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Chapter 49
Further topics

I conclude the volume with notes on six almost unconnected special topics. In §491 I look at equidis-
tributed sequences and the ideal Z of sets with asymptotic density zero. I give the principal theorems on
the existence of equidistributed sequences in abstract topological measure spaces, and examine the way in
which an equidistributed sequence can induce an embedding of a measure algebra in the quotient algebra
PN/Z. The next three sections are linked. In §492 T present some forms of ‘concentration of measure’ which
echo ideas from §476 in combinatorial, rather than geometric, contexts, with theorems of Talagrand and
Maurey on product measures and the Haar measure of a permutation group. In §493 I show how the ideas
of §8449, 476 and 492 can be put together in the theory of ‘extremely amenable’ topological groups. Some of
the important examples of extremely amenable groups are full groups of measure-preserving automorphisms
of measure algebras, previously treated in §383; these are the subject of §494, where I look also at some
striking algebraic properties of these groups. In §495, I move on to Poisson point processes, with notes on
disintegrations and some special cases in which they can be represented by Radon measures. In §496, I
revisit the Maharam submeasures of Chapter 39, showing that various ideas from the present volume can
be applied in this more general context. In §497, I give a version of Tao’s proof of Szemerédi’s theorem on
arithmetic progressions, based on a deep analysis of relative independence, as introduced in §458. Finally, in
8498 T give a pair of simple, but perhaps surprising, results on subsets of sets of positive measure in product
spaces.

Version of 26.5.24

491 Equidistributed sequences

In many of the most important topological probability spaces, starting with Lebesgue measure (491Eb,
491Xg), there are sequences which are equidistributed in the sense that, in the limit, they spend the right pro-
portion of their time in each part of the space (491Y1i). I give the basic results on existence of equidistributed
sequences in 491E-491H, 491Q and 491R. Investigating such sequences, we are led to some interesting prop-
erties of the asymptotic density ideal Z and the quotient algebra 3 = PN/Z (491A, 4911-491K, 491P).
For ‘effectively regular’ measures (491L-491M), equidistributed sequences lead to embeddings of measure
algebras in 3 (491N).

491 A The asymptotic density ideal (a) If I is a subset of N, its upper asymptotic density is
d*(I) = limsup,,_, ., +(I Nn), and its asymptotic density is d(I) = lim, . ~#(I Nn) if this is defined.
It is easy to check that d* is a submeasure on PN (definition: 392A), so that

Z={I:TCN,d*(I)=0}={I:TCN,d(I) =0}

is an ideal, the asymptotic density ideal.

(b) Note that
Z={I:1CN, lim, 002 "#(I N2\ 27) = 0}.
P If 7 C N and d*(I) = 0, then
9T N2\ 27) < 2.2 "L (I N 27H) - 0
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2 Further topics 491Ab

as n — o0o. In the other direction, if lim, s 27"#(I N 271\ 2) = 0, then for any ¢ > 0 there is an
m € N such that #(I N Qk+1 \ 2”“) < 2%¢ for every k > m. In this case, for n > 2™, take k, such that
2kn < p < 2kn+1 and see that

S#(INn) <27Rn(FIN2™) + 3hn,, 2Fe) < 2R (T N2™) + 26 — 2
as n — 0o, and d*(I) < 2¢; as € is arbitrary, I € Z. Q

(c) Writing D for the domain of d,

D={I:1CN, limsup%#(lﬂn) = liminf 2 #(I N n)}

n—0o n—oo M

={I:TCN,d"(I)=1-d"(N\ 1)},
NeD, ifI,JeDandICJthen J\IE€D,

if I, J€Dand INJ =0 then TUJ €D and d(IUJ) = d(I) + d(J).

It follows that if Z C D and INJ € Z for all I, J € Z, then the subalgebra of PN generated by Z is included
in D (313Ga). But note that D itself is not a subalgebra of PN (491Xa).

(d) The following elementary fact will be useful. If (I, ),cn is a strictly increasing sequence in N such
that limy, 00 lnt1/ln = 1, and T C R, then
1

d*(I) <limsup,,_, ., -

#I Nlpga \ ln)-

1

P Set v = limsupnﬁooﬁ#(f Nlnt1 \ln), and take € > 0. Let ng be such that #(I N1 \ 1) <
n+1""tn

(v +€)(Int1 —ln) and l41 — I, < €l,, for every n > ng, and write M for #(I Nl,,). If m > 1,,,, take k such
that I < m < lk41; then

k—1

#ANm) <M+ Y #I O lnga \1n) + (m — i)
n=ngo
k—1
<M + Z Y+ &) (lnt1 —ln) Flgr1 — e < M +m(y+e€) + em,
n=ngo

SO
1 M
—#(INm) < = 47+ 2

Accordingly d*(I) < v+ 2¢; as € is arbitrary, d*(I) <~. Q

*(e) The following remark will not be used directly in this section, but is one of the fundamental properties
of the ideal Z. If (I,,)nen is any sequence in Z, there is an I € Z such that I, \ I is finite for every n. P
Set J,, = Uj<n I; for each n, so that (J,)nen is a non-decreasing sequence in Z. Let (I,)nen be a strictly
increasing sequence in N such that, for each n, #(J, Nk) < 27"k for every k > I,,. Set I = J,,cny Jn \ ln-
Then I, \ I C 1, is finite for each n. Also, if n € N and l,, < k < l,41,

H#UINE)<#(J,Nk) <27k,
soleZ. Q

491B Equidistributed sequences Let X be a topological space and p a probability measure on X.
I say that a sequence (x;);eny in X is (asymptotically) equidistributed if d*({i : x; € F'}) < pF for
every measurable closed set F' C X; equivalently, if liminf, o 2#({i : i < n, z; € G}) > uG for every
measurable open set G C X.
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491C FEquidistributed sequences 3

Remark Equidistributed sequences are often called uniformly distributed. Traditionally, such sequences
have been defined in terms of their action on continuous functions, as in 491Cf. T have adopted the definition
here in order to deal both with Radon measures on spaces which are not completely regular (so that we
cannot identify the measure with an integral) and with Baire measures (so that there may be closed sets
which are not measurable). Note that we cannot demand that the sets {i : x; € F'} should have well-defined
densities (491Ye).

491C T work through a list of basic facts. The technical details (if we do not specialize immediately to
metrizable or compact spaces) are not quite transparent, so I set them out carefully.

Proposition Let X be a topological space, u a probability measure on X and (z;);en a sequence in X.

(a) (z;)ien is equidistributed iff lim inf,, .o %ﬂ St o f(@i) > [ fdu for every measurable bounded lower
semi-continuous function f: X — R.

(b) If 4 measures every zero set and (x;)sen is equidistributed, then lim,, . - +1 Yoio fz;) = [ fdp for
every f € Cp(X).

(c) Suppose that p measures every zero set in X . If lim,, n+1 St o f(zs) = [ fdufor every f e Cyp(X),
then d*({i : x; € F'}) < pF for every zero set F' C X.

(d) Suppose that X ib normal and that 1 measures every zero set and is inner regular with respect to the
closed sets. If lim,, oo n+1 Soio f(xi) = [ fdu for every f € Cyp(X), then (x;);en is equidistributed.

(e) Suppose that p is 7-additive and there is a base G for the topology of X, consisting of measurable
sets and closed under finite unions, such that liminf,,_, n%rl#({z 21 <m, x; € G}) > pG for every G € G.
Then (z;);en is equidistributed.

(f) Suppose that X is completely regular and that p measures every zero set and is 7-additive. Then
(x:)ien is equidistributed iff the limit lim,, n+1 Soio f(x;) is defined and equal to [ fdu for every f €
Ch(X).

(g) Suppose that X is metrizable and that p is a topological measure. Then (z;);cn is equidistributed iff
the limit lim,, oo n+1 ZZ:O f(x;) is defined and equal to ffd,u for every f € Cp(X).

(h) Suppose that X is compact, Hausdorff and zero-dimensional, and that p is a Radon measure on X.
Then (z;);en is equidistributed iff d({i : 2; € G}) = pG for every open-and-closed subset G of X.

proof (a)(i) Suppose that (z;)ien is equidistributed. Let f : X — [0,1] be a measurable lower semi-
continuous function and k > 1. For each j < k set G; = {z : f(z) > £}. Then

1

+1#({i 1< n,x; € Gj}) > ,LLGj

liminf,, o —1i-1 Zj 1 XGj(z;) = liminf,,_,

because (x;);en is equidistributed and G; is a measurable open set. Also f — %XX < % 2?21 xG; < f, s0

1 1 1
/fdu—g S;Zlqu ng; lf_lfcféfTZXG ;)
J= J=
n

S%linrggfn—zz:)(G ;) <hnm1nf—Zf x;).

=0 j=1

As k is arbitrary, liminf,, . n+1 Soio flas) > [ fdu.

The argument above depended on f takmg values in [0, 1]. But multiplying by an appropriate positive
scalar we see that lim inf,, . n%_l Z?:o flx) > f fdu for every bounded measurable lower semi-continuous
f: X —]0,00[, and adding a multiple of x X we see that the same formula is valid for all bounded measurable
lower semi-continuous f : X — R.

(ii) Conversely, if liminf, %—HZ?:O f(z;) > [ fdu for every bounded measurable lower semi-
continuous f : X — R, and G C X is a measurable open set, then xG is lower semi-continuous, so
liminf,, o n%‘_l#({z 21 <n,xz; € G}) > puG. As G is arbitrary, (x;);en is equidistributed.

(b) Apply (a) to the lower semi-continuous functions f and —f. (Recall that if u measures every zero
set, then every bounded continuous real-valued function is integrable, by 4A3L.)

D.H.FREMLIN



4 Further topics 491C

(c) Let F C X be a zero set, and € > 0. Then there is a continuous f : X — R such that F' = f~1[{0}].
Let § > 0 be such that pu{z : 0 < |f(z)] < 6} <€, and set g = (xX — %m)Jr Then g : X — [0,1] is

continuous and xF' < g, so
1 n
* ;. . j —_— .
d{i:x; € F}) < hq?l—ilip el Z;g(xz)
1=

=/gdu§u{xr|f(x)\ <O} < pF +e

As € and F are arbitrary, we have the result.

(d) Let FF C X be a measurable closed set and € > 0. Because p is inner regular with respect to the
closed sets, there is a measurable closed set F' C X \ F such that pF’ > pu(X \ F)) —e. Because X is normal,
there is a continuous function f : X — [0,1] such that xF' < f < x(X \ F’). Now

d*({i: z; € F}) < limsup,_, niﬂzggo fla) = fdp < p(X\ F') < pF +e.
As F and € are arbitrary, (z;);en is equidistributed.

(e) Let G C X be a measurable open set, and e > 0. Then H = {H : H € G, H C G} is upwards-directed
and has union G} since p is T-additive, there is an H € H such that uH > puG — e. Now

uGSe—l—uHSe—l—liminfl#({i:i<n, x; € H})

n—oo N

<e+ liminf%#({i ti<n, x; € G});

n—oo
as € and G are arbitrary, (x;);cy is equidistributed.
(F)(i) If (zi)ien is equidistributed then (b) tells us that lim, oo ig Yoieg f(2:) = [ fdp for every
f € Cy(X). (i) Suppose that limy, e 45 Yo f(2:) = [ fdp for every f € Cy(X). If G C X is a cozero
set, we can apply (c) to its complement to see that lim inf,,_, %_H#({z 21 <n,x; € G}) > puG. So applying
(e) with G the family of cozero sets we see that (z;);cn is equidistributed.

(g) Because every closed set is a zero set, this follows at once from (b) and (c).

(h) If (z;)ien is equidistributed and G C X is open-and-closed, then d*({i : z; € G}) < uG because G
is closed and d*({i : ; ¢ G}) < 1 — uG because G is open; so d({i : x; € G}) = pG. If the condition is
satisfied, then (e) tells us that (z;);en is equidistributed.

491D The next lemma provides a useful general criterion for the existence of equidistributed sequences.

Lemma Let X be a topological space and p a probability measure on X. Suppose that there is a sequence
(Vn)nen of point-supported probability measures on X such that lim sup,,_, . v F' < uF for every measurable
closed set F' C X. Then p has an equidistributed sequence.

proof For each n € N, let ¢, : X — [0,1] be such that v, E = 3 _pqn(x) for every E C X. Let
¢, + X — [0,1] be such that > .y ¢, (z) =1, K,, = {z : ¢,(x) > 0} is finite, ¢;,(z) is rational for every
x, and ) v [qn(7) — ¢, (x)] < 277; then limsup,,_, ., v, F' < pF for every measurable closed F', where v,
is defined from ¢,. For each n, let s,, > 1 be such that r,(z) = ¢} (z)s, is an integer for every = € K,,.
Let (%ni)ics, be a family in K, such that #({i : i < sy, Tn; = x}) = rp(x) for each z € K,; then

v E = Si#({z 11 < Sp, Tn; € E}) for every E C X.
Let (m)ren be such that s, < 27F Z?:o m;s; for each k. Set lop = 0. Given [,, take the largest k

such that Zf;é m;8; < lp;set lpy1 =1, + s, and x; = xp iy, for I, <i <l,1; continue. By the choice of
the my, lp1/ln =+ 1lasn —oo. Forany E C X, #({i: 1, <i<lpy1, 2 € E}) =#({j:j < sk, xx; € E})
whenever Zf;é m;s; <lp < Z?:o m;s;. So for any measurable closed set £ C X,
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491F FEquidistributed sequences 5

d*({i:a; € F}) < limsupi#({j L j < sk, apj € F))

k—oc0

(491Ad)
= limsup v, F < puF.

k—o0

As F is arbitrary, (x;);en is an equidistributed sequence for p.

491E Proposition (a)(i) Suppose that X and Y are topological spaces, u is a probability measure on X
and f: X — Y is a continuous function. If (x;);cn is a sequence in X which is equidistributed with respect
to p, then (f(x;))ien is equidistributed with respect to the image measure pf 1.

(ii) Suppose that (X, u) and (Y,v) are topological probability spaces and f : X — Y is a continuous
inverse-measure-preserving function. If (x;);en is a sequence in X which is equidistributed with respect to
w, then (f(z;)):en is equidistributed with respect to v.

(b) Let X be a topological space and p a probability measure on X, and suppose that X has a countable
network consisting of sets measured by p. Let A be the ordinary product measure on X~. Then A-almost
every sequence in X is p-equidistributed.

proof (a)(i) Let I C Y be a closed set which is measured by puf~!. Then f~![F] is a closed set in X
measured by p. So

d*({i: f(z;) € F}) =d*({i: z; € fHF]}) < pf~H[F)
(ii) Replace ‘uf~1" above by ‘v'".

(b) Let A be a countable network for the given topology & of X consisting of measurable sets, and let £
be the countable subalgebra of PX generated by A. Let T D & be the second-countable topology generated
by &; then p is a 7-additive topological measure with respect to T (4A2Nb, 4140), and € is a base for ¥
closed under finite unions. If E € &, then d({i : z; € E}) = pE for A-almost every sequence (z;);en in X,
by the strong law of large numbers (273J). So

d({i:z; € E}) = uE for every E € £

for A-almost every (z;);en. Now 491Ce tells us that any such sequence is equidistributed with respect to ¥
and therefore with respect to &.

491F Theorem Let (X4, %0, X0, tta))aca be a family of r-additive topological probability spaces,
each of which has an equidistributed sequence. If #(A) < ¢, then the 7-additive product measure A on
X =[],ca Xa (definition: 417F) has an equidistributed sequence.

proof (a) For the time being (down to the end of (f)), let us suppose that A = PN and that every p, is
inner regular with respect to the Borel sets. (This will simplify the formulae and make it possible to use the
theorems of §417, in particular 417G and 417].)

For each o C N, let (tq:)icny be an equidistributed sequence in X,; for n € N, let v,, be the point-
supported measure on X, defined by setting vy, F = %H#({Z 14 <, ty; € E}) for E C X,. For each
finite set I C PN, set Y7 = [[,c; Xo and 7;(z) = x[] € Y] for 2 € X. Let A; be the 7-additive product
of {pr)aer and, for each n, let 7, be the product of the measures (Von)acr- (Because I is finite, this is a
point-supported probability measure, as in 251Xu. I do not say ‘r-additive product’ here because I do not
wish to assume that all singleton sets are Borel, so the v,, may not be inner regular with respect to the
Borel sets.)

(b) Suppose that I C PN is finite and that W C Y7 is an open set. Then A\;W < liminf, o 07, W. P
Induce on #(I). If I = @, Y7 is a singleton and the result is trivial. For the inductive step, if T # ), take
any o € I and set I’ = I \ {a}. Then we can identify Y; with Y, x X, A\; with the 7-additive product of
A and p, (417J), and each 7y, with the product of v/, and vay,.

Let V be the family of those subsets V' of Y7 which are expressible as a finite union of sets of the form
U x H where U C Y;» and H C X, are open. Then V is a base for the topology of Y; closed under finite

D.H.FREMLIN



6 Further topics 491F

unions. Let € > 0. Because \; is 7-additive, there is a V' € V such that A\;V > AW — e. The function
t— ApVI{t}] : Xo — [0,1] is lower semi-continuous (417Ba), so 491Ca tells us that

AV = / AVt ()

n—oo N+

.. 1 " ..
< timinf 1 3 A V[{tr}] = liminf / AV v (dF).
1=0

At the same time, there are only finitely many sets of the form V[{t¢}], and for each of these we have
ArVI{t}] < liminf, o 71, VI{t}], by the inductive hypothesis. So there is an m € N such that Ay V[{t}] <
U VI[{t}] + € for every n > m and every t € X,,. We must therefore have

AW < AV + e < liminf / Az V{E v (d8) + €

< lim inf/z?I/nV[{t}}Van (dt) + 2¢

n— oo

= liminf 77,V + 2¢ < liminf o7, W + 2e.

n— oo n—

As e and W are arbitrary, the induction proceeds. Q

(¢) For KCneN,set Apg ={a:aCN, anNnn=K}and Z,x = HaeAnK X,. Then for each n € N
we can identify X with the finite product [[;c, Znkx. For K C n € N and i € N, define z,x; € Z,x by

setting zpki(a) = to; for a € A,k; let D,k be the point-supported measure on Z,x defined by setting
UpW = %_H#({z 21 < n, zni; € W}) for each W C Z,, . For n € N let 7, be the measure on X which is
the product of the measures 7, for K C n; this too is point-supported (251Xu(ii)).

(d) If I C PN is finite, there is an m € N such that 7y : X — Y7 is (¥, U1y, )-inverse-measure-preserving
for every n > m. PP Let m be such that a N'm # o/ N'm for all distinct o, &’ € I. If n > m, then 7, is the
product of the 7, i for K C n. Now 7y, interpreted as a function from [[, -, Z.x onto Y7, is of the form
T1((zx)kcn) = (Zarm(@))acr. If a € I and E C X, then

{z:2€]lkcn Znr, m1(2)(@) € B} ={2: 2 € [[gc,, ZnK; 2arn(@) € E},

SO

Up{z :mr(2)(@) € E}Y = Upannnly ¥ € Zn,ann, y(a) € E}

1 ..
= n—ﬂ#({z 21 <n, Znarm, € E})

1 .
= nT—l#({Z 21 <n, te; € E}) = vanE.

If W C Y7 is of the form {y : y(«) € E, for every a € I'}, where E, C X,, for each a € I, then

D W] = Dn(ﬂ {z:z€ H Znk, z(ann)(a) € Ey})
acl KCn

= H Up{z: z(anNn)(a) € Eq}
acl
(because {z : z(aNn)(«a) € E,} is determined by coordinates in {a N n} for each a € I, and a — aNn :
I — Pn is injective)

= [ vanEa = 71 W-
acl

In particular, 7,77 *[{y}] = P, {y} for every y € Y7. Consequently #,7; '[D] = 1, D for any countable set
D CY;. But if W is any subset of Y7, there are countable subsets D, D’ of W and Y; respectively such that
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491F FEquidistributed sequences 7

DInD:DnW; DInD/:l)In(YI\W)» DInD+DInD,: 1
because 7, is point-supported, and now
m (DSt W], 7 DY C X\ a (W), Dump D)+ Dy (D] = 1,

SO ﬂ,ﬂr;l [W] is defined and equal to ﬂ,ﬂrfl [D] = U1, W because b, is complete. So 7y is (Dnﬂfl, Ury)-inverse-
measure-preserving. Q

(e) Let W be the family of those open sets W C X expressible in the form 7 '[IW’] for some finite
I C PN and some open W/ C Y. If W € W, then AW < liminf, cy 7, W. PP Take I € [PN]<“ and an open
W' C Y; such that W = 7, '[W’]. Then

AW = A\ W/
(417K)
< liminf o7, W’

(by (b) above)

= lim inf 7,7, ' [W']
n—oo

(by (d))
= liminf 7, W. Q
n—oo

(f) If now F C X is any closed set and € > 0, then (because W is a base for the topology of X closed
under finite unions) there is a W € W such that W C X \ F and AW > 1 — AF — e. In this case

limsup,,_ o "nF' <1 —liminf,, , 7, W <1 - AW < AF +e.

As € is arbitrary, limsup,, ., 'nF < AF; as F' is arbitrary, 491D tells us that there is an equidistributed
sequence in X.

(g) All this was done while assuming that A = PN and every p, is inner regular with respect to the
Borel sets. For the superficially more general case enunciated, given only that #(A) < ¢ and each p, is a
T-additive topological measure with an equidistributed sequence, we can of course take it that A is a subset
of PN. Now let p., be the restriction of p, to the Borel o-algebra of X, for each @ € A, and for o € PN\ A
take X, to be a singleton set, T, its only topology and u, the only probability measure on X,. Every u/, is
now 7-additive, and for @ € A any equidistributed sequence for p,, is of course equidistributed for u/,, while
for a € PN\ A the only sequence in X,, is equidistributed for u/,. If we take A’ to be the T-additive product
of (ul)acn on X' =[], ,cn X4, then (a)-(f) show that X' has an equidistributed sequence (z;);en say.

Let 4 : X’ — X be the restriction map 2 — x[ A. This is continuous, so (74(x;))ien is equidistributed
with respect to )\’7721, by 491Ea. And )\’7721 agrees with A on the open subsets of X. PP If I C A is finite
and H, C X, is open for a € I, then

Nz : 2 € X,2(a) € H, for a € I}
=N{z:z€ X, z(a) € H, for a € I}
:HuaHa:A{x:IGX,x(a)EHa for a € I}.
ael

So N 7r;1 and A agree on the family Vy of open cylinder subsets of X. But Vj is closed under finite
intersections, so the probability measures \’ 7r;‘1 and \ agree on the o-algebra of subsets of X generated by
Vo, by the Monotone Class Theorem (136C). In particular, they agree on the family V; of sets expressible as
finite unions of members of V), which is a base for the topology of X closed under finite unions. If W C X
is open, then {V : V € V;, V C W} is upwards-directed and has union W, so

N WW = sup N7H)(V)
Vev,,VCW

(because \'7," is T-additive, by 411Gj)

D.H.FREMLIN



8 Further topics 491F

= sup ANV =W Q
VeV, VCW

At the same time, (74 (z;))ien is equidistributed for N'w*, by 491E(a-i). Directly from the definition in
491B, we see that (ma(z;))ien is also equidistributed for A, and A has an equidistributed sequence in this
case also.

491G Corollary The usual measure of {0,1}° has an equidistributed sequence.

proof The usual measure of {0,1} of course has an equidistributed sequence (just set x; = 0 for even ¢,
x; = 1 for odd 7), so 491F gives the result at once.

491H Theorem (VEECH 71) Any separable compact Hausdorff topological group has an equidistributed
sequence for its Haar probability measure.

proof Let X be a separable compact Hausdorff topological group. Recall that X has exactly one Haar
probability measure p, which is both a left Haar measure and a right Haar measure (442Ic).

(a) We need some elementary facts about convolutions.

(i) If 4 and vy are point-supported probability measures on X, then vy * v is point-supported. P If
nE =% cpqa(r)and 1l =3 _pq(z) for every E C X, then

(11 *12)(E) = (1 x w){(z,y) : 2y € E}

= > a@al) =) >

ryck zelE

(444A)

where ¢(z) = > oy q1(2)g2(a712) for z€ X. Q

(ii) Let v, A be Radon probability measures on X. Suppose that f € C(X), « € R and € > 0
are such that | [ f(yzz)v(dz) — o] < € for every y, 2 € X. Then | [ f(yzz)(A *x v)(dz) — a| < € and
| [ flyzz)(A*v)(dx) —a| <eforeveryy,z€ X. P

| [ s vz - of

—| [[ rtyweztdz)xaw) - of
(444C)

< /|/f(ywxz)u(da?) — a|A(dw) < /e)\(dw) =€,

| [ ) Nidz) = of
—| [[ rtyswetdn)x@w) - of
< /|/f(yxwz)u(dz) — a|A(dw) < /e)\(dw) =c Q
(b) Let A C X be a countable dense set. Let N be the set of point-supported probability measures v

on X which are defined by functions ¢ such that {x : g(z) > 0} is a finite subset of A and ¢(x) is rational
for every x. Then N is countable. Now, for every f € C(X) and ¢ > 0, there is a v € N such that
| [ flyzz)v(dz) — [ fdu| < efor all y, z € X. P Because X is compact, f is uniformly continuous for the

right uniformity of X (4A2Jf), so there is a neighbourhood U of the identity e such that |f(z') — f(z)] < Fe
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whenever z/z=! € U. Next, again because X is compact, there is a neighbourhood V of e such that
yry ! € U whenever # € V and y € X (4A5Ej). Because A is dense, V~lx N A # () for every x € X,
that is, VA = X; once more because X is compact, there are zo,...,z, € A such that X = (J,., Va;.

Set E; = Va; \ U, ij for each ¢ < n. Let ap,..., € [0,1] N Q be such that > 1" o, =1 and
[ flloe Yoig lovi — pE;i| < e, and define v € N by bettmg z/E SHai:i<n,z; € E} for every £ C X.

Let y, 2 € X. If i < n and = € Fj;, then zz;' € V so (yzz)(yziz)™" = yza; 'y~ € U and |f(yxz) —
flyz;z)| < %e. Accordingly

| [ fewiao) - [ rautas

1Y auf(wwiz) [ Flumln(ao)
1=0

(441Ac)

—|Zazfya:z /fywz (dx)|

(where A is the left modular functlon of X, by 442Kc)

f|2a1fyxz /fy:cz (dz)]|

(because X is unimodular, by 4421(:)

SZ\aif(ymiZ)—/’f(ym)u(dx)l

Z — nEi|| f(yziz) |+Z\fywz JnE; — /fywz Ju(de)]

3

<||f||ooZ|az uE|+Z / Flyez) — Flyase) u(da)

€ €
§5+zgaﬂEi—5~ Q
1=

(c) Let (Vn)nen be a sequence running over N, and set A\, = vg * 11 * ... x v, for each n. (Recall from
444B that convolution is associative.) Then each ), is a point-supported probability measure on X, by
(a-i). Also lim, o0 [ fdA, = [ fdpu for every f € C(X). P If f € C(X) and € > 0, then (b) tells us that
there is an m € N such that | [ f(yzz)vm(dz) — [ fdu| < € for all y, z € X. For any n > m, A\, is of the
form A v, x \. By (a-ii), used in both parts successively, | [ fd\, — [ fdu| < e. As e is arbitrary, we have
the result. Q

(d) If F C X is closed, then

,uF:inf{/fduszg fec(X)}

= 1nf hmbup/fd)\n > limsup A\, F.

n—roo n—roo

By 491D, p has an equidistributed sequence.

4911 The quotient PN/Z I now return to the asymptotic density ideal Z, moving towards a striking
relationship between the corresponding quotient algebra and equidistributed sequences. Since Z <1 PN, we
can form the quotient asymptotic density algebra 3 = PN/Z. The functional d* descends naturally to
3 if we set

d*(I*) = d*(I) for every I C N.
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10 Further topics 4911a

(a) d* is a strictly positive submeasure on 3. P d* is a submeasure on 3 because d* is a submeasure on

PN. d* is strictly positive because Z D {I : d*(I) = 0}. Q

(b) Let p be the metric on 3 defined by saying that p(a,b) = d*(a Ab) for all a, b € 3. Under p, the
Boolean operations U, n, A and \ and the function d* : 3 — [0, 1] are uniformly continuous (392Hb),
and 3 is complete. B Let (c,,)nen be a sequence in 3 such that p(c,y1,¢,) < 27" for every n € N; then
p(cr, ;) <274 for i < r. For each n € N choose C,, C N such that C% = ¢,; then d*(C,AC;) < 27+ for
i < r. Choose a strictly increasing sequence (k)nen in N such that k,.1 > 2k, for every n and, for each
n €N,

%#((CnACi) Nm) < 272 whenever i <n, m > k,.

Set C = UneN CpNkpy1 \ kn, and ¢ = C* € 3. If n € N and m > k11, then take r > n such that
k. <m < k,y1; in this case k; < 27 "m for i <, so

#((CACY) Nm) < kn + i H(CAC) Ny \ ki) + #(CAC) Nnm\ k)
= kn + z_j L((C;AC) Mgy \ ki) + #((C,AC) Nm\ ky)

i=n

r—1
Sknt Y #(CIACY) Nkiga) + #((CrAC) Nm)
1=n—+1
r—1
S kn + Z 27n+2k1_+1 + 27"+2m
1=n—+1
r—1
< kn + Z 27n+22i+177‘m + 27n+2m
1=n—+1
<k,+2"Bm 427" 2y,

But this means that

Ble,cn) = A (CAC,) < lim =2y g=n+3 4 g=nt2 < g-n+d
m—oo M
for every n, and (c,)nen converges to ¢ in 3. Q
For the rest of this section, I will take it that 3 is endowed with the metric p.

*(c) If {an)nen is a non-increasing sequence in 3, there is an a € 3 such that a C a, for every n and
d*(a) = inf,end*(a,). P For each n € N, choose I, C N such that I = a,; replacing I,, by Nj<n Li if
necessary, we can arrange that I, C I,, for every n. Set v = inf,cn d*(a,) = inf,en d*(I,). Let (kp)nen
be a strictly increasing sequence in N such that #(I,, Nk,) > (v —27")ky, for every n. Set I =, o In Nkn
and a = I* € 3. Then #(INky,) > (v —27")k, for every n, so d*(a) = d*(I) > ~. Also I\ I,, C k, is finite,
s0 a C ay, for every n. Of course it follows at once that d*(a) = v exactly, as required. Q

*(d) d* is a Maharam submeasure on 3. (Immediate from (c).)

~ 491J Lemma Let (a,)nen be a non-decreasing sequence in 3 = PN/Z such that lim, o d*(a,) +
d*(1\an,) = 1. Then (an)nen is topologically convergent to a member a of 3; a = sup,eyan in 3 and
d*(a) +d*(1\a) = 1.

proof (a) The point is that if m < n then d*(an \ am) < d*(an) +d*(1\ a;) — 1. P Let I, J C N be such
that I* = a,, and J* = a,. For any k > 1,
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SHE (R OVT) + R\ D) = 1A (RN T\ D) + (6 (1)),

SO

d*(J) + d"(N\ T) = limsup 1 #(k 1 J) + lim sup - #(k \ 1)
k—o0

k—o0

> limsup (¢ #(k 01 J) + 1 #(k\ 1))

k—o0

= limsup(%#(k NJ\I)+ %#(k\ (I'\ J)))

k—o0

> limsup 3 #(k 1.7\ 1) +li]€rginf%#(k\(I\J)) —d*(J\I)+1

k—o0
because a, C an, so I\ J € Z. But this means that
d*(ap \ @) = d*(J\I) < d*(J) +d*(N\ I) — 1 = d*(a,) +d*(1\a,) — 1. Q

(b) Accordingly

lim sup sup p(@m, an) = limsup sup d*(a, \ am,)
m—o0 n>m m—o0 n>m

< limsup(sup d*(a,) +d*(1\ ap) — 1)

m—o0 n>m

= limsup sup d*(a,) — d*(am,)
m—o0 n>m
(because lim,,, ;o d*(ay,) + d*(1\ a,,) = 1)
= 07

and (a,)nen is a Cauchy sequence in 3.

(c) Because 3 is complete, a = lim, ,o a, is defined in 3 (491Ib). For each m € N, a,,\a =
lim;, 00 @m \ an, = 0 (because \ is continuous), so a,, C a; thus a is an upper bound of {a, : n € N}.
If b is any upper bound of {a, : n € N}, then a\ b = lim,, o a, \ b = 0; S0 @ = sup,,cy ar. Finally,

d*(a) + d*(1\ a) = lim, o d*(an) + d*(1\ ay,) = 1.

491K Corollary Set D = {a: a € 3, d*(a) + d*(1\ a) = 1}, and write d for d*|D.
(a) If I C N then its asymptotic density d(I) is defined iff I* € D, and in this case d(I) = d(I*).
(b) If @ € D then its complement 1\ a in 3 belongs to D; if a, b € D and anb =0, then aub € D and
d(aub) =d(a) + d(b); if a, b€ D and a C b then b\ a € D and d(b\ a) = d(b) — d(a).
(c) D is a topologically closed subset of 3.
(d) If A C D is upwards-directed, then sup A is defined in 3 and belongs to D; moreover there is a
sequence in A with the same supremum as A, and sup A belongs to the topological closure of A.
(e) Let B C D be a subalgebra of 3. Then the following are equiveridical:
(i) 9B is topologically closed in 3;
(ii) B is order-closed in 3;
(iii) setting 7 = d*[B = d|B, (B, 7) is a probability algebra.
In this case, 2B is regularly embedded in 3.
(f) If I C D is closed under either n or u, then the topologically closed subalgebra of 3 generated by I,
which is also the order-closed subalgebra of 3 generated by I, is included in D.

proof (a)
I'eD = d*(I*)+d*(1\I*) =1
— d*(I)+d*(N\I)=1 < d(I) is defined
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by 491Ac, and in this case

d(I) = d*(I) = d*(I*) = d(I*).

(b) These all follow directly from the corresponding results concerning PN and d (491Ac).

() All we have to know is that a — d*(a), a — 1\a are continuous (392Hb); so that {a : d*(a) +
d*(1\ a) =1} is closed.

(d) Because A is upwards-directed, and d* is a non-decreasing functional on 3, there is a non-decreasing
sequence {(a,)nen in A such that lim, . d*(a,) = SUPge 4 d*(a) = v say. By 491J, b = lim, ,00 @y =
SUp,,cn @n is defined in 3 and belongs to D. If a € A and € > 0, there is an n € N such that d*(a,) > v —e.
Let @’ € A be a common upper bound of a and a,,. Then

d*(a\b) < d*(a'\ ap) = d*(a’) — d*(a,) < v — d*(a,) <.

As e is arbitrary, a C b; as a is arbitrary, b is an upper bound of A4; as b = sup,,cy @», b must be the supremum
of A.

(e)(i)=(ii) Suppose that B is topologically closed. If A C 9B is a non-empty upwards-directed subset
with supremum b € 3, then (d) tells us that b € A C 8. It follows that B is order-closed in 3 (313E(a-i)).

(ii)=-(iii) Suppose that 9B is order-closed in 3. If A C 9B is non-empty, then A’ = {apuU ... Ua, :
ap, ... ,a, € A} is non-empty and upwards-directed, so has a supremum in 3, which must belong to 9, and
must be the least upper bound of A in 8. Thus B is Dedekind (o-)complete. Now let {a,)nen be a disjoint
sequence in B and set b, = sup,,, a; for each n. Then (b,),en is a non-decreasing sequence in D so has a
limit and supremum b € D, and b € B. Also d*(b,) = >;-, d*(a;) for each n (induce on n), so

b = d*(b) = limy, o0 d*(bn) = Do d*(a;) = D ieg Vas.
Since certainly 70 = 0, 71 = 1 and vb > 0 whenever b € B \ {0}, (B, ) is a probability algebra.

(iii)=-(i) Suppose that (B, 7) is a probability algebra. Then it is complete under its measure metric
(323Gc), which agrees on B with the metric p of 3; so B must be topologically closed in 3.

We see also that 9B is regularly embedded in 3. P (Compare 323H.) If A C 9B is non-empty and
downwards-directed and has infimum 0 in B, and b € 3 is any lower bound of A in 3, then

d*(b) < inf,cqd*(a) = infaecp va =0

(321F), so b=0. Thus inf A =0 in 3. As A is arbitrary, this is enough to show that the identity map from
B to 3 is order-continuous (313Lb), that is, that 9B is regularly embedded in 3. Q

(f) Let B be the order-closed subalgebra of 3 generated by I. If I is closed under n, then (b), (d) and
313Gc tell us that B C D. If I is closed under u, then I' = {1\a: a € I} is a subset of D closed under
N, while 9B is the order-closed subalgebra generated by I’; so again B C D. By (e), B is in either case
topologically closed. So we see that the topologically closed subalgebra generated by [ is included in D; by
(e) again, it is equal to B.

491L Effectively regular measures The examples 491Xf and 491Yf show that the definition in 491B
is drawn a little too wide for comfort, and allows some uninteresting pathologies. These do not arise in the
measure spaces we care most about, and the following definitions provide a fire-break. Let (X, %, i) be a
measure space, and ¥ a topology on X.

(a) I will say that a measurable subset K of X of finite measure is regularly enveloped if for every € > 0
there are an open measurable set G and a closed measurable set F such that K C G C F and pu(F\ K) <e.

(b) Note that the family K of regularly enveloped measurable sets of finite measure is closed under finite
unions and countable intersections. P (i) If Ky, Ky € K and = is either U or N, let € > 0. Take measurable
open sets G1, G2 and measurable closed sets Fy, F» such that K; C G; C F; and pu(F; \ K;) < %e for both i.
Then G1 * G4 is a measurable open set, F} * F5 is a measurable closed set, K1 *x Ko C G1 *x Gy C Fy * F and
w((F1 % F3) \ (K7 % K3)) < e. As e is arbitrary, K1 * Ko € K. (ii) If (K, )nen is a non-increasing sequence in
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K with intersection K and € > 0, let n € N be such that puK, < uK + e. Then we can find a measurable
open set G and a measurable closed set F' such that K,, C G C F and pF < pK + €. As € is arbitrary,
K € K. Together with (i), this is enough to show that K is closed under countable intersections. Q

(c) Now I say that u is effectively regular if it is inner regular with respect to the regularly enveloped
sets of finite measure.

491M Examples (a) Any totally finite Radon measure is effectively regular. P Let (X,%,%, 1) be a
totally finite Radon measure space. If K C X is compact and € > 0, let L C X \ K be a compact set such
that uL > pX — pK +e. Let G, H be disjoint open sets including K, L respectively (4A2F(h-i)). Then
KCGCX\H,Gisopen, X\ H is closed, both G and X \ H are measurable, and pu((X \ H) \ K) <e.
This shows that every compact set is regularly enveloped, and p is effectively regular. Q

(b) Let (X,%,%,u) be a quasi-Radon measure space such that ¥ is a regular topology. Then p is
effectively regular. P Let E € 3 and take v < puE. Choose sequences (E,)nen and (G )nen inductively,
as follows. Ey C E is to be any measurable set such that v < pFEy < co. Given that pFE, > v, let G be
an open set of finite measure such that p(E, NG) > v (414Ea), and F' C G\ E,, a closed set such that
uF > u(G\E,)—2". Let H be the family of open sets H such that H C G\ F. Then H is upwards-directed
and covers E, (because ¥ is regular), so there is a G,, € H such that u(E, N Gy,) > v (414Ea again). Now
w(Gn \ E,) <27 Set E,,1 = E, NG, and continue.

At the end of the induction, set K = ﬂneN E,. For eachn, K C G, C G,, and

limy, o0 (G \ K) < limy, 00 27" + pu(E, \ K) = 0,

so K is regularly enveloped. At the same time, K C F and puK > . As E and 7 are arbitrary, p is
effectively regular. Q

(c) Any totally finite Baire measure is effectively regular. B Let u be a totally finite Baire measure on a
topological space X. If F C X is a zero set, let f : X — R be a continuous function such that F' = f~[{0}].
For each n € N, set G,, = {z : |f(x)] < 27"}, F,, = {z : |f(x)] < 27"}; then G,, is a measurable open
set, F,, is a measurable closed set, F' C G,, C F,, for every n and lim, . uF,, = pF (because p is totally
finite). This shows that every zero set is regularly enveloped; as u is inner regular with respect to the zero
sets (412D), u is effectively regular. Q

(d) A totally finite completion regular topological measure is effectively regular. (As in (c), all zero sets
are regularly enveloped.)

491N Theorem Let X be a topological space and u an effectively regular probability measure on X,
with measure algebra (2, /i). Suppose that (z;);cn is an equidistributed sequence in X. Then we have a
unique order-continuous Boolean homomorphism 7 : A — 3 = PN/Z such that 7G* C {i : x; € G}* for
every measurable open set G C X, and d*(ma) = fia for every a € 2.

proof (a) Define § : PX — 3 by setting A = {i : z; € A}* for A C X; then 6 is a Boolean homomorphism.
If F C X is closed and measurable, then d*(0F) < pF, because (x;);cn is equidistributed. Write K for the
family of regularly enveloped measurable sets.

If K € K, then mpK = inf{0G : K C G € XN T} is defined in 3, d*(moK) = uK and moK € D as defined
in 491K. P For each n € N, let G,,, F,, € ¥ be such that K C G,, C F,,, G, is open, F, is closed and
p(Fr \ K) <27". Set H, = X \[);<,, Gi- Then

d*(0H,) +d*(1\0H,) < d*(0H,) + d*(0((") F})) < pH, + p( () Fi)

i<n i<n
SpuX\K)+pl, <1427"
Also (6H,,)nen is a non-decreasing sequence in 3. By 491J, a = lim,,_,oc 0H,, = sup,,cy 0 H,, is defined in 3
and belongs to D. Set

b=1\a=Ilim, 40 1\0H, =lim, - 0(.<,, Gi),

i<n
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so that b also belongs to D. If K C G € ¥ N ¥, then
b\ OG = limy, 00 0(N;<,, Gi) \ 0G = im0 0(N;<,, Gi \ G)

and

J%b\@G):7£g;JWG(r]Gi\G»

i<n
sggﬁ%wOPﬂG»sgggq]m\on

This shows that b C §G whenever K C G € ¥ N T. On the other hand, any lower bound of {#G : K C G €
YN T} is also a lower bound of {6(,~,, Gi) : n € N}, so is included in b. Thus b = inf{G : K C G € ¥NT}
and 7o (K) = b is defined. -

To compute d*(b), observe first that b € 1\ 0H,, C 0F, for every n, so

d*(b) < inf,end*(0F,) < infpeny uF, = uK.
On the other hand,
d*(0(Nicn, Gi)) 2 1 = d*(0H,) > 1 — uH, > pk
for every n, so
d*(b) = limy, 00 J*W(ﬂign Gi)) > pK.
Accordingly d*(b) = uK, and moK has the required properties. Q
(b) f K, L € K, then mo(K N L) = noK nmoL. P We know that KN L € K (491Lb). And

moK nmoL =inf{G: K CGe€T}ninf{0H:LC H €T}
=inf{0GnH: K CGe%, LCHEeZ}
=inf{(GNH): KCGEe%T LCHeZ}om(KNL).

Now suppose that U O K N L is a measurable open set and € > 0. Let G, G’ be measurable open sets and
F, F’ measurable closed sets such that K CGCF, LCG' CF', y(F\ K) <eand u(F'\ L) <e. Then

d*(moK nmoL\ 0U) < d*(0G n G\ OU) = d*(0(GN G\ U))
SdOFNF\U) <u(FNF'\U) < 2.
As e is arbitrary, mo K nmoL C 0U; as U is arbitrary, moK nmoL C mo(K N L). Q
This means that {moK : K C X is a regularly embedded measurable set} is a subset of D closed under n.

By 491Kf, the topologically closed subalgebra B of 3 generated by this family is included in D; by 491Ke,
B is order-closed and regularly embedded in 3, and (2B, d*[B) is a probability algebra.

(c) Now observe that if we set Q@ = {K* : K € K} C 2, we have a function 7 : Q — B defined by setting
mK* = ngK whenever K € . P Suppose that K, L € K and u(KAL) = 0. Then

d*(moK AmgL) = d*(moK) + d*(moL) — 2d* (mo K N L)
(because mo K and moL belong to B C D)
= d*(noK) + d*(moL) — 2d* (mo(K N L))
=uK +pLl —2u(KNL)=0.

So mg K = mpL and either can be used to define 7K*. Q Next, the same formulae show that 7 : Q — B is
an isometry when @ is given the measure metric of 2, since if K, L belong to IC,

p(rK*,wL*) = d*(moK AmoL) = pK + pL — 2u(K N L) = p(KAL) = i(K* A L*).
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As @ is dense in 2 (412N), there is a unique extension of 7 to an isometry from 2 to 9B.
(d) Because
m(K*nLl)=n((KNL)*)=mn(KNL)=ngKnnyL =nK*nrL*

forall K, L € K, m(and’) = mranma for all a, ' € 2. Tt follows that 7 is a Boolean homomorphism. P
The point is that d*(7a) = fia for every a € @, and therefore for every a € 2. Now if a € 2, w(1\ a) must be
disjoint from 7a (since certainly 70 = 0), and has the same measure as 1\ ma (remember that we know that
(B, d*|B) is a measure algebra), so must be equal to 1\ 7a. By 312H(ii), 7 is a Boolean homomorphism.

Q

By 324G, 7 is order-continuous when regarded as a function from 2l to B. Because B is regularly
embedded in 3, 7 is order-continuous when regarded as a function from 2l to 3.

(e) Let G € ¥NZ. For any € > 0, there is a K € K such that K C G and u(G \ K) < e. In this case,
7K* =mK C 0G. So
d*(nG*\0G) < d* (G \7K*) = i(G*\ K*) = (G \ K) < e.
As € is arbitrary, 7G* C 0G.

(f) This shows that we have a homomorphism 7 with the required properties. To see that 7 is unique,
suppose that 7/ : 2l — 3 is also a homomorphism of the same kind. In this case

d*(I\7'a) = d*(7'(1\a)) = g(1\a) = 1 — ia = 1 — d*(7a),
so w'a € D, for every a € . If K € K, then 7' K* C G whenever K CG € X N%,s0om'K* C mgK = nK".
As both 7K* and 7' K* belong to D,
d*(rK\7'K*) = d*(nK*) — d*(7'K*) = uK — uK =0,

and 7K* = 7'K*. As {K* : K € K} is topologically dense in 2, and both 7 and 7’ are continuous, they
must be equal.

4910 Proposition Let X be a topological space and p an effectively regular probability measure on X
which measures every zero set, and suppose that (z;);cn is an equidistributed sequence in X. Let 2 be the
measure algebra of y and 7 : 2l — 3 = PN/Z the regular embedding described in 491N; let T, : L™ () —
L*>(3) be the corresponding order-continuous Banach algebra embedding (363F). Let S : £>°(X) — £>° be
the Riesz homomorphism defined by setting (Sf)(i) = f(x;) for f € £>°(X) and i € N, and R : {>° — L*>°(3)
the Riesz homomorphism corresponding to the Boolean homomorphism I +— I* : PN — 3. For f € £%(u)
let f* be the corresponding member of L (p) = L () (363I). Then T (f*) = RSf for every f € Cp(X).

proof To begin with, suppose that f : X — [0, 1] is continuous and k > 1. For each i < k set G; = {« :
f@) >} Fro={x: f@) 2 4} Then £ S0, xF; < f < £ 500 XGi- So

1 1
EZ;LI X(mE?) <Trf* < EZ?:O x(7G3),

1 1
S X(OF:) < RSF < 1508 x(0G)

where 0 : PX — 3 is the Boolean homomorphism described in the proof of 491N, because RS : (> (X) —
L*°(3) is the Riesz homomorphism corresponding to 6 (see 363Fa, 363Fg). Now 491N tells us that 7G* € G
for every cozero set G C X, so

where e is the standard order unit of the M-space L>(3). But looking at complements we see that we must
have wF* D OF for every zero set F' C X, so
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=
-

RSf < x(0G;) <

i

k
> x(0F)
i=0

.
o

= |

k
3 _1 . 1 3
X(RFY) = et ST < et Tuf

This means that [T, f*— RS f| < %e for every k > 1, so that T, f* = RSf. This is true whenever f € Cp(X)
takes values in [0, 1]; as all the operators here are linear, it is true for every f € Cp(X).

IN
el
-
I
=)

491P Proposition Any probability algebra (2, 1) with cardinal at most ¢ can be regularly embedded
as a subalgebra of 3 = PN/Z in such a way that f is identified with the restriction of the submeasure d* to
the image of 2.

proof The usual measure of {0,1}° is a totally finite Radon measure (416Ub), so is effectively regular
(491Ma). It has an equidistributed sequence (491G), so its measure algebra (B, 7.) can be regularly embed-
ded in 3 in a way which matches 7, with d* (491N). Now if (2, i) is any probability algebra with cardinal
at most ¢, it can be regularly embedded (by a measure-preserving homomorphism) in (B, 7.) (332N), and
therefore in (3,d*).

491Q Corollary Every Radon probability measure on {0,1}¢ has an equidistributed sequence.

proof Let p be a Radon probability measure on {0,1}¢, and (2, ) its measure algebra. For £ < ¢ set
Ee ={z:2€{0,1}%, 2(§) = 1} and e¢ = E} € 2.

(a) #(2) < c¢. P The o-algebra generated by {E¢ : £ < ¢} is the Baire o-algebra Ba({0,1}*) (4A3Na)
and E° belongs to the o-subalgebra B of 2 generated by {e; : £ < ¢} whenever E € Ba({0,1}). Now if
G C {0,1}° is open, then H = {H : H C G is determined by a finite set of coordinates} is an upwards-
directed family of open sets with union G, while H is a Baire set (see 4A3Nb) and H* € 9B for every
H e H. If € > 0, there is an H € G such that uG < uH + €, because u is T7-additive; so we have a sequence
(Hp)nen in H such that u(GA U,y Hyn) = 0 and G* = sup,,y Hy, € B. It follows that F'* € B for every
closed F C {0,1}°. Next, if E C {0,1}° is measured by pu, there is a sequence (F,,)nen of closed subsets
of E such that u(E \ U,y Fn) = 0, because y is inner regular with respect to the closed sets, so that
E* =sup,cn F, € B; thus A = B. But 9B has cardinal at most ¢, by 4A10. Q

(b) By 491P, there is a measure-preserving embedding 7 : 2 — 3, and 7[] C D as defined in 491K. For
§ < clet I¢ C N be such that I§ = me¢ in 3. Define z;(§), for i € N and £ < ¢, by setting z;({) = 1if i € I,
0 otherwise. Now suppose that H C {0, 1} is a basic open set of the form {z : z(§) = 1 for £ € K, 0 for
¢ € L}, where K, L C ¢ are finite. Set b=nH* in 3,

I={i:x; € H} ZNﬂﬂgeKlé\UfeLjf'
Then

b=7mH* =x(inf a¢\ supa
(&K f\geg ¢)

= inf mae \ supmag = inf 12\ supl; =1I°.
EeK €\ feIL) $ T ek f\geIL) ¢
Since b € D, d(I) is defined and is equal to d*(b) = pH* = pH.

If we now take F to be an open-and-closed subset of {0,1}¢, it can be expressed as a disjoint union of
finitely many basic open sets of the type just considered; because d is additive on disjoint sets, d({i : x; € E})
is defined and equal to pF. But this is enough to ensure that (z;);en is equidistributed, by 491Ch.

491R In this section I have been looking at probability measures with equidistributed sequences. A
standard line of investigation is to ask which of our ordinary constructions, applied to such measures, lead
to others of the same kind, as in 491Ea and 491F. We find that the language developed here enables us to
express another result of this type.

MEASURE THEORY
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Proposition Let X be a topological space, p an effectively regular topological probability measure on X
which has an equidistributed sequence, and v a probability measure on X which is an indefinite-integral
measure over . Then v has an equidistributed sequence.

proof Let K be the family of regularly enveloped measurable sets.

(a) Consider first the case in which v has Radon-Nikodym derivative of the form MLK x K for some K €

of non-zero measure. For each m € N, we have an open set G, 2 K such that (G \K) < 27™; of course we
can arrange that Gy, +1 C G, for each m. Set F,,, = Gy, for each m € N. Let (z;);en be an equidistributed
sequence for p. Then there is an I C N such that d(I) = uK and {i : i € I, z; ¢ G, } is finite for every

m. P For each m € N, set I,, = {i : ; € Gy, }. We know that liminf, %#(Im Nn) > uG,, > ukK for
each m, so we can find a strictly increasing sequence (k,)men such that %#(Im Nn) > pK — 27" whenever
m € N and n > k,,. Set

I'=UpmenIm Nkmar € Npenm U kmgr).

If Ky < 10 < K1,

(TN n) > (L () > pK — 27

so liminf,, s %#(I Nn) > pK. On the other hand, for any m € N,
{iSiEI, $1¢Fm}g1\lmgkm+l
is finite, so

limsup%#(l Nn) < limsup%#({i ti<n, x; € Fpl})

n—oo n—oo

< pFm < pK +277

Accordingly limsup,,_, ., %#(I Nn) < puK and d(I) is defined and equal to pK. Q

Let (jn)nen be the increasing enumeration of I, and set y, = z;, for each n. Then (yn)nen is equidis-
tributed for v. I® Note first that

lim -y 7= = Lo ji#(f Njn) = pk.

n n

Let F' C X be closed. Then vF' = HENK)

. On the other hand, for any m € N,

d({n:y, € F}) = limsupl#({i ti<n, x;, € F})
n—oo M

:limsup%#({i (i< jp,t €1, 2; € F})

n—oo

- limsup%#({i i< jp i€,z € FNGm))

n—0o0

(because {i:i € I, x; ¢ Gy, } is finite)

<limsupZ L #({i 1 i < jn, 2; € FN Fp})
n—oo " Jn
= H%limsupi#({i 1< Jn,x; € FNELY})

n— 00 ]
1 .. 1 ..
< — Sup — : i
S UK 117rlnbupn#({z i<mn,x; € FNEFL})

1 .
2mu K’

< MLKM(F NFp) < —uFNK)+2™) =vF +

1
SR
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18 Further topics 491R

as m is arbitrary, d*({n : y, € F'}) < vF; as F is arbitrary, (y,)nen is equidistributed for v. Q

(b) Now turn to the general case. Let f be a Radon-Nikodym derivative of v; we may suppose that f is
measurable and non-negative and defined everywhere in X. Then there is a sequence (K,;,)men in K such
that f =ae Doy #ﬂxK P Choose f,,, K, inductively, as follows. fo = f. Given that f,, > 0 is

measurable, set E,, = {x: fn(z) > m+1} and let K, € K be such that K,,, C E,, and u(E,, \ K,,) <2™™;
set fon+1 = fm — m+1 XK. Then (f,)men is non-increasing; set g = limy, 00 fm- T If g is not zero almost
everywhere, let r € N be such that uE > 27"t where E = {z : g(z ) > r+1}' Then E C E,, for every
m >r, so u(E\ Km) 27™ for every m > r and F = EN() K, is not empty. Take x € F’; then
fmt1(x) < flz) — m+1 for every m > r, which is impossible. X So g =0 a.e. and f =ae. Y oy #HXKW'

Q

By (a), we have for each m a sequence (Ymn)nen in X such that

m>r

. 1 .
w(F N Kp) > pK,y, -limsup,,_, E#({Z 21 <N, Yms € F})
for every closed F' C X. For n € N, let v,, be the point-supported measure on X defined by setting

v = Yoo o ey 6 S s € AD)

for A C X; because > .°_, B

Ij_”ll = [ fdu =1, v, is a probability measure. If F C X is closed,

limsup v, F < Z 1o hrnsup—#({ i <N, Ymi € F})

n—oo n—oo

oo
1
<> e F N Ky, / fdu = vF.
m=0
So 491D tells us that there is an equidistributed sequence for v, as required.

4918 The asymptotic density filter Corresponding to the asymptotic density ideal, of course we have
a filter. It is not surprising that convergence along this filter, in the sense of 2A3Sb, should be interesting
and sometimes important.

(a) Set
Fag={N\I:T€2}={I:TCN, limn_wo%#(lﬂn) =1}
Then Fy is a filter on N, the (asymptotic) density filter.
(b) For a bounded sequence {(an)nen in C, lim, 7, a,, = 0 iff limnﬁoon%_lz::o lak| = 0. P Set
M = supcy ||, and for € > 0 set I. = {n : |a,| < €}. Then, for any n > 1,

S+ DN L) < 5 g low] S e+ S A ((n+ D\ L),

n+1

L#é((n—’_]-)\-[e) = 07 that iS, N\Ie c Z and IE c J__.dy as €

P 1 .
So if limy, 500 ) Y oreo lak| =0, then lim, 1
Y=o lak| < &

is arbitrary, lim,,_, z, a, = 0. While if lim,,_, 7, &, = 0 then N\ I, € Z and limsup,, , ., —— n+1

. . . . 1
again, € is arbitrary, so lim, s el Sholakl =0. Q

(c) Foranym € Nand A CN, A+m € F,iff A € F4. P For any n > m, #(nN(A+m)) = #((n—m)NA),
S0
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d(A+m) =it o0 2 #(n 0 (A +m)) = lity oo ~#(n N A) = d(A)

if either d(A+m) or d(A) is defined, in particular, if either A+m or A belongs to F4. Q Hence, or otherwise,
for any (real or complex) sequence {ap)nen, limy, 7, ap = lim,,_, 7, apmyy, if either is defined.

491X Basic exercises (a)(i) Show that if I, J € D = domd as defined in 491A, then T U J € D iff
INJeDift I\J e Diff INJ € D. (ii) Show that if £ C D is an algebra of sets, then d[& is additive. (iii)
Find I, J € D such that TN J ¢ D.

>(b) Suppose that I C N and that f: N — N is strictly increasing. Show that d*(f[I]) < d*(I)d*(f[N]),
with equality if either I or f[N] has asymptotic density.

(c) Suppose that I C N. (i) Show that there is a J C I such that d*(J) = d*(I \ J) = d*(I). (ii) Show
that if 0 < o < d*(I) there is a J C I such that d*(J) = « and d*(I \ J) = d*(I) — «. (iii) Show that if d(I)
is defined and 0 < o < d(I) there is a J C I such that d(J) is defined and equal to a.

(d)(i)(a) Show that if I, K C N are such that d(I) and d(K) are defined, there is a J C N such
that d(J) is defined and d(J) = d*(J NI) = d*(J N K) = min(d(]),d(K)). (8) Let I C N be such that
d(J)=d*(JNI)+d*(J\I) for every J C N such that d(J) is defined. Show that either I € Z or N\ I € Z.
(ii) Show that for every e > 0 there is an I C N such that d*(I) = € but d(J) = 1 whenever J D I and d(J)
is defined.

(e) Let (X, X, u) be a probability space and (E,),en a sequence in X. For z € X, set I, = {n:n €N,
z € E,}. Show that [ d*(I,)u(dz) > liminf,, . pk,.

(f) Let (X,%,%, 1) be a compact Radon probability space. Take any point co not belonging to X, and
give X U {oo} the topology generated by {G U {cc} : G € T}. Show that X U {co} is compact and that the
image measure po, of u under the identity map from X to X U{oc} is a quasi-Radon measure, inner regular
with respect to the compact sets. Show that if we set x; = oo for every i, then (z;);cn is equidistributed for

fhoo-

>(g)(i) Show that a sequence (t;);en in [0, 1] is equidistributed (with respect to Lebesgue measure) iff
limy, o0 n%_l#({z 24 <mn, t; < pB}) =B for every g € [0,1]. (ii) Show that if o € R is irrational then the
sequence (<ia>);en of fractional parts of multiples of « is equidistributed. (Hint: 281N.) (iii) Show that
a function f :[0,1] — R is Riemann integrable (134K) iff lim,_, %H Soi o f(t;) is defined in R for every
equidistributed sequence (t;);en in [0,1]. (iv) Show that a sequence (t;);en in [0,1] is equidistributed iff
lim,, s o0 %_H S f(t;) is defined and equal to yfol f for every Riemann integrable function f : [0,1] — R.

>(h) Let X be a topological space, u a probability measure on X measuring every zero set, and (z;);en
an equidistributed sequence in X. Show that lim, . %H Soio f(x;) is defined and equal to [ fdu for

every bounded f: X — R which is continuous almost everywhere. (Cf. 134L.)
(i) Show that the usual measure on the split interval (419L) has an equidistributed sequence.

(j) Let X be a metrizable space, and p a quasi-Radon probability measure on X. (i) Show that there
is an equidistributed sequence for p. (ii) Show that if the support of p is not compact, and (x;);en is
an equidistributed sequence for pu, then there is a continuous integrable function f : X — R such that

limy,—s 00 %ﬂ Soro flag) = oo.

(k) Let ¢ : ¢ — PN be an injective function. For each n € N let \,, be the uniform probability measure
on P(Pn), giving measure 272" to each singleton. Define v, : P(Pn) — {0,1}¢ by setting ¢,,(Z)(¢) = 1 if
#(€)Nn € Z, 0 otherwise, and let v, be the image measure A\, !. Show that v, E is the usual measure
of E whenever E C {0,1}° is determined by coordinates in a finite set on which the map & — ¢(£) Nn is
injective. Use this with 491D to prove 491G.
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20 Further topics 491X1

>(1)(i) Let Z be the Stone space of the measure algebra of Lebesgue measure on [0, 1], with its usual
measure. Show that there is no equidistributed sequence in Z. (Hint: meager sets in Z have negligible
closures.) (ii) Show that Dieudonné’s measure on w; (411Q) has no equidistributed sequence. (iii) Show
that if #(I) > ¢ then the usual measure on {0, 1}! has no equidistributed sequence. (Hint: if (z;);en is any
sequence in {0,1}!, there is an infinite J C I such that (z;(n))ien = (2:(€))ien for all n, € € J.) (iv) Show
that if X is a topological group with a Haar probability measure i, and X is not separable, then p has no
equidistributed sequence. (Hint: use 443D to show that every separable subset is negligible.)

(m) Let X be a compact Hausdorff abelian topological group and p its Haar probability measure. Show
that a sequence (z;);en in X is equidistributed for p iff lim,, %H > o x(xi) = 0 for every non-trivial
character x : X — S'. (Hint: 281G.)

(n)(i) Let (an)nen be a non-decreasing sequence in 3 = PN/Z. Show that there is an a € 3 such that
an C a for every n € N and d*(a) = sup, ey d*(ay). (ii) Show that 3 is not Dedekind o-complete. (Hint:
303Bc).

(o) Let 3, J*_and D be as in 491K. Show that if @ € D\ {0} and 3, is the principal ideal of 3 generated
by a, then (34, d*[3,) is isomorphic, up to a scalar multiple of the submeasure, to (3, d*).

(p) Let (X, X, 1) be a semi-finite measure space and ¥ a topology on X. Show that p is effectively regular
iff whenever £ € ¥, uF < oo and € > 0 there are a measurable open set G and a measurable closed set
F D G such that u(F\ E) + pu(E\ G) <e. 52

(q) Let X be a normal topological space and p a topological measure on X which is inner regular with
respect to the closed sets and effectively locally finite. Show that p is effectively regular.

(r) Let X be a topological space and p an effectively regular measure on X. (i) Show that the completion
and c.l.d. version of u are also effectively regular. (ii) Show that if ¥ C X then the subspace measure on Y
is again effectively regular. (iii) Show that any totally finite indefinite-integral measure over p is effectively
regular.

(s)(i) Let X7, X2 be topological spaces with effectively regular measures p1, po. Show that the c.l.d.
product measure on X; X X5 is effectively regular with respect to the product topology. (Hint: 412R.) (ii)
Let (X;);cr be a family of topological spaces and p; an effectively regular probability measure on X; for
each 4. Show that the product probability measure on ], ; X; is effectively regular.

(t) Give [0,1] the topology ¥ generated by the usual topology and {[0,1]\ A : A C Q}. Let ur, be
Lebesgue measure on [0,1], and ¥ its domain. For E € ¥ set uF = uE+ #(ENQ) if ENQ is finite,
oo otherwise. Show that p is a o-finite quasi-Radon measure with respect to the topology %, but is not
effectively regular.

(u) Let 2 be a countable Boolean algebra and v a finitely additive functional on 2 such that v1 = 1.
Show that there is a Boolean homomorphism 7 : 20 — PN such that d(ma) is defined and equal to va for
every a € 2 (i) using 491Xc (ii) using 392H, 491P and 341Xc.

(v) Let X be a dyadic space. (i) Show that there is a Radon probability measure on X with support X.
(ii) Show that the following are equiveridical: (a) w(X) < ¢; (8) every Radon probability measure on X
has an equidistributed sequence; (y) X is separable. (Hint: 4A2Dd, 418L.)

(w) Give an example of a Radon probability space (X, 1) with a closed conegligible set F' C X such that
1 has an equidistributed sequence but the subspace measure upr does not. (Hint: the Stone space of the
measure algebra of Lebesgue measure embeds into {0,1}°.)

(x) Let X be a topological space. A sequence (z,)nen in X is called statistically convergent to z € X
it d({i : x; € G}) =1 for every open set G containing z. (i) Show that if X is first-countable then (z,)nen
is statistically convergent to x iff there is a set I C N such that d(I) = 1 and (x,)ner converges to z in
the ordinary sense that {n : n € I, x,, ¢ G} is finite for every open set G containing x. (ii) Show that a

bounded sequence {ay,)nen in R is statistically convergent to « iff lim,, oo % Z?:_ol lo; — a = 0.

MEASURE THEORY



491Y1 FEquidistributed sequences 21

491Y Further exercises (a) Show that every subset A of N is expressible in the form I4AJ4 where
d(I4) =d(Ja) =1 (i) by a direct construction, with A ~— I a continuous function (ii) using 443D.

(b) (M.Elekes) Let (X,%,u) be a o-finite measure space and (E,)neny @ sequence in ¥ such that
MNnen Upmsn Em is conegligible. Show that there is an I € Z such that (,cy U,ep, Em is conegligible.

(c) (cf. BERGELSON 85) Let 2 be a Boolean algebra, A C A\ {0} a non-empty set and o € [0,1].
Show that the following are equiveridical: (i) there is a finitely additive functional v : 2 — [0,1] such that
va > « for every a € A (ii) for every sequence {a,)nen in A there is a set I C N such that d*(I) > « and
inf;erqn a; # 0 for every n € N.

(d) Let 2 be a Boolean algebra, and v : 20 — [0, 00] a submeasure. Show that v is uniformly exhaustive
iff whenever (a,)nen is a sequence in 2 such that inf, ey va, > 0, there is a set I C N such that d*(I) > 0
and inf;crny, a; # 0 for every n € N.

>(e) Show that if X is a Hausdorff space and f : N — X is injective, then there is an open set G C X
such that f~1[G] does not have asymptotic density.

(f) Find a topological space X with a 7-additive topological probability measure p on X, a sequence
(xi)ieny in X and a base G for the topology of X, consisting of measurable sets and closed under finite
intersections, such that pG < liminf,, o n%rl#({z : i < n, x; € G}) for every G € G but (2;);en is not
equidistributed.

(g) Let X be a compact Hausdorff space on which every Radon probability measure has an equidistributed
sequence. Show that the cylindrical o-algebra of C'(X) is the o-algebra generated by sets of the form
{f:feC(X), f(x) > a} where z € X and a € R.

(h) Give w1+1 and [0, 1] their usual compact Hausdorff topologies. Let (¢;);en be a sequence in [0, 1] which
is equidistributed for Lebesgue measure uy, and set @ = {t; : i € N}, X = (w1 x ([0,1]\ Q)) U {w1} x Q),
with the subspace topology inherited from (w; + 1) x [0,1]. (i) Set F = {w1} x Q. Show that F is a
closed Baire set in the completely regular Hausdorff space X. (ii) Show that if f € C,(X) then there are a
gr € C([0,1]) and a ¢ < wy such that such that f(&,t) = gr(t) whenever (§,t) € X and ¢ < § < wy. (iii)
Show that there is a Baire measure p on X such that [ fdu = [ ggduy for every f € Cy(X). (iv) Show that
pF = 0. (v) Show that [ fdu = lim, oo o7 Yoimg f(wi,t:) for every f € Cy(X), but that ((wi,t:))ien is
not equidistributed with respect to pu.

(i) Let (X,%,%, 1) be a topological measure space. Let £ be the Jordan algebra of X (411Yc). (i)
Suppose that p is a complete probability measure on X and (z;);en an equidistributed sequence in X. Show
that the asymptotic density d({i : z; € E}) is defined and equal to uE for every E € £. (ii) Suppose that p
is a probability measure on X and that (z;);cn is a sequence in X such that d({i : x; € E}) is defined and
equal to pF for every E € £. Show that lim,,_, n%rl St flz) = [ fdu for every f € Cyp(X).

(j) Show that a sequence (z;);cn in [0, 1] is equidistributed for Lebesgue measure iff there is some rg € N
such that limy,_, e n%rl Sl = ﬁ for every r > 1.

(k) Let Z, u, X = Z x {0,1} and v be as described in 439K, so that p is a Radon probability measure
on the compact metrizable space Z, X has a compact Hausdorff topology finer than the product topology
and agreeing with the product topology on Z x {0}, and v is a measure on Z extending u. (i) Show that
if f € C(X), then {t:t € Z, f(t,0) # f(¢,1)} is countable. (ii) Show that [ f(¢,0)u(dt) = [ f(¢,1)v(dt)
for every f € C(X). (iii) Let A be the measure vg~! on X, where g(¢,0) = g(¢,1) = (¢,1) for t € Zs. Show
that there is a sequence (z;);en in Z x {0} such that [ fd\ = lim,_, n%_l St f(x;) for every f e C(X),
but that (z;);cn is not A-equidistributed.

(D) (i) Show that a Radon probability measure on an extremally disconnected compact Hausdorff space has
an equidistributed sequence iff it is point-supported. (ii) Show that there is a separable compact Hausdorff
space with a Radon probability measure which has no equidistributed sequence.
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(m) Show that there is a countable dense set D C [0,1]° such that no sequence in D is equidistributed
for the usual measure on [0,1]°.

(n) Let 3 = PN/Z and d* : 3 — [0,1] be as in 4911. Show that d* is order-continuous on the left
in the sense that whenever A C 3 is non-empty and upwards-directed and has a supremum c¢ € 3, then

0(c) = supye. d° (a).

(0)(i) Show that 3 is weakly (o,0c0)-distributive. (ii) Show that 3 = 3N. (iii) Show that 3 has the
o-interpolation property, but is not Dedekind o-complete. (iv) Show that 3 has many involutions in the
sense of 3820.

(p) Let (X, p) be a separable metric space and p a Borel probability measure on X. (i) Show that there is
an equidistributed sequence in X. (ii) Show that if (z;);cy is an equidistributed sequence in X, and (y;);en is
a sequence in X such that lim;_, . p(z;,y;) = 0, then (y;);en is equidistributed. (iii) Show that if f : X - R
is a bounded function, then lim,,_, o %H Yoo f(xi) — f(y;) = 0 for all equidistributed sequences (x;);en,
(yi)ien in X iff {z : f is continuous at x} is conegligible, and in this case lim, %H Yoo flxi) = [ fdu
for every equidistributed sequence (z;);en in X.

(q) Let (X, %) be a topological space, i a probability measure on X, and ¢ : X — X an inverse-measure-
preserving function. (i) Suppose that T has a countable network consisting of measurable sets, and that ¢ is
ergodic. Show that (¢™(x))nen is equidistributed for almost every = € X. (ii) Suppose that u is either inner
regular with respect to the closed sets or effectively regular, and that {z : (¢"(x))nen is equidistributed} is
not negligible. Show that ¢ is ergodic.

(r) Let (X¢)e<. be a family of topological spaces with countable networks consisting of Borel sets, and p a
T-additive topological probability measure on X = HE < X¢. Show that p has an equidistributed sequence.

(s)(i) Show that there is a family (ag¢)e<. in 3 such that infees ag = 0 and sup,c; ag = 1 for every infinite
I Cc. (ii) Show that if B C 3\ {0} has cardinal less than ¢ then there is an a € 3 such that bna and b\ a
are non-zero for every b € B.

(t) Let (X, %, %, u) be a 7-additive topological probability space. A sequence (z;);en in X is completely
equidistributed if, for every r > 1, the sequence ({Zy4i)i<r)nen is equidistributed for some (therefore any)
T-additive extension of the c.l.d. product measure p” on X”. (i) Show that if there is an equidistributed
sequence in X, then there is a completely equidistributed sequence in X. (ii) Show that if T is second-
countable, then pN-almost every sequence in X is completely equidistributed. (iii) Show that if X has two
disjoint open sets of non-zero measure, then no sequence which is well-distributed in the sense of 281Ym
can be completely equidistributed.

(u) Suppose, in 4910, that p is a topological measure. Show that T, f* < RSf for every bounded lower
semi-continuous f : X — R.

491Z Problem It is known that for almost every x > 1 the sequence (<x’>);cy of fractional parts of
powers of z is equidistributed for Lebesgue measure on [0, 1] (KUIPERS & NIEDERREITER 74, p. 35). But
is (<(2)">)nen equidistributed?

491 Notes and comments The notations d*, d (491A) are standard, and usefully suggestive. But coming
from measure theory we have to remember that d*, although a submeasure, is not an outer measure, the
domain of d is not an algebra of sets (491Xa), and d and d* are related by only one of the formulae we expect
to connect a measure with an outer measure (491Ac, 491Xd). In 491C, the limit limy, o0 + 1 f(2;), when
it is defined, is the Cesaro mean of the sequence {f(x;));en. The delicacy of the arguments here arises
from the fact that the family of (bounded) sequences with Cesaro means, although a norm-closed linear
subspace of £°°, is neither a sublattice nor a subalgebra. When we turn to the quotient algebra 3 = PN/Z,
we find ourselves with a natural submeasure to which we can apply ideas from §392 to good effect (491T;
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see also 491Yn and 491Yo). What is striking is that equidistributed sequences induce regular embeddings
of measure algebras in 3 which can be thought of as measure-preserving (491N).

Most authors have been content to define an ‘equidistributed sequence’ to be one such that the integrals
of bounded continuous functions are correctly specified (491Cf, 491Cg); that is, that the point-supported
measures ”}rl S o0z, converge to p in the vague topology on an appropriate class of measures (437J).
I am going outside this territory in order to cover some ideas I find interesting. 491Yk shows that it
makes a difference; there are Borel measures on compact Hausdorff spaces which have sequences which give
the correct Cesaro means for continuous functions, but lie within negligible closed sets; and the same can
happen with Baire measures (491Yh). It seems to be difficult, in general, to determine whether a topological
probability space — even a compact Radon probability space — has an equidistributed sequence. In the proofs
of 491D-491G I have tried to collect the principal techniques for showing that spaces do have equidistributed
sequences. In the other direction, it is obviously impossible for a space to have an equidistributed sequence if
every separable subspace is negligible (491X1). For an example of a separable compact Hausdorff space with
a Radon measure which does not have an equidistributed sequence, we seem to have to go deeper (491Y1).

4917 is a famous problem. It is not clear that it is a problem in measure theory, and there is no reason
to suppose that any of the ideas of this treatise beyond 491Xg are relevant. I mention it because I think
everyone should know that it is there.

Version of 30.5.16

492 Combinatorial concentration of measure

‘Concentration of measure’ takes its most dramatic forms in the geometrically defined notions of con-
centration explored in §476. But the phenomenon is observable in many other contexts, if we can devise
the right abstract geometries to capture it. In this section I present one of Talagrand’s theorems on the
concentration of measure in product spaces, using the Hamming metric (492D), and Maurey’s theorem on
concentration of measure in permutation groups (492H).

492A Lemma Let (X,X, ) be a totally finite measure space, a < § in R, ¢ : [a, ] = R a convex
function, and f : X — [a, 8] a 3-measurable function. Then

J o @)utd) < QO [ a4 201000,

_tragy Bt
proof If t € [a, 8] then ¢t = 6—a6 + 5o SO

Q

6(t) < =2 0(8) + S o) = ULy Bl—adld),

T
e
T
e

Accordingly

Qs(f(l’)) < ¢(B;:j(a)f($) + ﬂfﬁ(aﬂ):sz(ﬂ)

for every z € X; integrating with respect to x, we have the result.

492B Corollary Let (X, X, 1) be a probability space and f : X — [«, 1] a measurable function, where
1 (1+a)?
0<a<l. Thenf?dﬂ'ffd,ugT.

proof Set v = [ fdu, so that o <~ < 1. By 492A, with ¢(t) = %,

1 ¥ 1 1.1 :1+a7'y

e 11—« «

14+«

]_ —
Now 4= T
o 2

(1+a)?
4o

-~ takes its maximum value when v = , o this is also a bound for [ % I

(©) 2001 D. H. Fremlin
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492C Lemma %(1 + cosht) < e’/ for every t € R.

proof For k > 1, 4kk! < 2(2k)! (induce on k), so

t2k

<24y A g

1+cosht =243 77, o = k=1 grpl

492D Theorem (TALAGRAND 95) Let ((X;,%;, tt;))i<n be a non-empty finite family of probability
spaces with product (X,A,\). Let p be the normalized Hamming metric on X defined by setting

plx,y) = %#({z ci<n, x(i) #y(i)}) forz, y € X. If W € A and AW > 0, then
Tt (z,W) L t2/4n
fe P Adz) < N

for every t > 0.

proof The formulae below will go much more smoothly if we work with the simple Hamming metric
o(z,y) = #{i: x(@) # y(i)}) instead of p. In this case, we can make sense of the case n = 0, and this will
be useful. In terms of o, our target is to prove that if W € A and AW > 0, then

T to(x,W) L nt?/4
fe Adx) < N

for every t > 0.

(a) To begin with, suppose that every X; = Z = {0, 1}", every u; is a Borel measure, and W is compact.
Note that in this case A is a Radon measure (because the X; are compact and metrizable), and

{z:o(x,W)<m}= UIgn,#(I)S'rn{x FyeW, zin\I=yn\I}

is compact for every m, so the function x — o(x, W) is measurable.

Induce on n. If n = 0 we must have W = X = {0} and o(x,W) = 0 for every z, so the result is
trivial. For the inductive step to n + 1, we have W C X x X,,, where X = [[,_, X;, and we are looking at

[[ et @OWI\(dx) iy, (dE). Now, setting Ve = {z : (v,£) € W} for € € X,
V= U&EXW Ve={z:3¢eX,, (z,§ € W},

i<n

we have

o((z,8), W) <min(o(z,Ve), 1+ o(z,V))

for all z and &, counting o(z, () as oo if Vg is empty. So, for any £ € X,

/ew((gc’f)’w))\(da:) < min(/ et”(“’vﬁ))\(dx),et/et”(w’v))\(dx))

< ent?/4 min(i i)

AV AV
. . . . .1 et et
by the inductive hypothesis, counting mm(a, W) as 13-
. L Ve
It follows that if we set f(£) = max(e ’W) for £ € X,,,
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(At )W) - [ O 7o) ()
< [ Wepatae) - /¢ [minL AtV)un(ds)
:ent2/4/)‘V€ (d€) - /mm 7/\‘/ Y (dE)

< [ 1) [ Hsnnae)

< ™ 2/4 (I+e™*)?
- de—t

(492B)

= %e"tg/‘*(l + cosht) < e(tDE/4

by 492C, and
t0((2.6).W) ) (da) , (dE) < ——— e+ 1)1?/4
fe ( ‘T)lu’ ( g) —_ (AXM,L)(W)e Y
so the induction continues.
(b) Now turn to the general case. If W € A, there is a W7 C W such that Wy € ®Z<n2 and \W; = \W
(2561Wf). There must be countably-generated o-subalgebras X of ¥; such that W € ® Y. For each

<<n 1°

i < n,let (E;,)ken be a sequence in ¥; generating X%, and let h; : X; — Z be the correspondfng Marczewski
functional, so that h;(§) = (xFi(§))ken for £ € X;. Let p} be the Borel measure on Z defined by setting
p.F = p;h; '[F] for every Borel set F' C Z, and let v be the product of the measures y} on Y = Z". If
we set h(z) = (h;(2(i)))i<n for z € X, then h : X — Y is inverse-measure-preserving for A and v (254H).
Moreover, by the choice of the E;,, Wi = h=1[V] for some Borel set V C Y.

Because Y is a compact metrizable space, v is the completion of a Borel measure and is a Radon measure
(433Cb). For each I C n, write v; for the product measure on Z!, and set

Vi={u:ueZ"™N vi{v:veZl, (u,v) € V} >0},

Vi={y:yeY, yn\IeVi}
Then v(V'\ V{) = 0 for every I Cn, so if we set V' =(;c,, V/ then vV’ =vV. (Of course V' C Vj=1V.)
Take any v € ]0, \W[ =]0,vV’[. Let K C V' be a compact set such that vK > 5. Set g(y) = e!*¥X)
for y € Y, where I write o for the Hamming metric on Y (regarded as a product of n factor spaces). Then

g : Y — R is Borel measurable and gh : X — R is A-measurable. Also, for any z € X, o(z, W) < o(h(z), K).
P Take y € K such that o(h(x),y) = o(h(x), K), and set

I={i:h(z)(@) #y(@)}, w=h@)n\IT=yln\I
Because y € V', v € Vy and viH > 0, where H = {v : v € ZI, (u,v) € V}. But if we write \; for
the product measure on [[,.; X;, and hr(z) = (hi(2(@)))icr for z € [];c; Xi, then hy is inverse-measure-
preserving for A\; and vy; in particular, h;l[H ] is non-empty. This means that we can find an 2’ € X such
that 2/[n\ I = x[n\ T and 2|1 € h; '[H]. In this case, h(z') € V, s0 2’ € Wy C W, and
olx, W) <o(x,2') <#{) =o(h(z), K). Q
Accordingly
6t::r(m,W) < 6t0(h(z),K) — g(h(l‘))

/et"(‘”’w))\(dx) < /ghd)\ = /gdu

(because g is v-integrable and h is inverse-measure-preserving, see 235QG)

for every z € X, and
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< Lenﬁ/‘l
—vK

(by (a))

< lent2/4

v
As v is arbitrary,
TetU(I’W)A(dl’) < Lent2/4
— AW b
as claimed.
492E Corollary Let ((X;,Y;, 4i))i<n be a non-empty finite family of probability spaces with product

(X,A,0).
(a) Let p be the normalized Hamming metric on X. If W € A and AW > 0, then

*fo L ey’
Nl W) > 7} < e

for every v > 0.
(b) If W, W’ € A and v > 0 are such that e~ < AW - AW’ then there are x € W, 2/ € W’ such that
#({i 0 <, 3i) £ 2'(0)}) < my.
proof (a) Set t = 2ny. By 492D, there is a measurable function f : X — R such that f(z) > e'?®W) for
L #?/4n
every z € X and [ fd\ < e . So

N ol W) 20} < Ao f@) = ey < e [ pan

< 1 e—tv+t2/4n: 1 e—n",/Q.
- AW AW

(b) By (a), M*{z : p(x, W) >~} < AW, so there must be an x € W such that p(z, W’) < ~.

492F The next theorem concerns concentration of measure in permutation groups. I approach this
through a general result about slowly-varying martingales (492G).

Lemma e <t + et for every t € R.
proof If ¢t > 1 then ¢t <2 so
et <et’ <t4et’

If0 <t <1 then

(o ] o0
t_ I 1 1 2k
€ _1+t+zn! = 1+t+z((2k)! +(2k+1)!)t
n=2 k=1
Ootzk 2
STty o =t+e.
k=1

If t <0 then

t2k

o0 o0

t_ 28

e —1+t+25§1+t+2(2k)1
n=2 k=1

o0
2k
§1—|—t+ztk—'=t+et2.
k=1

MEASURE THEORY



492H Combinatorial concentration of measure 27

492G Lemma (MILMAN & SCHECHTMAN 86) Let (X,X, ) be a probability space, and (f,)nen a
martingale on X. Suppose that f,, € £L>°(u) for every n, and that «,, > ess sup |f,, — frn—1| for n > 1. Then
for any n > 1 and v > 0,

Pr(fa = fo 2 7) < exp(=7?/4377, of),
at least if >, a? > 0.
proof Let (3, ),en be a non-decreasing sequence of o-subalgebras of ¥ to which (f,,)nen is adapted.

(a) I show first that
E(exp(A(fn — f0))) < exp(A*320L; o)

for any n > 0 and any A > 0. P Induce on n. For n = 0, interpreting Z?Zl as 0, this is trivial. For
the inductive step to n + 1, set ¢ = f, — fn—1 and let g1, g2 be conditional expectations of exp(A\g) and

exp(A\2g?) on ¥,,_1. Because |g| < a, a.e., exp(A\2g?) < exp(A2a2) a.e. and go < exp(A2a2) a.e. Because

exp(\g) < \g + exp(A\2g?) wherever g is defined (492F), and 0 is a conditional expectation of g on ¥,_1,
g1 < g2 < exp(A\2a?) a.e.

Now observe that f,,_1— fo is X,,_1-measurable, so that exp(A(fn—1—fo)) X g1 is a conditional expectation
of exp(A(fr—1 — fo0)) X exp(Ag) =a.c. exp(A(fr — fo0)) on X,,—1 (233Eg). Accordingly

E(exp(A(fn — f0))) = E(exp(A(fn-1 — fo)) x g1)
<ess sup |g1| - E(exp(A(fn—1 — f0)))

n—1

< exp(Xaj) exp(A* Y a?)
i=1
(by the inductive hypothesis)

=exp(\* ) _af)
i=1

and the induction continues. Q

b) Now take n > 1 such that 7-1: a,2>0and720. Set A =~/2 T.L: o?. Then
=1 "% =1 "1

Pr(fa = fo =) = Pr(exp(A(fu — fo)) > ™)

< e ME(exp(Mfu — fo0)) < e M exp(A? )y _af)
i=1
(by (a) above)

=e M2 =exp(—*/4)_a7)

i=1

as claimed.

492H Theorem (MAUREY 79) Let X be a non-empty finite set and G the group of all permutations of
X with its discrete topology. For 7, ¢ € G set
_ #({zzeX n(z)#(2)})
Then p is a metric on G. Give G its Haar probability measure, and let f : G — R be a 1-Lipschitz function.
Then

Pr(f ~E(f) > ) < exp(-TEX)

for any v > 0.
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proof (a) We may suppose that X =n = {0,... ,n — 1} where n = #(X). For m < n, p: m — n set
A, ={m:m e G, m[m = p}, and let X,, be the subalgebra of PG generated by {4, : p € n™}, and f,, the
(unique) conditional expectation of f on X,,. Then

1
fm(m) = 7#(AP)Z¢'€AP f(#)
whenever m € G and p = w[m, while

{Q]’G}:Eogzlggznflzzn:PG

B) |f(7) = fr—1(m)] < % whenever 1 <m <nandrm e G. P Set p=mnlm—1and k =n(m—1).
Set J = p[m — 1] = {m(i) : i < m — 1}, and for j € n\ J let p; = p~<j> be that function from m to n
which extends p and takes the value j at m — 1; let o; be the common value of f,,,(¢) for ¢ € A, , so that
fm(m) = ag. Now, for each j € n\ (JU{k}), the function ¢ — (3_16)(1) is a bijection from A, to A, , where

(.
(j k) € G is the transposition which exchanges j and k. But this means that

|aj_ak‘:‘ﬁ Z f(¢)—ﬁ Z f(@‘
$E A,

PEAp,

1

(n—m)!

DIRORCRD]

PEAD;

< sup [£(6) — [(TR)9)| <

peA,,;

SR

because f is 1-Lipschitz and p(¢, (T)qﬁ) = % for every ¢. And this is true for every j € n\ (J U {k}).

Accordingly

|fm(77) - fm—l(ﬂ')| = |O[k _m Z f((]s)’ = |ak - ! Z O[j|

n—m-+1
PEAp JjeEN\J
1 1 2 2
< ap —aj| < —— ==
- n—m+1 Z ‘ k j| - n—m+1 Z n n’
jeEN\J jeEN\J

as claimed. Q

(¢) Now observe that f = f,_1 and that fy is the constant function with value E(f), so that

n—1
Pr(f —E(f) 2 7) = Pr(fa-1 — fo 2 7) < exp(—12/4 > (2)?)
i=1
(492Q)

= eXp(_%)v

which is what we were seeking to prove.

4921 Corollary Let X be a non-empty finite set, with #(X) = n, and G the group of all permutations
of X. Let p be the Haar probability measure of G when given its discrete topology. Suppose that A C G
and pA > % Then

2

p{r:reG,Ipe A, #{z:xe X, n(x) £ ¢(x)}) <k} >1 —exp(—ﬁlen)

for every k < n.
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proof If exp( this is trivial, since the left-hand-side of the inequality is surely at least %

_Fy s

64n) 2 2’
Otherwise, set g(m) = %min%A #{z 2z € X, n(z) # ¢(x)}) for m € G, so that g is 1-Lipschitz for the
metric p of 492H. Applying 492H to f = —g, we see that

2

k k 1
Pr(E(g) —g > %) < eXp(_GzTn) <3

and there must be some m € A such that E(g) — g(7) < %, so that E(g) < % This means that

w{r:meG, 3o e A, #({x:zx e X, n(x) # ¢(x)}) <k}
:1—,u{7r:7r€G7g(7r)>§}

2

k
>1=Pr(g—E(g) > ) > 1 —exp(—5,-),

applying 492H to g itself.

492X Basic exercises (a) Let (X, X, ) be a probability space, and {f,,)nen @ martingale on X. Suppose
that f,, € £L°°(u) for every n, and that o = />~ | o2 is finite and not zero, where a,, = ess sup | fr, — fn_1|
for n > 1. Show that f = lim, o f, is defined a.e., and that Pr(f — fo > ) < exp(—~2/40?) for every
v > 0. (Hint: show first that || fnll1 < || fnll2 < o+ || foll2 for every n, so that we can apply 275G.)

(b) Let (X, p) be a metric space and u a topological probability measure on X. Suppose that v, € > 0
are such that Pr(f — E(f) > 7) < € whenever f : X — [0,1] is 1-Lipschitz. Show that if 4F > 1 then

iz : p(a, F) > 29} <.

(c) Let (X, p) be a metric space and p a topological probability measure on X. Suppose that v, € > 0
are such that p{z : p(z, F) > v} < e whenever pF" > 1. Show that if f : X — [0, 1] is a 1-Lipschitz function
then Pr(f —E(f) > 2y +¢€) <e.

(d) Use 492G to show that if ((X;, X;, t;))i<n is a non-empty finite family of probability spaces with
product (X, A, \), and X is given its normalized Hamming metric, and f € £>()\) is 1-Lipschitz, then
Pr(f —E(f) > v) < e~ /4 for every v > 0. (Hint: if 35 C A is the o-algebra of subsets of X determined
by coordinates in k, and fi is a conditional expectation of f on X, then ess sup|fr+1 — fi| < %)

492 Notes and comments In metric spaces, we can say that a probability measure is ‘concentrated’ if
every Lipschitz function f is almost constant in the sense that, for some «, the sets {z : |f(z) — o > 7}
have small measure. What is astonishing is that this does not mean that the measure itself is concentrated
on a small set. In 492H, the measure is the Haar probability measure, spread as evenly as it well could be.
Of course, when I say that {z : |f(z) — a] > «} has ‘small’ measure, I have to let some other parameter
— in 492H, the size of X — vary, while ~ itself is fixed. Also the shapes of the formulae depend on which
normalizations we choose (observe the effect of moving from p to o in the proof of 492D). But the value
of 492H is that it gives a strong bound which is independent of the particular function f, provided that it
is 1-Lipschitz. This kind of concentration of measure can be described either in terms of the variation of
Lipschitz functions from their means or in terms of the measures of neighbourhoods of sets of measure %
(492XDb-492Xc). The latter, in a more abstract context, is what is described by the concentration functions
of measures on uniform spaces; there is an example of this in 493C.

The martingale method can be used to prove a version of 492E (492Xd). The method of 492D gives a

better exponent (e‘”'y2 in place of e~/ 1) and also information of a slightly different kind, in that it can

be applied directly to sets W of small measure, at least provided that v > % in 492E. We also need a little

more measure theory here, since sets which are measured by product measures can be geometrically highly
irregular, and our Lipschitz functions = — p(x, W) need not be measurable.

In the proof of 492G we have an interesting application of the idea of ‘martingale’. The inequality here
is quite different from the standard martingale inequalities like 275D or 275F or 275Yd-275Ye. It gives a
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very strong inequality concerning the difference f,, — fo, at the cost of correspondingly strong hypotheses on
the differences f; — f;_1; but since we need control of Y, ess sup |f; — fi—1|%, not of > ess sup|fi — fi—1],
there is scope for applications like 492H. What the inequality tells us is that most of the time the differences
fi — fi—1 cancel out, just as in the Central Limit Theorem, and that once again we have a vaguely Gaussian
sum f,, — fo.

Concentration of measure, in many forms, has been studied intensively in the context of the geometry of
normed spaces, as in MILMAN & SCHECHTMAN 86, from which 492F-4921 are taken.

Version of 4.1.13

493 Extremely amenable groups

A natural variation on the idea of ‘amenable group’ (§449) is the concept of ‘extremely amenable’ group
(493A). Expectedly, most of the ideas of 449C-449E can be applied to extremely amenable groups (493B);
unexpectedly, we find not only that there are interesting extremely amenable groups, but that we need
some of the central ideas of measure theory to study them. I give a criterion for extreme amenability of a
group in terms of the existence of suitably concentrated measures (493C) before turning to three examples:
measure algebras under symmetric difference (493D), LY spaces (493E) and isometry groups of spheres in
infinite-dimensional Hilbert spaces (493G).

493 A Definition Let G be a topological group. Then G is extremely amenable or has the fixed
point on compacta property if every continuous action of G on a compact Hausdorff space has a fixed
point.

493B Proposition (a) Let G and H be topological groups such that there is a continuous surjective
homomorphism from G onto H. If G is extremely amenable, so is H.

(b) Let G be a topological group and suppose that there is a dense subset A of G such that every finite
subset of A is included in an extremely amenable subgroup of G. Then G is extremely amenable.

(¢) Let G be a topological group with an extremely amenable normal subgroup H such that G/H is
extremely amenable. Then G is extremely amenable.

(d) The product of any family of extremely amenable topological groups is extremely amenable.

(e) Let G be a topological group. Then G is extremely amenable iff there is a point in the greatest ambit
Z of G (definition: 449D) which is fixed by the action of G on Z.

(f) Let G be an extremely amenable topological group. Then every dense subgroup of G is extremely
amenable.

proof We can use the same arguments as in 449C-449F, with some simplifications.

(a) As in 449Ca, let ¢ : G — H be a continuous surjective homomorphism, X a non-empty compact
Hausdorff space and « : H x X — X a continuous action. Let ¢; be the continuous action of G on X defined
by the formula as;x = ¢(a)ex. Then any fixed point for «; is a fixed point for .

(b) Let X be a non-empty compact Hausdorff space and « a continuous action of G on X. For I € [A]<¥
let H; be an extremely amenable subgroup of G including I. The restriction of the action to H;y x X is a
continuous action of H; on X, so

{z :aex =z for every a € I} D {x : asx = x for every a € H;}

is closed and non-empty. Because X is compact, there is an « € X such that aex = x for every a € A. Now
{a : ax = x} includes the dense set A, so is the whole of G, and « is fixed under the action of G. As X and
« are arbitrary, G is extremely amenable.

(c) Let X be a compact Hausdorff space and » a continuous actionof Gon X. Set Q ={z:z € X, aex =z
for every a € H}; then @ is a closed subset of X and, because H is extremely amenable, is non-empty.
Next, bex € Q for every z € Q and b € G. P If a € H, then b='ab € H and

as(bex) = (ab)ex = (bb~Lab)ex = be((b~Lab)ex) = bex.
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As a is arbitrary, bex € Q. Q Accordingly we have a continuous action of G on the compact Hausdorff space
Q.
Ifbe G, ae€ Hand z € Q, then (ba)sx = bex. So we have an action of G/H on @ defined by saying
that b*ex = bex for every b € G and = € @, and this is continuous for the quotient topology on G/H, as in
the proof of 449Cc. Because G/H is extremely amenable, there is a point x of ¢ which is fixed under the
action of G/H. So bex = b*ex = z for every b € G, and z is fixed under the action of G. As X and » are
arbitrary, G is extremely amenable.

(d) By (c), the product of two extremely amenable topological groups is extremely amenable, since each
can be regarded as a normal subgroup of the product. It follows that the product of finitely many extremely
amenable topological groups is extremely amenable. Now let (G;);ecr be any family of extremely amenable
topological groups with product G. For finite J C I let H; be the set of those a € G such that a(i) is the
identity in G; for every i € I'\ J. Then H is isomorphic (as topological group) to [ [, ; Gi, so is extremely
amenable. Since {H; : J € [I]<¥} is an upwards-directed family of subgroups of G with dense union, (b)
tells us that G is extremely amenable.

(e) Repeat the arguments of 449E(i)<(ii), noting that if zp € Z is a fixed point under the action of G
on Z, then its images under the canonical maps ¢ of 449Dd will be fixed for other actions.

(f) Again, the idea is to repeat the argument of 449F (a-ii). As there, let H be a dense subgroup of G, U
the space of bounded real-valued functions on G which are uniformly continuous for the right uniformity, and
V' the space of bounded real-valued functions on H which are uniformly continuous for the right uniformity.
As in 449F(a-ii), we have an extension operator T : V — U defined by saying that Tg is the unique
continuous extension of g for every g € V; and be;T'g = T'(be;g) for every b € H and g € V. Now T is a Riesz
homomorphism. So if z € Z is fixed by the action of G, that is, z(ae;f) = 2(f) for every a € G and f € U,
then 2T : V — R is a Riesz homomorphism, with z(TxH) = 1, and z(T'(be;g)) = z(be;Tg) = z(Tg) whenever
g€V and b€ H. Thus 2T is a fixed point of the greatest ambit of H, and H is extremely amenable.

493C Theorem Let G be a topological group and B its Borel o-algebra. Suppose that for every € > 0,
open neighbourhood V' of the identity of G, finite set I C G and finite family & of zero sets in G there is a
finitely additive functional v : B — [0, 1] such that vG =1 and

(i) ¥(VF) > 1 — e whenever F € £ and vF > 1,

(ii) for every a € I there is a b € aV such that |v(bF) — vF| < € for every F € £.

Then G is extremely amenable.

proof (a) Write P for the set of finitely additive functionals v : B — [0, 1] such that vG = 1. If V is an
open neighbourhood of the identity e of G, € > 0, I € [D]<% and £ is a finite family of zero sets in G, let
A(V,e,1,E) be the set of those v € P satisfying (i) and (ii) above. Our hypothesis is that none of these sets
A(V,e, I,E) are empty; since A(V,e,I,E) C AV, €/, I',E") whenever VC V' e <€, I D I'and £ D &,
there is an ultrafilter F on P containing all these sets.

Let U be the space of bounded real-valued functionals on G which are uniformly continuous for the right
uniformity on G. If we identify L°(B) with the space of bounded Borel measurable real-valued functions
on G (363H), then U is a Riesz subspace of L°(B). For each v € P we have a positive linear functional
fdv:L>®(B) — R (363L). For f € U set 2(f) = lim,_, 7 f fdv.

(b) z: U — R is a Riesz homomorphism, and z(xG) = 1. P Of course z is a positive linear functional
taking the value 1 at xG, just because all the integrals f dv are. Now suppose that fo, fi € U and foA f1 = 0.
Take any € > 0. Then there is an open neighbourhood V of e such that | f;(z)— f;(y)| < e whenever xy=! € V
and i € {0,1}. Set F; = {z : fi(x) = 0}, E; = VF; for each i. Then Fy U F; = X, so vFy + vF; > 1 for
every v € P, and there is a j € {0,1} such that Ay = {v: vF; > 1} € F. Next,

Ay ={v: if vF; > % then v(VF;) > 1 — €}
belongs to F. Accordingly lim, ,rvE; > 1 —€. As fj(x) < € for every z € Ej,

2(f;) = limys 7 f fidv < e(1+ 1 filloo)-

D.H.FREMLIN



32 Further topics 493C

This shows that min(z(fo), 2(f1)) < €(1 + || filloo + || f2]lco)- As € is arbitrary, min(z(fy), 2(f1)) = 0; as fo
and f; are arbitrary, z is a Riesz homomorphism (352G(iv)). Q
Thus z belongs to the greatest ambit Z of G.

(c) limy—, 7 f(a™te;f)dv = lim,_, 7 f fdv for every non-negative f € U and a € G. P Take any € > 0.
Let V' be an open neighbourhood of e such that |f(z) — f(y)| < € whenever z € Vy; then

la= e f =0 o1 flloo = supyeq | flaz) — f(bx)| <€
whenever b € Va. For n € Nset F,, = {z :z € G, f(z) > ne}. Set m = [2]|f||w], so that F,, = 0 for every

_ _1
n>m. Set(s—m,

A={v: thereis a b€ Va such that |v(b"'F,) — vF,| < 6 for every n < m}
={v: thereis a c € a 'V ™! such that |v(cF,) — vF,| <6 for every n < m} € F.

Take any v € A and b € Va such that [v(b~1F,) —vF,| < § for every n < m. Then, setting g = > ", exFp,
we have g € L>°(B) and g < f < g+ exG. Since b~1+;g (in the language of 4A5Cc) is just > ., ex(b™1F),),

we have
|][a_1-lde—][de| ge_i_‘][b_lolfdy—][fdﬂ §3€+|][b_lolgdl/—][ng|

(because [[b= e1g — b7 e flloo = [lg = flloo <€)

< 3e+ ez [VE, —v(b™'F,)| < 3¢+ med < 4e.

n=1
As Ae F,
[limy, 7 f a= Yoy fdv — f fdv| < 5e;
as e is arbitrary, lim, , 7 fa™'e;fdv = lim, 7 f fdv. Q
(d) Thus, for any a € G,
(ao2)(f) = z(a o f) = lim, 7 f o= o1 f dv = lim, 7 f fdv = 2(f)

for every non-negative f € U and therefore for every f € U, and aez = z. So z € Z is fixed under the action
of G on Z; by 493Ba, this is enough to ensure that G is extremely amenable.

493D I turn now to examples of extremely amenable groups. The first three are groups which we have
already studied for other reasons.

Theorem Let (2, i) be an atomless measure algebra. Then 2, with the group operation A and the
measure-algebra topology (definition: 323A), is an extremely amenable group.

proof (a) To begin with let us suppose that (2, i) is a probability algebra; write o for the measure metric
of 2, so that o(a,a’) = i(a & d’) for a, a’ € 2A. T seek to apply 493C.

(i) Let V be an open neighbourhood of 0 in A, € € ]0,3[, I € [A]<¥ and £ a finite family of zero sets
in 2. Let v > 0 be such that V 2 {a : ia < 2v}. Let B be the finite subalgebra of 2 generated by I and
By the set of atoms in B,. Set

1 3 1
t:;ln;, n = [max(tZ,SupbeBo ﬁ)]
Because 2 is atomless, we can split any member of 2\ {0} into two parts of equal measure (331C); if, starting
from the disjoint set By, we successively split the largest elements until we have a disjoint set B with just

n elements, then we shall have b < % for every b € B. We have a natural identification between {0, 1}7
and the subalgebra B of 2 generated by B, matching = € {0,1}? with f(z) = sup{b: b € B, z(b) = 1}.

Writing p for the normalized Hamming metric on {0,1}7 (492D), we have o(f(z), f(y)) < 2p(x,y) for all
z,y€{0,1}5. P Set J = {b:be B, x(b) # y(b)}, so that
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o(f(@), [(y)) = BF (@) & () = ilsup ) = ey ib < 2#(J) = 20(x,1). Q

(ii) Let vp be the usual measure on {0, 1}Z and set A\E = vp f~1[E] for every Borel set E C (. Then A
is a probability measure. Note that f : {0,1}? — B is a group isomorphism if we give {0,1}? the addition
+5 corresponding to its identification with Z&, and 9B the operation A . Because vp is translation-invariant
for +2, its copy, the subspace measure Ay on the A-conegligible finite set B, is translation-invariant for
A . But this means that AM{bAad : d € F} = AF whenever b € B and F C B, and therefore that
Mbad:de F} = \F whenever b € I and F € £. This shows that A satisfies condition (ii) of 493C.

(iii) Now suppose that F' € £ and that AF > . Set W = f~1[F], so that vgW > 1. By 492D,
fetp(z’W)VB(das) < 2et’/4n < 9e1/4 < 3,
o
vp{z : p(z, W) > v} =vp{a : tp(z, W) > In 2} = vp{z : et?@W) > 3} < ¢

Accordingly

Mand:aeV,de F} > Ma:0(a,F) <2y} =vp{z:o(f(x),F) <2v}
>vplz:o(f(x), [IW]) < 29} Zwp{z: p(z, W) <7}
(because f is 2-Lipschitz)
>1—e

So A also satisfies (i) of 493C.

(iv) Since V, ¢, I and & are arbitrary, 493C tells us that 2 is an extremely amenable group, at least
when (2, 1) is an atomless probability algebra.

(b) For the general case, observe first that if (2, ) is atomless and totally finite then (2,2) is an
extremely amenable group; this is trivial if 20 = {0}, and otherwise there is a probability measure on 2
which induces the same topology, so we can apply (a). For a general atomless measure algebra (2, i), set
A ={c:ceU, jic < oo} and for ¢ € A let A, be the principal ideal generated by c. Then 2. is a subgroup
of 2 and the measure-algebra topology of 2., regarded as a measure algebra in itself, is the subspace topology
induced by the measure-algebra topology of 2. So {2, : ¢ € 27} is an upwards-directed family of extremely
amenable subgroups of 2l with union which is dense in 2, so 2l itself is extremely amenable, by 493Bb. This
completes the proof.

493E Theorem (PESTOV 02) Let (X, 3, i) be an atomless measure space. Then L°(u), with the group
operation + and the topology of convergence in measure, is an extremely amenable group.

proof It will simplify some of the formulae if we move at once to the space L°(2), where (2, /1) is the
measure algebra of (X, X, u); for the identification of L°(2) with L°(u) see 364Ic; for a note on convergence
in measure in L°(2), see 367L; of course 2 is atomless if (X, X, i) is (322Bg).

(a) T seek to prove that S(2), with the group operation of addition and the topology of convergence in
measure, is extremely amenable. As in 493D, I start with the case in which (2, i) is a probability algebra,
and use 493C.

(i) Take an open neighbourhood V' of 0 in S(2), an € € ]0, 3[, a finite set I C S(2A) and a finite family
& of zero sets in S(2A). Let v > 0 be such that v € V whenever v € S(2) and afu # 0] < 27. Let B be
a finite subalgebra of 2 such that I is included in the linear subspace of S(2l) generated by {xb: b € By},
and By the set of atoms of Bg. As in the proof of 493D, set

1 3 1
t= 5 ln;, n = [max(t?, supye g, %)],
and let B C A\ {0} be a partition of unity with n elements, refining By, such that b < % for every b € B.

We have a natural identification between R® and the linear subspace of S(2) generated by {xb : b € B},
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matching € R? with f(z) = > e T(b)xb, which is continuous if R? is given its product topology. Writing
p for the normalized Hamming metric on R”, we have

ALE@) 7 SO = Cayegey b < 240 2(8) # y(5)}) = 2p(a,y)

for all z, y € RB.

(ii) Set B = sup,¢; [|[v]oo (if I =0, take B = 0). Let M > 0 be so large that (M + 3)" < (1 + 1e)M™.
On R, write py, for Lebesgue measure and p) for the indefinite-integral measure over py defined by the

function ﬁx[—M, M], so that u; E = ﬁuL(Eﬁ [-M, M]) whenever E C R and EN[—M, M] is Lebesgue

measurable. Let A, \’ be the product measures on R? defined from p17, and ;. Let v be the Borel probability
measure on S(2) defined by setting vF = X f~1[F] for every Borel set ' C S(2l).

Now |v(v+F)—vF| < e for every v € I and Borel set F' C S(). P Because B refines By, v is expressible
as f(y) for some y € RP; because ||[v]joc < B, |y(b)| < B for every b € B. Because f: R — S() is linear,
f v+ Fl=y+ f![F]. Now

v+ F) —vF| = |Nf o+ F] = XNfHF)
= Gy AU o+ FIN M M]Y) = M F) 0 (M, M)
(use 2531, or otherwise)

= LN+ FUF]) N =M, M) = A(FUE] O [ M, M|

@M)"

- ﬁ AFTYF] O (=M, M]™ = y)) = MfHF) 0 [-M, M]™)|
< @ MM M]" = y) A[-M, M)

= @ MM M]" =) \ [M, M]")

< G M=M= B0 4 5"\ [-M, M)

=2 (M+8)"-M") <e Q

So v satisfies (ii) of 493C.
(iii) Now suppose that F' € £ and vF > 1. Set W = f~1[F], so that AW > 1. Just as in the proof of
493D, [ etr@W) N (dx) < 2et°/4m < 3, so
Nz :p(z, W) >~} = N{a: etP@W) > 3} < ¢

and

viv+u:veV,ue F} >v{w:3u € F, afu+#w] <2y}
>N{x:p(z,W) <~} >1—c

So v also satisfies (i) of 493C.

(iv) Since V, ¢, I and & are arbitrary, 493C tells us that S(2l) is an extremely amenable group, at least
when (2, 1) is an atomless probability algebra.

(b) The rest of the argument is straightforward, as in 493D. First, S(2) is extremely amenable whenever
(A, 1) is an atomless totally finite measure algebra. For a general atomless measure algebra (2, i), set
Af = {c: fic < oo}. For each ¢ € A, let A, be the corresponding principal ideal of 2. Then we can
identify S(2l.), as topological group, with the linear subspace of L°(2() generated by {xa : a € 2.}, and
it is extremely amenable. Since {S(2A.) : ¢ € AS} is an upwards-directed family of extremely amenable
subgroups of L°(21) with dense union in L°(2(), L°(2) itself is extremely amenable, by 493Bb, as before.
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493F Returning to the ideas of §476, we find another remarkable example of an extremely amenable
topological group. I recall the notation of 4761. Let X be a (real) inner product space. Sx will be the
unit sphere {z : z € X, ||z|| = 1}. Let Hx be the isometry group of Sx with its topology of pointwise
convergence. When X is finite-dimensional, it is isomorphic, as inner product space, to R”, where r = dim X.
In this case Sx is compact, so (if r > 1) has a unique H x-invariant Radon probability measure vx, which is
strictly positive, and is a multiple of (r — 1)-dimensional Hausdorff measure; also Hy is compact (441Gb),
so has a unique Haar probability measure \x.

Lemma For any m € N and any € > 0, there is an 7(m, €) > 1 such that whenever X is a finite-dimensional
inner product space over R of dimension at least r(m,€), zg,... ,Zm—1 € Sx, Q1, Q2 C Hx are closed sets
and min(Ax @1, AxQ2) > ¢, then there are f1 € Q1, fo € Q2 such that || f1(z;) — fa(z;)| < € for every i < m.

proof Induce on m. For m = 0, the result is trivial. For the inductive step to m + 1, take r(m + 1,¢) >
r(m, %e) such that whenever r(m + 1,¢) < dim X < w and Ay, As C Sx and min(vi Ay, vy As) > %e then
there are x € Ay, y € Ay such that ||z — y|| < 4¢; this is possible by 476L.

Now take any inner product space X over R of finite dimension r > r(m+1,€), closed sets Q1, Q2 C Hx
such that min(AxQ1,Ax®@2) > €, and zg,...,Z,n € Sx. Let Y be the (r — 1)-dimensional subspace
{z:2 € X, (z|zy) = 0}, so that dimY > r(m, 3¢), and for i < m let y; € Y be a unit vector such that z; is
a linear combination of y; and z,,. Set Hy, = {f : f € Hx, f(xm) = @ }; then f — f[]Sy is a topological
group isomorphism from Hj to Hy. P (i) If f € H{, and z € Sx, then

z €Sy = (zlzm) =0 = (f(@)|f(zm)) =0 < [f(z) € Sy,

so f1Sy is a permutation of Sy and belongs to Hy. (ii) If ¢ € Hy, we can define f € H{ by setting
flax + Bx,y,) = ag(z) + Bz, whenever z € Sy and a? + 32 = 1, and f|Sy = g. (iii) Note that Hj is a
closed subgroup of Hy, so in itself is a compact Hausdorff topological group. Since the map f — f[Sy :
H{, — Hy is a bijective continuous group homomorphism between compact Hausdorff topological groups,
it is a topological group isomorphism. Q
Let Ay be the Haar probability measure of H{,. Then AxQ1 = [Ny (H}{ N f71Q1)Ax (df) (443Ue), so
Ax Q) > e, where Q) = {f : My (H{, N f71Q1) > %e}. Similarly, setting Q4 = {f : Ny (Hy, N f71Q2) > Jel,
Ax Qb > %e. Next, setting 0(f) = f(x.,) for f € Hx, Ax0~! is an Hx-invariant Radon probability measure
on Sx (443Ub), so must be equal to vx. Accordingly
vx (01@Q5]) = Ax (071 O[Q5]]) = Ax Q) =

€

N | =

for both j.

We chose r(m + 1,¢€) so large that we can be sure that there are z; € 0[Q}], 22 € 0[Q%] such that
|21 — 22]] < %e. Let hy € Q, ha € Q) be such that hy(z,,) = 0(h1) = 21 and ha(z,,) = 22. Let h € Hx be
such that h(z1) = 22 and ||h(z) — z| < e for every x € Sx (4A4Jg). Set hy = hhy, so that hy(z,) = 22
and [|hy(z) — ho(z)| < te for every z € Sx. Note that hy'hy € Hi,, so that hg and hy belong to the same
left coset of Hy -, and

Ny (HYy N hy'Qa) = Ny (HY Ny 'Q2) >

N | =
(@)

by 443Qa.

At this point, recall that dimY > r(m, %e), and that A} is a copy of Ay, the Haar probability measure
on Y. So we have g; € HY Nhy'Q1, g2 € Hy Nhy Qg such that ||g1(yi) — g2(vs)|| < ze for every i < m.
We have f1 = hi1g1 € Q1 and fo = hags € Q2. For any i < m,

I£1(ys) — F2(wa)ll < P11 (ys) — haga(a)ll + [ h1g2(ys) — haga(ys)|l

)
< g1 (yi) — go(ys)ll + F€<3€

Also gl(xm) = 92(xm) = Tm, SO

[ f1(@m) = fo(am)ll = [ha(@m) = halam)] < 3e.
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If i <m, then x; = (z;|Tm)Tm + (@ilyi)ys, s0 fi(xi) = (xs|zm) fj(@m) + (@:]y:) f; (ys) for both j (476J) and

| fi(s) = ol < el(@alzm)| + Sel(wilys)]

</ GO? + GV (@ilzm)? + (zilyi)? < e

So f1 and fy witness that the induction proceeds.

493G Theorem Let X be an infinite-dimensional inner product space over R. Then the isometry group
Hx of its unit sphere Sx, with its topology of pointwise convergence, is extremely amenable.

proof (a) Let ) be the family of finite-dimensional subspaces of X. For Y € ), write Y+ for the orthogonal
complement of Y, so that X = Y @ Y+ (4A4Jf). For ¢ € Hy define 6y (q) : Sx — Sx by saying that
Oy (q)(ay + Bz) = aq(y) + Bz whenever y € Sy, z € Sy. and o? + 32 = 1. Then 0y : Hy — Hy is a
injective group homomorphism. Also it is continuous, because ¢ — aq(y) + Bz is continuous for all relevant
«, B,y and z.

Y, WeYandY C W then 0y [Hy] C 6y [Hw]. P For any ¢ € Hy we can define ¢’ € Hy by saying
that ¢'(ay + fr) = aq(y) + Bx whenever y € Sy, z € Sy and o? + 32 = 1. Now Oy (q) = 0w (q) €
OwHw]. Q

Set G* = Uy ¢y Oy [Hy], so that G* is a subgroup of Hx.

(b) Let V be an open neighbourhood of the identity in G* (with the subspace topology inherited from the
topology of pointwise convergence on Hy), ¢ > 0 and I C G* a finite set. Then there is a Borel probability
measure A on G* such that

(i) M(fQ) = AQ for every f € I and every closed set Q C G*,

(ii) M(VQ) > 1 — e whenever Q@ C G* is closed and AQ > 1.
P We may suppose that e < % Let J € [Sx]<¥ and § > 0 be such that f € V whenever f € G* and
|| f(x) — || < for every x € J. We may suppose that J is non-empty; set m = #(J). Let Y € Y be such
that J CY and I C 0y [Hy| and dimY = r > r(m,¢), as chosen in 493F. (This is where we need to know
that X is infinite-dimensional.) Set AF = Ay 605! [F] for every Borel set F' C G*, where Ay is the Haar
probability measure of Hy, as before.

If fe I and F C G* is closed, then

MIF) = Ay 0y [fF] = Ay (05" (105 [F]) = Av 0y [F] = AF.
So A satisfies condition (i).
7 Suppose, if possible, that ;1 € G* is a closed set such that AQ; > % and A(V@Q1) < 1 —¢; set

Q2 = G*\ VQ1. Then 65'[Q1] and 65'[Q2] are subsets of Hy both of measure at least e. Set R; = {q: q €
Hy,q'e 9{,1[Qj]} for each j; because Hy is compact, therefore unimodular,

Ay Rj = A0 [Q;] = AQ; > €

for both j. Because dimY > r(m,e€), there are ¢g; € Ry, g2 € Ra such that ||¢1(x) — g2(x)|| < € for x € J.
Set f =6y (qy 'q1). If 2 € J, then

£ (@) = 2ll = llaz " q1(2) = 2l = ar(2) - g2(2)l| < e.

As this is true whenever 2 € J and f € V. On the other hand, 0y (¢;') € Q; and fy(g; ") € Q2 and
Oy (qrh) =0y (g5 "), so 0y (g5 ") € VQ1 N Qo, which is impossible. X
Thus A satisfies (ii). Q

(c) By 493C, G* is extremely amenable. But G* is dense in Hx. P If f € Hx and I C Sx is finite and
not empty, let Y7 be the linear subspace of X generated by I, and let (y1, ... ,%m) be an orthonormal basis
of 1. Set z; = f(y;) for each j, so that (z1,...,z,) is orthonormal (476J); let Y be the linear subspace
of X generated by y1,... ,Ym,21,.-. ,2m. Set ¥ = dimY and extend the orthonormal sets (y1,...,Ym)
and (z1,...,2m) to orthonormal bases (y1,...,y,) and (21,...,2,) of Y. Then we have an isometric linear
operator T : Y — Y defined by saying that Ty; = z; for each i; set ¢ = T[Sy € Hy. By 476], q(z) = f(z)
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for every = € I, so Oy (q) agrees with f on I, while 0y (¢q) € G*. As f and I are arbitrary, G* is dense in G.

Q
So 493Bb tells us that Hx is extremely amenable, and the proof is complete.

493H The following result shows why extremely amenable groups did not appear in Chapter 44.

Theorem (VEECH 77) If G is a locally compact Hausdorff topological group with more than one element,
it is not extremely amenable.

proof If GG is compact, this is trivial, since the left action of G on itself has no fixed point; so let us assume
henceforth that G is not compact.

(a) Let Z be the greatest ambit of G, a — a : G — Z the canonical map, and U the space of bounded
right-uniformly continuous real-valued functions on G. (I aim to show that the action of G on Z has no
fixed point.) Take any z* € Z. Let Vj be a compact neighbourhood of the identity e in G, and let By C G
be a maximal set such that VybNVyc = ) for all distinct b, ¢ € By. Then for any a € G there is a b € By such
that Voa N Vob # 0, that is, a € Vy 'VyBy. So if we set Yy = {B b€ Byy C Z, {asy :a € Vy Wy, y € Yo}
is a compact subset of Z including {é : a € G}, and is therefore the whole of Z (449Dc). Let ag € Vy 'Vi,

1Yo € Yy be such that ageyg = 2*, and set By = agBy, V1 = ao%aal; then z* € {IA) :be Bytand VibNVie=10
for all distinct b, ¢ € Bj.

(b) Because V7 is compact and G is not compact, there is an a; € G\ V;. Let Vo C V; be a neighbourhood
of e such that af1V2V271a1 C V1. Then we can express By as Dy U D1 U Dy where a1D; N VoD; = () for all
i. P Consider {(b,¢c) : b, ¢ € By, a1b € Vac}. Because Voc N Vo C VieNnVid = ) for all distinct ¢, ¢ € By,
this is the graph of a function A : D — Bj for some D C By. 7 If h is not injective, we have distinct b,
¢ € By and d € Bj such that a1b and a;c both belong to Vad. But in this case b and ¢ both belong to al_l‘/gd
and be~! € aflvzdd’l‘/{lal C Vq and b € Vi, which is impossible. X At the same time, if b € By, then
a1b ¢ Vab because aq ¢ Va, so h(b) # b for every b € D.

Let Dy C D be a maximal set such that h[Dg] N Dy = 0, and set Dy = h[Dy], D2 = By \ (DgU D1). Then
h[Do] N Doy = O by the choice of Dy; h[D N D1] N Dy = () because h is injective and Dy C h[D \ D;]; and
h[DN D3] C Dg because if b € DN Dy there must have been some reason why we did not put b into Dy, and
it wasn’t because b € h[Dg] or because h(b) = b. So h[D;] N D; = for all i, which is what was required. Q

(c) Since z* € {b: b€ B}, there must be some j < 2 such that z* € {b: b e D;}. Now recall that the
right uniformity on G, like any uniformity, can be defined by some family of pseudometrics (4A2Ja). There
is therefore a pseudometric p on G such that W, = {(a,b) : a, b € G, p(a,b) < €} is a member of the right
uniformity on G for every € > 0 and W7 C {(a,b) : ab= C V5}. If now we set

f(a) = min(lap(av DJ)) - min(]-a inf{p(aa b) be DJ})

fora € G, f : G — R is bounded and uniformly continuous for the right uniformity, so belongs to U. On the
other hand, if b, ¢ € D;, then a1b & Vac, that is, a;be™! ¢ V5 and p(a1b, ¢) > 1; as c is arbitrary, f(a1b) = 1.

(d) Now b(f) = f(b) = 0 for every b € D;, so z*(f) = 0. On the other hand, because z — ajez is
continuous,

arez* € {ayeb: b€ D;} = {ab: b € D;},
SO
(ar+z*)(f) > infpep, (1/1\5(f) = infyep, f(a1b) =1,

and ajez* # z*. As z* is arbitrary, this shows that the action of G on Z has no fixed point, and G is not
extremely amenable.

493X Basic exercises (a) Let G be a Hausdorff topological group, and G its completion with respect
to its bilateral uniformity. Show that G is extremely amenable iff G is.

>(b) Let X be a set with more than one member and p the zero-one metric on X. Let G be the isometry
group of X with the topology of pointwise convergence. Show that G is not extremely amenable. (Hint:
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give X a total ordering <, and let x, y be any two points of X. For a € G set f(a) = 1if a7 !(z) < a~}(y),
—1 otherwise. Show that, in the language of 449D, f € U. Show that if (ﬁ) is the transposition exchanging
x and y then (g)e;f = —f, while |2(f)| = 1 for every z in the greatest ambit of G.) (Compare 449Xh.)

(c) Show that under the conditions of 493C there is a finitely additive functional v : B — [0, 1] such that
v(aF) = vF for every a € G and every zero set F' C G, while v(VF) = 1 whenever V is a neighbourhood
of the identity, F is a zero set and vF' > %

(d) Prove 493G for infinite-dimensional inner product spaces over C.

(e) Let X be any (real or complex) inner product space. Show that the isometry group of X, with its
topology of pointwise convergence, is amenable. (Hint: 449Cd.)

(f) Let X be a separable Hilbert space. (i) Show that the isometry group G of its unit sphere, with its
topology of pointwise convergence, is a Polish group. (ii) Show that if X is infinite-dimensional, then every
countable discrete group can be embedded as a closed subgroup of GG, so that G is an extremely amenable
Polish group with a closed subgroup which is not amenable. (Cf. 449K.)

(g) If X is a (real or complex) Hilbert space, a bounded linear operator T : X — X is unitary if it is an
invertible isometry. Show that the set of unitary operators on X, with its strong operator topology (3A5I),
is an extremely amenable topological group.

(h) Let G be a topological group carrying Haar measures. Show that it is extremely amenable iff its
topology is the indiscrete topology. (Hint: 443L.)

493Y Further exercises (a) For a Boolean algebra 2 and a group G with identity e, write S(2; G) for
the set of partitions of unity (ag)seq in 2 such that {g : ay # 0} is finite. For (ag)gecq, (bg)gec € S(A),
write (ag)gea - (bg)gea = (¢g)geq Where ¢, = sup{apnb,-1, : h € G} for g € G. (i) Show that under
this operation S(2; G) is a group. (ii) Show that if we write hxa for the member (a4)4ec of S(2; G) such
that a5, = a and a, = 0 for other g € G, then gxa - hxb = (gh)x(anb), and S(2; G) is generated by
{gxa : g € G, a € A}. (iii) Show that if A = ¥/7 where ¥ is an algebra of subsets of a set X and 7 is
an ideal of X, then S(2l; G) can be identified with a space of equivalence classes in a suitable subgroup of
GX. (iv) Devise a universal mapping theorem for the construction S(2; G) which matches 361F in the case
(G,") = (R,+). (v) Now suppose that (2, 1) is a measure algebra and that G is a topological group. Show
that we have a topology on S(2[; G), making it a topological group, for which basic neighbourhoods of the
identity ex1 are of the form V(c,e,U) = {{ag)gec : fi(cn supgec v ag) < €} with jic < 0o, € > 0 and U a
neighbourhood of the identity in G. (vi) Show that if G is an amenable locally compact Hausdorff group
and (2, ) is an atomless measure algebra, then S(2; G) is extremely amenable. (Hint: PESTOV 02.) *(vi)
Explore possible constructions of spaces L°(2; G). (See HARTMAN & MYCIELSKI 58.)

493 Notes and comments In writing this section I have relied heavily on PESTOV 99 and PESTOV 02,
where you may find many further examples of extremely amenable groups. It is a striking fact that while the
theories of locally compact groups and extremely amenable groups are necessarily almost entirely separate
(493H), both are dependent on measure theory. Curiously, what seems to have been the first non-trivial
extremely amenable group to be described was found in the course of investigating the Control Measure
Problem (HERER & CHRISTENSEN 75).

The theory of locally compact groups has for seventy years now been a focal point for measure theory.
Extremely amenable groups have not yet had such an influence. But they encourage us to look again at
concentration-of-measure theorems, which are of the highest importance for quite separate reasons. In all the
principal examples of this section, and again in the further example to come in §494, we need concentration
of measure in product spaces (493D-493E and 494J), permutation groups (494I) or on spheres in Euclidean
space (493G). 493D and 493E are special cases of a general result in PEsTov 02 (493Ya(vi)) which itself
extends an idea from GLASNER 98. I note that 493D needs only concentration of measure in {0,1}, while
493E demands something rather closer to the full strength of Talagrand’s theorem 492D.
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I have expressed 493G as a theorem about the isometry groups of spheres in infinite-dimensional inner
product spaces; of course these are isomorphic to the orthogonal groups of the whole spaces with their strong
operator topologies (476Xd). Adapting the basic concentration-of-measure theorem 476K to the required
lemma 493F involves an instructive application of ideas from §443.

Version of 17.5.13

494 Groups of measure-preserving automorphisms

I return to the study of automorphism groups of measure algebras, as in Chapter 38 of Volume 3, but this
time with the intention of exploring possible topological group structures. Two topologies in particular have
attracted interest, the ‘weak’ and ‘uniform’ topologies (494A). After a brief account of their basic properties
(494B-494C) 1 begin work on the four main theorems. The first is the Halmos-Rokhlin theorem that if
(A, ) is the Lebesgue probability algebra the set of weakly mixing measure-preserving automorphisms of
20 which are not mixing is comeager for the weak topology on Aut;2 (494E). This depends on a striking
characterization of weakly mixing automorphisms of a probability algebra in terms of eigenvectors of the
corresponding operators on the complex Hilbert space L2 (2, 1) (494D, 494Xj(i)). It turns out that there is
an elegant example of a weakly mixing automorphism which is not mixing which can be described in terms
of a Gaussian distribution of the kind introduced in §456, so I give it here (494F).

We need a couple of preliminary results on fixed-point subalgebras (494G-494H) before approaching the
other three theorems. If (2, i) is an atomless probability algebra, then Aut;2l is extremely amenable under
its weak topology (494L); if Autz2 is given its uniform topology, then every group homomorphism from
Aut; 2 to a Polish group is continuous (4940); finally, there is no strictly increasing sequence of subgroups
with union Autz A (494Q). All these results have wide-ranging extensions to full subgroups of Aut;2 subject
to certain restrictions on the fixed-point subalgebras.

The work of this section will rely heavily on concepts and results from Volume 3 which have hardly
been mentioned so far in the present volume. I hope that the cross-references, and the brief remarks in
494Ac-494Ad, will be adequate.

494A Definitions (HALMOS 56) Let (2, i) be a measure algebra, and Aut;2 the group of measure-
preserving automorphisms of A (see §383). Write 2/ for {c:c € 2, fic < co}.

(a) T will say that the weak topology on Aut;2 is that generated by the pseudometrics (7, ¢) —
f(me A ¢c) as ¢ runs over AL

(b) I will say that the uniform topology on Aut; % is that generated by the pseudometrics

(7, ¢) = supyeq fi(cn (wa A da))
as ¢ runs over A7,
() T recall some notation from Volume 3. For any Boolean algebra 2 and a € 2, 2, will be the principal

ideal of 2 generated by a (312D). I will generally use the symbol ¢ for the identity in the automorphism
group Aut 2l of 2. If 7 € Aut2l and a € 2, a supports 7 if 7d = d whenever d na = 0; the support

suppm = sup{a Awa:a € A}

of 7 is the smallest member of 2 supporting m, if this is defined (381Bb, 381Ei). A subgroup G of Aut 2 is
‘full’ if ¢ € G whenever ¢ € Aut 2 and there are {a;);cr, (7 )icr such that (a;);cs is a partition of unity in
2 and m; € G and ¢d = m;d whenever ¢ € I and d C a; (381Be).

If a, b € A\ {0} are disjoint and 7 € Aut 2 is such that 7a = b, then (cm) € Aut 2 will be the exchanging
involution defined by saying that

i b)

(@, b)(d) =ndifdCa,

=7n"1dif d Cb,
=difdc1\(aub)

(© 2009 D. H. Fremlin
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(381R).

(d) In addition, I will repeatedly use the following ideas. Suppose that (2, i) is a probability algebra
(322Aa), € is a closed subalgebra of 2 (323I), and L*°(€) the M-space defined in §363. Then for each a € A
we have a conditional expectation u, € L>(€) of xa on €, so that [ u, = fi(anc) for every ¢ € € (365Q").

If A is relatively atomless over € (331A), a € A, and v € L*°(€) is such that 0 < v < u,, there is a
b € A such that b C a and v = u (apply Maharam’s lemma 331B to the functional ¢ — [ v : € — [0,1]).
Elaborating on this, we see that if (v,)nen is a sequence in L= (€)* and >, v; < u, for every n, there are
disjoint by, ... C a such that v; = up, for every i (choose the b; inductively).

494B Proposition Let (2, fi) be a measure algebra, and give Aut; 2 its weak topology.

(a) Autz 2 is a topological group.

(b) (m,a) — ma : Autz2A x A — 2 is continuous for the weak topology on Aut;2( and the measure-algebra
topology on 2.

(c) If (A, 1) is semi-finite (definition: 322Ad), Aut; 2 is Hausdorff.

(d) If (A, i) is localizable (definition: 322Ae), Aut; 2 is complete under its bilateral uniformity.

(e) If (2, fz) is o-finite (definition: 322Ac) and 2 has countable Maharam type (definition: 331Fa), then
Autz 2 is a Polish group.

proof (a) (Compare 441G.) Set p.(m,¢) = fi(mc A ¢c) for 7, ¢ € Autz2A and ¢ € AS; it is elementary to
check that p. is always a pseudometric, so 494Aa is a proper definition of a topology. If 7, ¢ € Aut;2 and
c € AS, then for any 7/, ¢’ € Aut;2 we have

pe(m'd' ,w) = fi(w'¢'c A whpe) < f(w' ¢ e T de) + (' pe & Te)
= [i(¢'c & dc) + pge(n', m) = pe(@', @) + pge(n’,7);

as ¢ is arbitrary, (7’,¢’) — 7'¢’ is continuous at (, ¢); thus multiplication is continuous. If ¢ € Aut;2 and
c € A, then for any 7 € Autz A

pe(r1,671) = fi(r e 8 670¢) = filc A g e)
— i(¢9 e A TE7) = pyorelm, )

1is continuous at ¢; thus inversion is continuous and Aut;2 is a topological group.

as c is arbitrary, m — 7~

(b) Suppose that ¢ € Autz, b € 2 and that V is a neighbourhood of ¢b in 2. Then there are ¢ € Af
and € > 0 such that V includes {d : fi(cn(d 2 ¢b)) < 4e}. In this case, because inversion in Autz2 is
continuous,

U={m:meAut,2, a(r tcarplc) <e pmn(¢ptenb) A dp(p~tenbd)) < e},
Vi={a:ae, p¢ lcn(anb)) <e}
are neighbourhoods of ¢, b respectively. If 7 € U and a € V', then
glen (ma s ¢db)) < i(en (ra A wd)) + falen (wb A b))
=a(rten (a b))+ a((cnwb) A (cn b))
(mteng™te) + a9 en(anb)) + al(r(rtenb) A d(¢~ enb))
e+e+a(r(rtend) An(p tend))

+a(m(¢ enb) A d(¢™ enD))
<2+ a((r tenb) A (ptend)) + ¢
< 3e+ ﬂ(ﬂ'_ch ¢_1c) < 4e,

and ma € V. As V, ¢ and b are arbitrary, (7, a) — ma is continuous.

IFormerly 365R.
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(c) Because (2, 1) is semi-finite, the measure-algebra topology on 2 is Hausdorff (323Ga), so the product
topology on 2% is Hausdorff. Now 7+ (ma)qeq : Autz2 — A% is injective, and by (b) it is continuous, so
the topology of Aut;2 must be Hausdorff.

(d)(i) For c € A/ and 7 € Aut 2, set 0.(7) = 7c; then 6. : Aut;2 — S is uniformly continuous for
the bilateral uniformity of Aut;2 and the measure metric p of A/ (323Ad). P We have p(d,d') = p(d & d')
for d, d' € A/, Let € > 0; then U = {7 : p.(m,1) < €} is a neighbourhood of ¢ in Aut; 2, and W = {(m, ¢) :
¢~ 17 € U} belongs to the bilateral uniformity. If (7, $) € W, then

p(0c(m), 0c(¢)) = fi(me & de) = (¢~ me A c) = pe(¢™'m, 1) < 6

as € is arbitrary, 6. is uniformly continuous. Q

(ii) Let F be a filter on Aut;2 which is Cauchy for the bilateral uniformity on Aut;2A. If ¢ € A/,
the image filter 6.[[F]] is Cauchy for the measure metric on A (4A2Ji). Because 2/ is complete under its
measure metric (323Mc), 6.[[F]] converges to 1yc say for the measure metric.

If ¢, d € Af and * is either of the Boolean operations n, A, then

1/10(c*d)zggn;_ﬂ(c*d):T};n}:ﬁc*ﬂdzggr}l_wc*ggrrlfﬁd

(because * is continuous for the measure metric, see 323Ma)

= toc * Pod.

So g : AF — A is a ring homomorphism. Next, if ¢ € A/, then
ﬂ¢00 = ﬂ(hmﬂ—)F 7TC) = hm‘n’—)]“ pme = fic
because /i : Af — [0, oo[ is continuous (323Mb).
Now recall that 7 +— 7~ : Aut; A — Aut;2 is uniformly continuous for the bilateral uniformity (4A5Hc).
So if we set 0.(m) = 7~ 'c for 7 € Aut;2A, we can apply the argument just above to 6 to find a ring

homomorphism ) : 2 — 2/ such that ¥)c = lim,_, 7 7~ 'c for every ¢ € /. To relate 1y and 1), we can
argue as follows. Given ¢ € A/,

fle & vove) = file & lim dvhe) = lim ji(e & guhe) = lim a6~ e Ave)

= a(lim (¢ e Ahpe)) = a((lim ¢~ e) aghe) = (o & 1ge) = 0;
o—F o—F
as c is arbitrary, 1o} is the identity on /. Similarly, 1)1 is the identity on . Thus 1o, 1 are the two
halves of a measure-preserving ring isomorphism of 27 .
If we give 2 its measure-algebra uniformity (323Ab), then 1y is uniformly continuous for the induced

uniformity on A7. P If ¢, di, do € A/, then

fi(en (Yody & thods)) = fi(thy 'en (di A dy)). Q

Since A/ is dense in 2 for the measure-algebra topology on 2 (323Bb), and 2 is complete for the measure-
algebra uniformity (323Gc), there is a unique extension of ¥y to a uniformly continuous function ¢ : % — 2
(3A4G). Since the Boolean operations A, n on 2 are continuous for the measure-algebra topology (323Ba),
1 is a ring homomorphism. Similarly, we have a unique continuous ¢’ : 2 — 2 extending v; since ¢’ and
’1) are continuous functions agreeing with the identity operator ¢ on 27, they are both ¢, and 1) € Aut 2.
To see that v is measure-preserving, note just that if a € 2 then

fipa = sup{jic : c € A, ¢ C ypa} = sup{fighoc : ¢ € A, Yhoc € Pa}
(because v is a permutation of 2S)

= sup{fic: ¢ € AL, e C Ya} = sup{fic: c € A, ¢ C a} = fia.
Thus 9 € Autz 2.
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Finally, 7 — 1. P If c € 2 and € > 0, there is an F € F such that fi(rc A ¢c) < € whenever 7, ¢ € F.
We have

p(me ape) = p(me A limg, r ¢c) = limy_, 7 fi(me & ¢c) < €

for every m € F'. As c and € are arbitrary, F — 1 for the weak topology on Aut;. Q As F is arbitrary,
the bilateral uniformity is complete.

(e)(i) The point is that A is separable for the measure metric. P Because 2 has countable Maharam
type, there is a countable subalgebra B of 2[ which 7-generates 2A; by 323J, 9B is dense in 2 for the
measure algebra topology. Next, there is a non-decreasing sequence (¢, )nen in 2 with supremum 1. Set
D ={bnec,:be B, nec N} Then D is a countable subset of A. If ¢ € A/ and € > 0, there are an n € N
such that fi(c\ ¢,) <€, and a b € B such that fi(c, n(cAb)) <e. Now d =bnc, belongs to D, and

plead) <plca(cney)) + a((cney) o (bney))
=p(c\en) + ilenn(cad)) < 2e.

As ¢ and € are arbitrary, D is dense in 2f and 27 is separable. Q

(ii) Let D be a countable dense subset of 2/, and U the family of sets of the form

{m:meAutz, p(dand) <27}
where d, d’ € D and n € N. All these sets are open for the weak topology. P It U = {7 : i(d A wd') < 27"}
and ¢ € U, set =127 = i(d 2 ¢d')). Then V = {r: i(dn (7d » ¢d')) < n} is a neighbourhood of ¢. If
m €V, then
pldand) <p(do¢d) + pled and) <277

and m € U. Thus ¢ € int U; as ¢ is arbitrary, U is open. Q

(iii) In fact U is a subbase for the weak topology on Aut;2A. B If W C Aut;2 is open and ¢ € W,
there are cg,...,c, € A and k € N such that W includes {7 : fi(mc; & ¢pe;) < 27F for every i < n}.
Let do, ... ,dy,dy, ... ,d, € D be such that ji(d; & ¢c;) < 27572, u(d, A ¢ec;) < 27572 for each i < n. Set
U; = {m: ji(d; rmd;) < 27%71}; then U; € U and ¢ € U; for each i < n, because

(s A pd;) < (d, A ge;) + (e & ¢d;) = a(dh & de;) + fle; A d;) < 27571
If # € U;, then
f(me; & gey) < fi(me; & wd;) + p(nd; A dL) + p(ds & pey) < 27F

SO ﬂign U; CW. As W and ¢ are arbitrary, U is a subbase for the topology. Q

(iv) Since U is countable, the weak topology is second-countable (4A20a). Since the weak topology
is a group topology, it is regular (4A5Ha, or otherwise); by (c) above it is Hausdorff; so by 4A2Pb it

is separable and metrizable. Accordingly the bilateral uniformity is metrizable (4A5Q(v)); by (d) above,
Autz is complete under the bilateral uniformity, so its topology is Polish.

494C Proposition Let (2, 1) be a measure algebra, and give Aut;2 its uniform topology.
(a) Autz 2 is a topological group.
(b) For ¢ € A/ and € > 0, set

Ulc,€) = {m: m € AutzQ, 7 is supported by an a € A such that i(cna) < €}.

Then {U(c,¢) : c € Af, e > 0} is a base of neighbourhoods of .

(¢) The set of periodic measure-preserving automorphisms of 20 with supports of finite measure is dense
in Autz .

(d) The weak topology on Autz 2l is coarser than the uniform topology.

) is semi-finite and G is a full subgroup of Aut; 2, then G is closed.
) is o-finite, then Aut; 2 is metrizable.
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(i) Suppose that (2, fi) is o-finite and 2 has countable Maharam type. If D C Aut;2 is countable, then
the full subgroup G of Aut; 2 generated by D, with its induced topology, is a Polish group.

proof (a) For m, ¢ € Aut;2 and ¢ € A7, set pl(m, ) = sup,eq fi(cn (Ta A ¢a)); as in part (a) of the proof
of 494B, it is elementary that every p., is a pseudometric, so the uniform topology ¥, is properly defined. If
m, ¢, 7, ¢ € AutpA, c € A and a € A, then

plcn(n'¢'anmea)) < plen(r'¢’annda))+ plen (nd'anrea))
<Pl m) + (" len (¢'a o ga))
< pe(m’,m) + prai (¢, 6);

/

as a is arbitrary, pl(n'¢/,m¢) < pl(n',w) + pl._1 (¢, ¢); as c is arbitrary, (7’,¢") — 7'¢ is continuous at

7, ¢); thus multiplication is continuous. If 7, ¢ € Aut; A, ¢ € A/ and a € A, then
I
jien (rta 8 671a)) = ilden (on~a & mrta) < (6, 7);

thus pl(m71,¢71) < Pye(m,0), T = 71 is continuous at ¢, and inversion is continuous. So once more we
have a topological group.

(b)(i) If ¢ € A/, 7 € AutzA and € > 0 are such that pj(m, 1) < e, then 7 € U(c,e). P Consider
A={a:aeU., anma =0}. Then

fia < plen (rana)) < pi(m ) < ce

1
3
for every a € A. If B C A is upwards-directed, then b* = sup B is defined in 2, and ib* = supycp fib
(321C). Now 7b* = sup,cp b, so b* nmb* = sup,cgbnmb = 0, and b* € A. By Zorn’s Lemma, A has a
maximal element a*. Suppose that d € 2l is disjoint from 7~ 'a* Ua* Uma*. Then a* U (d\ nd) € A; by the
maximality of a*, d C 7d and d = wd (because jid = jird < 00). Thus (1\c¢)u (7~ ta* Ua* Uma*) supports
m and witnesses that 7 € U(c,¢). Q
So every U(c,€) is a T,-neighbourhood of ..

(ii) Conversely, if ¢ € A/, € > 0 and 7 € U(c,¢), then p.(m,t) < e. P Let d € 2 be such that 7 is
supported by d and fi(cnd) < e. Then, for any a € 2, a Ama C d, so fi(cn (a A 7a)) < € which is what we
need to know. Q

So {U(c,¢€) : c € A/, € > 0} is a base of neighbourhoods of ¢ for T,,.

(c) Take a non-empty open subset U of Autz2 and ¢ € U.

(i) By (b), there are a ¢ € A and an € > 0 such that U(c,3€)U(c,3¢) € U~ '¢. Now there is a
1 € Autz2 such that ¥~ 1¢ € U(c,3¢) and 1 is supported by e = cu¢c. P By 332L, applied to 2. and
o[, there is a measure-preserving automorphism g : A, — 2, agreeing with ¢ on 2.; now set

va =volane)u(a\e)
for every a € A to get ¢ € Autz2 agreeing with ¢ on 2. and supported by e. As ¢ "l¢a = a for a C c,
1~ 1¢ is supported by 1\ ¢ and belongs to U(c, 3¢). Q

(i) By 381H, applied to 9|2, there is a partition (¢,)1<m<. of unity in 2, such that vc,, C ¢, for
every m, Y[, is periodic with period m for every m € N\ {0}, and 9|, is aperiodic. Of course ¢, = ¢,
for every m, just because fiycp, = ficy,. Let n > 1 be such that fic,, < nle and f(sup,,c,m<., ¢m) < €. By the
Halmos-Rokhlin-Kakutani lemma (386C), applied to [, there is a b C ¢, such that b, ¥b,... 9™ 1b
are disjoint and fi(c,, \ SUp;<, 1'b) < e. Note that jib is also at most e.

Set

d = SUpP,, < cw Cm U (Cw \ SUP; 1 Y'b), d =duyp™h,

and let 7 : > — 2A be the measure-preserving Boolean automorphism such that
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ma=vaif 1 <m < nandacC cp,
:7721c111“0§z'§1L!—2andagwib7
=y " aifac g™,
=aifacdu(l\e).
Then

a=y"a=aif 1 <m<nandacCcpy,
=™y Ma=aif 0 <i<n!andaC b,
=aifacdU(l\e),

so 7™ =, and 7 is periodic. Since 7 is supported by e, and 2, is Dedekind complete, 7 has a support of
finite measure. On the other hand ma = 1a whenever and’ = 0, so 714 is supported by d’ and belongs to
U(c,ad) CU(e,3e).

Now

7 l¢ =n ¢ € Ule,3¢)U(c,3¢) CU g, w € Us;
as U is arbitrary, the set of periodic automorphisms with supports of finite measure is dense in Autz2l.

(d) Let V' be a neighbourhood of the identity ¢ for the weak topology ¥, on Aut;2. Then there are
Cos- .. e €A and €, ... , e, > 0 such that

V 2 {r: plc; Ame;) < e for every i < k}.

Set ¢ = sup;, ¢, € = s min;<p ;. If € U(c,€) as defined in (b), there is an a € 2, supporting 7, such

that fi(cna) <e. In this case, for each i < k, ¢; \ 7¢; € ¢na, so
fle; Ame;) = 2ia(c \we;) < 2fi(ena) < €.

Thus V' O U(c,€) and V is a neighbourhood of ¢ for ¥,. As Aut;®2 is a topological group under either
topology, it follows that ¥, is finer than ¥,, (4A5FD).

(e) Because (2, i) is semi-finite, the weak topology is Hausdorff (494Bc), so the uniform topology, being
finer, must also be Hausdorff.

(f) Let F be a Cauchy filter for the ¥,-bilateral uniformity on Aut;2. Because the identity map from
(Aut;2,T,) to (Autz2A, T,,) is continuous ((d) above), it is uniformly continuous for the corresponding
bilateral uniformities (4A5Hd), and F is Cauchy for the T,-bilateral uniformity (4A2Ji). It follows that F
has a T,,-limit ¢ say (494Bd), in which case %a is the limit lim,_, r wa, for the measure-algebra topology
of A, for every a € 2A (494Bb). But ¢ is also the T,-limit of 7. I Suppose that ¢ € A/ and ¢ > 0.
Set V(c,e) = {m : pL.(m,t) < €}, where p/, is defined as (a) above. Then V(c,e€) is a T,-neighbourhood of
t, so {(m,¢) : ¢7—1 € V(ec,€)} belongs to the T,-bilateral uniformity, and there is an F' € F such that
¢! € V(e,€) whenever 7, ¢ € F.

Now if ¢ € F and a € 2,

plen(gasya)) = p(en(gas lim ma)) = lim A(cn(da & ma))
(because b — fi(cn (¢a A D)) is continuous)
= lim j(cn(¢n tmaAmwa)) < sup fi(en(pn'bAab)) <e.
Py TEF,beA

Thus pL(¢,%) < € for every ¢ € F. As ¢ and € are arbitrary, F is T,-convergent to ¢. Q
As F is arbitrary, Aut; 2l is complete for the ¥,-bilateral uniformity.

(g) (i) Suppose that ¢ belongs to the closure of G in Aut;2. Let B be the set of those b €  for which
there is a m € G such that m and ¢ agree on the principal ideal 2(,. Then B is order-dense in 2(. B* Suppose
that @ € 2\ {0}. Because (2, /i) is semi-finite, there is a non-zero ¢ € 2/ such that ¢ C a. Take € € ]0, fic].
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Then there is a m € G such that 771¢ € U(c,€). Let d € A be such that d supports 77 1¢ and ji(cnd) < e.
Set b = c\d. If ¥ Cb, then 7~ 1¢b’ = U, that is, ¢b' = 7b’; so © and ¢ agree on A, and b € B, while
0#£bCa Q

(ii) There is therefore a partition (b;);c; of unity consisting of members of B. For each i € I take
m; € G such that m; and ¢ agree on 2y, ; because G is full, ((b;,m;))icr witnesses that ¢ € G. As ¢ is
arbitrary, G is closed.

(h) Let (cn)nen be a non-decreasing sequence in 2/ with supremum 1. Then {U(c,,27") :n € N} is a
base of neighbourhoods of t. I If ¢ € A and e > 0, there is an n € N such that fi(c\¢c,) +27" < e If
m € Ul(cy,27™), there is an a € 2A, supporting 7, such that fi(¢, na) < 27"; in which case ji(cna) < € and
7w € U(c,€). Thus we have found an n such that U(c,,27™) C U(c,€). Q

By 4A5Q, Aut;2 is metrizable.

(i)(a) By (h), Autz2A and therefore G are metrizable; the bilateral uniformity of Autz2 is therefore
metrizable (4A5Q(v)). By (f), Aut; 2 is complete under its bilateral uniformity; by (g), G is closed, so is
complete under the induced uniformity. So there is a metric on G, inducing its topology, under which G is
complete, and all I have to show is that G is separable.

(B) Since the subgroup of Aut;2l generated by D is again countable, we may suppose that D is itself a
subgroup of Aut; 2. Let (¢,)nen be a non-decreasing sequence in 2f with supremum 1, and 98 a countable
subalgebra of 2, which 7-generates 2l; by 323J again, 8 is dense in 2 for the measure-algebra topology. For
m,n €N, m,...,mm € D and by,... b, € B, write E(m,n,mo, ... ,Tm,b0,... ,bm) for

{m:me G, S fi(cn nb; 0 supp(r~im)) < 27"}

(The supports are defined because 2 is Dedekind complete; see 381F.) Let D’ C G be a countable set
such that D’ N E(m,n, 7, ... ,Tm,b0,--. ,bm) is non-empty whenever m, n € N, mg,... ,m, € D and
bo, ... ,bm € B are such that E(m,n,mg,... ,Tm,bo,- .. ,bm) is non-empty.

Suppose that 7 € G, ¢ € Af and € > 0. Let n € N be such that fi(c\ c,) +27""2 < ¢. We have a family
((aj,mj))jes such that (a;);cs is a partition of unity in 2 consisting of elements of finite measure, and, for
each j € J, m; € D and 7 agrees with 7; on %, (381la), that is, a; N supp(m~'m;) = 0. Let jo,... ,jm € J

—n

be such that fi(c, \ sup,<,, a;;) < 27"; for each i < m, let b; € B be such that fi(c, n(b; & ay,)) < jH_l.

In this case, 7 € E(m,n, T, ... ,7j,.,00,... ,bm), so there is a 7 € D' N E(m,n, T, ... ,7j,.,00,--. ;bm).

Consider d = supp(r~'7). If we set d; = supp(7~'mj,) U supp(7#~'x;,), then 7 and 7 both agree with
on 1\ d;, sod C d;. Now

(e, nd) < (e \ sup b;) i(c, nb;nd)

i<m

SMS

< cn \ sup aj,) Z (aj, \ bi) Z (cnnb;nd;)

i<m i=0 i=0

m m

<274 274 Z cn Nb; N supp(rtw;,)) Z cn b N supp(7 )
i=0 i=0
+

S4.27n:27n 2

and ji(cnd) < e. But this means that 7% € U(c, €); as ¢, € and 7 are arbitrary, D’ is dense in G and G is
separable.

494D Lemma Let (2, i) be a probability algebra and ¢ € Aut;2A. Let T = T, : L2 — L2 be
the corresponding operator on the complex Hilbert space LE = LZ(2A, i) (366M). Then the following are
equiveridical:
(o) ¢ is weakly mixing (definition: 3720b);
(B) infren |(THw|w)| < 1 whenever w € L, |lwlls =1 and [w = 0;
(v) infren |(T*w|w)| = 0 whenever w € L, |w|s =1 and [w = 0.
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proof (a) Regarding Z, with addition and its discrete topology, as a topological group, its dual group is
the circle group S' = {2 : 2 € C, |2z| = 1} with multiplication and its usual topology (445Bb-445Bc); the
duality being given by the functional (k,z) + z¥ : Z x S — S1. For u € L2, define h,, : Z — C by setting
hy(k) = (T*u|u) for k € Z. Then h, is positive definite in the sense of 445L. P If Cp,... ,(, € C and
mo, ... ,My € Z, then

D Glehu(my —mi) = D GG(T™ ™ ufu) = > GG (T ulT™ )

3,k=0 3,k=0 3,k=0
(366Me)

= ¢GT™ul Y GT™ ) > 0. Q
§=0 k=0

By Bochner’s theorem (445N), there is a Radon probability measure v, on S* such that
fzkl/u(dz) = hy(k) = (T*ulu)
for every k € Z. Note that
vu(SY) = [ 20dvy = (ulu) = |[ull3.

(b)(i) Let P C C(S*;C) be the set of functions which are expressible in the form

p(2) =Y ey Cuz® for every z € S
where (, € C for every k € Z and {k : } # 0} is finite. Then P is a linear subspace of the complex Banach

space C(S';C), closed under multiplication. Also, if p € P, then p € P, where p(z) = p(z) for every z € S
P If p(z) = 3, cp (o2, then

p(z) = Ekez ékz_k = Zkez (f—kzk

for every z € S'. Q Of course P contains the constant function z — 2 and the identity function z — z, so
by the Stone-Weierstrass theorem (281G) P is || [|o-dense in C(S*; C).

(ii) For any p € P the coefficients of the corresponding expression p(z) = >, ., Cx2® are uniquely
defined, since

1 ™

:g_ﬂ—

<k efiktp(eit)dt

for every k. So we can define u,, for every u € L%, by saying that u, = Y okez CeT*u. Now we have

(uplu) = pez Cu (T ulu) = > kez Ckf v, (dz) = deVu'
We also see that

[ = () = ¥ G ul)

keZ

= Y Gl ) = 3 Gutult) =p(0) [

kEZ kEZ

It is elementary to check that if p € P and ¢(z) = zp(z) for every z € S, then u, = T'u,,. Note also that
prrup: P — L(2C is linear.

(iii) For any p € P and u € L, [upl2 < [Jull2[|plloc- P If p(2) = 3, cp ez for z € St set
a(2) = p(2)p(2) = 3 e GiCk? "
for z € S1. Then
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lupll3 = O GT7ul Y T u) = Y7 GO(TulT ) = Y GG (T Fulu)

JEZ keZ j,keZ JkeZ

= (uqlu) = /qdvu < lglloora(SY) = Pl 13- @

(c) Case 1 Suppose that v,{z} =0 whenever v € L2, z € S* and [u = 0.

. . 1 n
(i) If uw € LZ and [u = 0, then lim,, o -t > o |(T*u|u)|?> = 0. P For any n € N,

n n
1

(TRl P = = ST (TR ufu) (] T) = — S (TR ufu) (T Fulu)
k=0

n+1 n+1 n+1

k=0 k=0

:n+12/z Vudz/ “F v (dw)
:n+12/zwk2 (z,w))

where 12 is the product measure on (S')2. But observe that

=2k 2w <1

for all z, w € S!, while for w # z we have

n+1

_k _ 1—(wtz)t?

_- N\ k _T\w 2
n+12k:OZ w o (n+1)(1-w—1z) nas

Since

vi{(w,2) i w=z}= fuu{z}uu(dz) =0,

Lebesgue’s Dominated Convergence Theorem tells us that

limn_,ooizzzo |(TFulu)|? = limn_,oo Zk o | ZrwTF2(d(z,w)) =0. Q
n+1

(ii) Write Fy for the asymptotic density filter on N (491S). If u € L2 and [u = 0, then limy,_, 7, |(T*ulu)|> =

0, by (i) above and 491Sb. It follows at once that limy_, 7, (T*u|u) = 0.
In fact limy_, 7, (T*ulv) = 0 whenever [u = [v=0. P We have

lim (T*ulv) + (T*v|u) = kl_i)r;l_d(Tk(u +0)|u+v) — (T*ulv) — (T*v|v) =0, (%)

k—Faq

and similarly
limy_, 7, i(T*ulv) — i(T*v|u) = limg_, 7, (T* (iu)|v) + (T*v|iv) = 0,
so limy_, 7, (T*ulv) — (T*v|u) = 0; adding this to (*), limy_, #(T*ulv) = 0. Q
(iii) Now take any a, b € A and set v = ya — (fia)x1, v = xb— (fb)x1. In this case, [u = [v =0 and
(T*ulv) = (x(¢*a) — (pa)x1|xb — (b)x1)
= jubn¢*a) — jia - ib — i(¢*a) - ib + fia - ib = f(bn ¢*a) — fia - jib

for every k, so limy_,, fi(bn ¢*a) — fia - b = 0 and

. 1 n _ _ _

limy, o0 THZk:O |a(bn ¢*a) — fia - ib| = 0,
by 491Sb in the other direction. As a and b are arbitrary, ¢ is weakly mixing.

D.H.FREMLIN



48 Further topics 494D

(d) Case 2 Suppose there are u € L2 and ¢t € |-, 7] such that [« = 0 and v, {e*} > 0.
(i) For n € N, set set f,(2) = max(0,1 — 27|z — €'!|) for z € S*. Then
|2fn(2) — " fu(z) <277 if |2 — €] <277,
= 0 for other z € S*.
Because P is || ||-dense in C'(S*;C), there is a p,, € P such that ||p, — full < 27", in which case
|2pn(2) — €pn(2)] <3-27"
for every z € S*. Set q,,(2) = 2pn(2) for z € S*; then

[Tup, — e "up, |2 = lug, — e "up, ll2 < ull2llgn — e Palloo
(by (b-iid)
< 3-27"|ullz,
while

[up, ll2 < llullzllpnllco < 2[|ull2.

(ii) Let F be any non-principal ultrafilter on N. Then v = lim,,_, 7 u,,, is defined for the weak topology
of the complex Hilbert space L2 (4A4Ka). Also

(vlu) = limp— F(up, [u) = lim, fpndl/u = lim, 0o f fndvy = v, {e*} >0
so v # 0. But we also have
fv = (v|x1) = limp 7 (up, [x1) = limn_,fpn(l)fu =0,

and, taking limits in the weak topology on L(%,

Tv = lim Tu,y,
n—F
(because T is continuous for the weak topology, see 4A4Bd)
= lim eitupn = e'ly.
n—F

Set w = ﬁv; then |lwlls =1, [w =0,
2

infren |(TFw|w)| = infrey |e™ (w|w)] =1
and (B) is false.
(e) Putting (¢) and (d) together, we see that either («) is true or (3) is false, that is, that (8) implies

(a).
(f) On the other hand, («) implies (). I Suppose that ¢ is weakly mixing. Then
limy o0 —= Y1 (b ¢*a) = fia - ib] = 0
for all a, b € A; by 491Sb again,
limy_, 7, ji(bn ¢*a) — fia - ib = 0,
that is,

limy,, 7, (T*xalxb) = (xalx1) - (x1[xb),
whenever a, b € 2. Because (| ) is sesquilinear,

limy,, 7, (THulv) = (ulx1) - (x1]v)
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whenever u, v belong to S¢ = Sc(21), the complex linear span of {xa : a € A}. Because S¢ is norm-dense
in L2 (366Mb), and {T%u : k € N} is norm-bounded, we shall have

limy_, 7, (u|T~%v) = limg—, 7, (T*ulv) = (u|x1) - (x1|v)
whenever u € S¢ and v € L2; now {T~*v : k € N} is norm-bounded, so

limy, 7, (T*u|v) = limg_, 7, (u|T~*v) = (u|x1) - (x1|v)
for all u, v € L2. In particular, if [|w| =1 and [w =0,

infen | (TFulw)] < limg 7, [(TFolw)] = [(wh D)2 =0,
as required. Q

(g) Since () obviously implies (3), the three conditions are indeed equiveridical.

494E Theorem (HALMOS 1944, ROKHLIN 1948) Let (2, i) be a probability algebra, and give Aut;
its weak topology.

(a) If A # {0, 1}, the set of mixing measure-preserving Boolean automorphisms is meager in Aut; .

(b) If 2 is atomless and homogeneous, the set of two-sided Bernouilli shifts on (2(, i) (definition: 385Qb)
is dense in Aut; 2.

(c) If 2 has countable Maharam type, the set of weakly mixing measure-preserving Boolean automor-
phisms is a G subset of Aut;2l.

(d) If A is atomless and has countable Maharam type, the set of weakly mixing measure-preserving
Boolean automorphisms which are not mixing is comeager in Aut; %, and is not empty.

proof (a) Take a € A\ {0,1}. Let 6 > 0 be such that jia > § + (jia)?, and consider
F, ={m:me Aut;, ji(anna) < + (jia)? for every k > n}.

Because 7 +— ji(a N 7*a) is continuous for every k (494Bb), every F,, is closed. Because F,, cannot contain any
periodic automorphism, (Autz2() \ F, is dense for the uniform topology on Aut;2l (494Cc) and therefore
for the weak topology (494Cd). Accordingly |J F,, is meager; and every mixing measure-preserving
automorphism belongs to | J,, ¢y Fi-

(b) Suppose that ¢ € Autz2, A C A is finite and € > 0.

(i) By 494Cc, there is a periodic ¢ € Autz2 such that fi(¢a A Ya) < € for every a € . Let B be the
subalgebra of 2 generated by {¢*a : k € Z, a € A}; then B is finite (because {¢* : k € Z} is finite). Let B
be the set of atoms of B. Since [B] = B, ¢¥[B] = B and @[ B is a permutation of B. Let By C B be such
that By meets each orbit of ¢[ B in just one point; enumerate By as (b;)j<n.

Let r > 1 be such that #(B) + 1 < er. For each j < n, let m; be the size of the orbit of ©)[ B containing

b, and p; = [rab;| — 1; bet M =3 ~) m;p;. Because 2 is atomless, we can find a disjoint family (cit)i<p;

neN

in A, such that jic;; = ; for every | < p;. Because <1/kaj>]<n7k<mj is disjoint, so is (1/)kcjl>]<nyl<pj7k<mj.
Set

C={rej:j<n, l<pj, k<m;}, c=supC;
then

n—1

_ % %Z_: pym; > = ijmb—l)
n—1

7=0

= Z 1_@21_
—0

We shall need to know later that
1 n—1 _
- Z] o Pjmy; < ;ijo rmy;fib; = 1.
(ii) Let f: C — C be the cyclic permutation defined by setting
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f(¢kcjl) = wkﬂcﬂ ifj<n,l<pj, k<m;—2
=cj1ifj<n l<p; -2, k=m; -1,
=cjroifj<n—-2l=p; -1, k=m; —1,
=cpifj=n—-1l=p;j—1,k=m; — 1.
Set
C'={c:ceC, f(c) and ¢(c) are included in different members of B}.

Then #(C’) < n. P If ¢ € C', express it as ¥¥c;; where j < n, | < p; and k < m;. We surely have
f(e) # e, so k must be m; — 1. In this case,

Ye=yMicy CYMib; =bj,
so f(c) Zb; and [ must be p; — 1. Thus ¢ = wmi_lcj,pj,l for some j < n, and there are only n objects of

this form. Q

(iii) We know that there is a two-sided Bernouilli shift mo on (A, i) (385Sb). Now g is mixing (385Se),

therefore ergodic (372Qb) and aperiodic (386D). We know that % < 1, so by 386C again there is a dy € 2

such that dg, modo, . . . ,W(])‘/Ifldo are disjoint and fidg = % Because jifi(co) = pimhdy = % for every i < M

and 2 is homogeneous, there is a 6 € Aut; 2 such that 6(mjdy) = f*(coo) for every i < M. Set 7 = Ompf~*;
then 7 is a two-sided Bernouilli shift (385Sg). Now

7 fi(coo) = Omo0 ™1 fi(coo) = Omomido = [ (coo)

whenever 1 < M — 2. So

C" ={c:c€ C, mc and 9(c) are included in different members of B}
C C"U{FM  (con)}

has at most n + 1 members.
Because B is disjoint, e = supyc g b A b is disjoint from
supyeg TN b 2 sup(C\ C”)
and has measure at most

a(supC")+ 1\ e) < RTH +e < 2e

If @ € A, then a is the supremum of the members of B it includes, so ma A ¥a C e and
ji(ra & ga) < fi(ra & a) + fi(ta A da) < 3e.
(iv) Thus, given ¢ € Autz2A, A € [A]<“ and € > 0, we can find a two-sided Bernouilli shift 7 such that

fi(ra A ¢a) < 3e for every a € A; as ¢, A and € are arbitrary, the two-sided Bernouilli shifts are dense in

(c)(i) The point is that L2 = LZ(, ji) is separable in its norm topology. I By 3310, there is a countable
set A C 2A which is dense for the measure-algebra topology of 2. Let C' be a countable dense subset of C,
and

D= {Z?:O(jxaj : Co,... ,Cn S C, ag, ... ,ap € A},
so that D is a countable subset of LZ. Because the function

(C()v . ,Cn,ao, - ,an) — Z;’L:O (jxaj : CnJrl X Q[nJrl — L(%

is continuous fol each n, D contains > i—0Cixa; whenever (o, ..., ¢, € C and ag,...,a, € 2, that is,
Sc = Sc(2A) € D. But Sc is norm-dense in L(ZC7 so D also is dense and L?C is separable. Q

(ii) For m € Autz A, let T : L(% — L(QC be the corresponding linear operator, as in 494D. We need to
know that the function m — Trv : Autz2 — L2 is continuous for every v € L?. I It is elementary to
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check that a — ya : A — L% is continuous for the measure-algebra topology on 2, so (7w, a) — Trxa = xwa
is continuous (494Ba-494Bb), and 7 — Ty xa is continuous, for every a € 2. Because addition and scalar
multiplication are continuous on L%, 7w +— Trv is continuous for every v € S¢. Now if v is any member of
L%, ¢ € Aut; A and € > 0, there is a v’ € S¢ such that ||v — || < ¢, in which case

{m || Tev — Tyolla < 3e} D {m: || Trv' — Tyv'|| < €}
is a neighbourhood of ¢. Thus 7 + Tyv is continuous for arbitrary v € LZ. Q

(iii) It follows from (i) that the set V = {v:v € L, |lv|la = 1, [ v = 0} is separable (4A2P(a-iv)). Let
D' be a countable dense subset of V. For v € D', set

F, = {n: |(TFvlv)| > % for every k € N}.

Since the maps
7 7P Toev = TFo s (TFo|w)

are all continuous (494Ba and (ii) just above), F), is closed. Consider E' = Autz %A\ |J,cp, Fo. If 7 € Autz 2
is weakly mixing, then (a)=-(7y) of 494D tells us that 7 € E. On the other hand, if 7 € Aut;2 is not weakly
mixing, (3)=(a) of 494D tells us that there is a w € V such that infey |(T¥w|w)| > 1. Let v € D’ be such

that |jv — wlj2 < i. Then, for any k € N,

1
(Trolo)| > [(Trwlv)| = 1T7w = Tyv2lv]lz > [(Trwlv)| - 5

> [(Trwlw)| = | T7w]2flo = wlz = =

1.1
4 2"
Som e F, C (AutzA) \ E. Thus the set of weakly mixing automorphisms is precisely E, and is a Gs set.

(d) We know that every two-sided Bernouilli shift is weakly mixing (385Se, 372Qb), so the set E of
weakly mixing automorphisms is dense, by (b) here, and Gs, by (c¢), therefore comeager. By (a), the set
E’ of weakly mixing automorphisms which are not mixing is also comeager. By 494Be, Aut;2 is a Polish
space, so E’ is non-empty.

494F 494Ed tells us that ‘many’ automorphisms of the Lebesgue probability algebra are weakly mixing
but not mixing. It is another matter to give an explicit description of one. Bare-handed constructions (e.g.,
CHACON 69) demand ingenuity and determination. I prefer to show you an example taken from TAO LOS,
Lecture 12, Exercises 5 and 8, although it will take some pages in the style of this book, as it gives practice
in using ideas already presented.

Example (a) There is a Radon probability measure v on R, zero on singletons, such that
fcos(27r -3t v(dt) = fcos 2rtv(dt) >0

for every j € N.

(b) Set oji, = [cos2n(k — j)tv(dt) for j, k € Z. Then there is a centered Gaussian distribution y on
X = RZ with covariance matrix (Ojk)jkez-

(c) Let S: X — X be the shift operator defined by saying that (Sz)(j) = x(j + 1) for z € X and j € Z.
Then S is an automorphism of (X, u).

(d) Let (A, 1) be the measure algebra of ;1 and ¢ € Autz2 the automorphism represented by S. Then ¢
is not mixing.

(e) ¢ is weakly mixing.

proof (a)(i) Let 7 be the usual measure on PN (254Jb, 464A). Define h : PN — R by setting

2 s
h(I) = nge13 !

for I C N. Then h is continuous, so the image measure v = 7h~! is a Radon probability measure on R
(4181). Also h is injective, so v, like 7, is zero on singletons.
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(ii) The function ¢t — <3t> = 3t—|3t] is inverse-measure-preserving for v. B Set tpo(I) = {j : j+1 € I}
for I CN, () = <3t> for t € R. Then ¢y : PN — PN is inverse-measure-preserving for 7, because

HIpo(DNJ=K}y=0{I:IN(J+1)=K +1} =2"#)
whenever K C J € [N]<%. Next, for any I € PN\ {N,N\ {0}},
U1(h(I)) = <230,67377> =230y 377 = 2241673777 = h(¥o(1)).
S0 h1h =4 .. hipo, and
vt =oh W =g th i =oh Tl = 0. Q

Similarly, if we set

0(t) =5 —tif0<t <,
=2 _4irl<i<t,
3 3

=t otherwise,

then Oh(I) = h(IA(N\ {0})) for every I C N, and v~ = v.

(iii) Consequently, for any m € N,
fcos(27r -3mt) v(dt) = fcos(27rm<3t>) v(dt) = fcos 27mt v(dt)
(235G). Inducing on j, we see that
[ cos(2m - 37ty v(dt) = [ cos2mtv(dt)

for every j € N.

(iv) As for [ cos2mtv(dt), this is equal to [ cos276(t) v(dt). Now

cos 2mt + cos 2wO(t) = cos 27t + cos QW(% —t)

= QCOSgCOSQW(t—%) >0if0<t< é,

= cos 27t + cos 277(2 —t)

:2(3085%005271'(15—2) >Oif§ <t<1;

but h[PN] C [0, 3] U [2,1], so [0, 3] U [2,1] is v-conegligible, and cos 2t + cos 2w0(t) > 0 for v-almost every
t. Accordingly

f cos 2rtv(dt) = %f cos 27t + cos 2m0(t)v(dt) > 0.

(b) 01 = o for all j, k € Z. If J C Z is finite and (v;)jes € R’, then
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> vwmoir= > %‘%/COS 2m(k — j)tv(dt)

J,keJ j.ked

= Z YiYe / cos 2kt cos 27 jt 4 sin 2wkt sin 27t v(dt)

J,keJ
:/ Z vk cos 2wkt cos 2mjt v(dt)
J.ked
+/ Z Vi sin 2wkt sin 275t v(dt)
j.keJ
= /Zvj cos 275t Z*yk cos 2wkt v(dt)
= keJ
+/Z’yj sin 2t ka sin 2wkt v(dt)
jed keJ
> 0.

By 456C(iv), we have a Gaussian distribution of the right kind.

(c) Of course S is linear, and Z is countable, so the image measure uS~! is a centered Gaussian distri-
bution (456Ba). Since

/ () (k) (S ) (dr) = / (52)(j) (S)(k)u(de)

= /m(j + Da(k + Dp(de) = 041,541 = Ojk

for all j, k € Z, pS~! and p have the same covariance matrix, and are equal (456Bb). Thus the bijection S
is an automorphism of (X, p).

(d) Write L? for L*(, i), and T}, : L? — L? for the linear operator associated with the automorphism
¢. For k € Z, set fr(z) = x(k) for € X and uy, = fg € L?. Then f.S = fri1 so Tpur = ug41, by 364Qd.
Consider

(ngu0|u0) = /Ugj X ug = /sc(?)j):C(O),u(dx)
=030 = /005(277 S3t)w(dt) = /cos 2rtv(dt) # 0,

for every j, while

fuo = fm(O)u(dm) =0.

By 372Q(a-iv), 7 is not mixing.

(€) () limy o0 — 4o | [ 27w (dt)? = 0. P For any n € N,
1y 2mikt 2 1\ 2miks —2mikt
gl Z|/e v(dt)|* = —— Z/e V(ds)/e v(dt)
k=0 k=0
_ L - 2nik(s—t),,2
_ /n+1 kZ_Oe v2(d(s, 1))

where 2 is the product measure on R2. Now, for any s, t € R, | ZZ:O 62”’“(5*’5” < 1 for every n, while

L
n+1
if s —t is not an integer,
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Zk o€ e2mik(s—t) — (1—exp(27ri(n+1)(s—t)) -0

n+1 n+1)(1—exp(2wi(s—t)))

as n — 0o0. As v is zero on singletons,
v {(s,t) :s—t €L} = fl/{s ts€t+Zv(ds) =0.
So

: 1 ikt 3 1 mik(s—
lim,, oo nT—lZZ:O |f e2 kfy(dt)|2 = lim,,_y 00 fn_HZZ:O e2mik( t)u2(d(s,t)) =0

by Lebesgue’s dominated convergence theorem. Q
Consequently, as in (c-ii) of the proof of 494D,

0= lim |/62”ktu(dt)\2 = lim [ e*™*ty(dt)
k—Faq k—Faq

= lim Re/e%iktl/(dt) = lim [ cos(2mkt)v(dt).
k—Faq k—Faq

By 491Sc,
limk*)fd Ojk = limkﬂfd 0j.4+k = limk-*)fd fCOS(Qﬂ'kt)l/(dt) =0.

(ii) Suppose that f, g : X — R are functions such that, for some finite J C Z, there are continuous
bounded functions fy, go : R’ — R such that f(z) = fo(x[J) and g(x) = go(z]J) for every z € RX. Then

lim, 7, [ fS™ x gdu= [ fdu [ gdp.
P For any n € N, define R, : X — R7*{0:1} by setting
Rn(2)(5,0) = 2(j), Rn(2)(j,1) =2(j +n)

for ¥ € X and j € J; then R, is linear, so uR, ' is a centered Gaussian distribution on R7>{0:1}  The
covariance matrix o(") of pR;t is given by

o = / 092 )l (d2) = [ (Bo) G )Rk )

z(y w(dx) —a]klfe—e—O

z(f)z(k +n)pu(de) = 0jp4n ife=0,€ =1,

z(j +n)x(k)p(de) = 0j4nk = ok jin ife=1,€ =0,

/x]—l—n (GH+n)u(dz) =0jinkin =0jp ife=€ =1
for all j, k€ J. So

I G0, teny = Ok e =€

=0ife#¢.
Let ji be the centered Gaussian distribution i on R7*{%1} with covariance matrix 7 where

T(se),(kye') = Ojk if € = €,
=0ifes#¢

for any j, k € J. By 456Q, there is such a distribution and i = lim,,_, 7, uR,; ! for the narrow topology.
Next observe that, for z € X and z € R/>{0:1}
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R.(z) =z= 2(j+n) =2(j,1) for every j € J
— (S"x)(j) = 2(j,1) for every j € J
= f(S"x) = fo(2),
R, (z) =z = z(j) = 2(4,0) for every r < m
= g(x) = g5(2),
where we set
fo(z) = fol(z(5: 1))jes)s  90(2) = 90((2(4,0))jes
for z € R0} So fS" = fIR,., g = ghRn,
[ 18" x gdp= [(fiRn) x (gRn)dpu = [ f§ x ghd(nR;*)
for every n, and
lim, 7, [ fS" x gdu= [ fix ghdfi

because f} x g, is a bounded continuous function (437Mb).
Since 7(;,0y,(k,1) = 0 whenever j, k € J, the o-algebras ¥, X1 generated by coordinates in J x {0}, J x {1}
respectively are fi-independent (456Eb). Since f§ is ¥p-measurable and g{ is ¥1-measurable,

iy /fS"xgdu=/f6><gédﬁ:/f6dﬂ/96dﬁ
n—Jsd
(272D, 272R)

= lim /féd(uRle% lim /géd(uRle)
’ﬂ*)]:d ’I’L‘)]‘_d

tiy [ fiRdi [ gyRuds

n—>.7:d

lim /fS"d,u/gdu

n—Fq

lim /fdu/gdu=/fdu-/gdu,
n—Fq

(iii) If F, F' C X are compact, then lim,_, 7, p(S™"[F|NF') = pF - uF’. P Let € > 0. For k € N,
set Jy={j:j€Z,j| <k}and F, = {a]Jy : x € F}. Set f,go)(z) = max(0,1 — 2¥p.(z, F},)) for z € R7x,
where pj, is Euclidean distance in R7*, and f;,(z) = f]go) (x]Jy) for x € X. Then (fi(z))ren — XxF(x) for
every x € X. So there is a k € N such that [|fz — xF|du < e. Set f = fi; then f is a continuous function
from X to [0,1], [|f — xF| <€, and f factors through the continuous function flgo) :R7 — [0, 1].

Similarly, there is a continuous function g : X — [0, 1] such that [ |g — xF’|du < € and g factors through

a continuous function on Rt for some I. Setting J = .Jj, U J;, we see that f and g satisfy the conditions of
(ii) and

as required. Q

limp 7, [ fS™ x gdp= [ fduf gdp.
But for every n € N,

(5" [F] N F) - / 5" x gl < / FS™ — XS F]| + |g — xF'|dy
=/|f—xF|+\g—xF’|du§2e,

\uF - pF' — [ fdp [ gdul < [|f = XxF|+ g — xF'|dp < 2,
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SO

limsup |u(S™"[F]NF') — uF - uF’|

n—Fq

n—Fq

<4e+ lim |/fS”><gdpL /fdu/gdu|—4e

As € is arbitrary, lim,_, 7, u(S™"[FI|NF') = uF - unF'. Q

(iv) Now suppose that a, b € 2 and ¢ > 0. Because p is a Radon measure (454J(iii)), there are compact
sets Fy, F1 C X such that i(a A& FY) + a(bA Fy) < e. Now, for any n € N,

(6" anb) — u(ST RN F)| = | (¢"anb) — (9" Fy n FY)|
f(¢"a & ¢"Fg) + b & Fy)
— fila s F3) + (b A FY) <,

|fia - fib — pFo - pFy| < |fia — pFo| + b — pkh| < e.
So

limsup |E(¢"anb) — fia - b

n—Fq

<2+ lim |u(S7"[Fo] N Fy) — pFo - pFa| = 2¢

n—F, d
by (iii). As €, a and b are arbitrary, ¢ is weakly mixing (using 491Sb once more).

Remark Of course the measure v of part (a) is Cantor measure (256Hc, 256Xk).

494G Proposition Let (2, i) be a measure algebra and G a full subgroup of Aut; 2, with fixed-point
subalgebra € (definition: 395Ga).
(a) If a € A/ and 7 € G, there is a ¢ € G, supported by a Uma, such that ¢d = md for every d C a.
(b) If (2, 1) is localizable and a, b € A/, then the following are equiveridical:
(i) there is a m € G such that ma C b;
(ii) plane) < p(bne) for every c € €.
(c) If (A, 1) is localizable and a, b € Af, then the following are equiveridical:
(i) there is a m € G such that ma = b;
(ii) g(anc) = f(bnc) for every c € €.
(d) If (A, 2) is totally finite (definition: 322Ab) and (a;)icr, (bi)icr are disjoint families in 2 such that
p(a;nc) = f(b;ne) for every i € I and ¢ € €, there is a m € G such that wa; = b; for every i € I.
(e) If (A, 1) is localizable and H = {7 : m € Aut;2, mc = ¢ for every ¢ € €}, then H is the closure of G
for the weak topology of Aut;2l.

proof (a) Let ((a;,n;,b;))ics be a maximal family such that
— (a;)4er is a disjoint family in 24\ \ {0},
— (bi)ier is a disjoint family in g re;
—— for every ¢ € I, n; € Z and n™a; = b;.
Because fia < 00, I is countable. Set
a' = (ma\a)\ sup;cra;, U =(a\ma)\ sup;c; b;;
then
pa’ = fima — planma) — Y . cp fla; = pa — filanma) — Y, iby = b’
? If a’ #0, set ¢ = sup,,c; 7"a’. Then mc = ¢, so
a(enb;) = plennt™a;) = G(n™(cna;)) = plena;)

for every ¢ € I, and
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f(cnd) =ji(cna\ ma) — Z,ucmb g(cna) — a(cnanma) — Zucmb
el el

(]

ilcna;) = plenma\a) — Zu (cna;)
el iel

=p(enma) — p(enanma) —

.

=p(cnd’) = ga’ >0,
and cnb’ # 0. There is therefore an n € Z such that 7"a’ nd" # 0. But now, setting d = o’ n7~ "0, d # 0
and we ought to have added (d,n,n"d) to {(a;,n;, b;))icr. X
Thus sup;cy a; = ma\ @ and sup;c; b; = a\ ma. Now we can define ¢ € Aut 2 by the formula
¢d =nd if d C a,
=n"difie [l and d C a;,
=difdn(auma) =0

(381C, because I is countable and 2 is Dedekind o-complete). Because G is full, ¢ € G; ¢ is supported by
auma, and ¢ agrees with 7 on 2, as required.

(b)(i)=-(ii) If ma C b and ¢ € €, then
fglanc) = ar(anc) = p(ranme) < f(bne).

(ii)=(i) Now suppose that fi(anc) < (bnc) for every c € €.

(a) Consider first the case in which anbd = 0. Let {(a;,7;,b;))ier be a maximal family such that
— (a;)4er is a disjoint family in 2, \ {0},
— (b;)ser is a disjoint family in A,
—— for every i € I, m; € G and m;a; = b;.
Set @’ = sup;¢; a;, b’ = sup;c; b; and
c=upr(b\b',€) =sup,cqm(b\V) €
(395G, because 2 is Dedekind complete).

anc=a nc. P? Otherwise, a\ o’ meets ¢, so there is a 7 € G such that (a\ &) nm(b\ ') # 0, in which
case we ought to have added

((a\a)nma®\V), 7,77 (a\a')nb\ V)

to our family ((a;, 7, b;))icr. XQ
Now note that 1\ ¢ € €, so

fla\e) < ab\c) = i’ \c) = > _ (b \ )

el

:Z mi(a; \¢) = Zﬂ(ai\c):ﬂ(a,\c)a

iel
soa\c=a'\cand a=da.
Accordingly we can define m € Aut 2l by setting
nd=m;dif i € [ and d C a;,
=m;'difi € and d Cb,
=difdc 1\ (aubd)
(381C again). Because G is full, 7 € G, and

/
ma = T(SUp;e; 4;) = SUP;e; Ta; = sup;cr by = b C b.

(B) For the general case, we have

glena\b) =f(cna) —f(cnand) < f(end) — a(cnand) = alcnb\ a)
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for every ¢ € €, so (a) tells us that there is a my € G such that mo(a\b) C b\ a. Now if we set 7 =
%
(a\br, mo(a\ b)), m € G (because G is full, see 381Sd), and 7a C b, as required.

(c) If 7 € G and wa = b, then ma C b and 7~ 1b C a, so (b) tells us that fi(anc) = j(bnc) for every
ceC If ilanc) = fi(bnc) for every ¢ € €, then (b) tells us that there is a m € G such that ma C b; but as
ama = pa = b, we have ma = b.

(d) Let j be any object not belonging to I and set a; = 1\ sup;c; a;, bj = 1\ sup,c; b;. Then
fiajne) = fic =3 ;e ia; ne) = fic = 3, b ne) = fi(bj ne)
for every c € €. Set J =T U{j}. By (c), there is for each i € J a m; € G such that ma; = b;. Now {a;)ics

and (b;);c; are partitions of unity in 2(, so there is a 7 € Aut2l such that 7d = m;d whenever i € J and
d C a;; because G is full, 7 € G, and has the property we seek.

(e)(i) If a € A, then U = {7 : 7 € Aut; 2, ma £ a} is open for the weak topology. I* The functions
T e AutgA - A, b= b\a: A=A

are continuous (494Bb and 323Ba), and ¢ — fic : 2 — [0, 00] is lower semi-continuous (323Cb, because 2 is
semi-finite), so ™+ i(wa \ a) is lower semi-continuous (4A2B(d-ii)) and U = {7 : fi(ma\ a) > 0} is open. Q

Consequently, {7 : wc C ¢ for every ¢ € €} is closed. But if e C ¢ for every ¢ € €, then m¢ = ¢ for every
c € ¢. So H is closed. Of course H includes G, so G C H.

(ii) Suppose that 7 € H and that U is an open neighbourhood of 7. Then there are ag, ... ,a, € A
and 0 > 0 such that U includes {¢ : ¢ € Autz, i(ma; A ¢pa;) < § for every i < n}. Set e = sup;<,, a;; let B
be the finite subalgebra of 2, generated by {ena; : i < n}, and B the set of its atoms (definition: 316K).
If b € B, then fi(mbnc) = fa(bne) for every ¢ € €, so there is a ¢, € G such that ¢pb = 7b, by (c) above.
Equally, there is a ¢ € G such that ¢e = me. Now we can define ¢ € Aut;2 by saying that

vd = ¢pd if b€ B and d C b,
=¢difdc1\e¢

as usual, ¢ € G, while ¢b = wb for every b € B. But this means that ¢a; = ma; for every i < n, so
Y € GNU. As U is arbitrary, m € G; as « is arbitrary, G is dense in H and H = G.

494H Proposition Let 2 be a Boolean algebra, G a full subgroup of Aut2, and a € 2. Set G, = {7 :
m € G, 7 is supported by a}, H, = {n[2, : 7 € G,}.

(a) G, is a full subgroup of Aut2 and H, is a full subgroup of Aut®,, for every a € 2.

(b) Suppose that 2 is Dedekind complete, and that the fixed-point subalgebra of G is €. Then the
fixed-point subalgebra of H, is {anc:c € €}.

proof (a)(i) By 381Eb and 381Eh, G, is a subgroup of G, and 7 — 7|2, is a group homomorphism from
G, to Aut2,, so its image H, is a subgroup of Aut2A,.

(ii) Suppose that ¢ € Aut A and that ((a;, m;))icr is a family in 2 x G, such that (a;);ecs is a partition
of unity in 2 and m;d = ¢d whenever i € I and d C a;. Then ¢ € G, because G is full; and

¢d = sup;c;mi(dna;) =sup;e;dna; =d
whenever dna = 0, so ¢ is supported by a and belongs to G,.

(iii) Suppose that ¢ € Aut®, and that ((a;,7;))icr is a family in 2, x H, such that {(a;);cr is a
partition of unity in 2, and m;d = ¢d whenever ¢ € I and d C a;. For each i € I, there is a 7} € G, such
that m; = 7, [A,. Take j ¢ I and set J = I U{j}, a;j = 1\ a, 7 = ¢; define ¢ € Aut 2 by setting 1d = ¢d
ford C a, d for d C 1\ a. Then (a;);e is a partition of unity in 2 and ¢d = 7’;d whenever j € J and d C aj,
so 1 € G. Also v is supported by a, so ¢ = [, belongs to H,. As ¢ and ((a;, 7m;))ier are arbitrary, H, is
full.

(b)(3) If ¢ € €, then w(anc) = manme = anc whenever 7 € G and wa = a, so anc belongs to the
fixed-point subalgebra of H,.

MEASURE THEORY



4941 Groups of measure-preserving automorphisms 59

(ii) In the other direction, take any b in the fixed-point subalgebra of H,. Set ¢ = upr(b, €) = sup, g b
(395G once more). Of course bCanc. 2 If b # anc, set e = anc\b. Then there is a 7 € G such that
e1 =enmb # 0; set ey = 7 ey Cband ¢ = (63, €1). Then ¢ € G (381Sd again) and ¢ is supported by
erUes Ca, so @A, € Hy; but ¢b # b, so this is impossible. X Thus b is expressed as the intersection of a
with a member of €, as required.

4941 T take the proof of the next theorem in a series of lemmas, the first being the leading special case.

Lemma (GIORDANO & PESTOV 92) Let (2, i) be an atomless homogeneous probability algebra (definitions:
316Kb, 316N). Then Autz2, with its weak topology, is extremely amenable.

proof I seek to apply 493C.

(a) Take € > 0, a neighbourhood V' of the identity in Aut; A, a finite set I C Aut; 2 and a finite family A
of zero sets in Aut; . Let § > 0 and K € [2A]<“ be such that 7 € V whenever 7 € Aut; 2 and fi(a A 7a) < §
for every a € K. Let C be the set of atoms of the finite subalgebra € of 2 generated by K, and D the set
of atoms of the subalgebra © generated by K U|J, ., 7[K]; set k = #(C) and k' = #(D). Let m € N be so

large that 2kk’ < mé and (md — 1) > 64m h%; set 7 = |md], so that exp(—%) <e

(b) For each d € D let E; be a maximal disjoint family in 24 such that fie = L for every e € Ey; let E

m

be a partition of unity in 2, including (J,c p Fa, such that fie = % for every e € E. Let H be the group of
permutations of E. Then we have a group homomorphism 6 : H — Aut;2 such that 6(¢))[ E = 9 for every
v € H. P Fix eg € E. Then for each e € E there is a measure-preserving isomorphism ¢, : A, — 2,
because 2 is homogeneous (3311). For ¢ € Hg, FE and (¥e).c g are partitions of unity in 2, so we can define
0(¢) € Aut; by the formula

0(v)(a) = pyed, a whenever a C e € E.
It is easy to see that 6(¢)(e) = e for every e € E. If ¢, ' € Hg, then

0(wy)(a) = dyyredy 'a
= ¢ww’e¢;/le¢w’e¢e_la = 9(¢)9(¢/)(a>

whenever a C e € E; so 6 is a group homomorphism. Q
Write G for 0[H], so that G is a subgroup of Aut;2l.

(c) ICGV~L P Take 7 € I. For c € C, set
E ={Es:deD,dcc}, E!=U{FEs:deD,dCcnrc}.

Since sup Eq C d and fi(d\ sup Eg) < % for every d € D, sup E!. C ¢ and fi(c\ sup E.) < %; so mjic — k' <
#(E!) < mjc. Similarly, sup E/ C wc and

mpc — k' = mpnc — k' < #(E!) < mpame = mjic.
Let E. C E!, E" C E" be sets of size min(#(E"), #(E")) > mjic — k'. Setting ¢’ = sup E/, and ¢’ = sup E”
we have

e, plend) = (mc—#(E)) < Z,

and similarly ¢’ C 7e and f(me\ ¢”) < %

Because (E).cc and (E).cc are both disjoint, there is a 1) € H such that y[E’] = E/ for every ¢ € C.
Set ¢ = 0(1)); then ¢ € G and ¢c’ = ¢” for every ¢ € C. Now this means that

filc o pe) = fi(me & ge) < filme s c”) + alc” o pe)

2k’
m

=j(rend)+u(d ac) <
for every ¢ € C. Consequently
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2kk <

m

for every a € K, and 7~ 1¢ € V. Accordingly 7 € ¢V ~! C GV ~1; as 7 is arbitrary, ] C GV 1. Q

fila st pa) <

(d) T am ready to introduce the functional » demanded by the hypotheses of 493C. Let A be the Haar
probability measure on the finite group H, and v the image measure \@~!, regarded as a measure on Autz .
If 7 € I, then (c) tells us that there is a ¢» € H such that ¢ = 6(¢)) belongs to #V. In this case, for any
Aec A,

v(pA) = M~ pA] = A7 1[A]) = N0~1[A] = vA.
So v satisfies condition (ii) of 493C.

(e) As for condition (i) of 493C, consider W = {¢p : b € H, #({e: e € E, e # e}) <r}. Then g{W] C V.
P If ¢p € W, then 0(¢)(d) = d whenever d C e € F and e = e. So (1)) is supported by b = sup{e: e € E,
e #e}. Now fib < - < 4. So ji(a & ¢a) < fib < d for everya €A, and p € V. Q

Now suppose that F' C Aut;2 and vF > . Then

v(VF) = MV FE] > N\WOF)])
(because §[W] C V)

2

>1—exp(—g,—)

(by 4921, because \0~[F] = vF > 1)

D=

>1—e

So v satisfies the first condition in 493C.

(f) As e, V, I and A are arbitrary, Aut; 2 is extremely amenable.

494J Lemma Let (€, \) be a totally finite measure algebra, (98, 7) a probability algebra, and (2, jz) the
localizable measure algebra free product (€, \)®(%B,7) (325E). Give Aut; 2l its weak topology, and let G be
the subgroup {7 : 7 € Aut;2, 7(c®1) = c®1 for every c € €}. Suppose that B is either finite, with all its
atoms of the same measure, or homogeneous. Then G is amenable, and if either 8 is homogeneous or € is
atomless, G is extremely amenable.

proof (a) Let £ be the family of finite partitions of unity in € not containing {0}. Then for any E € £ we
have a function 0 : (Aut; B)¥ — G defined by saying that

9E(¢)(C & b) = SupeEE(c N 6) X d)eb

whenever ¢ = (¢c)ecr € (Auty; B)F, ¢ € € and b € B. P For each e € E, the defining universal mapping
theorem 325Da tells us that there is a unique measure-preserving Boolean homomorphism . : 2 — 2 such
that ¥.(c®1) =c®1 and ¥, (1®b) = 1® ¢.b for all b € B and ¢ € €. To see that 1, is surjective, note that
e [2] must be a closed subalgebra including € ® B (324Kb), which is dense (325D(c-i)). So 1. € Aut; 2.
Now (e ® 1)ccp is a partition of unity in 2, and ¢.(e ® 1) = e ® 1 for every e, so we have a m € Aut;2
defined by saying that ma = sup.cp ¥e(ane) for every a € A. Because G is full, 7 € G. So we can set
0r(¢) = w. Of course 7 is the only automorphism satisfying the given formula for 0g(4). Q

(b)(i) It is easy to check that if E € £ then g is a group homomorphism from (Aut; B)F to G; write
G for its set of values. Because 0 ¢ E, 0 is injective, and Gg is a subgroup of G isomorphic to the group
(Aut, B)F. Give Aut, B its weak topology, (Aut, B)F the product topology and G the topology induced
by the weak topology of Aut;%.

(ii) O is continuous. P If U is a neighbourhood of the identity in Gg, there are ag,... ,a, € 2A
and € > 0 such that U includes {7 : 7 € Gg, fi(a; & ma;) < 3e for every i < n}. For each i < n, there is an
a; € € ® B such that fi(a; & a) < e. Let By be a finite subalgebra of B such that a € € ® B, for every
i <mn. Let § > 0 be such that A1 < e. Then there is a neighbourhood V' of the identity in Autg B such
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that 7(b A ¢b) < § whenever ¢ € V and b € By. If now ¢ = (¢.)ecr belongs to VE, then for each i < n we
can express aj as SUD,j <, Cij ® bij where (€ij)j<m, is a partition of unity in € and b;; € B for every j < m;

(3150a). So

fi(a; & Op(@)a;) < Z i(((cij ne) @ bij) A Op(@)((cij ne) @ bi;))

(because ((¢;j Ne) ® bij)j<m, cck is a disjoint family with supremum a})
= Y (i ne) @bij) & ((cij ne) @ debiy))

i<m;
ecE

= Z f((cij ne) @ (bij & gebiy))
J<m;
eckE

= Z Aeijne) - v(bij & debij) <6 Z Acijne) <e,
j<m; Jj<m;
ecE ecE

and
fi(ai & 0p(p)ai) < fla; & ap) + [ila; A Op(p)a;) + i(0p(d)a; A Op(p)a;) < 3e.
This is true for every i < n, so 0g(¢) € U whenever ¢ € VE. As U is arbitrary, 0 is continuous. Q

(iii) 0];1 is continuous. I Let V' be a neighbourhood of the identity in Aut; 6. Then there are € > 0
and bo, ... ,b, € B such that ¢ € V whenever ¢ € Aut,; B and v(b; A ¢b;) < € for every i <n. Let 6 > 0 be
such that & < e)e for every e € F, and let U be

{m:7m€Gg, i((e®b;) Am(e®b;)) < § whenever e € E and i < n}.

Then U is a neighbourhood of the identity in Gg. If ¢ = (¢c)ecr € (Auty B)F is such that O(¢) € U, then
for every e € FE and i < n we have

P(bi & pebi) = 5-7l(e @ bi) 2 0p(9) (e @ b)) <

so ¢ € VE. As V is arbitrary, " is continuous. Q
(iv) Putting these together, 6 is a topological group isomorphism.
(c) The next step is to show that (Jg ¢ Gp is dense in G.

(i) Note first that there is an upwards-directed family D of finite subalgebras © of 8 such that if © € D
then every atom of D has the same measure, and [ JD is dense in B (for the measure-algebra topology of B).
P If B is finite, with all its atoms of the same measure, this is trivial; take D = {8}. Otherwise, because B
is homogeneous, (98, 7) must be isomorphic to the measure algebra (B,;, ;) of the usual measure on {0,1}"
for some infinite cardinal s, and we can take D to be the family of subalgebras determined by finite subsets

of k. Q

(ii) Suppose that = € G, ag,...,a, € A and € > 0. Let 2y be the subalgebra of 2 generated by
ap, ... ,a, and A the set of its atoms; let > 0 be such that 12n#(A) < e. Counsider subalgebras of 2 of
the form €y ® ® where & is a finite subalgebra of € and ©® € . This is an upwards-directed family of
subalgebras, and the closure of its union includes ¢ ® b whenever ¢ € € and b € B, so is the whole of 2.
There must therefore be a finite subalgebra €y of €, a ® € D, and a’, a” € €y ® D, for each a € A, such
that ji(a A ad’) <nand f(ma & a”’) < n for every a € A. Note that this implies that

i’ — ia"| < |fia’ — fia| + |fia — fia”] < 21
for every a € A.
(iii) Let E € & be the set of atoms of €y, D the set of atoms of ©, and v the common measure of the
members of D. For e € ' and a € A, set
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={d:de D, p(le@d)na)><ple®d)}, b,=supD.,,,

N | =

D! ={d:de D, p(le®d)nma) > %ﬂ(e ®d)}, b, =supD/,

Note that as A is disjoint, (D, )eeca is disjoint, for each e; and similarly (D! ),ca is disjoint for each e,
because (ma),c4 is disjoint. Next, for a € A and e € E, set Do, ={d : d € D e®d C d'}. Then, for each
a €A,

ila aswpe®bl,)= > plexd+ Y, Ale®d)
eck ecE ecE

deD’ \D.a d€Deq\D),

< Z 2i((e®@d)na) + Z 2fi((e @ d) \ a)

ecE ecE

d€D(,\Dea d€Deo\D.,

< Y 2i((e@d)na)+ Y 2h((e®d)\a)

ecE ecE

d€D\D., d€Deca

=2fi(a\a') +20(a’ \ a) = 2f(a pd') < 2,

and fi(a A sup,cpe®bl,) < 3n. Similarly, passing through a” in place of a’, we see that fi(ra A sup.cpe®
bl,) < 3n.

Consequently, for any a € A,

> Xe-Al#(DL,) — #(DL) =Y |ale @b,) — fie @ bL,)|
ecE ecE
<Y ille@tl,) a((e®1)na)
eeFE
+|a((e®1)na) — a((e ® 1) nma)l
+a(((e® 1) nma) A (e @ be,))
=) ille®b,)a((e®l)na))
eeE

+ia(((e®@1)nma) A(e®bl,))

(because m € G, so (e®1)nma =m((e ® 1) na) for every e)

=jfi(ar supe®@b.,) + ji(ra A supe®b’,) < 61.
ecE ecE

', D’ C D! such that #(D’,) =
#(D" ) = min(#(D.,), #(D")). As (D), ca)aca and (D" ) 4ea are always disjoint families, there is a permu-
tation 1, : D — D such that .[D’,] = D", for every a € A. Because (B, 7) is homogeneous, there is a
¢ € Auty B such that ¢.d = 1.d for every d € D.

(iv) Fix e € E for the moment. For each a € A, take D, C D

(v) This gives us a family ¢ = (¢¢)ecp. Consider g (¢). For each a € A,
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filra 2 05(8)(a)) < filma & supe  b,) + fi((sup e @ b,) A O(d) (sup e @ 1))
ecE eckE ecE

+ (0 (¢)(Slelg e®b,)A0g(4)(a))

<30+ Y (e @ bly) & (e ® debl,)) + Al(supe @ bl,) & a)

eck el
<3n+ Y A y#(DL,Ave[DL,]) + 31
eeE
<6+ Y Ae-y(#(DI,\ DL,) +#(Di, \ Di,))
ecE
=60+ Y Ae-q|#(DL,) — #(Dl,)| < 121.
ecE

(vi) Now, for each i <n,set A; ={a:a € A, a Ca;}; then

fi(ma; 8 0p(@)(ai) < 3 pea, i(ma & b0p(d)(a)) < 12n#(A) <,
while Op¢ € Gg. As ¢, ag, ... ,a, and € are arbitrary, (Jpco G is dense in G.

(vii) Note also that if E, E’ € &, thereisan F' € £ such that Gp D GpUGE . P Set F = {ene’ :e € E,
e € E'}\{0}. If ¢ = (¢c)ecr € (Auty; B)F, define (¢f) er € (Auty B)F by saying that ¢y = ¢. whenever
f€F,ee Eand f Ce. Then it is easy to check that 0p((¢s)jer) = 0r(¢). So Gp O Gg; similarly,
Gr2Gr.Q
So {Gg : E € £} is an upwards-directed family of subgroups of G with dense union in G.

(d) At this point, we start looking at the rest of the hypotheses.

(i) Suppose that 9B is atomless. Then 4941 tells us that Aut; B is extremely amenable. So all the
products (Aut; B)¥ are extremely amenable (493Bd), all the G are extremely amenable, and G is extremely
amenable by (c) and 493Bb.

(ii) Suppose that 9 is finite. Then Aut; B is finite, therefore amenable (449Cg); all the products
(Aut; B)E are amenable (449Ce), and G is amenable (449Cb).

(e) T have still to finish the case in which € is atomless and B is finite. If B = {0} then of course G = {v}
is extremely amenable, so we may take it that A1 > 0.

(i) Take € > 0, a neighbourhood V' of the identity in G, a finite set I C G and a finite family A of zero
sets in G. Let V; be a neighbourhood of the identity in G such that V2 C V1. By (c), there is an E’ € £
such that I C Gg/'Vi. Set k = #(E’). V1 is a neighbourhood of the identity for the uniform topology on G
(494Cd), so there is a 6 > 0 such that = € V; whenever 7 € G and the support of 7 has measure at most ¢

— 2
(494Cb). Let m be so large that md > kAl and (?—f -1)2> mln(g); set r = L?—{SJ, so that 2exp(f%) <e.
€

(ii) For each e € E’ let D, be a maximal disjoint set of elements of measure %5\1 in €; let £ D

Uecrr De be a maxiglal disjoint set of elements of measure %5\1 in €. Note that ¢ = 1\ sup,cp sup D, has

measure at most %)\1 < 4. Consequently Gg C GpVi. P If 7' € Gpr, express 05 (1') as (¢L)eer. Let

(¢e)ecr € (Auty B)F be such that ¢, = ¢, whenever ¢/ € E’ and e € D, and set m = 0 ({de)ecr). Then

ma = 7'a for every a C (1\¢) ® 1, so 717’ is supported by ¢ ® 1 and belongs to V;. Thus 7’ € 7Vj; as 7/
is arbitrary, Gg: C GgVi. Q It follows that I C GEV12 C GgV—L

(iii) Set H = Aut; B, and let Ay be the Haar probability measure on H, that is, the uniform probability
measure. Let A be the product measure on H¥, so that A is the Haar probability measure on H”. Let v be
the image measure )\HEI on G. If 7 € I, then Gg meets 7V, so there is a ¢ € HF such that 0g(¢) € 7V;
now

v(0p(9)F) = Mg [05()F] = X(@0;' [F]) = Mg [F] = vF
for every F' C G, and in particular for every F' € A. Thus v satisfies condition (ii) of 493C.
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(iv) Set
U={{(de)ecE : P € Auty; B for every e € E, #({e : ¢, is not the identity}) < r}.

Then 0p[U] C V. P If ¢ = (de)ccr belongs to U, then b = sup{e : e € E, ¢, is not the identity} has
measure at most A1 < 4§, while b supports 0(¢). So A(a A 0p(d)(a)) < for every a € A, and O(¢) € V.
Q

Let p be the normalized Hamming metric on HE (492D). If ¢ = (¢¢)ecr and ¥ = (¢.)ecr belong to
HE and p(¢,9) < -, then {e: ¢t is not the identity} has at most » members, and ¢gp—! € U, that is,
¢ € Usp. So if W C HF is such that AW > 1,

MUW) 2 Mg : p(¢, W) <~} > 1~ 2exp(—m(--)?)

r
m
(492Ea)

>1—¢€

by the choice of m and r. Transferring this to G, remembering that 0 : HF — G is an injective homomor-
phism, we get

V(VF) = MG VF] > AU [F]) > 1—¢
whenever F' C G and vF > % So v satisfies the first condition of 493C.

(v) As e, V, I and A were arbitrary, 493C tells us that G is extremely amenable. This completes the
proof.

494K Lemma Let (2, /i) be a totally finite measure algebra, and give Aut; 2 its weak topology. Let G
be a subgroup of Aut; 2 with fixed-point subalgebra €, and suppose that G = {7 : 7 € Aut; 2, mc = ¢ for
every ¢ € €}. Then G is amenable, and if every atom of 2 belongs to €, then G is extremely amenable.

proof (a) We need the structure theorems of §333; the final one 333R is the best adapted to our purposes
here. I repeat some of the special notation used in that theorem. For n € N, set B,, = P(n + 1) and let 7,
be the uniform probability measure on n+ 1, so that 28,, has n+4 1 atoms of the same measure; for an infinite
cardinal &, let (B, 7,) be the measure algebra of the usual measure on {0,1}". Then 333R tells us that
there are a partition of unity (¢;);er in €, where I is a countable set of cardinals, and a measure-preserving
isomorphism 6 : A — A’ = [[,.; €., ®B; such that fc = ((cnc;) ® 1);¢; for every ¢ € €. In particular, for
any ¢ € I,

= 0 otherwise,
that is, 0[2.,] is just the principal ideal of 2’ corresponding to the factor €61®%i. Thus we have an
isomorphism 6; : A, — @ci(@%i such that 0,c = c® 1 for every c € €,.

(b) For each i € I, set H; = {n[;, : # € G}. Because m¢; = ¢; for every m € G, H; is a subgroup of
Aut,,, and 7+ 7|, is a group homomorphism from G to H;. Set O(m) = (7w, )ier for m € G. Then
©: G = [[;e; Hi is a group homomorphism. Because (c;)ics is a partition of unity in 2, © is injective. In
the other direction, suppose that @ = (¢;);cr is such that every ¢; is a measure-preserving automorphism
of A, and ¢;c = c for every c € €.,. Then we have a 7 € Autz2 such that ma = ¢;a whenever ¢ € I and
a C ¢; it is easy to check that 7 € G and now ©(w) = ¢. Thus

H; ={¢: ¢ € Aut2,, is measure-preserving, ¢c = ¢ for every c € €., }

for each i, and © is a group isomorphism between G and [[,.; H;.

(c) As in part (b) of the proof of 494J, the next step is to confirm that © is a homeomorphism for the
weak topologies. The argument is very similar.
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(i) If U is a neighbourhood of the identity in G, then there are a finite set K C A and an ¢ > 0
such that U includes {7 : 7 € G, fi(a A 7wa) < 2¢ for every a € K}. Let J C I be a finite set such that

Zie[\.] jic; < €, and set
V = {{¢i)icr : $; € H; for every i € I,
_ ' . N
a(lane) & gilanc)) < Tr#0)
H;. If ¢ = (¢;)icr belongs to V, and 7 = ©71(¢), then,

for every i € J and a € K}.

Then V is a neighbourhood of the identity in ]
fora € K,

icl

flanma) =Y f((anc)am(anc)) =Y A(anc) s éilanc))

iel il
- ] ] ) _ e#(J)
< ;u((amcl) Adi(anc)) + ';J,ucz < ()11 + € < 2¢,
7 1€

and 7 € U. As U is arbitrary, ©~! is continuous.

(ii) If V' is a neighbourhood of the identity in [ [, ; H;, then there are a finite J C I, finite sets K; C 2,
for j € J, and an € > 0 such that ¢ = (¢;)ics belongs to V' if ¢ € [[,.; H; and fi(a A ¢ja) < € whenever
j € Jand a € K;. In this case.

U={m:m€eG, plarma) <ewhenever a € |J;c; K;}

is a neighbourhood of the identity in G, and O(7) € V whenever 7 € U. As V is arbitrary, © is continuous.

(d) Now observe that under the isomorphism 6; the group H; corresponds to the group of measure-
preserving automorphisms of €., &%, fixing ¢ ® 1 for every ¢ € €.,. By 494J, H; is amenable. By (b)-(c)
and 449Ce, G is amenable.

(e) Finally, suppose that every atom of 2 belongs to €, and look more closely at the algebras Qlci@%i
and the groups H;. If ¢ € [ is an infinite cardinal, then 28; is homogeneous and 494J tells us that H; is
extremely amenable. If 0 € I, then By = {0,1} and €., ®%B is isomorphic to €, ; in this case, Hy consists
of the identity alone, and is surely extremely amenable. If ¢ € I is finite and not 0, then B; is finite; and
also €., is atomless. PP? If ¢ € &, is an atom, take an atom b of 9B;; then ¢ ® b is an atom of €ci<§>‘3¢, and
6~ 1(c®b) is an atom of 2 not belonging to €. XQ So in this case again, 494J tells us that H; is extremely
amenable. Thus G is isomorphic to a product of extremely amenable groups and is extremely amenable
(493Bd).

494L Theorem Let (2, i) be a measure algebra and G a full subgroup of Aut;®, with the topology
induced by the weak topology of Aut;z2. Then G is amenable. If every atom of 2 with finite measure
belongs to the fixed-point subalgebra of G, then G is extremely amenable.

proof (a) To begin with, suppose that (2, 1) is totally finite. Let € be the fixed-point subalgebra of G, and
G’ O G the subgroup {m : 7 € Aut;, mc = c for every ¢ € €}. Then G is dense in G', by 494Ge. € is of
course the fixed-point subalgebra of G’, so G’ is amenable (494K) and G is amenable (449F (a-ii)). If every
atom of A belongs to €, then G’ and G are extremely amenable, by 494K and 493Bf.

(b) Now for the general case.
(i) For each a € A/, set
G, ={m: 7€ G, 7issupported by a}, H,={n[2,: 7€ G,}.

Then H, is a full subgroup of Autga, A, (494Ha), and is isomorphic to G4; moreover, the isomorphism is
a homeomorphism for the weak topologies. B Set 0(7) = w[, for m € G,. (a) If V is a neighbourhood of
the identity in H,, let 6 > 0 and K € [A,]<“ be such that

V2o{¢d:¢eH,, nba ¢b) <6 for every b € K};
then
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U={n:meqG,, abanb) <4 for every b € K}

is a neighbourhood of the identity in G,, and 6(7) € V for every m € U. So 6 is continuous. (5) If U is a
neighbourhood of the identity in G, let 6 > 0 and K € [2]<% be such that

UD{r:meG,, abarnb) <46 for every b € K};
then
V={¢d:9€G,, a((bna)rdbna)) < for every b € K}
is a neighbourhood of the identity in G,, and §~1(¢) € U for every ¢ € V, because
6-1(6)(b) = p(bna)u (b\a), ba O~ (B)(b) = (bNa) & d(bna)
for every ¢ € G, and b € 2. Thus 0~ ! is continuous. Q
By (a), H,, and therefore G,, is amenable.

(ii) H = Upeqs Ga is dense in G. P If 7 € G, ag,... ,a, € A/ and € > 0, set a = sup,;<,, a; and
b = auma. Then there is a ¢ € G such that ¢ agrees with m on 2, and ¢ is supported by b (494Ga). In
this case, ¢ € Gy, and f(mwa; & ¢a;) =0 < e for every i <n. Q
Since (Gg)qeas is upwards-directed, and every G, is amenable, G is amenable (449Cb).
(iii) If every atom of 2 of finite measure is fixed under the action of G, then every atom of 2, is fixed
under the action of H,, for every a € 2f. So every H, and every G, is extremely amenable, and G is
extremely amenable, by 493Bb.

494M Lemma Let 2 be a Boolean algebra, G a full subgroup of Aut2(, and V' C G a symmetric set.
Let ~¢ be the orbit equivalence relation on 2l induced by the action of G, so that a ~¢ b iff thereisa ¢ € G
such that ¢a = b. Suppose that a € 2 and 7, 7’ € G are such that

T = (l<)7,_c) and ' = (lg’ﬂ—/c/ ) are exchanging involutions supported by a,

b~gb and a\ (buc) ~¢g a\ (V' ud),

TevV,

whenever ¢ € G is supported by a there is a ¢ € V' agreeing with ¢ on 2A,.
Then 7/ € V3.

proof (a) There is a ¢ € G, supported by a, such that ¢n’ = w¢p. P» We know that there are ¢, ¢1 € G
such that ¢o(a\ (V'uc’)) =a\ (buc) and @1’ = b. Set ¢po = wh17'; then ¢ € G, who = P17, Por’ = TPy
and ¢oc’ = c. Because (a\ (b'uc),t,c/,1\a) and (a\ (buc),b,c, 1\ a) are partitions of unity in 2, there is
a ¢ € Aut2 such that
¢d = god ifd Ca\ (b ud),

—pditdct,

= ¢odif d C C/,

=difdc1l\a

(381C once more); because G is full, ¢ € G. Of course ¢ is supported by a. Now

or'd = ¢d =mopd if d Ca\ (b uc)
(because ¢d = ¢od is disjoint from bu ¢),
= ¢om’'d = wp1d = wpd if d C V',
=¢p1n’'d =7mpad =mopd if d C
=¢d=d=mpdifdC 1\a.

So ¢’ = . Q
(b) By our hypothesis, there is a ¢ € V agreeing with ¢ on 2,. In this case,
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Yr'd = ¢on'd = w¢d = 7wpd if d C a,
— pd = mpd it d C 1\ a.
So ¢’ = mp and
' = tmp e V3

because V is symmetric and m, ¢ € V.

494N Lemma Let (2, i) be a probability algebra and G C Autz2 a full subgroup with fixed-point

subalgebra €. Suppose that 2 is relatively atomless over €. For a € 2, let u, € L*°(€) be the conditional
expectation of ya on €, and let G, be {m : 7 € G is supported by a}. Suppose that a Cein A and V C G
are such that

V is symmetric, that is, V = V1,

for every ¢ € G there is a b € V such that ¢ and ¢ agree on A,

there is an involution in V' with support a,

Ug < %ue.
Then G, CV¥® ={m ... mg:7m,...,mg € V}.
proof (a)(i) Note that 494Gb, in the language of conditional expectations, tells us that if b, ¢ € 2 then
b ~¢ c¢ in the notation of 494M iff up = u.. Similarly, 494Gd tells us that if (b;);cr and (¢;);cr are disjoint
families in A and up, = u,, for every ¢ € I, there is a m € G such that 7b; = ¢; for every i.

(ii) It follows that every non-zero b € 2 is the support of an involution in G. I Because 2 is relatively
atomless over €, there is a ¢ C b such that u, = %ub (494Ad); now there is a ¢ € G such that ¢c = b\ ¢, and

%
m = (cyb\ c) is an involution, belonging to G (381Sd once more), with support b. Q

(b) If 7’ € G is an involution with support @’ C e and ua = ug, then 7/ € V3. P Let my € V be an
involution with support a. Because 2 is Dedekind complete, 7 is an exchanging involution (382Fa); express

it as (bg x, co) and 7" as (b’ 5 ). Because why = ¢g, Up, = Ucy, While up, + Uy = Upgueg = Ua; SO Upy = %ua.
Similarly, uy = $uq = up,. On the other hand,

Uenag = Ue — Ug = Ue — Ug’ = Ue\a/
and e\ a ~g e\ a'. So the conditions of 494M are satisfied and 7’ € V3. Q
(c) Now suppose that 7 is any involution in G' with support included in a. Then 7 € V6. P Let b, ¢ be
such that 7 = (b ¢). Once again,
1 1
Up = Ue < 5”(17 Uerg = Ue — Ugq > E’U/aa
so we can find d C e\ a such that uqy = u., while there is also a b3 C b such that u,, = %ub. Set

— —
c1 =wbi, by=0b\bi, co=mwby, m =(birc1), w2=(b2nxc2);

then m; and my are involutions, with supports by Uc; and by Ucy respectively, belonging to G and such
that m = myme. Next, (a-iii) tells us that there are involutions 73, m4 € G with supports d and a\ (buc)
(if a = buec, set my = ). Since my, mo, 3 and 74 have disjoint supports, they commute (381Ef). Con-
sequently mimsmy, momsm, are involutions, belonging to G, with supports a; = bjuciu(a\ (buc))ud,
as =byUcaU(a\ (buc))ud respectively. But now observe that

Ug, = Up, + Uy +Ug — Up — Ue + UG = Up + Ug — Up = Uq,
and similarly u,, = uq. By (b), both 717374 and mamsmy belong to V3. But this means that
T = MMy = M MeMATS = M M3M4 Mo T3y
belongs to VO, as claimed. Q
(d) By 382N, every member of G, is expressible as the product of at most three involutions belonging

to Gg, so belongs to V8.
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4940 Theorem (KITTRELL & TSANKOV 09) Suppose that (2, /i) is an atomless probability algebra
and G C Aut; is a full ergodic subgroup (definition: 395Ge), with the topology induced by the uniform
topology of Aut; .

(a) If V C G is symmetric and G can be covered by countably many left translates of V in G, then
V3 = {mimy.. . m38 : T1,... ,m38 € V} is a neighbourhood of the identity in G.

(b) If H is a topological group such that for every neighbourhood W of the identity in H there is a
countable set D C H such that H = DW, and 6 : G — H is a group homomorphism, then 6 is continuous.

proof (a)(i) Let (¢,)nen be a sequence in G such that G = |J,,cy ¥ V. It may help if I note straight away
that « € V2. P There is an n € N such that ¢ € ¢V, that is, ¢, € V; as V is symmetric, ¢,, € V and
t = P11 belongs to V2. Q

(ii) As before, set G, = {7 : # € G, 7 is supported by a} for a € 2. Now there is a non-zero e € 2
such that for every m € G, there is a ¢ € V2 agreeing with 7 on .. PP Because 2 is atomless, there is a
disjoint sequence (b,)nen in A\ {0}. 7 Suppose, if possible, that for every n € N there is a 7, € Gy, such
that there is no ¢ € V? agreeing with 7, on 2, . If n € N, then V2 = (¢,V)~ %,V and 7, = ¢~ 17, so
there must be a 7, € Gy, , either ¢ or m,, not agreeing with ¢ on 2;, for any ¢ € ¥, V. Define ¢ € Autz2
by the formula

d =l difn €N anddC by,
=difdn supb, =0.
neN

Because G is full, ¢ € G and there is an m € N such that ¢ € v,,,V. But now =}, agrees with ¢ on 2 _,
contrary to the choice of /.. X So one of the b, will serve for e. Q

(iii) There is an involution 7 € V2, supported by e, such that ji(supp ) < %ﬂe. P Take disjoint b,
Y C e such that fib = i’ = Lfie. Because G is full and ergodic, there is a ¢ € G such that ¢b = b'. (By

395G, the fixed-point subalgebra of G is {0, 1}, so we can apply 494Gc.) For every d € 2y, set ¢q = (d » ¢d).
Because G is full, ¢4 € G. Observe that

DcPd = PerdPendPendPive = PerdPdve = Pend

forall ¢, d Cb. Set A, ={d:d €Uy, ¢pag € ¥, V} for each n € N. Since 2, is complete under its measure
metric, there is an n € N such that A,, is non-meager; because 2 is atomless, %A, has no isolated points; so
there are dy, di € A, such that 0 < fi(dy A dy) < %ﬂe. Set d = dy A dy. Then

ba = Payba, = by ba, € V1,V =V,
and we can take ¢4 for 7. Q

(iv) Taking a = supp 7 in (iv), @ and e satisfy the conditions of 494N with respect to V2 and € = {0, 1},
so G, C (V)18 =36,

(v) Finally, there is a § > 0 such that, in the language of 494C, GNU(1,6) € V3%, P? Otherwise,
we can find for each n € Na 7w, € GNU(1,27" ua) \ V38, Set n,, = ¥,mntb,t, b, = suppm,; then
fib, = fi(suppm,) < 27" 'fia for each n (381Gd). So b = sup,,cy b, has measure at most jia, and there is
a ¢ € G such that ¢b C a. In this case, there is an n € N such that ¢! € ¢,,V, that is, ¢, € V=1 = V.
Now 7 = ¢, mnth, L¢~1 has support ¢b,, C a, so belongs to V36. But this means that m,, = ¢, ¢~ 1wy,
belongs to V38, contrary to the choice of m,,. XQ

So V38 is a neighbourhood of ¢ in G, as claimed.

(b) Let W be a neighbourhood of the identity in H. Then there is a symmetric neighbourhood Wi of
the identity in H such that W3® C W. Set V = 0~}[W;]. Let W5 be a neighbourhood of the identity in
H such that W{le C W1, and (yn)nen a sequence in H such that H = UneN YynWa. For each n € N,
choose ¢, € G such that 0(v,,) € y,Ws whenever 0[G] meets y,Ws. If © € G, there is an n € N such that
0() € y,Wo; in this case, 0(¢,,) € y,Wa, so

9(%7177) € WQ_lyfglanQ g Wl

and ¢, 'r € V. Thus 7 € 4,,V; as 7 is arbitrary, G = Unen ¥nV. By (a), V38 is a neighbourhood of ¢; but
V38 C oL W38] C 0L [W], so 6~ 1[W] is a neighbourhood of . As W is arbitrary,  is continuous (4A5Fa).
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494P Remark Note that if a topological group H is either Lindelof or ccc, it satisfies the condition
of (b) above. I Let W be an open neighbourhood of the identity in H. («) If H is Lindeldf, the result
follows immediately from the fact that {yW : y € H} is an open cover of H. (8) If H is ccc, let W,
be an open neighbourhood of the identity such that I/V1Wf1 C W, and D C H a maximal set such that
(yWi)yep is disjoint. Then D is countable. If x € H, there is a y € D such that W7 NyW; # 0, that is,
x € yWi Wt CyW; thus H = DW. Q See also 494Yh.

494Q Some of the same ideas lead to an interesting group-theoretic property of the automorphism
groups here.

Theorem (see DROSTE HOLLAND & ULBRICH 08) Let (2, i) be a probability algebra and G a full subgroup
of Aut;2 such that 2 is relatively atomless over the fixed-point subalgebra € of G. Let (V,)nen be a non-
decreasing sequence of subsets of G such that V.2 C V,,;; for every n and G = Unen Va- Then there is an
n € N such that G =V,,.

proof (a) For the time being (down to the end of (e) below), suppose that every V;, is symmetric. As in
494N, for each a € 2 write u, for the conditional expectation of xa on €, and set G, = {7 : 7w € G, 7 is
supported by a}.

(b) There are an a; > 0, an a1 € A and an ng € N such that u,, = a3x1 and for every m € G, there is a
¢ €V, agreeing with 7 on 2(,,. 7 Otherwise, because 2 is relatively atomless, we can choose inductively
a disjoint sequence (by,)nen in 2A such that u,, = 27"~ 1y1 for each n (use 494Ad). For each n € N there
must be a m, € Gy, such that there is no ¢ € V,, agreeing with 7, on %, . Because G is full, there is a
¢ € G agreeing with m, on 2, for every n. But now ¢ ¢ U,,cy Va = G. XQ

(c) There is an ag C ay such that u,, = %alxl and there is an involution m € G with support ag. B
Take disjoint a, a’ C a; such that u, = ue = ta;x1 (494Ad again). Set ag = aua’, so that u,, = %alxl.

There is a ¢ € G such that ¢a = o, and m = (a 4 a’) is an involution in G with support ag. Q Let ny > ng
be such that 7 € V,,,.

(d) By 494N, G,, C anls C Viu,45. Taking k > ai, 494Ad once more gives us a disjoint family (d;);<x in
1

A such that ug, = %Xl for every i < k; since Zf;ol ad; =1, (d;)i<k is a partition of unity, while ug, < %alxl

for every i. For i, j <k, let ¢;; € G be such that ¢;;(d; ud;) C ap (494Gc). Let ny > ny + 5 be such that
¢ij € Vp, for all 4, j < k. Then any involution in G belongs to V,f’zkz. P Let m € G be an involution; by

382Fa again, we can express it as (e e’). For i, j <k, set e;; = end; n7d;, ej; = me;; = €’ nmwd; Ndj; set
i = (€ij » egj). In this case, because all the e;; and egj are disjoint, (m;;); j<k is a commuting family, and

we can talk of [, i<k Tijs which of course is equal to m. Now, for each i, j < k,

GigTijbi;t = (dijei; $ismdi pijei;)
(381Sb) belongs to Gy, C Vi, 45 € Vi, So
Tij = G5 biimii b5 bij

belongs to V,f; and ™ =[] m;; belongs to V,f’f. Q

i,j<k
(e) Since, by 382N again, every member of G is expressible as a product of at most three involutions

belonging to G, G C Vr?f2 C V,,, where n = ng + [logy (9%2)].

(f) This completes the proof on the assumption that every V,, is symmetric. For the general case, set
W, =V, NV, for every n. Then (W,,),en is a non-decreasing sequence of symmetric sets with union G,
and

W2 CV2NV, 2= V2N (V)™ SV NV = Was

for every n, so there is an n € N such that G = W,, = V,,.
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494R There are many alternative versions of 494Q); see, for instance, 494Xm. Rather than attempt a
portmanteau result to cover them all, I give one which can be applied to the measure algebra of Lebesgue
measure on R and indicates some of the new techniques required.

Theorem Let (2, i) be an atomless localizable measure algebra, and G a full ergodic subgroup of Aut;2.
Let (V,)nen be a non-decreasing sequence of subsets of G, covering G, with V,2 C V,, 41 for every n. Then
there is an n € N such that G = V,,.

proof (a) My aim is to mimic the proof of 494Q. We have a simplification because G is ergodic, but 494M
will be applied in a different way. As before, it will be enough to consider the case in which every V, is
symmetric; as before, I will write G, for {7 : m € G, 7 is supported by a}.

Because G is ergodic, 2 must be quasi-homogeneous (374G); as it is also atomless, there is an infinite
cardinal & such that 2l, is homogeneous, with Maharam type &, for every a € 20/ \ {0} (374H). If (A, 1)
is totally finite, then the result is immediate from 494Q, normalizing the measure if necessary. So I will
assume that (2(, i) is not totally finite. In this case, the orbits of G can be described in terms of ‘magnitude’
(332Ga). If a € A/, maga = fia; otherwise, maga is the cellularity of 2,, and there will be a disjoint family
in A, of this cardinality (332F). Set A = mag 1 > w; then whenever a € 2 and maga = A, there is a partition
of unity (an)nen in A, such that maga, = A for every n.

(b) The key fact, corresponding to 494Gd, is as follows: if {(a;);cr and (b;);ecs are partitions of unity in
2 such that maga; = magb; for every i € I, then there is a ¢ € G such that ¢a; = b; for every i € I.

P (i) Consider first the case in which all the a;, b; have finite measure. In this case, let ((¢j,7j,d;)) e
be a maximal family such that
—— {cj)jes is a disjoint family in A4S\ {0},
—— (d;)jes is a disjoint family in 2,
— for every j € J, m; € G, mjc; = d; and there is an ¢ € I such that ¢; C a; and d; C b;.
Set a =1\ sup;c;c;j and b =1\ sup,c;d;. T If a # 0, there is an i € I such that ana; # 0. In this case,

Z ﬂ(bz n dj) = Z /_I,dj = Z /?L’IT;ldj

jedJ j€J7dj cb; jEJ,dj cb;
= E pcj < pa; = by,
JjEJ,cj Ca;

and bnb; # 0. Because G is ergodic, there is a m € G such that m(ana;)n(bnb;) # 0. Setting d =
ana; Nt (bnb;), we ought to have added (d,w,wd) to {(c;,m;,d;))jes. X

Thus a = 0; similarly, b = 0 and (c;)jes, (d;)jes are partitions of unity in 2. Because 2 is Dedekind
complete, there is a ¢ € Aut 2 such that ¢d = 7;d whenever j € J and d C ¢;, and now ¢ € G and ¢a; = b;
for every i € I.

(ii) For the general case, refine the partitions (a;);er and (b;);er as follows. For each i € I, if ia; = fib;
is finite, take \; = 1, ¢;0 = a; and d;p = b;; otherwise, take A\; = maga; = magb;, and let (cie)ecn,, (dig)e<r,
be partitions of unity in 2,,, Ay, respectively with fic;c = fidie = 1 for every £ < A; (332I). Now (i) tells us
that there is a ¢ € G such that ¢c;e = die whenever ¢ € I and £ < );, in which case ¢a; will be equal to b;
for every i € I. Q

(c) There are an a; € 2 and an ng € N such that maga; = mag(1\ a1) = A and whenever 7 € G,, there
is a ¢ € V,,, agreeing with m on A,,. P? Otherwise, let (b,)nen be a partition of unity in 2 such that
mag b, = A for every n. For each n € N there must be a m, € G}, such that there is no ¢ € V,, agreeing with
7p on Ay, . Now there is a ¢ € G agreeing with m, on %, for every n. But in this case ¢ ¢ |J,cn Vi = G-

XQ
(d) There is an ag C a1 such that magag = mag(a; \ ap) = A and there is an involution 7y € G with
support ag. P Take disjoint a, a’, a” C a; all of magnitude A; by (b), there is a ¢ € G such that ¢a = o/, and

7o = (a ¢ a’) is an involution with support ap = a Ua’ of magnitude A, while a1 \ ag 2 o’ also has magnitude
A. Q Let ny > ng be such that mp € V,,,.
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(e) If 7 € G is an involution with support b; C a; and magb; = mag(a; \by) = A, then 7 € V2. P

— — ) B -
Express mp and 7 as (a r, @’) and (b, b') respectively, and set @ = a1 \ (aud’), b = ay \ by; then a, o/, b, V/,
a and b must all have magnitude \. By (b), there is a ¢g € G such that

pob=a, @b =d/, ¢ob=4a, ¢o(l\a1)=1\ai.

In particular, a ~¢ b and @ ~¢ b, in the language of 494M, and (¢) tells us that the final hypothesis of 494M
is satisfied; so m € V2 . Q
%
(f) Now suppose that 7 is any involution in Go,. Then 7w € V,¥ . P Let b, b’ be such that 7 = (b V).
Next take disjoint ¢, ¢ C a; \ ag such that magc = magc¢’ = mag(a; \ (ap Ucuc’)) = A. Then there there is
an involution 7’ € G exchanging ¢ and ¢, and «’, 7n’ are both involutions in G,, satisfying the conditions
of (). So both belong to V;? and m = nr'n’ € V.. Q

(g) Set dy = ag, di = a1 \ ap and d2 = 1\ a;. Then dy, d; and dy all have magnitude A, so for all ¢, j < 3
there is a ¢;; € G such that ¢;;(d; Ud;) = do. Let ng > ny + 3 be such that ¢,; € V,,, for all ¢, j < 3. Then

any involution in G belongs to ij P Let m € G be an involution; express it as (e e’). For i, j < 3, set

/ / / 4 /
eij = endinmd;, ej; = me;; = €' nwd; Ndy; set mi; = (€ij = eij). In this case, because all the e;; and e;; are
disjoint, (m;;); j<3 is a commuting family, and we can talk of Hi7j<3 m;5, which of course is equal to 7. Now,

for each pair i, j < 3,

—1
Pijmijiy = (ij€ij g, mgt Pig€i)
is an involution in G, so belongs to Vfl C V43 CVy,. So
—1 —1
Tij = G55 ijTij®i; i

belongs to Vi; and m = Hi,j<3 mi; belongs to Vn227 Q

(h) Since every member of G is expressible as a product of at most three involutions in G' (382N once
more), G =V =V, 7.

494X Basic exercises (a) Let (2, i) be a semi-finite measure algebra. Show that the natural action of
Aut; A on A7 identifies Aut; 2 with a subgroup of the isometry group G of 2/ when 21/ is given its measure
metric, and that the weak topology on Aut; % corresponds to the topology of pointwise convergence on G
as described in 441G.

(b) Let (2, 1) be a semi-finite measure algebra. Show that the following are equiveridical: (i) 2 is purely
atomic and has at most finitely many atoms of any fixed measure; (ii) Autz2 is locally compact in its
weak topology; (iil) Aut;2 is compact in its uniform topology; (iv) Aut;2 has a Haar measure for its weak
topology.

(c) Let (A, 1) be a measure algebra. Show that the weak topology on Autz2l is that induced by the
product topology on A% if 2 is given its measure-algebra topology.

(d) Let (A, ) be a semi-finite measure algebra, G' a subgroup of Aut;2 and G its closure for the weak
topology on Aut;2(. Show that G is ergodic iff G is ergodic.

(e) Let I be a set, v; the usual measure on {0,1}!, and (B;,7;) its measure algebra. Let ¥ be the
group of measure space automorphisms g of {0, 1}1 for which there is a countable set J C I such that for
every x € {0,1}! there is a finite set K C J such that g(z)(i) = z(i) for every i € I \ K. For g € U, let
7y € Auty, B be the corresponding automorphism defined by saying that 7 ,(E*) = ¢~ [E]* whenever v;
measures E. (i) Show that G = {my : ¢ € U} is a full subgroup of Auty, B;. (ii) Show that G is ergodic
and dense in Auty, B for the weak topology on Auty, Br.

(f) Let (A, i) be the measure algebra of Lebesgue measure on [0, 1], and give Aut; 2 its weak topology.
(i) Show that the entropy function h of 385M is Borel measurable. (Hint: 385Xj.) (ii) Show that the set of
ergodic measure-preserving automorphisms is a dense Gy set. (Hint: let D C 2 be a countable dense set.

Show that m € Aut;2 is ergodic iff inf, ey ”r%i—l S o x(mid) — pd - x1|jy = 0 for every d € D.)
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(g) Let (A, &) be an atomless semi-finite measure algebra. (i) Show that Aut;2( is metrizable under its
weak topology iff (2, fi) is o-finite and has countable Maharam type. (ii) Show that Aut;2 is metrizable
under its uniform topology iff (A, i) is o-finite.

(h) Let (A, ) be a localizable measure algebra. Show that supp : Autz2A — 2 is continuous for the
uniform topology on Aut;®2 and the measure-algebra topology on 2.

(i) Let (2, z) be an atomless homogeneous probability algebra. Show that there is a weakly mixing
measure-preserving automorphism of 2 which is not mixing. (Hint: 372Yj).

(j) Let (2, ) be a probability algebra, 7 € Aut;2l and T the corresponding operator on L2 = L& (2, fi).
(i) Show that 7 is not ergodic iff there is a non-zero v € L2 such that [v =0 and Tw = v. (ii) Show that
7 is not weakly mixing iff there is a non-zero v € L% such that [v =0 and T'v is a multiple of v. (iii) Let
(AR2L, A) be the probability algebra free product of (2, fi) with itself (definition: 325K), and # € Aut; (ADA)
the automorphism such that 7(a ® b) = ma ® 7b for all a, b € 2A. Show that 7 is weakly mixing iff 7 is
ergodic iff 7 is weakly mixing. (Hint: consider T3 (v ® 9).)

(k) Let (2, 1) be a measure algebra. For m € Aut;2 let T, be the corresponding operator on L% =
LA(A, i). Show that (m,v) — Trv : Aut; A x LE — L2 is continuous if Autz2 is given its weak topology
and LZ its norm topology.

(1) Let (2, 1) be an atomless probability algebra; give 2( its measure metric. Show that the isometry
group of 2L, with its topology of pointwise convergence, is extremely amenable. (Hint: every isometry of 2
is of the form a — ¢ A 7a, where ¢ € 2 and 7 € Aut;2; now use 493Bc.)

(m) Let A be a homogeneous Dedekind complete Boolean algebra, and (V;,)nen a non-decreasing sequence
of subsets of Aut®, covering Aut A, with V;2 C V,,;; for every n. Show that there is an n € N such that
AutA =V,.

494Y Further exercises (a) Let (A, 1) be a semi-finite measure algebra. For m € Aut; 2, let T :
LO(2A) — LY(2) be the Riesz space automorphism such that Ty (xa) = x(mwa) for every a € A (364P). Take
any p € [1,00[ and write L}, for LP(2, i) as defined in 366A. Set G), = {T,[L} : 7 € AutzA}. (i) Show
that m — T [Lﬁ is a topological group isomorphism between Aut; 2, with its weak topology, and G, with
the strong operator topology from B(Ljy; L%) (3AS5I). (ii) Show that G, is closed in B(L%; LY). (iil) Show
that if (A, 1) is totally finite, then 7 +— T} [L}L is a topological group isomorphism between Aut; 2, with its
uniform topology, and G with the topology of uniform convergence on weakly compact subsets of L};.

(b) Let 2 be any Boolean algebra. For I C 2, set Uy = {7 : 7 € Auwt2, ma = a for every a € I'}. (i)
Show that {U; : I € [A]<“} is a base of neighbourhoods of the identity for a Hausdorff topology on Aut 2l
under which Aut 2l is a topological group. (ii) Show that if 2 is countable then Aut®, with this topology,
is a Polish group.

(c) Let (A, 1) be a semi-finite measure algebra. Show that Aut;2, with its weak topology, is weakly
a-favourable.

(d) Let z be counting measure on N. (i) Show that if we identify Aut; PN with the set of permutations
on N, the weak topology of Autz PN is the topology induced by the usual topology of NY. (ii) Show that
there is a comeager conjugacy class in Aut; PN.

(e) (ROSENDAL 09) Let (2, &) be the measure algebra of Lebesgue measure on [0, 1], and give Autz 2 its
weak topology. Let V be a countable base of open neighbourhoods of ¢ in Autz2(. (i) Show that if I C N is
infinite and V' € V, then {m : 7 € Autz, 7™ = for some n € I} is dense in Autz®, and that B(I,V) =
{m 7™ € V for some n € I} is dense and open. (ii) Show that if I C N is infinite then C(I) = [, ¢\, B(I,V)
is comeager, and is a union of conjugacy classes. (iii) Show that ({C(I) : I € [N]*} = {u}. (iv) Show that
every conjugacy class in Autz2l is meager.
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(f) Let (2, 1) be a measure algebra. Suppose that m € Autz2 is aperiodic. Show that the set of
conjugates of 7 in Aut; % is dense for the weak topology on Aut; 2.

(g) Let (A, ) be a probability algebra. Show that the set of weakly mixing automorphisms, with the
subspace topology inherited from the weak topology of Autz%, is weakly a-favourable.

(h) Let G be a Hausdorfl topological group. Show that the following are equiveridical: (i) for every
neighbourhood V' of the identity in G there is a countable set D C G such that G = DV (ii) there is a
family (H;);cr of Polish groups such that G is isomorphic, as topological group, to a subgroup of [],.; H;.

(i) Let (A, 1) be an atomless o-finite measure algebra, and G a full ergodic subgroup of Aut;2. Let
V C Aut; A be a symmetric set such that countably many left translates of V' cover Aut;2. Show that
V228 is a neighbourhood of ¢ for the uniform topology on Auty 2.

(j) Let (2, i) be a purely atomic probability algebra with two atoms of measure 2="~2 for each n € N;
give Aut; 2 its uniform topology. (i) Show that Aut;2( = 75 is compact, therefore not extremely amenable,
and can be regarded as a linear space over the field Z,. (ii) Show that there is a strictly increasing sequence
of subgroups of Aut;2 with union Autz2(. (iii) Show that there is a subgroup V of Autz®, not open,
such that Aut;2 is covered by countably many translates of V. (iv) Show that there is a discontinuous
homomorphism from Aut;2 to a Polish group.

(k) Let 2 be a Dedekind o-complete Boolean algebra. Show that it is not the union of a strictly increasing
sequence of subalgebras.

4947 Problems For k£ € N, say that a topological group G is k-Steinhaus if whenever V' C G is a
symmetric set, containing the identity, such that countably many left translates of V cover G, then V¥ is a
neighbourhood of the identity. For your favourite groups, determine the smallest k, if any, for which they
are k-Steinhaus. (See ROSENDAL & SOLECKI 07.)

494 Notes and comments In 494B-494C I run through properties of the weak and uniform topologies
of Autz2 in parallel. The effect is to emphasize their similarities, but they are of course very different —
for instance, consider 494Xg, or the contrast between 494Cg and 494Ge. Both have expressions in terms
of standard topologies on spaces of linear operators (494Ya), and the weak topology corresponds to the
pointwise topology of an isometry group (494Xa). There are other more or less natural topologies which can
be considered (e.g., that of 494YDb), but at present the two examined in this section seem to be the most
important. I spell out 494Be and 494Ci to show that the groups here provide interesting examples of Polish
groups with striking properties.

The formulation of 494D is specifically designed for the application in the proof of 494E(b-ii); the version
in 494Xj(ii) is much closer to the real strength of the idea, and takes us directly to one of the important
reasons for being interested in weakly mixing automorphisms in 494Xj(iii). The proof of 494D through
Bochner’s theorem saves space here, but fails to signal the concept of ‘spectral resolution’ of a unitary
operator on a Hilbert space (RiEsz & Sz.-NAGy 55, §109), which is an important tool in understanding
operators T and hence automorphisms 7.

While 494H and 494G are of some interest in themselves, their function here is to prepare the way to
4941, 4940 and 494Q. The first belongs to the series in §493; like the results in that section, it depends
on concentration-of-measure theorems, quoted in part (e) of the proof of 4941 and again in part (e) of the
proof of 494J. In addition, for the generalization from ergodic full groups to arbitrary full groups, we need
the structure theory for closed subalgebras developed in §333.

4940 and 494Q-494R break new ground. The former, following KITTRELL & TSANKOV 09, examines
a curious phenomenon identified by ROSENDAL & SOLECKI 07 in the course of a search for automatic-
continuity results. We cannot dispense entirely with the hypotheses that 2 should be atomless and G
ergodic (494Yj), though perhaps they can be relaxed. Many examples are now known of k-Steinhaus groups
(4940, 494Y1i), but as far as I am aware there are no non-trivial cases in which the critical value of £ has been
determined (494Z). The automatic-continuity corollary in 4940Db is really a result about homomorphisms
into Polish groups (see 494Yh), but applies in many other cases (494P).
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The phenomenon of 494Q), which we might call a (negative) ‘algebraic cofinality’ result, has attracted
attention with regard to many algebraic structures, starting with BERGMAN 06. Apart from the variations
of 494Q) in 494R and 494Xm, there is a simple example in 494Yk. 494Yj again indicates one of the limits of
the result.

Version of 20.12.08/1.1.19

495 Poisson point processes

A classical challenge in probability theory is to formulate a consistent notion of ‘random set’. Simple
geometric considerations lead us to a variety of measures which are both interesting and important. All
these are manifestly special constructions. Even in the most concrete structures, we have to make choices
which come to seem arbitrary as soon as we are conscious of the many alternatives. There is however
one construction which has a claim to pre-eminence because it is both robust under the transformations
of abstract measure theory and has striking properties when applied to familiar measures (to the point,
indeed, that it is relevant to questions in physics and chemistry). This gives the ‘Poisson point processes’ of
495D-495E. In this section I give a brief introduction to the measure-theoretic aspects of this construction.

495A Poisson distributions We need a little of the elementary theory of Poisson distributions.

(a) The Poisson distribution with parameter v > 0 is the point-supported Radon probability mea-
sure v, on R such that v {n} = i:e_"’ for every n € N. (See 285Q and 285Xr.) Its expectation is

n
> (n%nl)'e’V = 1. Since v,N =1, v, can be identified with the corresponding subspace measure on N.
It will be convenient to allow v = 0, so that the Dirac measure on R or N concentrated at 0 becomes a
‘Poisson distribution with expectation 0.

(b) The convolution of two Poisson distributions is a Poisson distribution. B If o, § > 0 then

(v # v3) ({n}) = / vs({n} — t)valdt)

(444A)
=2 e e
i=0 ' '
— i, .| L alfrTie B = (@4B)" (—a-p
nt e~ il(n—1i)! n!

for every n € N, s0 v * g = voy5. Q So if f and g are independent random variables with Poisson
distributions then f + g has a Poisson distribution (272T2).

(c) If (fi)ier is a countable independent family of random variables with Poisson distributions, and
a = E(fi) is finite, then f = >, ; fi is defined a.e. and has a Poisson distribution with expectation
a. TP For finite I we can induce on #(I), using (b) (and 272L) for the inductive step. For the infinite
case we can suppose that I = N. In this case f; > 0 a.e. for each i so f = > .° f; is defined a.e. and has
expectation «, by B.Levi’s theorem. Setting g, = Z?:o fi for each n, so that g, has a Poisson distribution
with expectation 8, = Y7, o, we have

RN bl
Pr(f <) = lim Pr(g, <v)= lim Z&efﬁ" =) Ze@

n—00 n—00 4 il £ 7l
=0 =0

for every v > 0, so f has a Poisson distribution with expectation o. Q

(©) 2003 D. H. Fremlin
2Formerly 272S.
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(d) I find myself repeatedly calling on the simple fact that 1 —e~7(1+7) = v (N\ {0,1}) is at most 1~?
for every > 0; this is because & (3t + e t(1+¢)) =¢(1—e~*) > 0 for t > 0.

495B Theorem Let (X, Y, ;1) be a measure space. Set ©f = {E: E € ¥, uE < oco}. Then for any v > 0
there are a probability space (2, A, A) and a family (gg)gexs of random variables on Q such that
(i) for every E € ¥/, gp has a Poisson distribution with expectation yuFE;
(ii) whenever (F;);c; is a disjoint family in %7, then (gg, )ics is stochastically independent;
(iii) whenever (E;)en is a disjoint sequence in ©f with union E € ¥/, then gp =,.. Z;’io 9B, -

proof (a) Let H C {H : H € ¥, 0 < pH < oo} be a maximal family such that H N H' is negligible
for all distinct H, H' € H. For H € H, let uy be the normalized subspace measure defined by setting
wyE = pE/pH for E € XNPH, and Ay the corresponding product probability measure on H N Next, for
H € H, let vy be the Poisson distribution with expectation yuH, regarded as a probability measure on N.
Let A be the product measure on Q = [ 4, (N x HY), giving each N x H" the product measure vy x Ap.
For w € Q, write mg (w), xm;(w) for its coordinates, so that w = ((mu(w), (xg;(W))jen)) Hen-

(b) For H € H and E € %, set ggp(w) = #{Jj : j < mu(w), vaj(w) € E}) when this is finite. Then

gu E is measurable and has a Poisson distribution with expectation yu(H N E); moreover, if Fy,... ,E, € 3
are disjoint, then gy g,,... ,9nE, are independent. I It is enough to examine the case in which the E;
cover X. Then for any ng,... ,n, € N with sum n,

Mw : ggE, (w) = n; for every i < r}
=Mw:#{j:j <mpgw), zu; € E;}) =n, for every ¢ <r}
=Mw:mpgw)=n, #{j:j<n, zg; € E;}) =n,; for every i <r}
= Z Mw :mpy(w) =n, zy; € E; whenever i <r, j € J;}

Jo,... ,J, partition n
#(J;)=n; for each i<r

= Z ('Y:U'H —'yuH H HQE) n;

Jo,...,Jr partition n
#(J;)=n; for each i<r

=L T (a(H 1 Eo))™

nol...n,.!'n! .
=0

_ [ QB e

n;!
=0

which is just what we wanted to know. Q
Obviously gyg = Z;’io g g, whenever (E;);cy is a disjoint sequence in ¥ with union E, and ggyg = 0
a.e. if y(HNE) =0.

(c) Suppose that Hy,...,H,, € H are distinct and FEy,...,E, € ¥ are disjoint. Then the random
variables gp; g, are independent. ¥ For each j < m, gu, g, is Ay,-measurable, where Ay, is the o-algebra
of subsets of Q0 which are measured by A and determined by the single coordinate H; in the product
[Tren (N x HY). Now the o-algebras Ay, are independent (272Ma). So if we have any family (n;;)i<r j<m
in N,

Mw i gu; B, (w) = ny; for every i <7, j <m}
m
= H Mw : gu; B, (w) = ny; for every i <r}
m T
= [T IIMw: 95,5 (w) = nij}
j=0i=0
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by (b); and this is what we need to know. Q

(d) For E € &/, set Hp = {H : H € H, p(E N H) > 0}; then Hp is countable, because H is almost
disjoint, and pE = )y, p(H N E), because H is maximal. Set gp(w) = >y, 9ur(w) when this is
finite. Then gg is defined a.e. and has a Poisson distribution with expectation yuE (495Ac). Also (9g;)icr
are independent whenever (E;);cs is a disjoint family in . P It is enough to deal with the case of finite
I (272Bb). Set H* = U,c; HE,, so that H* is countable, and for i € I set g; = 5« 9uE,- Then each
g; is equal almost everywhere to the corresponding gg,, and (g);cs is independent, by 272K. (The point is
that each g, is Af-measurable, where A} is the o-algebra generated by {gup, : H € H}, and 272K, with (c)
above, assures us that the A} are independent.) It follows at once that (gg,)ics is independent (272H). Q
This proves (i) and (ii).

(e) Similarly, if (E;);en is a disjoint sequence in X/ with union E € X7, set H* = Hp U ;e Hp,. For
each i € N, set g; = > pcy- 9mE;; then g =, gr,. Now

o o %)
ZgE, =a.e. Zg; = Z ZQHE7 = Z 9JHE =a.e. 9E,
=0 =0

HeH* i=0 HeH*

as required by (iii).

495C Lemma Let X be a set and £ a subring of the Boolean algebra PX. Let H be the family of sets
of the form

{§:5C X, #(SNE;)=n, for every i € I'}

where (E;);er is a finite disjoint family in £ and n; € N for every i € I. Then the Dynkin class T C P(PX)
generated by H (136A) is the o-algebra of subsets of PX generated by H.

proof Let @ be the set of functions ¢ from finite subsets of £ to N, and for g € @ set
H,={S:SCX,#(SNE)=q(E) for every E € domg}.

Our family # is just {H, : ¢ € @, domgq is disjoint}.
If ¢ € @Q and domg is a subring of £, then H, € T. PP Being a finite Boolean ring, dom ¢ is a Boolean

algebra; let A be the set of its atoms. Then H, is either empty or equal to Hy; 4; in either case it belongs
toT. Q

If ¢ is any member of @, then H, € T. P Let & be the subring of PX generated by domg. Then
H, = Ung,eQdom g =& Hy 1s the union of a countable disjoint family in T, so belongs to T. Q

Now observe that H; = {H, : ¢ € Q} U {0} is a subset of T closed under finite intersections, so by
the Monotone Class Theorem (136B) T includes the o-algebra generated by H1, and must be precisely the
o-algebra generated by H.

495D Theorem Let (X,Y, ) be an atomless measure space. Set ¥/ = {E : E € &, uF < oo}; for
E €%/ set fp(S) = #(SNE) when S C X meets E in a finite set. Let T be the o-algebra of subsets of
PX generated by sets of the form {S: fg(S) = n} where E € ¥ and n € N. Then for any v > 0 there is a
unique probability measure v with domain T such that

(i) for every E € ©f, fp is measurable and has a Poisson distribution with expectation yuF;

(ii) whenever (E;);cr is a disjoint family in ©/, then (fg,);es is stochastically independent.

proof (a) Let H, (vi)men, (um)men, (Wg)men, Am)men, @, A, (HE)pess and (gr)pexs be as in the
proof of 495B. Note that all the p; are atomless (234Nf3). Define ¢ : Q — PX by setting

dw) ={zm;jw): HeH, j<mpy(w)}
for w € Q.

(b) For E € ¥/, let Ag be the set of those w € Q such that
either there are H € H \ Hp, j € N such that zp;(w) € E

3Formerly 234F.
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or there are distinct H, H' € Hg and j € N such that zy;(w) € H’

or there is an H € H such that the zg;(w), for j € N, are not all distinct.
Then for any sequence (E;)ien in 7, A (U;en Ag,) = 0. P Set H* = {J; o He,, so that H* is a countable
subset of H. For H € H, set

Fp=H\(U{E;:i€N, HNE; is negligible} UU{H' : H' € H*, H # H}),

Wy = {z : 2 € HY is injective},
so that Fy is p/y-conegligible and Wy is Ag-conegligible (because iy is atomless, see 254V). Now
O\ Uren 4, 2 [gen(N x (Wy 0 Fpp))

has full outer measure in €2, by 254Lb, and its complement has zero inner measure (413Ec). Q
It follows that there is a probability measure A on (2, extending A, such that AAg = 0 for every E € >/
(417A). Let vg be the image measure A¢~ 1.

() If E e X andw € Q\ Ag, then fr(p(w)) = gr(w) if either is defined. P If H € H, then all the
xp;(w) are distinet; if H € H\H g, no xg;(w) can belong to E; if H, H' € Hp are distinct, then no z g ;(w)
can belong to H'. So all the zy,(w), zgk(w) for H, H € Hg and j, k € N must be distinct, and

fe(o(W)) = #{zm;j(w) : H € H, j <muw), zu;(w) € E})
=#({(H,5) : H € Hp, j <mu(w), zm;(w) € E})

= Z gueWw) = gr(w)

HeHE
if any of these is finite. @ It follows at once that if Ey, ... , E, € %/ are disjoint, then {w : fg, (¢(w)) = g, (w)
for every i < r} is A-conegligible, so that if ng,... ,n, € N then

vo{S : f5,(S) = n; for every i <r} = Mw : fg,(¢(w)) = n; for every i < r}

= Mw : gg, (W) = n; for every i < r}

= Mw: gg,(w) =n,; for every i <r}
T
— H QRE)™ | —yuE;
o n;! ’
i=0
Thus every fg, is finite vg-a.e., belongs to £%(1p) and has a Poisson distribution with the appropriate
expectation, and they are independent.

(d) As T is defined to be the o-algebra generated by the family {fg : E € %/}, it is included in the
domain of vy. Set v = 1| T; then v has the properties (i) and (ii). To see that it is unique, observe that if
v’ also has these properties, then {4 : vA = v’ A} is a Dynkin class containing every set of the form

{S: fg,(S)=n,; fori <r}

where Ey,...,E, € 7 are disjoint and ng,... ,n, € N. By 495C it contains the o-algebra generated by
this family, which is T. So v and v’ agree on T, and are equal.

495E Definition In the context of 495D, I will call the completion of v the Poisson point process on
X with intensity or density ~.

Note that the Poisson point process on (X, p) with intensity v > 0 is identical with the Poisson point
process on (X, yu) with intensity 1. There would therefore be no real loss of generality in the main theorems
of this section if I spoke only of point processes with intensity 1. I retain the extra parameter because
applications frequently demand it, and the formulae will be more useful with the ~s in their proper places;
moreover, there are important ideas associated with variations in v, as in 495Xe.

495F Proposition Let (X, %, 1) be an atomless measure space, {X;);ecr a countable partition of X into
measurable sets and v > 0. Let v be the Poisson point process of (X, X, ) with intensity v; for 7 € I let v;
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be the Poisson point process of (X;,¥;, ;) with intensity -, where p; is the subspace measure on X; and
¥, its domain. For S C X set ¢(S5) = (SN X; )161 € Hiel PX;. Then ¢ is an isomorphism between v and

the product measure A = [[,.; v on Z = [[,.; PX

proof (a) Because (X;);cs is a partition of X, ¢ is a bijection.

(b) For E € ¥ and S C X, set fg(S) = #(S N E) if this is finite, co otherwise. As in 495D, take T
to be the o-algebra of subsets of X generated by {fr : E € X/}, similarly, take T; to be the o-algebra of
subsets of X; generated by {fr|PX;: F € E{} for each ¢ € 1.

If EeXf, fe(S) = > ier JEnx, (SN X;) for every S € X. Consequently fz is measurable with respect
to the o-algebra T’ generated by Uieilfr: F € E{}; as T" C T and FE is arbitrary, T" = T. Next, the
o-algebra )., T; C PZ is generated by the family of subsets of Z of the form

Wirm = {(Si)icr : Si € X for every i € I, fr(S;) = m}
withjel, F e Zf and m € N. Since
¢ Wirm] ={S: S C X, fr(S)=m} eT.

iel

¢is (T, @iGIT )-measurable. On the other hand, the o-algebra of subsets of PX generated by {¢ HW;pm]
jel, FeX;,meN}is T =T. So ¢ is actually an isomorphism between (PX,T) and (Z, ®zel i)

(c) Trepeat the idea of 495C in a more complex form. This time, let @ be the set of functions from finite
subsets of {E: E € X/, {i : EN X, # 0} is finite} to N, and for ¢ € Q set

H,={S:SCX, #(SNE)=q(E) for every E € domgq};
let H be
{Hy:qe€ @, domgq C ;e Z{ is disjoint },

and T” C P(PX) the Dynkin class generated by H.

If g€ Qthen Hy € T". P J = Upcgomqii : EN Xi # 0} is finite, and F = [Jdom ¢ belongs to ¥/ and
is included in | J;c ; X;. Let A be the set of atoms of the subring £ generated by domq U {F N X; :i € J}.
If ¢ € Q and dom ¢’ = & then Hy is either empty or equal to Hyya € H. Now

Hq = Uqu’GQ,domq’:S qu

is the union of a countable disjoint family in T”, so belongs to T”. Q
Accordingly Hq, = {H, : ¢ € Q} U {0} is a subset of T” closed under finite intersections so T" includes
the o-algebra generated by #; and is the o-algebra generated by #.

(d) In (¢), if ¢ € Q and domg C Ulel ! is disjoint, then A\¢[H,| = vH,. P If ) € domq and ¢(0) # 0
then H, is empty and we can stop. Otherw1se set A = domgq \ {0}; then Hy = NgealS 5 € X,

fe(S) = q(E)}, so

(yuE)a®

— —uE
vHy = [lgea S © T

because A is disjoint. On the other hand, setting A; = {E': E € A, B C X;} and Hyi = X; N[ \gcy, 15
5 CXi, fe(S) = q(E)} for i € I, p[Hy] = [];c; Hgi and

Hyl qz*H H ’WE)q(E) e e

el i€l BE€A,;
QuE)"® _yuE
= =vH,.
H q(E q Q
EcA

(e) Of course {H : H € T, A\¢[H] = vH} is a Dynkin class; as it includes H, it includes T”. But H
contains {S : S C X, #(SN E) = m} whenever E € ¥/ is included in some X; and m € N. Because I is
countable and T” is a g-algebra, {S : S C X, #(S N E) = m} belongs to T” whenever E € 3/ and m € N,
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just because fu(S) =>,c; fenx, (S) is a countable sum of T"-measurable functions. But now we see that

T"” = T and ¢ is an isomorphism between (PX,T,v[T) and (Z,\, A ®z€1 i)

(f) Finally, v was defined as the completion of v T, while A is the completion of A[@ie ;T because v; is
always the completion of v[T;. So ¢ is an isomorphism between (PX,v) and (Z, \), as required.

495G Proposition Let (X, 3, u) be a perfect atomless measure space, and v > 0. Then the Poisson
point process on X with intensity -y is a perfect probability measure.

proof I refer to the construction in 495B-495D. In (b) of the proof of 495D, use the construction set out in
the proof of 417A, so that the domain A of X is precisely the family of sets of the form WA A where W belongs
to the domain A of the product measure A and A belongs to the o-ideal A" generated by {Ag : E' € »/}.
Then X is perfect. P Let h : @ — R be a A-measurable function and W € A a set of non-zero measure.
Then there are a W’ € A and an A € A* such that WAW' C A and h[Q\ A is A-measurable; let (F,,)pen
be a sequence in ¥/ such that A C UneN ,and hy : © — R a A-measurable function agreeing with h on
Q\ A. Set H* = J,,cny HE,,, s0 that H* is countable. As in the proof of 495D, set

Fg=H\ (U{E,:n €N, HNE, is negligibley U|J{H' : H' € H*, H' # H}),

Wy = {z :x € H" is injective},

for H € H, so that W}; = Wy N Fjj is Ag-conegligible. Set Q' =[] (N x Wj;). This is disjoint from
every Ag, (as in 495D) and therefore from A. The subspace measure Ags on ' induced by A is just the
product of the measures on N x Wy, (254La). All of these are perfect (451Jc, 451Dc), so Mg also is perfect
(451Jc again). Now

Ao (WD) =g (W NQ) =AW =AW > 0.

It follows that there is a compact set K C hi[W N Q] such that Ao/ (7' [K] N Q) > 0. As h and h; agree
on ', K C h[W], while

AT K] = A K]
(because AA = 0)

= M K] = Ao (BHE] N Q) > 0.
As W and h are arbitrary, X is perfect. Q

It follows at once that the image measure 5\¢_1 and its restriction to T are perfect (451Ea); finally, the
completion is perfect, by 451Gec.

495H Lemma Let (X, X, 1) be an atomless o-finite measure space, and v > 0; let v be the Poisson point
process on X with intensity v. Suppose that f : X — R is a X-measurable function such that pf~[{a}] =0
for every @ € R. Then v{S: S C X, f|S is injective} = 1.

proof If F C X has finite measure then {S : S C X, f[S N E is injective} is v-conegligible. P Set
B = pE. For a € [—00,00] set h(a) = p{z:x € E, f(x) < a}; then h : [—o0,00] — [0, 4] is non-decreasing,
continuous and surjective. Take any m > 1; then there are ap < ... < ayuy, in [—00, 00| such that g = —o0,

Q= 00 and h(a;y1) — h(oy) :% for each i < m. Set F,; = {z: a; < f(x) < aj41} for i < m. Then
v {S: S CX, fISNE is injective} > v{S : #(S N Fy;) <1 for every i < m}
= [ AS: #(SnFu) <1}

<m

- —yB/m iz}
=1Ie (1+2)

<m

= 6_75(1+ﬁ)m -1
m
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as m — 0o. So {S: f[SNE is injective} has inner measure 1 and is conegligible. Q
Now we are supposing that there is a non-decreasing sequence (E,,),cn of measurable sets of finite measure
covering X, so that

{S: f19 is injective} = N

has measure lim,, o, v{S : f[S N E, is injective} = 1.

nentS : fIS N E, is injective}

4951 Proposition Let (X, X, 1) be an atomless countably separated measure space (definition: 343D)
and v > 0. Let v/ be a complete probability measure on PX such that v'{S: S C X, SNE = 0} is defined
and equal to e~ 7*¥ whenever E € ¥ has finite measure. Then 1/ extends the Poisson point process v on X
with intensity .

proof (a) Write T for domv, and for E € ¥/, write A(E) for {S : S C X, SNE # 0} € T. If
Eo,...,E, € 7 are disjoint, then A(Ey),...,A(E,) are /-independent. P For I C {0,... ,n},

V(PXN(VAE)) =1-v{S:Sn|JE; =0} = exp(—yu(|  E:))
i€l i€l el
= Hexp(—w,uEi) = HU/A(EZ'). Q
el el

(b) If Ey,...,Ex € ¥/ are disjoint and ng, ... ,n; € N, then /{5 : S C X, #(SN E;) = n; for every
j < k} is defined and equal to v{S : S C X, #(SNE;) = n; for every j < k}. P Let (F,)men be a
sequence in Y separating the points of X. For each m € N let &, be the subalgebra of PX generated by
{E; 1 j < k}U{F;:i < m}, Ay the set of atoms of &, included in £ =J,,, Ej,

In={Z:ICA,, #{A: AcZ, AC E;})=n, for every j <k}
and
C={S:SCX,{A:Ac Ay, SONALD} €T}
Then

VCn= Y V{S:SNA#Dfor AcT,SNE\|JT =0}

ZETm
— Z e~ YH(EAUT) H (1 — e HENA)
I€Tm A€T

(by (2))
=Y v{S:SNA#Qfor AcZ,SNE\|JT =0}

ZETm

=vC,,.
Now, for S C X,

lim xCp(S) =1if #(S N E;) =n; for every j <k,

m—0o0

= 0 otherwise

because {F,, : m € N} separates the points of X. By Lebesgue’s Dominated Convergence Theorem (123C),
V{8 : #(S N E;) =n, for every j < k} is defined and equal to

limyy, 00 V' Cry = limyy 00 vCry, = v{S : #(SN E;) = n; for every j < k}. Q
(c) Now
{H:H CPX,VH and vH are defined and equal}

is a Dynkin class including the family H of 495C, so includes the o-algebra T of subsets of PX generated
by {{S: #(SNE)=n}:E €%/ neN}. Because v is defined to be the completion of [T and v/ is
complete, v/ H is defined and equal to vH whenever H is measured by v.
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495J Proposition Let (X1,%1, u1) and (Xo, X, o) be atomless measure spaces, and f : X7 — X5 an
inverse-measure-preserving function. Let v > 0, and let vy, v5 be the Poisson point processes on X1, Xo
respectively with intensity 7. Then S — f[S] : PX; — PXs is inverse-measure-preserving for vy and vs; in
particular, P A has full outer measure for v5 whenever A C X, has full outer measure for ps.

proof Set ¢(S) = f[S] for § C Xj;.

(a) If F € Eg, then {S : S C Xy, fIf Y[F]N S is not injective} is vi-negligible. P Let n € N. Set
a = =2 F. Because py is atomless, we can find a partition of F into sets Fy, ... , F;, of measure .. Now
{S: fIf71[F]N S is not injective} C Uicn {5 s #(SN R > 1}
has vq-outer measure at most
1 1
_ e 1 2.2 _ 2
(n+ 1D —e(1+7a)) < S(n+1)a’y 2t D) (YpaF)2.

As n is arbitrary, {S : f[f[F] NS is not injective} is negligible. Q

(b) It follows that, for any F € Eg and n € N,
{S: #(fISINF) =n}A{S - (S0 fHF]) = n}
is v1-negligible and {S : #(f[S] N F) = n} is measured by v4. So if Ty is the o-algebra of subsets of PX5

generated by sets of the form {T': #(FNT) = n} for F € £} and n € N, then 4 measures ¢y~ [H] for every
H € Ty. Next, if (F;);cr is a finite disjoint family in Eg and n; € N for i € I,

i{S : #(f[S]N F;) = n; for every i € I}
= {S: #(SN fF]) =n, for every i € I}
- H QM ED" e~ f ]
n!
el
(because (f~1[F])se; is a disjoint family in 37)
_ H (’YM:L!Fi)n e—'yuzFi.

icl

So the image measure 19! satisfies (i) and (ii) of 495D, and must agree with v5 on Ta; that is, ¢ is
inverse-measure-preserving for 17 and vo[Ty. As v is complete, 1 is inverse-measure-preserving for v and
vy (234Bat).

(c) If A C X, has full outer measure, then we can take uq to be the subspace measure on X; = A and
f(z) = for z € A. In this case, PA = ¢[PA] must have full outer measure for vs.

495K Lemma Let (X, i,ﬁ) be an atomless o-finite measure space, and v > 0. Write uy, for Lebesgue
measure on [0,1], ' for the product measure on X’ = X x [0,1], and X for the product measure on
Q' =0, 1]X. Let 7, v/ be the Poisson point processes on X, X’ respectively with intensity v. For T C X
define ¥ : Q' — PX’ by setting ¢ (z) = {(t,2(t)) : t € T} for z € Q'; let v be the image measure N7
on PX'. Then (v})c ¢ is a disintegration of v over ¥ (definition: 452E).

proof (a) Let E C X’ be a measurable set with finite measure, and write Hg = {S : SN E # (}. Then
VHp =1— e "WE < y4/E; but also TV}(HE)D(CZT) < 2yp/E. P We know that [ ppE[{t}]a(dt) = /'E
(252D). Let Y C X be a conegligible set such that E[{t}] is measurable for every t € Y and t — up E[{t}] :
Y — [0,1] is measurable. Set F; = {t : t € Y, 277! < pupE[{t}] < 27} for each i € N; let (F/);en be
a sequence of sets of finite measure with union X \ Uien Fi- Let W be the set of those T' C X such that
TN (X\Y)is empty and TN E;, TN F! are finite for every i € N; then W is o-conegligible.

For any T' € W,

4Formerly 235Hc.
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vp' [He] = {2 : ¥r(2) N E # 0}
=J U GzmeEnpul) U {z:20) € E{})}

ieENteTNE; 1ENteTNF]

is measured by A" and has measure at most Y ;0,27 '#(T N F;), because pr E[{t}] has measure at most 27
ifte TNF;, and is zeroif t € TN F]. So

/V’T(HE)ﬂ(dT) = /Xw;l [Hp]o(dT) < / Z 27 (T N Fy)o(dT)

~Y o / BT A F)(T) = 3 27,
1=0 =0

(because T — #(T N F;) has expectation yjiF;)
<2y [ wB((e)o(d) = 2/ E. @

(b) Suppose that (F});<s, (Cij)icrj<s and (n;j)i<r j<s are such that
r, s €N,
ng; € Nfori <r, j <s,
(Fj)j<s is a disjoint family of subsets of X with finite measure,
for each j < s, (Cjj)i<r is a disjoint family of measurable subsets of [0, 1].
Set Ejj = Fj x Cy; fori <rand j<s,and H={S:5 C X' #(SNE;;) =n;; for every i <r, j < s}.
Then [ v4(H)o(dT) = v'H.

P (i) To begin with, suppose that | J,_, Ci; = [0,1] for every j. Set n; = ZT_Ol n;; for each j, and let
W be the set of those T C X such that #(T' N F;) = n; for every j. Then oW = 1= : ﬁe VRE; Tf
TCXandze w;l[H], then for each j < s we must have

#(TﬂF ({t teTn j,Z(t)E UC”})

i<r

= rz_:#({t tt e T'NFy, 2(t) € Cyj})

r—1
_Z# wT mEz] Znij:nj.
=0

Turning this round, we see that if T ¢ W then ¢! [H] = 0 and vh.H = 0.
IfT € W, let Q be the set of all ¢ = (g(4, j))i<r,j<s such that (q(7,7))i<, is a disjoint family of subsets of

T N F; for each j and #(q(4,j)) = n;; for all ¢ and j. Then #(Q) = H; (1) H,n{ - . Accordingly
vinH = XN{z :¢r(2) € H}
=N{z:# ({t :te TNFj, 2(t) € Cyj}) = nyj for all 4, j}
= Z)\{z z(t) € C;; whenever ¢ <r, j < s andt € q(i,j)}

9€Q
s—1 r—1
= 1 mes=3 T1 o = [ T[22,
qeQ 1<T7(j<§‘ qeEQ i<r,j<s 3=0 i=0 Tij:
€q(e,g
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It follows that

s—1 r—1
_ _ (LCij)"s
/V’T(H)V(dT) =W H(n 'H n-']' )
7=0 1=0 v
s—1 ~ s—1 r—1
(YAE})"™ i, (prCij)"
= nju Tt T nol )
j=0 J =0 i=0 v
s—1 r—1 C )n,,
= 1 (g e T #2C)™
J 7’L”'
7=0 =0
s—1r—1 ni
= —vu Eij ('W‘IE ') ’ _ V/H7
7=0 =0 Tij

as required.

(ii) For the general case, set C,; = [0,1]\ U,., Cij, Erj = Fj x Cy; for each j < s. For o € NU+1xs,
set

Hy, ={5:5CX' #(SNE;;)=o0(i,j) for every i <r and j < s}.

By (i), we have v'H, = [ vi(H,)o(dT) for every o € NIr+1)xs,
Set

J={0:0 e NOTUXs 5(j j)=n,; fori <r,j<s}, K=Nrtxs\ j

H{ =U,c;Hs, Hy=U,cx Ho
Then H{ C H, HYNH = and
H{UH,={S:SNE,; is finite for all i <7, j < s}

is v’'-conegligible. Accordingly we have

/ (v)o (H)3dT) > / () (H)(dT) > 3 / Vi (H, )i (dT)

oced

=Y VH,=1-> v'H,

cedJ oeK
(because |J, ¢, Ho is v'-conegligible)

=1-> /V’T(Hg)a(dT) = /1 — Y vip(H,) #(dT)

oceK ceK
= [vrpx\mpotar) = [y (itan).

But this means, first, that (v5).(H) = (v4)*(H) for v-almost every T'; since v/, being an image of the
complete measure X, is always complete, v/.(H) is defined for r-almost every T. Finally,
VH=v'H{ =Y .,V H, = [ v .(H)p(dT),

as required. Q

(c) Suppose that (E;);<, is a disjoint family in ¥ ® X1, such that all the projections of the E; onto X
have finite measure, and n; € N for each i < r. Set H = {S : S C X', #(SN E;) = n; for every i < r}.
Then [vi(H)v(dT) =v'H.

P Let & be a finite subalgebra of ¥ such that every E; belongs to £ ® X1, and let (F}),<s enumerate
the atoms of £ of finite measure; extend this to an enumeration (Fj);<s of all the atoms of £. Then we
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can express each E; as |J;_
C;; must be empty for every j > s, so E; = |J

F; x Cy; where each C;; € X1; but as the projection of E; has finite measure,
i<s Fj x Cij. Let Q be the set of all ¢ € N"** such that
Zj;é q(i,7) = n; for every i < r. For ¢ € Q set

H,={S:SCX', #(SN(F; x Ci;)) =q(i,7) for every i <7, j < s}.

Then (H,)q4eq is disjoint and has union H, so
[ Vi (H)HAT) =X e [ Vi (Hy)o(dT) =3 e v'Hy = V'H,
using (b) for the middle equality. Q

(d) Now let (E;);<, be a finite disjoint family of subsets of X’ of finite measure, and (n;);<, a family in
N. Set H={S:S5 C X', #(SNE;) = n; for every i < r}. Then [ v}.(H)(dT) is defined and equal to v'H.

P Let € > 0. For each i < r we can find an E! € ¥ ® ¥, such that p/(F;AE!) < e (2511e). Discarding a
negligible set from E! if necessary, we may suppose that the projection of E. on X has finite measure. Set
E; = E/\ U<, E}, for each 4, so that (Ey)i<, is a disjoint family in ¥ ® Xz, and the projections of the E;
are still of finite measure. Set H = {S : S C X', #(SN E;) = n; for every i < r}. Then (c) tells us that
[vi-(H)o(dT) = v'H.

Set E = U, (BsAE)). Then ' E < re, while E includes E;\E; for every 1, SO

H\Hp CHCHUHg,

where Hp = {S: SN E # 0} as in (a). Accordingly

V'H — 3rve < v'H — 2rve
(by (a))
= / Vi (H)o(dT) — 2rve
(by (c))
< [vitin) - v (Hp)Ptar)
(by the other part of (a))

< / (vp) (H)3(dT) < / (v)*(H)3(dT)

< /V{F(PAI) + U (Hg)o(dT) < v'H + 2rye < v'H + 3rvye.

As ¢ is arbitrary,
v'H = [(vp):(H)P(dT) = [ (vy)* (H)p(dT).
As in (c-ii) above, it follows that [ v/}.(H)o(dT') is defined and equal to v'H. Q
(e) So if we write H for the family of subsets H of PX’ such that [ v4.(H)o(dT) is defined and equal to
v'H, and H, for the family of sets of the form H = {S: S C X', #(SNE;) = n; for every i < r} where
(E;)i<r is a disjoint family of sets of finite measure and n; € N for ¢ < r, we have H 2 Hy. But H is a
Dynkin class, so includes the o-algebra T’ generated by Hg, by 495C. Since every v’'-negligible set is included

in a v’-negligible member of T’, H contains every 1’-negligible set, and therefore every set measured by v';
which is what we need to know.

495L Theorem Let (X, 3, 1) and (X 3, fi) be atomless o-finite measure spaces and v > 0. Let v, ¥
be the Poisson point processes on X, X respectively with intensity 7. Suppose that f: X — X is inverse-
measure-preserving and that (i), ¢ is a disintegration of y over fi consistent with f (definition: 452E)

such that every p; is a probability measure. Write A for the product measure [ [, ¢ ¢ on Q = X X and for
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T C X define ¢ : Q@ — PX by setting ¢p(z) = 2[T] for z € Q; let vy be the image measure Acb}l on PX.
Then (vr)pcx is a disintegration of v over . Moreover

(i) setting f(S) = f[S] for S C X, (vr)pcx is consistent with f:PX = PX;
(ii) if (pe) e 5 1s strongly consistent with f, then (vr),c  is strongly consistent with f.
proof (a) For T C X let V7 be the set of those z € Q such that fz|T is injective. We need to know that
W ={T:T C X, T is countable, Vi is A-conegligible}

is 7-conegligible. B Write 2/ = {F:F ¢ ¥, iF < oo}. Because [i is atomless and o-finite, there is a
countable subalgebra £ of 3 such that for every € > 0 there is a cover of X by members of £ of measure at
most €. Set

Y ={t:te X, ufF] = (xF)(t) for every F € £},

so that Y is fi-conegligible and PY is v-conegligible. For F' € £, let W be the set of those 7' C Y such that
for every t € T N F there is an F’ € & such that TN F’' = {t}. Now, given F € £ENY/ and € > 0, there is a
partition (F;);es of F' into members of £ of measure at most e. Then

V*(PY \Wp) <0{T:#(T NF;) > 1 for some i € I'}

— TR (14 i) < Y ()
el

IN
M\g\\»—t s M

IN

- 1 9.
2 ZﬂFi = e ik
il
As € is arbitary, W is -conegligible; accordingly W' = (\{Wr : F € £ N %7} is -conegligible.
Now suppose that T € W’'. Because X is covered by £ N X7, we see that for every ¢t € T there is an

F € £NX/ containing ¢, and now there is an F’ € £ such that TN F’' = {t}. In particular, T is countable,
SO

Ur={z:2(t) € f~[F] whenever F € £ andt € TN F}

is A-conegligible. Take z € Ur. If t, ¢’ are distinct points of T', there is an F' € £ containing ¢ but not #’,
and now F' contains f(z(¢)) but not f(z(¢')). So fz|T is injective. Thus Uy C Vr and Vr is A-conegligible.
This is true for every T € W', so W D W' is -conegligible. Q

(b) Suppose that (E;);<, is a disjoint family of subsets of X with ﬁnite measure, and n; € N for i < r.
Set H={S:5CX, #(S N E;) = n, for every ¢ < r}. Then fVT )o(dT) is defined and equal to vH.
P As in 495K, set X' = = X x [0,1] with the product measure z’, and write ' for the product measure on
' =[0,1]%. Let v’ be the Poisson point process on X’ with intensity . For T C X define 17 : Q' — PX’
by setting ¢7(z) = {(t,2(t)) : t € T} for z € Q' and let v/}, be the image measure N'¢;' on PX’. By 495K,
(V) rc  is a disintegration of v’ over .

For each i < r, [ (E;)i(dt) = pE;; set Y1 = {t :  E; is defined for every ¢ < r}, so that ¥; C X is
v-conegligible. Set g;(t) = >_,_; e Ej for t € Y1 and i < r, and

E; = {(t7a) (te lea gz(t) <a< gl-‘rl(t)}
for i <r. Then 'E! = [ gi+1 — g; dv = pE; for each 4, by 252N.

Set

H ={S:SCX', #(5'NE]) =n,; for every i < r},

Wy ={T:TeW,TCYy, vpH'is defined},

so H’ is measured by v/ and Wi is D-conegligible. Let T be any member of Wi. Let @ be the set of
partitions ¢ = (q(4))i<, of T such that #(q(i)) = n; for every i < r; because T is countable, so is Q). Set
E, = X\U,., E: and E. = X'\ U,_, E/. Then

By =1—""0 wEi =1 — g.(t) = pr EL[{t}]
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for every t € Y;. Now
vpH = XN{z:2€Q, ¢¥r(z) € H'}

=XN{z:2€Q, #{t:t €T, 2(t) € El[{t}]}) = n; for every i < r}
= Z N{z:2€eQ, 2(t) € Ej[{t}] whenever i <r and t € q(i)}

q€Q

=2 I I meBilisn = > 11 11w
9€Q i=0teq(i) 9€Q i=0teq(i)

= Z Mz:2€Q, 2(t) € E; whenever i <r and ¢t € q(i)}
g€

=Mz:zeQ, #({t:t €T, z(t) € E;}) = n,; for every i <r}
=Mz:zeVp, #{t:t €T, 2(t) € E;}) = n, for every i <r}
=Mz:z € Vp, #(z[T]| N E;) =n,; for every i <r}
=Mz:2€eVp, ¢r(z) € H} = vpH.

Since this is true for v-almost every T,

/ v (H)5(dT) = / VL (HY9(dT) = o' H’
— HMQ—W’EQ =11 (“’L_:')"ie—‘Y“Ei —vH. Q

] n;! . n;!
1<r <r

Now, just as in part (e) of the proof of 495K, 495C tells us that [ v (H)o(dT) = vH whenever v measures
H, so that (v7)pc ¢ is a disintegration of v over .

(c) Let (F})i<, be a disjoint family in ¥/, and take n; € N for 4 < r. Set
F, :X\Ui<rFi7
Yo ={t:te X, uf[F] = (xFi)(t) for every i <7},
WQZ{TTEWaTg}/Q}a
so that Y5 is fi-conegligible and W5 is r-conegligible. Set
H={T:T e W,, #(T N F;) = n, for every i < r},
H=f"'[H={S:SCX, f[S] € H}.
Then vpH = xH(T) for every T € H. P For i < r and t € T N F}, we have
Mziz(t) € fUE]} = mfHF] =1
because T' C Y5. So
V={z:2€Vp, f(2(t)) € F; whenever i <r and t € TN F;}
is A-conegligible. But if z € V' then fz[T is injective, so
#(fTNNEF) = 4T 0 (f2)7HE]) = #(T N F)
for every i < r, and 2[T] € H iff T € H. Thus
vrH =Mz:2[T|€e H} =\V =1ifT € H,
= A2\ V) =0 otherwise. Q
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Setting
H={H:HCX,vpf '[H| = xH(T) for v-almost every T € H},

it is easy to check that # is a Dynkin class containing all sets of the form {T : T C X, #(T'N F;) = n; for
every i < r} where (F});<, is a disjoint family in $/, and therefore including the o-algebra generated by
such sets, by 495C. But as H also contains any subset of a negligible set belonging to H (remember that all
the vp are complete probability measures, like A), it includes the domain of 7, and (v1),c ¢ is consistent
with f .

(d) Now suppose that (), ¢ is strongly consistent with f. Set Y3 = {t : p f~'[{t}] = 1} and W3 =
{T:T €W, T CYs}. Then vpf '[{T}] =1 for every T € W3. P Set V. = {z: 2z € Q, f(2(t)) =t for
every t € T}. For each t € T,

Mz fz() =t} = nef (B} =1,
because T'C W3. As T is countable, V. is A-conegligible. But now

vrf THIH =Mz [T =T 2 AV = 1. Q

As W3 is D-conegligible, (1)« ¢ is strongly consistent with f.

495M Proposition Let (2, i) be a measure algebra, and v > 0. Then there are a probability algebra
(B, \) and a function 6 : A — B such that

(i) 6(sup A) = sup 0[A4] for every non-empty A C 2l such that sup A is defined in 2;

(ii) M0(a) = 1 — e~772 for every a € 2, interpreting e~ as 0;

(iii) whenever (a;);cs is a disjoint family in 2 and €; is the closed subalgebra of 9B generated by {6(a) :
a C a;} for each i, then (€;);c is stochastically independent.

proof (a) We may suppose that (2, i) is the measure algebra of a measure space (X, %, p) (321J). Set
W ={F:FEeX pk < o} and A/ = {a : a € A, jia < o}. Let (Q,A,\) and (gr)pexs be as in
495B, and take (B, ) to be the measure algebra of (2, A, \). Note that if £, F € ©f and u(EAF) = 0,
then gp\ r and gp\ g have Poisson distributions with expectation 0, so are zero almost everywhere, while
9E =ae. 9enF + gm\F and gr =ac genF + gr\E; S0 that gp =a. gr. This means that we can define
6 : A7 — B by setting (E*) = {w : gr(w) # 0}* whenever E € %/, and we shall have A\(fa) = 1 — e~ 7A@
because g has a Poisson distribution with expectation fia whenever E € ¥/ and E* = a. For a € %\ 2/
set O(a) = 1.

(b) If a, b € AT are disjoint, they can be represented as E*, F* where E, F € ¥/ are disjoint. In this
case, gpuF =ae. 9 + g, s0 8(aub) = 0(a) ub(b). Of course the same is true if a, b € A are disjoint and
either has infinite measure. It follows at once that for any a, b € A,

Olaud) =0(a\b)ublanbd)ub(b\a)=60(a)ub(b).

Consequently 6(sup A) = sup 0[A] for any finite set A € A. If A C 2 is an infinite set with supremum a*,
then A’ = {sup B : B € [A]<¥} is an upwards-directed set with supremum a*, so there is a non-decreasing
sequence (an)nen in A" such that lim,_, fia, = fia* (321D). In this case, b* = sup, ¢y 0(ar) is defined in
B and

A0 = lim,, 00 M(ay,) = lim, o0 1 — e~ =1 — e~V = \f(a*).
So b* = (a*); since 0(a*) is certainly an upper bound of §[A’], it must actually be the supremum of 6[A’]
and therefore (because 6 preserves finite suprema) of 6[A].
~ (c) Thus ¢ satisfies (i) and (ii). As for (iii), note first that if (a;);cs is a finite disjoint family in A, then
A(infier 0(ai)) = [1;c; A0(ai). P Set J = {i:i € I, fia; < oo}. For i € J, represent a; as E; where (E;)ics
is a disjoint family in /. Then (gg, );c, is independent, so

A(inf 0(a;)) = A(inf 0(a;)) = MQ N [ {w : g5, (W) = 0})

i€l ieJ et
= [[Mw: gz (W) =0} = [[M(a) = [[ V(). Q
icJ ieJ el
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Now suppose that (a;);cs is a finite disjoint family in 2 and that ®; is the subalgebra of B generated by
D; = {6(a) : a C a;} for each i. We know that each D; is closed under u (by (i)) and that A(inf;csd;) =
[Lics Ad; whenever J C I and d; € D; for each i € J, that is, that (d;);c; is stochastically independent
whenever d; € D; for each i. Setting D} = {1\d : d € D;} U {0}, we see that D} is closed under n and
that (d;);cr is stochastically independent whenever d; € D/ for each ¢ (as in 272F). An induction on #(J),
using 313Ga for the inductive step, shows that if J C I, d; € ©; for i € J, and d; € D} for i € I\ J, then
Minfier d;) = [Lics Ad;. At the end of the induction, we see that A(inf;e; d;) = [Lics Ad; whenever d; € D;
for each i, and therefore whenever d; belongs to the topological closure of ©; for each i, where 9B is given
its measure-algebra topology (§323).

Finally, suppose that (a;);cr is any disjoint family in 2, and €; is the closed subalgebra of 9B generated
by D; = {0(a) : a C a;} for each i. Take a finite set J C I and ¢; € €; for each ¢ € J. By 323J, €; is the
topological closure of the subalgebra ©; of B generated by {0(a) : a C a;}; so A(infieye;) = [[;c; Aci. As
(ci)icy is arbitrary, (€;);cs is independent.

icJ

495N Proposition Let U be any L-space. Then there are a probability space (€, A, \) and a positive
linear operator T': U — L*(\) such that ||Tul|; = |Jul|s whenever v € L' (u)™ and (T'w;);e; is stochastically
independent in L°()\) whenever (u;);cr is a disjoint family in L (u).

Remarks Recall that a family (u;);cr in a Riesz space is ‘disjoint’ if |u;| A |u;| = 0 for all distinct 4, j € T
(352C). A family (v;);er in L°()\) is ‘independent’ if (g;);cs is an independent family of random variables
whenever g; € £L%()\) represents v; for each i; compare 367W.

proof (a) By Kakutani’s theorem, there is a measure algebra (2, ) such that U is isomorphic, as Banach
lattice, to LY(2A, f1); now (2, ji) can be represented as the measure algebra of a measure space (X, ¥, i), and
we can identify U and L'(2, i) with L'(u) (365B). Set f = {E: E € %, uE < oo} and 2f = {a : a € L,
pa < oo} as usual. Take (2, A, \) and (9g)gexs from 495B, with v = 1. As in the proof of 495M, we have
JE =a.. gr Whenever E, F € ¥f and u(EAF) = 0; consequently we can define ¢ : 2Af — L()\) by setting
Ya = gy, whenever E € >/ and E* = a. Again as in 495M, gpuF =a.e. 9E + gr whenever E, F € >/ are
disjoint, so 1 is additive. Also

|[ally = [ gpd\ = pE = fia

whenever F € ©f represents a € /. By 365, there is a unique bounded linear operator T' : L'(2, i) —
LY(\) such that T(xa) = va for every a € 2Af. By 365Ja°, T is a positive operator. The set {u : u €
LY, @)t || Tully = ||ull1} is closed under addition, norm-closed and contains aya for every a € 2/ and
a > 0, so is the whole of L*(2L, i)™, by 365F.

Note that if (a;)scs is a disjoint family in 4/, then (a;);cr is stochastically independent, by 495B(ii).

(b) Now let (u;);er be a disjoint family in L'(2, ). Then (Tu;)ic; is independent. P? Otherwise,
there are a finite set J C I and a family (V;);c; such that V; is a neighbourhood of T'u; in the topology
of convergence in measure on L°(u) for each i € J, and (v;);c; is not independent whenever v; € V; for
each i (367W). Because the embedding L'(X) S L°(X) is continuous for the norm topology on L'(X) and
the topology of convergence in measure (245G), there is a § > 0 such that Tu; € V; whenever i € J,
uf € LY, 1) and ||u} — u;|; < 3. Now we can find such v} € S(AS) with |u}| < |u;| (365F).

Express each u} as > 2, kX, where (a,)k<p,; is a disjoint family in 27 and no ayy, is zero (361Eb).
In this case, all the a;, for ¢ € J and k < n;, are disjoint, so all the ¥(a;;) are independent. But this
means that (Tu})ics = (3 1o @irt(aik))ics is independent (272K); which is impossible, because T'uj € V;
for every i € J. XQ

So T, regarded as a function from U to L'()), has the required properties.

4950 The following is a more concrete expression of the same ideas.

Proposition Let (X,%, 1) be an atomless measure space, and v the Poisson point process on X with
intensity v > 0.

5Formerly 365Ka.
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(a) If f € LY (u), Qf(S) = > veSndom f () is defined and finite for v-almost every S C X, and [ Qrdv =
v [ fdp.

(b) If f € L' () N L*(p), [ QFdv is defined and equal to v [ fdu + (v [ fdu)*.

(c) We have a positive linear operator T : L'(u) — L'(v) defined by setting T'(f*) = Q% for every
feLt(w).

(d) [|Tul|y = ~v||ull; whenever u € L*(u)* and (Tu;);cs is stochastically independent in L°(\) whenever
(u;)ier is a disjoint family in L*(p).

proof (a) In the language of 495D, Qg = fg for every E € ¥/. So Q,r € £1(v) and J Qypdv = yuE
for every E € 7. If f = Y7 c;xE; is a simple function on X, then Qf =ae. Y5 @iQyr, € £1(v) and
[Qpdv =~ [ fdu. If f € LY(u) is zero a.e., then {S : S C f~1[{0}]} is v-conegligible, so Q; = 0 a.e.
It follows that if f € £(u) is non-negative, and (f,)nen is a non- decreasing sequence of simple functions
converging to f almost everywhere, then Qf =, lim, ;o0 Qy,, while Qy, <.. Qy,,, for every n; so Qy is
v-integrable and

[ Qrdv =lim, o0 [ Qp,dv =limy oo [ frdpu =~ [ fdu.

(b) We can use the same ideas, with some further twists.

/f%dv—wE=/f§;dV—7/fEdv

— Z(rﬂ —n)r{S: #(SNE)=n}

oo
_ Z ’YHE k=) . —YuE

= (E)?*) (V’ff) TE = (yuB)?

n=0

(i) If E € X/, then

so [ fpdv =ypuE + (yuE)?.

(ii) If f =1, a;xE; where Ey,... ,E, € ¥/ are disjoint and ap, ... ,a, € R, then fg,,..., fg, are
v-independent (495D), so

[@gav= | <§njaifEi>2du
Z azaj/fE X fg,dv

= fedv+ i fe,d fe.d

Z /E v lJ;ﬁé]O&aj/ E; Qv - / E; 14
(272R)

—Za (YRE; + (yuE;)? /Qfdu Za /fE dv)?
=0

77204 nl; JrZoz (YypE;)? /fdu Za (YuE;)?
1=0 1=0

=7/f2du+(7/fdu)2
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(iii) If f € £1(u) N L£2(p) is non-negative, there is a non-decreasing sequence (f,),en of non-negative
simple functions converging p-almost everywhere to f. Now (Qj,)nen is non-decreasing and converges
v-almost everywhere to )¢, and

@z =tim [ @3dv= 1w [ i+ r [ fad?
ZV/deM+(7/fdM)2~

(iv) Generally, if f € £1(u)NL2 (), it is equal almost everywhere to a difference fi — fo of non-negative
functions in £'(u) N £%(p) such that there is an E € 3 for which fo(x) = 0 whenever x € E and f;(z) = 0
whenever z € X \ E. In this case, identifying PX with PE x P(X \ E), @, depends on the first coordinate
and @y, on the second, so they are v-independent (495F). Consequently

/Q?«duz/chldu—Q/Qfl X szdu+/Q§2du
o [ Ban+ & [ ndny = [Quav [Quan-+r [ Bau+ o [ aduy?
:’Y/f12d1“+(’Y/fldN)Q*WQ/fldN'/f2dﬂ+7/f22dﬂ+(7/f2dﬂ)2
5 [ Fans o [ iy

as claimed.

(c) Since Qf =ae Qp whenever f =,. f in L'(n), we can define T : L'(u) — L*(v) by setting

T(f*) = (Qp)* for every f € L'(n); because Quf =ae. @Qf and Qfip =ae Qf + Qp whenever f,
€ £LY(p) and o € R, T is linear; because Q7 > 0 a.e. whenever f > 0 a.e., T is positive.

(d) Because [Qgdv = ~ [ fdu for every f € L'(u), and T is positive, ||Tully = vl|ul|: for every
w € LY (u)*. Finally, if (u;);e; is a finite disjoint family in L' (1), we can find a family (f;)ie; of measurable
functions from X to R such that f? = u; for each ¢ and the sets E; = {x : f;(x) # 0} are disjoint. For each
1 € I, let T; be the o-algebra of subsets of PX generated by sets of the form {S : #(S N E) = n} where
E C E; has finite measure and n € N. Then (T;);cr is independent (as in part (c) of the proof of 495M),
and each Qy, is T;-measurable, so (Qy,)icr is independent and (T'w;);cr is independent.

495P We can identify the characteristic functions of the random variables )¢ as defined above.

Proposition Let (X,%, 1) be an atomless measure space, and v the Poisson point process on X with
intensity v > 0. For f € L£(u) set Qf(S) = > vesndom £ f(2) when S C X and the sum is defined in R.
Then

fPX e dy = exp (ny (e®vf — l)d,u)
for any y € R.
proof Note that @y is defined v-almost everywhere, by 4950a.

(a) Consider first the case in which f is a simple function, expressed as Z?:o a;xF; where (F}) <y is
a disjoint family of sets of finite measure and a; € R for each j. Then Q;(S) = >i_, a;#(S N Fj) for
v-almost every S, so

/einde: /Heiyaj#(SﬂFj)V<dS> _ H/eiyaj#(SnFj)V(dS)
§=0

3=0
(because the functions S +— #(S N F;) are independent)
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:Hi%ﬂe’w@emﬂ He YE; ZM

§=0 k=0
= H exp((eiyo‘j — 1)’qu = exp 'yz wej _ 1) [LF)
Jj=0 j=0

(b) Now suppose that f is any integrable function. Then there is a sequence (f,,)nen of simple functions
such that |f,| <ae. |f] for every n and lim,,_,o fr =ae. f. Write gn, ¢ for Qy,, Q. Set
D={z:zedomf, |fo(x) <|f(x)| for every n and lim, o fo(z) = f(x)},

so that D is p-conegligible. If S C D and Q/(.S) is defined, then ¢(S) = lim,, ;0 ¢n(S), and this is true for
v-almost every S; so [ e¥4dy = lim,_, €9 dv, by Lebesgue’s Dominated Convergence Theorem. On the
other hand,

. al . . al .
et — 1] = |f0 ;e“‘/dﬂ <a, |e7@—1] :|f0 -e tdt] < o

for every o > 0. So if we set g(z) = e¥/(®) — 1, g, () = e¥/»(*) — 1 when these are defined, we have
lgn| <ace. |Yfnl <ae. lyf] for every n. Accordingly

f( Wi — 1Ddp = fhmn_mo( W — 1)dp = lim,, o0 f (e —1)du
by Lebesgue’s theorem again. It follows that

n— oo

/6in_de = lim [ e%¥dy = lim exp(v/(eiyf" — 1)dp)
n—oo

= exp(y lim /(eiyf” —1)dp) = exp(’y/(eiyf —1)dp),

n—oo

as claimed.

Remark Recall that a Poisson random variable with expectation  has characteristic function y — exp(y(e? —
1)) (part (a) of the proof of 285Q), corresponding to the case f = xF where uF' = 1. The random variables
Q¢ have compound Poisson distributions.

495Q If our underlying measure is a Radon measure, we can look for Radon measures on PX to represent
the Poisson point processes on X. There seem to be difficulties in general, but I can offer the following. See
also 495Yd.

Proposition Let (X,%,3, 1) be a Radon measure space such that p is outer regular with respect to the
open sets, and v > 0. Give the space C of closed subsets of X its Fell topology (4A2T).
(a) There is a unique quasi-Radon probability measure  on C such that

7{C:#(CNE) =0} =e HE
whenever E C X is a measurable set of finite measure.
(b) If Ey, ..., E, are disjoint sets of finite measure, none including any singleton set of non-zero measure,
and n; € N for ¢ < r, then
{C: #(CNE;) =n; forevery i <r} =[]_, QRE)™ b

n;!

(c) Suppose that u is atomless and v is the Poisson point process on X with intensity ~.
(i) C has full outer measure for v, and ¥ extends the subspace measure vc.
(ii) If moreover y is o-finite, then C is v-conegligible.
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(d) If X is locally compact then # is a Radon measure.
(e) If X is second-countable and p is atomless then 7 = v¢.

proof (a)(i) Set ©f = {E : uF < oco}. There is a disjoint family # of non-empty self-supporting measurable
subsets of X of finite measure such that ul =), ,, w(E N H) for every E € ¥ (412]); so if G C X is an
open set of finite measure, {H : H € H, GN H # 0} is countable. If F is any set of finite measure, it is
included in an open set of finite measure, because p is outer regular with respect to the open sets; so once
again {H : H € H, EN H # (} is countable.

Build Q = [z N x HY, (guE)Hen pes and the product measure A on € as in the proof of 495B; as
in the proof of 495D, set

dw) ={zp;jw): HeH, j <mpy(w)}
for w € Q.
() EEeX Mw:ENndw) =0 =eE. PH ={H:HecH, ENH #(} is countable. Now
{w:ENo¢(w) =0} = Npyepiw:zuj ¢ E for every j <mp(w)}

has measure
e Mw:gne(w) =0} =[1xeq e~ VH(HNE) _ o—yuE

because pE =3 cq, m(HNE). Q

Let Ty be the o-algebra of subsets of PX generated by sets of the form {S : SN E = ()} where E € %/.
By the Monotone Class Theorem (136B), A\ measures ¢~ [W] for every W € Tg; set rgW = \p~[W] for
W € Ty, so that if E € ¥ then 1{S: SNE =0} = e "E,

(iii) Give PX the topology & generated by sets of the form
{S:85NG#0}, {S:SNK =0}

for open sets G C X and compact sets K C X. (Thus the Fell topology on C is the subspace topology
induced by &.) Then PX is compact. I Follow the proof of 4A2T(b-iii) word for word, but replacing every
C with PX. Q

(iv) v is inner regular with respect to the G-closed sets. I Write £ for the family of &-closed sets
belonging to Ty. Of course L is closed under finite unions and countable intersections.
(o) Suppose that E € £/ and W = {S: SN E # 0}. Let e > 0. Then there is a compact set K C E such
that u(E\ K) <e. Set V={S:SNK #0}; then V € L, V C W and

voWA\V)<vo{S:SNE\K #0} <1—e "
As e is arbitrary, oW =sup{nyV : Ve L,V C W}.
(B) Suppose that E € ©f and W = {S: SN E = (}. Let ¢ > 0. Then there is an open set G 2 E such
that u(G\ E) <e. Set V={S:SNG=0}; then Ve £,V CW and
voWA\V)<up{S:SNG\E #0} <1—e 7"
As e is arbitrary, oW =sup{ny)V : V€ L,V C W}.
(7) By 412C, vy is inner regular with respect to the S-closed sets. Q

(v) Since & is a compact topology, the family of G-closed sets is a compact class, so 413P tells us that
1y has an extension to a complete topological measure 7y on PX, inner regular with respect to the closed
sets. Of course 7y, being a probability measure, is effectively locally finite and locally determined, so it is
a quasi-Radon measure with respect to the topology &. Consequently the subspace measure 7 on C is a
quasi-Radon measure for the Fell topology on C (415B).

(vi) C has full outer measure for 9. P*? Otherwise, there is a non-empty closed set V' C PX \ C.
Consider the family U of subsets of PX of the form

{S:SNK=0,SNG; #0 fori<r}

where K C X is compact and G; C X is an open set of finite measure for every ¢ < r. Because p is locally
finite, this is a base for &. SoU' ={U :U e U, UNW =0} is a cover of PX \ W D C. Of course U NC is
open in the Fell topology for every U € U; because C is compact, there are Uy, ... ,U,, € U’ covering C.
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Express each U; as {S: SNK; =0, SNGj; # 0 for i < r;}, where the K; are all compact and the G;
are all open. Because Uj<m Uj is disjoint from V, there is an S C PX which does not belong to any Uj.
Let £ be the finite algebra of subsets of X generated by {K; : j < m}U{Gj; :j < m, i <r;}; then there
is a finite set C' C S such that C'N E # () whenever £ € £ and SN E # 0. In this case, C € C\ U;,, Uj;
which is supposed to be impossible. XQ

(vii) Consequently 7 is a probability measure. If E € ¥/, then

H{C:CeC,CNE=0}=0(CNn{S:SCX,SNE=10})
=0{S:SNE=0}=vo{S:SNE =0} =e "
(viii) To see that » is uniquely defined, let 7' be another quasi-Radon probability measure on C with
the same property.
(@) Suppose that Ey, ..., E,. C X are disjoint measurable sets of finite measure, and
W={C:CeC,CNEy=0,CNE;#0for1<i<r}

Then W = /W. PP Induce on r. If r = 0 the result is immediate. For the inductive step to r > 1, consider
{C:CNEy=0,CNE; #0for1<i<r}tand {C:CN(EqUE,)=0,CNE;#0forl1<i<r} By
the inductive hypothesis, 7 and 7’ agree on these two sets, and therefore on their difference {C : C' € C,
CNEy=0,CNE;#0for1<i<r}. Q

(B) Suppose that we have a compact set K C X and open sets G; C X of finite measure, for i < r,
and set

V={C:CeC,CNK=0,CNG; #0 for every i <r}.

Then 7V = 0'V. P Let £ be the finite subalgebra of PX generated by {G; : i < r}U{K}, and A the set
of atoms of € included in K U UKT G;. For T C A set

Vz={C:CeC,CNE#Pfor FE€Z, CNE=0for Ec A\ I}
Then V' = (Jz¢5 Vz, where

J={Z:ICA ANnK =) for every A€ T,
for every i < r there is an A € 7 such that A C G;}.
Now («) shows that #Vz = 0'Vz for every Z C A, so that oV = #'V. Since sets V of the type described

form a base for the Fell topology closed under finite intersections, 7 = v’ (415H(v)). Q
This completes the proof of (a).

(b)(i) In the construction of 495B and (a-i) above, all the normalized subspace measures p; are Radon
measures (416Rb), while of course all the Poisson distributions vy are Radon measures, so the product
measure A on Q =[], N x H" has an extension to a Radon measure A (417Q). Let W be the family of

those sets W C PX such that 7y and 5\¢5’1[E] are defined and equal. Then W is a Dynkin class. So if
Wo € W is closed under finite intersections, the o-algebra of subsets of PX generated by W is included in
W. By (a-ii), To C W.

(ii) Let &g be the topology on PX generated by sets of the form {S : SN G # 0} where G C X is
open. (So &y is coarser than the topology & of (a-iii) above.) Then ¢ : @ — PX is continuous for the
product topology i on Q and Sy on PX. P If G C X is open, then

S SNG A0 =N, Uren jeniw 17 <mu(Ww), zh;(w) € Gi}
is open; by 4A2B(a-ii), this is enough. Q
(iii) &9 € W. P Because p is locally finite, the family U of sets of the form
{8:5NG; #£0 fori<r},

where G; C X is an open set of finite measure for each ¢ < r, is a base for Gg; and U C Ty € W. So if
We G, V= {V:V e 6&yNTy, VC W} is an upwards-directed family of sets with union W. Since 7 and
A are both 7-additive, and ¢~1[V] is open for every V € V,
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A$~HW] = supy ey Ao~ [V] = supy ¢y 0V = W,
and W eW. Q
(iv) fGC X isopenand n € N, W = {S: #(SNG) > n} belongs to &y. P

W = U{{S :SNG; # 0 for every i <n}: (G;)icn is a disjoint family

of open subsets of G of finite measure}. Q

(v) If Ep, ..., E,. C X are sets of finite measure, and ng, ... ,n, € N, then
V={S:#(SNE;) >n,; fori<r}

belongs to W. P Let € > 0. Then there is a § > 0 such that 1 — e~ < €. Let Go,...,G, be open sets
such that E; C G; for i <7 and Y ;_, pu(G; \ E;) < 4. Set

W={S:#(SNG;) >n; fori <r}, Wo={S:5NU,.,Gi\ E; #0};
then W € &g and Wy € Ty, so both belong to W, while
2oWo = Ao~ [Wo] =1 — exp(—yu(U;<, Gi \ B)) < e.
Now
WAWo CVCW, ¢ W]\ ¢ [Wo] C o~ [V]C o W]
So
7V = (#0)V e M@V =M@ V) S BV =AM (o V) < e

As € is arbitrary (and Dy, \ are complete), V is measured by 7y, ¢~ 1[V] is measured by A, and

70V = Ao V]| = [V = M (o7 [V])| = 0. Q

(vi) If Ey,...,E,. C X are sets of finite measure, ng,...,n, € Nand j <r, then
{S:#(SNE;)=n;fori<j, #(SNE;) >n; for j <i<r}

belongs to W. P Induce on j. For j = 0 we just have the case of (v). For the inductive step to j + 1, we
have

{S:#(SNE;)=n; fori <j #(SNE;)>mn,;for j<i<r}
={S:#(SNE;)=mn;fori<j #(SNE;)>mn,;for j<i<r}
\{S:#(SNE;)=n, for i < j, #(SNE;) > n; + 1,
#(SNE;)>n; forj<i<r}
ew
because W is a Dynkin class. Q

(vii) If E € ¥ has finite measure and does not include any non-negligible singleton, then #(EN¢(w)) =

9e(w), as defined in 495B, for M-almost every w € Q). P Let Ap be the set of those w €  such that

either there are an H € H and j € N such that y(HNE) =0 and zp;(w) € E

or there are an H € H and distinct ¢, j € N such that 2y, (w) = zp;(w) € E.
As observed in (a-i) above, {H : H € H, HN E # ()} is countable; while for any H € H and distinct 1,
j € N the set {w : zgi(w) = zm;(w) € E} is negligible because the subspace measure on E is atomless
(414G /416Xa), so the diagonal {(z,z) : * € E} is negligible in X2. Consequently AMAg = 0. But #(E N
p(w)) = gp(w) for every w € 2\ Ap. Q

(viii) Now suppose that Ey,...,E,. C X are disjoint sets of finite measure, none including any non-
negligible singleton, and nyg,... ,n, € N. Then

V={S:5CX,#(SNE;)=mn, for every i <r}
belongs to W, by (vi). Next,
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V] ={w: #(E; N ¢p(w)) = n; for every i < r},

SO

7V =X V] = Mw : g, (w) = n; for every i < r}
(by (vii))

T T
3 YRE)™ LB,
= TTMw: g () = mi} = [T 4B emmm,
i=0 i=0
Finally, because ;C = 1 and ¥ is the subspace measure on C,

{C:CelC, #(CNE;) =mn; foreveryi <r}=0(VNC)=rpV

- H RE)™ —yuB;
TL7' :
i=0

This completes the proof of (b).

(c)(i) Taking T D Ty to be the o-algebra of subsets of PX generated by sets of the form {S : #(SNE) =
n} where E € ¥ and n € N, (b-viii) tells us that 7% [T satisfies the conditions of 495D, so its completion
v is the Poisson point process as defined in 495E. Because 7 is complete, it extends v. (The identity map
from PX to itself is inverse-measure-preserving for 7y and g [T, therefore also for their completions 7y and
v.) Since C has full outer measure for 7y, by (a-v), it has full outer measure for v, and

ve(VNC)=vV =5V =0(VNC)
whenever v measures V', so U extends v¢.

(ii) If p is o-finite, then there is a sequence (H,),cn of open sets of finite measure covering X. For
eachn € N, {S§:5 C X, SN H, is finite} is v-conegligible. So W = {S : SN H, is finite for every n} is
v-conegligible. But W C C, so C is v-conegligible.

(d) If X is locally compact then C is Hausdorff (4A2T(e-ii)); so ¥, being a quasi-Radon probability
measure on a compact Hausdorff space, is a Radon measure (416G).

(e) Now suppose that X is second-countable.

(i) C has a countable network consisting of sets in T¢, the subspace o-algebra induced by the o-algebra
T of (c-i). I Let U be a countable base for ¥, closed under finite unions, consisting of sets of finite measure.
For Uy € U and finite Uy C U, set

V(Uo,Up) ={C:CeC,CNUy=0,CNU # 0 for every U € U} € Te¢.

If W C C is open for the Fell topology and Cy € W, there are a compact set K C X and a finite family
G C ¥ such that

Coe{C:CeC,CNK=0,CNG #{ for every G € G}.

For G € G let yg be a point of Cy N'G. Now there are a Uy € U such that K C Uy C X \ C and a family
(Ug)aeg in U such that zg € Ug C G for every G € G. In this case,

Co c V(Uo,{UG :G e Q}) cw.

As Cy and W are arbitrary, the countable set {V (U, Up) : Uy € U, Uy € [U]<“} is a network for the topology
of C. Q

(ii) Since ve measures every set in this countable network, it is a topological measure. Since it is also
complete, and 7, being a quasi-Radon probability measure, is the completion of its restriction to the Borel
o-algebra of C, v¢ extends v, and the two must be equal.

495R Proposition Let (X, %) be a o-compact locally compact Hausdorff space and MF°{°+(X) the set
of Radon measures on X. Give M°"(X) the topology generated by sets of the form {u : uG > a} and
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{p: pK < a} where G C X is open, K C X is compact and o € R. Let C be the space of closed subsets of
X with its Fell topology, and Pr(C) the set of Radon probability measures on C with its narrow topology
(definition: 437Jd). For u € Mgt (X) and v > 0 let 7, , be the Radon measure on C defined from x and ~
as in 495Q. Then the function (u,7) — 7y, : M2 (X) x ]0,00] — Pg(C) is continuous.

proof (a) Note that because X is o-compact, every Radon measure on X is o-finite, therefore outer regular
with respect to the open sets (412Wb), and we can apply 495Q to build the measures 7, ,. Just as in 495E
for ordinary Poisson point processes, the uniqueness assertion in 495Qa assures us that 7, , = 7, 1 for all
~v and p. Of course the sets

{(7) 1 G > o}, {(p,7) 1 ypK < a}

where G C X is open, K C X is compact and a € R, are all open in Mg>*(X) x ]0,00[; so the map
(1,7) = v is continuous. It will therefore be enough to show that the map p — 7,1 : Mg°"(X) — Pr(C)
is continuous. Write 7, for 7, ;.

(b) Fix an open set Wy C C, ap > 0 and pg € M§°+(X) such that 7,, Wy > ap. Let £ be the family of
relatively compact Borel subsets E of X such that pg(0F) = 0. Then & is a subring of PX (4A2Bi). Also
p— pE s M2t (X) — [0,00[ is continuous at pg for every E € €. P If E € € and € > 0, then

{p:poE —e<pE < poE + €}
D {p:p(int B) > po(int B) — €, uE < poE + €}
is a neighbourhood of 1y. Q
(c) Next, U = ENT is a base for T (411Gi). It follows that the family V of sets of the form
{C:CeC,CnNU;#Dfori<r, CNU = 0},
where U, Uy,... € U, is a base for the Fell topology on C. P If W C C is open for the Fell topology and
Cy € W, there are r € N, open sets G; C X for i < r and a compact set K C X such that
Coe{C:CNG;#Dforeachi<r, CNK =0} CW.

For each i < r choose x; € Cy N G; and U; € U such that z; € U; C G;. Because X is locally compact
and Hausdorff, it is regular, so every point of K belongs to a member of ¢/ with closure disjoint from Co;
because U is closed under finite unions, there is a U € U such that K C U and Cy N U = (. Now

{C:CecC,CnU;#Dfori<r,CNU =0}
belongs to V, contains Cj and is included in W. As Cy and W are arbitrary, ) is a base for the Fell topology
onC. Q
(d) If V eV, then u — 7,V : M (X) — [0,1] is continuous at po. ¥ Express V as {C : C € C,
CNU; #0fori<r,CNU = 0}, where U;, U € U. Let A be the set of atoms of the finite subring of £
generated by {U; :i <7} U{U}. For T C A set
Vi={C:CelC,IT={A:Ac A CNA#D}}.

Let J be the set of those T C A such that ANU = () for every A € T and for every i < r thereisan A € T
such that A C U;. Then (Vz)zes is a partition of V. Moreover, for any p € M (X) and Z C A,

.V =[laeaz e M Tlaer(1—e#4).
Since each p — pA is continuous at 19, by (a), so are the functionals p — 0, Vz, for Z C A, and p +— 7,V =
2resVuVz Q

(e) Let V* be the family of Borel subsets V of C such that p — 7,V : M2t (X) — [0, 00[ is continuous at
to. Then V C V* (by (c)), C € V* and V \ V' € V* whenever V, V' € V* and V' C V. Because V is closed
under finite intersections, it follows that V* includes the algebra of subsets of C generated by V (313Ga); in
particular, any finite union of members of V belongs to V*.

(f) Let us return to the open set Wy C C and the o € R of part (a). Because 7, is 7-additive and V is
a base for the topology of C ((b) above), there is a finite family Vy C V such that Vy = (J V) is included in
Wy and 7,, Vo > ap. But this means that
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{p:pe MPH(X), 5, Wo > apt 2 {p:p€ MZH(X), 7,Vo > ao}

is a neighbourhood of . As pg is arbitrary, {u : 7, Wy > ao} is open; as Wy and « are arbitrary, p — 7,
is continuous.

4958 There are many constructions which, in particular cases, can be used as an alternative to the
method of 495B-495D in setting up Poisson point processes. I give one which applies to the half-line [0, oo|
with Lebesgue measure.

Theorem Let v > 0, and let v be the Poisson point process on [0, co[, with Lebesgue measure, with intensity
. Let Ag be the exponential distribution with expectation 1/, regarded as a Radon probability measure
on ]0,00[, and A the corresponding product measure on ]0, 00| . Define ¢ : |0, 00" — P([0, 00[) by setting
d(z) = {> iy x(i) : n € N} for z € ]0, oo[". Then ¢ is a measure space isomorphism between ]0, o[ and a
v-conegligible subset of P([0, co[).

Remark As I seem not to have mentioned exponential distributions earlier in this treatise, I remark now
that the exponential distribution with parameter v has distribution function

Fit)=0ift<0,1—e " ift >0,

and probability density function
Ft)=0ift <0, ve " if t > 0;

its expectation is

J yte e = — [ 4 () gy = L

Because (when regarded as a Radon probability measure on R, following my ordinary rule set out in §271)
it gives measure zero to |—o0, 0], it can be identified with the subspace measure on ]0, co[, as here.

proof (a) For each n € N, #(5N[0,n]) is finite for v-almost every S; so the set
Qo ={5:85 C[0,00][, #(SN[0,n]) is finite for every n}

is v-conegligible. Next, the sets {S : SN [n,n + 1] # 0} are v-independent and have measure 1—e™7 > 0, so
{S: 5N [n,n+ 1] # 0 for infinitely many n}

is v-conegligible (273K). Finally, v{S:0€ S} =0,50Q = {S: S € Qo, 0 ¢ S, S is infinite} is v-conegligible.
For S € Q, let (g, (S))nen be the increasing enumeration of S. Let T be the o-algebra of subsets of P([0, oo[)
generated by sets of the form {S : #(S N E) = n} where E C [0, 00[ has finite measure and n € N. Then,
forn e Nand a > 0, {S: gn(S) < a} ={5: #(5SN[0,a]) > n+ 1} belongs to T, so g, is T-measurable.
Set ho(S) = go(S), hn(S) = gn(S) — gn_1(S) for n > 1, and A(S) = (hy(S))nen; then h: Q — ]0,00[" is a
bijection, and its inverse is ¢.

(b) For each k € N, Ig = {i : i € N, SN [27%,27%(i + 1)[ # 0} is infinite for every S € Q. So we can
define gg, : Q — ]0, 00, for each n, by taking gr,(S) = 27%(j + 1) if j € Is and #(Is N j) = n. Because all
the sets {S : j € Is} belong to T, each gg,, is T-measurable, and (g, )ren IS & non-increasing sequence with
limit g,,. Set hro(S) = gro(S) and hin(S) = grn(S) — gkn—1(S) for n > 1. Then h,, = limy_,o0 Akp-

(c) For any n € N, jo,... ,jn €N, k € N, set j. = >_I_ ji for » < n. Then
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v{S:58€Q, hpi(S) =27%(js + 1) for every i < n}
=1{S:5€Q, gi(S) =27F(r + 1+ j.) for every r < n}
=v{S:SN[27 (r+j),27F(r + 1+j])[ # 0 for every r < n,
sn 0,27 %5 =0,
SNn[27Fr+144.),27 (r +1+44j..1)[ = 0 for every r <n}
= (1 — exp(—27"))" exp(=2"*vjo) [ [ exp(=27 (i1 — 41))

r<n
n

=TI~ exp(=27*y) exp(=2 44,
=0

This means that the hy;, for ¢ € N are independent, with
Pr(hy =275 +1) = (1 —e 2 ")e2 "

for each j. Since hy; — h; v-a.e. for each 4, (h;);cn is also independent (367W). Now, for any a > 0,

Pr(hg; < ) = Z (1- exp(—27kfy)) exp(—27kfyj)

2=k (j4+1)<a

=1—exp(—27Fy|2Fa|) = 1 — e

as k — o0o. So

Pr(h; < @) = inf liminf Pr(hg; < 8)

B>a k—oo

(271L)
=infl—e W =1—¢"
B>a

for every a > 0 and every i € N.

(d) Accordingly (h;)ien is an independent sequence of random variables, each exponentially distributed
with expectation 1/. It follows that h : Q — ]0, oo[N
vg and A (254G).

Observe next that if E C [0, oo[ is Lebesgue measurable and n € N, then

{z:2€]0,00[", #(d(z) NE) =n} = Ujepye{z: Sl_pali) € E < jeI} €A,
writing A for the domain of X. So ¢ is (A, T)-measurable. Now, for any W € T,
A W] =v(h o W) =v(WNQ) =vIW.

So ¢ is inverse-measure-preserving for A and for v[T. Since A is complete and v is defined as the completion
of its restriction to T, ¢ is inverse-measure-preserving for A and v. Thus ¢ and h are the two halves of an
isomorphism between (]0, oo[N ,A) and the subspace (Q,vg), as claimed.

is inverse-measure-preserving for the subspace measure

495X Basic exercises

(b) Let (X, X, ) be an atomless measure space, and v a Poisson point process on X. (i) Show that [X]=%
has full outer measure for v. (ii) Show that if y is semi-finite then [X]=“ is conegligible iff p is o-finite. (iii)

Show that if p is semi-finite, then [X]<“ is non-negligible iff [X]<* is conegligible iff u is totally finite.

MEASURE THEORY



495X m Poisson point processes 99

(c) Let (X,%, ) be a strictly localizable measure space and (X;);c; a decomposition of X. Let v be
the Poisson point process on X with intensity 1, and for each i € I let v; be the Poisson point process on
X; with intensity 1 corresponding to the subspace measure px, on X;. Let A be the product of the family
(Vi)ier. Show that the map S — (SN X;)ier : PX — [[,c; PX; is inverse-measure-preserving for v and .

>(d) Let (X,%, 1) be an atomless measure space and T a topology on X such that X is covered by a
sequence of open sets of finite outer measure. Let v be a Poisson point process on X. Show that v-almost
every set S C X is locally finite in the sense that X is covered by the open sets meeting S in finite sets; in
particular, if X is Ty, then v-almost every subset of X is closed.

>(e)(i) Let (X,X, 1) be an atomless measure space, and for v > 0 let v, be the Poisson point process
on X with intensity . Show that for any ~, § > 0 the map (S,T) — SUT : PX x PX — PX is inverse-
measure-preserving for the product measure v, X vs and v45. (ii) Let X be a set, 3 a o-algebra of subsets
of X, and (u;);er a countable family of measures with domain ¥ such that p = Zie 7 Mi is atomless. Let
v, v; be the Poisson point processes with intensity 1 corresponding to the measures u, p;. Show that the
map (Si)ier — Ue; Si : (PX)! — PX is inverse-measure-preserving for the product measure [],.; v; and
v. (iii) Compare with 495Xc(i).

el

(f) Let (X,%, ) be an atomless semi-finite measure space, and v the Poisson point process on X with
intensity 1. Show that v is perfect iff p is.

(g) Let (U, i) be a measure algebra. Show that there is a probability measure A on R* guch that (i) for
every a € A/ the corresponding marginal measure on R is the Poisson distribution with expectation fia (ii)
whenever ag, ... ,a, € A/ are disjoint, the functions z — z(a;) : R - R are stochastically independent
with respect to A. (Hint: prove the result for finite 2 and use 454D.) Use this to prove 495M.

(h) Let U be a Hilbert space. Show that there are a probability algebra (28, )) and a linear operator
T :U — L?(B) such that (i) for every u € U, Tw has a normal distribution with expectation 0 and variance
llull3 (i) if (u;)icr is an orthogonal family in U then (Tu;);c; is A-independent. (Hint: see the proof of
456K.)

(i) Let v be the Poisson point process with intensity 1 on [0, oo with Lebesgue measure. Set Qo = {S :
S C[0,00[, SN[0,n] is finite for every n} and for S € Qg set ¥(S)(t) = #(SN]J0,¢]) for t € [0, c0[. Show that
1 is inverse-measure-preserving for the subspace measure v, and the distribution on R0l corresponding
to the Poisson process of 455Xh.

(j) Let (Y, T,v) be a probability space, and Ag the exponential distribution with expectation 1, regarded
as a Radon measure on ]0,00[. Let A be the product measure AY x N on ]0,00[" x YN, Set ¢(z,y) =
{Xr (i), y(n)) : n € N} for z € 10, 00[" and y € YN, Show that ¢ : ]0, 00" x YN — P(]0,00[ x Y) is a
measure space isomorphism between (]0,00[" x YN, ) and a conegligible set for the Poisson point process
on |0, 00[ x Y with intensity 1 for the c.l.d. product measure p;, x v, where py, is Lebesgue measure.

(k) Let C be the family of closed subsets of [0,00[. Let p be the usual metric on [0,00[ and p the
corresponding Hausdorfl metric on C \ {0} (4A2T). Let v be the Poisson point process on [0, co0[ with
intensity 1 over Lebesgue measure. Show that every member of C \ {(} has a v-negligible g-neighbourhood.

(1) Show that the topology on My (X) described in 495R is just the topology induced by the natural
embedding of My (X) into Ck(X)™ (436J) and the weak topology Ts(Cx(X)™, Cr(X)), where Cy(X) is the
Riesz space of continuous real-valued functions on X with compact support.

(m) Let C be the set of closed subsets of [0, co[ with its Fell topology. For ¢ € ]0,1] let As be the measure
on {0, 1} which is the product of copies of the measure on {0,1} in which {1} is given measure §. Define
¢s : {0, 1}V — C by setting ¢s(x) = {nd : n € N, x(n) = 1}, and let 75 be the Radon measure A\sp; ' on C.
Show that the Radon measure on C representing the Poisson point process on [0, 0o[ with intensity 1 over
Lebesgue measure is the limit lims ) 75 for the narrow topology on the space of Radon probability measures
on C.
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(n) Show that the standard gamma distribution with expectation 1 is the exponential distribution with
expectation 1.

(o) Let » > 1 be an integer; let u be Lebesgue measure on R” and 3, the volume of the unit ball in R”.
Set 1(t) = (t/B,)"/" for t > 0, so that the volume of a ball of radius v(t) is t. Let S,_; be the unit sphere
in R” and 6 the invariant Radon probability measure on S,._1, so that 8 is a multiple of (r — 1)-dimensional
Hausdorff measure (see 476I). Let Ag be the exponential distribution with expectation 1, regarded as a
Radon probability measure on ]0, co[, and A the product measure AY x 8~ on 10, co[" x SN ;. Set

O(w,2) = {P(XCizo (i)2(n) : n € N}

for € 0,00[" and z € SN |. Show that ¢ : ]0,00[" x SN | — P(R") is a measure space isomorphism
between |0, oo[N x SN, and a conegligible set for the Poisson point process on R” with intensity 1.

495Y Further exercises (a) Let U be an L-space. Show that there are a probability algebra (5, \)
and a linear operator 7' : U — L°(B) such that (i) for every u € U, Tu has a Cauchy distribution with
centre 0 and scale parameter |[u|| (ii) if (u;)ier is a disjoint family in U then (T'u;);cr is A-independent.

(b) Let U be an L-space. Show that there are a probability algebra (B, A) and a linear operator 7' : U —
L'(B, X) such that (i) for every u € U", Tu has a standard gamma distribution (definition: 455Xj) with
expectation ||ul| (ii) if (u;)ier is a disjoint family in U then (T'u;);cr is A-independent.

(c) Let (2, /1) be a measure algebra. For a, y € R set hy(a) = €%, and let hy, : LO(A) — LA(A)
(definition: 366M°) be the corresponding operator (to be defined, following the ideas of 364H" or otherwise).
Show that there are a probability algebra (%8, \) and a positive linear operator T : L' (2, i) — L'(8, \) such
that (i) ||Tw||; = |lu||s whenever u € L*(A, @)t (ii) (Tw;)ies is A-independent in L°(B) whenever (u;);cr is
a disjoint family in L'(2, i) (iii) [ hy(Tu)d\ = exp([(hy(u) — x1)dj) for every u € L*(A, 1) and y € R.

(d) Let (X, p) be a totally bounded metric space, i a Radon measure on X and v > 0. Let C be the set
of closed subsets of X, and 7 the quasi-Radon measure of 495Q; let p be the Hausdorfl metric on C \ {0}.
Show that the subspace measure on C \ {0} induced by 7 is a Radon measure for the topology induced by 4.

495 Notes and comments The underlying fact on which this section relies is that the Poisson distributions
form a one-parameter semigroup of infinitely divisible distributions, with v, * vg = V444 for all a, 8 > 0.
Other well-known families with this property are normal distributions, Cauchy distributions and gamma
distributions; for each of these we have results corresponding to 495B and 495N (495Xh, 495Ya, 495YDb). The
same distributions appeared, for the same reason, in the Lévy processes of §455. Observe that the version for
the normal distribution is related to the Gaussian processes of §456. The ‘compound Poisson’ distributions of
495P provide further examples, which approach the general form of infinitely divisible distributions (LOEVE
77, §23, or FRISTEDT & GRAY 97, §16.3).

The special feature of the Poisson point process, in this context, is the fact that (for atomless measure
spaces (X, 1)) it can be represented by a measure on P X rather than on some abstract auxiliary space (495D);
so that we have a notion of ‘random subset’, and can discuss the expected topological properties of subsets
of X (495Xb, 495Xd). In Euclidean spaces the geometric properties of these random subsets are also of great
interest; see MEESTER & RoOY 96. Here I look at the relations between this construction and others which
have been prominent in this book, such as inverse-measure-preserving functions (495J) and disintegrations
(495K-495L). In the latter we find ourselves in an interesting difficulty. If, as in 495K, we have a measure
space X = X x [0, 1], where X is an atomless measure space, then it is natural to suppose that our Poisson
process on X can be represented by picking a random subset T of X and then, for each t € T, a random
(t,a) € X. The obvious model for this idea is the map (T, z) — {(t,2(t)) : t € T} : PX x [0,1]X — PX.
The problem with this model is that the map is simply not measurable for the standard o-algebras on PX,
PX x [0,1]% and PX. When we have a canonical ordering in order type w of almost every subset of X

SFormerly 364Yn.
"Formerly 3641I.

MEASURE THEORY



496B Maharam submeasures 101

(‘almost every’ with respect to the Poisson point process on X, of course), as in 495Xo, there can be a way

around this, cutting [0, 1] down to a countable product and re-inventing the representation of pairs (7, z)
as subsets of X. But in the general case it seems that we have to set up a disintegration of the Poisson point
process on X over the Poisson point process on X which does not correspond to any measure on a product
PX x Q.

Following my usual custom, I have expressed the theorems of this section in terms of arbitrary (atomless)
measure spaces. The results are not quite without interest when applied to totally finite measures, but their
natural domain is the class of non-totally-finite o-finite measures, as in 495Q-495S. There is an unavoidable
obstacle if we wish to extend the ideas to measure spaces which are not atomless. The functions S — #(SNE)
may no longer have Poisson distributions, since if E is a singleton of positive measure then we shall have
a non-trivial two-valued random variable. In 495Q-495R I take one of the possible resolutions of this, with
measures 7 on spaces of subsets for which at least the sets {S : SN FE = (}, for disjoint E, are independent.
An alternative which is sometimes appropriate is to work with functions h : X — N and > h(z) in place
of subsets S of X and #(S N E); see FRISTEDT & GRAY 97, §29.

In 495M-4950 we have a little cluster of results which are relevant to rather different questions, to which
I will return in Chapter 52 of Volume 5. The objective here is to connect the structure of a measure algebra
or Banach lattice of arbitrarily large cellularity with something which can be realized in a probability space.
In each case, disjointness is transformed into stochastic independence. Once again, the special feature of
the Poisson point process is that we have a concrete representation of a linear operator which can also be
described in a more abstract way (4950).

The construction of 495B-495D seems to be the most straightforward way to generate Poisson point
processes. It fails however to give a direct interpretation of one of the most important approaches to these
processes, as limits of purely atomic processes in which sets are chosen by including or excluding individual
points independently (495Xm). In order to make sense of the limit here it seems that we need to put some
further structure onto the underlying measure space, and ‘o-finite locally compact Radon measure space’ is
sufficient to give a positive result (495R).

z€E

Version of 27.5.09

496 Maharam submeasures

The old problem of characterizing measurable algebras led, among other things, to the concepts of ‘Ma-
haram submeasure’ and ‘Maharam algebra’ (§393). It is known that these can be very different from
measures (§394), but the differences are not well understood. In this section I will continue the work of
6393 by showing that some, at least, of the ways in which topologies and measures interact apply equally
to Maharam submeasures. The most important of these interactions are associated with the concept of
‘Radon measure’, so the first step is to find a corresponding notion of ‘Radon submeasure’ (496C, 496Y).
In 496D-496K I run through a handful of theorems which parallel results in §§416 and 431-433. Products of
submeasures remain problematic, but something can be done (496L-496M).

496A Definitions As we have hardly had ‘submeasures’ before in this volume, I repeat the essential
definitions from Chapter 39. If 2 is a Boolean algebra, a submeasure on 2l is a functional p : 2 — [0, 0]
such that 0 =0 and pa < p(aud) < pa + b for all a, b € A (392A). p is strictly positive if pa > 0 for
every a € A\ {0} (392Ba), exhaustive if lim,,_, o pa, = 0 for every disjoint sequence (an)nen in A (392Bb),
totally finite if ul < oo (392Bd), a Maharam submeasure if it is totally finite and lim, . pa, = 0
for every non-increasing sequence (an)neny in 2 with zero infimum (393A). A Maharam submeasure is
sequentially order-continuous (393Ba). If 1 and v are two submeasures on a Boolean algebra 2/, then p is
absolutely continuous with respect to v if for every € > 0 there is a § > 0 such that pua < € whenever
va < 0 (392Bg). A Maharam algebra is a Dedekind o-complete Boolean algebra which carries a strictly
positive Maharam submeasure (393E).

496B Basic facts I list some elementary ideas for future reference.

(a) Let u be a submeasure on a Boolean algebra 2.
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(i) Set I = {a:a € A, pa = 0}. Clearly I is an ideal of ; write € for the quotient Boolean algebra
2A/I. Then we have a strictly positive submeasure i on € defined by setting fia® = pa for every a € 2A. P
If a* = b* then

p(a\b) = p(b\a) = plasb) =0, pa=planbd) = pub;
so i is well-defined. The formulae defining ‘submeasure’ transfer directly from p to f. If fia® = 0 then
pa=0,a €1 and a®* = 0, so j1 is strictly positive. Q

(ii) If p is exhaustive, so is fi. P If (ap)nen is a sequence in 2 such that (ay,)nen is disjoint in A/,
set by, = a, \ sup;., a; for each n; then (b,)nen is disjoint so

thus & is exhaustive. Q

(iii) If A is Dedekind o-complete and p is a Maharam submeasure, then € is a Maharam algebra. P
As p is sequentially order-continuous, I is a o-ideal and € is Dedekind o-complete (314C). Now suppose that
{(an)nen is a sequence in A such that ( * Ynen is non-increasing and has zero infimum in €. Set b,, = inf;<,, a;
for each n, and a = inf,,en a,,; then a® = 0 so pa = 0 and (again because u is sequentially order-continuous)

lim,, oo flay, = limy, oo by, = lim,, oo by, = pa = 0.

Since we already know that [ is a strictly positive submeasure, it is a strictly positive Maharam submeasure
and € is a Maharam algebra. Q
In this context I will say that ¢ is the Maharam algebra of p.

(b) If u is a strictly positive totally finite submeasure on a Boolean algebra 2l, there is an associated
metric (a,b) — p(a A b) (392H); the corresponding metric completion 2 admits a continuous extension of
1 to a strictly positive submeasure fi on A, If 1 is exhaustive, then [ is a Maharam submeasure and A is
a Maharam algebra (393H). A Maharam algebra is ccc, therefore Dedekind complete, and weakly (o, 00)-
distributive (393ED).

(c) If p is a submeasure defined on an algebra ¥ of subsets of a set X, I will say that the null ideal
N(u) of p is the ideal of subsets of X generated by {E : E € ¥, uE = 0}. If N(u) C X I will say that
u is complete. Generally, the completion of p is the functional ji defined by saying that i(EAA) = uE
whenever E € ¥ and A € N(p); it is elementary to check that [ is a complete submeasure.

(d) If 2 is a Maharam algebra, and p, v are two strictly positive Maharam submeasures on 2, then each
is absolutely continuous with respect to the other (393F). Consequently the metrics associated with them
are uniformly equivalent, and induce the same topology, the Maharam-algebra topology of 2 (393G).

496C Radon submeasures Let X be a Hausdorff space. A totally finite Radon submeasure on X
is a complete totally finite submeasure p defined on a o-algebra ¥ of subsets of X such that (i) 3 contains
every open set (ii) inf{y(E \ K) : K C E is compact} = 0 for every E € X.

In this context I will say that a set E € ¥ is self-supporting if u(F N G) > 0 whenever G C X is open
and GNE # .

496D Proposition Let i be a totally finite Radon submeasure on a Hausdorff space X with domain X.
(a) p is a Maharam submeasure.

(b) inf{u(G\ E) : G 2 E is open} = 0 for every F € X.

(¢) If E € ¥ there is a relatively closed F' C E such that F is self-supporting and pu(E \ F) = 0.

(d) If E € ¥ and € > 0 there is a compact self-supporting K C E such that u(E\ K) <e.

proof (a) Let (E,)nen be a non-increasing sequence in 3 with empty intersection. ? If inf, ey pE,, = € > 0,
then for each n € N choose a compact set K,, C E,, such that u(E, \ K,) < 27" 2¢. For each n € N,

1(En \ ﬂign Ki) < 3o m(Ei \ Ki) < e < pkEn,

80 (i<, #i # 0. There is therefore a point in (), oy Kn € ()
Maharam submeasure.

E,. X As (E,)nen is arbitrary, p is a

neN neN
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(b) We have only to observe that

inf{u(G\ E) : G 2 F and G is open}
<inf{u((X\ E)\K): K C X\ E is compact} = 0.

(c) Let G be the family of open subsets G of X such that u(ENG) = 0, and H = |JG. Then G is
upwards-directed. If € > 0 there is a compact set K C EN H such that u(E N H \ K) < ¢; now there is a
G e Gsuch that K C G and u(ENH) <e+ puK =e. As eis arbitrary, H € G; set F = E\ H.

(d) There is a compact Ky C E such that u(E\ Ky) < ¢ by (c), there is a closed self-supporting K C K
such that u(Ky\ K) =0.

496E Theorem Let X be a Hausdorff space and K the family of compact subsets of X. Let ¢ : L — [0, o0
be a bounded functional such that
(a) ¢ =0 and ¢K < H(K U L) < oK + ¢L for all K, L € K;
(8) whenever K € K and € > 0 there is an L € K such that L C X \ K and ¢K’ < ¢ whenever
K’ € K is digjoint from K U L;
() whenever K, L € K and K C L then ¢L < ¢K +sup{¢pK’': K' e K, K' CL\ K}.
Then there is a unique totally finite Radon submeasure on X extending ¢.

proof (a) For A C X write ¢,A = sup{¢K : K C A is compact}. Then ¢, extends ¢, by (a). Also
x(Upen Gn) < >0 o $+Gy, for every sequence (G)nen of open subsets of X. P If K C Unen Gn is
compact, it is expressible as Uign K; where n € N and K; C G; is compact for every i < n (4A2Fj). Now

K < 3o O < 312, 94 Gi

As K is arbitrary, ¢.(U,cn Gn) < >0 o #+Grn. Q In particular, because ¢f) = 0, ¢.(GUH) < ¢,G + ¢ H
for all open G, H C X.

(b) Let ¥ be the family of subsets E of X such that for every € > 0 there is a K C X such that KN E
and K \ E are both compact and ¢.(X \ K) < e. Then X is an algebra of subsets of X including . P (i)
Of course X \ E € ¥ whenever E € 3. (ii) f E, F € ¥ and € > 0, let K, L C X be such that KNE, K\ E,
LNF and L\ F are all compact and ¢,(X \ K), ¢.(X \ L) are both at most e. Then (K NL)N(EUF)
and (K NL)\ (EUF) are both compact, and

(X \(KNL)) <o (X\K) + 0. (X\ L) <e
As € is arbitrary, EU F € X. (iii) By hypothesis (8), C C X. Q

(c) X is a o-algebra of subsets of X. PP Let (E,),en be a sequence in ¥ with intersection F, and € > 0.
For each n € N let K,, C X be such that K,, N E,, and K, \ F,, are compact and ¢.(X \ K,) < 27 "¢; set
K = ,en Kn. Set L = (,,cn Kn N Ey, so that L C E is compact, and let L' € X \ L be a compact set
such that ¢ (X \ (LUL")) <e¢set K/ = KN(LUL'). Then ¢.(X \ K') < 3e. As L’ N L = () there is an
n € N such that L' N, K; N E; is empty. Now

KOL CUuen (X (i N E)) 0 (e Ki € Uy X\ Bi C X\ E,
so KK'NE=KNLand K'\ E=KnNLare compact. As e is arbitrary, £ € . Q
(d) Set = ¢, [X. Then p is subadditive. I Suppose that F, FF € ¥ and K C FU F is compact. Let

€ > 0. Then there are Ly, Ly € K such that Ly N E, L1 \ E, Ly N F and Ly \ F are all compact, while
¢(X \ L1) and ¢.(X \ Lg) are both at most e. Set K1 = L1 N E and Ko = Ly N F, so that

OK < p(KUK UKs) < (K1 UKs)+ o (K \ (K1 UK3))
(by hypothesis (7))

As e and K are arbitrary, ¢.(FUF) < ¢.E + ¢ F. Q
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(e) Every open set belongs to . P Let G C X be open, and € > 0. Applying (8) with K = 0
we have an L € K such that ¢.(X \ L) < e. Next, there is an L' € K, disjoint from L \ G, such that
P (X\(L\G)UL)) <e Set " =LN{(L\G)UL'). Then L"NG=LNL and L\ G = L\ G are
compact and ¢.(X \ L") < 2¢. Q

) IfECFeXYand uF =0then E € 3. PP Let € > 0. Let K C X be such that K N F and K \ F are
both compact and ¢.(X \ K) <e. Then (K \ F)NE and (K \ F)\ E are both compact, and

(X \(K\F)) = p(X\(K\ F)) < p(X\ K) + pF = ¢ (X \ K) <e.
As € is arbitrary, £ € 3. Q
(g) If E € ¥ and € > 0, there is a compact K C E such that u(E \ K) <e. P Let Ky C X be such that

KoNE and Ky \ E are both compact and ¢, (X \ Ko) <e. Set K =FENKy. f Le Land L C E\ K then
6L < 6.(X \ Ko) < ¢ 50 p(E\ K) < c. Q

(h) So w is a totally finite Radon submeasure. To see that it is unique, let p/ be another totally finite
Radon submeasure with the same properties, and ¥’ its domain. By condition (ii) of 496C, u' = ¢.[Y'.
If E € ¥ there are sequences (K, )nen, (Ln)nen of compact sets such that K,, C E, L, C X \ E and
B\ Ky) +p((X\ E)\ L,) < 27" for every n. Set F' = J,,cyy Kn and F' = |,y Ln; then F'U F' belongs
to ¥ NY and

WX\ (FUFY) = 6, (X\ (FUF)) = u(X \ (FUF))
< inlf\IM(X \ (Kn U Ln)) =0.
ne
Consequently E\ F € ¥ and E € ¥'.
The same works with p and g/ interchanged, so ¥ =¥/ and p’ = ¢.|X = p.

496F Theorem Let X be a zero-dimensional compact Hausdorff space and £ the algebra of open-and-
closed subsets of X. Let v : &€ — [0, 00[ be an exhaustive submeasure. Then there is a unique totally finite
Radon submeasure on X extending v.

proof (a) Let K be the family of compact subsets of X and for K € K set ¢ K = inf{vE : K C E € £}.
Then ¢ satisfies the conditions of 496E.

P(a) Of course ¢ = 0 and ¢K < ¢L whenever K C Lin K. f K CE €& and L C F € &, then
KULCEUF e and v(EUF) <vE+vF, so ¢ is subadditive.

(B8) The point is that for every K € K and € > 0 there is an E € £ such that K C F and vF < ¢
whenever F' € £ and F C E \ K; since otherwise we could find a disjoint sequence (F,)nen in € with

vF, > € for every n. But now L = X \ E is compact and disjoint from K, and every compact subset of
X\ (KUL)=FE\K is included in a member of £ included in E \ K; so sup{¢K’ : K’ C X \ (K UL) is
compact} < e.

(v) If K and L are compact and K C L and € > 0, take E € £ such that K C F and vE < ¢K + .
Set K =L\E.If Fef and F D K’', then EUF D L, so

¢L <v(EUF) <VvE 4 vF < ¢K + ¢+ vF.
As Fis arbitrary, ¢L < ¢K + ¢K' +¢. Q

There is therefore a totally finite Radon submeasure p extending ¢ and v.

(b) If i’ is another totally finite Radon submeasure extending v, then p/[K = ¢. B Of course ' K < K
forevery K e K. 2 f K e Kand ¢ > 0 and 'K + ¢ < ¢K, let E € € be such that K C E and ¢L < ¢
whenever L C E \ K is compact, as in (a-/3) above. Then

W (E\K)=sup{y/L:LC FE\ K is compact}
<sup{¢L: L C FE\ K is compact} < e
and
vE=p'E<e+p/K<uK <uE=vE. XQ
By the guarantee of uniqueness in 496E, 1/ = p.
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496G Theorem Let 2 be a Maharam algebra, and p a strictly positive Maharam submeasure on 2. Let
Z be the Stone space of 2, and write a for the open-and-closed subset of Z corresponding to each a € 2.
Then there is a unique totally finite Radon submeasure v on Z such that va = pa for every a € 2. The
domain of v is the Baire-property algebra BofZ , and the null ideal of v is the nowhere dense ideal of Z.

proof Let £ be the algebra of open-and-closed subsets of Z, and M the ideal of meager subsets of Z.
Because 2 is Dedekind complete (393Eb/496Bb), £ is the regular open algebra of Z (314S). By 496R(b-ii),
B={EAF:Ec&, Fec M}.

For a € 2, let @ be the corresponding member of £. By 314M, we have an isomorphism 6 : 20 — g/./\/l
defined by setting f(a) = a* for every a € A. For E € B, set vE = u(0~'E*). Because E — E* is
a sequentially order-continuous Boolean homomorphism (313P(b-ii)), v is a Maharam submeasure on B.
Because p is strictly positive, the null ideal of v is M.

Because 2 is weakly (o, 0o)-distributive (393Eb/496Bb), M is the ideal of nowhere dense subsets of Z
(3161). If E € B, consider B = {b:b €A, b C E}; set a = sup B in A. Now E \ @ is nowhere dense. P?
Otherwise, there is a non-zero ¢ € 2 such that F = ¢\ (E'\ @) is nowhere dense. In this case, the non-empty
open set ¢\ F is included in £\ @ and there is a non-zero b € 2 such that bC E\a. But in this case b€ B
and b C @, which is absurd. XQ

Set D = {a\b:b € B}. Then D is downwards-directed and has infimum 0. Because p is sequentially
order-continuous and 2 is cce, p is order-continuous (316Fc), and infzep pud = 0. Accordingly

~ ~

. K CEi < _ . N
inf{v(F\ K): K C F is compact} < blg]fg v(E\b) blg]f3 v(a\ b)

= l}g}fgu(a\b) =0.

Thus condition (ii) of 496C is satisfied and v is a totally finite Radon measure.
By 496F, v is unique.

496H Theorem Let X be a Hausdorff space, 3 an algebra of subsets of X, and pgo : X9 — [0, 00[ an
exhaustive submeasure such that inf{uo(F \ K) : K € ¥y is compact, K C E} = 0 for every F € ¥j. Then
1o has an extension to a totally finite Radon submeasure p; on X.

proof (a) Let P be the set of all submeasures p, defined on algebras of subsets of X, which extend pg, and
have the properties

(o) inf{p(E\ K) : K € dom p is compact, K C E} = 0 for every E € dom ,
(*) for every E € dom p and € > 0 there is an F' € ¥ such that p(EAF) <e.
Order P by extension of functions, so that P is a partially ordered set.

(b) If 4 € P, then p is exhaustive. PP? Otherwise, let (E,),en be a disjoint sequence in dom p such
that € = inf, ey B, is greater than 0. For each n € N, let F;, € ¥y be such that u(E,AF,) < 27" 2¢; set
Gn = Fn\ U, Fi for each n. Then

En C GoUUic,(BiAF), € < pGy + Y1y 2 % < oG + 3¢

and poG, > %e for every n. But (G,,)nen is disjoint and pg is supposed to be exhaustive. XQ

(c) Suppose that p € P has domain X, and that V' C X is such that
1(V, n): for every € > 0 there is a K € ¥ such that K NV is compact and pu(X \ K) <.

(i) Set H={H :V C H € £}. Then H is downwards-directed. If € > 0 there is an H € # such that
w(H\ H') < € for every H' € H. P? Otherwise, there would be a non-increasing sequence (Hy,)nen in H
such that u(H,, \ Hy41) > € for every n; but p is exhaustive, by (b). XQ

(ii) Let F be the filter on H generated by sets of the form {H' : H' € H, H' C H} for H € H. Then
limprp((ENH)U(F\ H)) is defined for all £, F' € X. P Given € > 0, then (i) tells us that there is an
Hy € H such that p(HAH') < p(Ho \ (HN H')) < e whenever H, H' € H are included in Hy. Now, for
such H and H’,
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(ENH)U(F\H)A(ENH)U(F\H) C HAH,

W(ENH)U(F\H)) —p(ENH)U(F\H))|<e Q

(i) If E, F, B/, ' € L and (ENV)U(F\ V) = (E'NV) U (F'\ V), then
limp 7 u((ENH)U(F\ H)) = limp,7 p((E'0 H) U (F'\ H)).

P Given € > 0, there is an Hy € H such that uG < ¢ whenever G € ¥ and G C Hy \ V, by (i). Now if
HeHand H - Ho,

G=(EnNnH)UF\H)A(E'NH)U(F'\H))CH\V,
(N HYU (F\ H)) — u((B' 1 H) U (F'\ H))| < 5G < e.
As € is arbitrary, the limits are equal. Q

(iv) Consequently, taking ¥’ to be the algebra {(ENV)U(F\V) : E, F € X} of subsets of X generated
by ¥ U {V}, we have a functional p : ¥’ — [0, oo[ defined by saying that

W (ENV)U(F\V)) =limpgozp((ENH)U(F\ H))
whenever E, F € 3.
(v) ¢/ is a submeasure extending p. B If E € ¥, then
WE = W (ENV)U(E\V)) =limp 5 (BN H) U (E\ H)) = puE,
SO [L/ extends L. If FE1, Ey, |y, Fs € E, set K= F1UFEsy, FF=F;UFy; then
(BN AU P\ A)U(EN AU (F\ 4) = (ENA)U(F\ 4))
for every set A, so
P (ELNV)U(FN\V) U (B2NV) U (F2\ V)
=W (ENV)U(F\V))
= Jim_u((E 0 H)U(F\ H))
= Jim_pu(((By 0 H) U (Fy \ ) U (B 0 H) U (Fy \ H)))
i p((Br VH) U B\ H)) + p((B2 N H) U (B2 \ H))

IN

=/ (BExnV)U(FN\V) +p/ (BN V) U (F2 \ V).
Thus p’ is subadditive; monotonicity is easier. Q

(vi) p' has the property (a). PP Suppose that E, F € ¥ and that € > 0. Let Hy € H be such that
w(Ho \ H) < € whenever H € H and H C Hy. Let Ky € ¥ be such that u(X \ Ko) < eand KoNV is
compact. Let K3 C E and Ko C F \ Hy be compact sets, belonging to %, such that u(E \ K1) < € and
w((F\ Hyo) \ K2) < e Set K = (K;NKyNV)U Ky, so that K is a compact set belonging to ¥’ and
K C(ENV)U(F\V). Nowif H e H and H C Hy,

p(((B\ (KN Ko)) N H) U ((F\ K2) \ H))
< (BN Ky) + (X \ Ko) + (P \ Ho) \ K2) + (Ho \ H) < 4e
Taking the limit along F,
((ENV)UFENV)\K) =/ ((B\ (KN Ko)NV)U((F\ K2)\ V) < de.
As FE, F and € are arbitrary, we have the result. Q

(vii) p' has the property (*). P Suppose that E, F € ¥ and that € > 0. Let Hy € H be such that
w(Ho \ H) < e whenever H € H and H C Hy. Set G = (EN Hy) U (F \ Hy) € . Then
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(ENV)U(F\V))AGC Ho\V,
SO
W ((ENVYU(F\V)AG) < i (Ho \ V) =iy 7 u(Ho \ H) < ¢. Q
(d)(@) If p e Pand V € N(u), then £(V, ) is true. P Let € > 0. There is an E € dom y, including V,
such that uE = 0; now there is a compact K € dom p, included in X \ E, such that
ez p((X\E)\ K) = pu(X\ K),
while K NV = () is compact. Q

(i) If p € P and V C X is closed, then {(V,p) is true. I For every e > 0, there is a compact
K € dom p such that u(X \ K) <e¢, and now K NV is compact. Q

(iii) Now suppose that u € P is such that every compact subset of X belongs to the domain ¥ of p,
and that (F),)nen is a sequence in ¥ with intersection V. Then $(V, i) is true. * Let € > 0. For each n € N,
there are compact sets K,, C F,,, K/, C X \ E,, such that

p(EB\ K) + (X \ En) \ K7) < 2777 c,

Set K = (,eny Kn U K5 then K is compact, so belongs to ¥. If L € X \ K is compact, then there is an
n € N such that LN, K; U K] is empty, so that

pL < 3o X\ (K UK]) <3 27" e <e
As L is arbitrary, (X \ K) < e. Finally,
KnV= mneN(Kn U K;L) NE, = ﬂnGN K,

is compact. Q

(e) If @ C P is a non-empty totally ordered subset of P, |JQ € P. So P has a maximal element u;,
which is a submeasure, satisfying («), and extending pg. Setting X1 = dom uq, (c) tells us that V € 3
whenever V' C X and §(V, p1) is true. By (d-i), N(p1) € X1 and gy is complete. By (d-ii), every closed
set, and therefore every open set, belongs to ¥;. So (d-iii) tells us that [, .y En € X1 for every sequence

(En)nen in X1, and ¥ is a o-algebra. Putting these together, all the conditions of 496C are satisfied, and
11 is a totally finite Radon submeasure.

4961 Theorem Let X be a set, 3 a o-algebra of subsets of X, and 1 a complete Maharam submeasure
on X.

(a) ¥ is closed under Souslin’s operation.

(b) If A is the kernel of a Souslin scheme (E,),cs in ¥, and € > 0, there is a ) € NY such that

p(A N\ U¢>6NN,¢§1/; ﬂnZl Egin) <e.

proof (a) Let N (u) be the null ideal of . Because p is exhaustive, every disjoint sequence in X\ NV (p) is
countable, so 431G tells us that ¥ is closed under Souslin’s operation.

(b) The argument of 431D applies, with trifling modifications in its expression. For o € S = [J,yN*,
set Ay = Uycpen Nns1 Eoini then A, € X, by (a). Given € > 0, let (€,)ses be a family of strictly positive
real numbers such that ) e, <e. For each o € S, let m, be such that (A, \J Ap~cis) < €5. Set

Y(k) = max{m, : 0 € N¥ o(i) < (i) for every i < k}

i<me

for k € N; then
A \ U¢€NN,¢§1/; nn21 Edﬁn - UUGS (Ao. \ Uigmg Ao“<i>)

has submeasure at most e.

496J Theorem Let X be a K-analytic Hausdorff space and p a Maharam submeasure defined on the
Borel o-algebra of X. Then
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inf{u(X \ K): K C X is compact} = 0.

proof Again, we have only to re-use the ideas of 432B. Let & be the completion of 1 (496A) and ¥ the
domain of fi. Let R C NN x X be an usco-compact relation such that R[NY] = X. For ¢ € S* = Ups1 N?

set I, = {¢:0 C ¢ € NN}, F, = R[I,]; then X is the kernel of the Souslin scheme (F,),cs+. Now, given
€ > 0, 4961Ib tells us that there is a ¢ € NV such that u(X \ F) < ¢, where F = Ugent g<p N1 Forni but

F = R[K] where K is the compact set {¢: ¢ € NN, ¢ <1}, so F is compact.

496K Proposition Let p be a Maharam submeasure on the Borel o-algebra of an analytic Hausdorff
space X. Then the completion of u is a totally finite Radon submeasure on X.

proof If £ C X is Borel, then it is K-analytic (423Eb); applying 496J to u[PE, we see that inf{u(F\ K) :
K C FE is compact} = 0. Consequently, writing ¥ for the domain of the completion fi of p, inf{i(F \ K) :
K C FE is compact} = 0 for every F € X. Condition (i) of the definition 496C is surely satisfied by fi, so fi
is a totally finite Radon submeasure.

496L Free products of Maharam algebras If 2, 8 are Boolean algebras with submeasures p, v
respectively, we have a submeasure X v on the free product 2 ® B (392K). It is easy to see, in 392K, that
if © and v are strictly positive so is p X v; moreover, if 1 and v are exhaustive so is p X v (392Ke).

Now suppose that (2;);cr is a family of Maharam algebras, where I is a finite totally ordered set. Then
we can take a strictly positive Maharam submeasure p; on each 2;, form an exhaustive submeasure A\ on
(= ®i€[ 2A;, and use A to construct a metric completion EI which is a Maharam algebra, as in 393H/496Bb.
(If I ={ig,...,in} where ig < ... <ip, then A = ((pig X ft3,) X ... ) X p;,, (392Kf). By 392Kc, the product
is associative, so the arrangement of the brackets is immaterial.) If we change each u; to uf, where p is
another strictly positive Maharam submeasure on 2;, then every ) is absolutely continuous with respect
to p; (393F/496Bd), so the corresponding A’ will be absolutely continuous with respect to A, and vice versa
(392Kd); in which case the metrics on €; are uniformly equivalent and we get the same metric completion
EI up to Boolean algebra isomorphism. We can therefore think of /G\I as ‘the’” Maharam algebra free
product of the family (;);e; of Boolean algebras; as in 392Kf, we shall have an isomorphism between
¢ Jur and the Maharam algebra free product of ¢ J and /QEK whenever J, K C I and j < k for every j € J
and k € K.

From 392Kg we see that if (2, 1) and (2B, v) are probability algebras, then their Maharam algebra free
product, regarded as a Boolean algebra, is isomorphic to their probability algebra free product as defined
in §325.

496M Representing products of Maharam algebras: Theorem Let X and Y be sets, with o-
algebras ¥ and T and Maharam submeasures p and v defined on ¥, T respectively. Let 2, B be their
Maharam algebras and write i, 7 for the strictly positive Maharam submeasures on 20 and B induced by
p and v as in 496Ba above. Let S®T be the o-algebra of subsets of X x Y generated by {ExXF:FEex,
FeT}.

(a) (Compare 418T.) Give 9B its Maharam-algebra topology (393G /496Bd). If W € ¥®T then W([{z}] €
T for every € X and the function z — W[{z}]* : X — B is Y-measurable and has separable range.
Consequently z — vW[{z}] : X — [0, 00[ is X-measurable.

(b) For W € ¥®T set

AW =inf{e:e> 0, p{z : vW[{z}] > ¢} <€}
Then ) is a Maharam submeasure on X®T, and
ATH{OY = (W W € S&T, {z: Wi[{z}] ¢ N(v)} € N(w)}.

(c¢) Let € be the Maharam algebra of \. Then 2 ® 9B can be embedded in € by mapping E* ® F* to
(Ex F) forall E€ ¥ and F eT.
(d) This embedding identifies (€, \) with the metric completion of (A ® B, i x 7).
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proof (a) Write W for the set of those W C X x Y such that W[{z}] € T for every x € X and z
W[{z}]* : X — B is Z-measurable and has separable range. Then ¥ @ T (identified with the algebra of
subsets of X x Y generated by {E x F: E € X, F € T}) is included in W.

If (Wp)nen is a non-decreasing sequence in W with union W, then W € W. P Of course W[{z}] =
Unen Wal{z}] belongs to T for every x € X. Set f,(xz) = Wy[{z}]* for n € N and 2 € X. For each
z € X, W[{z}] \ W,[{z}] is a non-increasing sequence with empty intersection, so lim, . v(W[{z}] \
Wrl{z}]) = 0 and (fn(z))nen converges to f(x) = W[{z}]* in B. By 418Ba, f is measurable. Also
D = {fu(z):z € X, n € N} is a separable subspace of B including f[X]. So W e W. Q

Similarly, (), ey Wn € W for any non-increasing sequence (Wp,)nen in W. W therefore includes the
o-algebra generated by ¥ ® T (136G), which is ©®T.

Now z — vW[{z}] = pW[{x}]* is measurable because 7 : B — R is continuous.

(b) Of course A\) = 0 and AW < AW’ if W, W’ € £&T and W C W'. If Wy, W, € £&T have union W,
)\Wl = Q1 and )\Wg = Q2, then

{z : vW[{z}] > a1 + a2} C {x: vW1[{z}] > a1} U{z : uW[{z}] > a2},
so, setting a = a1 + ao,
pwlz c vWi{z}] > af < p{z: vWi[{z}] > a1} + p{x : vWa[{z}] > a2} < a1 + a2 = ¢,

and AW < «. Thus A is monotonic and subadditive.

If now (W, )nen is a non-increasing sequence in Y&T with empty intersection, and € > 0, set E,, = {z:
vW,[{z}] > €} for each n. Then (E,),en is non-increasing; moreover, for any = € X, (W,[{z}])nen is a
non-increasing sequence in T with empty intersection, so lim, o vW,[{z}] = 0 and x ¢ ﬂneN E,. There
is therefore an n such that pFE, < € and A\W,, < e. As (W,)nen and € are arbitrary, A is a Maharam
submeasure.

Finally, for W € S&T,

MW =0 <<= p{z: vW[{z}

Wl{z}] =
— p{z:vW[{z}] > 2~ m} < 27" for every m, n € N
— pf{z:vW[{z}] >0} < 27" for every n € N
— p{zvW{z}] >0} =0 = {z: W[{z}] ¢ N(v)} € N(w).

(c)f E€X, then A(E x F) =min(pE,vF) foral E€ Y and F€T. SOANEx F)=0if E*®@ F* =0
in A ® B. Consequently we have injective Boolean homomorphisms from 2 to € and from B to € defined
by the formulae

E*— (ExY) for EEY, F*rs (X x F)* for F € T;

by 315J and 315Kb®, we have an injective Boolean homomorphism from 2 ® 9B to ¢ which maps E* ®@ F*
o (E x F)* whenever F € ¥ and F € T.

(d) M(ge) = (u x v)(e) for every e € A ® B. P Express e as sup;c; a; ® b; where (a;);cr is a finite
partition of unity in 2 and b; € *B for each i. For each i, we can express a;, b; as E}, F® where E; € X
and F; € T; moreover, we can do this in such a way that (E;);cs is a partition of X. In this case, pe = W*
where W = J,; Ei x Fy, so that, for € > 0,

wl{x : vWi{x}] > e} = w(U{E; : i € I, vF; > €}) = fi(sup{a; : i € I, 0b; > €}).
Accordingly

(X v)(e) = inf{e: (sup{a; : i € I, Db; > €}) < €}
=inf{e: pf{z: vW[{z}] > €} < e} = AW = AW* = A\(¢e). Q

Next, ¢[2 ® B] is dense in € for the metric induced by A. P Let © be the metric closure of ¢[2 @ B]
andset V={V:V e X®T, V* e D}. Then V includes ¥ ® T and is closed under unions and intersections

8Formerly 3151-315J.
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of monotonic sequences, so is the whole of ¥&T, and ® = €, as required. @ But this means that we can
identify € with the metric completions of ¢[2 ® B] and A ® B.

496X Basic exercises (a) Let X and Y be Hausdorff spaces, p a totally finite Radon submeasure on
X,and f: X = Y a function which is almost continuous in the sense that for every ¢ > 0 there is a compact
K C X such that f[K is continuous and u(X \ K) < e. Show that the image submeasure uf !, defined on
{F:F CY, f7}[F] € dom pu}, is a totally finite Radon submeasure on Y.

(b) Let X be a Hausdorff space and p a totally finite Radon submeasure on X. For A C X, set
w*A=inf{uFE : ACFE € dompu}. Show that x* is an outer regular Choquet capacity on X.

(c) Let X and Y be compact Hausdorff spaces, f : X — Y a continuous surjection, and v a totally finite
Radon submeasure on Y. Show that there is a totally finite Radon submeasure p on X such that v is the
image submeasure g f !

(d) Let X be a regular K-analytic Hausdorff space, and u a Maharam submeasure on the Borel o-algebra
of X which is 7-additive in the sense that whenever G is a non-empty upwards-directed family of open sets
in X with union H, then infgeg u(H \ G) = 0. Show that the completion of p is a totally finite Radon
submeasure on X. (Hint: let Xy be the algebra of subsets of X generated by the compact sets; show that
there is a totally finite Radon submeasure extending u[3.)

496Y Further exercises In the following exercises, I will say that a Radon submeasure is a complete
submeasure p on a Hausdorff space X such that (i) the domain ¥ of p is a o-algebra of subsets of X
containing every open set (ii) every point of X belongs to an open set G such that uG < oo (iii)(«)
uE =sup{uK : K C E is compact} for every E € ¥ (f) inf{u(F \ K) : K C F is compact} = 0 whenever
Ec¥ and pE < oo (iv) if E C X is such that EN K € ¥ for every compact K C X, then E € ¥.

(a) Let p be a Radon submeasure with domain ¥ and null ideal N'(1). Show that /A (p) is Dedekind
complete.

(b) Let X be a Hausdorff space, Y a metrizable space, ;1 a Radon submeasure on X with domain ¥, and
f X — Y a X-measurable function. Let H be the family of those H € X such that f[H is continuous.
Show that (o) uE =sup{uH : H € H, H C E} forevery E € ¥ () inf{wW(E\H): He H, HC E} =0
whenever ' € 3 and pFE < oco.

(c) Let X and Y be Hausdorff spaces, u a Radon submeasure on X with domain ¥, and f: X — Y
a function. Let F be the family of those F € ¥ such that f[F is continuous, and suppose that («)
uE =sup{uF : F e F, F C E} forevery E € ¥ () inf{u(E\ F): F e F, F C E} =0 whenever £ € &
and puFE < co. (i) Show that the image submeasure v = pf~! defined on {F : F C Y, f~}[F] € X}, is a
submeasure on Y defined on a o-algebra of sets containing every open subset of Y. (ii) Show that if v is
locally finite in the sense that Y = |J{H : H C Y is open, vH < oo}, then v is a Radon submeasure.

(d) Let X be a Hausdorff space and p a Radon submeasure on X which is either submodular or super-
modular. Show that there is a Radon measure on X with the same domain and null ideal as p. (Hint:
413Yh.)

(e) Let X be a topological space, G the family of cozero subsets of X, Ba the Baire o-algebra of X and
¥ : G — [0,00] a functional. Show that 1 can be extended to a Maharam submeasure with domain Ba iff
() YG < ¢ H whenever G, H € G and G C H,
(B) V(Upen Gn) < >onrg Gy for every sequence (Gy)pen in G,
(7) lim,,—y 00 ¥G,, = 0 for every non-increasing sequence (G, )nen in G with empty intersection,
and that in this case the extension is unique. (Hint: consider the family of sets E C X such that for every
€ > 0 there are a cozero set G 2O E and a zero set F' C F such that (G \ F) <e.)

(f) Let X be a Hausdorff space and K the family of compact subsets of X. Let ¢ : K — [0,00[ be a
functional such that
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(a) ¢ =0 and ¢K < p(K U L) < ¢K + ¢L for all K, L € K;

(B8) for every disjoint sequence (K, )nen in K, either lim, oo ¢K,, = 0 or limy, 00 (U, <,, K;i) =

i<n
003
() whenever K, L € K and K C L then ¢L < ¢K +sup{¢pK': K' e K, K' CL\ K},

(6) for every z € X there is an open set G containing x such that sup{¢pK : K € K, K C G}
is finite.

Show that there is a unique Radon submeasure on X extending ¢.

496 Notes and comments ‘Submeasures’ turn up in all sorts of places, if you are looking out for them;
so, as always, I have tried to draw my definitions as wide as practicable. When we come to ‘Maharam’
and ‘Radon’ submeasures, however, we certainly want to begin with results corresponding to the familiar
properties of totally finite measures, and the new language is complex enough without troubling with infinite
submeasures. For the main part of this section, therefore, I look only at totally finite submeasures.

I have tried here to give a sample of the ideas from the present volume which can be applied to submeasures
as well as to measures. I think they go farther than most of us would take for granted. One key point concerns
the definition of inner regularity: to the familiar ‘uFE = sup{uK : K € K, K C E} we need to add ‘if uF
is finite, then inf{u(EF\ K) : K € K, K C E} = 0’ (496C, 496Y; see also condition (3) of 496Yf). Using
this refinement, we can repeat a good proportion of the arguments of measure theory which are based on
topology and orderings rather than on arithmetic identities.

Version of 7.12.10

497 Tao’s proof of Szemerédi’s theorem

Szemerédi’s celebrated theorem on arithmetic progressions (497L) is not obviously part of measure theory.
Remarkably, however, it has stimulated significant developments in the subject. The first was Furstenberg’s
multiple recurrence theorem (FURSTENBERG 77, FURSTENBERG 81, FURSTENBERG & KATZNELSON 85).
In this section I will give an account of an approach due to T.Tao (TA0 07) which introduces another
phenomenon of great interest from a measure-theoretic point of view.

497A Definitions (a) Let (X,X, u) be a probability space, T a subalgebra of ¥ (not necessarily a
o-subalgebra) and (3;);c; a family of o-subalgebras of ¥. I will say that (¥;);c; has T-removable inter-
sections if whenever .J C [ is finite and not empty, E; € ¥; for i € J, u((;c; £i) = 0 and € > 0, there is a
family (Fj)ics such that F; € TNY; and p(E; \ F;) < € for each i € J, and (), ; F; = 0. (This is a stronger
version of what TAO 07 calls the ‘uniform intersection property’.)

(b) If X is a set and ¥, ¥/ are two o-algebras of subsets of X, ¥V ¥’ will be the o-algebra generated by
YUY If () ier is a family of o-algebras of subsets of X, I will write \/,_; X; for the o-algebra generated

by Ui Zi-

(c) If (X, X%, ) is a probability space and A C & C X, T will say that A is metrically dense in & if
for every E € £ and € > 0 there is an F' € A such that u(EAF) < ¢ that is, if {F* : F € A} is dense in
{E* : E € &} for the measure-algebra topology on the measure algebra of 1 (323A). Note that a subalgebra
of ¥ is metrically dense in the o-algebra it generates (compare 323J).

iel

497B Lemma Let (X, X, 1) be a probability space and T a subalgebra of X. Let (X;);c; be a family of
o-subalgebras of X.

(a) (X;)ier has T-removable intersections iff (¥;);c; has T-removable intersections for every finite J C I.

(b) Suppose that (¥;);er has T-removable intersections and that TNY; is metrically dense in ¥; for every
i. Let J be any set and f :.J — I a function. Then (X¢(;));es has T-removable intersections.

(c) Suppose that, for each i € I, we are given a o-subalgebra X! of 3; such that for every F € ¥; there
is an E' € X! such that EAFE’ is negligible. If (¥!),c; has T-removable intersections, so has (X;)c;.

(© 2009 D. H. Fremlin
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proof (a) is trivial.
(b) Suppose that K C J is finite and not empty, that (E;);ex € [[;ex Zy(;) is such that‘ 1(Njex Ej) =
0, and e > 0. Set n = #(K) and n = 55 > 0. Set E} = (\;cp ;)= £j € i for i € f[K]; then
ﬂief[K] El = ﬂjeK E; is negligible, so we have F] € TNX,, for i € f[K], such that ﬂief[K] F! =0 and
w(E; \ Fy) <n for every i € f[K]. As TNX; is metrically dense in ¥; for each 4, we can find G; € TN X ;)
such that p(E;AG;) < for each j € K. Set Gf = (¢ f(j)=; Gy for i € f[K]. Then
G\ F) < (G \ Ef) + (B \ FY) <3 ek pigy=i G5\ Ej) + 1 < (n+ 1),

Note that G} € T NX; for each i. Now set Fj = G; \ (G's(;) \ Fy ;) for j € K. Then Fj € TN Xy(;) and
n(E; \ Fy) < p(E; \ Gj) + p(Gipy \ Fiy) < (n+2)n=e.

Also

NE= () G\G\EF)
JEK ief[K] jeEK
f(G)=i

- N G @\F)C () F=0.

ic fIK] i€ fIK]

As (Ej) jer and € are arbitrary, (¥(;));cs has T-removable intersections.

(c) If J C I is finite and not empty, (Ej)jes € [[;c; X, (jes Ej is negligible and € > 0, then for
each j € J let B € ¥ be such that E;AFE; is negligible. In this case, ﬂjeJ E is negligible, so there are
Fy e TNXY, for j € J, such that u(E7 \ Fj) < € for every j € J and ;. ; F is empty. Now pu(Ej \ Fj) < €
for every j. As (Ej);jcs and € are arbitrary, (¥;);er has T-removable intersections.

497C Lemma Let (X, X, ) be a probability space and T a subalgebra of 3. Let I be a set, A an
upwards-directed set, and (Xq;i)aca,icr a family of o-subalgebras of ¥ such that, setting 3; = \/aeA Y for
each 1,
(i) Xoi € Xp; whenever i € I and o < S in A,
(ii) (Xai)ier has T-removable intersections for every « € A,
(iii) X; and \/ je1 Zaj are relatively independent over X,; for every i € I and a € A.
Then (X;);cr has T-removable intersections.

proof Take a non-empty finite set J C I, a family (E;);es such that £; € X; for every i € J and ;. ; E;

1 . )
TR nzé\/g> 0. For each ¢ € J there are an « € A and an E! € ¥,
such that u(E; AE]) < n? (because A is upwards-directed, so [ J,¢ 4 Zai is a subalgebra of ¥ and is metrically
dense in ¥;); we can suppose that it is the same « for each i. Let g; : X — [0,1] be a ¥,;-measurable

function which is a conditional expectation of yFE; on X,;; then
IXEi — gill2 < [[xEi — xEill2 <n
(cf. 244Nb). Set E = {x : g;(z) > 1 — §} € 3y;; then

is negligible, and € > 0. Set § =

2
(B \ EY) = p{x : xEi(x) — gi(x) > 6} < Zj = %

Set £ = (,c; Ef. Then pE = 0. P Since pu((,c; Ei) = 0, puE < Y7, p(E \ E;). For i € J, set
H, = Xn ﬂjeJ\{i} E}' and let h; be a conditional expectation of yH; on ¥,,. Then X \ F; € ¥; and
H; € \/ ;¢ Xay are relatively independent over ¥;, while X — g; is a conditional expectation of x(X \ E;)
on Y4, SO

WE\E) = (BN E) ) = [ (VB x = [ (X = g2) x hud

(by the definition of ‘relative independence’, 458Aa)
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= /(XX —gi) X B! x hydp < /6)(E£’ x hidp
(by the definition of E!")

=6 | hidp=0p(E!NH;)=0uE.
B

Summing, we have

WE < 6#(I)uE
but 6#(J) < 1,s0 uE =0. Q

Because (X4i)icr has T-removable intersections, there are F; € TN X, € TNY,, for i € J, such that
Nicr Fi = 0 and p(E] \ F;) < § for each i; in which case u(E; \ F;) < € for each i. As (E;)ics and € are
arbitrary, (3;);c; has T-removable intersections.

497D Lemma Let (X, 3, 1) be a probability space, T a subalgebra of ¥, and (X;);cr a finite family of

o-subalgebras of ¥ which has T-removable intersections; suppose that T N X; is metrically dense in 3; for
each i. Set ¥* =\/,.; ¥;. Suppose that we have a finite set I', a function g : I' — I and a family (A,),er
of o-subalgebras of 3 such that

(Ay)~er is relatively independent over ¥*,

for each v € T', A, and ¥* are relatively independent over ¥,

for each v € I', T N A, is metrically dense in A,.
Let A be a finite set and f : A — I, ¢ : A — PT functions such that ¥,y € ¥,) whenever a € A and
v € ¢(a). Suppose that

for each o € A,

Set ia = Ef(a) vV

ved( )A7 and X* V \/'yeF\¢(a) A, are relatively independent over Xy (,).

vEd(e) A, for « € A. Then (2a>a€A has T-removable intersections.

proof Of course we can suppose that A is non-empty, and that I' = (. 4 ¢(a).
(a) To begin with, suppose that every A, is actually a finite subalgebra of T.
(i) Take a non-empty set B C A, a family (Ea)acn € [[ocn ¥, such that ﬂ e Pa is negligible, and

€>0. Set A = ep¢(c). Let A be the set of atoms of \/, .1 A, and set n = W > 0.

(ii) For each H € A and o € B, let C(H, ) be the atom of \/, ¢,y Ay including H. Then there is
a family (Fra)aen, with empty intersection, such that Fy, € TN Y, and u(E, NC(H,a) \ Fyo) < n for
each o € B. P For each v € A, let H, be the atom of A, including H, h, : X — [0,1] a X,,y-measurable
function which is a conditional expectation of xH., on ¥y, and G = {z : h,(z) > 0}. Note that

C(H,a)=XN( ) H for every a € B,

vEP()

H=XN0MNyeaHy =Naep CH, ).

Because A, and ¥ are relatively independent over /.y, and ¥,,) € X*, h, is a conditional expectation
of xH, on ¥* for each v (458Fb). Because (A, >'Y€A is relatively independent over X%, h = [[ ca hy is
a conditional expectation of xH = x(X N[),ca Hy) on E*. (For the trivial case in which A = 0, take
h = xX.) For each a € B we have Ey € Xy(a) V V,gp(a) Ays 50 there is an an Ef, € Xy (,) such that
E,NC(H,a) = E,NC(H,a). Now (,cp E,, € £*, s0

S o = 1Daen Ba N Nyea Hy) < p(Naep(Ba N C(H, ) = 0;

accordingly (,c5 £4 N[, ca G+ is negligible. Set By = E7, N ﬂ7€¢ (a) G for each o € B; then Ej € Yg(a,
because G € Xy, € X (o) whenever v € ¢(a). Also (5 Bl is negligible.

Because (X;);cr has T-removable intersections and TNY; is metrically dense in %; for each i, (¥ f(a)>oz€ B
has T-removable intersections (497Bb). So we have Frro € TN Xy (4, for a € B, such that (,c 4 Fra =0
and p(E”\ Fra) < n for every a.

If « € B and v € ¢(a),
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OZfE&\G'Y h"/:lu’(H’YﬂE;\G’Y)

because h. is a conditional expectation of xH, on ¥X*. So if a € B,

W(EaNC(H, )\ Fo) = p(E, N C(H, @) \ Fra)
<WEL\ Fua)+ Y, n(ELNHy\G)

vEP(a)
(because C(H, ) = X N(,cp(a) Hy)
<1,
as required. Q
(iii) For o € B let A, be the set of atoms of \/_ ¢, Ay and set

Fo = UGeAa ﬂHeA,HgG Fra
Then F,, € TN f]a and
i(Ea \ Fo) = Z 1(Ea NG\ Fa)

GeAn

> Y WE.NG\ Fya)

GeA, HEA
HCG
> w(Ea NC(H,a)\ Fra) < n#(A) =
HeA
If H € Athen HC C(H,a) € A, and
HNF,CF,NC(H,a)C FHa,

for each . So H N(\,cq Fa is empty. But X = [JA s0 ey Fa = 0. As (E4)aep and € are arbitrary,
<Ea>a€ 4 has T-removable intersections.

IA

(b) Next, suppose that each A, is the o-algebra generated by T N A,.

(i) For L € [T]<¥, v € T and a € A write Az, for the algebra o-generated by A, N L and Sia =
Ef(a) \ v'yEcﬁ(a) AL'y~ Then

YAa € Sro whenever a € Aand AC L € [T]<«,

VLE[T]<w Yra =Yf@)V v'yEgb(a) \/Le[T]<w Apy = L)V \/'yeqﬁ(a) Ay =%,

because each A is the o-algebra generated by TN A, = ULE[T]@ Ar,. By (a), (f)Lo)aeA has T-removable

intersections for every L € [T]<%.

(ii) Suppose that « € A and L € [T]<%. Then \ ;) Ay and % V'V 44 Ay are relatively in-
dependent over X;(,), by hypothesis. So Y, = Y V \/v€¢> (@)
independent over ¥,y (458Db). Because ¥ty € Yo € Yo, Yo and X* \/Vwef‘\tb(a) A, are relatively inde-
pendent over X1, (458Dc). Because \/ AM C ¥ra,y 2o and Z* VYV

over 1o (458Db again). So ¥, and
VﬂeA ELB = \/ﬁeA(Zf(ﬂ) v \/76¢(6) ALW) cyrv Vver Ary

are relatively independent over Yla-

A, and ¥*V \/’YGF\¢ (a) Ay are relatively

Ap are relatively independent

YEP(ax) ~yel

(iii) With (i), this shows that the family <2LQ>L€[T]<UJ’OL€A satisfies the conditions of 497C, and (ia>aeA
has T-removable intersections.
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(c) Finally, for the general case, let A be the o-algebra generated by A, NT for v € T', and ¥, =
Bf(a) V V76¢(a) Aiz fora € A. If y € I and F' € A, there is an F' € Al such that FAF' is negligible; so
ifo € Aand E € 3, there is an E’ € ¥/, such that EAE" is negligible. By (b), (X, )aca has T-removable
intersections; by 497Bc, (X, )aca has T-removable intersections.

497E Theorem (TA0 07) Let (X, %, i) be a probability space, and T a subalgebra of ¥. Let I be a
partially ordered set such that v A 6 = inf{~,d} is defined in T for all v, 6 € T', and (X,),er a family of
o-subalgebras of ¥ such that

(i) TN X, is metrically dense in X, for every v € T,
(ii) if v, 6 € ' and v < § then £, C X5,
(iii) if vy € " and A, A’ are finite subsets of I' such that 6 Ay € A’ for every § € A, then ¥,
and \/sc A X5 are relatively independent over /5. A/ Xs.
Then (¥,)er has T-removable intersections.

proof (a) To begin with (down to the end of (d) below) suppose that I' is finite. In this case, we have a
rank function r : I' — N such that () = min{n : n € N, r(§) < n for every < v} for each v € I'. For
a CT set 3, = \/WEG ¥; note that T N 3, is always metrically dense in %,.

Let A be the family of those sets a C T such that v € @ whenever v < § € a. Forn € Nset I',, = {v:
r(y) =n}and A, ={a:a € A, r(y) <n for every v € a}

(b) Suppose that a, b, ¢ are subsets of I" and that 7y A § € ¢ whenever v € a and 6 € bU (a \ {7}). Then
(i) (¥4)yeaq is relatively independent over Se,
(ii) X, and % are relatively independent over X...
P Induce on #(a). If a = 0 then ¥, = {f), X} and the result is trivial. For the inductive step, take v € a
and set @’ = a\ {70}. Then the inductive hypothesis tells us that (X.),ecq is relatively independent over
Y. and that Ea/ and 3, are relatively independent over 3.. We also see that Yo A O € ¢ whenever § € d/, so
that X, and S are relatively 1ndependent over 3., by condition (iil) of this theorem. But this means that
(X4)vea is relatlvely independent over 3. (458Hb) Similarly, because in fact Yo A d € cfor every d € ' Ub,
Y, and Yo V3, are relatlvely mdependent over EC, so the triple ¥, Y. and ¥y are relatlvely independent
over Y. (458Hb again), and ¥, = ¥, V X, and ¥, are relatively independent over %, (458Ha). Thus the
induction continues. Q

(c) For each n € N, (3,)qca, has T-removable intersections. P Induce on n. If n = 0 then A,, = {#} and
the result is trivial. For the inductive step to n +1 > 1, apply 497D, as follows. The inductive hypothesis
tells us that (34)aea, has T-removable intersections, and we know that T N %, is always metrically dense
in X,. Set

yr = VaGA Z - Zd

where d = J,,,, I'm is the largest member of A,,. Define g : I',, — A, by setting g(v) = {6 : 0 <~}. Then
v A§ € d for all distinct v, § € Ty, so <Z )ver, is relatively independent over X*, by (b- i) just above. If
vel,andded, yAd € g(y),s0 X, = Z{"/} and X* = 34 are relatively independent over Z ), by (b-ii).
Of course T N X, is metrically dense in 3, for every v € I'y,.

For a € A, 41, set ¢(a) =anT, and

fla)=a\¢(a) =an,cpT'm € An.
If v € ¢(a) then g(v) C a, by the definition of A, so g(y) C f(a) and i) - f]f( y- Finally, by (b-

ii), Vyepa) By and B°V V cp | 40) o are relatively independent over Zf because if v € ¢(a) and

§€dU(I'y\ ¢(a)) then y Ad € g(y )Qf( )-
So all the hypotheses of 497D are satisfied, and

<Zf \ V“/€¢(a) % >a€An+1 = <Za>a6An+1
has T-removable intersections. Thus the induction proceeds. Q
(d) Because T is finite, there is some n such that A = A,,. Now, for each v € ', set e, = {d : § < ~};
then e, € A and X, = ¥, . By 497Bb, or otherwise, (X4)yer has T-removable intersections, as required.
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(e) Thus the theorem is true when I' is finite. For the general case, take any finite I'y C I' and set
I" = {infa : @ C Ty is non-empty}. Then I" is finite and closed under A, and (X,),er satisfies the
conditions of the theorem. So (3,)yer and (X,),er, have T-removable intersections. As I'y is arbitrary,
(¥4)yer has T-removable intersections (497Ba), and the proof is complete.

497F Invariant measures on P([I]<¥) (a) Let I be a set. Then P([I]<*) is a compact Hausdorff
space, if we give it its usual topology, generated by sets of the form {R :a € R C [I]<¥, b ¢ R} for finite
sets a, b C I. (You should perhaps fix on the case I = N for the first reading of this paragraph, so that
[I]<¢ will be a relatively familiar countable set, and you can remember that P([I]<*) is homeomorphic to
the Cantor set.) Let G| be the set of permutations of I, and for ¢ € Gy, R C [I]<% set

¢poR={opla] :a € R} ={a:a € [I]<*, ¢~ '[d] € R},

so that « is an action of Gy on P([I]<%), and R +— ¢+R is a homeomorphism for every ¢ € G;. Let P be
the set of Radon probability measures on P([I]<%). Then we have an action of Gy on P; defined by saying
that

$E={¢R:R e E}
for ¢ € Gy and E C P([I]<%), and

(¢op)(E) = u(¢~"E)
for ¢ € Gy, u € P; and Borel sets E C P([I]<¥). Because R +— ¢+R is a homeomorphism, the map

1 — ¢ep is a homeomorphism when Py is given its narrow topology, corresponding to the weak* topology
on C(P([I]<%))* (437J, 437Kc).

(b) If u € Py, I will say that p is permutation-invariant if u = ¢ep for every ¢ € Gy.

(c) For R C [I]<% and J C I I write R[J for the trace RNPJ C [J]<¥ of R on J. Let V be the family
of sets of the form Vyg ={R: R C [I]<¥, R[J = S} where J C I is finite and S C PJ. If p, v € Py agree
on V, they are equal. P If E C P([I])<% is open-and-closed, it is determined by coordinates in some finite
subset KC of [I]<%, in the sense that if R € E, R’ C [I|<* and RNK = R'NK, then R' € E. Let J C I be
a finite set such that I C [J]<¥, and set S = {R[J : R € E}. Now (Vjg)ses is a disjoint family in V with
union F, so

BE =3 ges Vs =VE.
As E is arbitrary, p = v (416Qa). Q

(d) If I, J are sets and f : I — J is a function, I define f : P([J]<¥) — P([I]<“) by setting f(R) = {a :
a € [I]<, fla] € R} for R C [J]<“. Note that f is continuous, since {R : a € f(R)} = {R: fla] € R} is
a basic open-and-closed set in P([J]<¥) for every a € [I|<*. If I C J and f is the identity function, then
f(R) = RJ[I for every R C [J]<“. Observe that when ¢ € G; and R C [I]<“ then ¢(R) = ¢~ '+R.

497G Theorem (TA0 07) Let I be an infinite set and J a filter on I not containing any finite set. Let
T be the algebra of open-and-closed subsets of P([I]<%), and u € Pr a permutation-invariant measure. For
J C I, write X for the o-algebra of subsets of P([I]<*) generated by sets of the form E, = {R:a € R C
[I]<“} where a € [J]<%. Then (X,) jes has T-removable intersections with respect to pu.

proof I seek to apply 497E with I' = 7, ordered by C. If J € J and a € [J]<“ then {R:a € R C [I|<%}
belongs to T N X j; accordingly Y7 is the o-algebra generated by T N Y ; and T N X is metrically dense in
Y 7. Condition (ii) of 497E is obviously satisfied. As for condition (iii), we can use 4591, as follows. Taking
X = P([{]=¥), we have the action « of G; on X described in 497Fa, and R — ¢+R is inverse-measure-
preserving for each ¢ because p is permutation-invariant. Now we see easily that

—— for every J C I, Uge(s<w i contains E, for every a € [J]<*, so o-generates ¥ ;

—ifa € [I]<% and ¢ € Gy,

Ega) = {R: ¢la] € R} = {¢=R : ¢la] € ¢+R} = {¢+R: a € R} = ¢p=E,;
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—if J C I, then {E: ¢+ F € Y45} is a o-algebra of sets containing ¢~ -E¢ [a] = Ea whenever
a € [J]<¥, so it includes ¥ 7, and ¢+ E € ¥4 for every E € X;

— if J C I and ¢ € Gy is such that ¢(i) = ¢ for every i € J, then {E : ¢E = E} is a
o-algebra of sets containing F, for every a € [J]<¥, so it includes X, and ¢«E = E for every
EecX;.

Thus the conditions of 4591 are satisfied. So if J € J and K, K’ are (finite) subsets of 7 such that JNK € K’
for every K € IC, 4591 tells us that ¥; and \/ ;.- Xk are relatively independent over \/ ;- x» £x, as required
by (iii) of 497E.

So 497E gives the result we seek.

497H I come now to the next essential ingredient of the proof.

Construction Suppose we are given a sequence ((my,, Ty ))nen and a non-principal ultrafilter F on N such
that

(&) (mp)nen is a sequence in N\ {0} and lim,,_,  m,, = o0,
(8) T, € Pm,, for each n.
Then for any set I there is a permutation-invariant p € Py such that
. 1 ~
p{R:RIK =S} =lim,,r W#({Z czeml 2(T,) = S})
whenever K C I is finite and S C PK.

proof (a) For each n € N let v, be the usual measure on m?, the product of I copies of the uniform
probability measure on the finite set m,,. The function w w(T ) :ml — P([I]<¥) is continuous, since
for any a € [I]<% the set {w : a € W(T},)} = {w : wla] € T,,} is determined by coordinates in the finite
set a. So we have a corresponding Radon probability measure p,, on P([I]<%) defined by saying that
nE = vp{w : 0(T},) € E} for every set E C P([I]<“) such that v,, measures {w : w(T},) € E} (418]). If
K C I is finite and w € m},, then

W(T)[K={a:a CK,wal €Ty} ={a:a C K, (wK)[a €T} =(wlK) (Ty).
So if S C PK, then
pn{R: R[K =8} = v,{w:weml, &(T,)[K = S}
=vpfw:weml, (wK) (T,) =S}

#m#({z zemy, Z(T,) = S}).

Let p be the limit lim,,_,  pt,, in the narrow topology on Pr; then

p{R:R[K =5} = limfun{R ‘R[K =5}
n—
(because {R : R[K = S} is open-and-closed; see 437Jf)

= lim e # ({2 : 2 € M, X(T,) = S})

n—F Mn

whenever K C I is finite and S C PK.

(b) Now let ¢ : I — I be any permutation and ¢ : P([I]<%) — P([I]<“) the corresponding permutation.
Then for any finite K C I,

HR)K ={a:aCK,ac pR)}
={a:aC K, ¢lal € R} ={a:ac[I]<¥, ¢la] € R[$[K]}.
Fix n € N for the moment. If K C [ is finite, and S C PK, then
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pnd”{R: R[K = 5} = uu{R : 9(R)[K = 5}

— 1R : S = {a:a e [[]<, ¢la] € R[[K]})
= pn{R: R[$[K] = {¢la] : a € S}}
= vn{w : 0(T,)[9|K] = {¢[a] : a € S}}
=wn{w:{a:a C K], wla] € Tn} = {¢a] : a € S}}
= vafw: {gla] : a C K, w[pla]] € T} = {¢a] : a € S}}
=vp{w:{a:a C K, (we)la] € T,,} = S}
=vp{w:{a:a C K, wla € T,} = S}

(because w +— w¢ : mL — ml is an automorphism for the measure v;,)
=vp{w: w(T,)[K =S} = u{R: R[K = S}.

So py, and ungz;*1 agree on the family V of basic open-and-closed sets described in 497F. As this is true for
every n, we also have uV = u¢=1[V] for every V € V, and u = up~'. As ¢ is arbitrary, u is permutation-
invariant.

4971 Definition If I, J are sets, R C PI and S C PJ, I will say for the purposes of the next two results
that an embedding of (I, R) in (/,5) is an injective function f: I — J such that fla] € S for every a € R,
that is (when S C [J]<¥), R C f(S).

497J Theorem (NAGLE RODL & SCHACHT 06) Let L be a finite set with r members, and T C PL.
Then for every € > 0 there is a § > 0 such that whenever I is a non-empty finite set, R C PI and the number
of embeddings of (L,T) in (I, R) is at most 6#(I)", there is an S C PI such that #(S N [I]¥) < e(1)* for
every k and there is no embedding of (L,T) in (I, R\ S).

proof (Tao 07) ? Suppose, if possible, otherwise.

(a) We have a sequence ((my,,T;,))nen such that

my, € N\ {0}, T, € Pmy,; the number of embeddings of (L,T) in (my,,T,) is at most 27 "m/; if
S C Pmy, and #(SN[m,)*) < emk for every k then there is an embedding of (L, T) in (m,, T,,\S)

for every n € N. Of course (L,T') always has at least one embedding in (m,,, T},) so lim,,_,o, m, = co. Let I
be an infinite set including L and F a non-principal ultrafilter on N. Let u € Py be the permutation-invariant
measure defined from ((m,,T},,))nen and F by the process of 497H.

(b) For ¢ C L set J. = cU (I \ L), so that ¥;_, in the notation of 497G, is the o-algebra of subsets of
P([I]<¥) generated by sets of the form E, = {R:a € R C [I|<“} where a € [cU (I \ L)]<*. Note that every
member of ¥; is determined by coordinates in PJ,, in the sense that if R € E € ¥, R’ C P([I]<¥) and
RNPJ) =R NPJ., then R € E.

By 497G, applied to the filter J on I generated by {I \ L}, (¥,)ccr has T-removable intersections
with respect to u, where T is the algebra of open-and-closed subsets of P([I]<%). A fortiori, (X )cer has
T-removable intersections with respect to pu.

(c) E. € X, for every ¢ € T, and
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p(VE)=mR:TCR = > uR:R[L=T'}

et TCT'CPL

= Y lim —#({z:zemy, X(T,) =T'})

n—F My,
TCT'CPL

_ 1 - o

=lim 3 #({zizemp HT)=T7))
TCT'CPL

= lim — #({z:z € m,LN T CzZ(T,)})

n—JF my,

= lim i#({z . 2 € mk is injective, T C 2(T},)})

n—F my
!
(because lim,, B _ 0, where k,, = m! — M’ s the number of non-injective functions from L to m.,,)
m’, o (mp—r)!
= lim 1. #({z : z is an embedding of (L,T) in (m,,T,)}) = 0.
n—JF my,

(d) Take n > 0 such that 2n#(T) < €, and (Fo)cer such that (. Fo = 0 and F, € TNX,, and
w(E.\ F.) < n for every ¢ € T. Every F, is open-and-closed, so there is an M € [I]<¥ such that L C M
and every F, is determined by coordinates in PM. In this case, each F, is determined by coordinates in
PMNPJ.=P(cU(M\L)). Setting

F/={R[M:ReF.}, E.={R[M:Re€E.}={R:ce RCPM},
we have

F,={R:RC[I|**,R[M € F)}, E.={R:RC[]~“, R[M € E/},
while both E’ and F!, and therefore E.\ F., regarded as subsets of P(PM), are determined by coordinates
in P(cU (M \ L)). Because (), oy Fe is empty, so is (o Fr.

(e) Let n > r be such that

ceT

e #t ({2 2 € md, 5(T) € B\ FLY) < n+pu{R: RIM € E\ Fl}

=n+p{R:R€E\F} <2
for every c € T. For c € T set
Q.={z:2emM 2(T,) € E.\ F'},
so that #(Q.) < 2nm#(M). Since

Z #{z:wCzeQ.}) = Z#(Qc) < 2p#(T)m# M)

ceT ceT
wEmﬁI\L

< em#OD = e (m\Eym

n?
there must be a w € m%\L such that
ZceT,wemﬁ“L #{z:wCzeQ.}) <eml;
set
Q.={z:wCze€Q,, zlcis injective}

for c € T, so that ) . #(Q.) < emy,.

If c € T and #(c) = k, then

1

#({eld s 2 € Q) = A (Qo)-

D.H.FREMLIN



120 Further topics 497J
PlIfz, 2’ emM and 2] (cU (M \ L)) = 2'[(cU (M \ L)), then 2(T,,)[(cU (M \ L)) = Z'(T,)[(cU (M \ L)),
so £(T,) € EL\ F! iff Z(T,) € E.\ F!, that is, z € Q. iff 2/ € Q.. So if a = z[c] for some z € Q. then
{2 eqQ.,dd=a}={:2"emd 2I(cU(M\L))==z(cu(M\L))}
has just #(mﬁ\c) = m?”~* members. Q
(f) Consider
S={z[c:ceT,z€Q.}.
Then

#(maF N {2ld €T, 2 € QL)
#({zld s ee TAILF, 2 € QL))
)

#(S 0 [ma]*)

(because every member of (), is injective on

1
< > W#(Qlc)
ceT )
#(c)=k

(by the last remark in (e))

for every k. So by the choice of (my, T},) there is an embedding v of (L, T) in (my, T, \ S); take z = v U w,
so that w C z € mM and 2L = v is injective and z[c] ¢ S for every ¢ € T. However, there is some ¢ € T
such that 2(T,,) ¢ F.. As c € 2(T},), 2(T,,) € E.. But now z € @, and z[c] € S. X

This contradiction proves the theorem.

497K Corollary: the Hypergraph Removal Lemma For every € > 0 and r > 1 there isa § > 0
such that whenever I is a finite set, R C [I]” and #({J : J € [I|"*L, [J]" C R}) < §#(I)"*L, there is an
S C [I]" such that #(S) < e#(I)" and there is no J € [I|"*! such that [J]" C R\ S.

proof In 497], take L to be a set with r + 1 members, and set T = [L]” in 497J. Then there is a 9 > 0
such that whenever I is a finite set, R C [I|” and the number of embeddings of (L, [L]") in (I, R) is at most
So#(I)" 1, there is an S C [I]" such that #(S) < e#(I)" and there is no embedding of (L, [L"]) in (I, R\ S).
Try § = ﬁdo. If I is finite, R C [I]" and J = {J : J € [I]"*!, [J]" C R} has at most §#(I)"*! members,
then an embedding of (L,[L]") in (I, R) is an injective function f : L — I such that f[J] € R for every
J € [L]", that is, f[L] € J. So the number of such embeddings is (r + 1)!#(J) < do#(I)"*!. There is
therefore an S C [I]” such that #(S) < e#(I)" and there is no embedding of (L, [L]") in (I, R\ S), that is,
there is no J € [I]"*! such that [J]" C R\ S.

497L Corollary: Szemerédi’s Theorem (SzZEMEREDI 75) For every € > 0 and r > 2 there is an
ng € N such that whenever n > ng, A C n and #(A) > en there is an arithmetic progression of length r + 1
in A.
proof (FRANKL & RODL 02) Set n = l(

r!
and #({J : J € [I]"*}, [J]” C R}) < 6#(I)"!, there is an S C [I]” such that #(5) < 2(rj_1)r#([)7" and
there is no J € [I]"*! such that [J]” € R\ S. Let ng be such that en > 277! and n(r +1)"*1§ > 1 whenever
n > ng. Take n > ng and A C n such that #(A) > en.

Let C C n" be the set

€

2r')r. Take ¢ > 0 such that whenever I is a finite set, R C [I]"

{(Gioyin, .. yip—1) 1 Yig(j +1)ij € A}
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Then #(C) > nn".2 P For m < r!set A,, = {i :i € A, i = m mod r!}. Then there is an m such that
#(An) > %l Now we have an injection ¢ : [A4,,]” — C given by saying that if lo < ... <{,_; in A4,, then

o({lo, ... L1 (G) =1l ifj=0
- J%(zj L) if0<j <

So
#(C) = #([An)7) = = (2 —p)r > 1

r! -7l

N Nr r
T_ (ﬁ) =" Q
Let I be n x (r+1) and for ¢ = (ig,... ,ir—1) € C set

Je=1{0i5,9) 15 < rHUA(Z)2o o)} € 7.
Observe that if ¢, ¢ € C are distinct, then [J.]" N [J~]" = (), since given any face of the r-simplex J,. we can
read off all but at most one of the coordinates of ¢ and calculate the last. Set R = |J.co[Je]" C [I]".

? Suppose, if possible, that the only r-simplices J € [I]"*! such that [J]" C R are of the form J, for
some ¢ € C. Then there are at most

#(C) <" <n-n(r +1)7F16 = SH(I)H

such simplices; by the choice of §, there is an S C [I]” such that R\ S covers no r-simplices and
n r_ N _r
#(8) < 5 = T < #(C),

But every J. must have a face in S, and no two J,. share a face, so this is impossible. X

So we have an r-simplex J € [I]"*!, which is not of the form J. where ¢ € C, such that [J]" C R. Now
since the only faces put into R come from the J., and therefore meet each of the r + 1 levels n x {k} in at
most one point, J must be of the form {(i;,7) : 7 <r}U{(l,7)}. Since {(¢;,7) : j < r} is a face of some J,
¢ = (lgy... ir—1) € C. Set I' =ig+ ... +ir_1; then I’ # [ because J # J.. For each k <7, J\ {(ix,k)} is a
face of J and therefore of J. for some ¢’ € C; now J. must be

(TN A ) D) UL = 2050 e 8 R = (TN A, ) WA +1 =T, F)}

and
Do+ 1+ (k+ 1) =1)

belongs to A. Since this is true for every k < r, and we also have Z;zo (7 +1)i; € A because ¢ € C, we have
an arithmetic progression in A of length r + 1, as required.

497M For a full-strength version of the multiple recurrence theorem it seems that the ideas described
above are inadequate; for an adaptation which goes farther, see AUSTIN 10A and AUSTIN 10B. However the
methods here can reach the following.

Lemma (cf. SoLYMOsI 03) Suppose that 7 > 1 and n € N. For 0 < j, k < rset e;(k) =1if k =4, 0
otherwise. For z € n” and C C n" write

A(z,C)={k:k€Z, z+ ke; € C for every i <r}, q(z,C)=#(A(z,0C)).

Then for every € > 0 there is a § > 0 such that #({z: z € n", q(2,C) > dn}) > én" whenever n e N, C C n"
and #(C) > en".

proof We can use some of the same ideas as in 497L. Let ¢’ > 0 be such that 2"r"¢’ < e. Let § > 0 be such
that whenever I is finite, R C [I]" and #({J : J € [I]"*L, [J]" € R}) < 6#(I)"*" there is an S C R such
that #(S) < €'#(I)" and there is no J € [I]"*! such that [J]" C R\ S (497K).

Take n € N and C C n” such that #(C) > en”. Set I = (n x r) U (nr x {r}), so that #(I) = 2nr. For
ce C set

9For the rest of this proof, and also in 497M and 497N below, I will use the formula n” both for the set of functions from

r={0,...,r—1} ton ={0,... ,n— 1} and for its cardinal interpreted as a real number; I trust that this will not lead to any
confusion.
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Jo={(e(i),i) i < ry U{(Xi, el@)r)} € 17T

set R = J.co[Je]”. Observe that if ¢, ¢’ € C are distinct then [J.]" and [J.|" are disjoint. If S C R and
#(S) < €#(I)", then #(S) < en” and there must be a ¢ € C such that [J.]"NS =0 and [J.]" C R\ S.
Consequently

K={K:Kel[l]*, K] CR)

must have more than 6#(1)" ™ > 26n""! members, by the choice of §.

Next, #(K) = >, c.r9(2,C). P Set B = {(2,k) : z € n", k € Z, z + ke; € C for every i < r}; then
#(B) = > .cr1(2,C). For any K € K, there must be a ¢ € C such that (ck(i),i) € K for every i <r
while (kg + Z:;& ¢k (i),r) € K for some kp; in this case, cx + kxe; € C for every i < r and (¢, ki) € B.
Conversely, starting from (z, k) € B, {(2(¢),7) : i < T}U{(k—i—zz;ol z(i),7)} belongs to K. So K — (ck, kk)
is a bijection from K to B and #(K) = #(B). Q

Thus > q(z,C) > 26n"T1. Of course

q(z,C) < #{k:z+kegen"} <n

zen”

for every z € n". So setting D = {z: z € n", q(z,C) > dn}, we have
26n™ 1 < n#(D) + on - n” < n#t(D) + dn"t!
and #(D) > én", as claimed.

497N Theorem (FURSTENBURG 81) Let (2, i) be a probability algebra and (m;);<, a non-empty finite
commuting family of measure-preserving Boolean homomorphisms from 2 to itself. If a € 2\ {0}, there is
an n > 0 such that

n—1 —,.
S ling <, 7ha) > on

for every n € N.

proof (a) To being with, suppose that every ; is an automorphism. Doubling r if necessary, we can suppose
that for every i < r there is a j < r such that 7; = 7; *. Let (Z,%, 1) be the Stone space of (2, i) (321K),
and set E = @, the open-and-closed subset of Z corresponding to a € 2. For each i < rlet T; : Z — Z be
the homeomorphism corresponding to m; : 2 — 2, so that Tz_l[g] = ;b for every b € A (312Q'Y); note that
T;T; corresponds to m;m; (312R') and T;T; = T;T; (because the representations in 312Q are unique), for
all 4, j < 7.
In 497M, set € =

zen"set T, =[], < Tiz(i). (We can speak of the product without inhibitions because the T; commute.)
Consider the set W = {(z,2) : z € n”, T.(z) € E}. Then W~'[{z}] has measure uE for every z, so if we
set F={z:z € E, #(W[{z}]) > en”} we have

n"uE <n"uF +en”, upuF >e.

14E = Lfia and take a corresponding § > 0; set n = 26%¢. Now, given n > 1, then for

In the notation of 497M, set
V={(z,2): (5,2) € W, a(e, W[{z}) > on};
then for any x € F we have #(V[{x}]) > dn", by the choice of §. There must therefore be a z € n” such
that puV=1[{z}] > uF > de. Take any x € V~1[{z}] and k € A(z, W[{z}]). Setting e;(i) =1 and €;(j) =0
for i <r and j € r\{i}, z + ke; € W[{z}], that is, TFT.(z) € E, for every i < r. Also |k| < n. Set
G = T.[V7'{z}]], so that uG > &e and for every y € G we have #({k : |k| < n, TF(y) € E for every
i <r}) > dn. But this means that

0Formerly 312P.
H¥ormerly 312Q.
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n—1 n—1
fi(inf 7Fa) = Z p{x : TF(z) € E for every i < r}
=0 " k=0
1 .k .
>3 Z plz : T (x) € E for every i <1}
|k|<n

(because if TF(z) € E for every i < r then Tilkl(:c) € E for every i < 1)
= %/#({k . |k| < n, TF(x) € E for every i < r})u(dx)

> %(WWG > %52en =nn,

as required.

(b) For the general case, 328J tells us that there are a probability algebra (€, \), a measure-preserving
Boolean homomorphism 7 : 2l — € and a commuting family (7;);<, of measure-preserving automorphisms
of € such that 7;m = 7m; for every i < r. Now wa € €\ {0}, so there is an 7 > 0 such that

mn < S0 Ainfio, 7hra) = Yp—g Minfic, mrka) = Y320 Alinfic, wFa)

for every n € N.

497X Basic exercises (a) Let (X, 3, 1) be a probability space, (3;);c;r an independent family of o-
subalgebras of X, and T a subalgebra of 3 such that T N %; is metrically dense in ¥; for every ¢ € I. For
J CIset ¥X;=\,c;%; Show that (¥;);c; has T-removable intersections.

(b) Let I be a set, G the group of permutations of I with its topology of pointwise convergence (441G,
449Xh), and « the action of G; on P([I]<*) described in 497F. Show that « is continuous.

(c) In 497F, show that {p : u € Py is permutation-invariant} is a closed subset of P.

497Y Further exercises (a) (i) Show that if A C N has non-zero upper asymptotic density then there
is a translation-invariant additive functional v : PZ — [0, 1] such that vA > 0. (ii) Consider the statement
(f) If € > 0 and A C N are such that #(A Nn) > en for every n then A includes arithmetic
progressions of all finite lengths.
Use Theorem 497N to prove (}). (iii) Find a direct proof that (f) implies Szemerédi’s theorem.

497 Notes and comments [ am grateful to T.D.Austin for introducing me to a preprint of TAO 07, on
which this section is based.

Regarded as a proof of Szemerédi’s theorem, the argument above has the virtues of reasonable brevity
and (I hope) of completeness and correctness. It depends, of course, on non-trivial ideas from measure
theory, which for anyone except a measure theorist will compromise the claim of ‘brevity’; and even measure
theorists may find that the proofs here demand close attention. There are further, more significant, defects.
The outstanding problem associated with Szemerédi’s theorem is the estimation of ng as a function of r and
€; and while in a theoretical sense it must be possible to trace through the arguments above to establish
rigorous bounds, the methods are not well adapted to such an exercise, and one would not expect the bounds
obtained to be good. There is also the point that I have made uninhibited use of the axiom of choice. The
ultrafilter in 497J can easily be replaced by an appropriate sequence, but all standard treatments of measure
theory assume at least the countable axiom of choice, and Szemerédi’s theorem is clearly true in significantly
weaker theories than ordinary ZF.

The first ‘measure-theoretic’ proof of Szemerédi’s theorem was due to FURSTENBURG 77, and relied on a
deep analysis of the structure of measure-preserving transformations. While the methods described here do
not seem to give us any information on this structure, it is apparently a folklore result that the hypergraph
removal lemma provides a quick proof of the basic theorem used in Furstenburg’s approach (497N, 497VYa).
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The value of the work here, therefore, lies less in its applications to the hypergraph removal lemma and
Szemerédi’s theorem, than in the idea of ‘removable intersections’, where Theorems 497E and 497G give us
two remarkable results, and useful exercises in the theory of relative independence from §458. We also have
an instructive example of a more general phenomenon. Given a sequence of finite objects with quantititative
aspects, it is often profitable to seek a measure u reflecting the asymptotic behaviour of this sequence; this is
the idea of the construction in 497H. The ‘quantitative aspects’ here, as developed in 497J, are the proportion
of functions from L to m,, which are embeddings of (L,T') in (my,T,), and the proportion of simplices in
[m.,]* which must be removed from T}, in order to destroy all these embeddings. The measure y is set up
to describe the limits of these proportions as measures of appropriate sets.

Returning to the definition 497Aa, most of its clauses can be expressed in terms of the measure algebra
of the measure y; but the final (), ; F; = (" has to be taken literally, and makes sense only in terms of
the measure space itself. In the key application (part (d) of the proof of 4977J), the original sets E., with
negligible intersection, already belong to the algebra T, but the adjustment to sets F,. with empty intersection
is still non-trivial, because of the requirement that each F, must belong to the prescribed o-algebra X ;..

I said in 497F that you could note that P([N]<“) is homeomorphic to the Cantor set, so that Py is
isomorphic to the space of Radon probability measures on {0, 1}". However the point of the construction
there is that we are looking at a particular action of the symmetric group Gy on P([N]<¥); and this has
very little to do with the natural actions of Gy on PN or {0, 1}, as studied in 459E and 459H, for instance.
In particular, permutation-invariant measures, in the sense of 497Fb, will not normally be invariant under
the much larger group derived from all permutations of [N]<“ rather than just those corresponding to
permutations of N.

I express 497N in terms of measure-preserving automorphisms of probability algebras in order to connect it
with the treatment of ergodic theory in Chapter 38, but you will observe that the proof presented immediately
shifts to a more traditional formulation in terms of probability spaces. This is only one of many multiple
recurrence theorems, some of them much stronger (and, it seems, deeper) than 497N or, indeed, 497J.

Version of 25.3.22

498 Cubes in product spaces

I offer a brief note on a special property of (Radon) product measures.

498 A Proposition Let (2, i) be a semi-finite measure algebra with its measure-algebra topology (323A).
Suppose that A C 2l is an uncountable analytic set. Then there is a compact set L. C A, homeomorphic to
{0,1}Y, such that inf L # 0 in 2.

proof A\ {0} is still an uncountable analytic subset of 2. By 423K, it has a subset homeomorphic to
{0,1}N = PN; let f: PN — A\ {0} be an injective continuous function. Because (2, ji) is semi-finite, there
is an a C f(0) such that 0 < fia < oo; set § = Sjia. Note that (I,J) — f(an f(I)\ f(J)) : (PN)? — R is
continuous. Choose a sequence (kj)nen in N inductively, as follows. Given (k;);<n, set K, = {k; : i < n}.
For each J C K, we have lim, oo £(f(J)\ f(JU{r})) =0, so there is a k,,, greater than k; for every i < n,
such that a(f(J)\ f(JU{k,}) < 2727715 for every J C K,,; continue.

Now
ﬂ(a n inf.]gKn f(J)) > (5(1 + 2771)

for every n € N. P Induce on n. If n = 0, then an inf;cr, f(J) = an f() has measure 26 = §(1 + 279).
For the inductive step to n + 1 > 1, observe that

(©) 2002 D. H. Fremlin
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plan dnf () =@an inf f()0f(U (kD)

JCKnt1
> p(an inf f(J)) — Z BN\ F(TU{kn}))

JCK,
- JCK,
o142 = Y 27l
JCKn
(by the inductive hypothesis and the choice of k)
=0(14+27"1).

So the induction proceeds. Q
Set K = {k;:i € N}, c=inf{f(J) : J C K is finite}. Then

v(anc) =inf,enf(an inf ek, f(J)) >4,

and ¢ # 0. But now observe that L = f[PK] is a subset of A homeomorphic to PK and therefore to {0, 1}.
Also {b: b2 ¢} is closed (323D(d-i)), so C = {J : f(J) D¢} is closed in PK; as it includes the dense set
[K]<¥, C = PK and inf L D ¢ is non-zero.

498B Proposition (see BRODSKII 1949, EGGLESTON 54) Let (X, %, 3, 1) be an atomless Radon measure
space, (Y,6,T,v) an effectively locally finite 7-additive topological measure space and A the 7-additive
product measure on X x Y (417C, 417F). Then if W C X x Y is closed and AW > 0 there are a non-
scattered compact set K C X and a closed set F' C Y of positive measure such that K x F C W.

proof (a) To begin with (down to the end of (¢)), let us suppose that both p and v are totally finite. Let
(B, 7) be the measure algebra of v. Writing A for the c.l.d. product measure on X x Y, there isa W/ DO W
such that AW’ is defined and equal to AW (apply 417C(b-v) to the complement of W). By 418Th, there
is a p-conegligible set Xy such that W/[{z}] € T for every z € Xy, B = {W'[{z}]* : « € X} is separable
for the measure-algebra topology of B, and z — W'[{z}]* : X9 — B is measurable. Now Fubini’s theorem,
applied in the form of 252D to A and in the form of 417Ga to A, tells us that

f W [{z ] u(dz) = AW = AW = f vW [{x}p(dz).
So X1 = {z : z € Xo, W[{z}]* = W[{x}]*} is p-conegligible. Since the topology of 9B is metrizable
(323Ad or 323Gb), B is separable and metrizable, and x — W[{z}]* : X1 — B is almost continuous (418],

applied to the subspace measure on X;). Let K* C X; be a compact set of non-zero measure such that
x— W[{z}]*: K* — B is continuous.

(b) There is a non-zero ¢ € B such that K, = {x : x € K*, ¢ € W[{z}]*} is compact and not scattered.
P Because x — W[{x}]* is continuous on K*, B* = {W[{z}]* : © € K*} is compact and every K, is
compact. (i) If B* is countable, then K* = |J,cg- Kb, so there is some ¢ € B* such that pK. > 0. Let £
be a non-negligible self-supporting subset of K,; then (because u is atomless, therefore zero on singletons)
E has no isolated points. So K. is not scattered. (ii) If B* is uncountable, then by 498A there is a set
D C B*, homeomorphic to {0, 1}, with a non-zero lower bound ¢ in B. Now {W[{z}]* : x € K.} includes
D, so {0,1} and therefore [0,1] are continuous images of closed subsets of K. and K. is not scattered

(4A2G(j-iv)). Q
(c) Set K = K.. Then 414Ac tells us that

(Neex WH=3])® = infaex W[{z}]* 2¢

is non-zero, so F' = (), . W[{x}] is non-negligible; while K" x F' C W. Since every section W[{x}] is closed,
so is F. So we have found appropriate sets K and F', at least when p and v are totally finite.

(d) For the general case, we need observe only that by 417C(b-iii) there are X’ € ¥ and Y’ € T, both
of finite measure, such that A(W N (X’ x Y’)) > 0. Now the subspace measure pxs on X’ is atomless and
Radon (214Ka, 416Rb), the subspace measure vy, on Y’ is 7-additive (414K), and the 7-additive product
of pix+ and vy is the subspace measure on X’ x Y’ induced by A (4171), while W/ = W N (X’ x Y') is
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relatively closed in X’ x Y’. So we can apply (a)-(c) to pux: and vy to see that there are a non-scattered
compact set K C X’ and a non-negligible relatively closed set F' C Y” such that K x F’ C W’. Now the
closure F = F' of I in Y is closed and K x ' = K x F' CW.

498C Proposition (see CIESIELSKI & PAWLIKOWSKI 03) Let ((X;, %, Xy, ii))ier be a countable family
of atomless Radon probability spaces, and A the product Radon probability measure on X =[], X; (417Q,
417R). If W C X and AW > 0, there is a family (K;);er such that K; C X, is a non-scattered compact set
for each i € I and [[,.; K; CW.
proof (a) To begin with, let us suppose that I = N. As X is inner regular with respect to the closed sets,
it is enough to deal with the case in which W is closed. For each n € N, set Y, = [[,5,, X; and let X, be

the product Radon probability measure on Y,,, so that Mo = A and A, can be identified with the Radon
product of p,, and 5\n+1 (4177). Using 498B repeatedly, we can find non-scattered compact sets K,, C X,
and closed non-negligible sets W,, C Y,, such that Wy = W and K,, x W,,;1 C W, for every n. In this case,
[Iic,, Ki x W,, € W for every n. If & € [],. K, then there is for each n € N an z,, € ([],,, K;) x Wy, such
that x,, [n = x[n, just because W, is not empty. But now every z,, belongs to W and so does z = lim,,_, o .

x is arbitrary, [[;cn Ki € W.

(b) For the general case, we may suppose that I C N. For ¢ € N\ I, take (X;,%;,3;, ;) to be [0,1] with
Lebesgue measure. Set W = {x : x € [[,cy Xi, z[I € W}. By (a), there are non-scattered compact sets
K; C X; such that J[,. K; € W, in which case [Lic; Ki € W, as required.

498X Basic exercises (a) Let (X, T, X, u) be a Radon measure space, (Y, &, T, ) an effectively locally
finite 7-additive topological measure space, and A the 7-additive product measure on X x Y. Show that

if W C X xY is closed and AW > 0 there are a compact set K C X and a closed set F' C Y of positive
measure such that K x F' C W and K is either non-scattered or non-negligible.

(b) Let (X,%,%, 1) be an atomless Radon measure space, (Y, T, ) any measure space, and A the c.l.d.
product measure on X x Y. Show that if W C X x Y and AW > 0 there are a non-scattered compact set
K C X and aset F CY of positive measure such that K x F' C W. (Hint: reduce to the case in which v
is totally finite and T is countably generated, so that the completion of v is a quasi-Radon measure for an
appropriate second-countable topology.)

(c) Let ((X;,%:, %, 14i))ier be any family of atomless Radon probability spaces, and A the ordinary
product measure on X = [],.; X;. Show that if W C X and AW > 0 then there are non-scattered compact
sets K; C X; for i € I such that [[,., K; CW.

(d) Let (X4, Ti, X4, 15))icr be a countable family of atomless Radon probability spaces, and W C [, ., X;
a set with positive measure for the Radon product of (11;);er. Show that there are atomless Radon probability
measures v; on X; such that W is conegligible for the Radon product of (v;);cr. (Hint: 439Xh(vii).)

498Y Further exercises (a) Let ((X;,%;, X;, 1i))icr be a family of atomless perfect probability spaces,
and A the ordinary product measure on X = [],.; X;. Show that if W C X and AW > 0 then there are
sets K; C X; for i € I, all with cardinal ¢, such that Hiel K, CW.

498 Notes and comments I have previously noted (325Yd) that a set W of positive measure in a product
space need not include the product of two sets of positive measure; this fact is also the basis of 419E. Here,
however, we see that if one of the factors is a Radon measure space then W does include the product of
a non-trivial compact set and a set of positive measure. There are many possible variations on the result,
corresponding to different product measures (498B, 498Xb) and different notions of ‘non-trivial’ (498Xa,
498Ya). The most important of the latter seems to be the idea of a ‘non-scattered’” compact set K; this
is a quick way of saying that [0, 1] is a continuous image of K, which is a little stronger than saying that
#(K) > ¢, and arises naturally from the proof of 498B.
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