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Appendix to Volume 4

Useful facts

As is to be expected, we are coming in this volume to depend on a wide variety of more or less recondite
information, and only an exceptionally broad mathematical education will have covered it all. While all
the principal ideas are fully expressed in standard textbooks, there are many minor points where I need
to develop variations on the familiar formulations. A little under half the material, by word-count, is in
general topology (§4A2), where I begin with some pages of definitions. I follow this with a section on
Borel and Baire σ-algebras, Baire-property algebras and cylindrical algebras (§4A3), worked out a little
more thoroughly than the rest of the material. The other sections are on set theory (§4A1), linear analysis
(§4A4), topological groups (§4A5) and Banach algebras (§4A6).

Version of 27.1.13

4A1 Set theory

For this volume, we need fragments from four topics in set theory and one in Boolean algebra. The most
important are the theory of closed cofinal sets and stationary sets (4A1B-4A1C) and infinitary combinatorics
(4A1D-4A1H). Rather more specialized, we have the theory of normal (ultra)filters (4A1J-4A1L) and a
mention of Ostaszewski’s ♣ (4A1M-4A1N), used for an example in §439. I conclude with a simple result on
the cardinality of σ-algebras (4A1O).

4A1A Cardinals again (a) An infinite cardinal κ is regular if it is not the supremum of fewer than κ
smaller cardinals, that is, if cfκ = κ. Any infinite successor cardinal is regular. (Kunen 80, I.10.37; Just
& Weese 96, 11.18; Jech 78, p. 40; Levy 79, IV.3.11.) In particular, ω1 = ω+ is regular.

(b) If ζ is an ordinal and X is a set then I say that a family 〈xξ〉ξ<ζ in X runs over X with cofinal
repetitions if {ξ : ξ < ζ, xξ = x} is cofinal with ζ for every x ∈ X. Now if X is any non-empty set and κ
is a cardinal greater than or equal to max(ω,#(X)), there is a family 〈xξ〉ξ<κ running over X with cofinal
repetitions. PPP By 3A1Ca, there is a surjection ξ 7→ (xξ, αξ) : κ→ X × κ. QQQ

(c) The cardinal c (i) Every non-trivial interval in R has cardinal c. (Enderton 77, p. 131.)
(ii) If #(A) ≤ c and D is countable, then #(AD) ≤ c. (#(AD) ≤ #(PN)N) = #(P(N×N)) = #(PN).)
(iii) cf(2κ) > κ for every infinite cardinal κ; in particular, cf c > ω. (Kunen 80, I.10.40; Just &

Weese 96, 11.24; Jech 78, p. 46; Jech 03, 5.11; Levy 79, V.5.2.)

(d) The Continuum Hypothesis This is the statement ‘c = ω1’; it is neither provable nor disprovable
from the ordinary axioms of mathematics, including the Axiom of Choice. As such, it belongs to Volume 5
rather than to the present volume. But I do at one point refer to one of its immediate consequences. If the
continuum hypothesis is true, then there is a well-ordering 4 of [0, 1] such that ([0, 1],4) has order type ω1

(because there is a bijection f : [0, 1] → ω1, and we can set s 4 t if f(s) ≤ f(t)).

4A1B Closed cofinal sets Let α be an ordinal.

(a) Note that a subset F of α is closed in the order topology iff supA ∈ F whenever A ⊆ F is non-empty
and supA < α. (4A2S(a-ii).)
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2 Appendix 4A1Bb

(b) If α has uncountable cofinality, and A ⊆ α has supremum α, then A′ = {ξ : 0 < ξ < α, ξ = sup(A∩ξ)}
is a closed cofinal set in α. PPP (α) For any η < α we can choose inductively a strictly increasing sequence
〈ξn〉n∈N in A starting from ξ0 ≥ η; now ξ = supn∈N ξn ∈ A′ and ξ ≥ η; this shows that A′ is cofinal with α.
(β) If ∅ 6= B ⊆ A′ and supB = ξ < α, then A ∩ ξ ⊇ A ∩ η for every η ∈ B, so

ξ = supB = supη∈B sup(A ∩ η) = sup(
⋃

η∈B A ∩ η) ≤ supA ∩ ξ ≤ ξ

and ξ ∈ A′. QQQ
In particular, taking A = α = ω1, the set of non-zero countable limit ordinals is a closed cofinal set in ω1.

(c)(i) If 〈Fξ〉ξ<α is a family of subsets of α, the diagonal intersection of 〈Fξ〉ξ<α is {ξ : ξ < α, ξ ∈ Fη

for every η < ξ}.
(ii) If κ is a regular uncountable cardinal and 〈Fξ〉ξ<κ is any family of closed cofinal sets in κ, its

diagonal intersection F is again a closed cofinal set in κ. PPP F =
⋂

ξ<κ(Fξ ∪ [0, ξ]) is certainly closed. To
see that it is cofinal, argue as follows. Start from any ζ0 < κ. Given ζn < κ, set

ζn+1 = supξ<ζn(min(Fξ \ ζn) + 1);

this is defined because every Fξ is cofinal with κ, and is less than κ because cfκ = κ. At the end of the
induction, set ζ∗ = supn∈N ζn; then ζ0 ≤ ζ∗ and ζ∗ < κ because cfκ > ω. If ξ, η < ζ∗, there is an n ∈ N
such that max(ξ, η) < ζn, in which case Fξ ∩ (ζ∗ \ η) ⊇ Fξ ∩ ζn+1 \ ζn is non-empty. As η is arbitrary and
Fξ is closed, ζ∗ ∈ Fξ; as ξ is arbitrary, ζ∗ ∈ F ; as ζ0 is arbitrary, F is cofinal. QQQ

(iii) In particular, if f : κ → κ is any function, then {ξ : ξ < κ, f(η) < ξ for every η < ξ} is a closed
cofinal set in κ, being the diagonal intersection of 〈κ \ (f(ξ) + 1)〉ξ<κ.

(d) If α has uncountable cofinality, F is a non-empty family of closed cofinal sets in α and #(F) < cfα,
then

⋂
F is a closed cofinal set in α. PPP Being the intersection of closed sets it is surely closed. Set

λ = max(ω,#(F)) and let 〈Fξ〉ξ<λ run over F with cofinal repetitions. Starting from any ζ0 < α, we can
choose 〈ζξ〉1≤ξ≤λ such that

– if ξ < λ then ζξ ≤ ζξ+1 ∈ Fξ;
– if ξ ≤ λ is a non-zero limit ordinal, ζξ = supη<ξ ζη.

(Because λ < cfα, ζξ < α for every ξ.) Now ζ0 ≤ ζλ < α, and if F ∈ F , ζ < ζλ there is a ξ < λ such
that F = Fξ and ζ ≤ ζξ, in which case ζ ≤ ζξ+1 ≤ ζλ and ζξ+1 ∈ F . This shows that either ζλ ∈ F or
ζλ = sup(F ∩ ζλ), in which case again ζλ ∈ F . As F is arbitrary, ζλ ∈

⋂
F ; as ζ0 is arbitrary,

⋂
F is cofinal.

QQQ
In particular, the intersection of any sequence of closed cofinal sets in ω1 is again a closed cofinal set in

ω1.

4A1C Stationary sets (a) Let κ be a cardinal. A subset of κ is stationary in κ if it meets every
closed cofinal set in κ; otherwise it is non-stationary.

(b) If κ is a cardinal of uncountable cofinality, the intersection of any stationary subset of κ with a closed
cofinal set in κ is again a stationary set (because the intersection of two closed cofinal sets is a closed cofinal
set); the family of non-stationary subsets of κ is a σ-ideal, the non-stationary ideal of κ. (Kunen 80,
II.6.9; Just & Weese 97, Lemma 21.11; Jech 03, p. 93; Levy 79, IV.4.35.)

(c) Pressing-Down Lemma (Fodor’s theorem) If κ is a regular uncountable cardinal, A ⊆ κ is
stationary and f : A → κ is such that f(ξ) < ξ for every ξ ∈ A, then there is a stationary set B ⊆ A such
that f is constant on B. (Kunen 80, II.6.15; Just & Weese 97, Theorem 21.2; Jech 78, Theorem 22;
Jech 03, 8.7; Levy 79, IV.4.40.)

(d) There are disjoint stationary sets A, B ⊆ ω1. (This is easily deduced from 419G or 438Cd, and is
also a special case of very much stronger results. See 541Ya in Volume 5, or Kunen 80, II.6.12; Just &

Weese 97, Corollary 23.4; Jech 78, p. 59; Jech 03, 8.8; Levy 79, IV.4.48.)

4A1D ∆-systems (a) A family 〈Iξ〉ξ∈A of sets is a ∆-system with root I if Iξ ∩ Iη = I for all distinct
ξ, η ∈ A.
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4A1I Set theory 3

(b) ∆-system Lemma If #(A) is a regular uncountable cardinal and 〈Iξ〉ξ∈A is any family of finite
sets, there is a set D ⊆ A such that #(D) = #(A) and 〈Iξ〉ξ∈D is a ∆-system. (Kunen 80, II.1.6; Just &

Weese 97, Theorem 16.3. For the present volume we need only the case #(A) = ω1, which is treated in
Jech 78, p. 225 and Jech 03, 9.18.)

4A1E Free sets (a) Let A be a set with cardinal at least ω2, and 〈Jξ〉ξ∈A a family of countable sets.
Then there are distinct ξ, η ∈ A such that ξ /∈ Jη and η /∈ Jξ. PPP Let K ⊆ A be a set with cardinal ω1, and
set L = K ∪

⋃
i∈K Ji. Then L has cardinal ω1, so there is a ξ ∈ A \L. Now there is an η ∈ K \ Jξ, and this

pair (ξ, η) serves. QQQ

(b) If 〈Kξ〉ξ∈A is a disjoint family of sets indexed by an uncountable subset A of ω1, and 〈Jη〉η<ω1
is a

family of countable sets, there is an uncountable B ⊆ A such that Kξ∩Jη = ∅ whenever η, ξ ∈ B and η < ξ.
PPP Choose 〈ζξ〉ξ<ω1

inductively in such a way that ζξ ∈ A and Kζξ ∩ Jζη = ∅, ζξ > ζη for every η < ξ. Set
B = {ζξ : ξ < ω1}. QQQ

4A1F Selecting subsequences (a) Let 〈Ki〉i∈I be a countable family of sets such that
⋂

i∈J Ki is
infinite for every finite subset J of I. Then there is an infinite set K such that K \ Ki is finite and
Ki \ K is infinite for every i ∈ I. PPP We can suppose that I ⊆ N. Choose 〈kn〉n∈N inductively such that
kn ∈

⋂
i∈I,i≤nKi \ {ki : i < n} for every n ∈ N, and set K = {k2n : n ∈ N}. QQQ

Consequently there is a family 〈Kξ〉ξ<ω1
of infinite subsets of N such that Kξ \ Kη is finite if η ≤ ξ,

infinite if ξ < η. (Choose the Kξ inductively.)

(b) Let 〈Ji〉i∈I be a countable family of subsets of [N]ω such that Ji ∩ PK 6= ∅ for every K ∈ [N]ω and
i ∈ I. Then there is an infinite K ⊆ N such that for every i ∈ I there is a J ∈ Ji such that K \ J is finite.
PPP The case I = ∅ is trivial; suppose that 〈in〉n∈N runs over I. Choose Kn, kn inductively, for n ∈ N, by
taking

K0 = N, kn ∈ Kn, Kn+1 ⊆ Kn \ {kn}, Kn+1 ∈ Jin

for every n; set K = {kn : n ∈ N}. QQQ

4A1G Ramsey’s theorem If n ∈ N, K is finite and h : [N]n → K is any function, there is an infinite
I ⊆ N such that h is constant on [I]n. (Bollobás 79, p. 105, Theorem 3; Just & Weese 97, 15.3; Jech
78, 29.1; Jech 03, 9.1; Levy 79, IX.3.7. For the present volume we need only the case n = #(K) = 2.)

4A1H The Marriage Lemma again In 449L it will be useful to have an infinitary version of the
Marriage Lemma available.

Proposition Let X and Y be sets, and R ⊆ X × Y a set such that R[{x}] is finite for every x ∈ X and
#(R[I]) ≥ #(I) for every finite set I ⊆ X. Then there is an injective function f : X → Y such that
(x, f(x)) ∈ R for every x ∈ X.

proof For each finite J ⊆ X there is an injective function fJ : J → Y such that fJ ⊆ R (identifying fJ with
its graph), by the ordinary Marriage Lemma (3A1K) applied to R ∩ (J × R[J ]). Let F be any ultrafilter
on [X]<ω containing {J : I ⊆ J ∈ [X]<ω} for every I ∈ [X]<ω; then for each x ∈ X there must be an
f(x) ∈ R[{x}] such that {J : fJ(x) = f(x)} ∈ F , because R[{x}] is finite. Now f ⊆ R is a function from
X to Y and must be injective, because for any x, x′ ∈ X there is a J ∈ [X]<ω such that f and fJ agree on
{x, x′}.

4A1I Filters (a) Let X be a non-empty set. If E ⊆ PX is non-empty and has the finite intersection
property,

F = {A : A ⊆ X, A ⊇
⋂

E ′ for some non-empty finite E ′ ⊆ E}

is the smallest filter on X including E , the filter generated by E .
If E ⊆ PX is non-empty and downwards-directed, then it has the finite intersection property iff it does

not contain ∅; in this case we say that E is a filter base; F = {A : A ⊆ X, A ⊇ E for some E ∈ E}, and E
is a base for the filter F .

In general, if E is a family of subsets of X, then there is a filter on X including E iff E has the finite
intersection property; in this case, there is an ultrafilter on X including E (2A1O).
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4 Appendix 4A1Ib

(b) If κ is a cardinal and F is a filter then F is κ-complete if
⋂
E ∈ F whenever E ⊆ F and 0 < #(E) < κ.

Every filter is ω-complete.

(c) A filter F on a regular uncountable cardinal κ is normal if (α) κ\ξ ∈ F for every ξ < κ (β) whenever
〈Fξ〉ξ<κ is a family in F , its diagonal intersection belongs to F .

4A1J Lemma A normal filter F on a regular uncountable cardinal κ is κ-complete.

proof If λ < κ and 〈Fξ〉ξ<λ is a family in F , set Fξ = κ for λ ≤ ξ < κ, and let F be the diagonal intersection
of 〈Fξ〉ξ<κ; then

⋂
ξ<λ Fξ ⊇ F \ λ belongs to F .

4A1K Theorem Let X be a set and F a non-principal ω1-complete ultrafilter on X. Let κ be the least
cardinal of any non-empty set E ⊆ F such that

⋂
E /∈ F . Then κ is a regular uncountable cardinal, F is

κ-complete, and there is a function g : X → κ such that g[[F ]] is a normal ultrafilter on κ.

proof (a) By the definition of κ, F is κ-complete. Because F is ω1-complete, κ > ω. Let H be the set of
all functions h : X → κ such that h−1[κ \ ξ] ∈ F for every ξ < κ. Then H is not empty. PPP Let 〈Eξ〉ξ<κ be
a family in F such that E =

⋂
ξ<κEξ /∈ F . Because F is an ultrafilter, X \ E ∈ F . Set h(x) = 0 if x ∈ E,

h(x) = min{ξ : x /∈ Eξ} if x ∈ X \ E; then

h−1[κ \ ξ] ⊇ (X \ E) ∩
⋂

η<ξ Eη ∈ F

for every ξ < κ, because F is κ-complete, so h ∈ H. QQQ

(b) For h, h′ ∈ H, say that h ≺ h′ if {x : h(x) < h′(x)} ∈ F . Then there is a g ∈ H such that h 6≺ g for
any h ∈ H. PPP??? Otherwise, there is a sequence 〈hn〉n∈N in H such that hn+1 ≺ hn for every n ∈ N. In this
case En = {x : hn+1(x) < hn(x)} ∈ F for every n. Because F is ω1-complete, there is an x ∈

⋂
n∈NEn; but

now 〈hn(x)〉n∈N is a strictly decreasing sequence of ordinals, which is impossible. XXXQQQ

(c) I should check that κ is regular. PPP If 〈αξ〉ξ<λ is any family in κ with λ < κ, then g−1[κ \αξ] ∈ F for
every ξ, so (because F is κ-complete)

g−1[κ \ supξ<λ αξ] =
⋂

ξ<λ g
−1[κ \ αξ] ∈ F ,

and supξ<λ αξ 6= κ. QQQ

(d) The image filter g[[F ]] is an ultrafilter on κ, by 2A1N. Because g ∈ H, g−1[κ\ξ] ∈ F and κ\ξ ∈ g[[F ]]
for any ξ < κ. ??? Suppose, if possible, that g[[F ]] is not normal. Then there is a family 〈Aξ〉ξ<κ in g[[F ]]
such that its diagonal intersection A does not belong to g[[F ]], that is, g−1[A] /∈ F and X \ g−1[A] ∈ F .
Define h : X → κ by setting

h(x) = 0 if g(x) ∈ A,

= min{η : η < g(x), g(x) /∈ Aη} if g(x) /∈ A.

Then

h−1[κ \ ξ] ⊇ (X \ g−1[A]) ∩
⋂

η<ξ g
−1[Aη] ∈ F

for every ξ < κ. Thus h ∈ H. But also h(x) < g(x) for every x ∈ X \ g−1[A], so h ≺ g, contrary to the
choice of g. XXX

Thus g[[F ]] is a normal filter, and the theorem is proved.

4A1L Theorem Let κ be a regular uncountable cardinal, and F a normal ultrafilter on κ. If S ⊆ [κ]<ω,
there is a set F ∈ F such that, for each n ∈ N, [F ]n is either a subset of S or disjoint from S.

proof (a) For each n ∈ N there is an Fn ∈ F such that either [Fn]n ⊆ S or [Fn]n ∩ S = ∅. PPP Induce on n.
If n = 0 we can take Fn = κ, because [κ]0 = {∅}. For the inductive step to n + 1, set Sξ = {I : I ∈ [κ]<ω,
I ∪ {ξ} ∈ S} for each ξ < κ. By the inductive hypothesis, there is for each ξ < κ a set Eξ ∈ F such that
either [Eξ]n ⊆ Sξ or [Eξ]n ∩ Sξ = ∅. Let E be the diagonal intersection of 〈Eξ〉ξ<κ, so that E ∈ F .

Suppose that A = {ξ : [Eξ]n ⊆ Sξ} belongs to F . Then E ∩ A ∈ F . If I ∈ [E ∩ A]n+1, set ξ = min I.
Then I \{ξ} ⊆ Eξ, so that I \{ξ} ∈ Sξ and I ∈ S. Thus [E∩A]n+1 ⊆ S. Similarly, if A /∈ F , then E \A ∈ F
and [E \A]n+1 ∩ S = ∅. Thus we can take one of E ∩A, E \A for Fn+1, and the induction continues. QQQ

(b) At the end of the induction, take F =
⋂

n∈N Fn; this serves.

Measure Theory



4A1O Set theory 5

4A1M Ostaszewski’s ♣ This is the statement

Let Ω be the family of non-zero countable limit ordinals. Then there is a family 〈θξ(n)〉ξ∈Ω,n∈N

such that (α) for each ξ ∈ Ω, 〈θξ(n)〉n∈N is a strictly increasing sequence with supremum ξ (β)
for any uncountable A ⊆ ω1 there is a ξ ∈ Ω such that θξ(n) ∈ A for every n ∈ N.

This is an immediate consequence of Jensen’s ♦ (Just & Weese 97, Exercise 22.9), which is itself a
consequence of Gödel’s Axiom of Constructibility (Kunen 80, §II.7; Just & Weese 97, §22; Jech 78,
§22; Jech 03, 13.21).

4A1N Lemma Assume ♣. Then there is a family 〈Cξ〉ξ<ω1
of sets such that (i) Cξ ⊆ ξ for every ξ < ω1

(ii) Cξ ∩ η is finite whenever η < ξ < ω1 (iii) for any uncountable sets A, B ⊆ ω1 there is a ξ < ω1 such that
A ∩ Cξ and B ∩ Cξ are both infinite.

proof (a) Let 〈θξ(n)〉ξ∈Ω,n∈N be a family as in 4A1M. Let f : ω1 → [ω1]2 be a surjection (3A1Cd). For
ξ ∈ Ω, set

Cξ =
⋃

i∈N f(θξ(i+ 1)) ∩ ξ \ θξ(i).

Then Cξ ⊆ ξ, and if η < ξ there is some n ∈ N such that θξ(n) ≥ η, so that

Cξ ∩ η ⊆
⋃

i≤n f(θξ(i))

is finite. For ξ ∈ ω1 \ Ω set Cξ = ∅. Then 〈Cξ〉ξ<ω1
satisfies (i) and (ii) above.

(b) Now suppose that A, B ⊆ ω1 are uncountable. Choose 〈αξ〉ξ<ω1
, 〈βξ〉ξ<ω1

, 〈Iξ〉ξ<ω1
inductively, as

follows. βξ is to be the smallest ordinal such that {αη : η < ξ} ∪
⋃

η<ξ Iη ⊆ βξ; Iξ is to be a doubleton

subset of ω1 \ (βξ ∪
⋃

η≤βξ
f(η)) meeting both A and B; and αξ < ω1 is to be such that f(αξ) = Iξ. Set

D = {αξ : ξ < ω1}. This construction ensures that 〈αξ〉ξ<ω1
and 〈βξ〉ξ<ω1

are strictly increasing, with
βξ < αξ < βξ+1 for every ξ, so that f(δ) meets both A and B for every δ ∈ D, while f(δ) ⊆ δ′ and
f(δ′) ∩ (δ ∪ f(δ)) = ∅ whenever δ < δ′ in D.

By the choice of 〈θξ(n)〉ξ∈Ω,n∈N, there is a ξ ∈ Ω such that θξ(n) ∈ D for every n ∈ N. But this means
that

f(θξ(i)) ⊆ θξ(i+ 1) ⊆ ξ, f(θξ(i+ 1)) ∩ (θξ(i) ∪ f(θξ(i))) = ∅

for every i ∈ N, so Cξ =
⋃

i≥1 f(θξ(i)) meets both A and B in infinite sets.

4A1O The size of σ-algebras: Proposition Let A be a Boolean algebra, B a subset of A, and B the
σ-subalgebra of A generated by B (331E). Then #(B) ≤ max(4,#(BN)). In particular, if #(B) ≤ c then
#(B) ≤ c.

proof (a) If #(B) ≤ 1, this is trivial, since then #(B) ≤ 4. So we need consider only the case #(B) ≥ 2.

(b) Set κ = #(BN); then whenever #(A) ≤ κ, that is, there is an injection from A to BN, then

#(AN) ≤ #((BN)N) = #(BN×N) = #(BN) = κ.

As we are supposing that B has more than one element, κ ≥ #({0, 1}N) = c ≥ ω1.

(c) Define 〈Bξ〉ξ<ω1
inductively, as follows. B0 = B ∪ {0}. Given 〈Bη〉η<ξ, where 0 < ξ < ω1, set

B′
ξ =

⋃
η<ξ Bη and

Bξ = {1 \ b : b ∈ B′
ξ}

∪ {sup
n∈N

bn : 〈bn〉n∈N is a sequence in B′
ξ with a supremum in A};

continue.
An easy induction on ξ (relying on 3A1Cc and (b) above) shows that every Bξ has cardinal at most κ.

So C =
⋃

ξ<ω1
Bξ has cardinal at most κ.

(d) Now 〈Bξ〉ξ<ω1
is a non-decreasing family, so if 〈cn〉n∈N is any sequence in C there is some ξ < ω1

such that every cn belongs to Bξ ⊆ B′
ξ+1. But this means that if supn∈N cn is defined in A, it belongs to

Bξ+1 ⊆ C. At the same time,
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6 Appendix 4A1O

1 \ c0 ∈ Bξ+1 ⊆ C.

This shows that C is closed under complementation and countable suprema; since it contains 0, it is a
σ-subalgebra of A; since it includes B, it includes B, and #(B) ≤ #(C) ≤ κ, as claimed.

(d) Finally, if #(B) ≤ c, #(B) ≤ max(4,#(BN)) ≤ c by 4A1A(c-ii).

4A1P An incidental fact If I is a countable set and ǫ > 0, there is a family 〈ǫi〉i∈I of strictly positive
real numbers such that

∑
i∈I ǫi ≤ ǫ. PPP Let f : I → N be an injection and set ǫi = 2−f(i)−1ǫ. QQQ

Version of 21.4.13/28.12.18

4A2 General topology

Even more than in previous volumes, naturally enough, the work of this volume depends on results from
general topology. We have now reached the point where some of the facts I rely on are becoming hard to
find as explicitly stated theorems in standard textbooks. I find myself therefore writing out rather a lot
of proofs. You should not suppose that the results to which I attach proofs, rather than references, are
particularly deep; on the contrary, in many cases I am merely spelling out solutions to classic exercises.

The style of ‘general’ topology, as it has evolved over the last hundred years, is to develop a language
capable of squeezing the utmost from every step of argument. While this does sometimes lead to absurdly
obscure formulations, it remains a natural, and often profitable, response to the remarkably dense network
of related ideas in this area. I therefore follow the spirit of the subject in giving the results I need in the
full generality achievable within the terminology I use. For the convenience of anyone coming to the theory
for the first time, I repeat some of them in the forms in which they are actually applied. I should remark,
however, that in some cases materially stronger results can be proved with little extra effort; as always,
this appendix is to be thought of not as a substitute for a thorough study of the subject, but as a guide
connecting standard approaches to the general theory with the special needs of this volume.

4A2A Definitions I begin the section with a glossary of terms not defined elsewhere.

Baire space A topological space X is a Baire space if
⋂

n∈NGn is dense in X whenever 〈Gn〉n∈N is a
sequence of dense open subsets of X.

Base of neighbourhoods If X is a topological space and x ∈ X, a base of neighbourhoods of x is a
family V of neighbourhoods of x such that every neighbourhood of x includes some member of V.

boundary If X is a topological space and A ⊆ X, the boundary of A is ∂A = A \ intA = A ∩X \A.
càdlàg If X is a Hausdorff space, a function f : [0,∞[ → X is càdlàg (‘continue à droit, limite à

gauche’) (or RCLL (‘right continuous, left limits’), an RRR-function,) if lims↓t f(s) = f(t) for every t ≥ 0
and lims↑t f(s) is defined in X for every t > 0.

càllàl If X is a Hausdorff space, a function f : [0,∞[ → X is càllàl (‘continue à l’une, limite à l’autre’)
if f(0) = lims↓0 f(s) and, for every t > 0, lims↓t f(s) and lims↑t f(s) are defined in X, and at least one of
them is equal to f(t).

Čech-complete A completely regular Hausdorff topological space X is Čech-complete if it is homeo-
morphic to a Gδ subset of a compact Hausdorff space.

closed interval Let X be a totally ordered set. A closed interval in X is an interval of one of the forms
∅, [x, y], ]−∞, y], [x,∞[ or X = ]−∞,∞[ where x, y ∈ X (see the definition of ‘interval’ below).

coarser topology If S and T are two topologies on a set X, we say that S is coarser than T if S ⊆ T.
(Equality allowed.)

compact support Let X be a topological space and f : X → R a function. I say that f has compact
support if {x : x ∈ X, f(x) 6= 0} is compact in X.

countably compact A topological space X is countably compact if every countable open cover of X
has a finite subcover. (Warning! some authors reserve the term for Hausdorff spaces.) A subset of a
topological space is countably compact if it is countably compact in its subspace topology.

c© 2002 D. H. Fremlin
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4A2A General topology 7

countably paracompact A topological space X is countably paracompact if given any countable open
cover G of X there is a locally finite family H of open sets which refines G and covers X. (Warning! some
authors reserve the term for Hausdorff spaces.)

countably tight A topological space X is countably tight (or has countable tightness) if whenever
A ⊆ X and x ∈ A there is a countable set B ⊆ A such that x ∈ B.

direct sum, disjoint union Let 〈(Xi,Ti)〉i∈I be a family of topological spaces, and set X = {(x, i) : i ∈ I,
x ∈ Xi}. The disjoint union topology on X is T = {G : G ⊆ X, {x : (x, i) ∈ G} ∈ Ti for every i ∈ I};
(X,T) is the (direct) sum of 〈(Xi,Ti)〉i∈I .

If X is a set, 〈Xi〉i∈I a partition of X, and Ti a topology on Xi for every i ∈ I, then the disjoint union
topology on X is {G : G ⊆ X, G ∩Xi ∈ Ti for every i ∈ I}.

dyadic A Hausdorff space is dyadic if it is a continuous image of {0, 1}I for some set I.

equicontinuous If X is a topological space, (Y,W) a uniform space, and F a set of functions from X to
Y , then F is equicontinuous if for every x ∈ X and W ∈ W the set {y : (f(x), f(y)) ∈W for every f ∈ F}
is a neighbourhood of x.

finer topology If S and T are two topologies on a set X, we say that S is finer than T if S ⊇ T.
(Equality allowed.)

first-countable A topological space X is first-countable if every point has a countable base of neigh-
bourhoods.

half-open Let X be a totally ordered set. A half-open interval in X is a set of one of the forms [x, y[,
]x, y] where x, y ∈ X and x < y (see the definition of ‘interval’ below).

hereditarily Lindelöf A topological space is hereditarily Lindelöf if every subspace is Lindelöf.

hereditarily metacompact A topological space is hereditarily metacompact if every subspace is meta-
compact.

hereditarily separable A topological space is hereditarily separable if every subspace is separable.

indiscrete If X is any set, the indiscrete topology on X is the topology {∅, X}.

interval Let (P,≤) be a partially ordered set. An interval in P is a set of one of the forms [p, q] = {r :
p ≤ r ≤ q}, [p, q[ = {r : p ≤ r < q}, ]p, q] = {r : p < r ≤ q}, ]p, q[ = {r : p < r < q}, [p,∞[ = {r : p ≤ r},
]−∞, q] = {r : r ≤ q}, ]p,∞[ = {r : p < r}, ]−∞, q[ = {r : r < q}, ]−∞,∞[ = P , where p, q ∈ P . Note
that every interval is order-convex, but even in a totally ordered set not every order-convex set need be an
interval in this sense; an interval always has end-points, if we allow ±∞.

irreducible If X and Y are topological spaces, a continuous surjection f : X → Y is irreducible if
f [F ] 6= Y for any closed proper subset F of X.

isolated If X is a topological space, a family A of subsets of X is isolated if A ∩
⋃

(A \ {A}) is empty
for every A ∈ A; that is, if A is disjoint and every member of A is a relatively open set in

⋃
A.

Lindelöf A topological space is Lindelöf if every open cover has a countable subcover. (Warning! some
authors reserve the term for regular spaces.)

Lipschitz If (X, ρ) and (Y, σ) are metric spaces, a function f : X → Y is γ-Lipschitz, or (γ, ρ, σ)-
Lipschitz, where γ ≥ 0, if σ(f(x), f(y)) ≤ γρ(x, y) for all x, y ∈ X. f : X → Y is Lipschitz or
(ρ, σ)-Lipschitz if it is (γ, ρ, σ)-Lipschitz for some γ ≥ 0.

locally finite If X is a topological space, a family A of subsets of X is locally finite if for every x ∈ X
there is an open set which contains x and meets only finitely many members of A.

lower semi-continuous If X is a topological space and T a totally ordered set, a function f : X → T is
lower semi-continuous if {x : f(x) > t} is open for every t ∈ T . (Cf. 225H, 3A3Cf.)

metacompact A topological space is metacompact if every open cover has a point-finite refinement
which is an open cover. (Warning! some authors reserve the term for Hausdorff spaces.)

neighbourhood If X is a topological space and x ∈ X, a neighbourhood of x is any subset of X including
an open set which contains x.

network Let (X,T) be a topological space. A network for T is a family E ⊆ PX such that whenever
x ∈ G ∈ T there is an E ∈ E such that x ∈ E ⊆ G.

normal A topological space X is normal if for any disjoint closed sets E, F ⊆ X there are disjoint open
sets G, H such that E ⊆ G and F ⊆ H. (Warning! some authors reserve the term for Hausdorff spaces.)

open interval Let X be a totally ordered set. An open interval in X is a set of one of the the forms
]x, y[, ]x,∞[, ]−∞, x[ or ]−∞,∞[ = X where x, y ∈ X (see the definition of ‘interval’ above).
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8 Appendix 4A2A

open map If (X,T) and (Y,S) are topological spaces, a function f : X → Y is open if f [G] ∈ S for
every G ∈ T.

order-convex Let (P,≤) be a partially ordered set. A subset C of P is order-convex if [p, q] = {r : p ≤
r ≤ q} is included in C whenever p, q ∈ C.

order topology Let (X,≤) be a totally ordered set. Its order topology is that generated by intervals of
the form ]x,∞[ = {y : y > x}, ]−∞, x[ = {y : y < x} as x runs over X.

paracompact A topological space is paracompact if every open cover has a locally finite refinement
which is an open cover. (Warning! some authors reserve the term for Hausdorff spaces.)

perfect A topological space is perfect if it is compact and has no isolated points.
perfectly normal A topological space is perfectly normal if it is normal and every closed set is a Gδ

set. (Warning! remember that some authors reserve the term ‘normal’ for Hausdorff spaces.)
point-countable, point-finite A family A of sets is point-countable if no point belongs to more than

countably many members of A. Similarly, an indexed family 〈Ai〉i∈I of sets is point-finite if {i : x ∈ Ai}
is finite for every x.

Polish A topological space X is Polish if it is separable and its topology can be defined from a metric
under which X is complete.

pseudometrizable A topological space (X,T) is pseudometrizable if T is defined by a single pseudo-
metric (2A3F).

refine(ment) If A is a family of sets, a refinement of A is a family B of sets such that every member of
B is included in some member of A; in this case I say that B refines A. (Warning! I do not suppose that⋃
B =

⋃
A.)

relatively countably compact If X is a topological space, a subset A of X is relatively countably
compact if every sequence in A has a cluster point in X. (Warning! This is not the same as supposing
that A is included in a countably compact subset of X.)

scattered A topological space X is scattered if every non-empty subset of X has an isolated point (in
its subspace topology).

second-countable A topological space is second-countable if the topology has a countable base, that
is, if its weight is at most ω.

semi-continuous see lower semi-continuous, upper semi-continuous.
sequential A topological space is sequential if every sequentially closed set in X is closed.
sequentially closed If X is a topological space, a subset A of X is sequentially closed if x ∈ A whenever

〈xn〉n∈N is a sequence in A converging to x ∈ X.
sequentially compact A topological space is sequentially compact if every sequence has a convergent

sequence. A subset of a topological space is sequentially compact if it is sequentially compact in its subspace
topology. (Warning! some authors reserve the term for Hausdorff spaces.)

sequentially continuous If X and Y are topological spaces, a function f : X → Y is sequentially
continuous if 〈f(xn)〉n∈N → f(x) in Y whenever 〈xn〉n∈N → x in X.

subbase If (X,T) is a topological space, a subbase for T is a family U ⊆ T which generates T, in the
sense that T is the coarsest topology on X including U . (Warning! most authors reserve the term for
families U with union X.)

totally bounded If (X,W) is a uniform space, a subset A of X is totally bounded if for every W ∈ W
there is a finite set I ⊆ X such that A ⊆W [I]. If (X, ρ) is a metric space, a subset of X is totally bounded
if it is totally bounded for the associated uniformity (3A4B).

uniform convergence If X is a set, (Y, σ) is a metric space and A is a family of subsets of X then the
topology of uniform convergence on members of A is the topology on Y X generated by the pseudometrics
(f, g) 7→ min(1, supx∈A σ(f(x), g(x))) as A runs over A \ {∅}. (It is elementary to verify that the formula
here defines a pseudometric.)

upper semi-continuous If X is a topological space and T is a totally ordered set, a function f : X → T
is upper semi-continuous if {x : f(x) < t} is open for every t ∈ T .

weakly α-favourable A topological space (X,T) is weakly α-favourable if there is a function σ :⋃
n∈N(T \ {∅})n+1 → T \ {∅} such that (i) σ(G0, . . . , Gn) ⊆ Gn whenever G0, . . . , Gn are non-empty open

sets (ii) whenever 〈Gn〉n∈N is a sequence in T \ {∅} such that Gn+1 ⊆ σ(G0, . . . , Gn) for every n, then⋂
n∈NGn is non-empty.
weight If X is a topological space, its weight w(X) is the smallest cardinal of any base for the topology.

Measure Theory



4A2Bd General topology 9

Cb If X is a topological space, Cb(X) is the space of bounded continuous real-valued functions defined
on X.

Fσ If X is a topological space, an Fσ set in X is one expressible as the union of a sequence of closed
sets.

Gδ If X is a topological space, a Gδ set in X is one expressible as the intersection of a sequence of open
sets.

Kσ If X is a topological space, a Kσ set in X is one expressible as the union of a sequence of compact
sets.

PX If X is any set, the usual topology on PX is that generated by the sets {a : a ⊆ X, a ∩ J = K}
where J ⊆ X is finite and K ⊆ J .

T0 If (X,T) is a topological space, we say that it is T0 if for any two distinct points of X there is an
open set containing one but not the other.

T1 If (X,T) is a topological space, we say that it is T1 if singleton sets are closed.
π-base If (X,T) is a topological space, a π-base for T is a set U ⊆ T such that every non-empty open

set includes a non-empty member of U .
σ-compact A topological space X is σ-compact if there is a sequence of compact subsets of X covering

X.
σ-disjoint A family of sets is σ-disjoint if it is expressible as

⋃
n∈N An where every An is disjoint.

σ-isolated If X is a topological space, a family of subsets of X is σ-isolated if it is expressible as
⋃

n∈N An

where every An is an isolated family.
σ-metrically-discrete If (X, ρ) is a metric space, a family of subsets of X is σ-metrically-discrete if it

is expressible as
⋃

n∈N An where ρ(x, y) ≥ 2−n whenever n ∈ N, A and B are distinct members of An, x ∈ A
and y ∈ B.

4A2B Elementary facts about general topological spaces (a) Bases and networks (i) Let (X,T)
be a topological space and U a subbase for T. Then {X} ∪ {U0 ∩ U1 ∩ . . . ∩ Un : U0, . . . , Un ∈ U} is a base
for T. (For this is a base for a topology, by 3A3Mc.)

(ii) Let X and Y be topological spaces, and U a subbase for the topology of Y . Then a function
f : X → Y is continuous iff f−1[U ] is open for every U ∈ U . (Engelking 89, 1.4.1(ii)).

(iii) If X and Y are topological spaces, E is a network for the topology of Y , and f : X → Y is a
function such that f−1[E] is open for every E ∈ E , then f is continuous. (The topology generated by E
includes the given topology on Y .)

(iv) If X is a topological space and U is a subbase for the topology of X, then a filter F on X converges
to x ∈ X iff {U : x ∈ U ∈ U} ⊆ F . (If the condition is satisfied, F ∪ {A : A ⊆ X, x /∈ A} is a topology on
X including U .)

(v) If X and Y are topological spaces with subbases U , V respectively, then {U×Y : U ∈ U}∪{X×V :
V ∈ V} is a subbase for the product topology of X × Y . (Kuratowski 66, §15.I.)

(vi) If U is a (sub-)base for a topology on X, and Y ⊆ X, then {Y ∩U : U ∈ U} is a (sub-)base for the
subspace topology of Y . (Császár 78, 2.3.13(e)-(f).)

(vii) If X is a topological space, E is a network for the topology of X, and Y is a subset of X, then
{E ∩ Y : E ∈ E} is a network for the topology of Y .

(viii) If X is a topological space and A is a (σ-)isolated family of subsets of X, then {A ∩ Y : A ∈ A′}
is (σ-)isolated whenever Y ⊆ X and A′ ⊆ A.

(ix) If a topological space X has a σ-isolated network, so has every subspace of X.

(b) If 〈Hi〉i∈I is a partition of a topological space X into open sets and Fi ⊆ Hi is closed (either in X or
in Hi) for each i ∈ I, then F =

⋃
i∈I Fi is closed in X. (X \ F =

⋃
i∈I(Hi \ Fi).)

(c) If X is a topological space, A ⊆ X and x ∈ X, then x ∈ A iff there is an ultrafilter on X, containing
A, which converges to x. ({A}∪{G : x ∈ G ⊆ X, G is open} has the finite intersection property; use 4A1Ia.)

(d) Semi-continuity Let X be a topological space.
(i) A function f : X → R is lower semi-continuous iff −f is upper semi-continuous. (Čech 66, 18D.8.)

A function f : X → R is lower semi-continuous iff Ω = {(x, α) : x ∈ X, α ≥ f(x)} is closed in X × R. (If f
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is lower semi-continuous and α < β < f(x) then {y : f(y) > β} × ]−∞, β[ is a neighbourhood of (x, α); so
Ω is closed. If Ω is closed then for any γ ∈ R the set {x : f(x) > γ} = {x : (x, γ) /∈ Ω} is open; so f is lower
semi-continuous.)

(ii) If T is a totally ordered set, f : X → T is lower semi-continuous, Y is another topological space, and
g : Y → X is continuous, then fg : Y → T is lower semi-continuous. ({y : (fg)(y) > t} = g−1[{x : f(x) >
t}].) In particular, if f : X → T is lower semi-continuous and Y ⊆ X, then f↾Y is lower semi-continuous.
Similarly, if f : X → T is upper semi-continuous and g : Y → X is continuous, then fg : Y → T is upper
semi-continuous.

(iii) If f , g : X → ]−∞,∞] are lower semi-continuous so is f + g : X → ]−∞,∞]. (Čech 66, 18D.8.)

(iv) If f , g : X → [0,∞] are lower semi-continuous so is f × g : X → [0,∞]. (Čech 66, 18D.8.)

(v) If Φ is any non-empty set of lower semi-continuous functions from X to [−∞,∞], then x 7→
supf∈Φ f(x) : X → [−∞,∞] is lower semi-continuous.

(vi) f : X → R is continuous iff f is both upper semi-continuous and lower semi-continuous iff f and
−f are both lower semi-continuous.

(vii) If f : X → [−∞,∞] is lower semi-continuous, and F is a filter on X converging to y ∈ X, then
f(y) ≤ lim infx→F f(x).

(viii) If X is compact and not empty, and f : X → [−∞,∞] is lower semi-continuous then K = {x :
f(x) = infy∈X f(y)} is non-empty and compact. PPP Setting γ = infy∈X f(y) ∈ [−∞,∞], {{x : f(x) ≤ α} :
α > γ} is a downwards-directed family of non-empty closed sets, so its intersection K is a non-empty closed
set. QQQ

(ix) If f , g : X → [0,∞] are lower semi-continuous and f+g is continuous at x ∈ X and finite there, then
f and g are continuous at x. PPP If ǫ > 0 there is a neighbourhood G of x such that (f+g)(y) ≤ (f+g)(x)+ǫ
for every y ∈ G and g(y) ≥ g(x) − ǫ for every y ∈ G, so that f(y) ≤ f(x) + 2ǫ for every y ∈ G. QQQ

(e) Separable spaces (i) If 〈Ai〉i∈I is a countable family of separable subsets of a topological space X

then
⋃

i∈I Ai and
⋃

i∈I Ai are separable. (If Di ⊆ Ai is countable and dense for each i,
⋃

i∈I Di is countable
and dense in both

⋃
i∈I Ai and its closure.)

(ii) If 〈Xi〉i∈I is a family of separable topological spaces and #(I) ≤ c, then
∏

i∈I Xi is separable.
(Engelking 89, 2.3.16.)

(iii) A continuous image of a separable topological space is separable. (Engelking 89, 1.4.11.)

(f) Open maps (i) Let 〈Xi〉i∈I be any family of topological spaces, with product X. If J ⊆ I is any set,
and we write XJ for

∏
i∈J Xi, then the canonical map x 7→ x↾J : X → XJ is open. (Engelking 89, p. 79.)

(ii) Let X and Y be topological spaces and f : X → Y a continuous open map. Then int f−1[B] =

f−1[intB] and f−1[B] = f−1[B] for every B ⊆ Y . PPP Because f is continuous, f−1[intB] is an open set
included in f−1[B], so is included in int f−1[B]. Because f is open, f [int f−1[B]] is an open set included in
f [f−1[B]] ⊆ B, so f [int f−1[B]] ⊆ intB, that is, int f−1[B] ⊆ f−1[intB]. Now apply this to Y \B and take
complements. QQQ

It follows that f−1[B] is nowhere dense in X whenever B ⊆ Y is nowhere dense in Y . (int f−1[B] =
int f−1[B] = f−1[intB] = ∅.) If f is surjective and B ⊆ Y , then B is nowhere dense in Y iff f−1[B] is

nowhere dense in X. (For int f−1[B] = f−1[intB] is empty iff intB is empty.)

(iii) Let X and Y be topological spaces and f : X → Y a continuous open map. Then H 7→ f−1[H] is
an order-continuous Boolean homomorphism from the regular open algebra of Y to the regular open algebra
of X. PPP If H ⊆ Y is a regular open set,

int f−1[H] = int f−1[H] = f−1[intH] = f−1[H]

by (ii), so f−1[H] is a regular open set in X. If F ⊆ Y is nowhere dense, then f−1[F ] is nowhere dense in X,

as noted in (ii) above. By 314Ra, H 7→ f−1[H] = int f−1[H] is an order-continuous Boolean homomorphism
from RO(Y ) to RO(X). QQQ If f is surjective, then the homomorphism is injective (because f−1[H] 6= ∅
whenever H 6= ∅), and for H ⊆ Y , H is a regular open set in Y iff f−1[H] is a regular open set in X
(because in this case f−1[H] = f−1[intH]).

(iv) If X0, Y0, X1, Y1 are topological spaces, and fi : Xi → Yi is an open map for each i, then
(x0, x1) 7→ (f0(x0), f1(x1)) : X0 ×X1 → Y0 × Y1 is open. (Engelking 89, 2.3.29.)
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(g) Let 〈Xi〉i∈I be a family of topological spaces with product X.

(i) If A ⊆ X is determined by coordinates in J ⊆ I in the sense of 254M, then A and intA are also
determined by coordinates in J . PPP Let π : X →

∏
i∈J Xi be the canonical map. Then A = π−1[π[A]], so

(f) tells us that intA = π−1[intπ[A]] and A = π−1[π[A]]; but these are both determined by coordinates in
J . QQQ

(ii) If F ⊆ X is closed, there is a smallest set J∗ ⊆ I such that F is determined by coordinates in J∗.
PPP Let J be the family of all those sets J ⊆ I such that F is determined by coordinates in J . If J1,

J2 ∈ J , then J1 ∩ J2 ∈ J (254Ta). Set J∗ =
⋂
J . ??? Suppose, if possible, that F is not determined by

coordinates in J∗. Then there are x ∈ F , y ∈ X \ F such that x↾J∗ = y↾J∗. Because X \ F is open, there
is a finite set K ⊆ I such that z /∈ F whenever z ∈ X and z↾K = y↾K. Because J is closed under finite
intersections, there is a J ∈ J such that K ∩ J = K ∩ J∗. Define z ∈ X by setting z(i) = x(i) for i ∈ J ,
z(i) = y(i) for i ∈ I \ J . Then z↾J = x↾J , so z ∈ F , but z↾K = y↾K, so z /∈ F . XXX

Thus J∗ ∈ J and is the required smallest member of J . QQQ

(h) Let X be a topological space.
(i) If E is a locally finite family of closed subsets of X, then

⋃
E ′ is closed for every E ′ ⊆ E . (Engelking

89, 1.1.11.)
(ii) If 〈fi〉i∈I is a family in C(X) such that 〈{x : fi(x) 6= 0}〉i∈I is locally finite, then we have a

continuous function f : X → R defined by setting f(x) =
∑

i∈I fi(x) for every x ∈ X. PPP For any x,
{i : fi(x) 6= 0} is finite, so f is well-defined. If x0 ∈ X and ǫ > 0, there is a neighbourhood V of x0 such
that J = {i : i ∈ I, fi(x) 6= 0 for some x ∈ V } is finite; now there is a neighbourhood W of x0, included in
V , such that

∑
i∈J |fi(x) −

∑
i∈J fi(x0)| < ǫ for every x ∈ W , so that |f(x) − f(x0)| < ǫ for every x ∈ W .

As x0 and ǫ are arbitrary, f is continuous. QQQ

(i) Let X be a topological space and A, B two subsets of X. Then the boundary ∂(A ∗ B) is included
in ∂A ∪ ∂B, where ∗ is any of ∪, ∩, \, △. (Generally, if F ⊆ X, {A : ∂A ⊆ F} = {A : A \ F ⊆ intA} is a
subalgebra of PX.)

(j) Let X be a topological space and D a dense subset of X, endowed with its subspace topology.
(i) A set A ⊆ D is nowhere dense in D iff it is nowhere dense in X. PPP

A is nowhere dense in X ⇐⇒ X \A is dense in X

(writing A for the closure of A in X)

⇐⇒ D \A is dense in X

(3A3Ea)

⇐⇒ D \A is dense in D

⇐⇒ D \ (D ∩A) is dense in D

⇐⇒ A is nowhere dense in D

because D ∩A = A
(D)

is the closure of A in D. QQQ
(ii) A set G ⊆ D is a regular open set in D iff it is expressible as D ∩ H for some regular open

set H ⊆ X. PPP (α) If G is a regular open subset of D, set H = intG, taking both the closure and the
interior in X. Then H is a regular open set in X. Now D ∩H is a relatively open subset of D included in

D ∩G = G
(D)

, so D ∩H ⊆ intD G
(D)

= G. In the other direction, G ∪D \G = D = X, so G ⊇ X \D \G

and H ⊇ X \D \G ⊇ G. So G = H ∩D is of the required form. (β) If H ⊆ X is a regular open set such
that G = D ∩H, set V = X \H; then H = X \ V . Now

V ∩D
(D)

= D ∩ V ∩D = D ∩ V = D \H = D \G,

so G = D \ V ∩D
(D)

is the complement of the closure of an open set in D, and is a regular open set in D.
QQQ
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4A2C Gδ, Fσ, zero and cozero sets Let X be a topological space.

(a)(i) The union of two Gδ sets in X is a Gδ set. (Engelking 89, p. 26; Kuratowski 66, §5.V.)
(ii) The intersection of countably many Gδ sets is a Gδ set. (Engelking 89, p. 26; Kuratowski 66,

§5.V.)
(iii) If Y is another topological space, f : X → Y is continuous and E ⊆ Y is Gδ in Y , then f−1[E] is

Gδ in X. (f−1[
⋂

n∈NHn] =
⋂

n∈N f
−1[Hn].)

(iv) If Y is a Gδ set in X and Z ⊆ Y is a Gδ set for the subspace topology of Y , then Z is a Gδ set in
X. (Kuratowski 66, §5.V.)

(v) A set E ⊆ X is an Fσ set iff X \ E is a Gδ set. (Kuratowski 66, §5.V.)

(b)(i) A zero set is closed. A cozero set is open.
(ii) The union of two zero sets is a zero set. (Császár 78, 4.2.36.) The intersection of two cozero sets

is a cozero set.
(iii) The intersection of a sequence of zero sets is a zero set. (If fn : X → R is continuous for each n,

x 7→
∑∞

n=0 min(2−n, |fn(x)|) is continuous.) The union of a sequence of cozero sets is a cozero set.
(iv) If Y is another topological space, f : X → Y is continuous and L ⊆ Y is a zero set, then f−1[L] is

a zero set. If f : X → Y is continuous and H ⊆ Y is a cozero set, then f−1[H] is a cozero set. (Čech 66,
28B.3.) If K ⊆ X and L ⊆ Y are zero sets then K × L is a zero set in X × Y . (K × L = π−1

1 [K] ∩ π−1
2 [L].)

(v) If H ⊆ X is a (co-)zero set and Y ⊆ X, then H ∩ Y is a (co-)zero set in Y . (Use (iv).)
(vi) A cozero set is the union of a non-decreasing sequence of zero sets. (If f : X → R is continuous,

X \ f−1[{0}]) =
⋃

n∈N g
−1
n [{0}], where gn(x) = max(0, 2−n − |f(x)|).) In particular, a cozero set is an Fσ

set; taking complements, a zero set is a Gδ set.
(vii) If G is a partition of X into open sets, and H ⊆ X is such that H ∩ G is a cozero set in G for

every G ∈ G, then H is a cozero set in X. (If fG : G→ R is continuous for every G ∈ G, then f : X → R is
continuous, where f(x) = fG(x) for x ∈ G ∈ G.) Similarly, if F ⊆ X is such that F ∩ G is a zero set in G
for every G ∈ G, then F is a zero set in X.

4A2D Weight Let X be a topological space.

(a)(i) w(Y ) ≤ w(X) for every subspace Y of X (4A2B(a-vi)).
(ii) If X =

∏
i∈I Xi then w(X) ≤ max(ω,#(I), supi∈I w(Xi)). (Engelking 89, 2.3.13.)

(b) A disjoint family G of non-empty open sets in X has cardinal at most w(X). (If U is a base for
the topology of X, then every non-empty member of G includes a non-empty member of U , so we have an
injective function from G to U .)

(c) A point-countable family G of open sets in X has cardinal at most max(ω,w(X)). PPP If X = ∅, this
is trivial. Otherwise, let U be a base for the topology of X with #(U) = w(X) > 0. Choose a function
f : G → U such that ∅ 6= f(G) ⊆ G whenever G ∈ G \ {∅}. Then GU = {G : f(G) = U} is countable for
every U ∈ U , so there is an injection hU : GU → N; now G 7→ (f(G), hf(G)(G)) : G → U × N is injective, so
#(G) ≤ #(U × N) = max(ω,w(X)). QQQ

(d) If X is a dyadic Hausdorff space then X is a continuous image of {0, 1}w(X). PPP There are a set I
and a continuous surjection f : {0, 1}I → X; because any power of {0, 1} is compact, so is X. If w(X) is
finite, #(X) = w(X) ≤ #({0, 1}w(X)) and the result is trivial; so we may suppose that w(X) is infinite.
Let U be a base for the topology of X with cardinality w(X). Set Z = {0, 1}I and let E be the algebra
of subsets of Z determined by coordinates in finite sets, so that E is an algebra of subsets of Z and is a
base for the topology of Z. For each pair U , V of members of U such that U ⊆ V , f−1[V ] ⊆ Z is open;
the set {E : E ∈ E , E ⊆ f−1[V ]} is upwards-directed and covers the compact set f−1[U ], so there is an
EUV ∈ E such that f−1[U ] ⊆ EUV ⊆ f−1[V ]. Let J ⊆ I be a set with cardinal at most max(ω,w(X)) such
that every EUV is determined by coordinates in J . Fix any w ∈ {0, 1}I\J and define g : {0, 1}J → X by
setting g(z) = f(z, w) for every z ∈ {0, 1}J , identifying Z with {0, 1}J × {0, 1}I\J . Then g is continuous.
??? If g is not surjective, set H = X \ g[{0, 1}J ]. Take x ∈ H; take V ∈ U such that x ∈ V ⊆ H; take an
open set G such that x ∈ G ⊆ G ⊆ V (this must be possible because X, being compact and Hausdorff,
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is regular – see 3A3Bb); take U ∈ U such that x ∈ U ⊆ G, so that x ∈ U ⊆ U ⊆ V . Because f is
surjective, there is a (u, v) ∈ {0, 1}J × {0, 1}I\J such that f(u, v) = x. Now (u, v) ∈ f−1[U ] ⊆ EUV ;
as EUV is determined by coordinates in J , (u,w) ∈ EUV ⊆ f−1[V ] and g(u) = f(u,w) ∈ V ; but V is
supposed to be disjoint from g[{0, 1}J ]. XXX So g is surjective, and X is a continuous image of {0, 1}J . Since
#(J) ≤ max(ω,w(X)) = w(X), {0, 1}J and X are continuous images of {0, 1}w(X). QQQ

(e) If X is a dyadic Hausdorff space then X is separable iff it is a continuous image of {0, 1}c. PPP {0, 1}c

is separable (4A2B(e-ii)), so any continuous image of it is separable. If X is a separable dyadic Hausdorff
space, let A ⊆ X be a countable dense set. If G, G′ ⊆ X are distinct regular open sets, then G∩A 6= G∩A′.
Thus X has at most c regular open sets; since X is compact and Hausdorff, therefore regular, its regular
open sets form a base (4A2F(b-ii)), and w(X) ≤ c. By (d), X is a continuous image of {0, 1}max(ω,w(X))

which is in turn a continuous image of {0, 1}c. QQQ

4A2E The countable chain condition (a)(i) Let 〈Xi〉i∈I be a family of topological spaces. If
∏

i∈J Xi

is ccc for every finite J ⊆ I, then
∏

i∈I Xi is ccc. (Kunen 80, II.1.9; Fremlin 84, 12I.)
(ii) A separable topological space is ccc. (If D is a countable dense set and G is a disjoint family of

non-empty open sets, we have a surjection from a subset of D onto G.)
(iii) The product of any family of separable topological spaces is ccc. PPP By 4A2B(e-ii) and (ii) here,

the product of finitely many separable spaces is separable, therefore ccc; so we can apply (i). QQQ
(iv) Any continuous image of a ccc topological space is ccc. (If f : X → Y is a continuous surjection

and H is an uncountable disjoint family of open subsets of Y , then {f−1[H] : H ∈ H} is an uncountable
disjoint family of open subsets of X.)

(b) Let 〈Xi〉i∈I be a family of topological spaces, and suppose that X =
∏

i∈I Xi is ccc. For J ⊆ I and
x ∈ X set XJ =

∏
i∈J Xi, πJ(x) = x↾J .

(i) If G ⊆ X is open, there is an open set W ⊆ G determined by coordinates in a countable subset of
I such that G ⊆ W . PPP Let W be the family of subsets of X determined by coordinates in countable sets.
Then W is a σ-algebra (254Mb) including the standard base U for the topology of X. Let U0 be a maximal
disjoint family in {U : U ∈ U , U ⊆ G}. Then U0 is countable, so W =

⋃
U0 belongs to W. No member of

U can be included in G \W , so G \W must be empty, and we have a suitable set. QQQ So G = W and intG
are determined by coordinates in a countable set (4A2B(g-i)); in particular, if G is a regular open set, then
it is determined by coordinates in a countable set.

(ii) If f : X → R is continuous, there are a countable set J ⊆ I and a continuous function g : XJ → R

such that f = gπJ . PPP For each q ∈ Q, set Fq = {x : f(x) < q}. By (i), Fq is determined by coordinates in
a countable set. Because Q is countable, there is a countable J ⊆ I such that every Fq is determined by
coordinates in J . Also {x : f(x) < α} =

⋃
q∈Q,q<α Fq is determined by coordinates in J for every α ∈ R, so

f(x) = f(y) whenever x↾J = y↾J , and there is a g : XJ → R such that f = gπJ . Now if H ⊆ R is open,
g−1[H] = πJ [f−1[H]] is open (4A2B(f-i)), so g is continuous. QQQ

(iii) If A ⊆ X is nowhere dense there is a countable set J ⊆ I such that π−1
J [πJ [A]] is nowhere dense.

PPP By (ii), there are a countable set J and an open set W ⊆ X \A such that W is determined by coordinates
in J and X \A ⊆W ; now W is dense in X and π−1

J [πJ [A]] ⊆ X \W is nowhere dense. QQQ

4A2F Separation axioms (a) Hausdorff spaces (i) A Hausdorff space is T1. (Čech 66, 27A.1.)
(ii) If X is a Hausdorff space and 〈xn〉n∈N is a sequence in X, then a point x of X is a cluster point of

〈xn〉n∈N iff there is a non-principal ultrafilter F on N such that x = limn→F xn. (If x is a cluster point of
〈xn〉n∈N, apply 4A1Ia to {{n : n ≥ n0, xn ∈ G} : n0 ∈ N, G ⊆ X is open, x ∈ G}.)

(iii) A topological space X is Hausdorff iff {(x, x) : x ∈ X} is closed in X × X. (Čech 66 27A.7;
Kuratowski 66, I.15.IV.)

(b) Regular spaces (i) A regular T1 space is Hausdorff. (Čech 66, 27B.7; Gaal 64, p. 81.) Any
subspace of a regular space is regular. (Engelking 89, 2.1.6; Kuratowski 66, §14.I.)

(ii) If X is a regular topological space, the regular open subsets of X form a base for the topology. PPP
If G is open and x ∈ G, there is an open set H such that x ∈ H ⊆ H ⊆ G; now intH is a regular open set
containing x and included in G. QQQ
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(c) Completely regular spaces In a completely regular space, the cozero sets form a base for the
topology. (Čech 66, 28B.5.)

(d) Normal spaces (i) Urysohn’s Lemma If X is normal and E, F are disjoint closed subsets of X,
then there is a continuous function f : X → [0, 1] such that f(x) = 0 for x ∈ E and f(x) = 1 for x ∈ F .
(Engelking 89, 1.5.11; Kuratowski 66, §14.IV.)

(ii) A regular normal space is completely regular.
(iii) A normal T1 space is Hausdorff (Gaal 64, p. 86) and completely regular (Császár 78, 4.2.5;

Gaal 64, p. 110).
(iv) If X is normal and E, F are disjoint closed sets in X there is a zero set including E and disjoint

from F . (Take a continuous function f which is zero on E and 1 on F , and set Z = {x : f(x) = 0}.)
(v) In a normal space a closed Gδ set is a zero set. (Engelking 89, 1.5.12.)
(vi) If X is a normal space and 〈Gi〉i∈I is a point-finite cover of X by open sets, there is a family

〈Hi〉i∈I of open sets, still covering X, such that Hi ⊆ Gi for every i. (Engelking 89, 1.5.18; Čech 66,
29C.1; Gaal 64, p. 89.)

(vii) If X is a normal space and 〈Gi〉i∈I is a point-finite cover of X by open sets, there is a family
〈H ′

i〉i∈I of cozero sets, still covering X, such that H ′
i ⊆ Gi for every i. (Take 〈Hi〉i∈I from (vi), and apply

(iv) to the disjoint closed sets X \Gi, Hi to find a suitable cozero set H ′
i for each i.)

(viii) If X is a normal space and 〈Gi〉i∈I is a locally finite cover of X by open sets, there is a family
〈gi〉i∈I of continuous functions from X to [0, 1] such that gi ≤ χGi for every i ∈ I and

∑
i∈I gi(x) = 1 for

every x ∈ X. (Engelking 89, proof of 5.1.9.)
(ix) Tietze’s theorem Let X be a normal space, F a closed subset of X and f : F → R a continuous

function. Then there is a continuous function g : X → R extending f . (Engelking 89, 2.1.8; Kuratowski

66, §14.IV; Gaal 64, p. 203.) It follows that if F ⊆ X is closed and f : F → [0, 1]I is a continuous function
from F to any power of the unit interval, there is a continuous function from X to [0, 1]I extending f .
(Extend each of the functionals x 7→ f(x)(i) for i ∈ I.)

(e) Paracompact spaces A Hausdorff paracompact space is regular. (Engelking 89, 5.1.5.) A regular
paracompact space is normal. (Engelking 89, 5.1.5; Gaal 64, p. 160.)

(f) Countably paracompact spaces A normal space X is countably paracompact iff whenever 〈Fn〉n∈N

is a non-increasing sequence of closed subsets of X with empty intersection, there is a sequence 〈Gn〉n∈N

of open sets, also with empty intersection, such that Fn ⊆ Gn for every n ∈ N. (Engelking 89, 5.2.2;
Császár 78, 8.3.56(f).)

(g) Metacompact spaces (i) A paracompact space is metacompact.
(ii) A closed subspace of a metacompact space is metacompact.
(iii) A normal metacompact space is countably paracompact. (Engelking 89, 5.2.6; Császár 78,

8.3.56(c).)

(h) Separating compact sets (i) If X is a Hausdorff space and K and L are disjoint compact subsets
of X, there are disjoint open sets G, H ⊆ X such that K ⊆ G and L ⊆ H. (Császár 78, 5.3.18.) If T
is an algebra of subsets of X including a subbase for the topology of X, there is an open V ∈ T such that
K ⊆ V ⊆ X \ L. PPP By 4A2B(a-i), T includes a base for the topology of X. So E = {U : U ∈ T is open,
U ⊆ G} has union G and there must be a finite E0 ⊆ E covering K; set V =

⋃
E0. QQQ

(ii) If X is a regular space, F ⊆ X is closed, and K ⊆ X \ F is compact, there are disjoint open sets
G, H ⊆ X such that K ⊆ G and F ⊆ H. (Engelking 89, 3.1.6.)

(iii) If X is a completely regular space, G ⊆ X is open and K ⊆ G is compact, there is a continuous
function f : X → [0, 1] such that f(x) = 1 for x ∈ K and f(x) = 0 for x ∈ X \ G. PPP For each x ∈ K
there is a continuous function fx : X → [0, 1] such that fx(x) = 1 and fx(y) = 0 for y ∈ X \ G. Set
Hx = {y : fx(y) > 1

2}. Then
⋃

x∈K Hx ⊇ K, so there is a finite set I ⊆ K such that K ⊆
⋃

x∈I Hx. Set
f(y) = min(1, 2

∑
x∈I fx(y)) for y ∈ X. QQQ

(iv) If X is a completely regular Hausdorff space and K and L are disjoint compact subsets of X, there
are disjoint cozero sets G, H ⊆ X such that K ⊆ G and L ⊆ H. PPP By (i), there are disjoint open sets G′,
H ′ such that K ⊆ G′ and L ⊆ H ′. By (iii), there is a continuous function f : X → [0, 1] such that f(x) = 1
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for x ∈ K and f(x) = 0 for x ∈ X \G′; set G = {x : f(x) 6= 0}, so that G is a cozero set and K ⊆ G ⊆ G′.
Similarly there is a cozero set H including L and included in H ′. QQQ

(v) If X is a completely regular space and K ⊆ X is a compact Gδ set, then K is a zero set. PPP Let
〈Gn〉n∈N be a sequence of open sets with intersection K. For each n ∈ N there is a continuous function
fn : X → [0, 1] such that fn(x) = 1 for x ∈ K and fn(x) = 0 for x ∈ X \Gn, by (iii). Now K =

⋂
n∈N{x :

1 − fn(x) = 0} is a zero set, by 4A2C(b-iii). QQQ
(vi) If 〈Xn〉n∈N is a sequence of topological spaces with product X, K ⊆ X is compact, F ⊆ X is

closed and K ∩ F = ∅, there is some n ∈ N such that x↾n 6= y↾n for any x ∈ F and y ∈ K.

PPP For n ∈ N and x ∈ X set πn(x) = x↾n; set Fn = π−1
n [πn[F ]]. Since 〈π−1

n [πn[F ]]〉n∈N is non-increasing,
so is 〈Fn〉n∈N. If x ∈ K, there is an open set G ⊆ X, determined by coordinates in a finite set, such
that x ∈ G ⊆ X \ F ; in this case there is an n ∈ N such that π−1

n [πn[G]] = G is disjoint from F , so
that πn[G] ∩ πn[F ] = ∅, G does not meet π−1

n [πn[F ]] and x /∈ Fn. As x is arbitrary, 〈K ∩ Fn〉n∈N is a
non-increasing sequence of relatively closed subsets of K with empty intersection; as K is compact, there is
an n such that K ∩ Fn = ∅, so that K ∩ π−1

n [πn[F ]] = ∅ and x↾n 6= y↾n whenever x ∈ F and y ∈ K. QQQ
(vii) If X is a compact Hausdorff space, f : X → R is continuous, and U is a subbase for T, then there

is a countable set U0 ⊆ U such that f(x) = f(y) whenever {U : x ∈ U ∈ U0} = {U : y ∈ U ∈ U0}. (Apply
(i) to sets of the form K = {x : f(x) ≤ α}, L = {x : f(x) ≥ β}.)

(i) Perfectly normal spaces A topological space X is perfectly normal iff every closed set is a zero set.
(Engelking 89, 1.4.9.)

Consequently, every open set in a perfectly normal space is a cozero set (and, of course, an Fσ set).

(j) Covers of compact sets Let X be a Hausdorff space, K a compact subset of X, and 〈Gi〉i∈I a
family of open subsets of X covering K. Then there are a finite set J ⊆ I and a family 〈Ki〉i∈J of compact
sets such that K =

⋃
i∈J Ki and Ki ⊆ Gi for every i ∈ J . PPP (i) Suppose first that I = {i, j} has just two

members. Then K \Gj and K \Gi are disjoint compact sets. By (h-i), there are disjoint open sets Hi, Hj

such that K \ Gj ⊆ Hi and K \ Gi ⊆ Hj ; setting Ki = K \Hj and Kj = K \Hi we have a suitable pair
Ki, Kj . (ii) Inducing on #(I) we get the result for finite I. (iii) In general, there is certainly a finite J ⊆ I
such that K ⊆

⋃
i∈J Gi, and we can apply the result to 〈Gi〉i∈J . QQQ

4A2G Compact and locally compact spaces (a) In any topological space, the union of two compact
subsets is compact.

(b) A compact Hausdorff space is normal. (Engelking 89, 3.1.9; Császár 78, 5.3.23; Gaal 64, p.
139.)

(c)(i) If X is a compact Hausdorff space, Y ⊆ X is a zero set and Z ⊆ Y is a zero set in Y , then Z is a
zero set in X. (By 4A2C(b-vi) and 4A2C(a-iv), Z is a Gδ set in X; now use 4A2F(d-v).)

(ii) Let X and Y be compact Hausdorff spaces, f : X → Y a continuous open map and Z ⊆ X a zero
set in X. Then f [Z] is a zero set in Y . PPP Let g : X → R be a continuous function such that Z = g−1[{0}].
Set Gn = {x : x ∈ X, |g(x)| < 2−n} for each n ∈ N. If y ∈

⋂
n∈N f [Gn], then f−1[{y}] is a compact set

meeting all the closed sets Gn, so meets their intersection, which is Z. Thus f [Z] =
⋂

n∈N f [Gn] is a Gδ set.
By 4A2F(d-v), it is a zero set. QQQ

(d) If X is a Hausdorff space, V is a downwards-directed family of compact neighbourhoods of a point x of
X and

⋂
V = {x}, then V is a base of neighbourhoods of x. PPP Let G be any open set containing x. Fix any

V0 ∈ V. Note that because X is Hausdorff, every member of V is closed (3A3Dc). So {V0 ∩ V \G : V ∈ V}
is a family of (relatively) closed subsets of V0 with empty intersection, cannot have the finite intersection
property (3A3Da), and there is a V ∈ V such that V0 ∩ V \ G = ∅. Now there is a V ′ ∈ V such that
V ′ ⊆ V0 ∩ V and V ′ ⊆ G. As G is arbitrary, V is a base of neighbourhoods of x. QQQ

(e) Let (X,T) be a locally compact Hausdorff space.
(i) If K ⊆ X is a compact set and G ⊇ K is open, then there is a continuous f : X → [0, 1] with

compact support such that χK ≤ f ≤ χG. (Let V be the family of relatively compact open subsets of X.
Then V is upwards-directed and covers X, so there is a V ∈ V including K. By 3A3Bb, T is completely
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regular; now 4A2F(h-iii) tells us that there is a continuous f : X → [0, 1] such that χK ≤ f ≤ χ(G∩ V ), so
that f has compact support.)

(ii) T is the coarsest topology on X such that every T-continuous real-valued function with compact
support is continuous. PPP Let Φ be the set of continuous functions of compact support for T. If S is a
topology on X such that every member of Φ is continuous, and x ∈ G ∈ T, then there is an f ∈ Φ such that
f(x) = 1 and f(y) = 0 for y ∈ X \G, by (i). Now f is S-continuous, by hypothesis, so H = {y : f(y) > 1

2}
belongs to S and x ∈ H ⊆ G. As x is arbitrary, G = intSG belongs to S; as G is arbitrary, T ⊆ S. QQQ

(f)(i) A topological space X is countably compact iff every sequence in X has a cluster point in X, that
is, X is relatively countably compact in itself. (Engelking 89, 3.10.3; Császár 78, 5.3.31(e); Gaal 64,
p. 129.)

(ii) If X is a countably compact topological space and 〈Fn〉n∈N is a sequence of closed sets such that⋂
i≤n Fi 6= ∅ for every n ∈ N, then

⋂
n∈N Fn 6= ∅. (Engelking 89, 3.10.3; Császár 78, 5.3.31(c).)

(iii) In any topological space, a relatively compact set is relatively countably compact (2A3Ob).
(iv) Let X and Y be topological spaces and f : X → Y a continuous function. If A ⊆ X is relatively

countably compact in X, then f [A] is relatively countably compact in Y . PPP Let 〈yn〉n∈N be a sequence in
f [A]. Then there is a sequence 〈xn〉n∈N in A such that f(xn) = yn for every n ∈ N. Because A is relatively
countably compact, 〈xn〉n∈N has a cluster point x ∈ X. If n0 ∈ N and H is an open set containing f(x),
there is an n ≥ n0 such that xn ∈ f−1[H], so that yn ∈ H. Thus f(x) is a cluster point of 〈yn〉n∈N; as
〈yn〉n∈N is arbitrary, f [A] is relatively countably compact. QQQ

(v) A relatively countably compact set in R must be bounded. (If A ⊆ R is unbounded there is a
sequence 〈xn〉n∈N in A such that |xn| ≥ n for every n.) So if X is a topological space, A ⊆ X is relatively
countably compact and f : X → R is continuous, then f [A] is bounded.

(vi) If X and Y are topological spaces and f : X → Y is continuous, then f [A] is countably compact
whenever A ⊆ X is countably compact. (Engelking 89, 3.10.5.)

(g)(i) Let X and Y be topological spaces and φ : X×Y → R a continuous function. Define θ : X → C(Y )
by setting θ(x)(y) = φ(x, y) for x ∈ X, y ∈ Y . Then θ is continuous if we give C(Y ) the topology of uniform
convergence on compact subsets of Y . (As noted in Engelking 89, pp. 157-158, the topology of uniform
convergence on compact sets is the ‘compact-open’ topology of C(Y ), as defined in 441Yi, so the result here
is covered by Engelking 89, 3.4.1.)

(ii) In particular, if Y is compact then θ is continuous if we give C(Y ) its usual norm topology.
(iii) Let X be a locally compact topological space, and give C(X) the topology of uniform convergence

on compact subsets of X. Then the function (f, x) 7→ f(x) : C(X) × X → R is continuous. PPP Take
g ∈ C(X), y ∈ X and ǫ > 0. Let K ⊆ X be a compact set such that y ∈ intK. Then V = {f : f ∈ C(X),
|f(x) − g(x)| ≤ 1

2ǫ for every x ∈ K} is a neighbourhood of g, and U = {x : x ∈ K, |g(x) − g(y)| ≤ 1
2ǫ} is a

neighbourhood of y. If f ∈ V and x ∈ U , then

|f(x) − g(y)| ≤ |f(x) − g(x)| + |g(x) − g(y)| ≤ ǫ. QQQ

(h)(i) Suppose that X is a compact space such that there are no non-trivial convergent sequences in X,
that is, no convergent sequences which are not eventually constant. If 〈Fn〉n∈N is a non-increasing sequence
of infinite closed subsets of X, then F =

⋂
n∈N Fn is infinite. PPP Because X is compact, F cannot be empty

(3A3Da). Choose a sequence 〈xn〉n∈N such that xn ∈ Fn \ {xi : i < n} for each n ∈ N. If G ⊇ F is an open
set, then

⋂
n∈N Fn \ G = ∅, so there must be some n ∈ N such that Fn ⊆ G, and xi ∈ G for i ≥ n. ??? If

F = {y0, . . . , yk}, let l ≤ k be the first point such that whenever G ⊇ {y0, . . . , yl} is open, then {i : xi /∈ G}
is finite. Then there is an open set G′ ⊇ {yj : j < l} such that I = {i : xi /∈ G′} is infinite. But if H is
any open set containing yl, then {i : xi /∈ G′ ∪ H} is finite, so {i : i ∈ I, xi /∈ H} is finite. Thus if we
re-enumerate 〈xi〉i∈I as 〈x′n〉n∈N, 〈x′n〉n∈N converges to yl and is a non-trivial convergent sequence. XXX Thus
F is infinite, as claimed. QQQ

(ii) If X is an infinite scattered compact Hausdorff space it has a non-trivial convergent sequence. PPP

Let 〈xn〉n∈N be any sequence of distinct points in X. Set Fn = {xi : i ≥ n} for each n, so that F =
⋂

n∈N Fn

is a non-empty set. Because X is scattered, F has an isolated point z say; let G be an open set such that
F ∩ G = {z}, and H an open set such that z ∈ H ⊆ H ⊆ G (3A3Bb). In this case, I = {i : xi ∈ H}
must be infinite; re-enumerate 〈xi〉i∈I as 〈x′n〉n∈N. ??? If 〈x′n〉n∈N does not converge to z, there is an open
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set H ′ containing z such that {n : x′n /∈ H ′} is infinite, that is, {i : i ∈ I, xi /∈ H ′} is infinite. In this case,
Fn ∩H \H ′ is non-empty for every n ∈ N, but F ∩H \H ′ = ∅, which is impossible. XXX Thus 〈x′n〉n∈N is a
non-trivial convergent sequence in X. QQQ

(iii) If X is an extremally disconnected Hausdorff space (definition: 3A3Af), it has no non-trivial
convergent sequence. PPP??? Suppose, if possible, that there is a sequence 〈xn〉n∈N converging to x ∈ X such
that {n : xn 6= x} is infinite. Choose 〈ni〉i∈N and 〈Gi〉i∈N inductively, as follows. Given that x /∈ Gj for

j < i, there is an ni such that xni
6= x and xni

/∈ Gj for every j < i; now let Gi be an open set such that

xni
∈ Gi and x /∈ Gi, and continue.

Since all the ni must be distinct, 〈xni
〉i∈N → x. But consider

G =
⋃

i∈NG2i \
⋃

j<2iGj , H =
⋃

i∈NG2i+1 \
⋃

j≤2iGj .

Then G and H are disjoint open sets and xn2i
∈ G, xn2i+1

∈ H for every i. So x ∈ G ∩H. But G is open

(because X is extremally disconnected), and is disjoint from H, and now H is disjoint from G; so they
cannot both contain x. XXXQQQ

(i)(i) If X and Y are compact Hausdorff spaces and f : X → Y is a continuous surjection then there
is a closed set K ⊆ X such that f [K] = Y and f↾K is irreducible. PPP Let E be the family of closed sets
F ⊆ X such that f [F ] = Y . If F ⊆ E is non-empty and downwards-directed, then for any y ∈ Y the family
{F ∩f−1[{y}] : F ∈ F} is a downwards-directed family of non-empty closed sets, so (because X is compact)
has non-empty intersection; this shows that

⋂
F ∈ E . By Zorn’s Lemma, E has a minimal element K say.

Now f [K] = Y but f [F ] 6= Y for any closed proper subset of K, so f↾K is irreducible. QQQ
(ii) If X and Y are compact Hausdorff spaces and f : X → Y is an irreducible continuous surjection,

then (α) if U is a π-base for the topology of Y then {f−1[U ] : U ∈ U} is a π-base for the topology of X (β)
if Y has a countable π-base so does X (γ) if x is an isolated point in X then f(x) is an isolated point in Y
(δ) if Y has no isolated points, nor does X. PPP (α) If G ⊆ X is a non-empty open set then f [X \ G] 6= Y .
As f [X \ G] is closed, there is a non-empty U ∈ U disjoint from f [X \ G]. Now f−1[U ] is a non-empty
subset of G. (β) Follows at once from (α). (γ) By (α), with U the family of all open subsets of Y , there is a
non-empty open set U ⊆ Y such that f−1[U ] ⊆ {x}, that is, U = {f(x)}. (δ) Follows at once from (γ). QQQ

(j)(i) Let X be a non-empty compact Hausdorff space without isolated points. Then there are a closed
set F ⊆ X and a continuous surjection f : F → {0, 1}N. PPP For σ ∈

⋃
n∈N{0, 1}n choose closed sets Vσ ⊆ X

inductively, as follows. V∅ = X. Given that Vσ is a closed set with non-empty interior, there are distinct
points x, y ∈ intVσ (because X has no isolated points); let G, H be disjoint open subsets of X such that
x ∈ G and y ∈ H; and let Vσa<0> and Vσa<1> be closed sets such that

x ∈ intVσa<0> ⊆ G ∩ intVσ, y ∈ intVσa<1> ⊆ H ∩ intVσ.

(This is possible because X is regular.) The construction ensures that Vτ ⊆ Vσ whenever τ ∈ {0, 1}n extends
σ ∈ {0, 1}m, and that Vτ ∩ Vσ = ∅ whenever τ , σ ∈ {0, 1}n are different. Set F =

⋂
n∈N

⋃
σ∈{0,1}n Vσ; then

F is a closed subset of X and we have a continuous function f : F → {0, 1}N defined by saying that
f(x)(i) = σ(i) whenever n ∈ N, σ ∈ {0, 1}n, i < n and x ∈ Vσ. Finally, f is surjective, because if z ∈ {0, 1}N

then 〈Vz↾n〉n∈N is a non-increasing sequence of closed sets in the compact space X, so has non-empty
intersection V say, and f(x) = z for any x ∈ V . QQQ

(ii) If X is a non-empty compact Hausdorff space without isolated points, then #(X) ≥ c. (Use (i).)
(iii) If X is a compact Hausdorff space which is not scattered, it has an infinite closed subset with a

countable π-base and no isolated points. PPP Because X is not scattered, it has a non-empty subset A without
isolated points. Then A is compact and has no isolated points; by (i), there are a closed set F0 ⊆ A and a
continuous surjection f : F0 → {0, 1}N. By (i-i) above, there is a closed F ⊆ F0 such that f [F ] = {0, 1}N

and f↾F is irreducible. Of course F is infinite; by (i-ii), it has a countable π-base and no isolated points. QQQ
(iv) Let X be a compact Hausdorff space. Then there is a continuous surjection from X onto [0, 1]

iff X is not scattered. PPP (α) Suppose that f : X → [0, 1] is a continuous surjection. By (i-i) again, there
is a closed set F ⊆ X such that f [F ] = [0, 1] and f↾F is irreducible; by (i-ii) F has no isolated points.
So X is not scattered. (β) If X is not scattered, let A ⊆ X be a non-empty set with no isolated points.
Then A is a non-empty compact subset of X with no isolated points, so there is a continuous surjection
g : A → {0, 1}N ((i) of this subparagraph). Now there is a continuous surjection h : {0, 1}N → [0, 1] (e.g.,
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set h(y) =
∑∞

n=0 2−n−1y(n) for y ∈ {0, 1}N), so we have a continuous surjection hg : A → [0, 1]. By
Tietze’s theorem (4A2F(d-ix)), there is a continuous function f0 : X → R extending hg; setting f(x) =
med(0, f0(x), 1) for x ∈ X, we have a continuous surjection f : X → [0, 1]. QQQ

(v) A Hausdorff continuous image of a scattered compact Hausdorff space is scattered. (Immediate
from (iv).)

(vi) If X is an uncountable first-countable compact Hausdorff space, it is not scattered. PPP Let G be
the family of countable open subsets of X, and G∗ its union. No finite subset of G can cover X, so X \G∗

is non-empty. ??? If x is an isolated point of X \G∗, then {x} ∪G∗ is a neighbourhood of x; let 〈Un〉n∈N run
over a base of open neighbourhoods of x with U0 ⊆ {x} ∪G∗. For each n ∈ N, Fn = U0 \ Un is a compact
set included in G∗, so is covered by finitely many members of G, and is countable. But this means that
U0 = {x} ∪

⋃
n∈N U0 \ Un is countable, and x ∈ G∗. XXX Thus X \ G∗ is a non-empty set with no isolated

points, and X is not scattered. QQQ
It follows that there is a continuous surjection from X onto [0, 1], by (iv).

(k) A locally compact Hausdorff space is Čech-complete. (Engelking 89, p. 196.)

(l) If X is a topological space, f : X → R is lower semi-continuous, and K ⊆ X is compact and not
empty, then there is an x0 ∈ K such that f(x0) = infx∈K f(x). (Gaal 64, p. 209 Theorem 3.) Similarly, if
g : X → R is upper semi-continuous, there is an x1 ∈ K such that g(x1) = supx∈K g(x).

(m) If X is a Hausdorff space, Y is a compact space and F ⊆ X × Y is closed, then its projection
{x : (x, y) ∈ F} is a closed subset of X. (Engelking 89, 3.1.16.)

(n) If X is a locally compact topological space, Y is a topological space and f : X → Y is a continuous
open surjection, then Y is locally compact. (Engelking 89, 3.3.15.)

4A2H Lindelöf spaces (a) If X is a topological space, then a subset Y of X is Lindelöf (in its subspace
topology) iff for every family G of open subsets of X covering Y there is a countable subfamily of G still
covering Y .

(b)(i) A regular Lindelöf spaceX is normal (therefore completely regular) and paracompact. (Engelking
89, 3.8.11 & 5.1.2.)

(ii) If X is a Lindelöf space and A is a locally finite family of subsets of X then A is countable. PPP
The family G of open sets meeting only finitely many members of A is an open cover of X. If G0 ⊆ G is a
countable cover of X then {A : A ∈ A, A meets some member of G0} = A \ {∅} is countable. QQQ

(c)(i) A topological space X is hereditarily Lindelöf iff for any family G of open subsets of X there is a
countable family G0 ⊆ G such that

⋃
G0 =

⋃
G. PPP (α) If X is hereditarily Lindelöf and G is a family of

open subsets of X, then G is an open cover of
⋃
G, so has a countable subcover. (β) If X is not hereditarily

Lindelöf, let Y ⊆ X be a non-Lindelöf subspace, and H a cover of Y by relatively open sets which has no
countable subcover; setting G = {G : G ⊆ X is open, G ∩ Y ∈ H}, there can be no countable G0 ⊆ G with
union

⋃
G. QQQ

(ii) Let X be a regular hereditarily Lindelöf space. Then X is perfectly normal. PPP Let F ⊆ X be
closed. Let G be the family of open sets G ⊆ X such that G ∩ F = ∅; because X is regular,

⋃
G = X \ F ;

because X is hereditarily Lindelöf, there is a sequence 〈Gn〉n∈N in G such that X \ F =
⋃

n∈NGn. This

means that F =
⋂

n∈NX \Gn is a Gδ set. But X is normal ((b) above), so is perfectly normal. QQQ

(d) Any σ-compact topological space is Lindelöf. (Engelking 89, 3.8.5.)

4A2I Stone-Čech compactifications (a) Let X be a completely regular Hausdorff space. Then there
is a compact Hausdorff space βX, the Stone-Čech compactification of X, in which X can be embedded
as a dense subspace. If Y is another compact Hausdorff space, then every continuous function from X to Y
has a unique continuous extension to a continuous function from βX to Y . (Engelking 89, 3.6.1; Császár

78, 6.4d; Čech 66, 41D.5.)
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(b) Let I be any set, and write βI for its Stone-Čech compactification when I is given its discrete
topology. Let Z be the Stone space of the Boolean algebra PI.

(i) There is a canonical homeomorphism φ : βI → Z defined by saying that φ(i)(a) = χa(i) for every
i ∈ I and a ⊆ I. PPP Recall that Z is the set of ring homomorphisms from PI onto Z2 (311E). If i ∈ I, let

î be the corresponding member of Z defined by setting î(a) = χa(i) for every a ⊆ I. Then Z is compact

and Hausdorff (311I), and i 7→ î : I → Z is continuous, so has a unique extension to a continuous function
φ : βI → Z.

If G ⊆ Z is open and not empty, it includes a set of the form â = {θ : θ ∈ Z, θ(a) = 1} where a ⊆ I is

not empty; if i is any member of a, î ∈ â ⊆ G so G ∩ φ[βI] 6= ∅. This shows that φ[βI] is dense in Z; as βI
is compact, φ[βI] is compact, therefore closed, and is equal to Z. Thus φ is surjective.

If t, u are distinct points of βI, there is an open subset H of βI such that t ∈ H and u /∈ H. Set a = H∩I.
Then t ∈ a, the closure of a regarded as a subset of βI, so φ(t) ∈ φ[a] (3A3Cd). But φ[a] = {̂i : i ∈ a} ⊆ â,

which is open-and-closed, so φ(t) ∈ â. Similarly, setting b = I \H, φ(u) ∈ b̂; since â ∩ b̂ = â ∩ b is empty,
φ(t) 6= φ(u). This shows that φ is injective, therefore a homeomorphism between βI and Z (3A3Dd). QQQ

Note that if z : PI → Z2 is a Boolean homomorphism, then {J : z(J) = 1} is an ultrafilter on I; and
conversely, if F is an ultrafilter on I, we have a Boolean homomorphism z : PI → Z2 such that F = z−1[{1}].
So we can identify βI with the set of ultrafilters on I. Under this identification, the canonical embedding
of I in βI corresponds to matching each member of I with the corresponding principal ultrafilter on I.

(ii) C(βI) is isomorphic, as Banach lattice, to ℓ∞(I). PPP By 363Ha, we can identify ℓ∞(I), as Banach
lattice, with L∞(PI) = C(Z). But (i) tells us that we have a canonical identification between C(Z) and
C(βI). QQQ

(iii) We have a one-to-one correspondence between filters F on I and non-empty closed sets F ⊆ βI,
got by matching F with

⋂
{â : a ∈ F}, or F with {a : a ⊆ I, F ⊆ â}, where â ⊆ βI is the open-and-closed

set corresponding to a ⊆ I. PPP The identification of βI with Z means that we can regard the map a 7→ â as
a Boolean isomorphism between PI and the algebra of open-and-closed subsets of βI (311I). For any filter
F on I, set H(F) =

⋂
{â : a ∈ F}; because {â : a ∈ F} is a downwards-directed family of non-empty closed

sets in the compact Hausdorff space βI, H(F) is a non-empty closed set. If F ⊆ βI is a non-empty closed
set, then it is elementary to check that H(F ) = {a : F ⊆ â} is a filter on I, and evidently H(H(F )) ⊇ F .
But if t ∈ βI \F , then (because {â : a ⊆ I} is a base for the topology of βI, see 311I again) there is an a ⊆ I

such that t ∈ â and F ∩ â = ∅, that is, F ⊆ Î \ a; so Î \ a ∈ H(F ) and H(H(F )) ⊆ Î \ a and t /∈ H(H(F )).
Thus H(H(F )) = F for every non-empty closed set F ⊆ βI.

If F1 and F2 are filters on I and a ∈ F1 \ F2, then {b̂ \ a : b ∈ F2} is a downwards-directed family

of non-empty closed sets in βI, so has non-empty intersection; if t ∈ b̂ \ a = b̂ \ â for every b ∈ F2, then
t ∈ H(F2) \H(F1). This shows that F 7→ H(F) is injective. It follows that F 7→ H(F), F 7→ H(F ) are the
two halves of a bijection, as claimed. QQQ

(iv) βI is extremally disconnected. (Because PI is Dedekind complete, Z is extremally disconnected
(314S).)

(v) There are no non-trivial convergent sequences in βI. (4A2G(h-iii). Compare Engelking 89,
3.6.15.)

4A2J Uniform spaces (See §3A4.) Let (X,W) be a uniform space; give X the induced topology T

(3A4Ab).

(a) W is generated by a family of pseudometrics. (Engelking 89, 8.1.10; Bourbaki 66, IX.1.4;
Császár 78, 4.2.32.) More precisely: if 〈Wn〉n∈N is any sequence in W, there is a pseudometric ρ on X such
that (α) {(x, y) : ρ(x, y) ≤ ǫ} ∈ W for every ǫ > 0 (β) whenever n ∈ N and ρ(x, y) < 2−n then (x, y) ∈ Wn

(Engelking 89, 8.1.10).
It follows that T is completely regular, therefore regular (3A3Be). T is defined by the bounded uniformly

continuous real-valued functions on X, in the sense that it is the coarsest topology S on X such that these
are all continuous. PPP Let P be the family of pseudometrics compatible with W in the sense of (α) just
above. If x ∈ G ∈ T, there is a ρ ∈ P such that {y : ρ(x, y) < 1} ⊆ G; setting f(y) = ρ(x, y), we see that
f is uniformly continuous, therefore S-continuous, and that x ∈ intSG. As x is arbitrary, G ∈ S; as G is
arbitrary, T ⊆ S; but of course S ⊆ T just because uniformly continuous functions are continuous. QQQ

D.H.Fremlin



20 Appendix 4A2Jb

(b) If W is countably generated and T is Hausdorff, there is a metric ρ on X defining W and T.
(Engelking 89, 8.1.21.)

(c) If W ∈ W and x ∈ X then x ∈ intW [{x}]. (Engelking 89, 8.1.3.) If A ⊆ X then A =
⋂

W∈W W [A].
(Engelking 89, 8.1.4.)

(d) Any subset of a totally bounded set in X is totally bounded. (Engelking 89, 8.3.2; Császár 78,
3.2.70.) The closure of a totally bounded set is totally bounded. PPP If A is totally bounded and W ∈ W,
take W ′ ∈ W such that W ′ ◦W ′ ⊆W . Then there is a finite set I ⊆ X such that A ⊆W ′[I]. In this case

A ⊆W ′[A] ⊆W ′[W ′[I]] = (W ′ ◦W ′)[I] ⊆W [I]

by (b). As W is arbitrary, A is totally bounded. QQQ

(e) A subset of X is compact iff it is complete (definition: 3A4F) (for its subspace uniformity) and totally
bounded. (Engelking 89, 8.3.16; Čech 66, 41A.8; Császár 78, 5.2.22; Gaal 64, pp. 278-279.) So if X
is complete, every closed totally bounded subset of X is compact, and the totally bounded sets are just the
relatively compact sets. (A closed subspace of a complete space is complete.)

(f) If f : X → R is a continuous function with compact support, it is uniformly continuous. PPP Set

K = {x : f(x) 6= 0}. Let ǫ > 0. For each x ∈ X, there is a Wx ∈ W such that |f(y) − f(x)| ≤ 1
2ǫ whenever

y ∈Wx[{x}]. Let W ′
x ∈ W be such that W ′

x ◦W ′
x ⊆Wx. Set Gx = intW ′

x[{x}]; then x ∈ Gx, by (b). Because
K is compact, there is a finite set I ⊆ K such that K ⊆

⋃
x∈I Gx. Set W = (X ×X)∩

⋂
x∈I W

′
x ∈ W. Take

any (y, z) ∈W ∩W−1. If neither y nor z belongs to K, then of course |f(y)− f(z)| ≤ ǫ. If y ∈ K, let x ∈ I
be such that y ∈ Gx. Then

y ∈W ′
x[{x}] ⊆Wx[{x}], z ∈W [W ′

x[{x}]] ⊆W ′
x[W ′

x[{x}]] ⊆Wx[{x}],

so

|f(y) − f(z)| ≤ |f(y) − f(x)| + |f(z) − f(x)| ≤ ǫ.

The same idea works if z ∈ K. So |f(y)− f(z)| ≤ ǫ for all y, z ∈W ∩W−1; as ǫ is arbitrary, f is uniformly
continuous. QQQ

(g)(i) If (Y,S) is a completely regular space, there is a uniformity on Y which induces S. (Engelking
89, 8.1.20.)

(ii) If (Y,S) is a compact completely regular topological space, there is exactly one uniformity on Y
which induces S; it is defined by the set of all those pseudometrics on Y which are continuous as functions
from Y × Y to R. (Engelking 89, 8.3.13; Gaal 64, p. 304.)

(iii) If (Y,S) is a compact completely regular space and V is the uniformity on Y inducing S, then any
continuous function from Y to X is uniformly continuous. (Gaal 64, p. 305 Theorem 8.)

(h) The set U of uniformly continuous real-valued functions on X is a Riesz subspace of RX containing
the constant functions. If a sequence in U converges uniformly, the limit function again belongs to U .
(Császár 78, 3.2.64; Gaal 64, p. 237 Lemma 4.)

(i) Let (Y,V) be another uniform space. If F is a Cauchy filter on X and f : X → Y is a uniformly
continuous function, then f [[F ]] is a Cauchy filter on Y . (Császár 78, 5.1.2.)

4A2K First-countable, sequential and countably tight spaces (a) Let X be a countably tight
topological space. If 〈Fξ〉ξ<ζ is a non-decreasing family of closed subsets of X indexed by an ordinal ζ, then
E =

⋃
ξ<ζ Fξ is an Fσ set, and is closed unless cf ζ = ω. PPP If cf ζ = 0, that is, ζ = 0, then E = ∅ is closed.

If cf ζ = 1, that is, ζ = ξ + 1 for some ordinal ξ, then E = Fξ is closed. If cf ζ = ω, there is a sequence

〈ξn〉n∈N in ζ with supremum ζ, so that E =
⋃

n∈N Fξn is Fσ. If cf ζ > ω, take x ∈ E. Then there is a

sequence 〈xn〉n∈N in E such that x ∈ {xn : n ∈ N}. For each n there is a ξn < ζ such that xn ∈ Fξn , and

now ξ = supn∈N ξn < ζ and x ∈ F ξ = Fξ ⊆ E. As x is arbitrary, E is closed. QQQ
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(b) If X is countably tight, any subspace of X is countably tight, just because if A ⊆ Y ⊆ X then the
closure of A in Y is the intersection of Y with the closure of A in X. If X is compact and countably tight,
then any Hausdorff continuous image of X is countably tight. PPP Let f : X → Y be a continuous surjection,
where Y is Hausdorff, B a subset of Y and y ∈ B. Set A = f−1[B]. Then A is compact, so f [A] is compact,

therefore closed; because f is surjective, y ∈ f [A] ⊆ f [A], and there is an x ∈ A such that f(x) = y. Now
there is a countable set A0 ⊆ A such that x ∈ A0, in which case

y = f(x) ∈ f [A0] ⊆ f [A0],

while f [A0] is a countable subset of B. QQQ

(c) If X is a sequential space, it is countably tight. PPP Suppose that A ⊆ X and x ∈ A. Set B =
⋃
{C :

C ⊆ A is countable}. If 〈yn〉n∈N is a sequence in B converging to y ∈ X, then for each n ∈ N we can
find a countable set Cn ⊆ A such that yn ∈ Cn, and now C =

⋃
n∈N Cn is a countable subset of A such

that y ∈ C ⊆ B. So B is sequentially closed, therefore closed, and x ∈ B. As A and x are arbitrary, X is
countably tight. QQQ

(d) If X is a sequential space, Y is a topological space and f : X → Y is sequentially continuous, then f
is continuous. (Engelking 89, 1.6.15.)

(e) First-countable spaces are sequential. (Engelking 89, 1.6.14.)

(f) Let X be a locally compact Hausdorff space in which every singleton set is Gδ. Then X is first-
countable. PPP If {x} =

⋂
n∈NGn where each Gn is open, then for each n ∈ N we can find a compact set Fn

such that x ∈ intFn ⊆ Gn. By 4A2Gd, {
⋂

i≤n Fi : n ∈ N} is a base of neighbourhoods of x. QQQ

4A2L (Pseudo-)metrizable spaces ‘Pseudometrizable’ spaces, as such, hardly appear in this volume,
for the usual reasons; they surface briefly in §463. It is perhaps worth noting, however, that all the ideas,
and very nearly all the results, in this paragraph apply equally well to pseudometrics and pseudometrizable
topologies. If X is a set and ρ is a pseudometric on X, set U(x, δ) = {y : ρ(x, y) < δ} for x ∈ X and δ > 0.

(a) Any subspace of a (pseudo-)metrizable space is (pseudo-)metrizable (2A3J). A topological space is
metrizable iff it is pseudometrizable and Hausdorff (2A3L).

(b) Metrizable spaces are paracompact (Engelking 89, 5.1.3; Császár 78, 8.3.16; Čech 66, 30C.2;
Gaal 64, p. 155), therefore hereditarily metacompact ((a) above and 4A2F(g-i)).

(c) A metrizable space is perfectly normal (Engelking 89, 4.1.13; Császár 78, 8.4.5.), so every closed
set is a zero set and every open set is a cozero set (in particular, is Fσ).

(d) If X is a pseudometrizable space, it is first-countable. (If ρ is a pseudometric defining the topology
of X, and x is any point of X, then {{y : ρ(y, x) < 2−n} : n ∈ N} is a base of neighbourhoods of x.) So X
is sequential and countably tight (4A2Ke, 4A2Kc), and if Y is another topological space and f : X → Y is
sequentially continuous, then f is continuous (4A2Kd).

(e) Relative compactness Let X be a pseudometrizable space and A a subset of X. Then the following
are equiveridical: (α) A is relatively compact; (β) A is relatively countably compact; (γ) every sequence in
A has a subsequence with a limit in X. PPP Fix a pseudometric ρ defining the topology of X. (α)⇒(β) by
4A2G(f-iii). If 〈xn〉n∈N is a sequence in A with a cluster point x ∈ X, then we can choose 〈ni〉i∈N inductively
such that ρ(xni

, x) ≤ 2−i and ni+1 > ni for every i; now 〈xni
〉i∈N → x; it follows that (β)⇒(γ). Now assume

that (α) is false. Then there is an ultrafilter F on X containing A which has no limit in X (3A3Be, 3A3De).
If F is a Cauchy filter, choose Fn ∈ F such that ρ(x, y) ≤ 2−n whenever x, y ∈ Fn, and xn ∈ A ∩

⋂
i≤n Fi

for each n; then it is easy to see that 〈xn〉n∈N is a sequence in A with no convergent subsequence. If F is
not a Cauchy filter, let ǫ > 0 be such that there is no F ∈ F such that ρ(x, y) ≤ ǫ for every x, y ∈ F . Then
X \ U(x, 12ǫ) ∈ F for every x ∈ X, so we can choose 〈xn〉n∈N inductively such that xn ∈ A \

⋃
i<n U(xi,

1
2ǫ)

for every n ∈ N, and again we have a sequence 〈xn〉n∈N in A with no convergent subsequence in X. Thus
not-(α)⇒ not-(γ) and the proof is complete. QQQ
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(f) Compactness If X is a pseudometrizable space, it is compact iff it is countably compact iff it is
sequentially compact. ((e) above, using 4A2G(f-i). Compare Engelking 89, 4.1.17, and Császár 78,
5.3.33 & 5.3.47.)

(g)(i) If (X, ρ) is a metric space, its topology has a base which is σ-metrically-discrete. PPP Enumerate X as
〈xξ〉ξ<κ where κ is a cardinal. Let 〈(qn, q

′
n)〉n∈N be a sequence running over {(q, q′) : q, q′ ∈ Q, 0 < q < q′}

in such a way that q′n − qn ≥ 2−n for every n ∈ N. For n ∈ N, ξ < κ set Gnξ = {x : ρ(x, xξ) <
qn, infη<ξ ρ(x, xη) > q′n} (interpreting inf ∅ as ∞). Then U = 〈Gnξ〉ξ<κ,n∈N is a σ-metrically-discrete family
of open sets. If G ⊆ X is open and x ∈ G, let ǫ > 0 be such that U(x, 2ǫ) ⊆ G. Let ξ < κ be minimal such
that ρ(x, xξ) < ǫ, and let n ∈ N be such that ρ(x, xξ) < qn < q′n < ǫ; then x ∈ Gnξ ⊆ G. As x and G are
arbitrary, U is a base for the topology of X. QQQ

(ii) Consequently, any metrizable space has a σ-disjoint base. (Compare Engelking 89, 4.4.3;
Császár 78, 8.4.5; Kuratowski 66, §21.XVII.)

(h) The product of a countable family of metrizable spaces is metrizable. (Engelking 89, 4.2.2; Császár

78, 7.3.27.)

(i) Let X be a metrizable space and κ ≥ ω a cardinal. Then w(X) ≤ κ iff X has a dense subset with
cardinal at most κ. (Engelking 89, 4.1.15.)

(j) If (X, ρ) is any metric space, then the balls B(x, δ) = {y : ρ(y, x) ≤ δ} are all closed sets (cf. 1A2G).
In particular, in a normed space (X, ‖ ‖), the balls B(x, δ) = {y : ‖y − x‖ ≤ δ} are closed.

4A2M Complete metric spaces (a) Baire’s theorem for complete metric spaces Every complete
metric space is a Baire space. (Engelking 89, 4.3.36 & 3.9.4; Kechris 95, 8.4; Császár 78, 9.2.1 & 9.2.8;
Gaal 64, p. 287.) So a non-empty complete metric space is not meager (cf. 3A3Ha).

(b) Let 〈(Xi, ρi)〉i∈I be a countable family of complete metric spaces. Then there is a complete metric on
X =

∏
i∈I Xi which defines the product topology on X. (Engelking 89, 4.3.12; Kuratowski 66, §33.III.)

(c) Let (X, ρ) be a complete metric space, and E ⊆ X a Gδ set. Then there is a complete metric on E
which defines the subspace topology of E. (Engelking 89, 4.3.23; Kuratowski 66, §33.VI; Kechris 95,
3.11.)

(d) Let (X, ρ) be a complete metric space. Then it is Čech-complete. (Engelking 89, 4.3.26.)

(e) A non-empty complete metric space without isolated points is uncountable. (If x is not isolated, {x}
is nowhere dense.)

4A2N Countable networks: Proposition (a) If X is a topological space with a countable network,
any subspace of X has a countable network.

(b) Let X be a space with a countable network. Then X is hereditarily Lindelöf. If it is regular, it is
perfectly normal.

(c) If X is a topological space, and 〈An〉n∈N is a sequence of subsets of X each of which has a countable
network (for its subspace topology), then A =

⋃
n∈NAn has a countable network.

(d) A continuous image of a space with a countable network has a countable network.
(e) Let 〈Xi〉i∈I be a countable family of topological spaces with countable networks, with product X.

Then X has a countable network.
(f) If X is a Hausdorff space with a countable network, there is a countable family G of open sets such

that whenever x, y are distinct points in X there are disjoint G, H ∈ G such that x ∈ G and y ∈ H.
(g) If X is a regular topological space with a countable network, it has a countable network consisting of

closed sets.
(h) A compact Hausdorff space with a countable network is second-countable.
(i) If a topological space X has a countable network, then any dense set in X includes a countable dense

set; in particular, X is separable.

Measure Theory



4A2O General topology 23

(j) If a topological space X has a countable network, then C(X), with the topology of pointwise conver-
gence inherited from the product topology of RX , has a countable network.

proof (a) If E is a countable network for the topology of X, and Y ⊆ X, then {Y ∩ E : E ∈ E} is a
countable network for the topology of Y .

(b) By Engelking 89, 3.8.12 X is Lindelöf. Since any subspace of X has a countable network ((a)
above), it also is Lindelöf, and X is hereditarily Lindelöf. By 4A2H(c-ii), if X is regular, it is perfectly
normal.

(c) If En is a countable network for the topology of An for each n, then
⋃

n∈N En is a countable network
for the topology of A.

(d) Let X be a topological space with a countable network E , and Y a continuous image of X. Let
f : X → Y be a continuous surjection. Then {f [E] : E ∈ E} is a network for the topology of Y . PPP If
H ⊆ Y is open and y ∈ H, then f−1[H] is an open subset of X and there is an x ∈ X such that f(x) = y.
Now there must be an E ∈ E such that x ∈ E ⊆ f−1[H], so that y ∈ f [E] ⊆ H. QQQ But {f [E] : E ∈ E} is
countable, so Y has a countable network.

(e) For each i ∈ I let Ei be a countable network for the topology of Xi. For each finite J ⊆ I, let CJ be
the family of sets expressible as

∏
i∈I Ei where Ei ∈ Ei for each i ∈ J and Ei = Xi for i ∈ I \ J ; then CJ is

countable because Ei is countable for each i ∈ J . Because the family [I]<ω of finite subsets of I is countable
(3A1Cd), E =

⋃
{CJ : J ∈ [I]<ω} is countable. But E is a network for the topology of X. PPP If G ⊆ X is

open and x ∈ G, then there is a family 〈Gi〉i∈I such that every Gi ⊆ Xi is open, J = {i : Gi 6= Xi} is finite,
and x ∈

∏
i∈I Gi. For i ∈ J , there is an Ei ∈ Ei such that x(i) ∈ Ei ⊆ Gi; set Ei = Xi for i ∈ I \ J . Then

E =
∏

i∈I Ei ∈ CJ ⊆ E

and x ∈ E ⊆ G. QQQ
So E is a countable network for the topology of X.

(f) By (b) and (e), X ×X is hereditarily Lindelöf. In particular, W = {(x, y) : x 6= y} is Lindelöf. Set

V = {G×H : G, H ⊆ X are open, G ∩H = ∅}.

Because X is Hausdorff, V is a cover of W . So there is a countable V0 ⊆ V covering W . Set

G = {G : G×H ∈ V0} ∪ {H : G×H ∈ V0}.

Then G is a countable family of open sets separating the points of X.

(g) Let E be a countable network for the topology of X. Set E ′ = {E : E ∈ E}. If G ⊆ X is open and
x ∈ G, then (because the topology is regular) there is an open set H such that x ∈ H ⊆ H ⊆ G. Now there
is an E ∈ E such that x ∈ E ⊆ H, in which case E ∈ E ′ and x ∈ E ⊆ G. So E ′ is a countable network for
X consisting of closed sets.

(h) Engelking 89, 3.1.19.

(i) Let D ⊆ X be dense, and E a countable network for the topology of X. Let D′ ⊆ D be a countable
set such that D′ ∩ E 6= ∅ whenever E ∈ E and D ∩ E 6= ∅. If G ⊆ X is open and not empty, there is an
x ∈ D ∩G; now there is an E ∈ E such that x ∈ E ⊆ G, and as x ∈ D ∩ E there must be an x′ ∈ D′ ∩ E,
so that x′ ∈ D′ ∩G. As G is arbitrary, D′ is dense in X.

Taking D = X, we see that X has a countable dense subset.

(j) Let E be a countable network for the topology of X and U a countable base for the topology of R
(4A2Ua). For E ∈ E and U ∈ U set H(E,U) = {f : f ∈ C(X), E ⊆ f−1[U ]}. Then the set of finite
intersections of sets of the form H(E,U) is a countable network for the topology of pointwise convergence
on C(X). (Compare 4A2Oe.)

4A2O Second-countable spaces (a) Let (X,T) be a topological space and U a countable subbase for
T. Then T is second-countable. ({X} ∪ {U0 ∩ U1 ∩ . . . ∩ Un : U0, . . . , Un ∈ U} is countable and is a base
for T, by 4A2B(a-i).)
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(b) Any base of a second-countable space includes a countable base. (Császár 78, 2.4.17.)

(c) A second-countable space has a countable network (because a base is also a network), so is separable
and hereditarily Lindelöf (Engelking 89, 1.3.8 & 3.8.1, 4A2Nb, 4A2Ni).

(d) The product of a countable family of second-countable spaces is second-countable. (Engelking 89,
2.3.14.)

(e) If X is a second-countable space then C(X), with the topology of uniform convergence on compact
sets, has a countable network. PPP (See Engelking 89, Ex. 3.4H.) Let U be a countable base for the topology
of X and V a countable base for the topology of R (4A2Ua). For U ∈ U , V ∈ V set H(U, V ) = {f : f ∈ C(X),
U ⊆ f−1[V ]}. Then the set of finite intersections of sets of the form H(U, V ) is a countable network for the
topology of uniform convergence on compact subsets of X. QQQ

4A2P Separable metrizable spaces (a)(i) A metrizable space is second-countable iff it is separable.
(Engelking 89, 4.1.16; Császár 78, 2.4.16; Gaal 64 p. 120.)

(ii) A compact metrizable space is separable (Engelking 89, 4.1.18; Császár 78, 5.3.35; Kura-

towski 66, §21.IX), so is second-countable and has a countable network.
(iii) Any base of a separable metrizable space includes a countable base (4A2Ob), which is also a

countable network, so the space is hereditarily Lindelöf (4A2Nb).
(iv) Any subspace of a separable metrizable space is separable and metrizable (4A2La, 4A2Na, 4A2Ni).
(v) A countable product of separable metrizable spaces is separable and metrizable (4A2B(e-ii), 4A2Lh).

(b) A topological space is separable and metrizable iff it is second-countable, regular and Hausdorff.
(Engelking 89, 4.2.9; Császár 78, 7.1.57; Kuratowski 66, §22.II.)

(c) A Hausdorff continuous image of a compact metrizable space is metrizable. (It is a compact Hausdorff
space, by 2A3N(b-ii), with a countable network, by 4A2Nd, so is metrizable, by 4A2Nh.)

(d) A metrizable space is separable iff it is ccc iff it is Lindelöf. (Engelking 89, 4.1.16.)

(e) If X is a compact metrizable space, then C(X) is separable under its usual norm topology defined
from the norm ‖ ‖∞. (4A2Oe, or Engelking 89, 3.4.16.)

4A2Q Polish spaces: Proposition (a) A countable discrete space is Polish.
(b) A compact metrizable space is Polish.
(c) The product of a countable family of Polish spaces is Polish.
(d) A Gδ subset of a Polish space is Polish in its subspace topology; in particular, a set which is either

open or closed is Polish.
(e) The disjoint union of countably many Polish spaces is Polish.
(f) If X is any set and 〈Tn〉n∈N is a sequence of Polish topologies on X such that Tm ∩ Tn is Hausdorff

for all m, n ∈ N, then the topology T∞ generated by
⋃

n∈N Tn is Polish.
(g) If X is a Polish space, it is homeomorphic to a Gδ set in a compact metrizable space.
(h) If X is a locally compact Hausdorff space, it is Polish iff it has a countable network iff it is metrizable

and σ-compact.

proof (a) Any set X is complete under the discrete metric ρ defined by setting ρ(x, y) = 1 whenever x,
y ∈ X are distinct. This defines the discrete topology, and if X is countable it is separable, therefore Polish.

(b) By 4A2P(a-ii), it is separable; by 4A2Je, any metric defining the topology is complete.

(c) If 〈Xi〉i∈I is a countable family of Polish spaces with product X, then surely X is separable (4A2B(e-
ii)); and 4A2Mb tells us that its topology is defined by a complete metric.

(d) If X is Polish and E is a Gδ set in X, then E is separable, by 4A2P(a-iv), and its topology is defined
by a complete metric, by 4A2Mc. So E is Polish. Any open set is of course a Gδ set, and any closed set is
a Gδ set by 4A2Lc.
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(e) Let 〈Xi〉i∈I be a countable disjoint family of Polish spaces, and X =
⋃

i∈I Xi. For each i ∈ I
let ρi be a complete metric on Xi defining the topology of Xi. Define ρ : X × X → [0,∞[ by setting
ρ(x, y) = min(1, ρi(x, y)) if i ∈ I and x, y ∈ Xi, ρ(x, y) = 1 otherwise. It is easy to check that ρ is a
complete metric on X defining the disjoint union topology on X. X is separable, by 4A2B(e-i), therefore
Polish.

(f) This result is in Kechris 95, 13.3; but I spell out the proof because it is an essential element of some
measure-theoretic arguments. On XN take the product topology T of the topologies Tn. This is Polish, by
(c). Consider the diagonal ∆ = {x : x ∈ XN, x(m) = x(n) for all m, n ∈ N}. This is closed in XN. PPP If
x ∈ XN \ ∆, let m, n ∈ N be such that x(m) 6= x(n). Because Tm ∩ Tn is Hausdorff, there are disjoint G,
H ∈ Tm ∩ Tn such that x(m) ∈ G and x(n) ∈ H. Now {y : y ∈ XN, y(m) ∈ G, y(n) ∈ H} is an open set in
XN containing x and disjoint from ∆. As x is arbitrary, ∆ is closed. QQQ

By (d), ∆, with its subspace topology, is a Polish space. Let f : X → ∆ be the natural bijection, setting
f(t) = x if x(n) = t for every n, and let S be the topology on X which makes f a homeomorphism. The
topology on ∆ is generated by {{x : x ∈ ∆, x(n) ∈ G} : n ∈ N, G ∈ Tn}, so S is generated by {{t : t ∈ X,
t ∈ G} : n ∈ N, G ∈ Tn} =

⋃
n∈N Tn. Thus S = T∞ and T∞ is Polish.

(g) Kechris 95, 4.14.

(h) If X is Polish, then it is separable, therefore Lindelöf (4A2P(a-iii)). Since the family G of relatively
compact open subsets of X covers X, there is a countable G0 ⊆ G covering X, and {G : G ∈ G0} witnesses
that X is σ-compact. Also, of course, X is metrizable.

If X is metrizable and σ-compact, let 〈Kn〉n∈N be a sequence of compact sets covering X; each Kn has
a countable network (4A2P(a-ii)), so X =

⋃
n∈NKn has a countable network (4A2Nc).

If X has a countable network, let Z = X∪{∞} be its one-point compactification (3A3O). This is compact
and Hausdorff and has a countable network, by 4A2Nc again, so is second-countable (4A2Nh) and metrizable
(4A2Pb) and Polish ((b) above). So X also, being an open set in Z, is Polish ((d) above).

4A2R Order topologies Let (X,≤) be a totally ordered set and T its order topology.
(a) The set U of open intervals in X (definition: 4A2A) is a base for T.
(b) [x, y], [x,∞[ and ]−∞, x] are closed sets for all x, y ∈ X.
(c) T is Hausdorff, normal and countably paracompact.
(d) If A ⊆ X then A is the set of elements of X expressible as either suprema or infima of non-empty

subsets of A.
(e) A subset of X is closed iff it is order-closed.
(f) If 〈xn〉n∈N is a non-decreasing sequence in X with supremum x, then x = limn→∞ xn.
(g) A set K ⊆ X is compact iff supA and inf A are defined in X and belong to K for every non-empty

A ⊆ K.
(h) X is Dedekind complete iff [x, y] is compact for all x, y ∈ X.
(i) X is compact iff it is either empty or Dedekind complete with greatest and least elements.
(j) Any open set G ⊆ X is expressible as a union of disjoint open order-convex sets; if X is Dedekind

complete, these will be open intervals.
(k) If X is well-ordered it is locally compact.
(l) In X ×X, {(x, y) : x < y} is open and {(x, y) : x ≤ y} is closed.
(m) If F ⊆ X and either F is order-convex or F is compact or X is Dedekind complete and F is closed,

then the subspace topology on F is induced by the inherited order of F .
(n) If X is ccc it is hereditarily Lindelöf, therefore perfectly normal.
(o) If Y is another totally ordered set with its order topology, an order-preserving function from X to Y

is continuous iff it is order-continuous.

proof (a) Put the definition of ‘order topology’ (4A2A) together with 4A2B(a-i).

(b) Their complements are either X, or members of U , or unions of two members of U .

(c) Fix a well-ordering 4 of X.

(i) If x < y ∈ X, define Uxy, Uyx as follows: if ]x, y[ is empty, Uxy = ]−∞, x] = ]−∞, y[ and
Uyx = [y,∞[ = ]x,∞[; otherwise, let z be the 4-least member of ]x, y[ and set Uxy = ]−∞, z[, Uyx = ]z,∞[.
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This construction ensures that if x, y are any distinct points of X, Uxy and Uyx are disjoint open sets
containing x, y respectively, so T is Hausdorff.

(ii) Now suppose that F ⊆ X is closed and that x ∈ X \ F . Then VxF = int(X ∩
⋂

y∈F Uxy) contains

x. PPP There are u, v ∈ X ∪ {−∞,∞} such that x ∈ ]u, v[ ⊆ X \F . If ]u, x[ = ∅, set u′ = u; otherwise, let u′

be the 4-least member of ]u, x[. Similarly, if ]x, v[ = ∅, set v′ = v; otherwise, let v′ be the 4-least member of
]x, v[. Then u′ < x < v′. Now suppose that y ∈ F and y > x. If ]x, v[ = ∅, then Uxy ⊇ ]−∞, x] = ]−∞, v′[.
Otherwise, v′ ∈ ]x, v[ ⊆ ]x, y[, so Uxy = ]−∞, z[ where z is the 4-least member of ]x, y[. But this means
that z 4 v′ and either z = v′ or z /∈ ]x, v[; in either case, v′ ≤ z and ]−∞, v′[ ⊆ Uxy.

Similarly, ]u′,∞[ ⊆ Uxy whenever y ∈ F and y < x. So x ∈ ]u′, v′[ ⊆ VxF . QQQ

(iii) Let E and F be disjoint closed sets. Set G =
⋃

x∈E VxF , H =
⋃

y∈F VyE . Then G and H are open

sets including E, F respectively. If x ∈ E and y ∈ F , then VxF ∩ VyE ⊆ Uxy ∩ Uyx = ∅, so G ∩H = ∅. As
E and F are arbitrary, T is normal.

(iv) Let 〈Fn〉n∈N be a non-increasing sequence of closed sets with empty intersection. Let I be the
family of open intervals I ⊆ X such that I ∩Fn = ∅ for some n. Because the Fn are closed and have empty
intersection, I covers X. If I, I ′ ∈ I are not disjoint, I ∪ I ′ ∈ I; so we have an equivalence relation ∼ on X
defined by saying that x ∼ y if there is some I ∈ I containing both x and y. The corresponding equivalence
classes are open and therefore closed, and are order-convex. Let G be the set of equivalence classes for ∼.

For each G ∈ G, fix xG ∈ G. Set G+ = G ∩ [xG,∞[. Then we have a non-decreasing sequence 〈G+
n 〉n∈N

of closed sets, with union G+, such that G+
n ∩ Fn = ∅ for each n. PPP If there is some m ∈ N such that

G+ ∩Fm = ∅, set G+
n = ∅ if G+ ∩Fn 6= ∅, G+ if G+ ∩Fn = ∅. Otherwise, given x ∈ G+ and n ∈ N, there is

some m such that [xG, x] does not meet Fm, and an x′ ∈ G+ ∩ Fmax(m,n), so that x′ ∈ Fn and x′ > x. We

can therefore choose a strictly increasing sequence 〈xk〉k∈N such that x0 = xG and xk+1 ∈ G+ ∩ Fk for each
k. If x is any upper bound of {xk : k ∈ N} then x 6∼ xG, so G+ =

⋃
k∈N[xG, xk]. Now, for each n, there is

a least k(n) such that [xG, xk(n)] ∩ Fn 6= ∅; set G+
n = ∅ if k(n) = 0, [xG, xk(n−1)] otherwise. As Fn+1 ⊆ Fn,

k(n+ 1) ≥ k(n) for each n. Since each [xG, xk] is disjoint from some Fn, and therefore from all but finitely
many Fn, limn→∞ k(n) = ∞ and G+ =

⋃
n∈NG

+
n . QQQ

Similarly, G− = G ∩ ]−∞, xG] can be expressed as the union of a non-decreasing sequence 〈G−
n 〉n∈N of

closed sets such that G−
n ∩Fn = ∅ for every n. Now set F ′

n =
⋃

G∈G G
+
n ∪G−

n for each n. Because every G+
n

and G−
n is closed, and every G is open-and-closed, F ′

n is closed. So 〈F ′
n〉n∈N is a non-decreasing sequence of

closed sets with union X, and F ′
n is disjoint from Fn for each n. Accordingly 〈X \F ′

n〉n∈N is a non-increasing
sequence of open sets with empty intersection enveloping the Fn. As 〈Fn〉n∈N is arbitrary, T is countably
paracompact (4A2Ff).

(d) Let B be the set of such suprema and infima. For x ∈ X set Ax = A ∩ ]−∞, x], A′
x = A ∩ [x,∞[.

Then x ∈ B iff either x = supAx or x = inf A′
x, so

x /∈ B ⇐⇒ x 6= supAx and x 6= inf A′
x

⇐⇒ there are u < x, v > x such that Ax ⊆ ]−∞, u] and A′
x ⊆ [v,∞[

⇐⇒ there are u, v such that x ∈ ]u, v[ ⊆ X \A

⇐⇒ x /∈ A.

Thus B = A, as claimed.

(e) Because X is totally ordered, all its subsets are both upwards-directed and downwards-directed; so
we have only to join the definition in 313Da to (d) above.

(f) If x ∈ ]u, v[ then there is some n ∈ N such that xn ≥ u, and now xi ∈ ]u, v[ for every i ≥ n.

(g)(i) If K is compact and A ⊆ K is non-empty, let B be the set of upper bounds for A in X ∪{−∞,∞},
and set G = {]−∞, a[ : a ∈ A} ∪ {]b,∞[ : b ∈ B}. Then no finite subfamily of G can cover K; and if
c ∈ K \

⋃
G then c = supA. Similarly, any non-empty subset of K has an infimum in X which belongs to

K.
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(ii) Now suppose that K satisfies the condition. By (d) above, it is closed. If it is empty it is certainly
compact. Otherwise, a0 = inf K and b0 = supK are defined in X and belong to K. Let G be an open cover
of K. Set

A = {x : x ∈ X, K ∩ [a0, x] is not covered by any finite G0 ⊆ G}.

Note that A is bounded below by a0. ??? If b0 ∈ A, then c = inf A is defined and belongs to [a0, b0], because
X is Dedekind complete. If c /∈ K then there are u, v such that c ∈ ]u, v[ ⊆ X \K; if c ∈ K then there are
u, v such that c ∈ ]u, v[ ⊆ G for some G ∈ G. In either case, u /∈ A, so that K ∩ [a0, v[ ⊆ (K ∩ [a0, u])∪ ]u, v[
is covered by a finite subset of G, and A does not meet [a0, v[, that is, A ⊆ [v,∞[ and v is a lower bound of
A. XXX Thus b0 /∈ A, and K = K ∩ [a0, b0] is covered by a finite subset of G. As G is arbitrary, K is compact.

(h) Use (g).

(i) Use (h).

(j) (Compare 2A2I.) For x, y ∈ G write x ∼ y if either x ≤ y and [x, y] ⊆ G or y ≤ x and [y, x] ⊆ G.
It is easy to check that ∼ is an equivalence relation on G. Let C be the set of equivalence classes under ∼.
Then C is a partition of G into order-convex sets. Now every C ∈ C is open. PPP If x ∈ C ∈ C then there
are u, v ∈ X ∪ {−∞,∞} such that x ∈ ]u, v[ ⊆ G; now ]u, v[ ⊆ C. QQQ So we have our partition of G into
disjoint open order-convex sets.

If X is Dedekind complete, then every member of C is an open interval. PPP Take C ∈ C. Set

A = {u : u ∈ X ∪ {−∞}, u < x for every x ∈ C},

B = {v : v ∈ X ∪ {∞}, x < v for every x ∈ C},

a = supA, b = inf B;

these are defined because X is Dedekind complete. If a < x < b, there are y, z ∈ C such that y ≤ x ≤ z,
so that [y, x] ⊆ [y, z] ⊆ G and y ∼ x and x ∈ C; thus ]a, b[ ⊆ C. If x ∈ C, there is an open interval ]u, v[
containing x and included in G; now ]u, v[ ⊆ C, so a ≤ u < x < v ≤ b and x ∈ ]a, b[. Thus C = ]a, b[ is an
open interval. QQQ

(k) Use (h).

(l) Write W for {(x, y) : x < y}. If x < y, then either there is a z such that x < z < y, in which case
]−∞, z[ × ]z,∞[ is an open set containing (x, y) and included in W , or ]x, y[ = ∅, so ]−∞, y[ × ]x,∞[ is an
open set containing (x, y) and included in W . Thus W is open.

Now {(x, y) : x ≤ y} = (X ×X) \ {(x, y) : y < x} is closed.

(m) The subspace topology TF on F is generated by sets of the form F ∩ ]−∞, x[, F ∩ ]x,∞[ where x ∈ X
(4A2B(a-vi)), while the order topology S on F is generated by sets of the form F ∩ ]−∞, x[, F ∩ ]x,∞[
where x ∈ F . So S ⊆ TF .

Now suppose that one of the three conditions is satisfied, and that x ∈ X. If x ∈ F , or F ∩ ]−∞, x[ is
either F or ∅, then of course F ∩ ]−∞, x[ ∈ S. Otherwise, F meets both ]−∞, x[ and [x,∞[ and does not
contain x, so is not order-convex. In this case x′ = inf(F ∩ [x,∞[) is defined and belongs to F . PPP If F is
compact, this is covered by (g). If X is Dedekind complete and F is closed, then x′ is defined, and belongs
to F by (e). QQQ Now F ∩ ]−∞, x[ = F ∩ ]−∞, x′[ ∈ S.

Similarly, F ∩ ]x,∞[ ∈ S for every x ∈ X. But this means that TF ⊆ S, so the two topologies are equal,
as stated.

(n)(i) Let G be a family of open subsets of X with union H. Set

A = {A : A ⊆
⋃
G0 for some countable G0 ⊆ G}.

(I seek to show that H ∈ A.) Of course
⋃
A0 ∈ A for every countable subset A0 of A.

(ii) Let C be the family of order-convex members of A, and C∗ the family of maximal members of C. If
C ∈ C is not included in any member of C∗, then there is a C ′ ∈ C such that C ⊆ C ′ and int(C ′ \C) 6= ∅. PPP
Since no member of C including C can be maximal, we can find C ′ ∈ C such that C ⊆ C ′ and #(C ′ \C) ≥ 5.
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Because C is order-convex, every point of X \C is either a lower bound or an upper bound of C, and there
must be three points x < y < z of C ′ \ C on the same side of C. In this case,

y ∈ ]x, z[ ⊆ int(C ′ \ C),

so we have an appropriate C ′. QQQ

(iii) In fact, every member of C is included in a member of C∗. PPP??? Suppose, if possible, otherwise.
Then we can choose a strictly increasing family 〈Cξ〉ξ<ω1

in C inductively, as follows. Start from any non-
empty C0 ∈ C not included in any member of C∗. Given that C0 ⊆ Cξ ∈ C, then Cξ cannot be included
in any member of C∗, so by (β) above there is a Cξ+1 ∈ C such that int(Cξ+1 \ Cξ) is non-empty. Given
〈Cη〉η<ξ where ξ < ω1 is a non-zero countable limit ordinal, set Cξ =

⋃
η<ξ Cη; then Cξ is order-convex,

because {Cη : η < ξ} is upwards-directed, and belongs to A, because A is closed under countable unions, so
Cξ ∈ C and the induction proceeds.

Now, however, 〈int(Cξ+1 \ Cξ)〉ξ<ω1
is an uncountable disjoint family of non-empty open sets, and X is

not ccc. XXXQQQ

(iv) Since C∪C ′ is order-convex whenever C, C ′ ∈ C and C∩C ′ 6= ∅, C∗ is a disjoint family. Moreover,
if x ∈ H, there is some open interval containing x and belonging to C, so x ∈ intC for some C ∈ C∗; this
shows that C∗ is an open cover of H. Because X is ccc, C∗ is countable, so H =

⋃
C∗ ∈ A. Thus there is

some countable G0 ⊆ G with union H; as G is arbitrary, X is hereditarily Lindelöf, by 4A2H(c-i).

(v) By 4A2H(c-ii), X is perfectly normal.

(o)(i) Suppose that f is continuous. If A ⊆ X is a non-empty set with supremum x in X, then x ∈ A, by

(d), so f(x) ∈ f [A] (3A3Cc) and f(x) is less than or equal to any upper bound of f [A]; but f(x) is an upper
bound of f [A], because f is order-preserving, so f(x) = sup f [A]. Similarly, f(inf A) = inf f [A] whenever A
is non-empty and has an infimum, so f is order-continuous.

(ii) Now suppose that f is order-continuous. Take any y ∈ Y and consider A = f−1[ ]−∞, y[ ],
B = X \ A. If x ∈ A then f(x) cannot be inf f [B] so x cannot be inf B and there is an x′ ∈ X such that
x < x′ ≤ z for every z ∈ B; in which case x ∈ ]−∞, x′[ ⊆ A. So A is open. Similarly, f−1[ ]y,∞[ ] is open.
By 4A2B(a-ii), f is continuous.

4A2S Order topologies on ordinals (a) Let ζ be an ordinal with its order topology.

(i) ζ is locally compact (4A2Rk); all the sets [0, η] = ]−∞, η + 1[, for η < ζ, are open and compact
(4A2Rh). If ζ is a successor ordinal, it is compact, being of the form [0, η] where ζ = η + 1.

(ii) For any A ⊆ ζ, A = {supB : ∅ 6= B ⊆ A, supB < ζ}. (4A2Rd, because inf B ∈ B ⊆ A for every
non-empty B ⊆ A.)

(iii) If ξ ≤ ζ, then the subspace topology on ξ induced by the order topology of ζ is the order topology
of ξ. (4A2Rm.)

(b) Give ω1 its order topology.

(i) ω1 is first-countable. PPP If ξ < ω1 is either zero or a successor ordinal, then {ξ} is open so {{ξ}} is a
base of neighbourhoods of ξ. If ξ is a non-zero limit ordinal, there is a sequence 〈ξn〉n∈N in ξ with supremum
ξ, and {]ξn, ξ] : n ∈ N} is a base of neighbourhoods of ξ. QQQ

(ii) Singleton subsets of ω1 are zero sets. (Assemble 4A2F(d-v), 4A2Rc and (i) above.)

(iii) If f : ω1 → R is continuous, there is a ξ < ω1 such that f(η) = f(ξ) for every η ≥ ξ. PPP???
Otherwise, we may define a strictly increasing family 〈ζξ〉ξ<ω1

in ω1 by saying that ζ0 = 0,

ζξ+1 = min{η : η > ζξ, f(η) 6= f(ζξ)}

for every ξ < ω1,

ζξ = sup{ζη : η < ξ}

for non-zero countable limit ordinals ξ. Now

ω1 =
⋃

k∈N{ξ : |f(ζξ+1) − f(ζξ)| ≥ 2−k},
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so there is a k ∈ N such that A = {ξ : |f(ζξ+1)−f(ζξ)| ≥ 2−k} is infinite. Take a strictly increasing sequence
〈ξn〉n∈N in A and set ξ = supn∈N ξn = supn∈N(ξn + 1). Then 〈ζξn〉n∈N and 〈ζξn+1〉n∈N are strictly increasing
sequences with supremum ζξ, so both converge to ζξ in the order topology of ω1 (4A2Rf), and

f(ζξ) = limn→∞ f(ζξn) = limn→∞ f(ζξn+1).

But this means that

limn→∞ f(ζξn) − f(ζξn+1) = 0,

which is impossible, because |f(ζξn) − f(ζξn+1)| ≥ 2−k for every n. XXXQQQ

4A2T Topologies on spaces of subsets In §§446, 476 and 479 it will be useful to be able to discuss
topologies on spaces of closed sets. In fact everything we really need can be expressed in terms of Fell
topologies ((a-ii) here), but it may help if I put these in the context of two other constructions, Vietoris
topologies and Hausdorff metrics (see (a) and (g) below), which may be more familiar to some readers. Let
X be a topological space, and C = CX the family of closed subsets of X.

(a)(i) The Vietoris topology on C is the topology generated by sets of the forms

{F : F ∈ C, F ∩G 6= ∅}, {F : F ∈ C, F ⊆ G}

where G ⊆ X is open.
(ii) The Fell topology on C is the topology generated by sets of the forms

{F : F ∈ C, F ∩G 6= ∅}, {F : F ∈ C, F ∩K = ∅}

where G ⊆ X is open and K ⊆ X is compact. If X is Hausdorff then the Fell topology is coarser than the
Vietoris topology. If X is compact and Hausdorff the two topologies agree.

(iii) Suppose X is metrizable, and that ρ is a metric on X inducing its topology. For a non-empty
subset A of X, write ρ(x,A) = infy∈A ρ(x, y) for every x ∈ X. Note that ρ(x,A) ≤ ρ(x, y) + ρ(y,A) for all
x, y ∈ X, so that x 7→ ρ(x,A) : X → R is 1-Lipschitz.

For E, F ∈ C \ {∅}, set

ρ̃(E,F ) = min(1,max(supx∈E ρ(x, F ), supy∈F ρ(y,E))).

If E, F ∈ C \ {∅} and z ∈ X, then ρ(z, F ) ≤ ρ(z, E) + supx∈E ρ(x, F ); from this it is easy to see that ρ̃ is a
metric on C \ {∅}, the Hausdorff metric. Observe that ρ̃({x}, {y}) = min(1, ρ(x, y)) for all x, y ∈ X.

Remarks The formula I give for ρ̃ has a somewhat arbitrary feature ‘min(1, . . . )’. Any number strictly
greater than 0 can be used in place of ‘1’ here. Many authors prefer to limit themselves to the family of
non-empty closed sets of finite diameter, rather than the whole of C \ {∅}; this makes it more more natural
to omit the truncation, and work with (E,F ) 7→ max(supx∈E ρ(x, F ), supy∈F ρ(y,E)). All such variations
produce uniformly equivalent metrics. A more radical approach redefines ‘metric’ to allow functions which
take the value ∞; but this seems a step too far.

Given that I am truncating my Hausdorff metrics by the value 1, there would be no extra problems if I
defined ρ̃(∅, E) = 1 for every non-empty closed set E; but I think I am following the majority in regarding
Hausdorff distance as defined only for non-empty sets.

(b)(i) The Fell topology is T1. PPP If F ⊆ X is closed and x ∈ X, then {E : E ∈ C, E ∩ (X \F ) = ∅} and
{E : E ∈ C, E ∩ {x} 6= ∅} are complements of open sets, so are closed. Now if F ∈ C then

{F} = {E : E ⊆ F} ∩
⋂

x∈F {E : x ∈ E}

is closed. QQQ
(ii) The map (E,F ) 7→ E ∪F : C × C → C is continuous for the Fell topology. PPP If G ⊆ X is open and

K ⊆ X is compact, then

{(E,F ) : (E ∪ F ) ∩G 6= ∅} = {(E,F ) : E ∩G 6= ∅ or F ∩G 6= ∅},

{(E,F ) : (E ∪ F ) ∩K = ∅} = {E : E ∩K = ∅} × {F : F ∩K = ∅}

are open in the product topology. So the result follows by 4A2B(a-ii). QQQ
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(iii) C is compact in the Fell topology. PPP Let F be an ultrafilter on C. Set F0 =
⋂

E∈F

⋃
E . (α) If

G ⊆ X is open and G ∩ F0 6= ∅, set E = {F : F ∈ C, F ∩G = ∅}. Then
⋃

E does not meet G, so does not
include F0, and E /∈ F. Accordingly {F : F ∩ G 6= ∅} = C \ E belongs to F. (β) If K ⊆ X is compact and

F0 ∩K = ∅, then {K ∩
⋃

E : E ∈ F} is a downwards-directed family of relatively closed subsets of K with
empty intersection so must contain the empty set, and there is an E ∈ F such that K ∩ F = ∅ for every
F ∈ E , that is, {F : F ∩K = ∅} belongs to F. (γ) By 4A2B(a-iv), F → F0. As F is arbitrary, C is compact.
QQQ

(c) If X is Hausdorff, x 7→ {x} is continuous for the Fell topology on C. PPP If G ⊆ X is open, then
{x : {x} ∩G 6= ∅} = G is open. If K ⊆ X is compact, then {x : {x} ∩K = ∅} = X \K is open (3A3Dc). QQQ

(d) If X and another topological space Y are regular, and CY , CX×Y are the families of closed subsets of
Y and X × Y respectively, then (E,F ) 7→ E ×F : CX ×CY → CX×Y is continuous when each space is given
its Fell topology. PPP (i) Suppose that W ⊆ X × Y is open, and consider VW = {(E,F ) : E ∈ CX , F ∈ CY ,
(E × F ) ∩W 6= ∅}. If (E0, F0) ∈ VW , take (x0, y0) ∈ (E0 × F0) ∩W . Let G ⊆ X and H ⊆ Y be open sets
such that (x0, y0) ∈ G ×H ⊆ W . Then {(E,F ) : E ∈ CX , F ∈ CY , E ∩G 6= ∅, F ∩H 6= ∅} is an open set
in CX × CY containing (E0, F0) and included in VW . As (E0, F0) is arbitrary, VW is open in CX × CY . (ii)
Suppose that K ⊆ X × Y is compact, and consider WK = {(E,F ) : E ∈ CX , F ∈ CY , (E × F ) ∩K = ∅}.
If (E0, F0) ∈ WK , then set K1 = K ∩ (E0 × Y ) and K2 = K ∩ (X × F0). These are disjoint closed subsets
of K, so there are disjoint open subsets U1, U2 of X × Y including K1, K2 respectively (4A2F(h-ii)). Now
K ′

1 = K \ U1 and K ′
2 = K \ U2 are compact subsets of K with union K.

Let π1, π2 be the projections from X × Y onto X, Y respectively; then {(E,F ) : E ∈ CX , E ∩ π1[K ′
1] =

F ∩π2[K ′
2] = ∅} is an open set in CX ×CY containing (E0, F0) and included in WK . As (E0, F0) is arbitrary,

WK is open. (iii) Putting these together with 4A2B(a-ii), we see that (E,F ) 7→ E × F is continuous. QQQ

(e) Suppose that X is locally compact and Hausdorff.
(i) The set {(E,F ) : E, F ∈ C, E ⊆ F} is closed in C × C for the product topology defined from the

Fell topology on C. PPP Suppose that E0, F0 ∈ C and E0 6⊆ F0. Take x ∈ E0 \ F0. Because X is locally
compact and Hausdorff, there is a relatively compact open set G such that x ∈ G and G ∩ F0 = ∅. Now
V = {E : E ∩ G 6= ∅} and W = {F : F ∩ G = ∅} are open sets in C containing E0, F0 respectively, and
E 6⊆ F for every E ∈ V and F ∈ W. This shows that {(E,F ) : E 6⊆ F} is open, so that its complement is
closed. QQQ

It follows that {(x, F ) : x ∈ F}= {(x, F ) : {x} ⊆ F} is closed in X × C when C is given its Fell topology,
since x 7→ {x} is continuous, by (c) above.

(ii) The Fell topology on C is Hausdorff. PPP The set

{(E,E) : E ∈ C} = {(E,F ) : E ⊆ F and F ⊆ E}

is closed in C × C, by (i). So 4A2F(a-iii) applies. QQQ
It follows that if 〈Fi〉i∈I is a family in C, and F is an ultrafilter on I, then we have a well-defined limit

limi→F Fi defined in C for the Fell topology, because C is compact ((b-iii) above).
(iii) If L ⊆ C is compact, then

⋃
L is a closed subset of X. PPP Take x ∈ X \

⋃
L. For every C ∈ L,

there is a relatively compact open set G containing x such that C∩G is empty; now finitely many such open
sets G must suffice for every C ∈ L, and the intersection of these G is a neighbourhood of x not meeting⋃

L. QQQ (Compare 4A2Gm.)

(f) Suppose that X is metrizable, locally compact and separable. Then the Fell topology on C is metriz-
able. PPP X is second-countable (4A2P(a-i)); let U be a countable base for the topology of X consisting of
relatively compact open sets (4A2Ob) and closed under finite unions. Let V be the set of open sets in C
expressible in the form

{F : F ∩ U 6= ∅ for every U ∈ U0, F ∩ V = ∅}

where U0 ⊆ U is finite and V ∈ U . Then V is countable. If V ⊆ C is open and F0 ∈ V, then there are a finite
family G of open sets in X and a compact K ⊆ X such that

F0 ∈ {F : F ∩G 6= ∅ for every G ∈ G, F ∩K = ∅} ⊆ V.
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For each G ∈ G there is a UG ∈ U such that UG ⊆ G and F ∩ UG 6= ∅. Next, each point of K belongs to a
member of U with closure disjoint from F0, so (because K is compact and U is closed under finite unions)
there is a V ∈ U such that K ⊆ V and F0 ∩ V = ∅. Now

V ′ = {F : F ∩ UG 6= ∅ for every G ∈ G, F ∩ V = ∅}

belongs to V, contains F0 and is included in V. This shows that V is a base for the Fell topology, and the Fell
topology is second-countable. Since we already know that it is compact and Hausdorff, therefore regular, it
is metrizable (4A2Pb). QQQ

(g) Suppose that X is metrizable, and that ρ is a metric inducing the topology of X; let ρ̃ be the
corresponding Hausdorff metric on C \ {∅}.

(i) The topology Sρ̃ defined by ρ̃ is finer than the Fell topology SF on C \ {∅}. PPP Let G ⊆ X be
open, and consider the set VG = {F : F ∈ C, F ∩ G 6= ∅}. If E ∈ VG, take x ∈ E ∩ G and ǫ > 0 such
that U(x, ǫ) ⊆ G; then {F : ρ̃(F,E) < ǫ} ⊆ VG. As E is arbitrary, VG is Sρ̃-open. Next, suppose that
K ⊆ X is compact, and consider the set WK = {F : F ∈ C \ {∅}, F ∩K = ∅}. If E ∈ WK , the function
x 7→ ρ(x,E) : K → ]0,∞[ is continuous, so has a non-zero lower bound ǫ say; now {F : ρ̃(F,E) < ǫ} ⊆ WK .
As E is arbitrary, WK is Sρ̃-open. So Sρ̃ is finer than the topology SF generated by the sets VG and WK .
QQQ

(ii) If X is compact, then Sρ̃ and SF are the same, and both are compact. PPP Suppose that E ∈ V ∈ Sρ̃.
Let ǫ ∈ ]0, 1[ be such that F ∈ V whenever F ∈ C \ {∅} and ρ̃(E,F ) < 2ǫ. Because X is compact, E is
ρ-totally bounded (4A2Je) and there is a finite set I ⊆ E such that E ⊆

⋃
x∈I U(x, ǫ). Because x 7→ ρ(x,E)

is continuous, K = {x : ρ(x,E) ≥ ǫ} is closed, therefore compact; now

W = {F : F ∈ C, F ∩K = ∅, F ∩ U(x, ǫ) 6= ∅ for every x ∈ I}

is a neighbourhood of E for SF included in V. Thus V is a neighbourhood of E for SF ; as E and V are
arbitrary, SF is finer than Sρ̃. So the two topologies are equal.

Observe finally that {∅} = {F : F ∈ C, F ∩X = ∅} is open for the Fell topology on C, so C \ {∅} is closed,
therefore compact, by (b-iii). So Sρ̃ = SF is compact. QQQ

4A2U Old friends (a) R, with its usual topology, is metrizable (2A3Ff) and separable (the countable set
Q is dense), so is second-countable (4A2P(a-i)). Every subset of R is separable (4A2P(a-iv)); in particular,
every dense subset of R has a countable subset which is still dense.

(b) NN is Polish in its usual topology (4A2Qc), so has a countable network (4A2P(a-iii) or 4A2Ne), and is
hereditarily Lindelöf (4A2Nb or 4A2Pd). Moreover, it is homeomorphic to [0, 1]\Q and R\Q (Kuratowski

66, §36.II; Kechris 95, 7.7).

(c) The map x 7→ 2
3

∑∞
j=0 3−jx(j) (cf. 134Gb) is a homeomorphism between {0, 1}N and the Cantor set

C ⊆ [0, 1]. (It is a continuous bijection.)

(d) If I is any set, then the map A 7→ χA : PI → {0, 1}I is a homeomorphism (for the usual topologies
on PI and {0, 1}I , as described in 4A2A and 3A3K). So PI is zero-dimensional, compact (3A3K) and
Hausdorff. If I is countable, then PI is metrizable, therefore Polish (4A2Qb).

(e) Give the space C([0,∞[) the topology Tc of uniform convergence on compact sets.

(i) C([0,∞[) is a Polish locally convex linear topological space. PPP Tc is determined by the seminorms
f 7→ supt≤n |f(t)| for n ∈ N, so it is a metrizable linear space topology. By 4A2Oe, it has a countable
network, so is separable. Any function which is continuous on every set [0, n] is continuous on [0,∞[, so
C([0,∞[) is complete under the metric (f, g) 7→

∑∞
n=0 min(2−n, supt≤n |f(t) − g(t)|); as this metric defines

Tc, Tc is Polish. QQQ

(ii) Suppose that A ⊆ C([0,∞[) is such that {f(0) : f ∈ A} is bounded and for every a ≥ 0 and ǫ > 0
there is a δ > 0 such that |f(s)− f(t)| ≤ ǫ whenever f ∈ A, s, t ∈ [0, a] and |s− t| ≤ δ. Then A is relatively
compact for Tc. PPP Note first that {f(a) : f ∈ A} is bounded for every a ≥ 0, since if δ > 0 is such that

|f(s) − f(t)| ≤ 1 whenever f ∈ A, s, t ∈ [0, a] and |s − t| ≤ δ, then |f(a)| ≤ |f(0)| + ⌈
a

δ
⌉ for every f ∈ A.
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So if F is an ultrafilter on C([0,∞[) containing A, g(a) = limf→F f(a) is defined for every a ≥ 0. If a ≥ 0
and ǫ > 0, let δ ∈ ]0, 1] be such that |f(s) − f(t)| ≤ ǫ whenever f ∈ A, s, t ∈ [0, a+ 1] and |s− t| ≤ δ; then
|g(s) − g(a)| ≤ ǫ whenever |s− a| ≤ δ; as a and ǫ are arbitrary, g ∈ C([0,∞[). If a ≥ 0 and ǫ > 0, let δ > 0
be such that |f(s) − f(t)| ≤ 1

3ǫ whenever f ∈ A, s, t ∈ [0, a] and |s− t| ≤ δ. Then

A′ = {f : f ∈ A, |f(iδ) − g(iδ)| ≤
1

3
ǫ for every i ≤ ⌈

a

δ
⌉}

belongs to F . Now |f(t) − g(t)| ≤ ǫ for every f ∈ A′ and t ∈ [0, a]. As a and ǫ are arbitrary, F → g for Tc.
As F is arbitrary, A is relatively compact (3A3De). QQQ

Version of 7.1.17

4A3 Topological σ-algebras

I devote a section to some σ-algebras which can be defined on topological spaces. While ‘measures’ will
not be mentioned here, the manipulation of these σ-algebras is an essential part of the technique of measure
theory, and I will give proofs and exercises as if this were part of the main work. I look at Borel σ-algebras
(4A3A-4A3J), Baire σ-algebras (4A3K-4A3P), spaces of càdlàg functions (4A3Q), Baire-property algebras
(4A3R, 4A3S) and cylindrical σ-algebras on linear spaces (4A3U-4A3W).

4A3A Borel sets If (X,T) is a topological space, the Borel σ-algebra of X is the σ-algebra B(X) of
subsets of X generated by T. Its elements are the Borel sets of X. If (Y,S) is another topological space
with Borel σ-algebra B(Y ), a function f : X → Y is Borel measurable if f−1[H] ∈ B(X) for every H ∈ S,
and is a Borel isomorphism if it is a bijection and B(Y ) = {F : F ⊆ Y, f−1[F ] ∈ B(X)}, that is, f is an
isomorphism between the structures (X,B(X)) and (Y,B(Y )).

4A3B (Σ,T)-measurable functions It is time I put the following idea into bold type.

(a) Let X and Y be sets, with σ-algebras Σ ⊆ PX and T ⊆ PY . A function f : X → Y is (Σ,T)-
measurable if f−1[F ] ∈ Σ for every F ∈ T.

(b) If Σ, T and Υ are σ-algebras of subsets of X, Y and Z respectively, and f : X → Y is (Σ,T)-
measurable while g : Y → Z is (T,Υ)-measurable, then gf : X → Z is (Σ,Υ)-measurable. (If H ∈ Υ,
g−1[H] ∈ T so (gf)−1[H] = f−1[g−1[H]] ∈ Σ.)

(c) Let 〈Xi〉i∈I be a family of sets with product X, Y another set, and f : X → Y a function. If

T ⊆ PY , Σi ⊆ PXi are σ-algebras for each i, then f is (T,
⊗̂

i∈IΣi)-measurable iff πif : Y → Xi is (T,Σi)-

measurable for every i, where πi : X → Xi is the coordinate map. PPP πi is (
⊗̂

j∈IΣj ,Σi)-measurable, so

if f is (T,
⊗̂

j∈IΣj)-measurable then πif must be (T,Σi)-measurable. In the other direction, if every πif

is measurable, then {H : H ⊆ X, f−1[E] ∈ T} is a σ-algebra of subsets of X containing π−1
i [E] whenever

i ∈ I and E ∈ Σi, so includes
⊗̂

i∈IΣi, and f is measurable. QQQ

4A3C Elementary facts (a) If X is a topological space and Y is a subspace of X, then B(Y ) is just
the subspace σ-algebra {E ∩ Y : E ∈ B(X)}. PPP {E : E ⊆ X, E ∩ Y ∈ B(Y )} and {E ∩ Y : E ∈ B(X)} are
σ-algebras containing all open sets, so include B(X), B(Y ) respectively. QQQ

(b) If X is a set, Σ is a σ-algebra of subsets of X, (Y,S) is a topological space and f : X → Y is a
function, then f is (Σ,B(Y ))-measurable iff f−1[H] ∈ Σ for every H ∈ S. PPP If f is (Σ,B(Y ))-measurable
then f−1[H] ∈ Σ for every H ∈ S just because S ⊆ B(Y ). If f−1[H] ∈ Σ for every H ∈ S, then
{F : F ⊆ Y, f−1[F ] ∈ Σ} is a σ-algebra of subsets of Y (111Xc; cf. 234C) including S, so includes B(Y ),
and f is (Σ,B(Y ))-measurable. QQQ

c© 2007 D. H. Fremlin
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(c) If X and Y are topological spaces, and f : X → Y is a function, then f is Borel measurable iff it
is (B(X),B(Y ))-measurable. (Apply (b) with Σ = B(X).) So if X, Y and Z are topological spaces and
f : X → Y , g : Y → Z are Borel measurable functions, then gf : X → Z is Borel measurable. (Use 4A3Bb.)

(d) If X and Y are topological spaces and f : X → Y is continuous, it is Borel measurable. (Immediate
from the definitions in 4A3A.)

(e) If X is a topological space and f : X → [−∞,∞] is lower semi-continuous, then it is Borel measurable.
(The inverse image of a half-open interval ]α, β] is a difference of open sets, so is a Borel set, and every open
subset of [−∞,∞] is a countable union of such half-open intervals.)

(f) If 〈Xi〉i∈I is a family of topological spaces with product X, then B(X) ⊇
⊗̂

i∈IB(Xi). (Put (d) and
4A3Bc together.)

(g) Let X be a topological space.

(i) The algebra A of subsets generated by the open sets is precisely the family of sets expressible as a
disjoint union

⋃
i≤nGi ∩Fi where every Gi is open and every Fi is closed. PPP Write A for the family of sets

expressible in this form. Of course A ⊆ A. In the other direction, observe that

X ∈ A,
if E, E′ ∈ A then E ∩ E′ ∈ A,
if E ∈ A then X \ E ∈ A

because if Gi is open and Fi is closed for i ≤ n, then (identifying {0, . . . , n} with n+ 1)

X \
⋃

i≤n

(Gi ∩ Fi) =
⋂

i≤n

(X \Gi) ∪ (Gi \ Fi)

=
⋃

I⊆n+1

(⋂

i∈I

(Gi \ Fi) ∩
⋂

i∈(n+1)\I

(X \Gi)
)

belongs to A. So A is an algebra of sets and must be equal to A. QQQ

(ii) B(X) is the smallest family E ⊇ A such that
⋃

n∈NEn ∈ E for every non-decreasing sequence
〈En〉n∈N in E and

⋂
n∈NEn ∈ E for every non-increasing sequence 〈En〉n∈N in E . (136G.)

4A3D Hereditarily Lindelöf spaces (a) Suppose that X is a hereditarily Lindelöf space and U is a
subbase for the topology of X. Then B(X) is the σ-algebra of subsets of X generated by U . PPP Write Σ for
the σ-algebra generated by U . Of course Σ ⊆ B(X) just because every member of U is open. In the other
direction, set

V = {X} ∪ {U0 ∩ U1 ∩ . . . ∩ Un : U0, . . . , Un ∈ U};

then V ⊆ Σ and V is a base for the topology of X (4A2B(a-i)). If G ⊆ X is open, set V1 = {V : V ∈ V,
V ⊆ G}; then G =

⋃
V1. Because X is hereditarily Lindelöf, there is a countable set V0 ⊆ V1 such that

G =
⋃
V0 (4A2H(c-i)), so that G ∈ Σ. Thus every open set belongs to Σ and B(X) ⊆ Σ. QQQ

(b) Let X be a set, Σ a σ-algebra of subsets of X, Y a hereditarily Lindelöf space, U a subbase for the
topology of Y , and f : X → Y a function. If f−1[U ] ∈ Σ for every U ∈ U , then f is (Σ,B(Y ))-measurable.
PPP {F : F ⊆ Y , f−1[F ] ∈ Σ} is a σ-algebra of subsets of Y including U , so contains every open set, by (a),
and therefore every Borel set, as in 4A3Cb. QQQ

(c) Let 〈Xi〉i∈I be a family of topological spaces with product X. Suppose that X is hereditarily Lindelöf.

(i) B(X) =
⊗̂

i∈IB(Xi). PPP By 4A3Cf, B(X) ⊇
⊗̂

i∈IB(Xi). On the other hand,
⊗̂

i∈IB(Xi) is a
σ-algebra including

U = {π−1
i [G] : i ∈ I, G ⊆ Xi is open},

where πi(x) = x(i) for i ∈ I and x ∈ X; since U is a subbase for the topology of X, (a) tells us that⊗̂
i∈IB(Xi) includes B(X). QQQ

(ii) If Y is another topological space, then a function f : Y → X is Borel measurable iff πif : Y → Xi

is Borel measurable for every i ∈ I, where πi : X → Xi is the canonical map. (Use 4A3Bc.)
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4A3E Applications Recall that any topological space with a countable network (in particular, any
second-countable space, any separable metrizable space) is hereditarily Lindelöf (4A2Nb, 4A2Oc, 4A2P(a-
iii)); and so is any ccc totally ordered space (4A2Rn). So 4A3Da-4A3Db will be applicable to these. As for
product spaces, the product of a countable family of spaces with countable networks again has a countable
network (4A2Ne), so for such spaces we shall be able to use 4A3Dc. For instance, B({0, 1}N) is the σ-algebra
of subsets of {0, 1}N generated by the sets {x : x(n) = 1} for n ∈ N.

4A3F Spaces with countable networks (a) Let X be a topological space with a countable network.
Then #(B(X)) ≤ c. PPP Let E be a countable network for the topology of X and Σ the σ-algebra of subsets of
X generated by E . Then #(Σ) ≤ c (4A1O). If G ⊆ X is open, there is a subset E ′ of E such that

⋃
E ′ = G;

but E ′ is necessarily countable, so G ∈ Σ. It follows that B(X) ⊆ Σ and #(B(X)) ≤ c. QQQ

(b) #(B(NN)) = c. PPP NN has a countable network (4A2Ub), so #(B(NN)) ≤ c. On the other hand,
B(NN) contains all singletons, so

#(B(NN)) ≥ #(NN) ≥ #({0, 1}N) = c. QQQ

4A3G Second-countable spaces (a) Suppose that X is a second-countable space and Y is any topo-
logical space. Then B(X × Y ) = B(X)⊗̂B(Y ). PPP By 4A3Cf, B(X × Y ) ⊇ B(X)⊗̂B(Y ). On the other hand,
let U be a countable base for the topology of X. If W ⊆ X × Y is open, set

VU =
⋃
{H : H ⊆ Y is open, U ×H ⊆W}

for U ∈ U . Then W =
⋃

U∈U U × VU belongs to B(X)⊗̂B(Y ). As W is arbitrary, B(X × Y ) ⊆ B(X)⊗̂B(Y ).
QQQ

(b) If X is any topological space, Y is a T0 second-countable space, and f : X → Y is Borel measurable,
then (the graph of) f is a Borel set in X × Y . PPP Let U be a countable base for the topology of Y . Because
Y is T0,

f =
⋂

U∈U ({(x, y) : x ∈ f−1[U ], y ∈ U} ∪ {(x, y) : x ∈ X \ f−1[U ], y ∈ Y \ U})

which is a Borel subset of X × Y by 4A3Cc and 4A3Cf. QQQ

4A3H Borel sets in Polish spaces: Proposition Let (X,T) be a Polish space and E ⊆ X a Borel
set. Then there is a Polish topology S on X, including T, for which E is open.

proof Let E be the union of all the Polish topologies on X including T. Of course X ∈ E . If E ∈ E then
X \ E ∈ E . PPP There is a Polish topology S ⊇ T such that E ∈ S. As both E and X \ E are Polish in the
subspace topologies SE , SX\E induced by S (4A2Qd), the disjoint union topology S′ of SE and SX\E

is also Polish (4A2Qe). Now S′ ⊇ S ⊇ T and X \ E ∈ S′, so X \ E ∈ E . QQQ Moreover, the union of any
sequence 〈En〉n∈N in E belongs to E . PPP For each n ∈ N let Sn ⊇ T be a Polish topology containing En. If
m, n ∈ N then Sm ∩Sn includes T, so is Hausdorff. By 4A2Qf, the topology S generated by

⋃
n∈N Sn is

Polish. Of course S ⊇ T, and
⋃

n∈NEn ∈ S, so
⋃

n∈NEn ∈ E . QQQ
Thus E is a σ-algebra. Since it surely includes T, it includes B(X,T), as claimed.

4A3I Corollary If (X,T) is a Polish space and 〈En〉n∈N is a sequence of Borel subsets of X, then there
is a zero-dimensional Polish topology S on X, including T, for which every En is open-and-closed.

proof (a) By 4A3H, we can find for each n ∈ N a Polish topology Tn ⊇ T containing Ek (if n = 2k is even)
or X \Ek (if n = 2k+ 1 is odd); now the topology T′ generated by

⋃
n∈N Tn is Polish, by 4A2Qf, and every

En is open-and-closed for T′.

(b) Now choose 〈Vn〉n∈N and 〈T′
n〉n∈N inductively such that

T′
0 = T′,

given that T′
n is a Polish topology on X, then Vn is a countable base for T′

n and T′
n+1 is a

Polish topology on X including T′
n ∪ {X \ V : V ∈ Vn}

(using (a) for the inductive step). Now the topology S generated by
⋃

n∈N T′
n is Polish, includes T, contains

every En and its complement and has a base
⋃

n∈N Vn consisting of open-and-closed sets.
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4A3J Borel sets in ω1: Proposition A set E ⊆ ω1 is a Borel set iff either E or its complement includes
a closed cofinal set.

proof (a) Let Σ be the family of all those sets E ⊆ ω1 such that either E or ω1 \E includes a closed cofinal
set. Of course Σ is closed under complements. Because the intersection of a sequence of closed cofinal sets
is a closed cofinal set (4A1Bd), the union of any sequence in Σ belongs to Σ; so Σ is a σ-algebra. If E is
closed, then either it is cofinal with ω1, and is a closed cofinal set, or there is a ξ < ω1 such that E ⊆ ξ, in
which case ω1 \ E includes the closed cofinal set ω1 \ ξ; in either case, E ∈ Σ. Thus every open set belongs
to Σ, and Σ includes B(ω1).

(b) Now suppose that E ⊆ ω1 is such that there is a closed cofinal set F ⊆ ω1 \ E. For each ξ < ω1 let
fξ : ξ → N be an injective function. Define g : E → N by setting g(η) = fα(η)(η), where α(η) = min(F \ η)

for η ∈ E. Set An = g−1[{n}] for n ∈ N, so that E =
⋃

n∈NAn. If n ∈ N, ξ ∈ An \ An and ξ′ < ξ, there
must be η, η′ ∈ An such that ξ′ ≤ η < η′ < ξ. But now, because fα(η′) is injective, while g(η) = g(η′) = n,

α(η) 6= α(η′), so α(η) ∈ F ∩ ]ξ′, ξ[. As ξ′ is arbitrary, ξ ∈ F = F . This shows that An ⊆ An ∪ F and
An = An \ F is a Borel set. This is true for every n ∈ N, so E =

⋃
n∈NAn is a Borel set.

(c) If E ⊆ ω1 includes a closed cofinal set, then (b) tells us that ω1 \ E and E are Borel sets. Thus
Σ ⊆ B(ω1) and Σ = B(ω1), as claimed.

4A3K Baire sets When we come to study measures in terms of the integrals of continuous functions
(§436), we find that it is sometimes inconvenient or even impossible to apply them to arbitrary Borel sets,
and we need to use a smaller σ-algebra, as follows.

(a) Definition Let X be a topological space. The Baire σ-algebra Ba(X) of X is the σ-algebra
generated by the zero sets. Members of Ba(X) are called Baire sets. (Warning! Do not confuse ‘Baire
sets’ in this sense with ‘sets with the Baire property’ in the sense of 4A3R, nor with ‘sets which are Baire
spaces in their subspace topologies’.)

(b) For any topological space X, Ba(X) ⊆ B(X) (because every zero set is closed, therefore Borel).
If T is perfectly normal – for instance, if it is metrizable (4A2Lc), or is regular and hereditarily Lindelöf
(4A2H(c-ii)) – then Ba(X) = B(X) (because every closed set is a zero set, by 4A2Fi, so every open set
belongs to Ba(X)).

(c) Let X and Y be topological spaces, with Baire σ-algebras Ba(X), Ba(Y ) respectively. If f : X → Y
is continuous, it is (Ba(X),Ba(Y ))-measurable. PPP Let T be the σ-algebra {F : F ⊆ Y, f−1[F ] ∈ Ba(X)}.
If g : Y → R is continuous, then gf : X → R is continuous, so

f−1[{y : g(y) = 0}] = {x : gf(x) = 0} ∈ Ba(X),

and {y : g(y) = 0} ∈ T. Thus every zero set belongs to T, and T ⊇ Ba(Y ). QQQ

(d) In particular, if X is a subspace of Y , then E∩X ∈ Ba(X) whenever E ∈ Ba(Y ). More fundamentally,
F ∩ X is a zero set in X for every zero set F ⊆ Y , just because g↾X is continuous for any continuous
g : Y → R.

(e) If X is a topological space and Y is a separable metrizable space, a function f : X → Y is Baire
measurable if f−1[H] ∈ Ba(X) for every open H ⊆ Y . Observe that f is Baire measurable in this sense
iff it is (Ba(X),B(Y ))-measurable iff it is (Ba(X),Ba(Y ))-measurable.

4A3L Lemma Let (X,T) be a topological space. Then Ba(X) is just the smallest σ-algebra of subsets
of X with respect to which every continuous real-valued function on X is measurable.

proof (a) Let f : X → R be a continuous function and α ∈ R. Set g(x) = max(0, f(x)−α) for x ∈ X; then
g is continuous, so

{x : f(x) ≤ α} = {x : g(x) = 0}

is a zero set and belongs to Ba(X). As α is arbitrary, f is Ba(X)-measurable.
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(b) On the other hand, if Σ is any σ-algebra of subsets ofX such that every continuous real-valued function
on X is Σ-measurable, and F ⊆ X is a zero set, then there is a continuous g such that F = g−1[{0}], so
that F ∈ Σ; as F is arbitrary, Σ ⊇ Ba(X).

4A3M Product spaces Let 〈Xi〉i∈I be a family of topological spaces with product X.

(a) Ba(X) ⊇
⊗̂

i∈IBa(Xi). (Apply 4A3Bc to the identity map from X to itself; compare 4A3Cf.)

(b) Suppose that X is ccc. Then every Baire subset of X is determined by coordinates in a countable set.
PPP By 254Mb, the family W of sets determined by coordinates in countable sets is a σ-algebra of subsets
of X. By 4A2E(b-ii), every continuous real-valued function is W-measurable, so W contains every zero set
and every Baire set. QQQ

4A3N Products of separable metrizable spaces: Proposition Let 〈Xi〉i∈I be a family of separable
metrizable spaces, with product X.

(a) Ba(X) =
⊗̂

i∈IBa(Xi) =
⊗̂

i∈IB(Xi).
(b) Ba(X) is the family of those Borel subsets of X which are determined by coordinates in countable

sets.
(c) A set Z ⊆ X is a zero set iff it is closed and determined by coordinates in a countable set.
(d) If Y is a dense subset of X, then the Baire σ-algebra Ba(Y ) of Y is just the subspace σ-algebra

Ba(X)Y induced by Ba(X).
(e) If Y is a set, T is a σ-algebra of subsets of Y , and f : Y → X is a function, then f is (T,Ba(X))-

measurable iff πif : Y → Xi is (T,B(Xi))-measurable for every i ∈ I, where πi(x) = x(i) for x ∈ X and
i ∈ I.

proof (a) X is ccc (4A2E(a-iii)), so if f : X → R is continuous, there are a countable set J ⊆ I and
a continuous function g : XJ → R such that f = gπ̃J , where XJ =

∏
i∈J Xi and π̃J : X → XJ is

the canonical map (4A2E(b-ii)). Now XJ is separable and metrizable (4A2P(a-v)), therefore hereditarily

Lindelöf (4A2P(a-iii)), so B(XJ ) =
⊗̂

i∈JB(Xi), by 4A3D(c-i). By 4A3Bc, π̃J is (
⊗̂

i∈IB(Xi),
⊗̂

j∈JB(Xj))-

measurable, so f is
⊗̂

i∈IB(Xi)-measurable. As f is arbitrary, Ba(X) ⊆
⊗̂

i∈IB(Xi) (4A3L). Also B(Xi) =

Ba(Xi) for every i (4A3Kb), so
⊗̂

i∈IB(Xi) =
⊗̂

i∈IBa(Xi). With 4A3Ma, this proves the result.

(b)(i) If W ∈ Ba(X) it is certainly a Borel set (4A3Kb), and by 4A3Mb it is determined by coordinates
in a countable set.

(ii) If W is a Borel subset of X determined by coordinates in a countable subset J of X, then write
XJ =

∏
i∈J Xi and XI\J =

∏
i∈I\J Xi; let π̃J : X → XJ be the canonical map. We can identify W with

W ′ ×XI\J , where W ′ is some subset of XJ . Now if z ∈ XI\J , W ′ = {w : w ∈ XJ , (w, z) ∈ W} is a Borel
subset of XJ , because w 7→ (w, z) : XJ → X is continuous. (I am passing over the trivial case X = ∅.) Since
XJ is metrizable (4A2P(a-v) again), W ′ ∈ Ba(XJ) (4A3Kb) and W = π̃−1

J [W ′] is a Baire set (4A3Kc).

(c)(i) If Z is a zero set, it is surely closed; and it is determined by coordinates in a countable set by (b)
above, or directly from 4A2E(b-ii) again.

(ii) If Z is closed and determined by coordinates in a countable set J , then (in the language of (b))
it can be identified with Z ′ × XI\J for some Z ′ ⊆ XJ . As in the proof of (b), Z ′ is closed (at least, if

XI\J 6= ∅), so is a zero set (4A2Lc), and Z = π̃−1
J [Z ′] is a zero set (4A2C(b-iv)).

(d)(i) Ba(Y ) ⊇ Ba(X)Y by 4A3Kd.

(ii) Let f : Y → R be any continuous function. For each n ∈ N, there is an open set Gn ⊆ X such
that Gn ∩ Y = {y : f(y) > 2−n}. Now Gn is determined by coordinates in a countable set (4A2E(b-i)),
so is a zero set, by (c) here. Because Y is dense in X, Gn = Gn ∩ Y does not meet {y : f(y) = 0}, and
{y : f(y) > 0} = Y ∩

⋃
n∈NGn belongs to Ba(X)Y . Thus Ba(X)Y contains every cozero subset of Y and

includes Ba(Y ).

(e) Put (a) and 4A3Bc together.
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4A3O Compact spaces (a) Let (X,T) be a topological space, U a subbase for T, and A the algebra
of subsets of X generated by U . If H ⊆ X is open and K ⊆ H is compact, there is an open E ∈ A such
that K ⊆ E ⊆ H. PPP Set V = {X} ∪ {U0 ∩ U1 ∩ . . . ∩ Un : U0, . . . , Un ∈ U}, so that V is a base for T and
V ⊆ A. {U : U ∈ V, U ⊆ H} is an open cover of the compact set K, so there is a finite set U0 ⊆ V such
that E =

⋃
U0 includes K and is included in H; now E ∈ A. QQQ

(b) Let (X,T) be a compact space and U a subbase for T. Then every open-and-closed subset of X
belongs to the algebra of subsets of X generated by U . (If F ⊆ X is open-and-closed, it is also compact;
apply (a) here with K = H = F .)

(c) Let (X,T) be a compact space and U a subbase for T. Then Ba(X) is included in the σ-algebra of
subsets of X generated by U . PPP Let Σ be the σ-algebra generated by U . If Z ⊆ X is a zero set, there is
a sequence 〈Hn〉n∈N of open sets with intersection Z (4A2C(b-vi)); now we can find a sequence 〈En〉n∈N in
Σ such that Z ⊆ En ⊆ Hn for every n, by (a), so that Z =

⋂
n∈NEn ∈ Σ. This shows that every zero set

belongs to Σ, so Σ must include Ba(X). QQQ

(d) In a compact Hausdorff zero-dimensional space the Baire σ-algebra is the σ-algebra generated by the
open-and-closed sets. (Apply (c) with U the family of open-and-closed sets.)

(e) Let 〈Xi〉i∈I be a family of compact Hausdorff spaces with product X. Then Ba(X) =
⊗̂

i∈IBa(Xi).

PPP By 4A3Ma, Ba(X) ⊇
⊗̂

i∈IBa(Xi). On the other hand, let Ui be the family of cozero sets in Xi for each
i. Because Xi is completely regular (3A3Bb), Ui is a base for its topology (4A2Fc). Set

W = {
∏

i∈I Ui : Ui ∈ Ui for every i ∈ I, {i : Ui 6= Xi} is finite},

so that W ⊆
⊗̂

i∈IBa(Xi) is a base for the topology of X. By (c) above, Ba(X) is the σ-algebra generated

by W, and Ba(X) ⊆
⊗̂

i∈IBa(Xi). QQQ

(f) In particular, for any set I, Ba({0, 1}I) is the σ-algebra generated by sets of the form {x : x(i) = 1}
as i runs over I.

4A3P Proposition The Baire σ-algebra Ba(ω1) of ω1 is just the countable-cocountable algebra (211R).

proof We see from 4A2S(b-iii) that every continuous function is measurable with respect to the countable-
cocountable algebra, so Ba(ω1) is included in the countable-cocountable algebra. On the other hand,

[0, ξ] = {η : η ≤ ξ} = [0, ξ + 1[ = ω1 \ ]ξ, ω1[

is an open-and-closed set (4A2S(a-i)), therefore a zero set, therefore belongs to Ba(ω1), for every ξ < ω1.
Now if ξ < ω1, it is itself a countable set, so

[0, ξ[ =
⋃

η<ξ[0, η] ∈ Ba(ω1), {ξ} = [0, ξ] \ [0, ξ[ ∈ Ba(ω1).

It follows that every countable set belongs to Ba(ω1) and the countable-cocountable algebra is included in
Ba(ω1).

4A3Q Càdlàg functions Let X be a Polish space, and Cdlg the set of càdlàg functions (definition:

4A2A) from [0,∞[ to X, with its topology of pointwise convergence inherited from X [0,∞[.
(a) Ba(Cdlg) is the subspace σ-algebra induced by Ba(X [0,∞[).
(b) (Cdlg,Ba(Cdlg)) is a standard Borel space.
(c)(i) For any t ≥ 0, let Bat(Cdlg) be the σ-algebra of subsets of Cdlg generated by the functions ω 7→ ω(s)

for s ≤ t. Then (ω, s) 7→ ω(s) : Cdlg × [0, t] → X is Bat(Cdlg)⊗̂B([0, t])-measurable.

(ii) (ω, t) 7→ ω(t) : Cdlg × [0,∞[ → X is Ba(Cdlg)⊗̂B([0,∞[)-measurable.
(d) The set C([0,∞[ ;X) of continuous functions from [0,∞[ to X belongs to Ba(Cdlg).

proof (a) Use 4A3Nd.

(b)(i) Fix a complete metric ρ on X defining its topology. For A ⊆ B ⊆ R, f ∈ XB and ǫ > 0, set
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jumpA(f, ǫ) = sup{n : there is an I ∈ [A]n such that ρ(f(s), f(t)) > ǫ

whenever s < t are successive elements of I}

(see 438P). Set D = Q ∩ [0,∞[. Then any set of the form {f : jumpA(f, ǫ) > m} is open, so

E =
⋂

n∈N

⋃

m∈N

{f : f ∈ XD, jumpD∩[0,n](f, 2
−n) ≤ m}

∩
⋂

q∈D
n∈N

⋃

m≥n

{f : f ∈ XD, ρ(f(q + 2−m), f(q)) ≤ 2−n}

is Borel in the Polish space XD.

(ii) If ω ∈ Cdlg, then jump[0,n](ω, 2
−n) is finite for every n ∈ N. (Apply 438Pa to an extension of ω

to a member of XR which is constant on ]−∞, 0[; or make the trifling required changes to the argument of
438Pa.) Since limn→∞ ω(q + 2−n) = ω(q) for every q ∈ D, ω↾D ∈ E.

(iii) Conversely, given f ∈ E, jump[0,n](f, ǫ) is finite for every n ∈ N and ǫ > 0, so limq∈D,q↓t f(q) is

defined in X for every t ≥ 0, and limq∈D,q↑t f(q) is defined in X for every t > 0. (Apply the argument
of (a-ii) of the proof of 438P.) Set ωf (t) = limq∈D,q↓t f(q) for t ≥ 0. Because f(q) is a cluster point of
〈f(q + 2−n)〉n∈N for every q ∈ D, ωf extends f . It is easy to see that jump[0,n[(ωf , ǫ) = jump[0,n[(f, ǫ) is

finite for every n ∈ N and ǫ > 0, so lims↓t ωf (s) is defined for every t ≥ 0 and lims↑t ωf (s) is defined for
every t > 0. Also, for t ≥ 0,

lims↓t ωf (s) = limq∈D,q↓t ωf (q) = limq∈D,q↓t f(q) = ωf (t).

Thus ωf ∈ Cdlg. Clearly a member of Cdlg is uniquely determined by its values on D, so f 7→ ωf and
ω 7→ ω↾D are the two halves of a bijection between E and Cdlg.

(iv) By 424G, E, with its Borel (or Baire) σ-algebra B(E), is a standard Borel space. Of course
the map ω 7→ ω↾D is (Ba(Cdlg),B(E))-measurable. But also the map f 7→ ωf (t) : E → X is B(E)-
measurable for every t ≥ 0. PPP If 〈qn〉n∈N is a sequence in D decreasing to t, ωf (t) = limn→∞ f(qn) for every

f ∈ E, and we can use 418Ba. QQQ Since Ba(Cdlg) is the σ-algebra induced by Ba(X [0,∞[) (4A3Nd), and

Ba(X [0,∞[) =
⊗̂

[0,∞[B(X) (4A3Na), this is enough to show that f 7→ ωf is (B(E),Ba(Cdlg))-measurable.

Thus (Cdlg,Ba(Cdlg)) ∼= (E,B(E)) is a standard Borel space.

(c)(i) For n ∈ N, ω ∈ Cdlg and s ∈ [0, t], set hn(ω, s) = ω(min(t, 2−ni)) if i ∈ N and 2−n(i−1) < s ≤ 2−ni.
If G ⊆ X is open then

{(ω, s) : s ≤ t, hn(ω, s) ∈ G} =
⋃

i∈N

{ω : ω(min(t, 2−ni)) ∈ G}

× ([0, t] ∩
]
2−n(i− 1), 2−ni

]
)

∈ Bat(Cdlg)⊗̂B([0, t]),

so hn is Bat(Cdlg)⊗̂B([0, t])-measurable. Now ω(s) = limn→∞ hn(ω, s) for every ω ∈ Cdlg and s ∈ [0, t], so
(ω, s) 7→ ω(s) is measurable in the same sense, by 418Ba again.

(ii) If G ⊆ X is open then

{(ω, t) : t ≥ 0, ω(t) ∈ G} =
⋃

n∈N

{(ω, t) : t ∈ [0, n], ω(t) ∈ G}

∈ Ba(Cdlg)⊗̂B([0,∞[).

(d)

C([0,∞[ ;X) =
⋂

n∈N

⋃

m∈N

{ω : ω ∈ Cdlg, ρ(ω(q), ω(q′)) ≤ 2−n

whenever q, q′ ∈ Q ∩ [0, n] and |q − q′| ≤ 2−m}.
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4A3R Baire property Let X be a topological space, and M the ideal of meager subsets of X. A
subset X has the Baire property if it is expressible in the form G△M where G ⊆ X is open and M ∈ M;
that is, A ⊆ X has the Baire property if there is an open set G ⊆ X such that G△A is meager. (For

A = G△M iff M = G△A.) The family B̂(X) of all such sets is the Baire-property algebra of X. (See

4A3S.) (Warning! do not confuse the ‘Baire-property algebra’ B̂ with the ‘Baire σ-algebra’ Ba as defined

in 4A3K.) The quotient algebra B̂(X)/M is the category algebra of X.

4A3S Proposition Let X be a topological space.
(a) Let A ⊆ X be any set.

(i) There is a largest open set G ⊆ X such that A ∩G is meager.
(ii) H = X \G is the smallest regular open subset of X such that A \H is meager; H ⊆ A.
(iii) H is in itself a Baire space.

(iv) If A ∈ B̂(X), H△A is meager.

(v) If X is a Baire space and A ∈ B̂(X), then H is the largest open subset of X such that H \ A is
meager.

(b)(i) B̂(X) is a σ-algebra of subsets of X including B(X).

(ii) B̂(X) = {G△M : G ⊆ X is a regular open set, M ∈ M}.
(c) If X has a countable network, its category algebra has a countable order-dense set (definition: 313J).

proof (a) (See Kechris 95, 8.29.)

(i) Set U = {U : U ⊆ X is open, A ∩ U is meager}. Let U0 ⊆
⋃
U be a maximal disjoint set, and

G0 =
⋃
U0. Then A ∩ G0 is meager. PPP For each U ∈ U0, let 〈FUn〉n∈N be a sequence of nowhere dense

closed sets covering A ∩ U . Set An =
⋃

U∈U0
FUn. If V ⊆ X is any non-empty open set, either V ∩ An is

empty or there is a U ∈ U0 such that V ∩ U 6= ∅, in which case V ∩ U \ FUn is a non-empty open subset of
U not meeting An. Thus An is nowhere dense. This is true for every n, so A∩G0 ⊆

⋃
n∈NAn is meager. QQQ

If U ∈ U , then V = U \ G0 belongs to U and cannot meet any member of U0, so must be empty. Thus
U ⊆ G0; as U is arbitrary, G =

⋃
U is included in G0 and G \G0 is nowhere dense. It follows that A∩G is

meager, and G is the largest open set for which this is true.

(ii) H = X \ G = int(X \ G) is now a regular open set (314O), and A \ H = (A ∩ G) ∪ (G \ G) is
meager. If H ′ is another regular open set such that A \H ′ is meager, then H \H ′ is open and meets A in
a meager set, so is included in G and must be empty. So H ⊆ intH ′ = H ′. Thus H is the smallest regular
open set such that A \H is meager. Of course X \ A belongs to U so is included in G and does not meet
H, that is, H ⊆ A.

(iii) If now 〈Hn〉n∈N is a sequence of open subsets of H which are dense in H, and H ′ ⊆ H is any
non-empty open set, H ′ \Hn is nowhere dense for every n, so H ′ \

⋂
n∈NHn is meager. On the other hand,

A ∩H ′ is non-meager so H ′ also is, and H ′ must meet
⋂

n∈NHn. As H ′ is arbitrary,
⋂

n∈NHn is dense in
H; as 〈Hn〉n∈N is arbitrary, H is a Baire space in its subspace topology.

(iv) If A has the Baire property, there is an open set U such that A△U is meager. In this case,
A∩H \U must be meager, so H ⊆ U and H \A ⊆ (U \A)∪ (U \G) is meager and H△A = (A\H)∪ (H \A)
is meager.

(v) By (iv), H \A is meager. If U ⊆ X is open and U \A is meager, set V = U \H. Then V \A and
V ∩ A are both meager, so V is meager, and must be empty, since X is a Baire space. Thus U ⊆ H and
G ⊆ H, because H is a regular open set.

(b)(i) (See Čech 66, §22C; Kuratowski 66, §11.III; Kechris 95, 8.22.) Of course X = X△∅ belongs

to B̂(X). If E ∈ B̂(X), let G ⊆ X be an open set such that E△G is meager. Then

(X \G)△(X \ E) ⊆ (G \G) ∪ (G△E)

is meager, so X \E ∈ B̂(X). If 〈En〉n∈N is a sequence in B̂(X), then for each n ∈ N we can find an open set
Gn such that Gn△En is meager, and now

(
⋃

n∈NGn)△(
⋃

n∈NEn) ⊆
⋃

n∈NGn△En
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is meager, so
⋃

n∈NEn ∈ B̂(X).

This shows that B̂(X) is a σ-algebra of subsets of X. Since it contains every open set, it must include
the Borel σ-algebra.

(ii) Of course G△M ∈ B̂(X) whenever G is a regular open set and M is meager. In the other direction,
given a set A with the Baire property, let G0 be an open set such that G0△A is meager. Then G = intG0

is a regular open set and G△G0 is nowhere dense, so M = G△A is meager, while A = G△M .

(c) Suppose that X has a countable network A. For A ∈ A, set dA = A
•

, the equivalence class of

A ∈ B̂ in B̂/M. If b ∈ B̂/M is non-zero, take E ∈ B̂ such that E• = b, and an open set G ⊆ X such that
E△G ∈ M. Then G is not meager. Set A1 = {A : A ∈ A, A ⊆ G}; then A1 is countable and G =

⋃
A1,

so there is a non-meager A ∈ A1. In this case A is not meager, so dA 6= 0, while A \G ⊆ G \G is nowhere

dense, so dA ⊆ b. As b is arbitrary, {dA : A ∈ A} is order-dense in B̂/M, and is countable because A is.

*4A3T The following result does not mention any topology, but its principal applications are with J
an ideal of meager sets, so I slip it in here. It will be useful in §424 and in Volume 5.

Lemma Let X and Y be sets, Σ a σ-algebra of subsets of X, T a σ-algebra of subsets of Y and J a σ-ideal
of T. Suppose that the quotient Boolean algebra T/J has a countable order-dense set.

(a) {x : x ∈ X, W [{x}] ∩A ∈ J } belongs to Σ for any W ∈ Σ⊗̂T and A ⊆ Y .
(b) For every W ∈ Σ⊗̂T there are sequences 〈En〉n∈N in Σ, 〈Vn〉n∈N in T such that (W△W1)[{x}] ∈ J

for every x ∈ X, where W1 =
⋃

n∈NEn × Vn.

proof (Compare Kechris 95, 16.1.)

(a) Let D ⊆ T/J be a countable order-dense set. Let V ⊆ T be a countable set such that D = {V • :
V ∈ V}. Let Λ be the family of subsets W of X × Y such that

W [{x}] ∈ T for every x ∈ X,

{x : x ∈ X, W [{x}] ∩A ∈ J } ∈ Σ for every A ⊆ Y .

(i) Of course ∅ ∈ Λ, because if W = ∅ then W [{x}] = ∅ for every x ∈ X, and {x : W [{x}]∩A ∈ J } = X
for every A ⊆ Y .

(ii) Suppose that W ∈ Λ, and set W ′ = (X × Y ) \W . Then

W ′[{x}] = Y \W [{x}] ∈ T

for every x ∈ X. Now suppose that A ⊆ Y . Set V∗ = {V : V ∈ V, A ∩ V /∈ J },

E = {x : W ′[{x}] ∩A ∈ J },

E′ = {x : V ∩W [{x}] /∈ J for every V ∈ V∗}.

Then E = E′. PPP (α) If x ∈ E and V ∈ V∗, then A∩W ′[{x}] = A\W [{x}] belongs to J , so V ∩A\W [{x}] ∈ J
and V ∩W [{x}] ⊇ V ∩ A ∩W [{x}] is not in J . As V is arbitrary, x ∈ E′; as x is arbitrary, E ⊆ E′. (β)
If x /∈ E, then W ′[{x}] ∩ A /∈ J . Set V1 = {V : V ∈ V, V \W ′[{x}] ∈ J }, D1 = {V • : V ∈ V1}. Then
D1 = {d : d ∈ D, d ⊆ W ′[{x}]•}, so W ′[{x}]• = supD1 in T/J (313K). Because J is a σ-ideal, the map
F 7→ F • : T → T/J is sequentially order-continuous (313Qb), and (

⋃
V1)• = supD1 (313Lc), that is,

W ′[{x}]△
⋃

V1 ∈ J . There must therefore be a V ∈ V1 such that V ∩A /∈ J , that is, V ∈ V∗. At the same
time, V ∩W [{x}] = V \W ′[{x}] belongs to J , so V witnesses that x /∈ E′. As x is arbitrary, E′ ⊆ E. QQQ

Since W ∈ Λ,

E = E′ = X \
⋃

V ∈V∗{x : V ∩W [{x}] ∈ J }

belongs to T. As A is arbitrary, W ′ ∈ Λ. Thus the complement of any member of Λ belongs to Λ.

(iii) If 〈Wn〉n∈N is any sequence in Λ with union W , then

W [{x}] =
⋃

n∈NWn[{x}] ∈ T

for every x, while
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{x : W [{x}] ∩A ∈ J } =
⋂

n∈N{x : Wn[{x}] ∩A ∈ J } ∈ Σ

for every A ⊆ Y . So W ∈ Λ.

(iv) What this shows is that Λ is a σ-algebra of subsets of X × Y . But if W = E × F , where E ∈ Σ
and F ∈ T, then

W [{x}] ∈ {∅, F} ⊆ T for every x ∈ X,

{x : W [{x}] ∩A ∈ J } ∈ {X \ E,X} ⊆ Σ

for every A ⊆ Y ; so W ∈ Λ. Accordingly Λ must include Σ⊗̂T, as claimed.

(b) Let 〈Vn〉n∈N be a sequence running over V ∪ {∅}. For each n ∈ N, set

En = {x : Vn \W [{x}] ∈ J };

by (a), En ∈ Σ. Set W1 =
⋃

n∈NEn × Vn. Take any x ∈ X. Then W1[{x}] =
⋃

n∈I Vn where I = {n : x ∈
En}. Since Vn \W [{x}] ∈ J for every n ∈ I, W1[{x}] \W [{x}] ∈ J . ??? If W [{x}] \W1[{x}] /∈ J , there is
a d ∈ D such that 0 6= d ⊆ W [{x}]• \W1[{x}]•. Let n ∈ N be such that V •

n = d; then Vn \W [{x}] ∈ J , so
n ∈ I and Vn ⊆W1[{x}] and d ⊆ W1[{x}]•, which is impossible. XXX

As x is arbitrary, W1 has the required properties.

4A3U Cylindrical σ-algebras I offer a note on a particular type of Baire σ-algebra.

Definition Let X be a linear topological space. Then the cylindrical σ-algebra of X is the smallest
σ-algebra Σ of subsets of X such that every continuous linear functional on X is Σ-measurable.

4A3V Proposition Let X be a linear topological space and Ts = Ts(X,X
∗) its weak topology. Then

the cylindrical σ-algebra of X is just the Baire σ-algebra of (X,Ts).

proof (a) Let 〈fi〉i∈I be a Hamel basis for X∗ (4A4Ab). For x ∈ X, set Tx = 〈fi(x)〉i∈I ; then T : X → RI

is a linear operator. Now Y = T [X] is dense in RI . PPP Y is a linear subspace of RI , so its closure Y
also is (2A5Ec). If φ ∈ (RI)∗ is such that φ(Tx) = 0 for every x ∈ X, there are a finite set J ⊆ I and a
family 〈αi〉i∈J ∈ RJ such that φ(y) =

∑
i∈J αiy(i) for every y ∈ RI (4A4Be). In this case,

∑
i∈J αifi(x) =

φ(Tx) = 0 for every x ∈ X; but 〈fi〉i∈I is linearly independent, so αi = 0 for every i ∈ J and φ = 0. By
4A4Eb, Y must be the whole of RI . QQQ

(b)(i) Set T′
s = {T−1[H] : H ⊆ Y is open}. Then T′

s = Ts. PPP Because every fi is continuous, T is
continuous, so T′

s ⊆ Ts. On the other hand, any f ∈ X∗ is a linear combination of the fi, so is T′
s-continuous,

and Ts ⊆ T′
s. QQQ

(ii) If g : X → R is Ts-continuous, there is a continuous g1 : Y → R such that g = g1T . PPP If x, x′ ∈ X
are such that Tx = Tx′, then every Ts-open set containing one must contain the other, so g(x) = g(x′). This
means that there is a function g1 : Y → R such that g = g1T . Next, if U ⊆ R is open, T−1[g−1

1 [U ]] = g−1[U ]
belongs to Ts = T′

s, so g−1
1 [U ] must be open in Y ; as U is arbitrary, g1 is continuous. QQQ

(c) Now let Σ be the cylindrical σ-algebra of X. Then every fi : X → R is Σ-measurable, so T : X → RI

is (Σ,Ba(RI))-measurable, by 4A3Ne. Because Y is dense in RI , Ba(Y ) is the subspace σ-algebra induced
by Ba(RI) (4A3Nd). So T : X → Y is (Σ,Ba(Y ))-measurable. Now if g : X → R is a continuous function,
there is a continuous function g1 : Y → R such that g = g1T ; g1 is Ba(Y )-measurable, so g is Σ-measurable.
As this is true for every Ts-continuous g : X → R, Ba(X) ⊆ Σ.

(d) On the other hand, Σ ⊆ Ba(X) just because every member of X∗ is Ts-continuous. So Σ = Ba(X),
as claimed.

4A3W Proposition Let (X,T) be a separable metrizable locally convex linear topological space, and
Ts = Ts(X,X

∗) its weak topology. Then the cylindrical σ-algebra of X is also both the Baire σ-algebra and
the Borel σ-algebra for both T and Ts.

proof (a) For any linear topological space, we have
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Σ ⊆ Ba(X,Ts) ⊆ Ba(X,T) ⊆ B(X,T), Ba(X,Ts) ⊆ B(X,Ts) ⊆ B(X,T),

writing Σ for the cylindrical σ-algebra and Ba(X,Ts), Ba(X,T), B(X,Ts) and B(X,T) for the Baire and
Borel σ-algebras of the two topologies. So all I have to do is to show that B(X,T) ⊆ Σ.

(b) Let 〈τn〉n∈N be a sequence of seminorms defining the topology of X (4A4Cf), and D ⊆ X a countable
dense set; for n ∈ N, δ > 0 and x ∈ X, set Un(x, δ) = {y : τi(y − x) < δ for every i ≤ n}. Then every
Un(x, δ) is a convex open set. Set

U = {Un(z, 2−m) : z ∈ D, m, n ∈ N}.

(c) If G ⊆ X is any convex open set, G ∈ Σ. PPP Set UG = {U : U ∈ U , U ∩ G = ∅}. For each U ∈ UG,
there are fU ∈ X∗, αU ∈ R such that fU (x) < αU for every x ∈ G and fU (x) > αU for every x ∈ U (4A4Db).
So F = {x : fU (x) ≤ αU for every U ∈ UG} belongs to Σ. Of course F ⊇ G. On the other hand, if x /∈ G,
there are m, n ∈ N such that G∩Un(x, 2−m) = ∅; if we take z ∈ D∩Un(x, 2−m−1), U = Un(z, 2−m−1) then
x ∈ U ∈ UG, so fU (x) > αU and x /∈ F . Thus G = F belongs to Σ. QQQ

(d) In particular, V = {U : U ∈ U} is included in Σ. But V is a countable network for T. So every member
of T is a union of countably many members of Σ and belongs to Σ. It follows at once that B(X,T) ⊆ Σ, as
required.

4A3X Basic exercises (a) Let X be a regular space with a countable network and Y any topological
space. Show that B(X × Y ) = B(X)⊗̂B(Y ). (Hint : 4A2Ng.)

(b) Let X be a topological space, and E ⊆ X. Show that the following are equiveridical: (α) E ∈ Ba(X);
(β) there are a continuous function f : X → [0, 1]N and F ∈ B([0, 1]N) such that E = f−1[F ].

>>>(c) Let X be a topological space, and K ⊆ X a compact set such that K ∈ Ba(X). Show that K is a
zero set. (Hint : 4A3Xb.)

(d) Let X be a compact Hausdorff space such that Ba(X) = B(X). Show that X is perfectly normal.

(e) Let S be the topology on R generated by the usual topology and {{x} : x ∈ R \Q}. Show that S is
completely regular and Hausdorff and that Q is a closed Baire set which is not a zero set.

>>>(f) Let X be a ccc completely regular topological space. Show that any nowhere dense set is included
in a nowhere dense zero set.

(g) Let 〈Xi〉i∈I be a family of spaces with countable networks, and X their product. Show that Ba(X) =⊗̂
i∈IBa(Xi).

>>>(h)(i) Let I be an uncountable set with its discrete topology, and X the one-point compactification of
I. Show that Ba(I) is not the subspace σ-algebra generated by Ba(X). (ii) Show that ω1, with its order
topology, has a subset I such that Ba(I) is not the subspace σ-algebra induced by Ba(ω1).

4A3Y Further exercises (a) Give an example of a Hausdorff space X with a countable network and
a metrizable space Y such that B(X × Y ) 6= B(X)⊗̂B(Y ).

(b) Let X be a Čech-complete space and 〈En〉n∈N a sequence of Borel sets in X. Show that there is a
Čech-complete topology on X, finer than the given topology, with the same weight, and containing every
En.

(c) Give an example of compact Hausdorff spacesX, Y and a function f : X → Y which is (Ba(X),Ba(Y ))-
measurable but not Borel measurable.

(d) Let 〈Xi〉i∈I be a family of regular spaces with countable networks, with product X. Show that (i)
Ba(X) is the family of Borel subsets of X which are determined by coordinates in countable sets; (ii) a set
Z ⊆ X is a zero set iff it is closed and determined by coordinates in a countable set; (iii) if Y ⊆ X is dense,
then Ba(Y ) is just the subspace σ-algebra Ba(X)Y induced by Ba(X).
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(e) Let X be a normal topological space and Y a closed subset of X. Show that every Baire subset of Y
is the intersection of Y with a Baire subset of X.

4A3 Notes and comments Much of this section consists of easy technicalities. It is however not always
easy to guess at the exact results obtainable by these methods. It is important to notice that Baire σ-
algebras on subspaces can give difficulties which do not arise with Borel σ-algebras (4A3Xh, 4A3Ca). I have
expressed 4A3D in terms of ‘hereditarily Lindelöf’ spaces. Of course the separable metrizable spaces form
by far the most important class of these, but there are others (the split interval, for instance) which are of
great interest in measure theory. Similarly, there are important products of non-metrizable spaces which
are ccc (e.g., 417Xt(vii)), so that 4A3Mb has something to say.

4A3H-4A3I are a most useful tool in studying Borel subsets of Polish spaces, especially in conjunction
with the First Separation Theorem (422I); see 424G and 424H. I include 4A3Yb and 4A3Yd to show that
some more of the arguments here can be adapted to non-separable or non-metrizable spaces.

You will note my caution in the definition of ‘Baire measurable’ function (4A3Ke). This is supposed to
cover the case of functions taking values in [−∞,∞] without taking a position on functions between general
topological spaces (4A3Yc).

It is relatively easy to show that spaces of càdlàg functions have standard Borel structures (4A3Qb). To
exhibit usable complete metrics generating these is another matter; see chap. 3 of Billingsley 99.

Version of 19.6.13

4A4 Locally convex spaces

As in §3A5, all the ideas, and nearly all the results as stated below, are applicable to complex linear
spaces; but for the purposes of this volume the real case will almost always be sufficient, and for definiteness
you may take it that the scalar field is R, except in 4A4J-4A4K. (Complex Hilbert spaces arise naturally in
§445.)

4A4A Linear spaces (a) If U is a linear space, a Hamel basis for U is a maximal linearly independent
family 〈ui〉i∈I in U , so that every member of U is uniquely expressible as

∑
i∈J αiui for some finite J ⊆ I

and 〈αi〉i∈J ∈ (R \ {0})J .

(b) Every linear space has a Hamel basis. (Schaefer 71, p. 10; Köthe 69, §7.3.)

(c) If U is a linear space, I write U ′ for the algebraic dual of U , the linear space of all linear functionals
from U to R.

4A4B Linear topological spaces (see §2A5) (a) If U is a linear topological space, and V is a linear
subspace of U , then V , with the linear structure and topology induced by those of U , is again a linear
topological space. (Bourbaki 87, I.1.3; Schaefer 71, §I.2; Köthe 69, §15.2.)

(b) If 〈Ui〉i∈I is any family of linear topological spaces, then U =
∏

i∈I Ui, with the product linear
space structure and topology, is again a linear topological space. (Bourbaki 87, I.1.3; Schaefer 71, §I.2;
Köthe 69, §15.4.) In particular, RX , with its usual linear and topological structures, is a linear topological
space, for any set X.

(c) If U and V are linear topological spaces, the set of continuous linear operators from U to V is a linear
subspace of the space L(U ;V ) of all linear operators from U to V . If U , V and W are linear topological
spaces, and T : U → V and S : V → W are continuous linear operators, then ST : U → W is a continuous
linear operator.

(d) If U is a linear topological space, I will write U∗ for the dual of U , the space of all continuous linear
functionals from U to R (compare 2A4H). U∗ is a linear subspace of U ′ as defined in 4A4Ac. The weak

c© 2002 D. H. Fremlin
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topology on U , Ts(U,U
∗), is that defined by the method of 2A5B from the seminorms u 7→ |f(u)| as f runs

over U∗ (compare 2A5Ia). The weak* topology on U∗, Ts(U
∗, U), is that defined from the seminorms

f 7→ |f(u)| as u runs over U (compare 2A5Ig). By 2A5B, both are linear space topologies. If U and V are
linear topological spaces, T : U → V is a continuous linear operator, and g ∈ V ∗, then gT ∈ U∗ ((c) above);
consequently T is (Ts(U,U

∗),Ts(V, V
∗))-continuous.

(e) If U =
∏

i∈I Ui is a product of linear topological spaces, then every element of U∗ is of the form
u 7→

∑
i∈J fi(u(i)) where J ⊆ I is finite and fi ∈ U∗

i for every i ∈ J . (Bourbaki 87, II.6.6; Schaefer 71,
IV.4.3; Köthe 69, §22.5.) Consequently the weak topology on U is the product of the weak topologies on
the Ui.

(f) Let U be a linear topological space. For A ⊆ U write A◦ for its polar set {f : f ∈ U∗, f(x) ≤ 1
for every x ∈ A} in U∗. If G is a neighbourhood of 0 in U , then G◦ is a Ts(U

∗, U)-compact subset of U∗

(compare 3A5F). (Schaefer 71, III.4.3; Köthe 69, §20.9; Rudin 91, 3.15.)

(g) Let U be a linear topological space. If D ⊆ U is non-empty and closed under addition and multipli-
cation by rationals, D is a linear subspace of U . PPP The linear span

V = {
∑n

i=0 αiui : u0, . . . , un ∈ D, α0, . . . , αn ∈ R}

of

D = {
∑n

i=0 αiui : u0, . . . , un ∈ D, α0, . . . , αn ∈ Q}

is included in D, because addition and scalar multiplication are continuous; so D = V is a linear subspace.
QQQ If A ⊆ U is separable, then the closed linear subspace generated by A is separable. PPP Let D0 ⊆ A be a
countable dense subset; then

D = {
∑n

i=0 αiui : u0, . . . , un ∈ D0, α0, . . . , αn ∈ Q}

is countable, and D is separable; but D is the closed linear subspace generated by A. QQQ

(h) If 〈ui〉i∈I is an indexed family in a Hausdorff linear topological space U and u ∈ U , we say that
u =

∑
i∈I ui if for every neighbourhood G of u there is a finite set J ⊆ I such that

∑
i∈K ui ∈ G whenever

K ⊆ I is finite and J ⊆ K (compare 226Ad).
If 〈vi〉i∈I is another family with the same index set, and v =

∑
i∈I vi is defined, then

∑
i∈I(ui + vi)

is defined and equal to u + v. PPP If G is a neighbourhood of u + v, there are neighbourhoods H, H ′

of u, v respectively such that H + H ′ ⊆ G; there are finite sets J , J ′ ⊆ I such that
∑

i∈K ui ∈ H
whenever J ⊆ K ∈ [I]<ω and

∑
i∈K vi ∈ H ′ whenever J ′ ⊆ K ∈ [I]ω; now

∑
i∈K ui + vi ∈ G whenever

J ∪ J ′ ⊆ K ∈ [I]<ω. QQQ
If now V is another Hausdorff linear topological space and T : U → V is a continuous linear operator,∑
i∈I Tui = T (

∑
i∈I ui) if the right-hand-side is defined. PPP Set u =

∑
i∈I ui. If H is an open set containing

Tu, then T−1[H] is an open set containing u, so there is a J ∈ [I]<ω (notation: 3A1J) such that
∑

i∈K ui ∈
T−1[H] and

∑
i∈K Tui ∈ H whenever J ⊆ K ∈ [I]<ω. QQQ

(i) If U is a Hausdorff linear topological space, then any finite-dimensional linear subspace of U is closed.
(Schaefer 71I.3.3; Taylor 64, 3.12-C; Rudin 91, 1.2.1.)

(j) If U is a first-countable Hausdorff linear topological space which (regarded as a linear topological
space) is complete, then there is a metric ρ on U , defining its topology, under which U is complete. PPP
Let W be the uniformity of U (3A4Ad). We know there is a sequence 〈Gn〉n∈N running over a base of
neighbourhoods of 0 in U ; setting Wn = {(u, v) : u − v ∈ Gn} for each n, {Wn : n ∈ N} generates W. So
there is a metric ρ on U defining W (4A2Jb). Because X is W-complete, it is ρ-complete (Engelking 89,
8.3.5). QQQ

4A4C Locally convex spaces (a) A linear topological space is locally convex if the convex open sets
form a base for the topology.
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(b) A linear topological space is locally convex iff its topology can be defined by a family of seminorms
(2A5B, 2A5D). (Bourbaki 87, II.4.1; Schaefer 71, §II.4; Köthe 69, §18.1.)

(c) Let U be a linear space and τ a seminorm on U . Then Nτ = {u : τ(u) = 0} is a linear subspace of X.
On the quotient space U/Nτ we have a norm defined by setting ‖u•‖ = τ(u) for every u ∈ U . (Bourbaki

87, II.1.3; Schaefer 71, II.5.4; Rudin 91, 1.43.)

(d) Let U be a locally convex linear topological space, and T the family of continuous seminorms on
U . For each τ ∈ T, write Nτ = {u : τ(u) = 0}, as in (c) above, and πτ for the canonical map from U to
Uτ = U/Nτ . Give each Uτ its norm, and set Gτ = {π−1

τ [H] : H ⊆ Uτ is open}. Then
⋃

τ∈T Gτ is a base for
the topology of X closed under finite unions. (Schaefer 71, II.5.4.)

(e) A linear subspace of a locally convex linear topological space is locally convex. (Bourbaki 87, II.4.3;
Köthe 69, §18.3.) The product of any family of locally convex linear topological spaces (4A4Bb) is locally
convex. (Bourbaki 87, II.4.3; Köthe 69, §18.3.)

(f) If U is a metrizable locally convex linear topological space, its topology can be defined by a sequence
of seminorms. (Bourbaki 87, II.4.1; Köthe 69, §18.2.)

(g) Let U be a linear space and V a linear subspace of the space U ′ of all linear functionals on U .
Let Ts(V,U) be the topology on V generated by the seminorms f 7→ |f(u)| as u runs over U (compare
4A4Bd), and let φ : V → R be a Ts(V,U)-continuous linear functional. Then there is a u ∈ U such that
φ(f) = f(u) for every f ∈ V . (Bourbaki 87, IV.1.1; Schaefer 71, IV.1.2; Köthe 69, §20.2; Rudin 91,
3.10; Dunford & Schwartz 57, II.3.9; Taylor 64, 3.81-A.)

(h) Grothendieck’s theorem If U is a complete locally convex Hausdorff linear topological space, and
φ is a linear functional on the dual U∗ such that φ↾G◦ is Ts(U

∗, U)-continuous for every neighbourhood G
of 0 in U , then φ is of the form f 7→ f(u) for some u ∈ U . (Bourbaki 87, III.3.6; Schaefer 71, IV.6.2;
Köthe 69, §21.9.)

4A4D Hahn-Banach theorem (a) Let U be a linear space and θ : U → [0,∞[ a seminorm.
(i) If V ⊆ U is a linear subspace and g : V → R is a linear functional such that |g(v)| ≤ θ(v) for every

v ∈ V , then there is a linear functional f : U → R, extending g, such that |f(u)| ≤ θ(u) for every u ∈ U .
(ii) If u0 ∈ U then there is a linear functional f : U → R such that f(u0) = θ(u0) and |f(u)| ≤ θ(u)

for every u ∈ U . (Bourbaki 87, II.3.2; Rudin 91, 3.3; Dunford & Schwartz 57, II.3.11; Taylor 64,
3.7-C; or use 3A5Aa.)

(b) Let U be a linear topological space and G, H two disjoint convex sets in U , of which one has non-
empty interior. Then there are a non-zero f ∈ U∗ and an α ∈ R such that f(u) ≤ α ≤ f(v) for every u ∈ G,
v ∈ H, so that f(u) < α for every u ∈ intG and α < f(v) for every u ∈ intH. (Bourbaki 87, II.5.2;
Schaefer 71, II.9.1; Köthe 69, §17.1.)

4A4E The Hahn-Banach theorem in locally convex spaces Let U be a locally convex linear
topological space.

(a) If V ⊆ U is a linear subspace, then every member of V ∗ extends to a member of U∗ (compare 3A5Ab).
(Bourbaki 87, II.4.1; Schaefer 71, II.4.2; Köthe 69, §20.1; Rudin 91, 3.6; Taylor 64, 3.8-D.)

Consequently Ts(V, V
∗) is just the subspace topology on V induced by Ts(U,U

∗).

(b) Let C ⊆ U be a non-empty closed convex set. If u ∈ U then u ∈ C iff f(u) ≤ supv∈C f(v) for every
f ∈ U∗ iff f(u) ≥ infv∈C f(v) for every f ∈ U∗. (Bourbaki 87, II.5.3; Schaefer 71, II.9.2; Köthe 69,
§20.7; Dunford & Schwartz 57, V.2.12.)

If V ⊆ U is a closed linear subspace and u ∈ U \ V there is an f ∈ U∗ such that f(u) 6= 0 and f(v) = 0
for every v ∈ V . (Bourbaki 87, II.5.3; Köthe 69, §20.1; Rudin 91, 3.5; Taylor 64, 3.8-E.)
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(c) If U is Hausdorff, U∗ separates its points (compare 3A5Ae). (Bourbaki 87, II.4.1; Rudin 91, 3.4.)

(d) If u ∈ U belongs to the Ts(U,U
∗)-closure of a convex set C ⊆ U , it belongs to the closure of C

(compare 3A5Ee). (Schaefer 71, II.9.2; Köthe 69, §20.7; Rudin 91, 3.12.) In particular, if C is closed,
it is Ts(U,U

∗)-closed. (Dunford & Schwartz 57, V.2.13.)

(e) If C, C ′ ⊆ U are disjoint non-empty closed convex sets, of which one is compact, there is an f ∈ U∗

such that supu∈C f(u) < infu∈C′ f(u). (Apply (b) to C − C ′. See Bourbaki 87, II.5.3; Schaefer 71,
II.9.2; Köthe 69, §20.7; Rudin 91, 3.4; Dunford & Schwartz 57, V.3.13.)

(f) Let V be a linear subspace of U ′. Let K ⊆ U be a non-empty Ts(U, V )-compact convex set, and
φ0 : V → R a linear functional such that φ0(f) ≤ supu∈K f(u) for every f ∈ V . Then there is a u0 ∈ K
such that φ0(f) = f(u0) for every f ∈ V . PPP Give U the topology Ts(U, V ) and V ′ the topology Ts(V

′, V )
(4A4Cg). For u ∈ U , f ∈ V set û(f) = f(u); then u 7→ û is a continuous linear operator from U to V ′ (use

2A3H), so K̂ = {û : u ∈ K} is a compact convex subset of V ′.

??? Suppose, if possible, that φ0 /∈ K̂. By (b), there is a continuous linear functional θθθ : V ′ → R such
that θθθ(φ0) > supu∈K θθθ(û). But there is an f ∈ V such that θθθ(φ) = φ(f) for every φ ∈ V ′ (4A4Cg), so that
φ0(f) > supu∈K f(u), contrary to hypothesis. XXX So there is a u0 ∈ K such that φ0 = û0, as claimed. QQQ

(g) The Bipolar Theorem Let A ⊆ U ′ be a non-empty set. Set A◦ = {u : u ∈ U , f(u) ≤ 1 for
every f ∈ A} (compare 4A4Bf). If g ∈ U ′ is such that g(u) ≤ 1 for every u ∈ A◦, then g belongs to the
Ts(U

′, U)-closed convex hull of A ∪ {0}. PPP Put 4A4Cg and (b) above together, as in (f). See Bourbaki

87, II.6.3; Schaefer 71, IV.1.5; Köthe 69, 20.8. QQQ

(h) Let W be a linear subspace of U ′ separating the points of U . Then W is Ts(U
′, U)-dense in U ′. (For

W 0 = {0}.)

4A4F The Mackey topology Let U be a linear space and V a linear subspace of U ′. The Mackey
topology Tk(V,U) on V is the topology of uniform convergence on convex Ts(U, V )-compact subsets of U .
Every Tk(V,U)-continuous linear functional on V is of the form f 7→ f(u) for some u ∈ U (use 4A4Ef). So
every Tk(V,U)-closed convex set is Ts(V,U)-closed, by 4A4Ed. (See Bourbaki 87, IV.1.1; Schaefer 71,
IV.3.2; Köthe 69, 21.4.)

4A4G Extreme points (a) Let X be a real linear space, and C ⊆ X a convex set. An element of
C is an extreme point of C if it is not expressible as a convex combination of two other members of C;
equivalently, if it is not expressible as 1

2 (x+ y) where x, y ∈ C are distinct.

(b) The Krěın-Mil’man theorem Let U be a Hausdorff locally convex linear topological space and
K ⊆ U a compact convex set. Then K is the closed convex hull of the set of its extreme points. (Bourbaki

87, II.7.1; Schaefer 71, II.10.4; Köthe 69, §25.1; Rudin 91, 3.22.)

(c) Let U and V be Hausdorff locally convex linear topological spaces, T : U → V a continuous linear
operator, K ⊆ X a compact convex set and v any extreme point of T [K] ⊆ V . Then there is an extreme
point u of K such that Tu = v. PPP Set K1 = {u′ : u′ ∈ K, Tu′ = v}. Then K1 is a compact convex set so
has an extreme point u. ??? If u is not an extreme point of K, it is expressible as αu1 + (1 − α)u2 where u1,
u2 are distinct points of K and α ∈ ]0, 1[. So v = αTu1 + (1 − α)Tu2, and we must have Tu1 = Tv = Tu2,
because v is an extreme point of T [K]; but this means that u1, u2 ∈ K1 and u is not an extreme point of
K1. XXX So u has the required properties. QQQ

4A4H Proposition Let I be a set, W a closed linear subspace of RI , U a linear topological space and
V a Hausdorff linear topological space. Let K ⊆ U be a compact set and T : U × RI → V a continuous
linear operator. Then T [K ×W ] is closed.

proof Take v0 ∈ T [K ×W ]. Let J ⊆ I be a maximal set such that

whenever L ⊆ J is finite and H ⊆ V is an open set containing v0, there are a u ∈ K and an
x ∈W such that x(i) = 0 for every i ∈ L and T (u, x) ∈ H.
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Let F be the filter on U × RI generated by the closed set K ×W , the sets {(u, x) : x(i) = 0} for i ∈ J ,
and the sets T−1[H] for open sets H containing v0. Then for any j ∈ I there is an F ∈ F such that
{x(j) : (u, x) ∈ F} is bounded. PPP??? Suppose, if possible, otherwise. Then, in particular, j /∈ J . So there
must be a finite set L ⊆ J and an open set H containing v0 such that x(j) 6= 0 whenever u ∈ K, x ∈ W ,
x(i) = 0 for every i ∈ L and T (u, x) ∈ H. By 2A5C, or otherwise, there is a neighbourhood G0 of 0 in V
such that v0 + G0 − G0 ⊆ H and αv ∈ G0 whenever v ∈ G0 and |α| ≤ 1. Fix u∗ ∈ K, x∗ ∈ W such that
x∗(i) = 0 for every i ∈ L and T (u∗, x∗) ∈ v0 +G0. If x ∈W and x(i) = 0 for every i ∈ L and x(j) = x∗(j),
then T (u∗, x∗ − x) /∈ v0 + G0 − G0 so T (0, x) /∈ G0. It follows that T (0, x) /∈ G0 whenever x ∈ W and
x(i) = 0 for every i ∈ L and |x(j)| ≥ |x∗(j)|.

Let G be a neighbourhood of 0 in V such that G + G − G − G ⊆ G0. We are supposing that {x(j) :
(u, x) ∈ F} is unbounded for every F ∈ F . So for every n ∈ N there are un ∈ K and xn ∈ W such that
xn(i) = 0 for i ∈ L, T (un, xn) ∈ v0 + G and |xn(j)| ≥ n. Let u ∈ K be a cluster point of 〈un〉n∈N. Then
T (u, 0) is a cluster point of 〈T (un, 0)〉n∈N, so M = {n : T (un, 0) ∈ T (u, 0) + G} is infinite. For n ∈ M ,
T (0, xn) = T (un, xn)−T (un, 0) ∈ v0−T (u, 0)+G−G; so if m, n ∈M , T (0, xm−xn) ∈ G−G−(G−G) ⊆ G0.
But note now that (xm − xn)(i) = 0 for all m, n ∈ N and i ∈ L, and that because M is infinite there are
certainly m, n ∈M such that |xm(j) − xn(j)| ≥ |x∗(j)|; which contradicts the last paragraph. XXXQQQ

Now let G be any ultrafilter on U × RI including F . Then for every i ∈ I there is a γi < ∞ such
that G contains {(u, x) : |x(i)| ≤ γi}. It follows that G has a limit (û, x̂) in K ×W . Now the image filter
T [[G]] (2A1Ib) converges to T (û, x̂); since T [[F ]] → v0, and the topology of V is Hausdorff, v0 = T (û, x̂) ∈
T [K ×W ]. As v0 is arbitrary, T [K ×W ] is closed.

4A4I Normed spaces (a) Two norms ‖ ‖, ‖ ‖′ on a linear space U give rise to the same topology iff
they are equivalent in the sense that, for some M ≥ 0,

‖x‖ ≤M‖x‖′, ‖x‖′ ≤M‖x‖

for every x ∈ U . (Köthe 69, §14.2; Taylor 64, 3.1-D; Jameson 74, 2.8.)

(b) If U and V are normed spaces, T : U → V is a linear operator and gT : U → R is continuous for
every g ∈ V ∗, then T is a bounded operator. (Jameson 74, 27.6.)

(c) If U is any normed space, its dual U∗, under its usual norm (2A4H), is a Banach space. (Rudin 91,
4.1; Dunford & Schwartz 57, II.3.9; Köthe 69, §14.5.)

(d) If U is a separable normed space, its dual U∗ (regarded as a normed space) is isometrically isomorphic
to a closed linear subspace of ℓ∞. PPP Let 〈xn〉n∈N run over a dense subset of the unit ball of U (4A2P(a-iv));
define T : U∗ → ℓ∞ by setting (Tf)(n) = f(xn) for every n. T is a linear isometry between U∗ and T [U∗],
which is closed because U∗ is complete (4A4Ic, 3A4Fd). QQQ

(e) Let U be a Banach space. Suppose that 〈ui〉i∈I is a family in U such that γ =
∑

i∈I ‖ui‖ <∞.
(i)

∑
i∈I ui is defined in the sense of 4A4Bh. PPP For J ∈ [I]<ω, set vJ =

∑
i∈J ui. For each n ∈ N,

there is a Jn ∈ [I]<ω such that γ −
∑

i∈K ‖ui‖ ≤ 2−n whenever Jn ⊆ K ∈ [I]<ω. Now

‖vJm
− vJn

‖ ≤
∑

i∈Jm△Jn
‖ui‖ ≤ 2−m + 2−n

for all m, n ∈ N, so 〈vJn
〉n∈N is a Cauchy sequence and has a limit v say. If now n ∈ N and Jn ⊆ K ∈ [I]<ω,

‖v −
∑

i∈K

ui‖ = lim
m→∞

‖vJm
−

∑

i∈K

ui‖ ≤ lim sup
m→∞

∑

i∈Jm△K

‖ui‖

≤ lim
m→∞

2−m + 2−n = 2−n,

so v =
∑

i∈I ui. QQQ
(ii) Now if 〈Ij〉j∈J is any partition of I, wj =

∑
i∈Ij

ui is defined for every j, and
∑

j∈J wj is defined

and equal to
∑

i∈I ui.

(f) Let U be a normed space. For u ∈ U , define û ∈ U∗∗ = (U∗)∗ by setting û(f) = f(u) for every
f ∈ U∗. Then {û : u ∈ U, ‖u‖ ≤ 1} is weak*-dense in {φ : φ ∈ U∗∗, ‖φ‖ = 1}. (Apply 4A4Eg with
A = {û : ‖u‖ ≤ 1}.)
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4A4J Inner product spaces (a) Let U be an inner product space over R

C
(3A5M). An orthonormal

family in U is a family 〈ei〉i∈I in U such that (ei|ej) = 0 if i 6= j, 1 if i = j. An orthonormal basis in U
is an orthonormal family 〈ei〉i∈I in U such that the closed linear subspace of U generated by {ei : i ∈ I} is
U itself.

(b) If U , V are inner product spaces over R and T : U → V is an isometry such that T (0) = 0, then
(Tu|Tv) = (u|v) for all u, v ∈ U and T is linear. PPP (α)

(Tu|Tv) =
1

2
(‖Tu‖2 + ‖Tv‖2 − ‖Tu− Tv‖2) =

1

2
(‖u‖2 + ‖v‖2 − ‖u− v‖2) = (u|v).

(β) For any u, v ∈ U ,

‖T (u+ v) − Tu− Tv‖2 = ‖T (u+ v)‖2 + ‖Tu‖2 + ‖Tv‖2

− 2(T (u+ v)|Tu) − 2(T (u+ v)|Tv) + 2(Tu|Tv)

= ‖u+ v‖2 + ‖u‖2 + ‖v‖2

− 2(u+ v|u) − 2(u+ v|v) + 2(u|v)

= 0.

So T is additive. (γ) Consequently T (qu) = qTu for every u ∈ U and q ∈ Q; as T is continuous, it is linear.
QQQ

(c) If U , V are inner product spaces over C and T : U → V is a linear operator such that ‖Tu‖ = ‖u‖
for every u ∈ U , then (Tu|Tv) = (u|v) for all u, v ∈ U . PPP

Re(Tu|Tv) =
1

2
(‖Tu‖2 + ‖Tv‖2 − ‖Tu− Tv‖2) = Re(u|v),

Im(Tu|Tv) = −Re(i(Tu|Tv)) = −Re(T (iu)|Tv) = −Re(iu|v) = Im(u|v). QQQ

(d) If U is an inner product space over R

C
, a linear operator T : U → U is self-adjoint if (Tu|v) = (u|Tv)

for all u, v ∈ U .

(e) If U is a finite-dimensional inner product space over R, it is isomorphic to Euclidean space Rr, where
r = dimU . (Taylor 64, 3.21-A.) In particular, any finite-dimensional inner product space is a Hilbert
space.

(f) If U is an inner product space over R

C
and V ⊆ U is a linear subspace of U , then V ⊥ = {x : x ∈

U, (x|y) = 0 for every y ∈ V } is a linear subspace of U , and ‖x+ y‖2 = ‖x‖2 + ‖y‖2 for x ∈ V , y ∈ V ⊥. If
V is complete (in particular, if V is finite-dimensional), then U = V ⊕ V ⊥. (Rudin 91, 12.4; Bourbaki

87, V.1.6; Taylor 64, 4.82-A.)

(g) If U is an inner product space over R and v1, v2 ∈ U are such that ‖v1‖ = ‖v2‖ = 1, there is a linear
operator T : U → U such that Tv1 = v2 and ‖Tu‖ = ‖u‖ and ‖Tu − u‖ ≤ ‖v1 − v2‖‖u‖ for every u ∈ U .
PPP If v2 is a multiple of v1, say v2 = αv1, take Tu = αu for every u. Otherwise, set w = v2 − (v2|v1)v1 and

w1 =
1

‖w‖
w, so that v2 = cos θv1 + sin θw1, where θ = arccos(v2|v1). Let V be the two-dimensional linear

subspace of U generated by v1 and w1, so that U = V ⊕ V ⊥. Define a linear operator T : U → U by saying
that Tv1 = v2, Tw1 = cos θw1 − sin θv1 and Tu = u for u ∈ V ⊥. Then T acts on V as a simple rotation
through an angle θ, so ‖Tv‖ = 1 and ‖Tv− v‖ = ‖v2− v1‖ whenever v ∈ V and ‖v‖ = 1; generally, if u ∈ U ,
then ‖Tu‖ = ‖u‖ and

‖Tu− u‖ = ‖T (Pu) − Pu‖ = ‖v2 − v1‖‖Pu‖ ≤ ‖v2 − v1‖‖u‖,

where P is the orthogonal projection of U onto V . QQQ

(h) Let U be an inner product space over R

C
, and 〈ui〉i∈I a countable family in U . Then there is a

countable orthonormal family 〈vj〉j∈J in U such that {vj : j ∈ J} and {ui : i ∈ I} span the same linear
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subspace of U . PPP We can suppose that I ⊆ N; set ui = 0 for i ∈ N\I. Define 〈vn〉n∈N inductively by setting

v′n = un −
∑

i<n(un|vi)vi, vn = 0 if v′n = 0,
1

‖v′

n‖
v′n otherwise. Set J = {n : vn 6= 0}. QQQ

(i) Let U be an inner product space over R

C
, and 〈ei〉i∈I an orthonormal family in U . Then

∑
i∈I |(u|ei)|

2 ≤
‖u‖2 for every u ∈ U . (Dunford & Schwartz 57, p. 252; Taylor 64, 3.2-D.)

(j) Let U be an inner product space over R

C
, and C ⊆ U a convex set. Then there is at most one point

u ∈ C such that ‖u‖ ≤ ‖v‖ for every v ∈ C. PPP If u, u′ both have this property, then v = 1
2 (u + u′) ∈ C,

and ‖u‖ = ‖u′‖ ≤ ‖v‖; but 4‖v‖2 + ‖u− u′‖2 = 2(‖u‖2 + ‖u′‖2), so ‖u− u′‖ = 0 and u = u′. QQQ
For such a u, ‖u‖2 ≤ Re(u|v) for every v ∈ C. PPP For α ∈ ]0, 1],

‖u‖2 ≤ ‖αv + (1 − α)u‖2 = ‖u‖2 + 2α(Re(u|v) − ‖u‖2) + α2‖v − u‖2,

so Re(u|v) − ‖u‖2 ≥ − limα↓0
1
2α‖v − u‖2. QQQ

4A4K Hilbert spaces (a) If U is a real or complex Hilbert space, its unit ball is compact in the weak
topology Ts(U,U

∗); any bounded set is relatively compact for Ts(U,U
∗). (Bourbaki 87, V.1.7; Dunford

& Schwartz 57, IV.4.6.)

(b) If U is a real or complex Hilbert space, any norm-bounded sequence in U has a weakly convergent
subsequence. (462D; Dunford & Schwartz 57, IV.4.7.)

(c) If U is a real or complex Hilbert space and 〈ui〉i∈I is any orthonormal family in U , then it can be
extended to an orthonormal basis. (Dunford & Schwartz 57, IV.4.10; Taylor 64, 3.2-I.) In particular,
U has an orthonormal basis.

4A4L Compact operators (see 3A5La) (a) Let U , V and W be Banach spaces. If T ∈ B(U ;V ) and
S ∈ B(V ;W ) and either S or T is a compact operator, then ST is compact. (Dunford & Schwartz 57,
VI.5.4; Jameson 74, 34.2.)

(b) If U is a Banach space, T ∈ B(U ;U) is a compact linear operator and γ 6= 0 then {u : Tu = γu}
is finite-dimensional. (Rudin 91, 4.18; Taylor 64, 5.5-C; Dunford & Schwartz 57, VII.4.5; Jameson
74, 34.8.)

4A4M Self-adjoint compact operators If U is a Hilbert space and T : U → U is a self-adjoint
compact linear operator, then T [U ] is included in the closed linear span of {Tv : v is an eigenvector of T}.
(Taylor 64, 6.4-B.)

4A4N Max-flow Min-cut Theorem (Ford & Fulkerson 56) Let (V,E, γ) be a (finite) transporta-
tion network, that is,

V is a finite set of ‘vertices’,
E ⊆ {(v, v′) : v, v′ ∈ V, v 6= v′} is a set of (directed) ‘edges’,
γ : E → [0,∞[ is a function;

we regard a member e = (v, v′) of E as ‘starting’ at v and ‘ending’ at v′, and γ(e) is the ‘capacity’ of the
edge e. Suppose that v0, v1 ∈ V are distinct vertices such that no edge ends at v0 and no edge starts at v1.
Then we have a ‘flow’ φ : E → [0,∞[ and a ‘cut’ X ⊆ E such that

(i) for every v ∈ V \ {v0, v1},
∑

e∈E,e starts at v φ(e) =
∑

e∈E,e ends at v φ(e),

(ii) φ(e) ≤ γ(e) for every e ∈ E,
(iii) there is no path from v0 to v1 using only edges in E \X,
(iv)

∑
e∈E,e starts at v0

φ(e) =
∑

e∈E,e ends at v1
φ(e) =

∑
e∈X γ(e).

proof Bollobás 79, §III.1; Anderson 87, 12.3.1.
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Version of 4.8.13

4A5 Topological groups

For Chapter 44 we need a variety of facts about topological groups. Most are essentially elementary, and
all the non-trivial ideas are covered by at least one of Császár 78 and Hewitt & Ross 63. In 4A5A-4A5C
and 4A5I I give some simple definitions concerning groups and group actions. Topological groups, properly
speaking, appear in 4A5D. Their simplest properties are in 4A5E-4A5G. I introduce ‘right’ and ‘bilateral’
uniformities in 4A5H; the latter are the more interesting (4A5M-4A5O), but the former are also important
(see the proof of 4A5P). 4A5J-4A5L deal with quotient spaces, including spaces of cosets of non-normal
subgroups. I conclude with notes on metrizable groups (4A5Q-4A5S).

4A5A Notation If X is a group, x0 ∈ X, and A, B ⊆ X I write

x0A = {x0x : x ∈ A}, Ax0 = {xx0 : x ∈ A},

AB = {xy : x ∈ A, y ∈ B}, A−1 = {x−1 : x ∈ A}.

A is symmetric if A = A−1. Observe that (AB)C = A(BC), (AB)−1 = B−1A−1 for any A, B, C ⊆ X.

4A5B Group actions (a) If X is a group and Z is a set, an action of X on Z is a function (x, z) 7→
x•z : X × Z → Z such that

(xy)•z = x•(y•z) for all x, y ∈ X and z ∈ Z,

e•z = z for every z ∈ Z

where e is the identity of X.
In this context I may say that ‘X acts on Z’, taking the operation • for granted.

(b) An action • of a group X on a set Z is transitive if for every w, z ∈ Z there is an x ∈ X such that
x•w = z.

(c) If • is an action of a group X on a set Z, I write x•A = {x•z : z ∈ A} whenever x ∈ X and A ⊆ Z.

(d) If • is an action of a group X on a set Z, then z 7→ x•z : Z → Z is a permutation for every x ∈ X.
(For it has an inverse z 7→ x−1

•z.) So if Z is a topological space and z 7→ x•z is continuous for every x, it is
a homeomorphism for every x.

(e) An action • of a group X on a set Z is faithful if whenever x, y ∈ X are distinct there is a z ∈ Z such
that x•z 6= y•z; that is, the natural homomorphism from X to the group of permutations of Z is injective.
An action of X on Z is faithful iff for any x ∈ X which is not the identity there is a z ∈ Z such that x•z 6= z.

(f) If • is an action of a group X on a set Z, then Yz = {x : x ∈ X, x•z = z} is a subgroup of X (the
stabilizer of z) for every z ∈ Z. If • is transitive, then Yw and Yz are conjugate subgroups for all w, z ∈ Z.
(If x•w = z, then Yz = xYwx

−1.)

(g) If • is an action of a group X on a set Z, then sets of the form {a•z : a ∈ X} are called orbits of the
action; they are the equivalence classes under the equivalence relation ∼, where z ∼ z′ if there is an a ∈ X
such that z′ = a•z.

4A5C Examples Let X be any group.

(a) Write

x•ly = xy, x•ry = yx−1, x•cy = xyx−1

for x, y ∈ X. These are all actions of X on itself, the left, right and conjugacy actions.

c© 2000 D. H. Fremlin
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(b) If A ⊆ X, we have an action of X on the set {yA : y ∈ X} of left cosets of A defined by setting
x•(yA) = xyA for x, y ∈ X.

(c)(i) Let • be an action of a group X on a set Z. If f is any function defined on a subset of Z, and x ∈ X,
write x•f for the function defined by saying that (x•f)(z) = f(x−1

•z) whenever z ∈ Z and x−1
•z ∈ dom f .

It is easy to check that this defines an action of X on the class of all functions with domains included in Z.
Observe that

x•(f + g) = (x•f) + (x•g), x•(f × g) = (x•f) × (x•g), x•(f/g) = (x•f)/(x•g)

whenever x ∈ X and f , g are real-valued functions with domains included in Z.

(ii) In (i), if X = Z, we have corresponding actions •l, •r and •c of X on the class of functions with
domains included in X:

(x•lf)(y) = f(x−1y), (x•rf)(y) = f(yx), (x•cf)(y) = f(x−1yx)

whenever these are defined. These are the left, right and conjugacy shift actions.
Note that

x•lχA = χ(xA), x•rχA = χ(Ax−1), x•cχA = χ(xAx−1)

whenever A ⊆ X and x ∈ X. In this context, the following idea is sometimes useful. If f is a function with

domain included in X, set
↔

f (y) = f(y−1) when y ∈ X and y−1 ∈ dom f . Then

(
↔

f )↔ = f , x•l

↔

f = (x•rf)↔, x•r

↔

f = (x•lf)↔, x•c

↔

f = (x•cf)↔

for any such f and any x ∈ X.

(d) If • is an action of a group X on a set Z, Y ⊆ X is a subgroup of X, and W ⊆ Z is Y -invariant in
the sense that y•w ∈W whenever y ∈ Y and w ∈W , then •↾Y ×W is an action of Y on W . In the context
of (c-i) above, this means that if V is any set of functions with domains included in W such that y•f ∈ V
whenever y ∈ Y and f ∈ V , then we have an action of Y on V .

4A5D Definitions (a) A topological group is a group X endowed with a topology such that the
operations (x, y) 7→ xy : X ×X → X and x 7→ x−1 : X → X are continuous.

(b) A Polish group is a topological group in which the topology is Polish.

4A5E Elementary facts Let X be any topological group.

(a) For any x ∈ X, the functions y 7→ xy, y 7→ yx and y 7→ y−1 are all homeomorphisms from X to itself.
(Hewitt & Ross 63, 4.2; Folland 95, 2.1.)

(b) The maps (x, y) 7→ x−1y, (x, y) 7→ xy−1 and (x, y) 7→ xyx−1 from X ×X to X are continuous.

(c) {G : G is open, e ∈ G, G−1 = G} is a base of neighbourhoods of the identity e of X. (Hewitt &

Ross 63, 4.6; Folland 95, 2.1.)

(d) If G ⊆ X is an open set, then AG and GA are open for any set A ⊆ X. (Hewitt & Ross 63, 4.4.)

(e) If F ⊆ X is closed and x ∈ X \ F , there is a neighbourhood U of e such that UxUU ∩ FUU = ∅.
PPP Set U1 = X \ x−1F . Let U2 be a neighbourhood of e such that U2U2U2U

−1
2 U−1

2 ⊆ U1. Let U be a
neighbourhood of e such that U ⊆ U2 ∩ xU2x

−1; this works. QQQ

(f) If K ⊆ X is compact and F ⊆ X is closed then KF and FK are closed. If K, L ⊆ X are compact
so is KL. (Hewitt & Ross 63, 4.4.)

(g) If there is any compact set K ⊆ X such that intK is non-empty, then X is locally compact.
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(h) If K ⊆ X is compact and F is a downwards-directed family of closed subsets of X with intersection
F0, then KF0 =

⋂
F∈F KF and F0K =

⋂
F∈F FK. PPP Of course KF0 ⊆

⋂
F∈F KF . If x ∈ X \KF0, then

K−1x ∩ F0 is empty; because K−1x is compact, there is some F ∈ F such that K−1x ∩ F = ∅ (3A3Db), so
that x /∈ KF . Accordingly KF0 =

⋂
F∈F KF . Similarly, F0K =

⋂
F∈F FK. QQQ

(i) If K ⊆ X is compact and G ⊆ X is open, then W = {(x, y) : xKy ⊆ G} is open in X ×X. PPP It is
enough to deal with the case K 6= ∅. Take (x0, y0) ∈W . For each z ∈ K, there is an open neighbourhood Uz

of e such that UzzUzUz ⊆ x−1
0 Gy−1

0 (apply (e) with F = X \x−1
0 Gy−1

0 ). Now {zUz : z ∈ K} is an open cover
of K so there are z0, . . . , zn ∈ K such that K ⊆

⋃
i≤n ziUzi . Set U =

⋂
i≤n Uzi ; then UKU ⊆ x−1

0 Gy−1
0

and (x, y) ∈ W whenever x ∈ x0U and y ∈ Uy0. Accordingly (x0, y0) ∈ intW ; as (x0, y0) is arbitrary, W is
open. QQQ

It follows that {x : xK ⊆ G}, {x : Kx ⊆ G} and {x : xKx−1 ⊆ G} are open in X.

(j) If X is Hausdorff, K ⊆ X is compact and U is a neighbourhood of e, there is a neighbourhood V of
e such that xy ∈ U whenever x, y ∈ K and yx ∈ V ; that is, y−1zy ∈ U whenever z ∈ V and y ∈ K. PPP If U
is open, then {yx : x, y ∈ K, xy /∈ U} is a closed set not containing e. Compare 4A5Oc below. QQQ

(k) Any open subgroup of X is also closed. (Császár 78, 11.2.12; Hewitt & Ross 63, 5.5; Folland
95, 2.1.)

(l) If X is locally compact, it has an open subgroup which is σ-compact. (Hewitt & Ross 63, 5.14;
Folland 95, 2.3.)

(m) If Y is a subgroup of X, its closure Y is a subgroup of X. (Hewitt & Ross 63, 5.3; Folland 95,
2.1.)

(n) Let X be a group and V a family of subsets of X. Then there is a topology of X under which X is
a topological group and V is a base of neighbourhoods of the identity iff

(α) V is a filter base;
(β) for every V ∈ V there is a W ∈ V such that W 2 ⊆ V ;
(γ) for every V ∈ V there is a W ∈ V such that W−1 ⊆ V ;
(δ) for every V ∈ V and z ∈ X there is a W ∈ V such that zWz−1 ⊆ V .

In this case, there is exactly one such topology, and it is Hausdorff iff
⋂
V = {e}.

Császár 78, 11.2.4; Hewitt & Ross 63, II.4.5.

4A5F Proposition (a) Let (X,T) and (Y,S) be topological groups. If φ : X → Y is a group homomor-
phism which is continuous at the identity of X, it is continuous. (Császár 78, 11.2.17; Hewitt & Ross

63, 5.40.)
(b) Let X be a group and S, T two topologies on X both making X a topological group. If every S-

neighbourhood of the identity is a T-neighbourhood of the identity, then S ⊆ T. (Apply (a) to the identity
map from (X,T) to (X,S).)

4A5G Proposition If 〈Xi〉i∈I is any family of topological groups, then
∏

i∈I Xi, with the product
topology and the product group structure, is again a topological group. (Hewitt & Ross 63, 6.2.)

4A5H The uniformities of a topological group Let (X,T) be a topological group. Write U for the
set of open neighbourhoods of the identity e of X.

(a) For U ∈ U , set WU = {(x, y) : xy−1 ∈ U} ⊆ X × X. The family {WU : U ∈ U} is a filter base,
and the filter on X ×X which it generates is a uniformity on X, the right uniformity of X. (Warning!!
Some authors call this the ‘left uniformity’.) This uniformity induces the topology T (Császár 78, 11.2.7).
It follows that T is completely regular, therefore regular (4A2Ja, or Hewitt & Ross 63, 8.4).

(b) For U ∈ U , set W̃U = {(x, y) : xy−1 ∈ U, x−1y ∈ U} ⊆ X ×X. The family {W̃U : U ∈ U} is a filter
base, and the filter on X × X which it generates is a uniformity on X, the bilateral uniformity of X.
This uniformity induces the topology T. (Császár 78, 11.3.c.)
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(c) x 7→ x−1 is uniformly continuous for the bilateral uniformity. (The check is elementary.)

(d) If X and Y are topological groups and φ : X → Y is a continuous homomorphism, then φ is
uniformly continuous for the bilateral uniformities. PPP If V is a neighbourhood of the identity in Y and
WV = {(y, z) : yz−1, y−1z both belong to V } is the corresponding member of the bilateral uniformity on Y ,
then U = φ−1[V ] is a neighbourhood of the identity in X and (φ(x), φ(w)) ∈WV whenever (x,w) ∈WU . QQQ

(e) If X is an abelian topological group, then the right and bilateral uniformities on X coincide, and may
be called ‘the’ topological group uniformity of X; cf. 3A4Ad.

4A5I Definitions If X is a topological group and Z a topological space, an action of X on Z is
‘continuous’ or ‘Borel measurable’ if it is continuous, or Borel measurable, when regarded as a function from
X × Z to Z.

Of course the left, right and conjugacy actions of a topological group on itself are all continuous.

4A5J Quotients under group actions, and quotient groups: Theorem (a) Let X be a topological
space, Y a topological group, and • a continuous action of Y on X. Let Z be the set of orbits of the action,
and for x ∈ X write π(x) ∈ Z for the orbit containing x.

(i) We have a topology on Z defined by saying that V ⊆ Z is open iff π−1[V ] is open in X. The
canonical map π : X → Z is continuous and open.

(ii)(α) If Y is compact and X is Hausdorff, then Z is Hausdorff.
(β) If X is locally compact then Z is locally compact.

(b) Let X be a topological group, Y a subgroup of X, and Z the set of left cosets of Y in X. Set
π(x) = xY for x ∈ X.

(i) We have a topology on Z defined by saying that V ⊆ Z is open iff π−1[V ] is open in X. The
canonical map π : X → Z is continuous and open.

(ii)(α) Z is Hausdorff iff Y is closed.
(β) If X is locally compact, so is Z.
(γ) If X is locally compact and Polish and Y is closed, then Z is Polish.
(δ) If X is locally compact and σ-compact and Y is closed and Z is metrizable, then Z is Polish.

(iii) We have a continuous action of X on Z defined by saying that x•π(x′) = π(xx′) for any x, x′ ∈ X.
(iv) If Y is a normal subgroup of X, then the group operation on Z renders it a topological group.

proof (a)(i) It is elementary to check that {V : π−1[V ] is open} is a topology such that π : X → Z is
continuous. To see that π is open, take an open set U ⊆ X and consider

π−1[π[U ]] =
⋃

x′∈U{x : π(x) = π(x′)} =
⋃

x′∈U,y∈Y {x : x = y•x′} =
⋃

y∈Y y•U .

But as x 7→ y•x is a homeomorphism for every y ∈ Y (4A5Ea), every y•U is open, and the union π−1[π[U ]]
is open. So π[U ] is open in Z; as U is arbitrary, π is an open map.

(ii)(ααα) Set F = {((x, x′), y) : x ∈ X, y ∈ Y , y•x = x′}. Because the function ((x, x′), y) 7→ (y•x, x′) :
(X × X) × Y → X × X is continuous and {(x, x) : x ∈ X} is closed in X × X (4A2F(a-iii)), F is closed.
By 4A2Gm, the projection {(x, x′) : ∃ y ∈ Y , y•x = x′} = {(x, x′) : π(x) = π(x′)} is closed in X × X ′

and {(x, x′) : π(x) 6= π(x′)} is open. Since (x, x′) 7→ (π(x), π(x′)) : X × X → Z × Z is an open mapping
(4A2B(f-iv)), {(z, z′) : z 6= z′} is open in Z × Z, and Z is Hausdorff by 4A2F(a-iii) in the other direction.

(βββ) Use 4A2Gn.

(b)(i) Apply (a-i) to the right action (y, x) 7→ xy−1 of Y on X, or see Hewitt & Ross 63, 5.15-5.16.

(ii)(ααα) By Hewitt & Ross 63, 5.21, Z is Hausdorff iff Y is closed.

(βββ) Use (a-ii-β), or see Hewitt & Ross 63, 5.22 or Folland 95, 2.2.

(γγγ) X has a countable network (4A2P(a-ii)), so Z also has (4A2Nd); since we have just seen that Z
is locally compact and Hausdorff, it must be Polish (4A2Qh).

(δδδ) Because X is σ-compact, so is its continuous image Z; we know from (α)-(β) that Z is locally
compact and Hausdorff; we are supposing that it is metrizable; so it is Polish, by the other half of 4A2Qh.
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(iii) I have noted in 4A5Cb that the formula given defines an action. If V ⊆ Z is open and x0 ∈ X,
z0 ∈ Z are such that x0•z0 ∈ V , take x′0 ∈ X such that π(x′0) = z0, and observe that x0x

′
0 ∈ π−1[V ], which

is open. So there are open neighbourhoods V0, V ′
0 of x0, x′0 respectively such that V0V

′
0 ⊆ π−1[V ], and

x•z ∈ V whenever x ∈ V0 and z ∈ π[V ′
0 ]. Since π[V ′

0 ] is an open neighbourhood of z0, this is enough to show
that • is continuous at (x0, z0).

(iv) Császár 78, 11.2.15; Hewitt & Ross 63, 5.26; Folland 95, 2.2.

4A5K Proposition Let X be a topological group with identity e.
(a) Y = {e} is a closed normal subgroup of X.
(b) Writing π : X → X/Y for the canonical map,

(i) a subset of X is open iff it is the inverse image of an open subset of X/Y ,
(ii) a subset of X is closed iff it is the inverse image of a closed subset of X/Y ,
(iii) π[G] is a regular open set in X/Y for every regular open set G ⊆ X,
(iv) π[F ] is nowhere dense in X/Y for every nowhere dense set F ⊆ X,
(v) π−1[V ] is nowhere dense in X for every nowhere dense V ⊆ X/Y .

proof (a) Császár 78, 11.2.13; Hewitt & Ross 63, 5.4; Folland 95, 2.3.

(b)(i)-(ii) Because π is continuous, the inverse image of an open or closed set is open or closed. In the

other direction, if G ⊆ X is open and x ∈ G, then x{e} = {x} ⊆ G, because X is regular (4A5Ha). So
G = GY = π−1[π[G]]. Since π is an open map (4A5J(a-i)), π[G] is open and G is the inverse image of an
open set. If F ⊆ X is closed, π[F ] = (X/Y ) \ π[X \ F ] is closed and

F = X \ π−1[π[X \ F ]] = π−1[(X/Y ) \ π[X \ F ]]

is the inverse image of a closed set.

(iii) If A ⊆ X, then π[A] is a closed set included in π[A] (because π is continuous), so π[A] = π[A].
If G ⊆ X is a regular open set, then π−1[intπ[G]] is an open subset of π−1[π[G]] = G, so is included in

intG = G. But this means that the open set π[G] includes intπ[G] = intπ[G], and π[G] = intπ[G] is a
regular open set.

(iv) If F ⊆ X is nowhere dense, then its closure is of the form π−1[V ] for some closed set V ⊆ X/Y .
Now if H ⊆ X/Y is a non-empty open set, π−1[H] is a non-empty open subset of X, so is not included in
F , and H cannot be included in V . Thus V is nowhere dense; but V ⊇ π[F ], so π[F ] is nowhere dense.

(v) If V ⊆ X/Y is nowhere dense, and G ⊆ X is open and not empty, then G = π−1[H] for some
non-empty open H ⊆ X/Y . In this case, H \ V is non-empty, so π−1[H \ V ] is a non-empty open subset of
G disjoint from π−1[V ]. As G is arbitrary, π−1[V ] is nowhere dense.

4A5L Theorem Let X be a topological group and Y a normal subgroup of X. Let π : X → X/Y be
the canonical homomorphism.

(a) If X ′ is another topological group and φ : X → X ′ a continuous homomorphism with kernel including
Y , then we have a continuous homomorphism ψ : X/Y → X ′ defined by the formula ψπ = φ; ψ is injective
iff Y is the kernel of φ.

(b) Suppose that K1, K2 are two subgroups of X/Y such that K2 ⊳ K1. Set Y1 = π−1[K1] and
Y2 = π−1[K2]. Then Y2 ⊳ Y1 and Y1/Y2 and K1/K2 are isomorphic as topological groups.

proof (a) This is elementary group theory, except for the claim that ψ is continuous. But if H ⊆ X ′ is open,
then ψ−1[H] = π[φ−1[H]] is open because φ is continuous and π is open (4A5J(a-i)); so ψ is continuous.

(b) See Hewitt & Ross 63, 5.35.

4A5M Proposition Let X be a topological group.
(a) Let Y be any subgroup of X. If X is given its bilateral uniformity, then the subspace uniformity on

Y is the bilateral uniformity of Y . (Császár 78, 11.3.13.)
(b) If X is locally compact it is complete under its right uniformity. (Császár 78, 11.3.21.) If X is

complete under its right uniformity it is complete under its bilateral uniformity. (Császár 78, 11.3.10.)
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(c) Suppose that X is Hausdorff and that Y is a subgroup of X which is locally compact in its subspace
topology. Then Y is closed in X. PPP Putting (a) and (b) together, we see that Y is complete in its subspace
uniformity, therefore closed (3A4Fd). QQQ

4A5N Theorem Let X be a Hausdorff topological group. Then its completion X̂ under its bilateral
uniformity can be endowed (in exactly one way) with a group structure rendering it a Hausdorff topological

group in which the natural embedding of X in X̂ represents X as a dense subgroup of X̂. (Császár 78,
11.3.15.) If X has a neighbourhood of the identity which is totally bounded for the bilateral uniformity,

then X̂ is locally compact. (Császár 78, 11.3.24.)

4A5O Proposition Let X be a topological group.
(a) If A ⊆ X, then the following are equiveridical: (i) A is totally bounded for the bilateral uniformity of

X; (ii) for every neighbourhood U of the identity there is a finite set I ⊆ X such that A ⊆ IU ∩ UI.
(b) If A, B ⊆ X are totally bounded for the bilateral uniformity of X, so are A ∪ B, A−1 and AB. In

particular,
⋃

i≤n xiB is totally bounded for any x0, . . . , xn ∈ X.

(c) If A ⊆ X is totally bounded for the bilateral uniformity, and U is any neighbourhood of the identity,
then {y : xyx−1 ∈ U for every x ∈ A} is a neighbourhood of the identity.

(d) If X is the product of a family 〈Xi〉i∈I of topological groups, a subset A of X is totally bounded for
the bilateral uniformity of X iff it is included in a product

∏
i∈I Ai where Ai ⊆ Xi is totally bounded for

the bilateral uniformity of Xi for every i ∈ I.
(e) If X is locally compact, a subset of X is totally bounded for the bilateral uniformity iff it is relatively

compact.

proof (a)(i)⇒(ii) Suppose that A is totally bounded, and that U is a neighbourhood of the identity e of
X. Set

W = {(x, y) : xy−1 ∈ U−1, x−1y ∈ U} = {(x, y) : y ∈ Ux ∩ xU};

then W belongs to the uniformity, so there is a finite set I ⊆ X such that A ⊆W [I]. But W [I] ⊆ UI ∩ IU ,
so A ⊆ UI ∩ IU .

(ii)⇒(i) Now suppose that A satisfies the condition, and that W belongs to the uniformity. Then
there is a neighbourhood U of e such that {(x, y) : xy−1 ∈ U, x−1y ∈ U} ⊆ W . Let V be a neighbourhood
of e such that V V −1 ⊆ U and V −1V ⊆ U . Let I ⊆ X be a finite set such that A ⊆ V I ∩ IV . For w, z ∈ I
set Awz = A ∩ V w ∩ zV . If x, y ∈ Awz, xy−1 ∈ V ww−1V −1 ⊆ U and x−1y ∈ V −1z−1zV ⊆ U . But this
means that Awz ×Awz ⊆W . So if we take a finite set J which meets every non-empty Awz, A ⊆W [J ]. As
W is arbitrary, A is totally bounded.

(b) Of course A ∪ B is totally bounded; this is immediate from the definition of ‘totally bounded’. If
U is a neighbourhood of e, so is U−1, so there is a finite set I ⊆ X such that A ⊆ IU−1 ∩ U−1I and
A−1 ⊆ UI−1 ∩ I−1U ; as U is arbitrary, A−1 is totally bounded.

To see that AB also is totally bounded, let U be a neighbourhood of e, and take a neighbourhood V
of e such that V V ⊆ U . Then there is a finite set I ⊆ X such that A ⊆ V I and B ⊆ IV . Let W be a
neighbourhood of e such that zWz−1 ∪ z−1Wz ⊆ V for every z ∈ I, and J a finite set such that B ⊆ WJ
and A ⊆ JW . Then

zW ⊆ V z, Wz ⊆ zV

for every z ∈ I, so

IW ⊆ V I, WI ⊆ IV

and

AB ⊆ V IWJ ⊆ V V IJ ⊆ UK, AB ⊆ JWIV ⊆ JIV V ⊆ KU

where K = IJ ∪ JI is finite. As U is arbitrary, AB is totally bounded.

(c) Let V be a neighbourhood of e such that V V V −1 ⊆ U . Let I be a finite set such that A ⊆ V I. Let
W be a neighbourhood of e such that zWz−1 ⊆ V for every z ∈ I. If now y ∈ W and x ∈ A, there is a
z ∈ I such that x ∈ V z, so that
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xyx−1 ∈ V zWz−1V −1 ⊆ V V V −1 ⊆ U .

Turning this round, {y : xyx−1 ∈ U for every x ∈ A} includes W and is a neighbourhood of e.

(d)(i) Suppose that A is totally bounded. Set Ai = πi[A] for each i ∈ I, where πi(x) = x(i) for x ∈ X.
If U is a neighbourhood of the identity in Xi, then V = π−1

i [U ] is a neighbourhood of the identity in X, so
there is a finite set J ⊆ X such that A ⊆ JV ∩ V J ; now Ai ⊆ KU ∩ UK, where K = πi[J ] is finite. As U
is arbitrary, Ai is totally bounded. This is true for every i, while A ⊆

∏
i∈I Ai.

(ii) Suppose that A ⊆
∏

i∈I Ai where Ai ⊆ Xi is totally bounded for each i ∈ I. If A is empty, of course
it is totally bounded; assume that A 6= ∅. If I = ∅, then X = {∅} is the trivial group, and again A is totally
bounded; so assume that I is non-empty. Let V be a neighbourhood of the identity in X. Then there are a
non-empty finite set L ⊆ I and a family 〈Ui〉i∈L such that Ui is a neighbourhood of the identity in Xi for
each i ∈ L, and V ⊇

⋂
i∈L π

−1
i Ui. For each i ∈ L, let Ji be a finite subset of Xi such that Ai ⊆ JiUi ∩UiJi.

Set

J = {x : x ∈ X, x(i) is the identity for i ∈ I \ L, x(i) ∈ Ji for i ∈ L}.

Then J is finite and A ⊆ JV ∩ V J . As V is arbitrary, A is totally bounded.

(e) Use (a).

4A5P Lemma Let X be a locally compact Hausdorff topological group. Take f ∈ Ck(X), the space of
continuous real-valued functions on X with compact supports.

(a) Let K ⊆ X be a compact set. Then for any ǫ > 0 there is a neighbourhood W of the identity e of X
such that |f(xay) − f(xby)| ≤ ǫ whenever x ∈ K, y ∈ X and ab−1 ∈W .

(b) For any x0 ∈ X, there is a non-negative f∗ ∈ Ck(X) such that for every ǫ > 0 there is an open set G
containing x0 such that |f(xy) − f(x0y)| ≤ ǫf∗(y) for every x ∈ G and y ∈ X.

proof (a) By 4A2Jf and 4A5Ha, f is uniformly continuous for the right uniformity of X. There is therefore
a symmetric neighbourhood U of e such that |f(y1) − f(y2)| ≤ ǫ whenever y1, y2 ∈ X and y1y

−1
2 ∈ U . By

4A5Oc, there is a symmetric neighbourhood W of e such that xzx−1 ∈ U whenever x ∈ K and z ∈W .
Now suppose that x ∈ K, y ∈ X and ab−1 ∈ W . Then (xay)(xby)−1 = xab−1x−1 ∈ U , so |f(xay) −

f(xby)| ≤ ǫ, as required.

(b) We need a trifling refinement of the ideas above.

(i) Suppose for the moment that x0 = e. Set L = {x : f(x) 6= 0} and let V be a compact symmetric
neighbourhood of the identity e, so that L and V L are compact. Let f∗ ∈ Ck(X) be such that f∗ ≥ χ(V L)
(4A2G(e-i)). Given ǫ > 0, take U as in (a), so that U is a symmetric neighbourhood of e and |f(y1)−f(y2)| ≤
ǫ whenever y1y

−1
2 ∈ U ; this time arrange further that U ⊆ V . Then if x ∈ U and y ∈ X,

either y and xy belong to V L, while (xy)y−1 ∈ U , so |f(xy) − f(y)| ≤ ǫ ≤ ǫf∗(y)
or neither y nor xy belongs to L, so |f(xy) − f(y)| = 0 ≤ ǫf∗(y).

(ii) For the general case, set f0(x) = f(x0x) for x ∈ X. Because x 7→ x0x is a homeomorphism,
f0 ∈ Ck(X). By (i), we have a non-negative f∗ ∈ Ck(X) such that for every ǫ > 0 there is a neighbourhood
Gǫ of e such that |f0(xy) − f0(y)| ≤ ǫf∗(y) whenever x ∈ Gǫ and y ∈ X. Now, given ǫ > 0, G′ = x0Gǫ is a
neighbourhood of x0 and |f(xy) − f(x0y)| ≤ ǫf∗(y) whenever x ∈ G′ and y ∈ X. So f∗ witnesses that the
result is true.

4A5Q Metrizable groups: Proposition Let (X,T) be a topological group. Then the following are
equiveridical:

(i) X is metrizable;
(ii) the identity e of X has a countable neighbourhood base;
(iii) there is a metric ρ on X, inducing the topology T, which is right-translation-invariant, that is,

ρ(x1, x2) = ρ(x1y, x2y) for all x1, x2, y ∈ X;
(iv) there is a right-translation-invariant metric on X which induces the right uniformity of X;
(v) the bilateral uniformity of X is metrizable.
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proof Császár 78, 11.2.10 and 11.3.2.

Warning! A Polish group (4A5Db) is of course metrizable, so has a right-translation-invariant metric
inducing its topology. At the same time, it has a complete metric inducing its topology. But there is no
suggestion that these two metrics should be the same, or even induce the same uniformity (441Xr).

4A5R Corollary If X is a locally compact topological group and {e} is a Gδ set in X, then X is
metrizable. (Put 4A5Q and 4A2Kf together, or see Hewitt & Ross 63, 8.5.)

4A5S Lemma Let X be a σ-compact locally compact Hausdorff topological group and 〈Un〉n∈N any
sequence of neighbourhoods of the identity in X. Then X has a compact normal subgroup Y ⊆

⋂
n∈N Un

such that Z = X/Y is Polish.

proof Let 〈Kn〉n∈N be a sequence of compact sets covering X. Choose inductively a sequence 〈Vn〉n∈N of
compact neighbourhoods of e such that, for each n ∈ N,

(α) Vn+1 ⊆ V −1
n , Vn+1Vn+1 ⊆ Vn, Vn ⊆ Un,

(β) xyx−1 ∈ Vn whenever y ∈ Vn+1 and x ∈
⋃

i≤nKi.

(When we come to choose Vn+1, we can achieve (α) because inversion and multiplication are continuous, and
(β) by 4A5Oc; and we can then shrink Vn+1 to a compact neighbourhood of e because X is locally compact.)
Set Y =

⋂
n∈N Vn. Then (α) is enough to ensure that Y is a compact subgroup of X included in

⋂
n∈N Un,

while (β) ensures that Y is normal, because for any x ∈ X there is an n ∈ N such that xVm+1x
−1 ⊆ Vm for

every m ≥ n.
Let π : X → Z be the canonical map. Then C =

⋂
n∈N π[intVn] is a Gδ subset of Z, because π is open

(4A5J(a-i) again). But

π−1[C] ⊆
⋂

n∈N

π−1[π[Vn+1]] =
⋂

n∈N

Vn+1Y ⊆
⋂

n∈N

Vn = Y,

so C = {eZ}, writing eZ for the identity of Z. Thus {eZ} is a Gδ set; as Z is locally compact and Hausdorff
(4A5J(b-ii)), it is metrizable (4A5R). By 4A5J(b-ii-δ), Z is Polish.

*4A5T I shall not rely on the following fact, but it will help you to make sense of some of the results
of this volume.

Theorem A compact Hausdorff topological group is dyadic.

proof Uspenskǐı 88.

Version of 8.12.10

4A6 Banach algebras

I give results which are needed for Chapter 44. Those down to 4A6K should be in any introductory text
on normed algebras; 4A6L-4A6O, as expressed here, are a little more specialized. As with normed spaces
or linear topological spaces, Banach algebras may be defined over either R or C. In §445 we need complex
Banach algebras, but in §446 I think the ideas are clearer in the context of real Banach algebras. Accordingly,
as in §2A4, I express as much as possible of the theory in terms applicable equally to either, speaking of

‘normed algebras’ or ‘Banach algebras’ without qualification, and using the symbol R

C
to represent the field

of scalars. Since (at least, if you keep to the path indicated here) the ideas are independent of which field
we work with, you will have no difficulty in applying the arguments given in Folland 95 or Hewitt &

Ross 63 for the complex case to the real case. In 4A6B and 4A6I-4A6K, however, we have results which
apply only to ‘complex’ Banach algebras, in which the underlying field is taken to be C.

4A6A Definition (a) I repeat a definition from §2A4. A normed algebra is a normed space U together
with a multiplication, a binary operator × on U , such that

u× (v × w) = (u× v) × w,
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u× (v + w) = (u× v) + (u× w), (u+ v) × w = (u× w) + (v × w),

(αu) × v = u× (αv) = α(u× v),

‖u× v‖ ≤ ‖u‖‖v‖

for all u, v, w ∈ U and α ∈ R

C
. A normed algebra is commutative if its multiplication is commutative.

(b) A Banach algebra is a normed algebra which is a Banach space. A unital Banach algebra is a
Banach algebra with a multiplicative identity e such that ‖e‖ = 1. (Warning: some authors reserve the
term ‘Banach algebra’ for what I call a ‘unital Banach algebra’.)

In a unital Banach algebra I will always use the letter e for the identity.

4A6B Stone-Weierstrass Theorem: fourth form Let X be a locally compact Hausdorff space, and
C0 = C0(X;C) the complex Banach algebra of continuous functions f : X → C such that {x : |f(x)| ≥ ǫ}
is compact for every ǫ > 0. Let A ⊆ C0 be such that

A is a linear subspace of C0,

f × g ∈ A for every f , g ∈ A,

the complex conjugate f̄ of f belongs to A for every f ∈ A,

for every x ∈ X there is an f ∈ A such that f(x) 6= 0,

whenever x, y are distinct points of X there is an f ∈ A such that f(x) 6= f(y).

Then A is ‖ ‖∞-dense in C0.

proof Let X∞ = X ∪ {∞} be the one-point compactification of X (3A3O). For f ∈ C0 write f# for the
extension of f to X ∪ {∞} with f#(∞) = 0, so that f# ∈ Cb(X∞;C). Let B ⊆ Cb(X∞;C) be the set of all
functions of the form f# + αχX∞ where f ∈ A and α ∈ C. Then B is a subalgebra of Cb(X ∪ {∞}) which
contains complex conjugates of its members and constant functions and separates the points of X∞.

Take any h ∈ C0 and ǫ > 0. By the ‘third form’ of the Stone-Weierstrass theorem (281G), there is a
g ∈ B such that ‖g − h#‖∞ ≤ 1

2ǫ. Express g as f# + αχX∞ where f ∈ A and α ∈ C. Then

|α| = |g(∞)| = |g(∞) − h#(∞)| ≤ 1
2ǫ,

so

‖h− f‖∞ = ‖h# − f#‖∞ ≤ ‖h# − g‖∞ + ‖g − f#‖∞ ≤ 1
2ǫ+ |α| ≤ ǫ.

As h and ǫ are arbitrary, A is dense in C0.

4A6C Proposition If U is any Banach space other than {0}, then the space B(U ;U) of bounded linear
operators from U to itself is a unital Banach algebra. (Köthe 69, 14.6.)

4A6D Proposition Any normed algebra U can be embedded as a subalgebra of a unital Banach algebra
V , in such a way that if U is commutative so is V . (Folland 95, §1.3; Hewitt & Ross 63, C.3.)

4A6E Proposition Let U be a unital Banach algebra and W ⊆ U a closed proper ideal. Then U/W ,
with the quotient linear structure, ring structure and norm, is a unital Banach algebra. (Hewitt & Ross

63, C.2.)

4A6F Proposition If U is a Banach algebra and φ : U → R

C
is a multiplicative linear functional, then

|φ(u)| ≤ ‖u‖ for every u ∈ U .

proof ??? Otherwise, there is a u such that |φ(u)| > ‖u‖; set v =
1

φ(u)
u, so that φ(v) = 1 and ‖v‖ < 1. Since

‖vn‖ ≤ ‖v‖n for every n ≥ 1, w =
∑

n∈N\{0} v
n is defined in U (4A4Ie), and w = vw+ v (because u 7→ vu is

a continuous linear operator, so we can use 4A4Bh to see that vw =
∑

n∈N\{0} v
n+1). But this means that

φ(w) = φ(v)φ(w) + φ(v) = φ(w) + 1, which is impossible. XXX
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4A6G Definition Let U be a normed algebra and u ∈ U .

(a) For any u ∈ U , limn→∞ ‖un‖1/n is defined and equal to infn≥1 ‖u
n‖1/n. (Hewitt & Ross 63, C.4.)

(b) This common value is called the spectral radius of u.

4A6H Theorem If U is a unital Banach algebra, then the set R of invertible elements is open, and
u 7→ u−1 is a continuous function from R to itself. If v ∈ U and ‖v − e‖ < 1, then v ∈ R and ‖v−1 − e‖ ≤

‖v−e‖

1−‖v−e‖
. (Folland 95, 1.4; Hewitt & Ross 63, C.8 & C.10; Rudin 91, 10.7 & 10.12.)

4A6I Theorem Let U be a complex unital Banach algebra and u ∈ U . Write r for the spectral radius
of u.

(a) If ζ ∈ C and |ζ| > r then ζe− u is invertible.
(b) There is a ζ such that |ζ| = r and ζe− u is not invertible.

proof Folland 95, 1.8; Hewitt & Ross 63, C.24; Rudin 91, 1.13.

4A6J Theorem Let U be a commutative complex unital Banach algebra, and u ∈ U . Then for any
ζ ∈ C the following are equiveridical:

(i) there is a non-zero multiplicative linear functional φ : U → C such that φ(u) = ζ;
(ii) ζe− u is not invertible.

proof Folland 95, 1.13; Hewitt & Ross 63, C.20; Rudin 91, 11.5.

4A6K Corollary Let U be a commutative complex Banach algebra and u ∈ U . Then its spectral radius
r(u) is max{|φ(u)| : φ is a multiplicative linear functional on U}. (Folland 95, 1.13; Hewitt & Ross 63,
C.20; Rudin 91, 11.9.)

4A6L Exponentiation Let U be a unital Banach algebra. For any u ∈ U ,
∑∞

k=0 ‖
1

k!
uk‖ ≤

∑∞
k=0

1

k!
‖u‖k

is finite, so

exp(u) =
∑

k∈N

1

k!
uk

is defined in U (4A4Ie). (In this formula, interpret u0 as e for every u.)

4A6M Lemma Let U be a unital Banach algebra.
(a) If u, v ∈ U and max(‖u‖, ‖v‖) ≤ γ then ‖ exp(u) − exp(v) − u + v‖ ≤ ‖u − v‖(exp γ − 1). So if

max(‖u‖, ‖v‖) ≤ 2
3 and exp(u) = exp(v) then u = v.

(b) If ‖u− e‖ ≤ 1
6 then there is a v such that exp(v) = u and ‖v‖ ≤ 2‖u− e‖.

(c) If u, v ∈ U and uv = vu then exp(u+ v) = exp(u) exp(v).

proof (a) Note first that if k ≥ 1 then

‖uk − vk‖ = ‖
k−1∑

i=0

uk−ivi − uk−i−1vi+1‖ = ‖
k−1∑

i=0

uk−i−1(u− v)vi‖

≤
k−1∑

i=0

‖u‖k−i−1‖u− v‖‖v‖i ≤
k−1∑

i=0

γk−1‖u− v‖ = kγk−1‖u− v‖.

So
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‖ exp(u) − exp(v) − u+ v‖ = ‖
∑

k∈N\{0,1}

1

k!
(uk − vk)‖ ≤

∞∑

k=2

1

k!
‖uk − vk‖

≤
∞∑

k=2

k

k!
γk−1‖u− v‖ = ‖u− v‖(exp γ − 1).

Now if exp(u) = exp(v) and γ ≤ 2
3 , 0 ≤ exp γ − 1 < 1 so ‖u− v‖ = 0 and u = v.

(b) Set γ = ‖u− e‖. Define 〈vn〉n∈N in U by setting v0 = 0, vn+1 = vn + u− exp(vn) for n ∈ N. Then

‖vn+1 − vn‖ = ‖u− exp(vn)‖ ≤ 2−nγ, ‖vn‖ ≤ 2(1 − 2−n)γ

for every n ∈ N. PPP Induce on n. The induction starts with ‖v0‖ = 0 and ‖u − exp(v0)‖ = ‖u − e‖ = γ.
Given that ‖vn‖ ≤ 2(1 − 2−n)γ and ‖u− exp(vn)‖ ≤ 2−nγ, then

‖vn+1‖ ≤ ‖vn‖ + ‖u− exp(vn)‖ ≤ 2(1 − 2−n)γ + 2−nγ = 2(1 − 2−n−1)γ.

Now max(‖vn+1‖, ‖vn‖) ≤ 2γ ≤ 1
3 , so

‖u− exp(vn+1)‖ = ‖vn+1 − vn + exp(vn) − exp(vn+1)‖ ≤ ‖vn+1 − vn‖(exp
1

3
− 1)

≤
1

2
‖vn+1 − vn‖ =

1

2
‖u− exp(vn)‖ ≤ 2−n−1γ,

and the induction continues. QQQ
Since

∑∞
n=0 ‖vn+1 − vn‖ is finite, v = limn→∞ vn is defined in U , and ‖v‖ = limn→∞ ‖vn‖ ≤ 2γ.

Accordingly

‖ exp(v) − exp(vn)‖ ≤ ‖v − vn‖ + ‖ exp(v) − exp(vn) − v + vn‖

≤ ‖v − vn‖(1 + exp
1

3
− 1) → 0

as n→ ∞, and exp(v) = limn→∞ exp(vn) = u.

(c) Because uv = vu, (u+ v)m =
∑m

j=0
m!

j!(m−j)!
ujvm−j for every m ∈ N (induce on m; the point is that

uvj = vju for every j ∈ N). Next,
∑

j,k∈N

1

j!k!
‖u‖j‖v‖k is finite. So

exp(u+ v) =
∑

m∈N

1

m!
(u+ v)m

=
∑

m∈N

( ∑

j+k=m

1

j!k!
ujvk

)
=

∑

(j,k)∈N×N

1

j!k!
ujvk

(using 4A4I(e-ii))

=
∑

j∈N

(∑

k∈N

1

j!k!
ujvk)

(4A4I(e-ii) again)

=
∑

j∈N

( 1
j!
uj

∑

k∈N

1

k!
vk

)

(by 4A4Bh, because w 7→
1

j!
ujw is a continuous linear operator for each j)

=
∑

j∈N

1

j!
uj exp(v) =

(∑

j∈N

1

j!
uj
)

exp(v)

(4A4Bh again)

= exp(u) exp(v),

as claimed.
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4A6N Lemma If U is a unital Banach algebra, u ∈ U and ‖un − e‖ ≤ 1
6 for every n ∈ N, then u = e.

proof For every n ∈ N there is a vn ∈ U such that exp(vn) = u2
n

and ‖vn‖ ≤ 1
3 (4A6Mb). Then

exp(vn+1) = exp(vn)2 = exp(2vn) (4A6Mc), ‖vn+1‖ ≤ 1
3 and ‖2vn‖ ≤ 1

3 so vn+1 = 2vn for every n (4A6Ma).
Inducing on n, vn = 2nv0 for every n, so that ‖v0‖ ≤ 2−n‖vn‖ → 0 as n→ ∞, and u = exp(v0) = e.

4A6O Proposition Let U be a normed algebra, and U∗, U∗∗ its dual and bidual as a normed space.
For a bounded linear operator T : U → U let T ′ : U∗ → U∗ be the adjoint of T and T ′′ : U∗∗ → U∗∗ the
adjoint of T ′.

(a) We have bilinear maps, all of norm at most 1,

(f, x) 7→ f ◦x : U∗ × U → U∗,

(φ, f) 7→ φ◦f : U∗∗ × U∗ → U∗,

(φ, ψ) 7→ φ◦ψ : U∗∗ × U∗∗ → U∗∗

defined by the formulae

(f ◦x)(y) = f(xy),

(φ◦f)(x) = φ(f ◦x),

(φ◦ψ)(f) = φ(ψ ◦f)

for all x, y ∈ U , f ∈ U∗ and φ, ψ ∈ U∗∗.
(b)(i) Suppose that S : U → U is a bounded linear operator such that S(xy) = (Sx)y for all x, y ∈ U .

Then S′′(φ◦ψ) = (S′′φ)◦ψ for all φ, ψ ∈ U∗∗.
(ii) Suppose that T : U → U is a bounded linear operator such that T (xy) = x(Ty) for all x, y ∈ U .

Then T ′′(φ◦ψ) = φ◦(T ′′ψ) for all φ, ψ ∈ U∗∗.

proof (a) The calculations are elementary if we take them one at a time.

(b)(i)(ααα)(S′f)◦x = f ◦(Sx) for every f ∈ U∗ and x ∈ U . PPP

((S′f)◦x)(y) = (S′f)(xy) = f(S(xy)) = f((Sx)y) = (f ◦(Sx))(y)

for every y ∈ U . QQQ

(βββ) ψ ◦(S′f) = S′(ψ ◦f) for every f ∈ U∗. PPP

(ψ ◦(S′f))(x) = ψ((S′f)◦x) = ψ(f ◦(Sx)) = (ψ ◦f)(Sx) = (S′(ψ ◦f))(x)

for every x ∈ U . QQQ

(γγγ) So

(S′′(φ◦ψ))(f) = (φ◦ψ)(S′f) = φ(ψ ◦(S′f))

= φ(S′(ψ ◦f)) = (S′′φ)(ψ ◦f) = ((S′′φ)◦ψ)(f)

for every f ∈ U∗, and S′′(φ◦ψ) = (S′′φ)◦ψ.

(ii)(ααα) (T ′f)◦x = T ′(f ◦x) for every f ∈ U∗ and x ∈ U . PPP

((T ′f)◦x)(y) = (T ′f)(xy) = f(T (xy)) = f(x(Ty)) = (f◦x)(Ty) = (T ′(f ◦x))(y)

for every y ∈ U . QQQ

(βββ) ψ ◦(T ′f) = (T ′′ψ)◦f for every f ∈ U∗. PPP

(ψ ◦(T ′f))(x) = ψ((T ′f)◦x) = ψ(T ′(f ◦x))

= (T ′′ψ)(f ◦x) = ((T ′′ψ)◦f)(x)

for every x ∈ U . QQQ

(γγγ) So
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(T ′′(φ◦ψ))(f) = (φ◦ψ)(T ′f) = φ(ψ ◦(T ′f)) = φ((T ′′ψ)◦f) = (φ◦(T ′′ψ))(f)

for every f ∈ U ′, and T ′′(φ◦ψ) = φ◦(T ′′ψ).

Remark I must not abandon you at this point without telling you that ◦ : U∗∗ × U∗∗ → U∗∗ is an Arens
multiplication, and that it is associative, so that that U∗∗ is a Banach algebra.

Version of 13.3.22

4A7 Algebraic topology

A fundamental theorem about the topology of Euclidean space is used in §472. (8.7.22) no idea what I
was doing here

4A7A Definitions Suppose that X and Y are topological spaces, and f : X → Y , g : X → Y are
continuous functions.

(a) A homotopy from f to g is a continuous function F : X × [0, 1] → Y such that F (x, 0) = f(x) and
F (x, 1) = g(x) for every x ∈ X.

(b) f and g are homotopic if there is a homotopy from f to g.

4A7B Theorem If r ≥ 1 and Sr−1 = ∂B(0.1) is the unit sphere {x : ‖x‖ = 1} in Rr, then the identity
function from Sr−1 to itself is not homotopic to a constant function.

proof

4A7C Corollary If r ≥ 1, B(0, 1) is the unit ball in Rr and h : B(0, 1) → B(0, 1) is a continuous
function such that h[Sr−1] = Sr−1, then h[B(0, 1)] = B(0, 1).

proof

472G Theorem (Bagnara Gennaioli Leccese & Luongo p22) Let r ≥ 1 be an integer, B ⊆ Rr a
closed balls, ρE the Euclidean metric on Rr, and ρ a metric on B inducing the usual topology on B. Then
there is a (ρ, ρE)-Lipschitz surjection from B onto itself.

proof (a) For the time being (down to the end of (c) below), suppose that B = {x : x ∈ Rr, ‖x‖ ≤ 1} is
the ordinary unit ball of Rr. Fix i such that 1 ≤ i ≤ r for the moment, and write πi for the ith coordinate
map from Rr to R.

(i) For α > 0 and x ∈ B, set

fi(α, x) = infz∈B πi(z) +
1

α
ρ(x, z);

since B is compact and z 7→ πi(z) +
1

α
ρ(x, z) is continuous, the infimum is attained at zxαi say. (We have

two metrics in this theorem, but only one topology on B, so ‘continuous’ and ‘compact’ in the last sentence
are unambiguous.)

(ii) Observe that

−1 = infz∈B πi(z) ≤ fi(α, x) ≤ πi(x) +
1

α
ρ(x, x) ≤ πi(x) ≤ 1

for every x ∈ B.

(iii) If 0 < α ≤ β and x ∈ B then

c© 2022 D. H. Fremlin
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fi(β, x) = infz∈B πi(z) +
1

β
ρ(x, z) ≤ infz∈B πi(z) +

1

α
ρ(x, z) = fi(α, x)

and

fi(α, x) − fi(β, x) ≤ sup
z∈B

(
(πi(z) +

1

α
ρ(x, z)) − (πi(z) +

1

β
ρ(x, z))

)

= (
1

α
−

1

β
) sup
z∈B

ρ(x, z) ≤M(
1

α
−

1

β
)

where M = supy,z∈B ρ(y, z) is finite, again because B is compact.

(iv) If x, y ∈ B then

fi(α, y) = inf
z∈B

πi(z) +
1

α
ρ(y, z) ≤ inf

z∈B
πi(z) +

1

α
(ρ(y, x) + ρ(x, z))

=
1

α
ρ(y, x) + inf

z∈B
πi(z) +

1

α
ρ(x, z) =

1

α
ρ(y, x) + fi(α, x)

and similarly fi(α, x) ≤
1

α
ρ(x, y) + fi(α, y), so |fi(α, x) − fi(α, y)| ≤ 1

αρ(x, y).

(v) For any x ∈ B, α 7→ fi(α, x) is non-increasing and bounded above, so limα↓0 fi(α, x) = supα>0 fi(α, x)
is defined. But now we have

πi(zxαi) +
1

α
ρ(x, zxαi) = fi(α, x) ≤ πi(x)

so ρ(x, zxαi) ≤ α for every α > 0 and x = limα↓0 zxαi. It follows that πi(x) = limα↓0 πi(zxαi) and

πi(x) ≥ lim
α↓0

fi(α, x) = lim
α↓0

(πi(zxαi) +
1

α
ρ(x, zxαi))

= πi(x) + lim
α↓0

1

α
ρ(x, zxαi) ≥ πi(x);

thus limα↓0 fi(α, x) = πi(x).
As the real-valued functions x 7→ πi(x) − fi(α, x) are all continuous and B is compact, Dini’s theorem

(436Ic) tells us that

limα↓0 supx∈B(πi(x) − fi(α, x)) = infα>0 supx∈B(πi(x) − fi(α, x)) = 0.

(vi) Extend fi to the whole of [0,∞[ × B by setting fi(0, x) = πi(x) for every x ∈ B. Then fi is
continuous. PPP Take α ≥ 0 and x ∈ B. If α > 0, then

|fi(β, y) − fi(α, x)| ≤ |fi(β, y) − fi(α, y)| + |fi(α, y) − fi(α, x)|

≤M |
1

β
−

1

α
| +

1

α
ρ(y, x)

whenever β > 0 and y ∈ B, by (iii) and (iv) above. So fi is continuous at (α, x). If α = 0, then

limβ↓0 supy∈B |fi(β, y) − πi(y)| = 0 = supy∈B |fi(0, y) − πi(y)|

so

lim sup
(β,y)→(α,x)

|fi(β, y) − fi(α, x)|

≤ lim sup
(β,y)→(α,x)

|fi(β, y) − πi(y)| + lim sup
(β,y)→(α,x)

|πi(y) − πi(x)| = 0

and again fi is continuous at (α, x). QQQ

(b) Define f : [0,∞[ ×B → Rr by setting

f(α, x) = (f1(α, x), . . . , fr(α, x))
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for x ∈ B. By (a-vi), f is continuous, and if α > 0 then by (a-iv)

‖f(α, x) − f(α, y)‖ ≤
∑r

i=1 |fi(α, x) − fi(α, y)| ≤
r

α
ρ(x, y)

for all x, y ∈ B so x 7→ f(α, x) is (ρ, ρE)-Lipschitz. By (a-v),

lim sup
α↓0

sup
x∈B

‖f(α, x) − x‖ ≤
r∑

i=1

lim sup
α↓0

sup
x∈B

|πi(x) − fi(α, x)| = 0

so there is a δ > 0 such that ‖f(α, x) − x‖ ≤ 1
2 whenever x ∈ B and 0 < α ≤ δ.

(c) For x ∈ Rr let h(x) ∈ B be such that ‖x− h(x)‖ = minz∈B ‖x− z‖ (3A5Md); then ‖h(x) − h(y)‖ ≤
‖x− y‖ for all x, y ∈ Rr (3A5Me1), while ‖h(x)‖ = 1 whenever ‖x‖ ≥ 1. So if we set F (t, x) = h(2f(δt, x))
for t ∈ [0, 1] and x ∈ B, F will be continuous and x 7→ F (1, x) : B → B will be (ρ, ρE)-Lipschitz.

Moreover, ‖f(δt, x)−x‖ ≤ 1
2 for every x ∈ B, by the choice of δ. so if x ∈ Sr−1 we shall have ‖f(δt, x)‖ ≥ 1

2
and ‖F (t, x)‖ = 1 for every t ∈ [0, 1]. So F ↾[0, 1] × Sr−1 is a homotopy between g0 and g↾Sr−1 where

g0(x) = F (0, x) = h(2f(0, x)) = h(2x) = x

for x ∈ Sr−1 and g(x) = F (1, x) for x ∈ B. But this means that g↾Sr−1 is homotopic to the identity on
Sr−1. By 4A7C, g[B] = B, while g is (ρ, ρE)-Lipschitz.

(d) For a general closed ball B ⊆ Rr, if B is a singleton then the result is trivial. If B = {x : x ∈ Rr,
‖x− z‖ ≤ δ} where z ∈ Rr and δ > 0, then (Rr, ρE , B) and (Rr, ρE , B(0, 1)) are lipeomorphic in the sense
that there is a bijection φ : Rr → Rr such that φ and φ−1 are (ρE , ρE)-Lipschitz and φ[B(0, 1)] = B. (Take
φ(x) = z + δx for x ∈ Rr.) Now, given a metric ρ on B inducing its topology, set ρ̃(x, y) = ρ(φ(x), φ(y))
for x, y ∈ B(0, 1); then ρ̃ is a metric on B(0, 1) inducing its topology, and φ−1 : B → B(0, 1) is (1, ρ, ρ̃)-
Lipschitz. By (a)-(c), there is a (ρ̃, ρE)-Lipschitz surjection g̃ : B(0, 1) → B(0, 1). But now g = φg̃φ−1 is a
(ρ, ρE)-Lipschitz surjection from B onto itself.

472H Corollary Let r ≥ 1 be an integer, ρ a metric on Rr inducing the usual topology on Rr, and µ
(ρ)
Hr

the corresponding r-dimensional Hausdorff measure on Rr. Then µ
(ρ)
Hr is strictly positive.

proof If G ⊆ Rr is a non-empty open set, it includes a non-trivial closed ball B say. By 472G, there is a
surjection g : B → B which is (ρ, ρE)-Lipschitz where ρE is the usual metric on Rr; let γ > 0 be such that g

is (γ, ρ, ρE)-Lipschitz. As the r-dimensional Hausdorff measure µ
(ρE)
Hr is just a multiple of Lebesgue measure

(264I),

0 < µ
(ρE)
Hr B ≤ γrµ

(ρ)
HrB

(471J) and

γrµ
(ρ)
HrG ≥ γrµ

(ρ)
HrB > 0.

Version of 10.1.17

Concordance for Appendix

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this volume, and which have since been changed.

4A2Jf Uniformities on completely regular spaces 4A2Jf, referred to in the 2009 edition of Volume
5, has been moved to 4A2Jg.

4A3Q Baire property and cylindrical σ-algebras 4A3Q-4A3T and 4A3V, referred to in the 2008
and 2015 editions of Volume 5, are now 4A3R-4A3U and 4A3W.

1Later editions only.
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4A4B Bounded sets in linear topological spaces 4A4Bg, referred to in the 2008 edition of Volume
5, has been moved to 3A5Nb.
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Szemerédi, E. [75] ‘On sets of integers containing no k elements in arithmetic progression’, Acta Arith-
metica 27 (1975) 199-245. [497L.]

Talagrand M. [75] ‘Sur une conjecture de H.H.Corson’, Bull. Sci. Math. 99 (1975) 211-212. [467M.]
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Weil A. [1940] L’intégration dans les groupes topologiques et ses applications, Hermann, 1940 (Actualités

Scientifiques et Industrielles 869). [445N.]
Wheeler R.F. [83] ‘A survey of Baire measures and strict topologies’, Expositiones Math. 1 (1983) 97-190.

[§435 notes , §437 notes .]

D.H.Fremlin


