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Chapter 52

Cardinal functions of measure theory

From the point of view of this book, the most important cardinals are those associated with measures
and measure algebras, especially, of course, Lebesgue measure and the usual measure νI of {0, 1}I . In
this chapter I try to cover the principal known facts about these which are theorems of ZFC. I start with
a review of the theory for general measure spaces in §521, including some material which returns to the
classification scheme of Chapter 21, exploring relationships between (strict) localizability, magnitude and
Maharam type. §522 examines Lebesgue measure and the surprising connexions found by Bartoszyński

84 and Raisonnier & Stern 85 between the cardinals associated with the Lebesgue null ideal and the
corresponding ones based on the ideal of meager subsets of R. §523 looks at the measures νI for uncountable
sets I, giving formulae for the additivities and cofinalities of their null ideals, and bounds for their covering
numbers, uniformities and shrinking numbers. Remarkably, these cardinals are enough to tell us most of
what we want to know concerning the cardinal functions of general Radon measures and semi-finite measure
algebras (§524). These three sections are heavily dependent on the Galois-Tukey connections and Tukey
functions of §§512-513. Precalibers do not seem to fit into this scheme, and the relatively partial information
I have is in §525. The second half of the chapter deals with special topics which can be approached with
the methods so far developed. In §526 I return to the ideal of subsets of N with asymptotic density zero,
seeking to locate it in the Tukey classification. Further σ-ideals which are of interest in measure theory are
the ‘skew products’ of §527. In §528 I examine some interesting Boolean algebras, the ‘amoeba algebras’
first introduced by Martin & Solovay 70, giving the results of Truss 88 on the connexions between
different amoeba algebras and localization posets. Finally, in §529, I look at a handful of other structures,
concentrating on results involving cardinals already described.
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521 Basic theory

In the first half of this section (down to 521L) I collect facts about the cardinal functions add, cf, non,
cov, shr and shr+ when applied to the null ideal N (µ) of a measure µ, and also the π-weight of a measure. In
particular I look at their relations with the constructions introduced earlier in this treatise: measure algebras
and function spaces (521B), subspace measures (521F), direct sums (521G), inverse-measure-preserving
functions and image measures (521H), products (521J), perfect measures (521K) and compact measures
(521L). The list is long just because I have four volumes’ worth of miscellaneous concepts to examine; nearly
all the individual arguments are elementary.

In the second half of the section, I give a handful of easy results which may clarify some patterns from
earlier volumes. In 521M-521P I look again at ‘strict localizability’ as considered in Chapter 21, importing
the concept of ‘magnitude’ of a measure space from §332, hoping to throw light on the examples of §216. In
521E I consider the topological densities of measure algebras. In 521R-521S I explore possibilities for the
‘countably separated’ measure spaces of §§343-344, examining in particular their Maharam types. Finally,
in 521T, I review some measures which arose in §464 while analyzing the L-space ℓ∞(I)∗.

521A Proposition Let (X,Σ, µ) be a measure space.
(a) If E ⊆ Σ and #(E) < addµ then

⋃ E ∈ Σ and

µ(
⋃ E) = sup{µ(

⋃ E0) : E0 ⊆ E is finite}.

(b) ω1 ≤ addµ ≤ addN (µ).
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2 Cardinal functions of measure theory 521A

(c) If µ is the measure defined by Carathéodory’s method from an outer measure θ on X, then addµ =
addN (µ).

(d) If µ is complete and locally determined, addµ = addN (µ).

proof (a) Induce on #(E). If E is finite, the result is trivial. For the inductive step to #(E) = κ ≥ ω,
enumerate E as 〈Eξ〉ξ<κ. For each ξ < κ, set Hξ = Eξ \ ⋃

η<ξ Eη for each ξ < κ. Then the inductive

hypothesis tells us that Hξ ∈ Σ for every ξ. Set E =
⋃ E =

⋃
ξ<κHξ; because 〈Hξ〉ξ<κ is disjoint, and

κ < addµ, E ∈ Σ and

µE =
∑

ξ<κ

µHξ = sup
I⊆κ is finite

µ(
⋃

ξ∈I

Hξ) ≤ sup
E0⊆E is finite

µ(
⋃

E) ≤ µE.

(b) By the definition of ‘measure’ (112A), µ is ω1-additive. Suppose that A ⊆ N (µ) and #(A) < addµ.
For each A ∈ A, choose a measurable negligible EA ⊇ A. Then (a) tells us that E =

⋃
A∈AEA has measure

zero, so
⋃A ⊆ E is negligible. As A is arbitrary, addN (µ) ≥ addµ.

(c) Now suppose that µ is defined by Carathéodory’s method from θ. Let 〈Ei〉i∈I be a disjoint family in
Σ, where #(I) < addN (µ), with union E.

Let A ⊆ X be any set. Then θ(A ∩ E) =
∑

i∈I θ(A ∩ Ei). PPP Of course

θ(A ∩ E) ≥ sup
J⊆I is finite

θ(A ∩
⋃

i∈J

Ei) = sup
J⊆I is finite

∑

i∈J

θ(A ∩ Ei)

(induce on #(J), using the fact that θB = θ(B ∩ Ei) + θ(B \ Ei) for every B ⊆ X and i ∈ J)

=
∑

i∈I

θ(A ∩ Ei).

If
∑

i∈I θ(A∩Ei) is infinite, we can stop. Otherwise, recalling that N (µ) = θ−1[{0}], J = {i : A∩Ei /∈ N (µ)}
is countable, and

⋃
i∈I\J A ∩ Ei is negligible, because #(I) < addN (µ); so

θ(A ∩ E) = θ(A ∩⋃
i∈J Ei) ≤

∑
i∈J θ(A ∩ Ei) =

∑
i∈I θ(A ∩ Ei)

and we have equality. QQQ
It follows that θ(A ∩ E) + θ(A \ E) ≤ θA. PPP For any finite J ⊆ I,

θ(A \ E) +
∑

i∈J

θ(A ∩ Ei) = θ(A \ E) + θ(A ∩
⋃

i∈J

Ei)

≤ θ(A \
⋃

i∈J

Ei) + θ(A ∩
⋃

i∈J

Ei) = θA.

Taking the supremum over J , we have the result. QQQ
As A is arbitrary, E ∈ Σ; and setting A = E, we see that µE =

∑
i∈I µEi. As 〈Ei〉i∈I is arbitrary,

addµ ≥ addN (µ) and the two additivities are equal.

(d) Now this follows immediately from (c), by 213C.

521B Proposition Let (X,Σ, µ) be a measure space and (A, µ̄) its measure algebra.
(a) If E ⊆ Σ and #(E) < addµ, then (

⋃ E)• = supE∈E E
• and (X ∩⋂ E)• = infE∈E E

• in A.
(b) Suppose that A ⊆ [−∞,∞]X is a non-empty family of Σ-measurable functions with #(A) < addµ,

and that g(x) = supf∈A f(x) in [−∞,∞] for every f ∈ A. Then g is Σ-measurable.

(c) Write L
0 for the family of µ-virtually measurable real-valued functions defined almost everywhere in

X, and L0 for the corresponding space of equivalence classes, as in §241. Suppose that A ⊆ L
0 is such that

0 < #(A) < addµ and {f• : f ∈ A} is bounded above in L0. Set g(x) = supf∈A f(x) whenever this is

defined in R; then g ∈ L
0 and g• = supf∈A f

• in L0.

(d)(i) If, in (b), A consists of non-negative integrable functions and is upwards-directed, then
∫
g dµ =

supf∈A

∫
fdµ.

Measure Theory



521D Basic theory 3

(ii) If, in (b), f1 ∧ f2 = 0 a.e. for all distinct f1, f2 ∈ A, then
∫
g dµ =

∑
f∈A

∫
fdµ.

proof (a) As in 521Aa,
⋃ E ∈ Σ, and of course (

⋃ E)• is an upper bound for {E• : E ∈ E}. If F ∈ Σ and
F • is an upper bound for {E• : E ∈ E}, then, applying 521Aa to {E \ F : E ∈ E}, we see that

⋃ E \ F is
negligible, so (

⋃ E)• ⊆ F •. Thus (
⋃ E)• is the least upper bound of {E• : E ∈ E}.

Applying this to {X \ E : E ∈ E} we see that (X ∩⋂ E)• = infE∈E E
•.

(b) For any α ∈ R,

{x : g(x) > α} =
⋃

f∈A{x : f(x) > α} ∈ Σ

by 521Aa.

(c) Take any h ∈ L
0 such that f• ≤ h• for every f ∈ A. For each f ∈ A, let Ef be a conegligible

measurable subset of {x : x ∈ dom f∩domh, f(x) ≤ h(x)} such that f↾Ef is measurable. Set E =
⋂

f∈AEf ;

then E is measurable and g is defined everywhere in E and g↾E is measurable (as in (b)). Also E is
conegligible, so g ∈ L

0, and of course f• ≤ g• for every f ∈ A, while g• ≤ h•. But this argument works
for every h such that h• is an upper bound for {f• : f ∈ A}, so g• must be actually the supremum of
{f• : f ∈ A}.

(d)(i) If supf∈A

∫
fdµ is infinite, this is trivial. Otherwise, {f• : f ∈ A} is bounded above in L1 and

therefore in L0. By (c), g• is its supremum in L0, therefore in L1; so∫
g =

∫
g• = supf∈A

∫
f• = supf∈A

∫
f ,

as in 365Df.

(ii) Apply (i) to A∗ = {sup I : I ∈ [A]<ω}.

521C Just because null ideals are σ-ideals of sets, we can read off some of the elementary properties
of their cardinal functions from 511J. But the presence of a measure gives us a new way to use shrinking
numbers, which will be useful later.

Proposition Let (X,Σ, µ) be a measure space, and A ⊆ X.
(a) If γ < µ∗A there is a B ⊆ A such that #(B) < shr+ N (µ) and µ∗B > γ.
(b) There is a B ⊆ A such that #(B) ≤ max(ω, shrN (µ)) and µ∗B = µ∗A.

proof (a) Set κ = shr+ N (µ). Let E be the family of those measurable subsets of X such that there is a
B ∈ [A ∩ E]<κ with µ∗B = µE. Then E is closed under finite unions (132Ed). ??? If µ∗B ≤ γ for every
B ∈ [A]<κ, then µE ≤ γ for every E ∈ E . By 215Ab, there is a non-decreasing sequence 〈En〉n∈N in E such
that E \⋃n∈N

En is negligible for every E ∈ E . Now µ(
⋃

n∈N
En) ≤ γ < µ∗A and A′ = A \⋃n∈N

En is not
negligible. Let B ∈ [A′]<κ be a non-negligible set. Then µ∗B ≤ γ is finite, so B has a measurable envelope
F (132Ee), which belongs to E ; but F \⋃n∈N

En ⊇ B is not negligible. XXX So we have a B ∈ [A]<κ with
µ∗B > γ, as required.

(b) If µ∗A = 0 take B = ∅. Otherwise, let 〈γn〉n∈N be a sequence in [0, µ∗A[ with supremum µ∗A.
For each n ∈ N, (a) tells us that there is a set Bn ⊆ A such that #(Bn) ≤ shr(µ) and µ∗Bn > γn; set
B =

⋃
n∈N

Bn.

521D Proposition Let (X,Σ, µ) be a measure space and (A, µ̄) its measure algebra.
(a) π(A) ≤ π(µ) ≤ max(π(A), cfN (µ)) (definitions: 511Dc, 511Gb).
(b) If µX > 0, then nonN (µ) ≤ π(µ).
(c) If (X,Σ, µ) has locally determined negligible sets (definition: 213I), then shrN (µ) ≤ π(µ).
(d) Suppose that there is a topology T on X such that (X,T,Σ, µ) is a quasi-Radon measure space.

Then, writing A+ for A \ {0}, the partially ordered sets (Σ \N (µ),⊇) and (A+,⊇) are Tukey equivalent and
π(µ) = π(A).

proof Let H ⊆ Σ \ N (µ) be a coinitial set with cardinal π(µ).

(a)(i) If a ∈ A is non-zero, there is an E ∈ Σ such that E• = a, and now E is not negligible, so there is
an H ∈ H such that H ⊆ E and 0 6= H• ⊆ a. Thus {H• : H ∈ H} is coinitial with A+ and witnesses that
π(A) ≤ #(H) = π(µ).

D.H.Fremlin



4 Cardinal functions of measure theory 521D

(ii) Let B ⊆ A+ be a coinitial set with cardinal π(A), and E a cofinal subset of N (µ) of size cfN (µ).
For b ∈ B, let Fb ∈ Σ be such that F •

b = b, and consider G = {Fb \ E : b ∈ B, E ∈ E}. Then G ⊆ Σ \ N (µ)
is coinitial with Σ \N (µ). PPP If µF > 0, there is a b ∈ B such that b ⊆ F •. In this case, Fb \F is negligible,
so there is an E ∈ E such that Fb \ F ⊆ E and F ⊇ Fb \ E ∈ G. QQQ

It follows that π(µ) ≤ #(G) ≤ #(B×E) is at most the cardinal product π(A)·cfN (µ) ≤ max(ω, π(A), cfN (µ)).
But if cfN (µ) is finite it is 1, so in fact π(µ) ≤ π(A) · cfN (µ) = max(π(A), cfN (µ)).

(b) For each H ∈ H choose xH ∈ H. Then A = {xH : H ∈ H} must meet every non-negligible measurable
set, so (as µX > 0) cannot itself be negligible. Thus

nonN (µ) ≤ #(A) ≤ #(H) = π(µ).

(c) Suppose that B ⊆ X is non-negligible. Because (X,Σ, µ) has locally determined negligible sets there
is an E ∈ Σ such that µE > 0 and B ∩ E is not negligible, and now B ∩ E has a measurable envelope
F say (132Ee again). Set H′ = {H : H ∈ H, B ∩ H 6= ∅} and for H ∈ H′ choose xH ∈ B ∩ H; set
A = {xH : H ∈ H′}, so that A ⊆ B and #(A) ≤ π(µ). ??? If A is negligible, then F \ A includes a
non-negligible measurable set so includes a member H of H. As µH > 0 and F is a measurable envelope
of B, H meets B and belongs to H′, and xH ∈ A ∩ H. XXX Thus A is not negligible. As B is arbitrary,
shrN (µ) ≤ π(µ).

(d) For E ∈ Σ\N (µ) let FE be a closed non-negligible subset of E and set φ(E) = F •
E ∈ A+; for a ∈ A+,

let ψ(a) be a self-supporting measurable set such that ψ(a)• = a (414F). Then if φ(E) ⊇ a, ψ(a) \ FE is
negligible so E ⊇ FE ⊇ ψ(a). Thus (φ, ψ) is a Galois-Tukey connection and (Σ \ N (µ),⊇,Σ \ N (µ)) 4GT

(A+,⊇,A+).

Moreover, if ψ(a) ⊇ E, then a ⊇ φ(E), so (ψ, φ) also is a Galois-Tukey connection and (A+,⊇,A+) 4GT

(Σ \ N (µ),⊇,Σ \ N (µ)).

Thus (Σ\N (µ),⊇,Σ\N (µ)) ≡GT (A+,⊇,A+), that is, (Σ\N (µ),⊇) ≡T (A+,⊇). By 513E(e-i), inverted,

π(µ) = ci(Σ \ N (µ)) = ci(A+) = π(A).

521E It will be useful later in the chapter to be able to calculate the topological density of measure-
algebra topologies.

Proposition Let (A, µ̄) be a semi-finite measure algebra.

(a) Give A its measure-algebra topology (323A).

(i) If B is a subalgebra of A, it is topologically dense iff it τ -generates A, that is, A is the order-closed
subalgebra of itself generated by B.

(ii) If A is finite, then its topological density is #(A); if A is infinite, its topological density is equal to
its Maharam type τ(A).

(b) Let Af be the set of elements of A with finite measure, with its strong measure-algebra topology
(323Ad). Then the topological density of Af is #(Af ) = #(A) if A is finite, and max(c(A), τ(A)) if A is
infinite.

proof (a)(i)(ααα) Suppose that B is topologically dense. Let C be the order-closed subalgebra of A generated
by B. If a ∈ Af and c ∈ A, there is a b ∈ C such that b ∩ a = c ∩ a. PPP For each n ∈ N, there is an
an ∈ B such that µ̄(a ∩ (an △ c)) ≤ 2−n. Set b = infn∈N supm≥n am ∈ C; then b ∩ a = c ∩ a (apply 323F to
〈a ∩ an〉n∈N). QQQ

It follows that Af ⊆ C. PPP If c ∈ Af , then whenever c ⊆ a ∈ Af there is a ba ∈ C such that ba ∩ a = c.
Now (because µ̄ is semi-finite) c = inf{ba : c ⊆ a ∈ Af} ∈ C. QQQ

Finally, again because µ̄ is semi-finite,

c = sup{a : a ∈ Af , a ⊆ c} ∈ C

for every c ∈ A, and A = C. Thus B τ -generates A.

(βββ) Suppose that B τ -generates A. Then the topological closure of B is order-closed (323D(c-i))
and a subalgebra (323B), so must be A, and B is topologically dense.

Measure Theory



521F Basic theory 5

(ii)(ααα) If A is finite, this is trivial, just because the measure-algebra topology is Hausdorff (323Ga).
So let us henceforth suppose that A is infinite, so that both τ(A) and the topological density dT(A) of A are
infinite.

(βββ) Let A ⊆ A be a set with cardinal τ(A) which τ -generates A, and let B be the subalgebra of
A generated by A. Then #(B) = #(A) = τ(A) (331Gc), and B is topologically dense in A, by (i); so
dT(A) ≤ τ(A).

(γγγ) Let A ⊆ A be a topologically dense set with cardinal dT(A), and B the subalgebra of A generated
by A. Then B is topologically dense, so it τ -generates A, and

τ(A) ≤ #(B) = #(A) = dT(A);

with (β), this means that we have equality, as claimed.

(b)(i) The case of finite A is again trivial; suppose that A is infinite. Let 〈ai〉i∈I be a partition of unity
in A consisting of non-zero elements of finite measure.

(ii) The topological density dtop(Af ) is at most max(c(A), τ(A)). PPP For each i, the topological density
of Aai

, with its measure-algebra topology, is at most max(ω, τ(Aai
)) ≤ τ(A) ((a) above and 514Ed); let

Bi ⊆ Aai
be a dense subset of this size or less. Set B =

⋃
i∈I Bi, D = {supB′ : B′ ∈ [B]<ω}. Then the metric

closure D of D in Af is closed under ∪ and includes Aai
for every i. If now a ∈ Af , a = supi∈I a ∩ ai ∈ D.

So

dtop(Af ) ≤ #(D) ≤ max(ω,#(I), τ(A)) ≤ max(c(A), τ(A)). QQQ

(iii) c(A) ≤ dtop(Af ). PPP Let 〈bj〉j∈J be any disjoint family in A+. For each j, let b′j ⊆ bj be a non-zero

element of non-zero finite measure. Set Gj = {a : a ∈ Af , µ̄(a△ b′j) < µ̄b′j} for j ∈ J . Then 〈Gj〉j∈J

is a disjoint family of non-empty open sets in Af , so #(J) ≤ dtop(Af ) (5A4Ba). As 〈bj〉j∈J is arbitrary,
c(A) ≤ dtop(Af ). QQQ

(iv) τ(A) ≤ dtop(Af ). PPP Let A ⊆ Af be a dense set with cardinal dtop(Af ). Let B be the order-closed
subalgebra of A generated by B = A ∪ {ai : i ∈ I}. For any i ∈ I, set Ai = {a ∩ ai : a ∈ A}. Now Ai is
topologically dense in Aai

(use 3A3Eb), so the order-closed subalgebra of Aai
it generates is the whole of

Aai
(323H); by 314H, Aai

= {b ∩ ai : b ∈ B}. As ai ∈ A ⊆ B, B includes Aai
. As supi∈I ai = 1, B = A.

Thus

τ(A) ≤ #(B) ≤ max(ω,#(I), dtop(Af )) = dtop(Af )

(using (iii) for the last equality). QQQ

(v) Putting these together, we have the result.

521F Proposition Let (X,Σ, µ) be a measure space, A a subset of X and µA the subspace measure on
A.

(a) N (µA) 4T N (µ), so addN (µA) ≥ addN (µ) and cfN (µA) ≤ cfN (µ).
(b) (A,∈,N (µA)) 4GT (X,∈,N (µ)), so nonN (µA) ≥ nonN (µ) and covN (µA) ≤ covN (µ).
(c) addµA ≥ addµ.
(d) shrN (µA) ≤ shrN (µ) and shr+ N (µA) ≤ shr+ N (µ).
(e) If either A ∈ Σ or (X,Σ, µ) has locally determined negligible sets, π(µA) ≤ π(µ).
(f) If µA is semi-finite, then τ(µA) ≤ τ(µ).

proof (a) Because N (µA) = PA∩N (µ) (214Cb), the embedding N (µA) ⊂→ N (µ) is a Tukey function, and
N (µA) 4T N (µ). By 513Ee, addN (µA) ≥ addN (µ) and cfN (µA) ≤ cfN (µ).

(b) Next, setting φ(x) = x for x ∈ A and ψ(F ) = F ∩ A for F ∈ N (µ), (φ, ψ) witnesses that (A,∈
,N (µA)) 4GT (X,∈,N (µ)). By 512D and 512Ed,

nonN (µA) = add(A,∈,N (µA)) ≥ add(X,∈,N (µ)) = nonN (µ),

covN (µA) = cov(A,∈,N (µA)) ≤ cov(X,∈,N (µ)) = covN (µ).

D.H.Fremlin



6 Cardinal functions of measure theory 521F

(c) If 〈Fξ〉ξ<κ is a disjoint family in ΣA = domµA, where κ < addµ, then for each ξ < κ we have an
Eξ ∈ Σ such that Fξ = A ∩ Eξ and µAFξ = µEξ (214Ca). Set E′

ξ = Eξ \
⋃

η<ξ Eη for ξ < κ; then E′
ξ ∈ Σ

for each ξ, and 〈E′
ξ〉ξ<κ is disjoint. Set E =

⋃
ξ<κE

′
ξ =

⋃
ξ<κEξ and F = A ∩ E =

⋃
ξ<κ Fξ. Then

∑
ξ<κ µAFξ ≤ µAF ≤ µE =

∑
ξ<κ µE

′
ξ ≤ ∑

ξ<κ µEξ =
∑

ξ<κ µAFξ,

and we have equality. As 〈Fξ〉ξ<κ is arbitrary, addµA ≥ addµ.

(d) If B ∈ PA \ N (µA), there is a C ⊆ B such that C /∈ N (µ) and #(C) ≤ shrN (µ) (resp. #(C) <
shr+ N (µ)); now C /∈ N (µA); as B is arbitrary, shrN (µA) ≤ shrN (µ) (resp. shr+ N (µA) ≤ shr+ N (µ)).

(e) Let H ⊆ Σ\N (µ) be a coinitial set with cardinal π(µ). Set G = {H ∩A : H ∈ H}\N (µ). Then µAG
is defined and non-zero for every G ∈ G. Now G is coinitial with domµA \ N (µA). PPP If µAB > 0, there is
an E ∈ Σ such that B = E ∩ A. If A ∈ Σ, then B ∈ Σ and there is an H ∈ H such that H ⊆ B, while of
course H ∈ G. If (X,Σ, µ) has locally determined negligible sets, then, as in the proof of 521Dc, there is a
non-negligible set F ∈ Σ which is a measurable envelope of a subset of B. Now there is an H ∈ H included
in F ∩ E, in which case H ∩A is included in B and belongs to G. QQQ So

π(µA) ≤ #(G) ≤ #(H) = π(µ).

(f) Writing A, AA for the measure algebras of µ and µA, we have a Boolean homomorphism π : A → AA

defined by saying that πE• = (F ∩ A)• for every E ∈ Σ. (The point is just that F ∩ A ∈ N (µA) whenever
F ∈ N (µ).) Now π is order-continuous. PPP Suppose that C ⊆ A is non-empty and downwards-directed and
inf C = 0 in A. ??? If b ∈ AA is a non-zero lower bound of π[C], then, because νA is semi-finite, there is a
G ∈ domµA such that 0 < µAG < ∞ and G• ⊆ b. Let E ∈ Σ be such that G = E ∩ A and µE = µAG
(214Ca). Then E• cannot be a lower bound of C; let a ∈ C be such that E• \ a 6= 0. In this case, there is
an F ∈ Σ such that F ⊆ E and F • = E• \ a, so that πF • is disjoint from πa ⊇ b, and F ∩G = (F ∩A) ∩G
must be negligible. We know that µF > 0, so µ(E \ F ) < µE; but also G \ (E \ F ) is negligible, so

µAG = µ∗G ≤ µ(E \ F ) < µE = µAG. XXX

It follows that inf π[C] = 0 in AA; as C is arbitrary, π is order-continuous. QQQ
Now let B ⊆ A be such that B τ -generates A and #(B) = τ(A). Writing B for the order-closed subalgebra

of AA generated by π[B], we see that π−1[B] is an order-closed subalgebra of A including B, so must be the
whole of A, and AA = π[A] = B. Accordingly

τ(µA) = τ(AA) ≤ #(π[B]) ≤ #(B) = τ(A) = τ(µ),

as claimed.

521G Proposition Let 〈(Xi,Σi, µi)〉i∈I be a non-empty family of measure spaces with direct sum
(X,Σ, µ). Then

addN (µ) = mini∈I addN (µi), addµ = mini∈I addµi,

covN (µ) = supi∈I covN (µi), nonN (µ) = mini∈I nonN (µi),

shrN (µ) = supi∈I shrN (µi), shr+ N (µ) = supi∈I shr+ N (µi),

τ(µ) ≤ max(ω, supi∈I τ(µi),min{λ : #(I) ≤ 2λ})

and π(µ) is the cardinal sum
∑

i∈I π(µi). If I is finite, then

cfN (µ) = maxi∈I cfN (µi).

proof Concerning each of addN (µ), addµ, covN (µ), nonN (µ), shrN (µ) and shr+ N (µ), 521F provides
an inequality in one direction. The reverse inequalities are equally straightforward, especially if we note that
N (µ) ∼=

∏
i∈I N (µi), so that 512Hc is relevant. For τ(µ), 514Ef provides the formula at once if we note that

the measure algebra of µ is isomorphic to the simple product of the measure algebras of the µi (cf. 322M).
As for π(µ), if for each i ∈ I we choose a coinitial set Hi of Σi \ N (µi) with cardinal π(µi), then

H = {H × {i} : i ∈ I, H ∈ Hi}

Measure Theory



521H Basic theory 7

is coinitial with Σ \ N (µ) and witnesses that π(µ) ≤ ∑
i∈I π(µi). (As in 214L, I am thinking of X as⋃

i∈I Xi×{i}.) Conversely, if H is coinitial with Σ\N (µ) and for each i ∈ I we set Hi = {H : H×{i} ∈ H},
we shall have Hi coinitial with Σi \ N (µi), so that

∑
i∈I π(µi) ≤

∑
i∈I #(Hi) ≤ #(H) = π(µ)

and π(µ) =
∑

i∈I π(µi).

521H Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and f : X → Y an inverse-measure-
preserving function.

(a)(i) (X,∈,N (µ)) 4GT (Y,∈,N (ν)), so nonN (µ) ≥ nonN (ν) and covN (µ) ≤ covN (ν).
(ii) If there is a topology on Y such that ν is a topological measure inner regular with respect to the

closed sets, then π(ν) ≤ π(µ).
(iii) If ν is σ-finite, then τ(ν) ≤ τ(µ).

(b) If ν is the image measure µf−1, then add ν ≥ addµ. If, moreover, µ is complete, N (ν) 4T N (µ), so
addN (µ) ≤ addN (ν) and cfN (µ) ≥ cfN (ν); also shrN (µ) ≥ shrN (ν) and shr+ N (µ) ≥ shr+ N (ν).

proof (a)(i) Set ψ(F ) = f−1[F ] for F ∈ N (ν). Then (f, ψ) is a Galois-Tukey connection from (X,∈,N (µ))
to (Y,∈,N (ν)), so

covN (µ) = cov(X,∈,N (µ)) ≤ cov(Y,∈,N (ν)) = covN (ν),

nonN (µ) = add(X,∈,N (µ)) ≥ add(Y,∈,N (ν)) = nonN (ν)

(512D, 512Ed again).

(ii) Let H be a coinitial subset of Σ \ N (µ) with cardinal π(µ). Set G = {f [H] : H ∈ H}. Because ν
is a topological measure, G ⊆ T; and if H ∈ H, then

νf [H] = µf−1[f [H]] ≥ µH > 0,

so G ⊆ T \ N (ν). If F ∈ T \ N (ν), there is a closed set F ′ ⊆ F such that 0 < νF ′ = µf−1[F ′]; there is an

H ∈ H such that H ⊆ f−1[F ′]; now G = f [H] belongs to G and is included in F ′ ⊆ F . So G is coinitial
with T \ N (ν) and

π(ν) ≤ #(G) ≤ #(H) = π(µ).

(iii) Let (A, µ̄) and (B, ν̄) be the measure algebras of µ, ν respectively. Then we have a sequentially
order-continuous measure-preserving Boolean homomorphism π : B → A defined by setting πF • = f−1[F ]•

for every F ∈ dom ν (324M). If A is finite then B must be finite with #(B) ≤ #(A), and consequently
τ(B) ≤ τ(A) (331Xc, or otherwise). So let us suppose that A is infinite.

Writing Af , Bf for the respective ideals of elements of finite measure, π↾Bf is a function from Bf to Af

which is an isometry for the measure metrics on Bf and Af . So the topological density dtop(Bf ) is equal
to dtop(π[Bf ]) and less than or equal to dtop(Af ) (5A4B(h-ii)).

Observe next that (B, ν̄) is σ-finite because ν is, and that (A, µ̄) therefore also is (324Kd). So we get

τ(ν) = τ(B) ≤ max(ω, c(B), τ(B)) = max(ω, dtop(Bf ))

(521Eb)

≤ max(ω, dtop(Af )) = max(ω, c(A), τ(A)) = τ(A) = τ(µ),

as required.

(b) If 〈Fξ〉ξ<κ is a disjoint family in T, where κ < addµ, then 〈f−1[Fξ]〉ξ<κ is a disjoint family in Σ, so

ν(
⋃

ξ<κ

Fξ) = µf−1[
⋃

ξ<κ

Fξ] = µ(
⋃

ξ<κ

f−1[Fξ] =
∑

ξ<κ

µf−1[Fξ] =
∑

ξ<κ

νFξ.

As 〈Fξ〉ξ<κ is arbitrary, add ν ≥ addµ.

D.H.Fremlin



8 Cardinal functions of measure theory 521H

Now suppose that µ is complete. In this case, F ∈ T whenever F ⊆ Y and f−1[F ] ∈ N (µ), so that N (ν)
is precisely {F : F ⊆ Y, f−1[F ] ∈ N (µ)}. It is now easy to check that F 7→ f−1[F ] : N (ν) → N (µ) is a
Tukey function. So addN (ν) ≥ addN (µ) and cfN (ν) ≤ cfN (µ), by 513Ee again.

Take any non-negligible A ⊆ Y . Then f−1[A] /∈ N (µ), so there is a set B ⊆ f−1[A] such that #(B) ≤
shrN (µ) and B /∈ N (µ). In this case, f [B] ⊆ A, f [B] /∈ N (ν) and #(f [B]) ≤ shrN (µ). As A is
arbitrary, shrN (ν) ≤ shrN (µ). The same argument, with < instead of ≤ at appropriate points, shows that
shr+ N (ν) ≤ shr+ N (µ).

521I Corollary Let (X,Σ, µ) be an atomless strictly localizable measure space. Then nonN (µ) ≥ nonN
and covN (µ) ≤ covN , where N is the null ideal of Lebesgue measure on R.

proof (a) If µX = 0 this is trivial.

(b) If 0 < µX < ∞, let ν be the completion of the normalized measure
1

µX
µ. Then ν is complete and

atomless, so by 343Cb there is an inverse-measure-preserving function from (X, ν) to ([0, 1], µ1), where µ1

is Lebesgue measure on [0, 1]. Also N (ν) = N (µ). By 521Ha, nonN (ν) ≥ nonN (µ1) and covN (ν) ≤
covN (µ1). Now ([0, 1],N (µ1)) is isomorphic to (R,N ). PPP Take a bijection h : R → [0, 1] such that
h(x) = 1

2 (1 + tanhx) for x ∈ R \Q; then h is a suitable isomorphism. QQQ So nonN (µ) = nonN (ν) ≥ nonN
and covN (µ) ≤ covN .

(c) If X has infinite measure, let 〈Xi〉i∈I be a decomposition of X into sets of finite measure. For each
i ∈ I let µi be the subspace measure on Xi. Then every µi is atomless, so, putting (b) and 521G together,

nonN (µ) = mini∈I nonN (µi) ≥ nonN ,

covN (µ) = supi∈I covN (µi) ≤ covN .

521J For product spaces the situation is more complicated, because the product measure introduces
‘new’ negligible sets which are not directly definable in terms of the null ideals of the factors. In the next
three sections, however, we shall find out quite a lot about the cardinal functions of Radon measures, and
this information, when it comes, can be used to give results about general products of probability measures.

Proposition Let 〈(Xi,Σi, µi)〉i∈I be a non-empty family of probability spaces with product (X,Σ, µ).
(a)

nonN (µ) ≥ supi∈I nonN (µi), covN (µ) ≤ mini∈I covN (µi),

addµ = addN (µ) ≤ mini∈I addN (µi), cfN (µ) ≥ supi∈I cfN (µi),

shrN (µ) ≥ supi∈I shrN (µi), shr+ N (µ) ≥ supi∈I shr+ N (µi),

π(µ) ≥ supi∈I π(µi).

(b) Set κ = #({i : i ∈ I, Σi 6= {∅, Xi}}. Then [κ]≤ω 4T N (µ); consequently addµ = addN (µ) is ω1 if κ
is uncountable, while cfN (µ) is at least cf[κ]≤ω.

(c) Now suppose that I is countable and that we have for each i ∈ I a probability space (Yi,Ti, νi) and an
inverse-measure-preserving function fi : Xi → Yi which represents an isomorphism of the measure algebras
of µi and νi. Let (Y,T, ν) be the product of 〈(Yi,Ti, νi)〉i∈I . Then

N (µ) 4T N (ν) ×∏
i∈I N (µi).

Consequently

addN (µ) ≥ min(addN (ν),mini∈I addN (µi)),

and if I is finite

cfN (µ) ≤ max(cfN (ν),maxi∈I cfN (µi)).

(d) If I is finite, then

Measure Theory



521J Basic theory 9

nonN (µ) = maxi∈I nonN (µi), covN (µ) = mini∈I covN (µi).

proof (a) Note that addµ = addN (µ) by 521Ad. Now with one exception the inequalities are immediate
if we apply 521H to the canonical maps from X to Xi. The odd one out is the last, because we do not have
a simple general result concerning the π-weight of an image measure. But in the present case we can argue
as follows. Let H ⊆ Σ \ N (µ) be a coinitial set with cardinal π(µ), and take i ∈ I. Then we can identify
(X,Σ, µ) with (X ′,Σ′, µ′) × (Xi,Σi, µi) where (X ′,Σ′, µ′) is the product of the family 〈(Xj ,Σj , µj)〉j∈I,j 6=i

(254N). If H ∈ H, µ(X \H) =
∫
µ∗
i (Xi \H[{x′}])µ′(dx′) (252D) is less than 1, so there is an x′H ∈ X ′ such

that µ∗
i (Xi \H[{x′H}]) < 1, (µi)∗H[{x′H}] > 0 and there is a GH ∈ Σi \ N (µi) such that GH ⊆ H[{x′H}].

Set G = {GH : H ∈ H}. If µiF > 0, then µ(X ′ × F ) > 0 and there is an H ∈ H included in X ′ × F ; in
which case GH ⊆ H[{x′H}] ⊆ F . So G is coinitial with Σi \ N (µi) and

π(µi) ≤ #(G) ≤ #(H) ≤ π(µ).

As i is arbitrary, supi∈I π(µi) ≤ π(µ), as claimed.

(b)(i) If κ ≤ ω then the constant function with value ∅ is a Tukey function from [κ]≤ω to N (µ). Otherwise,
set J = {i : i ∈ I, Σi 6= {∅, Xi}} and for i ∈ J choose a non-empty Ci ∈ Σi such that µiCi ≤ 1

2 . Index J as
〈iξn〉ξ<κ,n∈N and for ξ < κ set Eξ = {x : x(iξn) ∈ Ciξn for every n ∈ N}, so that µEξ =

∏
n∈N

µiξnCiξn = 0.

Define φ : [κ]≤ω → N (µ) by setting φK =
⋃

ξ∈K Eξ for countable K ⊆ κ. Then φ is a Tukey function. PPP If

E ∈ N (µ), there is a negligible E′ ⊇ E which is determined by coordinates in a countable set I ′ (254Oc).
Set L = {ξ : ξ < κ, iξn ∈ I ′ for some n ∈ N}; then L is countable. If ξ < κ and Eξ ⊆ E′, Eξ is determined
by coordinates in {iξn : n ∈ N}; as neither Eξ nor X \ E′ is empty, this must meet I ′, and ξ ∈ L. So
{K : K ∈ [κ]≤ω, φK ⊆ E} is bounded above by L ∈ [κ]≤ω. As E is arbitrary, φ is a Tukey function. QQQ
Accordingly [κ]≤ω 4T N (µ).

(ii) It follows that addN (µ) ≤ add[κ]≤ω ≤ ω1 if κ is uncountable, and that cfN (µ) ≥ cf[κ]≤ω.

(c)(i) Recall that any inverse-measure-preserving function f between measure spaces induces a measure-
preserving Boolean homomorphism F • 7→ (f−1[F ])• between the measure algebras (324M). For i ∈ I
and C ∈ Σi choose ψi(C) ∈ Ti such that (f−1

i [ψi(C)])• = C• in the measure algebra of µi, that is,

C△f−1
i [ψi(C)] ∈ N (µi). Next, for E ∈ N (µ) and n ∈ N, choose a family 〈CEnmi〉m∈N,i∈I such that

CEnmi ∈ Σi for every m ∈ N and i ∈ I, E ⊆ ⋃
m∈N

∏
i∈I CEnmi, and

∑
m∈N

∏
i∈I µiCEnmi ≤ 2−n; set

φ(E) =
(⋂

n∈N

⋃
m∈N

∏
i∈I ψi(CEnmi), 〈

⋃
m,n∈N

(CEnmi \ f−1
i [ψi(CEnmi)])〉i∈I

)
.

Because

ν(
⋂

n∈N

⋃

m∈N

∏

i∈I

ψi(CEnmi)) ≤ inf
n∈N

∑

m∈N

∏

i∈I

νiψi(CEnmi)

= inf
n∈N

∑

m∈N

∏

i∈I

µiCEnmi = 0,

φ is a function from N (ν) to N (ν) ×∏
i∈I N (µi).

Now φ is a Tukey function. PPP Suppose that W ∈ N (ν) and that Ei ∈ N (µi) for every i ∈ I. Define
f : X → Y by setting f(x) = 〈fi(x(i))〉i∈I for x ∈ X; then f is inverse-measure-preserving (254H). So
V = f−1[W ] ∪ ⋃

i∈I{x : x(i) ∈ Ei} is negligible. (This is where we need to know that I is countable.)
Suppose that E ∈ N (µ) is such that φ(E) ≤ (W, 〈Ei〉i∈I); take x ∈ E such that x(i) /∈ Ei for every i ∈ I,
and n ∈ N. Then there is an m ∈ N such that x ∈ ∏

i∈I CEnmi. For each i ∈ I,

CEnmi \ f−1
i [ψi(CEnmi)] ⊆ Ei, x(i) ∈ CEnmi \ Ei,

so fi(x(i)) ∈ ψi(CEnmi); thus f(x) ∈ ∏
i∈I ψi(CEnmi). As n is arbitrary,

f(x) ∈ ⋂
n∈N

⋃
m∈N

∏
i∈I ψi(CEnmi) ⊆W

and x ∈ V . As x is arbitrary, E ⊆ V . As (W, 〈Ei〉i∈I) is arbitrary, φ is a Tukey function. QQQ
So N (µ) 4T N (ν) ×∏

i∈I N (µi).

(ii) Accordingly
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10 Cardinal functions of measure theory 521J

addN (µ) ≥ add(N (ν) ×∏
i∈I N (µi)) = min(addN (ν),mini∈I addN (µi))

and

cfN (µ) ≤ cf(N (ν) ×∏
i∈I N (µi)) = max(cfN (ν),maxi∈I cfN (µi))

if I is finite.

(d)(i) For each i ∈ I let Ai ⊆ Xi be a non-negligible set with cardinal nonN (µi). Then A =
∏

i∈I Ai

is not negligible (251Wm), while #(A) ≤ max(ω,maxi∈I nonN (µi)). If all the nonN (µi) are finite, then
they are all equal to 1, and A is a singleton. So we must in any case have #(A) = maxi∈I nonN (µi), and
nonN (µ) ≤ maxi∈I nonN (µi). By (a), we have equality.

(ii) Suppose that I = {0, 1}, and that E is a cover of X = X0 ×X1 by negligible sets. For each E ∈ E ,
set CE = {x : x ∈ X0, E[{x}] /∈ N (µ1)}; then CE is negligible. If #(E) < covN (µ0), then there is an
x ∈ X0 \

⋃
E∈E CE ; in which case {E[{x}] : E ∈ E} witnesses that covN (µ1) ≤ #(E). So #(E) must be at

least min(covN (µ0), covN (µ1)). As E is arbitrary, covN (µ) ≥ min(covN (µ0), covN (µ1)).
Now an induction on #(I) (using the associative law 254N) shows that covN (µ) ≥ mini∈I covN (µi)

whenever I is finite. Using (a) again, we have equality here also.

Remark The simplest applications of (c) here will be when the µi are Maharam-type-homogeneous, so that
we can take the νi to be the usual measures on powers {0, 1}κi of {0, 1}, and ν will be isomorphic to the usual
measure on {0, 1}κ where κ is the cardinal sum

∑
i∈I κi. The cardinal functions of these measures are dealt

with in §523. For non-homogeneous µi we shall still be able to arrange for the νi to be completion regular
Radon measures on dyadic spaces, so that the product measure ν is again a Radon measure Y (532F), and
(once we have identified its measure algebra – see 334E, 334Ya) approachable by the methods of §524.

521K I turn now to ‘perfect’ and ‘compact’ measure spaces. (See §451 for the basic theory of these.)

Proposition Let (X,Σ, µ) be a perfect semi-finite measure space which is not purely atomic. Then

addN (µ) ≤ addN , cfN (µ) ≥ cfN ,

shrN (µ) ≥ shrN , shr+ N (µ) ≥ shr+ N , π(µ) ≥ π(µL)

where N is the null ideal of Lebesgue measure on R and µL is Lebesgue measure on R.

proof (a) Suppose first that µ is a complete atomless probability measure. Then there is a function f : X →
[0, 1] which is inverse-measure-preserving for µ and Lebesgue measure µ1 on [0, 1] (343Cb again); and in fact
µ1 is the image measure µf−1. PPP By 451O, µf−1 is a Radon measure; since it extends µ1 it must actually
be equal to µ1, by 415H. QQQ So addN (µ) ≤ addN (µ1), cfN (µ) ≥ cfN (µ1), shrN (µ) ≥ shrN (µ1), and
shr+ N (µ) ≥ shr+ N (µ1) and π(µ) ≥ π(µ1), by 521H. As in the proof of 521I, ([0, 1],N (µ1)) is isomorphic
to (R,N ). Of course µ1 is not isomorphic to µL. But µL is isomorphic to a direct sum of countably many
copies of µ1, so by 521G we know that π(µL) is the cardinal product ω · π(µ1); as π(µ1) is surely infinite,
this is π(µ1) again. So we have the result in the special case.

(b) Now suppose that (X,Σ, µ) is any semi-finite perfect measure space which is not purely atomic. Then
the completion µ̂ of µ is still a semi-finite perfect measure which is not purely atomic (212Gd, 451G(c-i)),
and N (µ) = N (µ̂) (212Eb). Because µ̂ is semi-finite and not purely atomic, there is a set E ∈ Σ of non-zero

finite measure such that the subspace measure µ̂E is atomless. Set ν =
1

µE
µ̂E , so that ν is an atomless

complete perfect probability measure on E, while N (ν) = N (µE). Putting (a) together with 521F, we get

addN (µ) = addN (µ̂) ≤ addN (µ̂E) = addN (ν) ≤ addN
and similarly for cf, shr and shr+.

521L Proposition (a) Let (X,Σ, µ) be a strictly localizable measure space and (Y,T, ν) a locally compact
semi-finite measure space, and suppose that they have isomorphic measure algebras. Then (X,∈,N (µ)) 4GT

(Y,∈,N (ν)); consequently covN (µ) ≤ covN (ν) and nonN (ν) ≤ nonN (µ).

Measure Theory
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(b) Let (X,Σ, µ) be a Maharam-type-homogeneous compact probability space with Maharam type κ.
Then covN (µ) = covNκ and nonN (µ) = nonNκ, where Nκ is the null ideal of the usual measure νκ on
{0, 1}κ.

(c) Let (X,Σ, µ) be a compact strictly localizable measure space with measure algebra A. Then

d(A) = min{#(A) : A ⊆ X has full outer measure}.

proof (a) This follows immediately from 521Ha, because by 343B there is an inverse-measure-preserving
function from X to Y .

(b) The point is that νκ is a compact measure (342Jd, 451Ja), so that we can apply (a) in both directions
to see that covN (µ) = covNκ and nonN (µ) = nonNκ.

(c) The case µX = 0 is trivial; suppose that µX > 0. Let K be a compact class such that µ is inner
regular with respect to K.

(i) Suppose that 〈Cξ〉ξ<d(A) is a family of centered sets in A covering A+. For each ξ < d(A), set
Kξ = {K : K ∈ K ∩ Σ, K• ∈ Cξ}; then Kξ has the finite intersection property so there is a point
xξ ∈ X ∩⋂Kξ. Set A = {xξ : ξ < d(A)}. If K ∈ K ∩ Σ and K ∩A = ∅, then K /∈ ⋃

ξ<d(A) Kξ so K• = 0; it

follows that every measurable subset of X \A is negligible and A has full outer measure, while #(A) ≤ d(A).

(ii) Let µ̂ be the completion of µ, Σ̂ its domain and θ : A → Σ̂ a lifting (341K, 212Gb, 322Da). Take
any A ⊆ X of full outer measure for µ; then it also has full outer measure for µ̂ (212Eb). For x ∈ A, set
Cx = {a : a ∈ A, x ∈ θa}; then 〈Cx〉x∈A is a family of centered sets in A with union A+, so d(A) ≤ #(A).

521M Proposition Let (X,Σ, µ) be a complete locally determined measure space of magnitude at most
addµ. Then it is strictly localizable.

proof Write κ for addµ. Let (A, µ̄) be the measure algebra of µ. Then there is a partition of unity
D ⊆ A consisting of elements of finite measure; as #(D) ≤ c(A) ≤ κ, there is a family 〈aξ〉ξ<κ running
over D ∪ {0}. For each ξ < κ, choose Eξ ∈ Σ such that E•

ξ = aξ, and set Fξ = Eξ \
⋃

η<ξ Eη. Because

Eξ \ Fξ =
⋃

η<ξ Eξ ∩ Eη is the union of fewer than addµ negligible sets, it is negligible, and Fξ ∈ Σ, with

F •

ξ = aξ. Now 〈Fξ〉ξ<κ is a disjoint family of sets of finite measure. If E ∈ Σ and µE > 0, there is some

ξ < κ such that E• ∩ aξ 6= 0, and now µ(E ∩ Fξ) > 0. Thus 〈Fξ〉ξ<κ satisfies the condition of 213Oa, and µ
is strictly localizable.

521N Proposition Let (X,Σ, µ) be a complete locally determined localizable measure space of magni-
tude at most c. Then it is strictly localizable.

proof Again let (A, µ̄) be the measure algebra of µ, and take a partition of unity D ⊆ A consisting
of elements of finite measure; as #(D) ≤ c(A) ≤ c, there is an injective function h : D → PN. This
time, because A is Dedekind complete, we can set bn = sup{d : d ∈ D, n ∈ h(d)} for each n ∈ N. If
d ∈ D, then d = infn∈h(d) bn \ supn∈N\h(d) bn. So if we choose En ∈ Σ such that E•

n = bn for each n,

and set Fd =
⋂

n∈h(d)En \ ⋃
n∈N\h(d)En for d ∈ D, 〈Fd〉d∈D will be a disjoint family in Σ and F •

d = d

for every d. Now µFd = µ̄d is always finite; and if E ∈ Σ is non-negligible, there is a d ∈ D such that
0 6= µ̄(E• ∩ d) = µ(E ∩ Fd). Thus 〈Fd〉d∈D satisfies the condition of 213Oa, and µ is strictly localizable.

521O Proposition (a) If (X,Σ, µ) is a semi-finite measure space, its magnitude is at most max(ω, 2#(X)).
(b) If (X,Σ, µ) is a strictly localizable measure space, its magnitude is at most max(ω,#(X)).
(c) There is an infinite semi-finite measure space (X,Σ, µ) with magnitude 2#(X).
(d) If 〈Ai〉i∈I is a disjoint family of subsets of X and #(I) > max(ω,mag(µ)) then there is an i ∈ I such

that X \Ai has full outer measure.

proof (a)-(b) These are elementary. If (X,Σ, µ) is semi-finite, with measure algebra A, then

c(A) ≤ #(A) ≤ #(Σ) ≤ #(PX) = 2#(X).

If µ is strictly localizable, with decomposition 〈Xi〉i∈I , then 〈X•
i 〉i∈I is a partition of unity in A consisting

of elements of finite measure, so
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12 Cardinal functions of measure theory 521O

c(A) ≤ max(ω,#({i : i ∈ I, µXi > 0})) ≤ max(ω,#(X))

by 332E.

(c) Let 〈Xξ〉ξ<ω1
be a disjoint family of sets such that #(Xξ) = #(P(

⋃
η<ξXη)) for every ξ < ω1; for

each ξ, let hξ : P(
⋃

η<ξXη) → Xξ be an injection. Set X =
⋃

ξ<ω1
Xξ. For A ⊆ X define fA : ω1 → X

by setting f(ξ) = hξ(A ∩⋃
η<ξXη) for each ξ; let JA be fA[ω1] and µA the countable-cocountable measure

on JA. Observe that #(JA) = ω1 for every A ⊆ X, and that if A, B ⊆ X are distinct then JA ∩ JB is
countable. So if we set µE =

∑
A⊆X µA(E ∩ JA) whenever E ⊆ X is such that E ∩ JA is countable or

cocountable in JA for every A, then µ will be a complete locally determined measure on X. Since µJA = 1
and µ(JA ∩ JB) = 0 whenever A, B ⊆ X are distinct, µ has magnitude 2#(X).

(d) ??? Otherwise, there is for each i ∈ I a measurable set Fi of non-zero measure such that Fi ⊆ Ai.
Again writing A for the measure algebra of µ, 〈F •

i 〉i∈I is a disjoint family in A \ {0} so #(I) ≤ c(A) ≤
max(ω,mag(µ)). XXX

521P Proposition (a) If 2λ < 2κ whenever c ≤ λ < κ and cfλ > ω, then the magnitude magµ of µ is
at most max(ω,#(X)) for every localizable measure space (X,Σ, µ).

(b) Suppose that 2c = 2c
+

. Then there is a localizable measure space (Y,T, ν) with #(Y ) = c and
mag ν = c+.

Remark TEX, for once, is obscure; 2c
+

here is #(P(c+)), not (2c)+.

proof (a) If magµ ≤ ω we can stop. Otherwise, set κ = magµ. Let (A, µ̄) be the measure algebra of µ,
so that κ = c(A) and there is a disjoint family 〈aξ〉ξ<κ in A+ (332F). If µ̃ is the c.l.d. version of µ, we can
identify A with the measure algebra of µ̃ (322Db).

case 1 If κ ≤ c, µ̃ is strictly localizable (521N), so has a lifting θ (341K again); but now 〈θaξ〉ξ<κ is a
disjoint family of non-empty subsets of X, so #(X) ≥ κ.

case 2 If κ > c, of course X is uncountable (521Oa). For ξ < κ, choose Eξ ∈ Σ such that E•

ξ = aξ.

??? If #(X) < κ, there is a set Y ⊆ X such that #(Y ) has uncountable cofinality and IY = {ξ : ξ < κ,
µ∗(Eξ ∩ Y ) > 0} has cardinal greater than max(c,#(X)). PPP If cf(#(X)) is uncountable, take Y = X.
Otherwise, let 〈Yn〉n∈N be an increasing sequence of subsets of X, with union X, such that #(Yn) is an
uncountable successor cardinal less than #(X) for every n. If ξ < κ, there is some n such that Eξ ∩ Yn is
non-negligible, that is, ξ ∈ IYn

. So the non-decreasing sequence 〈IYn
〉n∈N has union κ, and there is some

n ∈ N such that #(IYn
) > max(c,#(X)). Now we can take Y = Yn. QQQ

For every J ⊆ IY , set bJ = supξ∈J aξ and let FJ ∈ Σ be such that F •
J = bJ . If J , K ⊆ IY are distinct,

there is a ξ ∈ J△K, in which case aξ ⊆ bJ △ bK , Eξ \(FJ△FK) is negligible and Y ∩(FJ△FK) is non-empty.
Thus J 7→ Y ∩ FJ : PIY → PY is injective, and

2#(IY ) ≤ 2#(Y ) ≤ 2#(X) ≤ 2#(IY ).

Setting λ = max(c,#(Y )), κ′ = #(IY ) we now have c ≤ λ < κ′, cfλ > ω and 2λ = 2κ
′

, which is supposed
to be impossible. XXX

So in this case also we have #(X) ≥ κ.

(b)(i) Set I = Pc+ and X = {0, 1}I ∼= {0, 1}2c . Putting 5A4Be and 5A4C(a-ii) together, we see that
there is a set Y ⊆ X, with cardinal at most cω = c, which meets every non-empty Gδ subset of X. In
particular, if K ⊆ I is countable and x ∈ X there is a y ∈ Y such that y↾K = x↾K.

(ii) Let µ be the complete locally determined localizable measure on X described in 216E, with C = c+.
Then Y has full outer measure in X. PPP (I follow the notation and argument of 216E.) If µE > 0, then, by
the argument of part (g) of the proof of 216E, there are a γ < c+ and a K ∈ [I]≤ω such that FγK ⊆ E,
where FγK = {x : x↾K = xγ↾K}. But Y was chosen to meet every such set. As E is arbitrary, Y has full
outer measure. QQQ

(iii) magµ = c+. PPP In the language of 216E, we have a family 〈G{γ}〉γ<c + of µ-atoms of measure
1, each pair with negligible intersection, and every non-negligible measurable set meets some G{γ} in a
non-negligible set. QQQ

Measure Theory



521S Basic theory 13

(iv) Now let ν be the subspace measure on Y . By 214Ie, ν is complete, locally determined and
localizable. By 322I, we can identify the measure algebras of µ and ν, so mag ν = magµ = c+, while
#(Y ) = c.

521Q Free products We have some simple calculations associated with the measure algebra free prod-
ucts of §325.

Proposition (a) Let (A, µ̄) and (B, ν̄) be semi-finite measure algebras and (C, λ̄) their localizable measure
algebra free product. Then

c(C) ≤ max(ω, c(A), c(B)),

τ(C) ≤ max(ω, τ(A), τ(B)).

(b) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, and (C, λ̄) their probability algebra free product.
Then

τ(C) ≤ max(ω,#(I), supi∈I τ(Ai)).

proof (a)(i) Let A ⊆ A, B ⊆ B be partitions of unity consisting of elements of finite measure (322Ea).
Then C = {a⊗ b : a ∈ A, b ∈ B} is a disjoint family in C, and

supC = sup{(a⊗ 1) ∩ (1 ⊗ b) : a ∈ A, b ∈ B} = (sup
a∈A

a⊗ 1) ∩ (sup
b∈B

1 ⊗ b)

(313Bc)

= (supA⊗ 1) ∩ (1 ⊗ supB)

(325Da)

= (1 ⊗ 1) ∩ (1 ⊗ 1) = 1;

that is, C is a partition of unity. As every member of C has finite measure,

c(C) ≤ max(ω,#(C)) = max(ω,#(A),#(B)) = max(ω, c(A), c(B))

by 332E.

(ii) As for Maharam types, I am just repeating the result stated and proved in 334B.

(b) This is 334D.

521R Proposition If (X,Σ, µ) is any measure space, its Maharam type is at most 2#(X).

proof If A is the measure algebra of µ,

τ(A) ≤ #(A) ≤ #(Σ) ≤ #(PX) = 2#(X).

521S Proposition (a) A countably separated measure space has Maharam type at most 2c .
(b) There is a countably separated quasi-Radon probability space with Maharam type 2c .
(c) A countably separated semi-finite measure space has magnitude at most 2c .
(d) There is a countably separated semi-finite measure space with magnitude 2c .

proof Set κ = 2c .

(a) If (X,Σ, µ) is countably separated, there is an injective function from X to R (343E), so #(X) ≤ c;
now use 521R.

(b) As in (b-i) of the proof of 521P, there is a set Y ⊆ X = {0, 1}κ, with cardinal c, which meets every
non-empty Gδ subset of X, and therefore has full outer measure for the usual measure νκ of X.

In [0, 1] let 〈Cy〉y∈Y be a disjoint family of sets of full outer measure for Lebesgue measure µ1 on [0, 1]
(419I), and set C = {(y, t) : y ∈ Y, t ∈ Cy} ⊆ Z = X × [0, 1]. Now C has full outer measure for the
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14 Cardinal functions of measure theory 521S

product measure λ on Z. PPP Suppose that W ⊆ Z and λW > 0. Then
∫
µ1W [{x}]νκ(dx) > 0 (252D),

so {x : µ1W [{x}] > 0} has non-zero measure and meets Y . Taking y ∈ Y such that µ1W [{y}] > 0,
{y} × (Cy ∩W [{y}]) is a non-empty subset of C ∩W . QQQ

The measure algebra A of the subspace measure λC on C can therefore be identified with the measure
algebra of λ (322Jb), and has Maharam type κ. Because 〈Cy〉y∈Y is disjoint, each horizontal section of C is
a singleton and C is separated by the measurable sets C∩(X× [0, q]) for q ∈ Q∩ [0, 1]. Thus λC is countably
separated.

If we give Z the product topology, then λ is a Radon measure (417T, or otherwise), so λC is quasi-Radon
for the subspace topology (415B).

(c) As in (a), #(X) ≤ c, so we can use 521Oa.

(d)(i) The first step is to build a measure space of magnitude 2c and cardinal c, as follows. Let h :
c → ([c]≤ω)2 be a surjection; take its two components to be h1 and h2. For D ⊆ c set FD = {ξ : ξ < c,
h2(ξ) = D ∩ h1(ξ)}. For I ∈ [c]≤ω set AI = {ξ : ξ < c, I 6⊆ h1(ξ)}, and set A =

⋃{PAI : I ∈ [c]≤ω}; note
that A is a σ-ideal of subsets of c.

If D ⊆ c, FD /∈ A. PPP If I ∈ [c]≤ω, there is a ξ < c such that h(ξ) = (I, I ∩D), Now ξ ∈ FD \ AI ; as I is
arbitrary, FD /∈ A. QQQ So we can define a measure νD on c by saying that

νD(E) = 1 if E ⊆ c and FD \ E ∈ A,
= 0 if E ⊆ c and FD ∩ E ∈ A,

undefined otherwise,

and νDFD = 1.
If D, D′ ⊆ c are distinct, FD ∩ FD′ ∈ A. PPP Take η ∈ D△D′. If ξ ∈ FD ∩ FD′ , then D ∩ h1(ξ) = h2(ξ) =

D′ ∩ h1(ξ), so η /∈ h1(ξ) and ξ ∈ A{η}. Thus FD ∩ FD′ ⊆ A{η} ∈ A. QQQ
So if we set ν =

∑
D⊆c νD, as defined in 234G, ν is a measure on c such that νFD = 1 and ν(FD∩FD′) = 0

for all distinct D, D′ ⊆ c. Also ν is semi-finite, because if νE > 0 there is a D ⊆ c such that νDE > 0, in
which case ν(E ∩ FD) = νD(E ∩ FD) = 1. So ν is a semi-finite measure on c with magnitude #(Pc) = 2c .
Because every νD is complete, so is ν (234Ha).

(ii) As in (b), let 〈Cξ〉ξ<c be a disjoint family of subsets of [0, 1] all with full outer measure for Lebesgue
measure µ1. Set Z = c×[0, 1] with its c.l.d. product measure λ = ν×µ1, and C = {(ξ, t) : ξ < c, t ∈ Cξ} ⊆ Z.
Then C has full outer measure, by the argument of (b) above. So, as in (b), the measure algebra A of the
subspace measure λC on C can be identified with the measure algebra of λ. The map E 7→ C ∩ (E × [0, 1])
induces a measure-preserving homomorphism from the measure algebra of ν to A, so magλC = c(A) is at
least 2c ; by (c), it is exactly 2c . Also as in (b), λC is countably separated.

521T In §464 I looked at the L-space M of bounded additive functionals on PI for infinite sets I, of
which I = N is of course by far the most important, and found a band decomposition of M as Mτ ⊕ (Mm ∩
M⊥

τ )⊕Mpnm, where Mτ consists of the ‘completely additive’ functionals (and may be identified with ℓ1(I)),
Mm consists of the ‘measurable’ functionals (that is, those integrated by the usual measure on PI), and
Mpnm = M⊥

m consists of the ‘purely non-measurable’ functionals. Any non-negative functional θ ∈ M can

be identified with a Radon measure µθ on the Stone-Čech compactification βI (464P). The purely atomic
measures on I correspond to members of Mτ . Among the others, the general rule is that ‘simple’ measures
must correspond to functionals in Mpnm; see 464Pa and 464Xa. The next proposition, strengthening 464Qb,
shows that this rule is followed by Maharam types.

Proposition Let I be a set, and suppose that a non-zero θ ∈ (Mm ∩M⊥
τ )+, as defined in §464, corresponds

to the Radon measure µθ on βI. Let ν be the usual measure on PI. Then the Maharam type of µθ is at
least covN (ν).

proof Of course I has to be infinite, since not every additive functional on PI is completely additive; so
covN (ν) is not ∞. By 464Qc, we know that

{(a, b) : a, b ⊆ I, θa =
1

2
θI, θ(a ∩ b) =

1

4
θI}

Measure Theory



521Xh Basic theory 15

is conegligible for the product measure ν × ν on (PI)2. Set

A0 = {a : a ⊆ I, θa =
1

2
, {b : θ(a ∩ b) =

1

4
θI} is ν-conegligible};

then A0 is ν-conegligible. Now take a set A ⊆ A0 which is maximal subject to the requirement that
θ(a ∩ b) = 1

4θI for all distinct a, b ∈ A. If a is any subset of I, then either a ∈ A, or a /∈ A0, or there is a

b ∈ A \ {a} such that θ(a ∩ b) 6= 1
4θI; so PI is the union of

(PI \A0) ∪⋃
b∈A{a : θ(a ∩ b) 6= 1

4
θI}

and covN (ν) ≤ 1 + #(A). As covN (ν) is surely infinite, it is in fact less than or equal to #(A).
Now consider the open-and-closed sets â ⊆ βI for a ∈ A. If a, b ∈ A are distinct,

µθ(â△b̂) = µθ(â△b) = θ(a△b) = 1
2θI > 0.

So in the measure algebra A of µθ, {â• : a ∈ A} is a discrete set with cardinal at least covN (ν), and the
topological density of A is at least covN (ν) (5A4B(h-ii) again). By 521E, τ(µθ) = τ(A) ≥ covN (ν).

521X Basic exercises (a) Let B(R) be the Borel σ-algebra of R, and µ the restriction of Lebesgue
measure to B(R). Show that addµ = ω1. (Hint : if c = ω1, [R]ω1 6⊆ B(R); if c > ω1, [R]ω1 ∩B(R) = ∅; or use
423M and 423R1.)

(b) Let (X,Σ, µ) be a semi-finite locally compact measure space. Show that addµ is the least cardinal
of any set E ⊆ Σ such that

⋃ E /∈ Σ, or ∞ if there is no such E . (Hint : 451Q.)

(c) Let (X,Σ, µ) be a complete locally determined measure space, and κ a cardinal such that κ <
covN (µE) for every non-negligible measurable set E ⊆ X, writing µE for the subspace measure. Suppose
that A ⊆ X is such that both A and X \ A are expressible as the union of at most κ members of Σ. Show
that A ∈ Σ.

>>>(d)(i) Find a probability space (X,Σ, µ), with measure algebra A, such that π(A) < π(µ). (ii) Find a
probability space (X,Σ, µ), with null ideal N (µ), such that cfN (µ) < π(µ). (iii) Find a probability space
(X,Σ, µ) such that π(µ) < cfN (µ). (Hint : 513X(q-iii).)

(e) Let (X,Σ, µ) be a measure space and ν an indefinite-integral measure over µ. Show that addN (ν) ≥
addN (µ), cfN (ν) ≤ cfN (µ), nonN (ν) ≥ nonN (µ), covN (ν) ≤ covN (µ), shrN (ν) ≤ shrN (µ), shr+ N (ν) ≤
shr+ N (µ), π(ν) ≤ π(µ), τ(ν) ≤ τ(µ).

(f) Let (X,Σ, µ) be a semi-finite measure space which is not purely atomic. Show that π(µ) ≥ π(µL),
where µL is Lebesgue measure on R.

(g) Let (X,Σ, µ) be an atomless measure space with locally determined negligible sets (definition: 213I).
Show that nonN (µ) ≥ nonN , where N is the null ideal of Lebesgue measure.

(h) Let (X,Σ, µ) and (Y,T, ν) be complete locally determined measure spaces, neither of measure 0, and
µ× ν the c.l.d. product measure on X × Y . Show that

nonN (µ× ν) = max(nonN (µ), nonN (ν)),

covN (µ× ν) ≤ min(covN (µ), covN (ν))

with equality if either µ or ν is strictly localizable,

add(µ× ν) = addN (µ× ν) ≤ min(addN (µ), addN (ν)),

cfN (µ× ν) ≥ max(cfN (µ), cfN (ν)),

shrN (µ× ν) ≥ max(shrN (µ), shrN (ν)),

1Formerly 423Q.
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16 Cardinal functions of measure theory 521Xh

shr+ N (µ× ν) ≥ max(shr+ N (µ), shr+ N (ν)),

π(µ× ν) ≥ max(π(µ), π(ν)).

(i) Let (X,Σ, µ) be a probability space, and µN the product measure on XN. (i) Show that X has a set of
full outer measure with cardinal at most nonN (µN). (ii) Show that if A ⊆ Σ\N (µ) and #(A) < covN (µN),
then there is a countable set which meets every member of A.

(j) Show that the direct sum of c or fewer countably separated measure spaces is countably separated.

(k) Show that 2c < 2c
+

iff every countably separated complete locally determined localizable measure
space is strictly localizable. (Hint : 521P, 521S, 252Yp.)

(l) Show that if (X,Σ, µ) is a purely atomic countably separated semi-finite measure space then its
magnitude is at most max(ω,#(X)) and its Maharam type is countable.

(m) Suppose that 2κ ≤ c for every κ < c. Show that there is a countably separated semi-finite measure
space with magnitude 2c .

(n) For a measure space (X,Σ, µ) with null ideal N (µ), write hcov(µ) for infE∈Σ\N (µ) cov(E,N (µ)).
(Count inf ∅ as ∞, as usual.) Show that if (X,Σ, µ) and (Y,T, ν) are semi-finite measure spaces, neither
having zero measure, with c.l.d. product (X × Y,Λ, λ), then hcov(λ) = min(hcov(µ), hcov(ν)).

521Y Further exercises (a) Find a probability space (X,Σ, µ), a set Y and a function f : X → Y such
that, setting ν = µf−1, addN (µ) > addN (ν), cfN (µ) < cfN (ν), shrN (µ) < shrN (ν) and π(µ) < π(ν).

(b) Find a strictly localizable measure space (X,Σ, µ), a set Y , and a function f : X → Y such that,
setting ν = µf−1, ν is semi-finite and τ(µ) < τ(ν).

(c) Let (X,Σ, µ) and (Y,T, ν) be localizable measure spaces, and suppose that max(mag(ν), τ(ν)) ≤ c.
Show that the c.l.d. product measure on X × Y is localizable.

(d) Show that there is a probability space (X,Σ, µ) with Maharam type greater than #(X). (Hint :
523Ib.)

(e) Let κ be an infinite cardinal. Let us say that a measure space (X,Σ, µ) is κ-separated if there is a
family E ⊆ Σ, with cardinal at most κ, separating the points of X. (i) Show that there is a disjoint family
A of subsets of {0, 1}κ, all of full outer measure for the usual measure of {0, 1}κ, such that #(A) = 2κ. (ii)
Show that every κ-separated measure space has Maharam type at most 22

κ

, and that there is a κ-separated
quasi-Radon probability space with Maharam type 22

κ

. (iii) Show that every semi-finite κ-separated measure
space has magnitude at most 22

κ

, and that there is a semi-finite κ-separated measure space with magnitude
greater than 2κ. (iv) Suppose that c ≤ κ ≤ λ and 2κ = 2λ. Show that the usual measure on {0, 1}λ is
κ-separated.

521 Notes and comments The cardinal functions of an ideal can be thought of as measures of the
‘complexity’ of that ideal. In a measure space, it is natural to suppose that a subspace measure (at least,
on a measurable subspace) will be ‘simpler’ than the original measure; in 521F we see that the additivity
and uniformity tend to rise and the covering number, cofinality, shrinking number and π-weight tend to
fall. Similarly, an image measure ought to be simpler than its parent; but here, while additivity rises and
cofinality and shrinking number fall, uniformity falls and covering number rises (521H). Also there is a trap
if the original measure is not complete (521Ya), and π-weight is more complicated (521H(a-ii)). There is
a similar problem concerning topological π-weight, which led to the concept of network weight (5A4Ai,
5A4Bc); and just as network weight matches topological weight for compact Hausdorff spaces (5A4C(a-i)),
an appropriate hypothesis on our measures can make their π-weights more coherent (521H(a-ii)).

Direct sums should not be more complex than their most complex component; 521G confirms this preju-
dice except in respect of cofinality. Since we are looking, in effect, at the cofinality of a product of partially
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522B Cichoń’s diagram 17

ordered sets, we can expect at least as many difficulties as are to be found in pcf theory (§5A2). We should
like to be able to bound the complexity of a product in terms of the complexities of the factors; here there
seem to be some interesting questions, and 521J and 521Xh are, I hope, only a start.

Consider the statement

(†) ‘magµ ≤ #(X) for every localizable measure space (X,Σ, µ)’.

From 521P we see that the generalized continuum hypothesis implies (†), and also that there are simple
models of set theory in which (†) is false (Kunen 80, VIII.4.7; Jech 03, 15.18). I do not know whether
there is a natural combinatorial statement equiveridical with (†). If we amend (†) to

‘magµ ≤ #(X) for every countably separated localizable measure space (X,Σ, µ)’

we find ourselves with a statement equiveridical with ‘2c = 2c
+

’ (cf. 521Xk).
I give space to ‘countably separated’ measures because these can be identified with the topological mea-

sures on subsets of R, and I do not think it is immediately apparent just how complicated these can be. In
fact, as shown by the proofs of parts (b) and (d) in 521S, most of the phenomena which can arise in any mea-
sure space with cardinal less than or equal to c can appear in countably separated measure spaces. In 521Sb
I add ‘quasi-Radon’ to show that the very strong restrictions on countably separated Radon probability
measures (522Wa) depend on their perfectness, not on their τ -additivity.

The constructions in 521Oc and 521Sd both depend on almost-disjoint families of sets. Those described
here are elementary. In many models of set theory, we have much more striking results, of which 521Xm is
a simple example.

Some new considerations intrude rather abruptly in 521T, but the argument here is both elementary and
important, quite apart from its use in helping us to understand the classification scheme in §464.

Version of 11.7.23

522 Cichoń’s diagram

In this section I describe some extraordinary relationships between the cardinals associated with the
ideals of meager and negligible sets in the real line. I concentrate on the strikingly symmetric pattern of
Cichoń’s diagram (522B); the first half of the section is taken up with proofs of the facts encapsulated in
this diagram. I include a handful of results characterizing some of the most important cardinals here (522C,
522S), notes on Martin cardinals associated with the diagram (522T) and the Freese-Nation number of PN

(522U), and a brief discussion of cofinalities (522V).

522A Notation In this section, I will use the symbols M and N for the ideals of meager and negligible
subsets of R respectively. Associated with these we have the eight cardinals addM, covM, nonM, cfM,
addN , covN , nonN and cfN . In addition we have two cardinals associated with the partially ordered set
NN: the bounding number b = addω NN (see 513H for the definition of addω, and 522C for alternative
descriptions of b) and the dominating number d = cfNN; and finally I should include c itself as an eleventh
cardinal in the list to be examined here. I use the notions of Galois-Tukey connection and Tukey function,
and the associated relations 4GT, ≡GT and 4T, as described in §§512-513.

522B Cichoń’s diagram The diagram itself is the following:

covN nonM cfM cfN c

b d

ω1 addN addM covM nonN

The cardinals here increase from bottom left to top right; that is,

c© 2003 D. H. Fremlin
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18 Cardinal functions of measure theory 522B

ω1 ≤ addN ≤ addM ≤ b ≤ d ≤ cfM ≤ cfN ≤ c,

etc. In addition, we have two equalities:

addM = min(b, covM), cfM = max(d, nonM).

In the rest of this section I will prove all the inequalities declared here, seeking to demonstrate reasons for
the remarkable symmetry of the diagram. I will make heavy use of the ideas of §512. Of course many of
the elementary results can be proved directly without difficulty; but for the most interesting part of the
argument (522K-522Q below) Tukey functions seem to be the right way to proceed.

I start with the easiest results. It will be helpful to have descriptions of b and d in terms of other partially
ordered sets.

522C Lemma (i) On NN define a relation ≤∗ by saying that f ≤∗ g if if {n : f(n) > g(n)} is finite.
Then ≤∗ is a pre-order on NN; add(NN,≤∗) = b and cf(NN,≤∗) = d.

(ii) On NN define a relation � by saying that f � g if either f ≤ g or {n : g(n) ≤ f(n)} is finite. Then
� is a partial order on NN, add(NN,�) = b and cf(NN,�) = d.

(iii) (NN,≤∗) ≡T (NN,�).

proof (a) The checks that ≤∗ is a pre-order and that � is a partial order are elementary. Write ι for the
identity map from NN to itself.

(b) For f ∈ NN and A ⊆ NN say that f ≤′′′ A if there is a g ∈ A such that f ≤ g (see 512F). Now
(NN,≤′′′, [NN]≤ω) 4GT (NN,≤∗,NN). PPP For g ∈ NN, set ψ(g) = {h : g ≤∗ h ≤∗ g} ∈ [NN]ω. If f ≤∗ g, then
f ≤ f ∨g ∈ ψ(g), so f ≤′′′ ψ(g). Thus (ι, ψ) is a Galois-Tukey connection and (NN,≤′′′, [NN]≤ω) 4GT (NN,≤∗

,NN). QQQ

(c) (NN,≤∗,NN) 4GT (NN,�,NN). PPP If f , g ∈ NN and f � g, then f ≤∗ g; so (ι, ι) is a Galois-Tukey
connection from (NN,≤∗,NN) to (NN,� NN), as in 512Cd. QQQ

(d) If A ⊆ NN is countable, there is a ψ(A) ∈ NN such that g � ψ(A) for every g ∈ A. PPP If A is empty,
this is trivial. Otherwise, let 〈gn〉n∈N be a sequence running over A, and set ψ(A)(i) = 1 + maxn≤i gn(i) for
every i ∈ N. QQQ

It follows that (NN,�,NN) 4GT (NN,≤′′′, [NN]≤ω). PPP If A ∈ [NN]≤ω and f ≤′′′ A, then there is some
g ∈ A such that f ≤ g, so that f � ψ(A). Thus (ι, ψ) is a Galois-Tukey connection from (NN,�,NN) to
(NN,≤′′′, [NN]≤ω). QQQ

(e) Putting (b)-(d) together, we see that

(NN,≤′′′, [NN]≤ω) ≡GT (NN,≤∗,NN) ≡GT (NN,�,NN).

In particular, (NN,≤∗) ≡T (NN,�) (513Ea). By 512D,

add(NN,≤′′′, [NN]≤ω) = add(NN,≤∗,NN) = add(NN,�,NN),

cov(NN,≤′′′, [NN]≤ω) = cov(NN,≤∗,NN) = cov(NN,�,NN).

But by 513Ia we have

add(NN,≤′′′, [NN]≤ω) = addω(NN) = b,

so b = add(NN,≤∗) = add(NN,�). In the other direction,

d = cfNN = cov(NN,≤,NN) ≤ max(ω, cov(NN,≤′′′, [NN]≤ω))

(512Gf)

≤ max(ω, cov(NN,≤,NN))

(512Gc)

= max(ω, d) = d.

So
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d = cov(NN,≤′′′, [NN]≤ω) = cf(NN,≤∗) = cf(NN,�),

and the proof is complete.

522D Proposition b ≤ d.

proof Use 511He and 522C.

522E Proposition addN ≤ covN , addM ≤ covM, nonM ≤ cfM and nonN ≤ cfN .

proof We need only observe that both M and N are proper ideals of PR with union R, and use 511Jc.

522F Proposition ω1 ≤ addN and cfN ≤ c.

proof Of course ω1 ≤ addN because N is a σ-ideal of sets. As for cfN , we know that the family of
negligible Borel sets is cofinal with N (134Fb) and has at most c members (Fa), so cfN ≤ c.

522G Proposition (Rothberger 1938a) covN ≤ nonM and covM ≤ nonN .

proof The point is just that there is a comeager negligible set E ⊆ R. PPP Enumerate Q as 〈qn〉n∈N, and set

E =
⋂

n∈N

⋃
m≥n ]qn − 2−n, qn + 2−n[. QQQ

Because x 7→ a+ x and x 7→ a− x are measure-preserving homeomorphisms, a+ E is negligible and a− E
is comeager for every a ∈ R. Let A ⊆ R be a non-meager set with cardinal nonM. Then A ∩ (a − E) 6= ∅
for every a ∈ R, that is, {x+ E : x ∈ A} covers R; so covN ≤ #(A) = nonM.

For the other inequality, note that F = R \ E is conegligible and meager; so the same argument shows
that covM ≤ nonN .

522H Proposition addM ≤ b and d ≤ cfM.

proof (a) Start by choosing a countable base U for the topology of R, not containing ∅, and enumerate it
as 〈Uk〉k∈N. For each k ∈ N let 〈Vkl〉l∈N be a disjoint sequence of non-empty open subsets of Uk; finally,
enumerate Vkl ∩Q as 〈xkli〉i∈N for each k, l ∈ N.

(b) Fix f ∈ NN for the moment. Set Ek(f) = {xkli : l ∈ N, i ≤ f(l)} ⊆ Uk for each k ∈ N. This is
nowhere dense because if G is a non-empty open set, either G∩⋃

l∈N
Vkl = ∅ and G∩Ek(f) = ∅, or there is

an l such that G∩ Vkl is non-empty, in which case G∩ Vkl ∩Ek(f) is finite and G \Ek(f) ⊇ G∩ Vkl \Ek(f)
is non-empty.

Now choose 〈kn〉n∈N, 〈ln〉n∈N inductively as follows. Given 〈ki〉i<n,
⋃

i<nEki
(f) is nowhere dense, so

there is an ln ∈ N such that U ln ⊆ Un \⋃i<nEki
(f). Now if Un ⊆ ⋃

i≤n Uli , set kn = 0; otherwise, take kn

such that Ukn
⊆ Un \⋃i≤n Uli , and continue. At the end of the induction, set φ(f) =

⋃
n∈N

Ekn
.

The construction ensures that U ln ∩ Ekm
= ∅ for all m and n, so that Uln is always a non-empty open

subset of Un \ φ(f); accordingly φ(f) is nowhere dense. If G ⊆ R is a non-empty open set meeting φ(f),
there is a k ∈ N such that Ek(f) ⊆ G ∩ φ(f). PPP Let n ∈ N be such that Un ⊆ G and Un ∩ φ(f) 6= ∅. Then

there is an i ∈ N such that Un ∩ Eki
(f) 6= ∅; as Eki

(f) ∩ U lj is empty for every j, Un 6⊆ ⋃
j≤n Ulj and

Ekn
(f) ⊆ Ukn

⊆ Un ⊆ G,

so we can take k = kn. QQQ

(c) In the other direction, given M ∈ M, choose a sequence 〈Fn(M)〉n∈N of closed nowhere dense closed
sets covering M . For k, l, n ∈ N set gMnk(l) = min{j : xklj /∈ Fn(M)}. Since add(NN,�) = addω(NN,≤
) ≥ ω1 (522C(ii) with 513Ib, or use the construction in part (d) of the proof of 522C), {gMnk : n, k ∈ N} is
bounded above in (NN,�); take ψ(M) ∈ NN such that gMnk ≤ ψ(M) for all n and k.

(d) Now (φ, ψ) is a Galois-Tukey connection from (NN,�,NN) to (M,⊆,M). PPP Suppose that f ∈ NN and
M ∈ M are such that φ(f) ⊆M . Because φ(f) is closed and not empty and included in

⋃
n∈N

Fn(M), Baire’s
theorem (3A3G or 4A2Ma) tells us that there are n ∈ N and an open set G such that ∅ 6= G∩φ(f) ⊆ Fn(M).
By the last remark in (b), there is a k ∈ N such that Ek(f) ⊆ G∩φ(f). But this means that, for any l ∈ N,
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xkli ∈ G ∩ φ(f) for every i ≤ f(l), while if j = gMnk(l) then xklj /∈ G ∩ φ(f). So f(l) ≤ gMnk(l) for every l,
and f � gMnk � ψ(M). QQQ

(e) So in fact φ is a Tukey function from (NN,�) to (M,⊆) (513Ea). It follows at once that

addM ≤ add(NN,�), cf(NN,�) ≤ cfM
(513Ee), that is, addM ≤ b and d ≤ cfM, by 522C(ii).

522I Proposition b ≤ nonM and covM ≤ d.

proof Again Let � be the partial order on NN described in 522C(ii). Then (R\Q,∈,M) 4GT (NN,�,NN).
PPP Let φ : R \ Q → NN be a homeomorphism (4A2Ub2). For f ∈ NN, set Kf = {g : g ≤ f}; then Kf is
compact, so φ−1[Kf ] is compact. Because φ−1[Kf ] is disjoint from Q, it is nowhere dense. Set

ψ(f) =
⋃{φ−1[Kg] : g ∈ NN, {n : g(n) 6= f(n)} is finite}}.

Because there are only countably many functions eventually equal to f , ψ(f) ∈ M.
Suppose that x ∈ R \ Q and f ∈ NN are such that φ(x) � f . Set g = φ(x) ∨ f ; then g(n) = f(n) for

all but finitely many n, and φ(x) ≤ g, so x ∈ φ−1[Kg] ⊆ ψ(f). This shows that (φ, ψ) is a Galois-Tukey
connection from (R \Q,∈,M) to (NN,�,NN), so that (R \Q,∈,M) 4GT (NN,�,NN). QQQ

It follows (using 522C(ii) and 512D) that

b = add(NN,�,NN) ≤ add(R \Q,∈,M)

= min{#(A) : A ⊆ R \Q, A /∈ M} ≤ nonM,

d = cov(NN,�,NN) ≥ cov(R \Q,∈,M) = min{#(A) : A ⊆ M, R \Q ⊆
⋃

A}

= min{#(A ∪ {Q}) : A ⊆ M, R =
⋃

(A ∪ {Q})} ≥ covM.

522J Theorem (see Truss 77 and Miller 81) addM = min(b, covM) and cfM = max(d, nonM).

proof My aim this time is to prove that

(M,⊆,M) 4GT (R,∈,M)⊥ ⋉ (NN,≤′′′, [NN]≤ω),

defining ≤′′′ as in the proof of 522H and ⋉ as in 512I.

(a) Let 〈qn〉n∈N be a sequence running over Q with cofinal repetitions. For f ∈ NN, set

Ef = R \⋂n∈N

⋃
m≥n

]
qm − 2−f(m), qm + 2−f(m)

[
,

so that Ef is a meager set disjoint from Q. Observe that if 〈Hn〉n∈N is any sequence of closed sets disjoint
from Q, then there is an f ∈ NN such that

⋃
n∈N

Hn ⊆ Ef . PPP For each n ∈ N, let f(n) be such that]
qn − 2−f(n), qn + 2−f(n)

[
does not meet

⋃
m≤nHm. QQQ

For M ∈ M, choose a sequence 〈Fn(M)〉n∈N of nowhere dense closed sets covering M . For x ∈ R, if
Q ∩ (

⋃
n∈N

Fn(M) − x) is not empty, set pM (x)(n) = 0 for every n ∈ N; otherwise, take pM (x) = f for

some f ∈ NN such that Ef ⊇ ⋃
n∈N

Fn(M) − x. Now set φ(M) = (
⋃

n∈N
Fn(M) + Q, pM ). This defines

φ : M → M× (NN)R.

(b) In the other direction, define ψ : R× [NN]≤ω → M by setting ψ(x,B) =
⋃

f∈B(x+Ef ) for x ∈ R and

B ∈ [NN]≤ω. Now (φ, ψ) is a Galois-Tukey connection from (M,⊆,M) to (R,∈,M)⊥ ⋉ (NN,≤′′′, [NN]≤ω).
PPP (R,∈,M)⊥ = (M, 6∋,R), so

(R,∈,M)⊥ ⋉ (NN,≤′′′, [NN]≤ω) = (M× (NN)R, T,R× [NN]≤ω),

where ((M,p), (x,B)) ∈ T iff x /∈M and p(x) ≤ g for some g ∈ B. Now suppose that M ∈ M and (x,B) ∈
R× [NN]≤ω are such that (φ(M), (x,B)) ∈ T . Then x /∈ ⋃

n∈N
Fn(M) + Q, so Q ∩ (

⋃
n∈N

Fn(M) − x) = ∅,
while pM (x) ≤ g for some g ∈ B. But this means that

2Later editions only.

Measure Theory
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Eg ⊇ EpM (x) ⊇
⋃

n∈N
Fn(M) − x ⊇M − x, M ⊆ Eg + x ⊆ ψ(x,B).

As M and (x,B) are arbitrary, (φ, ψ) is a Galois-Tukey connection, as claimed. QQQ

(c) It follows that

cfM = cov(M,⊆,M)

(512Ea, as before)

≤ cov((R,∈,M)⊥ ⋉ (NN,≤′′′, [NN]≤ω))

= max(cov(R,∈,M)⊥, cov(NN,≤′′′, [NN]≤ω))

(512Jb)

= max(add(R,∈,M), d) = max(nonM, d)

by 512Ed and the calculation in part (e) of the proof of 522H. On the other hand

min(covM, b) = min(covM, add(NN,≤′′′, [NN]≤ω))

= min(cov(R,∈,M), add(NN,≤′′′, [NN]≤ω))

= min(add(R,∈,M)⊥, add(NN,≤′′′, [NN]≤ω))

= add((R,∈,M)⊥ ⋉ (NN,≤′′′, [NN]≤ω))

(512Jc)

≤ add(M,⊆,M)

((b) above and 512Db)

= addM

(512Ea, as ever). Since we already know from 522E and 522H that addM ≤ min(b, covM) and that
max(d, nonM) ≤ cfM, we have the result.

522K Localization The last step in proving the facts announced in 522B depends on the following
construction. Let I be any set. Write SI for the family of sets S ⊆ N × I such that each vertical section
S[{n}] has at most 2n members. For f ∈ IN and S ⊆ N× I say that f ⊆∗ S if {n : n ∈ N, (n, f(n)) /∈ S} is
finite; that is, f \S is finite, if we identify f with its graph. I will say that the supported relation (IN,⊆∗,SI)
is the I-localization relation. By far the most important case (and the only one needed in this section)
is when I is countably infinite; when I = N I will generally write S rather than SN.

Members of SI , or similar sets, are sometimes called slaloms. The particular formula ‘#(S[{n}]) ≤ 2n’
is convenient for the results of this section, but it is worth knowing that all functions diverging to ∞ give
rise to equivalent partially ordered sets.

*522L Lemma Let I be an infinite set. For any α ∈ NN write

S(α)
I = {S : S ⊆ N× I, #(S[{n}]) ≤ α(n) for every n ∈ N}.

Then (IN,⊆∗,S(α)
I ) ≡GT (IN,⊆∗,S(β)

I ) whenever α, β ∈ NN and limn→∞ α(n) = limn→∞ β(n) = ∞.

proof Let g ∈ NN be a strictly increasing sequence such that β(n) ≤ α(i) whenever n ∈ N and i ≥ g(n),
and let hn : I → Ig(n+1)\g(n) be a bijection for each n. Define φ : IN → IN by setting φ(f)(n) =

h−1
n (f↾g(n+ 1) \ g(n)) for f ∈ IN and n ∈ N. Define ψ : S(β)

I → P(N× I) by setting ψ(S) =
⋃

(n,i)∈S hn(i),

identifying each hn(i) ∈ Ig(n+1)\g(n) ⊆ (g(n+1)\g(n))×I with a subset of N×I. Now for g(n) ≤ j < g(n+1),
ψ(S)[{j}] = {hn(i)(j) : i ∈ S[{n}]} has at most β(n) ≤ α(j) members, while ψ(S)[{j}] = ∅ for j < g(0), so

ψ(S) ∈ S(α)
I for every S ∈ S(β)

I .

If f ∈ IN and S ∈ S(β)
I and φ(f) ⊆∗ S, then there is an n0 ∈ N such that φ(f)(n) ∈ S[{n}] for every

n ≥ n0. So
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f↾g(n+ 1) \ g(n) = hn(φ(f)(n)) ⊆ ψ(S)

for every n ≥ n0, (m, f(m)) ∈ ψ(S) for every m ≥ g(n0) and f ⊆∗ ψ(S). This means that (φ, ψ) is a

Galois-Tukey connection from (NN,⊆∗,S(α)
I ) to (NN,⊆∗,S(β)

I ). Similarly, (NN,⊆∗,S(β)
I ) 4GT (NN,⊆∗,S(α)

I )
and the two supported relations are equivalent.

522M Proposition Let (NN,⊆∗,S) be the N-localization relation. Then (NN,⊆∗,S) ≡GT (N ,⊆,N ).

proof (a) Let 〈Gij〉i,j∈N be a stochastically independent family of open subsets of [0, 1] such that the
Lebesgue measure µGij of Gij is 2−i for all i, j ∈ N. For f ∈ NN, set φ(f) =

⋂
n∈N

⋃
m≥nGm,f(m). Then

φ(f) is negligible.
For each E ∈ N , choose a non-empty compact self-supporting set KE ⊆ [0, 1]\E (416Dc). Let 〈WEn〉n∈N

enumerate a base for the relative topology on KE not containing ∅; because KE is self-supporting, no WEn

is negligible. Set

IEni = {j : j ∈ N, WEn ∩Gij = ∅}
for n, i ∈ N. Then

∑∞
i=0 2−i#(IEni) =

∑{µGij : i, j ∈ N, Gij ∩WEn = ∅}
is finite, by the Borel-Cantelli lemma (273K). For each n, let k(E, n) ∈ N be such that 2−i#(IEni) ≤ 2−n−1

for i ≥ k(E, n), and set

ψ(E) =
⋃

n∈N
{(i, j) : i, j ∈ N, i ≥ k(E, n), j ∈ IEni}.

Then

#({j : (i, j) ∈ ψ(E)}) ≤
∑

n∈N,k(E,n)≤i

#(IEni) ≤
∑

n∈N,k(E,n)≤i

2−n−12i ≤ 2i

for every i ∈ N, so ψ(E) ∈ S.
Now (φ, ψ) is a Galois-Tukey connection from (NN,⊆∗,S) to (N ,⊆,N ). PPP Suppose that f ∈ NN and

E ∈ N are such that φ(f) ⊆ E. Then KE ∩ ⋂
n∈N

⋃
m≥nGm,f(m) = ∅. By Baire’s theorem, there is

some m ∈ N such that
⋃

i≥mGi,f(i) ∩ KE is not dense in KE , that is, there is an n ∈ N such that

WEn ∩ ⋃
i≥mGi,f(i) = ∅ so f(i) ∈ IEni for every i ≥ m. But this means that (i, f(i)) ∈ ψ(E) for every

i ≥ max(m, k(E, n)), so that f ⊆∗ ψ(E). As f and E are arbitrary, we have the result. QQQ
Thus (NN,⊆∗,S) 4GT (N ,⊆,N ).

(b) Let H be the family of finite unions of bounded open intervals in R with rational endpoints. Then
H is countable. For each n ∈ N, let 〈Hni〉i∈N be an enumeration of {H : H ∈ H, µH ≤ 4−n}. Now for
each E ∈ N there is an f ∈ NN such that E ⊆ ⋂

n∈N

⋃
m≥nHm,f(m). PPP For each n ∈ N, let 〈Jni〉i∈N

be a sequence of open intervals with rational endpoints such that E ⊆ ⋃
i∈N

Jni and
∑∞

i=0 µJni ≤ 2−n−1.
Re-enumerating 〈Jni〉n∈N,i∈N as 〈Ji〉i∈N, we have a sequence of open intervals with rational endpoints such
that

∑∞
i=0 µJi ≤ 1 and E ⊆ ⋃

i≥n Ji for every n. Let 〈k(n)〉n∈N be a strictly increasing sequence such that

k(0) = 0 and
∑∞

i=k(n) µJi ≤ 4−n for every n ∈ N. Then Vn =
⋃

k(n)≤i<k(n+1) Ji belongs to H and has

measure at most 4−n for each n, so we can define f ∈ NN by saying that Hn,f(n) = Vn for each n, and we
shall have an appropriate function. QQQ

We can therefore find a function φ : N → NN such that E ⊆ ⋂
n∈N

⋃
m≥nHm,φ(E)(m) for every E ∈ N .

In the reverse direction, define

ψ(S) =
⋂

n∈N

⋃{Hmi : m ≥ n, (m, i) ∈ S}
for S ∈ S; because

∑
(m,i)∈S µHmi ≤

∑∞
m=0 2m4−m <∞,

ψ(S) ∈ N .
Now (φ, ψ) is a Galois-Tukey connection from (N ,⊆,N ) to (NN,⊆∗,S). PPP If E ∈ N and S ∈ S are such

that φ(E) ⊆∗ S, then
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E ⊆ ⋂
n∈N

⋃
m≥nHm,φ(E)(m) ⊆

⋂
n∈N

⋃
m≥n,(m,i)∈S Hmi = ψ(S). QQQ

So (N ,⊆,N ) 4GT (NN,⊆∗,S) and the proof is complete.

522N Lemma Let X be a topological space with a countable π-base. Then there is for each n ∈ N a
countable family Un of open subsets of X such that every dense open subset of X includes some member of
Un and

⋂V 6= ∅ for every V ∈ [Un]≤n.

proof Induce on n. Start by taking U to be a countable π-base for the topology of X which is closed under
finite unions. Set U0 = {∅}. For the inductive step to n+ 1, let 〈Hi〉i∈N be a sequence running over Un, and
set

Ji = {J : J ⊆ i,
⋂

j∈J Hj 6= ∅}
for i ∈ N,

Un+1 = {U ∪Hi : i ∈ N, U ∈ U , U ∩⋂
j∈J Hj 6= ∅ whenever J ∈ Ji}.

Then Un+1 is a countable family of open sets. If G ⊆ X is a dense open set, let i ∈ N be such that Hi ⊆ G.
Then Ji is finite, so we can find a U ∈ U such that U ⊆ G and U ∩ ⋂

j∈J Uj 6= ∅ for every J ∈ Ji; then

U ∪Hi belongs to Un+1 and is included in G. If V ⊆ Un+1 and #(V) ≤ n+1, then if V is empty we certainly
have

⋂V 6= ∅. Otherwise, express V as {Uk ∪Hi(k) : k ≤ n} where Uk ∩⋂
j∈J Hj 6= ∅ whenever J ∈ Ji(k);

do this in such a way that i(k) ≤ i(n) for every k < n. By the inductive hypothesis,
⋂

k<nHi(k) 6= ∅; if
i(k) = i(n) for some k < n, then of course

⋂
k≤nHi(k) 6= ∅; otherwise, Un ∩⋂

k<nHi(k) 6= ∅. In either case,⋂V is non-empty. So Un+1 has the required properties and the induction continues.

522O Proposition Let (NN,⊆∗,S) be the N-localization relation. Then (M,⊆,M) 4GT (NN,⊆∗,S).

proof Let 〈Un〉n∈N enumerate a π-base for the topology of R not containing ∅. By 522N, there is for each
n ∈ N a countable family Vn of open subsets of Un such that

⋂V 6= ∅ for every V ∈ [Vn]≤2n and every dense
open subset of Un includes some member of Vn. Enumerate Vn as 〈Vnm〉m∈N.

For each M ∈ M, let 〈Fn(M)〉n∈N be a non-decreasing sequence of nowhere dense sets covering M , and
let φ(M) ∈ NN be such that Fn(M) ∩ Vn,φ(M)(n) = ∅ for every n. In the other direction, for S ∈ S set

ψ(S) = R \⋂n∈N

⋃
m≥n(Um ∩⋂

i∈S[{m}] Vmi);

then because
⋂

i∈S[{m}] Vmi is non-empty for every n,
⋃

m≥n(Um ∩ ⋂
i∈S[{m}] Vmi) is a dense open set for

every n, and ψ(S) is meager.
Now (φ, ψ) is a Galois-Tukey connection from (M,⊆,M) to (NN,⊆∗,S). PPP Suppose that M ∈ M and

S ∈ S are such that φ(M) ⊆∗ S. Let n ∈ N be such that φ(M)(k) ∈ S[{k}] for every k ≥ n. Then

Fm(M) ∩⋂
i∈S[{k}] Vki ⊆ Fk(M) ∩ Vk,φ(M)(k) = ∅

whenever k ≥ max(m,n), so

Fm(M) ⊆ R \⋃k≥max(m,n)

⋂
i∈S[{k}] Vki ⊆ ψ(S)

for every m, and M ⊆ ψ(S). QQQ
So we have the result.

522P Corollary M 4T N .

proof Putting 522M and 522O and 512Cb together, we see that (M,⊆,M) 4GT (N ,⊆,N ), that is,
M 4T N .

522Q Theorem (Bartoszyński 84, Raisonnier & Stern 85) addN ≤ addM and cfM ≤ cfN .

proof 522P, 513Ee.

522R The exactness of Cichoń’s diagram The list of inequalities displayed in Cichoń’s diagram is
complete in the following sense: it is known that all assignments of the values ω1, ω2 to the eleven cardinals
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of the diagram which are allowed by the diagram together with the two equalities addM = min(b, covM),
cfM = max(d, nonM) are relatively consistent with the axioms of ZFC. So, for instance, it is possible to
have

ω1 = addN = covN = addM = b = nonM,

covM = d = cfM = nonN = cfN = c = ω2.

In §§552 and 554 below I will describe forcing constructions exhibiting a few of these combinations; for the
rest, I refer you to Bartoszyński & Judah 95, §§5.2, 7.5 and 7.6. I remark also that not all the forcing
methods used are effective beyond ω2, so that if we allow c = ω3 then some puzzles remain.

522S The cardinals nonM, covM All the cardinals in Cichoń’s diagram appear in many different
ways in set-theoretic real analysis. But addN , the additivity of Lebesgue measure, the bounding number
b, and covM, the Novák number of R, seem to be particularly important. The additivity of measure will
play a large role in the next section. Here I will give two striking characterizations of covM and a dual
characterization of nonM.

Theorem (a) n(R) = covM = mcountable.
(b) (Bartoszyński 87) covM is the least cardinal of any set A ⊆ NN such that for every g ∈ NN there

is an f ∈ A such that f(n) 6= g(n) for every n ∈ N.
(c) (Bartoszyński 87) nonM is the least cardinal of any set A ⊆ NN such that for every g ∈ NN there

is an f ∈ A such that {n : f(n) = g(n)} is infinite.

proof (a) Because R is a Baire space, the Novák number n(R) is equal to covM (512Eb). By 517P(d-ii)
or 517P(d-iii), n(R) = mcountable.

(b) Let κ be the smallest cardinal of any A ⊆ NN such that for every g ∈ NN there is an f ∈ A such that
f ∩ g = ∅, identifying the functions f and g with their graphs in N× N.

(i) covM ≤ κ. PPP Suppose that A ⊆ NN and that #(A) < covM. Set P =
⋃

n∈N
Nn, ordered

by extension of functions. Then P is a non-empty countable partially ordered set. For each f ∈ A set
Qf = {p : p ∈ P, p ∩ f 6= ∅}; then Qf is cofinal with P . Set Q = {Qf : f ∈ A}. Then

#(Q) ≤ #(A) < covM = mcountable ≤ m↑(P ),

so there is an upwards-linked R ⊆ P meeting every member of Q. Now g0 =
⋃
R ⊆ N × N is a function;

taking g ∈ NN to be any extension of g0 to the whole of N, g ∩ f 6= ∅ for every f ∈ A.
As A is arbitrary, this shows that κ ≥ covM. QQQ
In particular, κ ≥ ω1, as can also be seen by elementary arguments.

(ii) Let 〈Kn〉n∈N be any sequence of non-empty countable sets, and write F for the set of all functions
f such that dom f is an infinite subset of N and f(n) ∈ Kn for every n ∈ dom f . Then if A ∈ [F ]<κ there is
a g ∈ ∏

n∈N
Kn such that f ∩ g 6= ∅ for every f ∈ A. PPP For each n ∈ N, let Fn be

⋃{∏i∈I Ki : I ∈ [N]n+1}.
For f ∈ F and n ∈ N take any (n+ 1)-element subset of f and call it pf (n), so that pf (n) ∈ Fn. Now each
Fn is countably infinite, and

A′ = {pf : f ∈ A} ⊆ ∏
n∈N

Fn
∼= NN

has cardinal less than κ, so there is a φ ∈ ∏
n∈N

Fn such that φ ∩ pf 6= ∅ for every f ∈ A.
Now choose 〈ik〉k∈N inductively so that ik ∈ domφ(k)\{ij : j < k} for each k ∈ N, and take g ∈ ∏

n∈N
Kn

such that g(ik) = φ(k)(ik) for every k. Then for any f ∈ A there is a k ∈ N such that φ(k) = pf (k) ⊆ f , so
that g(ik) = f(ik) and f ∩ g 6= ∅, as required. QQQ

(iii) If A ⊆ NN and f0 ∈ NN and #(A) < κ, then there is a function g ∈ NN such that g(0) > 0,
g(n+ 1) ≥ f0(g(n)) for every n and {n : f(g(n)) ≤ g(n+ 1)} is infinite for every f ∈ A. PPP For f ∈ A set

f∗(0) = 0, f̃(n) = maxi≤n f(i), f∗(n+ 1) = n+ f̃(f̃(f∗(n)))

for each n, so that f ≤ f̃ , f̃ and f∗ are non-decreasing, and f∗ is unbounded. Consider B = {f∗↾N \ n :
f ∈ A, n ∈ N}; then #(B) ≤ max(#(A), ω) < κ, so by (ii) (or otherwise) there is an h ∈ NN meeting every
member of B. Now h ∩ f∗ is infinite for every f ∈ A. Set
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g(0) = 1 + h(0), g(n+ 1) = 1 + maxi≤n+1 h(i) + maxi≤n f0(g(i))

for n ∈ N, so that h(n) < g(n) and f0(g(n)) ≤ g(n+ 1) for every n, and g is non-decreasing.
??? Suppose, if possible, that f ∈ A is such that {n : f(g(n)) ≤ g(n + 1)} is finite. Let n0 ∈ N be such

that f(g(n)) ≥ g(n+ 1) for every n ≥ n0. If i ≥ n0 then

f̃(g(i)) ≥ f(g(i)) ≥ g(i+ 1),

so if i ≥ n0 and j ∈ N are such that f∗(j) ≥ g(i), then

f∗(j + 1) ≥ f̃(f̃(f∗(j))) ≥ f̃(f̃(g(i))) ≥ f̃(g(i+ 1)) ≥ g(i+ 2)

because f̃ is non-decreasing. But f∗ is unbounded; taking k such that f∗(k) ≥ g(n0), we have f∗(k + i) ≥
g(n0+2i) for every i ∈ N; because both f∗ and g are non-decreasing, this means that f∗(n) ≥ g(n) whenever
n ≥ max(k, 2k − n0). But there must be such an n with f∗(n) = h(n) < g(n), so this is impossible. XXX

Thus g has the required property. QQQ

(iv) Now suppose that P is a countable partially ordered set, Q is a family of cofinal subsets of P with
#(Q) < κ, and p0 ∈ P . Let 〈pi〉i≥1 be such that 〈pi〉i∈N runs over P with cofinal repetitions. Let f ∈ NN

be a strictly increasing function such that whenever n ∈ N and i < n then there is a j ∈ f(n) \ n such
that pi ≤ pj . For each Q ∈ Q let fQ ∈ NN be a strictly increasing function such that whenever n ∈ N and
i < n there is a j ∈ fQ(n) \ n such that pi ≤ pj ∈ Q. By (iii), we can find g ∈ NN such that g(0) > 0,
g(n+ 1) ≥ f(g(n)) for every n and IQ = {n : g(n+ 1) ≥ fQ(g(n))} is infinite for every Q ∈ Q.

For each n ∈ N, set Jn = g(n + 1) \ g(n), and let Φn be the set of functions h : g(n) → Jn such that
pi ≤ ph(i) for every i < g(n); because g(n + 1) ≥ f(g(n)) this is non-empty. For Q ∈ Q and n ∈ IQ let
φQ(n) ∈ Φn be such that pφQ(n)(i) ∈ Q for every i < g(n); such a function exists because g(n+1) ≥ fQ(g(n)).
Now all the Φn are countable (indeed finite), so (ii) tells us that there is a φ ∈ ∏

n∈N
Φn such that φ ∩ φQ

is non-empty for every Q ∈ Q.
Define 〈in〉n∈N by setting i0 = 0 and in+1 = φ(n)(in) for n ∈ N; because domφ(n) = g(n) > 0 and

φ(n)(i) < g(n + 1) whenever i < g(n), in is well-defined for each n. Because φ(n) ∈ Φn for each n,
pin ≤ pin+1

for each n. If Q ∈ Q there is some n such that φ(n) = φQ(n), so that

pin+1
= pφ(n)(in) = pφQ(n)(in) ∈ Q.

But this means that R = {pik : k ∈ N} is an upwards-linked (indeed, totally ordered) subset of P meeting
every member of Q and containing p0. As p0 and Q are arbitrary, m↑(P ) ≥ κ. As P is arbitrary, mcountable ≥
κ and κ = mcountable = covM, as claimed.

(c) Write λ for the least cardinal of any set A ⊆ NN such that for every g ∈ NN there is an f ∈ A such
that f ∩ g is infinite. Of course λ is infinite.

(i) Let A0 ⊆ R be a non-meager set with cardinal nonM. Then A0 \Q is not a meager subset of R and
therefore is not a meager subset of R \Q, since any subset of R \Q which is nowhere dense in R \Q is also
nowhere dense in R. So R \Q has a non-meager subset with cardinal nonM. But R \Q is homeomorphic
to NN (4A2Ub again), so there is a non-meager set A ⊆ NN with cardinal nonM.

Now take any g ∈ NN. Then
⋃

i≥n{f : f ∈ NN, f(i) = g(i)} is a dense open subset of NN for every n ∈ N,
so

{f : f ∈ NN, f ∩ g is infinite} =
⋂

n∈N

⋃
i≥n{f : f(i) = g(i)}

is a dense Gδ set and meets A; that is, there is an f ∈ A such that f ∩ g is infinite. Accordingly λ ≤ nonM.

(ii) Let A ⊆ NN be a set with cardinal λ such that for every g ∈ NN there is an f ∈ A such that f ∩ g
is infinite. Write S2 for

⋃
n∈N

{0, 1}n.

(ααα) There is a set A1 ⊆ NN, with cardinal at most λ, such that whenever g ∈ NN and D ⊆ N is infinite,
there is an f ∈ A1 such that f ∩ g↾D is infinite. PPP For n ∈ N set Fn =

⋃
I∈[N]n+1 N

I . Because each Fn is

countably infinite, there is a familyH ⊆ ∏
n∈N

Fn, with cardinal λ, such that for every ψ ∈ ∏
n∈N

Fn there is a

φ ∈ H such that φ∩ψ is infinite. For φ ∈ H define kφ ∈ NN by setting kφ(n) = min(domφ(n)\{kφ(i) : i < n})
for each n, so that kφ ∈ NN is injective, and choose fφ ∈ NN such that fφ(kφ(n)) = φ(n)(kφ(n)) for every n.
Now suppose that g ∈ NN and D ⊆ NN is infinite. Define ψ ∈ ∏

n∈N
Fn by taking ψ(n)(i) = g(i) whenever
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i ∈ D and #(D ∩ i) ≤ n. We know that there is a φ ∈ H such that K = {n : φ(n) = ψ(n)} is infinite, and
that for every n ∈ K

kφ(n) ∈ domφ(n) = domψ(n) ⊆ D,

fφ(kφ(n)) = φ(n)(kφ(n)) = ψ(n)(kφ(n)) = g(kφ(n)).

As kφ[K] is an infinite subset of D, fφ ∩ g↾D is infinite. So we can take A1 = {fφ : φ ∈ H}. QQQ

(βββ) Because S2 is countably infinite, we can copy A onto a set A2 ⊆ SN
2 , with cardinal λ, such that

for every ψ ∈ SN
2 there is a φ ∈ A2 such that φ ∩ ψ is infinite. For each φ ∈ A2 let hφ ∈ NN be a strictly

increasing function such that hφ(k) + #(φ(n)) ≤ hφ(k + 2) whenever k ∈ N and hφ(k) ≤ n < hφ(k + 1).

(γγγ) For φ ∈ A2 and f ∈ A1 define xφf , yφf ∈ {0, 1}N by saying (in the notation of 5A1C) that

xφf = σa
0 σ

a
1 . . . , yφf = τa0 τ

a
1 . . . ,

where

σk = φ(f(k)) if hφ(2k) ≤ f(k) < hφ(2k + 1),

= <0> otherwise,

τk = φ(f(k)) if hφ(2k + 1) ≤ f(k) < hφ(2k + 2),

= <0> otherwise.

Note that

#(σk) ≤ hφ(2k + 2) − hφ(2k), #(τk) ≤ hφ(2k + 3) − hφ(2k + 1)

for every k. Write

A3 = {xφf : φ ∈ A2, f ∈ A1} ∪ {yφf : φ ∈ A2, f ∈ A1}
so that A3 ⊆ {0, 1}N has cardinal at most λ.

(δδδ) A3 is a non-meager subset of {0, 1}N. PPP Let H be a dense Gδ subset of {0, 1}N. Then we can
express H as

⋂
n∈N

Gn where 〈Gn〉n∈N is a non-increasing sequence of dense open subsets of {0, 1}N. For
each n,

G′
n =

⋂
m≤n

⋂
τ∈{0,1}m{x : x ∈ {0, 1}N, τax ∈ Gn}

is a dense open subset of {0, 1}N so there is an υn ∈ S2 such that {x : υn ⊆ x ∈ {0, 1}N} ⊆ G′
n. Let

φ ∈ A2 be such that C = {n : n ∈ N, φ(n) = υn} is infinite. Set D0 = {k : C ∩ hφ(2k + 1) \ hφ(2k) 6= ∅},
D1 = {k : C ∩ hφ(2k + 2) \ hφ(2k + 1) 6= ∅}; then at least one of D0, D1 is infinite.

Suppose that D0 is infinite. For k ∈ D0 set nk = min(C ∩ hφ(2k + 1) \ hφ(2k)). Then there is an f ∈ A1

such that

E0 = {k : k ∈ D0, f(k) = nk}
is infinite. In this case, for k ∈ E0, hφ(2k) ≤ f(k) < hφ(2k + 1) so #(φ(f(k))) ≤ hφ(2k + 2) − hφ(2k) and

σk = φ(f(k)) = φ(nk) = υnk
. Accordingly σa

k σ
a

k+1 . . . ∈ G′
nk

.

At the same time, writing τ for σa
0 . . .

a σk−1,

#(τ) ≤ ∑k−1
i=0 hφ(2i+ 2) − hφ(2i) ≤ hφ(2k) ≤ nk

and

xφf = τaυ a
nk
σ a

k+1 . . .

belongs to Gnk
. Since 〈nk〉k∈N is strictly increasing, xφf belongs to Gn for infinitely many n and therefore

belongs to H.
Similarly, if D1 is infinite, we can set mk = min(C ∩hφ(2k+ 2)\hφ(2k+ 1)) for k ∈ D1, take f ∈ A1 such

that E1 = {k : k ∈ D1, f(k) = mk} is infinite, and for k ∈ E1 see that #(τa0 . . .a τk−1) ≤ mk and τk = υmk

so that yφf ∈ Gmk
. Thus in either case we have a member of A3 belonging to H; as H is arbitrary, A3 is

non-meager. QQQ
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(ǫǫǫ) Finally, let θ : {0, 1}N → [0, 1] be the standard surjection defined by setting θ(x) =
∑∞

i=0 2−i−1x(i)
for x ∈ {0, 1}N. Then θ is continuous and irreducible, so the inverse image of a dense open subset of [0, 1]
is a dense open subset of {0, 1}N, and θ[A3] is non-meager in [0, 1]. As the interior of [0, 1] in R is dense in
[0, 1], θ[A3] is non-meager in R and

nonM ≤ #(θ[A3]) ≤ #(A3) ≤ λ.

Together with (i) above, this shows that nonM = λ, as claimed.

522T Martin numbers Following the identification of covM with mcountable, we can amalgamate the
diagrams in 522B and 517Ob, as follows:

covN nonM cfM cfN c

b d

addN addM covM nonN

mσ-linked p

ω1 m mK mpcω1

proof The two new inequalities to be proved are mσ-linked ≤ addN and p ≤ addM.

(a) Let S∞ be the ‘(N,∞)-localization poset’

{p : p ⊆ N× N, #(p[{n}]) ≤ 2n for every n, supn∈N #(p[{n}]) <∞},

ordered by ⊆. For p ∈ S∞ set ‖p‖ = maxn∈N #(p[{n}]). Then S∞ is σ-linked upwards. PPP If p, q ∈ S∞,
‖p‖ ≤ n, ‖q‖ ≤ n and p[{i}] = q[{i}] for every i ≤ n, then p ∪ q ∈ S∞. So for any n ∈ N and 〈Ji〉i≤n ∈∏

i≤n[N]≤2i we have an upwards-linked set

{p : p ∈ S∞, ‖p‖ ≤ n, p[{i}] = Ji for every i ≤ n};

as there are only countably many such families 〈Ji〉i≤n, S∞ is σ-linked upwards. QQQ
Accordingly mσ-linked ≤ m↑(S∞). Next, m↑(S∞) ≤ add(NN,⊆∗,S), where (NN,⊆∗,S) is the N-localization

relation. PPP Suppose that A ⊆ NN and #(A) < m↑(S∞). For each f ∈ A, set Qf = {p : p ∈ S∞,
f ⊆∗ p}. If p ∈ S∞ and ‖p‖ = n, then p ⊆ p ∪ {(i, f(i)) : i ≥ n} ∈ Qf ; so Qf is cofinal with S∞. As
#({Qf : f ∈ A}) < m↑(S∞), there is an upwards-directed R ⊆ S∞ meeting Qf for every f ∈ A. Set
S =

⋃
R. For each n ∈ N, {p[{n}] : p ∈ R} is an upwards-directed family of subsets of N, all of size at most

2n, with union S[{n}]. So #(S[{n}]) ≤ 2n; as n is arbitrary, S ∈ S. If f ∈ A, there is a p ∈ R ∩ Qf , and
now f ⊆∗ p ⊆ S. As A is arbitrary, we have the result. QQQ

Now

mσ-linked ≤ m↑(S∞) ≤ add(NN,⊆∗,S) = add(N ,⊆,N )

(522M, 512Db)

= addN ,

as required.

(b)(i) Let U be a countable base for the topology of R, not containing ∅. Consider the set P of pairs
(σ, F ) where σ ∈ ⋃

n∈N
Un and F ⊆ R is nowhere dense, together with the relation ≤ where (σ, F ) ≤ (σ′, F ′)

if σ′ extends σ, F ′ ⊇ F and F ∩ σ′(i) = ∅ whenever i ∈ domσ′ \ domσ. Then ≤ is a partial order on P . PPP
If (σ, F ) ≤ (σ′, F ′) ≤ (σ′′, F ′′) then we surely have σ ⊆ σ′ ⊆ σ′′ and F ⊆ F ′ ⊆ F ′′. If i ∈ domσ′′ \ domσ,
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then either i ∈ domσ′ \ domσ and σ′′(i) = σ′(i) must be disjoint from F , or i ∈ domσ′′ \ domσ′ and σ′′(i)
must be disjoint from F ′ ⊇ F . Thus in either case F ∩ σ′′(i) = ∅; as i is arbitrary, (σ, F ) ≤ (σ′′, F ′′). Thus
≤ is transitive. Evidently it is also reflexive and anti-symmetric, so it is a partial order. QQQ

(ii) (P,≤) is σ-centered upwards. PPP If (σ, F0), . . . , (σ, Fk) are members of P with a common first
member, then they have a common upper bound (σ,

⋃
i≤k Fi) in P . So for any n ∈ N and σ ∈ Un the

set {(σ, F ) : F ⊆ R is nowhere dense} is upwards-centered in P ; as
⋃

n∈N
Un is countable, P is σ-centered

upwards. QQQ

(iii) For each V ∈ U and n ∈ N set

QnV = {(σ, F ) : (σ, F ) ∈ P , V ∩⋃
n≤i<domσ σ(i) 6= ∅}.

Then QnV is cofinal with P . PPP If (σ, F ) ∈ P , set m = max(n, domσ) + 1, and take U ∈ U such that
U ⊆ V \ F . Setting

σ′(i) = σ(i) for i < domσ,

= U for domσ ≤ i < m,

we find that (σ, F ) ≤ (σ′, F ) ∈ QnV . QQQ
For each nowhere dense set H ⊆ R,

Q′
H = {(σ, F ) : (σ, F ) ∈ P , H ⊆ F}

is cofinal with P . PPP For any (σ, F ) ∈ P , we have (σ, F ) ≤ (σ, F ∪H) ∈ Q′
H . QQQ

(iv) Now suppose that A ⊆ M and #(A) < p. Then each member of A is covered by a sequence
of nowhere dense sets, so there is a family H of nowhere dense sets with the same union as A and with
#(H) ≤ max(ω,#(A)). In this case

Q = {QnV : n ∈ N, V ∈ U} ∪ {Q′
H : H ∈ H}

is a family of cofinal subsets of P and

#(Q) ≤ max(ω,#(A)) < p ≤ m↑(P ).

There is therefore an upwards-directed R ⊆ P meeting every member of Q. If (σ, F ) and (σ′, F ′) belong
to R, they must be upwards-compatible in P , and in particular σ and σ′ have a common extension; we
therefore have a function φ =

⋃
(σ,F )∈R σ from a subset of N to U . If n ∈ N and V ∈ U , then there is a

(σ, F ) ∈ R ∩ QnV , so that there is some i ≥ n such that φ(i) = σ(i) meets V . As V is arbitrary, the open
set Wn =

⋃
i∈domφ,i≥n φ(i) is dense; as n is arbitrary, M = R \⋂n∈N

Wn is meager. Now H ⊆M for every

H ∈ H. PPP There is a (σ, F ) ∈ R ∩ Q′
H . Set n = domσ. If i ∈ domφ \ n, there is a (σ′, F ′) ∈ R such

that i ∈ domσ′; because R is upwards-directed, we may suppose that (σ, F ) ≤ (σ′, F ′). But in this case
φ(i) = σ′(i) must be disjoint from F and therefore from H. As i is arbitrary, H ∩Wn = ∅ and H ⊆M . QQQ

As H is arbitrary,
⋃A =

⋃H ⊆M . As A is arbitrary, addM ≥ p, as claimed.

Remark In fact m↑(S∞) is exactly equal to addN ; see 528N.

*522U FN(PN) For any cardinal which is known to lie between ω1 and c, it is natural, and often
profitable, to try to locate it on Cichoń’s diagram. For the Freese-Nation number of PN, which appeared
more than once in §518, we have the following results.

Proposition (Fuchino Koppelberg & Shelah 96, Fuchino Geschke & Soukup 01) (a) FN(PN) ≥ b.
(b) FN(PN) ≥ covN .
(c) If FN(PN) = ω1 then shrM = ω1, so

m = mK = mpcω1
= mσ-linked = p = addN = addM = b = covN = nonM = ω1.

(d) If FN(PN) = ω1 and κ ≥ mcountable is such that cf[κ]≤ω ≤ κ ≤ c, then κ = c. So if FN(PN) = ω1 and
mcountable < ωω, then

mcountable = nonN = d = cfM = cfN = c.
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(e) There is a set A ⊆ R with cardinal mcountable such that every meager set meets A in a set with cardinal
less than FN∗(PN).

proof (a) Let ≤∗ and � be the pre-order and partial order on NN described in 522C, so that b = add(NN,�).
Write κ for FN(PN); by 518D, κ = FN(NN,≤) and we have a Freese-Nation function φ : NN → [NN]<κ for
≤. For f ∈ NN, set ψ(f) =

⋃{φ(g) : g ≤∗ f ≤∗ g}; then #(ψ(f)) ≤ κ.
??? Suppose, if possible, that κ < b. Choose a family 〈fξ〉ξ≤κ in NN inductively, as follows. Given 〈fη〉η<ξ

where ξ ≤ κ,
⋃

η<ξ ψ(fη) has cardinal at most κ < b, so has a �-upper bound f ′ξ; now set fξ(i) = f ′ξ(i) + 1
for every i, and continue.

Next choose 〈hξ〉ξ<κ in φ(fκ) as follows. For each ξ < κ, fξ ∈ φ(fξ) (511Hh) so fξ ∈ ψ(fξ), fξ � f ′κ and
fξ � fκ. So if we set gξ = fξ∧fκ then gξ ≤∗ fξ ≤∗ gξ while gξ ≤ fκ. There is therefore an hξ ∈ φ(gξ)∩φ(fκ)
such that gξ ≤ hξ ≤ fκ. Now if η < ξ < κ, hη ∈ φ(gη) ⊆ ψ(fη) so hη � f ′ξ. Accordingly

{i : hξ(i) ≤ hη(i)} ⊆ {i : hξ(i) ≤ f ′ξ(i)} ∪ {i : f ′ξ(i) < hη(i)}
⊆ {i : hξ(i) < fξ(i)} ∪ {i : f ′ξ(i) < hη(i)}
⊆ {i : gξ(i) < fξ(i)} ∪ {i : f ′ξ(i) < hη(i)}

is finite and hξ 6= hη. But this means that {hξ : ξ < κ} has cardinal κ and #(φ(fκ)) = κ, contrary to the
choice of φ. XXX

Thus b ≤ κ = FN(PN), as claimed. In particular, FN(PN) is uncountable.

(b)(i) We need to know the following fact: if E is a family of non-negligible Lebesgue measurable subsets
of R, and #(E) < covN , there is a countable set meeting every member of E . PPP For each E ∈ E , R\(Q+E)
is negligible (439Eb), so there is an x ∈ R ∩⋂

E∈E Q +E; now Q + x is countable and meets every member
of E . QQQ

(ii) Set κ = FN(PN). If C is the family of closed sets in R, then (C,⊆) ∼= (T,⊇), so FN(C) = FN(T) = κ
(518D). Let f : C → [C]<κ be a Freese-Nation function.

(iii) ??? If κ < covN , write K for the set of infinite successor cardinals λ ≤ κ, and for λ ∈ K set
Dλ = {x : x ∈ R, #(f({x})) < λ}. As R =

⋃
λ∈K Dλ, there must be some λ ∈ K such that Dλ cannot

be covered by κ negligible sets. Choose 〈Mξ〉ξ≤λ and 〈Hξn〉ξ<λ,n∈N inductively, as follows. Mξ = ∅. Given
that Mξ ⊆ C and #(Mξ) ≤ κ, (i) tells us that there is a countable set Aξ ⊆ R meeting every non-negligible
member of Mξ; let 〈Hξn〉n∈N be a sequence of closed subsets of R \ Aξ such that

⋃
n∈N

Hξn is conegligible.
Now set

Mξ+1 = Mξ ∪ {Hξn : n ∈ N} ∪⋃
F∈Mξ

f(F ) ∈ [C]≤κ.

At non-zero limit ordinals ξ ≤ λ, set Mξ =
⋃

η<ξMη.
By the choice of λ, there is an x ∈ Dλ which does not belong to any negligible set belonging to Mλ, nor

to any of the sets R \⋃n∈N
Hξn for ξ < λ. Now #(Mλ ∩ f({x})) < λ; because λ is regular, there is a ξ < λ

such that Mλ∩f({x}) ⊆Mξ. Let n ∈ N be such that x ∈ Hξn. Then there must be an F ∈ f({x})∩f(Hξn)
such that x ∈ F ⊆ Hξn. In this case, Hξn ∈Mξ+1 and F ∈Mξ+2 ⊆Mλ, so in fact F ∈Mξ. Because x ∈ F ,
F cannot be negligible, so Aξ ∩ F 6= ∅; but Hξn was chosen to be disjoint from Aξ. XXX

(iv) Thus κ ≥ covN , as claimed.

(c) Let A ⊆ R be a non-meager set.

(i) By 518D, FN(T) = ω1, where T is the topology of R. Let f : T → [T]≤ω be a Freese-Nation
function. There is a set M such that

(α) whenever G ∈M ∩ T then f(G) ⊆M ;
(β) whenever t ∈M ∩ R then R \ {t} ∈M ;
(γ) whenever G ⊆ M is a countable family of dense open subsets of R, M ∩ A ∩ ⋂G is

non-empty;
(δ) #(M) ≤ ω1.

PPP Build a non-decreasing family 〈Mξ〉ξ<ω1
of countable sets as follows. M0 = ∅. Given that Mξ is countable,

let Mξ+1 be a countable set including Mξ such that
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(α) whenever G ∈Mξ ∩ T then f(G) ⊆Mξ+1;
(β) whenever t ∈Mξ ∩ R then R \ {t} ∈Mξ+1;
(γ) Mξ+1 ∩A ∩⋂{G : G ∈Mξ is a dense open subset of R} is not empty.

For countable limit ordinals ξ > 0, set Mξ =
⋃

η<ξMη. At the end of the construction, set M =
⋃

ξ<ω1
Mξ.

QQQ

(ii) If H ⊆ R is an open set, there is a countable family G ⊆M ∩T such that M ∩R∩⋂G ⊆ H ⊆ ⋂G.
PPP Set G = {G : G ∈ f(H) ∩M , H ⊆ G}; then certainly H ⊆ ⋂G and G is countable. If t ∈ M ∩ R \H,
then H ⊆ R \ {t} so there is a G ∈ f(H)∩ f(R \ {t}) such that H ⊆ G ⊆ R \ {t}; since R \ {t} ∈M , G ∈M ;
and t /∈ G. As t is arbitrary, M ∩ R ∩⋂G ⊆ H. QQQ

(iii) Now consider B = A ∩M . Then #(B) ≤ ω1. ??? If B is meager, let 〈Hn〉n∈N be a sequence of
dense open sets such that B∩⋂

n∈N
Hn = ∅. For each n ∈ N, let Gn be a countable family of dense open sets

belonging to M such that M ∩ R ∩⋂Gn ⊆ Hn (using (ii)). Set G =
⋃

n∈N
Gn; then G ⊆ M is a countable

family of dense open sets, so there is a t ∈ M ∩ A ∩⋂G, by condition (γ) in the specification of M . But
now t ∈M ∩A ∩⋂Gn ⊆ Hn for each n, so t ∈ B ∩⋂

n∈N
Hn, which is impossible. XXX

Thus A has a non-meager subset with cardinal at most ω1; as A is arbitrary, shrM = ω1.

(d)(i) Again let T be the topology of R and f : T → [T]≤ω a Freese-Nation function. This time, we can
find a set M such that

(†) for every g ∈ NN there is an h ∈M ∩ NN such that g(n) 6= h(n) for every n ∈ N;
(α) whenever G ∈M ∩ T then f(G) ⊆M ;
(β) M ∩ [M ]≤ω is cofinal with [M ]≤ω;
(γ) whenever D ∈M is countable, then there is a double sequence 〈Gij〉i,j∈N belonging to M

such that every Gij belongs to T, 〈Gij〉j∈N is disjoint for each i ∈ N and whenever G ∈ D is an
open subset of R with infinite complement, there is an i ∈ N such that Gij \G is non-empty for
every j ∈ N;

(δ) whenever 〈Gij〉i,j∈N ∈M is a double sequence of open subsets of R, and h ∈M ∩NN, then⋃
i∈N

Gi,h(i) ∈M ;
(ǫ) #(M) = κ.

PPP Build a non-decreasing family 〈Mξ〉ξ<ω1
of sets with cardinal κ as follows. Start with a set M0 ⊆ NN

such that #(M0) = κ and for every g ∈ NN there is an h ∈M0 such that g(n) 6= h(n) for every n ∈ N (using
522Sb). Given that #(Mξ) = κ, then cf[Mξ]≤ω = κ. Let Mξ+1 ⊇Mξ be such that

(α) whenever G ∈Mξ ∩ T then f(G) ⊆Mξ+1;
(β) Mξ+1 ∩ [Mξ]≤ω is cofinal with [Mξ]≤ω;
(γ) whenever D ∈ Mξ is countable, then there is a double sequence 〈Gij〉i,j∈N ∈ Mξ+1 such

that every Gij is an open set in R, 〈Gij〉j∈N is disjoint for each i ∈ N and whenever G ∈ D is an
open subset of R with infinite complement, there is an i ∈ N such that Gij \G is non-empty for
every j ∈ N;

(δ) whenever 〈Gij〉i,j∈N ∈ Mξ is a double sequence of open subsets of R, and h ∈ Mξ ∩ NN,
then

⋃
i∈N

Gi,h(i) ∈Mξ+1;
(ǫ) #(Mξ+1) = κ.

For limit ordinals ξ > 0, set Mξ =
⋃

η<ξMη. At the end of the construction, set M =
⋃

ξ<ω1
Mξ. Then

M ∩ [M ]≤ω =
⋃

ξ<ω1
Mξ+1 ∩ [Mξ]≤ω

is cofinal with
⋃

ξ<ω1
[Mξ]≤ω = [M ]≤ω, and it is easy to see that the other conditions are satisfied. QQQ

(ii) ??? Now suppose, if possible, that there is a t ∈ R such that R\I /∈M for any finite set I containing
t. Set

G = {G : G ∈M ∩ f(R \ {t}), t /∈ G}.

Then G is a countable subset of M and R \ G is infinite for every G ∈ G. Let D ∈ M be a countable set
including G. Then we have a double sequence 〈Gij〉i,j∈N ∈ M such that 〈Gij〉j∈N is a disjoint sequence of
open sets for each i ∈ N and whenever G ∈ D is an open subset of R with infinite complement, there is an
i ∈ N such that Gij \G is non-empty for every j ∈ N. In particular, this last clause is true for every G ∈ G.
For each i ∈ N choose g(i) ∈ N such that t /∈ Gij for any j 6= g(i); let h ∈M ∩ NN be such that h(i) 6= g(i)
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for every i, and set H =
⋃

i∈N
Gi,h(i) ∈M ; note that t /∈ H. Now there is a G ∈ f(H)∩ f(R \ {t}) such that

H ⊆ G and t /∈ G. As f(H) ⊆ M , G ∈ M , so G ∈ G. But this means that Gi,h(i) ⊆ G for every i ∈ N; and
we chose 〈Gij〉i,j∈N so that this could not be so. XXX

Thus I = {I : I ∈ [R]<ω, R \ I ∈M} covers R. As #(I) ≤ #(M) ≤ κ, #(R) ≤ κ and κ = c, as claimed.

(iii) Finally, if mcountable < ωω, then we can take κ = mcountable, by 5A1F(e-iv), and get mcountable =
. . . = c.

(e) Because FN(T) = FN(PN), 518E tells us that there is a set A ⊆ R, with cardinal n(R) = mcountable,
such that #(A ∩ F ) < FN∗(T) = FN∗(PN) for every nowhere dense set F ⊆ R. As FN∗(PN) certainly has
uncountable cofinality, A meets every meager set in a set with cardinal less than FN∗(PN).

522V Cofinalities For any cardinal associated with a mathematical structure, we can ask whether
there are any limitations on what that cardinal can be. The commonest form of such limitations, when they
appear, is a restriction on the possible cofinalities of the cardinal. I run through the known results concerning
the cardinals of Cichoń’s diagram. Most are elementary, but part (f) requires a substantial argument.

Proposition (a) cf c ≥ p.
(b) addN , addM and b are regular.
(c) cf(cfN ) ≥ addN , cf(cfM) ≥ addM and cf d ≥ b.
(d) cf(nonN ) ≥ addN , cf(nonM) ≥ addM.
(e) If cfM = mcountable then cf(cfM) ≥ nonM; if cfN = covN , then cf(cfN ) ≥ nonN .
(f) (Bartoszyński & Judah 89) cf(mcountable) ≥ addN .

proof (a) If ω ≤ κ < p then 2κ = c, by 517Rb, so cf c > κ by 5A1Fd.

(b) Use 513C(a-i); to see that b is regular, use its characterization as the additivity of a partially ordered
set in 522C(ii).

(c) Use 513C(a-ii); this time, we need to know that d is the cofinality of a partially ordered set for which
b is the additivity.

(d)-(e) 513Cb with 522Sa,

(f)(i) Write M1 for the ideal of meager subsets of NN, where NN is given its usual topology. Let
(NN,⊆∗,S) be the N-localization relation (522K), and set S(0) = {S : S ∈ S, limn→∞ 2−n#(S[{n}]) = 0}. I
will write finint and disj for the relations {(A,B) : A ∩B is finite}, {(A,B) : A ∩B = ∅}. Following the
same mild abuse of notation as in 512Aa and elsewhere, I will write (S(0), finint,NN) and (NN, disj,NN)
for the supported relations (S(0), R1,N

N) and (NN, R2,N
N), where

R1 = {(S, f) : S ∈ S(0), f ∈ NN, {n : (n, f(n)) ∈ S} is finite},

R2 = {(f, g) : f, g ∈ NN, f(n) 6= g(n) for every n}.

(ii)(α) (NN,∈,M1) 4GT (S(0), finint,NN). PPP For f ∈ NN, set φ(f) = f (identifying f with its
graph, as usual); for g ∈ NN, set ψ(g) = {h : h ∈ NN, h ∩ g is finite}. Then φ(f) ∈ S(0) for every f ∈ NN,
and ψ(g) ∈ M1 for every g ∈ NN, because all the sets {h : h ∩ g ⊆ n} are nowhere dense. If f , g ∈ NN

and (φ(f), g) ∈ finint, then f ∩ g is finite so f ∈ ψ(g); thus (φ, ψ) is a Galois-Tukey connection from
(NN,∈,M1) to (S(0), finint,NN). QQQ

(βββ) (S(0), finint,NN) 4GT (NN, disj,NN). PPP Let 〈In〉n∈N be a partition of N such that #(In) = 2n

for each n. For n ∈ N, let θn : NIn → N be a bijection. For S ∈ S(0), choose φ(S) ∈ NN such that whenever
(n, i) ∈ S then φ(S) ∩ θ−1

n (i) 6= ∅, where once again both the function φ(S) and the function θ−1
n (i) are

identified with their graphs; this is possible because on each set In there are at most 2n functions with
domain In that φ(S) has to meet. For g ∈ NN, define ψ(g) ∈ NN by saying that ψ(g)(n) = θn(g↾In) for
every n.

Now suppose that S ∈ S(0) and g ∈ NN are such that S ∩ ψ(g) is infinite. Then there is certainly an n
such that (n, ψ(g)(n)) ∈ S. In this case,

∅ 6= φ(S) ∩ θ−1
n (ψ(g)(n)) = φ(S) ∩ g↾In,
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so φ(S) ∩ g is non-empty. Turning this round, if (φ(S), g) ∈ disj then (S, ψ(g)) ∈ finint; that is, (φ, ψ) is
a Galois-Tukey connection from (S(0), finint,NN) to (NN, disj,NN). QQQ

(γγγ) cov(S(0), finint,NN) = mcountable. PPP

mcountable = n(NN) = covM1

(517Pd)

= cov(NN,∈,M1) ≤ cov(S(0), finint,NN)

(512Da and (α) above)

≤ cov(NN, disj,NN)

((β) above)

= mcountable

(522Sb, with 522Sa). QQQ

(iii) Suppose that κ < addN and that 〈Sξ〉ξ<κ is any family in S(0). Then there is an S∗ ∈ S(0) such
that Sξ \ S∗ is finite for every ξ < κ. PPP For ξ < κ, n ∈ N let fξ(n) ∈ N be such that #(Sξ[{i}]) ≤ 2i−2n

for every i ≥ fξ(n). Because κ < addN ≤ b, there is an f ∈ NN such that {n : fξ(n) > f(n)} is finite for
every ξ < κ (522C(ii)); of course we may suppose that f(0) = 0 and that f is strictly increasing and that
f(n) ≥ 2n for every n. Set Jn = f(n+1)\f(n) for each n. For each ξ < κ, let mξ be such that fξ(n) ≤ f(n)
for every n ≥ mξ; set S′

ξ = {(i, j) : (i, j) ∈ Sξ, i ≥ f(mξ)}. Then Sξ \ S′
ξ is finite and #(S′

ξ[{i}]) ≤ 2i−2n

whenever i ∈ Jn.
For each n ∈ N, let Kn be the family of those sets K ⊆ Jn × N such that #(K[{i}]) ≤ 2i−2n for every

i ∈ Jn, and θn : Kn → N a bijection; set hξ(n) = θn(S′
ξ ∩ (Jn × N)) for each ξ < κ.

By 522M, add(NN,⊆∗,S) = addN is greater than κ, so there is an S ∈ S such that hξ ⊆∗ S for every
ξ < κ. Set S∗ =

⋃
(n,j)∈S θ

−1
n (j). For any n ∈ N and i ∈ Jn, #(θ−1

n (j)[{i}]) ≤ 2i−2n for every j ∈ N, so that

S∗[{i}] =
⋃

(n,j)∈S θ
−1
n (j)[{i}] has cardinal at most 2i−n. This means that S∗ ∈ S(0).

Take any ξ < κ. As hξ ⊆∗ S, there is some m ∈ N such that (n, hξ(n)) ∈ S, that is, (n, θn(S′
ξ∩(Jn×N))) ∈

S, for every n ≥ m. But this means that S′
ξ ∩ (Jn ×N) ⊆ S∗ for every n ≥ m, so S′

ξ \ S∗ is finite; it follows

at once that Sξ \ S∗ is finite. Thus we have a suitable S∗. QQQ

(iv) ??? Now suppose, if possible, that cf(mcountable) = κ < addN . By (ii-γ), there is a set A ⊆ NN of
size mcountable such that for every S ∈ S(0) there is an f ∈ A such that S ∩f is finite. Express A as

⋃
ξ<κAξ

where #(Aξ) < mcountable for every ξ < κ. By (ii-γ) again, we can find for each ξ < κ an Sξ ∈ S(0) such

that Sξ ∩ f is infinite for every f ∈ Aξ. By (iii), there is an S∗ ∈ S(0) such that Sξ \ S∗ is finite for every
ξ < κ. But this means that S∗ ∩ f must be infinite for every f ∈ Aξ and every ξ < κ; which contradicts the
choice of A. XXX

So we are forced to conclude that cf(mcountable) ≥ addN , as stated.

522W Other spaces All the theorems above refer to the specific σ-ideals M and N of subsets of R

or the specific partially ordered set NN. Of course the structures involved appear in many other guises. In
particular, we have the following results.

(a)(i) Let (X,Σ, µ) be an atomless countably separated (definition: 343D) σ-finite perfect (definition:
342K) measure space of non-zero measure, and N (µ) the null ideal of µ. Then (X,N (µ)) is isomorphic to
(R,N ); in particular, addN (µ) = addN , covN (µ) = covN , nonN (µ) = nonN and cfN (µ) = cfN . PPP
The first thing to note is that because µ is σ-finite there is a probability measure ν on X with the same
measurable sets and the same negligible sets as µ (215B(vii)); and of course ν is still atomless, countably
separated and perfect. Next, the completion ν̂ of ν is again atomless, countably separated and perfect
(212Gd, 343H(vi), 451G(c-i)) and has the same negligible sets as ν (212Eb). In the same way, starting
from Lebesgue measure instead of µ, we have a complete atomless countably separated perfect probability
measure λ on R with the same negligible sets as Lebesgue measure. But now (X, ν̂) and (R, λ) are isomorphic
(344I), so that (X,N (µ)) and (R,N ) are isomorphic. QQQ
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(ii) The most important examples of spaces satisfying the conditions of (i) are Lebesgue measure on the
unit interval and the usual measure on {0, 1}N. But the ideas go much farther. On a Hausdorff space with a
countable network (e.g., any separable metrizable space, or any analytic Hausdorff space), any topological
measure is countably separated (433B). So any non-zero atomless Radon measure on such a space will have a
null ideal isomorphic to N . (The measure will be σ-finite because it is a locally finite measure on a Lindelöf
space, and perfect by 416Wa.)

(iii) As we shall see in §523, there are many more measure spaces (X,µ) for which N (µ) is close
enough to N to have the same additivity and cofinality, and even uniformity and covering number match in
a number of interesting cases.

(b)(i) Similarly, the structure (R,M) is duplicated in any non-empty Polish space X without isolated
points, in the sense that (X,B(X),M(X)) ∼= (R,B,M), where B and B(X) are the Borel σ-algebras of R
and X respectively, and M(X) is the ideal of meager subsets of X. PPP Note first that NN, with its usual
topology, has an uncountable nowhere dense closed set; e.g., {f : f(2n) = 0 for every n}. Now we know that
X has a dense Gδ set X1 homeomorphic to NN (5A4Le), and X1 must also have an uncountable nowhere
dense closed set F1; since X1 \F1 is again a non-empty Polish space without isolated points (4A2Qd), it too
has a dense Gδ set X2 homeomorphic to NN, and X2 is a dense Gδ set in X with uncountable complement.
Similarly, R has a dense Gδ subset H which is homeomorphic to NN and has uncountable complement.

Let M(X2), M(H) be the ideals of meager subsets of X2 and H when they are given their subspace
topologies. Because X2 is dense, a closed subset of X is nowhere dense in X iff its intersection with X2 is
nowhere dense in X2; accordingly M(X2) is precisely {M ∩X2 : M ∈ M(X)}. Similarly, M(H) = {M ∩H :
M ∈ M}.

Consider the complements X \X2, R \H. These are uncountable Borel subsets of Polish spaces. They
are therefore Borel isomorphic (424G, 424Cb); let φ : X \X2 → R \H be a Borel isomorphism. Next, X2

and H are homeomorphic to NN, therefore to each other; let ψ : X2 → H be a homeomorphism. Finally,
set θ = ψ ∪ φ, so that θ : X → R is a Borel isomorphism. For M ⊆ X,

M ∈ M(X) ⇐⇒ M ∩X2 ∈ M(X)

(because X \X2 is meager)

⇐⇒ M ∩X2 ∈ M(X2) ⇐⇒ ψ[M ∩X2] ∈ M(H)

⇐⇒ θ[M ] ∩H ∈ M(H) ⇐⇒ θ[M ] ∈ M.

So θ is an isomorphism between the structures (X,B(X),M(X)) and (R,B,M). QQQ

(ii) Again, the most important special cases here are X = [0, 1], X = {0, 1}N and X = NN.

522X Basic exercises >>>(a) Let K be the σ-ideal of subsets of NN generated by the compact sets. Show
that (K,⊆) is Tukey equivalent to the pre-ordered sets of 522C, so that addK = b and cfK = d.

(b) (O.Kalenda) Set (P,⊑) = (N,≤) × (NN,�) where � is the partial ordering of 522C(ii). Show that
(N,≤) 4T (P,⊑) 4T (NN,≤), (P,⊑) 64T (N,≤) and (NN,≤) 64T (P,⊑).

(c) Let (X,Σ, µ) be an atomless semi-finite measure space with µX > 0. Show that #(X) ≥ nonN .
(Hint : 343Cc.)

>>>(e) Show that there are just 23 assignments of values to the cardinals of Cichoń’s diagram which are
allowed by the results in 522D-522Q and have c = ω2.

(g) Show that if covN > ω1 then every ∆∆∆1
2 (= PCA-&-CPCA) set in a Polish space is universally

measurable. (Hint : 423Tb3, 521Xc.)

3Formerly 423Rb.
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(h) Let Z be the Stone space of the measure algebra A of Lebesgue measure. Show that the Novák
number n(Z) of Z and the Martin number m(A) of A are both equal to covN . (Hint : 341Q, 416V, 517K.)

522Y Further exercises (a) Show that if addN = cfN then (R,M) and (R,N ) are isomorphic, in
the sense that there is a permutation f : R → R such that A ⊆ R is meager iff f [A] is Lebesgue negligible.

(b) Show that if covN > ω1 then covN ≥ mpcω1
.

(c) Let P and Q be partially ordered sets such that Q has no greatest member, ∼ an equivalence relation
on P , and π : P → Q a surjective function such that, for p0, p1 ∈ P , π(p0) ≤ π(p1) iff there is a p ∼ p0
such that p ≤ p1. Suppose that κ is a cardinal such that no ∼-equivalence class has cardinal greater than
κ. Show that add(Q) ≤ max(FN(P ), κ).

(d) Suppose that FN(PN) = ω1. Show that whenever A ⊆ R is non-meager there is a set B ∈ [A]ω1 such
that every uncountable subset of B is non-meager4.

(e) Suppose that FN(PN) = p and that κ ≥ mcountable is such that cf[κ]<p ≤ κ. Show that κ ≥ c.

(f) (S.Geschke) Show that if FN∗(PN) ≤ mcountable then nonM ≤ FN∗(PN).

(g) Let S(0) be the family described in the proof of 522Vf. For any sets A, B say that A ⊆∗ B if A \ B
is finite, and define ≤∗ as in 522C. Show that (S(0),⊆∗,S(0)) 4GT (NN,≤∗,NN) ⋉ (NN,⊆∗,S(0)).

(h) Suppose that we have supported relations (A,R,B) and (A,S,A) such that R◦S ⊆ R, that is,
(a, b) ∈ R whenever (a, a′) ∈ S and (a′, b) ∈ R. Show that if ω ≤ cov(A,R,B) <∞ then cf(cov(A,R,B)) ≥
add(A,S,A).

(i) Let X be any topological space with countable π-weight and write M(X) for the family of meager
subsets of X. Show that M(X) 4T M.

522Z Problem Is it the case that (R,∈,M) ≡GT (NN, finint,NN)? (See 522S and the proof of 522V.)

522 Notes and comments All the significant ideas of this section may be found in Bartoszyński &

Judah 95, with a good deal more.
For many years it appeared that ‘measure’ and ‘category’ on the real line, or at least the structures

(R,B,N ) and (R,B,M) where B is the Borel σ-algebra of R, were in a symmetric duality. It was perfectly
well understood that the algebras A = B/B ∩N and G = B/B ∩M – what in this book I call the ‘Lebesgue
measure algebra’ and the ‘category algebra of R’ – are very different, but their complexities seemed to
be balanced, and such results as 522G encouraged us to suppose that anything provable in ZFC relating
measure to category ought to respect the symmetry. It therefore came as a surprise to most of us when
Bartoszyński and Raisonnier & Stern (independently, but both drawing inspiration from ideas of Shelah

84, themselves responding to a difficulty noted in Solovay 70) showed that addN ≤ addM in all models
of set theory. (It was already known that addN could be strictly less than addM.)

The diagram in its present form emphasizes a new dual symmetry, corresponding to the duality of
Galois-Tukey connections (512Ab). No doubt this also is only part of the true picture. It gives no hint,
for instance, of a striking difference between covM and covN . While covM = mcountable must have
uncountable cofinality (522Vf), covN can be ωω (Shelah 00). In 522H-522I and 522Sb-522Sc there are
hints of a different symmetry which I have not been able to formalize convincingly (see 522Z).

I have hardly mentioned shrinking numbers here. This is because while shrM and shrN can be located
in Cichoń’s diagram (we have nonM ≤ shrM ≤ cfM and nonN ≤ shrN ≤ cfN , by 511Jc), they are not
known to be connected organically with the rest of the diagram. I will return to them in a more general
context in 523M. I have also not said where the π-weight of Lebesgue measure (see 511Gb) fits in; this is in
fact equal to cfN , as will appear in 524P.

4In the language of 554C, every non-meager subset of the real line includes a Lusin set.
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In 522T I give two classic ‘Martin’s axiom’ arguments. They are typical in that the structure of the proof
is to establish that there is a suitable partially ordered set for which a ‘generic’ upwards-directed subset
will provide an object to witness the truth of some assertion. ‘Generic’, in this context, means ‘meeting
sufficiently many cofinal sets’. If there were any more definite method of finding the object sought, we would
use it; these constructions are always even more ethereal than those which depend on unscrupulous use of
the axiom of choice. ‘Really’ they are names of propositions in a suitable forcing language, since (as a rule)
we can lift Martin numbers above ω1 only by entering a universe created by forcing. But in this chapter,
at least, I will try to avoid such considerations, and use arguments which are expressible in the ordinary
language of ZFC, even though their non-trivial applications depend on assumptions beyond ZFC.

Of the partially ordered sets S∞ and P in the proof of 522T, the former comes readily to hand as soon
as we cast the problem in terms of the supported relation (NN,⊆∗,S); we need only realize that we can
express members of S as limits of upwards-directed subsets of a subfamily in which there is some room to
manoeuvre, so that we have enough cofinal sets. The latter is more interesting. It belongs to one of the
standard types in that the partially ordered set is made up of pairs (σ, F ) in which σ is the ‘working part’,
from which the desired meager set

M = R \⋂n∈N

⋃
σ∈R,i≥n σ(i)

will be constructed, and F is a ‘side condition’, designed to ensure that the partial order of P interacts
correctly with the problem. In such cases, there is generally a not-quite-trivial step to be made in proving
that the ordering is transitive ((b-i) of the proof of 522T). Note that we have two classes of cofinal set to
declare in (b-iii) of the proof here; the QnV are there to ensure that M is meager, and the Q′

H to ensure
that it includes every member of H. And a final element which must appear in every proof of this kind, is
the check that the partial order found is of the correct type, σ-linked in (a) and σ-centered in (b).

In 522U I suggest that it is natural to try to locate any newly defined cardinal among those displayed in
Cichoń’s diagram. Of course there is no presumption that it will be possible to do this tidily, or that we can
expect any final structure to be low-dimensional; the picture in 522T is already neater than we are entitled
to expect, and the complications in 522U (and 522Yd-522Yf) are a warning that our luck may be running
out. However, we can surprisingly often find relationships like the ones between FN(PN), b, shrM and
mcountable here, which is one of my reasons for using this approach. It is very remarkable that under fairly
weak assumptions on cardinal arithmetic (the hypothesis ‘mcountable < ωω’ in 522Ud is much stronger than
is necessary, since in ‘ordinary’ models of set theory we have cf[κ]≤ω = κ whenever cfκ > ω – see 5A6Bc
and 5A6C), the axiom ‘FN(PN) = ω1’ splits Cichoń’s diagram neatly into two halves. For an explanation
of why it was worth looking for such a split, see Fuchino Geschke & Soukup 01.

For the sake of exactness and simplicity, I have maintained rigorously the convention that M and N are
the ideals of meager and negligible sets in R with Lebesgue measure. But from the point of view of the
diagram, they are ‘really’ representatives of classes of ideals defined on non-empty Polish spaces without
isolated points, on the one hand, and on atomless countably separated σ-finite perfect measure spaces of
non-zero measure on the other (522W). The most natural expression of the duality between the supported
relations (R,∈,M) and (R,∈,N ) (522G) depends, of course, on the fact that both structures are invariant
under translation; but even this is duplicated in Rr and in infinite compact metrizable groups like {0, 1}N.

At some stage I ought to mention a point concerning the language of this chapter. It is natural to think
of such expressions as addN as names for objects which exist in some ideal universe. Starting from such
a position, the sentence ‘it is possible that addN < addM’ has to be interpreted as ‘there is a possible
mathematical universe in which addN < addM’. But this can make sense only if ‘addN ’ can refer to
different objects in different universes, and has a meaning independent of any particular incarnation. I
think that in fact we have to start again, and say that the expression addN is not a name for an object,
but an abbreviation of a definition. We can then speak of the interpretations of that definition in different
worlds. In fact we have to go much farther back than the names for cardinals in this section. PN and R

also have to be considered primarily as definitions. The set N itself has a relatively privileged position; but
even here it is perhaps safest to regard the symbol N as a name for a formula in the language of set theory
rather than anything else. Fortunately, one can do mathematics without aiming at perfect consistency or
logical purity, and I will make no attempt to disinfect my own language beyond what seems to be demanded
by the ideas I am trying to express at each moment; but you should be aware that there are possibilities for
confusion here, and that at some point you will need to find your own way of balancing among them. My
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own practice, when the path does not seem clear, is to re-read Kunen 80.

Version of 24.8.24

523 The measure of {0, 1}I
In §522 I tried to give an account of current knowledge concerning the most important cardinals associated

with Lebesgue measure. The next step is to investigate the usual measure νI on {0, 1}I for an arbitrary
set I. Here I discuss the cardinals associated with these measures. Obviously they depend only on #(I),
and are trivial if I is finite. I start with the basic diagram relating the cardinal functions of νκ and νλ for
different cardinals κ and λ (523B). I take the opportunity to mention some simple facts about the measures
νI (523C-523D). Then I look at additivities (523E), covering numbers (523F-523G), uniformities (523H-
523L), shrinking numbers (523M) and cofinalities (523N). I end with a description of these cardinals under
the generalized continuum hypothesis (523P).

523A Notation For any set I, I will write νI for the usual measure on {0, 1}I and NI for its null ideal.
Recall that ({0, 1}ω,Nω) is isomorphic to (R,N ), where N is the Lebesgue null ideal (522Wa).

523B The basic diagram Suppose that κ and λ are infinite cardinals, with κ ≤ λ. Then we have the
following diagram for the additivity, covering number, uniformity, shrinking number and cofinality of the
ideals Nκ and Nλ:

covNλ covNκ cfNκ cfNλ λω

shrNκ shrNλ

ω1 addNλ addNκ nonNκ nonNλ

(As in 522B, the cardinals here increase from bottom left to top right.)

proof For the inequalities relating two cardinals associated with the same ideal, see 511Jc; all we need to
know is that Nκ and Nλ are proper ideals containing singletons. For the inequalities relating the cardinal
functions of the two different ideals, use 521H; νκ is the image of νλ under the map x 7→ x↾κ : {0, 1}λ →
{0, 1}κ, by 254Oa. Of course ω1 ≤ addNλ. I leave the final inequality cfNλ ≤ λω for the moment, since
this will be part of Theorem 523N below.

523C In the next few paragraphs I will set out what is known about the cardinals here. It will be
convenient to begin with two easy lemmas.

Lemma Let I be any set, and J a family of subsets of I such that every countable subset of I is included
in some member of J . Then a subset A of {0, 1}I belongs to NI iff there is some J ∈ J such that
{x↾J : x ∈ A} ∈ NJ .

proof For J ⊆ I, x ∈ {0, 1}I set πJ (x) = x↾J ∈ {0, 1}J . Then νJ is the image measure νIπ
−1
J (254Oa

again), so A ∈ NI whenever there is some J ∈ J such that πJ [A] ∈ NJ . On the other hand, if A ∈ NI ,
there is a countable set K ⊆ I such that πK [A] ∈ NK (254Od). Now there is a J ∈ J such that K ⊆ J , so
that π−1

J [πJ [A]] ⊆ π−1
K [πK [A]] ∈ NI and πJ [A] ∈ NJ .

523D Because the measures νI are homogeneous in a strong sense, we have the following facts which
are occasionally useful.

Proposition Let κ be an infinite cardinal, and T the domain of νκ. For A ⊆ {0, 1}κ write TA for the
subspace σ-algebra on A.

c© 2005 D. H. Fremlin
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(a) If E ⊆ {0, 1}κ is measurable and not negligible, then (E,TE ,Nκ∩PE) is isomorphic to ({0, 1}κ,T,Nκ).
(b) If E ⊆ Nκ and #(E) < covNκ, then (νκ)∗(

⋃ E) = 0.
(c) If A ⊆ {0, 1}κ is non-negligible, then there is a set B ⊆ {0, 1}κ, of full outer measure, such that

(A,TA,Nκ ∩ PA) is isomorphic to (B,TB ,Nκ ∩ PB).
(d) There is a set A ⊆ {0, 1}κ with cardinal nonNκ which has full outer measure.

proof (a) In fact the subspace measure on E is isomorphic to a scalar multiple of νI (344L).

(b) ??? Otherwise, let F ⊆ ⋃ E be a non-negligible measurable set; then {F ∩ E : E ∈ E} witnesses that
cov(F,Nκ ∩ PF ) < covNκ, which contradicts (a). XXX

(c) Let E be a measurable envelope of A. By (a), there is a bijection f : E → {0, 1}κ which is an
isomorphism of the structures (E,TE ,Nκ ∩ PE) and ({0, 1}κ,T,Nκ). Set B = f [A]. Then f↾A is an
isomorphism of the structures (A,TA,Nκ ∩ PA) and (B,TB ,Nκ ∩ PB). Moreover, since A meets every
member of TE \ Nκ, B meets every member of T \ Nκ, that is, B has full outer measure.

(d) Let A0 ⊆ {0, 1}κ be a non-negligible set of cardinal nonNκ. By (c), there is a set A of full outer
measure which is isomorphic to A0 in the sense described there; in particular, #(A) = nonNκ.

523E Additivities Because the function κ 7→ addNκ is non-increasing, it must stabilize, that is, there
is some first κa such that addNκ = addNκa

for every κ ≥ κa. But in fact it stabilizes almost immediately.
If κ is any uncountable cardinal, then addNκ = add νκ = ω1, by 521Jb. Thus among the additivities
addNκ, only addNω = addN , the additivity of Lebesgue measure, can have any surprises for us.

523F Covering numbers Still on the left-hand side of the diagram, we again have a non-increasing
function κ 7→ covNκ, and a critical value κc after which it is constant. We can locate this value to some
extent through the following simple fact. If θ = covNκc

= min{covNκ : κ is a cardinal}, then covNθ = θ.
PPP Let κ be such that covNκ = θ. For I ⊆ κ, set πI(x) = x↾I for x ∈ {0, 1}κ. Let E ⊆ Nκ be a cover
of {0, 1}κ of cardinality θ. For each E ∈ E , let JE ⊆ κ be a countable set such that πJE

[E] ∈ NJE
. Set

I =
⋃

E∈E JE , so that #(I) ≤ θ and πI [E] ∈ NI for every E ∈ E . Then {πI [E] : E ∈ E} is a cover of {0, 1}I
by at most covNκ sets, and covNI ≤ covNκ. Since ({0, 1}I ,NI) is isomorphic to ({0, 1}#(I),N#(I)), we
also have

covNθ ≤ covN#(I) ≤ covNκ ≤ covNθ,

and covNθ = covNκ = θ. QQQ
What this means is that

ω ≤ κc ≤ θ ≤ covNκc
≤ covNω = covN ≤ c.

Another way of putting the same idea is to say that

if θ < λ then covNλ ≤ covNθ = θ < λ

so that

if λ is a cardinal such that covNλ ≥ λ then covNκ ≥ λ for every κ.

523G When the additivity of Lebesgue measure is large we have a further constraint on covering numbers.

Proposition (Kraszewski 01) If κ is a cardinal and covNκ < addN , then covNκ ≤ cf[κ]≤ω.

proof As {0, 1}κ is covered by negligible sets, κ is infinite. Let E be a subset of Nκ with cardinal covNκ

and union {0, 1}κ, and J a cofinal subset of [κ]ω with cardinal cf[κ]≤ω. For J ∈ J and x ∈ {0, 1}κ set
πJ(x) = x↾J , so that πJ : {0, 1}κ → {0, 1}J is inverse-measure-preserving. For J ∈ J set EJ = {E : E ∈ E ,
πJ [E] ∈ NJ}, HJ =

⋃ EJ . Since

#(EJ ) ≤ #(E) = covNκ < addN = addNω = addNJ ,

FJ =
⋃{πJ [E] : E ∈ EJ} ∈ NJ and HJ ⊆ π−1

J [FJ ] ∈ Nκ. Since
⋃

J∈J EJ = E (523C) covers {0, 1}κ,

{HJ : J ∈ J } covers {0, 1}κ and covNκ ≤ #(J ) = cf[κ]≤ω.

D.H.Fremlin



38 Cardinal functions of measure theory 523H

523H Uniformities On the other side of the diagram we have non-decreasing functions. To get upper
bounds for nonNκ we have the following method.

Lemma (Kraszewski 01) Suppose that I is a set and F a family of functions with domain I such that
for every countable J ⊆ I there is an f ∈ F such that f↾J is injective. Then

nonNI ≤ max(#(F ), supf∈F nonNf [I]).

proof If I is finite the result is trivial. Otherwise, for each f ∈ F take a non-negligible subset Af of {0, 1}f [I]
with cardinal nonNf [I]. Set A = {yf : f ∈ F, y ∈ Af} ⊆ {0, 1}I . ??? If A ∈ NI , there is a countable set
J ⊆ I such that {x↾J : x ∈ A} ∈ NJ . Let f ∈ F be such that f↾J is injective. Then we have a function
φ : {0, 1}f [I] → {0, 1}J defined by saying that φ(z) = zf↾J for every z ∈ {0, 1}f [I], and (because f↾J is
injective) φ is inverse-measure-preserving for νf [I] and νJ , so φ[Af ] cannot be νJ -negligible. But if y ∈ Af

then φ(y)(ξ) = y(f(ξ)) for every ξ ∈ J , so φ[Af ] ⊆ {x↾J : x ∈ A}, which is supposed to be negligible. XXX
Thus A is not negligible, and

nonNI ≤ #(A) ≤ max(ω,#(F ), supf∈F #(Af )) = max(#(F ), supf∈F nonNf [I])

because we are supposing that I is infinite, so there is some f ∈ F such that f [I] is infinite.

523I Theorem (a) For any cardinal κ,
(i) nonNκ ≤ max(nonN , cf[κ]≤ω),
(ii) nonNκ+ ≤ max(κ+, nonNκ),
(iii) nonN2κ ≤ max(c, cf[κ]≤ω),
(iv) nonN2κ ≤ max(κ+, nonN2κ).

(b) If cfκ > ω, then nonNκ+ ≤ max(cfκ, supλ<κ nonNλ).

proof (a) If κ is finite, all these are trivial; so suppose otherwise.

(i) Let J ⊆ [κ]≤ω be a cofinal set with cardinal cf[κ]≤ω, and for J ∈ J let fJ be the identity function
on J . Applying 523H with F = {fJ : J ∈ J } we get

nonNκ ≤ max(#(J ), sup
J∈J

nonNJ)

≤ max(nonNω, cf[κ]≤ω) = max(nonN , cf[κ]≤ω).

(ii) For each ξ < κ+ choose a function fξ : κ+ → κ which is injective on ξ, and set F = {fξ : ξ < κ+}.
By 523H,

nonNκ+ ≤ max(#(F ), supξ<κ+ nonNfξ[κ+]) ≤ max(κ+, nonNκ).

(iii) Take J as in (i). This time, for J ∈ J , define fJ : Pκ → PJ by setting fJ(A) = A ∩ J for every
A ⊆ κ. Applying 523H with F = {fJ : J ∈ J } we get

nonN2κ = nonNPκ ≤ max(#(J ), sup
J∈J

nonNPJ) ≤ max(cf[κ]≤ω, nonNc)

≤ max(cf[κ]≤ω, nonN , cf[c]≤ω) = max(cf[κ]≤ω, c)

(5A1F(e-iii)).

(iv) Set fξ(A) = A ∩ ξ for ξ < κ+ and A ⊆ κ+. If J ⊆ Pκ+ is countable, there is a ξ < κ+ such that
A ∩ ξ 6= A′ ∩ ξ for all distinct A, A′ ∈ J , that is, fξ↾J is injective. So 523H tells us that

nonN2κ = nonNP(κ+) ≤ max(κ+, sup
ξ<κ+

nonNfξ[κ+])

≤ max(κ+, sup
ξ<κ+

nonNPξ) = max(κ+, nonN2κ).

(b)(i) If κ = θ+ where θ is an infinite cardinal, nonNκ+ ≤ max(κ, nonNθ). PPP Choose an injective
function hζ : ζ → κ for each ζ < κ+. For ξ < κ define fξ : κ+ → κ by saying that
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fξ(ζ) = min(κ \ {fξ(η) : η < ζ, hζ(η) ≤ ξ})

for ζ < κ+. If J ⊆ κ+ is countable, then ξ = supη,ζ∈J,η<ζ hζ(η) is less than κ, and fξ(η) 6= fξ(ζ) for all
distinct η, ζ ∈ J . Applying 523H with F = {fξ : ξ < κ} and using (a-ii) above, we get

nonNκ+ ≤ max(κ, nonNκ) ≤ max(κ, nonNθ) = max(cfκ, supλ<κ nonNλ). QQQ

(ii) Now suppose that κ is an uncountable limit cardinal with uncountable cofinality. Again choose
an injective function hζ : ζ → κ for each ζ < κ+. This time, let K ⊆ κ be a cofinal set with cardinal cfκ
consisting of cardinals, and for λ ∈ K define fλ : κ+ → λ+ by the formula

fλ(ζ) = min(λ+ \ {fλ(η) : η < ζ, hζ(η) ≤ λ})

for ζ < κ+. If J ⊆ κ+ is countable, then there is a λ ∈ K such that λ ≥ supη,ζ∈J,η<ζ hζ(η), and fλ(η) 6= fλ(ζ)
for all distinct η, ζ ∈ J . Applying 523H with F = {fλ : λ ∈ K}, we get

nonNκ+ ≤ max(#(F ), supf∈F nonNf [κ+]) ≤ max(cfκ, supλ<κ nonNλ).

523J Corollary (Kraszewski 01) (a) nonNω2
= nonNω1

= nonN .
(b) For any n ∈ N, nonNωn+1

≤ max(ωn, nonN ).
(c) nonN2ω1 = nonNc .
(d) If n ∈ N then nonN2ωn ≤ max(ωn, nonNc ).

proof (a) We have

nonN = nonNω ≤ nonNω1
≤ nonNω2

(523B)

≤ max(cfω1, nonNω)

(523Ib)

= nonN .

(b) Induce on n, using 523Ib for the inductive step.

(c) By 523I(a-iii), nonN2ω1 ≤ max(ω1, nonNc ); since

ω1 ≤ nonNc ≤ nonN2ω1 ,

we have the result.

(d) Induce on n, using 523I(a-iii) or 523I(a-iv) for the inductive step.

523K Corollary (Burke n05) For any sets I, K let Υω(I,K) be the least cardinal of any family F of
functions from I to K such that for every countable J ⊆ I there is an f ∈ F which is injective on J . (If
#(K) < min(ω,#(I)) take Υω(I,K) = ∞.) Then

(a) nonNI ≤ max(Υω(I,K), nonNK) for all sets I and K;
(b) if κ ≥ c is a cardinal, then nonNκ = max(Υω(κ, c), nonNc).

proof (a) This is just a slightly weaker version of 523H.

(b) The point is that Υω(κ, c) ≤ nonNκ. PPP Let A ⊆ {0, 1}κ×ω be a non-negligible set of cardinal
nonNκ×ω. For x ∈ {0, 1}κ×ω define fx : κ → {0, 1}ω by setting fx(ξ) = 〈x(ξ, n)〉n∈N for each ξ < κ. If ξ,
η < κ are distinct, then {x : fx(ξ) = fx(η)} is negligible, so if J ⊆ κ is countable then {x : fx↾J is injective}
is conegligible and meets A. Accordingly {fx : x ∈ A} witnesses that

Υω(κ, c) = Υω(κ, {0, 1}ω) ≤ #(A) = nonNκ×ω = nonNκ. QQQ

Since we already know that

nonNc ≤ nonNκ ≤ max(Υω(κ, c), nonNc),

we have the result.
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523L On the other side we can find lower bounds which give a notion of the rate of growth of the
numbers nonNκ as κ increases.

Proposition (a) If λ and κ are infinite cardinals with κ > 2λ, then nonNκ > λ.
(b) If κ is a strong limit cardinal of countable cofinality then nonNκ > κ.

proof (a) Let A ⊆ {0, 1}κ be any set with cardinal at most λ. For ξ < κ set Bξ = {x : x ∈ A, x(ξ) = 1}.

Because κ > 2#(A), there is some B ⊆ A such that I = {ξ : Bξ = B} is infinite. But what this means is
that if ξ ∈ I then x(ξ) = 1 for every ξ ∈ B and x(ξ) = 0 for every x ∈ A \B, and A ⊆ {x : x is constant on
I} is negligible. As A is arbitrary, nonNκ > λ.

(b) By (a), nonNκ > λ for every λ < κ, so nonNκ ≥ κ; but also cf(nonNκ) ≥ addNκ (513C(b-ii)), so
nonNκ has uncountable cofinality and must be greater than κ.

523M Shrinking numbers As with nonN•, the functions κ 7→ shrNκ and κ 7→ shrNκ are non-
decreasing, by 521Hb. Some of the ideas used in 523I can be adapted to this context, but the pattern as a
whole is rather different.

Proposition (a)(i) For any non-zero cardinals κ and λ,

shrNκ ≤ max(covSh(κ, λ, ω1, 2), supθ<λ shrNθ).

(ii) For any infinite cardinal κ, shrNκ ≤ max(shrN , cf[κ]≤ω).
(iii) If cfκ > ω, then shrNκ ≤ max(κ, supθ<κ shrNθ).

(b) For any infinite cardinal κ,
(i) shrNκ ≥ κ;
(ii) cf(shrNκ) > ω;
(iii) cf(shr+ Nκ) > κ.

Remark For the definition of covSh, see 5A2Da.

proof (a)(i) If covSh(κ, λ, ω1, 2) = ∞ or κ is finite this is trivial. Otherwise, λ ≥ ω1. Take a non-negligible
A ⊆ {0, 1}κ. Let J ⊆ [κ]<λ be a set with cardinal covSh(κ, λ, ω1, 2) such that for every I ∈ [κ]<ω1 there is a
D ∈ [J ]<2 such that I ⊆ ⋃D, that is, there is a J ∈ J such that I ⊆ J . For each J ∈ J , AJ = {x↾J : x ∈ A}
is non-negligible; let BJ ⊆ AJ be a non-negligible set with cardinal at most shrNJ . Let B ⊆ A be a set
with cardinal at most max(ω,#(J ), supJ∈J shrNJ ) such that BJ ⊆ {x↾J : x ∈ B} for every J ∈ J . If
I ⊆ κ is countable, there is a J ∈ J such that I ⊆ J , so {x↾I : x ∈ B} ⊇ {y↾I : y ∈ BJ} is non-negligible;
it follows that B is non-negligible, while #(B) ≤ max(covSh(κ, λ, ω1, 2), supθ<λ shrNθ).

(ii) Taking λ = ω1 in (i),

shrNκ ≤ max(covSh(κ, ω1, ω1, 2), shrNω) = max(cf[κ]≤ω, shrN ).

(iii) Take λ = κ in (i); as [κ]≤ω =
⋃

ξ<κ[ξ]≤ω,

shrNκ ≤ max(covSh(κ, κ, ω1, 2), supθ<κ shrNθ) = max(κ, supθ<κ shrNθ).

(b)(i) Induce on κ. If κ = ω the result is trivial. For the inductive step to κ+, consider the set

A = {x : x ∈ {0, 1}κ+

, ∃ ξ < κ+, x(η) = 0 for every η ≥ ξ}.

Then the only set which includes A and is determined by coordinates in a countable set is {0, 1}κ+

, so A
has full outer measure. On the other hand, if B ⊆ A and #(B) ≤ κ, then there is some ζ < κ+ such that
x(ξ) = 0 for every x ∈ B and every ξ ≥ ζ, so B is negligible. Thus A witnesses that shrNκ+ ≥ κ+. Because
κ 7→ shrNκ is non-decreasing (523B), the inductive step to limit cardinals κ is trivial.

(ii) ??? Now suppose, if possible, that cf(shrNκ) = ω. Then there is a sequence 〈λn〉n∈N of cardinals
less than shrNκ with supremum shrNκ. For each n ∈ N set In = κ × {n}, and let An ⊆ {0, 1}In be a
non-negligible set such that every non-negligible subset of An has more than λn members. By 523Dc, there
is a set Bn ⊆ {0, 1}In of full outer measure such that every non-negligible subset of Bn has more than λn
members. Set
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B = {x : x ∈ {0, 1}κ×N, x↾In ∈ Bn for every n ∈ N}.

Then the natural isomorphism between {0, 1}κ×N and
∏

n∈N
{0, 1}In identifies B with

∏
n∈N

Bn, so B has

full outer measure in {0, 1}κ×N (254Lb). There must therefore be a set C ⊆ B, of non-zero measure, such
that #(C) ≤ shrNκ. Express C as

⋃
n∈N

Cn where #(Cn) ≤ λn for every n. Then there is an n ∈ N

such that Cn is not negligible, in which case Dn = {x↾In : x ∈ Cn} is non-negligible. But Dn ⊆ Bn and
#(Dn) ≤ λn, so this is impossible. XXX

(iii) The argument of (i) shows that if κ is a successor cardinal, then shr+ Nκ > κ. So we need consider
only the case in which κ is a limit cardinal. ??? If cf(shr+ Nκ) ≤ κ, then there is a family 〈λξ〉ξ<κ of cardinals

less than shr+ Nκ with supremum shr+ Nκ. I use the same method as in (ii). For each ξ < κ set Iξ = κ×{ξ},
and let Bξ ⊆ {0, 1}Iξ be a set of full outer measure such that every non-negligible subset of Bξ has at least
λξ members. Set

B = {x : x ∈ {0, 1}κ×κ, x↾Iξ ∈ Bξ for every ξ < κ.

Then B has full outer measure in {0, 1}κ×κ. There must therefore be a set C ⊆ B, of non-zero measure,
such that #(C) < shr+ Nκ. Let ξ < κ be such that #(C) < λξ. Then D = {x↾Iξ : x ∈ C} is non-negligible.
But D ⊆ Bξ and #(Dξ) < λξ, so this is impossible. XXX

523N Cofinalities For the cardinals cfNκ the pattern from 523I(a-i) and 523Mb continues, and indeed
we have an exact formula.

Theorem For any infinite cardinal κ,

κ ≤ cfNκ = max(cfN , cf[κ]≤ω) ≤ κω.

proof (a) cfNκ ≤ max(cfN , cf[κ]≤ω). PPP Let J be a cofinal family in [κ]ω with cardinal cf[κ]≤ω. For each
J ∈ J , write πJ(x) = x↾J for x ∈ {0, 1}κ. Let EJ be a cofinal subset of NJ with cardinal cfNJ = cfNω =
cfN . Consider E = {π−1

J [E] : J ∈ J , E ∈ EJ}. By 523C, E is cofinal with Nκ, so that

cfNκ ≤ #(E) ≤ max(cfN , cf[κ]≤ω). QQQ

(b) We know that cf[κ]≤ω ≤ cfNκ (521Jb) and that cfN = cfNω ≤ cfNκ (523B). So cfNκ =
max(cfN , cf[κ]≤ω).

(c) For the inequalities, note that ω ≤ cfN and if κ is uncountable then (in the language of 512Ba)

cf[κ]≤ω ≥ cov(κ,∈, [κ]≤ω) = κ.

On the other side, cfN ≤ c ≤ κω and cf[κ]≤ω ≤ #([κ]≤ω) ≤ κω.

523O Cofinalities of the cardinals In 523Mb I have shown that shrNκ has uncountable cofinality
for infinite κ, and rather more about shr+ Nκ. From 513Cb we have a little information concerning the
cofinalities of addNκ, covNκ, nonNκ and cfNκ; but except when κ = ω we learn only that cfNκ and
nonNκ have uncountable cofinality, and that if covNκ = cfNκ then their common cofinality is at least
nonNκ. This last remark can apply only to ‘small’ κ, since cfNκ ≥ κ (if κ is infinite) and covNκ ≤ covN .

523P The generalized continuum hypothesis In this chapter I am trying to present arguments in
forms which show their full strength and are not tied to particular axioms beyond those of ZFC. However it
is perhaps worth mentioning that in one of the standard universes the pattern is particularly simple.

Proposition Suppose that the generalized continuum hypothesis is true. Then, for any infinite cardinal κ,

addNκ = add νκ = covNκ = ω1;

nonNκ = λ if κ = λ+ where cfλ > ω,

= κ+ if cfκ = ω,

= κ otherwise;
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shrNκ = cfNκ = κ+ if cfκ = ω,

= κ otherwise;

shr+ Nκ = (shrNκ)+ = κ++ if cfκ = ω,

= κ+ otherwise.

proof Since

ω1 ≤ addNκ = add νκ ≤ covNκ ≤ covN ≤ c = ω1,

the additivity and covering number are always ω1.
If κ = λ+ where cfλ > ω, then κ > 2θ for every θ < λ, so we have

λ ≤ nonNκ ≤ max(c, cf[λ]≤ω) = λ

(523La, 523I(a-iii), 5A6Ab). If κ = λ+ where cfλ = ω, then

λ ≤ nonNκ ≤ λω ≤ 2λ = κ;

but as nonNκ has uncountable cofinality (513C(b-ii) again), nonNκ must be κ. If κ is a limit cardinal, then
κ > 2θ for every θ < κ, so

κ ≤ nonNκ ≤ max(ω1, cf[κ]≤ω)

by 523I(a-i); if cfκ > ω this is already enough to show that nonNκ = κ; if cfκ = ω then nonNκ cannot be
κ so must be κ+ = κω.

As for shrNκ, if cfκ = ω, then

κ+ ≤ shrNκ ≤ cfNκ = max(ω1, cf[κ]≤ω) ≤ 2κ = κ+

by 523M(b-ii) and 523N. If cfκ > ω then

κ ≤ shrNκ ≤ cfNκ ≤ κ

by 523M(b-i), 523N and 5A6Ab. This deals with shrNκ and cfNκ. For the augmented shrinking numbers,
we know that if cfκ = ω then shrNκ = κ+ is a successor cardinal so shr+ Nκ = (shrNκ)+ = κ++, while if
cfκ > ω then

shrNκ = κ < shr+ Nκ

(523M(b-iii))

≤ (shrNκ)+

and shr+ Nκ = (shrNκ)+ = κ+.

523X Basic exercises (a) Show that

(Nκ, 6∋, {0, 1}κ) 4GT ([κ]≤ω,⊆, [κ]≤ω) ⋉ (N , 6∋,R)

for every infinite cardinal κ. (See 512I for the definition of ⋉.) Use this to prove 523I(a-i).

(b) Let κ be an infinite cardinal, and J a family of subsets of κ such that every countable subset
of κ is included in some member of J . Show that nonNκ ≤ max(#(J ), supJ∈J nonNJ ), nonNPκ ≤
max(#(J ), supJ∈J nonNPJ), shrNκ ≤ max(#(J ), supJ∈J shrNJ ) and cfNκ ≤ max(#(J ), supJ∈J cfNJ ).

(c) Show that

(Nκ,⊆,Nκ) 4GT ([κ]≤ω,⊆, [κ]≤ω) ⋉ (N ,⊆,N )

for every infinite cardinal κ. Use this to prove 523N.
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(d) Let (X,Σ, µ) be any probability space, and for each set I write N (µI) for the null ideal of the product
measure on XI . Show that all the results of 523E-523I and 523L-523N are valid with N (µI) in place of NI

and N (µω) in place of N , except that
—– in 523E the additivities may stabilize at ∞ rather than ω1;
—– in 523F we can no longer be sure that covN (µω) ≤ c;
—– in 523I(a-iii) we need to write ‘nonN (µ2κ) ≤ max(c, nonN (µω), cf[κ]≤ω)’;
—– in 523L and 523Mb we have to assume that the measure algebra of µ is not {0, 1}, so that the product

measure µN is atomless;
—– in 523N we can no longer be sure that cfN (µω) ≤ κω.

523Y Further exercises (a) Set A = PR/N . Show that c ≤ c(A) ≤ π(A) ≤ 2shrN .

(b) Let κ be an infinite cardinal. Show that there is a family J ⊆ [κ]≤ω such that #(J ) ≤ shrNκ and
every infinite subset of κ meets some member of J in an infinite set.

(c) Suppose that κ ≥ ω and that [κ]≤ω has bursting number at most addN . Show that Nκ ≡T [κ]≤ω×N .

(d) Show that

(ω1,≤, ω1) ⋉ (ω1,≤, ω1) 64GT (ω1,≤, ω1) × (ω1,≤, ω1).

(e) For infinite cardinals κ, write Mκ for the ideal of meager subsets of {0, 1}κ. Show that under the
same conventions as in 522B and 523B we have the diagrams

covMλ covMκ cfMκ cfMλ λω

shrMκ shrMλ

ω1 addMλ addMκ nonMκ nonMλ

and

covNκ nonMκ cfMκ cfNκ κω

ω1 addNκ addMκ covMκ nonNκ

whenever ω ≤ κ ≤ λ. Show moreover that all the results of 523E-523P have parallel forms referring to Mκ.

(f) In the language of 523Ye, show that mpcω1
≤ covMκ for every infinite κ.

(g) Show that Ostaszewski’s ♣ (4A1M) implies that covNω1
= covMω1

= ω1.

523Z Problem Is there a proof in ZFC that shrNκ ≥ cf[κ]≤ω for every cardinal κ?

523 Notes and comments The basic diagram 523B is natural and easy to establish. Of course it leaves a
great deal of room, especially on the right-hand side, where we have the increasing functions nonN•, shrN•

and cfN•, and rather weak constraints

λ < nonNκ ≤ shrNκ ≤ cfNκ ≤ κω whenever 2λ < κ

to control them. However the generalized continuum hypothesis is sufficient to determine exact values for
all the cardinals considered here (523P).

The combinatorics of cf[κ]≤ω and almost-disjoint families of functions are extremely complex, and depend
in surprising ways on special axioms; I think it possible that the results of 523I-523J can be usefully extended.
However 523N at least reduces the measure-theoretic problem of determining cfNκ to a standard, if difficult,
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question in infinitary combinatorics. I do not know if there are corresponding results concerning nonNκ

and shrNκ (see 523Kb and 523Z).
All the ideas in this section up to and including 523P can be applied to ideals of meager sets (523Ye) and

indeed to other classes of ideals satisfying the fundamental lemma 523C; see Kraszewski 01.

Version of 29.9.10/10.9.13

524 Radon measures

It is a remarkable fact that for a Radon measure the principal cardinal functions are determined by its
measure algebra (524J), so can in most cases be calculated in terms of the cardinals of the last section
(524P-524Q). The proof of this seems to require a substantial excursion involving not only measure algebras
but also the Banach lattices ℓ1(κ) and/or the κ-localization relation (524D, 524E). The same machinery
gives us formulae for the cardinal functions of measurable algebras (524M). The results of §518 can be
translated directly to give partial information on the Freese-Nation numbers of measurable algebras (524O).
For covering number and uniformity, we can see from 521L that strictly localizable compact measures follow
Radon measures. I know of no such general results for any other class of measure, but there are some bounds
for cardinal functions of countably compact and quasi-Radon measures, which I give in 524R-524T.

524A Notation If (X,Σ, µ) is a measure space, N (µ) will be the null ideal of µ. For any cardinal κ, νκ
will be the usual measure on {0, 1}κ, Tκ its domain and (Bκ, ν̄κ) its measure algebra. As in §§522-523, I will
write Nκ for N (νκ) and N for the null ideal of Lebesgue measure on R, so that (R,N ) and ({0, 1}ω,Nω)
are isomorphic (522Wa). If A is any Boolean algebra, I write A+ for A\{0} and A− for A\{1}. If (A,R,B)
is a supported relation, R′′′ is the relation {(a, I) : a ∈ R−1[I]} (see 512F). For any cardinal κ, (κN,⊆∗,Sκ)
will be the κ-localization relation (522K).

524B Proposition Let (X,T,Σ, µ) be a σ-finite Radon measure space with Maharam type κ. Then
N (µ) 4T B−

κ .

proof (a) Suppose, to begin with, that µX = 1 and κ ≥ ω. Let A be the measure algebra of the Radon

product measure λ̃ on Y = XN. Then A ∼= Bκ. PPP By 417E(b-i), A is isomorphic to the measure algebra of
the usual product measure λ on Y , which by 334E is isomorphic to Bκ. QQQ

For E ∈ N (µ), let 〈FEi〉i∈N be a sequence of closed subsets of X such that E ∩ FEi = ∅ and µFEi ≥
1 − 2−i−1 for every n ∈ N. Then

λ̃(
∏

i∈N
FEi) = λ(

∏
i∈N

FEi) ≥
∏

i∈N
(1 − 2−i−1) > 0;

set

φ(E) = (Y \∏i∈N
FEi)

• ∈ A−.

For b ∈ A− let Kb ⊆ Y be a non-empty compact self-supporting set such that K•

b ∩ b = 0. Set πi(y) = y(i)

for i ∈ N and y ∈ Y . Then each πi[Kb] ⊆ X is compact and Kb ⊆ ∏
i∈N

π−1
i [πi[Kb]], so

∏
i∈N

µπi[Kb] > 0
and supi∈N µπi[Kb] = 1; set

ψ(b) = X \⋃i∈N
πi[Kb] ∈ N (µ).

If E ∈ N (µ) and b ∈ A− and φ(E) ⊆ b and j ∈ N, then

Kb \ π−1
j [FEj ] ⊆ Kb \

∏
i∈N

FEi

is negligible. As Kb is self-supporting, Kb \ π−1
j [FEj ] is empty and πj [Kb] ⊆ FEj . But this means that

πj [Kb] ∩ E = ∅ for every j ∈ N, so that E ⊆ ψ(b).
This shows that φ is a Tukey function, so that N (µ) 4T A− ∼= B−

κ .

(b) If κ is finite, N (µ) has a greatest member and the constant function with value 0 is a Tukey function
from N (µ) to B−

κ and the result is trivial. If κ is infinite and µX 6= 1, then, because µ is σ-finite and not
trivial, there is a function f : X → ]0,∞[ such that

∫
fdµ = 1 (215B(ix)). Let ν be the corresponding

c© 2003 D. H. Fremlin

Measure Theory



524C Radon measures 45

indefinite-integral measure; then ν is a Radon probability measure (416Sa) with the same measurable sets
and the same negligible sets as µ (234L), so Σ/N (ν) = Σ/N (µ) has Maharam type κ. In this case, (a) tells
us that N (µ) = N (ν) 4T B−

κ .

524C Lemma Let P be a partially ordered set such that p ∨ q = sup{p, q} is defined for all p, q ∈ P .
Suppose that ρ is a metric on P such that P is complete (as a metric space) and ∨ : P × P → P is
uniformly continuous with respect to ρ. Let Q ⊆ P be an open set, and κ ≥ d(Q) a cardinal. Then
(Q,≤′′′, [Q]<ω) 4GT (ℓ1(κ),≤, ℓ1(κ)). If Q is upwards-directed, then Q 4T ℓ

1(κ).

proof (a) If Q is finite, then we can set φ(q) = 0 for every q ∈ Q, ψ(x) = Q for every x ∈ ℓ1(κ) and (φ, ψ)
will be a Galois-Tukey connection from (Q,≤′′′, [Q]<ω) to (ℓ1(κ),≤, ℓ1(κ)). So let us suppose that Q and κ
are infinite.

(b) Let 〈qξ〉ξ<κ run over a dense subset of Q. For each q ∈ Q let m(q) ∈ N be such that {p : p ∈ P ,

ρ(p, q) ≤ 2−m(q)} ⊆ Q. For each n ∈ N, let δn > 0 be such that ρ(sup I, sup J) ≤ 2−n whenever ∅ 6= I ⊆
J ⊆ P and #(J) ≤ 2n and maxq∈J minp∈I ρ(p, q) ≤ 2δn; such exists because 〈pi〉i<k 7→ supi<k pi : P k → P
is uniformly continuous whenever k > 0, and in particular when k = 2n. Reducing the δn if necessary, we
may suppose that δn+1 ≤ δn ≤ 2−n for every n.

(c) Define φ : Q → ℓ1(κ) as follows. Given p ∈ Q, choose a sequence 〈ξ(p, n)〉n∈N in κ such that
ρ(p, qξ(p,n)) ≤ δn+1 for every n. Take φ(p) ∈ ℓ1(κ) such that

φ(p)(m(p)) ≥ 1, φ(p)(ξ(p, n)) ≥ 2−n for every n ∈ N

(regarding m(p) as a finite ordinal).

(d) Define ψ : ℓ1(κ) → [Q]<ω as follows. Given x ∈ ℓ1(κ), set Kn(x) = {qξ : ξ < κ, x(ξ) ≥ 2−n} for
n ∈ N. Then

∑∞
n=0 2−n#(Kn(x)) ≤ ∑

ξ<κ

∑{2−n : x(ξ) ≥ 2−n} ≤ 2‖x‖1 <∞,

so there is a k(x) ∈ N such that x(n) < 1 for n ∈ ω \ k(x) and also #(Kn(x)) ≤ 2n for n ≥ k(x). Set

K̃(x) = Kk(x)(x). For s ∈ K̃(x) set

I(x, s, k(x)) = {s}, I(x, s, n+ 1) = {q : q ∈ Kn+1(x), ρ(q, I(x, s, n)) ≤ 2δn+1}
for n ≥ k(x), writing ρ(q, I) for infq′∈I ρ(q, q′). Because 〈Kn(x)〉n∈N is non-decreasing, so is 〈I(x, s, n)〉n≥k(x).

Set rxsn = sup I(x, s, n) in P for n ≥ k(x); then ρ(rx,s,n+1, rxsn) ≤ 2−n−1 for every n ≥ k(x), by the choice

of δn+1, so rxs = limn→∞ rxsn is defined in P . Set ψ(x) = Q ∩ {rxs : s ∈ K̃(x)}.

(e) Now (φ, ψ) is a Galois-Tukey connection from (Q,≤′′′, [Q]<ω) to (ℓ1(κ),≤, ℓ1(κ)). PPP Suppose that

p ∈ Q and x ∈ ℓ1(κ) are such that φ(p) ≤ x. Then qξ(p,n) ∈ Kn(x) for every n, so s = qξ(p,k(x)) ∈ K̃(x).
Also qξ(p,n) ∈ I(x, s, n) for every n ≥ k(x), because

ρ(qξ(p,n+1), qξ(p,n)) ≤ δn+2 + δn+1 ≤ 2δn+1

for every n. So qξ(p,n) ≤ rxsn for every n ≥ k(x). It follows that

p ∨ rxs = limn→∞ qξ(p,n) ∨ rxsn = limn→∞ rxsn = rxs

and p ≤ rxs.

By the choice of k(x), we also have φ(p)(n) < 1 for n ≥ k(x), so that m(p) < k(x). We therefore have

ρ(rxs, p) ≤ ρ(qξ(p,k(x)), p) +

∞∑

n=k(x)

ρ(rx,s,n+1, rxsn)

(because s = qξ(p,k(x)) is the unique member of I(x, s, k(x)), so is equal to rx,s,k(x))

≤ δk(x)+1 +

∞∑

n=k(x)

2−n−1 ≤ 2−k(x)−1 + 2−k(x) ≤ 2−m(p)
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and rxs ∈ Q. So p ≤ rxs ∈ ψ(x) and p ≤′′′ ψ(x). As p and x are arbitrary, (φ, ψ) is a Galois-Tukey
connection. QQQ

(f) So (Q,≤′′′, [Q]<ω) 4GT (ℓ1(κ),≤, ℓ1(κ)), as claimed.
Finally, if Q is upwards-directed, then addQ ≥ ω, so (Q,≤, Q) ≡GT (Q,≤′′′, [Q]<ω) (513Id) and (Q,≤, Q)

4GT (ℓ1(κ),≤, ℓ1(κ)), that is, Q 4T ℓ
1(κ).

524D Proposition If κ is any cardinal,

(B−
κ ,⊆

′′′, [B−
κ ]<ω) 4GT (ℓ1(κ),≤, ℓ1(κ)).

proof If κ is finite then B−
κ is finite and the result is trivial. Otherwise, if we give Bκ its measure metric

ρ (323Ad), then it is a complete metric space in which ∪ is uniformly continuous (323Gc, 323B) and
B−

κ = Bκ \ {1} is an open set. Now the topological density of B−
κ and Bκ is κ, by 521E; so 524C gives the

result.

524E Proposition Let κ be an infinite cardinal. Then

(ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω) 4GT (κN,⊆∗,Sκ).

proof (a) For each i ∈ N, let 〈ziξ〉ξ<κ run over a norm-dense subset of {x : x ∈ ℓ1(κ)+, ‖x‖1 ≤ 4−i}. Now
there is a function φ : ℓ1(κ) → κN such that

for every x ∈ ℓ1(κ), n ∈ N there is a k ∈ N such that x ≤ k
∑∞

i=n zi,φ(x)(i).

PPP Given x ∈ ℓ1(κ), choose 〈xn〉n∈N, 〈ξn〉n∈N, 〈kn〉n∈N inductively, as follows. Take k0 ≥ 1 such that
‖x+‖1 ≤ k0; set x0 = k−1

0 x+ and take ξ0 < κ such that ‖x0 − z0ξ0‖1 < 1
4 . Given that xn ∈ ℓ1(κ)+,

ξn < κ are such that ‖xn − znξn‖1 < 4−n−1, let kn+1 ≥ 1 be such that ‖xn+1‖1 ≤ 4−n−1 where xn+1 =

(xn − znξn)+ + k−1
n+1x

+, and take ξn+1 < κ such that ‖xn+1 − zn+1,ξn+1
‖1 < 4−n−2; continue. At the end of

the process, set φ(x) = 〈ξn〉n∈N.
Now, for any n ∈ N, we have x ≤ x+ ≤ knxn. But we also have, for any m ≥ n, xm+1 ≥ xm − zmξm , so

that xn ≤ xm +
∑m−1

i=n ziξi for every m ≥ n. Since ‖xm‖1 ≤ 4−m for every m, limm→∞ xm = 0 and

x ≤ knxn ≤ kn
∑∞

i=n zi,φ(x)(i).

As x and n are arbitrary, φ is a suitable function. QQQ

(b) Define ψ0 : Sκ → ℓ1(κ) by setting ψ0(S) =
∑

(i,ξ)∈S ziξ; because
∑

(i,ξ)∈S ‖ziξ‖1 ≤ ∑∞
i=0 4−i#(S[{i}]) ≤ ∑∞

i=0 2−i

is finite, ψ0(S) is well defined in ℓ1(κ) for every S ∈ Sκ (4A4Ie). Now define ψ : Sκ → [ℓ1(κ)]≤ω by setting
ψ(S) = {kψ0(S) : k ∈ N} for S ∈ Sκ.

(c) If x ∈ ℓ1 and S ∈ Sκ are such that φ(x) ⊆∗ S, then x ≤′′′ ψ(S). PPP Let n ∈ N be such that
(i, φ(x)(i)) ∈ S for every i ≥ n. Then there is a k ∈ N such that

x ≤ k
∑∞

i=n zi,φ(x)(i) ≤ k
∑

(i,ξ)∈S ziξ = kψ0(S) ∈ ψ(S). QQQ

(d) Thus (φ, ψ) is a Galois-Tukey connection and

(ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω) 4GT (κN,⊆∗,Sκ).

524F Lemma Let (X,Σ, µ) be a countably compact measure space with Maharam type κ.
(a) If µ is a Maharam-type-homogeneous probability measure, there is a family 〈Eξ〉ξ<κ in N (µ) such

that
⋃

ξ∈AEξ has full outer measure for every uncountable A ⊆ κ.

(b) If µ is σ-finite, there is a family 〈Eξ〉ξ<κ in N (µ) such that
⋃

ξ∈AEξ is non-negligible for every
uncountable A ⊆ κ.

proof Let A be the measure algebra of (X,Σ, µ).
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(a) If κ is countable, we can take Eξ = ∅ for every ξ. Otherwise, A is τ -generated by a stochastically
independent family 〈aξ〉ξ<κ of elements of measure 1

2 , and for every G ∈ Σ there is a smallest countable set
IG ⊆ κ such that G• is in the closed subalgebra of A generated by {aξ : ξ ∈ IG} (254Rd or 325Mb). For
each ξ < κ choose Fξ ∈ Σ such that F •

ξ = aξ. Let K be a countably compact class such that µ is inner
regular with respect to K.

Let 〈Jξ〉ξ<κ be a disjoint family of subsets of κ all with cardinal ω1. For each ξ < κ choose 〈Kξn〉n∈N,
〈αξn〉n∈N inductively, as follows. αξ0 = min Jξ. Given αξn and 〈Kξi〉i<n, let Kξn ∈ K be such that
Kξn∩Fαξn

= ∅ and µ(Kξn) ≥ 1
2 (1−3−n−2); now let αξ,n+1 be a member of Jξ not belonging to IKξi

∪{αξi}
for any i ≤ n. Continue. Set

Eξ =
⋃

n∈N

⋂
m≥nKξm ⊆ ⋃

n∈N

⋂
m≥n(X \ Fαξm

),

so that Eξ is negligible, because all the αξm are different, so that 〈Fαξm
〉m∈N is stochastically independent.

Now suppose that A ⊆ κ is uncountable, and that F ⊆ X is measurable and not negligible. Let K ∈ K
be such that K ⊆ F and µK > 0; let ξ ∈ A be such that IK ∩ Jξ = ∅; let n ∈ N be such that µK ≥ 3−n−1.
Set Gm = K ∩⋂

n≤i<mKξi for m ≥ n. Then IGm
⊆ IK ∪⋃

i<m IKξi
does not contain αξm, for any m. This

means that

µGm+1 = µ(Gm ∩Kξm) ≥ µ(Gm \ Fαξm
) − 3−m−2

2
=

1

2
(µGm − 3−m−2)

for every m ≥ n, and an easy induction shows that µGm ≥ 3−m−1 for every m. But this tells us that every
Gm is non-empty; because K is a countably compact class, K ∩Eξ ⊇ ⋂

m≥nGm is non-empty, and F meets
Eξ.

As F is arbitrary,
⋃

ξ∈AEξ has full outer measure.

(b) For the general case, because µ is σ-finite, there is a countable partition of unity 〈ai〉i∈I in A such that
all the principal ideals Aai

are totally finite and Maharam-type-homogeneous (use 332A), and we can find a
partition 〈Xi〉i∈I of X into measurable sets such that X•

i = ai for each i. Moreover, the subspace measure
µXi

on Xi is countably compact (451Db). Writing κi for the Maharam type of Aai
, there is a family 〈Eiξ〉ξ<κi

of negligible subsets of Xi such that {ξ : ξ < κi, Eiξ ⊆ E} is countable for every negligible set E. (Apply
(a) to a scalar multiple of µXi

.) Now we know from 332S that κ = supi∈I κi = #({(i, ξ) : i ∈ I, ξ < κi}).
On the other hand, for any negligible set E ⊆ X, {(i, ξ) : i ∈ I, ξ < κi, Eiξ ⊆ E} is countable. So if we
re-enumerate 〈Eiξ〉i∈I,ξ<κi

as 〈Eξ〉ξ<κ we shall have an appropriate family.

524G Proposition Let (X,T,Σ, µ) be a Maharam-type-homogeneous Radon probability space with
Maharam type κ ≥ ω. Then (κN,⊆∗,Sκ) 4GT (N (µ),⊆,N (µ)).

proof (Compare 522M.)

(a) By 524F, there is a family 〈Eξ〉ξ<κ in N (µ) such that {ξ : Eξ ⊆ E} is countable for every E ∈ N (µ).
Next, because the measure algebra of µ is isomorphic to the measure algebra of the usual measure on
[0, 1]N×κ, there is a stochastically independent family 〈Giξ〉i∈N,ξ<κ in Σ such that µGiξ = 2−i for every
i ∈ N and ξ < κ. For f ∈ κN set

φ(f) =
⋃

n∈N
Ef(n) ∪

⋂
n∈N

⋃
m≥nGm,f(m) ∈ N (µ).

(b) Take E ∈ N (µ) and set IE = {ξ : Eξ ⊆ E}, so that IE is countable. Define πE : X → {0, 1}N×IE by
setting πE(x)(i, ξ) = 1 if x ∈ Giξ, 0 otherwise. Then there is a non-empty compact self-supporting set KE

such that πE↾KE is continuous. PPP Then πE is measurable, therefore almost continuous (418J), and there is
a non-negligible measurable set H ⊆ X \ E such that πE↾H is continuous. Because µ is inner regular with
respect to the compact self-supporting sets, there is a non-negligible compact self-supporting KE ⊆ H, and
this has the required property. QQQ
πE [KE ] is compact. Let 〈Wn(E)〉n∈N run over the family of open-and-closed subsets W of {0, 1}N×IE

meeting πE [KE ]. Then π−1
E [Wn(E)] is a non-empty relatively open subset of KE for every n; because KE

is self-supporting, π−1
E [Wn(E)] is never negligible. Set

J(E, n, i) = {ξ : ξ ∈ IE , π
−1
E [Wn(E)] ∩Giξ = ∅}

for n, i ∈ N. Because 〈Giξ〉i∈N,ξ∈IE is stochastically independent,
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∑∞
i=0 2−i#(J(E, n, i)) =

∑{µGiξ : i ∈ N, ξ ∈ IE , Giξ ∩ π−1
E [Wn(E)] = ∅}

is finite, by the Borel-Cantelli lemma (273K). For each n, let k(E, n) ∈ N be such that 2−i#(J(E, n, i)) ≤
2−n−1 for i ≥ k(E, n), and set

ψ(E) =
⋃

n∈N
{(i, ξ) : i ≥ k(E, n), ξ ∈ J(E, n, i)} ⊆ N× κ.

Then

#({ξ : (i, ξ) ∈ ψ(E)} ≤
∑

n∈N,k(E,n)≤i

#(J(E, n, i))

≤
∑

n∈N,k(E,n)≤i

2−n−12i ≤ 2i

for every i ∈ N, and ψ(E) ∈ Sκ.

(c) Now (φ, ψ) is a Galois-Tukey connection from (κN,⊆∗,Sκ) to (N (µ),⊆,N (µ)). PPP Suppose that
f ∈ κN and E ∈ N (µ) are such that φ(f) ⊆ E. Because Ef(n) ⊆ φ(f), f(n) ∈ IE for every n ∈ N. Next,
KE does not meet φ(f), so KE ∩⋂

n∈N

⋃
m≥nGm,f(m) is empty, that is,

πE [KE ] ∩⋂
n∈N

⋃
m≥n{w : w ∈ {0, 1}N×IE , w(m, f(m)) = 1} = ∅.

By Baire’s theorem, there is some m ∈ N such that

πE [KE ] ∩⋃
i≥m{w : w ∈ {0, 1}N×IE , w(i, f(i)) = 1}

is not dense in πE [KE ], and there is an n ∈ N such that

Wn(E) ∩⋃
i≥m{w : w ∈ {0, 1}N×IE , w(i, f(i)) = 1} = ∅.

In this case, f(i) ∈ J(E, n, i) for every i ≥ m. But this means that (i, f(i)) ∈ ψ(E) for every i ≥
max(m, k(E, n)), so that f ⊆∗ ψ(E). As f and E are arbitrary, (φ, ψ) is a Galois-Tukey connection. QQQ

(d) Thus φ and ψ witness that (κN,⊆∗,Sκ) 4GT (N (µ),⊆,N (µ)), as claimed.

524H Corollary Let κ be an infinite cardinal, and µ a Maharam-type-homogeneous Radon prob-
ability measure with Maharam type κ. Then (B+

κ ,⊇
′′′, [B+

κ ]≤ω), (ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω), (κN,⊆∗,Sκ) and
(N (µ),⊆,N (µ)) are Galois-Tukey equivalent.

proof By 512Gb, 524D and 524B,

(B−
κ ,⊆

′′′, [B−
κ ]<ω1) 4GT (B−

κ ,⊆
′′′, [B−

κ ]<ω) 4GT (ℓ1(κ),≤, ℓ1(κ)),

(N (µ),⊆,N (µ)) 4GT (B−
κ ,⊆,B

−
κ ).

So

(B+
κ ,⊇

′′′, [B+
κ ]≤ω) ∼= (B−

κ , ⊆
′′′, [B−

κ ]≤ω) = (B−
κ , ⊆

′′′, [B−
κ ]<ω1)

4GT (ℓ1(κ),≤′′′, [ℓ1(κ)]<ω1)

(512Gd)

= (ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω) 4GT (κN,⊆∗,Sκ)

(524E)

4GT (N (µ),⊆,N (µ))

(524G)

≡GT (N (µ),⊆′′′, [N (µ)]≤ω)

(513Id again)

4GT (B−
κ , ⊆

′′′, [B−
κ ]≤ω)

by 512Gb again.
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524I Corollary Let µ be a Maharam-type-homogeneous Radon probability measure with infinite Ma-
haram type κ. Then

addN (µ) = addNκ = addω ℓ
1(κ),

cfN (µ) = cfNκ = cf ℓ1(κ).

proof By 524H and 512Db,

add(ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω) = add(N (µ),⊆,N (µ))

= add(N (νκ),⊆,N (νκ)) = add(Nκ,⊆,Nκ).

But add(ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω) = addω ℓ
1(κ) (513Ia), while add(N (µ),⊆,N (µ)) = addN (µ) and add(Nκ,⊆

,Nκ) = addNκ (512Ea). So

addω ℓ
1(κ) = addN (µ) = addNκ.

On the other side, 512Da tells us that

cov(Nκ,⊆,Nκ) = cov(N (µ),⊆,N (µ)) = cov(ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω).

But

cov(Nκ,⊆,Nκ) = cfNκ, cov(N (µ),⊆,N (µ)) = cfN (µ)

(512Ea). Next, cf ℓ1(κ) > ω. PPP If 〈xn〉n∈N is any sequence in ℓ1(κ), then (because κ is infinite) Fn = {x :
x ≤ xn} is nowhere dense (for the norm topology) for any n ∈ N, so 〈Fn〉n∈N cannot cover ℓ1(κ) (4A2Ma)
and {xn : n ∈ N} cannot be cofinal. QQQ So 512Gf tells us that

cov(ℓ1(κ),≤′′′, [ℓ1(κ)]≤ω) = cov(ℓ1(κ),≤, ℓ1(κ)) = cf ℓ1(κ).

Putting these together,

cfN (µ) = cfNκ = cf ℓ1(κ)

as required.

524J Theorem Let (X,T,Σ, µ) and (Y,S,T, ν) be Radon measure spaces with non-zero measure and
isomorphic measure algebras.

(a) N (µ) and N (ν) are Tukey equivalent, so addµ = addN (µ) = addN (ν) = add ν and cfN (µ) =
cfN (ν).

(b) (X,∈,N (µ)) and (Y,∈,N (ν)) are Galois-Tukey equivalent, so covN (µ) = covN (ν) and nonN (µ) =
nonN (ν).

proof (a) Let A, B be the measure algebras of µ and ν. Let 〈ai〉i∈I be a partition of unity in A+ such
that all the principal ideals Aai

are homogeneous and totally finite, and 〈bi〉i∈I a matching family in B,
so that Aai

∼= Bbi for every i. Because (X,Σ, µ) and (Y,T, ν) are strictly localizable (416B), there are
decompositions 〈Xi〉i∈I and 〈Yi〉i∈I of X, Y respectively such that X•

i = ai and Y •
i = bi for every i (322M).

Write µXi
, νYi

for the corresponding subspace measures; of course these are Radon measures (416Rb). Then
N (µXi

) and N (νYi
) are Tukey equivalent for every i. PPP If the common Maharam type of Aai

and Bbi is
infinite, this is a consequence of 524H. If Aai

= {0, ai}, then µXi
is purely atomic and there is a single point

x of Xi such that µ{x} = µXi (414G). In this case N (µXi
) has a greatest member Xi \ {x}, and similarly

N (νκi
) has a greatest member, so they have Tukey equivalent cofinal subsets and are Tukey equivalent

(513E(d-ii)). QQQ
Now E 7→ 〈E ∩Xi〉i∈I is a partially-ordered-set isomorphism between N (µ) and

∏
i∈I N (µXi

). Similarly,
N (ν) is isomorphic to

∏
i∈I N (νYi

). It now follows from 513Eg that N (µ) and N (ν) are Tukey equivalent.
Accordingly addN (µ) = addN (ν) and cfN (µ) = cfN (ν). By 521Ad, addµ = addN (µ) and add ν =
addN (ν).

(b) Immediate from 521La, applied in both directions.

524K Corollary Let (X,T,Σ, µ) and (Y,S,T, ν) be Radon measure spaces with measure algebras A, B
respectively. If A can be regularly embedded in B, then N (µ) 4T N (ν).
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proof As usual, write µ̄ and ν̄ for the functionals on A, B respectively defined from µ and ν, and let
π : A → B be a regular embedding, that is, an order-continuous injective Boolean homomorphism.

(a) Consider first the case in which µ is totally finite and π is measure-preserving for µ̄ and ν̄. Let

(X̃, T̃, Σ̃, µ̃) and (Ỹ , S̃, T̃, ν̃) be the Stone spaces of (A, µ̄) and (B, ν̄) respectively. Then π corresponds to

a continuous function f : Ỹ → X̃ (312Q). By 418I, the image measure ν̃f−1 is a Radon measure on X̃. If

a ∈ A and â is the corresponding open-and-closed set in X̃, then

ν̃f−1[â] = ν̃(π̂a) = ν̄(πa) = µ̄a = µ̃â.

By 415H(v), ν̃f−1 = µ̃. By 521Hb, N (µ̃) 4T N (ν̃). But now 524Ja tells us that

N (µ) ≡T N (µ̃) 4T N (ν̃) ≡T N (ν).

(b) Next, consider the case in which µ and ν are totally finite but π is not necessarily measure-preserving.
As it is (sequentially) order-continuous, we have a measure µ′ on X defined by saying that µ′E = ν̄(πE•) for
E ∈ Σ, and N (µ′) = N (µ). Because µ′ is absolutely continuous with respect to µ, it is an indefinite-integral
measure over µ (234O) and is a Radon measure on X (416Sa again). Taking µ̄′ to be the corresponding
functional on A, (A, µ̄′) is the measure algebra of µ′ and π is measure-preserving for µ̄′ and ν̄. So (a) tells
us that

N (µ) = N (µ′) 4T N (ν).

(c) Thirdly, suppose that µ is totally finite, but ν might not be. Set Bf = {b : b ∈ B, ν̄b < ∞}. For
b ∈ Bf , set cb = sup{a : a ∈ A, b ∩ πa = 0}; then b ∩ πcb = 0, because π is order-continuous. If a ∈ A \ {0},
there is a b ∈ Bf such that b ∩ πa 6= 0, so that a 6⊆ cb. Accordingly supb∈Bf 1 \ cb = 1 in A; as A is ccc, there
is a sequence 〈bn〉n∈N in Bf such that supn∈N 1 \ cbn = 1, that is, ν̄(a ∩ supn∈N bn) > 0 for every non-zero
a ∈ A.

For each n ∈ N, choose Fn ∈ T such that F •
n = bn in B, and set Y ′ =

⋃
n∈N

Fn. The subspace measure
νY ′ is σ-finite, so there is a totally finite measure ν ′ on Y ′, an indefinite-integral measure over νY ′ , with the
same null ideal as νY ′ (use 215B(ix)). The measures νY ′ and ν ′ are both Radon measures (416Rb, 416Sa).
Setting b = supn∈N bn in B, the principal ideal Bb can be identified with the measure algebra of νY ′ (322I)
and ν ′. Moreover, the map a 7→ b ∩ πa : A → Bb is an injective order-continuous Boolean homomorphism.
By (b) and 521Fa,

N (µ) 4T N (ν ′) = N (νY ′) 4T N (ν).

(d) For the general case, let 〈ai〉i∈I be a partition of unity in A such that µ̄ai is finite for every i, and
set bi = πai for each i, so that 〈bi〉i∈I is a partition of unity in B. As in the proof of 524J, we have
corresponding partitions 〈Xi〉i∈I , 〈Yi〉i∈I of X, Y into measurable sets; as before, 322M tells us that N (µ)
and N (ν) can be identified with

∏
i∈I N (µXi

) and
∏

i∈I N (νYi
) respectively. Now, for each i, we can identify

the principal ideals Aai
, Bbi with the measure algebras of the subspace measures µXi

and νYi
, and π↾Aai

is an order-continuous embedding of Aai
in Bbi . So (c) tells us that N (µXi

) 4T N (νYi
). Accordingly

N (µ) ∼=
∏

i∈I N (µXi
) 4T

∏
i∈I N (νYi

) ∼= N (ν)

(513Eg again), and the proof is complete.

524L So far we have been looking at cardinals defined from null ideals. Of course there is an equally
important series based on measurable algebras, which turns out to be similarly strongly associated with the
cardinal functions of the ideals Nκ. I have already developed a good deal of the machinery in the arguments
of this section. But for ‘linking numbers’ we need a new idea, which is most clearly expressed in the context
of homogeneous algebras.

Proposition (Dow & Steprāns 94) Let κ be an infinite cardinal. Then for any n ≥ 2 the n-linking
number linkn(Bκ) is the least λ such that κ ≤ 2λ.

proof Let λ be the least cardinal such that κ ≤ 2λ.

(a) By 514Cb, Bκ is isomorphic, as partially ordered set, to a subset of P(link(Bκ)), so we must have
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2link(Bκ) ≥ #(Bκ) ≥ κ

and link(Bκ) ≥ λ. It follows at once that linkn(Bκ) ≥ λ for every n ≥ 2 (511Ia).

(b) Now let n ≥ 2, and take an injective function φ : κ → {0, 1}λ. Let C be the family of measurable
cylinders in {0, 1}κ, that is, sets of the form {x : x ∈ {0, 1}κ, x↾I = z}, where I ⊆ κ is finite and z ∈ {0, 1}I .
For each E ∈ Tκ \ Nκ we can find disjoint finite sets I ′E , I ′′E , JE ⊆ κ and GE ∈ Tκ such that

setting CE = {x : x ∈ {0, 1}κ, x(ξ) = 0 for ξ ∈ I ′E and x(ξ) = 1 for ξ ∈ I ′′E}, and kE =

#(I ′E) + #(I ′′E), νκ(CE \ E) ≤ 1

4n
νκCE =

1

4n
· 2−kE ;

GE is determined by coordinates in JE and νκ(CE ∩ (E△GE)) ≤ 1

4n
· 2−nkE ;

νκGE ≥ 1 − 1

2n
.

PPP By 254Fe, there is a set W , expressible as the union of finitely many measurable cylinders, such that

νκ(E△W ) ≤ 1

5n
νκE. Now νκW ≥ 9

10νκE so νκ(W \ E) ≤ 1

4n
νκW . W is determined by coordinates in a

finite set, so is expressible as a disjoint union of non-empty measurable cylinders, and for at least one of

these we must have νκ(C \ E) ≤ 1

4n
νκC; take such a one for CE . Express CE as {x : x↾IE = zE}, where

IE ⊆ κ is finite and zE ∈ {0, 1}IE , and set I ′E = {ξ : ξ ∈ IE , zE(ξ) = 0} and I ′′E = {ξ : ξ ∈ IE , zE(ξ) = 1};

then νκCE = 2−kE and νκ(CE \ E) ≤ 1

4
n · 2−kE .

Next, take a set W ′ ⊆ {0, 1}κ, determined by coordinates in a finite subset J of κ, such that νκ(E△W ′) ≤
1

4n
· 2−nkE . Set

GE = {x : x ∈ {0, 1}κ, ∃ y ∈W ′ ∩ CE , x↾κ \ IE = y↾κ \ IE},

so that GE is determined by coordinates in JE = J \ IE and GE ∩ CE = W ′ ∩ CE ; accordingly

νκ(CE ∩ (E△GE)) = νκ(CE ∩ (E△W ′)) ≤ νκ(E△W ′) ≤ 1

4n
· 2−nkE .

Note that GE and CE are stochastically independent, so that

νκCE(1 − νκGE) = νκ(CE \GE) ≤ νκ(CE \ E) + νκ(CE ∩ (E \GE))

≤ 1

4n
νκCE +

1

4n
(νκCE)n ≤ 1

2n
νκCE

and νκGE ≥ 1 − 1

2n
. QQQ

(c) Let Q be the set of all quadruples (k, U, V,W ) where k ∈ N and U , V , W are disjoint open-and-closed
subsets of {0, 1}λ in its usual topology. For q = (k, U, V,W ) ∈ Q, set

Eq = {E : E ∈ Tκ \ Nκ, kE = k, φ[I ′E ] ⊆ U, φ[I ′′E ] ⊆ V, φ[JE ] ⊆W}.

For any E ∈ Tκ \ Nκ, I ′E , I ′′E and JE , as chosen in (b) above, are disjoint finite sets, so φ[I ′E ], φ[I ′′E ] and
φ[JE ] also are, and there is a q ∈ Q such that E ∈ Eq. Now if q = (k, U, V,W ) ∈ Q and Ei ∈ Eq for i < n,
then νκ(

⋂
i<nEi) > 0. PPP Set I ′ =

⋃
i<n I

′
Ei

, I ′′ =
⋃

i<n I
′′
Ei

and J =
⋃

i<n JEi
. Then φ[I ′] ⊆ U , φ[I ′′] ⊆ V

and φ[J ] ⊆W , so that I ′, I ′′ and J must be disjoint. Set

C =
⋂

i<n CEi
= {x : x ∈ {0, 1}κ, x(ξ) = 0 for ξ ∈ I ′, x(ξ) = 1 for ξ ∈ I ′′};

then νκC = 2−#(I′∪I′′) ≥ 2−nk. Next, setting G =
⋂

i<nGEi
,

νκG ≥ 1 −∑n−1
i=0 (1 − νκGEi

) ≥ 1

2
,

and G is stochastically independent of C, so that νκ(C ∩G) ≥ 2−nk−1. Finally,

νκ(C ∩G \ Ei) ≤ νκ(CEi
∩GEi

\ Ei) ≤ 1

4n
· 2−nk
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for each i, so

νκ(C ∩G \⋂i<nEi) ≤ 2−nk−2 < νκ(C ∩G)

and νκ(
⋂

i<nEi) > 0. QQQ

(d) This means that if we set Aq = {E• : E ∈ Eq} for each q ∈ Q, then every Aq is an n-linked set in Bκ

and
⋃

q∈QAq = B+
κ . Because {0, 1}λ is a compact topological space with a subbase with cardinal λ ≥ ω,

it has λ open-and-closed sets and #(Q) = λ. So 〈Aq〉q∈Q witnesses that linkn(Bκ) ≤ λ, and the proof is
complete.

524M Theorem Let (A, µ̄) be a semi-finite measure algebra. Let K be the set of infinite cardinals κ
such that A has a homogeneous principal ideal with Maharam type κ.

#(A) = 2c(A) if A is finite,(a)

= τ(A)ω if A is ccc and infinite.

wdistr(A) = ∞ if A is purely atomic,(b)

= addN if K = {ω},
= ω1 otherwise.

π(A) = c(A) if A is purely atomic,(c)

= max(c(A), cfN , sup
κ∈K

cf[κ]≤ω) otherwise.

m(A) = ∞ if A is purely atomic,(d)

= min
κ∈K

covNκ otherwise.

d(A) = c(A) if A is purely atomic,(e)

= max(c(A), sup
κ∈K

nonNκ) otherwise.

(f) For 2 ≤ n < ω,

linkn(A) = c(A) if A is purely atomic,

= max(c(A),min{λ : τ(A) ≤ 2λ}) otherwise.

proof The case A = {0} is trivial, so I shall assume henceforth that A 6= {0}. Let 〈ai〉i∈I be a partition
of unity in A+ such that all the principal ideals Aai

are homogeneous and totally finite. For each i ∈ I,

set κi = τ(Aai
), so that Aai

∼= Bκi
, and let (Zi, λi) be the Stone space of (Aai

, µ̄↾Aai
). Let (Â, µ̃) be

the localization of (A, µ̄) (322Q). A can be identified with an order-dense Boolean subalgebra of Â, so that

〈ai〉i∈I is still a partition of unity in Â. Because Af = Âf (322P), Aai
is still a principal ideal of Â, and Â

can be identified with the simple product
∏

i∈I Aai
(315F).

(a) This is elementary if A is finite (see 511Ic). If A is infinite, then 515Ma tells us that #(A) = τ(A)ω.

(b)

wdistr(A) = wdistr(Â)

(514Ee)

= min
i∈I

wdistr(Aai
)

(514Ef)

= min
i∈I

wdistr(Bκi
) = min

i∈I
add(N (λi))

(514Be, because N (λi) is the ideal of nowhere dense subsets of Z, by 322R)

= min
i∈I

add(Nκi
)

(524Ja)
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= ∞ if K = ∅,
= addN if K = {ω},
= ω1 otherwise

(523E).

(c)(i) Consider first an algebra Bκ, where κ ≥ ω. Then ciB+
κ > ω. PPP If 〈bn〉n∈N is any sequence in

B+
κ , then (because Bκ is atomless) we can choose cn ⊆ bn such that 0 < ν̄κcn ≤ 2−n−2 for each n ∈ N. Set

c = supn∈N cn, b = 1 \ c; then b 6= 0 and bn 6⊆ b for every n, so {bn : n ∈ N} is not coinitial with B+
κ . QQQ

It follows that

ciB+
κ = cov(B+

κ ,⊇,B
+
κ ) = cov(B+

κ ,⊇
′′′, [B+

κ ]≤ω)

(512Gf)

= cov(Nκ,⊆,Nκ)

(524H)

= cfNκ.

(ii) If A is purely atomic, then Aai
= {0, ai} for every i, and π(A) = #(I) = c(A). Otherwise,

max(c(A), sup
i∈I

π(Aai
)) ≤ π(A)

(514Da, 514Ed)

≤ max(ω, c(A), sup
i∈I

π(Aai
))

(514Ef)

= max(c(A), sup
κ∈K

π(Bκ)) = max(c(A), sup
κ∈K

cfNκ)

(by (i))

= max(c(A), cfN , sup
κ∈K

cf[κ]≤ω))

by 523N.

(d) If A is purely atomic, then m(A) = ∞ (511If). Otherwise,

m(A) = m(Â)

(517Id)

= min
i∈I

m(Aai
) = min

i∈I
n(Zi)

(517N)

= min
i∈I

covN (λi)

(again because N (λi) is the ideal of nowhere dense subsets of Zi)

= min
i∈I

covNκi

(524Jb)

= min
κ∈K

covNκ,

as claimed.

(e)(i) I note first that d(Aai
) = nonNκi

for each i. PPP Let A ∈ PZi \ N (λi) be a set with cardinal
nonN (λi). Then H = intA is not empty. Let a ∈ A+

ai
be such that the corresponding open-and-closed set â
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is included in H. Then â can be identified with the Stone space of Aa (312T); because Aai
is homogeneous,

and A ∩ â is dense in â,

d(Aai
) = d(Aa) = d(â)

(514Bd)

≤ #(A ∩ â) ≤ nonN (λi) = nonNκi

(524Jb)

≤ d(Zi)

(because N (λi) is the ideal of nowhere dense subsets of Zi, so surely contains no dense set)

= d(Aai
)

by 514Bd again. QQQ

(ii) If A is purely atomic, d(A) = c(A). Otherwise,

max(c(A), sup
i∈I

d(Aai
)) ≤ d(A)

(514Da, 514Ed)

= d(Â)

(514Ee)

≤ max(ω, c(A), sup
i∈I

d(Aai
))

(514Ef)

= max(c(A), sup
i∈I

nonNκi
) = max(c(A), sup

κ∈K
nonNκ).

(f) If A is purely atomic, this is elementary, since any linked subset of A+ can contain at most one atom.
Otherwise, set

θ = max(c(A),min{λ : τ(A) ≤ 2λ}), θ′ = linkn(A).

For any i ∈ I, κi ≤ τ(A) (514Ed), so κi ≤ 2θ and linkn(Aai
) = linkn(Bκi

) ≤ θ (524L; of course the case
κi = 0 is trivial here). Accordingly

θ′ = linkn(Â)

(514Ee)

≤ max(ω, c(A), sup
i∈I

linkn(Aai
))

(514Ef)

≤ θ.

On the other hand, c(A) ≤ θ′ (514Da). For each i ∈ I, linkn(Ai) ≤ θ′ (514Ed), so κi ≤ 2θ
′

(524L, in the
other direction). Let Ai be a τ -generating subset of Aai

with cardinal κi. Now the order-closed subalgebra
of A generated by A = {ai : i ∈ I} ∪⋃

i∈I Ai is A, so

τ(A) ≤ #(A) = max(c(A), supi∈I κi) ≤ max(θ′, 2θ
′

) = 2θ
′

.

But this means that θ ≤ θ′ and the two are equal.

Remark For the corresponding calculation of τ(A), when (A, µ̄) is localizable, see 332S.
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524N Corollary (a) If (X,Σ, µ) is a semi-finite locally compact measure space, with µX > 0, then
covN (µ) ≥ mσ-linked.

(b) If A is any measurable algebra, then m(A) ≥ mσ-linked.

proof (a) Because µ is semi-finite and µX > 0, there is an E ∈ Σ such that 0 < µE < ∞. The subspace

measure µE on E is compact, so ν =
1

µE
µE is a compact probability measure. Set κ = max(ω, τ(ν)).

Because ν is a compact measure, there is a function f : {0, 1}κ → E which is inverse-measure-preserving for
νκ and ν (343Cd). Now

mσ-linked ≤ m(Bc )

(because Bc is σ-linked, by 524Mf)

= covNc

(524Md)

≤ covNκ

(523F)

≤ covN (ν)

(521Ha)

= covN (µE) ≤ covN (µ)

(521Fb).

(b) This is now immediate from 524Md.

524O Freese-Nation numbers I spell out those facts about Freese-Nation numbers of measure algebras
which can be read off from the results in §518.

Proposition (a) Let (A, µ̄) be an infinite measure algebra. Then FN(A) ≥ FN(PN).
(b) Let A be a measurable algebra.

(i) FN(A) ≤ c+.
(ii) If τ(A) ≤ c then FN(A) ≤ FN(PN).
(iii) If

(α) cf([λ]≤ω) ≤ λ+ for every cardinal λ ≤ τ(A),
(β) �λ is true for every uncountable cardinal λ ≤ τ(A) of countable cofinality,

then FN(A) ≤ FN∗(PN).
(c) Suppose that the continuum hypothesis and CTP(ωω+1, ωω) are both true. If A is a measurable

algebra, then

FN(A) = c = ω1 if ω ≤ τ(A) < ωω,

= c+ = ω2 otherwise .

proof (a) This is a special case of 518Ca.

(b)(i) Consider first the case A = Bκ for some cardinal κ. For I ⊆ κ, let CI be the closed subalgebra of
Bκ consisting of those a ∈ Bκ expressible in the form E• for some measurable E ⊆ {0, 1}κ determined by
coordinates in I. For a ∈ Bκ, there is a smallest subset Ia of λ such that a ∈ CI (325M again); Ia is always
countable.

For each a ∈ Bκ, set

f(a) = {b : Ib ⊆ Ia}.

Then #(f(a)) ≤ c. If a ⊆ b, then there is a c ∈ Bκ such that a ⊆ c ⊆ b and Ic ⊆ Ia ∩ Ib (325M(b-ii)). So f
is a Freese-Nation function. This shows that FN(Bκ) ≤ c+.

In general, A is either {0} or isomorphic to a closed subalgebra of Bκ where κ = max(ω, τ(A)), so
FN(A) ≤ FN(Bκ) ≤ c+ by 518Cc.
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(ii) A is σ-linked (524Mf), so 518D(iii) tells us that FN(A) ≤ FN(PN).

(iii) If B ⊆ A is a countably generated order-closed subalgebra, then FN(B) ≤ FN(PN), by (ii); so
518I tells us that FN(A) ≤ FN∗(PN).

(c) If τ(A) < ωω then cf[λ]≤ω = λ for ω1 ≤ λ ≤ τ(A) (5A1F(e-iv)), so we can use (a) and (b-iii);
otherwise use (b-i) and 518K.

524P The Maharam classification If the cardinal functions of a Radon measure space are determined
by its measure algebra, there ought to be some way of calculating them directly from the classification of
measure algebras in §332. In many cases this is straightforward.

Theorem Let (X,T,Σ, µ) be a Radon measure space, and A its measure algebra. Let K be the set of
infinite cardinals κ such that the Maharam-type-κ component of A is non-zero.

addµ = addN (µ) = ∞ if K = ∅,(a)

= addN if K = {ω},
= ω1 otherwise.

π(µ) = π(A) = c(A) if K = ∅,(b)

= max(c(A), cfN , sup
κ∈K

cf[κ]≤ω) otherwise.

covN (µ) = 1 if A = {0},(c)

= ∞ if A has an atom,

= covNminK otherwise.

nonN (µ) = ∞ if A = {0},(d)

= 1 if A has an atom,

= nonNminK otherwise.

shrN (µ) = 0 if A = {0},(e)

= 1 if A has an atom,

≥ shrN otherwise.

(f) If µ is σ-finite,

cfN (µ) = 1 if K = ∅,
= max(cfN , cf[τ(A)]≤ω) otherwise.

proof If µX = 0 all these results are trivial, so let us suppose henceforth that µX > 0. As in part (a)
of the proof of 524J, there is a decomposition 〈Xi〉i∈I of X such that the subspace measures µXi

are all
Maharam-type-homogeneous and non-zero. Note that max(ω,#(I)) = max(ω, c(A)) (332E). For each i ∈ I,
let κi be the Maharam type of µXi

.

(a) By 521Ad, addµ = addN (µ). The map E 7→ 〈E ∩ Xi〉i∈I identifies N (µ), as partially ordered
set, with the product of the family 〈N (µXi

)〉i∈I . So addN (µ) = mini∈I addN (µXi
) (511Hg). Now if

i ∈ I and κi = 0, Xi is an atom of (X,Σ, µ), so there is an xi ∈ Xi such that µ(Xi \ {xi}) = 0 (414G
again). In this case, Xi \ {xi} is the largest member of N (µXi

) and addN (µXi
) = ∞. If κi is infinite,

then addN (µXi
) = addNκi

, by 524I applied to a scalar multiple of µXi
. So addN (µ) = minκ∈K addNκ,

interpreting this as ∞ if K = ∅. But we know from 523E that addNκ = ω1 if κ > ω, while of course
addNω = addN . It follows at once that

addN (µ) = min
i∈I

addN (µXi
) = ∞ if K = ∅,

= addN if K = {ω},
= ω1 otherwise.
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(b) By 521Dd, π(µ) = π(A); and 524Mc gives us the formula for π(A).

(c) If E is a cover of X by negligible sets, and i ∈ I, then {E ∩Xi : E ∈ E} is a cover of Xi by negligible
sets; thus covN (µ) ≥ supi∈I covN (µXi

). By 524Jb, covN (µ) ≥ supi∈I covNκi
. If any of the κi is zero,

that is, if A has an atom, this is ∞, and we can stop.
Otherwise, for each i ∈ I,

covN (µXi
) = covNκi

≤ covNminK = λ

say, by 523B. So we have a family 〈Eiξ〉ξ<λ of negligible subsets of Xi covering Xi; setting Eξ =
⋃

i∈I Eiξ

for each ξ, we have a family 〈Eξ〉ξ<λ in N (µ) covering X, so covN (µ) ≤ covNminK . But we already know
that

covN (µ) ≥ supi∈I covNκi
≥ covNminK ,

so covN (µ) = covNminK .

(d) A set A ⊆ X is non-negligible iff A ∩ Xi is non-negligible for some i ∈ I. It follows at once that
nonN (µ) = mini∈I nonN (µXi

). If any of the Xi is an atom, it contains a point of non-zero measure, so
that nonN (µ) = 1. If κi ≥ ω for every i, then we have

nonN (µ) = mini∈I nonNκi
= nonNminK

by 524Jb and 523B again.

(e) If A is purely atomic, then µ is point-supported, so shrN (µ) = 1. Otherwise, let E be a measurable set
of non-zero finite measure such that the subspace measure µE is atomless; let ν be the normalized subspace

measure
1

µE
µE ; then ν, like µE , is a Radon measure. By 343Cb, there is a function f : E → {0, 1}ω which

is inverse-measure-preserving for ν and νω; because {0, 1}ω is separable and metrizable, νf−1 is a Radon
measure (451O, or 418I-418J) and must be equal to νω (416Eb). By 521Fd and 521Hb,

shrN (µ) ≥ shrN (µE) = shrN (ν) ≥ shrN (νω) = shrN .

(f)(i) If K = ∅ then (a) tells us that N (µ) has a greatest member, so that cfN (µ) = 1.

(ii) Now suppose that K is not empty. Then 524Fb tells us that there is a family 〈Eξ〉ξ<τ(A) in N (µ)

such that {ξ : Eξ ⊆ E} is countable for every E ∈ N (µ). In this case, J 7→ ⋃
ξ∈J Eξ : [τ(A)]≤ω → N (µ)

is a Tukey function, so cfN (µ) ≥ cf[τ(A)]≤ω. At the same time, there is an i ∈ I such that κi ≥ ω. The
identity map from N (µXi

) to N (µ) is a Tukey function; but this means that

cfN (µ) ≥ cfN (µXi
) = cfNκi

(524I again)

≥ cfNω = cfN

(523B). Thus cfN (µ) ≥ max(cfN , cf[τ(A)]≤ω).

(iii) In the other direction, we know from 524H (again, applied to a scalar multiple of µXi
) that

(N (µXi
),⊆,N (µXi

) ≡GT (κNi ,⊆∗,Sκi
) whenever κi is infinite. Now τ(A) ≥ κi, so the maps

identity: κNi → τ(A)N, S 7→ S ∩ (N× κi) : Sτ(A) → Sκi

form a Galois-Tukey connection from (κNi ,⊆∗,Sκi
) to (τ(A)N,⊆∗,Sτ(A)). Accordingly we have

(N (µXi
),⊆,N (µXi

)) ≡GT (κNi ,⊆∗,Sκi
)

4GT (τ(A)N,⊆∗,Sτ(A)) ≡GT (Nτ(A),⊆,Nτ(A)),

and N (µXi
) 4T Nτ(A).

The arguments quoted assume that κi is infinite; but of course it is still true that N (µXi
) 4T Nτ(A) when

κi = 0, since then any constant function from N (µXi
) to Nτ(A) is a Tukey function. It follows that
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N (µ) ∼=
∏

i∈I N (µXi
) 4T N I

τ(A)

(513Eg once more).

(iv) At this point observe that as we are assuming thatK 6= ∅, τ(A) is infinite; and as µ is supposed to be
σ-finite, I is countable. So we can find a disjoint family 〈Fi〉i∈I of measurable subsets of {0, 1}τ(A) such that
all the subspace measures (ντ(A))Fi

are isomorphic to scalar multiples of ντ(A). (Take Fi = {x : x(ni) = 1,
x(m) = 0 for m < ni} where i 7→ ni : I → N is injective.) In this case, the map

〈Ei〉i∈I 7→ ⋃
i∈I Ei :

∏
i∈I N ((ντ(A))Fi

) → N (ντ(A))

is a Tukey function, while N I
τ(A) is isomorphic to

∏
i∈I N ((ντ(A))Fi

). Putting these together,

N (µ) 4T N I
τ(A)

∼=
∏

i∈I N ((ντ(A))Fi
) 4T Nτ(A).

It follows that

cfN (µ) ≤ cfNτ(A) = max(N , cf[τ(A)]≤ω).

So we have inequalities in both directions and cfN (µ) = max(N , cf[τ(A)]≤ω), as claimed.

*524Q I do not know how to calculate cfN (µ) for non-σ-finite Radon measures µ without special
assumptions. In the presence of GCH, however, we have the following result.

Proposition Suppose that the generalized continuum hypothesis is true. Let (X,T,Σ, µ) be a Radon
measure space and (A, µ̄) its measure algebra. For each cardinal κ, write eκ for the Maharam-type-κ
component of A, and Cκ for the principal ideal of A generated by supκ′>κ eκ′ ; set λ = sup{κ : eκ 6= 0}.
Then cfN (µ) = max(c(C0)+, λ+) unless λ > c(C0) and there is some γ < λ such that cfλ > c(Cγ), in which
case cfN (µ) = λ.

proof (a) Write

θ = λ if λ > c(C0) and cfλ > min
γ<λ

c(Cγ),

= max(λ+, c(C0)+) otherwise.

If µ is purely atomic, it is point-supported, so λ = 0 and C0 = {0} and θ = 1 = cfN (µ). So let us
suppose henceforth that µ is not purely atomic, that is, C0 6= {0} and λ ≥ ω. As in the proofs of 524J
and 524P, there is a decomposition 〈Xi〉i∈I of X such that the subspace measures µXi

are all Maharam-
type-homogeneous and non-zero. Let κi be the Maharam type of µXi

for each i, so that λ = supi∈I κi.
Now N (µ) ∼=

∏
i∈I N (µXi

) (see the proof of 524Ja). For i ∈ I, cfN (µXi
) = 1 if κi = 0, and otherwise is

max(cfN , cf[κi]
≤ω) = max(ω1, cf[κi]

≤ω) (524Ja, 523N). By 5A6Ab,

cfN (µXi
) = 1 if κi = 0,

= κi if cfκi > ω,

= κ+i if cfκi = ω.

(b) For each cardinal κ, set Jκ = {i : i ∈ I, cfN (µXi
) > κ}, and set

λ1 = sup
i∈I

cfN (µXi
) = λ+ if there is an i ∈ I such that κi = λ and cfκi = ω,

= λ otherwise.

Then 513J tells us that if λ1 > #(J1) and there is some γ < λ1 such that cfλ1 > #(Jγ), then cfN (µ) = λ1,
and that otherwise cfN (µ) = max(#(J1)+, λ+1 ). As we are supposing that µ is not purely atomic, c(C0) ≥ ω
and c(C0) = max(ω,#(J1)); also λ+ ≥ λ1 ≥ λ ≥ ω.

case 1 Suppose λ1 ≤ #(J1). Then J1 is infinite, so c(C0) = #(J1) ≥ λ, and

cfN (µ) = #(J1)+ = c(C0)+ = θ

as required.
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case 2 Suppose λ1 > max(λ,#(J1)). Then there must be some i ∈ I such that cfN (µXi
) > λ ≥ ω, in

which case κi = λ has countable cofinality and λ1 = λ+. In this case, cfλ1 = λ1 > #(J1), so cfN (µ) = λ1.
If γ < λ, then Cγ is non-trivial, and cfλ = ω ≤ c(Cγ); so

θ = max(λ+,#(J1)+) = λ1 = cfN (µ).

case 3 Suppose λ1 = λ > #(J1) has countable cofinality. In this case we must have κi < λ1 for every
i, so #(Jγ) ≥ ω = cfλ1 for every γ < λ1, and cfN (µ) = λ+1 . At the same time, cfλ = ω ≤ c(Cγ) for every
γ < λ, so

θ = max(λ+,#(J1)+) = max(λ+1 ,#(J1)+) = cfN (µ).

case 4 Suppose λ1 = λ > #(J1) has uncountable cofinality. In this case we have λ > max(ω,#(J1)) =
c(C0), so

cfN (µ) = λ1 ⇐⇒ #(Jγ) < cfλ1 for some γ < λ1

⇐⇒ max(ω,#(Jγ)) < cfλ1 for some γ < λ1

⇐⇒ c(Cγ) < cfλ for some γ < λ

⇐⇒ θ = λ ⇐⇒ θ = λ1,

and otherwise

cfN (µ) = λ+1 = max(λ+, c(C0)+) = θ.

Thus cfN (µ) = θ in all cases.

524R The results above show that most of the most important cardinal functions of measurable algebras
and Radon measures are readily calculable from the cardinal functions of the ideals Nκ studied in §523. There
are no such simple formulae for other classes of space such as compact or quasi-Radon measures (524Xj,
524Xk). However I can give a handful of partial results, as follows.

Proposition Let (X,Σ, µ) be a countably compact σ-finite measure space with Maharam type κ. Then
[κ]≤ω 4T N (µ). Consequently cf[κ]≤ω ≤ cfN (µ), and if κ is uncountable then addN (µ) = ω1 and
cfN (µ) ≥ cfNκ.

proof If 〈Eξ〉ξ<κ is a family as in 524Fb, then I 7→ ⋃
ξ∈I Eξ : [κ]≤ω → N (µ) is a Tukey function, if both

[κ]≤ω and N (µ) are given their natural partial orderings of inclusion. By 513Ee, cf[κ]≤ω ≤ cfN (µ) and
add[κ]≤ω ≥ addN (µ). But if κ is uncountable, add[κ]≤ω = ω1 so addN (µ) is also ω1. At the same time,
cfN (µ) ≥ cfN (521K), so

cfN (µ) ≥ max(cfN , cf[κ]≤ω) = cfNκ.

524S In a different direction, there is something we can say about quasi-Radon measures.

Proposition Let (X,T,Σ, µ) be a Radon measure space, with µX > 0, and (Y,S,T, ν) a quasi-Radon
measure space such that the measure algebras of µ and ν are isomorphic. Then

(a) N (ν) 4T N (µ), so add ν = addN (ν) ≥ addN (µ) = addµ and cfN (ν) ≤ cfN (µ);
(b) (Y,∈,N (ν)) 4GT (X,∈,N (µ)), so covN (ν) ≤ covN (µ) and nonN (ν) ≥ nonN (µ).

proof (a) Let (Z,U,Λ, λ) be the Stone space of the measure algebra B of (Y,T, ν), and R ⊆ Z × Y the
relation described in 415Q/416V, so that R−1[F ] ∈ N (λ) for every F ∈ N (ν). Let W ⊆ Z be the union of
the open sets of finite measure. Then the subspace measure λW is a Radon measure and its measure algebra
is isomorphic to the measure algebras of ν and µ (411Pf).

Now F 7→W ∩R−1[F ] : N (ν) → N (λW ) is a Tukey function. PPP??? Otherwise, there is a family A ⊆ N (ν)
such that

⋃A /∈ N (ν) but {W ∩R−1[A] : A ∈ A} is bounded above in N (λW ). Because W is conegligible,
B =

⋃
A∈AR

−1[A] is negligible in Z. Let E ∈ T be a measurable envelope of
⋃A (213J/213L). Then the

open-and-closed set E∗ ⊆ Z corresponding to E• ∈ B is not negligible; as λ is inner regular with respect to
the open-and-closed sets (411Pb), there must be a non-empty open-and-closed set V ⊆ E∗ which is disjoint
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from
⋃

A∈AR
−1[A]. Express V as F ∗ where F ∈ T. Then R[V ] = R[F ∗] is disjoint from

⋃A. But R[F ∗]
is measurable and F \ R[F ∗] is negligible (415Qb), while F \ E must also be negligible, so E ∩ R[F ∗] is a
non-negligible measurable subset of E \⋃A, which is impossible. XXXQQQ

This shows that N (ν) 4T N (λW ). But λW and µ are Radon measures with isomorphic non-zero measure
algebras, so N (λW ) ≡T N (µ) (524J) and N (ν) 4T N (µ). Accordingly addN (ν) ≥ addN (µ) and cfN (ν) ≤
cfN (µ)

(b) This is a special case of 521La.

524T Corollary Let (Y,S,T, ν) be a quasi-Radon measure space, and B its measure algebra. Let K
be the set of infinite cardinals κ such that the Maharam-type-κ component of B is non-zero.

add ν = addN (ν) = ∞ if K = ∅,(a)

≥ addN if K = {ω}.
π(ν) = π(B) = c(B) if K = ∅,(b)

= max(c(B), cfN , sup
κ∈K

cf[κ]≤ω) otherwise.

covN (ν) = 1 if B = {0},(c)

= ∞ if B has an atom,

≤ covNminK otherwise.

nonN (ν) = ∞ if B = {0},(d)

= 1 if B has an atom,

≥ nonNminK otherwise.

(e) If ν is σ-finite,

cfN (ν) = 1 if K = ∅,
≤ max(cfN , cf[τ(B)]≤ω) otherwise.

proof Parts (a), (c), (d) and (e) are mostly a matter of putting 524P and 524S together. If there are atoms
for µ, they may no longer include singletons of non-zero measure; but they do include minimal non-negligible
closed sets, so there are non-negligible singletons and covN (µ), nonN (µ) are ∞ and 1 respectively. As for
(b), the proof of 524Pb still works.

524U There is an natural calculation which I shall want to call on later.

Lemma Let (A, µ̄) be a probability algebra. Then there is a Radon probability measure on {0, 1}τ(A) with
measure algebra isomorphic to (A, µ̄).

proof Write κ for τ(A).

(a) If A is finite, it is isomorphic to PI where I is the set of atoms of A. Now #(I) ≤ 2κ so we
have an injection f : I → {0, 1}κ. Let µ be the point-supported probability measure on {0, 1}κ such that
µ{f(a)} = µ̄a for every a ∈ I; this works.

(b) Otherwise, κ is infinite. By Maharam’s theorem, we have a partition 〈ai〉i∈I of unity in A such that,
for each i ∈ I, either ai is an atom or the principal ideal Aai

is homogeneous with Maharam type κi ≥ ω,
and in the latter case (Aai

, µ̄↾Aai
) is isomorphic to the measure algebra of ǫiνκi

, where I write ǫi = µ̄ai for
each i ∈ I. If ai is an atom, let µi be a point-supported measure concentrated at a single point of {0, 1}κ
and with mass ǫi. Otherwise, κi = τ(Aai

) ≤ κ; let fi : {0, 1}κi → {0, 1}κ be a continuous injection and set
µi = ǫiνκi

f−1
i where νκi

f−1
i is the image measure. Then µi is a Radon probability measure on {0, 1}κ with

measure algebra isomorphic to (Aai
, µ̄↾Aai

).
Now take an injection g : I → {0, 1}N. Define a measure µ on {0, 1}N × {0, 1}κ by setting

µW =
∑

i∈I µiW [{g(i)}]
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for those sets W ⊆ {0, 1}N × {0, 1}κ for which the sum is defined. It is easy to check that µ is a complete
topological probability measure which is inner regular with respect to the compact sets, that is, is a Radon
probability measure. Also, setting Ei = {g(i)} × {0, 1}κ, the subspace measure µEi

is isomorphic to µi so
has measure algebra isomorphic to (Aai

, µ̄↾Aai
); as 〈Ei〉i∈I is a partition of a µ-conegligible set, the measure

algebra of µ is isomorphic to the simple product of the measure algebras of µEi
, that is, to the simple

product
∏

i∈I(Aai
, µ̄↾Aai

) ∼= (A, µ̄).

As κ is infinite, {0, 1}N×{0, 1}κ is homeomorphic to {0, 1}κ and we can copy µ onto a Radon probability
measure on {0, 1}κ with measure algebra isomorphic to (A, µ̄).

524X Basic exercises (a) Suppose that (A, µ̄) is a probability algebra and that κ = linkn(A), where
2 ≤ n < ω. Show that there are families 〈Aξ〉ξ<κ in A \ {0} and 〈ǫξ〉ξ<κ in ]0, 1] such that µ̄(inf I) ≥ ǫξ
whenever I ∈ [Aξ]n and

⋃
ξ<κAξ = A \ {0}. (Hint : proof of 524L.)

(b) Let (X,Σ, µ) be a semi-finite measure space with measure algebra A, and A a family of non-negligible
(not necessarily measurable) subsets of X such that every non-negligible member of Σ includes a member
of A. Show that #(A) ≥ π(A).

(c) Show that if κ is uncountable, there is no function f : [0, 1]κ → {0, 1}κ which is almost continuous
and inverse-measure-preserving for the usual measures on these spaces. (Hint : if K ⊆ [0, 1]κ is a zero set,
any continuous function from K to {0, 1}κ is determined by coordinates in a countable set.)

(d) Let I‖ be the split interval and µ its usual measure (343J). Show that there are f : {0, 1}ω → I‖ and
g : I‖ → {0, 1}ω such that µ = νωf

−1 and νω = µg−1. (Hint : let A ⊆ [0, 1] be a non-measurable set; define
f0 : [0, 1]2 → I‖ by setting f0(x, y) = y+ if x ∈ A, y− otherwise.)

(e) Let (Z, µ) be the Stone space of (Bω, ν̄ω). Show that there is no f : {0, 1}ω → Z such that µ = νωf
−1.

(Hint : use 515J and 322Ra to show that every non-negligible measurable subset of Z has cardinal 2c.)

(f) Let X be a Hausdorff space with a compact topological probability measure µ with Maharam type κ,
and suppose that w(X) < covNκ. (i) Show that there is an equidistributed sequence for µ. (Hint : 491Eb.)
(ii) Show that if µ is strictly positive then X is separable.

(g) Let (X,T,Σ, µ) be a Radon probability space with a strong lifting, and (Z, ν) the Stone space of its
measure algebra. Show that shrN (µ) ≤ shrN (ν) and shr+ N (µ) ≤ shr+ N (ν). (Hint : 453Mb.)

(h) Let (X,T,Σ, µ) be a Radon measure space, and K the set of infinite cardinals κ such that the
Maharam-type-κ component of its measure algebra A is non-zero. Show that

min{#(A) : A ⊆ X has full outer measure} = sup({c(A)} ∪ {nonNκ : κ ∈ K}).

(i) Show that for any σ-ideal I of sets there is a compact probability measure µ such that I = N (µ).
(Hint : set X =

⋃ I ∪ {x0}.)

(j) Show that for any non-zero measurable algebra B and any cardinal κ, there is a complete compact
probability measure µ such that the measure algebra of µ is isomorphic to B, addN (µ) = ω1 and cfN (µ) ≥
κ. (Hint : 524Xi.)

(k) Suppose that nonNc = covNc = cf c = c. Show that there is a quasi-Radon probability measure µ
with Maharam type c such that addN (µ) = c.

524Y Further exercises (a) Show that if m ≥ 2 and 〈Ai〉i∈I is a family of σ-m-linked Boolean algebras,
with #(I) ≤ c, then the free product of 〈Ai〉i∈I is σ-m-linked.

(b) Let A be a measurable algebra with Maharam type λ. Show that there is a family V ⊆ [λ]≤c , cofinal
with [λ]≤c , such that #({A ∩ V : V ∈ V}) < FN∗(A) for every countable set A ⊆ λ.
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(c) For a Boolean algebra A and a cardinal θ, write ψθ(A) for the smallest size of any subalgebra C of
A such that d(C) ≥ θ. (If θ > d(A) set ψθ(A) = ∞.) (i) Show that if Z is the Stone space of A, I is the
ideal of nowhere dense sets in Z, and θ ≥ 2 then ψθ(A) ≤ cov([Z]<θ,⊆, I). (ii) Show that if (X,Σ, µ) is a
Maharam-type-homogeneous compact probability space with Maharam type κ, and θ is uncountable, then

ψθ(Bκ) = cov([X]<θ,⊆,N (µ)) = add(Σ \ N (µ), meet, [X]<θ),

where meet is the relation {(A,B) : A ∩ B 6= ∅}. (Hint : start with µ = νκ.) (iii) Show that if (X,Σ, µ) is
a semi-finite locally compact measure space with measure algebra A then ψω1

(A) ≤ cf([covN (µ)]≤ω). (iv)
Show that if (X,Σ, µ) is any probability space, with measure algebra A, and λ is the product probability
measure on XN, then covN (λ) ≤ ψω1

(A). (v) Show that ψaddM(Bω) ≤ nonM, where M is the ideal of
meager subsets of R.

524Z Problems (a) Let (Z, µ) be the Stone space of (Bω, ν̄ω). Is shrN (µ) necessarily equal to shrN ?

(b) Can there be a quasi-Radon probability measure µ with Maharam type greater than c such that
addN (µ) > ω1?

524 Notes and comments The ideas of this section are derived primarily from Bartoszyński 84, Frem-

lin 84b and Fremlin 91. Of course it is not necessary to pass through both ℓ1(κ) and the κ-localization
relation (κN,⊆∗,Sκ). I bring ℓ1(κ) into the argument (following Bartoszyński 84) because it will be useful
when we come to look at other structures in later in the chapter, and Sκ because it echoes the ideas of §522.
But note that 524G seems to need a new idea (the family 〈Eξ〉ξ<κ from 524F) not required in 522M.

The difficulties of the work above arise from the fact that while there are many inverse-measure-preserving
functions between Radon measure spaces, immediately linking covering numbers and uniformities, there
are far fewer continuous inverse-measure-preserving functions; for instance, there is no almost continuous
inverse-measure-preserving function from the unit interval to the split interval, let alone to the Stone space
of its measure algebra. And the straightforward Tukey functions between the ideals Nκ of §523 depend on
measures being images of each other, which is something we can rely on only when our functions are almost
continuous. (But see 524Xd.) I do not know of any direct construction of a Tukey function from the null
ideal of the Stone space of the Lebesgue measure algebra to N , for instance. This is why there is nearly
nothing about shrinking numbers in this section (see 524Za).

There is a significant gap in the calculations in 524P; for the cofinality of the null ideal I need to assume
that the measure is σ-finite. I have no useful general recipe for cfN (µ), valid in ZFC, when µ is a non-σ-finite
Radon measure. The point is that although we can identify N (µ) with the product of a family N (µXi

) of
partially ordered sets to which the arguments of this section apply (524Q), this is not in itself enough to
determine its cofinality in the absence of special axioms.

Version of 11.9.13

525 Precalibers

I continue the discussion of precalibers in §516 with results applying to measure algebras. I start with
connexions between measure spaces and precalibers of their measure algebras (525B-525C). The next step is
to look at measure-precalibers. Elementary facts are in 525D-525G. When we come to ask which cardinals
are precalibers of which measure algebras, there seem to be real difficulties; partial answers, largely based
on infinitary combinatorics, are in 525I-525O. 525P is a note on a particular pair of cardinals. Finally, 525T
deals with precaliber triples (κ, κ, k) where k is finite; I approach it through a general result on correlations
in uniformly bounded families of random variables (525S).

525A Notation If (X,Σ, µ) is a measure space, N (µ) will be the null ideal of µ. For any set I, νI
will be the usual measure on {0, 1}I , TI its domain, NI = N (νI) its null ideal and (BI , ν̄I) its measure
algebra. In this context, set ei = {x : x ∈ {0, 1}I , x(i) = 1}• in BI for i ∈ I. Then 〈ei〉i∈I is a stochastically
independent family of elements of measure 1

2 in BI , and {ei : i ∈ I} τ -generates BI ; I will say that 〈ei〉i∈I

is the standard generating family in BI .

c© 2004 D. H. Fremlin
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525B Proposition Let (X,T,Σ, µ) be a quasi-Radon measure space, and A its measure algebra. Then
the downwards precaliber triples of the partially ordered set (Σ \ N (µ),⊆) are just the precaliber triples of
the Boolean algebra A.

proof Put 521Dd and 516C together.

525C Theorem Let (X,T,Σ, µ) be a Radon measure space and (A, µ̄) its measure algebra.
(a) A pair (κ, λ) of cardinals is a precaliber pair of A iff whenever 〈Eξ〉ξ<κ is a family in Σ \ N (µ) there

is an x ∈ X such that #({ξ : x ∈ Eξ}) ≥ λ.
(b) A pair (κ, λ) of cardinals is a measure-precaliber pair of (A, µ̄) iff whenever 〈Eξ〉ξ<κ is a family in

Σ \ N (µ) such that infξ<κ µEξ > 0 then there is an x ∈ X such that #({ξ : x ∈ Eξ}) ≥ λ.
(c) Suppose that κ ≥ sat(A) is an infinite regular cardinal. Then the following are equiveridical:

(i) κ is a precaliber of A;
(ii) µ∗(

⋃
ξ<κEξ) = 0 whenever 〈Eξ〉ξ<κ is a non-decreasing family in N (µ);

(iii) whenever 〈Aξ〉ξ<κ is a non-decreasing family of sets such that
⋃

ξ<κAξ = X, then there is some
ξ < κ such that Aξ has full outer measure in X.

proof (a)(i) Suppose that (κ, λ) is a precaliber pair of A and 〈Eξ〉ξ<κ is a family in Σ \ N (µ). For each
ξ < κ, let Kξ ⊆ Eξ be a non-negligible compact set. Then there is a Γ ∈ [κ]λ such that {K•

ξ : ξ ∈ Γ} is

centered in A. But in this case {X} ∪ {Kξ : ξ ∈ Γ} has the finite intersection property, and must have
non-empty intersection. If x is any point of this intersection, {ξ : x ∈ Eξ} includes Γ and has size at least λ.

(ii) Suppose that whenever 〈Eξ〉ξ<κ is a family in Σ \ N (µ) there is an x ∈ X such that #({ξ : x ∈
Eξ}) ≥ λ. Because µ is complete and strictly localizable (416B), it has a lifting ψ : A → Σ (341K). Let
〈aξ〉ξ<κ be a family in A \ {0}; then there is an x ∈ X such that Γ = {ξ : x ∈ ψaξ} has cardinal at least λ.
But now {ψaξ : ξ ∈ Γ} is centered in Σ so {aξ : ξ ∈ Γ} is centered in A. As 〈aξ〉ξ<κ is arbitrary, (κ, λ) is a
precaliber pair of A.

(b) We can use exactly the same argument, provided that in part (i) we make sure that µKξ ≥ 1
2µEξ,

so that infξ<κ µ̄K
•

ξ > 0.

(c)(i)⇒(iii) Suppose that κ is a precaliber of A and 〈Aξ〉ξ<κ is a non-decreasing family of sets with union
X. ??? If no Aξ has full outer measure, then we can choose, for each ξ < κ, a non-negligible compact set
Kξ ⊆ X \Aξ. Because κ is a precaliber of A, there is a set Γ ∈ [κ]κ such that {K•

ξ : ξ ∈ Γ} is centered. Now

{Kξ : ξ ∈ Γ} has the finite intersection property and there is some x ∈ ⋂
ξ∈ΓKξ, in which case x /∈ ⋃

ξ∈ΓAξ.

But since Γ must be cofinal with κ,
⋃

ξ∈ΓAξ = X. XXX As 〈Aξ〉ξ<κ is arbitrary, (iii) is true.

(iii)⇒(ii) Suppose that (iii) is true, and that 〈Eξ〉ξ<κ is a non-decreasing family in N (µ). ??? If
⋃

ξ<κEξ

has non-zero inner measure, let E ⊆ ⋃
ξ<κEξ be a non-negligible measurable set. Set Aξ = Eξ ∪ (X \ E)

for each ξ; then 〈Aξ〉ξ<κ is a non-decreasing family with union X, so there is some ξ such that Aξ has full
outer measure. But E \ Eξ is a non-negligible measurable set disjoint from Aξ. XXX As 〈Eξ〉ξ<κ is arbitrary,
(ii) is true.

(ii)⇒(i) Let Z be the Stone space of A and ν its usual measure (411P). Because µ has a lifting, there
is an inverse-measure-preserving function f : X → Z (341P).

Let 〈Fξ〉ξ<κ be a non-decreasing family of nowhere dense subsets of Z. Then they are all ν-negligible
(411Pa), so 〈f−1[Fξ]〉ξ<κ is a non-decreasing family in N (µ) and µ∗(

⋃
ξ<κ f

−1[Fξ]) = 0. But this means

that if G = int(
⋃

ξ<κ Fξ), νG = µf−1[G] = 0 and G is empty. By 516Rb, κ is a precaliber of A.

525D Proposition Let (A, µ̄) be a measure algebra.
(a) Any precaliber triple of A is a measure-precaliber triple of (A, µ̄).
(b) If (κ, λ,<θ) is a measure-precaliber triple of (A, µ̄) and κ has uncountable cofinality, then (κ, λ,<θ)

is a precaliber triple of A.
(c) If κ is a measure-precaliber of (A, µ̄), so is cfκ.

proof (a) is immediate from the definitions in 511E.
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(b) If 〈aξ〉ξ<κ is any family in A+, then there is a δ > 0 such that Γ = {ξ : µ̄aξ ≥ δ} has cardinal κ; and
now there is a Γ′ ∈ [Γ]λ such that {aξ : ξ ∈ I} has a non-zero lower bound for every I ∈ [Γ′]<θ.

(c) The point is that κ is a measure-precaliber of (A, µ̄) iff it is a precaliber of the supported relation
(Aδ,⊇,A+) for every δ > 0, where Aδ = {a : a ∈ A, µ̄a ≥ δ}; so this is just a special case of 516Bd.

525E Proposition (a) Let (A, µ̄) be a probability algebra and κ an infinite cardinal. Then κ is a
precaliber of A iff either A is finite or κ is a measure-precaliber of (A, µ̄) and cfκ > ω.

(b) An infinite cardinal κ is a precaliber of every measurable algebra iff it is a measure-precaliber of every
probability algebra and has uncountable cofinality.

proof (a) If κ is a precaliber of A, of course κ is a measure-precaliber of (A, µ̄). Also cfκ is a precaliber of
A (516Bd again), so cfκ ≥ sat(A) (516Ja); and if A is infinite, cfκ > ω.

If A is finite, then any infinite cardinal is a precaliber of A (516Lc). If κ is a measure-precaliber of (A, µ̄)
and cfκ > ω, then κ is a precaliber of A by 525Db.

(b) Recall that an algebra A is ‘measurable’ iff either A = {0} or there is a functional µ̄ such that (A, µ̄)
is a probability algebra (391B). So the result follows directly from (a).

525F Proposition Let (A, µ̄) be a probability algebra.
(a) ω is a measure-precaliber of (A, µ̄).
(b) If ω ≤ κ < m(A), then κ is a measure-precaliber of (A, µ̄).

proof (a) Let 〈an〉n∈N be a sequence in A such that infn∈N µ̄an = δ > 0. Set a = infn∈N supm≥n am; then
µ̄a = infn∈N µ̄(supm≥n am) ≥ δ > 0, so a 6= 0. If 0 6= b ⊆ a and n ∈ N, there is anm ≥ n such that b ∩ am 6= 0.
We can therefore choose inductively a strictly increasing sequence 〈ni〉i∈N such that a ∩ infj≤i anj

6= 0 for
every i, so that 〈ani

〉i∈N is centered. As 〈an〉n∈N is arbitrary, ω is a measure-precaliber of (A, µ̄).

(b) If κ = ω, this is (a). Otherwise, let 〈aξ〉ξ<κ be a family in A with infξ<κ µ̄aξ = δ > 0. Set

c = infJ⊆κ,#(J)<κ supξ∈κ\J aξ;

then

µ̄c = infJ⊆κ,#(J)<κ µ̄(supξ∈κ\J aξ) ≥ δ.

Choose 〈Iξ〉ξ<κ inductively so that, for each ξ < κ, Iξ is a countable subset of κ\⋃η<ξ Iη and c ⊆ supη∈Iξ
aη.

For ξ < κ, set

Qξ = {b : 0 6= b ⊆ c, ∃ η ∈ Iξ, b ⊆ aη}.

Then Qξ is coinitial with A+
c . Because κ < m(A) ≤ m(Ac), there is a centered R ⊆ A+

c meeting every Qξ.
Now

Γ = {η : η < κ, ∃ b ∈ R, b ⊆ aη}
meets every Iξ so has cardinal κ, and {aη : η ∈ Γ} is centered. As 〈aξ〉ξ<κ is arbitrary, κ is a measure-
precaliber of (A, µ̄).

525G As is surely to be expected, questions about precalibers of measurable algebras can generally be
reduced to questions about precalibers of the algebras Bκ. Some of these can be quickly answered in terms
of the cardinals examined earlier in this chapter.

Proposition (a) Let (A, µ̄) be a totally finite measure algebra. Let K be the set of infinite cardinals κ′

such that the Maharam-type-κ′ component of A is non-zero (cf. 524M). If κ, λ and θ are cardinals, of which
κ is infinite, then (κ, λ,<θ) is a measure-precaliber triple of (A, µ̄) iff it is a measure-precaliber triple of
(Bκ′ , ν̄κ′) for every κ′ ∈ K.

(b) Suppose that ω ≤ κ < covNκ′ . Then κ is a measure-precaliber of Bκ′ .
(c) For any cardinal κ′, ω1 is a precaliber of Bκ′ iff covNκ′ > ω1.
(d) If κ, κ′ are cardinals such that nonNκ′ < cfκ, then κ is a precaliber of Bκ′ .
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proof (a)(i) Suppose that (κ, λ,<θ) is a measure-precaliber triple of (A, µ̄), κ′ ∈ K and 〈bξ〉ξ<κ is a family
in Bκ′ with infξ<κ ν̄κ′bξ = δ > 0. Let a ∈ A be such that the principal ideal Aa is homogeneous with

Maharam type κ′, so that there is an isomorphism π : Bκ′ → Aa with
1

µ̄a
µ̄(πb) = ν̄κ′b for every b ∈ Bκ′

(331L). Then infξ<κ µ̄(πbξ) = δµ̄a > 0, so there is a Γ ∈ [κ]λ such that infξ∈I πbξ and infξ∈I bξ are non-zero
for every I ∈ [Γ]<θ. As 〈bξ〉ξ<κ is arbitrary, (κ, λ,<θ) is a measure-precaliber triple of (Bκ′ , ν̄κ′).

(ii) Suppose that (κ, λ,<θ) is a measure-precaliber triple of (Bκ′ , ν̄κ′) for every κ′ ∈ K and 〈aξ〉ξ<κ

is a family in A with infξ<κ µ̄aξ = δ > 0. Let D ⊆ A \ {0} be a partition of unity in A such that all the
principal ideals Ad, for d ∈ D, are homogeneous. Let C ⊆ D be a finite set such that

∑
d∈D\C µ̄d ≤ 1

2δ.

Then for every ξ < κ there is a c ∈ C such that µ̄(aξ ∩ c) ≥ 1
2δµ̄c, so (because κ is infinite) there are c ∈ C

and Γ0 ∈ [κ]κ such that µ̄(aξ ∩ c) ≥ 1
2δµ̄c for every ξ ∈ Γ0. If c is an atom then infξ∈I aξ ⊇ c is non-zero for

every I ⊆ Γ0. Otherwise, the Maharam type κ′ of Ac belongs to K. Let π : Bκ′ → Ac be an isomorphism
with µ̄(πb) = µ̄c · ν̄κ′b for every b ∈ Bκ′ . Set bξ = π−1(aξ ∩ c); then ν̄κ′bξ ≥ 1

2δ for every ξ ∈ Γ0. There

is therefore a Γ ∈ [Γ0]λ such that infξ∈I bξ and infξ∈I aξ are non-zero for every I ∈ [Γ]<θ. As 〈aξ〉ξ<κ is
arbitrary, (κ, λ,<θ) is a measure-precaliber triple of (A, µ̄).

(b) We have covNκ′ = m(Bκ′) (524Md), so we can use 525Fb.

(c) If covNκ′ > ω1 then (b) tells us that ω1 is a precaliber of Bκ′ . If covNκ′ = ω1, let 〈Eξ〉ξ<ω1
be

a cover of {0, 1}κ′

by negligible sets; then 〈⋃η<ξ Eη〉ξ<ω1
is a non-decreasing family in Nκ′ with union of

non-zero inner measure, so 525Cc tells us that ω1 is not a precaliber of Bκ′ .

(d) If κ′ is finite this is elementary. Otherwise, d(Bκ′) = nonNκ′ (524Me). By 516Lc, κ is a precaliber
of Bκ′ .

525H The structure of BI Several of the arguments below will depend on the following ideas. Let I
be any set and 〈ei〉i∈I the standard generating family in BI . If a ∈ BI , there is a smallest countable set
J ⊆ I such that a belongs to the closed subalgebra CJ of BI generated by {ei : i ∈ J} (254Rd, 325Mb).
(Of course CJ is canonically isomorphic to BJ ; see 325Ma.)

Now suppose that 〈aξ〉ξ∈Γ is a family in BI , that for each ξ ∈ Γ we are given a set Iξ ⊆ I such that
aξ ∈ CIξ , and that J ⊆ I is such that Iξ ∩ Iη ⊆ J for all distinct ξ, η ∈ Γ. Then 〈aξ〉ξ∈Γ is relatively
stochastically independent over CJ . PPP 〈CIξ\J〉ξ∈Γ is stochastically independent, because 〈Iξ \ J〉ξ∈Γ is
disjoint; moreover, CJ is independent of CI\J ⊇ ⋃

ξ∈Γ CIξ\J , and CIξ∪J is the closed subalgebra generated

by CIξ\J ∪ CJ for each ξ. So 458Lg tells us that 〈CIξ∪J〉ξ∈Γ is relatively stochastically independent over
CJ ; a fortiori, 〈aξ〉ξ∈Γ is relatively stochastically independent over CJ . QQQ It follows that if ∆ ⊆ Γ is finite
and infξ∈∆ upr(aξ,CJ ) 6= 0, then infξ∈∆ aξ 6= 0 (458Lf); in particular, if 〈upr(aξ,CJ )〉ξ∈Γ is centered, so is
〈aξ〉ξ∈Γ.

525I Theorem (a)(i) If κ > 0 and (κ, λ,<θ) is a measure-precaliber triple of (Bκ, ν̄κ), then it is a
measure-precaliber triple of every probability algebra.

(ii) If κ > 0 and (κ, λ,<θ) is a precaliber triple of Bκ, then it is a precaliber triple of every measurable
algebra.

(b) Suppose that cfκ ≥ ω2. If (κ, λ) is a precaliber pair of Bκ′ for every κ′ < κ, then it is a precaliber
pair of every measurable algebra.

(c) Suppose that (κ, λ,<θ) is a measure-precaliber triple of (Bω, ν̄ω) and that κ′ is such that cf[κ′]≤ω <
cfκ. Then (κ, λ,<θ) is a measure-precaliber triple of (Bκ′ , ν̄κ′).

proof (a)(i) Let (A, µ̄) be any probability algebra and 〈aξ〉ξ<κ a family in A+ such that infξ<κ µ̄aξ > 0.
Let B be the closed subalgebra of A generated by {aξ : ξ < κ}. Then (B, µ̄↾B) is a probability algebra
with Maharam type at most κ, so is isomorphic to a closed subalgebra of (Bκ, ν̄κ) (332N). Since (κ, λ,<θ)
is a measure-precaliber triple of (Bκ, ν̄κ) it is a measure-precaliber triple of (B, µ̄↾B) (cf. 516Sb), and there
is a Γ ∈ [κ]λ such that {aξ : ξ ∈ I} is bounded below in B+ and therefore in A+ for every I ∈ [Γ]<θ. As
〈aξ〉ξ<κ is arbitrary, (κ, λ,<θ) is a measure-precaliber triple of (A, µ̄).

(ii) The same argument applies, deleting the phrase ‘infξ<κ µ̄aξ > 0’, since if A is a measurable algebra
other than {0} there is a functional µ̄ such that (A, µ̄) is a probability algebra.
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(b) By (a-ii), it is enough to prove that (κ, λ) is a precaliber pair of Bκ. Let 〈aξ〉ξ<κ be a family in B+
κ .

For each I ⊆ κ, let CI be the closed subalgebra of Bκ generated by {ei : i ∈ I}, as in 525H. Then for each
ξ < κ we have a countable set Iξ ⊆ κ such that aξ ∈ CIξ . Because cfκ ≥ ω2, there are a Γ ∈ [κ]κ and a
J ∈ [κ]<κ such that Iξ ∩ Iη ⊆ J for all distinct ξ, η ∈ Γ (5A1J(a-i)). Because #(J) < κ, (κ, λ) is a precaliber
pair of BJ

∼= CJ , so there is a Γ′ ∈ [Γ]λ such that 〈upr(aξ,CJ )〉ξ∈Γ′ is centered. It follows that 〈aξ〉ξ∈Γ′ is
centered (525H). As 〈aξ〉ξ<κ is arbitrary, we have the result.

(c) Let 〈aξ〉ξ<κ be a family in Bκ′ such that ν̄κ′aξ ≥ δ > 0 for every ξ < κ. Fix a cofinal family J in
[κ′]≤ω with cardinal less than cfκ. For each ξ < κ let Jξ ∈ J be such that aξ ∈ CJξ

, where this time CJξ
is

interpreted as a subalgebra of Bκ′ . Then there must be some J ∈ J such that A = {ξ : Jξ = J} has cardinal
κ. Now (CJ , ν̄κ′↾CJ) is isomorphic to a subalgebra of (Bω, ν̄ω), so has (κ, λ,<θ) as a measure-precaliber
triple, and there is a Γ ∈ [A]λ such that {aξ : ξ ∈ I} has a non-zero lower bound for every I ∈ [Γ]<θ. As
〈aξ〉ξ<κ is arbitrary, (κ, λ,<θ) is a measure-precaliber triple of (Bκ′ , ν̄κ′).

525J Corollary Suppose that κ is an infinite cardinal and κ < covNκ. Then κ is a measure-precaliber
of every probability algebra.

proof By 525Gb, κ is a measure-precaliber of (Bκ, ν̄κ); by 525Ia, it is a measure-precaliber of every
probability algebra.

525K Proposition Let κ > nonNω be a regular cardinal such that cf[λ]≤ω < κ for every λ < κ (e.g.,
κ = c+, (c+)+, etc.; or κ = ω2 if nonNω = ω1). Then κ is a precaliber of every measurable algebra.

proof The point is that κ is a precaliber of Bλ for every λ < κ. PPP If λ is finite, this is trivial. Otherwise,

d(Bλ) = nonNλ ≤ max(nonNω, cf[λ]≤ω) < κ = cfκ

by 524Me and 523I(a-i); it follows that κ is a precaliber of Bλ (516Lc once more). QQQ
By 525Ib, κ is a precaliber of all measurable algebras.

525L If κ > c is not a strong limit cardinal we can do a little better than 525K.

Proposition (Džamonja & Plebanek 04) Suppose that λ and κ are infinite cardinals such that λω <
cfκ ≤ κ ≤ 2λ, where λω is the cardinal power. Then κ is a precaliber of every measurable algebra.

proof By 525Eb and 525I(a-ii), it is enough to show that κ is a precaliber of Bκ. Let 〈aξ〉ξ<κ be a family
in Bκ \ {0}. Let θ : Bκ → Tκ be a lifting, and for each ξ < κ let Kξ be a non-empty closed subset of
θaξ which is determined by coordinates in a countable set Iξ. We may suppose that each Iξ is infinite; let
hξ : N → Iξ be a bijection, and set gξ(x) = xhξ for x ∈ {0, 1}κ, so that gξ : {0, 1}κ → {0, 1}N is continuous

and Kξ = g−1
ξ [gξ[Kξ]]. As c < cfκ, there is an L ⊆ {0, 1}N such that Γ0 = {ξ : ξ < κ, gξ[Kξ] = L} has

cardinal κ.
Because κ ≤ 2λ, there is an f : κ×λω → N such that whenever 〈ξn〉n∈N is a sequence of distinct elements

of κ there is an η < λω such that f(ξn, η) = n for every n (5A1Fg). For each η < λω, set Aη = {ξ : ξ < κ,
f(hξ(n), η) = n for every n ∈ N}; then

⋃
η<λω Aη = κ, while cfκ > λω, so there is an η∗ < λω such that

Γ = Γ0 ∩Aη∗ has κ members.
Fix z ∈ L. For ξ, η ∈ Γ and i, j ∈ N,

hξ(i) = hη(j) =⇒ i = f(hξ(i), η∗) = f(hη(j), η∗) = j.

So we can find an x ∈ {0, 1}κ such that x(hξ(i)) = z(i) whenever ξ ∈ Γ and i ∈ N; that is, gξ(x) = z for

every ξ ∈ Γ. But this means that x ∈ g−1
ξ [L] = Kξ for every ξ ∈ Γ. It follows that whenever I ∈ [Γ]<ω

then
⋂

ξ∈I θaξ 6= ∅ and infξ∈I aξ 6= 0; that is, that {aξ : ξ ∈ Γ} is centered. As 〈aξ〉ξ<κ is arbitrary, κ is a
precaliber of Bκ.

525M Proposition Let (A, µ̄) be a probability algebra and κ an infinite cardinal such that cfκ is a
measure-precaliber of (A, µ̄) and λω < κ for every λ < κ. Then κ is a measure-precaliber of (A, µ̄).

proof If κ = cfκ, we can stop; so henceforth I will suppose that κ is singular.

Measure Theory



525O Precalibers 67

(a) Suppose first that A = BI for some set I; let 〈ei〉i∈I be the standard generating family in BI . If
κ is regular, the result is trivial. Otherwise, let 〈aξ〉ξ<κ be a family in A+ such that infξ<κ ν̄Iaξ = δ > 0.
There is a strictly increasing family 〈κα〉α<cfκ of regular uncountable cardinals with supremum κ such that
κ0 > cfκ and if α < cfκ and λ < κα then λω < κα. PPP All we need to know is that if θ < κ there is a
regular uncountable cardinal θ′ such that θ ≤ θ′ < κ and λω < θ′ whenever λ < θ′; and θ′ = (θω)+ has this
property. QQQ

For each ξ < κ, let Iξ ⊆ I be a countable set such that aξ belongs to the closed subalgebra of A generated
by {ei : i ∈ Iξ}. By the ∆-system Lemma (5A1J(a-ii)), there is for each α < cfκ a set Γα ⊆ κα+1 \ κα such
that #(Γα) = κα+1 and 〈Iξ〉ξ∈Γα

is a ∆-system with root Jα say. Set J =
⋃

α<cfκ Jα, so that #(J) ≤ cfκ,
and

Γ′
α = {ξ : ξ ∈ Γα, (Iξ \ Jα) ∩ (J ∪⋃

η<κα
Iη) = ∅};

then #(Γ′
α) = κα+1 for every α < cfκ, and Iξ ∩ Iη ⊆ J for all distinct ξ, η ∈ Γ′ =

⋃
α<cfκ Γ′

α. Let CJ be
the closed subalgebra of A generated by {ei : i ∈ J}. For ξ ∈ Γ′, set bξ = upr(aξ,CJ ). By 515Ma,

#(CJ ) ≤ max(ω,#(J))ω < κα+1 = cfκα+1,

there is for each α < cfκ a cα ∈ CJ such that Γ′′
α = {ξ : ξ ∈ Γ′

α, bξ = cα} has cardinal κα+1. Note that

ν̄Icα = ν̄Ibξ ≥ ν̄Iaξ ≥ δ

whenever α < cfκ and ξ ∈ Γ′′
α.

Now recall that we are supposing that cfκ is a measure-precaliber of A. So there is a ∆ ∈ [cfκ]cfκ such
that {cα : α ∈ ∆} is centered in A. Now Γ′′ =

⋃
α∈∆ Γ′′

α has cardinal κ, and 〈bξ〉ξ∈Γ′′ is centered. It follows
that 〈aξ〉ξ∈Γ′′ is centered (525H).

As 〈aξ〉ξ<κ is arbitrary, κ is a measure-precaliber of A.

(b) For the general case, observe that by Maharam’s theorem (332B) A is isomorphic to the simple
product

∏
k∈K Adk

of a countable family of homogeneous principal ideals, where 〈dk〉k∈K is a partition of
unity in A. Let 〈aξ〉ξ<κ be a family in A such that infξ<κ µ̄aξ = δ > 0. Let L ⊆ K be a finite set such that∑

k∈K\L µ̄dk = δ′ < δ. Then there is some k ∈ L such that

Γk = {ξ : ξ < κ, µ̄(aξ ∩ dk) ≥ δ−δ′

#(L)
}

has cardinal κ. Since cfκ is a measure-precaliber of A, it is also a measure-precaliber of Adk
(cf. 516Sc).

Since (Adk
, µ̄↾Adk

) is isomorphic, up to a scalar multiple of the measure, to (BI , ν̄I) for some I, (a) tells us
that κ is a measure-precaliber of Adk

. There is therefore a set Γ ∈ [Γk]κ such that 〈aξ ∩ dk〉ξ∈Γ and 〈aξ〉ξ∈Γ

are centered. As 〈aξ〉ξ<κ is arbitrary, κ is a measure-precaliber of A.

525N Proposition (Argyros & Tsarpalias 82) Let κ be either ω or a strong limit cardinal of
countable cofinality, and suppose that 2κ = κ+. Then κ+ is not a precaliber of Bκ.

proof By 523Lb, nonNκ > κ. So if we enumerate {0, 1}κ as 〈xξ〉ξ<κ+ and set Eξ = {xη : η < ξ} for
ξ < κ+, 〈Eξ〉ξ<κ+ is an increasing family in Nκ with union {0, 1}κ. By 525Cc, κ+ is not a precaliber of Bκ.

525O As in 523P, GCH decides the most important questions.

Proposition Suppose that the generalized continuum hypothesis is true.
(a) An infinite cardinal κ is a measure-precaliber of every probability algebra iff cfκ is not the successor

of a cardinal of countable cofinality.
(b) An infinite cardinal κ is a precaliber of every measurable algebra iff cfκ is neither ω nor the successor

of a cardinal of countable cofinality.

proof (a)(i) If κ is a measure-precaliber of every probability algebra, so is cfκ (525Dc). By 525N, cfκ
cannot be the successor of a cardinal of countable cofinality.

(ii) Now suppose that cfκ is not the successor of a cardinal of countable cofinality. If κ = ω, then
certainly κ is a measure-precaliber of every probability algebra (525Fa). Otherwise, κ > λω for every λ < κ
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and cfκ > λω for every λ < cfκ (5A6Ac). By 525K, cfκ is a measure-precaliber of every probability algebra;
by 525M, so is κ.

(b) Put (a) and 525Eb together.

*525P As in 522U, the Freese-Nation number of PN is relevant to the questions here.

Proposition (mcountable,FN∗(PN)) is not a precaliber pair of Bω.

proof By 518D(iv), the Freese-Nation number of the topology of {0, 1}ω is FN(PN); the regular Freese-
Nation numbers are therefore also equal. We know that mcountable is the covering number of the meager
ideal of R (522Sa), and therefore also of the meager ideal of {0, 1}ω (522Wb) and of the nowhere dense ideal
of {0, 1}ω. By 518E, there is a set A ⊆ {0, 1}ω, with cardinal mcountable, such that #(A ∩ F ) < FN∗(PN)
for every nowhere dense set F ⊆ {0, 1}ω.

Fix a nowhere dense compact set K ⊆ {0, 1}ω of non-zero measure. For each x ∈ A, set ax = (K + x)•

in Bω, where + here is the usual group operation corresponding to the identification {0, 1}ω ∼= Zω
2 . Then

every ax is non-zero. If B ⊆ A and {ax : x ∈ B} is centered, then {K + x : x ∈ B} has the finite
intersection property, so there is a y in its intersection; now B ⊆ A ∩ (K + y), and K + y is nowhere dense,
so #(B) < FN∗(PN). Thus 〈ax〉x∈A has no centered subfamily with cardinal FN∗(PN) and witnesses that
(mcountable,FN∗(PN)) is not a precaliber pair of Bω.

525Q I turn now to some results which may be interpreted as information on precaliber triples in which
the third cardinal is finite.

Lemma Let (A, µ̄) be a semi-finite measure algebra, 〈un〉n∈N a ‖ ‖2-bounded sequence in L2 = L2(A, µ̄)+,
and F a non-principal ultrafilter on N. Suppose that p ∈ [0,∞[ is such that supn∈N ‖upn‖2 is finite, and set
v = limn→F un, w = limn→F u

p
n, the limits being taken for the weak topology in L2. Then vp ≤ w.

proof Of course the positive cone of L2 is closed for the weak topology so v ≥ 0 and we can speak of vp.
??? If vp 6≤ w, there are α, β ≥ 0 such that αp > β and

a = [[v > α]] \ [[w > β]] 6= 0.

Let b ⊆ a be such that 0 < µ̄b <∞ and consider u =
1

µ̄b
χb. Then, setting q = p/(p− 1) (of course p > 1),

(αµ̄b)p ≤ (

∫

b

v)p = lim
n→F

(

∫
un × χb× χb)p ≤ lim

n→F

(
‖un × χb‖p‖χb‖q)p

(by Hölder’s inequality, 244Eb)

= lim
n→F

(µ̄b)p/q
∫

b

upn = (µ̄b)p−1

∫

b

w ≤ β(µ̄b)p < αp(µ̄b)p,

which is absurd. XXX So vp ≤ w.

525R Lemma Let (A, µ̄) be a probability algebra and 〈un〉n∈N a ‖ ‖∞-bounded sequence in L∞(A, µ̄)+

such that δ = infn∈N

∫
un > 0. Let k0, . . . , km be strictly positive integers with sum k. Suppose that γ < δk.

(a) There are integers n0 < n1 < . . . < nm such that
∫ ∏m

j=0 u
kj
nj ≥ γ.

(b) In fact, there is an infinite set I ⊆ N such that
∫ ∏m

j=0 u
kj
nj ≥ γ whenever n0, . . . , nm belong to I and

n0 < n1 < . . . < nm.

proof (a) Let F be a non-principal ultrafilter on N. For each j ≤ m, let vj be the limit limn→F u
kj
n for the

weak topology on L2(A, µ̄); let v be the limit limn→F un. By 525Q,

∫ m∏

j=0

vj ≥
∫ m∏

j=0

vkj =

∫
vk = (‖χ1‖q‖v‖k)k

(where q =
k

k−1
, or ∞ if k = 1)
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≥
(∫

v × χ1
)k

(by Hölder’s inequality again, if k > 1)

=
(∫

v
)k

= lim
n→F

(∫
un

)k ≥ δk > γ.

(Or use 244Xd to show more directly that
∫
vk ≥ (

∫
v)k.) We can therefore choose n0, . . . , nm inductively

so that ∫ ∏s
j=0 u

kj
nj ×

∏m
j=s+1 vj > γ

for each s ≤ m (interpreting the final product
∏m

j=m+1 vj as χ1), since when we come to choose ns we shall
be able to use any member of

{n : n > nj for j < s,
∫
uks
n ×∏s−1

j=0 u
kj
nj ×

∏m
j=s+1 vj > γ},

which belongs to F so is not empty. At the end of the induction we shall have a sequence n0 < . . . < nm
such that

∫ ∏m
j=0 u

kj
nj ≥ γ, as required.

(b) Let J ⊆ [N]m+1 be the family of all sets of the form {n0, . . . , nm} where n0 < . . . < nm and∫ ∏m
j=0 u

kj
nj ≥ γ. By (a), applied to subsequences of 〈un〉n∈N, every infinite subset of N includes some

member of J . By Ramsey’s theorem (4A1G), there is an infinite I ⊆ N such that [I]m+1 ⊆ J , which is
what we need.

525S Theorem (Fremlin 88) Let (A, µ̄) be a probability algebra and κ an infinite cardinal. Let 〈uξ〉ξ<κ

be a ‖ ‖∞-bounded family in L∞(A)+. Set δ = infξ<κ

∫
uξ. Then for any k ∈ N and γ < δk+1 there is a

Γ ∈ [κ]κ such that
∫ ∏k

i=0 uξi ≥ γ for all ξ0, . . . , ξk ∈ Γ.

proof (a) It will be helpful to note straight away that it will be enough to consider the case (A, µ̄) = (BI , ν̄I)
for some set I. PPP There is always a (BI , ν̄I) in which (A, µ̄) can be embedded. In this case, L∞(A) can
be identified, as f -algebra, with a subspace of L∞(BI), and the embedding respects integrals. So we can
regard 〈uξ〉ξ<κ as a family in L∞(BI) and perform all calculations there. QQQ

At the same time, the case δ = 0 is trivial, so let us suppose henceforth that δ > 0.

(b) Next, having fixed on a suitable set I, let 〈ei〉i∈I be the standard generating family in BI , and for
J ⊆ I let CJ be the closed subalgebra of BI generated by {ei : i ∈ J}; following 325N, I will say that a
member of CJ is ‘determined by coordinates in J ’. For J ⊆ I let PJ : L1(BI , ν̄I) → L1(CJ , ν̄I↾CJ ) be the
conditional expectation operator. Note that if J , K ⊆ I then PJPK = PJ∩K (254Ra/458M(iii)).

It will be useful to start by looking at a particular subset W of L∞(BI), being the set of linear combina-
tions

∑n
i=0 αiχci where every αi is rational and every ci is determined by coordinates in a finite set. Now

PJ [W ] ⊆W for every J ⊆ I. PPP If c ∈ CK where K ⊆ I is finite, then

PJ(χc) = PJPK(χc) = PJ∩K(χc) =
∑

d is an atom of CJ∩K

ν̄I(c∩d)

ν̄Id
χd ∈W .

As PJ is linear, this is enough. QQQ Observe also that if K ⊆ I is finite, then PK [W ] is countable, being the
set of rational linear combinations of {χc : c ∈ CK}.

(c) Suppose, therefore, that we have a set I, a ‖ ‖∞-bounded family 〈uξ〉ξ<κ in L∞(BI)+ with infξ<κ

∫
uξ

= δ > 0, a k ∈ N and a γ < δk+1. To begin with, let us suppose further that

(α) uξ ≤ χ1 for every ξ < κ,
(β) uξ ∈W , as described in (b), for each ξ < κ;

for each ξ < κ, let Iξ ∈ [I]<ω be such that PIξuξ = uξ.

(i) Suppose that κ = ω. Because there are only finitely many sequences k0, . . . , km of strictly positive
integers with sum equal to k + 1, we can use 525Rb a finite number of times to find an infinite Γ ⊆ ω such

that
∫ ∏m

j=0 u
kj
nj ≥ γ whenever

∑m
j=0 kj = k + 1 and n0 < . . . < nm belong to Γ. But in this case we surely

have
∫ ∏k

i=0 uni
≥ γ for all n0, . . . , nk ∈ Γ.
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(ii) Next, suppose that κ > ω is regular. By the ∆-system Lemma (4A1Db) there is a ∆ ∈ [κ]κ such
that 〈Iξ〉ξ∈∆ is a ∆-system with root J say. Since PJ [W ] is countable, there is a v such that Γ = {ξ : ξ ∈
∆, PJuξ = v} has cardinal κ. Of course ∫

v =
∫
uξ ≥ δ

for every ξ ∈ Γ.
By 458Lg again, 〈CIξ〉ξ∈∆ is relatively independent over CJ . Now suppose that ξ0, . . . , ξk belong to Γ.

Then

∫ k∏

i=0

uξi ≥
∫ k∏

i=0

PJuξi

(458Lh)

=

∫
vk+1 ≥

(∫
v
)k+1

(as in the proof of 525Ra)

≥ δk+1 ≥ γ,

and this is what we need to know.

(iii) Finally, suppose that κ > cfκ ≥ ω. Set λ = cfκ and let 〈κζ〉ζ<λ be a strictly increasing family
of regular cardinals greater than λ and with supremum κ. For each ζ < λ let ∆ζ ⊆ κζ+1 \ κζ be a
set with cardinal κζ+1 such that 〈Iξ〉ξ∈∆ζ

is a ∆-system with root Jζ say. Set J =
⋃

ζ<λ Jζ ; note that

#(J) ≤ λ < κζ+1 for every ζ, so that

∆′
ζ = {ξ : ξ ∈ ∆ζ , (Iξ \ Jζ) ∩ (J ∪⋃

η<κζ
Iη) = ∅}

still has cardinal κζ+1.
If ζ < λ and ξ ∈ ∆′

ζ , Iξ ∩ J is included in the finite set Jζ ; so {PJuξ : ξ ∈ ∆′
ζ} is countable, and there is

a vζ such that ∆′′
ζ = {ξ : ξ ∈ ∆′

ζ , PJuξ = vζ} has cardinal κζ+1. Note that
∫
vζ =

∫
uξ ≥ δ

whenever ζ < λ and ξ ∈ ∆′′
ζ .

Because λ is regular, we can apply (i) or (ii) above to find an A ∈ [λ]λ such that
∫ ∏k

i=0 vζi ≥ γ whenever
ζ0, . . . , ζk ∈ A. Set Γ =

⋃
ζ∈A ∆′′

ζ ; because A must be cofinal with λ, #(Γ) = κ.

If ξ, η ∈ Γ are distinct, then Iξ ∩ Iη ⊆ J . So 〈CIξ〉ξ∈Γ is relatively independent over CJ . Take any
ξ0, . . . , ξk ∈ Γ; for each i ≤ k, let ζi ∈ A be such that ξi ∈ ∆′′

ζi
. By 458Lh again,

∫ ∏n
i=0 uξi ≥

∫ ∏n
i=0 PJuξi =

∫ ∏n
i=0 vζi ≥ γ,

so we are done (provided (α)-(β) are true).

(d) Now let us unwind these conditions from the bottom.

(i) If (α) is true, but (β) is not, take ǫ ∈ ]0, δ[ such that (δ − ǫ)k+1 > γ + (k + 1)ǫ. For each ξ < κ,
let u′ξ ∈ W be such that u′ξ ≤ χ1 and

∫
|uξ − u′ξ| ≤ ǫ. (Such a u′ξ exists because

⋃{CK : K ∈ [I]<ω} is

topologically dense in BI and u∧ χ1 ∈W for every u ∈W .) Then
∫
u′ξ ≥ δ − ǫ for each ξ, so we can apply

(c) to 〈u′ξ〉ξ<κ to see that there is a Γ ∈ [κ]κ such that
∫ ∏k

i=0 u
′
ξi

≥ γ + (k+ 1)ǫ for all ξ0, . . . , ξk ∈ Γ. Now

(because uξ and u′ξ all lie between 0 and χ1) we have
∣∣∏k

i=0 uξi −
∏k

i=0 u
′
ξi

∣∣ ≤ ∑k
i=0 |uξi − u′ξi |

(see 285O), so that ∫ ∏k
i=0 uξi ≥

∫ ∏k
i=0 u

′
ξi
−∑k

i=0

∫
|uξi − u′ξi | ≥ γ

whenever ξ0, . . . , ξn ∈ Γ, and the theorem is still true.
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(ii) Finally, for the general case, set M = 1 + supξ<κ ‖uξ‖∞, and u′ξ =
1

M
uξ for ξ < κ. Then every u′ξ

belongs to [0, χ1] and
∫
u′ξ ≥ δ

M
. By (i) there is a Γ ∈ [κ]κ such that

∫ ∏k
i=0 u

′
ξi

≥ γ

Mk+1
for all ξ0, . . . , ξk ∈ Γ;

in which case
∫ ∏k

i=0 uξi ≥ γ for all ξ0, . . . , ξk ∈ Γ.
This completes the proof.

525T Corollary (Argyros & Kalamidas 82) (a) If κ is an infinite cardinal and k ∈ N, (κ, κ, k) is a
measure-precaliber triple of every probability algebra.

(b) If κ is a cardinal of uncountable cofinality and k ∈ N, (κ, κ, k) is a precaliber triple of every measurable
algebra. In particular, every measurable algebra satisfies Knaster’s condition.

(c) If κ is a cardinal of uncountable cofinality, (A, µ̄) is a probability algebra, k ≥ 1 and 〈aξ〉ξ<κ is a
family in A \ {0}, then there are a δ > 0 and a Γ ∈ [κ]κ such that µ̄(infξ∈I aξ) ≥ δ for every I ∈ [Γ]k.

(d) For any measurable algebra A, m(A) ≥ mK; and if m(A) > ω1, then m(A) ≥ mpcω1
. So if ω ≤ κ < mK ,

κ is a measure-precaliber of every probability algebra.

proof Really this is just the special case of 525S in which every uξ belongs to {χa : a ∈ A}.

(a) If (A, µ̄) is a probability algebra and 〈aξ〉ξ<κ is a family in A such that infξ<κ µ̄aξ = δ > 0, take any

γ ∈
]
0, δk

[
. Setting uξ = χaξ for each ξ,

∫
uξ ≥ δ for each ξ, so there is a Γ ∈ [κ]κ such that

∫ ∏k
i=1 uξi ≥ γ

for every ξ1, . . . , ξk ∈ Γ; in which case infξ∈J aξ 6= 0 for every J ∈ [Γ]k. As 〈aξ〉ξ<κ is arbitrary, (κ, κ, k) is
a measure-precaliber triple of (A, µ̄).

(b) This now follows at once from 525Db, since any non-zero measurable algebra can be given a probability
measure. Taking κ = ω1 and k = 2, we have Knaster’s condition.

(c) For the quantitative version, we have only to note that there must be some α > 0 such that #({ξ :
µ̄aξ ≥ α} has cardinal κ, and take δ < αk.

(d) By (b), A satisfies Knaster’s condition; it follows at once that m(A) ≥ mK, while sat(A) ≤ ω1. If
m(A) > ω1, then ω1 is a precaliber of A (517Ig) so m(A) ≥ mpcω1

. By 525Fb, every infinite cardinal less
than mK is a measure-precaliber of every probability algebra.

525X Basic exercises (a) Let (X,Σ, µ) be any measure space and A its measure algebra. (i) Show that
(A+,⊇) 4T (Σ \ N (µ),⊇). (ii) Show that a pair (κ, λ) is a downwards precaliber pair of Σ \ N (µ) iff it is a
precaliber pair of A.

>>>(b) Let A be a measurable algebra. Show that ω1 is a precaliber of A iff either A is purely atomic or

τ(A) ≤ ω and covNω > ω1 or covNω1
> ω1. (Hint : 525G, 523F.)

>>>(c) (i) Suppose that addNω = covNω = κ. Show that κ is not a precaliber of Bω. (ii) Suppose that
nonNω = c. Show that c is not a precaliber of Bω.

(d) Let (X,Σ, µ) be a complete strictly localizable measure space and A its measure algebra. Show that
the supported relation (Σ \ N (µ),∋, X) has the same precaliber pairs as the Boolean algebra A.

(e) Suppose that (κ, λ) is a precaliber pair of every measurable algebra, that I is a set, and that X ⊆ RI

is a compact set such that #({i : x(i) 6= 0}) < λ for every x ∈ X. Show that #({i : x(i) 6= 0}) < κ for every
x belonging to the closed convex hull of X in RI . (Hint : 461I.)

(f) Suppose that λ ≤ κ are infinite cardinals, (A, µ̄) is a homogeneous probability algebra, and that
γ < 1 is such that whenever 〈aξ〉ξ<κ is a family in A and µ̄aξ ≥ γ for every ξ < κ, there is a Γ ∈ [κ]λ such
that {aξ : ξ ∈ Γ} is centered. Show that (κ, λ) is a measure-precaliber pair of (A, µ̄). (Hint : given that

infξ<κ µ̄aξ > 0, take (C, λ̄) =
⊗̂

m(A, µ̄) ∼= (A, µ̄) to be the probability algebra free product of a large finite
number of copies of (A, µ̄), and consider cξ = supj<m εjaξ for ξ < κ.)

(g) Let A be a Boolean algebra, and λ, κ cardinals such that (κ, λ) is a measure-precaliber pair of every
probability algebra. Suppose that A ⊆ A \ {0} has positive intersection number. Show that if 〈aξ〉ξ<κ is a
family in A, then there is a Γ ∈ [κ]λ such that {aξ : ξ ∈ Γ} is centered.
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(h) Let κ be a cardinal such that (α) λω < κ for every λ < κ (β) λω < cfκ for every λ < cfκ. Show that
κ is a measure-precaliber of every probability algebra.

(i) Show that if (X,T,Σ, µ) is a Radon measure space and µX > 0, then covN (µ) ≥ mK. (Hint : assemble
524Md, 524Pc, 525Tb.)

525Z Problem Can we, in ZFC, find an infinite cardinal κ which is not a measure-precaliber of all
probability algebras? From 525N we see that a negative answer will require a model of set theory in which
2κ > κ+ for all strong limit cardinals κ of countable cofinality; for such models see Foreman & Woodin

91, Cummings 92.

525 Notes and comments There seem to be three methods of proving that a cardinal is a precaliber of
a measure algebra. First, we have the counting arguments of 516L; since we know something about the
centering numbers of measure algebras (524Me), this gives us a start (see the proof of 525K). Next, we
can try to use Martin numbers, as in 517Ig and 525F; since we can relate the Martin number of a measure
algebra to the cardinals of §523 (524Md), we get the formulation 525J. In third place, we have arguments
based on the special structure of measure algebras, using 525H to apply ∆-system theorems from infinitary
combinatorics. Subject to the generalized continuum hypothesis, these ideas are enough to answer the most
natural questions (525O). Without this simplification, they leave conspicuous gaps. The most important
seems to be 525Z. Even if we know all the cardinals addNκ, covNκ, nonNκ and cfNκ of §523, we may still
not be able to determine which cardinals are precalibers; 525Xb is an exceptional special case.

I have presented this section with a bias towards measure-precalibers rather than precalibers. When there
is a difference, the former search deeper. ‘Cofinality ω1’ has a rather special position in this theory (525Ib),
deriving from the combinatorial arguments of 5A1I.

Version of 24.1.14

526 Asymptotic density zero

In §491, I devoted some paragraphs to the ideal Z of subsets of N with asymptotic density zero, as part of
an investigation into equidistributed sequences in topological measure spaces. Here I return to Z to examine
its place in the Tukey ordering of partially ordered sets. We find that it lies strictly between NN and ℓ1

(526B, 526J, 526L) but in some sense is closer to ℓ1 (526Ga). On the way, I mention the ideal Nwd of
nowhere dense subsets of NN (526H-526L) and ideals of sets with negligible closures (526I-526M).

526A Proposition For I ⊆ N, set νI = supn≥1
1
n#(I ∩ n).

(a) ν is a strictly positive submeasure (definition: 392A) on PN. We have a metric ρ on PN defined by
setting ρ(I, J) = ν(I△J) for all I, J ⊆ N, under which the Boolean operations ∪, ∩, △ and \ and upper
asymptotic density d∗ : PN → [0, 1] are uniformly continuous and PN is complete.

(b) Z is a separable closed subset of PN.
(c) If I ⊆ Z is such that

∑
I∈I νI is finite, then

⋃ I ∈ Z.
(d) With the subspace topology, (Z,⊆) is a metrizably compactly based directed set (definition: 513K).

proof (a) It is elementary to check that ν is a strictly positive submeasure. By 392H, ρ is a metric under
which the Boolean operations are uniformly continuous. Since

|d∗(I) − d∗(J)| ≤ d∗(I△J) ≤ ν(I△J)

for all I, J ⊆ N, d∗ is uniformly continuous. Let 〈Ij〉j∈N be a sequence in PN such that ρ(Ij , Ij+1) ≤ 2−j

for every j ∈ N. Set I =
⋂

m∈N

⋃
j≥m Ij . For any m ∈ N and n ≥ 1,

1

n
#(n ∩ (Im△I)) ≤ 1

n

∑∞
j=m #(n ∩ (Ij△Ij+1)) ≤ ∑∞

j=m ρ(Ij , Ij+1) ≤ 2−m+1,

so ρ(Im, I) ≤ 2−m+1. Thus 〈Ij〉j∈N is convergent to I; as 〈Ij〉j∈N is arbitrary, PN is complete (cf. 2A4E).

c© 2009 D. H. Fremlin
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(b) Z is a closed subset of PN. PPP If I belongs to the closure Z of Z, and ǫ > 0, let J ∈ Z be such that
ρ(I, J) ≤ 1

2ǫ, and let m ≥ 1 be such that 1
n#(J ∩ n) ≤ 1

2ǫ for every n ≥ m; then 1
n#(I ∩ n) ≤ ǫ for every

n ≥ m. As ǫ is arbitrary, I ∈ Z; as I is arbitrary, Z is closed. QQQ
Z is separable because [N]<ω is a countable dense set. (If I ∈ Z and n ∈ N, ρ(a, a∩n) ≤ supm>n

1
m#(m∩

I).)

(c) Let ǫ > 0. Then there is a finite I0 ⊆ I such that
∑

I∈I\I0
νI ≤ ǫ. Set J =

⋃ I, J0 =
⋃ I0; then

J0 ∈ Z so there is an n0 ∈ N such that #(J0 ∩ n) ≤ nǫ for every n ≥ n0. If n ≥ n0, then

#(J ∩ n) ≤ #(J0 ∩ n) +
∑

I∈I\I0
#(I ∩ n) ≤ nǫ+

∑
I∈I\I0

nνI ≤ 2nǫ.

As ǫ is arbitrary, J ∈ Z.

(d) Z is closed under ∪, so is a directed set under ⊆, and ∪ : Z × Z → Z is continuous. If a ∈ Z,
then on {b : b ⊆ a} the topology Tρ induced by ρ agrees with the usual compact Hausdorff topology S of
PN ∼= {0, 1}N. PPP If n ∈ N and ρ(b, c) < 1

n+1 , then b∩n = c∩n; so Tρ is finer than S on PN. If ǫ > 0, there

is an m ∈ N such that #(a∩n) ≤ nǫ whenever n ≥ m; now ρ(b, c) ≤ ǫ whenever b, c ⊆ a and b∩m = c∩m.
So S is finer than Tρ on {b : b ⊆ a}. QQQ Since {b : b ⊆ a} is S-compact, it is Tρ-compact.

Now suppose that 〈an〉n∈N is a sequence in Z with Tρ-limit a. Then it has a subsequence 〈ank
〉k∈N such

that ρ(a, ank
) ≤ 2−k for every k. Set b =

⋃
k∈N

ank
. Then, given ǫ > 0, let r, m ∈ N be such that 2−r ≤ ǫ

and #(n ∩ (a ∪⋃
k≤r ank

)) ≤ nǫ for every n ≥ m; then

#(n ∩ b) ≤ #(n ∩ (a ∪
⋃

k≤r

ank
)) +

∞∑

k=r+1

#(n ∩ ank
\ a)

≤ nǫ+

∞∑

k=r+1

2−kn ≤ 2nǫ

for every n ≥ m. So b ∈ Z and {ank
: k ∈ N} is bounded above in Z.

526B Proposition (Fremlin 91) NN 4T Z 4T ℓ
1.

proof (a) For α ∈ NN, set

φ(α) = {2ni : n ∈ N, i ≤ α(n)}.

Then φ(α) ∈ Z, because if k ∈ N then

#(m ∩ φ(α)) ≤ ∑k
n=0 α(n) + ⌈2−km⌉

for every m. Also φ : NN → Z is a Tukey function, because if φ(α) ⊆ a ∈ Z then α(n) ≤ min{i : 2ni /∈ a}
for every n ∈ N. So NN 4T Z.

(b) Give Z the metric ρ of 526A. Then Z is complete and separable and the lattice operation ∪ is uniformly
continuous (526Aa). By 524C, (Z,⊆′′′, [Z]<ω) 4GT (ℓ1(ω),≤, ℓ1(ω)). Since Z is upwards-directed, (Z,⊆,
Z) ≡GT (Z,⊆′′′, [Z]<ω) (513Id) and (Z,⊆,Z) 4GT (ℓ1,≤, ℓ1), that is, Z 4T ℓ

1.

526C The next three lemmas are steps on the way to Theorem 526F. I give them in much more generality
than is required by that theorem because a couple of them will be useful later, and I think they are interesting
in themselves. But if you are reading this primarily for the sake of 526F, you might save time by looking
ahead to the proof there and working backwards, extracting arguments adequate for the special case of 526E
which is actually required.

Lemma Let 〈(An, µ̄n)〉n∈N be a sequence of purely atomic probability algebras, and A =
∏

n∈N
An the

simple product algebra. Then there is an order-continuous Boolean homomorphism π : A → PN such that
lim supn→∞ µ̄na(n) is the upper asymptotic density d∗(πa) for every a ∈ A; consequently, limn→∞ µ̄na(n)
is the asymptotic density d(πa) of πa if either is defined.

proof (a) For each n ∈ N, let Cn be the set of atoms of An, and choose rational numbers αn(c) such that
αn(c) ≤ µ̄nc for each c ∈ Cn,

∑
c∈Cn

αn(c) > 1 − 2−n, and {c : c ∈ Cn, αn(c) > 0} is finite. Express αn(c)
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as rn(c)/sn for each c ∈ Cn, where rn(c) ∈ N and sn ∈ N \ {0}; let 〈In(c)〉c∈Cn
be a disjoint family of

subsets of N with #(In(c)) = rn(c) for each c, and set Jn =
⋃

c∈Cn
In(c); let πn : An → PJn be the Boolean

homomorphism such that πn(c) = In(c) for each c ∈ Cn. Then

(1 − 2−n)sn < sn
∑

c∈Cn
αn(c) =

∑
c∈Cn

rn(c) = #(Jn) ≤ sn.

Note that #(Jn) > 0. Also

#(Jn)(µ̄nd− 2−n) ≤ #(Jn)
∑

c∈Cn,c⊆d

αn(c)

≤ sn
∑

c∈Cn,c⊆d

αn(c) =
∑

c∈Cn,c⊆d

rn(c) = #(πnd)

and

(1 − 2−n)#(πnd) = (1 − 2−n)sn
∑

c∈Cn,c⊆d αn(c) ≤ #(Jn) · µ̄nd

for every d ∈ An. So, for a ∈ A,

lim supn→∞ µ̄na(n) = lim supn→∞
#(πna(n))

#(Jn)
.

(b) Let 〈mn〉n∈N be a sequence in N such that

mn#(Jn) ≥ 2n max(#(Jn+1),
∑

i<nmi#(Ji))

for every n. Set nk = n if
∑

i<nmi ≤ k <
∑

i≤nmi where n ∈ N; then limk→∞ nk = ∞. Set lk =∑
i<k #(Jni

), so that lk+1 − lk = #(Jnk
) for each k, and let φk : PJnk

→ P(lk+1 \ lk) be a Boolean
isomorphism; set

πa =
⋃

k∈N
φkπnk

a(nk)

for a ∈ A, so that π : A → PN is an order-continuous Boolean isomorphism.

(c) Let a ∈ A, and set

γ = lim supn→∞ µ̄na(n) = lim supn→∞
#(πna(n))

#(Jn)
,

γ′ = lim supl→∞
1

l
#(l ∩ πa).

Then γ ≤ γ′. PPP Setting l′n =
∑

i<nmi#(Ji), we have #(l′n+1 ∩ πa) ≥ mn#(πna(n)), while l′n+1 =
l′n +mn#(Jn) ≤ (1 + 2−n)mn#(Jn) for each n; but this means that

γ′ ≥ lim sup
n→∞

1

l′n+1

#(l′n+1 ∩ πa) ≥ lim sup
n→∞

mn#(πna(n))

(1 + 2−n)mn#(Jn)
= γ. QQQ

Also γ′ ≤ γ. PPP Let ǫ > 0. Let n∗ ≥ 1 be such that 2−n∗ ≤ ǫ and #(πna(n)) ≤ (γ + ǫ)#(Jn) for every
n ≥ n∗. Suppose that l ≥ l′n∗+1. Then l is of the form l′n+1 + j#(Jn+1) + i where n ≥ n∗, j < mn+1 and
i < #(Jn+1). Now l′n+1 = l′n +mn#(Jn), so

#(l′n+1 ∩ πa) ≤ l′n +mn#(πna(n)) ≤ l′n +mn#(Jn)(γ + ǫ)

≤ mn#(Jn)(γ + ǫ+ 2−n) ≤ mn#(Jn)(γ + 2ǫ)

by the choice of mn. Accordingly

#(l ∩ πa) ≤ mn#(Jn)(γ + 2ǫ) + (j + 1)#(πn+1a(n+ 1))

≤ mn#(Jn)(γ + 2ǫ) + j(γ + ǫ)#(Jn+1) + #(Jn+1)

≤ (γ + 2ǫ)l + #(Jn+1) ≤ (γ + 2ǫ)l + 2−nmn#(Jn)

(by the choice of mn)
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≤ (γ + 3ǫ)l.

As this is true for any l ≥ l′n∗+1, γ′ ≤ γ + 3ǫ; as ǫ is arbitrary, γ′ ≤ γ. QQQ

(d) Thus

lim supn→∞ µ̄na(n) = lim supn→∞
1

n
#(n ∩ πa)

for every a ∈ A. But as π is a Boolean homomorphism, it follows at once that

lim infn→∞ µ̄na(n) = lim infn→∞
1

n
#(n ∩ πa)

for every a, so that the limits are equal if either is defined.

526D Lemma Let (A, µ̄) be a semi-finite measure algebra, and κ ≥ max(ω, c(A), τ(A)) a cardinal. Let
(Bκ, ν̄κ) be the measure algebra of the usual measure on {0, 1}κ, and γ > 0. Then there is a function
θ : A → Bκ such that

(i) θ(supA) = sup θ[A] for every non-empty A ⊆ A such that supA is defined in A;
(ii) ν̄κθ(a) = 1 − e−γµ̄a for every a ∈ A, interpreting e−∞ as 0;
(iii) if 〈ai〉i∈I is a disjoint family in A, and Ci is the closed subalgebra of Bκ generated by {θ(a) : a ⊆ ai}

for each i, then 〈Ci〉i∈I is stochastically independent.

proof (a) By 495M5, we have exactly this result for some probability algebra (B, λ̄) in place of (Bκ, ν̄κ).
Set Af = {a : a ∈ A, µ̄a < ∞}, and give Af its measure metric ρ (323Ad). Then θ↾Af is uniformly
continuous for ρ and the measure metric σ of B. PPP If ǫ > 0, there is a δ > 0 such that |e−γs − e−γt| ≤ 1

2ǫ
whenever s, t ∈ [0,∞[ and |s − t| ≤ δ. Now if a, a′ ∈ A and µ̄(a△ a′) ≤ δ, set b = a ∩ a′; then θ(b) ⊆ θ(a)
and µ̄a− µ̄b ≤ δ, so

σ(θ(a), θ(b)) = λ̄(θ(a) \ θ(b)) = λ̄θ(a) − λ̄θ(b) = e−γµ̄b − e−γµ̄a ≤ 1

2
ǫ.

Similarly, σ(θ(a′), θ(b)) ≤ 1
2ǫ so σ(θ(a), θ(a′)) ≤ ǫ. As ǫ is arbitrary, this gives the result. QQQ

(b) By 521Eb, there is a set B ⊆ Af , of cardinal at most κ, which is dense for ρ. Accordingly θ[B] is
dense in f [Af ] for σ. Taking D to be the closed subalgebra of B generated by θ[B], τ(D) ≤ κ and θ[Af ] ⊆ D.
But if a ∈ A \ Af then θ(a) = 1, so θ[A] ⊆ D. Now there is a measure-preserving Boolean homomorphism
φ : D → Bκ (332N), and φθ : A → Bκ has the properties we need.

526E Lemma Let 〈(An, µ̄n)〉n∈N be a sequence of finite probability algebras and 〈γn〉n∈N a sequence in
]0,∞[. Write P for the set

{p : p ∈ ∏
n∈N

An, limn→∞ γnµ̄np(n) = 0},

with the ordering inherited from the product partial order on
∏

n∈N
An. Then P 4T Z.

proof (a) By 526D, we can find for each n a probability algebra (Bn, ν̄n) and a function θn : An → Bn

such that, for all a, a′ ∈ An,

θn(a ∪ a′) = θn(a) ∪ θn(a′),

ν̄nθn(a) = 1 − exp(−γnµ̄a).

We may suppose that Bn is generated by θn[An], so is itself finite. Set A =
∏

n∈N
An, B =

∏
n∈N

Bn,
θ(p) = 〈θn(p(n))〉n∈N for p ∈ A; then θ(supA) = sup θ[A] for any non-empty subset A of A. Set

Q = {q : q ∈ ∏
n∈N

Bn, limn→∞ ν̄nq(n) = 0}.

Then θ↾P is a Tukey function from P to Q. PPP P = f−1[Q], because limn→∞ γnξn = 0 iff limn→∞ 1 −
e−γnξn = 0. So θ↾P is a function from P to Q. If q ∈ Q, A = {p : p ∈ A, θ(p) ⊆ q} has a supremum p0 ∈ A;
now θ(p0) = sup θ[A] ⊆ q, so θ(p0) ∈ Q and p0 ∈ P is an upper bound for A in P . QQQ

5Formerly 495J.
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(b) By 526C, we have an order-continuous Boolean homomorphism π : B → PN such that π(q) ∈ Z iff
q ∈ Q. Now π↾Q is a Tukey function from Q to Z. PPP If d ∈ Z, set B = {q : q ∈ B, π(q) ⊆ d}. Because π is
an order-continuous Boolean homomorphism, B contains its supremum, and B is bounded above in Q. QQQ

(c) Thus πθ↾P : P → Z is a Tukey function and P 4T Z.

526F Theorem (ℓ1,≤, ℓ1) 4GT (NN,≤,NN) ⋉ (Z,⊆,Z).

proof (a) Let Q ⊆ NN be the set of strictly increasing sequences α such that α(0) > 0. For α ∈ Q, set

Pα = {x : x ∈ ℓ1, ‖x‖∞ ≤ α(0), lim
n→∞

2n
∞∑

i=α(n)

x(i)+ = 0}

= {x : x ∈ ℓ∞, ‖x‖∞ ≤ α(0), lim
n→∞

2n
α(n+1)−1∑

i=α(n)

x(i)+ = 0}

because

2n
∞∑

i=α(n)

x(i)+ =
∞∑

m=n

2n−m2m
α(m+1)−1∑

i=α(m)

x(i)+ ≤ 2 sup
m≥n

2m
α(m+1)−1∑

i=α(m)

x(i)+

for every n and x.
The point is that Pα 4T Z. PPP For each n ∈ N set kn = 22n(α(n+ 1) − α(n)),

Vn = (α(n+ 1) \ α(n)) × knα(0) ⊆ N× N, An = PVn,

and let µ̄n be the uniform probability measure on An, so that µ̄nd = #(d)/#(Vn) for d ⊆ Vn. For n ∈ N

and x ∈ ℓ∞ set

fn(x) = {(i, j) : α(n) ≤ i < α(n+ 1), j < kn min(α(0), x(i))} ⊆ Vn.

Then

|#(fn(x)) − kn
∑

α(n)≤i<α(n+1) min(α(0), x(i)+)| ≤ α(n+ 1) − α(n),

so if ‖x‖∞ ≤ α(0) then

∣∣2nα(0)(α(n+ 1) − α(n))µ̄fn(x) − 2n
α(n+1)−1∑

i=α(n)

x(i)+
∣∣ ≤ 2n(α(n+ 1) − α(n))/kn

= 2−n.

Accordingly

Pα = {x : x ∈ ℓ∞, ‖x‖∞ ≤ α(0), limn→∞ 2n(α(n+ 1) − α(n))µ̄nfn(x) = 0}.

Let A =
∏

n∈N
An be the simple product of the Boolean algebras An, and I the ideal

{a : a ∈ A, limn→∞ 2n(α(n+ 1) − α(n))µ̄na(n) = 0}
of A. For x ∈ ℓ∞, set f(x) = 〈fn(x)〉n∈N. Observe that f : ℓ∞ → A is supremum-preserving in the sense
that f(supA) = sup f [A] for any non-empty bounded subset A of ℓ∞.

The last formula for Pα shows that f(x) ∈ I for every x ∈ Pα. But if a ∈ I, A = {x : x ∈ Pα, f(x) ⊆ a}
is upwards-directed and has a supremum x0 ∈ ℓ∞, with ‖x0‖∞ ≤ α(0). Now f(x0) = supx∈A f(x) ⊆ a, so
x0 ∈ Pα and is an upper bound for A in Pα. Thus f↾Pα is a Tukey function from Pα to I, and Pα 4T I.
By 526E, I 4T Z, so Pα 4T Z. QQQ

Thus (Pα,≤, Pα) 4GT (Z,⊆,Z); it follows at once that (Pα,≤, ℓ1) 4GT (Z,⊆,Z).

(b) Now, for α ∈ NN, take P̃α = Pβ where β(n) = 1 + n + maxi≤n α(i) for n ∈ N. Then P̃α ⊆ P̃α′

whenever α ≤ α′ in NN,
⋃

α∈NN P̃α = ℓ1 and (P̃α,≤, ℓ1) 4GT (Z,⊆,Z) for every α; so (ℓ1,≤, ℓ1) 4GT (NN,≤
,NN) ⋉ (Z,⊆,Z), by 512K.
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526G Corollary Let N be the ideal of Lebesgue negligible subsets of R.
(a) addω Z = addN = addω ℓ

1 and cfZ = cfN = cf ℓ1.
(b) If A ⊆ Z and #(A) < addN , there is a J ∈ Z such that I \ J is finite for every I ∈ A.

proof (a)(i) Putting 526B and 513Ie together, we see that

addω NN ≥ addω Z ≥ addω ℓ
1,

that is,

b ≥ addω Z ≥ addN
(522A, 524I). Next, we can deduce from 526F that addω ℓ

1 ≥ min(addω NN, addω Z). PPP Let (φ, ψ) be a
Galois-Tukey connection from (ℓ1,≤, ℓ1) to

(NN,≤,NN) ⋉ (Z,⊆,Z) = (NN ×ZN
N

, T,NN ×Z),

where

T = {((p, f), (q, a)) : p ≤ q in NN, f(q) ⊆ a ∈ Z}.

We can interpret φ as a pair (φ1, φ2) where φ1 is a function from ℓ1 to NN and φ2 is a function from ℓ1×NN

to Z, and saying that (φ, ψ) is a Galois-Tukey connection means just that

if φ1(x) ≤ q and φ2(x, q) ⊆ a then x ≤ ψ(q, a).

Now suppose that A ⊆ ℓ1 and #(A) < min(addω NN, addω Z). Then there is a sequence 〈qn〉n∈N in
NN such that for every x ∈ A there is an n ∈ N such that φ1(x) ≤ qn. Next, for each n ∈ N there
is a sequence 〈anm〉m∈N in Z such that for every x ∈ A there is an m ∈ N such that φ2(x, qn) ⊆ anm.
In this case, B = {ψ(qn, anm) : m, n ∈ N} is a countable subset of Z, and for every x ∈ A there are
m, n ∈ N such that φ1(x) ≤ qn and φ2(x, qn) ⊆ anm, so that x ≤ ψ(qn, anm) ∈ B. As A is arbitrary,
addω ℓ

1 ≥ min(addω NN, addω Z). QQQ
Thus we have addN ≥ min(b, addω Z) = addω Z, and addω Z = addN . And we know from 524I, with

κ = ω there, that addN = addω ℓ
1

(ii) On the other hand, 524I, 526F, 512Da and 512Jb tell us that

cfN = cf ℓ1 = cov(ℓ1,⊆, ℓ1) ≤ cov((NN,≤,NN) ⋉ (Z,⊆,Z))

= max(cov(NN,≤,NN), cov(Z,⊆,Z)) = max(d, cfZ).

But from 526B we see that d ≤ cfZ ≤ cf ℓ1, so cfZ = cfN , while 524I tells us that cfN = cf ℓ1.

(b) By (a), there is a countable set D ⊆ Z such that every member of A is included in a member of D.
By 491Ae, there is a J ∈ Z such that I \ J is finite for every I ∈ D; this J serves.

526H I turn now to ideals of nowhere dense sets.

Proposition Let Nwd be the ideal of nowhere dense subsets of NN and M the ideal of meager subsets of
NN.

(a) Nwd is isomorphic, as partially ordered set, to (Nwd)N.
(b) (Nwd,⊆′′′, [Nwd]≤ω) ≡GT (M,⊆,M).
(c) Nwd 4T ℓ

1.
(d) Let X be a set and V a countable family of subsets of X. Set

D = {D : D ⊆ X, for every V ∈ V there is a V ′ ∈ V such that V ′ ⊆ V \D}.

Then D 4T Nwd.
(e) If X is any non-empty Polish space without isolated points, and Nwd(X) is the ideal of nowhere

dense subsets of X, then Nwd ≡T Nwd(X).
(f) If X is a compact metrizable space and Cnwd is the family of closed nowhere dense subsets of X with

the Fell (or Vietoris) topology (4A2T), then (Cnwd,⊆) is a metrizably compactly based directed set.

Remark Recall that if R is any relation then R′′′ is the relation {(x,B) : (x, y) ∈ R for some y ∈ B}; see
512F-512G.
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proof Enumerate S =
⋃

n∈N
Nn as 〈σn〉n∈N. For σ ∈ S write Iσ = {α : σ ⊆ α ∈ NN}.

(a) Define φ : Nwd → Nwd
N by setting φ(F )(n) = {α : <n>aα ∈ F} (notation: 5A1C). Then φ is an

isomorphism between Nwd and Nwd
N.

(b)(i) Choose φ : M → Nwd
N such that M ⊆ ⋃

n∈N
φ(M)(n) for every M ∈ M. Then φ is a Tukey

function so M 4T Nwd
N ∼= Nwd, that is, (M,⊆,M) 4GT (Nwd,⊆,Nwd). By 513Id and 512Gb,

(M,⊆,M) ≡GT (M,⊆′′′, [M]≤ω) 4GT (Nwd,⊆′′′, [Nwd]≤ω).

(ii) For n ∈ N and τ ∈ Nn, define gτ : NN → NN by saying that gτ (α) = τaα. Note that gτ is a
homeomorphism between NN and Iτ , so that gτ [F ] and g−1

τ [F ] are nowhere dense whenever F is.
Now for any F ∈ Nwd we can find a φ(F ) ∈ Nwd such that F ⊆ φ(F ) and for every σ ∈ S either

Iσ ∩ φ(F ) = ∅ or there is a τ ∈ S, extending σ, such that gτ [F ] ⊆ φ(F ). PPP Choose 〈τn〉n∈N, 〈υn〉n∈N

inductively, as follows. Given that Iυi
∩ (F ∪ gτj [F ]) = ∅ for all i, j < n, set E = Iσn

∩ (F ∪⋃
j<n gτj [F ]).

If E = ∅ set υn = σn and τn = ∅, so that gτn [F ] = F . If E is not empty, it is still nowhere dense, so we can
find υn ⊇ σn such that Iυn

∩ E = ∅. In this case,
⋃

i≤n Iυi
is a closed set not including Iσn

, so we can find

a τn ⊇ σn such that Iτn ∩⋃
i≤n Iυi

= ∅, and Iυi
∩ gτn [F ] = ∅ for i ≤ n. Thus in both cases we shall have⋃

i≤n Iυi
∩ (F ∪⋃

j≤n gτj [F ]) = ∅, and the induction proceeds.

Set φ(F ) = F ∪⋃
j∈N

gτj [F ]. Because υi ⊇ σi and φ(F ) ∩ Iυi
is empty for every i ∈ N, φ(F ) ∈ Nwd. If

σ ∈ S is such that φ(F ) meets Iσ, there is an n ∈ N such that σ = σn; now we cannot have υn = σn so we
must have τn ⊇ σn and gτn [F ] ⊆ φ(F ). Thus we have found an suitable set φ(F ). QQQ

For each M ∈ M let EM be a non-empty countable family of closed nowhere dense sets covering M , and
set ψ(M) = {g−1

τ [E] : E ∈ EM , τ ∈ S}. Then (φ, ψ) is a Galois-Tukey connection from (Nwd,⊆′′′, [Nwd]≤ω)
to (M,⊆,M). PPP Suppose that F ∈ Nwd and M ∈ M are such that φ(F ) ⊆ M . If F = ∅ then certainly
there is an F ′ ∈ ψ(M) covering F . Otherwise, φ(F ) is a non-empty closed set included in the union of
the countable set EM of closed sets. By Baire’s theorem, there must be a σ ∈ S and an E ∈ EM such
that ∅ 6= φ(F ) ∩ Iσ ⊆ E. In this case, there is a τ ⊇ σ such that gτ [F ] ⊆ φ(F ), so that gτ [F ] ⊆ E and
F ⊆ g−1

τ [E] ∈ ψ(M) and F ⊆′′′ ψ(M). As F and M are arbitrary, (φ, ψ) is a Galois-Tukey connection. QQQ

(iii) Thus we have

(M,⊆,M) 4GT (Nwd,⊆′′′, [Nwd]≤ω) 4GT (M,⊆,M)

and (M,⊆,M) ≡GT (Nwd,⊆′′′, [Nwd]≤ω).

(c) We can use the idea of 522O. Let 〈Un〉n∈N enumerate a base for the topology of NN not containing ∅.
By 522N, there is for each n ∈ N a countable family Vn of open subsets of Un such that

⋂V 6= ∅ for every
V ∈ [Vn]≤2n and every dense open subset of Un includes some member of Vn. Enumerate Vn as 〈Unm〉m∈N.

For each F ∈ Nwd let fF : N → N be such that F ∩ Un,fF (n) = ∅ for every n ∈ N, and for n, i ∈ N set

φ(F )(2n(2i+ 1) − 1) = 2−n if fF (n) = i,

= 0 otherwise.

Then
∑∞

i=0 φ(F )(i) = 2 for each F , so we have a function φ : Nwd → ℓ1.
Suppose that x ∈ ℓ1. Set A = {F : F ∈ Nwd, φ(F ) ≤ x} and E =

⋃A. The set

K = {n : #({i : x(2n(2i+ 1) − 1) ≥ 2−n}) ≥ 2n}
is finite; set k = sup({0} ∪K). If n > k, then #({fF (n) : F ∈ A}) < 2n, so

⋂
F∈A Un,fF (n) is a non-empty

open subset of Un disjoint from
⋃

F∈A F = E. Thus {n : Un ⊆ E} ⊆ {0, . . . , k} is finite, and therefore in
fact is empty, that is, E ∈ Nwd.

As x is arbitrary, φ : Nwd → ℓ1 is a Tukey function, and witnesses that Nwd 4T ℓ
1.

(d) If V = ∅ then D = PX has a greatest element and the result is trivial (any function from D to
Nwd will be a Tukey function). Otherwise, choose a function h : S → V ∪ {X} such that h(∅) = X and
〈h(σa<i>)〉i∈N runs over {V : h(σ) ⊇ V ∈ V} for every σ ∈ S. Note that h(τ) ⊆ h(σ) whenever τ ⊇ σ, and
that {h(τ) : σ ⊆ τ ∈ Nn} = {V : V ∈ V, V ⊆ h(σ)} whenever m ∈ N, σ ∈ Nm and n > m. For each D ∈ D
we can choose a sequence 〈τDn〉n∈N in S such that τDn ⊇ σn and D ∩ h(τDn) is empty and #(τDn) ≥ n for
every n ∈ N. Set φ(D) = NN \⋃n∈N

IτDn
, so that φ(D) ∈ Nwd.
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Take any F ∈ Nwd, and set D0 =
⋃{D : D ∈ D, φ(D) ⊆ F}. Then D0 ∈ D. PPP Let V ∈ V. Let υ ∈ N1

be such that h(υ) = V . Take τ ⊇ υ such that F ∩ Iτ = ∅. ??? If D0 ∩ h(τ) 6= ∅, then there is a D ∈ D
such that φ(D) ⊆ F and D ∩ h(τ) 6= ∅. Iτ ∩ φ(D) is empty, that is, Iτ ⊆ ⋃

n∈N
IτDn

; because #(τDn) ≥ n
for every n, this can happen only because there is some n ∈ N such that τDn ⊆ τ . But this means that
D ∩ h(τ) ⊆ D ∩ h(τDn) = ∅, which is impossible. XXX Thus D0 ∩ h(τ) is empty, and h(τ) is a member of V
included in V \D0. As V is arbitrary, D0 ∈ V. QQQ

As F is arbitrary, φ is a Tukey function and D 4T Nwd, as claimed.

(e)(i) Taking V to be a countable base for the topology of X not containing ∅, we have

Nwd(X) = {F : F ⊆ X, for every V ∈ V there is a V ′ ∈ V such that V ′ ⊆ V \ F},

so (d) tells us that Nwd(X) 4T Nwd.

(ii) X has a dense subset Y which is homeomorphic to NN (5A4Le). Let Nwd(Y ) be the family of
nowhere dense subsets of Y . For F ∈ Nwd(Y ) let φ(F ) be its closure in X. Then φ is a Tukey function
from Nwd(Y ) to Nwd(X), so Nwd ∼= Nwd(Y ) 4T Nwd(X).

(f) By 4A2Tg, the Fell topology on the family C of all closed subsets of X is compact and metrizable.
E ∪ F ∈ Cnwd for all E, F ∈ Cnwd, and ∪ : Cnwd × Cnwd → Cnwd is continuous (4A2T(b-ii)). If F ∈ Cnwd, the
set {E : E ∈ Cnwd, E ⊆ F} = {E : E ∈ C, E ∪ F = F} is closed in C, therefore compact. Now suppose that
〈Ek〉k∈N is a sequence in Cnwd converging to E ∈ Cnwd. If X = ∅ then of course {Ek : k ∈ N} is bounded
above in Cnwd. Otherwise, let 〈Un〉n∈N run over a base for the topology of X not containing ∅, and choose
〈kn〉n∈N, 〈Vn〉n∈N inductively, as follows. Given ki ∈ N for i < n, let Vn ⊆ Un be a non-empty open set such
that V n ∩ (E ∪⋃

i<nEki
) = ∅; given that E ∩ V i = ∅ for i ≤ n, choose kn ≥ n such that Ekn

∩⋃
i≤n V i is

empty. (This is possible because
⋃

i≤n V i is compact, so the family of sets disjoint from it is open in the Fell

topology.) Continue. At the end of the induction, G =
⋃

n∈N
Vn is a dense open set disjoint from

⋃
n∈N

Ekn
,

so X \ G is an upper bound for {Ekn
: n ∈ N} in Cnwd. Thus all the conditions of 513K are satisfied, and

Cnwd is metrizably compactly based.

526I A related type of ideal is the following. I express the result in more general form because it has
some measure theory in it.

Proposition (Fremlin 91) Let X be a second-countable topological space and µ a σ-finite topological
measure on X. Let E be the ideal of subsets of X with negligible closures. Then, writing Nwd for the ideal
of nowhere dense subsets of NN, E 4T Nwd and E 4T Z.

proof (a) If µX = 0 then E has a greatest element and the result is trivial. Otherwise, there is a probability
measure on X with the same measurable sets and the same negligible sets as µ (215B(vii)); so we may
suppose that µ itself is a probability measure. Let U be a countable base for the topology of X, containing
X and closed under finite unions.

(b) For k ∈ N let Vk be the countable set {V : V ∈ U , µV > 1 − 2−k}. Set

Ek = {E : E ⊆ X, for every V ∈ Vk there is a U ∈ Vk such that U ⊆ V \ E}.

Then E =
⋂

k∈N
Ek. PPP Because X ∈ Vk, µE ≤ 2−k for every E ∈ Ek, so

⋂
k∈N

Ek ⊆ E . On the other hand, if

E ∈ E and k ∈ N and V ∈ Vk, then µ(V \E) > 1− 2−k and U ′ = {U : U ∈ U , U ⊆ V \E} has union V \E.
As U ′ is countable, there is a finite U ′

1 ⊆ U ′ such that U =
⋃U ′

1 has measure greater than 1 − 2−k, so that
U ∈ Vk and U ⊆ V \ E. As V is arbitrary, E ∈ Vk; as E and k are arbitrary, E ⊆ ⋂

k∈N
Ek. QQQ

This means that the map E 7→ (E,E,E, . . . ) is a Tukey function from E to
∏

k∈N
Ek, so that E 4T∏

k∈N
Ek. At the same time, Ek 4T Nwd for every k, by 526Hd. So E 4T Nwd

N ∼= Nwd (513Eg, 526Ha).

(c) Let A be the countable subalgebra of PX generated by U . Then there is a Boolean homomorphism
π : A → PN such that d(πE) is defined and equal to µE for every E ∈ A. PPP This is easy to prove
directly (see 491Xu), but we can also argue as follows. Let 〈An〉n∈N be a non-decreasing sequence of finite
subalgebras of A with union A. By 526C, we have a Boolean homomorphism π′ :

∏
n∈N

An → PN such that
d(π′〈En〉n∈N) = limn→∞ µEn whenever En ∈ An for every n and the limit on the right is defined. For each
n ∈ N let πn : A → An be a Boolean homomorphism extending the identity homomorphism on An (314K,
or otherwise); set πE = π′〈πnE〉n∈N for E ∈ A; this works. QQQ
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Let 〈Vn〉n∈N be a sequence running over the closed sets belonging to A. Let 〈kn〉n∈N be a strictly increasing

sequence in N \ {0} such that
1

kn

#(kn ∩ πE) ≥ µE − 2−n whenever E belongs to the subalgebra Bn of A

generated by {Vi : i ≤ n}. Define φ : E → PN by setting

φ(E) =
⋂{ki ∪ πVi : i ∈ N, E ⊆ Vi}.

Then φ is a Tukey function from E to Z.

PPP (i) If E ∈ E and ǫ > 0 there is a U ∈ U such that U ⊆ X \E and µU ≥ 1 − ǫ. Let i ∈ N be such that
X \ U = Vi; then φ(E) ⊆ ki ∪ πVi, so

d∗(φ(E)) ≤ d∗(πVi) = µVi ≤ ǫ.

As ǫ is arbitrary, φ(E) ∈ Z. Thus φ is a function from E to Z.

(ii) Take any A ⊆ E , and set F =
⋃A, a =

⋃
E∈E φ(E). If n ∈ N and i ∈ kn \ a, then i /∈ φ(E) for

every E ∈ A, so for every E ∈ A there is a j < n such that E ⊆ Vj and i /∈ πVj . Set Fni =
⋃{Vj : j < n,

i /∈ πVj}, so that i /∈ πFni, while
⋃A ⊆ Fni and F ⊆ Fni. Set Fn = N ∩⋂

i∈kn\a
Fni, so that F ⊆ Fn and

no member of kn \ a belongs fo πFn, that is, kn ∩ πFn ⊆ a. Note that Fn ∈ Bn. So we have

1

kn

#(kn ∩ a) ≥ 1

kn

#(kn ∩ πFn) ≥ µFn − 2−n ≥ µF − 2−n.

This means that d∗(a) ≥ µF . So if {φ(E) : E ∈ A} is bounded above in Z, A must be bounded above in E ;
that is, φ is a Tukey function. QQQ

Thus E 4T Z also.

526J Proposition Let ELeb be the ideal of subsets of R whose closures are Lebesgue negligible. Then
NN 4T ELeb but ELeb 64T NN; consequently Z 64T NN, Nwd 64T NN and ℓ1 64T NN.

proof (a) Enumerate Q ∩ [0, 1] as 〈qi〉i∈N. Define φ : NN → ELeb by setting φ(f)(n) = {n + qi : n ∈ N,
i ≤ f(n)}. Then it is easy to see that φ is a Tukey function, because if F ⊆ NN and {f(n) : f ∈ F} is
unbounded, then

⋃
f∈F φ(f) is dense in [n, n+ 1] so does not belong to ELeb.

(b) Let ψ : ELeb → NN be any function. Let µ be Lebesgue measure on R, and choose 〈f(n)〉n∈N

inductively in N such that µ∗{t : t ∈ [0, 1], ψ({t})(i) ≤ f(i) for every i ≤ n} > 1
2 for every n. Set

An = {t : t ∈ [0, 1], ψ({t})(i) ≤ f(i) for every i ≤ n}, F =
⋂

n∈N
An

so that µF ≥ 1
2 . Let 〈Un〉n∈N enumerate the set of open intervals of R, meeting F , with rational endpoints,

and for each n ∈ N choose tn ∈ An ∩ Un. Then ψ({tn})(i) ≤ f(i) whenever n ≥ i, so {ψ({tn}) : n ∈ N} is

bounded above in NN; but {tn : n ∈ N} includes F , so {{tn} : n ∈ N} is not bounded above in ELeb. Thus
ψ cannot be a Tukey function.

(c) Accordingly ELeb 64T NN; since ELeb 4T Z 4T ℓ1 and ELeb 4T Nwd (526I, 526B), Z 64T NN,
Nwd 64T NN and ℓ1 64T NN.

526K Proposition Let Nwd be the ideal of nowhere dense subsets of NN. Then Z 64T Nwd, so
Z 64T ELeb and ℓ1 64T Nwd.

proof Let φ : Z → Nwd be any function. Let 〈Un〉n∈N enumerate a base for the topology of NN which
contains ∅ and is closed under finite unions. For each n ∈ N, set

an = {i : i ∈ N, φ(a) ∩ Un 6= ∅ whenever i ∈ a ∈ Z}.

Set

a = {min(an \ n2) : n ∈ N, an 6⊆ n2}
(interpreting n2 in the formula above as a member of N rather than as a subset of N2). Then a ∈ Z
and a ∩ an 6= ∅ whenever an is infinite. Set K = {n : n ∈ N, φ(a) ∩ Un = ∅}, so that K is infinite and⋃

n∈K Un = NN \ φ(a) is dense, while an is finite for every n ∈ K (since otherwise there is an i ∈ a ∩ an,
and φ(a) ∩ Un will not be empty). For n ∈ N,

⋃
m∈K∩n Um belongs to U ; let r(n) ∈ N be such that
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Ur(n) =
⋃

m∈K∩n Um. Then r(n) ∈ K for every n, so ar(n) is always finite. Take a strictly increasing
sequence 〈kn〉n∈N in K such that ar(n) ⊆ kn for every n. For i < k0, set bi = {i}; for kn ≤ i < kn+1, choose
bi ∈ Z such that i ∈ bi and φ(bi) ∩ Ur(n) is empty (such exists because i /∈ ar(n)).

Examine E =
⋃

i∈N
φ(bi) ⊆ NN. If m ∈ K then Um ⊆ Ur(n) for every n > m so Um ∩ φ(bi) = ∅ for every

i ≥ km+1 and Um ∩ E =
⋃

i<km+1
Um ∩ φ(bi) is nowhere dense. As

⋃
m∈K Um is a dense open set, E is

nowhere dense. On the other hand,
⋃

i∈N
bi = N. So {b : b ∈ Z, φ(b) ⊆ E} is not bounded above in Z, and

φ cannot be a Tukey function. As φ is arbitrary, Z 64T Nwd.
Because ELeb 4T Nwd (526I) and Z 4T ℓ

1 (526B), it follows that Z 64T ELeb and ℓ1 64T Nwd.

526L Proposition (Mátrai p09) Nwd 64T Z, so Nwd 64T ELeb and ℓ1 64T Z.

proof (a)(i) Fix a non-empty zero-dimensional compact metrizable space X without isolated points, and
write Nwd(X) for the ideal of nowhere dense subsets of X; the bulk of the argument here will be a proof that
Nwd(X) 64T Z. Let V be the family of non-empty open-and-closed subsets ofX. For V ∈ V write Nwd(V ) =

Nwd(X) ∩ PV for the family of nowhere dense subsets of V . As in 526A, set νI = supn≥1
1

n
#(I ∩ n) for

I ⊆ N. Take any function f : Nwd(X) → Z.

(ii) Let Q be the set of pairs σ = (mσ, Iσ) where Iσ ⊆ mσ ∈ N; for σ, τ ∈ Q, say that σ ≤ τ if either
σ = τ or 2mσ ≤ mτ and Iσ = mσ ∩ Iτ . Then (Q,≤) is a partially ordered set. For σ ∈ Q and ǫ > 0, let
D(σ, ǫ) be the set of those E ⊆ X for which there is an F ∈ Nwd(X), including E, such that f(F )∩mσ ⊆ Iσ
and ν(f(F ) \ Iσ) ≤ ǫ.

(iii) If σ ∈ Q, ǫ > 0 and k ≥ 2mσ, then

D(σ, ǫ) ⊆ ⋃{D(τ, ǫ) : σ ≤ τ ∈ Q, mτ = k, ν(Iτ \ Iσ) ≤ ǫ}.

PPP If E ∈ D(σ, ǫ), let F ∈ Nwd(X) be such that E ⊆ F , f(F ) ∩ mσ ⊆ Iσ and ν(f(F ) \ Iσ) ≤ ǫ. Set
τ = (k, Iσ ∪ (k ∩ f(F )); then σ ≤ τ and F witnesses that E ∈ D(τ, ǫ), while ν(Iτ \ Iσ) ≤ ǫ. QQQ

(iv) If σ ∈ Q and ǫ, δ > 0, then

D(σ, ǫ) ⊆ ⋃{D(τ, δ) : σ ≤ τ ∈ Q, ν(Iτ \ Iσ) ≤ ǫ}.

PPP If E ∈ D(σ, ǫ), let F ∈ Nwd(X) be such that E ⊆ F , F ∩mσ ⊆ Iσ and ν(f(F ) \ Iσ) ≤ ǫ. As f(F ) ∈ Z,
there is a k ≥ 2mσ such that ν(f(F )\k) ≤ δ. Set τ = (k, Iσ∪ (k∩f(F )); then F witnesses that E ∈ D(τ, δ),
while ν(Iτ \ Iσ) ≤ ǫ. QQQ

(v) Suppose that n ≥ 1 and that 〈σj〉j≤n, 〈τj〉j≤n are finite sequences in Q such that mτj ≤ mσj
for

j ≤ n and σj ≤ τj+1 for j < n. Then ν(
⋃

j<n Iτj+1
\ Iσj

) ≤ 3 maxj<n ν(Iτj+1
\ Iσj

). PPP Note first that we

certainly have mσj
≤ mτj+1

≤ mσj+1
for every j < n. Set K =

⋃
j<n Iτj+1

\Iσj
and ǫ = maxj<n ν(Iτj+1

\Iσj
).

If m ∈ N, set J = {j : j < n, σj 6= τj+1, mσj
≤ m}, J ′ = {j : j ∈ J , mτj+1

≤ m}. Then

#(m ∩K) ≤
∑

j∈J

#(m ∩ Iτj+1
\ Iσj

)

(because if j < n and m ≤ mσj
, then m ∩ Iτj+1

\ Iσj
= ∅)

≤ ǫm+
∑

j∈J ′

#(Iτj+1
\ Iσj

)

(because #(J \ J ′) ≤ 1)

≤ ǫ(m+
∑

j∈J ′

mτj+1
) ≤ ǫ(m+ 2m)

(because 2mτj+1
≤ 2mσj+1

≤ 2mσj′
≤ mτj′+1

≤ m whenever j, j′ are successive members of J ′)

= 3ǫm.

As m is arbitrary, νK ≤ 3ǫ. QQQ

(b)(i) Suppose that V ∈ V and that C0, . . . , Cn ⊆ Nwd(X) are such that every nowhere dense subset of
V is included in some member of

⋃
i≤n Ci. Then there is an i ≤ n such that every nowhere dense subset of
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V is included in some member of Ci. PPP??? Otherwise, for each i ≤ n we can find a nowhere dense subset Ei

of V not included in any member of Ci; now E =
⋃

i≤nEi is a nowhere dense subset of V not included in

any member of
⋃

i≤n Ci. XXXQQQ

(ii) Suppose that V ∈ V and that 〈Cn〉n∈N is a sequence of subsets of Nwd(X) such that every nowhere
dense subset of V is included in some member of

⋃
n∈N

Cn. Then for any E ∈ Nwd(V ) there are a U ∈ V
and an n ∈ N such that E ⊆ U and every nowhere dense subset of U is included in some member of Cn. PPP
As V 6= ∅ we can suppose that E 6= ∅. Let 〈Un〉n∈N be a non-increasing sequence in V such that U0 = V
and

⋂
n∈N

Un = E. ??? If, for every n ∈ N, there is an En ∈ Nwd(Un) not included in any member of Cn,
consider F =

⋃
n∈N

En; then F ∈ Nwd(V ) but F is not included in any member of any Cn. XXX So some Un

will serve. QQQ

(c) (The key.) Suppose that V ∈ V, σ ∈ Q and ǫ > 0 are such that Nwd(V ) ⊆ D(σ, ǫ). Let 〈ǫn〉n∈N be a
sequence in ]0,∞[. Then there are an n ∈ N, U0, . . . , Un ∈ V and τ ∈ Q such that

σ ≤ τ , ν(Iτ \ Iσ) ≤ 8ǫ,

V ⊆ ⋃
j≤n Uj , Nwd(Uj) ⊆ D(τ, ǫj) for every j ≤ n.

PPP It is enough to consider the case in which
∑∞

n=0 ǫn ≤ ǫ. Let 〈xn〉n∈N run over a dense subset of V . Choose
〈σn〉n∈N, 〈kn〉n∈N, 〈Un〉n≥1 and 〈τn〉n≥1 inductively, as follows. Start with σ0 = σ, k0 = mσ0

. Given that
Nwd(V ) ⊆ D(σn, ǫ), we know from (a-iv) that

Nwd(V ) ⊆ D(σn, ǫ) ⊆
⋃{D(τ, ǫn+1) : σn ≤ τ ∈ Q, ν(Iτ \ Iσn

) ≤ ǫ},

so by (b-ii) we can find a Un+1 ∈ V and a τn+1 ≥ σn such that xn ∈ Un+1, ν(Iτn+1
\ Iσn

) ≤ ǫ and
Nwd(Un+1) ⊆ D(τn+1, ǫn+1). Next, taking kn+1 = max(mτn+1

, 2mσn
), (a-iii) tells us that

Nwd(V ) ⊆ D(σn, ǫ) ⊆
⋃{D(τ, ǫ) : σn ≤ τ ∈ Q, mτ = kn+1, ν(Iτ \ Iσn

) ≤ ǫ},

so from (b-i) we see that there is a σn+1 ∈ Q such that Nwd(V ) ⊆ D(σn+1, ǫ), mσn+1
= kn+1, σn ≤ σn+1

and ν(Iσn+1
\ Iσn

) ≤ ǫ. Continue.
At the end of the induction, set E = V \ ⋃

n∈N
Un+1. Because {xn : n ∈ N} is dense in V , so is⋃

n∈N
Un+1, and E ∈ Nwd(V ). By (a-iv) and (b-ii) again, there are a U0 ∈ V and a τ0 ≥ σ such that

E ⊆ U0, Nwd(U0) ⊆ D(τ0, ǫ0) and ν(Iτ0 \ Iσ) ≤ ǫ. Now V ⊆ ⋃
n∈N

Un; since V is compact, there is an
n ∈ N such that V ⊆ ⋃

j≤n Uj .

I have still to define τ . Set k = 2 max(kn,mτ0). For each j ≤ n, (a-iii) and (b-i), as before, show
us that there is an υj ∈ Q such that τj ≤ υj , mυj

= k, ν(Iυj
\ Iτj ) ≤ ǫj and Nwd(Uj) ⊆ D(υj , ǫj).

Try setting τ = (k,
⋃

j≤n Iυj
). Then surely Nwd(Uj) ⊆ D(τ, ǫj) for each j. To estimate ν(Iτ \ Iσ), set

K =
⋃

j<n Iτj+1
\ Iσj

, K ′ =
⋃

j<n Iσj+1
\ Iσj

. By (a-v), νK and νK ′ are both at most 3ǫ. Now

Iτ \ Iσ ⊆
⋃

j≤n

(Iυj
\ Iτj ) ∪ (Iτ0 \ Iσ)

∪
⋃

j<n

(Iτj+1
\ Iσj

) ∪
⋃

j≤n

(Iσj
\ Iσ)

=
⋃

j≤n

(Iυj
\ Iτj ) ∪ (Iτ0 \ Iσ) ∪K ∪K ′,

and

ν(Iτ \ Iσ) ≤
n∑

j=0

ν(Iυj
\ Iτj ) + ν(Iτ0 \ Iσ) + νK + νK ′

≤ 7ǫ+

n∑

j=0

ǫj ≤ 8ǫ,

as required. QQQ

(d) Now we can find T ⊆ S =
⋃

n∈N
Nn, 〈δt〉t∈T , 〈σt〉t∈T , 〈τt〉t∈T and 〈Vt〉t∈T such that
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T is a tree (that is, t↾k ∈ T whenever t ∈ T and k ∈ N),
δt > 0 for every t ∈ T ,

∑
t∈T δt <∞,

σt ∈ Q, τt ∈ Q, σt ≤ τt for every t ∈ T ,
σt = τt↾n whenever n ∈ N and t ∈ T ∩ Nn+1,
ν(Iτt \ Iσt

) ≤ δt for every t ∈ T ,
Vt ∈ V, Nwd(Vt) ⊆ D(σt, δt) for every t ∈ T ,⋃{Vt : t ∈ T ∩ Nn} = X for every n ∈ N.

PPP Begin by choosing strictly positive δt, for t ∈ S, such that δ∅ = 1 and
∑

t∈S δt is finite. Now choose
Tn ⊆ Nn and 〈σt〉t∈Tn

, 〈Vt〉t∈Tn
inductively, as follows. Start with T0 = {∅}, σ∅ = (0, ∅) and V∅ = X. Then

Nwd(V∅) = Nwd(X) = D((0, ∅), 1) = D(σ∅, δ∅),

so the process starts. Given that Tn, 〈σt〉t∈Tn
and 〈Vt〉t∈Tn

have been defined, then for each t ∈ Tn use (c)
to find nt ∈ N, 〈Vta<i>〉i≤nt

∈ Vnt+1 and τt ∈ Q such that σt ≤ τt, ν(Iτt \ Iσt
) ≤ δt, Vt ⊆

⋃
i≤nt

Vta<i>

and Nwd(Vta<i>) ⊆ D(τt, δta<i>) for every i ≤ nt. Set Tn+1 = {ta<i> : t ∈ Tn, i ≤ nt} and σt = τt↾n for
every t ∈ Tn+1, and continue. At the end of the construction, set T =

⋃
n∈N

Tn. QQQ

(e) Let 〈yn〉n∈N run over a dense subset of X. For n ∈ N, take tn ∈ T ∩ Nn such that yn ∈ Vtn . Since
Nwd(Vtn) ⊆ D(σtn , δtn), we can choose an Fn ∈ Nwd(X), containing yn, such that ν(f(Fn) \ Iσtn

) ≤ δtn .
Now {f(Fn) : n ∈ N} is bounded above in Z. PPP Set K =

⋃
t∈T Iσt

. As Iσ∅
= ∅,

K =
⋃

n∈N

⋃
t∈T∩Nn+1 Iσt

\ Iσt↾n
=

⋃
t∈T Iτt \ Iσt

;

as
∑

t∈T ν(Iτt \ Iσt
) is finite, K ∈ Z (526Ac). Next,

⋃
n∈N

f(Fn) \K ⊆ ⋃
n∈N

f(Fn) \ Iσtn
;

as
∑∞

n=0 ν(f(Fn) \ Iσtn
) ≤ ∑∞

n=0 δtn

is finite,
⋃

n∈N
f(Fn)\K ∈ Z, so

⋃
n∈N

f(Fn) also belongs to Z, and is an upper bound for {f(Fn) : n ∈ N}.
QQQ

(f) On the other hand, {Fn : n ∈ N} is certainly not bounded above in Nwd(X), since
⋃

n∈N
Fn includes

the dense set {yn : n ∈ N}. So f cannot be a Tukey function. Since f is arbitrary, Nwd(X) 64T Z.

(g) Since Nwd(X) ≡T Nwd (526He), it follows that Nwd 64T Z. Since NN 4T ELeb 4T Z (526I, 526J)
and Nwd 4T ℓ

1 (526Hc), we see that Nwd 64T ELeb and ℓ1 64T Z.

Remark A somewhat stronger result is in Solecki & Todorčević 10.

526M Having introduced ideals of sets with negligible closures, I add a simple result which will be useful
later.

Proposition Let X be a second-countable topological space and µ a σ-finite topological measure on X. Let
E be the ideal of subsets of X with negligible closures, N (µ) the null ideal of µ, and M the ideal of meager
subsets of NN. Then

(E ,⊆,N (µ)) 4GT (M, 6∋,NN);

consequently add(E ,⊆,N (µ)) ≥ mcountable.

proof (a) Suppose first that µ is a probability measure. Let U be a countable base for the topology of X,
containing ∅ and closed under finite unions. For each n ∈ N, let 〈Uni〉i∈N run over {U : U ∈ U , µU ≥ 1−2−n}.
For f ∈ NN, set

ψ(f) =
⋂

n∈N

⋃
i≥nX \ Ui,f(i) ∈ N (µ).

For E ∈ E , set

φ(E) = {f : f ∈ NN, E 6⊆ ψ(f)}.

Then φ(E) ∈ M. PPP Since X \E is a conegligible open set, we can find for each i ∈ N a g(i) ∈ N such that
E ∩ Ui,g(i) = ∅. Now
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M =
⋃

n∈N

⋂
i≥n{f : f ∈ NN, f(i) 6= g(i)}

belongs to M. If f ∈ φ(E), there is an x ∈ E \ ψ(f), so that x ∈ ⋂
i≥n Ui,f(i) for some n; now if i ≥ n, we

have x ∈ Ui,f(i) \ Ui,g(i), so f(i) 6= g(i); thus f ∈M . Accordingly φ(E) ⊆M ∈ M. QQQ

Now (φ, ψ) is a Galois-Tukey connection from (E ,⊆,N (µ)) to (M, 6∋,NN), and (E ,⊆,N (µ)) 4GT (M, 6∋
,NN).

(b) If µX = 0, then of course (E ,⊆,N (µ)) 4GT (M, 6∋,NN) (take φ(E) = ∅ for every E ∈ E , ψ(f) = X
for every f ∈ NN). Otherwise, there is a probability measure ν on X with the same domain and the same
null ideal as µ, so (a) tells us that (E ,⊆,N (µ)) 4GT (M, 6∋,NN).

(c) Accordingly

add(E ,⊆,N (µ)) ≥ add(M, 6∋,NN) = covM
(512Db). But, writing M(R) for the ideal of meager subsets of R, covM = covM(R) = mcountable, by
522Wb and 522Sa.

Remark If X = R and µ is Lebesgue measure, then add(E ,⊆,N (µ)) = mcountable and cov(E ,⊆,N (µ)) =
nonM; see Bartoszyński & Shelah 92 or Bartoszyński & Judah 95, 2.6.14.

526X Basic exercises (a) Let ν : PN → [0, 1] be the submeasure described in 526A. Show that
d∗(I) = limn→∞ ν(I \ n) for every I ⊆ N.

(b) For I, J ⊆ N say that I ⊆∗ J if I \ J is finite. Show that (Z,⊆∗,Z) ≡GT (Z,⊆′′′, [Z]≤ω).

(c) Let Nwd be the ideal of nowhere dense subsets of NN and M the ideal of meager subsets of NN. Show
that addω Nwd = addM, nonNwd = ω, covNwd = mcountable and cfNwd ≤ cfM.

(d) Let X be a topological space with a countable π-base, and Nwd(X) the ideal of nowhere dense
subsets of X. Show that Nwd(X) 4T Nwd, where Nwd is the ideal of nowhere dense subsets of NN.

(e) In 526Hf, show that Cnwd is a Gδ subset of the family C of all closed subsets of X with its Fell topology,
so is a Polish space in the subspace topology.

(f) Let CLeb be the family of closed Lebesgue negligible subsets of [0, 1]. Show that CLeb with its Fell
topology is a Polish space and a metrizably compactly based directed set.

(g) Let ELeb be the ideal of subsets of R with negligible closures. (i) Show that it is Tukey equivalent to
the partially ordered set CLeb of 526Xf. (ii) Show that it is isomorphic to EN

Leb. (iii) Show that if we write
Eσ for the σ-ideal of subsets of R generated by ELeb, then (ELeb,⊆′′′, [ELeb]≤ω) ≡GT (Eσ,⊆, Eσ). (iv) Show
that addω ELeb = add Eσ and cf ELeb = cf Eσ.

526Y Further exercises (a) Let X be a locally compact separable metrizable space. Let Cnwd be the
family of closed nowhere dense sets in X with its Fell topology. Show that Cnwd is a metrizably compactly
based directed set.

(b) Let Z be the asymptotic density algebra PN/Z and define d̄∗ : Z → [0, 1] by setting d̄∗(I•) = d∗(I)
for every I ⊆ N, as in 491I. Show that if A ⊆ Z is non-empty, downwards-directed and has infimum 0, and
#(A) < p, then infa∈A d̄

∗(a) = 0. (Compare 491Id.)

(c) Show that wdistr(Z) = ω1.

(d) Show that m(Z) ≥ mσ-linked.

(e) Show that FN(PN) ≤ FN(Z) ≤ max(FN∗(PN), (cfN )+).

(f) Show that τ(Z) ≥ p.
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526 Notes and comments The ‘positive’ results of this section are straightforward enough, except perhaps
for 526F. As elsewhere in this chapter, I am attempting to describe a framework which will accommodate
the many arguments which have been found effective in discussing the cardinal functions of these partially
ordered sets. I note that in this section I use the symbol M to represent the ideal of meager subsets of NN,
rather than the ideal of meager subsets of R, as elsewhere in the chapter. If you miss this point, however,
none of the formulae here are dangerous, because the two ideals are Tukey equivalent, and indeed isomorphic
(522Wb).

When we come to ‘negative’ results, we have problems of a new kind. The special character of Tukey
functions is that they need not be of any particular type. They are not asked to be order-preserving, and
even if we have partially ordered sets with natural Polish topologies (as in 526A, 526Xe and 526Xf, for
instance), Tukey functions between them are not required to be Borel measurable. This means that in
order to show that there is no Tukey function between a given pair of partially ordered sets, we have had
to consider arbitrary functions, or seek to calculate suitable invariants which we know to be related to the
Tukey ordering, like precaliber triples (516C), and show that they are incompatible with the existence of a
Tukey function. For a discussion of a class of invariants giving very sharp distinctions, see Mátrai p09, §3.

Putting 526B and 526H-526L together, we find that we have a complete description of the Tukey ordering
on the set {NN, ELeb,Nwd,Z, ℓ1}, given by the diagram

Nwd ℓ1

NN ELeb Z

if we interpret this in the same way as for Cichoń’s diagram (522B). Moreover, this is exact, in that no
two of the five are Tukey equivalent, and Z and Nwd are Tukey incomparable. Note that all five of these
partially ordered sets are either themselves metrizably compactly based directed sets (526A, 513Xj, 513Xl)
or are Tukey equivalent to metrizably compactly based directed sets (526He-526Hf, 526Xf-526Xg).

In 526Yb-526Yf I list miscellaneous facts about the asymptotic density algebra. A remarkable description
of its Dedekind completion is in 556S below.

Version of 22.9.21

527 Skew products of ideals

The methods of this chapter can be applied to a large proportion of the partially ordered sets which arise
in analysis. In this section I look at skew products of ideals, constructed by a method suggested by Fubini’s
theorem and the Kuratowski-Ulam theorem (527E). At the end of the section I introduce ‘harmless’ algebras
(527M-527O).

527A Notation If (X,Σ, µ) is a measure space, N (µ) will be the null ideal of µ; N will be the null ideal
of Lebesgue measure on R. If X is a topological space, B(X) will be the Borel σ-algebra of X and M(X)
the σ-ideal of meager subsets of X; M will be the ideal M(R) of meager subsets of R.

527B Skew products of ideals Suppose that I ⊳ PX and J ⊳ PY are ideals of subsets of sets X, Y
respectively.

(a) I will write I ⋉ J for their skew product {W : W ⊆ X × Y , {x : W [{x}] /∈ J } ∈ I}. (This use of
the symbol ⋉ is unconnected with the usage in §512 except by the vaguest of analogies.) It is easy to check
that I ⋉ J ⊳ P(X × Y ).

Similarly, I ⋊ J will be {W : W ⊆ X × Y , {y : W−1[{y}] /∈ I} ∈ J }.

(b) Suppose that X and Y are not empty and that I and J are proper ideals. Then

add(I ⋉ J ) = min(add I, addJ ), cf(I ⋉ J ) ≥ max(cf I, cfJ ),

c© 2002 D. H. Fremlin
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86 Cardinal functions of measure theory 527Bb

non(I ⋉ J ) = max(non I, nonJ ), cov(I ⋉ J ) = min(cov I, covJ ).

PPP (i) If 〈Wξ〉ξ<κ is a family in I⋉J with κ < min(add I, addJ ), set W =
⋃

ξ<κWξ. For each ξ < κ, Hξ =

{x : Wξ[{x}] /∈ J } belongs to I; as κ < add I, H =
⋃

ξ<κHξ ∈ I. For any x /∈ H, W [{x}] =
⋃

ξ<κWξ[{x}] ∈
J because κ < addJ ; so W ∈ I ⋉ J . As 〈Wξ〉ξ<κ is arbitrary, add(I ⋉ J ) ≥ min(add I, addJ ).

In the other direction, as X /∈ I, J = {F : F ⊆ Y , X × F ∈ I ⋉ J }, so F 7→ X × F is a Tukey function
from J to I ⋉ J and addJ ≥ add(I ⋉ J ), cfJ ≤ cf(I ⋉ J ). Similarly, E 7→ E × Y is a Tukey function
from I to I ⋉ J and add I ≥ add(I ⋉ J ), cf I ≤ cf(I ⋉ J ).

(ii) Let A ⊆ X and B ⊆ Y be such that A /∈ I, B /∈ J , #(A) = non I and #(B) = nonJ . Then
A × B /∈ I ⋉ J , so non(I ⋉ J ) ≤ #(A × B). But note that as I and J are ideals, A and B are either
singletons or infinite; so #(A×B) = max(#(A),#(B)) and non(I ⋉ J ) ≤ max(non I, nonJ ).

In the other direction, take any W ∈ P(X × Y ) \ (I ⋉ J ). Set E = {x : W [{x}] /∈ J }. Then
#(E) ≥ non I and #(W [{x}]) ≥ nonJ for every x ∈ E, so #(W ) ≥ max(non I, nonJ ); as W is arbitrary,
non(I ⋉ J ) ≥ max(non I, nonJ ).

(iii) If A ⊆ I covers X, then {A×Y : A ∈ A} ⊆ I⋉J covers X×Y ; so cov(I⋉J ) ≤ cov I. Similarly,
cov(I ⋉ J ) ≤ covJ .

Now suppose that W ⊆ I ⋉ J and that #(W) < min(cov I, covJ ). For each W ∈ W set EW = {x :
W [{x}] /∈ J }; then EW ∈ I for every W , so there is an x ∈ X \ ⋃

W∈W EW , because #(W) < cov I.
Now W [{x}] ∈ J for every W , so there is a y ∈ Y \⋃W∈W W [{x}], because #(W) < covJ . In this case
(x, y) ∈ (X × Y ) \⋃W. As W is arbitrary, cov(I ⋉ J ) ≥ min(cov I, covJ ) and we have equality. QQQ

(c) The idea of the operation ⋉ here is that we iterate notions of ‘negligible set’ in a way indicated by
Fubini’s theorem: a measurable subset of R2 is negligible iff almost every vertical section is negligible, that
is, iff it belongs to N ⋉N . However it is immediately apparent that N ⋉N contains many non-measurable
sets, and indeed many sets of full outer measure (527Xa). We are therefore led to the following idea. If Λ
is a family of subsets of X × Y , write I ⋉Λ J ⊆ I ⋉ J for the ideal generated by (I ⋉ J ) ∩ Λ. Note that if
κ ≤ min(add I, addJ ) and

⋃W ∈ Λ for every W ∈ [Λ]<κ, then add(I⋉ΛJ ) ≥ κ; in particular, I⋉ΛJ will
be a σ-ideal whenever I and J are σ-ideals and Λ is a σ-algebra of subsets of X × Y . Typical applications
will be with Λ a Borel σ-algebra or an algebra of the form Σ⊗̂T. Thus 252F tells us that

if (X,Σ, µ) and (Y,T, ν) are measure spaces with c.l.d. product (X×Y,Λ, λ) then N (µ)⋉ΛN (ν) ⊆
N (λ).

If µ and ν are σ-finite then we get

N (λ) = N (µ) ⋉Σ⊗̂T N (ν)

(252C). If we take B = B(R2) to be the Borel σ-algebra of R2, then all four ideals N ⋉B(R2)N , M⋉B(R2)M,
M ⋉B(R2) N and N ⋉B(R2) M become interesting. In the next few paragraphs I will sketch some of the
ideas needed to deal with ideals of these kinds.

527C We are already familiar with N ⋉B(R2)N ; I begin by repeating a result from §417 in this language.

Theorem Let (X,T,Σ, µ) and (Y,S,T, ν) be σ-finite effectively locally finite τ -additive topological measure

spaces, both measures being inner regular with respect to the Borel sets. Let λ̃ be the τ -additive product
measure on X × Y (417C, 417F6). Then N (µ) ⋉B(X×Y ) N (ν) = N (λ̃).

proof (a) To begin with, suppose that µ and ν are complete. Then 417C(b-vi) and 417G7 tell us that λ̃ is

inner regular with respect to the Borel sets, and that a Borel subset of X × Y is λ̃-negligible iff it belongs
to N (µ)⋉N (ν). On the other hand, because µ and ν are σ-finite, so is λ̃ (251K), and every λ̃-negligible set

is included in a λ̃-negligible Borel set. PPP Suppose that W ∈ N (λ̃). Let 〈Wn〉n∈N be a cover of X × Y by

sets of finite measure. Because λ̃ is inner regular with respect to the Borel sets, we can find Vn ∈ B(X × Y )

such that Vn ⊆Wn \W and λ̃Vn = λ̃Wn for each n. Now

W ⊆ (X × Y ) \⋃n∈N
Vn ∈ N (λ̃) ∩ B(X × Y ). QQQ

6Formerly 417G.
7Formerly 417H.
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So N (µ) ⋉B(X×Y ) N (ν) = N (λ̃).

(b) For the general case, let µ̂ and ν̂ be the completions of µ and ν. Just because they extend µ and ν,
they are τ -additive topological measures; they are inner regular with respect to the Borel sets by 412Ha;
and similarly they are inner regular with respect to subsets of open sets of finite measure, that is, they are
effectively locally finite. Write λ̃̂ for the τ -additive product of µ̂ and ν̂; this is a complete locally determined
effectively locally finite topological measure on X × Y . By 417C(b-iv), it is inner regular with respect to
(Σ⊗̂T) ∨ B(X × Y ), and of course

λ̃̂ (E × F ) = µ̂E · ν̂F = µE · νF
whenever E ∈ Σ and F ∈ T. By the uniqueness assertion in 417Ca, λ̃̂ = λ̃. So

N (λ̃) = N (λ̃̂ ) = N (µ̂) ⋉B(X×Y ) N (ν̂)

(by (a) above)

= N (µ) ⋉B(X×Y ) N (ν)

by 212Eb.

527D The case M⋉B(R2) M is also well known.

Theorem Let X and Y be topological spaces, with product X × Y . Write M∗ = M(X) ⋉B(X×Y ) M(Y )

and M∗
1 = M(X) ⋉B̂(X×Y ) M(Y ), writing B̂(X × Y ) for the Baire-property algebra of X × Y .

(a) If M(X × Y ) ⊆ M∗
1, then M∗ = M∗

1 = M(X × Y ).
(b) Let G be the category algebra of Y (514I). If π(G) < addM(X) then M∗ = M(X × Y ).

proof (a)(i) ??? If M∗
1 6= M(X ×Y ), there is a set W ∈ M∗

1 \M(X ×Y ); take W1 ∈ B̂(X ×Y )∩ (M(X)⋉
M(Y )) such that W1 ⊇ W . By 4A3Sa8, there is an open set V ⊆ X × Y such that W1△V is meager and
V ∩ V ′ is empty whenever V ′ ⊆ X × Y is open and V ′ ∩W1 is meager. As W1 /∈ M(X × Y ), V cannot be
empty; let G ⊆ X, H ⊆ Y be non-empty open sets such that G ×H ⊆ V . In this case, G ×H cannot be
meager, so neither G nor H can be meager. (If F ⊆ X is nowhere dense, then F × Y is nowhere dense in
X × Y ; so M × Y ∈ M(X × Y ) whenever M ∈ M(X); as G× Y /∈ M(X × Y ), G /∈ M(X).) But now we
see that

{x : (G×H)[{x}] /∈ M(Y )} = G /∈ M(X),

so that G×H /∈ M∗
1; but (G×H) \W1 is meager, so belongs to M∗

1, and W1 is also supposed to belong to
M∗

1. XXX

(ii) So M∗
1 = M(X × Y ). Of course M∗ ⊆ M∗

1 just because B(X × Y ) ⊆ B̂(X × Y ). In the other
direction, if W ∈ M(X×Y ) there is a meager Fσ set W ′ ⊇W . Now W ′ is a Borel set in M(X×Y ) = M∗

1,
so W ′ ∈ M(X) ⋉M(Y ) witnesses that W ∈ M∗. Thus M(X × Y ) ⊆ M∗ and the three classes are equal.

(b) By (a), I have only to show that W ∈ M∗ whenever W ⊆ X × Y is meager. Let D ⊆ G \ {0} be an
order-dense subset with cardinal π(G). Let H be the smallest comeager regular open subset of Y , so that
an open subset of Y is meager iff it is disjoint from H (4A3Sa again). For each d ∈ D let Vd ⊆ Y be an
open set such that V •

d = d in G; since H• = 1, we may suppose that Vd ⊆ H. Observe that if F ⊆ Y is a
non-meager closed set, then there is a d ∈ D such that 0 6= d ⊆ F • in G, in which case Vd \ F is meager; as
Vd ⊆ H, Vd ⊆ F .

If W ⊆ X × Y is a nowhere dense closed set, it belongs to M∗. PPP Set E = {x : W [{x}] is not meager}.
For each d ∈ D, the set

Ed = {x : Vd ⊆W [{x}]} = {x : (x, y) ∈W for every y ∈ Vd}
is a closed set in X and Ed × Vd ⊆W ; so intEd × Vd is an open subset of W . As W is nowhere dense, and
Vd 6= ∅, intEd must be empty, and Ed ∈ M(X). Next, E =

⋃
d∈D Ed and #(D) = π(G) < addM(X), so

E ∈ M(X) and W ∈ M∗. QQQ
Since M∗ is a σ-ideal, it follows that every meager subset of X × Y belongs to M∗, as required.

8Formerly 4A3Ra.
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527E Corollary If X and Y are separable metrizable spaces, then M(X×Y ) = M(X)⋉B(X×Y )M(Y ).

proof π(C) ≤ π(Y ) ≤ w(Y ) ≤ ω < addM(X) (514Ja, 5A4Ba, 4A2P(a-i)).

Remark The case X = Y = R is the Kuratowski-Ulam theorem.

527F If we mix measure and category, as in M ⋉B(R2) N and N ⋉B(R2) M, we encounter some new
phenomena. To deal with the first we need the following, which is important for other reasons.

Lemma (see Cichoń & Pawlikowski 86) Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal
of subsets of X generated by Σ ∩ I; suppose that the quotient algebra Σ/Σ ∩ I is non-zero, atomless and
has countable π-weight. Let Y be a set, T a σ-algebra of subsets of Y , and 〈Hn〉n∈N a sequence of finite
covers of Y by members of T. Set

H∗
n = {⋃m≥nHm : Hm ∈ Hm ∪ {∅} for every m ≥ n}

for each n ∈ N. Then there is a sequence 〈Wn〉n∈N of subsets of NN ×X × Y such that
(i) for every n ∈ N, Wn is expressible as the union of a sequence of sets of the form I × E × F where

I ⊆ NN is open-and-closed, E ∈ Σ and F ∈ T;
(ii) whenever n ∈ N, α ∈ NN and x ∈ X then {y : (α, x, y) ∈Wn} ∈ H∗

n;
(iii) setting W =

⋂
n∈N

Wn, the set {(α, x) : α ∈ NN, x ∈ X, (α, x, f(x)) /∈W} belongs to [NN]≤ω ⋉ I for
every (Σ,T)-measurable function f : X → Y .

proof If X ∈ I or Y is empty, we can take every Wn to be ∅; suppose otherwise.

(a) Set S =
⋃

n∈N
Nn. There is a family 〈Uσ〉σ∈S such that

every Uσ belongs to Σ \ I,
for every σ ∈ S, 〈Uσa<i>〉i∈N is a disjoint sequence of subsets of Uσ and Uσ \

⋃
i∈N

Uσa<i> ∈ I,

(see 5A1C for the notation here),

for every E ∈ Σ \ I there is a σ ∈ S such that Uσ \ E ∈ I.

PPP Let D be a countable order-dense set in A = Σ/Σ ∩ I. Then the subalgebra B of A generated by
D is countable and atomless and non-trivial. Let E be the subalgebra of P(NN) generated by the sets
Iσ = {α : σ ⊆ α ∈ NN} for σ ∈ S. This is also an atomless countable Boolean algebra, and must therefore
be isomorphic to B (316M). Let π : E → B be an isomorphism, and set bσ = π(Iσ) for each σ ∈ S.
Set U∅ = X and for n ∈ N, σ ∈ Nn choose a disjoint sequence 〈Uσa<i>〉i∈N of subsets of Uσ such that
U•

σa<i> = bσa<i> for every i. This construction ensures that Uσ ∈ Σ \ I for every σ. If E ∈ Σ \ I, there

must be a non-zero d ∈ D such that d ⊆ E•; now π−1(d) ∈ E \{∅}, so there is a τ ∈ S such that Iτ ⊆ π−1(d),
bτ ⊆ E• and Uτ \ E ∈ I. Finally, if σ ∈ S, set E = Uσ \⋃i∈N

Uσa<i>; then for every τ ∈ S either τ ⊆ σ

and Uτ \E ⊇ Uσa<0> /∈ I, or Uτ ∩Uσ = ∅ and Uτ \E = Uτ /∈ I, or there is an i ∈ N such that τ ⊇ σa<i>
and again Uτ \ E = Uτ /∈ I. This means that E must belong to I, so that 〈Uσ〉σ∈S has all the required
properties. QQQ

(b) Enumerate S as 〈τk〉k∈N. Let 〈Hn〉n∈N be a sequence running over
⋃

n∈N
Hn. For n ∈ N, set

Kn = {(σ, k) : σ ∈ Nn+2, k < #(τσ(n)), σ(n+ 1) = #(τk), Hτσ(n)(k) ∈ Hn},

Vn =
⋃

(σ,k)∈Kn
{(α, x, y) : τk ⊆ α ∈ NN, x ∈ Uσ, y ∈ Hτσ(n)(k)}.

If α ∈ NN and x ∈ X the section {y : (α, x, y) ∈ Vn} is either empty or Hτσ(n)(k) where σ ∈ Nn+2, x ∈ Uσ

and τk = α↾σ(n+ 1); in either case it belongs to Hn ∪ {∅}.
So if we now set Wn =

⋃
m≥n Vm, Wn satisfies (i) and (ii) for every n.

(c) Set W =
⋂

n∈N
Wn. ??? Suppose, if possible, that f : X → Y is a (Σ,T)-measurable function such

that {(α, x) : (α, x, f(x)) /∈W} /∈ [NN]≤ω ⋉ I. Note that

{V : V ⊆ NN ×X × Y , {x : (α, x, f(x)) ∈ V } ∈ Σ for every α ∈ NN}
is a σ-algebra of subsets of NN ×X × Y containing I × E × F whenever I is open-and-closed, E ∈ Σ and
F ∈ T, so contains every Vn and every Wn.
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Set

A0 = {α : α ∈ NN, {x : (α, x, f(x)) /∈W} /∈ I},

so that A0 is uncountable. For each α ∈ A0,
⋃

n∈N
{x : (α, x, f(x)) /∈Wn} = {x : (α, x, f(x)) /∈W}

does not belong to I. So there is an n ∈ N such that

A1 = {α : α ∈ A0, {x : (α, x, f(x)) /∈Wn} /∈ I}
is uncountable. For each α ∈ A1, set Gα = {x : (α, x, f(x)) /∈ Wn}; then Gα ∈ Σ \ I, so there is a σ ∈ S
such that Uσ \Gα ∈ I. Let σ ∈ S be such that

A2 = {α : α ∈ A1, Uσ \Gα ∈ I}
is infinite. Set m = max(n,#(σ)); then Uσ∩{x : (α, x, f(x)) ∈ Vm} ∈ I for every α ∈ A2. Set M = #(Hm).

Take k ∈ N such that #({α↾k : α ∈ A2}) ≥ M . Let 〈αi〉i<M be a family in A2 such that αi↾k 6= αj↾k
for distinct i, j < M ; let 〈ri〉i<M , 〈li〉i<M be such that αi↾k = τri for each i and Hm = {Hli : i < M}.
Let s ∈ N be such that τs(ri) is defined and equal to li for i < M . Let σ′ ∈ Nm+2 be such that σ′ ⊇ σ,
σ′(m) = s and σ′(m+ 1) = k. Then Uσ′ /∈ I and Uσ′ \Gα ∈ I for every α ∈ A2.

Suppose that i < M and x ∈ Uσ′ . Then

{y : (αi, x, y) ∈ Vm} = Hτσ′(m)
(j) = Hτs(j)

where (σ′, j) ∈ Km, that is, j is such that τj ⊆ αi and #(τ(j)) = σ′(m + 1) = k. Thus j = ri, τs(j) = li
and {y : (αi, x, y) ∈ Vm} = Hli . But this means that, for any x ∈ Uσ′ ,

⋃
i<M{y : (αi, x, y) ∈ Vm} =

⋃
i<M Hli = Y

contains f(x); that is, Uσ′ ⊆ ⋃
i<M{x : (αi, x, f(x)) ∈ Vm}. On the other hand,

Uσ′ ∩ {x : (αi, x, f(x)) ∈ Vm} ⊆ Uσ ∩ {x : (αi, x, f(x)) ∈ Vm} ∈ I
for each i < M , while Uσ′ itself does not belong to I. So this is impossible. XXX

Thus 〈Wn〉n∈N satisfies (iii).

527G Theorem Let X be a set, Σ a σ-algebra of subsets of X, and I a σ-ideal of subsets of X
which is generated by Σ ∩ I; suppose that the quotient algebra Σ/Σ ∩ I is non-zero, atomless and has
countable π-weight. Let (Y,T, ν) be an atomless perfect semi-finite measure space such that νY > 0. Set
K = I ⋉Σ⊗̂T N (ν). Then [c]≤ω 4T K, so addK = ω1 and cfK ≥ c.

proof (a) To begin with (down to the end of (d)) suppose that ν is totally finite. Because ν is atomless, we
can for each n ∈ N find a finite cover Hn of Y by measurable sets with measures at most 2−n. Let T0 be the
σ-algebra generated by

⋃
n∈N

Hn, so that T0 is a σ-subalgebra of T. Construct 〈H∗
n〉n∈N, 〈Wn〉n∈N and W

from 〈Hn〉n∈N as in 527F. Then if f : X → Y is (Σ,T0)-measurable, {(α, x) : (α, x, f(x)) /∈W} ∈ [NN]≤ω⋉I.
Note that νH ≤ 2−n+1 for every H ∈ H∗

n, so ν{y : (α, x, y) ∈ Wn} ≤ 2−n+1 for every α ∈ NN, x ∈ X
and n ∈ N. For each α ∈ NN set Kα = {(x, y) : (α, x, y) ∈ W}. Observe that Kα ∈ Σ⊗̂T because
W ∈ B(NN)⊗̂Σ⊗̂T, and that

νKα[{x}] ≤ infn∈N ν{y : (α, x, y) ∈Wn} = 0

for every x ∈ X, so Kα ∈ K for every α ∈ NN.

(b) Set Σ̂ = {E△M : E ∈ Σ, M ∈ I}. Then Σ̂ is a σ-algebra of subsets of X (cf. 212Ca) and I is

a σ-ideal in Σ̂; also the identity embedding of Σ in Σ̂ induces an isomorphism between Σ/Σ ∩ I and Σ̂/I
(cf. 322Da). Consequently Σ̂/I has countable π-weight, therefore is ccc, and Σ̂ is closed under Souslin’s
operation (431G).

(c) Let A ⊆ NN be an uncountable set, and V ∈ Σ⊗̂T a set disjoint from
⋃

α∈AKα. (I aim to show that
(X × Y ) \ V /∈ I ⋉ N (ν).) There must be sequences 〈Cn〉n∈N in Σ, 〈Fn〉n∈N in T such that V belongs to
the σ-algebra generated by {Cn ×Fn : n ∈ N}; we can of course arrange that

⋃
n∈N

Hn ⊆ {Fn : n ∈ N}. Let

T1 be the σ-subalgebra of T generated by {Fn : n ∈ N}, so that T0 ⊆ T1 and V ∈ Σ⊗̂T1. Let g : Y → R
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be the Marczewski functional defined by setting g =
∑∞

n=0 3−nχFn. Because ν is perfect, there is a Borel
set H ⊆ g[Y ] such that g−1[H] is conegligible. Let h : H → Y be any function such that g(h(t)) = t for
every t ∈ H; note that h is (B(H),T1)-measurable, where B(H) is the Borel σ-algebra of H, just because

g[Fn] ∩ g[Y \ Fn] is empty for every n. Set V0 = {(x, t) : x ∈ X, t ∈ H, (x, h(t)) ∈ V }; then V0 ∈ Σ⊗̂B(H).
It follows that V0 belongs to the class of sets obtainable by Souslin’s operation from sets of the form E × F
where E ∈ Σ and F ⊆ H is relatively closed in H. (Use 421F.)

Set Ẽ = V −1
0 [H]. Because H is analytic and Σ̂ is closed under Souslin’s operation, Ẽ ∈ Σ̂ and there

is a (Σ̂,B(H))-measurable function f1 : Ẽ → H such that (x, f1(x)) ∈ V0 for every x ∈ Ẽ (423N). Now

f2 = hf1 : Ẽ → Y is (Σ̂,T1)-measurable and (x, f2(x)) ∈ V for every x ∈ Ẽ.

For every n ∈ N, En = f−1
1 [Fn] belongs to Σ̂, so there is an E′

n ∈ Σ such that En△E′
n ∈ I. Similarly,

there is an Ẽ′ ∈ Σ such that Ẽ△Ẽ′ ∈ I. Because I is generated by Σ ∩ I, there is an M0 ∈ Σ ∩ I
including (Ẽ△Ẽ′) ∪ ⋃

n∈N
(En△E′

n). Now Ẽ \M0 = Ẽ′ \M0 belongs to Σ. Set f3 = f2↾Ẽ \ M0; then

f−1
3 [Fn] = E′

n \M0 ∈ Σ for every n, so f3 is (Σ,T1)-measurable. Take any y0 ∈ Y , and set f(x) = f3(x) if

x ∈ Ẽ \M0, y0 for other x ∈ X; then f is (Σ,T1)-measurable, therefore (Σ,T0)-measurable.
The set {(α, x) : (α, x, f(x)) /∈ W} belongs to [NN]≤ω ⋉ I, so there must be an α ∈ A such that

M1 = {x : (α, x, f(x)) /∈ W} belongs to I. ??? Suppose, if possible, that (X × Y ) \ V ∈ I ⋉ N (ν). Then
there must be an x ∈ X \ (M0 ∪M1) such that V [{x}] is conegligible. In this case, V [{x}] ∩ g−1[H] is
conegligible, so is not empty, and there is a y ∈ V [{x}] ∩ g−1[H]. Consider y′ = h(g(y)); then g(y′) = g(y),
so {n : y′ ∈ Fn} = {n : y ∈ Fn}, and {F : y ∈ F ⇐⇒ y′ ∈ F} is a σ-algebra of subsets of Y containing

every Fn and therefore containing V [{x}]. So y′ ∈ V [{x}] and (x, g(y)) ∈ V0. This means that x ∈ Ẽ; as
x /∈ M0, f(x) = f3(x) = f2(x) and (x, f(x)) ∈ V . On the other hand, x /∈ M1, so (α, x, f(x)) ∈ W and
(x, f(x)) ∈ Kα; contradicting the choice of V as a set disjoint from Kα. XXX

This shows that (X × Y ) \ V /∈ I ⋉N (ν). As V is arbitrary,
⋃

α∈AKα /∈ K.

(d) This is true for every uncountable A ⊆ NN. But this means that A 7→ ⋃
α∈AKα is a Tukey function

from [NN]≤ω to K, and [c]≤ω ∼= [NN]≤ω 4T K.

(e) Thus the theorem is true if νY is finite. For the general case, let Y0 ∈ T be such that 0 < νY0 <∞.
Then the subspace measure νY0

is still atomless and perfect (214Ka, 451Dc), so [c]≤ω 4T K0, where K0 =
I⋉Σ⊗̂(T∩PY0)

N (νY0
). But K0 = K∩P(X ×Y0), so the identity map from K0 to K is a Tukey function, and

[c]≤ω 4T K0 4T K
in this case also. It follows at once that addK ≤ add[c]≤ω = ω1, so that addK = ω1 and cfK ≥ cf[c]≤ω = c.

527H Corollary M⋉B(R2) N ≡T [c]≤ω.

proof By 527G, [c]≤ω 4T M⋉B(R2)N . In the other direction, all we need to observe is that #(B(R2)) = c.

Let 〈Wξ〉ξ<c run over B(R2)∩ (M⋉N ), and for V ∈ M⋉B(R2) N choose ξV < c such that V ⊆WξV ; then

V 7→ {ξV } : M⋉B(R2) N → [c]≤ω is a Tukey function, so M⋉B(R2) 4T [c]≤ω.

527I I now turn to the ideal N ⋉B(R2) M.

Lemma Let X be a set, Σ a σ-algebra of subsets of X, and Y a topological space with a countable π-base
H. Let W be the family of subsets of X × Y of the form

⋃
H∈HEH ×H, where EH ∈ Σ for every H ∈ H,

and D0 the family of sets D ⊆ X × Y such that (X × Y ) \D ∈ W and D[{x}] is nowhere dense for every
x ∈ X; let L0 be the σ-ideal of subsets of X × Y generated by D0. Then Σ⊗̂B(Y ) ⊆ {W△L : W ∈ W,
L ∈ L0}.

proof Write V for {W△L : W ∈ W, L ∈ L0}. Then W and V are closed under countable unions. Next,
(X × Y ) \W ∈ V for every W ∈ W. PPP Express W as

⋃
H∈HEH ×H where EH ∈ Σ for every H ∈ H. For

H ∈ H, set

FH = X \⋃{EH′ : H ′ ∈ H, H ′ ∩H 6= ∅} ∈ Σ,

and set W ′ =
⋃

H∈H FH ×H. Then W ′ and W ∪W ′ belong to W. Set D = (X × Y ) \ (W ∪W ′). If x ∈ X
and G ⊆ Y is a non-empty open set, let H ⊆ G be a non-empty member of H. Then either x ∈ FH and
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H is a non-empty open subset of G \D[{x}], or there is an H ′ ∈ H such that H ∩H ′ 6= ∅ and x ∈ EH′ , in
which case H ∩H ′ is a non-empty open subset of G \D[{x}]. As G is arbitrary, D[{x}] is nowhere dense;
as x is arbitrary, D ∈ D0. But now observe that (X × Y ) \W = W ′△D belongs to V. QQQ

It follows that the complement of any member of V belongs to V, so V is a σ-algebra. Now E×G ∈ V for
every E ∈ Σ and open G ⊆ Y . PPP For H ∈ H, set EH = E if H ⊆ G, ∅ otherwise; set W =

⋃
H∈HEH ×H ∈

W. Then W ⊆ E ×G. But, defining W ′ from W as just above, we see that W ′ is disjoint from E ×G. So

(E ×G)△W ⊆ (X × Y ) \ (W ∪W ′) ∈ D0

and E ×G ∈ V. QQQ
Accordingly V includes the σ-algebra generated by {E ×G : E ∈ Σ, G ⊆ Y is open}, which is Σ⊗̂B(Y ).

527J Theorem (see Fremlin 91) Let X be a topological space and µ a σ-finite quasi-Radon measure on
X with countable Maharam type; let Y be a topological space of countable π-weight. Then N (µ) ⋉B(X×Y )

M(Y ) 4T N .

proof Write L for N (µ) ⋉B(X×Y ) M(Y ), and fix a countable π-base H, not containing ∅, for the topology
of Y .

(a) We need to know that for every Borel set V ⊆ X × Y there are sets V ′, V ′′ ∈ B(X)⊗̂B(Y ) such that
V ′ ⊆ V ⊆ V ′′ and V ′′ \ V ′ ∈ L. PPP Let V∗ be the family of all subsets of X × Y with this property. Because
B(X)⊗̂B(Y ) is a σ-algebra and L is a σ-ideal of sets, V∗ is a σ-algebra. If W ⊆ X × Y is open, set

UH =
⋃{G : G ⊆ X is open, G×H ⊆W}, U ′

H = {x : H ∩W [{x}] 6= ∅}
for H ∈ H, so all the UH and U ′

H are open (U ′
H is just the projection of the open set W ∩ (X ×H)). Set

V1 =
⋃

H∈H UH ×H and V2 =
⋃

H∈H((X \U ′
H)×H). Then V1 and V2 both belong to B(X)⊗̂B(Y ), V1 ⊆W

and W ∩ V2 = ∅.
Let x ∈ X. ??? If the open set V1[{x}]∪V2[{x}] is not dense, there is an H ∈ H disjoint from both V1[{x}]

and V2[{x}]. In this case x must belong to U ′
H , and there is a point y ∈ H ∩W [{x}]. (x, y) belongs to the

open set (X×H)∩W , so there are open sets G ⊆ X, H̃ ⊆ Y such that (x, y) ∈ G× H̃ ⊆ (X×H)∩W . Now

there is an H ′ ∈ H such that H ′ ⊆ H̃, in which case x ∈ G ⊆ UH′ . But this will mean that H ′ ⊆ V1[{x}]
and H ′ is a non-empty subset of H ∩ V1[{x}], which is impossible. XXX

Thus V1[{x}] ∪ V2[{x}] is dense for every x, and if we set V3 = (X × Y ) \ V2 we shall have V3 \ V1 ∈ L,
while both V1 and V3 belong to B(X)⊗̂B(Y ), and V1 ⊆ W ⊆ V3. So W ∈ V∗. This is true for every open
set W ⊆ X × Y , so the σ-algebra V∗ must contain every Borel set, as required. QQQ

It follows that every member of L is included in a member of L ∩ (B(X)⊗̂B(Y )). PPP If V ∈ L there is
a Borel set V ′ ⊇ V which belongs to L, and now there is a set V ′′ ∈ B(X)⊗̂B(Y ) such that V ′′ ⊇ V ′ and
V ′′ \ V ′ ∈ L, in which case V ′′ ⊇ V also must belong to L. QQQ

Thus L = N (µ) ⋉B(X)⊗̂B(Y ) M(Y ).

(b) To begin with let us suppose that X is compact and metrizable, µ is totally finite and Y is a Baire
space.

(i) Taking Σ = B(X), define W, D0 and L0 as in 527I. Now let D be the family of closed subsets
belonging to D0, and L1 the σ-ideal of subsets of X × Y generated by {E × Y : E ∈ N (µ)} ∪ D.

(ii) D0 ⊆ L1. PPP If D ∈ D0, express (X × Y ) \ D as
⋃

H∈HEH × H where EH ∈ B(X) for every
H ∈ H. Because µ is totally finite, µ is outer regular with respect to the open sets (412Wb). So for
each n ∈ N we can find a family 〈GnH〉H∈H of open sets in X such that EH ⊆ GnH for every H and∑

H∈H µ(GnH \ EH) ≤ 2−n. Set Dn = (X × Y ) \⋃H∈H(GnH ×H). Then Dn is closed and Dn ⊆ D ∈ D0

so Dn ∈ D. Set E =
⋂

n∈N

⋃
H∈H(GnH \ EH); then E ∈ N (µ) and

D ⊆ (E × Y ) ∪⋃
n∈N

Dn ∈ L1. QQQ

(iii) Of course every member of D belongs to L, so L1 ⊆ L. But in fact L = L1. PPP If V ∈ L, there
is a V ′ ∈ (N (µ) ⋉M(Y )) ∩ (B(X)⊗̂B(Y )) such that V ⊆ V ′, by (a). By 527I, we can express V ′ as W△L
where W ∈ W and L ∈ L0. By (ii), L0 ⊆ L1, so W ∈ L. There is therefore a negligible set E ⊆ X
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such that W [{x}] is meager for every x ∈ X \ E. But W [{x}] is always open, and Y is a Baire space, so
W ⊆ E × Y ∈ L1. Accordingly V ′ and V belong to L1. As V is arbitrary, L ⊆ L1. QQQ

(iv) Let G be a countable base for the topology of X containing X. Let U0 be the family of those
sets U ⊆ X × Y such that U is expressible as a finite union of sets of the form G × H where G ∈ G and
H ∈ H, and U the set of those U ∈ U0 such that π1[U ] = X, where π1 is the projection from X × Y onto
X. Consider

D′ = {D : D ⊆ X × Y , for every U0 ∈ U there is a U ∈ U such that U ⊆ U0 \D}.

D ⊆ D′. PPP Suppose that D ∈ D and U0 ∈ U , and consider U1 = {U : U ∈ U0, U ⊆ U0 \D}. For every
x ∈ X the section U0[{x}] is open and not empty and the section D[{x}] is nowhere dense, so there is a
y such that (x, y) ∈ U0 \ D; now there are G ∈ G, containing x, and an open H containing y such that
G ×H ⊆ U0 \D. Let H ′ ∈ H be such that ∅ 6= H ′ ⊆ H. Then U = G ×H ′ ∈ U1 and x ∈ π1[U ]. As x is
arbitrary, {π1[U ] : U ∈ U1} is an open cover of X; as X is compact and U1 is upwards-directed, there is a
U ∈ U1 such that π1[U ] = X; in which case U ∈ U and U ⊆ U0 \ D. As U is arbitrary, D ∈ D′; as D is
arbitrary, D ⊆ D′. QQQ

D is cofinal with D′. PPP Let D ∈ D′. For each H ∈ H \ {∅}, X ×H ∈ U , so there is a UH ∈ U such that
UH ⊆ (X ×H) \D; try D1 = (X \Y ) \⋃H∈H\{∅} UH . D1 is closed. Since U ⊆ U0 ⊆ W, (X ×Y ) \D1 ∈ W.

If x ∈ X, then D1[{x}] is a closed set not including any member of the π-base H, so is nowhere dense in Y ;
thus D1 ∈ D0 and (being closed) belongs to D. Of course D ⊆ D1. As D is arbitrary, D is cofinal with D′.
QQQ

(v) Because U is countable, 526Hd tells us that D′ 4T Nwd, where Nwd is the ideal of nowhere
dense subsets of NN; while of course D ≡T D′ (513E(d-ii)). Let φ : L → N (µ) × DN be such that if
φ(V ) = (E, 〈Dn〉n∈N) then V ⊆ (E×Y )∪⋃

n∈N
Dn; such a function exists by (iii), and is evidently a Tukey

function.
Note that the measure algebra of µ, being a totally finite measure algebra with countable Maharam type,

can be regularly embedded in the measure algebra of Lebesgue measure on either [0, 1] or on R. As µ is a
Radon measure (416G), N (µ) 4T N (524K) and

L 4T N (µ) ×DN 4T N ×Nwd
N ∼= N ×Nwd

(513Eg, 526Ha). Accordingly

(L,⊆,L) ≡GT (L,⊆′′′, [L]≤ω)

(513Id)

4GT (N ×Nwd,≤′′′, [N ×Nwd]≤ω)

(512Gb)

≡GT (N ,⊆′′′, [N ]≤ω) × (Nwd,⊆′′′, [Nwd]≤ω)

(512Hd)

≡GT (N ,⊆ N ) × (M,⊆,M)

(513Id, 526Hb, 512Hb)

4GT (N ,⊆,N ) × (N ,⊆,N )

(522P)

≡GT (N ,⊆,N )

(513Eh), and L 4T N .

(c) This proves the theorem when X is compact and metrizable, µ is totally finite and Y is a Baire space.
Now suppose that Y is still a Baire space, while (X,µ) is any totally finite quasi-Radon measure space with
countable Maharam type.

(i) There is a compact metrizable Radon measure space (Z, λ) such that λ and µ have isomorphic
measure algebras. PPP Because the measure algebra (A, µ̄) of µ is totally finite, it is isomorphic to the simple
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product of a countable family 〈(Ai, µ̄i)〉i∈I of homogeneous totally finite measure algebras (332B). Because µ
has countable Maharam type, every Ai is either {0}, {0, 1} or isomorphic to the measure algebra of Lebesgue
measure on an interval; in any case it is isomorphic to the measure algebra of a compact Radon measure
space (Zi, λi). Take (Z ′, λ′) to be the direct sum of the measure spaces 〈(Zi, λi)〉i∈I ; then the measure
algebra of (Z ′, λ′) is isomorphic to A. If we give Z ′ its disjoint union topology, it is a locally compact
σ-compact metrizable space, and its one-point compactification Z is second-countable, therefore metrizable;
taking λ to be the trivial extension of λ′, (Z, λ) is a compact metrizable Radon measure space with measure
algebra (B, λ̄) ∼= (A, µ̄). QQQ

(ii) Let f : X → Z be an inverse-measure-preserving function inducing an isomorphism π : B → A of
the measure algebras (416Wb). By 418J, f is almost continuous, so there is a Borel measurable function
which is equal almost everywhere to f (418V9); this function will still represent π, so we may suppose that
f itself is Borel measurable. Now if V ∈ B(X)⊗̂B(Y ), there is a V ′ ∈ B(Z)⊗̂B(Y ) such that {x : V [{x}] 6=
V ′[{f(x)}]} ∈ N (λ). PPP Let Ṽ be the family of subsets V of X × Y for which there is a V ′ ∈ B(Z)⊗̂B(Y )

such that {x : V [{x}] 6= V ′[{f(x)}]} ∈ N (λ). Then Ṽ is a σ-algebra. If E ∈ B(X) and H ∈ B(Y ), then
there must be an F ∈ B(Z) such that F • = πE• in B, so that E△f−1[F ] ∈ N (µ); now F ×H witnesses

that E ×H belongs to Ṽ. Accordingly Ṽ must include B(X)⊗̂B(Y ). QQQ

(iii) We know that N (µ) 4T N (λ) (524Sa), so there is a Tukey function θ : N (µ) → N (λ). Set
L′ = N (λ) ⋉B(Z)⊗̂B(Y ) M(Y ). Define a function φ : L → L′ as follows. First, for V ∈ L, choose φ0(V ) ∈
L∩ (B(X)⊗̂B(Y )) including V ((a) above). Next, by (ii) here, we can choose φ1(V ) ∈ B(Z)⊗̂B(Y ) such that
NV = {x : φ0(V )[{x}] 6= φ1(V )[{f(x)}]} belongs to N (µ). Set F = {z : z ∈ Z, φ1(V )[{z}] is not meager};
then F is a Borel set, by 4A3Ta10, and f−1[F ] ⊆ NV ∪{x : φ0(V )[{x}] /∈ M(Y )} ∈ N (µ); so F ∈ N (λ) and
φ1(V ) ∈ L′. Finally, set φ(V ) = (θ(NV ) × Y ) ∪ φ1(V ) ∈ L′.
φ is a Tukey function from L to L′. PPP Take W ∈ L′ and consider E = {V : V ∈ L, φ(V ) ⊆ W}. If

Y = ∅ then of course E is bounded above in L. Otherwise, N∗ = {z : W [{z}] = Y } must be λ-negligible,

while θ(NV ) ⊆ N∗ for every V ∈ E ; because θ is a Tukey function, Ñ =
⋃{NV : V ∈ E} is µ-negligible.

Take W1 ∈ L′ ∩ (B(Z)⊗̂B(Y )) including W , and set W̃ = {(x, y) : (f(x), y) ∈ W1}; then W̃ ∈ B(X)⊗̂B(Y )
because f is Borel measurable. As

{x : W̃ [{x}] /∈ M(Y )} = f−1{z : W1[{z}] /∈ M(Y )}
is negligible, W̃ ∈ L. So V0 = (Ñ × Y )∪ W̃ belongs to L. Now take any V ∈ E . If x ∈ X \ Ñ , then x /∈ NV ,
so

V [{x}] ⊆ φ0(V )[{x}] = φ1(V )[{f(x)}] ⊆W [{f(x)}]

⊆W1[{f(x)}] = W̃ [{x}] = V0[{x}].

This shows that V ⊆ V0; as V is arbitrary, V0 is an upper bound for E in L; as W is arbitrary, φ is a Tukey
function. QQQ

(iv) By (b), we know that L′ 4T N , so (iii) tells us that L 4T N , and the theorem is true in this case
also.

(d) We are nearly home. If Y is a Baire space and (X,µ) is a σ-finite quasi-Radon measure space with
countable Maharam type, which is not totally finite, then there is a measurable function f : X → ]0,∞[
such that

∫
fdµ = 1 (215B(ix)). Let ν be the indefinite-integral measure defined by f . Then ν has the same

negligible sets as µ (234Lc), and is a quasi-Radon measure (415Ob), so

L = N (ν) ⋉B(X×Y ) M(Y ) 4T N ,

by (c).

(e) Finally, suppose that Y is not a Baire space. In this case, let H∗ be the smallest comeager regular
open subset of Y (4A3Sa once more), and set L∗ = N (µ) ⋉B(X×H∗) M(H∗). Then L 4T L∗. PPP For every
V ∈ L, let V ′ be such that V ⊆ V ′ ∈ B(X × Y ) ∩ (N (µ) ⋉M(Y )), and set φ(V ) = V ′ ∩ (X ×H∗). Then

9Later editions only.
10Formerly 4A3Sa.
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φ(V ) is a Borel subset of X × H∗, and φ(V )[{x}] = V ′[{x}] ∩ H∗ is meager in H∗ whenever V ′[{x}] is
meager in Y , so φ(V ) ∈ L∗. To see that φ : L :→ L∗ is a Tukey function, take any W ∈ L∗. There is a Borel
set W ′ ∈ L∗ including W , and now V ′ = W ′ ∪ (X × (Y \H∗)) is a Borel subset of X × Y ; since V ′[{x}] is
meager in Y whenever W ′[{x}] is meager in H∗, V ′ ∈ L. Of course V ′ is an upper bound of {V : V ∈ L,
φ(V ) ⊆W}; as W is arbitrary, φ is a Tukey function and L 4T L∗. QQQ

By (d), L 4T N in this case also, and the proof is complete.

527K Corollary N ⋉B(R2) M ≡T N .

proof By 527J, N ⋉B(R2) M 4T N . On the other hand, E 7→ E × R is a Tukey function from N to
N ⋉B(R2) M, so N 4T N ⋉B(R2) M.

527L There are some interesting questions concerning the saturation of skew products. Here and in
527O I give results which will be useful later.

Theorem Let X be a set, Σ a σ-ideal of subsets of X, and I ⊳ PX a σ-ideal; suppose that Σ/Σ∩ I is ccc.
Let (Y,T, ν) be a σ-finite measure space. Then (Σ⊗̂T)/((Σ⊗̂T) ∩ (I ⋉N (ν))) is ccc.

proof (a) The case νY = 0 is trivial, as then I ⋉ N (ν) = P(X × Y ). Otherwise, there is a probability
measure on Y with the same domain and null ideal as ν (215B(vii)), so we may suppose that νY = 1.

(b) The family W of sets W ⊆ X × Y such that W [{x}] ∈ T for every x ∈ X and x 7→ νW [{x}] is
Σ-measurable is a Dynkin class (136A), and contains E × F whenever E ∈ Σ and F ∈ T; by the Monotone
Class Theorem (136B) it includes Σ⊗̂T.

(c) Now suppose that 〈Wξ〉ξ<ω1
is a disjoint family in Σ⊗̂T. For n ∈ N and ξ < κ set

Enξ = {x : νWξ[{x}] ≥ 2−n};

then #({ξ : x ∈ Enξ}) ≤ 2−n for every x ∈ X. It follows that An = {ξ : ξ < ω1, Enξ /∈ I} is countable. PPP
??? Otherwise, write A for the ccc algebra Σ/Σ∩ I, and aξ = E•

nξ for ξ < ω1. Then A is Dedekind complete;
set bξ = supξ≤η<ω1

aη for ξ < ω1 and b = infξ<ω1
bξ. Because A is ccc, there is a ζ < ω1 such that b = bξ

for every ξ ≥ ζ; because An is uncountable, b 6= 0. Choose 〈ci〉i∈N and 〈ξi〉i∈N inductively such that c0 = b
and, given that 0 6= ci ⊆ b, ξi is to be such that ci+1 = aξi ∩ ci 6= 0 and ξi > ξj for every j < i.
Now infi≤2n aξi ⊇ c2n+1 is non-zero, so there is an x ∈ ⋂

i≤2n Enξi ; but this is impossible. XXXQQQ

(d) This is true for every n ∈ N, so there is a ξ < ω1 such that ξ /∈ An for every n, that is, Enξ ∈ I for
every n. But in this case

{x : Wξ[{x}] /∈ N (ν)} =
⋃

n∈N
Enξ

belongs to I and Wξ ∈ I ⋉N (ν). As 〈Wξ〉ξ<ω1
is arbitrary, (Σ⊗̂T) ∩ (I ⋉N (ν)) is ω1-saturated in Σ⊗̂T

and (Σ⊗̂T)/(Σ⊗̂T) ∩ (I ⋉N (ν)) is ccc (316C).

527M The final theorem of this section provides me with an opportunity to introduce a concept which
will be needed in §547.

Definition A Boolean algebra A is harmless (cf. Just 92) if it is ccc and whenever B is a countable
subalgebra of A, there is a regularly embedded countable subalgebra of A including B.

527N Lemma (a) A Boolean algebra with a harmless order-dense subalgebra is itself harmless.
(b) If A is a Dedekind complete Boolean algebra, then it is harmless iff every order-closed subalgebra of

A with countable Maharam type has countable π-weight.
(c) For any set I, the regular open algebra RO({0, 1}I) of {0, 1}I is harmless, so the category algebra of

{0, 1}I is harmless.
(d) If A has countable π-weight it is harmless.
(e) If A is a harmless Boolean algebra, B is a Boolean algebra and π : A → B is a surjective order-

continuous Boolean homomorphism, then B is harmless. In particular, any principal ideal of a harmless
Boolean algebra is harmless.
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proof (a) Let A be a Boolean algebra with a harmless order-dense subalgebra D. By 316Xj or 513E(e-iii), A
is ccc. Let B be a countable subalgebra of A. For each b ∈ B let Db ⊆ D be a countable set with supremum
b (313K, 316E). Let D0 be the subalgebra of D generated by

⋃
b∈BDb. Then D0 is countable, so there is a

countable subalgebra D1 of D, including D0, which is regularly embedded in D. Let C be the subalgebra of
A generated by B ∪D1. Then C is countable. Now every member of C is the supremum of the members of
D1 it includes. PPP Set

C = {c : c ∈ C, c = sup{d : d ∈ D1, d ⊆ c} = inf{d : d ∈ D1, c ⊆ d}}.

Then C is closed under union (use 313Bd) and complementation (313A), and includes B∪D1, so C = C. QQQ

It follows that C is regularly embedded in A, because if C ⊆ C has supremum 1 in C then
⋃

c∈C{d : d ∈ D1,
d ⊆ c} must have supremum 1 in C and therefore in D1 (because D1 ⊆ C) and in D (because D1 is regularly
embedded in D) and in A (because D is regularly embedded in A). But this means that supC must be 1 in
A. As C is arbitrary, C is regularly embedded. As B is arbitrary, A is harmless.

(b)(i) Suppose that A is harmless and that B ⊆ A is an order-closed subalgebra of countable Maharam
type. Let B ⊆ B be a countable set which τ -generates B, and B0 the algebra generated by B; let C be a
countable subalgebra of A, including B0, which is regularly embedded in A. Let D be the set

{d : d ∈ A, d = sup{c : c ∈ C, c ⊆ d} = inf{c : c ∈ C, d ⊆ c}}.

Then D is an order-closed subalgebra of A. PPP As in (a) just above, it is a subalgebra. If D ⊆ D is a
non-empty set with supremum a in A, set C = {c : c ∈ C, c ⊆ a}, C ′ = {c : c ∈ C, a ⊆ c}. Then a is an
upper bound for C and a lower bound for C ′. ??? If either a is not the least upper bound of C, or a is not the
greatest lower bound of C ′, then A = {c′ \ c : c′ ∈ C ′, c ∈ C} is a subset of C with a non-zero lower bound
in A, so A has a non-zero lower bound c∗ in C. Now if d ∈ D, c ∈ C and c ⊆ d, then c ∈ C so c ∩ c∗ = 0; as
d = sup{c : c ∈ C, c ⊆ d}, d ∩ c∗ = 0. This is true for every d ∈ D, so a ∩ c∗ = 0 and 1 \ c∗ ∈ C ′; but c∗ was
chosen to be included in every member of C ′. XXX Thus a ∈ D; as D is arbitrary, D is order-closed in A. QQQ

Now B ⊆ C ⊆ D. As B is regularly embedded in A (314Ga), B ∩D is an order-closed subalgebra of B
including B, so is the whole of B, and B ⊆ D. It follows that π(B) ≤ π(D) (514Eb). But C is countable
and order-dense in D, so π(D) and π(B) are countable. As B is arbitrary, A satisfies the declared condition.

(ii) Now suppose that A satisfies the condition. Note first that A is ccc. PPP??? Suppose, if possible,
otherwise; let 〈aξ〉ξ<ω1

be a disjoint family in A \ {0}. Replacing a0 by a0 ∪ (1 \ supξ<ω1
aξ) if necessary,

we may suppose that supξ<ω1
aξ = 1. The map I 7→ supξ∈I aξ : Pω1 → A is an injective order-continuous

Boolean homomorphism, so its image B is an order-closed subalgebra of A isomorphic to Pω1. Now τ(B) =
τ(Pω1) = ω (514Ef, or otherwise), but π(B) = ω1; which is supposed to be impossible. XXXQQQ

If B is a countable subalgebra of A, let B1 be the order-closed subalgebra of A which it generates. Then
τ(B1) ≤ ω so π(B1) ≤ ω, and there is a countable subalgebra C of B1 which is order-dense in B1; of
course we may suppose that B ⊆ C. Now the identity maps from C to B1 and from B1 to A are both
order-continuous, so their composition also is, and C is regularly embedded in A. As B is arbitrary, A is
harmless.

(c) All regular open algebras are Dedekind complete. If B ⊆ RO({0, 1}I) is an order-closed subalgebra
with countable Maharam type, let 〈Gn〉n∈N be a sequence in B which τ -generates B. Every regular open
subset of {0, 1}I is determined by coordinates in some countable set (4A2E(b-i)), so there is a countable
J ⊆ I such that every Gn is determined by coordinates in J . Let πJ : {0, 1}I → {0, 1}J be the restriction
map; then we have an injective order-continuous Boolean homomorphism H 7→ π−1

J [H] : RO({0, 1}J ) →
RO({0, 1}I) (4A2B(f-iii)). Let C be the image of this homomorphism, so that C is an order-closed subalgebra
of RO({0, 1}I). If Hn = πJ [Gn] then Hn is regular and open for each n (4A2B(f-iii) again, because πJ is
surjective and π−1

J [Hn] = Gn is regular and open), so Gn = π−1
J [Hn] ∈ C; accordingly B ⊆ C. Now B is an

order-closed subalgebra of C so

π(B) ≤ π(C) = π({0, 1}J ) ≤ ω.

As B is arbitrary, RO({0, 1}I) satisfies the condition of (b) and is harmless.

Of course it follows at once that the category algebra is harmless, because it is isomorphic to the regular
open algebra (514If-514Ig).
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(d) Let D be a countable order-dense set in A. If B is a countable subalgebra of A, let C be the subalgebra
of A generated by D ∪B; then C is countable, includes B and is order-dense, therefore regularly embedded
in A. As B is arbitrary, A is harmless.

(e) Let D ⊆ B be a countable subalgebra. Because π[A] = B, there is a countable subalgebra C of A
such that π[C] = D. Let C1 ⊇ C be a countable regularly embedded subalgebra of A. Then D1 = π[C1] is
regularly embedded in B. PPP Let D ⊆ D1 be a non-empty set such that 1 is not the least upper bound of
D in B. Set C = C1 ∩ π−1[D ∪ {0}]; then 1 is not the least upper bound of π[C] in B, so (because π is
order-continuous) 1 is not the least upper bound of C in A. Because C1 is regularly embedded in A, there
is a non-zero c0 ∈ C1 such that c0 ∩ c = 0 for every c ∈ C. In particular, c0 /∈ C and πc0 6= 0. But we also
have πc ∩ πc0 = 0 for every c ∈ C, that is, d ∩ πc0 = 0 for every d ∈ D, and 1 is not the least upper bound
of D in D1. As D is arbitrary, D1 is regularly embedded. QQQ Of course D1 is countable. As D is arbitrary,
B is harmless.

If c ∈ A then a 7→ a ∩ c is an order-continuous homomorphism onto the principal ideal Ac generated by
c, so Ac is harmless.

527O Theorem Let (X,Σ, µ) be a σ-finite measure space and Y a topological space such that the
category algebra G of Y is harmless. Write L for (Σ⊗̂B(Y ))∩(N (µ)⋉M(Y )) and A for the measure algebra
of µ. Then C = (Σ⊗̂B(Y ))/L is ccc, and is isomorphic to the Dedekind completion of the free product A⊗G.
If neither A nor G is trivial, the isomorphism corresponds to embeddings E• 7→ (E × Y )• : A → C and
F • 7→ (X × F )• : B → C.

proof Write S for the topology of Y .

(a) Let W be the family of all sets of the form
⋃

n∈N
En ×Hn, where En ∈ Σ and Hn ⊆ Y is open for

every n. Then for any W ∈ W there is a W ′ ∈ W such that W ′△((X × Y ) \W ) ∈ L. PPP Express W as⋃
n∈N

En×Hn where En ∈ Σ and Hn ∈ S for each n. Let D be the order-closed subalgebra of G generated by
{H•

n : n ∈ N}. Because G is harmless and Dedekind complete, π(D) ≤ ω (527Nb); let 〈Gn〉n∈N be a sequence
in S such that {G•

n : n ∈ N} is a π-base for D; we may suppose that any non-empty open subset of any Gn

is non-meager. Let S1 be the second-countable topology on Y generated by {Hn : n ∈ N} ∪ {Gn : n ∈ N},
and B1(Y ) ⊆ B(Y ) the corresponding Borel σ-algebra. Then V • ∈ D for every V ∈ S1, because V is the
union of a countable family of sets all with images in D. If V ∈ S1 is dense for S1, and n ∈ N is such that
Gn is non-empty, V ∩ Gn 6= ∅ so V • ∩G•

n 6= 0, by the choice of the Gn. But this means that V • = 1, that
is, V is comeager for the original topology of Y .

Now W and (X × Y ) \W belong to Σ⊗̂B1(Y ). By 527I, there are W ′ and 〈Dn〉n∈N such that

((X × Y ) \W )△W ′ ⊆ ⋃
n∈N

Dn,

W ′ is expressible as
⋃

n∈N
Fn × Vn where Fn ∈ Σ and Vn ∈ S1 for every n,

every Dn belongs to Σ⊗̂B1(Y ),
for every x ∈ X and n ∈ N, Dn[{x}] is closed and nowhere dense for S1.

Evidently W ′ ∈ W; but we have just seen that sets which are closed and nowhere dense for S1 are meager
for S. So every Dn belongs to L and ((X × Y ) \W )△W ′ ∈ L. QQQ

(b) It follows (as in the proof of 527I) that V = {W△D : W ∈ W, D ∈ L} is a σ-algebra of sets, and as
E ×H ∈ W for every E ∈ Σ and H ∈ S, V = Σ⊗̂B(Y ).

(c) C is ccc. PPP??? Otherwise, there is a disjoint family 〈eξ〉ξ<ω1
in C \ {0}. For each ξ < ω1, there

is a Vξ ∈ (Σ⊗̂B(Y )) \ L such that V •

ξ = eξ, and a Wξ ∈ W such that Vξ△Wξ ∈ L. Express Wξ as⋃
n∈N

Eξn × Hξn; as Wξ /∈ L, there must be an nξ such that Eξ = Eξ,nξ
/∈ N (µ) and Hξ = Hξ,nξ

is
non-meager. Since the measure algebra of µ satisfies Knaster’s condition (525Tb), there is an uncountable
A ⊆ ω1 such that Eξ ∩ Eη /∈ N (µ) for all ξ, η ∈ A; because G is ccc, there are distinct ξ, η ∈ A such that
Hξ ∩Hη is non-meager. But also

(Eξ ∩ Eη) × (Hξ ∩Hη) ⊆Wξ ∩Wη ∈ L
because (Wξ ∩Wη)• = eξ ∩ eη = 0. So this is impossible. XXXQQQ

Thus C is ccc. As it is Dedekind σ-complete (314C), it is Dedekind complete (316Fa).
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(d) If either µX = 0 or Y is meager, then A ⊗ G and C are trivially isomorphic, and we can stop.
Otherwise, the map E 7→ (E × Y )• : Σ → C is a Boolean homomorphism with kernel Σ ∩ N (µ), so induces
a Boolean homomorphism π1 : A → C. Similarly, we have a Boolean homomorphism π2 : G → C defined
by setting π2(F •) = (X × F )• for F ∈ B(Y ). These now give us a Boolean homomorphism φ : A⊗G → C

defined by saying that

ψ(E• ⊗ F •) = π1(E•) ∩ π2(F •) = (E × F )•

for E ∈ Σ and F ∈ B(Y ) (315Jb). If E ∈ Σ \N (µ) and F ∈ B(Y ) \M(Y ), then E×F /∈ L; so φ is injective
(use 315Kb). If c ∈ C is non-zero, it is expressible as W • for some W ∈ W \ L; there must now be E ∈ Σ,
F ∈ B(Y ) such that E × F ⊆ W and E × F /∈ L, so that φ(E• ⊗ F •) is non-zero and included in w. Thus
φ[A⊗G] is isomorphic to A⊗G and is an order-dense subalgebra of the Dedekind complete Boolean algebra
C; it follows that C can be identified with the Dedekind completion of A⊗G.

527X Basic exercises >>>(a) Show that there is a set belonging to N ⋉N which has full outer measure
for Lebesgue measure in the plane. (Hint : enumerate the compact non-negligible subsets of the plane
as 〈Kξ〉ξ<c (4A3Fa); note that the projection Lξ of Kξ onto the first coordinate is always non-negligible,
therefore uncountable, therefore of cardinal c (423L); choose sξ ∈ Lξ \ {sη : η < ξ} and tξ ∈ Kξ[{sξ}] for
each ξ; consider {(sξ, tξ) : ξ < c}.)

>>>(b) Show that there is a unique construction of iterated skew products I0 ⋉ I1 ⋉ . . .⋉ In such that
(i) whenever X0, . . . , Xn are sets and Ij is an ideal of subsets of Xj for every j, then I0 ⋉ . . .⋉ In is an

ideal of subsets of X0 × . . .×Xn;
(ii) whenever X0, . . . , Xn are sets, Ij is an ideal of subsets of Xj for every j, and k < n, then the natural

identification of X0 × . . . × Xn with (X0 × . . . × Xk) × (Xk+1 × . . . × Xn) identifies I0 ⋉ . . . ⋉ In with
(I0 ⋉ . . .⋉ Ik) ⋉ (Ik+1 ⋉ . . .⋉ In) as defined in 527B.

(c) Complete the analysis in 527Bb by describing what happens if one of X, Y is empty or one of the
ideals is not proper.

(d) Let X be a set, Σ a σ-algebra of subsets of X, and I an ideal of subsets of X; let Y be a topological

space, B its Borel σ-algebra, B̂ its Baire-property algebra, and M its meager ideal. Show that I⋉Σ⊗̂B M =
I ⋉Σ⊗̂B̂ M.

>>>(e) Let Z be the Stone space of the measure algebra of Lebesgue measure on [0, 1], and f : Z → [0, 1]
the canonical inverse-measure-preserving continuous function (416V). Let F ⊆ [0, 1] be a nowhere dense set
which is not negligible, and set W = {(x, z) : x ∈ [0, 1], z ∈ Z, x + f(z) ∈ F}. Show that W is a nowhere
dense closed set in [0, 1] × Z but does not belong to M([0, 1]) ⋉ M(Z). (Hint : meager subsets of Z are
negligible (321K).)

>>>(f) Suppose that I and J are sets, X = {0, 1}I and Y = {0, 1}J . Show that M(X) ⋉B(X×Y ) M(Y ) =
M(X × Y ).

(g) Write X for the class of topological spaces which have category algebras which are atomless and with
countable π-weight. (i) Show that the Sorgenfrey line (415Xc) belongs to X. (ii) Show that the split interval
(419L) belongs to X. (iii) Show that if the regular open algebra of a topological space X is atomless and
has countable π-weight, then X ∈ X. (iv) Show that any open subspace of a space in X belongs to X. (v)
Show that any dense subspace of a space in X belongs to X. (vi) Show that any comeager subspace of a
space in X belongs to X. (vii) Show that the product of countably many spaces in X belongs to X.

(h) Show that a measurable algebra is harmless iff it is purely atomic.

527Y Further exercises (a) Show that I ⋉ J 6= I ⋊ J for any of the four cases in which {I,J } ⊆
{M,N}.

(b) Extend the idea of 527Xb to define an ideal ∨∧ξ<ζIξ of subsets of
∏

ξ<ζ Xζ when ζ is any ordinal and

Iξ is an ideal of subsets of Xξ for every ξ < ζ.
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(c) Let X be a set, Σ a σ-algebra of subsets of X and I a σ-ideal of Σ such that Σ/I is ccc. Let (Y,T, ν)
be a probability space. Show that (Σ⊗̂T)/(Σ⊗̂T) ∩ (I ⋉N (ν)) is ccc.

(d) Let (Y,T) be a topological space. Show that there is a topology S on Y , coarser than T, such that
the weight of (Y,S) is equal to the π-weight of (Y,T) and the two topologies have the same nowhere dense
sets, the same meager ideal and the same Baire-property algebras.

(e) Let X be a topological space with a σ-finite measure µ such that µ has countable Maharam type and
every measurable set can be expressed as the symmetric difference of a Borel set and a negligible set. Let
Y be a topological space with a countable π-base. Show that N (µ) ⋉B(X×Y ) M(Y ) 4T N (µ) ×N .

(f) Let 〈Ai〉i∈I be a family of harmless Boolean algebras satisfying Knaster’s condition, and A their free
product (315I). Show that A is harmless.

527 Notes and comments Skew products of ideals have been used many times for special purposes, and
we are approaching the point at which it would be worth developing a general theory of such products. I
am not really attempting to do this here, though the language of 527B is supposed to point to the right
questions. My primary aim in this section is to show that M⋉B(R2) N and N ⋉B(R2) M are very different
(527H, 527K). Of course the difference appears only when the continuum hypothesis is false (513Xf, 513Xr).

The version of the Kuratowski-Ulam theorem given in 527D is a natural one from the point of view of
this chapter, but you should be aware that there are many more cases in which M∗ = M(X × Y ); see
527Xf and Fremlin Natkaniec & Rec law 00. The statement of 527J includes the phrase ‘quasi-Radon
measure’. Actually we do not really need either τ -additivity or inner regularity with respect to closed sets.
What we need is a measure µ such that N (µ) 4T N and the Borel sets generate the measure algebra
(527Ye). The argument for 527J betrays its origin in the case X = Y = [0, 1], which is of course also the
natural home of 527C-527F. Some of the complications of the argument are due to its being written out for
spaces of countable π-weight; an alternative approach would start with a reduction to the case in which Y
is second-countable (527Yd).

It is interesting that all four of the quotient algebras

B(R2)/B(R2) ∩ (M⋉M), B(R2)/B(R2) ∩ (M⋉N ),

B(R2)/B(R2) ∩ (N ⋉M), B(R2)/B(R2) ∩ (N ⋉N )

are ccc (see 527E, 527Yc, 527O, 527Bc and also 527L). This should not be taken for granted; for a variety
of examples of quotient algebras associated with σ-ideals see Fremlin 03.

Version of 10.2.11/11.2.11

528 Amoeba algebras

In the course of investigating the principal consequences of Martin’s axiom, Martin & Solovay 70

introduced the partially ordered set of open subsets of R with measure strictly less than γ, for γ > 0 (528O).
Elementary extensions of this idea lead us to a very interesting class of partially ordered sets, which I study
here in terms of their regular open algebras, the ‘amoeba algebras’ (528A). Of course the most important
ones are those associated with Lebesgue measure, and these are closely related to ‘localization posets’ (528I),
themselves intimately connected with the localization relations of 522K. In the second half of the section I
look at the cardinal functions of these algebras, of which the most interesting seems to be Maharam type
(528V).

As elsewhere in this chapter, I will write (Bκ, ν̄κ) for the measure algebra of the usual measure on {0, 1}κ.
In any measure algebra (A, µ̄) I will write Af = {a : a ∈ A, µ̄a <∞}.

528A Amoeba algebras Let (A, µ̄) be a measure algebra.

c© 2007 D. H. Fremlin
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(a) If 0 < γ ≤ µ̄1, the amoeba algebra AM(A, µ̄, γ) is the regular open algebra RO↑(P ) where P =
{a : a ∈ A, µ̄a < γ}, ordered by ⊆ .

(b) The variable-measure amoeba algebra AM∗(A, µ̄) (Truss 88) is the regular open algebra
RO↑(P ′) where

P ′ = {(a, α) : a ∈ A, α ∈ ]µ̄a, µ̄1]},

ordered by saying that

(a, α) ≤ (b, β) if a ⊆ b and β ≤ α.

528B It may help to have the following simple facts set out straight away.

Lemma Let (A, µ̄) be a measure algebra and 0 < γ ≤ µ̄1. Set P = {a : a ∈ A, µ̄a < γ}.
(a) Two elements a, b ∈ P are compatible upwards in P iff µ̄(a ∪ b) < γ.
(b) Suppose that (A, µ̄) is semi-finite and atomless.

(i) P is separative upwards, so [a,∞[ ∈ RO↑(P ) for every a ∈ P .
(ii) If A ⊆ P is non-empty, then the infimum infa∈A [a,∞[ is empty unless supA is defined in A and

belongs to P , and in this case infa∈A [a,∞[ = [supA,∞[.

proof (a) [a,∞[ ∩ [b,∞[ = {c : a ∪ b ⊆ c ∈ P} is non-empty iff a ∪ b ∈ P .

(b)(i) Let a, b ∈ P be such that a 6⊆ b. If µ̄(a ∪ b) ≥ γ then a and b are already incompatible upwards.
Otherwise, µ̄(1 \ (a ∪ b)) ≥ γ − µ̄(a ∪ b). Because (A, µ̄) is atomless and semi-finite, there is a d ⊆ 1 \ (a ∪ b)
such that µ̄d = γ − µ̄(a ∪ b). Set c = b ∪ d. Then

µ̄c = γ − µ̄(a \ b) < γ = µ̄(a ∪ c),

so c ∈ [b,∞[ ⊆ P , while a and c are incompatible upwards in P . As a and b are arbitrary, P is separative
upwards.

By 514Me, it follows that [a,∞[ is a regular up-open set for every a ∈ P .

(ii) This is a re-phrasing of 514Mf.

528C Proposition Suppose that (X,Σ, µ) is a measure space, (A, µ̄) its measure algebra and 0 < γ ≤
µX. If E ⊆ Σ is any family such that µ is outer regular with respect to E , then AM(A, µ̄, γ) is isomorphic
to RO↑({E : E ∈ E , µE < γ}).

proof Set P = {a : a ∈ A, µ̄a < γ}, Q = {E : E ∈ E , µE < γ}. Because µ is outer regular with respect to
E , the map G 7→ G• : Q → A maps Q onto a cofinal subset P ′ of P . Moreover, two elements E0 and E1 of
Q are compatible upwards in Q iff µ(E0 ∪ E1) < γ iff E•

0 and E•
1 are compatible upwards in P . By 514R,

RO↑(P ) and RO↑(Q) are isomorphic.

528D Proposition (a) (Truss 88) Let (A, µ̄) be an atomless homogeneous probability algebra. Then
the amoeba algebras AM(A, µ̄, γ) and AM(A, µ̄, γ′) are isomorphic for all γ, γ′ ∈ ]0, 1[.

(b) Let (A, µ̄) be a non-totally-finite atomless quasi-homogeneous measure algebra (definition: 374G).
Then all the amoeba algebras AM(A, µ̄, γ), for γ > 0, are isomorphic.

proof (a)(i) Set P = {a : a ∈ A, µ̄a < γ}, and let κ be the Maharam type of A. Then the upwards
cellularity of P is at most κ. PPP??? Otherwise, there is an up-antichain A ⊆ P with cardinality κ+. Let
ǫ > 0 be such that A′ = {a : a ∈ A, µ̄a ≤ γ − ǫ} has cardinal κ+. Because the topological density of A is
κ (521Ea), there must be distinct a, a′ ∈ A′ such that µ̄(a△ a′) < ǫ; but in this case µ̄(a ∪ a′) < γ, so that
a ∪ a′ is an upper bound for {a, a′} in P . XXXQQQ

(ii) If 1 − √
1 − γ ≤ α < γ and D is a countable subset of ]α, γ[ such that supD = γ, then there is

a maximal up-antichain 〈atξ〉(t,ξ)∈D×κ in P such that µ̄atξ = t for every t ∈ D, ξ < κ. PPP Start with a
stochastically independent family 〈ctξ〉(t,ξ)∈D×κ of elements of A with µ̄ctξ = t for all t ∈ D, ξ < κ. Because

α ≥ 1 − √
1 − γ, A = 〈ctξ〉(t,ξ)∈D×κ is an up-antichain in P . Next, because supD = γ, Q = {a : a ∈ P ,

µ̄a ∈ D} is cofinal with P . So there is a maximal up-antichain A′ ⊇ A such that A′ ⊆ Q (513Aa). Now
(because c↑(P ) ≤ κ) {a : a ∈ A′, µ̄a = t} has cardinal κ for every t ∈ D, so we can enumerate A′ as
〈atκ〉(t,ξ)∈D×κ in P where µ̄atξ = t for every t ∈ D and ξ < κ. QQQ
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(iii) There are α, α′ ∈ ]0, 1[ such that

1 −√
1 − γ ≤ α < γ, 1 −√

1 − γ′ ≤ α′ < γ′,
γ−α

1−α
=

γ′−α′

1−α′
.

PPP We need consider only the case γ ≤ γ′. Set

β =
1√
1−γ

− 1, α = γ − β(1 − γ), α′ = γ′ − β(1 − γ′).

Then
γ−α

1−γ
= β =

γ′−α′

1−γ′
. Of course α ≤ γ and α′ ≤ γ′. On the other side, α = 1 − √

1 − γ, while

β ≤ 1√
1−γ′

− 1 so α′ ≥ 1 −√
1 − γ′. QQQ

(iv) If a ∈ P , {b : a ⊆ b ∈ P} is isomorphic, as partially ordered set, to {b : b ∈ A, µ̄b <
γ−µ̄a

1−µ̄a
}. PPP

The principal ideal A1\a generated by 1 \ a is isomorphic, up to a scalar multiple of the measure, to A, and
{b : a ⊆ b ∈ P} is isomorphic, as partially ordered set, to {b : b ⊆ 1 \ a, µ̄b < γ − µ̄a}. QQQ

(v) For each n ∈ N, set αn = γ − 2−n(γ − α), α′
n = γ′ − 2−n(γ′ − α′); then

1−α′
n

γ′−α′
n

= 1 +
1−γ′

γ′−α′
n

= 1 + 2n
1−γ′

γ′−α′
=

1−αn

γ−αn

,
γ′−α′

n

1−α′
n

=
γ−αn

1−αn

for every n ∈ N. Set P ′ = {a : a ∈ A, µ̄a < γ′}. By (b), we have a maximal up-antichain 〈anξ〉(n,ξ)∈N×ξ in
P such that µ̄anξ = αn for all n ∈ N and ξ < κ; similarly, there is a maximal up-antichain 〈a′nξ〉(n,ξ)∈N×ξ in

P ′ such that µ̄a′nξ = α′
n for all n ∈ N and ξ < κ. Now, for each n ∈ N and ξ < κ, [anξ,∞[, taken in P , is

isomorphic, as partially ordered set, to [a′nξ,∞[, taken in P ′, by (d). So

RO↑(P ) ∼=
∏

n∈N,ξ<κ

RO↑([anξ,∞[)

(514Nf)

∼=
∏

n∈N,ξ<κ

RO↑(
[
a′nξ,∞

[
) ∼= RO↑(P ′).

(b) Suppose that β, γ > 0. As in Lemma 332I, we have a partition D of unity in A such that µ̄a = β
for every a ∈ D. Similarly, we have a partition D′ of unity such that µ̄a = γ for every a ∈ D′. By
332E, #(D) = #(D′) = c(A). Let h : D → D′ be a bijection. If d ∈ D, the principal ideals Ad, Ah(d)

have the same Maharam type, because (A, µ̄) is quasi-homogeneous (374H), and are therefore isomorphic
as measure algebras, up to a scalar factor of the measure; let πd : Ad → Ah(d) be a Boolean isomorphism

such that µ̄(πda) =
γ

β
µ̄a for every a ⊆ d. Now we have a function π : Af → Af defined by saying that

πa = supd∈D πd(a ∩ d) whenever µ̄a < ∞, and π is a Boolean ring automorphism such that µ̄πa =
γ

β
µ̄a for

every a ∈ Af . But now π includes an isomorphism between the partially ordered sets {a : µ̄a < β} and
{a : µ̄a < γ}, so their regular open algebras AM(A, µ̄, β) and AM(A, µ̄, γ) are isomorphic.

528E Lemma Let (A, µ̄) be an atomless semi-finite measure algebra. Then there is a family 〈cα〉α∈[0,µ̄1]

in A such that cα ⊆ cβ and µ̄cα = α whenever 0 ≤ α ≤ β ≤ µ̄1, and α 7→ cα is continuous for the
measure-algebra topology of A.

proof Because (A, µ̄) is semi-finite, there is a non-decreasing sequence 〈en〉n∈N in Af such that supn∈N µ̄en =
µ̄1, starting from e0 = 0; set e = supn∈N en, so that µ̄e = µ̄1. Then (Ae, µ̄↾Ae) is σ-finite and atomless.
Let (C, λ̄) be the measure algebra of Lebesgue measure on [0, µ̄1[. For each n ∈ N set e′n = en+1 \ en and
dn = [µ̄en, µ̄en+1[

• ∈ C.
Because A is atomless, 332P tells us that there is for each n ∈ N a measure-preserving Boolean homo-

morphism πn from the principal ideal Cdn
to a principal ideal of Ae′n

, which must be Ae′n
itself because
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µ̄e′n = λ̄dn; by 324Kb, πn is order-continuous. Assembling these, we have an order-continuous measure-
preserving Boolean homomorphism π : C → Ae defined by setting πd = supn∈N πn(d ∩ dn) for every d ∈ C.
Now set cα = π [0, α[

•
for α ≤ µ̄1. Because π is continuous for the measure-algebra topologies of C and Ae

(324Fc), or otherwise, α 7→ cα is continuous.

528F Proposition Let (A, µ̄) be a semi-finite measure algebra, and γ ∈ ]0,∞[.
(a) Suppose that e ∈ A and µ̄e ≥ γ. If Ae is atomless, then AM(Ae, µ̄↾Ae, γ) can be regularly embedded

in AM(A, µ̄, γ).
(b) Suppose that A is atomless, and that γ < µ̄1. Let 〈ek〉k∈N be a non-decreasing sequence in A with

supremum 1, and suppose that µ̄ek ≥ γ for every k ∈ N. Then we have a sequence 〈πk〉k∈N such that πk :
AM(Aek , µ̄↾Aek , γ) → AM(A, µ̄, γ) is a regular embedding for every k ∈ N, and

⋃
k∈N

πk[AM(Aek , µ̄↾Aek , γ)] τ -
generates AM(A, µ̄, γ).

(c) Now suppose that (A, µ̄) is atomless and quasi-homogeneous, and that γ < µ̄1. Then AM(A, µ̄, γ) can
be regularly embedded in AM∗(A, µ̄).

proof (a) Set P = {a : a ∈ A, µ̄a < γ} and Q = P ∩ Ae. By 528E, we have a continuous order-preserving
function α 7→ cα : [0, µ̄e] → Ae such that µ̄cα = α for each α. If a ∈ A, then the function β 7→ µ̄(cβ \ a)
is a continuous non-decreasing function from [0, µ̄e] onto [0, µ̄(cµ̄e \ a)], and we can set δ(a, α) = min{β :
µ̄(cβ \ a) = α} whenever 0 ≤ α ≤ µ̄(cµ̄e \ a). In this case,

µ̄((a ∩ e) ∪ cδ(a,α)) = µ̄(a ∩ e) + µ̄(cδ(a,α) \ a) = α+ µ̄(a ∩ e).

Note that δ(a, α) ≤ δ(a′, α′) whenever a ⊆ a′ and α ≤ α′ ≤ µ̄(cµ̄1 \ a′).
If a ∈ P , then

µ̄(cµ̄e \ a) = µ̄cµ̄e − µ̄(a ∩ cµ̄e) ≥ µ̄e− µ̄(a ∩ e) ≥ µ̄a− µ̄(a ∩ e) = µ̄(a \ e).

So δ(a, µ̄(a \ e)) is defined, and we have a function f given by the formula

f(a) = (a ∩ e) ∪ cδ(a,µ̄(a\e))

for a ∈ P . In this case µ̄f(a) = µ̄a, so f(a) ∈ Q, for each a, and f , like δ, is order-preserving. Of course
f(a) = a for a ∈ Q.

If a ∈ P , b ∈ Q and f(a) ⊆ b, there is an a′ ∈ P such that a ⊆ a′ and b = f(a′). PPP Set a′ = a ∪ (b \ f(a)).
Then

µ̄a′ = µ̄a+ µ̄(b \ f(a)) = µ̄f(a) + µ̄(b \ f(a)) = µ̄b < γ,

so a′ ∈ P . Also b ⊆ f(a) ∪ (a′ ∩ e) ⊆ f(a′); as µ̄b = µ̄a′ = µ̄f(a′), b = f(a′). QQQ So if Q0 ⊆ Q is cofinal
with Q, f−1[Q0] will be cofinal with P (as in the proof of 514P), and we have an order-continuous Boolean

homomorphism π : RO↑(Q) → RO↑(P ) defined by setting πH = int f−1[H] for every H ∈ RO↑(Q). Finally,
f [P ] = f [Q] = Q. So π is injective and is a regular embedding of AM(Ae, µ̄↾Ae, γ) = RO↑(Q) into
AM(A, µ̄, γ) = RO↑(P ).

(b)(i) For each k ∈ N, set Qk = P ∩Aek and choose functions fk : P → Qk and πk : RO↑(Qk) → RO↑(P )
as in (a) above. If we write [c,∞[ = {a : c ⊆ a ∈ P} for every c ∈ P , then Aek ∩ [c,∞[ = {b : c ⊆ b ∈ Qk}
for k ∈ N and c ∈ Qk; in this case, Aek ∩ [c,∞[ ∈ RO↑(Qk), by 528B(b-i).

(ii) Let G be the order-closed subalgebra of RO↑(P ) generated by
⋃

k∈N
πk[RO↑(Qk)]. If a ∈ P , there is

a non-empty G ∈ G included in [a,∞[ ∈ RO↑(P ). PPP Because a ⊆ supk∈N ek and 〈ek〉k∈N is non-decreasing,
there is an infinite I ⊆ N such that

∑
k∈I µ̄(a \ ek) < γ − µ̄a. Set b = supk∈I fk(a). Then

µ̄b ≤ µ̄a+
∑

k∈I µ̄(a \ fk(a)) ≤ µ̄a+
∑

k∈I µ̄(a \ ek) < γ

because fk(a) ⊇ a ∩ ek for every k, by the construction in (a). Thus b ∈ P . Also

µ̄(a \ b) ≤ infk∈N µ̄(a \ fk(a)) = 0,

so a ⊆ b.
Set

Vk = Aek ∩ [fk(a),∞[ ∈ RO↑(Qk)
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for every k. Then πkVk = int f−1
k [Vk] belongs to G for each k, and G = infk∈N πkVk =

⋂
k∈N

πkVk (514M(d-
ii)) belongs to G. Because every fk is order-preserving, fk(b′) ⊇ fk(a) and fk(b′) ∈ Vk for every b′ ⊇ b; thus
b ∈ int f−1

k [Vk] for every k, and b ∈ G. This shows that G 6= ∅.

??? Suppose, if possible, that G 6⊆ [a,∞[. Then there is a c ∈ G such that a \ c 6= 0. If µ̄(c ∪ a) > γ, set
c′ = c. Otherwise, let δ > 0 be such that

δ + µ̄c < γ < δ + µ̄(c ∪ a) < µ̄1.

Because (A, µ̄) is atomless and semi-finite, there is a d ⊆ 1 \ (c ∪ a) such that µ̄d = δ. Set c′ = c ∪ d; then
c ⊆ c′ ∈ P so c′ ∈ G, while µ̄(c′ ∪ a) > γ, as in the previous case.

Because I is infinite, supk∈I ek = 1 and there is a k ∈ I such that µ̄((c′ ∪ a) ∩ ek) ≥ γ. In this case,

c′ ∈ πkVk ⊆ f−1
k [Vk], so [c′,∞[ meets f−1

k [Vk] and there is a c′′ ⊇ c′ such that c′′ ∈ P and fk(c′′) ∈ Vk, that
is, fk(c′′) ⊇ fk(a). Now, however,

fk(c′′) ⊇ (c′ ∩ ek) ∪ (fk(a) ∩ ek) ⊇ (c′ ∪ a) ∩ ek

has measure at least γ, and cannot belong to Qk. XXXQQQ

(iii) Since {[a,∞[ : a ∈ P} is a base for the topology of P , it is a π-base for RO↑(P ), and G includes
a π-base for RO↑(P ). But this means that every member of RO↑(P ) is the supremum of the members of G
it includes, and belongs to G. Thus G = RO↑(P ), as claimed.

(c)(i) This time, let 〈cα〉α∈[0,µ̄1] be a family in A such that cα ⊆ cβ and µ̄cα = α whenever 0 ≤ α ≤ β ≤ µ̄1.
Set P = {(a, α) : a ∈ A, α ∈ ]µ̄a, µ̄1]}. Let 〈γn〉n∈N be a strictly increasing sequence with supremum µ̄1 and
γ0 = 0. For each n ∈ N, set Pn = {(a, α) : γn ≤ µ̄a < α ≤ γn+1} and Qn = {a : a ∈ A, µ̄a < γn+1}, so that
Pn is an up-open set in P . Note that

⋃
n∈N

Pn is dense in P for the up-topology, since if (a, α) ∈ P then
(a,min(α, γn+1)) ∈ Pn where γn ≤ µ̄a < γn+1. Also

RO↑(Qn) = AM(A, µ̄, γn+1) ∼= AM(A, µ̄, γ).

PPP If µ̄1 = ∞, this is 528Db. If (A, µ̄) is totally finite, then A is homogeneous, so we can apply 528Da to an
appropriate multiple of the measure µ̄. QQQ

For a ∈ Af , the function α 7→ µ̄(cα \ a) : [0, µ̄1] → [0,∞] is continuous and non-decreasing, and

µ̄(cµ̄1 \ a) ≥ µ̄cµ̄1 − µ̄a = µ̄1 − µ̄a = µ̄(1 \ a).

So we can define δ(a, α), for a ∈ Af and 0 ≤ α ≤ µ̄(1 \ a), by saying that

δ(a, α) = min{β : µ̄(cβ \ a) = α} = min{β : µ̄(a ∪ cβ) = µ̄a+ α}.

As in (a), δ(a, α) ≤ δ(a′, α′) whenever a ⊆ a′ and α ≤ α′. For (a, α) ∈ Pn, set

fn(a, α) = a ∪ cδ(a,γn+1−α),

so that µ̄fn(a, α) = µ̄a+ γn+1 − α < γn+1 and fn(a, α) ∈ Qn. Of course fn(a, γn+1) = a if (a, γn+1) ∈ Pn,
that is, if a ∈ Qn and µ̄a ≥ γn.

(ii)(ααα) fn : Pn → Qn is order-preserving. PPP If (a, α) ≤ (a′, α′) in Pn, then δ(a, γn+1−α) ≤ δ(a′, γn+1−
α′), so fn(a, α) ⊆ fn(a′, α′). QQQ

(βββ) If p ∈ Pn, b ∈ Qn and fn(p) ⊆ b, there is a p′ ∈ Pn such that p ≤ p′ and b ⊆ fn(p′). PPP Express
p as (a, α). Consider a′ = a ∪ (b \ fn(p)). Then

µ̄a′ = µ̄a+ µ̄b− µ̄fn(p) = µ̄a+ µ̄b− µ̄a− γn+1 + α < α,

so (a′, α) ∈ P . Of course (a, α) ≤ (a′, α), so p′ = (a′, α) ∈ Pn. Also fn(p′) ⊇ fn(p) and

fn(p′) ⊇ a′ ⊇ b \ fn(p),

so b ⊆ fn(p′). QQQ

(γγγ) fn[Pn] is cofinal with Qn. PPP If b ∈ Qn, take b′ ∈ A such that b ⊆ b′ and γn ≤ µ̄b′ < γn+1. Then
(b′, γn+1) ∈ Pn and

b ⊆ b′ = fn(b′, γn+1) ∈ fn[Pn]. QQQ
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(iii) By 514P, RO↑(Qn) can be regularly embedded in RO↑(Pn). Now AM(A, µ̄, γ) is isomorphic to
RO↑(Qn), so there is an injective order-continuous Boolean homomorphism πn : AM(A, µ̄, γ) → RO↑(Pn).
Putting these together, we have an injective order-continuous Boolean homomorphism π : AM(A, µ̄, γ) →∏

n∈N
RO↑(Pn) defined by setting πu = 〈πn(u)〉n∈N for u ∈ AM(A, µ̄, γ). On the other hand, since 〈Pn〉n∈N

is a disjoint sequence of up-open subsets of P with dense union,
∏

n∈N
RO↑(Pn) ∼= RO↑(P ) = AM∗(A, µ̄)

by 315H. So we have a regular embedding of AM(A, µ̄, γ) into AM∗(A, µ̄), as claimed.

528G Proposition Let (A, µ̄) be a measure algebra, and C a σ-subalgebra of A such that sup(C∩Af ) = 1
in A. Then AM∗(C, µ̄↾C) can be regularly embedded in AM∗(A, µ̄).

proof (a) For each a ∈ Af we have a ‘conditional expectation’ ua ∈ L1(C) defined by saying that
∫
c
ua =

µ̄(a ∩ c) for every c ∈ Cf . (Apply 365O11 to the identity map from Cf to Af .) Note that as the supremum
of Cf in A is 1, ∫

ua = supc∈Cf

∫
c
ua = supc∈Cf µ̄(a ∩ c) = µ̄a.

Also, of course, 0 ≤ µ̄(a ∩ c) ≤ µ̄c for every c ∈ Cf , so 0 ≤ ua ≤ χ1 in L∞(C). Next, let u∗a be the decreasing
rearrangement of ua, that is, the element of L∞(AL) (where AL is the measure algebra of Lebesgue measure
on [0,∞[) such that [[u∗ > α]] = [0, µ̄[[u > α]][

•
for every α ≥ 0 (373Da).

(b) Set

P = {(a, α) : a ∈ A, α ∈ ]µ̄a, µ̄1]}, Q = {(c, α) : c ∈ C, α ∈ ]µ̄c, µ̄1]}.

Define a function f on P by saying that f(a, α) = (c, β) if

c = [[ua = 1]] = max{d : d ∈ C, d ⊆ a},

β = max{β′ : β′ ≥ 0, β′ +
∫∞

β′
u∗a ≤ α}.

Note that β > µ̄c because

µ̄c+
∫∞

µ̄c
u∗a =

∫
u∗a =

∫
ua < α,

using 373Fa for the equality in the middle, while β ≤ α ≤ µ̄1; so (c, β) belongs to Q.

(c)(i) If p ≤ p′ in P , then f(p) ≤ f(p′) in Q. PPP Express p, p′, f(p) and f(p′) as (a, α), (a′, α′),
(c, β), (c′, β′) respectively. Then c ⊆ a ⊆ a′ so c ⊆ c′. Next, χa ≤ χa′ so ua ≤ ua′ and u∗a ≤ u∗a′ (373Db);
accordingly

α′ ≤ α = β +
∫∞

β
u∗a ≤ β +

∫∞

β
u∗a′

and β′ ≤ β. QQQ

(ii) If p ∈ P , q ∈ Q and f(p) ≤ q, then there is a p′ ≥ p such that f(p′) ≥ q. PPP Express p, f(p) and q
as (a, α), (c, β) and (d, γ) respectively. Set a′ = a ∪ d. Then

µ̄a′ = µ̄a+ µ̄d− µ̄(a ∩ d) =

∫
ua + µ̄d−

∫

d

ua ≥
∫
u∗a + µ̄d−

∫ µ̄d

0

u∗a

(apply 373E with v = χd)

= µ̄d+

∫ ∞

µ̄d

u∗a < β +

∫ ∞

β

u∗a

(because [[u∗a = 1]] = [0, µ̄c]• and µ̄c ≤ µ̄d < γ ≤ β)

= α.

So (a′, α) ∈ P . Next, computing the integrals
∫
b
ua ∨ χd for b belonging to Cf and either included in d or

disjoint from it, we see that ua′ = ua ∨ χd so that [[ua′ = 1]] = [[ua = 1]] ∪ d = d. Accordingly

11Formerly 365P.
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µ̄a′ =
∫
ua′ =

∫
u∗a′ = µ̄d+

∫∞

µ̄d
u∗a′ < γ +

∫∞

γ
u∗a′

(as noted above for ua, we have [[u∗a′ = 1]] = [0, µ̄d]•), and if we set α′ = min(α, γ +
∫∞

γ
u∗a′) then p′ =

(a′, α′) ≥ p and f(p′) ≥ q, as required. QQQ

(iii) Since P and Q have a common least element (0, µ̄1) which is invariant under f , f satisfies the
second condition of 514P and AM∗(C, µ̄↾C) = RO↑(Q) is regularly embedded in AM∗(A, µ̄) = RO↑(P ).

528H Proposition Let (A, µ̄) be a semi-finite measure algebra, not {0}, and let κ ≥ max(ω, τ(A), c(A))
be a cardinal. Then AM∗(A, µ̄) can be regularly embedded in AM(Bκ, ν̄κ,

1
2 ).

proof (a) To begin with (down to the end of (g) below), assume that A is atomless. Let (AN, µ̄∞) be the
simple product of a sequence of copies of (A, µ̄) (322L), so that µ̄∞aaa =

∑∞
n=0 µan if aaa = 〈an〉n∈N ∈ AN.

Note that as A is certainly infinite, τ(AN) = τ(A) and c(AN) = c(A) (514Ef). By 526D, there is a function
θ : AN → Bκ such that

θ(supA) = sup θ[A] for every non-empty A ⊆ AN with a supremum in A,
ν̄κθ(aaa) = 1 − exp(−µ̄∞aaa) for every aaa ∈ AN,
whenever 〈aaa(i)〉i∈I is a disjoint family in AN and Ci is the closed subalgebra of Bκ generated

by {θ(aaa) : aaa ⊆ aaa(i)} for each i, then 〈Ci〉i∈I is stochastically independent.

(b) For b ∈ Bκ, set g(b) = sup{aaa : aaa ∈ AN, θ(aaa) ⊆ b}.

(i) It is immediate from its definition that g : Bκ → AN is order-preserving.

(ii) Because θ is supremum-preserving, θ(g(b)) ⊆ b for every b ∈ Bκ.

(iii) If b ∈ Bκ \ {1} then

1 − ν̄κb ≤ 1 − ν̄κθ(g(b)) = exp(−µ̄∞g(b)),

so µ̄∞g(b) ≤ − ln(1 − ν̄κb) is finite.

(iv) aaa ⊆ g(θ(aaa)) for every aaa ∈ AN; and if aaa ∈ AN has finite measure then g(θ(aaa)) = aaa, because if aaa′ 6⊆aaa
then ν̄κθ(aaa ∪aaa′) > ν̄κθ(aaa).

(v) If b ∈ Bκ and ǫ > 0, there is a δ > 0 such that µ̄∞(g(b′) \ g(b)) ≤ ǫ whenever ν̄κ(b′ \ b) ≤ δ.
PPP??? Otherwise, g(b) 6= 1AN so b 6= 1Bκ

and we can find a sequence 〈bn〉n∈N in Bκ such that ν̄κ(bn \ b) ≤
2−n−2(1 − ν̄κb) and µ̄∞(g(bn) \ g(b)) ≥ ǫ for every n ∈ N. For each n, set b∗n = b ∪ supm≥n bm; then

µ̄∞g(b∗n) = µ̄∞g(b) + µ̄∞(g(b∗n) \ g(b)) ≥ µ̄∞g(b) + µ̄∞(g(bn) \ g(b)) ≥ ǫ+ µ̄∞g(b).

Note that ν̄κb
∗
0 < 1 so g(b∗0) has finite measure.

The sequences 〈b∗n〉n∈N, 〈g(b∗n)〉n∈N and 〈θ(g(b∗n))〉n∈N are all non-increasing. Set aaa = infn∈N g(b∗n), so that

θ(aaa) ⊆ infn∈N θ(g(b∗n)) ⊆ infn∈N b
∗
n = b

because ν̄κ(b∗n \ b) ≤ 2−n−1 for every n. It follows that aaa ⊆ g(b). At the same time,

µ̄∞aaa = limn→∞ µ̄∞g(b∗n) > µ̄∞g(b),

which is impossible. XXXQQQ

(c) Define ψ : AN → A by setting ψ(aaa) = supn∈N an whenever aaa = 〈an〉n∈N ∈ AN.

(i) ψ is supremum-preserving and ψ(0) = 0.

(ii) If aaa, aaa′ ∈ AN then

µ̄(ψ(aaa) △ ψ(aaa′)) ≤ µ̄∞(aaa△aaa′) µ̄(ψ(aaa) \ ψ(aaa′)) ≤ µ̄∞(aaa \aaa′).

(iii) Now if b ∈ Bκ, a ∈ A, a ⊇ ψ(g(b)) and µ̄a < α ∈ R, there is a b′ ⊇ b such that a ⊆ ψ(g(b′)),
µ̄ψ(g(b′)) < α and ν̄κ(b′ \ b) ≤ 1 − exp(−µ̄(a \ ψ(g(b))).

PPP Take α′ such that µ̄a < α′ < α. By (b-v), there is a δ > 0 such that µ̄∞(g(b′) \ g(b)) ≤ α′ − µ̄a
whenever ν̄κ(b′ \ b) ≤ δ. Set aaa(n) = 〈ani〉i∈N for each n ∈ N, where ani = a \ ψ(g(b)) if i = n, 0 otherwise.
For each n ∈ N, let Cn be the closed subalgebra of Bκ generated by

Measure Theory
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{θ(aaa) : aaa ∈ AN, aaa ∩aaa(m) = 0 for every m ≥ n},

and let Tn : L1(Bκ, ν̄κ) → L1(Bκ, ν̄κ) be the corresponding conditional-expectation operator (365Q12).
Then 〈Cn〉n∈N is non-decreasing; also ν̄κθ(aaa

(n) ∩ c) = ν̄κθ(aaa
(n)) · ν̄κc for every n ∈ N and c ∈ Cn, by the final

clause of (a). By Lévy’s martingale theorem (275I, 367Jb), 〈Tn(χb)〉n∈N is ‖ ‖1-convergent. We can therefore
find an n ∈ N such that ‖Tn(χb) − Tn+1(χb)‖1 ≤ δ exp(−µ̄a). Set b′ = b ∪ θ(aaa(n)). Then g(b′) ⊇ g(b) ∪aaa(n),
so ψ(g(b′)) ⊇ ann ∪ ψ(g(b)) = a. Also

ν̄κ(b′ \ b) ≤ ν̄κθ(aaa
(n)) = 1 − exp(−µ̄∞aaa

(n)) = 1 − exp(−µ̄(a \ ψ(g(b))).

??? If µ̄ψ(g(b′)) ≥ α, set eee = g(b′) \ (g(b) ∪ supm∈N aaa
(m)). Since

ψ(g(b) ∪ supm∈N aaa
(m)) = ψ(g(b)) ∪ a = a,

ψ(eee) ⊇ ψ(g(b′)) \ a and

µ̄∞eee ≥ α− µ̄a > α′ − µ̄a;

as eee ⊆ g(θ(eee)) and eee ∩ g(b) = 0, ν̄κ(θ(eee) \ b) > δ. On the other hand,

(1 − ν̄κθ(aaa
(n)))ν̄κ(b ∩ θ(eee)) = (1 − ν̄κθ(aaa

(n)))

∫

θ(eee)

Tn(χb)

(because eee ∩aaa(m) = 0 for every m, so θ(eee) ∈ Cn)

=

∫
χ(1 \ θ(aaa(n))) ·

∫
Tn(χb) × χθ(eee)

=

∫
χ(1 \ θ(aaa(n))) × Tn(χb) × χθ(eee)

(because Tn(χb) × χθ(eee) ∈ L0(Cn) and χ(1 \ θ(aaa(n))) are stochastically independent)

=

∫

θ(eee)\θ(aaa(n))

Tn(χb),

(1 − ν̄κθ(aaa
(n)))ν̄κ(θ(eee)) = ν̄κ(θ(eee) \ θ(aaa(n)) = ν̄κ(b ∩ θ(eee) \ θ(aaa(n))

(because θ(eee) ⊆ θ(g(b′)) ⊆ b′ = b ∪ θ(aaa(n)))

=

∫

θ(eee)\θ(aaa(n))

Tn+1(χb)

because θ(eee) and θ(aaa(n)) both belong to Cn+1. So

δ exp(−µ̄a) = δ exp(−µ̄∞aaa
(n)) < ν̄κ(θ(eee) \ b) exp(−µ̄∞aaa

(n))

= (1 − ν̄κθ(aaa
(n)))ν̄κ(θ(eee) \ b))

=

∫

θ(eee)\θ(aaa(n))

Tn+1(χb) − Tn(χb)

≤ ‖Tn(χb) − Tn+1(χb)‖1 ≤ δ exp(−µ̄a),

which is impossible. XXX
So µ̄ψ(g(b′)) < α, as required. QQQ

(d) Fix c ∈ Bκ with measure 1
2 ; then the principal ideal of Bκ generated by c is isomorphic to Bκ with

the measure halved. We therefore have a Boolean isomorphism π : Bκ → (Bκ)c such that ν̄κπb = 1
2 ν̄κb

for every b ∈ Bκ. Set h(b) = ψ(g(π−1(b ∩ c))) for b ∈ Bκ. Then h : Bκ → A is order-preserving and
h(b) = h(b ∩ c) for every b ∈ Bκ. Translating the results of (b) and (c), we see that

if b ∈ Bκ and ǫ > 0, there is a δ > 0 such that µ̄(h(b′) \ h(b)) ≤ ǫ whenever ν̄κ(b′ \ b) ≤ δ,
if b ∈ Bκ, a ∈ A, a ⊇ h(b) and µ̄a < α ∈ R, there is a b′ ⊇ b such that a ⊆ h(b′), µ̄h(b′) < α

and ν̄κ(b′ \ b) ≤ 1
2 (1 − exp(−µ̄(a \ h(b))).

12Formerly 365R.
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Note also that

µ̄h(b) = µ̄ψ(g(π−1(b ∩ c))) ≤ µ̄∞g(π−1(b ∩ c))

≤ − ln(1 − ν̄κπ
−1(b ∩ c)) ≤ − ln(1 − 2ν̄κ(b ∩ c))

if we take ln(0) to be −∞.

(e)(i) Set γ0 = 1
2 (1 − exp(−µ̄1)), interpreting exp(−∞) as 0, so that 0 < γ0 ≤ 1

2 . Let P be the partially
ordered set {(a, α) : a ∈ A, α ∈ ]µ̄a, µ̄1]} and Q the partially ordered set {b : b ∈ Bκ, ν̄κb < γ0}, so that
AM∗(A, µ̄) = RO↑(P ) and AM(Bκ, ν̄κ, γ0) = RO↑(Q). For b ∈ Q, set αb = sup{µ̄h(b′) : b ⊆ b′ ∈ Q}. Then
αb > µ̄(h(b)). PPP We have

µ̄h(b) ≤ − ln(1 − 2ν̄κ(b ∩ c)) < − ln(1 − 2γ0) = µ̄1,

so h(b) 6= 1. Because A is atomless, there is an a ∈ A, disjoint from h(b), such that 0 < µ̄a < − ln(2ν̄κb).
Set aaa = 〈an〉n∈N where a0 = a, an = 0 for n ≥ 1. Then

ν̄κθ(aaa) = 1 − exp(−µ̄a) < 1 − 2ν̄κb,

so b′ = b ∪ πθ(aaa) ∈ Q, while h(b′) ⊇ h(b) ∪ a ⊃ h(b). QQQ

(ii) If b ∈ Q and µ̄h(b) < α, there is a b1 ∈ Q such that b ⊆ b1, h(b1) = h(b) and αb′ ≤ α. PPP Let δ > 0
be such that µ̄(h(b′) \ h(b)) ≤ α− µ̄h(b) whenever ν̄κ(b′ \ b) ≤ δ. Because γ0 ≤ 1

2 , there is a b1 ∈ Q such that
b ⊆ b1, b ∩ c = b1 ∩ c and µ̄b1 ≥ γ0 − δ. Then h(b1) = h(b). If b′ ∈ Q and b′ ⊇ b1, then ν̄κ(b′ ∩ c \ b) ≤ δ, so

µ̄(h(b′) \ h(b)) = µ̄(h(b′ ∩ c) \ h(b)) ≤ α− µ̄h(b)

and µ̄h(b′) ≤ α; thus αb2 ≤ α. QQQ

(f) By (e-i), we can define f : Q→ P by setting f(b) = (h(b), αb) for b ∈ Q.

(i) f is order-preserving because h is.

(ii) If P1 ⊆ P is up-open and cofinal with P , f−1[P1] is cofinal with Q. PPP Take any b ∈ Q. Set

α = min(αb, µ̄h(b) − ln(1 − 2γ0 + 2ν̄κb)) > µ̄h(b),

so that f(b) ≤ (h(b), α) in P . Then there is an (a, β) ∈ P1 such that (h(b), α) ≤ (a, β), that is, h(b) ⊆ a and
β ≤ α. In this case, there is a b1 ∈ Bκ such that b1 ⊇ b, h(b1) ⊇ a, µ̄h(b1) < β and

ν̄κ(b1 \ b) ≤ 1

2
(1 − exp(−µ̄(a \ h(b)))) < γ0 − ν̄b

because µ̄(a \ h(b)) < − ln(1 − 2γ0 + 2ν̄κb). So b1 ∈ Q. By (e-ii), there is a b2 ∈ Q such that b2 ⊇ b1,
h(b2) = h(b1) and αb2 ≤ β. Now b ⊆ b2, while f(b2) = (h(b1), αb2) ≥ (a, β). As P1 is up-open, f(b2) ∈ P1;
as b is arbitrary, f−1[P1] is cofinal with Q. QQQ

(iii) f [Q] is cofinal with P . PPP Take (a, α) ∈ P . Set aaa = 〈an〉n∈N ∈ AN where a0 = a and an = 0 for
n ≥ 1, and set b = πθ(aaa). Note that

ν̄κb =
1

2
(1 − exp(−µ̄a)) < γ0,

so b ∈ Q. Because µ̄∞aaa <∞, g(π−1b) = aaa and h(b) = a. By (e-ii) again, we can now find a b1 ⊇ b in Q such
that h(b1) = h(b) and αb1 ≤ α. So f(b1) ≥ (a, α). As (a, α) is arbitrary, f [Q] is cofinal. QQQ

(g) By 514O, AM∗(A, µ̄) = RO↑(P ) can be regularly embedded in

RO↑(Q) = AM(Bκ, ν̄κ, γ0) ∼= AM(Bκ, νκ,
1
2 )

by 528Da.

(h) All this has been done on the assumption that A is atomless, as required in (e). For the general case,
consider the localizable measure algebra free product (C, λ̄) of (A, µ̄) and (Bω, ν̄ω) (325E). By 521Qa, we
have

max(ω, c(C), τ(C)) ≤ max(ω, c(A), c(Bω), τ(A), τ(Bω)) ≤ κ.
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Also C is atomless because Bω is isomorphic to a closed subalgebra of C (325Dd) and is atomless (316R13).
By (a)-(g), AM∗(C, λ̄) can be regularly embedded in AM(Bω, ν̄ω,

1
2 ). Now consider the canonical embedding

ε1 : A → C. This is order-continuous and measure-preserving (325Da), so identifies the Dedekind σ-complete
Boolean algebra A with a σ-subalgebra of C; also Af has supremum 1 both in A and C. By 528G, AM∗(A, µ̄)
can be regularly embedded in AM∗(C, λ̄) and therefore in AM(Bω, ν̄ω,

1
2 ).

528I Definition For any set I, the (I,∞)-localization poset is the set

S∞
I = {p : p ⊆ N× I, #(p[{n}]) ≤ 2n for every n, supn∈N #(p[{n}]) is finite},

ordered by ⊆. For p ∈ S∞
I set ‖p‖ = maxn∈N #(p[{n}]). I will write S∞ for S∞

N
, already introduced in the

proof of 522T.

528J Proposition Let κ be an infinite cardinal, S∞
κ the (κ,∞)-localization poset, and (A, µ̄) a semi-

finite measure algebra, not {0}, with κ ≥ max(ω, c(A), τ(A)). Then the variable-measure amoeba algebra
AM∗(A, µ̄) can be regularly embedded in RO↑(S∞

κ ).

proof (a) To begin with (down to the end of (d) below), suppose that A is atomless. Let P be the partially
ordered set {(a, α) : a ∈ A, α ∈ ]µ̄a, µ1]}, so that AM∗(A, µ̄) = RO↑(P ). Give Af its measure metric, so
that its topological density is at most κ (521Eb). Set γ0 = 1

2 µ̄1 and for n ≥ 1 set γn = 2−2n−1µ̄1 if µ̄1 <∞,

4−n otherwise. For each n, let Dn be a dense subset of {a : a ∈ Af , µ̄a ≤ γn}, containing 0, with cardinal
at most κ, and let 〈dnξ〉ξ<κ be a family running over Dn with cofinal repetitions.

(b) If p ∈ S∞
κ set

ap = sup(n,ξ)∈p dnξ, αp = µ̄ap +
∑∞

n=0(2n − #(p[{n}]))γn.

Then

µ̄ap < αp ≤ ∑∞
n=0 2nγn = µ̄1,

so we can define f : S∞
κ → P by setting f(p) = (ap, αp). f is order-preserving, because if p ⊆ p′ in S∞

κ then

αp′ = µ̄ap′ +

∞∑

n=0

(2n − #(p′[{n}]))γn

≤ µ̄ap +
∑

(n,ξ)∈p′\p

µ̄dnξ +

∞∑

n=0

(2n − #(p′[{n}]))γn

≤ µ̄ap +

∞∑

n=0

#(p′[{n}] \ p[{n}])γn +

∞∑

n=0

(2n − #(p′[{n}]))γn = αp.

(c) Suppose that p ∈ S∞
κ and f(p) ≤ (a, α) ∈ P . Take α′ ∈ ]µ̄a, α[. For n ∈ N, set kn = 2n − #(p[{n}]).

Then ap ⊆ a and

µ̄a < α ≤ αp = µ̄ap +
∑∞

n=0 knγn.

So there is an r ∈ N such that

µ̄a < µ̄ap +
∑∞

n=0 γn min(r, kn);

take r so large that, in addition,
∑∞

n=r+1 2nγn ≤ α− α′.

For each n, set k′n = min(r, kn) and Cn = {supD : D ∈ [Dn]≤k′
n}. Then (because A is atomless) Cn is

dense in {c : c ∈ Af , µ̄c ≤ k′nγn}. We can therefore choose 〈cn〉n∈N inductively in such a way that

cn ∈ Cn, µ̄(a ∪ supm<n cm) < α′,

µ̄(a \ (ap ∪ supm<n cm)) <
∑∞

m=n k
′
mγm
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for every n ∈ N. PPP For the inductive step to n ≥ 0, set b = a \ (ap ∪ supm<n cm). Take b′ ⊆ b such that
µ̄b′ = min(k′nγn, µ̄b), so that

µ̄(a ∪ supm<n cm ∪ b′) = µ̄(a ∪ supm<n cm) < α′,

µ̄(b \ b′) <∑∞
m=n+1 k

′
mγm.

Let cn ∈ Cn be such that

α′ > µ̄(a ∪ supm<n cm ∪ b′) + µ̄(cn \ b′) ≥ µ̄(a ∪ supm≤n cm),

∑∞
m=n+1 k

′
mγm > µ̄(b \ b′) + µ̄(b′ \ cn) = µ̄(a \ (ap ∪ supm≤n cm))

and the induction proceeds. QQQ
For each n, we can find a set D′

n ⊆ Dn, with cardinal k′n, such that cn = supD′
n. Because 〈dnξ〉ξ<κ runs

over Dn with cofinal repetitions, we can find a set In ⊆ κ\p[{n}] such that #(In) = k′n and cn = supξ∈In dnξ.
Set q = p ∪ {(n, ξ) : n ∈ N, ξ ∈ In}. Then

#(q[{n}]) ≤ #(p[{n}]) + k′n ≤ min(2n, ‖p‖ + r)

for every n, so q ∈ S∞
κ and p ⊆ q. Now

aq = ap ∪ supn∈N,ξ∈In dnξ = ap ∪ supn∈N cn ⊇ a

because

µ̄(a \ aq) ≤ infn∈N µ̄(a \ (ap ∪ supm<n cm)) ≤ infn∈N

∑∞
m=n 2mγm = 0.

Also

µ̄aq = supn∈N µ̄(ap ∪ supm<n cm) ≤ α′ < α,

while #(q[{n}]) = #(p[{n}]) + kn = 2n whenever n ≤ r, so

αq = µ̄aq +
∑∞

n=r+1(2n − #(q[{n}]))γn ≤ α′ +
∑∞

n=r+1 2nγn ≤ α.

(d) What (c) shows is that if p ∈ S∞
κ and f(p) ≤ (a, α) in P , then there is a q ⊇ p in S∞

κ such that
(a, α) ≤ f(q). Next, S∞

κ has a least element ∅, and f(∅) = (0, µ̄1) is the least element of P . So 514P tells
us that RO↑(P ) = AM∗(A, µ̄) can be regularly embedded in RO↑(S∞

κ ).

(e) As for the general case, we can use the same trick as in part (h) of the proof of 528H. Let (C, λ̄) be the
localizable measure algebra free product of (A, µ̄) and (Bω, ν̄ω); as before, C is atomless, max(ω, c(C), τ(C)) ≤
κ and (A, µ̄) is embedded in (C, λ̄) as a σ-subalgebra with sufficient elements of finite measure. So AM∗(A, µ̄)
is regularly embedded in AM∗(C, λ̄) and in RO↑(S∞

κ ).

528K Theorem (Truss 88) Let (A, µ̄) be an atomless σ-finite measure algebra in which every non-zero
principal ideal has Maharam type κ, and 0 < γ < µ̄1. Then each of the algebras

AM(A, µ̄, γ), AM∗(A, µ̄), AM(Bκ, ν̄κ,
1
2 )

can be regularly embedded in the other two, and all three can be regularly embedded in RO↑(S∞
κ ).

proof By 528H, AM∗(A, µ̄) can be regularly embedded in AM(Bκ, ν̄κ,
1
2 ). Take any e ∈ A such that

γ < µ̄e < ∞. Then the principal ideal (Ae, µ̄↾Ae) is isomorphic, up to a scalar multiple of the measure, to
(Bκ, ν̄κ), so

AM(Bκ, ν̄κ,
1
2 ) ∼= AM(Bκ, ν̄κ,

γ

µ̄e
)

(528Da)
∼= AM(Ae, µ̄↾Ae, γ)

can be regularly embedded in AM(A, µ̄, γ) (528Fa). By 528Fc, AM(A, µ̄, γ) can be regularly embedded
in AM∗(A, µ̄). Finally, by 528J, AM∗(A, µ̄) can be regularly embedded in RO↑(S∞

κ ). Because regular
embeddability is transitive (313N), these facts are enough to prove the theorem.
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528L It is possible without great effort to calculate many of the cardinal functions of these algebras.

Lemma m(AM(Bω, ν̄ω,
1
2 )) ≤ addN , where N is the null ideal of Lebesgue measure on R.

proof Set P = {a : a ∈ Bω, ν̄ωa <
1
2}. Then wdistr(Bω) ≥ m↑(P ). PPP Take a family 〈Bξ〉ξ<κ of maximal

antichains in Bω, where κ < m↑(P ). Let C ⊆ Bω be a maximal disjoint set such that {b : b ∈ Bξ, b ∩ c 6= 0}
is finite for every ξ < κ and c ∈ C. ??? Suppose, if possible, that c0 = 1 \ supC is not 0. Take a0 ∈ P such
that ν̄ω(a0 ∪ c0) > 1

2 . (If ν̄ωc0 >
1
2 , take a0 = 0; otherwise, take a0 ⊆ 1 \ c0 such that 1

2 − ν̄ωc0 < ν̄ωa0 <
1
2 .)

For each ξ < κ, set

Qξ = {a : a ∈ P , {b : b ∈ Bξ, b 6⊆ a} is finite};

then Qξ is cofinal with P . There is therefore an upwards-directed R ⊆ P such that a0 ∈ R and R meets
every Qξ. Set e = supR; then ν̄ωe ≤ 1

2 so c1 = c0 \ e = (a0 ∪ c0) \ e is non-zero.
If ξ < κ, there is an a ∈ R ∩Qξ, so that

{b : b ∈ Bξ, b ∩ c1 6= 0} ⊆ {b : b ∈ Bξ, b 6⊆ a}
is finite. But this means that we ought to have added c1 to C. XXX

Thus C is a maximal antichain. As 〈Bξ〉ξ<κ is arbitrary, wdistr(A) ≥ m↑(P ). QQQ
Now 524Mb tells us that wdistr(Bω) = addN , so m↑(P ) ≤ addN . Finally, by 517Db,

m(AM(A, µ̄, γ)) = m↑(P ) ≤ addN ,

as claimed.

528M Lemma m↑(S∞) ≥ addN .

proof (a) Recall the definition of the supported relations (NN,⊆∗,S(α)) from 522L, where S(α) = {S : S ⊆
N × N, #(S[{n}]) ≤ α(n) for every n ∈ N} for α ∈ NN. Putting 522L, 522M and 512Db together, we have
add(NN,⊆∗,S(α)) = addN whenever limn→∞ α(n) = ∞.

(b) The core of the argument is the following fact. Suppose that Q ⊆ S∞ is cofinal and up-open, n ∈ N

and σ ∈ [N × N]<ω. Let G ⊆ N × N be a set with finite vertical sections. Then there is a k ∈ N such that
whenever σ ⊆ p ∈ S∞, p ⊆ σ ∪G and ‖p‖ ≤ n, there is a q ∈ Q such that p ⊆ q and ‖q‖ ≤ k.

PPP??? Suppose, if possible, otherwise. Then for each j ∈ N we can find pj ∈ S∞ such that σ ⊆ pj ⊆ σ ∪G,
‖pj‖ ≤ n and ‖q‖ > j whenever p ⊆ q ∈ Q. Let p be a cluster point of 〈pj〉j∈N in P(σ ∪ G). Then
#(p[{i}]) ≤ supj∈N #(pj [{i}]) ≤ min(2i, n) for every i, so p ∈ S∞. Because Q is cofinal with S∞, there is a
q ∈ Q such that p ⊆ q. Set k = n + ‖q‖. Then (σ ∪ G) ∩ (k × N) is finite, so there is an i ≥ k such that
pi ∩ (k × N) = p ∩ (k × N) ⊆ q. Set q′ = pi ∪ q. Then

#(q′[{j}]) = #(q[{j}]) ≤ min(‖q‖, 2j) if j < k,

≤ ‖pi‖ + ‖q‖ ≤ k ≤ 2j otherwise.

So q′ ∈ S∞ and ‖q′‖ ≤ k ≤ i; because Q is up-open in S∞, q′ ∈ Q, while pi ⊆ q′. But we chose pi so that
this could not happen. XXXQQQ

(c) We need to know that S∞ is upwards-ccc. PPP For any n ∈ N, finite σ ⊆ N × N the set {p : p ∈ S∞,
‖p‖ ≤ 2n−1, p ∩ (n× N) = σ} is upwards-linked. QQQ

(d) Now let 〈Qξ〉ξ<κ be any family of cofinal subsets of S∞, where κ < addN , and p0 ∈ S∞. For each
ξ < κ let Aξ ⊆ Qξ be a maximal up-antichain; by (c), Aξ is countable. Set Q′

ξ =
⋃{[q,∞[ : q ∈ Aξ}, so

that Q′
ξ is an up-open cofinal subset of S∞. Set A = {p0} ∪

⋃
ξ<κAξ. For q ∈ A, let Fq ⊆ NN be a finite set

such that (identifying each member of Fq with its graph) q ⊆ ⋃
Fq; set F =

⋃
q∈A Fq, so that

#(F ) ≤ max(ω, κ) < addN ≤ b

(522B). Let g0 ∈ NN be a strictly increasing function such that {i : f(i) > g0(i)} is finite for every f ∈ F ,
and also p0[{i}] ⊆ g0(i) for every i. Set G = {(i, j) : i ∈ N, j < g0(i)}, so that G ⊆ N×N has finite vertical
sections. Observe that if q ∈ A then q \G is finite.

For each ξ < κ, n ∈ N and finite σ ⊆ N × N, let k(ξ, σ, n) ∈ N be such that whenever p ∈ S∞ and
σ ⊆ p ⊆ σ ∪ G then there is a q ∈ Q′

ξ such that p ⊆ q and ‖q‖ ≤ k(ξ, σ, n); such a k exists by (b)
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above. Set kξ(n) = sup{k(ξ, σ, n) : σ ⊆ n × g0(n)}. Again because κ < b, there is a g1 ∈ NN such
that {n : kξ(n) > g1(n)} is finite for every ξ < κ. Let α ∈ NN be a non-decreasing function such that
limn→∞ α(n) = ∞ and

α(2g1(n)) ≤ n, α(n) + #(p0[{n}]) ≤ 2n, 2α(n) ≤ n

for every n.
Because add(NN,⊆∗,S(α)) = addN , there is an S0 ∈ S(α) such that f ⊆∗ S0 for every f ∈ F , so that

q \ S0 is finite for every q ∈ A. Replacing S0 by S0 ∩G if necessary, we may suppose that S0 ⊆ G.

(e) Let S be the family of subsets S of N × N such that #(S[{n}]) ≤ 2n for every n, as in 522K. Note
that p0∪S0 ∈ S, because α(n) + #(p0(n)) ≤ 2n for every n. Let C be the family of finite subsets σ of N×N

such that σ ∪ S0 ∈ S. For each ξ < κ, set

Dξ = {σ : σ ∈ C, ∃ q ∈ Aξ, q ⊆ σ ∪ S0}.

Then Dξ is cofinal with C. PPP Let σ ∈ C. Let n0 be so large that g1(2n0) ≥ kξ(2n0) and σ ⊆ n0 × g0(n0).
Set m = 2g1(2n0), p = σ ∪ (S0 ∩ (m× N)) ∈ S∞. Then σ ⊆ p ⊆ σ ∪G and ‖p‖ ≤ max(2n0 , α(m)) = 2n0 , so
there is a q ∈ Q′

ξ such that p ⊆ q and

‖q‖ ≤ k(ξ, σ, 2n0) ≤ kξ(2n0) ≤ g1(2n0) =
m

2
.

Let q′ ∈ Aξ be such that q′ ⊆ q. Let m′ ≥ max(m,n0) be such that q′ ⊆ (m′×N)∪S0, and set τ = q∩(m′×N),
so that σ ⊆ τ .

For n < m, we have

S0[{n}] ⊆ p[{n}] ⊆ q[{n}] = τ [{n}],

so (τ ∪ S0)[{n}] = q[{n}] has at most 2n members. For m ≤ n < m′, we have

#((τ ∪ S0)[{n}]) ≤ #(q[{n}]) + #(S0[{n}]) ≤ ‖q‖ + α(n) ≤ m

2
+

n

2
≤ 2n,

while for n ≥ m′ we have

#((τ ∪ S0)[{n}]) = #(S0[{n}]) ≤ α(n) ≤ 2n.

So τ ∪ S0 ∈ S and τ ∈ C. Since

q′ ⊆ (q′ ∩ (m′ × N)) ∪ S0 ⊆ (q ∩ (m′ × N)) ∪ S0 = τ ∪ S0,

τ ∈ Dξ. As σ is arbitrary, Dξ is cofinal with C. QQQ

(f) Because p0 ∪ S0 ∈ S, σ0 = p0 \ S0 belongs to C. Because κ < addN ≤ mcountable ≤ m↑(C), there is
an upwards-directed set E ⊆ C meeting every Dξ and containing σ0. Set S1 = S0 ∪

⋃
E. Then, because E

is upwards-directed,

#(S1[{n}]) = supσ∈E #((σ ∪ S0)[{n}]) ≤ 2n

for every n, and S1 ∈ S. Set R = {p : p ∈ S∞, p ⊆ S1}; then R ⊆ S∞ is upwards-directed (in fact, closed
under ∪), and p0 ∈ R because σ0 ∈ E. Now R meets Qξ for every ξ < κ. PPP There is a σ ∈ Dξ ∩ E. But
this means that there is a q ∈ Aξ such that q ⊆ σ ∪ S0 ⊆ S1 and q ∈ R ∩Qξ. QQQ

As p0 and 〈Qξ〉ξ<κ are arbitrary, m↑(S∞) ≥ addN .

528N Theorem (Brendle 00, 2.3.10; Judah & Repický 95) Let (A, µ̄) be an atomless σ-finite measure
algebra with countable Maharam type, and 0 < γ < µ̄1. Then the algebras AM(A, µ̄, γ) and AM∗(A, µ̄) and
the (N,∞)-localization poset S∞ (active upwards) all have Martin numbers equal to addN .

proof By 517Ia and 528K, with 517Db again,

m(AM(A, µ̄, γ)) = m(AM∗(A, µ̄)) = m(AM(Bω, ν̄ω,
1
2 ))

≥ m(RO↑(S∞)) = m↑(S∞).

As
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m(AM(Bω, ν̄ω,
1
2 )) ≤ addN ≤ m↑(S∞)

(528L, 528M), all these are equal to addN .

528O Corollary Let γ > 0. Let G be the partially ordered set

{G : G ⊆ R is open, µLG < γ},

where µL is Lebesgue measure. Then m↑(G) = addN .

proof Put 528C and 528N together.

528P Proposition Let (A, µ̄) be an atomless semi-finite measure algebra, and 0 < γ < µ̄1.
(a) For any integer m ≥ 2,

c(AM(A, µ̄, γ)) = linkm(AM(A, µ̄, γ)) = max(c(A), τ(A)).

(b) d(AM(A, µ̄, γ)) = π(AM(A, µ̄, γ)) = max(cf[c(A)]≤ω, π(A)).

proof Set P = {a : a ∈ A, µ̄a < γ}, so that AM(A, µ̄, γ) = RO↑(P ).

(a) Set κ0 = max(c(A), τ(A)), κ1 = linkm(RO↑(P )) = link↑
m(P ) and κ2 = c(RO↑(P )) = c↑(P ) (514N).

(i) The topological density of Af for its measure metric is κ0 (521Eb), so P has a metrically dense
subset D with cardinal at most κ0. For d ∈ D, set

Ud = {a : a ∈ P , µ̄(a \ d) <
1

m
(γ − µ̄d)}.

Then Ud is upwards-m-linked in P . Also, if a ∈ P , there is a d ∈ D such that µ̄(a△ d) < 1
m+1 (γ − µ̄a), and

now a ∈ Ud. So P is κ0-m-linked upwards and κ1 ≤ κ0.

(ii) By 511Hb or 511Ia, κ2 ≤ κ1.

(iii) We need to check that κ2 is infinite. PPP Take a ∈ A such that µ̄a = γ. For any n ≥ 1, we can find
disjoint a0, . . . , an ⊆ a all of measure 1

n+1γ; now 〈a \ ai〉i≤n is an up-antichain in P . So κ2 = c↑(P ) ≥ n+ 1;
and this is true for every n. QQQ

Now if (A, µ̄) is totally finite, then c(A) = ω ≤ κ2. Otherwise, there is a partition D of unity in A such
that µ̄d = 1

2γ for every d ∈ D; now D is an up-antichain in P and κ2 ≥ #(D) = c(A). So we see that in all
cases κ2 ≥ c(A).

(iv) If e ∈ Af and the principal ideal Ae is homogeneous, then τ(Ae) ≤ κ2. PPP??? Otherwise, set α = µ̄e,
κ = τ(Ae). Because µ̄1 > γ, there is a d ⊆ 1 \ e such that γ < µ̄(e ∪ d) < γ+ µ̄e, that is, 0 < γ− µ̄d < α. Set

β =

√
1 − γ−µ̄d

α
. Because Ae is isomorphic, up to a scalar multiple of the measure, to the measure algebra

of the usual measure on [0, 1]κ, there is a family 〈cξ〉ξ<κ in Ae such that

µ̄cξ = βα, µ̄(cξ ∩ cη) = β2α

whenever ξ, η < κ are distinct. Set bξ = d ∪ (e \ cξ) for ξ < κ. Then

µ̄(bξ ∪ bη) = µ̄d+ α− β2α = γ,

µ̄bξ = µ̄d+ α− βα < γ

for all distinct ξ, η < κ. So 〈bξ〉ξ<κ is an up-antichain in P and witnesses that κ2 ≥ κ. XXXQQQ

(v) Let E be a partition of unity in A such that 0 < µ̄e <∞ and Ae is homogeneous for every e ∈ E. For
e ∈ E, let Ae ⊆ Ae be a set with cardinal at most κ2 which τ -generates Ae. Then A =

⋃
e∈E Ae τ -generates

A, so that

κ0 = max(c(A), τ(A)) ≤ max(c(A),#(A)) ≤ max(c(A), κ2) = κ2,

and the three cardinals must be equal.

(b) Set κ3 = max(π(A), cf[c(A)]≤ω), κ4 = π(AM(A, µ̄, γ)) and κ5 = d(AM(A, µ̄, γ)).
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(i) By 323Mc, Af is complete in its measure metric. By 323Ma, ∪ : Af × Af → Af is uniformly
continuous for the measure metric, and P is an open subset of Af , while the topological density of Af is κ0.
By 524C, (P,⊆′′′, [P ]<ω) 4GT (ℓ1(κ0),≤, ℓ1(κ0)), where ⊆′′′ is defined as in 512F. It follows that

κ4 = π(RO↑(P )) = cfP

(514Nb)

= cov(P, ⊆, P ) ≤ max(ω, cov(P, ⊆′′′, [P ]≤ω))

(512Gf)

≤ max(ω, cov(P, ⊆′′′, [P ]<ω))

(512Gb)

≤ max(ω, cf ℓ1(κ0))

(512Da)

= cf ℓ1(κ0) = cfNκ0

(where Nκ0
is the null ideal of the usual measure on {0, 1}κ0 , as in 524I)

= max(cfN , cf[κ0]≤ω)

(523N)

= max(cfN , cf[τ(A)]≤ω, cf[c(A)]≤ω)

= max(cfN , cf[τ(A)]≤ω, c(A), cf[c(A)]≤ω) = max(π(A), cf[c(A)]≤ω)

(524Mc)

= κ3.

(ii) By 514Nd, d↑(P ) = κ5. Let 〈Bξ〉ξ<κ5
be a family of upwards-centered sets covering P . For each ξ,

bξ = supBξ is defined in A (counting sup ∅ as 0 if necessary), and

µ̄bξ = supI∈[Bξ]<ω µ̄(sup I) ≤ γ.

Set D = {bξ \ bη : ξ, η < κ5}. Then D is order-dense in A. PPP If a ∈ A \ {0}, take a′ ⊆ a such that
0 < µ̄a′ < γ. Then a′ ∈ P , so there is some ξ < κ5 such that a′ ∈ Bξ and a′ ⊆ bξ. Next, let c ⊆ 1 \ bξ be
such that

γ − µ̄bξ < µ̄c < γ − µ̄bξ + µ̄a′.

Then c ∪ (bξ \ a′) ∈ P , so there is an η < κ5 such that c ∪ (bξ \ a′) ⊆ bη. Now d = bξ \ bη ⊆ a′; as µ̄(bξ ∪ c) >
γ ≥ µ̄bη, bξ 6⊆ bη and d 6= 0. Of course d ∈ D and d ⊆ a; as a is arbitrary, D is order-dense. QQQ

Accordingly π(A) ≤ #(D) ≤ κ5. At the same time, cf[c(A)]≤ω ≤ κ5. PPP There is a disjoint set E ⊆ A\{0}
with cardinal c(A) (332F). For each ξ < κ5, let Iξ be the countable set {e : e ∈ E, e ∩ bξ 6= 0}. If J ⊆ E is
countable, let 〈ǫe〉e∈J be a strictly positive family of real numbers with sum less than γ. For each e ∈ J let
ae ⊆ e be such that 0 < µ̄ae ≤ ǫe, and set a = supe∈J ae. Then a ∈ P so there is a ξ < κ5 such that a ⊆ bξ
and J ⊆ Iξ. As J is arbitrary, {Iξ : ξ < κ5} is cofinal with [E]≤ω, and

cf[c(A)]≤ω = cf[E]≤ω ≤ κ5. QQQ

Putting these together, we see that κ3 ≤ κ5.

(iii) By 514Da, κ5 ≤ κ4, so the three cardinals are equal.

528Q Proposition Let S∞ be the (N,∞)-localization poset.
(a) π(RO↑(S∞)) = cfS∞ = c.
(b) For every m ≥ 2,

c(RO↑(S∞)) = c↑(S∞) = linkm(RO↑(S∞)) = link↑
m(S∞) = ω.

(c) d(RO↑(S∞)) = d↑(S∞) = cfN .

Measure Theory



528R Amoeba algebras 113

proof (a) If p, q ∈ S∞ and p 6⊆ q, take (n, i) ∈ p\q; then there is a q′ ∈ S∞ such that q′ ⊇ q, #(q′[{n}]) = 2n

and (n, i) /∈ q′, in which case p and q′ are incompatible upwards in S∞. So S∞ is separative upwards and
514Nb tells us that π(RO↑(S∞)) = cfS∞.

Next, there is an almost-disjoint family 〈hξ〉ξ<c in NN (5A1Nc). Identifying each hξ with its graph,
we can regard them as members of S∞; and any member of S∞ includes only finitely many of them. So
cfS∞ ≥ c. On the other hand, of course, cfS∞ ≤ #(S∞) = c. So π(RO↑(S∞)) = cfS∞ = c.

(b) If m ≥ 2, let Q be the countable set of pairs (I, r) where r ∈ N and I ∈ [N×N]<ω, and for (I, r) ∈ Q
set

AIr = {p : p ∈ S∞, p ∩ (r × N) = I, ‖p‖ ≤ 2r

m
}.

Then
⋃

i<m pi ∈ S∞ for any family 〈pi〉i<m in AIr, that is, AIr is upwards-m-linked in S∞. Also⋃
(I,r)∈QAIr = S∞, so link↑

m(S∞) ≤ ω. Of course c↑(S∞) is infinite, and since c↑(S∞) ≤ link↑
m(S∞)

(511Hb again), both must be ω. Now 514N tells us that

c(RO↑(S∞)) = linkm(RO↑(S∞)) = ω.

(c) Consider the N-localization relation (NN,⊆∗,S) of 522K. We know from 522M and 512Da that

cov(NN,⊆∗,S) = cov(N ,⊆,N ) = cfN .

(i) Let A ⊆ S be a set with cardinal cfN such that for every f ∈ NN there is an S ∈ A such that
f ⊆∗ S. Let A∗ be

{S : S ∈ S, S \⋃A′ is finite for some finite A′ ⊆ A};

then every member of S∞ is included in some member of A∗. But if S ∈ A∗ then {p : p ∈ S∞, p ⊆ S} is
upwards-directed. So

d↑(S∞) ≤ #(A∗) ≤ cfN .

(ii) Now let Q be a family of upwards-centered subsets of S∞ covering S∞. For each Q ∈ Q, SQ =
⋃
Q

belongs to S. Also every f ∈ NN belongs to S∞ so is covered by some SQ. So SQ witnesses that cfN =
cov(NN,⊆∗,S) ≤ #(Q); as Q is arbitrary, cfN ≤ d↑(S∞).

(iii) 514Nd tells us that

d(RO↑(S∞)) = d↑(S∞),

so we have equality throughout.

528R Theorem Let κ be any cardinal, and S∞
κ the (κ,∞)-localization poset. Then RO↑(S∞

κ ) has
countable Maharam type.

proof (a) If κ is finite then cfS∞
κ is finite and the result is trivial. So let us suppose from now on that κ is

infinite.

(b) S∞
κ is separative upwards. PPP If p, q ∈ S∞

κ and p 6⊆ q, take (n, ξ) ∈ p \ q. Let J ⊆ κ \ p[{n}] be a set
of size 2n − #(q[{n}], and set q′ = q ∪ ({n} × J); then q ⊆ q′ ∈ S∞ and p, q′ are incompatible upwards in
S∞
κ . QQQ

Accordingly [p,∞[ ∈ RO↑(S∞
κ ) for every p ∈ S∞

κ (514Me).

(c) For n ∈ N, m < 2n and ξ < κ, set

Gmnξ = sup{[p,∞[ : p ∈ S∞
κ , #(p[{n}]) = 2n, (n, ξ) ∈ p and #(p[{n}] ∩ ξ) = m},

the supremum being taken in RO↑(S∞
κ ).

(d) If n ∈ N, m < 2n and ξ < η < κ then Gmnξ∩Gmnη = ∅. PPP If p, q ∈ S∞
κ , #(p[{n}]) = #(q[{n}]) = 2n,

(n, ξ) ∈ p, (n, η) ∈ q and #(p[{n}] ∩ ξ) = #(q[{n}]) ∩ η) = m then p[{n}] 6= q[{n}], #(p[{n}] ∪ q[{n}]) > 2n

and [p,∞[ ∩ [q,∞[ is empty. QQQ
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(e) If ξ < κ then
⋃{Gmnξ : n ∈ N, m < 2n} is dense in S∞

κ . PPP If p ∈ S∞
κ , take n ∈ N such

that #(p[{n}]) < 2n; then there is a q ∈ S∞
κ such that p ⊆ q, ξ ∈ q[{n}] and #(q[{n}]) = 2n. Set

m = #(q[{n}] ∩ ξ); then [q,∞[ ⊆ [p,∞[ ∩Gmnξ. QQQ
Thus sup{Gmnξ : n ∈ N, m < 2n} = 1 in RO↑(S∞) whenever ξ < κ.

(f) Let G be the order-closed subalgebra of RO↑(S∞
κ ) generated by {Gmnξ : n ∈ N, m < 2n, ξ < κ}. For

n ∈ N and ξ < κ set Hnξ = [{(n, ξ)},∞[; then Hnξ = supm<2n Gmnξ. PPP Certainly Gmnξ ⊆ Hnξ whenever
m < 2n. If {(n, ξ)} ⊆ p ∈ S∞

κ , let q ∈ S∞
κ be such that p ⊆ q and #(q[{n}]) = 2n; set m = #(q[{n}]∩ξ); then

[q,∞[ ⊆ Hnξ ∩Gmnξ. Thus
⋃

m<2n Gmnξ is dense in Hnξ and Hnξ = supm<2n Gmnξ ∈ G. QQQ Consequently
Hnξ ∈ G.

(g) If p ∈ S∞
κ then [p,∞[ = inf(n,ξ)∈pHnξ belongs to G, by 514Me. So G includes an order-dense subset

of RO↑(S∞
κ ) and must be the whole of RO↑(S∞

κ ); that is, RO↑(S∞
κ ) is τ -generated by {Gmnξ : n ∈ N,

m < 2n, ξ < κ}. With (iv) and (v), we see that the conditions of 514F are satisified with J = κ and
I = {(m,n) : n ∈ N, m < 2n}, so that

τ(RO↑(S∞
κ )) ≤ max(ω,#(I)) = ω.

528S The calculation of Maharam types of amoeba algebras seems to be a good deal harder. However
it leads through an investigation of the structure of measure algebras, which is one of the things this book
is about, so I take the space to give one of the main theorems. It depends on a special property of the
standard generating families in algebras Bκ.

Definition Let (A, µ̄) be a measure algebra. I will say that a well-spread basis for A is a non-decreasing
sequence 〈Dn〉n∈N of subsets of A such that

(i) setting D =
⋃

n∈N
Dn, #(D) ≤ max(ω, c(A), τ(A));

(ii) if a ∈ A, γ ∈ R and µ̄a < γ, there is a set D ⊆ ⋃
n∈N

Dn such that a ⊆ supD and
µ̄(supD) < γ;

(iii) if n ∈ N and 〈di〉i∈N is a sequence in Dn such that µ̄(supi∈N di) < ∞, there is an infinite
set J ⊆ N such that d = supi∈J di belongs to Dn;

(iv) whenever n ∈ N, a ∈ A and µ̄a ≤ γ′ < γ < µ̄1, there is a b ∈ A such that a ⊆ b and
γ′ ≤ µ̄b < γ and µ̄(b ∪ d) ≥ γ whenever d ∈ Dn and d 6⊆ a.

528T Lemma (a) Let κ be an infinite cardinal, and 〈eξ〉ξ<κ the standard generating family in Bκ. For
n ∈ N let Cn be the set of elements of Bκ expressible as infξ∈I eξ ∩ infξ∈J(1 \ eξ) where I, J ⊆ κ are disjoint
and #(I ∪ J) ≤ n. Then 〈Cn〉n∈N is a well-spread basis for (Bκ, ν̄κ). Moreover,

(*) for each n ≥ 1, there is a set C ′
n ⊆ Cn, with cardinal κ, such that ν̄κc = 2−n for every

c ∈ C ′
n, and whenever a ∈ Bκ \ {1} and I ⊆ C ′

n is infinite, there is a c ∈ I such that
c′ 6⊆ a ∪ c whenever c ⊂ c′ ∈ Cn.

(b) Let (A, µ̄) be a measure algebra and e ∈ A. If 〈Cn〉n∈N is a well-spread basis for (Ae, µ̄↾Ae) and
〈Dn〉n∈N is a well-spread basis for (A1\e, µ̄↾A1\e), then 〈Cn ∪Dn〉n∈N is a well-spread basis for (A, µ̄).

proof (a)(i) 〈Cn〉n∈N satisfies (i) of Definition 528S just because τ(Bκ) = #(Cn) = κ for n ≥ 1, while
C0 = {1}.

(ii) For J ⊆ κ, let CJ be the order-closed subalgebra of Bκ generated by {eξ : ξ ∈ J}; recall that for
every a ∈ Bκ there is a countable set supp a ⊆ κ such that a ∈ CJ iff J ⊇ supp a (254Rd/325Mb). Of course
#(supp c) ≤ n whenever n ∈ N and c ∈ Cn.

Suppose that a ∈ Bκ and γ > ν̄κa. Then for each k ∈ N we can find an ak ∈ Bκ, with finite support,
such that ν̄κ(a△ ak) ≤ 2−k−2(γ − ν̄κa) (254Fe/325Jc). Set b = supk∈N ak; then

ν̄κb ≤ ν̄κa+
∑∞

k=0 ν̄κ(ak \ a) < γ,

ν̄κ(a \ b) ≤ infk∈N ν̄κ(a \ ak) = 0,

so a ⊆ b. If k ∈ N and #(supp ak) = nk, then ak = sup{c : c ∈ Cnk
, c ⊆ ak}, so b = sup{c : c ∈ ⋃

n∈N
Cn,

c ⊆ b}. Thus 528S(ii) is satisfied.
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(iii) If n ∈ N and 〈ci〉i∈N is a sequence in Cn, there is an infinite I ⊆ N such that 〈supp ci〉i∈I is a
∆-system with root K say (5A1Jc). For i ∈ I, express ci as c′i ∩ c

′′
i where c′i ∈ CK and c′′i ∈ C(supp ci)\K ; as

CK is finite, there is a c such that J = {i : c′i = c} is infinite. Now c ∈ Cn, and if m ∈ N then

supi∈J\m ci = c ∩ supi∈J\m c′′i = c

because 〈c′′i 〉i∈J\m is a stochastically independent family of elements of Bκ all of measure at least 2−n, so
has supremum 1. In particular, 528S(iii) is satisfied.

(iv) Suppose that n ∈ N and a ∈ Bκ. Then there is a δ > 0 such that ν̄κ(c \ a) ≥ δ whenever c ∈ Cn

and c 6⊆ a. PPP??? Otherwise, there is a sequence 〈ci〉i∈N in Cn such that 0 < ν̄κ(ci \ a) ≤ 2−i for every i ∈ N.
By (iii) just above, there is an infinite set J ⊆ N such that cj ⊆ supi∈J\m ci for every j ∈ J . Set j0 = min J ,

and let m be such that 2−m+1 < ν̄κ(cj0 \ a); then

2−m+1 < ν̄κ(supj∈J\m cj \ a) ≤ ∑∞
j=m ν̄κ(cj \ a) ≤ 2−m+1,

which is absurd. XXXQQQ

(v) Suppose that n ∈ N, a ∈ Bκ and ν̄κa ≤ γ′ < γ < 1. Pick δ > 0, r > n, k∗ ∈ N, ǫ > 0 and a′ ∈ Bκ

such that

ν̄κ(c \ a) ≥ δ whenever c ∈ Cn and c 6⊆ a,

2−r ≤ γ − γ′, (2−n − 2−r)nδ ≥ 2−r+2,

(1 − 2−r)k
∗ ≤ 1 − γ,

ǫ ≤ 1

2
δ, ǫ ≤ 2−r(1 − 2−r)k

∗

,

supp a′ is finite, ν̄κ(a△ a′) ≤ ǫ.

Let 〈Ki〉i∈N be a disjoint sequence in [κ \ supp a′]r, and set ci = infξ∈Ki
eξ for each i ∈ N. Then

supi∈N ci = 1, so there is a first k such that ν̄κ(a ∪ supi≤k ci) ≥ γ; set b1 = supi<k ci and b = a ∪ b1. Surely
a ⊆ b and ν̄κb < γ; also

(1 − 2−r)k
∗ ≤ 1 − γ ≤ 1 − ν̄κb1 = (1 − 2−r)k

so k ≤ k∗. Moreover,

γ − ν̄κb ≤ ν̄κ(b ∪ ck) − ν̄κb ≤ ν̄κ(ck \ b1) = 2−r(1 − 2−r)k ≤ 2−r ≤ γ − γ′,

so that, in particular, ν̄κb ≥ γ′.
If c ∈ Cn and c 6⊆ a then ν̄κ(c \ a) ≥ δ so ν̄κ(c \ a′) ≥ δ − ǫ. Express c as infi≤k c

′
i where supp c′i ⊆ Ki for

i < k and supp c′k ⊆ κ \⋃i<kKi. Set J = {i : i < k, c′i 6= 1}; then #(J) ≤ n. Now

ν̄κ(c \ (a′ ∪ b1)) = ν̄κ((c′k \ a′) ∩ inf
i∈J

(c′i \ ci) ∩ inf
i∈k\J

(1 \ ci))

= ν̄κ(c′k \ a′) ·
∏

i∈J

ν̄κ(c′i \ ci) ·
∏

i∈k\J

ν̄κ(1 \ ci)

(because supp(c′k \ a′) ⊆ supp c′k ∪ supp a′ ⊆ κ \ ⋃
i<kKi, so we are taking an infimum of stochastically

independent elements of Bκ)

≥ (δ − ǫ) ·
∏

i∈J

(2−n − 2−r) ·
∏

i∈k\J

(1 − 2−r)

(of course every c′i belongs to Cn)

≥ 1

2
(2−n − 2−r)n(1 − 2−r)kδ ≥ 2−r+1(1 − 2−r)k

≥ 2−r(1 − 2−r)k + 2−r(1 − 2−r)k
∗ ≥ γ − ν̄κb+ ǫ,

and
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ν̄κ(c \ b) ≥ γ − ν̄κb,

so ν̄κ(b ∪ c) ≥ γ.
As n, a, γ′ and γ are arbitrary, 〈Cn〉n∈N satisfies 528S(iv) and is a well-spread basis.

(vi) As for (*), given n ≥ 1, take a disjoint family 〈Kξ〉ξ<κ in [κ]n, and set cξ = infη∈Kξ
eη for ξ < κ,

C ′
n = {cξ : ξ < κ}. If I ⊆ κ is infinite and ν̄κa < 1, take δ > 0 such that δ < 2−n(1 − ν̄κa− δ), and a′ ∈ Bκ

such that supp a′ is finite and ν̄κ(a△ a′) ≤ δ. Then there is a ξ ∈ I such that Kξ ∩ supp aξ = ∅. ??? If c ∈ Cn

is such that cξ ⊂ c ⊆ a ∪ cξ, there must be a d ∈ Bκ, with support Kξ, included in c \ cξ. But now d ⊆ a and
supp d ∩ supp a′ = ∅, so

2−n(1 − ν̄κa− δ) ≤ 2−n(1 − ν̄κa
′) = ν̄κ(d \ a′) ≤ δ + ν̄κ(d \ a) = δ. XXX

(b)(i) We have

#(
⋃

n∈N

Cn ∪Dn) ≤ max(ω,#(
⋃

n∈N

Cn),#(
⋃

n∈N

Dn))

≤ max(ω, c(Ae), c(A1\e), τ(Ae), τ(A1\e)) = max(ω, c(A), τ(A))

by 514E.

(ii) Suppose that a ∈ A and µ̄a < γ. Then there are γ1, γ2 such that µ̄(a ∩ e) < γ1, µ̄(a \ e) < γ2 and
γ1 + γ2 ≤ γ. Let C ⊆ ⋃

n∈N
Cn, D ⊆ ⋃

n∈N
Dn be such that a ∩ e ⊆ supC, a \ e ⊆ supD, µ̄(supC) < γ1

and µ̄(supD) < γ2. Then C ∪D ⊆ ⋃
n∈N

Cn ∪Dn, a ⊆ sup(C ∪D) and µ̄(sup(C ∪D)) < γ.

(iii) Suppose that n ∈ N and 〈ci〉i∈N is a sequence in Cn ∪Dn such that µ̄(supi∈N ci) <∞. Then there
is an infinite J ⊆ N such that either ci ∈ Cn for every i ∈ J , or ci ∈ Dn for every i ∈ I. In either case, there
is an infinite I ⊆ J such that supi∈I ci belongs to Cn ∪Dn.

(iv) Thus 〈Cn∪Dn〉n∈N satisfies (i)-(iii) of Definition 528S. As for 528S(iv), suppose that n ∈ N, a ∈ A

and µ̄a ≤ γ′ < γ < µ̄1. We need to find a b ∈ A such that a ⊆ b and

γ′ ≤ µ̄b < γ ≤ µ̄(b ∪ c)

whenever c ∈ Cn ∪Dn and c 6⊆ a.

case 1 If e ⊆ a, then µ̄e is finite and

µ̄(a \ e) ≤ γ′ − µ̄e < γ − µ̄e < µ̄(1 \ e).

So there is a b2 ∈ A1\e such that a \ e ⊆ b2 and

γ′ − µ̄e ≤ µ̄b2 < γ − µ̄e ≤ µ̄(b2 ∪ d)

whenever d ∈ Dn and d 6⊆ a \ e; that is,

γ′ ≤ µ̄(e ∪ b2) < γ ≤ µ̄(e ∪ b2 ∪ d)

whenever d ∈ Dn and d 6⊆ a. Since c ⊆ a for every c ∈ Cn, we have µ̄(e ∪ b2 ∪ c) ≥ γ whenever c ∈ Cn ∪Dn

and c 6⊆ a, and can take b = e ∪ b2.

case 2 Similarly, if a ⊇ 1 \ e, we can take b = (1 \ e) ∪ b1 for a suitable b1 ⊆ e.

case 3 If neither e nor 1 \ e is included in a, we have

max(µ̄(a ∩ e), γ − µ̄(1 \ e)) < min(µ̄e, γ − µ̄(a \ e)),

so we can find γ′1, γ1 such that

max(µ̄(a ∩ e), γ − µ̄(1 \ e)) < γ′1 < γ1 < min(µ̄e, γ − µ̄(a \ e))

and γ1 − γ′1 < γ − γ′. Let b1 ∈ Ae be such that a ∩ e ⊆ b1 and

γ′1 ≤ µ̄b1 < γ1 ≤ µ̄(b1 ∪ c)

whenever c ∈ Cn and c 6⊆ a ∩ e. Set γ′2 = γ − γ1 and γ2 = γ − µ̄b1, so that

µ̄(a \ e) < γ′2 < γ2 ≤ γ − γ′1 < µ̄(1 \ e).
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Let b2 ∈ A1\e be such that a \ e ⊆ b2 and

γ′2 ≤ µ̄b2 < γ2 ≤ µ̄(b2 ∪ d)

whenever d ∈ Dn and d 6⊆ a \ e.
Try b = b1 ∪ b2. Then a ⊆ b and µ̄b = µ̄b1 + µ̄b2 belongs to

[µ̄b1 + γ′2, µ̄b1 + γ2[ ⊆ [γ′1 + γ − γ1, γ[ ⊆ [γ′, γ[.

If c ∈ Cn and c 6⊆ a, then c 6⊆ a ∩ e, so

µ̄(b ∪ c) = µ̄(b1 ∪ c) + µ̄b2 ≥ γ1 + γ′2 = γ;

while if d ∈ Dn and d 6⊆ a, then

µ̄(b ∪ d) = µ̄b1 + µ̄(b2 ∪ d) ≥ µb1 + γ2 = γ.

So in this case also we have found a suitable b.

528U Lemma Let (A, µ̄) be an atomless semi-finite measure algebra and 0 < γ < µ̄1. Let E, ǫ, 4 and
F be such that

E is a partition of unity in A such that Ae is homogeneous and 0 < ǫ ≤ µ̄e < ∞ for every
e ∈ E;

4 is a well-ordering of E such that τ(Ae) ≤ τ(Ae′) whenever e 4 e′ in E;
F is a partition of E such that each member of F is either a singleton or a countable set with

no 4-greatest member.

Let P0 be

{a : a ∈ A, µ̄a < γ, γ ≤ µ̄(a ∪ e) whenever {e} ∈ F},

ordered by ⊆ . Then RO↑(P0) has countable Maharam type.

proof (a)(i) For every e ∈ E, (Ae, µ̄↾Ae) is a non-zero atomless homogeneous totally finite measure algebra,
so is isomorphic, up to a scalar multiple of the measure, to (Bκ, ν̄κ) for some infinite cardinal κ (331L).
So we can copy the well-spread basis for (Bκ, ν̄κ) described in 528Ta into a well-spread basis 〈Den〉n∈N for
(Ae, µ̄↾Ae) such that

#(
⋃

n∈N
Den) = τ(Ae),

µ̄d ≥ 2−nµ̄e whenever n ∈ N and d ∈ Den,
De0 = {e},
for each n ≥ 1 there is a set D′

en ⊆ Den, with cardinal τ(Ae), such that µ̄d = 2−nµ̄e for every
d ∈ D′

en, and whenever a ∈ Ae \ {e} and I ⊆ D′
en is infinite, there is a d ∈ I such that d′ 6⊆ a ∪ d

whenever d′ ∈ Den and d′ ⊃ d,
(
⋃

n∈N
Den) \ (

⋃
n≥1D

′
en) has cardinal τ(Ae).

(The last item is not mentioned in 528T, but is clearly achievable by thinning the sets D′
en appropriately,

besides being automatic if we use the construction in (a-vi) of the proof of 528T.) Note that 〈D′
en〉n≥1 is a

disjoint sequence of subsets of Ae for each e, so 〈D′
en〉e∈E,n≥1 is disjoint.

(ii) For e ∈ F ∈ F , set

De =
⋃

n∈N
Den \⋃n≥1D

′
en, D∗

e =
⋃

e′∈F,e′4eDe.

Because F is countable and τ(Ae′) ≤ τ(Ae) whenever e′ 4 e, #(D∗
e) = τ(Ae) = #(D′

en) for every n ≥ 1. We
therefore have a partition 〈Ied〉d∈D∗

e
of

⋃
n≥1D

′
en into countably infinite sets such that Ied ∩D′

en is infinite
whenever d ∈ D∗

e and n ≥ 1.
Let θ be a limit ordinal such that the set Ω of limit ordinals less than θ has cardinal #(

⋃
e∈E De). (Of

course we can take θ to be either an uncountable cardinal or the ordinal product ω ·ω or 0.) Again because
every member of F is countable, we have an enumeration 〈dξ〉ξ<θ of

⋃
e∈E,n∈N

Den such that whenever ξ ∈ Ω
then there are F ∈ F and e ∈ F such that

dξ ∈ De, {dξ+i : i ≥ 1} =
⋃

e′∈F,e′<e Ie′dξ
.

This will mean that whenever ξ ∈ Ω and F ∈ F , e ∈ F are such that dξ ∈ Ae, then {i : dξ+i ∈ D′
e′n} is

infinite whenever e′ ∈ F , e 4 e′ and n ∈ N.
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(b)(i) Setting P = {a : a ∈ A, µ̄a < γ}, P0 ∈ RO↑(P ). PPP Evidently P0 is up-open. If a ∈ P \P0, that is,
there is some e such that {e} ∈ F and µ̄(a ∪ e) < γ, set b = a ∪ e; then a ⊆ b ∈ P , while µ̄(b′ ∪ e) = µ̄b′ < γ
whenever b′ ∈ [b,∞[, so [b,∞[ does not meet P0. Accordingly [a,∞[ 6⊆ P 0 and a /∈ intP 0. As a is arbitrary,
P0 = intP 0 ∈ RO↑(P ). QQQ

It follows that RO↑(P0) is the principal ideal of RO↑(P ) generated by P0 (314R(b-ii)). Moreover, for
a ∈ P0, [a,∞[ is the same whether taken in P or P0, and belongs to RO↑(P ) by 528B(b-i).

(ii) For a ∈ P0 and n ∈ N, set An(a) = {d : d ∈ ⋃
e∈E Den, d ⊆ a}. Then any sequence in An(a) has

a subsequence with an upper bound in An(a). PPP Set L = {e : e ∈ E, µ̄(a ∩ e) ≥ 2−nǫ}; then L is finite. If
e ∈ E \ L and d ∈ Den, then d ⊆ e and

µ̄d ≥ 2−nµ̄e ≥ 2−nǫ > µ̄(a ∩ e) ≥ µ̄(a ∩ d),

so d 6⊆ a. Thus An(a) ⊆ ⋃
e∈LDen. It follows that if 〈ci〉i∈N is any sequence in An(a), there is an e ∈ L such

that J = {i : ci ∈ Den} is infinite. Now there is an infinite I ⊆ J such that c = supi∈I ci belongs to Den. In
this case, c ⊆ a so c ∈ An(a) is an upper bound of {ci : i ∈ I}. QQQ

It follows that An(a) has only finitely many maximal elements, and any non-decreasing sequence in An(a)
has an upper bound in An(a). Consequently, every member of An(a) is included in a maximal element of
An(a). PPP??? Otherwise, we should be able to find a strictly increasing family 〈cξ〉ξ<ω1

in An(a); but now
there must be a ξ < ω1 such that µ̄cξ = µ̄cξ+1 < γ and cξ = cξ+1. XXXQQQ

Set En(a) = {ξ : dξ is a maximal element of An(a)}, so that En(a) is a finite subset of θ.

(iii) For n ∈ N, set

Qn = {b : b ∈ P0, An(b) = An(b′) whenever b ⊆ b′ ∈ P0}.

Then whenever a ∈ P0 and n ∈ N there is a b ∈ Qn such that a ⊆ b and An(a) = An(b). PPP Let L be a
finite subset of E including {e : µ̄(a ∩ e) ≥ 2−n−1ǫ} and such that µ̄(supL) > γ. Then 〈⋃e∈LDem〉m∈N is a
well-spread basis for (AsupL, µ̄↾AsupL). (Induce on #(L), using 528Tb for the inductive step.) Since

µ̄(a ∩ supL) < γ − µ̄(a \ supL) < µ̄(supL),

there is a a b0 ∈ AsupL, including a ∩ supL, such that

γ − µ̄(a \ supL) − 2−n−1ǫ ≤ µ̄b0 < γ − µ̄(a \ supL) ≤ µ̄(b0 ∪ d)

whenever d ∈ ⋃
e∈LDen and d 6⊆ a. Set b = b0 ∪ a. Then µ̄b = µ̄b0 + µ̄(a \ supL) < γ, so b ∈ P0. If

b ⊆ b′ ∈ P0 and d ∈ ⋃
e∈E Den \An(a), then either e ∈ L and

µ̄(b′ ∪ d) ≥ µ̄(b ∪ d) + µ̄(a \ supL) ≥ γ > µ̄b′,

or e /∈ L,

µ̄(d \ a) ≥ µ̄d− µ̄(a ∩ e) ≥ 2−nµ̄e− 2−n−1ǫ ≥ 2−n−1ǫ

and

µ̄(b′ ∪ d) ≥ µ̄b0 + µ̄(a \ supL) + 2−n−1ǫ ≥ γ > µ̄b′;

in either case d 6⊆ b′. Thus An(b′) = An(a) = An(b) whenever b ⊆ b′ ∈ P0, and b ∈ Qn. QQQ

(c)(i) For m, n, i ∈ N and ξ ∈ Ω, set

Qnmiξ = {b : b ∈ Qn, ξ + i ∈ En(b), #(En(b) ∩ ξ) = m},

Gnmiξ = sup{[b,∞[ : b ∈ Qnmiξ} ∈ RO↑(P0).

(ii) For any m, n, i ∈ N, 〈Gnmiξ〉ξ∈Ω is disjoint. PPP Suppose that ξ < η in Ω. If a ∈ Qnmiξ and
b ∈ Qnmiη, we see that ξ + i < η, ξ + i ∈ En(a) and

#(En(b) ∩ η) = m = #(En(a) ∩ ξ) < #(En(a) ∩ η).

So En(a) 6= En(b) and An(a) 6= An(b). But both a and b are supposed to belong to Qn, so [a,∞[ must be
disjoint from [b,∞[. As b is arbitrary, [a,∞[ ∩Gnmiη = ∅; as a is arbitrary, Gnmiξ ∩Gnmiη = ∅. QQQ

(iii) For any ξ ∈ Ω and a ∈ P0, there are m, n, i ∈ N and b ∈ Qnmiξ such that a ⊆ b. PPP Let e ∈ E be
such that dξ ⊆ e; let F be the member of F containing e. If F = {e}, then µ̄(a ∪ e) ≥ γ > µ̄a; set e0 = e, so
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that e0 ∈ F , e0 < e and a ∩ e0 6= e0. Otherwise, there are infinitely many members of F greater than e for
the ordering 4, because F has no greatest member, so µ̄(supe′∈F,e′<e e

′) = ∞, and there must be an e0 ∈ F
such that e0 < e and a ∩ e0 6= e0.

Let n ∈ N be such that 2−nµ̄e0 < min(γ − µ̄a, µ̄(e0 \ a)). Then {dξ+i : i ∈ N} meets D′
e0n in an infinite

set, and there is an i ∈ N such that dξ+i ∈ D′
e0n, µ̄dξ+i = 2−nµ̄e0, and d 6⊆ (a ∩ e0) ∪ dξ+i whenever d ∈ De0n

and d ⊃ dξ+i. Set a′ = a ∪ dξ+i; then dξ+i is a maximal member of An(a′). Let b ∈ Qn be such that a′ ⊆ b
and An(b) = An(a′). Then ξ + i ∈ En(b). Set m = #(En(b) ∩ ξ). Then b ∈ Qnmiξ and a ⊆ b. QQQ

Accordingly b ∈ [a,∞[∩Gnmiξ. As a is arbitrary,
⋃

m,n,i∈N
Gnmiξ is dense in P0 and supm,n,i∈NGnmiξ =

P0 in RO↑(P0).

(d)(i) Let G be the order-closed subalgebra of RO↑(P0) generated by {Gnmiξ : m, n, i ∈ N, ξ ∈ Ω}. By
(c-ii) and (c-iii), the conditions of 514F are satisfied, and G has countable Maharam type.

(ii) If d ∈ P0 ∩
⋃

e∈E,n∈N
Den then [d,∞[ ∈ G. PPP Set

H = sup{Gnmiξ : m, n, i ∈ N, ξ ∈ Ω and Gnmiξ ⊆ [d,∞[} ∈ RO↑(P0).

Then H ∈ G and H ⊆ [d,∞[. Suppose that a ∈ P0 and a ⊇ d. Let n ∈ N be such that d ∈ ⋃
e∈E Den. Then

there is a b ∈ Qn such that a ⊆ b. In this case, d ∈ An(b) so there is a maximal d′ ∈ An(b) including d;
let ξ ∈ Ω, i ∈ N be such that d′ = dξ+i, and set m = #(En(b) ∩ ξ). Then b ∈ Qnmiξ. On the other hand,
for any b′ ∈ Qnmiξ, d ⊆ dξ+i ⊆ b′, so [b′,∞[ ⊆ [d,∞[; as b′ is arbitrary, Gnmiξ ⊆ [d,∞[ and Gnmiξ ⊆ H.
Accordingly b ∈ H ∩ [a,∞[. As a is arbitrary, H is dense in [d,∞[ and must be the whole of [d,∞[; thus we
have [d,∞[ = H ∈ G. QQQ

(iii) If a ∈ P0 there is a b ∈ P0 such that a ⊆ b and [b,∞[ ∈ G. PPP Let E0 be a countable subset of E
such that a ⊆ supE0 and µ̄(supE0) > γ. Set L = {e : e ∈ E0, a ⊇ e}. Then E0 \ L is non-empty, and

∑
e∈E0\L

µ̄(a ∩ e) = µ̄a− µ̄(supL) < γ − µ̄(supL).

We therefore have a family 〈γe〉e∈E0\L such that µ̄(a ∩ e) < γe ≤ µ̄e for every e ∈ E0 \ L and
∑

e∈E0\L
γe <

γ − µ̄(supL). For each e ∈ E0 there is a Be ⊆ ⋃
n∈N

Den such that a ∩ e ⊆ supBe and µ̄(supBe) ≤ γe, by
528S(ii). Set

B = L ∪⋃
e∈E0\L

Be ⊆
⋃

e∈E,n∈N
Den

and b = supB. Then a ⊆ b and

µ̄b = µ̄(supL) +
∑

e∈E0\L
µ̄(supBe) ≤ µ̄(supL) +

∑
e∈E0\L

γe < γ,

so b ∈ P0. On the other hand,

[b,∞[ =
⋂

d∈B [d,∞[ = infd∈B [d,∞[ ∈ G,

as required. QQQ

(iv) As a is arbitrary, G includes a π-base for the Boolean algebra RO↑(P0) and must be the whole of
RO↑(P0). Accordingly

τ(RO↑(P0)) = τ(G) ≤ ω.

This completes the proof.

528V Theorem Let (A, µ̄) be an atomless semi-finite measure algebra and 0 < γ < µ̄1. Then AM(A, µ̄, γ)
has countable Maharam type.

proof Throughout the proof, P will stand for {a : a ∈ A, µ̄a < γ}.

(a) Suppose that there are a partition E of unity in A and an ǫ > 0 such that Ae is homogeneous and
ǫ ≤ µ̄e <∞ for every e ∈ E.

(i) Let 4 be a well-ordering of E such that τ(Ae) ≤ τ(Ae′) whenever e 4 e′ in E. Let F0 be a maximal
disjoint family of subsets of E of order type ω in the ordering induced by 4. Then M = E \⋃F0 must be
finite; set F = F0 ∪ {{e} : e ∈M}.

(ii) For L ⊆M , set
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PL = {a : a ∈ P , a ⊇ supL, µ̄(a ∪ e) ≥ γ for e ∈M \ L}.

Then 〈PL〉L⊆M is a disjoint family of open subsets of P . Also
⋃

L⊆M PL is dense in P . PPP If a ∈ P , let

L ⊆M be a maximal set such that µ̄(a ∪ supL) < γ, and set b = a ∪ supL; then a ⊆ b ∈ PL. QQQ So RO↑(P )
is isomorphic to the simple product

∏
L⊆M RO↑(PL) (315H again).

(iii) If L ⊆ M , then RO↑(PL) has countable Maharam type. PPP If PL = ∅ this is trivial. Otherwise
there is an a ∈ PL and µ̄(supL) ≤ µ̄a < γ. Consider A′ = A1\ supL, γ′ = γ − µ̄(supL), E′ = E \ L,
F ′ = F \ {{e} : e ∈ L} and 4′ = 4∩(E′ ×E′). Then (A′, µ̄↾A′), γ′, E′, ǫ, 4′ and F ′ satisfy the conditions
of 528U. Setting

Q0 = {c : c ∈ A′, µ̄c < γ′ ≤ µ̄(c ∪ e) for every e ∈M \ L},

RO↑(Q0) has countable Maharam type, by 528U. But the map c 7→ c ∪ supL is an order-isomorphism
between Q0 and PL, so RO↑(PL) has countable Maharam type. QQQ

(iv) Thus AM(A, µ̄, γ) = RO↑(P ) is isomorphic to the product of finitely many Boolean algebras with
countable Maharam type, and has countable Maharam type (514Ef).

(b) Now suppose that (A, µ̄) is localizable.

(i) In this case, let E be a partition of unity in A such that Ae is homogeneous and 0 < µ̄e < ∞ for
every e ∈ E. Let ǫ > 0 be such that

∑
e∈E,µ̄e≥ǫ µ̄e > γ. For each k ∈ N, set

Ek = {e : e ∈ E, µ̄e ≥ 2−kǫ}, e∗k = supEk.

By (a), AM(Ae∗k
, µ̄↾Ae∗k

, γ) has countable Maharam type for every k.

(ii) Now 528Fb tells us that we have a sequence 〈πk〉k∈N such that πk is a regular embedding of
AM(Ae∗k

, µ̄↾Ae∗k
, γ) into AM(A, µ̄, γ) for each k, and

⋃
k∈N

πk[AM(Ae∗k
, µ̄↾Ae∗k

, γ)] τ -generates AM(A, µ̄, γ).
So AM(A, µ̄, γ) has countable Maharam type. PPP For each k, we have a countable τ -generating set Dk ⊆
AM(Ae∗k

, µ̄↾Ae∗k
, γ). Let G be the order-closed subalgebra of AM(A, µ̄, γ) generated by D =

⋃
k∈N

πk[Dk].

For each k ∈ N, π−1
k [G] is an order-closed subalgebra of AM(Ae∗k

, µ̄↾Ae∗k
, γ) including Dk, so is the whole

of AM(Ae∗k
, µ̄↾Ae∗k

, γ), that is, πk[AM(Ae∗k
, µ̄↾Ae∗k

, γ)] ⊆ G. Since
⋃

k∈N
πk[AM(Ae∗k

, µ̄↾Ae∗k
, γ)] τ -generates

AM(A, µ̄, γ), G = AM(A, µ̄, γ) and τ(AM(A, µ̄, γ)) ≤ #(D) ≤ ω. QQQ

(c) Thus we have the result when (A, µ̄) is localizable. For the general case of atomless semi-finite (A, µ̄),

let (Â, µ̃) be the localization of (A, µ̄) (322Q). Since the embedding A ⊂→ Â identifies Af with Âf (322P),

{a : a ∈ Â, µ̃a < γ} can be identified with P , and the regular open algebras AM(A, µ̄, γ) and AM(Â, µ̃, γ)

are isomorphic. Again because Af and Âf are isomorphic, Â is atomless. By (b), the common Maharam

type of AM(A, µ̄, γ) and AM(Â, µ̃, γ) is countable.

528X Basic exercises (a) Suppose that (X,Σ, µ) is a measure space and (A, µ̄) its measure algebra.
Let E ⊆ Σ be a family such that µ is outer regular with respect to E , and P the set {(E,α) : E ∈ E ,
µE < α ≤ µX}, ordered by saying that (E,α) ≤ (F, β) if E ⊆ F and β ≤ α. Show that RO↑(P ) is
isomorphic to AM∗(A, µ̄).

(b) Let (A, µ̄) be an atomless quasi-homogeneous semi-finite measure algebra. Show that AM(A, µ̄, γ) is
homogeneous whenever 0 < γ < µ̄1. (Hint : first check that A ∼= A1\a whenever a ∈ A and 0 < µ̄a < µ̄1.)

(c)(i) Let (A, µ̄) be a totally finite measure algebra. Show that AM(A, µ̄, µ̄1) is isomorphic to A. (ii)
Let (A, µ̄) be an atomless measure algebra and e ∈ A a non-zero element of finite measure. Show that the
principal ideal Ae can be regularly embedded in AM(A, µ̄, µ̄e).

(d) Show that if (A, µ̄) is a probability algebra, 0 < γ ≤ 1 and κ ≥ max(ω, τ(A)) then AM(A, µ̄, γ) can
be regularly embedded in AM(Bκ, ν̄κ, γ).

(e) Let (X,T,Σ, µ) be a quasi-Radon measure space and (A, µ̄) its amoeba algebra. Show that if 0 <
γ < µX then the additivity of µ is not a precaliber of AM(A, µ̄, γ).
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(f) Let (A, µ̄) be an atomless σ-finite measure algebra and 0 < γ < µ̄1. Show that m(AM(A, µ̄, γ)) =
wdistr(A).

(g) Let (A, µ̄) be an atomless semi-finite measure algebra. (i) Show that

c(AM∗(A, µ̄)) = linkm(AM∗(A, µ̄)) = max(c(A), τ(A))

for any integer m ≥ 2. (ii) Show that

d(AM∗(A, µ̄)) = π(AM∗(A, µ̄)) = max(cf[c(A)]≤ω, π(A)).

(h) Show that for any cardinal κ there is a probability algebra (A, µ̄) such that AM(A, µ̄, 12 ) has Maharam
type κ.

528Y Further exercises (a) Let (A, µ̄) be an atomless quasi-homogeneous semi-finite measure algebra.
Show that AM∗(A, µ̄) is homogeneous.

(b) Let (A, µ̄) be an atomless totally finite measure algebra, and suppose that AM(A, µ̄, γ) can be regularly
embedded in AM∗(A, µ̄) for every γ ∈ ]0, µ̄1[. Show that A is homogeneous.

(c) Show that Bω1
cannot be regularly embedded in AM(Bω, ν̄ω,

1
2 ).

(d) Let (A, µ̄) be an atomless probability algebra and γ ∈ ]0, 1[. Show that AM(A, µ̄, γ) is not weakly
(σ,∞)-distributive.

(e) Let κ be an infinite cardinal. Show that (i) π(RO↑(S∞
κ )) = cfS∞

κ is the cardinal power κω; (ii) for
every m ≥ 2,

c(RO↑(S∞
κ )) = c↑(S∞

κ ) = linkm(RO↑(S∞
κ )) = link↑

m(S∞
κ ) = κ;

(iii) d(RO↑(S∞
κ )) = d↑(S∞

κ ) = max(cfN , cf[κ]≤ω).

(f) Let (A, µ̄) be a purely atomic semi-finite measure algebra of cellularity at most c, and 0 < γ < µ̄1.
Show that AM(A, µ̄, γ) has countable Maharam type.

(g) Let (A, µ̄) be an atomless semi-finite measure algebra and 0 < γ < µ̄1. Set κ = max(ω, c(A), τ(A))
and P = {a : a ∈ A, µ̄a < γ}; let P be the forcing notion (P,⊆, 0, ↑) (see 5A3A). Show that Pκ̌ < ω1.

(h) Show that if (A, µ̄) is a measure algebra with at most c atoms, then τ(AM∗(A, µ̄)) ≤ ω.

528Z Problems (a) Let (AL, µ̄L) be the measure algebra of Lebesgue measure on R. Is the amoeba
algebra AM(AL, µ̄L, 1) isomorphic to the amoeba algebra AM(Bω, ν̄ω,

1
2 )?

(b) Let (A, µ̄) be a probability algebra, B a closed subalgebra of A, and 0 < γ < 1. Is it necessarily true
that AM(B, µ̄↾B, γ) can be regularly embedded in AM(A, µ̄, γ)? (See 528Xd and 528G.)

528 Notes and comments The ideas of 528A-528K are based on Truss 88. The original amoeba algebras
of Martin & Solovay 70, used in their proof that addN ≥ m (528L), are closest to 528C. For some more
about the amoeba algebras derived from Lebesgue measure, see Bartoszyński & Judah 95, §3.4. In this
section I have been willing to assume that the measure algebras involved are atomless; amoeba algebras are
surely still interesting for other measure algebras, but the new questions seem to be combinatoric rather than
measure-theoretic. It seems still to be unknown whether the algebras AM(AL, µ̄L, 1) and AM(Bω, ν̄ω,

1
2 )

are actually isomorphic, rather than just mutually embeddable (528K, 528Za).
If we think of the partially ordered sets of 528A and 528I as forcing notions, we can study them in terms

of the forcing universes they lead to. This is associated with the prominence of ‘regular embeddings’ in this
section. I will not attempt to use such methods here, but I mention them because results such as 528Yg have
been part of the impulse for studying amoeba algebras, and led naturally to 528Ya, 528R and 528U-528V.
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Version of 26.5.11

529 Further partially ordered sets of measure theory

I end the chapter with notes on some more structures which can be approached by the methods used
earlier. The Banach lattices of Chapter 36 are of course partially ordered sets, and many of them can easily
be assigned places in the Tukey classification (529C, 529D, 529Xa). More surprising is the fact that the
Novák numbers of {0, 1}I , for large I, are supported by the additivity of Lebesgue measure (529F); this is
associated with an interesting property of the localization poset from the last section (529E). There is a
similarly unexpected connexion between the covering number of Lebesgue measure and ‘reaping numbers’
r(ω1, λ) for large λ (529H).

529A Notation As in previous sections, I will write N (µ) for the null ideal of µ in a measure space
(X,Σ, µ), and N for the null ideal of Lebesgue measure on R.

529B Proposition Let (A, µ̄) be a semi-finite measure algebra.
(a) For p ∈ [1,∞[, give Lp = Lp(A, µ̄) (definition: 366A) its norm topology. Then its topological density

is

d(Lp) = 1 if A = {0},
= ω if 0 < #(A) < ω,

= max(c(A), τ(A)) if A is infinite.

(b) Give L0 = L0(A) its topology of convergence in measure (367L). Then

d(L0) = 1 if A = {0},
= ω if 0 < #(A) < ω,

= τ(A) if A is infinite.

proof (a)(i) The case in which A is finite is elementary, since in this case Lp ∼= Rn, where n is the number
of atoms of A. So henceforth let us suppose that A is infinite.

(ii) If Af is the set of elements of A of finite measure, we have a natural injection a 7→ χa : Af → Lp,
and ‖χa−χb‖p = µ(a△ b)1/p, so χ is a homeomorphism for the measure metric on Af and the norm metric
on Lp. It follows that the density d(A) of A = {χa : a ∈ Af} for the norm topology is equal to the density
of Af for the strong measure-algebra topology, which is max(c(A), τ(A)), by 521Eb. So

max(c(A), τ(A)) = d(A) ≤ d(Lp)

by 5A4B(h-ii). In the other direction, if A0 is a dense subset of A with cardinal d(A) and D is the set of
rational linear combinations of members of A0, D ⊇ S(Af ) is dense in Lp (366C), so

d(Lp) ≤ #(D) ≤ max(ω,#(A0)) = max(c(A), τ(A)).

(b) Again, the case of finite A is trivial, so we need consider only infinite A. In this case, τ(A) is equal
to the topological density dT(A) of A with its measure-algebra topology T (521Ea).

(i) Let A ⊆ A be a topologically dense set of cardinal τ(A). Set

D = {∑n
i=0 qiχai : q0, . . . , qn ∈ Q, a0, . . . , an ∈ A},

so that D ⊆ L0 has cardinal τ(A). Because a 7→ χa : A → L0 is continuous (367Ra), the closure D of D
includes {χa : a ∈ A}. Because D is a linear subspace of L0, it includes S(A). Because S(A) is dense in L0

(367Nc), D = L0 and d(L0) ≤ #(D) = τ(A).

(ii) Let B ⊆ L0 be a dense set with cardinal d(L0). Set

A = {[[u > 1
2 ]] : u ∈ B},

c© 2003 D. H. Fremlin
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so that A ⊆ A and #(A) ≤ d(L0). Then A is topologically dense in A. PPP If c ∈ A, a ∈ Af and ǫ > 0, there
is a u ∈ B such that

∫
|u− χc| ∧ χa ≤ 1

2ǫ. But in this case, setting b = [[u > 1
2 ]], |χ(b△ c)| ≤ 2|u− χc|, so

µ̄(a ∩ (b△c)) ≤ 2
∫
|u− χc| ∧ χa ≤ ǫ.

As c, a and ǫ are arbitrary, A is topologically dense in A. QQQ
Accordingly

τ(A) = dT(A) ≤ #(A) ≤ d(L0)

and d(L0) = τ(A), as claimed.

529C Theorem (Fremlin 91) Let U be an L-space. Then U ≡T ℓ1(κ), where κ = dimU if U is
finite-dimensional, and otherwise is the topological density of U .

proof (a) The finite-dimensional case is trivial, since in this case U and ℓ1(κ) are isomorphic as Banach
lattices. So henceforth let us suppose that U is infinite-dimensional. Now ∨ : U × U → U is uniformly
continuous. PPP We have only to observe that u ∨ v = 1

2 (u + v + |u − v|) in any Riesz space, that addition
and subtraction are uniformly continuous in any linear topological space, and that u 7→ |u| is uniformly
continuous just because ||u| − |v|| ≤ |u − v| (see 354B). QQQ So 524C, with Q = P = U , tells us that
U 4T ℓ

1(κ).
The rest of the proof will therefore be devoted to showing that ℓ1(κ) 4T U .

(b) By Kakutani’s theorem (369E), there is a localizable measure algebra (A, µ̄) such that U is isomorphic,
as Banach lattice, to L1(A, µ̄). Let 〈ai〉i∈I be a partition of unity in A such that 0 < µ̄ai < ∞ and the
principal ideal Aai

is homogeneous for each i. Set κi = τ(Aai
), so that κi is either 0 or infinite for every i,

and κ = max(#(I), supi∈I κi) by 529Ba.
It will simplify the calculations to follow if we arrange that all the ai have measure 1. To do this, set

ν̄a =
∑

i∈I
µ̄(a∩ai)

µ̄ai

for a ∈ A; that is, ν̄a =
∫
a
w dµ̄, where w = supi∈I

1

µ̄ai

χai in L0(A). In this case,

∫
v dν̄ =

∫
v × w dν̄ for every v ∈ L1(A, ν̄), while

∫
u dµ̄ =

∫ 1

w
× u dν̄ for every u ∈ L1(A, µ̄) (365S14).

But this means that u 7→ u × 1

w
is a Banach lattice isomorphism between L1(A, µ̄) and L1(A, ν̄), and U is

isomorphic, as L-space, to L1 = L1(A, ν̄); while ν̄ai = 1 for every i.

(c) There are a set J , with cardinal κ, and a family 〈uj〉j∈J in L1 such that #(J) = κ, ‖uj‖ ≤ 2 for

every j ∈ J and ‖ supj∈K uj‖ ≥ 1
2

√
#(K) for every finite K ⊆ J . PPP Set

J = {(i, 0) : i ∈ I, κi = 0} ∪ {(i, ξ) : i ∈ I, ξ < κi}.

Then #(J) = κ. If i ∈ I and κi = 0, set u(i,0) = χai. If i ∈ I and κi > 0, then (Aai
, ν̄↾Aai

) is a homogeneous

probability algebra with Maharam type κi ≥ ω, so is isomorphic to the measure algebra (Ci, λ̄i) of ]0, 1]
κi

with its usual measure λi, the product of Lebesgue measure on each copy of ]0, 1] (334E). For ξ < κi, set

hiξ(t) =
1√
t(ξ)

for t ∈ ]0, 1]
κi ,

and let u(i,ξ) ∈ L1 correspond to h•

iξ ∈ L1(λi) ∼= L1(Ci, λ̄i) (365B). Of course

‖u(i,ξ)‖ =

∫
hiξ(t)λi(dt) =

∫ 1

0

1√
α
dα

(because the coordinate map t 7→ t(ξ) is inverse-measure-preserving)

= 2.

If L ⊆ κi is finite and not empty, then ‖ supξ∈L u(i,ξ)‖ =
∫
g dλi where g = supξ∈L hiξ, that is, g(t) =

supξ∈L
1√
t(ξ)

for t ∈ ]0, 1]
κi . Now, for any α ≥ 1,

14Formerly 365T.
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λi{t : g(t) ≤ α} = λi{t : α2t(ξ) ≥ 1 for every ξ ∈ L}

= (1 − 1

α2
)#(L) ≤ max(

1

2
, 1 − 1

2α2
#(L))

(induce on #(L))

= 1 − 1

2α2
#(L) if α ≥

√
#(L).

So

‖ sup
ξ∈L

u(i,ξ)‖ =

∫
g dλi =

∫ ∞

0

λi{t : g(t) > α}dα

(252O)

≥
∫ ∞

√
#(L)

λi{t : g(t) > α}dα

≥
∫ ∞

√
#(L)

1

2α2
#(L)dα =

1

2

√
#(L).

What this means is that if K ⊆ J is finite and all the first coordinates of members of K are the same,
then ‖ supj∈K uj‖ ≥ 1

2

√
#(K). In general, if K ⊆ J is finite, then for each i ∈ I set Li = {ξ : (i, ξ) ∈ K}.

Set vi = 0 if Li is empty, supξ∈Li
u(i,ξ) otherwise, so that ‖vi‖ ≥ 1

2

√
#(Li); now supj∈K uj =

∑
i∈I vi, so

‖ supj∈K uj‖ =
∑

i∈I ‖vi‖ ≥ 1

2

∑
i∈I

√
#(Li) ≥ 1

2

√∑
i∈I #(Li) =

1

2

√
#(K),

as required. QQQ

(d) We can now apply the idea of the proof of 524C, as follows. The density of ℓ1(κ) is of course κ, by
529Ba applied to counting measure on κ, or otherwise. Index a dense subset of ℓ1(κ) as 〈yj〉j∈J . For each
x ∈ ℓ1, choose a sequence 〈k(x, n)〉n∈N in J such that

‖x−∑n
m=0 yk(x,m)‖ ≤ 8−n

for every n. Note that

‖yk(x,n)‖ ≤ ‖x−∑n
m=0 yk(x,m)‖ + ‖x−∑n−1

m=0 yk(x,m)‖ ≤ 9 · 8−n

for each n. Choose f(x) ∈ L1 such that ‖f(x)‖ ≥ ‖x‖ and f(x) ≥ ∑∞
n=0 2−nuk(x,n); this is possible because

{uk(x,n) : n ∈ N} is bounded.

(e) f is a Tukey function. PPP Take v ∈ L1 and set

A = {x : f(x) ≤ v}, Kn = {k(x, n) : x ∈ A}
for n ∈ N. Fix n for the moment. If j ∈ Kn, then there is an x ∈ A such that j = k(x, n) and

uj = uk(x,n) ≤ 2nf(x) ≤ 2nv,

while ‖yj‖ = ‖yk(x,n)‖ ≤ 9 · 8−n. If K ⊆ Kn is finite, ‖2nv‖ ≥ 1
2

√
#(K), by (c); so #(Kn) ≤ 22n+2‖v‖2.

This means that if we set zn =
∑

j∈Kn
|yj | we shall have ‖zn‖ ≤ 9 · 8−n#(Kn) ≤ 36 · 2−n‖v‖2, while

yk(x,n) ≤ zn for every x ∈ A.

Now z =
∑∞

n=0 zn is defined in ℓ1(κ), and if x ∈ A then
∑n

m=0 yk(x,m) ≤ z for every n ∈ N, so that x ≤ z.

Thus A is bounded above in ℓ1(κ). As v is arbitrary, f is a Tukey function. QQQ

(f) Accordingly ℓ1(κ) 4T L
1 ∼= U , and the proof is complete.

529D Theorem (Fremlin 91) Let A be a homogeneous measurable algebra with Maharam type κ ≥ ω.
Then L0(A) ≡T ℓ

1(κ).
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proof (a) Let µ̄ be such that (A, µ̄) is a probability algebra. If we give L0 = L0(A) its topology of convergence
in measure, its density is κ, by 529Bb. Moreover, this topology is defined by the metric (u, v) 7→

∫
|u−v|∧χ1,

under which the lattice operation ∨ is uniformly continuous. PPP Just as in part (a) of the proof of 529C,
we have u ∨ v = 1

2 (u+ v + |u− v|) for all u and v, addition and subtraction are uniformly continuous, and

u 7→ |u| is uniformly continuous. QQQ So, just as in 529C, we can use 524C to see that L0 4T ℓ
1(κ).

(b) For the reverse connection, I repeat ideas from the proof of 529C. (A, µ̄) is isomorphic to the measure

algebra (C, λ̄) of ]0, 1]
κ

with its usual measure λ. For ξ < κ and t ∈ ]0, 1]
κ

set hξ(t) =
1√
t(ξ)

, and set uξ = h•

ξ

in L0(λ) ∼= L0(C) (364Ic). This time, observe that if x ∈ ℓ1(κ)+ and α ≥
√
‖x‖ then

λ̄[[supξ<κ

√
x(ξ)uξ ≤ α]] = λ̄( inf

ξ<κ
[[
√
x(ξ)uξ ≤ α]]) =

∏

ξ<κ

λ̄[[
√
x(ξ)uξ ≤ α]]

=
∏

ξ<κ

λ{t :

√
x(ξ)

t(ξ)
≤ α} =

∏

ξ<κ

(1 − x(ξ)

α2
)

≥ 1 − 1

α2

∑

ξ<κ

x(ξ) → 0

as α→ ∞. This means that supξ<κ

√
x(ξ)uξ is defined in L0(λ) (364La). So we can define f : ℓ1(κ) → L0(λ)

by saying that f(x) = supξ<κ

√
max(0, x(ξ))uξ for every x ∈ ℓ1(κ).

(c) f is a Tukey function. PPP Take v ∈ L0(λ)+, and set A = {x : f(x) ≤ v}. Note that f(x ∨ x′) =
f(x) ∨ f(x′) for all x, x′ ∈ ℓ1(κ), so A is upwards-directed. Take α > 0 such that λ̄[[v ≤ α]] = β > 1

2 . If

x ∈ A and x ≥ 0 then f(x) ≥
√
x(ξ)χ1 so x(ξ) ≤ α for every ξ. Now the calculation in (b) tells us that

β ≤ λ̄[[supξ<κ

√
x(ξ)uξ ≤ α]] =

∏

ξ<κ

(1 − 1

α2
x(ξ))

≤ max(
1

2
, 1 − 1

2α2

∑

ξ<κ

x(ξ)) = max(
1

2
, 1 − 1

2α2
‖x‖),

so ‖x‖ ≤ 2α2(1 − β). As A is upwards-directed and norm-bounded and contains 0, it is bounded above in
ℓ1(κ) (354N). As v is arbitrary, f is a Tukey function. QQQ

(d) Accordingly ℓ1(κ) 4T L
0(λ) ∼= L0(A) and ℓ1(κ) and L0(A) are Tukey equivalent.

529E Proposition Let S∞ be the (N,∞)-localization poset (528I). Then RO({0, 1}c ) can be regularly
embedded in RO↑(S∞).

proof (a) Let 〈hξ〉ξ<c be a family of eventually-different functions in NN (5A1Nc). Set

W0 =
⋃

n∈N is even

{(h, p) : h ∈ NN, p ∈ S∞, #(p[{n}]) = 2n,

(n, h(n)) /∈ p, (i, h(i)) ∈ p for every i > n}
∪ {(h, p) : h ∈ NN, p ∈ S∞, (i, h(i)) ∈ p for every i ∈ N},

W1 =
⋃

n∈N is odd

{(h, p) : h ∈ NN, p ∈ S∞, #(p[{n}]) = 2n,

(n, h(n)) /∈ p, (i, h(i)) ∈ p for every i > n}.
Observe that (i) W0 ∩W1 = ∅ (ii) if (h, p) ∈ Wj , where j = 0 or j = 1, and p ⊆ q ∈ S∞ then (h, q) ∈ Wj

(iii) if p ∈ S∞ then

#({ξ : (hξ, p) ∈W0 ∪W1}) ≤ ‖p‖
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is finite.

(b) Set Q = Fn<ω(c, {0, 1}), the set of functions from finite subsets of c to {0, 1}, ordered by extension
of functions, so that (Q,⊆) is isomorphic to (U ,⊇) where U is the usual base of the topology of {0, 1}c , and
RO↑(Q) ∼= RO↓(U) can be identified with the regular open algebra of {0, 1}c (514Sd). Define f : S∞ → Q
by setting f(p)(ξ) = j if (hξ, p) ∈Wj . Then f is order-preserving.

(c) For p ∈ S∞, set

A0(p) = {ξ : ξ < c, {n : n is even, (n, hξ(n)) /∈ p} is finite},

A1(p) = {ξ : ξ < c, {n : n is odd, (n, hξ(n)) /∈ p} is finite},

A(p) = A0(p) ∪A1(p),

so that A(p) is finite and dom f(p) ⊆ A(p). Now P1 = {p : p ∈ S∞, A(p) = dom f(p)} is cofinal with S∞.
PPP Take p ∈ S∞. Let m be such that

2m ≥ ‖p‖ + #(A(p)),

(n, hξ(n)) ∈ p whenever ξ ∈ A0(p) and n > m is even,

(n, hξ(n)) ∈ p whenever ξ ∈ A1(p) and n > m is odd.

Let p′ ∈ S∞ be such that

for n ≤ m, p′[{n}] ⊇ p[{n}] and #(p′[{n}]) = 2n,

for n > m, p′[{n}] = p[{n}] ∪ {hξ(n) : ξ ∈ A(p)}.

Then p ≤ p′ and A(p′) = A(p). Also A(p) = dom f(p′), because if ξ ∈ A(p) then either (n, hξ(n)) ∈ p′

for every n and (hξ, p
′) ∈ W0, or there is a largest n such that (n, hξ(n)) /∈ p′, in which case n ≤ m and

#(p′[{n}]) = 2n, so (hξ, p
′) belongs to W0 if n is even and W1 otherwise. QQQ

(d) If p ∈ P1 and q ∈ Q extends f(p), there is a p1 ∈ S∞ such that p1 ⊇ p and f(p1) = q. PPP Let m be
such that 2m ≥ ‖p‖+ #(dom q) and hξ(n) 6= hη(n) whenever ξ, η ∈ dom q are distinct and n ≥ m. For each
ξ ∈ dom q \ dom f(p) = dom q \ A(p), {n : n is even, (n, hξ(n)) /∈ p} and {n : n is odd, (n, hξ(n)) /∈ p} are
both infinite. So we can find m′ ≥ m such that all these sets meet m′ \m. Set

p′ = p ∪ {(n, hξ(n)) : n ∈ m′ \m is odd, q(ξ) = 0}
∪ {(n, hξ(n)) : n ∈ m′ \m is even, q(ξ) = 1}
∪ {(n, hξ(n)) : n ∈ N \m′, ξ ∈ dom q},

so that p ⊆ p′ ∈ S∞. Let p1 ∈ S∞ be such that p1 ⊇ p′, p1 \ p′ is finite, #(p1[{n}]) = 2n for every n < m′

and (n, hξ(n)) /∈ p1 \ p′ whenever n ∈ N and ξ ∈ dom q. Now f(p1) = q, while p ⊆ p1. QQQ

(e) Putting (c) and (d) together, we see that f−1[Q0] must be cofinal with S∞ for every cofinal Q0 ⊆ Q;
moreover, since ∅ ∈ P1 and f(∅) is the empty function, f [S∞] = Q. So f satisfies the conditions of 514O,
and RO↑(Q) ∼= RO({0, 1}c ) can be regularly embedded in RO↑(S∞).

529F Corollary (Brendle 00, 2.3.10; Brendle 06, Theorem 1) n({0, 1}I) ≥ addN for every set I.

proof If I is finite, this is trivial. Otherwise, write λ = n({0, 1}I). Then λ ≥ n({0, 1}c ). PPP If J ⊆ I
is a countably infinite set, then {{x : x↾J = z} : z ∈ {0, 1}J} is a cover of {0, 1}I by continuum many
nowhere dense sets, so λ ≤ c. Let 〈Eξ〉ξ<λ be a cover of {0, 1}κ by nowhere dense sets. Then each Eξ is
included in a nowhere dense closed set Fξ determined by coordinates in a countable set Kξ ⊆ I (4A2E(b-
iii)). Set K =

⋃
ξ<λKξ, so that #(K) ≤ c. Then all the projections F ′

ξ = {x↾K : x ∈ Fξ} are nowhere

dense in {0, 1}K (apply 4A2B(f-ii) to the continuous open surjections x 7→ x↾Kξ : {0, 1}I → {0, 1}Kξ and
y 7→ y↾Kξ : {0, 1}K → {0, 1}Kξ ), and they cover {0, 1}K . Next, we have an injection φ : K → c, and the sets

F ′′
ξ = {x : xφ ∈ F ′

ξ} form a cover of {0, 1}c by nowhere dense sets; so n({0, 1}c ) ≤ λ. QQQ

Because every non-empty open set {0, 1}c includes an open set homeomorphic to {0, 1}c ,
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n({0, 1}c ) = min{n(H) : H ⊆ {0, 1}c is open and not empty}
= m(RO({0, 1}c))

(517J)

≥ m(RO↑(S∞))

(where S∞ is the (N,∞)-localization poset, by 529E and 517Ia)

= addN

by 528N.

529G Reaping numbers (following Brendle 00) For cardinals θ ≤ λ let r(θ, λ) be the smallest cardinal
of any set A ⊆ [λ]θ such that for every B ⊆ λ there is an A ∈ A such that either A ⊆ B or A ∩B = ∅.

529H Proposition (Brendle 00, 2.7; Brendle 06, Theorem 5) r(ω1, λ) ≥ covN for all uncountable
λ.

proof Let 〈Aξ〉ξ<κ be a family in [λ]ω1 , where κ < cov(N ). I seek a B ⊆ λ such that Aξ ∩ B and Aξ \ B
are non-empty for every ξ < κ.

(a) If κ ≤ ω1, then choose 〈αξ〉ξ<κ and 〈βξ〉ξ<κ inductively so that

αξ ∈ Aξ \ {βη : η < ξ}, βξ ∈ Aξ \ {αη : η ≤ ξ}
for every ξ < κ, and set B = {βξ : ξ < κ}; this serves. So henceforth let us suppose that κ > ω1.

(b) For each ξ < κ let A′
ξ ⊆ Aξ be a set of order type ω1. For each n, let Xn be a set with cardinal n!

with its discrete topology and the uniform probability measure which gives measure
1

n!
to every singleton.

Give X =
∏

n∈N
Xn its product measure µ and its product topology. Because X is a compact metrizable

space and µ is a Radon measure (416U), covN (µ) = covN (522Wa). We can therefore choose a family
〈xξ〉ξ<κ in X in such a way that each xζ is random over its predecessors in the sense that

whenever ξ < κ and {xη : η ∈ A′
ξ ∩ ζ} is negligible, it does not contain xζ .

For distinct x, y ∈ X, set ∆(x, y) = min{i : x(i) 6= y(i)}. For x ∈ X, set B(x) = {η : xη 6= x, ∆(xη, x) is
even}.

(c) For every ξ < κ, {x : x ∈ X, Aξ ⊆ B(x)} and {x : x ∈ X, Aξ ∩B(x) = ∅} are negligible. PPP There is
a ζ < κ such that ζ ∈ A′

ξ, A′
ξ ∩ ζ is countable and D = {xη : η ∈ A′

ξ ∩ ζ} is dense in {xη : η ∈ A′
ξ}. Since

xζ ∈ D, D has measure greater than 0. By 275I, applied to the sequence 〈Σn〉n∈N where Σn is the finite

algebra of subsets of X determined by coordinates less than n, D has a point w which is a density point in
the sense that

limn→∞
µ{y:y↾n=w↾n, y∈D}

µ{y:y↾n=w↾n} = 1.

Consequently, setting

Jn = {y(n) : y ∈ D} = {y(n) : y ∈ D} ⊇ {y(n) : y ∈ D, y↾n = w↾n},

#(Jn)

n!
≥ µ{y:y↾n=w↾n, y∈D}

µ{y:y↾n=w↾n} → 1

as n→ ∞.
Next note that, for any y ∈ X and n ∈ N,

µ{x : ∃ i > n, x(i) = y(i)} ≤ ∑∞
i=n+1

1

i!
≤ n+2

(n+1)(n+1)!
.

So
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µ{x : ∃ y ∈ D,x(n) = y(n), x(i) 6= y(i) for every i > n}

≥ #(Jn)

n!

(
1 − n+2

(n+1)(n+1)!

)
→ 1

as n→ ∞, and

µ{x : ∃ y ∈ D \ {x}, ∆(x, y) is even} = µ{x : ∃ y ∈ D \ {x}, ∆(x, y) is odd} = 1.

But if y ∈ D \ {x} and ∆(x, y) is even, we have an η ∈ Aξ such that ∆(x, xη) is even, and η ∈ Aξ ∩ B(x);
similarly, if there is a y ∈ D \ {x} such that ∆(x, y) is odd, there is an η ∈ Aξ \ B(x). So {x : Aξ ⊆ B(x)}
and {x : Aξ ∩B(x) = ∅} are both negligible. QQQ

(d) Since covN (µ) = covN > κ, there is an x ∈ X such that both Aξ∩B(x) and Aξ\B(x) are non-empty
for every ξ < κ. So in this case also we have a suitable set B.

529X Basic exercises (a) Let (X,Σ, µ) be a measure space, and p ∈ [1,∞[. Show that Lp(µ) ≡T ℓ
1(κ),

where κ = dimLp(µ) if this is finite, d(Lp(µ)) otherwise.

(b) Let U be an L-space. (i) Show that addU = ∞ if U = {0}, ω otherwise. (ii) Show that addω U = ∞
if U is finite-dimensional, addN if U is separable and infinite-dimensional, ω1 otherwise. (iii) Show that

cfU = 1 if U = {0}, ω if 0 < dimU < ω, max(cfN , cf[d(U)]≤ω) otherwise. (iv) Show that link↑
<κ(U) = 1 if

κ ≤ ω, cfU otherwise.

(c) Let U be a separable Banach lattice. Suppose that 〈uξ〉ξ<κ is a family in U , where κ < addN . Show
that there is a family 〈ǫξ〉ξ<κ of strictly positive real numbers such that {ǫξuξ : ξ < κ} is order-bounded in
U .

>>>(d) Let U be a separable Banach lattice, and D ⊆ U a dense set. Let A ⊆ U be a set with cardinal less
than addN . Show that there is a w ∈ U such that for every u ∈ A and every ǫ > 0 there is a v ∈ D such
that |u− v| ≤ ǫw.

(e) Let I be the ideal of subsets I of N such that
∑

n∈I
1

n+1
is finite. (See 419A.) Show that ℓ1 ≡T I, so

that addω I = addN and cf I = cfN .

(f) Show that if θ ≤ θ′ ≤ λ′ ≤ λ are cardinals, then r(θ, λ) ≤ r(θ′, λ′).

(g)(i) Show that r(ω, ω) ≥ cov E ≥ max(covN ,mcountable), where E is the ideal of subsets of R with
Lebesgue negligible closures. (ii) Show that if λ is an infinite cardinal then r(ω, λ) ≥ max(addN , covNλ),
where Nλ is the null ideal of the usual measure on {0, 1}λ. (Hint : 529F.)

529Y Further exercises (a) Let X be a Polish space and Kσ the family of Kσ subsets of X. Show
that, defining ≤∗ as in 522C, (Kσ,⊆) 4T (NN,≤∗).

(b) Let X be a topological space with a countable network, and c : PX → [0,∞] an outer regular
submodular Choquet capacity (definitions: 432J). Show that if A is an upwards-directed family of subsets
of X such that #(A) < mσ-linked, then c(

⋃A) = supA∈A c(A).

(c) Let r ≥ 3 be an integer. (i) Let c : PRr → [0,∞] be Choquet-Newton capacity (§479). Show that
if A is an upwards-directed family of subsets of Rr such that #(A) < addN , then c(

⋃A) = supA∈A c(A).
(Hint : 479Xi.) (ii) Let I be the ideal of polar sets in Rr. Show that add I = addN .

(d) Show that, for any infinite set I, the regular open algebra RO({0, 1}I) of {0, 1}I is homogeneous, so
that m(RO({0, 1}I)) = n({0, 1})I .

(e) Show that b ≤ r(ω, ω) ≤ π(PN/[N]<ω).
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529 Notes and comments Many of the ideas of the last two chapters were first embodied in forcing
arguments. In 529E this becomes particularly transparent. If we have an upwards-directed set R ⊆ S∞

which is ‘generic’ in the sense that it meets all the cofinal subsets of S∞ definable in a language L with
terms for all the functions hξ, as well as such obvious ones as {p : #(p[{n}]) = 2n} for each n, and we set
S =

⋃R, then S will belong to the set S = SN of 522K, and we shall have hξ ⊆∗ S for every ξ; so that we

have a corresponding function f̃(S) =
⋃

p∈R f(p) ∈ {0, 1}c defined by setting

f̃(S)(ξ) ≡ sup{i : (i, hξ(i)) /∈ S} mod 2.

Next, if G ⊆ {0, 1}c is a dense open set with a definition in L, then f̃(S) ∈ G; for, setting Uq = {φ : q ⊆ φ ∈
{0, 1}c } when q ∈ Q = Fn<ω(c, {0, 1}), {q : Uq ⊆ G} is cofinal with Q, so {p : Uf(p) ⊆ G} is cofinal with

S∞ (part (d) of the proof of 529E) and meets R. Thus f̃(S) is ‘generic’ in the sense that it belongs to every
dense open set with a name in L; and it is a commonplace in the theory of forcing that a function which
transforms generic objects in one forcing extension into generic objects in another extension corresponds to
a regular embedding of the corresponding regular open algebras.
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Balcar B. & Vojtáš P. [77] ‘Refining systems on Boolean algebras’, pp. 45-58 in Lachlan Srebny &

Zarach 77. [515E.]
Bar-Hillel Y. [70] Mathematical Logic and Foundations of Set Theory. North-Holland, 1970.
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