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Chapter 53

Topologies and measures III

In this chapter I return to the concerns of earlier volumes, looking for results which can be expressed in the
language so far developed in this volume. In Chapter 43 I examined relationships between measure-theoretic
and topological properties. The concepts we now have available (in particular, the notion of ‘precaliber’)
make it possible to extend this work in a new direction, seeking to understand the possible Maharam types
of measures on a given topological space. §531 deals with general Radon measures; new patterns arise if
we restrict ourselves to completion regular Radon measures (§532). In §533 I give a brief account of some
further results depending on assumptions concerning the cardinals examined in Chapter 52, including notes
on uniformly regular measures and a description of the cardinals κ for which Rκ is measure-compact (533J).

In §534 I set out the elementary theory of ‘strong measure zero’ ideals in uniform spaces, concentrating
on aspects which can be studied in terms of concepts already introduced. Here there are some very natural
questions which have not as far as I know been answered (534Z). In the same section I run through elementary
properties of Hausdorff measures when examined in the light of the concepts in Chapter 52. In §535 I look
at liftings and strong liftings, extending the results of §§341 and 453; in particular, asking which non-
complete probability spaces have liftings. In §536 I run over what is known about Alexandra Bellow’s
problem concerning pointwise compact sets of continuous functions, mentioned in §463. With a little help
from special axioms, there are some striking possibilities concerning repeated integrals, which I examine in
§537. Moving into new territory, I devote a section (§538) to a study of special types of filter on N associated
with measure-theoretic phenomena, and to medial limits. In §539, I complete my account of the result of
B.Balcar, T.Jech and T.Pazák that it is consistent to suppose that every Dedekind complete ccc weakly
(σ,∞)-distributive Boolean algebra is a Maharam algebra, and work through applications of the methods
of Chapter 52 to Maharam submeasures and algebras.

Version of 27.2.24

531 Maharam types of Radon measures

In the introduction to §434 I asked

What kinds of measures can arise on what kinds of topological space?

In §§434-435, and again in §438, I considered a variety of topological properties and their relations with
measure-theoretic properties of Borel and Baire measures. I passed over, however, some natural questions
concerning possible Maharam types, to which I now return. For a given Hausdorff space X, the possible
measure algebras of totally finite Radon measures on X can be described in terms of the set MahR(X)
of Maharam types of Maharam-type-homogeneous Radon probability measures on X (531F). For X 6= ∅,
MahR(X) is of the form {0} ∪ [ω, κ∗[ for some infinite cardinal κ∗ (531Ef). In 531E and 531G I give basic
results from which MahR(X) can often be determined; for obvious reasons we are primarily concerned
with compact spaces X. In more abstract contexts, there are striking relationships between precalibers of
measure algebras, the sets MahR(X) and continuous surjections onto powers of {0, 1}, which I examine in
531L-531M, 531T and 531V. Intertwined with these, we have results relating the character of X to MahR(X)
(531N-531O). The arguments here depend on an analysis of the structure of homogeneous measure algebras
(531J, 531K, 531R).

531A Proposition Let (X,T,Σ, µ) be a quasi-Radon measure space with measure algebra (A, µ̄).
(a) The Maharam type τ(A) of A is at most the weight w(X) of X.
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2 Topologies and measures III 531A

(b) The cellularity c(A) of A is at most the hereditary Lindelöf number hL(X) of X. If µ is locally finite,
c(A) is at most the Lindelöf number L(X) of X.

(c) #({a : a ∈ A, µ̄a <∞}) ≤ max(1, w(X)ω), where w(X)ω is the cardinal power.
(d) If X is Hausdorff and µ is a Radon measure, then the Maharam type τ(A) of A is at most the network

weight nw(X) of X.

proof (a) Let U be a base for T with #(U) = w(X). Set B = {U• : U ∈ U} and let B be the order-closed
subalgebra of A generated by B; set T = {E : E ∈ Σ, E• ∈ B}. Then T is a σ-subalgebra of Σ containing
every negligible set.

If G ⊆ X is open, then G ∈ T. PPP By 414Aa, G• = sup{U• : U ∈ U , U ⊆ G} belongs to B. QQQ So every
Borel set belongs to T. If E ∈ Σ and µE < ∞, then, because µ is inner regular with respect to the Borel
sets, there is a Borel subset F of E with the same measure, so F , E \F and E belong to T. Thus {a : a ∈ A,
µ̄a <∞} ⊆ B; because µ is semi-finite, B = A and τ(A) ≤ #(B) ≤ #(U) = w(X).

(b)(i) If L(X) = n is finite, and F0, . . . , Fn ⊆ X are disjoint closed sets, then at least one of them is empty.
PPP For i ≤ n, set Gi = X \⋃j≤n,j 6=i Fj ; then

⋃
i≤nGi = X, so there is some k ≤ n such that

⋃
i6=kGi = X,

and now Fk = ∅. QQQ As µ is inner regular with respect to the closed sets, c(A) ≤ n = L(X) ≤ hL(X).

(ii) Suppose that ω ≤ L(X) ≤ hL(X). Let G be the family of open subsets of X of finite measure. Then
there is a set H ⊆ G, with cardinal at most hL(X), such that

⋃H =
⋃G (5A4Bf). Now supH∈HH• = 1,

because µ is effectively locally finite.
If D ⊆ A \ {0} is disjoint, then for each d ∈ D take Hd ∈ H such that d ∩H•

d 6= 0. If H ∈ H,
then {d : Hd = H} must be countable, since µH < ∞. So #(D) ≤ max(ω,#(H)); as D is arbitrary,
c(A) ≤ max(ω, hL(X)) = hL(X).

(iii) Finally, if ω ≤ L(X) and µ is locally finite, then in (ii) above we have X =
⋃G, so we can take

H to have size at most L(X), and continue as before, ending with c(A) ≤ max(ω,#(H)) = L(X).

(c) Again let U be a base for the topology of X with cardinal w(X). Let T be the σ-subalgebra of
Σ generated by U . If E ∈ Σ and µE < ∞, then for each n ∈ N we can find an open set Gn such that
µ(Gn△E) ≤ 2−n; now there is an open set Hn, a finite union of members of U , such that Hn ⊆ Gn

and µ(Gn \ Hn) ≤ 2−n. Setting F =
⋃

m∈N

⋂
n≥mHn, we see that F ∈ T and E△F is negligible. Thus

{F • : F ∈ T} ⊇ {a : µ̄a <∞} and

#({a : µ̄a <∞}) ≤ #(T) ≤ max(1,#(U)ω) = max(1, w(X)ω).

(d) If a ∈ A \ {0} and the principal ideal Aa is Maharam-type-homogeneous, then τ(Aa) ≤ nw(X). PPP
There is a compact set K ⊆ X such that 0 6= K• ⊆ Aa; let µK be the subspace measure on K. Then

τ(Aa) = τ(µK) ≤ w(K)

(by (a))

= nw(K)

(5A4C(a-i))

≤ nw(X)

(5A4Bb). QQQ

By (b), c(A) ≤ #(T) ≤ 2nw(X) (5A4Ba); so 332S tells us that τ(A) ≤ nw(X).

531B For strictly positive measures we have some easy inequalities in the other direction.

Proposition Let (X,Σ, µ) be a measure space, with measure algebra A, and T a topology on X such that
Σ includes a base for T and µ is strictly positive.

(a) If X is regular, then w(X) ≤ #(A).

(b) If X is Hausdorff, then #(X) ≤ 2#(A).

Measure Theory



531E Maharam types of Radon measures 3

proof Set V = Σ ∩ T, so that V is a base for T. If V , W ∈ V and V • = W • in A, then intV = intW .
PPP µ∗(V \W ) ≤ µ(V \W ) = 0, so (because µ is strictly positive) V ⊆ W and V ⊆ W and intV ⊆ intW .
Similarly, intW ⊆ intV . QQQ So if we set W = {intV : V ∈ V}, #(W) ≤ #(A).

(a) If T is regular, W is a base for T, so w(X) ≤ #(W) ≤ #(A).

(b) If T is Hausdorff, then for any distinct x, y ∈ X, there is a W ∈ W containing x but not y. PPP Let G,
H be disjoint open sets containing x, y respectively. Take V ∈ V such that x ∈ V ⊆ G, and set W = intV .
QQQ So #(X) ≤ 2#(W) ≤ 2#(A).

531C Lemma Let 〈Xi〉i∈I be a family of topological spaces with product X, and µ a totally finite
quasi-Radon measure on X with Maharam type κ. For each i ∈ I, let µi be the marginal measure on Xi,
and κi its Maharam type. Then κ is at most the cardinal sum

∑
i∈I κi.

proof For each i ∈ I, let 〈Eiξ〉ξ<κi
be a family in domµi such that {E•

iξ : ξ < κi} τ -generates the measure

algebra of µi. Consider W = {π−1
i [Eiξ] : i ∈ I, ξ < κi}, so that W ⊆ domµ and #(W) ≤ ∑

i∈I κi. Let B

be the closed subalgebra of the measure algebra A of µ generated by {W • : W ∈ W}.
For each i ∈ I, the canonical map πi : X → Xi induces a measure-preserving homomorphism φi from the

measure algebra Ai of µi to A (324M). Now φ−1
i [B] is a closed subalgebra of Ai containing E•

iξ for every

ξ < κi, so is the whole of Ai, that is, φi[Ai] ⊆ B. In particular, if G ⊆ Xi is open, π−1
i [G]• = φi(G

•)
belongs to B. Now the family V of open sets V ⊆ X such that V • ∈ B is closed under finite intersections
and contains π−1

i [G] whenever i ∈ I and G ⊆ Xi is open, so V is a base for the topology of X. But also V is
closed under arbitrary unions, because B is closed and µ is τ -additive (414Aa again). So V • ∈ B for every
open set V ⊆ X, and therefore for every Borel set V ⊆ X; as µ is inner regular with respect to the Borel
sets, B = A.

Thus {W • : W ∈ W} witnesses that the Maharam type τ(A) of µ is at most
∑

i∈I κi, as claimed.

531D Definition If X is a Hausdorff space, I write MahR(X) for the set of Maharam types of Maharam-
type-homogeneous Radon probability measures on X. Note that 0 ∈ MahR(X) iff X is non-empty, and that
any member of MahR(X) is either 0 or an infinite cardinal.

531E Proposition Let X be a Hausdorff space.
(a) κ ≤ w(X) for every κ ∈ MahR(X).
(b) MahR(Y ) ⊆ MahR(X) for every Y ⊆ X.
(c) MahR(X) =

⋃{MahR(K) : K ⊆ X is compact}.
(d) If X is K-analytic (in particular, if X is compact) and Y is a continuous image of X, MahR(Y ) ⊆

MahR(X).
(e) ω ∈ MahR(X) iff X has a compact subset which is not scattered.
(f) (Haydon 77) If ω ≤ κ′ ≤ κ ∈ MahR(X) then κ′ ∈ MahR(X).
(g) If Y is another Hausdorff space, and neither X nor Y is empty, then MahR(X × Y ) = MahR(X) ∪

MahR(Y ); generally, for any non-empty finite family 〈Xi〉i∈I of non-empty Hausdorff spaces, MahR(
∏

i∈I Xi)
=

⋃
i∈I MahR(Xi).

proof (a) This is immediate from 531Aa.

(b) If κ ∈ MahR(Y ), there is a Maharam-type-homogeneous Radon probability measure µ on Y with
Maharam type κ. Set

Σ′ = {E : E ⊆ X, µ measures Y ∩ E},

µ′E = µ(Y ∩ E) for E ∈ Σ′}.

It is easy to check that µ′ is a Radon probability measure on X (see 416Xc and 418I), and that µ′ and µ
have isomorphic measure algebras (cf. 322J). So µ′ is Maharam-type-homogeneous and has Maharam type
κ, and κ ∈ MahR(X).

(c) By (b), MahR(K) ⊆ MahR(X) for every compact set K ⊆ X. In the other direction, if κ ∈ MahR(X),
there is a Maharam-type-homogeneous Radon probability measure µ on X with Maharam type κ. Let

D.H.Fremlin



4 Topologies and measures III 531E

K ⊆ X be a compact set with µK > 0. Then the normalized subspace measure µ′ = (µK)−1µK is a Radon
probability measure on K, and its measure algebra is isomorphic to a principal ideal of the measure algebra
of µ, so is Maharam-type-homogeneous with Maharam type κ. Accordingly κ ∈ MahR(K).

(d) Take κ ∈ MahR(Y ). Then there is a Maharam-type-homogeneous Radon probability measure ν on Y
with Maharam type κ. Let f : X → Y be a continuous surjection. By 432G, there is a Radon measure µ on
X such that f is inverse-measure-preserving for µ and ν. Let K ⊆ X be a compact set such that µK > 0.
Then f [K] ⊆ Y is compact and

νf [K] = µ[f−1[f [K]] ≥ µK > 0.

Let ν1 =
1

νf [K]
νf [K] be the normalized subspace measure on f [K]. Then ν1 is a Maharam-type-homoge-

neous Radon probability measure on f [K] with Maharam type κ. By 418L, there is a Radon measure µ1 on
K such that f↾K is inverse-measure-preserving for µ1 and ν1 and induces an isomorphism of their measure
algebras. So µ1 witnesses that κ ∈ MahR(K); by (b), κ ∈ MahR(X).

(e)(i) If X has a compact subset K which is not scattered, then there is a continuous surjection from K
onto [0, 1] (4A2G(j-iv)). Of course Lebesgue measure witnesses that ω ∈ MahR([0, 1]), so (d) and (b) tell us
that ω ∈ MahR(K) ⊆ MahR(X).

(ii) If every compact subset of X is scattered and µ is a Maharam-type-homogeneous Radon probability
measure on X, let K be a compact set of non-zero measure and Z ⊆ K a closed self-supporting set. Then
Z has an isolated point z say; in this case, µ{z} > 0 so {z} is an atom for µ and (because µ is Maharam-
type-homogeneous) the Maharam type of µ is 0. As µ is arbitrary, ω /∈ MahR(X).

(f)(i) Suppose first that X is compact. Let µ be a Maharam-type-homogeneous Radon probability
measure on X with Maharam type κ. Let 〈Eξ〉ξ<κ be a stochastically independent family in domµ with
µEξ = 1

2 for every ξ. For each ξ < κ′ and n ∈ N, let fξn ∈ C(X) be such that
∫
|fξn − χEξ| ≤ 2−n (416I).

Define f : X → Rκ′×N by setting f(x)(ξ, n) = fξn(x) for x ∈ X, ξ < κ′ and n ∈ N. Then f is continuous, so
by 418I the image measure ν = µf−1 on the compact set f [X] is a Radon measure. For each ξ < κ′, the set

Fξ = {w : w ∈ f [X], limn→∞ w(ξ, n) = 1}
is a Borel set, and f−1[Fξ]△Eξ is µ-negligible; so 〈Fξ〉ξ<κ′ is a stochastically independent family of subsets
of f [X] with measure 1

2 . If B is the measure algebra of ν, and C the closed subalgebra of B generated by
{F •

ξ : ξ < κ′}, then C is Maharam-type-homogeneous, with Maharam type κ′; at the same time,

τ(B) ≤ w(f [X]) ≤ w(Rκ′×N) = κ′.

By 332N, B can be embedded in C; by 332Q, B and C are isomorphic, that is, B is Maharam-type-
homogeneous with Maharam type κ′, and ν witnesses that κ′ ∈ MahR(f [X]). By (d), κ′ ∈ MahR(X).

(ii) In general, (c) tells us that there is a compact set K ⊆ X such that κ ∈ MahR(K), so κ′ ∈
MahR(K) ⊆ MahR(X).

(g) Because neither Y nor X is empty, both X and Y are homeomorphic to subspaces of X × Y , so
(b) tells us that MahR(X × Y ) ⊇ MahR(X) ∪ MahR(Y ). In the other direction, given a Maharam-type-
homogeneous Radon probability measure µ on X × Y , let µ1, µ2 be the marginal measures on X and Y
respectively, so that each µk is a Radon probability measure (418I again). Let 〈Ei〉i∈I , 〈Fj〉j∈J be countable
partitions of X, Y into Borel sets such that all the subspace measures (µ1)Ei

and (µ2)Fj
are Maharam-type-

homogeneous. Then there must be i ∈ J , j ∈ J such that µ(Ei × Fj) > 0. Let µ′ be the subspace measure
µEi×Fj

; then the Maharam type of µ′ is κ, because µ is Maharam-type-homogeneous. Let µ′
1, µ′

2 be the
marginal measures of µ′ on Ei and Fj respectively. Then µ′

1 is an indefinite-integral measure over (µ1)Ei

(415Oa), so its measure algebra is isomorphic to a principal ideal of the measure algebra of (µ1)Ei
(322K),

and has the same Maharam type κ1 say. As in (b) above, κ1 ∈ MahR(X). Similarly, the Maharam type κ2
of µ′

2 belongs to MahR(Y ). Now 531C tells us that κ ≤ κ1 + κ2. Since κ is either zero or infinite, it must
be less than or equal to at least one of them, and belongs to MahR(X) ∪ MahR(Y ) by (f) above.

The result for general finite products now follows easily by induction on #(I).

Measure Theory



531G Maharam types of Radon measures 5

531F Proposition Let X be a Hausdorff space. Then a totally finite measure algebra (A, µ̄) is isomorphic
to the measure algebra of a Radon measure on X iff (α) whenever Aa is a non-trivial homogeneous principal
ideal of A then τ(Aa) ∈ MahR(X) (β) c(A) ≤ #(X).

proof (a) If µ is a totally finite Radon measure on X with measure algebra A and the principal ideal Aa

generated by a ∈ A \ {0} is homogeneous, then there is an E ∈ domµ such that E• = a. Let ν be the
probability measure (µF )−1µ F , that is, νH = µ(H ∩ F )/µF whenever H ⊆ X is such that µ measures
H ∩ F (234M). Then ν is a Radon measure (416Sa), the measure algebra of ν is isomorphic to a principal
ideal of Aa (322K) so is homogeneous with the same Maharam type, and ν witnesses that τ(Aa) ∈ MahR(X).
Thus A satisfies (α). As for (β), if X is infinite this is trivial (because (A, µ̄) is totally finite, so A is ccc),
and otherwise A is finite, with

c(A) = #({a : a ∈ A is an atom}) = #({x : x ∈ X, µ{x} > 0}) ≤ #(X).

(b) Now suppose that (A, µ̄) is a totally finite measure algebra satisfying the conditions. Express it as
the simple product of a countable family 〈(Ai, µ̄

′
i)〉i∈I of non-zero homogeneous measure algebras (332B);

we may suppose that I ⊆ N. For n ∈ I, set κn = τ(An) and γn = µ̄′
n1An

. (β) tells us that #(I) ≤ #(X);
let 〈xn〉n∈I be a family of distinct elements of X.

Set J = {n : n ∈ I, κn ≥ ω}. For each n ∈ J , (α) tells us that there is a Maharam-type-homogeneous
Radon probability measure µn on X with Maharam type κn. Now there is a disjoint family 〈En〉n∈N of Borel
subsets of X \ {xn : n ∈ I} such that µnEn > 0 for every n ∈ J . PPP Choose 〈En〉n∈N, 〈Fn〉n∈N inductively,
as follows. F0 = X \ {xn : n ∈ I}. Given that Fn is a Borel set and µjFn > 0 for every j ∈ J \ n, then
if n /∈ J set En = ∅ and Fn+1 = Fn. Otherwise, for each j ∈ J such that j > n, we can partition Fn into
finitely many Borel sets of µn-measure less than 2−jµnFn, because µn is atomless; take one of these, Gnj

say, such that µjGnj > 0; now set Fn+1 =
⋃

j∈J,j>nGnj and En = Fn \ Fn+1. Continue. QQQ Now set

µE =
∑

n∈I\J,xn∈E γn +
∑

n∈J(µnEn)−1γnµn(E ∩ En)

whenever E ⊆ X is such that µn measures E ∩En for every n ∈ J . Of course µ is a measure. Because every
µn is a topological measure, so is µ; because every µn is inner regular with respect to the compact sets, so
is µ; because every µn is complete, so is µ; thus µ is a Radon measure. Because every subspace measure
(µn)En

is Maharam-type-homogeneous with Maharam type κn, the measure algebra of µ is isomorphic to
(A, µ̄).

531G Proposition Let 〈Xi〉i∈I be a family of non-empty Hausdorff spaces with product X. Then an
infinite cardinal κ belongs to MahR(X) iff either κ ≤ #({i : i ∈ I, #(Xi) ≥ 2}) or κ is expressible as
supi∈I κi where κi ∈ MahR(Xi) for every i ∈ I.

proof (a)(i) Suppose that κ = supi∈I κi where κi ∈ MahR(Xi) for each i ∈ I. For each i, let µi be a Maha-
ram-type-homogeneous Radon probability measure on Xi with Maharam type κi and compact support (see
the proof of 531Ec). Let λ be the ordinary product of the measures µi. By 325I, the measure algebra of λ
can be identified with the probability algebra free product of the measure algebras of the µi. It is therefore
isomorphic to the measure algebra of the usual measure on {0, 1}κ′

, where κ′ is the cardinal sum
∑

i∈I κi;

in particular, it is homogeneous with Maharam type κ′ (since we are supposing that κ ≥ ω). By 417E(b-i)1,
the measure algebra of the τ -additive product µ of 〈µi〉i∈I can be identified with the measure algebra of λ,
while µ is a Radon measure (417Q). So µ witnesses that κ′ ∈ MahR(X); by 531Ef, κ ∈ MahR(X).

(ii) Suppose that ω ≤ κ ≤ #(I ′) where I ′ = {i : i ∈ I, #(Xi) ≥ 2}. For i ∈ I ′, let xi, yi be distinct
points of Xi and µi the point-supported probability measure on Xi such that µi{xi} = µi{yi} = 1

2 ; for
i ∈ I \ I ′, let µi be the unique Radon probability measure on Xi. As in (i) above, the Radon measure
product of 〈µi〉i∈I is Maharam-type-homogeneous, with Maharam type #(I ′), so #(I ′) ∈ MahR(X); by
531Ef again, κ ∈ MahR(X).

(b) Now suppose that ω ≤ κ ∈ MahR(X) and that κ > #(I ′). For each i ∈ I, let θi be the least
cardinal greater than every member of MahR(Xi). Note that κ′ ∈ MahR(Xi) whenever κ′ is a cardinal and
ω ≤ κ′ < θi. Set

1Formerly 417E(ii).

D.H.Fremlin



6 Topologies and measures III 531G

I1 = {i : i ∈ I, κ < θi}, Z1 =
∏

i∈I1
Xi,

I2 = {i : i ∈ I, θi ≤ κ, cf θi > ω}, Z2 =
∏

i∈I2
Xi,

I3 = {i : i ∈ I, θi = κ, cf θi = ω}, Z3 =
∏

i∈I3
Xi,

I4 = {i : i ∈ I, θi < κ, cf θi = ω}, Z4 =
∏

i∈I4
Xi,

I5 = {i : i ∈ I, θi = 1, #(Xi) > 1}, Z5 =
∏

i∈I5
Xi,

I6 = {i : i ∈ I, #(Xi) = 1}, Z6 =
∏

i∈I6
Xi.

Then X can be identified with
∏

1≤k≤6 Zk, so 531Eg tells us that κ ∈ MahR(Zk) for some k. As Z6 is a

singleton, we actually have κ ∈ MahR(Zk) for some k ≤ 5.

case 1 Suppose κ ∈ MahR(Z1). Then, in particular, I1 6= ∅ and there is a j ∈ I such that κ < θj . In
this case, κ ∈ MahR(Xj), and we can set κj = κ, κi = 0 for i 6= j to find a family in

∏
i∈I MahR(Xi) with

supremum κ.

case 2 Suppose that κ ∈ MahR(Z2). Let µ be a Radon probability measure on Z2 with Maharam type
κ. For each i ∈ Z2, let µ′

i be the marginal measure on Xi, and κ′i its Maharam type. By 531C,

κ ≤ ∑
i∈I2

κ′i ≤ max(ω,#(I2), supi∈I κ
′
i)

(5A4F(b-i)); since ∅ 6= I2 ⊆ I ′, #(I2) < κ ≤ supi∈I2 max(ω, κ′i); since κ is infinite, it must be less than or
equal to supi∈I2 max(ω, κ′i). On the other hand, by 531F, each κ′i is either finite or the supremum of some
countable subset of MahR(Xi); because cf θi > ω, κ′i < θi and max(ω, κ′i) ∈ MahR(Xi). Setting

κi = med(κ′i, ω, κ) for i ∈ I2,

= 0 for i ∈ I \ I2,

we have κi ∈ MahR(Xi) for every i ∈ I and κ = supi∈I κi.

case 3 Suppose that κ ∈ MahR(Z3). Because κ = θi /∈ MahR(Xi) for i ∈ I3, 531Eg tells us that I3
must be infinite. Let 〈in〉n∈N be a sequence of distinct elements of I3. Of course κ itself is uncountable and
has countable cofinality, so we can find a sequence κ′n of infinite cardinals less than κ with supremum κ.
Setting κin = κ′n, κi = 0 for i ∈ I \ {in : n ∈ N}, we have κi ∈ MahR(Xi) for every i and κ = supi∈I κi.

case 4 Suppose that κ ∈ MahR(Z4). Following the scheme of case 2 above, let µ be a Radon probability
measure on Z4 with Maharam type κ, and for each i ∈ I4 let µ′

i be the marginal measure on Xi and κ′i its
Maharam type. Then, as before, κ ≤ supi∈I4 max(ω, κ′i). At the same time, κ′i ≤ θi < κ for every i, so
we must have κ = supi∈I4 θi. Set δ = cfκ. Then we can choose 〈iξ〉ξ<δ inductively in I4 so that θiη < θiξ
whenever η < ξ < δ and supξ<δ θiξ = κ. Now define 〈κi〉i∈I by saying

κiξ+1
= θiξ whenever ξ < δ,

κi = 0 if i ∈ I \ {iξ+1 : ξ < δ}.

This gives κi ∈ MahR(Xi) for every i and κ = supi∈I κi.

case 5 ??? Suppose, if possible, that κ ∈ MahR(Z5). Once again, we can find a Radon probability
measure µ on Z5 with Maharam type κ, and look at its marginal measures µ′

i for i ∈ I5. This time, however,
every µ′

i must be purely atomic and has Maharam type κ′i ≤ ω; also #(I5) < κ. So our formula κ ≤ ∑
i∈I5

κ′i
becomes κ ≤ ω. In this case I5 must be finite and κ ∈ ⋃

i∈I5
MahR(Xi) = {0}, which is absurd. XXX

Thus this case evaporates and the proof is complete.

531H Remarks The results above already enable us to calculate MahR(X) for many spaces. Of course
we begin with compact spaces (531Ec). If X is compact and Hausdorff, and {0, 1}κ is a continuous image of a
closed subset ofX, where κ is an infinite cardinal, then κ ∈ MahR(X) (531Ed); so if {0, 1}w(X) is a continuous
image of a closed subset of X, then MahR(X) is completely specified, being {0} ∪ {κ : ω ≤ κ ≤ w(X)}

Measure Theory



531K Maharam types of Radon measures 7

(531Ea, 531Ef). Of course it is not generally true that w(X) ∈ MahR(X) (531Xc). But it is quite often
the case that {0, 1}κ is a continuous image of a closed subset of X for every κ ∈ MahR(X), and I will now
investigate this phenomenon.

531I Notation For the rest of the section, I will use the following notation, mostly familiar from earlier
chapters of this volume. For any set I, let νI be the usual measure on {0, 1}I , TI its domain, NI its null
ideal and (BI , ν̄I) its measure algebra. In this context, I will write 〈ei〉i∈I for the standard generating family
in BI (525A). For J ⊆ I let CJ be the closed subalgebra of BI generated by {ei : i ∈ J}. Now for a new
idea. For each i ∈ I, let φi : BI → BI be the measure-preserving involution corresponding to reversal of
the ith coordinate in {0, 1}I , that is, φi(ei) = 1 \ ei and φi(ej) = ej for j 6= i.

531J Lemma Let I be a set, and take BI , CJ , for J ⊆ I, and φi, for i ∈ I, as in 531I.
(a)

⋃{CJ : J ∈ [I]<ω} is dense in BI for the measure-algebra topology of BI .
(b) For every a ∈ BI , there is a (unique) countable J∗(a) ⊆ I such that, for J ⊆ I, a ∈ CJ iff J ⊇ J∗(a).
(c) J∗(1 \ a) = J∗(a) for every a ∈ BI .
(d) φiφj = φjφi for all i, j ∈ I.
(e) If J ⊆ I, a ∈ CJ and i ∈ I, then a ∩ φia, a ∪ φia belong to CJ\{i}.
(f) For a ∈ BI and i ∈ I we have φia = a iff i /∈ J∗(a).
(g) φia ∈ CJ whenever J ⊆ I, i ∈ I and a ∈ CJ .

proof (a) See 254Fe.

(b) See 254Rd or 325Mb.

(c) For J ⊆ I, 1 \ a ∈ CJ iff a ∈ CJ .

(d) Because {ek : k ∈ I} τ -generates BI , it is enough to check that φiφjek = φjφiek for all i, j, k ∈ I,
and this is easy.

(e) The subalgebra {(c ∩ ei) ∪ (c′ \ ei) : c, c′ ∈ CJ\{i}} generated by CJ\{i} ∪ {ei} is closed (323K), so
includes CJ and contains a. If c, c′ ∈ CJ\{i} are such that a = (c ∩ ei) ∪ (c′ \ ei), then φia = (c \ ei) ∪ (c′ ∩ ei)
and a ∩ φia = c ∩ c′, a ∪ φia = c ∪ c′ belong to CJ\{i}.

(f) If i /∈ J∗(a) then φia = a because φi(ej) = ej for every j 6= i. If φia = a then a = a ∩ φia ∈ CI\{i},
by (e), and J∗(a) ⊆ I \ {i}, that is, i /∈ J∗(a).

(g) CJ is the closed subalgebra of BI generated by {ej : j ∈ J}, so φi[CJ ] is the closed subalgebra
generated by {φiej : j ∈ J} ⊆ CJ (324L).

531K Lemma Let κ ≥ ω2 be a cardinal, and 〈eξ〉ξ<κ the standard generating family in Bκ. Suppose
that we are given a family 〈aξ〉ξ<κ in Bκ. Then there are a set Γ ∈ [κ]κ and a family 〈cξ〉ξ<κ in Bκ such
that

cξ ⊆ aξ, ν̄κcξ ≥ 2ν̄κaξ − 1

for every ξ, and

ν̄κ(infξ∈I(cξ ∩ eξ) ∩ infη∈J(cη \ eη)) =
1

2#(I∪J)
ν̄κ(infξ∈I∪J cξ)

whenever I, J ⊆ Γ are disjoint finite sets.

proof Let eξ, φξ, for ξ < κ, CL, for L ⊆ κ, and J∗(a), for a ∈ Bκ, be as in 531I-531J. Set Lξ = J∗(aξ) and
cξ = aξ ∩ φξaξ for each ξ; then

ν̄κcξ = ν̄κaξ + ν̄κ(φξaξ) − ν̄κ(aξ ∪ φξaξ) ≥ 2ν̄κaξ − 1

and cξ ∈ CLξ\{ξ} (531Je). By Hajnal’s Free Set Theorem (5A1J(a-iii)), there is a set Γ ∈ [κ]κ such that
ξ /∈ Lη whenever ξ, η are distinct members of Γ. (This is where we use the hypothesis that κ ≥ ω2.) Now
suppose that I, J ⊆ Γ are finite and disjoint. Then (Lξ \ {ξ}) ∩ (I ∪ J) = ∅, so cξ ∈ Cκ\(I∪J), for every
ξ ∈ I ∪ J . Accordingly c = infξ∈I∪J cξ belongs to Cκ\(I∪J). This means that c and the eξ, for ξ ∈ I ∪ J , are
stochastically independent, and
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8 Topologies and measures III 531K

ν̄κ(c ∩ infξ∈I eξ ∩ infη∈J(1 \ eη)) = ν̄κc ·
∏

ξ∈I ν̄κeξ ·
∏

η∈J ν̄κ(1 \ eη) =
1

2#(I∪J)
ν̄κc,

as claimed.

531L Theorem Let X be a Hausdorff space.
(a) (Haydon 77) If ω ∈ MahR(X) then {0, 1}ω is a continuous image of a compact subset of X.
(b) (Haydon 77, Plebanek 97) If κ ≥ ω2 belongs to MahR(X) and λ ≤ κ is an infinite cardinal such

that (κ, λ) is a measure-precaliber pair of every probability algebra, then {0, 1}λ is a continuous image of a
compact subset of X.

proof (a) If ω ∈ MahR(X) then X has a compact subset K which is not scattered (531Ee) and there is a
continuous surjection from K onto [0, 1] (4A2G(j-iv) again). As there is a continuous surjection from [0, 1]
onto [0, 1]ω (5A4I(b-ii)), there is a continuous surjection f : K → [0, 1]ω. Setting K ′ = f−1[{0, 1}ω], K ′ is a
compact subset of X and {0, 1}ω is a continuous image of K ′.

(b) Let µ be a Maharam-type-homogeneous Radon probability measure on X with Maharam type κ, Σ
its domain, and (A, µ̄) its measure algebra, so that (A, µ̄) is isomorphic to the measure algebra (Bκ, ν̄κ) as
discussed in 531I-531K. Let 〈eξ〉ξ<κ be a stochastically independent τ -generating set of elements of measure
1
2 in A, so that (A, 〈eξ〉ξ<κ) is isomorphic to Bκ with its standard generating family. For each ξ < κ, let

Eξ ∈ Σ be such that E•

ξ = eξ in A. Let K ′
ξ ⊆ Eξ, K ′′

ξ ⊆ X \ Eξ be compact sets of measure at least 1
3 , and

set Kξ = K ′
ξ ∪K ′′

ξ , aξ = K•

ξ for ξ < κ. By 531K, copied into A, there are 〈cξ〉ξ<κ and Γ0 ∈ [κ]κ such that

cξ ⊆ aξ and µ̄cξ ≥ 1
3 for each ξ, and

µ̄(infξ∈I(cξ ∩ eξ) ∩ infη∈J(cη \ eη)) =
1

2#(I∪J)
µ̄(infξ∈I∪J cξ)

whenever I, J ⊆ Γ0 are disjoint finite sets.
At this point, recall that (κ, λ) is supposed to be a measure-precaliber pair of every probability alge-

bra. So there is a Γ ∈ [Γ0]λ such that infξ∈I cξ 6= 0 for every finite I ⊆ Γ. It follows at once that
infξ∈I(aξ ∩ eξ) ∩ infη∈J(aη \ eη) is non-zero for all disjoint finite sets I, J ⊆ Γ. But this means that
X ∩⋂

ξ∈I K
′
ξ ∩

⋂
η∈J K

′′
η is non-negligible, therefore non-empty, for all disjoint finite I, J ⊆ Γ.

Set K =
⋂

ξ∈ΓKξ, so that K ⊆ X is compact. Then we have a continuous function f : K → {0, 1}Γ
defined by setting

f(x)(ξ) = 1 if x ∈ K ∩ Eξ = K ∩K ′
ξ,

= 0 if x ∈ K \ Eξ = K ∩K ′′
ξ .

Now f is surjective. PPP If w ∈ {0, 1}Γ and L ⊆ Γ is finite, then

FL = {x : x ∈ X, x ∈ K ′
ξ whenever ξ ∈ L and w(ξ) = 1,

x ∈ K ′′
ξ whenever ξ ∈ L and w(ξ) = 0}

is a non-empty closed set. The family {FL : L ∈ [Γ]<ω} is downwards-directed, so has non-empty intersection;
and if x is any point of the intersection, x ∈ K and f(x) = w. QQQ

As #(Γ) = λ, {0, 1}λ is a continuous image of a compact subset of X.

531M Proposition (Plebanek 97) If κ is an infinite cardinal and {0, 1}κ is a continuous image of
a closed subset of X whenever X is a compact Hausdorff space such that κ ∈ MahR(X), then κ is a
measure-precaliber of every probability algebra.

proof It will be enough to show that κ is a measure-precaliber of (Bκ, ν̄κ) (525I(a-i)). Let 〈aξ〉ξ<κ be a
family in Bκ such that infξ<κ ν̄κaξ = α > 0. Choose 〈bξ〉ξ<κ in Bκ inductively, as follows. Given 〈bη〉η<ξ,
let Dξ be the closed subalgebra of Bκ generated by {bη : η < ξ} ∪ {aξ}. Because Bκ is homogeneous with
Maharam type κ > τ(Dξ), it is relatively atomless over Dξ, and there is a b ∈ Bκ such that ν̄κ(b ∩ c) = 1

2 ν̄κc
for every c ∈ Dξ (331B). Set bξ = b ∩ aξ; then for any η < ξ we have
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531N Maharam types of Radon measures 9

ν̄κ(bξ △ bη) = ν̄κbξ + ν̄κbη − 2ν̄κ(bξ ∩ bη)

=
1

2
ν̄κaξ + ν̄κbη − ν̄κ(aξ ∩ bη) ≥ 1

2
ν̄κaξ ≥ α

2
.

Continue.

Let C be the subalgebra of Bκ generated by {bξ : ξ < κ}, and X its Stone space. Then C is isomorphic
to the algebra of open-and-closed subsets of X, so we have a Radon measure µ on X defined by saying that
µĉ = ν̄κc for every c ∈ C, writing ĉ for the open-and-closed subset of X corresponding to c (416Qa). Now
µ is strictly positive and we can identify C with a topologically dense subalgebra of the measure algebra of
µ. It follows that µ has a Maharam-type-homogeneous component of type at least κ. PPP??? Otherwise, there
would be a set E ⊆ X, of measure at least 1 − 1

4α, such that the Maharam type of the subspace measure
µE was less than κ. But

µ(E ∩ b̂ξ△b̂η) ≥ ν̄κ(bξ △ bη) − α

4
≥ α

4

whenever η < ξ < κ, so the topological density of the measure algebra of µE is at least κ (5A4B(h-ii)) and
the Maharam type of µE is at least κ (521E(a-ii)). XXXQQQ Thus κ ∈ MahR(X).

Accordingly {0, 1}κ is a continuous image of a closed subset of X. By 5A4C(d-iii), there is a non-empty
closed subset K of X such that χ(x,K) ≥ κ for every x ∈ K. Let D ⊆ κ be a maximal set such that

{K} ∪ {b̂ξ : ξ ∈ D} has the finite intersection property. Set Z = K ∩ ⋂
ξ∈D b̂ξ; then Z contains a point z

say. Because {bξ : ξ ∈ D} is centered, so is {aξ : ξ ∈ D}.

If x ∈ X \ {z}, then there is a c ∈ C such that x ∈ ĉ and z /∈ ĉ; accordingly there is a ζ < κ such that one

of x, z belongs to b̂ζ and the other does not. If ζ ∈ D then z ∈ b̂ζ and x /∈ b̂ζ , so x /∈ Z. If ζ /∈ D then, by

the maximality of D, Z ∩ b̂ζ = ∅, so that z /∈ b̂ζ , x ∈ b̂ζ and again x /∈ Z.

Thus Z = {z}, and {z} can be expressed as the intersection of #(D) relatively open sets in K. By
4A2Gd, it follows that #(D) ≥ χ(z,K) ≥ κ, and we have already seen that {aξ : ξ ∈ D} is centered. As
〈aξ〉ξ<κ is arbitrary, κ is a measure-precaliber of Bκ, as required.

531N In 531M we have a space X out of which there is no surjection onto {0, 1}κ because every non-
empty closed set has a point of character less than κ. From stronger properties of κ we can get compact
spaces with stronger topological properties, as in the next two results.

Proposition Let κ, κ′ and λ be infinite cardinals such that (κ, κ′) is not a measure-precaliber pair of
(Bλ, ν̄λ). Then there is a compact Hausdorff space X such that κ ∈ MahR(X) and χ(x,X) < max(κ′, λ+)
for every x ∈ X.

proof Let 〈aξ〉ξ<κ be a family in Bλ, with no centered subfamily with cardinal κ′, such that infξ<κ µ̄aξ =
α > 0. Let ψ : Bλ → Tλ be a lifting; for each ξ < κ, let Kξ ⊆ ψaξ be a compact set of measure at least
1
2α. If D ⊆ κ and #(D) = κ′, then there is a finite set I ⊆ D such that infξ∈I aξ = 0, in which case⋂

ξ∈I Kξ ⊆ ⋂
ξ∈I ψaξ = ∅. Thus {ξ : x ∈ Kξ} has cardinal less than κ′ for every x ∈ {0, 1}λ.

Set

X =
⋂

ξ<κ′{(x, y) : x ∈ {0, 1}λ, y ∈ {0, 1}κ, x ∈ Kξ or y(ξ) = 0},

so that X is a compact subset of {0, 1}λ × {0, 1}κ. Now χ((x, y), X) < max(κ′, λ+) for every (x, y) ∈ X. PPP
Set D = {ξ : ξ < κ, x ∈ Kξ}, so that #(D) < κ′. For I ∈ [λ]<ω and J ∈ [D]<ω set

VIJ = {(x′, y′) : (x′, y′) ∈ X, x′↾I = x↾I, y′↾J = y↾J},

so that V = {VIJ : I ∈ [λ]<ω, J ∈ [D]<ω} is a downwards-directed family of closed neighbourhoods of (x, y).
If (x′, y′) ∈ ⋂V, then x′ = x, so x′ /∈ Kξ for ξ ∈ κ \D, and y′(ξ) = y(ξ) = 0 for ξ /∈ D; also y′↾D = y↾D, so
(x′, y′) = (x, y). Thus

⋂V = {(x, y)}; by 4A2Gd again, V is a base of neighbourhoods of (x, y), and

χ((x, y), X) ≤ #(V) ≤ max(#(D), λ) < max(κ′, λ+). QQQ

Define g : {0, 1}λ × {0, 1}κ → {0, 1}κ and h : {0, 1}λ × {0, 1}κ → X by setting
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10 Topologies and measures III 531N

g(x, y)(ξ) = y(ξ) if x ∈ Kξ,

= 0 otherwise,

h(x, y) = (x, g(x, y)),

for ξ < κ, x ∈ {0, 1}λ and y ∈ {0, 1}κ. Write Σ for the domain of the product measure ν = νλ×νκ on {0, 1}λ×
{0, 1}κ. Then the σ-algebra {F : F ⊆ X, h−1[F ] ∈ Σ} contains all sets of the form {(x, y) : x(η) = 1} and
{(x, y) : y(ξ) = 1}, so includes a base for the topology of X and therefore contains every open-and-closed
set. Accordingly we have an additive functional U 7→ νh−1[U ] on the algebra of open-and-closed subsets of
X, which extends to a Radon probability measure µ on X (416Qa again). Set Fξ = {(x, y) : (x, y) ∈ X,
y(ξ) = 1} for each ξ < κ; then for any η < ξ < κ,

µ(Fξ \ Fη) = νh−1[Fξ \ Fη]

≥ ν{(x, y) : x ∈ Kξ, y(ξ) = 1, y(η) = 0} =
1

4
νλKξ ≥ 1

8
α.

As in the proof of 531M, this shows that the measure algebra of µ must have a homogeneous principal ideal
with Maharam type at least κ, and κ ∈ Mah(X).

531O Putting these ideas together with 531L, we come to the following.

Proposition (Kunen & Mill 95, Plebanek 95) Let κ be a regular infinite cardinal. Then the following
are equiveridical:

(i) κ is a measure-precaliber of every measurable algebra;
(ii) if X is a compact Hausdorff space such that κ ∈ MahR(X), then χ(x,X) ≥ κ for some x ∈ X.

proof (a) Consider first the case κ ≥ ω2.

(i)⇒(ii) If κ ∈ MahR(X), then {0, 1}κ is a continuous image of a compact subset of X, by 531Lb. By
5A4C(d-iii) again and 5A4Bb, it follows at once that χ(x,X) ≥ κ for many points x ∈ X.

not-(i)⇒not-(ii) By 525Ib there is a λ < κ such that κ is not a precaliber of Bλ, and therefore not a
measure-precaliber of (Bλ, ν̄λ) (525Db). Now 531N tells us that there is a compact Hausdorff space X such
that κ ∈ MahR(X) and χ(x,X) < max(κ, λ+) = κ for every x ∈ X.

(b) Now suppose that κ = ω1.

(i)⇒(ii) ??? Suppose, if possible, that ω1 is a precaliber of every probability algebra, but that there is
a first-countable compact Hausdorff space X with ω1 ∈ MahR(X). Let µ be a Maharam-type-homogeneous
Radon probability measure on X with Maharam type ω1, and (A, µ̄) its measure algebra; let 〈cξ〉ξ<ω1

be a
τ -generating stochastically independent family of elements of measure 1

2 in A. As in 531J, there is for each
a ∈ A a countable J∗(a) ⊆ ω1 such that a belongs to the closed subalgebra of A generated by {cξ : ξ ∈ J∗(a)}.

For each x ∈ X, let Ux be a countable base of open neighbourhoods of x, and set Ax = {U• : U ∈ Ux},
J†(x) =

⋃
a∈Ax

J∗(a). Then J†(x) is countable. For ξ < ω1, set Dξ = {x : J†(x) ⊆ ξ}; then 〈Dξ〉ξ<ω1
is a

non-decreasing family with union X. Now ω1 is supposed to be a precaliber of A, so there must be a ξ < ω1

such that Dξ has full outer measure (525Cc).
Let G ⊆ X be open. Then G• belongs to the closed subalgebra Cξ of A generated by {cη : η < ξ}. PPP

For each x ∈ G ∩Dξ, there is a Ux ∈ Ux such that Ux ⊆ G. Set H =
⋃{Ux : x ∈ G ∩Dξ}, so that H ⊆ G

is open and G ∩Dξ = H ∩Dξ; as Dξ has full outer measure, G \H is negligible and H• = G•. But 414Aa
once more tells us that H• = supx∈Dξ

U•
x, and this belongs to Cξ, because J†(x) ⊆ ξ for every x ∈ Dξ. QQQ

It follows at once that F • ∈ Cξ for every closed F ⊆ X. Because µ is inner regular with respect to the
closed sets, Cξ is order-dense in A and A = Cξ has Maharam type #(ξ) < ω1. XXX

Thus (i)⇒(ii).

not-(i)⇒not-(ii) Suppose that (i) is false.

(ααα) By 525J, covNω1
= ω1 and there is a family 〈Aξ〉ξ<ω1

of negligible subsets of {0, 1}ω1 covering
{0, 1}ω1 . For each ξ < ω1, let A′

ξ ⊇ Aξ be a negligible set determined by coordinates in a countable
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531O Maharam types of Radon measures 11

set Jξ ⊆ ω1; set Ãξ =
⋃{A′

η : η < ξ, Jη ⊆ ξ}; then Ãξ is determined by coordinates less than ξ. Set

Hξ = {y↾ξ : y ∈ Ãξ}, so that Hξ is a νξ-negligible subset of {0, 1}ξ.

We see that 〈Ãξ〉ξ<ω1
is non-decreasing, and

⋃
ξ<ω1

Ãξ =
⋃

ξ<ω1
A′

ξ = {0, 1}ω1 .

Consequently y↾ξ ∈ Hξ whenever η ≤ ξ < ω1, y ∈ {0, 1}ω1 and y↾η ∈ Hη, while for every y ∈ {0, 1}ω1 there
is a ξ < ω1 such that y↾ξ ∈ Hξ.

(βββ) Set Y = {0} ∪ {2−n : n ∈ N} ⊆ [0, 1]. For ξ ≤ ω1 define φξ : Y ξ → {0, 1}ξ by setting

φξ(x)(η) = 0 if η < ξ and x(η) = 0,

= 1 for other η < ξ.

Observe that φξ is Borel measurable for every ξ < ω1. Choose 〈Xξ〉ξ<ω1
, and 〈Kξn〉ξ<ω1,n∈N inductively,

as follows. The inductive hypothesis will be that Xξ is a compact subset of Y ξ, φξ[Xξ] is νξ-conegligible in
{0, 1}ξ, φξ↾Xξ is injective and x↾η ∈ Xη whenever x ∈ Xξ and η ≤ ξ < ω1.

Start with X0 = Y 0 = {∅} and φ0 : X0 → {0, 1}0 the identity map.
Given ξ < ω1 and Xξ ⊆ Y ξ, then 433D tells us that there is a Radon measure µξ on Xξ such that νξ is

the image measure µξφ
−1
ξ . Let 〈Kξn〉n∈N be a disjoint sequence of compact subsets of Xξ \ φ−1

ξ [Hξ] with
µξ-conegligible union. Set

Xξ+1 = {x : x ∈ Y ξ+1, x↾ξ ∈ Xξ, x(ξ) = 0}
∪

⋃

n∈N

{x : x ∈ Y ξ+1, x↾ξ ∈ Kξn, x(ξ) = 2−n}.

It is easy to see that Xξ+1 is compact and φξ+1↾Xξ+1 is injective, while surely x↾η ∈ Xη whenever x ∈ Xξ+1

and η ≤ ξ + 1, just because x↾ξ ∈ Xξ. Also

φξ+1[Xξ+1] ⊇ {y : y ∈ {0, 1}ξ+1, y↾ξ ∈ ⋃
n∈N φξ[Kξn]}

is νξ+1-conegligible because φξ[Kξn] must be analytic for every n and

νξ(
⋃

n∈N φξ[Kξn]) = µξ(
⋃

n∈NKξn) = 1

because φξ↾Xξ is injective.
Given that Xη has been defined for η < ξ, where ξ < ω1 is a non-zero limit ordinal, set

Xξ = {x : x ∈ Y ξ, x↾η ∈ Xη for every η < ξ}.

Of course Xξ is compact and φξ↾Xξ is injective. To see that φξ[Xξ] is conegligible, observe that

W =
⋂

η<ξ{y : y ∈ {0, 1}ξ, y↾η ∈ φη[Xη]}
is conegligible. But if y ∈ W and we choose xη ∈ Xη such that φη(xη) = y↾η for each η < ξ, then we must
have xζ = xη↾ζ whenever ζ ≤ η < ξ, because φζ↾Xζ is injective; so there is an x ∈ Y ξ such that xη = x↾η
for every η < ξ, in which case x ∈ Xξ and φξ(x) = y. Thus φξ[Xξ] ⊇W is conegligible.

(γγγ) At the end of the induction, set

X = {x : x ∈ Y ω1 , x↾ξ ∈ Xξ for every ξ < ω1}, φ = φω1
↾X.

As in the limit stage of the construction in (β), we see that X is a closed subset of Y ω1 , so with the
subspace topology is a zero-dimensional compact Hausdorff space. This time, we do not expect that φ[X]
should be conegligible in {0, 1}ω1 , but we find that it has full outer measure. PPP If K ⊆ {0, 1}ω1 is a
non-negligible closed Gδ set, there is a ξ < ω1 such that K is determined by coordinates less than ξ. Set
K ′ = {y↾ξ : y ∈ K}; then νξK

′ = νω1
K > 0, so there is an x0 ∈ Xξ such that φξ(x0) ∈ K ′. Extending x0

to x ∈ Y ω1 by setting x(η) = 0 for ξ ≤ η < ω1, we see by induction on ζ that x↾ζ ∈ Xζ for ξ ≤ ζ < ω1, so
x ∈ X; also φ(x)↾ξ = φξ(x0) ∈ K ′, so φ(x) ∈ K and K meets φ[X]. As νω1

is completion regular, φ[X] has
full outer measure. QQQ

(δδδ) X is first-countable. PPP If x ∈ X, ξ < ω1 and x(ξ) 6= 0, then x↾(ξ + 1) belongs to Xξ+1, and
there must be some n ∈ N such that x(ξ) = 2−n and x↾ξ ∈ Kξn; in which case φξ(x↾ξ) /∈ Hξ. Now take
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any x ∈ X. Then there is a ξ < ω1 such that φ(x) ∈ Ãξ and φξ(x) = φ(x)↾ξ belongs to Hξ. In this
case, V = {x′ : x′ ∈ X, x′↾ξ = x↾ξ} is a Gδ subset of X containing x. But if x′ ∈ V then, for any
η ≥ ξ, φη(x′↾η) ∈ Hη and x′(η) = 0. Thus V = {x}. By 4A2Gd once more, x has a countable base of
neighbourhoods in X; as x is arbitrary, X is first-countable. QQQ

(ǫǫǫ) By 234F, there is a measure λ on X such that φ is inverse-measure-preserving for λ and νω1
. Of

course λ is a probability measure. Now for any ξ < ω1 and n ∈ N,

{x : x ∈ X, x(ξ) = 0} = {x : φ(x)(ξ) = 0},

{x : x ∈ X, x(ξ) = 2−n} = {x : φ(x)(ξ) = 1, x↾ξ ∈ Kξn}
= {x : φ(x)(ξ) = 1, φξ(x↾ξ) ∈ φξ[Kξn]}
= {x : φ(x)(ξ) = 1, φ(x)↾ξ ∈ φξ[Kξn]}

are measured by λ. So the domain of λ includes a base for the topology of the zero-dimensional compact
Hausdorff space X. By 416Qa once more, there is a Radon measure µ on X agreeing with λ on the open-and-
closed subsets of X; by the Monotone Class Theorem (136C), µ and λ agree on the σ-algebra generated by
the open-and-closed sets, that is, the Baire σ-algebra of X (4A3Od). In particular, setting Eξ = {x : x ∈ X,
x(ξ) = 0} for ξ < ω1,

µ(Eξ ∩ Eη) = λ(Eξ ∩ Eη) = νω1
{y : y ∈ {0, 1}ω1 , y(ξ) = y(η) = 0}

=
1

2
if ξ = η < ω1,

=
1

4
if ξ, η < ω1 are different.

It follows that µ(Eξ△Eη) = 1
2 for all distinct ξ, η < ω1, so µ has uncountable Maharam type and ω1 ∈

MahR(X). Thus X and µ witness that (ii) is false.

(c) Finally, if κ = ω, both (i) and (ii) are true for elementary reasons (525Fa).

531P In 531O we saw that if ω1 is not a precaliber of every measurable algebra then there is a first-
countable compact Hausdorff space with a Radon measure with Maharam type ω1. With a sharper hypoth-
esis, and rather more work, we can get a stronger version, as follows.

Lemma Let Y be a zero-dimensional compact metrizable space, µ an atomless Radon probability measure
on Y , A ⊆ Y a µ-negligible set and Q a countable family of closed subsets of Y . Then there are closed sets
K, L ⊆ Y , with union Y , such that

K ∪ L = Y , K ∩ L ∩A = ∅, µ(K ∩ L) ≥ 1
2 ,

K ∩Q = Q \ L and L ∩Q = Q \K for every Q ∈ Q.

proof We can of course suppose that ∅ ∈ Q. For each Q ∈ Q let DQ be a countable dense subset of Q;
let S ⊆ Y \ (A ∪⋃

Q∈QDQ) be a closed set of measure at least 1
2 . (This is where we need to know that µ

is atomless, so that every DQ is negligible.) Let U be a countable base for the topology of Y consisting of
open-and-closed sets and let 〈(Un, Qn)〉n∈N run over U×Q. Choose inductively sequences 〈Gn〉n∈N, 〈Hn〉n∈N

of open-and-closed subsets of Y \S, as follows. Start with G0 = H0 = ∅. Given that Gn and Hn are disjoint
from each other and from S, then

—– if Un ∩ S = ∅, take Gn+1 = Gn ∪ (Un \Hn) and Hn+1 = Hn;
—– if Un∩S ∩Qn 6= ∅, U = Un \ (Gn ∪Hn) is open and includes Un∩S ∩Qn; as DQn

is dense

in Qn, U ∩DQn
includes U ∩ Qn which meets S so cannot be included in DQn

, and U ∩ DQn

must be infinite; take two of its points y, y′ say; neither belongs to S so we can enlarge Gn and
Hn to disjoint open-and-closed subsets Gn+1, Hn+1 of Y \ S containing y, y′ respectively, and
therefore both meeting Un ∩Qn;

—– otherwise, take Gn+1 = Gn and Hn+1 = Hn.

At the end of the induction, set G =
⋃

n∈NGn and H =
⋃

n∈NHn, so that G and H are disjoint open
subsets of Y \ S. Now if y is any point of Y \ S, there must be some n such that y ∈ Un ⊆ Y \ S, so that

Measure Theory



531Q Maharam types of Radon measures 13

y ∈ Gn+1 ∪Hn; thus Y = G∪H ∪S. Set K = G∪S = Y \H, L = H ∪S = Y \G; then K and L are closed
sets with union Y , and K ∩ L = S has measure at least 1

2 and is disjoint from A.
If Q ∈ Q, y ∈ S ∩Q and U is any neighbourhood of y, there is anπ[Z \W ] 6= Q n ∈ N such that Qn = Q

and y ∈ Un ⊆ U . In this case, Un ∩ S ∩ Qn 6= ∅ and G ∩ Q ⊇ Gn+1 ∩ Qn, H ∩ Q ⊇ Hn+1 ∩ Q both meet
Un ∩Q. As U and y are arbitrary,

K ∩ L ∩Q = S ∩Q ⊆ G ∩Q ∩H ∩Q,

K ∩Q ⊆ (S ∩Q) ∪ (G ∩Q) ⊆ G ∩Q = Q \ L
and similarly L ∩ Q ⊆ Q \K. At the same time, K ⊇ Q \ L and L ⊇ Q \ K, so K ∩ Q = Q \ L and

L ∩Q = Q \K. Thus K and L fulfil all the specifications.

531Q Proposition Suppose that cfNω = ω1. Then there is a hereditarily separable perfectly normal
compact Hausdorff space X, of weight ω1, with a Radon probability measure of Maharam type ω1 such that
every negligible set is metrizable.

proof For η ≤ ξ ≤ ω1 and x ∈ {0, 1}ξ, set πηξ(x) = x↾η; write πη for πηω1
: {0, 1}ω1 → {0, 1}η. As in 531I,

νξ is to be the usual measure on {0, 1}ξ.

(a) Choose

〈fξ〉ω≤ξ≤ω1
, 〈Xξ〉ω≤ξ≤ω1

, 〈µξ〉ω≤ξ<ω1
, 〈Kξ〉ω≤ξ<ω1

, 〈Lξ〉ω≤ξ<ω1
,

〈Q′
ξθ〉ω≤ξ≤θ<ω1

, 〈Qδξ〉ω≤δ≤ξ<ω1
, 〈Qηδξ〉ω≤η≤δ≤ξ<ω1

, 〈Aξθ〉ω≤ξ≤θ<ω1
, 〈Aξ〉ω≤ξ<ω1

inductively, as follows. Every Xξ, Kξ, Lξ, Q′
ξθ, Qδξ and Qηδξ is to be a closed subset of {0, 1}ξ, every fξ will

be a Baire measurable surjection from {0, 1}ξ onto Xξ, µξ will always be the Radon probability measure

νξf
−1
ξ on {0, 1}ξ, and Aξ and Aξθ will always be µξ-negligible subsets of {0, 1}ξ.

Given that ω ≤ ξ ≤ ω1 and that Kη, Lη are closed subsets of {0, 1}η covering {0, 1}η whenever ω ≤ η < ξ,
then define fξ(x)(η), for x ∈ {0, 1}ξ and η < ξ, by setting

fξ(x)(η) = 1 if η ≥ ω and x↾η /∈ Lη,

= 0 if η ≥ ω and x↾η /∈ Kη,

= x(η) otherwise.

(Thus the induction starts with fω(x) = x for x ∈ {0, 1}ω.) Then fξ : {0, 1}ξ → {0, 1}ξ is Baire measurable
(4A3Ne). Set

Xξ =
⋂

ω≤η<ξ{x : x ∈ {0, 1}ξ, x(η) = 1 or x↾η ∈ Lη, x(η) = 0 or x↾η ∈ Kη};

then Xξ ⊆ {0, 1}ξ is compact, fξ(x) ∈ Xξ for every x ∈ {0, 1}ξ, and fξ(x) = x for every x ∈ Xξ. So
fξ[{0, 1}ξ] = Xξ.

If now ξ < ω1, fξ : {0, 1}ξ → {0, 1}ξ is Borel measurable; by 433E, fξ is νξ-almost-continuous, and the

image measure µξ = νξf
−1
ξ is a Radon measure on the compact metrizable space {0, 1}ξ (418I). Of course

µξXξ = 1. Because {0, 1}ξ has countable weight, or otherwise, µξ has countable Maharam type (531Ad); by
524Pb, µξ is inner regular with respect to a family with cardinal at most cfNω = ω1, which we may suppose
to consist of closed sets; let 〈Q′

ξθ〉ξ≤θ<ω1
run over such a family. Similarly, there is a family 〈Aξθ〉ξ≤θ<ω1

running over a cofinal subset of the null ideal of µξ (524Pf). Next, for ω ≤ δ ≤ ξ, let Qδξ ⊆ π−1
δξ [Q′

δξ] be

the compact µξ-self-supporting set of the same µξ-measure as π−1
δξ [Q′

δξ] (414F). Note that Qδξ will always

be included in Xξ, because µξXξ = 1. Set Qηδξ = Xξ ∩ π−1
δξ [Qηδ] for ω ≤ η ≤ δ ≤ ξ, and

Aξ = {π−1
ηξ [Aηδ] : ω ≤ η ≤ δ ≤ ξ}, Aξ =

⋃{A : A ∈ Aξ, µξA = 0};

because Aξ is countable, Aξ is µξ-negligible. By 531P, we can find closed sets Kξ, Lξ covering {0, 1}ξ such

that µξ(Kξ ∩ Lξ) ≥ 1
2 , Kξ ∩ Lξ ∩ Aξ = ∅, Kξ ∩ Qηδξ = Qηδξ \ Lξ and Lξ ∩ Qηδξ = Qηδξ \Kξ whenever

ω ≤ η ≤ δ ≤ ξ.
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14 Topologies and measures III 531Q

This deals with the inductive step to a successor ordinal ξ + 1 when ω ≤ ξ < ω1. For limit ordinals
ξ ∈ ]ω, ω1[, fξ is defined by 〈(Kη, Lη)〉ω≤η<ξ, so the induction proceeds directly to ξ.

(b) At the end of the induction, write f for fω1
and X for Xω1

= f [{0, 1}ω1 ]. If z ∈ {0, 1}ω1 and ξ < ω1,
the formula for fξ in (a) shows that f(z)(η) = fξ(z↾ξ)(η) for every η < ξ, that is, that f(z)↾ξ = fξ(z↾ξ).
Next, νω1

f−1 measures every Baire subset of {0, 1}ω1 (use 4A3Na), so we have a Radon measure µ on
{0, 1}ω1 defined by saying that µV = νω1

f−1[V ] for every Baire set V ⊆ {0, 1}ω1 (432F); of course µV = 0
for every open-and-closed set V disjoint from X, so µX = 1.

At the same time, it will be helpful to fill in the definition of 〈Qηδξ〉ω≤η≤δ≤ξ<ω1
by taking Qηδω1

=

X ∩ π−1
δ [Qηδ] when ω ≤ η ≤ δ < ω1.

(c) Some simple facts.

(i) I have already observed that πξf = fξπξ for ω ≤ ξ < ω1; consequently

Xξ = fξ[{0, 1}ξ] = fξ[πξ[{0, 1}ω1 ]] = πξ[f [{0, 1}ω1 ]] = πξ[X]

and

µξV = νξf
−1
ξ [V ] = (νω1

π−1
ξ )f−1

ξ [V ] = νω1
(fξπξ)−1[V ]

= νω1
(πξf)−1[V ] = (νω1

f−1)π−1
ξ [V ] = µπ−1

ξ [V ]

for every open-and-closed set V ⊆ {0, 1}ξ. Thus the Radon measures µπ−1
ξ and µξ are identical.

(ii) Equally, if ω ≤ η ≤ ξ < ω1,

Xη = πη[X] = πηξ[πξ[X]] = πηξ[Xξ]

and

µη = µπ−1
η = µ(πηξπξ)−1 = (µπ−1

ξ )π−1
ηξ = µξπ

−1
ηξ .

Accordingly, if ω ≤ η ≤ δ ≤ ξ < ω1,

µξπ
−1
ηξ [Aηδ] = µηAηδ = 0.

Thus in fact Aξ =
⋃Aξ and Kξ ∩ Lξ is disjoint from π−1

ηξ [Aηδ] whenever ω ≤ η ≤ δ ≤ ξ < ω1.

(iii) If ω ≤ η ≤ δ ≤ ζ ≤ ξ ≤ ω1 and δ < ω1, then

πζξ[Qηδξ] = πζξ[Xξ ∩ π−1
δξ [Qηδ]] = πζξ[Xξ ∩ π−1

ζξ [π−1
δζ [Qηδ]]] = Xζ ∩ π−1

δζ [Qηδ]

(because πζξ[Xξ] = Xζ)

= Qηδζ .

(iv) If z, z′ ∈ X, ω ≤ η ≤ δ < ω1, z↾δ = z′↾δ and z↾η ∈ Aηδ, then z′ = z. PPP Suppose that δ ≤ ξ < ω1

and z↾ξ = z′↾ξ. Then Kξ ∩ Lξ does not meet π−1
ηξ [Aηδ], so does not contain z↾ξ. Accordingly

z(ξ) = 1 =⇒ z↾ξ ∈ Kξ =⇒ z↾ξ /∈ Lξ =⇒ z′↾ξ /∈ Lξ =⇒ z′(ξ) = 1,

and similarly z(ξ) = 0 ⇒ z′(ξ) = 0. So an easy induction on ξ shows that z(ξ) = z′(ξ) whenever δ ≤ ξ < ω1,
and z = z′. QQQ

(d) We come now to the first key idea of this construction. If ω ≤ η ≤ δ ≤ ξ ≤ ω1 and δ < ω1, then
gηδξ = πδξ↾Qηδξ is an irreducible continuous surjection onto Qηδ. PPP Of course gηδξ is continuous, just
because πδξ : {0, 1}ξ → {0, 1}δ is continuous, and it is a surjection onto Qηδ by (c-iii) just above. To see
that it is irreducible, induce on ξ. At the start, Qηδδ = Qηδ and gηδδ is an identity function, so is certainly
irreducible.

For the inductive step to ξ + 1, given that η ≤ δ ≤ ξ < ω1 and gηδξ is irreducible, consider h =
πξ,ξ+1↾Qη,δ,ξ+1. By (c-iii), h[Qη,δ,ξ+1] = Qηδξ. Note that Xξ+1 can be identified with

{(x, 1) : x ∈ Xξ ∩Kξ} ∪ {(x, 0) : x ∈ Xξ ∩ Lξ} ⊆ {0, 1}ξ × {0, 1},

Measure Theory



531Q Maharam types of Radon measures 15

so that Qη,δ,ξ+1 is identified with

{(x, 1) : x ∈ Qηδξ ∩Kξ} ∪ {(x, 0) : x ∈ Qηδξ ∩ Lξ},

and that with this identification h becomes the first-coordinate projection from Qη,δ,ξ+1 onto Qηδξ, while
Qηδξ = (Qηδξ∩Kξ)∪(Qηδξ∩Lξ). So 5A4L tells us that h is irreducible. But this means that gη,δ,ξ+1 = hgηδξ
is a composition of irreducible continuous surjections and is irreducible, by 5A4C(d-iv)).

For the inductive step to a limit ordinal ξ such that δ < ξ ≤ ω1, take a cylinder set V ⊆ {0, 1}ξ meeting
Qηδξ. This time, because ξ is a limit ordinal, there is a ζ such that δ ≤ ζ < ξ and V is determined by
coordinates less than ζ. Set V ′ = πζξ[V ]; then V ′ is a cylinder set in {0, 1}ζ meeting πζξ[Qηδξ] = Qηδζ . Now

πδξ[Qηδξ \ V ] = πδζ [πζξ[Qηδξ \ π−1
ζξ [V ′]]]

= πδζ [πζξ[Qηδξ] \ V ′] = πδζ [Qηδζ \ V ′] ⊂ Qηδ

because gηδζ : Qηδζ → Qηδ is irreducible. Thus the induction continues. QQQ

(e) It follows that if H ⊆ X is closed, there is a ξ < ω1 such that H = X ∩ π−1
ξ [πξ[H]] and πξ↾H is

irreducible. PPP For ω ≤ η ≤ ξ < ω1,

µηπη[H] = µξπ
−1
ηξ [πη[H]] = µξπ

−1
ηξ [πηξ[πξ[H]]] ≥ µξπξ[H].

So we have an η < ω1 such that µηπη[H] = µξπξ[H] whenever η ≤ ξ < ω1. Now recall that µη is inner
regular with respect to {Q′

ηδ : η ≤ δ < ω1}. So there is a countable set I ⊆ ω1 \ η such that 〈Q′
ηδ〉δ∈I is

disjoint, Q′
ηδ ⊆ πη[H] for every δ ∈ I and

∑
δ∈I µηQ

′
ηδ = µηπη[H].

For each δ ∈ I,

µδ(Qηδ \ πδ[H]) ≤ µδ(π−1
ηδ [Q′

ηδ] \ πδ[H])

≤ µδ(π−1
ηδ [πη[H]] \ πδ[H])

= µδ(π−1
ηδ [πη[H]]) − µδπδ[H]

(because surely πδ[H] ⊆ π−1
ηδ [πη[H]])

= µηπη[H] − µδπδ[H] = 0

by (c-ii) and the choice of η. Because Qηδ was µδ-self-supporting, and πδ[H] is closed, Qηδ ⊆ πδ[H]. Because

πδ↾X ∩ π−1
δ [Qηδ] is irreducible, X ∩ π−1

δ [Qηδ] ⊆ H.

Set ζ = sup(I ∪ {η}) < ω1. Since Qηδ ⊆ π−1
ηδ [Q′

ηδ], π−1
δζ [Qηδ] ⊆ π−1

ηζ [Q′
ηδ] for each δ ∈ I; as 〈Q′

ηδ〉δ∈I is

disjoint, so is 〈π−1
δζ [Qηδ]〉δ∈I ; and

∑

δ∈I

µζπ
−1
δζ [Qηδ] =

∑

δ∈I

µδQηδ =
∑

δ∈I

µδπ
−1
ηδ [Q′

ηδ]

=
∑

δ∈I

µηQ
′
ηδ = µηπη[H] = µζπζ [H].

Because X∩π−1
δ [Qηδ] ⊆ H, πζ [H] ⊇ Xζ∩π−1

δζ [Qηδ] for every δ ∈ I. So πζ [H]\⋃δ∈I π
−1
δζ [Qηδ] is µζ-negligible

and is included in Aζξ for some ξ ≥ ζ. Repeating the arguments of the last two sentences at the new level,
we see that

Xξ ∩
⋃

δ∈I π
−1
δξ [Qηδ] ⊆ πξ[H] ⊆ ⋃

δ∈I π
−1
δξ [Qηδ] ∪ π−1

ζξ Aζξ.

Now suppose that V ⊆ {0, 1}ω1 is an open set meeting H. Take z ∈ V ∩ H. If z ∈ π−1
ζ [Aζξ], then

z↾ξ 6= z′↾ξ for any other z′ ∈ X, by (c-iv); so z↾ξ /∈ πξ[H \ V ] and πξ[H \ V ] 6= πξ[H]. Otherwise, there is

a δ ∈ I such that z↾ξ ∈ π−1
δξ [Qηδ], z ∈ π−1

δ [Qηδ] and V ∩ π−1
δ [Qηδ] is not empty. Because πδ↾X ∩ π−1

δ [Qηδ]

is irreducible, πδ[H \ V ] cannot cover Qηδ ⊆ πδ[H]. Thus πδ[H \ V ] 6= πδ[H]; it follows at once that
πξ[H \ V ] 6= πξ[H] in this case also. As V is arbitrary, πξ↾H is irreducible.

I have still to check that H = X ∩ π−1
ξ [πξ[H]]. If z, z′ ∈ X, z ∈ H and z′↾ξ = z↾ξ, then if z ∈ π−1

ζ [Aζξ]

we have z′ = z ∈ H. Otherwise, there is some δ ∈ I such that z ∈ π−1
δ [Qηδ]. In this case, z′↾δ = z↾δ ∈ Qηδ;

but X ∩ π−1
δ [Qηδ] ⊆ H, so again z′ ∈ H. So we have the result. QQQ
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(f) We are within sight of the end. From (e) we see, first, that if H ⊆ X is closed then it is of the
form X ∩ π−1

ξ [πξ[H]] for some ξ < ω1, so is a zero set in X; accordingly X is perfectly normal, therefore

first-countable (5A4Cb). Second, for any closed H ⊆ X, there is an irreducible continuous surjection from
H onto a compact metrizable space πξ[H]; because πξ[H] is separable, so is H (5A4C(d-i)). It follows that

X is hereditarily separable. PPP If A ⊆ X, then A is separable; let D ⊆ A be a countable dense set. Because
X is first-countable, each member of A is in the closure of a countable subset of A, and there is a countable
C ⊆ A such that D ⊆ C. Now C is a countable dense subset of A. QQQ

(g) We need to check that ω1 ∈ MahR(X). For ω ≤ ξ < ω1, set Uξ = {z : z ∈ {0, 1}ω1 , z↾ξ ∈ Kξ ∩ Lξ,
z(ξ) = 1}. Then µ(Uξ△E) ≥ 1

4 whenever E ⊆ {0, 1}ω1 is a Baire set determined by coordinates less than ξ.

PPP Set E′ = πξ[E], so that E = π−1
ξ [E′] and E′ is a Baire set. Then

µ(Uξ \ E) = νω1
f−1[Uξ \ E] = νω1

{z : f(z)↾ξ ∈ Kξ ∩ Lξ \ E′, f(z)(ξ) = 1}
= νω1

{z : fξ(z↾ξ) ∈ Kξ ∩ Lξ \ E′, z(ξ) = 1}

=
1

2
νω1

{z : fξ(z↾ξ) ∈ Kξ ∩ Lξ \ E′} =
1

2
µξ(Kξ ∩ Lξ \ E′),

while

µ(E \ Uξ) = νω1
f−1[E \ Uξ] ≥ νω1

f−1[E ∩ π−1
ξ [Kξ ∩ Lξ] \ Uξ]

= νω1
{z : f(z)↾ξ ∈ Kξ ∩ Lξ ∩ E′, f(z)(ξ) = 0}

= νω1
{z : fξ(z↾ξ) ∈ Kξ ∩ Lξ ∩ E′, z(ξ) = 0}

=
1

2
νω1

{z : fξ(z↾ξ) ∈ Kξ ∩ Lξ ∩ E′} =
1

2
µξ(Kξ ∩ Lξ ∩ E′).

Putting these together,

µ(E△Uξ) ≥ 1

2
µξ(Kξ ∩ Lξ) ≥ 1

4
. QQQ

In particular, µ(Uη△Uξ) ≥ 1
4 whenever ω ≤ η < ξ < ω1. So µ has uncountable Maharam type. As

µX = 1, the subspace measure µX on X also has uncountable Maharam type, and ω1 ∈ MahR(X) (531Ef).
Now we have

ω1 ≤ τ(µX) ≤ w(X)

(531Aa)

≤ w({0, 1}ω1) = ω1,

so τ(µX) = w(X) = ω1.

(h) Finally, I come to the metrizability of negligible subsets of X. Suppose that A ⊆ X and µXA = 0.
Then we have a sequence 〈Hn〉n∈N of closed subsets of X\A such that limn→∞ µHn = 1. For each n ∈ N there
is an ηn < ω1 such thatHn = X∩π−1

ηn
[πηn

[Hn]], by (e); setting η = max(ω, supn∈N ηn), Hn = X∩π−1
η [πη[Hn]]

for every n, so π−1
η [πη[A]] is disjoint from every Hn and is µ-negligible. As µη = µπ−1

η , µηπη[A] = 0. There
must therefore be a δ ≥ η such that πη[A] ⊆ Aηδ. By (c-iv), πδ↾A is injective.

Write B for πδ[A] and h for the inverse function (πδ↾A)−1 : B → A. Then x 7→ h(x)(ξ) : B → {0, 1} is
continuous for every ξ < ω1. PPP Induce on ξ. For ξ < δ the result is trivial, as x = h(x)↾δ for every x ∈ B.
For the inductive step to ξ ≥ δ, we have

{x : x ∈ B, h(x)(ξ) = 1} = {x : x ∈ B, h(x)↾ξ /∈ Lξ}
= {x : x ∈ B, h(x)↾ξ ∈ Kξ},

but x 7→ h(x)↾ξ is continuous, by the inductive hypothesis, so this is relatively open-and-closed in B. Thus
x 7→ h(x)(ξ) is continuous and the induction continues. QQQ

Accordingly πδ↾A and h are the two parts of a homeomorphism between A and B ⊆ {0, 1}δ, and A is
metrizable. So X and µX have all the properties claimed.
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531R Returning to the ideas of 531K, we have the following construction.

Lemma Let I be a set, and let BI , 〈ei〉i∈I , 〈φi〉i∈I , 〈CK〉K⊆I and J∗ : BI → [I]≤ω be as in 531I-531K. For
a ∈ BI and K ⊆ I, set SK(a) = upr(a,CK) = min{c : a ⊆ c ∈ CK}, the upper envelope of a in CK (313S).

(a) For all a ∈ BI , i ∈ I and K, L ⊆ I,
(i) SI(a) = a,
(ii) SL(a) ⊆ SK(a) if K ⊆ L,
(iii) J∗SK(a) ⊆ J∗(a) ∩K,
(iv) SI\{i}(a) = a ∪ φia,
(v) SKSL(a) = SK∩L(a).

(b) Whenever a ∈ BI , ǫ > 0 and m ∈ N, there is a finite L ⊆ I such that ν̄I(SK(a) \ a) ≤ ǫ whenever
L ⊆ K ⊆ I and #(I \K) ≤ m.

proof (a)(i) CI = BI contains a.

(ii) If K ⊆ L then CL ⊇ CK contains SK(a).

(iii) If i ∈ I \ (J∗(a) ∩ K) then SK(a) ∈ CK so φiSK(a) ∈ CK , by 531Kg. Also φiSK(a) ⊇ a. PPP If
i /∈ K then φiSK(a) = SK(a) ⊇ a, by 531Kf. If i /∈ J∗(a) then φiSK(a) ⊇ φia = a. QQQ So φiSK(a) ⊇ SK(a);
but they have the same measure, so φiSK(a) = SK(a). As i is arbitrary, J∗SK(a) ⊆ J∗(a) ∩K, by 531Kf
in the other direction.

(iv) By 531Kf again, SI\{i}(a) = φiSI\{i}(a) ⊇ φia; so SI\{i}(a) ⊇ a ∪ φia. On the other hand, by
531Ke, a ∪ φi(a) belongs to CI\{i}, so includes SI\{i}(a).

(v) By (iii),

J∗SKSL(a) ⊆ J∗SL(a) ∩K ⊆ J∗(a) ∩ L ∩K,

and SKSL(a) ∈ CK∩L; since also SKSL(a) ⊇ SL(a) ⊇ a, SKSL(a) ⊇ SK∩L(a). On the other hand, SK∩L(a)
belongs to CK and includes SL(a), so includes SKSL(a).

(b) Induce on m. For m = 0 the result is immediate from (a-i). For the inductive step to m + 1, take
L0 ∈ [I]<ω such that ν̄I(SK(a) \ a) ≤ 1

3ǫ whenever L0 ⊆ K and #(I \K) ≤ m. By 531Ja, there are a finite

set L1 ⊆ I and a b ∈ CL1
such that ν̄I(a△ b) ≤ 1

3ǫ; set L = L0 ∪ L1. Suppose L ⊆ J and #(I \ J) = m+ 1;
take i ∈ I \ J and set K = J ∪ {i}. Then

SJ(a) = SI\{i}SK(a) = SK(a) ∪ φiSK(a)

by (a-v) and (a-iv). So

ν̄I(SJ (a) \ a) ≤ ν̄I(SK(a) \ a) + ν̄I(φiSK(a) \ a)

≤ ǫ

3
+ ν̄Iφi(SK(a) \ a) + ν̄I(φia \ a)

≤ ǫ

3
+ ν̄I(SK(a) \ a) + ν̄Iφi(a \ b) + ν̄I(φib \ b) + ν̄I(b \ a)

≤ 2ǫ

3
+ ν̄I(a \ b) + ν̄I(b \ a) ≤ ǫ

because φi is a measure-preserving Boolean homomorphism and φib = b. Thus the induction continues.

531S Moving on from hypotheses expressible as statements about measure algebras, we have a further
result which can be used when Martin’s axiom is true.

Lemma Suppose that ω1 < mK (definition: 517O). Let 〈eξ〉ξ<ω1
be the standard generating family in Bω1

,
and 〈aξ〉ξ<ω1

a family of elements of Bω1
of measure greater than 1

2 . Then there is an uncountable set
Γ ⊆ ω1 such that infξ∈I aξ ∩ eξ meets infη∈J aη \ eη whenever I, J ⊆ Γ are finite and disjoint.

proof (a) Define J∗(a), for a ∈ Bω1
, and SI(a), for a ∈ Bω1

and I ⊆ ω1, as in 531J and 531R. Let P be
the set of pairs (c, I) where I ⊆ ω1 is finite, 0 6= c ⊆ infξ∈I aξ and I ∩ J∗(c) = ∅. Order P by saying that
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(c, I) ≤ (c′, I ′) if I ⊆ I ′ and c′ ⊆ c. Then P is a partially ordered set. For each ξ < ω1, aξ ∩ φξaξ belongs to
Cκ\{ξ} (531Je) and is non-zero, so pξ = (aξ ∩ φξaξ, {ξ}) belongs to P . The point of the proof is the following
fact.

(b) P satisfies Knaster’s condition upwards. PPP Let 〈(cξ, Iξ)〉ξ<ω1
be a family in P . Then there are an

α > 0 and an uncountable A0 ⊆ ω1 such that ν̄ω1
(cξ ∩ cη) ≥ α for all ξ, η ∈ A0 (525Tc). Next, there is

an uncountable A1 ⊆ A0 such that 〈Iξ〉ξ∈A1
is a ∆-system with root I say (4A1Db); let m ∈ N be such

that A2 = {ξ : ξ ∈ A1, #(Iξ \ I) = m} is uncountable. Finally, because J∗(cη) is countable for each η, and
〈Iξ \ I〉ξ∈A2

is disjoint, we can find an uncountable A3 ⊆ A2 such that J∗(cη)∩ Iξ \ I = ∅ whenever η, ξ ∈ A3

and η < ξ.
Take a strictly increasing sequence 〈ηk〉k∈N in A3 and a ζ ∈ A3 greater than every ηk. By 531Rb, there

is a finite set K ⊆ ω1 such that ν̄ω1
(SJ (1 \ cζ) \ (1 \ cζ)) < α whenever K ⊆ J ⊆ ω1 and #(ω1 \ J) = m. Let

k ∈ N be such that Iηk
\ I does not meet K. Set c′ζ = Sκ\(Iηk\I)

(1 \ cζ). Then

ν̄ω1
(c′ζ ∩ cζ) ≤ α < ν̄ω1

(cζ ∩ cηk
),

so c = cηk
\ c′ζ is non-zero; as c′ζ ⊇ 1 \ cζ , c ⊆ cζ . Set L = Iηk

∪ Iζ . Then J∗(cηk
) is disjoint from Iηk

and

from Iζ \ I, by the choice of A3, while

J∗(c′ζ) ⊆ J∗(1 \ cζ) \ (Iηk
\ I) = J∗(cζ) \ (Iηk

\ I)

(531R(a-iii)) is also disjoint from L; so J∗(c) ⊆ J∗(cηk
) ∪ J∗(c′ζ) is disjoint from L. Finally,

c ⊆ cηk
∩ cζ ⊆ infξ∈Iηk

aξ ∩ infξ∈Iζ aξ = infξ∈L aξ,

so (c, L) ∈ P . Now (c, L) dominates both (cηk
, Iηk

) and (cζ , Iζ).
What this shows is that if we write Q for

{{η, ζ} : η, ζ ∈ A3, (cη, Iη) and (cζ , Iζ) are compatible upwards in P},

then whenever ζ ∈ A3 and M ⊆ A3 ∩ ζ is infinite there is an η ∈M such that {η, ζ} ∈ Q. By 5A1Hb, there
is an uncountable A4 ⊆ A3 such that [A4]2 ⊆ Q, that is, 〈(cξ, Iξ)〉ξ∈A4

is upwards-linked. As 〈(cξ, Iξ)〉ξ<ω1

is arbitrary, P satisfies Knaster’s condition upwards. QQQ

(c) By 517S, there is a sequence 〈Rn〉n∈N of upwards-directed subsets of P covering {pξ : ξ < ω1}; as ω1

is uncountable, there must be some n such that Γ = {ξ : pξ ∈ Rn} has cardinal ω1. In this case, {pξ : ξ ∈ Γ}
is upwards-centered in P . If I, J ⊆ Γ are finite and disjoint, then there must be a (c,K) ∈ P which is an
upper bound for {pξ : ξ ∈ I ∪ J}; now I ∪ J ⊆ K does not meet J∗(c), while c ⊆ infξ∈I∪J aξ. But this
means that

ν̄ω1
(c ∩ infξ∈I eξ ∩ infη∈J(1 \ eη)) = 2−#(I∪J)ν̄ω1

c > 0,

and

0 6= c ∩ infξ∈I eξ ∩ infη∈J(1 \ eη) ⊆ infξ∈I(aξ ∩ eξ) ∩ infη∈J(aη \ eη).

So we have a set Γ of the kind required.

531T Theorem (Fremlin 97) Suppose that ω ≤ κ < mK. If X is a Hausdorff space and κ ∈ MahR(X),
then {0, 1}κ is a continuous image of a compact subset of X.

proof (a) Because κ < mK ≤ m(A) for every probability algebra A (525Tb), κ is a measure-precaliber of
all probability algebras (525Fb).

(b) If κ = ω, X has a compact subset K which is not scattered (531E(e-ii), [0, 1] is a continuous image
of K (4A2G(j-iv) again) and {0, 1}N is a continuous image of a closed subset of K (using 4A2Uc).

(c) If κ = ω1, let K be a compact subset of X such that ω1 ∈ MahR(K), µ a Maharam-type-homogeneous
Radon probability measure on K with Maharam type ω1, and (A, µ̄) its measure algebra. Let 〈dξ〉ξ<ω1

be a
τ -generating stochastically independent family of elements of A of measure 1

2 . For ξ < ω1 let Eξ ∈ domµ be

such that E•

ξ = dξ, and K ′
ξ ⊆ Eξ, K ′′

ξ ⊆ K \Eξ compact sets of measure greater than 1
4 ; set Kξ = K ′

ξ ∪K ′′
ξ

and aξ = K•

ξ in A. Because (A, µ̄, 〈dξ〉ξ<ω1
) is isomorphic to (Bω1

, ν̄ω1
, 〈eξ〉ξ<ω1

), 531S tells us that there is
an uncountable set Γ ⊆ ω1 such that
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0 6= infξ∈I(aξ ∩ dξ) ∩ infη∈J(aη \ dη) = (K ∩⋂
ξ∈I K

′
ξ ∩

⋂
η∈J K

′′
η )•

whenever I, J ⊆ Γ are finite. Just as in part (b) of the proof of 531L, it follows that there is a continuous
surjection from

⋂
ξ∈ΓKξ onto {0, 1}Γ ∼= {0, 1}ω1 .

(d) If κ ≥ ω2, then 531Lb gives the result.

531U If we are willing to settle for weaker conclusions, there are versions of 531L which do not call for
any information on precalibers.

Proposition Let X be a Hausdorff space.
(a) Give the space PR(X) of Radon probability measures on X its narrow topology (437J). If κ ≥ ω2

belongs to MahR(X), then {0, 1}κ is a continuous image of a compact subset of PR(X).
(b) Give the space PR(X × X) its narrow topology. Then its tightness t(PR(X × X)) is at least

sup MahR(X).

proof (a)(Plebanek 02)(i) The argument begins by copying part of the proof of 531Lb. By 531Ec, there is
a compact set K ⊆ X such that κ ∈ MahR(K). Let µ be a Maharam-type-homogeneous Radon probability
measure on K with Maharam type κ, Σ its domain, and (A, µ̄) its measure algebra. Let 〈eξ〉ξ<κ be a
stochastically independent τ -generating set of elements of measure 1

2 in A. For each ξ < κ, let Eξ ∈ Σ be

such that E•

ξ = eξ in A; let K ′
ξ ⊆ Eξ, K ′′

ξ ⊆ K \Eξ be compact sets of measure at least 5
12 . By 531K, copied

into A, there are 〈cξ〉ξ<κ and Γ ∈ [κ]κ such that cξ ⊆ (K ′
ξ ∪K ′′

ξ )• and µ̄cξ ≥ 2
3 for each ξ, and

µ̄(infξ∈I cξ ∩ eξ ∩ infη∈J cη \ eη) =
1

2#(I∪J)
µ̄(infξ∈I∪J cξ)

whenever I, J ⊆ Γ are disjoint finite sets. In particular, infξ∈I cξ ∩ eξ meets infη∈J cη \ eη whenever I, J ⊆ Γ
are disjoint finite sets and infξ∈I∪J cξ 6= 0. But as cξ ∩ eξ ⊆ (K ′

ξ)• and cξ \ eξ ⊆ (K ′′
ξ )• for every ξ, we see

that
⋂

ξ∈I K
′
ξ ∩

⋂
ξ∈J K

′′
ξ 6= ∅ whenever I, J ⊆ Γ are disjoint finite sets and infξ∈I∪J cξ 6= 0.

(ii) Now for the new idea. For each I ⊆ Γ, set

LI = {ν : ν ∈ PR(K), νK ′
ξ ≥ 2

3
for ξ ∈ I and νK ′′

ξ ≥ 2

3
for ξ ∈ Γ \ I}.

Then LI 6= ∅. PPP Consider the families {cξ : ξ ∈ Γ} ⊆ A and {K ′
ξ : ξ ∈ I}∪ {K ′′

ξ : ξ ∈ Γ \ I} ⊆ PX. Because

µ̄ : A → [0, 1] is additive and µ̄cξ ≥ 2
3 for every ξ ∈ Γ, the intersection number of {cξ : ξ ∈ Γ} must be at

least 2
3 (391I). So if ξ0, . . . , ξn ∈ Γ there is a set J ⊆ n+ 1 such that #(J) ≥ 2

3 (n+ 1) and infj∈J cξj 6= 0. In
this case, setting J ′ = {j : j ∈ J , ξj ∈ I} and J ′′ = J \J ′ we have

⋂
j∈J ′ K ′

ξj
∩⋂

j∈J ′′ K ′′
ξj

6= ∅. As ξ0, . . . , ξn

are arbitrary, {K ′
ξ : ξ ∈ I} ∪ {K ′′

ξ : ξ ∈ Γ \ I} has intersection number at least 2
3 .

By 391I in the other direction, there is an additive functional ν̃ : PK → [0, 1] such that ν̃K = 1, ν̃K ′
ξ ≥ 2

3

for every ξ ∈ I and ν̃K ′′
ξ ≥ 2

3 for every ξ ∈ Γ \ I. By 416K, there is a Radon measure ν′ on K such that

ν′K ′
ξ ≥ 2

3 for every ξ ∈ I, ν′K ′′
ξ ≥ 2

3 for every ξ ∈ Γ \ I, and ν′K ≤ 1. Setting ν =
1

ν′K
ν′, we see that

ν′ ∈ LI . QQQ

(iii) Set

L =
⋃

I⊆Γ

LI =
⋂

ξ∈Γ

({ν : ν ∈ PR(K), νK ′
ξ ≥ 2

3
} ∪ {ν : ν ∈ PR(K), νK ′′

ξ ≥ 2

3
})

= PR(K) \
⋃

ξ∈Γ

({ν : ν(K \K ′
ξ) >

1

3
} ∩ {ν : ν(K \K ′′

ξ ) >
1

3
}).

Then L is closed in PR(K) for the narrow topology. Since all the sets {ν : νK ′
ξ ≥ 2

3} and {ν : νK ′′
ξ ≥ 2

3}
are closed in PR(K), we have a continuous function f : L→ {0, 1}Γ defined by saying that

f(ν)(ξ) = 1 if νK ′
ξ ≥ 2

3

= 0 if νK ′′
ξ ≥ 2

3
,
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and (ii) tells us that this is surjective.

(iv) Recall now that the compact space PR(K) can be identified with the subspace {µ : µ(X \K) = 0}
of PR(X) (use 437Nb). So {0, 1}κ ∼= {0, 1}Γ is a continuous image of a compact subset of PR(X).

(b) Take κ ∈ MahR(X), and a Maharam homogeneous probability measure µ on X with Maharam type
κ; write Σ for the domain of µ. I need to show that κ ≤ t(PR(X ×X)).

(i)(Plebanek & Sobota 15) To begin with (down to the end of (iii) below), suppose that X is
compact and that κ = ω1. In PR(X ×X) let L be the set of measures with both marginals equal to µ. By
437N(a-i), L is compact. If E, F ∈ Σ, ν 7→ ν(E × F ) : L → R is continuous. PPP Take ν0 ∈ L and ǫ > 0.
Then there are open G ⊇ E, H ⊇ F such that

ǫ ≥ µ(G \ E) + µ(H \ F )

= ν((G \ E) ×X) + ν(X × (H \ F )) ≥ ν((G×H) \ (E × F ))

for every ν ∈ L. Now U = {ν : ν ∈ PR(X × X), ν(G × H) > ν0(G × H) − ǫ} is a neighbourhood of ν0
(437Kd), and if ν ∈ U ∩ L then

ν(E × F ) ≥ ν(G×H) − ǫ ≥ ν0(G×H) − 2ǫ ≥ ν0(E × F ) − 2ǫ.

Similarly, there are neighbourhoods V , W of ν0 such that

ν((X \ E) ×X) ≥ ν0((X \ E) ×X) − 2ǫ for every ν ∈ V ∩ L,

ν(E × (X \ F )) ≥ ν0(E × (X \ F )) − 2ǫ for every ν ∈W ∩ L,

But now we see that

ν(E × F ) ≤ ν0(E × F ) + 4ǫ for every ν ∈ V ∩W ∩ L,

|ν(E × F ) − ν0(E × F )| ≤ 4ǫ for every ν ∈ U ∩ V ∩W ∩ L.

As ν0 and ǫ are arbitrary, ν 7→ ν(E × F ) is continuous on L. QQQ

(ii) Choose 〈Eξ〉ξ<ω1
, 〈Gξ〉ξ<ω1

inductively in such a way that for each ξ < ω1

Eξ ∈ Σ, µEξ = 1
2 ,

Eξ is independent of the σ-algebra generated by {Gη : η < ξ} ∪ {Eη : η < ξ},

Gξ ⊆ X is open, Eξ ⊆ Gξ, µGξ ≤ 3
5 .

Now whenever ξ < ω1 and I ∈ [ω1 \ ξ]<ω there is a νξI ∈ L such that νξI(Gη ×Gη) ≤ 9
25 for every η < ξ and

νξI(Gζ ×Gζ) ≥ 1
2 for every ζ ∈ I. PPP Set n = #(I); let A be the set of atoms of the algebra generated by

{Eη : η ∈ I}, V =
⋃

A∈AA×A and νξI = 2nµ2 V (234M) where µ2 is the Radon product measure µ× µ,

so that µA = 2−n for A ∈ A, µ2V = 2−n and νξI is a Radon probability measure on X × X (416Sa). If
F ∈ domµ then

νξI(F ×X) = 2n
∑

A∈A

µ2(A2 ∩ (F ×X))

= 2n
∑

A∈A

µ(A ∩ F ) · µA =
∑

A∈A

µ(A ∩ F ) = µF

and similarly νξI(X × F ) = µF ; thus νξI ∈ L. If η < ξ then

νξIG
2
η = 2n

∑

A∈A

(µ(A ∩Gη))2 = 2n
∑

A∈A

(µA · µGη)2

(because Gη and 〈Eζ〉ζ∈I are independent)

= (µGη)2 ≤ 9

25
.
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If ζ ∈ I then

νξIG
2
ζ ≥ νξIE

2
ζ = 2n

∑

A∈A

(µ(A ∩ Eζ))2 = 2n
∑

A∈A,A⊆Eζ

(µA)2

= 2−n#({A : A ∈ A, A ⊆ Eζ}) =
1

2
.

So νξI works. QQQ

(iii) Now, for each ξ < ω1, we can choose νξ ∈ ⋂
ξ≤ζ<ω1

{νξI : ζ ∈ I ∈ [ω1 \ ξ]<ω}. Because L is closed,

νξ ∈ L; because ν 7→ νE2 : L→ R is continuous whenever E ∈ Σ, by (i), νξG
2
η ≤ 9

25 for η < ξ and νξG
2
ζ ≥ 1

2

for ζ ≥ ξ. Next, there is a ν ∈ ⋂
η<ω1

{νξ : η < ξ < ω1}, and now νG2
η ≤ 9

25 for every η < ω1. Writing

D = {νξ : ξ < ω1} ⊆ L, ν ∈ D; but any countable C ⊆ D is included in {νξ : ξ ≤ ζ} for some ζ < ω1, so
that

sup{ν′G2
ζ : ν′ ∈ C} ≤ 9

25
<

1

2
≤ inf{νξG2

ζ : ξ ≤ ζ} ≤ νGζ2

and ν /∈ C. So D and ν witness that t(PR(X ×X)) ≥ ω1.

(iv) Still supposing that X is compact, consider other possibilities for κ. If κ = 0 then of course
κ ≤ t(PR(X×X)). If κ = ω, then X has a compact subset which is not scattered (531Ee), so X has a point
x which is not isolated; setting A = X \ {x}, x ∈ A \ B whenever B ∈ [A]<ω, so ω ≤ t(X) ≤ t(X ×X) ≤
t(PR(X ×X)) by 5A4Bb and 437Jd. If κ ≥ ω2, then

κ = t({0, 1}κ)

(by 5A4I(b-iii))

≤ t(PR(X))

(by (a) above and 5A4Bb)

≤ t(PR(X ×X))

because PR(X) is homeomorphic to a subspace of PR(X ×X), by 437Nb.

(v) This deals with the case in which X is compact. For the general case, we see from 531Ec that there
is a compact set K ⊆ X such that κ ∈ MahR(K), so (i)-(iv) tell us that t(PR(K×K)) ≥ κ. But PR(K×K)
can be identified with a subset of PR(X ×X) (437Nb) and t(PR(X ×X)) ≥ t(PR(K ×K)) ≥ κ.

531V 531Lb and 531U both depend on Hajnal’s Free Set Theorem (5A1Ic), which here is useful when
dealing with cardinals greater than or equal to ω2. More elementary arguments, as in 531La, give similar
results for ω, leaving ω1 exposed as a special case. In fact it really is different in this context, as is shown
by the following.

Proposition (a) Suppose that the continuum hypothesis is true. Then there is a compact Hausdorff space
X such that ω1 ∈ MahR(X) but {0, 1}ω1 is not a continuous image of a closed subset of PR(X).

(b)(Plebanek 97) Suppose that there is a family 〈Wξ〉ξ<ω1
in Nω1

such that every closed subset of
{0, 1}ω1 \⋃ξ<ω1

Wξ is scattered. Then there is a compact Hausdorff space X such that ω1 ∈ MahR(X) but

{0, 1}ω1 is not a continuous image of a closed subset of X.

proof (a)(i) In fact this is witnessed by the space X described in 531Q. (Since we are assuming that c = ω1,
we certainly have cfNω = ω1, so we can perform the construction in 531Q.) For the present argument, all
we need to know is that X is a compact Hausdorff space of weight at most ω1 carrying a Radon probability
measure with uncountable Maharam type for which every negligible subset is separable and metrizable.

Let µ̂ be such a measure. Then

ω1 ≤ τ(µ̂) ≤ w(X) ≤ ω1

by 511Gc and 531Aa. Next, by 524Pf (or directly from the construction in 531Q), the cofinality of the null
ideal N (µ̂) is max(cfNω, cf[ω1]≤ω) = ω1; let 〈Hξ〉ξ<ω1

be a cofinal family in N (µ̂) consisting of Borel sets.
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(ii) Write B for the Borel σ-algebra of X, M for the set of totally finite Borel measures on X which are
absolutely continuous with respect to µ = µ̂↾B, and for ξ < ω1 write Mξ for the set of totally finite Borel
measures on X for which X \Hξ is negligible.

(ααα) #(M) ≤ c. PPP For a non-negative µ-integrable real-valued function f write νf for the cor-
responding indefinite-integral measure, so that νfE =

∫
f × χE dµ for E ∈ B. By the Radon-Nikodým

theorem (232F), every member of M is expressible as νf for some f ; moreover, if f =a.e. g then νf = νg.
So #(M) ≤ #(L1(µ)). Now L1(µ) can be identified with L1(A, µ̄), where (A, µ̄) is the measure algebra of
µ (365B); since µ̂ is the completion of µ, we can identify (A, µ̄) with the measure algebra of µ̂ (322Da) and
apply 529Ba to see that the topological density of L1(A, µ̄) is ω1. Since L1(A, µ̄) is metrizable,

#(M) ≤ #(L1(µ)) = #(L1(A, µ̄)) ≤ d(L1(A, µ̄))ω = ωω
1 = c. QQQ

(βββ) For every ξ < ω1, #(Mξ) ≤ c. PPP A member of Mξ is determined by its restriction to the Borel
σ-algebra of Hξ. Now Hξ is separable and metrizable, therefore second-countable, and its topology has a
countable base Uξ containing Hξ and closed under finite intersections. If ν, ν′ are different totally finite
Borel measures on Hξ, then ν↾Uξ 6= ν′↾Uξ by the Monotone Class Theorem (136C again), so the same is
true if ν, ν′ are different members of Mξ, and

#(Mξ) ≤ #(RUξ) = c. QQQ

(γγγ) Every totally finite Borel measure ν on X can be expressed as a sum ν′ + ν′′ where ν′ ∈M and
ν′′ ∈ ⋃

ξ<ω1
Mξ. PPP By 232Ia, we can express ν as ν′ + ν′′ where ν′, ν′′ are countably additive, ν′ ∈M and

ν′′ is singular with respect to µ. There is a a Borel set F such that µF = ν′′(X \ F ) = 0; and now there is
a ξ < ω1 such that F ⊆ Hξ, so that ν′′ ∈Mξ and we have found a suitable expression for ν. QQQ

(iii) Of course every member of PR(X) is determined by its restriction to B. We therefore have

#(PR(X)) ≤ #(
⋃

ξ<ω1

M ×Mξ) ≤ max(ω1, sup
ξ<ω1

#(M) · #(Mξ))

(taking the cardinal products)

= c = ω1 < 2ω1 = #({0, 1}ω1).

So there cannot possibly be a continuous surjection from any subset of PR(X) onto {0, 1}ω1 .

(b) For the second example we can use a variation in the construction in 531M.

(i) Set Eξ = {z : z ∈ {0, 1}ω1 , z(ξ) = 1} for each ξ < ω1. Choose a family 〈Kξn〉ξ<ω1,n∈N of compact
sets in {0, 1}ω1 as follows. Given 〈Kηn〉η<ξ,n∈N, where ξ < ω1, such that

⋃
n∈NKηn is conegligible for every

η < ξ, then for each j ∈ N we can find a family 〈n(ξ, η, j)〉η<ξ in N such that Lξj =
⋂

η<ξ

⋃
i≤n(ξ,η,j)Kηi

has measure at least 1− 2−j−4. For j ∈ N choose a compact set K ′
ξj ⊆ Lξj \ (Wξ ∪

⋃
i<j K

′
ξi) of measure at

least 1 − 2−j−3 − νω1
(
⋃

i<j K
′
ξi). Set

Kξ,2i = K ′
ξi ∩ Eξ, Kξ,2i+1 = K ′

ξi \ Eξ

for each i ∈ N, and continue. Note that if ξ < ω1, i ∈ N and z, z′ ∈ Kξi then z(ξ) = z′(ξ).

(ii) At the end of the induction, let C be the algebra of subsets of {0, 1}ω1 generated by {Kξi : ξ < ω1,
i ∈ N}, and X its Stone space. Then we have a Radon probability measure µ on X defined by setting

µĈ = νω1
C for every C ∈ C, where Ĉ is the open-and-closed subset of X corresponding to C. For η < ξ < ω1,

we have

µ(K̂η0△K̂ξ0) = νω1
(Kη0△Kξ0)

= νω1
((Eη ∩K ′

η0)△(Eξ ∩K ′
ξ0))

≥ νω1
(Eη△Eξ) − νω1

(Eη \K ′
η0) − νω1

(Eξ \K ′
ξ0)

≥ 1

2
− 1

8
− 1

8
=

1

4
,
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so the Maharam type of µ is at least ω1 and ω1 ∈ MahR(X).

(iii) Let F ⊆ X be a non-scattered closed set. Then there is a ζ < ω1 such that F 6⊆ ⋃
i∈N K̂ζi. PPP???

Otherwise, set

R =
⋂

ξ<ω1

⋃
i∈N(F ∩ K̂ξi) ×Kξi ⊆ X × {0, 1}ω1 .

Note that for each ξ < ω1 the K̂ξi are disjoint open-and-compact sets covering the compact set F , so

{i : F ∩ K̂ξi 6= ∅} is finite and
⋃

i∈N(F ∩ K̂ξi)×Kξi is compact; thus R is compact. If (x, z) and (x′, z′) ∈ R

and x 6= x′, there must be some C ∈ C such that x ∈ Ĉ and x′ /∈ Ĉ, so there must be some ξ < ω1 and

i ∈ N such that just one of x, x′ belongs to K̂ξi; in this case, only the corresponding one of z, z′ can belong
to Kξi, and z 6= z′.

Conversely, if (x, z) and (x′, z′) ∈ R and z 6= z′, there is some ξ such that z(ξ) 6= z′(ξ). In this case, if i,

j ∈ N are such that (x, z) ∈ K̂ξi ×Kξi and (x′, z′) ∈ K̂ξj ×Kξj , i 6= j and x 6= x′.
This shows that R is the graph of a bijection from F to R[F ]. Because R is a compact subset of F ×R[F ],

it is a homeomorphism, and R[F ] is not scattered. But, for each ξ < ω1, R[F ] ⊆ ⋃
i∈NKξi is disjoint from

Wξ; and all compact subsets of {0, 1}ω1 \⋃ξ<ω1
Wξ are supposed to be scattered. XXXQQQ

(iv) Take x ∈ F \⋃i∈N K̂ζi. Then χ(x,X) ≤ ω. PPP Consider the set

V =
⋂

η≤ζ,i∈N{x′ : x′ ∈ X, x′ ∈ K̂ηi ⇐⇒ x ∈ K̂ηi}.

This is a Gδ set containing x. ??? If there is an x′ ∈ V \ {x}, there must be some ξ < ω1 and j ∈ N such

that just one of x, x′ belongs to K̂ξj . In this case, ξ > ζ, so Kξj ⊆
⋃

i≤kKζi and K̂ξj ⊆
⋃

i≤k K̂ζi for some

k ∈ N. But neither x nor x′ belongs to
⋃

i≤k K̂ζi. XXX Thus V = {x}; by 4A2Gd as usual, χ(x,X) ≤ ω. QQQ

(v) Thus we see that whenever F ⊆ X is a non-scattered closed set, there is an x ∈ F such that
χ(x,X) is countable. By 5A4C(d-iii), {0, 1}ω1 is not a continuous image of a closed subset of X.

531X Basic exercises (a) Show that there is a Hausdorff completely regular quasi-Radon probability
space (X,T,Σ, µ) with Maharam type greater than #(X). (Hint : 523Ib.)

(b) Give an example of a separable Radon measure space with magnitude 2c . (Hint : 4A2B(e-ii).)

(c) Let I‖ be the split interval (343J, 419L). Show that MahR(I ) = {0, ω}.

(d) Let I be an infinite set, and βI the Stone-Čech compactification of the discrete space I. Show that
2#(I) is the greatest member of MahR(βI). (Hint : 5A4Ia, 515I.)

(e) For a topological space X, write MahqR(X) for the set of Maharam types of Maharam-type-homo-
geneous quasi-Radon probability measures on X. (i) Show that κ ≤ w(X) for every κ ∈ MahqR(X). (ii)
Show that MahqR(Y ) ⊆ MahqR(X) for every Y ⊆ X. (iii) Show that if Y is another topological space, and
neither X nor Y is empty, then MahqR(X × Y ) = MahqR(X) ∪ MahqR(Y ).

>>>(f) Let X be a Hausdorff topological group carrying Haar measures, and A its Haar measure algebra
(442H, 443A). Show that w(X) = max(c(A), τ(A)). (Hint : 443Gf, 529Ba.) Show that if X is σ-compact,
locally compact, Hausdorff and not discrete then w(X) ∈ MahR(X).

(g) Let X be a Hausdorff space such that MahR(X) ⊆ {0, ω}, and N the null ideal of Lebesgue measure
on R. Show that the union of fewer than addN universally Radon-measurable subsets of X is universally
Radon-measurable.

(h) Let X be a completely regular Hausdorff space and κ an infinite cardinal. Suppose that whenever Y
is a Hausdorff continuous image of X of weight κ then MahR(Y ) ⊆ κ. Show that MahR(X) ⊆ κ.

(i) Let X be a Hausdorff space, and 〈Ei〉i∈I a family of universally Radon-measurable subsets of X such
that #(I) < covNκ for every κ. Show that MahR(

⋃
i∈I Ei) =

⋃
i∈I MahR(Ei).
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(j) Let K be an Eberlein compactum. Show that MahR(K) ⊆ {0, ω}. (Hint : 467Xj.)

(k) Let X be a Hausdorff space and κ a cardinal. Show that there is a Radon probability measure on X
with Maharam type κ iff either κ is finite and 2κ ≤ 2#(X) or κ = ω ≤ #(X) or κ ∈ MahR(X) or cfκ = ω
and κ = sup MahR(X).

>>>(l) Let X be a Hausdorff space and κ an infinite cardinal. (i) Show that {0, 1}κ is a continuous image
of a compact subset of X iff [0, 1]κ is a continuous image of a compact subset of X, and that in this case
{0, 1}κ is a continuous image of a compact subset of PR(X). (Hint : 437Xt.) (ii) Show that if X is normal
and {0, 1}κ is a continuous image of a closed subset of X then [0, 1]κ is a continuous image of X. (Hint :
4A2F(d-ix).) (iii) Show that if X is completely regular and {0, 1}κ is a continuous image of a compact
subset of X then [0, 1]κ is a continuous image of X. (Hint : 4A2F(h-iii).)

(m) Let (X,T,Σ, µ) be a Hausdorff quasi-Radon probability space. Show that the Maharam type of µ
is at most max(ω, 2χ(X)). (Hint : 5A4Ba, 5A4Bg.)

(n) In the language of 531R, show that if a, b ∈ BI and K ⊆ I \ J∗(b) is finite, then ν̄I(a△ SI\K(a)) ≤
2#(I)ν̄I(a△ b).

(o) Show that if mK > ω1 and X is a countably tight compact Hausdorff space, then ω1 /∈ MahR(X).

(p) Let X be an infinite compact Hausdorff space with a strictly positive Radon measure µ. Show that
the topological density of PR(X), with its narrow topology, is at most the Maharam type of µ. (Hint : the
indefinite-integral measures over µ are dense in PR(X).)

(q) Let W ⊆ Nω be such that every compact subset of {0, 1}ω \⋃W is scattered. Show that there is a
family W ′ ⊆ Nω1

such that #(W ′) = #(W) and every compact subset of {0, 1}ω1 \⋃W ′ is scattered.

531Y Further exercises (a) Let κ be an infinite cardinal such that κ = κc . Show that there is a set
X ⊆ {0, 1}κ, of full outer measure for νκ, such that every subset of X with cardinal c is discrete. Show that
MahqR(X) (531Xe) contains κ but not ω.

(b) Let X and Y be infinite compact Hausdorff spaces, and suppose that there is a norm-preserving
linear isomorphism between the dual spaces C(X)∗ and C(Y )∗. Show that MahR(X) = MahR(Y ).

(c) Let µ be a τ -additive Borel probability measure on a topological space X, and κ a cardinal of
uncountable cofinality such that (i) χ(x,X) < cfκ for every x ∈ X (ii) no non-negligible measurable set can
be covered by cfκ negligible sets. Show that the Maharam type of µ cannot be κ.

(d) Let X be a completely regular Hausdorff space and κ ≥ ω2 a cardinal. Show that if κ ∈ MahR(X)
then the Banach space ℓ1(κ) is isomorphic, as linear topological space, to a subspace of the Banach space
Cb(X).

(e) Let X be a locally compact Hausdorff space and κ an infinite cardinal such that ℓ1(κ) is isomorphic,
as linear topological space, to a subspace of C0(X) (definition: 436I). Show that κ ∈ MahR(X). (Hint :
Reduce to the case in which X is compact. Show that if 〈ei〉i∈N is the standard generating family in
ℓ1, n ∈ N and 〈αij〉i<j≤n is a family in [0,∞[, then there is a family 〈ǫij〉i<j≤n in {−1, 1} such that
‖∑i<j≤n ǫijαij(ei − ej)‖1 ≥ ∑

i<j≤n αij . See Pe lczyński 68.)

531Z Problems (a) Can there be a perfectly normal compact Hausdorff space X such that ω2 ∈
MahR(X)? (See 531Q, 554Xd.)

(b) Can there be a hereditarily separable compact Hausdorff space X such that ω2 ∈ MahR(X)?
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531 Notes and comments This section is directed to Radon measures, studying MahR(X); of course we
can look at Maharam types of quasi-Radon measures (531Xe, 531Ya), or Borel or Baire measures for that
matter. In the next section I shall have something to say about completion regular measures. The function
X 7→ MahR(X) has a much more satisfying list of basic properties (531E, 531G) than the others.

From 531L and 531T we see that there are many cardinals κ such that whenever X is a Hausdorff space
and κ ∈ MahR(X), then there is a continuous function from a closed subset of X onto {0, 1}κ. Such cardinals
are said to have Haydon’s property. From 531L, 531M and 531T we see that

ω has Haydon’s property (531La);
if κ ≥ ω2 and κ is a measure-precaliber of Bκ then κ has Haydon’s property (531Lb);

c(+n) has Haydon’s property for n ≥ 1 (525K);
if κ ≥ ω is not a measure-precaliber of Bκ then κ does not have Haydon’s property (531M);
if ω1 < mK then ω1 has Haydon’s property (531T).

(See also 544D.) Thus if mK > ω1, an infinite cardinal κ has Haydon’s property iff it is a measure-precaliber
of every probability algebra. ω1 really is different; it is possible that ω1 is a precaliber of every probability
algebra but does not have Haydon’s property. To check this, it is enough to find a model of set theory in
which covNω1

> ω1 (525Gc) but there is a family 〈Wξ〉ξ<ω1
as in 531Vb; one is described in 553F.

You will observe that the key arguments of this section all depend on analysis of the measure algebras
Bκ. We have already seen in §524 that many properties of a Radon measure can be determined from its
measure algebra. Here we find that some important topological properties of compact Hausdorff spaces can
be determined by the measure algebras of the Radon measures they carry. The results here largely depend
for their applications on knowing enough about precalibers; I remind you that it seems to be still unknown
whether it is possible that every infinite cardinal should be a measure-precaliber of every probability algebra.

The remarks above have concerned the existence of continuous surjections onto {0, 1}κ; a natural place to
start, because measures of Maharam type κ arise immediately from such surjections. In 531N-531Q I look at
different measures of the richness of a compact space X. Concerning characters, 531N-531O give us quite a
lot of information, slightly irregular at the edges. I ought to offer a remark on the context of 531Q. In some
set theories (for instance, when m > ω1), we find not only that ω1 is a precaliber of every measurable algebra,
but also that a compact Hausdorff space is hereditarily separable iff it is hereditarily Lindelöf (Fremlin

84a, 44H); so that, for instance, a hereditarily separable compact Hausdorff space must be first-countable,
so cannot carry a Radon measure of uncountable Maharam type. Typically, the situation is very different if
the continuum hypothesis or Jensen’s ♦ is true, and 531Q is a descendant of the construction in Kunen 81

of a non-separable hereditarily Lindelöf compact Hausdorff space. See Džamonja & Kunen 93 for further
exploration of these questions.

Following the lead of Haydon 77, more than half of this section is devoted to investigating properties of
compact Hausdorff spaces carrying Radon measures of particular Maharam types. Most of the topological
properties considered are very natural ones in this context. But in 531U I add an interesting pair of results
concerning topological properties of PR(X) or PR(X × X), less obviously connected to individual Radon
measures on X.

Version of 1.6.13

532 Completion regular measures on {0, 1}I
As I remarked in the introduction to §434, the trouble with topological measure theory is that there are

too many questions to ask. In §531 I looked at the problem of determining the possible Maharam types of
Radon measures on a Hausdorff space X. But we can ask the same question for any of the other classes of
topological measures listed in §411. It turns out that the very narrowly focused topic of completion regular
Radon measures on powers of {0, 1} already leads us to some interesting arguments.

I define the classes MahcrR(X), corresponding to the MahR(X) examined in §531, in 532A. They are less
accessible, and I almost immediately specialize to the relation λ ∈ MahcrR({0, 1}κ). This at least is more
or less convex (532G, 532K), and can be characterized in terms of the measure algebras Bλ (532I). On the
way it is helpful to extend the treatment of completion regular measures given in §434 (532D, 532E, 532H).
For fixed infinite λ, there is a critical cardinal κ0 ≤ (2λ)+ such that λ ∈ MahcrR({0, 1}κ) iff λ ≤ κ < κ0;
under certain conditions, when λ = ω, we can locate κ0 in terms of the cardinals of Cichoń’s diagram (532P,

c© 2004 D. H. Fremlin
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532Q). This depends on facts about the Lebesgue measure algebra (532M, 532O) which are of independent
interest. Finally, for other λ of countable cofinality, the square principle and Chang’s transfer principle are
relevant (532R-532S).

532A Definition If X is a topological space, I write Mahcr(X) for the set of Maharam types of Ma-
haram-type-homogeneous completion regular topological probability measures on X. If X is a Hausdorff
space, I write MahcrR(X) for the set of Maharam types of Maharam-type-homogeneous completion regular
Radon probability measures on X.

532B Proposition Let X be a Hausdorff space. Then a probability algebra (A, µ̄) is isomorphic to
the measure algebra of a completion regular Radon probability measure on X iff (α) τ(Aa) ∈ MahcrR(X)
whenever Aa is a non-zero homogeneous principal ideal of A (β) the number of atoms of A is not greater
than the number of points x ∈ X such that {x} is a zero set.

proof (a) Suppose that µ is a completion regular Radon probability measure on X and Aa is a non-zero
homogeneous principal ideal of its measure algebra A. Let F be such that F • = a and ν the indefinite-

integral measure over µ defined by the function
1

µF
χF . Then ν is a Radon measure (416Sa), inner regular

with respect to the zero sets (412Q); and its measure algebra is isomorphic, up to a scalar multiple, to Aa,
so is homogeneous with Maharam type τ(Aa). So ν witnesses that τ(Aa) ∈ MahcrR(X). This shows that A

satisfies condition (α).
As for condition (β), each atom of A is of the form {x}• for some x ∈ X such that µ{x} > 0 (414G, or

otherwise). In this case, because µ is completion regular, {x} must be a zero set. So we have at least as
many singleton zero sets as we have atoms in A.

(b) Now suppose that (A, µ̄) satisfies the conditions. I copy the argment of 531F. Express (A, µ̄) as the
simple product of a countable family 〈(Ai, µ̄

′
i)〉i∈I of non-zero homogeneous measure algebras. For i ∈ I, set

κi = τ(Ai) and γi = µ̄′
i1Ai

. Set J = {i : i ∈ I, κi ≥ ω}. (β) tells us that #(I \ J) is less than or equal to the
number of singleton zero sets in X; let 〈xi〉i∈I\J be a family of distinct elements of X such that every {xi}
is a zero set.

For each i ∈ J , (α) tells us that there is a completion regular Maharam-type-homogeneous Radon
probability measure µi on X with Maharam type κi. Now there is a disjoint family 〈Ei〉i∈J of Baire subsets
of X such that µiEi > 0 for every i ∈ J . PPP We may suppose that J ⊆ N. Choose 〈Ei〉i∈N, 〈Fi〉i∈N

inductively, as follows. F0 = X \ {xi : i ∈ I \ J}. Given that Fi is a Baire set and µjFi > 0 for every
j ∈ J \ i, then if i /∈ J set Ei = ∅ and Fi+1 = Fi; otherwise, because µi is atomless and completion regular,
we can find, for each j ∈ J such that j > i, a Baire set Gij ⊆ Fi such that µiGij < 2−jµiFi and µjGij > 0;
set Fi+1 =

⋃
j∈J,j>iGij and Ei = Fi \ Fi+1; continue. QQQ Now set

µE =
∑

i∈I\J,xi∈E γi +
∑

i∈J(µiEi)
−1γiµi(E ∩ Ei)

whenever E ⊆ X is such that µi measures E ∩ Ei for every i ∈ J . Of course µ is a probability measure.
Because every µi is a topological measure, so is µ; because every µi is inner regular with respect to the
compact sets, so is µ; because every µi is complete, so is µ; so µ is a Radon measure. Because every
subspace measure (µi)Ei

is Maharam-type-homogeneous with Maharam type κi, the measure algebra of µ is
isomorphic to (A, µ̄). Because all the {xi} are zero sets and all the µi are completion regular, µ is completion
regular.

532C Remarks Nearly the whole of this section will be devoted to the usual measures on powers of
{0, 1}. Accordingly the following notation will be useful, as previously in this volume. If I is any set, νI
will be the usual measure on {0, 1}I , BI its measure algebra and NI its null ideal. In this context, 〈ei〉i∈I

will be the standard generating family in BI (525A), and for J ⊆ I, CJ will be the closed subalgebra of BI

generated by {ei : i ∈ J}.
If X is a topological space, B(X) will be its Borel σ-algebra.
Let κ be an infinite cardinal. Then νκ is a completion regular Radon probability measure (416U), and Bκ

is homogeneous with Maharam type κ. So κ ∈ MahcrR({0, 1}κ). Next, any Radon measure on {0, 1}κ can
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have Maharam type at most w({0, 1}κ) (531Aa), so λ ≤ κ for every λ ∈ MahcrR({0, 1}κ). At the bottom
end, 0 ∈ MahcrR({0, 1}κ) iff {0, 1}κ has a singleton Gδ set, that is, iff κ = ω.

From this we see already that we do not have direct equivalents of any of the results 531Eb-531Ef.
However the class {(λ, κ) : λ ∈ MahcrR({0, 1}κ)} is convex in two senses (532G, 532K). For the first of these,
it will be useful to have a result left over from §434.

532D Theorem (Fremlin & Grekas 95) Let (X,µ1) and (Y, µ2) be effectively locally finite topological
measure spaces of which X is quasi-dyadic (definition: 434O), µ1 is completion regular and µ2 is τ -additive.
Let µ be the c.l.d. product measure on X×Y as defined in §251. Then µ is a τ -additive topological measure.

proof (a) To begin with (down to the end of (e)) let us suppose that µ1 and µ2 are complete and totally
finite and inner regular with respect to the Borel sets. Let 〈Xi〉i∈I be a family of separable metrizable spaces
such that there is a continuous surjection f :

∏
i∈I Xi → X. For each i ∈ I, let Ui be a countable base for

the topology of Xi not containing ∅; for J ⊆ I, let CJ be the family of cylinder sets expressible in the form
{z : z ∈ ∏

i∈I Xi, z(i) ∈ Ui for every i ∈ K} where K ⊆ J is finite and Ui ∈ Ui for each i ∈ K.

(b) ??? Suppose, if possible, that µ is not a topological measure. Let W ⊆ X × Y be a closed set which
is not measured by µ. By 434Q, µ1 is τ -additive; by 417C, there is a τ -additive topological measure µ̃
extending µ, and µ∗W = µ̃W (apply 417C(b-v-α) to the complement of W ).

(c) If J ⊆ I is countable, there are sets H, V , V ′ such that H ⊆ Y is open, V ∈ CJ , V ′ ∈ CI\J ,
f [V ∩ V ′] ×H is disjoint from W , and µ∗(W ∩ (f [V ] ×H)) > 0. PPP For V ∈ CJ , set

HV =
⋃

V ′∈CI\J
{H : H ⊆ Y is open, W ∩ (f [V ∩ V ′] ×H) = ∅},

HV =
⋃HV ,

and choose a measurable envelope FV of f [V ]. As CJ is countable,

W1 = (X × Y ) \⋃V ∈CJ
FV ×HV

is measured by µ; also W1 ⊆W because

{f [V ∩ V ′] ×H : V ∈ CJ , V ′ ∈ CI\J , H ⊆ Y is open}
is a network for the topology of X × Y . So

µ̃W1 = µW1 ≤ µ∗W < µ∗W = µ̃W

and µ̃(W \W1) > 0. There must therefore be a V ∈ CJ such that µ̃(W ∩ (FV ×HV )) > 0. Next, because
µ2 is τ -additive, there is a countable H ⊆ HV such that µ2(HV \⋃H) = 0, and now µ̃(W ∩ (FV ×⋃H)) =
µ̃(W ∩ (FV ×HV )) is non-zero. Accordingly there is an H ∈ H such that µ̃(W ∩ (FV ×H)) > 0. By 417G2,∫

FV
µ2(W [{x}] ∩H)µ1(dx) = µ̃(W ∩ (FV ×H))

is greater than 0. But this means that µ1{x : x ∈ FV , µ2(W [{x}] ∩ H) > 0} > 0. (Recall that we are
supposing that µ1 is complete.) So {x : x ∈ f [V ], µ2(W [{x}]∩H) > 0} is not µ1-negligible, and W ∩(f [V ]×
H) is not µ-negligible. Finally, because H ∈ HV , there is a V ′ ∈ CI\J such that W ∩ (f [V ∩ V ′] ×H) = ∅.
QQQ

(d) We may therefore choose inductively families 〈Jξ〉ξ<ω1
, 〈Hξ〉ξ<ω1

, 〈Vξ〉ξ<ω1
, 〈V ′

ξ 〉ξ<ω1
in such a way

that, for every ξ < ω1,

Jξ is a countable subset of I,
Hξ is an open subset of Y ,
Vξ ∈ CJξ

, V ′
ξ ∈ CI\Jξ

,

W ∩ (f [Vξ ∩ V ′
ξ ] ×Hξ) = ∅,

µ∗(W ∩ (f [Vξ] ×Hξ)) > 0,⋃
η<ξ Jη ⊆ Jξ,

Vξ, V ′
ξ ∈ CJξ+1

.

2Formerly 417H.
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For each ξ < ω1, let Kξ be a finite subset of Jξ+1 such that Vξ and V ′
ξ are determined by coordinates in Kξ.

By the ∆-system Lemma (4A1Db), there is an uncountable set A ⊆ ω1 such that 〈Kξ〉ξ∈A is a ∆-system

with root K say. Set ζ0 = minA. Express each Vξ as Ṽξ ∩ V̂ξ where Ṽξ ∈ CK and V̂ξ ∈ CKξ\K ; because CK
is countable, there is a Ṽ such that B = {ξ : ξ ∈ A, ξ > ζ0, Ṽξ = Ṽ } is uncountable. Note that µ∗

1f [Ṽ ] > 0,

because µ∗
1f [Ṽ ] ≥ µ∗(W ∩ (f [Vξ] ×Hξ)) for any ξ ∈ B. Also

K ⊆ Kζ0 ⊆ Jζ0+1 ⊆ Jξ,

so V ′
ξ is determined by coordinates in Kξ \ Jξ ⊆ Kξ \K, for every ξ ∈ B.

(e) Set H ′
ξ =

⋃
η∈B\ξHη for each ξ < ω1. Then 〈H ′

ξ〉ξ<ω1
is non-increasing, so there is a ζ < ω1 such

that µ2H
′
ξ = µ2H

′
ζ whenever ξ ≥ ζ. Now consider F = {x : µ2(W [{x}] ∩H ′

ζ) > 0}. Applying 417G to the

indicator function of W ∩ (X ×H ′
ζ), and recalling once more that µ1 is complete, we see that µ1 measures

F . Also µ∗
1(F ∩ f [Ṽ ]) > 0. PPP Take any ξ ∈ B \ ζ. Then

F ∩ f [Ṽ ] ⊇ {x : x ∈ f [Ṽξ], µ2(W [{x}] ∩Hξ) > 0}
must be non-µ1-negligible because W ∩ (f [Ṽξ] ×Hξ) is not µ-negligible. QQQ

At this point, recall that we are supposing that µ1 is completion regular. So there is a zero set Z ⊆ F
such that µ1Z > µ1F −µ∗

1(F ∩f [Ṽ ]), and Z∩f [Ṽ ] 6= ∅, that is, Ṽ ∩f−1[Z] is not empty. f−1[Z] is a zero set
(4A2C(b-iv)), so there is a countable set J ⊆ I such that f−1[Z] is determined by coordinates in J (4A3Nc);
we may suppose that K ⊆ J . Because 〈Kη \K〉η∈A is disjoint, there is a ξ ≥ ζ such that J ∩Kη = K for
every η ∈ A \ ξ.

Take any w ∈ Ṽ ∩f−1[Z] and modify it to produce w′ ∈ ∏
i∈I Xi such that w′↾J = w↾J and w′ ∈ V̂η ∩V ′

η

for every η ∈ B \ ξ; this is possible because V̂η ∩ V ′
η is determined by coordinates in Kη \K for each η, and

J and the Kη \K are disjoint. Set x = f(w′); then x ∈ Z ⊆ F , so µ2(W [{x}] ∩H ′
ζ) > 0.

w′ ∈ Ṽ , because w ∈ Ṽ and Ṽ is determined by coordinates in K ⊆ J ; so w′ ∈ Ṽ ∩ V̂η ∩ V ′
η = Vη ∩ V ′

η for
every η ∈ B \ ξ. Accordingly x ∈ f [Vη ∩ V ′

η ]; as W ∩ (f [Vη ∩ V ′
η ] ×Hη) = ∅, W [{x}] does not meet Hη. As

η is arbitrary, W [{x}] does not meet H ′
ξ and W [{x}] ∩H ′

ζ is µ2-negligible. But this is impossible. XXX

(f) This contradiction shows that µ will be a topological measure, at least if µ1 and µ2 are complete,
totally finite and inner regular with respect to the Borel sets. Now suppose just that µ1 and µ2 are totally
finite. Let µ′

1 and µ′
2 be the completions of the Borel measures µ1↾B(X) and µ2↾B(Y ), and µ′ their c.l.d.

product. Then µ1↾B(X) and µ′
1 are completion regular topological measures, while µ2↾B(Y ) and µ′

2 are
τ -additive. So (a)-(e) tell us that µ′ measures every open set. Now the completions µ̂1, µ̂2 extend µ′

1 and
µ′
2, and µ is the c.l.d. product of µ̂1 and µ̂2 (251T), so µ extends µ′ (251L). Thus we again have a topological

product measure µ.

(g) In the general case, let W ⊆ X × Y be an open set, E ⊆ X a zero set of finite measure, and
F ⊆ Y any set of finite measure. Then µ measures W ∩ (E × F ). PPP Let (µ1)E and (µ2)F be the subspace
measures. Then both are totally finite topological measures, (µ1)E is inner regular with respect to the zero
sets (412Pd), E is quasi-dyadic (434Pc), and (µ2)F is τ -additive (414K). So the product (µ1)E × (µ2)F is a
topological measure and measures W ∩ (E × F ). By 251Q, µ measures W ∩ (E × F ). QQQ

Let K be the family of zero sets of finite measure in X, L the family of Borel sets of finite measure in
Y , and M the family of sets M ⊆ X × Y such that µ measures W ∩M . Because µ1 is inner regular with
respect to K, µ2 is inner regular with respect to L, E × F ∈ M for every E ∈ K and F ∈ L, and M is
a σ-algebra of sets, 412R tells us that µ is inner regular with respect to M. As µ is complete and locally
determined, it must measure W (412Ja). As W is arbitrary, µ is a topological measure.

(h) Finally, as noted in (b), µ1 is τ -additive and there is a τ -additive topological measure µ̃ on X × Y
extending µ. (434Q and 417C still apply.) So µ too must be τ -additive.

532E Corollary Let 〈Xi〉i∈I be a family of regular spaces with countable networks, and Y any topological
space. Suppose that we are given a strictly positive topological probability measure µi on each Xi, and a τ -
additive topological probability measure ν on Y . Let µ be the ordinary product measure on Z =

∏
i∈I Xi×Y .

(a) µ is a topological measure.
(b) µ is τ -additive.
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(c) If ν is completion regular, and every µi is inner regular with respect to the Borel sets, then µ is
completion regular.

proof (a) For each i, Xi is hereditarily Lindelöf (4A2Nb), so µi is τ -additive (414O); let µ′
i be the completion

of the Borel measure µi↾B(Xi). Then µ′
i is a quasi-Radon measure (415C). By 4A2Nb, Xi is perfectly

normal, so µ′
i is completion regular. By 434Pb-434Pc,

∏
i∈I Xi is quasi-dyadic. The product ν1 of the µ′

i

is a topological measure (453I) and inner regular with respect to the zero sets (412Ub); so the product µ′

of ν1 and ν is a topological measure, by 532D. Now µ′ is also the product of the measures µi↾B(Xi) and ν
(254I, 254N), so µ extends µ′ (254H) and µ also is a topological measure.

(b) Because every µi is τ -additive, as is ν, 417E tells us that there is a τ -additive measure extending µ,
so µ itself must be τ -additive.

(c) For any i ∈ I, we know from (a) that µ′
i is inner regular with respect to the zero sets. Now every

non-µi-negligible set includes a non-µi-negligible Borel set, which includes a non-µi-negligible zero set;
accordingly µi is completion regular. By 412Ub again, µ is inner regular with respect to the zero sets, so is
completion regular.

532F Corollary Let 〈(Xi, µi)〉i∈I be a family of quasi-dyadic compact Hausdorff spaces with strictly pos-
itive completion regular Radon measures. Then the ordinary product measure µ on

∏
i∈I Xi is a completion

regular Radon measure.

proof By 532D, the ordinary product measure on
∏

i∈J Xi is a topological measure, for every finite J ⊆ I.
By 417Sc, µ is the τ -additive product measure on

∏
i∈I Xi, which by 417Q is a Radon measure. By 412Ub

once more, µ is completion regular.

532G Proposition Suppose that λ, λ′ and κ are cardinals such that max(ω, λ) ≤ λ′ ≤ κ and λ ∈
MahcrR({0, 1}κ). Then λ′ ∈ MahcrR({0, 1}κ).

proof Let ν be a completion regular Maharam-type-homogeneous Radon probability measure on {0, 1}κ
with Maharam type λ, and consider the ordinary product measure µ of νλ′ and ν on X = {0, 1}λ′ ×{0, 1}κ.
Applying 532E with Y = {0, 1}κ and Xξ = {0, 1} for ξ < λ′, we see that µ is a completion regular topological
probability measure on a compact Hausdorff space, therefore (being complete) a Radon measure. By 334A,
the Maharam type of µ is at most max(ω, λ′, λ) = λ′, so the measure algebra (A, µ̄) of µ can be embedded in

Bλ′ . At the same time, the inverse-measure-preserving projection from X onto {0, 1}λ′

induces a measure-
preserving embedding of Bλ′ into A. By 332Q, (A, µ̄) and (Bλ′ , ν̄λ′) are isomorphic, that is, µ is Maharam-
type-homogeneous with Maharam type λ′. So µ witnesses that λ′ ∈ MahcrR(X) = MahcrR({0, 1}κ).

532H Lemma Let 〈Xi〉i∈I be a family of separable metrizable spaces, and µ a totally finite completion
regular topological measure on X =

∏
i∈I Xi. Then

(a) the support of µ is a zero set;
(b) µ is inner regular with respect to the self-supporting zero sets.

proof (a) Recall from 434Q that µ is τ -additive, so has a support Z. Let 〈Kn〉n∈N be a sequence of zero
sets such that Kn ⊆ Z and µKn ≥ µX − 2−n for each n. Then there is a countable set J ⊆ I such that
every Kn is determined by coordinates in J (4A3Nc again). So

⋃
n∈NKn and Z ′ =

⋃
n∈NKn are determined

by coordinates in J (4A2B(g-i)), and Z ′ is a zero set, by 4A3Nc in the other direction. But Z ′ ⊆ Z and
µZ ′ = µZ so Z = Z ′ is a zero set.

(b) If µE > γ then there is a zero set K ⊆ E such that µK ≥ γ. Now µ K (234M) is a totally finite
topological measure on X which is completion regular (412Q), so its support Z is a zero set, by (a); and
Z ⊆ K ⊆ E is self-supporting for µ with µZ ≥ γ.

532I There is a useful general characterization of the sets MahcrR({0, 1}κ) in terms of the measure
algebras Bλ. At the same time, we can check that other products of separable metrizable spaces follow
powers of {0, 1}, as follows.

Theorem (Choksi & Fremlin 79) Let λ ≤ κ be infinite cardinals. Then the following are equiveridical:
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(i) λ ∈ MahcrR({0, 1}κ);
(ii) there is a family 〈Xξ〉ξ<κ of non-singleton separable metrizable spaces such that λ ∈ Mahcr(

∏
ξ<κXξ);

(iii) there is a Boolean-independent family 〈bξ〉ξ<κ in Bλ with the following property: for every a ∈ Bλ

there is a countable set J ⊆ κ such that the subalgebras generated by {a} ∪ {bξ : ξ ∈ J} and {bη : η ∈ κ \J}
are Boolean-independent.

proof If κ = ω then λ = ω and (i)-(iii) are all true. So we may assume that κ is uncountable.

(i)⇒(ii) is trivial.

(ii)⇒(iii)(ααα) If λ ∈ Mahcr(X), where every Xξ is a non-trivial separable metrizable space and X =∏
ξ<κXξ, let µ be a Maharam-type-homogeneous completion regular topological probability measure on

X with Maharam type λ. By 532Ha and 4A3Nc, the support Z of µ is determined by coordinates in a
countable subset L of κ.

(βββ) Let A be the measure algebra of µ. For each ξ < κ, let fξ : Xξ → [0, 1] be a continuous
function taking both values 0 and 1; let tξ ∈ ]0, 1[ be such that µ{x : x ∈ X, fξ(x(ξ)) = tξ} = 0. Set
Uξ = {x : fξ(x(ξ)) < tξ}, Vξ = {x : fξ(x) > tξ}; then Uξ and Vξ are disjoint non-empty open sets in X,
both determined by coordinates in {ξ}, and µ(Uξ ∪ Vξ) = 1. Set bξ = U•

ξ in A. Then 〈bξ〉ξ<κ\L is Boolean-

independent. PPP If I, I ′ ⊆ κ \ L are disjoint finite sets, then H = X ∩⋂
ξ∈I Uξ ∩

⋂
ξ∈I′ Vξ is a non-empty

open set in X. As H is determined by coordinates in I ∪ I ′ and Z is determined by coordinates in L, Z ∩H
is non-empty and therefore non-negligible; so µH > 0 and infξ∈I bξ \ supξ∈I′ bξ is non-zero in A. QQQ

(γγγ) If a ∈ A let E be such that E• = a. By 532Hb, we can choose for each n ∈ N self-supporting

zero sets Kn ⊆ E, K̃n ⊆ X \ E such that µKn + µK̃n ≥ 1 − 2−n. Let J ⊆ κ \ L be a countable set such

that every Kn and every K̃n is determined by coordinates in J ∪L. Now the subalgebras D1, D2 generated
by {a} ∪ {bξ : ξ ∈ J} and {bξ : ξ ∈ (κ \ L) \ J} are Boolean-independent. PPP Take non-zero d1 ∈ D1

and d2 ∈ D2. Suppose for the moment that d1 ∩ a 6= 0. As in (β), there is an open set G, determined by
coordinates in J , such that 0 6= a ∩G• ⊆ d1. There is also an open set H, determined by coordinates in
κ \ (J ∪L), such that 0 6= H• ⊆ d2. Next, as a = supn∈NK

•
n, there is an n ∈ N such that 0 6= K•

n ∩G•, that
is, Kn ∩ G 6= ∅. As Kn ∩ G is determined by coordinates in J ∪ L and H is determined by coordinates in
κ \ (J ∪ L), Kn ∩G ∩ V 6= ∅; as Kn is self-supporting,

0 6= (Kn ∩G ∩H)• ⊆ d1 ∩ d2.

In the same way, using K ′
n in place of Kn, we see that d1 ∩ d2 6= 0 if d1 \ a 6= 0. As d1 and d2 are arbitrary,

D1 and D2 are Boolean-independent. QQQ

(δδδ) As #(κ \ L) = κ and A ∼= Bλ, 〈bξ〉ξ∈κ\L, suitably reinterpreted, witnesses that (iii) is satisfied.

(iii)⇒(i) Now suppose that the conditions of (iii) are satisfied. Let (Z, ν) be the Stone space of (Bλ, ν̄λ).

(See 411P for a summary of the properties of these spaces.) For b ∈ Bλ write b̂ for the corresponding

open-and-closed subset of Z. Define φ : Z → {0, 1}κ by setting φ(z) = 〈χb̂ξ(z)〉ξ<κ for z ∈ Z. Then φ is
continuous; let µ = νφ−1 be the image Radon measure on {0, 1}κ (418I). Now µ is completion regular. PPP
Suppose that K ⊆ {0, 1}κ is compact and self-supporting. Identifying Bλ with the measure algebra of ν, we
have a Boolean homomorphism ψ : domµ → Bλ defined by setting ψE = (φ−1[E])• whenever µ measures
E, and ν̄λψE = νφ−1[E] = µE for every E; setting Eξ = {x : x ∈ {0, 1}κ, x(ξ) = 1}, ψEξ = bξ. Set
a = ψK. Let J ⊆ κ be a countable set such that the subalgebras D1, D2 generated by {a} ∪ {bξ : ξ ∈ J}
and {bη : η ∈ κ\J} are Boolean-independent. ??? If x ∈ K, y ∈ {0, 1}κ \K and x↾J = y↾J , let U be an open
cylinder containing y and disjoint from K. Express U as U ′ ∩ U ′′ where U ′ is determined by coordinates
in J and U ′′ by coordinates in κ \ J . Then ψU ′ ∈ D1 and ψU ′′ ∈ D2. As 〈bξ〉ξ<κ is Boolean-independent,
ψU ′′ 6= 0. Now K is self-supporting and x ∈ K ∩U ′, so µ(K ∩U ′) > 0 and ψ(K ∩U ′) = a ∩ ψU ′ is non-zero;
also a ∩ ψU ′ ∈ D1; because D1 and D2 are Boolean-independent, ψ(K ∩U) = a ∩ ψU ′ ∩ ψU ′′ 6= 0 and K ∩U
cannot be empty, contrary to the choice of U . XXX

This shows that K is determined by coordinates in J and is a zero set (4A3Nc, in the other direction).
As K is arbitrary, we see that all self-supporting compact sets are zero sets. But as µ is a Radon measure,
it is inner regular with respect to the self-supporting compact sets, therefore with respect to the zero sets,
and is completion regular. QQQ
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The inverse-measure-preserving function φ (and, of course, the Boolean homomorphism ψ) correspond
to an embedding of the measure algebra of µ into Bλ. So the Maharam type of µ is at most λ. There is
therefore a λ′ ∈ MahcrR({0, 1}κ) such that λ′ ≤ λ (532B). By 532G, λ ∈ MahcrR({0, 1}κ).

532J Corollary (a) Suppose that λ, κ are infinite cardinals and λ ∈ MahcrR({0, 1}κ). Then κ is at most
the cardinal power λω.

(b) If κ is an infinite cardinal such that λω < κ for every λ < κ (e.g., κ = c+), then MahcrR({0, 1}κ) = {κ}.

proof (a) By 532I, κ ≤ #(Bλ); by 524Ma, #(Bλ) ≤ λω.

(b) By (a), no infinite cardinal less than κ can belong to MahcrR({0, 1}κ). Also κ is uncountable, so the
remarks in 532C tell us the rest of what we need.

532K Corollary If ω ≤ λ ≤ κ′ ≤ κ and λ ∈ MahcrR({0, 1}κ) then λ ∈ MahcrR({0, 1}κ′

).

proof If 〈bξ〉ξ<κ witnesses the truth of 532I(iii) for λ and κ, then its subfamily 〈bξ〉ξ<κ′ witnesses the truth
of 532I(iii) for λ and κ′. PPP Of course 〈bξ〉ξ<κ′ is Boolean-independent. If a ∈ Bλ, there is a countable
set J ⊆ κ such that the subalgebras generated by {a} ∪ {bξ : ξ ∈ J} and {bη : η ∈ κ \ J} are Boolean-
independent. Now J ′ = J∩κ′ is a countable subset of κ′ and the subalgebras generated by {a}∪{bξ : ξ ∈ J ′}
and {bη : η ∈ κ′ \ J ′} are Boolean-independent. QQQ

532L Corollary If ω ≤ λ ≤ λ′ and cf[λ′]≤λ < cfκ and λ′ ∈ MahcrR({0, 1}κ), then λ ∈ MahcrR({0, 1}κ).

proof Let 〈bξ〉ξ<κ be a family in Bλ′ satisfying (iii) of 532I. Let 〈eη〉η<λ′ be the standard generating family
in Bλ′ , and J a cofinal subset of [λ′]λ with cardinal less than cfκ. For each ξ < κ, there are a countable
set L ⊆ λ′ such that bξ belongs to the closed subalgebra CL of Bλ′ generated by {eη : η ∈ L}, and a
Jξ ∈ J such that L ⊆ Jξ. Because #(J) < cfκ, there is a J ∈ J such that A = {ξ : ξ < κ, Jξ = J} has
cardinal κ. Now the closed subalgebra CJ of Bλ′ generated by {eη : η ∈ J} is isomorphic to Bλ, and the
Boolean-independent 〈bξ〉ξ∈A in CJ witnesses that 532I(iii) is true of λ and κ, as in the proof of 532K.

532M I turn now to the question of identifying those κ for which ω ∈ MahcrR({0, 1}κ). We know from
532C and 532Ja that they all lie between ω and c. To go farther we need to look at some of the cardinals
from §522.

Proposition If A ⊆ Bω \ {0} and #(A) < d = cf(NN), then there is a c ∈ Bω such that neither c nor 1 \ c
includes any member of A.

proof Let 〈en〉n∈N be the standard generating family in Bω = BN. For a ∈ A and n ∈ N let fa(n) ∈ N be
such that there is a b in the subalgebra Cfa(n)2 generated by {ei : i < fa(n)2} such that ν̄ω(b△ a) < 2−n−3µ̄a.

Because #(A) < d, there is an f ∈ NN such that f 6≤ fa for every a ∈ A; we may suppose that f is strictly
increasing and f(0) > 0. Note that

f(n)2 + n+ 1 < f(n)2 + 2f(n) + 1 ≤ f(n+ 1)2

for every n. For each n ∈ N, set

In = f(n)2 ⊆ N, I ′n = In+1 \ In,

c′n = inff(n)2≤i≤f(n)2+n+1 ei ∈ CI′
n
;

then ν̄ωc
′
n = 2−n−2 for each n. Define cn ∈ CIn , for n ∈ N, by setting c0 = 0 and cn+1 = cn △ c′n for each n.

Then ν̄ω(cn+1 △ cn) = 2−n−2 for every n, so 〈cn〉n∈N is a Cauchy sequence for the measure metric on Bω,
and has a limit c. Note that

∑m−1
i=n 2−i−3 ≤ ν̄ω(cm △ cn) ≤ ∑m−1

i=n 2−i−2

whenever m ≥ n. PPP Induce on m. For m = n the result is trivial (interpreting
∑n−1

i=n as zero). For the
inductive step to m+ 1, c′m ∈ CI′

m
is stochastically independent of cm △ cn ∈ CIm , so
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ν̄ω(cm+1 △ cn) = ν̄ω(c′m △ cm △ cn)

= ν̄ωc
′
m + ν̄ω(cm △ cn) − 2ν̄ω(c′m ∩ (cm △ cn))

= 2−m−2 + (1 − 2−m−1)ν̄ω(cm △ cn)

≥ 2−m−2 + (1 − 2−m−1)

m−1∑

i=n

2−i−3

(by the inductive hypothesis)

=

m−1∑

i=n

2−i−3 + 2−m−3(2 − 4

m−1∑

i=n

2−i−3) ≥
m∑

i=n

2−i−3;

on the other hand,

ν̄ω(cm+1 △ cn) ≤ 2−m−2 + ν̄ω(cm △ cn) ≤ ∑m
i=n 2−i−2.

So the induction proceeds. QQQ Taking the limit as m → ∞, we see that 2−n−2 ≤ ν̄ω(c△ cn) ≤ 2−n−1 for
every n ∈ N.

Take any a ∈ A. Let n ∈ N be such that fa(n) < f(n). Then there is a b ∈ CIn such that ν̄ω(a△ b) <
2−n−3µ̄a. Now c△ cn ∈ CN\In is stochastically independent of both b \ cn and b ∩ cn, so

ν̄ω(b \ c) = ν̄ω(((b \ cn) \ (c△ cn)) ∪ ((b ∩ cn) ∩ (c△ cn)))

= ν̄ω(b \ cn)(1 − ν̄ω(c△ cn)) + ν̄ω(b ∩ cn) · ν̄ω(c△ cn)

≥ ν̄ω(b \ cn)(1 − 2−n−1) + 2−n−2ν̄ω(b ∩ cn) ≥ 2−n−2ν̄ωb ≥ 2−n−3ν̄ωa.

So

ν̄ω(a \ c) ≥ 2n−3ν̄ωa− ν̄ω(b \ a) > 0,

and a 6⊆ c. Similarly,

ν̄ω(b ∩ c) = ν̄ω(b ∩ cn)(1 − ν̄ω(c△ cn)) + ν̄ω(b \ cn) · ν̄ω(c△ cn)

≥ ν̄ω(b ∩ cn)(1 − 2−n−1) + 2−n−2ν̄ω(b \ cn) ≥ 2−n−2ν̄ωb,

and ν̄ω(a ∩ c) > 0.
As a is arbitrary, we have found an appropriate c.

532N It will be useful to have a classic example relevant to a question already examined in 325F.

Lemma There is a Borel set W ⊆ {0, 1}N × {0, 1}N such that whenever E, F ⊆ {0, 1}N have positive
measure for νω then neither (E × F ) ∩W nor (E × F ) \W is negligible for the product measure ν2ω on
{0, 1}N × {0, 1}N.

proof (a) (Cf. 134Jb.) There is a Borel set H ⊆ {0, 1}N such that both H and its complement meet
every non-empty open set in a set of non-zero measure. PPP For x ∈ {0, 1}N set Ix = {n : x(i) = 0 for
2n ≤ i < 2n+1}. Set H = {x : Ix is finite and not empty and max Ix is even}. QQQ

(b) Let + be the usual group operation on {0, 1}N ∼= ZN
2 . In this group, addition and subtraction are

identical, as x + x = 0 for every x; but the formulae may be easier to read if I use the symbol − when it
seems appropriate. Set W = {(x, y) : x, y ∈ {0, 1}N, x− y ∈ H}.

Let E, F ⊆ {0, 1}N be sets of positive measure. Then {z : z ∈ {0, 1}N, νω(E ∩ (F + z)) > 0} is open
(443C) and not empty (443Da), so meets H in a set of positive measure. Now

ν2ω((E × F ) ∩W ) = ν2ω{(x, y) : x ∈ E, y ∈ F, x− y ∈ H}
= ν2ω{(x, z) : x ∈ E, x− z ∈ F, z ∈ H}

(because (x, y) 7→ (x, x− y) is a measure space automorphism for ν2ω, as in 255Ae or 443Xa)
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= ν2ω{(x, z) : x ∈ E, x ∈ F + z, z ∈ H}

=

∫

H

νω(E ∩ (F + z))νω(dz) > 0.

Applying the same argument with {0, 1}N \H in the place of H, we see that the same is true of (E×F )\W .

532O Proposition If A ⊆ Bω \ {0} and #(A) < covNω, then there is a c ∈ Bω such that neither c nor
1 \ c includes any member of A.

proof Take W ⊆ {0, 1}N × {0, 1}N as in 532N. For x ∈ {0, 1}N, set cx = W [{x}]• in Bω. If a ∈ A, then
{x : a ⊆ cx} ∈ Nω. PPP Let F ∈ Tω be such that F • = a, and set E = {x : a ⊆ cx}. Because x 7→ cx is
measurable when Bω is given its measure-algebra topology (418Ta), E ∈ Tω. For every x ∈ E, F \W [{x}]
is negligible, so (E × F ) \W is negligible, by Fubini’s theorem (252D). But this means that at least one of
E, F must be negligible; since F • = a 6= 0, νωE = 0, as required. QQQ

Similarly, {x : a ∩ cx = 0} is negligible. Since {0, 1}N cannot be covered by #(A) negligible sets, there is
an x ∈ {0, 1}N such that cx neither includes, nor is disjoint from, any member of A.

532P Proposition Set κ = max(d, covNω). If FN(PN) = ω1, then ω ∈ MahcrR({0, 1}κ). In particular,
if c = ω1 then ω ∈ MahcrR({0, 1}ω1).

proof (a) By 524O(b-ii), FN(Bω) = ω1; let f : Bω → [Bω]≤ω be a Freese-Nation function. By 532M (if
κ = d) or 532O (if κ = covNω), we can choose inductively a family 〈bξ〉ξ<κ in Bω such that neither bξ nor
1 \ bξ includes any nonzero member of Dξ, where Dξ is the smallest subalgebra of Bω including {bη : η < ξ}
and such that f(d) ⊆ Dξ for every d ∈ Dξ. Of course this implies that 〈bξ〉ξ<κ is Boolean-independent.

(b) For K, L ⊆ κ set dKL = infξ∈K bξ \ supξ∈L bξ. For a ∈ Bω, set Qa = {(K,L) : K, L ∈ [κ]<ω are
disjoint, dKL ⊆ a}, and let Q′

a be the set of minimal members of Qa, taking (K,L) ≤ (K ′, L′) if K ⊆ K ′

and L ⊆ L′. Of course Qa is well-founded so Q′
a is coinitial with Qa. Now Ran = {(K,L) : (K,L) ∈ Q′

a,
#(K ∪ L) = n} is countable for every n ∈ N and a ∈ Bω. PPP Induce on n. If n = 0 this is trivial. For the
inductive step to n+1, set R′

ζ = {(K,L) : K∪L ⊆ ζ, (K∪{ζ}, L) ∈ Ra,n+1} for each ζ < κ. For (K,L) ∈ R′
ζ ,

bζ∩dKL = dK∪{ζ},L is included in a, so there is a cKLζ ∈ f(dK∪{ζ},L)∩f(a) such that dK∪{ζ},L ⊆ cKLζ ⊆ a,
in which case bζ ⊆ cKLζ ∪ (1 \ dKL). If ζ < ζ ′ < κ, (K,L) ∈ R′

ζ and (K ′, L′) ∈ R′
ζ′ , then dK′L′ 6⊆ a (because

(K ′ ∪ {ζ ′}, L′) is a minimal member of Qa), so cKLζ ∪ (1 \ dK′L′) 6= 1; as cKLζ and dK′L′ both belong to
Dζ′ , bζ′ 6⊆ cKLζ ∪ (1 \ dK′L′) and cKLζ 6= cK′L′ζ′ . As f(a) is countable, A = {ζ : R′

ζ 6= ∅} is countable. Next,

for any ζ ∈ A and (K,L) ∈ R′
ζ , we see that dKL ⊆ a ∪ (1 \ bζ), and indeed that (K,L) ∈ Q′

a∪(1\bζ)
, so that

(K,L) ∈ Ra∪(1\bζ),n. By the inductive hypothesis, R′
ζ is countable.

This shows that {(K,L, ζ) : K ∪ L ⊆ ζ, (K ∪ {ζ}, L) ∈ Ra,n+1} is countable. In the same way, applying
the ideas above to 1 \ bζ in place of bζ , {(K,L, ζ) : K∪L ⊆ ζ, (K,L∪{ζ}) ∈ Ra,n+1} is countable; so Ra,n+1

is countable and the induction proceeds. QQQ
It follows that Q′

a is countable for every a ∈ Bω.

(c) Now take any a ∈ Bω and let J ⊆ κ be a countable set such that K ∪ L ⊆ J whenever (K,L) ∈
Q′

a∪Q′
1\a. ??? Suppose, if possible, that the algebras E1, E2 generated by {a} ∪ {bξ : ξ ∈ J} and {bη : η ∈ κ\J}

are not Boolean-independent. Then there must be finite subsets K, L, K ′ and L′ of κ such that K ∪L ⊆ J ,
K ′ ∪ L′ ⊆ κ \ J , dK′L′ 6= 0, and either

dKL ∩ a 6= 0, dK′L′ ∩ dKL ∩ a = 0

or

dKL \ a 6= 0, dK′L′ ∩ dKL \ a = 0.

Suppose the former. Then (K ∪K ′, L ∪ L′) ∈ Q1\a so there is a (K ′′, L′′) ∈ Q′
1\a such that K ′′ ⊆ K ∪K ′

and L′′ ⊆ L ∪ L′; in which case K ′′ ∪ L′′ ⊆ J so in fact K ′′ ⊆ K, L′′ ⊆ L and dKL ∩ a ⊆ dK′′L′′ ∩ a = 0,
which is impossible. Replacing a by 1 \ a we get a similar contradiction in the second case. XXX So E1 and
E2 are Boolean-independent.

(d) As a is arbitrary, (c) shows that 〈bξ〉ξ<κ satisfies the conditions of 532I(iii), so that ω belongs to
MahcrR({0, 1}κ), as claimed.
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532Q Proposition Suppose that addNω > ω1.

(a) λ /∈ MahcrR({0, 1}κ) whenever λ ≥ ω and max(ω, cf[λ]≤ω) < κ.
(b) If ω1 ≤ κ ≤ ωω then MahcrR({0, 1}κ) = {κ}.

proof (a) ??? If λ ∈ MahcrR({0, 1}κ), set κ′ = (max(ω, cf[λ]≤ω))+; then λ < κ′ so λ ∈ MahcrR({0, 1}κ′

)

(532K). As cf[λ]≤ω < cfκ′, ω belongs to MahcrR({0, 1}λ+

) (532L) and therefore to MahcrR({0, 1}ω1) (532K
again).

Let 〈bξ〉ξ<ω1
be a family in Bω satisfying the conditions of 532I(iii). By 524Mb, ω1 < wdistr(Bω); by

514K, there is a countable C ⊆ Bω \ {0} such that for every ξ < ω1 there is a c ∈ C such that c ⊆ bξ. Let
a ∈ C be such that {ξ : ξ < ω1, a ⊆ bξ} is uncountable. There is supposed to be a countable J ⊆ ω1 such that
the subalgebras generated by {a} and {bξ : ξ ∈ ω1 \ J} are Boolean-independent; but then {ξ : a ⊆ bξ} ⊆ J ,
which is impossible. XXX

This shows that (a) is true.

(b) If ω ≤ λ < κ ≤ ωω, then cf[λ]≤ω ≤ λ < κ (5A1F(e-iv)), so (a) tells us that λ /∈ MahcrR({0, 1}κ).
From 532C we see that MahcrR({0, 1}κ) must be {κ} exactly.

532R Two combinatorial principles already used in 524O are relevant to the questions treated here.

Proposition Suppose that λ is an uncountable cardinal with countable cofinality such that �λ (definition:
5A6D(a-ii)) is true. Set κ = λ+. Then λ ∈ MahcrR({0, 1}κ).

proof (a) Let 〈Iξ〉ξ<κ be a family of countably infinite subsets of λ as in 5A6E. For each ξ < κ, let
〈Iξn〉n∈N, 〈αξn〉n∈N be such that 〈Iξn〉n∈N is a disjoint sequence of subsets of Iξ with #(Iξn) = n for each n
and 〈αξn〉n∈N is a sequence of distinct points in Iξ \

⋃
n∈N Iξn. Set

Uξn = {x : x ∈ {0, 1}λ, x(η) = 0 for every η ∈ Iξn},

Vξn = {x : x ∈ Uξn \⋃m>n Uξm, x(αξn) = 1},

Ṽξn = {x : x ∈ Uξn \⋃m>n Uξm, x(αξn) = 0}
for n ∈ N. Note that as νκUξm = 2−m for each n, Vξn and Ṽξn are non-negligible, while both are determined
by coordinates in {αξn} ∪

⋃
m≥n Iξm ⊆ Iξ. Set

Fξ =
⋃

n∈N Vξn, bξ = F •

ξ ∈ Bλ.

Note that Fξ ∩ Ṽξn = ∅ for every n.

(b) Take any a ∈ Bλ. Then we can express a as E• where E ⊆ {0, 1}λ is a Baire set; let I ⊆ λ be a
countable set such that E is determined by coordinates in I. By the choice of 〈Iξ〉ξ<κ there is a countable
set J ⊆ κ such that I ∩ Iξ is finite for every ξ ∈ κ \ J . Let D1, D2 be the subalgebras of Bλ generated
by {a} ∪ {bξ : ξ ∈ J} and {bξ : ξ ∈ κ \ J} respectively. Then D1 and D2 are Boolean-independent. PPP If
d1 ∈ D1 and d2 ∈ D2 are non-zero, we can express d1 as H•

1 where H1 ⊆ {0, 1}λ is a Baire set determined by
coordinates in L = I ∪⋃

ξ∈K Iξ for some finite K ⊆ J . Next, we can find disjoint finite sets K ′, K ′′ ⊆ κ \ J
such that d2 ⊇ infξ∈K′ bξ \ supξ∈K′′ bξ. Because all the sets Iξ ∩ Iη, for distinct ξ, η < κ, and also the sets
I ∩ Iξ, for ξ ∈ κ \ J , are finite, there is an m ∈ N such that all the sets Jξ = {αξm} ∪ ⋃

n≥m Iξn, for

ξ ∈ K ′ ∪ K ′′, are disjoint from each other and from I. Look at the sets Vξm, for ξ ∈ K ′, and Ṽξm, for

ξ ∈ K ′′. Set H2 = {0, 1}λ ∩⋂
ξ∈K′ Vξm ∩⋂

ξ∈K′′ Ṽξm. Then H•
2 ⊆ d2. But observe now that all the Vξm and

Ṽξm are non-negligible and that Vξm, Ṽξm are determined by coordinates in Jξ for each ξ ∈ K ′ ∪K ′′. So

the sets H1, Vξm (for ξ ∈ K ′) and Ṽξm (for ξ ∈ K ′′) are stochastically independent, and

ν̄λ(d1 ∩ d2) ≥ νλ(H1 ∩H2) = νλH1 ·
∏

ξ∈K′ νλVξm ·∏ξ∈K′′ νλṼξm > 0.

Thus d1 ∩ d2 6= 0; as d1 and d2 are arbitrary, D1 and D2 are stochastically independent. QQQ

(c) The argument of (b) works equally well with I = ∅ and J an arbitrary finite subset of κ to show that
〈bξ〉ξ<κ is Boolean-independent. So the conditions of 532I(iii) are satisfied and κ ∈ MahcrR(λ), as claimed.
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532S Proposition Suppose that addNω > ω1 and that λ is an infinite cardinal such that CTP(λ+, λ)
(definition: 5A6Fa) is true. Then λ /∈ MahcrR({0, 1}κ) for any κ > λ.

proof By 532K, it is enough to consider the case κ = λ+. ??? Suppose, if possible, that there is a family
〈bξ〉ξ<κ in Bλ satisfying the conditions of 532I(iii). Let 〈eη〉η<λ be the standard generating family in Bλ.
Then for each ξ < κ we have a countable set Iξ ⊆ λ such that bξ belongs to the closed subalgebra of
Bλ generated by {eη : η ∈ Iξ}. Because CTP(κ, λ) is true, there is an uncountable set A ⊆ κ such
that J =

⋃
ξ∈A Iξ is countable (5A6F(b-ii)). Now the closed subalgebra CJ generated by {eη : η ∈ J} is

isomorphic to Bω, so 〈bξ〉ξ∈A witnesses that ω ∈ MahcrR({0, 1}ω1); but this contradicts 532Qa. XXX

532X Basic exercises (a) Let X be a normal Hausdorff space and Y ⊆ X a zero set. Show that
MahcrR(Y ) ⊆ MahcrR(X).

(b) Let βN be the Stone-Čech compactification of N. (i) Show that MahcrR(βN) = {0}. (Hint : non-
empty zero sets in βN \ N are never ccc.) (ii) Give an example of a non-empty compact Hausdorff space X
such that MahcrR(X) = ∅.

(c) Let X and Y be compact Hausdorff spaces. Show that MahcrR(X × Y ) ⊆ MahcrR(X) ∪ MahcrR(Y ).
(Hint : 434U.)

(d) Let λ and κ be infinite cardinals such that λ ∈ MahcrR({0, 1}κ). (i) Show that there is a strictly
positive Maharam-type-homogeneous completion regular Radon probability measure on {0, 1}κ with Ma-
haram type λ. (ii) Suppose that λ is uncountable and that H ⊆ {0, 1}κ is a non-empty Gδ set. Show that
λ ∈ MahcrR(H).

(e) Find a proof of 532E which does not rely on 532D. (Hint : 415E.)

(f) Let 〈(Xi, µi)〉i∈I be a family of quasi-dyadic spaces with strictly positive completion regular topological
probability measures. Show that the ordinary product measure on

∏
i∈I Xi is a strictly positive completion

regular τ -additive topological probability measure.

532Y Further exercises (a) Let Z be the Stone space of Bλ, where λ ≥ ω. (i) Show that if F ⊆ Z
is a non-empty nowhere dense zero set then it is not ccc. (ii) Show that MahcrR(Z) = {λ}. (iii) Show that
MahcrR(Z × Z) = ∅.

(b) Let 〈Xi〉i∈I be a family of topological spaces with countable networks, and Y any topological space.
Suppose that we are given a strictly positive topological probability measure µi on each Xi, and a τ -additive
topological probability measure ν on Y . Show that the ordinary product measure on

∏
i∈I Xi × Y is a

topological measure.

(c) Suppose that FN(PN) = ω1. Show that there are a Hausdorff space X and a completion regular
Radon measure µ on X such that the Maharam type of µ is ω, but the Maharam type of µ↾B(X) is ω1.
(Hint : 419C.)

532Z Problems (a) In 532P, can we take κ = cfNω?

(b) We have ω ∈ MahcrR({0, 1}ω1) if FN(PN) = ω1 (532P, 532K) and not if addNω > ω1 (532Q). Can
we narrow the gap?

(c) For a Hausdorff space X let MahspcrR(X) be the set of Maharam types of strictly positive Maharam
homogeneous completion regular Radon measures on X. Describe the sets Γ of cardinals for which there
are compact Hausdorff spaces X such that MahspcrR(X) = Γ.
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532 Notes and comments I have spent a good many pages on a rather specialized topic. But I think the
patterns here are instructive. When looking at MahR(X), as in §531, we quickly come to feel that it is a
measure of a certain kind of complexity; the richer the space X, the larger MahR(X) will be. 531Eb and
531Ed are direct manifestations of this, and 531G develops the theme. MahcrR(X) can sometimes tell us
more about X; knowing MahcrR(X) we may have a lower bound on the complexity of X as well as an upper
bound. (On the other hand, MahcrR(X) can evaporate for non-trivial reasons, as in 532Xb and 532Ya, and
leave us with very little idea of what X might be like.) In place of the straightforward facts in 531E, we have
the relatively complex and partial results in 532G and 532K. As soon as we leave the constrained context
of powers of {0, 1}, the most natural questions seem to be obscure (532Zc).

However, if we follow the paths which are open, rather than those we might otherwise have chosen, we come
to some interesting ideas, starting with 532I. Here, as happened in §531, we see that a proper understanding
of the measure algebras Bλ will take us a long way; and once again we find that this understanding has to
be conditional on the model of set theory we are working in. Even to decide which powers of {0, 1} carry
completion regular Radon measures with countable Maharam type we need to examine some new aspects of
the Lebesgue measure algebra (532M-532O). Moreover, as well as the familiar cardinals of Cichoń’s diagram,
we have to look at the Freese-Nation number of PN (532P). For larger Maharam types, in a way that we
are becoming accustomed to, other combinatorial principles become relevant (532R, 532S).

Version of 4.1.14

533 Special topics

I present notes on certain questions which can be answered if we make particular assumptions concerning
values of the cardinals considered in §§523-524. The first cluster (533A-533E) looks at Radon and quasi-
Radon measures in contexts in which the additivity of Lebesgue measure is large compared with other
cardinals of the structures considered. Developing ideas which arose in the course of §531, I discuss ‘uniform
regularity’ in perfectly normal and first-countable spaces (533H). We also have a complete description of the
cardinals κ for which Rκ is measure-compact (533J).

As previously, I write N (µ) for the null ideal of a measure µ; νκ will be the usual measure on {0, 1}κ and
Nκ = N (νκ) its null ideal.

533A Lemma Let (X,Σ, µ) be a semi-finite measure space with measure algebra (A, µ̄). If 〈Kξ〉ξ<κ is a
family of ideals in Σ such that µ is inner regular with respect to every Kξ and κ < min(addN (µ),wdistr(A)),
then µ is inner regular with respect to

⋂
ξ<κ Kξ.

proof Take E ∈ Σ and γ < µE. Then there is an E1 ∈ Σ such that E1 ⊆ E and γ < µE1 < ∞. For
ξ < κ, Dξ = {K• : K ∈ Kξ} is closed under finite unions and is order-dense in A, so includes a partition
of unity Aξ. Now there is a partition B of unity in A such that {a : a ∈ Aξ, a ∩ b 6= 0} is finite for every
b ∈ B and ξ < κ. Let B′ ⊆ B be a finite set such that µ̄(E•

1 ∩ supB′) ≥ γ, and let E2 ⊆ E1 be such that
E•

2 = E•
1 ∩ supB′. For any ξ < κ,

A′
ξ = {a : a ∈ Aξ, a ∩E•

2 6= 0} ⊆ ⋃
b∈B′{a : a ∈ Aξ, a ∩ b 6= 0}

is finite, so supA′
ξ belongs to Dξ and can be expressed as K•

ξ for some Kξ ∈ Kξ. Now E•
2 ⊆ supA′

ξ so E2\Kξ

is negligible. As κ < addN (µ), we have a negligible H ∈ Σ including
⋃

ξ<κE2 \Kξ; now E′ = E2 \H ⊆ E,

µE′ ≥ γ and E′ ∈ ⋂
ξ<κ Kξ. As E and γ are arbitrary, µ is inner regular with respect to

⋂
ξ<κ Kξ.

Remark Of course this result is covered by 412Ac unless wdistr(A) > ω1, which nearly forces A to have
countable Maharam type (524Mb).

533B Corollary Let (X,Σ, µ) be a totally finite measure space with countable Maharam type. If E ⊆ Σ,
#(E) < min(addNω, addN (µ)) and ǫ > 0, there is a set F ∈ Σ such that µ(X \F ) ≤ ǫ and {E ∩F : E ∈ E}
is countable.

proof Let (A, µ̄) be the measure algebra of µ. Then A is separable in its measure-algebra topology
(521Ea). Let H ⊆ Σ be a countable set such that {H• : H ∈ H} is dense in A. For E ∈ E and n ∈ N

c© 2007 D. H. Fremlin
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choose HEn ∈ H such that µ(E△HEn) ≤ 2−n; let KE be the family of measurable sets K such that K
is disjoint from

⋃
i≥nE△HEi for some n. Then µ is inner regular with respect to KE . Because #(E) <

min(wdistr(A), addN (µ)) (524Mb), µ is inner regular with respect to
⋂

E∈E KE (533A) and there is an
F ∈ ⋂KE such that µF ≥ µX − ǫ. If E ∈ E , there is an n ∈ N such that F ∩ (E△HEn) = ∅, that is,
F ∩ E = F ∩HEn; so {F ∩ E : E ∈ E} ⊆ {F ∩H : H ∈ H} is countable.

533C Proposition Let (X,T,Σ, µ) be a quasi-Radon measure space with countable Maharam type.
(a) If w(X) < addNω, then µ is inner regular with respect to the second-countable subsets of X; if

moreover T is regular and Hausdorff, then µ is inner regular with respect to the metrizable subsets of X.
(b) If Y is a topological space of weight less than addNω, then any measurable function f : X → Y is

almost continuous.
(c) If 〈Yi〉i∈I is a family of topological spaces, with #(I) < addNω, and fi : X → Yi is almost continuous

for every i, then x 7→ f(x) =〈fi(x)〉i∈I : X → ∏
i∈I Yi is almost continuous.

proof Note first that addN (µ) ≥ addNω, by 524Ta.

(a) Let U be a base for T with #(U) < addNω. Set

F = {F : F ⊆ X, {F ∩ U : U ∈ U} is countable}.

Then µ is inner regular with respect to F . PPP If E ∈ Σ and γ < µE, let H ∈ Σ be such that H ⊆ E and
γ < µH <∞. Then the subspace measure µH still has countable Maharam type (use 322I and 514Ed) and

addN (µH) ≥ addN (µ) ≥ addNω > #({H ∩ U : U ∈ U}).

By 533B, there is an F ∈ domµH such that µHF ≥ γ and {F ∩H ∩ U : U ∈ U} is countable; now F ∈ F ,
F ⊆ E and µF ≥ γ. QQQ But every member of F is second-countable (use 4A2B(a-vi)). If T is regular and
Hausdorff, then every member of F is separable and metrizable (4A2Pb).

(b) If f : X → Y is measurable, let V be a base for the topology of Y with #(V) < addNω. Suppose that
E ∈ Σ and γ < µE. By 533B, there is an F ∈ Σ such that F ⊆ E, γ < µF <∞ and {F ∩ f−1[V ] : V ∈ V}
is countable. It follows that {f [F ] ∩ V : V ∈ V} is countable, so that the subspace topology on f [F ] is
second-countable (4A2B(a-vi) again). Giving F its subspace topology TF and measure µF , µF is inner
regular with respect to the closed sets (412Pc). If H ⊆ f [F ] is relatively open in f [F ], it is of the form
G ∩ f [F ] where G is an open subset of Y , so that (f↾F )−1[H] = F ∩ f−1[G] is measured by µF ; thus
f↾F : F → f [F ] is measurable. By 418J, f↾F is almost continuous, and there is a K ∈ Σ such that K ⊆ F ,
µK ≥ γ and f↾K is continuous.

As E and γ are arbitrary, f is almost continuous.

(c) For each i ∈ I, set Ki = {K : K ∈ Σ, fi↾K is continuous}. Then Ki is an ideal in Σ and µ is inner
regular with respect to Ki. Also, as in 533B, #(I) < wdistr(A), where A is the measure algebra of µ. So
µ is inner regular with respect to K =

⋂
i∈I Ki, by 533A. But f↾K is continuous for every K ∈ K, so f is

almost continuous.

533D Proposition Let (X,T) be a first-countable compact Hausdorff space such that cf[w(X)]≤ω <
addNω, and µ a Radon measure on X with countable Maharam type. Then µ is inner regular with respect
to the metrizable zero sets.

proof Set κ = w(X). Then there is an injective continuous function f : X → [0, 1]κ (5A4Cc). Let I be a
cofinal subset of [κ]≤ω with #(I) < addNω. By 524Pa, addµ ≥ addNω.

For I ∈ I and x ∈ X set fI(x) = f(x)↾I. We need to know that for every x ∈ X there is an I ∈ I
such that {x} = f−1

I [fI [{x}]]. PPP Set FI = f−1
I [fI [{x}]] for each I. Because I is upwards-directed, 〈FI〉I∈I

is downwards-directed. Because f is injective and
⋃ I = κ,

⋂
I∈I FI = {x}. Let V be a countable base of

open neighbourhoods of x. For each V ∈ V there is an IV ∈ I such that FIV ∩ (X \ V ) = ∅. Let I ∈ I be
such that

⋃
V ∈V IV ⊆ I; then FI = {x}. QQQ

For I ∈ I, let λI be the image measure µf−1
I on [0, 1]I ; note that λI is a Radon measure (418I). Of course

addλI is also at least addNω, and in particular is greater than κ. If G ⊆ X is open, then G and fI [G] are
expressible as unions of at most κ compact sets, so λI measures fI [G].
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There is an I ∈ I such that µf−1
I [fI [G]] = µG for every open set G ⊆ X. PPP??? Suppose, if possible,

otherwise. For each I ∈ I choose an open set GI ⊆ X such that EI = f−1
I [fI [GI ]] \ GI is non-negligible;

because λI measures fI [GI ], µ measures EI . Set E′
I =

⋃
J∈I,J⊇I EJ for each I ∈ I; because #(I) < addµ,

µ measures E′
I . Note that E′

I ⊆ E′
J whenever J ⊆ I in I; moreover, any sequence in I has an upper

bound in I. There is therefore an M ∈ I such that E′
M \ E′

I is negligible for every I ∈ I. Again because
#(I) < addµ, E′

M \⋂I∈I E
′
I is negligible; as E′

M is not negligible, there is an x ∈ ⋂
I∈I E

′
I . But there is

an I ∈ I such that {x} = f−1
I [fI [{x}]], so x /∈ EJ for any J ⊇ I. XXXQQQ

Let U be a base for the topology of X with #(U) = κ. Then
⋃

U∈U f
−1
I [fI [U ]] \ U is µ-negligible; let Y

be its complement. If x ∈ X and y ∈ Y and x 6= y, there is a U ∈ U containing x but not y, so f−1
I [fI [U ]]

contains x and not y and f(x) 6= f(y). If F ⊆ Y is compact, then F is homeomorphic to the metrizable
fI [F ], so is metrizable, and F = f−1

I [fI [F ]] is a zero set. As µ is surely inner regular with respect to the
compact subsets of the conegligible set Y , it is inner regular with respect to the metrizable zero sets.

533E Corollary Suppose that covNω1
> ω1. Let (X,T) be a first-countable K-analytic Hausdorff space

such that cf[w(X)]≤ω < addNω. Then X is a Radon space.

proof Let µ be a totally finite Borel measure on X, E ⊆ X a Borel set and γ < µE. Because X is
K-analytic, there is a compact set K ⊆ X such that µ(E ∩ K) > γ (apply 432B to the measure µ E).
Let λ be the Radon measure on K defined by saying that

∫
fdλ =

∫
K
fdµ for every f ∈ C(K) (using the

Riesz Representation Theorem, 436J/436K). Because covNω1
> ω1, ω1 is a precaliber of every measurable

algebra (525J); as K is first-countable, ω1 /∈ MahR(K) (531O) and λ must have countable Maharam type
(531Ef). By 533D, λ is completion regular. But if F ⊆ K is a zero set (for the subspace topology of K),
there is a non-increasing sequence 〈fn〉n∈N in C(K) with infimum χF , so

λF = limn→∞

∫
fndλ = limn→∞

∫
K
fndµ = µF .

Accordingly

λH = sup{λF : F ⊆ H is a zero set} = sup{µF : F ⊆ H is a zero set} ≤ µH

for every Borel set H ⊆ K. As λK = µK, λ agrees with µ on the Borel subsets of K. In particular,
λ(E ∩K) > γ; now there is a compact set L ⊆ E ∩K such that γ ≤ λL = µL.

As E and γ are arbitrary, µ is tight; as µ is arbitrary, X is a Radon space.

533F Definition Let X be a topological space and µ a topological measure on X. I will say that µ is
uniformly regular if there is a countable family V of open sets in X such that G \⋃{V : V ∈ V, V ⊆ G}
is negligible for every open set G ⊆ X.

533G Lemma Let (X,T,Σ, µ) be a compact Radon measure space.
(a) The following are equiveridical:

(i) µ is uniformly regular;
(ii) there are a metrizable space Z and a continuous function f : X → Z such that µf−1[f [F ]] = µF

for every closed F ⊆ X;
(iii) there is a countable family H of cozero sets in X such that µG = sup{µH : H ∈ H, H ⊆ G} for

every open set G ⊆ X;
(iv) there is a countable family E of zero sets in X such that µG = sup{µE : E ∈ E , E ⊆ G} for every

open set G ⊆ X.
(b) If T is perfectly normal, the following are equiveridical:

(i) µ is uniformly regular;
(ii) there are a metrizable space Z and a continuous function f : X → Z such that µf−1[f [E]] = µE

for every E ∈ Σ;
(iii) there are a metrizable space Z and a continuous function f : X → Z such that f [G] 6= f [X]

whenever G ⊆ X is open and µG < µX;
(iv) there is a countable family E of closed sets in X such that µG = sup{µE : E ∈ E , E ⊆ G} for

every open set G ⊆ X.
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proof (a)(i)⇒(iii) Given V as in 533F, then for each V ∈ V there is a cozero set HV ⊆ V of the same
measure. PPP T is completely regular, so HV = {H : H ⊆ V is a cozero set} has union V ; µ is τ -additive, so
there is a sequence 〈Hn〉n∈N in HV such that µV = µ(

⋃
n∈NHn); set HV =

⋃
n∈NHn; by 4A2C(b-iii), HV

is a cozero set. QQQ Now H = {HV : V ∈ V} witnesses that (iii) is true.

(iii)⇒(iv) Given H as in (iii), then for each H ∈ H let 〈Fn(H)〉n∈N be a non-decreasing sequence of
zero sets with union H (4A2C(b-vi)). Set E = {Fn(H) : H ∈ H, n ∈ N}, so that E is a countable family of
zero sets. If G ⊆ X is open,

µG = supH∈H,H⊆G µH = supH∈H,H⊆G,n∈N µFn(H) ≤ supE∈E,E⊆G µE ≤ µG,

so E witnesses that (iv) is true.

(iv)⇒(ii) Given E as in (iv), then for each E ∈ E choose a continuous fE : X → R such that
E = f−1

E [{0}], and set f(x) = 〈fE(x)〉E∈E for x ∈ X. Then f : X → Z = RE is continuous and Z is
metrizable and f−1[f [E]] = E for every E ∈ E . If F ⊆ X is closed, set E0 = {E : E ∈ E , E ∩ F = ∅}. Then⋃ E0 has the same measure as X \ F and does not meet f−1[f [F ]], so µf−1[f [F ]] = µF . As F is arbitrary,
f and Z witness that µ satisfies (ii).

(ii)⇒(i) Take Z and f : X → Z as in (ii). Replacing Z by f [X] if necessary, we may suppose that f is
surjective, so that Z is compact, therefore second-countable (4A2P(a-ii)). Let U be a countable base for the
topology of Z closed under finite unions, and set V = {f−1[U ] : U ∈ U}, so that V is a countable family of
open sets in X. If G ⊆ X is open, set F = X \G, U0 = {U : U ∈ U , U ∩ f [F ] = ∅}, V0 = {f−1[U ] : U ∈ U0}.
Then Z \ f [F ] =

⋃U0 so X \ f−1[f [F ]] =
⋃V0 and (because U0 and V0 are closed under finite unions)

sup{µV : V ∈ V, V ⊆ G} ≥ sup
V ∈V0

µV = µ(X \ f−1[f [F ]])

= µX − µf−1[f [F ]] = µX − µF = µG.

Thus V witnesses that µ is uniformly regular.

(b)(i)⇒(iii) If µ is uniformly regular, then by (a-ii) there are a metrizable space Z and a continuous
function f : X → Z such that µf−1[f [F ]] = µF for every closed F ⊆ X. If now G ⊆ X is open and
µG < µX, there is a sequence 〈Fn〉n∈N of closed sets with union G, because T is perfectly normal. In this
case f−1[f [G]] =

⋃
n∈N f

−1[f [Fn]] has the same measure as G, so is not the whole of X, and f [G] 6= f [X].
Thus f and Z witness that (iii) is true.

(iii)⇒(ii) Take Z and f from (iii). Let ν be the image measure µf−1 on Z; then µ is a Radon measure
(418I again). ??? If E ∈ Σ and µ∗f−1[f [E]] > µE, let E′ ⊇ E be a Borel set such that µE′ = µE. Because
X is perfectly normal, E′ belongs to the Baire σ-algebra of X (4A3Kb), so is Souslin-F (421L), therefore
K-analytic (422Hb); consequently f [E′] is K-analytic (422Gd) therefore measured by ν (432A). This means
that f−1[f [E′]] ∈ Σ, and of course

µf−1[f [E′]] ≥ µ∗f−1[f [E]] > µE = µE′.

We can therefore find open sets G ⊇ E′ and G′ ⊇ X \f−1[f [E′]] such that µG+µG′ < µX. But now G∪G′

is an open set of measure less than µX and f [G ∪G′] = f [X], which is supposed to be impossible. XXX
Thus, for any E ∈ Σ, we have µ∗f−1[f [E]] = µE; of course it follows at once that f−1[f [E]] is measurable,

with the same measure as E, as required by (ii).

(ii)⇒(i)⇔(iv) These follow immediately from (a), because all closed sets in X are zero sets.

533H Theorem (a) Suppose that covNω1
> ω1. Let X be a perfectly normal compact Hausdorff space.

Then every Radon measure on X is uniformly regular.
(b) (Plebanek 00) Suppose that covNω1

> ω1 = nonNω. Let X be a first-countable compact Hausdorff
space. Then every Radon measure on X is uniformly regular.

proof (a) Let µ be a Radon measure on X. ??? If µ is not uniformly regular, then we can choose 〈gξ〉ξ<ω1
and

〈Gξ〉ξ<ω1
inductively, as follows. Given that gη : X → R is continuous for every η < ξ, set fξ(x) = 〈gη(x)〉η<ξ

for x ∈ X, so that fξ : X → Rξ is continuous. By 533G(b-iii), there is an open set Gξ such that µGξ < µX
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and fξ[Gξ] = fξ[X]; now Gξ is a cozero set and there is a continuous function gξ : X → R such that
Gξ = {x : gξ(x) 6= 0}. Continue.

At the end of the induction, we have a continuous function fω1
: X → Rω1 , setting fω1

(x) = 〈gξ(x)〉ξ<ω1

for each x. Now ω1 is a precaliber of every measurable algebra (525J again), and µ(X \Gξ) > 0 for each ξ,
so there is an x ∈ X such that A = {ξ : x /∈ Gξ} is uncountable (525Ca). Set H = {y : fω1

(y) 6= fω1
(x)};

then H is an open set, so expressible as
⋃

n∈NKn where each Kn is compact. For each ξ ∈ A there is an
xξ ∈ Gξ such that fξ(xξ) = fξ(x). As gξ(xξ) 6= 0 = gξ(x), xξ ∈ H. Let n ∈ N be such that A′ = {ξ : ξ ∈ A,
xξ ∈ Kn} is uncountable. Then

fω1
(x) ∈ {fω1

(xξ) : ξ ∈ A′} ⊆ fω1
[Kn];

but this is impossible, because Kn ⊆ H. XXX

So µ must be uniformly regular, as required.

(b) Let µ be a Radon measure on X. If µX = 0 then of course µ is uniformly regular; suppose µX > 0.
As in (a) and the proof of 533E, the Maharam type of µ is countable. Let A be the measure algebra of µ;
then d(A) ≤ nonNω (524Me), so there is a set A ⊆ X, of full outer measure, with #(A) ≤ ω1 (521Lc). For
each x ∈ X, let 〈Vxn〉n∈N run over a base of neighbourhoods of x. Let H be the family of sets expressible as
finite unions of Vxn for x ∈ A and n ∈ N, so that H is a family of open sets in X and #(H) ≤ ω1.

For any open G ⊆ X, µG = sup{µH : H ∈ H, H ⊆ G}. PPP Set H∗ =
⋃{H : H ∈ H, H ⊆ G}. For any

x ∈ A∩G, there is an n ∈ N such that Vxn ⊆ G, and now Vxn ∈ H, so x ∈ H∗. Thus G \H∗ does not meet
A; as A has full outer measure,

µG = µH∗ = sup{µH : H ∈ H, H ⊆ G}
because {H : H ∈ H, H ⊆ G} is closed under finite unions. QQQ So there is a countable H′ ⊆ {H : H ∈ H,
H ⊆ G} such that µG = supH∈H′ µH.

Let 〈Hξ〉ξ<ω1
run over H. For ξ < ω1, set

Gξ = {G : G ⊆ X is open, µG = sup{µHη : η ≤ ξ, Hη ⊆ G}}.

Then
⋃

ξ<ω1
Gξ = T. For each ξ < ω1, set

Yξ = {y : y ∈ X, Vyn ∈ Gξ for every n ∈ N};

then X =
⋃

ξ<ω1
Yξ. Now there is a ξ < ω1 such that Yξ has full outer measure. PPP Let ξ be such that

µ∗Yξ = µ∗Yη for every η ≥ ξ. ??? If µ∗Yξ < µX, let K ⊆ X \ Yξ be a non-negligible measurable set. Then
the subspace measure µK is a Radon measure with countable Maharam type, so

covN (µK) ≥ covNω ≥ covNω1
> ω1.

Since K ⊆ ⋃
η<ω1

Yη, there must be some η < ω1 such that µ∗
K(K ∩ Yη) > 0; but now µ∗(K ∩ Yη) > 0 and

η > ξ and

µ∗Yη = µ∗(Yη \K) + µ∗(Yη ∩K) > µ∗Yξ. XXX

So Yξ has full outer measure. QQQ

Set Hξ = {Hη : η ≤ ξ}. If G ⊆ X is open, and H∗ =
⋃{H : H ∈ Hξ, H ⊆ G}, then G \H∗ is negligible.

PPP Set V = {Vyn : y ∈ Yξ, n ∈ N, Vyn ⊆ G}, H∗
1 =

⋃V. Then Yξ does not meet G \ H∗
1 , so µH∗

1 = µG.
Let V0 ⊆ V be a countable set such that µ(

⋃V0) = µG. If V ∈ V0, then V ∈ Gξ and V ⊆ G so V \H∗ is
negligible. Accordingly

G \H∗ ⊆ (G \⋃V0) ∪⋃
V ∈V0

(V \H∗)

is negligible. QQQ So if we take H′ to be the set of finite unions of members of Hξ, H′ will be a countable
family of open sets and µG = sup{µH : H ∈ H′, H ⊆ G} for every open G ⊆ X. Thus µ is uniformly
regular.

533I We know from 435Fb/435H and 439P that RN is measure-compact and Rc is not. It turns out
that we already have a language in which to express a necessary and sufficient condition for Rκ to be
measure-compact. To give the result in its full strength I repeat a definition from 435Xk.
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Definition A completely regular space X is strongly measure-compact if µX = sup{µ∗K : K ⊆ X is
compact} for every totally finite Baire measure µ on X.

Remark For the elementary properties of these spaces, see 435Xk. I repeat one here: a completely regular
space X is strongly measure-compact iff it is measure-compact and pre-Radon. PPP(i) Suppose that X is
measure-compact and pre-Radon and that µ is a totally finite Baire measure on X. Because X is measure-
compact, µ has an extension to a quasi-Radon measure µ̃ (435D); because X is pre-Radon, µ̃ is Radon
(434Jb) and

µX = µ̃X = sup
K⊆X is compact

µ̃K

= sup
K⊆X is compact

µ̃∗K ≤ sup
K⊆X is compact

µ∗K ≤ µX.

As µ is arbitrary, X is strongly measure-compact. (ii) Suppose that X is strongly measure-compact. (α)
Let µ be a Baire probability measure on X. Then there is a non-negligible compact set, so X cannot be
covered by the negligible open sets; by 435Fa, this is enough to ensure that X is measure-compact. (β) Now
let µ be a totally finite τ -additive Borel measure on X. Write ν for the restriction of µ to the Baire σ-algebra
of X. Then there is a compact set K ⊆ X which is not ν-negligible. ??? If µ(X \K) = µX, then, because µ
is τ -additive and X is regular, there is a closed set F ⊆ X \K such that µF + ν∗K > µX. Because X is
completely regular, there is a zero set G including K and disjoint from F , in which case ν∗K > µG = νG,
which is impossible. XXX So µK > 0; by 434J(a-iii), this tells us that X is pre-Radon. QQQ

533J Theorem (see Fremlin 77) Let κ be a cardinal. Then the following are equiveridical:
(i) Rκ is measure-compact;
(ii) if 〈Xξ〉ξ<κ is a family of strongly measure-compact completely regular Hausdorff spaces then

∏
ξ<κXξ

is measure-compact;
(iii) whenever X is a compact Hausdorff space and 〈Gξ〉ξ<κ is a family of cozero sets in X, then X ∩⋂

ξ<κGξ is measure-compact;

(iv) for any Radon measure, the union of κ or fewer closed negligible sets has inner measure zero;
(v) for any Radon measure, the union of κ or fewer negligible sets has inner measure zero;
(vi) κ < covN (µ) for any Radon measure µ;
(vii) κ < covNκ;
(viii) κ < m(A) for every measurable algebra A.

proof not-(iv)⇒not-(i) Suppose that X is a Hausdorff space, µ is a Radon measure on X and 〈Fξ〉ξ<κ

is a family of closed µ-negligible subsets of X such that µ∗(
⋃

ξ<κ Fξ) > 0. Then there is a compact set

K ⊆ ⋃
ξ<κ Fξ such that µK > 0.

For each ξ < κ, there is a continuous gξ : K → [0, 1[ such that gξ(z) = 0 for z ∈ K ∩ Fξ and g−1
ξ [{0}] is

negligible. PPP For each n ∈ N, there is a compact set Ln ⊆ K \ Fξ such that µLn ≥ µK − 2−n; there is a
continuous fn : K → [0, 1] such that fn(z) = 0 for z ∈ K ∩ Fξ, 1 for z ∈ Ln; set gξ =

∑∞
n=0 2−n−2fn. QQQ

Set g(z) = 〈gξ(z)〉ξ<κ for z ∈ K, so that g : K → [0, 1[
κ

is continuous.
Let ν be the Baire measure on [0, 1]κ defined by setting νH = µg−1[H] for every Baire set H ⊆ [0, 1]κ.

Then ]0, 1[
κ

has full outer measure for ν. PPP If H ⊆ [0, 1]κ is a Baire set including ]0, 1[
κ
, then H is

determined by coordinates in some countable subset I of κ (4A3Mb). If z ∈ K and gξ(z) > 0 for every

ξ ∈ I, then g(z)↾I ∈ ]0, 1[
I

is equal to w↾I for some w ∈ H, so g(z) ∈ H. Thus g−1[H] includes {z : z ∈ K,
gξ(z) > 0 for every ξ ∈ I} and

νH = µg−1[H] ≥ µ{z : gξ(z) > 0 for every ξ ∈ I} = µK = ν[0, 1]κ. QQQ

On the other hand, every point y of ]0, 1[
κ

belongs to a ν-negligible cozero set. PPP g[K] is a compact set
not containing y, so there is a cozero set W containing y and disjoint from g[K], and now νW = 0. QQQ

Let ν0 be the subspace measure on ]0, 1[
κ
. By 4A3Nd, ν0 is a Baire measure on ]0, 1[

κ
. If y ∈ ]0, 1[

κ
it

belongs to a ν-negligible cozero set W ⊆ [0, 1]κ, and now W ∩ ]0, 1[
κ

is a ν0-negligible cozero set in ]0, 1[
κ

containing y. At the same time,

ν0 ]0, 1[
κ

= ν[0, 1]κ = µK > 0.
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So ν0 witnesses that ]0, 1[
κ

is not measure-compact; as Rκ is homeomorphic to ]0, 1[
κ
, it also is not measure-

compact.

(iv)⇒(iii) Suppose that (iv) is true and that we have X and 〈Gξ〉ξ<κ, as in (iii), with a Baire probability
measure µ on Y = X ∩ ⋂

ξ<κGξ. Let ν be the Radon probability measure on X defined by saying that∫
fdν =

∫
(f↾Y )dµ for every f ∈ C(X) (436J/436K again). Then νGξ = 1 for each ξ < κ. PPP Let f : X → R

be a continuous function such that Gξ = {x : x ∈ X, f(x) 6= 0}. Set fn = n|f | ∧ χX for each n. Then
limn→∞ fn = χGξ, so

νGξ = limn→∞

∫
fndν = limn→∞

∫
(fn↾Y )dµ = µY = 1. QQQ

By (iv), ν∗(
⋃

ξ<κ(X \Gξ)) = 0, that is, Y has full outer measure. In particular, Y must meet the support
of ν; take any z in the intersection. If U is a cozero set in Y containing z, there is an open set G ⊆ X such
that U = G ∩ Y ; now there is a continuous f : X → [0, 1] such that f(z) = 1 and f(x) = 0 for x ∈ X \G;
in this case

µU ≥
∫

(f↾Y )dµ =
∫
fdν > 0

because {x : f(x) > 0} is an open set meeting the support of ν. This shows that Y is not covered by the
µ-negligible relatively cozero sets; as µ is arbitrary, Y is measure-compact (435Fa).

(iii)⇒(i) We can express Rκ in the form of (iii) by taking X = [−∞,∞]κ and Gξ = {x : x(ξ) is finite}
for each ξ.

(iv)⇒(vii) Let Z be the Stone space of the measure algebra of νκ, and λ its usual measure. If 〈Eξ〉ξ<κ

is a family of λ-negligible sets, then, because λ is inner regular with respect to the open-and-closed sets, we
can find negligible zero sets Fξ ⊇ Eξ for each ξ. By (iv), {Fξ : ξ < κ} cannot cover Z, so the same is true
of {Eξ : ξ < κ}. Thus covN (λ) > κ. By 524Jb, covNκ > κ.

(vii)⇒(vi) Let θ be min{covN (ν) : ν is a non-zero Radon measure}. By 524Pc, there is an infinite
cardinal κ′ such that θ = covNκ′ ; by 523F, θ = covNθ. ??? If θ ≤ κ, then 523B tells us that

κ < covNκ ≤ covNθ = θ. XXX

So θ > κ, as required.

(vi)⇒(v) If (vi) is true, (X,µ) is a Radon measure space, 〈Fξ〉ξ<κ is a family of negligible sets, and
E ⊆ ⋃

ξ<κ Fξ is a measurable set, then the subspace measure µE is a Radon measure (416Rb), while E can

be covered by κ negligible sets; by (vi), µE = 0; as E is arbitrary, µ∗(
⋃

ξ<κ Fξ) = 0.

(v)⇒(ii) Suppose that (v) is true, that 〈Xξ〉ξ<κ is a family of strongly measure-compact completely
regular Hausdorff spaces with product X, and that µ is a Baire probability measure on X. For each ξ < κ
let Zξ be the Stone-Čech compactification of Xξ; set Z =

∏
ξ<κ Zξ, and πξ(z) = z(ξ) for z ∈ Z, ξ < κ.

Then we have a Radon probability measure λ on Z defined by saying that
∫
g dλ =

∫
X

(g↾X)dµ for every
g ∈ C(Z). Note that if W ⊆ Z is a zero set, there is a non-increasing sequence 〈gn〉n∈N in C(Z) with
infimum χW , so that

λW = infn∈N

∫
gndλ = infn∈N

∫
X

(gn↾X)dµ = µ(W ∩X).

Now λπ−1
ξ [Xξ] = 1 for each ξ. PPP Let ǫ > 0. We have a Baire probability measure µξ on Xξ defined by

setting µξE = µ(X ∩ π−1
ξ [E]) for every Baire set E ⊆ Xξ, and a Radon measure λξ = λπ−1

ξ on Zξ. Because
Xξ is strongly measure-compact, there is a compact set K ⊆ Xξ such that µ∗

ξK ≥ 1 − ǫ. Now K is still
compact when regarded as a subset of Zξ, so there is a zero set F ⊆ Zξ, including K, such that λξF = λξK.
In this case, F ∩Xξ is a zero set in Xξ including K, so

λ∗π
−1
ξ [Xξ] ≥ λπ−1

ξ [K] = λξK = λξF = λπ−1
ξ [F ]

= µ(X ∩ π−1
ξ [F ]) = µξ(F ∩Xξ) ≥ µ∗

ξK ≥ 1 − ǫ.

As ǫ is arbitrary, we have the result. QQQ
By (v), X = Z ∩⋂

ξ<κ π
−1
ξ [Xξ] has full outer measure for λ. Let G be the family of µ-negligible cozero

sets in X and H the family of λ-negligible open sets in Z. If x ∈ G ∈ G, then there is a continuous
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function g : Z → [0, 1] such that g(x) = 1 and H = {y : y ∈ X, g(y) > 0} is included in G; now∫
g dλ =

∫
(g↾X)dµ = 0, so λH = 0. This shows that

⋃G ⊆ ⋃H is λ-negligible, and, in particular, is not
the whole of X. By 435Fa as usual, this is enough to show that X is measure-compact, as required.

(ii)⇒(i) is elementary, because R is certainly strongly measure-compact.

(vi)⇒(viii)⇒(vii) are immediate from 524Md.

533X Basic exercises (a) Describe a family 〈Kt〉t∈R such that every Kt consists of compact sets,
Lebesgue measure on R is inner regular with respect to every Kt, but

⋂
t∈R Kt = ∅.

(b) Let µ be a uniformly regular topological measure on a topological space X. (i) Show that if A ⊆ X
then the subspace measure on A is uniformly regular. (ii) Show that any indefinite-integral measure over µ
is uniformly regular. (iii) Show that if Y is another topological space and f : X → Y is a continuous open
map, then the image measure µf−1 is uniformly regular.

(c) Show that any Radon measure on the split interval is uniformly regular. (Hint : 419L.)

(d) (Babiker 76) Let X and Y be compact Hausdorff spaces, µ a Radon measure on X, f : X → Y a
continuous surjection and ν = µf−1 the image measure on Y . Show that the following are equiveridical: (i)
νf [F ] = µF for every closed F ⊆ X; (ii)

∫
g dµ = inf{

∫
h dν : h ∈ C(Y ), hf ≥ g} for every g ∈ C(X); (iii)

for every g ∈ C(X), {y : g is constant on f−1[{y}]} is ν-conegligible.

(e) Show that any uniformly regular Borel measure has countable Maharam type.

(f) Let 〈Xi〉i∈I be a countable family of topological spaces with product X, and µ a τ -additive topological
measure on X. Suppose that the marginal measure of µ on Xi is uniformly regular for every i ∈ I. Show
that µ is uniformly regular.

(g) Let X be [0, 1] × {0, 1} with the topology generated by

{G× {0, 1} : G ⊆ [0, 1] is relatively open for the usual topology}
∪ {{(t, 1)} : t ∈ [0, 1]} ∪ {X \ {(t, 1)} : t ∈ [0, 1]}.

Show that X is compact and Hausdorff. Let µ be the Radon measure on X which is the image of Lebesgue
measure on [0, 1] under the map t 7→ (t, 0). Show that µ is uniformly regular but not completion regular.

(h) Let X be a topological space and µ a uniformly regular topological probability measure on X. Show
that there is an equidistributed sequence in X.

(i) Show that there is a first-countable compact Hausdorff space with a uniformly regular topological
probability measure, inner regular with respect to the closed sets, which is not τ -additive. (Hint : 439K.)

533Y Further exercises (a) (Pol 82) Let X be a compact Hausdorff space and µ a uniformly regular
Radon measure on X. Show that if we give the space M+

R of Radon measures on X its narrow topology

(437Jd) then χ(µ,M+
R ) ≤ ω.

(b) For a topological measure µ on a space X, write ureg(µ) for the smallest size of any family V of open
subsets of X such that G \⋃{V : V ∈ V, V ⊆ G} is negligible for every open G ⊆ X. (i) Show that if µ is
inner regular with respect to the Borel sets then the Maharam type τ(µ) of µ is at most ureg(µ). (ii) Show
that if X is compact and Hausdorff and µ is a Radon measure, then ureg(µ) ≤ max(nonNτ(µ), χ(X)). (iii)
Show that if X is compact and Hausdorff, µ is a Radon probability measure and covNτ(µ) > ureg(µ), then
µ has an equidistributed sequence.

(c) (Plebanek 00) Suppose that κ is a regular infinite cardinal such that nonNκ < covNκ = κ. Let
(X,µ) be a Radon probability space such that χ(X) < κ. Show that µ has an equidistributed sequence.
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(d) Let (X,T,Σ, µ) be a Radon measure space with countable Maharam type, A ⊆ Σ a set with cardinal
less than addNω, and S the topology on X generated by T ∪ A. Show that µ is S-Radon.

533Z Problem For which cardinals κ is Rκ Borel-measure-compact?

533 Notes and comments I suppose that from the standpoint of measure theory the most fundamental of
all the properties of ω is the fact that the union of countably many Lebesgue negligible sets is again Lebesgue
negligible; this is of course shared by every κ < addNω (which is in effect the definition of addNω). In
533A-533E and 533J we have results showing that uncountable cardinals can be ‘almost countable’ in other
ways. In each case the fact that ω has the property examined is either trivial (as in 533B) or a basic result
from Volume 4 (as in 533Cb, 533Cc and 533E). Similarly, the fact that c does not have any of these properties
is attested by classical examples. If you are familiar with Martin’s axiom you will not be surprised to observe
that everything here is sorted out if we assume that m = c.

533H does not quite fit this pattern, and the hypothesis in 533Hb definitely contradicts Martin’s axiom.
‘Uniformly regular’ measures got squeezed out of §434 by shortage of space; in the exercises 533Xb-533Xi I
sketch some of what was missed. Here I mention them just to show that there is more to say on the subject
of first-countable and perfectly normal spaces than I put into 531O and 531Q. Another phenomenon of
interest is the occurrence of measures which are inner regular with respect to a family of compact metrizable
sets (462J, 533Ca, 533D).

Version of 27.6.22

534 Hausdorff measures, strong measure zero and Rothberger’s property

In this section I look at constructions which are primarily metric rather than topological. I start with a
note on Hausdorff measures, spelling out connexions between Hausdorff r-dimensional measure on a separable
metric space and the basic σ-ideal N (534B).

The main part of the section section is a brief introduction to a class of ideals which are of great interest
in set-theoretic analysis. While the most important ones are based on separable metric spaces, some of the
ideas can be expressed in more general contexts, and I give a definition of ‘strong measure zero’ in terms of
uniformities (534Ca). An associated topological notion is what I call ‘Rothberger’s property’ (534Cb). A
famous characterization of sets of strong measure zero in R in terms of translations of meager sets can also
be represented as a theorem about σ-compact groups (534K). There are few elementary results describing
the cardinal functions of strong measure zero ideals, but I give some information on their additivities (534M)
and uniformities (534Q). There seem to be some interesting questions concerning spaces with isomorphic
strong measure zero ideals, which I consider in 534N-534P. A particularly important question, from the very
beginning of the topic in Borel 1919, concerns the possible cardinals of sets of strong measure zero; in
534Q-534S I give some sample facts and illustrative examples.

534A An elementary lemma will be useful.

Lemma Let (X, ρ) be a separable metric space. Then there is a countable family C of subsets of X
such that whenever A ⊆ X has finite diameter and η > 0 then there is a C ∈ C such that A ⊆ C and
diamC ≤ η + 2 diamA.

proof Let D be a countable dense subset of X and set C = {∅} ∪ {B(x, q) : x ∈ D, q ∈ Q, q ≥ 0}. If
A ⊆ X has finite diameter and η > 0, then if A = ∅ we can take C = ∅. Otherwise, take y ∈ A and q ∈ Q

such that diamA + 1
4η ≤ q ≤ diamA + 1

2η. Let x ∈ D be such that ρ(x, y) ≤ 1
4η; then C = B(x, q) ∈ C,

A ⊆ B(y, diamA) ⊆ C and diamC ≤ 2q ≤ η + 2 diamA.

534B Hausdorff measures There are difficult questions concerning the cardinals associated with even
the most familiar Hausdorff measures. However we do have some easy results.

c© 2003 D. H. Fremlin
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Theorem Let (X, ρ) be a metric space and r > 0. Write µHr for r-dimensional Hausdorff measure on X,
N (µHr) for its null ideal, N for the null ideal of Lebesgue measure on R and M for the ideal of meager
subsets of R.

(a) addµHr = addN (µHr).

(b) If X is separable, N (µHr) 4T N , so that addµHr ≥ addN and cfN (µHr) ≤ cfN .

(c) If X is separable, (X,∈,N (µHr)) 4GT (M, 6∋,R), so that covN (µHr) ≤ nonM and mcountable ≤
nonN (µHr).

(d) If X is analytic and µHrX > 0, then addµHr = addN , cfN (µHr) = cfN , nonN (µHr) ≤ nonN and
covN (µHr) ≥ covN .

proof (a) 521Ac.

(b)(i) Let C be a countable family of subsets of X such that whenever A ⊆ X has finite diameter and
η > 0 there is a C ∈ C such that A ⊆ C and diamC ≤ η + 2 diamA (534A).

If A ⊆ X, then A ∈ N (µHr) iff for every ǫ > 0 there is a sequence 〈Cn〉n∈N in C such that A ⊆ ⋃
n∈N Cn

and
∑∞

n=0(diamCn)r ≤ ǫ. PPP If A is negligible and ǫ > 0, then (by the definition in 471A) there must be
a sequence 〈An〉n∈N of subsets of X such that A ⊆ ⋃

n∈NAn and
∑∞

n=0(diamAn)r < 2−rǫ. Let 〈ηn〉n∈N

be a sequence of strictly positive real numbers such that
∑∞

n=0(ηn + 2 diamAn)r ≤ ǫ. For each n we can
find Cn ∈ Cn such that An ⊆ Cn and diamCn ≤ ηn + 2 diamAn, so that

∑∞
n=0(diamCn)r ≤ ǫ, while

A ⊆ ⋃
n∈N Cn.

On the other hand, if A satisfies the condition, then for every ǫ, δ > 0 there is a sequence 〈Cn〉n∈N of
subsets of X such that A ⊆ ⋃

n∈N Cn and
∑∞

n=0(diamCn)r ≤ min(ǫ, δr). In this case, diamCn ≤ δ for every
n, so θrδA, as defined in 471A, is at most ǫ. As ǫ is arbitrary, θrδA = 0; as δ is arbitrary, A is µHr-negligible.
QQQ

(ii) It follows that (N (µHr),⊆,N (µHr)) 4GT (NN,⊆∗,S), where (NN,⊆∗,S) is the N-localization
relation (522K).

PPP(ααα) For each n ∈ N, let In be the family of finite subsets I of C such that
∑

C∈I(diamC)r ≤ 4−n. Let
〈Inj〉j∈N be a sequence running over In. Now, given A ∈ N (µHr), then for each n ∈ N let 〈Cni〉i∈N be a
sequence in C, covering A, such that

∑∞
i=0(diamCni)

r ≤ 2−n−1. Let 〈Ci〉i∈N be a re-indexing of the family
〈Cni〉n,i∈N, so that 〈Ci〉i∈N is a sequence in C,

∑∞
i=0(diamCi)

r ≤ 1, and A ⊆ ⋂
m∈N

⋃
i≥m Ci. Let 〈k(n)〉n∈N

be a strictly increasing sequence in N such that k(0) = 0 and
∑∞

i=k(n)(diamCi)
r ≤ 4−n for every n. Now,

for n ∈ N, let φ(A)(n) be such that {Ci : k(n) ≤ i < k(n+ 1)} = In,φ(A)(n).

This process defines a function φ : N (µHr) → NN such that

A ⊆ ⋂
m∈N

⋃
n≥m

⋃
In,φ(A)(n)

for every A ∈ N (µHr).

(βββ) For S ∈ S, set

ψ(S) =
⋂

m∈N

⋃
n≥m

⋃
i∈S[{n}]

⋃
Ini ⊆ X.

If n ∈ N, then
∑{(diamC)r : C ∈ ⋃

i∈S[{n}] Ini} ≤ 2n · 4−n = 2−n,

because #(S[{n}]) ≤ 2n and
∑{(diamC)r : C ∈ Ini} ≤ 4−n for every i. But this means that, for any

m ∈ N,
∑{(diamC)r : C ∈ ⋃

n≥m

⋃
i∈S[{n}] Ini} ≤ 2−m+1,

while

ψ(S) ⊆ ⋃
(
⋃

n≥m

⋃
i∈S[{n}] Ini).

So ψ(S) ∈ N (µHr) for every S ∈ S.

(γγγ) Suppose that A ∈ N (µHr) and φ(A) ⊆∗ S ∈ S. Then there is some m0 ∈ N such that
(n, φ(A)(n)) ∈ S for every n ≥ m0. Now, for any m ∈ N, we have
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A ⊆
⋃

n≥max(m,m0)

⋃
In,φ(A)(n)

⊆
⋃

n≥max(m,m0)

⋃

i∈S[{n}]

⋃
Ini ⊆

⋃

n≥m

⋃

i∈S[{n}]

⋃
Ini,

so A ⊆ ψ(S). This shows that (φ, ψ) is a Galois-Tukey connection from (N (µHr),⊆,N (µHr)) to (NN,⊆∗,S),
and (N (µHr),⊆,N (µHr)) 4GT (NN,⊆∗,S). QQQ

(iii) Since (N ,⊆,N ) ≡GT (NN,⊆∗,S) (522M), (N (µHr),⊆,N (µHr)) 4GT (N ,⊆,N ), that is, N (µHr)
4T N .

(iv) By 513Ee, as usual, we can conclude that addN (µHr) ≥ addN and cfN (µHr) ≤ cfN .

(c)(i) If µHrX = 0, the result is trivial. PPP Set φ(x) = ∅ for x ∈ X, ψ(t) = X for t ∈ R; then (φ, ψ) is a
Galois-Tukey connection from (X,∈,N (µHr)) to (M, 6∋,R). QQQ So let us suppose that X is infinite.

(ii) Let F be the set of 1-Lipschitz functions f : X → [0, 1]. Define T : X → ℓ∞(F ) by setting
(Tx)(f) = f(x) for f ∈ F and x ∈ X. Then

‖Tx− Ty‖∞ = supf∈F |f(x) − f(y)| = min(1, ρ(x, y))

for all x, y ∈ X. PPP Of course supf∈F |f(x) − f(y)| ≤ min(1, ρ(x, y)), by the definition of F . On the other
hand, we can set f(z) = min(1, ρ(z, x)) for every z ∈ X; then f ∈ F and |f(x) − f(y)| = min(1, ρ(x, y)). So
we have equality. QQQ Thus T is 1-Lipschitz for ρ and the usual metric on ℓ∞(F ), and T [X] is a separable
subset of ℓ∞(F ) (4A2B(e-iii)). Let V be the closed linear subspace of ℓ∞(F ) generated by T [X]; then V is
separable (4A4Bg). Being a closed subset of the complete metric space ℓ∞(F ), V is a Polish space. Since
X has more than one point, and T is injective, V is non-empty and has no isolated points.

Let 〈vn〉n∈N enumerate a dense subset of V . Set

E =
⋂

n∈N

⋃
i≥n U(vi, 2

−i−1)

where U(v, δ) = {u : u ∈ V , ‖u − v‖∞ < δ} for v ∈ V , δ > 0. Then E is the intersection of a sequence of
dense open sets in V , so is comeager, and M = V \ E belongs to the ideal M(V ) of meager subsets of V .
For any v ∈ V , the map u 7→ u−v : V → V is a homeomorphism, so M−v ∈ M(V ). Define φ : X → M(V )
by setting φ(x) = M − Tx for x ∈ X.

In the other direction, define ψ : V → PX by setting ψ(v) = T−1[E− v] for v ∈ V . Then ψ(v) ∈ N (µHr)
for every v ∈ V . PPP If v ∈ V and δ ≤ 1

2 , then ‖u−u′‖∞ < 1 for all u, u′ ∈ U(v, δ), so ρ(x, x′) ≤ ‖Tx−Tx′‖∞
whenever x, x′ ∈ T−1[U(v, δ)]. Accordingly diamT−1[U(vi − v, 2−i−1)] ≤ 2−i for every i ∈ N. This means
that

µ∗
HrT

−1[E − v] = µ∗
Hr(

⋂

n∈N

⋃

i≥n

T−1[U(vi − v, 2−i−1)]

≤ inf
n∈N

∞∑

i=n

(2−i)r = 0. QQQ

So ψ is a function from V to N (µHr). We now see that

φ(x) 6∋ v =⇒ v /∈M − Tx =⇒ Tx /∈M − v

=⇒ Tx ∈ E − v =⇒ x ∈ ψ(v).

Thus (φ, ψ) is a Galois-Tukey connection from (X,∈,N (µHr)) to (M(V ), 6∋, V ) and

(X,∈,N (µHr)) 4GT (M(V ), 6∋, V ) ∼= (M, 6∋,R)

(522Wb).

(iii) Now

covN (µHr) = cov(X,∈,N (µHr)) ≤ cov(M, 6∋,R) = nonM,
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nonN (µHr) = add(X,∈,N (µHr)) ≥ add(M, 6∋,R) = covM = mcountable

(512D, 512Ed, 522Sa).

(d) If X is analytic and µHrX > 0, then by Howroyd’s theorem (471S) there is a compact set K ⊆ X

such that 0 < µHrK < ∞. Now the subspace measure µ
(K)
Hr on K is an atomless Radon measure (471E,

471Dg, 471F) on a compact metric space, so

addN ≤ addN (µHr) ≤ addN (µ
(K)
Hr ) = addN ,

cfN ≥ cfN (µHr) ≥ cfN (µ
(K)
Hr ) = cfN ,

nonN (µHr) ≤ nonN (µ
(K)
Hr ) = nonN ,

cov(X,N (µHr)) ≥ cov(K,N (µ
(K)
Hr )) = covN

by (b) above, 521F and 522Wa.

534C Strong measure zero and Rothberger’s property (a) Let (X,W) be a uniform space and
A ⊆ X. I say that A has strong measure zero or property C in X if for any sequence 〈Wn〉n∈N in W
there is a cover 〈An〉n∈N of A such that An ×An ⊆Wn for every n ∈ N. If (X, ρ) is a metric space, a subset
A of X has strong measure zero in X if it has strong measure zero for the uniformity defined by the metric
(3A4B), that is, for any sequence 〈ǫn〉n∈N of strictly positive real numbers there is a cover 〈An〉n∈N of X
such that diamAn ≤ ǫn for every n ∈ N.

I will write Smz(X,W) or Smz(X, ρ) for the family of sets of strong measure zero in a uniform space
(X,W) or a metric space (X, ρ).

(b) If X is a topological space and A is a subset of X, I will say that A has Rothberger’s property
in X if for every sequence 〈Gn〉n∈N of non-empty open covers of X there is a sequence 〈Gn〉n∈N such that
Gn ∈ Gn for every n ∈ N and A ⊆ ⋃

n∈NGn. I will write Rbg(X) for the family of subsets of X with
Rothberger’s property in X.

534D Proposition (a)(i) If (X,W) is a uniform space and A ⊆ X, then A has strong measure zero in
X iff it has strong measure zero in itself when it is given its subspace uniformity.

(ii) If (X,W) is a uniform space, then Smz(X,W) is a σ-ideal containing all the countable subsets of
X.

(iii) If (X,W) and (Y,V) are uniform spaces and f : X → Y is uniformly continuous, then f [A] ∈
Smz(Y,V) whenever A ∈ Smz(X,W).

(iv) Let (X,W) be a uniform space and A ⊆ X. Then A ∈ Smz(X,W) iff f [A] ∈ Smz(Y, ρ) whenever
(Y, ρ) is a metric space and f : X → Y is uniformly continuous.

(v) Let (X,W) be a uniform space and A ∈ Smz(X,W). If B ⊆ X is such that B \ G ∈ Smz(X,W)
whenever G is an open set including A, then B ∈ Smz(X,W).

(b) Let X be a topological space.
(i) Rbg(X) is a σ-ideal containing all the countable subsets of X.
(ii) If Y is another topological space, f : X → Y is continuous and A ∈ Rbg(X), then f [A] ∈ Rbg(Y ).
(iii) If A ∈ Rbg(X) and B ⊆ X is such that B \G ∈ Rbg(X) whenever G is an open set including A,

then B ∈ Rbg(X).
(iv) If F ⊆ X is closed, then Rbg(F ) = {A : A ∈ Rbg(X), A ⊆ F}.

proof (a)(i) Recall that the subspace uniformity on A is just WA = {W ∩ (A × A) : W ∈ W} (3A4D). If
A ∈ Smz(A,WA) and 〈Wn〉n∈N is a sequence in W, then 〈Wn ∩ (A × A)〉n∈N is a sequence in WA, so we
have a sequence 〈An〉n∈N of sets covering A with An × An ⊆ Wn ∩ (A× A) ⊆ Wn for every n; as 〈Wn〉n∈N

is arbitrary, A ∈ Smz(X,W). If A ∈ Smz(X,W) and 〈Vn〉n∈N is a sequence in WA, we can choose for
each n a Wn ∈ W such that Vn = Wn ∩ (A× A); now we have a sequence 〈An〉n∈N of sets covering A with
An ×An ⊆Wn for every n, in which case 〈An ∩A〉n∈N covers A and (An ∩A)× (An ∩A) ⊆ Vn for every n;
as 〈Vn〉n∈N is arbitrary, A ∈ Smz(A,A).
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(ii) It is immediate from the definition that any subset of a set in Smz(X,W) belongs to Smz(X,W),
and so does any countable set. Now suppose that 〈An〉n∈N is a sequence in Smz(X,W). Let 〈Wn〉n∈N be
any sequence in W. For each k ∈ N, 〈W2k(2i+1)〉i∈N is a sequence in W, so there is a sequence 〈Aki〉i∈N,

covering Ak, such that Aki ×Aki ⊆W2k(2i+1) for every i. Set B0 = ∅ and Bn = Aki if n = 2k(2i+ 1) where
k, i ∈ N; then A ⊆ ⋃

n∈NBn and Bn×Bn ⊆Wn for every n. As 〈Wn〉n∈N is arbitrary, A has strong measure
zero; as 〈An〉n∈N is arbitrary, Smz(X,W) is a σ-ideal.

(iii) Let 〈Vn〉n∈N be a sequence in V. For each n ∈ N, there is a Wn ∈ W such that (f(x), f(x′)) ∈ Vn
whenever (x, x′) ∈ Wn. Because A ∈ Smz(X,W), there is a cover 〈An〉n∈N of A such that An × An ⊆ Wn

for every n; now f [An] × f [An] ⊆ Vn for every n and
⋃

n∈N f [An] = f [A]. As 〈Vn〉n∈N is arbitrary, f [A] ∈
Smz(Y,V).

(iv) If A has strong measure zero, then of course f [A] has strong measure zero for any uniformly
continuous function f from X to a metric space, by (iii). Now suppose that A satisfies the condition, and
that 〈Wn〉n∈N is a sequence in W. Then there is a pseudometric ρ on X, compatible with the uniformity
in the sense that {(x, y) : ρ(x, y) ≤ ǫ} ∈ W for every ǫ > 0, such that {(x, y) : ρ(x, y) < 2−n} ⊆ Wn for
every n (4A2Ja). Set ∼ = {(x, y) : ρ(x, y) = 0}. Then ∼ is an equivalence relation on X. If Y is the set of
equivalence classes, we have a metric ρ̃ on Y defined by setting ρ̃(x•, y•) = ρ(x, y) for all x, y ∈ X. Setting
f(x) = x• for x ∈ X, f : X → Y is uniformly continuous. So f [A] ∈ Smz(Y, ρ̃). Let 〈Bn〉n∈N be a cover of
f [A] such that diamBn ≤ 2−n−1 for every n, and set An = f−1[Bn] for each n. Then 〈An〉n∈N is a cover of
A. If n ∈ N and x, y ∈ An, then ρ(x, y) = ρ̃(f(x), f(y)) ≤ 2−n−1, so (x, y) ∈Wn. Thus An ×An ⊆Wn. As
〈Wn〉n∈N is arbitrary, A ∈ Smz(X,W).

(v) Let 〈Wn〉n∈N be any sequence in W. For each n ∈ N, let Vn ∈ W be such that Vn ◦Vn ◦V −1
n ⊆W2n.

Then there is a sequence 〈An〉n∈N, covering A, such that An×An ⊆ Vn for every n. Set B2n = intVn[An] for
each n, and G =

⋃
n∈NB2n; then B2n×B2n ⊆W2n for every n and G is an open set including A. Accordingly

B\G ∈ Smz(X,W) and there is a sequence 〈B2n+1〉n∈N, covering B\G, such that B2n+1×B2n+1 ⊆W2n+1 for
every n. Now 〈Bn〉n∈N covers B and Bn×Bn ⊆Wn for every n. As 〈Wn〉n∈N is arbitrary, B ∈ Smz(X,W).

(b)(i) We can copy the argument of (a-ii). As before, it is immediate from the definition that any subset
of a set in Rbg(X), and any countable subset of X, belong to Rbg(X). Now suppose that 〈An〉n∈N is a
sequence in Rbg(X), with union A. Let 〈Gn〉n∈N be any sequence of non-empty open covers of X. For each
k ∈ N, 〈G2k(2i+1)〉i∈N is a sequence of open covers of X, so there is a sequence 〈Gki〉i∈N, covering Ak, such

that Gki ∈ G2k(2i+1) for every i. Take G0 to be any member of G0, and set Gn = Gki if n = 2k(2i + 1)
where k, i ∈ N; then A ⊆ ⋃

n∈NGn and Gn ∈ Gn for every n. As 〈Gn〉n∈N is arbitrary, A has Rothberger’s
property in X.

(ii) This uses the idea of (a-iii). Let 〈Hn〉n∈N be a sequence of non-empty open covers of Y . For each
n ∈ N, set Gn = {f−1[H] : H ∈ Hn}; then Gn is a non-empty open cover of X. Because A ∈ Rbg(X), there
is a cover 〈Gn〉n∈N of A such that Gn ∈ Gn for every n ∈ N. Expressing Gn as f−1[Hn] where Hn ∈ Hn for
each n ∈ N, f [A] ⊆ ⋃

n∈NHn. As 〈Hn〉n∈N is arbitrary, f [A] has Rothberger’s property in Y .

(iii) And here we can copy from (a-v). Let 〈Gn〉n∈N be any sequence of open covers of X. Then there
is a sequence 〈G2n〉n∈N, covering A, such that G2n ∈ G2n for every n. Set H =

⋃
n∈NG2n; then there is a

sequence 〈G2n+1〉n∈N, covering B \H, such that G2n+1 ∈ G2n+1 for each n. Putting these together, we have
a sequence 〈Gn〉n∈N covering B such that Gn ∈ Gn for every n. As 〈Gn〉n∈N is arbitrary, B has Rothberger’s
property in X.

(iv) If A ∈ Rbg(F ) then A ∈ Rbg(X) by (ii), because the identity map from F to X is continuous.
Conversely, if A ⊆ F and A ∈ Rbg(X), let 〈Gn〉n∈N be a sequence of non-empty relatively open covers of F .
For n ∈ N set

Hn = {H : H ⊆ X is open and there is a G ∈ Gn such that H ∩ F ⊆ G}.

Then Hn is a non-empty open cover of X because Gn covers F and X \ F ∈ Hn. Because A ∈ Rbg(X),
there is a sequence 〈Hn〉n∈N such that Hk ∈ Hn for every n ∈ N and A ⊆ ⋃

n∈NHn. For n ∈ N choose
Gn ∈ Gn such that Hn ∩ F ⊆ Gn; then A ⊆ ⋃

n∈NGn. As 〈Gn〉n∈N is arbitrary, A ∈ Rbg(F ).
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534E Proposition Let (X,W) be a uniform space, and give X the topology induced by W.
(a) Rbg(X) ⊆ Smz(X,W).
(b) If X is σ-compact, Rbg(X) = Smz(X,W).

proof (a) Suppose that A ∈ Rbg(X), and that 〈Wn〉n∈N is any sequence in W. For each n ∈ N, set
Gn = {G : G ⊆ X is open, G × G ⊆ Wn}; then Gn is a non-empty open cover of X. So we can find a
cover 〈Gn〉n∈N of A such that Gn ∈ Gn, that is, Gn × Gn ⊆ Wn, for each n. As 〈Wn〉n∈N is arbitrary,
A ∈ Smz(X,W).

(b)(i) Let K ⊆ X be compact and G an open cover of X. Then there is a W ∈ W such that whenever
x ∈ K there is a G ∈ G such that W [{x}] ⊆ G. PPP (Cf. 2A2Ed.) Set

Q = {(x, V ) : x ∈ X, V ∈ W, V [V [{x}]] ⊆ G for some G ∈ G}.

Then for every x ∈ X there are a G ∈ G such that x ∈ G and a V ∈ W such that V [V [{x}]] ⊆ G, and in
this case (x, V ) ∈ Q and x ∈ intV [{x}]. So {intV [{x}] : (x, V ) ∈ Q} is an open cover of X and there is a
finite set Q0 ⊆ Q such that K ⊆ ⋃{intV [{x}] : (x, V ) ∈ Q0}. Let W ∈ W be such that W ⊆ V whenever
(x, V ) ∈ Q0. If x ∈ K, there is an (x′, V ) ∈ Q0 such that x ∈ V [{x′}]; and now there is a G ∈ G including
V [V [{x′}]] ⊇W [{x}]. QQQ

(ii) Suppose that K ⊆ X is compact and A ∈ Smz(X,W). Then A ∩K ∈ Rbg(X). PPP Let 〈Gn〉n∈N

be a sequence of non-empty open covers of X. For each n ∈ N let Wn ∈ W be such that {Wn[{x}] : x ∈ K}
refines Gn. Let 〈An〉n∈N be a cover of A such that An×An ⊆Wn for every n. If n ∈ N and An∩K = ∅, take
any Gn ∈ Gn. Otherwise, take xn ∈ An ∩K and Gn ∈ Gn such that Wn[{xn}] ⊆ Gn. If x ∈ A ∩K, there
is an n ∈ N such that x ∈ An; now (xn, x) ∈ An × An ⊆ Wn and x ∈ Wn[{xn}] ⊆ Gn. As x is arbitrary,
A ∩K ⊆ ⋃

n∈NGn. As 〈Gn〉n∈N is arbitrary, A ∩K has Rothberger’s property in X. QQQ

(iii) Smz(X,W) ⊆ Rbg(X). PPP If A ∈ Smz(X,W), let 〈Kn〉n∈N be a sequence of compact subsets of
X covering X. By (ii) here, A ∩ Kn ∈ Rbg(X) for each n; by 534D(b-i), A ∈ Rbg(X). QQQ Putting this
together with (a), we see that Rbg(X) = Smz(X,W).

534F Another case in which Rothberger’s property and strong measure zero coincide is the following.

Proposition Let X be a regular paracompact space, and W the uniformity on X defined by the family of
all continuous pseudometrics on X. Then

Rbg(X) = Smz(X,W)

= {A : A ⊆ X, f [A] ∈ Smz(Y, ρ) whenever (Y, ρ) is a metric space

and f : X → Y is continuous}.

proof X is normal, therefore completely regular (4A2Ge), so W induces its topology (4A2J(g-i)), and
Rbg(X) ⊆ Smz(X,W) by 534Eb. If A ∈ Smz(X,W), (Y, ρ) is a metric space and f : X → Y is continuous,
then (x, y) 7→ ρ(f(x), f(y)) is a continuous pseudometric on X so is one of the pseudometrics defining W,
and f is uniformly continuous; now f [A] ∈ Smz(Y, ρ) by 534D(b-ii).

Now suppose that A ⊆ X is such that f [A] ∈ Smz(Y, ρ) whenever (Y, ρ) is a metric space and f : X → Y
is continuous, and let 〈Gn〉n∈N be a sequence of open covers of X. By 5A4Fb there is for each n ∈ N a
continuous pseudometric σn on X such that every subset of X of σn-diameter at most 1 is included in a
member of Gn. Set

σ(x, y) =
∑∞

n=0 2−n min(2, σn(x, y))

for x, y ∈ X. Then σ is a continuous pseudometric on X. Let ∼ be the corresponding equivalence relation
{(x, y) : σ(x, y) = 0} and Y = X/ ∼ the set of equivalence classes; then Y has a metric ρ defined by saying
that ρ(x•, y•) = σ(x, y) for x, y ∈ X, and x 7→ x• : X → Y is continuous. Accordingly f [A] = {x• : x ∈ A}
belongs to Smz(Y, ρ), and there is a sequence 〈Bn〉n∈N of subsets of Y , covering f [A], such that the ρ-
diameter of Bn is at most 2−n for each n. Setting An = f−1[Bn] for each n, A ⊆ ⋃

n∈NAn. If n ∈ N and x,
y ∈ An, then σ(x, y) ≤ 2−n so σn(x, y) ≤ 1; by the choice of σn, there is a set Gn ∈ Gn including An. But
now we see that A ⊆ ⋃

n∈N Gn. As 〈Gn〉n∈N is arbitrary, A ∈ Rbg(X).
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534G Remarks We see from 534E that in Euclidean space, the context of the original investigation of
these ideas, what I call Rothberger’s property and strong measure zero coincide; and as the latter phrase
is more commonly used and has a more generally accepted meaning, it is tempting to prefer it. But in the
framework of this treatise, devoted as it is to maximal convenient generality, the concepts diverge. Strong
measure zero has an obvious interpretation in any metric space, and can readily be applied in general uniform
spaces; while Rothberger’s property is a topological notion. They have very different natures as soon as we
leave the area of σ-compact spaces. In particular, the Polish space NN, topologically identifiable with R \Q,
has a wide variety of compatible uniformities, giving rise to potentially very different strong measure zero
ideals. So we find ourselves with the possibility that Rbg(R \ Q) may be much smaller than the trace of
Rbg(R) on the subset R \ Q, even though Q ∈ Rbg(R) (534Sb). Strong measure zero, of course, is much
more manageable on subsets (534D(a-i)).

534H Of course sets with strong measure zero or Rothberger’s property are necessarily small in other
ways.

Proposition If (X, ρ) is a metric space and A ∈ Smz(X, ρ), then A is separable, zero-dimensional and
universally negligible, and all compact subsets of A are countable.

proof (a) ??? If A is not separable, there is an uncountable B ⊆ A such that ǫ = infx,y∈B,x 6=y ρ(x, y) is
greater than 0 (5A4B(h-iii)). Now there can be no cover 〈An〉n∈N of B by sets of diameter less than ǫ. XXX
Thus A is separable.

(b) Now suppose that µ is a Borel probability measure on A. Then there is a δ > 0 such that for every
n ∈ N there is a relatively Borel set En ⊆ A with diamEn ≤ 2−n and µEn ≥ δ. PPP??? Otherwise, we can find
for each n ∈ N an ǫn > 0 such that µE ≤ 2−n−2 whenever E ⊆ A is a relatively Borel set and diamE ≤ ǫn.
Let 〈An〉n∈N be a cover of A such that diamAn ≤ ǫn for every n; then diamAn ≤ ǫn, so µ(A∩An) ≤ 2−n−2

for every n, and

µA ≤ ∑∞
n=0 µ(A ∩An) < 1. XXXQQQ

Now consider E =
⋂

n∈N

⋃
m≥nEm. Since µE ≥ δ > 0, there is an x ∈ E. For any n ∈ N, there is an

m ≥ n such that

x ∈ Em ⊆ B(x, 2−m) ⊆ B(x, 2−n),

so

µ{x} = infn∈N µ(A ∩B(x, 2−n)) ≥ δ > 0.

As µ is arbitrary, this shows that A is universally negligible.

(c) In particular, [0, 1], with its usual metric, is not of strong measure zero. Now if G ⊆ X is open and
x ∈ G, let δ > 0 be such that B(x, δ) ⊆ G, and set f(y) = max(0, 1− 1

δρ(y, x)) for y ∈ X; then f : X → [0, 1]
is uniformly continuous, so f [X] has strong measure zero (534D(a-iii)) and cannot be the whole of [0, 1]. As
f(x) = 1, there is an α ∈ [0, 1[ \ f [X], and f−1[[α, 1]] = f−1[ ]α, 1]] is an open-and-closed neighbourhood of
x included in G. As x and G are arbitrary, X is zero-dimensional.

(d) If K ⊆ X is compact, it must be scattered (439C(a-v)); because it is first-countable, it must be
countable (4A2G(j-vi)).

534I Let X be a regular topological space. Then X has Rothberger’s property in itself iff it is Lindelöf
and zero-dimensional and f [X] ∈ Rbg(R \Q) whenever f : X → R \Q is continuous.

proof (a) Suppose that X has Rothberger’s property in itself. Let G be an open cover of X. If X is empty
then ∅ is a countable subset of G covering X. Otherwise, setting Gn = G for each n, we have a sequence
〈Gn〉n∈N covering X such that Gn ∈ Gn for every n, and {Gn : n ∈ N} is a countable subcover of G. So X
is Lindelöf.

Thus X is Lindelöf and regular, therefore normal and completely regular (4A2H(b-i)). If G ⊆ X is open
and x ∈ G, there is a continuous f : X → [0, 1] such that f(x) = 1 and f(y) = 0 for every y ∈ X \ G.
Since f [X] ∈ Rbg([0, 1]) (534D(b-ii)), f [X] 6= [0, 1]; taking α ∈ [0, 1] \ X, f−1[]α, 1]] = f−1[[α, 1]] is an
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open-and-closed subset of G containing x. Thus X is zero-dimensional. And of course f [X] ∈ Rbg(R \ Q)
for every continuous f : X → R \Q, by by 534D(b-ii) again.

(b) Suppose that X has the given properties.

(i) If Z is a zero-dimensional Polish space and f : X → Z is continuous then f [X] ∈ Rbg(Z). PPP By
5A4If, we can suppose that Z is a closed subspace of NN. In this case, f [X] ∈ Rbg(NN), by hypothesis; by
534D(b-iv), f [X] ∈ Rbg(Z).

(ii) Now take a sequence 〈Gn〉n∈N of non-empty open covers of X. For each n ∈ N, let G′
n be the

family of open-and-closed subsets of X included in members of Gn; as X is zero-dimensional, each G′
n is a

non-empty open cover of X. As X is Lindelöf, there is for each n ∈ N a sequence 〈Gni〉i∈N in G′
n such that

X =
⋃

i∈NGin. Define f : X → Z = {0, 1}N×N by setting f(x)(n, i) = χGni for x ∈ X and n, i ∈ N; as
every Gni is open-and-closed, f is continuous. For n, i ∈ N, set Hni = {z : z ∈ Z, z(n, i) = 1}, so that
Gni = f−1[Hni. Set E =

⋂
n∈N

⋃
i∈NHni, so that E is a Gδ subset of Z including f [X]. By 4A2Qd, E is

Polish, so f [X] ∈ Rbg(E), by (i) above.
For each n ∈ N, {E ∩Hni : i ∈ N} is a relatively open cover of E. There is therefore a sequence 〈in〉n∈N

in N such that f [X] ⊆ ⋃
n∈NHnin and X =

⋃
n∈NGnin . Finally there is for each n ∈ N a Gn ∈ Gn such that

Gnin ⊆ Gn, so that X =
⋃

n∈NGn. As 〈Gn〉n∈N is arbitrary, X has Rothberger’s property in itself.

534J Proposition Let X be a Hausdorff space, and K a compact subset of X. Then K belongs to
Rbg(X) iff it is scattered.

proof (a) Set

F = {F : F ⊆ K is closed, L ∈ Rbg(X) for every closed L ⊆ K \ F}.

(b) F1 ∩ F2 ∈ F whenever F1, F2 ∈ F . PPP If L ⊆ K \ (F1 ∩ F2) is closed then L ∩ F1, L ∩ F2 are
disjoint compact subsets of the Hausdorff space X, so there are disjoint open subsets G1, G2 of X such that
L ∩ F1 ⊆ G1 and L ∩ F2 ⊆ G2 (4A2Fh). Now L \G2 is a closed subset of X disjoint from F1, so belongs to
Rbg(X), and similarly L \G1 ∈ Rbg(X), so L = (L \G1) ∪ (L \G2) belongs to Rbg(X). As L is arbitrary,
F1 ∩ F2 ∈ F . QQQ

(c) K∗ =
⋂F belongs to F . PPP Since K ∈ F , K∗ ⊆ K and K∗ is closed. If L ⊆ K \ K∗ is closed,

therefore compact, there must be a finite subset F0 of F such that L ∩⋂F0 is empty; we can take it that
K ∈ F0, and now (b) assures us that

⋂F0 ∈ F so L ∈ Rbg(X). As L is arbitrary, K∗ ∈ F . QQQ

(d) K∗ has no isolated point. PPP??? If x ∈ K∗ is an isolated point of K∗, set F = K∗ \ {x}. Then F
is a closed subset of K not belonging to F , so there is a closed set L ⊆ K \ F which does not belong to
Rbg(X). Now {x} certainly belongs to Rbg(X), so by 534D(b-iii) there is an open set H containing x such
that L \H /∈ Rbg(X). But L \H is a closed subset of K \K∗ and K∗ ∈ F , by (c). XXXQQQ

(e) If K is scattered, then K∗ must be empty, K ⊆ K \K∗ and K ∈ Rbg(X).

(f) Finally, if K is not scattered then there is a continuous surjection from K to [0, 1] (4A2G(j-iv)); now
[0, 1] /∈ Smz(R, ρ), where ρ is the usual metric on R, by 534H, so [0, 1] /∈ Rbg(R) (534Sa), K /∈ Rbg(K)
(534D(b-ii)) and K /∈ Rbg(X (534D(b-iv)).

534K Theorem Let X be a σ-compact locally compact Hausdorff topological group and A a subset of
X. Then the following are equiveridical:

(i) A ∈ Rbg(X);
(ii) for any sequence 〈Un〉n∈N of neighbourhoods of the identity e of X, there is a sequence 〈xn〉n∈N in X

such that A ⊆ ⋃
n∈N Unxn;

(iii) FA 6= X for any nowhere dense set F ⊆ X;
(iv) EA 6= X for any meager set E ⊆ X;
(v) AF 6= X for any nowhere dense set F ⊆ X;
(vi) AE 6= X for any meager set E ⊆ X.

Remark For the general theory of topological groups see §4A5 and Chapter 44. Readers unfamiliar with
this theory, or impatient with the extra discipline needed to deal with non-commutative groups, may prefer
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to start by assuming that X = R2, so that every xU becomes x+ U , every V −1V becomes V − V , and the
right uniformity is the Euclidean metric uniformity.

proof (i)⇒(ii) Suppose that (i) is true, and that 〈Un〉n∈N is any sequence of neighbourhoods of e. Then
{intUnx : x ∈ X} is an open cover of X for each n, so there is a sequence 〈xn〉n∈N such that A ⊆ ⋃

n∈N Unxn.

(ii)⇒(i) Suppose that (ii) is true, and that 〈Wn〉n∈N is any sequence in the right uniformity W of X
(4A5Ha). Then for each n ∈ N there is a neighbourhood Un of e such that Wn ⊇ {(x, y) : xy−1 ∈ Un};
let Vn be a neighbourhood of e such that VnV

−1
n ⊆ Un. By (ii), there is a sequence 〈xn〉n∈N such that

A ⊆ ⋃
n∈N Vnxn. Set An = Vnxn for each n. Then AnA

−1
n = VnV

−1
n ⊆ Un, so An × An ⊆ Wn, for each n,

while 〈An〉n∈N covers A. As 〈Wn〉n∈N is arbitrary, A ∈ Smz(X,W). By 534Eb, A ∈ Rbg(X).

(ii)⇒(iv) Suppose that A satisfies (ii), and that E ⊆ X is meager.

(ααα) If K ⊆ X is compact and nowhere dense, then there is a sequence 〈Un〉n∈N of neighbourhoods of
e such that K ′ =

⋂
n∈N UnK is still compact and nowhere dense. PPP By 443N(ii), there is a nowhere dense

zero set F ⊇ K. Now F is a Gδ set; suppose that F =
⋂

n∈NGn where Gn is open for each n. As K ⊆ Gn,
the open set U ′

n = {x : xK ⊆ Gn} (4A5Ei) contains e; let Un be a compact neighbourhood of e included
in U ′

n. Then UnK ⊆ Gn for every n, so K ′ =
⋂

n∈N UnK ⊆ F is nowhere dense, while K ′ is compact (use
4A5Ef). QQQ

(βββ) Let K ⊆ X be compact and nowhere dense and U a neighbourhood of e. Then there is a neigh-
bourhood V of e such that for every x ∈ X there is an x′ ∈ Ux such that V x′ ∩K = ∅. PPP Let 〈Un〉n∈N be
a sequence of neighbourhoods of e such that K ′ =

⋂
n∈N UnK is compact and nowhere dense ((α) above).

Choose a sequence 〈Vn〉n∈N of compact neighbourhoods of e such that V0 ⊆ U and Vn+1V
−1
n+1 ⊆ Un ∩ Vn for

each n ∈ N. Then Y =
⋂

n∈N Vn is a compact subgroup of X (see the proof of 4A5S), and Y K =
⋂

n∈N VnK

(4A5Eh). ??? If for every n ∈ N there is an xn ∈ X such that V −1
n x′ ∩K 6= ∅ for every x′ ∈ Uxn, then, in

particular, V −1
n xn ∩ K 6= ∅, so xn ∈ VnK. Since 〈VnK〉n∈N is a non-increasing sequence of compact sets,

〈xn〉n∈N has a cluster point

x∗ ∈ ⋂
n∈N VnK = Y K ⊆ K ′.

Because K ′ is nowhere dense, V1x
∗ 6⊆ K ′; take x ∈ V1x

∗ \ K ′. Let W be an open neighbourhood of e
such that Wx ∩ K ′ = ∅. Then Wx is disjoint from Y K = Y −1Y K so YWx ∩ Y K = ∅. Now YW is an
open set including Y =

⋂
n∈N Vn, and all the Vn are compact, so there is an m ≥ 1 such that Vm ⊆ YW and

Vmx ∩ Y K = ∅.
But observe that there is an n > m such that xn ∈ V1x

∗, so that

x ∈ V1V
−1
1 xn ⊆ V0xn ⊆ Uxn,

while V −1
n x ∩K ⊆ Vmx ∩ Y K is empty. XXX

Thus we can take V = V −1
n for some n. QQQ

(γγγ) Because X is σ-compact, any Fσ set in X is actually Kσ, and there is a sequence 〈Kn〉n∈N of
nowhere dense compact sets covering E; we can suppose that 〈Kn〉n∈N is non-decreasing. Choose inductively
sequences 〈Un〉n∈N, 〈Vn〉n∈N, 〈V ′

n〉n∈N and 〈V ′′
n 〉n∈N of neighbourhoods of e such that

U0 is any compact neighbourhood of e,
given Un, Vn is to be a neighbourhood of e such that VnVn ⊆ Un,
given Vn, V ′

n is to be a neighbourhood of e such that for every y ∈ X there is a z ∈ Vny such
that V ′

nz ∩Kn+1 = ∅
(using (β)),

given V ′
n, V ′′

n is to be an open neighbourhood of e such that (V ′′
n )−1V ′′

n ⊆ V ′
n,

given V ′′
n , Un+1 is to be a compact neighbourhood of e, included in Vn ∩ V ′′

n , such that
Kn+1Un+1 ⊆ V ′′

nKn+1.

(This last is possible by 4A5Ei, because V ′′
nKn+1 is an open set including Kn+1, so {x : Kn+1x ⊆ V ′′

nKn+1}
is an open set containing e.)

(δδδ) For each k ∈ N, 〈U2k(2i+1)〉i∈N is a sequence of neighbourhoods of e, so there must be a sequence

〈xki〉i∈N such that A ⊆ ⋃
i∈N U2k(2i+1)xki. Set x0 = e and xn = xki if n = 2k(2i+ 1). For any k ∈ N,
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A ⊆ ⋃
i∈NAki ⊆

⋃
i∈N U2k(2i+1)xki ⊆

⋃
n≥2k Unxn ⊆ ⋃

n≥k Unxn.

This means that EA ⊆ ⋃
n≥1KnUnxn. PPP If z ∈ EA, we can express it as xy where x ∈ E and y ∈ A.

There are a k ≥ 1 such that x ∈ Kk and an n ≥ k such that y ∈ Unxn, in which case z ∈ KnUnxn. QQQ

(ǫǫǫ) Now choose 〈yn〉n∈N, 〈zn〉n∈N as follows. Start from y0 = e. Given yn, let zn ∈ Vnynx
−1
n+1 be such

that V ′
nzn ∩Kn+1 = ∅; this is possible by the choice of V ′

n. Now set yn+1 = znxn+1, and continue.
For each n,

Un+1yn+1 ⊆ Vnyn+1

(by the choice of Un+1)

= Vnznxn+1 ⊆ VnVnynx
−1
n+1xn+1

(by the choice of zn)

⊆ Unyn

by the choice of Vn. Consequently, Un+1yn+1∩Kn+1Un+1xn+1 = ∅. PPP We chose zn such that V ′
nzn∩Kn+1 =

∅. Because (V ′′
n )−1V ′′

n ⊆ V ′
n, V ′′

n zn ∩ V ′′
nKn+1 = ∅. Because Kn+1Un+1 ⊆ V ′′

nKn+1 and Un+1 ⊆ V ′′
n ,

Un+1zn ∩Kn+1Un+1 = ∅, that is, Un+1yn+1 ∩Kn+1Un+1xn+1 = ∅. QQQ

(ζζζ) From (ǫ) we see that 〈Unyn〉n∈N is a non-increasing sequence of compact sets, so has non-empty
intersection. Take any x ∈ ⋂

n∈N Unyn. Then x /∈ Kn+1Un+1xn+1 for any n, so x /∈ ⋃
n≥1KnUnxn ⊇ EA.

Thus EA 6= X. As E is arbitrary, (iv) is true.

(iv)⇒(iii) is trivial.

(iii)⇒(ii) Suppose that (iii) is true. Let 〈Un〉n∈N be any sequence of open neighbourhoods of e. Then
there is a sequence 〈xn〉n∈N in X such that G =

⋃
n∈N xnU

−1
n is dense. PPP Let 〈Vn〉n∈N be a sequence

of neighbourhoods of e such that Vn+1V
−1
n+1 ⊆ Vn ∩ U−1

n for every n ∈ N. Then there is a compact
normal subgroup Y of X such that Y ⊆ ⋂

n∈N Vn and X/Y is metrizable (4A5S). The canonical map
x 7→ x• : X → X/Y is continuous, so X/Y is σ-compact, therefore separable (4A2P(a-ii)). Let 〈xn〉n∈N be
a sequence in X such that {x•

n : n ∈ N} is dense in X/Y . Set G0 =
⋃

n∈N xnVn+1Y . ??? If H = X \ G0

is non-empty, then {x• : x ∈ H} is open (4A5Ja) so contains x•
n for some n. But xnY ⊆ xnVn+1Y ⊆ G0,

so there can be no x ∈ H such that x• = x•
n. XXX Thus G0 is dense. But, for any n ∈ N, Y ⊆ V −1

n+1 so

Vn+1Y ⊆ U−1
n , and G =

⋃
n∈N xnU

−1
n includes G0. Thus G is dense, as required. QQQ

Accordingly F = X \ G is nowhere dense, and FA 6= X; suppose x ∈ X \ FA. Then F ∩ xA−1 = ∅,
that is, xA−1 ⊆ ⋃

n∈N xnU
−1
n , that is, A−1 ⊆ ⋃

n∈N x
−1xnU

−1
n , that is, A ⊆ ⋃

n∈N Unx
−1
n x. As 〈Un〉n∈N is

arbitrary, (ii) is true.

(i)⇔(v)⇔(vi) Because x 7→ x−1 is a homeomorphism,

A ∈ Rbg(X) =⇒ A−1 ∈ Rbg(X)

=⇒ EA−1 6= X whenever E ⊆ X is meager

=⇒ E−1A−1 6= X whenever E ⊆ X is meager

(because E−1 is meager if E is)

⇐⇒ AE 6= X whenever E ⊆ X is meager

=⇒ AF−1 6= X whenever F ⊆ X is nowhere dense

(because F−1 is nowhere dense if F is)

=⇒ FA−1 6= X whenever F ⊆ X is nowhere dense

=⇒ A−1 ∈ Rbg(X)

=⇒ A ∈ Rbg(X).

Remark The case X = R is due to Galvin Mycielski & Solovay 79.

D.H.Fremlin



54 Topology and measure III 534L

534L Proposition (Fremlin 91) Let (X, ρ) be a separable metric space. Then Smz(X, ρ) 4T N d,
where N is the null ideal of Lebesgue measure on R and d is the dominating number (522A).

proof (a) By 534A, there is a countable family C of subsets of X such that whenever A ⊆ X has finite
diameter and η > 0, there is a C ∈ C such that A ⊆ C and diamC ≤ η + 2 diamA. For each i ∈ N, let
〈Cij〉j∈N be a sequence running over {C : C ∈ C, diamC ≤ 2−i}. Let (NN,⊆∗,S) be the N-localization
relation.

(b) Let D ⊆ NN be a cofinal set with cardinal d. For each d ∈ D we can find a function φd : Smz(X, ρ) →
NN such that A ⊆ ⋂

n∈N

⋃
i≥n Cd(i),φd(A)(i) for every A ∈ Smz(X, ρ). PPP For A ∈ Smz(X, ρ) and k ∈ N,

choose a sequence 〈Aki〉i∈N of sets covering A such that 2 diamAki < 2−d(2k(2i+1)) for every i ∈ N. For
n = 2k(2i + 1), let An ∈ C be such that Aki ⊆ An and diamAn ≤ 2−d(n); choose φd(A)(n) such that
An = Cd(n),φd(A)(n). QQQ Define φ : Smz(X, ρ) → (NN)D by setting φ(A) = 〈φd(A)〉d∈D for A ∈ Smz(X, ρ).

(c) For S ∈ S and d ∈ D, define

ψd(S) =
⋂

n∈N

⋃
i≥n

⋃
j∈S[{i}] Cd(i),j ⊆ X.

For 〈Sd〉d∈D ∈ SD set ψ(〈Sd〉d∈D) =
⋂

d∈D ψd(Sd). Then A = ψ(〈Sd〉d∈D) has strong measure zero. PPP Let

〈ǫi〉i∈N be any family of strictly positive real numbers. Let d ∈ D be such that 2−d(k) ≤ ǫi whenever k ∈ N

and i < 2k+1. For each k ∈ N, #(Sd[{k}]) ≤ 2k, so we can find a sequence 〈Ai〉i∈N such that 〈Ai〉2k≤i<2k+1

is a re-enumeration of 〈Cd(k),j〉j∈S[{k}] supplemented by empty sets if necessary. This will ensure that if

2k ≤ i < 2k+1 then diamAi ≤ 2−d(k) ≤ ǫi, while

A ⊆ ψd(Sd) ⊆ ⋃
k∈N

⋃
j∈Sd[{k}]

Cd(k),j =
⋃

(k,j)∈Sd
Cd(k),j =

⋃
i∈NAi.

As 〈ǫi〉i∈N is arbitrary, A ∈ Smz(X, ρ). QQQ

(d) Taking (NN,⊆∗,S) to be the N-localization relation, as in the proof of 534B, (φ, ψ) is a Galois-Tukey
connection from (Smz(X, ρ),⊆,Smz(X, ρ)) to (NN,⊆∗,S)D, that is, ((NN)D, T,SD), where T is the simple
product relation as defined in 512H. PPP φ : Smz(X, ρ) → (NN)D and ψ : SD → Smz(X, ρ) are functions.
Suppose that A ∈ Smz(X, ρ) and 〈Sd〉d∈D are such that (φ(A), 〈Sd〉d∈D) ∈ T , that is, φd(A) ⊆∗ Sd for every
d. Fix d ∈ D for the moment. Then there is an n ∈ N such that (i, φd(A)(i)) ∈ Sd for every i ≥ n. Now, for
any m ≥ n,

A ⊆ ⋃
i≥m Cd(i),φd(A)(i) ⊆

⋃
i≥m

⋃
j∈Sd[{i}]

Cd(i),j .

Thus

A ⊆ ⋂
m∈N

⋃
i≥m

⋃
j∈Sd[{i}]

Cd(i),j) = ψd(Sd).

This is true for every d, so A ⊆ ψ(〈Sd〉d∈D). As A and 〈Sd〉d∈D are arbitrary, (φ, ψ) is a Galois-Tukey
connection. QQQ

(e) Thus (Smz(X, ρ),⊆,Smz(X, ρ)) 4GT (NN,⊆∗,S)D. But (NN,⊆∗,S) ≡GT (N ,⊆,N ) (522M), so
(NN,⊆∗,S)D ≡GT (N ,⊆,N )D (512Hb) and

(Smz(X, ρ),⊆,Smz(X, ρ)) 4GT (N ,⊆,N )D = (ND,≤,ND)

where ≤ is the natural partial order of the product partially ordered set ND. Accordingly Smz(X, ρ) 4T

ND ∼= N d, as claimed.

534M Corollary (a) If (X,W) is a Lindelöf uniform space, then addSmz(X,W) ≥ addN , where N is
the null ideal of Lebesgue measure on R.

(b) If X is a Lindelöf regular topological space, then addRbg(X) ≥ addN .

proof (a)(i) If (X, ρ) is a separable metric space, then 534L tells us that Smz(X, ρ) 4T N d, so addSmz(X, ρ) ≥
addN d = addN (513E(e-ii), 511Hg).

(ii) In general, if A ⊆ Smz(X,W) and #(A) < addN , take any metric space (Y, ρ) and uniformly
continuous f : X → Y . Then f [X] is Lindelöf (5A4Bc), therefore separable (4A2Pc), and f [A] has strong
measure zero in f [X] for every A ∈ A (534D(a-iii)), so f [

⋃A] =
⋃

A∈A f [A] has strong measure zero, by (i).
As f is arbitrary,

⋃A has strong measure zero, by 534D(a-iv); as A is arbitrary, addSmz(X,W) ≥ addN .
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(b) Being Lindelöf and regular, X is paracompact and normal (4A2H(b-i)), so there is a uniformity W on
X, inducing its topology, with Rbg(X) = Smz(X,W) (534F); so addRbg(X) = addSmz(X,W) ≥ addN ,
by (a).

534N Smz-equivalence (a) If (X,V) and (Y,W) are uniform spaces, I say that they are Smz-equivalent
if there is a bijection f : X → Y such that a set A ⊆ X has strong measure zero in X iff f [A] has strong
measure zero in Y . Of course this is an equivalence relation on the class of uniform spaces.

(b) If (X,V) and (Y,W) are uniform spaces, I say that X is Smz-embeddable in Y if it is Smz-equivalent
to a subspace of Y (with the subspace uniformity, of course). Evidently this is transitive in the sense that
if X is Smz-embeddable in Y and Y is Smz-embeddable in Z then X is Smz-embeddable in Z.

534O Lemma (a) Suppose that (X,W) and (Y,V) are uniform spaces and that 〈Xn〉n∈N, 〈Yn〉n∈N are
partitions of X, Y respectively such that Xn is Smz-equivalent to Yn for every n. Then X is Smz-equivalent
to Y .

(b) Suppose that (X,W) and (Y,V) are uniform spaces such that X is Smz-embeddable in Y and Y is
Smz-embeddable in X. Then (X,W) and (Y,V) are Smz-equivalent.

proof (a) For each n ∈ N, let fn : Xn → Yn be a bijection identifying the ideals of sets with strong measure
zero. Then f =

⋃
n∈N fn is a bijection identifying Smz(X,W) and Smz(Y,V).

(b) (Compare 344D.) Let X1 ⊆ X and Y1 ⊆ Y be Smz-equivalent to Y , X respectively; let f : X → Y1
and g : Y → X1 be bijections identifying the ideals of strong measure zero in each pair. Set X0 = X,
Y0 = Y , Xn+1 = g[Yn] and Yn+1 = f [Xn] for each n ≥ 1; then 〈Xn〉n∈N is a non-increasing sequence of
subsets of X and 〈Yn〉n∈N is a non-increasing sequence of subsets of Y . Set X∞ =

⋂
n∈NXn, Y∞ =

⋂
n∈N Yn.

Then f↾X2k \X2k+1 is an Smz-equivalence between X2k \X2k+1 and Y2k+1 \ Y2k+2, while g↾Y2k \ Y2k+1 is
an Smz-equivalence between Y2k \ Y2k+1 and X2k+1 \X2k+2; and g↾Y∞ is an Smz-equivalence between Y∞
and X∞. So (a) gives the required Smz-equivalence between X and Y .

534P Proposition Rr, ]0, 1[
r
, [0, 1]r and {0, 1}N are Smz-equivalent for every integer r ≥ 1.

proof As these spaces are σ-compact and completely regular, we do not have to specify the uniformities
we are thinking of, by 534Eb; in each case, the sets with strong measure zero are the sets with Rothberger’s
property.

(a) Give R its usual metric ρ. Of course the identity maps are Smz-embeddings of ]0, 1[ in [0, 1] and [0, 1]
in R. To complete the circuit, use 534Eb; any homeomorphism between R and ]0, 1[ matches Rbg(R) =
Smz(R, ρ) with Rbg(]0, 1[) = Smz(]0, 1[ , ρ). By 534Ob, R and [0, 1] and ]0, 1[ are Smz-equivalent.

(b) Give {0, 1}N the metric ρ defined by saying that

ρ(x, y) = inf{2−n : n ∈ N, x↾n = y↾n}
for x, y ∈ {0, 1}N. Define f : {0, 1}N → [0, 1] by setting f(x) =

∑∞
n=0 2−n−1x(n) for x ∈ {0, 1}N. Then f is

continuous, therefore uniformly continuous, so f [A] has strong measure zero in [0, 1] whenever A ⊆ {0, 1}N
has strong measure zero in {0, 1}N. It is also the case that f−1[B] has strong measure zero whenever
B ⊆ [0, 1] does. PPP Let 〈ǫn〉n∈N be any sequence of strictly positive numbers. Then there is a sequence
〈Bn〉n∈N, covering B, such that diamBn < 1

2 min(1, ǫ2n, ǫ2n+1) for every n. Fix n for the moment and

consider f−1[Bn]. If k is such that 2−k−1 ≤ diamBn < 2−k, then Bn can meet at most two intervals of the
type Iki = [2−ki, 2−k(i+ 1)]. So f−1[Bn] can meet at most two sets of the type {x : x↾k = z}, and we can
express it as A2n ∪A2n+1 where

max(diamA2n, diamA2n+1) ≤ 2−k ≤ 2 diamBn ≤ min(ǫ2n, ǫ2n+1).

Putting these together, we have a cover 〈An〉n∈N of
⋃

n∈N f
−1[Bn] ⊇ f−1[B] such that diamAn ≤ ǫn for

every n; as 〈ǫn〉n∈N is arbitrary, f−1[B] has strong measure zero. QQQ
Of course f is not a bijection, so it is not in itself an Smz-equivalence. But if we set

D1 = {x : x ∈ {0, 1}N, x is eventually constant},
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D2 = {2−ki : k ∈ N, i ≤ 2k},

then D1 ⊆ {0, 1}N and D2 ⊆ [0, 1] are countably infinite, and f↾{0, 1}N \D1 is an Smz-equivalence between
{0, 1}N \ D1 and [0, 1] \ D2. Putting this together with any bijection between D1 and D2, we have an
Smz-equivalence between {0, 1}N and [0, 1].

(c)(i) I show by induction on r that [0, 1]r is Smz-equivalent to R and therefore to [0, 1]. The case r = 1
is covered by (a). For the inductive step to r ≥ 2, I adapt the method of (b). Give {0, 1}N×r the metric ρ
defined by setting

ρ(x, y) = inf{2−n : n ∈ N, x↾(n× r) = y↾(n× r)}
for x, y ∈ {0, 1}N×r. Define f : {0, 1}N×r → [0, 1]r by setting

f(x) = 〈∑∞
i=0 2−i−1x(i, j)〉j<r

for x ∈ {0, 1}N×r. Then f is uniformly continuous, so f [A] has strong measure zero in [0, 1]r whenever A
has strong measure zero in {0, 1}N×r. Moreover, we find once again that f−1[B] has strong measure zero
whenever B ⊆ [0, 1]r has strong measure zero. PPP Let 〈ǫn〉n∈N be a sequence of strictly positive real numbers.
This time, set m = 2r and let 〈Bn〉n∈N be a cover of B such that diamBn < 1

2 min(1, infmn≤i<mn+m ǫi)
for every n. (For definiteness, let me say that I am giving [0, 1]r its Euclidean metric.) In this case, if
2−k−1 ≤ diamBn < 2−k, Bn can meet at most 2r intervals of the form [2−knnn, 2−k(nnn + 111)] where nnn ∈ Nr

and 111 = (1, . . . , 1). So f−1[Bn] can meet at most 2r = m sets of the form {x : x↾(k × r) = z}, and can be
covered by m sets 〈Aj〉mn≤j<mn+m where

diamAj ≤ 2−k ≤ 2 diamBn ≤ ǫj

for every j. Putting these together, we have a cover 〈Aj〉j∈N of f−1[B] such that diamAj ≤ ǫj for every j;
as 〈ǫn〉n∈N is arbitrary, f−1[B] has strong measure zero. QQQ

The function f here is very far from being one-to-one. But if we set

D∗
1 =

⋃
j<r{x : x ∈ {0, 1}N×r, 〈x(i, j)〉i∈N ∈ D1},

D∗
2 =

⋃
j<r{z : z ∈ [0, 1]r, z(j) ∈ D2},

where D1 ⊆ {0, 1}N, D2 ⊆ [0, 1] are defined as in the proof of (b), then f is a bijection between {0, 1}N×r \D∗
1

and [0, 1]r \ D∗
2 , so is an Smz-equivalence between these. Accordingly [0, 1]r \ D∗

2 is Smz-embeddable in
{0, 1}N×r, which is homeomorphic, therefore uniformly equivalent, to {0, 1}N, which is in turn Smz-equivalent
to ]0, 1[; so [0, 1]r \D∗

2 is Smz-embeddable in ]0, 1[.

Now consider D∗
2 . This is a countable union of sets which are isometric, therefore Smz-equivalent, to

[0, 1]r−1 and therefore to ]0, 1[, by the inductive hypothesis. We can therefore express D∗
2 as

⋃
n∈NXn where

〈Xn〉n∈N is disjoint and every Xn is Smz-embeddable in ]0, 1[ and therefore in ]n+ 1, n+ 2[. Assembling
these with the Smz-equivalence between [0, 1]r \ D∗

2 and ]0, 1[ we have already found, we have an Smz-
embedding from [0, 1]r to R. In the other direction, we certainly have an isometric embedding of [0, 1] in
[0, 1]r and therefore a Smz-embedding of R in [0, 1]r; so R and [0, 1]r are Smz-equivalent. Thus the induction
proceeds.

(ii) As for Rr, we have a homeomorphism between Rr and ]0, 1[
r
, which (because these again are

σ-compact) is an Smz-equivalence and therefore an Smz-embedding of Rr in [0, 1]r. So 534Ob, once more,
tells us that Rr and [0, 1]r and [0, 1] are Smz-equivalent.

(d) Thus Rr, ]0, 1[
r
, [0, 1]r and {0, 1}N are Smz-equivalent, for any uniformities inducing their usual

topologies.

534Q Large sets with strong measure zero It is a remarkable fact that it is relatively consistent
with ZFC to suppose that the only subsets of R with strong measure zero are the countable sets (Laver 76,
Ihoda 88 or Bartoszyński & Judah 95, §8.3). We therefore find ourselves investigating constructions of
non-trivial sets with strong measure zero under special axioms.

Proposition (a) Let X be a Lindelöf space. Then nonRbg(X) ≥ mcountable.
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(b) (see Fremlin & Miller 88) Give NN the metric ρ defined by setting ρ(x, y) = inf{2−n : n ∈ N,
x↾n = y↾n} for x, y ∈ NN. Then nonSmz(NN, ρ) = nonRbg(NN) = mcountable.

proof (a) Suppose that A ⊆ X and #(A) < mcountable. Let 〈Gn〉n∈N be a sequence of non-empty open
covers of X. Because X is Lindelöf, we can choose for each n a non-empty countable G′

n ⊆ Gn covering X.
Let P be the set of finite sequences p = 〈p(i)〉i<n such that p(i) ∈ G′

i for every i < n; say that p ≤ q in P
if q extends P . Then P is a countable partially ordered set. For each x ∈ A, the set Qx = {p : x ∈ p(i)
for some i < #(p)} is cofinal with P . PPP Given p ∈ P , set n = #(p); let G ∈ G′

n be such that x ∈ G; set
q = p ∪ {(n,G)}; then p ≤ q ∈ Qx. QQQ

Because #(A) < mcountable ≤ m↑(P ) (517Pc), there is an upwards-directed family R ⊆ P meeting every
Qx (517B(iv)). Now p∗ =

⋃
R is a function; A ⊆ ⋃

i∈dom p∗ p∗(i) and p∗(i) ∈ Gi for every i ∈ dom p∗. As

〈Gn〉n∈N is arbitrary, A has Rothberger’s property in X; as A is arbitrary, nonRbg(X) ≥ mcountable.

(b) By 522Sb, there is a set A ⊆ NN, with cardinal mcountable, such that for every y ∈ NN there is an
x ∈ A such that x(n) 6= y(n) for every n. ??? If A ∈ Smz(NN, ρ), take a sequence 〈yn〉n∈N in NN such that
A ⊆ ⋃

n∈NB(yn, 2
−n−1). Set y(n) = yn(n) for every n. Then there is an x ∈ A such that x(n) 6= y(n) for

every n. But in this case x(n) 6= yn(n) and x↾n+ 1 6= yn↾n+ 1 and x /∈ B(yn, 2
−n−1) for every n. XXX

Thus A witnesses that nonSmz(NN, ρ) ≤ mcountable. But we know from (a) that nonRbg(NN) ≥ mcountable

and from 534Ea that nonSmz(NN, ρ) ≥ nonRbg(NN), so the three cardinals are equal.

534R Proposition (a) If (X, ρ) is a separable metric space and A ⊆ X has cardinal less than c, there is
a Lipschitz function f : X → R such that f↾A is injective.

(b) (Carlson 93) If κ < c is a cardinal and there is any separable metric space with a set with cardinal κ
which is of strong measure zero, then there is a subset of R with cardinal κ which has Rothberger’s property
in R.

(c)(i) If cf(mcountable) = b there is a subset of R with cardinal mcountable which has Rothberger’s property
in itself.

(ii) (Rothberger 1941) If b = ω1 there is a subset of R with cardinal ω1 which has Rothberger’s
property in itself.

(iii) If mcountable = d there is a subset of R with cardinal mcountable which has Rothberger’s property in
itself.

proof (a) If X = ∅ this is trivial. Otherwise, let 〈xn〉n∈N run over a dense sequence in X, and for x ∈ X
define gx : R → R by setting

gx(t) =
∑∞

n=0
min(1,ρ(x,xn))

n!
tn

for t ∈ R. Then gx is a real-entire function (5A5A). If x, y ∈ X are distinct, then there must be some
n such that min(1, ρ(x, xn)) 6= min(1, ρ(y, xn)), so that one of the coefficients of gx − gy is non-zero, and
{t : gx(t) = gy(t)} is countable (5A5A). So if A ⊆ X and #(A) < c, we can find a t ≥ 0 such that
gx(t) 6= gy(t) for all distinct x, y ∈ A. Set f(x) = gx(t) for x ∈ X; then f : X → R is a function such that
f↾A is injective. If x, y ∈ X then

|f(x) − f(y)| = |
∞∑

n=0

(min(1, ρ(x, xn)) − min(1, ρ(y, yn))
tn

n!
|

≤ et sup
n∈N

|ρ(x, xn) − ρ(y, yn)| ≤ etρ(x, y),

so that f is Lipschitz.

(b) Let (X, ρ) be a separable metric space with a set A ∈ [X]κ of strong measure zero. Then (a) tells us
that we have a uniformly continuous function f : X → R which is injective on A, so that f [A] ∈ [R]κ has
strong measure zero in R (534D(a-iii)).

(c)(i) Let 〈xξ〉ξ<b be a family in NN which is increasing and unbounded for the pre-order ≤∗ of 522C(i).
Let C ⊆ mcountable be a closed cofinal set with cardinal b (5A1Ae), and 〈ζξ〉ξ<b the increasing enumeration
of C; let 〈yη〉η<mcountable

be a family of distinct elements of NN such that yη ≥ xξ whenever ξ < b and
ζξ ≤ η < ζξ+1.
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If K ⊆ NN is compact, then {η : yη ∈ K} has cardinal strictly less than mcountable. PPP Set x(n) =
supy∈K y(n) for each n ∈ N (I pass over the trivial case K = ∅). Then there is a ξ < b such that xξ 6≤∗ x.
If ζξ ≤ η < mcountable, there is a ξ′ ≥ ξ such that ζξ′ ≤ η < ζξ′+1 (this is where we need to know that C is
closed), and now

yη ≥ xξ′ ≥∗ xξ, yη 6≤ x, yη /∈ K.

So {η : yη ∈ K} ⊆ ζξ has cardinal less than mcountable. QQQ

Let f : NN → [0, 1] \Q be any homeomorphism (4A2Ub), and consider A = {f(yη) : η < mcountable} ∪Q.
Then #(A) = mcountable. Also A has Rothberger’s property in A. PPP Of course Q, being countable, has
Rothberger’s property in A. Let G ⊆ R be an open set including Q. Then [0, 1] \G and K = f−1[ [0, 1] \G]
are compact. Now

#(A \G) = #({η : yη ∈ K}) < mcountable

so A \ G has Rothberger’s property in A, by 534Qa. By 534D(b-iii), this is enough to show that A has
Rothberger’s property in itself. QQQ

Thus we have a set of the required kind.

(ii) This follows immediately if mcountable = ω1, and otherwise we can take any subset of R of cardinal
ω1.

(iii) The argument is similar to that in (i). This time, let 〈xξ〉ξ<d be a cofinal family in NN. For
each ξ < d, let yξ ∈ NN be such that yξ ≥ xξ and yξ 6≤ xη for any η < ξ. Again, if K ⊆ NN is compact,
then {η : yη ∈ K} has cardinal strictly less than mcountable. PPP Taking x = supK as before, there is a
ξ < d = mcountable such that x ≤ xξ; now for any η > ξ we know that yη 6≤ xξ so yη /∈ K. QQQ The rest of the
proof proceeds as before. (The set {yη : η < d} has cardinal d because it is cofinal with NN.)

534S Subject to the continuum hypothesis we have many ways of building sets with strong measure
zero, in addition to those in the proof of 534R. I give one example to suggest what can be done with a weak
form of Martin’s axiom.

Example Suppose that mcountable = c.
(a) There is a set A ⊆ [0, 1] \Q such that

(α) #(A ∩K) < c for every compact K ⊆ [0, 1] \Q,
(β) there is a continuous function f : [0, 1] \Q → [0, 1] such that f [A] = [0, 1],
(γ) A+A ⊇ ]0, 1].

(b) Now A ∪ Q has Rothberger’s property in itself, A ∈ Rbg(R), A is not meager, A /∈ Rbg(R \ Q) and
A×A /∈ Rbg(R2).

proof (a)(i) For x ∈ NN, define ψ(x) ∈ {0, 1}N by setting ψ(x)(n) = 0 if x(n) is even, 1 if x(n) is odd.
Then ψ : NN → {0, 1}N is a continuous surjection. Let φ : NN → [0, 1] \ Q be a homeomorphism (4A2Ub
again). Enumerate NN as 〈xξ〉ξ<c and ]0, 1] as 〈tξ〉ξ<c. For ξ ≤ c, set Kξ = {x : x ∈ NN, x ≤ xξ}, so that Kξ

is compact and φ[Kξ] is a compact subset of [0, 1] \Q, therefore nowhere dense in R. Write M for the ideal
of meager subsets of R, as in §522.

Choose 〈aξ〉ξ<c, 〈bξ〉ξ<c and 〈cξ〉ξ<c as follows. For each ξ < c, {xη : η < ξ} is not cofinal with NN,
because

cfNN = d ≥ covM = mcountable = c

(522I, 522Sa again), so we can find a yξ ∈ NN such that yξ 6≤ xη for any η < ξ; raising yξ if need be, we can
arrange that ψ(yξ) = ψ(xξ). Set aξ = φ(yξ). Consider

Eξ = {φ[Kη] : η < ξ} ∪ {tξ − φ[Kη] : η < ξ} ∪ {Q} ∪ {tξ −Q}.

This is a family of fewer than c = mcountable meager subsets of R, so does not cover ]0, tξ[ (522Sa once more).
Take any bξ ∈ ]0, tξ[ \⋃ Eξ; then neither bξ nor cξ = tξ − bξ belongs to Q ∪⋃

η<ξ φ[Kη].

At the end of the process, set

A = {aξ : ξ < c} ∪ {bξ : ξ < c} ∪ {cξ : ξ < c}.
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(ii)(ααα) If K ⊆ [0, 1] \ Q is compact, then φ−1[K] ⊆ NN is compact, so there is an η < c such that
φ−1[K] ⊆ Kη and K ⊆ φ[Kη]. If η < ξ < c, yξ /∈ Kη so aξ /∈ K, while neither bξ nor cξ belongs to
φ[Kη] ⊇ K. So A ∩K ⊆ {aξ : ξ ≤ η} ∪ {bξ : ξ ≤ η} ∪ {cξ : ξ ≤ η} has cardinal less than c.

(βββ) For x ∈ {0, 1}N set h(x) =
1

2

∑∞
i=0 2−ix(i), so that h : {0, 1}N → [0, 1] is a continuous surjection.

Set f = hψφ−1 : [0, 1] \Q → [0, 1]. Then f is continuous. Since ψφ−1(aξ) = ψ(yξ) = ψ(xξ) for every ξ < c,
ψφ−1[A] = {0, 1}N and f [A] = [0, 1]. So f↾A is a surjection from A onto [0, 1].

(γγγ) Since tξ = bξ + cξ ∈ A+A for every ξ < c, A+A ⊇ ]0, 1].

(b)(i) Let H ⊆ A ∪ Q be a relatively open set including Q, and take an open set G ⊆ R such that
H = G ∩ (A ∪ Q). Then K = [0, 1] \ G is a compact subset of [0, 1] \ Q and φ−1[K] is a compact subset
of NN. There is therefore an η < c such that φ−1[K] is bounded above by xη, that is, φ−1[K] ⊆ Kη and
K ⊆ φ[Kη]. So neither aξ nor bξ nor cξ can belong to K for any ξ > η, and #(A ∩K) < c = mcountable. By
534Qa, (A∪Q) \H = (A∪Q) \G = A∩K belongs to Rbg(A∪Q); as Q ∈ Rbg(A∪Q) and H is arbitrary,
A ∈ Rbg(A ∪Q) (534D(b-iii)).

(ii) As the embedding A ∪ Q ⊂→ R is continuous, A ∪ Q ∈ Rbg(R) (534D(b-ii)) and A ∈ Rbg(R)
(534D(b-i)).

(iii) By 534Ea, A is of strong measure zero for the usual metric on R. Setting B = A + Z, B is the
union of a sequence of sets isometric to A, so is of strong measure zero. As A + A ⊇ ]0, 1], B + A = R; by
534K, A is not meager.

(iv) Of course [0, 1] is not of strong measure zero for its usual metric (534H) so does not belong to
Rbg([0, 1]) (534Ea); now (a-β) here and 534D(b-ii) tell us that A cannot belong to Rbg([0, 1] \ Q). But
[0, 1] \Q is relatively closed in R \Q, so A cannot belong to Rbg(R \Q), by 534D(b-iv).

(v) If we give R and R2 their usual metrics, addition is a uniformly continuous function from R2 to R,
while A+A ⊇ ]0, 1] is not of strong measure zero. So A×A is not of strong measure zero (534D(a-iii)) and
cannot belong to Rbg(R2).

534X Basic exercises (a)(i) Let (X, ρ) be a metric space, r > 0 and A ⊆ X a set with strong measure
zero. Show that A has zero Hausdorff r-dimensional measure. (ii) Find a subset of R2 which is universally
negligible but does not have strong measure zero (for the usual metric on R2). (Hint : 439G.) (iii) Find
a subset of {0, 1}N which is universally negligible but does not have strong measure zero for the metric of
534Qb.

(b) Let r, s ≥ 1 be integers. Let A ⊆ Rr be a set with strong measure zero, and f : A → Rs a function
which is differentiable relative to its domain at every point of A. Show that f [A] has strong measure zero.
(Hint : 262N.)

(c) Let (X,W) and (Y,V) be uniform spaces and f : X → Y a continuous function. Suppose that
A ∈ Smz(X,W) is covered by a sequence of compact subsets of X. Show that f [A] ∈ Smz(Y,V).

(d) Let X be a σ-compact topological space which is either Hausdorff or regular, and A ⊆ X. Show that
A ∈ Rbg(X) iff for every sequence 〈Gn〉n∈N of finite open covers of X, there is a sequence 〈Gn〉n∈N, covering
A, such that Gn ∈ Gn for every n.

(e) Let (X,W) be a Hausdorff uniform space with strong measure zero. Show that X is universally
negligible iff it is a Radon space.

(f)(i) Let (X,W) be a Hausdorff uniform space. Show that if X has strong measure zero then it is
universally τ -negligible. (ii) Let X be a Hausdorff topological space. Show that if A ∈ Rbg(X) then A is
universally τ -negligible (definition: 439Xh).

(g) Give ω1 + 1 its order topology. Show that it has Rothberger’s property in itself but is not universally
negligible.
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(h) Give ω1 + 1 its order topology. Show that ω1 has Rothberger’s property in ω1 + 1 but not in itself.

(i) Let X be a locally compact Hausdorff topological group. Show that a subset of X has Rothberger’s
property in X iff it has strong measure zero for the right uniformity of X iff it has strong measure zero for
the bilateral uniformity of X.

(j)(i) Let (X,W) be a Lindelöf uniform space. Show that there is some κ such that Smz(X,W) 4T N κ,
where N is the null ideal of Lebesgue measure on R. (ii) Let X be a regular Lindelöf space. Show that
there is some κ such that Rbg(X) 4T N κ.

(k) Show that every separable metric space (X, ρ) is uniformly equivalent to a subspace of [0, 1]N and is
therefore Smz-embeddable in [0, 1]N.

(l) Let 〈In〉n∈N be a non-decreasing sequence of finite sets covering Z. For x, y ∈ ZN set ρ(x, y) =
inf{2−n : n ∈ N, x↾In = y↾In}. Show that ρ is a metric on ZN inducing its topological group uniformity
(4A5He), and that nonSmz(ZN , ρ) = mcountable.

(m)(i) Show that no cofinal subset of NN has strong measure zero for the metric ρ of 534Qb. (ii) Suppose
that mcountable = d. Show that there are a subset A of R \ Q and a metric ρ′ on R \ Q inducing the usual
topology of R \Q such that A has strong measure zero for the usual metric on R but not for ρ′.

(n) Let A be the set constructed in 534Sa on the assumption that mcountable = c. Show that A has strong
measure zero for the usual metric of R, and describe a metric on [0, 1] \Q, inducing the usual topology on
[0, 1] \Q, for which A does not have strong measure zero. (See also 534Ye.)

(o) [In this exercise, I will say that a topological space which has Rothberger’s property in itself has
‘property C′’.] (i) Show that any Lindelöf space with cardinal less than mcountable has property C′. (ii) Show
that if X is a topological space expressible as the union of a sequence of subspaces with property C′, then
X has property C′. (iii) Show that if X is a regular Lindelöf space expressible as the union of fewer than
addN subspaces with property C′, then X has property C′. (iv) Show that a continuous image of a space
with property C′ has property C′. (v) Show that a closed subset of a space with property C′ has property
C′. (vi) Show that if X is a topological space, A ⊆ X has property C′ and every closed subset of X \A has
property C′, then X has property C′.

534Y Further exercises (a) Let (X, ρ) be an analytic metric space and µHr Hausdorff r-dimensional
measure on X, where r > 0; suppose that µHrX > 0. Let I be the σ-ideal of subsets of X generated by
{A : µ∗

HrA <∞}. Show that

nonN (µHr) = min(nonN , non I) = nonN if µHr is σ-finite,

= non I otherwise.

(b)(i) Set I = {[4−mi, 4−m(i+ 1)[ : m ∈ N, i ∈ Z}. For A ⊆ R set θ(A) = inf{∑I∈I′

√
diam I : I ′ ⊆ I

covers A}. Show that if µ
(1)
H,1/2 is Hausdorff 1

2 -dimensional measure on R, then µ
(1)
H,1/2(A) = 0 iff θ(A) = 0.

(ii) Set J = {[2−mi, 2−m(i+ 1)[ × [2−mj, 2−m(j + 1)[ : m ∈ N, i, j ∈ Z}, and for A ⊆ R2 set θ′(A) =

inf{∑J∈J ′ diam J : J ′ ⊆ J covers A}. Show that if µ
(2)
H1 is Hausdorff 1-dimensional measure on R2, then

µ
(2)
H1(A) = 0 iff θ′(A) = 0. (iii) Show that the null ideals N (µ

(1)
H,1/2) and N (µ

(2)
H1) are isomorphic.

(c) Show that if either nonN = cfN or nonN < covN , where N is the null ideal of Lebesgue measure
on R, then Hausdorff one-dimensional measure on R2 does not have the measurable envelope property.

(e) Suppose that mcountable = c. Let X be the group of all permutations of N, regarded as the isometry
group of N with its {0, 1}-valued metric, so that X is a Polish group (441Xq). Show that there is a subset
A of X such that A has strong measure zero for the right uniformity of X but A−1 does not.
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(d) Let G be a collection of families of sets. Let us say that a set A has the G-Rothberger property if
for every sequence 〈Gn〉n∈N in G there is a cover 〈Gn〉n∈N of A such that Gn ∈ Gn for every n ∈ N. (i) Show
that the family I of sets with the G-Rothberger property is a σ-ideal of sets containing every countable
subset of

⋂
G∈G

⋃G. (ii) Show that if H is another collection of families of sets, and f is a function such

that for every H ∈ H there is a member of G refining {f−1[H] : H ∈ H}, then f [A] has the H-Rothberger
property whenever A ∈ I. (iii) Suppose that G is a collection of families of open subsets of a topological
space X, that A ∈ I has the G-Rothberger property, and that B ⊆ X is such that B \G ∈ I for every open
set G ⊇ A. Show that B ∈ I. (iv) Suppose that X =

⋃G for every G ∈ G, and that every member of G is
countable. Show that non(I, X) ≥ mcountable.

(e) Suppose that mcountable = d. Show that there are two complete metrics ρ, ρ′ on NN, both inducing
the usual topology of NN, such that Smz(NN, ρ) 6= Smz(NN, ρ′).

534Z Problems (a) Let µ
(2)
H1 be one-dimensional Hausdorff measure on R2. Is the covering number

covN (µ
(2)
H1) necessarily equal to covN ? As observed in 534Bc-534Bd, we have covN ≤ covN (µ

(2)
H1) ≤

nonM. We can ask the same question for r-dimensional Hausdorff measure on Rn whenever 0 < r < n; in
particular, for r-dimensional Hausdorff measure on [0, 1], where 0 < r < 1, and these questions are strongly

connected (534Yb). Shelah & Steprāns 05 show that nonN (µ
(2)
H1) can be less than nonN ; of course this

is possible only because µ
(2)
H1 is not semi-finite (439H, 521Xg).

(b) Can cfRbg(R) be ω1?

(c) How many types of complete separable metric spaces under Smz-equivalence can there be? If we give
NN the metric of 534Qb, can it fail to be Smz-equivalent to [0, 1]N with the metric (x, y) 7→ supn∈N 2−n|x(n)−
y(n)|?

(d) Suppose that there is a separable metric space with cardinal c with strong measure zero. Must there
be a subset of R with cardinal c with Rothberger’s property in R?

(e) On R, let T be the usual topology and S the right-facing Sorgenfrey topology (415Xc). Must
Rbg(R,S) and Rbg(R,T) be the same?

534 Notes and comments I have very little to say about Hausdorff measures, and 534B is here only
because it would seem even lonelier in a section by itself. All I have tried to do is to run through the obvious
questions connecting §471 with Chapter 52. But at the next level there is surely much more to be done
(534Za).

‘Strong measure zero’ has attracted a great deal of attention, starting with the work of E.Borel, who
suggested that every subset of R with strong measure zero must be countable; this is the Borel conjecture.
It turns out that this is undecidable in ZFC (see the preamble to 534Q), and that if the Borel conjecture is
true then there are no uncountable sets of strong measure zero in any separable metric space (534Rb). So
we have some questions of a new kind: in the ideals Smz(X,W) of sets of strong measure zero, in addition
to the standard cardinals add, non, cov and cf, we find ourselves asking for the possible cardinals of sets
belonging to the ideal.

The next point is that strong measure zero is not (or rather, not always) either a topological property or a
metric property; it is a property of uniform spaces. We must therefore be prepared to examine uniformities,
even if we are happy to stay with metrizable ones. In 534Xm we see that we can have a set which has strong
measure zero for one of two equivalent metrics and not for the other. Goldstern Judah & Shelah 93

describe a model in which mcountable = ω1, addRbg(R) = c = ω2 and there is a subset of R of cardinal
ω2 with strong measure zero. So in this case NN, with the metric described in 534Qb, is not even Smz-
embeddable in R with its usual metric. Of course in models of set theory in which the Borel conjecture is
true we do have a topologically determined structure on any separable metrizable space.

Note that for any uncountable complete separable metric space (X, ρ), there is a subset of X homeomor-
phic to {0, 1}N (423Ba, 423K3), and the homeomorphism must be a uniform equivalence; so that {0, 1}N

3Formerly 423J.
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and its companions [0, 1]r, Rr (534P) must be Smz-embeddable in X. In this sense they are the ‘simplest’
uncountableomplete metric spaces. In the same sense, [0, 1]N is the most complex separable metric space
(534Xk).

For σ-compact spaces, strong measure zero becomes a topological property (534Eb), corresponding to
what I call ‘Rothberger’s property’ (534Cb). Rothberger 1938b investigated subsets of R which have
Rothberger’s property in themselves, under the name ‘property C′’. The ideas of 534Da and 534L-534Ma
can be re-presented as theorems about Rothberger’s property (534Db, 534Mb, 534Xj ); the machinery of
534Yd is supposed to suggest a reason for this. It is natural to be attracted to a topological concept, but
there is a difficulty in that Rothberger’s property is not hereditary in the usual way (534Xh, 534Xm, 534Xn).
I note that while 534P can be stated in terms of Rbg-equivalence, isomorphism of the ideals of sets with
the appropriate Rothberger’s property, the concept of strong measure zero seems to be necessary in the
Schröder-Bernstein arguments based on 534O. Of course the spaces here are paracompact and normal, so
534F gives us an alternative approach to this issue.

For a fuller discussion of strong measure zero in R, see Bartoszyński & Judah 95, chap. 8, from which
many of the ideas of this section are taken.

Version of 1.6.11

535 Liftings

I introduced the Lifting Theorem (§341) as one of the fundamental facts about complete strictly localizable
measure spaces. Of course we can always complete a measure space and thereby in effect obtain a lifting for
any σ-finite measure. For the applications of the Lifting Theorem in §§452-453 this procedure is natural and
effective; and generally in this treatise I have taken the view that one should work with completed measures
unless there is some strong reason not to. But I have also embraced the principle of maximal convenient
generality, seeking formulations which will exhibit the full force of each idea in the context appropriate
to that idea, uncluttered by the special features of intended applications. So the question of when, and
why, liftings for incomplete measures can be found is one which automatically arises. It turns out to be a
fruitful question, in the sense that it leads us to new arguments, even though the answers so far available
are unsatisfying.

As usual, much of what we want to know depends on the behaviour of the usual measures on powers
of {0, 1} (535B). An old argument relying on the continuum hypothesis shows that Lebesgue measure can
have a Borel lifting; this has been usefully refined, and I give a strong version in 535D-535E. We know that
we cannot expect to have translation-invariant Borel liftings (345F), but strong Borel liftings are possible
(535H-535I), and in some cases can be built from Borel liftings (535J-535N).

For certain applications in functional analysis, we are more interested in liftings for L∞ spaces than
in liftings for measure algebras; and it is sometimes sufficient to have a ‘linear lifting’, not necessarily
corresponding to a lifting in the strict sense (535O, 535P). I give a couple of paragraphs to linear liftings
because in some ways they are easier to handle and it is conceivable that they are relevant to the main
outstanding problem (535Zf).

535A Notation (a) The most interesting questions to be examined in this section can be phrased in the
following language. If (X,Σ, µ) is a measure space and T a topology on X, I will say that a Borel lifting
of µ is a lifting which takes values in the Borel σ-algebra B(X) of X. (As usual, I will use the word ‘lifting’
indifferently for homomorphisms from Σ to itself, or from A to Σ, where A is the measure algebra of µ. Of
course a homomorphism θ : A → Σ is a Borel lifting iff the corresponding homomorphism E 7→ θE• : Σ → Σ
is a Borel lifting.) Similarly, a Baire lifting of µ is a lifting which takes values in the Baire σ-algebra
Ba(X) of X.

(b) I remark at once that if (X,T,Σ, µ) is a topological measure space and φ : Σ → B(X) is a Borel
lifting for µ, then φ↾B(X) is a lifting for the Borel measure µ↾B(X). Conversely, if φ′ : B(X) → B(X) is
a lifting for µ↾B(X), and if for every E ∈ Σ there is a Borel set E′ such that E△E′ is negligible, then φ′

extends uniquely to a Borel lifting φ of µ.
In the same way, any Baire lifting for a measure µ which measures every zero set will give us a lifting for

µ↾Ba(X); and a lifting for µ↾Ba(X) will correspond to a Baire lifting for µ if, for instance, µ is completion
regular, as in 535B below.
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(c) As in Chapter 52, I will say that, for any set I, νI is the usual measure on {0, 1}I and BI its measure
algebra.

535B Proposition Let (X,Σ, µ) be a strictly localizable measure space with non-zero measure. Suppose
that νκ has a Baire lifting (that is, νκ↾Ba({0, 1}κ) has a lifting) for every infinite cardinal κ such that the
Maharam-type-κ component of the measure algebra of µ is non-zero. Then µ has a lifting.

proof Write (A, µ̄) for the measure algebra of µ.

(a) Suppose first that µ is a Maharam-type-homogeneous probability measure. In this case A is either
{0, 1} or isomorphic to Bκ for some infinite κ. The case A = {0, 1} is trivial, as we can set φE = ∅ if
E ∈ Σ is negligible, φE = X if E ∈ Σ is conegligible. Otherwise, A is τ -generated by a stochastically
independent family 〈eξ〉ξ<κ of elements of measure 1

2 . For each ξ < κ, choose Eξ ∈ Σ such that E•

ξ = eξ,

and define f : X → {0, 1}κ by setting f(x)(ξ) = χEξ(x) for x ∈ X and ξ < κ. Then {F : F ⊆ {0, 1}κ, νF
and µf−1[F ] are defined and equal} is a Dynkin class containing all the measurable cylinders in {0, 1}κ, so
includes Baκ = Ba({0, 1}κ), and f is inverse-measure-preserving for µ and ν ′κ = νκ↾Baκ. Note that Bκ can
be identified with the measure algebra of ν ′κ (put 415E and 322Da together, or see 415Xs4). So we have
an induced measure-preserving Boolean homomorphism π : Bκ → A defined by setting πF • = f−1[F ]• for
every F ∈ Baκ. Since π[Bκ] is an order-closed subalgebra of A (324Kb) containing every eξ, it is the whole
of A.

We are supposing that there is a lifting θ : Bκ → Baκ of νκ. Define θ1 : A → Σ by setting θ1a =
f−1[θπ−1a] for every a ∈ A; then θ1 is a Boolean homomorphism because θ and π−1 are, and

(θ1a)• = π((θπ−1a)•) = ππ−1a = a

for every a ∈ A, so θ1 is a lifting for µ.

(b) It follows at once that if µ is any non-zero totally finite Maharam-type-homogeneous measure, then
it will have a lifting, as we can apply (a) to a scalar multiple of µ. Now consider the general case. Let K be
the family of measurable subsets K of X such that the subspace measure µK is non-zero, totally finite and
Maharam-type-homogeneous. Then µ is inner regular with respect to K, by Maharam’s theorem (332B).
By 412Ia, there is a decomposition 〈Xi〉i∈I of X such that at most one Xi does not belong to K, and that
exceptional one, if any, is negligible; adding a trivial element Xk = ∅ if necessary, we may suppose that
there is exactly one k ∈ I such that µXk = ∅. For each i ∈ I \ {k}, let µi be the subspace measure on Xi,
and Σi its domain; then µi has a lifting φi : Σi → Σi. (The point is that if the Maharam type κ of µi is
infinite, then the Maharam-type-κ component of A includes X•

i and is non-zero, so our hypothesis tells us
that νκ has a Baire lifting.) At this point, recall that we are also supposing that µX > 0, so there is some
j ∈ I \ {k}; fix z ∈ Xj , and define φ : Σ → PX by setting

φE =
⋃

i∈I\{k}

φi(E ∩Xi) if z /∈ φj(E ∩Xj),

= Xk ∪
⋃

i∈I\{k}

φi(E ∩Xi) if z ∈ φj(E ∩Xj).

Then φ is a lifting for µ. PPP It is a Boolean homomorphism because every φi is. If E ∈ Σ, then Xi ∩ φE =
φi(E ∩ Xi) if i ∈ I \ {k}, and is either Xk or ∅ if i = k; in any case, it belongs to Σi; as 〈Xi〉i∈I is a
decomposition for µ, φE ∈ Σ. Also

µ(E△φE) ≤ µXk +
∑

i∈I\{k} µi((E ∩Xi)△φi(E ∩Xi)) = 0.

Finally, if µE = 0, then µi(E ∩Xi) = 0 and φi(E ∩Xi) = ∅ for every i ∈ I \ {k}, so φE = ∅. QQQ

535C Proposition If λ and κ are cardinals with λ = λω ≤ κ, and νκ has a Baire lifting, then νλ has a
Baire lifting.

proof If λ is finite, the result is trivial, so we may suppose that λ ≥ ω (and therefore that λ ≥ c). For
I ⊆ κ, write BaI for the Baire σ-algebra of {0, 1}I and TI for the family of those E ∈ Baκ which are

4Formerly 415Xp.
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determined by coordinates in I. Set πI(x) = x↾I for every x ∈ {0, 1}κ; then H 7→ π−1
I [H] is a Boolean

isomorphism between BaI and TI , with inverse E 7→ πI [E]. PPP Because πI is continuous, π−1
I [H] ∈ Baκ

for every H ∈ BaI . Of course H 7→ π−1
I [H] is a Boolean homomorphism, and it is injective because πI is

surjective. Identifying {0, 1}κ with {0, 1}I × {0, 1}κ\I , we have a function h : {0, 1}I → {0, 1}κ defined by
setting h(v) = (v,0) for v ∈ {0, 1}I . This is continuous, therefore (BaI ,Baκ)-measurable. If E ∈ TI , then
E = π−1

I [πI [E]] = π−1
I [h−1[E]]; so H 7→ π−1

I [H] is surjective and is an isomorphism. QQQ
Consequently #(TI) ≤ c for every countable I ⊆ κ (4A1O, because BaI is σ-generated by the cylinder

sets, by 4A3Na). For any I, TI =
⋃

J∈[I]≤ω TJ , because every member of BaI is determined by coordinates

in a countable set (4A3Nb). So #(TI) ≤ max(c,#(I)ω) = λ whenever I ⊆ κ and #(I) = λ.
Let φ be a Baire lifting for νκ. Choose a non-decreasing family 〈Jξ〉ξ<ω1

in [κ]λ such that J0 = λ and
φE ∈ TJξ+1

whenever ξ < ω1 and E ∈ TJξ
. Set J =

⋃
ξ<ω1

Jξ; then TJ =
⋃

ξ<ω1
TJξ

, so φE ∈ TJ for every
E ∈ TJ .

We therefore have a Boolean homomorphism φ1 : BaJ → BaJ defined by setting φ1H = πJ [φ(π−1
J [H])]

for every H ∈ BaJ . If νJH = 0, then νκπ
−1
J [H] = 0 and φ1H = φ(π−1

J [H]) = 0. For any H ∈ BaJ ,

π−1
J [H△φ1H] = π−1

J [H]△φ(π−1
J [H])

is νκ-negligible, so H△φ1H is νJ -negligible. Thus φ1 is a lifting for νJ↾BaJ . As νJ↾BaJ is isomorphic to
νλ↾Baλ, the latter also has a lifting. As νλ is completion regular (416U), the measure algebra of νλ↾Baλ

can be identified with Bλ, and we can interpret a lifting for νλ↾Baλ as a Baire lifting for its completion νλ.

535D The following result covers most of the cases in which non-complete probability measures are
known to have liftings.

Theorem Let (X,Σ, µ) be a measure space such that µX > 0, and suppose that its measure algebra is
tightly ω1-filtered (definition: 511Di). Then µ has a lifting.

proof This is a special case of 518L.

535E Proposition Suppose that c ≤ ω2 and the Freese-Nation number FN(PN) is ω1.
(a) If A is a measurable algebra with cardinal at most ω2, it is tightly ω1-filtered.
(b) (Mokobodzki 7?) Let (X,Σ, µ) be a σ-finite measure space with non-zero measure and Maharam

type at most ω2.
(i) µ has a lifting.
(ii) If T is a topology on X such that µ is inner regular with respect to the Borel sets, then µ has a

Borel lifting.
(iii) If T is a topology on X such that µ is inner regular with respect to the zero sets, then µ has a

Baire lifting.

proof (a) By 524O(b-iii), FN(A) ≤ ω1, so 518M gives the result.

(b)(i) By 514De, the measure algebra of µ has cardinal at most

ωω
2 = max(c, ω2) ≤ ω2

(5A1F(e-iii)). So we can put (a) and 535D together.

(ii) Because µ is σ-finite and inner regular with respect to the Borel sets, every measurable set can
be expressed as the union of a Borel set and a negligible set. By (i), µ↾B(X) has a lifting, which can be
interpreted as a Borel lifting for µ, as in 535Ab.

(iii) As (ii), but with Ba(X) in place of B(X).

535F Using the continuum hypothesis, we can go a little farther with ideas from 341J.

Proposition Let (X,Σ, µ) be a measure space such that µX > 0 and #(A) ≤ ω1, where A is the measure
algebra of µ, and suppose that θ : A → Σ is such that

θ0 = ∅, θ(a ∩ b) = θa ∩ θb for all a, b ∈ A, (θa)• ⊆ a for every a ∈ A.

Then µ has a lifting θ : A → Σ such that θE• ⊇ θE for every E ∈ Σ.
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proof (a) Adjusting θ1 if necessary, we can suppose that θ1 = X. Note that θa ⊆ θb whenever a ⊆ b in
A. Let 〈aξ〉ξ<ω1

be a family running over A, and for α ≤ ω1 let Cα be the subalgebra of A generated by
{aξ : ξ < α}. Define Boolean homomorphisms θα : Cα → Σ inductively, as follows. The inductive hypothesis
will be that (θαc)

• = c and θαc ⊇ θc for every c ∈ Cα, while θα extends θβ for every β ≤ α. Start with
θ00 = ∅, θ01 = X.

(b) Given θα, where α < ω1, set

F =
⋃{θ(c ∪ aα) \ θαc : c ∈ Cα},

G =
⋃{θ(c ∪ (1 \ aα)) \ θαc : c ∈ Cα}.

Because Cα is countable, F and G belong to Σ. If c ∈ Cα, then

(θ(c ∪ aα) \ θαc)• = θ(c ∪ aα)• \ c ⊆ (c ∪ aα) \ c ⊆ aα,

so F • ⊆ aα; similarly, G• ⊆ 1 \ aα. Next, F ∩G = ∅. PPP If b, c ∈ Cα, then

(θ(b ∪ aα) \ θαb) ∩ (θ(c ∪ (1 \ aα)) \ θαc) = θ((b ∪ aα) ∩ (c ∪ (1 \ aα))) \ (θαb ∪ θαc)

⊆ θ(b ∪ c) \ θα(b ∪ c) = ∅. QQQ
Choose any E ∈ Σ such that E• = aα and set Eα = (E ∪ F ) \G; then E•

α = aα, F ⊆ Eα and G ∩ Eα = ∅.
If c ∈ Cα and c ⊆ aα, then θ((1 \ c) ∪ aα) = θ1 = X, so

θαc = θ((1 \ c) ∪ aα) \ θα(1 \ c) ⊆ F ⊆ Eα.

Similarly, if c ∈ Cα and c ∩ aα = 0, then

θαc = θ((1 \ c) ∪ (1 \ aα)) \ θα(1 \ c) ⊆ G

is disjoint from Eα. We can therefore define a Boolean homomorphism θα+1 : Cα+1 → Σ by setting

θα+1((b ∩ aα) ∪ (c \ aα)) = (θαb ∩ Eα) ∪ (θαc \ Eα)

for all b, c ∈ Cα (312O), and θα+1 will extend θβ for every β ≤ α + 1. Because (θα+1aα)• = E•
α = aα and

θα+1c = θαc for every c ∈ Cα, (θα+1a)• = a for every a ∈ Cα+1.
I have still to check the other part of the inductive hypothesis. If b, c ∈ Cα, then

θ((b ∩ aα) ∪ (c \ aα)) = θ((b ∪ c) ∩ (c ∪ aα) ∩ (b ∪ (1 \ aα)))

= θ(b ∪ c) ∩ θ(c ∪ aα) ∩ θ(b ∪ (1 \ aα))

⊆ θα(b ∪ c) ∩ (F ∪ θαc) ∩ (G ∪ θαb)
⊆ θα+1(b ∪ c) ∩ (θα+1aα ∪ θα+1c) ∩ (θα+1(1 \ aα) ∪ θα+1b)

= θα+1((b ∩ aα) ∪ (c \ aα)),

which is what we need to know.

(c) For non-zero limit ordinals α ≤ ω1, we have Cα =
⋃

β<α Cβ so we can, and must, take θα =
⋃

β<α θβ .
At the end of the induction, θω1

: A → Σ is an appropriate lifting.

535G Corollary (see Neumann 1931) Suppose that c = ω1. Then for any integer r ≥ 1 there is a Borel
lifting θ of Lebesgue measure on Rr such that x ∈ θE• whenever E ⊆ Rr is a Borel set and x is a density
point of E.

proof In 535F, let θ be lower Lebesgue density (341E), interpreted as a function from the Lebesgue measure
algebra to the Borel σ-algebra. We need to check that θE• is indeed always a Borel set; this is because

θE• = int*E = {x : limn→∞
µ(E∩B(x,2−n))

µB(x,2−n)
= 1}

and the functions x 7→ µ(E ∩B(x, 2−n)) are all continuous (use 443B).

535H Again using the continuum hypothesis, we have some results on ‘strong’ liftings, as described in
§453.
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Theorem Let (X,T,Σ, µ) be an effectively locally finite τ -additive topological measure space with measure
algebra A. If #(A) ≤ addµ and µ is strictly positive, then µ has a strong lifting.

proof (a) For each a ∈ A, set

a =
⋂{F : F ⊆ X is closed, F • ⊇ a}.

Then a is closed and a• ⊇ a (414Ac). If a, b ∈ A, then a ∪ b = a ∪ b. PPP Of course a ∪ b ⊇ a ∪ b, because the
operation is order-preserving. On the other hand, a∪ b is a closed set and (a∪ b)• ⊇ a ∪ b, so a∪ b ⊇ a ∪ b.
QQQ

For a subalgebra B of A, say that a function θ : B → Σ is ‘potentially a strong lifting’ if it is a Boolean
homomorphism and (θb)• = b and θb ⊆ b for every b ∈ B.

(b) (The key.) Suppose that B is a subalgebra of A, with cardinal less than addµ, and c ∈ A; let B1

be the subalgebra of A generated by B ∪ {c}. If θ : B → Σ is potentially a strong lifting, then it has an
extension θ1 : B1 → Σ which is also potentially a strong lifting.

PPP Set

C0 =
⋃{θa : a ∈ B, a ⊆ c},

D0 =
⋂{θb : b ∈ B, c ⊆ b},

C1 =
⋃{θa \ a \ c : a ∈ B},

D1 =
⋂{(X \ θb) ∪ b ∩ c : b ∈ B}.

Fix E0 ∈ Σ such that E•
0 = c.

If a, a′, b, b′ ∈ B and a′ ⊆ c ⊆ b′, then

a′ ⊆ b′, so θa′ ⊆ θb′;

θa′ ∩ θb = θ(a′ ∩ b) ⊆ a′ ∩ b ⊆ b ∩ c, so θa′ ⊆ (X \ θb) ∪ b ∩ c;

θa \ θb′ = θ(a \ b′) ⊆ a \ b′ ⊆ a \ c, so θa \ a \ c ⊆ θb′;

θa ∩ θb = θ(a ∩ b) ⊆ a ∩ b = a ∩ b ∩ c ∪ a ∩ b \ c ⊆ a \ c ∪ b ∩ c,
so

θa \ a \ c ⊆ (X \ θb) ∪ b ∩ c.
This shows that C0 ∪ C1 ⊆ D0 ∩D1. At the same time,

E•
0 = c ⊇ a′, so θa′ \ E0 is negligible;

E•
0 = c ⊆ b′, so E0 \ θb′ is negligible;

(E0 ∪ a \ c)• ⊇ c ∪ (a \ c) ⊇ a = (θa)•

so (θa \ a ∩ c) \ E0 is negligible;

E•
0 = c ⊆ (1 \ b) ∪ (b ∩ c) ⊆ (X \ θb)• ∪ b ∩ c

•

,

so E0 \ ((X \ θb) ∪ b ∩ c) is negligible. Because #(B) < addµ, (C0 ∪ C1) \ E0 and E0 \ (D0 ∩ D1) are
measurable and negligible.

If we set

E = (E0 ∪ C0 ∪ C1) ∩ (D0 ∩D1),

then E ∈ Σ, E• = c and C0 ∪ C1 ⊆ E0 ⊆ D0 ∩D1. So we can set θ1c = E to define a homomorphism from
B1 to Σ (312O again), and we shall have (θ1d)• = d for every d ∈ B1.

We must check that θ1d ⊆ d for every d ∈ B1. Now d is expressible as (b ∩ c) ∪ (a \ c) for some a, b ∈ B,
and in this case

θb ∩ E ⊆ θb ∩ ((X \ θb) ∪ b ∩ c) ⊆ b ∩ c,
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θa \ E ⊆ θa \ (θa \ a \ c) ⊆ a \ c,

so

θ1d = (θb ∩ E) ∪ (θa \ E) ⊆ b ∩ c ∪ a \ c = d.

So θ1 is a potential strong lifting, as required. QQQ

(c) Enumerate A as 〈aξ〉ξ∈κ where κ ≤ addµ, and for α ≤ κ let Bα be the subalgebra of A generated by
{aξ : ξ < α}. Then (b) tells us that we can choose inductively a family 〈θα〉α<κ such that θα : Bα → Σ is a
potential strong lifting and θα+1 extends θα for each α < κ. (At non-zero limit ordinals α, Bα =

⋃
ξ<α Bξ

so we can take θα to be the common extension of
⋃

ξ<α θξ. We need to know that µ is strictly positive in

order to be sure that 1 = X, so that we can take θ01 = X.) In this way we obtain a lifting θ = θκ of µ. Also
θa ⊆ a for every a ∈ A. Looking at this from the other side, if F ⊆ X is closed then F • ⊆ F so θ(F •) ⊆ F ,
and θ is a strong lifting.

535I Corollary (see Mokobodzki 75) Suppose that c = ω1. Let (X,T,Σ, µ) be a strictly positive
σ-finite quasi-Radon measure space with Maharam type at most ω1 = c. Then µ has a strong Borel lifting.

proof Because µ is σ-finite, its measure algebra A is ccc, and has size at most cω = ω1; so we can apply
535H to µ↾B(X).

535J Under certain conditions, we can deduce the existence of a strong lifting from the existence of a
lifting. The basic case is the following.

Lemma Let (X,T,Σ, µ) be a completely regular totally finite topological measure space with a Borel lifting
φ. Suppose that K ⊆ X is a self-supporting set of non-zero measure, homeomorphic to {0, 1}N, such that
K ∩G ⊆ φG for every open set G ⊆ X. Then the subspace measure µK has a strong Borel lifting.

proof (a) Taking E to be the algebra of relatively open-and-closed subsets of K, we have a Boolean
homomorphism ψ0 : E → B(X) such that E ⊆ intψ0E for every E ∈ E . PPP We have a Boolean-independent
sequence 〈En〉n∈N in E which generates E and separates the points of K. Because every member of E is
compact, we can choose for each n ∈ N an open Hn ⊆ X such that En = K ∩ Hn = K ∩ Hn. Define
h : X → K by saying that, for every n ∈ N and x ∈ X, h(x) ∈ En iff x ∈ Hn. Define ψ0 : E → B(X) by
setting ψ0E = h−1[E] for E ∈ E . Then ψ0 is a Boolean homomorphism. The set

{E : E ∈ E , E ⊆ intψ0E, K \ E ⊆ intψ0(K \ E)}
is a subalgebra of E containing every En, so is the whole of E , and ψ0 has the required property. QQQ

(b) Let A be the measure algebra of µ, and θ : A → B(X) the lifting corresponding to φ. Set ψ1E =
(ψ0E)• for E ∈ E , so that ψ1 : E → A is a Boolean homomorphism. Let I be the null ideal of µK . Because K
is self-supporting, E ∩I = {∅}. Taking E ′ = {E△F : E ∈ E , F ∈ I}, E ′ is a subalgebra of PK, and we have
a Boolean homomorphism ψ′ : E ′ → E defined by setting ψ′(E△F ) = E whenever E ∈ E and F ∈ I; set
ψ′
1 = ψ1ψ

′, so that ψ′
1 : E ′ → A is a Boolean homomorphism extending ψ1, and ψ′

1F = 0 whenever F ∈ I.

Because µ is totally finite, A is Dedekind complete, and there is a Boolean homomorphism ψ̃1 : PK → A

extending ψ′
1 (314K). Now set

φ1E = K ∩ (φE ∪ (θψ̃1E \ φK))

for every measurable E ⊆ K. Then φ1 is a strong lifting for µK . PPP φ↾ΣK is a Boolean homomorphism from
the domain ΣK of µK to B(φK), while E 7→ θψ̃1E \φK is a Boolean homomorphism from ΣK to B(X \φK);
putting these together, φ1 is a Boolean homomorphism from ΣK to B(K). If E ∈ ΣK , then E△(K ∩ φE)
and K \φK are negligible, so E△φ1E is negligible. If E ∈ ΣK is negligible, then φE = ∅, ψ′

1E = 0 and φ1E
is empty. Thus φ1 is a lifting for µK . Morover, if E ∈ E , set G = intψ0E, so that E = K ∩G. In this case,

E ⊆ φG = θG• ⊆ θ(ψ0E)• = θψ1E = θψ̃1E,

while

E ∩ φK ⊆ φG ∩ φK = φE;

so E ⊆ φ1E. So if V ⊆ K is relatively open,
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V =
⋃{E : E ∈ E , E ⊆ V } ⊆ ⋃{φ1E : E ∈ E , E ⊆ V } ⊆ φ1V .

Thus φ1 is strong. QQQ

535K Lemma Let X be a metrizable space, µ an atomless Radon measure on X and ν an atomless
strictly positive Radon measure on {0, 1}N. Let K be the family of those subsets K of X such that K, with
the subspace topology and measure, is isomorphic to {0, 1}N with its usual topology and a scalar multiple
of ν. Then µ is inner regular with respect to K.

proof (a) It will be helpful to note that if E ∈ domµ and γ < µE there is a compact set K ⊆ E such
that µK = γ. PPP Let 〈γn〉n∈N be a strictly decreasing sequence with γ0 < µE and infn∈N γn = γ. Choose
〈Kn〉n∈N, 〈En〉n∈N inductively as follows. E0 = E. Given that µEn > γn, let Kn ⊆ En be a compact set
such that µKn ≥ γn; now let En+1 be a measurable set with measure γn (215D, because µ is atomless). At
the end of the induction, set K =

⋂
n∈NKn. QQQ

(b) Now for the main argument. Suppose that 0 ≤ γ < µE. Let 〈γn〉n∈N be a strictly decreasing
sequence with γ0 < µE and infn∈N γn = γ. Set γ′n = 1

2 (γn + γn+1) for each n. For σ ∈ ⋃
n∈N{0, 1}n, set

Iσ = {z : σ ⊆ z ∈ {0, 1}N}. Let K0 be a compact subset of E of measure γ0; because X is metrizable, K0

is second-countable; let 〈Vn〉n∈N run over a base for the topology of K0. Choose 〈m(n)〉n∈N and Lσ, for
σ ∈ {0, 1}m(n), as follows. Start with m(0) = 0 and L∅ = K0. Given that 〈Lσ〉σ∈{0,1}m(n) is a disjoint family

of compact subsets of X with µLσ = γnνIσ for every σ ∈ {0, 1}m(n), let m(n+ 1) > m(n) be so large that
γn+1νIτ < (γn − γn+1)νIσ whenever σ ∈ {0, 1}m(n) and τ ∈ {0, 1}m(n+1). (This is where we need to know
that ν is atomless and strictly positive.) Now, for each σ ∈ {0, 1}m(n), enumerate {τ : σ ⊆ τ ∈ {0, 1}m(n+1)}
as 〈τ(σ, i)〉i<2m(n+1)−m(n) . Choose inductively disjoint compact sets Lτ(σ,i) ⊆ Lσ, for i < 2m(n+1)−m(n), in
such a way that µLτ(σ,i) = γn+1νIτ(σ,i) and Lτ(σ,i) is always either included in Vn or disjoint from it; this
will be possible because when we come to choose Lτ(σ,i), the measure of the set F = Lσ \ ⋃

j<i Lτ(σ,j)

available will be

γnνIσ −
∑

j<i

γn+1νIτ(σ,j) ≥ (γn − γn+1)νIσ + γn+1νIτ(σ,i)

> 2γn+1νIτ(σ,i),

so at least one of F ∩ Vn, F \ Vn will be of measure greater than γn+1νIτ(σ,i). Continue.

Set Kn =
⋃{Lσ : σ ∈ {0, 1}m(n)} for each n ∈ N, and K =

⋂
n∈NKn. The construction ensures that

whenever n ≤ k, σ ∈ {0, 1}m(n), τ ∈ {0, 1}m(k) and σ ⊆ τ , then Lτ ⊆ Lσ. We therefore have a function
f : K → {0, 1}N defined by saying that f(x)↾m(n) = σ whenever n ∈ N, σ ∈ {0, 1}m(n) and x ∈ K ∩ Lσ.
Because all the Lσ are compact, f is continuous. But it is also injective. PPP If x, y ∈ K are different, there
is an n ∈ N such that x ∈ Vn and y /∈ Vn; now f(x)↾m(n+ 1) 6= f(y)↾m(n+ 1). QQQ

For any n ∈ N, σ ∈ {0, 1}m(n) and k ≥ n,

µ(
⋃{Lτ : σ ⊆ τ ∈ {0, 1}m(k)}) =

∑
σ⊆τ∈{0,1}m(k) γkνIτ = γkνIσ.

So

µ(f−1[Iσ]) = infk≥n γkνIσ = γνIσ.

Thus the Radon measure µf−1 on {0, 1}N agrees with the Radon measure γν on {Iσ : σ ∈ ⋃
n∈N{0, 1}m(n)};

as this is a base for the topology of {0, 1}N closed under finite intersections, µf−1 and γν are identical
(415H(v)). Once again because ν is strictly positive, f is surjective and is a homeomorphism. So f witnesses
that K ∈ K. As E and γ are arbitrary, µ is inner regular with respect to K.

535L Lemma (a) If (X,T) is a separable metrizable space, there is a zero-dimensional separable metriz-
able topology S on X, finer than T, with the same Borel sets as T, such that T is a π-base for S.

(b) If X is a non-empty zero-dimensional separable metrizable space without isolated points, it is home-
omorphic to a dense subset of {0, 1}N.

(c) Any completely regular space with cardinal less than c is zero-dimensional.
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proof (a) Enumerate a countable base for T as 〈Un〉n∈N. Define a sequence 〈Sn〉n∈N of topologies on X
by saying that S0 = T and that Sn+1 is the topology on X generated by Sn ∪ {Vn}, where Vn is the
closure of Un for Sn. Inducing on n, we see that Sn is second-countable and has the same Borel sets as
T, for every n. So taking S to be the topology generated by

⋃
n∈N Sn (that is, the topology generated by

{Un : n ∈ N} ∪ {Vn : n ∈ N}), this also is second-countable and has the same Borel sets as T. Each Vn is
open for Sn+1 and closed for Sn, so is open-and-closed for S. Moreover, since

Un =
⋃{Um : m ∈ N, U

T

m ⊆ Un} =
⋃{Vm : m ∈ N, Vm ⊆ Un}

for each n, {Vn : n ∈ N} is a base for S consisting of open-and-closed sets for S, and S is zero-dimensional.
Finally, observe that if Vn is not empty, then Vn ⊇ Un 6= ∅, so T ⊇ {Un : n ∈ N} is a π-base for S.

(b) The family E0 of open-and-closed subsets of X is a base for the topology of X, so includes a countable
base U (4A2P(a-iii)). Because X has no isolated points, the subalgebra E1 of E0 generated by U is countable,
atomless and non-trivial, and must be isomorphic to the algebra E of open-and-closed subsets of {0, 1}N
(316M). Let π : E → E1 be an isomorphism. Then we have a function f : X → {0, 1}N defined by saying
that, for E ∈ E , f(x) ∈ E iff x ∈ πE. Because πE 6= ∅ for every non-empty E ∈ E , f [X] is dense in {0, 1}N.
Because {f−1[E] : E ∈ E} = E1 ⊇ U is a base for the topology of X, f is a homeomorphism between X and
f [X].

(c) If X is a completely regular space and #(X) < c, G ⊆ X is open and x ∈ G, let f : X → [0, 1]
be a continuous function such that f(x) = 1 and f(y) = 0 for y ∈ X \ G. Because #(X) < c, there is an
α ∈ [0, 1] \ f [X], and now {y : f(x) > α} = {y : f(x) ≥ α} is an open-and-closed set containing x and
included in G. As x and G are arbitrary, X is zero-dimensional.

535M Lemma Suppose that there is a Borel probability measure on {0, 1}N with a strong lifting. Then
whenever X is a separable metrizable space and D ⊆ X is a dense set, there is a Boolean homomorphism φ
from PD to the Borel σ-algebra B(X) of X such that φA ⊆ A for every A ⊆ D.

proof case 1 Suppose that X is countable. Then it is zero-dimensional (535Lc), so has a base U consisting
of open-and-closed sets; let E be the algebra of sets generated by U . For E ∈ E set πE = E ∩ D; then π
is an isomorphism between E and a subalgebra E ′ of PD. Because B(X) = PX is Dedekind complete, the
Boolean homomorphism π−1 : E ′ → E extends to a Boolean homomorphism φ : PD → PX = B(X) (314K
again). If A ⊆ D and x ∈ X \A, then there is a U ∈ U such that x ∈ U and A ∩ U = ∅, in which case

φA ⊆ π−1(D \ U) = X \ U
does not contain x. As x is arbitrary, φA ⊆ A; as A is arbitrary, φ has the required property.

case 2 Suppose that X is zero-dimensional and has no isolated points. If X is empty the result is trivial;
otherwise, by 535Lb, we may suppose that X is a dense subset of {0, 1}N. This time, let E be the algebra
of open-and-closed subsets of {0, 1}N. For E ∈ E , set πE = E ∩D. Because D is dense in X and therefore
in {0, 1}N, π is an isomorphism between E and a subalgebra E ′ of PD. Fix a Borel probability measure µ
on {0, 1}N with a strong lifting θ, and let A be the measure algebra of µ. Then A 7→ (π−1A)• is a Boolean
homomorphism from E ′ to A; because A is Dedekind complete, it extends to a Boolean homomorphism
ψ : PD → A. For E ⊆ {0, 1}N, set π̃E = E ∩X. Then φ = π̃θψ is a Boolean homomorphism from PD to
B(X). If A ⊆ D and x ∈ X \A, then there is an E ∈ E such that x ∈ E and A ∩ E = ∅, in which case

φA ⊆ θψA ⊆ θψ(D \ E) = θ({0, 1}N \ E)• = {0, 1}N \ E,

and x /∈ φA. As x and A are arbitrary, φ is a suitable homomorphism.

case 3 Suppose that X has no isolated points. Write T for the given topology on X. By 535La, there is
a finer zero-dimensional separable metrizable topology S on X, with the same Borel sets, such that T is a
π-base for S. If V ∈ S is non-empty, there is a non-empty U ∈ T such that U ⊆ V , and D ∩ V ⊇ D ∩ U
is non-empty; so D is S-dense. By case 2, there is a Boolean homomorphism φ : PD → B(X,S) such that

φA ⊆ A
S

for every A ⊆ D. As B(X,S) = B(X,T), and A
S ⊆ A

T
for every A ⊆ X, this φ satisfies the

conditions required.

general case In general, let G be the family of countable open subsets of X, and G0 =
⋃G; because

X is separable and metrizable, therefore hereditarily Lindelöf, G0 is countable. Set Z = X \ G0, and let
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D0 be a countable dense subset of Z; set Y = D ∪G0 ∪D0. By case 1, there is a Boolean homomorphism
φ0 : PD → PY such that φ0A ⊆ A for every A ⊆ D. By case 3, there is a Boolean homomorphism
φ1 : P(Y ∩ Z) → B(Z) such that φ1B ⊆ B for every B ⊆ Y ∩ Z. Now set

φA = (φ0A \ Z) ∪ φ1(Z ∩ φ0A)

for every A ⊆ D. Then φ is a Boolean homomorphism from PD to B(X); and if A ⊆ D, then

φA ⊆ φ0A ∪ φ1(Z ∩ φ0A) ⊆ A ∪ Z ∩A = A,

so in this case also we have a homomorphism of the kind we need.

535N Theorem Suppose there is a metrizable space X with a non-zero atomless semi-finite tight Borel
measure µ which has a lifting. Then whenever Y is a metrizable space and ν is a strictly positive σ-finite
Borel measure on Y , ν has a strong lifting.

proof (a) Let φ be a lifting for µ. Then there is a Borel set E ⊆ X, of non-zero finite measure, such that
E ∩ G ⊆ φG for every open G ⊆ X. PPP Let L0 ⊆ X be a compact set of non-zero measure; then L0 has a
countable base U ; set E = L0 ∩ φL0 \

⋃
U∈U (U△φU), so that µE = µL0 ∈ ]0,∞[. If G ⊆ X is open and

x ∈ E ∩ G, then there is a U ∈ U such that x ∈ U ⊆ G. Since x ∈ E ∩ U , x ∈ φU ⊆ φG. As x and G are
arbitrary, we have an appropriate E. QQQ

(b) Let λ be any strictly positive atomless Radon measure on {0, 1}N. There is a compact set K ⊆ E
such that K, with its induced topology and measure, is isomorphic to {0, 1}N with its usual topology and a
non-zero multiple of λ, by 535K. In particular, K is self-supporting. By 535J, the subspace measure on K
has a strong Borel lifting. It follows at once that λ has a strong Borel lifting.

(c) Refining (b) slightly, we see that if Y ⊆ {0, 1}N is a dense set and λ is a strictly positive atomless
totally finite Borel measure on Y , then λ has a strong lifting. PPP There is a Radon measure ν on {0, 1}N such
that νE = λ(Y ∩E) for every Borel set E ⊆ {0, 1}N (416F); because λ is atomless, so is ν; because λ is strictly
positive and Y is dense, ν is strictly positive. So ν has a strong Borel lifting ψ0 say. If E, F ∈ B({0, 1}N)
and E ∩ Y = F ∩ Y , then ν(E△F ) = 0 and ψ0E = ψ0F ; we therefore have a Boolean homomorphism
ψ : B(Y ) → B(Y ) defined by setting ψ(E∩Y ) = Y ∩ψ0E for every Borel set E ⊆ {0, 1}N. It is easy to check
that ψ is a lifting for λ, and it is strong because if G ⊆ {0, 1}N is open then ψ(Y ∩G) = Y ∩ ψ0G ⊆ Y ∩G.
QQQ

(d) If (Y,S) is a separable metrizable space with a strictly positive atomless totally finite Borel measure
ν, then ν has a strong lifting. PPP If Y = ∅ the result is trivial. Otherwise, by 535La, there is a finer separable
metrizable topology S′ on Y with the same Borel sets such that S is a π-base for S′. Because S and S′

have the same Borel sets, ν is a Borel measure for S′; because every non-empty S′-open set includes a
non-empty S-open set, ν is strictly positive for S′; because ν is atomless, Y has no S′-isolated points. By
535Lb, (Y,S′) is homeomorphic to a dense subset of {0, 1}N; by (c) above, ν has a lifting φ which is strong
with respect to the topology S′. But now φ is still strong with respect to the coarser topology S. QQQ

(e) Now suppose that Y is a separable metrizable space with a strictly positive totally finite Borel measure
ν. Then ν has a strong lifting. PPP The set D = {y : ν{y} > 0} is countable. If D is empty, then the result
is immediate from (d) applied to a scalar multiple of ν. (If νY = 0 then Y = ∅ and the result is trivial.)
Otherwise, let νY \D be the subspace measure; then νY \D is a totally finite Borel measure on Y \D, and is
zero on singletons, so must be atomless. Because Y \D is hereditarily Lindelöf, νY \D is τ -additive; let Z
be its support, and νZ the subspace measure on Z. Then νZ has a strong Borel lifting ψ0, by (d) again.
Next, Z is relatively closed in Y \D, so is expressible as F \D for some closed set F ⊆ Y . If x ∈ Y \F and
G is an open set containing x, then G′ = G \ F is a non-empty open set, so has non-zero measure, while
νY \D(G′ \D) = 0; accordingly G′ ∩D 6= ∅. This shows that Y \ F ⊆ D so D is dense in Y \ Z. Now 535M

(with (b) above) tells us that there is a Boolean homomorphism ψ1 : PD → B(Y \ Z) such that ψ1A ⊆ A
for every A ⊆ D. Define ψ : B(Y ) → B(Y ) by setting

ψE = ψ0(E ∩ Z) ∪ (E ∩D) ∪ (ψ1(E ∩D) \D)

for every Borel set E ⊆ Y . ψ is a Boolean homomorphism because ψ0 and ψ1 are. If νE = 0, then
νZ(E ∩ Z) = 0 and E ∩D = ∅, so ψE = ∅. For any E ∈ B(Y ), ψ0(E ∩ Z)△(E ∩ Z) and Y \ (D ∪ Z) are
negligible, so E△ψE is negligible. Thus ψ is a lifting for ν. Finally, for any E,
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ψE ⊆ ψ0(E ∩ Z) ∪ (E ∩D) ∪ ψ1(E ∩D) ⊆ E,

so ψ is a strong lifting. QQQ

(f) Finally, if Y is a metrizable space and ν is a strictly positive σ-finite Borel measure on Y , then Y
must be ccc, therefore separable; and there is a totally finite Borel measure ν ′ with the same null ideal as
ν, so that ν ′ has a strong lifting, by (e), which is also a strong lifting for ν.

535O Linear liftings Let (X,Σ, µ) be a measure space, with measure algebra A. Write L
∞(Σ) for the

space of bounded Σ-measurable real-valued functions on X. A linear lifting for µ is

either a positive linear operator T : L∞(µ) → L
∞(Σ) such that T (χX•) = χX and (Tu)• = u

for every u ∈ L∞(µ)
or a positive linear operator S : L∞(Σ) → L

∞(Σ) such that S(χX) = χX, Sf = 0 whenever
f = 0 a.e. and Sf =a.e. f for every f ∈ L

∞(Σ).

As with liftings (see 341A-341B) we have a direct correspondence between the two kinds of linear operator;
given T as in the first formulation, we can set Sf = T (f•) for every f ∈ L

∞(Σ); given S as in the second
formulation, we can set T (f•) = Sf for every f ∈ L

∞(Σ).
If θ : A → Σ is a lifting for µ, then we have a corresponding Riesz homomorphism T : L∞(A) → L

∞(Σ)
such that T (χa) = χ(θa) for every a ∈ A, by 363F. Identifying L∞(A) with L∞(µ) as in 363I, we see that
T can be regarded as a linear lifting. Of course the associated linear operator from L

∞(Σ) to itself is the
operator derived by the process of 363F from the Boolean homomorphism E 7→ θE• : Σ → Σ.

As in 535Aa, I will say that a Borel linear lifting is a linear lifting such that all its values are Borel
measurable functions; similarly, a Baire linear lifting is a linear lifting such that all its values are Baire
measurable functions.

535P I give a sample result to show that for some purposes linear liftings are adequate.

Proposition Let (X,Σ, µ) be a countably compact measure space such that Σ is countably generated,
(Y,T, ν) a σ-finite measure space with a linear lifting, and f : X → Y an inverse-measure-preserving
function. Then there is a disintegration 〈µy〉y∈Y of µ over ν, consistent with f , such that y 7→ µyE is a
T-measurable function for every E ∈ Σ.

proof I use the method of 452H-452I.

(a) Suppose first that µ and ν are probability measures. Let S : L∞(ν) → L
∞(T) be a linear lifting

for ν. Let T : L∞(µ) → L∞(ν) be the positive linear operator defined by saying that
∫
F
Tu =

∫
f−1[F ]

u

whenever u ∈ L∞(µ) and F ∈ T (as in part (a) of the proof of 452I). For y ∈ Y and E ∈ Σ, set

ψyE = (ST (χE•))(y)

as in part (b) of the proof of 452H. Because µ is countably compact, we can use the argument of 452H to
see that we have a family 〈µ′

y〉y∈Y of totally finite measures on X such that, for any E ∈ Σ, µ′
yE = ψyE for

almost every y ∈ Y .
Let H be a countable subalgebra of Σ such that Σ is the σ-algebra of sets generated by H. Set Y0 = {y :

µ′
yH = ψyH for every H ∈ H}, so that Y0 is conegligible; let Y1 ⊆ Y0 be a measurable conegligible set; set
µy = µ′

y for y ∈ Y1, and take µy to be the zero measure on X for y ∈ Y \ Y1. If H ∈ H, then

µyH = ψyH = ST (χH•)(y)

for every y ∈ Y1, so y 7→ µyH is T-measurable; also, of course,∫
F
µyHν(dy) =

∫
F
ST (χH•)dν =

∫
F
T (χH•) =

∫
f−1[F ]

χH• = µ(H ∩ f−1[F ]).

Now consider the family E of those E ∈ Σ such that y 7→ µyE is T-measurable and
∫
F
µyEν(dy) =

µ(E ∩ f−1[F ]) for every F ∈ T. This is a Dynkin class including H, so is the whole of Σ; which is what we
need to know.

(b) In general, if νY = 0, the result is trivial. Otherwise, apply (a) to a suitable pair of indefinite-integral
measures over µ and ν, as in part (c) of the proof of 452I.
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535Q Proposition Let (X,Σ, µ) and (Y,T, ν) be probability spaces, and λ the c.l.d. product measure
on X × Y . Suppose that λ↾Σ⊗̂T has a linear lifting. Then µ has a linear lifting.

proof Let S : L∞(Σ⊗̂T) → L
∞(Σ⊗̂T) be a linear lifting for λ↾Σ⊗̂T. For h ∈ L

∞(Σ⊗̂T), set (Uh)(x) =∫
h(x, y)ν(dy) for every x ∈ X; by 252P, Uh is well-defined and is Σ-measurable. Now U is a positive linear

operator from L
∞(Σ⊗̂T) to L

∞(Σ), and U(χ(X × Y )) = χX, because νY = 1. Note that∫
|Uh|dµ ≤

∫
U |h|dµ =

∫∫
|h(x, y)|ν(dy)µ(dx) =

∫
|h|dλ

for every h ∈ L
∞(Σ⊗̂T) (252P again). Next, for f ∈ L

∞(Σ) set (V f)(x, y) = f(x) for every x ∈ X and
y ∈ Y , so that V is a positive linear operator from L

∞(Σ) to L
∞(Σ⊗̂T).

Consider S1 = USV : L
∞(Σ) → L

∞(Σ). This is a positive linear operator and S1(χX) = χX. If
f ∈ L

∞(Σ) and f = 0 µ-a.e., then V f = 0 λ-a.e. and SV f = 0, so S1f = 0. For any f ∈ L
∞(Σ),∫

|f − S1f |dµ =
∫
|f − USV f |dµ =

∫
|UV f − USV f |dµ ≤

∫
|V f − SV f |dλ = 0,

so f =a.e. S1f ; thus S1 is a linear lifting for µ.

535R Proposition Write ν2ω for the usual measure on ({0, 1}ω)2, and T(2)
ω for its domain. Suppose that

νκ has a Baire linear lifting for some κ ≥ c++. Then there is a Borel linear lifting S for ν2ω which respects

coordinates in the sense that if f ∈ L
∞(T(2)

ω ) is determined by a single coordinate, then Sf is determined
by the same coordinate.

proof Because ({0, 1}κ, νκ) is isomorphic, as topological measure space, to ({0, 1}κ×ω, νκ×ω), the latter has
a Baire linear lifting S0 say. For I ⊆ κ, let TI be the σ-algebra of Baire subsets of {0, 1}κ×ω determined
by coordinates in I × ω. Then #(TI) ≤ c whenever #(I) ≤ c. Also Ba({0, 1}κ×ω) =

⋃{TI : I ∈ [κ]≤ω}
(4A3N). It follows that for every ξ < κ there is a set Iξ ⊆ κ, with cardinal at most c, such that ξ ∈ Iξ and
S0(χE) is TIξ -measurable whenever E ∈ TIξ ; so that S0f is TIξ -measurable whenever f : {0, 1}κ×ω → R is
bounded and TIξ -measurable.

Because κ ≥ c++, there are ξ, η < κ such that ξ /∈ Iη and η /∈ Iξ (5A1J(a-iii)). Set J = {ξ} × ω,
K = {η} × ω and L = (κ × ω) \ (J ∪ K), so that {0, 1}κ×ω can be identified with {0, 1}J∪K × {0, 1}L
and Ba({0, 1}κ×ω) with Ba({0, 1}J∪K)⊗̂Ba({0, 1}L). Set (V f)(w, z) = f(w) when f : {0, 1}J∪K → R is
a function, w ∈ {0, 1}J∪K and z ∈ {0, 1}L; and (Uh)(w) =

∫
h(w, z)νL(dz) when h : {0, 1}κ×ω → R is

a bounded Baire measurable function and w ∈ {0, 1}J∪K . Then S1 = US0V is a Baire linear lifting for
νJ∪K , just as in 535Q. Moreover, if f : {0, 1}J∪K → R is a bounded Baire measurable function determined
by coordinates in J , in the sense that f(x, y) = f(x, y′) whenever x ∈ {0, 1}J and y, y′ ∈ {0, 1}K , then
S1f is determined by coordinates in J . PPP V f is determined by coordinates in J , so S0V f is determined
by coordinates in Iξ × ω; since K ∩ (Iξ × ω) is empty, S0V f(x, y, z) = S0V f(x, y′, z) for all x ∈ {0, 1}J ,
z ∈ {0, 1}L and y, y′ ∈ {0, 1}K . It follows at once that

S1f(x, y) =
∫
S0V f(x, y, z)νL(dz) =

∫
S0V f(x, y′, z)νL(dz) = S1f(x, y′)

whenever x ∈ {0, 1}J and y, y′ ∈ {0, 1}K . QQQ Similarly, if f : {0, 1}J∪K → R is a bounded Baire measurable
function determined by coordinates in K, then S1f is determined by coordinates in K.

Now we can transfer S1 from {0, 1}J∪K ∼= {0, 1}J ×{0, 1}K to ({0, 1}ω)2, and we shall obtain a Baire (or
Borel) linear lifting S for ν2ω which respects coordinates.

535X Basic exercises (a) Let (X,Σ, µ) be a measure space with a lifting, and A any subset of X. Show
that if A has a measurable envelope then the subspace measure µA has a lifting. (Hint : 322I.)

(b) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with µiXi > 0 for every i ∈ I, and (X,Σ, µ) their
direct sum. Show that µ has a lifting iff every µi has a lifting.

(c) Let A be a Boolean algebra and I a proper ideal of A. Suppose that supA is defined in A and belongs
to I whenever A ⊆ I and #(A) < #(A). Show that there is a Boolean homomorphism θ : A/I → A such
that (θb)• = b for every b ∈ A/I. (Hint : enumerate A as {aξ : ξ < κ}; let Cξ be the subalgebra of A/I
generated by {a•

η : η < ξ}; construct θ↾Cξ inductively by choosing θa•

ξ appropriately.)
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(d) Let A be a Dedekind σ-complete Boolean algebra and I a proper ideal of A. Show that if the quotient
Boolean algebra A/I is tightly ω1-filtered, then there is a Boolean homomorphism θ : A/I → A such that
(θb)• = b for every b ∈ A/I.

(e) Let A be a tightly ω1-filtered Boolean algebra, B a Dedekind σ-complete Boolean algebra and A0 a
countable subalgebra of A. Show that every Boolean homomorphism from A0 to B extends to a Boolean
homomorphism from A to B.

(f) Let A, B be Boolean algebras such that supA is defined in A whenever A ⊆ A and #(A) < #(B), and
π : A → B a surjective Boolean homomorphism. Suppose that θ : B → A is such that θ0 = 0, πθb ⊆ b for
every b ∈ B and θ(b ∩ c) = θb ∩ θc for all b, c ∈ B. Show that there is a Boolean homomorphism θ : B → A

such that θb ⊆ θb and πθb = b for every b ∈ B.

(g) Suppose that c ≤ ω2 and FN(PN) = ω1. Show that νκ has a strong Baire lifting whenever κ ≤ ω2.
(Hint : let 〈eξ〉ξ<κ be the standard generating family for Bκ. Show that there is a tight ω1-filtration 〈aη〉η<ζ

of Bκ such that for every ξ < κ there is an η < ζ such that the closed subalgebras generated by {eδ : δ < ξ}
and {aδ : δ < η} are the same and eξ = aη.)

(h) Suppose that c ≤ ω2 and FN(PN) = ω1. Show that whenever X is a separable metrizable space and
D ⊆ X is a dense set, there is a Boolean homomorphism φ : PD → B(X) such that φA ⊆ A for every
A ⊆ D.

(i) Let (X,Σ, µ) be a measure space. Show that a linear lifting S : L∞(Σ) → L
∞(Σ) of µ corresponds to

a lifting iff it is ‘multiplicative’, that is, S(f × g) = Sf × Sg for all f , g ∈ L
∞(Σ).

(j) Let (X,Σ, µ) be a strictly localizable measure space with non-zero measure. Suppose that νκ has a
Baire linear lifting for every infinite cardinal κ such that the Maharam-type-κ component of the measure
algebra of µ is non-zero. Show that µ has a linear lifting.

(k) Let (X,Σ, µ) be a probability space such that whenever E ⊆ Σ, #(E) ≤ c and
⋃ E is negligible, then⋃ E ∈ Σ. Show that µ has a linear lifting. (Hint : 363Yf.)

(l) Let (Y,T, ν) be a σ-finite measure space with a linear lifting, Z a set, Υ a countably generated σ-
algebra of subsets of Z, and µ a measure with domain T⊗̂Υ such that ν is the marginal measure of µ on Y
and the marginal measure of µ on Z is countably compact. Show that there is a family 〈µy〉y∈Y of measures
with domain Υ such that y 7→ µyH is a T-measurable function for every H ∈ Υ and µW =

∫
µyW [{y}]ν(dy)

for every W ∈ T⊗̂Υ.

(m) Let (X,T,Σ, µ) and (Y,S,T, ν) be τ -additive topological probability spaces, and λ the τ -additive
product measure on X × Y (417F5). Suppose that λ has a Borel linear lifting and that µ is inner regular
with respect to the Borel sets. Show that µ has a Borel linear lifting.

535Y Further exercises (a) Suppose that we are provided with a bijection between B(R) and ω1, but
are otherwise not permitted to use the axiom of choice. Show that we can construct a Borel lifting for
Lebesgue measure.

(b) Suppose that for every cardinal κ there is a Baire linear lifting for νκ. Show that for every n ∈ N

there is a Borel linear lifting S for Lebesgue measure on [0, 1]n which (α) respects coordinates in the sense
that if f : [0, 1]n → R is a bounded measurable function determined by coordinates in I ⊆ n, then Sf also
is determined by coordinates in I (β) is symmetric in the sense that if ρ : n → n is any permutation and
(ρ̂f)(x) = f(xρ) for x ∈ [0, 1]n and f : [0, 1]n → R, then S commutes with ρ̂. (Hint : 5A1Jb.)

(c) Let (X,Σ, µ) be a countably compact measure space, (Y,T, ν) a σ-finite measure space with a linear
lifting, and f : X → Y an inverse-measure-preserving function. Suppose there is a family H ⊆ Σ such that
Σ is the σ-algebra of sets generated by H and #(H) < add ν. Show that there is a disintegration 〈µy〉y∈Y

of µ over ν, consistent with f , such that y 7→ µyE is a T-measurable function for every E ∈ Σ.

5Formerly 417G.
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(d) (Törnquist 11) Let (X,Σ, µ) be a countably separated perfect complete strictly localizable measure
space, A its measure algebra and G a subgroup of AutA of cardinal at most min(addN , p), where N is the
null ideal of Lebesgue measure on R. Show that there is an action • of G on X such that π•E = {π•x : x ∈ E}
belongs to Σ and (π•E)• = π(E•) whenever π ∈ G and E ∈ Σ. (Hint : 344C, 425Ya.)

535Z Problems (a) Can it be that every probability space has a lifting?
By 535B, it is enough to consider ({0, 1}κ,Ba({0, 1}κ), νκ↾Ba({0, 1}κ)) where κ is a cardinal. Since

Mokobodzki’s theorem (535Eb) deals with κ ≤ ω2 when c = ω1, the key case to consider seems to be κ = ω3.

(b) Suppose that c ≥ ω3. Does νω have a Borel lifting?
It is known to be relatively consistent with ZFC to suppose that c = ω2 and that FN(PN) = ω1 (554G-

554H). In this case νω has a Borel lifting (535E(b-ii)). But if c ≥ ω3 then Bω is not tightly ω1-filtered
(518S).

(c) (A.H.Stone) Can there be a countable ordinal ζ and a lifting φ of νω such that φE is a Borel set,
with Baire class at most ζ, for every Borel set E ⊆ {0, 1}ω?

The point of this question is that while, subject to the continuum hypothesis, we can almost write down a
formula for a Borel lifting for Lebesgue measure (535Ya), the method gives no control over the Baire classes
of the sets constructed.

(d) Can there be a strictly positive Radon probability measure of countable Maharam type which does
not have a strong lifting? (See 453G, 453N, 535I, 535Xg.)

(e) Is there a probability space which has a linear lifting but no lifting?

(f) Can there be a Borel linear lifting for the usual measure on ({0, 1}ω)2 which respects coordinates in
the sense of 535R?

It seems possible that there is a proof in ZFC that there is no such lifting; in which case 535R shows that
we should have a negative answer to (a).

535 Notes and comments For a fuller account of this topic, see Burke 93.
Neumann & Stone 1935 used a direct construction along the lines of 535Xc to show that if the

continuum hypothesis is true then Lebesgue measure has a Borel lifting. The method works equally well for
νω1

, but for νω2
we need a further idea from Mokobodzki 7?; the version I give here is based on Geschke

02, itself derived at some remove from Carlson Frankiewicz & Zbierski 94, who showed that we could
have a Borel lifting for Lebesgue measure in a model in which the continuum hypothesis is false (554I).

It is not a surprise that there should be a model of set theory in which Lebesgue measure has no Borel
lifting. Nor is it a surprise that the first such model should have been found by S.Shelah (Shelah 83). What
does remain surprising is that in most of the vast number of models of set theory which have been studied,
we do not know whether there is such a lifting. Only in the familiar case c = ω1, the special combination
c = ω2 = FN(PN)+ (535E), and in variations of Shelah’s model, do we have definite information. It remains
possible that in any model in which m > ω1 or c = ω3 there is no Borel lifting for Lebesgue measure. When
we leave the real line, the position is even more open; conceivably it is relatively consistent with ZFC to
suppose that every probability space has a lifting, and at least equally believably it is a theorem of ZFC
that νω3

does not have a Baire lifting.
From 535I we see that ω2 appears in Losert’s example (453N) for a good reason. Once again, it seems to be

unknown whether it is consistent to suppose that there is a (completed) strictly positive Radon probability
measure with countable Maharam type which has no strong lifting (535Zd). When we come to look for
strong Borel liftings, we have some useful information in the separable metrizable case (535N). The result
is natural enough. We are used to supposing that Polish spaces are all very much the same, and that point-
supported measures are trivial. But because the concept of ‘strong’ lifting is topological, and cannot easily
be reduced to the Borel structure, we have to work a bit; and it seems also that point-supported measures
need care (535M).

‘Linear liftings’ (535O-535R) remain poor relations. I give them house room here partly for completeness
and partly because of a slender hope that they will lead us to a solution of 535Za. Of course the match
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between ω3 in 535Za and c++ in 535R may show only a temporarily coincidental frontier of ignorance.
Burke & Shelah 92 have shown that it is relatively consistent with ZFC to suppose that νω has no Borel
linear lifting.

Version of 20.2.12

536 Alexandra Bellow’s problem

In 463Za I mentioned a curious problem concerning pointwise compact sets of continuous functions.
This problem is known to be soluble if we are allowed to assume the continuum hypothesis, for instance.
Here I present the relevant arguments, with supplementary remarks on ‘stable’ sets of measurable functions
(536E-536F).

536A The problem I recall some ideas from §463. Let (X,Σ, µ) be a measure space, and L
0 = L

0(Σ)
the space of all Σ-measurable functions from X to R, so that L

0 is a linear subspace of RX . On L
0 we

have the linear space topologies Tp and Tm of pointwise convergence and convergence in measure (462Ab,
245Ab). Tp is Hausdorff and locally convex; if µ is σ-finite, Tm is pseudometrizable. The question, already
asked in 463Za, is this: suppose that K ⊆ L

0 is compact for Tp, and that Tm is Hausdorff on K. Does it
follow that Tp and Tm agree on K?

536B Known cases Let (X,Σ, µ) be a σ-finite measure space. Given that K ⊆ L
0 is compact for Tp,

and Tm is Hausdorff on K, and

either K is sequentially compact for Tp

or K is countably tight for Tp

or K is convex
orX has a topology for which K ⊆ C(X), µ is a strictly positive topological measure, and every

function h ∈ RX which is continuous on every relatively countably compact set is continuous
or µ is perfect
or K is stable, in the sense of 465A,

then K is metrizable for Tp, and Tp and Tm agree on K (463Cd, 463F, 463G, 463H, 463Lc, 465G).
Now for the new results.

536C Proposition (see Talagrand 84, 9-3-3.) Let (X,Σ, µ) be a probability space such that the
π-weight π(µ) of µ is at most p. If K ⊆ L

0 is Tp-compact then it is Tm-compact.

proof (a) For the time being (down to the end of (d) below), suppose that |f | ≤ χX for every f ∈ K. Let
〈fi〉i∈N be any sequence in K.

(b) For I ∈ [N]ω, write lim supi→I fi for infn∈N supi∈I\n fi and lim infi→I fi for supn∈N infi∈I\n fi. Then

there is an I ∈ [N]ω such that lim infi→J fi =a.e. lim infi→I fi and lim supi→J fi =a.e. lim supi→I fi for every
J ∈ [I]ω. PPP (See the proof of 463D.) For I, J ∈ [N]ω set ∆(I) =

∫
lim supi→I fi − lim infi→I fi and say that

J � I if either J ⊆ I or J \ I is finite and I \ J is infinite. Then ∆(J) ≤ ∆(I) whenever J � I, and any
non-increasing sequence in [N]ω has a �-lower bound in [N]ω. By 513P, inverted, there is an I ∈ [N]ω such
that ∆(J) = ∆(I) whenever J � I, and this I will serve. QQQ

Set g = lim infi→I fi and h = lim supi→I fi.

(c) ??? Suppose, if possible, that E = {x : g(x) < h(x)} is not negligible. Let H be a coinitial subset
of Σ \ N (µ), where N (µ) is the null ideal of µ, with cardinal π(µ) ≤ p, and 〈Hξ〉ξ<p a family running
over {H : H ∈ H, H ⊆ E}. Choose 〈Iξ〉ξ<p, 〈xξ〉ξ<p and 〈yξ〉ξ<p inductively, as follows. The inductive
hypothesis will be that, for any ξ < p, 〈Iη〉η<ξ is a family of infinite subsets of N such that Iη \ Iζ is
finite whenever ζ ≤ η < ξ. Start with I0 = I. For the inductive step to ξ + 1, where ξ < p, since
g =a.e. lim infi→Iξ fi, there must be an xξ ∈ Hξ ∩ E such that g(xξ) = lim infi→Iξ fi(x). Let J ∈ [Iξ]ω

be such that limi→J fi(xξ) = g(xξ). Now lim supi→J fi =a.e. h, so we can find a yξ ∈ E ∩ Hξ such that
lim supi→J fi(yξ) = h(yξ) and an Iξ+1 ∈ [J ]<ω such that limi→Iξ+1

fi(yξ) = h(yξ).
For non-zero limit ordinals ξ < p, let Iξ be an infinite subset of I such that Iξ \Iη is finite for every η < ξ.
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At the end of the induction, there will be a non-principal ultrafilter F on N containing Iξ for every
ξ < p. Set f = limi→F fi. Because K is Tp-compact, f ∈ K ⊆ L

0. So at least one of the measurable sets
E′ = {x : x ∈ E, g(x) < f(x)} and E′′ = {x : x ∈ E, f(x) < h(x)} is non-negligible and contains Hξ for
some ξ < p. Now Iξ+1 ∈ F , so f(xξ) = limi→Iξ+1

fi(xξ) = g(xξ) and f(yξ) = h(yξ). But this means that
xξ ∈ Hξ \ E′′ and yξ ∈ Hξ \ E′, so Hξ cannot be included in either E′ or E′′. XXX

(d) So g =a.e. h and {x : g(x) = limi→I fi(x)} includes the conegligible set {x : g(x) = h(x)}. We also
have a g0 ∈ K which is a Tp-cluster point of 〈fi〉i∈I . Of course g ≤ g0 ≤ h, and all three must be equal
µ-a.e. But this means that 〈fi〉i∈I converges almost everywhere to g0, and therefore converges in measure
to g0 (245Ec). Now recall that 〈fi〉i∈N was an arbitrary sequence in K. So we see that every sequence in K
has a subsequence which is Tm-convergent to a point of K. As Tm is pseudometrizable, K is Tm-compact
(4A2Le).

(e) This concludes the proof when |f | ≤ χX for every f ∈ K. For the general case, let φ : R → ]−1, 1[
be a homeomorphism, and consider K ′ = {φf : f ∈ K}. Since f 7→ φf is a Tp-continuous function from L

0

to itself, K ′ is Tp-compact, therefore Tm-compact, by (a)-(c). Next, f 7→ φ−1f : K ′ → K is Tm-continuous.
PPP If 〈fn〉n∈N is a sequence in K ′ which is Tm-convergent to f ∈ K ′, and 〈gn〉n∈N is a subsequence of
〈fn〉n∈N, then 〈gn〉n∈N has a sub-subsequence 〈hn〉n∈N converging a.e. to f (245Ka); now φ−1hn converges
a.e. to φ−1f ∈ K, so converges in measure to φ−1f . As 〈gn〉n∈N is arbitrary, 〈φ−1fn〉n∈N converges in
measure to φ−1f . Thus f 7→ φ−1f is sequentially continuous for Tm, therefore continuous (4A2Ld). QQQ So
K = {φ−1f : f ∈ K ′} is Tm-compact, as claimed.

536D Theorem Let (X,Σ, µ) be a probability space, and L
0 the space of Σ-measurable real-valued

functions on X. Write Tp, Tm for the topologies of pointwise convergence and convergence in measure on
L

0. Suppose that K ⊆ L
0 is Tp-compact and that µ{x : f(x) 6= g(x)} > 0 for any distinct f , g ∈ K, but

that K is not Tp-metrizable.
(a) Every infinite Hausdorff space which is a continuous image of a closed subset of K has a non-trivial

convergent sequence.
(b) There is a continuous surjection from a closed subset of K onto {0, 1}ω1 .
(c) Every infinite compact Hausdorff space of weight at most ω1 has a non-trivial convergent sequence.
(d) c > ω1.
(e) The Maharam type of µ is at least 2ω1 .
(f) There is a non-negligible measurable set in Σ which can be covered by ω1 negligible sets.
(g) π(µ) > p.
(h) mcountable = ω1.

proof For f , g ∈ L
0 set ρ(f, g) =

∫
min(1, |f−g|); then ρ is a pseudometric on L

0 defining Tm, and ρ↾K×K
is a metric on K. Set ∆(∅) = 0, and for non-empty A ⊆ L

0 set ∆(A) = sup{ρ(inf L, supL) : ∅ 6= L ∈ [A]<ω}.
Note that if A ⊆ K has more than one member then ∆(A) > 0, and that ∆(A) ≤ ∆(B) whenever A ⊆ B.

(a)(i) ??? Suppose, if possible, that Z is an infinite Hausdorff space, K0 ⊆ K is closed, φ : K0 → Z
is a continuous surjection and there is no non-trivial convergent sequence in Z. Write L for the family of
closed subsets L of K0 such that φ[L] is infinite. Then L =

⋂
n∈N Ln belongs to L for every non-increasing

sequence 〈Ln〉n∈N in L. PPP 〈φ[Ln]〉n∈N is a non-increasing sequence of infinite closed subsets of Z; because
Z is supposed to have no non-trivial convergent sequence, M =

⋂
n∈N φ[Ln] is infinite (4A2G(h-i)). Since

φ[L] = M (5A4Cf), L ∈ L. QQQ By 513P again, there is a K1 ∈ L such that ∆(L) = ∆(K1) for every L ∈ L
such that L ⊆ K1.

(ii) Now there is no non-trivial convergent sequence in φ[K1], so φ[K1] cannot be scattered (4A2G(h-
ii)), and there is a continuous surjection ψ : φ[K1] → [0, 1] (4A2G(j-iv)). Let M ⊆ φ[K1] be a closed set
such that ψ[M ] = [0, 1] and ψ↾M is irreducible (4A2G(i-i)). Then M is infinite, has a countable π-base
and no isolated points (4A2G(i-ii)). Let K2 ⊆ φ−1[M ] be a closed set such that φ[K2] = M and φ↾K2 is
irreducible. Then K2 has a countable π-base, and φ[K2] is infinite, so ∆[K2] = ∆[K1].

Let V be a countable π-base for the topology of K2, not containing ∅. For each V ∈ V, choose hV ∈ V .
Set g0 = infV ∈V hV , g1 = supV ∈V hV in RX . Then g0 and g1 are measurable, and

∫
g1 − g0 ≥ ∆(K2) = ∆(K1) > 0.
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Set g(x) = max( 1
2 (g0(x) + g1(x)), g1(x) − 1

2 ) for x ∈ X, and

E = {x : g0(x) < g1(x)} = {x : g(x) < g1(x)} = {x : g0(x) < g(x)},

so that µE > 0. For x ∈ E, the set Fx = {f : f ∈ K2, f(x) ≤ g(x)} is a proper closed subset of K2,
so there is some V ∈ V such that V ∩ Fx = ∅. Because V is countable, there is a V ∈ V such that
D = {x : x ∈ E, V ∩ Fx = ∅} is non-negligible. But now observe that f(x) > g(x) whenever f ∈ V and
x ∈ D, so hU (x) > g(x) whenever U ∈ V, U ⊆ V and x ∈ D. Set V ′ = {U : U ∈ V, U ⊆ V }, g′0 = infU∈V′ hU
and L = {f : f ∈ K2, g′0 ≤ f ≤ g1}. Then g ≤ g′0 and

{x : x ∈ X, g1(x) − g′0(x) < min(1, g1(x) − g0(x))} ⊇ D

is non-negligible, so

∆(L) ≤
∫

min(1, g1 − g′0) <
∫

min(1, g1 − g0) = ∆(K1).

On the other hand, L meets every member of V ′, so L ∩ V is dense in V and L includes V . Because φ↾K2

is irreducible, φ[K2 \ V ] 6= M and φ[L] includes the non-empty open subset M \ φ[K2 \ V ] of M , which is
infinite because M has no isolated points. So ∆(L) ought to be equal to ∆(K1), by the choice of K1. XXX

Thus (a) is true.

(b) If 〈fn〉n∈N is a sequence in K which converges at almost every point of X, then any two Tp-cluster
points of 〈fn〉n∈N must be equal a.e. and therefore equal, so 〈fn〉n∈N is Tp-convergent (5A4Ce).

??? Suppose, if possible, that there is no continuous surjection from a closed subset of K onto {0, 1}ω1 .
Then 463D tells us that every sequence in K has a subsequence which is convergent almost everywhere,
therefore convergent. So K is sequentially compact, which is impossible, as noted in 536B. XXX

(c) Since [0, 1] is a continuous image of {0, 1}N, [0, 1]ω1 is a continuous image of {0, 1}ω1×N ∼= {0, 1}ω1

and therefore of a closed subset of K. If Z is an infinite compact Hausdorff space of weight at most ω1, it is
homeomorphic to a closed subset of [0, 1]ω1 (5A4Cc) and therefore to a continuous image of a closed subset
of K. By (a), Z must have a non-trivial convergent sequence.

(d) Since βN has weight c (5A4Ia), is infinite, but has no non-trivial convergent subsequence (4A2I(b-v)),
we must have ω1 < c.

(e)(i) If F1, F2 are disjoint non-empty Tp-closed subsets of K, then ρ(F1, F2) > 0. PPP??? Otherwise,
there are sequences 〈fn〉n∈N in F1, 〈gn〉n∈N in F2 such that ρ(fn, gn) ≤ 2−n for every n ∈ N. Let F be
any non-principal ultrafilter on N and set f = limn→F fn, g = limn→F gn, taking the limits in K for the
topology Tp. Then, for any n ∈ N,

{x : |f(x) − g(x)| > 2−n} ⊆ ⋃
i≥2n{x : |fi(x) − gi(x)| > 2−n}

has measure at most
∑∞

i=2n 2−i+n = 2−n+1, so f =a.e. g and f = g; but f ∈ F1 and g ∈ F2, so this is
impossible. XXXQQQ

(ii) By (b), there are a closed subset K0 of K and a continuous surjection ψ : K0 → {0, 1}ω1 . For
ξ < ω1, set Fξ = {f : f ∈ K0, ψ(f)(ξ) = 0}, F ′

ξ = {f : f ∈ K0, ψ(f)(ξ) = 1}; then ρ(Fξ, F
′
ξ) > 0. There

must therefore be a δ > 0 such that C = {ξ : ρ(Fξ, F
′
ξ) ≥ δ} is uncountable. For each D ⊆ C, choose hD ∈ K0

such that ψ(hD)↾C = χD. Then ρ(hD, hD′) ≥ δ for all distinct D, D′ ⊆ C. Thus A = {h•

D : D ⊆ C} is a
subset of L0 = L0(µ), of cardinal 2ω1 , such that any two members of A are distance at least δ apart for the
metric on L0 corresponding to ρ. Accordingly the cellularity and topological density of L0 are at least 2ω1 ;
by 529Bb, the Maharam type of µ is at least 2ω1 .

(f)(i) By (b), there is a continuous surjection ψ : K0 → {0, 1}ω1 where K0 ⊆ K is closed. Let Q be the
set of pairs (F,C) such that F ⊆ K0 is closed, C ⊆ ω1 is closed and cofinal and {ψ(f)↾C : f ∈ F} = {0, 1}C .
If 〈(Fn, Cn)〉n∈N is a non-increasing sequence in Q, then it has a lower bound in Q. PPP Set F =

⋂
n∈N Fn and

C =
⋂

n∈N Cn. Then for any z ∈ {0, 1}C and n ∈ N there is an fn ∈ Fn such that ψ(fn)↾C = z; now take
a Tp-cluster point f of 〈fn〉n∈N, and see that f ∈ F and that ψ(f)↾C = z. As z is arbitrary, (F,C) ∈ Q.
QQQ By 513P once more, there is a member (K1, C

∗) of Q such that ∆(F ) = ∆(K1) whenever (F,C) ∈ Q,
F ⊆ K1 and C ⊆ C∗. Now C∗ is order-isomorphic to ω1 and its order topology agrees with the subspace
topology induced by the order topology of ω1 (4A2Rm). Let θ : ω1 → C∗ be an order-isomorphism and set
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ψ1(f) = ψ(f)θ for f ∈ K1. Then ψ1 : K1 → {0, 1}ω1 is a continuous surjection, and if F ⊆ K1 is closed,
C ⊆ ω1 is closed and cofinal and {ψ1(f)↾C : f ∈ F} = {0, 1}C , then (F, θ[C]) ∈ Q so ∆(F ) = ∆(K1).

(ii) Let K2 ⊆ K1 be a compact set such that ψ1↾K2 is an irreducible surjection onto {0, 1}ω1 (4A2G(i-i)
again). Because {0, 1}ω1 is separable (4A2B(e-ii)), so is K2 (5A4C(d-i)). Let 〈fn〉n∈N enumerate a dense
subset of K2. Because K2 is compact in RX , h1 = supn∈N fn and h0 = infn∈N fn are defined in RX , and of
course they belong to L

0. If f ∈ K2, then

f(x) ∈ {fn(x) : n ∈ N} ⊆ [h0(x), h1(x)]

for every x, and h0 ≤ f ≤ h1. Accordingly we have

∆(K2) ≤ ρ(h0, h1) = supn∈N ρ(infi≤n fi, supi≤n fi) ≤ ∆(K2).

Let U be the family of non-empty cylinder sets in {0, 1}ω1 . For U ∈ U set IU = {n : n ∈ N, ψ1(fn) ∈ U}
and gU = inf{fn : n ∈ IU}. Observe that FU = {f : f ∈ K2, gU ≤ f ≤ h1} is a closed subset of K1

and that FU ∩ ψ−1
1 [U ] is dense in ψ−1

1 [U ], so U ∩ ψ1[FU ] must be dense in U and U ⊆ ψ1[FU ]. There is
a finite set I ⊆ ω1 such that U is determined by coordinates in I; in this case, C = ω1 \ I is closed and
cofinal in ω1, and {z↾C : z ∈ U} = {0, 1}C . By the choice of K1, ∆(FU ) = ∆(K1). As FU ⊆ [gU , h1] in L

0,
ρ(gU , h1) = ∆(K1) = ρ(h0, h1), and min(1, h1 − gU ) =a.e. min(1, h1 − h0).

Set h(x) = max( 1
2 (h0(x) + h1(x)), h1(x) − 1

2 ) for x ∈ X, and E = {x : h0(x) < h1(x)} = {x : h(x) <
h1(x)}, so that E is measurable and not negligible. If U ∈ U , then

EU = {x : x ∈ E, h(x) ≤ gU (x)}
⊆ {x : x ∈ E, h1(x) − gU (x) < min(1, h1(x) − h0(x))}

is negligible.
For every x ∈ E, F ′

x = {f : f ∈ K2, f(x) ≤ h(x)} is a proper closed subset of K2, so ψ1[F ′
x] 6= {0, 1}ω1

and there is some U ∈ U such that U ∩ ψ1[F ′
x] = ∅. In this case fn /∈ F ′

x, that is, fn(x) > h(x), for every
n ∈ IU , so gU (x) ≥ h(x). Thus E =

⋃
U∈U EU is a non-negligible measurable set covered by ω1 negligible

sets.

(g) This is immediate from 536C, since we already know that K cannot be stable.

(h) Continuing the argument from (f), define φ : X → RN by setting φ(x) = 〈fn(x)〉n∈N for x ∈ X. Then
φ is measurable (418Bd), so we have a non-zero totally finite Borel measure ν on RN defined by setting
νH = µ(E ∩ φ−1[H]) for every Borel set H ⊆ RN. Note that φ[X] ⊆ ℓ∞ and that ℓ∞ =

⋃
n∈N

⋂
i∈N{w :

|w(i)| ≤ n} is an Fσ set in RN. Now set

h′1(w) = supn∈N w(n), h′0(w) = infn∈N w(n),

h′(w) = max( 1
2 (h′0(w) + h′1(w)), h′1(w) − 1

2 )

for w ∈ ℓ∞, so that h1 = h′1φ, h0 = h′0φ and h = h′φ; for U ∈ U , set

E′
U = {w : w ∈ ℓ∞, h′(w) ≤ infn∈IU w(n)}

so that E′
U is an Fσ set and EU = E ∩ φ−1[E′

U ]; accordingly νE′
U = 0. Because E ⊆ ⋃

U∈U EU , φ[E] ⊆⋃
U∈U E

′
U .

Thus we have a non-negligible subset of RN which is covered by ω1 negligible Fσ sets and therefore by ω1

closed negligible sets. By 526M, mcountable = ω1.

536E The discussion of stable sets in §465 emphasized their connection with pointwise compactness.
In 465D and 465G we saw that stable sets are relatively pointwise compact and that on a stable set Tm is
coarser than Tp. The question of when we might be able to be sure that a pointwise compact set is stable
was left open (but see 465Xj and 465Xn). We now have the concepts to take another step in this direction,
which fits fairly naturally here, though it is not obviously connected with the question in 536A.

Proposition Let (X,Σ, µ) be a semi-finite measure space, with null ideal N (µ). For E ∈ Σ let µE be the
subspace measure on E. Suppose that π(µE) ≤ cov(E,N (µ)) whenever E ∈ Σ and 0 < µE < ∞. Then
every Tp-separable Tp-compact subset of L0 = L

0(Σ) is stable.
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proof (a) ??? Suppose that K is a Tp-separable Tp-compact subset of L0 which is not stable. Let A be a
countable Tp-dense subset of K. By 465C(a-ii), A is not stable. So there are a set E ∈ Σ and α < β in
R such that 0 < µE < ∞ and, in the language of 465A, (µ2k)∗Dk(A,E, α, β) = (µE)2k for every k ≥ 1.
Because A is countable,

Dk(A,E, α, β) =
⋃

f∈A

{w : w ∈ E2k, f(w(2i)) ≤ α,

f(w(2i+ 1)) ≥ β for i < k}.

is measured by the product measure µ2k for every k, so that E2k \Dk(A,E, α, β) is µ2k-negligible for every
k.

(b) For sets I, J ⊆ E set

AIJ = {f : f ∈ A, f(x) ≤ α for x ∈ I, f(x) ≥ β for i ∈ J}.

Let Q be the family of pairs (I, J) of finite subsets of E such that E2k \Dk(AIJ , E, α, β) is µ2k-negligible
for every k. Then whenever (I, J) ∈ Q, the set {(x, y) : x, y ∈ E, (I ∪ {x}, J ∪ {y}) /∈ Q} is µ2-negligible.
PPP For any k ≥ 1, if we identify E2k+2 with E2k × E2,

Dk+1(AIJ , E, α, β) =
⋃

f∈AIJ

{(w, (x, y)) : w ∈ E2k, x, y ∈ E, f(x) ≤ α, f(y) ≥ β,

f(w(2i)) ≤ α, f(w(2i+ 1)) ≥ β for i < k}
= {(w, (x, y)) : x, y ∈ E, w ∈ Dk(AI∪{x},J∪{y}, E, α, β)}.

Let Fk be the set of those (x, y) ∈ E2 such that E2k \ Dk(AI∪{x},J∪{y}, E, α, β) is not µ2k-negligible. As

E2k+2 \Dk+1(AIJ , E, α, β) is µ2k+2-negligible, Fk is µ2-negligible (252D). As k is arbitrary.

{(x, y) : x, y ∈ E, (I ∪ {x}, J ∪ {y}) /∈ Q} =
⋃

k≥1 Fk

is µ2-negligible. QQQ

(c) Set κ = π(µE); then κ ≥ cov(E,N (µ)) is infinite. Let 〈Hξ〉ξ<κ run over a coinitial set in {H : H ∈
Σ \ N (µ), H ⊆ E}. Then we can choose 〈(xξ, yξ)〉ξ<κ in such a way that, for each ξ < κ,

xξ, yξ ∈ Hξ, ({xη : η ∈ I}, {yη : η ∈ I}) ∈ Q for every finite I ⊆ ξ,

PPP When we come to choose (xξ, yξ) we shall need to find a point (x, y) of H2
ξ such that

({x} ∪ {xη : η ∈ I}, {y} ∪ {yη : η ∈ I})

belongs to Q for every finite I ⊆ ξ. By (b) and the inductive hypothesis, the forbidden set

H2
ξ ∩⋃

I∈[ξ]<ω{(x, y) : ({x} ∪ {xη : η ∈ I}, {y} ∪ {yη : η ∈ I}) /∈ Q}
is the union of fewer than κ µ2-negligible subsets of H2

ξ and cannot cover H2
ξ , by 521Jd, since κ ≥

cov(Hξ,N (µ)). We therefore have a candidate eligible to be (xξ, yξ), and the induction can proceed. QQQ

(d) At the end of the induction, we see that

CI = A{xη :η∈I},{yη:η∈I}

is non-empty for every finite I ⊆ κ. Let F be the filter on K generated by {CI : I ∈ [κ]<ω}. Because K
is Tp-compact, F has a Tp-cluster point f ∈ K ⊆ L

0. Now one of {x : x ∈ E, f(x) < β} and {x : x ∈ E,
f(x) > α} must belong to Σ \N (µ) and include some Hξ; but xξ, yξ ∈ Hξ, while f(xξ) ≤ α and f(yξ) ≥ β.
XXX

(e) Thus every pointwise separable-and-compact subset of L0 must be stable, as claimed.

536F Proposition Suppose that covN = cfN , where N is the null ideal of Lebesgue measure on R.
Let (X,T,Σ, µ) be a Radon measure space. Then every Tp-separable Tp-compact subset of L0(µ) is stable.
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proof (a) To begin with (down to the end of (c) below), suppose that µ is totally finite. Let K ⊆ L
0(µ)

be Tp-separable and Tp-compact. If K is empty, it is surely stable and we can stop. Otherwise, let 〈fn〉n∈N

be a sequence running over a Tp-dense subset of K. Define φ : X → RN by setting φ(x) = 〈fn(x)〉n∈N for
n ∈ N. Then φ is measurable (418Bd again), therefore almost continuous (418J). Set Z = φ[X], and let ν
be the image measure µφ−1 on Z; then ν is a Radon measure (418I). (This is where it helps to assume that
µ is totally finite.)

(b) Consider the set L = {g : g ∈ RZ , gφ ∈ K}.

(i) L ⊆ L
0(ν). PPP If g ∈ L and α > 0, then

φ−1[{z : z ∈ Z, g(z) > α}] = {x : x ∈ X, gφ(x) > α}
is measured by µ so {z : g(z) > α} is measured by ν. QQQ

(ii) L is Tp-separable. PPP Set gn(z) = z(n) for n ∈ N and z ∈ Z. Then gnφ = fn ∈ K so gn ∈ L. If
g ∈ L, there is a filter F on N such that gφ is the Tp-limit limn∈F fn, that is,

gφ(x) = limn→F fn(x) = limn→F gnφ(x)

for every x. But now g(z) = limn→F gn(z) for every z ∈ Z and g = limn→F gn belongs to the Tp-closure of
{gn : n ∈ N}. So the countable set {gn : n ∈ N} witnesses that L is Tp-separable. QQQ

(iii) L is Tp-compact. PPP Note first that if z ∈ Z there is an x ∈ φ−1[{z}], and now

supg∈L |g(z)| = supg∈L |gφ(x)| ≤≤ supf∈K |f(x)|

is finite. As g is arbitrary, L is relatively Tp-compact in RZ ; write L for its Tp-closure. The map g 7→ gφ :

RZ → RX is continuous for the pointwise topologies and gφ ∈ K for every g ∈ L, so gφ ∈ K = K for every
g ∈ L, and L = L is Tp-compect. QQQ

(iv) K = {gφ : g ∈ L}. PPP As the function g 7→ gφ is continuous, K ′ = {gφ : g ∈ L} is Tp-compact,
therefore Tp-closed; since it contains fn = gnφ for every n, it includes K. By the definition of L, K ′ ⊆ K
and they are equal. QQQ

(c) Now note that ν is a Radon measure on a separable metrizable space. So τ(ν) ≤ ω (531Ad),
π(ν) ≤ cfN (524Pb) and covN (νF ) ≥ covN for every non-negligible set F ∈ dom ν (524Pc). We are
supposing that covN = cfN , so 563E assures us that L is stable. Since φ is inverse-measure-preserving,
K = {gφ : g ∈ L} is stable (465Cd6).

(d) This deals with the case of totally finite µ. For the general case, take any E ∈ Σ such that µE <∞.
Then AE = {f↾E : f ∈ A} is included in L

0(domµE), and it is Tp-separable and Tp-compact because the
map f 7→ f↾E is pointwise continuous. Also µE is a Radon measure, by 416Rb. So AE is stable, by (a)-(c).
As E is arbitrary, A is stable (456C(c-iv)).

536X Basic exercises (a) Let (X,Σ, µ) be a complete measure space, with null ideal N (µ). Suppose
that addN (µ) = covN (µ). Show that there is a Tp-compact Tm-compact K ⊆ L

0(Σ) such that the identity
map on K is not (Tp,Tm)-continuous.

(b) Let (X,Σ, µ) be a perfect measure space. Suppose that non(E,N (µ)) < cov(E,N (µ)) for every
non-negligible measurable set E of finite measure. Show that if K ⊆ L

0(Σ) is Tp-compact, then the identity
map on K is (Tp,Tm)-continuous.

536Y Further exercises (a) Suppose that the additivity and covering number of the Lebesgue null
ideal are equal. Find a strictly localizable perfect measure space (X,Σ, µ) and a Tp-compact K ⊆ L

0(Σ)
such that Tm is Hausdorff on K but K is not Tm-compact.

6Formerly 465Xe.
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536 Notes and comments The methods of 536C-536D are derived from ideas of M.Talagrand. They
seem frustratingly close to delivering an answer to the original question. But it seems clear that even if a
positive answer – every Tp-compact Tm-separated set is metrizable – is true in ZFC, some further idea will
be needed in the proof. On the other side, while it may well be that in some familiar model of set theory
there is a negative answer, parts (c), (d) and (g) of 536D give simple tests to rule out many candidates.

Version of 12.8.13

537 Sierpiński sets, shrinking numbers and strong Fubini theorems

W.Sierpiński observed that if the continuum hypothesis is true then there are uncountable subsets of
R which have no uncountable negligible subsets, and that such sets lead to curious phenomena; he also
observed that, again assuming the continuum hypothesis, there would be a (non-measurable) function f :
[0, 1]2 → {0, 1} for which Fubini’s theorem failed radically, in the sense that∫∫

f(x, y)dxdy = 0,
∫∫

f(x, y)dydx = 1.

In this section I set out to explore these two insights in the light of the concepts introduced in Chapter
52. I start with definitions of ‘Sierpiński’ and ‘strongly Sierpiński’ set (537A), with elementary facts and an
excursion into the theory of ‘entangled’ sets (537C-537G). Turning to repeated integration, I look at three
interesting cases in which, for different reasons, some form of separate measurability is enough to ensure
equality of repeated integrals (537I, 537L, 537S). Working a bit harder, we find that there can be valid

non-trivial inequalities of the form
∫ ∫

dxdy ≤
∫ ∫

dydx (537N-537Q).

As elsewhere, I will write N (µ) for the null ideal of a measure µ.

537A Definitions (a) If (X,Σ, µ) is a measure space, a subset of X is a Sierpiński set if it is uncount-
able but meets every negligible set in a countable set.

(b) If (X,Σ, µ) is a measure space, a subset A of X is a strongly Sierpiński set if it is uncountable
and for every n ≥ 1 and for every set W ⊆ Xn which is negligible for the (c.l.d.) product measure on Xn,
the set {u : u ∈ An ∩W , u(i) 6= u(j) for i < j < n} is countable.

537B Proposition (a) Let (X,Σ, µ) be a measure space and A ⊆ X a Sierpiński set.
(i) addN (µ) = nonN (µ) = ω1 and covN (µ) ≥ #(A).
(ii) If {x} is negligible for every x ∈ A, then cfN (µ) ≥ cf([#(A)]≤ω).

(b) Suppose that (X,Σ, µ) and (Y,T, ν) are measure spaces such that singleton subsets of Y are negligible.
Let f : X → Y be an inverse-measure-preserving function.

(i) If A ⊆ X is a Sierpiński set, then f [A] is a Sierpiński set in Y and #(f [A]) = #(A).
(ii) Now suppose that ν is σ-finite. If A ⊆ X is a strongly Sierpiński set, then f [A] is a strongly

Sierpiński set in Y .
(c) Suppose that λ and κ are infinite cardinals and that (X,Σ, µ) is a locally compact semi-finite measure

space of Maharam type at most λ in which singletons are negligible and µX > 0. Give {0, 1}λ its usual
measure.

(i) If {0, 1}λ has a Sierpiński subset with cardinal κ, then X has a Sierpiński subset with cardinal κ.
(ii) If {0, 1}λ has a strongly Sierpiński subset with cardinal κ, then X has a strongly Sierpiński subset

with cardinal κ.

proof (a)(i) We are told that A is uncountable; now any subset of A with ω1 members witnesses that
nonN (ν) ≤ ω1. On the other hand, if E is a family of negligible sets covering X, then #(A) ≤ max(ω,#(E)),
so #(E) ≥ #(A); as E is arbitrary, covN (µ) ≥ #(A).

(ii) If {x} is negligible for every x ∈ A, then [A]≤ω ⊆ N (µ), and the identity function is a Tukey
function from [A]≤ω to N (µ); so cf[A]≤ω ≤ cfN (µ).

c© 2005 D. H. Fremlin
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(b)(i) If y ∈ Y , then {y} and f−1[{y}] are negligible, so A∩ f−1[{y}] is countable; consequently #(A) ≤
max(ω,#(f [A])) and #(f [A]) = #(A). If F ⊆ Y is negligible, then f−1[F ] is negligible so A ∩ f−1[F ] and
f [A] ∩ F are countable. So f [A] is a Sierpiński set.

(ii) LetW ⊆ Y n be a negligible set for the product measure λ′ on Y n, where n ≥ 1. Define fff : Xn → Y n

by saying that fff(x0, . . . , xn−1) = (f(x0), . . . , f(xn−1)) for x0, . . . , xn−1 ∈ X. Because ν is σ-finite, fff is
inverse-measure-preserving for λ and λ′ (251Wp). If W is λ′-negligible, then fff−1[W ] is λ-negligible, and
B = {u : u ∈ An ∩ fff−1[W ], u(i) 6= u(j) for i < j < n} is countable. Consequently

{v : v ∈ f [A]n ∩W, v(i) 6= v(j) for i < j < n} ⊆ fff [B]

is countable.

(c) Take any set E ⊆ X of non-zero finite measure, and give E its normalized subspace measure µ′
E =

(µE)−1µE . Then there is an f : {0, 1}λ → E which is inverse-measure-preserving for νλ and µ′
E (343Cd).

So (b) tells us that E has a subset A with cardinal κ which is Sierpiński or strongly Sierpiński for µ′
E . But

now A is still Sierpiński or strongly Sierpiński for µ.

537C Entangled sets (a) Definition If X is a totally ordered set, then X is ω1-entangled if whenever
n ≥ 1, I ⊆ n and 〈xξi〉ξ<ω1,i<n is a family of distinct elements of X, then there are distinct ξ, η < ω1 such
that I = {i : i < n, xξi ≤ xηi}.

(b) Give {0, 1}N its lexicographic ordering, that is,

x ≤ y iff either x = y or there is an n ∈ N such that x↾n = y↾n and x(n) < y(n).

Then the map x 7→ 2
3

∑∞
n=0 3−nx(n) : {0, 1}N → R is an order-isomorphism between {0, 1}N and the Cantor

set, so any ω1-entangled subset of {0, 1}N can be transferred to an ω1-entangled subset of R.

537D Lemma Let X be an ω1-entangled totally ordered set.
(a) There is a countable set D ⊆ X which meets [x, y] whenever x < y in X.
(b) Whenever n ≥ 1, I ⊆ n and 〈xξi〉ξ<ω1,i<n is a family of distinct elements of X, there are ξ < η < ω1

such that I = {i : i < n, xξi ≤ xηi}.

proof (a)(i) There is a countable set D0 ⊆ X which meets [x, z] whenever x < y < z in X. PPP??? Otherwise,
choose 〈xξi〉ξ<ω1,i<3 inductively so that xξ0 < xξ1 < xξ2 and [xξ0, xξ2] does not meet {xηi : η < ξ, i < 3}.
Now, if ξ, η < ω1 are different, we cannot have

xξ0 ≤ xη0, xξ1 > xη1, xξ2 ≤ xη2.

So 〈xξi〉ξ<ω1,i<3 witnesses that X is not ω1-entangled. XXXQQQ

(ii) Set A = {(x, y) : x < y, [x, y] ∩ D0 = ∅}. Note that if (x, y), (x′, y′) ∈ A are distinct, then
[x, y]∩ [x′, y′] = ∅, since otherwise [min(x, x′),max(y, y′)] would be an interval disjoint from D0 with at least
three elements. It follows that A is countable. PPP??? Otherwise, let 〈(xξ0, xξ1)〉ξ<ω1

be a family of distinct
elements of A. Then all the xξi are distinct. But if ξ, η < ω1 are different, we cannot have

xξ0 ≤ xη0, xξ1 > xη1.

So 〈xξi〉ξ<ω1,i<2 witnesses that X is not entangled. XXXQQQ

(iii) So if we set D = D0 ∪ {x : (x, y) ∈ A} we shall have a suitable countable set.

(b) For i < n write ≤i =≤ if i ∈ I, ≤i =≥ if i ∈ n \ I; we are seeking ξ < η such that xξi ≤i xηi for
every i < n. For each family ddd = 〈di〉i<n in D, set Addd = {ξ : xξi ≤i di for each i < n}. Let ζ < ω1 be such
that Addd ∩ ζ 6= ∅ whenever ddd ∈ Dn and Addd 6= ∅. Now there are distinct ξ′, η ∈ ω1 \ ζ such that xξ′i ≤i xηi
for every i < n. For each i < n, there is a di ∈ D such that xξ′i ≤i di ≤i xηi. Set ddd = 〈di〉i<n; then ξ′ ∈ Addd

so there is a ξ ∈ ζ ∩Addd. Now ξ < η and xξi ≤i xηi for every i, as required.

537E Lemma Suppose that n ≥ 1, I ⊆ n and that A ⊆ ({0, 1}N)n is non-negligible for the usual product
measure νnN on ({0, 1}N)n. Let ≤ be the lexicographic ordering of {0, 1}N. Then there are v, w ∈ A such
that v(i) 6= w(i) for every i < n and {i : i < n, v(i) ≤ w(i)} = I.
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proof For each k ∈ N let Σk be the algebra of subsets of X = ({0, 1}N)n generated by sets of the form
{v : v ∈ X, v(i)(j) = 1} for i < n and j < k. Then 〈Σk〉k∈N is a non-decreasing sequence of finite algebras
and the σ-algebra generated by

⋃
k∈N Σk is the Borel σ-algebra B(X) of X. Let E ∈ B(X) be a measurable

envelope of A for νnN . For each k ∈ N, let fk be the conditional expectation of χE on Σk, that is,

fk(u) = 2knνnN{v : v ∈ E, v(i)↾k = u(i)↾k for every i < n}
for u ∈ X. By Lévy’s martingale theorem (275I), χE =a.e. limk→∞ fk. In particular, there are a u ∈ A and
a k ∈ N such that fk(u) > 1 − 2−n. But this means that

F = {v : v ∈ E, v(i)↾k = u(i)↾k for every i < n}
has measure greater than 2−kn(1 − 2−n), and both the sets

F ′ = {v : v ∈ F , v(i)(k) = 0 for i ∈ I, v(i)(k) = 1 for i ∈ n \ I},

F ′′ = {w : w ∈ F , w(i)(k) = 1 for i ∈ I, w(i)(k) = 0 for i ∈ n \ I},

must have positive measure. Accordingly we can find v ∈ A ∩ F ′ and w ∈ A ∩ F ′′, and these will serve.

537F Corollary Suppose that A ⊆ {0, 1}N is strongly Sierpiński for the usual measure on {0, 1}N. Then
A is ω1-entangled for the lexicographic ordering of {0, 1}N.

proof Let 〈xξi〉ξ<ω1,i<n be a family of distinct points in A, where n ≥ 1, and I a subset of n. Then
xξ = 〈xξi〉i<n belongs to An, and has no two coordinates the same, for every ξ < ω1. So D = {xξ : ξ < ω1}
cannot be negligible. By 537E, there are distinct ξ, η < ω1 such that I = {i : xξi ≤ xηi}.

537G Theorem (Todorčević 85) Suppose that there is an ω1-entangled totally ordered set X of size
κ ≥ ω1. Then there are two upwards-ccc partially ordered sets P , Q such that c↑(P ×Q) ≥ κ.

proof (a) Let Y ⊆ X be a set such that #(Y ) = #(X \ Y ) = κ, and f : Y → X \ Y an injective function.
Set

P = {I : I ∈ [Y ]<ω, f↾I is order-preserving},

Q = {I : I ∈ [Y ]<ω, f↾I is order-reversing},

both ordered by ⊆. Then {({y}, {y}) : y ∈ Y } is an up-antichain in P ×Q, so c↑(P ×Q) ≥ κ.

(b) P is upwards-ccc. PPP Let 〈Iα〉α<ω1
be a family in P . By the ∆-system Lemma (4A1Db), there is an

uncountable set A ⊆ ω1 such that 〈Iα〉α∈A is a ∆-system with root I say; now there is an n ∈ N such that
B = {α : α ∈ A, #(Iα \ I) = n} is uncountable. If n = 0 then Iα = Iβ are upwards-compatible for any α,
β ∈ B and we can stop.

If n ≥ 1, enumerate Iα \ I in increasing order as 〈xαi〉i<n, for each α ∈ B. Let D ⊆ X be a countable
set such that D meets every interval in X with more than one member (537Da). For i < j < n and α ∈ B
let dαij , d

′
αij ∈ D be such that xαi ≤ dαij ≤ xαj and f(xαi) ≤ d′αij ≤ f(xαj). (Because Iα ∈ P , f↾Iα is

order-preserving so f(xαi) < f(xαj).) Let 〈dij〉i<j<n, 〈d′ij〉i<j<n be such that

C = {α : α ∈ B, dαij = dij and d′αij = d′ij whenever i < j < n}
is uncountable.

Consider the family 〈yαi〉α∈C,i<2n where yαi = xαi and yα,i+n = f(xαi) if i < n. Because X is entangled,
there must be distinct α, β ∈ C such that yαi ≤ yβi for every i < 2n, that is, xαi ≤ xβi and f(xαi) ≤ f(xβi)
for every i < n. But now examine I = Iα ∪ Iβ . If x, x′ ∈ I and x ≤ x′,

either both x and x′ belong to Iα and f(x) ≤ f(x′) because Iα ∈ P ,
or both x and x′ belong to Iβ and f(x) ≤ f(x′),
or x = xαi and x′ = xβj where i < j < n, so that

f(x) = f(xαi) ≤ d′ij ≤ f(xβj
) = f(x′),

or x = xβi and x′ = xαj where i < j < n, so that f(x) ≤ f(x′),
or x = xαi and x′ = xβi where i < n, so that f(x) = f(xαi) ≤ f(xβi) = f(x′).
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(Note that we cannot have x = xαi and x′ = xβj with j < i, because in this case xβj ≤ dji ≤ xαi while
xβj 6= xαi; nor can we have x = xβi < x′ = xαi with i < n.) So f↾I is order-preserving and I ∈ P witnesses
that Iα and Iβ are upwards-compatible in P . As 〈Iα〉α<ω1

is arbitrary, P is upwards-ccc. QQQ

(c) Similarly, Q is upwards-ccc. PPP The principal changes needed in the argument above are

—– in the choice of the d′αij , we need to write ‘f(xαi) ≥ d′αij ≥ f(xαj)’;
—– in the choice of particular α and β in the set C, we need to write ‘yαi ≤ yβi for i < n and

yαi ≥ yβi for n ≤ i < 2n’. QQQ

So P and Q satisfy our requirements.

537H Scalarly measurable functions (a) Definition Let X be a set, Σ a σ-algebra of subsets of X
and U a linear topological space. A function φ : X → U is scalarly (Σ-)measurable if fφ : X → R is
(Σ-)measurable for every f ∈ U∗.

(b) If φ : X → U is scalarly measurable, V is another linear topological space and T : U → V is a
continuous linear operator, then Tφ : X → V is scalarly measurable, because hT ∈ U∗ for every h ∈ V ∗.

(c) If U is a separable metrizable locally convex space and φ : X → U is scalarly measurable, then it is
measurable. PPP T = {F : F ⊆ U , φ−1[F ] ∈ Σ} includes the cylindrical σ-algebra of U (4A3U7), which is the
Borel σ-algebra (4A3W8). QQQ

537I Proposition Let (X,Σ, µ) and (Y,T, ν) be probability spaces and U a reflexive Banach space.
Suppose that x 7→ ux : X → U and y 7→ fy : Y → U∗ are bounded scalarly measurable functions. Then∫∫

fy(ux)µ(dx)ν(dy) and
∫∫

fy(ux)ν(dy)µ(dx) are defined and equal.

proof (a)(i) Recall from 467Hc that if V ⊆ U and W ⊆ U∗ are closed linear subspaces, I call them a
‘projection pair’ if U = V ⊕W ◦ and ‖v + v′‖ ≥ ‖v‖ for all v ∈ V and v′ ∈ W ◦. We need to know that this
is symmetric; that is, that in this case

U∗ = W ⊕ V ◦, ‖g + g′‖ ≥ ‖g‖ for all g ∈W , g′ ∈ V ◦.

PPP Note first that if g ∈W ∩ V ◦, then g(u) = 0 for every u ∈W ◦ + V , that is, g = 0. Now take any f ∈ U∗.
Define g : U → R by saying that g(v + v′) = f(v) for v ∈ V , v′ ∈ W ◦. Then g is linear and continuous and
‖g‖ ≤ ‖f‖. Now g(v′) = 0 for every v′ ∈ W ◦, that is, g ∈ W ◦◦, which is the weak*-closure of W (4A4Eg);
but as U and U∗ are reflexive, this is just the norm-closure of W , which is equal to W . Set g′ = f −g. Then
g′ ∈ V ◦. This shows that f ∈W + V ◦; as f is arbitrary, U∗ = W ⊕ V ◦. Finally, I remarked in the course of
the argument that ‖g‖ ≤ ‖f‖, which is what we need to know to check that ‖g‖ ≤ ‖g+ g′‖ whenever g ∈W
and g′ ∈ V ◦. QQQ

(ii) Because U is reflexive, its unit ball is weakly compact, so U is surely weakly compactly generated,
therefore weakly K-countably determined (467M). Now turn to Lemma 467J. This tells us that there is a
family M of subsets of U ∪ U∗ such that

for every B ⊆ X ∪X∗ there is an M ∈ M such that B ⊆M and #(M) ≤ max(ω,#(B));
whenever M′ ⊆ M is upwards-directed, then

⋃M′ ∈ M;
whenever M ∈ M then (VM ,WM ) is a projection pair of subspaces of U and U∗,

where I write VM = M ∩ U and WM = M ∩ U∗. For M ∈ M,

U = VM ⊕W ◦
M , U∗ = WM ⊕ V ◦

M ;

let PM : U → VM and QM : U∗ → WM be the corresponding projections. Since ‖v‖ ≤ ‖v + v′‖ whenever
v ∈ VM and v′ ∈W ◦

M , ‖PM‖ ≤ 1; similarly, ‖QM‖ ≤ 1.
If u ∈ U , f ∈ U∗ and M ∈ M, then

f(PMu) = (QMf)(u) = (QMf)(PMu).

PPP Express u as v + v′ and f as g + g′, where v ∈ VM , v′ ∈W ◦
M , g ∈WM and g′ ∈ V ◦

M . Then

7Formerly 4A3T.
8Formerly 4A3V.
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f(v) = g(v) = g(u),

that is,

f(PMu) = (QMf)(PMu) = (QMf)(u). QQQ

(iii) If M0, M1 ∈ M and M0 ⊆M1 then PM0
= PM0

PM1
= PM1

PM0
. PPP If u ∈ U , express it as v0 + v′0

where v0 ∈ VM0
and v′0 ∈W ◦

M0
; now express v′0 as v1 + v′1 where v1 ∈ VM1

and v′1 ∈W ◦
M1

. Then

PM0
u = v0 ∈ VM1

,

so PM1
PM0

u = PM0
u. On the other hand, u = v0 + v1 + v′1 where v0 + v1 ∈ VM1

and v′1 ∈ W ◦
M1

, so
PM1

u = v0 + v1; and as v1 = v′0 − v′1 belongs to W ◦
M0

, PM0
PM1

u = v0 = PM0
u. QQQ

(iv) If 〈Mξ〉ξ<ζ is a non-decreasing family in M, where ζ is a non-zero limit ordinal, then we know
that M =

⋃
ξ<ζ Mξ belongs to M. Now

PMu = limξ↑ζ PMξ
u

for every u ∈ U , the limit being for the norm topology on U . PPP Let ǫ > 0. We know that PMu ∈ VM =
M ∩ U , so there is a u′ ∈M ∩U such that ‖u′ −PMu‖ ≤ 1

2ǫ. Let ξ < ζ be such that u′ ∈Mξ. If ξ ≤ η < ζ,
then

‖PMη
u− PMu‖ = ‖PMη

(PMu− u′) + PM (u′ − PMu)‖
(because u′ ∈ VMη

, so PMu
′ = PMη

u′ = u′)

≤ 2‖PMu− u′‖ ≤ ǫ. QQQ

(v) Similarly,

QM0
= QM0

QM1
= QM1

QM0

whenever M0, M1 ∈ M and M0 ⊆M1, and

QMf = limξ↑ζ QMξ
f

whenever f ∈ U∗ and ζ is a non-zero limit ordinal and 〈Mξ〉ξ<ζ is a non-decreasing family in M with union
M .

(b) Now let M0 be {M : M ∈ M, #(M) ≤ ω}. Then there is an M0 ∈ M0 such that

PM0
(ux) = PM (ux) µ-a.e.(x)

whenever M0 ⊆M ∈ M0.
PPP??? Suppose, if possible, otherwise. Then we can choose inductively an increasing family 〈Mξ〉ξ<ω1

in
M0 such that

µ{x : PMξ+1
(ux) 6= PMξ

(ux)} > 0 for every ξ < ω1,

Mξ =
⋃

η<ξMη whenever ξ < ω1 is a non-zero countable limit ordinal.

(The set of x for which PMξ+1
(ux) 6= PMξ

(ux) is necessarily measurable because x 7→ PMξ+1
ux − PMξ

ux
is scalarly measurable, by 537Hb, therefore measurable for the norm topology, by 537Hc, since VMξ+1

is
separable.) Now there must be a δ > 0 such that

A = {ξ : ξ < ω1, µEξ ≥ δ}
is infinite, where

Eξ = {x : ‖PMξ+1
(ux) − PMξ

(ux)‖ ≥ δ}
for each ξ < ω1. But in this case there must be an x ∈ X such that

A′ = {ξ : ξ ∈ A, x ∈ Eξ}
is infinite. (Take a sequence 〈ξn〉n∈N of distinct points in A, and x ∈ ⋂

n∈N

⋃
m≥nEξm .) Let ζ be any cluster

point of A′ in ω1. Then

D.H.Fremlin



86 Topologies and measures III 537I

PMζ
(ux) = limξ↑ζ PMξ

(ux)

((a-iv) above), which is impossible. XXXQQQ

(c) Similarly, there is an M1 ∈ M0 such that M1 ⊇M0 and

PM1
(fy) = PM (fy) ν-a.e.(y)

whenever M1 ⊆ M ∈ M0. Because x 7→ PM1
(ux) and y 7→ QM1

(fy) are scalarly measurable maps to
norm-separable spaces, they are norm-measurable; again because VM1

and WM1
are separable, (x, y) →

(PM1
ux, QM1

fy) : X × Y → VM1
×WM1

is Σ⊗̂T-measurable (418Bd). Because (f, x) 7→ f(x) : U∗ ×U → R

is norm-continuous, (x, y) 7→ (QM1
fy)(PM1

ux) is Σ⊗̂T-measurable, and∫∫
(QM1

fy)(PM1
ux)µ(dx)ν(dy) =

∫∫
(QM1

fy)(PM1
ux)ν(dy)µ(dx)

by Fubini’s theorem (252C).
Now observe that if y ∈ Y there is an M ∈ M0 such that M1 ⊆M and fy ∈M . So

∫
fy(ux)µ(dx) =

∫
(QMfy)(ux)µ(dx) =

∫
fy(PMux)µ(dx)

=

∫
fy(PM1

ux)µ(dx) =

∫
(QM1

fy)(PM1
ux)µ(dx).

This is true for every y. So
∫∫

fy(ux)µ(dx)ν(dy) is defined and equal to
∫∫

(QM1
fy)(PM1

ux)µ(dx)ν(dy).
Similarly, ∫∫

fy(ux)ν(dy)µ(dx) =
∫∫

(QM1
fy)(PM1

ux)ν(dy)µ(dx).

Putting these together, we have the result.

537J Corollary Let (X,Σ, µ), (Y,T, ν) and (Z,Λ, σ) be probability spaces. Let x 7→ Ux : X → Λ and
y 7→ Vy : Y → Λ be functions such that

x 7→ σ(Ux ∩W ), y 7→ σ(Vy ∩W )

are measurable for every W ∈ Λ. Then
∫∫

σ(Ux ∩ Vy)µ(dx)ν(dy) and
∫∫

σ(Ux ∩ Vy)ν(dy)µ(dx) are defined
and equal.

proof (a) For x ∈ X set ux = (χUx)• in L2(σ). Then x 7→ ux is scalarly measurable. PPP If f ∈ U∗, there is a
v ∈ L2(σ) such that f(u) =

∫
u× v for every u ∈ L2(σ) (244K). Let ǫ > 0. Then there are W0, . . . ,Wn ∈ Λ

and α0, . . . , αn ∈ R such that ‖v −∑n
i=0 αi(χWi)

•‖2 ≤ ǫ (244Ha), so that

|f(ux) −∑n
i=0 αiσ(Ux ∩Wi)| = |

∫
ux × v −

∫
ux ×∑n

i=0 αi(χWi)
•| ≤ ǫ‖ux‖2 ≤ ǫ

for every x ∈ X. Now the function x 7→ ∑n
i=0 αiσ(Ux ∩Wi) is Σ-measurable. So we see that the function

x 7→ f(ux) is uniformly approximated by Σ-measurable functions and is itself Σ-measurable. As f is
arbitrary, x 7→ ux is scalarly measurable. QQQ

(b) Similarly, setting vy = (χVy)• for y ∈ Y , y 7→ vy : Y → L2(σ) is scalarly measurable. Identifying
L2(σ) with its dual, 537I tells us that∫∫

(ux|vy)µ(dx)ν(dy) =
∫∫

(ux|vy)ν(dy)µ(dx),

that is, that ∫∫
σ(Ux ∩ Vy)µ(dx)ν(dy) =

∫∫
σ(Ux ∩ Vy)ν(dy)µ(dx).

537K The next few paragraphs will be concerned with upper and lower integrals. For the basic theory
of these, see §133 and 214J.

Theorem (Freiling 86, Shipman 90) Let 〈(Xj ,Σj , µj)〉j≤m be a finite sequence of probability spaces and
〈κj〉j≤m a sequence of cardinals such that XN

j , with its product measure µN
j , has a subset with cardinal κj

which is not covered by κj−1 negligible sets (if j ≥ 1) and is not negligible (if j = 0). Let f :
∏

j≤mXj → R

be a bounded function, and suppose that σ : m+ 1 → m+ 1 and τ : m+ 1 → m+ 1 are permutations. Set
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I =
∫
. . .

∫
f(x0, . . . , xm)dxσ(m) . . . dxσ(0),

I ′ =
∫
. . .

∫
f(x0, . . . , xm)dxτ(m) . . . dxτ(0).

Then I ≤ I ′.

proof Let M ≥ 0 be such that |f(x0, . . . , xm)| ≤M for all x0, . . . , xm.

(a) Set Z =
∏

j≤mXN
j . The key fact is that we can find negligible sets W (uuu) ⊆ XN

k , for k ≤ m and

uuu ∈ ∏
j≤m,j 6=kX

N
j , such that

I ≤ lim infn→∞
1

n+1

∑n
i=0 f(t0i, . . . , tmi)

whenever 〈tj〉j≤m = 〈〈tji〉i∈N〉j≤m is such that tk /∈ W (t0, . . . , tk−1, tk+1, . . . , tm) for every k. PPP Because
the formula

lim infn→∞
1

n+1

∑n
i=0 f(t0i, . . . , tmi)

is tolerant of permutations of the coordinates 0, . . . ,m, it is enough to consider the case σ(j) = j for j ≤ m,
so that

I =
∫
. . .

∫
f(x0, . . . , xm)dxm . . . dx0.

(i) Define D0, . . . , Dm+1 as follows. D0 = {∅} =
∏

j<0X
N
j . For 0 < k ≤ m let Dk be the set of those

(t0, . . . , tk−1) ∈ ∏
j<kX

N
j such that

I ≤ lim infn→∞
1

n+1

∑n
i=0

∫
. . .

∫
f(t0i, . . . , tk−1,i, xk, . . . , xm)dxm . . . dxk,

where tj = 〈tji〉i∈N for j < k. For k < m and uuu = (u0, . . . , uk−1, uk+1, . . . , um) in
∏

j≤m,j 6=kX
N
j , set

W (uuu) = ∅ if (u0, . . . , uk−1) /∈ Dk,

= {t : t ∈ XN
k , (u0, . . . , uk−1, t) /∈ Dk+1} otherwise.

(ii) W (uuu) ⊆ XN
k is negligible. To see this, we need consider only the case in which (u0, . . . , uk−1)

belongs to Dk. Express uj as 〈uji〉i∈N for j < k, and for i ∈ N define hi : Xk → R by setting

hi(x) =
∫
. . .

∫
f(u0i, . . . , uk−1,i, x, xk+1, . . . , xm)dxm . . . dxk+1

for x ∈ Xk. Now the definition of Dk tells us just that

I ≤ lim infn→∞
1

n+1

∑n
i=0

∫
. . .

∫
f(u0i, . . . , uk−1,i, xk, . . . , xm)dxm . . . dxk,

that is, that

I ≤ lim infn→∞
1

n+1

∑n
i=0

∫
hi(x)dx.

For each i ∈ N let gi : Xk → [−M,M ] be a measurable function such that gi(x) ≤ hi(x) for every x
and

∫
gidµk =

∫
hidµk. Now consider the functions g̃i : XN

k → R defined by setting g̃i(t) = gi(ti) for

t = 〈ti〉i∈N ∈ XN
k . We have

∫
g̃idµ

N
k =

∫
hidµk for each i, while 〈g̃i〉i∈N is a uniformly bounded independent

sequence of random variables. By the strong law of large numbers in the form 273H,

limn→∞
1

n+1

∑n
i=0(g̃i(t) −

∫
g̃idµ

N
k ) = 0

for almost every t ∈ XN
k . Since

lim infn→∞
1

n+1

∑n
i=0

∫
g̃idµ

N
k = lim infn→∞

1

n+1

∑n
i=0

∫
hidµk ≥ I,

we have
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I ≤ lim inf
n→∞

1

n+1

n∑

i=0

g̃i(t) ≤ lim inf
n→∞

1

n+1

n∑

i=0

hi(ti)

= lim inf
n→∞

1

n+1

n∑

i=0

∫
. . .

∫
f(u0i, . . . , uk−1,i, ti, xk+1, . . . , xm)dxm . . . dxk+1

for almost every t = 〈ti〉i∈N ∈ XN
k , that is, (u0, . . . , uk−1, t) ∈ Dk+1 for almost every t ∈ XN

k , that is, W (uuu)
is negligible, as required.

(iii) Suppose that ttt = (t0, . . . , tm) ∈ Z is such that tk /∈W (t0, . . . , tk−1, tk+1, . . . , tm) for every k < m.
Then (t0, . . . , tk) ∈ Dk+1 for every k; in particular, ttt ∈ Dm+1 and, writing tj = 〈tji〉i∈N for each j,

I ≤ lim infn→∞
1

n+1

∑n
i=0 f(t0i, . . . , tmi). QQQ

(b) Similarly, or applying the argument above to −f , we have negligible sets W ′(uuu) ⊆ XN
k , for k ≤ m

and uuu ∈ ∏
j≤m,j 6=kX

N
j , such that

I ′ ≥ lim supn→∞
1

n+1

∑n
i=0 f(t0i, . . . , tmi)

whenever 〈tj〉j≤m = 〈〈tji〉i∈N〉j≤m is such that tk /∈ W ′(t0, . . . , tk−1, tk+1, . . . , tm) for every k. Enlarging
the W ′(uuu) if necessary, we may suppose that W ′(uuu) ⊇W (uuu) for every uuu.

(c) Now the point of the construction is that we can find a ttt = (t0, . . . , tm) ∈ Z such that tk /∈
W ′(t0, . . . , tk−1, tk+1, . . . , tm) for every k. PPP For each k ≤ m let Ak ⊆ XN

k be a non-negligible set with
cardinal κk which (if k ≥ 1) cannot be covered by κk−1 negligible sets. Choose tm, tm−1, . . . , t0 in such a
way that

tk ∈ Ak, tk /∈W (uuu) whenever uuu ∈ ∏
j<k Aj ×

∏
k<j≤m{tj};

this is always possible because #(A0 × . . .×Ak−1) = κk−1 if k ≥ 1. QQQ
So we get

I ≤ lim inf
n→∞

1

n+1

n∑

i=0

f(t0i, . . . , tmi)

≤ lim sup
n→∞

1

n+1

n∑

i=0

f(t0i, . . . , tmi) ≤ I ′,

as claimed.

537L Corollary Let 〈(Xj ,Σj , µj)〉j≤m be a finite sequence of probability spaces such that XN
j , with its

product measure µN
j , has a Sierpiński set with cardinal ωj+1 for each j ≤ m. Let f :

∏
j≤mXj → R be a

bounded function, and suppose that σ : m+ 1 → m+ 1 and τ : m+ 1 → m+ 1 are permutations such that
the two repeated integrals

I =
∫
. . .

∫
f(x0, . . . , xm)dxσ(m) . . . dxσ(0),

I ′ =
∫
. . .

∫
f(x0, . . . , xm)dxτ(m) . . . dxτ(0),

are both defined. Then I = I ′.

proof Apply 537K in both directions.

537M A pair of simple facts which I never got round to spelling out will be useful below.

Lemma Suppose that (X,Σ, µ) is a totally finite measure space and f is a [0,∞]-valued function defined
almost everywhere in X.
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(a) If γ <
∫
f , then there is a measurable integrable function g : X → [0,∞[ such that

∫
g ≥ γ and

{x : x ∈ dom f , g(x) ≤ f(x)} has full outer measure in X.
(b) If

∫
f < γ, then there is a measurable integrable function g : X → [0,∞[ such that

∫
g ≤ γ and

{x : x ∈ dom f , f(x) ≤ g(x)} has full outer measure in X.

proof (a) By 135H(b-i),
∫
f = supk∈N

∫
min(f(x), k)µ(dx);

let k ∈ N be such that
∫
fk > γ, where fk(x) = min(f(x), k) for x ∈ dom f . Because µX < ∞,

∫
fk is

finite. By 133J(a-i), there is an integrable h such that
∫
h =

∫
fk and fk ≤a.e. h; adjusting h on a negligible

set if necessary, we can arrange that h is defined (and finite) everywhere on X and is measurable. Set
ǫ = (

∫
h− γ)/(1 + µX), and g = h− ǫχX; then by the last part of 133J(a-i),

{x : x ∈ dom f , g(x) ≤ f(x)} = {x : x ∈ dom f , h(x) ≤ f(x) + ǫ}
has full outer measure in X, while

∫
g ≥ γ.

(b) By 135Ha, there is a measurable h : X → [0,∞] such that h ≤a.e. f and
∫
h =

∫
f ; as

∫
h is finite,

h is finite a.e. and can be adjusted to be finite everywhere. Set ǫ = (γ −
∫
h)/(1 + µX), and g = h+ ǫχX;

then
∫
g ≤ γ and {x : f(x) ≤ g(x)} has full outer measure.

537N For ordinary two-variable repeated integrals we can squeeze a little bit more out than is given by
537K.

Proposition Let (X,Σ, µ) be a semi-finite measure space, (Y,T, ν) a probability space, and νN the product
measure on Y N. If non(E,N (µ)) < covN (νN) for every E ∈ Σ \ N (µ), then

∫ ∫
f(x, y)ν(dy)µ(dx) ≤

∫ ∫
f(x, y)µ(dx)ν(dy)

for every function f : X × Y → [0,∞].

proof (a) To begin with, suppose that µX <∞ and #(X) < covN (νN). For each y ∈ Y , let hy : X → [0,∞]

be a measurable function such that f(x, y) ≤ hy(x) for every x ∈ X and
∫
hydµ =

∫
f(x, y)µ(dx); let v : Y →

[0,∞] be a measurable function such that
∫
hydµ ≤ v(y) for every y ∈ Y and

∫
v dν =

∫ ∫
f(x, y)µ(dx)ν(dy).

If this is infinite, we can stop. Otherwise, for each x ∈ X let gx : Y → [0,∞] be a measurable function such
that gx(y) ≤ f(x, y) for every y ∈ Y and

∫
gxdν =

∫
f(x, y)ν(dy), and let u : X → [0,∞] be a measurable

function such that u(x) ≤
∫
gx dν for every x and

∫
u dµ =

∫ ∫
f(x, y)ν(dy)µ(dx).

As #(X) < covN (νN), we can find a sequence 〈yi〉i∈N in Y such that

∫
v dν = limn→∞

1

n+1

∑n
i=0 v(yi)

and
∫
gxdν = limn→∞

1

n+1

∑n
i=0 gx(yi)

for every x ∈ X. (For by 273J, the set of such sequences is the intersection of fewer than covN (νN)
conegligible sets in Y N, and cannot be empty.) If x ∈ X, then

u(x) ≤
∫
gxdν = lim infn→∞

1

n+1

∑n
i=0 gx(yi) ≤ lim infn→∞

1

n+1

∑n
i=0 hyi

(x).

So

∫ ∫
f(x, y)ν(dy)µ(dx) =

∫
u dµ ≤ lim inf

n→∞

1

n+1

n∑

i=0

∫
hyi

dµ

(by Fatou’s Lemma)
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≤ lim inf
n→∞

1

n+1

n∑

i=0

v(yi) =

∫
v dν

=

∫ ∫
f(x, y)µ(dx)ν(dy),

as required.

(b) Now suppose that µ is totally finite and that X has a subset A of full outer measure with #(A) <
covN (νN). Let µA be the subspace measure on A. Then for any q : X → [0,∞] we have

∫
q dµ ≤

∫
(q↾A)dµA ≤

∫
(q↾A)dµA ≤

∫
q dµ

(214J). So, writing fA for the restriction of f to A× Y ,

∫ ∫
f(x, y)ν(dy)µ(dx) ≤

∫ ∫
fA(x, y)ν(dy)µA(dx)

≤
∫ ∫

fA(x, y)µA(dx)ν(dy)

(by (a))

≤
∫ ∫

f(x, y)µ(dx)ν(dy).

(c) For the general case, let u : X → [0,∞] be a measurable function such that u(x) ≤
∫
f(x, y)ν(dy) for

every x ∈ X and
∫
u dµ =

∫ ∫
f(x, y)ν(dy)µ(dx). Take any γ <

∫
u dµ. Because µ is semi-finite, there is a

non-empty set F ∈ Σ of finite measure such that
∫
F
u dµ > γ. Now let E be the family of measurable sets

E ⊆ F of finite measure for which there is a non-empty set A ⊆ E, with cardinal less than covN (νN), such
that µ∗A = µE, that is, A has full outer measure for the subspace measure µE , that is, E is a measurable
envelope of A. Then E is closed under finite unions and every non-empty member of Σ includes a member of
E . So there is a non-decreasing sequence 〈Ek〉k∈N in E such that

⋃
k∈NEk ⊆ F and F \⋃k∈NEk is negligible.

In this case, γ <
∫
F
u dµ = limk→∞

∫
Ek
u dµ, so there is a k ∈ N such that γ ≤

∫
Ek
u dµ. Set E = Ek.

Consider the restriction fE of f to E × Y and the subspace measure µE on E. We have

γ ≤
∫

E

u dµ =

∫
(u↾E)dµE ≤

∫ ∫
fE(x, y)ν(dy)µE(dx)

≤
∫ ∫

fE(x, y)µE(dx)ν(dy)

(because E ∈ E , so we can use (b))

≤
∫ ∫

f(x, y)µ(dx)ν(dy)

because
∫
fE(x, y)µE(dx) ≤

∫
f(x, y)µ(dx) for every y, by 214Ja or otherwise. Since γ is arbitrary,
∫ ∫

f(x, y)ν(dy)µ(dx) ≤
∫ ∫

f(x, y)µ(dx)ν(dy)

in this case also.

537O Corollary Let (X,Σ, µ) and (Y,T, ν) be probability spaces, and νN the product measure on Y N.
If shr+N (µ) ≤ covN (νN) then

∫ ∫
f(x, y)ν(dy)µ(dx) ≤

∫ ∫
f(x, y)µ(dx)ν(dy)

for every function f : X × Y → [0,∞[.
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proof Take any γ <
∫ ∫

f(x, y)ν(dy)µ(dx). By 537Ma, there are a measurable function u : X → [0,∞[ and

a set A of full outer measure in X such that
∫
u dµ ≥ γ and u(x) ≤

∫
f(x, y)ν(dy)µ(dx) for every x ∈ A.

Let µA be the subspace measure on A, and fA the restriction of f to A× Y . If B ⊆ A is any non-negligible
relatively measurable set, there is a non-negligible D ⊆ B such that #(D) < shr+N (µ), so

non(B,N (µA)) = non(B,N (µ)) ≤ #(D) < covN (νN).

So

γ ≤
∫
u dµ =

∫
(u↾A)dµA ≤

∫ ∫
fA(x, y)ν(dy)µA(dx)

(because u↾A is measurable and (u↾A)(x) ≤
∫
fA(x, y)ν(dy) for every x ∈ A)

≤
∫ ∫

fA(x, y)µA(dx)ν(dy)

(by 537N)

≤
∫ ∫

f(x, y)µ(dx)ν(dy)

because
∫
fA(x, y)µA(dx) ≤

∫
f(x, y)µ(dx) for every y, by 214J again. As γ is arbitrary, we have the result.

Remark There is a similar inequality, under different hypotheses, in 543C below.

537P Corollary Let (X,Σ, µ) and (Y,T, ν) be probability spaces, and νN the product measure on Y N;
suppose that shr+N (µ) ≤ covN (νN), and that f : X × Y → R is bounded.

(a)
∫ ∫

f(x, y)ν(dy)µ(dx) ≤
∫ ∫

f(x, y)µ(dx)ν(dy),

∫ ∫
f(x, y)µ(dx)ν(dy) ≤

∫ ∫
f(x, y)ν(dy)µ(dx).

(b) If
∫∫

f(x, y)µ(dx)ν(dy) is defined, and
∫
f(x, y)ν(dy) is defined for almost every x, then the other

repeated integral
∫∫

f(x, y)ν(dy)µ(dx) is defined and equal to
∫∫

f(x, y)µ(dx)ν(dy).

proof (a) Apply 537O to the functions (x, y) 7→M + f(x, y), (x, y) 7→M − f(x, y) for suitable M .

(b) By (a),

∫∫
f(x, y)µ(dx)ν(dy) ≤

∫ ∫
f(x, y)ν(dy)µ(dx)

≤
∫ ∫

f(x, y)ν(dy)µ(dx) ≤
∫∫

f(x, y)µ(dx)ν(dy).

537Q We can extend the second part of 537Pa, as well as the first, to unbounded functions, if we
strengthen the set-theoretic hypothesis.

Proposition (Humke & Laczkovich 05) Let (X,Σ, ν) and (Y,T, µ) be probability spaces, and µN, νN

the product measures on XN, Y N respectively. If shr+N (µN) ≤ covN (νN) then
∫ ∫

f(x, y)µ(dx)ν(dy) ≤
∫ ∫

f(x, y)ν(dy)µ(dx) for every function f : X × Y → [0,∞[.

proof ??? Suppose, if possible, otherwise.

(a) There is a measurable function u : Y → [0,∞[ such that

u(y) ≤
∫
f(x, y)µ(dx) for every y,

∫ ∫
f(x, y)ν(dy)µ(dx) <

∫
u dν.
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Since
∫
u dν is the supremum of the integrals of the non-negative simple functions dominated by u, we may

suppose that u itself is a simple function; express it as
∑m

j=0 αjχFj where αj ≥ 0 for each i and (F0, . . . , Fm)
is a partition of Y into measurable sets. Now

m∑

j=0

∫ ∫
f(x, y)χFj(y)ν(dy)µ(dx) ≤

∫ m∑

j=0

∫
f(x, y)χFj(y)ν(dy)µ(dx)

(133J(b-v))

≤
∫ ∫

f(x, y)ν(dy)µ(dx)

(because if x ∈ X and q : Y → [0,∞] is measurable and f(x, y) ≤ q(y) for every y, then the sum
∑m

j=0

∫
f(x, y)χFj(y)ν(dy) is at most

∑m
j=0

∫
q × χFjdν =

∫
q dν)

<

∫
u dν =

m∑

j=0

αjνFj .

There are therefore a j ≤ m and a γ < 1 such that
∫ ∫

f(x, y)χFj(y)ν(dy)µ(dx) < γαjνFj .

Now there is a measurable function v : X → [0,∞[ such that
∫
v dµ ≤ γαjνFj and

D = {x : x ∈ X,
∫
f(x, y)χFj(y)ν(dy) ≤ v(x)}

has full outer measure in X, by 537Mb.

(b) For y ∈ Y and xxx = 〈xi〉i∈N ∈ XN, set h(xxx, y) = lim infn→∞
1

n+1

∑n
i=0 f(xi, y). If y ∈ Y , then

∫
f(x, y)µ(dx) ≤ h(xxx, y) for µN-almost every xxx. PPP We have a measurable function q : X → [0,∞[ such that

q(x) ≤ f(x, y) for every x and

∫
f(x, y)µ(dx) =

∫
q dµ ≤ lim inf

n→∞

1

n+1

n∑

i=0

q(xi)

≤ lim inf
n→∞

1

n+1

n∑

i=0

f(xi, y) = h(xxx, y)

for almost every xxx = 〈xi〉i∈N. QQQ At the same time,

V = {〈xi〉i∈N : lim infn→∞
1

n+1

∑n
i=0 v(xi) ≤ γαjνFj}

is conegligible in XN, because
∫
v dµ ≤ γαjνFj .

(c) Set

W = {(xxx, y) : xxx ∈ XN, y ∈ Fj , h(xxx, y) ≥ αj}
and consider the function χW : XN × Y → {0, 1}. If y ∈ Fj then

∫
f(x, y)µ(dx) ≥ αj so W−1[{y}] is

conegligible in XN. On the other hand, if xxx = 〈xi〉i∈N belongs to V ∩DN,

∫
αjχW (xxx, y)ν(dy) ≤

∫
h(xxx, y)χFj(y)ν(dy)

=

∫
lim inf
n→∞

1

n+1

n∑

i=0

f(xi, y)χFj(y)ν(dy)

≤ lim inf
n→∞

∫
1

n+1

n∑

i=0

f(xi, y)χFj(y)ν(dy)

(133Kb)
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≤ lim inf
n→∞

1

n+1

n∑

i=0

∫
f(xi, y)χFj(y)ν(dy)

(133J(b-ii))

≤ lim inf
n→∞

1

n+1

n∑

i=0

v(xi) ≤ γαjνFj .

(d) As V is conegligible and DN has full outer measure (254Lb),

∫ ∫
χW (xxx, y)ν(dy)µN(dxxx) ≤ γνFj < νFj =

∫∫
χW (xxx, y)µN(dxxx)ν(dy)

=

∫ ∫
χW (xxx, y)µN(dxxx)ν(dy).

But we are supposing that shr+N (µN) ≤ covN (νN), so this contradicts 537P. XXX
So we have the result.

537R Lemma Let (X,Σ, µ) be a complete probability space and (Y,T, ν) a probability space such that
shr+N (µ) ≤ covN (νN), where νN is the product measure on Y N. Let f : X×Y → R be a bounded function
which is measurable in each variable separately, and set u(x) =

∫
f(x, y)ν(dy) for x ∈ X. Then u : X → R

is measurable.

proof ??? Otherwise, there are a non-negligible measurable set E ⊆ X and α, β ∈ R such that α < β and

µ∗{x : x ∈ E, u(x) ≤ α} = µ∗{x : x ∈ E, u(x) ≥ β} = µE

(413G). Let A ⊆ {x : x ∈ E, u(x) ≤ α} and B ⊆ {x : x ∈ E, u(x) ≥ β} be sets with cardinal less than
shr+N (µ) and outer measure greater than 1

2µE (521Ca). Let 〈yi〉i∈N be a sequence in Y such that

u(x) = limn→∞
1

n+1

∑n
i=0 f(x, yi)

for every x ∈ A ∪B. Because x 7→ f(x, yi) is measurable for each i, u↾A ∪B is measurable; but this means
that A and B can be separated by measurable sets, which is impossible, because µ∗A+ µ∗B > µE. XXX

537S Proposition Let (X,Σ, µ) and (Y,T, ν) be probability spaces such that

shr+N (µ) ≤ covN (νN),

where νN is the product measure on Y N, and

cf([τ(ν)]≤ω) < cov(E,N (µ)) for every E ∈ Σ \ N (µ),

where τ(ν) is the Maharam type of ν. Let f : X × Y → [0,∞[ be a function which is measurable in each
variable separately. Then

∫∫
f(x, y)µ(dx)ν(dy) and

∫∫
f(x, y)ν(dy)µ(dx) exist and are equal.

proof (a) Let Λ̃ ⊇ Σ⊗̂T be the σ-algebra of sets W ⊆ X × Y such that all the vertical and horizontal

sections of W are measurable. If W ∈ Λ̃, then x 7→ νW [{x}] : X → [0, 1] is measurable, by 537R. If W ∈ Λ̃
and almost every horizontal section of W is negligible, then

∫
νW [{x}]µ(dx) =

∫ ∫
χW (x, y)ν(dy)µ(dx)

≤
∫ ∫

χW (x, y)µ(dx)ν(dy) = 0

by 537Pa, so almost every vertical section of W is negligible.

(b) Let (B, ν̄) be the measure algebra of (Y,T, ν). If W ∈ Λ̃ and there is a metrically separable subalgebra
C of B containing W [{x}]• for every x ∈ X, then there is a W ′ ∈ Σ⊗̂T such that W [{x}]△W ′[{x}] is
negligible for almost every x. PPP Note first that for every F ∈ T the map
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x 7→ ν(W [{x}]△F ) = ν((W△(X × F ))[{x}]

is measurable, by (a). So x 7→ W [{x}]• : X → C is measurable, by 418Bc. By 418T(b-ii), there is a
W ′ ∈ Σ⊗̂T such that W [{x}]• = W ′[{x}]• for almost every x. QQQ

(c) In fact we find that for any W ∈ Λ̃ there is a W ′ ∈ Σ⊗̂T such that W [{x}]△W ′[{x}] is negligible for
almost every x. PPP Set κ = τ(ν) = τ(B), and let 〈eξ〉ξ<κ generate B. Let K ⊆ [κ]≤ω be a cofinal set with
cardinal cf[κ]≤ω. For K ∈ K, let BK be the closed subalgebra of B generated by {eξ : ξ ∈ K} and AK the
set {x : x ∈ X, W [{x}]• ∈ BK}. Note that K 7→ AK is non-decreasing and that the union of any sequence
in K is included in a member of K. So there is a K0 ∈ K such that µ∗AK0

= supK∈K µ
∗AK .

If E is a measurable envelope of AK0
, then {AK \ E : K ∈ K} is a cover of X \ E by negligible sets. So

cov(X \ E,N (µ)) ≤ cf[κ]≤ω and X \ E must be negligible, that is, AK0
has full outer measure.

Taking a sequence 〈Fn〉n∈N in T such that {F •
n : n ∈ N} is dense in BK0

, we see from (a) that x 7→
infn∈N ν(W [{x}]△Fn) is measurable, while it is zero on AK0

. So W [{x}]• ∈ BK0
for almost every x ∈ X,

that is, AK0
is actually conegligible. Taking a measurable conegligible set E′ ⊆ AK0

and applying (b) to
W ∩ (E′ × Y ), we see that there is a W ′ ∈ Σ⊗̂T such that W [{x}]△W ′[{x}] is negligible for almost every
x ∈ X. QQQ

(d) Now turn to the function f under consideration. For q ∈ Q set Wq = {(x, y) : f(x, y) ≥ q} ∈ Λ̃.

By (c), we have Vq ∈ Σ⊗̂T such that Vq[{x}]△Wq[{x}] is ν-negligible for µ-almost every x, and therefore
W−1

q [{y}]△V −1
q [{y}] is µ-negligible for ν-almost every y, by (a). If q ≤ q′ then Wq′ \ Wq is empty, so

Vq′ [{x}] \ Vq[{x}] is ν-negligible for µ-almost every x, and Vq′ \ Vq is (µ × ν)-negligible, where µ × ν is the
product measure on X × Y . Similarly,

⋂
q′<q Vq′ \ Vq is negligible for every q. Moreover, writing V∞ for⋂

q∈Q Vq, V∞[{x}] is ν-negligible for µ-almost every x, so (µ× ν)V∞ = 0; similarly, (µ× ν)V0 = 1. There is

therefore a Σ⊗̂T-measurable g : X × Y → [0,∞[ such that Vq△{(x, y) : g(x, y) ≥ q} is (µ× ν)-negligible for
every q ∈ Q. In this case,

{x : f(x, y) 6= g(x, y)} is µ-negligible for ν-almost every y,

{y : f(x, y) 6= g(x, y)} is ν-negligible for µ-almost every x,

and

∫∫
f(x, y)µ(dx)ν(dy) =

∫∫
g(x, y)µ(dx)ν(dy)

=

∫∫
g(x, y)ν(dy)µ(dx) =

∫∫
f(x, y)ν(dy)µ(dx)

by 252H.

(e) Finally, if f is unbounded, set fk(x, y) = min(f(x, y), k) for each k ∈ N. Then

∫∫
f(x, y)µ(dx)ν(dy) = lim

k→∞

∫∫
fk(x, y)µ(dx)ν(dy)

= lim
k→∞

∫∫
fk(x, y)ν(dy)µ(dx) =

∫∫
f(x, y)ν(dy)µ(dx).

537X Basic exercises (a)(i) Let (X,Σ, µ) be a measure space such that singletons are negligible and
cfN (µ) = ω1. Show that there is a Sierpiński subset of X. (ii) Show that if µ is Lebesgue measure on R

and cfN (µ) = ω1, then there is a strongly Sierpiński subset of R.

(b) Show that for any uncountable cardinal κ there is a purely atomic probability space with a strongly
Sierpiński set with cardinal κ.

(c) Let (X,Σ, µ) be a measure space. Show that the union of any sequence of Sierpiński sets in X is
again a Sierpiński set in X.

Measure Theory
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(d) Let (X,Σ, µ) be a measure space and Y any subspace of X. Show that a subset of Y is a Sierpiński
set for the subspace measure on Y iff it is a Sierpiński set for µ.

(e) Suppose that λ is an infinite cardinal and the usual measure νλ on {0, 1}λ has a Sierpiński set with
cardinal κ. Show that νλ has a Sierpiński set A such that #(A ∩ E) = κ whenever νλE > 0.

(f) Let (X, ρ) be a non-separable metric space with r-dimensional Hausdorff measure, where r > 0. Show
that X has a Sierpiński subset with cardinal equal to the topological density of X.

>>>(g) Suppose that nonN < covN , where N is the null ideal of Lebesgue measure on R. Let (X,T,Σ, µ)
and (Y,S,T, ν) be Radon probability spaces of countable Maharam type, and f : X×Y → [0,∞[ a function
such that I =

∫∫
f(x, y)µ(dx)ν(dy) and I ′ =

∫∫
f(x, y)ν(dy)µ(dx) are both defined. Show that I = I ′.

>>>(h) Let (X,Σ, µ) be a probability space in which there is a well-ordered family in N (µ) with union X;
e.g., because nonN (µ) = #(X) or addN (µ) = covN (µ). Show that there is a function f : X ×X → [0, 1]
such that

∫
f(x, y)µ(dx) = 0 for every y ∈ X and

∫
f(x, y)µ(dy) = 1 for every x ∈ X.

>>>(i) (In this exercise, all integrals are to be taken with respect to one-dimensional Lebesgue measure

µ.) (i) Find a function f : [0, 1]2 → {0, 1} such that
∫ ∫

f(x, y)dxdy = 1 but
∫∫

f(x, y)dydx = 0. (Hint :
there is a disjoint family 〈Ay〉y∈[0,1] of sets of full outer measure.) (ii) Find a function f : [0, 1]2 → {0, 1}
such that

∫∫
f(x, y)dxdy = 1 but

∫ ∫
f(x, y)dydx = 0. (iii) Find a function f : [0, 1]2 → {0, 1} such

that
∫ ∫

f(x, y)dxdy = 1 but
∫ ∫

f(x, y)dydx = 0. (Hint : enumerate [0, 1] as 〈xξ〉ξ<c in such a way that

{xξ : ξ < nonN (µ)} has full outer measure; set f(xξ, xη) = 1 if η < ξ.)

537Y Further exercises (a) Let 〈(Xj ,Σj , µj)〉j≤m be a finite sequence of probability spaces and 〈κj〉j≤m

a sequence of cardinals such that Xj has a subset with cardinal κj which is not covered by κj−1 negligible
sets (if j ≥ 1) and is not negligible (if j = 0). Set X =

∏
j≤mXj , and for k ≤ m write Zk for

∏
j≤m,j 6=kXj .

Suppose that for each k ≤ m we have a set Ak ⊆ X such that, identifying X with Xk × Zk, {z : (x, z) ∈
Ak} ⊆ Zk is negligible for the product measure on Zk whenever x ∈ Xk. Show that

⋃
k≤mAk 6= X.

537Z Problems (a) Is it relatively consistent with ZFC to suppose that R, with Lebesgue measure, has
a Sierpiński subset but no strongly Sierpiński subset?

(b) Is it relatively consistent with ZFC to suppose that there is a probability space (X,µ) such that
(X,µ) has a Sierpiński set but its power (XN, µN) does not?

537 Notes and comments It is easy to see that if c = ω1 then there is a strongly Sierpiński set with
cardinal ω1 for Lebesgue measure (537Xa). Countable-cocountable measures have strongly Sierpiński sets
for trivial reasons. To eliminate all Sierpiński sets (on the definition of 537A) from atomless complete locally
determined measure spaces, it is enough to ensure that the uniformity of Lebesgue measure is greater than
ω1 (537Bb). For the simplest models with non-trivial Sierpiński sets with cardinal greater than ω1, see 552E
below.

The ‘entangled sets’ of 537C-537G belong rather to combinatorics than to measure theory; I go as far as
I do into this theory because it is interesting in view of 552E. But it includes a proof that if the continuum
hypothesis is true then there are two ccc partially ordered sets whose product is not ccc, which in its own
context is of great importance.

Fubini’s theorem is so important in measure theory that exploration of its boundaries has been a perennial
challenge. I gave elementary examples in 252Xf-252Xg to show that as soon as we abandon the requirement
that

∫∫
|f(x, y)|dxdy < ∞ our repeated integrals can be expected to be unreliable. But for non-negative

functions f on σ-finite spaces, measurability is enough to ensure that repeated integrals are equal (252H).
In this section I look for results which will be valid for non-measurable functions. In 537I-537J we have
a rather esoteric example – or, some would say, an example from a topic which I have neglected in this
book – which is unusual in that it is a theorem of ZFC; for a note on its ancestry see Fremlin 93, 5L. In
537K-537L we see that, in the presence of a sufficient supply of Sierpiński sets, for instance, we must have
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∫∫
f(x, y)dxdy =

∫∫
f(x, y)dydx for ordinary bounded real-valued functions on the product of probability

spaces, as long as both repeated integrals are defined. The argument here depends on using the strong law
of large numbers to replace an integral

∫
f(x, y)dx by the limit of a sequence of averages of values f(xi, y).

This is why the Sierpiński sets must be available not in the original probability spaces X0, . . . , Xm but in
their powers XN

j . Of course for our favourite spaces, starting with [0, 1], (XN, µN) is isomorphic to (X,µ),
so this does not seem too large a step; but it begs an obvious question (537Zb). For any result of this kind
we certainly need some special axiom (537Xh).

In 537L the hypothesis includes strong ‘separate measurability’ conditions; we need not only separate
measurability, but measurability of the functions x 7→

∫
f(x, y)dy and y 7→

∫
f(y, x)dx. With a different

set-theoretic hypothesis we can relax these (537S). I approach this form through ideas from Humke &

Laczkovich 05, where there is a careful analysis of repeated integrals of the form
∫ ∫

, etc. My own

version is in 537N-537Q. At every step there are ZFC examples to show that we cannot change the formulae

involving
∫

,
∫

without disaster (537Xi); but it is not so clear that the set-theoretic hypotheses offered are

unimprovable.

Version of 18.2.14

538 Filters and limits

A great many special types of filter have been studied. In this section I look at some which are particularly
interesting from the point of view of measure theory: Ramsey ultrafilters, measure-converging filters and
filters with the Fatou property. About half the section is directed towards Benedikt’s theorem (538M)
on extensions of perfect probability measures; on the way we need to look at measure-centering ultrafilters
(538G-538K) and iterated products of filters (538E, 538L). The second major topic here is a study of ‘medial
limits’ (538P-538S); these are Banach limits of a very special type. In between, the measure-converging
property (538N) and the Fatou property (538O) offer some intriguing patterns.

538A Filters For ease of reference, I begin the section with a list of the special types of filter on N which
we shall be looking at later.

Definitions Let F be a filter on N.

(a) F is free if it contains every cofinite subset of N, that is, includes the Fréchet filter.

(b) F is a p-point filter if it is free and for every sequence 〈An〉n∈N in F there is an A ∈ F such that
A \An is finite for every n ∈ N. (Compare 5A6Ga.)

(c) F is Ramsey or selective if it is free and for every f : [N]2 → {0, 1} there is an A ∈ F such that f
is constant on [A]2.

(d) F is rapid if it is free and for every sequence 〈tn〉n∈N of real numbers which converges to 0, there is
an A ∈ F such that

∑
n∈A |tn| is finite. Note that a free filter F on N is rapid iff for every f ∈ NN there

is an A ∈ F such that #(A ∩ f(k)) ≤ k for every k ∈ N. PPP (i) If F is rapid and f ∈ NN, let g ∈ NN be a

strictly increasing sequence such that f ≤ g. Set ti = 2 if i < g(0),
1

k+1
if g(k) ≤ i < g(k + 1); then there

is an A ∈ F such that
∑

i∈A ti is finite; as F is free, there is an A ∈ F such that
∑

i∈A ti ≤ 1, in which
case #(A ∩ f(k)) ≤ #(A ∩ g(k)) ≤ k for every k ∈ N. (ii) If F satisfies the condition and 〈ti〉i∈N → 0, take
a strictly increasing f ∈ NN such that |ti| ≤ 2−k whenever k ∈ N and i ≥ f(k); let A ∈ F be such that
#(A ∩ f(k)) ≤ k for every k; then

∑
i∈A |ti| ≤

∑∞
k=0 2−k#(A ∩ f(k + 1) \ f(k)) is finite. QQQ

(e) F is nowhere dense if for every sequence 〈tn〉n∈N in R there is an A ∈ F such that {tn : n ∈ A} is
nowhere dense.

(f) F is measure-centering or has property M if whenever A is a Boolean algebra, ν : A → [0,∞[ is
an additive functional, and 〈an〉n∈N is a sequence in A such that infn∈N νan > 0, there is an A ∈ F such
that {an : n ∈ A} is centered.

c© 2009 D. H. Fremlin
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(g) F is measure-converging if whenever (X,Σ, µ) is a probability space, 〈En〉n∈N is a sequence in Σ,
and limn→∞ µEn = 1, then

⋃
A∈F

⋂
n∈AEn is conegligible.

(h) F has the Fatou property if whenever (X,Σ, µ) is a probability space, 〈En〉n∈N is a sequence in Σ,
and X =

⋃
A∈F

⋂
n∈AEn, then limn→F µEn is defined and equal to 1.

(i) For any countably infinite set I, I will say that a filter F on I is free, or a p-point filter, or Ramsey,
etc., if it is isomorphic to such a filter on N. Of course this usage is possible only because every property here
is invariant under permutations of N. For ‘rapid’ and ‘measure-converging’ filters, we need an appropriate
translation of ‘sequence converging to 0’; the corresponding notion on an arbitrary index set I is a function
u ∈ ccc0(I), that is, a real-valued function u on I such that {i : i ∈ I, |u(i)| ≥ ǫ} is finite for every ǫ > 0; if
we give I its discrete topology, c0(I) is C0(I) as defined in 436I.

538B We need a number of basic ideas which can profitably be examined in a rather more general
context. I start with a fundamental pre-order on the class of all filters.

The Rudin-Keisler ordering If F , G are filters on sets I, J respectively, I will say that F ≤RK G if there
is a function f : J → I such that

F = f [[G]] = {A : A ⊆ I, f−1[A] ∈ G},

the filter on I generated by {f [B] : B ∈ G}. (I ought to remark that while this is a standard idea for
ultrafilters, in the case of general filters the terminology is not well established.) Of course ≤RK is reflexive
and transitive. If F ≤RK G and G is an ultrafilter, then F is an ultrafilter (2A1N). If F is a principal
ultrafilter then F ≤RK G for every filter G.

538C Lemma (a) If I is a set, F is an ultrafilter on I and f : I → I is a function such that f [[F ]] = F ,
then {i : f(i) = i} ∈ F .

(b) If I is a set, F and G are ultrafilters on I, F ≤RK G and G ≤RK F , then there is a permutation
h : I → I such that h[[F ]] = G; that is, F and G are isomorphic.

proof (a) It is enough to consider the case in which I = κ is a cardinal.

(i) {ξ : ξ < κ, ξ ≤ f(ξ)} ∈ F . PPP Define 〈Dn〉n∈N, 〈En〉n∈N by saying that

D0 = κ, Dn+1 = {ξ : ξ ∈ Dn, f(ξ) ∈ Dn, f(ξ) < ξ}, En = Dn \Dn+1

for n ∈ N. If ξ ∈ Dn then ξ > f(ξ) > . . . > fn(ξ), so
⋂

n∈NDn = ∅ and 〈En〉n∈N is a partition of κ.

If ξ ∈ En+1 then fn+1(ξ) < fn(ξ) < . . . < ξ, fn+1(ξ) ≤ fn+2(ξ), so f(ξ) ∈ En. Set E =
⋃

n≥1E2n,

E′ =
⋃

n∈NE2n+1; then f [E] ⊆ E′ is disjoint from E, so E /∈ F . Also f [E′] ⊆ E ∪ E0 is disjoint from E′,
so E′ /∈ F . Because F is an ultrafilter, E0 ∈ F , as claimed. QQQ

(ii) If A ⊆ I and A /∈ F then B =
⋃

n∈N(fn)−1[A] does not belong to F . PPP For ξ ∈ B set m(ξ) =
min{n : n ∈ N, fn(ξ) ∈ A}. If m(ξ) > 0 then m(f(ξ)) = m(ξ)− 1. So setting C = {ξ : m(ξ) is even and not
0}, C ′ = {ξ : m(ξ) is odd} we have f [C] ∩ C = ∅, f [C ′] ∩ C ′ = ∅ and B ⊆ A ∪ C ∪ C ′; so B /∈ F . QQQ

Turning this round, if A ∈ F then
⋃

n∈N(fn)−1[κ \A] /∈ F and
⋂

n∈N(fn)−1[A] ∈ F .

(iii) For ξ < κ set

g(ξ) = min{ζ : there is some n ∈ N such that fn(ζ) = ξ}.

Then g[[F ]] = F . PPP If A ∈ F then F contains
⋂

n∈N(fn)−1[A] ⊆ g−1[A], so g−1[A] ∈ F . Thus F ⊆ g[[F ]];
as F is an ultrafilter, F = g[[F ]]. QQQ

Now g(ξ) ≤ ξ for every ξ < κ; applying (i) to g, we see that G = {ξ : g(ξ) = ξ} ∈ F . But consider
H = {ξ : ξ < f(ξ)}. Then g(η) < η for every η ∈ f [H], so f [H] /∈ F and H /∈ F . Since we already know
that {ξ : ξ ≤ f(ξ)} ∈ F , we see that {ξ : f(ξ) = ξ} belongs to F , as claimed.

(b) Let f , g : I → I be such that f [[F ]] = G and g[[G]] = F . Then (gf)[[F ]] = g[[f [[F ]] ]] = F , so
J0 = {i : g(f(i)) = i} ∈ F , by (a). Similarly, J1 = {i : f(g(i)) = i} belongs to G. Set J = J0 ∩ f−1[J1] ∈ F ;
then g(f(i)) = i for every i ∈ J and f(g(j)) = j for every j ∈ f [J ], so f↾J and g↾f [J ] are inverse bijections
between J ∈ F and f [J ] ∈ G. If J is finite, then certainly #(I \ J) = #(I \ f [J ]) and there is an extension
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of f↾J to a permutation of I. If J is infinite, let J ′ ⊆ J be a set such that #(J ′) = #(J \ J ′) = #(J) and
J ′ ∈ F ; then #(I \ J ′) = #(I \ f [J ′]) = #(I) so there is an extension of f↾J ′ to a permutation of I.

Thus in either case we have a permutation h : I → I and a K ∈ F such that K ⊆ J and h↾K = f↾K.
But now h[[F ]] = G and h is an isomorphism between (I,F) and (I,G).

538D Finite products of filters (a) Suppose that F , G are filters on sets I, J respectively. I will write
F ⋉ G for

{A : A ⊆ I × J , {i : A[{i}] ∈ G} ∈ F}.

It is easy to check that F ⋉ G is a filter. (Compare the skew product I ⋉ J of ideals defined in 527Ba.)

(b) If F and G are ultrafilters, so is F ⋉ G. PPP If A ⊆ I × J and A /∈ F ⋉ G, then {i : A[{i}] ∈ G} /∈ F}
and

{i : ((I × J) \A)[{i}] ∈ G} = {i : i ∈ I, J \A[{i}] ∈ G} = I \ {i : A[{i}] ∈ G} ∈ F ,

so (I × J) \A ∈ F ⋉ G. QQQ

(c) If F , G and H are filters on I, J , K respectively, then the natural bijection between (I × J) × K
and I × (J × K) is an isomorphism between (F ⋉ G) ⋉ H and F ⋉ (G ⋉ H). PPP If A ⊆ I × (J × K) and
B = {(i, j), k) : (i, (j, k)) ∈ A}, then

A ∈ F ⋉ (G ⋉H) ⇐⇒ {i : A[{i}] ∈ G ×H} ∈ F
⇐⇒ {i : {j : (A[{i}])[{j}] ∈ H} ∈ G} ∈ F
⇐⇒ {(i, j) : (A[{i}])[{j}] ∈ H} ∈ F ⋉ G
⇐⇒ {(i, j) : B[{(i, j)}] ∈ H} ∈ F ⋉ G
⇐⇒ B ∈ (F ⋉ G) ⋉H. QQQ

(d) It follows that we can define a product F0 ⋉ . . . ⋉ Fn of any finite string F0, . . . ,Fn of filters, and
under the natural identifications of the base sets we shall have (F0⋉ . . .⋉Fn)⋉ (Fn+1⋉ . . .⋉Fm) identified
with F0 ⋉ . . .⋉ Fm whenever F0, . . . ,Fn, . . . ,Fm are filters.

(e) For any filters F and G, F ≤RK F ⋉ G and G ≤RK F ⋉ G. PPP Taking the base sets to be I, J
respectively and f(i, j) = i, g(i, j) = j for i ∈ I and j ∈ J , we have F = f [[F ⋉ G]] and G = g[[F ⋉ G]]. QQQ

Inducing on n, we see that Fn ≤RK F0⋉ . . .⋉Fn whenever F0, . . . ,Fn are filters; consequently Fm ≤RK

F0 ⋉ . . .⋉ Fn whenever F0, . . . ,Fn are filters and m ≤ n.

(f) If F , F ′, G and G′ are filters, with F ≤RK F ′ and G ≤RK G′, then F ⋉ G ≤RK F ′ ⋉ G′. PPP Let the
base sets of the filters be I, I ′, J and J ′, and let f : I ′ → I and g : J ′ → J be such that F = f [[F ′]] and
G = g[[G′]]. Set h(i, j) = (f(i), g(j)) for i ∈ I and j ∈ J . If A ⊆ I × J , then

h−1[A] ∈ F ′ ⋉ G′ ⇐⇒ {i : (h−1[A])[{i}] ∈ G′} ∈ F ′

⇐⇒ {i : g−1[A[{f(i)}]] ∈ G′} ∈ F ′

⇐⇒ {i : A[{f(i)}] ∈ G} ∈ F ′

⇐⇒ {i : A[{i}] ∈ G} ∈ F ⇐⇒ A ∈ F ⋉ G.

So F ⋉ G = h[[F ′ ⋉ G′]] and F ⋉ G ≤RK F ′ ⋉ G′. QQQ

Accordingly F0 ⋉ . . .⋉ Fn ≤RK G0 ⋉ . . .⋉ Gn whenever Fi ≤RK Gi for every i ≤ n.

(g) It follows that if F0, . . . ,Fn are filters and k0 < . . . < km ≤ n, then Fk0
⋉. . .⋉Fkm

≤RK F0⋉. . .⋉Fn.
PPP Induce on m to see that Fk0

⋉ . . .⋉ Fkm
≤RK F0 ⋉ . . .⋉ Fkm

. QQQ
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538E There are many variations on the construction here. A fairly elaborate extension will be needed
in 538L below.

Iterated products of filters (a) First, a scrap of notation for the rest of the first half of this section
(down to 538M). Set S =

⋃
i∈N Ni. Fix on a family 〈θ(ξ, k)〉1≤ξ<ω1,k∈N such that each 〈θ(ξ, k)〉k∈N is a

non-decreasing sequence running over a cofinal subset of ξ. (You will probably prefer to suppose that when
ξ = η + 1 is a successor ordinal, then θ(ξ, k) = η for every k ∈ N.)

(b) Now suppose that ζ is a non-zero countable ordinal. Let 〈Fξ〉1≤ξ≤ζ be a family of filters on N. For
ξ ≤ ζ, define Gξ ⊆ PS as follows. Start by taking G0 to be the principal filter generated by {∅}. For
1 ≤ ξ ≤ ζ, set

Gξ = {A : A ⊆ S, {k : k ∈ N, {τ : <k>aτ ∈ A} ∈ Gθ(ξ,k)} ∈ Fξ}.

(See 5A1C for the notation here.) It is elementary to check that every Gξ is a filter, and that if every Fξ is
free, so is every Gξ. Moreover, if every Fξ is an ultrafilter, so is every Gξ.

(c) Continuing from (b), we find that Fξ ≤RK Gξ whenever 1 ≤ ξ ≤ ζ and Gη ≤RK Gξ whenever
0 ≤ η ≤ ξ ≤ ζ. PPP Induce on ξ. (i) If ξ ≥ 1, define f : S → N by setting f(τ) = τ(0) if τ 6= ∅, f(∅) = 0.
Then, for B ⊆ N,

f−1[B] ∈ Gξ ⇐⇒ {k : {τ : <k>aτ ∈ f−1[B]} ∈ Gθ(ξ,k)} ∈ Fξ

⇐⇒ B ∈ Fξ,

so Fξ = f [[Gξ]] ≤RK Gξ. (ii) If η = ξ ≤ ζ then of course Gη ≤RK Gξ. (iii) If 0 ≤ η < ξ then there is a k0 such
that η ≤ θ(ξ, k) for k ≥ k0. For k ≥ k0, Gη ≤RK Gθ(ξ,k) by the inductive hypothesis; let gk : S → S be such
that Gη = gk[[Gθ(ξ,k)]]. Now define g : S → S by setting

g(τ) = gk(σ) if k ≥ k0 and τ = <k>aσ,

= ∅ otherwise.

For B ⊆ S,

g−1[B] ∈ Gξ ⇐⇒ {k : {σ : <k>aσ ∈ g−1[B]} ∈ Gθ(ξ,k)} ∈ Fξ

⇐⇒ {k : k ≥ k0, {σ : g(<k>aσ) ∈ B} ∈ Gθ(ξ,k)} ∈ Fξ

(because Fξ is free)

⇐⇒ {k : k ≥ k0, {σ : gk(σ) ∈ B} ∈ Gθ(ξ,k)} ∈ Fξ

⇐⇒ {k : k ≥ k0, B ∈ Gη} ∈ Fξ ⇐⇒ B ∈ Gη,

so Gη = g[[Gξ]] ≤RK Gξ. QQQ

(d) It follows that if 1 ≤ ξ0 < . . . < ξn ≤ ζ then Fξn ⋉ . . .⋉ Fξ0 ≤RK Gξn . PPP Induce on the pair (ξn, n).
If ξn = 1 then n = 0 and we just have F1 ≤RK G1, as in part (i) of the proof of (c). For the inductive step
to ξn = ξ > 1, if n = 0 then again we need only note that Fξ0 = Fξ ≤RK Gξ. If n > 0, let k0 ≥ 1 be such
that ξn−1 ≤ θ(ξ, k) for every k ≥ k0. For k ≥ k0,

Fξn−1
⋉ . . .⋉ Fξ0 ≤RK Gξn−1

≤ Gθ(ξ,k)

by the inductive hypothesis, so we have a function gk : S → Nn such that Fξn−1
⋉ . . .⋉ Fξ0 = gk[[Gθ(ξ,k)]].

Define g : S → Nn+1 by setting

g(τ) = <k>agk(σ) if k ≥ k0 and τ = <k>aσ,

= the constant function with value 0 otherwise.

Then, for B ⊆ Nn+1,
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g−1[B] ∈ Gξ ⇐⇒ {k : {σ : g(<k>aσ) ∈ B} ∈ Gθ(ξ,k)} ∈ Fξ

⇐⇒ {k : k ≥ k0, {σ : <k>agk(σ) ∈ B} ∈ Gθ(ξ,k)} ∈ Fξ

⇐⇒ {k : k ≥ k0, {σ : gk(σ) ∈ Bk} ∈ Gθ(ξ,k)} ∈ Fξ

(writing Bk = {σ : <k>aσ ∈ B} ⊆ Nn for k ∈ N)

⇐⇒ {k : k ≥ k0, Bk ∈ Fξn−1
⋉ . . .⋉ Fξ0} ∈ Fξ

⇐⇒ {k : k ∈ N, Bk ∈ Fξn−1
⋉ . . .⋉ Fξ0} ∈ Fξ

⇐⇒ B ∈ Fξn ⋉ . . .⋉ Fξ0 .

Thus g witnesses that Fξn ⋉ . . .⋉ Fξ0 ≤RK Gξn , and the induction proceeds. QQQ
Consequently Fξn ⋉ . . .⋉ Fξ0 ≤RK Gζ whenever 1 ≤ ξ0 < . . . < ξn ≤ ζ.

(e) The following special remark will be useful in Theorem 538L. Suppose that we are given Aξ ∈ Fξ

for each ξ ∈ [1, ζ]. Define T ⊆ S and α : T → [0, ζ] as follows. Start by saying that ∅ ∈ T and α(∅) = ζ.
Having determined T ∩ Nn and α↾T ∩ Nn, where n ∈ N, then for τ ∈ Nn+1 say that τ ∈ T iff τ is of the
form σa<k> where

σ ∈ T ∩ Nn, α(σ) > 0, k ∈ Aα(σ), σ(i) < k for every i < n,

and in this case set α(τ) = θ(α(σ), k). Continue. Observe that α(τ) < α(σ) whenever σ, τ ∈ T and τ
properly extends σ.

Suppose that D ∈ ⋂
1≤ξ≤ζ Fξ. Then T ∗

D = {τ : τ ∈ T ∩⋃
n∈ND

n, α(τ) = 0} belongs to Gζ . PPP I aim to

show by induction on ξ that if τ ∈ T ∩⋃
n∈ND

n and α(τ) = ξ then {σ : τaσ ∈ T ∗
D} belongs to Gξ. If ξ = 0

then of course {σ : τaσ ∈ T ∗
D} = {∅} ∈ G0. For the inductive step to ξ > 0,

{k : {σ : τa<k>aσ ∈ T ∗
D} ∈ Gθ(ξ,k)}

⊇ {k : k ∈ D, τa<k> ∈ T, α(τa<k>) = θ(ξ, k)}
(by the inductive hypothesis)

⊇ {k : k ∈ Aξ ∩D, τ(i) < k for every i < dom τ}
∈ Fξ,

so {σ : τaσ ∈ T ∗
D} ∈ Gξ. At the end of the induction, we can apply this to τ = ∅ and ξ = ζ. QQQ

538F Ramsey filters There is an extensive and fascinating theory of Ramsey filters; see, for instance,
Comfort & Negrepontis 74. Here, however, I will give only those fragments which are directly relevant
to the other work of this section.

Proposition (a) A Ramsey filter on N is a rapid p-point ultrafilter.
(b) If F is a Ramsey ultrafilter on N, G is a non-principal ultrafilter on N, and G ≤RK F , then F and G

are isomorphic and G is a Ramsey ultrafilter.
(c) Let F be a Ramsey filter on N. Suppose that 〈An〉n∈N is any sequence in F . Then there is an A ∈ F

such that n ∈ Am whenever m, n ∈ A and m < n.
(d) Let F be a Ramsey filter on N. Let S ⊆ [N]<ω be such that ∅ ∈ S and {n : I ∪ {n} ∈ S} ∈ F for

every I ∈ S. Then there is an A ∈ F such that [A]<ω ⊆ S.
(e) If F is a countable family of distinct Ramsey filters on N, there is a disjoint family 〈AF 〉F∈F of subsets

of N such that AF ∈ F for every F ∈ F.
(f) Let F be a countable family of non-isomorphic Ramsey ultrafilters on N, and h : N → [F]<ω a function.

Suppose that we are given an AF ∈ F for each F ∈ F. Then there is an A ∈ ⋂
F such that whenever i,

j ∈ A, F ∈ h(i) and i < j, there is a k ∈ AF such that i < k < j.
(g) If mcountable = c, there is a Ramsey ultrafilter on N.

proof (a) Let F be a Ramsey filter on N.
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(i) F is an ultrafilter. PPP Let A be any subset of N. Define f : [N]2 → {0, 1} by setting f(I) = 1 if
#(I ∩ A) = 1, 0 otherwise. Then we have an I ∈ F such that f is constant on [I]2. As F is free, #(I) ≥ 3
and the constant value of f cannot be 1. So either I ⊆ A and A ∈ F , or I ∩A = ∅ and N \A ∈ F . As A is
arbitrary, F is an ultrafilter. QQQ

(ii) F is a p-point filter. PPP Let 〈In〉n∈N be a sequence in F . Set Kn = (N\n)∩⋂i<n Ii, Jn = Kn\Kn+1

for each n; then 〈Jn〉n∈N is a partition of N. Define f : [N]2 → {0, 1} by setting f(a) = 0 if there is an n ∈ N

such that a ⊆ Jn, 1 otherwise. Let I ∈ F be such that f is constant on [I]2.
Since N\Jn ∈ F for every n, there must be two points in I belonging to different Jn; so that the constant

value of f must be 1, and no two points of I belong to the same Jn. In particular, I ∩ Jn is always finite,
and I \ In ⊆ ⋃

i≤n I ∩ Ji is always finite. As 〈In〉n∈N is arbitrary, F is a p-point filter. QQQ

(iii) F is rapid. PPP Let 〈tn〉n∈N be a sequence converging to 0. For each n, set In = {i : |ti| ≤ 2−n}; as
F is free, In ∈ F . Looking again at the proof of (ii) above, we see that the construction there gives us an
I ∈ F such that #(I \ In) ≤ n+ 1 for every n. We can therefore enumerate I as 〈kn〉n∈N in such a way that
kn+1 ∈ In for every n. But this means that

∑
i∈I |ti| =

∑∞
n=0 |tkn

| ≤ |tk0
| +

∑∞
n=1 2−n+1 <∞.

As 〈tn〉n∈N is arbitrary, F is rapid. QQQ

(b) Let f : N → N be such that f [[F ]] = G. For K ∈ [N]2, set h(K) = 0 if f↾K is constant, 1 otherwise.
Then there is an A ∈ F such that h is constant on [A]2, that is, f is either constant or injective on A. Since
f [A] ∈ G, f [A] is infinite, so f is injective on A. Let g : N → N be any function extending (f↾A)−1; then
gf(n) = n for every n ∈ A, so

(gf)[[F ]] = {I : (gf)−1[I] ∈ F} = {I : A ∩ (gf)−1[I] ∈ F} = {I : A ∩ I ∈ F} = F .

But this means that g[[G]] = F and F ≤RK G.
By 538Cb, F and G are isomorphic, so G also must be a Ramsey ultrafilter.

(c) For m < n in N, set h({m,n}) = 1 if n ∈ Am, 0 otherwise. Then there is an A ∈ F such that h↾[A]2

is constant. Setting k = minA, A meets Ak \ (k + 1), so h takes the value 1 on [A]2; consequently n ∈ Am

whenever m, n ∈ A and m < n.

(d) For n ∈ N, set

An = {i : I ∪ {i} ∈ S whenever I ⊆ n+ 1 and I ∈ S} ∈ F .

By (c), there is an A ∈ F such that n ∈ Am whenever m, n ∈ A and m < n; and we can suppose that
A ⊆ A0, so that {n} ∈ S for every n ∈ A. Now an easy induction on n shows that P(A ∩ n) ⊆ S for every
n, so [A]<ω ⊆ S.

(e) Enumerate F as 〈Fn〉n<#(F). For distinct m, n < #(F) there is a Bmn ∈ Fm \ Fn. PPP We know that
there is a set in Fm△Fn; now either this set or its complement will serve for Bmn. QQQ Because every member
of F is a p-point filter ((a) above), we can find for each n < #(F) a set Cn ∈ Fn such that Cn \ (Bnm \Bmn)
is finite for every m < #(F) such that m 6= n. Set AFn

= Cn \⋃m<n Cm for n < #(F); then 〈AF 〉F∈F is
disjoint. Since

Cm ∩ Cn ⊆ (Cm \Bmn) ∪ (Cn ∩Bmn)

is finite whenever m 6= n, Cn \AFn
is finite and AFn

∈ Fn for each n < #(F).

(f)(i) We can suppose that h(i) ⊆ h(j) whenever i ≤ j, and that F =
⋃

i∈N h(i). Let g : N → N be a
strictly increasing function such that g(0) > 0 and whenever i ∈ N and F ∈ h(i), there is a k ∈ AF such
that i < k < g(i). Set lm = gm(0) and Jm = lm+1 \ lm for each m, so that 〈Jm〉m∈N is a partition of N. Let
〈aξ〉ξ<ω1

be a family of infinite subsets of N, all containing 0, such that aξ ∩ aη is finite for all distinct ξ,
η < ω1 (5A1Ga), and set Mξ =

⋃
m∈aξ

Jm for each ξ; then Mξ ∩Mη is finite for all distinct ξ, η < ω1. It

follows that each member of F can contain at most one Mξ, and there is a ξ < ω1 such that Mξ does not
belong to any member of F, that is, M = N \Mξ belongs to

⋂
F.

(ii) Define f : N → N by setting f(n) = max{m : m ∈ aξ, lm ≤ n} for n ∈ N. For each F ∈ F, f [[F ]]
is isomorphic to F , by (b). It follows that if F , F ′ are distinct members of F, f [[F ]] 6= f [[F ′]]. Because F
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is countable, there is a disjoint family 〈KF 〉F∈F of sets such that KF ∈ f [[F ]] for every F ∈ F ((e) above).
Set LF = f−1[KF ] ∈ F for each F ∈ F.

(iii) For i < j in N, set h({i, j}) = 1 if j < g(i), 0 otherwise. F ∈ F, there is an L′
F ∈ F such that

L′
F ⊆ LF and h is constant on [L′

F ]2. As L′
F is infinite, the constant value cannot be 1 and must be 0, that

is, g(i) ≤ j whenever i, j ∈ L′
F and i < j.

(iv) Consider A =
⋃

F∈F L
′
F ∩M . Then A ∈ ⋂

F. Suppose that i, j ∈ A and i < j; then g(i) ≤ j. PPP
Let F , F ′ ∈ F be such that i ∈ L′

F and j ∈ L′
F ′ .

case 1 If F = F ′, then both i and j belong to L′
F , so g(i) ≤ j by (iii).

case 2 If F 6= F ′, then i ∈ LF and j ∈ LF ′ , so f(i) ∈ KF and f(j) ∈ KF ′ and f(i) 6= f(j). Let m,
n ∈ N be such that i ∈ Jm and j ∈ Jn; since j /∈ Mξ, n /∈ aξ and f(j) < n. As KF and KF ′ are disjoint,
f(i) < f(j). It follows that m < f(j) < n, so

g(i) ≤ g(lm+1) ≤ g(lf(j)) ≤ ln ≤ j

and g(i) ≤ j in this case also. QQQ
By the choice of g, this means that if F ∈ h(i) there must be a k ∈ AF such that i < k < j, as required.

(g)(i) Suppose that E ⊆ PN is a filter base, containing N \n for every n ∈ N, and with cardinal less than
mcountable. Let f : [N]2 → {0, 1} be a function. Then there is an F ⊆ N such that f is constant on [F ]2 and
F meets every member of E . PPP Set

E+ = {J : J ⊆ N, J ∩ E 6= ∅ for every E ∈ E},

Sn = {n} ∪ {i : i ∈ N \ {n}, f({i, n}) = 1},

S′
n = {n} ∪ {i : i ∈ N \ {n}, f({i, n}) = 0}

for n ∈ N.

case 1 Suppose that {n : n ∈ J , J ∩ Sn ∈ E+} belongs to E+ for every J ∈ E+. Set

I = {I : I ∈ [N]<ω, f(K) = 1 for every K ∈ [I]2, N ∩⋂
i∈I Si ∈ E+}.

If I ∈ I, J = N ∩⋂
i∈I Si and E ∈ E , then J ∈ E+; because E is a filter base, J ∩ E ∈ E+; by hypothesis,

{n : n ∈ J ∩E, J ∩E ∩ Sn ∈ E+} belongs to E+ and is not empty. There is therefore some n ∈ J ∩E such
that J ∩ Sn ∈ E+, in which case I ∪ {n} ∈ I.

In particular, there is some k ∈ N such that {k} ∈ I. Set

C = {α : α ∈ NN, {α(i) : i < m} ∈ I for every m ∈ N}.

Then C is compact, and it is non-empty because the constant function with value k belongs to C. Moreover,
if α ∈ C and m ∈ N and E ∈ E , there is an n ∈ E such that {α(i) : i < m} ∪ {n} ∈ I, so there is a β ∈ C
such that β(i) = α(i) for i < m and β(m) = n. Thus {β : β ∈ C, E ∩ β[N] 6= ∅} is a dense open subset of
C. Writing M(C) for the ideal of meager subsets of C, covM(C) is either ∞ (if C has an isolated point)
or covM(R) = mcountable, by 522Wb and 522Sa; in either case, it is greater than #(E). There is therefore
some α ∈ C such that F = α[N] meets every member of E ; in this case, f is equal to 1 everywhere in [F ]2,
so we have an appropriate F .

case 2 Otherwise, there is a K ∈ E+ such that {n : n ∈ K, K ∩ Sn ∈ E+} does not belong to E+.
Let E0 ∈ E be disjoint from {n : n ∈ K, K ∩ Sn ∈ E+}. Set G = E ∪ {K ∩ E : E ∈ E}, so that G is a
filter base and #(G) < mcountable. If n ∈ E0 then there is an E′

n ∈ E disjoint from K ∩ Sn. So if J ∈ G+,
J ∩S′

n ⊇ (J ∩K ∩E′
n) \ {n} belongs to G+ for every n ∈ E0; accordingly {n : n ∈ J , J ∩S′

n ∈ G+} ⊇ J ∩E0

belongs to G+.
We can therefore apply the argument of case 1 to G and the function 1− f to see that there is an F ⊆ N,

meeting every member of G ⊇ E , such that f = 0 on [F ]2. QQQ

(ii) Enumerate the set of functions from [N]2 to {0, 1} as 〈fξ〉ξ<c. Choose a non-decreasing family
〈Eξ〉ξ≤c inductively, as follows; the inductive hypothesis will be that Eξ ⊆ PN is a filter base with cardinal
at most max(ω,#(ξ)). Start with E0 = {N \n : n ∈ N}. Given Eξ, where ξ < c = mcountable, use (i) to find a
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set Fξ, meeting every member of Eξ, such that fξ is constant on [Fξ]2; take Eξ+1 = Eξ ∪ {E ∩ Fξ : E ∈ Eξ}.
Given 〈Eη〉η<ξ, where ξ ≤ c is a non-zero limit ordinal, set Eξ =

⋃
η<ξ Eη.

At the end of the induction, let F be the filter generated by Ec ; then F is a Ramsey filter.

538G Measure-centering filters: Theorem Let F be a free filter on N. Write νω for the usual measure
on {0, 1}N, Tω for its domain and (Bω, ν̄ω) for its measure algebra. Then the following are equiveridical:

(i) F is measure-centering;
(ii) whenever 〈an〉n∈N is a sequence in Bω such that infn∈N ν̄ωan > 0, there is an A ∈ F such that

{an : n ∈ A} is centered;
(iii) whenever 〈Fn〉n∈N is a sequence in Tω such that infn∈N νωFn > 0, there is an A ∈ F such that⋂

n∈A Fn 6= ∅;
(iv) whenever (X,Σ, µ) is a perfect totally finite measure space and 〈Fn〉n∈N is a sequence in Σ,

µ∗(
⋃

A∈F

⋂
n∈A Fn) ≥ lim infn→F µFn;

(v) whenever µ is a Radon probability measure on PN, then µ∗F ≥ lim infn→F µEn, where En = {a :
n ∈ a ⊆ N} for each n.

proof (i)⇒(ii) is trivial.

not-(iv)⇒not-(ii) Suppose there are a perfect totally finite measure space (X,Σ, µ) and a sequence
〈Fn〉n∈N in Σ such that lim infn∈N µFn > µ∗(

⋃
A∈F

⋂
n∈A Fn). Let F be a measurable envelope of⋃

A∈F

⋂
n∈A Fn. Let T be the σ-subalgebra of Σ generated by {F} ∪ {Fn : n ∈ N}; then µ↾T is a

compact measure (451F). Let ν be its normalization
1

µX
µ↾T; then ν is a compact probability measure. We

see that lim infn→F νFn > νF ; take γ such that νF < γ < lim infn→F νFn, and set C = {n : νFn > γ}, so
that C ∈ F .

Let K be a compact class such that ν is inner regular with respect to K. For n ∈ C, let Kn ∈ K ∩ T be
such that Kn ⊆ Fn \ F and νKn ≥ γ − νF ; for n ∈ N \ C set Kn = X.

The measure algebra (B, ν̄) of ν is a probability algebra with countable Maharam type, so there is a
measure-preserving Boolean homomorphism π : B → Bω (332P or 333D). Set an = πK•

n for each n. Then

ν̄ωan = νKn ≥ γ − νF > 0

for every n. On the other hand, if A ∈ F , then A ∩ C ∈ F so
⋂

n∈A∩C Kn ⊆ ⋂
n∈A∩C Fn \ F is empty. As

Kn belongs to the compact class K for every n ∈ A ∩ C, there must be a finite set I ⊆ A ∩ C such that⋂
n∈I Kn = ∅, in which case infn∈I an = π(

⋂
n∈I Kn)• = 0. This shows that {an : n ∈ A} is not centered.

So 〈an〉n∈N witnesses that (ii) is false.

(iv)⇒(i) Suppose that (iv) is true. Take a Boolean algebra A, an additive functional ν : A → [0,∞[ and
a sequence 〈an〉n∈N in A such that infn∈N νan > 0. By 311E and 311H, we can suppose that A is the algebra
of open-and-closed subsets of a compact zero-dimensional space Z. In this case, there is a Radon measure
µ on Z extending ν (416Qa). Of course µ is perfect (416Wa), and lim infn→F µan ≥ infn∈N νan > 0, so (iv)
tells us that there is an A ∈ F such that

⋂
n∈A an 6= ∅, in which case {an : n ∈ N} is centered in A. As A, ν

and 〈an〉n∈N are arbitrary, F is measure-centering.

(iv)⇒(v) The point is simply that µ is perfect (416Wa again) and that
⋃

A∈F

⋂
n∈AEn =

⋃
A∈F{a : A ⊆ a ⊆ N} = F .

(v)⇒(iii) Suppose that (v) is true, and that 〈Fn〉n∈N is a sequence in Tω such that infn∈N νωFn > 0.
Define φ : {0, 1}N → PN by setting φ(x) = {n : x ∈ Fn} for each n. Then φ is almost continuous (418J), so
the image measure µ = νωφ

−1 is a Radon probability measure on PN (418I). Defining En as in (v), we have

µEn = νωφ
−1[En] = νωFn

for every n ∈ N, so

0 < infn∈N ν̄ωan ≤ lim infn→F µEn ≤ µ∗F = ν∗ωφ
−1[F ]

(451Pc). In particular, there must be an x ∈ φ−1[F ], so that A = {n : x ∈ Fn} belongs to F , and
⋂

n∈A Fn

is non-empty.
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(iii)⇒(ii) Assume (iii). Let 〈an〉n∈N be a sequence in Bω such that infn∈N ν̄ωan > 0. Let θ : Bω → Tω

be a lifting (341K), and set Fn = θan for each n. Then νωFn = ν̄ωan for every n, so (iii) tells us that there
is an A ∈ F such that

⋂
n∈A Fn 6= ∅. In this case, θ(infn∈I an) =

⋂
n∈I Fn 6= ∅ for every non-empty finite

I ⊆ A, so {an : n ∈ A} is centered.

538H Proposition (a) Any measure-centering filter on N is an ultrafilter.
(b) If F is a measure-centering ultrafilter on N and G is a filter on N such that G ≤RK F , then G is

measure-centering.
(c) Every Ramsey ultrafilter on N is measure-centering.
(d) (Shelah 98b) Every measure-centering ultrafilter on N is a nowhere dense ultrafilter.
(e) (Benedikt 99) If covN = c, where N is the Lebesgue null ideal, then there is a measure-centering

ultrafilter on N.

proof (a) Let a, b be disjoint non-zero elements of Bω, where (Bω, ν̄ω) is the measure algebra of the usual
measure on {0, 1}N, as in 538G. Given I ⊆ N, set an = a if n ∈ I, b if n ∈ N \ I. Then infn∈N ν̄ωan > 0, so
there is a J ∈ F such that {an : n ∈ J} is centered, in which case either J ⊆ I or J ∩ I = ∅; so that one of
I, N \ I must belong to F .

(b) Let f : N → N be such that f [[F ]] = G. Let (A, µ̄) be a totally finite measure algebra and 〈an〉n∈N a
sequence in A with infn∈N µ̄an > 0. Then 〈af(n)〉n∈N has the same property, so there is an A ∈ F such that
{af(n) : n ∈ A} is centered. Now f [A] ∈ G and {am : m ∈ f [A]} is centered.

(c) Let F be a Ramsey ultrafilter and 〈bn〉n∈N a sequence in Bω such that γ = infn∈N ν̄ωbn is greater
than 0. Set b = infA∈F supn∈A bn; then ν̄ωb ≥ γ. Set S = {I : I ∈ [N]<ω, b ∩ infn∈I bn 6= 0}. Then ∅ ∈ S. If
I ∈ S, set c = b ∩ infn∈I bn and C = {n : c ∩ bn = 0}. Then supn∈C bn does not meet c so does not include
b, and C /∈ F . Accordingly

{n : I ∪ {n} ∈ S} = N \ C ∈ F .

By 538Fd, there is an A ∈ F such that [A]<ω ⊆ S, in which case {bn : n ∈ A} is centered. As 〈bn〉n∈N is
arbitrary, F is measure-centering.

(d) Let F be a measure-centering ultrafilter, and 〈tn〉n∈N a sequence in R. Let F ⊆ [0, 1[ be a nowhere
dense set with non-zero Lebesgue measure, and set H =

⋃
k∈Z F + k, so that H is nowhere dense in R; let

µ be Lebesgue measure on [0, 1]. For n ∈ N set

En = {x : x ∈ [0, 1], x+ tn ∈ H} = [0, 1] ∩⋃
k∈Z F − tn + k,

so that µEn = µF > 0. By 538G(iv), there is an A ∈ F such that
⋂

n∈AEn is non-empty; take x ∈ ⋂
n∈AEn,

so that tn ∈ H − x for every n ∈ A, and {tn : n ∈ A} is nowhere dense. As 〈tn〉n∈N is arbitrary, F is a
nowhere dense filter.

(e)(i) Let 〈an〉n∈N be a sequence in Bω such that infn∈N ν̄ωan > 0, and C ⊆ PN a filter base such that
#(C) < covN . Then there is an A ⊆ N such that A meets every member of C and {an : n ∈ A} is centered.
PPP Set ǫ = infn∈N ν̄ωan. For C ∈ C set bC = supn∈C an; because C 6= ∅, ν̄ωbC ≥ ǫ. Set b = infC∈C bC ;
because C is downwards-directed, ν̄ωb ≥ ǫ (321F) and b 6= 0.

Let θ : Bω → Tω be a lifting (341K). For C ∈ C, set FC =
⋃

n∈C θan; then

F •

C = bC ⊇ b,

so θb\FC is negligible. Because b 6= 0, θb is not negligible; because #(C) < covN , θb∩⋂C∈C FC is non-empty
(apply 522Wa to the subspace measure on θb). Take any x in the intersection, and set A = {n : x ∈ θan}.
For every C ∈ C, there is an n ∈ C such that x ∈ θan, so A ∩ C 6= ∅. If I ⊆ A is finite and not empty, then
θ(infn∈I an) =

⋂
n∈I θan contains x, so infn∈I an 6= 0; thus {an : n ∈ A} is centered. QQQ

(ii) Since #(Bω) = c (524Ma), we can enumerate as 〈〈aξn〉n∈N〉ξ<c the family of all sequences 〈an〉n∈N

in Bω such that infn∈N ν̄ωan > 0. Choose 〈Cξ〉ξ<c inductively, as follows. The inductive hypothesis will be
that Cξ ⊆ PN is a filter base and #(Cξ) ≤ max(ω,#(ξ)). Start with C0 = {N \ n : n ∈ N}. Given Cξ, where
ξ < c, such that

#(Cξ) ≤ max(ω,#(ξ)) < c = covN ,
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(i) tells us that there is an Aξ ⊆ N, meeting every member of Cξ, such that {aξn : n ∈ Aξ} is centered; set

Cξ+1 = Cξ ∪ {C ∩Aξ : C ∈ Cξ}.

For a non-zero limit ordinal ξ ≤ c, set Cξ =
⋃

η<ξ Cη. Let F be the filter generated by Cc; then F is a free

filter satisfying 538G(ii), so is measure-centering.

538I Theorem Suppose that F is a measure-centering ultrafilter on N, and that (X,Σ, µ) is a perfect
probability space. Let A be the family of all sets of the form limn→F En where 〈En〉n∈N is a sequence in
Σ. Then there is a unique complete measure λ on X such that λ is inner regular with respect to A and
λ(limn→F En) = limn→F µEn for every sequence 〈En〉n∈N in Σ; and λ extends µ.

Remark By ‘limn→F En’ I mean the limit in the compact Hausdorff space PX, that is,

{x : {n : x ∈ En} ∈ F} =
⋃

A∈F

⋂
n∈AEn =

⋂
A∈F

⋃
n∈AEn.

proof (a) A is an algebra of subsets of X. PPP If 〈En〉n∈N, 〈Fn〉n∈N are sequences in Σ, then

limn→F (En ∩ Fn) = (limn→F En) ∩ (limn→F Fn),

limn→F (En△Fn) = (limn→F En)△(limn→F Fn)

because F is an ultrafilter. QQQ Of course Σ ⊆ A, because if En = E for every n then limn→F En = E.

(b) If 〈En〉n∈N and 〈Fn〉n∈N are sequences in Σ and limn→F En = limn→F Fn, then limn→F µEn =
limn→F µFn. PPP

| lim
n→F

µEn − lim
n→F

µFn| = lim
n→F

|µEn − µFn| ≤ lim
n→F

µ(En△Fn) ≤ µ∗( lim
n→F

En△Fn)

(538G(iv))

= µ∗( lim
n→F

En△ lim
n→F

Fn) = µ∗∅ = 0. QQQ

(c) We therefore have a functional φ : A → [0, 1] defined by setting φ(limn→F En) = limn→F µEn for
every sequence 〈En〉n∈N in Σ. Clearly φ extends µ. Also φ is additive. PPP If 〈En〉n∈N, 〈Fn〉n∈N are sequences
in Σ such that limn→F En and limn→F Fn are disjoint, then

φ( lim
n→F

En ∪ lim
n→F

Fn) = φ( lim
n→F

En ∪ Fn) = lim
n→F

µ(En ∪ Fn)

= lim
n→F

µEn + µFn − µ(En ∩ Fn)

= lim
n→F

µEn + lim
n→F

µFn − lim
n→F

µ(En ∩ Fn)

= φ( lim
n→F

En) + φ( lim
n→F

Fn) − φ( lim
n→F

En ∩ Fn)

= φ( lim
n→F

En) + φ( lim
n→F

Fn). QQQ

(d) Next, if 〈Am〉m∈N is a non-increasing sequence in A, and 0 ≤ γ < infm∈N φAm, there is an A ∈ A
such that A ⊆ ⋂

m∈NAm and φA ≥ γ. PPP We can suppose that A0 = X. For each m ∈ N, let 〈Emn〉n∈N

be a sequence in Σ such that Am = limn→F Emn, starting with E0n = X for every n. For m ∈ N, set
E′

mn =
⋂

i≤mEin for n ∈ N; then

Am =
⋂

i≤mAi = limn→F E
′
mn;

set Im = {n : n ∈ N, µE′
mn ≥ γ}. Since limn→F µE

′
mn = φAm > γ, Im ∈ F . For n ∈ N, set Fn =

⋂{E′
mn :

m ∈ N, µE′
mn ≥ γ}; set A = limn→F Fn. Then µFn ≥ γ for every n, so φA ≥ γ. Also, for m ∈ N, Fn ⊆ E′

mn

whenever n ∈ Im, so A ⊆ limn→F E
′
mn = Am. QQQ

(e) In particular, infm∈N φAm must be 0 whenever 〈Am〉m∈N is a non-increasing sequence in A with empty
intersection. By 413K, there is a complete measure λ on X extending φ and inner regular with respect to
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Aδ, the set of intersections of sequences in A. But λC = sup{λA : A ∈ A, A ⊆ C} for every C ∈ Aδ. PPP
Suppose that 0 ≤ γ < λC. There is a sequence 〈Am〉m∈N in A with intersection C; because A is an algebra
of sets, we can suppose that 〈Am〉m∈N is non-increasing. Now

γ < λC = infm∈N λAm = infm∈N φAm,

so (d) tells us that there is an A ∈ A such that A ⊆ C and γ ≤ φA = λA. QQQ It follows at once that λ is
inner regular with respect to A.

(f) If E ∈ Σ and we set En = E for every n ∈ N, then E = limn→F En belongs to A and

λE = φE = limn→F µEn = µE.

So λ extends µ. Finally, we see from 412Mb, as usual, that λ is uniquely defined.

Notation In this context, I will call λ the F-extension of µ.

538J Proposition Let F be a measure-centering ultrafilter on N and (X,Σ, µ) a perfect probability
space; let λ be the F-extension of µ as defined in 538I.

(a) Let (A, µ̄) be the measure algebra of µ, (B, λ̄) the measure algebra of λ, and (C, ν̄) the probability
algebra reduced power (A, µ̄)N|F (328C). Then we have a measure-preserving isomorphism π : B → C

defined by saying that

π((limn→F En)•) = 〈E•
n〉•n∈N

for every sequence 〈En〉n∈N in Σ.
(b) Let (X ′,Σ′, µ′) be another perfect probability space, and φ : X → X ′ an inverse-measure-preserving

function. Let λ′ be the F-extension of µ′. Then φ is inverse-measure-preserving for λ and λ′.
(c) Let F ′ be a filter on N such that F ′ ≤RK F , and λ′ the F ′-extension of µ. Then λ extends λ′.

proof (a)(i) I had better check first that the formula for π defines a function. If 〈En〉n∈N, 〈Fn〉n∈N are
sequences in Σ such that (limn→F En)• = (limn→F Fn)• in B, then

0 = λ( lim
n→F

En△ lim
n→F

Fn) = lim
n→F

µ(En△Fn)

= lim
n→F

µ̄(E•

n △ F •

n) = ν̄(〈E•

n〉•n∈N △ 〈F •

n〉•n∈N),

so 〈E•
n〉•n∈N = 〈F •

n〉•n∈N in C.

(ii) Setting B0 = {E• : E ∈ A}, where A is as in 538I, it is now routine to check that π : B0 → C is a
surjective measure-preserving Boolean homomorphism. (Recall that C is, by definition, the quotient of AN

by the ideal {〈an〉n∈N : limn→F µ̄an = 0}.) But of course this means that B0 is isomorphic to C, therefore
Dedekind complete. Since λ is inner regular with respect to A (538I), B0 is order-dense in B, and must be
the whole of B.

(b) Setting

A = {limn→F En : En ∈ Σ ∀ n ∈ N}, A′ = {limn→F Fn : Fn ∈ Σ′ ∀ n ∈ N}
as in 538I, φ−1[C] ∈ A and λφ−1[C] = λ′C for every C ∈ A′. PPP Let 〈Fn〉n∈N be a sequence in Σ′ such that
C = limn→F Fn; then

λφ−1[C] = λφ−1[ lim
n→F

Fn] = λ( lim
n→F

φ−1[Fn])

= lim
n→F

µφ−1[Fn] = lim
n→F

µ′Fn = λ′C. QQQ

By 412K, φ is inverse-measure-preserving for λ and λ′.

(c) By 538Hb, F ′ is measure-centering. Let f : N → N be such that F ′ = f [[F ]]. Setting

A = {limn→F En : En ∈ Σ ∀ n ∈ N}, A′ = {limn→F ′ En : En ∈ Σ ∀ n ∈ N},

A′ ⊆ A and λA = λ′A for every A ∈ A′. PPP Let 〈En〉n∈N be a sequence in Σ such that A = limn→F ′ En;
then A = limn→F Ef(n), so
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λA = limn→F µEf(n) = limn→F ′ µEn = λ′A. QQQ

By 412K again, the identity map from X to itself is inverse-measure-preserving for λ and λ′, that is, λ
extends λ′.

538K Having identified the measure algebra of a measure-centering-ultrafilter extension λ as a probability
algebra reduced product (538Ja), we are in a position to apply the results of §377.

Proposition Let (X,Σ, µ) be a perfect probability space, F a measure-centering ultrafilter on N and λ the
F-extension of µ as constructed in 538I.

(a)(i) Let 〈fn〉n∈N be a sequence in L
0(µ) such that {f•

n : n ∈ N} is bounded in the linear topological
space L0(µ). Then

(α) f(x) = limn→F fn(x) is defined in R for λ-almost every x ∈ X;
(β) f ∈ L

0(λ).
(ii) For every f ∈ L

0(λ) there is a sequence 〈fn〉n∈N in L
0(µ), bounded in the sense of (i), such that

f = limn→F fn λ-a.e.
(b) Suppose that 1 ≤ p ≤ ∞, and 〈fn〉n∈N is a sequence in L

p(µ) such that supn∈N ‖fn‖p is finite. Set
f(x) = limn→F fn(x) whenever this is defined in R.

(i)(α) f ∈ L
p(λ);

(β) ‖f‖p ≤ limn→F ‖fn‖p.
(ii) Let g be a conditional expectation of f on Σ.

(α) If p = 1 and {fn : n ∈ N} is uniformly integrable, then then ‖f‖1 = limn→F ‖fn‖1 and
g• = limn→F f

•
n for the weak topology of L1(µ).

(β) If 1 < p <∞, then g• = limn→F f
•
n for the weak topology of Lp(µ).

(c) Suppose that 1 ≤ p ≤ ∞ and f ∈ L
p(λ).

(i) There is a sequence 〈fn〉n∈N in L
p(µ) such that f = limn→F fn λ-a.e. and ‖f‖p = supn∈N ‖fn‖p.

(ii) If p = 1, we can arrange that 〈fn〉n∈N should be uniformly integrable.
(d) Let (X ′,Σ′, µ′) be another perfect measure space, and λ′ the F-extension of µ′. Let S : L1(µ) → L1(µ′)

be a bounded linear operator.
(i) There is a unique bounded linear operator Ŝ : L1(λ) → L1(λ′) such that Ŝf• = g• whenever

〈fn〉n∈N, 〈gn〉n∈N are uniformly integrable sequences in L
1(µ), L

1(ν) respectively, f = limn→F fn λ-a.e.,
g = limn→F gn λ

′-a.e., and g•
n = Sf•

n for every n ∈ N.

(ii) The map S 7→ Ŝ : B(L1(µ);L1(µ′)) → B(L1(λ);L1(λ′)) is a norm-preserving Riesz homomorphism.

proof We shall find that most of the work for this result has been done in §377. The only new step is in
(a)(i), but we shall have some checking to do.

(a)(i) Let 〈f̃n〉n∈N be a sequence of Σ-measurable functions from X to R such that f̃n = fn µ-a.e. for
every n ∈ N.

(ααα) Let ǫ > 0. Applying 367Rd9 to {f̃•
n : n ∈ N} = {f•

n : n ∈ N}, there is a γ > 0 such that µEn ≤ ǫ

for every n ∈ N, where En = {x : |f̃n(x)| ≥ γ}. Set E = limn→F En, so that λE ≤ ǫ. For x ∈ X \ E,

{n : |f̃n(x)| ≤ γ} ∈ F , so limn→F f̃n(x) is defined in R. As ǫ is arbitrary, limn→F f̃n(x) is defined in R for
λ-almost every x. Since

{x : x ∈ dom fn and fn(x) = f̃n(x) for every n ∈ N}
is µ-conegligible, therefore λ-conegligible, limn→F fn is defined in R λ-a.e.

(βββ) For any α ∈ R,

{x : limn→F f̃n(x) > α} =
⋃

k∈N limn→F{x : fn(x) ≥ α+ 2−k} ∈ domλ.

So f =a.e. limn→F f̃n belongs to L
0(λ).

(ii) At this point I seek to import the machinery of §377.

(ααα) Let (A, µ̄) and (B, λ̄) be the measure algebras of µ, λ respectively; recall that we can identify
L0(µ) and L0(λ) with L0(A) and L0(B) (364Ic). Write (C, ν̄) for the probability algebra reduced power

9Later editions only.
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(A, µ̄)N|F ; let φ : AN → C be the canonical surjection, and π : B → C the isomorphism of 538Ja; set
ψ = π−1φ : AN → B. Then λ̄ψ(〈an〉n∈N) = limn→F µ̄an for every sequence 〈an〉n∈N in A, and ψ is
surjective.

(βββ) LetW0 ⊆ L0(A)N be the set of sequences bounded for the topology of convergence in measure, and
W0 ⊆ L

0(µ)N the set of sequences 〈fn〉n∈N such that 〈f•
n〉n∈N ∈ W0. Then we have a Riesz homomorphism

T : W 0 → L0(B) defined by saying that T (〈f•
n〉n∈N) = (limn→F fn)• whenever 〈fn〉n∈N ∈ W0. PPP We know

from (i) that (limn→F fn)• is defined in L0(λ) ∼= L0(B) whenever 〈fn〉n∈N ∈ W0. (I am taking the domain
of limn→F fn to be {x : limn→F fn(x) is defined in R}.) Since

limn→F fn =a.e. limn→F gn

whenever fn =a.e. gn for every n, T is well-defined. Since

limn→F fn + gn =a.e. limn→F fn + limn→F gn,

limn→F αfn =a.e. α limn→F fn, limn→F |fn| =a.e. | limn→F fn|
whenever 〈fn〉n∈N, 〈gn〉n∈N ∈ W0 and α ∈ R, T is a Riesz homomorphism. QQQ

(γγγ) If 〈an〉n∈N is any sequence in A, T (〈χan〉n∈N) = χψ(〈an〉n∈N). PPP Express each an as E•
n, where

En ∈ Σ, and set F = limn→F En. In the language of 538Ja,

ψ(〈an〉n∈N) = π−1φ(〈an〉n∈N) = π−1(〈an〉•n∈N) = F •,

so

T (〈χan〉n∈N) = (limn→F χEn)• = (χF )• = χ(F •) = χψ(〈an〉n∈N). QQQ

(δδδ) Recalling thatW0 is just the family of sequences 〈un〉n∈N in L0 such that infk∈N supn∈N µ̄[[|un| > k]] =
0 (367Rd again), (γ) means that we can identify T : W0 → L0(B) with the Riesz homomorphism described
in 377B. By 377D(d-i), T [W0] = L0(B), which is what we need to prove the immediate result here.

(b)(i) As in part (a) of the proof of 377C, we see that a ‖ ‖p-bounded sequence in L
p(µ) will belong to

W0. So we can use 377Db.

(ii) Use 377Ec.

(c) Use 377Dd.

(d) Use 377F.

538L Theorem Suppose that ζ is a non-zero countable ordinal and 〈Fξ〉1≤ξ≤ζ is a family of Ramsey
ultrafilters on N, no two isomorphic. Let 〈Gξ〉ξ≤ζ be the corresponding iterated product system, as described
in 538E. Then Gζ is a measure-centering ultrafilter.

proof (a) Define 〈(Aξ, µ̄ξ)〉ξ≤ζ inductively, as follows. (A0, µ̄0) = (Bω, ν̄ω) is to be the measure algebra of
the usual measure on {0, 1}N. Given 〈(Aη, µ̄η)〉η<ξ, where 0 < ξ ≤ ζ, let (Aξ, µ̄ξ) be the probability algebra
reduced product

∏
k∈N(Aθ(ξ,k), µ̄θ(ξ,k))|Fξ, as described in 328A-328C. At the end of the induction, write

(C, ν̄) for (Aζ , µ̄ζ).

(b) We have a family 〈φξη〉η≤ξ≤ζ defined by induction on ξ, as follows. The inductive hypothesis will
be that φη′η is a measure-preserving Boolean homomorphism from Aη to Aη′ , and that φη′′η = φη′′η′φη′η

whenever η ≤ η′ ≤ η′′ < ξ. For the inductive step to ξ, take φξξ to be the identity map on Aξ. If

ξ > 0, set φ̃kj = φθ(ξ,k),θ(ξ,j) for j ≤ k in N; then 328Ea tells us that we have measure-preserving Boolean

homomorphisms φ̃k : Aθ(ξ,k) → Aξ such that φ̃j = φ̃kφ̃kj for j ≤ k. If j ≤ k and η ≤ θ(ξ, j), then

φ̃kφθ(ξ,k),η = φ̃kφ̃kjφθ(ξ,j),η = φ̃jφθ(ξ,j),η

whenever k ≥ j; so we can take this common value for φξη. If η ≤ η′ < ξ, then take k such that η′ ≤ θ(ξ, k),
and see that

φξη′φη′η = φ̃kφθ(ξ,k),η′φη′η = φ̃kφθ(ξ,k),η = φξη,
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so the induction proceeds.
For each ξ ≤ ζ, write πξ for φζξ : Aξ → C, and Cξ for the subalgebra πξ[Aξ]. Of course πξφξη = πη, so

that Cη ⊆ Cξ, whenever η ≤ ξ ≤ ζ.

(c) For each ξ > 0, we have a canonical map 〈ak〉k∈N → 〈ak〉•k∈N :
∏

k∈N Aθ(ξ,k) → Aξ. Since every
πξ : Aξ → Cξ is a measure-preserving isomorphism, we have a corresponding map ψξ :

∏
k∈N Cθ(ξ,k) → Cξ.

Reading off the basic facts of 328Ab and 328Eb, we see that

—– ν̄ψξ(〈ck〉k∈N) = limk→Fξ
ν̄ck for every sequence 〈ck〉k∈N ∈ ∏

k∈N Cθ(ξ,k),
—– ψξ(〈ck〉k∈N) ⊆ supk∈A ck whenever 〈ck〉k∈N ∈ ∏

k∈N Cθ(ξ,k) and A ∈ Fξ

(we can take the supremum in C because Cξ is regularly embedded in C, as noted in 314Ga).

(d) Let 〈aτ 〉τ∈S be a family in A0 = Bω such that γ = infτ∈S µ̄aτ is non-zero. By 538Fe, we can find
a disjoint family 〈Aξ〉1≤ξ≤ζ of subsets of N such that Aξ ∈ Fξ for every ξ. Use these to define T ⊆ S and
α : T → [0, ζ] as in 538Ee. Set cτ = 0 for τ ∈ S \ T . For τ ∈ T define cτ ∈ Cα(τ) by induction on α(τ),

as follows. If α(τ) = 0, set cτ = π0aτ . For the inductive step to α(τ) = ξ > 0, we know that τa<k> ∈ T
and α(τa<k>) = θ(ξ, k) whenever k ∈ Aξ and τ(i) < k for every i < dom τ ; for other k, τa<k> /∈ T so
cτa<k> = 0 ∈ Cθ(ξ,k). Thus cτa<k> ∈ Cθ(ξ,k) for every k, and ψξ(〈cτa<k>〉k∈N) ∈ Cξ; take this for cτ . Note
that

ν̄cτ = limk→Fξ
ν̄cτa<k> ≥ inf{ν̄cτa<k> : k ∈ N, τa<k> ∈ T}.

Inducing on α(τ), we see that ν̄cτ ≥ γ for every τ ∈ T . In particular, ν̄c∅ ≥ γ.

(e) For I ⊆ N, set TI = T ∩ ⋃
n∈N I

n and eI = infτ∈TI
cτ ; let S be the family of those finite subsets

I of N such that eI 6= ∅. Then T∅ = {∅}, e∅ = c∅ and ∅ ∈ S. Moreover, if I ∈ S and 1 ≤ ξ ≤ ζ, then
{k : I ∪ {k} ∈ S} ∈ Fξ. PPP Set k0 = sup I + 1. If k ∈ Aξ and k ≥ k0, set

dk = inf{cτa<k> : τ ∈ TI , α(τ) = ξ}.

Set B = {k : k ∈ Aξ, k ≥ k0, dk ∩ eI 6= 0}. If k ∈ B, then

TI∪{k} = TI ∪ {τa<k> : τ ∈ TI , α(τ) = ξ},

because every member of T is strictly increasing and τa<k> can belong to T only when k ∈ Aα(τ), that is,
α(τ) = ξ. So eI∪{k} = dk ∩ eI 6= 0 and I ∪ {k} ∈ S.

??? If B /∈ Fξ, then B′ = {k : k ∈ Aξ, k ≥ k0, dk ∩ eI = 0} belongs to Fξ. So

eI ⊆ inf{cτ : τ ∈ TI , α(τ) = ξ}
= inf

τ∈TI

α(τ)=ξ

ψξ(〈cτa<k>〉k∈N) = ψξ(〈 inf
τ∈TI

α(τ)=ξ

cτa<k>〉k∈N)

(because ψξ is a Boolean homomorphism and TI is finite)

⊆ sup
k∈B′

inf
τ∈TI

α(τ)=ξ

cτa<k>

(by (c))

= sup
k∈B′

dk.

But eI ∩ dk = 0 for every k ∈ B′ and eI 6= 0. XXX
Thus {k : I ∪ {k} ∈ S} ⊇ B ∈ Fξ. QQQ

(f) For i ∈ N set

Ci = {k : I ∪ {k} ∈ S whenever I ∈ S and I ⊆ i},

so that Ci ∈ Fξ for every ξ ∈ [1, ζ]. At this point, recall that every Fξ is supposed to be a Ramsey ultrafilter.
So for each ξ ∈ [1, ζ] we have an A′

ξ ∈ Fξ such that A′
ξ ⊆ Aξ ∩ C0 and j ∈ Ci whenever i, j ∈ A′

ξ and i < j

(538Fc). Next, for i ∈ N set Mi = {α(τ) : τ ∈ T , τ(j) ≤ i whenever j < dom τ}; then Mi is finite, so there
is a D ∈ ⋂

1≤ξ≤ζ Fξ such that whenever i, j ∈ D, i < j and ξ ∈ Mi, there is a k ∈ A′
ξ such that i < k < j

(538Ff). Of course we can suppose that D ⊆ ⋃
1≤ξ≤ζ A

′
ξ, so that D ∩Aξ = D ∩A′

ξ for every ξ.
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(g) J ∈ S for every finite subset J of D. PPP Induce on #(J). We know that ∅ ∈ S. If i ∈ D, then {i} ∈ S
because D ⊆ C0. For the inductive step to #(J) ≥ 2, set j = max J , I = J \ {j} and i = max I. Then
I ∈ S, by the inductive hypothesis; so if TJ = TI , we certainly have J ∈ S. Otherwise, there is a member
of TJ \ TI , and this must be of the form τa<j> where τ ∈ TI and j ∈ Aα(τ); as j ∈ D, j ∈ A′

α(τ). But this

means that α(τ) ∈ Mi and there is a k ∈ A′
α(τ) such that i < k < j. In this case, j ∈ Ck and I ⊆ k, so

J = I ∪ {k} belongs to S, and the induction proceeds. QQQ

(h) Thus {cτ : τ ∈ TD} is centered; setting T ∗
D = {τ : τ ∈ TD, α(τ) = 0}, {cτ : τ ∈ T ∗

D} and therefore
{aτ : τ ∈ T ∗

D} are centered. But T ∗
D belongs to Gζ , by 538Ee.

Since 〈aτ 〉τ∈S was chosen arbitrarily in (d) above, Gζ satisfies the condition of 538G(ii), translated to the
countably infinite set S, and is measure-centering.

538M Benedikt’s theorem (Benedikt 98) Let (X,Σ, µ) be a perfect probability space. Then there
is a measure λ on X, extending µ, such that λ(limn→F En) is defined and equal to limn→F µEn for every
sequence 〈En〉n∈N in Σ and every Ramsey filter F on N.

proof (a) If there are no Ramsey filters, we can take λ = µ and stop; so let us suppose that there is
at least one Ramsey filter. Let F be a family of Ramsey filters consisting of just one member of each
isomorphism class, so that every Ramsey filter is isomorphic to some member of F, and no two members of
F are isomorphic. Fix a well-ordering 4 of F with a greatest member F∗ and a family 〈θ(ξ, k)〉1≤ξ<ω1,k∈N

such that 〈θ(ξ, k)〉k∈N is always a non-decreasing sequence of ordinals less than ξ such that {θ(ξ, k) : k ∈ N}
is cofinal with ξ.

(b)(i) For any non-empty countable set D ⊆ F containing F∗, enumerate it in 4-increasing order as
〈Fξ〉1≤ξ≤ζ , and let GD be the measure-centering ultrafilter constructed from 〈Fξ〉1≤ξ≤ζ and 〈θ(ξ, k)〉1≤ξ≤ζ,k∈N

by the method of 538E-538L; let λD be the GD-extension of µ as defined in 538I.

(ii) For any non-empty finite set I ⊆ F, list it in 4-increasing order as F0, . . . ,Fn, and set HI =
Fn⋉ . . .⋉F0 as defined in 538D. By 538Ed, or otherwise, HI ≤RK GI , so HI is measure-centering (538Hb);
let λ′I be the HI -extension of µ.

(c) If ∅ 6= I ⊆ J ∈ [F]<ω, then HI ≤RK HJ , by 538Dg, and λ′J extends λ′I , by 538Jc. Thus 〈λ′I〉∅6=I∈[F]<ω

is an upwards-directed family of probability measures on X.
If I ⊆ [F]<ω \ {∅} is countable, we have a non-empty countable set D ⊆ F including {F∗} ∪⋃ I. Now

538Ed tells us that HI ≤RK GD for every I ∈ I, so that λD extends λ′I for every I ∈ I (538Jc again). Thus
for every countable subset of {λ′I : I ∈ [F]<ω \ {∅}} there is a measure on X extending them all. By 457G,
there is a measure λ on X extending every λ′I .

(d) If F is a Ramsey ultrafilter and 〈En〉n∈N is a sequence in Σ, there is an F ′ ∈ F such that F and

F ′ are isomorphic. In particular, F ≤RK F ′, so λ̃F ′ extends λ̃F , where λ̃F , λ̃F ′ are the F-extension and
F ′-extension of µ. But λ extends λ′{F ′} = λ̃F ′ and therefore extends λ̃F . Accordingly λ(limn→F En) is

defined and equal to λ̃F (limn→F En) = limn→F µEn, as required.

538N Measure-converging filters: Proposition (a) Let F be a free filter on N. Let νω be the usual
measure on {0, 1}N, and Tω its domain. Then the following are equiveridical:

(i) F is measure-converging;
(ii) whenever 〈Fn〉n∈N is a sequence in Tω and limn→∞ νωFn = 1, then

⋃
A∈F

⋂
n∈A Fn is

conegligible;
(iii) whenever (X,Σ, µ) is a measure space with locally determined negligible sets (definition:

213I), and 〈fn〉n∈N is a sequence in L
0 = L

0(µ) which converges in measure to f ∈ L
0, then

limn→F fn =a.e. f ;
(iv) whenever µ is a Radon measure on PN such that limn→∞ µEn = 1, where En = {a : n ∈

a ⊆ N} for each n, then µF = 1.

(b) Every measure-converging filter is free.
(c) Suppose that F is a measure-converging filter.

(i) If G is a filter on N including F , then G is measure-converging.
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(ii) If G is a filter on N and G ≤RB F (definition: 5A6Ic), then G is measure-converging.

(d) (M.Foreman) Every rapid filter is measure-converging.

(e) (M.Talagrand) If there is a measure-converging filter, there is a measure-converging filter which is not
rapid.

(f) Let F be a measure-converging filter on N and G any filter on N. Then G ⋉F is measure-converging.

(g) If mcountable = d, there is a rapid filter.

proof (a)(i)⇒(iii) Suppose that F is measure-converging, and that (X,Σ, µ), 〈fn〉n∈N and f are as in (iii).
Let H ∈ Σ be a conegligible set such that H ⊆ dom f ∩ dom fn and f↾H and fn↾H are measurable for
every n ∈ N. Let k ∈ N; set Hk = {x : x ∈ H, lim supn→F |fn(x) − f(x)| > 2−k}. Then Hk ∩ F is negligible

whenever F ∈ Σ and µF < ∞. PPP If µF = 0 this is trivial. Otherwise, let ν =
1

µF
µF be the normalized

subspace measure on F . For each n ∈ N, set Fn = {x : x ∈ F ∩H, |fn(x) − f(x)| ≤ 2−k}. Then

limn→∞ ν(F \ Fn) ≤ 2k

µF
limn→∞

∫
min(|fn − f |, χF )dµ = 0

because 〈fn〉n∈N → f in measure. So limn→∞ νFn = 1 and H ′ =
⋃

A∈F

⋂
n∈A Fn is ν-conegligible. But

H ′ ∩Hk = ∅, so µ∗(Hk ∩ F ) = ν∗(Hk ∩ F ) = 0. QQQ

Since µ has locally determined negligible sets, Hk is negligible. This is true for every k ∈ N, so H\⋃k∈NHk

is conegligible; and limn→F fn(x) = f(x) for every x ∈ H \⋃k∈NHk, so limn→F fn = f a.e., as required.

(iii)⇒(iv) Assuming (iii), let µ and 〈En〉n∈N be as in (iv). Set fn = χ(PN \ En) for each n; then
limn→∞

∫
fndµ = 0, so 〈fn〉n∈N → 0 in measure, and H = {a : limn→F fn(a) = 0} is conegligible. But for

any a ∈ H,

a = {n : a ∈ En} = {n : fn(x) ≤ 1

2
}

belongs to F , so H ⊆ F and µF = 1.

(iv)⇒(ii) Assume (iv), and let 〈Fn〉n∈N be as in (ii). Define φ : {0, 1}N → PN by setting φ(x) = {n :
x ∈ Fn} for x ∈ {0, 1}N. Then φ is almost continuous (418J), so the image measure µ = νωφ

−1 on PN is a
Radon measure (418I). Since Fn = φ−1[En] for each n, limn→∞ µEn = 1 and 1 = µF = νωφ

−1[F ]. But now
⋃

a∈F

⋂
n∈a Fn =

⋃
a∈F{x : a ⊆ φ(x)} = φ−1[F ]

is νω-conegligible, as required.

(ii)⇒(i) Assume (ii), and take a probability space (X,Σ, µ) and a sequence 〈Hn〉n∈N in Σ such that
limn→∞ µHn = 1; set G =

⋃
A∈F

⋂
n∈AHn.

Let λ be the c.l.d. product measure on X × {0, 1}N, and set

Wn = Hn × {0, 1}N, Vn = {(x, y) : x ∈ X, y ∈ {0, 1}N, y(n) = 1}
for n ∈ N. Let Λ1 be the σ-algebra of subsets of X × {0, 1}N generated by {Wn : n ∈ N} ∪ {Vn : n ∈ N},
and λ1 the completion of the restriction λ↾Λ1. Note that as the identity map from X × {0, 1}N is inverse-
measure-preserving for λ and λ↾Λ1, it is inverse-measure-preserving for their completions (234Ba); but λ is
complete, so this just means that λ extends λ1. Then λ1 is a complete atomless probability measure with
countable Maharam type. Its measure algebra C is therefore isomorphic, as measure algebra, to the measure
algebra Bω of νω; let π : Bω → C be a measure-preserving isomorphism. By 343B, or otherwise, there is a
realization φ : X × {0, 1}N → {0, 1}N, inverse-measure-preserving for λ1 and νω, such that φ−1[F ]• = πF •

in C for every F ∈ Tω. Because π is surjective, there is for each n ∈ N an Fn ∈ Tω such that φ−1[Fn]△Wn

is λ1-negligible.

Since

limn→∞ νωFn = limn→∞ λ1Wn = limn→∞ λWn = limn→∞ µHn = 1,

F =
⋃

A∈F

⋂
n∈A Fn is νω-conegligible, and φ−1[F ] =

⋃
A∈F

⋂
n∈A φ

−1[Fn] is λ1-conegligible. We have

G× {0, 1}N =
⋃

A∈F

⋂
n∈AWn, so

(G× {0, 1}N)△φ−1[F ] ⊆ ⋃
n∈NWn△φ−1[Fn]
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is λ1-negligible. Thus G × {0, 1}N is λ1-conegligible, therefore λ-conegligible. But this means that G is
µ-conegligible, by 252D applied to G× {0, 1}N; and this is what we needed to know.

(b) Let F be a measure-converging filter and m ∈ N. Take a singleton set X = {x} and the probability
measure µ on X; set Ei = ∅ for i < n, X for i ≥ n. Then limi→∞ µEi = 1, so there is an A ∈ F such that⋂

i∈AEi is non-empty. Now N \ n ⊇ A belongs to F ; as n is arbitrary, F is free.

(c)(i) Immediate from the definition in 538Ag.

(ii) Let f : N → N be a finite-to-one function such that G = f [[F ]]. Let (X,Σ, µ) be a probability
space and 〈En〉n∈N a sequence in Σ such that limn→∞ µEn = 1. Set Fn = Ef(n) for n ∈ N; because f is
finite-to-one, limn→∞ µFn = 1. So H =

⋃
A∈F

⋂
n∈A Fn is conegligible. If x ∈ H, set Ax = {n : x ∈ En};

then

f−1[Ax] = {n : x ∈ Ef(n)} = {n : x ∈ Fn}
belongs to F so Ax ∈ f [[F ]] and x ∈ ⋃

B∈f [[F ]]

⋂
n∈B En. Thus

⋃
B∈f [[F ]]

⋂
n∈B En ⊇ H is conegligible. As

(X,Σ, µ) and 〈En〉n∈N are arbitrary, f [[F ]] is measure-converging.

(d) Let F be a rapid filter on N, and 〈Hn〉n∈N a sequence in Tω such that limn→∞ νωHn = 1. Set
G =

⋃
A∈F

⋂
n∈AHn. Since limn→∞(1 − νωHn) = 0, there is an A ∈ F such that

∑
n∈A 1 − νωHn <∞; set

H =
⋃

m∈N

⋂
n∈A\mHn ⊆ G. Then

νωH ≥ supm∈N 1 −∑
n∈A\m(1 − νωHn) = 1,

so G is conegligible. Thus F satisfies (a-ii) and is measure-converging.

(e) Let F be a measure-converging filter. Let 〈In〉n∈N be a sequence of non-empty finite subsets of N

such that limn→∞ #(In) = ∞. Let G be

{A : A ⊆ N, limn→F
1

#(In)
#(A ∩ In) = 1}.

Then G is a filter on N.

(i) G is measure-converging. PPP Let 〈Hi〉i∈N be a sequence in Tω such that limi→∞ νωHi = 1, and set

G =
⋃

A∈G

⋂
i∈AHi. Set gn =

1

#(In)

∑
i∈In

χHi for each n; then

limn→∞

∫
gn = limn→∞

1

#(In)

∑
i∈In

νωHi = 1

because limn→∞ #(In) = ∞ and limi→∞ νωHi = 1. Since 0 ≤ gn ≤ χ{0, 1}N for every n, 〈gn〉n∈N → χ{0, 1}N
in measure. By (a-iii) above, H = {x : limn→F gn(x) = 1} is conegligible.

For x ∈ H, set Ax = {i : x ∈ Hi}. Then

1

#(In)
#(In ∩Ax) = gn(x) → 1

as n → F , so Ax ∈ G and x ∈ G. Accordingly G ⊇ H is conegligible. As 〈Hi〉i∈N is arbitrary, G is
measure-converging. QQQ

(ii) G is not rapid. PPP Define 〈ti〉i∈N by saying that

ti = sup{ 1

#(In)
: n ∈ N, i ∈ In}

for i ∈ N, counting sup ∅ as 0. Then limi→∞ ti = 0. If A ∈ G and m ∈ N, then B = {n : #(A∩In) ≥ 2
3#(In)}

belongs to F , and must be infinite, by (b) above. So there is an n ∈ B such that #(In) ≥ 3m, and now

∑
i∈A\m ti ≥ #(A ∩ In \m) · 1

#(In)
≥ 1

3
.

As m is arbitrary,
∑

i∈A ti = ∞; as A is arbitrary, G is not rapid. QQQ

(f) Let 〈Eij〉i,j∈N be a family in Tω such that 〈νωEinjn〉n∈N → 1 for some, or any, enumeration
〈(in, jn)〉n∈N of N × N. Set G =

⋃
C∈G⋉F

⋂
(i,j)∈C Eij . For each i ∈ N, limj→∞ νωEij = 1, so Gi =
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⋃
A∈F

⋂
j∈AEij is conegligible; set H =

⋂
i∈NGi. For x ∈ H, set Ax = {(i, j) : x ∈ Eij}. As x ∈ Gi,

Ax[{i}] ∈ F for every i ∈ N; thus Ax ∈ G ⋉F and x ∈ G. So G includes the conegligible set H, and is itself
conegligible. As 〈Eij〉i,j∈N is arbitrary, G is measure-converging.

(g)(i) Suppose that E ⊆ [N]ω is a family with #(E) < mcountable, and that f ∈ NN is non-decreasing.
Then there is an A ⊆ N, meeting every member of E , such that #(A ∩ f(n)) ≤ n for every n ∈ N. PPP
Consider X =

∏
n∈N N \ f(n). Then X is a closed subset of NN, homeomorphic to NN. For E ∈ E , set

GE = {x : x ∈ X, E ∩ x[N] 6= ∅};

then GE is a dense open subset of X. Writing M(X) for the ideal of meager subsets of X, #(E) <
mcountable = covM(X), so there is an x ∈ X ∩⋂

E∈E GE ; set A = x[N]. QQQ

(ii) Let 〈fξ〉ξ<d be a cofinal family in NN; we may suppose that every fξ is strictly increasing. Choose
a non-decreasing family 〈Eξ〉ξ≤d inductively, as follows. E0 = {N \ n : n ∈ N}. Given that ξ < d = mcountable

and that Eξ ⊆ [N]<ω is a filter base with cardinal at most max(ω,#(ξ)), use (i) to find a set Aξ ⊆ N, meeting
every member of Eξ, such that #(Aξ ∩ fξ(n)) ≤ n for every n; set

Eξ+1 = Eξ ∪ {Aξ ∩ E : E ∈ Eξ}.

For non-zero limit ordinals ξ ≤ d set Eξ =
⋃

η<ξ Eη.

At the end of the induction, let F be the filter on N generated by Ed. Then F is rapid. PPP It is free
because E0 ⊆ F . If 〈tn〉n∈N is a sequence in R converging to 0, let f ∈ NN be such that |ti| ≤ 2−n whenever
n ∈ N and i ≥ f(n), and let ξ < d be such that f ≤ fξ. Then Aξ ∈ F and

∑
i∈Aξ

|ti| ≤
∑∞

n=0 2−n#(Aξ ∩ fξ(n+ 1) \ fξ(n)) ≤ ∑∞
n=0 2−n(n+ 1)

is finite. QQQ

538O The Fatou property: Proposition (a) Let F be a filter on N. Let νω be the usual measure on
{0, 1}N, and Tω its domain. Then the following are equiveridical:

(i) F has the Fatou property;
(ii) whenever 〈Fn〉n∈N is a sequence in Tω and ν∗ω(

⋃
A∈F

⋂
n∈A Fn) = 1, then limn→F νωFn = 1;

(iii) whenever (X,Σ, µ) is a measure space and 〈fn〉n∈N is a sequence of non-negative functions

in L
0(µ), then

∫
lim infn→F fndµ ≤ lim infn→F

∫
fndµ;

(iv) whenever µ is a Radon probability measure on PN, then µ∗F ≤ lim infn→F µEn, where
En = {a : n ∈ a ⊆ N} for each n ∈ N.

(b) If F and G are filters on N, G ≤RK F and F has the Fatou property, then G has the Fatou property.
(c) If F and G are filters on N with the Fatou property, then F ⋉ G has the Fatou property.

proof (a) not-(iii)⇒not-(i) Suppose that (X,Σ, µ) is a measure space and 〈fn〉n∈N a sequence of non-

negative functions in L
0 such that

∫
lim infn→F fndµ > lim infn→F

∫
fndµ. Changing the fn on negligible

sets does not change either
∫

lim infn→F fndµ or
∫

lim infn→F fndµ, so we may assume that every fn is

defined everywhere inX and is Σ-measurable. Take α such that
∫

lim infn→F fndµ > α > lim infn→F

∫
fndµ;

set A = {n :
∫
fndµ ≤ α}; then A meets every member of F . Since fn is integrable for every n ∈ A, the set

G = {x : supn∈A fn(x) > 0} is a countable union of sets of finite measure.
Let λ be the c.l.d. product measure on G × R, and consider the ordinate sets Wn = {(x, β) : x ∈ G,

0 ≤ β < fn(x)} for n ∈ A. Set W =
⋃

C∈F

⋂
n∈C∩AWn; writing g for lim infn→F fn,

{(x, β) : x ∈ G, 0 ≤ β < g(x)} ⊆W .

Since λ is a product of two σ-finite measures it is σ-finite, and W has a measurable envelope W̃ say. Now
λ∗W > α. PPP??? Otherwise, λW̃ ≤ α. Writing µL for Lebesgue measure on R,

α ≥ λW̃ =

∫

G

µLW̃ [{x}]µ(dx)

(252D)
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≥
∫

G

g dµ > α. XXXQQQ

There is therefore a set V ⊆ W̃ such that α < λV <∞, and now λ∗(V ∩W ) > α. Let ν be the subspace
measure on V ∩W . Set

Vn = V ∩W ∩Wn if n ∈ A,

= V ∩W if n ∈ N \A.
Then

lim inf
n→F

νVn = sup
C∈F

inf
n∈C

νVn ≤ sup
n∈A

νVn

≤ sup
n∈A

λWn = sup
n∈A

∫
fndµ ≤ α.

On the other hand,
⋃

C∈F

⋂
n∈C Vn =

⋃
C∈F

⋂
n∈C∩A V ∩W ∩Wn = V ∩W

and ν(V ∩W ) = λ∗(V ∩W ) > α. Moving to a normalization of ν, we see that (i) is false.

(iii)⇒(iv) If F satisfies (iii) and µ is a Radon probability measure on PN, set g = lim infn→F χEn. If
a ∈ F , then {n : χEn(a) = 1} = a ∈ F , so g(a) = 1; thus

µ∗F =

∫
χFdµ

(133Je)

≤
∫
g dµ ≤ lim inf

n→F

∫
χEn = lim inf

n→F
µEn,

as required.

(iv)⇒(ii) Given (iv), suppose that 〈Fn〉n∈N is a sequence in Tω and ν∗ω(
⋃

A∈F

⋂
n∈A Fn) = 1. As in

the corresponding part of the argument for 538Na, define φ : {0, 1}N → PN by setting φ(x) = {n : x ∈ Fn},
and let µ be the Radon measure νωφ

−1. Then

µ∗F = ν∗ωφ
−1[F ] = ν∗ω(

⋃
A∈F

⋂
n∈A Fn) = 1

(using 451Pc again for the first equality), so limn→F νωFn = limn→F µEn = 1.

(ii)⇒(i) Assume (ii), and take a probability space (X,Σ, µ) and a sequence 〈Hn〉n∈N in Σ such that
X =

⋃
A∈F

⋂
n∈AHn.

As in the corresponding part of the argument for 538Na, let λ be the c.l.d. product measure on X×{0, 1}N,
and set

Wn = Hn × {0, 1}N, Vn = {(x, y) : x ∈ X, y ∈ {0, 1}N, y(n) = 1}
for n ∈ N. Let Λ1 be the σ-algebra of subsets of X ×{0, 1}N generated by {Wn : n ∈ N}∪{Vn : n ∈ N}, and
λ1 the completion of the restriction λ↾Λ1. As before, there is a function φ : X × {0, 1}N → {0, 1}N, inverse-
measure-preserving for λ1 and νω, such that there is for each n ∈ N an Fn ∈ Tω such that φ−1[Fn]△Wn is
λ1-negligible. Set G =

⋃
A∈F

⋂
n∈A Fn.

Since X =
⋃

A∈F

⋂
n∈AHn, X × {0, 1}N =

⋃
A∈F

⋂
n∈AWn and

(X × {0, 1}N) \ φ−1[G] ⊆ ⋃
n∈N φ

−1[Fn]△Wn

is λ1-negligible. By 413Eh,

ν∗ωG ≥ λ1φ
−1[G] = 1.

By (ii), limn→F νωFn = 1. But
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νωFn = λ1φ
−1[Fn] = λ1Wn = λWn = µHn

for each n, so limn→F µHn = 1. As (X,Σ, µ) and 〈Hn〉n∈N are arbitrary, F has the Fatou property.

(b) Let h : N → N be such that G = h[[F ]]. Let (X,Σ, µ) be a probability space and 〈Hn〉n∈N a sequence
in Σ such that

X =
⋃

A∈G

⋂

n∈A

Hn

=
⋃

A⊆N,h−1[A]∈F

⋂

n∈A

Hn =
⋃

A∈F

⋂

n∈A

Hh(n).

Then

1 = lim inf
n→F

µHh(n) = sup
A∈F

inf
n∈A

µHh(n)

≤ sup
A∈G

inf
n∈A

µHn = lim inf
n→G

µHn.

As (X,Σ, µ) and 〈Hn〉n∈N are arbitrary, G has the Fatou property.

(c) Let (X,Σ, µ) be a probability space and 〈Eij〉i,j∈N a family in Σ such that X =
⋃

C∈F⋉G

⋂
(i,j)∈C Eij .

For each i ∈ N, set Fi =
⋃

B∈G

⋂
j∈B Eij , and let Gi ∈ Σ be a measurable envelope of Fi. Then⋃

A∈F

⋂
i∈AGi = X. PPP If x ∈ X, there is a C ∈ F ⋉ G such that x ∈ Eij whenever (i, j) ∈ C. Set

A = {i : C[{i}] ∈ G} ∈ F . If i ∈ A, then

x ∈ ⋂
j∈C[{i}]Eij ⊆ Fi ⊆ Gi,

so x ∈ ⋂
i∈AGi. QQQ

Accordingly limi→F µGi = 1. Take ǫ > 0; then A = {i : µGi ≥ 1 − ǫ} belongs to F . For each i ∈ A,

1 − ǫ ≤ µGi = µ∗Fi =

∫
χFi =

∫
lim inf
j→G

χEij ≤ lim inf
j→G

∫
χEij

(by (a-iii) above)

= lim inf
j→G

µEij ,

so {j : µEij ≥ 1 − 2ǫ} ∈ G. But this means that {(i, j) : µEij ≥ 1 − 2ǫ} ∈ F ⋉ G. As ǫ is arbitrary,
lim(i,j)→F⋉G µEij = 1. As (X,Σ, µ) and 〈Eij〉i,j∈N are arbitrary, F ⋉ G has the Fatou property.

538P Theorem Let ν : PN → R be a bounded finitely additive functional. Write
∫
. . . dν for the

associated linear functional on ℓ∞ (see 363L), and set En = {a : n ∈ a ⊆ N} for each n ∈ N. Then the
following are equiveridical:

(i) whenever µ is a Radon probability measure on PN,
∫
ν(a)µ(da) is defined and equal to

∫
µEnν(dn);

(ii) whenever µ is a Radon probability measure on [0, 1]N,
∫∫
x dν µ(dx) is defined and equal to∫∫

x(n)µ(dx)ν(dn);
(iii) whenever (X,Σ, µ) is a probability space and 〈fn〉n∈N is a uniformly bounded sequence of measurable

real-valued functions on X, then
∫∫
fn(x)ν(dn)µ(dx) is defined and equal to

∫∫
fndµ ν(dn);

(iv) whenever 〈Fn〉n∈N is a sequence of Borel subsets of {0, 1}N,
∫∫
χFn(x)ν(dn)νω(dx) is defined and

equal to
∫
νωFnν(dn), where νω is the usual measure on {0, 1}N.

proof (i)⇒(ii)(ααα) For t ∈ [0, 1] define ht : [0, 1]N → PN by setting ht(x) = {n : x(n) ≥ t} for x ∈ [0, 1]N,
and let µt = µh−1

t be the image measure on PN. Then µt is a Radon measure for each t. PPP Because ht is
Borel measurable and PN is metrizable, ht is almost continuous (418J), so µt is a Radon measure (418I). QQQ

(βββ) For m ∈ N define vm ∈ [0, 1]N by setting

vm(n) = 2−m
∑2m

k=1 µ{x : x(n) ≥ 2−mk}.
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Then ‖vm+1 − vm‖∞ ≤ 2−m−1. PPP For any n ∈ N,

vm(n) − vm+1(n) = 2−m
2m∑

k=1

µ{x : x(n) ≥ 2−mk} − 2−m−1
2m+1∑

k=1

µ{x : x(n) ≥ 2−m−1k}

= 2−m−1
2m∑

k=1

(2µ{x : x(n) ≥ 2−mk} − µ{x : x(n) ≥ 2−mk}

− µ{x : x(n) ≥ 2−m−1(2k + 1)})

= 2−m−1
2m∑

k=1

µ{x : 2−mk ≤ x(n) < 2−m−1(2k + 1)} ≤ 2−m−1. QQQ

So v = limm→∞ vm is defined in ℓ∞ and
∫
v dν = limm→∞

∫
vmdν. Also v(n) =

∫
x(n)µ(dx) for every n ∈ N,

so
∫∫

x(n)µ(dx)ν(dn) =
∫
v dν.

(γγγ) Set

f(t) =
∫
µtEnν(dn) =

∫
ν(a)µt(da)

for each t ∈ [0, 1] (using (i)). Then, for any m ∈ N,

−
∫
vmdν = 2−m

2m∑

k=1

−
∫
µ{x : x(n) ≥ 2−mk}ν(dn)

= 2−m
2m∑

k=1

−
∫
µ{x : h2−mk(x) ∈ En}ν(dn)

= 2−m
2m∑

k=1

−
∫
µ2−mkEnν(dn) = 2−m

2m∑

k=1

f(2−mk).

(δδδ) Next, for m ∈ N and x ∈ [0, 1]N, set qm(x) = 2−m
∑2m

k=1 χh2−mk(x), so that 〈qm(x)〉m∈N is non-
decreasing and ‖x− qm(x)‖∞ ≤ 2−m for each m, while qm : [0, 1]N → [0, 1]N is Borel measurable. Now

−
∫∫

qm(x)dν µ(dx) = 2−m
2m∑

k=1

∫
ν(h2−mk(x))µ(dx)

= 2−m
2m∑

k=1

∫
ν(a)µ2−mk(da) = 2−m

2m∑

k=1

f(2−mk).

Also 〈
∫
qm(x)dν〉m∈N →

∫
x dν uniformly for x ∈ [0, 1]N, so

∫∫
x dν µ(dx) is defined and equal to

lim
m→∞

∫
−
∫
qm(x)dν µ(dx) = lim

m→∞
2−m

2m∑

k=1

f(2−mk) = lim
m→∞

−
∫
vmdν

= −
∫
v dν = −

∫∫
x(n)µ(dx)ν(dn).

As µ is arbitrary, (ii) is true.

(ii)⇒(iii) Assume (ii), and let (X,Σ, µ) be a probability space and 〈fn〉n∈N a uniformly bounded sequence
of measurable real-valued functions on X. As completing µ does not affect the integral

∫
. . . dµ (212Fb), we

may suppose that µ is complete. Let γ > 0 be such that |fn(x)| ≤ γ for every n ∈ N and x ∈ X, and set

q(x)(n) =
1

2γ
(γ+ fn(x)) for all n and x. Then q : X → [0, 1]N is measurable, so there is a Radon probability

measure λ on [0, 1]N such that q is inverse-measure-preserving for µ and λ. PPP Taking λ0E = µq−1[E] for
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Borel sets E ⊆ [0, 1]N, q is inverse-measure-preserving for µ and λ0; taking λ to be the completion of λ0, q
is inverse-measure-preserving for µ and λ, by 234Ba; and λ is a Radon measure by 433Cb. QQQ Now

−
∫∫

fndµ ν(dn) = 2γ −
∫∫

q(x)(n)µ(dx)ν(dn) − γ

= 2γ −
∫∫

z(n)λ(dz)ν(dn) − γ

(235Gc)

= 2γ

∫
−
∫
z(n)ν(dn)λ(dz) − γ

(by (ii))

= 2γ

∫
−
∫
q(x)(n)ν(dn)µ(dx) − γ =

∫
−
∫
fn(x)ν(dn)µ(dx).

As µ and 〈fn〉n∈N are arbitrary, (iii) is true.

(iii)⇒(iv) is elementary, taking fn = χFn and µ = νω.

(iv)⇒(i) If (iv) is true and µ is a Radon probability measure on PN, there is an inverse-measure-
preserving function φ from ({0, 1}N, νω) to (PN, µ) (343Cd). For each n ∈ N, set Fn = φ−1[En] for each n
and choose a Borel set F ′

n ⊆ {0, 1}N such that νω(F ′
n△Fn) = 0. Then

∫∫
χF ′

n(x)ν(dn)νω(dx) is defined and
equal to ∫

νωF
′
nν(dn) =

∫
νωFnν(dn) =

∫
µEnν(dn).

Now

−
∫
µEnν(dn) =

∫
−
∫
χF ′

n(x)ν(dn)νω(dx) =

∫
−
∫
χFn(x)ν(dn)νω(dx)

(because for almost every x, χFn(x) = χF ′
n(x) for every n)

=

∫
−
∫
χEn(φ(x))ν(dn)νω(dx) =

∫
−
∫
χEn(a)ν(dn)µ(da)

(235Gc again)

=

∫
−
∫
χa(n)ν(dn)µ(da) =

∫
ν(a)µ(da).

As µ is arbitrary, (i) is true.

538Q Definition I will say that a bounded finitely additive functional ν satisfying (i)-(iv) of 538P is
a medial functional; if, in addition, ν is non-negative, νa = 0 for every finite set a ⊆ N and νN = 1, I
will call ν a medial limit. I should remark that the term ‘medial limit’ is normally used for the associated
linear functional

∫
. . . dν on ℓ∞, rather than the additive functional ν on PN; thus h ∈ (ℓ∞)∗ is a medial

limit if h ≥ 0, h(w) = limn→∞ w(n) for every convergent sequence w ∈ ℓ∞ and
∫
h(〈fn(x)〉n∈N)µ(dx) is

defined and equal to h(〈
∫
fndµ〉n∈N) whenever (X,Σ, µ) is a probability space and 〈fn〉n∈N is a uniformly

bounded sequence of measurable real-valued functions on X.
Note that 538P(i) tells us that a medial limit ν : PN → R is universally Radon-measurable (definition:

434Ec), therefore universally measurable (434Fc).

538R Proposition Let M ∼= (ℓ∞)∗ be the L-space of bounded finitely additive functionals on PN, and
Mmed ⊆M the set of medial functionals.

(a) Mmed is a band in M , and if T ∈ L×(ℓ∞; ℓ∞) (definition: 355G) and T ′ : M →M is its adjoint, then
T ′ν ∈Mmed for every ν ∈Mmed.

(b) Taking Mτ to be the band of completely additive functionals on PN and Mm the band of measurable
functionals, as described in §464, Mτ ⊆Mmed ⊆Mm.
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(c) Suppose that 〈νk〉k∈N is a norm-bounded sequence in Mmed, and that ν ∈ Mmed. Set ν̃(a) =∫
νk(a)ν(dk) for a ⊆ N. Then ν̃ ∈Mmed.

(d) Suppose that ν ∈ M is a medial limit, and set F = {a : a ⊆ N, ν(a) = 1}. Then F is a measure-
converging filter with the Fatou property.

(e) Let (X,Σ, µ) and (Y,T, λ) be probability spaces, and T ∈ L×(L∞(µ);L∞(λ)). Let 〈fn〉n∈N, 〈gn〉n∈N

be sequences in L
∞(µ), L∞(ν) respectively such that Tf•

n = g•
n for every n and 〈f•

n〉n∈N is norm-bounded in
L∞(µ). Let ν ∈ M be a medial functional. Then f(x) =

∫
fn(x)ν(dn) and g(y) =

∫
gn(y)ν(dn) are defined

for almost every x ∈ X and y ∈ Y ; moreover, f ∈ L
∞(µ), g ∈ L

∞(λ) and Tf• = g•.

proof (a)(i) Any of the four conditions of 538P makes it clear that Mmed is a linear subspace of M .
We see also that Mmed is norm-closed in M . PPP Let 〈νn〉n∈N be a sequence in Mmed which is norm-

convergent to ν ∈ M . If µ is a Radon probability measure on [0, 1]N, then 〈
∫
x dνn〉n∈N →

∫
x dν uniformly

for x ∈ [0, 1]N, so

∫
−
∫
x dν µ(dx) = lim

n→∞

∫
−
∫
x dνnµ(dx)

= lim
n→∞

−
∫∫

x(i)µ(dx)νn(di) = −
∫∫

x(i)µ(dx)ν(di).

As µ is arbitrary, ν ∈Mmed. QQQ

(ii) Before completing the proof that Mmed is a band, I deal with the second clause of (a).

(ααα) Recall from §355 that L×(ℓ∞; ℓ∞) is the set of differences of order-continuous positive linear
operators from ℓ∞ to itself. Since M can be identified with (ℓ∞)∗, any T ∈ L×(ℓ∞; ℓ∞) has an adjoint
T ′ : M → M defined by saying that (T ′ν)(a) =

∫
T (χa)dν for every a ⊆ N. Since x 7→

∫
Tx dν and

x 7→
∫
x d(T ′ν) both belong to (ℓ∞)∗ and agree on {χa : a ⊆ N}, they are equal, that is,

∫
Tx dν =

∫
x d(T ′ν)

for every x ∈ ℓ∞.

(βββ) If T : ℓ∞ → ℓ∞ is an order-continuous positive linear operator, it is a norm-bounded linear
operator (355C), and all the functionals x 7→ (Tx)(n) are order-continuous, therefore represented by members
of ℓ1; that is, we have a family 〈αni〉n,i∈N in [0,∞[ such that

(Tx)(n) =
∑∞

i=0 αnix(i) whenever x ∈ ℓ∞ and n ∈ N,

supn∈N

∑∞
i=0 αni = ‖T‖ is finite.

In this case, if ν ∈M and ν′ = T ′ν in M ,∫
x dν′ =

∫
(Tx)(n)ν(dn) =

∫ ∑∞
i=0 αnix(i)ν(dn)

for every x ∈ ℓ∞.
Now suppose that that ‖T‖ ≤ 1, so that

∑∞
i=0 αni ≤ 1 for every n. Consider the function φ = T ↾[0, 1]N.

This is a function from [0, 1]N to itself, and it is continuous for the product topology on N.
Take any ν ∈ M and Radon probability measure µ on [0, 1]N; then the image measure µ1 = µφ−1 on

[0, 1]N is a Radon probability measure (418I), and
∫
f(φ(x))µ(dx) =

∫
f(x)µ1(dx) for any µ1-integrable

function f . In particular, setting f(x) =
∫
x dν,

∫∫
φ(x) dν µ(dx) =

∫∫
x dν µ1(dx) =

∫∫
x(n)µ1(dx)ν(dn)

because ν ∈Mmed.
Set ν′ = T ′ν. Then we can calculate

−
∫∫

x(n)µ(dx)ν′(dn) = −
∫ ∞∑

i=0

αni

∫
x(i)µ(dx)ν(dn) = −

∫∫ ∞∑

i=0

αnix(i)µ(dx)ν(dn)

(the inner integral is with respect to a genuine σ-additive measure, so we have B.Levi’s theorem)

= −
∫∫

φ(x)(n)µ(dx)ν(dn) = −
∫∫

x(n)µ1(dx)ν(dn)

=

∫
−
∫
φ(x) dν µ(dx) =

∫
−
∫
Tx dν µ(dx) =

∫
−
∫
x dν′ µ(dx).
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As µ is arbitrary, ν′ satisfies 538P(ii), and is a medial functional.

(γγγ) Thus T ′ν ∈ Mmed whenever ν ∈ Mmed and T : ℓ∞ → ℓ∞ is positive, order-continuous and of
norm at most 1. As Mmed is a linear subspace of M , the same is true for every positive order-continuous T
and for differences of such operators, that is, for every T ∈ L×(ℓ∞; ℓ∞), as claimed.

(iii) I now return to the question of showing that Mmed is a band. The point is that if ν is a medial
functional and b ⊆ N, then νb is a medial functional, where νb(a) = ν(a ∩ b) for every a ⊆ N. PPP Define
T : ℓ∞ → ℓ∞ by setting Tx = x × χb for x ∈ ℓ∞. Then T is a positive order-continuous operator, and
T ′ν ∈Mmed, by (iii) above. But

(T ′ν)(a) =
∫
T (χa)dν =

∫
χ(a ∩ b)dν = ν(a ∩ b) = νb(a)

for every a ⊆ N, so νb = T ′ν is a medial functional. QQQ
By 436M, this is enough to ensure that Mmed is a band in M .

(b)(i) Recall that an additive functional on PN is completely additive iff it corresponds to an element of
ℓ1, that is, belongs to the band generated by the elementary functionals δk where δk(a) = χa(k) for k ∈ N

and a ⊆ N. To see that δk belongs to Mmed, all we have to do is to note that δk = χEk where Ek is defined
as in 538P; so if µ is a Radon probability measure on PN, we shall have∫

δkdµ = µEk =
∫
µEnδk(dn).

Since Mmed is a band, it must include Mτ .

(ii) On the other side, 538P(i) tells us that every member of Mmed is universally measurable, and
therefore belongs to Mm, which is just the set of bounded additive functionals which are Σ-measurable,
where Σ is the domain of the usual measure on PN.

(c)(i) Because 〈νk〉k∈N is norm-bounded, ν̃ is well-defined and additive; also it is bounded. PPP If γ is such
that ‖ν‖ ≤ γ and ‖νk‖ ≤ γ for every k, then

|ν̃(a)| ≤ γ supk∈N |νk(a)| ≤ γ2

for every a ⊆ N. QQQ
Note that ∫

χa dν̃ = ν̃(a) =
∫
νk(a)ν(dk) =

∫∫
χa dνkν(dk)

for every a ⊆ N, so that∫
x dν̃ =

∫
x(n) ν̃(dn) =

∫∫
x(n) νk(dn)ν(dk) =

∫∫
x dνkν(dk)

whenever x ∈ ℓ∞ is a linear combination of indicator functions, and therefore for every x ∈ ℓ∞.

(ii) Now suppose that (X,Σ, µ) is a probability space and that 〈fn〉n∈N is a uniformly bounded sequence

of measurable real-valued functions on X. Let (X, Σ̂, µ̂) be the completion of (X,Σ, µ). For k ∈ N and x ∈ X
set gk(x) =

∫
fn(x)νk(dn); because νk is a medial functional, we know that

∫
gkdµ =

∫∫
fn(x)µ(dx)νk(dn) is

defined, so gk is Σ̂-measurable. Consequently
∫∫
gk(x)ν(dk)µ̂(dx) is defined and equal to

∫∫
gk(x)µ̂(dx)ν(dk).

It follows that

−
∫∫

fn(x)µ(dx)ν̃(dn) = −
∫
−
∫∫

fn(x)µ(dx)νk(dn)ν(dk)

= −
∫∫

−
∫
fn(x)νk(dn)µ(dx)ν(dk) = −

∫∫
gk(x)µ̂(dx)ν(dk)

=

∫
−
∫
gk(x)ν(dk)µ̂(dx) =

∫
−
∫
−
∫
fn(x)νk(dn)ν(dk)µ̂(dx)

=

∫
−
∫
fn(x)ν̃(dn)µ̂(dx) =

∫
−
∫
fn(x)ν̃(dn)µ(dx).

(Recall that µ and µ̂ give rise to the same integrals, by 212Fb again.) As (X,Σ, µ) and 〈fn〉n∈N are arbitrary,
ν̃ ∈Mmed.

(d) Of course F = {N \ a : ν(a) = 0} is a filter.

D.H.Fremlin



120 Topologies and Measures III 538R

(i) If (X,Σ, µ) is a probability space, 〈En〉n∈N is a sequence in Σ, and limn→∞ µEn = 1, then∫∫
χEn(x)ν(dn)µ(dx) =

∫∫
χEndµ ν(dn) =

∫
µEnν(dn) = 1.

So E = {x :
∫
χEn(x)ν(dn) = 1} is µ-conegligible. But if x ∈ E and a = {n : x ∈ En}, then νa =∫

χEn(x)ν(dn) = 1 and a ∈ F and x ∈ ⋂
n∈aEn. Thus

⋃
a∈F

⋂
n∈aEn ⊇ E is conegligible. As (X,Σ, µ) and

〈En〉n∈N are arbitrary, F is measure-converging.

(ii) If (X,Σ, µ) is a probability space, 〈En〉n∈N is a sequence in Σ, and X =
⋃

A∈F

⋂
n∈AEn, then

{n : x ∈ En} ∈ F for every x ∈ X, and∫
µEnν(dn) =

∫∫
χEn(x)ν(dn)µ(dx) =

∫
ν{n : x ∈ En}µ(dx) = 1.

So for any ǫ > 0, ν{n : µEn ≤ 1 − ǫ} = 0 and {n : µEn ≥ 1 − ǫ} ∈ F ; accordingly limn→F µEn = 1. As
(X,Σ, µ) and 〈En〉n∈N are arbitrary, F has the Fatou property.

(e)(i) For each n ∈ N, we can find a Σ-measurable function f ′n : X → R, equal almost everywhere to fn,
and such that supx∈X |f ′n(x)| = ess sup |fn|. Now 〈f ′n〉n∈N is uniformly bounded, so f ′(x) =

∫
f ′n(x)ν(dn) is

defined for every x ∈ X; and f(x) is defined and equal to f ′(x) for µ-almost every x. Since f ′ is integrable,
f ′ and f are µ-virtually measurable and essentially bounded, and f ∈ L

∞(µ). Similarly, g ∈ L
∞(λ).

(ii) If h ∈ L
1(µ), then

∫
f × h dµ =

∫∫
fn × h dµ ν(dn). PPP (α) If h is defined everywhere, measurable

and bounded, then, taking f ′n and f ′ as in (i), (f ′ × h)(x) =
∫
f ′n(x)h(x)ν(dn) for every x ∈ X, so

∫
f × h dµ =

∫
f ′ × h dµ =

∫
−
∫

(f ′n × h)(x)ν(dn)µ(dx)

= −
∫∫

f ′n × h dµ ν(dn) = −
∫∫

fn × h dµ ν(dn).

(β) In general, set γ = supn∈N ess sup fn. Given ǫ > 0, there is a simple function h′ such that ‖h−h′‖1 ≤ ǫ,
and now

|
∫
f × h dµ−−

∫∫
fn × h dµ ν(dn)|

≤ |
∫
f × h dµ−

∫
f × h′ dµ| + |

∫
f × h′ dµ−−

∫∫
fn × h′ dµ ν(dn)|

+ | −
∫∫

fn × h′ dµ ν(dn) −−
∫∫

fn × h dµ ν(dn)|

≤ ‖f‖∞‖h− h′‖1 + sup
n∈N

|
∫
fn × h′ dµ−

∫
fn × h dµ| ≤ 2ǫγ.

As ǫ is arbitrary,
∫
f × h dµ =

∫∫
fn × h dµ ν(dn). QQQ

Similarly,
∫
g × h dλ =

∫∫
gn × h dλ ν(dn) for every λ-integrable h.

(iii) If h ∈ L
1(λ) there is an h̃ ∈ L

1(µ) such that
∫
h̃• × v =

∫
h• × Tv for every v ∈ L∞(µ). PPP Recall

that L1(µ), L1(λ) can be identified with L∞(µ)× and L∞(ν)× (365Lb10); perhaps I should remark that the

formulae
∫
h̃• × v,

∫
h• × Tv represent abstract integrals taken in L1(µ), L1(λ) respectively (242B). Setting

φ(w) =
∫
h• ×w for w ∈ L∞(λ), φ ∈ L∞(λ)×, so φT ∈ L∞(µ)× (355G) and there is an h̃ ∈ L

1(µ) such that
∫
h̃• × v = φ(Tv) =

∫
h• × Tv

for every v ∈ L∞(µ). QQQ

(iv) Take h and h̃ as in (iii), and consider

∫
h• × g• =

∫
h× g dλ = −

∫∫
h× gn dλ ν(dn)

(by (ii))

10Formerly 365Mb.
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= −
∫

(

∫
h• × g•

n)ν(dn) = −
∫

(

∫
h• × Tf•

n)ν(dn)

= −
∫

(

∫
h̃• × f•

n)ν(dn) = −
∫∫

h̃× fndµ ν(dn) =

∫
h̃× fdµ

(by (ii) again)

=

∫
h̃• × f• =

∫
h• × Tf•.

As h is arbitrary, and the duality between L∞(µ) and L1(λ) is separating, Tf• = g•, as required.

538S Theorem (a) If mcountable = c, there is a medial limit.
(b) (Larson 09) Suppose that the filter dichotomy (5A6Id) is true. If I is any set and ν is a finitely

additive real-valued functional on PI which is universally measurable for the usual topology on PI, then ν
is completely additive.11 Consequently there is no medial limit.

proof (a)(i) Let M be the L-space of bounded additive functionals on PN. Let us say that a subset C of
M is rationally convex if αν + (1 − α)ν′ ∈ C whenever ν, ν′ ∈ C and α ∈ [0, 1] ∩ Q; for A ⊆ M , write
ΓQ(A) for the smallest rationally convex set including A. Set Q = ΓQ({δn : n ∈ N}) where δn(a) = χa(n) for
a ⊆ N and n ∈ N. In the language of 538Rb, Q ⊆Mτ ⊆Mmed, so 538P(i) tells us that

∫
ν dµ =

∫
µEnν(dn)

for every ν ∈ Q, where En = {a : n ∈ a ⊆ N} as usual.

(ii) Suppose that F is a filter base on Q, consisting of rationally convex sets, with cardinal less than
mcountable. Let µ be a Radon probability measure on PN. Then there is a sequence 〈νk〉k∈N in Q such that∑∞

k=0

∫
|νk+1(a) − νk(a)|µ(da) <∞,

{k : k ∈ N, νk ∈ F} is infinite for every F ∈ F .

PPP Each ν ∈ Q is a bounded Borel measurable real-valued function on PN; let u ∈ L2 = L2(µ) be a
Ts(L

2, L2)-cluster point of 〈ν•〉ν∈Q along the filter generated by F . For any F ∈ F , the ‖ ‖2-closure of the
rationally convex set {ν• : ν ∈ F} ⊆ L2 is convex, so includes the weak closure of {ν• : ν ∈ F} and therefore
contains u. So {ν• : ν ∈ F} meets {v : v ∈ L2, ‖v − u‖2 ≤ ǫ} for every ǫ > 0.

Set Hk = {ν : ν ∈ Q, ‖ν• − u‖2 ≤ 2−k} for each k ∈ N; then every Hk meets every member of F . If we
give each Hk its discrete topology, and take H to be the product

∏
k∈NHk, then H is homeomorphic to NN.

Writing M(H) for the ideal of meager subsets of H, covM(H) = mcountable > #(F), while
⋃

k≥n{α : α ∈ H, α(k) ∈ F}
is a dense open subset of H for every F ∈ F and n ∈ N. There is therefore an α ∈ H such that {k : α(k) ∈ F}
is infinite for every F ∈ F ; take νk = α(k) for each k. Since µ is a probability measure,

∫
|νk+1 − νk|dµ ≤ ‖ν•

k+1 − ν•

k‖2
(244E; see 244Xd)

≤ 2−k−1 + 2−k

for every k, and
∑∞

k=0

∫
|νk+1 − νk|dµ is finite. QQQ

(iii) Because a Radon probability measure on PN is defined by its values on the countable algebra B

of open-and-closed sets, the number of such measures is at most #(RB) = c. Enumerate them as 〈µξ〉ξ<c .
Choose a non-decreasing family 〈Fξ〉ξ≤c of filter bases on Q, as follows. The inductive hypothesis will be that
Fξ has cardinal at most max(ω,#(ξ)) and consists of rationally convex sets. Start with F0 = {Fn : n ∈ N}
where Fn = ΓQ({δi : i ≥ n}) for each n. Given Fξ where ξ < c, apply (ii) with µ = µξ to see that there is a
sequence 〈νξk〉k∈N in Q such that∑

k∈N

∫
|νξ,k+1 − νξk|dµξ <∞,

{k : νξk ∈ F} is infinite for every F ∈ Fξ.

11The result developed into this form in the course of correspondence with J.Pachl.
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Let Fξ+1 be

Fξ ∪ {F ∩ ΓQ({νξk : k ≥ l}) : F ∈ Fξ, l ∈ N}.

For non-zero limit ordinals ξ ≤ c, set Fξ =
⋃

η<ξ Fη.

(iv) At the end of the induction, let F be the filter on M ∼= (ℓ∞)∗ generated by Fc , and let θ
be a cluster point of F for the weak* topology of (ℓ∞)∗. Then θ is a medial limit. PPP If µ is a Radon
probability measure on PN, take ξ < c such that µ = µξ. Because ΓQ({νξk : k ≥ l}) belongs to F for every
l ∈ N,

∫
u(n)θ(dn) = limk→∞

∫
u(n)νξk(dn) for every u ∈ ℓ∞ for which the limit is defined. In particular,

θ(a) = limk→∞ νξk(a) whenever a ⊆ N is such that the limit is defined. Because
∑

k∈N

∫
|νξ,k+1 − νξk|dµ is

finite, this is the case for µ-almost every a, so∫
θ(a)µ(da) = limk→∞

∫
νξk(a)µ(da) = limk→∞

∫
µEnνξk(dn);

and because the latter limit is defined it is equal to
∫
µEnθ(dn). As µ is arbitrary, θ satisfies condition (i)

of 538P, and is a medial functional; because Q ∈ F , θN = 1; and because F0 ⊆ F , θ(a) = 0 for every finite
a ⊆ N, so θ is a medial limit. QQQ

(b)(i) The key is the following. Suppose that ν : PI → R is a universally measurable additive functional.

(ααα) For every set J and function φ : I → J , νφ−1 is universally measurable, where (νφ−1)(b) =
ν(φ−1[b]) for every b ⊆ J . PPP We have only to observe that b 7→ φ−1[b] : PJ → PI is continuous, and apply
434Df. QQQ

(βββ) ν is bounded. PPP??? Otherwise, there is a disjoint sequence 〈ck〉k∈N of subsets of I such that
limk→∞ |νck| = ∞ (326D(ii)). Enlarging c0 if necessary, we can suppose that

⋃
k∈N ck = I. Set φ(i) = k for

k ∈ N and i ∈ ck. Then νφ−1[{k}] → ∞ as k → ∞. But ν′ = νφ−1 is universally measurable, therefore
TN-measurable, where TN is the domain of the usual measure λN on PN. Let M be such that λNE > 0
where E = {a : |ν′a| ≤ M}. Then there are an n ∈ N such that for every k ≥ n there are a, b ∈ E
such that a△b = {k} (345E; recall that the natural bijection a → χa : PN → {0, 1}N identifies λN with
the usual measure on {0, 1}N). In this case, k belongs to exactly one of a, b; suppose that k ∈ a \ b; then
|ν′{k}| = |νa− ν′b| ≤ 2M . This is supposed to be true for every k ≥ n, so lim supk→∞ |ν′{k}| ≤ 2M . XXXQQQ

(γγγ) |ν| is universally measurable. PPP As in part (b-i) of the proof of 464K, there is a sequence
〈cn〉n∈N in PI such that ν+a = limn→∞ ν(a ∩ cn) for every a ⊆ I. Since all the functions a 7→ a ∩ cn
are continuous, a 7→ ν(a ∩ cn) is universally measurable for every n, and ν+ is universally measurable (use
418C). Consequently |ν| = 2ν+ − ν is universally measurable. QQQ

(ii) If ν : PN → [0,∞[ is a universally measurable additive functional and ν{n} = 0 for every n ∈ N,
then ν = 0. PPP??? Otherwise, consider F = {a : νa = νN}. This is a filter on N containing every cofinite set.
Let φ : N → N be finite-to-one, and write ν′ for νφ−1. Setting I = {a : ν′a = 0}, we have a strictly positive
additive functional on the quotient algebra PN/I, so PN/I is ccc and I cannot be [N]<ω, that is, φ[[F ]] is
not the Fréchet filter. On the other hand, ν′ is universally measurable, by (i-α), so

φ[[F ]] = {a : φ−1[a] ∈ F} = {a : ν′a = ν′N}
is a universally measurable subset of PN, and cannot be an ultrafilter (464Ca). Thus F witnesses that the
filter dichotomy is false. XXXQQQ

(iii) Returning to the general case of a universally measurable additive functional ν : PI → R, set
γi = ν{i} for i ∈ I. By (i-β), supJ∈[I]<ω |∑j∈J γj | = supJ∈[I]<ω |νJ | is finite, so

∑
i∈I |γi| < ∞, and we

have a functional ν1 : PI → R defined by setting ν1a =
∑

i∈a γi for every a ⊆ I. ν1 is continuous for the
topology of PI, so ν2 = ν − ν1 is universally measurable, and ν′ = |ν2| is universally measurable, by (i-γ).

ν′J = 0 for every countable set J ⊆ I. PPP If J is finite, this is trivial, because

|ν2|{i} = |ν2{i}| = |ν{i} − ν1{i}| = |γi − γi| = 0

for every i ∈ I. If J is countably infinite, then the embedding PJ ⊂→ PI is continuous, so ν′↾PJ is universally
measurable for the usual topology on PJ ; also it is still zero on singletons, so (ii) tells us that it is zero on
the whole of PJ . QQQ
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It follows that ν′ is zero everywhere. PPP Take c ⊆ I and ǫ > 0. ν′ must be TI -measurable, where TI is the
domain of the usual measure λI on PI. Since λI is a completion regular Radon measure (416U), there must
be a non-negligible zero set K ⊆ PI such that |ν′a− ν′b| ≤ ǫ for all a, b ∈ K; and there is a countable set
J ⊆ I such that K is determined by coordinates in J (4A3Nc, applied to {0, 1}I ∼= PI). Take any a ∈ K.
Then c1 = (c \ J) ∪ (a ∩ J) and a ∩ J both belong to K. But as ν′(c ∩ J) = 0,

|ν′c| = |ν′c1 − ν′(a ∩ J)| ≤ ǫ.

As c and ǫ are arbitrary, ν′ = 0. QQQ
Accordingly ν2 = 0 and ν = ν1. But of course ν1 is completely additive.

(iv) Finally, a medial limit would be a non-zero additive functional from PN to [0, 1] which was
universally measurable, as noted in 538Q, and zero on singletons; and this has already been ruled out by
(ii).

Remark It is possible to have medial limits when mcountable ≪ c; see 553N.

538X Basic exercises (a) Let F be a filter on N, and I an infinite subset of N such that N \ I /∈ F ;
write F⌈I for the filter {A ∩ I : A ∈ F}. Show that if F is free, or a p-point filter, or Ramsey, or rapid, or
nowhere dense, or measure-centering, or measure-converging, or with the Fatou property, then so is F⌈I.

(b) For A ∈ [N]ω let fA : N → A be the increasing enumeration of A. Let F be a free filter on N. Show
that F is rapid iff {fA : A ∈ F} is cofinal with NN.

(c) Let F be a filter which is universally measurable (regarded as a subset of P(
⋃F) with its usual

topology), and G another filter such that G ≤RK F . Show that G is universally measurable.

(d) Let FFr be the Fréchet filter and Fd the asymptotic density filter, the filter of subsets of N with
asymptotic density 1. (i) Show that FFr and Fd are p-point filters. (ii) Show that FFr ≤RB Fd but that
FFr ⋉ FFr 6≤RK Fd.

(e)(i) Let 〈Fn〉n∈N be a sequence of filters on N, and F a filter on N. Write limn→F Fn for the filter
{A : A ⊆ N, {n : n ∈ N, A ∈ Fn} ∈ F}. Show that if every Fn is rapid, then limn→F Fn is rapid. (ii) Let F
be a rapid filter, and G any filter on N. Show that G ⋉ F is rapid. (iii) In 538E, suppose that F1 is rapid.
Show that Gξ is rapid for every ξ ≥ 1.

(f)(i) Let F be a nowhere dense filter, and G a filter on N such that G ≤RK F . Show that G is nowhere
dense. (ii) Show that a p-point ultrafilter is nowhere dense. (iii) In 538E, show that if every Fξ is a nowhere
dense ultrafilter, then Gζ is a nowhere dense ultrafilter.

>>>(g) Let F be a free filter on N. Show that the following are equiveridical: (i) F is a Ramsey filter; (ii)
whenever K is finite, k ∈ N and f : [N]k → K is a function, there is an F ∈ F such that f is constant on
[F ]k; (iii) F is a p-point filter and whenever 〈En〉n∈N is a disjoint sequence in [N]<ω, there is an F ∈ F such
that #(F ∩En) ≤ 1 for every n; (iv) whenever 〈En〉n∈N is a disjoint sequence in PN \ F , there is an F ∈ F
such that #(F ∩ En) ≤ 1 for every n.

(h) Let F be a countable family of distinct p-point ultrafilters on N. Show that there is a disjoint family
〈AF 〉F∈F of subsets of N such that AF ∈ F for every F ∈ F.

(i) Let (X,Σ, µ) be a complete perfect probability space, (Y,S) a perfectly normal compact Hausdorff
space, 〈fn〉n∈N a sequence of measurable functions from X to Y , F a measure-centering ultrafilter on N

and λ the F-extension of µ. (i) Setting f(x) = limn→F fn(x) for x ∈ X, show that f is domλ-measurable.
(ii) For each n ∈ N, show that there is a unique Radon measure νn on Y such that fn is inverse-measure-
preserving for µ and νn. (iii) Let ν be the limit limn→F νn for the narrow topology on the space of Radon
probability measures on Y (437Jd). Show that f is inverse-measure-preserving for λ and ν. (Hint : look at
the Radon measure associated with the image measure λf−1. You may prefer to begin with metrizable Y .)
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(j) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, F an ultrafilter on I, and (A, µ̄) the probability
algebra reduced product of

∏
i∈I(Ai, µ̄i)|F . For each i ∈ I, let ⊆i be the order relation on Ai; set P =

∏
i∈I Ai

and let P |F be the partial order reduced product of 〈(Ai,⊆i)〉i∈I modulo F as defined in 5A2A. Describe a
canonical order-preserving map from P |F to A.

(k)(i) Let (A, µ̄) be a homogeneous probability algebra with Maharam type κ, I a non-empty set, F an
ultrafilter on I and (C, ν̄) the probability algebra reduced power (A, µ̄)I |F . Show that C is homogeneous,
with Maharam type the transversal number TrI(I;κ) (definition: 5A1M), where I = {I \ A : A ∈ F}.
(Hint : 5A1Nd, 521Eb.) (ii) Show that if (A, µ̄) is any probability algebra and F and G are non-principal
ultrafilters on N, then the probability algebra reduced powers (A, µ̄)N|F and (A, µ̄)N|G are isomorphic.

(l) Let (X,Σ, µ) be a perfect probability space and µ′ an indefinite-integral measure over µ which is also
a probability measure. Let F be a measure-centering ultrafilter on N and λ, λ′ the F-extensions of µ and
µ′. Show that λ′ is an indefinite-integral measure over λ.

>>>(m) (Benedikt 98) (i) Let F be any free filter on N. Show that F⋉F is not measure-centering. (Hint :
let 〈en〉n∈N be the standard generating family in Bω, and consider amn = em \ en if m < n, 1 otherwise.)
(ii) Let F be a measure-centering ultrafilter on N. Show that if f , g ∈ NN and {n : f(n) 6= g(n)} ∈ F , then
f [[F ]] 6= g[[F ]]. (Hint : consider an = ef(n) \ eg(n) if f(n) 6= g(n).)

(n) Let X be a locally compact Hausdorff topological group, and µ a left Haar measure on X. Show that
there is a complete locally determined left-translation-invariant measure λ on X such that λ(limn→F En)
is defined and equal to supK⊆X is compact limn→F µ(En ∩K) whenever F is a Ramsey ultrafilter on N and
〈En〉n∈N is a sequence of Haar measurable subsets of X.

(o)(i) Let 〈Fn〉n∈N be a sequence of measure-converging filters on N. Show that
⋂

n∈N Fn is measure-
converging, so that limn→F Fn (538Xe) is measure-converging for any filter F on N. (ii) In 538E, suppose
that F1 is measure-converging. Show that Gξ is measure-converging for every ξ ∈ [1, ζ].

(p) Suppose that 〈Fξ〉ξ<κ is a family of measure-converging filters, where κ is non-zero and less than the
additivity addN of Lebesgue measure. Show that

⋂
ξ<κ Fξ is measure-converging.

(q)(i) Let F be a filter on N. Show that F has the Fatou property iff
∫
fdµ and limn→F

∫
fndµ are

defined and equal whenever (X,Σ, µ) is a measure space, g : X → [0,∞[ is an integrable function and
〈fn〉n∈N is a sequence of measurable functions on X such that |fn| ≤a.e. g for every n and limn→F fn =a.e. f .
(ii) Show that a non-principal ultrafilter on N cannot have the Fatou property. (Hint : 464Ca.)

(r) Show that the asymptotic density filter (538Xd) has the Fatou property.

(s)(i) Let 〈Fn〉n∈N be a sequence of filters with the Fatou property, and F a filter with the Fatou property.
Show that limn→F Fn (538Xe) has the Fatou property. (ii) In 538E, suppose that Fξ has the Fatou property
for every ξ ∈ [1, ζ]. Show that Gξ has the Fatou property for every ξ ≤ ζ.

(t) Let ν : PN → R be a bounded additive functional. (i) Show that ν is a medial functional iff∫
ν{n : x ∈ En}µ(dx) is defined and equal to

∫
µEnν(dn) whenever (X,Σ, µ) is a probability space and

〈En〉n∈N is a sequence in Σ. (ii) Show that in this case a 7→ νφ−1[a] is a medial functional for any φ : N → N.

>>>(u) Let (X,Σ, µ) be a probability space, and T a σ-subalgebra of Σ. Let 〈fn〉n∈N be a sequence in
L

∞(µ) such that supn∈N ess sup |fn| is finite, and for each n ∈ N let gn be a conditional expectation of fn
on T. Suppose that ν is a medial functional. Show that f(x) =

∫
fn(x)ν(dn) and g(x) =

∫
gn(x)ν(dn) are

defined for almost every x, that f ∈ L
∞(µ), and that g is a conditional expectation of f on T.

(v) (V.Bergelson) Show that there are a probability algebra (A, µ̄) and a sequence 〈an〉n∈N in A such
that infn∈N µ̄an > 0 but am ∩ an ∩ am+n = 0 whenever m, n > 0. (Hint : for n ≥ 1, set En = {x : x ∈ [0, 1],
⌊3nx⌋ ≡ 1 mod 3}.)
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538Y Further exercises (a) Show that if F and G are filters and F ≤RK G, then, in the language of
512A, (F ,⊇,F) 4GT (G,⊇,G), so that ciF ≤ ciG and F is κ-complete whenever κ is a cardinal and G is
κ-complete.

(b) Let F be a free ultrafilter on N, and suppose that whenever G is a free filter on N and G ≤RK F ,
then F ≤RK G. Show that F is a Ramsey ultrafilter. (Hint : Comfort & Negrepontis 74.)

(c) Show that if p = c then there are 2c Ramsey ultrafilters on N, and therefore 2c isomorphism classes
of Ramsey ultrafilters.

(d) Let F be an ultrafilter on N. Show that F is measure-centering iff whenever A is a Boolean algebra,
D ⊆ A\{0} has intersection number greater than 0 (definition: 391H) and 〈an〉n∈N is a sequence in D, then
there is an A ∈ F such that {an : n ∈ A} is centered.

(e)(i) Show that if covN = c, there is a measure-centering ultrafilter on N including the asymptotic
density filter (538Xd). (ii) Show that an ultrafilter on N including the asymptotic density filter cannot be
a p-point filter. (iii) Show that a filter on N including the asymptotic density filter cannot be a rapid filter.

(f)(i) Let F , G be free filters on N such that F ⋉G is measure-centering. Show that there is no free filter
H such that H ≤RK F and H ≤RK G. (ii) Show that if there are two non-isomorphic Ramsey ultrafilters
on N, then there are two non-isomorphic measure-centering ultrafilters F , G on N such that F ⋉ G is not
measure-centering.

(g) For an uncountable set I, let us say that a filter F on I is uniform and measure-centering if
#(A) = #(I) for every A ∈ F and whenever A is a Boolean algebra, ν : A → [0,∞[ is an additive functional,
and 〈ai〉i∈I is a family in A with infi∈I νai > 0, there is an A ∈ F such that {ai : i ∈ A} is centered. (i) State
and prove a result corresponding to 538G for such filters. (Hint : in the part corresponding to 538G(iv), use
‘compact’ measures rather than ‘perfect’ measures.) (ii) State and prove a result corresponding to 538H.
(Hint : set κ = #(I). In the part corresponding to 538Hc, suppose that you have a κ-complete ultrafilter
on I, rather than a Ramsey ultrafilter; see 4A1L. In the part corresponding to 538He, suppose that κ is
regular and that covNκ = 2κ, where Nκ is the null ideal of the usual measure on {0, 1}κ.) (iii) State and
prove results corresponding to 538I-538K. (iv) State and prove results corresponding to 538L-538M, but
with ‘normal ultrafilters’ in place of ‘Ramsey ultrafilters’.

(h) Show that if F and G are filters on N, F is rapid and G ≤RB F , then G is rapid.

(i) Give an example of filters F , G on N such that F has the Fatou property, G ⊆ F and G does not have
the Fatou property.

(j)(i) Let F be a nowhere dense filter on N, and I the ideal {N \A : A ∈ F}. Show that PN/I is finite.
(ii) Show that a free filter with the Fatou property cannot be nowhere dense.

(k) Let (X,Σ, µ) be a probability space and 〈fm〉m∈N, 〈gn〉n∈N two uniformly bounded sequences of real-
valued measurable functions defined on X. Let ν, ν′ : PN → R be bounded additive functionals. Show that∫∫∫

fm × gndµ ν(dm)ν′(dn) =
∫∫∫

fm × gndµ ν
′(dn)ν(dm).

(l) (Meyer 73) Let ν be a medial limit. Write U for the set of sequences u ∈ RN such that sup{
∫
v dν :

v ∈ ℓ∞, v ≤ |u|} is finite; for u ∈ U , write
∫
u dν for limm→∞

∫
med(−m,u(n),m)ν(dn) (see 364Xj). Suppose

that (X,Σ, µ) is a probability space and 〈fn〉n∈N a sequence of µ-integrable real-valued functions on X such
that 〈

∫
|fn|dµ〉n∈N ∈ U . (i) Show that 〈fn(x)〉n∈N ∈ U for µ-almost every x ∈ X. Set f(x) =

∫
fn(x)ν(dn)

whenever 〈fn(x)〉n∈N ∈ U . (ii) Show that if every fn is non-negative then
∫
fdµ ≤

∫∫
fndµ ν(dn). (iii) Show

that if {fn : n ∈ N} is uniformly integrable then
∫
fdµ =

∫∫
fndµ ν(dn). (iv) Show that if 〈f•

n〉n∈N is weakly
convergent to 0 in L1(µ), then f =a.e. 0. (v) Suppose that 〈fn〉n∈N is uniformly integrable. Let T be a
σ-subalgebra of Σ, and for each n ∈ N let gn be a conditional expectation of fn on T; set g(x) =

∫
gn(x)ν(dn)

whenever 〈gn(x)〉n∈N ∈ U . Show that g is a conditional expectation of f on T.
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(m) Suppose that F is a filter on N with the Fatou property, and 〈νn〉n∈N a sequence of medial limits.
Set G = {A : A ⊆ N, limn→F νnA = 1}. Show that G is a filter with the Fatou property.

(n) Show that u ≥ r(ω, ω) ≥ max(covN ,mcountable) (definitions: 5A6Ia, 529G).

(o)(i) Show that if F is a rapid filter on N, then ciF ≥ d. (ii) Show that d ≥ g (definition: 5A6I(b-ii)).
(iii) Show that if u < g there are no rapid filters on N, and if there is a measure-converging filter there is a
measure-converging ultrafilter with coinitiality u.

(p) Suppose that the filter dichotomy is true. (i) Let A be a Dedekind σ-complete Boolean algebra. Show
that if ν : A → R is an additive functional which is universally measurable for the order-sequential topology
of A, then ν is countably additive. (ii) Let (A, µ̄) be a localizable measure algebra. Show that if ν : A → R

is an additive functional which is universally measurable for the measure-algebra topology on A, then it is
continuous.

(q)(i) Show that there is a semigroup operation +̇ on the set βN of ultrafilters on N defined by saying
that F+̇G = +[[F ⋉G]] for all F , G ∈ βN, where + : N×N → N is addition. (ii) Show that if we identify βN
with the Stone-Čech compactification of N (4A2I(b-i)), then +̇ is continuous in the first variable. (iii) Show
that there is a non-principal ultrafilter F on N which is idempotent, that is, F+̇F = F . (Hint : consider
a minimal closed sub-semigroup of the set of non-principal ultrafilters.) (iv) For any function f ∈ NN, write
FS(f) for {∑n∈K f(n) : K ∈ [N]<ω}; say a finite sum set is a set of the form FS(f) for some strictly

increasing function f ∈ NN. Show that if F is a non-principal idempotent ultrafilter on N and I ∈ F , then
I includes a finite sum set. (This is a version of Hindman’s theorem.) (v) Show that if I ⊆ N is a finite
sum set there is an idempotent ultrafilter containing I. (vi) Suppose that (A, µ̄) is a probability algebra
and π : A → A is a measure-preserving Boolean homomorphism. (α) Show that if F is an idempotent
ultrafilter on N, then limn→F µ(a ∩ πna) ≥ (µa)2 for every a ∈ A (β) Show that there is a finite sum set
I ⊆ N such that {πna : n ∈ I} is centered. (vii) Show that no idempotent ultrafilter is measure-centering.
(Hint : 538Xv.) (viii) Show that if F is a p-point ultrafilter then F+̇F is isomorphic to F ⋉ F and is not
measure-centering. (ix) Repeat, as far as possible, for semigroups other than (N,+).

(r) (V.Bergelson-M.Talagrand) Show that there are a probability algebra (A, µ̄) and a sequence 〈an〉n∈N

in A such that µ̄an = 1
2 for every n ∈ N but infm,n∈I µ̄(am ∩ an) = 0 whenever I ⊆ N does not have

asymptotic density 0.

538Z Problem Show that it is relatively consistent with ZFC to suppose that there are no measure-
converging filters on N.

538 Notes and comments This is a long section, and rather a lot of ideas are crowded into it, starting
with the list in 538A. If you have looked at ultrafilters on N at all, you are likely to have encountered
‘p-point’, ‘rapid’ and ‘Ramsey’ ultrafilters, and most of 538B-538D and 538F will probably be familiar. The
‘iterated products’ of 538E will also be a matter of adapting known concepts to my particular formulation.

Some of the slightly contorted language of 538Fe and 538Ff (with references to ‘#(F)’) is there because
we do not know how many isomorphism classes of Ramsey filters there are. If there are none (as in random
real models, see 553H), or one (Shelah 82, §VI.5), then things are very simple. If there are infinitely many
then we could rephrase 538Ff in terms of sequences of non-isomorphic filters. But it is possible that there
should be two, or seventeen (Shelah 98a, p. 335).

In 538H-538M I try to set out, and expand, some of the principal ideas of Benedikt 98. The starting
point is the observation that a Ramsey ultrafilter gives us an extension of Lebesgue measure on [0, 1], indeed
of any perfect probability measure. Observing that this property is preserved by iterations, we are led
to ‘measure-centering’ ultrafilters. Once we have the idea of measure-centering-ultrafilter extension of a
perfect probability measure, we can set out to look at its properties in terms of the (by now very extensive)
general theory of this treatise. The first step has to be the identification of its measure algebra (538Ja,
538Xk), followed, if possible, by the identification of the corresponding Banach function spaces. It turns
out that these can be reached by an alternative route not involving special properties of the ultrafilter or
the probability space, which I have expressed in general forms in §§328 and 377. This gives a long list
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of facts, which I have written out in 538Ja and 538K. Minor variations of the measure and the filter are
straightforward (538Jb, 538Jc, 538Xl). For iterated products of filters we have more work to do (538L),
especially if we are to express them in a form adequate for the objective, the universal-extension result of
538M.

You will have noticed that in the statement of 538G I speak of ‘
⋃

A∈F

⋂
n∈A Fn’ and ‘lim infn→F µFn’.

Something of the sort is necessary since in that theorem I do not insist from the outset that F should be
an ultrafilter. Of course only ultrafilters are of interest in this context, by 538Ha, and for these we have⋃

A∈F

⋂
n∈A Fn = limn→F Fn and lim infn→F µFn = limn→F µFn, as in 538I.

For most of this section I have kept firmly to the study of filters on N. For measure-centering filters, at
least, there are interesting extensions to filters on uncountable sets, which I mention in 538Yg. We can do
a good deal with the ideas of 538G-538K on cardinals less than c in the presence of (for instance) Martin’s
axiom; but for anything corresponding to 538L-538M it seems that we must use a two-valued-measurable
cardinal (541M below).

Measure-converging filters (538N) and filters with the Fatou property (538O) form an oddly complemen-
tary pair. I have tried to emphasize the correspondence in the characterizations 538Na and 538Oa (compare
538G(v), 538Na(iv) and 538Oa(iv)), but after this they seem to diverge. The phrase ‘Fatou property’ comes
from 538O(a-iii); if you like, Fatou’s Lemma says that the Fréchet filter has the Fatou property. From
538Xq(i) I see that I could just as well have called it the ‘Lebesgue property’. Note that any filter larger
than a measure-converging filter is again measure-converging, so that if there is a measure-converging filter
there is a measure-converging ultrafilter; but that no non-principal ultrafilter can have the Fatou property
(538Xq(ii)). On the other hand, there are many free filters with the Fatou property, but it is not known for
sure whether there have to be measure-converging filters. It is possible for a measure-converging filter to
have the Fatou property (538Rd).

In the last part of the section I look at a different kind of limit. A ‘Banach limit’ is an extension to
ℓ∞ of the ordinary limit regarded as a linear functional on the closed subspace of convergent sequences; a
‘medial limit’ is a Banach limit which commutes with integration in appropriate settings. To study these
I use the formulae of repeated integration to do some surprising things. In 363L I tried to explain what I
meant by the formula ‘

∫
. . . dν’ for a finitely additive functional ν. This defines linear functionals which are

positive for non-negative ν. In ‘repeated integrals’ like
∫∫

fn(x)µ(dx)ν(dn) (538P(iii)), we must interpret the

formula as
∫ (∫

fn(x)µ(dx)
)
ν(dn); the ‘inner integral’ is an ordinary integral with respect to the countably

additive measure µ, and the ‘outer integral’ is a name for a linear functional. In the integral
∫
. . . dν we

have no problem with measurability, though we must check that the integrand n 7→
∫
fndµ is bounded (or,

at least, satisfies the condition in 538Yl); but when we look at the other repeated integrals,
∫
ν(a)µ(da) or∫∫

x dν µ(dx) or
∫∫
fn(x)ν(dn)µ(dx), the conditions of 538P must explicitly assert that the outer integrals

are defined.

Because we don’t need to consider measurability, the ‘finitely additive integrals’ here are in some ways
easy to deal with; ‘disintegrations’ like ν̃ =

∫
νk ν(dk) (538Rc) slide past all the usual questions. However

we must always be vigilant against the temptations of limiting processes. As with the Riemann integral, of
course, we can integrate the limit of a uniformly convergent sequence of functions. But see the manoeuvres of
part (a-iii) of the proof of 538R, where the sums

∑∞
i=0 αni... demand different treatments at different points.

And Fubini’s theorem nearly disappears; the point of ‘medial functionals’ is that something extraordinary
has to happen before we can expect to change the order of integration.

I have used the language of Volume 3 to express 538Re in a general form. Of course by far the most
important example is when the operator T is a conditional expectation operator (538Xu). For more examples
of operators in L×(L∞;L∞), see §§373-374.

For most of the classes of filter here, there is a question concerning their existence. Subject to the
continuum hypothesis, there are many Ramsey ultrafilters, and refining the argument we find that the same
is true if p = c (538Yc). There are many ways of forcing non-existence of Ramsey ultrafilters, of which one
of the simplest is in 553H below. With more difficulty, we can eliminate p-point ultrafilters (Wimmers 82)
or rapid filters (Miller 80) or nowhere dense filters and therefore measure-centering ultrafilters (538Hd,
Shelah 98b). It is not known for sure that we can eliminate measure-converging filters (538Z).
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Version of 24.5.14/30.8.18

539 Maharam submeasures

Continuing the work of §§392-394 and 496, I return to Maharam submeasures and the forms taken by
the ideas of the present volume in this context. At least for countably generated algebras, and in some
cases more generally, many of the methods of Chapter 52 can be applied (539B-539K). In 539L-539N I give
the main result of Balcar Jech & Pazak 05 and Veličković 05: it is consistent to suppose that every
Dedekind complete ccc weakly (σ,∞)-distributive Boolean algebra is a Maharam algebra. In 539R-539U I
introduce the idea of ‘exhaustivity rank’ of an exhaustive submeasure.

539A The story so far As submeasures have hardly appeared before in this volume, I begin by repeating
some of the essential ideas.

(a) If A is a Boolean algebra, a submeasure on A is a functional ν : A → [0,∞] such that ν0 = 0,
νa ≤ νb whenever a ⊆ b, and ν(a ∪ b) ≤ νa+ νb for all a, b ∈ B (392A); it is totally finite if ν1 <∞. If ν
is a submeasure defined on an algebra of subsets of a set X, I say that the null ideal of ν is the ideal N (ν)
of subsets of X generated by {E : νE = 0} (496Bc). A submeasure ν on a Boolean algebra A is exhaustive
if limn→∞ νan = 0 for every disjoint sequence 〈an〉n∈N in A; it is uniformly exhaustive if for every ǫ > 0
there is an n ∈ N such that there is no disjoint family a0, . . . , an with νai ≥ ǫ for every i ≤ n (392Bc). A
Maharam submeasure is a totally finite sequentially order-continuous submeasure (393A); a Maharam
submeasure on a Dedekind σ-complete Boolean algebra is exhaustive (393Bc).

(b) A Maharam algebra is a Dedekind σ-complete Boolean algebra with a strictly positive Maharam
submeasure. Any Maharam algebra is ccc and weakly (σ,∞)-distributive (393Eb). A Maharam algebra is
measurable iff it carries a strictly positive uniformly exhaustive submeasure (393D). If ν is any Maharam
submeasure on a Dedekind σ-complete Boolean algebra A, its Maharam algebra is the quotient A/{a : νa =
0} (496Ba).

(c) If ν is any strictly positive totally finite submeasure on a Boolean algebra A, there is an associated

metric (a, b) 7→ ν(a△ b) on A; the completion Â of A under this metric is a Boolean algebra (392Hc). If ν is

exhaustive, then Â is a Maharam algebra (393H). If ν and ν ′ are both strictly positive Maharam submeasures
on the same Maharam algebra A, ν is absolutely continuous with respect to ν ′ (393F). Consequently the
associated metrics are uniformly equivalent, and A has a canonical topology and uniformity, its Maharam-
algebra topology and Maharam-algebra uniformity (393G).

(d) Let A be a Boolean algebra.

(i) A sequence 〈an〉n∈N in A order*-converges to a ∈ A (definition: 367A) iff there is a partition B of
unity in A such that {n : b ∩ (an △ a) 6= 0} is finite for every b ∈ B (393Ma).

(ii) The order-sequential topology on A is the topology for which the closed sets are just the sets
closed under order*-convergence (393L).

(iii) If A is ccc and Dedekind σ-complete, a subalgebra of A is order-closed iff it is closed for the
order-sequential topology (393O).

(iv) If A is ccc and weakly (σ,∞)-distributive, then the closure of a set A ⊆ A for the order-sequential
topology is the set of order*-limits of sequences in A (393Pb).

(v) If A is a Maharam algebra, then its Maharam-algebra topology is its order-sequential topology
(393N).

(vi) If A is a Dedekind σ-complete ccc weakly (σ,∞)-distributive Boolean algebra, and {0} is a Gδ set
for the order-sequential topology, then A is a Maharam algebra (393Q).

c© 2007 D. H. Fremlin
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(e) It was a long-outstanding problem (the ‘Control Measure Problem’) whether every Maharam algebra
is in fact a measurable algebra; this was solved by a counterexample in Talagrand 08, described in §394.

(f) If X is a Hausdorff space, a totally finite Radon submeasure on X is a totally finite submeasure
ν defined on a σ-algebra Σ of subsets of X such that (i) if E ⊆ F ∈ Σ and νF = 0 then E ∈ Σ (ii) every
open set belongs to Σ (iii) if E ∈ Σ and ǫ > 0 there is a compact set K ⊆ E such that ν(E \K) ≤ ǫ (496C).
Every totally finite Radon submeasure is a Maharam submeasure (496Da). If X is a Hausdorff space and ν
is a totally finite Radon submeasure on X, a set E ∈ dom ν is self-supporting if ν(E ∩G) > 0 whenever
G ⊆ X is an open set meeting E. If E ∈ dom ν and ǫ > 0, there is a compact self-supporting K ⊆ E such
that ν(E \K) ≤ ǫ (496Dd).

Let ν be a strictly positive Maharam submeasure on a Dedekind σ-complete Boolean algebra A. Let Z
be the Stone space of A, and write â for the open-and-closed subset of Z corresponding to each a ∈ A. Then
there is a unique totally finite Radon submeasure ν ′ on Z such that ν ′â = νa for every a ∈ A; the null ideal
of ν ′ is the nowhere dense ideal of Z (496G).

(g) For a cardinal κ, I write Nκ for the null ideal of the usual measure on {0, 1}κ; N ∼= Nω will be the
null ideal of Lebesgue measure on R, and M the meager ideal of R.

539B Proposition Let A be a Maharam algebra, τ(A) its Maharam type and dT(A) its topological
density for its Maharam-algebra topology. Then τ(A) ≤ dT(A) ≤ max(ω, τ(A)).

proof Recall that the Maharam-algebra topology is the order-sequential topology (539A(d-v)). A is ccc
and weakly (σ,∞)-distributive (539Ab), so if D ⊆ A is topologically dense, then every element of A is
expressible as the order*-limit infn∈N supm≥n am of some sequence 〈an〉n∈N in D (539A(d-iv)). In this case
D τ -generates A and τ(A) ≤ #(D); accordingly τ(A) ≤ dT(A). If D ⊆ A τ -generates A, let B be the
subalgebra of A generated by D and B its topological closure. Then B is order-closed (because A is ccc),
so is the whole of A, and dT(A) ≤ #(B) ≤ max(ω,#(D)); accordingly dT(A) ≤ max(ω, τ(A)).

539C Theorem Let A be a Maharam algebra.
(a)

(A+,⊇′′′, [A+]≤max(ω,τ(A))) 4GT (Pou(A),⊑∗,Pou(A)),

where A+ = A \ {0}, (A+,⊇′′′, [A+]≤κ) is defined as in 512F, and (Pou(A),⊑∗) as in 512Ee.
(b) Pou(A) 4T Nτ(A).

proof If A = {0} these are both trivial; suppose otherwise. Fix a strictly positive Maharam submeasure ν
on A such that ν1 = 1. Let B be a subalgebra of A which is dense in A for the metric (a, b) 7→ ν(a△ b) and
has cardinal at most κ = max(ω, τ(A)) (539B).

(a)(i) For a ∈ A+ choose φ(a) ∈ Pou(A) as follows. Start by taking dn ∈ B, for n ∈ N, such that
ν(dn △ (1 \ a)) ≤ 2−n−2νa for each n; set bn = dn \ supi<n bi for n ∈ N, a′ = 1 \ supn∈N bn = 1 \ supn∈N dn;
then every bn belongs to B,

ν(a′ \ a) ≤ infn∈N ν((1 \ dn) \ a) ≤ infn∈N ν(dn △ (1 \ a)) = 0,

ν(a \ a′) ≤ ∑∞
n=0 ν(a ∩ dn) < νa,

so 0 6= a′ ⊆ a. Now set φ(a) = {a′} ∪ {bn : n ∈ N}.

(ii) For C ∈ Pou(A), set

ψ(C) = {c ∩ b : c ∈ C, b ∈ B} \ {0} ∈ [A+]≤κ.

(iii) Suppose that a ∈ A+, C ∈ Pou(A) and φ(a) ⊑∗ C. Then there is a b ∈ ψ(C) such that b ⊆ a.
PPP Let c ∈ C be such that c ∩ a′ 6= 0, where a′ is defined as in (i) above. Then B = {b : b ∈ φ(a) \ {a′},
c ∩ b 6= 0} is a finite subset of B, so supB ∈ B and c \ supB ∈ ψ(C). But c \ supB = c ∩ a′ ⊆ a. QQQ Thus
a⊇′′′ ψ(C).

As a is arbitrary, (φ, ψ) is a Galois-Tukey connection from (A+,⊇′′′, [A+]≤κ) to (Pou(A),⊑∗,Pou(A), and
(A+,⊇′′′, [A+]≤κ) 4GT (Pou(A),⊑∗,Pou(A).
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(b)(i) If τ(A) is finite, then A is purely atomic and Pou(A) has an upper bound in itself, as does Nκ; so
the result is trivial. Accordingly we may suppose henceforth that τ(A) = κ is infinite.

(ii) If C ∈ Pou(A), there is a sequence 〈bn〉n∈N in B such that νbn ≤ 4−n for every n ∈ N and {c : c ∈ C,
c 6⊆ supi≥n bi} is finite for every n ∈ N. PPP If C is finite this is trivial. Otherwise, set ǫn = 4−n/(n + 2)
for each n ∈ N, and enumerate C as 〈cn〉n∈N. Let 〈k(n)〉n∈N be a strictly increasing sequence such that
νc′n ≤ ǫn for every n, where c′n = supi≥k(n) ci; choose 〈bn〉n∈N in B inductively so that

ν(bn△ supj≤n(c′j \ supj≤i<n bi)) ≤ ǫn+1

for each n ∈ N. Then we see by induction on n that

ν(c′j \ supj≤i<n bi) ≤ ǫn

whenever j ≤ n in N, and therefore that

νbn ≤ ǫn+1 + (n+ 1)ǫn ≤ 4−n

for each n; while c′j ⊆ supi≥j bi for every j, so

1 \ supi≥n bi ⊆ 1 \ c′n = supi<k(n) ci

meets only finitely many members of C, for every n. QQQ

(iii) Now fix on an enumeration 〈bξ〉ξ<κ of B. Consider the κ-localization relation (κN,⊆∗,Sκ) (522K).
We see from (ii) that we can find a function φ : Pou(A) → κN such that

νbφ(C)(n) ≤ 4−n for every n ∈ N,

1 \ supi≥n bφ(C)(i) meets only finitely many members of C, for every n ∈ N.

Next, define ψ : Sκ → Pou(A) as follows. Given S ∈ Sκ, set a0(S) = 1,

an+1(S) = supm≥n sup{bξ : (m, ξ) ∈ S, νbξ ≤ 4−m}
for each n; then νan+1(S) ≤ ∑∞

m=n 2−m = 2−n+1 for every n, so ψ(S) = {an(S) \ an+1(S) : n ∈ N} is a
partition of unity in A.

(iv) Suppose that C ∈ Pou(A) and S ∈ Sκ are such that φ(C) ⊆∗ S. In this case there is an m ∈ N

such that (n, φ(C)(n)) ∈ S for every n ≥ m. Since νbφ(C)(n) ≤ 4−n for every n, supi≥n bφ(C)(i) ⊆ an+1(S)
and 1 \ an+1(S) meets only finitely many members of C, for every n ≥ m. Thus every member of ψ(S)
meets only finitely many members of C, and C ⊑∗ ψ(S).

This shows that (φ, ψ) is a Galois-Tukey connection from (Pou(A),⊑∗,Pou(A)) to (κN,⊆∗,Sκ), and
(Pou(A),⊑∗,Pou(A)) 4GT (κN,⊆∗,Sκ). On the other side, we know already that (κN,⊆∗,Sκ) 4GT (Nκ,⊆,
Nκ) (524G); so (Pou(A),⊑∗,Pou(A)) 4GT (Nκ,⊆,Nκ), that is, Pou(A) 4T Nκ.

539D Corollary Let A be a Maharam algebra.
(a) π(A) ≤ max(cf[τ(A)]≤ω, cfN ).
(b) If τ(A) ≤ ω, then wdistr(A) ≥ addN .

proof Set κ = τ(A).

(a) If π(A) is countable, or π(A) ≤ cf[κ]≤ω, we can stop. Otherwise, κ is infinite and

max(ω, κ) ≤ max(ω, cf[κ]≤ω) < π(A)

= cov(A+,⊇,A+) ≤ max(ω, κ, cov(A+,⊇′′′, [A+]≤κ))

(512Gf), so

π(A) ≤ cov(A+,⊇′′′, [A+]≤κ) ≤ cov(Pou(A),⊑∗,Pou(A))

(539Ca, 512Da)

= cf Pou(A) ≤ cfNκ

(539Cb, 513E(e-i))
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= max(cf[κ]≤ω, cfN )

(523N).

(b) If κ is finite, wdistr(A) = ∞ and we can stop. Otherwise, κ = ω and

wdistr(A) = add Pou(A)

(512Ee)

≥ addNκ

(539Cb, 513E(e-ii))

= addN .

539E Proposition (Veličković 05, Balcar Jech & Pazák 05) If A is an atomless Maharam algebra,
not {0}, there is a sequence 〈an〉n∈N in A such that supn∈I an = 1 and infn∈I an = 0 for every infinite I ⊆ N.

proof Fix a strictly positive Maharam submeasure ν on A.

(a) If 〈an〉n∈N is a sequence in A such that δ = infn∈N νan is greater than 0, there are a non-zero d ∈ A

and an infinite I ⊆ N such that d ⊆ supi∈J ai for every infinite J ⊆ I. PPP??? Otherwise, set bJ = supi∈J ai for
J ⊆ N. Choose 〈Iξ〉ξ<ω1

, 〈cξ〉ξ<ω1
and 〈dξ〉ξ<ω1

inductively, as follows. I0 = N. The inductive hypothesis
will be that Iξ is an infinite subset of N, Iξ \ Iη is finite whenever η ≤ ξ, and cξ ∩ bIξ+1

= 0 for every ξ < ω1.
Given 〈Iη〉η≤ξ where ξ < ω1, set dξ = infn∈N bIξ\n. Since νbJ ≥ δ for every non-empty J ⊆ N, νdξ ≥ δ and
dξ 6= 0. By hypothesis, there is an infinite Iξ+1 ⊆ Iξ such that cξ = dξ \ bIξ+1

is non-zero. Given 〈Iη〉η<ξ

where ξ < ω1 is a non-zero limit ordinal, let Iξ be an infinite set such that Iξ \ Iη is finite for every η < ξ,
and continue.

Now observe that if η < ξ < ω1, Iξ \ Iη is finite, so that there is an n ∈ N such that Iξ \ n ⊆ Iη+1, and

cξ ⊆ dξ ⊆ bIξ\n ⊆ bIη+1

is disjoint from cη. But this means that 〈cξ〉ξ<ω1
is disjoint, which is impossible, because A is ccc. XXXQQQ

(b) Let us say that a Boolean algebra B splits reals if there is a sequence 〈bn〉n∈N in B such that
supn∈I bn = 1 and infn∈I bn = 0 for every infinite I ⊆ N. Now the set of those d ∈ A such that the principal
ideal Ad generated by d splits reals is order-dense in A. PPP Let a ∈ A+.

case 1 If ν↾Aa is uniformly exhaustive, then Aa is measurable (539Ab). Let µ̄ be a probability
measure on Aa; because Aa, like A, is atomless, there is a stochastically independent family 〈an〉n∈N in Aa

with µ̄an = 1
2 for every n, and now 〈an〉n∈N witnesses that Aa splits reals.

case 2 If ν↾Aa is not uniformly exhaustive, let 〈bni〉i≤n∈N be a family of elements of Aa such that
〈bni〉i≤n is disjoint for each n and ǫ = infi≤n∈N νbni is greater than 0. There is a family 〈fξ〉ξ<ω1

in∏
n∈N{0, . . . , n} such that {n : fξ(n) = fη(n)} is finite whenever η < ξ < ω1. (For each ξ < ω1 let

θξ : ξ → N be injective. Now define 〈fξ〉ξ<ω1
inductively by saying that

fξ(n) = min(N \ {fη(n) : η < ξ, θξ(η) < n})

for every ξ < ω1 and n ∈ N.)
??? If for every ξ < ω1 and I ∈ [N]ω there is a J ∈ [I]ω such that infi∈J bi,fξ(i) 6= 0, choose 〈Iξ〉ξ<ω1

inductively so that Iξ ∈ [N]ω, Iξ \ Iη is finite for every η < ξ, and cξ = infi∈Iξ bi,fξ(i) is non-zero for every
ξ < ω1. Then whenever η < ξ the set Iξ ∩ Iη is infinite, so there is an i ∈ Iξ ∩ Iη such that fξ(i) 6= fη(i);
now cξ ∩ cη ⊆ bi,fξ(i) ∩ bi,fη(i) = 0. But this means that we have an uncountable disjoint family in Aa, which
is impossible, because A is ccc. XXX

Thus we have a ξ < ω1 and an infinite I ⊆ N such that infi∈J di = 0 for every infinite J ⊆ I, where
di = bi,fξ(i) for i ∈ I. Next, applying (a) to 〈di〉i∈I , we have an infinite K ⊆ I and a d 6= 0 such that
d = supi∈J di for every infinite J ⊆ K. But this means that 〈d ∩ di〉i∈K witnesses that Ad splits reals; while
d ⊆ a.

As a is arbitrary, we have the result. QQQ
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(c) By 313K, there is a partition D of unity in A such that Ad splits reals for every d ∈ D; choose a
sequence 〈adn〉n∈N in Ad witnessing this for each d ∈ D. Set an = supd∈D adn for each n. If I ⊆ N is infinite,
then

supn∈I an = supd∈D supn∈I adn = supD = 1,

while

d ∩ infn∈I an = infn∈I adn = 0

for every d ∈ D, so infn∈I an = 0. Thus 〈an〉n∈N witnesses that A splits reals, as claimed.

539F Definition For the next result I need a name for one more cardinal between ω1 and c. The
splitting number s is the least cardinal of any family A ⊆ PN such that for every infinite I ⊆ N there is
an A ∈ A such that I ∩A and I \A are both infinite.

539G Proposition Let X be a set, Σ a σ-algebra of subsets of X, and ν an atomless Maharam submea-
sure on Σ. Let M be the ideal of meager subsets of R.

(a) nonN (ν) ≥ max(s,mcountable).
(b) covN (ν) ≤ nonM.

proof If νX = 0, these are both trivial; suppose otherwise.

(a)(i) Suppose that D ⊆ X and #(D) < mcountable. For any ǫ > 0, there is an F ∈ Σ such that D ⊆ F
and νF ≤ ǫ. PPP By 393I, there is for each n ∈ N a finite partition En of X into members of Σ such that
νE ≤ 2−n−1ǫ for each E ∈ En. Express each En as {Eni : i < k(n)}. For x ∈ D, let fx ∈ ∏

n∈N k(n) be such

that x ∈ En,fx(n) for every n. Because #(D) < mcountable, there is an f ∈ NN such that f ∩ fx 6= ∅ for every
x ∈ D (522Sb); we may suppose that f(n) < k(n) for every n. Set F =

⋃
n∈NEn,f(n); this works. QQQ

Applying this repeatedly, we get a sequence 〈Fn〉n∈N in Σ such that D ⊆ Fn and νFn ≤ 2−n for every n;
now F =

⋂
n∈N Fn includes D and belongs to N (ν). As D is arbitrary, nonN (ν) ≥ mcountable.

(ii) Set A = Σ/Σ∩N (ν), and define ν̄ : A → [0,∞[ by setting ν̄E• = νE for every E ∈ Σ. Then ν̄ is a
strictly positive atomless Maharam submeasure on A. By 539E, there is a sequence 〈an〉n∈N in A such that
supn∈I an = 1 and infn∈I an = 0 for every infinite I ⊆ N. For each n ∈ N, let En ∈ Σ be such that E•

n = an.
Suppose that D ⊆ X and #(D) < s. For x ∈ D, set Ax = {n : x ∈ En}. Because #(D) < s, there is an

infinite I ⊆ N such that one of I ∩Ax, I \Ax is finite for every x ∈ D. Set

F =
⋃

m∈N

(
(X \⋃n∈I\mEn) ∪ (

⋂
n∈I\mEn)

)
;

then

F • = supm∈N

(
(1 \ supn∈I\m an) ∪ (infn∈I\m an)

)
= 0,

so F ∈ N (ν), while D ⊆ F . As D is arbitrary, nonN (ν) ≥ s.

(b) Let 〈k(n)〉n∈N, 〈Eni〉i<k(n) and 〈fx〉x∈X be as in (a-i) above, with ǫ = 1. Give Z =
∏

n∈N k(n) its
compact metrizable product topology. By 522Wb, there is a family 〈gξ〉ξ<nonM in Z such that {gξ : ξ <
nonM} is non-meager. For each f ∈ Z, the set

H(f) =
⋂

m∈N

⋃
n≥m{g : g ∈ Z, g(n) = f(n)}

is comeager in Z, so contains some gξ; turning this round, Z =
⋃

ξ<nonMH(gξ). Consider the sets Fξ =

{x : x ∈ X, fx ∈ H(gξ)}; then X =
⋃

ξ<nonM Fξ, while

νFξ ≤ infm∈N

∑∞
n=m νEn,gξ(n) = 0

for every ξ. So covN (ν) ≤ nonM.

539H Corollary Let A be an atomless Maharam algebra, not {0}. Then d(A) ≥ max(s,mcountable).

proof Let Z be the Stone space of A and ν ′ the totally finite Radon submeasure on Z corresponding to
a strictly positive Maharam submeasure ν on A (539Af), so that N (ν ′) is the ideal of meager subsets of
Z. Note that the meager sets of Z are all nowhere dense, because A is weakly (σ,∞)-distributive (316I).
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Because A is atomless, so are ν and ν ′. As every meager subset of Z is nowhere dense (and Z 6= ∅), no
dense set can be meager, and

d(A) = d(Z)

(514Bd)

≥ nonN (ν ′) ≥ max(s,mcountable)

by 539Ga.

539I Corollary Suppose that #(X) < max(s,mcountable), where s is the splitting number. Let Σ be a
σ-algebra of subsets of X such that (X,Σ) is countably separated, in the sense that there is a sequence in Σ
separating the points of X, and I a σ-ideal of Σ containing singletons. Then there is no non-zero Maharam
submeasure on Σ/I.

proof (a) Let µ be a Maharam submeasure on Σ/I. Then we have a Maharam submeasure ν on Σ defined
by setting νE = µE• for every E ∈ Σ, and ν{x} = 0 for every x ∈ X.

(b) ν is atomless. PPP Let 〈En〉n∈N be a sequence in Σ separating the points of X, and F ∈ Σ such that
νF > 0. Choose 〈Fn〉n∈N inductively so that F0 = F and, given that νFn > 0, Fn+1 is either Fn ∩ En or
Fn \ En and νFn+1 > 0. Then

⋂
n∈N Fn has at most one member, so limn→∞ νFn = 0, and there is an n

such that νFn = ν(F ∩ Fn) and ν(F \ Fn) are non-zero. QQQ

(c) By 539Ga,

nonN (ν) ≥ max(s,mcountable) > #(X)

and νX = 0, so µ is identically 0.

539J Theorem (a) Let ν be a totally finite Radon submeasure on a Hausdorff space X (539Af) and A

its Maharam algebra. Then N (ν) 4T Pou(A).
(b) Let ν be a totally finite Radon submeasure on a Hausdorff space X and A its Maharam algebra.

(i) wdistr(A) ≤ addN (ν).
(ii) τ(A) ≤ w(X).
(iii) cfN (ν) ≤ max(cf[τ(A)]≤ω, cfN ).
(iv) If τ(A) ≤ ω (e.g., because X is second-countable), then addN (ν) ≥ addN and cfN (ν) ≤ cfN .

proof (a) For E ∈ N (ν), let KE be a maximal disjoint family of compact sets of non-zero submeasure
disjoint from E, and set CE = {K• : K ∈ KE}. Because ν is inner regular with respect to the compact
sets, CE ∈ Pou(A). Now E 7→ CE : N (ν) → Pou(A) is a Tukey function. PPP Suppose that E ⊆ N (ν) and
D ∈ Pou(A) are such that CE ⊑∗ D for every E ∈ E ; take any ǫ > 0. Because D is countable, we have a
countable partition H of X into measurable sets such that D = {H• : H ∈ H}. Because ν is inner regular
with respect to the self-supporting compact sets (539Af), we can find a self-supporting compact set K ⊆ X
such that ν(X \ K) ≤ ǫ and K is covered by finitely many members of H; consequently K• meets only
finitely many members of D.

If E ∈ E , then K• meets only finitely many members of CE , so there is a finite set K′
E ⊆ KE such that

K \ KE is negligible, where KE =
⋃K′

E . But KE is compact and K is self-supporting, so K ⊆ KE and
K ∩ E = ∅.

This means that
⋃ E ⊆ X \K is included in an open set of submeasure at most ǫ. This is true for every

ǫ > 0, so
⋃ E is included in a negligible Gδ set and belongs to N (ν); that is, E is bounded above in N (ν).

As E is arbitrary, E 7→ CE is a Tukey function. QQQ

(b)(i) Putting (a) and 513E(e-ii) together,

wdistr(A) = add Pou(A) ≤ addN (ν).

(ii) If U is a base for the topology of X with #(U) = w(X), consider D = {U• : U ∈ U} and the
order-closed subalgebra B of A generated by D; note that B is closed for the order-sequential (or Maharam-
algebra) topology of A (539Ad). Let E be the algebra of sets generated by U . If F ∈ dom ν and ǫ > 0,
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there are compact sets K ⊆ F , L ⊆ X \ F such that ν(X \ (K ∪ L)) ≤ ǫ. There is an E ∈ E such that
K ⊆ E ⊆ X \ L, so ν(E△F ) ≤ ǫ. Now E• ∈ B and ν̄(F • △E•) ≤ ǫ; as ǫ is arbitrary, F • ∈ B; as F is
arbitrary, B = A and A is τ -generated by D. This means that τ(A) ≤ #(D) ≤ w(X), as required.

(iii) Setting κ = τ(A), (a) and 539Cb tell us that N (ν) 4T Nκ, where Nκ is the null ideal of the usual
measure on {0, 1}κ. So addN (ν) ≥ addNκ and

cfN (ν) ≤ cfNκ ≤ max(cf[κ]≤ω, cfN )

(513E(e-i), 523N).

(iv) If κ ≤ ω then Nκ 4T N so addN (ν) ≥ addN and cfN (ν) ≤ cfN .

539K We can approach precalibers by some of the same combinatorial methods as before.

Proposition Let A be a Boolean algebra and ν an exhaustive submeasure on A.
(a) Let 〈ai〉i∈N be a sequence in A such that infi∈N νai > 0.

(i) There is an infinite I ⊆ N such that {ai : i ∈ I} is centered.
(ii) For every k ∈ N there are an S ∈ [N]ω and a δ > 0 such that ν(infi∈J ai) ≥ δ for every J ∈ [S]k.

(b) Suppose that 〈aξ〉ξ<κ is a family in A such that infξ<κ νaξ > 0, where κ is a regular uncountable
cardinal. Then for every k ∈ N there are a stationary set S ⊆ κ and a δ > 0 such that ν(infi∈J ai) ≥ δ for
every J ∈ [S]k.

(c) If ν is strictly positive, then (κ, κ, k) is a precaliber triple of A for every regular uncountable cardinal
κ and every k ∈ N; in particular, A satisfies Knaster’s condition.

proof (a)(i) This is 392J.

(ii) Induce on k. The cases k = 0, k = 1 are trivial. For the inductive step to k + 1, let M ∈ [N]ω and
δ > 0 be such that ν(infi∈J ai) ≥ δ for every J ∈ [M ]k. ??? Suppose, if possible, that for every S ∈ [M ]ω

and γ > 0 there is a J ∈ [S]k+1 such that ν(infi∈J ai) < γ. Using Ramsey’s theorem (4A1G) repeatedly,
we can find 〈In〉n∈N such that I0 ∈ [M ]ω, In+1 ∈ [In]ω, rn = min In /∈ In+1 and ν(infi∈J ai) ≤ 2−n−2δ for
every n ∈ N and J ∈ [In]k+1. Set S = {rn : n ∈ N}. If J ∈ [S]k and min J = rn, then J ∪ {rm} ∈ [Im]k+1,
so ν(infi∈J ai ∩ arm) ≤ 2−m−2δ, for every m < n. It follows that ν(infi∈J ai ∩ supm<n arm) ≤ 1

2δ and

ν(infi∈J ai \ supm<n arm) ≥ 1
2δ. But this means that νcn ≥ 1

2δ where cn = arn \ supm<n arm for each n. As
〈cn〉n∈N is disjoint, this is impossible. XXX

Thus we can find γ > 0 and S ∈ [M ]ω such that ν(infi∈J ai) ≥ γ for every J ∈ [S]k+1, and the induction
continues.

(b) Again induce on k. The cases k = 0, k = 1 are trivial. For the inductive step to k + 1 ≥ 2, write
cJ = infi∈J ai for J ∈ [κ]<ω. We know from the inductive hypothesis that there are a stationary set S ⊆ κ
and a δ > 0 such that νcJ ≥ 3δ for every J ∈ [S]k. For each ξ ∈ S, choose m(ξ) ∈ N and 〈Jξi〉i<m(ξ) as

follows. Given 〈Jξi〉i<j , where j ∈ N, choose, if possible, Jξj ∈ [S ∩ ξ]k such that ν(cJξj
∩ cJξi

) ≤ 2−iδ for

every i < j and ν(aξ ∩ cJξj
) ≤ 2−jδ; if this is not possible, set m(ξ) = j and stop. Now the point is that

we always do have to stop. PPP??? Otherwise, set di = cJξi
for each i ∈ N. Because Jξi ∈ [S]k, νdi ≥ 3δ for

each i; also ν(di ∩ dj) ≤ 2−iδ for i < j; so νd′j ≥ δ, where d′j = dj \ supi<j di for each j. But now 〈d′j〉j∈N is
disjoint and ν is not exhaustive. XXXQQQ

At the end of the process, we have m(ξ) and 〈Jξi〉i<m(ξ) for each ξ ∈ S. By the Pressing-Down Lemma

(4A1Cc), there are m̃ and 〈J̃i〉i<m̃ such that S′ = {ξ : ξ ∈ S, m(ξ) = m̃, Jξi = J̃i for every i < m̃} is
stationary in κ. ??? Suppose, if possible, that I ∈ [S′]k+1 and νcI ≤ 2−m̃δ. Set ξ = max I, J = I \ {ξ},
η = min I ∈ J . Then J ∈ [S ∩ ξ]k. For each i < m̃ = m(ξ),

ν(cJ ∩ cJξi
) ≤ ν(aη ∩ cJξi

) = ν(aη ∩ cJηi
) ≤ 2−iδ,

while

ν(aξ ∩ cJ) = νcI ≤ 2−m̃δ.

But this means that we could have extended the sequence 〈Jξi〉i<m̃ by setting Jξm̃ = J . XXX
So S′ and 2−m̃δ provide the next step in the induction.

(c) This is now immediate from (b).
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539L I come now to the work of Balcar Jech & Pazák 05, based on the characterizations of Maharam
algebras set out in §393.

Lemma (Quickert 02) Let A be a Boolean algebra, and I the family of countable subsets I of A for which
there is a partition C of unity such that {a : a ∈ I, a ∩ c 6= 0} is finite for every c ∈ C.

(a) I is an ideal of PA including [A]<ω.
(b) If A ⊆ A+ is such that A ∩ I is finite for every I ∈ I, and B = {b : b ⊇ a for some a ∈ A}, then B ∩ I

is finite for every I ∈ I.
(c) If A is ccc, then there is no uncountable B ⊆ A such that [B]≤ω ⊆ I.
(d) If A is ccc and weakly (σ,∞)-distributive, I is a p-ideal (definition: 5A6Ga).

proof (a) Of course every finite subset of A belongs to I. If I0, I1 ∈ I and J ⊆ I0 ∪ I1, then J ∈ [A]≤ω.
For each j, we have a partition Cj of unity in A such that {a : a ∈ Ij , a ∩ c 6= 0} is finite for every c ∈ Cj .
Set C = {c0 ∩ c1 : c0 ∈ C0, c1 ∈ C1}; then C is a partition of unity in A and {a : a ∈ J , a ∩ c 6= 0} is finite
for every c ∈ C.

(b) Take I ∈ I. Set J = B ∩ I. For each b ∈ J , let ab ∈ A be such that ab ⊆ b. Let C be a partition
of unity such that {b : b ∈ I, b ∩ c 6= 0} is finite for every c ∈ C; then {ab : b ∈ J , ab ∩ c 6= 0} is finite for
every c ∈ C, so {ab : b ∈ J} belongs to I and must be finite. ??? If J is infinite, there is an a ∈ A such that
K = {b : b ∈ J , a = ab} is infinite; but in this case there is a c ∈ C such that a ∩ c 6= 0 and b ∩ c 6= 0 for
every b ∈ K. XXX So J is finite, as claimed.

(c) Let Â be the Dedekind completion of A (314U). Let B ⊆ A be an uncountable set, and 〈bξ〉ξ<ω1
a

family of distinct elements of B. Set d = infξ<ω1
supξ≤η<ω1

bη, taken in Â. Then (because Â is ccc, by 514Ee)
d = supξ≤η<ω1

bη for some ξ (316E); in particular, d 6= 0. Next, we can find a strictly increasing sequence

〈ξn〉n∈N in ω1 such that d ⊆ supξn≤η<ξn+1
bη for every n ∈ N. Set I = {bη : η < supn∈N ξn} ∈ [B]≤ω. If C is

any partition of unity in A, there must be some c ∈ C such that c ∩ d 6= 0, and now {a : a ∈ I, a ∩ c 6= 0} is
infinite. So I /∈ I.

(d) Let 〈In〉n∈N be a sequence in I. For each n ∈ N, let Cn be a partition of unity such that {a : a ∈ In,
a ∩ c 6= 0} is finite for every c ∈ Cn. Let D be a partition of unity such that {c : c ∈ Cn, c ∩ d 6= 0} is finite
for every d ∈ D and n ∈ N. Then

{a : a ∈ In, a ∩ d 6= 0} ⊆ ⋃
c∈Cn,c∩d 6=0{a : a ∈ In, a ∩ c 6= 0}

is finite for every d ∈ D and n ∈ N. Let 〈dn〉n∈N be a sequence running over D ∪ {∅} and set I =
⋃

n∈N{a :
a ∈ In, a ∩ di = 0 for every i ≤ n}. Then

In \ I ⊆ ⋃
i≤n{a : a ∈ In, a ∩ di 6= ∅}

is finite for each n. Also

{a : a ∈ I, a ∩ dn 6= 0} ⊆ ⋃
i<n{a : a ∈ Ii, a ∩ dn 6= 0}

is finite for each n, so I ∈ I.

Remark In this context, I is called Quickert’s ideal.

539M Lemma Let A be a weakly (σ,∞)-distributive ccc Dedekind σ-complete Boolean algebra, and
suppose that A+ is expressible as

⋃
k∈NDk where no infinite subset of any Dk belongs to Quickert’s ideal

I. Then A is a Maharam algebra.

proof The point is that if 〈an〉n∈N is a sequence in A which order*-converges to 0, then {an : n ∈ N} ∈ I
(539A(d-i)). So no sequence in any Dk can order*-converge to 0. Because A is weakly (σ,∞)-distributive
and ccc, 0 does not belong to the closure Dk of Dk for the order-sequential topology on A (539A(d-iv)).
So A+ =

⋃
k∈NDk is Fσ and {0} is Gδ for the order-sequential topology. It follows that A is a Maharam

algebra (539A(d-vi)).

539N Theorem (Balcar Jech & Pazák 05, Veličković 05) Suppose that Todorčević’s p-ideal
dichotomy (5A6Gb) is true. Then every Dedekind σ-complete ccc weakly (σ,∞)-distributive Boolean algebra
is a Maharam algebra.
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proof Let A be a Dedekind σ-complete ccc weakly (σ,∞)-distributive Boolean algebra. Let I be Quickert’s
ideal on A; then I is a p-ideal (539Ld). By 539Lc, there is no B ∈ [A]ω1 such that [B]≤ω ⊆ I. We are
assuming that Todorčević’s p-ideal dichotomy is true; so A must be expressible as

⋃
n∈NDn where no infinite

subset of any Dn belongs to I. By 539M, A is a Maharam algebra.

539O Corollary Suppose that Todorčević’s p-ideal dichotomy is true. Let A be a Dedekind complete
Boolean algebra such that every countably generated order-closed subalgebra of A is a measurable algebra.
Then A is a measurable algebra.

proof (a) A is ccc. PPP??? Otherwise, let 〈aξ〉ξ<ω1
be a disjoint family of non-zero elements of A. Let

f : ω1 → {0, 1}N be an injective function, and set bn = sup{aξ : ξ < ω1, fξ(n) = 1} for each n; let B be the
order-closed subalgebra of A generated by {bn : n ∈ N} ∪ {supξ<ω1

aξ}. Then aξ ∈ B for every ξ < ω1, so
B is not ccc; but B is supposed to be measurable. XXXQQQ

(b) A is weakly (σ,∞)-distributive. PPP Let 〈Cn〉n∈N be a sequence of partitions of unity in A. As A

is ccc, every Cn is countable; let B be the order-closed subalgebra of A generated by
⋃

n∈N Cn. Then
B is measurable, therefore weakly (σ,∞)-distributive, and there is a partition D of unity in B such that
{c : c ∈ Cn, c ∩ d 6= 0} is finite for every n ∈ N and d ∈ D. As B is order-closed, D is still a partition of
unity in A. As 〈Cn〉n∈N is arbitrary, A is weakly (σ,∞)-distributive. QQQ

(c) By 539N, A is a Maharam algebra; let ν be a strictly positive Maharam submeasure on A. Now ν
is uniformly exhaustive. PPP??? Otherwise, there are ǫ > 0 and a family 〈ani〉i≤n∈N in A such that 〈ani〉i≤n

is disjoint for every n ∈ N and νani ≥ ǫ whenever i ≤ n ∈ N. Let B be the order-closed subalgebra of A
generated by {ani : i ≤ n ∈ N}. Then B is a measurable algebra; let µ̄ be a functional such that (B, µ̄) is a
totally finite measure algebra. Since µ̄ and ν↾B are both strictly positive Maharam submeasures on B, ν is
absolutely continuous with respect to µ̄ (539Ac). But νani ≥ ǫ for every n and i, while infi≤n∈N µ̄ani must
be zero. XXXQQQ

(d) So A is a Dedekind σ-complete Boolean algebra with a strictly positive uniformly exhaustive Maharam
submeasure, and is a measurable algebra (539Ab).

539P I should say at once that 539N-539O really do need some special axiom. In fact the following
example was found at the very beginning of the study of Maharam algebras.

Souslin algebras: Proposition Suppose that T is a well-pruned Souslin tree (554Yc, 5A1Ed), and set
A = RO↑(T ).

(a) A is Dedekind complete, ccc and weakly (σ,∞)-distributive.
(b) If B is an order-closed subalgebra of A and τ(B) ≤ ω, then B ∼= PI for some countable set I; in

particular, B is a measurable algebra.
(c) (Maharam 1947) The only Maharam submeasure on A is identically zero.

proof (a)(i) A is Dedekind complete just because it is a regular open algebra.

(ii) T is upwards-ccc, so A is ccc, by 514Nc.

(iii) For t ∈ T , set t̂ = int [t,∞[ ∈ A; then {t̂ : t ∈ T} is order-dense in A. Let r : T → On be the

rank function of T (5A1Ea). For each ξ < ω1, Aξ = {t̂ : t ∈ T , r(t) = ξ} is a partition of unity in A. PPP If

r(t) = r(t′) and t 6= t′ then [t,∞[ ∩ [t′,∞[ = ∅ so t̂ ∩ t̂′ = 0 in A; thus Aξ is disjoint. If a ∈ A \ {0}, there is

an s ∈ T such that ŝ ⊆ a; if r(s) ≥ ξ, there is a t ≤ s such that r(t) = ξ, and a ∩ t̂ 6= 0; if r(s) < ξ, there is

a t ≥ s such that r(t) = ξ (because T is well-pruned), and t̂ ⊆ a. Thus supAξ = 1 in A. QQQ
If A ⊆ A is a partition of unity, there is a ξ < ω1 such that Aξ refines A in the sense that every member

of Aξ is included in some member of A (see 311Ge). PPP B = {t̂ : t ∈ T , t̂ ⊆ a for some a ∈ A} is order-dense
in A, so there is a partition C of unity included in B; C is countable; let D ⊆ T be a countable set such
that C = {t̂ : t ∈ D}; set ξ = supt∈D r(t). QQQ

Of course Aη refines Aξ whenever ξ ≤ η < ω1. So if 〈Cn〉n∈N is a sequence of partitions of unity in A,
there is a ξ < ω1 such that Aξ refines Cn for every n ∈ N, and then {c : c ∈ Cn, a ∩ c 6= 0} has just one
member for every a ∈ Aξ and n ∈ N. As 〈Cn〉n∈N is arbitrary, A is weakly (σ,∞)-distributive.
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(b) If B ⊆ A is a countable set τ -generating B, there is a countable set D ⊆ T such that b = sup{t̂ : t ∈ D,

t̂ ⊆ b} for every b ∈ B. Now ξ = sup{r(t) : t ∈ D} is countable, and b = sup{a : a ∈ Aξ, a ⊆ b} for every
b ∈ B, so B is included in the order-closed subalgebra C of A generated by Aξ. Of course Aξ is order-dense
in C. For a ∈ Aξ, set ba = inf{b : b ∈ B, b ⊇ a}; then every ba is an atom in B and {ba : a ∈ Aξ} is
order-dense in B, so B is purely atomic. As B is ccc, the set I of its atoms is countable; being Dedekind
complete, B is isomophic to PI.

(c) Let ν be a Maharam submeasure on A. Then for every ǫ > 0 there is a ξ < ω1 such that νa ≤ ǫ for
every a ∈ Aξ. PPP Set

T ′ = {t : νt̂ ≥ ǫ}.

Then T ′ is a subtree of T and {t : t ∈ T ′, r(t) = ξ} is finite for every ξ < ω1, because ν is exhaustive. Also
T ′, like T , can have no uncountable branches. It follows that the height of T ′ is countable (5A1E(b-i)), that
is, that there is a ξ < ω1 such that r(t) < ξ for every t ∈ T ′ and νa ≤ ǫ for every a ∈ Aξ. QQQ

As this is true for every ǫ > 0, there is actually a ξ < ω1 such that νa = 0 for every a ∈ Aξ. But as Aξ is
a countable partition of unity and ν is a Maharam submeasure, ν1 = 0 and ν is identically zero.

539Q Reflection principles In 539O, we have a theorem of the type ‘if every small subalgebra of A is
. . . , then A is . . . ’. There was a similar result in 518I, and we shall have another in 545G. Here I collect
some simple facts which are relevant to the present discussion.

(a) If A is a Boolean algebra and every subset of A of cardinal ω1 is included in a ccc subalgebra of A,
then A is ccc. (For there can be no disjoint set with cardinal ω1.)

(b) If A is ccc and every countable subset of A is included in a weakly (σ,∞)-distributive subalgebra of
A, then A is weakly (σ,∞)-distributive. PPP If Cn is a partition of unity in A for every n, set

D = {d : {c : c ∈ Cn, c ∩ d 6= 0} is finite for every n ∈ N}.

??? If D is not order-dense in A, take a ∈ A+ such that d 6⊆ a for every d ∈ D. Let B be a weakly (σ,∞)-
distributive subalgebra of A including {a} ∪⋃

n∈N Cn. Then every Cn is a partition of unity in B, so there
is a partition B of unity in B such that B ⊆ D. But now a ∈ B+ so there is a b ∈ B such that a ∩ b 6= 0
and a ∩ b ∈ D. XXX

So D is order-dense in A and includes a partition of unity in A. As 〈Cn〉n∈N is arbitrary, A is weakly
(σ,∞)-distributive. QQQ

(c) If every countable subset of A is included in a subalgebra of A with the σ-interpolation property, then
A has the σ-interpolation property. PPP If A, B ⊆ A are countable and a ⊆ b whenever a ∈ A and b ∈ B, let
B be a subalgebra of A, including A∪B, with the σ-interpolation property; then there is a c ∈ B such that
a ⊆ c ⊆ b for every a ∈ A and b ∈ B. QQQ

(d) If A is a Maharam algebra and every countably generated closed subalgebra of A is a measurable
algebra, then A is measurable. (This is part (c) of the proof of 539O.)

(e) Suppose that Todorčević’s p-ideal dichotomy is true. Let A be a Boolean algebra such that every
subset of A of cardinal at most ω1 is included in a subalgebra of A which is a Maharam algebra. Then A

is a Maharam algebra. PPP By (a), A is ccc; by (c), A is Dedekind complete; by (b), A is weakly (σ,∞)-
distributive; by 539N, A is a Maharam algebra. QQQ

(f) Suppose that Todorčević’s p-ideal dichotomy is true. Let A be a Boolean algebra such that every
subset of A of cardinal at most c is included in a subalgebra of A which is a measurable algebra. Then A is
measurable. PPP By (a), A is ccc. So if B is a countably generated order-closed subalgebra, it has cardinal
c, and is included in a measurable subalgebra C of A. Now B is order-closed in C, so is itself a measurable
algebra. By 539O, A also is measurable. QQQ

(g) On the other hand, Farah & Veličković 06 show that if κ is an infinite cardinal such that 2κ = κ+,
�κ (5A6D) is true and the cardinal power κω is equal to κ, then there is a Dedekind complete Boolean
algebra A, with cardinal κ+, such that every order-closed subalgebra of A with cardinal at most κ is a
measurable algebra, but A is not a measurable algebra (and therefore is not a Maharam algebra, by (d)
above). In particular, this can easily be the case with κ = c.
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539R Exhaustivity rank While we now know that there are non-measurable Maharam algebras, we
know practically nothing about their structure. The following idea is one tool for investigation.

Definitions Suppose that A is a Boolean algebra and ν an exhaustive submeasure on A. For ǫ > 0, say that
a 4ǫ b if either a = b or a ⊆ b and ν(b \ a) > ǫ. Then 4ǫ is a well-founded partial order on A (use 5A1Dc;
if 〈an〉n∈N were strictly decreasing for 4ǫ, then 〈an \ an+1〉n∈N would be disjoint, with ν(an \ an+1) ≥ ǫ for
every n). Let rνǫ : A → On be the corresponding rank function, so that

rνǫ(a) = sup{rνǫ(b) + 1 : b ⊆ a, ν(a \ b) > ǫ}
for every a ∈ A (5A1Db). Now the exhaustivity rank of ν is supǫ>0 rνǫ(1).

539S Elementary facts Let A be a Boolean algebra with an exhaustive submeasure ν and associated
rank functions rνǫ for ǫ > 0.

(a) rνδ(a) ≤ rνǫ(b) whenever ν(a \ b) ≤ δ−ǫ. PPP Induce on rνǫ(b). If rνǫ(b) = 0, then νb ≤ ǫ so νa ≤ δ and
rνδ(a) = 0. For the inductive step to rνǫ(b) = ξ, if c ⊆ a and ν(a \ c) > δ then ν(b \ c) > ǫ and rνǫ(b ∩ c) < ξ.
Also ν(c \ b) ≤ δ− ǫ so, by the inductive hypothesis, rνδ(c) ≤ rνδ(b ∩ c) < ξ; as c is arbitrary, rνδ(a) ≤ ξ and
the induction continues. QQQ In particular,

rνǫ(a) ≤ rνǫ(b) if a ⊆ b, rνδ(a) ≤ rνǫ(a) if ǫ ≤ δ.

(b) If a, b ∈ A are disjoint and ǫ > 0, then rνǫ(a ∪ b) is at least the ordinal sum rνǫ(a) + rνǫ(b). PPP Induce
on rνǫ(b). If rνǫ(b) = 0, the result is immediate from (a) above. For the inductive step to rνǫ(b) = ξ, we have
for any η < ξ a c ⊆ b such that ν(b \ c) > ǫ and η ≤ rνǫ(c) < ξ. Now rνǫ(a ∪ c) ≥ rνǫ(a) + η, by the inductive
hypothesis, and ν((a ∪ b) \ (a ∪ c)) > ǫ, so rνǫ(a ∪ b) > rνǫ(a) + η; as η is arbitrary, rνǫ(a ∪ b) ≥ rνǫ(a) + ξ
and the induction continues. QQQ

539T The rank of a Maharam algebra (a) Note that the rank function rνǫ associated with an
exhaustive submeasure ν depends only on the set {a : νa > ǫ}. In particular, if ν and ν ′ are exhaustive
submeasures on a Boolean algebra A and νa ≤ ǫ whenever ν ′a ≤ δ, then rνǫ(a) ≤ rν′δ(a) for every a ∈ A.
If A is a Maharam algebra, then any two Maharam submeasures on A are mutually absolutely continuous
(539Ac), so have the same exhaustivity rank; I will call this the Maharam submeasure rank of A,
Mhsr(A). Note that if a ∈ A then Mhsr(Aa) ≤ Mhsr(A).

(b) If A is a measurable algebra, Mhsr(A) ≤ ω, because if µ is an additive functional and ǫ > 0, then
µa > ǫrµǫ(a) for every a ∈ A. More generally, for any uniformly exhaustive submeasure ν and ǫ > 0, rνǫ(a)
is finite, being the maximal size of any disjoint set consisting of elements, included in a, of submeasure
greater than ǫ.

(c)(i) Suppose that A is a Maharam algebra with a strictly positive Maharam submeasure ν, and that
B is a subalgebra of A which is dense for the Maharam-algebra topology of A. For ǫ > 0, write rǫ = rνǫ
for the corresponding rank function on A, and r′ǫ = rν↾B,ǫ for the rank function on B corresponding to the
exhaustive submeasure ν↾B. If 0 < δ < ǫ, a ∈ A, b ∈ B, ξ ∈ On, ν(a△ b) < ǫ − δ and rǫ(a) ≥ ξ, then
r′δ(b) ≥ ξ. PPP Induce on ξ. If ξ = 0 the result is trivial. For the inductive step to ξ > 0, take any η < ξ. Then
we have an a′ ⊆ a such that ν(a \ a′) > ǫ and rǫ(a

′) > η. Let b′ ∈ B be such that ν(a′ △ b′) < ǫ−δ−ν(a△ b)
and consider b ∩ b′. We have

ν(a′ △ (b ∩ b′)) = ν((a ∩ a′) △ (b ∩ b′)) ≤ ν(a△ b) + ν(a′ △ b′) < ǫ− δ

so r′δ(b ∩ b′) > η, by the inductive hypothesis. Moreover,

ν(b \ (b ∩ b′)) = ν(b \ b′) ≥ ν(a \ a′) − ν(a \ b) − ν(b′ \ b)

> ǫ− ν(a△ b) − ν(a′ △ b′) > δ

so r′δ(b) ≥ η + 1. This is true for every η < ξ, so r′δ(b) ≥ ξ. QQQ

(ii) It follows that if A is an infinite Maharam algebra, then Mhsr(A) < τ(A)+. PPP A has a dense
subalgebra B with cardinal τ = τ(A) (539B). If ν is a strictly positive Maharam submeasure on A, then
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ν↾B is an exhaustive submeasure on B, so rν↾B,δ(1) < τ+ for every δ > 0, by 5A1Dd. By (i) here,
rνǫ(1) < τ+ for every ǫ > 0. Since cf τ+ > ω, Mhsr(A) = supn∈N rν,2−n(1) is less than τ+. QQQ

(d) The Maharam algebras described in §394 are all defined from exhaustive submeasures with domain
the countable algebra B of open-and-closed subsets of a compact metrizable space. By (c), such algebras
must have Maharam submeasure rank less than ω1.

539U Theorem Suppose that A is a non-measurable Maharam algebra. Then Mhsr(A) is at least the
ordinal power ωω.

proof Let ν be a strictly positive Maharam submeasure on A.

(a) For the time being (down to the end of (d) below), assume that A is nowhere measurable (definition:
391Bc). For a ∈ A, set

ν̌a = infn∈N sup{mini≤n νai : a0, . . . , an ⊆ a are disjoint}.

Then ν̌ is a Maharam submeasure. PPP Of course ν̌0 = 0 and ν̌a ≤ ν̌b whenever a ⊆ b. If a, b ∈ A and
ǫ > 0, then there are n0, n1 ∈ N such that whenever 〈ci〉i∈I is a disjoint family in A, then #({i : ν(ci ∩ a) ≥
ν̌a+ ǫ}) ≤ n0 and #({i : ν(ci ∩ b) ≥ ν̌b+ ǫ}) ≤ n1. So

#({i : ν(ci ∩ (a ∪ b)) ≥ ν̌a+ ν̌b+ 2ǫ}) ≤ n0 + n1.

It follows that ν̌(a ∪ b) ≤ ν̌a+ ν̌b+ 2ǫ; as ǫ, a and b are arbitrary, ν̌ is a submeasure. Because ν̌ ≤ ν, ν̌ is a
Maharam submeasure. QQQ

(b) Because A is nowhere measurable, ν̌ is strictly positive. PPP If a ∈ A \ {0}, the principal ideal Aa

is not measurable, so the Maharam submeasure ν↾Aa cannot be uniformly exhaustive; that is, there is an
ǫ > 0 such that there are arbitrarily long disjoint strings 〈ai〉i≤n in Aa with νai ≥ ǫ for every i ≤ n. But
this means that ν̌a ≥ ǫ > 0. QQQ

(c) Let rνǫ, rν̌ǫ be the rank functions associated with ν and ν̌. Then rνǫ(a) is at least the ordinal product
ω · rν̌ǫ(a) whenever a ∈ A and ǫ > 0. PPP Induce on rν̌ǫ(a). If rν̌ǫ(a) = 0, the result is trivial. For the
inductive step to rν̌ǫ(a) = ξ + 1, take b ⊆ a such that ν̌b > ǫ and rν̌ǫ(a \ b) = ξ. Then for every n ∈ N

there are disjoint b0, . . . , bn ⊆ b such that νbi > ǫ for every i, and rνǫ(b) ≥ ω; by the inductive hypothesis,
rνǫ(a \ b) ≥ ω · ξ; by 539Sb, rνǫ(a) ≥ ω · ξ + ω = ω · (ξ + 1), and the induction proceeds. The inductive step
to non-zero limit ξ is elementary. QQQ

(d) Now

Mhsr(A) = sup
ǫ>0

rνǫ(1) ≥ sup
ǫ>0

ω · rν̌ǫ(1) = ω · sup
ǫ>0

rν̌ǫ(1)

(5A1Bb)

= ω · Mhsr(A);

as Mhsr(A) > 0, Mhsr(A) ≥ ωω (5A1Bc).

(e) For the general case, let a ∈ A+ be such that the principal ideal Aa is nowhere measurable. Then
Mhsr(A) ≥ Mhsr(Aa) ≥ ωω.

539V PV norms and exhaustivity (a) If we construct a submeasure ν on an algebra B from a PV
norm ‖ ‖ on [N]<ω and sequences 〈Tn〉n∈N, 〈αk〉k∈N and 〈Nk〉k∈N as in 394B and 394H, we can relate the
exhaustivity rank of ν to ‖ ‖, as follows. Note first that the set L = {L : L ∈ [N]<ω, νL ≤ 1}, ordered by ⊆,
is a tree with no infinite branches, by the last clause of 394Aa. For K ⊆ [N]<ω, set ∂K = {K \ {maxK} :
∅ 6= K ∈ K}; iterating as in 421N, set

∂0L = L, ∂ξL = ∂(
⋂

η<ξ ∂
ηL)

for ordinals ξ > 0. Now observe that if L ⊂ L′ ∈ L and z ∈ ∏
r∈L′ Tr, then (at least if every Tr has

at least two members) Yz↾L \ Yz includes some Yz′ where z′ ∈ ∏
r∈L′ Tr, so ν(Yz↾L \ Yz) ≥ 8 (394G) and

rν1(Yz↾L) > rν1(Yz). An easy induction now shows that rν1(Yz) ≥ ξ whenever L ∈ ∂ξL and z ∈ ∏
r∈L Tr.

So if ∅ ∈ ∂ξL then rν1(X) ≥ ξ.
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(b) Moving to the Maharam algebra A = B̂ defined from ν, as in 394Nc, we see that A has a strictly
positive Maharam submeasure ν̂ extending ν, so that the same formulae, interpreted in A, tell us that
Mhsr(A) ≥ ξ whenever ∅ ∈ ∂ξL.

(c) The next step is to understand which families L ⊆ [N]<ω can be expressed as {L : ‖L‖ ≤ 1} for some
PV norm ‖ ‖. Looking through the definition in 394Aa, we see that we shall need, at least,

—– {n} ∈ L for every n ∈ N,
—– I ∈ L whenever J ∈ L and #(I ∩ n) ≤ #(J ∩ n) for every n,
—– for every infinite A ⊆ N there is an n ∈ N such that A ∩ n /∈ L.

Following Perović & Veličković 18, I will say that a family satisfying these three conditions is admis-
sible. The point is that they are sufficient as well as necessary. PPP Given an admissible family L ⊆ [N]<ω,
set

‖I‖ = min{#(L0) : L0 ⊆ L, I ⊆ ⋃L0}
for I ∈ [N]<ω. Because L contains all singletons, ‖I‖ ≤ #(I) is always finite. ‖I‖ = 0 iff I ⊆ ⋃ ∅ iff I = ∅.
If #(I) = 1 then I ∈ L so ‖I‖ ≤ 1. Of course ‖ ‖ is subadditive. If I, J ∈ [N]<ω and #(I ∩n) ≤ #(J ∩n) for
every n, there is an injective function f : I → J such that f(i) ≤ i for every i ∈ I (set f(i) = min(J \f [I∩ i])
for i ∈ I); now if L0 ⊆ L and J ⊆ ⋃L0 then f−1[L] ∈ L for every L ∈ L0 and I ⊆ ⋃

L∈L0
f−1[L]. So

‖I‖ ≤ ‖J‖. Finally, if A ⊆ N and ‖A∩ n‖ ≤ m for every n ∈ N, let 〈Lni〉n∈N,i<m be a family in L such that
A ∩ n ⊆ ⋃

i<m Lni for every n. For j ∈ A let gj : N → m be such that j ∈ Ln,gj(n) whenever j < n. Let
h : N → m be such that for every k ∈ N there is an n ∈ N such that gj(n) = h(j) for every j ∈ A ∩ k, so
that j ∈ Ln,h(j) for j ∈ A ∩ k, and h−1[{l}] ∩ A ∩ k is included in Lnl and belongs to L. As k is arbitrary,

h−1[{l}] ∩A must be finite; as l is arbitrary, A is finite.
Now we see that ‖I‖ ≤ 1 iff there is an L ∈ L including I, that is, iff I ∈ L. So we have expressed L in

the required form. QQQ

(d) For every ξ < ω1 there is an admissible family Lξ ⊆ [N]<ω such that ∅ ∈ ∂ηLξ for every η < ξ. PPP
Recall from 5A1Tb that there is a sequence 〈≤n〉n∈N of partial orders on ω1 such that

〈≤n〉n∈N is non-decreasing and
⋃

n∈N ≤n is the usual ordering of ω1,
if ξ < ω1 and n ∈ N then {η : η ≤n ξ} is finite.

Define 〈Lξ〉ξ<ω1
inductively by saying that L0 = {I : I ⊆ N, #(I) ≤ 1} and

Lξ = L0 ∪
⋃

η<ξ{I : I ∈ [N]<ω, #(I) ≥ 2, η ≤min I ξ, I \ {min I} ∈ Lη}
for 0 < ξ < ω1. We see at once that L0 is admissible. Supposing that Lη is admissible and ∅ ∈ ∂ζLη

whenever ζ < η < ξ, we need to check the following.

(i) {n} ∈ Lξ for every n ∈ N, because {n} ∈ L0.

(ii) If J ∈ Lξ and #(I ∩ n) ≤ #(J ∩ n) for every n ∈ N, either #(I) ≤ 1 and certainly I ∈ Lξ, or
#(I) > 1, #(J) > 1 and min J ≤ min I. In this case, #((I \ {min I}) ∩ n) ≤ #((J \ {min J}) ∩ n) for
every n ∈ N. Now there is an η < ξ such that η ≤min J ξ and J \ {min J} ∈ Lη. Because Lη is admissible,
I \ {min I} ∈ Lη; because min J ≤ min I, η ≤min I ξ and I ∈ Lξ.

(iii) If A ⊆ N is infinite, then D = {η : η ≤minA ξ} is finite. For each η ∈ D there is an nη ∈ N

such that (A \ {minA}) ∩ nη /∈ Lη. Setting n = max({1 + min(A \ {minA})} ∪ {nη : η ∈ D}, we see that
#(A ∩ n) ≥ 2 and (A ∩ n) \ {min(A ∩ n)} /∈ Lη for any η ∈ D, so A ∩ n /∈ Lξ.

(iv) Thus Lξ is admissible. Now suppose that η < ξ.

(ααα) If η ≤ 1, we have {∅, {0}} ⊆ Lξ so ∅ ∈ ∂Lξ ⊆ ∂ηLξ.

(βββ) If η ≥ 2 let n be such that η ≤n ξ and consider L = {{n} ∪ (I + n+ 1) : I ∈ Lη}, where I write
I + n+ 1 for {i+ n+ 1 : i ∈ I}. Then L ⊆ Lξ. An easy induction on ζ shows that

∂ζLξ ⊇ ∂ζL ⊇ {{n} ∪ (I + n+ 1) : I ∈ ∂ζLη}
for every ζ such that ∅ ∈ ∂ζLη, and in particular for every ζ < η. So {n} ∈ ⋂

ζ<η ∂
ζLξ and ∅ ∈ ∂ηLξ.

(v) Inducing on ξ, we see that ∅ ∈ ∂ηLξ whenever η < ξ < ω1. QQQ
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(e) Putting these together, we see that if ξ < ω1 we have an admissible family Lξ+1 such that we can
define a PV norm ‖ ‖ξ from Lξ+1 as in (c), a submeasure νξ on a countable atomless algebra B from ‖ ‖ξ as
in 394H, and a Maharam algebra Aξ from νξ as in 394Nc, in such a way that the exhaustivity rank of νξ is
at least ξ and Mhsr(Aξ) ≥ ξ.

539W The set of exhaustive submeasures: Theorem Let C be a countable atomless Boolean
algebra, not {0}. Write Msm for the set of totally finite submeasures on C, regarded as a subset of [0,∞[

C
,

and Mesm for the set of exhaustive totally finite submeasures on C. Then Msm is Polish, and Mesm ⊆ Msm

is coanalytic and not Borel. Setting

Fξ = {ν : ν ∈Mesm has exhaustivity rank at most ξ}
for ξ < ω1, every Fξ is a Borel subset of Msm and every analytic subset of Mesm is included in some Fξ.

proof (a) Directly from the definition in 539Aa, we see that Msm is a closed subset of the Polish space

[0,∞[
C
, and is itself Polish. Writing D ⊆ CN for the set of infinite disjoint sequences in C, we see that

{(ν, d) : νd(n) ≥ ǫ for every n ∈ N}
is closed in Msm × CN (if we give C its discrete topology) for every ǫ, so that

{ν : there is some d ∈ D such that ν(d(n)) ≥ ǫ for every n ∈ N}
is analytic in Msm for every ǫ (423B), and

{ν : ν ∈Msm, ν is not exhaustive}
=

⋃

k∈N

{ν : there is some d ∈ D such that ν(d(n)) ≥ 2−k for every n ∈ N}

is analytic (423B, 423E). Accordingly its complement in Msm, the set of Mesm of exhaustive totally finite
submeasures, is coanalytic.

(b) Define 〈Eaǫξ〉a∈C,ǫ>0,ξ<ω1
by saying that

Eaǫ0 = {ν : ν ∈Msm, νa ≤ ǫ},

Eaǫξ = {ν : ν ∈Msm, ν ∈ ⋃
η<ξ Ebǫη whenever b ⊆ a and ν(a \ b) > ǫ}

for a ∈ C, ǫ > 0 and 0 < ξ < ω1. Then every Eaǫξ is a Borel subset of Msm. PPP For ξ = 0 this is just because
ν 7→ νa : Msm → [0,∞[ is continuous. For ξ > 0 we have

Eaǫξ =
⋂

b∈C
b⊆a

⋃

η<ξ

{ν : ν(a \ b) ≤ ǫ or ν ∈ Ebǫη}

which is Borel because C is countable. QQQ Observe also that Eaδξ ⊆ Eaǫξ whenever a ∈ C, 0 < δ ≤ ǫ and
ξ < ω1.

(c)(i) If ν ∈ Mesm, a ∈ C, ǫ > 0 and ξ < ω1, then rνǫ(a) ≤ ξ iff ν ∈ Eaǫξ. PPP Induce on ξ. For ξ = 0 we
have

rνǫ(a) = 0 ⇐⇒ νa ≤ ǫ ⇐⇒ ν ∈ Eaǫ0.

For the inductive step to ξ > 0,

rνǫ(a) ≤ ξ ⇐⇒ rνǫ(b) < ξ whenever b ⊆ a and ν(a \ b) > ǫ

⇐⇒ ν ∈
⋃

η<ξ

Ebǫη whenever b ⊆ a and ν(a \ b) > ǫ

⇐⇒ ν ∈ Eaǫξ. QQQ

So for ν ∈Mesm and ξ ≤ ω1,

ν has exhaustivity rank at most ξ ⇐⇒ ν ∈ E1ǫξ for every ǫ > 0.
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(ii) Next, if ν ∈ Msm and ξ < ω1 are such that ν ∈ E1ǫξ for every ǫ > 0, then ν is exhaustive. PPP
??? Otherwise, there are an ǫ > 0 and a non-increasing sequence 〈ai〉i∈N such that ν(ai \ ai+1) > ǫ for every
i ∈ N. Of course we can suppose that a0 = 0. But now we find, inducing on η, that ν /∈ Eaiǫη for every
i ∈ N and η < ω1, which is impossible. XXXQQQ

(iii) Setting

Fξ =
⋂

ǫ>0E1ǫξ =
⋂

k∈NE1,2−k,ξ

for ξ < ω1, we see that Fξ is a Borel subset of Msm and is precisely the set of exhaustive submeasures on C

with exhaustivity rank at most ξ.

(d)(i) For ǫ > 0, write Wǫ for the set of triples (ν, ν′, H) such that

ν, ν′ ∈Msm and H ⊆ C2.
(1, 1) ∈ H,
whenever (a, b) ∈ H there is a b′ ⊆ b such that ν′(b \ b′) > ǫ and (a′, b′) ∈ H whenever a′ ⊆ a

and ν(a \ a′) > ǫ.

Then Wǫ is a Borel subset of Msm ×Msm × P(C2), where the power set P(C2) is given its usual compact
metrizable topology (4A2Ud). So Vǫ = {(ν, ν′) : there is an H such that (ν, ν′, H) ∈ Wǫ} is an analytic
subset of M2

sm.

(ii) If ǫ > 0, ν, ν′ ∈Mesm and (ν, ν′, H) ∈Wǫ then rνǫ(a) < rν′ǫ(b) whenever (a, b) ∈ H. PPP I show by
induction on ξ that if (a, b) ∈ H and rνǫ(a) ≥ ξ then rν′ǫ(b) > ξ. PPP Induce on ξ. If ξ = 0 we know that
there is a b′ ⊆ b such that ν′(b \ b) > ǫ so rν′ǫ(b) > 0. For the inductive step to ξ > 0, we know that there is
a b′ ⊆ b such that ν′(b \ b′) > ǫ and (a′, b′) ∈ H whenever a′ ⊆ a and ν(a \ a′) > ǫ. If η < ξ then there is an
a′ ⊆ a such that ν(a \ a′) > ǫ and rνǫ(a

′) ≥ η; now (a′, b′) ∈ H so rν′ǫ(b
′) > η, by the inductive hypothesis.

As η is arbitrary, ξ ≤ rν′ǫ(b
′) < rν′ǫ(b). Thus the induction continues. QQQ

(iii) If ǫ > 0 and ν, ν′ ∈ Mesm then (ν, ν′) ∈ Vǫ iff rνǫ(1) < rν′ǫ(1). PPP If (ν, ν′) ∈ Vǫ there is an
H such that (ν, ν′, H) ∈ Wǫ; now (1, 1) ∈ H so (ii) tells us that rνǫ(1) < rν′ǫ(1). If rνǫ(1) < rnu′ǫ(1) set
H = {(a, b) : a, b ∈ C, rνǫ(a) < rν′ǫ(b)}; then it is easy to check that (ν, ν′, H) ∈Wǫ, so (ν, ν′) ∈ Vǫ. QQQ

(e) Now suppose that A ⊆Mesm is an analytic set, and that ǫ > 0. Consider the relation 4ǫ on A defined
by saying that ν 4ǫ ν

′ if either ν = ν′ or rνǫ(1) < rν′ǫ(1). This is a partial ordering, and it is well-founded
because if B ⊆ A is well-founded and minν∈B rνǫ(1) = ξ then any ν ∈ B such that rνǫ(1) = ξ is minimal in
B. Now {(ν, ν′) : ν ≺ǫ ν

′} = A2 ∩ Vǫ, so by the Kunen-Martin theorem (5A1De) 4ǫ has countable height.
Since ν ≺ǫ ν

′ whenever ν, ν′ ∈ A and rνǫ(1) < rν′ǫ(1), {rνǫ(1) : ν ∈ A} must be countable.
This is true for every ǫ > 0, so ζ = supν∈A,k∈N rν,2−k(1) is less than ω1. But now A ⊆ Fζ .

(f) Finally, no Fζ can be the whole of Mesm. PPP We know from 539Ve that there are a countable atomless
Boolean algebra B and a totally finite exhaustive submeasure on B with exhaustivity rank at least ζ + 1.
But C and B are isomorphic (316M) so the same is true of A, that is, Mesm \ Fζ 6= ∅. QQQ By (e) here, Mesm

cannot be analytic, so cannot be a Borel subset of the Polish space Msm.

Remark In the language of 423S, 〈Fξ〉ξ<ω1
is a family of Borel constituents of Mens.

539X Basic exercises (a) Let A be a Maharam algebra. Show that linkn(A) ≤ max(ω, τ(A)) for every
n ≥ 2.

(b) Show that, in the language of §522, p ≤ s ≤ min(nonN , nonM, d).

(c) Let A be a Maharam algebra. (i) Show that if

(α) cf[λ]≤ω ≤ λ+ for every cardinal λ ≤ τ(A),
(β) �λ is true for every uncountable cardinal λ ≤ τ(A) of countable cofinality,

then FN(A) ≤ FN(PN), with equality unless A is finite. (Hint : 518D, 518I.) (ii) Show that if #(A) ≤ ω2

and FN(PN) = ω1, then A is tightly ω1-filtered. (Hint : 518M.)

(d) Let X be a set, Σ a σ-algebra of subsets of X, and ν : Σ → [0,∞[ a non-zero Maharam submeasure;
set I = {E : E ∈ Σ, νE = 0} and A = Σ/I. Suppose that #(A) ≤ ω2 and FN(PN) = ω1. Show that there
is a lifting for ν, that is, a Boolean homomorphism θ : A → Σ such that (θa)• = a for every a ∈ A. (Hint :
518L.)
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(e) Let A be a Boolean algebra, ν an exhaustive submeasure on A, and 〈ai〉i∈N a sequence in A such that
infi∈N νai > 0. Let F be a Ramsey ultrafilter on N. (i) Show that there is an I ∈ F such infi,j∈I ν(ai ∩ aj) >
0. (ii) Show that for every k ∈ N there is an I ∈ F such that inf{ν(infi∈K ai) : K ∈ [I]k} > 0. (iii) Show
that there is an I ∈ F such that {ai : i ∈ I} is centered. (Hint : 538Hc.)

(f) Let X be a set, Σ a σ-algebra of subsets of X, and I ⊳ PX a σ-ideal; suppose that Σ/Σ ∩ I is ccc.
Let Y be a set, T a σ-algebra of subsets of Y , and ν : T → [0,∞[ a Maharam submeasure; let I ⋉N (ν) be
the skew product. Show that (Σ⊗̂T)/(Σ⊗̂T) ∩ (I ⋉N (ν)) is ccc. (Hint : 527L.)

539Y Further exercises (a) Let A be a Dedekind σ-complete Boolean algebra with a countable σ-
generating set (331E), and ν a Maharam submeasure on A. Set I = {a : νa = 0}. Show that I 4T N .

(b) Let X be a set, Σ a σ-algebra of subsets of X, and I a proper σ-ideal of subsets of X generated by
Σ∩I; let ΣL be the algebra of Lebesgue measurable subsets of R. Write A for Σ/Σ∩I, L for (Σ⊗̂ΣL)∩(I⋉N )
and C for Σ⊗̂ΣL/L. (i) Show that c(C) = max(ω, c(A)) and τ(C) = max(ω, τ(A)). (ii) Show that C is weakly
(σ,∞)-distributive iff A is. (iii) Show that C is measurable iff A is. (iv) Show that C is a Maharam algebra
iff A is.

(c) Let A be a Boolean algebra with a strictly positive Maharam submeasure ν̂, and B a subalgebra of
A which is dense for the associated metric (539Ac); set ν = ν̂↾B, so that ν is an exhaustive submeasure on
B. For ǫ > 0 let rνǫ : B → On and rν̂ǫ : A → On be the rank functions associated with ν and ν̂ respectively.
Show that

rνδ(b) ≤ rν̂δ(b) ≤ rνǫ(b)

whenever b ∈ B and 0 < ǫ < δ.

(e) (J.Kupka) Let ν be a totally finite submeasure on a Boolean algebra A, and set

ν̌a = infn∈N sup{mini≤n νai : a0, . . . , an ⊆ a are disjoint}.

for a ∈ A, as in the proof of 539U. Show that either ν̌ ≥ 1
3ν or there is a non-zero additive µ : A → [0,∞[

such that µa ≤ νa for every a ∈ A. (Hint : 392D.)

(f) Show that the exhaustive submeasures constructed by Talagrand’s original method, as described in

§394 with ‖I‖ = #(I) for I ∈ [N]<ω, have exhaustivity rank at most the ordinal power ωω2

.

(g) Suppose that A is a non-measurable Maharam algebra. Show that Mhsr(A) = ω · Mhsr(A).

539Z Problems (a) Let ν be a non-zero totally finite Radon submeasure on a Hausdorff space X. Must
there be a lifting for ν? that is, writing Σ for the domain of ν, must there be a Boolean homomorphism
φ : Σ → Σ such that ν(E△φE) = 0 for every E ∈ Σ and φE = ∅ whenever νE = 0?

(b) Is there a Maharam algebra with uncountable Maharam submeasure rank?

539 Notes and comments During the growth of this treatise, the sections on Maharam submeasures
were twice transformed by new discoveries, and I naturally hope that the work I have just presented will
be similarly outdated before too long. In the pages above I have tried in the first place to show how the
cardinal functions of chapters 51 and 52 can be applied in this more general context. With minor refinements
of technique, we can go a fair way. Because we know we have at least two non-trivial atomless Maharam
algebras of countable type, we are led to a more detailed analysis, as in 539Ca and 539J.

Equally instructive are the apparent limits to what the methods can achieve, which mostly point to
remaining areas of obscurity. I say ‘remaining’; but what is most conspicuous about the present situation is
our nearly total ignorance concerning the structure of non-measurable Maharam algebras. The Talagrand-
Perović-Veličković construction, as described in §394, gives us a family of such algebras, but so far we can
answer hardly any of the most elementary questions about them (see 394Z).
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The message of Balcar Jech & Pazák 05 is that a Dedekind complete, ccc, weakly (σ,∞)-distributive
Boolean algebra is ‘nearly’ a Maharam algebra. Any further condition (e.g., the σ-finite chain condition,
as in 393S) is likely to render it a Maharam algebra; and with a little help from an extra axiom of set
theory, it is already necessarily a Maharam algebra (539N). Similarly, much of the work of the last sixty
years on submeasures suggests that exhaustive submeasures are ‘nearly’ uniformly exhaustive, and that an
extra condition (e.g., sub- or super-modularity) is enough to tip the balance (413Yh). At both boundaries,
there are few examples to limit conjectures about further conditions on which such results might be based.
Besides 539P and Talagrand’s examples, we have a further important possibility of a not-quite-Maharam
algebra in 555K below.
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Mycielski J. & Świerczkowski S. [64] ‘On the Lebesgue measurability and the axiom of determinateness’,
Fund. Math. 54 (1964) 67-71. [567F.]

Naimark M.A. [70] Normed Rings. Wolters-Noordhoff, 1970. [§561 notes .]
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