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Chapter 47

Geometric measure theory

I offer a chapter on geometric measure theory, continuing from Chapter 26. The greater part of it is
directed specifically at two topics: a version of the Divergence Theorem (475N) and the elementary theory
of Newtonian capacity and potential (§479). I do not attempt to provide a balanced view of the subject,
for which I must refer you to Mattila 95, Evans & Gariepy 92 and Federer 69. However §472,
at least, deals with something which must be central to any approach, Besicovitch’s Density Theorem
for Radon measures on R

r (472D). In §473 I examine Lipschitz functions, and give crude forms of some
fundamental ineqalities relating integrals

∫

‖ grad f‖dµ with other measures of the variation of a function

f (473H, 473K). In §474 I introduce perimeter measures λ∂E and outward-normal functions ψE as those for
which the Divergence Theorem, in the form

∫

E
divφ dµ =

∫

φ .ψE dλ
∂
E , will be valid (474E), and give the

geometric description of ψE(x) as the Federer exterior normal to E at x (474R). In §475 I show that λ∂E can
be identified with normalized Hausdorff (r − 1)-dimensional measure on the essential boundary of E.

§471 is devoted to Hausdorff measures on general metric spaces, extending the ideas introduced in §264
for Euclidean space, up to basic results on densities (471P) and Howroyd’s theorem (471S). In §476 I turn to
a different topic, the problem of finding the subsets of Rr on which Lebesgue measure is most ‘concentrated’
in some sense. I present a number of classical results, the deepest being the Isoperimetric Theorem (476H):
among sets with a given measure, those with the smallest perimeters are the balls.

The last three sections are different again. Classical electrostatics led to a vigorous theory of capacity and
potential, based on the idea of ‘harmonic function’. It turns out that ‘Brownian motion’ in R

r (§477) gives
an alternative and very powerful approach to the subject. I have brought Brownian motion and Wiener
measure to this chapter because I wish to use them to illuminate the geometry of Rr; but much of §477
(in particular, the strong Markov property, 477G) is necessarily devoted to adapting ideas developed in
the more general contexts of Lévy and Gaussian processes, as described in §§455-456. In §478 I give the
most elementary parts of the theory of harmonic and superharmonic functions, building up to a definition of
‘harmonic measures’ based on Brownian motion (478P). In §479 I use these techniques to describe Newtonian
capacity and its extension Choquet-Newton capacity (479C) on Euclidean space of three or more dimensions,
and establish their basic properties (479E, 479F, 479N, 479P, 479U).

Version of 10.2.16

471 Hausdorff measures

I begin the chapter by returning to a class of measures which we have not examined in depth since
Chapter 26. The primary importance of these measures is in studying the geometry of Euclidean space; in
§265 I looked briefly at their use in describing surface measures, which will reappear in §475. Hausdorff
measures are also one of the basic tools in the study of fractals, but for such applications I must refer you
to Falconer 90 and Mattila 95. All I shall attempt to do here is to indicate some of the principal ideas
which are applicable to general metric spaces, and to look at some special properties of Hausdorff measures
related to the concerns of this chapter and of §261.

471A Definition Let (X, ρ) be a metric space and r ∈ ]0,∞[. For δ > 0 and A ⊆ X, set

θrδA = inf{
∞
∑

n=0

(diamDn)
r : 〈Dn〉n∈N is a sequence of subsets of X covering A,

diamDn ≤ δ for every n ∈ N}.
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2 Geometric measure theory 471A

It will be useful to note that every θrδ is an outer measure. Now set

θrA = supδ>0 θrδA

for A ⊆ X; θr also is an outer measure on X; this is r-dimensional Hausdorff outer measure on X.
Let µHr be the measure defined by Carathéodory’s method from θr; µHr is r-dimensional Hausdorff
measure on X.

471B Definition Let (X, ρ) be a metric space. An outer measure θ on X is a metric outer measure
if θ(A ∪B) = θA+ θB whenever A, B ⊆ X and ρ(A,B) > 0.

471C Proposition Let (X, ρ) be a metric space and θ a metric outer measure on X. Let µ be the
measure on X defined from θ by Carathéodory’s method. Then µ is a topological measure.

471D Theorem Let (X, ρ) be a metric space and r > 0. Let µHr be r-dimensional Hausdorff measure
on X, and Σ its domain; write θr for r-dimensional Hausdorff outer measure on X.

(a) µHr is a topological measure.
(b) For every A ⊆ X there is a Gδ set H ⊇ A such that µHrH = θrA.
(c) θr is the outer measure defined from µHr.
(d) Σ is closed under Souslin’s operation.
(e) µHrE = sup{µHrF : F ⊆ E is closed} whenever E ∈ Σ and µHrE <∞.
(f) If A ⊆ X and θrA <∞ then A is separable and the set of isolated points of A is µHr-negligible.
(g) µHr is atomless.
(h) If µHr is totally finite it is a quasi-Radon measure.

471E Corollary If (X, ρ) is a metric space, r > 0 and Y ⊆ X then r-dimensional Hausdorff measure

µ
(Y )
Hr on Y extends the subspace measure (µ

(X)
Hr )Y on Y induced by r-dimensional Hausdorff measure µ

(X)
Hr

on X; and if either Y is measured by µ
(X)
Hr or Y has finite r-dimensional Hausdorff outer measure in X, then

µ
(Y )
Hr = (µ

(X)
Hr )Y .

471F Corollary Let (X, ρ) be an analytic metric space, and write µHr for r-dimensional Hausdorff
measure on X. Suppose that ν is a locally finite indefinite-integral measure over µHr. Then ν is a Radon
measure.

471G Increasing Sets Lemma Let (X, ρ) be a metric space and r > 0.
(a) Suppose that δ > 0 and that 〈An〉n∈N is a non-decreasing sequence of subsets of X with union A.

Then θr,6δ(A) ≤ (5r + 2) supn∈N θrδAn.
(b) Suppose that δ > 0 and that 〈An〉n∈N is a non-decreasing sequence of subsets of X with union A.

Then θrδA = supn∈N θrδAn.

471H Corollary Let (X, ρ) be a metric space, and r > 0. For A ⊆ X, set

θr∞A = inf{∑∞
n=0(diamDn)

r : 〈Dn〉n∈N is a sequence of subsets of X covering A}.
Then θr∞ is an outer regular Choquet capacity on X.

Remark θr∞ is r-dimensional Hausdorff capacity on X.

471I Theorem Let (X, ρ) be a metric space, and r > 0. Write µHr for r-dimensional Hausdorff measure
on X. If A ⊆ X is analytic, then µHrA is defined and equal to sup{µHrK : K ⊆ A is compact}.

471J Proposition Let (X, ρ) and (Y, σ) be metric spaces, and f : X → Y a γ-Lipschitz function, where

γ ≥ 0. If r > 0 and θ
(X)
r , θ

(Y )
r are the r-dimensional Hausdorff outer measures on X and Y respectively,

then θ
(Y )
r f [A] ≤ γrθ

(X)
r A for every A ⊆ X.
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471S Hausdorff measures 3

471K Lemma Let (X, ρ) be a metric space, and r > 0. Let µHr be r-dimensional Hausdorff measure on
X. If A ⊆ X, then µHrA = 0 iff for every ǫ > 0 there is a countable family D of sets, covering A, such that
∑

D∈D(diamD)r ≤ ǫ.

471L Proposition Let (X, ρ) be a metric space and 0 < r < s. If A ⊆ X is such that µ∗
HrA is finite,

then µHsA = 0.

471M Definition If (X, ρ) is a metric space and A ⊆ X, write A∼ for {x : x ∈ X, ρ(x,A) ≤ 2 diamA},
where ρ(x,A) = infy∈A ρ(x, y). (∅∼ = ∅.)

471N Lemma Let (X, ρ) be a metric space. Let F be a family of subsets ofX such that {diamF : F ∈ F}
is bounded. Set

Y =
⋂

δ>0

⋃{F : F ∈ F , diamF ≤ δ}.
Then there is a disjoint family I ⊆ F such that

(i)
⋃F ⊆ ⋃

F∈I F
∼;

(ii) Y ⊆ ⋃J ∪⋃

F∈I\J F
∼ for every J ⊆ I.

471O Lemma Let (X, ρ) be a metric space, and r > 0. Suppose that A, F are such that

(i) F is a family of closed subsets of X such that
∑∞
n=0(diamFn)

r is finite for every disjoint
sequence 〈Fn〉n∈N in F ,

(ii) for every x ∈ A, δ > 0 there is an F ∈ F such that x ∈ F and 0 < diamF ≤ δ.

Then there is a countable disjoint family I ⊆ F such that A\⋃ I has zero r-dimensional Hausdorff measure.

471P Theorem Let (X, ρ) be a metric space, and r > 0. Let µHr be r-dimensional Hausdorff measure
on X. Suppose that A ⊆ X and µ∗

HrA <∞.

(a) limδ↓0 sup{µ
∗

Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} = 1 for µHr-almost every x ∈ A.

(b) lim supδ↓0
µ∗

Hr(A∩B(x,δ))

δr
≥ 1 for µHr-almost every x ∈ A. So

2−r ≤ lim supδ↓0
µ∗

Hr(A∩B(x,δ))

(diamB(x,δ))r
≤ 1

for µHr-almost every x ∈ A.
(c) If A is measured by µHr, then

limδ↓0 sup{µ
∗

Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} = 0

for µHr-almost every x ∈ X \A.

471Q Lemma Let (X, ρ) be a metric space, and r > 0, δ > 0. Suppose that θrδX, as defined in 471A,
is finite.

(a) There is a non-negative additive functional ν on PX such that νX = 5−rθrδX and νA ≤ (diamA)r

whenever A ⊆ X and diamA ≤ 1
5δ.

(b) If X is compact, there is a Radon measure µ on X such that µX = 5−rθrδX and µG ≤ (diamG)r

whenever G ⊆ X is open and diamG ≤ 1
5δ.

471R Lemma Let (X, ρ) be a compact metric space and r > 0. Let µHr be r-dimensional Hausdorff
measure on X. If µHrX > 0, there is a Borel set H ⊆ X such that 0 < µHrH <∞.

471S Theorem Let (X, ρ) be an analytic metric space, and r > 0. Let µHr be r-dimensional Hausdorff
measure on X, and B the Borel σ-algebra of X. Then the Borel measure µHr↾B is semi-finite and tight.

D.H.Fremlin



4 Geometric measure theory 471T

471T Proposition Let (X, ρ) be a metric space, and r > 0.
(a) If X is analytic and µHrX > 0, then for every s ∈ ]0, r[ there is a non-zero Radon measure µ on X

such that
∫∫ 1

ρ(x,y)s
µ(dx)µ(dy) <∞.

(b) If there is a non-zero topological measure µ on X such that
∫∫ 1

ρ(x,y)r
µ(dx)µ(dy) is finite, then

µHrX = ∞.

471Z Problems (a) Let µ
(2)
H1, µ

(1)
H,1/2 be one-dimensional Hausdorff measure on R

2 and 1
2 -dimensional

Hausdorff measure on R respectively, for their usual metrics. Are the measure spaces (R2, µ
(2)
H1) and

(R, µ
(1)
H,1/2) isomorphic? (See 471Yj.)

(b) Let ρ be a metric on R
2 inducing the usual topology, and µ

(ρ)
H2 the corresponding 2-dimensional

Hausdorff measure. Is it necessarily the case that µ
(ρ)
H2(R

2) > 0? (See 471Yf.)

Version of 22.3.11

472 Besicovitch’s Density Theorem

The first step in the program of the next few sections is to set out some very remarkable properties of
Euclidean space. We find that in R

r, for geometric reasons (472A), we have versions of Vitali’s theorem
(472B-472C) and Lebesgue’s Density Theorem (472D) for arbitrary Radon measures. I add a version of the
Hardy-Littlewood Maximal Theorem (472F).

Throughout the section, r ≥ 1 will be a fixed integer. As usual, I write B(x, δ) for the closed ball with
centre x and radius δ. ‖ ‖ will represent the Euclidean norm, and x .y the scalar product of x and y, so that
x .y =

∑r
i=1 ξiηi if x = (ξ1, . . . , ξr) and y = (η1, . . . , ηr).

472A Besicovitch’s Covering Lemma Suppose that ǫ > 0 is such that (5r+1)(1− ǫ− ǫ2)r > (5+ ǫ)r.
Let x0, . . . , xn ∈ R

r, δ0, . . . , δn > 0 be such that

‖xi − xj‖ > δi, δj ≤ (1 + ǫ)δi

whenever i < j ≤ n. Then

#({i : i ≤ n, ‖xi − xn‖ ≤ δi + δn}) ≤ 5r.

472B Theorem Let A ⊆ R
r be a bounded set, and I a family of non-trivial closed balls in R

r such that
every point of A is the centre of a member of I. Then there is a family 〈Ik〉k<5r of countable subsets of I
such that each Ik is disjoint and

⋃

k<5r Ik covers A.

472C Theorem Let λ be a Radon measure on R
r, A a subset of Rr and I a family of non-trivial closed

balls in R
r such that every point of A is the centre of arbitrarily small members of I. Then

(a) there is a countable disjoint I0 ⊆ I such that λ(A \⋃ I0) = 0;
(b) for every ǫ > 0 there is a countable I1 ⊆ I such that A ⊆ ⋃ I1 and

∑

B∈I1
λB ≤ λ∗A+ ǫ.

472D Besicovitch’s Density Theorem Let λ be any Radon measure on R
r. Then, for any locally

λ-integrable real-valued function f ,

(a) f(y) = limδ↓0
1

λB(y,δ)

∫

B(y,δ)
fdλ,

(b) limδ↓0
1

λB(y,δ)

∫

B(y,δ)
|f(x)− f(y)|λ(dx) = 0

for λ-almost every y ∈ R
r.

*472E Proposition Let λ, λ′ be Radon measures on R
r, and G ⊆ R

r an open set. Let Z be the support
of λ, and for x ∈ Z ∩G set

Measure Theory (abridged version)



473Bb Poincaré’s inequality 5

M(x) = sup{λ
′B

λB
: B ⊆ G is a non-trivial ball with centre x}.

Then

λ{x : x ∈ Z, M(x) ≥ t} ≤ 5r

t
λ′G

for every t > 0.

*472F Theorem Let λ be a Radon measure on R
r, and f ∈ L

p(λ) any function, where 1 < p < ∞.

Let Z be the support of λ, and for x ∈ Z set f∗(x) = supδ>0
1

λB(x,δ)

∫

B(x,δ)
|f |dλ. Then f∗ is lower

semi-continuous, and ‖f∗‖p ≤ 2
( 5rp

p−1

)1/p‖f‖p.

Version of 25.7.11/7.8.20

473 Poincaré’s inequality

In this section I embark on the main work of the first half of the chapter, leading up to the Divergence
Theorem in §475. I follow the method in Evans & Gariepy 92. The first step is to add some minor results
on differentiable and Lipschitz functions to those already set out in §262 (473B-473C). Then we need to
know something about convolution products (473D), extending ideas in §§256 and 444; in particular, it will

be convenient to have a fixed sequence 〈h̃n〉n∈N of smoothing functions with some useful special properties
(473E).

The new ideas of the section begin with the Gagliardo-Nirenberg-Sobolev inequality, relating ‖f‖r/(r−1)

to
∫

‖ grad f‖. In its simplest form (473H) it applies only to functions with compact support; we need to

work much harder to get results which we can use to estimate
∫

B
|f |r/(r−1) in terms of

∫

B
‖ grad f‖ and

∫

B
|f | for balls B (473I, 473K).

473A Notation For the next three sections, r ≥ 2 will be a fixed integer. For x ∈ R
r and δ ≥ 0,

B(x, δ) = {y : ‖y − x‖ ≤ δ} will be the closed ball with centre x and radius δ. I will write ∂B(x, δ) for the
boundary of B(x, δ), the sphere {y : ‖y − x‖ = δ}. Sr−1 = ∂B(0, 1) will be the unit sphere. As in Chapter
26, I will use Greek letters to represent coordinates of vectors, so that x = (ξ1, . . . , ξr), etc.
µ will always be Lebesgue measure on R

r. βr = µB(0, 1) will be the r-dimensional volume of the unit
ball, that is,

βr =
πk

k!
if r = 2k is even,

=
22k+1k!πk

(2k+1)!
if r = 2k + 1 is odd

(252Q). ν will be normalized Hausdorff (r − 1)-dimensional measure on R
r, that is, ν = 2−r+1βr−1µH,r−1,

where µH,r−1 is (r − 1)-dimensional Hausdorff measure on R
r as described in §264. Recall from 265F and

265H that νSr−1 = 2πβr−2 = rβr (counting β0 as 1).

473B Differentiable functions (a) Recall from §262 that a function φ from a subset of Rr to R
s

(where s ≥ 1) is differentiable at x ∈ R
r, with derivative an s × r matrix T , if for every ǫ > 0 there is a

δ > 0 such that ‖φ(y) − φ(x) − T (y − x)‖ ≤ ǫ‖y − x‖ whenever ‖y − x‖ ≤ δ; this includes the assertion

that B(x, δ) ⊆ domφ. In this case, the coefficients of T are the partial derivatives
∂φj

∂ξi
(x) at x, where

φ1, . . . , φs are the coordinate functions of φ, and
∂

∂ξi
represents partial differentiation with respect to the

ith coordinate.

(b) When s = 1, I will write (grad f)(x) for the derivative of f at x, the gradient of f .

D.H.Fremlin



6 Geometric measure theory 473Bc

(c) Chain rule for functions of many variables Let φ : A→ R
s and ψ : B → R

p be functions, where
A ⊆ R

r and B ⊆ R
s. If x ∈ A is such that φ is differentiable at x, with derivative S, and ψ is differentiable

at φ(x), with derivative T , then the composition ψφ is differentiable at x, with derivative TS.

(d) It follows that if f and g are real-valued functions defined on a subset of Rr, and x ∈ dom f ∩ dom g
is such that (grad f)(x) and (grad g)(x) are both defined, then grad(f × g)(x) is defined and equal to
f(x) grad g(x) + g(x) grad f(x).

(e) Let D be a subset of Rr and φ : D → R
s any function. Set D0 = {x : x ∈ D, φ is differentiable at

x}. Then the derivative of φ, regarded as a function from D0 to R
rs, is (Lebesgue) measurable.

(f) If G ⊆ R
r is an open set, a function φ : G → R

s is smooth if it is differentiable arbitrarily often;
that is, if all its repeated partial derivatives

∂mφj

∂ξi1 ...∂ξim

are defined and continuous everywhere on G. I will write D for the family of real-valued functions from R
r

to R which are smooth and have compact support.

473C Lipschitz functions (a) If f and g are bounded real-valued Lipschitz functions, defined on any
subsets of Rr, then f × g, defined on dom f ∩ dom g, is Lipschitz.

(b) Suppose that F1, F2 ⊆ R
r are closed sets with convex union C. Let f : C → R be a function such

that f↾F1 and f↾F2 are both Lipschitz. Then f is Lipschitz.

(c) Suppose that f : Rr → R is Lipschitz. grad f is defined almost everywhere. grad f is (Lebesgue)
measurable on its domain. If γ is a Lipschitz constant for f , ‖ grad f(x)‖ ≤ γ whenever grad f(x) is defined.

(d) Conversely, if f : Rr → R is differentiable and ‖ grad f(x)‖ ≤ γ for every x, then γ is a Lipschitz
constant for f .

(e) Note that if f ∈ D then f is Lipschitz as well as bounded.

(f)(i) If D ⊆ R
r is bounded and f : D → R is Lipschitz, then there is a Lipschitz function g : Rr → R,

with compact support, extending f .

(ii) It follows that if D ⊆ R
r is bounded and f : D → R

s is Lipschitz, then there is a Lipschitz function
g : Rr → R

s, with compact support, extending f .

473D Smoothing by convolution: Lemma Suppose that f and g are Lebesgue measurable real-valued
functions defined µ-almost everywhere in R

r.
(a) If f is integrable and g is essentially bounded, then their convolution f ∗ g is defined everywhere in

R
r and uniformly continuous, and ‖f ∗ g‖∞ ≤ ‖f‖1 ess sup |g|.
(b) If f is locally integrable and g is bounded and has compact support, then f ∗ g is defined everywhere

in R
r and is continuous.

(c) If f and g are defined everywhere in R
r and x ∈ R

r \ ({y : f(y) 6= 0}+ {z : g(z) 6= 0}), then (f ∗ g)(x)
is defined and equal to 0.

(d) If f is integrable and g is bounded, Lipschitz and defined everywhere, then f ∗ grad g and grad(f ∗ g)
are defined everywhere and equal, where f ∗ grad g = (f ∗ ∂g

∂ξ1
, . . . , f ∗ ∂g

∂ξr
). Moreover, f ∗ g is Lipschitz.

(e) If f is locally integrable, and g ∈ D, then f ∗ g is defined everywhere and is smooth.
(f) If f is essentially bounded and g ∈ D, then all the derivatives of f ∗ g are bounded, and f ∗ g is

Lipschitz.
(g) If f is integrable and φ : Rr → R

r is a bounded measurable function with components φ1, . . . , φr,
and we write (f ∗ φ)(x) = ((f ∗ φ1)(x), . . . , (f ∗ φr)(x)), then ‖(f ∗ φ)(x)‖ ≤ ‖f‖1 supy∈Rr ‖φ(y)‖ for every
x ∈ R

r.

Measure Theory (abridged version)



473L Poincaré’s inequality 7

473E Lemma (a) Define h : R → [0, 1] by setting h(t) = exp(
1

t2−1
) for |t| < 1, 0 for |t| ≥ 1. Then h is

smooth, and h′(t) ≤ 0 for t ≥ 0.

(b) For n ≥ 1, define h̃n : Rr → R by setting

αn =
∫

h((n+ 1)2‖x‖2)µ(dx), h̃n(x) =
1

αn

h((n+ 1)2‖x‖2)

for every x ∈ R
r. Then h̃n ∈ D, h̃n(x) ≥ 0 for every x, h̃n(x) = 0 if ‖x‖ ≥ 1

n+1
, and

∫

h̃ndµ = 1.

(c) If f ∈ L
0(µ), then limn→∞(f ∗ h̃n)(x) = f(x) for every x ∈ dom f at which f is continuous.

(d) If f : Rr → R is uniformly continuous (in particular, if it is either Lipschitz or a continuous function

with compact support), then limn→∞ ‖f − f ∗ h̃n‖∞ = 0.

(e) If f ∈ L
0(µ) is locally integrable, then f(x) = limn→∞(f ∗ h̃n)(x) for µ-almost every x ∈ R

r.

(f) If f ∈ L
p(µ), where 1 ≤ p <∞, then limn→∞ ‖f − f ∗ h̃n‖p = 0.

473F Lemma For any measure space (X,Σ, λ) and any non-negative f1, . . . , fk ∈ L
0(λ),

∫

∏k
i=1 f

1/k
i dλ ≤ ∏k

i=1

(

∫

fidλ
)1/k

.

473G Lemma Let (X,Σ, λ) be a σ-finite measure space and k ≥ 2 an integer. Write λk for the product
measure on Xk. For x = (ξ1, . . . , ξk) ∈ Xk, t ∈ X and 1 ≤ i ≤ k set Si(x, t) = (ξ′1, . . . , ξ

′
k) where ξ

′
i = t and

ξ′j = ξj for j 6= i. Then if h ∈ L
1(λk) is non-negative, and we set hi(x) =

∫

h(Si(x, t))λ(dt) whenever this
is defined in R, we have

∫

(
∏k
i=1 hi)

1/(k−1)dλk ≤ (
∫

h dλk)
k/(k−1).

473H Gagliardo-Nirenberg-Sobolev inequality Suppose that f : Rr → R is a Lipschitz function
with compact support. Then ‖f‖r/(r−1) ≤

∫

‖ grad f‖dµ.

473I Lemma For any Lipschitz function f : B(0, 1) → R,
∫

B(0,1)
|f |r/(r−1)dµ ≤

(

2r+4
√
r
∫

B(0,1)
‖ grad f‖+ |f |dµ

)r/(r−1)
.

473J Lemma Let f : Rr → R be a Lipschitz function. Then
∫

B(y,δ)
|f(x)− f(z)|µ(dx) ≤ 2r

r
δr
∫

B(y,δ)
‖ grad f(x)‖‖x− z‖1−rµ(dx)

whenever y ∈ R
r, δ > 0 and z ∈ B(y, δ).

473K Poincaré’s inequality for balls Let B ⊆ R
r be a non-trivial closed ball, and f : B → R a

Lipschitz function. Set γ =
1

µB

∫

B
fdµ. Then

(

∫

B
|f − γ|r/(r−1)dµ

)(r−1)/r ≤ c
∫

B
‖ grad f‖dµ,

where c = 2r+4
√
r(1 + 2r+1).

473L Corollary Let B ⊆ R
r be a non-trivial closed ball, and f : B → [0, 1] a Lipschitz function. Set

F0 = {x : x ∈ B, f(x) ≤ 1
4}, F1 = {x : x ∈ B, f(x) ≥ 3

4}.
Then

(

min(µF0, µF1)
)(r−1)/r ≤ 4c

∫

B
‖ grad f‖dµ,

where c = 2r+4
√
r(1 + 2r+1).

D.H.Fremlin
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473M The case r = 1 In this case, B is just a closed interval, and

‖f × χB − γχB‖∞ = supx∈B |f(x)− γ| ≤ supx,y∈B |f(x)− f(y)| ≤
∫

B
|f ′|dµ,

giving a version of 473K for r = 1. As for 473L, if
∫

B
|f ′| < 1

2 then at least one of F0, F1 must be empty.

Version of 17.11.12

474 The distributional perimeter

The next step is a dramatic excursion, defining (for appropriate sets E) a perimeter measure for which a
version of the Divergence Theorem is true (474E). I begin the section with elementary notes on the divergence
of a vector field (474B-474C). I then define ‘locally finite perimeter’ (474D), ‘perimeter measure’ and ‘outward
normal’ (474F) and ‘reduced boundary’ (474G). The definitions rely on the Riesz representation theorem,
and we have to work very hard to relate them to any geometrically natural idea of ‘boundary’. Even half-
spaces (474I) demand some attention. From Poincaré’s inequality we can prove isoperimetric inequalities
for perimeter measures (474L). With some effort we can locate the reduced boundary as a subset of the
topological boundary, and obtain asymptotic inequalities on the perimeter measures of small balls (474N).
With much more effort we can find a geometric description of outward normal functions in terms of ‘Federer
exterior normals’ (474R), and get a tight asymptotic description of the perimeter measures of small balls
(474S). I end with the Compactness Theorem for sets of bounded perimeter (474T).

474B The divergence of a vector field (a) For a function φ from a subset of R
r to R

r, write

divφ =
∑r
i=1

∂φi

∂ξi
, where φ = (φ1, . . . , φr); for definiteness, let us take the domain of divφ to be the set of

points at which φ is differentiable. divφ ∈ D for every φ ∈ Dr.

(b) If f : Rr → R and φ : Rr → R
r are functions, then div(f × φ) = φ . grad f + f × divφ at any point

at which f and φ are both differentiable.

(c) If φ : Rr → R
r is a Lipschitz function with compact support, then

∫

divφ dµ = 0.

(d) If φ : Rr → R
r and f : Rr → R are Lipschitz functions, one of which has compact support, then

f × φ is Lipschitz.
It follows that

∫

φ . grad f dµ+
∫

f × divφ dµ = 0.

(e) If f ∈ L
∞(µ), g ∈ L

1(µ) is even and φ : Rr → R
r is a Lipschitz function with compact support, then

∫

(f ∗ g)× divφ =
∫

f × div(g ∗ φ).

474C Invariance under isometries: Proposition Suppose that T : Rr → R
r is an isometry, and

that φ is a function from a subset of Rr to R
r. Then

div(T−1φT ) = (divφ)T .

474D Locally finite perimeter: Definition Let E ⊆ R
r be a Lebesgue measurable set. Its perimeter

perE is

sup{|
∫

E
divφ dµ| : φ : Rr → B(0, 1) is a Lipschitz function with compact support}

(allowing ∞). A set E ⊆ R
r has locally finite perimeter if it is Lebesgue measurable and

sup{|
∫

E
divφ dµ| : φ : Rr → R

r is a Lipschitz function, ‖φ‖ ≤ χB(0, n)}
is finite for every n ∈ N. Of course a Lebesgue measurable set with finite perimeter also has locally finite
perimiter.

c© 2001 D. H. Fremlin
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474I The distributional perimeter 9

474E Theorem Suppose that E ⊆ R
r has locally finite perimeter.

(i) There are a Radon measure λ∂E on R
r and a Borel measurable function ψ : Rr → Sr−1 such that

∫

E
divφ dµ =

∫

φ .ψ dλ∂E

for every Lipschitz function φ : Rr → R
r with compact support.

(ii) This formula uniquely determines λ∂E , which can also be defined by saying that

λ∂E(G) = sup{|
∫

E
divφ dµ| : φ : Rr → R

r is Lipschitz, ‖φ‖ ≤ χG}
whenever G ⊆ R

r is open.

(iii) If ψ̂ is another function defined λ∂E-a.e. and satisfying the formula in (i), then ψ̂ and ψ are equal
λ∂E-almost everywhere.

474F Definitions In the context of 474E, I will call λ∂E the perimeter measure of E, and if ψ is a
function from a λ∂E-conegligible subset of Rr to Sr−1 which has the property in (i) of the theorem, I will
call it an outward-normal function for E.

Observe that if E has locally finite perimeter, then perE = λ∂E(R
r). The definitions in 474D-474E also

make it clear that if E, F ⊆ R are Lebesgue measurable and µ(E△F ) = 0, then perE = perF and E has
locally finite perimeter iff F has; and in this case λ∂E = λ∂F and an outward-normal function for E is an
outward-normal function for F .

474G The reduced boundary Let E ⊆ R
r be a set with locally finite perimeter; let λ∂E be its perimeter

measure and ψ an outward-normal function for E. The reduced boundary ∂$E is the set of those y ∈ R
r

such that, for some z ∈ Sr−1,

limδ↓0
1

λ∂
EB(y,δ)

∫

B(y,δ)
‖ψ(x)− z‖λ∂E(dx) = 0.

Note that, writing ψ = (ψ1, . . . , ψr) and z = (ζ1, . . . , ζr), we must have

ζi = limδ↓0
1

λ∂
EB(y,δ)

∫

B(y,δ)
ψidλ

∂
E ,

so that z is uniquely defined; call it ψE(y). ∂
$E and ψE are determined entirely by the set E.

limδ↓0
1

λ∂
EB(x,δ)

∫

B(x,δ)
|ψi(x)− ψi(y)|λ∂E(dx) = 0

for every i ≤ r, for λ∂E-almost every y ∈ R
r; and for any such y, ψE(y) is defined and equal to ψ(y). ∂$E

is λ∂E-conegligible and ψE is an outward-normal function for E. I will call ψE : ∂$E → Sr−1 the canonical
outward-normal function of E.

Once again, we see that if E, F ⊆ R
r are sets with locally finite perimeter and E△F is Lebesgue

negligible, then they have the same reduced boundary and the same canonical outward-normal function.

474H Invariance under isometries: Proposition Let E ⊆ R
r be a set with locally finite perimeter.

Let λ∂E be its perimeter measure, and ψE its canonical outward-normal function. If T : Rr → R
r is any

isometry, then T [E] has locally finite perimeter, λ∂T [E] is the image measure λ∂ET
−1, the reduced boundary

∂$T [E] is T [∂$E], and the canonical outward-normal function of T [E] is SψET
−1, where S is the derivative

of T .

474I Half-spaces: Proposition Let H ⊆ R
r be a half-space {x : x .v ≤ α}, where v ∈ Sr−1. Then H

has locally finite perimeter; its perimeter measure λ∂H is defined by saying

λ∂H(F ) = ν(F ∩ ∂H)

whenever F ⊆ R
r is such that ν measures F ∩ ∂H, and the constant function with value v is an outward-

normal function for H.

D.H.Fremlin



10 Geometric measure theory 474J

474J Lemma Let E ⊆ R
r be a set with locally finite perimeter. Let λ∂E be the perimeter measure of E,

and ψE its canonical outward-normal function. Then R
r \ E also has locally finite perimeter; its perimeter

measure is λ∂E , its reduced boundary is ∂$E, and its canonical outward-normal function is −ψE .

474K Lemma Let E ⊆ R
r be a set with locally finite perimeter; let λ∂E be its perimeter measure, and

ψ an outward-normal function for E. Let φ : Rr → R
r be a Lipschitz function with compact support, and

g ∈ D an even function. Then
∫

φ . grad(g ∗ χE)dµ+
∫

(g ∗ φ) .ψ dλ∂E = 0.

474L Two isoperimetric inequalities: Theorem Let E ⊆ R
r be a set with locally finite perimeter,

and λ∂E its perimeter measure.

(a) If E is bounded, then (µE)(r−1)/r ≤ perE.
(b) If B ⊆ R

r is a closed ball, then

min(µ(B ∩ E), µ(B \ E))(r−1)/r ≤ 2cλ∂E(intB),

where c = 2r+4
√
r(1 + 2r+1).

474M Lemma Suppose that E ⊆ R
r has locally finite perimeter, with perimeter measure λ∂E and an

outward-normal function ψ. Then for any y ∈ R
r and any Lipschitz function φ : Rr → R

r,
∫

E∩B(y,δ)
divφ dµ =

∫

B(y,δ)
φ .ψ dλ∂E +

∫

E∩∂B(y,δ)
φ(x) .

1

δ
(x− y) ν(dx)

for almost every δ > 0.

474N Lemma Let E ⊆ R
r be a set with locally finite perimeter, and λ∂E its perimeter measure. Then,

for any y ∈ ∂$E,

(i) lim infδ↓0
µ(B(y,δ)∩E)

δr
≥ 1

(3r)r
;

(ii) lim infδ↓0
µ(B(y,δ)\E)

δr
≥ 1

(3r)r
;

(iii) lim infδ↓0
λ∂
EB(y,δ)

δr−1
≥ 1

2c(3r)r−1
,

where c = 2r+4
√
r(1 + 2r+1);

(iv) lim supδ↓0
λ∂
EB(y,δ)

δr−1
≤ 4πβr−2.

474O Definition Let A ⊆ R
r be any set, and y ∈ R

r. A Federer exterior normal to A at y is a
v ∈ Sr−1 such that,

limδ↓0
µ∗((H△A)∩B(y,δ))

µB(y,δ)
= 0,

where H is the half-space {x : (x− y) .v ≤ 0}.

474P Lemma If A ⊆ R
r and y ∈ R

r, there can be at most one Federer exterior normal to A at y.

474Q Lemma Set c′ = 2r+3
√
r − 1(1 + 2r). Suppose that c∗, ǫ and δ are such that

c∗ ≥ 0, δ > 0, 0 < ǫ <
1√
2
, c∗ǫ3 < 1

4βr−1, 4c′ǫ ≤ 1
8βr−1.

Set Vδ = {z : z ∈ R
r−1, ‖z‖ ≤ δ} and Cδ = Vδ × [−δ, δ], regarded as a cylinder in R

r. Let f ∈ D be such
that

∫

Cδ
‖ gradr−1 f‖+max(

∂f

∂ξr
, 0)dµ ≤ c∗ǫ3δr−1,

where gradr−1 f = (
∂f

∂ξ1
, . . . ,

∂f

∂ξr−1

, 0). Set

Measure Theory (abridged version)



475C The essential boundary 11

F = {x : x ∈ Cδ, f(x) ≥ 3

4
}, F ′ = {x : x ∈ Cδ, f(x) ≤ 1

4
}.

and for γ ∈ R set Hγ = {x : x ∈ R
r, ξr ≤ γ}. Then there is a γ ∈ R such that

µ(F△(Hγ ∩ Cδ)) ≤ 9µ(Cδ \ (F ∪ F ′)) + (c∗βr−1 + 16c′)ǫδr.

474R Theorem Let E ⊆ R
r be a set with locally finite perimeter, ψE its canonical outward-normal

function, and y any point of its reduced boundary ∂$E. Then ψE(y) is the Federer exterior normal to E at
y.

474S Corollary Let E ⊆ R
r be a set with locally finite perimeter, and λ∂E its perimeter measure. Let

y be any point of the reduced boundary of E. Then

limδ↓0
λ∂
EB(y,δ)

βr−1δr−1
= 1.

474T The Compactness Theorem Let Σ be the algebra of Lebesgue measurable subsets of Rr, and
give it the topology Tm of convergence in measure defined by the pseudometrics ρH(E,F ) = µ((E△F )∩H)
for measurable sets H of finite measure. Then

(a) per : Σ → [0,∞] is lower semi-continuous;
(b) for any γ <∞, {E : E ∈ Σ, perE ≤ γ} is compact.

Version of 24.1.13

475 The essential boundary

The principal aim of this section is to translate Theorem 474E into geometric terms. We have already
identified the Federer exterior normal as an outward-normal function, so we need to find a description of
perimeter measures. Most remarkably, these turn out, in every case considered in 474E, to be just normalized
Hausdorff measures (475G). This description needs the concept of ‘essential boundary’ (475B). In order to
complete the programme, we need to be able to determine which sets have ‘locally finite perimeter’; there
is a natural criterion in the same language (475L). We now have all the machinery for a direct statement
of the Divergence Theorem (for Lipschitz functions) which depends on nothing more advanced than the
definition of Hausdorff measure (475N). (The definitions, at least, of ‘Federer exterior normal’ and ‘essential
boundary’ are elementary.)

This concludes the main work of the first part of this chapter. But since we are now within reach of
a reasonably direct proof of a fundamental fact about the (r − 1)-dimensional Hausdorff measure of the
boundaries of subsets of Rr (475Q), I continue up to Cauchy’s Perimeter Theorem and the Isoperimetric
Theorem for convex sets (475S, 475T).

475B The essential boundary Let A ⊆ R
r be any set. The essential closure of A is the set

cl*A = {x : lim supδ↓0
µ∗(B(x,δ)∩A)

µB(x,δ)
> 0}

Similarly, the essential interior of A is the set

int*A = {x : lim infδ↓0
µ∗(B(x,δ)∩A)

µB(x,δ)
= 1}.

Finally, the essential boundary ∂*A of A is cl*A \ int*A.

475C Lemma Let A, A′ ⊆ R
r.

(a)

intA ⊆ int*A ⊆ cl*A ⊆ A, ∂*A ⊆ ∂A,

c© 2000 D. H. Fremlin
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12 Geometric measure theory 475C

cl*A = R
r \ int*(Rr \A), ∂*(Rr \A) = ∂*A.

(b) If A \A′ is negligible, then cl*A ⊆ cl*A′ and int*A ⊆ int*A′; if A itself is negligible, cl*A, int*A and
∂*A are all empty.

(c) int*A, cl*A and ∂*A are Borel sets.
(d) cl*(A∪A′) = cl*A∪cl*A′ and int*(A∩A′) = int*A∩ int*A′, so ∂*(A∪A′), ∂*(A∩A′) and ∂*(A△A′)

are all included in ∂*A ∪ ∂*A′.
(e) cl*A ∩ int*A′ ⊆ cl*(A ∩A′), ∂*A ∩ int*A′ ⊆ ∂*(A ∩A′) and ∂*A \ cl*A′ ⊆ ∂*(A ∪A′).
(f) ∂*(A ∩A′) ⊆ (cl*A′ ∩ ∂A) ∪ (∂*A′ ∩ intA).
(g) If E ⊆ R

r is Lebesgue measurable, then E△int*E, E△cl*E and ∂*E are Lebesgue negligible.
(h) A is Lebesgue measurable iff ∂*A is Lebesgue negligible.

475D Lemma Let E ⊆ R
r be a set with locally finite perimeter. Then ∂$E ⊆ ∂*E and ν(∂*E\∂$E) = 0.

475E Lemma Let E ⊆ R
r be a set with locally finite perimeter.

(a) If A ⊆ ∂$E, then ν∗A ≤ (λ∂E)
∗A.

(b) If A ⊆ R
r and νA = 0, then λ∂EA = 0.

475F Lemma Let E ⊆ R
r be a set with locally finite perimeter, and ǫ > 0. Then λ∂E is inner regular

with respect to the family E = {F : F ⊆ R
r is Borel, λ∂EF ≤ (1 + ǫ)νF}.

475G Theorem Let E ⊆ R
r be a set with locally finite perimeter. Then λ∂E = ν ∂*E.

475H Proposition Let V ⊆ R
r be a hyperplane, and T : Rr → V the orthogonal projection. Suppose

that A ⊆ R
r is such that νA is defined and finite, and for u ∈ V set

f(u) = #(A ∩ T−1[{u}]) if this is finite,
= ∞ otherwise.

Then
∫

V
f(u)ν(du) is defined and at most νA.

475I Lemma Let K be the family of compact sets K ⊆ R
r such that K = cl*K. Then µ is inner regular

with respect to K.

475J Lemma Let E be a Lebesgue measurable subset of Rr, identified with R
r−1 × R. For u ∈ R

r−1,
set Gu = {t : (u, t) ∈ int*E}, Hu = {t : (u, t) ∈ int*(Rr \ E)} and Du = {t : (u, t) ∈ ∂*E}, so that Gu, Hu

and Du are disjoint and cover R.
(a) There is a µr−1-conegligible set Z ⊆ R

r−1 such that whenever u ∈ Z, t < t′ in R, t ∈ Gu and t′ ∈ Hu,
there is an s ∈ Du ∩ ]t, t′[.

(b) There is a µr−1-conegligible set Z1 ⊆ R
r−1 such that whenever u ∈ Z1, t, t

′ ∈ R, t ∈ Gu and t′ ∈ Hu,
there is a member of Du between t and t′.

(c) If E has locally finite perimeter, there is a conegligible set Z2 ⊆ Z1 such that, for every u ∈ Z2,
Du ∩ [−n, n] is finite for every n ∈ N, Gu and Hu are open, and Du = ∂Gu = ∂Hu, so that the constituent
intervals of R \Du lie alternately in Gu and Hu.

475K Lemma Suppose that h : Rr → [−1, 1] is a Lipschitz function with compact support; let n ∈ N

be such that h(x) = 0 for ‖x‖ ≥ n. Suppose that E ⊆ R
r is a Lebesgue measurable set. Then

|
∫

E

∂h

∂ξr
dµ| ≤ 2

(

βr−1n
r−1 + ν(∂*E ∩B(0, n))

)

.

475L Theorem Suppose that E ⊆ R
r. Then E has locally finite perimeter iff ν(∂*E ∩B(0, n)) is finite

for every n ∈ N.

Measure Theory (abridged version)
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475M Corollary (a) The family of sets with locally finite perimeter is a subalgebra of the algebra of
Lebesgue measurable subsets of Rr.

(b) A set E ⊆ R
r is Lebesgue measurable and has finite perimeter iff ν(∂*E) < ∞, and in this case

ν(∂*E) is the perimeter of E.
(c) If E ⊆ R

r has finite measure, then perE = lim infα→∞ per(E ∩B(0, α)).

475N The Divergence Theorem Let E ⊆ R
r be such that ν(∂*E ∩B(0, n)) is finite for every n ∈ N.

(a) E is Lebesgue measurable.
(b) For ν-almost every x ∈ ∂*E, there is a Federer exterior normal vx of E at x.
(c) For every Lipschitz function φ : Rr → R

r with compact support,
∫

E
divφ dµ =

∫

∂*E
φ(x) .vx ν(dx).

475O Lemma Let E ⊆ R
r be a set with locally finite perimeter, and ψE its canonical outward-normal

function. Let v be the unit vector (0, . . . , 0, 1). Identify R
r with R

r−1×R. Then we have sequences 〈Fn〉n∈N,
〈gn〉n∈N and 〈g′n〉n∈N such that

(i) for each n ∈ N, Fn is a Lebesgue measurable subset of Rr−1, and gn, g
′
n : Fn → [−∞,∞] are Lebesgue

measurable functions such that gn(u) < g′n(u) for every u ∈ Fn;
(ii) if m, n ∈ N are distinct and u ∈ Fm ∩ Fn, then [gm(u), g′m(u)] ∩ [gn(u), g

′
n(u)] = ∅;

(iii)
∑∞
n=0

∫

Fn
g′n − gndµr−1 = µE;

(iv) for any continuous function h : Rr → R with compact support,
∫

∂*E
h(x)v .ψE(x) ν(dx) =

∑∞
n=0

∫

Fn
h(u, g′n(u))− h(u, gn(u))µr−1(du),

where we interpret h(u,∞) and h(u,−∞) as 0 if necessary;
(v) for µr−1-almost every u ∈ R

r−1,

{t : (u, t) ∈ ∂*E} = {gn(u) : n ∈ N, u ∈ Fn, gn(u) 6= −∞}
∪ {g′n(u) : n ∈ N, u ∈ Fn, g

′
n(u) 6= ∞}.

475P Lemma Let v ∈ Sr−1 be any unit vector, and V ⊆ R
r the hyperplane {x : x .v = 0}. Let

T : Rr → V be the orthogonal projection. If E ⊆ R
r is any set with locally finite perimeter and canonical

outward-normal function ψE , then
∫

∂*E
|v .ψE |dν =

∫

V
#(∂*E ∩ T−1[{u}])ν(du),

interpreting #(∂*E ∩ T−1[{u}]) as ∞ if ∂*E ∩ T−1[{u}] is infinite.

475Q Theorem (a) Let E ⊆ R
r be a set with finite perimeter. For v ∈ Sr−1 write Vv for {x : x .v = 0},

and let Tv : R
r → Vv be the orthogonal projection. Then

perE = ν(∂*E) =
1

2βr−1

∫

Sr−1

∫

Vv

#(∂*E ∩ T−1
v [{u}])ν(du)ν(dv)

= lim
δ↓0

1

2βr−1δ

∫

Sr−1

µ(E△(E + δv))ν(dv).

(b) Suppose that E ⊆ R
r is Lebesgue measurable. Set

γ = supx∈Rr\{0}
1

‖x‖µ(E△(E + x)).

Then γ ≤ perE ≤ rβrγ

2βr−1

.

475R Convex sets in R
r: Lemma Let C ⊆ R

r be a convex set.

D.H.Fremlin
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(a) If x ∈ C and y ∈ intC, then ty + (1− t)x ∈ intC for every t ∈ ]0, 1].

(b) C and intC are convex.

(c) If intC 6= ∅ then C = intC.

(d) If intC = ∅ then C lies within some hyperplane.

(e) intC = intC.

475S Corollary: Cauchy’s Perimeter Theorem Let C ⊆ R
r be a bounded convex set with non-

empty interior. For v ∈ Sr−1 write Vv for {x : x .v = 0}, and let Tv : R
r → Vv be the orthogonal projection.

Then

ν(∂C) =
1

βr−1

∫

Sr−1

ν(Tv[C])ν(dv).

475T Corollary: the Convex Isoperimetric Theorem If C ⊆ R
r is a bounded convex set, then

ν(∂C) ≤ rβr(
1
2 diamC)r−1.

Version of 29.7.21

476 Concentration of measure

Among the myriad special properties of Lebesgue measure, a particularly interesting one is ‘concentration
of measure’. For a set of given measure in the plane, it is natural to feel that it is most ‘concentrated’ if it is
a disk. There are many ways of defining ‘concentration’, and I examine three of them in this section (476F,
476G and 476H); all lead us to Euclidean balls as the ‘most concentrated’ shapes. On the sphere the same
criteria lead us to caps (476K).

All the main theorems of this section will be based on the fact that semi-continuous functions on compact
spaces attain their bounds. The compact spaces in question will be spaces of subsets, and I begin with
some general facts concerning the topologies introduced in 4A2T (476A-476B). The particular geometric
properties of Euclidean space which make all these results possible are described in 476D-476E, where I
describe concentrating operators based on reflections. The actual theorems 476F-476H and 476K can now
almost be mass-produced.

476A Proposition Let X be a topological space, C the family of closed subsets of X, K ⊆ C the family
of closed compact sets and µ a topological measure on X.

(a)(i) If µ is outer regular with respect to the open sets then µ↾C : C → [0,∞[ is upper semi-continuous
with respect to the Vietoris topology on C.

(ii) If µ is locally finite and inner regular with respect to the closed sets then µ↾K is upper semi-
continuous with respect to the Vietoris topology.

(iii) If µ is inner regular with respect to the closed sets and f is a non-negative µ-integrable real-valued
function then F 7→

∫

F
fdµ : C → R is upper semi-continuous with respect to the Vietoris topology.

(b) Suppose that µ is tight.

(i) If µ is totally finite then µ↾C is upper semi-continuous with respect to the Fell topology on C.
(ii) If f is a non-negative µ-integrable real-valued function then F 7→

∫

F
fdµ : C → R is upper semi-

continuous with respect to the Fell topology.

(c) Suppose that X is metrizable, and that ρ is a metric on X defining its topology; let ρ̃ be the Hausdorff
metric on C \ {∅}.

(i) If µ is totally finite, then µ↾C \ {∅} is upper semi-continuous with respect to ρ̃.

(ii) If µ is locally finite, then µ↾K \ {∅} is upper semi-continuous with respect to ρ̃.

(iii) If f is a non-negative µ-integrable real-valued function, then F 7→
∫

F
fdµ : C \ {∅} → R is upper

semi-continuous with respect to ρ̃.

c© 2001 D. H. Fremlin
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476F Concentration of measure 15

476B Lemma Let (X, ρ) be a metric space, and C the family of closed subsets ofX, with its Fell topology.
For ǫ > 0, set U(A, ǫ) = {x : x ∈ X, ρ(x,A) < ǫ} if A ⊆ X is not empty; set U(∅, ǫ) = ∅. Then for any
τ -additive topological measure µ on X, the function

(F, ǫ) 7→ µU(F, ǫ) : C × ]0,∞[ → [0,∞]

is lower semi-continuous.

476C Proposition Let (X, ρ) be a non-empty compact metric space, and suppose that its isometry
group G acts transitively on X. Then X has a unique G-invariant Radon probability measure µ, which is
strictly positive.

476D Concentration by partial reflection (a) Let X be an inner product space. For any unit
vector e ∈ X and any α ∈ R, write R = Reα : X → X for the reflection in the hyperplane V = Veα =
{x : x ∈ X, (x|e) = α}, so that R(x) = x + 2(α − (x|e))e for every x ∈ X. Next, for any A ⊆ X, define
ψ(A) = ψeα(A) by setting

ψ(A) = {x : x ∈ A, (x|e) ≥ α} ∪ {x : x ∈ A, (x|e) < α, R(x) ∈ A}
∪ {x : x ∈ R

r \A, (x|e) ≥ α, R(x) ∈ A}
= (W ∩ (A ∪R[A])) ∪ (A ∩R[A]),

where W =Weα is the half-space {x : (x|e) ≥ α}.

(b)(i) If A ⊆ B ⊆ X, ψ(A) ⊆ ψ(B). (ii) For any A ⊆ X, ψ(R[A]) = ψ(A). (iii) If F ⊆ X is closed, then
ψ(F ) is closed.

(c) If x ∈ X \W and y ∈W then ‖x−R(y)‖ ≤ ‖x− y‖.

(d) For non-empty A ⊆ X and ǫ > 0, set U(A, ǫ) = {x : ρ(x,A) < ǫ}, where ρ is the standard metric on
X. U(ψ(A), ǫ) ⊆ ψ(U(A, ǫ)).

476E Lemma Let X be an inner product space, e ∈ X a unit vector and α ∈ R. Let R = Reα : X → X
be the reflection operator, and ψ = ψeα : PX → PX the associated transformation, as described in 476D.
For x ∈ A ⊆ X, define

φA(x) = x if (x|e) ≥ α,

= x if (x|e) < α and R(x) ∈ A,

= R(x) if (x|e) < α and R(x) /∈ A.

Let ν be a topological measure on X which is R-invariant.
(a) For any A ⊆ X, φA : A → ψ(A) is a bijection. If α < 0, then ‖φA(x)‖ ≤ ‖x‖ for every x ∈ A, with

‖φA(x)‖ < ‖x‖ iff (x|e) < α and R(x) /∈ A.
(b)(i) If E ⊆ X is measured by ν, then ψ(E) is measured by ν, νψ(E) = νE and φE is a measure space

isomorphism for the subspace measures on E and ψ(E) induced by ν.
(ii) For any A ⊆ X, ν∗ψ(A) ≤ ν∗A ≤ 2ν∗ψ(A).

(c) If α < 0 and E ⊆ X is measured by ν, then
∫

E
‖x‖ν(dx) ≥

∫

ψ(E)
‖x‖ν(dx), with equality iff {x : x ∈

E, (x|e) < α, R(x) /∈ E} is negligible.
(d) Suppose that X is separable. Let λ be the c.l.d. product measure of ν with itself on X×X. If E ⊆ X

is measured by ν, then
∫

E×E ‖x− y‖λ(d(x, y)) ≥
∫

ψ(E)×ψ(E)
‖x− y‖λ(d(x, y)).

(e) Now suppose that X = R
r. Then ν(∂*ψ(A)) ≤ ν(∂*A) for every A ⊆ R

r, where ∂*A is the essential
boundary of A.

476F Theorem Let r ≥ 1 be an integer, and let µ be Lebesgue measure on R
r. For non-empty A ⊆ R

r

and ǫ > 0, write U(A, ǫ) for {x : ρ(x,A) < ǫ}, where ρ is the Euclidean metric on R
r. If µ∗A is finite, then

µU(A, ǫ) ≥ µU(BA, ǫ), where BA is the closed ball with centre 0 and measure µ∗A.
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476G Theorem Let r ≥ 1 be an integer, and let µ be Lebesgue measure on R
r; write λ for the product

measure on R
r × R

r. For any measurable set E ⊆ R
r of finite measure, write BE for the closed ball with

centre 0 and the same measure as E. Then
∫

E×E ‖x− y‖λ(d(x, y)) ≥
∫

BE×BE
‖x− y‖λ(d(x, y)).

476H The Isoperimetric Theorem Let r ≥ 1 be an integer, and let µ be Lebesgue measure on R
r. If

E ⊆ R
r is a measurable set of finite measure, then perE ≥ perBE , where BE is the closed ball with centre

0 and the same measure as E.

476I Spheres in inner product spaces For the rest of the section I will use the following notation.
Let X be a (real) inner product space. SX will be the unit sphere {x : x ∈ X, ‖x‖ = 1}. Let HX be the
isometry group of SX with its topology of pointwise convergence.

A cap in SX will be a set of the form {x : x ∈ SX , (x|e) ≥ α} where e ∈ SX and −1 ≤ α ≤ 1.
When X is finite-dimensional, it is isomorphic to R

r, where r = dimX. If r ≥ 1, SX has a unique
HX -invariant Radon probability measure νX , which is strictly positive. If r ≥ 1 is an integer, the (r − 1)-
dimensional Hausdorff measure of the sphere SRr is finite and non-zero. (r − 1)-dimensional Hausdorff
measure on SRr is a multiple of the normalized invariant measure νRr . The same is therefore true in any
r-dimensional inner product space.

476J Lemma Let X be a real inner product space and f ∈ HX . Then (f(x)|f(y)) = (x|y) for all x,
y ∈ SX . f(αx+ βy) = αf(x) + βf(y) whenever x, y ∈ SX and α, β ∈ R are such that αx+ βy ∈ SX .

476K Theorem Let X be a finite-dimensional inner product space of dimension at least 2, SX its unit
sphere and νX the invariant Radon probability measure on SX . For a non-empty set A ⊆ SX and ǫ > 0,
write U(A, ǫ) = {x : ρ(x,A) < ǫ}, where ρ is the usual metric of X. Then there is a cap C ⊆ SX such that
νXC = ν∗XA, and νX(SX ∩ U(A, ǫ)) ≥ νX(SX ∩ U(C, ǫ)) for any such C and every ǫ > 0.

476L Corollary For any ǫ > 0, there is an r0 ≥ 1 such that whenever X is a finite-dimensional inner
product space of dimension at least r0, A1, A2 ⊆ SX and min(ν∗XA1, ν

∗
XA2) ≥ ǫ, then there are x ∈ A1,

y ∈ A2 such that ‖x− y‖ ≤ ǫ.

Version of 4.1.08/2.1.10

477 Brownian motion

I presented §455 with an extraordinary omission: the leading example of a Lévy process, and the inspi-
ration for the whole project, was relegated to an anonymous example (455Xg). In this section I will take
the subject up again. The theorem that the sum of independent normally distributed random variables is
again normally distributed (274B), when translated into the language of this volume, tells us that we have
a family 〈λt〉t>0 of centered normal distributions such that λs+t = λs ∗ λt for all s, t > 0. Consequently
we have a corresponding example of a Lévy process on R, and this is the process which we call ‘Brownian
motion’ (477A). This is special in innumerable ways, but one of them is central: we can represent it in such
a way that sample paths are continuous (477B), that is, as a Radon measure on the space of continuous
paths starting at 0. In this form, it also appears as a limit, for the narrow topology, of interpolations of
random walks (477C).

For the geometric ideas of §479, we need Brownian motion in three dimensions; the r-dimensional theory
of 477D-477G gives no new difficulties. The simplest expression of Brownian motion in R

r is just to take a
product measure (477Da), but in order to apply the results of §455, and match the construction with the
ideas of §456, a fair bit of explanation is necessary. The geometric properties of Brownian motion begin
with the invariant transformations of 477E. As for all Lévy processes, we have a strong Markov property,
and Theorem 455U translates easily into the new formulation (477G), as does the theory of hitting times
(477I). I conclude with a classic result on maximal values which will be useful later (477J), and with proofs
that almost all Brownian paths are nowhere differentiable (477K) and have zero two-dimensional Hausdorff
measure (477L).

c© 2008 D. H. Fremlin
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477A Brownian motion: Theorem There are a probability space (Ω,Σ, µ) and a family 〈Xt〉t≥0 of
real-valued random variables on Ω such that

(i) X0 = 0 almost everywhere;
(ii) whenever 0 ≤ s < t then Xt −Xs is normally distributed with expectation 0 and variance t− s;
(iii) 〈Xt〉t≥0 has independent increments.

477B Theorem Let 〈Xt〉t≥0 be as in 477A, and µ̂ the distribution of the process 〈Xt〉t≥0. Let C([0,∞[)0
be the set of continuous functions ω : [0,∞[ → R such that ω(0) = 0. Then C([0,∞[)0 has full outer measure
for µ̂, and the subspace measure µW on C([0,∞[)0 induced by µ̂ is a Radon measure when C([0,∞[)0 is
given the topology Tc of uniform convergence on compact sets.

*477C Theorem For α > 0, define fα : RN → Ω = C([0,∞[)0 by setting fα(z)(t) =
√
α(

∑

i<n z(i) +
1

α
(t−nα)z(n)) when z ∈ R

N, n ∈ N and nα ≤ t ≤ (n+1)α. Give Ω its topology Tc of uniform convergence

on compact sets, and R
N its product topology; then fα is continuous. For a Radon probability measure ν

on R, let µνα be the image Radon measure νNf−1
α on Ω, where νN is the product measure on R

N. Let µW
be the Radon measure of 477B, and U a neighbourhood of µW in the space PR(Ω) of Radon probability
measures on Ω for the narrow topology. Then there is a δ > 0 such that µνα ∈ U whenever α ∈ ]0, δ] and ν
is a Radon probability measure on R with mean 0 =

∫

x ν(dx) and variance 1 =
∫

x2ν(dx) and
∫

{x:|x|≥δ/√α} x
2ν(dx) ≤ δ. (†)

477D Multidimensional Brownian motion Fix an integer r ≥ 1.

(a) Let µW1 be the Radon probability measure on Ω1 = C([0,∞[)0 described in 477B; I will call it
one-dimensional Wiener measure. We can identify the power Ωr1 with Ω = C([0,∞[ ;Rr)0, the space
of continuous functions ω : [0,∞[ → R

r such that ω(0) = 0, with the topology of uniform convergence on
compact sets; note that Ω1 is Polish, so Ωr1 also is. Because Ω1 is separable and metrizable, the c.l.d. product
measure µrW1 measures every Borel set, while it is inner regular with respect to the compact sets, so it is a
Radon measure. I will say that µW = µrW1, interpreted as a measure on C([0,∞[ ;Rr)0, is r-dimensional
Wiener measure.
µW1 is the subspace measure on Ω1 induced by the distribution µ̂ of the process 〈Xt〉t≥0 in 477A.

µW here, regarded as a measure on C([0,∞[)r0, is the subspace measure induced by the measure µ̂r on
(R[0,∞[)r ∼= R

[0,∞[×r.

(b) For ω ∈ Ω, t ≥ 0 and i < r, set X
(i)
t (ω) = ω(t)(i). Then 〈X(i)

t 〉t≥0,i<r is a centered Gaussian process,
with covariance matrix

E(X(i)
s ×X

(j)
t ) = 0 if i 6= j,

= min(s, t) if i = j.

(c)(i) µW is the only Radon probability measure on Ω such that the process 〈X(i)
t 〉t≥0,i<r described in

(b) is a Gaussian process with the covariance matrix there.

(ii) Another way of looking at the family 〈X(i)
t 〉i<r,t≥0 is to write Xt(ω) = ω(t) for t ≥ 0, so that

〈Xt〉t≥0 is now a family of Rr-valued random variables defined on Ω. We can describe its distribution in
terms matching those of 455Q and 477A, which become

(i) X0 = 0 everywhere;

(ii) whenever 0 ≤ s < t then
1√
t−s

(Xt −Xs) has the standard Gaussian distribution µrG;

(iii) whenever 0 ≤ t1 < . . . < tn, then Xt2 −Xt1 , . . . , Xtn −Xtn−1
are independent.

Note that these properties also determine the Radon measure µW .
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477E Invariant transformations of Wiener measure: Proposition Let r ≥ 1 be an integer, and
µW Wiener measure on Ω = C([0,∞[ ;Rr)0. Let µ̂r be the product measure on (R[0,∞[)r as described in
477D.

(a) Suppose that f : (R[0,∞[)r → (R[0,∞[)r is inverse-measure-preserving for µ̂r, and that Ω0 ⊆ Ω is
a µW -conegligible set such that f [Ω0] ⊆ Ω0. Then f↾Ω0 is inverse-measure-preserving for the subspace
measure induced by µW on Ω0.

(b) Suppose that T̂ : Rr×[0,∞[ → R
r×[0,∞[ is a linear operator such that, for i, j < r and s, t ≥ 0,

∫

(T̂ ω)(i, s)(T̂ ω)(j, t)µ̂r(dω) = min(s, t) if i = j,

= 0 if i 6= j.

Then, identifying R
r×[0,∞[ with (R[0,∞[)r, T̂ is inverse-measure-preserving for µ̂r.

(c) Suppose that t ≥ 0. Define St : Ω → Ω by setting (Stω)(s) = ω(s + t) − ω(s) for s ≥ 0 and ω ∈ Ω.
Then St is inverse-measure-preserving for µW .

(d) Let T : Rr → R
r be an orthogonal transformation. Define T̃ : Ω → Ω by setting (T̃ ω)(t) = T (ω(t))

for t ≥ 0 and ω ∈ Ω. Then T̃ is an automorphism of (Ω, µW ).

(e) Suppose that α > 0. Define Uα : Ω → Ω by setting Uα(ω)(t) =
1√
α
ω(αt) for t ≥ 0 and ω ∈ Ω. Then

Uα is an automorphism of (Ω, µW ).
(f) Set

Ω0 = {ω : ω ∈ Ω, limt→∞
1

t
ω(t) = 0},

and define R : Ω0 → Ω0 by setting

(Rω)(t) = tω(
1

t
) if t > 0,

= 0 if t = 0.

Then Ω0 is µW -conegligible and R is an automorphism of Ω0 with its subspace measure.

(g) Suppose that 1 ≤ r′ ≤ r, and that µ
(r′)
W is Wiener measure on C([0,∞[ ;Rr

′

)0. Define P : Ω →
C([0,∞[ ;Rr

′

)0 by setting (Pω)(t)(i) = ω(t)(i) for t ≥ 0, i < r′ and ω ∈ Ω. Then µ
(r′)
W is the image measure

µWP
−1.

477F Proposition Let r ≥ 1 be an integer. Then Wiener measure on Ω = C([0,∞[ ;Rr)0 is strictly
positive for the topology Tc of uniform convergence on compact sets.

477G The strong Markov property: Theorem Suppose that r ≥ 1, µW is Wiener measure on
Ω = C([0,∞[ ;Rr)0 and Σ is its domain. For t ≥ 0 let Σt be

{F : F ∈ Σ, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t]},

Σ+
t =

⋂

s>t Σs,

and let τ : Ω → [0,∞] be a stopping time adapted to the family 〈Σ+
t 〉t≥0. Define φτ : Ω×Ω → Ω by saying

that

φτ (ω, ω
′)(t) = ω(t) if t ≤ τ(ω),

= ω(τ(ω)) + ω′(t− τ(ω)) if t ≥ τ(ω).

Then φτ is inverse-measure-preserving for µW × µW and µW .

477H Some families of σ-algebras: Proposition Let r ≥ 1 be an integer, µW r-dimensional Wiener

measure on Ω = C([0,∞[ ;Rr)0 and Σ its domain. Set X
(i)
t (ω) = ω(t)(i) for t ≥ 0 and i < r. For I ⊆ [0,∞[,

Measure Theory (abridged version)
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let TI be the σ-algebra of subsets of Ω generated by {X(i)
s −X

(i)
t : s, t ∈ I, i < r}, and T̂I the σ-algebra

{E△F : E ∈ TI , µWF = 0}.
(a) T[0,∞[ is the Borel σ-algebra of Ω either for the topology of pointwise convergence inherited from

(Rr)[0,∞[ or Rr×[0,∞[, or for the topology of uniform convergence on compact sets.
(b) If I is a family of subsets of [0,∞[ such that for all distinct I, J ∈ I either sup I ≤ inf J or sup J ≤ inf I

(counting inf ∅ as ∞ and sup ∅ as 0), then 〈T̂I〉I∈I is an independent family of σ-algebras.
(c) For t ≥ 0, let Σt be the σ-algebra of sets F ∈ Σ such that ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and

ω′↾[0, t] = ω↾[0, t], and Σ+
t =

⋂

s>t Σs. Write T̂
+

[0,t] for
⋂

s>t T̂[0,s]. Then, for any t ≥ 0,

T[0,t] ⊆ Σt ⊆ Σ+
t ⊆ T̂

+

[0,t] = T̂[0,t] = T̂[0,t[.

(d) On the tail σ-algebra
⋂

t≥0 T̂[t,∞[, µW takes only the values 0 and 1.

477I Hitting times Take r ≥ 1, and let µW be Wiener measure on Ω = C([0,∞[ ;Rr)0 and Σ its
domain; for t ≥ 0 define Σ+

t and T[0,t] as in 477G and 477H. Give Ω its topology of uniform convergence on
compact sets.

(a) Suppose that A ⊆ R
r. For ω ∈ Ω set τ(ω) = inf{t : t ∈ [0,∞[, ω(t) ∈ A}, counting inf ∅ as

∞. I will call τ the Brownian hitting time to A, or the Brownian exit time from R
r \ A. I will

say that the Brownian hitting probability of A, or the Brownian exit probability of R
r \ A, is

hp(A) = µW {ω : τ(ω) <∞} if this is defined. More generally, I will write

hp∗(A) = µ∗
W {ω : τ(ω) <∞} = µ∗

W {ω : ω−1[A] 6= ∅},
the outer Brownian hitting probability, for any A ⊆ R

r.

(b) If A ⊆ R
r is analytic, the Brownian hitting time to A is a stopping time adapted to the family

〈Σ+
t 〉t≥0.
In particular, there is a well-defined Brownian hitting probability of A.

(c) Let F ⊆ R
r be a closed set, and τ the Brownian hitting time to F .

(i) If τ(ω) <∞, then

τ(ω) = inf ω−1[F ] = minω−1[F ]

because ω is continuous. If 0 /∈ F and τ(ω) <∞, then ω(τ(ω)) ∈ ∂F .

(ii) τ is lower semi-continuous.

(iii) τ is adapted to 〈T[0,t]〉t≥0.
In the language of 477G, we have T[0,t] ⊆ Σt for every t ≥ 0, so τ must also be adapted to 〈Σt〉t≥0.

(d) If A ⊆ R
r is any set, then

hp∗(A) = min{hp(B) : B ⊇ A is an analytic set} = min{hp(E) : E ⊇ A is a Gδ set}.

(e) If A ⊆ R
r is analytic, then hp(A) = sup{hp(K) : K ⊆ A is compact}.

477J Proposition Let µW be Wiener measure on Ω = C([0,∞[)0. Set Xt(ω) = ω(t) for ω ∈ Ω. Then

Pr(maxs≤tXs ≥ α) = 2Pr(Xt ≥ α) =
2√
2π

∫∞
α/

√
t
e−u

2/2du

whenever t > 0 and α ≥ 0.

477K Typical Brownian paths: Proposition Let µW be Wiener measure on Ω = C([0,∞[)0. Then
µW -almost every element of Ω is nowhere differentiable.

477L Theorem Let r ≥ 1 be an integer, and µW Wiener measure on Ω = C([0,∞[ ;Rr)0; for s > 0 let
µHs be s-dimensional Hausdorff measure on R

r.
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(a) {ω(t) : t ∈ [0,∞[} is µH2-negligible for µW -almost every ω.
(b) Now suppose that r ≥ 2. For ω ∈ Ω, let Fω be the compact set {ω(t) : t ∈ [0, 1]}. Then for µW -almost

every ω ∈ Ω, µHsFω = ∞ for every s ∈ ]0, 2[.

Version of 4.6.09/7.8.20

478 Harmonic functions

In this section and the next I will attempt an introduction to potential theory. This is an enormous subject
and my choice of results is necessarily somewhat arbitrary. My principal aim is to give the most elementary
properties of Newtonian capacity, which will appear in §479. It seems that this necessarily involves a basic
understanding of harmonic and superharmonic functions. I approach these by the ‘probabilistic’ route, using
Brownian motion as described in §477.

The first few paragraphs, down to 478J, do not in fact involve Brownian motion; they rely on multidi-
mensional advanced calculus and on the Divergence Theorem. Defining ‘harmonic function’ in terms of
average values over concentric spherical shells (478B), the first step is to identify this with the definition in
terms of the Laplacian differential operator (478E). An essential result is a formula for a harmonic function
inside a sphere in terms of its values on the boundary and the ‘Poisson kernel’ (478Ib), and we also need to
understand the effects of smoothing by convolution with appropriate functions (478J). I turn to Brownian
motion with Dynkin’s formula (478K), relating the expected value of f(Xτ ) for a stopped Brownian process
Xτ to an integral in terms of ∇2f . This is already enough to deal with the asymptotic behaviour of Brownian
paths, which depends in a striking way on the dimension of the space (478M).

We can now approach Dirichlet’s problem. If we have a bounded open set G ⊆ R
r, there is a family

〈µx〉x∈G of probability measures such that whenever f : G → R is continuous and f↾G is harmonic, then
f(x) =

∫

fdµx for every x ∈ G (478Pc). So this family of ‘harmonic measures’ gives a formula continuously
extending a function on ∂G to a harmonic function on G, whenever such an extension exists (478S). The
method used expresses µx in terms of the distribution of points at which Brownian paths starting at x
strike ∂G, and relies on Dynkin’s formula through Theorem 478O. The strong Markov property of Brownian
motion now enables us to relate harmonic measures associated with different sets (478R).

478A Notation r ≥ 1 will be an integer; if you find it easier to focus on one dimensionality at a time,
you should start with r = 3, because r = 1 is too easy and r = 2 is exceptional. µ will be Lebesgue measure
on R

r, and ‖ ‖ the Euclidean norm on R
r; ν will be normalized (r − 1)-dimensional Hausdorff measure on

R
r. In the elementary case r = 1, ν will be counting measure on R.

βr =
1

k!
πk if r = 2k is even,

=
22k+1k!

(2k+1)!
πk if r = 2k + 1 is odd.

ν(∂B(0, 1)) = rβr =
2

(k−1)!
πk if r = 2k is even,

=
22k+1k!

(2k)!
πk if r = 2k + 1 is odd.

In the formulae below, there are repeated expressions of the form
1

‖x−y‖r−1
,

1

‖x−y‖r−2
; in these, it will

often be convenient to interpret 1
0 as ∞.

It will be convenient to do some calculations in the one-point compactification R
r ∪ {∞} of Rr. For a

set A ⊆ R
r

A
∞

= A, ∂∞A = ∂A

if A is bounded, and

A
∞

= A ∪ {∞}, ∂∞A = ∂A ∪ {∞}
if A is unbounded. A

∞
and ∂∞A are always compact. In this context I will take x + ∞ = ∞ for every

x ∈ R
r.
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µW will be r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0, the space of continuous functions ω
from [0,∞[ to R

r such that ω(0) = 0, endowed with the topology of uniform convergence on compact sets;
Σ will be the domain of µW . µ2

W will be the product measure on Ω × Ω. I will write Xt(ω) = ω(t) for
t ∈ [0,∞[ and ω ∈ Ω, and if τ : Ω → [0,∞] is a function, I will write Xτ (ω) = ω(τ(ω)) whenever ω ∈ Ω and
τ(ω) is finite.

I will write Σt for the σ-algebra of sets F ∈ Σ such that ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] =
ω↾[0, t], and Σ+

t =
⋂

s>t Σs. T[0,t] will be the σ-algebra of subsets of Ω generated by {Xs : s ≤ t}.

478B Harmonic and superharmonic functions Let G ⊆ R
r be an open set and f : G→ [−∞,∞] a

function.

(a) f is superharmonic if
1

ν(∂B(x,δ))

∫

∂B(x,δ)
fdν is defined in [−∞,∞] and less than or equal to f(x)

whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G.

(b) f is subharmonic if −f is superharmonic, that is,
1

ν(∂B(x,δ))

∫

∂B(x,δ)
fdν is defined in [−∞,∞] and

greater than or equal to f(x) whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G.

(c) f is harmonic if it is both superharmonic and subharmonic, that is,
1

ν(∂B(x,δ))

∫

∂B(x,δ)
fdν is defined

and equal to f(x) whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G.

478C Elementary facts Let G ⊆ R
r be an open set.

(a) If f : G→ [−∞,∞] is a function, then f is superharmonic iff −f is subharmonic.

(b) If f , g : G→ [−∞,∞[ are superharmonic functions, then f + g is superharmonic.

(c) If f , g : G→ [−∞,∞] are superharmonic functions, then f ∧ g is superharmonic.

(d) Let f : G→ R be a harmonic function which is locally integrable with respect to Lebesgue measure
on G. Then

f(x) =
1

µB(x,δ)

∫

B(x,δ)
fdµ

whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G. So f is continuous.

478D Maximal principle: Proposition Let G ⊆ R
r be a non-empty open set. Suppose that g :

G
∞ → ]−∞,∞] is lower semi-continuous, g(y) ≥ 0 for every y ∈ ∂∞G, and g↾G is superharmonic. Then

g(x) ≥ 0 for every x ∈ G.

478E Theorem Let G ⊆ R
r be an open set and f : G→ R a function with continuous second derivative.

Write ∇2f for its Laplacian div grad f =
∑r
i=1

∂2f

∂ξ2i
.

(a) f is superharmonic iff ∇2f ≤ 0 everywhere in G.
(b) f is subharmonic iff ∇2f ≥ 0 everywhere in G.
(c) f is harmonic iff ∇2f = 0 everywhere in G.

478F Basic examples (a) For any y, z ∈ R
r,

x 7→ 1

‖x−z‖r−2
, x 7→ (x−z) .y

‖x−z‖r
,

x 7→ ‖y−z‖2−‖x−y‖2

‖x−z‖r
= 2

(x−z) . (y−z)

‖x−z‖r
− 1

‖x−z‖r−2

are harmonic on R
r \ {z}.

(b) For any z ∈ R
2,

x 7→ ln ‖x− z‖
is harmonic on R

2 \ {z}.
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478G Lemma (a)
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

‖x−z‖r−2
ν(dz) =

1

max(δ,‖x‖)r−2
whenever x ∈ R

r and δ > 0.

(b)
1

ν(∂B(0,δ))

∫

∂B(0,δ)

|δ2−‖x‖2|
‖x−z‖r

ν(dz) =
1

max(δ,‖x‖)r−2
whenever x ∈ R

r, δ > 0 and ‖x‖ 6= δ.

(c)
∫

B(0,δ)

1

‖x−z‖r−2
µ(dz) ≤ 1

2
rβrδ

2 whenever x ∈ R
r and δ > 0.

478H Corollary If r ≥ 2, then x 7→ 1

‖x−z‖r−2
: Rr → [0,∞] is superharmonic for any z ∈ R

r.

478I Theorem Suppose that y ∈ R
r and δ > 0; let S = ∂B(y, δ).

(a) Let ζ be a totally finite Radon measure on S, and define f on R
r \ S by setting

f(x) =
1

rβrδ

∫

S

|δ2−‖x−y‖2|
‖x−z‖r

ζ(dz)

for x ∈ R
r \ S. Then f is continuous and harmonic.

(b) Let g : S → R be a νS-integrable function, where νS is the subspace measure on S induced by ν, and
define f : Rr → R by setting

f(x) =
1

rβrδ

∫

S

g(z)
|δ2−‖x−y‖2|

‖x−z‖r
ν(dz) if x ∈ R

r \ S,

= g(x) if x ∈ S.

(i) f is continuous and harmonic in R
r \ S.

(ii) If r ≥ 2, then

lim infz∈S,z→z0 g(x) = lim infx→z0 f(x), lim supx→z0 f(x) = lim supz∈S,z→z0 g(x)

for every z0 ∈ S.
(iii) f is continuous at any point of S where g is continuous, and if g is lower semi-continuous then f

also is.
(iv) supx∈Rr f(x) = supz∈S g(z) and infx∈Rr f(x) = infz∈S g(z).

478J Convolutions and smoothing: Proposition (a) Suppose that f : Rr → [0,∞] is Lebesgue
measurable, and G ⊆ R

r an open set such that f↾G is superharmonic. Let h : Rr → [0,∞] be a Lebesgue
integrable function, and f ∗h the convolution of f and h. If H ⊆ G is an open set such that H −{z : h(z) 6=
0} ⊆ G, then (f ∗ h)↾H is superharmonic.

(b) Suppose, in (a), that h(y) = h(z) whenever ‖y‖ = ‖z‖ and that
∫

Rr h dµ ≤ 1. If x ∈ G and γ > 0 are
such that B(x, γ) ⊆ G and h(y) = 0 whenever ‖y‖ ≥ γ, then (f ∗ h)(x) ≤ f(x).

(c) Let f : Rr → [0,∞] be a lower semi-continuous function, and 〈h̃n〉n∈N the sequence of 473E. If G ⊆ R
r

is an open set such that f↾G is superharmonic, then f(x) = limn→∞(f ∗ h̃n)(x) for every x ∈ G.
(d) Let G ⊆ R

r be an open set, K ⊆ G a compact set and g : G→ R a smooth function. Then there is a
smooth function f : G → R with compact support included in G such that f agrees with g on an open set
including K.

478K Dynkin’s formula: Lemma Let µW be r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0;
set Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0. Let f : Rr → R be a three-times-differentiable function such that f
and its first three derivatives are continuous and bounded.

(a) E(f(Xt)) = f(0) +
1

2
E(

∫ t

0
(∇2f)(Xs)ds) for every t ≥ 0.

(b) If τ : Ω → [0,∞[ is a stopping time adapted to 〈Σ+
t 〉t≥0 and E(τ) is finite, then

E(f(Xτ )) = f(0) +
1

2
E(
∫ τ

0
(∇2f)(Xs)ds).

478L Theorem Let µW be r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0, f : Rr → [0,∞] a
lower semi-continuous superharmonic function, and τ : Ω → [0,∞] a stopping time adapted to 〈Σ+

t 〉t≥0. Set
H = {ω : ω ∈ Ω, τ(ω) <∞}. Then
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f(x) ≥
∫

H
f(x+ ω(τ(ω)))µW (dω)

for every x ∈ R
r.

478M Proposition (a) If r = 1, then {ω(t) : t ≥ 0} = R for almost every ω ∈ Ω.
(b) If r ≤ 2, then {ω(t) : t ≥ 0} is dense in R

2 for almost every ω ∈ Ω.
(c) If r ≥ 2, then for every z ∈ R

2, z /∈ {ω(t) : t > 0} for almost every ω ∈ Ω.
(d) If r ≥ 3, then limt→∞ ‖ω(t)‖ = ∞ for almost every ω ∈ Ω.

478N Wandering paths Let G ⊆ R
r be an open set, and for x ∈ G set

Fx(G) = {ω : either τx(ω) <∞ or limt→∞ ‖ω(t)‖ = ∞}
where τx is the Brownian exit time from G − x. I will say that G has few wandering paths if Fx(G) is
conegligible for every x ∈ G. In this case we can be sure that, if x ∈ G, then for almost every ω either

limt→∞ ‖ω(t)‖ = ∞ or ω(t) /∈ G−x for some t. So we can speak of Xτx(ω) = ω(τx(ω)), taking this to be ∞ if
ω ∈ Fx(G) and τx(ω) = ∞; and ω will be continuous on [0, τx(ω)] for every ω ∈ Fx(G). Xτx : Ω → ∂∞(G−x)
is Borel measurable.

From 478M, we see that if r ≥ 3 then any open set in R
r will have few wandering paths, while if r ≤ 2

then G will have few wandering paths whenever it is not dense in R
r. Note that if G ⊆ R

r is open, H is a
component of G, and x ∈ H, then the exit times from H − x and G− x are the same, and Fx(G) = Fx(H).
It follows that if G has more than one component then it has few wandering paths.

478O Theorem Let G ⊆ R
r be an open set with few wandering paths and f : G

∞ → R a bounded
lower semi-continuous function such that f↾G is superharmonic. Take x ∈ G and let τ : Ω → [0,∞] be the
Brownian exit time from G− x. Then f(x) ≥ E(f(x+Xτ )).

478P Harmonic measures (a) Let A ⊆ R
r be an analytic set and x ∈ R

r. Let τ : Ω → [0,∞]
be the Brownian hitting time to A − x. Then τ is Σ-measurable, where Σ is the domain of µW . Setting
H = {ω : τ(ω) <∞}, Xτ : H → R

r is Σ-measurable.
Consider the function ω 7→ x+ω(τ(ω)) : H → R

r. This induces a Radon image measure µx on R
r defined

by saying that

µxF = µW {ω : ω ∈ H, x+ ω(τ(ω)) ∈ F} = Pr(x+Xτ ∈ F )

whenever this is defined. Xτ (ω) ∈ ∂(A− x) for every ω ∈ H, and ∂A is conegligible for µx. I will call µx
the harmonic measure for arrivals in A from x. Of course µxR

r is the Brownian hitting probability of
A.

Note that if F ⊆ R
r is closed and x ∈ R

r \ F , then the Brownian hitting time to F − x is the same as
the Brownian hitting time to ∂F − x, so that the harmonic measure for arrivals in F from x coincides with
the harmonic measure for arrivals in ∂F from x.

(b) Let A ⊆ R
r be an analytic set, x ∈ R

r, and µx the harmonic measure for arrivals in A from x. If
f : Rr → [0,∞] is a lower semi-continuous superharmonic function, f(x) ≥

∫

fdµx.

(c) We can re-interpret 478O in this language. Let G ⊆ R
r be an open set with few wandering paths,

and x ∈ G. Let µx be the harmonic measure for arrivals in R
r \G from x. In this case, taking τ to be the

Brownian exit time from G− x and H = {ω : τ(ω) <∞}, limt→∞ ‖ω(t)‖ = ∞ for almost every ω ∈ Ω \H.
If f : ∂∞G→ [−∞,∞] is a function, then

E(f(x+Xτ )) =

∫

H

f(x+Xτ (ω))µW (dω) + f(∞)µW (Ω \H)

(counting f(∞) as zero if G is bounded)

=

∫

fdµx + f(∞)(1− µxR
r)

if either integral is defined in [−∞,∞]. In particular, if f : G
∞ → R is a bounded lower semi-continuous

function and f↾G is superharmonic, then f(x) ≥
∫

fdµx + f(∞)(1 − µxR
r). Similarly, if f : G

∞ → R is
continuous and f↾G is harmonic, then f(x) =

∫

fdµx + f(∞)(1− µxR
r) for every x ∈ G.
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(d) Suppose that 〈An〉n∈N is a non-decreasing sequence of analytic subsets of Rr, with union A. For

x ∈ R
r, let µ

(n)
x , µx be the harmonic measures for arrivals in An, A respectively from x. Then µx is the

limit limn→∞ µ
(n)
x for the narrow topology on the space of totally finite Radon measures on R

r.

478Q Proposition Let S be the sphere ∂B(y, δ), where y ∈ R
r and δ > 0. For x ∈ R

r \S, let ζx be the
indefinite-integral measure over ν defined by the function

z 7→ |δ2−‖x−y‖2|
rβrδ‖x−z‖r

if z ∈ S,

7→ 0 if z ∈ R
r \ S.

(a) If x ∈ intB(y, δ), then the harmonic measure µx for arrivals in S from x is ζx.

(b) In particular, the harmonic measure µy for arrivals in S from y is
1

νS
ν S.

(c) Suppose that r ≥ 2. If x ∈ R
r \B(y, δ), then the harmonic measure µx for arrivals in S from x is ζx.

µxR
r =

δr−2

‖x−y‖r−2
.

478R Theorem Let A, B ⊆ R
r be analytic sets with A ⊆ B. For x ∈ R

r, let µ
(A)
x , µ

(B)
x be the harmonic

measures for arrivals in A, B respectively from x. Then, for any x ∈ R
r, 〈µ(A)

y 〉y∈Rr is a disintegration of

µ
(A)
x over µ

(B)
x .

478S Corollary Let A ⊆ R
r be an analytic set, and f : ∂A → R a bounded universally measurable

function. For x ∈ R
r \ A set g(x) =

∫

fdµx, where µx is the harmonic measure for arrivals in A from x.
Then g is harmonic.

478T Corollary Let A ⊆ R
r be an analytic set, and for x ∈ R

r let µx be the harmonic measure for
arrivals in A from x. Then x 7→ µx is continuous on R

r \A for the total variation metric on the set of totally
finite Radon measures on R

r.

478U Proposition Suppose that A ⊆ R
r and that 0 belongs to the essential closure of A. Then the

outer Brownian hitting probability hp∗(A) of A is 1.

*478V Theorem (a) Let G ⊆ R
r be an open set with few wandering paths and f : G

∞ → R a continuous
function such that f↾G is harmonic. For x ∈ R

r let τx : Ω → [0,∞] be the Brownian exit time from G− x.
Set

gτx(ω) = f(x+ ω(τx(ω))) if τx(ω) <∞,

= f(∞) if lim
t→∞

‖ω(t)‖ = ∞ and τx(ω) = ∞.

Then f(x) = E(gτx).

(b) Now suppose that σ is a stopping time adapted to 〈Σt〉t≥0 such that σ(ω) ≤ τx(ω) for every ω. Set

gσ(ω) = gτx(ω) if σ(ω) = τx(ω) = ∞,

= f(x+ ω(σ(ω))) otherwise.

As in 455Lc, set Σσ = {E : E ∈ domµW , E ∩{ω : σ(ω) ≤ t} ∈ Σt for every t ≥ 0}. Then gσ is a conditional
expectation of gτx on Σσ.
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Version of 15.2.10/28.4.10

479 Newtonian capacity

I end the chapter with a sketch of fragments of the theory of Newtonian capacity. I introduce equilibrium
measures as integrals of harmonic measures (479B); this gives a quick definition of capacity (479C), with
a substantial number of basic properties (479D, 479E), including its extendability to a Choquet capacity
(479Ed). I give sufficient fragments of the theory of Newtonian potentials (479F, 479J) and harmonic
analysis (479G, 479I) to support the classical definitions of capacity and equilibrium measures in terms of
potential and energy (479K, 479N). The method demands some Fourier analysis extending that of Chapter
28 (479H). 479P is a portmanteau theorem on generalized equilibrium measures and potentials with an exact
description of the latter in terms of outer Brownian hitting probabilities. I continue with notes on capacity
and Hausdorff measure (479Q), self-intersecting Brownian paths (479R) and an example of a discontinuous
equilibrium potential (479S). Yet another definition of capacity, for compact sets, can be formulated in terms
of gradients of potential functions (479U); this leads to a simple inequality relating capacity to Lebesgue
measure (479V). The section ends with an alternative description of capacity in terms of a measure on the
family of closed subsets of Rr (479W).

479A Notation In this section, unless otherwise stated, r will be a fixed integer greater than or equal to
3. µ will be Lebesgue measure on R

r, and βr the measure of B(0, 1); ν will be normalized (r−1)-dimensional
Hausdorff measure on R

r.
Recall that if ζ is a measure on a spaceX, and E ∈ dom ζ, then ζ E is defined by saying that (ζ E)(F ) =

ζ(E ∩ F ) whenever F ⊆ X and ζ measures E ∩ F . If ζ is a Radon measure, so is ζ E.
Ω will be C([0,∞[ ;Rr)0, with the topology of uniform convergence on compact sets; µW will be Wiener

measure on Ω. Recall that the Brownian hitting probability hp(D) of a set D ⊆ R
r is µW {ω : ω−1[D] 6= ∅}

if this is defined, and that for any D ⊆ R
r the outer Brownian hitting probability is hp∗(D) = µ∗

W {ω :
ω−1[D] 6= ∅}.

If x ∈ R
r and A ⊆ R

r is an analytic set, µ
(A)
x will be the harmonic measure for arrivals in A from x; note

that µ
(A)
x (Rr) = µ

(A)
x (∂A) = hp(A− x).

I will write ρtv for the total variation metric on the space M+
R (Rr) of totally finite Radon measures on

R
r, so that

ρtv(λ, ζ) = supE,F⊆Rr are Borel λE − ζE − λF + ζF

for λ, ζ ∈M+
R (Rr).

479B Theorem Let A ⊆ R
r be a bounded analytic set.

(i) There is a Radon measure λA on R
r, with support included in ∂A, defined by saying that

〈 1

rβrγ
µ
(A)
x 〉x∈∂B(0,γ) is a disintegration of λA over the subspace measure ν∂B(0,γ) whenever γ > 0 and

A ⊆ intB(0, γ).

(ii) λA is the limit lim‖x‖→∞ ‖x‖r−2µ
(A)
x for the total variation metric on M+

R (Rr).

479C Definitions (a)(i) In the context of 479B, I will call λA the equilibrium measure of the bounded
analytic set A, and λAR

r the Newtonian capacity capA of A.

(ii) For any D ⊆ R
r, its Choquet-Newton capacity will be

c(D) = infG⊇D is open supK⊆G is compact capK.

Sets with zero Choquet-Newton capacity are called polar.

(b) If ζ is a Radon measure on R
r, the Newtonian potential associated with ζ is the function Wζ :

R
r → [0,∞] defined by the formula

Wζ(x) =
∫

Rr

1

‖y−x‖r−2
ζ(dy)

for x ∈ R
r. The energy of ζ is now
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energy(ζ) =
∫

Wζdζ =
∫

Rr

∫

Rr

1

‖x−y‖r−2
ζ(dy)ζ(dx).

If A is a bounded analytic subset of Rr, the potential W̃A =WλA
is the equilibrium potential of A.

(c) If ζ is a Radon measure on R
r, I will write Uζ for the (r− 1)-potential of ζ, defined by saying that

Uζ(x) =
∫

Rr

1

‖x−y‖r−1
ζ(dy) ∈ [0,∞] for x ∈ R

r.

479D Proposition (a) For any γ > 0 and z ∈ R
r, the Newtonian capacity of B(z, γ) is γr−2, the

equilibrium measure of B(z, γ) is
1

rβrγ
ν ∂B(z, γ), and the equilibrium potential of B(z, γ) is given by

W̃B(z,γ)(x) = min(1,
γr−2

‖x−z‖r−2
)

for every x ∈ R
r.

(b) Let A ⊆ R
r be a bounded analytic set with equilibrium measure λA and equilibrium potential W̃A.

(i) W̃A(x) ≤ 1 for every x ∈ R
r.

(ii) If B ⊆ A is another analytic set, W̃B ≤ W̃A.

(iii) W̃A(x) = 1 for every x ∈ intA.
(c) Let A, B ⊆ R

r be bounded analytic sets.
(i) λA∪B ≤ λA + λB .
(ii) λAB ≤ capB.

479E Theorem (a) Newtonian capacity cap is submodular.
(b) Suppose that 〈An〉n∈N is a non-decreasing sequence of analytic subsets of Rr with bounded union A.
(i) The equilibrium measure λA is the limit limn→∞ λAn

for the narrow topology on the spaceM+
R (Rr)

of totally finite Radon measures on R
r.

(ii) capA = limn→∞ capAn.

(iii) The equilibrium potential W̃A is limn→∞ W̃An
= supn∈N W̃An

.
(c) Suppose that 〈An〉n∈N is a non-increasing sequence of bounded analytic subsets of R

r such that
⋂

n∈N
An =

⋂

n∈N
An = A say.

(i) λA is the limit limn→∞ λAn
for the narrow topology on M+

R (Rr).
(ii) capA = limn→∞ capAn.

(d)(i) Choquet-Newton capacity c : PR
r → [0,∞] is the unique outer regular Choquet capacity on R

r

extending cap.
(ii) c is submodular.
(iii) c(A) = sup{capK : K ⊆ A is compact} for every analytic set A ⊆ R

r.

479F Theorem Let ζ be a totally finite Radon measure on R
r, and set G = R

r \ supp ζ. Let Wζ be the
Newtonian potential associated with ζ.

(a) Wζ : R
r → [0,∞] is lower semi-continuous, and Wζ↾G : G→ [0,∞[ is continuous.

(b) Wζ is superharmonic, and Wζ↾G is harmonic.
(c) Wζ is locally µ-integrable; in particular, it is finite µ-a.e.
(d) If ζ has compact support, then ζRr = lim‖x‖→∞ ‖x‖r−2Wζ(x).
(e) If Wζ↾ supp ζ is continuous then Wζ is continuous.
(f) If K is a compact set such that Wζ↾K is continuous and finite-valued then Wζ K is continuous.
(g) If Wζ is finite ζ-a.e. and f : Rr → [0,∞] is a lower semi-continuous superharmonic function such that

f ≥Wζ ζ-a.e., then f ≥Wζ .
(h) If ζ ′ is another Radon measure on R

r and ζ ′ ≤ ζ, then Wζ′ ≤Wζ and energy(ζ ′) ≤ energy(ζ).

479G Lemma (In this result, r may be any integer greater than or equal to 1.) For α ∈ R, set

kα(x) =
1

‖x‖α
for x ∈ R

r \ {0}. If α < r, β < r and α + β > r, then kα+β−r is a constant multiple of the

convolution kα ∗ kβ .
Remark If r ≥ 3, I will take cr > 0 to be the constant such that crkr−2 = kr−1 ∗ kr−1.
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479H Theorem (In this result, r may be any integer greater than or equal to 1.) Let ζ be a totally

finite Radon measure on R
r and

∧

ζ its Fourier transform.

(a) If f ∈ L
1
C
(µ), then ζ ∗ f is µ-integrable and (ζ ∗ f)∧ = (

√
2π)r

∧

ζ ×
∧

f .

(b) If ζ has compact support and h : Rr → C is a rapidly decreasing test function, then ζ ∗ h and h×
∧

ζ
are rapidly decreasing test functions.

(c) Suppose that f is a tempered function on R
r. If either ζ has compact support or f is expressible as

the sum of a µ-integrable function and a bounded function, then ζ ∗ f is defined µ-almost everywhere and
is a tempered function.

(d) Suppose that f , g are tempered functions on R
r such that g represents the Fourier transform of f .

If either ζ has compact support or f is expressible as the sum of a bounded function and a µ-integrable

function, then (
√
2π)r

∧

ζ × g represents the Fourier transform of ζ ∗ f .

479I Proposition (In this result, r may be any integer greater than or equal to 1.)
(a) Suppose that 0 < α < r.
(i) There is a tempered function representing the Fourier transform of kα.
(ii) There is a measurable function g0, defined almost everywhere on [0,∞[, such that y 7→ g0(‖y‖)

represents the Fourier transform of kα.
(iii) In (ii),

2α/2Γ(α2 )
∫∞
0
tr−1g0(t)e

−ǫt2dt = 2(r−α)/2Γ( r−α2 )
∫∞
0
tα−1e−ǫt

2

dt

for every ǫ > 0.
(iv) 2α/2Γ(α2 )g0(t) = 2(r−α)/2Γ( r−α2 )tα−r for almost every t > 0.

(v) 2(r−α)/2Γ( r−α2 )kr−α represents the Fourier transform of 2α/2Γ(α2 )kα.
(b) Suppose that ζ1, ζ2 are totally finite Radon measures on R

r, and 0 < α < r. If ζ1 ∗kα = ζ2 ∗kα µ-a.e.,
then ζ1 = ζ2.

479J Lemma (a) Let ζ be a totally finite Radon measure on R
r. Let Uζ be the (r − 1)-potential of ζ

and Wζ the Newtonian potential of ζ; let kr−1 and kr−2 be the Riesz kernels. Then Uζ =a.e. ζ ∗ kr−1 and
Wζ =a.e. ζ ∗ kr−2.

(b) Let ζ, ζ1 and ζ2 be totally finite Radon measures on R
r.

(i)
∫

Rr Wζ1dζ2 =
∫

Rr Wζ2dζ1 =
1

cr

∫

Rr Uζ1 × Uζ2dµ.

(ii) The energy energy(ζ) of ζ is
1

cr
‖Uζ‖22, counting ‖Uζ‖2 as ∞ if Uζ /∈ L

2(µ).

(iii) If ζ = ζ1 + ζ2 then Uζ = Uζ1 + Uζ2 and Wζ = Wζ1 +Wζ2 ; similarly, Uαζ = αUζ and Wαζ = αWζ

for α ≥ 0.
(iv) If Uζ1 = Uζ2 µ-a.e., then ζ1 = ζ2.
(v) If Wζ1 =Wζ2 µ-a.e., then ζ1 = ζ2.

(vi) ζRr = limγ→∞
1

rβrγ

∫

∂B(0,γ)
Wζdν.

(c) Let M+
R (Rr) be the set of totally finite Radon measures on R

r, with its narrow topology. Then

energy :M+
R (Rr) → [0,∞] is lower semi-continuous.

479K Lemma Let K ⊆ R
r be a compact set, with equilibrium measure λK . Then λKK = capK =

energy(λK), and if ζ is any Radon measure on R
r such that ζK ≥ capK ≥ energy(ζ), ζ = λK .

479L Corollary Let K ⊆ R
r be a compact set with equilibrium potential W̃K .

(a) If ζ is any Radon measure on R
r with finite energy, then W̃K(x) = 1 for ζ-almost every x ∈ K.

(b) If ζ is a Radon measure on R
r such that Wζ ≤ 1 everywhere on K, ζK ≤ capK.

(c) W̃K(x) ≤ hp(K − x) for every x ∈ R
r \K.

479M Lemma Let A ⊆ R
r be an analytic set with finite Choquet-Newton capacity c(A).

(a) limγ→∞ c(A \B(0, γ)) = 0.
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(b) λA = limγ→∞ λA∩B(0,γ) is defined for the total variation metric on the space M+
R (Rr) of totally finite

Radon measures on R
r.

(c)(i) λAR
r = c(A).

(ii) supp(λA) ⊆ ∂A.
(iii) If B ⊆ R

r is another analytic set such that c(B) <∞, then λA∪B ≤ λA + λB .

(d)(i) W̃A =WλA
is the limit limγ→∞ W̃A∩B(0,γ) = supγ≥0 W̃A∩B(0,γ).

(ii) W̃A(x) ≤ 1 for every x ∈ R
r.

(iii) If ζ is any Radon measure on R
r with finite energy, W̃A(x) = 1 for ζ-almost every x ∈ A.

(iv) energy(λA) = c(A).

479N Theorem Let A ⊆ R
r be an analytic set with finite Choquet-Newton capacity c(A).

(a) Writing Wζ for the Newtonian potential of a Radon measure ζ on R
r,

c(A) = sup{ζA : ζ is a Radon measure on R
r, Wζ(x) ≤ 1 for every x ∈ R

r};
if A is closed, the supremum is attained.

(b) c(A) = inf{energy(ζ) : ζ is a Radon measure on R
r, ζA ≥ c(A)}; if A is closed, the infimum is

attained.

(c) If A 6= ∅, c(A) = sup{ 1

energy(ζ)
: ζ is a Radon measure on R

r such that ζA = 1}, counting 1

∞ as zero;

if A is closed, the supremum is attained.

479O Polar sets: Proposition For a set D ⊆ R
r, the following are equiveridical:

(i) D is polar;
(ii) there is a totally finite Radon measure ζ on R

r such that its Newtonian potential Wζ is infinite at
every point of D;

(iii) there is an analytic set E ⊇ D such that ζE = 0 whenever ζ is a Radon measure on R
r with finite

energy.

479P Theorem Let D ⊆ R
r be a set with finite Choquet-Newton capacity c(D).

(a) There is a totally finite Radon measure λD on R
r such that λD = λA, as defined in 479Mb, whenever

A ⊇ D is analytic and c(A) = c(D).

(b) Write W̃D = WλD
for the equilibrium potential corresponding to the equilibrium measure λD. Then

W̃D(x) = hp∗((D \ {x})− x) for every x ∈ R
r.

(c)(i)(α) λDR
r = c(D);

(β) if ζ is any Radon measure on R
r with finite energy, W̃D(x) = 1 for ζ-almost every x ∈ D;

(γ) energy(λD) = c(D);
(δ) if D′ ⊆ D and c(D′) = c(D), then λD′ = λD.

(ii) supp(λD) ⊆ ∂D.
(iii) For any D′ ⊆ R

r such that c(D′) <∞,
(α) λ∗D(D

′) ≤ c(D′);
(β) λD∪D′ ≤ λD + λD′ ;

(γ) W̃D∩D′ + W̃D∪D′ ≤ W̃D + W̃D′ ;
(δ) ρtv(λD, λD′) ≤ 2c(D△D′).

(iv) If 〈Dn〉n∈N is a non-decreasing sequence of sets with union D, then

(α) W̃D = limn→∞ W̃Dn
= supn∈N W̃Dn

;

(β) 〈λDn
〉n∈N → λD for the narrow topology on M+

R (Rr).
(v) c(D) = inf{ζRr : ζ is a Radon measure on R

r, Wζ ≥ χD}
= inf{energy(ζ) : ζ is a Radon measure on R

r, Wζ ≥ χD}.
(vi) Writing cl*D for the essential closure of D, c(cl*D) ≤ c(D) and W̃cl*D ≤ W̃D.
(vii) Suppose that f : D → R

r is γ-Lipschitz, where γ ≥ 0. Then c(f [D]) ≤ γr−2c(D).

479Q Hausdorff measure: Theorem For s ∈ ]0,∞[ let µHs be Hausdorff s-dimensional measure on
R
r. Let D be any subset of Rr.
(a) If the Choquet-Newton capacity c(D) is non-zero, then µ∗

H,r−2D = ∞.

(b) If s > r − 2 and µ∗
HsD > 0, then c(D) > 0.

Measure Theory (abridged version)



Newtonian capacity 29

479R Proposition (a) Suppose that r = 3. Then almost every ω ∈ Ω is not injective.
(b) If r ≥ 4, then almost every ω ∈ Ω is injective.

479S Example Suppose that e ∈ R
r is a unit vector. Then there is a sequence 〈δn〉n∈N of strictly

positive real numbers such that the equilibrium potential W̃K is discontinuous at e whenever K ⊆ B(0, 1)
is compact, e ∈ intK and ‖x− te‖ ≤ δn whenever n ∈ N, t ∈ [1− 2−n, 1], x ∈ K and ‖x‖ = t.

*479T Lemma (a) If g : Rr → R is a smooth function with compact support,

∫

Rr

1

‖x−y‖r−2
∇2g dµ = −r(r − 2)βrg(x)

for every x ∈ R
r.

(b) Let g, h : Rr → R be smooth functions with compact support. Then
∫

Rr
h×∇2g dµ =

∫

Rr
g ×∇2h = −

∫

Rr
gradh . grad g dµ.

(c) Let ζ be a totally finite Radon measure on R
r, and Wζ : Rr → [0,∞] the associated Newtonian

potential. Then
∫

Rr Wζ × ∇2g dµ = −r(r − 2)βr
∫

Rr g dζ for every smooth function g : R
r → R with

compact support.
(d) Let ζ be a totally finite Radon measure on R

r such that Wζ is finite-valued everywhere and Lipschitz.
Then

∫

Rr grad f . gradWζdµ = r(r − 2)βr
∫

Rr f dζ for every Lipschitz function f : Rr → R with compact
support.

(e) Let K ⊆ R
r be a compact set, and ǫ > 0. Then there is a Radon measure ζ on R

r, with support
included inK+B(0, ǫ), such thatWζ is a smooth function with compact support,Wζ ≥ χK, ζRr ≤ capK+ǫ
and

∫

Rr
‖ gradWζ‖2dµ = r(r − 2)βr energy(ζ) ≤ r(r − 2)βrζR

r.

*479U Theorem Let K ⊆ R
r be compact, and let Φ be the set of Lipschitz functions g : Rr → R such

that g(x) ≥ 1 for every x ∈ K and lim‖x‖→∞ g(x) = 0. Then

r(r − 2)βr capK = inf{
∫

Rr

‖ grad g‖2dµ : g ∈ Φ is smooth and has compact support}

= inf{
∫

Rr

‖ grad g‖2dµ : g ∈ Φ}.

*479V Theorem Let D ⊆ R
r be a set of finite outer Lebesgue measure, and BD the closed ball with

centre 0 and the same outer measure as D. Then the Choquet-Newton capacity c(D) of D is at least capBD.

*479W Theorem Let C+ be the family of non-empty closed subsets of Rr, with its Fell topology. Then
there is a unique Radon measure θ on C+ such that θ∗{C : C ∈ C+, D ∩ C 6= ∅} is the Choquet-Newton
capacity c(D) of D for every D ⊆ R

r.
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