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Introduction to Volume 5

For the final volume of this treatise, I have collected results which demand more sophisticated set theory
than elsewhere. The line is not sharp, but typically we are much closer to questions which are undecidable
in ZFC. Only in Chapter 55 are these brought to the forefront of the discussion, but elsewhere much of
the work depends on formulations carefully chosen to express, as arguments in ZFC, ideas which arose in
contexts in which some special axiom – Martin’s axiom, for instance – was being assumed. This has forced
the development of concepts – e.g., cardinal functions of structures – which have taken on vigorous lives of
their own, and which stand outside the territory marked by the techniques of earlier volumes.

In terms of the classification I have used elsewhere, this volume has one preparatory chapter and five
working chapters. There is practically no measure theory in Chapter 51, which is an introduction to some
of the methods which have been devised to make sense of abstract analysis in the vast range of alternative
mathematical worlds which have become open to us in the last fifty years. It is centered on a study of
partially ordered sets, which provide a language in which many of the most important principles can be
expressed. Chapter 52 looks at manifestations of these ideas in measure theory. In Chapter 53 I continue
the work of Volumes 3 and 4, examining questions which arise more or less naturally if we approach the
topics of those volumes with the new techniques.

The Banach-Ulam problem got a mention in Volume 2, a paragraph in Volume 3 and a section in Volume
4; at last, in Chapter 54 of the present volume, I try to give a proper account of the extraordinary ideas
to which it has led. I have regretfully abandoned the idea of describing even a representative sample of the
forcing models which have been devised to show that measure-theoretic propositions are consistent, but in
Chapter 55 I set out some of the basic properties of random real forcing. Finally, in Chapter 56, I look
at what measure theory becomes in ZF alone, with countable or dependent choice, and with the axiom of
determinacy.

While I should like to believe that most of the material of this volume will be accessible to those who
have learnt measure theory from other sources, it has obviously been written with earlier volumes constantly
in mind, and I have to advise you to make sure that Volumes 3 and 4, at least, will be available in case of
need. Apart from these, I do of course assume that readers will be at ease with modern set theory. It is not
so much that I demand a vast amount of knowledge – §§5A1-5A2 have a good many proofs to help cover
any gaps – as that I present arguments without much consideration for the inexperienced, and some of them
may be indigestible at first if you have not cut your teeth on Just & Weese 96 or Jech 78. What you
may not need is any prior knowledge of forcing. But of course for Chapter 55 you will have to take a proper
introduction to forcing, e.g., Kunen 80, in parallel with §5A3, since nothing here will make sense without
an acquaintance with forcing languages and the fundamental theorem of forcing.

Note on second printing
There has been the usual crop of errors (most, but not all, minor) to be corrected, and I have added a

few new results. The most important is P.Larson’s proof that it is relatively consistent with ZFC to suppose
that there is no medial limit. In the process of preparing new editions of Volumes 1-4, I have I hope covered
all the items listed in the old §5A6 (‘Later editions only’), which I have therefore dropped, even though
there are one or two further entries under this heading. As before, these can be found on the Web edition
at http://www1.essex.ac.uk/maths/people/fremlin/mtcont.htm. Version of 3.1.15

Chapter 51

Cardinal functions

The primary object of this volume is to explore those topics in measure theory in which questions arise
which are undecided by the ordinary axioms of set theory. We immediately face a new kind of interaction
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2 Cardinal functions Chap. 51 intro.

between the propositions we consider. If two statements are undecidable, we can ask whether either implies
the other. Almost at once we find ourselves trying to make sense of a bewildering tangle of uncoordinated
patterns. The most successful method so far found of listing the multiple connexions present is to reduce as
many arguments as possible to investigations of the relationships between specially defined cardinal numbers.
In any particular model of set theory (so long as we are using the axiom of choice) these numbers must be
in a linear order, so we can at least estimate the number of potential configurations, and focus our attention
on the possibilities which seem most accessible or most interesting. At the very beginning of the theory, for
instance, we can ask whether c = 2ω is equal to ω1, or ω2, or ωω1

, or 2ω1 . For Lebesgue measure, perhaps
the first question to ask is: if 〈Eξ〉ξ<ω1

is a family of measurable sets, is
⋃

ξ<ω1
Eξ necessarily measurable?

If the continuum hypothesis is true, certainly not; but if c > ω1, either ‘yes’ or ‘no’ becomes possible. The
way in which it is now customary to express this is to say that ‘ω1 ≤ addN ≤ c, and ω1 ≤ addN < c,
ω1 < addN ≤ c and ω1 < addN < c are all possible’, where addN is defined as the least cardinal of any
family E of Lebesgue measurable sets such that

⋃
E is not measurable. (Actually it is not usually defined

in quite this way, but that is what it comes to.)
At this point I suggest that you turn to 522B, where you will find a classic picture (‘Cichoń’s diagram’)

of the relationships between ten cardinals intermediate between ω1 and c, with addN immediately above
ω1. As this diagram already makes clear, one can define rather a lot of cardinal numbers. Furthermore,
the relationships between them are not entirely expressible in terms of the partial order in which we say
that κa � κb if we can prove in ZFC that κa ≤ κb. Even in Cichoń’s diagram we have results of the type
addM = min(b, covM) in which three cardinals are involved. It is clear that the framework which has
been developed over the last thirty-five years is only a beginning. Nevertheless, I am confident that it will
maintain a leading role as the theory evolves. The point is that at least some of the cardinals (addN , b
and covM = mcountable, for instance) describe such important features of such important structures that
they appear repeatedly in arguments relating to diverse topics, and give us a chance to notice unexpected
connexions.

The first step is to list and classify the relevant cardinals. This is the purpose of the present chapter. In
fact the definitions here are mostly of a general type. Associated with any ideal of sets, for instance, we have
four cardinals (‘additivity’, ‘cofinality’, ‘unformity’ and ‘covering number’; see 511F). Most of the cardinals
examined in this volume can be defined by one of a limited number of processes from some more or less
naturally arising structure; thus addN , already mentioned, is normally defined as the additivity of the ideal
of Lebesgue negligible subsets of R, and covM is the covering number of the ideal of meager subsets of R.
Another important type of definition is in terms of whole classes of structure: thus Martin’s cardinal m can
be regarded as the least Martin number (definition: 511Dg) of any ccc Boolean algebra.

§511 lists some of the cardinals associated with partially ordered sets, Boolean algebras, topological spaces
and ideals of sets. Which structures count as ‘naturally arising’ is a matter of taste and experience, but
it turns out that many important ideas can be expressed in terms of cardinals associated with relations,
and some of these are investigated in §512. The core ideas of the chapter are most clearly manifest in
their application to partially ordered sets, which I look at in §513. In §514 I run through the elementary
results connecting the cardinal functions of topological spaces and associated Boolean algebras and partially
ordered sets. §515 is a brief excursion into abstract Boolean algebra. §516 is a discussion of ‘precalibers’.
§517 is an introduction to the theory of ‘Martin numbers’, which (following the principles I have just tried
to explain) I will use as vehicles for the arguments which have been used to make deductions from Martin’s
axiom. §518 gives results on Freese-Nation numbers and tight filtrations of Boolean algebras which can be
expressed in general terms and are relevant to questions in measure theory.

Version of 10.10.13

511 Definitions

A large proportion of the ideas of this volume will be expressed in terms of cardinal numbers associated
with the structures of measure theory. For any measure space (X,Σ, µ) we have, at least, the structures
(X,Σ), (X,Σ,N (µ)) (where N (µ) is the null ideal of µ) and the measure algebra A = Σ/Σ ∩ N (µ); each
of these types of structure has a family of cardinal functions associated with it, starting from the obvious
ones #(X), #(Σ) and #(A). For the measure algebra A, we quickly find that we have cardinals naturally
associated with its Boolean structure and others naturally associated with the topological structure of its

Measure Theory



511Bf Definitions 3

Stone space; of course the most important ones are those which can be described in both languages. The
actual measure µ : Σ → [0,∞], and its daughter µ̄ : A → [0,∞], will be less conspicuous here; for most of
the questions addressed in this volume, replacing a measure by another with the same measurable sets and
the same negligible sets will make no difference.

In this section I list the definitions on which the rest of the chapter depends, with a handful of elementary
results to give you practice with the definitions.

511A Pre-ordered sets When we come to the theory of forcing in Chapter 55, there will be technical
advantages in using a generalization of the concept of ‘partial order’. A pre-ordered set is a set P together
with a relation ≤ on P such that

if p ≤ q and q ≤ r then p ≤ r,
p ≤ p for every p ∈ P ;

that is, ≤ is transitive and reflexive but need not be antisymmetric. As with partial orders, I will write
p ≥ q to mean q ≤ p; [p, q] = {r : p ≤ r and r ≤ q}; [p,∞[ = {q : p ≤ q}, ]−∞, p] = {q : q ≤ p}. An upper
(resp. lower) bound for a set A ⊆ P will be a p ∈ P such that q ≤ p (resp. p ≤ q) for every q ∈ A. If
(Q,≤) is another pre-ordered set, I will say that f : P → Q is order-preserving if f(p) ≤ f(p′) whenever
p ≤ p′ in P . If 〈(Pi,≤i)〉i∈I is a family of pre-ordered sets, their product is the pre-ordered set (P,≤)
where P =

∏
i∈I Pi and, for p, q ∈ P , p ≤ q iff p(i) ≤i q(i) for every i ∈ I (cf. 315C).

If (P,≤) is a pre-ordered set, we have an equivalence relation ∼ on P defined by saying that p ∼ q if

p ≤ q and q ≤ p. Now we have a canonical partial order on the set P̃ of equivalence classes defined by saying
that p• ≤ q• iff p ≤ q. For all ordinary purposes, (P,≤) and (P̃ ,≤) carry the same structural information,
and the move to the true partial order is natural and convenient. It occasionally happens (see 512Ee below,
for instance, and also the theory of iterated forcing in Kunen 80, chap. VIII) that it is helpful to have a
language which enables us to dispense with this step, thereby simplifying some basic definitions. However
the extra generality leads to no new ideas, and I expect that most readers will prefer to do nearly all their
thinking in the context of partially ordered sets.

511B Definitions Let (P,≤) be any pre-ordered set.

(a) A subset Q of P is cofinal with P if for every p ∈ P there is a q ∈ Q such that p ≤ q. The cofinality
of P , cfP , is the least cardinal of any cofinal subset of P .

(b) The additivity of P , addP , is the least cardinal of any subset of P with no upper bound in P . If
there is no such set, write addP = ∞.

(c) A subset Q of P is coinitial with P if for every p ∈ P there is a q ∈ Q such that q ≤ p. The
coinitiality of P , ciP , is the least cardinal of any coinitial subset of P .

(d) Two elements p, p′ of P are compatible upwards if [p,∞[∩[p′,∞[ 6= ∅, that is, if {p, p′} has an upper
bound in P ; otherwise they are incompatible upwards. A subset A of P is an up-antichain if no two
distinct elements of A are compatible upwards. The upwards cellularity of P is c↑(P ) = sup{#(A) : A ⊆ P
is an up-antichain in P}; the upwards saturation of P , sat↑(P ), is the least cardinal κ such that there is
no up-antichain in P with cardinal κ. P is called upwards-ccc if it has no uncountable up-antichain, that
is, c↑(P ) ≤ ω, that is, sat↑(P ) ≤ ω1.

(e) Two elements p, p′ of P are compatible downwards if ]−∞, p] ∩ ]−∞, p′] 6= ∅, that is, if {p, p′}
has a lower bound in P ; otherwise they are incompatible downwards. A subset A of P is a down-
antichain if no two distinct elements of A are compatible downwards. The downwards cellularity of P
is c↓(P ) = sup{#(A) : A ⊆ P is a down-antichain in P}; the downwards saturation of P , sat↓(P ), is the
least κ such that there is no down-antichain in P with cardinal κ. P is called downwards-ccc if it has no
uncountable down-antichain, that is, c↓(P ) ≤ ω, that is, sat↓(P ) ≤ ω1.

(f) If κ is a cardinal, a subset A of P is upwards-<κ-linked in P if every subset of A of cardinal less

than κ is bounded above in P . The upwards <κ-linking number of P , link↑
<κ(P ), is the smallest cardinal

of any cover of P by upwards-<κ-linked sets.
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4 Cardinal functions 511Bf

A subset A of P is upwards-κ-linked in P if it is upwards-<κ+-linked, that is, every member of [A]≤κ

is bounded above in P . The upwards κ-linking number of P , link↑
κ(P ) = link↑

<κ+(P ), is the smallest
cardinal of any cover of P by upwards-κ-linked sets.

Similarly, a subset A of P is downwards-<κ-linked if every member of [A]<κ has a lower bound in
P , and downwards-κ-linked if it is downwards-<κ+-linked; the downwards <κ-linking number of

P , link↓
<κ(P ), is the smallest cardinal of any cover of P by downwards-<κ-linked sets, and link↓

κ(P ) =

link↓
<κ+(P ).

(g) The most important cases of (f) above are κ = 2 and κ = ω. A subset A of P is upwards-linked if any
two members of A are compatible upwards in P , and upwards-centered if it is upwards-<ω-linked, that is,

any finite subset of A has an upper bound in P . The upwards linking number of P , link↑(P ) = link↑
2(P ),

is the least cardinal of any cover of P by upwards-linked sets, and the upwards centering number of P ,

d↑(P ) = link↑
<ω(P ), is the least cardinal of any cover of P by upwards-centered sets.

Similarly, A ⊆ P is downwards-linked if any two members of A are compatible downwards in P , and
downwards-centered if any finite subset of A has a lower bound in P ; the downwards linking number

of P is link↓(P ) = link↓
2(P ), and the downwards centering number of P is d↓(P ) = link↓

<ω(P ).

If link↑(P ) ≤ ω (resp. link↓(P ) ≤ ω) we say that P is σ-linked upwards (resp. downwards). If
d↑(P ) ≤ ω (resp. d↓(P ) ≤ ω) we say that P is σ-centered upwards (resp. downwards).

(h) The upwards Martin number m↑(P ) of P is the smallest cardinal of any family Q of cofinal
subsets of P such that there is some p ∈ P such that no upwards-linked subset of P containing p meets
every member of Q; if there is no such family Q, write m↑(P ) = ∞.

Similarly, the downwards Martin number m↓(P ) of P is the smallest cardinal of any family Q of
coinitial subsets of P such that there is some p ∈ P such that no downwards-linked subset of P containing
p meets every member of Q, or ∞ if there is no such Q.

(i) A Freese-Nation function on P is a function f : P → PP such that whenever p ≤ q in P then
[p, q] ∩ f(p) ∩ f(q) is non-empty. The Freese-Nation number of P , FN(P ), is the least κ such that there
is a Freese-Nation function f : P → [P ]<κ. The regular Freese-Nation number of P , FN∗(P ), is the
least regular infinite κ such that there is a Freese-Nation function f : P → [P ]<κ. If Q is a subset of P , the
Freese-Nation index of Q in P is the least cardinal κ such that cf(Q∩ ]−∞, p]) < κ and ci(Q∩ [p,∞[) < κ
for every p ∈ P .

(j) The (principal) bursting number buP of P is the least cardinal κ such that there is a cofinal
subset Q of P such that

#({q : q ∈ Q, q ≤ p, p 6≤ q}) < κ

for every p ∈ P .

(k) It will be convenient to have a phrase for the following phenomenon. I will say that P is separative
upwards if whenever p, q ∈ P and p 6≤ q there is a q′ ≥ q which is incompatible upwards with p. Similarly, of
course, P is separative downwards if whenever p, q ∈ P and p 6≥ q there is a q′ ≤ q which is incompatible
downwards with p.

511C On the symbol ∞ I note that in the definitions above I have introduced expressions of the form
‘addP = ∞’. The ‘∞’ here must be rigorously distinguished from the ‘∞’ of ordinary measure theory, which
can be regarded as a top point added to the set of real numbers. The ‘∞’ of 511B is rather a top point
added to the class of ordinals. But it is convenient, and fairly safe, to use formulae like ‘addP ≤ addQ’ on
the understanding that addP ≤ ∞ for every pre-ordered set P , while ∞ ≤ addQ only when addQ = ∞.
Of course we have to be careful to distinguish between ‘addP < ∞’ (meaning that there is a subset of P
with no upper bound in P ) and ‘addP is finite’ (meaning that addP < ω).

511D Definitions Let A be a Boolean algebra. I write A+ for the set A \ {0} of non-zero elements of A
and A− for A \ {1}, so that the partially ordered sets (A−,⊆) and (A+,⊇) are isomorphic.

Measure Theory



511E Definitions 5

(a) The Maharam type τ(A) of A is the smallest cardinal of any subset B of A which τ -generates A in
the sense that the order-closed subalgebra of A including B is A itself. (See Chapter 33.)

(b) The cellularity of A is

c(A) = c↑(A−) = c↓(A+) = sup{#(C) : C ⊆ A+ is disjoint}.

The saturation of A is

sat(A) = sat↑(A−) = sat↓(A+) = sup{#(C)+ : C ⊆ A+ is disjoint},

that is, the smallest cardinal κ such that there is no disjoint family in A+ with cardinal κ.

(c) The π-weight or density π(A) of A is cfA− = ciA+, that is, the smallest cardinal of any order-dense
subset of A.

(d) Let κ be a cardinal. A subset A of A+ is <κ-linked if it is downwards-<κ-linked in A+, that is,
no B ∈ [A]<κ has infimum 0, and κ-linked if it is <κ+-linked, that is, every B ∈ [A]≤κ has a non-zero

lower bound. The <κ-linking number link<κ(A) of A is link↓
<κ(A+), the least cardinal of any family of

<κ-linked sets covering A+; and the κ-linking number linkκ(A) of A is link<κ+(A), that is, the least
cardinal of any cover of A+ by κ-linked sets.

(e) As in 511Bg, I say that A ⊆ A+ is linked if no two members of A are disjoint; the linking number of
A is link(A) = link2(A), the least cardinal of any cover of A+ by linked sets. Similarly, A ⊆ A+ is centered
if inf I 6= 0 for any finite I ⊆ A; that is, if A is downwards-centered in A+. The centering number d(A) of
A is d↑(A−) = d↓(A+), that is, the smallest cardinal of any cover of A+ by centered sets. A is σ-m-linked
if linkm(A) ≤ ω; in particular, it is σ-linked iff link(A) ≤ ω. A is σ-centered if d(A) ≤ ω.

(f) If κ is any cardinal, A is weakly (κ,∞)-distributive if whenever 〈Aξ〉ξ<κ is a family of partitions
of unity in A, there is a partition B of unity such that {a : a ∈ Aξ, a ∩ b 6= 0} is finite for every b ∈ B
and ξ < κ. Now the weak distributivity wdistr(A) of A is the least cardinal κ such that A is not weakly
(κ,∞)-distributive. (If there is no such cardinal, write wdistr(A) = ∞.)

(g) The Martin number m(A) of A is the downwards Martin number of A+, that is, the smallest
cardinal of any family B of coinitial subsets of A+ for which there is some a ∈ A+ such that no linked subset
of A containing a meets every member of B; or ∞ if there is no such B.

(h) The Freese-Nation number of A, FN(A), is the Freese-Nation number of the partially ordered set
(A,⊆). The regular Freese-Nation number FN∗(A) of A is the regular Freese-Nation number of (A,⊆),
that is, the smallest regular infinite cardinal greater than or equal to FN(A).

(i) If κ is a cardinal, a tight κ-filtration of A is a family 〈aξ〉ξ<ζ in A, where ζ is an ordinal, such
that, writing Aα for the subalgebra of A generated by {aξ : ξ < α}, (α) Aζ = A (β) for every α < ζ,
the Freese-Nation index of Aα in A is at most κ. If A has a tight κ-filtration, I will say that it is tightly
κ-filtered.

511E Precalibers (a) Let (P,≤) be a pre-ordered set.

(i) I will say that (κ, λ,<θ) is an upwards precaliber triple of P if κ, λ and θ are cardinals, and
whenever 〈pξ〉ξ<κ is a family in P then there is a set Γ ∈ [κ]λ such that {pξ : ξ ∈ I} has an upper bound in
P for every I ∈ [Γ]<θ.

Similarly, (κ, λ,<θ) is a downwards precaliber triple of P if κ, λ and θ are cardinals and whenever
〈pξ〉ξ<κ is a family in P then there is a set Γ ∈ [κ]λ such that {pξ : ξ ∈ I} has a lower bound in P for every
I ∈ [Γ]<θ.

(ii) An upwards precaliber pair of P is a pair (κ, λ) of cardinals such that (κ, λ,<ω) is an upwards
precaliber triple of P , that is, whenever 〈pξ〉ξ<κ is a family in P there is a Γ ∈ [κ]λ such that {pξ : ξ ∈ Γ}
is upwards-centered in P .

D.H.Fremlin



6 Cardinal functions 511E

A downwards precaliber pair of P is a pair (κ, λ) of cardinals such that (κ, λ,<ω) is a downwards
precaliber triple of P .

(iii) An up- (resp. down-) precaliber of P is a cardinal κ such that (κ, κ) is an upwards (resp.
downwards) precaliber pair of P .

(b) Let (X,T) be a topological space. Then (κ, λ,<θ) is a precaliber triple of X if it is a downwards
precaliber triple of T \ {∅}; (κ, λ) is a precaliber pair of X if it is a downwards precaliber pair of T \ {∅};
and κ is a precaliber of X if it is a down-precaliber of T \ {∅}.

(c) Let A be a Boolean algebra. Then (κ, λ,<θ) is a precaliber triple of A if it is a downwards
precaliber triple of A+; (κ, λ) is a precaliber pair of A if it is a downwards precaliber pair of A+; and κ is
a precaliber of A if it is a down-precaliber of A+.

(d) If (A, µ̄) is a measure algebra, then (κ, λ,<θ) is a measure-precaliber triple of (A, µ̄) if whenever
〈aξ〉ξ<κ is a family in A such that infξ<κ µ̄aξ > 0, then there is a Γ ∈ [κ]λ such that {aξ : ξ ∈ I} has a
non-zero lower bound for every I ∈ [Γ]<θ. Now (κ, λ) is a measure-precaliber pair of (A, µ̄) if (κ, λ,<ω)
is a measure-precaliber triple, and κ is a measure-precaliber of (A, µ̄) if (κ, κ) is a measure-precaliber
pair.

(e) In this context, I will say that (κ, λ, θ) is a precaliber triple (in any sense) if (κ, λ,<θ+) is a precaliber
triple as defined above; and similarly for measure-precaliber triples.

(f) I will say that one of the structures here satisfies Knaster’s condition if it has (ω1, ω1, 2) as a
precaliber triple, that is, if every uncountable set has an uncountable linked subset. (For pre-ordered sets
I will speak of ‘Knaster’s condition upwards’ or ‘Knaster’s condition downwards’.) A structure satisfying
Knaster’s condition must be ccc, because an uncountable set of mutually incompatible elements surely
cannot have an uncountable linked subset.

511F Definitions Let X be a set and I an ideal of subsets of X.

(a) Taking I to be partially ordered by ⊆, we can speak of add I and cf I in the sense of 511B. I is called
κ-additive or κ-complete if κ ≤ add I, that is, if

⋃
E ∈ I for every E ∈ [I]<κ.

In addition we have three other cardinals which will be important to us.

(b) The uniformity of I is

non I = min{#(A) : A ⊆ X, A /∈ I},

or ∞ if there is no such set A. (Note the hidden variable X in this notation; if any confusion seems possible,
I will write non(X, I). Many authors prefer unif I.)

(c) The shrinking number of I, shr I, is the smallest cardinal κ such that whenever A ∈ PX \ I there
is a B ∈ [A]≤κ \ I. (Again, we need to know X as well as I to determine shr I, and if necessary I will write
shr(X, I).) The augmented shrinking number shr+(I) is the smallest κ such that whenever A ∈ PX \I
there is a B ∈ [A]<κ \ I.

(d) The covering number of I is

cov I = min{#(E) : E ⊆ I,
⋃
E = X},

or ∞ if there is no such set E . (Once more, X is a hidden variable here, and I may write cov(X, I).)

511G Definition Let (X,Σ, µ) be a measure space.

(a) If κ is a cardinal, µ is κ-additive if
⋃
E ∈ Σ and µ(

⋃
E) =

∑
E∈E µE for every disjoint family

E ∈ [Σ]<κ. The additivity addµ of µ is the largest cardinal κ such that µ is κ-additive, or ∞ if µ is
κ-additive for every κ.

Measure Theory



511Ia Definitions 7

(b) The π-weight π(µ) of µ is the coinitiality of Σ \ N (µ), where N (µ) is the null ideal of µ.

(c) Recall that the Maharam type τ(µ) of µ is the Maharam type of the measure algebra of µ (331Fc).

511H Elementary facts: pre-ordered sets Let P be a pre-ordered set.

(a) If P̃ is the partially ordered set of equivalence classes in P , as described in 511A, all the cardinal

functions defined in 511B have the same values for P and P̃ . (The point is that p is an upper bound for

A ⊆ P iff p• is an upper bound for {q• : q ∈ A} ⊆ P̃ .) Similarly, P and P̃ will have the same triple
precalibers, precaliber pairs and precalibers.

(b) Obviously, c↑(P ) ≤ sat↑(P ). (In fact c↑(P ) is determined by sat↑(P ); see 513Bc below.) If κ ≤ λ are
cardinals then

link↑
<κ(P ) ≤ link↑

<λ(P ) ≤ cfP ,

because every upwards-<λ-linked set is upwards-<κ-linked and every set ]−∞, p] is upwards-<λ-linked.

c↑(P ) ≤ link↑(P ), because if A ⊆ P is an up-antichain then no upwards-linked set can contain more than
one point of A. It follows that

link↑(P ) = link↑
<3(P ) ≤ link↑

<ω(P ) = d↑(P ) ≤ cfP .

Of course cfP ≤ #(P ). Similarly,

link↓
<κ(P ) ≤ link↓

<λ(P ) ≤ ciP

whenever κ ≤ λ, and

c↓(P ) ≤ link↓(P ) ≤ d↓(P ) ≤ ciP ≤ #(P ), c↓(P ) ≤ sat↓ P .

(c) P is empty iff cfP = 0 iff ciP = 0 iff addP = 0 iff d↑(P ) = 0 iff d↓(P ) = 0 iff link↑(P ) = 0 iff

link↓(P ) = 0 iff c↑(P ) = 0 iff c↓(P ) = 0 iff sat↑(P ) = 1 iff sat↓(P ) = 1 iff FN(P ) = 0.

(d) P is upwards-directed iff c↑(P ) ≤ 1 iff sat↑(P ) ≤ 2 iff link↑(P ) ≤ 1 iff d↑(P ) ≤ 1. Similarly, P is

downwards-directed iff c↓(P ) ≤ 1 iff sat↓(P ) ≤ 2 iff link↓(P ) ≤ 1 iff d↓(P ) ≤ 1.
If P is not empty, it is upwards-directed iff addP > 2 iff addP ≥ ω.

(e) If P is partially ordered, it has a greatest element iff cfP = 1 iff addP = ∞. Otherwise, addP ≤ cfP ,
since no cofinal subset of P can have an upper bound in P .

(f) If P is totally ordered, then cfP ≤ addP . PPP If A ⊆ P has no upper bound in P it must be cofinal
with P . QQQ

(g) If 〈Pi〉i∈I is a non-empty family of non-empty pre-ordered sets with product P , then addP =
mini∈I addPi. PPP A set A ⊆ P lacks an upper bound in P iff there is an i ∈ I such that {p(i) : p ∈ A} is
unbounded above in Pi. QQQ

(h) If P is partially ordered and f : P → PP is a Freese-Nation function then p ∈ f(p) for every p ∈ P ,
because [p, p] meets f(p) ∩ f(p).

511I Elementary facts: Boolean algebras Let A be a Boolean algebra.

(a)

link<κ(A) ≤ link<λ(A) ≤ π(A)

whenever κ ≤ λ,

c(A) ≤ link(A) ≤ d(A) ≤ π(A) ≤ #(A), c(A) ≤ sat(A).

In addition, τ(A) ≤ π(A) because any order-dense subset of A τ -generates A.

D.H.Fremlin
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(b)(i) A = {0} iff π(A) = 0 iff link(A) = 0 iff d(A) = 0 iff c(A) = 0 iff sat(A) = 1.

(ii) τ(A) = 0 iff A is either {0} or {0, 1}.

(c) If A is finite, then c(A) = link(A) = d(A) = π(A) is the number of atoms of A, sat(A) = c(A) + 1 and
#(A) = 2c(A), while τ(A) = ⌈log2 c(A)⌉, unless A = {0}, in which case τ(A) = 0. If A is infinite then c(A),
link(A), d(A), π(A), sat(A) and τ(A) are all infinite.

(d) Note that A is ‘ccc’ just when c(A) ≤ ω, that is, sat(A) ≤ ω1. A is weakly (σ,∞)-distributive, in the
sense of 316G, iff wdistr(A) ≥ ω1.

(e)(i) If A is purely atomic, wdistr(A) = ∞. PPP Suppose that 〈Aξ〉ξ<κ is any family of partitions of unity
in A. Then the set B of atoms of A is a partition of unity, and {a : a ∈ Aξ, a ∩ b 6= 0} has just one member
for every b ∈ B and ξ < κ. As 〈Aξ〉ξ<κ is arbitrary, wdistr(A) = ∞. QQQ

(ii) If A is not purely atomic, wdistr(A) ≤ π(A). PPP Let c ∈ A+ be disjoint from every atom of A, and
D ⊆ A an order-dense set of size π(A); let D′ be {d : d ∈ D, d ⊆ c}. For d ∈ D′, there is a disjoint sequence
of non-zero elements included in d; let Ad be a partition of unity in A including such a sequence. If B is
any partition of unity in A, there are a b ∈ B such that b ∩ c 6= 0, and a d ∈ D′ such that d ⊆ b ∩ c; now
{a : a ∈ Ad, b ∩ a 6= 0} is infinite. So 〈Ad〉d∈D′ witnesses that wdistr(A) ≤ #(D′) ≤ π(A). QQQ

(f) m(A) = ∞ iff A is purely atomic. PPP Write B for the family of all coinitial subsets of A+. (i) If A is
purely atomic and a ∈ A+, then there is an atom d ⊆ a; now d ∈ B for every B ∈ B, so {d, a} is a linked
subset of A meeting every member of B. Accordingly m(A) = ∞. (ii) If A is not purely atomic, let a ∈ A+

be such that no atom of A is included in a. ??? If A is a linked subset of A containing a and meeting every
member of B, set B = A+ \A. If b ∈ A+, then either b ∩ a = 0 and b ∈ B, or there are non-zero disjoint b′,
b′′ ⊆ b ∩ a and one of b′, b′′ must belong to B. So B ∈ B, which is impossible. XXX So m(A) ≤ #(B) <∞. QQQ

511J Elementary facts: ideals of sets Let X be a set and I an ideal of subsets of X.

(a) add I ≥ ω, by the definition of ‘ideal of sets’.

(b) shr I = sup{non(A, I ∩ PA) : A ∈ PX \ I}, counting sup ∅ as 0; shr I ≤ #(X); shr I ≤ shr+ I ≤
(shr I)+; if shr I is a successor cardinal, shr+ I = (shr I)+.

(c) Suppose that I covers X but does not contain X. Then add I ≤ cov I ≤ cf I and add I ≤ non I ≤
shr I ≤ cf I. PPP Let J be a subset of I with cardinal cov I covering X; let K be a cofinal subset of I with
cardinal cf I; let A ∈ PX \ I be such that #(A) = non I. (i) J cannot have an upper bound in I, so
add I ≤ #(J ) = cov I. (ii)

⋃
K =

⋃
I = X, so cov I ≤ #(K) = cf I. (iii) For each x ∈ A we can find an

Ix ∈ I containing x; now {Ix : x ∈ A} cannot have an upper bound in I, so add I ≤ #(A) = non I. (iv) By
(b), shr I ≥ non I. (v) Take any B ⊆ X such that B /∈ I. Then for each K ∈ K we can find an xK ∈ B \K;
now B′ = {xK : K ∈ K} is not included in any member of K, so cannot belong to I, while B′ ⊆ B and
#(B′) ≤ #(K) = cf I. As B is arbitrary, shr I ≤ cf I. QQQ

(d) Suppose that X ∈ I. Then add I = non I = ∞, cov I ≤ 1 (with cov I = 0 iff X = ∅) and shr I = 0.

(e) Suppose that I has a greatest member which is not X. Then add I = cov I = ∞ and non I = shr I =
cf I = 1.

(f) Suppose that I has no greatest member and does not cover X. Then add I ≤ cf I (511He), non I =
shr I = 1 and cov I = ∞.

(g) Suppose that Y ⊆ X, and set IY = I∩PY , regarded as an ideal of subsets of Y . Then add IY ≥ add I,
non IY ≥ non I, shr IY ≤ shr I, shr+ IY ≤ shr+ I, cov IY ≤ cov I and cf IY ≤ cf I.

511X Basic exercises (a) Let P be a partially ordered set and κ ≥ 3 a cardinal. Show that addP ≥ κ
iff (λ, λ, λ) is an upwards precaliber triple of P for every λ < κ.

Measure Theory
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>>>(b) Let X be a compact Hausdorff space. Show that a pair (κ, λ) of cardinals is a precaliber pair of X
iff whenever 〈Gξ〉ξ<κ is a family of non-empty open subsets of X there is an x ∈ X such that {ξ : x ∈ Gξ}
has cardinal at least λ.

(c) Let (X,Σ, µ) be a measure space. For A ⊆ X write µA for the subspace measure on A, and N (µ),
N (µA) for the corresponding null ideals. Show that shr(X,N (µ)) = sup{non(A,N (µA)) : A ∈ PX \N (µ)}.

(d) Let (X,Σ, µ) be a measure space, and let µ̂, µ̃ be the completion and c.l.d. version of µ. (i) Let
N (µ) = N (µ̂) and N (µ̃) be the corresponding null ideals. Show that addN (µ) ≤ addN (µ̃), covN (µ) ≥
covN (µ̃), nonN (µ) ≤ nonN (µ̃), shrN (µ) ≥ shrN (µ̃) and shr+ N (µ) ≥ shr+ N (µ̃). (ii) Show that addµ ≤
add µ̂ ≤ add µ̃, π(µ) = π(µ̂) ≤ π(µ̃) and τ(µ) = τ(µ̂) ≥ τ(µ̃).

(e) Show that if P is a partially ordered set and c↑(P ) < ω then c↑(P ) = link↑(P ) = d↑(P ) and
m↑(P ) = ∞.

(f) Let P be a partially ordered set. Show that ω is an up-precaliber of P iff c↑(P ) < ω.

>>>(g)(i) Show that if P is a partially ordered set and κ is an up-precaliber of P , then cfκ is also an
up-precaliber of P . (ii) Show that if κ is a cardinal and cfκ > cfP then κ is an up-precaliber of P .

>>>(h) Give R, N and Q their usual total orders. Show that FN(N) = FN(Q) = ω and that FN(R) = ω1.

(i) Show that if P is a partially ordered set and #(P ) ≥ 3 then FN(P ) ≤ #(P ). (Hint : consider
separately the cases P infinite, P finite with no greatest member, and P finite with greatest and least
members.)

(j) Let P be a partially ordered set and Q a family of subsets of P with #(Q) < addP . Show that if⋃
Q is cofinal with P then one of the members of Q is cofinal with P .

(k) Let U be a Riesz space and κ a cardinal. Then U is weakly (κ,∞)-distributive if whenever 〈Aξ〉ξ<κ

is a family of non-empty downwards-directed subsets of U+, each with infimum 0, and
⋃

ξ<κAξ has an upper
bound in U , then

{u : u ∈ U , for every ξ < κ there is a v ∈ Aξ such that v ≤ u}

has infimum 0 in U . Show that an Archimedean Riesz space is weakly (κ,∞)-distributive iff its band algebra
is. (Hint : 368R.)

(l) Let X be a set and I an ideal of subsets of X. Show that the coinitiality ci(PX \ I) is at most
#(X)shr I .

511Y Further exercises (a)(i) Show that d↑(P ) ≤ 2link
↑(P ) for every partially ordered set P . (ii) Show

that there is a partially ordered set P such that d↑(P ) = ω but P cannot be covered by countably many
upwards-directed sets.

(b) Let κ be an infinite cardinal, with its usual well-ordering. Show that FN(κ) = κ.

(c)(i) Find a semi-finite measure space (X,Σ, µ) such that cfN (µ) < cfN (µ̃), where N (µ) and N (µ̃)
are the null ideals of µ and its c.l.d. version. (ii) Find a semi-finite measure space (X,Σ, µ) such that
addN (µ̃) > addN (µ) and cfN (µ̃) < cfN (µ).

(d) Show that, for a set I, (ω1, ω, ω) is a precaliber triple of NI iff I is countable.

511 Notes and comments Because (P,≥) is a pre-ordered set whenever (P,≤) is, any cardinal function
on pre-ordered sets is bound to appear in two mirror-image forms. It does not quite follow that we have to
set up a language with a complete set of mirror pairs of definitions, and indeed I have omitted the reflections
of ‘additivity’ and ‘bursting number’; but the naturally arising pre-ordered sets to which we shall want to
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10 Cardinal functions 511 Notes

apply these ideas may appear in either orientation. The most natural conversions to topological spaces
and Boolean algebras use the families of non-empty open sets and non-zero elements, which are ‘active
downwards’, so that we have such formulae as π(A) = ciA+ and c(X) = c↓(T \ {∅}); but we could equally
well say that π(A) = cfA− or that c(X) is the upwards-cellularity of the partially ordered set of proper
closed subsets of X.

Most readers, especially those acquainted with Volumes 3 and 4 of this treatise, will be more familiar
with topological spaces and Boolean algebras than with general pre-ordered sets, and will prefer to approach
the concepts here through the formulations in 5A4A and 511D. But even in the present chapter we shall
be looking at questions which demand substantial fragments of the theory of general partially ordered sets,
and I think it is useful to grapple with these immediately. The list of definitions above is a long one, and
the functions here vary widely in importance; but I hope you will come to agree that all are associated with
interesting questions.

I apologise for introducing two cardinal functions to represent the ‘breadth’ of a pre-ordered set (or
topological space or Boolean algebra), its ‘cellularity’ and ‘saturation’. It turns out that the saturation of a
space determines its cellularity (513Bc), which seems to render the concept of ‘cellularity’ unnecessary; but
it is well-established and makes some formulae simpler. This is an example of a standard problem: whenever
we give a name to a supremum, we find ourselves asking whether the supremum is attained. The question
of whether cellularity is attained turns out to be rather interesting (513B again). In the case of shrinking
numbers, the ordinary shrinking number shr I is the one which has been most studied, but I shall have some
results which are more elegantly expressed in terms of the augmented shrinking number shr+ I.

I give very little space here to the functions m() and wdistr() and to precalibers; these are bound to
be a bit mysterious. Later in the chapter I will explore their relations with each other and with other
cardinal functions. You may recognise them as belonging to the general area associated with Martin’s
axiom (Fremlin 84a, or §517 below). ‘Precaliber pairs’ have a slightly more direct description in the
context of compact Hausdorff spaces (511Xb). ‘Freese-Nation numbers’ relate to quite different aspects of
the structure of ordered sets. As will be made clear in the next two sections, all the other cardinal functions
defined in 511B refer to the cofinal (or coinitial) structure of a partially ordered set; the Freese-Nation
number, by contrast, tells us something about the nature of intervals inside it. We see a difference already
in the formula for the Freese-Nation number of a Boolean algebra, which refers to the whole algebra A rather
than to A+. Another signal is the fact that it is not a trivial matter to calculate the Freese-Nation number
of a finite partially ordered set.

The only cardinal functions I have explicitly defined for measure spaces are the additivity and π-weight
of a measure (511G), and even these are, in the most important cases, reducible to the additivity of the
null ideal (521A) and the π-weight of the measure algebra (521Da). I give a pair of warming-up exercises
(511Xc-511Xd), but we shall hardly see ‘measure’ again until Chapter 52. For the questions studied in this
volume, the important cardinals associated with a measure µ are those defined from its measure algebra
together with the four cardinals addN (µ), covN (µ), nonN (µ) and cfN (µ). In particular, the additivity
of Lebesgue measure will have a special position. In the case of a topological measure space, of course, we
can investigate relationships between the cardinal functions of the topology and the cardinal functions of
the measure. I will come to such questions in Chapter 53.

Version of 27.11.13

512 Galois-Tukey connections

One of the most powerful methods of relating the cardinals associated with two partially ordered sets
P and Q is to identify a ‘Tukey function’ from one to the other (513D). It turns out that the idea can be
usefully generalized to other relational structures through the concept of ‘Galois-Tukey connection’ (512A).
In this section I give the elementary theory of these connections and their effect on simple cardinal functions.

512A Definitions (a) A supported relation is a triple (A,R,B) where A and B are sets and R is a
subset of A×B.

It will be convenient, and I think not dangerous, to abuse notation by writing (A,∈, B) or (A,⊆, B) to
mean (A,R,B) where R is {(a, b) : a ∈ A, b ∈ B, a ∈ b} or {(a, b) : a ∈ A, b ∈ B, a ⊆ b}.

c© 2002 D. H. Fremlin
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512D Galois-Tukey connections 11

(b) If (A,R,B) is a supported relation, its dual is the supported relation (A,R,B)⊥ = (B,S,A) where

S = (B ×A) \R−1 = {(b, a) : a ∈ A, b ∈ B, (a, b) /∈ R}.

(c) If (A,R,B) and (C, S,D) are supported relations, a Galois-Tukey connection from (A,R,B) to
(C, S,D) is a pair (φ, ψ) such that φ : A → C and ψ : D → B are functions and (a, ψ(d)) ∈ R whenever
(φ(a), d) ∈ S.

(d) (Vojtáš 93) If (A,R,B) and (C, S,D) are supported relations, I write (A,R,B) 4GT (C, S,D) if
there is a Galois-Tukey connection from (A,R,B) to (C, S,D), and (A,R,B) ≡GT (C, S,D) if (A,R,B) 4GT

(C, S,D) and (C, S,D) 4GT (A,R,B).

512B Definitions (a) If (A,R,B) is a supported relation, its covering number cov(A,R,B) (some-
times called norm ‖(A,R,B)‖) is the least cardinal of any set C ⊆ B such that A ⊆ R−1[C]; or ∞ if
A 6⊆ R−1[B]. Its additivity is add(A,R,B) = cov(A,R,B)⊥, that is, the smallest cardinal of any subset
C ⊆ A such that C 6⊆ R−1[{b}] for any b ∈ B; or ∞ if there is no such C.

Note that add(A,R,B) = 0 iff B = ∅, and that add(A,R,B) = 1 iff B 6= ∅ and cov(A,R,B) = ∞.

(b) If (A,R,B) is a supported relation, its saturation sat(A,R,B) is the least cardinal κ such that
whenever 〈aξ〉ξ<κ is a family in A then there are distinct ξ, η < κ and a b ∈ B such that (aξ, b) and (aη, b)
both belong to R; if there is no such κ (that is, if cov(A,R,B) = ∞) I write sat(A,R,B) = ∞.

(c) If (A,R,B) is a supported relation and κ is a cardinal, say that a subset A′ of A is <κ-linked if
for every I ∈ [A′]<κ there is a b ∈ B such that I ⊆ R−1[{b}], and κ-linked if it is <κ+-linked, that is, for
every I ∈ [A′]≤κ there is a b ∈ B such that I ⊆ R−1[{b}]. Now the <κ-linking number link<κ(A,R,B)
of (A,R,B) is the least cardinal of any cover of A by <κ-linked sets, if there is such a cover, and otherwise
is ∞; and the κ-linking number linkκ(A,R,B) of (A,R,B) is link<κ+(A,R,B), that is, the least cardinal
of any cover of A by κ-linked sets.

If κ ≤ λ, then every <λ-linked set is <κ-linked, so link<κ(A,R,B) ≤ link<λ(A,R,B). Note also that
linkκ(A,R,B) is equal to cov(A,R,B) for every κ ≥ #(A), so that link<θ(A,R,B) ≤ cov(A,R,B) for every
θ.

512C There are two things which should be done at once: to plainly state enough of the elementary
theory to show at least that the definitions here lead to a coherent structure; and to give examples. I begin
with the theory, which really is elementary.

Theorem Let (A,R,B), (C, S,D) and (E, T, F ) be supported relations.
(a) (A,R,B)⊥⊥ = (A,R,B).
(b) If (φ, ψ) is a Galois-Tukey connection from (A,R,B) to (C, S,D) and (φ′, ψ′) is a Galois-Tukey

connection from (C, S,D) to (E, T, F ), then (φ′φ, ψψ′) is a Galois-Tukey connection from (A,R,B) to
(E, T, F ).

(c) If (φ, ψ) is a Galois-Tukey connection from (A,R,B) to (C, S,D), then (ψ, φ) is a Galois-Tukey
connection from (C, S,D)⊥ to (A,R,B)⊥.

(d) If R′ ⊆ R then (A,R,B) 4GT (A,R′, B).
(e) If (A,R,B) 4GT (C, S,D) and (C, S,D) 4GT (E, T, F ) then (A,R,B) 4GT (E, T, F ).
(f) ≡GT is an equivalence relation on the class of supported relations.
(g) If (A,R,B) 4GT (C, S,D) then (C, S,D)⊥ 4GT (A,R,B)⊥. So if (A,R,B) ≡GT (C, S,D) then

(A,R,B)⊥ ≡GT (C, S,D)⊥.

proof (a)-(c) are immediate from the definitions. (d) is trivial because the identity functions from A and
B to themselves form a Galois-Tukey connection from (A,R,B) to (A,R′, B). (e) follows from (b), and (g)
from (c). (f) is immediate from (d) and (e) and the symmetry of the definition of ≡GT.

512D Theorem Let (A,R,B) and (C, S,D) be supported relations such that (A,R,B) 4GT (C, S,D).
Then

(a) cov(A,R,B) ≤ cov(C, S,D);
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12 Cardinal functions 512D

(b) add(C, S,D) ≤ add(A,R,B);
(c) sat(A,R,B) ≤ sat(C, S,D);
(d) link<κ(A,R,B) ≤ link<κ(C, S,D) for every cardinal κ.

proof Let (φ, ψ) be a Galois-Tukey connection from (A,R,B) to (C, S,D). If D0 ⊆ D is such that
C = S−1[D0], then A = R−1[ψ[D0]]; this shows that cov(A,R,B) ≤ cov(C, S,D). If κ = sat(C, S,D) and
〈aξ〉ξ<κ is any family in A, then there are a d ∈ D and distinct ξ, η < κ such that (φ(aξ), d) ∈ S and
(φ(aη), d) ∈ S, in which case (aξ, ψ(d)) and (aη, ψ(d)) both belong to R; so sat(A,R,B) ≤ κ. If C is a
cover of C by <κ-linked sets, then {φ−1[C ′] : C ′ ∈ C} is a cover of A by <κ-linked sets; this shows that
link<κ(A,R,B) ≤ link<κ(C, S,D).

Finally, (C, S,D)⊥ 4GT (A,R,B)⊥, by 512Cc, so

add(C, S,D) = cov(C, S,D)⊥ ≤ cov(A,R,B)⊥ = add(A,R,B).

512E Examples Of course ‘supported relations’ appear everywhere in mathematics. They are important
to us here because covering numbers, saturation and linking numbers, as defined above, correspond to
important cardinal functions as defined in §511, and because surprising Galois-Tukey connections exist, as
we shall see in Chapter 52. The simplest examples are the following.

(a) Let (P,≤) be a pre-ordered set. Then (P,≤, P ) and (P,≥, P ) are supported relations, with duals
(P, 6≥, P ) and (P, 6≤, P ). cov(P,≤, P ) = cfP , cov(P,≥, P ) = ciP , add(P,≤, P ) = addP and sat(P,≤, P ) =
sat↑(P ). For any cardinal κ, a subset of P is upwards-<κ-linked in the sense of 511Bf iff it is <κ-linked in

(P,≤, P ) in the sense of 512Bc. So link↑
<κ(P ) = link<κ(P,≤, P ). In particular, d↑(P ) = link<ω(P,≤, P )

(511Bg).

(b) Let (X,T) be a topological space. Then

π(X) = cov(T \ {∅},⊇,T \ {∅}),

d(X) = cov(T \ {∅},∋, X) = add(X, /∈,T \ {∅}),

sat(X) = sat(T \ {∅},⊇,T \ {∅}) = sat(T \ {∅},∋, X),

n(X) = cov(X,∈,Nwd(X)) = cov(X,Nwd(X))

where Nwd(X) is the ideal of nowhere dense subsets of X. Note that if M(X) is the ideal of meager subsets
of X, then cov(X,M(X)) = n(X) unless n(X) = ω, in which case cov(X,M(X)) = 1.

(c) Let A be a Boolean algebra. Write A+ for A \ {0} and A− for A \ {1}. Then

π(A) = cov(A+,⊇,A+) = cov(A−,⊆,A−),

sat(A) = sat(A+,⊇,A+) = sat(A−,⊆,A−),

d(A) = link<ω(A+,⊇,A+) = link<ω(A−,⊆,A−),

link(A) = link2(A+,⊇,A+) = link2(A−,⊆,A−)

and generally

link<κ(A) = link<κ(A+,⊇,A+) = link<κ(A−,⊆,A−),

linkκ(A) = linkκ(A+,⊇,A+) = linkκ(A−,⊆,A−)

for every cardinal κ.

(d) Let X be a set and I an ideal of subsets of X. Then the dual of (X,∈, I) is (I, 6∋, X); cov(X,∈, I) =
cov I and add(X,∈, I) = non I.

(e) For a Boolean algebra A, write Pou(A) for the set of partitions of unity in A. For C, D ∈ Pou(A),
say that C ⊑∗ D if every element of D meets only finitely many members of C. Then ⊑∗ is a pre-order on
Pou(A). Translating the definition 511Df into this language, we see that wdistr(A) = add Pou(A).
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512F I now turn to some constructions involving supported relations and Galois-Tukey connections
which will be useful later.

Dominating sets For any supported relation (A,R,B) and any cardinal κ, we can form a corresponding
supported relation (A,R′′′, [B]<κ), where

R′′′ = {(a, I) : I ∈ [B]<κ, a ∈ R−1[I]}.

The most important cases to us will be κ = ω and κ = ω1. When κ is a successor cardinal I will normally

write (A,R′′′, [B]≤λ) rather than (A,R′′′, [B]<λ+

).

512G Proposition Let (A,R,B) and (C, S,D) be supported relations and κ, λ cardinals.
(a) (A,R,B) is isomorphic to (A,R′′′, [B]1).
(b) If (A,R,B) 4GT (C, S,D) and λ ≤ κ then (A,R′′′, [B]<κ) 4GT (C, S ′′′, [D]<λ).
(c) In particular, (A,R′′′, [B]<κ) 4GT (A,R,B) if κ ≥ 2.
(d) If cfκ ≥ λ and (A,R′′′, [B]<κ) 4GT (C, S,D) then (A,R′′′, [B]<κ) 4GT (C, S ′′′, [D]<λ).
(e)(i) If cov(A,R,B) = ∞ then add(A,R′′′, [B]<κ) ≤ 1.

(ii) If cov(A,R,B) <∞ then add(A,R′′′, [B]<κ) ≥ κ.
(f) cov(A,R,B) ≤ max(ω, κ, cov(A,R′′′, [B]≤κ)); if κ ≥ 1 and cov(A,R,B) > max(κ, ω) then cov(A,R,B)

= cov(A,R′′′, [B]≤κ).

proof (a) is trivial.

(b) If (φ, ψ) is a Galois-Tukey connection from (A,R,B) to (C, S,D), then (φ, ψ′) is a Galois-Tukey
connection from (A,R′′′, [B]<κ) to (C, S ′′′, [D]<λ), where ψ′(J) = ψ[J ] for every J ∈ [D]<λ.

(c) Setting φ(a) = a for a ∈ A and ψ(b) = {b} for b ∈ B, (ψ, φ) is a Galois-Tukey connection from
(A,R′′′, [B]<κ) to (A,R,B).

(d) Let (φ, ψ) be a Galois-Tukey connection from (A,R′′′, [B]<κ) to (C, S,D). Set ψ′(I) =
⋃

d∈I ψ(d) for

I ∈ [D]<λ; then (φ, ψ′) is a Galois-Tukey connection from (A,R′′′, [B]<κ) to (C, S ′′′, [D]<λ).

(e)(i) There is an a ∈ A \R−1[B]; now (a, I) /∈ R′′′ for any I ∈ [B]<κ, so add(A,R′′′, [B]<κ) ≤ 1.

(ii) For every a ∈ A there is a ba ∈ B such that (a, ba) ∈ R. If A′ ⊆ A and #(A′) < κ, then
I = {ba : a ∈ A′} belongs to [B]<κ, and (a, I) ∈ R′′′ for every a ∈ A′; as A′ is arbitrary, add(A,R′′′, [B]<κ) ≥ κ.

(f) If λ = cov(A,R′′′, [B]≤κ) is not ∞, let D ⊆ [B]≤κ be a set with cardinal λ such that A = (R′′′)−1[D],
and set D =

⋃
D; then A ⊆ R−1[D], so cov(A,R,B) ≤ #(D) ≤ max(ω, κ, λ).

If κ ≥ 1, then cov(A,R′′′, [B]≤κ) ≤ cov(A,R,B), by (c) and 512Da, so if the latter is greater than
max(κ, ω) they are equal.

512H Simple products (a) If 〈(Ai, Ri, Bi)〉i∈I is any family of supported relations, its simple product
is (

∏
i∈I Ai, T,

∏
i∈I Bi) where T = {(a, b) : (a(i), b(i)) ∈ Ri for every i ∈ I}.

(b) Let 〈(Ai, Ri, Bi)〉i∈I and 〈(Ci, Si, Di)〉i∈I be two families of supported relations, with simple products
(A,R,B) and (C, S,D). If (Ai, Ri, Bi) 4GT (Ci, Si, Di) for every i, then (A,R,B) 4GT (C, S,D). PPP For
each i, let (φi, ψi) be a Galois-Tukey connection from (Ai, Ri, Bi) to (Ci, Si, Di). Define φ : A → C and
ψ : D → B by setting φ(〈ai〉i∈I) = 〈φi(ai)〉i∈I , ψ(〈di〉i∈I) = 〈ψi(di)〉i∈I for 〈ai〉i∈I ∈ A, 〈di〉i∈I ∈ D; then

(φ(〈ai〉i∈I), 〈di〉i∈I) ∈ S =⇒ (φi(ai), di) ∈ Si for every i ∈ I

=⇒ (ai, ψi(di)) ∈ Ri for every i ∈ I

=⇒ (〈ai〉i∈I , ψ(〈di〉i∈I)) ∈ R.

So (φ, ψ) is a Galois-Tukey connection and (A,R,B) 4GT (C, S,D). QQQ

(c) Let 〈(Ai, Ri, Bi)〉i∈I be a family of supported relations with simple product (A,R,B). Suppose
that no Ai is empty. Then add(A,R,B) = mini∈I add(Ai, Ri, Bi), interpreting min ∅ as ∞ if I = ∅. PPP
Set κ = add(A,R,B) and κ′ = mini∈I add(Ai, Ri, Bi). If I = ∅ then A = B = {∅} and R = {(∅, ∅)}
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14 Cardinal functions 512Hc

so add(A,R,B) = ∞. Otherwise, if C ⊆ A and #(C) < κ′, then, for each i, #({c(i) : c ∈ C}) <
add(Ai, Ri, Bi), so there is a bi ∈ Bi such that (c(i), bi) ∈ Ri for every c ∈ C; now (c, 〈bi〉i∈I) ∈ R for every
c ∈ C; as C is arbitrary, κ ≥ κ′. In the other direction, if i ∈ I and C ′ ∈ [Ai]

<κ, then (because no Aj is
empty) there is a C ∈ [A]<κ such that C ′ = {c(i) : c ∈ C}. Now there is a b ∈ B such that (c, b) ∈ R for
every c ∈ C, so that (c′, b(i)) ∈ Ri for every c′ ∈ C ′. As i and C ′ are arbitrary, κ′ ≤ κ. QQQ

(d) Suppose that (A,R,B) and (C, S,D) are supported relations with simple product (A×C, T,B×D).
Let κ be an infinite cardinal and define (A,R′′′, [B]<κ), (C, S ′′′, [D]<κ) and (A×C, T ′′′, [B×D]<κ) as in 512F.
Then

(A,R′′′, [B]<κ) × (C, S ′′′, [D]<κ) ≡GT (A× C, T ′′′, [B ×D]<κ).

PPP Express (A,R′′′, [B]<κ) × (C, S ′′′, [D]<κ) as (A× C, T̃ , [B]<κ × [D]<κ).

(i) Set φ(a, c) = (a, c) for all a ∈ A, c ∈ C, and for I ∈ [B ×D]<κ set

ψ(I) = (π1[I], π2[I]) ∈ [B]<κ × [D]<κ,

where π1(b, d) = b and π2(b, d) = d for b ∈ B, d ∈ D. If a ∈ A, c ∈ C and I ∈ [B × D]<κ are such
that (φ(a, c), I) ∈ T ′′′, then there must be a (b, d) ∈ I such that ((a, c), (b, d)) ∈ T , that is, (a, b) ∈ R and
(c, d) ∈ S; now b ∈ π1[I] and d ∈ π2[I], so (a, π1[I]) ∈ R′′′ and (c, π2[I]) ∈ S ′′′ and

((a, c), ψ(I)) = ((a, c), (π1[I], π2[I])) ∈ T̃ .

As a, c and I are arbitrary, (φ, ψ) is a Galois-Tukey connection and

(A,R′′′, [B]<κ) × (C, S ′′′, [D]<κ) 4GT (A× C, T ′′′, [B ×D]<κ).

(ii) In the other direction, given (J,K) ∈ [B]<κ × [D]<κ set ψ′(J,K) = J × K ∈ [B × D]<κ. (This

is where we need to suppose that κ is infinite.) If now (φ(a, c), (J,K)) ∈ T̃ , that is, (a, J) ∈ R′′′ and
(c,K) ∈ S ′′′, there are b ∈ J and d ∈ K such that (a, b) ∈ R and (c, d) ∈ S, so that ((a, c), (b, d)) ∈ T and
((a, c), ψ′(J,K)) ∈ T ′′′. As a, c, J and K are arbitrary, (φ, ψ′) is a Galois-Tukey connection and

(A× C, T ′′′, [B ×D]<κ) 4GT (A,R′′′, [B]<κ) × (C, S ′′′, [D]<κ). QQQ

(e) If 〈(Pi,≤i)〉i∈I is a family of pre-ordered sets, with product (P,≤) (511A), then (P,≤, P ) is just∏
i∈I(Pi,≤i, Pi) in the sense here.

512I Sequential compositions Let (A,R,B) and (C, S,D) be supported relations. Their sequential
composition (A,R,B) ⋉ (C, S,D) is (A× CB , T,B ×D), where

T = {((a, f), (b, d)) : (a, b) ∈ R, f ∈ CB , (f(b), d) ∈ S}.

Their dual sequential composition (A,R,B) ⋊ (C, S,D) is (A× C, T̃ , B ×DA) where

T̃ = {((a, c), (b, g)) : a ∈ A, b ∈ B, c ∈ C, g ∈ DA

and either (a, b) ∈ R or (c, g(a)) ∈ S}.

512J Proposition Let (A,R,B) and (C, S,D) be supported relations.
(a) (A,R,B) ⋊ (C, S,D) = ((A,R,B)⊥ ⋉ (C, S,D)⊥)⊥.
(b) cov((A,R,B) ⋉ (C, S,D)) is the cardinal product cov(A,R,B) · cov(C, S,D) unless B = C = ∅ 6= A,

if we use the interpretations

0 · ∞ = ∞ · 0 = 0, κ · ∞ = ∞ · κ = ∞ ·∞ = ∞ for every cardinal κ ≥ 1.

(c) add((A,R,B) ⋉ (C, S,D)) = min(add(A,R,B), add(C, S,D)) unless A× C = ∅ 6= B ×D.

proof (a) is just a matter of disentangling the definitions.

(b) Define T ⊆ (A× CB) × (B ×D) as in 512I.
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512K Galois-Tukey connections 15

(i) Suppose first that neither A nor C is empty, that A ⊆ R−1[B] and that C ⊆ S−1[D]. If B0 ⊆ B
and D0 ⊆ D are such that A ⊆ R−1[B0] and C ⊆ S−1[D0], then for any a ∈ A and f ∈ CB there
are b ∈ B0 and d ∈ D0 such that (a, b) ∈ R and (f(b), d) ∈ S, so that (a, f) ∈ T−1[B0 × D0]. So
cov((A,R,B) ⋉ (C, S,D)) ≤ cov(A,R,B) · cov(C, S,D).

On the other hand, if H ⊆ B × D is such that A × CB ⊆ T−1[H], set B0 = {b : C ⊆ S−1[H[{b}]]}.
Then #(H[{b}]) ≥ cov(C, S,D) for b ∈ B0. Also A ⊆ R−1[B0]. PPP??? Otherwise, take a ∈ A \ R−1[B0]. For
b ∈ B \B0, choose f(b) ∈ C \ S−1[H[{b}]]; for b ∈ B0, take f(b) to be any member of C. There is supposed
to be a member (b, d) of H such that ((a, f), (b, d)) ∈ T , that is, (a, b) ∈ R and (f(b), d) ∈ S. But now
b /∈ B0, by the choice of a, and (f(b), d) /∈ S, by the choice of f ; so we have a contradiction. XXXQQQ

So #(B0) ≥ cov(A,R,B) and #(H) ≥ cov(A,R,B) · cov(C, S,D); as H is arbitrary, cov((A,R,B) ⋉
(C, S,D)) ≥ cov(A,R,B) · cov(C, S,D).

(ii) If A = ∅ then A × CB = ∅ so cov(A,R,B) and cov((A,R,B) ⋉ (C, S,D)) are both zero. If
C = ∅ and B 6= ∅ then cov(C, S,D) = cov((A,R,B) ⋉ (C, S,D)) = 0. If A and C are non-empty and
A 6⊆ R−1[B], then A × CB 6⊆ T−1[B × D], so cov(A,R,B) = cov((A,R,B) ⋉ cov(C, S,D)) = ∞, while
cov(C, S,D) ≥ 1. If A and C are non-empty and A ⊆ R−1[B] and C 6⊆ S−1[D], then B 6= ∅; if we take
c ∈ C \ S−1[D] and any member a of A, and set f(b) = c for every b ∈ B, then (a, f) /∈ T−1[B × D], so
cov((A,R,B) ⋉ (C, S,D)) = cov(C, S,D) = ∞, while cov(A,R,B) ≥ 1. So with the single exception of
B = C = ∅ 6= A (in which case the empty function belongs to CB , so that cov((A,R,B) ⋉ (C, S,D)) = ∞,
while cov(C, S,D) = 0) we have cov((A,R,B) ⋉ (C, S,D)) = cov(A,R,B) · cov(C, S,D).

(c) Assume throughout that either A× C 6= ∅ (so that A× CB 6= ∅) or that B ×D = ∅.

(i) add((A,R,B)⋉(C, S,D)) ≤ add(A,R,B). PPP If add(A,R,B) = ∞ the result is trivial. If B×D = ∅
then add((A,R,B)⋉(C, S,D)) = 0 ≤ add(A,R,B). Otherwise, our hypothesis ensures that C is not empty;
take A0 ⊆ A such that #(A0) = add(A,R,B) and A0 6⊆ R−1[{b}] for any b ∈ B, take any b0 ∈ B and
any f0 ∈ CB ; then there is no (b, d) ∈ B × D such that ((a, f0(b0)), (b, d)) ∈ T for every a ∈ A0, so
add((A,R,B) ⋉ (C, S,D)) ≤ #(A0) = add(A,R,B). QQQ

(ii) add((A,R,B)⋉(C, S,D)) ≤ add(C, S,D). PPP Again, if add(C, S,D) = ∞ or B×D = ∅ the result is
immediate. Otherwise, A 6= ∅. Take C0 ⊆ C such that #(C0) = add(C, S,D) and there is no d ∈ D such that
C0 ⊆ S−1[{d}], for c ∈ C0 set fc(b) = c for every b ∈ B, and fix any a0 ∈ A; then there is no (b, d) ∈ B ×D
such that ((a0, fc), (b, d)) ∈ T for every c ∈ C0, so add((A,R,B) ⋉ (C, S,D)) ≤ #(C0) = add(C, S,D). QQQ

(iii) add((A,R,B) ⋉ (C, S,D)) ≥ min(add(A,R,B), add(C, S,D)). PPP If H ⊆ A × CB and #(H) is
less than min(add(A,R,B), add(C, S,D)), set A0 = {a : (a, f) ∈ H} and F = {f : (a, f) ∈ H}. Then
there are a b ∈ B such that (a, b) ∈ R for any a ∈ A0, and a d ∈ D such that (f(b), d) ∈ S for any
f ∈ F , so that ((a, f), (b, d)) ∈ T for any (a, f) ∈ H. As H is arbitrary, add((A,R,B) ⋉ (C, S,D)) ≥
min(add(A,R,B), add(C, S,D)). QQQ

512K The following fact will be used in §526.

Lemma Suppose that (A,R,B) and (C, S,D) are supported relations, and P is a partially ordered set.
Suppose that 〈Ap〉p∈P is a family of subsets of A such that

(Ap, R,B) 4GT (C, S,D) for every p ∈ P ,

Ap ⊆ Aq whenever p ≤ q in P ,
⋃

p∈P Ap = A.

Then (A,R,B) 4GT (P,≤, P ) ⋉ (C, S,D).

proof If C = ∅ the result is trivial, since every Ap is empty and B can be empty only if D is. So we may
suppose that C 6= ∅. For each p ∈ P , let (φp, ψp) be a Galois-Tukey connection from (Ap, R,B) to (C, S,D).
For a ∈ A, let r(a) ∈ P be such that a ∈ Ar(a), and set fa(p) = φp(a) whenever p ∈ P and a ∈ Ap; for
other p ∈ P take fa(p) to be any member of C. Set φ(a) = (r(a), fa) for a ∈ A. For q ∈ P , d ∈ D set
ψ(q, d) = ψq(d) ∈ B. Now (φ, ψ) is a Galois-Tukey connection from (A,R,B) to (P,≤, P ) ⋉ (C, S,D). PPP
Suppose that a ∈ A and (q, d) ∈ P ×D are such that r(a) ≤ q and (fa(q), d) ∈ S. Then a ∈ Ar(a) ⊆ Aq so
fa(q) = φq(a). Because (φq, ψq) is a Galois-Tukey connection, (a, ψ(q, d)) = (a, ψq(d)) ∈ R. QQQ

So we have the result.
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16 Cardinal functions 512X

512X Basic exercises (a)(i) Suppose that A ⊆ A′, B′ ⊆ B and that R is any relation. Show that
(A,R,B) 4GT (A′, R,B′). (ii) Show that (∅, ∅, {∅}) 4GT (A,R,B) 4GT ({∅}, ∅, ∅) for every supported
relation (A,R,B).

(b) Let (A,R,B) be any supported relation. Show that sat(A,R,B) ≤ (link2(A,R,B))+.

(c) Let (X,T) be a topological space and (Y,TY ) an open subspace. Show that (TY \{∅},⊇,TY \{∅}) 4GT

(T \ {∅},⊇,T \ {∅}).

(d) Let (X,T) and (Y,S) be topological spaces. (i) Show that if Y is a continuous image of X, (S \ {∅},
∋, Y ) 4GT (T \ {∅},∋, X). (ii) Show that if X and Y are compact and Hausdorff and there is an irreducible
continuous surjection from X onto Y , then (T\{∅},∋, X) ≡GT (S\{∅},∋, Y ) and (T\{∅},⊇,T\{∅}) ≡GT

(S \ {∅},⊇,S \ {∅}), so d(X) = d(Y ) and π(X) = π(Y ).

(e) Let 〈(Ai, Ri, Bi)〉i∈I be a family of supported relations with simple product (A,R,B). Show that
(A,R,B)⊥ can be naturally identified with the simple product of 〈(Ai, Ri, Bi)

⊥〉i∈I .

(f) Let (A,R,B) be a supported relation and κ > 0 a cardinal. Show that (A,R′′′, [B]≤κ) 4GT (A,R,B)κ,
where (A,R,B)κ is the simple product of κ copies of (A,R,B) and R′′′ = {(a, J) : a ∈ R−1[J ]} as usual.

(g) Let (A,R,B) and (C, S,D) be supported relations, and (A× C, T,B ×D) their simple product. (i)
Show that if C 6= ∅, then (A,R,B) 4GT (A×C, T,B×D). (ii) Show that (A×C, T,B×D) 4GT (A,R,B)⋉
(C, S,D). (iii) Show that (using the conventions of 512Jb) cov(A×C, T,B×D) = cov(A,R,B)·cov(C, S,D).

(h) Let (A0, R0, B0), (A1, R1, B1), (C0, S0, D0) and (C1, S1, D1) be supported relations such that
(A0, R0, B0) 4GT (A1, R1, B1) and (C0, S0, D0) 4GT (C1, S1, D1). Show that

(A0, R0, B0) ⋉ (C0, S0, D0) 4GT (A1, R1, B1) ⋉ (C1, S1, D1),

(A0, R0, B0) ⋊ (C0, S0, D0) 4GT (A1, R1, B1) ⋊ (C1, S1, D1).

512 Notes and comments Much of this section is cluttered by the repeated names (A,R,B) of ‘supported
relations’. In fact these could probably be dispensed with. While I am reluctant to alter the general
convention I use in this book, that a ‘relation’ is neither more nor less than a class of ordered pairs, it is
clear that in all significant cases our supported relation (A,R,B) will be such that A = {a : (a, b) ∈ R} and
B = {b : (a, b) ∈ R}, so that A and B can be recovered from the set R. But this would make impossible
the very useful convention that ‘(X,∈,A)’ is to be interpreted as ‘(X, {(x,A) : A ∈ A, x ∈ X ∩A},A)’, and
since nearly every mathematical argument in this context demands names for the domains and codomains
of the relations, it seems easier to write these in each time.

An important feature of the theory here is that while it is very common for our relations to be reasonably
well-behaved by some criterion (for instance, we may have Polish spaces A and B and a coanalytic set
R ⊆ A × B), the functions in a Galois-Tukey connection are not required to have any properties beyond
those declared in the definition. Of course the most important Galois-Tukey connections are those which
are ‘natural’ in some sense, and are constructed in a way which does not involve totally unscrupulous use
of the axiom of choice. I will return to this question in the next section.

Version of 23.2.14

513 Partially ordered sets

In §§511-512 I have given long lists of definitions. It is time I filled in details of the most elementary
relationships between the various concepts introduced. Here I treat some of those which can be expressed in
the language of partially ordered sets. I begin with notes on cofinality and saturation, with the Erdős-Tarski
theorem (513B). In this context, Galois-Tukey connections take on particularly direct forms (513D-513E);
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for directed sets, we have an alternative definition of Tukey equivalence (513F). The majority of the cardinal
functions defined so far on partially ordered sets are determined by their cofinal structure (513G, 513If; see
also 516Ga below).

In the last third of the section (513K-513O), I discuss Tukey functions between directed sets with a
special kind of topological structure, which I call ‘metrizably compactly based’; the point is that for Polish
metrizably compactly based directed sets, if there is any Tukey function between them, there must be one
which is measurable in an appropriate sense (513O).

513A It will help to have an elementary lemma on maximal antichains.

Lemma Let P be a partially ordered set.
(a) If Q ⊆ P is cofinal and A ⊆ Q is an up-antichain, there is a maximal up-antichain A′ in P such that

A ⊆ A′ ⊆ Q. In particular, Q includes a maximal up-antichain.
(b) If A ⊆ P is a maximal up-antichain, Q =

⋃
q∈A [q,∞[ is cofinal with P .

proof (a) Let A′ ⊆ Q be maximal subject to being an up-antichain in P including A. Then for any
p ∈ P \A′, there are a q ∈ Q such that p ≤ q, and an r ∈ A′ such that

∅ 6= [r,∞[ ∩ [q,∞[ ⊆ [r,∞[ ∩ [p,∞[,

so A′ ∪ {p} is not an up-antichain. But this means that A′ is a maximal up-antichain in P .
Starting from A = ∅, we see that Q includes a maximal up-antichain.

(b) If p ∈ P , then either p ∈ A ⊆ Q, or A ∪ {p} is not an up-antichain, so that there is some q ∈ A such
that

∅ 6= [p,∞[ ∩ [q,∞[ ⊆ Q ∩ [p,∞[.

513B Theorem Let P be a partially ordered set.
(a) buP ≤ cfP ≤ #(P ).
(b) sat↑(P ) is either finite or a regular uncountable cardinal.
(c) c↑(P ) is the predecessor of sat↑(P ) if sat↑(P ) is a successor cardinal, and otherwise is equal to sat↑(P ).

proof (a) To see that cfP ≤ #(P ) all we have to note is that P is a cofinal subset of itself. To see that
buP ≤ cfP , set κ = cfP and let 〈pξ〉ξ<κ enumerate a cofinal subset of P . Set

A = {ξ : ξ < κ, pξ 6≤ pη for any η < ξ}, Q = {pξ : ξ ∈ A}.

If p ∈ P there is a least ξ < κ such that p ≤ pξ, and now ξ ∈ A; so Q is cofinal with P . If p ∈ P , there is
some ξ ∈ A such that p ≤ pξ, and now {q : q ∈ Q, q ≤ p, p 6≤ q} ⊆ {pη : η < ξ} has cardinal less than κ, so
that Q witnesses that buP ≤ κ.

(b)(i) Set κ = sat↑(P ). For p ∈ P , set θ(p) = sat↑([p,∞[). Note that if p ∈ P and B ⊆ P is any
up-antichain, then Bp = {q : q ∈ B, [q,∞[ ∩ [p,∞[ 6= ∅} has less than θ(p) members. PPP For q ∈ Bp, choose
q′ ∈ [q,∞[ ∩ [p,∞[. Because B is an up-antichain, {q′ : q ∈ Bp} is an up-antichain and q 7→ q′ is injective;
so #(Bp) = #({q′ : q ∈ Bp}) < θ(p). QQQ

If p ≤ q in P , any up-antichain in [q,∞[ is also an up-antichain in [p,∞[, so θ(q) ≤ θ(p). It follows that
Q = {p : p ∈ P, θ(q) = θ(p) for every q ≥ p} is cofinal with P . Let A ⊆ Q be a maximal up-antichain
(513Aa); then #(A) < κ.

(ii) ??? Suppose, if possible, that κ = ω.

case 1 Suppose there is a p ∈ A such that θ(p) = ω. Then we can choose 〈pn〉n∈N, 〈qn〉n∈N

inductively, as follows. p0 = p. Given that pn ∈ Q and θ(pn) = ω, there must be pn+1, qn ∈ [pn,∞[ such
that [pn+1,∞[ ∩ [qn,∞[ = ∅; now pn+1 ∈ Q and θ(pn+1) = ω. Continue. At the end of the induction,
{qn : n ∈ N} is an infinite up-antichain in P , which is impossible.

case 2 Suppose that θ(p) < ω for every p ∈ A. Then n =
∑

p∈A θ(p) is finite. Let B ⊆ P be any

up-antichain. For each p ∈ A, set Bp = {q : q ∈ B, [q,∞[ ∩ [p,∞[ 6= ∅}; as noted in (i), #(Bp) < θ(p) for
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every p ∈ A, so #(
⋃

p∈ABp) ≤ n. But B =
⋃

p∈ABp, because A is a maximal up-antichain, so #(B) ≤ n.

As B is arbitrary, sat↑(P ) ≤ n+ 1 < ω. XXX
Thus κ 6= ω.

(iii) ??? Suppose, if possible, that κ is a singular infinite cardinal. Set λ = cfκ and let 〈κξ〉ξ<λ be a
strictly increasing family of cardinals with supremum κ.

case 1 Suppose there is a p ∈ Q such that θ(p) = κ. Then, because λ < κ, there is an up-antichain
B ⊆ [p,∞[ with cardinal λ; enumerate B as 〈pξ〉ξ<λ. For each ξ < λ, θ(pξ) > κξ, so there is an up-antichain
Cξ ⊆ [pξ,∞[ with cardinal κξ. Now C =

⋃
ξ<λ Cξ is an up-antichain in P with cardinal κ, which is supposed

to be impossible.

case 2 Suppose that θ(p) < κ for every p ∈ Q.

case 2a Suppose that supp∈A θ(p) < κ. Then there is an up-antichain C ⊆ P such that #(C) is
greater than max(ω,#(A), supp∈A θ(p)). For each p ∈ A set Cp = {q : q ∈ C, [q,∞[ ∩ [p,∞[ 6= ∅}, so that
#(Cp) < θ(p). It follows that C 6=

⋃
p∈A Cp. But if q ∈ C \

⋃
p∈A Cp, there is a q′ ∈ Q such that q′ ≥ q, and

now A ∪ {q′} is an up-antichain in Q strictly including A, which is impossible.

case 2b Suppose that supp∈A θ(p) = κ. Then we can choose inductively a family 〈pξ〉ξ<λ in A such
that θ(pξ) > max(κξ, supη<ξ θ(pη)) for each ξ; the point being that when we come to choose pξ, 〈θ(pη)〉η<ξ

is a family of fewer than cfκ cardinals less than κ, so has supremum less than κ. Now all the pξ must be
distinct. For each ξ, let Bξ ⊆ [pξ,∞[ be an up-antichain with cardinal κξ; then

⋃
ξ<λBξ is an up-antichain

in P with cardinal κ, which is impossible. XXX
Thus κ cannot be a singular infinite cardinal.

(c) All we need to know is that c↑(P ) = sup{κ : κ < sat↑(P )}.

Remark (b) is sometimes called the Erdős-Tarski theorem.

513C Cofinalities of cardinal functions We can say a little about the possible cofinalities of the
cardinals which have appeared so far.

Proposition (a) Let P be a partially ordered set with no greatest member.
(i) If addP is greater than 2 (that is, P is upwards-directed), it is a regular infinite cardinal, and there

is a family 〈pξ〉ξ<addP in P such that pη < pξ whenever η < ξ < addP , but {pξ : ξ < addP} has no upper
bound in P .

(ii) If cfP is infinite, its cofinality is at least addP .
(b) Let I be an ideal of subsets of a set X such that

⋃
I = X /∈ I.

(i) cf(add I) = add I ≤ cf(cf I).
(ii) cf(non I) ≥ add I.
(iii) If cov I = cf I then cf(cf I) ≥ non I.

proof (a)(i) By 511Hd, addP ≥ ω; by 511He, addP <∞, so addP is an infinite cardinal. Let 〈qξ〉ξ<addP

be a family in P with no upper bound in P . Choose 〈pξ〉ξ<addP inductively, as follows. Given pξ, where
ξ < addP , there is a p′ξ ∈ P such that p′ξ 6≤ pξ; let pξ+1 be an upper bound of {pξ, p′ξ, qξ}. For a limit

ordinal ξ < addP , let pξ be an upper bound of {pη : η < ξ}. This will ensure that pη < pξ whenever
ξ < η < addP and that {pξ : ξ < addP} has no upper bound, since such a bound would have to be a bound
for {qξ : ξ < addP}.

??? If addP is singular, express it as supξ<λ κξ, where λ < addP and κξ < addP for each ξ < λ. Then
for each ξ < λ, {pη : η < κξ} has an upper bound rξ in P ; but now {rξ : ξ < λ} has an upper bound in P ,
which is also an upper bound of {pη : η < addP}. XXX Thus addP is regular.

(ii) ??? If cf(cfP ) < addP , express cfP as supξ<λ κξ where λ < addP and κξ < cfP for each ξ < λ.
Let 〈pη〉η<cfP enumerate a cofinal subset of P . Then {pη : η < κξ} is never cofinal with P , so there is for
each ξ < λ a qξ ∈ P such that qξ 6≤ pη for every η < κξ. But now there is a q ∈ P which is an upper bound
for {qξ : ξ < λ}, and q 6≤ pη for any η < cfP . XXX

(b)(i) Because
⋃
I = X /∈ I, cf I and add I are both infinite, so this is just a special case of (a).
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(ii) ??? If cf(non I) < add I, express non I as supξ<λ κξ where λ < add I and κξ < non I for each ξ < λ.
Let 〈xη〉η<non I enumerate a subset of X not belonging to I. Then Iξ = {xη : η < κξ} belongs to I for each
ξ < λ; but this means that

⋃
ξ<λ Iξ = {xη : η < non I} belongs to I. XXX

(iii) Set cf(cf I) = κ. Let 〈Aξ〉ξ<κ be a family of subsets of I, all with cardinal less than cf I = cov I,
such that

⋃
ξ<κ Aξ is cofinal with I. Because #(Aξ) < cov I, there is an xξ ∈ X \

⋃
Aξ for each ξ < κ.

Now {xξ : ξ < κ} is not included in any member of Aξ for any ξ, so cannot belong to I and witnesses that
non I ≤ κ.

513D Galois-Tukey connections between partial orders have some distinctive features which make a
special language appropriate.

Definition Let P and Q be pre-ordered sets. A function φ : P → Q is a Tukey function if φ−1[B] is
bounded above in P whenever B ⊆ Q is bounded above in Q. A function ψ : Q → P is a dual Tukey
function (also called ‘cofinal function’, ‘convergent function’) if ψ[B] is cofinal with P whenever B ⊆ Q is
cofinal with Q.

If P and Q are pre-ordered sets, I will write ‘P 4T Q’ if (P,≤, P ) 4GT (Q,≤, Q), and ‘P ≡T Q’
if (P,≤, P ) ≡GT (Q,≤, Q); in the latter case I say that P and Q are Tukey equivalent. It follows
immediately from 512C that 4T is reflexive and transitive, and of course P ≡T Q iff P 4T Q and Q 4T P .

513E Theorem Let P and Q be pre-ordered sets.
(a) If (φ, ψ) is a Galois-Tukey connection from (P,≤, P ) to (Q,≤, Q) then φ : P → Q is a Tukey function

and ψ : Q→ P is a dual Tukey function.
(b)(i) A function φ : P → Q is a Tukey function iff there is a function ψ : Q → P such that (φ, ψ) is a

Galois-Tukey connection from (P,≤, P ) to (Q,≤, Q).
(ii) A function ψ : Q → P is a dual Tukey function iff there is a function φ : P → Q such that (φ, ψ)

is a Galois-Tukey connection from (P,≤, P ) to (Q,≤, Q).
(iii) If ψ : Q→ P is order-preserving and ψ[Q] is cofinal with P , then ψ is a dual Tukey function.

(c) The following are equiveridical, that is, if one is true so are the others:
(i) P 4T Q;
(ii) there is a Tukey function φ : P → Q;
(iii) there is a dual Tukey function ψ : Q→ P .

(d)(i) Let f : P → Q be such that f [P ] is cofinal with Q and, for p, p′ ∈ P , f(p) ≤ f(p′) iff p ≤ p′. Then
P ≡T Q.

(ii) Suppose that A ⊆ P is cofinal with P . Then A ≡T P

(iii) For p, q ∈ P say that p ≡ q if p ≤ q and q ≤ p; let P̃ be the partially ordered set of equivalence

classes in P under the equivalence relation ≡ (511A, 511Ha). Then P ≡T P̃ .
(e) Suppose now that P 4T Q. Then

(i) cfP ≤ cfQ;
(ii) addP ≥ addQ;
(iii) sat↑(P ) ≤ sat↑(Q), c↑(P ) ≤ c↑(Q);

(iv) link↑
<κ(P ) ≤ link↑

<κ(Q) for any cardinal κ;

(v) link↑(P ) ≤ link↑(Q), d↑(P ) ≤ d↑(Q).
(f) If P and Q are Tukey equivalent, then cfP = cfQ and addP = addQ.
(g) If 〈Pi〉i∈I and 〈Qi〉i∈I are families of pre-ordered ordered sets such that Pi 4T Qi for every i, then∏
i∈I Pi 4T

∏
i∈I Qi.

(h) If 0 < κ < addP then P ≡T P
κ. In particular, if P is upwards-directed then P ≡T P × P .

proof (a) To say that (φ, ψ) is a Galois-Tukey connection from (P,≤, P ) to (Q,≤, Q) means just that
p ≤ ψ(q) whenever φ(p) ≤ q. Now if B ⊆ Q has an upper bound q, ψ(q) is an upper bound for φ−1[B]; as
B is arbitrary, φ is a Tukey function. Similarly, if B ⊆ Q is cofinal, then for any p ∈ P there is a q ∈ B
such that φ(p) ≤ q and p ≤ ψ(q), so ψ[B] is cofinal with P . As B is arbitrary, ψ is a dual Tukey function.

(b)(i) If φ : P → Q is a Tukey function, then for each q ∈ Q set Aq = {p : p ∈ P, φ(p) ≤ q}. Aq must be
bounded above in P ; take ψ(q) to be any upper bound for Aq in P . Then we see that p ≤ ψ(q) whenever
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φ(p) ≤ q, so that (φ, ψ) is a Galois-Tukey connection from (P,≤, P ) to (Q,≤, Q). Together with (a), this
proves (i).

(ii) If ψ : Q → P is a dual Tukey function, then for each p ∈ P set Bp = {q : q ∈ Q, ψ(q) 6≥ p}.
Then ψ[Bp] is not cofinal with P , so Bp cannot be cofinal with Q, and there must be a φ(p) ∈ P such
that φ(p) 6≤ q for any q ∈ Bp. Turning this round, if φ(p) ≤ q then q /∈ Bp and p ≤ ψ(q); so (φ, ψ) is a
Galois-Tukey connection from (P,≤, P ) to (Q,≤, Q). Together with (a), this proves (ii).

(iii) Because ψ[Q] is cofinal with P , we have a function φ : P → Q such that p ≤ ψφ(p) for every
p ∈ P . Now, for any p ∈ P and q ∈ Q,

φ(p) ≤ q =⇒ p ≤ ψφ(p) ≤ ψ(q),

so (φ, ψ) is a Galois-Tukey connection and ψ is a dual Tukey function.

(c) This follows immediately from (a) and (b).

(d)(i) f is a Tukey function. PPP If A ⊆ P and f [A] is bounded above in Q, let q be an upper bound
for f [A]. Because f [P ] is cofinal with Q, there is a p0 ∈ P such that q ≤ f(p0). If now p ∈ A, we have
f(p) ≤ q ≤ f(p0) so p ≤ p0; thus A is bounded above in P . As A is arbitrary, f is a Tukey function. QQQ So
P 4T Q.
f is a dual Tukey function. PPP If A ⊆ P is cofinal with P , and q ∈ Q, there are a p ∈ P such that

q ≤ f(p), and a p′ ∈ A such that p ≤ p′; in which case

q ≤ f(p) ≤ f(p′) ∈ f [A].

Thus f [A] is cofinal with Q; as A is arbitrary, f is a dual Tukey function. QQQ So Q 4T P and P ≡T Q.

(ii) Apply (i) to the identity map from A to P .

(iii) Apply (i) to the canonical map from P to P̃ .

(e) This is just a restatement of the results in 512D, using the identifications listed in 512Ea. The only
omission concerns cellularities, for which I have not set out a formal definition in the context of supported
relations; but if A ⊆ P is an up-antichain and φ : P → Q is a Tukey function, then {φ(a), φ(a′)} can have
no upper bound in Q for any distinct a, a′ ∈ A, so φ[A] is an up-antichain in Q with the same cardinality
as A, and #(A) ≤ c↑(Q). As A is arbitrary, c↑(P ) ≤ c↑(Q) and sat↑(P ) ≤ sat↑(Q).

(f) follows at once from (e).

(g) This is a special case of 512H.

(h) Let Q ⊆ Pκ be the set of constant functions. Because κ ≥ 1, Q is isomorphic to P ; because κ < addP ,
Q is cofinal with Pκ; so P ∼= Q ≡GT P

κ.

513F Theorem (Tukey 1940) Suppose that P and Q are upwards-directed partially ordered sets. Then
P and Q are Tukey equivalent iff there is a partially ordered set R such that P and Q are both isomorphic,
as partially ordered sets, to cofinal subsets of R.

proof (a) Suppose that P and Q are Tukey equivalent. Then there are Tukey functions φ : P → Q and
ψ : Q→ P . Set S = (P × {0}) ∪ (Q× {1}), with a relation ≤ defined by saying that

(p, 0) ≤ (q, 1) iff (α) there is a p′ ≥ p in P such that φ(p′) ≤ q in Q (β) q′ ≤ q in Q whenever
q′ ∈ Q and ψ(q′) ≤ p in P ,

(q, 1) ≤ (p, 0) iff (α) there is a q′ ≥ q in Q such that ψ(q′) ≤ p in P (β) p′ ≤ p in P whenever
p′ ∈ P and φ(p′) ≤ q in Q,

(p′, 0) ≤ (p, 0) iff p′ ≤ p in P ,
(q′, 1) ≤ (q, 1) iff q′ ≤ q in Q.

Of course ≤ is reflexive. To see that it is transitive, observe that if (p, 0) ≤ (q, 1) ≤ (p̃, 0) then there
is a p′ ≥ p such that φ(p′) ≤ q, and now p′ ≤ p̃, so (p, 0) ≤ (p̃, 0). Similarly, (q, 1) ≤ (q̃, 1) whenever
(q, 1) ≤ (p, 0) ≤ (q̃, 1). The other cases to check are equally easy. It is not necessarily the case that ≤ is
antisymmetric, since it is possible to have (p, 0) ≤ (q, 1) ≤ (p, 0); but we have an equivalence relation ∼= on
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S defined by saying that s ∼= t if s ≤ t and t ≤ s, and a natural partial order on the set R of equivalence
classes defined by saying that s• ≤ t• iff s ≤ t.

The map p 7→ (p, 0)• : P → R is an order-isomorphism between P and its image P̃ ⊆ R. Now for any
q ∈ Q there is a p ∈ P such that (q, 1) ≤ (p, 0). PPP Since φ is a Tukey function, A = {p′ : φ(p′) ≤ q} must
be bounded above in P ; let p0 be an upper bound for A. Now because P is upwards-directed, there is a
p ∈ P such that p0 ≤ p and ψ(q) ≤ p, and in this case (q, 1) ≤ (p, 0). QQQ This is what we need to see that P̃
is cofinal with R. Similarly, Q is order-isomorphic to its canonical image in R, and this too is cofinal with
R. So both P and Q are isomorphic to cofinal subsets of R.

(b) Conversely, if P and Q are both isomorphic to cofinal subsets of a partially ordered set R, then P ,
R and Q are all Tukey equivalent, by 513Ed.

513G We shall repeatedly want to use some elementary facts about cofinal subsets.

Proposition Let P be a pre-ordered set and Q a cofinal subset of P . Then
(a) addQ = addP ;
(b) cfQ = cfP ;
(c) sat↑(Q) = sat↑(P ), c↑(Q) = c↑(P );

(d) link↑
<κ(Q) = link↑

<κ(P ) for any cardinal κ; in particular, link↑(Q) = link↑(P ) and d↑(Q) = d↑(P );
(e) buQ = buP .

proof All except (e) are consequences of 513Ed and 513Ee. As for bursting numbers, every cofinal subset
of Q is also cofinal with P , so buP ≤ buQ. For the reverse inequality, let Q1 be a cofinal subset of P such
that #({q : q ∈ Q1, q ≤ p, p 6≤ q}) < buP for every p ∈ p. Let φ : Q1 → Q be any function such that
φ(q) ≥ q for every q ∈ Q1, so that φ[Q1] is cofinal with Q. If q ∈ Q, then

{q′ : q′ ∈ φ[Q1], q′ ≤ q, q 6≤ q′} ⊆ {φ(q′′) : q′′ ∈ Q1, q′′ ≤ q, q 6≤ q′′}

has cardinal less than buP , and φ[Q1] witnesses that buQ ≤ buP .

513H Definition Let P be a partially ordered set. Its σ-additivity addω P is the smallest cardinal of
any subset A of P such that A 6⊆

⋃
q∈D ]−∞, q] for any countable set D ⊆ P . If there is no such set, that

is, if cfP ≤ ω, I write addω P = ∞.

513I Proposition Let P be a partially ordered set. As in 512F, write p ≤′′′ A, for p ∈ P and A ⊆ P , if
there is a q ∈ A such that p ≤ q.

(a) addω P = add(P,≤′′′, [P ]≤ω).
(b) max(ω1, addP ) ≤ addω(P ).
(c) If addω P is an infinite cardinal, it is regular.
(d) If 2 ≤ κ ≤ addP , then (P,≤′′′, [P ]<κ) ≡GT (P,≤, P ). So if addP > ω, addω(P ) = addP .
(e) If Q is another partially ordered set and (P,≤′′′, [P ]≤ω) 4GT (Q,≤′′′, [Q]≤ω) (in particular, if P 4T Q)

then addω P ≥ addω Q.
(f) If Q ⊆ P is cofinal with P , then addω Q = addω P .
(g) If κ ≤ cfP then add(P,≤′′′, [P ]<κ) ≤ cfP . So if cfP > ω then addω P ≤ cfP .
(h) If cf(cfP ) > ω then cf(cfP ) ≥ addω P .

proof (a) All we have to do is to disentangle the definitions in 512Ba, 512F and 513H.

(b) is immediate from the definition of addω.

(c) ??? Suppose, if possible, that addω P = κ where κ > max(ω, cfκ). Express κ as supξ<λ κξ where
κξ < κ for every ξ < λ = cfκ. Let A ⊆ P be a set with cardinal κ such that A 6⊆

⋃
q∈D ]−∞, q] for any

countable set D ⊆ P . Express A as
⋃

ξ<λAξ where #(Aξ) = κξ for each ξ < λ. For each ξ < λ, there is a

countable set Dξ ⊆ P such that Aξ ⊆
⋃

q∈Dξ
]−∞, q]. Set B =

⋃
ξ<λDξ; then #(B) ≤ λ < κ, so there is a

countable set D ⊆ P such that B ⊆
⋃

q∈D ]−∞, q]. But now A ⊆
⋃

q∈D ]−∞, q]. XXX

(d) By 512Gc, (P,≤′′′, [P ]<κ) 4GT (P,≤, P ). In the other direction, because κ ≤ addP , we have a
function ψ : [P ]<κ → P such that I ⊆ ]−∞, ψ(I)] for every I ∈ [P ]<κ; so if we set φ(p) = p for p ∈ P , (φ, ψ)
will be a Galois-Tukey connection from (P,≤, P ) to (P,≤′′′, [P ]<κ), and (P,≤, P ) 4GT (P,≤′′′, [P ]<κ).
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Now if addP > ω,

addω P = add(P,≤′′′, [P ]≤ω) = add(P,≤, P ) = addP .

(e) Use (a) with 512Db and 512Gb.

(f) Use (e) and 513Ed.

(g) Let Q ⊆ P be a cofinal subset of P with cardinal cfP . If A ⊆ P is such that every member of
Q is dominated by a member of A, then A also is cofinal, so #(A) ≥ κ; thus Q witnesses that add(P,≤′′′

, [P ]<κ) ≤ cfP . Putting κ = ω1 we see that if cfP > ω then addω P ≤ cfP .

(h) ??? If ω < cf(cfP ) = λ < addω P let Q ⊆ P be a cofinal set with cardinal cfP and express Q as⋃
ξ<λQξ where #(Qξ) < cfP and Qξ ⊆ Qη whenever ξ ≤ η < λ. For each ξ < λ, Qξ cannot be cofinal

with P , so there is a pξ ∈ P such that pξ 6≤ q for any q ∈ Qξ. Now A = {pξ : ξ < λ} has cardinal less
than addω P , so there is a countable set D ⊆ P such that A ⊆

⋃
r∈D ]−∞, r]. For each r ∈ D there is a

qr ∈ Q such that r ≤ qr; let ξr < λ be such that qr ∈ Qξr . Because λ is uncountable and regular (being the
cofinality of a cardinal), ζ = supr∈D ξr is less than λ, and qr ∈ Qζ for every r ∈ D. But now there is an
r ∈ D such that pζ ≤ r ≤ qr ∈ Qζ , contrary to the choice of pζ . XXX

Remark The point of (b) and (d) here is that there are significant cases in which addP < ω1 < addω P .

*513J Cofinalities of products It is easy to find the additivity of a product of partially ordered sets
(511Hg). Calculating the cofinality of a product of partially ordered sets is surprisingly difficult, and there
are some extraordinary results in this area. (See Burke & Magidor 90; there is a taster in 542J below.)
Here I will give just one special fact which will be useful.

Proposition Suppose that the generalized continuum hypothesis is true. Let 〈Pi〉i∈I be a family of non-
empty partially ordered sets with product P . Set

κ = #({i : i ∈ I, cfPi > 1}), λ = supi∈I cfPi.

Then
(i) if κ and λ are both finite, cfP is the cardinal product

∏
i∈I cfPi;

(ii) if λ > κ and there is some γ < λ such that cfλ > #({i : i ∈ I, cfPi > γ}), then cfP = λ;
(iii) otherwise, cfP = max(κ+, λ+).

proof (a) For each i ∈ I, let Qi ⊆ Pi be a cofinal set with cardinal cfPi. Then Q =
∏

i∈I Qi is cofinal with
P =

∏
i∈I Pi, so cfP ≤ #(Q). If λ < ω, then every Qi must be just the set of maximal elements of Pi, so

Q is the set of maximal elements of P , and cfP = #(Q). This deals with case (i).

(b) cfP > κ. PPP Set J = {i : i ∈ I, cfPi > 1}. If 〈pi〉i∈J is any family in P , then we can choose
q ∈ P such that q(i) 6≤ pi(i) for every i ∈ J ; accordingly {pi : i ∈ J} cannot be cofinal with P . QQQ So if
max(ω, λ) ≤ κ,

cfP ≥ κ+ = 2κ

(because we are assuming the generalized continuum hypothesis)

= 2max(κ,λ) ≥ #(P{(i, q) : i ∈ J, q ∈ Qi}) ≥ #(
∏

i∈J

Qi) = #(Q)

(because #(Qi) = 1 for i ∈ I \ J)

≥ cfP,

and cfP = κ+ = max(κ+, λ+), as required by (iii).

(c) Note that cfP ≥ λ, because if R ⊆ P is cofinal with P then {p(i) : p ∈ R} is cofinal with Pi for each
i. So if κ is finite and λ is infinite,

λ ≤ cfP ≤ #(Q) ≤ max(ω, supi∈J #(Qi)) = λ
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and cfP = λ, as required by (ii).

(d) If λ is infinite and κ < cfλ then every function from κ to λ is bounded above in λ. So

λ ≤ cfP ≤ #(Q) ≤ #(λκ)

(where λκ, for once, denotes the set of functions from κ to λ)

= #(
⋃

ζ<λ

ζκ) ≤ max(ω, λ, sup
ζ<λ

#(ζκ)) ≤ max(ω, λ, sup
ζ<λ

2max(ζ,κ)) = λ,

again using GCH. Thus in this case also we have cfP = λ, as required by (ii).

(e) So we are left with the case in which cfλ = θ ≤ κ < λ. Let 〈λη〉η<θ be a family of cardinals less than
λ with supremum λ.

(ααα) Suppose that we are in case (iii), that is, #({i : i ∈ I, cfPi > γ}) ≥ θ for every γ < λ. Then
cfP > λ. PPP We can choose 〈i(η)〉η<θ inductively in I so that cfPi(η) > λη and i(η) 6= i(ξ) when ξ < η < θ.
If 〈pξ〉ξ<λ is any family in P , we can find q ∈ P such that q(i(η)) 6≤ pξ(i(η)) for any η < θ and ξ < λη, so
that q 6≤ pξ for any ξ < λ. As 〈pξ〉ξ<λ is arbitrary, cfP > λ. QQQ Now

cfP ≤ #(Q) ≤ #(λκ) ≤ 2max(κ,λ) = λ+ ≤ cfP ,

so cfP = λ+ = max(κ+, λ+), as required.

(βββ) Otherwise, we are in case (ii), and there is a cardinal γ < λ such that #(K) < θ, where K = {i :
i ∈ I, cfPi > γ}. Then supi∈K cfPi = λ, so (d) tells us that cf(

∏
i∈K Pi) = λ. On the other hand,

#(
∏

i∈I\K cfPi) ≤ 2max(γ,κ) ≤ λ.

Since we can identify P with the product of
∏

i∈K Pi and
∏

i∈I\K Pi, cfP ≤ #(λ × λ) = λ. But we noted

in (c) that cfP ≥ λ, so cfP = λ, as required. This completes the proof.

*513K I remarked in the notes to §512 that Galois-Tukey correspondences are not required to have
any special properties, and of course the same is true of Tukey functions. But it is also the case that
the ‘natural’ Tukey functions arising in Chapter 52 can in many cases be derived from Borel measurable
functions between Polish spaces. I now present some ideas taken from Solecki & Todorčević 04 which
may be regarded as a partial explanation of the phenomenon.

Definition I will say that a metrizably compactly based directed set is a partially ordered set P
endowed with a metrizable topology such that

(i) p ∨ q = sup{p, q} is defined for all p, q ∈ P , and ∨ : P × P → P is continuous;
(ii) {p : p ≤ q} is compact for every q ∈ P ;
(iii) every convergent sequence in P has a subsequence which is bounded above.

In this context, I will say that P is ‘separable’ or ‘analytic’ if it is separable, or analytic, in the topological
sense.

I leave it to you to check that many significant partially ordered sets are compactly based in the sense
defined here (513Xj-513Xn, 513Yg).

*513L Proposition Let P be a metrizably compactly based directed set.
(a) The ordering of P is a closed subset of P × P .
(b) P is Dedekind complete.
(c)(i) A non-decreasing sequence in P has an upper bound iff it is topologically convergent, and in this

case its supremum is its limit.
(ii) A non-increasing sequence in P converges topologically to its infimum.

(d) If p ∈ P and 〈pi〉i∈N is a sequence in P , then 〈pi〉i∈N is topologically convergent to p iff for every
I ∈ [N]ω there is a J ∈ [I]ω such that p = infn∈N supi∈J\n pi.

(e) Suppose that p ∈ P and a double sequence 〈pni〉n,i∈N in P are such that limi→∞ pni = pn is defined
in P and less than or equal to p for each n. Then there is a q ∈ P such that {i : pni ≤ q} is infinite for every
n ∈ N.
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proof Let ρ be a metric on P inducing its topology.

(a) We have only to observe that {(p, q) : p ≤ q} = {(p, q) : p ∨ q = q}.

(b) Suppose that A ⊆ P is non-empty and bounded above. Let B be the set of upper bounds of A.
Then E = {[p, q] : p ∈ A, q ∈ B} is a non-empty family of compact sets with the finite intersection property,
because any non-empty finite subset of A has a least upper bound. So there is a q0 ∈

⋂
E and now q0 must

be the supremum of A.

(c)(i) Suppose that 〈pi〉i∈N is a non-decreasing sequence in P . (α) If it has a topological limit p, then

p ∨ pj = limi→∞ pi ∨ pj = limi→∞ pi = p

for each j, so p is an upper bound for {pi : i ∈ N}; while if q is an upper bound for {pi : i ∈ N} then p ≤ q
by (a). Thus p = supi∈N pi. (β) If {pi : i ∈ N} is bounded above, then it has a least upper bound p, by (b).
Now ]−∞, p] is compact, therefore sequentially compact, and every subsequence of 〈pi〉i∈N has a convergent
sub-subsequence; by (α), the limit of this sub-subsequence is always its supremum, which must be p; so
〈pi〉i∈N itself converges to p.

(ii) Suppose that 〈pi〉i∈N is a non-increasing sequence in P . Then it lies in the compact set ]−∞, p0]
so has a convergent subsequence 〈p′i〉i∈N with limit p say. As in (i) just above,

p ∨ p′j = limi→∞ p′i ∨ p
′
j = limi→∞ p′j = p′j

for each j, so p is a lower bound for {p′i : i ∈ N}; while if q is a lower bound for {p′i : i ∈ N} then q ≤ p by
(a). Thus p = infi∈N p

′
i = infi∈N pi. What this shows is that infi∈N pi is the only cluster point of 〈pi〉i∈N and

is therefore its topological limit.

(d)(i) Suppose that p = limi→∞ pi. Note first that if q ∈ P then

lim supi→∞ ρ(q ∨ pi, p) ≤ limi→∞ ρ(q ∨ pi, q ∨ p) + ρ(q ∨ p, p) = ρ(q ∨ p, p),

lim supi→∞ ρ(p ∨ q ∨ pi, p) ≤ ρ((p ∨ q) ∨ p, p) = ρ(q ∨ p, p)

because ∨ is continuous. Now let I ⊆ N be infinite. By 513K(iii), there is an infinite I ′ ⊆ I such that
{pi : i ∈ I ′} is bounded above. We can choose inductively a strictly increasing sequence 〈in〉n∈N in I ′ such
that

ρ(supj≤n≤k pin , p) < 2−j , ρ(p ∨ supj≤n≤k pin , p) < 2−j

whenever j ≤ k in N. Set J = {in : n ∈ N}; then ρ(supj∈J,m≤j≤k pj , p) < 2−m whenever m ≤ k ∈ N and
[m, k] meets J . For each m, qm = supj∈J\m pj is defined in P , by (b) above; moreover, (c-i) tells us that
qm = limk→∞ supj∈J,m≤j≤k pj so

ρ(qm, p) = limk→∞ ρ(supj∈J,m≤j≤k pj , p) ≤ 2−m.

But this means that p is the topological limit of the non-increasing sequence 〈qm〉m∈N and must be infm∈N qm.
Thus 〈pi〉i∈N satisfies the condition proposed.

(ii) Now suppose that for every I ∈ [N]ω there is a J ∈ [I]ω such that p = infn∈N supi∈J\n pi. Then

any convergent subsequence of 〈pi〉i∈N has limit p. PPP Suppose the subsequence is 〈pin〉n∈N where 〈in〉n∈N

is strictly increasing. Set I = {in : n ∈ N}. Then we must have an infinite J ⊆ N such that p =
infm∈N supk∈J\m pik . Now (i) tells us that we also have an infinite K ⊆ J such that the limit p′ of 〈pin〉n∈N

is infm∈N supk∈K\m pik . Since supk∈K\m pik ≤ supk∈J\m pik for every m, p′ ≤ p. On the other hand, we

also have an infinite L ⊆ K such that p = infm∈N supk∈L\m pik ; so that p ≤ p′ and p = p′. QQQ

Since the condition tells us also that every subsequence of 〈pi〉i∈N has a sub-subsequence which is bounded
above, and therefore has a convergent sub-sub-subsequence, p is actually the limit of 〈pi〉i∈N.

(e) Note first that if 〈qi〉i∈N is a sequence in P converging to q∗ ∈ P , and ǫ > 0, there is a q′ ∈ P
such that ρ(q′, q∗) ≤ ǫ and {i : qi ≤ q′} is infinite. PPP By (d), there is an infinite J ⊆ N such that
q∗ = infn∈N supi∈J\n qi; by (c-ii), we can take q′ = supi∈J\n qi for some n. QQQ

For m, i ∈ N, set qmi = p ∨ supn≤m pni. Then limi→∞ qmi = p ∨ supn≤m pn = p for each m. We can

therefore find, for each m ∈ N, a qm ∈ P such that ρ(qm, p) ≤ 2−m and {i : qmi ≤ qm} is infinite. As
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〈qm〉m∈N → p, there is a q ∈ P such that {m : qm ≤ q} is infinite. Now, for any n ∈ N, there is an m ≥ n
such that qm ≤ q, so that

{i : pni ≤ q} ⊇ {i : qmi ≤ qm}

is infinite.

*513M Proposition Let P be a separable metrizably compactly based directed set, and give the set C
of closed subsets of P its Vietoris topology. Let Kb ⊆ C be the family of non-empty compact subsets of P
which are bounded above in P . Then K 7→ supK : Kb → P is Borel measurable.

proof Writing K for the family of non-empty compact subsets of P , we have a sequence 〈fn〉n∈N of

Borel measurable functions from K to P such that K = {fn(K) : n ∈ N} for every K ∈ K (5A4Dc). Set
gn(K) = supi≤n fi(K) for each K ∈ K and n ∈ N; because P is separable, every gn is Borel measurable (put
418Bd and 418Ac together). For K ∈ Kb, 〈gn(K)〉n∈N is a non-decreasing bounded sequence, so converges
to g(K) ∈ P , by 513L(c-i); now g : Kb → P is Borel measurable (418Ba). Since {q : q ≤ g(K)} is a closed set
including {fi(K) : i ∈ N}, it includes K, and g(K) is an upper bound for K; because g(K) = supi∈N fi(K),
g(K) = supK. So we have the result.

*513N Lemma Let P and Q be non-empty metrizably compactly based directed sets of which P is
separable, and φ : P → Q a Tukey function. Set

R = {(q, p) : p ∈ P, q ∈ Q, φ(p) ≤ q}.

Then
(a) R[ ]−∞, q] ] is bounded above in P for every q ∈ Q;
(b) R ⊆ Q× P is usco-compact.

proof (a) Because P is non-empty, we need consider only the case in which R[ ]−∞, q] ] is non-empty. Let
〈pn〉n∈N be a sequence running over a dense subset of R[ ]−∞, q] ]. For each n ∈ N we have sequences 〈pni〉i∈N

in P and 〈qni〉n∈N in Q such that φ(pni) ≤ qni, limi→∞ pni = pn and limi→∞ qni = qn ≤ q. By 513Le, there
is a q′ ∈ Q such that In = {i : qni ≤ q′} is infinite for every n ∈ N. Because φ is a Tukey function, there is
a p′ ∈ P such that pni ≤ p′ whenever n ∈ N and i ∈ In. But now {p : p ≤ p′} is closed, so it contains every
pn and p′ is an upper bound for R[ ]−∞, q] ].

(b) In particular, for any q ∈ Q, R[{q}] is bounded above in P , therefore relatively compact; since R is
closed, every R[{q}] is closed and therefore compact. Now suppose that F ⊆ P is closed and that 〈qn〉n∈N

is a sequence in R−1[F ] converging to q ∈ Q. Then there is a q∗ ∈ Q such that J = {n : qn ≤ q∗} is infinite.
For n ∈ J , let pn ∈ F be such that (qn, pn) ∈ R. Then {pn : n ∈ J} is included in the order-bounded set
R−1[ ]−∞, q∗] ], so is relatively compact, and 〈pn〉n∈N has a cluster point p say. Of course p ∈ F ; also (q, p)
is a cluster point of 〈(qn, pn)〉n∈N, so belongs to R = R, and q ∈ R−1[F ]. As q is arbitrary, R−1[F ] is closed;
as F is arbitrary, R is usco-compact.

*513O Theorem (Solecki & Todorčević 04) Let P and Q be metrizably compactly based directed
sets such that P 4T Q. Let Σ be the σ-algebra of subsets of P generated by the Souslin-F sets.

(a) If P is separable, there is a Borel measurable dual Tukey function ψ : Q→ P .
(b) If P is separable and Q is analytic, there is a Σ-measurable Tukey function φ : P → Q.

proof If either P or Q is empty, so is the other, and the result is trivial; suppose that they are non-empty.

(a) Let φ0 : P → Q be a Tukey function, and set R = {(q, p) : p ∈ P, q ∈ Q, φ0(p) ≤ q}, so that R is
usco-compact (513N). Let C be the set of closed subsets of P with its Vietoris topology; then q 7→ R[{q}] is
Borel measurable (5A4Db). Since ∅ is an isolated point of C, Q0 = {y : R[{y}] 6= ∅} is a Borel set in Q. If
q ∈ Q0, then R[{q}] is a non-empty compact subset of P which is bounded above (513Na), so 513M tells us
that q 7→ supR[{q}] : Q0 → P is Borel measurable. Fix any p0 ∈ P and set ψ(q) = supR[{q}] if q ∈ Q0, p0
if q ∈ Q \Q0. Then ψ is Borel measurable. If p ∈ P , q ∈ Q and φ0(p) ≤ q, then (q, p) ∈ R, p ∈ R[{q}] and
p ≤ ψ(q); thus (φ0, ψ) is a Galois-Tukey connection and ψ is a dual Tukey function.
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(b) R ⊆ Q×P is a closed set (422Da) and R[Q] = P . Because P and Q are separable and metrizable, R
can be obtained by Souslin’s operation from products of closed sets. By the von Neumann-Jankow selection
theorem (423N), there is a Σ-measurable φ : P → Q such that (φ(p), p) ∈ R for every p ∈ P . If q ∈ Q, then
{p : φ(p) ≤ q} ⊆ R[ ]−∞, q] ] is bounded above in P , so φ is a Tukey function.

513P The last result in this section is entirely unconnected with the rest, and is a standard trick; but
it will be useful later and contains an implicit challenge (513Yj).

Lemma Let P and Q be non-empty partially ordered sets, and suppose that (i) every non-decreasing
sequence in P has an upper bound in P (ii) there is no strictly increasing family 〈qξ〉ξ<ω1

in Q. Let
f : P → Q be an order-preserving function. Then there is a p ∈ P such that f(p′) = f(p) whenever p′ ∈ P
and p′ ≥ p.

proof ??? Otherwise, we can choose 〈pξ〉ξ<ω1
inductively so that

p0 ∈ P ,
pξ+1 ≥ pξ and f(pξ+1) > f(pξ) for every ξ < ω1,
pξ is an upper bound for {pη : η < ξ} for every non-zero limit ordinal ξ < ω1.

But now 〈f(pξ)〉ξ<ω1
is strictly increasing, which is impossible. XXX

513X Basic exercises (a) Let P be a partially ordered set, and A the family of subsets of P which are
not cofinal with P . Show that (A, 6∋, P ) 4GT (P,≤, P ). Explain the relation of this fact to 511Xj, 513C(a-ii)
and 513Xb.

(b) Let P be a partially ordered set such that buP ≥ ω. Show that cf(buP ) ≥ addP .

(c) Let P , Q and R be partially ordered sets. (i) Show that if φ1 : P → Q and φ2 : Q → R are Tukey
functions, then φ2φ1 : P → R is a Tukey function. (ii) Show that if ψ1 : P → Q and ψ2 : Q → R are dual
Tukey functions, then ψ2ψ1 : P → R is a dual Tukey function.

(d) Let P and Q be partially ordered sets, and g : Q → P a function. Show that g is a dual Tukey
function iff for every p0 ∈ P there is a q0 ∈ Q such that g(q) ≥ p0 for every q ≥ q0.

(e)(i) Show that if P , Q are partially ordered sets, P is Dedekind complete and P 4T Q, there is an
order-preserving dual Tukey function from Q to P . (ii) Set P = [{0, 1, 2}]≤2 and Q = [{0, 1, 2}]2. Show that
there is no order-preserving Tukey function from P to Q.

(r) Let P be a partially ordered set. Show that if κ ≥ cfP and λ ≤ addP then P 4T [κ]<λ.

(f) Suppose that P is a partially ordered set and addP = cfP = κ ≥ ω. Show that P ≡T κ.

(g) Prove (a)-(d) of 513G directly, without mentioning Tukey functions or Galois-Tukey connections.

>>>(h)(i) Show that if P and Q are two partially ordered sets such that sat↑(P ) = #(P )+ = #(Q)+ =
sat↑(Q) then P and Q are Tukey equivalent. (Hint : if B ⊆ Q is an up-antichain, any injective function
φ : P → B is a Tukey function from P to Q.) (ii) Give an example of such a pair P , Q such that m(P ) 6= m(Q)
and buP 6= buQ.

(i) Let P , Q1, Q2 be partially ordered sets such that (P,≤, P ) 4GT (Q1,≤, Q1)⋉ (Q2,≤, Q2) (definition:
512I). Show that addω P ≥ min(addω Q1, addω Q2).

(j) Show that NN, with its usual ordering and topology, is a metrizably compactly based directed set.

(k) Let X be a set, 1 ≤ p < ∞ and P the positive cone (ℓp(X))+ of the Banach lattice ℓp(X), with the
topology induced by the norm of ℓp(X). Show that P is a metrizably compactly based directed set.

(l) Let Z be the ideal of subsets of N with asymptotic density zero, with its natural ordering and the

topology induced by the metric (a, b) 7→ supn≥1
1

n

#((a△ b) ∩ n). Show that Z is a metrizably compactly

based directed set.
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(m) Let X be a metrizable space, and F the set of nowhere dense compact subsets of X. Show that F ,
with its natural ordering and its Vietoris topology, is a metrizably compactly based directed set. (Hint : use
a Hausdorff metric.)

(n) Let X be a metrizable space, K the family of compact subsets of X, and I a σ-ideal of subsets of X.
Show that K∩ I, with the natural partial order and the Vietoris topology, is a metrizably compactly based
directed set.

(o) Let 〈Pi〉i∈I be a countable family of metrizably compactly based directed sets, with product P . Show
that P is metrizably compactly based.

(p) Let P be a metrizably compactly based directed set. (i) Show that P is a lattice iff it has a least
element. (ii) Show that if we adjoin a least element −∞ to P as an isolated point, P ∪{−∞} is a metrizably
compactly based directed set.

(q) Let 〈Pi〉i∈I be a family of partially ordered sets, and P their product. (i) Show that cfP is at most
the cardinal product

∏
i∈I cfPi, with equality if I is finite. (ii) Show that if P 6= ∅ then supi∈I cfPi ≤ cfP .

(iii) Show that if P 6= ∅ and for every i ∈ I there is a j ∈ I such that cfPi < cfPj , then supi∈I cfPi < cfP .

513Y Further exercises (a) Show that for a cardinal κ, there is a partially ordered set P such that
c↑(P ) = sat↑(P ) = κ iff κ is weakly inaccessible. (Hint : for such a κ, take X to be a product of discrete
spaces, one of each cardinality less than κ, and P the family of proper closed subsets of X.)

(b) Show that for any cardinal κ > 0 there is a supported relation (A,R,B) such that sat(A,R,B) = κ.

(c) For a non-empty upwards-directed set P , a topological space X and A ⊆ X, write clP (A) for the set

of points x ∈ X for which there is a function f : P → A such that x ∈ f [C] for every cofinal set C ⊆ P ;
equivalently, f [[F↑(P )]] → x, where F↑(P ) is the filter on P generated by sets of the form [p,∞[ as p runs
over P . Now let P and Q be upwards-directed sets. Show that P 4T Q iff clP (A) ⊆ clQ(A) for any subset
A of any topological space.

(d) For partially ordered sets P and Q, say that P ≈ Q if there is a partially ordered set R into which both
P and Q can be embedded as cofinal subsets. (i) Show that P ≈ Q iff there is a Galois-Tukey connection
(φ, ψ) from (P,≤, P ) to (Q,≤, Q) such that (ψ, φ) is a Galois-Tukey connection from (Q,≤, Q) to (P,≤, P ).
(ii) Show that if P , R and R′ are partially ordered sets such that P can be embedded as a cofinal subset into
both R and R′, then R ≈ R′. (iii) Show that ≈ is an equivalence relation on the class of partially ordered
sets. (iv) Show that if P is a set of partially ordered sets, and P ≈ P ′ for all P , P ′ ∈ P, then there is a
partially ordered set R such that every member of P can be embedded into R as a cofinal set. (v) Give an
example of partially ordered sets P and Q such that P ≡T Q but P 6≈ Q.

(e) For a cardinal κ and a supported relation (A,R,B) set add<κ(A,R,B) = add(A,R′′′, [B]<κ). Which
of the ideas of 513I can be extended to the general context?

(f) Show that there are two families 〈(Ai, Ri, Bi)〉i∈I and 〈(Ci, Si, Di)〉i∈I of supported relations, with
simple products (A,R,B) and (C, S,D) respectively, such that cov(Ai, Ri, Bi) = cov(Ci, Si, Di) for each i,
but cov(A,R,B) 6= cov(C, S,D). (Hint : examine the proof of 513J.)

(g) Let X be a set and U a solid linear subspace of RX with an order-continuous norm under which it
is a Banach lattice. Show that its positive cone, with its norm topology, is a metrizably compactly based
directed set.

(h) Explore possible definitions of ‘compactly based’ partially ordered set which do not require the
topology to be metrizable.

(i) Let P be an analytic metrizably compactly based directed set. Show that P is Polish. (Hint : Solecki
& Todorčević 04.)
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(j) For partially ordered sets P and Q, say that QzP if for every order-preserving f : P → Q there is a
p ∈ P such that f(p′) = f(p) for every p′ ≥ p. Explore the properties of the relation z.

513 Notes and comments Most of the first part of this section consists of elementary verifications; an
exception is the Erdős-Tarski theorem on the cellularity and saturation of a partially ordered set (513Bb-
513Bc), which can equally well be regarded as a theorem about topological spaces or Boolean algebras (see
514Da and 514Nc). As usual, I have presented the ideas of the last two sections in an ahistorical manner;
the original objective of Tukey 1940 was to classify directed sets from the point of view of net-convergence
(513Yc).

I have starred 513K-513O because I do not expect to rely on them in the rest of this work. Nevertheless
I think that they give a useful support to the ideas here, particularly in the context of §526, where these
‘compactly based’ partial orders appear naturally. Note that 513Ld tells us that if a directed set P is
metrizably compactly based, there is a unique witnessing topology; every topological property of P must be
a reflection of a property of the ordering.

Version of 16.5.14

514 Boolean algebras

The cardinal functions of Boolean algebras and topological spaces are intimately entwined; necessarily so,
because we have a functorial connexion between Boolean algebras and zero-dimensional compact Hausdorff
spaces (312Q). In this section I run through the elementary ideas. In 514D-514E I list properties of cardinal
functions of Boolean algebras, corresponding to the relatively familiar results in 5A4B for topological spaces;
Stone spaces (514B), regular open algebras (514H) and category algebras (514I) provide links of different
kinds between the two theories. It turns out that some of the most important features of the cofinal structure
of a pre-ordered set can also be described in terms of its ‘up-topology’ (514L-514M) and the associated regular
open algebra (514N-514S). I conclude with a brief note on finite-support products (514T-514U).

514A I put a special property of locally compact spaces into the language of this chapter.

Lemma Let (X,T) be a topological space. Then d(X) ≥ d↓(T\{∅}). If X is locally compact and Hausdorff,
then d(X) = d↓(T \ {∅}).

proof If x ∈ X, then {G : x ∈ G ∈ T} is downwards-centered in T \ {∅}. So

d↓(T \ {∅}) ≤ cov(T \ {∅},∋, X) = d(X).

Now suppose that X is locally compact and Hausdorff. Set κ = d↓(T \ {∅}), and let 〈Hξ〉ξ<κ be a cover

of T \ {∅} by downwards-centered sets. For ξ < κ set Fξ =
⋂
{H : H ∈ Hξ}, and let D ⊆ X be a set with

cardinal at most κ such that D∩Fξ 6= ∅ whenever ξ < κ and Fξ 6= ∅. If G ⊆ X is a non-empty open set, then

there is a non-empty relatively compact open set H0 such that H0 ⊆ G (recall that X, being locally compact
and Hausdorff, is certainly regular). There is some ξ < κ such that H0 ∈ Hξ; because {H : H ∈ Hξ} is

a family of closed sets with the finite intersection property containing the compact set H0, its intersection
Fξ is not empty. Also Fξ ⊆ H0 ⊆ G, so D ∩G ⊇ D ∩ Fξ is non-empty. As G is arbitrary, D is dense, and
d(X) ≤ #(D) ≤ κ. We know already that κ ≤ d(X), so they are equal.

514B Stone spaces Necessarily, any cardinal function ζ of topological spaces corresponds to a cardinal
function ζ̃ of Boolean algebras, taking ζ̃(A) = ζ(Z) where Z is the Stone space of A. Working through the
functions described in 5A4A and 511D, we have the following results.

Theorem Let A be any Boolean algebra and Z its Stone space. For a ∈ A let â be the corresponding
open-and-closed subset of Z.

(a) #(A) is 2w(Z) = 2#(Z) if A is finite, w(Z) otherwise.
(b) sat(A) = sat(Z), c(A) = c(Z).
(c) π(A) = π(Z).

c© 2003 D. H. Fremlin
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(d) d(A) = d(Z).

(e) Let Nwd(Z) be the ideal of nowhere dense subsets of Z. Then wdistr(A) = addNwd(Z).

proof Let E be the algebra of open-and-closed subsets of Z, so that a 7→ â is an isomorphism from A to E .
The essential fact here is that E \ {∅} is coinitial with T \ {∅}, where T is the topology of Z, so that (writing
A+ for A \ {0}, as usual)

(A+,⊇,A+) ∼= (E \ {∅},⊇, E \ {∅}) ≡GT (T \ {∅},⊇,T \ {∅})

by 513E(d-ii), inverted.

(a) If A is finite, so is Z, and in this case A ∼= PZ has cardinal 2#(Z). If A is infinite, so are Z and w(Z).
Because E is a base for the topology of Z, w(Z) ≤ #(E) = #(A). On the other hand, let U be a base for
the topology of Z with #(U) = w(Z). Then every member of E is expressible as the union of a finite subset
of U , so

#(A) = #(E) ≤ #([U ]<ω) ≤ max(ω,#(U)) = w(Z).

(b)-(c)

c(A) = c(E) = c↓(E \ {∅}) = c↓(T \ {∅}) = c(Z),

sat(A) = sat(E) = sat↓(E \ {∅}) = sat↓(T \ {∅}) = sat(Z),

π(A) = π(E) = ci(E \ {∅}) = ci(T \ {∅}) = π(Z)

using 513Gb, inverted, to move between E \ {∅} and T \ {∅}.

(d)

d(A) = d↓(A+) = d↓(E \ {∅}) = d↓(T \ {∅})

(513Gd, inverted)

= d(Z)

because Z is compact and Hausdorff (514A).

(e) Let (Pou(A),⊑∗) be the pre-ordered set of partitions of unity in A as described in 512Ee. For
C ∈ Pou(A), set

f(C) = Z \
⋃

c∈C ĉ.

Then f(C) ∈ Nwd(Z). PPP??? Otherwise, since f(C) is certainly closed, its interior is non-empty, and there
is a non-zero a ∈ A such that â ⊆ f(C); but in this case a ∩ c = 0 for every c ∈ C and C is not a partition
of unity. XXXQQQ

If C, D ∈ Pou(A) and C ⊑∗ D then f(C) ⊆ f(D). PPP If d ∈ D, C0 = {c : c ∈ C, c ∩ d 6= 0} is finite and

d ⊆ supC0; so d̂ ⊆
⋃

c∈C0
ĉ is disjoint from f(C). Thus Z \ f(D) ⊆ Z \ f(C) and f(C) ⊆ f(D). QQQ

If C, D ∈ Pou(A) and f(C) ⊆ f(D) then C ⊑∗ D. PPP If d ∈ D then the compact set d̂ is included in the

open set
⋃

c∈C ĉ. So there is a finite set C0 ⊆ C such that d̂ ⊆
⋃

c∈C0
ĉ and {c : c ∈ C, d ∩ c 6= 0} ⊆ C0 is

finite. QQQ

f [Pou(A)] is cofinal with Nwd(Z). PPP If F ∈ Nwd(Z), let C ⊆ A be a maximal disjoint set such that
F ∩ ĉ = ∅ for every c ∈ C. ??? If C is not a partition of unity in A, let a ∈ A+ be such that a ∩ c = 0 for

every c ∈ C. Then â \F is a non-empty open set, so there is a non-zero b ∈ A such that b̂ ⊆ â \F ; in which
case we ought to have added b to C. XXX So C ∈ Pou(A) and F ⊆ f(C). QQQ

By 513E(d-i), Pou(A) and Nwd(Z) are Tukey equivalent, and

addNwd(Z) = add Pou(A) = wdistr(A)

as remarked in 512Ee.
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514C I begin the detailed study of cardinal functions of Boolean algebras with two elementary remarks.

Lemma Let A be a Boolean algebra.
(a) d(A) is the smallest cardinal κ such that A is isomorphic, as Boolean algebra, to a subalgebra of Pκ.
(b) link(A) is the smallest cardinal κ such that A is isomorphic, as partially ordered set, to a subset of

Pκ.

proof (a)(i) If we have an isomorphism π from A to a subalgebra of Pκ, then Aξ = {a : ξ ∈ πa} is centered
for each ξ < κ, and

⋃
ξ<κAξ = A+; so d(A) ≤ κ.

(ii) Let Z be the Stone space of A, and for a ∈ A let â ⊆ Z be the corresponding open-and-closed set.
There is a dense set D ⊆ Z with cardinal d(A) (514Bd), and a 7→ D ∩ â : A → PD is an injective Boolean
homomorphism; so A is isomorphic to a subalgebra of PD ∼= P(d(A)).

(b)(i) κ ≤ link(A). PPP Let 〈Aξ〉ξ<link(A) be a family of linked subsets of A+ covering A+. Set A′
ξ = {b :

∃ a ∈ Aξ, b ⊇ a}; then each A′
ξ is still linked in A. Define h : A → Pκ by setting h(a) = {ξ : a ∈ A′

ξ}.
Then h is order-preserving. Now if a, b ∈ A and a 6⊆ b, there is a ξ < κ such that a \ b ∈ Aξ, in which case
ξ ∈ h(a) \ h(b). Thus h is an embedding and κ ≤ link(A). QQQ

(ii) link(A) ≤ κ. PPP Let h : A → Pκ be an order-isomorphism between A and a subset of Pκ. For each
ξ, set

Aξ = {a : a ∈ A, ξ ∈ h(a) \ h(1 \ a)}.

If a, b ∈ Aξ then ξ ∈ h(b) \ h(1 \ a) so b 6⊆ 1 \ a and a ∩ b 6= 0; thus Aξ is linked. If a ∈ A+ then a 6⊆ 1 \ a so
h(a) 6⊆ h(1 \ a) and there is a ξ < κ such that ξ ∈ h(a) \ h(1 \ a); thus A+ =

⋃
ξ<κAξ and link(A) ≤ κ. QQQ

514D Theorem Let A be a Boolean algebra.
(a)

c(A) ≤ link(A) ≤ d(A) ≤ π(A) ≤ #(A) ≤ 2link(A), τ(A) ≤ π(A),

sat(A) = c(A)+ unless sat(A) is weakly inaccessible, in which case sat(A) = c(A).

(b) If A ⊆ A, there is a B ∈ [A]<sat(A) with the same upper bounds as A; similarly, there is a B ∈ [A]<sat(A)

with the same lower bounds as A.
(c) linkc(A)(A) = link<sat(A)(A) = π(A).

(d) If A is not purely atomic, wdistr(A) ≤ min(d(A), 2τ(A)) is a regular infinite cardinal.
(e) #(A) ≤ max(4, supλ<sat(A) τ(A)λ), where τ(A)λ is the cardinal power.

proof Let Z be the Stone space of A; for a ∈ A, let â ⊆ Z be the corresponding open-and-closed set.

(a) This is mostly a repetition of 511Ia. By 514Cb, #(A) ≤ 2link(A). By 513Bc, inverted, and the
definitions in 511Db,

sat(A) = sat↓(A+) = c↓(A+)+ = c(A)+

unless sat(A) is a regular uncountable limit cardinal, that is, is weakly inaccessible, and otherwise sat(A) =
c(A). (See also 5A4Ba.)

(b) By 5A4Bd, applied to {â : a ∈ A}, there is a B ∈ [A]<sat(A) such that
⋃

b∈B b̂ =
⋃

a∈A â. Now if c is

an upper bound of B, then ĉ is a closed set including b̂ for every b ∈ B, so it also includes â for every a ∈ A,
and c is an upper bound of A.

Applying this to {1 \ a : a ∈ A} we see that there is a set B′ ∈ [A]<sat(A) with the same lower bounds as
A.

(c) Set κ = link<sat(A)(A). By 511Ia, κ ≤ linkc(A)(A) ≤ π(A). On the other hand, if A ⊆ A+ is < sat(A)-

linked, it has a lower bound in A+. PPP By (b), there is a set B ⊆ A, with the same lower bounds as A,
such that #(B) < sat(A). Now B has a non-zero lower bound because A is < sat(A)-linked, so A also has a
non-zero lower bound. QQQ We have a cover 〈Aξ〉ξ<κ of A+ by < sat(A)-linked sets; each Aξ has a non-zero
lower bound aξ say; and {aξ : ξ < κ} is a π-base for A, so π(A) ≤ κ.
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(d)(i) Because wdistr(A) = addNwd(Z), where Nwd(Z) is the ideal of nowhere dense subsets of Z
(514Be), and is not ∞ (511Ie), it must be a regular infinite cardinal (513C(a-i)). (Or argue directly from
511Df.)

(ii) As for the upper bound for wdistr(A), suppose that a ∈ A+ includes no atom and that D ∈
[A]τ(A) τ -generates A. Since A and τ(A) are surely infinite, the subalgebra B of A generated by D ∪ {a} is

still with cardinal τ(A) (331Gc). For B ⊆ B set EB = Z ∩
⋂

b∈B b̂, and set C = {B : B ⊆ B, EB is nowhere

dense}. Then
⋃

B∈C EB ⊇ â. PPP Take any z ∈ â. Set B = {b : b ∈ B, z ∈ b̂}. ??? If EB has non-empty
interior, it includes ĉ for some non-zero c ⊆ a. But now, for any d ∈ D, either d ∈ B and c ⊆ d, or 1 \ d ∈ B
and c ∩ d = 0. So the order-closed subalgebra {d : either c ⊆ d or c ∩ d = 0} includes D and must be the
whole of A, and c ⊆ a is an atom. XXX So intEB = ∅, B ∈ C and z ∈ EB . As z is arbitrary, â ⊆

⋃
B∈C EB . QQQ

By 514Be, with 514Bd,

wdistr(A) ≤ #(C) ≤ 2#(B) = 2τ(A).

At the same time, if Y ⊆ Z is any dense set with cardinal d(Z), then {{y} : y ∈ Y ∩ â} is a family of
nowhere dense sets with no upper bound in the ideal of nowhere dense subsets of Z; so 514Be also tells us
that

wdistr(A) ≤ #(Y ∩ â) ≤ d(Z) = d(A).

(e) (Compare 4A1O.) Set κ = supλ<sat(A) τ(A)λ. If #(A) > 4 then τ(A) ≥ 2 so κ ≥ supλ<sat(A) 2λ,

and the result is immediate from 511Ic if A is finite. If A is infinite, so is sat(A), while λ < κ for every
λ < sat(A), so sat(A) ≤ κ. Let D ⊆ A be a set with cardinal τ(A) which τ -generates A. Define 〈Dξ〉ξ<κ

inductively by setting

D0 = D, Dξ = {1 \ a : a ∈ A, a = supC for some C ⊆
⋃

η<ξDη}

for ξ < κ. Then #(Dξ) ≤ κ for every ξ < κ. PPP The point is that, by (b), every member of Dξ is expressible

in the form 1 \ supC for some C ∈ [
⋃

η<ξDη]<sat(A). But the inductive hypothesis tells us that
⋃

η<ξDη

has cardinal at most κ, so the number of its subsets with cardinal less than sat(A) is also κ (5A1Ff, because
sat(A) is regular), and #(Dξ) ≤ κ. QQQ

At the end of the induction, set B =
⋃

ξ<sat(A)Dξ. Then 1 \ (b ∪ b′) ∈ B for every b, b′ ∈ B, so B is

a subalgebra of A. Also it is order-closed. PPP If B ⊆ B has a supremum a ∈ A, there is a C ⊆ B such
that #(C) < sat(A) and a = supC. Now there must be some set J ⊆ sat(A) such that #(J) < sat(A) and
C ⊆

⋃
η∈J Dη. Since sat(A) is regular (513Bb), ζ = sup J is less than sat(A). Now 1 \ a ∈ Dζ+1 and a ∈ B.

QQQ
By the choice of D, B = A, so #(A) = #(B) ≤ κ.

514E Subalgebras, homomorphic images, products: Theorem Let A be a Boolean algebra.
(a) If B is a subalgebra of A, then

sat(B) ≤ sat(A), c(B) ≤ c(A),

link<κ(B) ≤ link<κ(A)

for every κ ≤ ω, in particular,

d(B) ≤ d(A), link(B) ≤ link(A).

(b) If B is a regularly embedded subalgebra of A then, in addition, link<κ(B) ≤ link<κ(A) for κ > ω,
π(B) ≤ π(A) and wdistr(A) ≤ wdistr(B).

(c) If B is a Boolean algebra and φ : A → B is a surjective order-continuous Boolean homomorphism,
then

sat(B) ≤ sat(A), c(B) ≤ c(A), π(B) ≤ π(A),

link<κ(B) ≤ link<κ(A) for every cardinal κ,

d(B) ≤ d(A), link(B) ≤ link(A),
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and also

wdistr(A) ≤ wdistr(B), τ(B) ≤ τ(A).

(d) If B is a principal ideal of A, then

sat(B) ≤ sat(A), c(B) ≤ c(A), π(B) ≤ π(A),

link<κ(B) ≤ link<κ(A) for every κ,

d(B) ≤ d(A), link(B) ≤ link(A);

moreover,

wdistr(A) ≤ wdistr(B), τ(B) ≤ τ(A).

(e) If B is an order-dense subalgebra of A then

sat(B) = sat(A), c(B) = c(A), π(B) = π(A),

link<κ(B) = link<κ(A) for every κ,

d(B) = d(A), link(B) = link(A),

and finally

wdistr(B) = wdistr(A), τ(A) ≤ τ(B).

(f) If A is the simple product of a family 〈Ai〉i∈I of Boolean algebras, then

τ(A) ≤ max(ω, supi∈I τ(Ai),min{λ : #(I) ≤ 2λ}),

sat(A) ≤ max(ω,#(I)+, supi∈I sat(Ai)),

c(A) ≤ max(ω,#(I), supi∈I c(Ai)),

π(A) ≤ max(ω,#(I), supi∈I π(Ai)),

link<κ(A) ≤ max(ω,#(I), supi∈I link<κ(Ai)) for every κ,

link(A) ≤ max(ω,#(I), supi∈I link(Ai)),

d(A) ≤ max(ω,#(I), supi∈I d(Ai)),

and

wdistr(A) = mini∈I wdistr(Ai).

proof Write Z for the Stone space of A.

(a) Any disjoint subset of B+ is a disjoint subset of A+, so sat(B) ≤ sat(A) and c(B) ≤ c(A). If κ ≤ ω
and A is a cover of A+ by sets which are downwards <κ-linked in A+, then A ∩B is downwards <κ-linked
in B+ for each A ∈ A, so link<κ(B) ≤ link<κ(A).

(b) For each non-zero a ∈ A, the set Ba = {b : b ∈ B, a ⊆ b} does not have infimum 0 in A so cannot
have infimum 0 in B; let ψ(a) ∈ B+ be a lower bound for Ba. If now we set φ(b) = b for b ∈ B, (φ, ψ) is a
Galois-Tukey connection from (B+,⊇,B+) to (A+,⊇,A+). It follows at once that

link<κ(B) = link<κ(B+,⊇,B+) ≤ link<κ(A+,⊇,A+) = link<κ(A)

for arbitrary κ (512Dd), and that

π(B) = cov(B+,⊇,B+) ≤ cov(A+,⊇,A+) = π(A)

(512Da).

Now suppose that κ < wdistr(A) and that 〈Bξ〉ξ<κ is a family of partitions of unity in B. Then
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D = {d : d ∈ B, {b : b ∈ Bξ, b ∩ d 6= 0} is finite for every ξ < κ}

is order-dense in B. PPP Take any non-zero d ∈ B. supBξ = 1 in A, that is, Bξ is still a partition of unity
in A, for each ξ. So there is a partition A of unity in A such that {b : b ∈ Bξ, b ∩ a 6= 0} is finite for every
ξ < κ and a ∈ A. Let a ∈ A be such that d ∩ a 6= 0, and set eξ = sup{b : b ∈ Bξ, b ∩ a 6= 0} for each ξ < κ.
Then a ⊆ eξ ∈ B for each ξ. This means that {d} ∪ {eξ : ξ < κ} has a non-zero lower bound d ∩ a in A; as
B is regularly embedded in A, there is a non-zero d′ ⊆ d which is also a lower bound for {eξ : ξ < κ}. But
this means that d′ ∈ D. As d is arbitrary, D is order-dense in B. QQQ

There is therefore a partition of unity included in D. As 〈Bξ〉ξ<κ is arbitrary, wdistr(B) ≥ wdistr(A).

(c)(i) For any b ∈ B+ there is a ψ(b) ∈ A+ such that φψ(b) ⊆ b and a = 0 whenever a ⊆ ψ(b) and
φa = 0. PPP Consider D = {d : d ∈ A, φd ⊇ b}. This is a non-empty downwards-directed subset of A and b
is a non-zero lower bound of φ[D]. As φ is supposed to be order-continuous, D must have a non-zero lower
bound in A; let ψ(b) be such a lower bound. Since there is a d ∈ A such that φd = b, and now d ∈ D, we
must have φψ(b) ⊆ φd = b. If a ⊆ ψ(b) and φa = 0, then φ(1 ⊆ a) = 1 ⊇ b, 1 \ a ∈ D and a ⊆ ψ(b) ⊆ 1 \ a, so
a = 0. QQQ

(ii) If κ = sat(A) and 〈bξ〉ξ<κ is a family in B+, then 〈ψ(bξ)〉ξ<κ is a family in A+ and there are
distinct ξ, η < κ such that a = ψ(bξ) ∩ ψ(bη) is non-zero. Now

0 6= φa ⊆ φψ(bxi) ∩ φψ(bη) ⊆ bξ ∩ bη.

As 〈bξ〉ξ<κ is arbitrary, sat(B) ≤ sat(A). By a similar argument, or using 514Da, we see that c(B) ≤ c(A).

(iii) Let A be a coinitial subset of A+ of cardinal π(A). Set B = φ[A] \ {0}. If b ∈ B+, there is an
a ∈ A such that a ⊆ ψ(b), and now φa ∈ B and φa ⊆ φψ(b) ⊆ b. So B is cofinal with B+ and

π(B) ≤ #(B) ≤ #(A) = π(A).

(iv) Let W be the Stone space of B. Write Nwd(Z), Nwd(W ) for the ideals of nowhere dense subsets
of Z and W , so that addNwd(Z) = wdistr(A) and addNwd(W ) = wdistr(B) (514Be). Corresponding to
φ : A → B we have an injective continuous function θ : W → Z such that θ−1[E] ∈ Nwd(W ) for every
E ∈ Nwd(Z) (312Sb, 313R). Also θ[F ] ∈ Nwd(Z) for every F ∈ Nwd(W ). PPP??? Otherwise, because θ[F ]
is compact, therefore closed, there is a non-empty open set G ⊆ θ[F ]. Now θ−1[G] is a non-empty open
set, and is included in F , because θ is injective; but this is impossible. XXXQQQ So if J0 ⊆ Nwd(W ) and
#(J0) < wdistr(A), E =

⋃
{θ[F ] : F ∈ J0} belongs to Nwd(Z) and

⋃
J0 ⊆ θ−1[E] belongs to Nwd(W ).

This shows that addNwd(W ) ≥ addNwd(Z), so that wdistr(B) ≥ wdistr(A).

(v) As for τ(B), we have only to recall that if D ⊆ A is a τ -generating set with cardinal τ(A), the
order-closed subalgebra of B generated by φ[D] includes φ[A] = B (313Mb), and

τ(B) ≤ #(φ[D]) ≤ τ(A).

(d) If B is the principal ideal generated by b, then a 7→ a ∩ b : A → B is an order-continuous surjection,
so we can repeat the list in (c).

(e)(i) Because B+ is coinitial with A+ we can use 513Gc, inverted, to see that

sat(B) = sat↓(B+) = sat↓(A+) = sat(A), c(B) = c(A),

π(B) = ci(B+) = ci(A+) = π(A),

link<κ(B) = link↓
<κ(B+) = link↓

<κ(A+) = link<κ(A).

(ii) From (b) we know that wdistr(B) ≥ wdistr(A). For the reverse inequality, suppose that κ <
wdistr(B) and that 〈Aξ〉ξ<κ is any family of partitions of unity in A. For each ξ < κ set Bξ = {b : b ∈ B, ∃
a ∈ Aξ, b ⊆ a}. Then Bξ is order-dense in B and includes a partition of unity B′

ξ (313K). Now there is a

partition C of unity in B such that D′
ξc = {b : b ∈ B′

ξ, b ∩ c 6= 0} is finite for any ξ < κ and c ∈ C. C is still

a partition of unity in A, and Dξc = {a : a ∈ Aξ, a ∩ c 6= 0} is finite for every c ∈ C and ξ < κ. (For if a, a′

are distinct elements of Dξc, then {b : b ∈ D′
ξc, b ⊆ a} and {b : b ∈ D′

ξc, b ⊆ a′} are disjoint and not empty.)

As 〈Aξ〉ξ<κ is arbitrary, wdistr(B) ≤ wdistr(A).
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(iii) If D ⊆ B τ -generates B, then D also τ -generates A. PPP Applying 313Mb to the identity map from
B to A, we see that the order-closed subalgebra D of A generated by D includes B; but as any member of
A is the supremum of a subset of B, D = A. QQQ So τ(A) ≤ τ(B).

(f) We can identify each Ai with the principal ideal of A generated by an element ai, where 〈ai〉i∈I is a
partition of unity in A (315E). If κ = max(ω, supi∈I τ(Ai),min{λ : #(I) ≤ 2λ}), then for each i ∈ I choose
〈aiξ〉ξ<κ in Ai such that {aiξ : ξ < κ} τ -generates Ai, and let φ : I → Pκ be injective. For ξ < κ, set

bξ = supi∈I aiξ, cξ = supi∈φ(ξ) ai.

Let B be the order-closed subalgebra of A generated by {bξ : ξ < κ} ∪ {cξ : ξ < κ}. Then

ai = inf{cξ : ξ ∈ φ(i)} \ sup{cξ : ξ ∈ κ \ φ(i)} ∈ B

for each i. Because {b : b ∈ B, b ⊆ ai} is an order-closed subalgebra of Ai containing bξ ∩ ai = aiξ for every
ξ < κ, it is the whole of Ai, so Ai ⊆ B for every i ∈ I. It follows at once that B = A, so that τ(A) ≤ κ.

The other parts are all elementary.

514F For measure algebras, Maharam type is not only the cardinal function which gives most informa-
tion, but is also, as a rule, easy to calculate. For other Boolean algebras, it may not be obvious what the
Maharam type is. The following result sometimes helps.

Proposition Let A be a Dedekind complete Boolean algebra, and 〈aij〉i∈I,j∈J a τ -generating family in A

such that

〈aij〉j∈J is disjoint for every i ∈ I, supi∈I aij = 1 for every j ∈ J .

Then τ(A) ≤ max(ω,#(I)).

proof (a) We may suppose that J = κ is a cardinal. For i, j ∈ I set

a∗i = supξ<κ aiξ, bij = supξ<η<κ aiη ∩ ajξ.

Then

supη≤ζ aiη = a∗i \ supj∈I(bij \ supξ<ζ ajξ)

whenever i ∈ I and ζ < κ. PPP (i) If η ≤ ζ and j ∈ I, then aiη ⊆ a∗i and

aiη ∩ bij = sup
ξ<θ<κ

aiη ∩ aiθ ∩ ajξ = sup
ξ<η

aiη ∩ ajξ

(because 〈aiθ〉θ<κ is disjoint)

⊆ sup
ξ<ζ

ajξ,

so

supη≤ζ aiη ⊆ a∗i \ supj∈I(bij \ supξ<ζ ajξ).

(ii) If 0 6= c ⊆ a∗i and c ∩ aiη = 0 for every η ≤ ζ, there are an η > ζ such that c′ = c ∩ aiη is non-zero, and
a j ∈ I such that c′′ = c′ ∩ ajζ is non-zero. In this case c′′ ⊆ bij \ supξ<ζ ajξ, so c ∩ bij \ supξ<ζ ajξ 6= 0.
Accordingly

supη≤ζ aiη ⊇ a∗i \ supj∈I(bij \ supξ<ζ ajξ). QQQ

(b) Let B be the order-closed subalgebra of A generated by {a∗i : i ∈ I} ∪ {bij : i, j ∈ I}. Using
(a) for the inductive step, we see that supξ≤ζ aiξ ∈ B for every i ∈ I and ζ < κ. Consequently aiζ =
supξ≤ζ aiξ \ supξ<ζ aiξ belongs to B whenever i ∈ I and ζ < κ, and A = B is τ -generated by {a∗i : i ∈
I} ∪ {bij : i, j ∈ I}, so has Maharam type at most max(ω,#(I)).

514G Order-preserving functions of Boolean algebras (a) Let F be an ordinal function of Boolean
algebras, that is, a function defined on the class of Boolean algebras, taking ordinal values, and such that
F (A) = F (B) whenever A and B are isomorphic. We say that F is order-preserving if F (B) ≤ F (A)
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whenever B is a principal ideal of A. It is easy to check that all the cardinal functions defined in 511D
are order-preserving; see 514Ed. Now a Boolean algebra A is F -homogeneous if F (B) = F (A) for every
non-zero principal ideal B of A. Of course any principal ideal of an F -homogeneous Boolean algebra is again
F -homogeneous.

We have already seen ‘Maharam-type-homogeneous’ algebras in Chapter 33. I mention cellularity-
homogeneous algebras as a class which will be used later. The proof of the Erdős-Tarski theorem in
513Bb is based on the idea of upwards-saturation-homogeneous partially ordered set. Of course all the most
important ordinal functions of Boolean algebras actually take cardinal values.

(b) If F is any order-preserving ordinal function of Boolean algebras, and A is a Boolean algebra, then
(writing Aa for the principal ideal generated by a) {a : a ∈ A, Aa is F -homogeneous} is order-dense in A.
PPP If a ∈ A+, set ξ = min{F (Ab) : 0 6= b ⊆ a}, and let b be such that 0 6= b ⊆ a and F (Ab) = ξ; then Ab is
F -homogeneous. QQQ So if A is a Dedekind complete Boolean algebra, it is isomorphic to a simple product of
F -homogeneous Boolean algebras. (Argue as in the proof of 332B.)

(c) Similarly, if F0, . . . , Fn are order-preserving ordinal functions of Boolean algebras, and A is any
Boolean algebra, then {a : Aa is Fi-homogeneous for every i ≤ n} is order-dense in A; and if A is Dedekind
complete, it is isomorphic to a simple product of Boolean algebras all of which are Fi-homogeneous for every
i ≤ n.

(d) Of course any Boolean algebra which is homogeneous in the full sense (316N) is F -homogeneous
for every function F of Boolean algebras. Maharam’s theorem tells us that a Maharam-type-homogeneous
measurable algebra is homogeneous (331N).

514H Regular open algebras: Proposition Let (X,T) be a topological space and RO(X) its regular
open algebra (314O et seq.).

(a)(i) (RO(X)+,⊇,RO(X)+) 4GT (T \ {∅},⊇,T \ {∅}).
(ii) If X is regular, (RO(X)+,⊇,RO(X)+) ≡GT (T \ {∅},⊇,T \ {∅}).

(b)(i) sat(RO(X)) = sat(X), c(RO(X)) = c(X), π(RO(X)) ≤ π(X) and d(RO(X)) ≤ d(X).
(ii) If X is regular, π(RO(X)) = π(X).
(iii) If X is locally compact and Hausdorff, d(RO(X)) = d(X).

(c) Let Nwd(X) be the ideal of nowhere dense subsets of X.
(i) If X is regular, wdistr(RO(X)) ≤ addNwd(X).
(ii) If X is locally compact and Hausdorff, wdistr(RO(X)) = addNwd(X).

(d) If Y ⊆ X is dense, then G 7→ G ∩ Y is a Boolean isomorphism from RO(X) to RO(Y ).

proof (a) For G ∈ T \ {∅}, set ψ(G) = intG. If we set φ(G) = G for G ∈ RO(X)+, then (φ, ψ) is a
Galois-Tukey connection from (RO(X)+,⊇,RO(X)+) to (T \ {∅},⊇,T \ {∅}).

If X is regular, then RO(X)+ is coinitial with T\{∅}, so 513Ed, inverted, shows that they are equivalent.

(b)(i) Any disjoint family in RO(X)+ is a disjoint family of non-empty open subsets of X, so c(RO(X)) ≤
c(X) and sat(RO(X)) ≤ sat(X). On the other hand, if G is a disjoint family of non-empty open subsets of
X, then 〈intG〉G∈G is a disjoint family in RO(X)+, so c(X) ≤ c(RO(X)) and sat(RO(X)) ≤ sat(X).

By (a) and 513Ee, inverted,

π(RO(X)) = ci(RO(X)+) ≤ ci(T \ {∅}) = π(X),

d(RO(X)) = d↓(RO(X)+) ≤ d↓(T \ {∅} ≤ d(X)

by 514A.

(ii) If X is regular, RO(X)+ is coinitial with T \ {∅}, so ci(RO(X)+) = ci(T \ {∅}) and π(RO(X)) =
π(X).

(iii) If X is locally compact and Hausdorff it is also regular, so RO(X)+ is coinitial with T \ {∅}, and

d(X) = d↓(T \ {∅})

(514A)
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= d↓(RO(X)+) = d(RO(X)).

(c)(i) Let 〈Eξ〉ξ<κ be a family of nowhere dense sets in X, where κ < wdistr(RO(X)). For each ξ < κ,

set Gξ = {G : G ∈ RO(X), G ∩ Eξ = ∅}. Then Gξ is upwards-directed, and
⋃

Gξ = X \ Eξ, because any

point of X \Eξ belongs to a regular open set with closure disjoint from Eξ. But this means that supGξ = X
in RO(X) (314P), and there is a partition G′

ξ of unity included in Gξ. Because κ < wdistr(RO(X)), there

is a partition H of unity in RO(X) such that {G : G ∈ G′
ξ, G ∩H 6= ∅} is finite for each ξ and H ∈ H. It

follows that H ⊆
⋃
{G : G ∈ G′

ξ} is disjoint from Eξ whenever ξ < κ and H ∈ H. Accordingly
⋃

ξ<κEξ is

disjoint from
⋃

H and is nowhere dense. As 〈Eξ〉ξ<κ is arbitrary, addNwd(X) ≥ wdistr(RO(X)).

(ii) If X is locally compact and Hausdorff, suppose that κ < addNwd(X) and that 〈Gξ〉ξ<κ is a family
of partitions of unity in RO(X). Then Eξ = X \

⋃
Gξ is a nowhere dense closed set for each ξ (314P again).

So E =
⋃

ξ<κEξ is nowhere dense. Set

U = {U : U ⊆ X is open, U ⊆ X \ E is compact};

then U is an upwards-directed family with union X \ E, so includes a partition G of unity. But if H ∈ G
and ξ < κ, H is a compact set disjoint from Eξ, so must be included in the union of some finite subfamily
from Gξ, and {G : G ∈ Gξ, G ∩ H 6= ∅} is finite. As 〈Gξ〉ξ<κ is arbitrary, wdistr(RO(X)) ≥ addNwd(X)
and we have equality.

(d) If Y ⊆ X is dense, and we write intY ,
(Y )

for interior and closure in the subspace topology of Y ,
we have

intY G ∩ Y
(Y )

= intY (Y ∩G ∩ Y ) = intY (Y ∩G) = Y ∩ intG

for every open set G ⊆ X. Let f : Y → X be the identity map. Then f is continuous and f−1[M ] = Y ∩M
is nowhere dense in Y whenever M ⊆ X is nowhere dense in X, so we have a corresponding Boolean
homomorphism π : RO(X) → RO(Y ) defined by setting

πG = intY f−1[G]
(Y )

= intY G ∩ Y
(Y )

= Y ∩ intG = G ∩ Y

for every G ∈ RO(X) (314Ra). Because Y is dense, πG 6= ∅ for every non-empty G, and π is injective. If
H ∈ RO(Y ) \ {∅}, then there is an open set G ⊆ X such that H = G ∩ Y , so that

π(intG) = Y ∩ intG = intY G ∩ Y
(Y )

= H;

thus π is surjective and is an isomorphism.

514I Category algebras For many topological spaces, their regular open algebras can be understood
better through their expressions as quotients of Baire-property algebras. It is time I brought this approach
into the main line of the argument.

(a) Let X be a topological space, and M the σ-ideal of meager subsets of X. Recall that the Baire-

property algebra of X is the σ-algebra B̂ = {G△A : G ⊆ X is open, A ∈ M}, and that the category algebra

of X is the quotient Boolean algebra G = B̂/M (4A3R1). Note that if G ⊆ X is any open set, then G \G
and G \ intG are nowhere dense, so

G• = G
•

= (intG)•

in G.

(b) For G ∈ RO(X), set πG = G• ∈ G. Then π : RO(X) → G is an order-continuous surjective Boolean
homomorphism. PPP (i) If G, H ∈ RO(X), then

G∩RO(X) H = G ∩H, X \RO(X) G = X \G,

(314P), so

1Formerly 4A3Q.
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(G∩RO(X) H)• = (G ∩H)• = G• ∩H•,

(X \RO(X) G)• = (X \G)• = 1 \G
•

= 1 \G•.

By 312H(ii), this is enough to show that π is a Boolean homomorphism. (ii) If E ∈ B̂, let G0 ⊆ X be an
open set such that G0△E ∈ M; then G = intG0 belongs to RO(X) and

πG = G• = G•
0 = E•.

Thus π is surjective. (iii) There is a regular open set W such that X\W is meager and every non-empty open
subset of W is non-meager (4A3Sa2); now the kernel of π is just {G : G ∈ RO(X), G∩W = ∅} which has a
largest member int(X \W ). This shows that the kernel of π is order-closed, so that π is order-continuous
(313P(a-ii)). QQQ

(c) From the last part of the proof of (b), we see that the kernel of π is the principal ideal of RO(X)
generated by X \W , so that in fact π includes an isomorphism between the complementary principal ideal
generated by W and G.

In particular, being isomorphic to a principal ideal in the Dedekind complete Boolean algebra RO(X), G
is Dedekind complete (314Xd, 314Ea).

(d) It is useful to know that if G ⊆ X is open, then the category algebra of G can be identified with the
principal ideal of G generated by G•; this is because a subset of G is nowhere dense regarded as a subset of
G iff it is nowhere dense regarded as a subset of X, so that M∩PG is exactly the ideal of meager subsets
of G for the subspace topology, while the Borel σ-algebra of G is {G ∩ E : E ⊆ X is Borel} (4A3Ca).

(e) Recall from 431Fa that every A ⊆ X has a Baire-property envelope, that is, a set E ∈ B̂ such that

A ⊆ E and E \ F is meager whenever F ∈ B̂ and A ⊆ F . If 〈An〉n∈N is any sequence of subsets of X,
and En is a Baire-property envelope of An for each n, then E =

⋃
n∈NEn is a Baire-property envelope of

A =
⋃

n∈NAn. PPP Of course A ⊆ E ∈ B̂. If A ⊆ F ∈ B̂, then An ⊆ F for every n, so En \ F is meager for
every n and E \ F is meager. QQQ

If A ⊆ X, we can define ψ(A) ∈ G by setting ψ(A) = inf{F • : A ⊆ F ∈ B̂}, because G is Dedekind
complete. Note that ψ(A) = E• for any Baire-property envelope E of A. It follows that ψ(

⋃
n∈NAn) =

supn∈N ψ(An) for any sequence 〈An〉n∈N of subsets of X; also ψ(A) = 0 in G iff A is meager.

(f) The construction here is most useful when X is a Baire space, so that no non-empty open set is
meager, π is injective and is an isomorphism between RO(X) and G.

(g) If X is a zero-dimensional space, then the algebra E of open-and-closed sets in X is an order-dense
subalgebra of RO(X), so that RO(X) can be identified with the Dedekind completion of E ; and if X is a
zero-dimensional compact Hausdorff space, then the category algebra of X can equally be identified with
the Dedekind completion of E .

(h) Finally, I note that if X is an extremally disconnected compact Hausdorff space, so that its algebra E
of open-and-closed sets is already Dedekind complete (314S), then E = RO(X). So if X is the Stone space
of a Dedekind complete Boolean algebra A, we have a Boolean isomorphism a 7→ â• from A to G, writing â
for the open-and-closed subset of X corresponding to a ∈ A.

514J Now we have the following.

Proposition Let X be a topological space and C its category algebra.
(a) sat(C) ≤ sat(X), c(C) ≤ c(X), π(C) ≤ π(X) and d(C) ≤ d(X).
(b) If X is a Baire space, sat(C) = sat(X) and c(C) = c(X).
(c) If X is regular, wdistr(C) ≤ addNwd(X), where Nwd(X) is the ideal of nowhere dense subsets of X.

proof All we need to know is that C is isomorphic to a principal ideal of RO(X), which is the whole of
RO(X) if X is a Baire space (514Ic, 514If), and apply 514H and 514Ed.

2Formerly 4A3Ra.
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514K Later in this volume, we shall see that the Lebesgue measure algebra, in particular, can have weak
distributivity large compared with its cellularity and its Maharam type. For such algebras the following
result gives us significant information.

Proposition Let A be a Boolean algebra such that sat(A) ≤ wdistr(A). Then whenever A ⊆ A and
#(A) < wdistr(A) there is a set C ⊆ A such that #(C) ≤ max(c(A), τ(A)) and a = sup{c : c ∈ C, c ⊆ a}
for every a ∈ A.

proof (a) If A is finite we can take C to be the set of atoms of A; so let us henceforth suppose that A is
infinite. Let D ⊆ A be a τ -generating set of cardinal τ(A), and D the subalgebra of A generated by D, so
that (because A is infinite) #(D) = τ(A). For any a ∈ A, write

Q(a) = {b : b ∈ A, ∃ d ∈ D, (a△ d) ∩ b = 0},

E(a) = {B : B is a maximal antichain, supB′ ∈ Q(a) for every finite B′ ⊆ B}.

Now the first fact to establish is that E(a) 6= ∅ for any a ∈ A.
PPP Set E = {a : E(a) 6= ∅}. Then D ⊆ E, because 1 ∈ Q(d) and {1} ∈ E(d) for every d ∈ D. If a ∈ E,

then Q(1 \ a) = Q(a) (because 1 \ d ∈ D for every d ∈ D), so E(1 \ a) = E(a) is non-empty, and 1 \ a ∈ E. If
F ⊆ E is non-empty and has supremum a ∈ A, then there is a non-empty set F0 ⊆ F , still with supremum
a, such that #(F0) < sat(A) (514Db). For each c ∈ F0 choose Bc ∈ E(c). Because #(F0) < wdistr(A), there
is a maximal antichain B ⊆ A such that {e : e ∈ Bc, e ∩ b 6= 0} is finite for every c ∈ F0. If B′ ⊆ B is finite
and c ∈ F0, then supB′ ⊆ supB′

c where B′
c = {e : e ∈ Bc, e ∩ supB′ 6= 0}, so supB′ ∈ Q(c). Set

D̃ = {b : there are b′ ∈ B and c ∈ F0 such that b ⊆ b′ \ (a \ c)}.

Because supF0 = a and supB = 1, sup D̃ = 1 and there is a maximal antichain B̃ ⊆ D̃. If B′ ⊆ B̃ is finite,
with supremum b∗, there are c0, . . . , cn ∈ F0 such that b∗ is disjoint from a \ supi≤n ci; also b∗ ∈ Q(ci) for
each i. So we can find di ∈ D such that ci △ di is disjoint from b∗ for each i ≤ n; accordingly c△ d is disjoint
from b∗, where c = supi≤n ci and d = supi≤n di, and

a△ d ⊆ (a△ c) ∪ (c△ d) ⊆ (a \ c) ∪ (c△ d) ⊆ 1 \ b∗,

while d ∈ D. This shows that b∗ ∈ Q(a); as B′ is arbitrary, B̃ ∈ E(a) and a ∈ E.
This shows that E is closed under complements and arbitrary suprema. It is therefore an order-closed

subalgebra of A (312B(iii), 313E(a-i)); since it includes D, it is the whole of A, which is what we need to
know. QQQ

(b) Now turn to the given set A. For each a ∈ A choose Ba ∈ E(a). Then there is a maximal antichain
B such that {e : e ∈ Ba, e ∩ b 6= 0} is finite for every b ∈ B and a ∈ A. Of course #(B) < sat(A). Set
C = {d ∩ b : d ∈ D, b ∈ B}. Then

#(C) ≤ max(ω,#(B),#(D)) ≤ max(c(A), τ(A)).

??? Suppose that a ∈ A is not the supremum of C ′ = {c : c ∈ C, c ⊆ a}. Let a′ ⊆ a be non-zero and disjoint
from every member of C ′. Then there is a b ∈ B such that b ∩ a′ 6= 0. As b is covered by finitely many
members of Ba it belongs to Q(a), and there is a d ∈ D such that (a△ d) ∩ b = 0; which means that

0 6= a′ ∩ b ⊆ a ∩ b = d ∩ b,

while d ∩ b ∈ C. Thus d ∩ b ∈ C ′; but a′ is supposed to be disjoint from every member of C ′. XXX
Thus C has the properties we need.

514L The regular open algebra of a pre-ordered set Many important features of pre-ordered sets,
at least in those aspects which are of concern to us here, can be related to the regular open algebras of
suitable topologies.

Definitions (a) For any pre-ordered set P , a subset G of P is up-open if [p,∞[ ⊆ G whenever p ∈ G.
The family of such sets is a topology on P , the up-topology. Similarly, the down-topology of P is the
family of down-open sets H such that p ≤ q ∈ H ⇒ p ∈ H. Note that G ⊆ P is up-open iff it is closed for
the down-topology, and vice versa. In particular, the intersection of any non-empty family of up-open sets
is again up-open..
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(b) I will write RO↑(P ) for the regular open algebra of P when P is given its up-topology, and RO↓(P )
for the regular open algebra of P when P is given its down-topology.

514M These up- and down-topologies, entirely unrelated to the usual ‘order topology’ on a totally ordered
set (4A2A) and the ideas of order-convergence considered in Volume 3, take a bit of getting used to. Their
characteristic property is that every point p has a smallest neighbourhood [p,∞[; see 514Xj. I begin with
an elementary lemma for practice.

Lemma Let P be a pre-ordered set endowed with its up-topology.
(a)(i) For any A ⊆ P , A = {p : A ∩ [p,∞[ 6= ∅}.

(ii) For any p ∈ P , [p,∞[ is the set of elements of P which are compatible upwards with p.

(iii) For any p, q ∈ P , the following are equiveridical: (α) q ∈ int [p,∞[; (β) every member of [q,∞[ is
compatible upwards with p; (γ) q is incompatible upwards with every r ∈ P which is incompatible upwards
with p.

(b) A subset of P is dense iff it is cofinal.
(c) If Q is another pre-ordered set with its up-topology, a function f : P → Q is continuous iff it is

order-preserving.
(d)(i) A subset G of P is a regular open set iff

G = {p : G ∩ [q,∞[ 6= ∅ for every q ≥ p}.

(ii) If G is a non-empty family of regular open subsets of P , then
⋂
G is a regular open subset of P ,

and is inf G in the regular open algebra RO↑(P ).
(e) P is separative upwards iff all the sets [p,∞[ are regular open sets.
(f) If P is separative upwards and A ⊆ P has a supremum p in P , then [p,∞[ = infq∈A [q,∞[ in RO↑(P ).

proof (a) For (i), we need only note that [p,∞[ is the smallest open set containing p. Now (ii) amounts to
a restatement of the definition of ‘compatible upwards’. As for (iii),

q ∈ int [p,∞[ ⇐⇒ [q,∞[ ⊆ [p,∞[

⇐⇒ [q′,∞[ ∩ [p,∞[ 6= ∅ for every q′ ≥ q

(by (i))

⇐⇒ [q,∞[ ∩ [r,∞[ = ∅ whenever [r,∞[ ∩ [p,∞[ = ∅

because

P \ [p,∞[ =
⋃
{[r,∞[ : [r,∞[ ∩ [p,∞[ = ∅}.

(b) U = {[p,∞[ : p ∈ P} is a base for the up-topology, so a subset of P is dense iff it meets every member
of U ; but this is the same thing as saying that it is cofinal.

(c) If f is order-preserving and H ⊆ Q is up-open, then

p′ ≥ p ∈ f−1[H] =⇒ f(p′) ≥ f(p) ∈ H =⇒ f(p′) ∈ H,

so f−1[H] is up-open; as H is arbitrary, f is continuous. If f is continuous and p ≤ p′ in P , then H =
[f(p),∞[ is up-open, so f−1[H] is up-open and must contain p′, that is, f(p′) ≥ f(p); as p and p′ are
arbitrary, f is order-preserving.

(d)(i) For any set A ⊆ P ,

{p : A ∩ [q,∞[ 6= ∅ for every q ≥ p} = {p : [p,∞[ ⊆ A} = intA

(using (a)).

(ii) As noted in 514L,
⋂

G is open, so is equal to its interior; but 314P tells us that int
⋂
G is inf G in

RO(P ).

(e)
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P is separative upwards

⇐⇒∀ p, q ∈ P, either p ≤ q or ∃ r, r ≥ q, [r,∞[ ∩ [p,∞[ = ∅

(511Bk)

⇐⇒∀ p, q ∈ P, either q ∈ [p,∞[ or q /∈ int [p,∞[

((a-iii) above)

⇐⇒∀ p ∈ P, int [p,∞[ ⊆ [p,∞[

⇐⇒∀ p ∈ P, [p,∞[ is a regular open set.

(f) [p,∞[ is actually the intersection
⋂

q∈A [q,∞[.

514N Proposition Let (P,≤) be a pre-ordered set, and write T↑ for the up-topology of P and RO↑(P )
for the regular open algebra of (P,T↑).

(a) (RO↑(P )+,⊇,RO↑(P )+) 4GT (T↑ \ {∅},⊇,T↑ \ {∅}) ≡GT (P,≤, P ). If P is separative upwards, then
(RO↑(P )+,⊇,RO↑(P )+) ≡GT (P,≤, P ).

(b) π(RO↑(P )) ≤ π(P,T↑) = d(P,T↑) = cfP . If P is separative upwards, then we have equality.
(c) sat↑(P,≤) = sat(P,T↑) = sat(RO↑(P )) and c↑(P,≤) = c(P,T↑) = c(RO↑(P )).
(d) For any cardinal κ,

link<κ(RO↑(P )) ≤ link↑
<κ(P,≤),

with equality if either P is separative upwards or κ ≤ ω. In particular, we always have

link↑(P,≤) = link(RO↑(P )), d↑(P,≤) = d(RO↑(P )).

(e) If Q ⊆ P is cofinal, then RO↑(Q) ∼= RO↑(P ).
(f) If A ⊆ P is a maximal up-antichain, then RO↑(P ) ∼=

∏
a∈A RO↑([a,∞[).

(g) If P̃ is the partially ordered set of equivalence classes associated with P , then RO↑(P̃ ) ∼= RO↑(P ).

proof (a) By 514Ha,

(RO↑(P )+,⊇,RO↑(P )+) 4GT (T↑ \ {∅},⊇,T↑ \ {∅}).

Next, observe that U = {[p,∞[ : p ∈ P} is a base for T↑, so that

(T↑ \ {∅},⊇,T↑ \ {∅}) ≡GT (U ,⊇,U)

by 513Ed (inverted, as usual). If we set φ(p) = [p,∞[ for p ∈ P , and choose ψ(U) ∈ P such that U =
[ψ(U),∞[ for U ∈ U , then (φ, ψ) is a Galois-Tukey connection from (P,≤, P ) to (U ,⊇,U), while (ψ, φ) is a
Galois-Tukey connection in the reverse direction; so (P,≤) ≡GT (U ,⊇).

If P is separative upwards, then U is included in RO↑(P ) (514Me) and is coinitial with RO↑(P )+, so

(RO↑(P )+,⊇,RO↑(P )+) ≡GT (U ,⊇,U) ≡GT (P,≤, P ).

(b) Now

π(RO↑(P )) ≤ π(P,T↑)

(514H(b-i))

= ci(T↑ \ {∅}) = ciU = cfP,

defining U as in (a) above. By 514Mb, cfP = d(P,T↑). If P is separative upwards, then π(RO↑(P )) = cfP
because (RO↑(P )+,⊇,RO↑(P )+) ≡GT (P,≤, P ).

(c) Similarly, again using 514H(b-i), and with 512Dc at the last step,

sat(RO↑(P )) = sat(P,T↑) = sat↓(T↑ \ {∅}) = sat↓(U) = sat↑(P ).

Now we saw in 514Da and 513Bc that cellularity is determined by saturation both for partially ordered sets
and for Boolean algebras, so c(RO↑(P )) = c↑(P ). (Of course this is easily shown by a direct argument.)
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(d) Using (a) and 512Dd, we see that

link<κ(RO↑(P )) = link<κ(RO↑(P )+,⊇,RO↑(P )+)

≤ link<κ(P,≤, P ) = link↑
<κ(P,≤),

with equality if P is separative upwards. For other P , if κ ≤ ω, set λ = link<κ(RO↑(P )) and let 〈Hξ〉ξ<λ

be a cover of RO↑(P )+ by <κ-linked sets. Set Aξ = {p : int [p,∞[ ∈ Hξ} for each ξ < κ. Then any Aξ is
upwards-<κ-linked in P . PPP??? Otherwise, there is an I ∈ [Aξ]<κ which has no upper bound in P , that is,⋂

p∈I [p,∞[ = ∅. Now
⋂

p∈I int [p,∞[ ⊆
⋃

i∈I([p,∞[ \ [p,∞[)

is an open set covered by finitely many nowhere dense sets and is therefore empty, so we have a finite subset

of Hξ with empty intersection. XXXQQQ So 〈Aξ〉ξ<λ witnesses that link↑
<κ(P,≤) ≤ λ and again we have equality.

In particular,

link(RO↑(P )) = link<3(RO↑(P )) = link↑
<3(P,≤) = link↑(P,≤),

d(RO↑(P )) = link<ω(RO↑(P )) = link↑
<ω(P,≤) = d↑(P,≤).

(e) Put 514Mb and 514Hd together.

(f) Because A is an up-antichain, 〈[a,∞[〉a∈A is a disjoint family of open sets in P ; because A is maximal,⋃
a∈A [a,∞[ is cofinal, therefore dense. So 315H gives the result.

(g) Let Q ⊆ P be a set meeting each equivalence class in just one point, so that q 7→ q• : Q → P̃ is a

bijection. Then Q is cofinal with P , while with its subspace ordering Q is isomorphic to P̃ . So

RO↑(P̃ ) ∼= RO↑(Q) ∼= RO↑(P )

by (e).

514O Of course we very much want to be able to recognise cases in which two partially ordered sets
have isomorphic regular open algebras; and it is also important to know when one RO↑(P ) can be regularly
embedded in another. The next four results give some of the known sufficient conditions for these.

Proposition Suppose that P and Q are pre-ordered sets and f : P → Q is an order-preserving function
such that f−1[Q0] is cofinal with P for every up-open cofinal Q0 ⊆ Q. Then there is an order-continuous

Boolean homomorphism π : RO↑(Q) → RO↑(P ) defined by setting πH = int f−1[H] (taking the closure and
interior with respect to the up-topology on P ) for every H ∈ RO↑(Q). If f [P ] is cofinal with Q then π is
injective, so is a regular embedding of RO↑(Q) in RO↑(P ).

proof By 514Mc, f is continuous for the up-topologies. Moreover, f−1[M ] is nowhere dense in P whenever
M ⊆ Q is nowhere dense in Q. PPP Q0 = Q \M is up-open and dense, therefore cofinal (514Mb), so f−1[Q0]
is up-open and dense, and f−1[M ] ⊆ P \ f−1[Q0] is nowhere dense. QQQ

By 314Ra again, there is an order-continuous Boolean homomorphism π : RO↑(Q) → RO↑(P ) defined by

setting πH = int f−1[H] for every H ∈ RO↑(Q). Now

f [P ] is cofinal ⇐⇒ f [P ] is dense

=⇒ f [P ] ∩H 6= ∅ for every H ∈ RO↑(Q) \ {∅}

⇐⇒ f−1[H] 6= ∅ for every H ∈ RO↑(Q) \ {∅}

⇐⇒ πH 6= ∅ for every H ∈ RO↑(Q) \ {∅} ⇐⇒ π is injective.

So in this case π is a regular embedding of RO↑(Q) in RO↑(P ).

514P Corollary Suppose that P and Q are pre-ordered sets, that f : P → Q is an order-preserving
function and whenever p ∈ P , q ∈ Q and f(p) ≤ q, there is a p′ ≥ p such that f(p′) ≥ q. If f [P ] is either

cofinal with Q or coinitial with Q, then RO↑(Q) can be regularly embedded in RO↑(P ).
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proof If Q0 ⊆ Q is up-open and cofinal, then f−1[Q0] is cofinal with P . PPP Take any p ∈ P . Then there
are a q ∈ Q0 such that q ≥ f(p) and a p′ ≥ p such that f(p′) ≥ q; as Q0 is up-open, p′ ∈ f−1[Q0]; as p is
arbitrary, f−1[Q0] is cofinal. QQQ So if f [P ] is cofinal with Q, we can use 514O. On the other hand, if f [P ] is
coinitial with Q it is also cofinal with Q. PPP For q ∈ Q there is a p ∈ P such that f(p) ≤ q; now our main
hypothesis tells us that there is a p′ ∈ P such that f(p′) ≥ q. QQQ So we have the result in this case also.

514Q Proposition Let P and Q be pre-ordered sets, endowed with their up-topologies, and f : P → Q
a function such that

whenever A ⊆ P is a maximal up-antichain then f↾A is injective and f [A] is a maximal up-
antichain in Q.

Then there is an injective order-continuous Boolean homomorphism π : RO↑(P ) → RO↑(Q) defined by

setting π(int [p,∞[) = int [f(p),∞[ for every p ∈ P . In particular, RO↑(P ) can be regularly embedded in
RO↑(Q). If f [P ] is cofinal with Q, then π is an isomorphism.

proof (a) For p ∈ P , set Hp = int [f(p),∞[ ∈ RO↑(Q). If A ⊆ P is a maximal up-antichain, 〈[f(p),∞[〉p∈A

is a disjoint family of up-open subsets of Q with dense union, so 〈Hp〉p∈A is a partition of unity in RO↑(Q). It

follows that 〈Hp〉p∈A must be disjoint for every up-antichain A ⊆ P . Moreover, if p0 ∈ P and p1 ∈ int [p0,∞[
in P , we have a maximal up-antichain A containing p0, and A′ = (A \ {p0}) ∪ {p1} is an up-antichain; as
Hp1

∩
⋃

p∈A,p 6=p0
Hp = ∅, Hp1

must be included in Hp0
.

(b) For G ∈ RO↑(P ), set πG = sup{Hp : p ∈ G}, the supremum being taken in RO↑(Q). If G,
G′ ∈ RO↑(P ) are disjoint, then p and p′ are incompatible upwards, so Hp and Hp′ are disjoint, whenever
p ∈ G and p′ ∈ G′; accordingly πG and πG′ must be disjoint.

(c) If p ∈ P , then of course Hp ⊆ π(int [p,∞[). On the other hand, if p′ ∈ int [p,∞[, then we saw in (a)

that Hp′ ⊆ Hp, so that π(int [p,∞[) must be exactly Hp.

(d) If G ⊆ RO↑(P ) has supremum G0 in RO↑(P ), πG0 = supG∈G πG in RO↑(Q). PPP Of course πG0 ⊇ πG
for every G ∈ G. Let A be maximal among the up-antichains included in

⋃
G, and extend A to a maximal

up-antichain A′ ⊆ P . Then 〈Hp〉p∈A′ is a partition of unity in RO↑(Q), so H = supp∈AHp and H ′ =

supp∈A′\AHp are complementary elements of RO↑(Q). For every p ∈ A there is a G ∈ G with p ∈ G, so
that Hp ⊆ πG; accordingly H ⊆ supG∈G πG. On the other hand, take any p ∈ G0. By the maximality of A,
G ∩ [p′,∞[ = ∅ for every p′ ∈ A′ \ A and G ∈ G, so [p,∞[ ∩ [p′,∞[ ⊆ G0 ∩ [p′,∞[ = ∅ for every p′ ∈ A′ \ A
and Hp ∩Hp′ = ∅ for every p′ ∈ A′ \A, that is, Hp ∩H

′ = ∅ and Hp ⊆ H. As p is arbitrary,

πG0 ⊆ H ⊆ supG∈G πG ⊆ πG0

and we have equality. QQQ

(e) Now we see that

π∅ = ∅,

πP = Q

(because if we take any maximal up-antichain A ⊆ P , πP includes supp∈AHp),

πG ∩ πH = ∅ whenever G, H ∈ RO↑(P ) and G ∩H = ∅,

π(supG) = supπ[G] for every G ⊆ RO↑(P ).

By 312H(iv), π is a Boolean homomorphism, and by 313L(b-iv) it is order-continuous. Finally, πG 6= ∅
whenever G ∈ RO↑(P ) \ {∅}, so π is injective and is a regular embedding.

(f) If f [P ] is cofinal with Q, then π[RO↑(P )] is order-dense in RO↑(Q). PPP Let H ∈ RO↑(Q) be non-empty.
As f [P ] is dense, there is a p ∈ P such that f(p) ∈ H. Now

∅ 6= π(int [p,∞[) = int [f(p),∞[ ⊆ intH = H;

as H is arbitrary, we have the result. QQQ By 314Ia, π is an isomorphism. This completes the proof.
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514R Corollary Let P and Q be pre-ordered sets. Suppose that there is a function f : P → Q such
that f [P ] is cofinal with Q and, for p, p′ ∈ P , p and p′ are compatible upwards in P iff f(p) and f(p′) are
compatible upwards in Q. Then RO↑(P ) ∼= RO↑(Q).

proof The point is that f satisfies the condition of 514Q. PPP Suppose that A ⊆ P is a maximal up-
antichain. If p, p′ are distinct elements of A, then p and p′ are incompatible upwards in P , so f(p) and
f(p′) are incompatible upwards in Q. This shows simultaneously that f↾A is injective and that f [A] is an
up-antichain in Q. If q is any element of Q, there is a p ∈ P such that f(p) ≥ q; now there must be a
p′ ∈ A such that p′ is compatible upwards with p, in which case f(p′) is compatible upwards with f(p) and
therefore with q. So f [A] is maximal; as A is arbitrary, we have the result. QQQ

So 514Q gives the result.

514S Proposition (a) Let A be a Dedekind complete Boolean algebra and P a pre-ordered set. Suppose
that we have a function f : P → A+ such that, for p, q ∈ P ,

f(p) ⊆ f(q) whenever p ≤ q,

f(p) ∩ f(q) = 0 whenever p and q are incompatible downwards in P ,

f [P ] is order-dense in A.

Then RO↓(P ) ∼= A.
(b) Let A be a Dedekind complete Boolean algebra and D ⊆ A an order-dense set not containing 0. Give

D the ordering ⊆ , and write RO↓(D) for the regular open algebra of D with its down-topology. Then
RO↓(D) ∼= A.

(c) Let (X,T) be a topological space and P a pre-ordered set. Suppose we have a function g : P → T\{∅}
such that, for p, q ∈ P ,

g(p) ⊆ g(q) whenever p ≤ q,

g(p) ∩ g(q) = ∅ whenever p and q are incompatible downwards in P ,

g[P ] is a π-base for T.

Then RO↓(P ) ∼= RO(X).
(d) Let (X,T) be a topological space and U a π-base for the topology of X not containing {∅}. Give U

the ordering ⊆. Then RO↓(U) ∼= RO(X).

proof (a)(i) The key is the following fact: if p ∈ P , a ∈ A and a ∩ f(p) 6= 0, then there is a q ≤ p such that
f(q) ⊆ a. PPP There is a q0 ∈ P such that f(q0) ⊆ a ∩ f(p). Now q0 and p cannot be incompatible downwards,
so there is a q ∈ ]−∞, q0] ∩ ]−∞, p], and in this case f(q) ⊆ f(q0) ⊆ a. QQQ

(ii) For G ∈ RO↓(P ), set πG = sup f [G] in A. Then π : RO↓(P ) → A is order-preserving. Of course
π(∅) = 0.
π(G ∩H) = πG ∩ πH for all G, H ∈ RO↓(P ). PPP Because π is order-preserving, π(G ∩H) ⊆ πG ∩ πH.

??? If a = πG ∩ πH \ π(G ∩ H) 6= 0, take p ∈ G such that a ∩ f(p) 6= 0; then there is a p′ ≤ p such that
f(p′) ⊆ a. Next, there must be a q ∈ H such that f(q) ∩ f(p′) 6= 0, and a q′ ≤ q such that f(q′) ⊆ f(p′).
But now q′ ∈ ]−∞, p] ∩ ]−∞, q] ⊆ G ∩H, so f(q′) ⊆ π(G ∩H); while at the same time f(q′) ⊆ a. XXX Thus
π(G ∩H) = πG ∩ πH. QQQ

π(P \ G) = 1 \ πG for every G ∈ RO↓(P ). PPP (Perhaps I should say that G here is the closure of G for
the down-topology of P .) Set H = P \ G. Then πG ∩ πH = π(G ∩H) = 0 by what we have just seen. ???
If a = 1 \ (πG ∪ πH) is non-zero, let p0 ∈ P be such that f(p0) ⊆ a. Then ]−∞, p0] is a non-empty open set
so must meet one of G, H. But if p ∈ G∪H then f(p0) ∩ f(p) = 0 so p0 and p are incompatible downwards
and, in particular, p 6≤ p0. XXXQQQ

So π is a Boolean homomorphism, and it is injective because πG ⊇ f(p) 6= 0 whenever p ∈ G ∈ RO↓(P ).
Finally, π is surjective. PPP If a ∈ A, set G = {p : f(p) ⊆ a}. Then G is down-open. If q /∈ G, f(q) \ a 6= 0,
so there is a q1 ≤ q such that f(q1) ∩ a = 0 and ]−∞, q1] does not meet G; accordingly ]−∞, q] 6⊆ G and
q /∈ intG. So G ∈ RO↓(P ). Because f [P ] is order-dense, a = sup f [G] = πG belongs to π[RO↓(P )]. QQQ
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Thus we have an isomorphism between RO↓(P ) and A.

(b) Apply (a) to the identity map from D to A.

(c) Apply (a) to the map p 7→ int g(p) : P → RO(X).

(d) Apply (c) to the identity function from U to T.

514T Finite-support products At many points in this chapter we find ourselves seeking to relate par-
tially ordered sets to Boolean algebras and topological spaces. In 511D and 512Eb I sought to describe the
cardinal functions of topological spaces and Boolean algebras in terms of naturally associated partially or-
dered sets, and in 514L and 514N of this section I described constructions of topologies and Boolean algebras
from partial orders. One of the most important constructions of general topology is that of ‘product’. The
matching construction in Boolean algebra is that of ‘free product’ (315I). I now come to the corresponding
idea for partial orders.

Definition Let 〈Pi〉i∈I be a family of non-empty partially ordered sets. The upwards finite-support

product
⊗↑

i∈I Pi of 〈Pi〉i∈I is the set
⋃
{
∏

i∈J Pi : J ∈ [I]<ω}, ordered by saying that p ≤ q iff dom p ⊆

dom q and p(i) ≤ q(i) for every i ∈ dom p. Similarly, the downwards finite-support product
⊗↓

i∈I Pi

of 〈Pi〉i∈I is the same set
⋃
{
∏

i∈J Pi : J ∈ [I]<ω}, but ordered by saying that p ≤ q iff dom q ⊆ dom p and
p(i) ≤ q(i) for every i ∈ dom q.

514U Proposition Let 〈Pi〉i∈I be a family of non-empty partially ordered sets, with upwards finite-

support product P =
⊗↑

i∈I Pi.

(a) The regular open algebra RO↑(P ) is isomorphic to the regular open algebra of P ∗ =
∏

i∈I Pi when
every Pi is given its up-topology.

(b) If I is finite, P ∗ is a cofinal subset of P , and the ordering of P ∗, regarded as a subset of P , is the
usual product partial order on P ∗.

(c) If Qi ⊆ Pi is cofinal for each i ∈ I, then
⋃

J∈[I]<ω

∏
i∈J Qi is cofinal with P . So cfP is at most

max(ω,#(I), supi∈I cfPi).
(d) c↑(P ) = supJ∈[I]<ω c↑(

∏
i∈J Pi).

proof (a) For p ∈ P , set

Gp = {q : q ∈ P ∗, q(i) ≥ p(i) for every i ∈ dom p}.

Then Gp is a non-empty open set in P ∗. If p ≤ p′ in P , then Gp ⊇ Gp′ . If p, p′ ∈ P are incompatible
upwards in P , there must be an i ∈ dom p∩ dom p′ such that p(i) and p′(i) are incompatible upwards in Pi,
in which case Gp ∩Gp′ is empty. If V ⊆ P ∗ is a non-empty open set, take any q ∈ V . There is a finite set
J ⊆ I such that V ⊇ {q′ : q′ ∈ P ∗, q′(i) ≥ q(i) for every i ∈ J}. Set p = q↾J ; then Gp ⊆ V . So p 7→ Gp

satisfies the conditions of 514Sc, inverted, and RO↑(P ) is isomorphic to RO(P ∗).

(b)-(c) These are immediate from the definition of the ordering of P . For the estimate of the cofinality
of P , just take cofinal sets Qi ⊆ Pi such that #(Qi) = cfPi for each i, and estimate #(

⋃
J∈[I]<ω

∏
i∈J Qi).

(d) We have

c↑(P ) = c(RO↑(P ))

(514Nc)

= c(RO↑(P ∗))

((a) above))

= c(P ∗)

(514Hb)

= sup
J∈[I]<ω

c(
∏

i∈J

Pi)

(5A4Be, here taking the product topology on
∏

i∈I Pi)
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= sup
J∈[I]<ω

c↑(
∏

i∈J

Pi)

because if J is finite then the up-topology T
↑
J on

∏
i∈J Pi is just the product of the up-topologies on the Pi,

so we can use the identification of c(
∏

i∈J Pi,T
↑
J ) with c↑(

∏
i∈J Pi).

514X Basic exercises (a) Let A be a Boolean algebra. Show that link<κ(A) = π(A) for any κ ≥ sat(A).

(b) Let 〈Ai〉i∈I be a family of Boolean algebras and A their free product. Show that

d(A) ≤ max(ω,#(I), supi∈I d(Ai)), π(A) ≤ max(ω,#(I), supi∈I π(Ai)),

c(A) ≤ max(ω, supi∈I 2c(Ai)).

(Hint : 4A1Db, 5A1Ha.)

(c) Let A be a Boolean algebra and B a chargeable Boolean algebra (definition: 391Bb). Suppose that
A \ {1} 4T B \ {1}. Show that A is chargeable. (Hint : 391J.)

(d) Let κ be a cardinal and A a Boolean algebra with cardinal at most 2κ. (i) Show that A is a
homomorphic image of a κ-centered Boolean algebra. (Hint : if κ is infinite, {0, 1}2

κ

has density κ.) (ii)
Show that if A is Dedekind complete it is a homomorphic image of Pκ. (Hint : 514Ca, 314K.)

(e) Let A be a Boolean algebra and B either a regularly embedded subalgebra of A or a quotient A/I
where I is an order-closed ideal in A. Let Pou(A), Pou(B) be the pre-ordered sets of partitions of unity in
A, B respectively (512Ee). Show that Pou(B) 4T Pou(A), and hence that wdistr(B) ≥ wdistr(A).

(f) Let X be a set. Show that τ(PX) is the least cardinal λ such that #(X) ≤ 2λ.

(g) Let Σ be the countable-cocountable algebra of ω1. Show that Σ is an order-dense subalgebra of Pω1,
that τ(Σ) = ω1, and that τ(Pω1) = ω.

(h) For a Boolean algebra A, write hc(A) = min{c(B) : B is a non-zero principal ideal of A}, counting
min ∅ as ∞. (i) Show that if B is a regularly embedded subalgebra of A, then hc(B) ≤ hc(A). (ii) Show
that if B is a Boolean algebra and there is a surjective order-continuous Boolean homomorphism from A

onto B, then hc(B) ≤ hc(A). (iii) Show that if B is a principal ideal of A then hc(B) ≥ hc(A). (iv) Show
that if B is an order-dense subalgebra of A then hc(B) = hc(A). (v) Show that if A is the simple product
of a family 〈Ai〉i∈I of Boolean algebras, then hc(A) = mini∈I hc(Ai).

>>>(i)(i) (Solovay 66) Let I be any set, with its discrete topology, and X = IN with the product topology.
Show that τ(RO(X)) = ω. (Hint : take I to be well-ordered; set Gij = {x : x(i) < x(j)} for i, j ∈ N; show
that the closed subalgebra of RO(X) generated by the Gij contains {x : x(n) ≥ ξ} for every n ∈ N and
ξ ∈ I.) (ii) Show that the subalgebra B of RO(X) generated by {{x : x(n) = i} : n ∈ N, i ∈ I} is an
order-dense subalgebra of RO(X) and that τ(B) ≥ #(I) if #(I) > 1.

(j) Let (X,T) be a T0 topological space. Show that we have a partial order on X defined by saying that

x ≤ y iff x ∈ {y}. Show that T is the up-topology on X iff the family of T-closed sets is a topology.

(k) Let P be a partially ordered set. Show that a subset of P is a regular open set for the up-topology
iff it is of the form

⋂
q∈A{p : p ∈ P, [p,∞[ ∩ [q,∞[ = ∅} for some set A ⊆ P .

>>>(l) Rewrite the statement and proof of the Erdős-Tarski theorem (513Bb) (i) in terms of topological
spaces (ii) in terms of Boolean algebras.

(m) Find partially ordered sets P and Q such that the regular open algebras of P and Q for their
up-topologies are isomorphic, but addP 6= addQ and cfP 6= cfQ.
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(n) Let P be a non-empty partially ordered set such that its regular open algebra RO↑(P ) for the up-
topology is atomless, and let Q be a set of the same size as P with the trivial partial order in which q ≤ q′

iff q = q′. Show that Q and the product partially ordered set P ×Q are Tukey equivalent but RO↑(P ×Q)
is atomless, while RO↑(Q) is purely atomic.

(o) Let P be a partially ordered set and κ an infinite cardinal. Show that κ < wdistr(RO↑(P )) iff for
every family 〈Qξ〉ξ<κ of cofinal subsets of P there is a cofinal Q ⊆ P such that for every q ∈ Q and ξ < κ
there is an I ∈ [Qξ]<ω such that for every p ≥ q there is an r ∈ I which is compatible upwards with p.

(p) Suppose that P is a partially ordered set and that A ⊆ P is such that

Q = {q : q ∈ P , q = sup{a : a ∈ A, a ≤ q}}

is cofinal with P . Show that if P is separative upwards, then τ(RO↑(P )) ≤ #(A).

(q) Let A be the measure algebra of Lebesgue measure. Show that the simple products {0, 1} × A and
PN× A are not isomorphic, but that each can be regularly embedded in the other.

(r) Let (X,T) and (Y,S) be topological spaces. Suppose we have a π-base U for T and a function
f : U → S such that f [U ] is a π-base for S and, for U , U ′ ∈ U , U ∩U ′ = ∅ iff f(U) ∩ f(U ′) = ∅. Show that
RO(X) ∼= RO(Y ).

(s) Let 〈Pi〉i∈I be a family of non-empty partially ordered sets and 〈Ij〉j∈J a partition (that is, dis-

joint cover) of I. Show that the upwards finite-support product
⊗↑

i∈I Pi can be naturally identified with⊗↑
j∈J

⊗↑
i∈Ij

Pi.

514Y Further exercises (a) For a partially ordered set P , its order-dimension is the smallest cardinal
κ such that P is isomorphic, as partially ordered set, to a subset of a product

∏
ξ<κXξ where every Xξ

is a totally ordered set (and the product is given its product partial order, as in 315C). Show that the
order-dimension of a Boolean algebra A is link(A).

(b) Show that PN has a subalgebra with uncountable π-weight. (Hint : 515H.)

(c) Let A be a Boolean algebra such that c(A) 6= 1, and A a subset of A. Show that there is a B ∈ [A]≤c(A)

with the same upper and lower bounds as A.

(d) Show that for any cardinal κ there are a ccc Boolean algebra A and an ideal I of A such that
c(A/I) = κ.

(e) Let A be a Dedekind complete Boolean algebra, not {0}, P the forcing notion (A+,⊆, 1, ↓) (5A3M),
and κ a cardinal. Show that the following are equiveridical: (i) there is an atomless order-closed subalgebra
of A with Maharam type at most κ; (ii) P Pκ̌ 6= (Pκ)̌ .

(f) Let A be a Boolean algebra and κ a cardinal. I will say that A has the <κ-interpolation property
if whenever A, B ⊆ A, a ⊆ b whenever a ∈ A and b ∈ B, and #(A ∪ B) < κ, then there is a c ∈ A

such that a ⊆ c ⊆ b for every a ∈ A, b ∈ B. (Thus the σ-interpolation property of 466G is the <ω1-
interpolation property.) (i) Suppose that A has the <κ-interpolation property and I is an ideal of A such
that κ ≤ (add I)+. Show that the quotient A/I has the <κ-interpolation property. (ii) Suppose that A has
the <κ-interpolation property, B is a Boolean algebra with cardinal at most κ, C is a subalgebra of B and
φ : C → A is a Boolean homomorphism. Show that φ has an extension to a Boolean homomorphism from B

to A. (Compare 314K.) (iii) Show that if A has the <sat(A)-interpolation property it is Dedekind complete.

(g) Let A be a ccc Dedekind complete Boolean algebra with Maharam type κ. Show that there is a
σ-ideal J of the Baire σ-algebra Ba({0, 1}κ) such that A ∼= Ba({0, 1}κ)/J .
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514 Notes and comments With any mathematical object, the set-theorist’s first concern is simply to
establish its cardinality. There is therefore a natural distinction to make between cardinal invariants which
control the cardinality of a space, as linking number, centering number and π-weight do for Boolean algebras
(514Da), and others, like weak distributivity, which are measures of some kind of complexity not directly
linked with cardinality. Observe that for general Boolean algebras A not even the cellularity is controlled
by the Maharam type (514Xi); in fact, of the cardinals here, only wdistr(A) is controlled by τ(A) alone
(514Dd). Maharam type and cellularity together control the size of the algebra (514De), and for measurable
algebras, of course, Maharam type almost completely determines the algebra and even the measure (see
Chapter 33).

I use the language of Galois-Tukey connections in many of the proofs of this section. This is not because
there is any real need for it (there is no depth to any of the results I quote) but because I think that it
shows some common strands running through a rather long list of facts. Also it points up the proofs which
are not reducible to simple applications of ideas in §512; for instance, those relating to weak distributivity.
And, finally, it will provide useful practice for the ideas of Chapter 52.

I have deliberately arranged the lists of cardinal functions of topological spaces and Boolean algebras in
such a way that the cardinals of Boolean algebras and their Stone spaces will naturally correspond. There are
of course important exceptions. The Maharam type of a Boolean algebra, and the tightness of a topological
space, do not seem to have significant natural analogues in the other category. Note that the correspondences
depend to a significant degree on the compactness of Stone spaces. This is perhaps more important than
their zero-dimensionality. The point about the open-and-closed algebra of a zero-dimensional space is that
it is order-dense in the regular open algebra, and that our cardinal functions of Boolean algebras are nearly
all unchanged by Dedekind completion (514Ee). For arbitrary topological spaces, we can still investigate
their regular open algebras, and we find that the cardinal functions of a regular open algebra are much more
closely related to those of the topological space if the space is locally compact (514A, 514H(b)-(c)).

You will not be surprised to recognise some of the results and arguments of this section as direct gener-
alizations of special cases already treated; thus 316B becomes 514Bb, 316E (or 215B(iv)) becomes 514Db,
316I becomes 514Be and 4A1O becomes 514De.

I have to admit that there are rather more pages than ideas in this section. What it is really here for is to
provide a compendium of useful facts in the language which I wish to use in the rest of the volume. Perhaps
I should say ‘languages’, because much of the space is taken up by repeating results in three forms, as they
apply to partially ordered sets, to Boolean algebras and to topological spaces. The point is of course that
we frequently find that a fact which is obvious in one of its three manifestations is a surprise in another.
And some care is needed in the translations. The theory of finite-support products of partially ordered sets
(514T-514U), for instance, is supposed to mimic the theory of products of topological spaces. But actually it
reflects the theory of π-bases of topologies rather than the theory of spaces-with-points. And while we have
straightforward functors between the categories of Boolean algebras and topological spaces, with Boolean
homomorphisms corresponding to continuous functions (312Q-312S), such results as we have concerning
functions between partially ordered sets and their actions on the corresponding regular open algebras are
partial and delicate (514O-514R).

The Tukey classification (513D) and the regular open algebras of 514N are both attempts to reduce the
multitudinous variety of partially ordered sets to relatively coherent schemes. They carry rather different
information; the Tukey classification tells us about additivity and cofinality (513E) and precalibers (516C
below), while the regular open algebra determines linking numbers (514N). It is easy to find partially ordered
sets with the same regular open algebras but different additivity and cofinality (514Xm), or with the same
Tukey classification but different regular open algebras (514Xn). The regular open algebras studied here are
primarily of interest in relation to the use of partially ordered sets in the theory of forcing; I hope to return
to such questions later in this volume.

Of the cardinal functions of Boolean algebras defined in §511, I have not mentioned Martin numbers or
Freese-Nation numbers. These will be dealt with at length in §§517-518.
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515 The Balcar-Franěk theorem

I interpolate a section to give two basic results on Dedekind complete Boolean algebras: the Balcar-
Franěk theorem (515H) on independent sets and the Pierce-Koppelberg theorem (515L) on cardinalities.
The concept of ‘Boolean-independence’ (515A) provides a tool for some useful results on regular open
algebras (515N-515Q).

515A Definition Let A be a Boolean algebra, not {0}.
(a) I say that a family 〈Bi〉i∈I of subalgebras of A is Boolean-independent if infi∈J bi 6= 0 whenever

J ⊆ I is finite and bi ∈ B+
i = Bi \ {0} for every i ∈ J .

(b) I say that a family 〈ai〉i∈I in A is Boolean-independent if infj∈J aj \ supk∈K ak is non-zero whenever
J , K ⊆ I are disjoint finite sets. Similarly, a set B ⊆ A is Boolean-independent if inf J \ supK 6= 0 for
any disjoint finite sets J , K ⊆ B.

(c) I say that a family 〈Di〉i∈I of partitions of unity in A is Boolean-independent if infi∈J di 6= 0
whenever J ⊆ I is finite and di ∈ Di for every i ∈ J .

(Many authors write ‘independent’ rather than ‘Boolean-independent’, and in the proofs of this section I
may do the same. But in this book as a whole it is more often natural to read ‘independent’ as ‘stochastically
independent’, as in 458L and 525H.)

515B Lemma (Compare 272D.) Let A be a Boolean algebra, not {0}.
(a) A family 〈ai〉i∈I in A is Boolean-independent iff no ai is 0 or 1 and 〈{0, ai, 1 \ ai, 1}〉i∈I is a Boolean-

independent family of subalgebras of A.
(b) Let 〈Bi〉i∈I be a family of subalgebras of A. Let B be the free product of 〈Bi〉i∈I , and εi : Bi → B the

canonical homomorphism for each i ∈ I (315I). Then we have a unique Boolean homomorphism φ : B → A

such that φεi(b) = b whenever i ∈ I and b ∈ Bi, and 〈Bi〉i∈I is Boolean-independent iff φ is injective; in
which case B is isomorphic to the subalgebra of A generated by

⋃
i∈I Bi.

(c) If 〈Bi〉i∈I is a Boolean-independent family of subalgebras of A, 〈Ij〉j∈J is a disjoint family of subsets
of I, and Cj is the subalgebra of A generated by

⋃
i∈Ij

Bi for each j, then 〈Cj〉j∈J is Boolean-independent.

(d) Suppose that B ⊆ A is a Boolean-independent set and that 〈Cj〉j∈J is a disjoint family of subsets of
B. For j ∈ J write Cj for the subalgebra of A generated by Cj . Then 〈Cj〉j∈J is Boolean-independent.

(e) Suppose that 〈Bi〉i∈I is a Boolean-independent family of subalgebras of A, and that for each i ∈ I we
have a Boolean-independent subset Bi of Bi. Then 〈Bi〉i∈I is disjoint and

⋃
i∈I Bi is Boolean-independent.

(f) Let 〈Di〉i∈I be a family of partitions of unity in A, none containing 0. For each i ∈ I let Bi be
the order-closed subalgebra of A generated by Di. Then 〈Bi〉i∈I is Boolean-independent iff 〈Di〉i∈I is
Boolean-independent.

proof (a) The point is just that in 515Aa we need consider only bi ∈ Bi \ {0, 1}, while in 515Ab we have

infj∈J aj \ supk∈K ak = infj∈J aj ∩ infi∈K 1 \ ak.

(b) 315Jb, applied to the identity maps from the Bi to A, assures us that there is a unique Boolean
homomorphism φ : B → A such that φεi(b) = b for every i ∈ I and b ∈ Bi.

(i) By 315K(e-ii), 〈εi[Bi]〉i∈I is a Boolean-independent family of subalgebras of B. So if φ is injective,
〈Bi〉i∈I = 〈πi[εi[Bi]]〉i∈I is Boolean-independent in φ[B] and therefore in A. In this case, because B is the
subalgebra of itself generated by

⋃
i∈I εi[Bi] (315Ka), the subalgebra of A generated by

⋃
i∈I Bi is φ[B] and

is isomorphic to B.

(ii) If 〈Bi〉i∈I is Boolean-independent and b ∈ B+, there are a finite J ⊆ I and a family 〈bj〉j∈J ∈∏
j∈J B+

j such that b ⊇ infj∈J εj(bj) (315Kb). Now φ(b) ⊇ infj∈J bj is non-zero; as b is arbitrary, φ is
injective.

(c) Let L ⊆ J be a finite set and suppose that cj ∈ C+
j for each j ∈ L. As observed in (b), the embeddings

Bi ⊂→ Cj identify Cj with the free product of 〈Bi〉i∈Ij , so 315Kb tells us that there must be a finite set

c© 2001 D. H. Fremlin
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Kj ⊆ Ij and elements bi ∈ B+
i , for i ∈ Kj , such that infi∈Kj

bi ⊆ cj . Now infj∈L cj ⊇ inf{bi : i ∈
⋃

j∈LKj}

is non-zero. As 〈cj〉j∈L is arbitrary, 〈Cj〉j∈J is Boolean-independent. (Compare 315L.)

(d) Set Bb = {0, b, 1 \ b, 1} for b ∈ B, so that 〈Bb〉b∈B is Boolean-independent, by (a); now apply (c).

(e)(i) If i, j ∈ I are distinct, b ∈ Bi and b′ ∈ Bj , then b ∈ B+
i and 1 \ b′ ∈ B+

j , so b \ b′ 6= 0 and b 6= b′.

(ii) If J , K are disjoint finite subsets of
⋃

i∈I Bi, then J ∩Bi and K ∩Bi are disjoint finite subsets of
Bi, so that

bi = inf(J ∩Bi) \ sup(K ∩Bi) ∈ B+
i

for each i ∈ I. Let L ⊆ I be a finite set such that J ∪K ⊆
⋃

i∈LBi; then

inf J \ supK = infi∈L bi 6= 0.

As J and K are arbitrary,
⋃

i∈I Bi is Boolean-independent.

(f) Since Di ⊆ Bi, 〈Di〉i∈I must be Boolean-independent if 〈Bi〉i∈I is.
On the other hand, each Di is order-dense in Bi. PPP For d ∈ Di, the set {b : d ⊆ b or d ∩ b = 0} is an

order-closed subalgebra of A including Di, so includes Bi. If b ∈ B+
i , then (because supDi = 1 in A) there

must be a d ∈ Di such that b ∩ d 6= 0, in which case 0 6= d ⊆ b. As b is arbitrary, Di is order-dense in Bi. QQQ
Now suppose that 〈Di〉i∈I is Boolean-independent, J ⊆ I is finite and bi ∈ B+

i for each i ∈ J . Then
we have non-zero di ∈ Di such that di ⊆ bi for each i. So infi∈J bi ⊇ infi∈J di is non-zero. As 〈bi〉i∈J is
arbitrary, 〈Bi〉i∈I is Boolean-independent.

515C Proposition Let A be a Boolean algebra, not {0}, and κ a cardinal.
(a) There is a Boolean-independent subset of A with cardinal κ iff there is a subalgebra of A which is

isomorphic to the algebra of open-and-closed subsets of {0, 1}κ.
(b) If A is Dedekind complete, there is a Boolean-independent subset of A with cardinal κ iff there is a

subalgebra of A which is isomorphic to the regular open algebra of {0, 1}κ.

proof Set Z = {0, 1}κ; write E for the algebra of open-and-closed subsets of Z and G for the regular open
algebra of Z.

(a)(i) Suppose that A has a Boolean-independent subset of cardinal κ, enumerated as 〈aξ〉ξ<κ. Setting
Aξ = {0, aξ, 1 \ aξ, 1} for each ξ, 〈Aξ〉ξ<κ is a Boolean-independent family of subalgebras of A, and the
subalgebra C of A generated by

⋃
ξ<κ Aξ can be identified with the free product of 〈Aξ〉ξ<κ (515Bb). But

since the Stone space of each Aξ has just two points, the construction of 315I makes it plain that the Stone
space of C is homeomorphic to Z, so that C is isomorphic to E .

(ii) In the other direction, the sets Eξ = {z : z ∈ Z, z(ξ) = 1} are Boolean-independent in E , so if E
can be embedded in A there must be a Boolean-independent subset of A with cardinal κ.

(b) Now suppose that A is Dedekind complete. E is an order-dense subalgebra of G (314T). So if A

has a subalgebra isomorphic to G it certainly has one isomorphic to E . On the other hand, if A has a
subalgebra isomorphic to E , so that there is an injective Boolean homomorphism π : E → A, then (because
A is Dedekind complete) π has an extension to a Boolean homomorphism π1 : G → A (314K); because E is
order-dense in G and π is injective, π1 is injective, so that π1[G] is a subalgebra of A isomorphic to G.

Putting this together with (a), we see that A has a Boolean-independent subset with cardinal κ iff it has
a subalgebra isomorphic to G.

515D Lemma Let A be a Dedekind complete Boolean algebra, not {0}, and B an order-closed subal-
gebra of A such that A is relatively atomless over B. Then there is an a∗ ∈ A \ {0, 1} such that B and
{0, a∗, 1 \ a∗, 1} are Boolean-independent subalgebras of A.

Remark Recall from 331A that a Boolean algebra A is ‘relatively atomless’ over an order-closed subalgebra
B if for every a ∈ A+ there is a c ⊆ a which is not of the form a ∩ b for any b ∈ B.

proof Set

C = {c : c ∈ A, c 6= 0, B ∩ Ac = {0}},
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where Ac is the principal ideal of A generated by c. Then C is order-dense in A. PPP If a ∈ A+, there is a
c ∈ Aa \ {a ∩ b : b ∈ B}. Set b0 = sup{b : b ∈ B, b ⊆ c}; then c \ b0 ⊆ a and c \ b0 ∈ C. QQQ

For a ∈ A set upr(a,B) = inf{b : a ⊆ b ∈ B}, as in 313S. Set E = {upr(c,B) : c ∈ C}. Then E is
order-dense in B, because if b ∈ B+ there is a c ∈ C such that c ⊆ b, and now upr(c,B) belongs to E and is
included in b. So there is a partition D of unity in B included in E (313K). For each d ∈ D choose cd ∈ C
such that d = upr(cd,B), and set a∗ = sup{cd : d ∈ D}. If b ∈ B+, there is a d ∈ D such that b ∩ d 6= 0,
that is, d 6⊆ 1 \ b, so cd 6⊆ 1 \ b and b ∩ cd 6= 0; so b ∩ a∗ 6= 0. Also, because cd ∈ C, b ∩ d 6⊆ cd = a∗ ∩ d, so b 6⊆ a∗

and b ∩ (1 \ a∗) 6= 0. As b is arbitrary, B and {0, a∗, 1 \ a∗, 1} are Boolean-independent.

515E Lemma (Balcar & Vojtáš 77) Let A be a Boolean algebra. Suppose that C ⊆ A+ and that
#(C) < c(Ac) for every c ∈ C, where Ac is the principal ideal of A generated by c. Then there is a partition
D of unity in A such that every member of C includes a non-zero member of D.

proof Enumerate C as 〈cξ〉ξ<κ. For each ξ < κ, let Bξ be a disjoint set in A+
cξ

with cardinal κ+, and set

Aξ = {η : η < κ, #({b : b ∈ Bξ, b ∩ cη 6= 0}) ≤ κ},

B′
ξ = Bξ \

⋃
η∈Aξ

{b : b ∈ Bξ, b ∩ cη 6= 0}.

Then B′
ξ is a disjoint set in Acξ , #(B′

ξ) = κ+, and {b : b ∈ B′
ξ, b ∩ cη 6= 0} is empty if η ∈ Aξ and has

cardinal κ+ otherwise. Now define A ⊆ κ inductively by saying that ξ ∈ A iff ξ ∈ Aη whenever η ∈ A ∩ ξ,
and set B =

⋃
ξ∈AB

′
ξ.

B is disjoint. PPP If η, ξ ∈ A, η ≤ ξ, b ∈ B′
η, b′ ∈ B′

ξ and b 6= b′, then either η = ξ and b ∩ b′ = 0 because

B′
ξ is disjoint, or η < ξ and ξ ∈ Aη and b ∩ b′ ⊆ b ∩ cξ = 0. QQQ Also Dξ = {b : b ∈ B, b ∩ cξ 6= 0} has cardinal

κ+ for every ξ < κ. PPP If ξ ∈ A, then Dξ ⊇ B′
ξ has cardinal κ+. If ξ /∈ A there is some η ∈ A ∩ ξ such that

ξ /∈ Aη and Dξ ⊇ {b : b ∈ B′
η, b ∩ cξ 6= 0} has cardinal κ+. QQQ

We can therefore find an injection ξ 7→ bξ : κ → B such that cξ ∩ bξ 6= 0 for every ξ. Let D be any
partition of unity including {cξ ∩ bξ : ξ < κ}; this works.

515F Lemma Let A be a Dedekind complete Boolean algebra such that c(A) = sat(A) and A is
cellularity-homogeneous. Then there is a Boolean-independent family 〈Di〉i∈I of partitions of unity in
A such that #(I) = supi∈I #(Di) = c(A).

proof Write κ for c(A) = sat(A). Choose 〈Dξ〉ξ<κ inductively, as follows. Given Dη for η < ξ, let Cξ be the
subalgebra of A generated by

⋃
η<ξDη; then #(Cξ) < κ. (Recall from 513Bb that κ = sat↓(A+) must be a

regular uncountable cardinal, while of course #(Dη) < κ for every η.) By 515E we have a partition D of
unity in A, not containing {0}, such that every non-zero element of Cξ includes an element of D. For each
d ∈ D the principal ideal of A generated by d has cellularity κ > #(ξ) so there is a disjoint family 〈bdη〉η≤ξ

of non-zero elements with supremum d. Set bη = supd∈D bdη for η ≤ ξ, and Dξ = {bη : η ≤ ξ}; then Dξ is a
partition of unity in A.

The construction ensures that whenever d ∈ Dξ and c ∈ C+
ξ then d ∩ c 6= 0. It follows that 〈Dξ〉ξ<κ is

Boolean-independent. PPP I show by induction on #(J) that if J ⊆ κ is finite and dξ ∈ Dξ for each ξ ∈ J ,
then infξ∈J dξ 6= 0. If J is empty this is trivial. For the inductive step to #(J) = n+ 1, set ξ = max J and
J ′ = ξ ∩ J . By the inductive hypothesis, c = infη∈J ′ dη is non-zero; but c ∈ Cξ, so, by the construction of
Dξ, c ∩ dξ = infη∈J dη is non-empty. So the induction proceeds. QQQ

515G Lemma Let 〈Ai〉i∈I be a non-empty family of Boolean algebras with simple product A. Suppose
that for each i ∈ I the algebra Ai has a Boolean-independent set with cardinal κi ≥ ω. Then A has a
Boolean-independent set with cardinal κ = #(

∏
i∈I κi).

proof For each i ∈ I let Bi be a Boolean-independent set in Ai with cardinal κi. Let 〈aξ〉ξ<κ be a family
in

∏
i∈I Bi ⊆ A such that for every finite J ⊆ κ there is an i ∈ I such that aξ(i) 6= aη(i) whenever ξ, η ∈ J

are distinct (5A1L). Now 〈aξ〉ξ<κ is Boolean-independent in A. PPP Suppose that J , K ⊆ κ are finite and
disjoint. Then there is an i ∈ I such that aξ(i) 6= aη(i) whenever ξ, η ∈ J ∪K are distinct. But this means
that 〈aξ(i)〉ξ∈J∪K is Boolean-independent in Ai, so that, setting a = infξ∈J aξ \ supξ∈K aξ,
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a(i) = infξ∈J aξ(i) \ supξ∈K aξ(i) 6= 0,

and a 6= 0. As J and K are arbitrary, 〈aξ〉ξ<κ is a Boolean-independent family. QQQ
Accordingly {aξ : ξ < κ} is a Boolean-independent set of size κ.

515H The Balcar-Franěk theorem (Balcar & Franěk 82) Let A be an infinite Dedekind complete
Boolean algebra. Then there is a Boolean-independent set A ⊆ A such that #(A) = #(A).

proof Set κ = #(A). For a ∈ A write Aa for the principal ideal of A generated by a.

(a) Suppose that A is purely atomic. Then A has an independent set with cardinal κ. PPP Let B be the
set of its atoms; because A is infinite, so is B; set λ = #(B), so that

A ∼=
∏

b∈B Ab
∼= Pλ

(315F(iii)), and κ = 2λ. There is a dense subset D of {0, 1}κ with #(D) ≤ λ (5A4Be); let f : B → D be a
surjection. For ξ < κ set

aξ = sup{b : b ∈ B, f(b)(ξ) = 1}.

If J , K ⊆ κ are disjoint finite sets, the set

G = {x : x ∈ {0, 1}κ, x(ξ) = 1 ∀ ξ ∈ J, x(η) = 0 ∀ η ∈ K}

is a non-empty open set, so there is a b ∈ B such that f(b) ∈ G; but this means that infξ∈J aξ \ supη∈K aη ⊇ b
is non-zero. As J and K are arbitrary, {aξ : ξ < κ} is an independent subset of A with cardinal κ. QQQ

(b) Suppose that A is Maharam-type-homogeneous, and that B is an order-closed subalgebra of A with
Maharam type less than τ(A). Then there is a subalgebra C of A, Boolean-independent of B, such that
C has a Boolean-independent subset with cardinal τ(A). PPP Let B ⊆ B be a set with cardinal less than
τ(A) which τ -generates B. Choose 〈cξ〉ξ<τ(A) inductively, as follows. Given 〈cη〉η<ξ, where ξ < τ(A),

let Bξ be the order-closed subalgebra of A generated by B ∪ {cη : η < ξ}. If a ∈ A+, the order-closed
subalgebra D = {a ∩ b : b ∈ Bξ} of Aa is τ -generated by {a ∩ cη : η < ξ} ∪ {a ∩ b : b ∈ B} (314Hb),
so τ(D) < τ(A) = τ(Aa) and D 6= Aa. Thus A is relatively atomless over Bξ; by 515D, there is a
cξ ∈ A\{0, 1} such that Bξ and {0, cξ, 1 \ cξ, 1} are Boolean-independent. Continue. Now an easy induction
on #(J ∪K) (as in the last part of the proof of 515F) shows that if J , K are disjoint finite subsets of τ(A),
and b ∈ B is non-zero, b ∩ infξ∈J cξ \ supη∈K cη 6= 0. So if we take C to be the subalgebra of A generated
by C = {cξ : ξ < τ(A)}, C and B are Boolean-independent and C ⊆ C is a Boolean-independent set with
cardinal τ(A). QQQ

(c) Suppose that A is Maharam-type-homogeneous and that c(A) < sat(A). Then A has a Boolean-
independent subset with cardinal κ. PPP Because A is infinite, c(A) is infinite. Let D ⊆ A+ be a disjoint
set with cardinal c(A); adding 1 \ supD if necessary, we may suppose that D is a partition of unity. For
each d ∈ D, Ad has a Boolean-independent set with cardinal τ(Ad) = τ(A) (apply (b) above to Ad, with
D = {0, d}). By 315F(iii) again, A ∼=

∏
d∈D Ad; by 515G,

∏
d∈D Ad has a Boolean-independent subset with

cardinal the cardinal power τ(A)#(D) = τ(A)c(A), so A also has. But

κ ≤ supλ<sat(A) τ(A)λ = τ(A)c(A)

by 514De, so A has a Boolean-independent set of cardinal κ. QQQ

(d) Suppose that A is cellularity-homogeneous and Maharam-type-homogeneous and c(A) = sat(A).
Then A has a Boolean-independent subset with cardinal κ.

PPP (i) By 515F, we can find a Boolean-independent family 〈Di〉i∈I of partitions of unity in A such that
#(I) = supi∈I #(Di) = sat(A). We know that sat(A) ≥ ω1, so we can suppose that all the Di are infinite.
For each i ∈ I, let Di be the order-closed subalgebra of A generated by Di. By (a) above, Di has a Boolean-
independent subset Bi with cardinal 2#(Di), so that B =

⋃
i∈I Bi has cardinal supλ<sat(A) 2λ. By 515Df,

〈Di〉i∈I is Boolean-independent. By 515De, B is Boolean-independent.

(ii) If #(B) = κ, we can stop. Otherwise, let D be the order-closed subalgebra of A generated by
D =

⋃
i∈I Di. Because
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sup
λ<sat(A)

#(B)λ = #(B)

(5A1Ff)

< κ ≤ sup
λ<sat(A)

τ(A)λ

(514Be), we must have

τ(A) > #(B) = supλ<sat(A) 2λ ≥ sat(A) = #(D) ≥ τ(D).

By (b), we have a subalgebra C of A, Boolean-independent of D, such that C has a Boolean-independent
subset C with cardinal τ(A). Let 〈Ci〉i∈I be a disjoint family of subsets of C all with cardinal τ(A).

For i ∈ I, let Ci0 be the subalgebra of A generated by Di and Ci1 the subalgebra generated by Ci. Let

Ei be the subalgebra generated by Ci0 ∪ Ci1 and Êi its Dedekind completion (314T-314U). In Êi we have
the partition of unity Di and the Boolean-independent set Ci with cardinal τ(A). For each b ∈ Di, the

principal ideal (Êi)b of Êi generated by b has a Boolean-independent set {b ∩ c : c ∈ Ci} with cardinal τ(A).

Because Êi is Dedekind complete, it is isomorphic to
∏

b∈Di
(Êi)b, and has a Boolean-independent subset

with cardinal τ(A)#(Di) (515G again).

Because A is Dedekind complete, the embedding Ei ⊂→ A extends to a Boolean homomorphism πi : Êi → A

(314K). Because Ei is order-dense in Êi, πi is injective. So E∗
i = πi[Êi] is a subalgebra of A isomorphic to

Êi, and has a Boolean-independent subset Ei with cardinal τ(A)#(Di).

(iii) By 515Df and 515Dd, 〈Ci0〉i∈I and 〈Ci1〉i∈I are both Boolean-independent families; because Ci0 ⊆
D and Cj1 ⊆ C whenever i, j ∈ I, and D and C are Boolean-independent, 〈Cij〉i∈I,j∈{0,1} is Boolean-

independent, so 〈Ei〉i∈I is Boolean-independent (515Dc). If J ⊆ I is finite, and ei ∈ (E∗
i )+ for each i ∈ J ,

then there are e′i ∈ Ei such that 0 6= e′i ⊆ ei for each i. Now infi∈J ei ⊇ infi∈J e
′
i 6= 0. As 〈ei〉i∈J is arbitrary,

〈E∗
i 〉i∈I is Boolean-independent. But this means that E =

⋃
i∈I Ei is Boolean-independent (515De), while

#(E) ≥ supi∈I τ(A)#(Di) = supλ<sat(A) τ(A)λ ≥ κ.

Of course #(E) ≤ #(A) = κ, so we have a Boolean-independent set with cardinal κ in this case also. QQQ

(e) If A is atomless it has a Boolean-independent subset with cardinal κ. PPP Because Maharam type
and cellularity are both order-preserving cardinal functions (514Ed), A is isomorphic to the product of a
family 〈Ai〉i∈I of Maharam-type-homogeneous cellularity-homogeneous algebras, none of them {0} (514Gc).
Now, for each i, Ai is an atomless (therefore infinite) Maharam-type-homogeneous cellularity-homogeneous
Dedekind complete Boolean algebra, so by (c)-(d) above has a Boolean-independent set with cardinal #(Ai).
By 515G once more, A has a Boolean-independent set with cardinal #(

∏
i∈I Ai) = κ. QQQ

(f) Finally, for the general case, let A be the set of atoms of A and set c = supA, so that the principal
ideal Ac is purely atomic and the principal ideal A1\c is atomless. Because A ∼= Ac × A1\c is infinite, one
of Ac, A1\c has cardinal κ, and therefore (by (a) or (f)) has a Boolean-independent subset with cardinal κ;
which is now a Boolean independent subset of A with cardinal κ.

This completes the proof.

515I Corollary If A is an infinite Dedekind complete Boolean algebra and κ ≤ #(A), A has a subalgebra
isomorphic to the regular open algebra of {0, 1}κ.

proof By 515H, A has a Boolean-independent family 〈aξ〉ξ<κ. By 515Cb, A has a subalgebra isomorphic
to the regular open algebra of {0, 1}κ.

515J Corollary If A is an infinite Dedekind complete Boolean algebra with Stone space Z, then #(Z) =
2#(A).

proof Since Z may be identified with the set of uniferent ring homomorphisms from A to Z2 (311E),
#(Z) ≤ 2#(A). On the other hand, writing W = {0, 1}#(A), we have a subalgebra of A isomorphic to the
algebra E of open-and-closed subsets of W (515I). If π : E → A is an injective Boolean homomorphism, it
corresponds to a surjective continuous function ψ : Z →W (312Sa), so that #(Z) ≥ #(W ) = 2#(A).
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515K I extract part of the proof of the next theorem as a lemma.

Lemma Let A be an infinite Boolean algebra with the σ-interpolation property.
(a) Let 〈an〉n∈N be a disjoint sequence in A. Then #(A) ≥ #(

∏
n∈N Aan

), writing Ad for the principal
ideal of A generated by d, as usual.

(b) Set κ = #(A), and let I be the set of those a ∈ A such that #(Aa) < κ. Then I is an ideal of A, and
either A/I is infinite,
or there is a set J ⊆ I with cardinal κ such that every sequence in J has an upper bound in J ,
or #(

∏
n∈N Aan

) = κ for some sequence 〈an〉n∈N in I.

Remark Recall from 466G that A has the ‘σ-interpolation property’ if whenever A, B ⊆ A are countable
and a ⊆ b for every a ∈ A and b ∈ B, then there is a c ∈ A such that a ⊆ c ⊆ b for every a ∈ A and b ∈ B.
See also 514Yf above.

proof (a) The point is that the map a 7→ 〈a ∩ an〉n∈N : A →
∏

n∈N Aan
is surjective. PPP If 〈bn〉n∈N ∈∏

n∈N Aan
, there must be an a ∈ A such that bn ⊆ a ⊆ 1 \ (an \ bn) for every n, so that a ∩ an = bn for every

n. QQQ The result follows at once.

(b) If a, b ∈ I then (c, d) 7→ c ∪ d is a surjection from Aa × Ab onto Aa∪b, so a ∪ b ∈ I; of course b ∈ I
whenever b ⊆ a ∈ I, so I is an ideal of A.

??? Suppose, if possible, that all three alternatives are false. Then A/I is finite; let v0, . . . , vm be its
atoms. Let c0, . . . , cm ∈ A be such that c•i = vi for every i. Observe that A is the union of finitely many
sets with cardinal #(I), so I itself must have cardinal κ, and there is a sequence 〈b′n〉n∈N in I with no
upper bound in I; setting bn = b′n \ supm<n b

′
m for each n, we get a disjoint sequence 〈bn〉n∈N in I with

no upper bound in I. Now there is some k ≤ m such that 〈bn ∩ ck〉n∈N has no upper bound in I. Set
K = {d : d ⊆ ck, d ∩ bn = 0 for every n ∈ N}. Then K ⊳ Ack . If d ∈ K, ck \ d is an upper bound for
{bn ∩ ck : n ∈ N}, so does not belong to I; as c•k is an atom in A/I, d must belong to I. Thus K ⊆ I. The
function d 7→ 〈d ∩ bn〉n∈N : Ack →

∏
n∈N Ack∩bn is a Boolean homomomorphism with kernel K, so

#(Ack/K) ≤ #(
∏

n∈N Ack∩bn) < κ

(since the third alternative is false, and #(
∏

n∈N Ack∩bn) ≤ κ by (a)); as #(Ack) = κ, #(K) = κ. There is
therefore a sequence 〈dn〉n∈N in K with no upper bound in K. But there is a d ∈ A such that dn ⊆ d ⊆ 1 \ bn
for every n ∈ N, because A has the σ-interpolation property; so that d ∩ ck ∈ K is an upper bound for
{dn : n ∈ N}. XXX

515L Theorem (Koppelberg 75) If A is an infinite Boolean algebra with the σ-interpolation property,
then #(A) is equal to the cardinal power #(A)ω.

proof Induce on κ = #(A).

(a) If κ ≤ c, then (because A is infinite) there is a disjoint sequence 〈an〉n∈N in A+, so that

c ≤ #(
∏

n∈N Aan
) ≤ #(A)

by 515Ka, and κ = c. So κω = (2ω)ω = κ.

(b) For the inductive step to κ > c, set I = {a : a ∈ A, #(Aa) < κ}, as in 515Kb. It is easy to see that
every principal ideal of A has the σ-interpolation property, so that #(Aa)ω ≤ max(c,#(Aa)) for every a ∈ I.
Now consider the three possibilities of 515Kb.

case 1 If the quotient algebra A/I is infinite, then κω = κ. PPP There is a disjoint sequence 〈un〉n∈N in
A/I. For each n ∈ N take an ∈ A such that a•

n = un; now setting a′n = an \ supi<n ai for each n, 〈a′n〉n∈N is
a disjoint sequence in A \ I. So

κ ≤ κω = #(
∏

n∈N Aa′
n
) ≤ κ

by 515Ka again. QQQ

case 2 Suppose that there is a set J ⊆ I such that #(J) = κ and every sequence in J has an upper
bound in J . Then κω = κ. PPP
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κω = #(JN) ≤ #(
⋃

a∈J

AN
a )

(because every sequence in J is included in Aa for some a ∈ J)

≤ max(ω,#(J), sup
a∈I

#(AN
a )) ≤ max(κ, sup

a∈J

#(Aa)) = κ ≤ κω. QQQ

case 3 Suppose there is a sequence 〈an〉n∈N in I such that #(
∏

n∈N Aan
) = κ. Then κω = κ. PPP Set

L = {n : n ∈ N, Aan
is infinite}. Then

κω = #((
∏

n∈N

Aan
)N) = #(

∏

n∈N\L

AN
an

×
∏

n∈L

AN
an

)

≤ #(c×
∏

n∈L

Aan
) ≤ max(c, κ) = κ. QQQ

Thus in all three cases we have κω = κ, and the induction proceeds.

515M Corollary (a) If A is an infinite ccc Dedekind σ-complete Boolean algebra then #(A) = τ(A)ω.
(b) If A is any infinite Dedekind σ-complete Boolean algebra, then #(L0(A)) = #(L∞(A)) = #(A).

proof (a) Of course A, being Dedekind σ-complete, has the σ-interpolation property, as noted in 466G. So
by 515L and 514De,

τ(A)ω ≤ #(A)ω = #(A) ≤ τ(A)ω.

(b) a 7→ χa : A → L∞(A) and u 7→ 〈[[u > q]]〉q∈Q : L0(A) → AQ are injective, so

#(A) ≤ #(L∞(A)) ≤ #(L0(A)) ≤ #(A)ω = #(A).

515N It will be convenient later to know a little more about the regular open algebras of powers of
{0, 1}.

Proposition Let I be a set. Write G for the regular open algebra RO({0, 1}I).
(a) G is ccc and Dedekind complete and isomorphic to the category algebra of {0, 1}I . The algebra of

open-and-closed subsets of {0, 1}I is an order-dense subalgebra of G.
(b) Let A be a Boolean algebra. Then A is isomorphic to G iff it is Dedekind complete and there is a

Boolean-independent family 〈ai〉i∈I in A such that the subalgebra generated by {ai : i ∈ I} is order-dense
in A.

(c) If I is infinite, G is homogeneous.

proof Write E for the algebra of open-and-closed subsets of {0, 1}I and ei = {x : x ∈ {0, 1}I , x(i) = 1} for
i ∈ I. Note that the set

{e : e ⊆ {0, 1}I is determined by coordinates in a finite set}

is an algebra of subsets of {0, 1}I (254Ma) which contains ei for every i so includes E . We also know that
every member of G is determined by coordinates in a countable subset of I (4A2E(b-i)).

(a) G, being a regular open algebra, is Dedekind complete (314P). By 4A2E(a-iii), {0, 1}I is ccc; by
514H(b-i), G is ccc. By 514Kg, E is an order-dense subalgebra of G and G is isomorphic to the category
algebra of {0, 1}I .

(b)(i) Because {0, 1}I is zero-dimensional, E is order-dense in G. Now 〈ei〉i∈I is independent and gener-
ates E (cf. 315Ka). So G has the declared properties.

(ii) If A satisfies the conditions, then, as in (a-i) of the proof of 515C, the subalgebra of A generated by
{ei : i ∈ I} is isomorphic to E . Now both A and G are Dedekind completions of E , so they are isomorphic
(314U).
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(c)(i) Suppose first that I is countable, and that a ∈ G+. Then the principal ideal Ga is atomless and
Dedekind complete and has countable π-weight (514Eb), so has a countable order-dense subalgebra B. B is
countable, atomless and not {0}, so is isomorphic to the algebra of open-and-closed subsets of {0, 1}N and to
E (316M). Now any isomorphism between B and E extends to an isomorphism between their completions,
which by 314Ub can be identified with Ga and G.

(ii) Now suppose that I is uncountable. Again take a ∈ G+. Then a is determined by coordinates
in some countable subset J of I. We can of course suppose that J is infinite. Now we can express a as
b × {0, 1}I\J where b is a non-empty open subset of {0, 1}J , and in fact is a regular open subset (use the
formulae in 4A2B(g-i) to see that int b × {0, 1}I\J = int a). Let B be the principal ideal of RO({0, 1}J )
generated by b. By (i) here, B is isomorphic to RO({0, 1}J ) and there is an independent family 〈bj〉j∈J in
B generating an order-dense subalgebra E1 of B.

Next, we have a independent family 〈ck〉k∈I\J in RO({0, 1}I\J ) generating an order-dense subalgebra E2
of RO({0, 1}I\J ). Note that, by 4A2B(g-i) again,

b′ 7→ b′ × {0, 1}I\J : RO({0, 1}I) → G, c′ 7→ {0, 1}J × c′ : RO({0, 1}I\J → G

are injective Boolean homomorphisms. So if we set

aj = bj × {0, 1}I\J for j ∈ J , aj = {0, 1}J × ck for k ∈ I \ J ,

〈ai〉i∈I will be an independent family in G and the subalgebra E it generates will contain b′×c′ for every b ∈ E1
and c ∈ E2; as every member of G+, being a non-empty open set in {0, 1}I ∼= {0, 1}J × {0, 1}I\J , includes a
product b′ × c′ where b′ ∈ RO({0, 1}I)+ and c′ ∈ RO({0, 1}I\J )+, E is order-dense in Ga. Accordingly (b)
tells us that Ga

∼= G, as required.

Remark Algebras of this kind will appear regularly as the volume proceeds; they are among the basic
building blocks from which Dedekind complete Boolean algebras are constructed. I will occasionally use the
phrase ‘Cohen algebra’ indifferently to mean either the category algebra, or the regular open algebra, of
a set {0, 1}I where I is infinite.

515O We need to know some elementary facts about the algebra RO({0, 1}N) which I have not yet spelt
out.

Proposition (a) A Boolean algebra A is isomorphic to G = RO({0, 1}N) iff it is Dedekind complete, atomless,
has countable π-weight and is not {0}. In particular, the regular open algebra RO(R) is isomorphic to G.

(b) Every atomless order-closed subalgebra of G is isomorphic to G.

proof (a)(i) By 515N, G is Dedekind complete (514Ic) and has π-weight ω. As in the proof of 515N, the
algebra E of open-and-closed subsets of {0, 1}N is order-dense in G; as E is atomless, so is G.

(ii) If A satisfies the conditions, let B be a countable order-dense subset of A and B the subalgebra
of A generated by B. Then B is countable, atomless and not {0}, so is isomorphic to E (316M). Now any
isomorphism between B and E extends to an isomorphism between their completions, which by 314Ub can
be identified with A and G respectively.

(iii) All regular open algebras are Dedekind complete. Because R is not empty, RO(R) 6= {0}. Because
R is Hausdorff and has no isolated points, RO(R) is atomless. Because R has countable π-weight, so has
RO(R) (514H(b-ii)). So RO(R) ∼= G by (ii) here.

(b) All we have to observe is that any atomless order-closed subalgebra of G satisfies the conditions of
(a) (see 514E).

515P There is a more complicated, but still manageable, characterization of RO({0, 1}ω1).

Proposition A Boolean algebra A is isomorphic to RO({0, 1}ω1) iff
(α) it is non-zero, ccc and Dedekind complete,
(β) every non-zero principal ideal of A has π-weight ω1,
(γ) there is a non-decreasing family 〈Aξ〉ξ<ω1

of countable subsets of A such that

each Aξ is order-dense in the order-closed subalgebra of A which it generates,
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Aζ =
⋃

ξ<ζ Aξ for every non-zero countable limit ordinal ζ,⋃
ξ<ω1

Aξ is order-dense in A.

proof Write G for RO({0, 1}ω1).

(a)(i) We know from 515N that G satisfies the conditions (α) and (β) above.

(ii) For ξ < ω1, let Eξ be the set of open-and-closed subsets of {0, 1}ω1 which are determined by
coordinates in ξ, and Gξ the set of regular open subsets of {0, 1}ω1 which are determined by coordinates
in ξ. Then Gξ is an order-closed subalgebra of G. PPP Reviewing the formulae of 314O, we see that the
Boolean operations of G can all be expressed in terms of (arbitrary) unions and intersections, set difference,
closure and interior. Since all of these can be done within the family of subsets of {0, 1}ω1 determined by
coordinates in ξ (254Ma, 4A2B(g-i)), Gξ is an order-closed subalgebra of G. QQQ Next, Eξ is a subalgebra
of the algebra E of open-and-closed subsets of {0, 1}ω1 , and is order-dense in Gξ, so Gξ is the order-closed
subalgebra of G generated by Eξ.

Of course 〈Eξ〉ξ<ω1
is a non-decreasing family of countable subsets of G. If ζ is a non-zero countable limit

ordinal, then every member of Eζ is determined by coordinates in a finite subset of ζ, so Eζ =
⋃

ξ<ζ Eξ. And⋃
ξ<ω1

Eξ = E is order-dense in G. So 〈Eξ〉ξ<ω1
witnesses that G satisfies condition (γ).

(b) Now suppose that A and 〈Aξ〉ξ<ω1
satisfy the conditions (α)-(γ). For each ξ < ω1 let Aξ be the

order-closed subalgebra generated by Aξ.

(i) We need to know that A =
⋃

ξ<ω1
Aξ. PPP Because A is ccc and 〈Aξ〉ξ<ω1

is a non-decreasing family of

order-closed subalgebras of A,
⋃

ξ<ω1
Aξ is an order-closed subalgebra (use 316Fb). But

⋃
ξ<ω1

Aξ includes

the order-dense set
⋃

ξ<ω1
Aξ so is the whole of A. QQQ

(ii) Suppose that C is an order-closed subalgebra of C with countable π-weight. Then there is an a ∈ A

which is independent of C in the sense that c ∩ a and c \ a are non-zero for every non-zero c ∈ C. PPP Let
〈(ai, ci)〉i∈I be a maximal family such that 〈ci〉i∈I is a disjoint family in C and, for each i ∈ I, ai ⊆ ci is such
that c ∩ ai and c \ ai are non-zero for every c ∈ C such that c ∩ ci is non-zero. Set c∗ = 1 \ supi∈I ci. ??? If
c∗ 6= 0, consider the principal ideal Ac∗ of A generated by c∗. By hypothesis, this must have uncountable π-
weight, so the countable set Cc∗ cannot be order-dense in Ac∗ , and there is a non-zero a′ ∈ Ac∗ not including
any non-zero member of Cc∗ , therefore not including any non-zero member of C. Set c′ = upr(a′,C); then
c′ is non-zero and c′ ⊆ c∗, so c′ ∩ ci = 0 for every i ∈ I. If c ∈ C is non-zero and meets c′, then c ∩ c′ 6⊆ a
so c \ a 6= 0, while a 6⊆ c′ \ c so c ∩ a 6= 0. But this means that we ought to have added (a′, c′) to the family
〈(ai, ci)〉i∈I . XXX

Thus supi∈I ci = 1. Set a = supi∈I ai. If c ∈ C+, there is an i ∈ I such that c ∩ ci 6= 0, in which case
c ∩ a ⊇ c ∩ ai and c \ a ⊇ (c ∩ ci) \ ai are both non-zero. Accordingly a is independent of C, as required. QQQ

(iii) Suppose that C is an order-closed subalgebra of A with countable π-weight, and b ∈ A. Then
there are an an a ∈ A and a d ∈ C+ such that a is independent of C and a ∩ d ⊆ b. PPP By (ii), we have an
a′ ∈ A which is independent of C. If there is a non-zero d ∈ C such that d ⊆ b we can set a = a′. Otherwise,
set d = upr(b,C) and a = b ∪ (a′ \ d). If c ∈ C is non-zero, either c ∩ d 6= 0 and

c ∩ a ⊇ c ∩ d ∩ b 6= 0, c \ a ⊇ c ∩ d \ b 6= 0,

or c \ d 6= 0 and

c ∩ a ⊇ (c \ d) ∩ a′ 6= 0, c \ a ⊇ (c \ d) \ a′ 6= 0.

So a is independent of C, while of course 0 6= a ∩ d ⊆ b. QQQ

(iv) Suppose that ζ < ω1. Then there are a ζ ′ ≥ ζ and an independent sequence 〈ai〉i∈N in Aζ′ such
that Aζ and the subalgebra B generated by {ai : i ∈ N} are independent and the subalgebra generated by
Aζ ∪B is order-dense in Gζ′ . PPP We need a couple of bookkeeping devices. For each ξ < ω1 le 〈b(ξ, n)〉n∈N

be a sequence running over Aξ \ {0}, and let 〈(ji, ki)〉i∈N be an enumeration of N× N with ji ≤ i for every
i ∈ N. Now choose sequences 〈ζi〉i∈N in ω1, 〈ai〉i∈N in A and 〈Di〉i∈N inductively so that

ζi = min{ξ : ζ ≤ ξ, aj ∈ Aξ for every j < i}

(by (i) above, ζi will always be countable, and ζ = ζ0 ≤ ζ1 ≤ . . . )
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Di is the subalgebra of A generated by Aζ ∪ {aj : j < i}

(so that Di is always an order-closed subalgebra of A, by 314Ja),

ai is independent of Di and there is a d ∈ Di such that 0 6= ai ∩ d ⊆ b(ζji , ki)

(using (iii)). At the end of the induction, set ζ ′ = supi∈N ζi.
Because ai is always independent of Di, 〈ai〉i∈N is independent and B, the subalgebra generated by

{ai : i ∈ N}, is independent of Aζ . Next, if a ∈ Aζ′ is non-zero, there is an a′ ∈ Aζ′ such that 0 6= a′ ⊆ a;
there are a ξ < ζ ′ such that a′ ∈ Aξ, a j ∈ N such that ξ ≤ ζj and a′ ∈ Aζj , and an i ∈ N such that ji = j

and a′ = b(ζji , ki). There is now a d ∈ D+
i such that ai ∩ d ⊆ a′. Because Di is generated by Aζ∪{al : l < i},

there are c ∈ A+
ζ and J ⊆ i such that a′′ = c ∩ inf l∈J al \ supl∈i\J al is included in a′. But now a′′ belongs

to the subalgebra generated by Aζ ∪B and is included in a. As a is arbitrary, the subalgebra generated by
Aζ ∪B is order-dense in Aζ′ , as required. QQQ

(v) We can therefore build inductively families 〈ζξ〉ξ<ω1
and 〈aξi〉ξ<ω1,i∈N such that, for each ξ < ω1,

〈aηi〉η<ξ,i∈N is independent,

the subalgebra generated by {aξ′i : ξ′ < ξ, i ∈ N} is an order-dense subset of Aζi .

PPP Start with ζ0 = 0. For the inductive step to ξ + 1, where ξ < ω1, apply (iv) with ζ = ζξ to choose
〈aξi〉i∈N and ζ ′, and set ζξ+1 = ζ ′. If a ∈ A+

ζξ+1
then a includes c ∩ b for some non-zero c ∈ Aζ and b in

the algebra generated by {aξi : i ∈ N}; now c includes c′ for some non-zero c′ in the subalgebra generated
by {aξ′i : ξ′ < ξ, i ∈ N}, and we see that c′ ∩ b is a non-zero element of the subalgebra generated by
{aξ′i : ξ′ ≤ ξ + 1, i ∈ N} and is included in a.

For the inductive step to a non-zero limit ordinal ξ < ω1 set ζξ = supη<ξ ζη. In this case, if a ∈ A+
ζξ

,

there is a non-zero a′ ∈ Aζξ included in a, there is an η < ξ such that a′ ∈ Aζη , and there is a non-zero a′′

in the subalgebra generated by {aη′i : η′ < η, i ∈ N} such that a′′ ⊆ a′. So again the subalgebra generated
by {aξ′i : ξ′ < ξ, i ∈ N} is order-dense in Aζξ and the induction proceeds. QQQ

(vi) At the end of the induction, 〈aξi〉ξ<ω1,i∈N is independent, because all its finite subfamilies are
independent. Because aξ0 ∈ Aζξ+1

\ Aζξ for every ξ, 〈ζξ〉ξ<ω1
is strictly increasing and supξ<ω1

ζξ = ω1, so
that A =

⋃
ξ<ω1

Aζξ . Accordingly the subalgebra generated by {aξi : ξ < ω1, i ∈ N} will be order-dense in
A. But 515Nc now tells us that A ∼= G. So the conditions listed are sufficient as well as necessary.

515Q Concerning closed subalgebras, the position with RO({0, 1}ω1) is nearly as straightforward as with
RO({0, 1}ω), though the proof is a good deal deeper.

Proposition Let A be an atomless order-closed subalgebra of G = RO({0, 1}ω1). Then A is isomorphic
either to RO({0, 1}ω) or to G or to the simple product RO({0, 1}ω) ×G.

proof (a) We know that there is a non-decreasing family 〈Bξ〉ξ<ω1
of countable subsets of G such that⋃

ξ<ω1
Bξ is order-dense in G, Bξ =

⋃
η<ξ Bη for every non-zero countable limit ordinal ξ, every Bξ is

order-dense in the order-closed subalgebra Gξ of G which it generates, and G =
⋃

ξ<ω1
Gξ.

Consider the set

C = {ζ : ζ < ω1 is a non-zero limit ordinal,

upr(b,A) ∈ Gζ for every b ∈
⋃

ξ<ζ

Bξ}.

Then C is a closed cofinal subset of ω1, and upr(b,A) ∈ Gζ whenever ζ ∈ C and b ∈
⋃

ξ<ζ Bξ = Bζ . Set

Aζ = {upr(b,A) : b ∈ Bζ} for each ζ ∈ C. Then 〈Aζ〉ζ∈C is a non-decreasing family of countable subsets
of A and Aζ =

⋃
ξ∈C∩ζ Aξ whenever ζ ∈ C is sup(C ∩ ζ). Moreover, if ζ ∈ C, Aζ is an order-dense subset

of A ∩ Gζ . PPP Surely Aζ ⊆ A, and Aζ ⊆ Gζ by the definition of C. If a ∈ (A ∩ Gζ)+, there is a non-zero
b ∈ Bζ such that b ⊆ a, and now upr(b,A) ∈ Aζ and 0 6= upr(b,A) ⊆ a. QQQ Since A ∩Gζ is an order-closed
subalgebra of G it is also an order-closed subalgebra of A and must be the order-closed subalgebra of A

generated by Aζ .
What this means is that 〈Aζ〉ζ∈C , suitably re-indexed, witnesses that A satisfies condition (γ) of 515P.
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(b) So if A is π-weight-homogeneous with π-weight ω1, that is, all its non-zero principal ideals have
π-weight ω1, then A ∼= G. PPP As surely it is non-zero, ccc and Dedekind complete (because G is), it satisfies
all three conditions of 515P. QQQ

On the other hand, if π(A) is countable, then 515O tells us that A ∼= RO({0, 1}ω). So let us suppose from
now on that A has uncountable π-weight and has a principal ideal which has π-weight different from ω1.

(c) Because π-weight is an order-preserving ordinal function of Boolean algebras (514Ed), and A is
Dedekind complete, it is isomorphic to a simple product of π-weight-homogeneous principal ideals (514Gc),
all of which are Dedekind complete and have π-weight at most π(A) ≤ π(G) = ω1 (514Eb). Because
c(A) ≤ c(G) is countable (514Ea), we are dealing with a countable product. As π(A) > ω, not all the terms
have countable π-weight, and we are supposing also that not all the terms have π-weight ω1.

The terms with π-weight ω can be joined together as a single principal ideal B with π-weight ω (514Ef),
which must now be isomorphic to RO({0, 1}ω). Similarly the terms with π-weight ω1 can be joined together
as a single π-weight-homogeneous principal ideal C of π-weight ω1. So A ∼= B× C.

Express C as Ac where c ∈ A. Consider the corresponding principal ideal Gc of G. This is isomorphic to
G (515Nc) and C is an order-closed subalgebra of Gc. So (b) tells us that C ∼= G, and our decomposition of
A is of the required form.

515X Basic exercises (a) Let A be a Boolean algebra, not {0}, and 〈Di〉i∈I a family of partitions of
unity in A, none containing 0. Show that the following are equiveridical: (i) 〈Di〉i∈I is Boolean-independent;
(ii) 〈Bi〉i∈I is Boolean-independent, where Bi is the subalgebra of A generated by Di for each i ∈ I.

(b) Give an example of a Boolean algebra A with Boolean-independent subalgebras B, C such that the
order-closed subalgebras generated by B and C are not Boolean-independent.

(c) For a Boolean algebra A, not {0}, write ind(A) for sup{#(A) : A ⊆ A is Boolean-independent}. (If
A = {0}, say ind(A) = 0.) (i) Show that if B is either a subalgebra or a principal ideal or a homomorphic
image of A then ind(B) ≤ ind(A). (ii) Show that A is infinite iff ind(A) is infinite. (iii) Show that if A is
finite and not {0} then ind(A) is the largest n such that 22

n

≤ #(A). (iv) Show that if A is the finite-cofinite
algebra of subsets of an infinite set X, then ind(A) = ω but A has no infinite Boolean-independent set. (v)
Show that if A and B are Boolean algebras then ind(A×B) is at most the cardinal sum ind(A) + ind(B).
(vi) Show that if A is infinite and has the σ-interpolation property then ind(A) ≥ c.

(d) Let Z be an infinite extremally disconnected compact Hausdorff space. Show that there is a continuous
surjection from Z onto {0, 1}w(Z).

(e) Let A be a Boolean algebra with the σ-interpolation property. Show that any homomorphic image
of A has the σ-interpolation property.

(f) Let κ be an infinite cardinal. Show that the following are equiveridical: (i) there is a measure algebra
with cardinal κ; (ii) there is a measurable algebra with cardinal κ; (iii) κω = κ.

515Y Further exercises (a)(i) Show that if A is any Boolean algebra, other than {0}, with cardinal
at most ω1, it is isomorphic to a subalgebra of PN/[N]<ω. (ii) Show that an atomless Boolean algebra with
cardinal ω1 and the σ-interpolation property is isomorphic to PN/[N]<ω. (This is a version of Parovičenko’s
theorem.)

(b) Let A be a Dedekind complete Boolean algebra, and κ ≤ #(A) a regular uncountable cardinal. Show
that there is a strictly increasing family 〈Aξ〉ξ<κ of subalgebras of A with union A. (Compare 494Yk.)

515 Notes and comments The material of this section is taken from Koppelberg 89, where you can find
a good deal more. I have picked out the results which are essential to a proper understanding of measure
algebras. Of course there are short cuts, using Maharam’s theorem (332B), if we know that we are dealing
with a localizable measure algebra; but I should not like to leave you with the impression that the theorems
here are restricted to measure algebras.
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Any theorem about Boolean algebras is also a theorem about zero-dimensional compact Hausdorff spaces;
thus 515H and 515Xd have an equal right to be called the Balcar-Franěk theorem. 515D and part (b) of the
proof of 515H may be regarded as a simple form of some of the ideas of §331.

Clearly some of the ideas of this section can be expressed in terms of the independence number ind(A)
(515Xc). But the expression is complicated by the fact that (like cellularity) the independence number may
not be attained (see 515Xc(iv)), while the theorems here mostly need actual Boolean-independent families.
Since ind(A) = #(A) for infinite Dedekind complete Boolean algebras (515H), we shall not have to grapple
with these difficulties.

The results of 515O-515Q give us a good grip on the regular open algebras of {0, 1}ω and {0, 1}ω1 and
their order-closed subalgebras. There are serious obstacles in the way of extending these ideas; order-closed
subalgebras of the category algebra of {0, 1}ω2 , for instance, can be very different in character. For examples
see Koppelberg & Shelah 96 and Balcar Jech & Zapletal 97.

Version of 9.10.14

516 Precalibers

In this section I will try to display the elementary connexions between ‘precalibers’, as defined in 511E,
and the cardinal functions we have looked at so far. The first step is to generalize the idea of precaliber
from partially ordered sets to supported relations (516A); the point is that Galois-Tukey connections give us
information on precalibers (516C), and in particular give quick proofs that partially ordered sets, topological
spaces and Boolean algebras related in the canonical ways explored in §514 have many of the same precalibers
(516G, 516H, 516M). Much of the section is taken up with lists of expected facts, but for some results the
hypotheses need to be chosen with care. I end with a fundamental theorem on the saturation of product
spaces (516T).

516A Definition If (A,R,B) is a supported relation, a precaliber triple of (A,R,B) is a triple
(κ, λ,<θ) where κ, λ and θ are cardinals and whenever 〈aξ〉ξ<κ is a family in A then there is a set Γ ∈ [κ]λ

such that 〈aξ〉ξ∈Γ is <θ-linked in the sense of 512Bc, that is, for every I ∈ [Γ]<θ there is a b ∈ B such that
(aξ, b) ∈ R for every ξ ∈ I. Similarly, (κ, λ, θ) is a precaliber triple of (A,R,B) if whenever 〈aξ〉ξ<κ is a
family in A then there is a set Γ ∈ [κ]λ such that 〈aξ〉ξ∈Γ is θ-linked; that is, if (κ, λ,<θ+) is a precaliber
triple.

Now (κ, λ) is a precaliber pair of (A,R,B) if (κ, λ,<ω) is a precaliber triple of (A,R,B), and κ is a
precaliber of (A,R,B) if (κ, κ) is a precaliber pair.

516B Elementary remarks I ought perhaps to spell out the following immediate consequences of the
definitions. Let (A,R,B) be a supported relation.

(a) If κ′ ≥ κ, λ′ ≤ λ, θ′ ≤ θ and (κ, λ,<θ) is a precaliber triple of (A,R,B), then (κ′, λ′, <θ′) is a
precaliber triple of (A,R,B). So if κ′ ≥ κ, λ′ ≤ λ and (κ, λ) is a precaliber pair of (A,R,B), then (κ′, λ′)
is a precaliber pair of (A,R,B).

(b) If θ > 0, then (0, 0, <θ) is a precaliber triple of (A,R,B) iff B 6= ∅. If A = ∅ then (κ, λ,<θ) is a
precaliber triple of (A,R,B) whenever κ ≥ 1. If A 6= ∅ and A 6= R−1[B], that is, cov(A,R,B) = ∞, then
the only precaliber triples of (A,R,B) are of the form (κ, 0, <θ). If A 6= ∅ and (κ, λ,<θ) is a precaliber
triple of (A,R,B), then λ ≤ κ. cov(A,R,B) = ∞ iff 1 is not a precaliber of (A,R,B).

(c) If (κ, λ, λ) is a precaliber triple of (A,R,B) then (κ, λ,<θ) is a precaliber triple of (A,R,B) for every
θ; in particular, (κ, λ) is a precaliber pair of (A,R,B).

(d) If (κ, κ,<θ) is a precaliber triple of (A,R,B), so is (cfκ, cfκ,<θ). PPP If cfκ = κ there is nothing to
prove. If 2 ≤ κ < ω and A is empty the result is trivial. If 2 ≤ κ < ω and A is not empty, then B is not
empty, so if θ ≤ 1 the result is trivial. If 2 ≤ κ < ω and A is not empty and θ > 1, then R−1[B] = A so
(cfκ, cfκ,<θ) = (1, 1, <θ) is a precaliber triple of (A,R,B).

If κ > cfκ is infinite, let 〈γξ〉ξ<cfκ be a strictly increasing family with supremum κ. For η < κ, set
f(η) = min{ξ : η ≤ γξ}. If 〈aξ〉ξ<cfκ is a family in A, set a′η = af(η) for each η < κ. Then there is a Γ ∈ [κ]κ
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such that 〈a′η〉η∈Γ is <θ-linked. Set Γ′ = {f(η) : η ∈ Γ}; then 〈aξ〉ξ∈Γ′ is <θ-linked. Also Γ must be cofinal
with κ, so Γ′ is cofinal with cfκ and #(Γ′) = cfκ. As 〈aξ〉ξ<cfκ is arbitrary, (cfκ, cfκ,<θ) is a precaliber
triple of (A,R,B). QQQ

In particular, if κ is a precaliber of (A,R,B), so is cfκ.

516C Theorem Suppose that (A,R,B) and (C, S,D) are supported relations, and that (A,R,B) 4GT

(C, S,D). Then (κ, λ,<θ) or (κ, λ, θ) is a precaliber triple of (A,R,B) whenever it is a precaliber triple of
(C, S,D), so (κ, λ) is a precaliber pair of (A,R,B) whenever it is a precaliber pair of (C, S,D), and κ is a
precaliber of (A,R,B) whenever it is a precaliber of (C, S,D).

proof Let (φ, ψ) be a Galois-Tukey connection from (A,R,B) to (C,R, S). If (κ, λ,<θ) is a precaliber
triple of (C, S,D), and 〈aξ〉ξ<κ is a family in A, then there is a set Γ ∈ [κ]λ such that whenever I ∈ [Γ]<θ

there is a d ∈ D such that (f(aξ), d) ∈ S for every ξ ∈ I, and now (aξ, g(d)) ∈ R for every ξ ∈ I. Thus
(κ, λ,<θ) is a precaliber triple of (A,R,B). The results for precaliber pairs and precalibers follow at once.

516D Corollary If (A,R,B) ≡GT (C, S,D) then (A,R,B) and (C, S,D) have the same precaliber triples,
the same precaliber pairs and the same precalibers.

516E Remark Because all the definitions in 516A start from precaliber triples (κ, λ,<θ), any theorem
about such precaliber triples is likely to lead at once to corresponding results concerning precaliber triples
(κ, λ, θ), precaliber pairs and precalibers. In the rest of this section I shall not always take the space to spell
these out systematically, and when later I wish to use a fact about precalibers I may direct you, without
comment, to a fact about precaliber triples or pairs from which it may be deduced.

516F The next step is to check the connexion between the definition in 516A and those of §511. But
this is elementary.

Proposition (a) If P is a partially ordered set, (κ, λ,<θ) or (κ, λ, θ) is a precaliber triple of (P,≤, P ) iff it
is an upwards precaliber triple of P .

(b) If A is a Boolean algebra, then A and (A+,⊇,A+) have the same precaliber triples, where A+ = A\{0}.
(c) If (X,T) is a topological space, then X and (T \ {∅},⊇,T \ {∅}) have the same precaliber triples.

proof Read the definitions in 511E and 516A.

516G Corollary Let (P,≤) be a partially ordered set.
(a) If Q is a cofinal subset of P , then P and Q have the same upwards precaliber triples.
(b) Let T↑ be the up-topology of P (definition: 514L). Then (κ, λ,<θ) is an upwards precaliber triple for

(P,≤) iff it is a precaliber triple for (P,T↑).

proof (a) By 513E(d-ii), (P,≤, P ) ≡GT (Q,≤, Q).

(b) By 514Na, (P,≤, P ) ≡GT (T↑ \ {∅},⊇,T↑ \ {∅}).

516H Corollary Let A be a Boolean algebra.
(a) If Z is the Stone space of A, then A and Z have the same precaliber triples.
(b) If B is an order-dense subalgebra of A, then A and B have the same precaliber triples.

proof (a) Write T for the topology of Z and E for the algebra of open-and-closed sets. Because Z is zero-
dimensional, E+ is coinitial with T \ {∅}, so (A+,⊇,A+) ∼= (E+,⊇, E+) and (T \ {∅},⊇,T \ {∅}) have the
same precaliber triples, by 516Ga, inverted.

(b) B+ is coinitial with A+, so we can use the same idea.

516I Corollary Let (X,T) be a topological space.
(a) If Y is an open subspace of X, then every precaliber triple of X is a precaliber triple of Y .
(b) If Y is a dense subspace of X, then every precaliber triple of X is a precaliber triple of Y .
(c) If X is regular and Y is a dense subspace of X, then X and Y have the same precaliber triples.
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(d) Suppose that Y is a topological space, and that there is a continuous surjection f : X → Y such that
int f [G] 6= ∅ whenever G ⊆ X is a non-empty open set. Then every precaliber triple of X is a precaliber
triple of Y .

proof (a) Write S for the topology of Y . For H ∈ S\{∅}, set φ(H) = H; for G ∈ T\{∅}, set ψ(G) = G∩Y
if this is non-empty, G otherwise. Then (φ, ψ) is a Galois-Tukey connection from (S \ {∅},⊇,S \ {∅}) to
(T \ {∅},⊇,T \ {∅}), so 516C and 516Fc give the result.

(b) Again write S for the topology of Y . For H ∈ S\{∅}, set φ(H) = X\Y \H, where the closure is taken
in X; for G ∈ T\{∅}, set ψ(G) = G∩Y . Then (φ, ψ) is a Galois-Tukey connection from (S\{∅},⊇,S\{∅})
to (T \ {∅},⊇,T \ {∅}), so again we have the result.

(c) If now X is regular, then for each G ∈ T \ {∅} choose VG ∈ T \ {∅} such that V G ⊆ G and set
ψ′(G) = VG∩Y . Then (ψ′, φ) is a Galois-Tukey connection from (T\{∅},⊇,T\{∅}) to (S\{∅},⊇,S\{∅}),
so every precaliber triple of Y is a precaliber triple of X.

(d) Once more writing S for the topology of Y , set φ(H) = f−1[H] for every H ∈ S \ {∅} and ψ(G) =
int f [G] for every G ∈ T \ {∅}; then again (φ, ψ) is a Galois-Tukey connection from (S \ {∅},⊇,S \ {∅}) to
(T \ {∅},⊇,T \ {∅}).

Remark For variations on (b) and (d) here, see 516Xh and 516Oa.

516J Straightforward counting arguments give us some connexions between precalibers and other car-
dinal functions, as follows.

Proposition Let (A,R,B) be a supported relation.
(a) sat(A,R,B) is the least cardinal κ, if there is one, such that (κ, 2) is a precaliber pair of (A,R,B);

if there is no such κ, sat(A,R,B) = ∞. In particular, if κ ≥ 2 is a precaliber of (A,R,B), then κ ≥
sat(A,R,B).

(b) If κ > max(ω, λ, link<θ(A,R,B)) then (κ, λ+, <θ) is a precaliber triple of (A,R,B). In particular, if
κ > max(ω, λ, cov(A,R,B)) then (κ, λ+, <θ) is a precaliber triple of (A,R,B) for every θ.

(c) If cfκ > link<θ(A,R,B) then (κ, κ,<θ) is a precaliber triple of (A,R,B).

proof (a) If (κ, 2) is a precaliber pair of (A,R,B), and 〈aξ〉ξ<κ is any family in A, then there must be a
Γ ∈ [κ]2 such that for every finite I ⊆ Γ there is a b ∈ B such that (aξ, b) ∈ R for every ξ ∈ I. But this
means that if Γ = {ξ, η} then ξ, η are distinct members of κ such that, for some b ∈ B, both (aξ, b) and
(aη, b) belong to R. As 〈aξ〉ξ<κ is arbitrary, sat(A,R,B) ≤ κ.

Conversely, any witness that (κ, 2) is not a precaliber pair of (A,R,B) will provide a witness that
sat(A,R,B) > κ.

Now if κ ≥ 2 is a precaliber of (A,R,B), that is, (κ, κ) is a precaliber pair, then (κ, 2) is a precaliber pair
of (A,R,B), by 516Ba, so κ ≥ sat(A,R,B).

(b) Write δ for link<θ(A,R,B), and let 〈Aη〉η<δ be a cover of A by <θ-linked sets. Let 〈aξ〉ξ<κ be any
family in A. For η < δ set Cη = {ξ : aξ ∈ Aη}; then κ =

⋃
η<δ Cη so there must be some η < δ such that

#(Cη) > λ. Now if Γ ⊆ Cη is a set with cardinal λ+, {aξ : ξ ∈ Γ} is <θ-linked in (A,R,B). As 〈aξ〉ξ<κ is
arbitrary, (κ, λ+, <θ) is a precaliber triple of (A,R,B).

The special case is now elementary, if we remember that link<θ(A,R,B) ≤ cov(A,R,B) for every θ
(512Bc).

(c) If link<θ(A,R,B) = 0 then A = ∅ and the result is trivial. Otherwise, cfκ ≥ ω. Choose δ and 〈Cη〉η<δ

as in (b) above. Let 〈aξ〉ξ<κ be any family in A. Then there must be some η < δ such that #(Cη) = κ, and
{aξ : ξ ∈ Cη} is <θ-linked in (A,R,B). As 〈aξ〉ξ<κ is arbitrary, (κ, κ,<θ) is a precaliber triple of (A,R,B).

516K For partially ordered sets, we have translations of the results above, and a further useful fact.

Proposition Let P be a partially ordered set.
(a) sat↑(P ) is the least cardinal κ such that (κ, 2) is an upwards precaliber pair of P .
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(b) If κ > max(ω, λ, link↑
<θ(P )) then (κ, λ+, <θ) is an upwards precaliber triple of P . In particular, if κ >

max(ω, λ, cfP ) then (κ, λ+, <θ) is an upwards precaliber triple of P for every θ, and if κ > max(ω, λ, d↑(P ))
then (κ, λ+) is an upwards precaliber pair of P .

(c) If cfκ > cfP then (κ, κ,<θ) is an upwards precaliber triple of P for every θ. If cfκ > d↑(P ) then κ
is an up-precaliber of P .

(d) If sat↑(P ) ≥ ω, (sat↑(P ), ω) is an upwards precaliber pair of P .

proof (a)-(c) We need only identify cfP with cov(P,≤, P ) ≥ supθ link<θ(P,≤, P ) (512Bc) and d↑(P ) with
the centering number link<ω(P,≤, P ), as in 512Ea.

(d)(i) Set κ = sat↑(P ). By 513Bb, κ is a regular uncountable cardinal. The first thing to note is that if
〈pξ〉ξ<κ is any family in P , then there is a ζ < κ such that {ξ : ξ < κ, pξ and pζ are compatible upwards
in P} has cardinal κ. PPP??? Otherwise, for each ζ < κ there is an αζ < κ such that pζ and pξ are upwards-
incompatible for every ξ ≥ αζ . Set C = {ξ : ξ < κ, αη ≤ ξ for every η < ξ}. Then #(C) = κ and 〈pξ〉ξ∈C is
an up-antichain in P , which is impossible. XXXQQQ

(ii) Now let 〈pξ〉ξ<κ be a family in P . Choose inductively sets An ∈ [κ]κ, ordinals ζn ∈ An and families
〈pnξ〉ξ∈An

in P , as follows. A0 = κ, p0ξ = pξ for each ξ < κ. Given 〈pnξ〉ξ∈An
, then by (i) there is a ζn ∈ An

such that

An+1 = {ξ : ξ ∈ An, ξ 6= ζn, pnξ is compatible upwards with pn,ζn}

has cardinal κ. Now, for ξ ∈ An+1, let pn+1,ξ be an upper bound of {pn,ζn , pnξ}; continue.
At the end of the induction, observe that 〈pn,ζn〉n∈N is non-decreasing. At the same time, we see that

pξ ≤ pnξ whenever n ∈ N and ξ ∈ An. So {pζn : n ∈ N} is upwards-centered. Also the ζn are all different,
so Γ = {ζn : n ∈ N} is infinite. As 〈pξ〉ξ<κ is arbitrary, (sat↑(P ), ω) is an upwards precaliber pair of P .

Remark There will be a stronger form of (d) in 517Fa below.

516L Corollary Let A be a Boolean algebra.
(a) sat(A) is the least cardinal κ such that (κ, 2) is a precaliber pair of A.
(b) If κ > max(ω, λ, link<θ(A)) then (κ, λ+, <θ) is a precaliber triple of A. In particular, if κ >

max(ω, λ, π(A)) then (κ, λ+, <θ) is a precaliber triple of A for every θ, and if κ > max(ω, λ, d(A)) then
(κ, λ+) is a precaliber pair of A.

(c) If cfκ > d(A) then κ is a precaliber of A.
(d) If A is infinite, (sat(A), ω) is a precaliber pair of A.

proof Apply 516K, inverted, to A+, recalling that π(A) = ci(A+).

516M When we turn to topological spaces, we can refine the results slightly, using the following ele-
mentary facts.

Lemma Let (X,T) be a topological space and RO(X) its regular open algebra. If κ, λ and θ are cardinals,
and θ ≤ ω, then the following are equiveridical:

(i) (κ, λ,<θ) is a precaliber triple of (X,T);
(ii) (κ, λ,<θ) is a precaliber triple of (T \ {∅},∋, X);
(iii) (κ, λ,<θ) is a precaliber triple of RO(X).

proof (a)(i)⇒(ii) If we set φ(G) = G and choose a point ψ(G) ∈ G for every non-empty open set G ⊆ X,
then (φ, ψ) is a Galois-Tukey connection from (T \ {∅},∋, X) to (T \ {∅},⊇,T \ {∅}), so any precaliber triple
of the latter is a precaliber triple of the former.

(b)(ii)⇒(iii) Assume (ii), and let 〈Gξ〉ξ<κ be a family in RO(X)+. Then there is a Γ ∈ [κ]λ such
that

⋂
ξ∈I Gξ 6= ∅ for every I ∈ [Γ]<θ. But in this case, because I is finite,

⋂
ξ∈I Gξ is a lower bound for

{Gξ : ξ ∈ I} in RO(X)+. As 〈Gξ〉ξ<κ is arbitrary, (κ, λ,<θ) is a precaliber triple of RO(X).

(c)(iii)⇒(i) Assume (iii), and let 〈Gξ〉ξ<κ be a family in T \ {∅}. Then there is a Γ ∈ [κ]λ such that⋂
ξ∈I intGξ 6= ∅ for every I ∈ [Γ]<θ. But in this case, because I is finite,

⋂
ξ∈I Gξ is not empty, and is a

lower bound for {Gξ : ξ ∈ I} in T \ {∅}. As 〈Gξ〉ξ<κ is arbitrary, (κ, λ,<θ) is a precaliber triple of (X,T).
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516N Corollary Let X be a topological space.
(a) sat(X) is the least cardinal κ such that (κ, 2) is a precaliber pair of X.
(b) If κ > max(ω, λ, d(X)) then (κ, λ+) is a precaliber pair of X.
(c) If cfκ > d(X) then κ is a precaliber of X.
(d) If sat(X) is infinite, then (sat(X), ω) is a precaliber pair of X.

proof Here we need to know that sat(X) = sat(RO(X)) and d(X) ≥ d(RO(X)) (514H(b-i)).

516O The idea of 516M leads to further results about precalibers of topological spaces.

Proposition Let (X,T) be a topological space.
(a) If Y is a continuous image of X and θ ≤ ω, then (κ, λ,<θ) is a precaliber triple of Y whenever it is a

precaliber triple of X.
(b) Suppose that X is the product of a family 〈Xi〉i∈I of topological spaces. If (κ, κ,<θ) is a precaliber

triple of every Xi and either I is finite or θ ≤ ω and κ is a regular uncountable cardinal, then (κ, κ,<θ) is
a precaliber triple of X.

proof (a) Let f : X → Y be a continuous surjection. Writing S for the topology of Y , we have a Galois-
Tukey connection (φ, f) from (S\{∅},∋, Y ) to (T\{∅},∋, X), if we set φ(H) = f−1[H] for H ∈ S\{∅}. Now
if θ ≤ ω and (κ, λ,<θ) is a precaliber triple of (X,T), it is a precaliber triple of (T\{∅},∋, X), (S\{∅},∋, Y )
and (Y,S), using 516M and 516C.

(b) If X = ∅ then (κ, κ,<θ) is a precaliber triple of X just because X = Xi for some i; so let us suppose
that X 6= ∅.

(i) If I = {0, 1} then (κ, κ,<θ) is a precaliber triple of X. PPP Let 〈Wξ〉ξ<κ be a family of non-empty open
sets in X. For each ξ < κ, let Gξ0 ⊆ X0 and Gξ1 ⊆ X1 be non-empty open sets such that Gξ0 ×Gξ1 ⊆Wξ.

Because (κ, κ,<θ) is a precaliber triple of X0, there is a Γ ∈ [κ]κ such that H
(0)
K = int(

⋂
ξ∈K Gξ0) is non-

empty for every K ∈ [Γ]<θ. Because (κ, κ,<θ) is a precaliber triple of X1, there is a ∆ ∈ [Γ]κ such that

H
(1)
K = int(

⋂
ξ∈K Gξ1) is non-empty for every K ∈ [∆]<θ. Now

⋂
ξ∈K Wξ ⊇ H

(0)
K × H

(1)
K has non-empty

interior for every K ∈ [∆]<θ. As 〈Wξ〉ξ<κ is arbitrary, (κ, κ,<θ) is a precaliber triple of X. QQQ

(ii) If I is finite, then (κ, κ,<θ) is a precaliber triple of X. PPP Induce on #(I), using (i) for the inductive
step. QQQ

(iii) Now suppose that I is infinite, κ is regular and uncountable and θ ≤ ω. Then (κ, κ,<θ) is a
precaliber triple of X. PPP Let 〈Wξ〉ξ<κ be a family of non-empty open sets in X. Let V be the standard
base for the topology of X consisting of sets of the form

∏
ξ<κ Uξ where Uξ ⊆ Xξ is open for every ξ and

{ξ : Uξ 6= Xξ} is finite. For each ξ < κ let W ′
ξ ⊆Wξ be a non-empty member of V, so that W ′

ξ is determined

by a coordinates in a finite subset Iξ of I. By the ∆-system Lemma (4A1Db) there is a set A ⊆ κ, with
cardinal κ, such that 〈Iξ〉ξ∈A is a ∆-system with root J say. For ξ ∈ A express W ′

ξ as Uξ ∩ Vξ where Uξ

is determined by coordinates in J and Vξ is determined by coordinates in Iξ \ J . Now Uξ is of the form

π−1
J [Hξ] where Hξ ⊆

∏
i∈J Xi is a non-empty open set and πJ : X →

∏
i∈J Xi is the canonical map. By

(ii), (κ, κ,<θ) is a precaliber triple of
∏

i∈J Xi, so there is a Γ ∈ [A]κ such that
⋂

ξ∈K Hξ is non-empty

whenever K ∈ [Γ]<θ. Now take any K ∈ [Γ]<θ. Then U = π−1
J [

⋂
ξ∈K Hξ] is a non-empty set determined

by coordinates in J , while Vξ is a non-empty open set determined by coordinates in Iξ \ J for each ξ ∈ K;
because the Iξ \ J are disjoint and K is finite, U ∩

⋂
ξ∈J Vξ is non-empty, and

⋂
ξ∈K Wξ is a non-empty set,

necessarily open because K is finite. As 〈Wξ〉ξ<κ is arbitrary, (κ, κ,<θ) is a precaliber triple of X. QQQ

516P Corollary Let 〈Pi〉i∈I be a family of non-empty partially ordered sets, with upwards finite-support

product P =
⊗↑

i∈I Pi (definition: 514T). If (κ, κ,<θ) is an upwards precaliber triple of every Pi and either
I is finite or θ ≤ ω and κ is a regular uncountable cardinal, then (κ, κ,<θ) is an upwards precaliber triple
of P .

proof Suppose first that θ is countable. By 516Gb and 516M we can identify the relevant upwards
precaliber triples of each Pi and P with the precaliber triples of their regular open algebras. But RO↑(P ) ∼=
RO(

∏
i∈I Pi) (514Ua), so 516Ob gives the result at once.
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For finite I, P ∗ =
∏

i∈I Pi is a cofinal subset of P (514Ub), so that it has the same upwards precaliber
triples (516Ga); at the same time, it is easy to see that the up-topology of P ∗ is just the product of the
up-topologies on the Pi. So this time we do not need to look at regular open algebras and can use 516Gb
and 516Ob directly.

516Q For locally compact spaces, as usual, we have further results.

Proposition Let X be a locally compact Hausdorff topological space.
(a) (κ, λ) is a precaliber pair of X iff whenever 〈Gξ〉ξ<κ is a family of non-empty open subsets of X, then

there is an x ∈ X such that #({ξ : x ∈ Gξ}) ≥ λ.
(b) Suppose that κ is a regular infinite cardinal. Then κ is a precaliber of X iff sat(X) ≤ κ and whenever

〈Eξ〉ξ<κ is a non-decreasing family of nowhere dense subsets of X then
⋃

ξ<κEξ has empty interior.

proof (a)(i) The condition asserts that (κ, λ, λ) is a precaliber triple of (T \ {∅},∋, X). It follows at once
that (κ, λ) is a precaliber pair of (T \ {∅},∋, X) and therefore of (X,T), by 516M.

(ii) Now suppose that (κ, λ) is a precaliber pair of X, and that 〈Gξ〉ξ<κ is a family of non-empty open

subsets of X. For each ξ < κ choose a non-empty relatively compact open set Hξ such that Hξ ⊆ Gξ. Then

there is a Γ ∈ [κ]λ such that {Hξ : ξ ∈ Γ} is centered. In this case, {Hξ : ξ ∈ Γ} has the finite intersection
property, so has non-empty intersection. If x is any point of this intersection, then {ξ : x ∈ Gξ} ⊇ Γ has
cardinal at least λ.

(b)(i) Suppose that κ is a precaliber of X. Then surely sat(X) ≤ κ (516Ja). If 〈Eξ〉ξ<κ is a non-
decreasing family of nowhere dense subsets of X, take any non-empty open set G ⊆ X. For each ξ < κ,
Gξ = G\Eξ is a non-empty open set, so by (a) there is an x ∈ X such that Γ = {ξ : x ∈ Gξ} has cardinal κ.
But as 〈Gξ〉ξ<κ is non-increasing, this means that Γ = κ and x ∈ G \

⋃
ξ<κEξ. As G is arbitrary,

⋃
ξ<κEξ

has empty interior.

(ii) Now suppose that the condition is satisfied. Let 〈Gξ〉ξ<κ be a family of non-empty open subsets

of X. For ξ < κ set Hξ =
⋃

η≥ξ Gη, Wξ = X \Hξ. By 5A4Bd, there is a set I ⊆ κ such that #(I) < sat(X)
and

⋃
ξ∈I Wξ =

⋃
ξ<κWξ.

Because #(I) < cfκ, ζ = sup I is less than κ, and Hζ ∩Wξ = ∅ for every ξ ∈ I, so Hζ ∩Wξ = ∅ for every

ξ < κ, that is, Hζ ⊆ Hξ for every ξ < κ.
Setting

Eξ = Hζ \Hξ ⊆ Hξ \Hξ

for each ξ, 〈Eξ〉ξ<κ is a non-decreasing family of nowhere dense sets, and cannot cover Hζ . If x ∈ Hζ \⋃
ξ<κEξ, then x ∈ Hξ for every ξ < κ, so Γ = {η : x ∈ Gη} is cofinal with κ. Because κ is regular, Γ ∈ [κ]κ,

and
⋂

ξ∈I Gξ is non-empty for every I ∈ [Γ]<ω. As 〈Gξ〉ξ<κ is arbitrary, κ is a precaliber of X, by (a).

516R We can use the last proposition to give corresponding characterizations of precaliber pairs of
Boolean algebras in terms of their Stone spaces.

Corollary Let A be a Boolean algebra and Z its Stone space.
(a) A pair (κ, λ) of cardinals is a precaliber pair of A iff whenever 〈Gξ〉ξ<κ is a family of non-empty open

sets in Z there is a z ∈ Z such that #({ξ : z ∈ Gξ}) ≥ λ.
(b) Suppose that κ ≥ sat(A) is a regular infinite cardinal. Then κ is a precaliber of A iff whenever 〈Eξ〉ξ<κ

is a non-decreasing family of nowhere dense subsets of Z then
⋃

ξ<κEξ has empty interior.

proof Put 516Ha and 516Q together.

516S I collect some further results relating precalibers to the standard constructions involving Boolean
algebras as considered in 514E.

Proposition Let A be a Boolean algebra.
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(a) If B is a subalgebra of A and (κ, λ,<θ) is a precaliber triple of A such that θ ≤ ω, then (κ, λ,<θ) is
a precaliber triple of B. In particular, every precaliber pair of A is a precaliber pair of B and B will satisfy
Knaster’s condition if A does.

(b) If B is a regularly embedded subalgebra of A, then every precaliber triple of A is a precaliber triple
of B.

(c) If B is a Boolean algebra and φ : A → B is a surjective order-continuous Boolean homomorphism,
then every precaliber triple of A is a precaliber triple of B.

(d) If B is a principal ideal of A then every precaliber triple of A is a precaliber triple of B.
(e) If A is the simple product of a family 〈Ai〉i∈I of Boolean algebras, (κ, λ,<θ) is a precaliber triple of

Ai for every i ∈ I and cfκ > #(I), then (κ, λ,<θ) is a precaliber triple of A.

proof (a) The Stone space of B is a continuous image of the Stone space of A (312Sa). So all we have to
do is to put 516Ha and 516Oa together.

Taking θ = ω we see that a precaliber pair of A will be a precaliber pair of B. Taking λ = κ = ω1 and
θ = 3, we see that if A satisfies Knaster’s condition so does B.

(b) Any subset of B+ with a lower bound in A+ has a lower bound in B+, so the identity map from B+

to A+ is a Tukey function from (B+,⊇) to (A+,⊇) and we can put 516C together with 516Fb.

(c) If A ⊆ A+ has no lower bound in A+, that is, inf A = 0, then inf φ[A] = 0 and φ[A] has no lower
bound in B+. Accordingly φ↾A+ is a dual Tukey function from (A+,⊇) to (B+,⊇), (B+,⊇) 4T (A+,⊇) and
we can proceed as in (c).

(d) As in (b), the identity map from B+ to A+ is a Tukey function from (B+,⊇) to (A+,⊇). (Or put
312T and 516Ia together.)

(e) Let 〈aξ〉ξ<κ be a family in A+. Then for each ξ < κ there is an i ∈ I such that aξ(i) is non-zero in
Ai. As cfκ > #(I) there is an i ∈ I such that ∆ = {ξ : ξ < κ, aξ(i) 6= 0} has cardinal κ. As (#(∆), λ,<θ)
is a precaliber triple of Ai, there is a Γ ∈ [∆]λ such that {aξ(i) : ξ ∈ I} has a non-zero lower bound in Ai for
every I ∈ [Γ]<θ. But now {aξ : ξ ∈ I} has a non-zero lower bound in A for every I ∈ [Γ]<θ, while Γ ∈ [κ]λ.
As 〈aξ〉ξ<κ is arbitrary, (κ, λ,<θ) is a precaliber triple of A.

516T A central problem from the very beginning of set-theoretic topology concerns the saturation of
product spaces. Here I describe one of the principal methods of showing that product spaces have small
saturation, in a form adapted to partially ordered sets.

Theorem (a) Let P and Q be partially ordered sets, and κ a cardinal such that (κ, sat↑(Q), 2) is an upwards
precaliber triple of P . Then sat↑(P ×Q) ≤ κ.

(b) Let 〈Pi〉i∈I be a family of non-empty partially ordered sets with upwards finite-support product P .
Suppose that κ is a regular uncountable cardinal such that (κ, κ, 2) is an upwards precaliber triple of every
Pi. Then sat↑(P ) ≤ κ.

proof (a) ??? Otherwise, there is an up-antichain 〈(pξ, qξ)〉ξ<κ in P × Q. Let Γ ⊆ κ be a set with cardinal
sat↑(Q) such that {pξ : ξ ∈ Γ} is upwards-linked. Then 〈qξ〉ξ∈Γ must be an up-antichain in Q; but this is
impossible. XXX

(b) By 516P, (κ, κ, 2) is an upwards precaliber triple of P . So (κ, 2, 2) and (κ, 2, <ω) also are (516Ba,
516Bc), and sat↑(P ) ≤ κ (516Ka).

516U It will be useful to be able to quote what amounts to a simple special case of the above result.

Corollary Let A be a Boolean algebra satisfying Knaster’s condition (511Ef) and B a ccc Boolean algebra.
Then their free product A⊗B is ccc.

proof By 516Ta, inverted, (A\{0})× (B\{0}) is downwards-ccc. But (a, b) 7→ a⊗ b is an order-preserving
bijection between (A\{0})×(B\{0}) and an order-dense (that is, coinitial) subset of (A⊗B)\{0} (315Kb);
so (A⊗B) \ {0} is downwards-ccc (513Gc, inverted), that is, A⊗B is ccc.
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516V An elementary, but not quite obvious, fact will turn out to be useful.

Proposition Let A be an atomless Boolean algebra which satisfies Knaster’s condition. Then A has an
atomless order-closed subalgebra with countable Maharam type.

proof For each a ∈ A \ {0} choose a′ such that a′ ⊆ a and a′ /∈ {0, a}. Define 〈Bξ〉ξ<ω1
and 〈Bξ〉ξ<ω1

inductively, as follows. Bξ will be the order-closed subalgebra of A generated by
⋃

η<ξ Bη; Bξ will be {b : b

is an atom of Bξ} ∪ {b′ : b is an atom of Bξ}. Because A is ccc (511Ef), every Bξ will be countable and
every Bξ will be countably τ -generated. Of course 〈Bξ〉ξ<ω1

is non-decreasing.
??? If no Bξ is atomless, then choose an atom bξ of Bξ for each ξ < ω1. Because A satisfies Knaster’s

condition, there is an uncountable set Γ ⊆ ω1 such that bξ ∩ bη 6= 0 for all ξ, η ∈ Γ. If ξ < η in ω1, then
bξ ∈ Bη and bη is an atom of Bη so either bη ⊆ bξ or bη ∩ bξ = 0. So we see that if ξ < η in Γ, then bη ⊆ bξ.
But we know also that b′ξ ∈ Bη, so bξ is not an atom of Bη and bξ \ bη 6= 0.

This means that if we define f : Γ → Γ by taking f(ξ) = min(Γ \ (ξ + 1)) for ξ ∈ Γ, 〈bξ \ bf(ξ)〉ξ∈Γ will be
a disjoint family in A \ {0}, which is impossible. XXX

So one of the Bξ will serve for B.

516X Basic exercises (a) Let (A,R,B) be a supported relation, and n ≥ 1 an integer. Show that n is
a precaliber of (A,R,B) iff add(A,R,B) > n.

(b) Let P and Q be partially ordered sets, and f : P → Q a surjection such that, for any finite set
I ⊆ P , I is bounded above in P iff f [I] is bounded above in Q. Show that P and Q have the same upwards
precaliber pairs.

(c)(i) Show that if P is a partially ordered set and κ > cfP is an infinite cardinal such that cfκ is an
up-precaliber of P , then κ is an up-precaliber of P . (ii) Show that if A is a Boolean algebra and κ > π(A)
is an infinite cardinal such that cfκ is a precaliber of A, then κ is a precaliber of A.

(d) Let P be a partially ordered set and κ an infinite cardinal. Show that sat↑(P ) ≤ κ iff (κ, ω) is an
upwards precaliber pair of P . (Hint : if κ = sat↑(P ) and 〈pξ〉ξ<κ is a family in P , choose ξn, qn such that
pξi ≤ qn for i ≤ n and {ξ : qn is compatible upwards with pξ} is always cofinal with κ.)

(e) Let (X,T) be a topological space, RO(X) its regular open algebra and G its category algebra (defini-
tion: 514I). (i) Show that any precaliber triple of (X,T) is also a precaliber triple of RO(X), (T \ {∅},∋, X)
and G. (ii) Show that if (X,T) is regular, then (X,T) and RO(X) have the same precaliber triples. (iii)
Show that if (X,T) is locally compact and Hausdorff, then (X,T) and G have the same precaliber triples.

(f) Let (P,≤) be the totally ordered set ω1, T↑ its up-topology and RO↑(P ) the regular open algebra of
(P,T↑). Show that (ω1, ω1, ω1) is a precaliber triple of RO↑(P ) but not of (P,≤) or (P,T↑).

(g) Let 〈Ai〉i∈I be a family of Boolean algebras and A their free product. Show that if (κ, κ,<θ) is a
precaliber triple of every Ai and either I is finite or θ ≤ ω and κ is a regular infinite cardinal, then (κ, κ,<θ)
is a precaliber triple of A.

(h) Suppose that X is a topological space and Y is a dense subset of X and θ ≤ ω. Show that (κ, λ,<θ)
is a precaliber triple of Y iff it is a precaliber triple of X.

(i) Let X be a locally compact Hausdorff space, and κ a precaliber of X. Show that whenever 〈Eξ〉ξ<κ

is a non-decreasing family of nowhere dense subsets of X then
⋃

ξ<κEξ has empty interior.

(j) Prove 516Sa-516Sc without mentioning Stone spaces.

(k)(i) Let X and Y be topological spaces, and κ a cardinal such that (κ, sat(Y ), 2) is a precaliber triple of
X. Show that sat(X × Y ) ≤ κ. (ii) Let 〈Xi〉i∈I be a family of topological spaces with product X. Suppose
that κ is a regular uncountable cardinal such that (κ, κ, 2) is a precaliber triple of every Xi. Show that
sat(X) ≤ κ.
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(l)(i) Let A and B be Boolean algebras, and A⊗B their free product. Suppose that κ is a cardinal such
that (κ, sat(B), 2) is a precaliber triple of A. Show that sat(A ⊗ B) ≤ κ. (ii) Let 〈Ai〉i∈I be a family of
Boolean algebras with free product A. Suppose that κ is a regular uncountable cardinal such that (κ, κ, 2)
is a precaliber triple of every Ai. Show that sat(A) ≤ κ.

(m) Let X and Y be topological spaces. Show that if (κ, κ′, <θ) is a precaliber triple of X and (κ′, λ,<θ)
is a precaliber triple of Y , then (κ, λ,<θ) is a precaliber triple of X × Y .

(n) Suppose that A and B are Boolean algebras and that there is a surjective Boolean homomorphism
from A to B. Show that if (κ, λ,<θ) is a precaliber triple of A and θ is countable, then (κ, λ,<θ) is a
precaliber triple of B.

516Y Further exercises (a) Let A be an atomless Boolean algebra such that (κ, κ, 2) is a precaliber
triple of A for every regular uncountable cardinal κ. Show that there is a countable B ⊆ A such that for
every non-zero a ∈ A there is a b ∈ B such that a meets both b and 1 \ b.

516 Notes and comments ‘Precaliber triples’ are visibly complex. With three cardinals in action, there is
a promise of a powerful method of describing special features of a partially ordered set or Boolean algebra,
but at the same time a threat of alarming demands on our memory. In fact none of the arguments in this
section are deep, and they are here mainly for reference. Some of the results depend in not-quite-obvious
ways on the exact hypotheses, and it will be useful later to have clear statements to hand. In the proofs I
have emphasized Galois-Tukey connections whenever possible; at the cost of possibly tedious repetititions of
such formulae as (T \ {∅},⊇,T \ {∅}) naming the supported relations involved, they can save us the trouble
of negotiating the quantifiers in the definition

∀ 〈aξ〉ξ<κ ∈ Aκ ∃ Γ ∈ [κ]λ ∀ I ∈ [Γ]<θ ∃ b ∈ B . . . .

But of course it is a useful exercise to find proofs from first principles, not mentioning supported relations
and not (for instance) using Stone spaces to deal with Boolean algebras.

‘Supported relations’ form a materially more various class of structures than partially ordered sets, topo-
logical spaces or Boolean algebras. But the constructions already developed in this book (Stone spaces,
regular open algebras, up-topologies) give us functorial relations between the last three categories which
mean that from the point of view of this section they are nearly the same. So such results as 516T can be
expected to apply to topological spaces and Boolean algebras as well (516Xk, 516Xl). (But note 516Xf.)

Precaliber triples belong with saturation and linking numbers as parameters describing the ‘breadth’ of
a topological space or Boolean algebra; see Comfort & Negrepontis 82. In the first place, they address
a classic problem: when is the product of ccc topological spaces ccc? (This is the case κ = ω1 of 516Xk.)
But with the exception of saturation, there do not appear to be simple connexions between precalibers
and the cardinal functions we have looked at so far. Precalibers seem to correspond to new features of
the structures considered here. When we come to look at the most important objects of measure theory
(in particular, measure algebras), we shall find that their precalibers are relatively fluid; I mean that while
cellularity, Maharam types and many linking numbers, for instance, are determined by simple formulae in
ZFC, precalibers are not.

Version of 14.11.14

517 Martin numbers

I devote a section to the study of ‘Martin numbers’ of partially ordered sets and Boolean algebras. Like
additivity and cofinality they enable us to frame as theorems of ZFC some important arguments which were
first used in special models of set theory, and to pose challenging questions on the relationships between
classical structures in analysis. I begin with some general remarks on the Martin numbers of partially
ordered sets (517A-517E); most of these are perfectly elementary but the equivalent conditions of 517B, in
particular, are useful and not all obvious. Much of the importance of Martin numbers comes from their effect

c© 2003 D. H. Fremlin
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on precalibers (517F, 517H) and hence on saturation of products (517G). The same ideas can be expressed in
terms of Boolean algebras, with no surprises (517I). I have not set out a definition of ‘Martin number’ for a
topological space, but the Novák number of a locally compact Hausdorff space is closely related to the Martin
numbers of its regular open algebra and its algebra of open-and-closed sets (517J-517K). Consequently we
have connexions between the Martin number and the weak distributivity of a Boolean algebra (517L). A
striking fact, which will have a prominent role in the next chapter, is that non-trivial countable partially
ordered sets all have the same Martin number mcountable (517P).

517A Proposition For any partially ordered set P , m↑(P ) ≥ ω1.

proof If Q is a countable family of cofinal subsets of P and p0 ∈ P , let 〈Qn〉n∈N be a sequence running
over Q ∪ {P}, and choose 〈pn〉n≥1 inductively such that pn+1 ≥ pn and pn+1 ∈ Qn for every n ∈ N. Then
{pn : n ∈ N} is an upwards-linked subset of P meeting every member of Q.

517B Lemma Let P be a partially ordered set, and κ a cardinal. Then the following are equiveridical:
(i) κ < m↑(P );
(ii) whenever p0 ∈ P and Q is a family of up-open cofinal subsets of P with #(Q) ≤ κ, there is an

upwards-linked subset of P which contains p0 and meets every member of Q;
(iii) whenever p0 ∈ P and A is a family of maximal up-antichains in P with #(A) ≤ κ, there is an

upwards-linked subset of P which contains p0 and meets every member of A;
(iv) whenever p0 ∈ P and Q is a family of cofinal subsets of P with #(Q) ≤ κ, there is an upwards-directed

subset of P which contains p0 and meets every member of Q;
(v) whenever p0 ∈ P and Q is a family of up-open cofinal subsets of P with #(Q) ≤ κ, there is an

upwards-directed subset of P which contains p0 and meets every member of Q;
(vi) whenever p0 ∈ P and A is a family of maximal up-antichains in P with #(A) ≤ κ, there is an

upwards-directed subset of P which contains p0 and meets every member of A.

proof (a) Most of the circuit is elementary.

(vi)⇒(iv) because every cofinal subset of P includes a maximal up-antichain (513Aa).

(iv)⇒(v)⇒(ii) are trivial.

(ii)⇒(i) Assuming (ii), let Q be a family of cofinal subsets of P with #(Q) ≤ κ. For each Q ∈ Q,
UQ =

⋃
q∈Q [q,∞[ is up-open and cofinal with P (513Ab). If p0 ∈ P , (ii) tells us that there is an upwards-

linked subset R0 of P containing p0 and meeting UQ for every Q ∈ Q. Set R =
⋃

p∈R0
]−∞, p]; then R is an

upwards-linked subset of P containing p0 and meeting every member of Q. As Q and p0 are arbitrary, (i)
is true.

(i)⇒(iii) Assuming (i), let A be a family of maximal up-antichains in P with #(A) ≤ κ. For each
A ∈ A, UA =

⋃
p∈A [p,∞[ is cofinal with P . So (i) tells us that if p0 ∈ P there is an upwards-linked subset

R0 of P containing p0 and meeting UA for every A ∈ A. As just above, set R =
⋃

p∈R0
]−∞, p]; then R is

upwards-linked, contains p0 and meets every member of A. As A and p0 are arbitrary, (iii) is true.

(b) So we are left with (iii)⇒(vi). Assume (iii), and take p0 ∈ P and a family A of maximal up-antichains
in P with #(A) ≤ κ. Let C be the set of all maximal up-antichains in P . For A ∈ C, set UA =

⋃
q∈A [q,∞[.

Then UA is cofinal with P . Consequently UA ∩ UB is cofinal with P for any A, B ∈ C, because if p ∈ P
there are q ∈ UA and r ∈ UB such that p ≤ q ≤ r, and now r ∈ UA ∩ UB . It follows that UA ∩ UB includes
a maximal up-antichain D(A,B).

Take any A0 ∈ C such that p0 ∈ A0. Let A∗ ⊆ C be such that {A0} ∪ A ⊆ A∗, D(A,B) ∈ A∗ for all A,
B ∈ A∗, and #(A∗) ≤ max(ω, κ) (5A1Gb). Then there is an upwards-linked subset R0 of P containing p0
and meeting every member of A∗. PPP If #(A∗) ≤ κ, this is immediate from (iii); if #(A∗) ≤ ω, it is because
ω < m↑(P ), by 517A, and (i)⇒(iii). QQQ

Set R = R0 ∩
⋃
A∗. Then R contains p0 (because p0 ∈ R0 ∩ A0) and R meets every member of A. Also

R is upwards-directed. PPP If p, q ∈ R, take A, B ∈ A∗ such that p ∈ A and q ∈ B. Then D(A,B) ∈ A∗,
so there is an r ∈ R0 ∩D(A,B), and r ∈ R. As r ∈ UA ∩ UB , there must be p′ ∈ A and q′ ∈ B such that
p′ ≤ r and q′ ≤ r. But R0 is upwards-linked, so
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∅ 6= [p,∞[ ∩ [r,∞[ ⊆ [p,∞[ ∩ [p′,∞[;

as A is an up-antichain, p = p′. Similarly, q = q′ and r ∈ R is an upper bound of {p, q}. As p and q are
arbitrary, R is upwards-directed. QQQ

So we have a set R of the kind required by (vi).

517C Lemma Let P0 and P1 be partially ordered sets, and suppose that there is a relation S ⊆ P0 ×P1

such that S[P0] is cofinal with P1, S−1[Q] is cofinal with P0 for every cofinal Q ⊆ P1, and S[R] is upwards-
linked in P1 for every upwards-linked R ⊆ P0. Then m↑(P1) ≥ m↑(P0).

proof Suppose that p1 ∈ P1 and that Q is a family of cofinal subsets of P1 with #(Q) < m↑(P0). Then
there is a pair (p0, p

′
1) ∈ S such that p′1 ≥ p1. Now S−1[Q] is cofinal with P0 for every Q ∈ Q, so there is

an upwards-linked R ⊆ P0 containing p0 and meeting S−1[Q] for every Q ∈ Q. In this case p′1 ∈ S[R] and
S[R] is upwards-linked, so {p1} ∪ S[R] is an upwards-linked subset of P1 containing p1 and meeting every
member of Q. As p1 and Q are arbitrary, m↑(P1) ≥ m↑(P0).

517D Proposition (a) If P is a partially ordered set and Q is a cofinal subset of P , then m↑(P ) = m↑(Q).
(b) If P is any partially ordered set and RO↑(P ) is its regular open algebra when it is given its up-topology,

then m↑(P ) = m(RO↑(P )).
(c) If P is a partially ordered set and p0 ∈ P , then m↑([p0,∞[) ≥ m↑(P ).

proof (a) Let P0, P1 be cofinal subsets of P , and set S = {(p0, p1) : p0 ∈ P0, p1 ∈ P1, p0 ≥ p1}. Then
S satisfies the conditions of 517C, so m↑(P1) ≥ m↑(P0). It follows at once that all cofinal subsets of P ,
including P itself, have the same Martin number.

(b)(i) Setting S = {(p,G) : p ∈ G ∈ RO↑(P )}, S satisfies the conditions of 517C with P0 = (P,≤) and
P1 = (RO↑(P )+,⊇), so m(RO↑(P )) ≥ m↑(P ).

(ii) Setting S′ = {(G, p) : G ∈ RO↑(P )+, p ∈ P, G ⊆ [p,∞[}, S′ satisfies the conditions of 517C with
P0 = (RO↑(P )+,⊇) and P1 = (P,≤), so m↑(P ) ≥ m(RO↑(P )).

(c) Let Q be a family of upwards-cofinal subsets of [p0,∞[ with #(Q) < m↑(P ), and p1 ∈ [p0,∞[. For
each Q ∈ Q, set Q′ = Q ∪ {p : p ∈ P, [p,∞[ ∩ [p0,∞[ = ∅}. Then every Q′ is cofinal with P . So there is an
upwards-linked set R ⊆ P containing p1 and meeting Q′ for every Q ∈ Q. If Q ∈ Q and r ∈ R ∩ Q′, then
[r,∞[ ∩ [p0,∞[ ⊇ [r,∞[ ∩ [p1,∞[ is non-empty, so r ∈ Q. Thus R ∩ [p0,∞[ is an upwards-linked subset of
[p0,∞[ containing p1 and meeting every member of Q. As Q and p1 are arbitrary, m↑([p0,∞[) ≥ m↑(P ).

517E Corollary Let P be a partially ordered set such that m↑(P ) is not ∞. Then m↑(P ) ≤ 2cfP .

proof Let Q0 be a cofinal subset of P with #(Q0) = cfP . Then m↑(Q0) = m↑(P ) < ∞. So there are
q0 ∈ Q0 and a family Q of cofinal subsets of Q0 such that no upwards-linked subset of Q0 containing p0 can
meet every member of Q. Now

m↑(P ) = m↑(Q0) ≤ #(Q) ≤ 2#(Q0) = 2cfP .

517F Proposition Let P be a non-empty partially ordered set.
(a) Suppose that κ and λ are cardinals such that sat↑(P ) ≤ cfκ, λ ≤ κ and λ < m↑(P ). Then (κ, λ) is

an upwards precaliber pair of P .
(b) In particular, if sat↑(P ) ≤ cfκ ≤ κ < m↑(P ) then κ is an up-precaliber of P .

proof (a) Since P is not empty, sat↑(P ) ≥ 2 and κ is infinite. Write θ for sat↑(P ). Let 〈pξ〉ξ<κ be a family
in P . For I ⊆ κ, set

UI =
⋃

ξ∈I [pξ,∞[, VI = {q : q ∈ P, [q,∞[ ∩ [pξ,∞[ = ∅ for every ξ ∈ I}.

Then for every J ⊆ κ there is an I ∈ [J ]<θ such that VJ ∪UI is cofinal with P . PPP VJ ∪UJ is cofinal with P ,
so there is a maximal up-antichain A ⊆ VJ ∪UJ . Now #(A∩UJ) < sat↑(P ) = θ, so there is a set I ∈ [J ]<θ

such that A ∩ UJ ⊆ UI , and A ⊆ VJ ∪ UI . Now VJ ∪ UI ⊇
⋃

q∈A [q,∞[, so is cofinal with P . QQQ
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Next, Q =
⋃
{Vκ\I : I ∈ [κ]<κ} is not cofinal with P . PPP??? If it were, there would be a maximal up-

antichain A ⊆ Q. For each q ∈ A, let Iq ∈ [κ]<κ be such that q ∈ Vκ\Iq . Because #(A) < θ ≤ cfκ,⋃
q∈A Iq 6= κ, and there is a ξ ∈ κ \

⋃
q∈A Iq. But now [q,∞[ ∩ [pξ,∞[ = ∅ for every q ∈ A, and A is not a

maximal antichain. XXXQQQ
Let q0 ∈ P be such that Q ∩ [q0,∞[ = ∅. Choose 〈Iξ〉ξ<λ inductively in such a way that, writing

Jξ = κ\
⋃

η<ξ Iη, Iξ ∈ [Jξ]<θ and Qξ = VJξ
∪UIξ is cofinal with P for every ξ < λ. Because λ < m↑(P ), there

is an upwards-directed set R ⊆ P containing q0 and meeting every Qξ. Set Γ = {η : η < κ, R∩ [pη,∞[ 6= ∅};
then {pη : η ∈ Γ} is upwards-centered. Next, κ \ Jξ =

⋃
η<ξ Iη has cardinal less than κ for every ξ < λ. PPP

If θ = κ or κ = ω, this is because #(ξ) < κ and #(Iη) < κ for every η < ξ and κ is regular (use 513Bb).
Otherwise it’s because max(ω, θ,#(ξ)) < κ. QQQ

This means that VJξ
∩ [q0,∞[ = ∅ and R ∩ VJξ

must be empty, for every ξ < λ. We must therefore have
R ∩ UIξ 6= ∅ for each ξ < λ, so that Γ ∩ Iξ 6= ∅; as 〈Iξ〉ξ<λ is disjoint, #(Γ) ≥ λ.

As 〈pξ〉ξ<κ is arbitrary, (κ, λ) is an upwards precaliber pair of P .

(b) This follows at once, setting λ = κ.

517G Corollary (a) If P and Q are partially ordered sets and sat↑(Q) < m↑(P ), then sat↑(P ×Q) is at
most max(ω, sat↑(P ), sat↑(Q)).

(b) Let 〈Pi〉i∈I be a family of non-empty partially ordered sets with upwards finite-support product P .
Let κ be a regular uncountable cardinal such that sat↑(Pi) ≤ κ < m↑(Pi) for every i ∈ I. Then sat↑(P ) ≤ κ.

proof (a) Set λ = sat↑(Q), κ = max(ω, sat↑(P ), sat↑(Q)). Then κ is regular (513Bb again), λ ≤ κ and
λ < m↑(P ), so (κ, λ) is an upwards precaliber pair of P and (κ, λ, 2) is an upwards precaliber triple of P .
By 516Ta, sat↑(P ×Q) ≤ κ.

(b) By 517Fb, κ is an up-precaliber of Pi for every i, so (κ, κ, 2) is an upwards precaliber triple of every
Pi, and we can use 516Tb.

517H Proposition Let P be a non-empty partially ordered set, and let P ∗ be the upwards finite-support
product of the family 〈Pn〉n∈N where Pn = P for every n. Suppose that κ < m↑(P ∗).

(a) Every subset of P with κ or fewer members can be covered by a sequence of upwards-directed sets.
(b) In particular, if κ is uncountable then (κ, λ) is an upwards precaliber pair of P for every λ < κ, and

if κ has uncountable cofinality then κ is an up-precaliber of P .

proof (a) Let A ∈ [P ]<κ. For each p ∈ A, set Qp = {q : q ∈ P ∗, ∃ n ∈ dom q, q(n) = p}; then Qp is cofinal
with P ∗. So there is an upwards-directed set R ⊆ P ∗ such that R∩Qp 6= ∅ for every p ∈ A. For each n ∈ N,
set Rn = {q(n) : q ∈ R, n ∈ dom q}. Then A ⊆

⋃
n∈NRn. If n ∈ N and r, r′ ∈ Rn, there are q, q′ ∈ R

such that q(n) = r and q′(n) = r′. Now there is a q′′ ∈ R such that q′′ ≥ q and q′′ ≥ q′, in which case
q′′(n) belongs to Rn ∩ [r,∞[ ∩ [r′,∞[. As r and r′ are arbitrary, Rn is upwards-directed. Thus 〈Rn〉n∈N is
an appropriate sequence.

(b) Suppose that κ is uncountable and that either λ < κ or cfκ > ω and λ = κ. Let 〈pξ〉ξ<κ be any
family in P . Let 〈Rn〉n∈N be a sequence of upwards-directed sets covering {pξ : ξ < κ}, and for each n ∈ N

set Γn = {ξ : pξ ∈ Rn}. There must be some n such that #(Γn) ≥ λ, and {pξ : ξ ∈ Γn} is upwards-centered.

517I Proposition Let A be a Boolean algebra.
(a) If B is a regularly embedded subalgebra of A, then m(B) ≥ m(A).
(b) If B is a principal ideal of A, then m(B) ≥ m(A).
(c) If B is an order-dense subalgebra of A, then m(B) = m(A).

(d) If Â is the Dedekind completion of A, then m(Â) = m(A).
(e) If D ⊆ A is non-empty and supD = 1, then m(A) = mind∈D m(Ad), where Ad is the principal ideal

generated by d.
(f) If A is the simple product of a non-empty family 〈Ai〉i∈I of Boolean algebras, then m(A) = mini∈I m(Ai).
(g) Suppose that κ and λ are infinite cardinals such that sat(A) ≤ cfκ, λ ≤ κ and λ < m(A). Then (κ, λ)

is a precaliber pair of A.
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proof (a) Setting S = {(a, b) : a ∈ A+, a ⊆ b ∈ B}, S satisfies the conditions of 517C for P0 = (A+,⊇)
and P1 = (B+,⊇). PPP The only non-trivial part is the check that if Q is coinitial with B+ then S−1[Q] is
coinitial with A+. But supQ = 1 in B; as B is regularly embedded in A, supQ = 1 in A. So if a ∈ A+,
there is a b ∈ Q such that a ∩ b 6= 0, and now a ∩ b ∈ S−1[Q] and a ∩ b ⊆ a. As a is arbitrary, S−1[Q] is
coinitial with A+. QQQ So m(B) ≥ m(A).

(b) If Aa is the principal ideal generated by a ∈ A+ = A \ {0}, we have

m(A) = m↓(A+) ≤ m↓(]0, a])

(by 517Dc, inverted)

= m(Aa).

On my definitions the trivial ideal {0} also is a principal ideal, but of course m({0}) = ∞ ≥ m(A).

(c) Apply 517Da (inverted) to A+ and B+.

(d) This follows from (c), because A is order-dense in Â.

(e) By (b), m(A) ≤ m(Ad) for every d. In the other direction, let Q be a family of coinitial subsets of
A+ such that #(Q) < mind∈D m(Ad), and take any c ∈ A+. Then there is a d ∈ D such that c ∩ d 6= 0. For
Q ∈ Q set Q′ = {a ∩ d : a ∈ Q} \ {0}; then Q′ is coinitial with A+

d . Since #({Q′ : Q ∈ Q}) < m(Ad), there

is a downwards-linked set R′ ⊆ A+
d meeting every Q′ and containing c ∩ d. Set R = {a : a ∈ A, a ∩ d ∈ R′};

then R is a downwards-linked subset of A+ meeting every member of Q and containing c. As c and Q are
arbitrary, m(A) ≥ mind∈D m(Ad).

(f) This is, in effect, a special case of (e), since we can identify the Ai with principal ideals of A (315E).

(g) Apply 517Fa (inverted) to A+.

517J Proposition Let X be a locally compact Hausdorff space, and κ a cardinal. Then the following
are equiveridical:

(i) κ < m(RO(X)), where RO(X) is the regular open algebra of X;
(ii) X ∩

⋂
G is dense in X whenever G is a family of dense open subsets of X and #(G) ≤ κ;

(iii) κ < n(H) for every non-empty open set H ⊆ X.

proof (i)⇒(iii) Suppose that κ < m(RO(X)). Let H ⊆ X be a non-empty open set and E a family of
nowhere dense subsets of H with #(E) ≤ κ. Note that every member of E is nowhere dense in X. Because
X is locally compact and regular, we have a non-empty regular open set H0 such that K = H0 is compact
and included in H. For each E ∈ E , set GE = {G : G ∈ RO(X)+, G ∩ E = ∅}; then GE is coinitial with
RO(X)+. Because κ < m↓(RO(X)+), there is a centered G ⊆ RO(X)+ containing H0 and meeting every
GE . But in this case {K} ∪ {G : G ∈ G} is a family of closed sets in X containing the compact set K and
with the finite intersection property, so has non-empty intersection F , which is included in H \

⋃
E . As H

and E are arbitrary, (iii) is true.

(iii)⇒(ii) This is easy. If (iii) is true, G is a family of dense open subsets of X with #(G) ≤ κ, and
H ⊆ X is a non-empty open set, then E = {H \ G : G ∈ G} is a family of nowhere dense subsets of H, so
cannot cover H, and H ∩

⋂
G 6= ∅. As G and H are arbitrary, (ii) is true.

(ii)⇒(i) Suppose that (ii) is true. Take H ∈ RO(X)+ and a family G of coinitial subsets of RO(X)+ with
#(G) ≤ κ. For each G ∈ G,

⋃
G is a dense open subset of X. Accordingly there is a point x ∈ H∩

⋂
G∈G

⋃
G.

Set R = {G : G ∈ RO(X), x ∈ G}. Then R is a downwards-linked subset of RO(X)+ containing H and
meeting every member of G. As H and G are arbitrary, κ < m(RO(X)).

517K Corollary Let A be a Boolean algebra with Stone space Z.
(a) m(A) = m(RO(Z)).
(b) For any cardinal κ, the following are equiveridical:

(i) κ < m(A);
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(ii) Z ∩
⋂
G is dense in Z whenever G is a family of dense open subsets of Z and #(G) ≤ κ;

(iii) κ < n(H) for every non-empty open set H ⊆ Z.

proof (a) A is isomorphic to the algebra of open-and-closed subsets of Z, which is an order-dense subalgebra
of RO(Z) (314Ta). So m(A) = m(RO(Z)) by 517Ic.

(b) now follows from 517J.

517L These identifications make the following results easy.

Proposition Let A be a Boolean algebra.
(a) wdistr(A) ≤ m(A).
(b) If wdistr(A) is a precaliber of A then wdistr(A) < m(A).

proof (a) Let Z be the Stone space of A and Nwd the ideal of nowhere dense subsets of Z. Then wdistr(A) =
addNwd (514Be), while m(A) is the least cardinal of any subset of Nwd covering a non-empty open subset
of Z, if there is one (517Kb). Since no non-empty open subset of Z can belong to Nwd, wdistr(A) ≤ m(A).

(b) Because wdistr(A) = addNwd ≥ ω, it is a regular infinite cardinal (513C(a-i)). If 〈Gξ〉ξ<wdistr(A) is
a family of dense open subsets of Z, and H ⊆ Z is open and not empty, then Hξ = H ∩ int(

⋂
η<ξ Gη) is

non-empty for every ξ < wdistr(A). So if also wdistr(A) is a precaliber of A and therefore of Z (516Ha),
there is a point z of Z such that {ξ : z ∈ Hξ} has cardinal wdistr(A) (516Qb) and is therefore cofinal
with wdistr(A); which means that z ∈ H ∩

⋂
ξ<wdistr(A)Gξ. Thus n(H) > wdistr(A); as H is arbitrary,

m(A) > wdistr(A), by 517Kb again.

517M It is worth extracting an idea from the proofs just above as a general result.

Proposition Let X be any topological space. Then the Novák number n(X) of X (5A4Af) is at most
sup{m(RO(G)) : G ⊆ X is open and not empty}, where RO(G) is the regular open algebra of G.

proof (a) If there is a non-empty open subset G of X such that m(RO(G)) = ∞, the result is trivial;
suppose otherwise. Set κ = sup{m(RO(G)) : G ⊆ X is open and not empty}. Then for any non-empty open
set G ⊆ X there is a family 〈Eξ〉ξ<κ of nowhere dense sets such that #(E) ≤ κ and G ∩ int(

⋃
ξ<κEξ) 6= ∅.

PPP We have a family 〈Qξ〉ξ<κ of order-dense subsets of RO(G)+ and an H ∈ RO(G)+ such that there is no
downwards-directed family in RO(G)+ containing H and meeting every Qξ. Set Eξ = G \

⋃
Qξ for each ξ;

then Eξ must be nowhere dense in the topological sense because any open set meeting G at all must meet
some member of Qξ. If x ∈ H, then R = {U : U ∈ RO(G), x ∈ U} is a downwards-directed family in
RO(G)+ containing H, so does not meet every Qξ, and there must be a ξ < κ such that x /∈

⋃
Qξ, that is,

x ∈ Eξ. As x is arbitrary, G ∩ int(
⋃

ξ<κEξ) ⊇ H is not empty. QQQ

(b) Let 〈Hi〉i∈I be a maximal disjoint family of non-empty open sets in X such that every Hi can be
covered by a family of at most κ nowhere dense sets. By (a),

⋃
i∈I Hi is dense. For each i ∈ I, let 〈Eiξ〉ξ<κ

be a family of nowhere dense sets covering Hi. Set Eξ =
⋃

i∈I Hi ∩ Eiξ for each ξ < κ; then Eξ is nowhere
dense (5A4Ea). Also

⋃
ξ<κEξ =

⋃
i∈I Hi is a dense open set, so that {Eξ : ξ < κ} ∪ (X \

⋃
i∈I Hi) is a

cover of X by nowhere dense sets, and n(X) ≤ κ. (Of course κ is infinite, by 517A, except in the trivial
case X = ∅.)

517N Corollary If A is a Martin-number-homogeneous Boolean algebra with Stone space Z, then
m(A) = n(Z).

proof By 517Kb(i)⇒(iii), m(A) ≤ n(Z). In the other direction, given a ∈ A, write â for the open-and-closed
subset of Z corresponding to a, and Aa for the principal ideal generated by a. If G ⊆ Z is a non-empty
regular open set, let a ∈ A \ {0} be such that â ⊆ G. Then

m(RO(G)) ≤ m(RO(â))

(by 517Ib, because RO(â) can be regarded as a principal ideal of RO(G))
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= m(Aa)

(because we can identify â with the Stone space of Aa, by 312T, and use 517Ka)

= m(A).

By 517M, n(Z) ≤ m(A).

517O Martin cardinals (a) For any class P of partially ordered sets, we have an associated cardinal

m
↑
P = min{m↑(P ) : P ∈ P}.

Much the most important of these is the cardinal

m = min{m↑(P ) : P is upwards-ccc}.

Others of great interest are

p = min{m↑(P ) : P is σ-centered upwards},

mK = min{m↑(P ) : P satisfies Knaster’s condition upwards},

mcountable = min{m↑(P ) : P is a countable partially ordered set}.

Two more which are worth examining are

mσ-linked = min{m↑(P ) : P is σ-linked upwards},

mpcω1
= min{m↑(P ) : ω1 is an up-precaliber of P}.

(b) These cardinals are related as follows:

mσ-linked p mcountable c

ω1 m mK mpcω1

The numbers here increase from bottom left to top right; that is,

ω1 ≤ m ≤ mK ≤ mpcω1
≤ p ≤ mcountable ≤ c,

mK ≤ mσ-linked ≤ p.

From 517A we see that ω1 ≤ m. For the proof that mcountable ≤ c, see 517P below. As for the intermediate
inequalities involving Martin cardinals, they follow directly from inclusions between the corresponding classes
of partially ordered set. These are all immediate from the definitions; I give references to the general results
of this chapter which cover the relevant facts, as follows.

(i) Every partially ordered set satisfying Knaster’s condition upwards is ccc. (If (ω1, 2) is an upwards
precaliber pair of P , then sat↑(P ) ≤ ω1 (516Ka).)

(ii) If ω1 is an up-precaliber of P , then P satisfies Knaster’s condition upwards. (If (ω1, ω1, <ω) is a
triple precaliber of P , so is (ω1, 2, <ω), by 516Ba.)

(iii) If P is σ-linked upwards, it satisfies Knaster’s condition upwards. (As ω1 > max(ω, ω, link↑(P )),
(ω1, ω1, <3) is an upwards precaliber triple of P (516Kb), so (ω1, 2, <3) and (ω1, 2, <ω) also are, by 516Ba
again.)

(iv) If P is σ-centered upwards, it is σ-linked upwards. (link(P ) ≤ link<ω(P ), by 511Hb.)

(v) If P is σ-centered upwards, ω1 is an up-precaliber of P . (As ω1 > max(ω, ω, link↑
<ω(P )), (ω1, ω1)

is an upwards precaliber pair of P , by 516Kb again.)

(vi) If P is countable, it is σ-centered upwards. (Singleton subsets are centered.)
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(c) I should note a special feature of the bottom row of this diagram. In the chain ω1 ≤ m ≤ mK ≤ mpcω1
,

at most one of the inequalities can be strict. PPP Suppose that P is upwards-ccc and m↑(P ) > ω1. Then ω1

is an up-precaliber of P (517Fb), so m↑(P ) ≥ mpcω1
. So if, for instance, mK > ω1 and P satisfies Knaster’s

condition upwards, m↑(P ) > ω1 and m↑(P ) ≥ mpcω1
; as P is arbitrary, mK ≥ mpcω1

. Similarly, if m > ω1

then m = mpcω1
. QQQ

(d) Now Martin’s Axiom is the assertion

‘m = c’.

From the diagram above, we see that this is a consequence of the continuum hypothesis (‘ω1 = c’), and fixes
all the intermediate cardinals.

(e) All the partially ordered sets considered in (b) are ccc, which is why m appears at bottom left. The
same idea can be applied to larger classes, e.g. ‘proper’ or ‘stationary-set-preserving’ partial orders. For the
moment I will not even define these classes; I mention them only for the sake of readers who are already
familiar with them and may be expecting a reference here. There is an important difference, however, in
that if the cardinal which we might call

mproper = min{m↑(P ) : P is upwards-proper}

is greater than ω1, then c = mproper = ω2 (Veličković 92, or Moore 05); so that we have only to say
whether the Proper Forcing Axiom (‘mproper > ω1’) is true or false to determine the value of mproper.

517P All the cardinals here have special features, but the ones I will concentrate on just now are the
two largest, mcountable and p.

Proposition (a) ω1 ≤ mcountable ≤ c.
(b) Let A be a Boolean algebra with countable π-weight. If A is purely atomic, then m(A) = ∞; otherwise,

m(A) = mcountable.
(c) If P is a partially ordered set of countable cofinality and m↑(P ) is not ∞, then m↑(P ) = mcountable.
(d)(i) Let X be a topological space such that its category algebra is atomless and has countable π-weight.

Then n(X) ≤ mcountable.
(ii) If X is a non-empty locally compact Hausdorff space with countable π-weight and no isolated

points, then n(X) = mcountable.
(iii) If X is a non-empty Polish space with no isolated points, then n(X) = mcountable.

proof Let B be the algebra of open-and-closed subsets of {0, 1}N. The argument will go more smoothly if
I prove (a)-(c) with m(B) in place of mcountable, and at an appropriate moment point out that I have shown
that the two are equal.

(a) m(B) = m↓(B+) is uncountable, by 517A. To see that m(B) ≤ c, let Q be the set of all coinitial
subsets of B+; then #(Q) ≤ c because B is countable. ??? If m(B) > c, there must be a linked set R ⊆ B+

meeting every member of Q. But now consider Q = B+ \ R. If a ∈ B+, there are disjoint non-zero a′,
a′′ ⊆ a which cannot both belong to R, so at least one belongs to Q. But this means that Q is order-dense
in B and ought to meet R. XXX (Compare 517E.)

(b)(i) If A is purely atomic, m(A) = ∞, by 511If.

(ii) Suppose that A is not purely atomic. Because π(A) is countable, there is a countable order-dense
set C ⊆ A. Let C be the subalgebra of A generated by C, so that C is a countable order-dense subalgebra of
A, and is not purely atomic. Consider the free product C⊗B (315N). This is a countable atomless Boolean
algebra (use 315O), so is isomorphic to B (316M). Also we have an injective order-continuous Boolean
homomorphism from C to C⊗B (315K), so that C is isomorphic to a regularly embedded subalgebra of B
and m(C) ≥ m(B) (517Ia).

Next, C has a non-trivial atomless principal ideal Ca say. Because Ca is still countable, it is itself
isomorphic to B. So 517Ib tells us that m(C) ≤ m(Ca) = m(B), and m(C) = m(B).

Finally, m(A) = m(C) by 517Ic.
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(c) We know that m↑(P ) = m(RO↑(P )) (517Db) and that π(RO↑(P )) ≤ cfP (514Nb) is countable. Let
D ⊆ RO↑(P )+ be a countable order-dense set, and A the subalgebra of RO↑(P ) generated by D. Then
m(RO↑(P )) = m(A) by 517Ic, and A is countable. By (b), m↑(P ) = m(A) is either ∞ or m(B); since the
former is ruled out by hypothesis, we are left with the latter.

What this shows, however, is that

m(B) ≤ min{m↑(P ) : cfP ≤ ω} ≤ min{m↑(P ) : #(P ) ≤ ω}

= mcountable ≤ m↓(B+) = m(B)

so that mcountable = m(B) and we can rewrite the results so far in the forms given in the statement of the
proposition.

(d)(i) Consider first the case in which X is a non-empty Baire space, so that its category algebra is
isomorphic to RO(X) (514If). Since RO(X) is atomless and not {∅}, and in particular is not purely atomic,
but has countable π-weight, m(RO(X)) = mcountable, by (b). The same applies to any non-empty open
subset G of X, recalling that the category algebra of G can be identified with a principal ideal of the
category algebra of X (514Id). So n(X) ≤ mcountable by 517M.

If X is not a Baire space, then it has a smallest comeager regular open set H, which is itself a Baire space
(4A3Sa3), and X and H have isomorphic category algebras (514Ic), so we see from the argument just above
that n(H) ≤ mcountable. But X \H is a countable union of nowhere dense subsets of X, and every subset of
H which is nowhere dense in H is also nowhere dense in X, so n(X) ≤ max(ω, n(H)) ≤ mcountable.

(ii) Because X is Hausdorff and has no isolated points, RO(X) is atomless. Next, π(RO(X)) ≤ π(X)
is countable (514H(b-i)), and RO(X) is isomorphic to the category algebra of X, by Baire’s theorem. So
the first part of the proof of (i) tells us that n(X) ≤ mcountable = m(RO(X)). From 517J we now see that

m(RO(X)) = min{n(H) : H ⊆ X is a non-empty open set} ≤ n(X),

so n(X) = mcountable exactly.

(iii) Now suppose that X is a non-empty Polish space without isolated points. As in (ii), the category
algebra of X is atomless and has countable π-weight, so n(X) ≤ mcountable. In the other direction, suppose
that κ < mcountable and that 〈Eξ〉ξ<κ is a family of nowhere dense subsets of X. Let ρ be a metric defining
the topology of X under which X is complete, and U a countable base for the topology of X, not containing
∅. For ξ < κ, set Qξ = {U : U ∈ U , U ∩ Eξ = ∅}; for n ∈ N set Q′

n = {U : U ∈ U , diamU ≤ 2−n}. Then
every Qξ and every Q′

n is coinitial with U . By (c) above,

m↓(U) ≥ mcountable > max(κ, ω),

so there is a downwards-directed V ⊆ U meeting every Qξ and every Qn. Now {V : V ∈ V} is a downwards-
directed set containing sets of arbitrarily small diameter, so generates a Cauchy filter and (because (X, ρ)
is complete) has non-empty intersection. Take any x ∈

⋂
V ∈V V . Because V meets every Qξ, x /∈

⋃
ξ<κEξ

and 〈Eξ〉ξ<κ does not cover X. As 〈Eξ〉ξ<κ is arbitrary, n(X) ≥ mcountable and the two are equal.

517Q Lemma If P is any partially ordered set, m↑(P ) ≥ min(addω P,mcountable).

proof (For the definition of addω P , see 513H.) Take κ < min(addω P,mcountable), p0 ∈ P and a family
〈Qξ〉ξ<κ of cofinal subsets of P . Choose 〈Rn〉n∈N and 〈Qnξ〉n∈N,ξ<κ as follows. R0 = {p0}. Given that
Rn ⊆ P is countable, then for each ξ < κ choose a countable set Qnξ ⊆ Qξ such that for every p ∈ Rn there
is a q ∈ Qnξ such that p ≤ q. Now, because addω P > κ (and, of course, addω P > ω, as noted in 513Ib), we
can find a countable set Rn+1 ⊆ P such that whenever q ∈

⋃
ξ<κQnξ there is an r ∈ Rn+1 such that q ≤ r.

This will ensure that whenever p ∈ Rn and ξ < κ there are q ∈ Qξ and p′ ∈ Rn+1 such that p ≤ q ≤ p′.
At the end of the induction, consider the countable partially ordered set R =

⋃
n∈NRn. For ξ < κ set

Q′
ξ = {r : r ∈ R, ∃ q ∈ Qξ, q ≤ r};

3Formerly 4A3Ra.

D.H.Fremlin



76 Cardinal functions 517Q

then Q′
ξ is cofinal with R. Because κ < mcountable, there is an upwards-linked subset S of R meeting every

Q′
ξ and containing p0. But now {p : p ∈ P, ∃ s ∈ S, p ≤ s} is an upwards-linked subset of p containing p0

and meeting every Qξ. As p0 and 〈Qξ〉ξ<κ are arbitrary, m↑(P ) ≥ min(addω P,mcountable).

517R Proposition (a) (‘Booth’s Lemma’; see Booth 70) Suppose that A is a family of subsets of N
such that #(A) < p and

⋂
J is infinite for every finite J ⊆ A. Then there is an infinite I ⊆ N such that

I \A is finite for every A ∈ A.
(b) 2κ ≤ c for every κ < p.
(c) Suppose that X is a set and #(X) < p. Then there is a countable set A ⊆ PX such that PX is the

σ-algebra generated by A.

proof (a) Let P be [N]<ω × [A]<ω, ordered by saying that (K,J ) ≤ (K ′,J ′) if K ⊆ K ′ ⊆ K ∪
⋂
J and

J ⊆ J ′. If (K,J ) ≤ (K ′,J ′) ≤ (K ′′,J ′′) then of course K ⊆ K ′′ and J ⊆ J ′′; also

K ′′ ⊆ K ′ ∪
⋂

J ′ ⊆ K ∪
⋂

J ∪
⋂
J ′ ⊆ K ∪

⋂
J .

So ≤ is a partial ordering of P . For any K ∈ [N]<ω, {(K,J ) : J ∈ [A]<ω} is upwards-centered; so P is
σ-centered upwards.

For each A ∈ A, set QA = {(K,J ) : (K,J ) ∈ P , A ∈ J }; since (K,J ) ≤ (K,J ∪ {A}) whenever
(K,J ) ∈ P , QA is cofinal with P . For n ∈ N, set Q′

n = {(K,J ) : (K,J ) ∈ P , K 6⊆ n}. If (K,J ) ∈ P ,
⋂
J

must be infinite, and there is an m ∈ N∩
⋂
J \ n; now (K,J ) ≤ (K ∪ {m},J ) ∈ Q′

n. So Q′
n is cofinal with

P .
Because max(ω,#(A)) < p (517Ob), there is an upwards-linked R ⊆ P meeting every QA and every Q′

n.
Set I =

⋃
{K : (K,J ) ∈ R}. If n ∈ N, there is a (K,J ) ∈ R∩Q′

n; now K 6⊆ n and K ⊆ I, so I 6⊆ n; as n is
arbitrary, I is infinite. If A ∈ A, there is (K0,J0) ∈ R ∩QA. ??? If I 6⊆ K0 ∪ A, there is a (K,J ) ∈ R such
that K 6⊆ K0 ∪ A. Now there is a (K ′,J ′) ∈ P such that (K,J ) ≤ (K ′,J ′) and (K0,J0) ≤ (K ′,J ′). But
in this case

K ⊆ K ′ ⊆ K0 ∪
⋂
J0 ⊆ K0 ∪A. XXX

So I \A ⊆ K0 is finite. As A is arbitrary, we have a suitable I.

(b) We may suppose that κ is infinite. By 515H, or otherwise, there is a Boolean-independent family
〈Jξ〉ξ<κ in PN. Note that I =

⋂
ξ∈K Jξ \

⋃
ξ∈L Jξ must be infinite whenever K, L ⊆ κ are disjoint finite

sets, because 〈I ∩ Jξ〉ξ∈κ\(K∪L) is Boolean-independent. For C ⊆ κ set

AC = {Jξ : ξ ∈ C} ∪ {N \ Jξ : ξ ∈ κ \ C}.

By (a), there is an infinite IC ⊆ N such that IC \A is finite for every A ∈ AC . If C, D ⊆ κ and ξ ∈ C \D,
then IC \ Jξ and ID ∩ Jξ are finite, so IC ∩ ID is finite and IC 6= ID. Thus C 7→ IC is injective and 2κ ≤ c.

(c) Let 〈Ix〉x∈X be a family of infinite subsets of N such that Ix ∩ Iy is finite for all distinct x, y ∈ X
(5A1Ga). Set An = {x : n ∈ Ix} for n ∈ N.

Take any A ⊆ X and set PA = Fn<ω(N; {0, 1}) × [X \A]<ω, partially ordered by saying that

(f, J) ≤ (f ′, J ′) if f ′ extends f , J ′ ⊇ J and whenever x ∈ J and i ∈ Ix ∩ dom f ′ \ dom f ,
then f ′(i) = 0.

Then PA is σ-centered upwards because {(f, J) : J ∈ [X \ A]<ω} is upwards-centered for every f ∈
Fn<ω(N; {0, 1}). For x ∈ A and m ∈ N set

Qxm = {(f, J) : (f, J) ∈ PA, f(i) = 1 for some i ∈ Ix \m};

for x ∈ X \A set

Q′
x = {(f, J) : (f, J) ∈ PA, x ∈ J}.

Then every Qxm and every Q′
x is cofinal with PA. Because #(X) < p, there is an upwards-directed R ⊆ PA

meeting every Qxm and every Q′
x. Set L =

⋃
(f,J)∈R{i : f(i) = 1}. Now

—– if x ∈ A and m ∈ N then L ∩ Ix \m is non-empty, so L ∩ Ix is infinite,
—– if x ∈ X \ A, there is a pair (f0, J0) ∈ R such that x ∈ J0; now f(i) = 0 whenever

(f, J) ∈ R and i ∈ dom f \ dom f0, so L ∩ Ix ⊆ dom f0.
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Accordingly

A = {x : x ∈ X, Ix ∩ L is infinite} =
⋂

n∈N

⋃
m∈L\nAm

belongs to the σ-algebra generated by A = {An : n ∈ N}, and we have a suitable family.

517S Proposition Let P be a partially ordered set which satisfies Knaster’s condition upwards. If
A ⊆ P and #(A) < mK, then A can be covered by a sequence of upwards-directed subsets of P .

proof By 516P, the upwards finite-support product P ∗ of countably many copies of P also satisfies Knaster’s
condition upwards. So we can use 517Ha.

517X Basic exercises (a) Let P be a partially ordered set and κ a cardinal. Show that the following are
equiveridical: (i) κ < m↑(P ); (ii) whenever p0 ∈ P and Q is a family of cofinal subsets of P with #(Q) ≤ κ,
there is an upwards-centered subset of P which contains p0 and meets every member of Q; (iii) whenever
p0 ∈ P and Q is a family of up-open cofinal subsets of P with #(Q) ≤ κ, there is an upwards-centered
subset of P which contains p0 and meets every member of Q; (iv) whenever p0 ∈ P and A is a family of
maximal up-antichains in P with #(A) ≤ κ, there is an upwards-centered subset of P which contains p0
and meets every member of A.

(b) Let P be a partially ordered set and A a maximal up-antichain in P . Show that

m↑(P ) = minp∈A m↑([p,∞[).

(c)(i) Let A be a Boolean algebra, not {0}. For a ∈ A let Aa be the corresponding principal ideal. Show
that there is an a ∈ A+ such that m(Ab) = m(Aa) whenever 0 6= b ⊆ a. (ii) Show that any Dedekind complete
Boolean algebra is isomorphic to a simple product of Martin-number-homogeneous Boolean algebras.

>>>(d) Let P be a partially ordered set. Show that m↑(P ) = ∞ iff {p : [p,∞[ is upwards-linked} is cofinal
with P .

(e) Let 〈Ai〉i∈I be a family of Boolean algebras and A its free product; suppose that κ is a regular
uncountable cardinal such that sat(Ai) ≤ κ < m(Ai) for every i ∈ I. Show that sat(A) ≤ κ.

(f) Let A be a Boolean algebra and C the free product of a sequence of copies of A. Suppose that
κ < m(C). (i) Show if A ∈ [A+]≤κ then A can be covered by a sequence of centered subsets of A+. (ii) Show
that if cfκ ≥ ω1 then κ is a precaliber of A.

(g) Let A be a Boolean algebra and Z its Stone space. Show that m(A) = min{n(Y ) : Y ⊆ Z is a
non-meager set with the Baire property}.

>>>(h) Let P be a non-empty partially ordered set and P ∗ the upwards finite-support product of a sequence
of copies of P . Show that if m↑(P ∗) > ω1 then P must be upwards-ccc.

(i) Let X be any topological space. Show that m(RO(X)) ≥ min{n(G) : G ⊆ X is a non-empty open
set}.

(j) Let X be a locally compact Hausdorff space such that RO(X) is Martin-number-homogeneous. Show
that m(RO(X)) = n(X).

(k)(i) Let P be a partially ordered set which is σ-linked upwards. Show that if A ⊆ P and #(A) <
mσ-linked, then A can be covered by a sequence of upwards-directed subsets of P . (ii) Let P be a partially
ordered set such that ω1 is an up-precaliber of P . Show that if A ⊆ P and #(A) < mpcω1

, then A can
be covered by a sequence of upwards-directed subsets of P . (iii) Let P be a partially ordered set which
is σ-centered upwards. Show that if A ⊆ P and #(A) < p, then A can be covered by a sequence of
upwards-directed subsets of P .
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517Y Further exercises (a) For a partially ordered set P , write AP for the family of upwards-linked
subsets of P , BP for the family of cofinal subsets of P , and TP for {(R,Q) : R ∈ AP , Q ∈ BP , R ∩Q = ∅}.
(i) Show that m↑(P ) = minp∈P cov(A[p,∞[, T[p,∞[, B[p,∞[). (ii) Show that if Q is another partially ordered
set and there is a relation S ⊆ P ×Q with the properties described in 517C, then for every q ∈ Q there is a
p ∈ P such that (A[p,∞[, T[p,∞[, B[p,∞[) 4GT (A[q,∞[, T[q,∞[, B[q,∞[).

(b) Show that for every infinite regular cardinal κ there is a partially ordered set with Martin number
κ+.

(c) Show that m(PN/[N]<ω) ≥ p.

(d) (A.Szymański, 1981) (i) Suppose that A, B ∈ [PN]<p, A is downwards-directed and A∩B is infinite
for all A ∈ A, B ∈ B. Show that there is a set D ⊆ N such that D \ A is finite for every A ∈ A and D ∩B
is infinite for every B ∈ B. (ii) Show that p is regular.

517 Notes and comments The study of ‘Martin numbers’ is a natural extension of investigations into
consequences of Martin’s axiom. Most of the results here are straightforward expressions of techniques
developed for deducing consequences from m = c or m > ω1. In particular, 517F, 517G and 517H correspond
to the now-classical theorems that if m > ω1 then ω1 is a precaliber of every ccc partially ordered set, the
product of any family of ccc topological spaces is ccc, and a ccc partially ordered set with cardinal ω1 is a
countable union of directed sets (see Fremlin 84a, §41). For those familiar with the use of Martin’s axiom
there are no surprises here, though some refinements in the arguments are necessary. The cardinal mcountable

is probably most commonly known as the Novák number of R (517Pd), the covering number of the ideal
of meager subsets of R. In countable partially ordered sets, most of the arguments above short-circuit to
some degree; precalibers become trivial, finite-support products are automatically ccc, and directed sets
have cofinal totally ordered subsets, so that the ideas take on new colours.

In Fremlin 84a I found that focusing on the cardinals p, mK and m broke the arguments up into
reasonably balanced chapters. Within the chapter on mK, however, there is a natural division between
arguments applying to mpcω1

and those applying to mσ-linked, which in the present book I intend to make
explicit. The notation p is the standard name for the cardinal mσ-centered; its special position comes in
part from the fact that it had been studied under a different, combinatorial, definition for a decade before
M.G.Bell showed that it could also be described by the definition here (Bell 81, or Fremlin 84a, 14C).

Version of 24.12.14

518 Freese-Nation numbers

I run through those elements of the theory of Freese-Nation numbers, as developed by S.Fuchino, S.Geschke,
S.Koppelberg, S.Shelah and L.Soukup, which seem relevant to questions concerning measure spaces and
measure algebras. The first part of the section (518A-518K) examines the calculation of Freese-Nation
numbers of familiar partially ordered sets and Boolean algebras. In 518L-518S I look at ‘tight filtrations’,
which are of interest to us because of their use in lifting theorems (518L, §535).

For the definitions of ‘Freese-Nation number’ and ‘Freese-Nation index’ see 511Bi and 511Dh.

518A Proposition (Fuchino Koppelberg & Shelah 96) Let P be a partially ordered set.
(a) FN(P ) ≤ max(3,#(P )).
(b) FN(P,≥) = FN(P,≤).
(c) If P has no maximal element, then addP ≤ FN(P ).

proof (a)(i) Suppose first that P is finite and totally ordered. If #(P ) ≤ 2, set f(p) = P for every p ∈ P .
Otherwise, take p0 ∈ P such that ]−∞, p0[ and ]p0,∞[ are both non-empty, and set f(p) = [p0,∞[ if p ≥ p0,
]−∞, p0] if p < p0; then f is a Freese-Nation function witnessing that FN(P ) ≤ #(P ).

(ii) Next suppose that P is finite and not totally ordered. For p ∈ P set Ap = ]−∞, p] ∪ [p,∞[, and
take B = {p : Ap = P}; then B 6= P . Set f(p) = Ap for p ∈ P \ B, B for p ∈ B; then f is a Freese-Nation
function so again FN(P ) ≤ #(P ).
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(iii) If P is infinite, enumerate it as 〈pξ〉ξ<#(P ) and set f(pξ) = {pη : η ≤ ξ} for each ξ; once more we
have a Freese-Nation function witnessing that FN(P ) ≤ #(P ).

(b) A function f : P → PP is a Freese-Nation function for ≤ iff it is a Freese-Nation function for the
reverse ordering ≥.

(c) Set κ = FN(P ). Then we have a Freese-Nation function f : P → [P ]<κ.

(i) I had better sort out the trivial cases. If P is empty, then κ = addP = 0. Otherwise, p ∈ f(p) for
every p ∈ P , so κ ≥ 2; if addP ≤ 2 we can stop. So we may suppose that addP > 2, that is, that P is
upwards-directed.

(ii) ??? If κ < addP , choose 〈pξ〉ξ≤κ inductively, as follows. Given 〈pη〉η<ξ, where ξ ≤ κ, then
⋃

η<ξ f(pη)

has an upper bound p′ξ in P . PPP If κ is infinite, this is because #(
⋃

η<ξ f(pη)) ≤ κ < addP . If κ is finite, it

is because #(
⋃

η<ξ f(pη)) < ω ≤ addP . QQQ

As P has no maximal element, we can find pξ > p′ξ, and continue. At the end of the induction, we have

pξ < pκ, so there is a qξ ∈ f(pξ) ∩ f(pκ) ∩ [pξ, pκ], for each ξ < κ. If η < ξ < κ, then

qη ≤ p′ξ < pξ ≤ qξ

and qη 6= qξ. But this means that f(pκ) ⊇ {qξ : ξ < κ} has at least κ elements. XXX

518B Proposition Let P be a partially ordered set and Q a subset of P .

(a) If Q is order-convex (that is, [q, q′] ⊆ Q whenever q, q′ ∈ Q), then FN(Q) ≤ FN(P ).

(b) If Q is a retract of P (that is, there is an order-preserving h : P → Q such that h(q) = q for every
q ∈ Q), then FN(Q) ≤ FN(P ).

(c) If Q is, in itself, Dedekind complete (that is, every non-empty subset of Q with an upper bound in Q
has a supremum in Q for the induced ordering), then FN(Q) ≤ FN(P ).

proof (a) If f : P → PP is a Freese-Nation function on P , then q 7→ Q∩ f(q) : Q→ PQ is a Freese-Nation
function on Q.

(b) If f is a Freese-Nation function on P , then q 7→ h[f(q)] is a Freese-Nation function on Q.

(c) Set Q1 =
⋃

q,q′∈Q[q, q′], so that Q1 is an order-convex subset of P and FN(Q1) ≤ FN(P ). For

p ∈ Q1, set h(p) = sup(Q ∩ ]−∞, p]), the supremum being taken in Q; then h : Q1 → Q is a retraction, so
FN(Q) ≤ FN(Q1).

518C Corollary (a) If A is an infinite Dedekind σ-complete Boolean algebra then FN(A) ≥ FN(PN).

(b) Let A be an infinite Dedekind complete Boolean algebra. Then

FN(RO({0, 1}#(A))) ≤ FN(A) ≤ FN(P(link(A))) ≤ max(3, 2link(A)).

(c) Let A be a Dedekind complete Boolean algebra. If B is either an order-closed subalgebra or a principal
ideal of A, then FN(B) ≤ FN(A).

proof (a) Take any disjoint sequence 〈an〉n∈N in A; then I 7→ supn∈I an is an embedding of the partially
ordered set PN into A. As PN is Dedekind complete, 518Bc tells us that FN(PN) ≤ FN(A).

(b)(i) By 515I, A has a subalgebra B isomorphic to the regular open algebra RO({0, 1}#(A)); by 518Bc,
FN(B) ≤ FN(A).

(ii) By 514Cb, we have a subset Q of P(link(A)) which is order-isomorphic to A, and 518Bc tells us
that FN(Q) ≤ FN(P(link(A))).

(iii) By 518Aa, FN(P(link(A))) ≤ 2link(A) except in the trivial case A = {0, 1}.

(c) Immediate from 518Bc.
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518D Corollary The following sets all have the same Freese-Nation number:
(i) PN;
(ii) NN, with its usual ordering ≤;
(iii) any infinite σ-linked Dedekind complete Boolean algebra;
(iv) the family of open subsets of any infinite Hausdorff second-countable topological space.

proof (a) The map I 7→ χI : PN → NN is an order-preserving embedding; because PN is Dedekind
complete, FN(PN) ≤ FN(NN) (518Bc).

(b) The map f 7→ {(i, j) : j ≤ f(i)} : NN → P(N× N) is an order-preserving embedding; because NN is
Dedekind complete,

FN(NN) ≤ FN(P(N× N)) = FN(PN).

(c) Now let A be an infinite σ-linked Dedekind complete Boolean algebra. By 518Ca, FN(PN) ≤ FN(A);
by 518Cb, FN(A) ≤ FN(PN).

(d) Let (X,T) be an infinite Hausdorff second-countable space. (α) Because X is Hausdorff and infinite,
it has a disjoint sequence 〈Gn〉n∈N of non-empty open sets; now I 7→

⋃
n∈I Gn is an embedding of PN in T,

so FN(PN) ≤ FN(T). (β) Let U be a countable base for T. Then G 7→ {U : U ∈ U , U ⊆ G} is an embedding
of T in PU ; as T, regarded as a partially ordered set, is Dedekind complete, FN(T) ≤ FN(PU) = FN(PN).

518E There is a simple result in general topology which will be used a couple of times in the next
chapter.

Lemma Let (X,T) be a T1 topological space without isolated points, and Nwd(X) the ideal of nowhere
dense sets. Then there is a set A ⊆ X, with cardinal covNwd(X), such that #(A ∩ F ) < FN∗(T) for every
F ∈ Nwd(X).

Remark Perhaps I should say here that FN∗(T) is the regular Freese-Nation number of the partially ordered
set (T,⊆).

proof As X has no isolated points, covNwd(X) ≤ #(X). Set κ = covNwd(X) and λ = FN∗(T). If κ < λ
the result is trivial and we can stop. Otherwise, let f : T → [T]<λ be a Freese-Nation function. Then we can
choose 〈xξ〉ξ<κ inductively so that whenever η < ξ and G ∈ f(X \ {xη}) is dense, then xξ ∈ G. PPP When we
come to choose xξ, set θ = #(

⋃
η<ξ{G : G ∈ f(X \ {xη}) is dense}). If λ < κ then θ ≤ max(#(ξ), ω, λ) < κ.

If λ = κ then κ is regular and infinite and #(f(X \ {xη}) < κ for every η < ξ so again θ < κ. So we have
fewer than covNwd(X) dense open sets and can find a point xξ in all of them. QQQ

Note that as X \ {xη} is itself dense for every η < ξ, and H ∈ f(H) for every H ∈ T, all the xξ must
be distinct, and A = {xξ : ξ < κ} has cardinal κ. Now suppose that F ∈ Nwd(X) and set B = {ξ : ξ < κ,

xξ ∈ F}. For each ξ ∈ B, X \F ⊆ X \{xξ}, so there is a Gξ ∈ f(X \F )∩f(X \{xξ}) such that X \F ⊆ Gξ

and xξ /∈ Gξ. If η, ξ ∈ B and η < ξ, then Gη ∈ f(X \ {xη}) is dense, so contains xξ, and cannot be equal to

Gξ. Thus ξ 7→ Gξ is an injective function from B to f(X \F ), and #(B) < λ. Thus we have an appropriate
set A.

518F Lemma Let A be a Boolean algebra, B a subalgebra of A and κ an infinite cardinal.
(a) If cf(B ∩ [0, a]) < κ for every a ∈ A, then the Freese-Nation index of B in A is at most κ.
(b) Suppose that I ∈ [A]<cfκ and BI is the subalgebra of A generated by B ∪ I. If the Freese-Nation

index of B in A is less than or equal to κ, so is the Freese-Nation index of BI .
(c) If B is expressible as the union of fewer than κ order-closed subalgebras of A, each of them Dedekind

complete in itself, then the Freese-Nation index of B in A is at most κ.

proof (a) For any a ∈ A,

ci(B ∩ [a, 1]) = cf(B ∩ [0, 1 \ a]) < κ.

(b)(i) Suppose first that I is a singleton {d}. In this case

BI = {(b ∩ d) ∪ (c \ d) : b, c ∈ B}.
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Take a ∈ A. Then there are sets B, C ⊆ B, with cardinal less than κ, which are cofinal in

B ∩ [0, a ∪ (1 \ d)], B ∩ [0, a ∪ d]

respectively. Set D = {b ∩ d : b ∈ B} ∪ {c \ d : c ∈ C}, so that D ⊆ BI ∩ [0, a] and #(D) < κ. If b, c ∈ B

and (b ∩ d) ∪ (c \ d) ⊆ a, then b ⊆ a ∪ (1 \ d) and c ⊆ a ∪ d, so there are b′ ∈ B, c′ ∈ C such that b ⊆ b′ and
c ⊆ c′; now

(b ∩ d) ∪ (c \ d) ⊆ (b′ ∩ d) ∪ (c′ \ d) ∈ D.

Thus D witnesses that cf(C∩ [0, a]) < κ. By (a), this is enough to show that the Freese-Nation index of BI

in A is at most κ.

(ii) An elementary induction now shows that the Freese-Nation index of BI in A is at most κ for every
finite subset I of A. If ω ≤ #(I) < cfκ and a ∈ A, then BI =

⋃
{BJ : J ∈ [I]<ω}. For each J ∈ [I]<ω, let

BJ be a cofinal subset of BJ ∩ [0, a] with cardinal less than κ. Then B =
⋃
{BJ : J ∈ [I]<ω} is cofinal in

BI ∩ [0, a]; and as #([I]<ω) < cfκ, #(B) < κ. So again we have cf(BI ∩ [0, a]) < κ for every a ∈ A, and the
Freese-Nation index of BI in A is at most κ.

(c) Suppose that 〈Bξ〉ξ<λ is a family of order-closed subalgebras with union B, where λ < κ. If a ∈ A,
then bξ = sup(Bξ ∩ [0, a]) is defined in Bξ, and belongs to [0, a], for each ξ < λ, and {bξ : ξ < λ} is cofinal
with B ∩ [0, a]; so we can apply (a).

518G Lemma (Fuchino Koppelberg & Shelah 96) Let P be a partially ordered set, ζ an ordinal,
and 〈Aξ〉ξ<ζ a family with union P ; set Pα =

⋃
ξ<αAξ for each α ≤ ζ. Let κ be a regular infinite cardinal

such that, for each α < ζ, FN(Pα+1) ≤ κ and the Freese-Nation index of Pα in Pα+1 is at most κ. Then
FN(P ) ≤ κ.

proof For each α < ζ set A′
α = Aα \ Pα and choose a Freese-Nation function fα : Pα+1 → [Pα+1]<κ. For

p ∈ P , let γ(p) be that α < ζ such that p ∈ A′
α, and let Dp ⊆ Pγ(p) be a set with cardinal less than κ

such that Dp ∩ ]−∞, p] is cofinal with Pγ(p) ∩ ]−∞, p] and Dp ∩ [p,∞[ is cofinal with Pγ(p) ∩ [p,∞[. Define
g inductively, on each A′

α in turn, by setting g(p) = fγ(p)(p) ∪
⋃

q∈Dp
g(q) for every p ∈ P . Because κ is

regular, g is a function from P to [P ]<κ.
Now g is a Freese-Nation function on P . PPP I induce on α to show that if p, q ∈ P and max(γ(p), γ(q)) = α

then g(p) ∩ g(q) ∩ [p, q] 6= ∅. For the inductive step to α < ζ, if γ(p) = γ(q) = α then

g(p) ∩ g(q) ∩ [p, q] ⊇ fα(p) ∩ fα(q) ∩ [p, q] 6= ∅.

If γ(p) < γ(q) = α, then there is an r ∈ Dq such that p ≤ r ≤ q; now max(γ(p), γ(r)) < α, so

g(p) ∩ g(q) ∩ [p, q] ⊇ g(p) ∩ g(r) ∩ [p, r] 6= ∅

by the inductive hypothesis. The same argument works if γ(q) < γ(p). QQQ

518H Lemma Suppose that κ is an uncountable cardinal of countable cofinality such that �κ is true
and cf[λ]≤ω ≤ λ+ for every λ ≤ κ. Then there are families 〈Mαn〉α<κ+,n∈N, 〈Mα〉α<κ+ of sets and a function
sk such that

(i) #(Mαn) < κ whenever α < κ+ and n ∈ N;
(ii) 〈Mαn〉n∈N is non-decreasing for each α < κ+;
(iii) 〈Mα〉α<κ+ is a non-decreasing family, Mα =

⋃
β<αMβ for every non-zero limit ordinal α < κ+, and

κ+ ⊆
⋃

α<κ+ Mα;

(iv) if α < κ+ has uncountable cofinality, Mα =
⋃

n∈NMαn;
(v) X ⊆ sk(X) for every set X;
(vi) sk(X) is countable whenever X is countable;
(vii) A ⊆ sk(X) whenever A ∈ sk(X) is countable;
(viii) sk(X) ⊆ sk(Y ) whenever X ⊆ sk(Y );
(ix) for every α < κ+ of uncountable cofinality there is an m ∈ N such that whenever n ≥ m and A ⊆Mαn

is countable there is a countable set D ∈Mαn such that A ⊆ sk(D);
(x)

⋃
α<κ+ Mα ∩ [κ]≤ω is cofinal with [κ]≤ω.
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proof (a) There is a strictly increasing sequence 〈κn〉n∈N of infinite cardinals with supremum κ; since

κ+n ≤ cf[κ+n ]≤ω ≤ max(κ+n , cf[κn]≤ω) = κ+n

for each n (5A1F(e-iv)), we can suppose that in fact cf[κn]≤ω = κn for every n. Take 〈Cα〉α<κ+ witnessing
�κ, so that

for every α < κ+, Cα ⊆ α is a closed cofinal set in α of order type at most κ,
whenever δ < α < κ+ and δ = sup(δ ∩ Cα), then Cδ = δ ∩ Cα

(5A6D(a-ii)). For α < κ+ set

C ′
α = {δ : δ < α, δ = sup(δ ∩ Cα)} ⊆ Cα

and

C ′
αn = {δ : δ ∈ C ′

α, otp(δ ∩ Cα) < κn}

for each n. Because otp(Cα) ≤ κ, C ′
α =

⋃
n∈N C

′
αn, while #(C ′

αn) ≤ κn for each n. Note that if α has
uncountable cofinality, C ′

α will be cofinal with α.

(b) Let g : κ+ → [κ]≤ω be such that g[κ+] is cofinal with [κ]≤ω. For each non-zero α < κ+, fix on a
surjective function fα : κ → α. For each n ∈ N, let gn : κn → [κn]≤ω be such that gn[κn] is cofinal with
[κn]≤ω. For each α < κ+, let hα : #(Cα) → Cα be a bijection. Now, for any set X, write sk(X) for the
smallest set including X and such that

g(α) ∈ sk(X) whenever α ∈ sk(X) ∩ κ+,
fα(ξ) ∈ sk(X) whenever 0 < α < κ+, ξ < κ and α, ξ ∈ sk(X),
gn(ξ) ∈ sk(X) whenever n ∈ N and ξ ∈ κn ∩ sk(X),
hα[A] ∈ sk(X) whenever α ∈ sk(X) ∩ κ+ and A ∈ sk(X),
A ∪B ∈ sk(X) whenever A, B ∈ sk(X),
A ⊆ sk(X) whenever A ∈ sk(X) is countable.

Of course we always have

sk(sk(X)) = sk(X) =
⋃
{sk(I) : I ∈ [X]<ω}

and #(sk(X)) ≤ max(ω,#(X)), so (v)-(viii) are all true.

(c) For each α < κ+ and n ∈ N, set Mαn = sk(κn ∪ C ′
αn) and Mα = sk(κ ∪ α). Then

#(Mαn) ≤ max(ω, κn,#(C ′
αn)) < κ.

Also 〈Mα〉α<κ+ is non-decreasing and Mα =
⋃

β<αMβ whenever α < κ is a non-zero limit ordinal, while

κ+ ⊆
⋃

α<κ+ Mα. This deals with (i)-(iii).

(d) Now for (iv): Mα =
⋃

n∈NMαn whenever α < κ+ has uncountable cofinality. PPP Of course Mαn ⊆Mα

for every n just because sk(X) ⊆ sk(Y ) whenever X ⊆ Y . On the other hand, if β < α, take δ ∈ C ′
α such

that β < δ, and ξ < κ such that fδ(ξ) = β; then if n ∈ N is such that ξ < κn and otp(δ ∩ Cα) < κn, β will
be in Mαn. So

⋃
n∈NMαn

⊇ α. Moreover,

κ =
⋃

n∈N κn ⊆
⋃

n∈NMαn.

So α ∪ κ ⊆
⋃

n∈NMαn and Mα must be exactly
⋃

n∈NMαn. QQQ

(e) Again suppose that α < κ+ has uncountable cofinality. Then there must be an m ∈ N such that C ′
αm

is cofinal with α. Suppose that n ≥ m and A ⊆ Mαn is countable. Then there must be a countable set
C ⊆ κn ∪ C ′

αn such that A ⊆ sk(C). Let δ ∈ C ′
αm be such that C ∩ α ⊆ δ. Then Cδ = δ ∩ Cα has cardinal

less than κm ≤ κn, so (C∩κn)∪h−1
δ [C] is a countable subset of κn and is included in gn(ξ) for some ξ < κn.

Now ξ and δ belong to Mαn, so gn(ξ) and hδ[gn(ξ)] and D = gn(ξ) ∪ hδ[gn(ξ)] all belong to Mαn, and are
countable. But C ⊆ D, so A ⊆ sk(D), as required by (ix).

(f) Finally, if A ⊆ κ is countable, there is a β < κ+ such that g(β) ⊇ A, and now g(β) ∈ Mβ+1. So (x)
is true.

518I Theorem (Fuchino & Soukup 97) Let A be a ccc Dedekind complete Boolean algebra. Suppose
that
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(α) cf[λ]≤ω ≤ λ+ for every cardinal λ ≤ τ(A),
(β) �λ is true for every uncountable cardinal λ ≤ τ(A) of countable cofinality.

Let A be a ccc Dedekind complete Boolean algebra, and κ a regular uncountable cardinal such that FN(B) ≤
κ for every countably generated order-closed subalgebra B of A. Then FN(A) ≤ κ.

proof Induce on the Maharam type τ(A) of A.

(a) If τ(A) ≤ ω the result is trivial.

(b) For the inductive step to τ(A) = λ, where λ is an infinite cardinal of uncountable cofinality, let
〈aξ〉ξ<λ enumerate a τ -generating subset of A. For each β < λ, let Bβ be the order-closed subalgebra of A
generated by {aξ : ξ < β}, and for α ≤ λ set Aα =

⋃
β<α Bβ . By the inductive hypothesis, FN(Bβ) ≤ κ

for every β < λ. Also, for α < κ, either α has uncountable cofinality, in which case (because A is ccc)
Aα = Bα is order-closed, or α has countable cofinality, in which case Aα is a countable union of order-closed
subalgebras. In either case, the Freese-Nation index of Aα in Aα+1 is countable (518Fc). Because cfλ > ω,
A = Aλ. By 518G, FN(A) ≤ κ.

(c)(i) For the inductive step to τ(A) = λ, where λ is an uncountable cardinal of countable cofinality, we
may use the method of Lemma 518H to construct 〈Mαn〉α<λ+,n∈N, 〈Mα〉α<λ+ and sk as described there.
Enumerate a τ -generating set in A as 〈aξ〉ξ<λ, and for any set X write BX for the order-closed subalgebra
of A generated by {aξ : ξ ∈ X ∩ λ}. For each α < λ+ set Eα =

⋃
{Bsk(D) : D ∈Mα is countable}.

(ii) If α < λ+ has uncountable cofinality, then Eα is the union of a non-decreasing sequence of order-
closed subalgebras of A with Maharam type less than λ. PPP By (ix) of 518H, there is an m ∈ N such that
whenever n ≥ m and D ⊆ Mαn is countable there is a countable set F ∈ Mαn such that D ⊆ sk(F ). For
each n ≥ m, set Cn =

⋃
{Bsk(D) : D ∈ Mαn is countable}. Then for any countable set C ⊆ Cn, there is a

countable set D of countable sets belonging to Mαn such that C ⊆
⋃

D∈D Bsk(D). So there is a countable
set F ∈ Mαn such that D ⊆ sk(F ); by 518H(vii), D ⊆ sk(F ) and Bsk(D) ⊆ Bsk(F ) (518H(viii)) for every
D ∈ D. But this means that C ⊆ Bsk(F ) ⊆ Cn, while Bsk(F ) is an order-closed subalgebra of A. Because A

is ccc, this is enough to show that Cn is an order-closed subalgebra of A; by 518H(ii) and 518H(iv), 〈Cn〉n≥m

is non-decreasing and has union Eα. Each Cn is τ -generated by

{aη : there is a countable D ∈Mαn such that η ∈ sk(D) ∩ λ+},

so (using 518H(vi))

τ(Cn) ≤ max(ω,#(Mαn)) < λ. QQQ

It follows from 518Fc again that the Freese-Nation index of Eα in A is countable, and from the inductive
hypothesis we see also that FN(Cn) ≤ κ for every n ≥ m, so that (using 518G, as usual) FN(Eα) ≤ κ.

(iii) If α < λ+ is the union of a sequence 〈αn〉n∈N of ordinals of uncountable cofinality, then Mα =⋃
n∈NMαn

(518H(iii)), so Eα =
⋃

n∈N Eαn
is again a countable union of order-closed subalgebras of A, and

the Freese-Nation index of Eα in A is at most ω. Moreover, because FN(Eαn
) ≤ κ for each n, FN(Eα) ≤ κ.

(iv) If a ∈ A, there is a countable set D ⊆ λ such that a ∈ BD. But now there is an α < λ+, of
uncountable cofinality, such that D ⊆ D′ for some countable D′ ∈Mα (518H(x)), and

a ∈ BD ⊆ BD′ ⊆ Bsk(D′) ⊆ Eα,

by 518H(v).

(v) Let F ⊆ λ+ be the set of ordinals which are either of uncountable cofinality, or the union of a
sequence of such ordinals; so that F is a closed cofinal set in λ+, and Eα has countable Freese-Nation index
in A for every α ∈ F . By (iv),

⋃
α∈F Eα = A. So if we enumerate F in ascending order as 〈αξ〉ξ<λ+ and

set Pξ = Eαξ
for each ξ, Pλ+ = A then 〈Pξ〉ξ≤λ+ satisfies the conditions of 518G, so FN(A) ≤ κ, and the

induction proceeds.

518J Lemma Let λ be an infinite cardinal and G the regular open algebra of {0, 1}λ. Suppose that κ
is the least cardinal of uncountable cofinality greater than or equal to FN(G). Then κ ≤ c+ and we have a
family V ⊆ [λ]≤c, cofinal with [λ]≤c, such that #({A ∩ V : V ∈ V}) < κ for every countable set A ⊆ λ.
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proof Actually it is more convenient to work with G = RO({0, 1}λ×N); of course this makes no difference.

(a) I will use the phrase ‘cylinder set’ to mean a subset of X = {0, 1}λ×N of the form {x : x↾J = z},
where J ⊆ λ×N is finite. For I ⊆ λ, let GI be the order-closed subalgebra of G consisting of those regular
open sets determined by coordinates in I × N. For G ∈ G, there is a smallest subset J(G) of λ such that
G ∈ GJ(G) (use 4A2B(g-ii)). Recall that J(G) is always countable (use 4A2E(b-i)), so that #(GI) ≤ c

whenever #(I) ≤ c.

(b) The function G 7→ GJ(G) is a Freese-Nation function. PPP Suppose that G1 ⊆ G2 in G. Set K =

J(G1) and L = J(G2), and let φ : X → {0, 1}L×N be the canonical map, so that φ−1[φ[G2]] = G2. Set

H = φ−1[intφ[G1]]; because φ is continuous and open (4A2B(f-i)), H = intφ−1[φ[G1]] (4A2B(f-ii)). In

particular, H is a regular open set; at the same time, H ⊇ G1 and H ⊆ intφ−1[φ[G2]] = G2 and H is
determined by coordinates in L × N, so H ∈ GL. Next, φ[G1] ⊆ {0, 1}L×N is determined by coordinates

in (K ∩ L) × N, so intφ[G1] also is (4A2B(g-i)) and H is determined by coordinates in K × N. Thus
H ∈ GJ(G1) ∩GJ(G2), which is what we need. QQQ

Since #(GJ(G)) ≤ c for every G, FN(G) ≤ c+; as cf c+ is surely uncountable, κ ≤ c+.

(c) Now let f : G → [G]<κ be a Freese-Nation function. Let V be the family of those sets V ∈ [λ]≤c such
that f(G) ⊆ GV for every G ∈ GV ; because #(f(G)) ≤ c for every G, and #(GV ) ≤ c whenever V ∈ [λ]≤c,
V is cofinal with [λ]≤c.

(d) Fix a countable set A ⊆ λ and ζ ∈ A for the moment. Let 〈Cξ〉ξ∈A be a disjoint family of non-empty
cylinder sets determined by coordinates in {ζ} × N; for each ξ ∈ A, set C ′

ξ = {x : x ∈ X, x(ξ, 0) = 1}. Set

G∗ = supξ∈A Cξ ∩ C
′
ξ ∈ GA.

Next, for V ∈ V, set

GV = supξ∈A∩V Cξ ∩ C ′
ξ, G′

V = sup{H : H ∈ GV , H ⊆ G∗}

so that GV ⊆ G∗ and G′
V ∈ GV . Now if ζ ∈ V ∈ V, GV = G′

V . PPP Since Cξ ∩C
′
ξ ∈ GV for every ξ ∈ V ∩A,

GV ∈ GV and GV ⊆ G′
V . ??? Suppose, if possible, that GV 6= G′

V . Then G′
V \ GV is a non-empty set

belonging to GV , so includes a non-empty cylinder set D determined by coordinates in V × N. Express D
as D′ ∩D′′, where D′ is determined by coordinates in (V ∩ A) × N and D′′ by coordinates in (V \ A) × N.
As D′ ∩D′′ ⊆ G∗ ∈ GA, D′ ⊆ G∗, so D′ ∩ Cξ ⊆ C ′

ξ for ξ ∈ A.

If ξ ∈ A \ V , D ∩ C ′
ξ is determined by coordinates in a set not containing {(ξ, 0)}, but is included in C ′

ξ,
so must be empty. Thus

D ⊆ D′ = supξ∈A∩V D
′ ∩ Cξ ∩ C

′
ξ ⊆ GV ,

which is impossible. XXX Accordingly GV = G′
V , as claimed. QQQ

Note next that if V , V ′ ∈ V and V ∩ A 6= V ′ ∩ A, then GV 6= GV ′ , because if ξ ∈ A ∩ (V△V ′) then
Cξ ∩ C

′
ξ ⊆ GV △GV ′ .

At this point, consider f(G∗). For each V ∈ V such that ζ ∈ V , there must be some HV ∈ f(G∗)∩f(GV )
such that GV ⊆ HV ⊆ G∗. By the definition of V, HV ∈ GV so HV ⊆ G′

V = GV and HV = GV . But this
shows that

#({V ∩A : ζ ∈ V ∈ V}) ≤ #({GV : ζ ∈ V ∈ V}) ≤ #(f(G∗)) < κ.

(e) Now take any countable A ⊆ λ. By (d), we see that #({A ∩ V : ζ ∈ V ∈ V}) < κ for every ζ ∈ A.
But now

{A ∩ V : V ∈ V} ⊆ {∅} ∪
⋃

ζ∈A{A ∩ V : ζ ∈ V ∈ V}

has size less than κ, because cfκ > ω. This completes the proof.

518K Theorem (Fuchino Geschke Shelah & Soukup 01) Suppose that λ > c is a cardinal of
countable cofinality such that CTP(λ+, λ) is true (definition: 5A6F). Let A be a Dedekind complete Boolean
algebra with cardinal at least λ. Then FN(A) ≥ ω2.
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proof (a) By 518Cb and 518Cc, it is enough to show that FN(G) ≥ ω2, where G is the regular open algebra
of {0, 1}λ.

(b) ??? Suppose, if possible, that FN(G) ≤ ω1. Let V ⊆ [λ]≤c be as in 518J, with κ = ω1. Note first that
if V ′ ⊆ V and #(V ′) ≤ λ then there is an A ∈ [λ]≤ω such that A 6⊆ V for every V ∈ V ′. PPP Let 〈λn〉n∈N be a
sequence of cardinals less than λ with supremum λ. Express V ′ as

⋃
n∈N Vn where #(Vn) ≤ λn for each n.

For each n ∈ N, #(
⋃

Vn) < λ, so we can find an αn ∈ λ \
⋃

Vn; now A = {αn : n ∈ N} is not included in
any member of V ′. QQQ

Choose 〈Aξ〉ξ<λ+ and 〈Vξ〉ξ<λ+ inductively, as follows. Given Vη ∈ V for η < ξ, choose Aξ ∈ [λ]≤ω such
that Aξ 6⊆ Vη for every η < ξ; now take Vξ ∈ V such that Aξ ⊆ Vξ, and continue.

Because CTP(λ+, λ) is true, there is an uncountable set B ⊆ λ+ such that C =
⋃

ξ∈B Aξ is countable

(5A6F(b-ii)). If η, ξ ∈ B and η < ξ, then Aξ = Aξ ∩C ∩ Vξ 6⊆ Vη, so C ∩ Vξ 6= C ∩ Vη. But this means that
{C ∩ V : V ∈ V} is uncountable, contrary to the choice of V. XXX

Thus FN(G) ≥ ω2, and the proof is complete.

Remark Compare Fuchino & Soukup 97, Theorem 12, where it is shown that if the generalized continuum
hypothesis and CTP(ωω+1, ωω) are both true the Freese-Nation number of [ωω]≤ω is greater than ω1, and
also Fuchino Geschke Shelah & Soukup 01, Theorem 4.2, where a different special axiom is used to
find a ccc Dedekind complete Boolean algebra with cardinal ωω+1 with Freese-Nation number greater than
ω1.

518L I turn now to the associated idea of ‘tight filtration’ (511Di). Before discussing conditions ensuring
the existence of such filtrations, I give the application of the idea which is most important for this book.

Theorem Let A be a Dedekind σ-complete Boolean algebra, B a tightly ω1-filtered Boolean algebra, and
π : A → B a surjective sequentially order-continuous Boolean homomorphism; suppose that B 6= {0}. Then
there is a Boolean homomorphism θ : B → A such that πθb = b for every b ∈ B.

proof Let 〈bξ〉ξ<ζ be a tight ω1-filtration in B; for α ≤ ζ, write Cα for the subalgebra of B generated by
{bξ : ξ < α}. Define Boolean homomorphisms θα : Cα → A inductively, as follows. Start with C0 = {0, 1},
θ00 = ∅, θ01 = 1. Given θα, let B, B′ ⊆ Cα be countable sets such that B is a cofinal subset of {b : b ∈ Cα,
b ⊆ bα} and B′ is a cofinal subset of {b : b ∈ Cα, b ⊆ 1 \ bα}. Choose any a ∈ A such that πa = bα and set

aα = (a ∪ supb∈B θαb) \ supb∈B′ θαb.

Because B and B′ are both countable and A is Dedekind σ-complete, aα is defined in A. Because B and
B′ are cofinal with {b : b ∈ Cα, b ⊆ bα} and {b : b ∈ Cα, b ⊆ 1 \ bα} respectively, θb ⊆ aα whenever b ∈ Cα

and b ⊆ bα, while θb ∩ aα = ∅ whenever b ∈ Cα and b ⊆ 1 \ bα. This means that we can define a Boolean
homomorphism θα+1 : Cα+1 → A by setting

θα+1((b ∩ bα) ∪ (c \ bα)) = (θαb ∩ aα) ∪ (θαc \ aα)

for all b, c ∈ Cα (312O).
This is the inductive step to a successor ordinal. For the inductive step to a non-zero limit ordinal α ≤ ζ,

Cα =
⋃

ξ<α Cξ and we can define θα by setting θαa = θξa whenever ξ < α and a ∈ Cξ.

An easy induction (using the hypothesis that π is sequentially order-continuous) now shows that c = πθαc
whenever α ≤ ζ and c ∈ Cα, so that πθζ is the identity homomorphism on Cζ = B.

518M Theorem Let A be a Boolean algebra and κ a regular infinite cardinal such that FN(A) ≤ κ and
#(A) ≤ κ+. Then A is tightly κ-filtered.

proof (a) Let 〈aξ〉ξ<κ+ run over A, and let f : A → [A]<κ be a Freese-Nation function. For each α < κ+,
let Aα be the smallest subalgebra of A containing aξ for every ξ < α and such that f(a) ⊆ Aα for every
a ∈ Aα. Then 〈Aα〉α<κ+ is a non-decreasing family with union A, and #(Aα) ≤ κ for every α < κ+.

(b)(i) If α < κ+, the Freese-Nation index of Aα in A is at most κ. PPP If a ∈ A, then whenever b ∈ Aα

and b ⊆ a, there is a c ∈ f(a)∩ f(b)∩ [b, a]. Now c ∈ f(a)∩Aα. This shows that f(a)∩Aα ∩ [0, a] is cofinal
with Aα ∩ [0, a], so that cf(Aα ∩ [0, a]) < κ. By 518Fa, this is what we need to know. QQQ
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(ii) If α < κ+, I ∈ [A]<κ and B is the subalgebra of A generated by Aα ∪ I, then the Freese-Nation
index of B in A is at most κ, by 518Fb.

(c) For each α < κ+ enumerate Aα+1 \ Aα as 〈aαξ〉ξ<κα
, where κα ≤ κ. Well-order A by setting a 4 a′

if either there is some α < κ+ such that a ∈ Aα and a′ /∈ Aα or there are α < κ+ and ξ ≤ η < κα such that
a = aαξ and a′ = aαη. Let ζ ∈ On be the order type of this well-ordering and 〈bξ〉ξ<ζ the corresponding
enumeration of A. For each β ≤ ζ, let Bβ be the subalgebra of A generated by {bξ : ξ < β}. Then the
Freese-Nation index of Bβ in A is at most κ. PPP If β < ζ, there is a largest α < κ+ such that Aα ⊆ Bβ , and in
this case Aα = Bγ for some γ ≤ β, while Aα+1 = Bγ′ for some γ′ > β; moreover, #(β\γ) < κα ≤ κ, because
otp(γ′ \ γ) = κα. But this means that B, which is the subalgebra of A generated by Aα ∪ {bξ : γ ≤ ξ < β},
has Freese-Nation index at most κ, by (b-ii) above. QQQ

Thus 〈bξ〉ξ<ζ is a tight κ-filtration of A.

518N Definition Let A be a Boolean algebra and κ a cardinal. Then a κ-Geschke system for A is a
family G of subalgebras of A such that

(α) every element of A belongs to an element of G with cardinal less than κ;
(β) for any G0 ⊆ G, the subalgebra of A generated by

⋃
G0 belongs to G;

(γ) whenever B1, B2 ∈ G, a ∈ B1, b ∈ B2 and a ⊆ b, then there is a c ∈ B1 ∩B2 such that
a ⊆ c ⊆ b.

(Of course (γ) can be rephrased as ‘B1 ∩ B2 ∩ [0, b] is cofinal with B1 ∩ [0, b] whenever B1, B2 ∈ G and
b ∈ B2’.)

518O Lemma Let A be a Boolean algebra, κ a cardinal and G a κ-Geschke system for A. Suppose that
λ ≥ κ is a regular uncountable cardinal and that f : [A]<ω → [A]<λ is a function. Then there is a B ∈ G

such that #(B) < λ and f(I) ⊆ B whenever I ∈ [B]<ω.

proof Enlarging f if necessary, we may suppose that f(I) always includes the subalgebra of A generated
by I, and that f({a}) includes a member of G, with cardinal less than κ and containing a, for every a ∈ A.
If now we take A0 = ∅ and An+1 =

⋃
{f(I) : I ∈ [An]<ω} for each n ∈ N, B =

⋃
n∈NAn will be a subalgebra

of A, of size less than λ, and a union of members of G, so belongs to G; while f(I) ⊆ B for every I ∈ [B]<ω.

518P Lemma (Geschke 02) Let κ be a regular uncountable cardinal and A a Boolean algebra. Then
A is tightly κ-filtered iff there is a κ-Geschke system for A.

proof (a) Suppose that A is tightly κ-filtered.

(i) Let 〈aξ〉ξ<ζ be a tight κ-filtration of A. For I ⊆ ζ let AI be the subalgebra of A generated by
{aξ : ξ ∈ I}. For α < ζ, there must be subsets Uα, Vα of Aα, with cardinal less than κ, such that Uα is
cofinal with Aα ∩ [0, aα] and Vα is cofinal with Aα ∩ [0, 1 \ aα]. Let Kα ∈ [α]<κ be such that Uα ∪Vα ⊆ AKα

.
Write M for the family of those subsets M of ζ such that Kα ⊆M for every α ∈M .

(ii) If M , N ∈ M, γ ≤ ζ, a ∈ AM∩γ , b ∈ AN∩γ and a ⊆ b, then there is a c ∈ AM∩N∩γ such that
a ⊆ c ⊆ b. PPP Induce on γ.

(ααα) If γ = 0 then

AM∩γ = AN∩γ = AM∩N∩γ = {0, 1}

and the result is trivial.

(βββ) For the inductive step to γ = α+ 1, consider the following cases.
case 1 If α /∈ M ∪ N then a ∈ AM∩α and b ∈ AN∩α, so the inductive hypothesis gives us a

c ∈ AM∩N∩α such that a ⊆ c ⊆ b.
case 2 If α ∈ N \M , then a ∈ AM∩α and b is of the form (b′ ∩ aα) ∪ (b′′ \ aα) where b′, b′′ ∈ AN∩α.

Now a \ b′ ∈ Aα and a \ b′ ⊆ 1 \ aα, so there is a v ∈ Vα such that a \ b′ ⊆ v. Since Kα ⊆ N ∩ α, v ∈ AN∩α.
Similarly, there is a u ∈ Uα ⊆ AN∩α such that a \ b′′ ⊆ u. We have

a ⊆ (u ∩ b′) ∪ (v ∩ b′′) ∪ (b′ ∩ b′′) ∈ AN∩α,

so the inductive hypothesis tells us that there is a c ∈ AM∩N∩α such that
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a ⊆ c ⊆ (u ∩ b′) ∪ (v ∩ b′′) ∪ (b′ ∩ b′′) ⊆ b.

case 3 Similarly, if α ∈ M \ N , then we express a as (a′ ∩ aα) ∪ (a′′ \ aα) where a′, a′′ ∈ AM∩α,
and find v ∈ Vα ⊆ AM∩α, u ∈ Uα ⊆ AM∩α, c ∈ AM∩N∩α such that

a′ \ b ⊆ v, a′′ \ b ⊆ u,

a ⊆ c ⊆ (b ∪ u) ∩ (b ∪ v) ⊆ b.

case 4 Finally, if α ∈M ∩N , express a as (a′ ∩ aα) ∪ (a′′ \ aα) and b as (b′ ∩ aα) ∪ (b′′ \ aα) where
a′, a′′ belong to AM∩α and b′, b′′ belong to AN∩α. As a′ \ b′ belongs to Aα and is included in 1 \ aα, there
is a v ∈ Vα such that a′ \ b′ ⊆ v; as Kα ⊆M ∩N ∩ α, v ∈ AM∩N∩α. Now a′ \ v ∈ AM∩α, b′ \ v ∈ AN∩α and
a′ \ v ⊆ b′ \ v, so the inductive hypothesis tells us that there is a c′ ∈ AM∩N∩α such that a′ \ v ⊆ c′ ⊆ b′ \ v;
in which case c′ ∩ aα ∈ AM∩N∩γ and

a′ ∩ aα = a′ ∩ aα \ v ⊆ c′ ∩ aα ⊆ b′ ∩ aα \ v = b′ ∩ aα.

Similarly, there are u ∈ AM∩N∩α, c′′ ∈ AM∩N∩γ such that

a′′ \ b′′ ⊆ v, a′′ \ u ⊆ c′′ ⊆ b′′ \ u, a′′ \ aα ⊆ c′′ \ aα ⊆ b′′ \ aα.

Putting these together, c = (c′ ∩ aα) ∪ (c′′ \ aα) belongs to AM∩N∩γ and a ⊆ c ⊆ b.
Thus the induction proceeds to a successor ordinal γ.

(γγγ) If γ > 0 is a limit ordinal, a ∈ AM∩γ and b ∈ AN∩γ and a ⊆ b, then there is some α < γ such that
a ∈ AM∩α and b ∈ AN∩α, so the inductive hypothesis gives us a c ∈ AM∩N∩α ⊆ AM∩N∩γ with a ⊆ c ⊆ b,
and again the induction proceeds. QQQ

(ii) Now set G = {AM : M ∈ M}, and consider the conditions (α)-(γ) of 518N.

(ααα) For any a ∈ A, there is a finite set I ⊆ ζ such that a ∈ AI . Let M be the smallest element of M
including I; then (because κ is regular and uncountable) #(M) < κ, so #(AM ) < κ, while a ∈ AM ∈ G.

(βββ) If G0 ⊆ G, consider M∗ = {M : M ∈ M, AM ∈ G0}. Then M∗ =
⋃

M∗ belongs to M, and
AM∗ ∈ G must be the subalgebra of A generated by

⋃
G0.

(γγγ) Finally, condition (γ) is just (ii) above with γ = ζ.
So G is a κ-Geschke system for A.

(b) Suppose that A has a κ-Geschke system G. I seek to use the ideas of the proof of 518M.

(i) Enumerate A as 〈aξ〉ξ<λ, and for each ξ < λ let Cξ ∈ G be such that aξ ∈ Cξ and #(Cξ) < κ. For
α ≤ λ let Aα be the subalgebra of A generated by

⋃
ξ<α Cξ, so that Aα ∈ G. Set Cα = Cα \ Aα for each

α < λ. An easy induction shows that, for any α ≤ λ, Aα is the subalgebra of A generated by
⋃

ξ<α Cξ.

(ii) If α ≤ λ, the Freese-Nation index of Aα in A is at most κ. PPP For any ξ < λ and b ∈ Aα ∩ [0, aξ]
there must be a c ∈ Aα ∩ Cξ such that b ⊆ c ⊆ aξ, because both Aα and Cξ belong to G; so Cξ ∩Aα ∩ [0, aξ]
is cofinal with Aα ∩ [0, aξ] and cf(Aα ∩ [0, aξ]) ≤ #(Cξ) < κ. Similarly, Cξ ∩ Aα ∩ [aξ, 1] is coinitial with
Aα ∩ [aξ, 1] and ci(Aα ∩ [aξ, 1]) < κ. QQQ

(iii) List
⋃

α<λ Cα as 〈bξ〉ξ<ζ , where ζ is an ordinal, in such a way that whenever ξ ≤ η < ζ, bξ ∈ Cα

and bη ∈ Cβ , then α ≤ β. Then {bξ : ξ < ζ} generates A. If β < ζ and Bβ is the subalgebra of A generated
by {bξ : ξ < β}, let α be such that bξ ∈ Cα; then Aα = Bγ for some γ ≤ β, #(β \ γ) < #(Cα) < κ and Bβ

is the subalgebra of A generated by Aα ∪ {bξ : γ ≤ ξ < β}, so has Freese-Nation index at most κ in A, by
518Fb. This shows that 〈bξ〉ξ<ζ is a tight κ-filtration of A, and A is tightly κ-filtered.

518Q Corollary Let κ be a regular uncountable cardinal and A a tightly κ-filtered Boolean algebra.
(a) If C is a retract of A (that is, C is a subalgebra of A and there is a Boolean homomorphism π : A → C

such that πc = c for every c ∈ C), then C is tightly κ-filtered.
(b) If C is a subalgebra of A which is (in itself) Dedekind complete, then C is tightly κ-filtered.

proof (a) By 518P there is a κ-Geschke system G for A. Let G1 be the set of those B ∈ G such that
π[B] ⊆ B. Then G1 is a κ-Geschke system. PPP Of course G1 satisfies (γ) of 518N, just because G1 ⊆ G.
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As for (β), if G0 ⊆ G1 and B∗ is the subalgebra generated by
⋃
G0, then B∗ ∈ G and π[B∗] must be the

subalgebra generated by
⋃

B∈G0
π[B] ⊆ B∗, so π[B∗] ⊆ B∗ and B∗ ∈ G1. Finally, if a ∈ A, 518O (taking

λ = κ and f(I) = {a} ∪ π[I]) tells us that there is a B ∈ G1 containing a and with cardinal less than κ. QQQ
Observe next that because πc = c for every c ∈ C, π[B] = B ∩ C for every B ∈ G1. Set H = {B ∩ C :

B ∈ G1}. Then H is a κ-Geschke system for C. PPP (α) If c ∈ C there is a B ∈ G1 such that c ∈ B and
#(B) < κ; now c ∈ B ∩ C ∈ H and #(B ∩ C) < κ. (β) If H′ ⊆ H, set G′

1 = {B : B ∈ G1, B ∩ C ∈ H′}.
Then the subalgebra B∗ generated by

⋃
G′

1 belongs to G1, and π[B∗] ∈ H is the subalgebra generated by⋃
{π[B] : B ∈ G′

1} =
⋃

H. (γ) If b1 ∈ D1 ∈ H, b2 ∈ D2 ∈ H and b1 ⊆ b2, express D1, D2 as B1 ∩ C,
B2 ∩ C where B1 and B2 belong to G1. Then there is a b ∈ B1 ∩B2 such that b1 ⊆ b ⊆ b2; in which case
πb ∈ D1 ∩D2 and

b1 = πb1 ⊆ πb ⊆ πb2 = b2.

Thus H satisfies (γ) of 518N and is a κ-Geschke system for C. By 518P in the other direction, C is tightly
κ-filtered. QQQ

(b) In this case, the identity map from C to itself extends to a Boolean homomorphism from A to C

(314K), so we can use (a).

518R Lemma (a) Let I be a set and G the regular open algebra of {0, 1}I . For J ⊆ I let GJ be the
order-closed subalgebra of G consisting of regular open sets determined by coordinates in J . Suppose that J
and K are disjoint subsets of I, and 〈aq〉q∈Q, 〈bq〉q∈Q disjoint families in GJ \ {∅} and GK \ {∅} respectively.
For t ∈ R set wt = supp,q∈Q,p≤t≤q aq ∩ bp, the supremum being taken in G; set w = supp,q∈Q,p≤q aq ∩ bp. If
w′ ⊆ w belongs to the subalgebra of G generated by GI\K ∪GI\J , then {t : wt ⊆ w′} is finite.

(b) If I = ω3 then G is not tightly ω1-filtered.

proof (a)(i) I had better explain why each GJ is an order-closed subalgebra; the point is just that if
A ⊆ {0, 1}I is determined by coordinates in J ⊆ I then so are its closure and interior (4A2B(g-i) again), so

that the operations H 7→ int(
⋂
H), H 7→ int

⋃
H take subsets of GJ to members of GJ .

(ii) w′ must be expressible in the form supi<n ui ∩ vi where ui ∈ GI\K and vi ∈ GI\J for each i. ???
Suppose, if possible, that there are t0 < t1 < . . . < tn in R such that wtj ⊆ supi<n ui ∩ vi for every j. Take
rational numbers qj and q′j , for j ≤ n, such that q0 ≤ t0 ≤ q′0 < q1 ≤ t1 ≤ q′1 < . . . < qn ≤ tn ≤ q′n. Set

e−1 = {0, 1}I . Choose ij , ej , cj , c
′
j and c′′j inductively, for j ≤ n, as follows. Given that ej−1 ∈ GI\(J∪K)

is non-empty, where j ≤ n, then aq′j , bqj and ej−1 are non-empty sets determined by coordinates in J , K

and I \ (J ∪K) respectively, so have non-empty intersection; also aq′j ∩ bqj ⊆ wtj ⊆ supi<n ui ∩ vi. There is

therefore an ij < n such that aq′j ∩ bqj ∩ ej−1 ∩ uij ∩ vij is non-empty, and includes a basic cylinder set cj
say. Now we can express cj as c′j ∩ c

′′
j ∩ ej where c′j is determined by coordinates in J , c′′j by coordinates in

K and ej by coordinates in I \ (J ∪K); note that ej ⊆ ej−1, and continue.
At the end of this process, there must be j < k ≤ n such that ij = ik = i say. Now q′j < qk, so

aq′j ∩ bqk ∩ ui ∩ vi ⊆ aq′j ∩ bqk ∩ w = ∅.

(Recall that 〈aq〉q∈Q and 〈bq〉q∈Q are disjoint.) On the other hand, c′j ∩ c
′′
j ∩ ej ⊆ ui, which is determined by

coordinates in I \K, so c′j ∩ ej ⊆ ui; similarly, c′′k ∩ ek ⊆ vi; so

capc′j ∩ ej ∩ c
′′
k ∩ ek ⊆ aq′j ∩ bqk ∩ ui ∩ vi = ∅.

But c′j , c
′′
k and ej ∩ek are all non-empty and determined by coordinates in J , K and I \ (J ∪K) respectively,

so this is impossible. XXX
Thus {t : wt ⊆ w′} has at most n members, and is finite.

(b) As in 518J, I will work with I = ω3 × N.

(i) Note that every member of G belongs to GJ for some countable J (4A2E(b-i) again), so we can
choose for each c ∈ G a countable J(c) ⊆ ω3 such that c ∈ GJ(c)×N for some countable I. For each ξ < ω3,
let 〈aξq〉q∈Q be a disjoint family of non-zero elements of G{ξ}×N. For t ∈ R, ξ < ω3 set c′ξt = supq∈Q,q≤t aξq,

c′′ξt = supq∈Q,q≥t aξq. Let T ⊆ R be a set with cardinal ω1. For D ⊆ G set J̃(D) =
⋃

c∈D J(c).

Measure Theory



518Y Freese-Nation numbers 89

(ii) ??? Suppose, if possible, that G is tightly ω1-filtered. Then it has an ω1-Geschke system B say
(518P). By 518O, with λ = ω3 and

f(∅) = {c′′ξt : ξ < ω2, t ∈ T} = C

say, there is a B1 ∈ B such that C ⊆ B1 and #(B1) ≤ ω2; take ξ ∈ ω3 \ J̃(B1), and let B2 ∈ B be such

that B2 is countable and aξp ∈ B2 for every p ∈ Q. Then J̃(B2) is countable, so there is an η ∈ ω2 \ J̃(B2).
Set w = supp,q∈Q,p≤q aξp ∩ aηq, and for t ∈ T set wt = c′ξt ∩ c

′′
ηt. Then w belongs to a countable B0 ∈ B,

while the subalgebra B∗ of G generated by B1 ∪B2 belongs to B. But if we set J = {ξ} ×N, K = {η} ×N

then we see that B1 ⊆ G(ω3×N)\J and B2 ⊆ G(ω3×N)\K . So (a) tells us that any member of B∗ included in
w can include only finitely many wt, while wt ∈ B∗ ∩ [0, w]. Thus cf(B∗ ∩ [0, w]) ≥ ω1. On the other hand,
by (γ) of 518N, the countable set B0 ∩B∗ ∩ [0, w] is cofinal with B∗ ∩ [0, w]. XXX

This contradiction proves the result.

518S Theorem (Geschke 02) If A is a tightly ω1-filtered Dedekind complete Boolean algebra then
#(A) ≤ ω2.

proof ??? Otherwise, by 515I, A has a subalgebra C isomorphic to the regular open algebra of {0, 1}ω3 . By
518Rb, C is not tightly ω1-filtered; by 518Qb, nor is A. XXX

518X Basic exercises (a) Let A be a Boolean algebra and B a principal ideal of A. Show that
FN(B) ≤ FN(A).

(b) Show that FN(α) = #(α) for every infinite ordinal α.

(c) Show that if P and Q are partially ordered sets, then FN(P × Q) is at most the cardinal product
FN(P ) · FN(Q).

>>>(d) Show that FN(PN) ≥ ω1.

(e) Show that FN(Q) = ω and FN(R) = ω1.

(f) Show that FN∗(PN/[N]<ω) = FN∗(PN).

(g) Let P be a partially ordered set and Q a subset of P with Freese-Nation index κ in P . Show that if
λ ≥ max(κ,FN(P )) is a regular infinite cardinal then FN(Q) ≤ κ.

(h) Let P be a partially ordered set and 〈Pξ〉ξ<ζ a non-decreasing family of subsets of P such that
Pξ =

⋃
η<ξ Pη for every non-zero limit ordinal ξ ≤ ζ. Suppose that κ is a regular infinite cardinal such that

the Freese-Nation index of Pξ in Pξ+1 is at most κ for every ξ < ζ. Show that the Freese-Nation index of
P0 in Pζ is at most κ.

(i) Let A be a Boolean algebra, κ a regular infinite cardinal and 〈aξ〉ξ<ζ a family in A. For each α ≤ ζ
let Aα be the subalgebra of A generated by {aξ : ξ < α}. Suppose that Aζ = A and that the Freese-Nation
index of Aα in Aα+1 is at most κ for every α < ζ. Show that 〈aξ〉ξ<ζ is a tight κ-filtration of A.

(j) Suppose that c = ω1. Show that any Dedekind complete ccc Boolean algebra with cardinal at most
c+ = ω2 is tightly ω1-filtered.

(k) Let A be a Boolean algebra, κ ≤ λ cardinals and G a κ-Geschke system for A. Show that G is a
λ-Geschke system for A.

(l) Let κ ≤ c be a regular uncountable cardinal. Show that if A is a tightly κ-filtered Dedekind complete
Boolean algebra then #(A) ≤ κ+.

518Y Further exercises (a) Show that if P is a finite partially ordered set then FN(P ) ≤ 2 + 1
2#(P ).
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(b) Show that FN(PI) > #(I) for every infinite set I. (Hint : Fuchino Koppelberg & Shelah 96.)

(c)(i) Let A be an infinite Boolean algebra. Show that FN(S(A)) = FN(A). (ii) Let A be a Dedekind
complete Boolean algebra. Show that FN(A) ≤ FN(L0(A)) ≤ FN(AN).

518 Notes and comments ‘Freese-Nation numbers’ are a relatively recent topic, beginning with the
investigation of partially ordered sets with Freese-Nation numbers at most ω (the ‘Freese-Nation property’)
in Freese & Nation 78 and those with Freese-Nation numbers at most ω1 (the ‘weak Freese-Nation
property’) in Fuchino Koppelberg & Shelah 96. There are interesting puzzles concerning the Freese-
Nation numbers of finite and countable partially ordered sets which I pass over here. Unlike most of the
cardinals discussed in this chapter, Freese-Nation numbers refer to the internal, rather than cofinal, structure
of a partially ordered set.

The Freese-Nation number FN(PN) appears in many contexts besides the identifications of 518D. I will
mention it again in 522U. I do not know whether it is consistent to suppose that its cofinality is countable.

Of the special axioms used in 518I, (α) has a more familiar aspect; for instance, it is a consequence of
GCH, regardless of the value of τ(A) (5A6Ab). (β) is believed not to be a consequence of GCH (see 555Yf),
but is true in ‘ordinary’ models of set theory (5A6Db, 5A6Bc). In 518K I call on a form of Chang’s transfer
principle; this is false in ordinary models of set theory (5A6Fc), but is believed to be relatively consistent
with ZFC + GCH (5A6Fa). Freese-Nation numbers are therefore a little exceptional among those appearing
in measure theory, in that they are not fixed by the generalized continuum hypothesis.
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Tarski A. [1945] ‘Ideale in volständigen Mengenkörpen II’, Fundamenta Math. 33 (1945) 51-65. [541P.]
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Todorčević S. [87] ‘Partitioning pairs of countable ordinals’, Acta Math. 159 (1987) 261-294. [554Yc.]
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