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Chapter 47
Geometric measure theory

I offer a chapter on geometric measure theory, continuing from Chapter 26. The greater part of it is
directed specifically at two topics: a version of the Divergence Theorem (475N) and the elementary theory
of Newtonian capacity and potential (§479). I do not attempt to provide a balanced view of the subject,
for which I must refer you to MATTILA 95, EVANS & GARIEPY 92 and FEDERER 69. However §472,
at least, deals with something which must be central to any approach, Besicovitch’s Density Theorem
for Radon measures on R” (472D). In §473 I examine Lipschitz functions, and give crude forms of some
fundamental ineqalities relating integrals [ || grad f||dp with other measures of the variation of a function
f (473H, 473K). In §474 I introduce perimeter measures A% and outward-normal functions 1z as those for
which the Divergence Theorem, in the form | pdivody = [¢.¢p d\2,, will be valid (474E), and give the
geometric description of 1g(z) as the Federer exterior normal to E at  (474R). In §475 I show that A%, can
be identified with normalized Hausdorff (r — 1)-dimensional measure on the essential boundary of E.

8471 is devoted to Hausdorff measures on general metric spaces, extending the ideas introduced in §264
for Euclidean space, up to basic results on densities (471P) and Howroyd’s theorem (471S). In §476 I turn to
a different topic, the problem of finding the subsets of R on which Lebesgue measure is most ‘concentrated’
in some sense. I present a number of classical results, the deepest being the Isoperimetric Theorem (476H):
among sets with a given measure, those with the smallest perimeters are the balls.

The last three sections are different again. Classical electrostatics led to a vigorous theory of capacity and
potential, based on the idea of ‘harmonic function’. It turns out that ‘Brownian motion’ in R” (§477) gives
an alternative and very powerful approach to the subject. I have brought Brownian motion and Wiener
measure to this chapter because I wish to use them to illuminate the geometry of R”; but much of §477
(in particular, the strong Markov property, 477G) is necessarily devoted to adapting ideas developed in
the more general contexts of Lévy and Gaussian processes, as described in §§455-456. In §478 I give the
most elementary parts of the theory of harmonic and superharmonic functions, building up to a definition of
‘harmonic measures’ based on Brownian motion (478P). In §479 I use these techniques to describe Newtonian
capacity and its extension Choquet-Newton capacity (479C) on Euclidean space of three or more dimensions,
and establish their basic properties (479E, 479F, 479N, 479P, 479U).

Version of 10.2.16

471 Hausdorff measures

I begin the chapter by returning to a class of measures which we have not examined in depth since
Chapter 26. The primary importance of these measures is in studying the geometry of Euclidean space; in
6265 I looked briefly at their use in describing surface measures, which will reappear in §475. Hausdorff
measures are also one of the basic tools in the study of fractals, but for such applications I must refer you
to FALCONER 90 and MATTILA 95. All I shall attempt to do here is to indicate some of the principal ideas
which are applicable to general metric spaces, and to look at some special properties of Hausdorff measures
related to the concerns of this chapter and of §261.

471A Definition Let (X, p) be a metric space and r € ]0,00[. For § > 0 and A C X, set

0,sA = inf{Z(diam D))" : (Dy)nen is a sequence of subsets of X covering A,
n=0

diam D,, < ¢ for every n € N}.

Extract from MEASURE THEORY, results-only version, by D.H.FREMLIN, University of Essex, Colchester. This material
is copyright. It is issued under the terms of the Design Science License as published in http://dsl.org/copyleft/dsl.txt.
This is a development version and the source files are not permanently archived, but current versions are normally accessible
through https://wwwl.essex.ac.uk/maths/people/fremlin/mt.htm. For further information contact david@fremlin.org.

(©) 2002 D. H. Fremlin
(©) 2000 D. H. Fremlin



2 Geometric measure theory 471A

It will be useful to note that every 6,.s is an outer measure. Now set
0,A = supsq0r5A

for A C X; 60, also is an outer measure on X; this is r-dimensional Hausdorff outer measure on X.
Let pp, be the measure defined by Carathéodory’s method from 6,; g, is r-dimensional Hausdorff
measure on X.

471B Definition Let (X, p) be a metric space. An outer measure 6 on X is a metric outer measure
it 0(AU B) = A + 0B whenever A, B C X and p(A, B) > 0.

471C Proposition Let (X, p) be a metric space and € a metric outer measure on X. Let u be the
measure on X defined from 6 by Carathéodory’s method. Then y is a topological measure.

471D Theorem Let (X, p) be a metric space and r > 0. Let pg, be r-dimensional Hausdorff measure
on X, and ¥ its domain; write 6,. for r-dimensional Hausdorff outer measure on X.
(a) pmr is a topological measure.
(b) For every A C X there is a Gs set H D A such that ugy,.H = 0, A.
(¢) 0, is the outer measure defined from g gy,
(d) X is closed under Souslin’s operation.
(e) purE =sup{ug,F : FF C E is closed} whenever £ € ¥ and pg,E < co.
(f) If AC X and 60,.A < oo then A is separable and the set of isolated points of A is pg,-negligible.
(&) pmr is atomless.
(h) If pgr, is totally finite it is a quasi-Radon measure.

471E Corollary If (X, p) is a metric space, r > 0 and Y C X then r-dimensional Hausdorff measure

ug}? on Y extends the subspace measure (M%))y on Y induced by r-dimensional Hausdorff measure ,ug?

on X; and if either Y is measured by ,u%) or Y has finite r-dimensional Hausdorff outer measure in X, then

Y
w3 = (i )y

471F Corollary Let (X, p) be an analytic metric space, and write ug, for r-dimensional Hausdorff
measure on X. Suppose that v is a locally finite indefinite-integral measure over pg,-. Then v is a Radon
measure.

471G Increasing Sets Lemma Let (X, p) be a metric space and r > 0.

(a) Suppose that 6 > 0 and that (A,)nen is a non-decreasing sequence of subsets of X with union A.
Then 6, 65(A) < (5" 4 2) sup,,en Ors An-

(b) Suppose that 6 > 0 and that (A,),en is a non-decreasing sequence of subsets of X with union A.
Then 6,5A = sup,,cn OrsAn.

471H Corollary Let (X, p) be a metric space, and r > 0. For A C X, set
0,00 A =inf{> > (diam D,,)" : (Dy)nen is a sequence of subsets of X covering A}.
Then 6, is an outer regular Choquet capacity on X.

Remark 6, is r-dimensional Hausdorff capacity on X.

4711 Theorem Let (X, p) be a metric space, and r > 0. Write g, for r-dimensional Hausdorff measure
on X. If A C X is analytic, then pg,-A is defined and equal to sup{ug,K : K C A is compact}.

471J Proposition Let (X, p) and (Y, o) be metric spaces, and f : X — Y a 5-Lipschitz function, where

v >0. If r >0 and 9£X), Gﬁy) are the r-dimensional Hausdorff outer measures on X and Y respectively,
then 9£Y)f[A] < 7T9£X)A for every A C X.
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4718 Hausdorff measures 3

471K Lemma Let (X, p) be a metric space, and r > 0. Let pg, be r-dimensional Hausdorff measure on
X. If AC X, then pg,-A = 0 iff for every € > 0 there is a countable family D of sets, covering A, such that

> pep(diam D)" <e.

471L Proposition Let (X, p) be a metric space and 0 < r < s. If A C X is such that pj;,.A is finite,
then pgsA = 0.

471M Definition If (X, p) is a metric space and A C X, write A™ for {z: z € X, p(z, A) < 2diam A},
where p(z, A) = inf,ca p(z,y). (0~ =0.)

471N Lemma Let (X, p) be a metric space. Let F be a family of subsets of X such that {diam F' : F' € F}
is bounded. Set

Y =Nsso U{F : F € F, diam F < 6}.
Then there is a disjoint family Z C F such that

(i) U]:%eIFNQ
(i) Y CUT UUpep g I for every J C I.

4710 Lemma Let (X, p) be a metric space, and r > 0. Suppose that A, F are such that
(i) F is a family of closed subsets of X such that Y ° (diam F,,)" is finite for every disjoint
sequence (Fy,)pen in F,
(ii) for every x € A, 6 > 0 there is an F' € F such that € F and 0 < diam F' < 6.
Then there is a countable disjoint family Z C F such that A\|JZ has zero r-dimensional Hausdorff measure.

471P Theorem Let (X, p) be a metric space, and r > 0. Let pp, be r-dimensional Hausdorff measure
on X. Suppose that A C X and pj, A < oo.

(a) lims o sup{% cx €D, 0<diamD < 4§} =1 for py,-almost every = € A.
(b) limsupy) o W > 1 for prpr-almost every x € A. So

Wir, (ANB(2.5))

27T < limsuplu0 (diam B(x.0))" <1
for pp,-almost every x € A.
(c) If A is measured by pip,, then
: #ir(AND) : _
lims | sup{ (iam D) z €D, 0<diamD <4} =0

for pp,-almost every z € X \ A.

471Q Lemma Let (X, p) be a metric space, and r > 0, 6 > 0. Suppose that 0,5 X, as defined in 471A,
is finite.

(a) There is a non-negative additive functional v on PX such that vX = 5776,5X and vA < (diam A)"
whenever A C X and diam A < %5.

(b) If X is compact, there is a Radon measure p on X such that uX = 5776,sX and puG < (diamG)"
whenever G C X is open and diam G < %5.

471R Lemma Let (X, p) be a compact metric space and r > 0. Let ug, be r-dimensional Hausdorff
measure on X. If pugy,.X > 0, there is a Borel set H C X such that 0 < pg,.H < occ.

471S Theorem Let (X, p) be an analytic metric space, and r > 0. Let pg, be r-dimensional Hausdorff
measure on X, and B the Borel o-algebra of X. Then the Borel measure pgy, [B is semi-finite and tight.
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4 Geometric measure theory 471T

471T Proposition Let (X, p) be a metric space, and 7 > 0.
(a) If X is analytic and pg,X > 0, then for every s € |0, r[ there is a non-zero Radon measure p on X

such that ff ﬁu(dx)u(dy) < 00.

(b) If there is a non-zero topological measure y on X such that ff ﬁu(dw)u(dy) is finite, then
’y "
/’LHT‘X = Q.

4717 Problems (a) Let ug)l, ug)l /2 be one-dimensional Hausdorff measure on R? and %—dimensional

Hausdorff measure on R respectively, for their usual metrics. Are the measure spaces (R{ﬂ%i) and
(R, “g)l/2> isomorphic? (See 471Y]j.)

(b) Let p be a metric on R? inducing the usual topology, and u&% the corresponding 2-dimensional
Hausdorff measure. Is it necessarily the case that /,LE{;; (R?) > 0?7 (See 471Yf.)

Version of 22.3.11

472 Besicovitch’s Density Theorem

The first step in the program of the next few sections is to set out some very remarkable properties of
Euclidean space. We find that in R", for geometric reasons (472A), we have versions of Vitali’s theorem
(472B-472C) and Lebesgue’s Density Theorem (472D) for arbitrary Radon measures. I add a version of the
Hardy-Littlewood Maximal Theorem (472F).

Throughout the section, r > 1 will be a fixed integer. As usual, I write B(x,d) for the closed ball with
centre x and radius 4. || || will represent the Euclidean norm, and z.y the scalar product of « and y, so that

wy=Y" &miife=(&,... &) and y = (n,... ).

472A Besicovitch’s Covering Lemma Suppose that € > 0 is such that (5" +1)(1 —e—€2)" > (5+¢)".
Let zg,... ,2, € R", dg,...,d, > 0 be such that

||£Cz - I]” > 57;, 5j S (1 + 6)57
whenever ¢ < 7 < n. Then

H#{i i <n, ||z — x| <04+ 0,}) <5

472B Theorem Let A C R” be a bounded set, and Z a family of non-trivial closed balls in R" such that
every point of A is the centre of a member of Z. Then there is a family (Zy)r<s- of countable subsets of Z
such that each Zj is disjoint and Uk<5r T covers A.

472C Theorem Let A\ be a Radon measure on R", A a subset of R” and Z a family of non-trivial closed
balls in R” such that every point of A is the centre of arbitrarily small members of Z. Then

(a) there is a countable disjoint Zo C Z such that M(A\ JZp) = 0;

(b) for every € > 0 there is a countable Z; C 7 such that A C |JZ; and ZBeL AB < \*A + e

472D Besicovitch’s Density Theorem Let A be any Radon measure on R”. Then, for any locally
M-integrable real-valued function f,

(a) f(y) = Timsyo m Jn(y.6) FAN

. 1
(b) lims o B(y.0) fB(y,[;) |f(z) — f(y)|A(dz) =0
for A-almost every y € R".

*472E Proposition Let A\, \' be Radon measures on R”, and G C R" an open set. Let Z be the support
of A\, and for x € ZN G set
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473Bb Poincaré’s inequality 5

N'B
A

M(z) = sup{ : B C G is a non-trivial ball with centre x}.

Then
Ma:w € Z, M(z) >t} <ZNG

for every t > 0.

*472F Theorem Let A be a Radon measure on R", and f € LP(\) any function, where 1 < p < 0.
Let Z be the support of A\, and for © € Z set f*(z) = sup5>omf3(m 5) |f]dX. Then f* is lower

semi-continuous, and || f*||, < 2(%)1/p||f||p.

Version of 25.7.11/7.8.20

473 Poincaré’s inequality

In this section I embark on the main work of the first half of the chapter, leading up to the Divergence
Theorem in §475. I follow the method in EVANS & GARIEPY 92. The first step is to add some minor results
on differentiable and Lipschitz functions to those already set out in §262 (473B-473C). Then we need to
know something about convolution products (473D), extending ideas in §§256 and 444; in particular, it will
be convenient to have a fixed sequence (ﬁn>neN of smoothing functions with some useful special properties
(473E).

The new ideas of the section begin with the Gagliardo-Nirenberg-Sobolev inequality, relating || f1|;/¢—1)
to [ | grad f||. In its simplest form (473H) it applies only to functions with compact support; we need to
work much harder to get results which we can use to estimate [, [f|"/(""!) in terms of [ | grad f|| and
S | f] for balls B (4731, 473K).

473A Notation For the next three sections, r > 2 will be a fixed integer. For x € R" and § > 0,
B(z,0) ={y : |ly — z|| <} will be the closed ball with centre z and radius 6. I will write 0B(z, ) for the
boundary of B(z,d), the sphere {y : ||y — z|| = d}. S,—1 = dB(0,1) will be the unit sphere. As in Chapter
26, I will use Greek letters to represent coordinates of vectors, so that z = (&1, ..., &), etc.

w will always be Lebesgue measure on R”. G, = uB(0,1) will be the r-dimensional volume of the unit
ball, that is,

Tl'k . .
By = M if r = 2k is even,

22k+1k!ﬂ.k

kD) if r=2k+11is odd

(252Q). v will be normalized Hausdorff (r — 1)-dimensional measure on R”, that is, v = 27" 3, _1upg 1,
where pp 1 is (r — 1)-dimensional Hausdorff measure on R” as described in §264. Recall from 265F and
265H that vS,_1 = 278,_2 = B, (counting fy as 1).

473B Differentiable functions (a) Recall from §262 that a function ¢ from a subset of R" to R?®
(where s > 1) is differentiable at z € R, with derivative an s x r matrix T, if for every € > 0 there is a
d > 0 such that ||¢p(y) — ¢(z) — T(y — z)|| < €|ly — x| whenever ||y — || < §; this includes the assertion

that B(z,d) C dom¢. In this case, the coefficients of T are the partial derivatives (2(27 () at z, where
¢1,...,¢s are the coordinate functions of ¢, and % represents partial differentiation with respect to the

ith coordinate.
(b) When s =1, I will write (grad f)(z) for the derivative of f at x, the gradient of f.

D.H.FREMLIN



6 Geometric measure theory 473Bc

(c) Chain rule for functions of many variables Let ¢ : A — R?® and ¢ : B — RP be functions, where
ACR" and B C R®. If z € A is such that ¢ is differentiable at x, with derivative S, and ¢ is differentiable
at ¢(x), with derivative T, then the composition ¢ is differentiable at x, with derivative T'S.

(d) It follows that if f and g are real-valued functions defined on a subset of R”, and x € dom f Ndom g
is such that (grad f)(z) and (gradg)(z) are both defined, then grad(f x ¢)(z) is defined and equal to

f(z)grad g(x) + g(z) grad f(x).

(e) Let D be a subset of R" and ¢ : D — R?® any function. Set Dy = {z : € D, ¢ is differentiable at
x}. Then the derivative of ¢, regarded as a function from Dy to R"%, is (Lebesgue) measurable.

(f) If G C R" is an open set, a function ¢ : G — R® is smooth if it is differentiable arbitrarily often;
that is, if all its repeated partial derivatives
o,
&;, .06,
are defined and continuous everywhere on G. I will write D for the family of real-valued functions from R”
to R which are smooth and have compact support.

473C Lipschitz functions (a) If f and g are bounded real-valued Lipschitz functions, defined on any
subsets of R", then f x g, defined on dom f N dom g, is Lipschitz.

(b) Suppose that Fy, F5 C R" are closed sets with convex union C. Let f : C — R be a function such
that f[Fy and f[F5 are both Lipschitz. Then f is Lipschitz.

(c) Suppose that f: R™ — R is Lipschitz. grad f is defined almost everywhere. grad f is (Lebesgue)
measurable on its domain. If 7y is a Lipschitz constant for f, || grad f(z)|| < -y whenever grad f(z) is defined.

(d) Conversely, if f : R" — R is differentiable and || grad f(z)| < « for every z, then ~ is a Lipschitz
constant for f.

(e) Note that if f € D then f is Lipschitz as well as bounded.

(£)(3) If D CR" is bounded and f : D — R is Lipschitz, then there is a Lipschitz function g : R"™ — R,
with compact support, extending f.

(ii) It follows that if D C R” is bounded and f : D — R? is Lipschitz, then there is a Lipschitz function
g :R" — R* with compact support, extending f.

473D Smoothing by convolution: Lemma Suppose that f and g are Lebesgue measurable real-valued
functions defined p-almost everywhere in R".

(a) If f is integrable and g is essentially bounded, then their convolution f x g is defined everywhere in
R" and uniformly continuous, and || f * glleo < || f]|1 €ss sup |g].

(b) If f is locally integrable and ¢ is bounded and has compact support, then f x g is defined everywhere
in R™ and is continuous.

(¢) If f and g are defined everywhere in R” and x € R"\ ({y : f(y) # 0} +{z : g(z) # 0}), then (f *xg)(x)
is defined and equal to 0.

(d) If f is integrable and g is bounded, Lipschitz and defined everywhere, then f x grad g and grad(f  g)
are defined everywhere and equal, where f x gradg = (f * S—Z, e fx %) Moreover, f * g is Lipschitz.

(e) If f is locally integrable, and g € D, then f * g is defined everywhere and is smooth.

(f) If f is essentially bounded and g € D, then all the derivatives of f % g are bounded, and f * g is
Lipschitz.

(g) If f is integrable and ¢ : R™ — R" is a bounded measurable function with components ¢1,... , ¢,

andﬂvge write (fx @)(x) = ((f * ¢1)(@), ..., (f * &r)(2)), then [[(f * @)()[| < | fll1supycp~ [[¢(y)]| for every
r € R".
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473L Poincaré’s inequality 7

473E Lemma (a) Define h : R — [0, 1] by setting h(t) = exp( ) for [t| < 1, 0 for [¢| > 1. Then h is

smooth, and A'(t) <0 fog t>0.
(b) For n > 1, define h,, : R™ — R by setting

tn = [ h((n+ 12 2lP)u(de),  ulz) = ih((m 1)2][]12)

for every € R”. Then h,, € D, h,(x) > 0 for every x, hy(z) = 0 if ||z|| > — and [ hndp = 1.

(c) If f € LO(p), then limy, o0 (f * hn)(z) = f(x) for every z € dom f at Wthh f is continuous.

(d) If f:R" — R is uniformly continuous (in particular, if it is either Lipschitz or a continuous function
with compact support), then lim, o ||f — f * ha, oo = 0.

(e) If f € £%(p) is locally integrable, then f(z) = limy, e (f % hy,) () for p-almost every z € R”.

(f) If f € LP(u), where 1 < p < 00, then limy, o0 ||f — f % hn|l, = 0.

473F Lemma For any measure space (X, ¥, \) and any non-negative fi, ..., fr € L9(\),
1/k
sz 1f1/kd)‘<Hz 1 ffld)\)

473G Lemma Let (X, X, \) be a o-finite measure space and k > 2 an integer. Write Ag for the product
measure on X*. For z = (&,...,&) € XF t€ X and 1 <i < kset S; (:17 t) = (51,... ,§k) where £, =t and
i =¢&; for j #4. Thenif h € L1(\g) is non-negative, and we set h;(z) = [ h(S )A(dt) whenever this
is defined in R, we have

ST )V DN < (f hdr)™/ F=D.

473H Gagliardo-Nirenberg-Sobolev inequality Suppose that f : R™ — R is a Lipschitz function
with compact support. Then || f|l,/-—1) < [ || grad f||dp.

4731 Lemma For any Lipschitz function f : B(0,1) — R,

r/(r— r r/(r—1
Saon 170V dp < (2747 [ o) I arad f1] + | fldps)

473J Lemma Let f : R” — R be a Lipschitz function. Then

Sty @) = F@litde) < 257 [ lgrad f@)le — 2]~ u(da)

whenever y € R™, 6 > 0 and z € B(y,J).

473K Poincaré’s inequality for balls Let B C R” be a non-trivial closed ball, and f : B - R a
. . . 1
Lipschitz function. Set v = B fB fdu. Then

(e (r—=1)/r
(f, |f =7 =Vdy) <c[, Ilgrad f||dp,
where ¢ = 274, /r(1 + 27 +1).

473L Corollary Let B C R” be a non-trivial closed ball, and f: B — [0, 1] a Lipschitz function. Set
Fo={z:2€B, f(z) <1}, Fi={z:2€B, f(z) > 3}.
Then
(min(,uFo,uFl))(rfl)/r < 4ch || grad f||du,
where ¢ = 274, /r(1 + 2" +1).
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8 Geometric measure theory 473M

473M The case r = 1 In this case, B is just a closed interval, and

1f % XB = xBlloo = supyep | f(x) = 7] < supyyep [f(@) = fFW)| < [, 1F |du,
giving a version of 473K for r = 1. As for 473L, if fB lf'] < % then at least one of Fj, F1 must be empty.

Version of 17.11.12

474 The distributional perimeter

The next step is a dramatic excursion, defining (for appropriate sets F) a perimeter measure for which a
version of the Divergence Theorem is true (474E). I begin the section with elementary notes on the divergence
of a vector field (474B-474C). I then define ‘locally finite perimeter’ (474D), ‘perimeter measure’ and ‘outward
normal’ (474F) and ‘reduced boundary’ (474G). The definitions rely on the Riesz representation theorem,
and we have to work very hard to relate them to any geometrically natural idea of ‘boundary’. Even half-
spaces (4741) demand some attention. From Poincaré’s inequality we can prove isoperimetric inequalities
for perimeter measures (474L). With some effort we can locate the reduced boundary as a subset of the
topological boundary, and obtain asymptotic inequalities on the perimeter measures of small balls (474N).
With much more effort we can find a geometric description of outward normal functions in terms of ‘Federer
exterior normals’ (474R), and get a tight asymptotic description of the perimeter measures of small balls
(474S). I end with the Compactness Theorem for sets of bounded perimeter (474T).

474B The divergence of a vector field (a) For a function ¢ from a subset of R" to R", write
divg =30, gé, where ¢ = (¢1,... ,¢,); for definiteness, let us take the domain of div ¢ to be the set of
points at which ¢ is differentiable. div¢ € D for every ¢ € D,..

(b) If f:R" — R and ¢ : R" — R" are functions, then div(f x ¢) = ¢. grad f + f x div ¢ at any point
at which f and ¢ are both differentiable.

(c) If ¢ : R” — R" is a Lipschitz function with compact support, then [ div¢du = 0.

(d) If ¢ : R" = R” and f : R" — R are Lipschitz functions, one of which has compact support, then
f x ¢ is Lipschitz.
It follows that

[ é.grad fdu+ [ f x divedu=0.

(e) If f € £L(u), g € L1(u) is even and ¢ : R" — R" is a Lipschitz function with compact support, then
J(fxg) xdivg = [ fxdiv(g*¢).

474C Invariance under isometries: Proposition Suppose that T : R”™ — R”" is an isometry, and

that ¢ is a function from a subset of R” to R”. Then
div(T~1¢T) = (dive)T.

474D Locally finite perimeter: Definition Let £ C R” be a Lebesgue measurable set. Its perimeter
per E is

sup{\fE divedy| : ¢ : R™ — B(0,1) is a Lipschitz function with compact support}
(allowing c0). A set E C R" has locally finite perimeter if it is Lebesgue measurable and
sup{|fE div¢du| : ¢ : R™ — R” is a Lipschitz function, ||¢|| < xB(0,n)}

is finite for every n € N. Of course a Lebesgue measurable set with finite perimeter also has locally finite
perimiter.

(©) 2001 D. H. Fremlin
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4741 The distributional perimeter 9

474E Theorem Suppose that £ C R" has locally finite perimeter.
(i) There are a Radon measure A% on R” and a Borel measurable function ¢ : R” — S,_; such that

Jpdivodu= [ ¢.9dN%

for every Lipschitz function ¢ : R™ — R” with compact support.
(ii) This formula uniquely determines A%, which can also be defined by saying that

X%(G) = sup{| [, divédu| : ¢ : R" — R" is Lipschitz, [|¢] < xG}

whenever G C R" is open.
(iii) If ¢ is another function defined A\%-a.e. and satisfying the formula in (i), then ¢) and % are equal
A2 _almost everywhere.

474F Definitions In the context of 474E, I will call AaE the perimeter measure of E, and if v is a
function from a )\%—conegligible subset of R” to S,_; which has the property in (i) of the theorem, I will
call it an outward-normal function for F.

Observe that if F has locally finite perimeter, then per E = A\%(R"). The definitions in 474D-474E also
make it clear that if E, F' C R are Lebesgue measurable and u(EAF) = 0, then per E = per F' and F has
locally finite perimeter iff F' has; and in this case A% = A% and an outward-normal function for E is an
outward-normal function for F.

474G The reduced boundary Let £ C R” be a set with locally finite perimeter; let )\BE be its perimeter
measure and 9 an outward-normal function for E. The reduced boundary 9%E is the set of those y € R”
such that, for some z € S,_1,

lims o (z) — 2| A% (dz) = 0.

1
A2 B(y,0) fB(yﬁ) ¥
Note that, writing ¥ = (¢1,... ,%,) and z = ((1,... ,(-), we must have

ST _ \D
¢ = lims o N B(50) fB(y,&) i dAG,

so that z is uniquely defined; call it g (y). O%E and ¢ are determined entirely by the set E.
. 1
lims 0 m[lg(m’é) [vi(x) — ¥i(y)[ A (dz) = 0

for every i < r, for \%-almost every y € R”; and for any such y, ¥ g (y) is defined and equal to ¥(y). °FE
is )\%—conegligible and g is an outward-normal function for E. I will call ¢5 : 9*F — S,_; the canonical
outward-normal function of F.

Once again, we see that if £, F© C R" are sets with locally finite perimeter and FAF is Lebesgue
negligible, then they have the same reduced boundary and the same canonical outward-normal function.

474H Invariance under isometries: Proposition Let £ C R" be a set with locally finite perimeter.
Let )\% be its perimeter measure, and ¥ g its canonical outward-normal function. If 7' : R”™ — R” is any
isometry, then T'[E] has locally finite perimeter, )\% o is the image measure )\%T*I7 the reduced boundary

O*T[E] is T[0®E], and the canonical outward-normal function of T[E] is S1gT !, where S is the derivative
of T

4741 Half-spaces: Proposition Let H C R” be a half-space {z : z.v < a}, where v € S"~. Then H
has locally finite perimeter; its perimeter measure A, is defined by saying

N.(F) = v(F N OH)

whenever FF C R" is such that v measures F' N 0H, and the constant function with value v is an outward-
normal function for H.

D.H.FREMLIN
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474J Lemma Let E C R" be a set with locally finite perimeter. Let /\% be the perimeter measure of F,
and g its canonical outward-normal function. Then R” \ E also has locally finite perimeter; its perimeter
measure is /\%, its reduced boundary is 8% F, and its canonical outward-normal function is —p.

474K Lemma Let E C R” be a set with locally finite perimeter; let )\% be its perimeter measure, and
1) an outward-normal function for E. Let ¢ : R™ — R" be a Lipschitz function with compact support, and
g € D an even function. Then

fqb. grad(g * xE)dp + f(g * @) .hdAY, = 0.

474L Two isoperimetric inequalities: Theorem Let £ C R" be a set with locally finite perimeter,
and )\% its perimeter measure.

(a) If E is bounded, then (pE)("~1/" < per E.

(b) If B C R" is a closed ball, then

min(u(B N E), u(B\ E))"=D/" < 2eX\% (int B),
where ¢ = 274, /r(1 + 2" +1).

474M Lemma Suppose that £ C R” has locally finite perimeter, with perimeter measure /\% and an
outward-normal function . Then for any y € R” and any Lipschitz function ¢ : R™ — R",

. B o 1
fEﬁB(y,&) divgdu = fB(yﬁ) . dAG + fEnaB(y,é) qﬁ(z)g(as—y)l/(dx)

for almost every § > 0.

474N Lemma Let F C R" be a set with locally finite perimeter, and )\% its perimeter measure. Then,
for any y € O°E,
(By,0)nE) o 1 .

5" =B
(By,)\E) o 1 .

or — (3r)’
AzB(y,d) o 1

or=1 T 2¢(3r)r—1’
where ¢ = 274, /r(1 + 2" +1);

o
(iv) lim Sups 0 %@ < 478, _s.

(i) liminfs;o &

(ii) liminfs o &

(iii) liminfsyo

4740 Definition Let A C R" be any set, and y € R". A Federer exterior normal to A at y is a
v € S,_1 such that,
p (HAA)NB(y,9))
nB(y,6)

lim,;\w = 0,

where H is the half-space {z : (z —y).v < 0}.
474P Lemma If A CR" and y € R", there can be at most one Federer exterior normal to A at y.

474Q Lemma Set ¢/ = 2"3/r — 1(1 4 2"). Suppose that c*, ¢ and § are such that
20, 050, 0<e<—s, S <ip, Ade<if

Set Vs = {z: 2 € R"™1, ||z| <4} and Cs5 = Vs x [-4,], regarded as a cylinder in R". Let f € D be such
that

8f * 3 sr—1
Jo, lgrad, o f]| + max(5, 0)dp < "6,

where grad,_; f = (g?f, ’8§f ,0). Set

MEASURE THEORY (abridged version)



475C The essential boundary 11

F:{x::re(?(;,f(;v)z%}7 F’:{x:xECg,f(x)gi}.

and for v € R set Hy = {z : x € R", & < v}. Then there is a v € R such that
W(EA(H, 01 Cy)) < 9u(Cs \ (FUF") + (¢*Bry + 16¢ 0"

474R Theorem Let E C R" be a set with locally finite perimeter, g its canonical outward-normal
function, and y any point of its reduced boundary 9*E. Then ¥g(y) is the Federer exterior normal to E at

Y.

474S Corollary Let E C R" be a set with locally finite perimeter, and )\% its perimeter measure. Let
y be any point of the reduced boundary of E. Then

. 28, B(y,0
hm(uo 76E;lf;i_l) =1.

474T The Compactness Theorem Let ¥ be the algebra of Lebesgue measurable subsets of R”, and
give it the topology ¥, of convergence in measure defined by the pseudometrics py (E, F) = u((EAF)NH)
for measurable sets H of finite measure. Then

(a) per : & — [0, 00] is lower semi-continuous;

(b) for any v < o0, {E : E € &, per E < ~} is compact.

Version of 24.1.13
475 The essential boundary

The principal aim of this section is to translate Theorem 474E into geometric terms. We have already
identified the Federer exterior normal as an outward-normal function, so we need to find a description of
perimeter measures. Most remarkably, these turn out, in every case considered in 474E, to be just normalized
Hausdorff measures (475G). This description needs the concept of ‘essential boundary’ (475B). In order to
complete the programme, we need to be able to determine which sets have ‘locally finite perimeter’; there
is a natural criterion in the same language (475L). We now have all the machinery for a direct statement
of the Divergence Theorem (for Lipschitz functions) which depends on nothing more advanced than the
definition of Hausdorff measure (475N). (The definitions, at least, of ‘Federer exterior normal’ and ‘essential
boundary’ are elementary.)

This concludes the main work of the first part of this chapter. But since we are now within reach of
a reasonably direct proof of a fundamental fact about the (r — 1)-dimensional Hausdorff measure of the
boundaries of subsets of R” (475Q), I continue up to Cauchy’s Perimeter Theorem and the Isoperimetric
Theorem for convex sets (475S, 475T).

475B The essential boundary Let A C R” be any set. The essential closure of A is the set

%A _ 1 w*(B(z,0)NA)
cl*A = {x : limsupg B >0}
Similarly, the essential interior of A is the set

px (B(z,6)NA)
uB(z,6) 1}

Finally, the essential boundary 9*A of A is cI*A \ int*A.

int*A = {z : liminfs}o

475C Lemma Let A, A’ CR".
(a)
int A Cint*A Ccl*AC A, 0*ACIA,

(©) 2000 D. H. Fremlin
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cl*A =R"\int*(R"\ A), 0J*(R"\ A)=09*A.

(b) If A\ A’ is negligible, then cl*A C cl*A’ and int*A C int*A’; if A itself is negligible, cl*A, int* A and
O*A are all empty.

(c) int*A, cI*A and 0*A are Borel sets.

(d) cI*(AUA") = cl*AUcl*A’ and int*(ANA’) = int*ANint*A’, so 0*(AUA"), 0*(ANA") and 0*(AAA")
are all included in 0*A U 9*A’.

(e) c*ANint*A’ Ccl*(AN A, *ANint*A’ CI*(AN A’) and %A\ cI*A’' C 9*¥(AU A).

(f) O¥(ANA") C (cI*A' NOA)U (0*A' Nint A).

(g) If E C R" is Lebesgue measurable, then EAInt*E, EAcI*E and 0*F are Lebesgue negligible.

(h) A is Lebesgue measurable iff 9* A is Lebesgue negligible.

475D Lemma Let E C R” be a set with locally finite perimeter. Then 0°E C 9*E and v(9*E\0*E) = 0.

475E Lemma Let F C R” be a set with locally finite perimeter.
(a) If A C O°E, then v*A < (A2)*A.
(b) If A C R” and vA = 0, then A\2.A = 0.

475F Lemma Let E C R” be a set with locally finite perimeter, and ¢ > 0. Then )\% is inner regular
with respect to the family & = {F : F C R" is Borel, A\ F < (1 + €)uF}.

475G Theorem Let E C R" be a set with locally finite perimeter. Then A%, = vL 9*E.

475H Proposition Let V C R” be a hyperplane, and T : R” — V the orthogonal projection. Suppose
that A C R" is such that v A is defined and finite, and for u € V set

f(u) = #(ANT[{u}]) if this is finite,

= oo otherwise.

Then [, f(u)v(du) is defined and at most vA.

4751 Lemma Let K be the family of compact sets K C R” such that K = cI*K. Then p is inner regular
with respect to K.

475J Lemma Let E be a Lebesgue measurable subset of R, identified with R™™! x R. For u € R" 1,
set G, = {t: (u,t) € int*E}, H, = {t: (u,t) € it*(R"\ E)} and D,, = {¢t : (u,t) € 0*E}, so that G,,, H,
and D,, are disjoint and cover R.

(a) There is a p,_1-conegligible set Z C R"~! such that whenever u € Z,t <t in R, t € G, and t' € H,,,
there is an s € D, N ¢, ¢'[.

(b) There is a p,_1-conegligible set Z; C R"~! such that whenever u € Z;, t,t' € R, t € G, and t' € H,,,
there is a member of D, between ¢ and t'.

(¢) If E has locally finite perimeter, there is a conegligible set Zy C Z; such that, for every u € Zs,
D, N [—n,n] is finite for every n € N, G,, and H,, are open, and D, = 0G,, = OH,, so that the constituent
intervals of R\ D, lie alternately in G, and H,.

475K Lemma Suppose that h : R" — [—1,1] is a Lipschitz function with compact support; let n € N
be such that h(z) = 0 for ||z|| > n. Suppose that E C R" is a Lebesgue measurable set. Then

oh -
[ ol < 2(Br—1n" !t + v(0*EN B(0,n))).

475L Theorem Suppose that E C R". Then F has locally finite perimeter iff »(0* E N B(0,n)) is finite
for every n € N.

MEASURE THEORY (abridged version)



475R The essential boundary 13

475M Corollary (a) The family of sets with locally finite perimeter is a subalgebra of the algebra of
Lebesgue measurable subsets of R".

(b) A set E C R" is Lebesgue measurable and has finite perimeter iff ¥(9*FE) < oo, and in this case
v(0*E) is the perimeter of E.

(¢) If E CR" has finite measure, then per F = liminf,_, ., per(E N B(0, «)).

475N The Divergence Theorem Let E C R” be such that v(0*E N B(0,n)) is finite for every n € N.
(a) E is Lebesgue measurable.

(b) For v-almost every x € 0*E, there is a Federer exterior normal v, of E at z.

(c) For every Lipschitz function ¢ : R” — R" with compact support,

Jpdivedu= [, o). v, v(d).

4750 Lemma Let £ C R” be a set with locally finite perimeter, and ¥ g its canonical outward-normal
function. Let v be the unit vector (0, ... ,0,1). Identify R” with R"~! x R. Then we have sequences (F},)nen,
(gn)nen and (g, )nen such that

(i) for each n € N, F, is a Lebesgue measurable subset of R"™1, and g,, ¢/, : F,, — [—~00, 0c] are Lebesgue
measurable functions such that g,(u) < g,(u) for every u € F;

(ii) if m, n € N are distinct and u € F,, N F,,, then [gm(u), g, (w)] N [gn(w), g, (w)] = 0;

(iil) 3020 [, 9n — Gnditr—1 = pE;

(iv) for any continuous function h : R" — R with compact support,

S @) p(@) vide) =300, [ h(u, g7, (u) = hlu, gn () pr—1 (du),

where we interpret h(u,o00) and h(u, —o0) as 0 if necessary;
(v) for p,_1-almost every u € R™—1,
{t: (u,t) € O*E} = {gn(u) :n €N, u € F,, gn(u) # —cc}
U{gn(u) :n €N, u € Fy, g(u) # oo}

475P Lemma Let v € S,_; be any unit vector, and V' C R” the hyperplane {x : z.v = 0}. Let
T : R" — V be the orthogonal projection. If £ C R" is any set with locally finite perimeter and canonical
outward-normal function ¥ g, then

S 0 tpldy = [ #(*E N T~ [{u}])v(du),
interpreting #(0*E N T~ [{u}]) as oo if 9*E N T~ 1[{u}] is infinite.

475Q Theorem (a) Let E C R" be a set with finite perimeter. For v € S,_; write V,, for {z : x.v = 0},
and let T, : R"™ — V,, be the orthogonal projection. Then

per E = v(0*E) = 2;_1 /S /V #(0*E NT,  [{u}))v(du)v(dv)

. 1
= lim / p(EA(E + 6v))v(dv).
mass [, MEA (dv)

(b) Suppose that E C R" is Lebesgue measurable. Set
1
Y = SUPgeRrr\ {0} m#(EA(E + ).

Then v < per E < ;;—'Y

r—1
475R Convex sets in R": Lemma Let C' C R" be a convex set.

D.H.FREMLIN
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(a) If x € C and y € int C, then ty + (1 — t)z € int C for every ¢ € |0, 1].
(b) C and int C are convex.

(c) If int C' # 0 then C' = int C.

(d) If int C = @ then C lies within some hyperplane.

(

e) int C =int C.

475S Corollary: Cauchy’s Perimeter Theorem Let C' C R" be a bounded convex set with non-
empty interior. For v € S,_; write V,, for {x : x.v = 0}, and let T, : R” — V,, be the orthogonal projection.
Then

V(9C) = ﬁ% Js,  v(TChw(dv).

475T Corollary: the Convex Isoperimetric Theorem If C' C R" is a bounded convex set, then

v(0C) < rB,(3 diam C) 1.

Version of 29.7.21

476 Concentration of measure

Among the myriad special properties of Lebesgue measure, a particularly interesting one is ‘concentration
of measure’. For a set of given measure in the plane, it is natural to feel that it is most ‘concentrated’ if it is
a disk. There are many ways of defining ‘concentration’, and I examine three of them in this section (476F,
476G and 476H); all lead us to Euclidean balls as the ‘most concentrated’ shapes. On the sphere the same
criteria lead us to caps (476K).

All the main theorems of this section will be based on the fact that semi-continuous functions on compact
spaces attain their bounds. The compact spaces in question will be spaces of subsets, and I begin with
some general facts concerning the topologies introduced in 4A2T (476A-476B). The particular geometric
properties of Euclidean space which make all these results possible are described in 476D-476E, where I
describe concentrating operators based on reflections. The actual theorems 476F-476H and 476K can now
almost be mass-produced.

476 A Proposition Let X be a topological space, C the family of closed subsets of X, K C C the family
of closed compact sets and p a topological measure on X.
(a)(i) If p is outer regular with respect to the open sets then u[C : C — [0, 00[ is upper semi-continuous
with respect to the Vietoris topology on C.
(ii) If p is locally finite and inner regular with respect to the closed sets then p[K is upper semi-
continuous with respect to the Vietoris topology.
(iii) If p is inner regular with respect to the closed sets and f is a non-negative p-integrable real-valued
function then F' — f g Jdp : C — R is upper semi-continuous with respect to the Vietoris topology.
(b) Suppose that u is tight.
(i) If p is totally finite then u[C is upper semi-continuous with respect to the Fell topology on C.
(ii) If f is a non-negative p-integrable real-valued function then F +— || pfdp: C — R is upper semi-
continuous with respect to the Fell topology.
(c) Suppose that X is metrizable, and that p is a metric on X defining its topology; let p be the Hausdorff
metric on C \ {0}.
(i) If p is totally finite, then p[C \ {0} is upper semi-continuous with respect to p.
(ii) If p is locally finite, then u[KC\ {0} is upper semi-continuous with respect to p.
(iii) If f is a non-negative p-integrable real-valued function, then F' — f P fdp: C\ {0} — R is upper
semi-continuous with respect to p.

(©) 2001 D. H. Fremlin
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476F Concentration of measure 15

476B Lemma Let (X, p) be a metric space, and C the family of closed subsets of X, with its Fell topology.
For e > 0, set U(A,e) = {z : 2 € X, p(z,A) < e} if A C X is not empty; set U(D,e) = (). Then for any
T-additive topological measure p on X, the function

(F,e) — pU(F,¢€) : C x]0,00[ — [0, 0]

is lower semi-continuous.

476C Proposition Let (X, p) be a non-empty compact metric space, and suppose that its isometry
group G acts transitively on X. Then X has a unique G-invariant Radon probability measure p, which is
strictly positive.

476D Concentration by partial reflection (a) Let X be an inner product space. For any unit
vector e € X and any o € R, write R = R, : X — X for the reflection in the hyperplane V =V, =
{z 1z € X, (z]e) = a}, so that R(z) = = + 2(a — (x]e))e for every z € X. Next, for any A C X, define
¥(A) = Yea(A) by setting

Y(A)={z:z €A, (zle) >alU{z:z € A (x|e) < a, R(x) € A}
U{z:zeR"\ A, (z|le) > a, R(z) € A}
= (Wn(AUR[A)]) U (AN R[A]),
where W = W, is the half-space {z : (z|e) > a}.

(b)) f AC BC X, ¢(A) C(B). (ii) For any A C X, ¥(R[A]) = ¥(A). (iii) If FF C X is closed, then
Y(F) is closed.

(c) Ifz € X\ W and y € W then ||z — R(y)|| < ||z — vl

(d) For non-empty A C X and € > 0, set U(4,¢) = {x : p(z, A) < €}, where p is the standard metric on
X, U((A),€) C $(U(A, ).

476E Lemma Let X be an inner product space, e € X a unit vector and o« € R. Let R = R, : X — X
be the reflection operator, and ¢ = 1, : PX — PX the associated transformation, as described in 476D.
For x € A C X, define

da(x) = if (x]e) > «,
=z if (z|e) < a and R(x) € A,
= R(z) if (z]e) < o and R(x) ¢ A.
Let v be a topological measure on X which is R-invariant.
(a) For any A C X, ¢4 : A — ¥(A) is a bijection. If @ < 0, then [|[¢pa(x)| < ||z|| for every x € A, with
l6a@) < ] iff (sle) <  and R(z) ¢ A,
(b)(i) If E C X is measured by v, then ¢(F) is measured by v, vi)(E) = vE and ¢g is a measure space
isomorphism for the subspace measures on E and v (F) induced by v.
(ii) For any A C X, v*yp(A) < v*A < 2v*y(A).
() If @ <0 and E C X is measured by v, then [ [|z|v(dz) > fw(E) lz|lv(dx), with equality iff {z: x €
E, (z|e) < a, R(z) ¢ E} is negligible.
(d) Suppose that X is separable. Let A be the c.l.d. product measure of v with itself on X x X. If E C X
is measured by v, then

Jisss 2 =9I 0) > [ ol = ylINda, ).

(e) Now suppose that X =R". Then v(0*9(A)) < v(0*A) for every A C R”, where 0*A is the essential
boundary of A.

476F Theorem Let r > 1 be an integer, and let u be Lebesgue measure on R". For non-empty A C R”
and € > 0, write U(4,¢) for {x : p(x, A) < €}, where p is the Euclidean metric on R”. If ;* A is finite, then
uU(A,€) > uU(Ba,€), where By is the closed ball with centre 0 and measure p* A.

D.H.FREMLIN
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476G Theorem Let r > 1 be an integer, and let i be Lebesgue measure on R"; write A for the product
measure on R” x R". For any measurable set £ C R" of finite measure, write Bg for the closed ball with
centre 0 and the same measure as E. Then

Josr e —vlXd(z,9) = [, o lle—ylAd(z,y)).

476H The Isoperimetric Theorem Let » > 1 be an integer, and let p be Lebesgue measure on R”. If
E C R" is a measurable set of finite measure, then per E > per Bg, where Bg is the closed ball with centre
0 and the same measure as F.

4761 Spheres in inner product spaces For the rest of the section I will use the following notation.
Let X be a (real) inner product space. Sx will be the unit sphere {z : € X, ||z|| = 1}. Let Hx be the
isometry group of Sx with its topology of pointwise convergence.

A cap in Sx will be a set of the form {x: 2 € Sx, (z|e) > a} where e € Sx and -1 < a < 1.

When X is finite-dimensional, it is isomorphic to R", where r = dim X. If » > 1, Sx has a unique
H x-invariant Radon probability measure vx, which is strictly positive. If » > 1 is an integer, the (r — 1)-
dimensional Hausdorff measure of the sphere Sgr is finite and non-zero.  (r — 1)-dimensional Hausdorff
measure on Sgr is a multiple of the normalized invariant measure vg-. The same is therefore true in any
r-dimensional inner product space.

476J Lemma Let X be a real inner product space and f € Hx. Then (f(x)|f(y)) = (z|y) for all x,
y € Sx. flax+ By) = af(x)+ Bf(y) whenever x, y € Sx and «, § € R are such that ax + Sy € Sx.

476K Theorem Let X be a finite-dimensional inner product space of dimension at least 2, Sx its unit
sphere and vx the invariant Radon probability measure on Sx. For a non-empty set A C Sy and € > 0,
write U(A,€) = {x : p(xz, A) < €}, where p is the usual metric of X. Then there is a cap C C Sx such that
vxC =viA, and vx(Sx NU(A,¢€)) > vx(Sx NU(C,¢)) for any such C' and every ¢ > 0.

476L Corollary For any € > 0, there is an ry > 1 such that whenever X is a finite-dimensional inner
product space of dimension at least rg, A1, A2 C Sx and min(ri Ay, vy As) > €, then there are x € Ay,
y € A such that ||z —y| < e

Version of 4.1.08/2.1.10

477 Brownian motion

I presented §455 with an extraordinary omission: the leading example of a Lévy process, and the inspi-
ration for the whole project, was relegated to an anonymous example (455Xg). In this section I will take
the subject up again. The theorem that the sum of independent normally distributed random variables is
again normally distributed (274B), when translated into the language of this volume, tells us that we have
a family (A;)¢>0 of centered normal distributions such that As4; = As * A for all s, ¢ > 0. Consequently
we have a corresponding example of a Lévy process on R, and this is the process which we call ‘Brownian
motion’ (477A). This is special in innumerable ways, but one of them is central: we can represent it in such
a way that sample paths are continuous (477B), that is, as a Radon measure on the space of continuous
paths starting at 0. In this form, it also appears as a limit, for the narrow topology, of interpolations of
random walks (477C).

For the geometric ideas of §479, we need Brownian motion in three dimensions; the r-dimensional theory
of 477D-477G gives no new difficulties. The simplest expression of Brownian motion in R” is just to take a
product measure (477Da), but in order to apply the results of §455, and match the construction with the
ideas of §456, a fair bit of explanation is necessary. The geometric properties of Brownian motion begin
with the invariant transformations of 477E. As for all Lévy processes, we have a strong Markov property,
and Theorem 455U translates easily into the new formulation (477G), as does the theory of hitting times
(4771). I conclude with a classic result on maximal values which will be useful later (477J), and with proofs
that almost all Brownian paths are nowhere differentiable (477K) and have zero two-dimensional Hausdorff
measure (477L).

(©) 2008 D. H. Fremlin
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477A Brownian motion: Theorem There are a probability space (2,3, 1) and a family (X;);>¢ of
real-valued random variables on 2 such that

(i) Xo = 0 almost everywhere;

(ii) whenever 0 < s < ¢t then X; — X is normally distributed with expectation 0 and variance ¢ — s;

(iii) (X¢)¢>0 has independent increments.

477B Theorem Let (X;);>¢ be as in 477A, and /i the distribution of the process (X;);>o. Let C([0, 00])o
be the set of continuous functions w : [0, c0[ — R such that w(0) = 0. Then C([0, 0o[)o has full outer measure
for i, and the subspace measure py on C(]0,00[)p induced by f is a Radon measure when C([0, 0o[)o is
given the topology %, of uniform convergence on compact sets.

*477C Theorem For a > 0, define f, : RN — Q = C([0, 00[)o by setting fo(2)(t) = vVa(>,., 2(i) +
é(t —na)z(n)) when z € RN n € N and na <t < (n+1)a. Give Q its topology T.. of uniform convergence
on compact sets, and RY its product topology; then f,, is continuous. For a Radon probability measure v
on R, let y,, be the image Radon measure v f7! on 0, where v/ is the product measure on RY. Let
be the Radon measure of 477B, and U a neighbourhood of puy in the space Pgr(€2) of Radon probability
measures on §) for the narrow topology. Then there is a § > 0 such that p,o € U whenever a € ]0, 4] and v
is a Radon probability measure on R with mean 0 = [ 2 v(dz) and variance 1 = [ 2?v(dz) and

f{z:mz&/\/a} w?v(dz) < 6. (1)

477D Multidimensional Brownian motion Fix an integer r > 1.

(a) Let pwy be the Radon probability measure on ©y = C(]0,00[)¢ described in 477B; I will call it
one-dimensional Wiener measure. We can identify the power Q] with Q@ = C([0,00[;R")o, the space
of continuous functions w : [0,00[ — R” such that w(0) = 0, with the topology of uniform convergence on
compact sets; note that €2; is Polish, so Q] also is. Because (; is separable and metrizable, the c.l.d. product
measure [iy;; measures every Borel set, while it is inner regular with respect to the compact sets, so it is a
Radon measure. I will say that pw = ujy,, interpreted as a measure on C([0, 00 ;R")o, is r-dimensional
Wiener measure.

w1 is the subspace measure on €y induced by the distribution i of the process (X;);>o in 477A.
puw here, regarded as a measure on C([0,00[)f, is the subspace measure induced by the measure " on
(R[O,oo[)r ~ R[O,oo[xr.

(b) Forw e Q,t>0and i < r, set Xt(i) (w) = w(t)(7). Then (Xt(i)>t207i<r is a centered Gaussian process,
with covariance matrix

E(X® x XY =0if i # j,

= min(s,t) if i = j.

(c)(i) pw is the only Radon probability measure on € such that the process (Xt(i))tzo,iq described in
(b) is a Gaussian process with the covariance matrix there.

(ii) Another way of looking at the family <Xt(i)>i<r,t20 is to write X;(w) = w(t) for t > 0, so that
(Xt)t>0 is now a family of R"-valued random variables defined on 2. We can describe its distribution in
terms matching those of 455Q and 477A, which become

(i) Xo = 0 everywhere;

(ii) whenever 0 < s < t then \/%(Xt — X,) has the standard Gaussian distribution pug,;

(iii) whenever 0 <t; < ... <y, then Xy, — Xyy,... , Xy, — X
Note that these properties also determine the Radon measure pyy .

are independent.

n—1
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477E Invariant transformations of Wiener measure: Proposition Let » > 1 be an integer, and
pw Wiener measure on 2 = C([0,00[;R")g. Let 4" be the product measure on (R[>0 as described in
477D.

(a) Suppose that f : (R0 — (R0 is inverse-measure-preserving for 4", and that Qy C Q is
a uy-conegligible set such that f[Q¢] C Qp. Then f[€Q is inverse-measure-preserving for the subspace
measure induced by gy on Q.

(b) Suppose that T : Rr>10.00l — R7>10.200 jg g linear operator such that, for i, j <7 and s, t > 0,

/ (Tw)(i, s)(Tw) (G, )i (dw) = min(s, £) if i =
—0ifi#j.

Then, identifying R7*[02° with (RI%°l)" 7 is inverse-measure-preserving for i".

(¢) Suppose that ¢ > 0. Define S; : Q — Q by setting (Siw)(s) = w(s +t) — w(s) for s > 0 and w € Q.
Then S, is inverse-measure-preserving for uyy.

(d) Let T : R” — R” be an orthogonal transformation. Define 7' : Q — Q by setting (Tw)(t) = T(w(t))
for t > 0 and w € Q. Then 7T is an automorphism of (Q, pw).

(e) Suppose that @ > 0. Define U, : Q — Q by setting U, (w)(t) = %w(at) for t > 0 and w € Q. Then
U, is an automorphism of (€2, uw ).
(f) Set

Qo ={w:w e Q, limy_, %w(t) = 0},

and define R : Q¢ — Qg by setting

(Rwﬂﬂzﬁwe)ﬁt>0,
—0ift=0.

Then € is pup-conegligible and R is an automorphism of Q4 with its subspace measure.
(g) Suppose that 1 < 7/ < r, and that ug,) is Wiener measure on C([0,00[;R")o. Define P : Q —
C([0,00[; R ) by setting (Pw)(t)(i) = w(t)(i) for t >0, i <’ and w € Q. Then ,u%,‘r,) is the image measure

pw Pt

477F Proposition Let > 1 be an integer. Then Wiener measure on Q = C([0,00[;R")o is strictly
positive for the topology ¥, of uniform convergence on compact sets.

477G The strong Markov property: Theorem Suppose that r > 1, uy is Wiener measure on
Q2 =C([0,00[;R")g and X is its domain. For ¢ > 0 let X; be

{F:FeX e F whenever w € F, w' € Q and w'[[0,t] = w[[0, ]},

E;r = ﬂs>t s,
and let 7 : Q — [0,00] be a stopping time adapted to the family (3;);>0. Define ¢, : Q x Q — Q by saying
that

br(w,w)(t) = w(t) if t < 7(w),

w(T(w)) +w'(t — 7(w)) if t > 7(w).

Then ¢, is inverse-measure-preserving for py X pw and pyy.

477TH Some families of o-algebras: Proposition Let 7 > 1 be an integer, pw r-dimensional Wiener
measure on = C([0,00[; R")g and ¥ its domain. Set Xt(l) (w) =w(t)(4) for t > 0and i < r. For I C [0, 00],
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let T; be the o-algebra of subsets of 2 generated by {Xs(i) — Xt(i) is,tel, i <r}, and T; the o-algebra
{EAF B eTy, MwF = 0}

(a) Tio,00] is the Borel o-algebra of Q either for the topology of pointwise convergence inherited from
(R™)[0:000 or R7*[0:°[ o1 for the topology of uniform convergence on compact sets.

(b) If Z is a family of subsets of [0, oo[ such that for all distinct I, J € Z either sup I < inf J or sup J < inf I
(counting inf () as co and sup ) as 0), then (T 1)1ez is an independent family of o-algebras.

(c) For t > 0, let ¥; be the o-algebra of sets F' € ¥ such that w’ € F whenever w € F, w’ € Q and

W' 1[0,4] = wi[0,], and F = )., T,. Write T for M-, To,q- Then, for any ¢ > 0,

-+
T, € X¢ C uC Tio,9 = Tio,4) = Tioe[-

(d) On the tail o-algebra (5, T[tm[, puw takes only the values 0 and 1.

4771 Hitting times Take r > 1, and let uy be Wiener measure on Q = C([0,00[;R")g and ¥ its
domain; for ¢ > 0 define ;" and To,q as in 477G and 477H. Give (2 its topology of uniform convergence on
compact sets.

(a) Suppose that A C R". For w € Q set 7(w) = inf{t : ¢ € [0,00[, w(t) € A}, counting inf ) as
oo. I will call 7 the Brownian hitting time to A, or the Brownian exit time from R”\ A. T will
say that the Brownian hitting probability of A, or the Brownian exit probability of R" \ A4, is
hp(A) = pw{w : 7(w) < oo} if this is defined. More generally, I will write

hp* (4) = gy o T(w) < 0} = iy w s w1 [A] £ 0},
the outer Brownian hitting probability, for any A C R".

(b) If A C R" is analytic, the Brownian hitting time to A is a stopping time adapted to the family
(2 )ez0.
In particular, there is a well-defined Brownian hitting probability of A.
(c) Let F C R" be a closed set, and 7 the Brownian hitting time to F.
(i) If 7(w) < oo, then
7(w) = inf w1 [F] = minw™![F]
because w is continuous. If 0 ¢ F and 7(w) < oo, then w(7(w)) € OF.
(ii) 7 is lower semi-continuous.
(iii) 7 is adapted to (Tg¢)¢>o0-
In the language of 477G, we have Ty 4 C X for every ¢ > 0, so 7 must also be adapted to (X¢):>o.
(d) If A CR" is any set, then
hp*(A) = min{hp(B) : B D A is an analytic set} = min{hp(F) : £ D A is a Gy set}.

(e) If A C R" is analytic, then hp(A) = sup{hp(K) : K C A is compact}.
477J Proposition Let py be Wiener measure on Q = C([0, 00[)g. Set Xi(w) = w(t) for w € Q. Then

Pr(maxs<; X5 > a) =2Pr(X; > a) = /2 g0,

2 [e'e]
ﬁfa/ﬁe
whenever ¢t > 0 and o > 0.

477K Typical Brownian paths: Proposition Let py be Wiener measure on ©Q = C([0, 00[)g. Then
pw-almost every element of ) is nowhere differentiable.

477L Theorem Let r > 1 be an integer, and py Wiener measure on 2 = C([0, 00[;R")g; for s > 0 let
s be s-dimensional Hausdorff measure on R”.
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(a) {w(t) : t € [0,00[} is pme-negligible for puy-almost every w.
(b) Now suppose that r > 2. For w € Q, let F,, be the compact set {w(¢) : t € [0,1]}. Then for p -almost
every w € Q, upsF, = oo for every s € |0, 2[.

Version of 4.6.09/7.8.20

478 Harmonic functions

In this section and the next I will attempt an introduction to potential theory. This is an enormous subject
and my choice of results is necessarily somewhat arbitrary. My principal aim is to give the most elementary
properties of Newtonian capacity, which will appear in §479. It seems that this necessarily involves a basic
understanding of harmonic and superharmonic functions. I approach these by the ‘probabilistic’ route, using
Brownian motion as described in §477.

The first few paragraphs, down to 478J, do not in fact involve Brownian motion; they rely on multidi-
mensional advanced calculus and on the Divergence Theorem. Defining ‘harmonic function’ in terms of
average values over concentric spherical shells (478B), the first step is to identify this with the definition in
terms of the Laplacian differential operator (478E). An essential result is a formula for a harmonic function
inside a sphere in terms of its values on the boundary and the ‘Poisson kernel’ (478Ib), and we also need to
understand the effects of smoothing by convolution with appropriate functions (478J). I turn to Brownian
motion with Dynkin’s formula (478K), relating the expected value of f(X,) for a stopped Brownian process
X to an integral in terms of V2 f. This is already enough to deal with the asymptotic behaviour of Brownian
paths, which depends in a striking way on the dimension of the space (478M).

We can now approach Dirichlet’s problem. If we have a bounded open set G C R", there is a family
{piz)zeq of probability measures such that whenever f : G — R is continuous and f[G is harmonic, then
f(z) = [ fdu, for every x € G (478Pc). So this family of ‘harmonic measures’ gives a formula continuously
extending a function on G to a harmonic function on G, whenever such an extension exists (478S). The
method used expresses pu, in terms of the distribution of points at which Brownian paths starting at x
strike G, and relies on Dynkin’s formula through Theorem 4780. The strong Markov property of Brownian
motion now enables us to relate harmonic measures associated with different sets (478R).

478 A Notation r > 1 will be an integer; if you find it easier to focus on one dimensionality at a time,
you should start with r = 3, because r = 1 is too easy and r = 2 is exceptional. p will be Lebesgue measure
on R”, and || || the Euclidean norm on R”; v will be normalized (r — 1)-dimensional Hausdorff measure on
R". In the elementary case r = 1, v will be counting measure on R.

1 . .
By = —=7" if r = 2k is even,

Tk
= ey T =2k -+ Lis odd,
v(0B(0,1)) =rf, = (kfl)'wk if r = 2k is even,

22k+1p|
T(2k)!

7% if r = 2k + 1 is odd.

L ! ; in these, it will

In the formulae below, there are repeated expressions of the form gl To—g—2

often be convenient to interpret % as 00.
It will be convenient to do some calculations in the one-point compactification R” U {oco} of R”. For a
set A CR"

AT =4, 9*A=0A
if A is bounded, and
AT =AU{cc}, 0%°A=0AU{c0}
if A is unbounded. A~ and 9®A are always compact. In this context I will take x + co = oo for every

r € R".
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pw will be r-dimensional Wiener measure on = C([0,00[;R")g, the space of continuous functions w
from [0, oo to R” such that w(0) = 0, endowed with the topology of uniform convergence on compact sets;
¥ will be the domain of pw . p?, will be the product measure on  x Q. I will write X;(w) = w(t) for
t €]0,00[ and w € Q, and if 7 : Q — [0, 00] is a function, I will write X, (w) = w(7(w)) whenever w € 2 and
7(w) is finite.

I will write X4 for the o-algebra of sets F' € 3 such that w’ € F whenever w € F, v’ € Q and w'[[0,t] =
w[0,7], and £f = M,5, Xs. Tpo,¢y Will be the o-algebra of subsets of  generated by {X, : s < t}.

478B Harmonic and superharmonic functions Let G C R” be an open set and f : G — [—00, 0] a
function.

_ . 1
(a) f is superharmonic if T@B@ED) faB(L[g)

whenever z € G, 6 > 0 and B(z,d) C G.

fdv is defined in [—o00, 00] and less than or equal to f(z)

1
v(0B(x,0))
greater than or equal to f(x) whenever x € G, § > 0 and B(z,d) C G.

(b) f is subharmonic if — f is superharmonic, that is, faB(x.s) fdv is defined in [—o0, 0o] and

(¢) f is harmonic if it is both superharmonic and subharmonic, that is, m faB(gc,é) fdv is defined
and equal to f(z) whenever z € G, § > 0 and B(z,d) C G.

478C Elementary facts Let G C R” be an open set.

(@) If f: G — [—00, 0] is a function, then f is superharmonic iff —f is subharmonic.

(b) If f, g : G — [—00, 0] are superharmonic functions, then f + g is superharmonic.

() If f, g: G — [—00, 0] are superharmonic functions, then f A g is superharmonic.

(d) Let f: G — R be a harmonic function which is locally integrable with respect to Lebesgue measure
on G. Then

1
1@ =565 Jiog Fn

whenever x € G, § > 0 and B(z,d) C G. So f is continuous.

478D Maximal principle: Proposition Let G C R" be a non-empty open set. Suppose that g :
(R |—00, 00] is lower semi-continuous, g(y) > 0 for every y € 9°G, and ¢g[G is superharmonic. Then
g(x) > 0 for every z € G.

478E Theorem Let G C R” be an open set and f : G — R a function with continuous second derivative.

Write V2f for its Laplacian divgrad f = Y_;_, g%];

(a) f is superharmonic iff V2 f < 0 everywhere in G.
(b) f is subharmonic iff V2f > 0 everywhere in G.
(c) f is harmonic iff V2f = 0 everywhere in G.

478F Basic examples (a) For any y, z € R",

NN 1 (z—2).y
lz—z|I"=2" o=z’
o Izl gl _ o). ) 1
llz—=" llz—=" lz—=|"~2

are harmonic on R" \ {z}.
(b) For any z € R?,

= In|la— z|

is harmonic on R? \ {z}.
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1 f 1
v(0B(0,6)) Y0B(0,9) ||[z—z|"—2
(b) 1 f |62_Hx||2‘1/(dz) _ 1

v(0B(0,0)) Y0B(0,0) ||z—z||" max (3, |z[|)"—2

1 1 o ;
(c) fB(O,J) = wu(dz) < 27"5,«5 whenever x € R™ and § > 0.

1

max (4, |z[|)" 2

478G Lemma (a) v(dz) = whenever z € R” and § > 0.

whenever z € R”, § > 0 and ||z|| # 6.

1

lz—z"—2

478H Corollary If r > 2, then z — :R” — [0, 00] is superharmonic for any z € R".

4781 Theorem Suppose that y € R" and § > 0; let S = 9B(y, 9).
(a) Let ¢ be a totally finite Radon measure on S, and define f on R" \ S by setting
_ L 62— ]|z —yl|?|
Fla) = g P (a)

llo—z[|"

for x € R™\ S. Then f is continuous and harmonic.
(b) Let g : S — R be a vg-integrable function, where vg is the subspace measure on S induced by v, and
define f: R" — R by setting

flz) = rﬁlré /Sg(z)wu(dz) ifzeR"\ S,

llz—="
=g(zx)ifzes.

(i) f is continuous and harmonic in R" \ S.
(i) If r > 2, then

liminf.cs .z, g(x) = liminf, ., f(x), limsup, .  f(z)=lim SUD,c5 220 g(z)

for every 2y € S.
(iii) f is continuous at any point of S where g is continuous, and if g is lower semi-continuous then f
also is.

(iv) supger- f(z) = sup,cq 9(2) and infyer- f(z) = inf.eg g(2).

478J Convolutions and smoothing: Proposition (a) Suppose that f : R"™ — [0,00] is Lebesgue
measurable, and G C R" an open set such that f[G is superharmonic. Let h : R™ — [0, 00] be a Lebesgue
integrable function, and f * h the convolution of f and h. If H C G is an open set such that H — {z : h(z) #
0} C G, then (f * h)[H is superharmonic.

(b) Suppose, in (a), that h(y) = h(z) whenever ||y|| = ||z| and that [,, hdu < 1. If 2 € G and v > 0 are
such that B(z,v) C G and h(y) = 0 whenever ||y|| > v, then (f % h)(z) < f(z).

(c) Let f : R" — [0, 00] be a lower semi-continuous function, and (h,)nen the sequence of 473E. If G C R”
is an open set such that f|G is superharmonic, then f(z) = lim,_ o0 (f * hy)(z) for every z € G.

(d) Let G C R" be an open set, K C G a compact set and g : G — R a smooth function. Then there is a
smooth function f : G — R with compact support included in G such that f agrees with g on an open set
including K.

478K Dynkin’s formula: Lemma Let uy be r-dimensional Wiener measure on @ = C([0, 00[;R")g;
set X¢(w) = w(t) for w € Q and ¢t > 0. Let f: R” — R be a three-times-differentiable function such that f
and its first three derivatives are continuous and bounded.

1
(a) E(f(Xy)) = f(0) + EE(fOt(VQf)(XS)ds) for every t > 0.
(b) If 7: Q — [0,00[ is a stopping time adapted to (3] );>0 and E(7) is finite, then

E(f(X,)) = £(0) + SE(f; (V2[)(X,)ds).

478L Theorem Let uy be r-dimensional Wiener measure on Q = C([0,00[;R")g, f : R" — [0,00] a
lower semi-continuous superharmonic function, and 7 : Q — [0, 0o] a stopping time adapted to (X} );>0. Set
H={w:weQ, r(w) <oo}. Then
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(@) 2 [}, Fz +w(r(w)))pw (dw)

for every z € R".

478M Proposition (a) If r = 1, then {w(t) : t > 0} = R for almost every w € Q.
(b) If r < 2, then {w(t) : t > 0} is dense in R? for almost every w € €.

(c) If r > 2, then for every z € R?, 2z ¢ {w(t) : t > 0} for almost every w € Q.

(d) If r > 3, then lim;_, ||w(t)|| = oo for almost every w € .

478N Wandering paths Let G C R" be an open set, and for x € G set
F,.(G) = {w : either 7, (w) < 0o or lim;_, o ||w(t)]] = 0o}

where 7, is the Brownian exit time from G — z. I will say that G has few wandering paths if F,(G) is
conegligible for every x € GG. In this case we can be sure that, if € G, then for almost every w either
lim; s o0 |Jw(t)|| = 00 orw(t) ¢ G—u for some t. So we can speak of X, (w) = w(7,(w)), taking this to be oo if
w € F;(G) and 7, (w) = oo; and w will be continuous on [0, 7, (w)] for every w € F,(G). X, : Q@ — 0°(G—x)
is Borel measurable.

From 478M, we see that if » > 3 then any open set in R" will have few wandering paths, while if » < 2
then G will have few wandering paths whenever it is not dense in R”. Note that if G C R" is open, H is a
component of G, and x € H, then the exit times from H — 2z and G — x are the same, and F,(G) = F,(H).
It follows that if G has more than one component then it has few wandering paths.

4780 Theorem Let G C R" be an open set with few wandering paths and f : G~ = R a bounded
lower semi-continuous function such that f[G is superharmonic. Take x € G and let 7 :  — [0, 00] be the
Brownian exit time from G — x. Then f(z) > E(f(x + X,)).

478P Harmonic measures (a) Let A C R" be an analytic set and z € R". Let 7 : Q — [0,00]
be the Brownian hitting time to A — 2. Then 7 is X-measurable, where 3 is the domain of uy . Setting
H={w:7(w) <o}, X;: H— R" is ¥-measurable.

Consider the function w — z+w(r(w)) : H — R". This induces a Radon image measure p, on R" defined
by saying that

peF =pp{w:we H z+w(T(w) e F}=Pr(z+ X, € F)

whenever this is defined. X, (w) € (A — x) for every w € H, and 0A is conegligible for p,. I will call p,
the harmonic measure for arrivals in A from z. Of course u,R” is the Brownian hitting probability of
A.

Note that if 7/ C R" is closed and € R" \ F, then the Brownian hitting time to F' — z is the same as
the Brownian hitting time to OF — x, so that the harmonic measure for arrivals in F' from z coincides with
the harmonic measure for arrivals in OF from x.

(b) Let A C R” be an analytic set, x € R", and u, the harmonic measure for arrivals in A from z. If
f:R" — [0, 00] is a lower semi-continuous superharmonic function, f(z) > f fdpg.

(c) We can re-interpret 4780 in this language. Let G C R” be an open set with few wandering paths,
and x € G. Let u, be the harmonic measure for arrivals in R” \ G from x. In this case, taking 7 to be the
Brownian exit time from G — x and H = {w : 7(w) < oo}, lims_, 0 [Jw(t)]] = oo for almost every w € Q\ H.
If f:0°G — [—o00,00] is a function, then

B+ X)) = [ Flo+ Xolow (de) + fohun (@ H)
(counting f(oo) as zero if G is bounded)
— [ fdia + 1)1 - )

if either integral is defined in [—o00,00]. In particular, if f: G~ — R is a bounded lower semi-continuous
function and f[G is superharmonic, then ) > [ fduy + f(00)(1 — peR™). Similarly, if f : GT S5 Ris
continuous and f[G is harmonic, then f(x ffduw + f(00)(1 — pR™) for every z € G.
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(d) Suppose that (A,),en is a non-decreasing sequence of analytic subsets of R”, with union A. For
xz € R7, let u;"), 1t be the harmonic measures for arrivals in A,,, A respectively from x. Then p, is the
limit lim,,_, ,uin) for the narrow topology on the space of totally finite Radon measures on R".

478Q Proposition Let S be the sphere 0B(y, ), where y € R™ and § > 0. For z € R"\ S, let (, be the
indefinite-integral measure over v defined by the function

162 llz—y]?| -
= — lf z S
rBrola—zlr S

= 0if z € R™\ S.

a

(b

) If € int B(y, ¢), then the harmonic measure p, for arrivals in S from x is (,.
) In particular, the harmonic measure p, for arrivals in S from y is %VLS .

(c) Suppose that r > 2. If € R"\ B(y,d), then the harmonic measure p, for arrivals in S from z is (,.
52
/’LzRT =

lz—yllm—2"

478R Theorem Let A, B C R" be analytic sets with A C B. For z € R", let qu”, ;L;B) be the harmonic

measures for arrivals in A, B respectively from z. Then, for any x € R", <u§A)>y€RT is a disintegration of

uéA) over ug;B).

478S Corollary Let A C R" be an analytic set, and f : A — R a bounded universally measurable
function. For x € R" \ A set g(z) = [ fdu,, where p, is the harmonic measure for arrivals in A from z.
Then g is harmonic.

478T Corollary Let A C R" be an analytic set, and for € R" let y1,, be the harmonic measure for
arrivals in A from z. Then z — p, is continuous on R” \ A for the total variation metric on the set of totally
finite Radon measures on R".

478U Proposition Suppose that A C R" and that 0 belongs to the essential closure of A. Then the
outer Brownian hitting probability hp*(A4) of A4 is 1.

*478V Theorem (a) Let G C R" be an open set with few wandering paths and f : G~ = R a continuous
function such that f[G is harmonic. For z € R" let 7, : Q — [0, 00] be the Brownian exit time from G — x.
Set

gr, (W) = f(x 4+ w(Tz(w))) if 7 (w) < o0,

= f(o0) if tlggo lw®)|l = oo and 7, (w) = oco.

Then f(2) = E(gy. ).
(b) Now suppose that o is a stopping time adapted to (X;);>¢ such that o(w) < 7,(w) for every w. Set

9o (W) = gr, (W) if o(w) = 7o (w) = o0,
= f(x + w(o(w))) otherwise.

As in 455Lc, set Xy, = {E : E € dom puw, EN{w : 0(w) < t} € ; for every ¢ > 0}. Then g, is a conditional
expectation of g., on ¥,.
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Version of 15.2.10/28.4.10
479 Newtonian capacity

I end the chapter with a sketch of fragments of the theory of Newtonian capacity. I introduce equilibrium
measures as integrals of harmonic measures (479B); this gives a quick definition of capacity (479C), with
a substantial number of basic properties (479D, 479E), including its extendability to a Choquet capacity
(479Ed). I give sufficient fragments of the theory of Newtonian potentials (479F, 479J) and harmonic
analysis (479G, 4791) to support the classical definitions of capacity and equilibrium measures in terms of
potential and energy (479K, 479N). The method demands some Fourier analysis extending that of Chapter
28 (479H). 479P is a portmanteau theorem on generalized equilibrium measures and potentials with an exact
description of the latter in terms of outer Brownian hitting probabilities. I continue with notes on capacity
and Hausdorff measure (479Q)), self-intersecting Brownian paths (479R) and an example of a discontinuous
equilibrium potential (479S). Yet another definition of capacity, for compact sets, can be formulated in terms
of gradients of potential functions (479U); this leads to a simple inequality relating capacity to Lebesgue
measure (479V). The section ends with an alternative description of capacity in terms of a measure on the
family of closed subsets of R" (479W).

479A Notation In this section, unless otherwise stated, r will be a fixed integer greater than or equal to
3. p will be Lebesgue measure on R", and 3, the measure of B(0,1); v will be normalized (r —1)-dimensional
Hausdorff measure on R".

Recall that if  is a measure on a space X, and E € dom ¢, then (L F is defined by saying that ((L E)(F) =
C(ENF) whenever F C X and ¢ measures EN F. If ¢ is a Radon measure, so is (L E.

Q will be C([0,00[;R")g, with the topology of uniform convergence on compact sets; py will be Wiener
measure on ). Recall that the Brownian hitting probability hp(D) of a set D C R" is uw{w : w=1[D] # 0}
if this is defined, and that for any D C R" the outer Brownian hitting probability is hp*(D) = pj{w :
w™lD] # 0}.

If z € R" and A C R" is an analytic set, ug(f‘) will be the harmonic measure for arrivals in A from x; note
that iV (R7) = " (84) = hp(A — 2).

I will write pg, for the total variation metric on the space Mf{ (R") of totally finite Radon measures on
R”, so that

ptv()\; <) = SupE,Fg]R”‘ are Borel AE — <E —AF + CF
for A, ¢ € M7 (R").

479B Theorem Let A C R” be a bounded analytic set.
(i) There is a Radon measure As on R”, with support included in OA, defined by saying that

( ﬂl ;é‘”)me@B(oﬁ) is a disintegration of A4 over the subspace measure vyp(o,) whenever v > 0 and
T ’V"y

A Cint B(0,7).
(ii) Aa is the limit lim)— oo ||:1:H"_2u§54) for the total variation metric on Mg (R").

479C Definitions (a)(i) In the context of 479B, I will call A 4 the equilibrium measure of the bounded
analytic set A, and A\4R" the Newtonian capacity cap A of A.
(ii) For any D C R", its Choquet-Newton capacity will be
C(D) = infGQD is open SungG is compact cap K.

Sets with zero Choquet-Newton capacity are called polar.

(b) If ¢ is a Radon measure on R", the Newtonian potential associated with { is the function W :
R" — [0, 0] defined by the formula

We(w) = [y, s Sld)

for x € R". The energy of ( is now
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1
energy(¢) = [ Wed¢ = |, TfRT WC(C@)C(W)
If A is a bounded analytic subset of R”, the potential W, = Wy , is the equilibrium potential of A.

(c) If(isa Radon measure on R”, I will write U, for the (r — 1)-potential of (, defined by saying that
er - |T -((dy) € [0,00] for z € R".

479D Proposition (a) For any v > 0 and z € R", the Newtonian capacity of B(z,v) is 7" ~2, the
equilibrium measure of B(z,7) is %UL@B(Z, v), and the equilibrium potential of B(z,~) is given by

~ r—2

WB(z,’y) (.’L‘) = min(L W)

for every z € R".

(b) Let A C R” be a bounded analytic set with equilibrium measure A4 and equilibrium potential Wy.
(i) Wa(z) <1 for every x € R".
(ii) If B C A is another analytic set, Wp < Wy
(iii) Wa(z) = 1 for every z € int A.

(c) Let A, B C R" be bounded analytic sets.
(i) Aaus < A4+ AB.
(ii) AaB < cap B.

479E Theorem (a) Newtonian capacity cap is submodular.
(b) Suppose that (A, ),en is a non-decreasing sequence of analytic subsets of R™ with bounded union A.
(i) The equilibrium measure A4 is the limit lim,_,c A4, for the narrow topology on the space My (R")
of totally finite Radon measures on R".
(ii) cap A = lim,—, oo cap A,.
(iii) The equilibrium potential Wy is limy, o0 WAn = SUP,,eN VNVATL.
(c) Suppose that (A,)nen is a non-increasing sequence of bounded analytic subsets of R" such that
Mnew An = Npen An = A say.
(i) A is the limit lim,_, A4, for the narrow topology on My (R").
(i) cap A = lim,—, oo cap A,.
(d)(i) Choquet-Newton capacity ¢ : PR" — [0, 00] is the unique outer regular Choquet capacity on R"
extending cap.
(ii) ¢ is submodular.
(iii) ¢(A) = sup{cap K : K C A is compact} for every analytic set A C R".

479F Theorem Let ¢ be a totally finite Radon measure on R”, and set G = R" \ supp (. Let W¢ be the
Newtonian potential associated with (.

(a) W : R™ — [0, 00] is lower semi-continuous, and W, [G : G — [0, 0o[ is continuous.

(b) W is superharmonic, and W, |G is harmonic.

(c) We is locally p-integrable; in particular, it is finite p-a.e.

(d) If ¢ has compact support, then (R" = lim; |00 [|2]|""*We ().

(e) If We [ supp( is continuous then W¢ is continuous.

(f) If K is a compact set such that W, [ K is continuous and finite-valued then W¢| g is continuous.

(g) If W, is finite (-a.e. and f : R” — [0, 00] is a lower semi-continuous superharmonic function such that
f>We C-ae., then f > We.

h) If ¢’ is another Radon measure on R" and ¢’ < (, then Wy < W, and energy(¢’) < energy(¢).

¢ ¢

479G Lemma (In this result, » may be any integer greater than or equal to 1.) For a € R, set
bole) = [

convolution k, * kg.

forx e R"\{0}. fa<r, 8<rand a+ 8 >r, then koyps_, is a constant multiple of the

Remark If » > 3, I will take ¢, > 0 to be the constant such that ¢,.k._o = k,_1 x k,_1.
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479H Theorem (In this result, » may be any integer greater than or equal to 1.) Let ¢ be a totally
finite Radon measure on R” and 2 its Fourier transform.

N A

(a) If f € L&(u), then ¢ = f is p-integrable and (¢ * f)" = (V2m)"( x f.

(b) If ¢ has compact support and h : R” — C is a rapidly decreasing test function, then ¢ * h and h x 2
are rapidly decreasing test functions.

(c) Suppose that f is a tempered function on R”. If either ¢ has compact support or f is expressible as
the sum of a p-integrable function and a bounded function, then ¢ * f is defined p-almost everywhere and
is a tempered function.

(d) Suppose that f, g are tempered functions on R” such that g represents the Fourier transform of f.
If either ¢ has compact support or f is expressible as the sum of a bounded function and a p-integrable

function, then (v/ 27T)T2 x g represents the Fourier transform of ¢  f.

4791 Proposition (In this result, » may be any integer greater than or equal to 1.)
(a) Suppose that 0 < o < 7.
(i) There is a tempered function representing the Fourier transform of k.
(ii) There is a measurable function gg, defined almost everywhere on [0, oo[, such that y — go(||y])
represents the Fourier transform of k.
(iii) In (i),
204/2F(%)f000 trilgo(t)€7€t2dt _ 2(7‘704)/21-\(%)‘[000 taflefet’zdt

for every € > 0.
(iv) 2921 (9)go(t) = 2r=)/2D(52)¢2~" for almost every ¢ > 0.
(v) 20=)/2D(252)k, _, represents the Fourier transform of 2%/2T'(%)k,.
(b) Suppose that (1, (s are totally finite Radon measures on R”, and 0 < a < 7. If {3 ko = (o xkqo prace.,

then Cl = CQ.

479J Lemma (a) Let ¢ be a totally finite Radon measure on R". Let U¢ be the (r — 1)-potential of ¢
and W, the Newtonian potential of (; let k,._; and k,_ be the Riesz kernels. Then Us =, ¢ * k-—1 and
WC —a.e. C* kr_s.

(b) Let ¢, ¢1 and (» be totally finite Radon measures on R”.

. 1
(1) Jor WedGa = [, We,dCy = o Jrr U, x Ugydp.

(ii) The energy energy(() of ¢ is %HU&@, counting ||U¢||2 as oo if Ue ¢ L2 ().

(iii) If ¢ = 1 + (2 then Ue = Ue, + Ue, and W = W, + W, ; similarly, Uy = aUe and Wy = oV,
for a > 0.

(iv) If Ug, = Ug, p-ace., then ¢ = (.

(v) It We, = W, pra.e., then ¢ = (o.

o 1
(vi) (R™ = limy 00 B f@B(O,'y) Wedv.

(c) Let My (R") be the set of totally finite Radon measures on R”, with its narrow topology. Then
energy : My (R™) — [0, oc] is lower semi-continuous.

479K Lemma Let K C R" be a compact set, with equilibrium measure Ag. Then Ax K = cap K =
energy(Ag ), and if ¢ is any Radon measure on R" such that (K > cap K > energy((), { = Ak.

479L Corollary Let K C R” be a compact set with equilibrium potential Wi

(a) If ¢ is any Radon measure on R” with finite energy, then WK(x) =1 for (-almost every z € K.
(b) If ¢ is a Radon measure on R” such that W, < 1 everywhere on K, (K < cap K.

(c) Wk (z) < hp(K — ) for every z € R™ \ K.

479M Lemma Let A C R" be an analytic set with finite Choquet-Newton capacity ¢(A).
(a) lim,— 0 (A \ B(0,7)) = 0.
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(b) A4 = limy—,00 AanB(0,) is defined for the total variation metric on the space My (R") of totally finite
Radon measures on R".
(€)(i) AaR" = ¢(A).
ii) supp(Aa) C OA.
iii) If B C R" is another analytic set such that ¢(B) < oo, then Aaup < Aa + Ap.
(1) WA = Wy, is the limit lim, WAQB(O ) = SUP.,>q WAQB(OW)
i) Wu(x) <1 for every z € R".
iii) If ¢ is any Radon measure on R” with finite energy, WA(x) =1 for (-almost every = € A.
iv) energy(Aa) = c(A).

d

—~ = S

479N Theorem Let A C R" be an analytic set with finite Choquet-Newton capacity c(A).
(a) Writing W¢ for the Newtonian potential of a Radon measure ( on R,

c(A) =sup{CA: ( is a Radon measure on R", W¢(z) < 1 for every z € R"};

if A is closed, the supremum is attained.
(b) ¢(A) = inf{energy(¢) : ¢ is a Radon measure on R", (A > ¢(A)}; if A is closed, the infimum is
attained.
. 1
(€) T A# 0, e(4) = sup{ ot

if A is closed, the supremum is attained.

: ¢ is a Radon measure on R” such that (A = 1}, counting Loas Z€r0;
(0.9}

4790 Polar sets: Proposition For a set D C R", the following are equiveridical:

(i) D is polar;

(ii) there is a totally finite Radon measure ¢ on R" such that its Newtonian potential W¢ is infinite at
every point of D;

(iil) there is an analytic set F D D such that (E = 0 whenever ¢ is a Radon measure on R” with finite
energy.

479P Theorem Let D C R" be a set with finite Choquet-Newton capacity ¢(D).
(a) There is a totally finite Radon measure Ap on R” such that Ap = A4, as defined in 479Mb, whenever
A D D is analytic and ¢(A) = ¢(D).
( ) Write Wp =W,y , for the equilibrium potential corresponding to the equilibrium measure Ap. Then
Wp(x p (D \ {z}) — z) for every z € R".
(@) Aok = (D) ~
(8) if ¢ is any Radon measure on R" with finite energy, Wp(z) = 1 for {-almost every x € D;
(7) energy(Ap) = c(D);
(6) if D' C D and ¢(D') = ¢(D), then Ap, = Ap.
(ii) supp(Ap) € 9D.
(iii)
(
(

o)
B
~
)

or any D’ C R" such that ¢(D’) < oo,
p(D") < e(D');

up’ < Ap + Apr;

(
( ) P v()\D7>\D’) < QC(DAD/)
(iv) If (Dn)nen is a non-decreasing sequence of sets with union D, then
( WD = hmn_mo WD = SUPjeN WD

(8) (Ap, )nen — )\D for the narrow topology on Mg (R").
(v) ¢(D) = inf{(R" : ¢ is a Radon measure on R", W, > xD}

= inf{energy(¢) : ¢ is a Radon measure on R", W, > xD}.

(vi) Writing cl*D for the essential closure of D, ¢(cI*D) < ¢(D) and Weop < Wp.
(vii) Suppose that f: D — R" is y-Lipschitz, where v > 0. Then ¢(f[D]) < v"2¢(D).

F

) A

) >\D

) Wopnp: + Wpup < Wp + Wpr;
't

)

)

479Q Hausdorff measure: Theorem For s € ]0,00[ let ups be Hausdorff s-dimensional measure on
R". Let D be any subset of R".

(a) If the Choquet-Newton capacity ¢(D) is non-zero, then uj . ,D = oo.

(b) If s > r — 2 and pj;,.D > 0, then ¢(D) > 0.
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479R Proposition (a) Suppose that r = 3. Then almost every w € ) is not injective.
(b) If r > 4, then almost every w € () is injective.

479S Example Suppose that e € R” is a unit vector. Then there is a sequence (0,)ncn of strictly
positive real numbers such that the equilibrium potential W is discontinuous at e whenever K C B(0, 1)
is compact, e € int K and ||z — te|| < 0, whenever n € N, ¢t € [1 —27",1], x € K and ||z|| = ¢.

*479T Lemma (a) If g : R” — R is a smooth function with compact support,

1 2 _ _
o o Y gdin = —r(r = 2)B,g(x)

for every z € R".
(b) Let g, h : R" — R be smooth functions with compact support. Then

er h x V2gdu = er g x V2h = —fRT grad h. grad g dp.

(c) Let ¢ be a totally finite Radon measure on R”, and W, : R” — [0, 00] the associated Newtonian
potential. Then fRT We x Vigduy = —r(r — 2)B, fRngC for every smooth function ¢ : R™ — R with
compact support.

(d) Let ¢ be a totally finite Radon measure on R” such that W is finite-valued everywhere and Lipschitz.
Then er grad f. grad Wedp = r(r — 2)5, fRT. fdC for every Lipschitz function f : R™ — R with compact
support.

(e) Let K C R" be a compact set, and ¢ > 0. Then there is a Radon measure ¢ on R", with support
included in K+ B(0, €), such that W¢ is a smooth function with compact support, W > x K, (R" < cap K +¢
and

S | grad We||2dp = r(r — 2)B, energy(¢) < r(r — 2)B,CR".

*479U Theorem Let K C R” be compact, and let ® be the set of Lipschitz functions g : R” — R such
that g(x) > 1 for every € K and lim;|o g(2) = 0. Then

r(r—2)6.cap K = inf{/ | grad g||?dp : g € ® is smooth and has compact support}
R’V‘
=inf{ [ | gradg|’du: g € ®}.
R’V‘
*479V Theorem Let D C R” be a set of finite outer Lebesgue measure, and Bp the closed ball with
centre 0 and the same outer measure as D. Then the Choquet-Newton capacity ¢(D) of D is at least cap Bp.

*479W Theorem Let C™ be the family of non-empty closed subsets of R", with its Fell topology. Then
there is a unique Radon measure 6 on C* such that 6*{C : C € C*, DN C # 0} is the Choquet-Newton
capacity ¢(D) of D for every D C R".
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