ¢e(x]&) € de[Ken]}
={z:0(x)(&) =1, ()€ € d¢[Kenl}

are measured by A. So the domain of X includes a base for the topology of the zero-dimensional compact
Hausdorff space X. By 416Qa once more, there is a Radon measure p on X agreeing with A on the open-and-
closed subsets of X; by the Monotone Class Theorem (136C), p and A agree on the o-algebra generated by
the open-and-closed sets, that is, the Baire o-algebra of X (4A30d). In particular, setting B = {z : z € X,
z(§) = 0} for £ <wy,

W(Ee N Ey) = MEe N Ey) = v, {y 1y € {0,137, y(€) = y(n) = 0}

= ifE=p<uw,

= i if £, n < w; are different.
It follows that u(E¢AE,) = % for all distinct £, n < wi, so p has uncountable Maharam type and w; €
Mahg (X). Thus X and p witness that (ii) is false.

() Finally, if kK = w, both (i) and (ii) are true for elementary reasons (525Fa).

531P In 5310 we saw that if wy is not a precaliber of every measurable algebra then there is a first-
countable compact Hausdorff space with a Radon measure with Maharam type w;. With a sharper hypoth-
esis, and rather more work, we can get a stronger version, as follows.

Lemma Let Y be a zero-dimensional compact metrizable space, ¢ an atomless Radon probability measure
onY, ACY a p-negligible set and Q a countable family of closed subsets of Y. Then there are closed sets
K, L CY, with union Y, such that

KuL=Y, KNLNA=0, wuKNL)>3,

KNQ=Q\Land LNQ =Q\ K for every Q € Q.

proof We can of course suppose that () € Q. For each Q € Q let Dy be a countable dense subset of Q;
let S CY\(AUUgeo Dg) be a closed set of measure at least 3. (This is where we need to know that
is atomless, so that every Dg is negligible.) Let U be a countable base for the topology of Y consisting of
open-and-closed sets and let (U, @ ))nen run over U x Q. Choose inductively sequences (G )nen, (Hn)neN
of open-and-closed subsets of Y\ S, as follows. Start with Gy = Hy = 0. Given that G,, and H,, are disjoint
from each other and from S, then
—ifU, NS =0, take Gpp1 = G, U (U, \ Hy,) and Hy, 1 = Hp;
—ifU,NSNQ, #0,U =U,\ (G, UH,) is open and includes U,, NSNQy; as D, is dense
in @Qn, UNDg, includes U N @, which meets S so cannot be included in Dg,, and U N Dg,,
must be infinite; take two of its points y, ¢’ say; neither belongs to S so we can enlarge G,, and
H,, to disjoint open-and-closed subsets Gp+1, Hy11 of Y \ S containing y, 3’ respectively, and
therefore both meeting U,, N Qp;
—— otherwise, take G,,+1 = G,, and H,,41 = H,.
At the end of the induction, set G = |J,,cy Gn and H = |J,,cy Hy, so that G and H are disjoint open
subsets of Y\ S. Now if y is any point of Y \ S, there must be some n such that y € U,, C Y \ S, so that
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YyE€Gu1UH,; thusY =GUHUS. Set K =GUS=Y\H,L=HUS=Y\G, then K and L are closed
sets with union Y, and K N L = S has measure at least % and is disjoint from A.

IfQe Q,ye SNQ and U is any neighbourhood of y, there is ann[Z \ W] # Q n € N such that Q,, = Q
and y € U, C U. In this case, U, NSNQ, #0and GNQ D Gr11NQn, HNQ O H, 11 NQ both meet
U,N Q. As U and y are arbitrary,

KNLNQ=SNQCGENRNHNQ,

KNQC(SNQUGNQ)CGENO=Q\
B)

and similarly LN Q C @\ K. At the same time, K O Q \ L and L
LNQ@=@Q\ K. Thus K and L fulfil all the specifications.

L
Q\K,so KNQ = Q\L and

531Q Proposition Suppose that ¢f A, = w;. Then there is a hereditarily separable perfectly normal
compact Hausdorff space X, of weight wy, with a Radon probability measure of Maharam type wy such that
every negligible set is metrizable.

proof For n < ¢ <wp and z € {0,1}%, set my¢(z) = zn; write m, for m, : {0,1}* — {0,1}". As in 5311,
Ve is to be the usual measure on {0, 1}°.

(a) Choose
<f£>w§§§w17 <X5>w§§§w17 </L£>w§§<wu <K£>w§£<w1a <L§>wS§<w1a

(Qfp)w<e<o<wrs (Qog)w<s<e<wrs (@nog)w<n<o<e<wr (Aeo)w<e<o<wrs (Aew<e<in

inductively, as follows. Every X¢, K¢, L, Qég, Qse and Q¢ is to be a closed subset of {0, 1}%, every fe will
be a Baire measurable surjection from {0,1}¢ onto Xe¢, pe will always be the Radon probability measure
nggl on {0,1}%, and A and Agp will always be pe-negligible subsets of {0, 1}%.

Given that w < § < w; and that K, L, are closed subsets of {0,1}" covering {0, 1}"” whenever w < n < &,
then define f¢(z)(n), for z € {0,1}% and 1 < &, by setting

fe(x)(n) =1if n > w and z[n & Ly,
=0ifn>wand z[n ¢ K,,

= z(n) otherwise.

(Thus the induction starts with f,,(z) = « for z € {0,1}*.) Then f¢ : {0,1}¢ — {0,1}¢ is Baire measurable
(4A3Ne). Set

Xe = No<neelz 2 €10, 1}, z(n)=1orz[n € Ly, x(n) =0or zIn € K, };

then X¢ C {0,1}¢ is compact, fe(z) € X¢ for every z € {0,1}%, and fe(x) = x for every z € X¢. So
Jel{0, 1] = Xe.

If now & < wy, fe : {0,1}* — {0,1}¢ is Borel measurable; by 433E, fe is v¢-almost-continuous, and the
image measure pe = vefg ! is a Radon measure on the compact metrizable space {0,1}¢ (418I). Of course

peXe = 1. Because {0, 1}¢ has countable weight, or otherwise, 1¢ has countable Maharam type (531Ad); by
524PDb, ¢ is inner regular with respect to a family with cardinal at most cf N, = wq, which we may suppose
to consist of closed sets; let <Q'59>5§0<w1 run over such a family. Similarly, there is a family (Agg)e<o<w,

running over a cofinal subset of the null ideal of pe (524Pf). Next, for w < § < &, let Qse C 7r5_£1 [ng] be
the compact pe-self-supporting set of the same ug-measure as 7rg£1 [ng] (414F). Note that Qs¢ will always
be included in X¢, because e Xe = 1. Set Qpse = Xe N 7r§51 [Qns] for w < <0 < ¢, and

Ae={m[Apliw<n<d<e), Ac=U{A: A€ A, peA =0}

because A is countable, A is pe-negligible. By 531P, we can find closed sets K¢, L¢ covering {0, 1}¢ such
that Mg(Kg N Lg) > %, KenLenAe = 0, Ke N Quse = Quose \Lg and Le¢ N Qpse = Qnse \ K¢ whenever
w<n<s<E

D.H.FREMLIN



14 Topologies and measures II11 531Q

This deals with the inductive step to a successor ordinal £ + 1 when w < ¢ < w;. For limit ordinals
€ € |w, w1, fe is defined by ((K,,, Ly))w<n<e¢, so the induction proceeds directly to &.

(b) At the end of the induction, write f for f,, and X for X,,, = f[{0,1}**]. If z € {0,1}** and £ < wy,
the formula for f¢ in (a) shows that f(2)(n) = fe(21€)(n) for every n < &, that is, that f(2)[{ = fe(2]€).
Next, v, f~! measures every Baire subset of {0,1}*1 (use 4A3Na), so we have a Radon measure y on
{0,1}# defined by saying that uV = v, f~1[V] for every Baire set V C {0,1}* (432F); of course uV = 0
for every open-and-closed set V' disjoint from X, so uX = 1.

At the same time, it will be helpful to fill in the definition of (Quse)w<n<s<e<w, by taking Qusw., =
X ﬁﬂgl[Qng] when w <1 <6 < wi.

(¢) Some simple facts.
(i) T have already observed that ¢ f = feme for w < § < wq; consequently
Xe = [e[{0,1}%] = fe[me[{0, 1} ]] = me[ f[{0, 1}*]] = me[ X]
and
eV = vef V] = (vaoyme ) f V] = v (feme) V]
= v, (e ) V] = (v f 1) V] = pmg V]
for every open-and-closed set V' C {0,1}¢. Thus the Radon measures pe ! and e are identical.
(ii) Equally, if w <9 <& < wy,
Xy = my[X] = mpe[me[X]] = mye[Xe]
and
py = pyt = pmgeme) Th = (umg me = e
Accordingly, if w <n < <€ < wy,
Méﬂn_gl [Ans] = pnAns = 0.
Thus in fact A¢ = |J A¢ and K¢ N L is disjoint from 7T77_£1 [A;5] whenever w < < 4§ <& < ws.

(i) Fwo<n<§<(<€<w and § < wy, then

mee|Qnoe] = mee[Xe N e [Qusll = mee[Xe N (w5 [Qusll) = X Nyt [Qus]
(because mee[Xe] = X¢)
= Qn6C~

(iv)Ifz, 2/ e X,w<n<d<wi, 2[6 =2'[0 and z[n € A,s, then 2’ = z. PP Suppose that § < & < w;
and z[¢ = 2'1{. Then K¢ N L¢ does not meet 77;51 [A,5], so does not contain z[£. Accordingly

2)=1=z2[{ € Kt = 2[{ ¢ Le = 2 [{ ¢ Le = /(&) =1,

and similarly z(£) =0 = 2/(£) = 0. So an easy induction on & shows that z(£) = 2'(£) whenever ¢ < £ < wy,
and 2z =2'. Q

(d) We come now to the first key idea of this construction. If w <1 <6 < ¢ < w; and 0 < wy, then
gnse = Ts¢[Qnse is an irreducible continuous surjection onto @,s. P Of course g,s5¢ is continuous, just
because mse : {0,1}¢ — {0,1}° is continuous, and it is a surjection onto @, by (c-iii) just above. To see
that it is irreducible, induce on £. At the start, Q55 = @ns and gyss is an identity function, so is certainly
irreducible.

For the inductive step to § + 1, given that n < 6 < £ < w; and gys¢ is irreducible, consider h =
Te,e+1[Qn.s,641- By (c-il), h[Qy s.641] = Qnse. Note that X¢ 1 can be identified with

{(z,1) 2 € Xe N K¢} U{(2,0) : 2 € Xe N L} € {0,1} x {0,1},
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so that Q) 5¢+1 is identified with
{(z,1) 12 € Quse N K} U{(,0) : x € Quse N Le},

and that with this identification A becomes the first-coordinate projection from @, s.¢4+1 onto Qs¢, while
Qnoe = (Qnse NKe)U(QuseNLe). So 5A4L tells us that h is irreducible. But this means that ¢, 5¢11 = hgnse
is a composition of irreducible continuous surjections and is irreducible, by 5A4C(d-iv)).

For the inductive step to a limit ordinal & such that § < ¢ < wy, take a cylinder set V' C {0, 1}¢ meeting
Qnse. This time, because ¢ is a limit ordinal, there is a ¢ such that § < ¢ < £ and V is determined by
coordinates less than (. Set V' = m¢¢[V]; then V’ is a cylinder set in {0, 1}¢ meeting m¢¢[Qnse] = Qpsc. Now

mse[Qnoe \ V] = msclmee[Quoe \ wee [V']]]
= Tac[mee[Quoac] \ V'] = msc[@noc \ V'] € Qus
because gns¢ @ Qnsc — Qns is irreducible. Thus the induction continues. Q

(e) It follows that if H C X is closed, there is a £ < w; such that H = X N 7r5_1[7r£ [H]] and e[ H is
irreducible. P For w < n < ¢ < wyq,
pinn[H) = per, ey [H]) = pem, [mpe[me[H]]] > peme [ H].
So we have an n < wy such that p,m,[H] = peme[H] whenever n < € < wy. Now recall that p, is inner
regular with respect to {Q; 5 : 7 < <wi}. So there is a countable set I C w; \ 1 such that (Q]s)ser is
disjoint, Q5 C m[H] for every § € I and 5.y un@y5 = pnT[H].
For each ¢ € I,

5 (Qns \ w5 [H]) < ps (7,5 Q) \ ws[H))

(because surely 7s5[H| C 7r;51 (7, [H]])
= py[H] — psms[H] = 0
by (c-ii) and the choice of 7. Because @Q,,s was ps-self-supporting, and ms[H] is closed, Qs C m5[H]. Because
751 X Ny Q] s irreducible, X Ny Q5] € H.
Set ¢ = sup(f U {n}) < wi. Since Q5 < Wgél[Q;](;], 7r521 [(Qns] € 7r;€1[ ys) for each § € I; as (Q5)ser is
disjoint, so is <7r5_41 (Qns])ser; and

> uemitQus) =D 1sQus = > paT s [Qls]

ser ser sel
= ZMUQ;WS = pnmy[H] = peme[H].
éel

Because X N5 '[Q,5] € H, 7¢[H] 2 Xcﬂﬂ'gcl [Qys] for every 6 € I. So m¢[H]\Use s ﬂ({cl [Qns) is pe-negligible
and is included in A¢¢ for some £ > (. Repeating the arguments of the last two sentences at the new level,
we see that

Xen U5ej 775_51 [Qns] C me[H] C Uée] 7"5_51 [Qns] U ﬂ'g_glAC&

Now suppose that V' C {0,1}** is an open set meeting H. Take z € VN H. If z € WEI[AggL then
z[€ # 2/ [€ for any other 2’ € X, by (c-iv); so z[§ ¢ me[H \ V] and m¢[H \ V] # m¢[H]. Otherwise, there is
a ¢ € I such that z[¢{ € 71'(;&1 [Qus), z € 75 ' [Qns] and V N 75 1 [Qys] is not empty. Because 75X N7y ' [Qs]
is irreducible, ms[H \ V] cannot cover Q,s C mws[H]. Thus ms[H \ V]| # ms[H]; it follows at once that
me[H \ V] # m¢[H] in this case also. As V' is arbitrary, m¢[ H is irreducible.

I have still to check that H = X N ﬂ'gl[wdH]]. If 2z, 2/ € X, z € H and 2/'[§ = z[¢, then if z € 71'51[1445]
we have 2/ = z € H. Otherwise, there is some § € I such that z € 775_1[@,75]. In this case, 2'[6 = 2[0 € Qps;
but X N 7r5_1[Q,,5] C H, so again 2’ € H. So we have the result. Q
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(f) We are within sight of the end. From (e) we see, first, that if H C X is closed then it is of the
form X Ny 1[7r5 [H]] for some £ < wiq, so is a zero set in X; accordingly X is perfectly normal, therefore
first-countable (5A4Cb). Second, for any closed H C X, there is an irreducible continuous surjection from
H onto a compact metrizable space m¢[H]; because m¢[H| is separable, so is H (5A4C(d-1)). It follows that
X is hereditarily separable. PP If A C X, then A is separable; let D C A be a countable dense set. Because
X is first-countable, each member of A is in the closure of a countable subset of A, and there is a countable
C C A such that D C C. Now C is a countable dense subset of 4. Q

(g) We need to check that w; € Mahgr(X). For w < & < wi, set Us = {z: 2z € {0,1}*", 2] € K¢ N L,
2(¢) = 1}. Then p(U;AE) > 1 whenever E C {0,1}“* is a Baire set determined by coordinates less than .
P Set E' = m¢[E], so that F = ng[E’] and E’ is a Baire set. Then

1w(Ue \ E) = vy, f U \ Bl = vio {2 : f(2)[§ € KeNLe \ B, f(2)(§) =1}
= v {2 fe(21€) € Ke N Le \ B, 2(€) = 1}

1 1
= 5%}1{2 : fE(Z[f) € KeNLe \ El} = i,ug(Kg N L \ El>,
while

W(EN\Ug) = v, f[THE\Ue] 2 v fTHE N [Ke N Lel \ Ug
= v {z: f(2)I§ € KeNLeNE', f(2)(§) = 0}
=vp{z: fe(z1€) € KeNLeNE', 2(§) =0}

1 1
= Euwl{z : fg(z[f) € KenLen E/} = §/LE<K§ NLsN E/)
Putting these together,

1
WEAUe) > Spe(KeNLe) > 7. Q

1
iy 4'
In particular, u(U,AUs) > i whenever w < 1 < £ < wi. So p has uncountable Maharam type. As
uX =1, the subspace measure px on X also has uncountable Maharam type, and w; € Mahg(X) (531Ef).

Now we have

wy < 7(px) < w(X)
(531Aa)
< ’U)({O, 1}W1) = Wi,

so T(ux) =w(X) =w.

(h) Finally, I come to the metrizability of negligible subsets of X. Suppose that A C X and uxA = 0.
Then we have a sequence (H,,),en of closed subsets of X\ A such that lim,,_, o, #H,, = 1. For each n € N there
is an ), < wy such that H,, = XN, [, [Hy,]], by (e); setting ) = max(w, sup,,ey ), Hn = XN, ! [m [Ho ]
for every n, so 77,71[737 [A]] is disjoint from every H,, and is pu-negligible. As p1,, = uw;l, pyy[A] = 0. There
must therefore be a § > 1 such that m,[A] C A,5. By (c-iv), ms[A is injective.

Write B for m5[A] and h for the inverse function (m5]A)~!: B — A. Then z > h(z)(&) : B — {0,1} is
continuous for every £ < wy. P Induce on £. For £ < 0 the result is trivial, as x = h(x)[¢ for every = € B.
For the inductive step to £ > d, we have

{z:xeB, h(z)§) =1} ={z:2x € B, h(zx)[£ ¢ L¢}
={z:z € B, h(z)[{ € K¢},

but x +— h(x)[€ is continuous, by the inductive hypothesis, so this is relatively open-and-closed in B. Thus
x +— h(z)(€) is continuous and the induction continues. Q

Accordingly 7s5[ A and h are the two parts of a homeomorphism between A and B C {0,1}°, and A is
metrizable. So X and px have all the properties claimed.
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531R Returning to the ideas of 531K, we have the following construction.
Lemma Let I be a set, and let By, (e;)icr, (¢i)ier, (€x)rcr and J* : By — [I]S* be as in 5311-531K. For
a€Brand K C1I,set Sk(a) =upr(a,Cx) =min{c:a C ¢ € €k}, the upper envelope of a in €k (313S).
(a) Foralla € By, i€l and K, L C 1,

(i) Si(a) = a,
(ii) S ()CSK()ingL,
(iii) J*Sk(a) C J*(a) N K,
(iv) Snip(a) = av ¢ia,
(v) SkSi(a) = Sknr(a).
(b) Whenever a € B;, ¢ > 0 and m € N, there is a finite L C I such that 7;(Sk(a)\ a) < € whenever
LCKCIland #(I\K)<m.

proof (a)(i) €; = B; contains a.

(ii) If K C L then €1, D €k contains Sk (a).

(iii) If ¢ € T\ (J*(a) N K) then Sk(a) € €k so ¢;Sk(a) € €k, by 531Kg. Also ¢;Sk(a)2a. P If
1 ¢ K then ¢;Sk(a) = Sk(a) Da, by 531Kf. If i ¢ J*(a) then ¢;Sk(a) D p;a = a. Q So ¢;Sk(a) D Sk(a);

but they have the same measure, so ¢;Sk(a) = Sk(a). As i is arbitrary, J*Sk(a) C J*(a) N K, by 531Kf
in the other direction.

(iv) By 531Kf again, Sp\qiy(a) = ¢:Spiy(a) 2 ¢ia; so Spyiy(a) 2augia. On the other hand, by
531Ke, a U ¢;(a) belongs to €\ (3, so includes Sy ;1 (a)
(v) By (i),
J*SkS1(a) C J*Sp(a) N K C J*(a) N LN K,

and Sk Sr(a) € Cxnr; since also Sk Sr(a) 2 Sp(a) Da, SkSr(a) D Sknr(a). On the other hand, Sknr(a)
belongs to €x and includes Sp(a), so includes Sk Sr(a).

(b) Induce on m. For m = 0 the result is immediate from (a-i). For the inductive step to m + 1, take
Lo € [I]<% such that 7;(Sk(a)\a) < te whenever Lo C K and #(I \ K) < m. By 531Ja, there are a finite
set L1 C I and a b € €1, such that 77(a Ab) < 2e; set L = LoU Ly. Suppose L C J and #(I\ J) =m + 1;
take ¢ € I'\ J and set K = J U {i}. Then

Sy(a) = Sn\(iySk (a) = Sk(a) U Sk (a)
by (a-v) and (a-iv). So

vr(Sy(a)\a) < vr(Sk(a)\ a) + vr(¢iSk(a)\ a)
19i(Sk(a)\ a) + vr(pia\ a)

(
+

IN IN
wla

sy i

+ 71(Sk(a)\ a) +v1¢i(a\b) + vr(pib\ b) + vr(b\ a)

IN

vr(a\b) +vr(b\a) <e
because ¢; is a measure-preserving Boolean homomorphism and ¢;b = b. Thus the induction continues.

531S Moving on from hypotheses expressible as statements about measure algebras, we have a further
result which can be used when Martin’s axiom is true.

Lemma Suppose that wy < mg (definition: 5170). Let {eg)¢<w, be the standard generating family in B,,,,

and (ag)e<, a family of elements of B, of measure greater than 3. Then there is an uncountable set

I' C wy such that infecrae ne¢ meets inf, c 7 ay, \ e, whenever I, J C T are finite and disjoint.

proof (a) Define J*(a), for a € B,,, and Si(a), for a € B,,, and I C wy, as in 531J and 531R. Let P be
the set of pairs (¢, I) where I C wy is finite, 0 # ¢ C infeerae and I N J*(¢) = 0. Order P by saying that
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(e, 1) < (¢, I')if I CI' and ¢ C c. Then P is a partially ordered set. For each { < w1, ag N deae belongs to
C.\(e) (531Je) and is non-zero, so pe = (ag N deag, {£}) belongs to P. The point of the proof is the following
fact.

(b) P satisfies Knaster’s condition upwards. I Let ((c¢, I¢))e<w, be a family in P. Then there are an
a > 0 and an uncountable Ay C wy such that 7, (cc ne,y) > a for all £, n € Ag (525Tc). Next, there is
an uncountable A; C Ag such that (I¢)eca, is a A-system with root I say (4A1Db); let m € N be such
that Ay = {£: & € Ay, #(I¢ \ I) = m} is uncountable. Finally, because J*(c,) is countable for each 7, and
(Ie\ I)¢ca, is disjoint, we can find an uncountable A C Ay such that J*(¢,) N1I¢\ I = () whenever 1, { € A3
and n < &.

Take a strictly increasing sequence (nx)ren in A3 and a ( € Aj greater than every n,. By 531Rb, there
is a finite set K C wyq such that 7, (S7(1\cc)\ (1\ ¢¢)) < a whenever K C J C wy and # (w1 \ J) = m. Let
k € N be such that I, \ I does not meet K. Set c: = Sy\(r, \r)(1\¢¢). Then

le(clc ﬁC() S a < ﬂwl(cc mcnk)v

SO € = Cy, \c’< is non-zero; as C/C D1\¢e, ¢ Cee. Set L =1, Ul Then J*(cp,) is disjoint from I,, and
from I \ I, by the choice of As, while

J7(c) € T (AN e) \ (I \I) = J*(co) \ (I, \ 1)
531R(a-iii)) is also disjoint from L; so J*(¢) C J*(¢,, ) U J*(c.) is disjoint from L. Finally,

Nk ¢

cCcey, Nee C infgejnk ag N inf§€]< ag = infgeL Qg,

so (¢, L) € P. Now (¢, L) dominates both (¢, , I, ) and (c¢, I¢).
What this shows is that if we write @ for
,CYim, C € As, (¢, 1) and (c¢, I¢) are compatible upwards in P},
n n nydn ¢ 4¢

then whenever ¢ € Az and M C A3 N is infinite there is an p € M such that {n,(} € Q. By 5A1Hb, there
is an uncountable Ay C Aj such that [A4]? C @, that is, ((cg, I¢))¢eca, is upwards-linked. As ((c¢, I¢))e<w,
is arbitrary, P satisfies Knaster’s condition upwards. Q

(c) By 5178, there is a sequence (R,)nen of upwards-directed subsets of P covering {pe : £ < w1 }; as wq
is uncountable, there must be some n such that I' = {£ : p¢ € R, } has cardinal w;. In this case, {ps : £ € T'}
is upwards-centered in P. If I, J C T are finite and disjoint, then there must be a (¢, K) € P which is an
upper bound for {ps : £ € TU J}; now I UJ C K does not meet J*(c), while ¢ C infeeryyae. But this
means that

Uy, (e infeeree ninfer(1\ey)) = 277UV, ¢ > 0,
and
0# cninfecreeninfyes(1\e,) C infeer(ae nee) N infyer(an \ ey).

So we have a set I' of the kind required.

531T Theorem (FREMLIN 97) Suppose that w < k < mgk. If X is a Hausdorff space and k € Mahg (X),
then {0,1}" is a continuous image of a compact subset of X.

proof (a) Because k < mg < m(2) for every probability algebra 21 (525Tb), x is a measure-precaliber of
all probability algebras (525FDb).

(b) If K = w, X has a compact subset K which is not scattered (531E(e-ii), [0,1] is a continuous image
of K (4A2G(j-iv) again) and {0,1}" is a continuous image of a closed subset of K (using 4A2Uc).

(c) If kK = wyq, let K be a compact subset of X such that w; € Mahg (K), u a Maharam-type-homogeneous
Radon probability measure on K with Maharam type w1, and (2, i) its measure algebra. Let (d¢)¢<., be a
T-generating stochastically independent family of elements of 20 of measure % For £ < w; let E¢ € dom pu be
such that Ef = d¢, and K} C E¢, K C K\ E¢ compact sets of measure greater than ; set K¢ = K UK/
and ag = K¢ in 2. Because (2, i, (d¢)¢<w, ) is isomorphic to (B, , Vs (€¢)e<wy ), 5318 tells us that there is
an uncountable set I' C w; such that
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0 +# infgej(ag N dg) N infne](an \ dn) =(Kn nfe] Ké N mWEJ K;{)'

whenever I, J C T are finite. Just as in part (b) of the proof of 531L, it follows that there is a continuous
surjection from () K¢ onto {0, 1} = {0, 1}

(d) If kK > wa, then 531LDb gives the result.

531U If we are willing to settle for weaker conclusions, there are versions of 531L which do not call for
any information on precalibers.

Proposition Let X be a Hausdorff space.

(a) Give the space Pr(X) of Radon probability measures on X its narrow topology (437J). If k > wo
belongs to Mahg (X), then {0,1}" is a continuous image of a compact subset of Pg(X).

(b) Give the space Pr(X x X) its narrow topology. Then its tightness ¢(Pr(X x X)) is at least
sup Mahg (X).

proof (a)(PLEBANEK 02)(i) The argument begins by copying part of the proof of 531Lb. By 531Ec, there is
a compact set K C X such that x € Mahg (K). Let u be a Maharam-type-homogeneous Radon probability
measure on K with Maharam type x, ¥ its domain, and (2, i) its measure algebra. Let (es)e<) be a

stochastically independent T-generating set of elements of measure % in /. For each { < &, let F¢ € ¥ be

such that B¢ = e¢ in 2; let K{ C E¢, K C K\ E¢ be compact sets of measure at least 2. By 531K, copied
into %A, there are (c¢)e<y and I' € [£]" such that ¢ C (Kg U K{)* and fice > 2 for each &, and

— /. . 1 — .
Ainfecrcenesn infpcrep\ey) = Wﬂ(lnféejuJ ce)

whenever I, J C I are disjoint finite sets. In particular, infecr ce Ne¢ meets inf, c 5 ¢, \ €, whenever I, J C T
are disjoint finite sets and infecruyce # 0. But as cgeneg C (Ké)‘ and cg \ eg C (Ké’)' for every £, we see
that Neey Ki N Neey K¢ # 0 whenever I, J C T' are disjoint finite sets and infeeruy ce # 0.

(ii) Now for the new idea. For each I C T, set
Ly={v:ve PR(K), vK; Z% for £ € I and yKé’Z% for € e T\ I}.

Then Ly # (. B Consider the families {c¢ : { € T'} C A and {K{:§ € I[JU{K{ : £ € T\ I} C PX. Because
fi : A — [0,1] is additive and fice > 2 for every £ € I, the intersection number of {c¢ : ¢ € I'} must be at
least 2 (3911). So if &, ... ,&, €T thereis aset J C n+1 such that #(J) > 2(n+1) and infjcyce; # 0. In
this case, setting J' = {j : j € J, §; € I} and J” = J\ J" we have (), Kéj NNjesr KgJ #0. As &, ... &
are arbitrary, {K; : §{ € I} U{K{ : £ € I'\ I} has intersection number at least 2

By 3911 in the other direction, there is an additive functional 7 : PK — [0, 1] such that 7K =1, ﬁKé > %
for every £ € I and DK&’ > % for every £ € T'\ I. By 416K, there is a Radon measure v/ on K such that

VKL > 2 for every & € I, VK{ > 2 for every £ € T'\ I, and V'K < 1. Setting v = L1/, we see that

V'K
Ve L;. Q
(iii) Set

2 2
L=|JLi={v:veP(K),vK; > Stu{vive Pr(K), vE{ > 1))
ICr ¢er

= Pr(E)\ [ J (v v(E\KY) > S} 0 {v s v(K\ KY) > 2)).
fer

Then L is closed in Pr(K) for the narrow topology. Since all the sets {v : I/Ké > %} and {v : VKé’ > %}
are closed in Pr(K), we have a continuous function f : L — {0, 1} defined by saying that

Jw)(&) = 1if vKL >

Wiy wiN

=0 if vk{ >
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and (ii) tells us that this is surjective.

(iv) Recall now that the compact space P (K) can be identified with the subspace {u : u(X \ K) = 0}
of Pr(X) (use 437Nb). So {0,1}* = {0,1}! is a continuous image of a compact subset of Py (X).

(b) Take k € Mahg(X), and a Maharam homogeneous probability measure p on X with Maharam type
k; write 3 for the domain of p. I need to show that k < ¢(Pr(X x X)).

(i)(PLEBANEK & SOBOTA 15) To begin with (down to the end of (iii) below), suppose that X is
compact and that kK = w;. In Pr(X x X) let L be the set of measures with both marginals equal to u. By
437N(a-i), L is compact. If E, F € ¥, v — v(E x F) : L — R is continuous. I Take vy € L and € > 0.
Then there are open G O E, H O F such that

€z G\ E)+u(H\F)
— V(G \E) x X) + (X x (H\ F)) 2 v((G x H)\ (E x F))

for every v € L. Now U = {v : v € Pr(X x X), v(G x H) > 1vy(G x H) — €} is a neighbourhood of vq
(437Kd), and if v € U N L then

VEXF)>v(Gx H)—e>vy(Gx H)—2e¢>vy(E x F) — 2e.
Similarly, there are neighbourhoods V', W of v such that
V((X\E)xX)>1p((X\E) x X)—2¢for every v € VN L,
V(EX(X\F))>v(Ex (X\F))—2eforeveryve WNL,

But now we see that

V(E X F) <yy(E x F)+4e forevery v e VNWNL,

[V(E x F) —vy(E x F)| < 4de for every v e UNV N W N L.
As vy and e are arbitrary, v — v(E x F') is continuous on L. Q
(ii) Choose (E¢)e<w,, (Ge)e<w, inductively in such a way that for each & < w;
E§ IS /LEg = %,
E¢ is independent of the o-algebra generated by {G,, : n < £} U{E, : n <},

G¢ C X isopen, FE¢CGe, pGe < %

Now whenever { < wy and I € [wy \ {]<* there is a ve; € L such that ver (G, x Gy) < 2 for every n < £ and
ver(Ge x Ge) > 5 for every ¢ € I. P Set n = #(I); let A be the set of atoms of the algebra generated by
{Ey:nel},V=UgcsAxAand ve =2"p?LV (234M) where p? is the Radon product measure p X p,
so that uA = 27" for A € A, p?V = 27" and v is a Radon probability measure on X x X (416Sa). If
F € dom p then

ver(F x X)=2" )" p?(A* N (F x X))

AeA
=2" Z,u(AﬁF)-,uA: Zﬂ(AﬂF):,uF
AcA AcA

and similarly ver (X x F) = pF; thus ver € L. If n < £ then

VG2 =2 S (AN G =27 3 (uA - uGy)?
AcA AcA
(because G, and (E¢)c¢er are independent)

_ 2 9
= (uGy)” < 25"
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If ( € I then

verGE > v BE = 2" Y (WANE))?? =20 Y ()
AecA A€AACE,

=27 #({A: A€ ALACE}) =+

So ver works. Q

(iii) Now, for each § < w1, we can choose vg € (oo, {Ver : C € 1 € [w1 \ {]<+}. Because L is closed,
ve € L; because v +— vE? : L — R is continuous whenever E € X, by (i), 1G5 < gt for n < § and v:GE > §
for ¢ > £. Next, there is a v E ﬂn<w1 {ve :m <& <wi}, and now 1/G127 < % for every n < wy. Writing
D={ve:{<w} CL,v e D;but any countable C C D is included in {ve : £ < ¢} for some ¢ < wy, so
that

sup{v'G} : v € O} < % < % <inf{reG7 : € < <G

and v ¢ C. So D and v witness that ¢(Pr(X x X)) > w.

(iv) Still supposing that X is compact, consider other possibilities for k. If kK = 0 then of course
Kk < t(Pr(X x X)). If K = w, then X has a compact subset which is not scattered (531Ee), so X has a point
x which is not isolated; setting A = X \ {z}, z € A\ B whenever B € [A]<¥, so w < t(X) < (X x X) <
t(Pr(X x X)) by 5A4Bb and 437Jd. If kK > wy, then

Kk =1t({0,1}%)
(by 5AAI(b-iii))
< t(Pr(X))
(by (a) above and 5A4BDb)
< t(Pr(X x X))

because Pr(X) is homeomorphic to a subspace of Pr(X x X), by 437Nb.

(v) This deals with the case in which X is compact. For the general case, we see from 531Ec that there
is a compact set K C X such that k € Mahg (K), so (i)-(iv) tell us that ¢(Pr(K x K)) > k. But Pr(K x K)
can be identified with a subset of Pr(X x X) (437Nb) and ¢(Pr(X x X)) > t(Pr(K x K)) > k.

531V 531Lb and 531U both depend on Hajnal’s Free Set Theorem (5A1Ic), which here is useful when
dealing with cardinals greater than or equal to ws. More elementary arguments, as in 531La, give similar
results for w, leaving w; exposed as a special case. In fact it really is different in this context, as is shown
by the following.

Proposition (a) Suppose that the continuum hypothesis is true. Then there is a compact Hausdorff space
X such that w; € Mahg(X) but {0,1}** is not a continuous image of a closed subset of Pr(X).

(b)(PLEBANEK 97) Suppose that there is a family (We)ecw, in N, such that every closed subset of
{0,131 \ Ug <o, We is scattered. Then there is a compact Hausdorff space X such that wi € Mahg(X) but
{0,1}** is not a continuous image of a closed subset of X.

proof (a)(i) In fact this is witnessed by the space X described in 531Q. (Since we are assuming that ¢ = wy,

we certainly have cf N, = wq, so we can perform the construction in 531Q.) For the present argument, all

we need to know is that X is a compact Hausdorff space of weight at most w; carrying a Radon probability

measure with uncountable Maharam type for which every negligible subset is separable and metrizable.
Let i be such a measure. Then

wr <7(f) <w(X) <w
by 511Ge and 531Aa. Next, by 524Pf (or directly from the construction in 531Q), the cofinality of the null
ideal N(f1) is max(cf N, cflw1]S¥) = wi; let (He)e<w, be a cofinal family in N (j1) consisting of Borel sets.
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(ii) Write B for the Borel o-algebra of X, M for the set of totally finite Borel measures on X which are
absolutely continuous with respect to u = [ B, and for { < w; write M¢ for the set of totally finite Borel
measures on X for which X \ H¢ is negligible.

(a) #(M) < ¢. P For a non-negative p-integrable real-valued function f write vy for the cor-
responding indefinite-integral measure, so that v;F = f f X xEdu for E € B. By the Radon-Nikodym
theorem (232F), every member of M is expressible as vy for some f; moreover, if f =,. g then vy = v,.
So #(M) < #(L*(n)). Now L'(u) can be identified with L*(2, 1), where (2, ji) is the measure algebra of
w (365B); since fi is the completion of u, we can identify (2, i) with the measure algebra of ji (322Da) and
apply 529Ba to see that the topological density of L(2, ji) is wy. Since L' (%A, 1) is metrizable,

#(M) < #(LH () = #(L' (A, 1) < d(LHA 1) =wi =c. Q

(B) For every € < wy, #(M¢) < ¢. P A member of M is determined by its restriction to the Borel
o-algebra of H¢. Now H¢ is separable and metrizable, therefore second-countable, and its topology has a
countable base Ug containing He and closed under finite intersections. If v, v/ are different totally finite
Borel measures on He, then v[Ue # v/[Ug by the Monotone Class Theorem (136C again), so the same is
true if v, 1/ are different members of M, and

#(Me) < #(RY) =c. Q

() Every totally finite Borel measure v on X can be expressed as a sum v/ + v” where v/ € M and
V' e U€<w1 M. P By 232Ia, we can express v as v’ + " where v/, v are countably additive, v’ € M and
V" is singular with respect to u. There is a a Borel set F' such that uF' = v"/(X \ F) = 0; and now there is
a £ < wi such that F' C He, so that " € M¢ and we have found a suitable expression for v. Q

(iii) Of course every member of Pg(X) is determined by its restriction to B. We therefore have

#(Pr(X)) < #(|J M x M) < max(wr, sup #(M) - #(Me))

E<wr £<wn
(taking the cardinal products)
=c¢=w; < 2“ = #({0,1}*").

So there cannot possibly be a continuous surjection from any subset of Pg(X) onto {0,1}«1.

(b) For the second example we can use a variation in the construction in 531M.

(i) Set Ef = {z: z € {0,1}*", 2(¢) = 1} for each { < wy. Choose a family (K¢p,)e<w, nen of compact
sets in {0,1}* as follows. Given (K, )n<¢nen, where § < wy, such that |J,, o Ky is conegligible for every
n < &, then for each j € N we can find a family (n(£,7,7))n<e in N such that Le; = (), ¢ U;<n e, Kni

has measure at least 1 —27/~%. For j € N choose a compact set Ki; C Lg; \ (We UU,_; K{;) of measure at
least 1 — 27773 — v, (U, K¢;). Set

Keoi = K NEe,  Kepir = Ki; \ B
for each ¢ € N, and continue. Note that if { < wi, i € N and z, 2’ € Kg; then 2(§) = 2/(§).

i<j

(ii) At the end of the induction, let € be the algebra of subsets of {0, 1}** generated by {Kg; : £ < wy,
1 € N}, and X its Stone space. Then we have a Radon probability measure p on X defined by setting

uC =, C for every C € €, where C is the open-and-closed subset of X corresponding to C'. Forn < ¢ < wy,
we have

(Ko AR o) = v, (Ko AKeo)
= Vo, (B N Kyo) A(Ee N K))
> Vw1(E77AE£) =V, (En \K;O) — Vi, (B \ Kéo)
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so the Maharam type of p is at least wy and w; € Mahg(X).

(iii) Let F' C X be a non-scattered closed set. Then there is a ¢ < w; such that F' & |,y f?gi~ P?
Otherwise, set

R=Necw, Uien(F N Kei) x Kei © X x {0,131

Note that for each ¢ < w; the f?gi are disjoint open-and-compact sets covering the compact set F', so
{i: FnN IA(@» # (0} is finite and |J; oy (F N [?51) x K¢; is compact; thus R is compact. If (z,2) and (2/,2') € R
and z # 2/, there must be some C' € € such that z € C and 7' ¢ 6, so there must be some ¢ < w; and
1 € N such that just one of x, ' belongs to I?gi; in this case, only the corresponding one of z, 2z’ can belong
to K¢, and z # 2.

Conversely, if (z,z) and (2/,2') € R and z # 2/, there is some £ such that z(£) # 2/(£). In this case, if 4,
j € N are such that (z,2) € K¢ x K¢; and (2/,2') € Kej x Kej, i # j and @ # 2.

This shows that R is the graph of a bijection from F' to R[F]. Because R is a compact subset of F' x R[F],
it is a homeomorphism, and R[F] is not scattered. But, for each § < wy, R[F] C |J;cy Ke: is disjoint from
We; and all compact subsets of {0, 1} \ U£<w1 We are supposed to be scattered. XQ

(iv) Take z € F\ |J I?Q-. Then x(z, X) < w. P Consider the set

€N
V=,<cieni?’ 12" € X, 2" € IA(M — z¢€ [A(m}

This is a Gs set containing x. 2 If there is an 2’ € V' \ {z}, there must be some { < w; and j € N such

that just one of x, 2’ belongs to K¢;. In this case, £ > (, so K¢j C |, <) K¢i and K¢j C |, K¢i for some

k € N. But neither z nor z’ belongs to Uigk IA(Q'. X Thus V = {z}; by 4A2Gd as usual, x(z,X) <w. Q

(v) Thus we see that whenever FF C X is a non-scattered closed set, there is an « € F such that
x(z, X) is countable. By 5A4C(d-iii), {0,1}“* is not a continuous image of a closed subset of X.

531X Basic exercises (a) Show that there is a Hausdorff completely regular quasi-Radon probability
space (X, %, %, u) with Maharam type greater than #(X). (Hint: 523Ib.)

(b) Give an example of a separable Radon measure space with magnitude 2°. (Hint: 4A2B(e-ii).)
(c) Let I!l be the split interval (343J, 419L). Show that Mahg () = {0, w}.

(d) Let I be an infinite set, and SI the Stone-Cech compactification of the discrete space I. Show that
2#(I) is the greatest member of Mahg (8I). (Hint: 5A4la, 5151.)

(e) For a topological space X, write Mahyg (X) for the set of Maharam types of Maharam-type-homo-
geneous quasi-Radon probability measures on X. (i) Show that x < w(X) for every x € Mahqr(X). (ii)
Show that Mahqg (Y) C Mahqg(X) for every Y C X. (iii) Show that if ¥ is another topological space, and
neither X nor Y is empty, then Mahqg(X x Y) = Mahgr (X) U Mahg (Y).

>(f) Let X be a Hausdorff topological group carrying Haar measures, and 2 its Haar measure algebra
(442H, 443A). Show that w(X) = max(c(A), 7(A)). (Hint: 443Gf, 529Ba.) Show that if X is o-compact,
locally compact, Hausdorff and not discrete then w(X) € Mahg(X).

(g) Let X be a Hausdorff space such that Mahg (X) C {0,w}, and A the null ideal of Lebesgue measure
on R. Show that the union of fewer than add N universally Radon-measurable subsets of X is universally
Radon-measurable.

(h) Let X be a completely regular Hausdorff space and x an infinite cardinal. Suppose that whenever Y’
is a Hausdorff continuous image of X of weight x then Mahg(Y) C k. Show that Mahg(X) C k.

(i) Let X be a Hausdorff space, and (E;);cr a family of universally Radon-measurable subsets of X such
that #(I) < cov N, for every x. Show that Mahg(U,c; Ei) = U,y Mahgr (E;).
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(j) Let K be an Eberlein compactum. Show that Mahg (K) C {0,w}. (Hint: 467Xj.)

(k) Let X be a Hausdorff space and & a cardinal. Show that there is a Radon probability measure on X
with Maharam type & iff either k is finite and 2% < 2#(X) or k = w < #(X) or k € Mahg(X) orcfk =w
and k = sup Mahg (X).

>(1) Let X be a Hausdorff space and  an infinite cardinal. (i) Show that {0,1}" is a continuous image
of a compact subset of X iff [0,1]" is a continuous image of a compact subset of X, and that in this case
{0,1}" is a continuous image of a compact subset of Pr(X). (Hint: 437Xt.) (ii) Show that if X is normal
and {0,1}" is a continuous image of a closed subset of X then [0,1]* is a continuous image of X. (Hint:
4A2F(d-ix).) (iii) Show that if X is completely regular and {0,1}" is a continuous image of a compact
subset of X then [0, 1]" is a continuous image of X. (Hint: 4A2F (h-iii).)

(m) Let (X,%,%, u) be a Hausdorfl quasi-Radon probability space. Show that the Maharam type of u
is at most max(w,2X(X)). (Hint: 5A4Ba, 5A4Bg.)

(n) In the language of 531R, show that if a, b € B; and K C I'\ J*(b) is finite, then vr(a A Sp g (a)) <
2#(1)17](0, A b)

(o) Show that if mg > w; and X is a countably tight compact Hausdorff space, then w; ¢ Mahg (X).

(p) Let X be an infinite compact Hausdorff space with a strictly positive Radon measure p. Show that
the topological density of Pg(X), with its narrow topology, is at most the Maharam type of p. (Hint: the
indefinite-integral measures over u are dense in Pr(X).)

(@) Let W C N, be such that every compact subset of {0,1}* \ [JW is scattered. Show that there is a
family W C N, such that #(W') = #(W) and every compact subset of {0,1}** \ [JW' is scattered.

531Y Further exercises (a) Let x be an infinite cardinal such that k = k°. Show that there is a set
X C{0,1}", of full outer measure for v, such that every subset of X with cardinal ¢ is discrete. Show that
Mahgg (X) (531Xe) contains £ but not w.

(b) Let X and Y be infinite compact Hausdorfl spaces, and suppose that there is a norm-preserving
linear isomorphism between the dual spaces C(X)* and C(Y)*. Show that Mahg (X) = Mahg(Y).

(¢) Let p be a 7-additive Borel probability measure on a topological space X, and x a cardinal of
uncountable cofinality such that (i) x(x, X) < cfx for every x € X (ii) no non-negligible measurable set can
be covered by cf k negligible sets. Show that the Maharam type of p cannot be k.

(d) Let X be a completely regular Hausdorff space and x > ws a cardinal. Show that if kK € Mahg (X)
then the Banach space ¢!(k) is isomorphic, as linear topological space, to a subspace of the Banach space
Cp(X).

(e) Let X be a locally compact Hausdorff space and  an infinite cardinal such that ¢! (k) is isomorphic,
as linear topological space, to a subspace of Cy(X) (definition: 436I). Show that x € Mahg(X). (Hint:
Reduce to the case in which X is compact. Show that if (e;);en is the standard generating family in
', n € N and (qjj)icj<n is a family in [0,00[, then there is a family (€;;)i<j<n in {—1,1} such that
|| Zi<j§n eijai]—(ei — 6j)||1 > Zi<j§n Qj. See PELCZYNSKI 68)

531Z Problems (a) Can there be a perfectly normal compact Hausdorff space X such that we €
Mahg (X)? (See 531Q, 554Xd.)

(b) Can there be a hereditarily separable compact Hausdorff space X such that wy € Mahg (X)?
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531 Notes and comments This section is directed to Radon measures, studying Mahg (X); of course we
can look at Maharam types of quasi-Radon measures (531Xe, 531Ya), or Borel or Baire measures for that
matter. In the next section I shall have something to say about completion regular measures. The function
X — Mahg(X) has a much more satisfying list of basic properties (531E, 531G) than the others.

From 531L and 531T we see that there are many cardinals x such that whenever X is a Hausdorff space
and x € Mahg (X), then there is a continuous function from a closed subset of X onto {0,1}". Such cardinals
are said to have Haydon’s property. From 531L, 531M and 531T we see that

w has Haydon’s property (531La);

if Kk > wy and k is a measure-precaliber of B, then x has Haydon’s property (531Lb);

¢+ has Haydon’s property for n > 1 (525K);

if kK > w is not a measure-precaliber of B, then x does not have Haydon’s property (531M);

if w; < mk then w; has Haydon’s property (531T).
(See also 544D.) Thus if mkg > wy, an infinite cardinal x has Haydon’s property iff it is a measure-precaliber
of every probability algebra. w; really is different; it is possible that w; is a precaliber of every probability
algebra but does not have Haydon’s property. To check this, it is enough to find a model of set theory in
which cov N, > w;y (525Gc) but there is a family (We)ecw, as in 531Vb; one is described in 553F.

You will observe that the key arguments of this section all depend on analysis of the measure algebras
%B,. We have already seen in §524 that many properties of a Radon measure can be determined from its
measure algebra. Here we find that some important topological properties of compact Hausdorff spaces can
be determined by the measure algebras of the Radon measures they carry. The results here largely depend
for their applications on knowing enough about precalibers; I remind you that it seems to be still unknown
whether it is possible that every infinite cardinal should be a measure-precaliber of every probability algebra.

The remarks above have concerned the existence of continuous surjections onto {0, 1}”; a natural place to
start, because measures of Maharam type k arise immediately from such surjections. In 531N-531Q I look at
different measures of the richness of a compact space X. Concerning characters, 531N-5310 give us quite a
lot of information, slightly irregular at the edges. I ought to offer a remark on the context of 531Q. In some
set theories (for instance, when m > w1 ), we find not only that w; is a precaliber of every measurable algebra,
but also that a compact Hausdorff space is hereditarily separable iff it is hereditarily Lindel6f (FREMLIN
844, 44H); so that, for instance, a hereditarily separable compact Hausdorfl space must be first-countable,
so cannot carry a Radon measure of uncountable Maharam type. Typically, the situation is very different if
the continuum hypothesis or Jensen’s < is true, and 531Q is a descendant of the construction in KUNEN 81
of a non-separable hereditarily Lindel6f compact Hausdorff space. See DZAMONJA & KUNEN 93 for further
exploration of these questions.

Following the lead of HAYDON 77, more than half of this section is devoted to investigating properties of
compact Hausdorff spaces carrying Radon measures of particular Maharam types. Most of the topological
properties considered are very natural ones in this context. But in 531U I add an interesting pair of results
concerning topological properties of Pr(X) or Pr(X x X), less obviously connected to individual Radon
measures on X.

Version of 1.6.13

532 Completion regular measures on {0, 1}/

As I remarked in the introduction to §434, the trouble with topological measure theory is that there are
too many questions to ask. In §531 I looked at the problem of determining the possible Maharam types of
Radon measures on a Hausdorff space X. But we can ask the same question for any of the other classes of
topological measures listed in §411. It turns out that the very narrowly focused topic of completion regular
Radon measures on powers of {0,1} already leads us to some interesting arguments.

I define the classes Mah g (X), corresponding to the Mahg (X) examined in §531, in 532A. They are less
accessible, and I almost immediately specialize to the relation A € Mah,({0,1}"). This at least is more
or less convex (532G, 532K), and can be characterized in terms of the measure algebras %, (532I). On the
way it is helpful to extend the treatment of completion regular measures given in §434 (532D, 532E, 532H).
For fixed infinite A, there is a critical cardinal ko < (2)* such that A € Mah.r({0,1}") iff A < k < Ko;
under certain conditions, when A = w, we can locate kg in terms of the cardinals of Cichoni’s diagram (532P,

(©) 2004 D. H. Fremlin

D.H.FREMLIN



26 Topologies and measures II11 8532 intro.

532Q). This depends on facts about the Lebesgue measure algebra (532M, 5320) which are of independent
interest. Finally, for other A of countable cofinality, the square principle and Chang’s transfer principle are
relevant (532R-5328).

532A Definition If X is a topological space, I write Mah.,(X) for the set of Maharam types of Ma-
haram-type-homogeneous completion regular topological probability measures on X. If X is a Hausdorff
space, I write Mah,g(X) for the set of Maharam types of Maharam-type-homogeneous completion regular
Radon probability measures on X.

532B Proposition Let X be a Hausdorff space. Then a probability algebra (2, &) is isomorphic to
the measure algebra of a completion regular Radon probability measure on X iff (o) 7(,) € Maher(X)
whenever 2, is a non-zero homogeneous principal ideal of 2 (8) the number of atoms of 2 is not greater
than the number of points z € X such that {z} is a zero set.

proof (a) Suppose that u is a completion regular Radon probability measure on X and 2, is a non-zero
homogeneous principal ideal of its measure algebra 2. Let F' be such that F* = a and v the indefinite-

integral measure over p defined by the function inF . Then v is a Radon measure (416Sa), inner regular
o

with respect to the zero sets (412Q); and its measure algebra is isomorphic, up to a scalar multiple, to 2,
so is homogeneous with Maharam type 7(2,). So v witnesses that 7(2,) € Mah¢,g(X). This shows that 2
satisfies condition («).

As for condition (8), each atom of 2 is of the form {z}* for some z € X such that p{z} > 0 (414G, or
otherwise). In this case, because p is completion regular, {x} must be a zero set. So we have at least as
many singleton zero sets as we have atoms in 2.

(b) Now suppose that (2, i) satisfies the conditions. I copy the argment of 531F. Express (2, i) as the
simple product of a countable family ((2;, fi}))iecr of non-zero homogeneous measure algebras. For i € I, set
ki =7(2;) and v; = @ily,. Set J ={i:i €1, k; > w}. (B) tells us that #(I\ J) is less than or equal to the
number of singleton zero sets in X let (x;);cp\ s be a family of distinct elements of X such that every {z;}
is a zero set.

For each i € J, («) tells us that there is a completion regular Maharam-type-homogeneous Radon
probability measure p; on X with Maharam type x;. Now there is a disjoint family (FE;);c; of Baire subsets
of X such that p;E; > 0 for every i € J. P We may suppose that J C N. Choose (E;)icn, (Fi)ien
inductively, as follows. Fy = X \ {z; : ¢ € I\ J}. Given that F; is a Baire set and p;F; > 0 for every
jeJ\i,thenifi ¢ J set F; =0 and F; 1 = F;; otherwise, because p; is atomless and completion regular,
we can find, for each j € J such that j > 4, a Baire set G;; C Fj such that ;G5 < 2*juiFl- and p;Gy; > 0;
set Fi1 = UjeJ,j>z’ Gi; and E; = F; \ F;11; continue. @ Now set

BE =3 e saer Vi T 2ics (WiB) T i (B N EY)

whenever £ C X is such that p; measures E N E; for every i € J. Of course p is a probability measure.
Because every pu; is a topological measure, so is u; because every p; is inner regular with respect to the
compact sets, so is pu; because every p; is complete, so is p; so p is a Radon measure. Because every
subspace measure (p;) g, is Maharam-type-homogeneous with Maharam type &;, the measure algebra of y is
isomorphic to (2, 1). Because all the {z;} are zero sets and all the u; are completion regular, i is completion
regular.

532C Remarks Nearly the whole of this section will be devoted to the usual measures on powers of
{0,1}. Accordingly the following notation will be useful, as previously in this volume. If I is any set, v;
will be the usual measure on {0,1}!, B its measure algebra and N7 its null ideal. In this context, (e;);cr
will be the standard generating family in B; (525A), and for J C I, €; will be the closed subalgebra of B;
generated by {e; : i € J}.

If X is a topological space, B(X) will be its Borel o-algebra.

Let x be an infinite cardinal. Then v is a completion regular Radon probability measure (416U), and B,
is homogeneous with Maharam type x. So x € Mahg({0,1}"). Next, any Radon measure on {0,1}" can

MEASURE THEORY



532D Completion regular measures on {0,1} 27

have Maharam type at most w({0,1}*) (531Aa), so A < & for every A € Mahr({0,1}"). At the bottom
end, 0 € Mah¢,r({0,1}") iff {0,1}" has a singleton Gs set, that is, iff K = w.

From this we see already that we do not have direct equivalents of any of the results 531Eb-531Ef.
However the class {(\, k) : A € Mah,r({0,1}")} is convex in two senses (532G, 532K). For the first of these,
it will be useful to have a result left over from §434.

532D Theorem (FREMLIN & GREKAS 95) Let (X, 1) and (Y, p2) be effectively locally finite topological
measure spaces of which X is quasi-dyadic (definition: 4340), p; is completion regular and ps is 7-additive.
Let p be the c.l.d. product measure on X XY as defined in §251. Then p is a 7-additive topological measure.

proof (a) To begin with (down to the end of (e)) let us suppose that p; and ug are complete and totally
finite and inner regular with respect to the Borel sets. Let (X;);cs be a family of separable metrizable spaces
such that there is a continuous surjection f : [[,c.; Xi — X. For each i € I, let U; be a countable base for
the topology of X; not containing (J; for J C I, let C; be the family of cylinder sets expressible in the form
{z:z€]],c; Xi, 2(i) € U; for every i € K} where K C J is finite and U; € U; for each i € K.

(b) ? Suppose, if possible, that u is not a topological measure. Let W C X x Y be a closed set which
is not measured by p. By 434Q, p; is 7-additive; by 417C, there is a 7-additive topological measure [
extending p, and p*W = W (apply 417C(b-v-) to the complement of W).

(c) If J C I is countable, there are sets H, V, V' such that H C Y is open, V' € C;, V' € Cp\y,
fIV NV’ x H is disjoint from W, and p*(W N (f[V] x H)) > 0. P For V € Cy, set

Hy = UV’ecI\J{H :H CYisopen, WN(f[VNV'] x H) =0},

Hy =UHy,
and choose a measurable envelope Fy of f[V]. As Cy is countable,
Wi = (X xY)\Uyec, Fv x Hy
is measured by u; also W7 C W because
{flVnV']xH:VeC;, V' €Cpy, HCY is open}
is a network for the topology of X x Y. So
Wy = pWy < pW < W = gW

and fi(W \ Wp) > 0. There must therefore be a V' € Cy such that g(W N (Fy x Hy)) > 0. Next, because
p2 is T-additive, there is a countable H C Hy such that ps(Hy \|JH) = 0, and now gp(W N (Fy x | JH)) =
a(W N (Fy x Hy)) is non-zero. Accordingly there is an H € H such that i(W N (Fy x H)) > 0. By 417G?,

Jio, 12 (W [{}] A H)pa (d) = (W 0 (Fy % H))

is greater than 0. But this means that pi{x : x € Fy, uo(W[{z}] N H) > 0} > 0. (Recall that we are
supposing that py is complete.) So {z : z € f[V], pe(W[{z}]NH) > 0} is not p;-negligible, and WnN(f[V] x
H) is not p-negligible. Finally, because H € Hy, there is a V' € Cp\ ; such that W N (f[VNV'] x H) = 0.
Q

(d) We may therefore choose inductively families (Je)e<w,s (He)e<wr (Ve)e<wrs (Vi)e<w, in such a way
that, for every £ < wq,
J¢ is a countable subset of I,
H¢ is an open subset of Y,
Ve € o, V€ Cr
WA (fVe N V] x He) = 0,
W (W (FIVe] x He)) >0,
Un<£ Iy € Je,
Vg, VE/ S CJEJrl.

2Formerly 417H.

D.H.FREMLIN



28 Topologies and measures II11 532D

For each ¢ < wy, let K¢ be a finite subset of J¢11 such that V¢ and VZ are determined by coordinates in K.
By the A-system Lemma (4A1Db), there is an uncountable set A C wy such that (K¢)eca is a A-system
with root K say. Set (; = min A. Express each V¢ as ‘75 N VE where ‘75 € Cx and Vg € Cr,\k; because Cx
is countable, there is a V such that B = {£: € € A, € > (o, Ve = V} is uncountable. Note that uff[V] > 0,
because pf f[V] > p*(W N (f[Ve] x He)) for any € € B. Also

K C K¢ ©Jo+1 C e,
so V¢ is determined by coordinates in K¢ \ J¢ C K¢ \ K, for every £ € B.

(e) Set Hi = U, cp\¢ Hy for each { < wy. Then (H¢)ecw, is non-increasing, so there is a ¢ < w; such
that uoH{ = pi2 H; whenever £ > (. Now consider F' = {z : u2(W[{z}] N H() > 0}. Applying 417G to the
indicator function of W N (X x H(), and recalling once more that 1 is complete, we see that y; measures
F. Also i (F N f[V]) > 0. P Take any £ € B\ ¢. Then

FOfIV12{x:z € f[Ve], pa(W[{z}] N He) > 0}

must be non-p;-negligible because W N (f [f/g] X He) is not p-negligible. Q

At this point, recall that we are supposing that p; is completion regular. So there is a zero set Z C F
such that p1 Z > pu1 F — i (FNf[V]), and ZN f[V] # 0, that is, VN f~1[Z] is not empty. f~'[Z] is a zero set
(4A2C(b-iv)), so there is a countable set J C I such that f~![Z] is determined by coordinates in J (4A3Nc);
we may suppose that K C J. Because (K, \ K),ca is disjoint, there is a & > ¢ such that J N K, = K for
every n € A\ &

Take any w € V N f~1[Z] and modify it to produce w’ € [I;c; Xi such that w'[J = w[J and v’ € Vn nv,
for every n € B\ &; this is possible because Vn N Vn’ is determined by coordinates in K, \ K for each n, and
J and the K, \ K are disjoint. Set x = f(w'); then x € Z C F', so p2(W[{z}] N H{) > 0.

w' €V, because w € V and V is determined by coordinates in K C J; so w’ € V N V,, NV, =V,NV, for
every 11 € B\ §. Accordingly = € f[V, NV, ]; as W N (f[V, N V] x Hy) = 0, W[{z}] does not meet H,. As
n is arbitrary, W[{z}] does not meet H; and W([{z}] N H{ is pi>-negligible. But this is impossible. X

(f) This contradiction shows that p will be a topological measure, at least if uq and po are complete,
totally finite and inner regular with respect to the Borel sets. Now suppose just that u; and us are totally
finite. Let p) and ph be the completions of the Borel measures pq [B(X) and p2[B(Y), and p’ their c.l.d.
product. Then uq [B(X) and p} are completion regular topological measures, while us[B(Y) and ph are
T-additive. So (a)-(e) tell us that u’ measures every open set. Now the completions /i1, i extend pj and
15, and g is the c.l.d. product of ji; and fip (251T), so p extends p' (251L). Thus we again have a topological
product measure u.

(g) In the general case, let W C X x Y be an open set, E C X a zero set of finite measure, and
F CY any set of finite measure. Then p measures W N (E x F). P Let (u1)g and (u2)r be the subspace
measures. Then both are totally finite topological measures, (u1)g is inner regular with respect to the zero
sets (412Pd), E is quasi-dyadic (434Pc), and (p2)r is 7-additive (414K). So the product (p1)g X (u2)F is a
topological measure and measures W N (E x F'). By 251Q, p measures W N (E x F). Q

Let I be the family of zero sets of finite measure in X, £ the family of Borel sets of finite measure in
Y, and M the family of sets M C X x Y such that p measures W N M. Because p; is inner regular with
respect to IC, uo is inner regular with respect to £, £ x F € M for every E € K and F € L, and M is
a o-algebra of sets, 412R tells us that p is inner regular with respect to M. As u is complete and locally
determined, it must measure W (412Ja). As W is arbitrary, p is a topological measure.

(h) Finally, as noted in (b), p; is 7-additive and there is a 7-additive topological measure i on X x Y
extending . (434Q and 417C still apply.) So u too must be m-additive.

532E Corollary Let (X;);cs be a family of regular spaces with countable networks, and Y any topological

space. Suppose that we are given a strictly positive topological probability measure p; on each X;, and a 7-

additive topological probability measure v on Y. Let x be the ordinary product measure on Z = [[,.; XixY.
(a) p is a topological measure.

(b) p is T-additive.
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(c) If v is completion regular, and every pu; is inner regular with respect to the Borel sets, then p is
completion regular.

proof (a) For each i, X; is hereditarily Lindel6f (4A2Nb), so p; is T-additive (4140); let p! be the completion
of the Borel measure p;[B(X;). Then p} is a quasi-Radon measure (415C). By 4A2Nb, X; is perfectly
normal, so y; is completion regular. By 434Pb-434Pc, [],.; X; is quasi-dyadic. The product v; of the p]
is a topological measure (453I) and inner regular with respect to the zero sets (412Ub); so the product p/
of v1 and v is a topological measure, by 532D. Now p' is also the product of the measures p;[B(X;) and v
(2541, 254N), so p extends p' (254H) and p also is a topological measure.

(b) Because every p; is T-additive, as is v, 417E tells us that there is a 7-additive measure extending u,
so u itself must be T-additive.

(c) For any i € I, we know from (a) that ) is inner regular with respect to the zero sets. Now every
non-u;-negligible set includes a non-p;-negligible Borel set, which includes a non-u;-negligible zero set;
accordingly u; is completion regular. By 412Ub again, u is inner regular with respect to the zero sets, so is
completion regular.

532F Corollary Let ((X;, ui))ier be a family of quasi-dyadic compact Hausdorff spaces with strictly pos-
itive completion regular Radon measures. Then the ordinary product measure p on [[,.; X; is a completion
regular Radon measure.

icl

proof By 532D, the ordinary product measure on ], ; X; is a topological measure, for every finite J C I.
By 417Sc, p is the m-additive product measure on [[,.; X;, which by 417Q is a Radon measure. By 412Ub
once more, j is completion regular.

icl

532G Proposition Suppose that A, ' and s are cardinals such that max(w,\) < X < k and X €
Mahe,gr ({0,1}%). Then ' € Mah.,g({0,1}").

proof Let v be a completion regular Maharam-type-homogeneous Radon probability measure on {0, 1}"*
with Maharam type A, and consider the ordinary product measure p of vy and v on X = {0,1}* x {0, 1}*.
Applying 532E with Y = {0, 1}" and X = {0, 1} for £ < X, we see that ;1 is a completion regular topological
probability measure on a compact Hausdorff space, therefore (being complete) a Radon measure. By 334A,
the Maharam type of u is at most max(w, \'; A) = X', so the measure algebra (2, i) of u can be embedded in
By . At the same time, the inverse-measure-preserving projection from X onto {0, 1})‘/ induces a measure-
preserving embedding of B, into 2. By 332Q, (2, ) and (B, ¥y/) are isomorphic, that is, p is Maharam-
type-homogeneous with Maharam type X. So p witnesses that A\’ € Mahq,g (X) = Mahg ({0, 1}").

532H Lemma Let (X;);c; be a family of separable metrizable spaces, and p a totally finite completion
regular topological measure on X = [[,.; X;. Then

(a) the support of p is a zero set;

(b) w is inner regular with respect to the self-supporting zero sets.

icl

proof (a) Recall from 434Q) that p is 7-additive, so has a support Z. Let (K, )nen be a sequence of zero
sets such that K,, C Z and puK, > uX — 27" for each n. Then there is a countable set J C I such that
every K, is determined by coordinates in J (4A3Nc again). So U,y Kr and Z" = (J,, oy K are determined
by coordinates in J (4A2B(g-i)), and Z’ is a zero set, by 4A3Nc¢ in the other direction. But Z’ C Z and
nZ' = uZ so Z = 7' is a zero set.

(b) If uE > + then there is a zero set K C F such that uK > v. Now plL K (234M) is a totally finite
topological measure on X which is completion regular (412Q), so its support Z is a zero set, by (a); and
Z C K C F is self-supporting for p with pZ > ~.

5321 There is a useful general characterization of the sets Mahr({0,1}") in terms of the measure
algebras 9,. At the same time, we can check that other products of separable metrizable spaces follow
powers of {0,1}, as follows.

Theorem (CHOKSI & FREMLIN 79) Let A < x be infinite cardinals. Then the following are equiveridical:

D.H.FREMLIN



30 Topologies and measures II11 5321

(i) A € Mahe,r ({0, 1}7);

(ii) there is a family (X¢)e<, of non-singleton separable metrizable spaces such that A € Mahe ([ ], Xe):

(iii) there is a Boolean-independent family (b¢)e<, in B with the following property: for every a € By
there is a countable set J C & such that the subalgebras generated by {a}u {b¢ : £ € J} and {b, : n € K\ J}
are Boolean-independent.

proof If Kk =w then A = w and (i)-(iii) are all true. So we may assume that  is uncountable.

(i)=(ii) is trivial.

(ii)=-(iii) (a) If A € Mah(X), where every X, is a non-trivial separable metrizable space and X =
]_[f < X¢, let p be a Maharam-type-homogeneous completion regular topological probability measure on

X with Maharam type A\. By 532Ha and 4A3Nc, the support Z of u is determined by coordinates in a
countable subset L of k.

(B) Let 2 be the measure algebra of p. For each & < &, let fe : X¢ — [0,1] be a continuous
function taking both values 0 and 1; let ¢, € ]0,1[ be such that p{z : x € X, fe(z(€)) = te} = 0. Set
Ue ={z @ fe(z(€)) < te}, Ve = {z : fe(x) > t¢}; then Ue and Ve are disjoint non-empty open sets in X,
both determined by coordinates in {{}, and p(Us U Vg) = 1. Set be = U¢ in 2. Then (b¢)e<p\r is Boolean-
independent. P If I, I’ C x\ L are disjoint finite sets, then H = X Ny Ue N (eep Ve is a non-empty
open set in X. As H is determined by coordinates in I U’ and Z is determined by coordinates in L, Z N H
is non-empty and therefore non-negligible; so uH > 0 and infeer be \ supger be is non-zero in 2. Q

(7) If a € A let E be such that E* = a. By 532Hb, we can choose for each n € N self-supporting
zero sets K,, C F, K,CX \ E such that pK, + ,uf(n >1-—27" Let J C x\ L be a countable set such
that every K,, and every K, is determined by coordinates in J U L. Now the subalgebras ©1, ©, generated
by {a} U{be : £ € J} and {be : £ € (k\ L)\ J} are Boolean-independent. I Take non-zero d; € D,
and dy € D3. Suppose for the moment that d; na # 0. As in (8), there is an open set G, determined by
coordinates in J, such that 0 % anG* C dy. There is also an open set H, determined by coordinates in
k\ (JUL), such that 0 # H* C da. Next, as a = sup,,cy K, there is an n € N such that 0 # K nG*, that
is, K, NG # (. As K, NG is determined by coordinates in J U L and H is determined by coordinates in
k\(JUL), K, NGNV # §; as K, is self-supporting,

0#(KanﬂH)'gdlﬂd2.

In the same way, using K/, in place of K,,, we see that d; ndy # 0 if dy \ @ # 0. As d; and d5 are arbitrary,
9, and ®5 are Boolean-independent. Q

(0) As #(x\ L) = x and A= DBy, (be)ecp\ L, suitably reinterpreted, witnesses that (iii) is satisfied.

(iii)=(i) Now suppose that the conditions of (iii) are satisfied. Let (Z,v) be the Stone space of (B, 7).
(See 411P for a summary of the properties of these spaces.) For b € 9B, write b for the corresponding
open-and-closed subset of Z. Define ¢ : Z — {0,1}* by setting ¢(z) = (ng(z)>g<ﬁ for z € Z. Then ¢ is
continuous; let u = v¢~! be the image Radon measure on {0,1}* (4181). Now p is completion regular. ¥
Suppose that K C {0, 1}* is compact and self-supporting. Identifying B, with the measure algebra of v, we
have a Boolean homomorphism v : dom u — B defined by setting Y E = (¢~ '[E])* whenever y measures
E, and ¢ E = v¢~[E] = pE for every E; setting Ee = {z : x € {0,1}", z(§) = 1}, Ee = be. Set
a =K. Let J C k be a countable set such that the subalgebras ©1, ©, generated by {a}u{b: : £ € J}
and {b, : n € '\ J} are Boolean-independent. ? If x € K,y € {0,1}"\ K and z[J = y[J, let U be an open
cylinder containing y and disjoint from K. Express U as U’ N U"” where U’ is determined by coordinates
in J and U” by coordinates in « \ J. Then YU’ € D, and pU"” € Dy. As (b¢)e<, is Boolean-independent,
YU"” # 0. Now K is self-supporting and z € KNU', so u(KNU') >0 and ¢(KNU’) = anyU’ is non-zero;
also anyU’ € Dq; because D, and D5 are Boolean-independent, (K NU) = anypU’' nypU"” # 0 and KNU
cannot be empty, contrary to the choice of U. X

This shows that K is determined by coordinates in J and is a zero set (4A3Nc, in the other direction).
As K is arbitrary, we see that all self-supporting compact sets are zero sets. But as u is a Radon measure,
it is inner regular with respect to the self-supporting compact sets, therefore with respect to the zero sets,
and is completion regular. Q
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The inverse-measure-preserving function ¢ (and, of course, the Boolean homomorphism %) correspond
to an embedding of the measure algebra of p into %,. So the Maharam type of p is at most A. There is
therefore a X € Mah,r ({0, 1}") such that X’ < X (5632B). By 532G, A € Mah¢g ({0, 1}*).

532J Corollary (a) Suppose that A, x are infinite cardinals and A € Mah,r({0,1}*). Then & is at most
the cardinal power \“.
(b) If  is an infinite cardinal such that A < & for every A < & (e.g., k = ¢T), then Mahr ({0,1}*) = {x}.

proof (a) By 5321, k < #(B)); by 524Ma, #(By) < A“.

(b) By (a), no infinite cardinal less than & can belong to Mah.,g({0,1}"). Also « is uncountable, so the
remarks in 532C tell us the rest of what we need.

532K Corollary If w < A <k’ < k and A € Mah,g({0,1}"*) then A € Mahr ({0, 1}“/).

proof If (b¢)es<, witnesses the truth of 532I(iii) for A and &, then its subfamily (b¢)¢< . witnesses the truth
of 532I(iii) for A\ and «’. P Of course (b¢)e<n is Boolean-independent. If a € By, there is a countable
set J C & such that the subalgebras generated by {a} U {b¢ : £ € J} and {b, : n € £\ J} are Boolean-
independent. Now J' = JNk' is a countable subset of £’ and the subalgebras generated by {a}U{bes : { € J'}
and {b, : 7 € K"\ J'} are Boolean-independent. Q

532L Corollary If w < A < )\ and cf[\]5* < cfk and N € Mah,r({0,1}"), then A € Mah,r ({0, 1}"*).

proof Let (b¢)e<, be a family in B satisfying (iii) of 532I. Let (e,),< be the standard generating family
in By, and J a cofinal subset of [\']* with cardinal less than cfx. For each ¢ < &, there are a countable
set L C X such that be belongs to the closed subalgebra € of By generated by {e, : n € L}, and a
Je € J such that L C Je. Because #(J) < cfx, thereis a J € J such that A = {{ : §{ < k, Je = J} has
cardinal k. Now the closed subalgebra €; of B, generated by {e, : n € J} is isomorphic to By, and the
Boolean-independent (b¢)¢ca in € witnesses that 532I(iii) is true of A and &, as in the proof of 532K.

532M I turn now to the question of identifying those x for which w € Mah¢,g({0,1}"). We know from
532C and 532Ja that they all lie between w and ¢. To go farther we need to look at some of the cardinals
from §522.

Proposition If A C B, \ {0} and #(A4) < 0 = cf(NV), then there is a ¢ € B,, such that neither ¢ nor 1\ ¢
includes any member of A.

proof Let {e,)ncn be the standard generating family in B, = By. For a € A and n € N let f,(n) € N be
such that there is a b in the subalgebra €, ()2 generated by {e; : i < fq(n)?} such that ,(b A a) < 27" ?[ia.
Because #(A) < 0, there is an f € NN such that f £ f, for every a € 2; we may suppose that f is strictly
increasing and f(0) > 0. Note that

f)?+n+1<fn)?+2f(n)+1< f(n+1)?
for every n. For each n € N, set

In=f(n)>CN, I, =1I1\I,

¢y = infryz<icrn)zini i € oy

then ¢, = 272 for each n. Define ¢, € €;,, for n € N, by setting ¢o = 0 and ¢, 41 = ¢, & ¢, for each n.
Then 7, (cpr1 & cy) = 27772 for every n, 80 (¢p)nen is a Cauchy sequence for the measure metric on B,
and has a limit ¢. Note that

S8 < G (em A ) < Z;nfl 272

i=n =n

whenever m > n. P Induce on m. For m = n the result is trivial (interpreting Z?::Ll as zero). For the
inductive step to m + 1, ¢;,, € € is stochastically independent of ¢,, A ¢, € &;,, so
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Vi (Cop1 O ) = V(¢ A e A C3)
= U,Ch, + Uyl(Cm D ) — 20, (cl, 0 (em & cp))
=272 4L (1 =27 Yo, (em Acy)

m—1
>2 M2 4 (1 -2 h) Z 9~i=3

(by the inductive hypothesis)
m—1 m—1 m
=Y 2B Be g Y 2Tt > N o

on the other hand,
U (Cmg1 D ¢n) <272 4 Dy(em Acy) < S 27172,

So the induction proceeds. @ Taking the limit as m — oo, we see that 27772 < ,(cAc,) < 277! for
every n € N.

Take any a € A. Let n € N be such that f,(n) < f(n). Then there is a b € €;, such that 7,(a 2b) <
27" 3/ia. Now cAc, € ¢z, is stochastically independent of both b\ ¢, and bnc,, so

Vu(b\e) = Uu(((b\ en) \ (cAcp))u((bnep) n(cacn)))
=0,(b\cn)(1 = Ty(chcy)) +Tu(bney) - Du(c A ey)
> U,(b\en)(1—27""H 427" 25, (bney) > 27" 20,0 > 27" 3,a.

So
v,(a\e) > 2" 3u,a — ,(b\a) >0,

and a ¢ c¢. Similarly,

Uy(bne) =0,(bNecp)(1 = Dy(ctcn)) + Db\ cn) - Du(ct cy)
> Uy(bnen)(1 =271 427" 20, (b\ ¢p) > 27" ?b,

and 7,(anc) > 0.
As a is arbitrary, we have found an appropriate c.

532N It will be useful to have a classic example relevant to a question already examined in 325F.

Lemma There is a Borel set W C {0,1}" x {0,1}" such that whenever E, F C {0,1}" have positive
measure for v, then neither (E x F) N W nor (E x F)\ W is negligible for the product measure v/2 on
{0, 13 x {0, 1}".

proof (a) (Cf. 134Jb.) There is a Borel set H C {0,1}" such that both H and its complement meet
every non-empty open set in a set of non-zero measure. P For z € {0,1} set I, = {n : z(i) = 0 for
2n < < 2"t} Set H = {x: I, is finite and not empty and max I, is even}. Q

(b) Let + be the usual group operation on {0, 1} = ZY. In this group, addition and subtraction are
identical, as « + = 0 for every z; but the formulae may be easier to read if I use the symbol — when it
seems appropriate. Set W = {(z,y) : z, y € {0, 1}, z —y € H}.

Let E, F C {0,1}" be sets of positive measure. Then {z : z € {0, 1}, v ,(E N (F + z)) > 0} is open
(443C) and not empty (443Da), so meets H in a set of positive measure. Now

V(B x F)NW) =12 {(2y) v € B, y € F, 2 —y € H)
=v2{(z,2):v€E,x—2€F,z¢€ H}

(because (z,y) — (z,2 — y) is a measure space automorphism for 2, as in 255Ae or 443Xa)
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=1v2{(x,2):x€E,2 € F+2, 2¢€ H}

- / V(BN (F + 2))v(dz) > 0.
H
Applying the same argument with {0, 1}\ H in the place of H, we see that the same is true of (E x F)\ W.

5320 Proposition If A C B, \ {0} and #(A) < covN,, then there is a ¢ € B, such that neither ¢ nor
1\ ¢ includes any member of A.

proof Take W C {0,1} x {0,1}" as in 532N. For = € {0,1}", set ¢, = W[{x}]* in B,,. If a € A, then
{r:ace} €N, PLet FeT, besuch that F* = a, and set F = {z : a C ¢,}. Because z > ¢, is
measurable when B, is given its measure-algebra topology (418Ta), E € T,,. For every x € E, F\ W[{z}]
is negligible, so (E x F) \ W is negligible, by Fubini’s theorem (252D). But this means that at least one of
E, F must be negligible; since F* =a # 0, v, F = 0, as required. Q

Similarly, {z : anc, = 0} is negligible. Since {0, 1} cannot be covered by #(A) negligible sets, there is
an z € {0, 1} such that c, neither includes, nor is disjoint from, any member of A.

532P Proposition Set x = max(?, covN,,). If FN(PN) = wy, then w € Mah,g({0,1}*). In particular,
if ¢ = wy then w € Mahe,g ({0, 1}*1).

proof (a) By 5240(b-ii), FN(B,,) = wi; let f : B, — [B,]=¥ be a Freese-Nation function. By 532M (if
k =10) or 5320 (if kK = covN,,), we can choose inductively a family (b¢)e<, in B,, such that neither b nor
1\ b¢ includes any nonzero member of D¢, where D¢ is the smallest subalgebra of B, including {b, : n < &}
and such that f(d) C D¢ for every d € D¢. Of course this implies that (b¢)e<, is Boolean-independent.

(b) For K, L C k set dxr = infeek be \ supgep be. For a € B, set Q, = {(K,L) : K, L € [s]<“ are
disjoint, dxr, C a}, and let @', be the set of minimal members of Q,, taking (K,L) < (K',L') if K C K’
and L C L. Of course @, is well-founded so @/, is coinitial with Q,. Now R, = {(K,L) : (K,L) € Q.,,
#(K UL) = n} is countable for every n € N and a € B,. P Induce on n. If n = 0 this is trivial. For the
inductive step to n+1, set R, = {(K,L) : KUL C ¢, (KU{C}, L) € Ry n+1} for each ¢ < k. For (K, L) € R,
beNdxr = dguqcy,r is included in a, so there is a cxr¢ € f(dguicy,n) N f(a) such that dgygey,n € cxre C a,
in which case b¢ C cxrc U (1\dkr). If ¢ < (' <k, (K,L) € R; and (K', L") € R;,, then drr/ € a (because
(K'"U{¢'}, L") is a minimal member of Q,), so cxrcU(1\dk/r/) # 1; as cxrc and dg . both belong to
Do, be exreU(I\dgrr) and cxre # cxrrrer. As f(a) is countable, A = {¢ : R’< # (0} is countable. Next,
for any ¢ € A and (K, L) € R/, we see that dgr, C au(1\b.), and indeed that (K,L) € wa(nbc)’ so that
(K, L) € Ras(1\b;)n- By the inductive hypothesis, R/ is countable.

This shows that {(K,L,{): K UL C (, (KU{C},L) € R4 n+t1} is countable. In the same way, applying
the ideas above to 1\ b¢ in place of b¢, {(K,L,() : KUL C ¢, (K, LU{(}) € Rq n+1} is countable; so Ry 11
is countable and the induction proceeds. Q

It follows that @, is countable for every a € B,,.

(c) Now take any a € B, and let J C & be a countable set such that K U L C J whenever (K,L) €
Qu,UQ1.,- T Suppose, if possible, that the algebras €;, €; generated by {a} U {b¢ : { € J} and {b, : n € K\ J}
are not Boolean-independent. Then there must be finite subsets K, L, K’ and L’ of x such that K UL C J,
K'UL' Ck\J,dg # 0, and either

dKLma;é O, dKILI deLma: 0
or

dxp\a#0,dgp ndgr \a=0.
Suppose the former. Then (K U K',LUL') € Q1.4 so there is a (K", L") € @}, such that K" C K U K’
and L’ C LU L’; in which case K" UL” C J so in fact K" C K, L” C L and dx;na Cdgrprna =0,
which is impossible. Replacing a by 1\ a we get a similar contradiction in the second case. X So &; and
¢, are Boolean-independent.

(d) As a is arbitrary, (c) shows that (b¢)e<. satisfies the conditions of 5321I(iii), so that w belongs to
Mah.,r ({0,1}"), as claimed.
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532Q Proposition Suppose that add N, > w;.
(a) A ¢ Mahe,r({0,1}*) whenever A > w and max(w, cf[\]<¥) < k.
(b) If w1 < k < w,, then Mah,r({0,1}*) = {x}.

proof (a) ? If A € Mah,gr({0,1}%), set v’ = (max(w, cf[A]<¥))*; then A < &’ so A € Mahgr({0,1}*")
(532K). As cf[A]S* < cf &/, w belongs to Maheg ({0,1}*") (532L) and therefore to Mahgg ({0, 1}¢1) (532K
again).

Let (b¢)e<w, be a family in B, satisfying the conditions of 532I(iii). By 524Mb, wy < wdistr(B,,); by
514K, there is a countable C' C 9B, \ {0} such that for every { < w; there is a ¢ € C such that ¢ C be. Let
a € C be such that {£ : £ < wi, a C be} is uncountable. There is supposed to be a countable J C wy such that
the subalgebras generated by {a} and {b¢ : { € w1 \ J} are Boolean-independent; but then {£ : a C be} C J,
which is impossible. X

This shows that (a) is true.

(®) If w < X < k < wy, then cf[A]S¥ < X\ < k (5A1F(e-iv)), so (a) tells us that A\ ¢ Mahcgr ({0, 1}%).
From 532C we see that Mah., ({0, 1}") must be {x} exactly.

532R Two combinatorial principles already used in 5240 are relevant to the questions treated here.

Proposition Suppose that A is an uncountable cardinal with countable cofinality such that Oy (definition:
5A6D(a-ii)) is true. Set k = AT. Then A € Mah.r ({0, 1}*).

proof (a) Let (I¢)¢<, be a family of countably infinite subsets of A as in 5AGE. For each { < &, let
(Ien)nen, (@en)nen be such that (Ign)nen is a disjoint sequence of subsets of I with #(I¢,) = n for each n
and (agn)nen is a sequence of distinct points in ¢ \ U, ey Len- Set

Ugn = {x 12 € {0,1}*, z(n) = 0 for every n € I¢,},
Ven = {2 : 2 € Ugn \ U, Uem #(@en) = 1},

f/gn ={2:2 € Usn \ Upnorp, Uem, T(agn) = 0}

for n € N. Note that as v,,U¢p, = 27" for each n, Vg, and Vgn are non-negligible, while both are determined
by coordinates in {aen} U, 5, Lem € Ie. Set

Fe=Upen Ven,  be = F¢ € By,
Note that Fg N Vg, = 0 for every n.

(b) Take any a € B,. Then we can express a as E* where E C {0,1}* is a Baire set; let I C X be a
countable set such that E is determined by coordinates in I. By the choice of (I¢)¢<, there is a countable
set J C k such that I N I¢ is finite for every £ € k\ J. Let D1, D5 be the subalgebras of B generated
by {a} U{be : £ € J} and {be : £ € K\ J} respectively. Then ©; and D, are Boolean-independent. P If
dy € D and dy € D5 are non-zero, we can express di as Hy where H; C {0, 1}’\ is a Baire set determined by
coordinates in L = T U UgeK I¢ for some finite K C J. Next, we can find disjoint finite sets K', K" C k\ J
such that dp O infee g be \ supge g be. Because all the sets I¢ M I, for distinct £, < k, and also the sets
INlI, for & € k\ J, are finite, there is an m € N such that all the sets J¢ = {agm} U U, >,, len, for
¢ € K' UK", are disjoint from each other and from I. Look at the sets V,,, for { € K’, and f/gm, for
€€ K". Set Hy ={0,1}*nN ﬂgeK, Vem N ﬂfeK” f/gm. Then Hj C ds. But observe now that all the Vg, and
ng are non-negligible and that Vg, \7§m are determined by coordinates in J¢ for each £ € K’ U K”. So
the sets Hy, Ve, (for £ € K') and f/§m (for £ € K") are stochastically independent, and

Ua(dind2) > va(H1 N H2) = vaHy - [Jee e vaVem  [lecren Ve > 0.
Thus dy ndy # 0; as dy and do are arbitrary, ®; and ®5 are stochastically independent. Q

(c) The argument of (b) works equally well with I = () and J an arbitrary finite subset of x to show that
(be)e<s is Boolean-independent. So the conditions of 532I(iii) are satisfied and x € Mah,g(\), as claimed.
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532S Proposition Suppose that add NV,, > w; and that X is an infinite cardinal such that CTP(AT, \)
(definition: 5A6Fa) is true. Then A ¢ Mah.,g({0,1}") for any x > A.

proof By 532K, it is enough to consider the case k = AT. 7 Suppose, if possible, that there is a family
(be)e<k in By satisfying the conditions of 532I(iii). Let (e,),<x be the standard generating family in B.
Then for each £ < ~ we have a countable set Iz C A such that b belongs to the closed subalgebra of
B generated by {e, : n € I¢}. Because CTP(k,\) is true, there is an uncountable set A C & such
that J = (Jgc 4 I¢ is countable (5A6F(b-ii)). Now the closed subalgebra €, generated by {e, : n € J} is
isomorphic to B, s0 (be)eca Witnesses that w € Mahe,g ({0, 1}“1); but this contradicts 532Qa. X

532X Basic exercises (a) Let X be a normal Hausdorff space and ¥ C X a zero set. Show that
Mahe, g (Y) € Mahg,r(X).

(b) Let AN be the Stone-Cech compactification of N. (i) Show that Mahe,g(6N) = {0}. (Hint: non-
empty zero sets in SN\ N are never ccc.) (ii) Give an example of a non-empty compact Hausdorff space X
such that Mahg,g (X) = 0.

(c) Let X and Y be compact Hausdorff spaces. Show that Mahegr (X x Y) C Mah¢,g(X) UMah,gr(Y).
(Hint: 434U.)

(d) Let A and & be infinite cardinals such that A € Mah.g({0,1}"). (i) Show that there is a strictly
positive Maharam-type-homogeneous completion regular Radon probability measure on {0,1}" with Ma-
haram type A. (ii) Suppose that A is uncountable and that H C {0,1}" is a non-empty Gs set. Show that
A € Mahe,r (H).

(e) Find a proof of 532E which does not rely on 532D. (Hint: 415E.)
(f) Let ((X;, t:))ic1 be a family of quasi-dyadic spaces with strictly positive completion regular topological

probability measures. Show that the ordinary product measure on [[,.; X; is a strictly positive completion
regular 7-additive topological probability measure.

el

532Y Further exercises (a) Let Z be the Stone space of By, where A > w. (i) Show that if F C Z
is a non-empty nowhere dense zero set then it is not ccc. (i) Show that Mahe,r(Z) = {A}. (iii) Show that
Mahr(Z x Z) = 0.

(b) Let (X;);er be a family of topological spaces with countable networks, and Y any topological space.
Suppose that we are given a strictly positive topological probability measure p; on each X;, and a T-additive
topological probability measure v on Y. Show that the ordinary product measure on [[,.; X; x Y is a
topological measure.

(c) Suppose that FN(PN) = w;. Show that there are a Hausdorff space X and a completion regular

Radon measure p on X such that the Maharam type of p is w, but the Maharam type of u[B(X) is w;.
(Hint: 419C.)

532Z Problems (a) In 532P, can we take k = cfN,?

(b) We have w € Mah¢,r ({0,1}*) if FN(PN) = w;y (532P, 532K) and not if add NV, > wy (532Q). Can
we narrow the gap?

(c) For a Hausdorff space X let Mahgpe,r (X) be the set of Maharam types of strictly positive Maharam
homogeneous completion regular Radon measures on X. Describe the sets I' of cardinals for which there

are compact Hausdorff spaces X such that Mahg,,r(X) =T.
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532 Notes and comments I have spent a good many pages on a rather specialized topic. But I think the
patterns here are instructive. When looking at Mahg (X), as in §531, we quickly come to feel that it is a
measure of a certain kind of complexity; the richer the space X, the larger Mahg (X) will be. 531Eb and
531Ed are direct manifestations of this, and 531G develops the theme. Mah.r(X) can sometimes tell us
more about X; knowing Mah.,r (X) we may have a lower bound on the complexity of X as well as an upper
bound. (On the other hand, Mah.,g(X) can evaporate for non-trivial reasons, as in 532Xb and 532Ya, and
leave us with very little idea of what X might be like.) In place of the straightforward facts in 531E, we have
the relatively complex and partial results in 532G and 532K. As soon as we leave the constrained context
of powers of {0,1}, the most natural questions seem to be obscure (532Zc).

However, if we follow the paths which are open, rather than those we might otherwise have chosen, we come
to some interesting ideas, starting with 5321. Here, as happened in §531, we see that a proper understanding
of the measure algebras %, will take us a long way; and once again we find that this understanding has to
be conditional on the model of set theory we are working in. Even to decide which powers of {0,1} carry
completion regular Radon measures with countable Maharam type we need to examine some new aspects of
the Lebesgue measure algebra (532M-5320). Moreover, as well as the familiar cardinals of Cichori’s diagram,
we have to look at the Freese-Nation number of PN (532P). For larger Maharam types, in a way that we
are becoming accustomed to, other combinatorial principles become relevant (532R, 5328S).

Version of 4.1.14
533 Special topics

I present notes on certain questions which can be answered if we make particular assumptions concerning
values of the cardinals considered in §§523-524. The first cluster (533A-533E) looks at Radon and quasi-
Radon measures in contexts in which the additivity of Lebesgue measure is large compared with other
cardinals of the structures considered. Developing ideas which arose in the course of §531, I discuss ‘uniform
regularity’ in perfectly normal and first-countable spaces (533H). We also have a complete description of the
cardinals  for which R” is measure-compact (533J).

As previously, I write N (u) for the null ideal of a measure y; v,; will be the usual measure on {0,1}"* and
N, = N(v,,) its null ideal.

533A Lemma Let (X, X, 1) be a semi-finite measure space with measure algebra (2, ). If (K¢)e<r is a
family of ideals in 3 such that p is inner regular with respect to every K¢ and £ < min(add NV (p), wdistr(2()),
then p is inner regular with respect to ﬂ& < Ke.

proof Take F € ¥ and v < pF. Then there is an F; € ¥ such that £} C F and v < pF; < oo. For
£ <k, Dg ={K*: K € K¢} is closed under finite unions and is order-dense in 2, so includes a partition
of unity A¢. Now there is a partition B of unity in 2 such that {a : a € A¢, anb # 0} is finite for every
be B and £ < k. Let B C B be a finite set such that g(E} n sup B’) > v, and let F5 C E; be such that
E3 = E} nsup B'. For any £ < k,

Ai={a:a€Ag,anEs #0} CUpeplaa€ Ag, anb# 0}

is finite, so sup A’E belongs to D¢ and can be expressed as K¢ for some K¢ € K¢. Now E3 C sup Aé so Eo\ K¢
is negligible. As x < add A (u), we have a negligible H € ¥ including U£<K Ey\ K¢;now E' = E;\H C E,
pE" >~ and E' € (\;_,, K¢. As E and v are arbitrary, p is inner regular with respect to (), Ke.
Remark Of course this result is covered by 412Ac unless wdistr(2) > wy, which nearly forces 2 to have
countable Maharam type (524Mb).

533B Corollary Let (X, X, 1) be a totally finite measure space with countable Maharam type. If £ C X,
#(&) < min(add N, add N (1)) and € > 0, there is a set F' € ¥ such that u(X \ F) <eand {ENF:E €&}
is countable.

proof Let (2, ) be the measure algebra of u. Then 2 is separable in its measure-algebra topology
(521Ea). Let H C X be a countable set such that {H* : H € H} is dense in . For E € £ and n € N

(©) 2007 D. H. Fremlin
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choose Hg, € H such that u(EAHg,) < 27"; let Kg be the family of measurable sets K such that K
is disjoint from |J;~,, EAHE; for some n. Then p is inner regular with respect to Kg. Because #(€) <
min(wdistr(2A), add M (p)) (524Mb), p is inner regular with respect to (\zee Kp (533A) and there is an
F € NKg such that uF' > puX —e. If E € &, there is an n € N such that F N (EAHg,) = 0, that is,
FNE=FNHgp,;s0o{FNE:Ec€&} C{FNH:HEcH}is countable.

533C Proposition Let (X, %, 3, 1) be a quasi-Radon measure space with countable Maharam type.

(a) If w(X) < add N, then p is inner regular with respect to the second-countable subsets of X; if
moreover ¥ is regular and Hausdorff, then p is inner regular with respect to the metrizable subsets of X.

(b) If Y is a topological space of weight less than add A, then any measurable function f : X — Y is
almost continuous.

(¢) If (Y;)ier is a family of topological spaces, with #(I) < add NV, and f; : X — Y; is almost continuous
for every i, then x — f(x) =(fi(2))icr : X — [[;c; Yi is almost continuous.

proof Note first that add N'(u) > add N, by 524Ta.

(a) Let U be a base for T with #U) < add N,,. Set
F={F:FCX,{FNU:U €U} is countable}.

Then p is inner regular with respect to 7. PP If £ € ¥ and v < pFE, let H € 3 be such that H C E and
v < pH < oo. Then the subspace measure g still has countable Maharam type (use 322I and 514Ed) and

add N (pug) > add N () > add N, > #({HNU : U € U}).

By 533B, there is an F' € dom py such that ugF >~y and {FNHNU : U € U} is countable; now F € F,
F C FE and uF > v. Q But every member of F is second-countable (use 4A2B(a-vi)). If T is regular and
Hausdorff, then every member of F is separable and metrizable (4A2Pb).

(b) If f : X — Y is measurable, let V be a base for the topology of Y with #(V) < add NV,,. Suppose that
E € ¥ and v < uE. By 533B, there is an F' € ¥ such that F C E, v < uF < oo and {F N f~[V]:V € V}
is countable. It follows that {f[F]NV : V € V} is countable, so that the subspace topology on f[F] is
second-countable (4A2B(a-vi) again). Giving F its subspace topology ¥ and measure pup, pp is inner
regular with respect to the closed sets (412Pc). If H C f[F] is relatively open in f[F], it is of the form
G N f[F] where G is an open subset of Y, so that (f|F)"}[H] = F N f~![G] is measured by pp; thus
fIF : F — f[F]is measurable. By 418J, f[F is almost continuous, and there is a K € ¥ such that K C F,
uK >~ and f[K is continuous.

As E and v are arbitrary, f is almost continuous.

(c) For each i € I, set K; = {K : K € ¥, f;[ K is continuous}. Then K; is an ideal in ¥ and p is inner
regular with respect to ;. Also, as in 533B, #(I) < wdistr(2), where 2 is the measure algebra of p. So
w1 is inner regular with respect to K = [..; K, by 533A. But f]K is continuous for every K € K, so f is
almost continuous.

iel

533D Proposition Let (X, %) be a first-countable compact Hausdorff space such that cf[w(X)]=* <
add V,, and i a Radon measure on X with countable Maharam type. Then u is inner regular with respect
to the metrizable zero sets.

proof Set k = w(X). Then there is an injective continuous function f : X — [0,1]" (5A4Cc). Let Z be a
cofinal subset of [k]< with #(Z) < add NV,,. By 524Pa, add 1 > add \V,.

For I € 7 and = € X set fr(x) = f(x)]I. We need to know that for every x € X thereisan I € T
such that {z} = f; '[fr[{z}]]. P Set F; = f; '[f1[{x}]] for each I. Because T is upwards-directed, (Fr)rer
is downwards-directed. Because f is injective and (JZ = &, [1;c7 FT = {z}. Let V be a countable base of
open neighbourhoods of x. For each V' € V there is an Iy € T such that Fr, N (X \V)=10. Let I € Z be
such that | Jy .y, Iv C I; then F; = {z}. Q

For I € Z, let A\r be the image measure uf;l on [0, 1]%; note that A; is a Radon measure (4181). Of course
add Ay is also at least add NV, and in particular is greater than . If G C X is open, then G and f;[G] are
expressible as unions of at most £ compact sets, so \; measures f;[G].
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There is an I € 7 such that ufl_l[fj [G]] = pG for every open set G C X. P? Suppose, if possible,
otherwise. For each I € Z choose an open set G; C X such that E; = f;'[f7[G]] \ G is non-negligible;
because A\; measures fr[Gp], u measures Ey. Set By =J;c7 jo; Ey for each I € T; because #(Z) < add p,
p measures E}. Note that E; C E’ whenever J C I in Z; ‘moreover, any sequence in Z has an upper
bound in Z. There is therefore an M € Z such that E, \ E} is negligible for every I € Z. Again because
#(Z) < add p, Ejy; \ ez B} is negligible; as E}, is not negligible, there is an « € (;o7 E}. But there is
an I € Z such that {z} = f; *[fr[{z}]), so z ¢ E; for any J D I. XQ

Let U be a base for the topology of X with #(U) = x. Then (J; ¢, U\ U is p-negligible; let Y
be its complement. If + € X and y € Y and z # y, there is a U € U containing = but not y, so f; ' [fr[U]]
contains z and not y and f(z) # f(y). If F C Y is compact, then F is homeomorphic to the metrizable
f1[F], so is metrizable, and F = f;'[f[F]] is a zero set. As ju is surely inner regular with respect to the
compact subsets of the conegligible set Y, it is inner regular with respect to the metrizable zero sets.

533E Corollary Suppose that cov N, > w;. Let (X, %) be a first-countable K-analytic Hausdorff space
such that cf[w(X)]=¥ < add A,,. Then X is a Radon space.

proof Let p be a totally finite Borel measure on X, E C X a Borel set and v < pE. Because X is
K-analytic, there is a compact set K C X such that u(EF N K) > v (apply 432B to the measure ulL F).
Let A be the Radon measure on K defined by saying that [ fd\ = [} fdu for every f € C(K) (using the
Riesz Representation Theorem, 436J/436K). Because cov.V,, > wi, w; is a precaliber of every measurable
algebra (525J); as K is first-countable, wy ¢ Mahg (K) (5310) and A must have countable Maharam type
(531Ef). By 533D, A is completion regular. But if ¥ C K is a zero set (for the subspace topology of K),
there is a non-increasing sequence ( f,)nen in C(K) with infimum x F, so

AF = limy oo [ frdX = limp, o fK fodu = puF.
Accordingly
AH =sup{\F : F C H is a zero set} = sup{uF : FF C H is a zero set} < uH

for every Borel set H C K. As AK = uK, \ agrees with p on the Borel subsets of K. In particular,
A(E N K) > ~; now there is a compact set L C E N K such that v < AL = uL.
As F and + are arbitrary, p is tight; as u is arbitrary, X is a Radon space.

533F Definition Let X be a topological space and u a topological measure on X. I will say that u is
uniformly regular if there is a countable family V of open sets in X such that G\ | J{V : V € V, V C G}
is negligible for every open set G C X.

533G Lemma Let (X, %, %, 1) be a compact Radon measure space.
(a) The following are equiveridical:
(i) p is uniformly regular;
(ii) there are a metrizable space Z and a continuous function f : X — Z such that uf~![f[F]] = pF
for every closed F' C X
(iii) there is a countable family H of cozero sets in X such that uG = sup{uH : H € H, H C G} for
every open set G C X
(iv) there is a countable family &£ of zero sets in X such that uG = sup{uE : E € £, E C G} for every
open set G C X.
(b) If T is perfectly normal, the following are equiveridical:
(i) p is uniformly regular;
(i) there are a metrizable space Z and a continuous function f : X — Z such that uf~'[f[E]] = uE
for every E € X;
(iii) there are a metrizable space Z and a continuous function f : X — Z such that f[G] # f[X]
whenever G C X is open and puG < pX;
(iv) there is a countable family £ of closed sets in X such that uG = sup{pE : E € £, E C G} for
every open set G C X.
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proof (a)(i)=-(iii) Given V as in 533F, then for each V' € V there is a cozero set Hy C V of the same
measure. P T is completely regular, so Hy = {H : H C V is a cozero set} has union V; u is T-additive, so
there is a sequence (H,)nen in Hy such that pV = pu(U, ey Hn); set Hy =, cny Hn; by 4A2C(b-iii), Hy
is a cozero set. Q Now H = {Hy : V € V} witnesses that (iii) is true.

(iii)=(iv) Given H as in (iii), then for each H € H let (F,,(H))nen be a non-decreasing sequence of
zero sets with union H (4A2C(b-vi)). Set & = {F,(H) : H € H, n € N}, so that £ is a countable family of
zero sets. If G C X is open,

nG =supgey e M = suyew ncamen WEn(H) < supgpes peq hE < pG,

so € witnesses that (iv) is true.

(iv)=-(ii) Given &£ as in (iv), then for each E € & choose a continuous fg : X — R such that
E = fz'[{0}], and set f(z) = (fr(z))pee for € X. Then f : X — Z = R is continuous and Z is
metrizable and f~![f[E]] = E for every E € £. If F C X is closed, set & = {E: E € £, ENF = (}. Then
(U &o has the same measure as X \ F and does not meet f~1[f[F]], so uf ~![f[F]] = pF. As F is arbitrary,
f and Z witness that p satisfies (ii).

(ii)=(i) Take Z and f : X — Z as in (ii). Replacing Z by f[X] if necessary, we may suppose that f is
surjective, so that Z is compact, therefore second-countable (4A2P(a-ii)). Let U be a countable base for the
topology of Z closed under finite unions, and set V = {f~'[U] : U € U}, so that V is a countable family of
open sets in X. If G C X isopen, set F = X\ G, Uy ={U :U €U, UNf[F] =0}, Vo ={f7U]: U € Up}-
Then Z \ f[F] =JUy so X \ f[f[F]] = UV and (because Uy and Vy are closed under finite unions)

sup{uV : VeV, V C G} > sup uV = u(X\ fLfIF])
Vevy

= pX — pfHfIF)] = pX — pF = pG.
Thus V witnesses that p is uniformly regular.

(b)(i)=(iii) If p is uniformly regular, then by (a-ii) there are a metrizable space Z and a continuous
function f : X — Z such that uf~'[f[F]] = uF for every closed FF C X. If now G C X is open and
uG < pX, there is a sequence (Fy,)nen of closed sets with union G, because ¥ is perfectly normal. In this
case fHf[G]] = Upen f [f[Fn]] has the same measure as G, so is not the whole of X, and f[G] # f[X].
Thus f and Z witness that (iii) is true.

(iii)=(ii) Take Z and f from (iii). Let v be the image measure xf ~! on Z; then u is a Radon measure
(4181 again). 7 If £ € ¥ and p*f~[f[E]] > uFE, let E' O E be a Borel set such that uF’ = pE. Because
X is perfectly normal, E’ belongs to the Baire o-algebra of X (4A3Kb), so is Souslin-F (421L), therefore
K-analytic (422Hb); consequently f[E’] is K-analytic (422Gd) therefore measured by v (432A). This means
that f~1[f[E’]] € ¥, and of course

pfHFEN = pt fHAE]] > pE = pE'.
We can therefore find open sets G 2 E’ and G’ 2 X\ f1[f[E’]] such that uG + uG’ < pX. But now GUG’
is an open set of measure less than X and f[G UG’'] = f[X], which is supposed to be impossible. X

Thus, for any E € 3, we have p* f~1[f[E]] = uE; of course it follows at once that f~1[f[E]] is measurable,
with the same measure as F, as required by (ii).

(ii)=(i)<(iv) These follow immediately from (a), because all closed sets in X are zero sets.

533H Theorem (a) Suppose that covN,,, > w;. Let X be a perfectly normal compact Hausdorff space.
Then every Radon measure on X is uniformly regular.

(b) (PLEBANEK 00) Suppose that covV,,;, > w; = nonN,,. Let X be a first-countable compact Hausdorff
space. Then every Radon measure on X is uniformly regular.

proof (a) Let i be a Radon measure on X. ? If i is not uniformly regular, then we can choose (g¢)e<y, and
(Ge)e<w, inductively, as follows. Given that g, : X — R is continuous for every n < £, set fe(x) = (g5 (2))n<e
for z € X, so that fe : X — RS is continuous. By 533G (b-iii), there is an open set G¢ such that uGe < uX
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and fe[Ge] = fe[X]; now Ge¢ is a cozero set and there is a continuous function g : X — R such that
Ge = {x : ge(x) # 0}. Continue.

At the end of the induction, we have a continuous function f,, : X — R, setting fo, () = (9¢(2))e<w,
for each z. Now wy is a precaliber of every measurable algebra (525J again), and pu(X \ G¢) > 0 for each &,
so there is an « € X such that A = {£ : # ¢ G¢} is uncountable (525Ca). Set H = {y : fu,,(y) # fu,(2)};
then H is an open set, so expressible as (J, .y Kn where each K, is compact. For each { € A there is an
xe € Gg such that fe(xe) = fe(x). As ge(xe) # 0= ge(x), z¢ € H. Let n € N be such that A’ ={{:{ € A,
x¢ € K} is uncountable. Then

Jor (@) € {fu, (we) : § € A’} C fu, [Kn];
but this is impossible, because K,, C H. X
So i must be uniformly regular, as required.

(b) Let p be a Radon measure on X. If 4 X = 0 then of course p is uniformly regular; suppose uX > 0.
As in (a) and the proof of 533E, the Maharam type of p is countable. Let 2 be the measure algebra of u;
then d(2A) < non N, (524Me), so there is a set A C X, of full outer measure, with #(A) < w; (521Lc). For
each x € X, let (Vyn)nen run over a base of neighbourhoods of z. Let H be the family of sets expressible as
finite unions of V,, for x € A and n € N, so that H is a family of open sets in X and #(H) < w;.

For any open G C X, uG =sup{pH : He H, H CG}. P Set H* = J{H : H € H, H C G}. For any
x € ANG, there is an n € N such that V,,,, C G, and now V,,, € H, so x € H*. Thus G\ H* does not meet
A; as A has full outer measure,

uG = pH* =sup{uH : H e H, H C G}

because {H : H € H, H C G} is closed under finite unions. @ So there is a countable H' C {H : H € H,
H C G} such that puG = supy ey pH.
Let (He¢)ecw, run over H. For & < wy, set

Ge = {G: G C X is open, pG = sup{pH, : n < ¢, H, C G}}.
Then U€<w1 Ge = %. For each § < wy, set
Ye={y:ye X, Vy, € G for every n € N};

then X = U5<w1 Ye. Now there is a ¢ < w; such that Y¢ has full outer measure. I Let  be such that
WYe = p*Y, for every n > £ T If p*Ye < pX, let K C X \ Y¢ be a non-negligible measurable set. Then
the subspace measure pg is a Radon measure with countable Maharam type, so

cov N (ug) > cov N, > cov N, > w.

Since K C |, ., ¥y, there must be some n < w; such that pj (K NY;) > 0; but now p*(K NY,) > 0 and
n > & and
pYy = p (Y \ K) +p* (Y, NK) > p'Ye. X

So Y has full outer measure. Q

Set He ={H, :n <¢&}. If G C X is open, and H* = |J{H : H € H¢, H C G}, then G\ H* is negligible.
PSetV={Vy,:yeYe,neN V, CG}, H =JV. Then Y¢ does not meet G \ Hy, so uH{ = pG.
Let Vo C V be a countable set such that p((JVo) = pG. If V € Vg, then V € Ge and V C Gso V \ H* is
negligible. Accordingly

G\H" C(G\UVo)UlUyey,(V\H)

is negligible. Q So if we take H’ to be the set of finite unions of members of H¢, H' will be a countable
family of open sets and uG = sup{uH : H € H', H C G} for every open G C X. Thus p is uniformly
regular.

5331 We know from 435Fb/435H and 439P that RY is measure-compact and R¢ is not. It turns out
that we already have a language in which to express a necessary and sufficient condition for R” to be
measure-compact. To give the result in its full strength I repeat a definition from 435Xk.
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Definition A completely regular space X is strongly measure-compact if X = sup{p*K : K C X is
compact} for every totally finite Baire measure p on X.

Remark For the elementary properties of these spaces, see 435Xk. I repeat one here: a completely regular
space X is strongly measure-compact iff it is measure-compact and pre-Radon. PP(i) Suppose that X is
measure-compact and pre-Radon and that p is a totally finite Baire measure on X. Because X is measure-
compact, p has an extension to a quasi-Radon measure i (435D); because X is pre-Radon, fi is Radon
(434Jb) and

uX =npX = sup K
KCX is compact
= sup WK< sup WK <pX.
KCX is compact KCX is compact

As p is arbitrary, X is strongly measure-compact. (ii) Suppose that X is strongly measure-compact. («)
Let © be a Baire probability measure on X. Then there is a non-negligible compact set, so X cannot be
covered by the negligible open sets; by 435Fa, this is enough to ensure that X is measure-compact. (8) Now
let 1 be a totally finite T-additive Borel measure on X. Write v for the restriction of u to the Baire o-algebra
of X. Then there is a compact set K C X which is not v-negligible. ? If u(X \ K) = puX, then, because
is 7-additive and X is regular, there is a closed set ' C X \ K such that uF + v*K > pX. Because X is
completely regular, there is a zero set G including K and disjoint from F', in which case v*K > uG = vG,
which is impossible. X So pK > 0; by 434J(a-iii), this tells us that X is pre-Radon. Q

533J Theorem (see FREMLIN 77) Let x be a cardinal. Then the following are equiveridical:

(i) R* is measure-compact;

(ii) if (X¢)e<s is a family of strongly measure-compact completely regular Hausdorff spaces then ]_[f on Xe
is measure-compact;

(iii) whenever X is a compact Hausdorff space and (G¢)e<y is a family of cozero sets in X, then X N
ﬂf <, G¢ is measure-compact;

(iv) for any Radon measure, the union of k or fewer closed negligible sets has inner measure zero;

(v) for any Radon measure, the union of x or fewer negligible sets has inner measure zero;

(vi) k < cov N () for any Radon measure yu;

(vil) K < cov N,;

(viii) k < m(2) for every measurable algebra 2.

proof not-(iv)=mnot-(i) Suppose that X is a Hausdorff space, p is a Radon measure on X and (F¢)ecx
is a family of closed p-negligible subsets of X such that M*(UE < Fe) > 0. Then there is a compact set
K C U£<n F¢ such that pk > 0.

For each £ < k, there is a continuous g¢ : K — [0, 1] such that g¢(z) = 0 for z € K N F¢ and ggl[{O}] is
negligible. I For each n € N, there is a compact set L, C K \ F¢ such that L, > pK — 27™; there is a
continuous f,, : K — [0,1] such that f,(z) =0 for z € KN Fe, 1 for z € Ly; set ge = > 00 027" 2 f,. Q
Set g(z) = (ge(2))e<n for z € K, so that g : K — [0,1[" is continuous.

Let v be the Baire measure on [0, 1]* defined by setting vH = pug~'[H] for every Baire set H C [0, 1]".
Then ]0,1[" has full outer measure for v. P If H C [0,1]® is a Baire set including ]0,1[", then H is
determined by coordinates in some countable subset I of x (4A3Mb). If z € K and g¢(z) > 0 for every
¢ €I, then g(2)]I €]0,1[" is equal to w|[I for some w € H, so g(z) € H. Thus g~*[H] includes {z: z € K,
ge(z) > 0 for every £ € I} and

vH = pg='[H] > p{z : ge(2) > 0 for every £ € I} = uK = v[0,1]". Q

On the other hand, every point y of ]0, 1[” belongs to a v-negligible cozero set. P g[K] is a compact set
not containing y, so there is a cozero set W containing y and disjoint from ¢[K], and now vW = 0. Q

Let vy be the subspace measure on |0, 1[". By 4A3Nd, g is a Baire measure on ]0,1[". If y € ]0,1[" it
belongs to a v-negligible cozero set W C [0,1]%, and now W N]0,1[" is a vp-negligible cozero set in |0, 1["
containing y. At the same time,

19]0,1[" = v[0,1]" = uK > 0.
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So vy witnesses that |0, 1[" is not measure-compact; as R* is homeomorphic to |0, 17, it also is not measure-
compact.

(iv)=-(iii) Suppose that (iv) is true and that we have X and (G¢)e<x, as in (iii), with a Baire probability
measure g on Y = X N ﬂ£ < Ge. Let v be the Radon probability measure on X defined by saying that
J fdv = [(f1Y)dp for every f € C(X) (436J/436K again). Then vG¢ = 1 foreach& < k. P Let f: X — R
be a continuous function such that G¢ = {z : © € X, f(z) # 0}. Set f, = n|f| A xX for each n. Then
limy, 00 fn = XG¢, s0

VGe = limy o0 [ fudv =limy oo [(fulY)dp=pY =1. Q

By (iv), u*(U§<H(X \ G¢)) = 0, that is, Y has full outer measure. In particular, ¥ must meet the support
of v; take any z in the intersection. If U is a cozero set in Y containing z, there is an open set G C X such
that U = G NY; now there is a continuous f : X — [0,1] such that f(z) =1 and f(z) =0 for z € X \ G;
in this case

pU > [(fIY)dp= [ fdv >0

because {z : f(x) > 0} is an open set meeting the support of v. This shows that Y is not covered by the
p-negligible relatively cozero sets; as p is arbitrary, Y is measure-compact (435Fa).

(iii)=-(i) We can express R” in the form of (iii) by taking X = [—o00,00]" and G¢ = {z : z(£) is finite}
for each &.

(iv)=(vii) Let Z be the Stone space of the measure algebra of v,,, and A its usual measure. If (E¢)ecy
is a family of A-negligible sets, then, because \ is inner regular with respect to the open-and-closed sets, we
can find negligible zero sets Fy O E¢ for each £. By (iv), {F¢ : £ < k} cannot cover Z, so the same is true
of {E¢ : € < k}. Thus cov N (A) > k. By 524Jb, cov N, > k.

(vii)=(vi) Let 8 be min{covN (v) : v is a non-zero Radon measure}. By 524Pc, there is an infinite
cardinal " such that 0 = cov N,/; by 523F, 0 = covNy. T If 6 < k, then 523B tells us that

K <covlN, <covNy =0. X
So 0 > K, as required.

(vi)=(v) If (vi) is true, (X, u) is a Radon measure space, (F¢)eo, is a family of negligible sets, and
EC U5 < Fe is a measurable set, then the subspace measure up is a Radon measure (416Rb), while E' can
be covered by k negligible sets; by (vi), uE = 0; as F is arbitrary, /‘*(Ug<n Fe) =0.

(v)=-(ii) Suppose that (v) is true, that (X¢)ec, is a family of strongly measure-compact completely
regular Hausdorff spaces with product X, and that y is a Baire probability measure on X. For each { < &
let Z¢ be the Stone-Cech compactification of X¢; set Z = [[,_, Z¢, and me(2) = 2(§) for z € Z, £ < k.
Then we have a Radon probability measure A on Z defined by saying that [gd\ = [ (gl X)du for every

g € C(Z). Note that if W C Z is a zero set, there is a non-increasing sequence (g)nen in C(Z) with
infimum xW, so that

AW = infren [ gnd = infpen [ (gnl X)dp = p(W N X).

Now )\Wg 1[X§] =1 for each {&. I? Let € > 0. We have a Baire probability measure p¢ on X, defined by
setting pe £ = p(X N ng[E]) for every Baire set E C X¢, and a Radon measure \¢ = )\ﬂ'gl on Z¢. Because
X is strongly measure-compact, there is a compact set K C X¢ such that pgK > 1 —e. Now K is still
compact when regarded as a subset of Z¢, so there is a zero set F' C Z¢, including K, such that \¢F' = A\¢K.
In this case, F'N X¢ is a zero set in X¢ including K, so

Aerg H[Xe] 2 Mg K] = AcK = AcF = Mg '[F)
= (X N ' [F]) = pe(F N Xe) > pe K > 1.

As € is arbitrary, we have the result. Q
By (v), X =2Zn ﬂ£<m ng[Xg] has full outer measure for X\. Let G be the family of u-negligible cozero
sets in X and H the family of A-negligible open sets in Z. If x € G € G, then there is a continuous
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function g : Z — [0,1] such that g(z) = 1 and H = {y : y € X, ¢g(y) > 0} is included in G; now
Jgdx= [(gIX)dp =0, so AH = 0. This shows that | JG C [JH is A-negligible, and, in particular, is not
the whole of X. By 435Fa as usual, this is enough to show that X is measure-compact, as required.

(ii)=-(i) is elementary, because R is certainly strongly measure-compact.

(vi)=(viii)=(vii) are immediate from 524Md.

533X Basic exercises (a) Describe a family (K;):cr such that every K: consists of compact sets,
Lebesgue measure on R is inner regular with respect to every Ky, but (,cp K¢ = 0.

(b) Let p be a uniformly regular topological measure on a topological space X. (i) Show that if A C X
then the subspace measure on A is uniformly regular. (ii) Show that any indefinite-integral measure over p
is uniformly regular. (iii) Show that if Y is another topological space and f : X — Y is a continuous open
map, then the image measure pf~! is uniformly regular.

(c) Show that any Radon measure on the split interval is uniformly regular. (Hint: 419L.)

(d) (BABIKER 76) Let X and Y be compact Hausdorff spaces, 1 a Radon measure on X, f: X =Y a
continuous surjection and v = pf~! the image measure on Y. Show that the following are equiveridical: (i)
vf[F] = pF for every closed F C X; (ii) [gdp =inf{[hdv:h e C(Y), hf > g} for every g € C(X); (iii)
for every g € C(X), {y : g is constant on f~![{y}]} is v-conegligible.

(e) Show that any uniformly regular Borel measure has countable Maharam type.

(f) Let (X;)icr be a countable family of topological spaces with product X, and p a 7-additive topological
measure on X. Suppose that the marginal measure of y on X; is uniformly regular for every ¢ € I. Show
that p is uniformly regular.

(g) Let X be [0,1] x {0,1} with the topology generated by

{G x {0,1} : G C [0,1] is relatively open for the usual topology}
U{{& 1)}t 0,1]JU{X\{(¢1}:te0,1]}.

Show that X is compact and Hausdorff. Let u be the Radon measure on X which is the image of Lebesgue
measure on [0, 1] under the map ¢ — (¢,0). Show that p is uniformly regular but not completion regular.

(h) Let X be a topological space and u a uniformly regular topological probability measure on X. Show
that there is an equidistributed sequence in X.

(i) Show that there is a first-countable compact Hausdorff space with a uniformly regular topological
probability measure, inner regular with respect to the closed sets, which is not 7-additive. (Hint: 439K.)

533Y Further exercises (a) (PoL 82) Let X be a compact Hausdorff space and p a uniformly regular
Radon measure on X. Show that if we give the space M;{ of Radon measures on X its narrow topology
(437Jd) then x(u, M) < w.

(b) For a topological measure p on a space X, write ureg(u) for the smallest size of any family V of open
subsets of X such that G\ |J{V : V € V, V C G} is negligible for every open G C X. (i) Show that if 4 is
inner regular with respect to the Borel sets then the Maharam type 7(u) of p is at most ureg(u). (ii) Show
that if X is compact and Hausdorff and y is a Radon measure, then ureg(y) < max(non Ny(,), x(X)). (iii)
Show that if X is compact and Hausdorff, u is a Radon probability measure and COVNT(M) > ureg(p), then
w1 has an equidistributed sequence.

(c) (PLEBANEK 00) Suppose that s is a regular infinite cardinal such that non NV, < covN,, = k. Let
(X, 1) be a Radon probability space such that x(X) < k. Show that p has an equidistributed sequence.
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(d) Let (X,%,%, 1) be a Radon measure space with countable Maharam type, A C ¥ a set with cardinal
less than add AV, and & the topology on X generated by T U A. Show that p is &-Radon.

533Z Problem For which cardinals  is R” Borel-measure-compact?

533 Notes and comments I suppose that from the standpoint of measure theory the most fundamental of
all the properties of w is the fact that the union of countably many Lebesgue negligible sets is again Lebesgue
negligible; this is of course shared by every x < add N, (which is in effect the definition of add N,,). In
533A-533E and 533J we have results showing that uncountable cardinals can be ‘almost countable’ in other
ways. In each case the fact that w has the property examined is either trivial (as in 533B) or a basic result
from Volume 4 (as in 533Cb, 533Cc and 533E). Similarly, the fact that ¢ does not have any of these properties
is attested by classical examples. If you are familiar with Martin’s axiom you will not be surprised to observe
that everything here is sorted out if we assume that m = c.

533H does not quite fit this pattern, and the hypothesis in 533Hb definitely contradicts Martin’s axiom.
‘Uniformly regular’ measures got squeezed out of §434 by shortage of space; in the exercises 533Xb-533Xi I
sketch some of what was missed. Here I mention them just to show that there is more to say on the subject
of first-countable and perfectly normal spaces than I put into 5310 and 531Q. Another phenomenon of
interest is the occurrence of measures which are inner regular with respect to a family of compact metrizable
sets (462J, 533Ca, 533D).

Version of 27.6.22

534 Hausdorff measures, strong measure zero and Rothberger’s property

In this section I look at constructions which are primarily metric rather than topological. I start with a
note on Hausdorff measures, spelling out connexions between Hausdorff r-dimensional measure on a separable
metric space and the basic o-ideal N (534B).

The main part of the section section is a brief introduction to a class of ideals which are of great interest
in set-theoretic analysis. While the most important ones are based on separable metric spaces, some of the
ideas can be expressed in more general contexts, and I give a definition of ‘strong measure zero’ in terms of
uniformities (534Ca). An associated topological notion is what I call ‘Rothberger’s property’ (534Cb). A
famous characterization of sets of strong measure zero in R in terms of translations of meager sets can also
be represented as a theorem about o-compact groups (534K). There are few elementary results describing
the cardinal functions of strong measure zero ideals, but I give some information on their additivities (534M)
and uniformities (534Q). There seem to be some interesting questions concerning spaces with isomorphic
strong measure zero ideals, which I consider in 534N-534P. A particularly important question, from the very
beginning of the topic in BOREL 1919, concerns the possible cardinals of sets of strong measure zero; in
534Q-534S T give some sample facts and illustrative examples.

534A An elementary lemma will be useful.

Lemma Let (X,p) be a separable metric space. Then there is a countable family C of subsets of X
such that whenever A C X has finite diameter and 1 > 0 then there is a C' € C such that A C C and
diam C < 1 + 2 diam A.

proof Let D be a countable dense subset of X and set C = {§} U{B(z,q) : x € D, q € Q, ¢ > 0}. If
A C X has finite diameter and 1 > 0, then if A = () we can take C' = (). Otherwise, take y € A and q € Q
such that diam A + in < g < diam A + %n. Let z € D be such that p(z,y) < in; then C' = B(zx,q) € C,
A C B(y,diam A) C C and diam C < 2g < i+ 2diam A.

534B Hausdorff measures There are difficult questions concerning the cardinals associated with even
the most familiar Hausdorff measures. However we do have some easy results.

(©) 2003 D. H. Fremlin
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Theorem Let (X, p) be a metric space and r > 0. Write pp, for r-dimensional Hausdorff measure on X,
N (pg,) for its null ideal, N for the null ideal of Lebesgue measure on R and M for the ideal of meager
subsets of R.

(a) add pp, = add N (ug).-

(b) If X is separable, N'(pup) <1 N, so that add pg, > add N and of N (ug,) < cfN.

(c) If X is separable, (X, €, N (ug+)) <ar (M, Z,R), so that covN(ug,) < non M and Meountable <
non N (fpr).

(d) If X is analytic and pg,X > 0, then add pg, = add N, cf N (ug,) = cf N, non N (ug,) < non N and
cov N (ppyr) > covN.

proof (a) 521Ac.

(b)(i) Let C be a countable family of subsets of X such that whenever A C X has finite diameter and
1 > 0 there is a C € C such that A C C and diam C < 7+ 2diam A (534A).

If AC X, then A € N(up,) iff for every € > 0 there is a sequence (Cp)nen in C such that A C (J, oy Cn
and Y  (diam C,,)" < e. P If A is negligible and ¢ > 0, then (by the definition in 471A) there must be
a sequence (Ay)nen of subsets of X such that A C (J,cyAn and )7 ((diam A,)" < 27"e. Let (,)nen
be a sequence of strictly positive real numbers such that Y (7, + 2diam A,)" < e. For each n we can
find C,, € C, such that A,, C C, and diamC,, < n,, + 2diam A,,, so that Zzozo(diam Cpn)" < €, while
AC U, Co

On the other hand, if A satisfies the condition, then for every e, § > 0 there is a sequence (C,)nen of
subsets of X such that A C (J,,cy Cr and >0 (diam C,,)" < min(e, 6"). In this case, diam C,, < ¢ for every
n, 0 0,5 A, as defined in 471A, is at most €. As e is arbitrary, 0,5 A = 0; as § is arbitrary, A is pug,-negligible.

Q
(ii) It follows that (N (um), S, N (nur)) <ar (NN, C* S), where (NN, C* S) is the N-localization
relation (522K).

P (a) For each n € N, let 7, be the family of finite subsets I of C such that ). ;(diam C)" <47". Let
(Inj)jen be a sequence running over Z,,. Now, given A € N(pg,), then for each n € N let (Cyi)ien be a
sequence in C, covering A, such that > .2 (diam Cy,;)" <2771 Let (C;)ien be a re-indexing of the family
(Cri)n,ien, so that (C;)ien is a sequence in C, . (diam C;)" < 1, and A € (e Uisim Ci- Let (k(n))nen
be a strictly increasing sequence in N such that k(0) = 0 and Z;’ik(n) (diam C;)" < 47" for every n. Now,
for n € N, let ¢(A)(n) be such that {C; : k(n) <i < k(n+1)} = I, 4a)(n)-

This process defines a function ¢ : N'(pg,) — NN such that

AC Mnen Unzm Ulnsaym)

for every A € N'(umy).
(B) For S € S, set
V(S) = Men Unsm Uiesny Uni € X.
If n € N, then
2 A(diam O)" 1 C € Ujegigny Init <27 -47" =277,

because #(S[{n}]) < 2™ and Y {(diamC)" : C € I,;} < 47" for every i. But this means that, for any
m €N,

> A{(diam C)" : C € Uz Uiesiny Ini} < 2-mH
while
So ¥(S) € N(ugy,) for every S € S.

(7) Suppose that A € N(pp,) and ¢(A) C* S € S. Then there is some my € N such that
(n,d(A)(n)) € S for every n > mg. Now, for any m € N, we have
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AC U  ULswm

n>max(m,mg)

c U U UwclU U Ul

n>max(m,mg) 1€S[{n}] n>mieS[{n}]

so A C 9(S). This shows that (¢, 1) is a Galois-Tukey connection from (N (pg..), S, N () to (NN, C*,S),
and (N(MH7)7 Q,N(M}h)) <ar (NN, Q*,S) Q

(iii) Since (N, C,N) =gt (NN, C*,8) (522M), (N (), S, N (pa)) <at (N, S, N), that is, N (ug,)
<t N.

(iv) By 513Ee, as usual, we can conclude that add N (pg,) > add N and cf N (ug,) < cfN.

(c)(d) If pp,X =0, the result is trivial. B Set ¢(z) =0 for x € X, ¥(t) = X for t € R; then (¢,1) is a
Galois-Tukey connection from (X, €, N (up,)) to (M, %, R). Q So let us suppose that X is infinite.

(ii) Let F be the set of 1-Lipschitz functions f : X — [0,1]. Define T : X — ¢°°(F) by setting

(Tz)(f) = f(z) for f € F and x € X. Then
[Tz — Tyllso = supser | f(z) = f(y)] = min(1L, p(z,y))
for all z, y € X. P Of course supep | f(z) — f(y)| < min(1, p(z,y)), by the definition of F'. On the other
hand, we can set f(z) = min(1, p(z,z)) for every z € X; then f € F and |f(z) — f(y)| = min(1, p(z,y)). So
we have equality. Q Thus T is 1-Lipschitz for p and the usual metric on £°°(F), and T[X] is a separable
subset of £>°(F) (4A2B(e-iii)). Let V be the closed linear subspace of £>°(F) generated by T[X]; then V is
separable (4A4Bg). Being a closed subset of the complete metric space £>°(F), V is a Polish space. Since
X has more than one point, and T is injective, V' is non-empty and has no isolated points.
Let (vp,)nen enumerate a dense subset of V. Set

E=N,enUis, Ulvi, 2771

where U(v,0) ={u:u €V, ||lu—v||s <} for v € V, § > 0. Then FE is the intersection of a sequence of
dense open sets in V, so is comeager, and M = V \ E belongs to the ideal M(V') of meager subsets of V.
For any v € V, the map u — u—v : V — V is a homeomorphism, so M —v € M(V). Define ¢ : X — M(V)
by setting ¢(z) = M — Tz for z € X.

In the other direction, define ¢ : V' — PX by setting ¢ (v) = T~[E —v] for v € V. Then ¢(v) € N (p11,)
for everyv € V. P Ifv € V and § < 1, then |u— U’Hoo < 1forall u, v’ € U(v,6), so p(x,z') < |Tz—T2'||o
whenever z, 2’ € T~U (v, §)]. Accordmgly diam T~ U (v; — v,27%71)] < 27% for every i € N. This means
that

iy THE = o] = pip () U T U = 0,277
neNi>n

oo

< inf )T =o0.
S z=oa
1=n

So 1 is a function from V' to N (ug,). We now see that
o) Fv—=v¢M-Te—=Tr ¢ M—v
= TreFE—v= 1z € (v).
Thus (¢, ) is a Galois-Tukey connection from (X, €, N'(pg.)) to (M(V),%,V) and
(X, €, N(pnr)) Sar (M(V), 2,V) = (M, %, R)
(522Wh).
(iii) Now
cov N (pp,) = cov(X, €, N(pmr)) < cov(M, #,R) = non M,
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non N (ppr) = add(X, €, N (pny,)) > add(M, #,R) = cov M = Mcountable
(512D, 512Ed, 522Sa).

(d) If X is analytic and pg,X > 0, then by Howroyd’s theorem (471S) there is a compact set K C X

such that 0 < pp,.K < oo. Now the subspace measure ug? on K is an atomless Radon measure (471E,
471Dg, 471F) on a compact metric space, so

add NV < add N (pupr,) < add N (i) = add AV,
N > cf N (ppy) > cf/\f(ug?) =cf N,
non N (pp,) < nonN(u(HIi)) =non N,

cov(X, N (pmr)) > COV(K,N(M%))) =cov
by (b) above, 521F and 522Wa.

534C Strong measure zero and Rothberger’s property (a) Let (X, W) be a uniform space and
A C X. Isay that A has strong measure zero or property C in X if for any sequence (W,,),eny in W
there is a cover (4, )nen of A such that A, x A,, C W, for every n € N. If (X, p) is a metric space, a subset
A of X has strong measure zero in X if it has strong measure zero for the uniformity defined by the metric
(3A4B), that is, for any sequence (€,)nen of strictly positive real numbers there is a cover (A4, )nen of X
such that diam A,, < ¢, for every n € N.

I will write Smz(X, W) or Smz(X, p) for the family of sets of strong measure zero in a uniform space
(X, W) or a metric space (X, p).

(b) If X is a topological space and A is a subset of X, I will say that A has Rothberger’s property
in X if for every sequence (G, )nen of non-empty open covers of X there is a sequence (G, )nen such that
Gn € G, for every n € Nand A C J,,cyy G- I will write Rbg(X) for the family of subsets of X with
Rothberger’s property in X.

534D Proposition (a)(i) If (X, W) is a uniform space and A C X, then A has strong measure zero in
X iff it has strong measure zero in itself when it is given its subspace uniformity.
(ii) If (X, W) is a uniform space, then Smz(X, W) is a o-ideal containing all the countable subsets of
X.
(iii) If (X, W) and (Y,V) are uniform spaces and f : X — Y is uniformly continuous, then f[A4] €
Smz(Y,V) whenever A € Smz(X, W).
(iv) Let (X,) be a uniform space and A C X. Then A € Smz(X, W) iff f[A] € Smz(Y, p) whenever
(Y, p) is a metric space and f : X — Y is uniformly continuous.
(v) Let (X, W) be a uniform space and A € Smz(X,W). If B C X is such that B\ G € Smz(X, W)
whenever G is an open set including A, then B € Smz(X,W).
(b) Let X be a topological space.
(i) Rbg(X) is a o-ideal containing all the countable subsets of X.
(ii) If Y is another topological space, f : X — Y is continuous and A € Rbg(X), then f[A] € Rbg(Y).
(iii) If A € Rbg(X) and B C X is such that B\ G € Rbg(X) whenever G is an open set including A,
then B € Rbg(X).
(iv) If F C X is closed, then Rbg(F) = {A: A€ Rbg(X), AC F}.

proof (a)(i) Recall that the subspace uniformity on A is just Wa = {W N (A x A) : W € W} (3A4D). If
A € Smz(A,W4) and (W, )nen is a sequence in W, then (W,, N (A x A))pen is a sequence in Wy, so we
have a sequence (A, )nen of sets covering A with A,, x A, CW,, N (A x A) C W, for every n; as (W, )nen
is arbitrary, A € Smz(X,W). If A € Smz(X, W) and (V,,)nen is a sequence in Wy, we can choose for
each n a W,, € W such that V,, = W,, N (A x A); now we have a sequence (A, ),en of sets covering A with
A, x A, €W, for every n, in which case (4, N A),en covers A and (4, N A) x (4, N A) CV, for every n;
as (Vi )nen is arbitrary, A € Smz(A4, A).
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(ii) It is immediate from the definition that any subset of a set in Smz(X, W) belongs to Smz(X, W),
and so does any countable set. Now suppose that (A, ),en is a sequence in Smz(X,W). Let (W, )nen be
any sequence in W. For each k € N, (War(g;11))ien is a sequence in W, so there is a sequence (Ag;)ien,
covering Ay, such that Ay; x Ag; € Wok(9;41) for every i. Set By = () and B,, = Ay; if n = 2F(2i + 1) where
k,i € N;then A C |J, ey Bn and By, x B,, C W, for every n. As (W, )nen is arbitrary, A has strong measure
zero; as (Ap)nen is arbitrary, Smz(X, W) is a o-ideal.

(iii) Let (Vi )nen be a sequence in V. For each n € N, there is a W,, € W such that (f(x), f(2')) € V,,
whenever (x,2') € W,,. Because A € Smz(X, W), there is a cover (A, )nen of A such that A4, x 4, C W,
for every n; now f[A,] x f[An] C V,, for every n and |J, oy f[An] = fIA]l. As (Vi)nen is arbitrary, f[A] €
Smz(Y, V).

(iv) If A has strong measure zero, then of course f[A] has strong measure zero for any uniformly
continuous function f from X to a metric space, by (iii). Now suppose that A satisfies the condition, and
that (W,,)nen is a sequence in W. Then there is a pseudometric p on X, compatible with the uniformity
in the sense that {(z,y) : p(z,y) < €} € W for every ¢ > 0, such that {(z,y) : p(z,y) < 27"} C W, for
every n (4A2Ja). Set ~ = {(z,y) : p(z,y) = 0}. Then ~ is an equivalence relation on X. If Y is the set of
equivalence classes, we have a metric p on Y defined by setting p(x*,y*) = p(x,y) for all z, y € X. Setting
f(x)=a*forz € X, f: X = Y is uniformly continuous. So f[A] € Smz(Y, p). Let (B, )nen be a cover of
f[A] such that diam B,, < 27"~! for every n, and set A,, = f~![B,] for each n. Then (A, ),cn is a cover of
A. IfneNand 2,y € A,, then p(z,y) = p(f(x), f(y)) <2771, so (z,y) € W,,. Thus A4, x A, C W,,. As
(Wh)nen is arbitrary, A € Smz(X,W).

(v) Let (W,,)nen be any sequence in W. For each n € N, let V,, € W be such that VoV, 0V~ C Wy,,.
Then there is a sequence (A, )nen, covering A, such that A, x A,, C V,, for every n. Set Ba,, = int V,,[A,,] for
eachn, and G = UneN Bay,; then Bsy, x Ba,, € Wy, for every n and G is an open set including A. Accordingly
B\G € Smz(X, W) and there is a sequence (Bay+1)nenN, covering B\G, such that Ba,, 11X Ba,+1 C Wa, 41 for
every n. Now (B, )nen covers B and B,, x B,, C W, for every n. As (W,,),en is arbitrary, B € Smz(X, W).

(b) (i) We can copy the argument of (a-ii). As before, it is immediate from the definition that any subset
of a set in Rbg(X), and any countable subset of X, belong to Rbg(X). Now suppose that (A,)nen is a
sequence in Rbg(X), with union A. Let (G, )nen be any sequence of non-empty open covers of X. For each
k € N, (Gor(2i41))ien is a sequence of open covers of X, so there is a sequence (Gy;)ien, covering Ay, such
that Gri € Gor(i41) for every i. Take Gy to be any member of Gy, and set G, = Gy; if n = 2F(2i + 1)
where k, i € N; then A C {J,,cy G and Gy, € G, for every n. As (Gp)nen is arbitrary, A has Rothberger’s
property in X.

(ii) This uses the idea of (a-iii). Let (H,)nen be a sequence of non-empty open covers of Y. For each
neN,set G, ={f YH]|: H€ H,}; then G, is a non-empty open cover of X. Because A € Rbg(X), there
is a cover (G, )nen of A such that G,, € G, for every n € N. Expressing G,, as f~![H,] where H,, € H,, for
each n € N, f[A] € U,cn Hn- As (Hn)nen is arbitrary, f[A] has Rothberger’s property in Y.

(iii) And here we can copy from (a-v). Let (G, )nen be any sequence of open covers of X. Then there
is a sequence (Gan)nen, covering A, such that Ga, € Ga, for every n. Set H = J, cjy G2n; then there is a
sequence (Gay11)nen, covering B\ H, such that Go, 1 € Gapyq for each n. Putting these together, we have
a sequence (G, )nen covering B such that G,, € G, for every n. As (G, )nen is arbitrary, B has Rothberger’s
property in X.

(iv) If A € Rbg(F) then A € Rbg(X) by (ii), because the identity map from F' to X is continuous.
Conversely, if A C F and A € Rbg(X), let {(G,,)nen be a sequence of non-empty relatively open covers of F'.
For n € N set

H, ={H : HC X is open and there is a G € G,, such that H N F C G}.

Then H,, is a non-empty open cover of X because G,, covers F and X \ F € H,,. Because A € Rbg(X),
there is a sequence (Hp)nen such that Hy € H,, for every n € N and A C |J H,,. For n € N choose

neN - n
G, € G, such that H, N F C G,; then A C | Gr. As (Gp)nen is arbitrary, A € Rbg(F).

neN
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534E Proposition Let (X, W) be a uniform space, and give X the topology induced by W.
(a) Rbg(X) C Smz(X, W).
(b) If X is o-compact, Rbg(X) = Smz(X, W).

proof (a) Suppose that A € Rbg(X), and that (W,),en is any sequence in W. For each n € N, set
G, ={G: G C X is open, G x G C W,}; then G, is a non-empty open cover of X. So we can find a
cover (Gp)nen of A such that G,, € G, that is, G,, x G,, C W, for each n. As (W,),en is arbitrary,
A e Smz(X,W).

(b)(i) Let K C X be compact and G an open cover of X. Then there is a W € W such that whenever
x € K there is a G € G such that W[{z}] C G. P (Cf. 2A2Ed.) Set

Q={(=V):zeX,VeW, VIV[{z}]] CG for some G € G}.

Then for every x € X there are a G € G such that x € G and a V € W such that V[V[{z}]] C G, and in
this case (x,V) € Q and « € int V[{z}]. So {int V[{z}]: (z,V) € @} is an open cover of X and there is a
finite set Qo C @ such that K C [J{int V[{z}] : (z,V) € Qo}. Let W € W be such that W C V whenever
(z,V) € Qo. If z € K, there is an (2, V) € Qg such that x € V[{z'}]; and now there is a G € G including
VIV 2 Wia)]. @

(ii) Suppose that K C X is compact and A € Smz(X,W). Then AN K € Rbg(X). P Let (Gp)nen
be a sequence of non-empty open covers of X. For each n € N let W,, € W be such that {W,[{z}] : z € K}
refines G,,. Let (A, )nen be a cover of A such that A, x A,, C W, for every n. If n € Nand A, NK = 0, take
any G, € G,. Otherwise, take z, € A, N K and G,, € G,, such that W,[{z,}] C G,. If z € AN K, there
is an n € N such that « € A,; now (z,,2) € A, x A, CW,, and = € W,,[{z,}] C G,. As z is arbitrary,
ANK CU,cnGn- As (Gn)nen is arbitrary, AN K has Rothberger’s property in X. Q

(iii) Smz(X, W) C Rbg(X). P If A € Smz(X, W), let (K, )nen be a sequence of compact subsets of
X covering X. By (ii) here, AN K,, € Rbg(X) for each n; by 534D(b-i), A € Rbg(X). Q Putting this
together with (a), we see that Rbg(X) = Smz(X, W).

534F Another case in which Rothberger’s property and strong measure zero coincide is the following.

Proposition Let X be a regular paracompact space, and W the uniformity on X defined by the family of
all continuous pseudometrics on X. Then

Rbg(X) = Smz(X, W)
={A: ACX, fl[A] € Smz(Y, p) whenever (Y, p) is a metric space

and f: X — Y is continuous}.

proof X is normal, therefore completely regular (4A2Ge), so W induces its topology (4A2J(g-i)), and
Rbg(X) C Smz(X, W) by 534Eb. If A € Smz(X, W), (Y, p) is a metric space and f : X — Y is continuous,
then (x,y) — p(f(z), f(y)) is a continuous pseudometric on X so is one of the pseudometrics defining W,
and f is uniformly continuous; now f[A] € Smz(Y, p) by 534D(b-ii).

Now suppose that A C X is such that f[A] € Smz(Y, p) whenever (Y, p) is a metric space and f: X =Y
is continuous, and let (G,),en be a sequence of open covers of X. By 5A4FDb there is for each n € N a
continuous pseudometric o, on X such that every subset of X of g,-diameter at most 1 is included in a
member of G,,. Set

o(z,y) =30 2 " min(2,0,(z,y))

for x, y € X. Then o is a continuous pseudometric on X. Let ~ be the corresponding equivalence relation
{(z,y) : o(x,y) =0} and Y = X/ ~ the set of equivalence classes; then Y has a metric p defined by saying
that p(z*,y*) = o(z,y) for z, y € X, and x — 2z* : X — Y is continuous. Accordingly f[A] = {z*:z € A}
belongs to Smz(Y, p), and there is a sequence (B,,),en of subsets of Y, covering f[A], such that the p-
diameter of B,, is at most 27" for each n. Setting A,, = f~![B,] for each n, A C Unen An- If n € N and z,
y € Ay, then o(x,y) < 27" so o,(x,y) < 1; by the choice of o, there is a set G,, € G,, including A,,. But
now we see that A C | J,cy Gn- As (Gn)nen is arbitrary, A € Rbg(X).
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534G Remarks We see from 534E that in Euclidean space, the context of the original investigation of
these ideas, what I call Rothberger’s property and strong measure zero coincide; and as the latter phrase
is more commonly used and has a more generally accepted meaning, it is tempting to prefer it. But in the
framework of this treatise, devoted as it is to maximal convenient generality, the concepts diverge. Strong
measure zero has an obvious interpretation in any metric space, and can readily be applied in general uniform
spaces; while Rothberger’s property is a topological notion. They have very different natures as soon as we
leave the area of o-compact spaces. In particular, the Polish space NY| topologically identifiable with R\ Q,
has a wide variety of compatible uniformities, giving rise to potentially very different strong measure zero
ideals. So we find ourselves with the possibility that Rbg(R \ Q) may be much smaller than the trace of
Rbg(R) on the subset R\ Q, even though Q € Rbg(R) (534Sb). Strong measure zero, of course, is much
more manageable on subsets (534D(a-1)).

534H Of course sets with strong measure zero or Rothberger’s property are necessarily small in other
ways.

Proposition If (X, p) is a metric space and A € Smz(X, p), then A is separable, zero-dimensional and
universally negligible, and all compact subsets of A are countable.

proof (a) 7 If A is not separable, there is an uncountable B C A such that € = inf, yep 22y p(z,y) is
greater than 0 (5A4B(h-iii)). Now there can be no cover (A, ),en of B by sets of diameter less than e. X
Thus A is separable.

(b) Now suppose that u is a Borel probability measure on A. Then there is a 6 > 0 such that for every
n € N there is a relatively Borel set E,, C A with diam F,, < 27" and uFE, > §. P? Otherwise, we can find
for each n € N an ¢, > 0 such that pF < 277=2 whenever F C A is a relatively Borel set and diam F < ¢,.
Let (A,)nen be a cover of A such that diam A,, < ¢, for every n; then diam A,, < €,,, so u(ANA,) <2772
for every n, and

pA <Y u(An4,) <1 XQ

Now consider £ =, oy U FEy,. Since pE > § > 0, there is an x € E. For any n € N, there is an

m > n such that

m>n

xz € E, C B(x,27™) C B(x,27"),
SO
p{x} =infpen p(AN B(x,27™)) > § > 0.
As p is arbitrary, this shows that A is universally negligible.

(¢) In particular, [0, 1], with its usual metric, is not of strong measure zero. Now if G C X is open and
x € G, let 6 > 0 be such that B(z,d) C G, and set f(y) = max(0,1— %p(y,x)) for y € X; then f: X — [0,1]
is uniformly continuous, so f[X] has strong measure zero (534D (a-iii)) and cannot be the whole of [0, 1]. As
f(z) =1, there is an « € [0, 1]\ f[X], and f~[[e,1]] = f~*[]a, 1]] is an open-and-closed neighbourhood of
z included in G. As x and G are arbitrary, X is zero-dimensional.

(d) If K C X is compact, it must be scattered (439C(a-v)); because it is first-countable, it must be
countable (4A2G(j-vi)).

5341 Let X be a regular topological space. Then X has Rothberger’s property in itself iff it is Lindelof
and zero-dimensional and f[X] € Rbg(R \ Q) whenever f: X — R\ Q is continuous.

proof (a) Suppose that X has Rothberger’s property in itself. Let G be an open cover of X. If X is empty
then @) is a countable subset of G covering X. Otherwise, setting G,, = G for each n, we have a sequence
(Gp)nen covering X such that G, € G, for every n, and {G,, : n € N} is a countable subcover of G. So X
is Lindelof.

Thus X is Lindelof and regular, therefore normal and completely regular (4A2H(b-i)). If G C X is open
and x € G, there is a continuous f : X — [0,1] such that f(z) =1 and f(y) = 0 for every y € X \ G.
Since f[X] € Rbg([0,1]) (534D(b-ii)), f[X] # [0,1]; taking @ € [0,1]\ X, f~ ', 1]] = f~ e, 1]] is an
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open-and-closed subset of G containing x. Thus X is zero-dimensional. And of course f[X] € Rbg(R\ Q)
for every continuous f: X — R\ Q, by by 534D(b-ii) again.

(b) Suppose that X has the given properties.

(i) If Z is a zero-dimensional Polish space and f : X — Z is continuous then f[X] € Rbg(Z). P By
5AA4If, we can suppose that Z is a closed subspace of NY. In this case, f[X] € Rbg(NY), by hypothesis; by
534D (b-iv), f[X] € Rbg(Z).

(ii) Now take a sequence (G,)nen of non-empty open covers of X. For each n € N, let G/, be the
family of open-and-closed subsets of X included in members of G,; as X is zero-dimensional, each G/, is a
non-empty open cover of X. As X is Lindelof, there is for each n € N a sequence (Gp;)ien in G/, such that
X = U;en Gin- Define f: X — Z = {0, 13NN by setting f(z)(n,i) = xGp; for z € X and n, i € N; as
every Gy is open-and-closed, f is continuous. For n, i € N, set H,; = {z : z € Z, z(n,i) = 1}, so that
Gni = [ Hpui. Set E = Mpen Usen Hni, so that E is a Gs subset of Z including f[X]. By 4A2Qd, E is
Polish, so f[X] € Rbg(E), by (i) above.

For each n € N, {E N H,; : i € N} is a relatively open cover of E. There is therefore a sequence (ip,)nen
in N such that f[X] C U, cy Hni, and X = J,,cy Gni, - Finally there is for each n € N a G,, € G, such that
Ghi, € Gy, sothat X =J, ey Gn- As (Gn)nen is arbitrary, X has Rothberger’s property in itself.

534J Proposition Let X be a Hausdorff space, and K a compact subset of X. Then K belongs to
Rbg(X) iff it is scattered.

proof (a) Set
F ={F:F CK is closed, L € Rbg(X) for every closed L C K \ F'}.

(b) Fi N Fy, € F whenever Fi, Fo € F. P L C K\ (Fy N Fy) is closed then L N Fy, L N Fy are
disjoint compact subsets of the Hausdorff space X, so there are disjoint open subsets G1, G2 of X such that
LNF; CGyand LN Fy C G (4A2Fh). Now L\ G5 is a closed subset of X disjoint from Fj, so belongs to
Rbg(X), and similarly L\ G; € Rbg(X), so L = (L\ G1) U (L \ G2) belongs to Rbg(X). As L is arbitrary,
PNk eF. Q

(c) K* = N F belongs to F. P Since K € F, K* C K and K* is closed. If L C K\ K* is closed,
therefore compact, there must be a finite subset Fy of F such that L N[ Fy is empty; we can take it that
K € Fp, and now (b) assures us that (| Fo € F so L € Rbg(X). As L is arbitrary, K* € F. Q

(d) K* has no isolated point. P? If x € K* is an isolated point of K*, set F = K*\ {«}. Then F
is a closed subset of K not belonging to F, so there is a closed set L C K \ F' which does not belong to
Rbg(X). Now {z} certainly belongs to Rbg(X), so by 534D (b-iii) there is an open set H containing z such
that L\ H ¢ Rbg(X). But L\ H is a closed subset of K \ K* and K* € F, by (c). XQ

(e) If K is scattered, then K* must be empty, K C K \ K* and K € Rbg(X).

(f) Finally, if K is not scattered then there is a continuous surjection from K to [0,1] (4A2G(j-iv)); now
[0,1] ¢ Smz(R, p), where p is the usual metric on R, by 534H, so [0,1] ¢ Rbg(R) (534Sa), K ¢ Rbg(K)
(534D(b-ii)) and K ¢ Rbg(X (534D(b-iv)).

534K Theorem Let X be a o-compact locally compact Hausdorff topological group and A a subset of
X. Then the following are equiveridical:

(i) A € Rbg(X);

(ii) for any sequence (Up)nen of neighbourhoods of the identity e of X, there is a sequence (z,)nen in X
such that A C (J,, ey UnTn;

(iii) FA # X for any nowhere dense set F' C X;

(iv) EA # X for any meager set £ C X;

(v) AF # X for any nowhere dense set F' C X;

(vi) AE # X for any meager set £ C X.

Remark For the general theory of topological groups see §4A5 and Chapter 44. Readers unfamiliar with
this theory, or impatient with the extra discipline needed to deal with non-commutative groups, may prefer
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to start by assuming that X = R?, so that every zU becomes x + U, every V'V becomes V — V, and the
right uniformity is the Euclidean metric uniformity.

proof (i)=-(ii) Suppose that (i) is true, and that (Up)nen is any sequence of neighbourhoods of e. Then
{int U,z : € X} is an open cover of X for each n, so there is a sequence (z,)nen such that A C J,, .y UnZn-

(ii)=(i) Suppose that (ii) is true, and that (W,)n,en is any sequence in the right uniformity W of X
(4A5Ha). Then for each n € N there is a neighbourhood U, of e such that W,, D {(z,y) : 2y~ € U,};
let V;, be a neighbourhood of e such that V,V,-! C U,. By (ii), there is a sequence (z,)nen such that
A C Upen Van. Set A, = V,x, for each n. Then A AL =V, V-t C U, s0 Ay x A, © W, for each n,
while (A, )nen covers A. As (W), )nen is arbitrary, A € Smz(X,W). By 534Eb, A € Rbg(X).

(ii)=(iv) Suppose that A satisfies (ii), and that F C X is meager.

(a) If K C X is compact and nowhere dense, then there is a sequence (U, )nen of neighbourhoods of
e such that K’ = (0, .y Un K is still compact and nowhere dense. B By 443N(ii), there is a nowhere dense
zero set F' O K. Now F is a Gs set; suppose that F' = [, .y Gy, where G, is open for each n. As K C G,
the open set U}, = {z : K C G, } (4A5Ei) contains e; let U, be a compact neighbourhood of e included
in U}. Then U,K C G,, for every n, so K' =), .y UnK C F is nowhere dense, while K’ is compact (use
4A5ES). Q

neN

(B) Let K C X be compact and nowhere dense and U a neighbourhood of e. Then there is a neigh-
bourhood V of e such that for every € X there is an 2’ € Uz such that Va2’ N K = (. P Let (U, )nen be
a sequence of neighbourhoods of e such that K’ = (1, .y Un K is compact and nowhere dense ((c) above).
Choose a sequence (V,,),en of compact neighbourhoods of e such that Vy C U and Vn+1Vn__~_11 cU,nV, for
each n € N. Then Y =, oy Vi is a compact subgroup of X (see the proof of 4A5S), and YK = (1, .y Vo IS
(4A5Eh). 7 If for every n € N there is an x,, € X such that V"2’ N K # ) for every 2’ € Uz, then, in
particular, V, 1z, N K # 0, so z,, € V,K. Since (V,,K),en is a non-increasing sequence of compact sets,
(Zn)nen has a cluster point

" €Nen VaK =YK C K"

Because K' is nowhere dense, Viz* € K’; take x € Viz* \ K'. Let W be an open neighbourhood of e
such that Wa N K’ = (. Then Wz is disjoint from YK = Y 'YK so YWz NYK = (). Now YW is an
open set including Y = (1, .y Vi, and all the V;, are compact, so there is an m > 1 such that V,, C YW and
Vinx NY K = .

But observe that there is an n > m such that z,, € Viz*, so that

S V1V1_1:En C Voxn, CUx,,

while Vn_la: NK CVy,zNYK is empty. X
Thus we can take V = V-1 for some n. Q

() Because X is o-compact, any F, set in X is actually K,, and there is a sequence (K, ),en of
nowhere dense compact sets covering F; we can suppose that (K,,)nen is non-decreasing. Choose inductively
sequences (Up)nens (Vidnens (Voinen and (V) pen of neighbourhoods of e such that

Up is any compact neighbourhood of e,
given U,, Vi, is to be a neighbourhood of e such that V,,V,, C U,,
given V,,, V! is to be a neighbourhood of e such that for every y € X there is a z € V,,y such

that V2N K41 =0

(using (8)),
given V! V" is to be an open neighbourhood of e such that (V,/)~1V" C V!
given V. U,41 is to be a compact neighbourhood of e, included in V;, N V)", such that

KnJrlUnJrl g VAIKnJrL
(This last is possible by 4A5Ei, because V,” K, 11 is an open set including K41, so {z : K412 C V) K41}
is an open set containing e.)

(0) For each k € N, (Ugk(2i41))ien is a sequence of neighbourhoods of e, so there must be a sequence
(zri)ien such that A C |,y Uak(2i41)Zki- Set o = e and x, = xy, if n = 2F(2i + 1). For any k € N,
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A - UieN Aki c UieN U2k(2i+1)$ki - Un22’€ Unzpn C Unzk Unzy,.

This means that EA C |J,,»; KnUpz,. P If 2 € EA, we can express it as zy where x € E and y € A.
There are a k > 1 such that 2 € K}, and an n > k such that y € U,x,,, in which case z € K,U,z,. Q

(€) Now choose (yn)nen, (zn)nen as follows. Start from yo = e. Given y,, let z, € Vnynx;}rl be such
that V!z, N K1 = 0; this is possible by the choice of V,!. Now set y,+1 = znZn+1, and continue.
For each n,

Unt+1Yn+1 € VaYn+1
(by the choice of Up+1)
- Vnznxn—i-l g VnVnynxr_Lj_lxn-&-l
(by the choice of z,,)
€ Un¥n

by the choice of V,,. Consequently, Uy, +1¥n+1NKp+1Unt12n+1 = 0. P We chose z, such that V! z, N K, 11 =
0. Because (V) V' C V! V"2, NV'K,1 = 0. Because K, 1Upi1 C V/K,y1 and U,yq C V/,
Unt12n N Kp41Upy1 = 0, that is, Upy1Ynt1 N Kpp1Unp12n41 = 0. Q

(¢) From (e) we see that (U,yn)nen is a non-increasing sequence of compact sets, so has non-empty
intersection. Take any = € ﬂnGN Unyn. Then z ¢ K, 11Up 112541 for any n, so x ¢ Upsy KnUnzyn 2 FA.
Thus EA # X. As E is arbitrary, (iv) is true. N

(iv)=-(iii) is trivial.

(iii)=-(ii) Suppose that (iii) is true. Let (U,)nen be any sequence of open neighbourhoods of e. Then
there is a sequence (z,)nen in X such that G = |J,cy r,U 1 is dense. P Let (V,)nen be a sequence
of neighbourhoods of e such that Vn+1Vn_+11 C V,NnU,;*! for every n € N. Then there is a compact
normal subgroup Y of X such that Y C [, .V, and X/Y is metrizable (4A5S). The canonical map
xz—2®: X — X/Y is continuous, so X/Y is o-compact, therefore separable (4A2P(a-ii)). Let (z,)nen be
a sequence in X such that {z;, : n € N} is dense in X/Y. Set Go = UpenanVat1Y. 2 If H = X\ G
is non-empty, then {z* : x € H} is open (4A5Ja) so contains z;, for some n. But z,Y C z,V,11Y C Gy,
so there can be no x € H such that * = z;,. X Thus Gy is dense. But, for any n € N, Y C Vn_+11 SO
VoY CUL and G = Unen x,U, ! includes Gy. Thus G is dense, as required. Q

Accordingly F = X \ G is nowhere dense, and FA # X; suppose z € X \ FA. Then FNzA~! = 0,
that is, A~ C U, ey U, Y that is, A~ C U, ey tanU, Y, that is, A C U, ey Un®y '@ As (Up)nen is
arbitrary, (ii) is true.

neN

1

(i) (v)<(vi) Because x — 2~ is a homeomorphism,

A€ Rbg(X) = A™! € Rbg(X)

— FA™! % X whenever E C X is meager

— E'A7! £ X whenever E C X is meager
(because E~1 is meager if E is)

<= AF # X whenever F C X is meager

— AF ! # X whenever F C X is nowhere dense
(because F~1 is nowhere dense if F is)

— FA ! # X whenever F C X is nowhere dense

= A~ € Rbg(X)

= A € Rbg(X).

Remark The case X = R is due to GALVIN MYCIELSKI & SOLOVAY 79.
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534L Proposition (FREMLIN 91) Let (X, p) be a separable metric space. Then Smz(X,p) <t N?,
where N is the null ideal of Lebesgue measure on R and 9 is the dominating number (522A).

proof (a) By 534A, there is a countable family C of subsets of X such that whenever A C X has finite
diameter and 1 > 0, there is a C € C such that A C C and diam C < 5+ 2diam A. For each i € N, let
(Cyj)jen be a sequence running over {C : C € C, diamC' < 27"}, Let (NN, C* S) be the N-localization
relation.

(b) Let D C NY be a cofinal set with cardinal . For each d € D we can find a function ¢4 : Smz(X, p) —
NN such that A C Mhen UiZn Ca(i),pa(a) i) for every A € Smz(X,p). P For A € Smz(X,p) and k € N,

choose a sequence (Ay;)ien of sets covering A such that 2diam Ay; < 9—d(2"(2i+1)) for every i € N. For
n = 2¥(2i + 1), let A, € C be such that A;; C A, and diam A4, < 274" choose ¢q(A)(n) such that
Ap = Can),pa(a)(n)- Q Define ¢ : Smz(X, p) — (NY)P by setting ¢(A) = (¢pa(A))dep for A € Smz(X, p).

(c) For S € S and d € D, define
Ya(S) = ﬂnGN UiZn UjeS[{i}] Cd(i),j c X.

For (Sa)aep € SP set ¥((Sa)aep) = Nuep Va(Sa). Then A = ¢((Sa)qep) has strong measure zero. P Let
(€i)ien be any family of strictly positive real numbers. Let d € D be such that 2-d(k) < ¢; whenever k € N
and ¢ < 281, For each k € N, #(Sa[{k}]) < 2¥, so we can find a sequence (4;);en such that (A;)ar<;cgrs1
is a re-enumeration of (Cyx),;)jesi{r)] supplemented by empty sets if necessary. This will ensure that if
2k < j < 2k*+1 then diam A; < 274k < ¢, while

A € Pa(Sa) € Upen Ujes,iry Camrs = U gyes, Cayg = Uien Ai-

As (€;)ien is arbitrary, A € Smz(X, p). Q

(d) Taking (N¥, C* S) to be the N-localization relation, as in the proof of 534B, (¢, 1)) is a Galois-Tukey
connection from (Smz(X, p), C,Smz(X, p)) to (NN, C* 8)P, that is, (NY)P, T, SP), where T is the simple
product relation as defined in 512H. P ¢ : Smz(X,p) — (NY)? and ¢ : SP — Smz(X, p) are functions.
Suppose that A € Smz(X, p) and (Sg)aep are such that (¢(A4), (Sa)aep) € T, that is, ¢p4(A) C* Sy for every
d. Fix d € D for the moment. Then there is an n € N such that (i, ¢4(A)(7)) € Sy for every ¢ > n. Now, for
any m > n,

A C Uism Cati,pa)) € Uism Ujesain Cac .-

Thus

ACNyen Uizm UjGSd,[{i}] Cagi).j) = Yal(Sa)-
This is true for every d, so A C ¥({Sq)acp)- As A and (Sq)qep are arbitrary, (¢,v) is a Galois-Tukey
connection. Q
(e) Thus (Smz(X,p),C,Smz(X,p)) <cr (NY,C* 8)P. But (NN, C* S) =qr (N, C,N) (522M), so
(NN, C* 8)P =¢r (N, S, N)P (512Hb) and
(Smz(X, p), €, Smz(X, p)) <1 (N, S, N)P = (NP, <, NP

where < is the natural partial order of the product partially ordered set N'P. Accordingly Smz(X, p) <t
NP =2 AP as claimed.

534M Corollary (a) If (X, W) is a Lindelof uniform space, then add Smz(X, W) > add NV, where N is
the null ideal of Lebesgue measure on R.
(b) If X is a Lindelof regular topological space, then add Rbg(X) > add N.

proof (a) (i) If (X, p) is a separable metric space, then 534L tells us that Smz(X, p) <1 N°, so add Smz(X, p) >
add AV® = add N (513E(e-ii), 511Hg).

(ii) In general, if A C Smz(X, W) and #(A) < add N, take any metric space (Y, p) and uniformly
continuous f : X — Y. Then f[X] is Lindelof (5A4Bc), therefore separable (4A2Pc), and f[A] has strong
measure zero in f[X] for every A € A (534D(a-iii)), so f[lJA] = Jc4 f[A] has strong measure zero, by (i).
As f is arbitrary, | J.A has strong measure zero, by 534D(a-iv); as A is arbitrary, add Smz(X, W) > add NV.
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(b) Being Lindeldf and regular, X is paracompact and normal (4A2H(b-i)), so there is a uniformity W on
X, inducing its topology, with Rbg(X) = Smz(X, W) (534F); so add Rbg(X) = add Smz(X, W) > add N,
by (a).

534N Smz-equivalence (a) If (X, V) and (Y, W) are uniform spaces, I say that they are Smz-equivalent
if there is a bijection f : X — Y such that a set A C X has strong measure zero in X iff f[A] has strong
measure zero in Y. Of course this is an equivalence relation on the class of uniform spaces.

(b) If (X, V) and (Y, W) are uniform spaces, I say that X is Smz-embeddable in Y if it is Smz-equivalent
to a subspace of Y (with the subspace uniformity, of course). Evidently this is transitive in the sense that
if X is Smz-embeddable in Y and Y is Smz-embeddable in Z then X is Smz-embeddable in Z.

5340 Lemma (a) Suppose that (X,V) and (Y, V) are uniform spaces and that (X, )nen, (Yn)nen are
partitions of X, Y respectively such that X,, is Smz-equivalent to Y,, for every n. Then X is Smz-equivalent
to Y.

(b) Suppose that (X, W) and (Y,V) are uniform spaces such that X is Smz-embeddable in ¥ and Y is
Smz-embeddable in X. Then (X, W) and (Y, V) are Smz-equivalent.

proof (a) For each n € N, let f,, : X,, — Y}, be a bijection identifying the ideals of sets with strong measure
zero. Then f = J,,cy fn is a bijection identifying Smz(X, W) and Smz(Y,V).

(b) (Compare 344D.) Let X; C X and Y7 C Y be Smz-equivalent to Y, X respectively; let f: X — Y}
and g : Y — X; be bijections identifying the ideals of strong measure zero in each pair. Set Xy = X,
Yo =Y, Xpy1 = g[Ya] and Y41 = f[X,,] for each n > 1; then (X, ),en is a non-increasing sequence of
subsets of X and (Y,,)nen is @ non-increasing sequence of subsets of Y. Set Xoo = [,,cn Xn, Yoo = pen Yo
Then f]Xok \ Xogt1 is an Smz-equivalence between Xop \ Xog+1 and Yagy1 \ Yogto, while g] Yor \ Yor41 is
an Smz-equivalence between Yoy \ Yort1 and Xopi1 \ Xogto; and g Yy, is an Smz-equivalence between Yo,
and X. So (a) gives the required Smz-equivalence between X and Y.

534P Proposition R", ]0,1[", [0,1]" and {0, 1} are Smz-equivalent for every integer r > 1.

proof As these spaces are o-compact and completely regular, we do not have to specify the uniformities
we are thinking of, by 534Eb; in each case, the sets with strong measure zero are the sets with Rothberger’s

property.
a) Give R its usual metric p. Of course the identity maps are Smz-embeddings of |0, 1] in [0, 1] and |0,
p

in R. To complete the circuit, use 534Eb; any homeomorphism between R and ]0, 1] matches Rbg(R) =
Smz(R, p) with Rbg(]0,1[) = Smz(]0, 1], p). By 5340b, R and [0, 1] and ]0, 1] are Smz-equivalent.

(b) Give {0, 1} the metric p defined by saying that
plz,y) =inf{27" :n e N, x[n =yn}

for z, y € {0,1}". Define f : {0, 1} — [0,1] by setting f(z) = > 27" tz(n) for z € {0,1}". Then f is
continuous, therefore uniformly continuous, so f[A] has strong measure zero in [0, 1] whenever A C {0, 1}
has strong measure zero in {0,1}. It is also the case that f~![B] has strong measure zero whenever
B C [0,1] does. P Let (e,)nen be any sequence of strictly positive numbers. Then there is a sequence
(B )nen, covering B, such that diam B,, < %min(l,EQn,€2n+1) for every n. Fix n for the moment and
consider f~1[B,]. If k is such that 27%~! < diam B,, < 27%, then B,, can meet at most two intervals of the
type Ix; = [27%i,27%(i + 1)]. So f~![B,] can meet at most two sets of the type {z : 2|k = 2}, and we can
express it as Ag, U Ag, 11 where

max(diam Ay, ,diam Ay, 1) < 27F < 2diam B,, < min(ea,, €2,41)-

Putting these together, we have a cover (An)nen of U, ey /7' [Bn] 2 f7'[B] such that diam A, < ¢, for
every n; as (e,)nen is arbitrary, f~1[B] has strong measure zero. Q
Of course f is not a bijection, so it is not in itself an Smz-equivalence. But if we set

Dy = {z:2 € {0,1}", z is eventually constant},
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Dy ={27Fi:keN,i<2k}

then D; C {0,1}N and Dy C [0, 1] are countably infinite, and f]{0, 1} \ D; is an Smz-equivalence between
{0,1}N\ Dy and [0,1] \ Do. Putting this together with any bijection between D; and D, we have an
Smz-equivalence between {0, 1} and [0, 1].

(c)(i) I show by induction on r that [0,1]" is Smz-equivalent to R and therefore to [0,1]. The case r =1
is covered by (a). For the inductive step to r > 2, T adapt the method of (b). Give {0, 1}"*" the metric p
defined by setting

ple,y) =inf{27" :neN, z[(n xr)=y[(n xr)}
for x, y € {0, 1}%7. Define f : {0,1}"*" — [0,1]" by setting
fla) = (CZo 27 (i 4))i<r

for x € {0,1}"%". Then f is uniformly continuous, so f[A] has strong measure zero in [0,1]" whenever A
has strong measure zero in {0, 1}}"*". Moreover, we find once again that f~![B] has strong measure zero
whenever B C [0, 1]" has strong measure zero. I Let (€, )nen be a sequence of strictly positive real numbers.
This time, set m = 2" and let (B,,)nen be a cover of B such that diam B,, < %min(LinfmnSKanrm €)
for every n. (For definiteness, let me say that I am giving [0,1]" its Euclidean metric.) In this case, if
27k=1 < diam B,, < 27%, B, can meet at most 2" intervals of the form [27%*n,27%(n + 1)] where n € N"
and 1 = (1,...,1). So f~[B,] can meet at most 2" = m sets of the form {z : z[(k x r) = 2}, and can be
covered by m sets (A;)mn<j<mntm Where

diam A; < 27% < 2diam B,, < €

for every j. Putting these together, we have a cover (4;) ey of f~![B] such that diam A; < ¢; for every j;
as {€,)nen is arbitrary, f~![B] has strong measure zero. Q
The function f here is very far from being one-to-one. But if we set

Dy =U; Az 2 € {0,117, (2(i, j))ien € D1},

D; =U;, {2 :2€[0,1]", 2(j) € D2},

where D; C {0, 1}, Dy C [0, 1] are defined as in the proof of (b), then f is a bijection between {0, 1}*™\ Dy
and [0,1]" \ D3, so is an Smz-equivalence between these. Accordingly [0,1]" \ D} is Smz-embeddable in
{0,137 which is homeomorphic, therefore uniformly equivalent, to {0, 1}, which is in turn Smz-equivalent
to ]0,1[; so [0,1]" \ D3 is Smz-embeddable in ]0, 1.

Now consider D3. This is a countable union of sets which are isometric, therefore Smz-equivalent, to
[0,1]"! and therefore to ]0, 1[, by the inductive hypothesis. We can therefore express D3 as |J, o X»n where
(Xn)nen is disjoint and every X,, is Smz-embeddable in |0, 1[ and therefore in Jn + 1,7 4 2[. Assembling
these with the Smz-equivalence between [0,1]" \ Di and ]0,1[ we have already found, we have an Smz-
embedding from [0,1]” to R. In the other direction, we certainly have an isometric embedding of [0, 1] in
[0,1]" and therefore a Smz-embedding of R in [0, 1]"; so R and [0, 1] are Smz-equivalent. Thus the induction
proceeds.

(ii) As for R", we have a homeomorphism between R" and ]0,1[", which (because these again are
o-compact) is an Smz-equivalence and therefore an Smz-embedding of R” in [0,1]". So 5340b, once more,
tells us that R” and [0, 1]” and [0, 1] are Smz-equivalent.

(d) Thus R", ]0,1[", [0,1]" and {0,1}" are Smz-equivalent, for any uniformities inducing their usual
topologies.

534Q Large sets with strong measure zero It is a remarkable fact that it is relatively consistent
with ZFC to suppose that the only subsets of R with strong measure zero are the countable sets (LAVER 76,
THODA 88 or BARTOSZYNSKI & JUDAH 95, §8.3). We therefore find ourselves investigating constructions of
non-trivial sets with strong measure zero under special axioms.

Proposition (a) Let X be a Lindeldf space. Then non Rbg(X) > Mcountable-
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(b) (see FREMLIN & MILLER 88) Give NY the metric p defined by setting p(z,y) = inf{27" : n € N,
x[n = yln} for x, y € NN. Then non Smz(NY, p) = non Rbg(NY) = mcountable-

proof (a) Suppose that A C X and #(A4) < Meountable- Let (Gn)nen be a sequence of non-empty open
covers of X. Because X is Lindelof, we can choose for each n a non-empty countable G/, C G,, covering X.
Let P be the set of finite sequences p = (p(4));<n such that p(i) € G/ for every i < n; say that p < ¢ in P
if ¢ extends P. Then P is a countable partially ordered set. For each = € A, the set Q, = {p : € p(i)
for some ¢ < #(p)} is cofinal with P. I Given p € P, set n = #(p); let G € G/, be such that z € G set
q=pU{(n,G)};thenp <qe Q. Q

Because #(A) < Meountable < m'(P) (517Pc), there is an upwards-directed family R C P meeting every
Qs (517B(iv)). Now p* = [J R is a function; A C (J;cqom - P*(¢) and p*(i) € G; for every i € domp™. As
(Gn)nen is arbitrary, A has Rothberger’s property in X; as A is arbitrary, non Rbg(X) > Meountable-

(b) By 522Sb, there is a set A C NN with cardinal Mcountable, such that for every y € NN there is an
x € A such that x(n) # y(n) for every n. 7 If A € Smz(NV, p), take a sequence (y,)nen in NY such that
A C U, en Byn,27"71). Set y(n) = yn(n) for every n. Then there is an z € A such that z(n) # y(n) for
every n. But in this case x(n) # y,(n) and x[n+ 1 # y,[n+ 1 and x ¢ B(y,,27 ") for every n. X

Thus A witnesses that non Smz(NY, p) < Meountable: But we know from (a) that non Rbg(NY) > m ountable
and from 534Ea that non Smz(NY, p) > non Rbg(NY), so the three cardinals are equal.

534R Proposition (a) If (X, p) is a separable metric space and A C X has cardinal less than ¢, there is
a Lipschitz function f : X — R such that f[A is injective.

(b) (CARLSON 93) If k < ¢ is a cardinal and there is any separable metric space with a set with cardinal &
which is of strong measure zero, then there is a subset of R with cardinal x which has Rothberger’s property
in R.

(¢)(d) If cf(Meountable) = b there is a subset of R with cardinal mcountable Wwhich has Rothberger’s property
in itself.

(ii) (ROTHBERGER 1941) If b = w; there is a subset of R with cardinal w; which has Rothberger’s
property in itself.

(iii) If Meountable = 0 there is a subset of R with cardinal Mcountable which has Rothberger’s property in
itself.

proof (a) If X = 0 this is trivial. Otherwise, let {(x,)nen Tun over a dense sequence in X, and for z € X
define g, : R — R by setting
ga:(t) — ZZO:O min(l,p(w,xn))tn

n!

for t € R. Then g, is a real-entire function (5A5A). If z, y € X are distinct, then there must be some
n such that min(1, p(z, z,)) # min(1, p(y, ,)), so that one of the coefficients of g, — g, is non-zero, and
{t : g.(t) = gy(t)} is countable (5A5A). So if A C X and #(A) < ¢, we can find a ¢ > 0 such that
9z (t) # gy(t) for all distinct z, y € A. Set f(x) = go(t) for x € X; then f: X — R is a function such that
fTA is injective. If z, y € X then

n

n!|

[F(@) = F@)| =Y (min(1, p(z, 24)) — min(1, p(y, yn))*
n=0

< e'sup |p(z, zn) — p(y, yn)| < €'p(z,y),
neN

so that f is Lipschitz.

(b) Let (X, p) be a separable metric space with a set A € [X]* of strong measure zero. Then (a) tells us
that we have a uniformly continuous function f : X — R which is injective on A, so that f[A] € [R]* has
strong measure zero in R (534D (a-iii)).

(c)(i) Let (z¢)¢<p be a family in NV which is increasing and unbounded for the pre-order <* of 522C(i).

Let C' C Mcountable be a closed cofinal set with cardinal b (5A1Ae), and ((¢)¢<p the increasing enumeration
of C; let (Un)n<meommearse D€ @ family of distinct elements of NY such that y, > x¢ whenever £ < b and

Ce <1< (g1
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If K € NY is compact, then {n : Yy € K} has cardinal strictly less than meountanie. I Set z(n) =
sup, e y(n) for each n € N (I pass over the trivial case K = ()). Then there is a £ < b such that z¢ £* z.
If (¢ <1 < Mceountable, there is a & > ¢ such that Cer <1 < (er41 (this is where we need to know that C is
closed), and now

Yn = Ter >* x¢, ynng yn¢K~

So {n:y, € K} C (¢ has cardinal less than mcountable- Q

Let f: NN —[0,1]\ Q be any homeomorphism (4A2Ub), and consider A = {f(yy) : 7 < Mcountable } U Q.
Then #(A) = Mcountable- Also A has Rothberger’s property in A. P Of course Q, being countable, has
Rothberger’s property in A. Let G C R be an open set including Q. Then [0,1]\ G and K = f~1[[0,1] \ G]
are compact. Now

#(A \ G) = #({77 : yn S K}) < Mcountable

so A\ G has Rothberger’s property in A, by 534Qa. By 534D(b-iii), this is enough to show that A has
Rothberger’s property in itself. Q
Thus we have a set of the required kind.

(ii) This follows immediately if Mcountable = w1, and otherwise we can take any subset of R of cardinal
w1.

(iii) The argument is similar to that in (i). This time, let (z¢)e<p be a cofinal family in NY. For
each £ <0, let y¢ € NY be such that ye > x¢ and y¢ £ @, for any n < §. Again, if K C NY is compact,
then {n : y, € K} has cardinal strictly less than mcountable. I Taking x = sup K as before, there is a
€ < ¥ = Mceountable Such that < x¢; now for any 7 > £ we know that y,, € x¢ so y, ¢ K. Q The rest of the
proof proceeds as before. (The set {y, : 7 < 0} has cardinal ? because it is cofinal with NY.)

534S  Subject to the continuum hypothesis we have many ways of building sets with strong measure
zero, in addition to those in the proof of 534R. I give one example to suggest what can be done with a weak
form of Martin’s axiom.

Example Suppose that mcountable = €.
(a) There is a set A C [0,1] \ Q such that
() #(AN K) < ¢ for every compact K C [0,1] \ Q,
(B) there is a continuous function f : [0,1] \ Q — [0, 1] such that f[A] = [0, 1],
(v) A+ AD]0,1].
(b) Now A U Q has Rothberger’s property in itself, A € Rbg(R), A is not meager, A ¢ Rbg(R\ Q) and
A x A ¢ Rbg(R?).

proof (a)(i) For z € NN, define ¥ (x) € {0,1} by setting ¥(z)(n) = 0 if x(n) is even, 1 if z(n) is odd.
Then ¢ : N¥ — {0,1}" is a continuous surjection. Let ¢ : NY¥ — [0,1] \ Q be a homeomorphism (4A2Ub
again). Enumerate NV as (z¢)e<. and ]0,1] as (tg)e<e. For € <, set K¢ = {z: 2 € NV, 2 < ¢}, so that K¢
is compact and @[K¢] is a compact subset of [0, 1] \ Q, therefore nowhere dense in R. Write M for the ideal
of meager subsets of R, as in §522.

Choose (ag)e<c, (be)e<c and (ce)e. as follows. For each & < ¢, {z, : n < &£} is not cofinal with NV,
because

cfNN =0 > cov M = Meountable = ¢

(5221, 5228a again), so we can find a ye € NY such that ye £ oy for any n < ; raising ye if need be, we can
arrange that ¢ (ye) = ¥(x¢). Set ag = ¢(y¢). Consider

Ee = {o[Ky| :n <&} U {te — o[Ky] : n <P U{Q}U{te — Q}.
This is a family of fewer than ¢ = Meountable meager subsets of R, so does not cover |0, t¢[ (522Sa once more).
Take any be € ]0,t¢[\ U&; then neither be nor cg = t¢ — be belongs to QU U, - ¢[Ky].
At the end of the process, set

A={ac:E<cfU{be: &<t U{ee: &<}
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(ii)(e) If K C [0,1] \ Q is compact, then ¢~[K] C NV is compact, so there is an n < ¢ such that
¢ K] C K, and K C ¢[K,]. If n < & < ¢, ye ¢ K, so a¢ ¢ K, while neither b¢ nor c¢ belongs to
OK)) D K. So ANK C{ag: £ <npU{be: & <n}U{ce: & <n} has cardinal less than c.

(B) For z € {0, 1} set h(z) = % S0 27 (i), so that h : {0,1} — [0, 1] is a continuous surjection.
Set f = hyp¢~':[0,1]\ Q — [0,1]. Then f is continuous. Since ¢~ (ag) = ¢ (ye) = ¥ (z¢) for every £ < ¢,
Yo A] = {0, 1} and f[A] = [0,1]. So f[A is a surjection from A onto [0, 1].

(7) Since t¢ = bg +cc € A+ A for every £ < ¢, A+ A D]0,1].

(b)(i) Let H C AU Q be a relatively open set including Q, and take an open set G C R such that
H=GN(AUQ). Then K = [0,1] \ G is a compact subset of [0,1] \ Q and ¢~![K] is a compact subset
of NY. There is therefore an 1 < ¢ such that ¢~![K] is bounded above by w,, that is, ¢ 1[K] C K, and
K C ¢[K,]. So neither a¢ nor bg nor c¢ can belong to K for any £ > 1, and #(AN K) < ¢ = Meountable- BY
534Qa, (AUQ)\ H = (AUQ) \ G = AN K belongs to Rbg(AUQ); as Q € Rbg(AUQ) and H is arbitrary,
A € Rbg(AU Q) (534D(b-iii)).

(ii) As the embedding AU Q G R is continuous, A U Q € Rbg(R) (534D(b-ii)) and A € Rbg(R)
(534D (b-1)).

(iii) By 534Ea, A is of strong measure zero for the usual metric on R. Setting B = A+ Z, B is the
union of a sequence of sets isometric to A, so is of strong measure zero. As A+ A 2]0,1], B+ A=R; by
534K, A is not meager.

(iv) Of course [0, 1] is not of strong measure zero for its usual metric (534H) so does not belong to
Rbg([0,1]) (534Ea); now (a-f) here and 534D(b-ii) tell us that A cannot belong to Rbg([0,1] \ Q). But
[0,1] \ Q is relatively closed in R\ Q, so A cannot belong to Rbg(R \ Q), by 534D (b-iv).

(v) If we give R and R? their usual metrics, addition is a uniformly continuous function from R? to R,
while A+ A D ]0,1] is not of strong measure zero. So A x A is not of strong measure zero (534D (a-iii)) and
cannot belong to Rbg(R?).

534X Basic exercises (a)(i) Let (X, p) be a metric space, 7 > 0 and A C X a set with strong measure
zero. Show that A has zero Hausdorff r-dimensional measure. (ii) Find a subset of R? which is universally
negligible but does not have strong measure zero (for the usual metric on R?). (Hint: 439G.) (iii) Find
a subset of {0,1}" which is universally negligible but does not have strong measure zero for the metric of
534Qb.

(b) Let r, s > 1 be integers. Let A C R” be a set with strong measure zero, and f : A — R* a function
which is differentiable relative to its domain at every point of A. Show that f[A] has strong measure zero.
(Hint: 262N.)

(c) Let (X, W) and (Y,V) be uniform spaces and f : X — Y a continuous function. Suppose that
A € Smz(X, W) is covered by a sequence of compact subsets of X. Show that f[A] € Smz(Y, V).

(d) Let X be a o-compact topological space which is either Hausdorff or regular, and A C X. Show that
A € Rbg(X) iff for every sequence (G, )nen of finite open covers of X, there is a sequence (G, )nen, covering
A, such that G,, € G, for every n.

(e) Let (X, W) be a Hausdorff uniform space with strong measure zero. Show that X is universally
negligible iff it is a Radon space.

(f)(1) Let (X,W) be a Hausdorfl uniform space. Show that if X has strong measure zero then it is
universally 7-negligible. (ii) Let X be a Hausdorff topological space. Show that if A € Rbg(X) then A is
universally 7-negligible (definition: 439Xh).

(g) Give wy + 1 its order topology. Show that it has Rothberger’s property in itself but is not universally
negligible.
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(h) Give wy 4 1 its order topology. Show that w; has Rothberger’s property in w; + 1 but not in itself.

(i) Let X be a locally compact Hausdorff topological group. Show that a subset of X has Rothberger’s
property in X iff it has strong measure zero for the right uniformity of X iff it has strong measure zero for
the bilateral uniformity of X.

(§)(i) Let (X, W) be a Lindelof uniform space. Show that there is some x such that Smz(X, W) <1t ",
where N is the null ideal of Lebesgue measure on R. (ii) Let X be a regular Lindelof space. Show that
there is some & such that Rbg(X) <1 N*.

(k) Show that every separable metric space (X, p) is uniformly equivalent to a subspace of [0, 1] and is
therefore Smz-embeddable in [0, 1]Y.

(1) Let (I,)nen be a non-decreasing sequence of finite sets covering Z. For =, y € ZN set p(z,y) =
inf{27" : n € N, z[I,, = y[I,}. Show that p is a metric on Z" inducing its topological group uniformity
(4A5He), and that non Smz(ZY, p) = Meountable-

(m) (i) Show that no cofinal subset of NN has strong measure zero for the metric p of 534Qb. (ii) Suppose
that Meountable = 0. Show that there are a subset A of R\ Q and a metric p’ on R\ Q inducing the usual
topology of R\ Q such that A has strong measure zero for the usual metric on R but not for p’.

(n) Let A be the set constructed in 534Sa on the assumption that Mcountable = ¢. Show that A has strong
measure zero for the usual metric of R, and describe a metric on [0,1] \ Q, inducing the usual topology on
[0,1] \ Q, for which A does not have strong measure zero. (See also 534Ye.)

(o) [In this exercise, I will say that a topological space which has Rothberger’s property in itself has
‘property C".] (i) Show that any Lindel6f space with cardinal less than mcountable has property C’. (ii) Show
that if X is a topological space expressible as the union of a sequence of subspaces with property C’, then
X has property C'. (iii) Show that if X is a regular Lindelof space expressible as the union of fewer than
add \V subspaces with property C’, then X has property C’. (iv) Show that a continuous image of a space
with property C’ has property C’. (v) Show that a closed subset of a space with property C’ has property
C’. (vi) Show that if X is a topological space, A C X has property C’ and every closed subset of X \ A has
property C’, then X has property C'.

534Y Further exercises (a) Let (X, p) be an analytic metric space and p g, Hausdorff r-dimensional
measure on X, where r > 0; suppose that pg,-X > 0. Let Z be the o-ideal of subsets of X generated by
{A: p}, A < oco}. Show that

non N (pg,) = min(non N,nonZ) = non N if up, is o-finite,

nonZ otherwise.

(b)(i) Set Z = {[4™™i,4"™(i+ 1)[: m € N, i € Z}. For A C Rset §(A) = inf{> ;. Vdiam1:Z' C T
covers A}. Show that if Ng?uz is Hausdorff }-dimensional measure on R, then Mg?l/Q(A) =0iff 6(A) = 0.
(i) Set J = {[27™i,27 (i + 1)[ x [27™§,27 (i + 1)[: m € N, i, j € Z}, and for A € R? set 0'(A) =
inf{} ;. diamJ : J" C J covers A}. Show that if ,ug)l is Hausdorff 1-dimensional measure on R?, then

ug)l (A) =0iff #’(A) = 0. (iii) Show that the null ideals N(Ng)uz) and N(ﬂg)l) are isomorphic.

(c) Show that if either non N = c¢f N/ or non N < cov N, where N is the null ideal of Lebesgue measure
on R, then Hausdorff one-dimensional measure on R? does not have the measurable envelope property.

(e) Suppose that Meountable = ¢. Let X be the group of all permutations of N, regarded as the isometry
group of N with its {0, 1}-valued metric, so that X is a Polish group (441Xq). Show that there is a subset
A of X such that A has strong measure zero for the right uniformity of X but A~! does not.
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(d) Let & be a collection of families of sets. Let us say that a set A has the &-Rothberger property if
for every sequence (G,,)nen in & there is a cover (G, )nen of A such that G,, € G, for every n € N. (i) Show
that the family Z of sets with the &-Rothberger property is a o-ideal of sets containing every countable
subset of (gee UG- (ii) Show that if § is another collection of families of sets, and f is a function such
that for every H € §) there is a member of & refining {f~![H] : H € H}, then f[A] has the -Rothberger
property whenever A € Z. (iii) Suppose that & is a collection of families of open subsets of a topological
space X, that A € T has the &-Rothberger property, and that B C X is such that B\ G € T for every open
set G O A. Show that B € Z. (iv) Suppose that X =G for every G € &, and that every member of & is
countable. Show that non(Z, X) > Meountable-

(e) Suppose that Meountable = 0. Show that there are two complete metrics p, p’ on NV, both inducing
the usual topology of NY, such that Smz(NY, p) # Smz(NN, o).

534Z Problems (a) Let ,ug)l be one-dimensional Hausdorff measure on R2. Is the covering number

cov./\/(,ug)l) necessarily equal to covAN? As observed in 534Bc-534Bd, we have covN' < cov./\/(ug)l) <
non M. We can ask the same question for r-dimensional Hausdorff measure on R™ whenever 0 < r < n; in
particular, for r-dimensional Hausdorff measure on [0, 1], where 0 < r < 1, and these questions are strongly

connected (534YDb). SHELAH & STEPRANS 05 show that nonN(ug)l) can be less than non \; of course this
is possible only because ug)l is not semi-finite (439H, 521Xg).

(b) Can cfRbg(R) be wy?

(c) How many types of complete separable metric spaces under Smz-equivalence can there be? If we give
N the metric of 534Qb, can it fail to be Smz-equivalent to [0, 1]N with the metric (z,y) — sup, ey 27" |z(n)—

y(n)[?

(d) Suppose that there is a separable metric space with cardinal ¢ with strong measure zero. Must there
be a subset of R with cardinal ¢ with Rothberger’s property in R?

(e) On R, let T be the usual topology and & the right-facing Sorgenfrey topology (415Xc). Must
Rbg(R, &) and Rbg(R, ) be the same?

534 Notes and comments I have very little to say about Hausdorff measures, and 534B is here only
because it would seem even lonelier in a section by itself. All I have tried to do is to run through the obvious
questions connecting §471 with Chapter 52. But at the next level there is surely much more to be done
(5347Za).

‘Strong measure zero’ has attracted a great deal of attention, starting with the work of E.Borel, who
suggested that every subset of R with strong measure zero must be countable; this is the Borel conjecture.
It turns out that this is undecidable in ZFC (see the preamble to 534Q), and that if the Borel conjecture is
true then there are no uncountable sets of strong measure zero in any separable metric space (534Rb). So
we have some questions of a new kind: in the ideals Smz(X, W) of sets of strong measure zero, in addition
to the standard cardinals add, non, cov and cf, we find ourselves asking for the possible cardinals of sets
belonging to the ideal.

The next point is that strong measure zero is not (or rather, not always) either a topological property or a
metric property; it is a property of uniform spaces. We must therefore be prepared to examine uniformities,
even if we are happy to stay with metrizable ones. In 534Xm we see that we can have a set which has strong
measure zero for one of two equivalent metrics and not for the other. GOLDSTERN JUDAH & SHELAH 93
describe a model in which Mcountaple = w1, add Rbg(R) = ¢ = wo and there is a subset of R of cardinal
wy with strong measure zero. So in this case NN, with the metric described in 534Qb, is not even Smz-
embeddable in R with its usual metric. Of course in models of set theory in which the Borel conjecture is
true we do have a topologically determined structure on any separable metrizable space.

Note that for any uncountable complete separable metric space (X, p), there is a subset of X homeomor-
phic to {0, 1} (423Ba, 423K?), and the homeomorphism must be a uniform equivalence; so that {0, 1}

3Formerly 423J.
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and its companions [0,1]", R” (534P) must be Smz-embeddable in X. In this sense they are the ‘simplest’
uncountableomplete metric spaces. In the same sense, [0,1]" is the most complex separable metric space
(534XXk).

For o-compact spaces, strong measure zero becomes a topological property (534Eb), corresponding to
what I call ‘Rothberger’s property’ (534Cb). ROTHBERGER 1938B investigated subsets of R which have
Rothberger’s property in themselves, under the name ‘property C”’. The ideas of 534Da and 534L-534Ma
can be re-presented as theorems about Rothberger’s property (534Db, 534Mb, 534Xj ); the machinery of
534Yd is supposed to suggest a reason for this. It is natural to be attracted to a topological concept, but
there is a difficulty in that Rothberger’s property is not hereditary in the usual way (534Xh, 534Xm, 534Xn).
I note that while 534P can be stated in terms of Rbg-equivalence, isomorphism of the ideals of sets with
the appropriate Rothberger’s property, the concept of strong measure zero seems to be necessary in the
Schroder-Bernstein arguments based on 5340. Of course the spaces here are paracompact and normal, so
534F gives us an alternative approach to this issue.

For a fuller discussion of strong measure zero in R, see BARTOSZYNSKI & JUDAH 95, chap. 8, from which
many of the ideas of this section are taken.

Version of 1.6.11
535 Liftings

I introduced the Lifting Theorem (§341) as one of the fundamental facts about complete strictly localizable
measure spaces. Of course we can always complete a measure space and thereby in effect obtain a lifting for
any o-finite measure. For the applications of the Lifting Theorem in §§452-453 this procedure is natural and
effective; and generally in this treatise I have taken the view that one should work with completed measures
unless there is some strong reason not to. But I have also embraced the principle of maximal convenient
generality, seeking formulations which will exhibit the full force of each idea in the context appropriate
to that idea, uncluttered by the special features of intended applications. So the question of when, and
why, liftings for incomplete measures can be found is one which automatically arises. It turns out to be a
fruitful question, in the sense that it leads us to new arguments, even though the answers so far available
are unsatisfying.

As usual, much of what we want to know depends on the behaviour of the usual measures on powers
of {0,1} (535B). An old argument relying on the continuum hypothesis shows that Lebesgue measure can
have a Borel lifting; this has been usefully refined, and I give a strong version in 535D-535E. We know that
we cannot expect to have translation-invariant Borel liftings (345F), but strong Borel liftings are possible
(535H-535I), and in some cases can be built from Borel liftings (535J-535N).

For certain applications in functional analysis, we are more interested in liftings for L> spaces than
in liftings for measure algebras; and it is sometimes sufficient to have a ‘linear lifting’, not necessarily
corresponding to a lifting in the strict sense (5350, 535P). I give a couple of paragraphs to linear liftings
because in some ways they are easier to handle and it is conceivable that they are relevant to the main
outstanding problem (535Zf).

535A Notation (a) The most interesting questions to be examined in this section can be phrased in the
following language. If (X, X, 1) is a measure space and ¥ a topology on X, I will say that a Borel lifting
of p is a lifting which takes values in the Borel o-algebra B(X) of X. (As usual, I will use the word ‘lifting’
indifferently for homomorphisms from ¥ to itself, or from 2 to X, where 2 is the measure algebra of u. Of
course a homomorphism 6 : 2 — ¥ is a Borel lifting iff the corresponding homomorphism F +— 0FE°® : ¥ — %
is a Borel lifting.) Similarly, a Baire lifting of p is a lifting which takes values in the Baire o-algebra
Ba(X) of X.

(b) T remark at once that if (X,%T,%, ) is a topological measure space and ¢ : ¥ — B(X) is a Borel
lifting for p, then ¢[B(X) is a lifting for the Borel measure p[B(X). Conversely, if ¢' : B(X) — B(X) is
a lifting for p[B(X), and if for every F € ¥ there is a Borel set E’ such that EAFE’ is negligible, then ¢’
extends uniquely to a Borel lifting ¢ of u.

In the same way, any Baire lifting for a measure p which measures every zero set will give us a lifting for
ulBa(X); and a lifting for p[Ba(X) will correspond to a Baire lifting for p if, for instance, p is completion
regular, as in 535B below.
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(c) As in Chapter 52, I will say that, for any set I, v; is the usual measure on {0,1}/ and B its measure
algebra.

535B Proposition Let (X, X, i) be a strictly localizable measure space with non-zero measure. Suppose
that v, has a Baire lifting (that is, v, [Ba({0,1}"*) has a lifting) for every infinite cardinal x such that the
Maharam-type-x component of the measure algebra of p is non-zero. Then p has a lifting.

proof Write (2, i) for the measure algebra of p.

(a) Suppose first that u is a Maharam-type-homogeneous probability measure. In this case 2 is either
{0,1} or isomorphic to B, for some infinite k. The case A = {0,1} is trivial, as we can set ¢pE =  if
E € ¥ is negligible, ¢oF = X if F € ¥ is conegligible. Otherwise, 2 is 7-generated by a stochastically
independent family (e¢)e<, of elements of measure % For each £ < k, choose E¢ € ¥ such that Ef = e,
and define f : X — {0,1}" by setting f(z)(§) = xEe(z) for x € X and £ < k. Then {F : F C {0,1}", vF
and pf~1[F] are defined and equal} is a Dynkin class containing all the measurable cylinders in {0, 1}, so
includes Ba,, = Ba({0,1}*), and f is inverse-measure-preserving for u and v/, = v, [Ba,. Note that B, can
be identified with the measure algebra of v/ (put 415E and 322Da together, or see 415Xs*). So we have
an induced measure-preserving Boolean homomorphism 7 : 9B, — 2 defined by setting 7F* = f~1[F]* for
every F' € Ba,. Since 7[B,] is an order-closed subalgebra of 2 (324Kb) containing every e, it is the whole
of 2.

We are supposing that there is a lifting 6 : B, — Ba, of v,. Define 6; : % — ¥ by setting 61a =
f7t07ta] for every a € 2; then 6; is a Boolean homomorphism because 6 and 7! are, and

(01a)* =77 1a)) =nan"la=a
for every a € 2, so 6, is a lifting for pu.

(b) It follows at once that if p is any non-zero totally finite Maharam-type-homogeneous measure, then
it will have a lifting, as we can apply (a) to a scalar multiple of p. Now consider the general case. Let K be
the family of measurable subsets K of X such that the subspace measure pg is non-zero, totally finite and
Maharam-type-homogeneous. Then p is inner regular with respect to I, by Maharam’s theorem (332B).
By 412Ia, there is a decomposition (X;);c; of X such that at most one X; does not belong to K, and that
exceptional one, if any, is negligible; adding a trivial element X = () if necessary, we may suppose that
there is exactly one k € T such that uXjy = (. For each i € I\ {k}, let u; be the subspace measure on X;,
and ¥; its domain; then p; has a lifting ¢; : ¥; — 3;. (The point is that if the Maharam type k of y; is
infinite, then the Maharam-type-x component of 2 includes X! and is non-zero, so our hypothesis tells us
that v, has a Baire lifting.) At this point, recall that we are also supposing that X > 0, so there is some
j €I\ {k};fix z € X;, and define ¢ : ¥ — PX by setting

oE= |J ¢i(ENX)ifz¢¢;(ENX;),
ieI\{k}
=XpU |J #(ENX,)ifz€g;(ENX;).
ieI\{k}
Then ¢ is a lifting for . PP It is a Boolean homomorphism because every ¢; is. If £ € ¥, then X; N ¢F =

o, (ENX;)ifi e I\ {k}, and is either Xj, or () if ¢ = k; in any case, it belongs to X;; as (X;)ier is a
decomposition for p, ¢F € 3. Also

WEAQE) < Xy + 3 ey (BN X)) Adi(EN X)) = 0.
Finally, if uE = 0, then p;(ENX;) =0 and ¢;(EN X;) =0 for every i € I\ {k}, so ¢oE =10. Q
535C Proposition If A and k are cardinals with A = A\* < k, and v,, has a Baire lifting, then v has a
Baire lifting.

proof If X is finite, the result is trivial, so we may suppose that A > w (and therefore that A > ¢). For
I C k, write Ba; for the Baire o-algebra of {0,1}! and T; for the family of those £ € Ba, which are

4Formerly 415Xp.
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determined by coordinates in I. Set 77(x) = x[I for every x € {0,1}*; then H + 7, '[H] is a Boolean
isomorphism between Ba; and Ty, with inverse E +— m;[E]. PP Because 77 is continuous, W;l[H] € Ba,
for every H € Ba;. Of course H — W;l[H ] is a Boolean homomorphism, and it is injective because 7 is
surjective. Identifying {0,1}* with {0,1}! x {0,1}*\! we have a function h : {0,1} — {0,1}* defined by
setting h(v) = (v,0) for v € {0,1}!. This is continuous, therefore (Bas, Ba,)-measurable. If E € Ty, then
E =77 7[[E]) = 7y R YE]]; so H — 77 '[H] is surjective and is an isomorphism. Q

Consequently #(T;) < ¢ for every countable I C x (4A10, because Bay is o-generated by the cylinder
sets, by 4A3Na). For any I, T; = |J Je(n=« T, because every member of Ba; is determined by coordinates
in a countable set (4A3Nb). So #(T;) < max(c, #(I)¥) = XA whenever I C x and #(I) = .

Let ¢ be a Baire lifting for v,. Choose a non-decreasing family (J¢)¢<w, in [k]* such that Jo = A and
¢E € Ty, whenever { <w; and E € T,. Set J = U£<w1 Je; then Ty = U5<w1 T, s0 oF € T for every
EeT;.

We therefore have a Boolean homomorphism ¢ : Ba; — Ba; defined by setting ¢ H = m;[¢(7; ' [H])]
for every H € Ba,. If vyH = 0, then v,7; ' [H] = 0 and ¢ H = ¢(n;'[H]) = 0. For any H € Ba,,

m; (HAG H] = m ) [H] Ag(m [ H])
is v,-negligible, so HA¢1 H is v -negligible. Thus ¢; is a lifting for v;[Bay. As vj[Bay is isomorphic to

va[Bay, the latter also has a lifting. As vy is completion regular (416U), the measure algebra of vy [Bay
can be identified with 2B, and we can interpret a lifting for v, [Ba, as a Baire lifting for its completion vy.

535D The following result covers most of the cases in which non-complete probability measures are
known to have liftings.

Theorem Let (X,3, 1) be a measure space such that uX > 0, and suppose that its measure algebra is
tightly wi-filtered (definition: 511Di). Then p has a lifting.

proof This is a special case of 518L.

535E Proposition Suppose that ¢ < ws and the Freese-Nation number FN(PN) is wy.
(a) If 2 is a measurable algebra with cardinal at most ws, it is tightly w;-filtered.
(b) (MOKOBODZKI 77) Let (X,X, 1) be a o-finite measure space with non-zero measure and Maharam
type at most wa.
(i) p has a lifting.
(ii) If T is a topology on X such that p is inner regular with respect to the Borel sets, then p has a
Borel lifting.
(iii) If T is a topology on X such that p is inner regular with respect to the zero sets, then p has a
Baire lifting.

proof (a) By 5240(b-iii), FN(2() < wy, so 518M gives the result.
(b)(i) By 514De, the measure algebra of p has cardinal at most
w§ = max(c,ws) < wo
(5A1F (e-iii)). So we can put (a) and 535D together.

(i) Because pu is o-finite and inner regular with respect to the Borel sets, every measurable set can
be expressed as the union of a Borel set and a negligible set. By (i), u[B(X) has a lifting, which can be
interpreted as a Borel lifting for u, as in 535Ab.

(iii) As (ii), but with Ba(X) in place of B(X).

535F Using the continuum hypothesis, we can go a little farther with ideas from 341J.

Proposition Let (X, 3, u) be a measure space such that X > 0 and #(2() < wy, where 2 is the measure
algebra of p, and suppose that 6 : % — ¥ is such that

00=10, 6H(anb)=60angbforalla,be, (fa)*® Ca foreveryac .
Then p has a lifting 6 : A — ¥ such that 6E* O 6F for every E € 3.
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proof (a) Adjusting 01 if necessary, we can suppose that §1 = X. Note that fa C §b whenever a C b in
2A. Let (a¢)¢<w, be a family running over 2, and for a < w; let €, be the subalgebra of 2 generated by
{a¢ : £ < a}. Define Boolean homomorphisms 6, : €, — ¥ inductively, as follows. The inductive hypothesis
will be that (6,¢)* = ¢ and f,c 2 fc for every ¢ € €,, while 6, extends 6g for every S < a. Start with
600 =0, 61 = X.

(b) Given 6,, where o < wy, set

F=U{f(cuan)\bac:ce &y},

G=U{f(cu(1\aq))\Osc:ce,}.
Because €, is countable, F' and G belong to X. If ¢ € €, then
(B(cuaq) \ bac)* =0(cuay)*\c C (cUan)\ ¢ C aq,

so F'* C aq; similarly, G* € 1\ ay. Next, FNG =(. P If b, c € €, then

(B(buay) \ 0ab) N(B(cu(1\an)) \ bac) =0((buay)n(cu(l\ay)))\ (Babubyc)
Chbuc)\b,(buc)=0. Q

Choose any E € ¥ such that E* = a, and set E, = (EUF)\ G; then £} = a,, F C E, and GNE, = 0.
If c€ €, and ¢ C a,, then 8((1\c)Ua,) =01 = X, so

Oac=0((1\c)uas)\ba(1\c) C F C E,.
Similarly, if ¢ € €, and cna, = 0, then
fac=10((1\c)u(1\aa)) \ba(l\c) € G
is disjoint from E,. We can therefore define a Boolean homomorphism 6,41 : €441 — ¥ by setting
Out1((bnag) u(e\an)) = (0abNEL) U (B.c\ Ey)

for all b, ¢ € €, (3120), and 0,41 will extend 03 for every 8 < a + 1. Because (0n1104)° = ES = aq and
Oor1c = O4c for every ¢ € €, (0ar1a)® = a for every a € €oaq.
I have still to check the other part of the inductive hypothesis. If b, ¢ € €,, then

0((bnaa)u(c\aa)) =0((buc)n(cuaa)n(bu(l\aa)))

(buc)NBlcuay) NBbU(1\ aq))

w(buc) N (FUbOye) N (GUGLD)

wtr1(buc) N (Oat1a0 UbOar1c) N (Oag1(1\ an) UBni1b)
=bat+1((bnaa)u(c\aq)),

which is what we need to know.

(c) For non-zero limit ordinals o < wy, we have €, = Uﬂ<a €3 so we can, and must, take 8, = U/3<a 5.
At the end of the induction, 6, : A — X is an appropriate lifting.

535G Corollary (see NEUMANN 1931) Suppose that ¢ = wy. Then for any integer r > 1 there is a Borel
lifting 6 of Lebesgue measure on R” such that x € §FE* whenever E C R” is a Borel set and z is a density
point of E.

proof In 535F, let § be lower Lebesgue density (341E), interpreted as a function from the Lebesgue measure
algebra to the Borel o-algebra. We need to check that §F* is indeed always a Borel set; this is because
o __ i 4% — B H /’L(EOB('Z‘7277L)) —
0F° = int*FE = {z : lim, o T Baa) 1}
and the functions © — p(E N B(xz,27™)) are all continuous (use 443B).

535H Again using the continuum hypothesis, we have some results on ‘strong’ liftings, as described in
§453.
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Theorem Let (X, T, %, 1) be an effectively locally finite 7-additive topological measure space with measure
algebra 2. If #(2) < add p and p is strictly positive, then u has a strong lifting.

proof (a) For each a € , set
a=({F:F CXisclosed, F* D a}.

Then @ is closed and @* 2 a (414Ac). If a, b € 2, then aub =aUb. P Of course auUb D @U b, because the
operation ~ is order-preserving. On the other hand, @Ub is a closed set and (@Ub)* Daub,soaUb D aub.

Q
For a subalgebra 9B of 2, say that a function 6 : B — ¥ is ‘potentially a strong lifting’ if it is a Boolean

homomorphism and (6b)* = b and 6b C b for every b € B.

(b) (The key.) Suppose that B is a subalgebra of 2, with cardinal less than add u, and ¢ € ; let B,
be the subalgebra of 2 generated by B U {c}. If § : B — X is potentially a strong lifting, then it has an
extension #; : B — X which is also potentially a strong lifting.

P Set

Co=U{0a:a€B,acc}
Do ={0b:be B, cCb},
Cy =J{fa\a\c:aec B},

Dy =N{(X\6b)Ubnc:be B}

Fix Fy € ¥ such that Ej = c.
Ifa,a,b,b € B and a’ CcC¥, then

a Cb,sofa C OV,

Oa' nBb=0(a'nb) Ca’'nbCbnc,sobd C(X\0b)Ubng;

Oa\ O = 0(a\V) Ca\b Ca\e, soba\a\cC o,

fanbb=0(anb) Canb=anbncUanb\cCa\cUbne,
SO
Ba\a\cC (X \Ob)Ubnec.
This shows that Cy UCy C Dy N Dy. At the same time,

E§ =c2d,s0 6a’\ Ey is negligible;
Ey=ccl/,so Ey\0Ob is negligible;

(EgUa\c¢)*2cul(a\c)da= (ba)
so (fa\ @ane) \ Ey is negligible;
Ey=cc(1\bu(bne) (X \6b)* ubnc,
so Eg \ (X \ 6b) Ubnc) is negligible. Because #(B) < addpu, (Co U Cy) \ Eg and Ey \ (Dg N D) are

measurable and negligible.
If we set

FE = (E()UC()UCl)ﬁ (DoﬂDl),

then £ € ¥, E* =cand CoUC; C Ey C Dy N Dy. So we can set #1¢ = E to define a homomorphism from
B to ¥ (3120 again), and we shall have (61d)* = d for every d € B;.

We must check that 61d C d for every d € B;. Now d is expressible as (bnc)u (a\ ¢) for some a, b € B,
and in this case

ObNECObN((X\Ob)Ubnec)Chne,
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fa\ E C 6a\ (6a\a\ec) Cave,

SO

61d = (ObNE)U (fa\ E) CbncUa\c=d.
So 67 is a potential strong lifting, as required. Q
(c) Enumerate 2 as (ag)ecr, where k < add p, and for o < k let B, be the subalgebra of 2 generated by
{ag : € < a}. Then (b) tells us that we can choose inductively a family (6,)a<x such that 6, : B, - X isa
potential strong lifting and 6,41 extends 6, for each o < k. (At non-zero limit ordinals «, B, = UE <o Be
so we can take 6, to be the common extension of U5 <o Ve We need to know that p is strictly positive in
order to be sure that 1 = X, so that we can take 61 = X.) In this way we obtain a lifting = 6,; of u. Also

fa C @ for every a € 2. Looking at this from the other side, if F C X is closed then F'* C F so §(F*) C F,
and 0 is a strong lifting.

5351 Corollary (see MOKOBODZKI 75) Suppose that ¢ = wy. Let (X,%, %, u) be a strictly positive
o-finite quasi-Radon measure space with Maharam type at most wy = ¢. Then p has a strong Borel lifting.

proof Because p is o-finite, its measure algebra 2 is ccc, and has size at most ¢ = wi; so we can apply
535H to uB(X).

535J Under certain conditions, we can deduce the existence of a strong lifting from the existence of a
lifting. The basic case is the following.

Lemma Let (X, %, X, 1) be a completely regular totally finite topological measure space with a Borel lifting
¢. Suppose that K C X is a self-supporting set of non-zero measure, homeomorphic to {0, 1}N , such that
K NG C ¢G for every open set G C X. Then the subspace measure px has a strong Borel lifting.

proof (a) Taking £ to be the algebra of relatively open-and-closed subsets of K, we have a Boolean
homomorphism v : £ — B(X) such that E C int ¢)oF for every E € £. P We have a Boolean-independent
sequence (E,)nen in & which generates £ and separates the points of K. Because every member of & is
compact, we can choose for each n € N an open H, C X such that F, = KN H, = KN H,. Define
h: X — K by saying that, for every n € N and z € X, h(z) € E,, iff z € H,. Define ¢ : £ — B(X) by
setting Yo E = h~![E] for E € £. Then vy is a Boolean homomorphism. The set
{E:Ee€& ECintyyoE, K\ E Cintyo(K \ E)}

is a subalgebra of £ containing every E,, so is the whole of £, and 1y has the required property. Q

(b) Let 2 be the measure algebra of u, and 6 : 2 — B(X) the lifting corresponding to ¢. Set 1 E =
(Yo F)* for E € £, so that ¢ : £ — A is a Boolean homomorphism. Let Z be the null ideal of px. Because K
is self-supporting, ENZ = {@}. Taking &’ = {EAF : E €&, F € I}, &' is a subalgebra of PK, and we have
a Boolean homomorphism ¢’ : & — £ defined by setting ¢/(EAF) = E whenever E € £ and F € T; set
Y =19, so that ¥ : & — 2 is a Boolean homomorphism extending ¢, and ¥j F = 0 whenever I € 7.

Because p is totally finite, 2 is Dedekind complete, and there is a Boolean homomorphism 3, : PK — 2
extending ¢ (314K). Now set

¢ E=KN(¢EU (001 F \ ¢K))

for every measurable E C K. Then ¢ is a strong lifting for pux. P ¢[Xk is a Boolean homomorphism from
the domain Yx of px to B(¢K), while E — 6y, E\ ¢K is a Boolean homomorphism from X to B(X \ ¢K);
putting these together, ¢; is a Boolean homomorphism from Y i to B(K). If E € Xk, then EA(K N ¢F)
and K \ ¢K are negligible, so EA¢1 E is negligible. If £ € X is negligible, then ¢F =0, ] F =0 and ¢ F
is empty. Thus ¢, is a lifting for px. Morover, if £ € £, set G = int o E, so that E = K N G. In this case,

E C ¢G = 0G* CO(poE)* = 0 E = 0yn E,
while
EN¢K C ¢GNopK = ok,
so E C ¢ FE. Soif V C K is relatively open,
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V=I{E:Fec&, ECV}CUnFE:EcE, ECVICHV.
Thus ¢, is strong. Q

535K Lemma Let X be a metrizable space, 1 an atomless Radon measure on X and v an atomless
strictly positive Radon measure on {0, 1}". Let K be the family of those subsets K of X such that K, with
the subspace topology and measure, is isomorphic to {0, 1} with its usual topology and a scalar multiple
of v. Then p is inner regular with respect to K.

proof (a) It will be helpful to note that if F € domu and v < pE there is a compact set K C E such
that uK = . B Let (7,)nen be a strictly decreasing sequence with vy < pE and inf, ey, = 7. Choose
(Kn)nen, (En)neny inductively as follows. Eg = E. Given that pF, > v,, let K,, C E,, be a compact set
such that pK, > v,; now let F, 11 be a measurable set with measure 7, (215D, because y is atomless). At
the end of the induction, set K =, Kn- Q

(b) Now for the main argument. Suppose that 0 < v < pF. Let (y,)nen be a strictly decreasing
sequence with 79 < pE and infren v, = 7. Set 7, = (Y + Ynt1) for each n. For o € J,,cn{0,1}", set
I, ={z:0C 2z ¢€{0,1}N}. Let Ky be a compact subset of E of measure 7p; because X is metrizable, K,
is second-countable; let (V;,)nen run over a base for the topology of Ky. Choose (m(n))neny and L, for
o € {0,1}™™  as follows. Start with m(0) = 0 and Ly = K. Given that (Lo)oeqoymen s a disjoint family
of compact subsets of X with uL, = v,v1, for every o € {0,1}™™ let m(n + 1) > m(n) be so large that
Y1y < (Yo — Yni1)vIy whenever o € {0,1}) and 7 € {0,1}™*1) . (This is where we need to know
that v is atomless and strictly positive.) Now, for each o € {0,1}™("™) enumerate {7 : ¢ C 7 € {0,1}"("+1)}
as (7(0,1));<omn+1-mm . Choose inductively disjoint compact sets L. () € Lo, for i < gm(ntl)=—m(n) jp
such a way that ul.(, ;) = Yny1V1r(s,i) and L., ;) is always either included in V,, or disjoint from it; this
will be possible because when we come to choose L,(s,;), the measure of the set F' = Ly \ Uj<i Lo,
available will be

'YnVIa - Z’Yn-l—lylr(a,j) > (’Yn - ’Yn-‘rl)ylo’ + ’Yn-l—lVI‘r(a',i)
j<i

> 27n+1VIT(U,i)a

so at least one of F'NV,,, F'\ V,, will be of measure greater than v, 171, (,,;. Continue.

Set K, = U{L, : 0 € {0,1}™(™} for each n € N, and K = ), .y K». The construction ensures that
whenever n < k, o € {0,1}"™), 7 € {0,1}"*) and ¢ C 7, then L, C L,. We therefore have a function
f: K — {0,1}Y defined by saying that f(z)[m(n) = o whenever n € N, ¢ € {0,1}™™ and z € K N L.
Because all the L, are compact, f is continuous. But it is also injective. B If =, y € K are different, there
is an n € N such that z € V,, and y ¢ V,,; now f(z)[m(n+1) # f(y)Imn+1). Q

For any n € N, o € {0,1}™(™ and k > n,

w(U{L: : 0 C 7 €0, 1}m(k)}) = EJQTE{O,I}""UC) vevl; = ypvi,.
So
u(f o)) = infyspn yevl, = ywi,.

Thus the Radon measure pf~! on {0, 1} agrees with the Radon measure v on {I, : o € |J,,c{0, 1} };
as this is a base for the topology of {0,1}" closed under finite intersections, pf~! and yv are identical
(415H(v)). Once again because v is strictly positive, f is surjective and is a homeomorphism. So f witnesses
that K € K. As E and ~ are arbitrary, p is inner regular with respect to K.

535L Lemma (a) If (X, ¥) is a separable metrizable space, there is a zero-dimensional separable metriz-
able topology & on X, finer than ¥, with the same Borel sets as ¥, such that ¥ is a m-base for &.

(b) If X is a non-empty zero-dimensional separable metrizable space without isolated points, it is home-
omorphic to a dense subset of {0, 1}

(¢) Any completely regular space with cardinal less than ¢ is zero-dimensional.
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proof (a) Enumerate a countable base for T as (U,)nen. Define a sequence (S,)nen of topologies on X
by saying that &y = ¥ and that &, is the topology on X generated by &, U {V,}, where V,, is the
closure of U, for &,. Inducing on n, we see that &,, is second-countable and has the same Borel sets as
T, for every n. So taking & to be the topology generated by |J, .y ©n (that is, the topology generated by
{U, : n € N} U{V,, : n € N}), this also is second-countable and has the same Borel sets as ¥. Each V, is
open for G,,41 and closed for G,,, so is open-and-closed for &. Moreover, since

Up =U{Un meN, Usy, CUY = U{Vin :m €N, Vy, C Uy}

for each n, {V;, : n € N} is a base for & consisting of open-and-closed sets for &, and & is zero-dimensional.
Finally, observe that if V, is not empty, then V,, D U, # 0, so T 2 {U, : n € N} is a m-base for &.

(b) The family & of open-and-closed subsets of X is a base for the topology of X, so includes a countable
base U (4A2P(a-iii)). Because X has no isolated points, the subalgebra & of & generated by U is countable,
atomless and non-trivial, and must be isomorphic to the algebra £ of open-and-closed subsets of {0, 1}
(316M). Let 7 : £ — &; be an isomorphism. Then we have a function f : X — {0,1}" defined by saying
that, for £ € €, f(z) € E iff z € 7E. Because 7E # () for every non-empty F € &, f[X] is dense in {0, 1}.
Because {f~1[E]: E € £} = & D U is a base for the topology of X, f is a homeomorphism between X and
fIX].

(c) If X is a completely regular space and #(X) < ¢, G C X is open and = € G, let f : X — [0,1]
be a continuous function such that f(xz) =1 and f(y) = 0 for y € X \ G. Because #(X) < ¢, there is an
a € [0,1]\ f[X], and now {y : f(z) > a} = {y : f(x) > a} is an open-and-closed set containing = and
included in G. As x and G are arbitrary, X is zero-dimensional.

535M Lemma Suppose that there is a Borel probability measure on {0, 1} with a strong lifting. Then
whenever X is a separable metrizable space and D C X is a dense set, there is a Boolean homomorphism ¢
from PD to the Borel o-algebra B(X) of X such that A C A for every A C D.

proof case 1 Suppose that X is countable. Then it is zero-dimensional (535Lc), so has a base U consisting
of open-and-closed sets; let £ be the algebra of sets generated by . For E € £ set 71E = EN D; then 7
is an isomorphism between £ and a subalgebra &’ of PD. Because B(X) = PX is Dedekind complete, the
Boolean homomorphism 77! : & — £ extends to a Boolean homomorphism ¢ : PD — PX = B(X) (314K
again). If A C D and = € X \ A, then there is a U € U such that z € U and ANU = (), in which case

pAC A YD\U)=X\U
does not contain x. As x is arbitrary, ¢A C A; as A is arbitrary, ¢ has the required property.

case 2 Suppose that X is zero-dimensional and has no isolated points. If X is empty the result is trivial;
otherwise, by 535Lb, we may suppose that X is a dense subset of {0, 1}". This time, let £ be the algebra
of open-and-closed subsets of {0,1}Y. For E € &, set 7E = EN D. Because D is dense in X and therefore
in {0,1}", 7 is an isomorphism between £ and a subalgebra £ of PD. Fix a Borel probability measure u
on {0, 1} with a strong lifting 6, and let 2 be the measure algebra of . Then A+ (771A)* is a Boolean
homomorphism from &’ to 2; because 2 is Dedekind complete, it extends to a Boolean homomorphism
Y :PD — A For E C {0,1}", set #E = EN X. Then ¢ = 701 is a Boolean homomorphism from PD to
B(X). If AC D and z € X \ 4, then there is an E € £ such that x € E and AN E = (), in which case

A C YA C Op(D\ E) = 0({0, 1} \ E)* = {0, 1} \ E,
and z ¢ ¢A. As z and A are arbitrary, ¢ is a suitable homomorphism.

case 3 Suppose that X has no isolated points. Write ¥ for the given topology on X. By 535La, there is
a finer zero-dimensional separable metrizable topology & on X, with the same Borel sets, such that ¥ is a
m-base for &. If V' € & is non-empty, there is a non-empty U € T such that U CV,and DNV 2 DNU
is non-empty; so D is G-dense. By case 2, there is a Boolean homomorphism ¢ : PD — B(X, &) such that
PA C A° for every A C D. As B(X,6) = B(X,%), and a° C A for every A C X, this ¢ satisfies the
conditions required.

general case In general, let G be the family of countable open subsets of X, and Gy = |JG; because
X is separable and metrizable, therefore hereditarily Lindelof, Gg is countable. Set Z = X \ Gy, and let
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Dy be a countable dense subset of Z; set Y = D U Go U Do. By case 1, there is a Boolean homomorphism
¢o : PD — PY such that oA C A for every A C D. By case 3, there is a Boolean homomorphism
¢1: P(YNZ)— B(Z) such that ¢1 B C B for every B CY N Z. Now set

A = (9oA\ Z) U $1(Z N goA)
for every A C D. Then ¢ is a Boolean homomorphism from PD to B(X); and if A C D, then
A C hoAUG1(ZNpoA) CAUZNA=A4,

so in this case also we have a homomorphism of the kind we need.

535N Theorem Suppose there is a metrizable space X with a non-zero atomless semi-finite tight Borel
measure p which has a lifting. Then whenever Y is a metrizable space and v is a strictly positive o-finite
Borel measure on Y, v has a strong lifting.

proof (a) Let ¢ be a lifting for u. Then there is a Borel set E C X, of non-zero finite measure, such that
ENG C ¢G for every open G C X. P Let Ly C X be a compact set of non-zero measure; then Ly has a
countable base U; set E = Lo N ¢Lo \ Uy (UAQU), so that pE = pLgy € ]0,00[. If G C X is open and
xr € ENG, then there is a U € U such that t € U C G. Since x € ENU, x € ¢U C ¢G. As x and G are
arbitrary, we have an appropriate E. Q

(b) Let A\ be any strictly positive atomless Radon measure on {0, 1}!. There is a compact set K C E
such that K, with its induced topology and measure, is isomorphic to {0, 1} with its usual topology and a
non-zero multiple of A, by 535K. In particular, K is self-supporting. By 535J, the subspace measure on K
has a strong Borel lifting. It follows at once that A has a strong Borel lifting.

(c) Refining (b) slightly, we see that if Y C {0,1}" is a dense set and A is a strictly positive atomless
totally finite Borel measure on Y, then A has a strong lifting. B There is a Radon measure v on {0, 1} such
that vE = A(YNE) for every Borel set E C {0, 1} (416F); because A is atomless, so is v; because ) is strictly
positive and Y is dense, v is strictly positive. So v has a strong Borel lifting 1 say. If E, F € B({0,1}Y)
and ENY = FNY, then v(EAF) = 0 and ¢oE = o F; we therefore have a Boolean homomorphism
¥ : B(Y) — B(Y) defined by setting 1/(ENY) = Y N1y E for every Borel set E C {0, 1}, It is easy to check
that 1 is a lifting for A, and it is strong because if G C {0,1}" is open then (Y NG) =Y NG C Y NG.
Q

(d) If (Y, ©) is a separable metrizable space with a strictly positive atomless totally finite Borel measure
v, then v has a strong lifting. B If Y = () the result is trivial. Otherwise, by 535La, there is a finer separable
metrizable topology &’ on Y with the same Borel sets such that & is a m-base for &’. Because & and &’
have the same Borel sets, v is a Borel measure for &’; because every non-empty &’-open set includes a
non-empty G-open set, v is strictly positive for &’; because v is atomless, Y has no &’-isolated points. By
535Lb, (Y, &') is homeomorphic to a dense subset of {0, 1}; by (c) above, v has a lifting ¢ which is strong
with respect to the topology &’. But now ¢ is still strong with respect to the coarser topology &. Q

(e) Now suppose that Y is a separable metrizable space with a strictly positive totally finite Borel measure
v. Then v has a strong lifting. I The set D = {y : v{y} > 0} is countable. If D is empty, then the result
is immediate from (d) applied to a scalar multiple of v. (If Y = 0 then Y = () and the result is trivial.)
Otherwise, let vy p be the subspace measure; then vy p is a totally finite Borel measure on Y\ D, and is
zero on singletons, so must be atomless. Because Y \ D is hereditarily Lindeldf, vy p is 7-additive; let Z
be its support, and vz the subspace measure on Z. Then vz has a strong Borel lifting 19, by (d) again.
Next, Z is relatively closed in Y\ D, so is expressible as F'\ D for some closed set FF CY. If x € Y\ F and
G is an open set containing z, then G’ = G \ F' is a non-empty open set, so has non-zero measure, while
A p(G'\ D) = 0; accordingly G’ N D # (). This shows that Y\ F C D so D is dense in Y\ Z. Now 535M
(with (b) above) tells us that there is a Boolean homomorphism v : PD — B(Y \ Z) such that 1, A C A
for every A C D. Define ¢ : B(Y) — B(Y) by setting

VE =¢o(ENZ)U(END)U (Y1 (EN D)\ D)

for every Borel set E C Y. 1% is a Boolean homomorphism because ¢y and 9, are. If vE = 0, then
vz(ENZ)=0and END =0, so yE =0. For any F € B(Y), Yo(ENZ)A(ENZ) and Y \ (DU Z) are
negligible, so EAYE is negligible. Thus % is a lifting for v. Finally, for any F,
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YE Co(ENZ)U(END)Uy(END)CE,
so 1 is a strong lifting. Q

(f) Finally, if Y is a metrizable space and v is a strictly positive o-finite Borel measure on Y, then Y
must be cce, therefore separable; and there is a totally finite Borel measure v’ with the same null ideal as
v, so that v’ has a strong lifting, by (e), which is also a strong lifting for v.

5350 Linear liftings Let (X, X, u) be a measure space, with measure algebra 2. Write £°(X) for the
space of bounded Y-measurable real-valued functions on X. A linear lifting for pu is
either a positive linear operator 7' : L (u) — £>°(X) such that T'(xX*) = xX and (Tu)* =u
for every u € L (u)
or a positive linear operator S : £L°(X) — £°(X) such that S(xX) = xX, Sf = 0 whenever
f=0ae and Sf =, f for every f € L>(X).
As with liftings (see 341A-341B) we have a direct correspondence between the two kinds of linear operator;
given T as in the first formulation, we can set Sf = T'(f*) for every f € £>°(X); given S as in the second
formulation, we can set T'(f*) = Sf for every f € £L>2(X).

If 6 : A — X is a lifting for p, then we have a corresponding Riesz homomorphism T : L>°(2A) — L£>(X)
such that T'(xa) = x(0a) for every a € 2, by 363F. Identifying L (2() with L () as in 3631, we see that
T can be regarded as a linear lifting. Of course the associated linear operator from £°°(X) to itself is the
operator derived by the process of 363F from the Boolean homomorphism F — 0FE°® : ¥ — 3.

As in 535Aa, I will say that a Borel linear lifting is a linear lifting such that all its values are Borel
measurable functions; similarly, a Baire linear lifting is a linear lifting such that all its values are Baire
measurable functions.

535P I give a sample result to show that for some purposes linear liftings are adequate.

Proposition Let (X,X%, ) be a countably compact measure space such that ¥ is countably generated,
(Y, T,v) a o-finite measure space with a linear lifting, and f : X — Y an inverse-measure-preserving
function. Then there is a disintegration (u,)ycy of p over v, consistent with f, such that y — p,E is a
T-measurable function for every E € X.

proof I use the method of 452H-4521.

(a) Suppose first that x4 and v are probability measures. Let S : L (v) — £>°(T) be a linear lifting
for v. Let T : L>(u) — L*°(v) be the positive linear operator defined by saying that [, Tu = ff*l[F] u

whenever v € L*°(u) and F' € T (as in part (a) of the proof of 452I). For y € Y and F € &, set
Uy E = (ST(XE*))(y)

as in part (b) of the proof of 452H. Because y is countably compact, we can use the argument of 452H to
see that we have a family (u;)yey of totally finite measures on X such that, for any £ € ¥, yy E = ¢, E for
almost every y € Y.

Let H be a countable subalgebra of ¥ such that ¥ is the o-algebra of sets generated by H. Set Yy = {y :
o H = 1, H for every H € H}, so that Yy is conegligible; let Y3 C Yy be a measurable conegligible set; set
ty = py, for y € Y1, and take 1, to be the zero measure on X for y € Y\ Yy. If H € H, then

pyH =y H = ST (xH*)(y)
for every y € Y7, so y — p,H is T-measurable; also, of course,
p— . J— L] p— o ___ _1
Syt Hv(dy) = [ STOH )dv = [ T(xH*) = [, xH* = p(H 0 f7HF]).

Now consider the family £ of those E € ¥ such that y — py,E is T-measurable and | iy Ev(dy) =
w(E N f7YF)) for every F € T. This is a Dynkin class including H, so is the whole of ¥; which is what we
need to know.

(b) In general, if vY = 0, the result is trivial. Otherwise, apply (a) to a suitable pair of indefinite-integral
measures over u and v, as in part (c) of the proof of 4521.
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535Q Proposition Let (X, 3, 1) and (Y, T, v) be probability spaces, and A the c.l.d. product measure
on X x Y. Suppose that A\]X®T has a linear lifting. Then x has a linear lifting.

proof Let S : LX(Z®T) — L®(XZ®T) be a linear lifting for A\[X®T. For h € L>®(X&T), set (Uh)(x) =
J h(z,y)v(dy) for every x € X; by 252P, Uh is well-defined and is -measurable. Now U is a positive linear
operator from £>(E&T) to £2(X), and U(x(X x Y)) = xX, because Y = 1. Note that

J1Uhldp < [Ulhldp = [ |h(z,y)|v(dy)p(dz) = [ |h]dA

for every h € L®(X®T) (252P again). Next, for f € £2(X) set (Vf)(x,y) = f(z) for every z € X and
y €Y, so that V is a positive linear operator from £>(%) to LX(BRT).

Consider S; = USV : £L>°(X) — L£>°(X). This is a positive linear operator and S;(xX) = xX. If
feLl>(X) and f =0 p-a.e., then Vf =0 Ia.e. and SVf =0,s0 S1f=0. For any f € L>(X),

J1f=Sifldp= [|f =USVfldu= [[UVf—USVfldu< [|Vf—SVfldr=0,
SO f =ae. S1f; thus Sy is a linear lifting for p.

535R Proposition Write /2 for the usual measure on ({0,1}*)2, and Tf) for its domain. Suppose that
v, has a Baire linear lifting for some x > ¢**. Then there is a Borel linear lifting S for 2 which respects
coordinates in the sense that if f € L°°(T£)2)) is determined by a single coordinate, then Sf is determined
by the same coordinate.

proof Because ({0,1}",v,) is isomorphic, as topological measure space, to ({0, 1 s Vixw), the latter has
a Baire linear lifting Sy say. For I C &, let T; be the o-algebra of Baire subsets of {0,1}"*% determined
by coordinates in I x w. Then #(T;) < ¢ whenever #(I) < ¢. Also Ba({0,1}**%) = |J{T; : I € [k]=*}
(4A3N). It follows that for every { < & there is a set I¢ C x, with cardinal at most ¢, such that { € Iz and
So(xE) is Tr,-measurable whenever E € Ty, ; so that Sy f is Tj,-measurable whenever f: {0, 1}"** — R is
bounded and T Ig—measurable.

Because £ > ¢t there are &, n < k such that { ¢ I, and n ¢ I (5A1J(a-il)). Set J = {£} x w,
K={n}xwand L = (k xw)\ (JUK), so that {0,1}"*¢ can be identified with {0,1}/Y%X x {0,1}%
and Ba({0,1}**¢) with Ba({0,1}’Y¥)&Ba({0,1}*). Set (Vf)(w,z) = f(w) when f : {0,1}/E — R is
a function, w € {0,1}/Y% and 2 € {0,1}¢; and (Uh)(w) = [ h(w,z)vr(dz) when h : {0,1}"*% — R is
a bounded Baire measurable function and w € {0,1}/“K. Then S; = USyV is a Baire linear lifting for
vyuK, just as in 535Q. Moreover, if f : {0,1}/Y% — R is a bounded Baire measurable function determined
by coordinates in J, in the sense that f(z,y) = f(z,y’) whenever x € {0,1}’ and y, 3 € {0,1}¥, then
S1f is determined by coordinates in J. B V f is determined by coordinates in J, so SV f is determined
by coordinates in Iz x w; since K N (I¢ x w) is empty, SoV f(z,y,2) = SoV f(z,y’,2) for all z € {0,1}/,
z€{0,1}F and y, ¥ € {0,1}X. It follows at once that

Slf(xvy) = fSOVf(x’y7Z)VL(dZ) = fSon(x,y’,z)uL(dz) = S1f(.13,y/)

whenever z € {0,1}7 and y, 3’ € {0,1}X. Q Similarly, if f: {0,1}7YK — R is a bounded Baire measurable
function determined by coordinates in K, then Sy f is determined by coordinates in K.

Now we can transfer S; from {0,1}7/°K 2 {0,1}7 x {0, 1}¥ to ({0,1}*)?, and we shall obtain a Baire (or
Borel) linear lifting S for 12 which respects coordinates.

}I{Xw

535X Basic exercises (a) Let (X, X, 1) be a measure space with a lifting, and A any subset of X. Show
that if A has a measurable envelope then the subspace measure p4 has a lifting. (Hint: 3221.)

(b) Let ((X;, %4, i) Yicr be a family of measure spaces, with u; X; > 0 for every ¢ € I, and (X, X, u) their
direct sum. Show that p has a lifting iff every u; has a lifting.

(c) Let 2 be a Boolean algebra and I a proper ideal of 2. Suppose that sup A is defined in 2 and belongs
to I whenever A C I and #(A) < #(2). Show that there is a Boolean homomorphism 6 : 2(/T — 2 such
that (0b)* = b for every b € /1. (Hint: enumerate A as {a¢ : £ < k}; let €¢ be the subalgebra of /I
generated by {a;7 :m < &} construct 0] €, inductively by choosing 0(15 appropriately.)
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(d) Let 2 be a Dedekind o-complete Boolean algebra and I a proper ideal of 2. Show that if the quotient
Boolean algebra 21/I is tightly w;-filtered, then there is a Boolean homomorphism 6 : /I — 2 such that
(0b)* = b for every b € A/I.

(e) Let 2 be a tightly w;-filtered Boolean algebra, B a Dedekind o-complete Boolean algebra and 2ly a
countable subalgebra of 2. Show that every Boolean homomorphism from 2(y to 2 extends to a Boolean
homomorphism from 2 to 8.

(f) Let 2, B be Boolean algebras such that sup A is defined in 2 whenever A C 2 and #(A4) < #(B), and
7w : A — B a surjective Boolean homomorphism. Suppose that 8 : B — 2 is such that 80 = 0, 78b C b for
every b € B and 8(bnc) = 8bnfc for all b, ¢ € B. Show that there is a Boolean homomorphism 6 : 8 — 2
such that 8b C b and 7w0b = b for every b € B.

(g) Suppose that ¢ < ws and FN(PN) = w;. Show that v, has a strong Baire lifting whenever xk < ws.
(Hint: let (e¢)¢<. be the standard generating family for B,. Show that there is a tight wq-filtration (a,),<¢
of 9B, such that for every £ < k there is an n < ¢ such that the closed subalgebras generated by {es : § < £}
and {as : 6 < n} are the same and e¢ = a,.)

(h) Suppose that ¢ < wy and FN(PN) = w;. Show that whenever X is a separable metrizable space and
D C X is a dense set, there is a Boolean homomorphism ¢ : PD — B(X) such that ¢A C A for every
ACD.

(i) Let (X, X, 1) be a measure space. Show that a linear lifting S : £L°(X) — £>°(X) of u corresponds to
a lifting iff it is ‘multiplicative’, that is, S(f x g) = Sf x Sg for all f, g € L>(X).

(J) Let (X,X, 1) be a strictly localizable measure space with non-zero measure. Suppose that v, has a
Baire linear lifting for every infinite cardinal x such that the Maharam-type-x component of the measure
algebra of y is non-zero. Show that p has a linear lifting.

(k) Let (X, %, ) be a probability space such that whenever £ C X, #(€) < ¢ and |J € is negligible, then
JE& € 3. Show that p has a linear lifting. (Hint: 363YTt.)

(1) Let (Y, T,v) be a o-finite measure space with a linear lifting, Z a set, T a countably generated o-
algebra of subsets of Z, and p a measure with domain T®Y such that v is the marginal measure of y on Y
and the marginal measure of y on Z is countably compact. Show that there is a family (u,),ecy of measures
with domain Y such that y — j, H is a T-measurable function for every H € T and uW = [ p, W [{y}|v(dy)
for every W € T®Y.

(m) Let (X,%,%, 1) and (Y, 6, T, v) be m-additive topological probability spaces, and A the 7-additive
product measure on X x Y (417F%). Suppose that A has a Borel linear lifting and that p is inner regular
with respect to the Borel sets. Show that p has a Borel linear lifting.

535Y Further exercises (a) Suppose that we are provided with a bijection between B(R) and wy, but
are otherwise not permitted to use the axiom of choice. Show that we can construct a Borel lifting for
Lebesgue measure.

(b) Suppose that for every cardinal k there is a Baire linear lifting for v,. Show that for every n € N
there is a Borel linear lifting S for Lebesgue measure on [0, 1]™ which («) respects coordinates in the sense
that if f:[0,1]" — R is a bounded measurable function determined by coordinates in I C n, then Sf also
is determined by coordinates in I () is symmetric in the sense that if p : n — n is any permutation and
(pf)(x) = f(zp) for x € [0,1]" and f : [0,1]™ — R, then S commutes with p. (Hint: 5A1Jb.)

(c) Let (X, %, i) be a countably compact measure space, (Y, T, v) a o-finite measure space with a linear
lifting, and f : X — Y an inverse-measure-preserving function. Suppose there is a family H C ¥ such that
Y is the o-algebra of sets generated by H and #(H) < addv. Show that there is a disintegration (u,)yey
of v over v, consistent with f, such that y — pyE is a T-measurable function for every £ € 3.

5Formerly 417G.
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(d) (TOorNQuisT 11) Let (X, X, i) be a countably separated perfect complete strictly localizable measure
space, 2 its measure algebra and G a subgroup of Aut 2l of cardinal at most min(add NV, p), where A is the
null ideal of Lebesgue measure on R. Show that there is an action « of G on X such that 7eE = {mezx : x € E}
belongs to ¥ and (weE)* = n(E*) whenever m € G and F € X. (Hint: 344C, 425Ya.)

535Z Problems (a) Can it be that every probability space has a lifting?
By 535B, it is enough to consider ({0,1}*,Ba({0,1}"*),v,Ba({0,1}")) where x is a cardinal. Since
Mokobodzki’s theorem (535Eb) deals with k£ < ws when ¢ = wy, the key case to consider seems to be k = ws.

(b) Suppose that ¢ > ws. Does v, have a Borel lifting?

It is known to be relatively consistent with ZFC to suppose that ¢ = wo and that FN(PN) = w; (554G-
554H). In this case v, has a Borel lifting (535E(b-ii)). But if ¢ > w3 then B, is not tightly w;-filtered
(5188).

(c) (A.H.Stone) Can there be a countable ordinal ¢ and a lifting ¢ of v, such that ¢FE is a Borel set,
with Baire class at most (, for every Borel set E C {0,1}*?

The point of this question is that while, subject to the continuum hypothesis, we can almost write down a
formula for a Borel lifting for Lebesgue measure (535Ya), the method gives no control over the Baire classes
of the sets constructed.

(d) Can there be a strictly positive Radon probability measure of countable Maharam type which does
not have a strong lifting? (See 453G, 453N, 5351, 535Xg.)

(e) Is there a probability space which has a linear lifting but no lifting?

(f) Can there be a Borel linear lifting for the usual measure on ({0,1}*)? which respects coordinates in
the sense of 535R?

It seems possible that there is a proof in ZFC that there is no such lifting; in which case 535R shows that
we should have a negative answer to (a).

535 Notes and comments For a fuller account of this topic, see BURKE 93.

NEUMANN & STONE 1935 used a direct construction along the lines of 535Xc to show that if the
continuum hypothesis is true then Lebesgue measure has a Borel lifting. The method works equally well for
Vy, , but for v, we need a further idea from MOKOBODZKI 77; the version I give here is based on GESCHKE
02, itself derived at some remove from CARLSON FRANKIEWICZ & ZBIERSKI 94, who showed that we could
have a Borel lifting for Lebesgue measure in a model in which the continuum hypothesis is false (5541I).

It is not a surprise that there should be a model of set theory in which Lebesgue measure has no Borel
lifting. Nor is it a surprise that the first such model should have been found by S.Shelah (SHELAH 83). What
does remain surprising is that in most of the vast number of models of set theory which have been studied,
we do not know whether there is such a lifting. Only in the familiar case ¢ = wy, the special combination
¢ =wy = FN(PN)* (535E), and in variations of Shelah’s model, do we have definite information. It remains
possible that in any model in which m > wy or ¢ = ws there is no Borel lifting for Lebesgue measure. When
we leave the real line, the position is even more open; conceivably it is relatively consistent with ZFC to
suppose that every probability space has a lifting, and at least equally believably it is a theorem of ZFC
that v,,, does not have a Baire lifting.

From 5351 we see that wo appears in Losert’s example (453N) for a good reason. Once again, it seems to be
unknown whether it is consistent to suppose that there is a (completed) strictly positive Radon probability
measure with countable Maharam type which has no strong lifting (535Zd). When we come to look for
strong Borel liftings, we have some useful information in the separable metrizable case (535N). The result
is natural enough. We are used to supposing that Polish spaces are all very much the same, and that point-
supported measures are trivial. But because the concept of ‘strong’ lifting is topological, and cannot easily
be reduced to the Borel structure, we have to work a bit; and it seems also that point-supported measures
need care (535M).

‘Linear liftings’ (5350-535R) remain poor relations. I give them house room here partly for completeness
and partly because of a slender hope that they will lead us to a solution of 535Za. Of course the match
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between ws in 535Za and ¢™ in 535R may show only a temporarily coincidental frontier of ignorance.
BURKE & SHELAH 92 have shown that it is relatively consistent with ZFC to suppose that v, has no Borel
linear lifting.

Version of 20.2.12
536 Alexandra Bellow’s problem

In 463Za I mentioned a curious problem concerning pointwise compact sets of continuous functions.
This problem is known to be soluble if we are allowed to assume the continuum hypothesis, for instance.
Here I present the relevant arguments, with supplementary remarks on ‘stable’ sets of measurable functions
(536E-536F).

536 A The problem I recall some ideas from §463. Let (X, 3, ) be a measure space, and £? = £9()
the space of all ¥-measurable functions from X to R, so that £° is a linear subspace of RX. On £° we
have the linear space topologies ¥, and ¥, of pointwise convergence and convergence in measure (462Ab,
245ADb). T, is Hausdorff and locally convex; if 44 is o-finite, T, is pseudometrizable. The question, already
asked in 463Za, is this: suppose that K C £° is compact for %, and that %, is Hausdorff on K. Does it
follow that ¥, and ¥,, agree on K?

536B Known cases Let (X,Y, 1) be a o-finite measure space. Given that K C £° is compact for T,
and T, is Hausdorff on K, and
either K is sequentially compact for T,
or K is countably tight for T,
or K is convex
or X has a topology for which K C C(X), u is a strictly positive topological measure, and every
function A € R¥X which is continuous on every relatively countably compact set is continuous
or p is perfect
or K is stable, in the sense of 465A,
then K is metrizable for T, and T, and ¥,,, agree on K (463Cd, 463F, 463G, 463H, 463Lc, 465G).
Now for the new results.

536C Proposition (see TALAGRAND 84, 9-3-3.) Let (X,3,u) be a probability space such that the
m-weight 7(x) of p is at most p. If K C £0 is T,-compact then it is T,,-compact.

proof (a) For the time being (down to the end of (d) below), suppose that |f| < xX for every f € K. Let
(fi)ien be any sequence in K.

(b) For I € [N]*, write limsup,_,; f; for inf,ensup;ep,, fi and liminf; 7 f; for sup,, ey infiep, fi- Then
there is an I € [N]¥ such that liminf;, ; f; = liminf;; f; and limsup,_, ; f; =a.. limsup,_,; f; for every
J € [I]“. P (See the proof of 463D.) For I, J € [N]¥ set A(I) = [limsup,_,; f; —liminf; ,; f; and say that
J = I'if either J C I or J\ [ is finite and I \ J is infinite. Then A(J) < A(I) whenever J < I, and any
non-increasing sequence in [N]* has a <-lower bound in [N]¥. By 513P, inverted, there is an I € [N} such
that A(J) = A(I) whenever J < I, and this I will serve. Q

Set g = liminf; ,; f; and h = limsup,_,; f;-

(c) ? Suppose, if possible, that E = {z : g(x) < h(x)} is not negligible. Let H be a coinitial subset
of ¥\ M(p), where N (p) is the null ideal of p, with cardinal 7(u) < p, and (He)ecp a family running
over {H : H € H, HC E}. Choose (I¢)ecp, (T¢)ewp and (ye)e<, inductively, as follows. The inductive
hypothesis will be that, for any & < p, (I,),<¢ is a family of infinite subsets of N such that I, \ I¢ is
finite whenever ( < n < &. Start with Iy = I. For the inductive step to & + 1, where £ < p, since
g =ae liminf; .7, f;, there must be an x¢ € He N E such that g(we) = liminf; 7, fi(z). Let J € [I¢]*
be such that lim;_, ; fi(z¢) = g(z¢). Now limsup;_,; fi =ae. h, so we can find a y¢ € EN He such that
limsup,_, ; fi(ye) = h(ye) and an Iy € [J]<¢ such that lim; 7., fi(ye) = h(ye)-

For non-zero limit ordinals £ < p, let I¢ be an infinite subset of I such that I¢ \ I,, is finite for every n < &.
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At the end of the induction, there will be a non-principal ultrafilter 7 on N containing I for every
&€ <p. Set f=lim;, 7 f;. Because K is T,-compact, f € K C £0. So at least one of the measurable sets
E' ={z:2€FE, gz) < f(zr)} and E” = {z : € E, f(x) < h(z)} is non-negligible and contains H¢ for
some £ < p. Now I¢yq € F, s0 f(xe) = lim; g, fi(ze) = g(we) and f(ye) = h(ye). But this means that
x¢ € He \ E"” and ye € He \ E', so He cannot be included in either E' or E”. X

(d) So g =ae. h and {z : g(z) = lim;_,; fi(z)} includes the conegligible set {z : g(x) = h(z)}. We also
have a go € K which is a T,-cluster point of (f;);cr. Of course g < go < h, and all three must be equal
p-a.e. But this means that < fiYier converges almost everywhere to gg, and therefore converges in measure
to go (245Ec). Now recall that (f;);en was an arbitrary sequence in K. So we see that every sequence in K

has a subsequence which is T,,-convergent to a point of K. As T,, is pseudometrizable, K is T,,-compact
(4A2Le).

(e) This concludes the proof when |f| < xX for every f € K. For the general case, let ¢ : R — ]—1,1]
be a homeomorphism, and consider K’ = {¢f : f € K}. Since f + ¢f is a T,-continuous function from £°
to itself, K’ is T,-compact, therefore T,,-compact, by (a)-(c). Next, f +— ¢! f : K’ = K is T,,-continuous.
P If (fu)nen is a sequence in K’ which is %,,-convergent to f € K', and (gn)nen is a subsequence of
{fn)nen, then (g, )nen has a sub-subsequence (h,,)nen converging a.e. to f (245Ka); now ¢~ 1h,, converges
a.e. to ¢~1f € K, so converges in measure to ¢~ 1f. As (gn)nen is arbitrary, (¢! f,)nen converges in
measure to ¢~ f. Thus f +— ¢~ 1f is sequentially continuous for T,,, therefore continuous (4A2Ld). Q So
K={¢7'f: fe K'}is T,,-compact, as claimed.

536D Theorem Let (X, 1) be a probability space, and £° the space of Y-measurable real-valued
functions on X. Write T, T, for the topologies of pointwise convergence and convergence in measure on
L0 Suppose that K C £° is T,-compact and that u{z : f(z) # g(x)} > 0 for any distinct f, g € K, but
that K is not T,-metrizable.

(a) Every infinite Hausdorff space which is a continuous image of a closed subset of K has a non-trivial
convergent sequence.
b) There is a continuous surjection from a closed subset of K onto {0,1}*.
¢) Every infinite compact Hausdorff space of weight at most w; has a non-trivial convergent sequence.
d) c> wi.
e) The Maharam type of u is at least 2«1.
f) There is a non-negligible measurable set in X which can be covered by w; negligible sets.
)

(
(
(
(
(
(g

(h) Mceountable = W1-

proof For f, g € L% set p(f,g) = [ min(1,|f—g|); then p is a pseudometric on £° defining T,,, and p| K x K
is a metric on K. Set A()) = 0, and for non-empty A C £° set A(A) = sup{p(inf L,sup L) : § # L € [A]<*}.
Note that if A C K has more than one member then A(A) > 0, and that A(A) < A(B) whenever A C B.

(a)(i) ? Suppose, if possible, that Z is an infinite Hausdorff space, Ky C K is closed, ¢ : Ky — Z
is a continuous surjection and there is no non-trivial convergent sequence in Z. Write £ for the family of
closed subsets L of Ky such that ¢[L] is infinite. Then L = [,y Ln belongs to L for every non-increasing
sequence (Lp)nen in L. P (P[L,])nen is a non-increasing sequence of infinite closed subsets of Z; because
Z is supposed to have no non-trivial convergent sequence, M = [,y ¢[L,] is infinite (4A2G(h-i)). Since
o[L] = M (5A4Cf), L € L. Q By 513P again, there is a K; € £ such that A(L) = A(K;) for every L € L
such that L C Kj.

(ii) Now there is no non-trivial convergent sequence in ¢[K1], so ¢[K;] cannot be scattered (4A2G/(h-
ii)), and there is a continuous surjection ¢ : ¢[K;] — [0,1] (4A2G(j-iv)). Let M C ¢[K1] be a closed set
such that ¢[M] = [0,1] and [ M is irreducible (4A2G(i-i)). Then M is infinite, has a countable w-base
and no isolated points (4A2G(i-ii)). Let Ko C ¢~ 1[M] be a closed set such that ¢[Ks] = M and ¢[Ks is
irreducible. Then K5 has a countable m-base, and ¢[K>] is infinite, so A[Ka] = A[K;].
Let V be a countable 7-base for the topology of K5, not containing (). For each V' € V, choose hy € V.
Set go = infy ey hy, g1 = supy ¢y hy in RX. Then gy and ¢; are measurable, and

[ 91— 90 > A(K3) = A(Ky) > 0.
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Set g(z) = max(%(go(2) + g1(2)), g1 (x) — 3) for z € X, and

E={z:g0(z) <gi(x)} ={z:9(x) <g1(2)} = {: go(x) < g(x)},
so that uE > 0. For z € E, the set F, = {f : f € Ka, f(x) < g(x)} is a proper closed subset of K,
so there is some V' € V such that V N F, = . Because V is countable, there is a V € V such that
D ={z:z € E,VNF, =0} is non-negligible. But now observe that f(z) > g(x) whenever f € V and
x € D, so hy(z) > g(x) whenever U ¢ V,U CVandz € D. Set V' ={U :U € V,U CV}, g = infyey hy
and L={f:f€ Ky, gy, <f<gq} Then g <g and

{r:2eX, gi(x) —go(r) <min(1,g1(x) = go(2))} 2 D
is non-negligible, so
A(L) < fmin(1,91 —g4) < fmin(l,gl —g0) = A(Ky).

On the other hand, L meets every member of V', so LNV is dense in V and L includes V. Because ¢| K>

is irreducible, ¢[Ka \ V] # M and ¢[L] includes the non-empty open subset M \ ¢[K3 \ V] of M, which is

infinite because M has no isolated points. So A(L) ought to be equal to A(K7), by the choice of K;. X
Thus (a) is true.

(b) If (fn)nen is a sequence in K which converges at almost every point of X, then any two ¥,-cluster
points of (f,)nen must be equal a.e. and therefore equal, so (f)nen is Tp-convergent (5A4Ce).

? Suppose, if possible, that there is no continuous surjection from a closed subset of K onto {0,1}*!.
Then 463D tells us that every sequence in K has a subsequence which is convergent almost everywhere,
therefore convergent. So K is sequentially compact, which is impossible, as noted in 536B. X

(c) Since [0,1] is a continuous image of {0, 1}, [0,1]“! is a continuous image of {0, 1}*1*N = [0 1}«1
and therefore of a closed subset of K. If Z is an infinite compact Hausdorff space of weight at most wy, it is
homeomorphic to a closed subset of [0,1]“* (5A4Cc) and therefore to a continuous image of a closed subset
of K. By (a), Z must have a non-trivial convergent sequence.

(d) Since SN has weight ¢ (5A4la), is infinite, but has no non-trivial convergent subsequence (4A2I(b-v)),
we must have wy < ¢.

(e)(d) If Fy, F» are disjoint non-empty ¥,-closed subsets of K, then p(Fy,F;) > 0. P? Otherwise,
there are sequences (f,)nen in F1, (gn)nen in Fy such that p(f,,gn) < 27" for every n € N. Let F be
any non-principal ultrafilter on N and set f = lim,_,r f,, ¢ = lim,_, = g,,, taking the limits in K for the
topology ¥,,. Then, for any n € N,

{z:|f(z) —g(@)] > 27"} CUjsgn{z : [file) — gi(2)| > 277}

has measure at most Y o, 27" = 27" g0 f =, gand f = g; but f € F} and g € F», so this is
impossible. XQ

(ii) By (b), there are a closed subset Ky of K and a continuous surjection ¢ : Ky — {0,1}**. For
§ <wi,set Fe ={f: f € Ko, v(f)(§) =0}, Ff={f: f € Ko, Y(f)(§) = 1}; then p(F¢, F¢) > 0. There
must therefore be a § > 0 such that C' = {§ : p(Fg, F{) > ¢} is uncountable. For each D C C, choose hp € Ky
such that ¥(hp)[C = xD. Then p(hp,hp/) > ¢ for all distinct D, D’ C C. Thus A ={h}, : D C C}is a
subset of L® = L°%(u), of cardinal 2*1, such that any two members of A are distance at least § apart for the
metric on L? corresponding to p. Accordingly the cellularity and topological density of L° are at least 241;
by 529Bb, the Maharam type of u is at least 2“1,

(f) (i) By (b), there is a continuous surjection 9 : Ko — {0,1}** where Ky C K is closed. Let @ be the
set of pairs (F, C) such that F' C K is closed, C' C w; is closed and cofinal and {¢(f)[C : f € F} = {0,1}€.
If ((Fy, Cy))nen is a non-increasing sequence in @, then it has a lower bound in Q. P Set F' = (1, .\ F5, and
C = N,en Cn- Then for any z € {0, 1} and n € N there is an f,, € F, such that ¢(f,)[C = z; now take
a Tp-cluster point f of (fn)nen, and see that f € F and that ¢(f)[C = z. As z is arbitrary, (F,C) € Q.
Q By 513P once more, there is a member (K7, C*) of @ such that A(F) = A(K;) whenever (F,C) € Q,
F C Ky and C C C*. Now C* is order-isomorphic to w; and its order topology agrees with the subspace
topology induced by the order topology of wy (4A2Rm). Let 6 : w; — C* be an order-isomorphism and set

D.H.FREMLIN



78 Topologies and measures II11 536D

V1(f) = ¥(f)0 for f € K;. Then ¢ : K; — {0,1}** is a continuous surjection, and if F C K is closed,
C C wy is closed and cofinal and {¢(f)[C : f € F} = {0,1}“, then (F,0[C]) € Q so A(F) = A(K,).

(ii) Let K2 C K7 be a compact set such that ¢ [ K is an irreducible surjection onto {0, 1}** (4A2G(i-i)
again). Because {0,1}*! is separable (4A2B(e-ii)), so is Ky (5A4C(d-i)). Let (f,)nen enumerate a dense
subset of K5. Because Ko is compact in RX, h; = sup,en fn and hg = inf,en f,, are defined in R¥X, and of
course they belong to £°. If f € Ko, then

f(x) € {fu(x) : n € N} C [ho(x), h1(z)]
for every z, and hg < f < hy. Accordingly we have
A(K32) < p(ho, h1) = sup, ey p(infi<n fi,sup;<,, fi) < A(K2).

Let U be the family of non-empty cylinder sets in {0,1}**. For U € U set Iy = {n:n € N, 1 (f,) € U}
and gy = inf{f, : n € Iy}. Observe that Fy = {f : f € Ko, gu < f < hy} is a closed subset of K;
and that Fyy Ny ' [U] is dense in 4] *[U], so U N4 [Fy] must be dense in U and U C 1 [Fy]. There is
a finite set I C wy such that U is determined by coordinates in I; in this case, C = wq \ [ is closed and
cofinal in wy, and {z[C : z € U} = {0,1}¢. By the choice of K1, A(Fy) = A(K1). As Fyy C [gu, ha] in £°,
p(gu, h1) = A(Ky) = p(ho, h1), and min(1, hy — gu) =a.e. min(1, hy — hg).

Set h(z) = max(5(ho(x) + h1(z)),hi(x) — %) for x € X, and E = {z : ho(z) < hi(x)} = {z : h(z) <
hi(x)}, so that E is measurable and not negligible. If U € U, then

Ey={z:2€E, h(z) <gy(x)}
C{z:z€E, hi(z) — gu(z) < min(1, hy(x) — ho(x))}
is negligible.
For every x € E, F, = {f : f € K3, f(x) < h(z)} is a proper closed subset of K3, so i1[F.] # {0,1}**
and there is some U € Y such that U Ny [F,] = 0. In this case f, ¢ F,, that is, f,(z) > h(z), for every

n € Iy, so gy(x) > h(x). Thus E = |Jy ¢, Evu is a non-negligible measurable set covered by w; negligible
sets.

(g) This is immediate from 536C, since we already know that K cannot be stable.

(h) Continuing the argument from (f), define ¢ : X — RN by setting ¢(x) = (f,,(x))nen for z € X. Then
¢ is measurable (418Bd), so we have a non-zero totally finite Borel measure v on RY defined by setting
vH = p(E N ¢~ [H]) for every Borel set H C RY. Note that ¢[X] C ¢>° and that > = [J, .y Nien{w :
|w(i)] < n} is an F, set in RY. Now set

hi(w) = sup,eyw(n), ho(w) = inf,enyw(n),

h'(w) = max( (hy (w) + hi (w)), 7y (w) — 3)
for w € £°°, so that hy = hl¢p, hg = hjy¢ and h = h/¢; for U € U, set
E, ={w:we>*, h(w) <inf,cr, win)}
so that By, is an F, set and Ey = E N ¢~ '[E}]; accordingly vE], = 0. Because E C (J; o, Eu, ¢[E] C
Uvew Ev-
Thus we have a non-negligible subset of RN which is covered by w; negligible F,, sets and therefore by wy
closed negligible sets. By 526M, Mcountable = W1-

536E The discussion of stable sets in §465 emphasized their connection with pointwise compactness.
In 465D and 465G we saw that stable sets are relatively pointwise compact and that on a stable set T, is
coarser than €,. The question of when we might be able to be sure that a pointwise compact set is stable
was left open (but see 465Xj and 465Xn). We now have the concepts to take another step in this direction,
which fits fairly naturally here, though it is not obviously connected with the question in 536A.

Proposition Let (X, Y, ) be a semi-finite measure space, with null ideal N'(i). For E € 3 let ug be the
subspace measure on E. Suppose that 7(ug) < cov(E,N (1)) whenever E € ¥ and 0 < uE < co. Then
every T,-separable T,-compact subset of £° = £°(X) is stable.
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proof (a) ? Suppose that K is a T,-separable T,-compact subset of L9 which is not stable. Let A be a
countable T,-dense subset of K. By 465C(a-ii), A is not stable. So there are a set £ € ¥ and a < § in
R such that 0 < uFE < oo and, in the language of 465A, (u?*)*Dy(A, E,a, B) = (uE)?* for every k > 1.
Because A is countable,

Di(A, B, 0, 8) = | J{w: w e B**, f(w(2i)) < o,
feA
fw(2i+1)) > B for i < k}.

is measured by the product measure p2* for every k, so that E?*\ Dy(A, E, a, B) is u**-negligible for every
k.

(b) For sets I, J C E set
Ary={f:f€A fla)<aforzel, f(x) > pforiec J}.

Let Q be the family of pairs (I,.J) of finite subsets of E such that E2* \ Dy(A;s, E, a, B) is u*F-negligible
for every k. Then whenever (I,J) € Q, the set {(z,y) : z, y € E, (IU{x},JU{y}) ¢ Q} is u?-negligible.
P For any k > 1, if we identify E?*t2 with E?¢ x E2,

Dk—i—l(AIJaE,O‘,ﬁ) = U {(w,(x,y)) Tw e Ezk? x, Yy S E, f(IL') S «, f(y) 2 /33
fe€ALs

fw(29) < o, f(w(2i+1)) > B for i < k}
={(w,(z,y)) 17,y € E, w € Di(A10u(a},s0{y} £, 8)}.
Let F} be the set of those (x,y) € E? such that E?F\ Dy (Arugay, 04y, B, @, B) is not p2F-negligible. As
E?k+2)\ Dr 1 (Arg, B, , B) is u?**+2-negligible, Fy, is u2-negligible (252D). As k is arbitrary.
{(z,y):z,y e B, (TU{z}, JU{y}) ¢ Q} = Upx1 Fi
is p?-negligible. Q
(c) Set k = w(pp); then k > cov(E, N (u)) is infinite. Let (He)ec, run over a coinitial set in {H : H €
Y\ N(n), HC E}. Then we can choose ((z¢,ye))e<x in such a way that, for each £ < &,
xe, ye € He,  ({xy :m eI}, {y, :nel})eQ for every finite I C &,
PP When we come to choose (z¢, ye) we shall need to find a point (x,y) of HE2 such that
({z}Ufwy :ne I} {y} Ufyy:nel})
belongs to @ for every finite I C £. By (b) and the inductive hypothesis, the forbidden set
HE N Ujegee{(@,y) : (t U{ay i e L {y} Ufyy n e 1}) ¢ Q}

is the union of fewer than s p2-negligible subsets of Hg and cannot cover Hg, by 521Jd, since xk >
cov(He, N (). We therefore have a candidate eligible to be (z¢, y¢), and the induction can proceed. Q

(d) At the end of the induction, we see that

Cr = Afa,mery {y,mel}

is non-empty for every finite I C x. Let F be the filter on K generated by {C; : I € [k]<“}. Because K
is T,-compact, F has a T,-cluster point f € K C L% Now one of {z : x € E, f(z) < 8} and {z : z € E,
f(x) > a} must belong to ¥\ A (p1) and include some He; but ¢, ye € He, while f(z¢) < o and f(ye) > 5.
X

(e) Thus every pointwise separable-and-compact subset of £° must be stable, as claimed.

536F Proposition Suppose that cov N = c¢f N, where A is the null ideal of Lebesgue measure on R.
Let (X,T,%, ) be a Radon measure space. Then every T,-separable T,-compact subset of £°(y) is stable.
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proof (a) To begin with (down to the end of (c) below), suppose that yu is totally finite. Let K C £%(p)
be T,-separable and T,-compact. If K is empty, it is surely stable and we can stop. Otherwise, let {f,)nen
be a sequence running over a T,-dense subset of K. Define ¢ : X — RN by setting ¢(z) = (fn(x))nen for
n € N. Then ¢ is measurable (418Bd again), therefore almost continuous (418J). Set Z = ¢[X], and let v
be the image measure u¢~! on Z; then v is a Radon measure (4181). (This is where it helps to assume that
w is totally finite.)

(b) Consider the set L = {g: g € R?, g¢ € K}.

(i) LCL%v). PIfge L and a > 0, then
o {z:2€Z,9(2) > a}] ={z:2€ X, gp(z) > a}
is measured by p so {z : g(z) > a} is measured by v. Q

ii) L is T,-separable. P Set g,(z) = z(n) for n € Nand z € Z. Then g,¢ = f, € K so g, € L. If
P
g € L, there is a filter 7 on N such that g¢ is the T,-limit lim,c 7 f,, that is,

g¢(x) = lim,, r fn(x) = lim, .7 gnd)(x)

for every x. But now g(z) = lim,,—, r gn(2) for every z € Z and ¢g = lim,,_, r g,, belongs to the T,-closure of
{gn : n € N}. So the countable set {g,, : n € N} witnesses that L is T,-separable. Q

(iii) L is T,-compact. P Note first that if z € Z there is an x € ¢~ [{z}], and now
suPger |9(2)] = supyer [9¢(x)] << supjei |f(2)|

is finite. As g is arbitrary, L is relatively T,-compact in RZ; write L for its T,-closure. The map g — g¢ :
RZ - R¥ is continuous for the pointwise topologies and g¢ € K for every g € L, so g¢ € K = K for every
g€ L,and L = L is Tp-compect. Q

(iv) K = {g¢ :g € L}. P As the function g — g¢ is continuous, K’ = {g¢ : g € L} is T,-compact,
therefore ¥,-closed; since it contains f, = g,¢ for every n, it includes K. By the definition of L, K’ C K
and they are equal. Q

(c) Now note that v is a Radon measure on a separable metrizable space. So 7(v) < w (531Ad),
w(v) < of N (524Pb) and covN(vp) > covN for every non-negligible set F € domv (524Pc). We are
supposing that covN = cf N, so 563E assures us that L is stable. Since ¢ is inverse-measure-preserving,
K ={g¢: g € L} is stable (465Cd°).

(d) This deals with the case of totally finite . For the general case, take any F € 3 such that uF < co.
Then Ap = {f|E : f € A} is included in £°(dom uf), and it is T,-separable and T,-compact because the
map f — f[E is pointwise continuous. Also pg is a Radon measure, by 416Rb. So A is stable, by (a)-(c).
As E is arbitrary, A is stable (456C(c-iv)).

536X Basic exercises (a) Let (X,3, 1) be a complete measure space, with null ideal A(1). Suppose
that add N (1) = cov N (u). Show that there is a T,-compact T,,,-compact K C £Y(X) such that the identity
map on K is not (%, T,,)-continuous.

(b) Let (X,X,u) be a perfect measure space. Suppose that non(E,N(u)) < cov(E,N(u)) for every
non-negligible measurable set E of finite measure. Show that if K C £°(X) is T,-compact, then the identity
map on K is (%, T,,)-continuous.

536Y Further exercises (a) Suppose that the additivity and covering number of the Lebesgue null
ideal are equal. Find a strictly localizable perfect measure space (X, ¥, 1) and a T,-compact K C L%(X)
such that ¥, is Hausdorff on K but K is not ¥,,-compact.

SFormerly 465Xe.
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536 Notes and comments The methods of 536C-536D are derived from ideas of M.Talagrand. They
seem frustratingly close to delivering an answer to the original question. But it seems clear that even if a
positive answer — every ¥ ,-compact T,,,-separated set is metrizable — is true in ZFC, some further idea will
be needed in the proof. On the other side, while it may well be that in some familiar model of set theory
there is a negative answer, parts (c), (d) and (g) of 536D give simple tests to rule out many candidates.

Version of 12.8.13

537 Sierpinski sets, shrinking numbers and strong Fubini theorems

W.Sierpinski observed that if the continuum hypothesis is true then there are uncountable subsets of
R which have no uncountable negligible subsets, and that such sets lead to curious phenomena; he also
observed that, again assuming the continuum hypothesis, there would be a (non-measurable) function f :
[0,1]% — {0, 1} for which Fubini’s theorem failed radically, in the sense that

ff f(z,y)dzdy =0, ff f(z,y)dydz = 1.

In this section I set out to explore these two insights in the light of the concepts introduced in Chapter
52. T start with definitions of ‘Sierpiriski’ and ‘strongly Sierpinski’ set (537A), with elementary facts and an
excursion into the theory of ‘entangled’ sets (537C-537G). Turning to repeated integration, I look at three
interesting cases in which, for different reasons, some form of separate measurability is enough to ensure
equality of repeated integrals (5371, 537L, 537S). Working a bit harder, we find that there can be valid
non-trivial inequalities of the form [ [dazdy < [ [dydz (537N-537Q).

As elsewhere, I will write N (i) for the null ideal of a measure p.

537A Definitions (a) If (X, X, u) is a measure space, a subset of X is a Sierpinski set if it is uncount-
able but meets every negligible set in a countable set.

(b) If (X,X, ) is a measure space, a subset A of X is a strongly Sierpinski set if it is uncountable
and for every n > 1 and for every set W C X™ which is negligible for the (c.l.d.) product measure on X",
the set {u:u € A" NW, u(i) # u(j) for i < j < n} is countable.

537B Proposition (a) Let (X, 3, u) be a measure space and A C X a Sierpinski set.
(i) add M (p) = non N'(p) = wy and cov N () > #(A).
(ii) If {x} is negligible for every = € A, then cf N () > cf([#(A)]=¥).

(b) Suppose that (X, ¥, 1) and (Y, T, v) are measure spaces such that singleton subsets of Y are negligible.

Let f: X — Y be an inverse-measure-preserving function.

(i) If A C X is a Sierpinski set, then f[A] is a Sierpiniski set in Y and #(f[4]) = #(A).

(ii) Now suppose that v is o-finite. If A C X is a strongly Sierpinski set, then f[A] is a strongly
Sierpinski set in Y.

(c) Suppose that A and & are infinite cardinals and that (X, 3, i) is a locally compact semi-finite measure
space of Maharam type at most A in which singletons are negligible and X > 0. Give {0,1}* its usual
measure.

(i) If {0,1}* has a Sierpiniski subset with cardinal x, then X has a Sierpiriski subset with cardinal x.
(i) If {0,1}* has a strongly Sierpinski subset with cardinal , then X has a strongly Sierpinski subset
with cardinal .

proof (a)(i) We are told that A is uncountable; now any subset of A with w; members witnesses that
non NV (v) < wy. On the other hand, if £ is a family of negligible sets covering X, then #(A4) < max(w, #(&)),
so #(&) > #(A); as &€ is arbitrary, cov N (u) > #(A).

(ii) If {z} is negligible for every x € A, then [A]=* C A(u), and the identity function is a Tukey
function from [A]= to N (u); so cf[A]S¥ < cf N ().

(©) 2005 D. H. Fremlin
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(b)(i) If y € Y, then {y} and f~![{y}] are negligible, so AN f~1[{y}] is countable; consequently #(A4) <
max(w, #(f[A])) and #(f[A]) = #(A). If F CY is negligible, then f~1[F] is negligible so AN f~1[F] and
fI[A] N F are countable. So f[A] is a Sierpinski set.

(ii) Let W C Y™ be a negligible set for the product measure A’ on Y, where n > 1. Define f : X™ — Y™
by saying that f(zo,...,zn—1) = (f(x0),..., f(zn-1)) for zo,... ,z,—1 € X. Because v is o-finite, f is
inverse-measure-preserving for A and X (251Wp). If W is N-negligible, then f~1[W] is A-negligible, and
B={u:uec A" N f7W], u(i) # u(j) for i < j < n} is countable. Consequently

{v:ve fIA" N W, v(i) #v(j) for i < j <n} C f[B]
is countable.

(c) Take any set E C X of non-zero finite measure, and give E its normalized subspace measure pf =
(WE)~'pg. Then there is an f : {0,1}* — E which is inverse-measure-preserving for v, and p', (343Cd).
So (b) tells us that E has a subset A with cardinal x which is Sierpifiski or strongly Sierpinski for p. But
now A is still Sierpiriski or strongly Sierpinski for p.

537C Entangled sets (a) Definition If X is a totally ordered set, then X is wi-entangled if whenever
n>1,1Cnand (Tg)ecw, i<n is a family of distinct elements of X, then there are distinct &, n < w; such
that I ={i:i<n, ze < xpi}.

(b) Give {0, 1}" its lexicographic ordering, that is,
x <y iff either x = y or there is an n € N such that z[n = y|n and xz(n) < y(n).

Then the map x — 237" 137 "z(n) : {0,1}"' — R is an order-isomorphism between {0, 1}" and the Cantor
set, so any w;-entangled subset of {0, 1} can be transferred to an w;-entangled subset of R.

537D Lemma Let X be an wi-entangled totally ordered set.

(a) There is a countable set D C X which meets [z, y] whenever z < y in X.

(b) Whenever n > 1, I Cn and (Z¢;)¢<w, i<n is & family of distinct elements of X, there are £ <n < w;
such that I = {i: i <n, z¢ < @y}

proof (a)(i) There is a countable set Dy C X which meets [z, z] whenever < y < zin X. PP? Otherwise,
choose (Z¢i)e<w, i<s inductively so that z¢op < g1 < x¢2 and [zeg, T¢2] does not meet {z,; 1 n < &, i < 3}.
Now, if €, n < w; are different, we cannot have

Teo < Tpo,  Tel > Tpl,  Tea < Xpa.
S0 (Tei)e<wn i<3 Witnesses that X is not wi-entangled. X Q

(ii) Set A = {(z,y) : = < y, [x,y] N Dy = B}. Note that if (z,y), (z/,y’) € A are distinct, then
[z,y]N[z’,y'] = 0, since otherwise [min(z, 2'), max(y, y’)] would be an interval disjoint from Dy with at least
three elements. It follows that A is countable. P? Otherwise, let ((@¢o,Z¢1))e<w, be a family of distinct
elements of A. Then all the x¢; are distinct. But if £, n < w; are different, we cannot have

Teo < Tpo, Tel > Tyl
S0 (Tgi)e<uws i<z Witnesses that X is not entangled. XQ
(iii) So if we set D = Do U {z : (z,y) € A} we shall have a suitable countable set.

(b) For i < n write <;=<ifi € I, <;=>if i € n\ I; we are seeking & < 7 such that z¢; <; x,; for
every ¢ < n. For each family d = (d;);<,, in D, set Ag = {& : x¢; <; d; for each i < n}. Let ( < wy be such
that Ag N ¢ # 0 whenever d € D™ and Agq # 0. Now there are distinct &', 7 € wy \ ¢ such that z¢; <; 2,
for every i < n. For each i < n, there is a d; € D such that z¢/; <; d; <; ,;. Set d = (d;);<n; then {’ € Aq
so there is a £ € (N Ag. Now & < n and z¢; <; @, for every i, as required.

537E Lemma Suppose that n > 1, I C n and that A C ({0,1}")" is non-negligible for the usual product
measure v on ({0,1}M)". Let < be the lexicographic ordering of {0,1}". Then there are v, w € A such
that v(i) # w(i) for every i <m and {i:i <n, v(i) <w()} =1
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proof For each k € N let ¥ be the algebra of subsets of X = ({0, 1}Y)" generated by sets of the form
{v:ve X, v()(j) =1} for i <nand j < k. Then (Zi)ren is a non-decreasing sequence of finite algebras
and the o-algebra generated by (J; oy Xk is the Borel o-algebra B(X) of X. Let E € B(X) be a measurable
envelope of A for vf. For each k € N, let fj, be the conditional expectation of xE on Xy, that is,

fr(uw) =2Fv{v v e B, v(i)[k = u(i)|k for every i < n}

for u € X. By Lévy’s martingale theorem (2751), XE =,.0. limg_ o0 fx. In particular, there are a u € A and
a k € N such that fx(u) >1— 27", But this means that

F={v:veFE v(i)lk=u(i)lk for every i < n}
has measure greater than 27%7(1 — 27"), and both the sets

F'={v:veF,v(i)k)=0foriel v(i)(k)=1forien\I},

F'={w:weF,w(i)(k)=1foriel, w(i)k)=0foriecn\I},

must have positive measure. Accordingly we can find v € AN F' and w € AN F”, and these will serve.

537F Corollary Suppose that A C {0,1}" is strongly Sierpiniski for the usual measure on {0, 1}". Then
A is wi-entangled for the lexicographic ordering of {0, 1}.

proof Let (z¢;)ecw i<n be a family of distinct points in A, where n > 1, and I a subset of n. Then
Te = (Tgi)icn belongs to A, and has no two coordinates the same, for every € < wi. So D = {z¢ : £ < w1}
cannot be negligible. By 537E, there are distinct &, n < wy such that I = {3 : z¢; <z}

537G Theorem (TODORCEVIC 85) Suppose that there is an wq-entangled totally ordered set X of size
k > wi. Then there are two upwards-ccc partially ordered sets P, @ such that c'(P x Q) > k.

proof (a) Let Y C X be a set such that #(Y) =#(X \Y) =k, and f: Y — X \ Y an injective function.
Set

P={I:1¢€[Y]<¥ f]Iis order-preserving},

Q={I:1€clY]<¥, fII is order-reversing},
both ordered by C. Then {({y},{y}): ¥ € Y} is an up-antichain in P x @, so ¢'(P x Q) > &.

(b) P is upwards-ccc. P Let (I,)a<w, be a family in P. By the A-system Lemma (4A1Db), there is an
uncountable set A C wy such that (I,)aca is a A-system with root I say; now there is an n € N such that
B={a:aec A, #(I,\ I) = n} is uncountable. If n = 0 then I, = Ig are upwards-compatible for any a,
[ € B and we can stop.

If n > 1, enumerate I, \ I in increasing order as (Ta;)i<n, for each a € B. Let D C X be a countable
set such that D meets every interval in X with more than one member (537Da). For i < j <n and a € B
let dagj, d'm.j € D be such that x4 < daij < 2oj and f(Ta:) < dfnj < f(zaj). (Because I, € P, fl1, is

order-preserving so f(zai) < f(Zaj).) Let (dij)i<j<n, (di;)i<j<n be such that
C:{a:CMEB,daijZdij and d’

wij = di; whenever 7 < j <mn}
is uncountable.

Consider the family (Yas)acc,i<2n Where yo; = Tas a0d Yo i4n = f(Tai) if ¢ < n. Because X is entangled,
there must be distinct «, 5 € C such that y,; < yg; for every i < 2n, that is, z4; < 28, and f(rai) < f(xpi)
for every i < n. But now examine I = I, Ulg. If x, 2’ € I and = < o/,

either both @ and 2’ belong to I, and f(z) < f(z') because I, € P,
or both = and z’ belong to Iz and f(z) < f(z'),

Or T = T; and 2’ = xg; where ¢ < j < n, so that
f(@) = f(zai) < djj < f(zg,) = f(2'),

or x = xg; and 2’ = x,; where ¢ < j < n, so that f(z) < f(z'),
or & = xq; and =’ = xg; where i < n, so that f(z) = f(za) < f(zgi) = f(2').
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(Note that we cannot have x = x,; and ' = xg; with j < i, because in this case xg; < dj; < x4, while
Z3j 7 Tas; DOT can we have x = x; < a' = xq; with i < n.) So f|I is order-preserving and I € P witnesses
that I, and Iz are upwards-compatible in P. As (I,)a<w, is arbitrary, P is upwards-ccc. Q

(c) Similarly, @ is upwards-ccc. B The principal changes needed in the argument above are
—— in the choice of the d,;;, we need to write ‘f(zai) > d,;; > f(%aj)’;
—— in the choice of particular o and  in the set C', we need to write ‘yo; < yg; for ¢ < n and
Yai = Ygi forn <1< 2n’. Q

So P and @ satisfy our requirements.

537H Scalarly measurable functions (a) Definition Let X be a set, ¥ a o-algebra of subsets of X
and U a linear topological space. A function ¢ : X — U is scalarly (X-)measurable if f¢ : X — R is
(3-)measurable for every f € U*.

(b) If ¢ : X — U is scalarly measurable, V is another linear topological space and T : U — V is a
continuous linear operator, then T'¢ : X — V is scalarly measurable, because hT € U* for every h € V'*.

(c) If U is a separable metrizable locally convex space and ¢ : X — U is scalarly measurable, then it is
measurable. P T = {F : F C U, ¢~ '[F] € £} includes the cylindrical o-algebra of U (4A3U"), which is the
Borel o-algebra (4A3W?%). Q

5371 Proposition Let (X,>, ) and (Y, T,v) be probability spaces and U a reflexive Banach space.
Suppose that © — u; : X — U and y — f, : ¥ — U" are bounded scalarly measurable functions. Then

[ fy(ug)p(dz)v(dy) and [[ f,(ugs)v(dy)p(dz) are defined and equal.

proof (a)(i) Recall from 467Hc that if V' C U and W C U* are closed linear subspaces, I call them a
‘projection pair’ if U =V @ W*° and v+ ¢'|| > ||v| for all v € V and v' € W°. We need to know that this
is symmetric; that is, that in this case
Ur=WaoVe, |g+d>lgl|foralgeW, g eVe.

P Note first that if g € W NV®, then g(u) =0 for every u € W° 4V, that is, g = 0. Now take any f € U*.
Define g : U — R by saying that g(v + v') = f(v) for v € V, v' € W°. Then g is linear and continuous and
lgll < [If]l- Now g(v") = 0 for every v' € W°, that is, g € W°°, which is the weak*-closure of W (4A4Eg);
but as U and U* are reflexive, this is just the norm-closure of W, which is equal to W. Set ¢’ = f —g. Then
g’ € V°. This shows that f € W 4+ V?°; as f is arbitrary, U* = W & V°. Finally, I remarked in the course of

the argument that ||g|| < ||f]|, which is what we need to know to check that ||g|| < |lg+ ¢'|| whenever g € W
and ¢’ € V°. Q

(ii) Because U is reflexive, its unit ball is weakly compact, so U is surely weakly compactly generated,
therefore weakly K-countably determined (467M). Now turn to Lemma 467J. This tells us that there is a
family M of subsets of U U U* such that

for every B C X U X* there is an M € M such that B C M and #(M) < max(w, #(B));
whenever M’ C M is upwards-directed, then |J M’ € M;
whenever M € M then (Vr, W)y) is a projection pair of subspaces of U and U*,
where I write Vjyy = M NU and Wy = M NU*. For M € M,
U=VyeeWy, U =WyeVy;

let Py : U — Vg and Q- U* — Wiy be the corresponding projections. Since |[v|| < |lv 4 ¢/|| whenever
v €V and v' € Wy, [Py < 1; similarly, ||Qa| < 1.
IfueU, feU*and M € M, then

f(Pru) = (@ f)(w) = (Qum f)(Paruw).
P Express u as v + v’ and f as g + ¢’, where v € Vi, v/ € Wy, g € Wy and ¢’ € V. Then

"Formerly 4A3T.
8Formerly 4A3V.
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f(v) = g(v) = g(u),
that is,
f(Pryu) = (Qum f)(Puu) = (Qmf)(u). Q
(iii) If My, My € M and My C M; then Py, = Pry, Par, = Par Pa,- PP If u € U, express it as vg + v
where vg € Vay, and vy € Wy, 5 now express vj as vy + vy where vy € Vi, and vj € Wy, . Then
PMOU =1 € VM17

so Py, Pyryu = Ppyu. On the other hand, u = vy + vy + v} where vg +v1 € Vi, and v} € Wy, , so
Prru = v + v1; and as v1 = v — v} belongs to Wiy Pary Paryu = vo = Prru. Q

(iv) If (M¢)e<c is a non-decreasing family in M, where ¢ is a non-zero limit ordinal, then we know
that M = (J;, M¢ belongs to M. Now

PM’U, = limﬁc PMgu

for every u € U, the limit being for the norm topology on U. I Let € > 0. We know that Pyu € Vi =
M NU, so there is a v’ € M NU such that |[u' — Pyul| < 1e. Let £ < ¢ be such that v’ € M. If € <n <,
then

[ Par,w — Prrull = || Par, (Prw — u') + Par (v’ = Pyu)
so Pyu' = Py u' = ')
<2||Pyu—|| <e Q

(because u' € Vi

n?

(v) Similarly,
Qo = Qi Qnr, = Qar, Qs
whenever My, My € M and My C My, and
Qum f = limgre Qure f

whenever f € U* and ( is a non-zero limit ordinal and (M¢)¢<¢ is a non-decreasing family in M with union
M.

(b) Now let Mg be {M : M € M, #(M) < w}. Then there is an My € M, such that
Py (ug) = Prs(ug) p-a.e.(x)

whenever My C M € M.
P? Suppose, if possible, otherwise. Then we can choose inductively an increasing family (M¢)ec, in
M such that

plx s Pury, (ue) # Pu(ug)} > 0 for every € < wi,

Me = U77 <¢ My whenever { < w; is a non-zero countable limit ordinal.

(The set of = for which Py, (uz) # Par(uz) is necessarily measurable because = +— Py, uy — Pty
is scalarly measurable, by 537Hb, therefore measurable for the norm topology, by 537Hc, since Vi, is
separable.) Now there must be a § > 0 such that

A:{§Z£<W1,ME§Z5}
is infinite, where
Ef = {‘T : ||PM5+1(U’93) - PMg (uw)” > 5}
for each & < wy. But in this case there must be an x € X such that
A={¢: (€A e E}

is infinite. (Take a sequence (£,)nen of distinct points in A, and 2 € ),y U
point of A’ in wy. Then

Ee,,.) Let ¢ be any cluster

m>n
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PMC (uf) = hmﬁg P]\/[E (Um)

((a-iv) above), which is impossible. X Q
(c) Similarly, there is an M; € My such that My 2O My and

Par, (fy) = Pu(fy) v-ace.(y)
whenever M7 C M € M. Because z — Py, (uy) and y — Qar, (f,) are scalarly measurable maps to
norm-separable spaces, they are norm-measurable; again because V), and Wy, are separable, (z,y) —
(Pary e, Qar fy) : X XY = Vi, x Wiy, is S®@T-measurable (418Bd). Because (f,z) — f(z): U* xU — R
is norm-continuous, (x,y) — (Qar, fy)(Par,tz) is S&T-measurable, and

JJ Qs £)(Paruz)u(da)v(dy) = [[(Qar fy) (Pary e v (dy) p(de)

by Fubini’s theorem (252C).
Now observe that if y € Y there is an M € M such that M; C M and f, € M. So

/ () der) = / (Qurfy) (s )ulde) = / £, (Parus ) u(de)
- / £, (Pas, us Ju(da) = / (Qar, £,)(Pary us )l de).

This is true for every y. So [[ fy(uz)p(dz)v(dy) is defined and equal to [[(Qnar, fy)(Par ue)p(dz)v(dy).
Similarly,

JJ fyua)v(dy)n(dz) = [[(Qar fy) (Paryue)v(dy)p(de).

Putting these together, we have the result.

537J Corollary Let (X, X, u), (Y, T,v) and (Z, A, o) be probability spaces. Let  — U, : X — A and
y— Vy Y — A be functions such that

x> oU,NW), y—oaV,NnW)

are measurable for every W € A. Then [[ o(U, NV,)u(dx)v(dy) and [[ o(U, NV, )v(dy)u(dz) are defined
and equal.

proof (a) For x € X set u, = (xU,)* in L?(0). Then z + u, is scalarly measurable. P If f € U*, there is a
v € L%(o) such that f(u) = [u x v for every u € L?(o) (244K). Let € > 0. Then there are Wo,... ,W, € A
and ag, ... ,a, € R such that ||v — 37", a;(xW;)*]]2 < € (244Ha), so that

| fuz) = Y io(Us N W;)| = |fux XU = f“w X D ico ai(xXWi)*| < ellugll2 < e

for every x € X. Now the function = — >, a;0(U, N W;) is X-measurable. So we see that the function
x +— f(u,) is uniformly approximated by Y-measurable functions and is itself ¥-measurable. As f is
arbitrary, x +— u, is scalarly measurable. Q

(b) Similarly, setting v, = (xV,)* for y € Y, y — v, : Y — L?(0) is scalarly measurable. Identifying
L?(o) with its dual, 5371 tells us that

[ (ualvy)u(da)v(dy) = [[ (ua|v,)v(dy)p(da),

that is, that
ff o (U N Vy)u(dx)v(dy) = ff o(Uy NVy)v(dy)p(dz).

537K The next few paragraphs will be concerned with upper and lower integrals. For the basic theory
of these, see §133 and 214J.

Theorem (FREILING 86, SHIPMAN 90) Let ((X;,%;, 11;)) j<m be a finite sequence of probability spaces and
(kj)j<m @& sequence of cardinals such that X JN , with its product measure ,u?l , has a subset with cardinal x;
which is not covered by r;_1 negligible sets (if j > 1) and is not negligible (if j = 0). Let f: [[,,, X; = R
be a bounded function, and suppose that c : m+1—m+ 1 and 7: m+ 1 — m + 1 are permutations. Set
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f ff Zoy.-. & dxa(m) dxo(0)7

I :fff(x(h, m)dxr(m)~~dx7—(0)~
Then I < I'.
proof Let M > 0 be such that |f(zo,... ,zm)| < M for all zg, ... ,zpy.

(@) Set Z = [[;<,, X}, The key fact is that we can find negligible sets W(u) C X}, for k < m and
u € ngm,j;ék XJN, such that

N
n+1

S o f(tois - s tma)

whenever (¢;)j<m = ((tji)ien)j<m is such that ¢ & Wi(to,... ,tx—1,tk+1,... ,tm) for every k. I* Because
the formula

I <liminf,,_

1
hIIl Hlfn_>oo il Z?:O f(t()i, e ;tmi)
is tolerant of permutations of the coordinates 0, ... ,m, it is enough to consider the case o(j) = j for j < m,
so that
I—f ffxo,... m) ATy . . . dxg.

(i) Define Dy, ..., Dyy1 as follows. Do = {0} = Hj<0 X}\I. For 0 < k < m let Dy be the set of those
(to,--- ,tr—1) € [1;. X]' such that

N 1
I <liminf, T—HZ?:Oi' . .if(tm, e th—1,i, Ty oo T ) ATy . dTg,
where t; = (tj;)ien for j < k. For k <m and u = (ug, ... ,Uk—1,Ukt1, .- ,Um) in Hj<mj¢k XJN, set

W(u) = @ if (UO, - ,uk_l) ¢ Dk,
={t:te X}, (ug,... ,up_1,t) ¢ D41} otherwise.

(ii) W(u) C X1 is negligible. To see this, we need consider only the case in which (ug,... ,ux_1)
belongs to Dy,. Express u; as (uj;)ien for j < k, and for ¢ € N define h; : X;, — R by setting
x) = f . ff(uOi, e Uk 1,iy Ty Thg Ly -+ o s Ty ) ATy « . dThq1
for x € X}. Now the definition of Dy, tells us just that
. 1
I <liminf, T—HE?:Oi' . .if(um, e Uk—1,5y Ty - Ty ) ATy, - . . AT,
that is, that
I <liminf LZ’} [ hi(x)da
> n—o00 el i=0J " .
For each i € N let g; : X3, — [-M, M| be a measurable function such that g;(z) < h;(z) for every z
and [ g;duy = [hidu,. Now consider the functions §; : X) — R defined by setting g;(t) = g;(t;) for

t = (ti)ien € X5. We have fgidug = [hdpy, for each i, while (g;);en is a uniformly bounded independent
sequence of random variables. By the strong law of large numbers in the form 273H,

1
hmnﬂoo Zl 0 gz fgzdﬂk =0

for almost every t € X}. Since

1

im0 J hidpk > 1,

liminf,, oo — +1 > Ofgzd,u,c = liminf, o —

we have
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I <liminf —— 3" g;(t) < liminf —— > hy(t;)
=0 1=0

n—oo n+1 4 n—oo n+1 4

n
.. 1
:hmmf—Z/.../f(uOi,... ,ukfl’i7ti,xk:+1’... ,xm)dxm...dxkﬂ
=0 ~— —

n—oo n+1

for almost every t = (t;);en € X1, that is, (ug,...,ug—1,t) € Dgi1 for almost every t € XV, that is, W (u)
is negligible, as required.

(iii) Suppose that t = (to,... ,t;m) € Z is such that tx, & W(to,... ,tk—1,tk+1,.-- ,tm) for every k < m.
Then (to,... ,tx) € Dgtq for every k; in particular, ¢ € D,, 41 and, writing ¢; = (¢;;);en for each j,

S o ftois - s tmi). Q

.. 1
I <liminf,_ el

(b) Similarly, or applying the argument above to — f, we have negligible sets W’(u) C X}, for k < m
andu € [, iz X}, such that

1

f <1
I'> hmsupnﬁoon—Jrl

Soro f(tois . stma)

whenever (t;)j<m = {({tji)ien)j<m is such that ¢t & W'(to,... ,tk—1,tk+1,--. ,tm) for every k. Enlarging
the W' (u) if necessary, we may suppose that W'(u) 2 W (u) for every u.

(c) Now the point of the construction is that we can find a t = (tg,...,tm) € Z such that t; ¢
W'(to, . ytk—1,tks1,--- ,tm) for every k. I For each k < m let Ay C XEI be a non-negligible set with
cardinal kj which (if £ > 1) cannot be covered by kp_1 negligible sets. Choose t,,, t;—1,... ,tp in such a
way that

t € Ag,  tk € W(u) whenever u € []; ; Aj X [ ;< {ti}s
this is always possible because #(Ag X ... x A1) = k1 if k> 1. Q

So we get
n
1< liggi(gfn%_l ;f(tm, o td)
n
< hfl_folipn%rl ;f(tou costmi) ST
as claimed.

537L Corollary Let ((X;,%;, 1tj))j<m be a finite sequence of probability spaces such that XJN, with its
product measure ,u?l, has a Sierpiniski set with cardinal w;;; for each j < m. Let f : ngm X; =+ R be a
bounded function, and suppose that c : m+1—m+1and 7: m+ 1 — m + 1 are permutations such that
the two repeated integrals

I= fff(xo, ,xm)dazg(m)...dxo(o),

I = f ce ff(d?o, ce ,CCm)de(m) .. .dl‘T(O),
are both defined. Then I = I'.

proof Apply 537K in both directions.

537M A pair of simple facts which I never got round to spelling out will be useful below.

Lemma Suppose that (X,X, ) is a totally finite measure space and f is a [0, co]-valued function defined
almost everywhere in X.
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(a) If v < [f, then there is a measurable integrable function g : X — [0,00[ such that [¢ > + and
{z:z €domf, g(x) < f(z)} has full outer measure in X.

b) If [f < ~, then there is a measurable integrable function g : X — [0, 00[ such that [¢g < v and
{z:2¢€ dom f, f(x) < g(x)} has full outer measure in X.

proof (a) By 135H(b-i),
T = suppen [ min(f (@), k)p(da);

let k¥ € N be such that Tfk > «, where fi(z) = min(f(z),k) for x € dom f. Because pX < oo, Tfk is
finite. By 133J(a-1), there is an integrable h such that [ h = ffk and fr <... h; adjusting h on a negligible
set if necessary, we can arrange that h is defined (and finite) everywhere on X and is measurable. Set
e=([h—7)/(1+pX), and g = h — exX; then by the last part of 133J(a-i),

{z:zedomf, gx) < f(z)} ={z:z €dom f, h(z) < f(x) + €}

has full outer measure in X, while [ g > ~.

(b) By 135Ha, there is a measurable h : X — [0,00] such that h <, fand [h = [f;as [h is finite,

h is finite a.e. and can be adjusted to be finite everywhere. Set ¢ = (y — [h)/(1 4+ pX), and g = h + exX;
then [g <~ and {z: f(z) < g(x)} has full outer measure.

537N For ordinary two-variable repeated integrals we can squeeze a little bit more out than is given by
537K.

Proposition Let (X, X, 1) be a semi-finite measure space, (Y, T, v) a probability space, and v the product
measure on Y. If non(E, N (1)) < cov N (v N) for every E € & \N( ), then

J [ f@ywidy)p < [ [f(,y)n(dz)v(dy)
for every function f: X x Y — [0, o0].

proof (a) To begin with, suppose that 41X < oo and #(X) < cov N (V). Foreachy € Y, let by, : X — [0, 00]
be a measurable function such that f(x,y) < hy(z) for every z € X and [ hydp = [f(z,y)pu(dz); letv:Y —

[0, 00] be a measurable function such that [ hy,dp < v(y) for every y € Y and [vdv = TTf(a:, y)u(dx)v(dy).
If this is infinite, we can stop. Otherwise, for each z € X let g, : Y — [0, 00] be a measurable function such
that g,(y) < f(z,y) for every y € Y and [ g,dv = [ f(z,y)v(dy), and let u : X — [0,00] be a measurable

function such that u(x) < [ g, dv for every x and [udu = [ [ f(z,y)v(dy)p(dz).
As #(X) < cov N (), we can find a sequence <yi)i€N in Y such that

Zn (yz)

f’tidl/ = lim,, oo — el

and
Z?:o 9z (Yi)

for every x € X. (For by 273J, the set of such sequences is the intersection of fewer than cov N (V)
conegligible sets in YN, and cannot be empty.) If x € X, then

1 n
> "0 92 (yi) < liminf, o — el Yoo hy, ().

fgwdl/ =limy 00 — gl

) < fgzdl/ = liminf, o — +1

So

//f(fay)V(dy)u(dw) = /udu< hnngogfrZ/hytdu

(by Fatou’s Lemma)
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n

. 1
< hnrgloréfn—_i_l Zov(yi) = /Udl/

_ //f(a:, y)ul(da)v(dy),

(b) Now suppose that p is totally finite and that X has a subset A of full outer measure with #(A) <
cov N (Y). Let pa be the subspace measure on A. Then for any ¢ : X — [0, 00] we have

Jadn < [(al A)dpa < [(al A)dpa < [qdp
(214J). So, writing fa for the restriction of f to A x Y,

//fxy (dy)p(dz) //foy Jv(dy)pa(de)

< //fA(l'7 Y)pa(de)v(dy)

< //f (@, y)u(dz)v(dy).

(c) For the general case, let u : X — [0, 00] be a measurable function such that u(z) < [ f(z,y)v(dy) for

as required.

(by (a))

every z € X and [udu = [ [f(x,y)v(dy)u(dz). Take any v < [wdp. Because p is semi-finite, there is a
non-empty set F' € ¥ of finite measure such that || pudp > . Now let £ be the family of measurable sets
E C F of finite measure for which there is a non-empty set A C E, with cardinal less than cov N (vY), such
that p*A = pFE, that is, A has full outer measure for the subspace measure pg, that is, F is a measurable
envelope of A. Then £ is closed under finite unions and every non-empty member of ¥ includes a member of
£. So there is a non-decreasing sequence (Ey)ren in £ such that | J, .y Ex € F and F'\ ;¢ Er is negligible.
In this case, v < [pudp = limgoo [ wdp, so there is a k € N such that v < [, udpu. Set E = Ej.
Consider the restriction fg of f to £ X Y and the subspace measure pup on E. We have

)< /E wdp = / (ul B)dpp < / / fo(@,y)v(dy)ps(dz)
< //fE(x, y)pe(dz)v(dy)

(because E € &, so we can use (

//fxy (dz)v(dy)

because f fe(z,y)pe(de) < [f(z,y)u(dx) for every y, by 214Ja or otherwise. Since 7 is arbitrary,

ii uldz) < T [ f(x pyu(doy(dy)

in this case also.

5370 Corollary Let (X, 3, ) and (Y, T,v) be probability spaces, and v the product measure on Y™,
If shrt AV (1) < cov N (VNY) then

[ [ yywidy)u(dz) < [ [z, y)u(dow(dy)

for every function f: X x Y — [0, 00].
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proof Take any v < Tff(;v, y)v(dy)p(dx). By 537Ma, there are a measurable function u : X — [0, oo[ and
a set A of full outer measure in X such that Judp > v and u(x) < [f(z,y)v(dy)p(dz) for every z € A.
Let 14 be the subspace measure on A, and f4 the restriction of f to A x Y. If B C A is any non-negligible
relatively measurable set, there is a non-negligible D C B such that # (D) < shr™A(u), so

non(B, N (114)) = non(B, N (n)) < #(D) < cov N (@V).

So
1< [udu— / Adua < [ [ fateyvidypatis)
(because ul A is measurable and (u[A)(z) < ffA x,y)v (d ) for every x € A)
</ / e y)pa(de)(dy)
(by 537N)

< [ [1wvutazpiay

because TfA(x, Y)pa(de) < Tf(a:, y)u(dx) for every y, by 214J again. As v is arbitrary, we have the result.

Remark There is a similar inequality, under different hypotheses, in 543C below.

537P Corollary Let (X,3, ) and (Y, T,v) be probability spaces, and v/ the product measure on Y™;
suppose that shr™A(u) < cov N (¥V), and that f: X x ¥ — R is bounded.

(a)

fi x,y)v(dy)p(dx) ff x,y)u(dr)v(dy),
J S y)p(da fT p(dz).

() If [[ f(z,y)u(dx)v(dy) is defined, and ff (x,y)v(dy) is defined for almost every x, then the other
repeated integral [[ f(z,y)v(dy)p(dz) is defined and equal to [[ f(z,y)p(dz)v(dy).

proof (a) Apply 5370 to the functions (z,y) — M + f(z,y), (z,y) — M — f(z,y) for suitable M.

(b) By (a),
/ F (e, y)u(d)v(dy) < / / £, y)v(dy)p(d)

< [ [ sapmantin) < [ septan).

537Q We can extend the second part of 537Pa, as well as the first, to unbounded functions, if we
strengthen the set-theoretic hypothesis.

Proposition (HUMKE & LACzZKOVICH 05) Let (X, %, v) and (Y, T, ) be probability spaces and N
the product measures on X, YN respectively. If Shr+N( N < cov N (VM) then [ [ f(z,y)p(dz)v (dy) <

fff (x,y)v(dy)u(dr) for every function f: X x Y — [0, col.

proof ? Suppose, if possible, otherwise.

(a) There is a measurable function u : Y — [0, co[ such that

<ffxy (dzx) for every y, fffxy w(dz) <fudu
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Since [wudy is the supremum of the integrals of the non-negative simple functions dominated by u, we may

suppose that u itself is a simple function; express it as Z;’;O a;xFj where a; > 0 for each ¢ and (Fy, ... , Fiy,)
is a partition of Y into measurable sets. Now

[r@answvianuas < [ 3 [ funr @)
JZO// Y)xLri\y Y)n /;/ Y)xXLri\y Y)u

< [ [ 1 uwtdnian)

(because if € X and ¢ : Y — [0,00] is measurable and f(z,y) < ¢(y) for every y, then the sum
Soio [ f (@, y)xFj(y)v(dy) is at most Y7 [ g x xFjdv = [ qdv)

< /udl/ = ZO{jI/Fj.

Jj=0

(1333 (b-v))

There are therefore a j < m and a v < 1 such that

ST F o Fy)vldy)u(de) < o,

Now there is a measurable function v : X — [0, 00[ such that [vdu < ya;vF; and

D={x:xeX, [fz,y)xF;yw(dy) <v(z)}
has full outer measure in X, by 537Mb.

(b) For y € Y and £ = (z;)ien € XV, set h(z,y) = liminfnﬁm%ﬂzzlzo f(ziy). Ify € Y, then

if(m, y)u(dz) < h(z,y) for pN-almost every z. PP We have a measurable function ¢ : X — [0, co[ such that
q(z) < f(x,y) for every x and

n

[rntan) = [adu < tmint 53" gt

i=0

n—oo M+

. 1 =
< timinf 3 f(a1,1) = blo.)
i=0
for almost every = (z;);en. Q At the same time,

.. 1 n
V = {{x;)ien : liminf, n—ﬂzizov(fm) < ya,;vF;}

is conegligible in XM, because [vdp < ya,;vF;.
(c) Set
W ={(z,y):z € XN, y € Fj, h(z,y) > a;}
and consider the function xW : XN x Y — {0,1}. If y € F; then [f(z,y)u(dz) > a; so W [{y}] is
conegligible in XN. On the other hand, if = (x;);cn belongs to V N DY,

/ W (, y)v(dy) < / (e, y)XF; (y)v(dy)

= /lim inf 1 Z T (s, y)x Fy(y)v(dy)
i=0

n—oo n+1

n—oo

< lim inf / ni“ > flasy)xEFi(y)v(dy)
=0
(133Kb)

MEASURE THEORY



537S Sierpiriski sets, shrinking numbers and strong Fubini theorems 93
1 T
< liminf — x; Fi(y)v(d
< limin n+1§/f( B YIXEF () (dy)
i=

(1337 (b-ii))

.. 1
< hnrr_1>1oréfn—_i_1 z;v(xi) < ~va,;vF}.
7=

(d) As V is conegligible and D" has full outer measure (254Lb),
[ [xw @ pwtanidn) < s < v = [ [ (e (@opiay
— [ [z

But we are supposing that shr™ AV (uY) < cov N (vN), so this contradicts 537P. X
So we have the result.

537R Lemma Let (X, X, 1) be a complete probability space and (Y, T, v) a probability space such that
shr™ A (p) < cov N (vN), where N is the product measure on YN, Let f : X x Y — R be a bounded function
which is measurable in each variable separately, and set u(z) = [ f(z,y)v(dy) for € X. Then u: X — R
is measurable.

proof ? Otherwise, there are a non-negligible measurable set £ C X and «, 8 € R such that o < 8 and
p{r:z € E,u(z) <a}=p*{z:2 € E,u(z) > B} = uk
(413G). Let AC {z:z € E, u(z) < a}and BC {z:z € E, u(z) > S} be sets with cardinal less than
shr™A/(u) and outer measure greater than 1pFE (521Ca). Let (y;);en be a sequence in Y such that
u(z) = limy, 00 %_HZ;;O flx,y:)
for every © € AU B. Because x — f(z,y;) is measurable for each i, u[ AU B is measurable; but this means
that A and B can be separated by measurable sets, which is impossible, because u*A 4+ u*B > uE. X
537S Proposition Let (X, %, 1) and (Y, T, v) be probability spaces such that
shrt N (1) < cov N (VY),
where N is the product measure on YV, and
cf([T(v)]=¥) < cov(E, N (u)) for every E € X\ N (1),

where 7(v) is the Maharam type of v. Let f : X xY — [0,00[ be a function which is measurable in each
variable separately. Then [[ f(z,y)u(dx)v(dy) and [[ f(z,y)v(dy)p(de) exist and are equal.

proof (a) Let A D X&T be the o-algebra of sets W € X x Y such that all the vertical and horizontal
sections of W are measurable. If W € A, then « — vW[{z}] : X — [0,1] is measurable, by 537R. If W € A
and almost every horizontal section of W is negligible, then

[owttinn) = [ [yt

< [ [ putdomiay) o
by 537Pa, so almost every vertical section of W is negligible.

(b) Let (B, 7) be the measure algebra of (Y, T,v). If W € A and there is a metrically separable subalgebra
¢ of B containing W[{x}]* for every 2 € X, then there is a W’ € E&T such that W[{z}]AW'[{z}] is
negligible for almost every x. I® Note first that for every F' € T the map
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z = (W} AF) = v(WAX x F))[{z}]

is measurable, by (a). So x — W[{z}]* : X — € is measurable, by 418Bc. By 418T(b-ii), there is a
W' € £®T such that W[{z}]* = W'[{z}]* for almost every z. Q

() In fact we find that for any W € A there is a W’ € S&T such that W [{z}]AW’[{z}] is negligible for
almost every z. P Set k = 7(v) = 7(B), and let (e¢)¢<, generate B. Let K C [k]<* be a cofinal set with
cardinal cf[k]<*. For K € K, let Bk be the closed subalgebra of B generated by {e¢ : ¢ € K} and Ak the
set {z:z € X, W[{z}]* € Bk}. Note that K — A is non-decreasing and that the union of any sequence
in I is included in a member of K. So there is a Ky € IC such that p*Ag, = supgex " Ak.

If E is a measurable envelope of Ag,, then {Ax \ E: K € K} is a cover of X \ E by negligible sets. So
cov(X \ E,N(n)) < cf[k]=% and X \ F must be negligible, that is, Ag, has full outer measure.

Taking a sequence (Fy,)nen in T such that {F: : n € N} is dense in Bg,, we see from (a) that z —
inf,en v(W[{z}]AF,) is measurable, while it is zero on Ag,. So W[{z}]* € Bk, for almost every z € X,
that is, Ak, is actually conegligible. Taking a measurable conegligible set £’ C A, and applying (b) to
W N (E" xY), we see that there is a W’ € Y®T such that W[{z}]AW’[{z}] is negligible for almost every
reX.Q

(d) Now turn to the function f under consideration. For ¢ € Q set W, = {(z,v) : f(z,y) > ¢} € A.
By (c), we have V, € ©&T such that V,[{z}]AW,[{z}] is v-negligible for p-almost every z, and therefore
W {yAV, ' [{y}] is p-negligible for v-almost every y, by (a). If ¢ < ¢’ then Wy \ W, is empty, so
Vo l{z}] \ Vy[{z}] is v-negligible for u-almost every x, and Vg \ V, is (1 x v)-negligible, where p x v is the

product measure on X x Y. Similarly, g<qVa \ V; is negligible for every q. Moreover, writing V, for

Nyen Var Vool{z}] is v-negligible for y-almost every z, so (u x v)Veo = 0; similarly, (u x v)Vo = 1. There is
therefore a Y®T-measurable g : X x Y — [0, 00 such that V,A{(z,y) : g(x,y) > ¢} is (4 x v)-negligible for
every ¢ € Q. In this case,

{z: f(z,y) # g(x,y)} is p-negligible for v-almost every y,
{y: f(z,y) # g(x,y)} is v-negligible for u-almost every z,

and

[ s wutaontan = [[ s puspiay)
~ [[ stwvwianntan = [[ e ppiaputin)

by 252H.
(e) Finally, if f is unbounded, set fi(z,y) = min(f(z,y), k) for each k € N. Then

// f(z,y)u(dz)v(dy) = lim //fk(x,y)u(dw)V(dy)

k—o0

= lim. / / ol y)v(dy)u(dz) = / / F,y)v(dy)p(dz).

537X Basic exercises (a)(i) Let (X,Y, 1) be a measure space such that singletons are negligible and
cfN(p) = wy. Show that there is a Sierpiriski subset of X. (ii) Show that if yu is Lebesgue measure on R
and cf V(i) = wy, then there is a strongly Sierpiriski subset of R.

(b) Show that for any uncountable cardinal k there is a purely atomic probability space with a strongly
Sierpinski set with cardinal .

(c) Let (X,X%, 1) be a measure space. Show that the union of any sequence of Sierpiriski sets in X is
again a Sierpinski set in X.
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(d) Let (X, X, 1) be a measure space and Y any subspace of X. Show that a subset of Y is a Sierpiniski
set for the subspace measure on Y iff it is a Sierpinski set for p.

(e) Suppose that A is an infinite cardinal and the usual measure vy on {0,1}* has a Sierpiriski set with
cardinal k. Show that v, has a Sierpiniski set A such that #(A N E) = k whenever vy E > 0.

(f) Let (X, p) be a non-separable metric space with r-dimensional Hausdorff measure, where r > 0. Show
that X has a Sierpiriski subset with cardinal equal to the topological density of X.

>(g) Suppose that non N < cov. N, where A is the null ideal of Lebesgue measure on R. Let (X, T, 3, u)
and (Y, &, T, v) be Radon probability spaces of countable Maharam type, and f : X xY — [0, o0[ a function
such that I = [[ f(z,y)pu(dz)v(dy) and I' = [[ f(z,y)v(dy)p(dz) are both defined. Show that I = I'.

>(h) Let (X, X, 1) be a probability space in which there is a well-ordered family in N (x) with union X;
e.g., because non N'(u) = #(X) or add N () = cov N (). Show that there is a function f: X x X — [0,1]
such that [ f(z,y)u(dx) =0 for every y € X and [ f(z,y)u(dy) =1 for every z € X.

>(i) (In this exercise, all integrals are to be taken with respect to one-dimensional Lebesgue measure
p.) (i) Find a function f : [0,1]> — {0,1} such that [ [f(z,y)dzdy = 1 but [[ f(z,y)dyde = 0. (Hint:
there is a disjoint family (Ay),ec(0,1] of sets of full outer measure.) (ii) Find a function f : [0,1]*> — {0,1}
such that [[ f(z,y)dady = 1 but [ [f(z,y)dyde = 0. (iii) Find a function f : [0,1]> — {0,1} such

that [ [ f(z,y)dedy = 1 but [ [ f(z,y)dydz = 0. (Hint: enumerate [0,1] as (z¢)e<. in such a way that
{z¢ : € <nonN(p)} has full outer measure; set f(xe¢,x,) =1if n < &)

537Y Further exercises (a) Let ((X;, X, t;)) j<m be a finite sequence of probability spaces and (k) j<m
a sequence of cardinals such that X; has a subset with cardinal x; which is not covered by x;_; negligible
sets (if j > 1) and is not negligible (if j = 0). Set X =[[;.,, X, and for k < m write Z for [[,,, ;. Xj-
Suppose that for each k& < m we have a set A, C X such that7 identifying X with Xy x Zy, {z : (z,2) €
A} C Zj, is negligible for the product measure on Zj, whenever x € Xj. Show that (J, ., Ar # X.

537Z Problems (a) Is it relatively consistent with ZFC to suppose that R, with Lebesgue measure, has
a Sierpinski subset but no strongly Sierpinski subset?

(b) Is it relatively consistent with ZFC to suppose that there is a probability space (X, u) such that
(X, 1) has a Sierpiniski set but its power (XY, u) does not?

537 Notes and comments It is easy to see that if ¢ = w; then there is a strongly Sierpiriski set with
cardinal w;y for Lebesgue measure (537Xa). Countable-cocountable measures have strongly Sierpinski sets
for trivial reasons. To eliminate all Sierpiniski sets (on the definition of 537A) from atomless complete locally
determined measure spaces, it is enough to ensure that the uniformity of Lebesgue measure is greater than
w1 (537Bb). For the simplest models with non-trivial Sierpiriski sets with cardinal greater than wy, see 552E
below.

The ‘entangled sets’ of 537C-537G belong rather to combinatorics than to measure theory; I go as far as
I do into this theory because it is interesting in view of 552E. But it includes a proof that if the continuum
hypothesis is true then there are two ccc partially ordered sets whose product is not ccc, which in its own
context is of great importance.

Fubini’s theorem is so important in measure theory that exploration of its boundaries has been a perennial
challenge. I gave elementary examples in 252X{-252Xg to show that as soon as we abandon the requirement
that [[|f(z,y)|dzdy < oo our repeated integrals can be expected to be unreliable. But for non-negative
functions f on o-finite spaces, measurability is enough to ensure that repeated integrals are equal (252H).
In this section I look for results which will be valid for non-measurable functions. In 537I-537J we have
a rather esoteric example — or, some would say, an example from a topic which I have neglected in this
book — which is unusual in that it is a theorem of ZFC; for a note on its ancestry see FREMLIN 93, 5L. In
537K-537L we see that, in the presence of a sufficient supply of Sierpinski sets, for instance, we must have
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[[ f(x,y)dzdy = [[ f(z,y)dydz for ordinary bounded real-valued functions on the product of probability
spaces, as long as both repeated integrals are defined. The argument here depends on using the strong law
of large numbers to replace an integral [ f(z,y)dz by the limit of a sequence of averages of values f(x;,y).
This is why the Sierpinski sets must be available not in the original probability spaces Xj,... , X,, but in
their powers X'. Of course for our favourite spaces, starting with [0,1], (X™, u") is isomorphic to (X, u),
so this does not seem too large a step; but it begs an obvious question (537Zb). For any result of this kind
we certainly need some special axiom (537Xh).

In 537L the hypothesis includes strong ‘separate measurability’ conditions; we need not only separate
measurability, but measurability of the functions « — [ f(z,y)dy and y — [ f(y,x)dz. With a different
set-theoretic hypothesis we can relax these (537S). I approach this form through ideas from HUMKE &
LAczKOVICH 05, where there is a careful analysis of repeated integrals of the form [ [, etc. My own
version is in 537N-537Q. At every step there are ZFC examples to show that we cannot change the formulae
involving [, [ without disaster (537Xi); but it is not so clear that the set-theoretic hypotheses offered are
unimprovable.

Version of 18.2.14
538 Filters and limits

A great many special types of filter have been studied. In this section I look at some which are particularly
interesting from the point of view of measure theory: Ramsey ultrafilters, measure-converging filters and
filters with the Fatou property. About half the section is directed towards Benedikt’s theorem (538M)
on extensions of perfect probability measures; on the way we need to look at measure-centering ultrafilters
(538G-538K) and iterated products of filters (538E, 538L). The second major topic here is a study of ‘medial
limits’ (538P-538S); these are Banach limits of a very special type. In between, the measure-converging
property (538N) and the Fatou property (5380) offer some intriguing patterns.

538A Filters For ease of reference, I begin the section with a list of the special types of filter on N which
we shall be looking at later.

Definitions Let F be a filter on N.
(a) F is free if it contains every cofinite subset of N, that is, includes the Fréchet filter.

(b) F is a p-point filter if it is free and for every sequence (A, )ncn in F there is an A € F such that
A\ A, is finite for every n € N. (Compare 5A6Ga.)

(c) F is Ramsey or selective if it is free and for every f : [N]> — {0,1} there is an A € F such that f
2

is constant on [A]“.

(d) F is rapid if it is free and for every sequence (t,)nen of real numbers which converges to 0, there is
an A € F such that Y, ., |t,| is finite. Note that a free filter 7 on N is rapid iff for every f € N there
is an A € F such that #(AN f(k)) < k for every k € N. P (i) If F is rapid and f € N¥, let g € NY be a
) k%—l if g(k) < i < g(k + 1); then there
is an A € F such that ), ,t; is finite; as F is free, there is an A € F such that >, ,#; < 1, in which
case #(AN f(k)) < #(AnNg(k)) <k for every k € N. (ii) If F satisfies the condition and (t;);eny — 0, take
a strictly increasing f € N¥ such that [¢;] < 27% whenever k € N and i > f(k); let A € F be such that

#(AN f(k)) < k for every k; then 3", 4 |t:] < S50 27 74(AN f(k + 1)\ f(k)) is finite. Q

(e) F is nowhere dense if for every sequence (t,)ncn in R there is an A € F such that {t, : n € A} is
nowhere dense.

strictly increasing sequence such that f < g. Set t; = 2 if ¢ < ¢(0)

(f) F is measure-centering or has property M if whenever 2 is a Boolean algebra, v : 20 — [0, oo] is
an additive functional, and (a,)nen is a sequence in 2 such that inf, cnva, > 0, there is an A € F such
that {a, : n € A} is centered.

(© 2009 D. H. Fremlin
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(g) F is measure-converging if whenever (X, X, 1) is a probability space, (E,)nen is a sequence in X,
and limy, o By = 1, then |J e 7, a En is conegligible.

(h) F has the Fatou property if whenever (X, X, 1) is a probability space, (E,)nen is a sequence in X,
and X = UycrNpea En, then lim,_, 7 uF,, is defined and equal to 1.

(i) For any countably infinite set I, I will say that a filter F on I is free, or a p-point filter, or Ramsey,
etc., if it is isomorphic to such a filter on N. Of course this usage is possible only because every property here
is invariant under permutations of N. For ‘rapid’ and ‘measure-converging’ filters, we need an appropriate
translation of ‘sequence converging to 0’; the corresponding notion on an arbitrary index set I is a function
u € ¢o(I), that is, a real-valued function u on I such that {i :¢ € I, |u(i)| > €} is finite for every ¢ > 0; if
we give I its discrete topology, ¢o(I) is Co(I) as defined in 4361.

538B We need a number of basic ideas which can profitably be examined in a rather more general
context. I start with a fundamental pre-order on the class of all filters.

The Rudin-Keisler ordering If F, G are filters on sets I, J respectively, I will say that F <gk G if there
is a function f : J — I such that

F=/flG)]={A:ACI, 1Al eg},

the filter on I generated by {f[B] : B € G}. (I ought to remark that while this is a standard idea for
ultrafilters, in the case of general filters the terminology is not well established.) Of course <gk is reflexive
and transitive. If F <gg G and G is an ultrafilter, then F is an ultrafilter (2A1N). If F is a principal
ultrafilter then F <gk G for every filter G.

538C Lemma (a) If I is a set, F is an ultrafilter on I and f : I — I is a function such that f[[F]] = F,
then {i: f(i) =i} € F.

(b) If I is a set, F and G are ultrafilters on I, F <gx G and G <gk F, then there is a permutation
h: I — I such that h[[F]] = G; that is, F and G are isomorphic.

proof (a) It is enough to consider the case in which I = & is a cardinal.

(1) {¢: €<k, £ < f(§} € F. P Define (Dy)nen, (En)nen by saying that

DOZ":a Dn+1:{€:£€Dnaf(€)€Dnvf()<£}a E, =D, \Dn+1

forn € N. If £ € D, then £ > f(§) > ... > f*(£), so ﬂneN = () and (E,)nen is a partition of k.
If § € Epyr then fr7H(E) < f2(€) < ... < & (g < f"“(f), so f(§) € En. Set B = 51 Eon,
E" = U, en Fony1; then f[E] C E' is disjoint from E, so E ¢ F. Also f[E'] C E'U Ej is disjoint from E’,
so E' ¢ F. Because F is an ultrafilter, Eg € F, as claimed. Q

(if) If AC T and A ¢ F then B = J,, (™) '[A4] does not belong to F. B For { € B set m(§) =
min{n:n e N, f7(§) € A}. If m(§) >0 then m(f(ﬁ)) = ( ) — 1. So setting C = {£ : m(&) is even and not

0}, C'={¢: m()isodd}wehavef[ ia , flC1n Q)andBCAUC’UC so B¢ F. Q
Turning this round, if A € F then UneN(f")_l[n \ 4] §é Fand N,en(f™) 1Al € F.

(iii) For & < & set
g(&) = min{( : there is some n € N such that f"(¢) = ¢}.

Then g[[F]] = F. P If A € F then F contains [, cn(f™)*[A] C g '[A], so g~![A] € F. Thus F C g[[F]];
as F is an ultrafilter, F = g[[F]]. Q

Now ¢(§) < € for every & < k; applying (i) to g, we see that G = {¢ : g(§) = &} € F. But consider
H={¢:£< f(&}. Then g(n) < n for every n € f[H], so f[H] ¢ F and H ¢ F. Since we already know
that {€: € < f(€)} € F, we see that {£: f(£) = £} belongs to F, as claimed.

(b) Let f, g : I — I be such that f[[F]] = G and ¢[[G]] = F. Then (¢f)[[F]] = g[[f[[F]]]] = F, so
Jo={i:g(f(i)) =14} € F, by (a). Similarly, J; = {i : f(g(i)) = i} belongs to G. Set J = JoN f~1[}1] € F;
then g(f (7)) =i for every i € J and f(g(j)) = j for every j € f[J], so f|J and g] f[J] are inverse bijections
between J € F and f[J] € G. If J is finite, then certainly #(I \ J) = #(I \ f[J]) and there is an extension
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of fJ to a permutation of I. If J is infinite, let J' C J be a set such that #(J') = #(J\ J') = #(J) and
J' € F;then #(I\ J') =#(I\ f[J']) = #(I) so there is an extension of f[J’ to a permutation of I.

Thus in either case we have a permutation h : I — I and a K € F such that K C J and h|K = f[K.
But now h[[F]] = G and h is an isomorphism between (I, F) and (I, G).

538D Finite products of filters (a) Suppose that F, G are filters on sets I, J respectively. I will write
F x G for

{A:ACTIxJ, {i:A[{i}] € G} e F}.
It is easy to check that F x G is a filter. (Compare the skew product Z x J of ideals defined in 527Ba.)

(b) If 7 and G are ultrafilters, sois F x G. PIf AC I x Jand A¢ F x G, then {i: A[{i}] € G} ¢ F}
and

{i:(IxNH\NA{iHegt={i:iel, J\A[{i}] e G} =1\ {i: A[{i}] € G} € F,
so(IxJ)\AeFxG Q

(c) If 7, G and H are filters on I, J, K respectively, then the natural bijection between (I x J) x K
and I x (J x K) is an isomorphism between (F X G) X H and F X (G x H). PIf A C I x (J x K) and
B ={(i,j). k) : (i,(j, k)) € A}, then

AeFx(GxH) «— {i:Al{i}]eGxH}eF
= {i: {j: (A{BDHH e H} e Gt e F
= {G.J): (A{DHIH e H} e Fx G
= {(i,)) : B{(i,j)}] e H} e Fx G
< Be(FXxG)xH Q

(d) It follows that we can define a product Fy x ... X F,, of any finite string Fo, ... ,F, of filters, and
under the natural identifications of the base sets we shall have (Fo x ... x F,) X (Fpt1 X ... X F,) identified
with Fy X ... X F,, whenever Fo,...,F,,...,Fn are filters.

(e) For any filters F and G, F <gpg F X G and G <gx F x G. P Taking the base sets to be I, J
respectively and f(i,j) =i, g(i,j) =j fori € [ and j € J, we have F = f[[F x G]] and G = g[[F x G]|. Q

Inducing on n, we see that F,, <grk Fo X ... X F, whenever Fy, ... ,F, are filters; consequently F,, <rk
Fo X ... X F, whenever Foy,...,F, are filters and m < n.

(£) f 7, F/, G and G’ are filters, with F <gx F’ and G <gk G’, then F x G <gx F’' x G'. P Let the
base sets of the filters be I, I’, J and J’, and let f : I’ — I and g : J' — J be such that F = f[[F']] and
G = g[[G']]- Set h(i,j) = (f(i),g(j)) fori e T and j € J. If AC I x J, then

R Al e FIxG < {i:(h'A){i}]eG'}eF
— {i:g [A{f@)} €G}eF
— {i: A{f()} eG}eF
— {i: A{i}]€G} e F <= Ac FxgG.
So FxG=h[[F xG]land Fx G<grx F' X G'. Q

Accordingly Fo X ... X F, <grk Go X ... X G, whenever F; <grk G; for every i < n.

(g) It follows that if Fo, ... ,F, are filters and kg < ... < ky,, < n, then Fp, X... X Fg, <prkg FoX...XFy.
P Induce on m to see that Fy, X ... X Fr <gx Fo X ...X Fg, . Q
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538E There are many variations on the construction here. A fairly elaborate extension will be needed
in 538L below.

Iterated products of filters (a) First, a scrap of notation for the rest of the first half of this section
(down to 538M). Set S = [J;cy N*. Fix on a family (6(¢,k))1<e<w, ken such that each (0(¢, k))ren is a
non-decreasing sequence running over a cofinal subset of £. (You will probably prefer to suppose that when
& =n+1is a successor ordinal, then (&, k) = n for every k € N.)

(b) Now suppose that ¢ is a non-zero countable ordinal. Let (F¢)1<¢<¢ be a family of filters on N. For
¢ < (, define G¢ C PS as follows. Start by taking Gy to be the principal filter generated by {@}. For
1 <€ <, set

Ge={A:ACS {k:keN, {r:<k>"17¢€ A} € Gye )} € Fe}-
(See 5A1C for the notation here.) It is elementary to check that every G is a filter, and that if every F¢ is

free, so is every Ge. Moreover, if every F¢ is an ultrafilter, so is every Gg.

(c) Continuing from (b), we find that Fr <gx Ge whenever 1 < ¢ < (¢ and G, <gk G¢ whenever
0<n<¢< (¢ Plnduce on & (i) If € > 1, define f : S — N by setting f(7) = 7(0) if 7 £ 0, f(0) = 0.
Then, for B C N,

fTUBl€Ge <= {k:{r:<k>"1€ !B} € Gy} € Fe
< BecFg,
so Fe = f[Ge]] <mx Ge. (ii) If n = £ < ¢ then of course G,) <rk Ge¢. (iii) If 0 < n < & then there is a kg such

that n < 0(&, k) for k > ko. For k > ko, G, <rk Go(¢,k) by the inductive hypothesis; let gx : S — S be such
that G, = gr[[Go(e,k)]]. Now define g : S — S by setting

9(1) = gi(0) if k > kg and 7 = <k>"0,

(0 otherwise.

For BC S,

g Bl €G: — {k:{o:<k>"0€ g '[B]} €Gyen} € Fe
= {k:k>ko, {0:9(<k>"0) € B} € Gy(e iy} € Fe
(because F¢ is free)
< {k:k>ko, {0:g1(0) € B} € Goe )} € Fe
< {k:k>ky, BEG,} € Fr <= B¢,

so Gy = g[[G¢]] <rk G¢- Q

(d) It follows that if 1 <& < ... <&, <( then F¢, X ... X Fgy <gk Ge,. PP Induce on the pair (&,,n).
If &, = 1 then n = 0 and we just have F; <grk Gi, as in part (i) of the proof of (¢). For the inductive step
to & = £ > 1, if n = 0 then again we need only note that F¢, = F¢ <prk Ge. If n > 0, let kg > 1 be such
that &,—1 < 0(&, k) for every k > kqo. For k > ko,

Fepy X oo X Fey SRK Ge,y < Goe,n)

by the inductive hypothesis, so we have a function gy : S — N" such that Fe, , X ... X Fey = gr[[Goce,m)]]-
Define g : § — N™+! by setting

g(1) = <k>"gi(0) if k > ko and 7 = <k>"0,

= the constant function with value 0 otherwise.

Then, for B C N*+1
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g '[Bl€Ge <= {k:{0o:9(<k>"0) € B} € Gye.1n} € F¢
= {k:k >k, {0:<k>"gr(o) € B} € Gye,iy} € Fe
= {k:k>ko, {o:91(0) € Br} € Goe )} € Fe
(writing By, = {0 : <k>"0 € B} CN" for k € N)
= {k:k>ko, By € Fe,_, X ... X Fg,} € Fe
< {k:keN, B, Fe, , X...X Fg, } € Fe
< BeFg X... X Fg.

Thus g witnesses that F¢ X ... x F¢ <rk Gs,, and the induction proceeds. Q
Consequently Fg, X ... X Fg, <rx G¢ whenever 1 <& <... <&, <.

(e) The following special remark will be useful in Theorem 538L. Suppose that we are given A; € F;
for each £ € [1,¢]. Define T C S and o : T — [0,(] as follows. Start by saying that §) € T and «(0) = (.
Having determined T N N™ and a7 N N", where n € N, then for 7 € N**! say that 7 € T iff 7 is of the
form o~ <k> where

ceTNN", a(o) >0, keAys), o(i)<kforeveryi<n,

and in this case set a(r) = 0(a(o),k). Continue. Observe that a(7) < «(c) whenever o, 7 € T and 7
properly extends o.

Suppose that D € (o, Fe. Then T, = {7 : 7 € TN, ey D", a(r) = 0} belongs to G¢. P I aim to
show by induction on & that if 7 € TN,y D™ and a(7) = £ then {0 : 770 € T} belongs to Ge. If £ =0
then of course {0 : 770 € T5} = {0} € Gy. For the inductive step to £ > 0,

{k:{o:7"<k>"0€ThH} € Goe )}
O2{k:ke D, m<k>eT a(tm<k>)=0(k)}
(by the inductive hypothesis)
O{k:keA:nND, (i) < k for every ¢ < domT}
€ Fe,

so{o: 770 € T}} € Ge. At the end of the induction, we can apply this to 7 =0 and { = (. Q

538F Ramsey filters There is an extensive and fascinating theory of Ramsey filters; see, for instance,
COMFORT & NEGREPONTIS 74. Here, however, I will give only those fragments which are directly relevant
to the other work of this section.

Proposition (a) A Ramsey filter on N is a rapid p-point ultrafilter.

(b) If F is a Ramsey ultrafilter on N, G is a non-principal ultrafilter on N, and G <gk F, then F and G
are isomorphic and G is a Ramsey ultrafilter.

(c) Let F be a Ramsey filter on N. Suppose that (A,,),en is any sequence in F. Then there is an A € F
such that n € A,, whenever m, n € A and m < n.

(d) Let F be a Ramsey filter on N. Let § C [N]<% be such that ) € S and {n : TU {n} € 8} € F for
every I € S. Then there is an A € F such that [A]<¥ C S.

(e) If § is a countable family of distinct Ramsey filters on N, there is a disjoint family (Az)rcz of subsets
of N such that Ax € F for every F € §.

(f) Let § be a countable family of non-isomorphic Ramsey ultrafilters on N, and § : N — [§]<% a function.
Suppose that we are given an Ar € F for each F € §. Then there is an A € (| F such that whenever 4,
je A, Feh(i)and i < j, there is a k € Ax such that i < k < j.

(g) If Mcountable = ¢, there is a Ramsey ultrafilter on N.

proof (a) Let F be a Ramsey filter on N.
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(i) F is an ultrafilter. P Let A be any subset of N. Define f : [N]> — {0,1} by setting f(I) = 1 if
#(INA) =1, 0 otherwise. Then we have an I € F such that f is constant on [[]>. As F is free, #(I) > 3
and the constant value of f cannot be 1. So either I C Aand A€ F,or INA=0and N\ Ae F. As A is
arbitrary, F is an ultrafilter. Q

(ii) F is a p-point filter. B Let (I,,)nen be a sequence in F. Set K,, = (N\n)N(,_,, I;, Jn = Kp\ Kpnp1
for each n; then (J,),en is a partition of N. Define f : [N]?2 — {0, 1} by setting f(a) = 0 if there is an n € N
such that a C J,,, 1 otherwise. Let I € F be such that f is constant on [I]?.
Since N\ J,, € F for every n, there must be two points in I belonging to different J,,; so that the constant
value of f must be 1, and no two points of I belong to the same J,,. In particular, I N J,, is always finite,
and I\ I, C U,,, I N J; is always finite. As (I,,)nen is arbitrary, F is a p-point filter. Q@

(iii) F is rapid. PP Let (¢, )nen be a sequence converging to 0. For each n, set I,, = {i : [t;| < 27"}; as
F is free, I, € F. Looking again at the proof of (ii) above, we see that the construction there gives us an
I € F such that #(I\ I,,) < n+1 for every n. We can therefore enumerate I as (k,)nen in such a way that
kn41 € I, for every n. But this means that

Dier [til = 2000 [t | < el + 22002, 274 < o0
As (t,)nen is arbitrary, F is rapid. Q
(b) Let f : N — N be such that f[[F]] =G. For K € [N]?, set h(K) = 0 if f|K is constant, 1 otherwise.
Then there is an A € F such that h is constant on [A4]?, that is, f is either constant or injective on A. Since
flA] € G, f[A] is infinite, so f is injective on A. Let g : N — N be any function extending (fA)~!; then
gf(n) =n for every n € A, so
GHIFN =AL: (g eFr={I:An(gf) 'Hle F}={I: ANl € F}=7F.

But this means that ¢[[G]] = F and F <gx G.
By 538Cb, F and G are isomorphic, so G also must be a Ramsey ultrafilter.

(c) For m < nin N, set h({m,n}) =1if n € A,,, 0 otherwise. Then there is an A € F such that h|[A]?
is constant. Setting k = min A, A meets Ay \ (k + 1), so h takes the value 1 on [A]?; consequently n € A,,
whenever m, n € A and m < n.

(d) For n € N, set
A, ={i: TU{i} € S whenever I Cn+1and I €S} e F.

By (c), there is an A € F such that n € A, whenever m, n € A and m < n; and we can suppose that
A C Ay, so that {n} € S for every n € A. Now an easy induction on n shows that P(ANn) C S for every
n, so [A]<¥ C S.

(e) Enumerate § as (Fy)p<x(z). For distinct m, n < #(J) there is a By, € Fip \ Fr. P We know that
there is a set in F,, AF,; now either this set or its complement will serve for B,,,. Q Because every member
of § is a p-point filter ((a) above), we can find for each n < #(§) a set C,, € F,, such that Cy, \ (Bnm \ Bmn)
is finite for every m < #(§) such that m # n. Set Ax, = C,, \ U Cp, for n < #(F); then (Ar)res is
disjoint. Since

m<n

Cm m C"L g (Cm \ B"mn) U (C"L m an)
is finite whenever m # n, C,, \ Ar, is finite and Ar, € F, for each n < #(F).

(f)(i) We can suppose that h(i) C h(j) whenever i < j, and that § = (J;cyb(i). Let g : N — N be a
strictly increasing function such that ¢g(0) > 0 and whenever ¢ € N and F € h(i), there is a k € Az such
that i < k < g(i). Set l,,, = ¢"(0) and J,,, = Lt1 \ L, for each m, so that (J,,)men is a partition of N. Let
(ag)e<w, be a family of infinite subsets of N, all containing 0, such that a¢ N a,, is finite for all distinct &,
n < wi (5A1Ga), and set Mg = UmGag Jy for each &; then M¢ N M, is finite for all distinct &, n < wy. It
follows that each member of § can contain at most one M, and there is a § < w; such that Mg does not
belong to any member of §, that is, M = N\ M, belongs to (5.

(ii) Define f : N — N by setting f(n) = max{m : m € a¢, l,, < n} for n € N. For each F € §, f[[F]]
is isomorphic to F, by (b). It follows that if F, F' are distinct members of §, f[[F]] # f[[F']]. Because §
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is countable, there is a disjoint family (K r)reg of sets such that Kx € f[[F]] for every F € § ((e) above).
Set Ly = f~}[Kz] € F for each F € §.

(iii) For ¢ < j in N, set h({i,j}) = 1 if j < g(i), 0 otherwise. F € §, there is an L’> € F such that
L'> C Lz and h is constant on [L’z]?. As L'z is infinite, the constant value cannot be 1 and must be 0, that
is, g(i) < j whenever 4, j € L' and i < j.

(iv) Consider A = Jrcz Lz N M. Then A € (§. Suppose that 7, j € A and i < j; then g(i) < j. P
Let F, 7' € § be such that i € L’z and j € L.

case 1 If 7 = F’, then both ¢ and j belong to L'z, so g(i) < j by (iii).

case 2If F# F',theni € Lr and j € Lz, so f(i) € Kr and f(j) € Kz and f(i) # f(j). Let m,
n € N be such that i € J,, and j € J,; since j ¢ Mg, n ¢ ae and f(j) < n. As Kr and Kz are disjoint,
f@) < f(7). It follows that m < f(j) < n, so

9(1) < glm+1) < gllp)) <l <j

and ¢(i) < j in this case also. Q
By the choice of g, this means that if 7 € §(i) there must be a k € Ax such that i < k < j, as required.

(g) (i) Suppose that £ C PN is a filter base, containing N\ n for every n € N, and with cardinal less than
Meountable: Let f 1 [N]2 — {0,1} be a function. Then there is an F' C N such that f is constant on [F]? and
F meets every member of £. B Set

ET={J:JCN,JNE #{ for every E € £},
Sn=A{n}U{i:i e N\ {n}, f({i,n}) =1},
Sp=A{nyU{i:ie N\{n}, f({i,n}) =0}

for n € N.
case 1 Suppose that {n:n € J, JNS, € ET} belongs to £ for every J € £T. Set
I=A{I:1€[N]<¥, f(K)=1forevery K € [I]>, NN(,c;S; € ET}.

IfIeZ, J=NN(,c;Siand E € &, then J € £T; because £ is a filter base, J N E € £1; by hypothesis,
{n:neJNE, JNENS, € "} belongs to £ and is not empty. There is therefore some n € J N E such
that J NS, € €T, in which case I U {n} € Z.

In particular, there is some k € N such that {k} € Z. Set

C={a:aeNV {a(i):i<m} eI for every m € N}.

Then C is compact, and it is non-empty because the constant function with value k belongs to C. Moreover,
ifaeCand m e Nand E € &, there is an n € F such that {a(i) : i <m}U{n} € Z, so thereis a f € C
such that (i) = (i) for i < m and S(m) = n. Thus {8: 8 € C, ENB|N] # (J} is a dense open subset of
C. Writing M(C) for the ideal of meager subsets of C, cov M(C) is either co (if C' has an isolated point)
or cov M(R) = Meountable; by 522Wb and 522Sa; in either case, it is greater than #(&). There is therefore
some o € C such that F' = a[N] meets every member of £; in this case, f is equal to 1 everywhere in [F]?,
so we have an appropriate F.

case 2 Otherwise, there is a K € £ such that {n:n € K, KNS, € €T} does not belong to £T.
Let Ey € € be disjoint from {n :n € K, KNS, € Et}. Set G =EU{KNE :E € &}, so that G is a
filter base and #(G) < Meountable- If n € Ey then there is an E/, € £ disjoint from K NS,. Soif J € G*,
JNS, D (JNKNE,)\{n} belongs to Gt for every n € Ey; accordingly {n:n € J, JNS, €GT} D JNE,
belongs to G
We can therefore apply the argument of case 1 to G and the function 1 — f to see that there is an F' C N,
meeting every member of G O &, such that f =0 on [F]?. Q

(ii) Enumerate the set of functions from [N]? to {0,1} as (f¢)¢<.. Choose a non-decreasing family
(E¢)e<c inductively, as follows; the inductive hypothesis will be that & C PN is a filter base with cardinal
at most max(w, #(§)). Start with & = {N\n : n € N}. Given &, where £ < ¢ = Mcountable, use (i) to find a
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set F¢, meeting every member of &, such that f¢ is constant on [F¢]?; take Egy1 = E U{ENF¢ : E € &}
Given (&,)y<¢, where £ < ¢ is a non-zero limit ordinal, set & = Un<§ &y.
At the end of the induction, let F be the filter generated by &, ; then F is a Ramsey filter.

538G Measure-centering filters: Theorem Let F be a free filter on N. Write v, for the usual measure
on {0,1}N, T, for its domain and (B, #,) for its measure algebra. Then the following are equiveridical:

(i) F is measure-centering;

(ii) whenever (a,)nen is a sequence in B, such that inf,cnv,a, > 0, there is an A € F such that
{an : n € A} is centered,;

(iii) whenever (F,)nen is a sequence in T, such that inf,eyv,F, > 0, there is an A € F such that
nneA Fy # @;

(iv) whenever (X,X¥,u) is a perfect totally finite measure space and (Fy)nen iS a sequence in X,
15 (Uacr Nnea Fn) > liminf, 7 pFy;

(v) whenever p is a Radon probability measure on PN, then p*F > liminf,, ,r uE,, where E, = {a :
n € a C N} for each n.

proof (i)=(ii) is trivial.

not-(iv)=not-(ii) Suppose there are a perfect totally finite measure space (X,¥,u) and a sequence
(Fa)nen in X such that liminf,enpuFy > p*(Uacr Npea Fn)- Let F' be a measurable envelope of
UacrMNnea Fn- Let T be the o-subalgebra of ¥ generated by {F} U {F, : n € N}; then u[T is a

compact measure (451F). Let v be its normalization HLXM[T; then v is a compact probability measure. We

see that liminf, ,» vF, > vF; take 7 such that vF < v < liminf, , vF,,, and set C = {n : vF, > v}, so
that C' € F.

Let K be a compact class such that v is inner regular with respect to K. For n € C, let K,, € KN T be
such that K, C F,, \ F and vK,, > v —vF; for n e N\ C set K,, = X.

The measure algebra (B,7) of v is a probability algebra with countable Maharam type, so there is a
measure-preserving Boolean homomorphism 7 : 8 — 9B, (332P or 333D). Set a,, = 7K}, for each n. Then

vy, =vKy, >~v—vF >0

for every n. On the other hand, if A € F, then ANC € F 50 (,,c anc En € Npeanc Fn \ F is empty. As
K, belongs to the compact class K for every n € AN C, there must be a finite set I C A N C such that
Mper Kn = 0, in which case inf,cra, = 7( )* = 0. This shows that {a, : n € A} is not centered.
So (an)nen witnesses that (ii) is false.

nel = N

(iv)=-(i) Suppose that (iv) is true. Take a Boolean algebra 2, an additive functional v : 20 — [0, oo and
a sequence (a,)nen in 2A such that inf, cyva, > 0. By 311E and 311H, we can suppose that 2l is the algebra
of open-and-closed subsets of a compact zero-dimensional space Z. In this case, there is a Radon measure
won Z extending v (416Qa). Of course p is perfect (416Wa), and liminf,,_, r pa, > inf,enva, > 0, so (iv)
tells us that there is an A € F such that (), . 4 an # 0, in which case {a,, : n € N} is centered in 2. As 2, v
and (an)nen are arbitrary, F is measure-centering.

(iv)=(v) The point is simply that p is perfect (416Wa again) and that
UAe]—'ﬂneA E, = UAeJ—‘{a tACaC N} =F.
(v)=-(iii) Suppose that (v) is true, and that (F,),en is a sequence in Ty, such that inf,en v, F, > 0.

Define ¢ : {0,1} — PN by setting ¢(z) = {n: x € F,,} for each n. Then ¢ is almost continuous (418J), so
the image measure p = v,¢~ ! is a Radon probability measure on PN (4181). Defining E,, as in (v), we have

wE, = v,0 E,] = v F,
for every n € N, so
0 < infhen Vpa, <liminf, 7 uE, < p*F = vi¢ 1 [F)]
(451Pc). In particular, there must be an € ¢~'[F], so that A = {n: 2 € F,} belongs to F, and (), 4 Fn

is non-empty.
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(iii)=-(ii) Assume (iii). Let {(a,)nen be a sequence in B, such that inf, ey v,a, > 0. Let 6 : B, — T,
be a lifting (341K), and set F,, = fa,, for each n. Then v, F,, = 1,a,, for every n, so (iii) tells us that there
is an A € F such that (), 4 F, # 0. In this case, §(inf,e7 an) = (,c; Fn # 0 for every non-empty finite
I C A, so{a,:n e A} is centered.

538H Proposition (a) Any measure-centering filter on N is an ultrafilter.

(b) If F is a measure-centering ultrafilter on N and G is a filter on N such that G <gx F, then G is
measure-centering.

(c) Every Ramsey ultrafilter on N is measure-centering.

(d) (SHELAH 98B) Every measure-centering ultrafilter on N is a nowhere dense ultrafilter.

(e) (BENEDIKT 99) If cov N = ¢, where AV is the Lebesgue null ideal, then there is a measure-centering
ultrafilter on N.

proof (a) Let a, b be disjoint non-zero elements of B,,, where (B,,, 7,,) is the measure algebra of the usual
measure on {0, 1}N, as in 538G. Given I C N, set a, = a if n € I, bif n € N\ I. Then inf,cy 7ya, > 0, so
there is a J € F such that {a, : n € J} is centered, in which case either J C I or J NI = {; so that one of
I, N\ I must belong to F.

(b) Let f: N — N be such that f[[F]] = G. Let (A, &) be a totally finite measure algebra and {(a,)nen a
sequence in 2 with inf, ey fia, > 0. Then (af(,))nen has the same property, so there is an A € F such that
{ayn) :n € A} is centered. Now f[A] € G and {a,, : m € f[A]} is centered.

(c) Let F be a Ramsey ultrafilter and (b,,),en a sequence in B, such that v = inf, ey Db, is greater
than 0. Set b = inf sc F sup,,c 4 bn; then 7,b > 7. Set S ={I: 1 € [N|<¥, bn inf,crb, # 0}. Then @ € S. If
IeS, set c=bninfuerb, and C = {n:cnb, = 0}. Then sup, ¢ b, does not meet ¢ so does not include
b, and C' ¢ F. Accordingly

{n:ITU{n} €S} =N\CeF.

By 538Fd, there is an A € F such that [A]<¥ C S, in which case {b, : n € A} is centered. As (b,)nen is
arbitrary, F is measure-centering.

(d) Let F be a measure-centering ultrafilter, and (¢,)nen a sequence in R. Let F C [0,1[ be a nowhere
dense set with non-zero Lebesgue measure, and set H = (J,, F' + k, so that H is nowhere dense in R; let
1 be Lebesgue measure on [0,1]. For n € N set

E,={z:ze0,1],x+t, € H} =[0,1]NUpez F' —tn +k,

so that uE, = puF > 0. By 538G(iv), there is an A € F such that [, . 4, E, is non-empty; take x € [,,c 4 En,
so that ¢, € H — x for every n € A, and {t, : n € A} is nowhere dense. As (t,)nen is arbitrary, F is a
nowhere dense filter.

(e)(i) Let {an)nen be a sequence in B, such that inf, ey Fya, > 0, and C C PN a filter base such that
#(C) < covN. Then there is an A C N such that A meets every member of C' and {a,, : n € A} is centered.
P Set € = inf,enUya,. For C € C set bo = sup,c¢ an; because C' # 0, 7,bc > €. Set b = infeoee be;
because C is downwards-directed, #,b > € (321F) and b # 0.

Let 6 : B, — T, be a lifting (341K). For C € C, set Fo =

Fg =be Db,

s0 0b\ F¢ is negligible. Because b # 0, 6b is not negligible; because #(C) < cov N, 0bN(¢c Fe is non-empty
(apply 522Wa to the subspace measure on 0b). Take any z in the intersection, and set A = {n : z € fa,}.
For every C € C, there is an n € C such that x € fa,,, so ANC # 0. If I C A is finite and not empty, then
O(infrcr an) =, c; 0an contains z, so inf,cr a, # 0; thus {a, : n € A} is centered. Q

nec Ban; then

(ii) Since #(B,,) = ¢ (524Ma), we can enumerate as ((agn)nen)e<. the family of all sequences (a,)nen
in B, such that inf, ey D,a, > 0. Choose (C¢)e<. inductively, as follows. The inductive hypothesis will be
that C¢ C PN is a filter base and #(C¢) < max(w,#(§)). Start with Co = {N\ n : n € N}. Given C¢, where
& < ¢, such that

#(Ce) < max(w, #(§)) < ¢ = cov N,
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(i) tells us that there is an A; C N, meeting every member of C¢, such that {ae, : n € A¢} is centered; set
Ceqr =C€U{CﬂA§ :C EC&}.

For a non-zero limit ordinal { < ¢, set C¢ = J, . Cy. Let F be the filter generated by C; then F is a free

n<§
filter satisfying 538G(ii), so is measure-centering.

5381 Theorem Suppose that F is a measure-centering ultrafilter on N, and that (X, X, u) is a perfect
probability space. Let A be the family of all sets of the form lim,_,» E, where (E,),en is a sequence in
3. Then there is a unique complete measure A on X such that A is inner regular with respect to A and
Alim,, 7 E,,) = lim,,_, » uF,, for every sequence (F,)nen in X; and A extends p.

Remark By ‘lim,, , F,,’ I mean the limit in the compact Hausdorff space PX, that is,

{z:{n:zek,}eF}= UAe}' mneA E, = ﬂAe}‘ UneA En.
proof (a) A is an algebra of subsets of X. P If (E,)en, (Fn)nen are sequences in X, then
because F is an ultrafilter. Q Of course ¥ C A, because if E,, = E for every n then lim,, ,r F, = E.

(b) If (Ep)nen and (Fy)nen are sequences in ¥ and lim,,r F,, = lim,_,r F,,, then lim, ,r pE, =
lim, ,rufF,. P

| lim pE, — lim pF,|= lim |pE, — pF,| < lim w(E,AF,) < u*(lim E,AF,)
n—F n—F n—F n—F

n—F
(538G (iv))
=Wl B Ji F) =70 =0.Q

(c) We therefore have a functional ¢ : A — [0,1] defined by setting ¢(lim,,+ F,,) = lim,_, 7 pE, for
every sequence (E,)pen in X. Clearly ¢ extends p. Also ¢ is additive. B If (E,)nen, (Fp)nen are sequences
in ¥ such that lim,_, » F,, and lim,,_, 7 F}, are disjoint, then

P iy F) = L Bn U Fn) = Jig 4lEn U 1)
= lim pE, + pF, — w(E,NF,)
n—F
=1 E li F, — i FE, F,
i B o+ B B = lim p(En 0 Fn)
(i, En) + ¢(lim, Fn) = ¢( limy B 0 F)
=¢(lim E,)+ ¢(lim F,). Q
n—F n—F

(d) Next, if (A;,)men is a non-increasing sequence in A, and 0 < v < inf,,cy @A, there is an A € A
such that A C (), .y A and A > . P We can suppose that A9 = X. For each m € N, let (Eyun)nen
be a sequence in ¥ such that A,, = lim, ., E,,,, starting with Ey, = X for every n. For m € N, set
El . = Ni<m Ein for n € N; then

A, = ﬂigm A; = lim,_,r E!

mn)

set I, = {n:n €N, pE/ >~} Since lim,_, 7 pE.,, = ¢An >, I, € F. For n € N, set F,, = (\{E},,, :

meN, uE! >~} set A=1lim,,_,z F,. Then uF,, > ~ for every n, so pA > ~. Also, form e N, F,, CE!
whenever n € I,,, so A Clim, ,x E/ ., = An. Q

(e) In particular, inf,,cn @A, must be 0 whenever (A, ) cn is a non-increasing sequence in A with empty
intersection. By 413K, there is a complete measure A on X extending ¢ and inner regular with respect to
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As, the set of intersections of sequences in A. But A\C = sup{A\A: A€ A, A C C} for every C € A;. P
Suppose that 0 < < AC. There is a sequence (A4,,)men in A with intersection C; because A is an algebra
of sets, we can suppose that (A4,,)men is non-increasing. Now

Y < )\C = infmeN AAm = infmeN ¢A7n7

so (d) tells us that there is an A € A such that A C C' and 7 < pA = MAA. Q It follows at once that \ is
inner regular with respect to A.

() If E € ¥ and we set F,, = E for every n € N, then E = lim,,_, 7 E,, belongs to A and
AE = ¢oF =lim,,r uE, = uFE.
So A extends p. Finally, we see from 412Mb, as usual, that X is uniquely defined.

Notation In this context, I will call A the F-extension of u.

538J Proposition Let F be a measure-centering ultrafilter on N and (X, 3, u) a perfect probability
space; let A be the F-extension of u as defined in 538I.

(a) Let (2, i) be the measure algebra of y, (B, )) the measure algebra of )\, and (€,7) the probability
algebra reduced power (2, i)N|F (328C). Then we have a measure-preserving isomorphism 7 : B8 — €
defined by saying that

m((imn— 7 En)*) = (E5)hen
for every sequence (E,)pen in 2.
(b) Let (X',%’, i) be another perfect probability space, and ¢ : X — X’ an inverse-measure-preserving

function. Let A be the F-extension of p/. Then ¢ is inverse-measure-preserving for A and \'.
(c) Let F' be a filter on N such that 7' <gx F, and X\’ the F’-extension of u. Then A extends X

proof (a)(i) I had better check first that the formula for 7 defines a function. If (E,)nen, (Fn)nen are
sequences in ¥ such that (lim,r E,)* = (lim,—,  F,)* in B, then
0=Mlim E,A lim F,)= lim u(E,AF,)
n—F n—F n—F
= nh_{I}__ﬂ’(En A Fn) = V(<En>n€N A <Fn>n€N)7
0 (B} )hen = (Fi)hen in €

(ii) Setting By = {E* : E € A}, where A is as in 5381, it is now routine to check that 7 : By — Cis a
surjective measure-preserving Boolean homomorphism. (Recall that € is, by definition, the quotient of 2N
by the ideal {{(an)nen : lim,— F fia, = 0}.) But of course this means that By is isomorphic to €, therefore

Dedekind complete. Since A is inner regular with respect to A (538I), By is order-dense in B, and must be
the whole of 8.

(b) Setting
A={lim, s FE, :E,€¢XV¥neN}, A={lim,,rF,:F,eXVneN}
as in 5381, ¢7[C] € A and A~ }[C] = N'C for every C € A’. P Let (F,),en be a sequence in ¥/ such that
C = lim,,_, 7 F,; then
MO = A [ lim_F,] = A(lim_¢ ™' [F,])
n—F n—F
= lim po '[F,] = lim 4/F, =NC. Q
n—F

n—>F
By 412K, ¢ is inverse-measure-preserving for A and \'.
(c) By 538Hb, F' is measure-centering. Let f : N — N be such that F’ = f[[F]]. Setting
A={lim, 7B, :E, e XV¥neN}, A ={limy,rE,:E,eSYneN},
A" C Aand MA = N A for every A € A'. P Let (E,)nen be a sequence in ¥ such that A = lim,, = Ep;
then A = lim,,, 7 Fy(y), so
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A = 1iIIln_>_7_' [LEf(n) = 1imn_>_7:/ ,U,En = \NA. Q

By 412K again, the identity map from X to itself is inverse-measure-preserving for A and ), that is, A
extends \'.

538K Having identified the measure algebra of a measure-centering-ultrafilter extension \ as a probability
algebra reduced product (538Ja), we are in a position to apply the results of §377.

Proposition Let (X, X, 1) be a perfect probability space, F a measure-centering ultrafilter on N and A the
F-extension of p as constructed in 538I.
(a)(i) Let {fn)nen be a sequence in £%(u) such that {fs : n € N} is bounded in the linear topological
space L°(u). Then
(o) f(z) =limy,_, 7 frn(x) is defined in R for A-almost every = € X;
(B) f e LoN).

(ii) For every f € L%(\) there is a sequence (f,)nen in £2(i), bounded in the sense of (i), such that

f=1lim,~ f, \a.e.
(b) Suppose that 1 < p < oo, and (fn)nen is a sequence in LP(u) such that sup, cy || fnllp is finite. Set
f(x) =lim,, = f,(z) whenever this is defined in R.
()(a) f € LP(V);
B) ||pr < lim, 7 ||anp
(ii) Let g be a conditional expectation of f on 3.
() If p = 1 and {f, : n € N} is uniformly integrable, then then |f|1 = lim,— 7| fa|1 and
g* = lim,,, 7 f2 for the weak topology of L' ().
(8) If 1 < p < o0, then g* = lim,,, 7 f for the weak topology of LP ().
(c) Suppose that 1 < p < oo and f € LP(N).

(i) There is a sequence (fp)nen in LP(p) such that f = lim, 7 f, A-a.e. and || f||, = sup,en || fnllp-

(ii) If p = 1, we can arrange that (f,)nen should be uniformly integrable.

(d) Let (X', %, ') be another perfect measure space, and X’ the F-extension of i/, Let S : L (u) — L (i)
be a bounded linear operator.

(i) There is a unique bounded linear operator S : L'(A\) — L'(\) such that Sf* = ¢g* whenever
{fi)nen, (gn)nen are uniformly integrable sequences in £!(u), £1(v) respectively, f = lim, .,z f, \-a.e.,
g =lim,, . rg, N-a.e., and g;, = Sf for every n € N.

(ii) The map S — S : B(L'(u); L* (1)) — B(LY(\); L*()\)) is a norm-preserving Riesz homomorphism.

proof We shall find that most of the work for this result has been done in §377. The only new step is in
(a)(i), but we shall have some checking to do.

(a)(i) Let (fn)nen be a sequence of Y-measurable functions from X to R such that f, = f, p-a.e. for
every n € N.

(@) Let € > 0. Applying 367Rd? to {f2 : n € N} = {f2 : n € N}, there is a v > 0 such that pE, <e
for every n € N, where E,, = {x : |fn(a:)| > ~}. Set E = lim,,r E,, so that AE <e. Forz € X\ E,
{n:|fu(x)] <~} € F, s0 lim, 7 fn(z) is defined in R. As € is arbitrary, lim,,_, 7 f,(z) is defined in R for
A-almost every z. Since

{z:2z € dom f, and f,(zx) = fn(z) for every n € N}
is p-conegligible, therefore \-conegligible, lim,,_, = f,, is defined in R A-a.e.
(B) For any a € R,
{z :lim, 7 fn(z) > a} = Upen limpo7{z : fo(z) > o+ 27"} € dom A.
So f =a.e. lim,_, 7 f, belongs to LO(N).
(ii) At this point I seek to import the machinery of §377.

() Let (A, ) and (B, \) be the measure algebras of 1, A respectively; recall that we can identify
LO%(p) and LO(\) with LO(2) and L°(B) (364Ic). Write (€,7) for the probability algebra reduced power

9Later editions only.
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QL )NF; let ¢ 2 AN — € be the canonical surjection, and 7 : B — € the isomorphism of 538Ja; set
v = 771¢ : AN — B. Then Mp({an)nen) = lim, 7 jia, for every sequence (a,)nen in A, and 1 is
surjective.

(B) Let Wy € L°(20)N be the set of sequences bounded for the topology of convergence in measure, and
Wy C LO(u)N the set of sequences (fy,)nen such that (f2),en € Wo. Then we have a Riesz homomorphism
T : WY — LO(B) defined by saying that T((f2)nen) = (lim, 7 f,)* whenever (f,)nen € Wo. PP We know
from (i) that (lim,_, = f,)* is defined in LO(\) = L%(B) whenever (f,)nen € Wo. (I am taking the domain
of lim,_, 7 f, to be {x : lim,_, = f(z) is defined in R}.) Since
hmn—>]: fn —a.e. limn—>.7: gn

whenever f, =... gn for every n, T is well-defined. Since

hmn—)]'_ fn + 9n =ae. hmn%]" fn + hmnﬁ}_ 9n

hmn%]—' afn a.e. alimn%]—' fna hmnﬂ]—' |fn| —a.e. |hmn~>}' fn|
whenever (f,)nen, (gn)neny € Wy and a € R, T is a Riesz homomorphism. Q

(7) If {an)nen is any sequence in A, T({xan)nen) = X¥({@n)nen). P Express each a,, as E, where
E, € ¥, and set F = lim,_,r E,,. In the language of 538Ja,

Y((an)nen) = 77 ¢((an)nen) = 77 ((an)hen) = F*,

T({(xan)nen) = (limy 7 xEn)* = (XF)* = x(F*) = x¢¥((@n)nen). Q

(0) Recalling that Wy is just the family of sequences (uy,)nen in L° such that infjen sup,, ey fif|un| > k]
0 (367Rd again), () means that we can identify T : Wy — L°(8) with the Riesz homomorphism described
in 377B. By 377D(d-i), T[Wy] = L°(B), which is what we need to prove the immediate result here.

(b)(i) As in part (a) of the proof of 377C, we see that a || ||,-bounded sequence in L£P(u) will belong to
Wy. So we can use 377Db.

(ii) Use 377Ec.
(¢) Use 377Dd.
(d) Use 377F.

538L Theorem Suppose that ¢ is a non-zero countable ordinal and (Fe¢)i1<e<¢ is a family of Ramsey
ultrafilters on N, no two isomorphic. Let (G¢)e<¢ be the corresponding iterated product system, as described
in 538E. Then G is a measure-centering ultrafilter.

proof (a) Define ((2, fic))e<c inductively, as follows. (Ao, fio) = (B, 7) is to be the measure algebra of
the usual measure on {0, 1}, Given ((,, fi)))y<e, where 0 < & < ¢, let (g, jig) be the probability algebra
reduced product [[,cn(Rbo(e k), Boe,x))|Fe, as described in 328A-328C. At the end of the induction, write
(¢,v) for (mfvﬁC)'

(b) We have a family (¢¢y)n<e<c defined by induction on &, as follows. The inductive hypothesis will
be that ¢,, is a measure-preserving Boolean homomorphism from 2, to #,, and that ¢y, = ¢pry g
whenever n < 7' < 7 < & For the inductive step to £, take ¢¢e to be the identity map on A¢. If
&> 0, set (Z;kj = Qg(¢,k),0(¢,5) for j < k in N; then 328Ea tells us that we have measure-preserving Boolean

homomorphisms ¢y, : g ) — Ae such that q~5j = gzgkgzgk] for j <k.If j <kandn<0(,j), then

Drbo(e. k) = PuPriPoe.jyn = Pidoe.j)m

whenever k > j; so we can take this common value for ¢¢,. If n <17’ < ¢, then take k such that ' < 6(&, k),
and see that

Peny Gyrn = qgk%(f’k)m"bn’n = (/Bk%(ﬁ,k)m = d¢n,
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so the induction proceeds.
For each ¢ < ¢, write m¢ for ¢¢e : e — €, and & for the subalgebra m¢[2¢]. Of course mege, = my, s0
that &, C &, whenever n < § < (.

(c) For each £ > 0, we have a canonical map (ap)ren — (ar)hen © [Lpeny Qo) — Ae. Since every
me + Ae — C¢ is a measure-preserving isomorphism, we have a corresponding map ¢ : [],cn Cocen)y — Ce-
Reading off the basic facts of 328 Ab and 328EDb, we see that

— pe({cr)ren) = limp_, 7, Dey for every sequence (cx)ren € []pen Coce,k)s
—— Ye((ck)ren) C Supgea cx whenever (cp)ren € [[en Coge,r) and A € Fe
(we can take the supremum in € because € is regularly embedded in €, as noted in 314Ga).

(d) Let {(a;)res be a family in 2y = 9B, such that v = inf,cg fia, is non-zero. By 538Fe, we can find
a disjoint family (Ag¢)i1<e<¢ of subsets of N such that A¢ € F¢ for every . Use these to define T C S and
a:T —[0,¢] as in 538Ee. Set ¢, =0 for 7 € S\ T. For 7 € T define ¢; € €,y by induction on a(7),
as follows. If a(7) = 0, set ¢, = mpa,. For the inductive step to a(7) = £ > 0, we know that 7°<k> € T
and ot <k>) = 0(£, k) whenever k € A¢ and 7(i) < k for every ¢ < dom; for other k, 77<k> ¢ T so
Crrck> = 0 € Cye ). Thus concps € Eyee gy for every k, and Ye((c~<k>)ren) € €¢; take this for ¢,. Note
that

ver = limg 7, Vern g > inf{Uc~ o k€N, 77°<k> € T

Inducing on «(7), we see that ve, > v for every 7 € T. In particular, vcy > .

(e) For I C N, set Tt = TN,y ™ and e = inf 7, 75 let S be the family of those finite subsets
I of N such that e; # (). Then Ty = {0}, eg = ¢y and ) € S. Moreover, if I € S and 1 < £ < ¢, then
{k:TU{k} €S} € Fe. P Set kg =supl+1. If k € A¢ and k > ko, set

dp, = inf{c,~cp> : 7 € Tr, 1) = £}
Set B={k:ke A¢, k> ko, dpner #0}. If k € B, then
Trogey = Tr U{r"<k>:7 €Ty, a(r) =},

because every member of 7' is strictly increasing and 77 <k> can belong to T only when k € A, (), that is,
a(r) =& Soerupy =drner #0and TU{k} € S.
? If B¢ Fe, then B' ={k: k€ A¢, k > ko, di ney = 0} belongs to F¢. So

inf{c, : 7€ Ty, a(r) =&}

dnf - e((ermcrsdnen) = ve(( Inf - crocis Jren)
a(r)=¢ a(r)=¢

(because ¢ is a Boolean homomorphism and 77 is finite)

€r

N

C sup inf ¢~
keB’ aT(f)Tz’g <k>
(by (c))
= sup dj.
kEB’
But e; ndy =0 for every k € B’ and e; # 0. X
Thus {k: TU{k} €S} DBe F:. Q

(f) For i € N set
C; ={k:TU{k} € S whenever I € S and I C i},

so that C; € F¢ for every £ € [1,(]. At this point, recall that every F is supposed to be a Ramsey ultrafilter.
So for each § € [1,¢] we have an Ay € F¢ such that A; C A¢ N Cp and j € C; whenever 4, j € A; and i < j
(538Fc). Next, for i € Nset M; = {a(r) : 7 € T, 7(j) < i whenever j < dom7}; then M; is finite, so there
is a D € (),<¢<¢ Fe such that whenever 4, j € D, i < j and € M;, there is a k € Ag such that i <k < j
(538Ff). Of course we can suppose that D C UlSESC A'g, so that DN A =DnN A/E for every &.

D.H.FREMLIN



110 Topologies and Measures I11 538L

(g) J € S for every finite subset J of D. P Induce on #(J). We know that ) € S. If i € D, then {i} € S
because D C Cy. For the inductive step to #(J) > 2, set j = maxJ, I = J\ {j} and ¢ = maxI. Then
I € S, by the inductive hypothesis; so if Ty = T}, we certainly have J € §. Otherwise, there is a member
of T; \ Ty, and this must be of the form 77 <j> where 7 € T7 and j € Aq(r);as j € D, j € A’a(T). But this
means that a(7) € M; and there is a k € A;(T) such that ¢ < k < j. In this case, j € Cy and I C k, so
J =T U{k} belongs to &, and the induction proceeds. Q

(h) Thus {c, : 7 € Tp} is centered; setting T/y = {7 : 7 € Tp, a(r) = 0}, {¢; : 7 € T/} and therefore
{a; : 7 € T}, } are centered. But T}, belongs to G¢, by 538Ee.

Since (ar)res was chosen arbitrarily in (d) above, G¢ satisfies the condition of 538G(ii), translated to the
countably infinite set .S, and is measure-centering.

538M Benedikt’s theorem (BENEDIKT 98) Let (X, X, 1) be a perfect probability space. Then there
is a measure A on X, extending p, such that A(lim,,—, » E,,) is defined and equal to lim,_, r uFE,, for every
sequence (E,)nen in ¥ and every Ramsey filter F on N.

proof (a) If there are no Ramsey filters, we can take A = p and stop; so let us suppose that there is
at least one Ramsey filter. Let § be a family of Ramsey filters consisting of just one member of each
isomorphism class, so that every Ramsey filter is isomorphic to some member of §, and no two members of
§ are isomorphic. Fix a well-ordering < of § with a greatest member F* and a family (0(¢,k))1<e<w, ken
such that (0(&, k))ken is always a non-decreasing sequence of ordinals less than ¢ such that {6(£, k) : k € N}
is cofinal with &.

(b)(i) For any non-empty countable set D C § containing F*, enumerate it in <-increasing order as
(Fe)1<e<c, and let Gp be the measure-centering ultrafilter constructed from (Fe)1<e<¢ and (0(&, k))1<e<c ken
by the method of 538E-538L; let A\p be the Gp-extension of u as defined in 538I.

(ii) For any non-empty finite set I C §, list it in <-increasing order as Fy,... ,F,, and set H; =
Fn X ... X Fy as defined in 538D. By 538Ed, or otherwise, H; <rk Gr, so H; is measure-centering (538HDb);
let A} be the H -extension of p.

(c) fD#1CJe[§]<, then H; <rk H,, by 538Dg, and X} extends A7, by 538Jc. Thus (A\})g.re[z<~
is an upwards-directed family of probability measures on X.

If 7 C [§]<¥ \ {0} is countable, we have a non-empty countable set D C § including {F*} U|JZ. Now
538Ed tells us that H; <gk Gp for every I € Z, so that Ap extends A} for every I € Z (538Jc again). Thus
for every countable subset of {\} : I € [§]<¢ \ {0}} there is a measure on X extending them all. By 457G,
there is a measure A on X extending every A;.

(d) If F is a Ramsey ultrafilter and (E,)nen is a sequence in X, there is an F' € § such that F and
F' are isomorphic. In particular, 7 <rx JF', so Az extends Az, where Az, Az are the F-extension and
F'-extension of p. But A extends )\f{ 7y = Ar and therefore extends Ar. Accordingly A(lim, = E,) is

defined and equal to A Flim,, » E,) = lim,,_,  nF,, as required.

538N Measure-converging filters: Proposition (a) Let F be a free filter on N. Let v,, be the usual
measure on {0, 1}, and T, its domain. Then the following are equiveridical:

(i) F is measure-converging;

(ii) whenever (Fy)nen is a sequence in T, and lim, oo v, F, = 1, then Uy r
conegligible;

(iii) whenever (X, X, i) is a measure space with locally determined negligible sets (definition:
2131), and (f,)nen is a sequence in L0 = £%(u) which converges in measure to f € £° then
hmn%]" fn a.e. fa

(iv) whenever p is a Radon measure on PN such that lim,, o uF,, =1, where E,, ={a:n €
a C N} for each n, then pF = 1.

(b) Every measure-converging filter is free.
(¢) Suppose that F is a measure-converging filter.
(i) If G is a filter on N including F, then G is measure-converging,.

neA F, is
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(ii) If G is a filter on N and G <gp F (definition: 5A6Ic), then G is measure-converging.
(d) (M.Foreman) Every rapid filter is measure-converging.
(e) (M.Talagrand) If there is a measure-converging filter, there is a measure-converging filter which is not
rapid.
(f) Let F be a measure-converging filter on N and G any filter on N. Then G x F is measure-converging.
() If Meountable = 0, there is a rapid filter.

proof (a)(i)=-(iii) Suppose that F is measure-converging, and that (X, %, u), (fn)nen and f are as in (iii).
Let H € ¥ be a conegligible set such that H C dom f Ndom f, and f[H and f,[H are measurable for
every n € N. Let k € N; set Hy, = {z:x € H, limsup,,_, 7 |fn(x) — f(z)| > 27%}. Then H}, N F is negligible
whenever F' € ¥ and puF < co. P If uF = 0 this is trivial. Otherwise, let v = MLFM r be the normalized

subspace measure on F. For each n € N, set F,, = {z:x € FNH, |f,(z) — f(z)] <27%}. Then
k
limy, o0 v(F \ F) < j—F limy o0 [ min(|fo — fI, XF)dp =0

because (fy)nen — f in measure. So lim, oo vF, = 1 and H' = {J, () F,, is v-conegligible. But
HNH,=0,s0 p*(H,NF)=v*(H,NF)=0.Q
Since p has locally determined negligible sets, Hy, is negligible. This is true for every k € N, so H\{J, ey Hr

is conegligible; and lim,,, 7 f,(x) = f(z) for every x € H \ U, cy H, so lim,, .7 f, = f a.e., as required.

neA

(iii)=(iv) Assuming (iii), let p and (E,)nen be as in (iv). Set f, = x(PN\ E,,) for each n; then
lim,, o0 ffndu =0, 80 (fn)neny — 0 in measure, and H = {a : lim,,, 7 f,,(a) = 0} is conegligible. But for
any a € H,

1
az{n:aEEn}:{n:fn(z)Sg}
belongs to F, so H C F and uF = 1.

(iv)=(ii) Assume (iv), and let (F},),en be as in (ii). Define ¢ : {0,1}Y — PN by setting ¢(z) = {n :
r € F,} for x € {0,1}". Then ¢ is almost continuous (418J), so the image measure y = v,¢~! on PN is a
Radon measure (4181). Since F,, = ¢~ ![E,] for each n, lim, oo uE, = 1 and 1 = uF = v,¢~[F]|. But now

Uae]-' ﬂnea F, = Uae}‘{x ta C ¢(x)} = ¢_1[}—]

is v,,-conegligible, as required.

(ii)=-(i) Assume (ii), and take a probability space (X, %, u) and a sequence (Hp)nen in X such that
limy, o0 pHp = 15 st G = JacrNphea Hn-
Let A be the c.l.d. product measure on X x {0, 1}, and set

W, =H, x{0,1}, V,={(z,y):2€ X,y {0,1}, y(n) =1}

for n € N. Let A; be the o-algebra of subsets of X x {0, 1} generated by {W,, : n € N} U{V,, : n € N},
and \; the completion of the restriction A\[A;. Note that as the identity map from X x {0,1}" is inverse-
measure-preserving for A and A[Aq, it is inverse-measure-preserving for their completions (234Ba); but A is
complete, so this just means that A\ extends A\;. Then Ay is a complete atomless probability measure with
countable Maharam type. Its measure algebra € is therefore isomorphic, as measure algebra, to the measure
algebra 9B, of v,; let 7 : B, — € be a measure-preserving isomorphism. By 343B, or otherwise, there is a
realization ¢ : X x {0, 1} — {0, 1}, inverse-measure-preserving for A\; and v, such that ¢~'[F]* = 7nF*
in € for every F' € T,,. Because 7 is surjective, there is for each n € N an F,, € T, such that ¢~ ![F,]AW,,
is A1-negligible.
Since

lim, o0 Vo Fr = limy, 00 MWy, = limy, 00 AW, = limy, 00 pH,, = 1,
F = UcrNyea Fn is vo-conegligible, and ¢~ [F] = Ujcr Nnea @ '[Fnl is Ai-conegligible.  We have
G x {0, 1} = User Nyea Wa, so
(G x {0, 1) A6 HF] € U, ey Wnlg ™t [y
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is A;-negligible. Thus G x {0,1}" is \;-conegligible, therefore A-conegligible. But this means that G is
p-conegligible, by 252D applied to G' x {0, 1}; and this is what we needed to know.

(b) Let F be a measure-converging filter and m € N. Take a singleton set X = {z} and the probability
measure p on X; set E; = () for i < n, X for ¢ > n. Then lim;_, uE; = 1, so there is an A € F such that
Nica Ei is non-empty. Now N\ n D A belongs to F; as n is arbitrary, F is free.

(c)(i) Immediate from the definition in 538Ag.

(ii) Let f : N — N be a finite-to-one function such that G = f[[F]]. Let (X, 3, ) be a probability
space and (E,)nen a sequence in ¥ such that lim, o uF, = 1. Set F,, = Ey) for n € N; because f is
finite-to-one, lim, oo pff, = 1. So H = [J,c 7N F, is conegligible. If x € H, set A, = {n:z € E,};
then

neA

A ={n:2 € Eppmt={n:2€F,}

belongs to F so A, € f[[F]] and 2 € Upc s Nnep En- Thus Upe pizy Nnep En 2 H is conegligible. As
(X, X, u) and (E,)nen are arbitrary, f[[F]] is measure-converging.

(d) Let F be a rapid filter on N, and (H,)nen a sequence in T, such that lim, . vwH, = 1. Set
G =UunerNpea Hn. Since lim, oo (1 — v, Hy,) = 0, there is an A € F such that ), 1 —v,H, < oo; set
H = UmEN mnEA\m H" < G. Then

voH > sup,,en 1 — ZnGA\m(l —voHy) =1,

so G is conegligible. Thus F satisfies (a-ii) and is measure-converging.

(e) Let F be a measure-converging filter. Let (I,)nen be a sequence of non-empty finite subsets of N
such that lim,,_,, #(I,) = co. Let G be

. 1

Then G is a filter on N.

(i) G is measure-converging. P Let (H;);en be a sequence in T, such that lim;_, . v, H; = 1, and set

G =UuegNica Hi- Set g, = ﬁ > ier, XH; for each n; then

1
mziéln voH; =1

because lim,, oo #(1,,) = oo and lim;_, o, v, H; = 1. Since 0 < g, < x{0, 1} for every n, (g, )nen — x{0, 1}V
in measure. By (a-iii) above, H = {x : lim,,_, g, (x) = 1} is conegligible.
For z € H, set A, = {i:x € H;}. Then
1
#(I15)
asn — F,s0 A, € G and ¢ € G. Accordingly G O H is conegligible. As (H,);cy is arbitrary, G is
measure-converging. Q

H#(I,NA) =gn(z) =1

(ii) G is not rapid. P Define (¢;);en by saying that

1
#(In)

for ¢ € N, counting sup @ as 0. Then lim;_,t; =0. If A € Gand m € N, then B = {n : #:(ANI,) > %#([n)}
belongs to F, and must be infinite, by (b) above. So there is an n € B such that #(I,,) > 3m, and now
LIS

ZieA\m t; > #(A NI, \ m) ' #I) =

As m is arbitrary, ;. 4 t; = 00; as A is arbitrary, G is not rapid. Q

t; = sup{ neN,iel,}

W=

(f) Let (Eij)ijen be a family in T, such that (v,E;, j, )nen — 1 for some, or any, enumeration
((ins gn)inen of N x No Set G = Upegyr ﬂ(m‘)ec E;;. For each i € N, lim; o v, E;; = 1, so G; =
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UaerMjea Bij is conegligible; set H = (), G;. For z € H, set A, = {(i,j) : € Ey}. Asx € Gy,
A, [{i}] € F for every i € N; thus A, € G x F and z € G. So G includes the conegligible set H, and is itself
conegligible. As (E;;); jen is arbitrary, G is measure-converging.

(g)(i) Suppose that & C [N]¢ is a family with #(£) < Mcountable, and that f € NV is non-decreasing.
Then there is an A C N, meeting every member of &, such that #(A N f(n)) < n for every n € N. P
Consider X =[], .yN\ f(n). Then X is a closed subset of N¥, homeomorphic to N¥. For E € £, set

Gg={r:z€ X, ENnz[N] # 0};

then Gg is a dense open subset of X. Writing M(X) for the ideal of meager subsets of X, #(£) <
Mcountable = €OV M (X)), so there is an z € X N ﬂEeE Gp; set A=2z[N]. Q

(ii) Let (fe)e<o be a cofinal family in NY; we may suppose that every fe is strictly increasing. Choose
a non-decreasing family (£¢)¢<o inductively, as follows. & = {N\ n: n € N}. Given that £ < ? = Meountable
and that & C [N]<“ is a filter base with cardinal at most max(w, #(§)), use (i) to find a set Ac C N, meeting
every member of &, such that #(A: N fe(n)) < n for every n; set

5E+1:€§U{AEQE:EES£}.

For non-zero limit ordinals £ < 9 set & = Un<§ &y

At the end of the induction, let F be the filter on N generated by &. Then F is rapid. B It is free
because & C F. If (t,)nen is a sequence in R converging to 0, let f € NN be such that |t;| < 27" whenever
n € Nand ¢ > f(n), and let £ <0 be such that f < fe. Then A; € F and

Dieac ltil S 0027 (A N fe(n+ 1)\ fe(n)) < 3507,27" (n+1)
is finite. Q

5380 The Fatou property: Proposition (a) Let F be a filter on N. Let v, be the usual measure on
{0, 1}N , and T, its domain. Then the following are equiveridical:
(i) F has the Fatou property;
(ii) whenever (F;,)nen is a sequence in Ty, and v, (U 4 7 Npea Fn) = 1, then lim,, , 7 v, I, = 1;
(iii) whenever (X, 3, pt) is a measure space and (f,,)nen is a sequence of non-negative functions
in £9(p), then [liminf, ,r f,du < liminf, 7 [ f,dy;
(iv) whenever p is a Radon probability measure on PN, then p*F < liminf, _, r uF,, where
E, ={a:n € aCN} for each n € N.
(b) If F and G are filters on N, G <gx F and F has the Fatou property, then G has the Fatou property.
(c) If F and G are filters on N with the Fatou property, then F x G has the Fatou property.

proof (a) not-(iii)=not-(i) Suppose that (X, 3, ) is a measure space and (f,)nen a sequence of non-
negative functions in £ such that [liminf,r f,dp > liminf, 7 [ f,du. Changing the f, on negligible
sets does not change either [liminf, ,r f,du or [liminf, ,r f,du, so we may assume that every f, is

defined everywhere in X and is X-measurable. Take a such that [liminf, 7 fodp > o > liminf, 7 [ fndu;
set A={n: [ fndu < a}; then A meets every member of F. Since f, is integrable for every n € A, the set
G = {z : sup,,c 4 fn(z) > 0} is a countable union of sets of finite measure.

Let A be the c.l.d. product measure on G x R, and consider the ordinate sets W,, = {(z,5) : = € G,
0< B < fu(z)} for ne A. Set W =Ueccr Npecna Was writing g for liminf, , 7 f,,

{(,8):2€G,0< B <g(x)} CW.

Since A is a product of two o-finite measures it is o-finite, and W has a measurable envelope W say. Now
NW > a. P? Otherwise, A\W < «. Writing uy, for Lebesgue measure on R,

o> AW = / p W ) ()
G
(252D)
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> / gdu > a. XQ
G

There is therefore a set V' C W such that a < AV < oo, and now A\*(V NW) > a. Let v be the subspace
measure on V N W. Set
Ve=VNnWnW,ifneA,
=VNWifneN\A.

Then

liminf vV,, = sup inf vV, < sup vV,
n—F ceFnec neA

< sup A\W,, = Sup/fndu <a.
necA necA

On the other hand,
Uoer Mueo Ve =Ucer Mnecna VOW N W, =V AW
and v(VNW) = X(VNW) > a. Moving to a normalization of v, we see that (i) is false.

(iii)=(iv) If F satisfies (iii) and u is a Radon probability measure on PN, set g = liminf, ,» xE,,. If
a € F, then {n: xFE,(a) =1} =a € F, so g(a) = 1; thus

pwrF = / xFdp
(133Je)

< /g dp < lim inf/xEn = liminf pFE,,
n—F n—F

as required.

(iv)=(ii) Given (iv), suppose that (Fy,)nen is a sequence in Ty, and v} (U cr Npea Fn) = 1. Asin
the corresponding part of the argument for 538Na, define ¢ : {0, 1} — PN by setting ¢(z) = {n: x € F,},
and let p be the Radon measure v,¢~!. Then
1w F =50 F| = v5(Uaer Npea Fn) =1
(using 451Pc again for the first equality), so lim,,, r v, F,, = lim,,, r pE,, = 1.

(ii)=-(i) Assume (ii), and take a probability space (X, %, u) and a sequence (Hp)nen in X such that

X =User Mnea Hn-
As in the corresponding part of the argument for 538Na, let A be the c.l.d. product measure on X x {0, 1},
and set

Wn=H, x {0,1},  V, ={(z,y):z€ X, yec{0,1} yn) =1}

for n € N. Let A; be the o-algebra of subsets of X x {0,1}" generated by {W,, : n € NyU{V,, : n € N}, and
A1 the completion of the restriction A\[A;. As before, there is a function ¢ : X x {0, 1} — {0, 1}, inverse-
measure-preserving for A; and v, such that there is for each n € N an F,, € T, such that qS*l[Fn]AWn is
Ar-negligible. Set G = U crNpea Fn-

Since X = e 7 Mnea Hns X x {0,131 = U e 7 Nnea Wa and

(X x {0, 1)\ ¢ H[G] C Upen 0 Fa] AW,
is A1-negligible. By 413Eh,
vEG > Mo G = 1.
By (ii), lim,— 7 v, F, = 1. But
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voFp = Mo F,] = MW, = \W,, = uH,
for each n, so lim,,,r uH, = 1. As (X, X, u) and (H,,),en are arbitrary, F has the Fatou property.

(b) Let h : N — N be such that G = h[[F]]. Let (X, 3, u) be a probability space and (Hy)nen a sequence
in ¥ such that

x=y N

AegneA
= U Nam=U N e
ACN,h—1[A]eF n€A AeF neA

Then
1= hglgf pHp )y = sup 7in(f4 wHp(n)

< sup inf pH, = hm 1nf uwH,.
AegneA

As (X, %, u) and (H,)nen are arbitrary, G has the Fatou property.

(c) Let (X, X, i) be a probability space and (E;;); jen a family in X such that X = Upocryg ﬂ(i,j)eC E;;.
For each i € N, set I; = Upeg ﬂjeB E;j, and let G; € ¥ be a measurable envelope of F;. Then
UaerNicaGi = X. P If x € X, there is a C € F x G such that € Ej;; whenever (i,j) € C. Set
A={i:C[{i}] € G} € F. If i € A, then

* € Myecrgay By < Fi € Gy

sox €(;caGi- Q
Accordingly lim;, » uG; = 1. Take € > 0; then A = {i : uG; > 1 — €} belongs to F. For each i € A,

1—e< puG;, =p*F; = /XF /hmlnfxE” < hrnlnf/inj
(by (a-iii) above)
= hjni}élf wEij,

so {j : pE;; > 1 —2¢} € G. But this means that {(¢,j) : uE;; > 1 —2¢} € F x G. As € is arbitrary,
lim; jy rug pEij = 1. As (X, %, ) and (Ejj;); jen are arbitrary, 7 x G has the Fatou property.

538P Theorem Let v : PN — R be a bounded finitely additive functional. Write f...dv for the
associated linear functional on £*° (see 363L), and set E,, = {a : n € a C N} for each n € N. Then the
following are equiveridical:

(i) whenever 4 is a Radon probability measure on PN, [v(a)u(da) is defined and equal to f uE,v(dn);

(i ) whenever p is a Radon probability measure on [0,1] 1 . [frdvp(dz) is defined and equal to

i v(dn);

(111) Whenever (X, 3, p) is a probability space and (fy,)nen is a uniformly bounded sequence of measurable
real-valued functions on X, then [ff,,(z)v(dn)u(dz) is defined and equal to f frdpv(dn);

(iv) whenever (F,),en is a sequence of Borel subsets of {0, 1}, [fxF,(x)v(dn)v,(dz) is defined and
equal to fv,F,v(dn), where v, is the usual measure on {0, 1},
proof (i)=(ii)(a) For t € [0,1] define h; : [0,1]N — PN by setting hi(z) = {n : z(n) > t} for z € [0,1]",
and let p; = ph; ' be the image measure on PN. Then y; is a Radon measure for each t. P Because h; is
Borel measurable and PN is metrizable, h; is almost continuous (418J), so . is a Radon measure (418I). Q

(B) For m € N define vy, € [0, 1] by setting
o) = 272l () = 2R,
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Then |[Vyms1 — Vmllooc <27™7 1. P For any n € N,

om gmt1
Um(n) — vpar1(n) =277 Zu{x cx(n) > 27 ™k} — 27! Z p{x :x(n) > 271k}
k=1 k=1

om
=9o-m-1 Z(2u{x rx(n) > 27"k} — plz rx(n) > 27"k}
k=1

—p{z:x(n) >27" 2k +1)})
gm
=27y pfa 2k <a(n) <272k D)} <27 T Q
k=1

So v = limy, 00 Uy, is defined in £>° and fov dv = limy, o0 fmdr. Also v(n) = [z(n)u(dz) for every n € N,
so ff z(n)p(dz)v(dn) = fvdv.
(7) Set
£(0) = f 1 Eurldn) = [ via)pe(da)
for each ¢ € [0, 1] (using (i)). Then, for any m € N,

][vmdy =2"" :Zml][ w{x : z(n) > 27"k}v(dn)

om

=2 m Z][u{x tho-mp () € En}v(dn)
k=1
om om

—gm Z][ pra—mp Env(dn) =273 " f(27"k).
k=1 k=1

(0) Next, for m € N and z € [0,1], set g, (z) = 27™ Zizl Xho-mp(x), so that (gm(z))men is non-
decreasing and ||z — ¢, (2)||oo < 27™ for each m, while g, : [0,1]Y — [0,1]Y is Borel measurable. Now

om

}[ @ iz =27 > [ vtamil@utdo)

—27 S [ v ilda) =27 Y F27R)
k=1 k=1

Also (fgm(2)dv)men — fo dv uniformly for € [0,1]Y, so [fa dv u(dz) is defined and equal to

om

lim /][ gm (z)dv p(dz) = lim 27™ Zf(Q_mk) = lim 4 vpdv

m—+o0 m—o0 P m—+o00
][’Udl/ :][/x(n)y(dx)u(dn).

(ii)=(iii) Assume (ii), and let (X, 3, u) be a probability space and (f,,)nen a uniformly bounded sequence
of measurable real-valued functions on X. As completing p does not affect the integral [ ...du (212Fb), we
may suppose that p is complete. Let v > 0 be such that |f,(z)| < « for every n € N and z € X, and set

As p is arbitrary, (ii) is true.

q(z)(n) = %(7 + fu(x)) for all n and z. Then ¢ : X — [0, 1]" is measurable, so there is a Radon probability

measure A on [0, 1] such that ¢ is inverse-measure-preserving for ; and A\. P Taking \oE = uq~![E] for
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Borel sets E C [0, 1]V, ¢ is inverse-measure-preserving for p and \g; taking A to be the completion of A, ¢
is inverse-measure-preserving for p and A, by 234Ba; and A is a Radon measure by 433Cb. Q@ Now

][/ Fadpv(dn) = 2v][/ Jv(dn) —
_ 9 ][ / (n)A\(d2)v(dn) —

=2y /][ Adz) —
— 2y [ a@wanutiz) - = [f fu@pidnntda),

As p and (f,)nen are arbitrary, (iii) is true.

(235Gc)

(by (ii))

(iii)=(iv) is elementary, taking f, = xF, and p = v,,.

(iv)=(i) If (iv) is true and p is a Radon probability measure on PN, there is an inverse-measure-
preserving function ¢ from ({0,1}N,2,,) to (PN, i) (343Cd). For each n € N, set F,, = ¢~ *[E,] for each n
and choose a Borel set F, C {0, 1} such that v, (F,AF,) =0. Then [fxF,(z)v(dn)v,(dz) is defined and
equal to

waF v(dn) fl/wF v(dn) J(;LE v(dn).

Now

][,uE v(dn) /fo’ z)v(dn)v,(dz) /fo v(dn)v,(dx)

(because for almost every x, xF,(z) = xF},(z) for every n)

/fxE (¢(x))v(dn)v,(dx) /fxE Yp(da)
/][ xa(n pu(da) = /u(a) u(da).

538Q Definition I will say that a bounded finitely additive functional v satisfying (i)-(iv) of 538P is
a medial functional; if, in addition, v is non-negative, va = 0 for every finite set ¢« C N and vN =1, I
will call v a medial limit. I should remark that the term ‘medial limit’ is normally used for the associated
linear functional f...dv on ¢>°, rather than the additive functional v on PN; thus h € (£°)* is a medial
limit if 2 > 0, h(w) = lim, o w(n) for every convergent sequence w € ¢> and [ A((fn(2))nen)p(dz) is
defined and equal to h(([ fndi)nen) whenever (X, X, i) is a probability space and (f,)nen is a uniformly
bounded sequence of measurable real-valued functions on X.

Note that 538P(i) tells us that a medial limit v : PN — R is universally Radon-measurable (definition:
434Ec), therefore universally measurable (434Fc).

(235Gc again)

As p is arbitrary, (i) is true.

538R Proposition Let M 2 (¢*°)* be the L-space of bounded finitely additive functionals on PN, and
Myea € M the set of medial functionals.

(a) Meq is a band in M, and if T' € L*(£>°;£>°) (definition: 355G) and T" : M — M is its adjoint, then
T'v € Myeq for every v € My,cq.

(b) Taking M, to be the band of completely additive functionals on PN and M,, the band of measurable
functionals, as described in §464, M, C Muyeq € My,.
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(¢) Suppose that (vk)ren is a norm-bounded sequence in Mpeq, and that v € Mpeq. Set D(a) =
fui(a)v(dk) for a C N. Then 0 € Mpeq.

(d ) Suppose that v € M is a medial limit, and set F = {a : a C N, v(a) = 1}. Then F is a measure-
converging filter with the Fatou property.

(e) Let (X, %, u) and (Y, T, A) be probability spaces, and T € L*(L*>(u); L°°(/\)) Let (fn)nen, (In)nen
be sequences in £>°(u), £L°(v) respectively such that T fr=g for every n and < fodnen is norm bounded in
L>(p). Let v € M be a medial functional. Then f(z) = f f,(x)v(dn) and g(y) = fgn(y) are defined
for almost every x € X and y € Y; moreover, f € L‘X’( ), g € L"O()\) and Tf =g°.

proof (a)(i) Any of the four conditions of 538P makes it clear that My,eq is a linear subspace of M.
We see also that Meq is norm-closed in M. P Let (v,)nen be a sequence in Myeq which is norm-
convergent to v € M. If u is a Radon probability measure on [0, 1], then (Fx dvp)nen — f2 dv uniformly

for x € [0,1)N, so
/][ xdv p(dr) = 1i_{n /][ x dvp p(dx)

st f] stontasntan = [ o6 it

(ii) Before completing the proof that My,eq is a band, I deal with the second clause of (a).

As p is arbitrary, v € Myeq- Q

(a) Recall from §355 that L*(€°°;¢>°) is the set of differences of order-continuous positive linear
operators from £ to itself. Since M can be identified with (£>°)*, any T € L*(£°°;£°°) has an adjoint
T' : M — M defined by saying that (I'v)(a) = fT(xa)dv for every a C N. Since z — fTzdv and
z + f2d(T"v) both belong to (¢>°)* and agree on {xa : a C N}, they are equal, that is, fTx dv = fx d(T"v)
for every = € £°°.

(B) It T : £>° — ¢ is an order-continuous positive linear operator, it is a norm-bounded linear
operator (355C), and all the functionals x — (T'z)(n) are order-continuous, therefore represented by members
of £1; that is, we have a family (ap;)n ien in [0, 00[ such that

(Tz)(n) = > ;2 anix(i) whenever x € £*° and n € N,

SUPLen Dopeo @i = || T is finite.
In this case, if v € M and v/ =T'v in M,
fas dv' = f(T le 0 Qnix(i)v(dn)
for every = € £°°.
Now suppose that that ||T]| < 1, so that > ;o an; <1 for every n. Consider the function ¢ = T1[0, 1.
This is a function from [0, 1]Y to itself, and it is continuous for the product topology on N.
Take any ¥ € M and Radon probability measure p on [0 1] then the image measure (4 = ¢! on

[0,1]Y is a Radon probability measure (4181), and [ f(¢ = [ f(z)p1(dz) for any pui-integrable
function f. In particular, setting f(z) = fz dv,

ff¢ dVM (dx) ffdeul (dx) ff n) 1 (dx)v(dn)

because v € M yeq.
Set v/ = T'v. Then we can calculate

][/ p(da) (dn) ][Zan/ p(dz)v(dn) ][/Zanx (dz)v(dn)

(the inner integral is with respect to a genuine o-additive measure, so we have B.Levi’s theorem)

][/¢ p(dx)v(dn) ][/ n)p1 (dz)v(dn)
:/][(b(x)duu(dx):/][Txdvu(dx):/][xdz/u(dx).
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As p is arbitrary, v satisfies 538P(ii), and is a medial functional.

(7) Thus T'v € Myeq whenever v € Myeq and T : £°° — £ is positive, order-continuous and of
norm at most 1. As Meq is a linear subspace of M, the same is true for every positive order-continuous T’
and for differences of such operators, that is, for every T' € L*(£°°;£), as claimed.

(iii) I now return to the question of showing that Myeq is a band. The point is that if v is a medial
functional and b C N, then v is a medial functional, where vp(a) = v(a Nb) for every a C N. I Define
T : {°° — £ by setting Toz = z x xb for x € ¢>°. Then T is a positive order-continuous operator, and
T'v € Med, by (iil) above. But

(T"v) foadl/—fxaﬂbd =v(anbd) =wp(a)

for every a C N, so v, = T'v is a medial functional. Q
By 436M, this is enough to ensure that M,eq is a band in M.

(b) (i) Recall that an additive functional on PN is completely additive iff it corresponds to an element of
¢!, that is, belongs to the band generated by the elementary functionals §;, where d;(a) = ya(k) for k € N
and a C N. To see that &5 belongs to My,eq, all we have to do is to note that §, = xEj where E} is defined
as in 538P; so if p is a Radon probability measure on PN, we shall have

f Opdu = pEy = qunék(dn).
Since Mpeq is a band, it must include M., .

(ii) On the other side, 538P(i) tells us that every member of My,eq is universally measurable, and
therefore belongs to My,, which is just the set of bounded additive functionals which are Y-measurable,
where X is the domain of the usual measure on PN.

(c)(i) Because (Vk)ken is norm-bounded, 7 is well-defined and additive; also it is bounded. P If 7 is such
that ||v|| <~ and ||vg]| < v for every k, then

|7(a)] < vsupyen [vi(a)] < 72

for every a C N. Q
Note that

fxa dv =v(a) = fl/k(a)u(dk) = Hxa dvv(dk)
for every a C N, so that
fa: dv = fa:(n) Ha: vi(dn)v(dk) zﬂxdyku(dk)
whenever x € £°° is a linear combination of indicator functions, and therefore for every x € £°°.

(ii) Now suppose that (X, X, 1) is a probability space and that (f,,)nen is a uniformly bounded sequence
of measurable real—valued functions on X. Let (X, 3, z) be the completion of (X, X, u). For k E Nandz € X
set gr(z) = f fn(x)v(dn); because vy, is a medial functlonal we know that [ gpdp = f/ fo(z (dx)uk(dn) is
deﬁned S0 gp is 3- measurable Consequently [fgi(z)v(dk)i(dz) is defined and equal to f gy (z)i(dz)v(dk).

It follows that
][/ Fo(@)p(da) 5 (dn) ]9[/ Fol@)u(dz)vie(dn)v(dk)
][/][ (@) v (dn) p(dz) v (dk) ][/ iz v(dk)
_ /][ o (@) (dk / Ful@) v (dn)v(dk)adz)
~ [ tuwitanitan) = [[ @rtanntn)

(Recall that p and f give rise to the same integrals, by 212Fb again.) As (X, X, i) and (f,,)nen are arbitrary,
U € Mpea-

(d) Of course F = {N\ a : v(a) =0} is a filter.
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(i) If (X, X, u) is a probability space, (En>neN is a sequence in X, and lim,, ., pE, = 1, then

ffXEn(l‘)V(dn ff XEndpv(dn) f,uEnV dn) = 1.

So E = {z : fxE.(z)v(dn) = 1} is p—coneghglble. But if x € F and a = {n : « € E,}, then va =
fxEn(z)v(dn) =1and a € F and x € (¢, En. Thus U,cr Nyeq En 2 E is conegligible. As (X, 3, 1) and
(E,)nen are arbitrary, F is measure-converging.

(ii) If (X, ¥, ) is a probability space, (E,)nen is a sequence in ¥, and X = (J ez [),ca En, then
{n:ze€E,} €F for every z € X, and

fME v(dn) ffxE Yu(de) = fu{n cx € Eytp(de) =1.

So for any € > 0, v{n : pE, < 1—¢€} =0 and {n : uE, > 1 —¢€} € F; accordingly lim,, ,x uE, = 1. As
(X,3, p) and (E,)nen are arbitrary, F has the Fatou property.

(e)(i) For each n € N, we can find a ¥-measurable function f;, : X — R, equal almost everywhere to fn,
and such that sup,cx |fn(z)| = ess sup | fn|. Now (f})nen is uniformly bounded, so f'(z) = f/ (z
defined for every x € X; and f(z) is defined and equal to f'(x) for p-almost every . Slnce flis mtegrable
f/ and f are p-virtually measurable and essentially bounded, and f € £>°(u). Similarly, g € £°()\).

(ii) If h € LY (p), then [ f x hdp = f[ fn x hdp I/(dn) P (a ) If h is defined everywhere, measurable
and bounded, then, taking f and f" asin (i), (f" x h)(z) = ff,(z v(dn) for every x € X, so

/thmw=/fwde:/¥uzx@@»@Muwm
][f x hdpuv(dn) ][fnxhduu(dn)

(B) In general, set v = sup,,cy ess sup f,. Given € > 0, there is a simple function A’ such that ||h —h'||; <,

and now
|/f><hdpb—][/fn X hdpv(dn)|

g|/f><hd,u—/fxh’du|+|/f><h’du—][/fnxh'd;uz(dn)|
+|][/fnxh’duu(dn)—][/fn><hd,uzx(dn)|

<1l Wl sup | [ fox b di = [ 5] < 260,
ne
As e is arbitrary, [ f x hdp = f[ f, x hdpv(dn). Q

Similarly, [ g x hdX = f[ g, x hdAv(dn) for every A-integrable h.

(iii) If h € £'(\) there is an h € £'(p) such that [h® x v = [ h* x T for every v € L (). P Recall
that L'(u), L*(\) can be identified with L (u)* and L>(v)* (365Lb'°); perhaps I should remark that the
formulae [ h® x v, [ h* x T represent abstract integrals taken in L'(u), L'(\) respectively (242B). Setting
p(w) = [h* xw for w € L®(N), ¢ € L®(N\)*, s0 ¢T € L=(u)* (355G) and there is an h € £'(u) such that

[ xv=¢(Tv) = [h* x Tv
for every v € L (). Q

(iv) Take h and h as in (iii), and consider

/h'xg':/hxgd)\:][/hxgnd)\y(dn)

(by (ii))

0Formerly 365Mb.
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= F([ 1< guwtam) = ([ 1 x T gzyiam)
:][(/13- < f)u(dn) :][/B X fadpv(dn) = /iL « fdu

:/ﬁ’xf‘:/h'fo‘.

As h is arbitrary, and the duality between L>(u) and L'()\) is separating, T'f* = g*, as required.

(by (ii) again)

538S Theorem (a) If meountable = ¢, there is a medial limit.

(b) (LARSON 09) Suppose that the filter dichotomy (5A6Id) is true. If T is any set and v is a finitely
additive real-valued functional on PPI which is universally measurable for the usual topology on PI, then v
is completely additive.!! Consequently there is no medial limit.

proof (a)(i) Let M be the L-space of bounded additive functionals on PN. Let us say that a subset C' of
M is rationally convex if av + (1 — a)v’ € C whenever v, v/ € C and o € [0,1] NQ; for A C M, write
Tg(A) for the smallest rationally convex set including A. Set @ = T'g({d,, : n € N}) where §,,(a) = xa(n) for
a C N and n € N. In the language of 538Rb, Q C M, C Myeq, so 538P(i) tells us that [ vdy = fuE,v(dn)
for every v € Q, where E,, = {a:n € a C N} as usual.

(ii) Suppose that F is a filter base on @), consisting of rationally convex sets, with cardinal less than
Mcountable- Let 1 be a Radon probability measure on PN. Then there is a sequence (v;)ren in @ such that
Yoo J vat1(a) — vi(a)|p(da) < oo,
{k: k € N, vy, € F} is infinite for every F € F.
P Each v € Q is a bounded Borel measurable real-valued function on PN; let u € L? = L?(u) be a
T(L?, L?)-cluster point of (v*),cq along the filter generated by F. For any F' € F, the || ||2-closure of the
rationally convex set {v* : v € F'} C L? is convex, so includes the weak closure of {v* : v € F'} and therefore
contains u. So {v*:v € F} meets {v:v € L? |[v—ul2 <€} for every e > 0.
Set H, = {v:v e Q, |[v* —uls <27%} for each k € N; then every Hj meets every member of F. If we
give each Hy its discrete topology, and take H to be the product [], .y Hr, then H is homeomorphic to NN,
Writing M (H) for the ideal of meager subsets of H, cov.M(H) = Meountable > #(F ), while

Ursnlo:a € H, a(k) € F}

is a dense open subset of H for every F' € F and n € N. There is therefore an o € H such that {k : a(k) € F}
is infinite for every F' € F; take v, = a(k) for each k. Since u is a probability measure,

/mﬂ — vy < i — il
(244E; see 244Xd)
S 27]671 4 2716

for every k, and Y77 o [ |vk41 — vi|dp is finite. Q

(iii) Because a Radon probability measure on PN is defined by its values on the countable algebra B
of open-and-closed sets, the number of such measures is at most #(R”®) = ¢. Enumerate them as (u¢)e< -
Choose a non-decreasing family (F¢)e<. of filter bases on @, as follows. The inductive hypothesis will be that
F¢ has cardinal at most max(w, #(£)) and consists of rationally convex sets. Start with Fy = {F,, : n € N}
where F,, = T'g({d; : ¢ > n}) for each n. Given F; where £ < ¢, apply (ii) with p = p¢ to see that there is a
sequence (Veg)ken in @ such that

> rer S Vers1 — verldpe < oo,
{k : ver, € F} is infinite for every F' € Fe.

HThe result developed into this form in the course of correspondence with J.Pachl.
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Let Feqq1 be
Fe U{FNTo({ver : k>1}): F € Fe, L € N}

For non-zero limit ordinals § < ¢, set F¢ =, . -

(iv) At the end of the induction, let F be the filter on M = (¢*°)* generated by F., and let
be a cluster point of F for the weak* topology of (¢°)*. Then 6 is a medial limit. P If x4 is a Radon
probability measure on PN, take { < ¢ such that u = pe. Because I'g({rer : k > 1}) belongs to F for every
l € N, fu(n)f(dn) = limj_, fu(n)ve,(dn) for every u € £ for which the limit is defined. In particular,
0(a) = limy o0 vex(a) whenever a C N is such that the limit is defined. Because Y, o [ [Ve k1 — ver|dp is
finite, this is the case for p-almost every a, so

f@(a),u(da) = limg_ o0 f veg(a)p(da) = limy o0 qunyfk(dn);

and because the latter limit is defined it is equal to fuE,0(dn). As p is arbitrary, 6 satisfies condition (i)
of 538P, and is a medial functional; because @ € F, 0N = 1; and because Fy C F, 6(a) = 0 for every finite
a C N, so 0 is a medial limit. Q

(b) (i) The key is the following. Suppose that v : PI — R is a universally measurable additive functional.

(a) For every set J and function ¢ : I — J, v¢~! is universally measurable, where (v¢=1)(b) =
v(¢~1[b]) for every b C J. PP We have only to observe that b+ ¢~1[b] : PJ — PI is continuous, and apply
434Df. Q

(B) v is bounded. P? Otherwise, there is a disjoint sequence (ci)ren of subsets of I such that
limyg 00 [vex| = 00 (326D(ii)). Enlarging co if necessary, we can suppose that (J, oy cr = I. Set ¢(i) = k for
k € Nand i € ¢. Then v 1[{k}] — oo as k — oo. But v/ = v¢~! is universally measurable, therefore
Ty-measurable, where Ty is the domain of the usual measure Ay on PN. Let M be such that A\yE > 0
where E = {a : |'a] < M}. Then there are an n € N such that for every k > n there are a, b € F
such that aAb = {k} (345E; recall that the natural bijection a — xa : PN — {0,1}" identifies Ay with
the usual measure on {0,1}"). In this case, k belongs to exactly one of a, b; suppose that k € a \ b; then
|v'{k}| = |va —v'b] < 2M. This is supposed to be true for every k > n, so limsup,_, . [V'{k}| < 2M. XQ

(7) |v| is universally measurable. P As in part (b-i) of the proof of 464K, there is a sequence
(en)nen in PI such that vta = lim,_« v(aNec,) for every a C I. Since all the functions a — a N e,
are continuous, a — v(a N c¢,) is universally measurable for every n, and vT is universally measurable (use
418C). Consequently |v| = 2v" — v is universally measurable. Q

(ii) If v : PN — [0, 00[ is a universally measurable additive functional and v{n} = 0 for every n € N,
then v = 0. P? Otherwise, consider F = {a : va = vN}. This is a filter on N containing every cofinite set.
Let ¢ : N — N be finite-to-one, and write v/ for v¢~!. Setting Z = {a : v’a = 0}, we have a strictly positive
additive functional on the quotient algebra PN/Z, so PN/Z is ccc and Z cannot be [N]<“, that is, ¢[[F]] is
not the Fréchet filter. On the other hand, v’ is universally measurable, by (i-a), so

H[F)={a:¢"ta] € F} ={a:v'a=1v'N}

is a universally measurable subset of PN, and cannot be an ultrafilter (464Ca). Thus F witnesses that the
filter dichotomy is false. X Q

(iii) Returning to the general case of a universally measurable additive functional v : PI — R, set
vi = v{i} for i € I. By (i-B), sup epp<e [ 2ojc5 Vil = supjep<w [ J] is finite, so 37, /[l < oo, and we
have a functional v; : PI — R defined by setting v1a = Zie‘l v; for every a C I. v is continuous for the
topology of PI, so vo = v — 17 is universally measurable, and v/ = |i»| is universally measurable, by (i-v).
v'J = 0 for every countable set J C I. P If J is finite, this is trivial, because

wal{i} = lva{i}| = [{i} —vi{i}[ = [% =7l =0
for every i € I. If J is countably infinite, then the embedding P.J S PI is continuous, so v [P.J is universally

measurable for the usual topology on P.J; also it is still zero on singletons, so (ii) tells us that it is zero on
the whole of PJ. Q
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It follows that v/ is zero everywhere. P Take ¢ C I and € > 0. v/ must be T;-measurable, where T is the
domain of the usual measure Ay on PI. Since At is a completion regular Radon measure (416U), there must
be a non-negligible zero set K C PI such that [v'a — /'b| < € for all a, b € K; and there is a countable set
J C I such that K is determined by coordinates in J (4A3Nc, applied to {0,1}! = PI). Take any a € K.
Then ¢; = (¢\ J)U (aNJ) and a N J both belong to K. But as v/(¢cNJ) =0,

Ve =|ver —vVi(anJd)| <e.

As ¢ and € are arbitrary, v’ = 0. Q
Accordingly vo = 0 and v = v;. But of course v is completely additive.

(iv) Finally, a medial limit would be a non-zero additive functional from PN to [0,1] which was
universally measurable, as noted in 538Q, and zero on singletons; and this has already been ruled out by
(ii).

Remark It is possible to have medial limits when mcountable < ¢; see 553N.

538X Basic exercises (a) Let F be a filter on N, and I an infinite subset of N such that N\ I ¢ F;
write F[I for the filter {ANTI: A€ F}. Show that if F is free, or a p-point filter, or Ramsey, or rapid, or
nowhere dense, or measure-centering, or measure-converging, or with the Fatou property, then so is F[I.

(b) For A € [N]“ let fa : N — A be the increasing enumeration of A. Let F be a free filter on N. Show
that F is rapid iff {f4 : A € F} is cofinal with N

(c) Let F be a filter which is universally measurable (regarded as a subset of P(|JF) with its usual
topology), and G another filter such that G <gx F. Show that G is universally measurable.

(d) Let Fr be the Fréchet filter and Fy the asymptotic density filter, the filter of subsets of N with
asymptotic density 1. (i) Show that Fg and Fy are p-point filters. (ii) Show that Fg <gp Fy4 but that
Fre X Frr £RK Fa-

(e)(i) Let (Fn)nen be a sequence of filters on N, and F a filter on N. Write lim,,_,  F,, for the filter
{A:ACN,{n:neN, Ae F,} € F}. Show that if every F,, is rapid, then lim,,_, » F,, is rapid. (ii) Let F
be a rapid filter, and G any filter on N. Show that G x F is rapid. (iii) In 538E, suppose that Fj is rapid.
Show that G¢ is rapid for every £ > 1.

(f)(i) Let F be a nowhere dense filter, and G a filter on N such that G <gk F. Show that G is nowhere
dense. (ii) Show that a p-point ultrafilter is nowhere dense. (iii) In 538E, show that if every F¢ is a nowhere
dense ultrafilter, then G is a nowhere dense ultrafilter.

>(g) Let F be a free filter on N. Show that the following are equiveridical: (i) F is a Ramsey filter; (ii)
whenever K is finite, K € N and f : [NJ* — K is a function, there is an F' € F such that f is constant on
[F]F; (iii) F is a p-point filter and whenever (E,,),en is a disjoint sequence in [N]<“, there is an F' € F such
that #(F N E,) <1 for every n; (iv) whenever (E,),en is a disjoint sequence in PN\ F, there is an F' € F
such that #(F N E,) <1 for every n.

(h) Let § be a countable family of distinct p-point ultrafilters on N. Show that there is a disjoint family
(Ar)rez of subsets of N such that Ar € F for every F € §.

(i) Let (X,3, ) be a complete perfect probability space, (Y, &) a perfectly normal compact Hausdorff
space, {fn)nen & sequence of measurable functions from X to Y, F a measure-centering ultrafilter on N
and A\ the F-extension of u. (i) Setting f(z) = lim,— 7 fn(z) for x € X, show that f is dom A-measurable.
(ii) For each n € N, show that there is a unique Radon measure v, on Y such that f,, is inverse-measure-
preserving for p and v,,. (iii) Let v be the limit lim,,_,  v,, for the narrow topology on the space of Radon
probability measures on Y (437Jd). Show that f is inverse-measure-preserving for A and v. (Hint: look at
the Radon measure associated with the image measure Af~1. You may prefer to begin with metrizable Y.)
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(J) Let ((A;, f1;))ier be a family of probability algebras, F an ultrafilter on I, and (2, i) the probability
algebra reduced product of [, (2, fi;)| F. Foreachi € I, let C; be the order relation on 2;; set P = [,., 2
and let P|F be the partial order reduced product of ((le, <, )}161 modulo F as defined in 5A2A. Describe a

canonical order-preserving map from P|F to 2L

(k)(i) Let (2, &) be a homogeneous probability algebra with Maharam type x, I a non-empty set, F an
ultrafilter on I and (€,7) the probability algebra reduced power (2, 1)!|F. Show that € is homogeneous,
with Maharam type the transversal number Trz(I; ) (definition: 5AIM), where Z = {I\ A: A € F}.
(Hint: 5A1Nd, 521Eb.) (ii) Show that if (2, i) is any probability algebra and F and G are non-principal
ultrafilters on N, then the probability algebra reduced powers (2, i)N|F and (2, #)N|G are isomorphic.

(D) Let (X, 3, 1) be a perfect probability space and p/ an indefinite-integral measure over u which is also
a probability measure. Let F be a measure-centering ultrafilter on N and A, A’ the F-extensions of u and
u'. Show that )\’ is an indefinite-integral measure over A.

>(m) (BENEDIKT 98) (i) Let F be any free filter on N. Show that F x F is not measure-centering. (Hint:
let {en)nen be the standard generating family in 9B, and consider a,,, = e, \ €, if m < n, 1 otherwise.)
(ii) Let F be a measure-centering ultrafilter on N. Show that if f, g € NN and {n : f(n) # g(n)} € F, then

FIUFI # gl[FIl. (Hint: consider an = efm) \ egeny if f(n) # g(n).)

(n) Let X be a locally compact Hausdorff topological group, and p a left Haar measure on X. Show that
there is a complete locally determined left-translation-invariant measure A\ on X such that A(lim,,_, r E,)
is defined and equal to SUD ¢ x is compact iMn— 7 (En N K) whenever F is a Ramsey ultrafilter on N and
(En)nen is a sequence of Haar measurable subsets of X.

(0)(i) Let (Fn)nen be a sequence of measure-converging filters on N. Show that (), .y Fn is measure-
converging, so that lim,,_, » 7, (538Xe) is measure-converging for any filter 7 on N. (ii) In 538E, suppose
that F7 is measure-converging. Show that G, is measure-converging for every £ € [1,(].

(p) Suppose that (Fe¢)e<, is a family of measure-converging filters, where & is non-zero and less than the
additivity add A of Lebesgue measure. Show that ﬂg < F¢ is measure-converging.

(a)(i) Let F be a filter on N. Show that F has the Fatou property iff [ fdu and lim,_,r [ f.du are
defined and equal whenever (X,3, 1) is a measure space, g : X — [0,00] is an integrable function and
(fn)nen is a sequence of measurable functions on X such that |f,| <... ¢ for every n and lim, = f,, =a.. f.
(ii) Show that a non-principal ultrafilter on N cannot have the Fatou property. (Hint: 464Ca.)

(r) Show that the asymptotic density filter (538Xd) has the Fatou property.

(s)(i) Let (Fy,)nen be a sequence of filters with the Fatou property, and F a filter with the Fatou property.
Show that lim,,_, r F,, (538Xe) has the Fatou property. (ii) In 538E, suppose that F¢ has the Fatou property
for every & € [1,¢]. Show that G¢ has the Fatou property for every & < (.

(t) Let v : PN — R be a bounded additive functional. (i) Show that v is a medial functional iff
Jv{n : z € E,}pu(dx) is defined and equal to fpuE,v(dn) whenever (X, X, p) is a probability space and
(En)nen is a sequence in . (ii) Show that in this case a — v¢~![a] is a medial functional for any ¢ : N — N.

>(u) Let (X,X, ) be a probability space, and T a o-subalgebra of 3. Let (f,)nen be a sequence in
£°°(p) such that sup,,cyess sup|fn| is finite, and for each n E N let gn be a conditional expectation of fn
on T. Suppose that v is a medial functional. Show that f(z) = f f,(z)v(dn) and g(z) = fgn(z) are
defined for almost every x, that f € £°°(u), and that g is a condltlonal expectatlon of f on T.

(v) (V.Bergelson) Show that there are a probability algebra (2, i) and a sequence (an)nen in 2 such
that inf, ey fia, > 0 but a,, Nay, Namyn = 0 whenever m, n > 0. (Hint: for n > 1, set E, = {z: z € [0,1],
[3nz] =1 mod 3}.)
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538Y Further exercises (a) Show that if 7 and G are filters and F <gk G, then, in the language of
512A, (F, D, F) <ar (G,2,G), so that ciF < ¢iG and F is k-complete whenever k is a cardinal and G is
k-complete.

(b) Let F be a free ultrafilter on N, and suppose that whenever G is a free filter on N and G <gx F,
then F <gk G. Show that F is a Ramsey ultrafilter. (Hint: COMFORT & NEGREPONTIS 74.)

(c) Show that if p = ¢ then there are 2° Ramsey ultrafilters on N, and therefore 2° isomorphism classes
of Ramsey ultrafilters.

(d) Let F be an ultrafilter on N. Show that F is measure-centering iff whenever 2 is a Boolean algebra,
D C 2\ {0} has intersection number greater than 0 (definition: 391H) and (a,)nen is a sequence in D, then
there is an A € F such that {a, : n € A} is centered.

(e)(i) Show that if cov N\ = ¢, there is a measure-centering ultrafilter on N including the asymptotic
density filter (538Xd). (ii) Show that an ultrafilter on N including the asymptotic density filter cannot be
a p-point filter. (iii) Show that a filter on N including the asymptotic density filter cannot be a rapid filter.

(£)(1) Let F, G be free filters on N such that F x G is measure-centering. Show that there is no free filter
H such that H <gx F and H <gk G. (ii) Show that if there are two non-isomorphic Ramsey ultrafilters
on N, then there are two non-isomorphic measure-centering ultrafilters 7, G on N such that F x G is not
measure-centering.

(g) For an uncountable set I, let us say that a filter F on I is uniform and measure-centering if
#(A) = #(I) for every A € F and whenever 2 is a Boolean algebra, v : 2 — [0, co[ is an additive functional,
and (a;);cr is a family in 2 with inf;c7 va; > 0, there is an A € F such that {a; : i € A} is centered. (i) State
and prove a result corresponding to 538G for such filters. (Hint: in the part corresponding to 538G(iv), use
‘compact’ measures rather than ‘perfect’ measures.) (ii) State and prove a result corresponding to 538H.
(Hint: set k = #(I). In the part corresponding to 538Hc, suppose that you have a x-complete ultrafilter
on I, rather than a Ramsey ultrafilter; see 4A1L. In the part corresponding to 538He, suppose that k is
regular and that cov,, = 2%, where N, is the null ideal of the usual measure on {0,1}*.) (iii) State and
prove results corresponding to 538I-538K. (iv) State and prove results corresponding to 538L-538M, but
with ‘normal ultrafilters’ in place of ‘Ramsey ultrafilters’.

(h) Show that if F and G are filters on N, F is rapid and G <gp F, then G is rapid.

(i) Give an example of filters F, G on N such that F has the Fatou property, G C F and G does not have
the Fatou property.

(j)(i) Let F be a nowhere dense filter on N, and Z the ideal {N\ A : A € F}. Show that PN/Z is finite.
(ii) Show that a free filter with the Fatou property cannot be nowhere dense.

(k) Let (X, X, 1) be a probability space and (f)men, (gn)nen two uniformly bounded sequences of real-
valued measurable functions defined on X. Let v, v/ : PN — R be bounded additive functionals. Show that

H fn X gndpv(dm)v' (dn) = [ fu X gndp v/ (dn)v(dm).

(1) (MEYER 73) Let v be a medial limit. Write U for the set of sequences u € RN such that sup{fvdv :
v € £, v < |ul} is finite; for u € U, write fu dv for limy, o f med(—m, u(n), m)v(dn) (see 364Xj). Suppose
that (X, X, ) is a probability space and (f,)nen a sequence of p-integrable real-valued functions on X such
that ([ |fnldu)nen € U. (i) Show that (f,(2))nen € U for p-almost every x € X. Set f(z) = f fn(x)v(dn)
whenever (f,,(2))nen € U. (ii) Show that if every f,, is non-negative then [ fdu < f[ fodpv(dn). (iii) Show
that if {f, : n € N} is uniformly integrable then [ fdu =f/[ f,dpv(dn). (iv) Show that if (f2),en is weakly
convergent to 0 in L'(p), then f =,. 0. (v) Suppose that {f,)nen is uniformly integrable. Let T be a
o-subalgebra of ¥, and for each n € N let g,, be a conditional expectation of f,, on T; set g(z) = fgn(x)v(dn)
whenever (g, (z))neny € U. Show that g is a conditional expectation of f on T.
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(m) Suppose that F is a filter on N with the Fatou property, and (v, )nen & sequence of medial limits.
Set G ={A: ACN, lim, ,rv,A =1}. Show that G is a filter with the Fatou property.

(n) Show that u > t(w,w) > max(cov N, Meountable) (definitions: 5A61a, 529G).

(0)(i) Show that if F is a rapid filter on N, then ciF > 9. (ii) Show that d > g (definition: 5A6I(b-ii)).
(iii) Show that if u < g there are no rapid filters on N, and if there is a measure-converging filter there is a
measure-converging ultrafilter with coinitiality u.

(p) Suppose that the filter dichotomy is true. (i) Let 2 be a Dedekind o-complete Boolean algebra. Show
that if v : % — R is an additive functional which is universally measurable for the order-sequential topology
of A, then v is countably additive. (ii) Let (2, i) be a localizable measure algebra. Show that if v : A — R
is an additive functional which is universally measurable for the measure-algebra topology on 2, then it is
continuous.

(q)(i) Show that there is a semigroup operation + on the set SN of ultrafilters on N defined by saying
that F+G = +[[F x G]] for all F, G € AN, where + : Nx N — N is addition. (ii) Show that if we identify SN
with the Stone-Cech compactification of N (4A2I(b-i)), then 4 is continuous in the first variable. (iii) Show
that there is a non-principal ultrafilter 7 on N which is idempotent, that is, F+F = F. (Hint: consider
a minimal closed sub-semigroup of the set of non-principal ultrafilters.) (iv) For any function f € NY, write
FS(f) for {3, cx f(n) : K € [N]<*}; say a finite sum set is a set of the form FS(f) for some strictly
increasing function f € NY¥. Show that if F is a non-principal idempotent ultrafilter on N and I € F, then
I includes a finite sum set. (This is a version of Hindman’s theorem.) (v) Show that if I C N is a finite
sum set there is an idempotent ultrafilter containing I. (vi) Suppose that (2, i) is a probability algebra
and 7 : 2 — 2A is a measure-preserving Boolean homomorphism. («) Show that if F is an idempotent
ultrafilter on N, then lim,_, = p(an7"a) > (ua)? for every a € 2 (B) Show that there is a finite sum set
I C N such that {n"a : n € I} is centered. (vii) Show that no idempotent ultrafilter is measure-centering.
(Hint: 538Xv.) (viii) Show that if F is a p-point ultrafilter then F+F is isomorphic to F x F and is not
measure-centering. (ix) Repeat, as far as possible, for semigroups other than (N, +).

(r) (V.Bergelson-M.Talagrand) Show that there are a probability algebra (2, &) and a sequence {(a,)nen
in 2 such that pa, = % for every n € N but inf,, ner fi(am Na,) = 0 whenever I C N does not have
asymptotic density 0.

538Z Problem Show that it is relatively consistent with ZFC to suppose that there are no measure-
converging filters on N.

538 Notes and comments This is a long section, and rather a lot of ideas are crowded into it, starting
with the list in 538A. If you have looked at ultrafilters on N at all, you are likely to have encountered
‘p-point’, ‘rapid’ and ‘Ramsey’ ultrafilters, and most of 538B-538D and 538F will probably be familiar. The
‘iterated products’ of 538E will also be a matter of adapting known concepts to my particular formulation.

Some of the slightly contorted language of 538Fe and 538Ff (with references to ‘#(§)’) is there because
we do not know how many isomorphism classes of Ramsey filters there are. If there are none (as in random
real models, see 553H), or one (SHELAH 82, §VI.5), then things are very simple. If there are infinitely many
then we could rephrase 538Ff in terms of sequences of non-isomorphic filters. But it is possible that there
should be two, or seventeen (SHELAH 98A, p. 335).

In 538H-538M 1 try to set out, and expand, some of the principal ideas of BENEDIKT 98. The starting
point is the observation that a Ramsey ultrafilter gives us an extension of Lebesgue measure on [0, 1], indeed
of any perfect probability measure. Observing that this property is preserved by iterations, we are led
to ‘measure-centering’ ultrafilters. Once we have the idea of measure-centering-ultrafilter extension of a
perfect probability measure, we can set out to look at its properties in terms of the (by now very extensive)
general theory of this treatise. The first step has to be the identification of its measure algebra (538Ja,
538Xk), followed, if possible, by the identification of the corresponding Banach function spaces. It turns
out that these can be reached by an alternative route not involving special properties of the ultrafilter or
the probability space, which I have expressed in general forms in §§328 and 377. This gives a long list
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of facts, which I have written out in 538Ja and 538K. Minor variations of the measure and the filter are
straightforward (538Jb, 538Jc, 538X1). For iterated products of filters we have more work to do (538L),
especially if we are to express them in a form adequate for the objective, the universal-extension result of
538M.

You will have noticed that in the statement of 538G I speak of ‘(J,c 7 (V,ca Fn’ and ‘liminf, , 7 puF,’.
Something of the sort is necessary since in that theorem I do not insist from the outset that F should be
an ultrafilter. Of course only ultrafilters are of interest in this context, by 538Ha, and for these we have
Usaer Nnea Frn = lim, 7 F,, and liminf,, ., 7 pF,, = lim,_, 7 pF,, as in 538L.

For most of this section I have kept firmly to the study of filters on N. For measure-centering filters, at
least, there are interesting extensions to filters on uncountable sets, which I mention in 538Yg. We can do
a good deal with the ideas of 538G-538K on cardinals less than ¢ in the presence of (for instance) Martin’s
axiom; but for anything corresponding to 538L-538M it seems that we must use a two-valued-measurable
cardinal (541M below).

Measure-converging filters (538N) and filters with the Fatou property (5380) form an oddly complemen-
tary pair. I have tried to emphasize the correspondence in the characterizations 538Na and 5380a (compare
538G(v), 538Na(iv) and 5380a(iv)), but after this they seem to diverge. The phrase ‘Fatou property’ comes
from 5380 (a-iii); if you like, Fatou’s Lemma says that the Fréchet filter has the Fatou property. From
538Xq(i) I see that I could just as well have called it the ‘Lebesgue property’. Note that any filter larger
than a measure-converging filter is again measure-converging, so that if there is a measure-converging filter
there is a measure-converging ultrafilter; but that no non-principal ultrafilter can have the Fatou property
(538Xq(ii)). On the other hand, there are many free filters with the Fatou property, but it is not known for
sure whether there have to be measure-converging filters. It is possible for a measure-converging filter to
have the Fatou property (538Rd).

In the last part of the section I look at a different kind of limit. A ‘Banach limit’ is an extension to
£°° of the ordinary limit regarded as a linear functional on the closed subspace of convergent sequences; a
‘medial limit’ is a Banach limit which commutes with integration in appropriate settings. To study these
I use the formulae of repeated integration to do some surprising things. In 363L I tried to explain what I
meant by the formula “f ...dv" for a finitely additive functional v. This defines linear functionals which are
positive for non-negative v. In ‘repeated integrals’ like £ f,,(2)u(dz)v(dn) (538P(iii)), we must interpret the
formula as f ([ f,(2)p(dz))v(dn); the ‘inner integral’ is an ordinary integral with respect to the countably
additive measure p, and the ‘outer integral’ is a name for a linear functional. In the integral f...dv we
have no problem with measurability, though we must check that the integrand n — [ f,du is bounded (or,
at least, satisfies the condition in 538Y1); but when we look at the other repeated integrals, [ v(a)u(da) or
JFxdv p(dx) or [ffn(z)v(dn)u(dx), the conditions of 538P must explicitly assert that the outer integrals
are defined.

Because we don’t need to consider measurability, the ‘finitely additive integrals’ here are in some ways
easy to deal with; ‘disintegrations’ like 7 = fv v(dk) (538Rc) slide past all the usual questions. However
we must always be vigilant against the temptations of limiting processes. As with the Riemann integral, of
course, we can integrate the limit of a uniformly convergent sequence of functions. But see the manoeuvres of
part (a-iii) of the proof of 538R, where the sums ) :° ; @p;... demand different treatments at different points.
And Fubini’s theorem nearly disappears; the point of ‘medial functionals’ is that something extraordinary
has to happen before we can expect to change the order of integration.

I have used the language of Volume 3 to express 538Re in a general form. Of course by far the most
important example is when the operator T is a conditional expectation operator (538Xu). For more examples
of operators in L*(L%; L), see §§373-374.

For most of the classes of filter here, there is a question concerning their existence. Subject to the
continuum hypothesis, there are many Ramsey ultrafilters, and refining the argument we find that the same
is true if p = ¢ (538Y¢). There are many ways of forcing non-existence of Ramsey ultrafilters, of which one
of the simplest is in 553H below. With more difficulty, we can eliminate p-point ultrafilters (WIMMERS 82)
or rapid filters (MILLER 80) or nowhere dense filters and therefore measure-centering ultrafilters (538Hd,
SHELAH 98B). It is not known for sure that we can eliminate measure-converging filters (538Z).
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539 Maharam submeasures

Continuing the work of §§392-394 and 496, I return to Maharam submeasures and the forms taken by
the ideas of the present volume in this context. At least for countably generated algebras, and in some
cases more generally, many of the methods of Chapter 52 can be applied (539B-539K). In 539L-539N I give
the main result of BALCAR JECH & PAzAK 05 and VELICKOVIC 05: it is consistent to suppose that every
Dedekind complete ccc weakly (o, 0o)-distributive Boolean algebra is a Maharam algebra. In 539R-539U I
introduce the idea of ‘exhaustivity rank’ of an exhaustive submeasure.

539A The story so far As submeasures have hardly appeared before in this volume, I begin by repeating
some of the essential ideas.

(a) If 2 is a Boolean algebra, a submeasure on 2 is a functional v : 2 — [0, 00] such that 0 = 0,
va < vb whenever a C b, and v(aub) < va+ vb for all a, b € B (392A); it is totally finite if v1 < co. If v
is a submeasure defined on an algebra of subsets of a set X, I say that the null ideal of v is the ideal A (v)
of subsets of X generated by {E : vE = 0} (496Bc). A submeasure v on a Boolean algebra 2 is exhaustive
if lim,, 00 va,, = 0 for every disjoint sequence {(a,)necn in 2; it is uniformly exhaustive if for every € > 0
there is an n € N such that there is no disjoint family ag, ... ,a, with va; > € for every i < n (392Bc). A
Maharam submeasure is a totally finite sequentially order-continuous submeasure (393A); a Maharam
submeasure on a Dedekind o-complete Boolean algebra is exhaustive (393Bc).

(b) A Maharam algebra is a Dedekind o-complete Boolean algebra with a strictly positive Maharam
submeasure. Any Maharam algebra is ccc and weakly (o, 0o)-distributive (393Eb). A Maharam algebra is
measurable iff it carries a strictly positive uniformly exhaustive submeasure (393D). If v is any Maharam
submeasure on a Dedekind o-complete Boolean algebra 2L, its Maharam algebra is the quotient 2/{a : va =
0} (496Ba).

(c) If v is any strictly positive totally finite submeasure on a Boolean algebra 2, there is an associated
metric (a,b) — v(a A D) on A; the completion 2A of A under this metric is a Boolean algebra (392Hc). If v is
exhaustive, then 2 is a Maharam algebra (393H). If v and v’ are both strictly positive Maharam submeasures
on the same Maharam algebra 2, v is absolutely continuous with respect to v’ (393F). Consequently the
associated metrics are uniformly equivalent, and 2l has a canonical topology and uniformity, its Maharam-

algebra topology and Maharam-algebra uniformity (393G).

(d) Let 21 be a Boolean algebra.

(i) A sequence (ap)nen in A order*-converges to a € A (definition: 367A) iff there is a partition B of
unity in 2 such that {n : bn(a, & a) # 0} is finite for every b € B (393Ma).

(ii) The order-sequential topology on 2 is the topology for which the closed sets are just the sets
closed under order*-convergence (393L).

(iii) If A is ccc and Dedekind o-complete, a subalgebra of 2 is order-closed iff it is closed for the
order-sequential topology (3930).

(iv) If 2 is ccc and weakly (o, 0o)-distributive, then the closure of a set A C 2 for the order-sequential
topology is the set of order*-limits of sequences in A (393Pb).

(v) If 2 is a Maharam algebra, then its Maharam-algebra topology is its order-sequential topology
(393N).

(vi) If 2 is a Dedekind o-complete ccc weakly (o, 0o)-distributive Boolean algebra, and {0} is a G; set
for the order-sequential topology, then 2l is a Maharam algebra (393Q).

(©) 2007 D. H. Fremlin
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(e) It was a long-outstanding problem (the ‘Control Measure Problem’) whether every Maharam algebra
is in fact a measurable algebra; this was solved by a counterexample in TALAGRAND 08, described in §394.

(f) If X is a Hausdorff space, a totally finite Radon submeasure on X is a totally finite submeasure
v defined on a o-algebra ¥ of subsets of X such that (i) if E C F € ¥ and vF = 0 then E € ¥ (ii) every
open set belongs to ¥ (iii) if £ € ¥ and € > 0 there is a compact set K C E such that v(E\ K) < € (496C).
Every totally finite Radon submeasure is a Maharam submeasure (496Da). If X is a Hausdorff space and v
is a totally finite Radon submeasure on X, a set E € domv is self-supporting if v(F N G) > 0 whenever
G C X is an open set meeting E. If £ € domv and € > 0, there is a compact self-supporting K C E such
that v(E \ K) < e (496Dd).

Let v be a strictly positive Maharam submeasure on a Dedekind o-complete Boolean algebra 2. Let Z
be the Stone space of 2, and write @ for the open-and-closed subset of Z corresponding to each a € 2. Then
there is a unique totally finite Radon submeasure v’ on Z such that v’a = va for every a € 2; the null ideal
of v/ is the nowhere dense ideal of Z (496G).

(g) For a cardinal , I write N for the null ideal of the usual measure on {0,1}%; N = A, will be the
null ideal of Lebesgue measure on R, and M the meager ideal of R.

539B Proposition Let 2 be a Maharam algebra, 7(2) its Maharam type and dz(2) its topological
density for its Maharam-algebra topology. Then 7(2) < dz () < max(w, 7(A)).

proof Recall that the Maharam-algebra topology is the order-sequential topology (539A(d-v)). 2 is ccc
and weakly (o, c0)-distributive (539Ab), so if D C 2 is topologically dense, then every element of 2 is
expressible as the order*-limit inf, cy Sup,,~,, @m of some sequence (a,)nen in D (539A(d-iv)). In this case
D 7-generates 2 and 7(21) < #(D); accordingly 7(2) < ds(A). If D C 2A 7-generates A, let B be the
subalgebra of 2 generated by D and B its topological closure. Then 9B is order-closed (because 2 is ccc),
so is the whole of 2, and d(2) < #(B) < max(w, #(D)); accordingly dz () < max(w,7(A)).

539C Theorem Let 2 be a Maharam algebra.
(a)
(2, [ Smax(er@)) <o (Pou(), C*, Pou(2)),
where 2+ =20\ {0}, (AF,2, [AF]=") is defined as in 512F, and (Pou(2l), C*) as in 512Ee.
(b) Pou(2) s Ny

proof If 20 = {0} these are both trivial; suppose otherwise. Fix a strictly positive Maharam submeasure v
on 2 such that v1 = 1. Let B be a subalgebra of 2 which is dense in 2 for the metric (a,b) — v(a A b) and
has cardinal at most k£ = max(w, 7()) (539B).

(a)(i) For a € AT choose ¢(a) € Pou(A) as follows. Start by taking d,, € B, for n € N, such that
v(d, & (1\a)) < 27" 2vaq for each n; set b, = d, \ sup,,, b; for n € N, a’ = 1\ sup,cnbp = 1\ sup, ey dn;
then every b,, belongs to B,

v(a'\a) <infpenv((1\dn) \ @) < infrenv(dn & (1\a)) =0,

via\d) <> v(and,) < va,
so 0 # a’ C a. Now set ¢(a) = {a’} u{b, : n € N}
(ii) For C € Pou(2), set
P(C)={cnb:ce C,beB}\ {0} € [AT]=F.
(iii) Suppose that a € A", C € Pou(2) and ¢(a) C* C. Then there is a b € 1)(C) such that b C a.

P Let ¢ € C be such that cna’ # 0, where @’ is defined as in (i) above. Then B = {b: b € ¢(a) \ {d'},
c¢nb # 0} is a finite subset of B, so sup B € B and ¢\ sup B € ¢¥(C). But ¢\ supB =cna’ C a. Q Thus
a2 P(C).

As a is arbitrary, (¢,1)) is a Galois-Tukey connection from (2,27, [AT]=%) to (Pou(2A), C*, Pou(2A), and
A+, 2" [AT]=") < (Pou(2A), C*, Pou(2A).
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(b)(3) If 7() is finite, then A is purely atomic and Pou(2) has an upper bound in itself, as does N,;; so
the result is trivial. Accordingly we may suppose henceforth that 7(2() = & is infinite.

(i) If C € Pou(2l), there is a sequence (b, )nen in B such that vb,, < 47" for every n € Nand {c: c € C,
cZ sup;>, bi} is finite for every n € N. P If C is finite this is trivial. Otherwise, set €, = 47" /(n + 2)
for each n € N, and enumerate C' as (cp)nen. Let (k(n))nen be a strictly increasing sequence such that
ve, < €y for every n, where ¢;, = sup;sj(,,) ¢i; choose (by)nen in B inductively so that

v(bnAsup;<, () \ Supj<icp bi)) < €ngr
for each n € N. Then we see by induction on n that
V(C;- \ SUpj<icy, bi) < €n
whenever j < n in N, and therefore that
Vb, <é€pt1+ (n+1)e, <477

for each n; while c C sup;>; b; for every j, so
L\ sup;s, bi € 1\ €, = Sup; g Ci
meets only finitely many members of C, for every n. Q

(iii) Now fix on an enumeration (b¢)¢<,, of B. Consider the s-localization relation (", C*,S,) (522K).
We see from (ii) that we can find a function ¢ : Pou(2) — " such that

Vbg(cy(n) < 47" for every n € N,

1\ sup;>, by(c)(i) meets only finitely many members of C, for every n € N.
Next, define ¢ : S, — Pou() as follows. Given S € S, set ap(S) =1,
an11(S) = sup,,>, sup{be : (m,§) € S, vbe <47™}
for each n; then va,1(S) < >°0°_ 27™ = 27" for every n, so ¥(S) = {a,(S)\ ant1(S) : n € N} is a
partition of unity in 2.

(iv) Suppose that C € Pou(2) and S € S,; are such that ¢(C) C* S. In this case there is an m € N
such that (n,$(C)(n)) € S for every n > m. Since vbycymy < 47" for every n, sup;s,, byc)(i) S an+1(S)
and 1\ a,+1(S) meets only finitely many members of C, for every n > m. Thus every member of ¢(S)
meets only finitely many members of C, and C' =* ¢(5).

This shows that (¢,?) is a Galois-Tukey connection from (Pou(2(),C*, Pou(2)) to (s%,C*,S,), and
(Pou(2A), C*, Pou(A)) <ar (kY,C*,Sk). On the other side, we know already that (s, C*,S,) <ar (N, C,
N) (524G); so (Pou(2A), C*, Pou(A)) <aT (Ni, C,Ny), that is, Pou(A) <1 N.

539D Corollary Let 2 be a Maharam algebra.
(a) m(A) < max(cf[r(A)]=%, cfN).
(b) If 7(2) < w, then wdistr(A) > add N.

proof Set k= 7(A).

(a) If m(2) is countable, or 7(2) < cf[k]=*, we can stop. Otherwise, « is infinite and

max(w, &) < max(w, cf[x]=¥) < 7(2A)
= cov(AT, 2, AT) < max(w, k, cov(AT, 2, [AT]=F))

(512Gf), so

7(2A) < cov(AT, 2, [AFT]=F) < cov(Pou(A), T*, Pou(2A))
(539Ca, 512Da)
= cf Pou(2A) < cf N,
(539Ch, 513E(e-i))
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= max(cf[k]5%, cf N)

(523N).

(b) If k is finite, wdistr(2) = oo and we can stop. Otherwise, k = w and

wdistr(A) = add Pou()
(512Ee)
> add N,
(539Ch, 513E(e-ii))
=add V.

539E Proposition (VELICKOVIC 05, BALCAR JECH & PAzAK 05) If 2 is an atomless Maharam algebra,
not {0}, there is a sequence (a,)nen in A such that sup,,c; a, = 1 and inf,,cr a, = 0 for every infinite I C N.

proof Fix a strictly positive Maharam submeasure v on 2.

(a) If (an)nen is a sequence in A such that 6 = inf,,cy va, is greater than 0, there are a non-zero d € 2
and an infinite I C N such that d C sup, ; a; for every infinite J C I. P*? Otherwise, set by = sup;¢ ; a; for
J C N. Choose (Ig)ecw,, (Ce)ecw, and (de)e<w, inductively, as follows. Iy = N. The inductive hypothesis
will be that I¢ is an infinite subset of N, I¢ \ I, is finite whenever n < ¢, and c¢ nby.,, = 0 for every £ < w;.
Given (I,)),<¢ where § < wy, set d¢ = inf,enby\,. Since vb; > 6 for every non-empty J C N, vdg > 6 and
de # 0. By hypothesis, there is an infinite I¢11 C I¢ such that cg = d¢ \ by, is non-zero. Given (I,),<¢
where { < w; is a non-zero limit ordinal, let Iz be an infinite set such that I \ I, is finite for every n < ¢,
and continue.

Now observe that if n < £ < wi, I¢ \ I, is finite, so that there is an n € N such that I \ n C I,;1, and

ce Cde Cbran Cbp,,,

is disjoint from ¢,). But this means that (c¢)e<w, is disjoint, which is impossible, because 2 is ccc. X Q

(b) Let us say that a Boolean algebra 9B splits reals if there is a sequence (b,)nen in B such that
sup,,c7 bn = 1 and inf,,c1 b, = 0 for every infinite I C N. Now the set of those d € 2 such that the principal
ideal 204 generated by d splits reals is order-dense in 2. P Let a € AT.

case 1 If v[%, is uniformly exhaustive, then 2, is measurable (539Ab). Let i be a probability
measure on 2,; because 2, like 2, is atomless, there is a stochastically independent family (a,)nen in 2,
with ga, = % for every n, and now (a,),en witnesses that 2, splits reals.

case 2 If v[2, is not uniformly exhaustive, let (b;)i<nen be a family of elements of 2, such that
(bni)i<n is disjoint for each n and € = inf;<,envby; is greater than 0. There is a family (fe)ecw, in
[I.end0; ... ,n} such that {n : fe(n) = f,(n)} is finite whenever n < & < wy. (For each { < w; let
¢ : £ — N be injective. Now define (f¢)e<., inductively by saying that

fe(n) = min(N\ {f,(n) : n <&, b¢(n) <n})
for every £ <w; and n € N.)

7 If for every { < w; and I € [N]¥ there is a J € [I]* such that infie;b; s i) # 0, choose (I¢)e<u,
inductively so that Iz € [N]“, I¢ \ I, is finite for every n < &, and ¢¢ = infiey, b; s, ;) is non-zero for every
¢ < wy. Then whenever n < & the set I N I, is infinite, so there is an ¢ € I N I,, such that fe(i) # fy(4);
now ¢g N ¢y C by g iy Nbiy, i) = 0. But this means that we have an uncountable disjoint family in 2, which
is impossible, because 2 is ccc. X

Thus we have a £ < w; and an infinite I C N such that inf;c;d; = 0 for every infinite J C I, where
di = bi j.(s) for i € I. Next, applying (a) to (d;)icr, we have an infinite K C I and a d # 0 such that
d = sup,;c ; d; for every infinite J C K. But this means that (dnd;);cx witnesses that 2 splits reals; while
dC a.

As a is arbitrary, we have the result. Q
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(c) By 313K, there is a partition D of unity in 2 such that 2A; splits reals for every d € D; choose a
sequence (@qn)nen in Aq witnessing this for each d € D. Set a,, = supyep aan for each n. If I C N is infinite,
then

SUp,,c7 @n = SUPgcp SUP, e Udn = SUp D = 1,
while
dninf,era, = infper ag, =0

for every d € D, so inf,,cr a, = 0. Thus (a,)nen witnesses that 2 splits reals, as claimed.

539F Definition For the next result I need a name for one more cardinal between w; and ¢. The
splitting number s is the least cardinal of any family A C PN such that for every infinite I C N there is
an A € A such that I N A and I\ A are both infinite.

539G Proposition Let X be a set, ¥ a o-algebra of subsets of X, and v an atomless Maharam submea-
sure on Y. Let M be the ideal of meager subsets of R.

(a) non N'(v) > max(s, Mcountable)-

(b) cov N (v) < non M.

proof If vX = 0, these are both trivial; suppose otherwise.

(a)(i) Suppose that D C X and #(D) < Meountable- For any € > 0, there is an F' € ¥ such that D C F
and vF < e. PP By 393I, there is for each n € N a finite partition &, of X into members of ¥ such that
vE < 27" e for each E € &,. Express each £, as {Ep; : i < k(n)}. For x € D, let f, € [],, oy k(n) be such
that = € E,, ¢, (n) for every n. Because #(D) < Mcountable, there is an f € NN such that fN f, # 0 for every
x € D (5228b); we may suppose that f(n) < k(n) for every n. Set F' =, cyy En, f(n); this works. Q

Applying this repeatedly, we get a sequence (F},)nen in X such that D C F,, and vF,, < 27" for every n;
now F' =,y Fn includes D and belongs to N'(v). As D is arbitrary, non N'(v) > Mcountable-

(ii) Set 2 = X/XNN(v), and define 7 : A — [0, oo| by setting vE* = vE for every E € ¥.. Then U is a
strictly positive atomless Maharam submeasure on 2. By 539E, there is a sequence (a,)nen in 2 such that
sup,cr an = 1 and inf,,c; a, = 0 for every infinite I C N. For each n € N, let E,, € ¥ be such that E;, = ay.

Suppose that D C X and #(D) < s. For x € D, set A, = {n: 2z € E,}. Because #(D) < s, there is an
infinite I C N such that one of TN A,, I'\ A, is finite for every z € D. Set
F= UmEN((X \ UnEI\m En) U (ﬂnel\m En))’

then
F* = supen((1\ 8Uppepym an) U (infrenm an)) =0,
so F € N(v), while D C F. As D is arbitrary, non N'(v) > s.

(b) Let (k(n))nen, (Eni)ickn) and (fz)zex be as in (a-i) above, with e = 1. Give Z =[],y k(n) its
compact metrizable product topology. By 522Whb, there is a family (g¢)e<non m in Z such that {ge : £ <
non M} is non-meager. For each f € Z, the set

H(f) = NmenUnzmig:9 € Z, g(n) = f(n)}
is comeager in Z, so contains some g¢; turning this round, Z = U§<nonM H(ge). Consider the sets F =
{z:x e X, fo € H(ge)}s then X = g pon pq Fe, While

vFe <infpend oo, VE

n,ge(n) = 0

for every £. So cov N (v) < non M.

539H Corollary Let 2 be an atomless Maharam algebra, not {0}. Then d(2() > max(s, Meountable)-

proof Let Z be the Stone space of 2 and v’ the totally finite Radon submeasure on Z corresponding to
a strictly positive Maharam submeasure v on 2 (539Af), so that A (v') is the ideal of meager subsets of
Z. Note that the meager sets of Z are all nowhere dense, because 2 is weakly (o, co)-distributive (316I).
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Because 2 is atomless, so are v and /. As every meager subset of Z is nowhere dense (and Z # (}), no
dense set can be meager, and

(514Bd)

> HOHN(V,) > max(s, mcountable)

by 539Ga.

5391 Corollary Suppose that #(X) < max(s, Meountable), Where s is the splitting number. Let ¥ be a
o-algebra of subsets of X such that (X, ) is countably separated, in the sense that there is a sequence in &
separating the points of X, and Z a o-ideal of ¥ containing singletons. Then there is no non-zero Maharam
submeasure on /7.

proof (a) Let u be a Maharam submeasure on ¥/Z. Then we have a Maharam submeasure v on ¥ defined
by setting vE = pE* for every E € ¥, and v{z} = 0 for every z € X.

(b) v is atomless. P Let (E),)nen be a sequence in ¥ separating the points of X, and F' € ¥ such that
vF > 0. Choose (F,)ncn inductively so that Fy = F and, given that vF, > 0, F,4 is either F,, N E,, or
F, \ E, and vF,,;1 > 0. Then ﬂneN F),, has at most one member, so lim,,_,., ¥F,, = 0, and there is an n
such that vF,, = v(F N F,) and v(F \ F,) are non-zero. Q

(c) By 539Ga,
non N (v) > max(s, Meountable) > #(X)

and v X =0, so p is identically 0.

539J Theorem (a) Let v be a totally finite Radon submeasure on a Hausdorff space X (539Af) and 2
its Maharam algebra. Then N (v) <1 Pou(2).
(b) Let v be a totally finite Radon submeasure on a Hausdorff space X and 2 its Maharam algebra.
(i) wdistr() < add N (v).
(i) 7(2A) < w(X).
(iii) ef NV (v) < max(cf[r(2A)]<%, cfN).
(iv) If 7(2) < w (e.g., because X is second-countable), then add V' (v) > add A and cf N (v) < cf V.

proof (a) For £ € N(v), let Kg be a maximal disjoint family of compact sets of non-zero submeasure
disjoint from FE, and set Cy = {K* : K € Kg}. Because v is inner regular with respect to the compact
sets, Cg € Pou(2). Now E +— Cg : N(v) — Pou(2) is a Tukey function. B Suppose that & C N (v) and
D € Pou(2) are such that Cg C* D for every E € &; take any € > 0. Because D is countable, we have a
countable partition H of X into measurable sets such that D = {H* : H € H}. Because v is inner regular
with respect to the self-supporting compact sets (539Af), we can find a self-supporting compact set K C X
such that v(X \ K) < € and K is covered by finitely many members of H; consequently K* meets only
finitely many members of D.

If E € &, then K* meets only finitely many members of Cg, so there is a finite set K C Kg such that
K \ Kg is negligible, where K = |JK%. But Kg is compact and K is self-supporting, so K C Kg and
KNnE=1.

This means that | J€ C X \ K is included in an open set of submeasure at most e. This is true for every
€ >0, so |J€ is included in a negligible G set and belongs to AV(v); that is, £ is bounded above in N (v).
As & is arbitrary, E — Cg is a Tukey function. Q

(b)(i) Putting (a) and 513E(e-ii) together,
wdistr(2) = add Pou(2) < add M (v).
(ii) If U is a base for the topology of X with #(U) = w(X), consider D = {U* : U € U} and the

order-closed subalgebra B of 2 generated by D; note that 9B is closed for the order-sequential (or Maharam-
algebra) topology of 2 (539Ad). Let & be the algebra of sets generated by U. If F € domv and € > 0,
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there are compact sets K C F, L C X \ F such that v(X \ (K UL)) < e. Thereis an E € & such that
K CECX\L,sov(EAF) <e Now E* € B and v(F* A E*) < ¢ as € is arbitrary, F'* € B; as F' is
arbitrary, 8 = 2 and 2 is 7-generated by D. This means that 7() < #(D) < w(X), as required.

(iii) Setting x = 7(21), (a) and 539Cb tell us that N (v) <1 N,;, where N,; is the null ideal of the usual
measure on {0,1}*. So add N'(v) > add NV, and

cf N (v) < ef N, < max(cf[k]=¥, cf N)
(513E(e-i), 523N).
(iv) If Kk < w then N,; <1 N so add N (v) > add N and c¢f N (v) < cfN.

539K We can approach precalibers by some of the same combinatorial methods as before.

Proposition Let 2 be a Boolean algebra and v an exhaustive submeasure on 2.
(a) Let (a;);en be a sequence in A such that inf;en va; > 0.
(i) There is an infinite I C N such that {a; : ¢ € I'} is centered.
(ii) For every k € N there are an S € [N]* and a ¢ > 0 such that v(inf;c s a;) > 6 for every J € [S]*.
(b) Suppose that (ag)e<, is a family in 2 such that infec, vae > 0, where £ is a regular uncountable
cardinal. Then for every k € N there are a stationary set S C k and a § > 0 such that v(inf;c;a;) > ¢ for
every J € [S]*.
(c) If v is strictly positive, then (k, &, k) is a precaliber triple of 2 for every regular uncountable cardinal
k and every k € N; in particular, 2 satisfies Knaster’s condition.

proof (a)(i) This is 392J.

(ii) Induce on k. The cases k = 0, k = 1 are trivial. For the inductive step to k + 1, let M € [N]* and
§ > 0 be such that v(inf;cya;) > & for every J € [M]*. ? Suppose, if possible, that for every S € [M]¥
and v > 0 there is a J € [S]**! such that v(inf;c;a;) < 7. Using Ramsey’s theorem (4A1G) repeatedly,
we can find (I,,)nen such that Iy € [M]*, I,41 € [I,]¥, 7, = minl, ¢ I,+1 and v(inf;cya;) < 277728 for
every n € N and J € [I,]**. Set S = {r, : n € N}. If J € [S]¥ and min J = r,,, then J U {r,,} € [[,]**1,
so v(infiesa;nay,) < 27m725, for every m < n. It follows that v(infcsa; N sup,,., ar,) < 16 and
v(infics a; \ sup,, ., ar, ) > 36. But this means that vc,, > 16 where ¢, = a,, \ sup,,,, ar,, for each n. As
(en)nen 1s disjoint, this is impossible. X
Thus we can find v > 0 and S € [M]¥ such that v(inf;c s a;) > v for every J € [S]*+1, and the induction
continues.

(b) Again induce on k. The cases k = 0, k = 1 are trivial. For the inductive step to k + 1 > 2, write
cy = infieya; for J € [k]<%. We know from the inductive hypothesis that there are a stationary set S C &
and a ¢ > 0 such that vc; > 30 for every J € [S]*. For each ¢ € S, choose m(§) € N and (J¢;)icm(e) as
follows. Given (Jg;)i<;, where j € N, choose, if possible, J¢; € [S N &J* such that v(cy,, ney,) < 2776 for
every i < j and v(agncy,,) < 2776; if this is not possible, set m(¢) = j and stop. Now the point is that
we always do have to stop. PP Otherwise, set d; = c;,, for each i € N. Because Jg; € [S]k, vd; > 36 for
each i; also v(d; nd;) < 27%6 for i < j; so vd; > 0, where dj = d; \ sup,_; d; for each j. But now (d)en is
disjoint and v is not exhaustive. XQ

At the end of the process, we have m(§) and (Jei);<m(e) for each £ € S. By the Pressing-Down Lemma
(4A1Cc), there are 7 and (J;)i<s such that S = {€ : € € S, m(§) = M, Jei = J; for every i < m} is
stationary in k. 7 Suppose, if possible, that I € [S/]*¥*1 and ve; < 27™§. Set € = max[, J = I\ {¢},
n=minl € J. Then J € [SN¢J*. For each i < m = m(¢),

vicsneg,) <viagney,) =viayney,,) <279,
while
v(agney) =ver <27M6.

But this means that we could have extended the sequence (Jg;)i<m by setting Jez; = J. X
So S" and 276 provide the next step in the induction.

(c) This is now immediate from (b).
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539L I come now to the work of BALCAR JECH & PAZAK 05, based on the characterizations of Maharam
algebras set out in §393.

Lemma (QUICKERT 02) Let 2 be a Boolean algebra, and Z the family of countable subsets I of 2 for which
there is a partition C of unity such that {a : a € I, anc # 0} is finite for every ¢ € C.

(a) Z is an ideal of P2l including [2A]<«.

(b) If A C AT is such that AN T is finite for every I € Z, and B = {b: b2 a for some a € A}, then BN T
is finite for every I € T.

(c) If 2 is cce, then there is no uncountable B C 2A such that [B]=* C T.

(d) If 2 is ccc and weakly (o, 0o)-distributive, Z is a p-ideal (definition: 5A6Ga).

proof (a) Of course every finite subset of 2 belongs to Z. If Iy, I; € Z and J C Iy U Iy, then J € [A]=%.
For each j, we have a partition C; of unity in 2 such that {a : a € I;, anc # 0} is finite for every ¢ € Cj.
Set C'={cognecy : ey € Cy, ¢1 € C1}; then C is a partition of unity in 2 and {a: a € J, anc # 0} is finite
for every c € C.

(b) Take I € Z. Set J = BN 1I. For each b € J, let a, € A be such that a, C b. Let C' be a partition
of unity such that {b:b € I, bnc # 0} is finite for every ¢ € C; then {ap : b € J, apnc # 0} is finite for
every ¢ € C, so {ap : b € J} belongs to Z and must be finite. ? If J is infinite, there is an a € A such that
K ={b:be J, a=ap} is infinite; but in this case there is a ¢ € C such that anc # 0 and bne¢ # 0 for
every b € K. X So J is finite, as claimed.

(c) Let A be the Dedekind completion of 2 (314U). Let B C 2 be an uncountable set, and (be)e<w, @
family of distinct elements of B. Set d = inf¢<y, sups<, <, by, taken in 2. Then (because Ais cec, by 514Ee)
d = Supg<, «, by for some £ (316E); in particular, d # 0. Next, we can find a strictly increasing sequence
(€n)nen in wy such that d C supg <, ¢, ., by for every n € N. Set I = {b, : ) <sup,enén} € [B]=«. If O is

any partition of unity in 2/, there must be some ¢ € C such that cnd # 0, and now {a:a € I, anc # 0} is
infinite. So I ¢ 7.

(d) Let (I,)nen be a sequence in Z. For each n € N, let C,, be a partition of unity such that {a: a € I,,
anc # 0} is finite for every ¢ € Cy,. Let D be a partition of unity such that {c: c € Cy, cnd # 0} is finite
for every d € D and n € N. Then

{arael,, and#0} CU.co, cnazol@:a € In, anc# 0}

is finite for every d € D and n € N. Let (dp)nen be a sequence running over D U {(} and set I = |J,,cy{a:
a € I,, and; =0 for every ¢ < n}. Then

IN\TCUicplaa€ly, and; # 0}

is finite for each n. Also
{a:a€l,and, #0}C|J

is finite for each n, so I € 7.

{a:a€l;and, # 0}

i<n

Remark In this context, Z is called Quickert’s ideal.

539M Lemma Let 2 be a weakly (o, c0)-distributive ccc Dedekind o-complete Boolean algebra, and
suppose that At is expressible as Uken Dr where no infinite subset of any Dy, belongs to Quickert’s ideal
Z. Then 2 is a Maharam algebra.

proof The point is that if (an)nen is a sequence in 2 which order*-converges to 0, then {a, : n € N} € T
(539A(d-i)). So no sequence in any Dy, can order*-converge to 0. Because 2 is weakly (o, co)-distributive
and ccc, 0 does not belong to the closure Dy, of Dy, for the order-sequential topology on 2 (539A(d-iv)).
So AT = Jyen Di is Fo and {0} is Gs for the order-sequential topology. It follows that 2 is a Maharam
algebra (539A(d-vi)).

539N Theorem (BALCAR JECH & PAzAK 05, VELICKOVIC 05) Suppose that Todorcevié’s p-ideal
dichotomy (5A6GD) is true. Then every Dedekind o-complete ccc weakly (o, 0o)-distributive Boolean algebra

is a Maharam algebra.
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proof Let 2 be a Dedekind o-complete ccc weakly (o, co)-distributive Boolean algebra. Let Z be Quickert’s
ideal on 2A; then Z is a p-ideal (539Ld). By 539Lc, there is no B € [A]“* such that [B]<¥ C Z. We are
assuming that Todorcevié’s p-ideal dichotomy is true; so 20 must be expressible as D,, where no infinite
subset of any D,, belongs to Z. By 539M, 2 is a Maharam algebra.

neN

5390 Corollary Suppose that Todorcevi¢’s p-ideal dichotomy is true. Let 2 be a Dedekind complete
Boolean algebra such that every countably generated order-closed subalgebra of 2 is a measurable algebra.
Then 2 is a measurable algebra.

proof (a) A is ccc. PP? Otherwise, let {(ag)e<,, be a disjoint family of non-zero elements of 2A. Let
f w1 — {0,1}Y be an injective function, and set b, = sup{a¢ : £ < wy, fe(n) = 1} for each n; let B be the
order-closed subalgebra of 2 generated by {b, : n € N} U {sup,_,, ac}. Then a¢ € B for every { < wy, so
B is not ccc; but B is supposed to be measurable. X Q

(b) 2 is weakly (o,00)-distributive. B Let (C,)nen be a sequence of partitions of unity in 2. As 2
is ccc, every C, is countable; let B be the order-closed subalgebra of 2 generated by J,cyCrn. Then
B is measurable, therefore weakly (o, co)-distributive, and there is a partition D of unity in 9B such that
{c:c€C,, ¢cnd # 0} is finite for every n € N and d € D. As B is order-closed, D is still a partition of

unity in 2. As (Cp)nen is arbitrary, 2 is weakly (o, co)-distributive. Q

(c) By 539N, 2 is a Maharam algebra; let v be a strictly positive Maharam submeasure on 2. Now v
is uniformly exhaustive. *2? Otherwise, there are ¢ > 0 and a family (a,i)i<nen in 2 such that (an)i<n
is disjoint for every n € N and va,; > € whenever ¢« < n € N. Let 8 be the order-closed subalgebra of 2
generated by {a,; : i <n € N}. Then B is a measurable algebra; let i be a functional such that (B, i) is a
totally finite measure algebra. Since i and v[ B are both strictly positive Maharam submeasures on 9B, v is
absolutely continuous with respect to i (539Ac). But va,,; > € for every n and 4, while inf;<,en fia,; must
be zero. XQ

(d) So A is a Dedekind o-complete Boolean algebra with a strictly positive uniformly exhaustive Maharam
submeasure, and is a measurable algebra (539AD).

539P I should say at once that 539N-5390 really do need some special axiom. In fact the following
example was found at the very beginning of the study of Maharam algebras.

Souslin algebras: Proposition Suppose that 7" is a well-pruned Souslin tree (554Yc, 5A1Ed), and set
2l = RON(T).

(a) A is Dedekind complete, ccc and weakly (o, 0o)-distributive.

(b) If 9B is an order-closed subalgebra of 2 and 7(8) < w, then B = PI for some countable set I; in
particular, 8 is a measurable algebra.

(¢) (MAHARAM 1947) The only Maharam submeasure on 2l is identically zero.

proof (a)(i) 2 is Dedekind complete just because it is a regular open algebra.
(ii) T is upwards-ccc, so 2 is cce, by 514Nc.

(iii) For t € T, set t = int [t,00[ € 2A; then {t : t € T} is order-dense in A. Let 7 : T — On be the
rank function of 7' (5A1Ea). For each £ < wy, A¢ = {t: t € T, 7(t) = &} is a partition of unity in 2. P If
r(t) = r(t') and t # t' then [t,00[ N [t/,00[ = @ so £N# = 0 in 2A; thus Ag is disjoint. If @ € 2\ {0}, there is
an s € T such that 5 C a; if 7(s) > &, there is a ¢t < s such that r(t) = &, and ant #0; if r(s) < &, there is
at > s such that r(t) = & (because T is well-pruned), and # C a. Thus sup A¢ = 1 in A Q

If A C 2 is a partition of unity, there is a & < wy such that A¢ refines A in the sense that every member
of A¢ is included in some member of A (see 311Ge). P B = {t:teT,tcafor someac A} is order-dense
in 2A, so there is a partition C of unity included in B; C' is countable; let D C T be a countable set such
that C' = {t:t € D}; set £ = sup,epr(t). Q

Of course A, refines A¢ whenever { <7 < w;. So if (Cp)nen is a sequence of partitions of unity in 2,
there is a £ < w; such that A¢ refines C,, for every n € N, and then {c: ¢ € C,, anc # 0} has just one
member for every a € A¢ and n € N. As (C),)nen is arbitrary, 2 is weakly (o, 00)-distributive.

MEASURE THEORY



539Qg Maharam submeasures 137

(b) If B C 2 is a countable set T-generating B, there is a countable set D C T such that b = sup{tA: te D,
t C b} for every b € B. Now & = sup{r(t) : t € D} is countable, and b = sup{a : a € A¢, a C b} for every
b € B, so B is included in the order-closed subalgebra € of 2 generated by A¢. Of course A¢ is order-dense
in €. For a € Ag, set b, = inf{b : b € B, bDa}; then every b, is an atom in B and {b, : a € A¢} is
order-dense in B, so B is purely atomic. As B is ccc, the set I of its atoms is countable; being Dedekind
complete, B is isomophic to PI.

(c) Let v be a Maharam submeasure on 2. Then for every € > 0 there is a £ < w; such that va < € for
every a € A¢. PP Set

T ={t:vt>e}.

Then T” is a subtree of T and {t : t € T", r(t) = £} is finite for every £ < wy, because v is exhaustive. Also
T’, like T, can have no uncountable branches. It follows that the height of 7" is countable (5A1E(b-i)), that
is, that there is a & < wy such that r(t) < { for every t € 7" and va < € for every a € A¢. Q

As this is true for every e > 0, there is actually a £ < w; such that va = 0 for every a € A¢. But as A is
a countable partition of unity and v is a Maharam submeasure, v1 = 0 and v is identically zero.

539Q Reflection principles In 5390, we have a theorem of the type ‘if every small subalgebra of 2 is
..., then 2 is ...’. There was a similar result in 5181, and we shall have another in 545G. Here I collect
some simple facts which are relevant to the present discussion.

(a) If 2 is a Boolean algebra and every subset of 2 of cardinal wy is included in a cec subalgebra of 2,
then A is ccc. (For there can be no disjoint set with cardinal w;.)

(b) If 2 is ccc and every countable subset of 2 is included in a weakly (o, co)-distributive subalgebra of
2, then 2 is weakly (o, co)-distributive. B If C,, is a partition of unity in 2 for every n, set

D={d:{c:ceC,, cnd#0} is finite for every n € N}.

? If D is not order-dense in %A, take a € A" such that d € a for every d € D. Let B be a weakly (o, 00)-
distributive subalgebra of 2l including {a} U J, ¢y Cn. Then every C,, is a partition of unity in B, so there
is a partition B of unity in B such that B C D. But now a € B so there is a b € B such that anb # 0
andanbe D. X

So D is order-dense in 2 and includes a partition of unity in 2. As (C,)nen is arbitrary, 2 is weakly
(0, 00)-distributive. Q

(c) If every countable subset of 2 is included in a subalgebra of 2 with the o-interpolation property, then
2 has the o-interpolation property. P If A, B C 2 are countable and a C b whenever a € A and b € B, let
B be a subalgebra of 2, including AU B, with the o-interpolation property; then there is a ¢ € B such that
aCcCbforeveryac Aandbe B. Q

(d) If 2 is a Maharam algebra and every countably generated closed subalgebra of 2l is a measurable
algebra, then 2l is measurable. (This is part (c) of the proof of 5390.)

(e) Suppose that Todoréevié’s p-ideal dichotomy is true. Let 2 be a Boolean algebra such that every
subset of 2 of cardinal at most w; is included in a subalgebra of 2 which is a Maharam algebra. Then 2
is a Maharam algebra. P By (a), 2 is ccc; by (c¢), 2 is Dedekind complete; by (b), 2 is weakly (o, c0)-
distributive; by 539N, 2 is a Maharam algebra. Q

(f) Suppose that Todorcevié’s p-ideal dichotomy is true. Let 2 be a Boolean algebra such that every
subset of 2 of cardinal at most ¢ is included in a subalgebra of 2 which is a measurable algebra. Then 2 is
measurable. P By (a), 2 is ccc. So if B is a countably generated order-closed subalgebra, it has cardinal
¢, and is included in a measurable subalgebra € of 2. Now ‘B is order-closed in €, so is itself a measurable
algebra. By 5390, 2 also is measurable. Q

(g) On the other hand, FARAH & VELICKOVIC 06 show that if & is an infinite cardinal such that 2% = k¥,
O, (5A6D) is true and the cardinal power k“ is equal to k, then there is a Dedekind complete Boolean
algebra 2, with cardinal x*, such that every order-closed subalgebra of 2| with cardinal at most & is a
measurable algebra, but 2 is not a measurable algebra (and therefore is not a Maharam algebra, by (d)
above). In particular, this can easily be the case with k = c.
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539R Exhaustivity rank While we now know that there are non-measurable Maharam algebras, we
know practically nothing about their structure. The following idea is one tool for investigation.

Definitions Suppose that 2 is a Boolean algebra and v an exhaustive submeasure on 2. For € > 0, say that
a < bif either a = bor a Cband v(b\a) > e. Then <. is a well-founded partial order on 2 (use 5A1Dc;
if (an)nen were strictly decreasing for <., then (a, \ an41)nen would be disjoint, with v(ay, \ any1) > € for
every n). Let r,e : 2 — On be the corresponding rank function, so that

rye(a) = sup{ryc(b) +1:b C a, v(a\b) > €}
for every a € 20 (5A1DDb). Now the exhaustivity rank of v is sup,.q7..(1).

539S Elementary facts Let 2 be a Boolean algebra with an exhaustive submeasure v and associated
rank functions r,. for € > 0.

(a) rus(a) < rye(b) whenever v(a\b) < J—e. I Induce on rp(b). If r,(b) =0, then vb < e so va < ¢ and
rus(a) = 0. For the inductive step to rpe(b) =&, if ¢ Ca and v(a\ c) > 6 then v(b\ ¢) > eand r,.(bnc) < &.
Also v(e\b) < & — e so, by the inductive hypothesis, r,5(c) < rus(bnec) < &; as ¢ is arbitrary, r,s5(a) < £ and
the induction continues. @ In particular,

Tye(a) <rue(b) ifa Cb,  7rus(a) <rye(a)if e <o.

(b) If a, b € A are disjoint and € > 0, then r,.(a Ub) is at least the ordinal sum 7,.(a) +ryc(b). I Induce
on r,¢(b). If r,(b) = 0, the result is immediate from (a) above. For the inductive step to r,.(b) = £, we have
for any n < € a ¢ C bsuch that v(b\ ¢) > e and n < rp(c) < & Now ry(auc) > ry(a) +n, by the inductive
hypothesis, and v((aub)\ (auc)) > ¢, so r,e(aub) > r,(a) + n; as n is arbitrary, r,.(aub) > ryc(a) + ¢
and the induction continues. Q

539T The rank of a Maharam algebra (a) Note that the rank function r,. associated with an
exhaustive submeasure v depends only on the set {a : va > €}. In particular, if v and v’ are exhaustive
submeasures on a Boolean algebra 2 and va < € whenever v'a < §, then r,.(a) < r,s5(a) for every a € 2.
If 2 is a Maharam algebra, then any two Maharam submeasures on 2l are mutually absolutely continuous
(539Ac), so have the same exhaustivity rank; I will call this the Maharam submeasure rank of 2,
Mhsr(21). Note that if a € 2 then Mhsr(2,) < Mhsr(21).

(b) If A is a measurable algebra, Mhsr(2) < w, because if y is an additive functional and € > 0, then
pa > erye(a) for every a € . More generally, for any uniformly exhaustive submeasure v and € > 0, r,,(a)
is finite, being the maximal size of any disjoint set consisting of elements, included in a, of submeasure
greater than e.

(c)(i) Suppose that 2 is a Maharam algebra with a strictly positive Maharam submeasure v, and that
B is a subalgebra of 2 which is dense for the Maharam-algebra topology of 2. For € > 0, write r. = ..
for the corresponding rank function on 2, and r. = r, ;3 ¢ for the rank function on B corresponding to the
exhaustive submeasure v[B. If 0 < 0 < e, a € A, b€ B, £ € On, v(aadb) < e—46 and r(a) > &, then
r5(b) > €. P Induce on €. If £ = 0 the result is trivial. For the inductive step to £ > 0, take any n < £&. Then
we have an @’ C a such that v(a\ a') > e and r.(a’) > 7. Let b’ € B be such that v(a’' AV) <e—0—v(arb)
and consider bnb’. We have

via & (bnY))=v((and)a (dnd)) <viaab)+v(d ab)<e—4§
so r5(bnd’) > n, by the inductive hypothesis. Moreover,
v(b\ (bnd)) = v(b\V') > v(a\ad') —v(a\b) —v(b'\b)
>e—vianb)—v(d ab) >4
so r5(b) > n + 1. This is true for every n < ¢, so r5(b) > €. Q
(ii) It follows that if 2 is an infinite Maharam algebra, then Mhsr(2) < 7(2)*. P 2 has a dense
subalgebra B with cardinal 7 = 7(2) (539B). If v is a strictly positive Maharam submeasure on 2, then
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v|B is an exhaustive submeasure on B, so r,us(1) < 71 for every 6 > 0, by 5A1Dd. By (i) here,
Tve(1) < 77 for every € > 0. Since cf 7+ > w, Mhsr(2) = sup,,cy 7,2 (1) is less than 7. Q

(d) The Maharam algebras described in §394 are all defined from exhaustive submeasures with domain
the countable algebra B of open-and-closed subsets of a compact metrizable space. By (c), such algebras
must have Maharam submeasure rank less than wy.

539U Theorem Suppose that 2 is a non-measurable Maharam algebra. Then Mhsr(2l) is at least the
ordinal power w®.

proof Let v be a strictly positive Maharam submeasure on 2.

(a) For the time being (down to the end of (d) below), assume that 2 is nowhere measurable (definition:
391Bc). For a € , set

va = inf, ey sup{min;<, va; : ag,... ,a, C a are disjoint}.

Then v is a Maharam submeasure. B Of course 70 = 0 and va < b whenever a Cb. If a, b € 2 and
€ > 0, then there are ng, ny € N such that whenever (¢;);c;s is a disjoint family in 2, then #({i : v(¢; na) >
va+e}) <ngand #({i:v(c;nb) >vb+¢€}) <nji. So

#{i:v(ein(aud)) > va+ vb+ 2€}) < ng + nq.

It follows that (aub) < Pa+ Ub+ 2¢; as €, a and b are arbitrary, o is a submeasure. Because 7 < v, U is a
Maharam submeasure. Q

(b) Because 2 is nowhere measurable, U is strictly positive. I If a € 2\ {0}, the principal ideal 2,
is not measurable, so the Maharam submeasure v[2(, cannot be uniformly exhaustive; that is, there is an
€ > 0 such that there are arbitrarily long disjoint strings (a;);<, in 2, with va; > € for every i < n. But
this means that ra > € > 0. Q

(c) Let rye, rpe be the rank functions associated with v and ©. Then r,.(a) is at least the ordinal product
w - rpe(a) whenever a € 2 and € > 0. P Induce on rpc(a). If ry.(a) = 0, the result is trivial. For the
inductive step to rz.(a) = £ + 1, take b C a such that b > ¢ and r;.(a\b) = £ Then for every n € N
there are disjoint b, ... ,b, C b such that vb; > € for every i, and r,(b) > w; by the inductive hypothesis,
rue(a\b) > w-& by 539Sb, ryc(a) > w- &+ w=w-(£+1), and the induction proceeds. The inductive step
to non-zero limit £ is elementary. Q

(d) Now

Mhsr(2() = supr,e(1) > supw - (1) = w - sup rpe(1)
e>0 e>0 >0

(5A1BD)
= w - Mhsr(2l);

as Mhsr(2) > 0, Mhsr(2) > w* (5A1Bc).

(e) For the general case, let a € 2T be such that the principal ideal 2, is nowhere measurable. Then
Mhsr(21) > Mhsr(2(,) > w®.

539V PV norms and exhaustivity (a) If we construct a submeasure v on an algebra 98 from a PV
norm ||| on [N]<¢ and sequences (T,,)nen, (@k)ren and (Ni)ren as in 394B and 394H, we can relate the
exhaustivity rank of v to || ||, as follows. Note first that the set £ = {L: L € [N]<¥, vL < 1}, ordered by C,
is a tree with no infinite branches, by the last clause of 394Aa. For K C [N]<“, set OK = {K \ {max K} :
) # K € K}; iterating as in 421N, set

OL=L, L=0(,.0"L)

for ordinals §& > 0. Now observe that if L C L' € £ and z € [],.;, T», then (at least if every T, has
at least two members) Yz \ Y. includes some Y., where 2" € [] ., Tr, so v(Y,; \ Y2) > 8 (394G) and
7,1(Yzrz) > r1(Yz). An easy induction now shows that r,q(Y,) > ¢ whenever L € 0°L and z € [Icr T
So if () € O5L then 7,1 (X) > €.
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(b) Moving to the Maharam algebra 21 = B defined from v, as in 394Nc, we see that 2 has a strictly
positive Maharam submeasure o extending v, so that the same formulae, interpreted in 2, tell us that
Mhsr(2) > ¢ whenever () € 9°L.

(c) The next step is to understand which families £ C [N]<“ can be expressed as {L : ||L|| < 1} for some

PV norm || ||. Looking through the definition in 394Aa, we see that we shall need, at least,

— {n} € L for every n € N,

—— I € £ whenever J € £ and #(I Nn) < #(J Nn) for every n,

—— for every infinite A C N there is an n € N such that ANn ¢ L.
Following PEROVIC & VELICKOVIC 18, I will say that a family satisfying these three conditions is admis-
sible. The point is that they are sufficient as well as necessary. P Given an admissible family £ C [N]<%,
set

]| = min{#(Lo) : Lo € £, I € Lo}
for I € [N]<¥. Because £ contains all singletons, ||I|| < #(I) is always finite. |I|| =0iff I C YD iff I = 0.
If #(I) =1then I € Lso ||I|| <1. Of course || || is subadditive. If I, J € [N]<* and #(I Nn) < #(JNn) for
every n, there is an injective function f : I — J such that f(i) < i for every i € I (set f(i) = min(J\ f[INi])
for i € I); now if Lo € £ and J C (JLo then f~[L] € L for every L € Lo and I C Upp, f7'L]. So
[II]] < ||J||- Finally, if A C N and ||[ANn| < m for every n € N, let (Lp;)nen,i<m be a family in £ such that
ANn C Uy, Lni for every n. For j € Alet g; : N — m be such that j € L, 4, (,) Whenever j < n. Let
h : N — m be such that for every k € N there is an n € N such that g;(n) = h(j) for every j € ANk, so
that j € L,, p(j) for j € ANk, and h*[{I}] N ANk is included in L,; and belongs to £. As k is arbitrary,
h=L[{I}] N A must be finite; as [ is arbitrary, A is finite.
Now we see that ||I|| < 1 iff there is an L € £ including I, that is, iff I € £. So we have expressed £ in

the required form. Q

(d) For every £ < wy there is an admissible family £¢ C [N]<“ such that () € 9"L¢ for every n < (. P
Recall from 5A1Tb that there is a sequence (<, ),y of partial orders on wy such that

(<n)nen is non-decreasing and | J,, .y <, is the usual ordering of wy,

if ¢ <wy and n € N then {n:n <, £} is finite.
Define (L¢)¢<w, inductively by saying that Lo = {I: I C N, #(I) <1} and

Le=LoUU, el : 1€ N, #(I) > 2,0 Smins & I\ {minI} € £,}

for 0 < § < wy. We see at once that Lo is admissible. Supposing that £, is admissible and () € 89/377
whenever { < n < &, we need to check the following.

(i) {n} € L¢ for every n € N, because {n} € L.

(i) If J € L¢ and #(I Nn) < #(J Nn) for every n € N, either #(I) < 1 and certainly I € L¢, or
#(I) > 1, #(J) > 1 and minJ < min/. In this case, #((I \ {minl}) Nn) < #((J \ {minJ}) N n) for
every n € N. Now there is an 1 < & such that 7 <pins & and J \ {minJ} € L£,. Because £, is admissible,
I'\{minI} € L,; because minJ <min’l, n <min7 { and I € L¢.

(iii) If A C N is infinite, then D = {n :  <mina &} is finite. For each n € D there is an n, € N
such that (A\ {min A}) Nn, ¢ L,. Setting n = max({1 + min(A \ {min A})} U{n, : n € D}, we see that
#(ANn)>2and (ANn)\ {min(ANn)} ¢ L, for any n € D, so ANn ¢ Le.

(iv) Thus L¢ is admissible. Now suppose that n < &.
(o) If n <1, we have {0, {0}} C L¢ so 0 € 0L C I"Le.

(B) If n > 2 let n be such that n <,, £ and consider £L = {{n} U (I +n+1):I € L,}, where I write
I4+n+1for{i+n+1:iel}. Then £ C L. An easy induction on ¢ shows that

OLDILO{{nUT+n+1):1€d°L,}
for every ( such that () € 9L, and in particular for every ¢ <n. So {n} € Ne<n O°Le and ) € 9" L.

(v) Inducing on &, we see that () € 9"L, whenever n < { < w;. Q
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(e) Putting these together, we see that if £ < w; we have an admissible family L1 such that we can
define a PV norm || ||¢ from L¢4 as in (c¢), a submeasure v¢ on a countable atomless algebra B from || ||¢ as
in 394H, and a Maharam algebra 2¢ from v¢ as in 394Nc, in such a way that the exhaustivity rank of v is
at least £ and Mhsr(2¢) > &.

539W The set of exhaustive submeasures: Theorem Let € be a countable atomless Boolean
algebra, not {0}. Write Mg, for the set of totally finite submeasures on €, regarded as a subset of [0, oo[€
and Mgy, for the set of exhaustive totally finite submeasures on €. Then M, is Polish, and Mesy, € Mgm
is coanalytic and not Borel. Setting

)

Fe ={v: v € Mgy has exhaustivity rank at most £}
for £ < wi, every F¢ is a Borel subset of M, and every analytic subset of Mgy is included in some Fg.

proof (a) Directly from the definition in 539Aa, we see that My, is a closed subset of the Polish space
[0, oo[g, and is itself Polish. Writing D C €N for the set of infinite disjoint sequences in €, we see that

{(v,d) : vd(n) > € for every n € N}
is closed in Mgy, x €Y (if we give € its discrete topology) for every ¢, so that
{v : there is some d € D such that v(d(n)) > e for every n € N}

is analytic in Mgy, for every e (423B), and

{v:v € Mg, v is not exhaustive}

= U {v: there is some d € D such that v(d(n)) > 27" for every n € N}
keN

is analytic (423B, 423E). Accordingly its complement in Mgy, the set of Mgy, of exhaustive totally finite
submeasures, is coanalytic.

(b) Define <Eaeg>ae¢,e>o,g<wl by saying that
Eoco = {v : v € Mgy, va < e},

Eoee ={v:v € My, v e Un<£ Ebe,, whenever b C a and v(a\b) > €}

fora € €, e>0and 0 <& <w;. Then every Fq¢ is a Borel subset of M. I For £ = 0 this is just because
v = va: Mgy — [0,00[ is continuous. For £ > 0 we have

Eoet = ﬂ U{l/ cv(a\b) <eorv € By}t
be€ n<¢
bCa
which is Borel because € is countable. @ Observe also that Eqs¢ € Egee whenever a € €, 0 < § < € and
f < wq.

(c)(d) If v € Mesm, a € €, ¢ >0 and £ < wy, then ry(a) < € iff v € Epee. B Induce on €. For £ =0 we
have

rve(a) =0 <= va<e < v € Eyy.

For the inductive step to & > 0,

rye(a) <& <= ry(b) < & whenever b C a and v(a\b) > ¢

= rve U Ebe,, whenever b C a and v(a\b) > ¢
n<¢
—= v E L, Q

So for v € Megy, and & < wy,

v has exhaustivity rank at most { <= v € Fy for every € > 0.
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(ii) Next, if v € Mgy and § < w; are such that v € Ey for every € > 0, then v is exhaustive. I
? Otherwise, there are an € > 0 and a non-increasing sequence (a;);en such that v(a; \ a;11) > € for every
i € N. Of course we can suppose that ag = 0. But now we find, inducing on 7, that v ¢ E,,¢, for every
i € N and n < wi, which is impossible. XQ

(iii) Setting
Fe = ﬂe>0 Eiee = ﬂkeN Erp-re

for £ < wy, we see that F¢ is a Borel subset of My, and is precisely the set of exhaustive submeasures on €
with exhaustivity rank at most &.

(d)(i) For e > 0, write W, for the set of triples (v,v’, H) such that

v,V € Mgy, and H C €2,

(1,1) e H,

whenever (a,b) € H there is a b’ C b such that v/(b\ ') > € and (a/,V') € H whenever o/ C a

and v(a\d') > e

Then W, is a Borel subset of M, x Mgy, x P(€2), where the power set P(€2) is given its usual compact
metrizable topology (4A2Ud). So V. = {(v,v') : there is an H such that (v,v/, H) € W,} is an analytic
subset of M2 .

(ii) If € > 0, v, V' € Megyy, and (v, v/, H) € W, then r,.(a) < r,/¢(b) whenever (a,b) € H. P I show by
induction on & that if (a,b) € H and r,c(a) > £ then r,(b) > & P Induce on £. If £ = 0 we know that
there is a b’ C b such that v/(b\b) > € s0 r,/(b) > 0. For the inductive step to £ > 0, we know that there is
a b’ C bsuch that v/(b\ V') > € and (a’,b') € H whenever o' C a and v(a\ a') > e. If n < £ then there is an
a’ C a such that v(a\a') > e and r,.(a’) > n; now (a’,b') € H so r,.¢(b’) > n, by the inductive hypothesis.
As n is arbitrary, £ < r, () < r,(b). Thus the induction continues. Q

(iii) If e > 0 and v, v/ € Megy then (v,v') € VL iff r,e(1) < rpe(1). P If (v,0) € V; there is an

H such that (v,v/,H) € W; now (1,1) € H so (ii) tells us that r,c(1) < rpre(1). I re(1) < rpure(l) set
H={(a,b) :a,be € ry(a) <ryb)}; then it is easy to check that (v,v',H) € W, so (v,v/) € V.. Q

(e) Now suppose that A C Mgy, is an analytic set, and that € > 0. Consider the relation <. on A defined
by saying that v <. v/ if either v = v/ or r,.(1) < r,/¢(1). This is a partial ordering, and it is well-founded
because if B C A is well-founded and min,cp 7r,(1) = £ then any v € B such that r,.(1) = £ is minimal in
B. Now {(v,v') : v < V'} = A2 NV, so by the Kunen-Martin theorem (5A1De) <. has countable height.
Since v <, v/ whenever v, v/ € A and r,(1) < rpe(1), {r,e(1) : v € A} must be countable.

This is true for every € > 0, 50 { = SUp, ¢ 4 ey Tv,2-+ (1) is less than w;. But now A C F.

(f) Finally, no F, can be the whole of Megy,. I» We know from 539Ve that there are a countable atomless
Boolean algebra B and a totally finite exhaustive submeasure on B with exhaustivity rank at least ¢ + 1.
But € and 9B are isomorphic (316M) so the same is true of 2, that is, Mesm \ F¢ # 0. Q By (e) here, Megm
cannot be analytic, so cannot be a Borel subset of the Polish space Mgy, .

Remark In the language of 423S, (Fi¢)¢<., is a family of Borel constituents of Meps.

539X Basic exercises (a) Let 2 be a Maharam algebra. Show that link, () < max(w, 7(2()) for every
n > 2.

(b) Show that, in the language of §522, p < s < min(non .\, non M, ).

(c) Let & be a Maharam algebra. (i) Show that if
(a) cf[N]S¥ < AT for every cardinal A < 7(2),
(8) O, is true for every uncountable cardinal A < 7(2() of countable cofinality,
then FN(2() < FN(PN), with equality unless 2 is finite. (Hint: 518D, 5181.) (ii) Show that if #(A) < ws
and FN(PN) = wyq, then 2 is tightly w;-filtered. (Hint: 518M.)

(d) Let X be a set, ¥ a o-algebra of subsets of X, and v : ¥ — [0, oo[ a non-zero Maharam submeasure;
set Z={F:E €3, vE =0} and A = X/Z. Suppose that #(A) < wy and FN(PN) = w;. Show that there
is a lifting for v, that is, a Boolean homomorphism 6 : 2f — ¥ such that (6a)* = a for every a € 2. (Hint:
518L.)
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(e) Let 2 be a Boolean algebra, v an exhaustive submeasure on 2, and (a;);en a sequence in 2 such that
inf,eny va; > 0. Let F be a Ramsey ultrafilter on N. (i) Show that there is an I € F such inf; jer v(a; na;) >
0. (ii) Show that for every k € N there is an I € F such that inf{v(inf;cx a;) : K € [I]*} > 0. (iii) Show
that there is an I € F such that {a; : i € I'} is centered. (Hint: 538Hc.)

(f) Let X be a set, X a o-algebra of subsets of X, and Z <« PX a o-ideal; suppose that X/ NZ is ccc.
Let Y be a set, T a o-algebra of subsets of Y, and v : T — [0, 0o[ a Maharam submeasure; let Z x N (v) be
the skew product. Show that (X®T)/(2&T) N (Z x N(v)) is cce. (Hint: 527L.)

539Y Further exercises (a) Let 20 be a Dedekind o-complete Boolean algebra with a countable o-
generating set (331E), and v a Maharam submeasure on 2. Set Z = {a : va = 0}. Show that Z g1 N.

(b) Let X be a set, ¥ a o-algebra of subsets of X, and Z a proper o-ideal of subsets of X generated by
¥NZ; let ¥ be the algebra of Lebesgue measurable subsets of R. Write 2 for ¥/XNZ, £ for (Y% 1)N(ZxN)
and € for Y®¥ /L. (i) Show that ¢(€) = max(w, ¢(2)) and 7(€) = max(w, 7(A)). (ii) Show that € is weakly
(0, 00)-distributive iff 2 is. (iii) Show that € is measurable iff 2 is. (iv) Show that € is a Maharam algebra
iff 2 is.

(c) Let 2 be a Boolean algebra with a strictly positive Maharam submeasure 2, and 9B a subalgebra of
2 which is dense for the associated metric (539Ac); set v = D[B, so that v is an exhaustive submeasure on
B. For e > 0let r,. : B — On and rp. : A — On be the rank functions associated with v and ¥ respectively.
Show that

TV6(b) S Tl?6(b) S Tz/e(b)
whenever b € 8 and 0 < € < 4.

(e) (J.Kupka) Let v be a totally finite submeasure on a Boolean algebra 2, and set
va = inf, ey sup{min;<, va; : ag, ... ,a, C a are disjoint}.

for a € 2, as in the proof of 539U. Show that either v > %l/ or there is a non-zero additive p : A — [0, 00|
such that pa < wva for every a € 2. (Hint: 392D.)

(f) Show that the exhaustive submeasures constructed by Talagrand’s original method, as described in
§394 with ||I|| = #(I) for I € [N]<“, have exhaustivity rank at most the ordinal power w’

(g) Suppose that 2 is a non-measurable Maharam algebra. Show that Mhsr(2) = w - Mhsr(2().

539Z Problems (a) Let v be a non-zero totally finite Radon submeasure on a Hausdorff space X. Must
there be a lifting for v?7 that is, writing X for the domain of v, must there be a Boolean homomorphism
¢ : 3 — ¥ such that v(EA@FE) = 0 for every E € ¥ and ¢F = () whenever vE = 07

(b) Is there a Maharam algebra with uncountable Maharam submeasure rank?

539 Notes and comments During the growth of this treatise, the sections on Maharam submeasures
were twice transformed by new discoveries, and I naturally hope that the work I have just presented will
be similarly outdated before too long. In the pages above I have tried in the first place to show how the
cardinal functions of chapters 51 and 52 can be applied in this more general context. With minor refinements
of technique, we can go a fair way. Because we know we have at least two non-trivial atomless Maharam
algebras of countable type, we are led to a more detailed analysis, as in 539Ca and 539J.

Equally instructive are the apparent limits to what the methods can achieve, which mostly point to
remaining areas of obscurity. I say ‘remaining’; but what is most conspicuous about the present situation is
our nearly total ignorance concerning the structure of non-measurable Maharam algebras. The Talagrand-
Perovi¢-Velickovié¢ construction, as described in §394, gives us a family of such algebras, but so far we can
answer hardly any of the most elementary questions about them (see 3947Z).
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The message of BALCAR JECH & PAzAK 05 is that a Dedekind complete, cce, weakly (o, 0o)-distributive
Boolean algebra is ‘nearly’ a Maharam algebra. Any further condition (e.g., the o-finite chain condition,
as in 393S) is likely to render it a Maharam algebra; and with a little help from an extra axiom of set
theory, it is already necessarily a Maharam algebra (539N). Similarly, much of the work of the last sixty
years on submeasures suggests that exhaustive submeasures are ‘nearly’ uniformly exhaustive, and that an
extra condition (e.g., sub- or super-modularity) is enough to tip the balance (413Yh). At both boundaries,
there are few examples to limit conjectures about further conditions on which such results might be based.
Besides 539P and Talagrand’s examples, we have a further important possibility of a not-quite-Maharam
algebra in 555K below.
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