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Appendix to Volume 4

Useful facts

As is to be expected, we are coming in this volume to depend on a wide variety of more or less recondite
information, and only an exceptionally broad mathematical education will have covered it all. While all
the principal ideas are fully expressed in standard textbooks, there are many minor points where I need
to develop variations on the familiar formulations. A little under half the material, by word-count, is in
general topology (§4A2), where I begin with some pages of definitions. I follow this with a section on
Borel and Baire σ-algebras, Baire-property algebras and cylindrical algebras (§4A3), worked out a little
more thoroughly than the rest of the material. The other sections are on set theory (§4A1), linear analysis
(§4A4), topological groups (§4A5) and Banach algebras (§4A6).

Version of 27.1.13

4A1 Set theory

For this volume, we need fragments from four topics in set theory and one in Boolean algebra. The most
important are the theory of closed cofinal sets and stationary sets (4A1B-4A1C) and infinitary combinatorics
(4A1D-4A1H). Rather more specialized, we have the theory of normal (ultra)filters (4A1J-4A1L) and a
mention of Ostaszewski’s ♣ (4A1M-4A1N), used for an example in §439. I conclude with a simple result on
the cardinality of σ-algebras (4A1O).

4A1A Cardinals again (a) An infinite cardinal κ is regular if cfκ = κ. Any infinite successor cardinal
is regular. ω1 = ω+ is regular.

(b) If ζ is an ordinal and X is a set then I say that a family 〈xξ〉ξ<ζ in X runs over X with cofinal
repetitions if {ξ : ξ < ζ, xξ = x} is cofinal with ζ for every x ∈ X. Now if X is any non-empty set and κ
is a cardinal greater than or equal to max(ω,#(X)), there is a family 〈xξ〉ξ<κ running over X with cofinal
repetitions.

(c) The cardinal c (i) Every non-trivial interval in R has cardinal c.
(ii) If #(A) ≤ c and D is countable, then #(AD) ≤ c.
(iii) cf(2κ) > κ for every infinite cardinal κ; in particular, cf c > ω.

(d) The Continuum Hypothesis This is the statement ‘c = ω1’; it is neither provable nor disprovable
from the ordinary axioms of mathematics. If the continuum hypothesis is true, then there is a well-ordering
4 of [0, 1] such that ([0, 1],4) has order type ω1.

4A1B Closed cofinal sets Let α be an ordinal.

(a) Note that a subset F of α is closed in the order topology iff supA ∈ F whenever A ⊆ F is non-empty
and supA < α.

(b) If α has uncountable cofinality, and A ⊆ α has supremum α, then A′ = {ξ : 0 < ξ < α, ξ = sup(A∩ξ)}
is a closed cofinal set in α. In particular, the set of non-zero countable limit ordinals is a closed cofinal set
in ω1.

(c)(i) If 〈Fξ〉ξ<α is a family of subsets of α, the diagonal intersection of 〈Fξ〉ξ<α is {ξ : ξ < α, ξ ∈ Fη

for every η < ξ}.
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2 Appendix 4A1Bc

(ii) If κ is a regular uncountable cardinal and 〈Fξ〉ξ<κ is any family of closed cofinal sets in κ, its
diagonal intersection F is again a closed cofinal set in κ.

(iii) In particular, if f : κ → κ is any function, then {ξ : ξ < κ, f(η) < ξ for every η < ξ} is a closed
cofinal set in κ.

(d) If α has uncountable cofinality, F is a non-empty family of closed cofinal sets in α and #(F) < cfα,
then

⋂
F is a closed cofinal set in α. In particular, the intersection of any sequence of closed cofinal sets in

ω1 is again a closed cofinal set in ω1.

4A1C Stationary sets (a) Let κ be a cardinal. A subset of κ is stationary in κ if it meets every
closed cofinal set in κ; otherwise it is non-stationary.

(b) If κ is a cardinal of uncountable cofinality, the intersection of any stationary subset of κ with a
closed cofinal set in κ is again a stationary set; the family of non-stationary subsets of κ is a σ-ideal, the
non-stationary ideal of κ.

(c) Pressing-Down Lemma If κ is a regular uncountable cardinal, A ⊆ κ is stationary and f : A→ κ
is such that f(ξ) < ξ for every ξ ∈ A, then there is a stationary set B ⊆ A such that f is constant on B.

(d) There are disjoint stationary sets A, B ⊆ ω1.

4A1D ∆-systems (a) A family 〈Iξ〉ξ∈A of sets is a ∆-system with root I if Iξ ∩ Iη = I for all distinct
ξ, η ∈ A.

(b) ∆-system Lemma If #(A) is a regular uncountable cardinal and 〈Iξ〉ξ∈A is any family of finite sets,
there is a set D ⊆ A such that #(D) = #(A) and 〈Iξ〉ξ∈D is a ∆-system.

4A1E Free sets (a) Let A be a set with cardinal at least ω2, and 〈Jξ〉ξ∈A a family of countable sets.
Then there are distinct ξ, η ∈ A such that ξ /∈ Jη and η /∈ Jξ.

(b) If 〈Kξ〉ξ∈A is a disjoint family of sets indexed by an uncountable subset A of ω1, and 〈Jη〉η<ω1
is

a family of countable sets, there is an uncountable B ⊆ A such that Kξ ∩ Jη = ∅ whenever η, ξ ∈ B and
η < ξ.

4A1F Selecting subsequences (a) Let 〈Ki〉i∈I be a countable family of sets such that
⋂

i∈J Ki is
infinite for every finite subset J of I. Then there is an infinite set K such that K \Ki is finite and Ki \K is
infinite for every i ∈ I. Consequently there is a family 〈Kξ〉ξ<ω1

of infinite subsets of N such that Kξ \Kη

is finite if η ≤ ξ, infinite if ξ < η.

(b) Let 〈Ji〉i∈I be a countable family of subsets of [N]ω such that Ji ∩ PK 6= ∅ for every K ∈ [N]ω and
i ∈ I. Then there is an infinite K ⊆ N such that for every i ∈ I there is a J ∈ Ji such that K \ J is finite.

4A1G Ramsey’s theorem If n ∈ N, K is finite and h : [N]n → K is any function, there is an infinite
I ⊆ N such that h is constant on [I]n.

4A1H Proposition Let X and Y be sets, and R ⊆ X × Y a set such that R[{x}] is finite for every
x ∈ X and #(R[I]) ≥ #(I) for every finite set I ⊆ X. Then there is an injective function f : X → Y such
that (x, f(x)) ∈ R for every x ∈ X.

4A1I Filters (a) Let X be a non-empty set. If E ⊆ PX is non-empty and has the finite intersection
property,

F = {A : A ⊆ X, A ⊇
⋂

E ′ for some non-empty finite E ′ ⊆ E}

is the smallest filter on X including E , the filter generated by E .
If E ⊆ PX is non-empty and downwards-directed, then it has the finite intersection property iff it does

not contain ∅; in this case we say that E is a filter base; F = {A : A ⊆ X, A ⊇ E for some E ∈ E}, and E
is a base for the filter F .

In general, if E is a family of subsets of X, then there is a filter on X including E iff E has the finite
intersection property; in this case, there is an ultrafilter on X including E .

Measure Theory (abridged version)



§4A2 intro. General topology 3

(b) If κ is a cardinal and F is a filter then F is κ-complete if
⋂
E ∈ F whenever E ⊆ F and 0 < #(E) < κ.

Every filter is ω-complete.

(c) A filter F on a regular uncountable cardinal κ is normal if (α) κ\ξ ∈ F for every ξ < κ (β) whenever
〈Fξ〉ξ<κ is a family in F , its diagonal intersection belongs to F .

4A1J Lemma A normal filter F on a regular uncountable cardinal κ is κ-complete.

4A1K Theorem Let X be a set and F a non-principal ω1-complete ultrafilter on X. Let κ be the least
cardinal of any non-empty set E ⊆ F such that

⋂
E /∈ F . Then κ is a regular uncountable cardinal, F is

κ-complete, and there is a function g : X → κ such that g[[F ]] is a normal ultrafilter on κ.

4A1L Theorem Let κ be a regular uncountable cardinal, and F a normal ultrafilter on κ. If S ⊆ [κ]<ω,
there is a set F ∈ F such that, for each n ∈ N, [F ]n is either a subset of S or disjoint from S.

4A1M Ostaszewski’s ♣ This is the statement

Let Ω be the family of non-zero countable limit ordinals. Then there is a family 〈θξ(n)〉ξ∈Ω,n∈N

such that (α) for each ξ ∈ Ω, 〈θξ(n)〉n∈N is a strictly increasing sequence with supremum ξ (β)
for any uncountable A ⊆ ω1 there is a ξ ∈ Ω such that θξ(n) ∈ A for every n ∈ N.

4A1N Lemma Assume ♣. Then there is a family 〈Cξ〉ξ<ω1
of sets such that (i) Cξ ⊆ ξ for every ξ < ω1

(ii) Cξ ∩ η is finite whenever η < ξ < ω1 (iii) for any uncountable sets A, B ⊆ ω1 there is a ξ < ω1 such that
A ∩ Cξ and B ∩ Cξ are both infinite.

4A1O The size of σ-algebras: Proposition Let A be a Boolean algebra, B a subset of A, and B

the σ-subalgebra of A generated by B. Then #(B) ≤ max(4,#(BN)). In particular, if #(B) ≤ c then
#(B) ≤ c.

4A1P An incidental fact If I is a countable set and ǫ > 0, there is a family 〈ǫi〉i∈I of strictly positive
real numbers such that

∑
i∈I ǫi ≤ ǫ.

Version of 21.4.13/28.12.18

4A2 General topology

Even more than in previous volumes, naturally enough, the work of this volume depends on results from
general topology. We have now reached the point where some of the facts I rely on are becoming hard to
find as explicitly stated theorems in standard textbooks. I find myself therefore writing out rather a lot
of proofs. You should not suppose that the results to which I attach proofs, rather than references, are
particularly deep; on the contrary, in many cases I am merely spelling out solutions to classic exercises.

The style of ‘general’ topology, as it has evolved over the last hundred years, is to develop a language
capable of squeezing the utmost from every step of argument. While this does sometimes lead to absurdly
obscure formulations, it remains a natural, and often profitable, response to the remarkably dense network
of related ideas in this area. I therefore follow the spirit of the subject in giving the results I need in the
full generality achievable within the terminology I use. For the convenience of anyone coming to the theory
for the first time, I repeat some of them in the forms in which they are actually applied. I should remark,
however, that in some cases materially stronger results can be proved with little extra effort; as always,
this appendix is to be thought of not as a substitute for a thorough study of the subject, but as a guide
connecting standard approaches to the general theory with the special needs of this volume.

c© 2002 D. H. Fremlin
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4 Appendix 4A2A

4A2A Definitions
Baire space A topological space X is a Baire space if

⋂
n∈N

Gn is dense in X whenever 〈Gn〉n∈N is a
sequence of dense open subsets of X.

Base of neighbourhoods If X is a topological space and x ∈ X, a base of neighbourhoods of x is a
family V of neighbourhoods of x such that every neighbourhood of x includes some member of V.

boundary If X is a topological space and A ⊆ X, the boundary of A is ∂A = A \ intA = A ∩X \A.
càdlàg If X is a Hausdorff space, a function f : [0,∞[ → X is càdlàg (‘continue à droit, limite à

gauche’) (or RCLL (‘right continuous, left limits’), an RRR-function,) if lims↓t f(s) = f(t) for every t ≥ 0
and lims↑t f(s) is defined in X for every t > 0.

càllàl If X is a Hausdorff space, a function f : [0,∞[ → X is càllàl (‘continue à l’une, limite à l’autre’)
if f(0) = lims↓0 f(s) and, for every t > 0, lims↓t f(s) and lims↑t f(s) are defined in X, and at least one of
them is equal to f(t).

Čech-complete A completely regular Hausdorff topological space X is Čech-complete if it is homeo-
morphic to a Gδ subset of a compact Hausdorff space.

closed interval Let X be a totally ordered set. A closed interval in X is an interval of one of the forms
∅, [x, y], ]−∞, y], [x,∞[ or X = ]−∞,∞[ where x, y ∈ X.

coarser topology If S and T are two topologies on a set X, we say that S is coarser than T if S ⊆ T.
(Equality allowed.)

compact support Let X be a topological space and f : X → R a function. I say that f has compact
support if {x : x ∈ X, f(x) 6= 0} is compact in X.

countably compact A topological space X is countably compact if every countable open cover of X
has a finite subcover. A subset of a topological space is countably compact if it is countably compact in
its subspace topology.

countably paracompact A topological space X is countably paracompact if given any countable open
cover G of X there is a locally finite family H of open sets which refines G and covers X.

countably tight A topological space X is countably tight (or has countable tightness) if whenever
A ⊆ X and x ∈ A there is a countable set B ⊆ A such that x ∈ B.

direct sum, disjoint union Let 〈(Xi,Ti)〉i∈I be a family of topological spaces, and set X = {(x, i) : i ∈ I,
x ∈ Xi}. The disjoint union topology on X is T = {G : G ⊆ X, {x : (x, i) ∈ G} ∈ Ti for every i ∈ I};
(X,T) is the (direct) sum of 〈(Xi,Ti)〉i∈I .

If X is a set, 〈Xi〉i∈I a partition of X, and Ti a topology on Xi for every i ∈ I, then the disjoint union
topology on X is {G : G ⊆ X, G ∩Xi ∈ Ti for every i ∈ I}.

dyadic A Hausdorff space is dyadic if it is a continuous image of {0, 1}I for some set I.
equicontinuous If X is a topological space, (Y,W) a uniform space, and F a set of functions from X to

Y , then F is equicontinuous if for every x ∈ X and W ∈ W the set {y : (f(x), f(y)) ∈W for every f ∈ F}
is a neighbourhood of x.

finer topology If S and T are two topologies on a set X, we say that S is finer than T if S ⊇ T.
(Equality allowed.)

first-countable A topological space X is first-countable if every point has a countable base of neigh-
bourhoods.

half-open Let X be a totally ordered set. A half-open interval in X is a set of one of the forms [x, y[,
]x, y] where x, y ∈ X and x < y.

hereditarily Lindelöf A topological space is hereditarily Lindelöf if every subspace is Lindelöf.
hereditarily metacompact A topological space is hereditarily metacompact if every subspace is meta-

compact.
hereditarily separable A topological space is hereditarily separable if every subspace is separable.
indiscrete If X is any set, the indiscrete topology on X is the topology {∅, X}.
interval Let (P,≤) be a partially ordered set. An interval in P is a set of one of the forms [p, q] = {r :

p ≤ r ≤ q}, [p, q[ = {r : p ≤ r < q}, ]p, q] = {r : p < r ≤ q}, ]p, q[ = {r : p < r < q}, [p,∞[ = {r : p ≤ r},
]−∞, q] = {r : r ≤ q}, ]p,∞[ = {r : p < r}, ]−∞, q[ = {r : r < q}, ]−∞,∞[ = P , where p, q ∈ P .

irreducible If X and Y are topological spaces, a continuous surjection f : X → Y is irreducible if
f [F ] 6= Y for any closed proper subset F of X.

isolated If X is a topological space, a family A of subsets of X is isolated if A ∩
⋃
(A \ {A}) is empty

for every A ∈ A.

Measure Theory (abridged version)



4A2A General topology 5

Lindelöf A topological space is Lindelöf if every open cover has a countable subcover.
Lipschitz If (X, ρ) and (Y, σ) are metric spaces, a function f : X → Y is γ-Lipschitz, or (γ, ρ, σ)-

Lipschitz, where γ ≥ 0, if σ(f(x), f(y)) ≤ γρ(x, y) for all x, y ∈ X. f : X → Y is Lipschitz or
(ρ, σ)-Lipschitz if it is (γ, ρ, σ)-Lipschitz for some γ ≥ 0.

locally finite If X is a topological space, a family A of subsets of X is locally finite if for every x ∈ X
there is an open set which contains x and meets only finitely many members of A.

lower semi-continuous If X is a topological space and T a totally ordered set, a function f : X → T is
lower semi-continuous if {x : f(x) > t} is open for every t ∈ T .

metacompact A topological space is metacompact if every open cover has a point-finite refinement
which is an open cover.

neighbourhood If X is a topological space and x ∈ X, a neighbourhood of x is any subset of X including
an open set which contains x.

network Let (X,T) be a topological space. A network for T is a family E ⊆ PX such that whenever
x ∈ G ∈ T there is an E ∈ E such that x ∈ E ⊆ G.

normal A topological space X is normal if for any disjoint closed sets E, F ⊆ X there are disjoint open
sets G, H such that E ⊆ G and F ⊆ H.

open interval Let X be a totally ordered set. An open interval in X is a set of one of the the forms
]x, y[, ]x,∞[, ]−∞, x[ or ]−∞,∞[ = X where x, y ∈ X.

open map If (X,T) and (Y,S) are topological spaces, a function f : X → Y is open if f [G] ∈ S for
every G ∈ T.

order-convex Let (P,≤) be a partially ordered set. A subset C of P is order-convex if [p, q] = {r : p ≤
r ≤ q} is included in C whenever p, q ∈ C.

order topology Let (X,≤) be a totally ordered set. Its order topology is that generated by intervals of
the form ]x,∞[, ]−∞, x[ as x runs over X.

paracompact A topological space is paracompact if every open cover has a locally finite refinement
which is an open cover.

perfect A topological space is perfect if it is compact and has no isolated points.
perfectly normal A topological space is perfectly normal if it is normal and every closed set is a Gδ

set.
point-countable, point-finite A family A of sets is point-countable if no point belongs to more than

countably many members of A. Similarly, an indexed family 〈Ai〉i∈I of sets is point-finite if {i : x ∈ Ai}
is finite for every x.

Polish A topological space X is Polish if it is separable and its topology can be defined from a metric
under which X is complete.

pseudometrizable A topological space (X,T) is pseudometrizable if T is defined by a single pseudo-
metric.

refine(ment) If A is a family of sets, a refinement of A is a family B of sets such that every member
of B is included in some member of A; in this case I say that B refines A.

relatively countably compact If X is a topological space, a subset A of X is relatively countably
compact if every sequence in A has a cluster point in X.

scattered A topological space X is scattered if every non-empty subset of X has an isolated point (in
its subspace topology).

second-countable A topological space is second-countable if the topology has a countable base.
semi-continuous see lower semi-continuous, upper semi-continuous.
sequential A topological space is sequential if every sequentially closed set in X is closed.
sequentially closed If X is a topological space, a subset A of X is sequentially closed if x ∈ A whenever

〈xn〉n∈N is a sequence in A converging to x ∈ X.
sequentially compact A topological space is sequentially compact if every sequence has a convergent

sequence. A subset of a topological space is sequentially compact if it is sequentially compact in its subspace
topology.

sequentially continuous If X and Y are topological spaces, a function f : X → Y is sequentially
continuous if 〈f(xn)〉n∈N → f(x) in Y whenever 〈xn〉n∈N → x in X.

subbase If (X,T) is a topological space, a subbase for T is a family U ⊆ T which generates T, in the
sense that T is the coarsest topology on X including U .

D.H.Fremlin



6 Appendix 4A2A

totally bounded If (X,W) is a uniform space, a subset A of X is totally bounded if for every W ∈ W
there is a finite set I ⊆ X such that A ⊆W [I]. If (X, ρ) is a metric space, a subset of X is totally bounded
if it is totally bounded for the associated uniformity.

uniform convergence If X is a set, (Y, σ) is a metric space and A is a family of subsets of X then the
topology of uniform convergence on members ofA is the topology on Y X generated by the pseudometrics
(f, g) 7→ min(1, supx∈A σ(f(x), g(x))) as A runs over A \ {∅}.

upper semi-continuous If X is a topological space and T is a totally ordered set, a function f : X → T
is upper semi-continuous if {x : f(x) < t} is open for every t ∈ T .

weakly α-favourable A topological space (X,T) is weakly α-favourable if there is a function σ :⋃
n∈N

(T \ {∅})n+1 → T \ {∅} such that (i) σ(G0, . . . , Gn) ⊆ Gn whenever G0, . . . , Gn are non-empty open
sets (ii) whenever 〈Gn〉n∈N is a sequence in T \ {∅} such that Gn+1 ⊆ σ(G0, . . . , Gn) for every n, then⋂

n∈N
Gn is non-empty.

weight If X is a topological space, its weight w(X) is the smallest cardinal of any base for the topology.
Cb If X is a topological space, Cb(X) is the space of bounded continuous real-valued functions defined

on X.
Fσ If X is a topological space, an Fσ set in X is one expressible as the union of a sequence of closed

sets.
Gδ If X is a topological space, a Gδ set in X is one expressible as the intersection of a sequence of open

sets.
Kσ If X is a topological space, a Kσ set in X is one expressible as the union of a sequence of compact

sets.
PX If X is any set, the usual topology on PX is that generated by the sets {a : a ⊆ X, a ∩ J = K}

where J ⊆ X is finite and K ⊆ J .
T0 If (X,T) is a topological space, we say that it is T0 if for any two distinct points of X there is an

open set containing one but not the other.
T1 If (X,T) is a topological space, we say that it is T1 if singleton sets are closed.
π-base If (X,T) is a topological space, a π-base for T is a set U ⊆ T such that every non-empty open

set includes a non-empty member of U .
σ-compact A topological space X is σ-compact if there is a sequence of compact subsets of X covering

X.
σ-disjoint A family of sets is σ-disjoint if it is expressible as

⋃
n∈N

An where every An is disjoint.
σ-isolated IfX is a topological space, a family of subsets ofX is σ-isolated if it is expressible as

⋃
n∈N

An

where every An is an isolated family.
σ-metrically-discrete If (X, ρ) is a metric space, a family of subsets of X is σ-metrically-discrete if it

is expressible as
⋃

n∈N
An where ρ(x, y) ≥ 2−n whenever n ∈ N, A and B are distinct members of An, x ∈ A

and y ∈ B.

4A2B Elementary facts about general topological spaces (a) Bases and networks (i) Let (X,T)
be a topological space and U a subbase for T. Then {X} ∪ {U0 ∩ U1 ∩ . . . ∩ Un : U0, . . . , Un ∈ U} is a base
for T.

(ii) Let X and Y be topological spaces, and U a subbase for the topology of Y . Then a function
f : X → Y is continuous iff f−1[U ] is open for every U ∈ U .

(iii) If X and Y are topological spaces, E is a network for the topology of Y , and f : X → Y is a
function such that f−1[E] is open for every E ∈ E , then f is continuous.

(iv) If X is a topological space and U is a subbase for the topology of X, then a filter F on X converges
to x ∈ X iff {U : x ∈ U ∈ U} ⊆ F .

(v) If X and Y are topological spaces with subbases U , V respectively, then {U×Y : U ∈ U}∪{X×V :
V ∈ V} is a subbase for the product topology of X × Y .

(vi) If U is a (sub-)base for a topology on X, and Y ⊆ X, then {Y ∩U : U ∈ U} is a (sub-)base for the
subspace topology of Y .

(vii) If X is a topological space, E is a network for the topology of X, and Y is a subset of X, then
{E ∩ Y : E ∈ E} is a network for the topology of Y .

(viii) If X is a topological space and A is a (σ-)isolated family of subsets of X, then {A ∩ Y : A ∈ A′}
is (σ-)isolated whenever Y ⊆ X and A′ ⊆ A.

Measure Theory (abridged version)



4A2Bh General topology 7

(ix) If a topological space X has a σ-isolated network, so has every subspace of X.

(b) If 〈Hi〉i∈I is a partition of a topological space X into open sets and Fi ⊆ Hi is closed for each i ∈ I,
then F =

⋃
i∈I Fi is closed in X.

(c) If X is a topological space, A ⊆ X and x ∈ X, then x ∈ A iff there is an ultrafilter on X, containing
A, which converges to x.

(d) Semi-continuity Let X be a topological space.
(i) A function f : X → R is lower semi-continuous iff −f is upper semi-continuous. A function

f : X → R is lower semi-continuous iff Ω = {(x, α) : x ∈ X, α ≥ f(x)} is closed in X × R.
(ii) If T is a totally ordered set, f : X → T is lower semi-continuous, Y is another topological space,

and g : Y → X is continuous, then fg : Y → T is lower semi-continuous. In particular, if f : X → T is
lower semi-continuous and Y ⊆ X, then f↾Y is lower semi-continuous. Similarly, if f : X → T is upper
semi-continuous and g : Y → X is continuous, then fg : Y → T is upper semi-continuous.

(iii) If f , g : X → ]−∞,∞] are lower semi-continuous so is f + g : X → ]−∞,∞].
(iv) If f , g : X → [0,∞] are lower semi-continuous so is f × g : X → [0,∞].
(v) If Φ is any non-empty set of lower semi-continuous functions from X to [−∞,∞], then x 7→

supf∈Φ f(x) : X → [−∞,∞] is lower semi-continuous.
(vi) f : X → R is continuous iff f is both upper semi-continuous and lower semi-continuous iff f and

−f are both lower semi-continuous.
(vii) If f : X → [−∞,∞] is lower semi-continuous, and F is a filter on X converging to y ∈ X, then

f(y) ≤ lim infx→F f(x).
(viii) If X is compact and not empty, and f : X → [−∞,∞] is lower semi-continuous then K = {x :

f(x) = infy∈X f(y)} is non-empty and compact.
(ix) If f , g : X → [0,∞] are lower semi-continuous and f + g is continuous at x ∈ X and finite there,

then f and g are continuous at x.

(e) Separable spaces (i) If 〈Ai〉i∈I is a countable family of separable subsets of a topological space X

then
⋃

i∈I Ai and
⋃

i∈I Ai are separable.
(ii) If 〈Xi〉i∈I is a family of separable topological spaces and #(I) ≤ c, then

∏
i∈I Xi is separable.

(iii) A continuous image of a separable topological space is separable.

(f) Open maps (i) Let 〈Xi〉i∈I be any family of topological spaces, with product X. If J ⊆ I is any set,
and we write XJ for

∏
i∈J Xi, then the canonical map x 7→ x↾J : X → XJ is open.

(ii) Let X and Y be topological spaces and f : X → Y a continuous open map. Then int f−1[B] =

f−1[intB] and f−1[B] = f−1[B] for every B ⊆ Y .
It follows that f−1[B] is nowhere dense in X whenever B ⊆ Y is nowhere dense in Y . If f is surjective

and B ⊆ Y , then B is nowhere dense in Y iff f−1[B] is nowhere dense in X.
(iii) Let X and Y be topological spaces and f : X → Y a continuous open map. Then H 7→ f−1[H] is

an order-continuous Boolean homomorphism from the regular open algebra of Y to the regular open algebra
of X. If f is surjective, then the homomorphism is injective, and for H ⊆ Y , H is a regular open set in Y
iff f−1[H] is a regular open set in X.

(iv) If X0, Y0, X1, Y1 are topological spaces, and fi : Xi → Yi is an open map for each i, then
(x0, x1) 7→ (f0(x0), f1(x1)) : X0 ×X1 → Y0 × Y1 is open.

(g) Let 〈Xi〉i∈I be a family of topological spaces with product X.
(i) If A ⊆ X is determined by coordinates in J ⊆ I, then A and intA are also determined by coordinates

in J .
(ii) If F ⊆ X is closed, there is a smallest set J∗ ⊆ I such that F is determined by coordinates in J∗.

(h) Let X be a topological space.
(i) If E is a locally finite family of closed subsets of X, then

⋃
E ′ is closed for every E ′ ⊆ E .

(ii) If 〈fi〉i∈I is a family in C(X) such that 〈{x : fi(x) 6= 0}〉i∈I is locally finite, then we have a
continuous function f : X → R defined by setting f(x) =

∑
i∈I fi(x) for every x ∈ X.
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8 Appendix 4A2Bi

(i) Let X be a topological space and A, B two subsets of X. Then the boundary ∂(A ∗B) is included in
∂A ∪ ∂B, where ∗ is any of ∪, ∩, \, △.

(j) Let X be a topological space and D a dense subset of X, endowed with its subspace topology.
(i) A set A ⊆ D is nowhere dense in D iff it is nowhere dense in X.
(ii) A set G ⊆ D is a regular open set in D iff it is expressible as D ∩ H for some regular open set

H ⊆ X.

4A2C Gδ, Fσ, zero and cozero sets Let X be a topological space.

(a)(i) The union of two Gδ sets in X is a Gδ set.
(ii) The intersection of countably many Gδ sets is a Gδ set.
(iii) If Y is another topological space, f : X → Y is continuous and E ⊆ Y is Gδ in Y , then f−1[E] is

Gδ in X.
(iv) If Y is a Gδ set in X and Z ⊆ Y is a Gδ set for the subspace topology of Y , then Z is a Gδ set in

X.
(v) A set E ⊆ X is an Fσ set iff X \ E is a Gδ set.

(b)(i) A zero set is closed. A cozero set is open.
(ii) The union of two zero sets is a zero set. The intersection of two cozero sets is a cozero set.
(iii) The intersection of a sequence of zero sets is a zero set. The union of a sequence of cozero sets is

a cozero set.
(iv) If Y is another topological space, f : X → Y is continuous and L ⊆ Y is a zero set, then f−1[L] is

a zero set. If f : X → Y is continuous and H ⊆ Y is a cozero set, then f−1[H] is a cozero set. If K ⊆ X
and L ⊆ Y are zero sets then K × L is a zero set in X × Y .

(v) If H ⊆ X is a (co-)zero set and Y ⊆ X, then H ∩ Y is a (co-)zero set in Y .
(vi) A cozero set is the union of a non-decreasing sequence of zero sets. In particular, a cozero set is

an Fσ set; a zero set is a Gδ set.
(vii) If G is a partition of X into open sets, and H ⊆ X is such that H ∩ G is a cozero set in G for

every G ∈ G, then H is a cozero set in X. Similarly, if F ⊆ X is such that F ∩ G is a zero set in G for
every G ∈ G, then F is a zero set in X.

4A2D Weight Let X be a topological space.

(a)(i) w(Y ) ≤ w(X) for every subspace Y of X.
(ii) If X =

∏
i∈I Xi then w(X) ≤ max(ω,#(I), supi∈I w(Xi)).

(b) A disjoint family of non-empty open sets in X has cardinal at most w(X).

(c) A point-countable family of open sets in X has cardinal at most max(ω,w(X)).

(d) If X is a dyadic Hausdorff space then X is a continuous image of {0, 1}w(X).

(e) If X is a dyadic Hausdorff space then X is separable iff it is a continuous image of {0, 1}c.

4A2E The countable chain condition (a)(i) Let 〈Xi〉i∈I be a family of topological spaces. If
∏

i∈J Xi

is ccc for every finite J ⊆ I, then
∏

i∈I Xi is ccc.
(ii) A separable topological space is ccc.
(iii) The product of any family of separable topological spaces is ccc.
(iv) Any continuous image of a ccc topological space is ccc.

(b) Let 〈Xi〉i∈I be a family of topological spaces, and suppose that X =
∏

i∈I Xi is ccc. For J ⊆ I and
x ∈ X set XJ =

∏
i∈J Xi, πJ(x) = x↾J .

(i) If G ⊆ X is open, there is an open set W ⊆ G determined by coordinates in a countable subset of
I such that G ⊆ W . So G = W and intG are determined by coordinates in a countable set; in particular,
if G is a regular open set, then it is determined by coordinates in a countable set.

(ii) If f : X → R is continuous, there are a countable set J ⊆ I and a continuous function g : XJ → R

such that f = gπJ .
(iii) If A ⊆ X is nowhere dense there is a countable set J ⊆ I such that π−1

J [πJ [A]] is nowhere dense.
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4A2F Separation axioms (a) Hausdorff spaces (i) A Hausdorff space is T1.
(ii) If X is a Hausdorff space and 〈xn〉n∈N is a sequence in X, then a point x of X is a cluster point of

〈xn〉n∈N iff there is a non-principal ultrafilter F on N such that x = limn→F xn.
(iii) A topological space X is Hausdorff iff {(x, x) : x ∈ X} is closed in X ×X.

(b) Regular spaces (i) A regular T1 space is Hausdorff. Any subspace of a regular space is regular.
(ii) If X is a regular topological space, the regular open subsets of X form a base for the topology.

(c) Completely regular spaces In a completely regular space, the cozero sets form a base for the
topology.

(d) Normal spaces (i) Urysohn’s Lemma If X is normal and E, F are disjoint closed subsets of X,
then there is a continuous function f : X → [0, 1] such that f(x) = 0 for x ∈ E and f(x) = 1 for x ∈ F .

(ii) A regular normal space is completely regular.
(iii) A normal T1 space is Hausdorff and completely regular .
(iv) If X is normal and E, F are disjoint closed sets in X there is a zero set including E and disjoint

from F .
(v) In a normal space a closed Gδ set is a zero set.
(vi) If X is a normal space and 〈Gi〉i∈I is a point-finite cover of X by open sets, there is a family

〈Hi〉i∈I of open sets, still covering X, such that Hi ⊆ Gi for every i.
(vii) If X is a normal space and 〈Gi〉i∈I is a point-finite cover of X by open sets, there is a family

〈H ′
i〉i∈I of cozero sets, still covering X, such that H ′

i ⊆ Gi for every i.
(viii) If X is a normal space and 〈Gi〉i∈I is a locally finite cover of X by open sets, there is a family

〈gi〉i∈I of continuous functions from X to [0, 1] such that gi ≤ χGi for every i ∈ I and
∑

i∈I gi(x) = 1 for
every x ∈ X.

(ix) Tietze’s theorem Let X be a normal space, F a closed subset of X and f : F → R a continuous
function. Then there is a continuous function g : X → R extending f . It follows that if F ⊆ X is closed
and f : F → [0, 1]I is a continuous function from F to any power of the unit interval, there is a continuous
function from X to [0, 1]I extending f .

(e) Paracompact spaces A Hausdorff paracompact space is regular. A regular paracompact space is
normal.

(f) Countably paracompact spaces A normal space X is countably paracompact iff whenever 〈Fn〉n∈N

is a non-increasing sequence of closed subsets of X with empty intersection, there is a sequence 〈Gn〉n∈N of
open sets, also with empty intersection, such that Fn ⊆ Gn for every n ∈ N.

(g) Metacompact spaces (i) A paracompact space is metacompact.
(ii) A closed subspace of a metacompact space is metacompact.
(iii) A normal metacompact space is countably paracompact.

(h) Separating compact sets (i) If X is a Hausdorff space and K and L are disjoint compact subsets
of X, there are disjoint open sets G, H ⊆ X such that K ⊆ G and L ⊆ H. If T is an algebra of subsets of
X including a subbase for the topology of X, there is an open V ∈ T such that K ⊆ V ⊆ X \ L.

(ii) If X is a regular space, F ⊆ X is closed, and K ⊆ X \ F is compact, there are disjoint open sets
G, H ⊆ X such that K ⊆ G and F ⊆ H.

(iii) If X is a completely regular space, G ⊆ X is open and K ⊆ G is compact, there is a continuous
function f : X → [0, 1] such that f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ X \G.

(iv) If X is a completely regular Hausdorff space and K and L are disjoint compact subsets of X, there
are disjoint cozero sets G, H ⊆ X such that K ⊆ G and L ⊆ H.

(v) If X is a completely regular space and K ⊆ X is a compact Gδ set, then K is a zero set.
(vi) If 〈Xn〉n∈N is a sequence of topological spaces with product X, K ⊆ X is compact, F ⊆ X is

closed and K ∩ F = ∅, there is some n ∈ N such that x↾n 6= y↾n for any x ∈ F and y ∈ K.
(vii) If X is a compact Hausdorff space, f : X → R is continuous, and U is a subbase for T, then there

is a countable set U0 ⊆ U such that f(x) = f(y) whenever {U : x ∈ U ∈ U0} = {U : y ∈ U ∈ U0}.
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(i) Perfectly normal spaces A topological space X is perfectly normal iff every closed set is a zero
set.

Consequently, every open set in a perfectly normal space is a cozero set (and an Fσ set).

(j) Covers of compact sets Let X be a Hausdorff space, K a compact subset of X, and 〈Gi〉i∈I a
family of open subsets of X covering K. Then there are a finite set J ⊆ I and a family 〈Ki〉i∈J of compact
sets such that K =

⋃
i∈J Ki and Ki ⊆ Gi for every i ∈ J .

4A2G Compact and locally compact spaces (a) In any topological space, the union of two compact
subsets is compact.

(b) A compact Hausdorff space is normal.

(c)(i) If X is a compact Hausdorff space, Y ⊆ X is a zero set and Z ⊆ Y is a zero set in Y , then Z is a
zero set in X.

(ii) Let X and Y be compact Hausdorff spaces, f : X → Y a continuous open map and Z ⊆ X a zero
set in X. Then f [Z] is a zero set in Y .

(d) If X is a Hausdorff space, V is a downwards-directed family of compact neighbourhoods of a point x
of X and

⋂
V = {x}, then V is a base of neighbourhoods of x.

(e) Let (X,T) be a locally compact Hausdorff space.
(i) If K ⊆ X is a compact set and G ⊇ K is open, then there is a continuous f : X → [0, 1] with

compact support such that χK ≤ f ≤ χG.
(ii) T is the coarsest topology on X such that every T-continuous real-valued function with compact

support is continuous.

(f)(i) A topological space X is countably compact iff every sequence in X has a cluster point in X
(ii) If X is a countably compact topological space and 〈Fn〉n∈N is a sequence of closed sets such that⋂

i≤n Fi 6= ∅ for every n ∈ N, then
⋂

n∈N
Fn 6= ∅.

(iii) In any topological space, a relatively compact set is relatively countably compact.
(iv) Let X and Y be topological spaces and f : X → Y a continuous function. If A ⊆ X is relatively

countably compact in X, then f [A] is relatively countably compact in Y .
(v) A relatively countably compact set in R must be bounded. So if X is a topological space, A ⊆ X

is relatively countably compact and f : X → R is continuous, then f [A] is bounded.
(vi) If X and Y are topological spaces and f : X → Y is continuous, then f [A] is countably compact

whenever A ⊆ X is countably compact.

(g)(i) Let X and Y be topological spaces and φ : X×Y → R a continuous function. Define θ : X → C(Y )
by setting θ(x)(y) = φ(x, y) for x ∈ X, y ∈ Y . Then θ is continuous if we give C(Y ) the topology of uniform
convergence on compact subsets of Y .

(ii) In particular, if Y is compact then θ is continuous if we give C(Y ) its usual norm topology.
(iii) Let X be a locally compact topological space, and give C(X) the topology of uniform convergence

on compact subsets of X. Then the function (f, x) 7→ f(x) : C(X)×X → R is continuous.

(h)(i) Suppose that X is a compact space such that there are no non-trivial convergent sequences in X.
If 〈Fn〉n∈N is a non-increasing sequence of infinite closed subsets of X, then F =

⋂
n∈N

Fn is infinite.
(ii) If X is an infinite scattered compact Hausdorff space it has a non-trivial convergent sequence.
(iii) If X is an extremally disconnected Hausdorff space, it has no non-trivial convergent sequence.

(i)(i) If X and Y are compact Hausdorff spaces and f : X → Y is a continuous surjection then there is
a closed set K ⊆ X such that f [K] = Y and f↾K is irreducible.

(ii) If X and Y are compact Hausdorff spaces and f : X → Y is an irreducible continuous surjection,
then (α) if U is a π-base for the topology of Y then {f−1[U ] : U ∈ U} is a π-base for the topology of X (β)
if Y has a countable π-base so does X (γ) if x is an isolated point in X then f(x) is an isolated point in Y
(δ) if Y has no isolated points, nor does X.
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(j)(i) Let X be a non-empty compact Hausdorff space without isolated points. Then there are a closed
set F ⊆ X and a continuous surjection f : F → {0, 1}N.

(ii) If X is a non-empty compact Hausdorff space without isolated points, then #(X) ≥ c.

(iii) If X is a compact Hausdorff space which is not scattered, it has an infinite closed subset with a
countable π-base and no isolated points.

(iv) Let X be a compact Hausdorff space. Then there is a continuous surjection from X onto [0, 1] iff
X is not scattered.

(v) A Hausdorff continuous image of a scattered compact Hausdorff space is scattered.

(vi) If X is an uncountable first-countable compact Hausdorff space, it is not scattered. It follows that
there is a continuous surjection from X onto [0, 1].

(k) A locally compact Hausdorff space is Čech-complete.

(l) If X is a topological space, f : X → R is lower semi-continuous, and K ⊆ X is compact and not empty,
then there is an x0 ∈ K such that f(x0) = infx∈K f(x). Similarly, if g : X → R is upper semi-continuous,
there is an x1 ∈ K such that g(x1) = supx∈K g(x).

(m) If X is a Hausdorff space, Y is a compact space and F ⊆ X × Y is closed, then its projection
{x : (x, y) ∈ F} is a closed subset of X.

(n) If X is a locally compact topological space, Y is a topological space and f : X → Y is a continuous
open surjection, then Y is locally compact.

4A2H Lindelöf spaces (a) If X is a topological space, then a subset Y of X is Lindelöf iff for every
family G of open subsets of X covering Y there is a countable subfamily of G still covering Y .

(b)(i) A regular Lindelöf space X is normal (therefore completely regular) and paracompact.

(ii) If X is a Lindelöf space and A is a locally finite family of subsets of X then A is countable.

(c)(i) A topological space X is hereditarily Lindelöf iff for any family G of open subsets of X there is a
countable family G0 ⊆ G such that

⋃
G0 =

⋃
G.

(ii) Let X be a regular hereditarily Lindelöf space. Then X is perfectly normal.

(d) Any σ-compact topological space is Lindelöf.

4A2I Stone-Čech compactifications (a) Let X be a completely regular Hausdorff space. Then there
is a compact Hausdorff space βX, the Stone-Čech compactification of X, in which X can be embedded
as a dense subspace. If Y is another compact Hausdorff space, then every continuous function from X to Y
has a unique continuous extension to a continuous function from βX to Y .

(b) Let I be any set, and write βI for its Stone-Čech compactification when I is given its discrete
topology. Let Z be the Stone space of the Boolean algebra PI.

(i) There is a canonical homeomorphism φ : βI → Z defined by saying that φ(i)(a) = χa(i) for every
i ∈ I and a ⊆ I. We can identify βI with the set of ultrafilters on I. Under this identification, the canonical
embedding of I in βI corresponds to matching each member of I with the corresponding principal ultrafilter
on I.

(ii) C(βI) is isomorphic, as Banach lattice, to ℓ∞(I).

(iii) We have a one-to-one correspondence between filters F on I and non-empty closed sets F ⊆ βI,
got by matching F with

⋂
{â : a ∈ F}, or F with {a : a ⊆ I, F ⊆ â}, where â ⊆ βI is the open-and-closed

set corresponding to a ⊆ I.

(iv) βI is extremally disconnected.

(v) There are no non-trivial convergent sequences in βI.
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4A2J Uniform spaces Let (X,W) be a uniform space; give X the induced topology T.

(a) W is generated by a family of pseudometrics. More precisely: if 〈Wn〉n∈N is any sequence in W,
there is a pseudometric ρ on X such that (α) {(x, y) : ρ(x, y) ≤ ǫ} ∈ W for every ǫ > 0 (β) whenever n ∈ N

and ρ(x, y) < 2−n then (x, y) ∈Wn.
It follows that T is completely regular, therefore regular. T is defined by the bounded uniformly continuous

real-valued functions on X, in the sense that it is the coarsest topology on X such that these are all
continuous.

(b) If W is countably generated and T is Hausdorff, there is a metric ρ on X defining W and T.

(c) If W ∈ W and x ∈ X then x ∈ intW [{x}]. If A ⊆ X then A =
⋂

W∈W W [A].

(d) Any subset of a totally bounded set in X is totally bounded. The closure of a totally bounded set
is totally bounded.

(e) A subset of X is compact iff it is complete (for its subspace uniformity) and totally bounded. So if
X is complete, every closed totally bounded subset of X is compact, and the totally bounded sets are just
the relatively compact sets.

(f) If f : X → R is a continuous function with compact support, it is uniformly continuous.

(g)(i) If (Y,S) is a completely regular space, there is a uniformity on Y which induces S.
(ii) If (Y,S) is a compact completely regular topological space, there is exactly one uniformity on Y

which induces S; it is defined by the set of all those pseudometrics on Y which are continuous as functions
from Y × Y to R.

(iii) If (Y,S) is a compact completely regular space and V is the uniformity on Y inducing S, then any
continuous function from Y to X is uniformly continuous.

(h) The set U of uniformly continuous real-valued functions on X is a Riesz subspace of RX containing
the constant functions. If a sequence in U converges uniformly, the limit function again belongs to U .

(i) Let (Y,V) be another uniform space. If F is a Cauchy filter on X and f : X → Y is a uniformly
continuous function, then f [[F ]] is a Cauchy filter on Y .

4A2K First-countable, sequential and countably tight spaces (a) Let X be a countably tight
topological space. If 〈Fξ〉ξ<ζ is a non-decreasing family of closed subsets of X indexed by an ordinal ζ, then
E =

⋃
ξ<ζ Fξ is an Fσ set, and is closed unless cf ζ = ω.

(b) If X is countably tight, any subspace of X is countably tight. If X is compact and countably tight,
then any Hausdorff continuous image of X is countably tight.

(c) If X is a sequential space, it is countably tight.

(d) If X is a sequential space, Y is a topological space and f : X → Y is sequentially continuous, then f
is continuous.

(e) First-countable spaces are sequential.

(f) Let X be a locally compact Hausdorff space in which every singleton set is Gδ. Then X is first-
countable.

4A2L (Pseudo-)metrizable spaces

(a) Any subspace of a (pseudo-)metrizable space is (pseudo-)metrizable. A topological space is metrizable
iff it is pseudometrizable and Hausdorff.
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(b) Metrizable spaces are paracompact, therefore hereditarily metacompact.

(c) A metrizable space is perfectly normal, so every closed set is a zero set and every open set is a cozero
set (in particular, is Fσ).

(d) If X is a pseudometrizable space, it is first-countable. So X is sequential and countably tight, and
if Y is another topological space and f : X → Y is sequentially continuous, then f is continuous.

(e) Relative compactness Let X be a pseudometrizable space and A a subset of X. Then the following
are equiveridical: (α) A is relatively compact; (β) A is relatively countably compact; (γ) every sequence in
A has a subsequence with a limit in X.

(f) Compactness If X is a pseudometrizable space, it is compact iff it is countably compact iff it is
sequentially compact.

(g)(i) If (X, ρ) is a metric space, its topology has a base which is σ-metrically-discrete.
(ii) Consequently, any metrizable space has a σ-disjoint base.

(h) The product of a countable family of metrizable spaces is metrizable.

(i) Let X be a metrizable space and κ ≥ ω a cardinal. Then w(X) ≤ κ iff X has a dense subset with
cardinal at most κ.

(j) If (X, ρ) is any metric space, then the balls B(x, δ) = {y : ρ(y, x) ≤ δ} are all closed sets. In particular,
in a normed space (X, ‖ ‖), the balls B(x, δ) = {y : ‖y − x‖ ≤ δ} are closed.

4A2M Complete metric spaces (a) Baire’s theorem for complete metric spaces Every complete
metric space is a Baire space. So a non-empty complete metric space is not meager.

(b) Let 〈(Xi, ρi)〉i∈I be a countable family of complete metric spaces. Then there is a complete metric
on X =

∏
i∈I Xi which defines the product topology on X.

(c) Let (X, ρ) be a complete metric space, and E ⊆ X a Gδ set. Then there is a complete metric on E
which defines the subspace topology of E.

(d) Let (X, ρ) be a complete metric space. Then it is Čech-complete.

(e) A non-empty complete metric space without isolated points is uncountable.

4A2N Countable networks: Proposition (a) If X is a topological space with a countable network,
any subspace of X has a countable network.

(b) Let X be a space with a countable network. Then X is hereditarily Lindelöf. If it is regular, it is
perfectly normal.

(c) If X is a topological space, and 〈An〉n∈N is a sequence of subsets of X each of which has a countable
network (for its subspace topology), then A =

⋃
n∈N

An has a countable network.
(d) A continuous image of a space with a countable network has a countable network.
(e) Let 〈Xi〉i∈I be a countable family of topological spaces with countable networks, with product X.

Then X has a countable network.
(f) If X is a Hausdorff space with a countable network, there is a countable family G of open sets such

that whenever x, y are distinct points in X there are disjoint G, H ∈ G such that x ∈ G and y ∈ H.
(g) If X is a regular topological space with a countable network, it has a countable network consisting of

closed sets.
(h) A compact Hausdorff space with a countable network is second-countable.
(i) If a topological space X has a countable network, then any dense set in X includes a countable dense

set; in particular, X is separable.
(j) If a topological space X has a countable network, then C(X), with the topology of pointwise conver-

gence inherited from the product topology of RX , has a countable network.
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4A2O Second-countable spaces (a) Let (X,T) be a topological space and U a countable subbase for
T. Then T is second-countable.

(b) Any base of a second-countable space includes a countable base.

(c) A second-countable space has a countable network, so is separable and hereditarily Lindelöf.

(d) The product of a countable family of second-countable spaces is second-countable.

(e) If X is a second-countable space then C(X), with the topology of uniform convergence on compact
sets, has a countable network.

4A2P Separable metrizable spaces (a)(i) A metrizable space is second-countable iff it is separable.
(ii) A compact metrizable space is separable, so is second-countable and has a countable network.
(iii) Any base of a separable metrizable space includes a countable base, which is also a countable

network, so the space is hereditarily Lindelöf.
(iv) Any subspace of a separable metrizable space is separable and metrizable.
(v) A countable product of separable metrizable spaces is separable and metrizable.

(b) A topological space is separable and metrizable iff it is second-countable, regular and Hausdorff.

(c) A Hausdorff continuous image of a compact metrizable space is metrizable.

(d) A metrizable space is separable iff it is ccc iff it is Lindelöf.

(e) If X is a compact metrizable space, then C(X) is separable under its usual norm topology defined
from the norm ‖ ‖∞.

4A2Q Polish spaces: Proposition (a) A countable discrete space is Polish.
(b) A compact metrizable space is Polish.
(c) The product of a countable family of Polish spaces is Polish.
(d) A Gδ subset of a Polish space is Polish; in particular, a set which is either open or closed is Polish.
(e) The disjoint union of countably many Polish spaces is Polish.
(f) If X is any set and 〈Tn〉n∈N is a sequence of Polish topologies on X such that Tm ∩ Tn is Hausdorff

for all m, n ∈ N, then the topology generated by
⋃

n∈N
Tn is Polish.

(g) If X is a Polish space, it is homeomorphic to a Gδ set in a compact metrizable space.
(h) If X is a locally compact Hausdorff space, it is Polish iff it has a countable network iff it is metrizable

and σ-compact.

4A2R Order topologies Let (X,≤) be a totally ordered set and T its order topology.
(a) The set U of open intervals in X is a base for T.
(b) [x, y], [x,∞[ and ]−∞, x] are closed sets for all x, y ∈ X.
(c) T is Hausdorff, normal and countably paracompact.
(d) If A ⊆ X then A is the set of elements of X expressible as either suprema or infima of non-empty

subsets of A.
(e) A subset of X is closed iff it is order-closed.
(f) If 〈xn〉n∈N is a non-decreasing sequence in X with supremum x, then x = limn→∞ xn.
(g) A set K ⊆ X is compact iff supA and inf A are defined in X and belong to K for every non-empty

A ⊆ K.
(h) X is Dedekind complete iff [x, y] is compact for all x, y ∈ X.
(i) X is compact iff it is either empty or Dedekind complete with greatest and least elements.
(j) Any open set G ⊆ X is expressible as a union of disjoint open order-convex sets; if X is Dedekind

complete, these will be open intervals.
(k) If X is well-ordered it is locally compact.
(l) In X ×X, {(x, y) : x < y} is open and {(x, y) : x ≤ y} is closed.

Measure Theory (abridged version)
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(m) If F ⊆ X and either F is order-convex or F is compact or X is Dedekind complete and F is closed,
then the subspace topology on F is induced by the inherited order of F .

(n) If X is ccc it is hereditarily Lindelöf, therefore perfectly normal.
(o) If Y is another totally ordered set with its order topology, an order-preserving function from X to Y

is continuous iff it is order-continuous.

4A2S Order topologies on ordinals (a) Let ζ be an ordinal with its order topology.
(i) ζ is locally compact; all the sets [0, η] = ]−∞, η + 1[, for η < ζ, are open and compact. If ζ is a

successor ordinal, it is compact.
(ii) For any A ⊆ ζ, A = {supB : ∅ 6= B ⊆ A, supB < ζ}.
(iii) If ξ ≤ ζ, then the subspace topology on ξ induced by the order topology of ζ is the order topology

of ξ.

(b) Give ω1 its order topology.
(i) ω1 is first-countable.
(ii) Singleton subsets of ω1 are zero sets.
(iii) If f : ω1 → R is continuous, there is a ξ < ω1 such that f(η) = f(ξ) for every η ≥ ξ.

4A2T Topologies on spaces of subsets Let X be a topological space, and C = CX the family of closed
subsets of X.

(a)(i) The Vietoris topology on C is the topology generated by sets of the forms

{F : F ∈ C, F ∩G 6= ∅}, {F : F ∈ C, F ⊆ G}

where G ⊆ X is open.
(ii) The Fell topology on C is the topology generated by sets of the forms

{F : F ∈ C, F ∩G 6= ∅}, {F : F ∈ C, F ∩K = ∅}

where G ⊆ X is open and K ⊆ X is compact. If X is Hausdorff then the Fell topology is coarser than the
Vietoris topology. If X is compact and Hausdorff the two topologies agree.

(iii) Suppose X is metrizable, and that ρ is a metric on X inducing its topology. For a non-empty
subset A of X, write ρ(x,A) = infy∈A ρ(x, y) for every x ∈ X. Note that x 7→ ρ(x,A) : X → R is 1-Lipschitz.

For E, F ∈ C \ {∅}, set

ρ̃(E,F ) = min(1,max(supx∈E ρ(x, F ), supy∈F ρ(y,E))).

ρ̃ is a metric on C \ {∅}, the Hausdorff metric. ρ̃({x}, {y}) = min(1, ρ(x, y)) for all x, y ∈ X.

(b)(i) The Fell topology is T1.
(ii) The map (E,F ) 7→ E ∪ F : C × C → C is continuous for the Fell topology.
(iii) C is compact in the Fell topology.

(c) If X is Hausdorff, x 7→ {x} is continuous for the Fell topology on C.

(d) If X and another topological space Y are regular, and CY , CX×Y are the families of closed subsets of
Y and X × Y respectively, then (E,F ) 7→ E ×F : CX ×CY → CX×Y is continuous when each space is given
its Fell topology.

(e) Suppose that X is locally compact and Hausdorff.
(i) The set {(E,F ) : E, F ∈ C, E ⊆ F} is closed in C × C for the product topology defined from the

Fell topology on C. {(x, F ) : x ∈ F} is closed in X × C when C is given its Fell topology.
(ii) The Fell topology on C is Hausdorff. It follows that if 〈Fi〉i∈I is a family in C, and F is an ultrafilter

on I, then we have a well-defined limit limi→F Fi defined in C for the Fell topology.
(iii) If L ⊆ C is compact, then

⋃
L is a closed subset of X.

(f) Suppose that X is metrizable, locally compact and separable. Then the Fell topology on C is metriz-
able.

D.H.Fremlin
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(g) Suppose that X is metrizable, and that ρ is a metric inducing the topology of X; let ρ̃ be the
corresponding Hausdorff metric on C \ {∅}.

(i) The topology Sρ̃ defined by ρ̃ is finer than the Fell topology SF on C \ {∅}.
(ii) If X is compact, then Sρ̃ and SF are the same, and both are compact.

4A2U Old friends (a) R, with its usual topology, is metrizable and separable, so is second-countable.
Every subset of R is separable; every dense subset of R has a countable subset which is still dense.

(b) NN is Polish in its usual topology, so has a countable network, and is hereditarily Lindelöf. Moreover,
it is homeomorphic to [0, 1] \Q and R \Q.

(c) The map x 7→ 2
3

∑∞

j=0 3
−jx(j) is a homeomorphism between {0, 1}N and the Cantor set C ⊆ [0, 1].

(d) If I is any set, then the map A 7→ χA : PI → {0, 1}I is a homeomorphism. So PI is zero-dimensional,
compact and Hausdorff. If I is countable, then PI is metrizable, therefore Polish.

(e) Give the space C([0,∞[) the topology Tc of uniform convergence on compact sets.

(i) C([0,∞[) is a Polish locally convex linear topological space.

(ii) Suppose that A ⊆ C([0,∞[) is such that {f(0) : f ∈ A} is bounded and for every a ≥ 0 and ǫ > 0
there is a δ > 0 such that |f(s)− f(t)| ≤ ǫ whenever f ∈ A, s, t ∈ [0, a] and |s− t| ≤ δ. Then A is relatively
compact for Tc.

Version of 7.1.17

4A3 Topological σ-algebras

I devote a section to some σ-algebras which can be defined on topological spaces. While ‘measures’ will
not be mentioned here, the manipulation of these σ-algebras is an essential part of the technique of measure
theory, and I will give proofs and exercises as if this were part of the main work. I look at Borel σ-algebras
(4A3A-4A3J), Baire σ-algebras (4A3K-4A3P), spaces of càdlàg functions (4A3Q), Baire-property algebras
(4A3R, 4A3S) and cylindrical σ-algebras on linear spaces (4A3U-4A3W).

4A3A Borel sets If (X,T) is a topological space, the Borel σ-algebra of X is the σ-algebra B(X) of
subsets of X generated by T. Its elements are the Borel sets of X. If (Y,S) is another topological space
with Borel σ-algebra B(Y ), a function f : X → Y is Borel measurable if f−1[H] ∈ B(X) for every H ∈ S,
and is a Borel isomorphism if it is a bijection and B(Y ) = {F : F ⊆ Y, f−1[F ] ∈ B(X)}.

4A3B (Σ,T)-measurable functions (a) Let X and Y be sets, with σ-algebras Σ ⊆ PX and T ⊆ PY .
A function f : X → Y is (Σ,T)-measurable if f−1[F ] ∈ Σ for every F ∈ T.

(b) If Σ, T and Υ are σ-algebras of subsets of X, Y and Z respectively, and f : X → Y is (Σ,T)-
measurable while g : Y → Z is (T,Υ)-measurable, then gf : X → Z is (Σ,Υ)-measurable.

(c) Let 〈Xi〉i∈I be a family of sets with product X, Y another set, and f : X → Y a function. If T ⊆ PY ,

Σi ⊆ PXi are σ-algebras for each i, then f is (T,
⊗̂

i∈IΣi)-measurable iff πif : Y → Xi is (T,Σi)-measurable
for every i, where πi : X → Xi is the coordinate map.

4A3C Elementary facts (a) If X is a topological space and Y is a subspace of X, then B(Y ) is just
the subspace σ-algebra {E ∩ Y : E ∈ B(X)}.

(b) If X is a set, Σ is a σ-algebra of subsets of X, (Y,S) is a topological space and f : X → Y is a
function, then f is (Σ,B(Y ))-measurable iff f−1[H] ∈ Σ for every H ∈ S.

c© 2007 D. H. Fremlin
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(c) If X and Y are topological spaces, and f : X → Y is a function, then f is Borel measurable iff it is
(B(X),B(Y ))-measurable. So if X, Y and Z are topological spaces and f : X → Y , g : Y → Z are Borel
measurable functions, then gf : X → Z is Borel measurable.

(d) If X and Y are topological spaces and f : X → Y is continuous, it is Borel measurable.

(e) IfX is a topological space and f : X → [−∞,∞] is lower semi-continuous, then it is Borel measurable.

(f) If 〈Xi〉i∈I is a family of topological spaces with product X, then B(X) ⊇
⊗̂

i∈IB(Xi).

(g) Let X be a topological space.

(i) The algebra A of subsets generated by the open sets is precisely the family of sets expressible as a
disjoint union

⋃
i≤nGi ∩ Fi where every Gi is open and every Fi is closed.

(ii) B(X) is the smallest family E ⊇ A such that
⋃

n∈N
En ∈ E for every non-decreasing sequence

〈En〉n∈N in E and
⋂

n∈N
En ∈ E for every non-increasing sequence 〈En〉n∈N in E .

4A3D Hereditarily Lindelöf spaces (a) Suppose that X is a hereditarily Lindelöf space and U is a
subbase for the topology of X. Then B(X) is the σ-algebra of subsets of X generated by U .

(b) Let X be a set, Σ a σ-algebra of subsets of X, Y a hereditarily Lindelöf space, U a subbase for the
topology of Y , and f : X → Y a function. If f−1[U ] ∈ Σ for every U ∈ U , then f is (Σ,B(Y ))-measurable.

(c) Let 〈Xi〉i∈I be a family of topological spaces with product X. Suppose that X is hereditarily Lindelöf.

(i) B(X) =
⊗̂

i∈IB(Xi).

(ii) If Y is another topological space, then a function f : Y → X is Borel measurable iff πif : Y → Xi

is Borel measurable for every i ∈ I, where πi : X → Xi is the canonical map.

4A3F Spaces with countable networks (a) Let X be a topological space with a countable network.
Then #(B(X)) ≤ c.

(b) #(B(NN)) = c.

4A3G Second-countable spaces (a) Suppose that X is a second-countable space and Y is any topo-
logical space. Then B(X × Y ) = B(X)⊗̂B(Y ).

(b) If X is any topological space, Y is a T0 second-countable space, and f : X → Y is Borel measurable,
then (the graph of) f is a Borel set in X × Y .

4A3H Borel sets in Polish spaces: Proposition Let (X,T) be a Polish space and E ⊆ X a Borel
set. Then there is a Polish topology S on X, including T, for which E is open.

4A3I Corollary If (X,T) is a Polish space and 〈En〉n∈N is a sequence of Borel subsets of X, then there
is a zero-dimensional Polish topology S on X, including T, for which every En is open-and-closed.

4A3J Borel sets in ω1: Proposition A set E ⊆ ω1 is a Borel set iff either E or its complement includes
a closed cofinal set.

4A3K Baire sets (a) Definition Let X be a topological space. The Baire σ-algebra Ba(X) of X is
the σ-algebra generated by the zero sets. Members of Ba(X) are called Baire sets.

(b) For any topological space X, Ba(X) ⊆ B(X). If T is perfectly normal then Ba(X) = B(X).
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(c) Let X and Y be topological spaces, with Baire σ-algebras Ba(X), Ba(Y ) respectively. If f : X → Y
is continuous, it is (Ba(X),Ba(Y ))-measurable.

(d) In particular, if X is a subspace of Y , then E ∩X ∈ Ba(X) whenever E ∈ Ba(Y ). F ∩X is a zero
set in X for every zero set F ⊆ Y .

(e) If X is a topological space and Y is a separable metrizable space, a function f : X → Y is Baire
measurable if f−1[H] ∈ Ba(X) for every open H ⊆ Y . f is Baire measurable iff it is (Ba(X),B(Y ))-
measurable iff it is (Ba(X),Ba(Y ))-measurable.

4A3L Lemma Let (X,T) be a topological space. Then Ba(X) is just the smallest σ-algebra of subsets
of X with respect to which every continuous real-valued function on X is measurable.

4A3M Product spaces Let 〈Xi〉i∈I be a family of topological spaces with product X.

(a) Ba(X) ⊇
⊗̂

i∈IBa(Xi).

(b) Suppose that X is ccc. Then every Baire subset of X is determined by coordinates in a countable
set.

4A3N Products of separable metrizable spaces: Proposition Let 〈Xi〉i∈I be a family of separable
metrizable spaces, with product X.

(a) Ba(X) =
⊗̂

i∈IBa(Xi) =
⊗̂

i∈IB(Xi).
(b) Ba(X) is the family of those Borel subsets of X which are determined by coordinates in countable

sets.
(c) A set Z ⊆ X is a zero set iff it is closed and determined by coordinates in a countable set.
(d) If Y is a dense subset of X, then the Baire σ-algebra Ba(Y ) of Y is just the subspace σ-algebra

Ba(X)Y induced by Ba(X).
(e) If Y is a set, T is a σ-algebra of subsets of Y , and f : Y → X is a function, then f is (T,Ba(X))-

measurable iff πif : Y → Xi is (T,B(Xi))-measurable for every i ∈ I, where πi(x) = x(i) for x ∈ X and
i ∈ I.

4A3O Compact spaces (a) Let (X,T) be a topological space, U a subbase for T, and A the algebra of
subsets of X generated by U . If H ⊆ X is open and K ⊆ H is compact, there is an open E ∈ A such that
K ⊆ E ⊆ H.

(b) Let (X,T) be a compact space and U a subbase for T. Then every open-and-closed subset of X
belongs to the algebra of subsets of X generated by U .

(c) Let (X,T) be a compact space and U a subbase for T. Then Ba(X) is included in the σ-algebra of
subsets of X generated by U .

(d) In a compact Hausdorff zero-dimensional space the Baire σ-algebra is the σ-algebra generated by the
open-and-closed sets.

(e) Let 〈Xi〉i∈I be a family of compact Hausdorff spaces with product X. Then Ba(X) =
⊗̂

i∈IBa(Xi).

(f) In particular, for any set I, Ba({0, 1}I) is the σ-algebra generated by sets of the form {x : x(i) = 1}
as i runs over I.

4A3P Proposition The Baire σ-algebra Ba(ω1) of ω1 is the countable-cocountable algebra.

4A3Q Càdlàg functions Let X be a Polish space, and Cdlg the set of càdlàg functions from [0,∞[ to

X, with its topology of pointwise convergence inherited from X [0,∞[.
(a) Ba(Cdlg) is the subspace σ-algebra induced by Ba(X [0,∞[).
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(b) (Cdlg,Ba(Cdlg)) is a standard Borel space.
(c)(i) For any t ≥ 0, let Bat(Cdlg) be the σ-algebra of subsets of Cdlg generated by the functions ω 7→ ω(s)

for s ≤ t. Then (ω, s) 7→ ω(s) : Cdlg × [0, t] → X is Bat(Cdlg)⊗̂B([0, t])-measurable.

(ii) (ω, t) 7→ ω(t) : Cdlg × [0,∞[ → X is Ba(Cdlg)⊗̂B([0,∞[)-measurable.
(d) The set C([0,∞[ ;X) of continuous functions from [0,∞[ to X belongs to Ba(Cdlg).

4A3R Baire property Let X be a topological space, and M the ideal of meager subsets of X. A subset
X has the Baire property if it is expressible in the form G△M where G ⊆ X is open andM ∈ M; A ⊆ X

has the Baire property if there is an open set G ⊆ X such that G△A is meager. The family B̂(X) of all

such sets is the Baire-property algebra of X. The quotient algebra B̂(X)/M is the category algebra
of X.

4A3S Proposition Let X be a topological space.
(a) Let A ⊆ X be any set.
(i) There is a largest open set G ⊆ X such that A ∩G is meager.
(ii) H = X \G is the smallest regular open subset of X such that A \H is meager; H ⊆ A.
(iii) H is in itself a Baire space.

(iv) If A ∈ B̂(X), H△A is meager.

(v) If X is a Baire space and A ∈ B̂(X), then H is the largest open subset of X such that H \ A is
meager.

(b)(i) B̂(X) is a σ-algebra of subsets of X including B(X).

(ii) B̂(X) = {G△M : G ⊆ X is a regular open set, M ∈ M}.
(c) If X has a countable network, its category algebra has a countable order-dense set.

*4A3T Lemma Let X and Y be sets, Σ a σ-algebra of subsets of X, T a σ-algebra of subsets of Y and
J a σ-ideal of T. Suppose that the quotient Boolean algebra T/J has a countable order-dense set.

(a) {x : x ∈ X, W [{x}] ∩A ∈ J } belongs to Σ for any W ∈ Σ⊗̂T and A ⊆ Y .
(b) For every W ∈ Σ⊗̂T there are sequences 〈En〉n∈N in Σ, 〈Vn〉n∈N in T such that (W△W1)[{x}] ∈ J

for every x ∈ X, where W1 =
⋃

n∈N
En × Vn.

4A3U Cylindrical σ-algebras: Definition Let X be a linear topological space. Then the cylindrical
σ-algebra of X is the smallest σ-algebra Σ of subsets of X such that every continuous linear functional on
X is Σ-measurable.

4A3V Proposition Let X be a linear topological space and Ts = Ts(X,X
∗) its weak topology. Then

the cylindrical σ-algebra of X is just the Baire σ-algebra of (X,Ts).

4A3W Proposition Let (X,T) be a separable metrizable locally convex linear topological space, and
Ts = Ts(X,X

∗) its weak topology. Then the cylindrical σ-algebra of X is also both the Baire σ-algebra and
the Borel σ-algebra for both T and Ts.

Version of 19.6.13

4A4 Locally convex spaces

As in §3A5, all the ideas, and nearly all the results as stated below, are applicable to complex linear
spaces; but for the purposes of this volume the real case will almost always be sufficient, and for definiteness
you may take it that the scalar field is R, except in 4A4J-4A4K. (Complex Hilbert spaces arise naturally in
§445.)

4A4A Linear spaces (a) If U is a linear space, a Hamel basis for U is a maximal linearly independent
family 〈ui〉i∈I in U , so that every member of U is uniquely expressible as

∑
i∈J αiui for some finite J ⊆ I

and 〈αi〉i∈J ∈ (R \ {0})J .

c© 2002 D. H. Fremlin
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(b) Every linear space has a Hamel basis.

(c) If U is a linear space, I write U ′ for the algebraic dual of U , the linear space of all linear functionals
from U to R.

4A4B Linear topological spaces (a) If U is a linear topological space, and V is a linear subspace
of U , then V , with the linear structure and topology induced by those of U , is again a linear topological
space.

(b) If 〈Ui〉i∈I is any family of linear topological spaces, then U =
∏

i∈I Ui, with the product linear space

structure and topology, is again a linear topological space. RX , with its usual linear and topological
structures, is a linear topological space, for any set X.

(c) If U and V are linear topological spaces, the set of continuous linear operators from U to V is a linear
subspace of the space L(U ;V ) of all linear operators from U to V . If U , V and W are linear topological
spaces, and T : U → V and S : V → W are continuous linear operators, then ST : U → W is a continuous
linear operator.

(d) If U is a linear topological space, I will write U∗ for the dual of U , the space of all continuous linear
functionals from U to R. U∗ is a linear subspace of U ′. The weak topology on U , Ts(U,U

∗), is that defined
from the seminorms u 7→ |f(u)| as f runs over U∗. The weak* topology on U∗, Ts(U

∗, U), is that defined
from the seminorms f 7→ |f(u)| as u runs over U . If U and V are linear topological spaces, T : U → V is a
continuous linear operator, and g ∈ V ∗, then gT ∈ U∗; T is (Ts(U,U

∗),Ts(V, V
∗))-continuous.

(e) If U =
∏

i∈I Ui is a product of linear topological spaces, then every element of U∗ is of the form
u 7→

∑
i∈J fi(u(i)) where J ⊆ I is finite and fi ∈ U∗

i for every i ∈ J . Consequently the weak topology on
U is the product of the weak topologies on the Ui.

(f) Let U be a linear topological space. For A ⊆ U write A◦ for its polar set {f : f ∈ U∗, f(x) ≤ 1 for
every x ∈ A} in U∗. If G is a neighbourhood of 0 in U , then G◦ is a Ts(U

∗, U)-compact subset of U∗.

(g) Let U be a linear topological space. If D ⊆ U is non-empty and closed under addition and multipli-
cation by rationals, D is a linear subspace of U . If A ⊆ U is separable, then the closed linear subspace
generated by A is separable.

(h) If 〈ui〉i∈I is an indexed family in a Hausdorff linear topological space U and u ∈ U , we say that
u =

∑
i∈I ui if for every neighbourhood G of u there is a finite set J ⊆ I such that

∑
i∈K ui ∈ G whenever

K ⊆ I is finite and J ⊆ K.
If 〈vi〉i∈I is another family with the same index set, and v =

∑
i∈I vi is defined, then

∑
i∈I(ui + vi) is

defined and equal to u+ v.
If now V is another Hausdorff linear topological space and T : U → V is a continuous linear operator,∑
i∈I Tui = T (

∑
i∈I ui) if the right-hand-side is defined.

(i) If U is a Hausdorff linear topological space, then any finite-dimensional linear subspace of U is closed.

(j) If U is a first-countable Hausdorff linear topological space which (regarded as a linear topological
space) is complete, then there is a metric ρ on U , defining its topology, under which U is complete.

4A4C Locally convex spaces (a) A linear topological space is locally convex if the convex open sets
form a base for the topology.

(b) A linear topological space is locally convex iff its topology can be defined by a family of seminorms.

(c) Let U be a linear space and τ a seminorm on U . Nτ = {u : τ(u) = 0} is a linear subspace of X. On
the quotient space U/Nτ we have a norm defined by setting ‖u•‖ = τ(u) for every u ∈ U .
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(d) Let U be a locally convex linear topological space, and T the family of continuous seminorms on U .
For each τ ∈ T, write Nτ = {u : τ(u) = 0} and πτ for the canonical map from U to Uτ = U/Nτ . Give each
Uτ its norm, and set Gτ = {π−1

τ [H] : H ⊆ Uτ is open}. Then
⋃

τ∈T Gτ is a base for the topology of X closed
under finite unions.

(e) A linear subspace of a locally convex linear topological space is locally convex. The product of any
family of locally convex linear topological spaces is locally convex.

(f) If U is a metrizable locally convex linear topological space, its topology can be defined by a sequence
of seminorms.

(g) Let U be a linear space and V a linear subspace of U ′. Let Ts(V,U) be the topology on V generated
by the seminorms f 7→ |f(u)| as u runs over U , and let φ : V → R be a Ts(V,U)-continuous linear functional.
Then there is a u ∈ U such that φ(f) = f(u) for every f ∈ V .

(h) Grothendieck’s theorem If U is a complete locally convex Hausdorff linear topological space, and
φ is a linear functional on the dual U∗ such that φ↾G◦ is Ts(U

∗, U)-continuous for every neighbourhood G
of 0 in U , then φ is of the form f 7→ f(u) for some u ∈ U .

4A4D Hahn-Banach theorem (a) Let U be a linear space and θ : U → [0,∞[ a seminorm.
(i) If V ⊆ U is a linear subspace and g : V → R is a linear functional such that |g(v)| ≤ θ(v) for every

v ∈ V , then there is a linear functional f : U → R, extending g, such that |f(u)| ≤ θ(u) for every u ∈ U .
(ii) If u0 ∈ U then there is a linear functional f : U → R such that f(u0) = θ(u0) and |f(u)| ≤ θ(u) for

every u ∈ U .

(b) Let U be a linear topological space and G, H two disjoint convex sets in U , of which one has non-
empty interior. Then there are a non-zero f ∈ U∗ and an α ∈ R such that f(u) ≤ α ≤ f(v) for every u ∈ G,
v ∈ H, so that f(u) < α for every u ∈ intG and α < f(v) for every u ∈ intH.

4A4E The Hahn-Banach theorem in locally convex spaces Let U be a locally convex linear
topological space.

(a) If V ⊆ U is a linear subspace, then every member of V ∗ extends to a member of U∗. Ts(V, V
∗) is

the subspace topology on V induced by Ts(U,U
∗).

(b) Let C ⊆ U be a non-empty closed convex set. If u ∈ U then u ∈ C iff f(u) ≤ supv∈C f(v) for every
f ∈ U∗ iff f(u) ≥ infv∈C f(v) for every f ∈ U∗.

If V ⊆ U is a closed linear subspace and u ∈ U \ V there is an f ∈ U∗ such that f(u) 6= 0 and f(v) = 0
for every v ∈ V .

(c) If U is Hausdorff, U∗ separates its points.

(d) If u ∈ U belongs to the Ts(U,U
∗)-closure of a convex set C ⊆ U , it belongs to the closure of C. In

particular, if C is closed, it is Ts(U,U
∗)-closed.

(e) If C, C ′ ⊆ U are disjoint non-empty closed convex sets, of which one is compact, there is an f ∈ U∗

such that supu∈C f(u) < infu∈C′ f(u).

(f) Let V be a linear subspace of U ′. Let K ⊆ U be a non-empty Ts(U, V )-compact convex set, and
φ0 : V → R a linear functional such that φ0(f) ≤ supu∈K f(u) for every f ∈ V . Then there is a u0 ∈ K
such that φ0(f) = f(u0) for every f ∈ V .

(g) The Bipolar Theorem Let A ⊆ U ′ be a non-empty set. Set A◦ = {u : u ∈ U , f(u) ≤ 1 for every
f ∈ A}. If g ∈ U ′ is such that g(u) ≤ 1 for every u ∈ A◦, then g belongs to the Ts(U

′, U)-closed convex hull
of A ∪ {0}.
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(h) Let W be a linear subspace of U ′ separating the points of U . Then W is Ts(U
′, U)-dense in U ′.

4A4F The Mackey topology Let U be a linear space and V a linear subspace of U ′. The Mackey
topology Tk(V,U) on V is the topology of uniform convergence on convex Ts(U, V )-compact subsets of
U . Every Tk(V,U)-continuous linear functional on V is of the form f 7→ f(u) for some u ∈ U . So every
Tk(V,U)-closed convex set is Ts(V,U)-closed.

4A4G Extreme points (a) Let X be a real linear space, and C ⊆ X a convex set. An element of C is
an extreme point of C if it is not expressible as a convex combination of two other members of C.

(b) The Krěın-Mil’man theorem Let U be a Hausdorff locally convex linear topological space and
K ⊆ U a compact convex set. Then K is the closed convex hull of the set of its extreme points.

(c) Let U and V be Hausdorff locally convex linear topological spaces, T : U → V a continuous linear
operator, K ⊆ X a compact convex set and v any extreme point of T [K] ⊆ V . Then there is an extreme
point u of K such that Tu = v.

4A4H Proposition Let I be a set, W a closed linear subspace of RI , U a linear topological space and
V a Hausdorff linear topological space. Let K ⊆ U be a compact set and T : U × RI → V a continuous
linear operator. Then T [K ×W ] is closed.

4A4I Normed spaces (a) Two norms ‖ ‖, ‖ ‖′ on a linear space U give rise to the same topology iff
they are equivalent in the sense that, for some M ≥ 0,

‖x‖ ≤M‖x‖′, ‖x‖′ ≤M‖x‖

for every x ∈ U .

(b) If U and V are normed spaces, T : U → V is a linear operator and gT : U → R is continuous for
every g ∈ V ∗, then T is a bounded operator.

(c) If U is any normed space, its dual U∗, under its usual norm, is a Banach space.

(d) If U is a separable normed space, its dual U∗ is isometrically isomorphic to a closed linear subspace
of ℓ∞.

(e) Let U be a Banach space. Suppose that 〈ui〉i∈I is a family in U such that γ =
∑

i∈I ‖ui‖ <∞.
(i)

∑
i∈I ui is defined.

(ii) Now if 〈Ij〉j∈J is any partition of I, wj =
∑

i∈Ij
ui is defined for every j, and

∑
j∈J wj is defined

and equal to
∑

i∈I ui.

(f) Let U be a normed space. For u ∈ U , define û ∈ U∗∗ = (U∗)∗ by setting û(f) = f(u) for every
f ∈ U∗. Then {û : u ∈ U, ‖u‖ ≤ 1} is weak*-dense in {φ : φ ∈ U∗∗, ‖φ‖ = 1}.

4A4J Inner product spaces (a) Let U be an inner product space over R

C
. An orthonormal family

in U is a family 〈ei〉i∈I in U such that (ei|ej) = 0 if i 6= j, 1 if i = j. An orthonormal basis in U is an
orthonormal family 〈ei〉i∈I in U such that the closed linear subspace of U generated by {ei : i ∈ I} is U
itself.

(b) If U , V are inner product spaces over R and T : U → V is an isometry such that T (0) = 0, then
(Tu|Tv) = (u|v) for all u, v ∈ U and T is linear.

(c) If U , V are inner product spaces over C and T : U → V is a linear operator such that ‖Tu‖ = ‖u‖
for every u ∈ U , then (Tu|Tv) = (u|v) for all u, v ∈ U .
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(d) If U is an inner product space over R

C
, a linear operator T : U → U is self-adjoint if (Tu|v) = (u|Tv)

for all u, v ∈ U .

(e) If U is a finite-dimensional inner product space over R, it is isomorphic to Euclidean space Rr, where
r = dimU . In particular, any finite-dimensional inner product space is a Hilbert space.

(f) If U is an inner product space over R

C
and V ⊆ U is a linear subspace of U , then V ⊥ = {x : x ∈

U, (x|y) = 0 for every y ∈ V } is a linear subspace of U , and ‖x+ y‖2 = ‖x‖2 + ‖y‖2 for x ∈ V , y ∈ V ⊥. If
V is complete (in particular, if V is finite-dimensional), then U = V ⊕ V ⊥.

(g) If U is an inner product space over R and v1, v2 ∈ U are such that ‖v1‖ = ‖v2‖ = 1, there is a linear
operator T : U → U such that Tv1 = v2 and ‖Tu‖ = ‖u‖ and ‖Tu− u‖ ≤ ‖v1 − v2‖‖u‖ for every u ∈ U .

(h) Let U be an inner product space over R

C
, and 〈ui〉i∈I a countable family in U . Then there is a

countable orthonormal family 〈vj〉j∈J in U such that {vj : j ∈ J} and {ui : i ∈ I} span the same linear
subspace of U .

(i) Let U be an inner product space over R

C
, and 〈ei〉i∈I an orthonormal family in U . Then

∑
i∈I |(u|ei)|

2 ≤
‖u‖2 for every u ∈ U .

(j) Let U be an inner product space over R

C
, and C ⊆ U a convex set. Then there is at most one point

u ∈ C such that ‖u‖ ≤ ‖v‖ for every v ∈ C.
For such a u, ‖u‖2 ≤ Re(u|v) for every v ∈ C.

4A4K Hilbert spaces (a) If U is a real or complex Hilbert space, its unit ball is compact in the weak
topology Ts(U,U

∗); any bounded set is relatively compact for Ts(U,U
∗).

(b) If U is a real or complex Hilbert space, any norm-bounded sequence in U has a weakly convergent
subsequence.

(c) If U is a real or complex Hilbert space and 〈ui〉i∈I is any orthonormal family in U , then it can be
extended to an orthonormal basis. In particular, U has an orthonormal basis.

4A4L Compact operators (a) Let U , V and W be Banach spaces. If T ∈ B(U ;V ) and S ∈ B(V ;W )
and either S or T is a compact operator, then ST is compact.

(b) If U is a Banach space, T ∈ B(U ;U) is a compact linear operator and γ 6= 0 then {u : Tu = γu} is
finite-dimensional.

4A4M Self-adjoint compact operators If U is a Hilbert space and T : U → U is a self-adjoint
compact linear operator, then T [U ] is included in the closed linear span of {Tv : v is an eigenvector of T}.

4A4N Max-flow Min-cut Theorem Let (V,E, γ) be a (finite) transportation network, that is,

V is a finite set of ‘vertices’,
E ⊆ {(v, v′) : v, v′ ∈ V, v 6= v′} is a set of (directed) ‘edges’,
γ : E → [0,∞[ is a function;

we regard a member e = (v, v′) of E as ‘starting’ at v and ‘ending’ at v′, and γ(e) is the ‘capacity’ of the
edge e. Suppose that v0, v1 ∈ V are distinct vertices such that no edge ends at v0 and no edge starts at v1.
Then we have a ‘flow’ φ : E → [0,∞[ and a ‘cut’ X ⊆ E such that

(i) for every v ∈ V \ {v0, v1},
∑

e∈E,e starts at v φ(e) =
∑

e∈E,e ends at v φ(e),

(ii) φ(e) ≤ γ(e) for every e ∈ E,
(iii) there is no path from v0 to v1 using only edges in E \X,
(iv)

∑
e∈E,e starts at v0

φ(e) =
∑

e∈E,e ends at v1
φ(e) =

∑
e∈X γ(e).
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4A5 Topological groups

For Chapter 44 we need a variety of facts about topological groups. Most are essentially elementary, and
all the non-trivial ideas are covered by at least one of Császár 78 and Hewitt & Ross 63. In 4A5A-4A5C
and 4A5I I give some simple definitions concerning groups and group actions. Topological groups, properly
speaking, appear in 4A5D. Their simplest properties are in 4A5E-4A5G. I introduce ‘right’ and ‘bilateral’
uniformities in 4A5H; the latter are the more interesting (4A5M-4A5O), but the former are also important.
4A5J-4A5L deal with quotient spaces, including spaces of cosets of non-normal subgroups. I conclude with
notes on metrizable groups (4A5Q-4A5S).

4A5A Notation If X is a group, x0 ∈ X, and A, B ⊆ X I write

x0A = {x0x : x ∈ A}, Ax0 = {xx0 : x ∈ A},

AB = {xy : x ∈ A, y ∈ B}, A−1 = {x−1 : x ∈ A}.

A is symmetric if A = A−1.

4A5B Group actions (a) If X is a group and Z is a set, an action of X on Z is a function (x, z) 7→
x•z : X × Z → Z such that

(xy)•z = x•(y•z) for all x, y ∈ X and z ∈ Z,

e•z = z for every z ∈ Z

where e is the identity of X.
In this context I may say that ‘X acts on Z’, taking the operation • for granted.

(b) An action • of a group X on a set Z is transitive if for every w, z ∈ Z there is an x ∈ X such that
x•w = z.

(c) If • is an action of a group X on a set Z, I write x•A = {x•z : z ∈ A} whenever x ∈ X and A ⊆ Z.

(d) If • is an action of a group X on a set Z, then z 7→ x•z : Z → Z is a permutation for every x ∈ X.
So if Z is a topological space and z 7→ x•z is continuous for every x, it is a homeomorphism for every x.

(e) An action • of a group X on a set Z is faithful if whenever x, y ∈ X are distinct there is a z ∈ Z
such that x•z 6= y•z.

(f) If • is an action of a group X on a set Z, then Yz = {x : x ∈ X, x•z = z} is a subgroup of X (the
stabilizer of z) for every z ∈ Z. If • is transitive, then Yw and Yz are conjugate subgroups for all w, z ∈ Z.

(g) If • is an action of a group X on a set Z, then sets of the form {a•z : a ∈ X} are called orbits of the
action; they are the equivalence classes under the equivalence relation ∼, where z ∼ z′ if there is an a ∈ X
such that z′ = a•z.

4A5C Examples Let X be any group.

(a) Write

x•ly = xy, x•ry = yx−1, x•cy = xyx−1

for x, y ∈ X. These are all actions of X on itself, the left, right and conjugacy actions.

(b) If A ⊆ X, we have an action of X on the set {yA : y ∈ X} of left cosets of A defined by setting
x•(yA) = xyA for x, y ∈ X.

c© 2000 D. H. Fremlin
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(c)(i) Let • be an action of a group X on a set Z. If f is any function defined on a subset of Z, and x ∈ X,
write x•f for the function defined by saying that (x•f)(z) = f(x−1

•z) whenever z ∈ Z and x−1
•z ∈ dom f .

It is easy to check that this defines an action of X on the class of all functions with domains included in Z.

x•(f + g) = (x•f) + (x•g), x•(f × g) = (x•f)× (x•g), x•(f/g) = (x•f)/(x•g)

whenever x ∈ X and f , g are real-valued functions with domains included in Z.

(ii) In (i), if X = Z, we have corresponding actions •l, •r and •c of X on the class of functions with
domains included in X. These are the left, right and conjugacy shift actions.

Note that

x•lχA = χ(xA), x•rχA = χ(Ax−1), x•cχA = χ(xAx−1)

whenever A ⊆ X and x ∈ X. In this context, the following idea is sometimes useful. If f is a function with

domain included in X, set
↔

f (y) = f(y−1) when y ∈ X and y−1 ∈ dom f . Then

(
↔

f )↔ = f , x•l

↔

f = (x•rf)
↔, x•r

↔

f = (x•lf)
↔, x•c

↔

f = (x•cf)
↔

for any such f and any x ∈ X.

(d) If • is an action of a group X on a set Z, Y ⊆ X is a subgroup of X, and W ⊆ Z is Y -invariant in
the sense that y•w ∈W whenever y ∈ Y and w ∈W , then •↾Y ×W is an action of Y on W . In the context
of (c-i) above, this means that if V is any set of functions with domains included in W such that y•f ∈ V
whenever y ∈ Y and f ∈ V , then we have an action of Y on V .

4A5D Definitions (a) A topological group is a group X endowed with a topology such that the
operations (x, y) 7→ xy : X ×X → X and x 7→ x−1 : X → X are continuous.

(b) A Polish group is a topological group in which the topology is Polish.

4A5E Elementary facts Let X be any topological group.

(a) For any x ∈ X, the functions y 7→ xy, y 7→ yx and y 7→ y−1 are all homeomorphisms from X to
itself.

(b) The maps (x, y) 7→ x−1y, (x, y) 7→ xy−1 and (x, y) 7→ xyx−1 from X ×X to X are continuous.

(c) {G : G is open, e ∈ G, G−1 = G} is a base of neighbourhoods of the identity e of X.

(d) If G ⊆ X is an open set, then AG and GA are open for any set A ⊆ X.

(e) If F ⊆ X is closed and x ∈ X \ F , there is a neighbourhood U of e such that UxUU ∩ FUU = ∅.

(f) If K ⊆ X is compact and F ⊆ X is closed then KF and FK are closed. If K, L ⊆ X are compact
so is KL.

(g) If there is any compact set K ⊆ X such that intK is non-empty, then X is locally compact.

(h) If K ⊆ X is compact and F is a downwards-directed family of closed subsets of X with intersection
F0, then KF0 =

⋂
F∈F KF and F0K =

⋂
F∈F FK.

(i) If K ⊆ X is compact and G ⊆ X is open, then W = {(x, y) : xKy ⊆ G} is open in X ×X.
It follows that {x : xK ⊆ G}, {x : Kx ⊆ G} and {x : xKx−1 ⊆ G} are open in X.

(j) If X is Hausdorff, K ⊆ X is compact and U is a neighbourhood of e, there is a neighbourhood V of
e such that xy ∈ U whenever x, y ∈ K and yx ∈ V ; that is, y−1zy ∈ U whenever z ∈ V and y ∈ K.

(k) Any open subgroup of X is also closed.
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(l) If X is locally compact, it has an open subgroup which is σ-compact.

(m) If Y is a subgroup of X, its closure Y is a subgroup of X.

(n) Let X be a group and V a family of subsets of X. Then there is a topology of X under which X is
a topological group and V is a base of neighbourhoods of the identity iff

(α) V is a filter base;
(β) for every V ∈ V there is a W ∈ V such that W 2 ⊆ V ;
(γ) for every V ∈ V there is a W ∈ V such that W−1 ⊆ V ;
(δ) for every V ∈ V and z ∈ X there is a W ∈ V such that zWz−1 ⊆ V .

In this case, there is exactly one such topology, and it is Hausdorff iff
⋂
V = {e}.

4A5F Proposition (a) Let (X,T) and (Y,S) be topological groups. If φ : X → Y is a group homomor-
phism which is continuous at the identity of X, it is continuous.

(b) Let X be a group and S, T two topologies on X both making X a topological group. If every
S-neighbourhood of the identity is a T-neighbourhood of the identity, then S ⊆ T.

4A5G Proposition If 〈Xi〉i∈I is any family of topological groups, then
∏

i∈I Xi, with the product
topology and the product group structure, is again a topological group.

4A5H The uniformities of a topological group Let (X,T) be a topological group. Write U for the
set of open neighbourhoods of the identity e of X.

(a) For U ∈ U , set WU = {(x, y) : xy−1 ∈ U} ⊆ X ×X. The family {WU : U ∈ U} is a filter base, and
the filter on X ×X which it generates is a uniformity on X, the right uniformity of X. This uniformity
induces the topology T. It follows that T is completely regular, therefore regular.

(b) For U ∈ U , set W̃U = {(x, y) : xy−1 ∈ U, x−1y ∈ U} ⊆ X ×X. The family {W̃U : U ∈ U} is a filter
base, and the filter on X × X which it generates is a uniformity on X, the bilateral uniformity of X.
This uniformity induces the topology T.

(c) x 7→ x−1 is uniformly continuous for the bilateral uniformity.

(d) If X and Y are topological groups and φ : X → Y is a continuous homomorphism, then φ is uniformly
continuous for the bilateral uniformities.

4A5I Definitions If X is a topological group and Z a topological space, an action of X on Z is
‘continuous’ or ‘Borel measurable’ if it is continuous, or Borel measurable, when regarded as a function from
X × Z to Z.

4A5J Quotients under group actions, and quotient groups: Theorem (a) Let X be a topological
space, Y a topological group, and • a continuous action of Y on X. Let Z be the set of orbits of the action,
and for x ∈ X write π(x) ∈ Z for the orbit containing x.

(i) We have a topology on Z defined by saying that V ⊆ Z is open iff π−1[V ] is open in X. The
canonical map π : X → Z is continuous and open.

(ii)(α) If Y is compact and X is Hausdorff, then Z is Hausdorff.
(β) If X is locally compact then Z is locally compact.

(b) Let X be a topological group, Y a subgroup of X, and Z the set of left cosets of Y in X. Set
π(x) = xY for x ∈ X.

(i) We have a topology on Z defined by saying that V ⊆ Z is open iff π−1[V ] is open in X. The
canonical map π : X → Z is continuous and open.

(ii)(α) Z is Hausdorff iff Y is closed.
(β) If X is locally compact, so is Z.
(γ) If X is locally compact and Polish and Y is closed, then Z is Polish.
(δ) If X is locally compact and σ-compact and Y is closed and Z is metrizable, then Z is Polish.

(iii) We have a continuous action of X on Z defined by saying that x•π(x′) = π(xx′) for any x, x′ ∈ X.
(iv) If Y is a normal subgroup of X, then the group operation on Z renders it a topological group.
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4A5K Proposition Let X be a topological group with identity e.

(a) Y = {e} is a closed normal subgroup of X.

(b) Writing π : X → X/Y for the canonical map,

(i) a subset of X is open iff it is the inverse image of an open subset of X/Y ,

(ii) a subset of X is closed iff it is the inverse image of a closed subset of X/Y ,

(iii) π[G] is a regular open set in X/Y for every regular open set G ⊆ X,

(iv) π[F ] is nowhere dense in X/Y for every nowhere dense set F ⊆ X,

(v) π−1[V ] is nowhere dense in X for every nowhere dense V ⊆ X/Y .

4A5L Theorem Let X be a topological group and Y a normal subgroup of X. Let π : X → X/Y be
the canonical homomorphism.

(a) If X ′ is another topological group and φ : X → X ′ a continuous homomorphism with kernel including
Y , then we have a continuous homomorphism ψ : X/Y → X ′ defined by the formula ψπ = φ; ψ is injective
iff Y is the kernel of φ.

(b) Suppose that K1, K2 are two subgroups of X/Y such that K2 ⊳ K1. Set Y1 = π−1[K1] and
Y2 = π−1[K2]. Then Y2 ⊳ Y1 and Y1/Y2 and K1/K2 are isomorphic as topological groups.

4A5M Proposition Let X be a topological group.

(a) Let Y be any subgroup of X. If X is given its bilateral uniformity, then the subspace uniformity on
Y is the bilateral uniformity of Y .

(b) If X is locally compact it is complete under its right uniformity. If X is complete under its right
uniformity it is complete under its bilateral uniformity.

(c) Suppose that X is Hausdorff and that Y is a subgroup of X which is locally compact in its subspace
topology. Then Y is closed in X.

4A5N Theorem Let X be a Hausdorff topological group. Then its completion X̂ under its bilateral
uniformity can be endowed (in exactly one way) with a group structure rendering it a Hausdorff topological

group in which the natural embedding of X in X̂ represents X as a dense subgroup of X̂. If X has

a neighbourhood of the identity which is totally bounded for the bilateral uniformity, then X̂ is locally
compact.

4A5O Proposition Let X be a topological group.

(a) If A ⊆ X, then the following are equiveridical: (i) A is totally bounded for the bilateral uniformity of
X; (ii) for every neighbourhood U of the identity there is a finite set I ⊆ X such that A ⊆ IU ∩ UI.

(b) If A, B ⊆ X are totally bounded for the bilateral uniformity of X, so are A ∪ B, A−1 and AB. In
particular,

⋃
i≤n xiB is totally bounded for any x0, . . . , xn ∈ X.

(c) If A ⊆ X is totally bounded for the bilateral uniformity, and U is any neighbourhood of the identity,
then {y : xyx−1 ∈ U for every x ∈ A} is a neighbourhood of the identity.

(d) If X is the product of a family 〈Xi〉i∈I of topological groups, a subset A of X is totally bounded for
the bilateral uniformity of X iff it is included in a product

∏
i∈I Ai where Ai ⊆ Xi is totally bounded for

the bilateral uniformity of Xi for every i ∈ I.

(e) If X is locally compact, a subset of X is totally bounded for the bilateral uniformity iff it is relatively
compact.

4A5P Lemma Let X be a locally compact Hausdorff topological group. Take f ∈ Ck(X).

(a) Let K ⊆ X be a compact set. Then for any ǫ > 0 there is a neighbourhood W of the identity e of X
such that |f(xay)− f(xby)| ≤ ǫ whenever x ∈ K, y ∈ X and ab−1 ∈W .

(b) For any x0 ∈ X, there is a non-negative f∗ ∈ Ck(X) such that for every ǫ > 0 there is an open set G
containing x0 such that |f(xy)− f(x0y)| ≤ ǫf∗(y) for every x ∈ G and y ∈ X.
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4A5Q Metrizable groups: Proposition Let (X,T) be a topological group. Then the following are
equiveridical:

(i) X is metrizable;
(ii) the identity e of X has a countable neighbourhood base;
(iii) there is a metric ρ on X, inducing the topology T, which is right-translation-invariant, that is,

ρ(x1, x2) = ρ(x1y, x2y) for all x1, x2, y ∈ X;
(iv) there is a right-translation-invariant metric on X which induces the right uniformity of X;
(v) the bilateral uniformity of X is metrizable.

4A5R Corollary If X is a locally compact topological group and {e} is a Gδ set in X, then X is
metrizable.

4A5S Lemma Let X be a σ-compact locally compact Hausdorff topological group and 〈Un〉n∈N any
sequence of neighbourhoods of the identity in X. Then X has a compact normal subgroup Y ⊆

⋂
n∈N

Un

such that Z = X/Y is Polish.

*4A5T Theorem A compact Hausdorff topological group is dyadic.

Version of 8.12.10

4A6 Banach algebras

I give results which are needed for Chapter 44. Those down to 4A6K should be in any introductory text
on normed algebras; 4A6L-4A6O, as expressed here, are a little more specialized. As with normed spaces
or linear topological spaces, Banach algebras may be defined over either R or C. In §445 we need complex
Banach algebras, but in §446 I think the ideas are clearer in the context of real Banach algebras. Accordingly,
as in §2A4, I express as much as possible of the theory in terms applicable equally to either, speaking of

‘normed algebras’ or ‘Banach algebras’ without qualification, and using the symbol R

C
to represent the field

of scalars. Since (at least, if you keep to the path indicated here) the ideas are independent of which field
we work with, you will have no difficulty in applying the arguments given in Folland 95 or Hewitt &

Ross 63 for the complex case to the real case. In 4A6B and 4A6I-4A6K, however, we have results which
apply only to ‘complex’ Banach algebras, in which the underlying field is taken to be C.

4A6A Definition (a) A normed algebra is a normed space U together with a multiplication, a binary
operator × on U , such that

u× (v × w) = (u× v)× w,

u× (v + w) = (u× v) + (u× w), (u+ v)× w = (u× w) + (v × w),

(αu)× v = u× (αv) = α(u× v),

‖u× v‖ ≤ ‖u‖‖v‖

for all u, v, w ∈ U and α ∈ R

C
. A normed algebra is commutative if its multiplication is commutative.

(b) A Banach algebra is a normed algebra which is a Banach space. A unital Banach algebra is a
Banach algebra with a multiplicative identity e such that ‖e‖ = 1.

In a unital Banach algebra I will always use the letter e for the identity.

4A6B Stone-Weierstrass Theorem: fourth form Let X be a locally compact Hausdorff space, and
C0 = C0(X;C) the complex Banach algebra of continuous functions f : X → C such that {x : |f(x)| ≥ ǫ}
is compact for every ǫ > 0. Let A ⊆ C0 be such that

A is a linear subspace of C0,

f × g ∈ A for every f , g ∈ A,
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the complex conjugate f̄ of f belongs to A for every f ∈ A,

for every x ∈ X there is an f ∈ A such that f(x) 6= 0,

whenever x, y are distinct points of X there is an f ∈ A such that f(x) 6= f(y).

Then A is ‖ ‖∞-dense in C0.

4A6C Proposition If U is any Banach space other than {0}, then the space B(U ;U) of bounded linear
operators from U to itself is a unital Banach algebra.

4A6D Proposition Any normed algebra U can be embedded as a subalgebra of a unital Banach algebra
V , in such a way that if U is commutative so is V .

4A6E Proposition Let U be a unital Banach algebra and W ⊆ U a closed proper ideal. Then U/W ,
with the quotient linear structure, ring structure and norm, is a unital Banach algebra.

4A6F Proposition If U is a Banach algebra and φ : U → R

C
is a multiplicative linear functional, then

|φ(u)| ≤ ‖u‖ for every u ∈ U .

4A6G Definition Let U be a normed algebra and u ∈ U .

(a) For any u ∈ U , limn→∞ ‖un‖1/n is defined and equal to infn≥1 ‖u
n‖1/n.

(b) This common value is the spectral radius of u.

4A6H Theorem If U is a unital Banach algebra, then the set R of invertible elements is open, and
u 7→ u−1 is a continuous function from R to itself. If v ∈ U and ‖v − e‖ < 1, then v ∈ R and ‖v−1 − e‖ ≤

‖v−e‖

1−‖v−e‖
.

4A6I Theorem Let U be a complex unital Banach algebra and u ∈ U . Write r for the spectral radius
of u.

(a) If ζ ∈ C and |ζ| > r then ζe− u is invertible.
(b) There is a ζ such that |ζ| = r and ζe− u is not invertible.

4A6J Theorem Let U be a commutative complex unital Banach algebra, and u ∈ U . Then for any
ζ ∈ C the following are equiveridical:

(i) there is a non-zero multiplicative linear functional φ : U → C such that φ(u) = ζ;
(ii) ζe− u is not invertible.

4A6K Corollary Let U be a commutative complex Banach algebra and u ∈ U . Then its spectral radius
r(u) is max{|φ(u)| : φ is a multiplicative linear functional on U}.

4A6L Exponentiation Let U be a unital Banach algebra. For any u ∈ U ,

exp(u) =
∑

k∈N

1

k!
uk

is defined in U .

4A6M Lemma Let U be a unital Banach algebra.
(a) If u, v ∈ U and max(‖u‖, ‖v‖) ≤ γ then ‖ exp(u) − exp(v) − u + v‖ ≤ ‖u − v‖(exp γ − 1). So if

max(‖u‖, ‖v‖) ≤ 2
3 and exp(u) = exp(v) then u = v.

(b) If ‖u− e‖ ≤ 1
6 then there is a v such that exp(v) = u and ‖v‖ ≤ 2‖u− e‖.

(c) If u, v ∈ U and uv = vu then exp(u+ v) = exp(u) exp(v).
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4A6N Lemma If U is a unital Banach algebra, u ∈ U and ‖un − e‖ ≤ 1
6 for every n ∈ N, then u = e.

4A6O Proposition Let U be a normed algebra, and U∗, U∗∗ its dual and bidual as a normed space.
For a bounded linear operator T : U → U let T ′ : U∗ → U∗ be the adjoint of T and T ′′ : U∗∗ → U∗∗ the
adjoint of T ′.

(a) We have bilinear maps, all of norm at most 1,

(f, x) 7→ f ◦x : U∗ × U → U∗,

(φ, f) 7→ φ◦f : U∗∗ × U∗ → U∗,

(φ, ψ) 7→ φ◦ψ : U∗∗ × U∗∗ → U∗∗

defined by the formulae

(f ◦x)(y) = f(xy),

(φ◦f)(x) = φ(f ◦x),

(φ◦ψ)(f) = φ(ψ ◦f)

for all x, y ∈ U , f ∈ U∗ and φ, ψ ∈ U∗∗.
(b)(i) Suppose that S : U → U is a bounded linear operator such that S(xy) = (Sx)y for all x, y ∈ U .

Then S′′(φ◦ψ) = (S′′φ)◦ψ for all φ, ψ ∈ U∗∗.
(ii) Suppose that T : U → U is a bounded linear operator such that T (xy) = x(Ty) for all x, y ∈ U .

Then T ′′(φ◦ψ) = φ◦(T ′′ψ) for all φ, ψ ∈ U∗∗.

Version of 13.3.22

4A7 Algebraic topology

A fundamental theorem about the topology of Euclidean space is used in §472. (8.7.22) no idea what I
was doing here

4A7A Definitions Suppose that X and Y are topological spaces, and f : X → Y , g : X → Y are
continuous functions.

(a) A homotopy from f to g is a continuous function F : X × [0, 1] → Y such that F (x, 0) = f(x) and
F (x, 1) = g(x) for every x ∈ X.

(b) f and g are homotopic if there is a homotopy from f to g.

4A7B Theorem If r ≥ 1 and Sr−1 = ∂B(0.1) is the unit sphere {x : ‖x‖ = 1} in Rr, then the identity
function from Sr−1 to itself is not homotopic to a constant function.

4A7C Corollary If r ≥ 1, B(0, 1) is the unit ball in Rr and h : B(0, 1) → B(0, 1) is a continuous
function such that h[Sr−1] = Sr−1, then h[B(0, 1)] = B(0, 1).

472G Theorem (Bagnara Gennaioli Leccese & Luongo p22) Let r ≥ 1 be an integer, B ⊆ Rr a
closed balls, ρE the Euclidean metric on Rr, and ρ a metric on B inducing the usual topology on B. Then
there is a (ρ, ρE)-Lipschitz surjection from B onto itself.

472H Corollary Let r ≥ 1 be an integer, ρ a metric on Rr inducing the usual topology on Rr, and µ
(ρ)
Hr

the corresponding r-dimensional Hausdorff measure on Rr. Then µ
(ρ)
Hr is strictly positive.

Version of 10.1.17

c© 2022 D. H. Fremlin
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Concordance for Appendix

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this volume, and which have since been changed.

4A2Jf Uniformities on completely regular spaces 4A2Jf, referred to in the 2009 edition of Volume
5, has been moved to 4A2Jg.

4A3Q Baire property and cylindrical σ-algebras 4A3Q-4A3T and 4A3V, referred to in the 2008
and 2015 editions of Volume 5, are now 4A3R-4A3U and 4A3W.

4A4B Bounded sets in linear topological spaces 4A4Bg, referred to in the 2008 edition of Volume
5, has been moved to 3A5Nb.

c© 2017 D. H. Fremlin
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