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Chapter 47

Geometric measure theory

I offer a chapter on geometric measure theory, continuing from Chapter 26. The greater part of it is
directed specifically at two topics: a version of the Divergence Theorem (475N) and the elementary theory
of Newtonian capacity and potential (§479). I do not attempt to provide a balanced view of the subject,
for which I must refer you to Mattila 95, Evans & Gariepy 92 and Federer 69. However §472,
at least, deals with something which must be central to any approach, Besicovitch’s Density Theorem
for Radon measures on Rr (472D). In §473 I examine Lipschitz functions, and give crude forms of some
fundamental ineqalities relating integrals

∫
‖ grad f‖dµ with other measures of the variation of a function

f (473H, 473K). In §474 I introduce perimeter measures λ∂E and outward-normal functions ψE as those for
which the Divergence Theorem, in the form

∫
E

divφ dµ =
∫
φ .ψE dλ

∂
E , will be valid (474E), and give the

geometric description of ψE(x) as the Federer exterior normal to E at x (474R). In §475 I show that λ∂E can
be identified with normalized Hausdorff (r − 1)-dimensional measure on the essential boundary of E.

§471 is devoted to Hausdorff measures on general metric spaces, extending the ideas introduced in §264
for Euclidean space, up to basic results on densities (471P) and Howroyd’s theorem (471S). In §476 I turn to
a different topic, the problem of finding the subsets of Rr on which Lebesgue measure is most ‘concentrated’
in some sense. I present a number of classical results, the deepest being the Isoperimetric Theorem (476H):
among sets with a given measure, those with the smallest perimeters are the balls.

The last three sections are different again. Classical electrostatics led to a vigorous theory of capacity and
potential, based on the idea of ‘harmonic function’. It turns out that ‘Brownian motion’ in Rr (§477) gives
an alternative and very powerful approach to the subject. I have brought Brownian motion and Wiener
measure to this chapter because I wish to use them to illuminate the geometry of Rr; but much of §477
(in particular, the strong Markov property, 477G) is necessarily devoted to adapting ideas developed in
the more general contexts of Lévy and Gaussian processes, as described in §§455-456. In §478 I give the
most elementary parts of the theory of harmonic and superharmonic functions, building up to a definition of
‘harmonic measures’ based on Brownian motion (478P). In §479 I use these techniques to describe Newtonian
capacity and its extension Choquet-Newton capacity (479C) on Euclidean space of three or more dimensions,
and establish their basic properties (479E, 479F, 479N, 479P, 479U).

Version of 10.2.16

471 Hausdorff measures

I begin the chapter by returning to a class of measures which we have not examined in depth since
Chapter 26. The primary importance of these measures is in studying the geometry of Euclidean space; in
§265 I looked briefly at their use in describing surface measures, which will reappear in §475. Hausdorff
measures are also one of the basic tools in the study of fractals, but for such applications I must refer you
to Falconer 90 and Mattila 95. All I shall attempt to do here is to indicate some of the principal ideas
which are applicable to general metric spaces, and to look at some special properties of Hausdorff measures
related to the concerns of this chapter and of §261.

471A Definition Let (X, ρ) be a metric space and r ∈ ]0,∞[. For δ > 0 and A ⊆ X, set

θrδA = inf{
∞∑

n=0

(diamDn)r : 〈Dn〉n∈N is a sequence of subsets of X covering A,

diamDn ≤ δ for every n ∈ N}.
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2 Geometric measure theory 471A

(As in §264, take diam ∅ = 0 and inf ∅ = ∞.) It will be useful to note that every θrδ is an outer measure.
Now set

θrA = supδ>0 θrδA

for A ⊆ X; θr also is an outer measure on X, as in 264B; this is r-dimensional Hausdorff outer
measure on X. Let µHr be the measure defined by Carathéodory’s method from θr; µHr is r-dimensional
Hausdorff measure on X.

Notation It may help if I list some notation already used elsewhere. Suppose that (X, ρ) is a metric space.
I write

B(x, δ) = {y : ρ(y, x) ≤ δ}, U(x, δ) = {y : ρ(y, x) < δ}
for x ∈ X, δ ≥ 0; recall that U(x, δ) is open (2A3G). For x ∈ X and A, A′ ⊆ X I write

ρ(x,A) = infy∈A ρ(x, y), ρ(A,A′) = infy∈A,z∈A′ ρ(y, z);

for definiteness, take inf ∅ to be ∞, as before.

471B Definition Let (X, ρ) be a metric space. An outer measure θ on X is a metric outer measure
if θ(A ∪B) = θA+ θB whenever A, B ⊆ X and ρ(A,B) > 0.

471C Proposition Let (X, ρ) be a metric space and θ a metric outer measure on X. Let µ be the
measure on X defined from θ by Carathéodory’s method. Then µ is a topological measure.

proof (Compare 264E, part (b) of the proof.) Let G ⊆ X be open, and A any subset of X such that
θA <∞. Set

An = {x : x ∈ A, ρ(x,A \G) ≥ 2−n},

B0 = A0, Bn = An \An−1 for n > 1.

Observe that An ⊆ An+1 for every n and
⋃
n∈NAn =

⋃
n∈NBn = A ∩ G. The point is that if m, n ∈ N

and n ≥ m + 2, and if x ∈ Bm and y ∈ Bn, then there is a z ∈ A \G such that ρ(y, z) < 2−n+1 ≤ 2−m−1,
while ρ(x, z) must be at least 2−m, so ρ(x, y) ≥ ρ(x, z) − ρ(y, z) ≥ 2−m−1. Thus ρ(Bm, Bn) > 0 whenever
n ≥ m+ 2. It follows that for any k ≥ 0

∑k
m=0 θB2m = θ(

⋃
m≤k B2m) ≤ θ(A ∩G) <∞,

∑k
m=0 θB2m+1 = θ(

⋃
m≤k B2m+1) ≤ θ(A ∩G) <∞.

Consequently
∑∞
n=0 θBn <∞.

But now, given ǫ > 0, there is an m such that
∑∞
n=m θBm ≤ ǫ, so that

θ(A ∩G) + θ(A \G) ≤ θAm +

∞∑

n=m

θBn + θ(A \G)

≤ ǫ+ θAm + θ(A \G) = ǫ+ θ(Am ∪ (A \G))

(since ρ(Am, A \G) ≥ 2−m)

≤ ǫ+ θA.

As ǫ is arbitrary, θ(A∩G) + θ(A \G) ≤ θA. As A is arbitrary, G is measured by µ; as G is arbitrary, µ is a
topological measure.

471D Theorem Let (X, ρ) be a metric space and r > 0. Let µHr be r-dimensional Hausdorff measure
on X, and Σ its domain; write θr for r-dimensional Hausdorff outer measure on X, as defined in 471A.

(a) µHr is a topological measure.
(b) For every A ⊆ X there is a Gδ set H ⊇ A such that µHrH = θrA.
(c) θr is the outer measure defined from µHr (that is, θr is a regular outer measure).

Measure Theory



471D Hausdorff measures 3

(d) Σ is closed under Souslin’s operation.
(e) µHrE = sup{µHrF : F ⊆ E is closed} whenever E ∈ Σ and µHrE <∞.
(f) If A ⊆ X and θrA <∞ then A is separable and the set of isolated points of A is µHr-negligible.
(g) µHr is atomless.
(h) If µHr is totally finite it is a quasi-Radon measure.

proof (a) The point is that θr, as defined in 471A, is a metric outer measure. PPP (Compare 264E, part (a)
of the proof.) Let A, B be subsets of X such that ρ(A,B) > 0. Of course θr(A ∪B) ≤ θrA+ θrB, because
θr is an outer measure. For the reverse inequality, we may suppose that θr(A ∪ B) < ∞, so that θrA and
θrB are both finite. Let ǫ > 0 and let δ1, δ2 > 0 be such that

θrA+ θrB ≤ θrδ1A+ θrδ2B + ǫ,

defining the θrδi as in 471A. Set δ = min(δ1, δ2,
1
2ρ(A,B)) > 0 and let 〈Dn〉n∈N be a sequence of sets of

diameter at most δ, covering A ∪B, and such that
∑∞
n=0(diamDn)r ≤ θrδ(A ∪B) + ǫ. Set

K = {n : Dn ∩A 6= ∅}, L = {n : Dn ∩B 6= ∅}.

Because ρ(x, y) > diamDn whenever x ∈ A, y ∈ B and n ∈ N, K ∩ L = ∅; and of course A ⊆ ⋃
n∈K Dk,

B ⊆ ⋃
n∈LDn. Consequently

θrA+ θrB ≤ ǫ+ θrδ1A+ θrδ2B ≤ ǫ+
∑

n∈K
(diamDn)r +

∑

n∈L
(diamDn)r

≤ ǫ+

∞∑

n=0

(diamDn)r ≤ 2ǫ+ θrδ(A ∪B) ≤ 2ǫ+ θr(A ∪B).

As ǫ is arbitrary, θr(A∪B) ≥ θrA+ θrB, and we therefore have equality. As A and B are arbitrary, θr is a
metric outer measure. QQQ

Now 471C tells us that µHr must be a topological measure.

(b) (Compare 264Fa.) If θrA = ∞ this is trivial. Otherwise, for each n ∈ N, let 〈Dni〉i∈N be a sequence
of sets of diameter at most 2−n such that A ⊆ ⋃

i∈NDi and
∑∞
i=0(diamDni)

r ≤ θr,2−n(A) + 2−n, defining

θr,2−n as in 471A. Let ηni ∈ ]0, 2−n] be such that (2ηni + diamDni)
r ≤ 2−n−i + (diamDni)

r, and set
Gni = {x : ρ(x,Dni) < ηni}, for all n, i ∈ N; then Gni =

⋃
x∈Dni

U(x, ηni) is an open set including Dni and

(diamGni)
r ≤ 2−n−i + (diamDni)

r. Set

H =
⋂
n∈N

⋃
i∈NGni,

so that H is a Gδ set including A.
For any δ > 0, there is an n ∈ N such that 3 · 2−n ≤ δ, so that diamGmi ≤ diamDmi + 2ηmi ≤ δ for

every i ∈ N and m ≥ n, and

θrδH ≤
∞∑

i=0

(diamGmi)
r ≤

∞∑

i=0

2−m−i + (diamDmi)
r

≤ 2−m+1 + θr,2−m(A) + 2−m ≤ 2−m+2 + θrA

for every m ≥ n. Accordingly θrδH ≤ θrA for every δ > 0, so θrH ≤ θrA. Of course this means that
θrH = θrA; and since, by (a), µHr measures H, we have µHrH = θrA, as required.

(c) (Compare 264Fb.) If A ⊆ X,

θrA ≥ µ∗
HrA

(by (b))

= inf{θrE : A ⊆ E ∈ Σ} ≥ θrA.

(d) Use 431C.

D.H.Fremlin



4 Geometric measure theory 471D

(e) By (b), there is a Borel set H ⊇ E such that µHrH = µHrE, and now there is a Borel set H ′ ⊇ H \E
such that µHrH

′ = µHr(H \ E) = 0, so that G = H \H ′ is a Borel set included in E and µHrG = µHrE.
Now G is a Baire set (4A3Kb), so is Souslin-F (421L), and µHrG = supF⊆G is closed µHrF , by 431E.

(f) For every n ∈ N, there must be a sequence 〈Dni〉i∈N of sets of diameter at most 2−n covering A; now
if D ⊆ A is a countable set which meets Dni whenever i, n ∈ N and A ∩Dni 6= ∅, D will be dense in A. If
A0 is the set of isolated points in A, it is still separable (4A2P(a-iv)); but as the only dense subset of A0 is
itself, it is countable. Since θrδ{x} = (diam{x})r = 0 for every δ > 0, µHr{x} = 0 for every x ∈ X, and A0

is negligible.

(g) In fact, if A ⊆ X and θrA > 0, there are disjoint A0, A1 ⊆ A such that θrAi > 0 for both i. PPP (i)
Suppose first that A is not separable. For each n ∈ N, let Dn ⊆ A be a maximal set such that ρ(x, y) ≥ 2−n

for all distinct x, y ∈ Dn; then
⋃
n∈NDn is dense in A, so there is some n ∈ N such that Dn is uncountable;

if we take A1, A2 to be disjoint uncountable subsets of Dn, then θrA1 = θrA2 = ∞. (ii) If A is separable,
then set G = {G : G ⊆ X is open, θr(A∩G) = 0}. Because A is hereditarily Lindelöf (4A2P(a-iii)), there is
a countable subset G0 of G such that A ∩⋃G = A ∩⋃G0 (4A2H(c-i)), so A ∩⋃G is negligible and A \⋃G
has at least two points x0, x1. If we set Ai = A∩U(xi,

1
2ρ(xi, x1−i)) for each i, these are disjoint subsets of

A of non-zero outer measure. QQQ

(h) If µHr is totally finite, then it is inner regular with respect to the closed sets, by (e). Also, because
X must be separable, by (f), therefore hereditarily Lindelöf, µHr must be τ -additive (414O). Finally, µHr
is complete just because it is defined by Carathéodory’s method. So µHr is a quasi-Radon measure.

471E Corollary If (X, ρ) is a metric space, r > 0 and Y ⊆ X then r-dimensional Hausdorff measure

µ
(Y )
Hr on Y extends the subspace measure (µ

(X)
Hr )Y on Y induced by r-dimensional Hausdorff measure µ

(X)
Hr

on X; and if either Y is measured by µ
(X)
Hr or Y has finite r-dimensional Hausdorff outer measure in X, then

µ
(Y )
Hr = (µ

(X)
Hr )Y .

proof Write θ
(X)
r and θ

(Y )
r for the two r-dimensional Hausdorff outer measures.

If A ⊆ Y and 〈Dn〉n∈N is any sequence of subsets of X covering A, then 〈Dn ∩ Y 〉n∈N is a sequence
of subsets of Y covering A, and

∑∞
n=0(diam(Dn ∩ Y ))r ≤ ∑∞

n=0(diamDn)r; moreover, when calculating
diam(Dn ∩ Y ), it doesn’t matter whether we use the metric ρ on X or the subspace metric ρ↾Y × Y on
Y . What this means is that, for any δ > 0, θrδA is the same whether calculated in Y or in X, so that

θ
(Y )
r A = supδ>0 θrδA = θ

(X)
r A.

Thus θ
(Y )
r = θ

(X)
r ↾PY . Also, by 471Db, θ

(X)
r is a regular outer measure. So 214Hb gives the results.

471F Corollary Let (X, ρ) be an analytic metric space (that is, a metric space in which the topology is
analytic in the sense of §423), and write µHr for r-dimensional Hausdorff measure on X. Suppose that ν is
a locally finite indefinite-integral measure over µHr. Then ν is a Radon measure.

proof Since dom ν ⊇ domµHr, ν is a topological measure. Because X is separable, therefore hereditarily
Lindelöf, ν is σ-finite and τ -additive, therefore locally determined and effectively locally finite. Next, it is
inner regular with respect to the closed sets. PPP Let f be a Radon-Nikodým derivative of ν. If νE > 0, there
is an E′ ⊆ E such that

0 < νE′ =
∫
f × χE′ dµHr <∞.

There is a µHr-simple function g such that g ≤ f × χE′ µHr-a.e. and
∫
g dµHr > 0; setting H = E′ ∩ {x :

g(x) > 0}, νHrH < ∞. Now there is a closed set F ⊆ H such that µHrF > 0, by 471De, and in this case
νF ≥

∫
F
g dµHr > 0. By 412B, this is enough to show that ν is inner regular with respect to the closed sets.

QQQ
Since ν is complete (234I), it is a quasi-Radon measure, therefore a Radon measure (434Jf, 434Jb).

471G Increasing Sets Lemma (Davies 70) Let (X, ρ) be a metric space and r > 0.
(a) Suppose that δ > 0 and that 〈An〉n∈N is a non-decreasing sequence of subsets of X with union A.

Then θr,6δ(A) ≤ (5r + 2) supn∈N θrδAn.

Measure Theory



471G Hausdorff measures 5

(b) Suppose that δ > 0 and that 〈An〉n∈N is a non-decreasing sequence of subsets of X with union A.
Then θrδA = supn∈N θrδAn.

proof (a) If supn∈N θrδAn = ∞ this is trivial; suppose otherwise.

(i) Take any γ > γ′ > supn∈N θrδAn. For each i ∈ N, let ζi ∈
]
0, 14δ

]
be such that (α + ζi)

r ≤
αr + 2−i−1(γ − γ′) whenever 0 ≤ α ≤ δ. For each n ∈ N, there is a sequence 〈Cni〉i∈N of sets covering An
such that diamCni ≤ δ for every i and

∑∞
i=0(diamCni)

r < γ′; let 〈γni〉i∈N be such that diamCni ≤ γni ≤ δ
and γni > 0 for every i and

∑∞
i=0 γ

r
ni ≤ γ′. Since

∑∞
i=0 γ

r
ni is finite, limi→∞ γni = 0. Because γni > 0 for

every i, we may rearrange the sequences 〈Cni〉i∈N, 〈γni〉i∈N in such a way that γni ≥ γn,i+1 for each i.
In this case, limi→∞ supn∈N γni = 0. PPP

(i+ 1)γrni ≤
∑i
j=0 γ

r
nj ≤ γ

for every n, i ∈ N. QQQ

(ii) By Ramsey’s theorem (4A1G, with n = 2), there is an infinite set I ⊆ N such that

for all i, j ∈ N there is an s ∈ N such that either Cmi ∩ Cnj = ∅ whenever m, n ∈ I and
s ≤ m < n or Cmi ∩ Cnj 6= ∅ whenever m, n ∈ I and s ≤ m < n,

for each i ∈ N, αi = limn∈I,n→∞ γni is defined in R.

(Apply 4A1Fb with the families

Jij = {J : J ∈ [N]ω, either Cmi ∩ Cnj = ∅ whenever m, n ∈ J and m < n

or Cmi ∩ Cnj 6= ∅ whenever m, n ∈ J and m < n}
J ′
iq = {J : J ∈ [N]ω, either γni ≤ q for every n ∈ J

or γni ≥ q for every n ∈ J}
for i, j ∈ N and q ∈ Q.)

Of course αj ≤ αi ≤ δ whenever i ≤ j, because γnj ≤ γni ≤ δ for every n. Set Dni = {x : ρ(x,Cni) ≤
2αi + 2ζi} for all n, i ∈ N, and Di =

⋃
s∈N

⋂
n∈I\sDni for i ∈ N. (I am identifying each s ∈ N with the set

of its predecessors.) Note that if i ∈ N and x, y ∈ Di, then there is an s ∈ N such that x, y both belong to
Dni for every n ∈ I \ s, so ρ(x, y) ≤ diamDni for every n ∈ I \ s and ρ(x, y) ≤ lim infn∈I,n→∞ diamDni.
Accordingly diamDi ≤ lim infn∈I,n→∞ diamDni.

(iii) Set

L = {(i, j) : i, j ∈ N, ∀ s ∈ N ∃ m, n ∈ I, s ≤ m < n and Cmi ∩ Cnj 6= ∅}.

If (i, j) ∈ L then there is an s ∈ N such that Cmi ⊆ Dmin(i,j) whenever m ∈ I and m ≥ s. PPP By the choice
of I, we know that there is an s0 ∈ N such that Cmi ∩ Cnj 6= ∅ whenever m, n ∈ I and s0 ≤ m < n. Let
s1 ≥ s0 be such that

γmi ≤ αi + min(ζi, ζj), γmj ≤ αj + min(ζi, ζj)

whenever m ∈ I and m ≥ s1. Take m0 ∈ I such that m0 ≥ s1, and set s = m0 + 1. Let m ∈ I be such that
m ≥ s.

(ααα) Suppose that i ≤ j and x ∈ Cmi. Take any n ∈ I such that m ≤ n. Then there is an n′ ∈ I such
that n < n′. We know that Cmi ∩ Cn′j and Cni ∩ Cn′j are both non-empty. So

ρ(x,Cni) ≤ diamCmi + diamCn′j ≤ γmi + γn′j ≤ αi + ζi + αj + ζi ≤ 2αi + 2ζi

and x ∈ Dni. This is true for all n ∈ I such that n ≥ m, so x ∈ Di. As x is arbitrary, Cmi ⊆ Di.

(βββ) Suppose that j ≤ i and x ∈ Cmi. Take any n ∈ I such that n > m. Then Cmi ∩ Cnj is not
empty, so

ρ(x,Cnj) ≤ diamCmi ≤ γi ≤ αi + ζj ≤ αj + ζj

and x ∈ Dnj . As x and n are arbitrary, Cmi ⊆ Dj .
Thus Cmi ⊆ Dmin(i,j) in both cases. QQQ

(iv) Set

D.H.Fremlin



6 Geometric measure theory 471G

D =
⋃
i∈NDi, J = {i : i ∈ N, ∃ s ∈ N, Cni ⊆ D whenever n ∈ I and n ≥ s}.

If i ∈ N \ J and j ∈ N, then (iii) tells us that (i, j) /∈ L, so there is some s ∈ N such that Cmi ∩ Cnj = ∅
whenever m, n ∈ I and s ≤ m < n.

(v) For l ∈ N, µ∗
Hr(Al \ D) ≤ 2γ. PPP Let ǫ > 0. Then there is a k ∈ N such that γni ≤ ǫ whenever

n ∈ N and i > k. Next, there is an s ∈ N such that

Cni ⊆ D whenever i ≤ k, i ∈ J , n ∈ I and s ≤ n,

Cmi ∩ Cnj = ∅ whenever i, j ≤ k, i /∈ J , m, n ∈ I and s ≤ m < n.

Take m, n ∈ I such that max(l, s) ≤ m < n. Then

Al \D =
⋃

i∈N

Al ∩ Cmi \D

⊆
⋃

i≤k
(An ∩ Cmi \D) ∪

⋃

i>k

Cmi

⊆
⋃

i≤k,i/∈J
(An ∩ Cmi) ∪

⋃

i>k

Cmi

⊆
⋃

i≤k,i/∈J,j≤k
(Cmi ∩ Cnj) ∪

⋃

j>k

Cnj ∪
⋃

i>k

Cmi

=
⋃

j>k

Cnj ∪
⋃

i>k

Cmi.

Since diamCnj ≤ γj ≤ ǫ and diamCmi ≤ γi ≤ ǫ for all i, j > k,

θrǫ(Al \D) ≤ ∑∞
i=k+1 γ

r
ni +

∑∞
i=k+1 γ

r
mi ≤ 2γ.

This is true for every ǫ > 0, so µ∗
Hr(Al \D) ≤ 2γ, as claimed. QQQ

(vi) This is true for each l ∈ N. But this means that µ∗
Hr(A \D) ≤ 2γ (132Ae). Now θr,6δD ≤ 5rγ. PPP

For each i ∈ N,

diamDi ≤ lim inf
n∈I,n→∞

diamDni ≤ lim inf
n∈I,n→∞

diamCni + 4αi + 4ζi

≤ lim
n∈I,n→∞

γni + 4αi + 4ζi = 5αi + 4ζi ≤ 6δ.

Next, for any k ∈ N,
∑k
i=0 α

r
i = limn∈I,n→∞

∑k
i=0 γ

r
ni ≤ γ′,

so

k∑

i=0

(diamDi)
r ≤ 5r

k∑

i=0

(αi + ζi)
r ≤ 5r(

k∑

i=0

αri + 2−i−1(γ − γ′))

(by the choice of the ζi)

≤ 5r(γ′ +
k∑

i=0

2−i−1(γ − γ′)) ≤ 5rγ.

Letting k → ∞,

θr,6δD ≤ ∑∞
i=0(diamDi)

r ≤ 5rγ. QQQ

Putting these together,

θr,6δA ≤ θr,6δD + θr,6δ(A \D) ≤ θr,6δD + µ∗
Hr(A \D) ≤ (5r + 2)γ.

As γ is arbitrary, we have the preliminary result (a).

Measure Theory



471G Hausdorff measures 7

(b) Now let us turn to the sharp form (b). Once again, we may suppose that supn∈N θrδAn is finite.

(i) Take γ such that supn∈N θrδAn < γ. As in (a)(i) above, we can find a family 〈Cni〉n,i∈N such that

An ⊆ ⋃
i∈N Cni,

diamCni ≤ δ for every i ∈ N,

∑∞
i=0(diamCni)

r ≤ γ

for each n, and

limi→∞ supn∈N diamCni = 0.

Replacing each Cni by its closure if necessary, we may suppose that every Cni is a Borel set.
Let Q ⊆ X be a countable set which meets Cni whenever n, i ∈ N and Cni is not empty. This time, let

I ⊆ N be an infinite set such that

αi = limn∈I,n→∞ diamCni is defined in [0, δ] for every i ∈ N,

limn∈I,n→∞ ρ(z, Cni) is defined in [0,∞] for every i ∈ N and every z ∈ Q.

(Take ρ(z, ∅) = ∞ if any of the Cni are empty.) It will be helpful to note straight away that the limit
limn∈I,n→∞ ρ(x,Cni) is defined in [0,∞] for every i ∈ N and x ∈ Q. PPP If limn∈I,n→∞ ρ(y, Cni) = ∞ for
some y ∈ Q, then limn∈I,n→∞ ρ(x,Cni) = ∞, and we can stop. Otherwise, for any ǫ > 0, there are a
z ∈ Q such that ρ(x, z) ≤ ǫ and an s ∈ N such that Cmi is not empty and |ρ(z, Cmi) − ρ(z, Cni)| ≤ ǫ
whenever m, n ∈ I \ s; in which case |ρ(x,Cmi) − ρ(x,Cni)| ≤ 3ǫ whenever m, n ∈ I \ s. As ǫ is arbitrary,
limn∈I,n→∞ ρ(x,Cni) is defined in R. QQQ

Let F be a non-principal ultrafilter on N containing I, and for i ∈ N set

Di = {x : limn→F ρ(x,Cni) = 0}.

Set D =
⋃
i∈NDi. (Actually it is easy to check that every Di is closed.)

(ii) Set

A∗ =
⋃
m∈N

⋂
n∈I\m

⋃
i∈N Cni \D;

note that A∗ is a Borel set. For k, m ∈ N, set

A∗
km =

⋂
n∈I\m

⋃
i≥k Cni.

For fixed k, 〈A∗
km〉m∈N is a non-decreasing sequence of sets. Also its union includes A∗. PPP Take x ∈ A∗.

(ααα)??? If x /∈ Q, let ǫ > 0 be such that Q∩B(x, ǫ) = ∅. Let l ∈ N be such that diamCni ≤ ǫ whenever
n ∈ N and i ≥ l; then x /∈ Cni whenever n ∈ N and i ≥ l. Let m ∈ N be such that x ∈ ⋃

i∈N Cni whenever
n ∈ I and n ≥ m. Then x ∈ ⋃

i<l Cni whenever n ∈ I and n ≥ m. But this means that there must be some
i < l such that {n : x ∈ Cni} ∈ F and x ∈ Di ⊆ D; which is impossible. XXX

(βββ) Thus x ∈ Q, so limn∈I,n→∞ ρ(x,Cni) is defined for each i (see (i) above), and must be greater
than 0, since x /∈ Di. In particular, there is an s ∈ N such that x /∈ Cni whenever i < k and n ∈ I \s; there is
also an m ∈ N such that x ∈ ⋂

n∈I\m
⋃
i∈N Cni; so that x ∈ A∗

k,max(s,m). As x is arbitrary, A∗ ⊆ ⋃
m∈NA

∗
km.

QQQ

(iii) µHrA
∗ is finite. PPP Take any ǫ > 0. Let k ∈ N be such that diamCni ≤ ǫ whenever i ≥ k and

n ∈ N. For any m ∈ I, θrǫA
∗
km ≤ ∑∞

i=k(diamCmi)
r ≤ γ. By (a),

θr,6ǫA
∗ ≤ (5r + 2) sup

m∈N

θrǫA
∗
km

= (5r + 2) sup
m∈I

θrǫA
∗
km ≤ (5r + 2)γ.

As ǫ is arbitrary, µHrA
∗ ≤ (5r + 2)γ <∞. QQQ

D.H.Fremlin
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(iv) Actually, µHrA
∗ ≤ γ − ∑∞

i=0 α
r
i . PPP??? Suppose, if possible, otherwise. Take β such that γ −∑∞

i=0 α
r
i < β < µHrA

∗. For x ∈ A∗ and k ∈ N, set fk(x) = min{n : n ∈ I, x ∈ A∗
kn}; then 〈fk〉k∈N is a

non-decreasing sequence of Borel measurable functions from A∗ to N. Choose 〈sk〉k∈N inductively so that

µHr{x : x ∈ A∗, fj(x) ≤ sj for every j ≤ k} > β

for every k ∈ N. Set Ã = {x : x ∈ A∗, fj(x) ≤ sj for every j ∈ N}; because µHrA
∗ is finite, µHrÃ ≥ β.

Take ǫ > 0 such that θrǫÃ > γ −∑∞
i=0 α

r
i . Let k ∈ N be such that θrǫÃ +

∑k−1
i=0 α

r
i > γ and diamCni ≤ ǫ

whenever n ∈ N and i ≥ k. Take n ∈ I such that n ≥ sj for every j ≤ k and θrǫÃ+
∑k−1
i=0 (diamCni)

r > γ.

If x ∈ Ã, then

fk(x) ≤ sk ≤ n, x ∈ A∗
kn ⊆ ⋃

i≥k Cni,

so θrǫÃ ≤ ∑∞
i=k(diamCni)

r; but this means that
∑∞
i=0(diamCni)

r > γ, contrary to the choice of the Cni.
XXXQQQ

(v) Now observe that

A ⊆ ⋃
m∈N

⋂
n≥m

⋃
i∈N Cni ⊆ A∗ ∪D.

Moreover, for any i ∈ N, diamDi ≤ αi ≤ δ. PPP If x, y ∈ Di then for every ǫ > 0

ρ(x,Cni) ≤ ǫ, ρ(y, Cni) ≤ ǫ, diamCni ≤ αi + ǫ

for all but finitely many n ∈ I. So ρ(x, y) ≤ αi + 3ǫ. As x, y and ǫ are arbitrary, diamDi = diamDi ≤ αi.
Of course αi ≤ δ because diamCni ≤ δ for every n. QQQ

Now

θrδD ≤ ∑∞
i=0(diamDi)

r ≤ ∑∞
i=0 α

r
i .

Putting this together with (iv),

θrδA ≤ θrδD + θrδA
∗ ≤ θrδD + µHrA

∗ ≤ γ.

As γ is arbitrary,

θrδA ≤ supn∈N θrδAn;

as θrδ is an outer measure, we have equality.

471H Corollary Let (X, ρ) be a metric space, and r > 0. For A ⊆ X, set

θr∞A = inf{∑∞
n=0(diamDn)r : 〈Dn〉n∈N is a sequence of subsets of X covering A}.

Then θr∞ is an outer regular Choquet capacity on X.

proof (a) Of course 0 ≤ θr∞A ≤ θr∞B whenever A ⊆ B ⊆ X.

(b) Suppose that 〈An〉n∈N is a non-decreasing sequence of subsets of A with union A. By (a), γ =
limn→∞ θr∞An is defined and less than or equal to θr∞A. If γ = ∞, of course it is equal to θr∞A.
Otherwise, take β = (γ + 1)1/r. For n, k ∈ N there is a sequence 〈Dnki〉i∈N of sets, covering An, such that∑∞
i=0(diamDnki)

r ≤ γ + 2−k. But in this case diamDnki ≤ β for all n, k and i, so the Dnki witness that
θrβAn ≤ γ. By 471Gb, γ ≥ θrβA ≥ θr∞A and again we have γ = θr∞A.

(c) Let A ⊆ X be any set, and suppose that γ > θr∞A. Let 〈Dn〉n∈N be a sequence of sets, covering
A, such that

∑∞
n=0(diamDn)r < γ. Let 〈ǫn〉n∈N be a sequence of strictly positive real numbers such that∑∞

n=0(diamDn + 2ǫn)r ≤ γ. Set Gn = {x : ρ(x,Dn) < ǫn} for each n; then Gn is open and diamGn ≤
diamDn + 2ǫn. So G =

⋃
n∈NGn is an open set including A, and 〈Gn〉n∈N witnesses that θr∞G ≤ γ. As A

and γ are arbitrary, the condition of 432Jb is satisfied and θr∞ is an outer regular Choquet capacity.

Remark θr∞ is r-dimensional Hausdorff capacity on X.

471I Theorem Let (X, ρ) be a metric space, and r > 0. Write µHr for r-dimensional Hausdorff measure
on X. If A ⊆ X is analytic, then µHrA is defined and equal to sup{µHrK : K ⊆ A is compact}.

Measure Theory
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proof (a) Before embarking on the main line of the proof, it will be convenient to set out a preliminary
result. For δ > 0, n ∈ N, B ⊆ X set

θ
(n)
rδ (B) = inf{∑n

i=0(diamDi)
r : B ⊆ ⋃

i≤nDi, diamDi ≤ δ for every i ≤ n},

taking inf ∅ = ∞ as usual. Then θrδB ≤ θ
(n)
rδ (B) for every n. Now the point is that θ

(n)
rδ (B) = sup{θ(n)rδ (I) :

I ⊆ B is finite}. PPP Set γ = supI∈[B]<ω θ
(n)
rδ (I). Of course γ ≤ θ

(n)
rδ (B). If γ = ∞ there is nothing

more to say. Otherwise, take any γ′ > γ. For each I ∈ [B]<ω, we have a function fI : I → {0, . . . , n}
such that

∑
i∈J ρ(xi, yi)

r ≤ γ′ whenever J ⊆ {0, . . . , n} and xi, yi ∈ I and fI(xi) = fI(yi) = i for every
i ∈ J , while ρ(x, y) ≤ δ whenever x, y ∈ I and fI(x) = fI(y). Let F be an ultrafilter on [B]<ω such that
{I : x ∈ I ∈ [B]<ω} ∈ F for every x ∈ B (4A1Ia). Then for every x ∈ B there is an f(x) ∈ {0, . . . , n} such
that {I : x ∈ I ∈ [B]<ω, fI(x) = f(x)} ∈ F . Set Di = f−1[{i}] for i ≤ n. If x, y ∈ B and f(x) = f(y),
there is an I ∈ [B]<ω containing both x and y such that fI(x) = f(x) = f(y) = fI(y), so that ρ(x, y) ≤ δ;
thus diamDi ≤ δ for each i. If J ⊆ {0, . . . , n} and for each i ∈ J we take xi, yi ∈ Di, then there is
an I ∈ [B]<ω such that fI(xi) = fI(yi) = i for every i ∈ J , so

∑
i∈J ρ(xi, yi)

r ≤ γ′. This means that
∑
i≤n(diamDi)

r ≤ γ′, so that θ
(n)
rδ (B) ≤ γ′. As γ′ is arbitrary, θ

(n)
rδ (B) ≤ γ, as claimed. QQQ

(b) Now let us turn to the set A. Because A is Souslin-F (422Ha), µHr measures A (471Da, 471Dd). Set
γ = sup{µHrK : K ⊆ A is compact}.

??? Suppose, if possible, that µHrA > γ. Take γ′ ∈ ]γ, µHrA[. Let δ > 0 be such that γ′ < θrδA. Let
f : NN → A be a continuous surjection. For σ ∈ S =

⋃
n∈N Nn, set

Fσ = {φ : φ ∈ NN, φ(i) ≤ σ(i) for every i < #(σ)},

so that f [F∅] = A. Now choose ψ ∈ NN and a sequence 〈In〉n∈N of finite subsets of NN inductively, as follows.

Given that Ij ⊆ Fψ↾n for every j < n and that θrδ(f [Fψ↾n]) > γ′, then θ
(n)
rδ (f [Fψ↾n]) > γ′, so by (a) above

there is a finite subset In of Fψ↾n such that θ
(n)
rδ (f [In]) ≥ γ′. Next,

lim
i→∞

θrδf [F(ψ↾n)a<i>] = θrδ(
⋃

i∈N

f [F(ψ↾n)a<i>])

(by 471G)

= θrδf [Fψ↾n] > γ′,

so we can take ψ(n) such that
⋃
j≤n Ij ⊆ Fψ↾n+1 and θrδf [Fψ↾n+1] > γ′, and continue.

At the end of the induction, set K = {φ : φ ≤ ψ}. Then f [K] is a compact subset of A, and In ⊆ K for
every n ∈ N, so

θ
(n)
rδ (f [K]) ≥ θ

(n)
rδ (f [In]) ≥ γ′

for every n ∈ N. On the other hand, µHr(f [K]) ≤ γ, so there is a sequence 〈Di〉i∈N of sets, covering
f [K], all of diameter less than δ, such that

∑∞
i=0(diamDi)

r < γ′. Enlarging the Di slightly if need be, we
may suppose that they are all open. But in this case there is some finite n such that K ⊆ ⋃

i≤nDi, and

θ
(n)
rδ (K) ≤ ∑n

i=0(diamDi)
r < γ′; which is impossible. XXX

This contradiction shows that µHrA = γ, as required.

471J Proposition Let (X, ρ) and (Y, σ) be metric spaces, and f : X → Y a γ-Lipschitz function, where

γ ≥ 0. If r > 0 and θ
(X)
r , θ

(Y )
r are the r-dimensional Hausdorff outer measures on X and Y respectively,

then θ
(Y )
r f [A] ≤ γrθ

(X)
r A for every A ⊆ X.

proof (Compare 264G.) Let δ > 0. Set η = δ/(1 + γ) and consider θ
(X)
rη : PX → [0,∞], defined as in 471A.

We know that θ
(X)
r A ≥ θ

(X)
rη A, so there is a sequence 〈Dn〉n∈N of sets, all of diameter at most η, covering

A, with
∑∞
n=0(diamDn)r ≤ θ

(X)
r A+ δ. Now f [A] ⊆ ⋃

n∈N f [Dn] and

diam f [Dn] ≤ γ diamDn ≤ γη ≤ δ

for every n. Consequently

D.H.Fremlin
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θ
(Y )
rδ (f [A]) ≤ ∑∞

n=0(diam f [Dn])r ≤ ∑∞
n=0 γ

r(diamDn)r ≤ γr(θ
(X)
r A+ δ),

and

θ
(Y )
r (f [A]) = limδ↓0 θ

(Y )
rδ (f [A]) ≤ γrθ

(X)
r A,

as claimed.

471K Lemma Let (X, ρ) be a metric space, and r > 0. Let µHr be r-dimensional Hausdorff measure on
X. If A ⊆ X, then µHrA = 0 iff for every ǫ > 0 there is a countable family D of sets, covering A, such that∑
D∈D(diamD)r ≤ ǫ.

proof If µHrA = 0 and ǫ > 0, then, in the language of 471A, θr1A ≤ ǫ, so there is a sequence 〈Dn〉n∈N of
sets covering A such that

∑∞
n=0(diamDn)r ≤ ǫ.

If the condition is satisfied, then for any ǫ, δ > 0 there is a countable family D of sets, covering A,
such that

∑
D∈D(diamD)r ≤ min(ǫ, δr). If D is infinite, enumerate it as 〈Dn〉n∈N; if it is finite, enumerate

it as 〈Dn〉n<m and set Dn = ∅ for n ≥ m. Now A ⊆ ⋃
n∈NDn and diamDn ≤ δ for every n ∈ N, so

θrδA ≤ ∑∞
n=0(diamDn)r ≤ ǫ. As ǫ is arbitrary, θrδA = 0; as δ is arbitrary, θrA = 0; it follows at once that

µHrA is defined and is zero (113Xa).

471L Proposition Let (X, ρ) be a metric space and 0 < r < s. If A ⊆ X is such that µ∗
HrA is finite,

then µHsA = 0.

proof Let ǫ > 0. Let δ > 0 be such that δs−r(1 + µ∗
HrA) ≤ ǫ. Then there is a sequence 〈An〉n∈N of sets of

diameter at most δ such that A ⊆ ⋃
n∈NAn and

∑∞
n=0(diamAn)r ≤ 1 + µ∗

HrA. But now, by the choice of

δ,
∑∞
n=0(diamAn)s ≤ ǫ. As ǫ is arbitrary, µHsA = 0, by 471K.

471M There is a generalization of the density theorems of §§223 and 261 for general Hausdorff measures,
which (as one expects) depends on a kind of Vitali theorem. I will use the following notation for the next
few paragraphs.

Definition If (X, ρ) is a metric space and A ⊆ X, write A∼ for {x : x ∈ X, ρ(x,A) ≤ 2 diamA}, where
ρ(x,A) = infy∈A ρ(x, y). (Following the conventions of 471A, ∅∼ = ∅.)

471N Lemma Let (X, ρ) be a metric space. Let F be a family of subsets ofX such that {diamF : F ∈ F}
is bounded. Set

Y =
⋂
δ>0

⋃{F : F ∈ F , diamF ≤ δ}.

Then there is a disjoint family I ⊆ F such that
(i)

⋃F ⊆ ⋃
F∈I F

∼;

(ii) Y ⊆ ⋃J ∪⋃
F∈I\J F

∼ for every J ⊆ I.

proof (a) Let γ be an upper bound for {diamF : F ∈ F}. Choose 〈In〉n∈N, 〈Jn〉n∈N inductively, as follows.
I0 = ∅. Given In, set F ′

n = {F : F ∈ F , diamF ≥ 2−nγ, F ∩⋃ In = ∅}, and let Jn ⊆ F ′
n be a maximal

disjoint set; now set In+1 = In ∪ Jn, and continue.
At the end of the induction, set

I ′ =
⋃
n∈N In, I = I ′ ∪ {{x} : x ∈ F \⋃ I ′, {x} ∈ F}.

The construction ensures that every In is a disjoint subset of F , so I ′ and I are also disjoint subfamilies of
F .

(b) ??? Suppose, if possible, that there is a point x in
⋃F \⋃F∈I F

∼. Let F ∈ F be such that x ∈ F .

Since x /∈ ⋃ I ′ and {x} /∈ I, {x} /∈ F , and diamF > 0; let n ∈ N be such that 2−nγ ≤ diamF ≤ 2−n+1γ.
If F /∈ F ′

n, there is a D ∈ In such that F ∩D 6= ∅; otherwise, since Jn is maximal and F /∈ Jn, there is a
D ∈ Jn such that F ∩D 6= ∅. In either case, we have a D ∈ I such that F ∩D 6= ∅ and diamF ≤ 2 diamD.
But in this case ρ(x,D) ≤ diamF ≤ 2 diamD and x ∈ D∼, which is impossible. XXX

(c) ??? Suppose, if possible, that there are a point x ∈ Y and a set J ⊆ I such that x /∈ ⋃J ∪⋃F∈I\J F
∼.

Then there is an F ∈ F such that x ∈ F and diamF < ρ(x,
⋃J ), so that F ∩ ⋃J = ∅. As in (b), F
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cannot be {x}, and there must be an n ∈ N such that 2−nγ < diamF ≤ 2−n+1γ. As in (b), there must
be a D ∈ In+1 such that F ∩ D 6= ∅, so that x ∈ D∼; and as D cannot belong to J , we again have a
contradiction. XXX

471O Lemma Let (X, ρ) be a metric space, and r > 0. Suppose that A, F are such that

(i) F is a family of closed subsets of X such that
∑∞
n=0(diamFn)r is finite for every disjoint

sequence 〈Fn〉n∈N in F ,
(ii) for every x ∈ A, δ > 0 there is an F ∈ F such that x ∈ F and 0 < diamF ≤ δ.

Then there is a countable disjoint family I ⊆ F such that A\⋃ I has zero r-dimensional Hausdorff measure.

proof Replacing F by {F : F ∈ F , 0 < diamF ≤ 1} if necessary, we may suppose that supF∈F diamF
is finite and that diamF > 0 for every F ∈ F . Take a disjoint family I ⊆ F as in 471N. If I is finite,
then A ⊆ Y ⊆ ⋃ I, where Y is defined as in 471N, so we can stop. Otherwise, hypothesis (i) tells us
that {F : F ∈ I, diamF ≥ δ} is finite for every δ > 0, so I is countable; enumerate it as 〈Fn〉n∈N; we
must have

∑∞
n=0(diamFn)r < ∞. Since diamF∼

n ≤ 5 diamFn for every n,
∑∞
n=0(diamF∼

n )r is finite, and
infn∈N

∑∞
i=n(diamF∼

i )r = 0. But now observe that the construction ensures that A \⋃ I ⊆ ⋃
i≥n F

∼
i for

every n ∈ N. By 471K, µHr(A \⋃ I) = 0, as required.

471P Theorem Let (X, ρ) be a metric space, and r > 0. Let µHr be r-dimensional Hausdorff measure
on X. Suppose that A ⊆ X and µ∗

HrA <∞.

(a) limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} = 1 for µHr-almost every x ∈ A.

(b) lim supδ↓0
µ∗

Hr(A∩B(x,δ))

δr
≥ 1 for µHr-almost every x ∈ A. So

2−r ≤ lim supδ↓0
µ∗

Hr(A∩B(x,δ))

(diamB(x,δ))r
≤ 1

for µHr-almost every x ∈ A.
(c) If A is measured by µHr, then

limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} = 0

for µHr-almost every x ∈ X \A.

proof (a)(i) Note first that as the quantities

sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ}

decrease with δ, the limit is defined in [0,∞] for every x ∈ X. Moreover, since diamD = diamD and
µ∗
Hr(A ∩D) ≥ µ∗

Hr(A ∩D) for every D,

sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D ⊆ X, 0 < diamD ≤ δ}

= sup{µ
∗
Hr(A∩F )

(diamF )r
: F ⊆ X is closed, x ∈ F, 0 < diamF ≤ δ}

for every x and δ.

(ii) Fix ǫ for the moment, and set

Aǫ = {x : x ∈ A, limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} > 1 + ǫ}.

Then θrη(A) ≤ µ∗
HrA− ǫ

1+ǫ
µ∗
HrAǫ for every η > 0, where θrη is defined in 471A. PPP Let F be the family

{F : F ⊆ X is closed, 0 < diamF ≤ η, (1 + ǫ)(diamF )r ≤ µ∗
Hr(A ∩ F )}.

Then every member of Aǫ belongs to sets in F of arbitrarily small diameter. Also, if 〈Fn〉n∈N is any disjoint
sequence in F ,
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∑∞
n=0(diamFn)r ≤ ∑∞

n=0 µ
∗
Hr(A ∩ Fn) ≤ µ∗

HrA <∞
because every Fn, being closed, is measured by µHr. (If you like, Fn ∩ A is measured by the subspace
measure on A for every n.) So 471O tells us that there is a countable disjoint family I ⊆ F such that
Aǫ \

⋃ I is negligible, and µ∗
HrAǫ = µ∗

Hr(Aǫ ∩
⋃ I).

Because θrη is an outer measure and θrη ≤ µ∗
Hr,

θrηA ≤ θrη(A ∩
⋃

I) + θrη(A \
⋃

I) ≤
∑

F∈I
(diamF )r + µ∗

Hr(A \
⋃

I)

(because I is countable)

≤ 1

1+ǫ
µ∗
Hr(A ∩

⋃
I) + µ∗

Hr(A \
⋃

I) = µ∗
HrA− ǫ

1+ǫ
µ∗
Hr(A ∩

⋃
I)

≤ µ∗
HrA− ǫ

1+ǫ
µ∗
Hr(Aǫ ∩

⋃
I) = µ∗

HrA− ǫ

1+ǫ
µ∗
HrAǫ,

as claimed. QQQ

(iii) Taking the supremum as η ↓ 0, µ∗
HrA ≤ µ∗

HrA− ǫ

1+ǫ
µ∗
HrAǫ and µHrAǫ = 0.

This is true for any ǫ > 0. But

{x : x ∈ A, limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} > 1}

is just
⋃
n∈NA2−n , so is negligible.

(iv) Next, for 0 < ǫ ≤ 1, set

A′
ǫ = {x : x ∈ A, µ∗

Hr(A ∩D) ≤ (1 − ǫ)(diamD)r

whenever x ∈ D and 0 < diamD ≤ ǫ}.

Then A′
ǫ is negligible. PPP Let 〈Dn〉n∈N be any sequence of sets of diameter at most ǫ covering A′

ǫ. Set
K = {n : Dn ∩A′

ǫ 6= ∅}. Then

µ∗
HrA

′
ǫ ≤

∑

n∈K
µ∗
Hr(A ∩Dn)

≤ (1 − ǫ)
∑

n∈K
(diamDn)r ≤ (1 − ǫ)

∞∑

n=0

(diamDn)r.

As 〈Dn〉n∈N is arbitrary,

µ∗
HrA

′
ǫ ≤ (1 − ǫ)θrǫA

′
ǫ ≤ (1 − ǫ)µ∗

HrA
′
ǫ,

and µ∗
HrA

′
ǫ (being finite) must be zero. QQQ

This means that

{x : x ∈ A, limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} < 1} ⊆ ⋃

n∈NA
′
2−n

is also negligible, and we have the result.

(b) We need a slight modification of the argument in (a)(iv). This time, for 0 < ǫ ≤ 1, set

Ã′
ǫ = {x : x ∈ A, µ∗

Hr(A ∩B(x, δ)) ≤ (1 − ǫ)δr whenever 0 < δ ≤ ǫ}.

Then µ∗
HrÃ

′
ǫ ≤ ǫ. PPP Note first that, as µHr{x} = 0 for every x, µ∗

Hr(A ∩ B(x, δ)) ≤ (1 − ǫ)δr whenever

x ∈ Ã′
ǫ and 0 ≤ δ ≤ ǫ. Let 〈Dn〉n∈N be a sequence of sets of diameter at most ǫ covering Ã′

ǫ. Set

K = {n : Dn ∩ Ã′
ǫ 6= ∅}, and for n ∈ K choose xn ∈ Dn ∩ Ã′

ǫ and set δn = diamDn. Then Dn ⊆ B(xn, δn)

and δn ≤ ǫ for each n, so Ã′
ǫ ⊆

⋃
n∈K B(xn, δn) and

Measure Theory



471Q Hausdorff measures 13

µ∗
HrÃ

′
ǫ ≤

∑

n∈K
µ∗
Hr(Ã

′
ǫ ∩B(xn, δn))

≤
∑

n∈K
(1 − ǫ)δrn ≤ (1 − ǫ)

∞∑

n=0

(diamDn)r.

As 〈Dn〉n∈N is arbitrary, µ∗
HrÃ

′
ǫ ≤ (1 − ǫ)µ∗

HrÃ
′
ǫ and Ã′

ǫ must be negligible. QQQ
Now

{x : x ∈ A, lim supδ↓0
µ∗

Hr(A∩B(x,δ))

δr
< 1} =

⋃
n∈N Ã

′
2−n

is negligible. As for the second formula, we need note only that diamB(x, δ) ≤ 2δ for every x ∈ X, δ > 0
to obtain the first inequality, and apply (a) to obtain the second.

(c) Let ǫ > 0. This time, write Ãǫ for

{x : x ∈ X, limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} > ǫ}.

Let E ⊆ A be a closed set such that µ(A \ E) ≤ ǫ2 (471De). For η > 0, let Fη be the family

{F : F ⊆ X \ E is closed, 0 < diamF ≤ η, µHr(A ∩ F ) ≥ ǫ(diamF )r}.

Just as in (a) above, every point in Ãǫ \E belongs to members of Fη of arbitrarily small diameter. If 〈Fi〉i∈I
is a countable disjoint family in Fη,

∑
i∈I(diamFi)

r ≤ 1

ǫ
µHr(A \ E) ≤ ǫ

is finite. There is therefore a countable disjoint family Iη ⊆ Fη such that µHr((Ãǫ \ E) \⋃ Iη) = 0. If θrη
is the outer measure defined in 471A, we have

θrη(Ãǫ \A) ≤ θrη(
⋃

Iη) + θrη(Ãǫ \ (E ∪
⋃

Iη))

≤
∑

F∈Iη

(diamF )r + µ∗
Hr(Ãǫ \ (E ∪

⋃
Iη)) ≤ ǫ.

As η is arbitrary, µ∗
Hr(Ãǫ \A) ≤ ǫ. But now

{x : x ∈ X \A, limδ↓0 sup{µ
∗
Hr(A∩D)

(diamD)r
: x ∈ D, 0 < diamD ≤ δ} > 0}

is
⋂
n∈N Ã2−n \A, and is negligible.

471Q I now come to a remarkable fact about Hausdorff measures on analytic spaces: their Borel versions
are semi-finite (471S). We need some new machinery.

Lemma Let (X, ρ) be a metric space, and r > 0, δ > 0. Suppose that θrδX, as defined in 471A, is finite.
(a) There is a non-negative additive functional ν on PX such that νX = 5−rθrδX and νA ≤ (diamA)r

whenever A ⊆ X and diamA ≤ 1
5δ.

(b) If X is compact, there is a Radon measure µ on X such that µX = 5−rθrδX and µG ≤ (diamG)r

whenever G ⊆ X is open and diamG ≤ 1
5δ.

proof (a) I use 391E. If θrδX = 0 the result is trivial. Otherwise, set γ = 5r/θrδX and define φ : PX → [0, 1]
by setting φA = min(1, γ(diamA)r) if diamA ≤ 1

5δ, 1 for other A ⊆ X. Now

whenever 〈Ai〉i∈I is a finite family of subsets of X, m ∈ N and
∑
i∈I χAi ≥ mχX, then∑

i∈I φAi ≥ m.

PPP Discarding any Ai for which φAi = 1, if necessary, we may suppose that diamAi ≤ 1
5δ and φAi =

γ(diamAi)
r for every i. Choose 〈Ij〉j≤m, 〈Jj〉j<m inductively, as follows. I0 = I. Given that j < m and

that Ij ⊆ I is such that
∑
i∈Ij χAi ≥ (m − j)χX, apply 471N to {Ai : i ∈ Ij} to find Jj ⊆ Ij such that
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14 Geometric measure theory 471Q

〈Ai〉i∈Jj is disjoint and
⋃
i∈Ij Ai ⊆ ⋃

i∈Jj A
∼
j . Set Ij+1 = Ij \ Jj . Observe that

∑
i∈Jj χAj ≤ χX, so∑

i∈Ij+1
χAi ≥ (m− j − 1)χX and the induction proceeds.

Now note that, for each j < m, 〈A∼
i 〉i∈Jj is a cover of

⋃
i∈Ij Ai = X by sets of diameter at most δ. So∑

i∈Jj (diamA∼
i )r ≥ θrδX for each j, and

∑
i∈I(diamA∼

i )r ≥ mθrδX. Accordingly

∑

i∈I
φAi = γ

∑

i∈I
(diamAi)

r ≥ 5−rγ
∑

i∈I
(diamA∼

i )r

≥ 5−rmγθrδX = m. QQQ

By 391E, there is an additive functional ν0 : PX → [0, 1] such that ν0X = 1 and ν0A ≤ φA for every
A ⊆ X. Setting ν = 5−rθrδXν0, we have the result.

(b) Now suppose that X is compact. By 416K, there is a Radon measure µ on X such that µK ≥ νK
for every compact K ⊆ X and µG ≤ νG for every open G ⊆ X. Because X itself is compact, µX = νX =
5−rθrδX. If G is open and diamG ≤ 1

5δ,

µG ≤ νG ≤ (diamG)r,

as required.

471R Lemma (Howroyd 95) Let (X, ρ) be a compact metric space and r > 0. Let µHr be r-dimensional
Hausdorff measure on X. If µHrX > 0, there is a Borel set H ⊆ X such that 0 < µHrH <∞.

proof (a) Let δ > 0 be such that θr,5δ(X) > 0, where θr,5δ is defined as in 471A. Then there is a family
V of open subsets of X such that (i) diamV ≤ δ for every V ∈ V (ii) {V : V ∈ V, diamV ≥ ǫ} is finite
for every ǫ > 0 (iii) whenever A ⊆ X and 0 < diamA < 1

4δ there is a V ∈ V such that A ⊆ V and

diamV ≤ 8 diamA. PPP For each k ∈ N, let Ik be a finite subset of X such that X =
⋃
x∈Ik B(x, 2−k−2δ);

now set V = {U(x, 2−k−1δ) : k ∈ N, x ∈ Ik}. Then V is a family of open sets and (i) and (ii) are satisfied.
If A ⊆ X and 0 < diamA < 1

4δ, let k ∈ N be such that 2−k−3δ ≤ diamA < 2−k−2δ. Take x ∈ Ik such that

B(x, 2−k−2δ) ∩A 6= ∅; then A ⊆ U(x, 2−k−1δ) ∈ V and diamU(x, 2−k−1δ) ≤ 2−kδ ≤ 8 diamA. QQQ
In particular, {V : V ∈ V, diamV ≤ ǫ} covers X for every ǫ > 0.

(b) Set

P = {µ : µ is a Radon measure on X, µV ≤ (diamV )r for every V ∈ V}.

P is non-empty (it contains the zero measure, for instance). Now if G ⊆ X is open, µ 7→ µG is lower
semi-continuous for the narrow topology (437Jd), so P is a closed set in the narrow topology on the set of
Radon measures on X, which may be identified with a subset of C(X)∗ with its weak* topology (437Kc).
Moreover, since there is a finite subfamily of V covering X, γ = sup{µX : µ ∈ P} is finite, and P is compact
(437Pb/437Rf). Because µ 7→ µX is continuous, P0 = {µ : µ ∈ P, µX = γ} is non-empty. Of course P
and P0 are both convex, and P0, like P , is compact. By the Krěın-Mil’man theorem (4A4Gb), applied in
C(X)∗, P has an extreme point ν say.

Note next that θr,5δ(X) is certainly finite, again because X is compact. By 471Qb, γ > 0, and ν is
non-trivial. For any ǫ > 0, there is a finite cover of X by sets in V of diameter at most ǫ, which have
measure at most ǫr (for ν); so ν is atomless. In particular, ν{x} = 0 for every x ∈ X.

(c) For ǫ > 0, set

Gǫ =
⋃{V : V ∈ V, 0 < diamV ≤ ǫ and νV ≥ 1

2 (diamV )r}.

Then Gǫ is ν-conegligible. PPP??? Otherwise, ν(X \Gǫ) > 0. Because V ′
ǫ = {V : V ∈ V, diamV > ǫ} is finite,

there is a Borel set E ⊆ X \ Gǫ such that νE > 0 and, for every V ∈ V ′
ǫ, either E ⊆ V or E ∩ V = ∅.

Because ν is atomless, there is a measurable set E0 ⊆ E such that νE0 = 1
2νE (215D); set E1 = E \ E0.

Define Radon measures ν0, ν1 on X by setting

νi(F ) = 2ν(F ∩ Ei) + ν(F \ E)

whenever ν measures F \ E1−i, for each i (use 416S if you feel the need to check that this defines a Radon
measure on the definitions of this book). If V ∈ V, then, by the choice of E,

Measure Theory
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either E ⊆ V and νiV = νV ≤ (diamV )r

or E ∩ V = ∅ and νiV = νV ≤ (diamV )r

or 0 < diamV ≤ ǫ and νV < 1
2 (diamV )r, in which case νiV ≤ 2νV ≤ (diamV )r

or diamV = 0 and νiV = νV = 0 = (diamV )r.

So both νi belong to P and therefore to P0, since νiX = νX = γ. But ν = 1
2 (ν0 + ν1) and ν0 6= ν1, so this

is impossible, because ν is supposed to be an extreme point of P0. XXXQQQ

(d) Accordingly, setting H =
⋂
n∈NG2−n , νH = νX = γ. Now examine µHrH.

(i) µHrH ≥ 8−rγ. PPP Let 〈An〉n∈N be a sequence of sets covering H with diamAn ≤ 1
8δ for every n.

Set K = {n : diamAn > 0}, H ′ = H ∩⋃
n∈K An; then H \H ′ is countable, so νH ′ = νH. For each n ∈ K,

let Vn ∈ V be such that An ⊆ Vn and diamVn ≤ 8 diamAn ((a) above). Then

∞∑

n=0

(diamAn)r =
∑

n∈K
(diamAn)r ≥ 8−r

∑

n∈K
(diamVn)r

≥ 8−r
∑

n∈K
νVn ≥ 8−rνH ′ = 8−rγ.

As 〈An〉n∈N is arbitrary,

8−rγ ≤ θr,δ/8(H) ≤ µ∗
HrH = µHrH. QQQ

(ii) µHrH ≤ 2γ. PPP Let η > 0. Set F = {V : V ∈ V, 0 < diamV ≤ η, νV ≥ 1
2 (diamV )r}. Then F is

a family of closed subsets of X, and (by the definition of Gǫ) every member of H belongs to members of F
of arbitrarily small diameter. Also νF ≥ 1

2 (diamF )r for every F ∈ F , so
∑∞
n=0(diamFn)r ≤ 2

∑∞
n=0 νFn <∞

for any disjoint sequence 〈Fn〉n∈N in F . By 471O, there is a countable disjoint family I ⊆ F such that
µHr(H \⋃ I) = 0. Accordingly

θrη(H) ≤ ∑
F∈I(diamF )r + θrη(H \⋃ I) ≤ ∑

F∈I 2νF ≤ 2γ.

As η is arbitrary, µHrH = µ∗
HrH ≤ 2γ. QQQ

(e) But this means that we have found a Borel set H with 0 < µHrH <∞, as required.

471S Theorem (Howroyd 95) Let (X, ρ) be an analytic metric space, and r > 0. Let µHr be r-
dimensional Hausdorff measure on X, and B the Borel σ-algebra of X. Then the Borel measure µHr↾B is
semi-finite and tight (that is, inner regular with respect to the closed compact sets).

proof Suppose that E ∈ B and µHrE > 0. Since E is analytic (423Eb), 471I above tells us that there
is a compact set K ⊆ E such that µHrK > 0. Next, by 471R, there is a Borel set H ⊆ K such that
0 < µHrH <∞. (Strictly speaking, µHrH here should be calculated as the r-dimensional Hausdorff measure
of H defined by the subspace metric ρ↾K ×K on K. By 471E we do not need to distinguish between this
and the r-dimensional measure calculated from ρ itself.) By 471I again (applied to the subspace metric on
H), there is a compact set L ⊆ H such that µHrL > 0.

Thus E includes a non-negligible compact set of finite measure. As E is arbitrary, this is enough to show
both that µHr↾B is semi-finite and that it is tight.

471T Proposition Let (X, ρ) be a metric space, and r > 0.
(a) If X is analytic and µHrX > 0, then for every s ∈ ]0, r[ there is a non-zero Radon measure µ on X

such that
∫∫ 1

ρ(x,y)s
µ(dx)µ(dy) <∞.

(b) If there is a non-zero topological measure µ on X such that
∫∫ 1

ρ(x,y)r
µ(dx)µ(dy) is finite, then

µHrX = ∞.
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16 Geometric measure theory 471T

proof (a) By 471S, there is a compact set K ⊆ X such that µHrK > 0. Set δ = 5 diamK and define
θrδ as in 471A. Then θrδK > 0, by 471K, and θrδK ≤ (diamK)r < ∞. By 471Qb, there is a Radon
measure ν on K such that νK > 0 and νG ≤ (diamG)r whenever G ⊆ K is relatively open; consequently
ν∗A ≤ (diamA)r for every A ⊆ K. Now, for any y ∈ X,

∫

K

1

ρ(x,y)s
ν(dx) =

∫ ∞

0

ν{x : x ∈ K,
1

ρ(x,y)s
≥ t}dt =

∫ ∞

0

ν{x : x ∈ K, ρ(x, y) ≤ 1

t1/s
}dt

=

∫ ∞

0

ν(K ∩B(y,
1

t1/s
))dt ≤

∫ ∞

0

(diam(K ∩B(y,
1

t1/s
)))rdt

≤
∫ ∞

0

(min(diamK,
2

t1/s
))rdt ≤ 2r

∫ ∞

0

min((diamK)r,
1

tr/s
)dt <∞

because r > s. It follows at once that
∫
K

∫
K

1

ρ(x,y)s
ν(dx)ν(dy) is finite. Taking µ to be the extension of ν

to a Radon measure on X for which X \K is negligible, we have an appropriate µ.

(b)(i) We can suppose that X is separable (471Df). Since the integrand is strictly positive, µ must be
σ-finite, so that there is no difficulty with the repeated integral. Replacing µ by µ F for some set F of
non-zero finite measure, we can suppose that µ is totally finite; and replacing µ by a scalar multiple of itself,
we can suppose that it is a probability measure.

(ii) Let ǫ > 0. Let H be the conegligible set {y :
∫ 1

ρ(x,y)r
µ(dx) <∞}. For any y ∈ X, µ{y} = 0, so

limδ↓0
∫
B(y,δ)

1

ρ(x,y)r
µ(dx) = 0

for every y ∈ H. For each δ > 0,

(x, y) 7→ χB(y,δ)(x)

ρ(x,y)r
: X ×X → [0,∞]

is Borel measurable, so

y 7→
∫
B(y,δ)

1

ρ(x,y)r
µ(dx) : X → [0,∞]

is Borel measurable (252P, applied to the restriction of µ to the Borel σ-algebra of X). There is therefore

a δ > 0 such that E = {y : y ∈ H,
∫
B(y,δ)

1

ρ(x,y)r
µ(dy) ≤ ǫ} has measure µE ≥ 1

2 . Note that if C ⊆ X has

diameter less than or equal to δ and meets E then µC ≤ ǫ(diamC)r. PPP Set γ = diamC and take y ∈ C∩E.
If C = {y} then µC = 0. Otherwise,

µC ≤ µB(y, γ) ≤ γr
∫
B(y,δ)

1

ρ(x,y)r
µ(dx) ≤ γrǫ. QQQ

Now suppose that E ⊆ ⋃
i∈I Ci where diamCi ≤ δ for every i, and each Ci is either empty or meets E.

Then

1

2
≤ µE ≤ ∑∞

i=0 µCi ≤
∑∞
i=0 ǫ(diamCi)

r.

As 〈Ci〉i∈N is arbitrary, ǫµHrE ≥ 1

2
and µHrX ≥ 1

2ǫ
. As ǫ is arbitrary, µHrX = ∞.

Remark See 479Cb below.

471X Basic exercises (a) Define a metric ρ on X = {0, 1}N by setting ρ(x, y) = 2−n if x↾n = y↾n
and x(n) 6= y(n). Show that the usual measure µ on X is one-dimensional Hausdorff measure. (Hint :
diamF ≥ µF for every closed set F ⊆ X.)

(b) Suppose that g : R → R is continuous and non-decreasing, and that ν is the corresponding Lebesgue-

Stieltjes measure (114Xa). Define ρ(x, y) = |x − y| +
√

|g(x) − g(y)| for x, y ∈ R. Show that ρ is a metric
on R defining the usual topology. Show that ν is 2-dimensional Hausdorff measure for the metric ρ.
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(c) Let r ≥ 1 be an integer, and give Rr the metric ((ξ1, . . . , ξr), (η1, . . . , ηr)) 7→ maxi≤r |ξi − ηi|. Show
that Lebesgue measure on Rr is Hausdorff r-dimensional measure for this metric.

(d) Let (X, ρ) be a metric space and r > 0; let µHr, θr∞ be r-dimensional Hausdorff measure and capacity
on X. (i) Show that, for A ⊆ X, µHrA = 0 iff θr∞A = 0. (ii) Suppose that E ⊆ X and δ > 0 are such that
δµHrE < θr∞E. Show that there is a closed set F ⊆ E such that µHrF > 0 and δµHr(F ∩G) ≤ (diamG)r

whenever µHr measures G. (Hint : show that {G• : θr∞G < δµHrG} cannot be order-dense in the measure
algebra of µHr. This is a version of ‘Frostman’s Lemma’.) (iii) Let C be the family of closed subsets of X,
with its Vietoris topology. Show that θr∞↾C is upper semi-continuous.

(e) Show that all the outer measures θrδ described in 471A are outer regular Choquet capacities.

(f) Let (X, ρ) be an analytic metric space, (Y, σ) a metric space, and f : X → Y a Lipschitz function.
Show that if r > 0 and A ⊆ X is measured by Hausdorff r-dimensional measure on X, with finite measure,
then f [A] is measured by Hausdorff r-dimensional measure on Y .

(g) Let (X, ρ) be a metric space and r > 0. Show that a set A ⊆ X is negligible for Hausdorff r-
dimensional measure on X iff there is a sequence 〈An〉n∈N of subsets of X such that

∑∞
n=0(diamAn)r is

finite and A ⊆ ⋂
n∈N

⋃
m≥nAm.

(h) Let (X, ρ) be a metric space. (i) Show that there is a unique dimH(X) ∈ [0,∞] such that the
r-dimensional Hausdorff measure of X is infinite if 0 < r < dimH(X), zero if r > dimH(X). (dimH(X)
is the Hausdorff dimension of X.) (ii) Show that if 〈An〉n∈N is any sequence of subsets of X, then
dimH(

⋃
n∈NAn) = supn∈N dimH(An).

(i) Let (X, ρ) be a metric space, and µ any topological measure on X. Suppose that E ⊆ X and that
µE is defined and finite. (i) Show that (x, δ) 7→ µ(E ∩ B(x, δ)) : X × [0,∞[ → R is upper semi-continuous.

(ii) Show that x 7→ lim supδ↓0
1

δr
µ(E ∩B(x, δ)) : X → [0,∞] is Borel measurable, for every r ≥ 0. (iii) Show

that if X is separable, then µB(x, δ) > 0 for every δ > 0, for µ-almost every x ∈ X.

(j) Give R its usual metric. Let C ⊆ R be the Cantor set, and r = ln 2/ ln 3. Show that

lim infδ↓0
µHr(C∩B(x,δ))

(diamB(x,δ))r
≤ 2−r

for every x ∈ R.

(k) Let (X, ρ) be a metric space and r > 0. Let µHr be r-dimensional Hausdorff measure on X and
µ̃Hr its c.l.d. version (213D-213E). Show that µ̃Hr is inner regular with respect to the closed sets, and that
µ̃HrA = µHrA for every analytic set A ⊆ X.

471Y Further exercises (a) The next few exercises (down to 471Yd) will be based on the following.
Let (X, ρ) be a metric space and ψ : PX → [0,∞] a function such that ψ∅ = 0 and ψA ≤ ψA′ whenever
A ⊆ A′ ⊆ X. Set

θψδA = inf{
∞∑

n=0

ψDn : 〈Dn〉n∈N is a sequence of subsets of X covering A,

diamDn ≤ δ for every n ∈ N}
for δ > 0, and θψA = supδ>0 θψδA for A ⊆ X. Show that θψ is a metric outer measure. Let µψ be the
measure defined from θψ by Carathéodory’s method.

(b) Suppose that ψA = inf{ψE : E is a Borel set including A} for every A ⊆ X. Show that θψ = µ∗
ψ

and that µψE = sup{µψF : F ⊆ E is closed} whenever µψE <∞.

(c) Suppose that X is separable and that β > 0 is such that ψA∼ ≤ βψA for every A ⊆ X, where A∼

is defined in 471M. (i) Suppose that A ⊆ X and F is a family of closed subsets of X such that
∑∞
n=0 ψFn
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is finite for every disjoint sequence 〈Fn〉n∈N in F and for every x ∈ A, δ > 0 there is an F ∈ F such that
x ∈ F and 0 < diamF ≤ δ. Show that there is a disjoint family I ⊆ F such that µψ(A \ ⋃ I) = 0. (ii)
Suppose that δ > 0 and that θψδ(X) < ∞. Show that there is a non-negative additive functional ν on PX
such that νX = 1

β θψδ(X) and νA ≤ ψA whenever A ⊆ X and diamA ≤ 1
5δ. (iii) Now suppose that for

every x ∈ X and ǫ > 0 there is a δ > 0 such that ψB(x, δ) ≤ ǫ. Show that if X is compact and µψX > 0
there is a compact set K ⊆ X such that 0 < µψK <∞.

(d) State and prove a version of 471P appropriate to this context.

(e) Give an example of a set A ⊆ R2 which is measured by Hausdorff 1-dimensional measure on R2 but
is such that its projection onto the first coordinate is not measured by Hausdorff 1-dimensional measure on
R.

(f) Let ρ be a metric on R inducing the usual topology. Show that the corresponding Hausdorff dimension
of R is at least 1.

(g) Show that the space (X, ρ) of 471Xa can be isometrically embedded as a subset of a metric space
(Y, σ) in such a way that (i) diamB(y, δ) = 2δ for every y ∈ Y and δ ≥ 0 (ii) Y \X is countable (iii) if µH1

is one-dimensional Hausdorff measure on Y , then µH1B(y, δ) ∈ {0, δ} for every y ∈ Y and δ ≥ 0, so that

limδ↓0
µH1B(y,δ)

diamB(x,δ)
∈ {0, 12}

for every y ∈ Y .

(h) Let 〈kn〉n∈N be a sequence in N\{0, 1, 2, 3} such that
∑∞
n=0

1

kn

<∞. Set X =
∏
n∈N kn. Set m0 = 1,

mn+1 = k0k1 . . . kn for n ∈ N. Define a metric ρ on X by saying that

ρ(x, y) = 1/2mn if n = min{i : x(i) 6= y(i)} and min(x(n), y(n)) = 0,

= 1/mn if n = min{i : x(i) 6= y(i)} and min(x(n), y(n)) > 0.

Let ν be the product measure on X obtained by giving each factor kn the uniform probability measure in
which each singleton set has measure 1/kn. (i) Show that if A ⊆ X then ν∗A ≤ diamA. (ii) Show that ν
is one-dimensional Hausdorff measure on X. (iii) Set E =

⋃
n∈N{x : x ∈ X, x(n) = 0}. Show that νE < 1.

(iv) Show that

lim supδ↓0
ν(E∩B(x,δ))

νB(x,δ)
≥ 1

2

for every x ∈ X. (v) Show that there is a family F of closed balls in X such that every point of X is the
centre of arbitrarily small members of F , but ν(

⋃ I) < 1 for any disjoint subfamily I of F .

(i) Let (X, ρ) be a metric space and 0 < r < s. Suppose that there is an analytic set A ⊆ X such that
µHsA > 0. Show that there is a Borel surjection f : X → R such that µHrf

−1[{α}] = ∞ for every α ∈ R.

(j) Let ρ be the metric on {0, 1}N defined in 471Xa. (i) Show that for any integer k ≥ 1 there are
a γk > 0 and a bijection f : [0, 1]k → {0, 1}N such that whenever 0 < r ≤ 1, µH,rk is Hausdorff rk-
dimensional measure on [0, 1]k (for its usual metric) and µ̃Hr is Hausdorff r-dimensional measure on {0, 1}N,
then µ∗

H,rkA ≤ γkµ̃
∗
Hrf [A] ≤ γ2kµ

∗
H,rkA for every A ⊆ [0, 1]k. (ii) Show that in this case µH,rk and the

image measure µ̃Hrf
−1 have the same measurable sets, the same negligible sets and the same sets of finite

measure.

(k) Let (X, ρ) be a metric space, and r > 0. Give X × R the metric σ where σ((x, α), (y, β)) =
max(ρ(x, y), |α− β|). Write µL, µr and µr+1 for Lebesgue measure on R, r-dimensional Hausdorff measure
on (X, ρ) and (r+ 1)-dimensional Hausdorff measure on (X ×R, σ) respectively. Let λ be the c.l.d. product

of µr and µL. (i) Show that if W ⊆ X × R then
∫
µ∗
rW

−1[{α}]dα ≤ µ∗
r+1W . (ii) Show that if I ⊆ R is a

bounded interval, A ⊆ X and µ∗
rA is finite, then µ∗

r+1(A× I) = µ∗
rA · µLI. (iii) Give an example in which

there is a compact set K ⊆ X × R such that µr+1K = 1 and λK = 0. (iv) Show that if µr is σ-finite then
µr+1 = λ. (Hint : Federer 69, 2.10.45.)
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471Z Problems (a) Let µ
(2)
H1, µ

(1)
H,1/2 be one-dimensional Hausdorff measure on R2 and 1

2 -dimensional

Hausdorff measure on R respectively, for their usual metrics. Are the measure spaces (R2, µ
(2)
H1) and

(R, µ
(1)
H,1/2) isomorphic? (See 471Yj.)

(b) Let ρ be a metric on R2 inducing the usual topology, and µ
(ρ)
H2 the corresponding 2-dimensional

Hausdorff measure. Is it necessarily the case that µ
(ρ)
H2(R2) > 0? (See 471Yf.)

471 Notes and comments In the exposition above, I have worked throughout with simple r-dimensional
measures for r > 0. As noted in 264Db, there are formulae in which it is helpful to interpret µH0 as counting
measure. More interestingly, when we come to use Hausdorff measures to give us information about the
geometric structure of an object (e.g., in the observation that the Cantor set has ln 2/ ln 3-dimensional
Hausdorff measure 1, in 264J), it is sometimes useful to refine the technique by using other functionals than
A 7→ (diamA)r in the basic formulae of 264A or 471A. The most natural generalization is to functionals of
the form ψA = h(diamA) where h : [0,∞] → [0,∞] is a non-decreasing function (264Yo). But it is easy to
see that many of the arguments are valid in much greater generality, as in 471Ya-471Yc. For more in these
directions see Rogers 70 and Federer 69.

In the context of this book, the most conspicuous peculiarity of Hausdorff measures is that they are
often very far from being semi-finite. (This is trivial for non-separable spaces, by 471Df. That Hausdorff
one-dimensional measure on a subset of R2 can be purely infinite is not I think obvious; I gave an example in
439H.) The response I ordinarily recommend in such cases is to take the c.l.d. version. But then of course we
need to know just what effect this will have. In geometric applications, one usually begins by checking that
the sets one is interested in have σ-finite measure, and that therefore no problems arise; but it is a striking
fact that Hausdorff measures behave relatively well on analytic sets, even when not σ-finite, provided we
ask exactly the right questions (471I, 471S, 471Xk).

The geometric applications of Hausdorff measures, naturally, tend to rely heavily on density theorems;
it is therefore useful to know that we have effective versions of Vitali’s theorem available in this context
(471N-471O), leading to a general density theorem (471P) similar to that in 261D; see also 472D below. I
note that 471P is useful only after we have been able to concentrate our attention on a set of finite measure.
And traps remain. For instance, the formulae of 261C-261D cannot be transferred to the present context
without re-evaluation (471Yh).

This section, and indeed the chapter as a whole, is devoted to calculations involving metrics, which is why
the phrase ‘metric space’ is constantly repeated while the word ‘metrizable’ does not appear. But of course
topological ideas are omnipresent. See 471Yf for an interesting elementary fact with an obvious implied
challenge (471Zb). There is a less elementary fact in 471Yj, which shows that much of the measure space
structure, if not the geometry, of Hausdorff r-dimensional measure on Rk is determined by the ratio r/k.
(See 471Za.)

Version of 22.3.11

472 Besicovitch’s Density Theorem

The first step in the program of the next few sections is to set out some very remarkable properties of
Euclidean space. We find that in Rr, for geometric reasons (472A), we have versions of Vitali’s theorem
(472B-472C) and Lebesgue’s Density Theorem (472D) for arbitrary Radon measures. I add a version of the
Hardy-Littlewood Maximal Theorem (472F).

Throughout the section, r ≥ 1 will be a fixed integer. As usual, I write B(x, δ) for the closed ball with
centre x and radius δ. ‖ ‖ will represent the Euclidean norm, and x .y the scalar product of x and y, so that
x .y =

∑r
i=1 ξiηi if x = (ξ1, . . . , ξr) and y = (η1, . . . , ηr).

472A Besicovitch’s Covering Lemma Suppose that ǫ > 0 is such that (5r + 1)(1− ǫ− ǫ2)r > (5 + ǫ)r.
Let x0, . . . , xn ∈ Rr, δ0, . . . , δn > 0 be such that

‖xi − xj‖ > δi, δj ≤ (1 + ǫ)δi

whenever i < j ≤ n. Then
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#({i : i ≤ n, ‖xi − xn‖ ≤ δi + δn}) ≤ 5r.

proof Set I = {i : i ≤ n, ‖xi − xn‖ ≤ δn + δi}.

(a) It will simplify the formulae of the main argument if we suppose for the time being that δn = 1; in

this case 1 ≤ (1 + ǫ)δi, so that δi ≥ 1

1+ǫ
for every i ≤ n, while we still have δi < ‖xi − xn‖ for every i < n,

and ‖xi − xn‖ ≤ 1 + δi for every i ∈ I.
For i ∈ I, define x′i by saying that

– if ‖xi − xn‖ ≤ 2 + ǫ, x′i = xi;

– if ‖xi − xn‖ > 2 + ǫ, x′i is to be that point of the closed line segment from xn to xi which is
at distance 2 + ǫ from xn.

(b) The point is that ‖x′i−x′j‖ > 1− ǫ− ǫ2 whenever i, j are distinct members of I. PPP We may suppose
that i < j.

case 1 Suppose that ‖xi − xn‖ ≤ 2 + ǫ and ‖xj − xn‖ ≤ 2 + ǫ. In this case

‖x′i − x′j‖ = ‖xi − xj‖ ≥ δi ≥ 1

1+ǫ
≥ 1 − ǫ.

case 2 Suppose that ‖xi − xn‖ ≥ 2 + ǫ ≥ ‖xj − xn‖. In this case

‖x′i − x′j‖ = ‖x′i − xj‖ ≥ ‖xi − xj‖ − ‖xi − x′i‖
≥ δi − ‖xi − xn‖ + 2 + ǫ ≥ δi − δi − 1 + 2 + ǫ = 1 + ǫ.

case 3 Suppose that ‖xi − xn‖ ≤ 2 + ǫ ≤ ‖xj − xn‖. Then

‖x′i − x′j‖ = ‖xi − x′j‖ ≥ ‖xi − xj‖ − ‖xj − x′j‖ > δi − ‖xj − xn‖ + 2 + ǫ

≥ δi − δj − 1 + 2 + ǫ ≥ δi − δi(1 + ǫ) + 1 + ǫ ≥ 1 + ǫ− ǫ(2 + ǫ)

(because δi < ‖xi − xn‖ ≤ 2 + ǫ)

= 1 − ǫ− ǫ2.

case 4 Suppose that 2 + ǫ ≤ ‖xj − xn‖ ≤ ‖xi − xn‖. Let y be the point on the line segment between
xi and xn which is the same distance from xn as xj . In this case

‖y − xj‖ ≥ ‖xi − xj‖ − ‖xi − y‖ ≥ δi − ‖xi − xn‖ + ‖xj − xn‖ ≥ ‖xj − xn‖ − 1.

Because the triangles (xn, y, xj) and (xn, x
′
i, x

′
j) are similar,

‖x′i − x′j‖ =
2+ǫ

‖xj−xn‖
‖y − xj‖ ≥ (2 + ǫ)

‖xj−xn‖−1

‖xj−xn‖
≥ 1 + ǫ

because ‖xj − xn‖ ≥ 2 + ǫ.

case 5 Suppose that 2 + ǫ ≤ ‖xi − xn‖ ≤ ‖xj − xn‖. This time, let y be the point on the line segment
from xn to xj which is the same distance from xn as xi is. We now have

‖y − xi‖ ≥ ‖xi − xj‖ − ‖xj − y‖ > δi − ‖xj − xn‖ + ‖xi − xn‖
≥ δj − ǫδi − (δj + 1) + ‖xi − xn‖
= ‖xi − xn‖ − 1 − ǫδi ≥ ‖xi − xn‖(1 − ǫ) − 1,

so that

‖x′i − x′j‖ =
2+ǫ

‖xi−xn‖
‖y − xi‖ > (2 + ǫ)

‖xi−xn‖(1−ǫ)−1

‖xi−xn‖

≥ (2 + ǫ)
(2+ǫ)(1−ǫ)−1

2+ǫ
= 1 − ǫ− ǫ2.
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So we have the required inequality in all cases. QQQ

(c) Now consider the balls B(x′i,
1−ǫ−ǫ2

2 ) for i ∈ I. These are disjoint, all have Lebesgue measure

2−rβr(1− ǫ− ǫ2)r where βr is the measure of the unit ball B(0, 1), and are all included in the ball B(xn, 2 +
ǫ+ 1−ǫ

2 ), which has measure 2−rβr(5 + ǫ)r. So we must have

2−rβr(1 − ǫ− ǫ2)r#(I) ≤ 2−rβr(5 + ǫ)r.

But ǫ was declared to be so small that this implies that #(I) ≤ 5r, as claimed.

(d) This proves the lemma in the case δn = 1. For the general case, replace each xi by δ−1
n xi and each

δi by δi/δn; the change of scale does not affect the hypotheses or the set I.

472B Theorem Let A ⊆ Rr be a bounded set, and I a family of non-trivial closed balls in Rr such that
every point of A is the centre of a member of I. Then there is a family 〈Ik〉k<5r of countable subsets of I
such that each Ik is disjoint and

⋃
k<5r Ik covers A.

proof (a) For each x ∈ A let δx > 0 be such that B(x, δx) ∈ I. If either A is empty or supx∈A δx = ∞, the
result is trivial. (In the latter case, take x ∈ A such that δx ≥ diamA and set I0 = {B(x, δx)}, Ik = ∅ for
k > 0.) So let us suppose henceforth that {δx : x ∈ A} is bounded in R. In this case, C =

⋃
x∈AB(x, δx) is

bounded in Rr.
Fix ǫ > 0 such that (5r + 1)(1 − ǫ− ǫ2)r > (5 + ǫ)r.

(b) Choose inductively a sequence 〈Bn〉n∈N in I ∪{∅} as follows. Given 〈Bi〉i<n, then if A ⊆ ⋃
i<nBi set

Bn = ∅. Otherwise, set αn = sup{δx : x ∈ A\⋃i<nBi}, choose xn ∈ A\⋃i<nBi such that (1 + ǫ)δxn
≥ αn,

set Bn = B(xn, δxn
) and continue.

Now whenever n ∈ N, In = {i : i < n, Bi∩Bn 6= ∅} has fewer than 5r members. PPP We may suppose that
Bn 6= ∅, in which case Bi = B(xi, δxi

) for every i ≤ n, and the xi, δxi
are such that, whenever i < j ≤ n,

xj /∈ Bi, i.e., ‖xi − xj‖ > δxi
,

δxj
≤ αi ≤ (1 + ǫ)δxi

.

But now 472A gives the result at once. QQQ

(c) We may therefore define a function f : N → {0, 1, . . . , 5r − 1} by setting

f(n) = min{k : 0 ≤ k < 5r, f(i) 6= k for every i ∈ In}
for every n ∈ N. Set Ik = {Bi : i ∈ N, f(i) = k, Bi 6= ∅} for each k < 5r. By the choice of f , i /∈ Ij , so
that Bi ∩ Bj = ∅, whenever i < j and f(i) = f(j); thus every Ik is disjoint. Since Bi ⊆ C for every i,∑{µBi : f(i) = k} ≤ µ∗C for every k < 5r, and

∑∞
i=0 µBi ≤ 5rµ∗C is finite.

(d) ??? Suppose, if possible, that

A 6⊆ ⋃
k<5r

⋃ Ik =
⋃
n∈NBn.

Take x ∈ A \⋃n∈NBn. Then, first, A 6⊆ ⋃
i<nBi for every n, so that αn is defined; next, αn ≥ δx, so that

(1 + ǫ)δxn
≥ δx for every n. But this means that µBn ≥ βr

( δx

1+ǫ

)r
for every n, and

∑∞
n=0 µBn = ∞; which

is impossible. XXX

(e) Thus A ⊆ ⋃
k<5r

⋃ Ik, as required.

472C Theorem Let λ be a Radon measure on Rr, A a subset of Rr and I a family of non-trivial closed
balls in Rr such that every point of A is the centre of arbitrarily small members of I. Then

(a) there is a countable disjoint I0 ⊆ I such that λ(A \⋃ I0) = 0;
(b) for every ǫ > 0 there is a countable I1 ⊆ I such that A ⊆ ⋃ I1 and

∑
B∈I1

λB ≤ λ∗A+ ǫ.

proof (a)(i) The first step is to show that if A′ ⊆ A is bounded then there is a finite disjoint set J ⊆ I such
that λ∗(A′ ∩⋃J ) ≥ 6−rλ∗A′. PPP If λ∗A′ = 0 take J = ∅. Otherwise, by 472B, there is a family 〈Jk〉k<5r

of disjoint countable subsets of I such that
⋃
k<5r Jk covers A′. Accordingly
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λ∗A′ ≤ ∑5r−1
k=0 λ∗(A′ ∩⋃Jk)

and there is some k < 5r such that λ∗(A′ ∩⋃Jk) ≥ 5−rλ∗A′. Let 〈Bi〉i∈N be a sequence running over Jk;
then

limn→∞ λ∗(A′ ∩⋃
i≤nBi) = λ∗(A′ ∩⋃Jk) ≥ 5−rλ∗A′,

so there is some n ∈ N such that λ∗(A′ ∩⋃
i≤nBi) ≥ 6−rλ∗A′, and we can take J = {Bi : i ≤ n}. QQQ

(ii) Now choose 〈Kn〉n∈N inductively, as follows. Start by fixing on a sequence 〈mn〉n∈N running over
N with cofinal repetitions. Take K0 = ∅. Given that Kn is a finite disjoint subset of I, set I ′ = {B : B ∈
I, B ∩⋃Kn = ∅}, An = A ∩ B(0,mn) \⋃Kn. Because every point of A is the centre of arbitrarily small
members of I, and

⋃Kn is closed, every member of An is the centre of (arbitrarily small) members of I ′, and
(i) tells us that there is a finite disjoint set Jn ⊆ I ′ such that λ∗(An∩

⋃Jn) ≥ 6−rλ∗An. Set Kn+1 = K∪Jn,
and continue. At the end of the induction, set I0 =

⋃
n∈N Kn; because 〈Kn〉n∈N is non-decreasing and every

Kn is disjoint, I0 is disjoint, and of course I0 ⊆ I.
The effect of this construction is to ensure that

λ∗(A ∩B(0,mn) \
⋃

Kn+1) = λ∗(An \
⋃

Jn) = λ∗An − λ∗(An ∩
⋃

Jn)

(because
⋃Jn is a closed set, therefore measured by λ)

≤ (1 − 6−r)λ∗An

= (1 − 6−r)λ∗(A ∩B(0,mn) \
⋃

Kn)

for every n. So, for any m ∈ N,

λ∗(A ∩B(0,m) \⋃Kn) ≤ λ∗(A ∩B(0,m))(1 − 6−r)#({j:j<n,mj=m}) → 0

as n→ ∞, and λ∗(A ∩B(0,m) \⋃ I0) = 0. As m is arbitrary, λ∗(A \⋃ I0) = 0, as required.

(b)(i) Let E ⊇ A be such that λE = λ∗A, and H ⊇ E an open set such that λH ≤ λE + 1
2ǫ (256Bb).

Set I ′ = {B : B ∈ I, B ⊆ H}. Then every point of A is the centre of arbitrarily small members of I ′, so by
(a) there is a disjoint family I0 ⊆ I ′ such that λ(A \⋃ I0) = 0. Of course

∑
B∈I0

λB = λ(
⋃ I0) ≤ λH ≤ λ∗A+ 1

2ǫ.

(ii) For m ∈ N set Am = A ∩ B(0,m) \ ⋃ I0. Then there is a Jm ⊆ I, covering Am, such that∑
B∈Jm

λB ≤ 2−m−2ǫ. PPP There is an open set G ⊇ Am such that λG ≤ 5−r2−m−2ǫ. Now I ′′ = {B :

B ∈ I, B ⊆ G} covers Am, so there is a family 〈Jmk〉k<5r of disjoint countable subfamilies of I ′′ such that
Jm =

⋃
k<5r Jmk covers Am. For each k,

∑
B∈Jmk

λB = λ(
⋃Jmk) ≤ λG,

so
∑
B∈Jm

λB ≤ 5rλG ≤ 2−m−2ǫ. QQQ

(iii) Setting I1 = I0 ∪
⋃
m∈N Jm we have a cover of A by members of I, and

∑

B∈I1

λB ≤
∑

B∈I0

λB +

∞∑

m=0

∑

B∈Jm

λB

≤ λ∗A+
1

2
ǫ+

∞∑

m=0

2−m−2ǫ = λ∗A+ ǫ.

472D Besicovitch’s Density Theorem Let λ be any Radon measure on Rr. Then, for any locally
λ-integrable real-valued function f ,

(a) f(y) = limδ↓0
1

λB(y,δ)

∫
B(y,δ)

fdλ,
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(b) limδ↓0
1

λB(y,δ)

∫
B(y,δ)

|f(x) − f(y)|λ(dx) = 0

for λ-almost every y ∈ Rr.

Remark The theorem asserts that, for λ-almost every y, limits of the form limδ↓0
1

λB(y,δ)
. . . are defined;

in my usage, this includes the assertion that λB(y, δ) 6= 0 for all sufficiently small δ > 0.

proof (Compare 261C and 261E.)

(a) Let Z be the support of λ (411Nd); then Z is λ-conegligible and λB(y, δ) > 0 whenever y ∈ Z and
δ > 0. For q < q′ in Q and n ∈ N set

Anqq′ = {y : y ∈ Z ∩ dom f, ‖y‖ < n, f(y) ≤ q, lim supδ↓0
1

λB(y,δ)

∫
B(y,δ)

fdλ > q′}.

Then λAnqq′ = 0. PPP Let ǫ > 0. Then there is an η ∈ ]0, ǫ] such that
∫
F
|f |dλ ≤ ǫ whenever F ⊆ B(0, n) and

λF ≤ η (225A). Let E be a measurable envelope of Anqq′ included in {y : y ∈ Z∩dom f, f(y) ≤ q, ‖y‖ < n},
and take an open set G ⊇ E such that G ⊆ B(0, n) and λ(G \ E) ≤ η (256Bb again). Let I be the family
of non-singleton closed balls B ⊆ G such that

∫
B
f ≥ q′λB. Then every point of Anqq′ is the centre of

arbitrarily small members of I, so there is a disjoint family I0 ⊆ I such that λ(Anqq′ \
⋃ I0) = 0 (472C).

Now λ(E \⋃ I0) = 0 and λ((
⋃ I0) \ E) ≤ η ≤ ǫ, so

q′λE ≤ q′λ(
⋃

I0) + ǫ|q′| =
∑

B∈I0

q′λB + ǫ|q′|

≤
∑

B∈I0

∫

B

fdλ+ ǫ|q′| =

∫
⋃ I0

fdλ+ ǫ|q′|

≤
∫

E

fdλ+ ǫ(1 + |q′|) ≤ qλE + ǫ(1 + |q′|),

and

(q′ − q)λ∗Anqq′ = (q′ − q)λE ≤ (1 + |q′|)ǫ.
As ǫ is arbitrary, λ∗Anqq′ = 0. QQQ

As n, q and q′ are arbitrary,

lim supδ↓0
1

λB(y,δ)

∫
B(y,δ)

f ≤ f(y)

for λ-almost every y ∈ Z, therefore for λ-almost every y ∈ Rr. Similarly, or applying the same argument to
−f ,

lim infδ↓0
1

λB(y,δ)

∫
B(y,δ)

f ≥ f(y)

for λ-almost every y, and

limδ↓0
1

λB(y,δ)

∫
B(y,δ)

f exists = f(y)

for λ-almost every y.

(b) Now, for each q ∈ Q set gq(x) = |f(x) − q| for x ∈ dom f . By (a), we have a λ-conegligible set D
such that

limδ↓0
1

λB(y,δ)

∫
B(y,δ)

gqdλ = gq(y)

for every y ∈ D and q ∈ Q. Now, if y ∈ D and ǫ > 0, there is a q ∈ Q such that |f(y) − q| ≤ ǫ, and a δ0 > 0
such that

| 1

λB(y,δ)

∫
B(y,δ)

gqdλ− gq(y)| ≤ ǫ

whenever 0 < δ ≤ δ0. But in this case
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1

λB(y,δ)

∫

B(y,δ)

|f(x) − f(y)|λ(dx)

≤ 1

λB(y,δ)

∫

B(y,δ)

|f(x) − q|λ(dx) +
1

λB(y,δ)

∫

B(y,δ)

|q − f(y)|λ(dx)

≤ 3ǫ.

As ǫ is arbitrary,

limδ↓0
1

λB(y,δ)

∫
B(y,δ)

|f(x) − f(y)|λ(dx) = 0;

as this is true for every y ∈ D, the theorem is proved.

*472E Proposition Let λ, λ′ be Radon measures on Rr, and G ⊆ Rr an open set. Let Z be the support
of λ, and for x ∈ Z ∩G set

M(x) = sup{λ
′B

λB
: B ⊆ G is a non-trivial ball with centre x}.

Then

λ{x : x ∈ Z, M(x) ≥ t} ≤ 5r

t
λ′G

for every t > 0.

proof The function M : Z → [0,∞] is lower semi-continuous. PPP If M(x) > t ≥ 0, there is a δ > 0 such that
B(x, δ) ⊆ G and λ′B(x, δ) > tλB(x, δ). Because λ is a Radon measure, there is an open set V ⊇ B(x, δ) such
that V ⊆ G and λ′B(x, δ) > tλV ; because B(x, δ) is compact, there is an η > 0 such that B(x, δ+ 2η) ⊆ V .
Now if y ∈ Z and ‖y − x‖ ≤ η,

B(x, δ) ⊆ B(y, δ + η) ⊆ V ,

so λ′B(y, δ + η) > tλB(y, δ + η) and M(y) > t. QQQ
In particular, Ht = {x : x ∈ Z ∩G, M(x) > t} is always measured by λ. Now, given t > 0, let I be the

set of non-trivial closed balls B ⊆ G such that λ′B > tλB. By 472B, there is a family 〈Ik〉k<5r of countable
disjoint subsets of I such that

⋃
k<5r Ik covers Ht. So

λHt ≤
∑5r−1
k=0

∑
B∈Ik

λB ≤ 1

t

∑5r−1
k=0

∑
B∈Ik

λ′B ≤ 5r

t
λ′G,

as claimed.

*472F Theorem Let λ be a Radon measure on Rr, and f ∈ L
p(λ) any function, where 1 < p < ∞.

Let Z be the support of λ, and for x ∈ Z set f∗(x) = supδ>0
1

λB(x,δ)

∫
B(x,δ)

|f |dλ. Then f∗ is lower

semi-continuous, and ‖f∗‖p ≤ 2
( 5rp

p−1

)1/p‖f‖p.

proof (a) Replacing f by |f | if necessary, we may suppose that f ≥ 0. Z is λ-conegligible, so that f∗ is
defined λ-almost everywhere. Next, f∗ is lower semi-continuous. PPP I repeat an idea from the proof of 472E.
If f∗(x) > t ≥ 0, there is a δ > 0 such that

∫
B(x,δ)

|f |dλ > tλB(x, δ). Because λ is a Radon measure, there

is an open set V ⊇ B(x, δ) such that
∫
B(x,δ)

|f |dλ > tλV ; because B(x, δ) is compact, there is an η > 0 such

that B(x, δ + 2η) ⊆ V ; and now f∗(y) > t for every y ∈ Z ∩B(x, η). QQQ

(b) For t > 0, set Ht = {x : x ∈ Z, f∗(x) > t} and Ft = {x : x ∈ dom f, f(x) ≥ t}. Then

λHt ≤ 2·5r

t

∫
Ft/2

fdλ.

PPP Set g = f × χFt/2. Because ( t2 )pλFt/2 ≤ ‖f‖pp is finite, λFt/2 is finite, χFt/2 ∈ L
q(λ) (where 1

p + 1
q = 1)

and g ∈ L
1(λ) (244Eb). Let λ′ be the indefinite-integral measure defined by g over λ (234J); then λ′ is

totally finite, and is a Radon measure (416Sa). Set
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M(x) = sup{λ
′B

λB
: B ⊆ Rr is a non-trivial ball with centre x}

for x ∈ Z. Then f∗(x) ≤M(x) + t
2 for every x ∈ Z, just because

∫
B
fdλ ≤ t

2
λB +

∫
B
g dλ =

t

2
λB + λ′B

for every closed ball B. Accordingly

λHt ≤ λ{x : M(x) >
t

2
} ≤ 2·5r

t
λ′Rr

(by 472E)

=
2·5r

t

∫

Ft/2

fdλ. QQQ

(c) As in part (c) of the proof of 286A, we now have

∫
(f∗)pdλ =

∫ ∞

0

λ{x : f∗(x)p > t}dt = p

∫ ∞

0

tp−1λ{x : f∗(x) > t}dt

≤ 2 · 5rp

∫ ∞

0

tp−2

∫

Ft/2

fdλdt = 2 · 5rp

∫

Rr

f(x)

∫ 2f(x)

0

tp−2dtλ(dx)

= 2 · 5rp

∫

Rr

2p−1

p−1
f(x)pλ(dx) =

2p5rp

p−1

∫
fpdλ.

Taking pth roots, we have the result.

472X Basic exercises (a) Show that if λ, λ′ are Radon measures on Rr which agree on closed balls,
they are equal. (Cf. 466Xj.)

(b) Let λ be a Radon measure on Rr. Let A ⊆ Rr be a non-empty set, and ǫ > 0. Show that there is a
sequence 〈Bn〉n∈N of closed balls in Rr, all of radius at most ǫ and with centres in A, such that A ⊆ ⋃

n∈NBn
and

∑∞
n=0 λBn ≤ λ∗A+ ǫ.

(c) Let λ be a non-zero Radon measure on Rr and Z its support. Show that we have a lower density φ

(definition: 341C) for the subspace measure λZ defined by setting φE = {x : x ∈ Z, limδ↓0
λ(E∩B(x,δ))

λB(x,δ)
= 1}

whenever λZ measures E.

(d) Let λ be a Radon measure on Rr, and f a locally λ-integrable function. Show that E = {y : g(y) =

limδ↓0
1

λB(y,δ)

∫
B(y,δ)

f dλ is defined in R} is a Borel set, and that g : E → R is Borel measurable.

472Y Further exercises (a)(i) Let I be a finite family of intervals (open, closed or half-open) in R.
Show that there are subfamilies I0, I1 ⊆ I, both disjoint, such that I0 ∪ I1 covers

⋃ I. (Hint : induce on
#(I).) Show that this remains true if any totally ordered set is put in place of R. (ii) Show that if I is any
family of non-empty intervals in R such that none contains the centre of any other, then I is expressible as
I0 ∪ I1 where both I0 and I1 are disjoint.

(b) Let m = m(r) be the largest number such that there are u1, . . . , um ∈ Rr such that ‖ui‖ = 1 for
every i and ‖ui − uj‖ ≥ 1 for all i 6= j. Let A ⊆ Rr be a bounded set and x 7→ δx : A → ]0,∞[ a bounded
function; set Bx = B(x, δx) for x ∈ A. (i) Show that m < 3r. (ii) Show that there is an ǫ ∈

]
0, 1

10

]
such

that whenever ‖u0‖ = . . . = ‖um‖ = 1 there are distinct i, j ≤ m such that ui .uj >
1
2 (1 + ǫ). (iii) Suppose

that u, v ∈ Rr are such that 1
3 ≤ ‖u‖ ≤ 1, ‖v‖ ≤ 1 + ǫ and ‖u − v‖ > 1. Show that the angle u0̂v has

cosine at most 1
2 (1 + ǫ). (Hint : maximise

a2+b2−c2

2ab
subject to 1

3 ≤ a ≤ 1, b ≤ 1 + ǫ and c ≥ 1.) (iv) Suppose
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that 〈xn〉n∈N is a sequence in A such that xn /∈ Bxi
for i < n and (1 + ǫ)δxn

≥ sup{δx : x ∈ A \⋃i<nBxi
}

for every n. Show that A ⊆ ⋃
n∈NBxn

. (v) Take y ∈ Rr. Show that there is at most one n such that

‖y − xn‖ ≤ 1
3δxn

. (vi) Show that if i < j, 1
3δxi

≤ ‖y − xi‖ ≤ δxi
and ‖y − xj‖ ≤ δj then the cosine of the

angle xiŷxj is at most 1
2 (1 + ǫ). (vii) Show that #({i : y ∈ Bxi

}) ≤ m+ 1.
Hence show that if I is any family of non-trivial closed balls such that every point of A is the centre of

some member of I, then there is a countable I0 ⊆ I, covering A, such that no point of Rr belongs to more
than 3r members of I0.

(c) Use 472Yb to prove an alternative version of 472B, but with the constant 9r + 1 in place of 5r.

(d) Let A ⊆ Rr be a bounded set, and I a family of non-trivial closed balls in Rr such that whenever
x ∈ A and ǫ > 0 there is a ball B(y, δ) ∈ I such that ‖x− y‖ ≤ ǫδ. Show that there is a family 〈Ik〉k<5r of
subsets of I such that each Ik is disjoint and

⋃
k<5r Ik covers A.

(e) Give an example of a strictly positive Radon probability measure µ on a compact metric space (X, ρ)
for which there is a Borel set E ⊆ X such that

lim infδ↓0
µ(E∩B(x,δ))

µB(x,δ)
= 0, lim supδ↓0

µ(E∩B(x,δ))

µB(x,δ)
= 1

for every x ∈ X.

(f) Let λ be a Radon measure on Rr, and f a λ-integrable real-valued function. Show that supδ>0
1

λB(x,δ)

∫
B(x,δ)

|f |dλ
is defined and finite for λ-almost every x ∈ Rr.

(g) Let λ, λ′ be Radon measures on Rr. (i) Show that g(x) = limδ↓0
λ′B(x,δ)

λB(x,δ)
is defined in R for λ-almost

every x. (ii) Setting λ0 = supn∈N λ
′ ∧ nλ in the cone of Radon measures on Rr (437Yi), show that g is a

Radon-Nikodým derivative of λ0 with respect to λ. (Hint : show that if λ and λ′ are mutually singular then
g = 0 λ-a.e.)

472 Notes and comments I gave primacy to the ‘weak’ Vitali’s theorem in 261B because I think it is
easier than the ‘strong’ form in 472C, it uses the same ideas as the original one-dimensional theorem in
221A, and it is adequate for the needs of Volume 2. Any proper study of general measures on Rr, however,
will depend on the ideas in 472A-472C. You will see that in 472B, as in other forms of Vitali’s theorem, there
is a key step in which a sequence is chosen greedily. This time we must look much more carefully at the
geometry of Rr because we can no longer rely on a measure to tell us what is happening. (Though you will
observe that I still use the elementary properties of Euclidean volume in the argument of 472A.) Once we
have reached 472C, however, we are in a position to repeat all the arguments of 261C-261E in much greater
generality (472D), and, as a bonus, can refine 261F (472Xb). For more in this direction see Mattila 95

and Federer 69, §2.8.
It is natural to ask whether the constant ‘5r’ in 472B is best possible. The argument of 472A is derived

from Sullivan 94, where a more thorough analysis is given. It seems that even for r = 2 the best constant
is unknown. (For r = 1, the best constant is 2; see 472Ya.) Note that even for finite families I we should
have to find the colouring number of a graph (counting two balls as linked if they intersect), so it may well
be a truly difficult problem. The method in 472B amounts to using the greedy colouring algorithm after
ordering the balls by size, and one does not expect such approaches to give exact colouring numbers. Of
course the questions addressed here depend only on the existence of some function of r to do the job.

An alternative argument runs through a kind of pointwise version of 472A (472Yb-472Yc). It gives a
worse constant but is attractive in other ways. For many of the applications of 472C, the result of 472Yb is
already sufficient.

The constant 2
( 5rp

p−1

)1/p
in 472F makes no pretence to be ‘best’, or even ‘good’. The only reason for

giving a formula at all is to emphasize the remarkable fact that it does not depend on the measure λ. The
theorems of this section are based on the metric geometry of Euclidean space, not on any special properties
of Lebesgue measure. The constants do depend on the dimension, so that even in Hilbert space (for instance)
we cannot expect any corresponding results.
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473Bc Poincaré’s inequality 27

Version of 25.7.11/7.8.20

473 Poincaré’s inequality

In this section I embark on the main work of the first half of the chapter, leading up to the Divergence
Theorem in §475. I follow the method in Evans & Gariepy 92. The first step is to add some minor results
on differentiable and Lipschitz functions to those already set out in §262 (473B-473C). Then we need to
know something about convolution products (473D), extending ideas in §§256 and 444; in particular, it will

be convenient to have a fixed sequence 〈h̃n〉n∈N of smoothing functions with some useful special properties
(473E).

The new ideas of the section begin with the Gagliardo-Nirenberg-Sobolev inequality, relating ‖f‖r/(r−1)

to
∫
‖ grad f‖. In its simplest form (473H) it applies only to functions with compact support; we need to

work much harder to get results which we can use to estimate
∫
B
|f |r/(r−1) in terms of

∫
B
‖ grad f‖ and∫

B
|f | for balls B (473I, 473K).

473A Notation For the next three sections, r ≥ 2 will be a fixed integer. For x ∈ Rr and δ ≥ 0,
B(x, δ) = {y : ‖y − x‖ ≤ δ} will be the closed ball with centre x and radius δ. I will write ∂B(x, δ) for the
boundary of B(x, δ), the sphere {y : ‖y − x‖ = δ}. Sr−1 = ∂B(0, 1) will be the unit sphere. As in Chapter
26, I will use Greek letters to represent coordinates of vectors, so that x = (ξ1, . . . , ξr), etc.
µ will always be Lebesgue measure on Rr. βr = µB(0, 1) will be the r-dimensional volume of the unit

ball, that is,

βr =
πk

k!
if r = 2k is even,

=
22k+1k!πk

(2k+1)!
if r = 2k + 1 is odd

(252Q). ν will be normalized Hausdorff (r − 1)-dimensional measure on Rr, that is, ν = 2−r+1βr−1µH,r−1,
where µH,r−1 is (r − 1)-dimensional Hausdorff measure on Rr as described in §264. Recall from 265F and
265H that νSr−1 = 2πβr−2 = rβr (counting β0 as 1).

473B Differentiable functions (a) Recall from §262 that a function φ from a subset of Rr to Rs

(where s ≥ 1) is differentiable at x ∈ Rr, with derivative an s × r matrix T , if for every ǫ > 0 there is a
δ > 0 such that ‖φ(y)− φ(x)− T (y− x)‖ ≤ ǫ‖y− x‖ whenever ‖y− x‖ ≤ δ; this includes the assertion that

B(x, δ) ⊆ domφ. In this case, the coefficients of T are the partial derivatives
∂φj

∂ξi
(x) at x, where φ1, . . . , φs

are the coordinate functions of φ, and
∂

∂ξi
represents partial differentiation with respect to the ith coordinate

(262Ic).

(b) When s = 1, so that we have a real-valued function f defined on a subset of Rr, I will write (grad f)(x)
for the derivative of f at x, the gradient of f . If we strictly adhere to the language of (a), grad f is a

1× r matrix
(

∂f

∂ξ1
. . .

∂f

∂ξr

)
; but it is convenient to treat it as a vector, so that grad f(x) (when defined)

belongs to Rr, and we can speak of y . grad f(x) rather than (grad f(x))(y), etc.

(c) Chain rule for functions of many variables I find that I have not written out the following basic
fact. Let φ : A → Rs and ψ : B → Rp be functions, where A ⊆ Rr and B ⊆ Rs. If x ∈ A is such that φ is
differentiable at x, with derivative S, and ψ is differentiable at φ(x), with derivative T , then the composition
ψφ is differentiable at x, with derivative TS.

PPP Recall that if we regard S and T as linear operators, they have finite norms (262H). Given ǫ > 0, let
η > 0 be such that η‖T‖+η(‖S‖+η) ≤ ǫ. Let δ1, δ2 > 0 be such that φ(y) is defined and ‖φ(y)−φ(x)−S(y−
x)‖ ≤ η‖y−x‖ whenever ‖y−x‖ ≤ δ1, and ψ(z) is defined and ‖ψ(z)−ψφ(x)−T (z−φ(x))‖ ≤ η‖z−φ(x)‖
whenever ‖z − φ(x)‖ ≤ δ2. Set δ = min(δ1,

δ2

η+‖S‖ ) > 0. If ‖y − x‖ ≤ δ, then φ(y) is defined and

‖φ(y) − φ(x)‖ ≤ ‖S(y − x)‖ + ‖φ(y) − φ(x) − S(y − x)‖ ≤ (‖S‖ + η)‖y − x‖ ≤ δ2,
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so ψφ(y) is defined and

‖ψφ(y) − ψφ(x) − TS(y − x)‖
≤ ‖ψφ(y) − ψφ(x) − T (φ(y) − φ(x))‖ + ‖T‖‖φ(y) − φ(x) − S(y − x)‖
≤ η‖φ(y) − φ(x)‖ + ‖T‖η‖y − x‖
≤ η(‖S‖ + η)‖y − x‖ + ‖T‖η‖y − x‖ ≤ ǫ‖y − x‖;

as ǫ is arbitrary, ψφ is differentiable at x with derivative TS. QQQ

(d) It follows that if f and g are real-valued functions defined on a subset of Rr, and x ∈ dom f ∩ dom g
is such that (grad f)(x) and (grad g)(x) are both defined, then grad(f × g)(x) is defined and equal to

f(x) grad g(x) + g(x) grad f(x). PPP Set φ(y) =

(
f(y)
g(y)

)
for y ∈ dom f ∩ dom g; then φ is differentiable at

x with derivative the 2 × r matrix

(
grad f(x)
grad g(x)

)
(262Ib). Set ψ(z) = ζ1ζ2 for z = (ζ1, ζ2) ∈ R2; then ψ is

differentiable everywhere, with derivative the 1 × 2 matrix ( ζ2 ζ1 ). So f × g = ψφ is differentiable at x
with derivative

( g(x) f(x) )

(
grad f(x)
grad g(x)

)
= g(x) grad f(x) + f(x) grad g(x). QQQ

(e) Let D be a subset of Rr and φ : D → Rs any function. Set D0 = {x : x ∈ D, φ is differentiable at x}.
Then the derivative of φ, regarded as a function from D0 to Rrs, is (Lebesgue) measurable. PPP Use 262P;
the point is that, writing T (x) for the derivative of φ at x, T (x) is surely a derivative of φ↾D0, relative to
D0, at every point of D0. QQQ (See also 473Ya.)

(f) If G ⊆ Rr is an open set, a function φ : G → Rs is smooth if it is differentiable arbitrarily often;
that is, if all its repeated partial derivatives

∂mφj

∂ξi1 ...∂ξim

are defined and continuous everywhere on G. I will write D for the family of real-valued functions from Rr

to R which are smooth and have compact support.

473C Lipschitz functions (a) If f and g are bounded real-valued Lipschitz functions, defined on any
subsets of Rr, then f × g, defined on dom f ∩ dom g, is Lipschitz. PPP Let γf , Mf , γg and Mg be such that
|f(x)| ≤Mf and |f(x)−f(y)| ≤ γf‖x−y‖ for all x, y ∈ dom f , while |g(x)| ≤Mg and |g(x)−g(y)| ≤ γg‖x−y‖
for all x, y ∈ dom g. Then for any x, y ∈ dom f ∩ dom g,

|f(x)g(x) − f(y)g(y)| ≤ |f(x)||g(x) − g(y)| + |g(y)||f(x) − f(y)|
≤ (Mfγg +Mgγf )‖x− y‖.

So Mfγg +Mgγf is a Lipschitz constant for f × g. QQQ

(b) Suppose that F1, F2 ⊆ Rr are closed sets with convex union C. Let f : C → R be a function
such that f↾F1 and f↾F2 are both Lipschitz. Then f is Lipschitz. PPP For each j, let γj be a Lipschitz
constant for f↾Fj , and set γ = max(γ1, γ2), so that γ is a Lipschitz constant for both f↾F1 and f↾F2. Take
any x, y ∈ C. If both belong to the same Fj , then |f(x) − f(y)| ≤ γ‖x − y‖. If x ∈ Fj and y /∈ Fj ,
then y must belong to F3−j , and (1 − t)x + ty ∈ F1 ∪ F2 for every t ∈ [0, 1], because C is convex. Set
t0 = sup{t : t ∈ [0, 1], (1 − t)x+ ty ∈ Fj}, z = (1 − t0)x+ t0y; then z ∈ F1 ∩ F2, because both are closed, so

|f(x) − f(y)| ≤ |f(x) − f(z)| + |f(z) − f(y)| ≤ γ‖x− z‖ + γ‖z − y‖ = γ‖x− y‖.

As x and y are arbitrary, γ is a Lipschitz constant for f . QQQ

(c) Suppose that f : Rr → R is Lipschitz. Recall that by Rademacher’s theorem (262Q), grad f is
defined almost everywhere. All the partial derivatives of f are (Lebesgue) measurable, by 473Be, so grad f
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is (Lebesgue) measurable on its domain. If γ is a Lipschitz constant for f , ‖ grad f(x)‖ ≤ γ whenever
grad f(x) is defined. PPP If z ∈ Rr, then

limt↓0
1

t
|f(x+ tz) − f(x) − tz . grad f(x)| = 0,

so

|z . grad f(x)| = limt↓0
1

t
|f(x+ tz) − f(x)| ≤ γ‖z‖;

as z is arbitrary, ‖ grad f(x)‖ ≤ γ. QQQ

(d) Conversely, if f : Rr → R is differentiable and ‖ grad f(x)‖ ≤ γ for every x, then γ is a Lipschitz
constant for f . PPP Take x, y ∈ Rr. Set g(t) = f((1−t)x+ty) for t ∈ R. The function t 7→ (1−t)x+ty : R → Rr

is everywhere differentiable, with constant derivative y − x, so by 473Bc g is differentiable, with derivative
g′(t) = (y−x) . grad f((1−t)x+ty) for every t; in particular, |g′(t)| ≤ γ‖y−x‖ for every t. Now, by the Mean
Value Theorem, there is a t ∈ [0, 1] such that g(1) − g(0) = g′(t), so that |f(y) − f(x)| = |g′(t)| ≤ γ‖y − x‖.
As x and y are arbitrary, f is γ-Lipschitz. QQQ

(e) Note that if f ∈ D then all its partial derivatives are continuous functions with compact support, so
are bounded (436Ia), and f is Lipschitz as well as bounded, by (d) here.

(f)(i) If D ⊆ Rr is bounded and f : D → R is Lipschitz, then there is a Lipschitz function g : Rr → R,
with compact support, extending f . PPP By 262Bb there is a Lipschitz function f1 : Rr → R which extends
f . Let γ > 0 be such that D ⊆ B(0, γ) and γ is a Lipschitz constant for f1; set M = |f1(0)| + γ2; then
|f1(x)| ≤M for every x ∈ D, so if we set f2(x) = med(−M,f1(x),M) for x ∈ Rr, f2 is a bounded Lipschitz
function extending f . Set f3(x) = med(0, 1 +γ−‖x‖, 1) for x ∈ Rr; then f3 is a bounded Lipschitz function
with compact support. By (a), g = f3 × f2 is Lipschitz, and g : Rr → R is a function with compact support
extending f . QQQ

(ii) It follows that if D ⊆ Rr is bounded and f : D → Rs is Lipschitz, then there is a Lipschitz function
g : Rr → Rs, with compact support, extending f . PPP By 262Ba, we need only apply (i) to each coordinate
of f . QQQ

473D Smoothing by convolution We shall need a miscellany of facts, many of them special cases of
results in §§255 and 444, concerning convolutions on Rr. Recall that I write (f ∗g)(x) =

∫
f(y)g(x−y)µ(dy)

whenever f and g are real-valued functions defined almost everywhere in Rr and the integral is defined, and
that f ∗ g = g ∗ f (255Fb, 444Og). Now we have the following.

Lemma Suppose that f and g are Lebesgue measurable real-valued functions defined µ-almost everywhere
in Rr.

(a) If f is integrable and g is essentially bounded, then their convolution f ∗ g is defined everywhere in
Rr and uniformly continuous, and ‖f ∗ g‖∞ ≤ ‖f‖1 ess sup |g|.

(b) If f is locally integrable and g is bounded and has compact support, then f ∗ g is defined everywhere
in Rr and is continuous.

(c) If f and g are defined everywhere in Rr and x ∈ Rr \ ({y : f(y) 6= 0}+ {z : g(z) 6= 0}), then (f ∗ g)(x)
is defined and equal to 0.

(d) If f is integrable and g is bounded, Lipschitz and defined everywhere, then f ∗ grad g and grad(f ∗ g)

are defined everywhere and equal, where f ∗ grad g = (f ∗ ∂g

∂ξ1
, . . . , f ∗ ∂g

∂ξr
). Moreover, f ∗ g is Lipschitz.

(e) If f is locally integrable, and g ∈ D, then f ∗ g is defined everywhere and is smooth.
(f) If f is essentially bounded and g ∈ D, then all the derivatives of f ∗ g are bounded, and f ∗ g is

Lipschitz.
(g) If f is integrable and φ : Rr → Rr is a bounded measurable function with components φ1, . . . , φr,

and we write (f ∗ φ)(x) = ((f ∗ φ1)(x), . . . , (f ∗ φr)(x)), then ‖(f ∗ φ)(x)‖ ≤ ‖f‖1 supy∈Rr ‖φ(y)‖ for every
x ∈ Rr.

proof (a) See 255K.
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(b) Suppose that g(y) = 0 when ‖y‖ ≥ n. Given x ∈ Rr, set f̃ = f × χB(x, n+ 1). Then f̃ ∗ g is defined

everywhere and continuous, by (a), while (f ∗ g)(z) = (f̃ ∗ g)(z) whenever z ∈ B(x, 1); so f ∗ g is defined
everywhere in B(x, 1) and is continuous at x.

(c) We have only to note that f(y)g(x− y) = 0 for every y.

(d) Let γ be a Lipschitz constant for g. We know that grad g is defined almost everywhere, is measurable,
and that ‖ grad g(x)‖ ≤ γ whenever it is defined (473Cc); so (f ∗ grad g)(x) is defined for every x, by (a)
here. Fix x ∈ Rr. If y, z ∈ Rr set

θ(y, z) =
1

‖z‖
(
g(x− y + z) − g(x− y) − z . grad g(x− y)

)

whenever this is defined. Then |θ(y, z)| ≤ 2γ whenever it is defined. Now suppose that 〈zn〉n∈N is a sequence
in Rr \ {0} converging to 0. Then limn→∞ θ(y, zn) = 0 whenever grad g(x − y) is defined, which almost
everywhere. So limn→∞

∫
f(y)θ(y, zn)µ(dy) = 0, by Lebesgue’s Dominated Convergence Theorem. But this

means that

1

‖zn‖
(
(f ∗ g)(x+ zn) − (f ∗ g)(x) − ((f ∗ grad g)(x)) .zn

)
→ 0

as n→ ∞. As 〈zn〉n∈N is arbitrary, grad(f ∗ g)(x) is defined and is equal to (f ∗ grad g)(x).
Now grad g is bounded, because g is Lipschitz, so grad(f ∗ g) = f ∗ grad g also is bounded, by (a), and

f ∗ g must be Lipschitz (473Cd).

(e) By (b), f ∗ g is defined everywhere and is continuous. Now, for any i ≤ r,
∂

∂ξi
(f ∗ g) = f ∗ ∂g

∂ξi

everywhere. PPP Let n ∈ N be such that g(y) = 0 if ‖y‖ ≥ n. Given x ∈ Rr, set f̃ = f × χB(x, n+ 1). Then

(f ∗ g)(z) = (f̃ ∗ g)(z) for every z ∈ B(x, 1), so that

∂(f∗g)
∂ξi

(x) =
∂(f̃∗g)
∂ξi

(x) = (f̃ ∗ ∂g

∂ξi
)(x)

(by (d))

= (f ∗ ∂g

∂ξi
)(x)

(because of course
∂g

∂ξi
is also zero outside B(0, n)). QQQ Inducing on k,

∂k

∂ξi1 . . . ∂ξik
(f ∗ g)(x) = (f ∗ ∂kg

∂ξi1 . . . ∂ξik
)(x)

for every x ∈ Rr and every i1, . . . , ik; so we have the result.

(f) The point is just that all the partial derivatives of g, being smooth functions with compact support,
are integrable, and that

| ∂

∂ξi
(f ∗ g)(x)| = |(f ∗ ∂g

∂ξi
)(x)| ≤ ‖f‖∞‖ ∂g

∂ξi
‖1

for every x and every i ≤ r. Inducing on the order of D, we see that D(f ∗ g) = f ∗Dg and ‖D(f ∗ g)‖∞ ≤
‖f‖∞‖Dg‖1, so that D(f ∗ g) is bounded, for any partial differential operator D. In particular, grad(f ∗ g)
is bounded, so that f ∗ g is Lipschitz, by 473Cd.

(g) If x, z ∈ Rr, then

z .(f ∗ φ)(x) =
r∑

i=1

ζi(f ∗ φi)(x) =

∫
f(y)

r∑

i=1

ζiφi(x− y)µ(dy)

≤
∫

|f(y)||
r∑

i=1

ζiφi(x− y)|µ(dy)

≤
∫

|f(y)|‖z‖‖φ(x− y)‖µ(dy) ≤ ‖z‖‖f‖1 sup
y∈Rr

‖φ(y)‖.
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As z is arbitrary, ‖(f ∗ φ)(x)‖ ≤ ‖f‖1 supy∈Rr ‖φ(y)‖.

473E Lemma (a) Define h : R → [0, 1] by setting h(t) = exp(
1

t2−1
) for |t| < 1, 0 for |t| ≥ 1. Then h is

smooth, and h′(t) ≤ 0 for t ≥ 0.

(b) For n ≥ 1, define h̃n : Rr → R by setting

αn =
∫
h((n+ 1)2‖x‖2)µ(dx), h̃n(x) =

1

αn

h((n+ 1)2‖x‖2)

for every x ∈ Rr. Then h̃n ∈ D, h̃n(x) ≥ 0 for every x, h̃n(x) = 0 if ‖x‖ ≥ 1

n+1
, and

∫
h̃ndµ = 1.

(c) If f ∈ L
0(µ), then limn→∞(f ∗ h̃n)(x) = f(x) for every x ∈ dom f at which f is continuous.

(d) If f : Rr → R is uniformly continuous (in particular, if it is either Lipschitz or a continuous function

with compact support), then limn→∞ ‖f − f ∗ h̃n‖∞ = 0.

(e) If f ∈ L
0(µ) is locally integrable, then f(x) = limn→∞(f ∗ h̃n)(x) for µ-almost every x ∈ Rr.

(f) If f ∈ L
p(µ), where 1 ≤ p <∞, then limn→∞ ‖f − f ∗ h̃n‖p = 0.

proof (a) Set h0(t) = exp(− 1
t ) for t > 0, 0 for t ≤ 0. A simple induction on n shows that the nth derivative

h
(n)
0 of h0 is of the form

h
(n)
0 (t) = qn(

1

t
) exp(−1

t
) for t > 0

= 0 for t ≤ 0,

where each qn is a polynomial of degree 2n; the inductive hypothesis depends on the fact that lims→∞ q(s)e−s =
0 for every polynomial q. So h0 is smooth. Now h(t) = h0(1 − t2) so h also is smooth. If 0 ≤ t < 1 then

h′(t) = − exp(
1

t2−1
) · 2t

(t2−1)2
< 0;

if t > 1 then h′(t) = 0; since h′ is continuous, h′(t) ≤ 0 for every t ≥ 0.

(b) We need only observe that

x 7→ (n+ 1)2‖x‖2 = (n+ 1)2
∑r
i=1 ξ

2
i

is smooth and that the composition of smooth functions is smooth (using 473Bc).

(c) If f is continuous at x and ǫ > 0, let n0 ∈ N be such that |f(y) − f(x)| ≤ ǫ whenever y ∈ dom f and

‖y − x‖ ≤ 1

n0+1
. Then for any n ≥ n0,

|(f ∗ h̃n)(x) − f(x)| = |
∫
f(x− y)h̃n(y)µ(dy) −

∫
f(x)h̃n(y)µ(dy)|

≤
∫

|f(x− y) − f(x)|h̃n(y)µ(dy) ≤
∫
ǫh̃n(y)µ(dy) = ǫ.

As ǫ is arbitrary, we have the result.

(d) Repeat the argument of (c), but ‘uniformly in x’; that is, given ǫ > 0, take n0 such that |f(y)−f(x)| ≤
ǫ whenever x, y ∈ Rr and ‖y − x‖ ≤ 1

n0+1
, and see that |(f ∗ h̃n)(x) − f(x)| ≤ ǫ for every n ≥ n0 and every

x.

(e) We know from 472Db or 261E that, for almost every x ∈ Rr,

limδ↓0
1

µB(x,δ)

∫
B(x,δ)

|f(y) − f(x)|µ(dy) = 0.

Take any such x. Set γ = f(x), Set g(y) = |f(y) − γ| for every y ∈ dom f . Let ǫ > 0. Then there is some

δ > 0 such that
q(t)

βrtr
≤ ǫ whenever 0 < t ≤ δ, where
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q(t) =
∫
B(x,t)

g dµ =
∫ t
0

∫
∂B(x,s)

g(y)ν(dy)dt

by 265G, so q′(t) =
∫
∂B(y,t)

g dν for almost every t ∈ [0, δ], by 222E. If n+ 1 ≥ 1

δ
, then

(g ∗ h̃n)(x) =

∫
g(y)h̃n(x− y)µ(dy) =

∫

B(x,δ)

g(y)h̃n(x− y)µ(dy)

=
1

αn

∫ δ

0

∫

∂B(x,t)

g(y)h((n+ 1)2t2)ν(dy)dt

(265G again)

=
1

αn

∫ δ

0

h((n+ 1)2t2)q′(t)dt

= − 1

αn

∫ δ

0

2(n+ 1)2th′((n+ 1)2t2)q(t)dt

(integrating by parts (225F), because q(0) = h((n+ 1)2δ2) = 0 and both q and h are absolutely continuous)

≤ − ǫ

αn

∫ δ

0

2(n+ 1)2th′((n+ 1)2t2)βrt
rdt

(because 0 ≤ q(t) ≤ ǫβrt
r and h′((n+ 1)2t2) ≤ 0 for 0 ≤ t ≤ δ)

= ǫ

(applying the same calculations with χRr in place of g). But now, since (γχRr ∗ h̃n)(x) = γ for every n,

|(f ∗ h̃n)(x) − γ| = |
∫

(f(y) − γ)h̃n(x− y)µ(dy)| ≤
∫
|f(y) − γ|h̃n(x− y)µ(dy) ≤ ǫ

whenever n+ 1 ≥ 1

δ
. As ǫ is arbitrary, f(x) = γ = limn→∞(f ∗ h̃n)(x); and this is true for µ-almost every x.

(f) Apply 444T to the indefinite-integral measure h̃nµ over µ defined by h̃n; use 444Pa for the identifi-

cation of (h̃nµ) ∗ f with h̃n ∗ f = f ∗ h̃n.

473F Lemma For any measure space (X,Σ, λ) and any non-negative f1, . . . , fk ∈ L
0(λ),

∫ ∏k
i=1 f

1/k
i dλ ≤ ∏k

i=1

(∫
fidλ

)1/k
.

proof Induce on k. Note that we can suppose that every fi is integrable; for if any
∫
fi is zero, then fi = 0

a.e. and the result is trivial; and if all the
∫
fi are greater than zero and any of them is infinite, the result

is again trivial.
The induction starts with the trivial case k = 1. For the inductive step to k ≥ 2, we have

∫ k∏

i=1

f
1/k
i dλ ≤ ‖

k−1∏

i=1

f
1/k
i ‖k/(k−1)‖f1/kk ‖k

(by Hölder’s inequality, 244E)

=
(∫ k−1∏

i=1

f
1/(k−1)
i dλ

)(k−1)/k(
∫
fkdλ

)1/k

≤
(k−1∏

i=1

(

∫
fidλ)1/(k−1)

)(k−1)/k(
∫
fkdλ

)1/k

(by the inductive hypothesis)

=
k∏

i=1

(

∫
fidλ)1/k,

as required.
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473G Lemma Let (X,Σ, λ) be a σ-finite measure space and k ≥ 2 an integer. Write λk for the product
measure on Xk. For x = (ξ1, . . . , ξk) ∈ Xk, t ∈ X and 1 ≤ i ≤ k set Si(x, t) = (ξ′1, . . . , ξ

′
k) where ξ′i = t and

ξ′j = ξj for j 6= i. Then if h ∈ L
1(λk) is non-negative, and we set hi(x) =

∫
h(Si(x, t))λ(dt) whenever this

is defined in R, we have ∫
(
∏k
i=1 hi)

1/(k−1)dλk ≤ (
∫
h dλk)k/(k−1).

proof Induce on k.

(a) If k = 2, we have

∫
h1 × h2dλk =

∫∫ (∫
h(τ1, ξ2)dτ1

)(∫
h(ξ1, τ2)dτ2

)
dξ1dξ2

=

∫∫∫∫
h(τ1, ξ2)h(ξ1, τ2)dτ1dτ2dξ1dξ2

=

∫∫
h(τ1, ξ2)dτ1dξ2 ·

∫∫
h(ξ1, τ2)dτ2dξ1 =

(∫
h dλ2

)2

by Fubini’s theorem (252B) used repeatedly, because (by 253D) (τ1, τ2, ξ1, ξ2) 7→ h(ξ1, τ2)h(τ1, ξ2) is λ4-
integrable. (See 251W for a sketch of the manipulations needed to apply 252B, as stated, to the integrals
above.)

(b) For the inductive step to k ≥ 3, argue as follows. For y ∈ Xk−1, set g(y) =
∫
h(y, t)dt whenever

this is defined in R, identifying Xk with Xk−1 × X, so that g(y) = hk(y, t) whenever either is defined. If
1 ≤ i < k, we can consider Si(y, t) for y ∈ Xk−1 and t ∈ X, and we have∫

g(Si(y, t))dt =
∫∫

h(Si(y, t), u)dudt =
∫
hi(y, t)dt

for almost every y ∈ Xk−1. So

∫
(

k∏

i=1

hi)
1/(k−1)dλk =

∫∫
(

k−1∏

i=1

hi(y, t))
1/(k−1)g(y)1/(k−1)dt λk−1(dy)

=

∫
g(y)1/(k−1)

∫
(

k−1∏

i=1

hi(y, t))
1/(k−1)dt λk−1(dy)

≤
∫
g(y)1/(k−1)

k−1∏

i=1

(∫
hi(y, t)dt

)1/(k−1)
λk−1(dy)

(473F)

=

∫
g(y)1/(k−1)

k−1∏

i=1

gi(y)1/(k−1)λk−1(dy)

(where gi is defined from g in the same way as hi is defined from h)

≤
(∫

g(y)λk−1(dy)
)1/(k−1)(

∫ k−1∏

i=1

gi(y)1/(k−2)λk−1(dy)
)(k−2)/(k−1)

(by Hölder’s inequality again, this time with
1

k−1
+

k−2

k−1
= 1)

≤
(∫

g(y)λk−1(dy)
)1/(k−1) ·

∫
g(y)λk−1(dy)

(by the inductive hypothesis)

=
(∫

g(y)λk−1(dy)
)k/(k−1)

=
(∫

h(x)λk(dx)
)k/(k−1)

,

and the induction proceeds.
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473H Gagliardo-Nirenberg-Sobolev inequality Suppose that f : Rr → R is a Lipschitz function
with compact support. Then ‖f‖r/(r−1) ≤

∫
‖ grad f‖dµ.

proof By 473Cc, grad f is measurable and bounded, so ‖ grad f‖ also is; since it must have compact
support, it is integrable.

For 1 ≤ i ≤ r, x = (ξ1, . . . , ξr) ∈ Rr and t ∈ R write Si(x, t) = (ξ′1, . . . , ξ
′
r) where ξ′i = t and ξ′j = ξj for

j 6= i. Set hi(x) =
∫∞
−∞ ‖ grad f(Si(x, t))‖dt when this is defined, which will be the case for almost every x.

Now, whenever hi(x) is defined,

|f(x)| = |f(Si(x, ξi))| = |
∫ ξi
−∞

∂
∂tf(Si(x, t))dt| ≤ hi(x).

(Use 225E and the fact that a Lipschitz function on any bounded interval in R is absolutely continuous.)
So |f | ≤a.e. hi for every i ≤ r. Accordingly

∫
|f(x)|r/(r−1)µ(dx) ≤

∫ ∏r
i=1 hi(x)1/(r−1)µ(dx) ≤

(∫
‖ grad f(x)‖µ(dx)

)r/(r−1)

by 473G. Raising both sides to the power (r − 1)/r we have the result.

473I Lemma For any Lipschitz function f : B(0, 1) → R,
∫
B(0,1)

|f |r/(r−1)dµ ≤
(
2r+4

√
r
∫
B(0,1)

‖ grad f‖ + |f |dµ
)r/(r−1)

.

proof (a) Set g(x) = max(0, 2‖x‖2 − 1) for x ∈ B(0, 1). Then grad g is defined at every point x such that

‖x‖ < 1 and ‖x‖ 6= 1√
2
, and at all such points ∂g

∂ξi
is either 0 or 4ξi for each i, so that ‖ grad g(x)‖ ≤ 4‖x‖ ≤ 4.

Hence (or otherwise) g is Lipschitz. So f1 = f × g is Lipschitz (473Ca).
By Rademacher’s theorem again, grad f1 is defined almost everywhere in B(0, 1). Now

∫

B(0,1)

‖ grad f1‖dµ =

∫

B(0,1)

‖f(x) grad g(x) + g(x) grad f(x)‖µ(dx)

(473Bd)

≤
∫

B(0,1)

4|f | + ‖ grad f‖dµ.

(b) It will be convenient to have an elementary fact out in the open. Set φ(x) =
x

‖x‖2
for x ∈ Rr \ {0};

note that φ2(x) = x. Then φ↾{x : ‖x‖ ≥ δ} is Lipschitz, for any δ > 0. PPP If ‖x‖ = α ≥ δ, ‖y‖ = β ≥ δ,
then we have

‖φ(x) − φ(y)‖2 =
1

α4
‖x‖2 − 2

α2β2
x .y +

1

β4
‖y‖2

=
1

α2β2

(
‖y‖2 − 2x .y + ‖x‖2

)
≤ 1

δ4
‖x− y‖2,

so
1

δ2
is a Lipschitz constant for φ↾Rr \B(0, δ). QQQ

(c) Set f2(x) = f(x) if ‖x‖ ≤ 1, f1φ(x) if ‖x‖ ≥ 1. Then f2 is well-defined (because f1(x) = f(x) if

‖x‖ = 1), is zero outside B(0,
√

2) (because g(x) = 0 if ‖x‖ ≤ 1√
2
), and is Lipschitz. PPP By 473Cb, it will

be enough to show that f2↾F is Lipschitz, where F = {x : ‖x‖ ≥ 1}. But (b) shows that φ↾F is 1-Lipschitz,
so any Lipschitz constant for f1 is also a Lipschitz constant for f2↾F . QQQ

If ‖x‖ > 1, then, for any i ≤ r,

∂f2

∂ξi
(x) =

r∑

j=1

∂f1

∂ξj
(φ(x)) · ∂

∂ξi
(

ξj

‖x‖2
) =

∂f1

∂ξi
(φ(x)) · 1

‖x‖2
− 2

r∑

j=1

∂f1

∂ξj
(φ(x)) · ξiξj

‖x‖4

=
∂f1

∂ξi
(φ(x)) · 1

‖x‖2
− 2ξi

‖x‖4
x . grad f(φ(x))
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wherever the right-hand side is defined, that is, wherever all the partial derivatives
∂f1

∂ξj
(φ(x)) are defined.

But H = B(0, 1) \ dom(grad f1) is negligible, and does not meet {x : ‖x‖ < 1√
2
}, so φ↾H is Lipschitz and

φ[H] = φ−1[H] is negligible (262D); while grad f1(φ(x)) is defined whenever ‖x‖ > 1 and x /∈ φ−1[H]. So
the formula here is valid for almost every x ∈ F , and

|∂f2
∂ξi

(x)| ≤ ‖ grad f1(φ(x))‖ · 1

‖x‖2
+

2|ξi|
‖x‖4

‖ grad f1(φ(x))‖‖x‖

= ‖ grad f1(φ(x))‖‖x‖+2|ξi|
‖x‖3

≤ 3‖ grad f1(φ(x))‖

for almost every x ∈ F . But (since we know that grad f2 is defined almost everywhere, by Rademacher’s
theorem, as usual) we have

‖ grad f2(x)‖ ≤ 3
√
r‖ grad f1(φ(x))‖

for almost every x ∈ F .

(d) We are now in a position to estimate

∫

F

‖ grad f2‖dµ =

∫

B(0,
√
2)

‖ grad f2‖dµ−
∫

B(0,1)

‖ grad f2‖dµ

(because f2(x) = 0 if ‖x‖ ≥
√

2)

=

∫ √
2

1

∫

∂B(0,t)

‖ grad f2(x)‖ν(dx)dt

(265G, as usual)

≤ 3
√
r

∫ √
2

1

∫

∂B(0,t)

‖ grad f1(
1

t2
x)‖ν(dx)dt

(by (b) above)

≤ 3
√
r

∫ √
2

1

∫

∂B(0,1/t)

t2r−2‖ grad f1(y)‖ν(dy)dt

substituting x = t2y in the inner integral; the point being that as the function y 7→ t2y changes all distances
by a scalar multiple t2, it must transform Hausdorff (r − 1)-dimensional measure by a multiple t2r−2. But
now, substituting s = 1

t in the outer integral, we have

∫

F

‖ grad f2‖dµ ≤ 3
√
r

∫ 1

1/
√
2

1

s2r

∫

∂B(0,s)

‖ grad f1(y)‖ν(dy)ds

≤ 2r · 3
√
r

∫ 1

1/
√
2

∫

∂B(0,s)

‖ grad f1(y)‖ν(dy)ds

= 2r · 3
√
r

∫

B(0,1)

‖ grad f1‖dµ

≤ 2r+2
√
r

∫

B(0,1)

4|f | + ‖ grad f‖dµ

by (a) above.

(e) Accordingly

∫

Rr

‖ grad f2‖dµ =

∫

B(0,1)

‖ grad f‖dµ+

∫

F

‖ grad f2‖dµ

≤ 2r+4
√
r

∫

B(0,1)

|f | + ‖ grad f‖dµ.
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But now we can apply 473H to see that

∫

B(0,1)

|f |r/(r−1)dµ ≤
∫

|f2|r/r−1dµ ≤ (

∫
‖ grad f2‖dµ)r/(r−1)

≤
(
2r+4

√
r

∫

B(0,1)

|f | + ‖ grad f‖dµ
)r/(r−1)

,

as claimed.

473J Lemma Let f : Rr → R be a Lipschitz function. Then
∫
B(y,δ)

|f(x) − f(z)|µ(dx) ≤ 2r

r
δr
∫
B(y,δ)

‖ grad f(x)‖‖x− z‖1−rµ(dx)

whenever y ∈ Rr, δ > 0 and z ∈ B(y, δ).

proof (a) To begin with, suppose that f is smooth. In this case, for any x, z ∈ B(y, δ),

|f(x) − f(z)| =
∣∣
∫ 1

0

d

dt
f(z + t(x− z))dt

∣∣

=
∣∣
∫ 1

0

(x− z) . grad f(z + t(x− z))dt
∣∣

≤ ‖x− z‖
∫ 1

0

‖ grad f(z + t(x− z))‖dt.

So, for η > 0,

∫

B(y,δ)∩∂B(z,η)

|f(x) − f(z)|ν(dx)

≤ η

∫ 1

0

∫

B(y,δ)∩∂B(z,η)

‖ grad f(z + t(x− z))‖ν(dx)dt

(grad f is continuous and bounded, and the subspace measure induced by ν on ∂B(z, η) is a (quasi-)Radon

measure (471E, 471Dh), so its product with Lebesgue measure also is (417T), and there is no difficulty with

the change in order of integration)

≤ η

∫ 1

0

1

tr−1

∫

B(y,δ)∩∂B(z,tη)

‖ grad f(w)‖ν(dw)dt

(because if φ(x) = z + t(x − z), then νφ−1[E] =
1

tr−1
νE whenever ν measures E and t > 0, while φ(x) ∈

B(y, δ) whenever x ∈ B(y, δ))

= ηr
∫ 1

0

∫

B(y,δ)∩∂B(z,tη)

‖ grad f(w)‖‖w − z‖1−rν(dw)dt

= ηr−1

∫ η

0

∫

B(y,δ)∩∂B(z,s)

‖ grad f(w)‖‖w − z‖1−rν(dw)ds

(substituting s = tη)

= ηr−1

∫

B(y,δ)∩B(z,η)

‖ grad f(w)‖‖w − z‖1−rµ(dw).

So
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∫

B(y,δ)

|f(x) − f(z)|µ(dx) =

∫ 2δ

0

∫

B(y,δ)∩∂B(z,η)

|f(x) − f(z)|ν(dx)dη

≤
∫ 2δ

0

ηr−1

∫

B(y,δ)∩B(z,η)

‖ grad f(w)‖‖w − z‖1−rµ(dw)dη

≤
∫ 2δ

0

ηr−1

∫

B(y,δ)

‖ grad f(w)‖‖w − z‖1−rµ(dw)dη

=
2r

r
δr

∫

B(y,δ)

‖ grad f(w)‖‖w − z‖1−rµ(dw).

(b) Now turn to the general case in which f is not necessarily differentiable everywhere, but is known to
be Lipschitz and bounded. We need to know that

∫
B(y,δ)

‖x− z‖1−rµ(dx) is finite; this is because

∫

B(y,δ)

‖x− z‖1−rµ(dx) ≤
∫

B(z,2δ)

‖x− z‖1−rµ(dx) =

∫ 2δ

0

t1−rν(∂B(z, t))dt

=

∫ 2δ

0

t1−rrβrt
r−1dt = 2δrβr.

Take the sequence 〈h̃n〉n∈N from 473E. Then 〈f ∗ h̃n〉n∈N converges uniformly to f (473Ed), while 〈grad(f ∗
h̃n)〉n∈N = 〈h̃n ∗grad f〉n∈N (473Dd) is uniformly bounded (473Cc, 473Dg) and converges almost everywhere

to grad f (473Ee). But this means that, setting fn = f ∗ h̃n,

∫

B(y,δ)

|f(x) − f(z)|µ(dx) = lim
n→∞

∫

B(y,δ)

|fn(x) − fn(z)|µ(dx)

≤ lim
n→∞

2r

r
δr

∫

B(y,δ)

‖ grad fn(x)‖‖x− z‖1−rµ(dx)

(because every fn is smooth, by 473De)

=
2r

r
δr

∫

B(y,δ)

‖ grad f(x)‖‖x− z‖1−rµ(dx)

by Lebesgue’s Dominated Convergence Theorem.

(c) Finally, if f is not bounded on the whole of Rr, it is surely bounded on B(y, δ), so we can apply (b)
to the function x 7→ med(−M,f(x),M) for a suitable M ≥ 0 to get the result as stated.

473K Poincaré’s inequality for balls Let B ⊆ Rr be a non-trivial closed ball, and f : B → R a

Lipschitz function. Set γ =
1

µB

∫
B
fdµ. Then

(∫
B
|f − γ|r/(r−1)dµ

)(r−1)/r ≤ c
∫
B
‖ grad f‖dµ,

where c = 2r+4
√
r(1 + 2r+1).

proof (a) To begin with (down to the end of (b)) suppose that B is the unit ball B(0, 1). Then, for any
x ∈ B,

|f(x) − γ| =
1

µB

∣∣
∫

B

f(x) − f(z)µ(dz)
∣∣

≤ 1

µB

∫

B

|f(x) − f(z)|µ(dz)

≤ 2r

r
· 1

µB

∫

B

‖ grad f(z)‖‖x− z‖1−rµ(dz),
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by 473J. Also, for any z ∈ B,

∫

B(z,2)

‖x− z‖1−rµ(dx) =

∫ 2

0

∫

∂B(z,t)

‖x− z‖1−rν(dx)dt

=

∫ 2

0

t1−rν(∂B(z, t))dt =

∫ 2

0

t1−rtr−1νSr−1dt = 2rβr.

So

∫

B

|f(x) − γ|µ(dx) ≤ 2r

r
· 1

µB

∫

B

∫

B

‖ grad f(z)‖‖x− z‖1−rµ(dz)µ(dx)

=
2r

rβr

∫

B

∫

B

‖ grad f(z)‖‖x− z‖1−rµ(dx)µ(dz)

≤ 2r

rβr

∫

B

‖ grad f(z)‖
∫

B(z,2)

‖x− z‖1−rµ(dx)µ(dz)

≤ 2r+1

∫

B

‖ grad f(z)‖µ(dz).

(b) Now apply 473I to g = f(x) − γ. We have

∫

B

|f − γ|r/(r−1)dµ ≤
(
2r+4

√
r

∫

B

‖ grad f‖ + |g|dµ
)r/(r−1)

≤
(
2r+4

√
r(1 + 2r+1)

∫

B

‖ grad f‖dµ
)r/(r−1)

(by (a))

=
(
c

∫

B

‖ grad f‖dµ
)r/(r−1)

.

(c) For the general case, express B as B(y, δ), and set h(x) = f(y+δx) for x ∈ B(0, 1). Then gradh(x) =
δ grad f(y + δx) for almost every x ∈ B(0, 1). Now

∫
B(0,1)

h dµ =
1

δr

∫
B(y,δ)

fdµ,

so

1

µB(0,1)

∫
B(0,1)

h dµ =
1

µB(y,δ)

∫
B(y,δ)

fdµ = γ.

We therefore have

∫

B(y,δ)

|f − γ|r/(r−1)dµ = δr
∫

B(0,1)

|h− γ|r/(r−1)dµ

≤ δr
(
c

∫

B(0,1)

‖ gradh‖dµ
)r/(r−1)

(by (a)-(b) above)

= δr
(δc
δr

∫

B(y,δ)

‖ grad f‖dµ
)r/(r−1)

=
(
c

∫

B(y,δ)

‖ grad f‖dµ
)r/(r−1)

.

Raising both sides to the power (r − 1)/r we have the result as stated.

Remark As will be plain from the way in which the proof here is constructed, there is no suggestion that
the formula offered for c gives anything near the best possible value.
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473L Corollary Let B ⊆ Rr be a non-trivial closed ball, and f : B → [0, 1] a Lipschitz function. Set

F0 = {x : x ∈ B, f(x) ≤ 1
4}, F1 = {x : x ∈ B, f(x) ≥ 3

4}.

Then
(
min(µF0, µF1)

)(r−1)/r ≤ 4c
∫
B
‖ grad f‖dµ,

where c = 2r+4
√
r(1 + 2r+1).

proof Setting γ =
1

µB

∫
B
fdµ,

∫

B

|f − γ|r/(r−1)dµ ≥ 1

4r/(r−1)
µF0 if γ ≥ 1

2
,

≥ 1

4r/(r−1)
µF1 if γ ≤ 1

2
.

So 473K tells us that

1

4

(
min(µF0, µF1)

)(r−1)/r ≤ c
∫
B
‖ grad f‖dµ,

as required.

473M The case r = 1 The general rubric for this section declares that r is taken to be at least 2,
which is clearly necessary for the formula in 473K to be appropriate. For the sake of an application in
the next section, however, I mention the elementary corresponding result when r = 1. In this case, B is
just a closed interval, and grad f is the ordinary derivative of f ; interpreting (

∫
B
|f − γ|r/(r−1))(r−1)/r as

‖f × χB − γχB‖r/(r−1), it is natural to look at

‖f × χB − γχB‖∞ = supx∈B |f(x) − γ| ≤ supx,y∈B |f(x) − f(y)| ≤
∫
B
|f ′|dµ,

giving a version of 473K for r = 1. We see that the formula for c remains valid in the case r = 1, with a
good deal to spare. As for 473L, if

∫
B
|f ′| < 1

2 then at least one of F0, F1 must be empty.

473X Basic exercises (a) Set f(x) = max(0,− ln ‖x‖), fk(x) = min(k, f(x)) for x ∈ R2 \ {0}, k ∈ N.
Show that limk→∞ ‖f − fk‖2 = limk→∞ ‖ grad f − grad fk‖1 = 0, so that all the inequalities 473H-473L are
valid for f .

(b) Let k ∈ [1, r] be an integer, and set m =
(r−1)!

(k−1)!(r−k)!
. Let e1, . . . , er be the standard orthonormal

basis of Rr and J the family of subsets of {1, . . . , r} with k members. For J ∈ J let VJ be the linear span
of {ei : i ∈ J}, πJ : Rr → VJ the orthogonal projection and νJ the normalized k-dimensional Hausdorff
measure on VJ . Show that if A ⊆ Rr then (µ∗A)m ≤ ∏

J∈J ν
∗
JπJ [A]. (Hint : start with A ⊆ [0, 1]r and note

that ([0, 1]r)m can be identified with
∏
J∈J [0, 1]J .)

473Y Further exercises (a) Let D ⊆ Rr be any set and φ : D → Rs any function. Show that
D0 = {x : x ∈ D, φ is differentiable at x} is a Borel subset of Rr, and that the derivative of φ is a Borel
measurable function. (Compare 225J.)

473 Notes and comments The point of all the inequalities 473H-473L is that they bound some measure of
variance of a function f by the integral of ‖ grad f‖. If r = 2, indeed, we are looking at ‖f‖2 (473H) or

∫
B
|f |2

(473I) or something essentially equal to the variance of probability theory (473K). In higher dimensions we
need to look at ‖ ‖r/(r−1) in place of ‖ ‖2, and when r = 1 we can interpret the inequalities in terms of the
supremum norm ‖ ‖∞ (473M). In all cases we want to develop inequalities which will enable us to discuss
a function in terms of its first derivative. In one dimension, this is the familiar Fundamental Theorem
of Calculus (Chapter 22). We find there a straightforward criterion (‘absolute continuity’) to determine
whether a given function of one variable is an indefinite integral, and that if so it is the indefinite integral
of its own derivative. Even in two dimensions, this simplicity disappears. The essential problem is that a
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function can be the indefinite integral of an integrable gradient function without being bounded (473Xa).
The principal results of this section are stated for Lipschitz functions, but in fact they apply much more
widely. The argument suggested in 473Xa involves approximating the unbounded function f by Lipschitz
functions fk in a sharp enough sense to make it possible to read off all the inequalities for f from the
corresponding inequalities for the fk. This idea leads naturally to the concept of ‘Sobolev space’, which I
leave on one side for the moment; see Evans & Gariepy 92, chap. 4, for details.

Version of 17.11.12

474 The distributional perimeter

The next step is a dramatic excursion, defining (for appropriate sets E) a perimeter measure for which
a version of the Divergence Theorem is true (474E). I begin the section with elementary notes on the
divergence of a vector field (474B-474C). I then define ‘locally finite perimeter’ (474D), ‘perimeter measure’
and ‘outward normal’ (474F) and ‘reduced boundary’ (474G). The definitions rely on the Riesz representation
theorem, and we have to work very hard to relate them to any geometrically natural idea of ‘boundary’. Even
half-spaces (474I) demand some attention. From Poincaré’s inequality (473K) we can prove isoperimetric
inequalities for perimeter measures (474L). With some effort we can locate the reduced boundary as a subset
of the topological boundary (474Xc), and obtain asymptotic inequalities on the perimeter measures of small
balls (474N). With much more effort we can find a geometric description of outward normal functions in
terms of ‘Federer exterior normals’ (474R), and get a tight asymptotic description of the perimeter measures
of small balls (474S). I end with the Compactness Theorem for sets of bounded perimeter (474T).

474A Notation I had better repeat some of the notation from §473. r ≥ 2 is a fixed integer. µ is
Lebesgue measure on Rr, and βr = µB(0, 1) is the volume of the unit ball. Sr−1 = ∂B(0, 1) is the unit
sphere. ν is normalized (r − 1)-dimensional Hausdorff measure on Rr. We shall sometimes need to look
at Lebesgue measure on Rr−1, which I will denote µr−1. As in §473, I will use Greek letters to represent
coordinates, so that x = (ξ1, . . . , ξr) for x ∈ Rr, etc., and βr will be the r-dimensional volume of the unit
ball in Rr.

D is the set of smooth functions f : Rr → R with compact support; Dr the set of smooth functions
φ : Rr → Rr with compact support, that is, the set of functions φ = (φ1, . . . , φr) : Rr → Rr such that
φi ∈ D for every i.

I continue to use the sequence 〈h̃n〉n∈N from 473E; these functions all belong to D, are non-negative
everywhere and zero outside B(0, 1

n+1 ), are even, and have integral 1.

474B The divergence of a vector field (a) For a function φ from a subset of Rr to Rr, write

divφ =
∑r
i=1

∂φi

∂ξi
, where φ = (φ1, . . . , φr); for definiteness, let us take the domain of divφ to be the set of

points at which φ is differentiable (in the strict sense of 262Fa). Note that divφ ∈ D for every φ ∈ Dr. We
need the following elementary facts.

(b) If f : Rr → R and φ : Rr → Rr are functions, then div(f × φ) = φ . grad f + f × divφ at any point
at which f and φ are both differentiable. (Use 473Bc; compare 473Bd.)

(c) If φ : Rr → Rr is a Lipschitz function with compact support, then
∫

divφ dµ = 0. PPP divφ is
defined almost everywhere (by Rademacher’s theorem, 262Q), measurable (473Be), bounded (473Cc) and
with compact support, so

∫
divφ dµ =

∑r
i=1

∫ ∂φi

∂ξi
dµ

is defined in R. For each i ≤ r, Fubini’s theorem tells us that we can replace integration with respect to µ
by a repeated integral, in which the inner integral is

∫∞
−∞

∂φi

∂ξi
(ξ1, . . . , ξr)dξi = 0

c© 2001 D. H. Fremlin
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because φi(ξ1, . . . , ξr) = 0 whenever |ξi| is large enough. So
∫ ∂φi

∂ξi
dµ also is zero. Summing over i, we have

the result. QQQ

(d) If φ : Rr → Rr and f : Rr → R are Lipschitz functions, one of which has compact support, then f×φ
is Lipschitz. PPP Take n ∈ N such that f(x)φ(x) = 0 for ‖x‖ > n, and γ ≥ 0 such that |f(x)−f(y)| ≤ γ‖x−y‖
and ‖φ(x)−φ(y)‖ ≤ γ‖x− y‖ for all x, y ∈ Rr, while also |f(x)| ≤ γ whenever ‖x‖ ≤ n+ 1 and ‖φ(x)‖ ≤ γ
whenever ‖x‖ ≤ n+ 1. If x, y ∈ Rr then

—– if ‖x‖ ≤ n+ 1 and ‖y‖ ≤ n+ 1,

‖f(x)φ(x) − f(y)φ(y)‖ ≤ |f(x)|‖φ(x) − φ(y)‖ + ‖φ(y)‖|f(x) − f(y)| ≤ 2γ2‖x− y‖;

—– if ‖x‖ ≤ n and ‖y‖ > n+ 1,

|f(x)φ(x) − f(y)φ(y)‖ = |f(x)|‖φ(x)‖ ≤ γ2 ≤ γ2‖x− y‖;

—– if ‖x‖ > n and ‖y‖ > n, |f(x)φ(x) − f(y)φ(y)‖ = 0.

So 2γ2 is a Lipschitz constant for f × φ. QQQ
It follows that ∫

φ . grad f dµ+
∫
f × divφ dµ = 0.

PPP f and φ and f × φ are all differentiable almost everywhere. So∫
φ . grad f dµ+

∫
f × divφ dµ =

∫
div(f × φ)dµ = 0

by (b) and (c) above. QQQ

(e) If f ∈ L
∞(µ), g ∈ L

1(µ) is even (that is, g(−x) is defined and equal to g(x) for every x ∈ dom g),
and φ : Rr → Rr is a Lipschitz function with compact support, then

∫
(f ∗ g) × divφ =

∫
f × div(g ∗ φ),

where g ∗ φ = (g ∗ φ1, . . . , g ∗ φr). PPP For each i,

∫
(f ∗ g) × ∂φi

∂ξi
dµ =

∫∫
f(x)g(y)

∂φi

∂ξi
(x+ y)µ(dy)µ(dx)

(255G/444Od)

=

∫∫
f(x)g(−y)

∂φi

∂ξi
(x+ y)µ(dy)µ(dx)

(because g is even)

=

∫
f × (g ∗ ∂φi

∂ξi
)dµ =

∫
f × ∂

∂ξi
(g ∗ φi)dµ

as in 473Dd. Now take the sum over i of both sides. QQQ

474C Invariance under isometries: Proposition Suppose that T : Rr → Rr is an isometry, and
that φ is a function from a subset of Rr to Rr. Then

div(T−1φT ) = (divφ)T .

proof Set z = T (0). By 4A4Jb, the isometry x 7→ T (x)− z is linear and preserves inner products, so there
is an orthogonal matrix S such that T (x) = z + S(x) for every x ∈ Rr. Now suppose that x ∈ Rr is such
that (divφ)(T (x)) is defined. Then T (y) − T (x) − S(y− x) = 0 for every y, so T is differentiable at x, with
derivative S, and φT is differentiable at x, with derivative DS, where D is the derivative of φ at T (x), by
473Bc. Also T−1(y) = S−1(y − z) for every y, so T−1 is differentiable at φ(T (x)) with derivative S−1, and
T−1φT is differentiable at x, with derivative S−1DS. Now if D is 〈δij〉1≤i,j≤r and S is 〈σij〉1≤i,j≤r and
S−1DS is 〈τij〉1≤i,j≤r, then S−1 is the transpose 〈σji〉1≤i,j≤r of S, because S is orthogonal, so

div(T−1φT )(x) =

r∑

i=1

τii =

r∑

i=1

r∑

j=1

σji

r∑

k=1

δjkσki

=

r∑

j=1

r∑

k=1

δjk

r∑

i=1

σjiσki =

r∑

j=1

δjj = divφ(T (x))
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because
∑r
i=1 σjiσjk = 1 if j = k and 0 otherwise. If div(T−1φT )(x) is defined, then (because T−1 also is

an isometry)

(divφ)(T (x)) = div(TT−1φTT−1)(T (x)) = div(T−1φT )(T−1T (x)) = div(T−1φT )(x).

So the functions div(T−1φT ) and (divφ)T are identical.

474D Locally finite perimeter: Definition Let E ⊆ Rr be a Lebesgue measurable set. Its perimeter
perE is

sup{|
∫
E

divφ dµ| : φ : Rr → B(0, 1) is a Lipschitz function with compact support}
(allowing ∞). A set E ⊆ Rr has locally finite perimeter if it is Lebesgue measurable and

sup{|
∫
E

divφ dµ| : φ : Rr → Rr is a Lipschitz function, ‖φ‖ ≤ χB(0, n)}
is finite for every n ∈ N. Of course a Lebesgue measurable set with finite perimeter also has locally finite
perimiter.

474E Theorem Suppose that E ⊆ Rr has locally finite perimeter.
(i) There are a Radon measure λ∂E on Rr and a Borel measurable function ψ : Rr → Sr−1 such that∫

E
divφ dµ =

∫
φ .ψ dλ∂E

for every Lipschitz function φ : Rr → Rr with compact support.
(ii) This formula uniquely determines λ∂E , which can also be defined by saying that

λ∂E(G) = sup{|
∫
E

divφ dµ| : φ : Rr → Rr is Lipschitz, ‖φ‖ ≤ χG}
whenever G ⊆ Rr is open.

(iii) If ψ̂ is another function defined λ∂E-a.e. and satisfying the formula in (i), then ψ̂ and ψ are equal
λ∂E-almost everywhere.

proof (a)(i) For each l ∈ N, set

γl = sup{|
∫
E

divφ dµ| : φ : Rr → Rr is Lipschitz, ‖φ‖ ≤ χB(0, l)}.

If f : Rr → R is a Lipschitz function and f(x) = 0 for ‖x‖ ≥ l, then |
∫
E

∂f

∂ξi
dµ| ≤ γl‖f‖∞ for every i ≤ r.

PPP It is enough to consider the case ‖f‖∞ = 1, since the result is trivial if ‖f‖∞ = 0, and otherwise we can
look at an appropriate scalar multiple of f . In this case, set φ(x) = f(x)ei for every x, where ei is the unit
vector (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith place. Then φ is Lipschitz and ‖φ‖ = |f | ≤ χB(0, l), so

|
∫
E

∂f

∂ξi
dµ| = |

∫
E

divφ dµ| ≤ γl. QQQ

(ii) Write Ck for the space of continuous functions with compact support from Rr to R. By 473Dc

and 473De, f ∗ h̃n ∈ D for every f ∈ Ck and n ∈ N. Now the point is that

Li(f) = limn→∞
∫
E

∂

∂ξi
(f ∗ h̃n)dµ

is defined whenever f ∈ Ck and i ≤ r. PPP Applying 473Ed, we see that ‖f − f ∗ h̃n‖∞ → 0 as n→ ∞. Let l

be such that f(x) = 0 for ‖x‖ ≥ l. Then ‖(f ∗ h̃m)− (f ∗ h̃n)‖∞ → 0 as m, n→ ∞, while all the f ∗ h̃m are
zero outside B(0, l + 1) (473Dc), so that

∣∣∫
E

∂

∂ξi
(f ∗ h̃m)dµ−

∫
E

∂

∂ξi
(f ∗ h̃n)dµ

∣∣ ≤ γl+1‖(f ∗ h̃m) − (f ∗ h̃n)‖∞ → 0

as m, n→ ∞. Thus 〈
∫
E

∂

∂ξi
(f ∗ h̃n)dµ〉n∈N is a Cauchy sequence and must have a limit. QQQ

(iii) If f ∈ Ck is Lipschitz and zero outside B(0, l), then

|
∫
E

∂f

∂ξi
dµ−

∫
E

∂

∂ξi
(f ∗ h̃n)dµ| ≤ γl+1‖f − f ∗ h̃n‖∞ → 0
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as n→ ∞, and Li(f) =
∫
E

∂f

∂ξi
dµ. Consequently |Li(f)| ≤ γl‖f‖∞.

(b) Because all the functionals f 7→
∫
E

∂

∂ξi
(f ∗ h̃n)dµ are linear, Li is linear. Moreover, by the last remark

in (a-iii), it is order-bounded when regarded as a linear functional on the Riesz space Ck, so is expressible
as a difference L+

i − L−
i of positive linear functionals (356B).

By the Riesz Representation Theorem (436J), we have Radon measures λ+i , λ−i on Rr such that L+
i (f) =∫

fdλ+i , L−
i (f) =

∫
fdλ−i for every f ∈ Ck. Let λ̂ be the sum

∑r
i=1 λ

+
i + λ−i , so that λ̂ is a Radon measure

(416De) and every λ+i , λ−i is an indefinite-integral measure over λ̂ (416Sb).

For each i ≤ r, let g+i , g−i be Radon-Nikodým derivatives of λ+i , λ−i with respect to λ̂. Adjusting them

on a λ̂-negligible set if necessary, we may suppose that they are all bounded non-negative Borel measurable

functions from Rr to R. (Recall from 256C that λ̂ must be the completion of its restriction to the Borel
σ-algebra.) Set gi = g+i − g−i for each i. Then

∫

E

∂f

∂ξi
dµ = L+

i (f) − L−
i (f) =

∫
fdλ+i −

∫
fdλ−i

=

∫
f × g+i dλ̂−

∫
f × g−i dλ̂ =

∫
f × gidλ̂

for every Lipschitz function f with compact support (235K). Set g =
√∑r

i=1 g
2
i . For i ≤ r, set ψi(x) =

gi(x)

g(x)

when g(x) 6= 0,
1√
r

when g(x) = 0, so that ψ = (ψ1, . . . , ψr) : Rr → Sr−1 is Borel measurable. Let λ∂E be

the indefinite-integral measure over λ̂ defined by g; then λ∂E is a Radon measure on Rr (256E/416Sa).

(c) Now take any Lipschitz function φ : Rr → Rr with compact support. Express it as (φ1, . . . , φr)
where φi : Rr → R is a Lipschitz function with compact support for each i. Then

∫

E

divφ dµ =

r∑

i=1

∫

E

∂φi

∂ξi
dµ =

r∑

i=1

Li(φi)

=

r∑

i=1

L+
i (φi) −

r∑

i=1

L−
i (φi) =

r∑

i=1

∫
φidλ̂

+
i −

r∑

i=1

∫
φidλ̂

−
i

=
r∑

i=1

∫
φi × g+i dλ̂−

r∑

i=1

∫
φi × g−i dλ̂

(by 235K again)

=
r∑

i=1

∫
φi × gidλ̂ =

r∑

i=1

∫
φi × ψidλ

∂
E

(235K once more, because ψi × g = gi)

=

∫
φ .ψ dλ∂E .

So we have λ∂E and ψ satisfying (i).

(d) Now suppose that G ⊆ Rr is open. If φ : Rr → Rr is a Lipschitz function with compact support and
‖φ‖ ≤ χG, then

|
∫
E

divφ dµ| = |
∫
φ .ψ dλ∂E | ≤

∫
‖φ‖dλ∂E ≤ λ∂E(G).

On the other hand, if γ < λ∂E(G), let G0 ⊆ G be a bounded open set such that γ < λ∂E(G0), and set
ǫ = 1

3 (λ∂E(G0) − γ). Let K ⊆ G0 be a compact set such that λ∂E(G0 \ K) ≤ ǫ. Let δ > 0 be such that
‖x − y‖ ≥ 2δ whenever y ∈ K and x ∈ Rr \ G0, and set H = {x : infy∈K ‖x − y‖ < δ}. Now there are
f1, . . . , fr ∈ Ck such that
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∑r
i=1 f

2
i ≤ χH,

∫ ∑r
i=1 fi × ψidλ

∂
E ≥ γ.

PPP For each i ≤ r, we can find a sequence 〈gmi〉m∈N in Ck such that
∫
|gmi− (ψi×χK)|dλ∂E ≤ 2−m for every

m ∈ N (416I); multiplying the gmi by a function which takes the value 1 on K and 0 outside H if necessary,
we can suppose that gmi(x) = 0 for x /∈ H. Set

fmi =
gmi

max(1,
√∑r

j=1
g2
mj)

∈ Ck

for each m and i. Now limm→∞ fmi(x) = ψi(x) for every i ≤ r whenever limm→∞ gmi(x) = ψi(x) for every
i ≤ r, which is the case for λ∂E-almost every x ∈ K. Also

∑r
i=1 f

2
mi ≤ χH for every m, so |∑r

i=1 fmi×ψi| ≤
χH for every m, while

limm→∞
∑r
i=1

∫
K
fmi × ψidλ

∂
E =

∑r
i=1

∫
K
ψ2
i dλ

∂
E = λ∂E(K).

At the same time,

|∑r
i=1

∫
Rr\K fmi × ψidλ

∂
E | ≤ λ∂E(H \K) ≤ ǫ

for every m, so
∑r
i=1

∫
fmi × ψidλ

∂
E ≥ λ∂E(G0) − 3ǫ = γ

for all m large enough, and we may take fi = fmi for such an m. QQQ
Now, for n ∈ N, set

φn = (f1 ∗ h̃n, . . . , fr ∗ h̃n) ∈ Dr.

For all n large enough, we shall have ‖x− y‖ ≥ 1

n+1
for every x ∈ Rr \G0 and y ∈ H, so that φn(x) = 0 if

x /∈ G0. By 473Dg,

‖φn(x)‖ ≤ supy∈R

√∑r
i=1 fi(y)2 ≤ 1

for every x and n, so that ‖φn‖ ≤ χG0 for all n large enough. Next, limn→∞ φn(x) = (f1(x), . . . , fr(x)) for
every x ∈ Rr (473Ed), so ∫

E
divφndµ =

∫
φn .ψ dλ

∂
E →

∫ ∑r
i=1 fi × ψidλ

∂
E ≥ γ

as n→ ∞, by Lebesgue’s Dominated Convergence Theorem. As γ is arbitrary,

λ∂E(G) ≤ sup{
∫

E

divφ dµ : φ ∈ Dr, ‖φ‖ ≤ χG}

≤ sup{
∫

E

divφ dµ : φ is Lipschitz, ‖φ‖ ≤ χG}

and we have equality.

(e) Thus λ∂E must satisfy (ii). By 416Eb, it is uniquely defined. Now suppose that ψ̂ is another function
from a λ∂E-conegligible set to Rr and satisfies (i). Then

∫
φ .ψ dλ∂E =

∫
φ . ψ̂ dλ∂E

for every Lipschitz function φ : Rr → Rr with compact support. Take any i ≤ r and any compact set
K ⊆ Rr. For m ∈ N, set fm(x) = max(0, 1 − 2m infy∈K ‖y − x‖) for x ∈ Rr, so that 〈fm〉m∈N is a sequence
of Lipschitz functions with compact support and limm→∞ fm = χK. Set

φm = (0, . . . , fm, . . . , 0),

where the non-zero term is in the ith position. Then

∫

K

ψidλ
∂
E = lim

m→∞

∫
fm × ψidλ

∂
E = lim

m→∞

∫
φm .ψ dλ∂E

= lim
m→∞

∫
φm . ψ̂ dλ∂E =

∫

K

ψ̂idλ
∂
E .
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By the Monotone Class Theorem (136C), or otherwise,
∫
F
ψ̂idλ

∂
E =

∫
F
ψidλ

∂
E for every bounded Borel set

F , so that ψ̂i = ψi λ
∂
E-a.e.; as i is arbitrary, ψ = ψ̂ λ∂E-a.e. This completes the proof.

474F Definitions In the context of 474E, I will call λ∂E the perimeter measure of E, and if ψ is a
function from a λ∂E-conegligible subset of Rr to Sr−1 which has the property in (i) of the theorem, I will
call it an outward-normal function for E.

The words ‘perimeter’ and ‘outward normal’ are intended to suggest geometric interpretations; much of
this section and the next will be devoted to validating this suggestion.

Observe that if E has locally finite perimeter, then perE = λ∂E(Rr). The definitions in 474D-474E also
make it clear that if E, F ⊆ R are Lebesgue measurable and µ(E△F ) = 0, then perE = perF and E has
locally finite perimeter iff F has; and in this case λ∂E = λ∂F and an outward-normal function for E is an
outward-normal function for F .

474G The reduced boundary Let E ⊆ Rr be a set with locally finite perimeter; let λ∂E be its perimeter

measure and ψ an outward-normal function for E. The reduced boundary ∂$E is the set of those y ∈ Rr

such that, for some z ∈ Sr−1,

limδ↓0
1

λ∂
EB(y,δ)

∫
B(y,δ)

‖ψ(x) − z‖λ∂E(dx) = 0.

(When requiring that the limit be defined, I mean to insist that λ∂EB(y, δ) should be non-zero for every
δ > 0, that is, that y belongs to the support of λ∂E . Warning! Some authors use the phrase ‘reduced
boundary’ for a slightly larger set.) Note that, writing ψ = (ψ1, . . . , ψr) and z = (ζ1, . . . , ζr), we must have

ζi = limδ↓0
1

λ∂
EB(y,δ)

∫
B(y,δ)

ψidλ
∂
E ,

so that z is uniquely defined; call it ψE(y). Of course ∂$E and ψE are determined entirely by the set E,
because λ∂E is uniquely determined and ψ is determined up to a λ∂E-negligible set (474E).

By Besicovitch’s Density Theorem (472Db),

limδ↓0
1

λ∂
EB(x,δ)

∫
B(x,δ)

|ψi(x) − ψi(y)|λ∂E(dx) = 0

for every i ≤ r, for λ∂E-almost every y ∈ Rr; and for any such y, ψE(y) is defined and equal to ψ(y). Thus

∂$E is λ∂E-conegligible and ψE is an outward-normal function for E. I will call ψE : ∂$E → Sr−1 the
canonical outward-normal function of E.

Once again, we see that if E, F ⊆ Rr are sets with locally finite perimeter and E△F is Lebesgue
negligible, then they have the same reduced boundary and the same canonical outward-normal function.

474H Invariance under isometries: Proposition Let E ⊆ Rr be a set with locally finite perimeter.
Let λ∂E be its perimeter measure, and ψE its canonical outward-normal function. If T : Rr → Rr is any
isometry, then T [E] has locally finite perimeter, λ∂T [E] is the image measure λ∂ET

−1, the reduced boundary

∂$T [E] is T [∂$E], and the canonical outward-normal function of T [E] is SψET
−1, where S is the derivative

of T .

proof (a) As noted in 474C, the derivative of T is constant, and is an orthogonal matrix. Suppose that
n ∈ N. Let φ : Rr → Rr be a Lipschitz function such that ‖φ‖ ≤ χB(0, n). Then

|
∫

T [E]

divφ dµ| = |
∫

E

(divφ)T dµ|

(263D, because | detS| = 1)

= |
∫

E

div(T−1φT )dµ|

(474C)
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= |
∫

E

div(S−1φT )dµ|

(because S−1φT and T−1φT differ by a constant, and must have the same derivative)

≤ λ∂E(T−1[B(0, n)])

because S−1φT is a Lipschitz function and

‖S−1φT‖ = ‖φT‖ ≤ χT−1[B(0, n)].

Since T−1[B(0, n)] is bounded, λ∂E(T−1[B(0, n)]) is finite for every n, and T [E] has locally finite perimeter.

(b) We can therefore speak of its perimeter measure λ∂T [E]. Let G ⊆ Rr be an open set. If φ : Rr → Rr

is a Lipschitz function and ‖φ‖ ≤ χT [G], then

|
∫
T [E]

divφ dµ| = |
∫
E

div(S−1φT )dµ| ≤ λ∂E(G)

because S−1φT is a Lipschitz function dominated by χG. As φ is arbitrary, λ∂T [E](T [G]) ≤ λ∂E(G). Applying

the same argument in reverse, with T−1 in the place of T , we see that λ∂E(G) ≤ λ∂T [E](T [G]), so the two

are equal. This means that the Radon measures λ∂T [E] and λ∂ET
−1 (418I) agree on open sets, and must be

identical (416Eb again).

(c) Now consider SψET
−1. Since ψE is defined λ∂E-almost everywhere and takes values in Sr−1, ψET

−1

and SψET
−1 are defined λ∂T [E]-almost everywhere and take values in Sr−1. If φ : Rr → Rr is a Lipschitz

function with compact support,

∫

T [E]

divφ dµ =

∫

E

(divφ)T dµ =

∫

E

div(T−1φT )dµ

=

∫

E

div(S−1φT )dµ =

∫
(S−1φT ) .ψE dλ

∂
E

=

∫
(φT ) .(SψE)dλ∂E

(because S is orthogonal)

=

∫
φ .(SψET

−1)d(λ∂ET
−1)

(235G)

=

∫
φ .(SψET

−1)dλ∂T [E].

Accordingly SψET
−1 is an outward-normal function for T [E]. Write ψT [E] for the canonical outward-normal

function of T [E].

(d) Take y ∈ R and consider

1

λ∂
T [E]B(y,δ)

∫

B(y,δ)

‖SψET−1(x) − SψET
−1(y)‖λ∂T [E](dx)

=
1

λ∂
EB(T−1(y),δ)

∫

B(T−1(y),δ)

‖SψE(x) − SψET
−1(y)‖λ∂E(dx)

=
1

λ∂
EB(T−1(y),δ)

∫

B(T−1(y),δ)

‖ψE(x) − ψET
−1(y)‖λ∂E(dx)

for any δ > 0 for which

λ∂T [E]B(y, δ) = λ∂ET
−1[B(y, δ)] = λ∂EB(T−1(y), δ)

is non-zero. We see that
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limδ↓0
1

λ∂
T [E]B(y,δ)

∫
B(y,δ)

‖SψET−1(x) − SψET
−1(y)‖λ∂

T [E]
(dx)

is defined and equal to 0 whenever

1

λ∂
EB(T−1(y),δ)

∫
B(T−1(y),δ)

‖ψE(x) − ψET
−1(y)‖λ∂E(dx)

is defined and equal to 0, that is, T−1(y) ∈ ∂$E. In this case, y ∈ ∂$T [E] and SψET
−1(y) = ψT [E](y). So

∂$T [E] ⊇ T [∂$E] and SψET
−1 extends ψT [E].

Applying the argument to T−1, we see that S−1ψT [E]T extends ψE , that is, ψT [E] extends SψET
−1. So

SψET
−1 is exactly the canonical outward-normal function of T [E], and its domain T [∂$E] is ∂$T [E].

474I Half-spaces It will be useful, and perhaps instructive, to check the most elementary special case.

Proposition Let H ⊆ Rr be a half-space {x : x .v ≤ α}, where v ∈ Sr−1. Then H has locally finite
perimeter; its perimeter measure λ∂H is defined by saying

λ∂H(F ) = ν(F ∩ ∂H)

whenever F ⊆ Rr is such that ν measures F ∩ ∂H, and the constant function with value v is an outward-
normal function for H.

proof (a) Suppose, to begin with, that v is the unit vector (0, . . . , 0, 1) and that α = 0, so that H = {x :
ξr ≤ 0}. Let φ : Rr → Rr be a Lipschitz function with compact support. Then for any i < r

∫
H

∂φi

∂ξi
µ(dx) = 0

because we can regard this as a multiple integral in which the inner integral is with respect to ξi and is
therefore always zero. On the other hand, integrating with respect to the rth coordinate first,

∫

H

∂φr

∂ξr
µ(dx) =

∫

Rr−1

∫ 0

−∞

∂φr

∂ξr
(z, t)dt µr−1(dz)

=

∫

Rr−1

φr(z, 0)µr−1(dz) =

∫

∂H

φr(x)ν(dx)

(identifying ν on Rr−1 × {0} with µr−1 on Rr−1)

=

∫

∂H

φ .v dν =

∫
φ .v dλ

where λ is the indefinite-integral measure over ν defined by the function χ(∂H). Note that (by 234La) λ
can also be regarded as ν∂Hι

−1, where ν∂H is the subspace measure on ∂H and ι : ∂H → Rr is the identity
map. Now ν∂H can be identified with Lebesgue measure on Rr−1, by 265B or otherwise, so in particular is
a Radon measure, and λ also is a Radon measure, by 418I again or otherwise.

This means that λ and the constant function with value v satisfy the conditions of 474E, and must be
the perimeter measure of H and an outward-normal function.

(b) For the general case, let S be an orthogonal matrix such that S(0, . . . , 0, 1) = v, and set T (x) =
S(x) + αv for every x, so that H = T [{x : ξr ≤ 0}]. By 474H, the perimeter measure of H is λT−1 and the
constant function with value v is an outward-normal function for H. Now the Radon measure λ∂H = λT−1

is defined by saying that

λ∂HF = λT−1[F ] = ν(T−1[F ] ∩ {x : ξr = 0}) = ν(F ∩ T [{x : ξr = 0}]) = ν(F ∩ ∂H)

whenever ν(F ∩∂H) is defined, because ν (being a scalar multiple of a Hausdorff measure) must be invariant
under the isometry T .

474J Lemma Let E ⊆ Rr be a set with locally finite perimeter. Let λ∂E be the perimeter measure of E,
and ψE its canonical outward-normal function. Then Rr \ E also has locally finite perimeter; its perimeter
measure is λ∂E , its reduced boundary is ∂$E, and its canonical outward-normal function is −ψE .
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proof Of course Rr \ E is Lebesgue measurable. By 474Bc,∫
Rr\E divφ dµ = −

∫
E

divφ dµ =
∫
φ .(−ψE) dλ∂E

for every Lipschitz function φ : Rr → Rr with compact support. The uniqueness assertions in 474E tell us
that Rr \ E has locally finite perimeter, that its perimeter measure is λ∂E , and that −ψE is an outward-
normal function for Rr \ E. Referring to the definition of ‘reduced boundary’ in 474G, we see at once that
∂$(Rr \ E) = ∂$E and that ψRr\E = −ψE .

474K Lemma Let E ⊆ Rr be a set with locally finite perimeter; let λ∂E be its perimeter measure, and
ψ an outward-normal function for E. Let φ : Rr → Rr be a Lipschitz function with compact support, and
g ∈ D an even function. Then ∫

φ . grad(g ∗ χE)dµ+
∫

(g ∗ φ) .ψ dλ∂E = 0.

proof

∫
φ . grad(g ∗ χE)dµ = −

∫
(g ∗ χE) × divφ dµ

(474Bd, using 473Dd to see that g ∗ χE is Lipschitz)

= −
∫
χE × div(g ∗ φ)dµ

(474Be)

= −
∫

(g ∗ φ) .ψ dλ∂E

(because g ∗ φ is smooth and has compact support, so is Lipschitz), as required.

474L Two isoperimetric inequalities: Theorem Let E ⊆ Rr be a set with locally finite perimeter,
and λ∂E its perimeter measure.

(a) If E is bounded, then (µE)(r−1)/r ≤ perE.
(b) If B ⊆ Rr is a closed ball, then

min(µ(B ∩ E), µ(B \ E))(r−1)/r ≤ 2cλ∂E(intB),

where c = 2r+4
√
r(1 + 2r+1).

proof (a) Let ǫ > 0. By 473Ef, there is an n ∈ N such that ‖f − χE‖r/(r−1) ≤ ǫ, where f = χE ∗ h̃n. Note
that f is smooth (473De again) and has compact support, because E is bounded. Let η > 0 be such that

∫
‖ grad f‖dµ ≤

∫ ‖ grad f‖2√
η+‖ grad f‖2

dµ+ ǫ,

and set φ =
grad f√

η+‖ grad f‖2
. Then φ ∈ Dr and ‖φ(x)‖ ≤ 1 for every x ∈ Rr. Now we can estimate

∫
‖ grad f‖dµ ≤

∫
φ . grad f dµ+ ǫ

= −
∫

(h̃n ∗ φ) .ψ dλ∂E + ǫ

(where ψ is an outward-normal function for E, by 474K)

≤
∫

‖h̃n ∗ φ‖dλ∂E + ǫ ≤ perE + ǫ

because ‖(h̃n ∗ φ)(x)‖ ≤ 1 for every x ∈ Rr, by 473Dg. Accordingly
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(µE)(r−1)/r = ‖χE‖r/(r−1) ≤ ‖f‖r/(r−1) + ǫ ≤
∫

‖ grad f‖dµ+ ǫ

(473H)

≤ perE + 2ǫ.

As ǫ is arbitrary, we have the result.

(b)(i) Set α = min(µ(B ∩ E), µ(B \ E)). If α = 0, the result is trivial; so suppose that α > 0. Take any
ǫ ∈ ]0, α]. Let B1 be a closed ball, with the same centre as B and strictly smaller non-zero radius, such that
µ(B \B1) ≤ ǫ; then α− ǫ ≤ min(µ(B1 ∩ E), µ(B1 \ E)). For f ∈ L

r/(r−1)(µ) set

γ0(f) =
1

µB1

∫
B1
fdµ, γ1(f) = ‖(f × χB1) − γ0(f)χB1‖r/(r−1);

then both γ0 and γ1 are continuous functions on L
r/(r−1)(µ) if we give it its usual pseudometric (f, g) 7→

‖f − g‖r/(r−1). Now γ1(χ(E ∩B)) ≥ 1
2 (α− ǫ)(r−1)/r. PPP We have

γ0(χ(E ∩B)) =
µ(B1∩E)

µB1

,

γ1(χ(E ∩B))r/(r−1) =

∫

B1

|χ(E ∩B) − γ0(χ(E ∩B))|r/(r−1)

= µ(B1 ∩ E)
(
1 − µ(B1∩E)

µB1

)r/(r−1)
+ µ(B1 \ E)

(µ(B1∩E)

µB1

)r/(r−1)

= µ(B1 ∩ E)
(µ(B1\E)

µB1

)r/(r−1)
+ µ(B1 \ E)

(µ(B1∩E)

µB1

)r/(r−1)
.

Either µ(B1 ∩ E) ≥ 1
2µB1 or µ(B1 \ E) ≥ 1

2µB1; suppose the former. Then

γ1(χ(E ∩B))r/(r−1) ≥ 1

2r/(r−1)
µ(B1 \ E) ≥ 1

2r/(r−1)
(α− ǫ)

and γ1(χ(E ∩B)) ≥ 1

2
(α− ǫ)(r−1)/r. Exchanging B1 ∩E and B1 \E we have the same result if µ(B1 ∩E) ≥

1
2µB1. QQQ

(ii) Express B as B(y, δ) and B1 as B(y, δ1). Take n0 ≥ 2

δ−δ1
. Because γ1 is ‖ ‖r/(r−1)-continuous,

there is an n ≥ n0 such that γ1(f) ≥ 1
2 (α − ǫ)(r−1)/r − ǫ, where f = h̃n ∗ χ(E ∩ B) (473Ef); as in part (a)

of the proof, f ∈ D. Let η > 0 be such that
∫
B1

‖ grad f‖2√
η+‖ grad f‖2

dµ ≥
∫
B1

‖ grad f‖dµ− ǫ.

Let m ≥ n0 be such that
∫
φ . grad f dµ ≥

∫
B1

‖ grad f‖dµ− 2ǫ, where

φ = h̃m ∗ (
grad f√

η+‖ grad f‖2
× χB1).

Note that φ(x) = 0 if ‖x − y‖ ≥ 1
2 (δ + δ1), so that (h̃n ∗ φ)(x) = 0 if x /∈ intB. By 473Dg, ‖φ(x)‖ ≤ 1 for

every x and ‖(h̃n ∗ φ)(x)‖ ≤ 1 for every x, so ‖h̃n ∗ φ‖ ≤ χ(intB).
Now we have

∫
φ . grad f dµ =

∫
φ . grad(h̃n ∗ χ(E ∩B)) dµ

= −
∫

(h̃n ∗ χ(E ∩B)) × divφ dµ

(474Bd)
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= −
∫

E∩B
div(h̃n ∗ φ)dµ

(474Be)

= −
∫

E

div(h̃n ∗ φ)dµ ≤ λ∂E(intB)

(474E).

(iii) Accordingly

1

2
(α− ǫ)(r−1)/r − ǫ ≤ γ1(f) ≤ c

∫

B1

‖ grad f‖dµ

(473K)

≤ c
(∫

φ . grad f dµ+ 2ǫ
)
≤ c(λ∂E(intB) + 2ǫ).

As ǫ is arbitrary, α(r−1)/r ≤ 2cλ∂E(intB), as claimed.

474M Lemma Suppose that E ⊆ Rr has locally finite perimeter, with perimeter measure λ∂E and an
outward-normal function ψ. Then for any y ∈ Rr and any Lipschitz function φ : Rr → Rr,

∫
E∩B(y,δ)

divφ dµ =
∫
B(y,δ)

φ .ψ dλ∂E +
∫
E∩∂B(y,δ)

φ(x) .
1

δ
(x− y) ν(dx)

for almost every δ > 0.

proof (a) For t > 0, set

w(t) =
∫
E∩∂B(y,t)

φ(x) .
1

t
(x− y) ν(dx)

when this is defined. By 265G, applied to functions of the form

x 7→
{
φ(x) .

x−y

‖x−y‖ if x ∈ E and 0 < ‖x− y‖ ≤ α

0 otherwise,

w is defined almost everywhere in ]0,∞[ and is measurable (for Lebesgue measure on R).
Let δ > 0 be any point in the Lebesgue set of w (223D). Then

limt↓0
1

t

∫ δ+t
δ

|w(s) − w(δ)|ds ≤ 2 limt↓0
1

2t

∫ δ+t
δ−t |w(s) − w(δ)| = 0.

Let ǫ > 0. Then there is an η > 0 such that

1

η

∫ δ+η
δ

|w(s) − w(δ)|ds ≤ ǫ,
∫
B(y,δ+η)\B(y,δ)

‖φ‖dλ∂E ≤ ǫ,

∫
B(y,δ+η)\B(y,δ)

‖divφ‖dµ ≤ ǫ.

(b) Set

g(x) = 1 if ‖x− y‖ ≤ δ,

= 1 − 1

η
(‖x− y‖ − δ) if δ ≤ ‖x− y‖ ≤ δ + η,

= 0 if ‖x− y‖ ≥ δ + η.

Then g is continuous, and grad g(x) = 0 if ‖x − y‖ < δ or ‖x − y‖ > δ + η; while if δ < ‖x − y‖ < δ + η,

grad g(x) = − x−y

η‖x−y‖ . This means that

Measure Theory



474N The distributional perimeter 51

∫

E

φ . grad g dµ = −1

η

∫ δ+η

δ

∫

E∩∂B(y,t)

1

t
(x− y) .φ(x) ν(dx)dt

= −1

η

∫ δ+η

δ

w(t)dt.

By the choice of η,

|
∫
E
φ . grad g dµ+ w(δ)| ≤ ǫ.

(c) By 474E and 474Bb we have

∫
(g × φ) .ψ dλ∂E =

∫

E

div(g × φ)dµ

(of course g × φ is Lipschitz, by 473Ca and 262Ba)

=

∫

E

φ . grad g dµ+

∫

E

g × divφ dµ.

Next, by the choice of η,

|
∫

((g × φ) .ψ dλ∂E −
∫
B(y,δ)

φ .ψ dλ∂E | ≤
∫
B(y,δ+η)\B(y,δ)

‖φ‖dλ∂E ≤ ǫ,

while

|
∫
E
φ . grad g dµ+

∫
E∩∂B(y,δ)

φ(x) .
1

δ
(x− y)ν(dx)| = |

∫
E
φ . grad g dµ+ w(δ)| ≤ ǫ

and

∣∣
∫

E

g × divφ dµ−
∫

E∩B(y,δ)

divφ dµ
∣∣

≤
∫

B(y,δ+η)\B(y,δ)

‖divφ‖dµ ≤ ǫ.

Putting these together, we have

|
∫
E∩B(y,δ)

divφ dµ−
∫
B(y,δ)

φ .ψ dλ∂E −
∫
E∩∂B(y,δ)

φ(x) .
1

δ
(x− y)ν(dx)| ≤ 3ǫ.

As ǫ is arbitrary, this gives the result.

474N Lemma Let E ⊆ Rr be a set with locally finite perimeter, and λ∂E its perimeter measure. Then,

for any y ∈ ∂$E,

(i) lim infδ↓0
µ(B(y,δ)∩E)

δr
≥ 1

(3r)r
;

(ii) lim infδ↓0
µ(B(y,δ)\E)

δr
≥ 1

(3r)r
;

(iii) lim infδ↓0
λ∂
EB(y,δ)

δr−1
≥ 1

2c(3r)r−1
,

where c = 2r+4
√
r(1 + 2r+1);

(iv) lim supδ↓0
λ∂
EB(y,δ)

δr−1
≤ 4πβr−2.

proof (a) Let ψE be the canonical outward-normal function of E (474G). Take y ∈ ∂$E. Set

Φ = {φ : φ is a Lipschitz function from Rr to B(0, 1)}.

Because the space L1(µ) is separable in its usual (norm) topology (244I), so is {(divφ×χB(y, 1))• : φ ∈ Φ}
(4A2P(a-iv)), and there must be a countable set Φ0 ⊆ Φ such that

whenever φ ∈ Φ and m ∈ N there is a φ̂ ∈ Φ0 such that
∫
B(y,1)

| divφ− div φ̂|dµ ≤ 2−m.
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Now, for each φ ∈ Φ0,

|
∫

E∩B(y,δ)

divφ dµ| = |
∫

B(y,δ)

φ .ψE dλ
∂
E +

∫

E∩∂B(y,δ)

φ(x) .
1

δ
(x− y)ν(dx)|

≤ λ∂EB(y, δ) + ν(E ∩ ∂B(y, δ))

for almost every δ > 0, by 474M. But this means that, for almost every δ ∈ ]0, 1],

per(E ∩B(y, δ)) = sup
φ∈Φ

|
∫

E∩B(y,δ)

divφ dµ|

= sup
φ∈Φ0

|
∫

E∩B(y,δ)

divφ dµ| ≤ λ∂EB(y, δ) + ν(E ∩ ∂B(y, δ)).

(b) It follows that, for some δ0 > 0,

per(E ∩B(y, δ)) ≤ 3ν(E ∩ ∂B(y, δ))

for almost every δ ∈ ]0, δ0]. PPP Applying 474M with φ(x) = ψE(y) for every x, we have

0 =
∫
B(y,δ)

ψE(y) .ψE(x)λ∂E(dx) +
∫
E∩∂B(y,δ)

ψE(y) .
1

δ
(x− y)ν(dx)

for almost every δ ∈ [0, 1]. But by the definition of ψE(y),

limδ↓0
1

λ∂
EB(y,δ)

∫
B(y,δ)

ψE(y) .ψE dλ
∂
E = limδ↓0

1

λ∂
EB(y,δ)

∫
B(y,δ)

ψE(y) .ψE(y) dλ∂E = 1.

So there is some δ0 > 0 such that, for almost every δ ∈ ]0, δ0],

λ∂EB(y, δ) ≤ 2

∫

B(y,δ)

ψE(y) .ψE dλ
∂
E

= −2

∫

E∩∂B(y,δ)

ψE(y) .
1

δ
(x− y)ν(dx) ≤ 2ν(E ∩ ∂B(y, δ)). (†)

But this means that, for almost every such δ,

per(E ∩B(y, δ)) ≤ λ∂EB(y, δ) + ν(E ∩ ∂B(y, δ)) ≤ 3ν(E ∩ ∂B(y, δ)). QQQ

(c) Set g(t) = µ(E∩B(y, t)) for t ≥ 0. By 265G, g(t) =
∫ t
0
ν(E∩∂B(y, s))ds for every t, so g is absolutely

continuous on [0, 1] and g′(t) = ν(E ∩ ∂B(y, t)) for almost every t. Now we can estimate

g(t)(r−1)/r = µ(E ∩B(y, t))(r−1)/r ≤ per(E ∩B(y, t))

(474La)

≤ 3ν(E ∩ ∂B(y, t)) = 3g′(t)

for almost every t ∈ [0, δ0]. So

d

dt

(
g(t)1/r

)
=

1

r
g(t)(1−r)/rg′(t) ≥ 1

3r

for almost every t ∈ [0, δ0]; since t 7→ g(t)1/r is non-decreasing, g(t)1/r ≥ t

3r
(222C) and g(t) ≥ (3r)−rtr for

every t ∈ [0, δ0].

(d) Accordingly

lim infδ↓0
µ(B(y,δ)∩E)

δr
≥ inf0<δ≤δ0

µ(B(y,δ)∩E)

δr
≥ 1

(3r)r
.

This proves (i).
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(e) Because λ∂
Rr\E = λ∂E and −ψE is the canonical outward-normal function of Rr \ E (474J), y also

belongs to ∂$(Rr \ E), so the second formula of this lemma follows from the first.

(f) By 474Lb,

λ∂EB(y, δ) ≥ 1

2c
min

(
µ(B(y, δ) ∩ E), µ(B(y, δ) \ E)

)(r−1)/r

for every δ ≥ 0. So

lim inf
δ↓0

λ∂EB(y, δ)

δr−1
≥ 1

2c
lim inf
δ↓0

min
(µ(B(y, δ) ∩ E)

δr
,
µ(B(y, δ) \ E)

δr
)(r−1)/r

≥ 1

2c
min

(
lim inf
δ↓0

µ(B(y, δ) ∩ E)

δr
, lim inf

δ↓0
µ(B(y, δ) \ E)

δr
)(r−1)/r

≥ 1

2c

( 1

(3r)r

)(r−1)/r
=

1

2c(3r)r−1
.

Thus (iii) is true.

(g) Returning to the inequality (†) in the proof of (b) above, we have a δ0 > 0 such that

λ∂EB(y, δ) ≤ 2ν(E ∩ ∂B(y, δ)) ≤ 2ν(∂B(y, δ)) = 4πβr−2δ
r−1

(265F) for almost every δ ∈ ]0, δ0]. But this means that, for any δ ∈ [0, δ0[,

λ∂EB(y, δ) ≤ inft>δ λ
∂
EB(y, t) ≤ inft>δ 4πβr−2t

r−1 = 4πβr−2δ
r−1,

and (iv) is true.

474O Definition Let A ⊆ Rr be any set, and y ∈ Rr. A Federer exterior normal to A at y is a
v ∈ Sr−1 such that,

limδ↓0
µ∗((H△A)∩B(y,δ))

µB(y,δ)
= 0,

where H is the half-space {x : (x− y) .v ≤ 0}.

474P Lemma If A ⊆ Rr and y ∈ Rr, there can be at most one Federer exterior normal to A at y.

proof Suppose that v, v′ ∈ Sr−1 are two Federer exterior normals to E at y. Set

H = {x : (x− y) .v ≤ 0}, H ′ = {x : (x− y) .v′ ≤ 0}.

Then

limδ↓0
µ((H△H′)∩B(y,δ))

µB(y,δ)
≤ limδ↓0

µ∗((H△A)∩B(y,δ))

µB(y,δ)
+ limδ↓0

µ∗((H′△A)∩B(y,δ))

µB(y,δ)
= 0.

But for any δ > 0,

(H△H ′) ∩B(y, δ) = y + δ((H0△H ′
0) ∩B(0, 1)),

where

H0 = {x : x .v ≤ 0}, H ′
0 = {x : x .v′ ≤ 0}.

So

0 = limδ↓0
µ((H△H′)∩B(y,δ))

µB(y,δ)
=

µ((H0△H′
0)∩B(0,1))

µB(0,1)
=

µ((H0△H′
0)∩B(0,n))

µB(0,n)

for every n ≥ 1, and µ(H0△H ′
0) = 0. Since µ is strictly positive, and H0 and H ′

0 are both the closures of
their interiors, they must be identical; and it follows that v = v′.

474Q Lemma Set c′ = 2r+3
√
r − 1(1 + 2r). Suppose that c∗, ǫ and δ are such that

c∗ ≥ 0, δ > 0, 0 < ǫ <
1√
2
, c∗ǫ3 < 1

4βr−1, 4c′ǫ ≤ 1
8βr−1.
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Set Vδ = {z : z ∈ Rr−1, ‖z‖ ≤ δ} and Cδ = Vδ × [−δ, δ], regarded as a cylinder in Rr. Let f ∈ D be such
that

∫
Cδ

‖ gradr−1 f‖ + max(
∂f

∂ξr
, 0)dµ ≤ c∗ǫ3δr−1,

where gradr−1 f = (
∂f

∂ξ1
, . . . ,

∂f

∂ξr−1

, 0). Set

F = {x : x ∈ Cδ, f(x) ≥ 3

4
}, F ′ = {x : x ∈ Cδ, f(x) ≤ 1

4
}.

and for γ ∈ R set Hγ = {x : x ∈ Rr, ξr ≤ γ}. Then there is a γ ∈ R such that

µ(F△(Hγ ∩ Cδ)) ≤ 9µ(Cδ \ (F ∪ F ′)) + (c∗βr−1 + 16c′)ǫδr.

proof (a) For t ∈ [−δ, δ] set

ft(z) = f(z, t) for z ∈ Rr−1,

Ft = {z : z ∈ Vδ, ft(z) ≥ 3

4
}, F ′

t = {z : z ∈ Vδ, ft(z) ≤ 1

4
};

set

γ = sup
(
{−δ} ∪ {t : t ∈ [−δ, δ], µr−1Ft ≥ 3

4
µr−1Vδ}

)
,

G = {t : t ∈ [−δ, δ],
∫
Vδ

‖ grad ft‖dµr−1 ≥ ǫ2δr−2}.

Note that (gradr−1 f)(z, t) = ((grad ft)(z), 0), so we have
∫ δ
−δ

∫
Vδ

‖ grad ft‖dµr−1dt =
∫
Cδ

‖ gradr−1 f‖dµ ≤ c∗ǫ3δr−1

and µ1G ≤ c∗ǫδ, where µ1 is Lebesgue measure on R.

(b) If t ∈ [−δ, δ] \G, then

min(µr−1F
′
t , µr−1Ft) ≤ 4c′ǫδr−1.

PPP If r > 2,

min
(
µr−1F

′
t , µr−1Ft)

)(r−2)/(r−1) ≤ 4c′
∫

Vδ

‖ grad ft‖dµr−1

(473L)

≤ 4c′ǫ2δr−2

because t /∈ G, so that

min(µr−1F
′t, µr−1Ft) ≤ (4c′ǫ2)(r−1)/(r−2)δr−1

≤ 4c′ǫδr−1

because 4c′ ≥ 1 and
2(r−1)

r−2
≥ 1 and ǫ ≤ 1. If r = 2, then

∫
Vδ

‖ grad ft‖dµr−1 ≤ ǫ2 <
1

2
,

so at least one of F ′
t , Ft is empty, as noted in 473M, and min(µr−1F

′
t , µr−1Ft) = 0. QQQ

(c) If −δ ≤ s < t ≤ δ, then

∫ δ
−δ max(

∂f

∂ξr
(z, ξ), 0)dξ ≥

∫ t
s

∂f

∂ξr
(z, ξ)dξ = f(z, t) − f(z, s) ≥ 1

2

for every z ∈ F ′
s ∩ Ft. Accordingly
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1

2
µr−1(F ′

s ∩ Ft) ≤
∫
Cδ

max(
∂f

∂ξr
, 0)dµ ≤ c∗ǫ3δr−1 <

1

4
βr−1δ

r−1 =
1

4
µr−1Vδ

and µr−1(F ′
s ∩ Ft) < 1

2µr−1Vδ. It follows that if −δ ≤ s < γ, so that there is a t > s such that µr−1Ft ≥
3
4µr−1Vδ, then µr−1F

′
s <

3
4µr−1Vδ.

(d) Now

µ((F△(Hγ ∩ Cδ)) ≤ 9µ(Cδ \ (F ∪ F ′)) + ǫδr(c∗βr−1 + 16c′).

PPP Set

G̃ = {t : −δ ≤ t ≤ δ, µr−1(Ft ∪ F ′
t ) ≤

7

8
µr−1Vδ},

Ĝ = {t : −δ ≤ t ≤ δ, µr−1Ft ≤ 4c′ǫδr−1},

Ĝ′ = {t : −δ ≤ t ≤ δ, µr−1F
′
t ≤ 4c′ǫδr−1}.

Then

1

8
µr−1Vδ · µ1G̃ ≤ µ(Cδ \ (F ∪ F ′)),

µ(F ∩ (Vδ × Ĝ)) ≤ 8c′ǫδr,

µ(F ′ ∩ (Vδ × Ĝ′)) ≤ 8c′ǫδr.

So if we set

W = (Cδ \ (F ∪ F ′)) ∪ (Vδ × (G̃ ∪G ∪ {γ}))

∪ (F ∩ (Vδ × Ĝ)) ∪ (F ′ ∩ (Vδ × Ĝ′)),

we shall have

µW ≤ µ(Cδ \ (F ∪ F ′)) + µ1G̃ · µr−1Vδ + µ1G · µr−1Vδ + 16c′ǫδr

≤ 9µ(Cδ \ (F ∪ F ′)) + c∗ǫδµr−1Vδ + 16c′ǫδr

= 9µ(Cδ \ (F ∪ F ′)) + ǫδr(c∗βr−1 + 16c′)

(using the estimate of µ1G in (a)).
??? Suppose, if possible, that there is a point (z, t) ∈ (F△(Hγ ∩ Cδ)) \W . Since t /∈ G, (b) tells us that

min(µr−1F
′
t , µr−1Ft) ≤ 4c′ǫδr−1 ≤ 1

8
µr−1Vδ.

So t ∈ Ĝ ∪ Ĝ′. Also, since t /∈ G̃, µr−1Ft + µr−1F
′
t ≥

7

8
µr−1Vδ; so (since t 6= γ) either µr−1Ft ≥ 3

4
µr−1Vδ

and t < γ, or µr−1F
′
t ≥

3

4
µr−1Vδ and t > γ (by (c)). Now

t < γ =⇒ µr−1Ft ≥ 3

4
µr−1Vδ

=⇒ µr−1F
′
t ≤ 4c′ǫδr−1

=⇒ t ∈ Ĝ′

=⇒ (z, t) /∈ F ′

(because (z, t) /∈ F ′ ∩ (Vδ × Ĝ′))

=⇒ (z, t) ∈ F

(because (z, t) /∈ Cδ \ (F ∪ F ′))

=⇒ (z, t) ∈ F ∩Hγ ,
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which is impossible. And similarly

t > γ =⇒ µr−1F
′ ≥ 3

4
µr−1Vδ

=⇒ µr−1Ft ≤ 4c′ǫδr−1

=⇒ t ∈ Ĝ

=⇒ (z, t) /∈ F

=⇒ (z, t) /∈ F ∪Hγ ,

which is equally impossible. XXX
Thus F△(Hγ ∩ Cδ) ⊆W has measure at most

9µ(Cδ \ (F ∪ F ′)) + ǫδr(c∗βr−1 + 16c′),

as claimed. QQQ

474R Theorem Let E ⊆ Rr be a set with locally finite perimeter, ψE its canonical outward-normal
function, and y any point of its reduced boundary ∂$E. Then ψE(y) is the Federer exterior normal to E at
y.

proof Write λ∂E for the perimeter measure of E, as usual.

(a) To begin with (down to the end of (c-ii) below) suppose that y = 0 and that ψE(y) = (0, . . . , 0, 1) = v
say. Set

c = 2r+4
√
r(1 + 2r+1), c′ = 2r+3

√
r − 1(1 + 2r),

c1 = 1 + max
(
4πβr−2, 2c(3r)

r−1
)
,

(counting β0 as 1, if r = 2),

c∗ =
√

2(2
√

2)r−1c1, c∗1 = 10 +
1

2
(c∗ +

16c′

βr−1

).

As in 474Q, set

Vδ = {z : z ∈ Rr−1, ‖z‖ ≤ δ}, Cδ = Vδ × [−δ, δ]. Hγ = {x : ξr ≤ γ}

for δ > 0 and γ ∈ R, and gradr−1 f = (
∂f

∂ξ1
, . . . ,

∂f

∂ξr−1

, 0) for f ∈ D.

(b)(i) Take any ǫ > 0 such that

ǫ <
1√
2
, c∗ǫ3 <

1

4
βr−1, 2r+1c′ǫ <

1

8
βr−1.

Then there is a δ0 ∈ ]0, 1] such that

1

λ∂
EB(0,δ)

∫
B(0,δ)

‖ψE(x) − v‖λ∂E(dx) ≤ ǫ3,

1

c1
δr−1 ≤ λ∂EB(0, δ) ≤ c1δ

r−1

for every δ ∈
]
0, 2δ0

√
2
]

(using 474N(iii) and 474N(iv) for the inequalities bounding λ∂EB(0, δ)).

(ii) Suppose that 0 < δ ≤ δ0. Note first that

∫

C2δ

‖v − ψE‖dλ∂E ≤
∫

B(0,2δ
√
2)

‖v − ψE‖dλ∂E ≤ ǫ3λ∂EB(0, 2δ
√

2)

≤ c1ǫ
3(2δ

√
2)r−1 =

c∗√
2
ǫ3δr−1.
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(iii) limn→∞ h̃n ∗χE =a.e. χE (473Ee), so there is an n ≥ 1
δ such that

∫
Cδ

|h̃n ∗χE −χE|dµ ≤ 1
4ǫµCδ.

Setting

f = h̃n ∗ χE, F = {x : x ∈ Cδ, f(x) ≥ 3
4}, F ′ = {x : x ∈ Cδ, f(x) ≤ 1

4},

we have f ∈ D (473De once more) and

µ(Cδ \ (F ∪ F ′)) ≤ ǫµCδ, µ(F△(E ∩ Cδ)) ≤ ǫµCδ.

(iv)

∫
Cδ

‖ gradr−1 f‖ + max(
∂f

∂ξr
, 0)dµ ≤ c∗ǫ3δr−1.

PPP??? Suppose, if possible, otherwise. Note that because µCδ = 2βr−1δ
r, limδ′↑δ µCδ′ = µCδ, so there is some

δ′ < δ such that
∫
Cδ′

‖ gradr−1 f‖ + max(
∂f

∂ξr
, 0)dµ > c∗ǫ3δr−1.

For 1 ≤ i ≤ r and x ∈ Rr, set

θi(x) =

∂f
∂ξi

(x)

‖ gradr−1 f(x)‖ if i < r, x ∈ Cδ′ and gradr−1(x) 6= 0,

= 1 if i = r, x ∈ Cδ′ and
∂f

∂ξr
(x) ≥ 0,

= 0 otherwise.

Then all the θi are µ-integrable. Setting θ = (θ1, . . . , θr),

∫
θ . grad fdµ =

∫
Cδ′

‖ gradr−1 f‖ + max(
∂f

∂ξr
, 0)dµ > c∗ǫ3δr−1.

By 473Ef, 〈‖θi − θi ∗ h̃k‖1〉k∈N → 0 for each i; since grad f is bounded,∫
(h̃k ∗ θ) . grad f dµ > c∗ǫ3δr−1

for any k large enough. If we ensure also that
1

k+1
≤ δ − δ′, and set φ = h̃k ∗ θ, we shall get a function

φ ∈ D, with ‖φ(x)‖ ≤
√

2χCδ for every x (by 473Dc and 473Dg), such that∫
φ . grad fdµ > c∗ǫ3δr−1.

Moreover, referring to the definition of ∗ in 473Dd and 473Dg,

(h̃n ∗ φ)(x) .v = (h̃n ∗ (h̃k ∗ θr))(x) ≥ 0

for every x, because h̃n, h̃k and θr are all non-negative.
Now

c∗ǫ3δr−1 <

∫
φ . grad fdµ =

∫
φ . grad(h̃n ∗ χE)dµ

= −
∫

(h̃n ∗ φ) .ψE dλ
∂
E

(474K)

≤
∫

(h̃n ∗ φ) .(v − ψE) dλ∂E ≤
√

2

∫

C2δ

‖v − ψE‖ dλ∂E

(because ‖(h̃n ∗ φ)(x)‖ ≤
√

2 for every x, by 473Dg again, and (h̃n ∗ φ)(x) = 0 if x /∈ Cδ + C1/(n+1) ⊆ C2δ)

≤ c∗ǫ3δr−1;

which is absurd. XXXQQQ

D.H.Fremlin



58 Geometric measure theory 474R

(v) By 474Q, there is a γ ∈ R such that

µ(F△(Hγ ∩ Cδ)) ≤ 9µ(Cδ \ (F ∪ F ′)) + (c∗βr−1 + 16c′)ǫδr

≤ 9ǫµCδ +
1

2βr−1

(c∗βr−1 + 16c′)ǫµCδ = (c∗1 − 1)ǫµCδ,

and

µ((E△Hγ) ∩ Cδ) ≤ µ(F△(E ∩ Cδ)) + µ(F△(Hγ ∩ Cδ)) ≤ c∗1ǫµCδ.

(vi) As ǫ is arbitrary, we see that

limδ↓0 infγ∈R
1

µCδ

µ((E△Hγ) ∩ Cδ) = 0.

(c) Again take ǫ ∈ ]0, 1].

(i) By (b) above and 474N(i)-(ii) there is a δ1 > 0 such that whenever 0 < δ ≤ δ1 then

µ(B(0, δ) ∩ E) ≥ 1

2(3r)rβr

µB(0, δ),

µ(B(0, δ) \ E) ≥ 1

2(3r)rβr

µB(0, δ)

and there is a γ ∈ R such that

µ((E△Hγ) ∩ Cδ) < min(ǫ,
ǫr

4βr−1(3r)r
)µCδ.

In this case, |γ| ≤ ǫδ. PPP??? Suppose, if possible, that γ < −ǫδ. Then

µ(B(0, ǫδ) ∩ E) ≤ µ(E ∩ Cδ \Hγ)

<
ǫr

4βr−1(3r)r
µCδ =

1

2βr(3r)r
µB(0, ǫδ)

which is impossible. XXX In the same way, ??? if γ > ǫδ,

µ(B(0, ǫδ) \ E) ≤ µ((Cδ \Hγ) \ E)

<
ǫr

4βr−1(3r)r
µCδ =

1

2βr(3r)r
µB(0, ǫδ). XXXQQQ

(ii) It follows that

µ((E△H0) ∩ Cδ) ≤ µ((E△Hγ) ∩ Cδ) + µ((Hγ△H0) ∩ Cδ)

≤ ǫµCδ + ǫδµr−1Vδ =
3

2
ǫµCδ.

As ǫ is arbitrary,

limδ↓0
µ((E△H0)∩Cδ)

µCδ

= 0,

and

limδ↓0
µ((E△H0)∩Bδ)

µBδ

≤ 2βr−1

βr

limδ↓0
µ((E△H0)∩Cδ)

µCδ

= 0.

(d) Thus v is a Federer exterior normal to E at 0 if ψE(0) = v. For the general case, let S be an
orthogonal matrix such that SψE(y) = v, and set T (x) = S(x− y) for every x. The point is of course that

0 = T (y) ∈ T [∂$E] = ∂$T [E], v = SψET
−1(0) = ψT [E](0)

(474H). So if we set

H = {x : (x− y) .ψE(y) ≤ 0} = {x : T (x) .v ≤ 0} = T−1[H0],
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then

µ((H△E)∩B(y,δ))

µB(y,δ)
=

µ((H0△T [E])∩B(0,δ))

µB(0,δ)
→ 0

as δ ↓ 0, and ψE(y) is a Federer exterior normal to E at y, as required.

474S Corollary Let E ⊆ Rr be a set with locally finite perimeter, and λ∂E its perimeter measure. Let
y be any point of the reduced boundary of E. Then

limδ↓0
λ∂
EB(y,δ)

βr−1δr−1
= 1.

proof (a) Set v = ψE(y) and H = {x : (x− y) .v ≤ 0}, as in 474R. Now

∫
H∩∂B(y,δ)

v .
1

δ
(x− y)ν(dx) = −βr−1δ

r−1

for almost every δ > 0. PPP Set φ(x) = v for every x ∈ Rr. By 474I, φ is an outward-normal function for H,
so 474M tells us that, for almost every δ > 0,

∫

H∩∂B(y,δ)

v .
1

δ
(x− y) ν(dx) =

∫

H∩B(y,δ)

divφ dµ−
∫

B(y,δ)

v .v dλ∂H

= −λ∂HB(y, δ) = −ν(B(y, δ) ∩ ∂H)

(using the identification of λ∂H in 474I)

= −βr−1δ
r−1

(identifying ν on the hyperplane ∂H with Lebesgue measure on Rr−1, as usual). QQQ

(b) Now, given ǫ > 0, there is a δ0 > 0 such that whenever 0 < δ ≤ δ0 there is an η such that
δ ≤ η ≤ δ(1 + ǫ) and |λ∂EB(y, η) − βr−1η

r−1| ≤ ǫηr−1. PPP Let ζ > 0 be such that

ζ(1 +
5π

r
βr−2)(1 + ǫ)r ≤ ǫ2.

By 474N(iv) and 474R and the definition of ψE , there is a δ0 > 0 such that

λ∂EB(y, δ) ≤ 5πβr−2δ
r−1,

µ((E△H) ∩B(y, δ)) ≤ ζδr,

∫
B(y,δ)

‖ψE(x) − v‖λ∂E(dx) ≤ ζλ∂EB(y, δ)

whenever 0 < δ ≤ (1 + ǫ)δ0. Take 0 < δ ≤ δ0. Then, for almost every η > 0, we have

∫
B(y,η)

v .ψE(x)λ∂E(dx) +
∫
E∩∂B(y,η)

v .
1

η
(x− y) ν(dx) = 0

by 474M, applied with φ the constant function with value v. Putting this together with (a), we see that, for
almost every η ∈ ]0, (1 + ǫ)δ0],

|λ∂EB(y, η) − βr−1η
r−1| = |

∫

B(y,η)

v .v dλ∂E − βr−1η
r−1|

≤ |
∫

B(y,η)

v .(v − ψE) dλ∂E | + |
∫

B(y,η)

v .ψE dλ
∂
E − βr−1η

r−1|

≤
∫

B(y,η)

‖ψE − v‖dλ∂E

+ |
∫

B(y,η)

v .ψE(x)λ∂E(dx) +

∫

H∩∂B(y,η)

v .
1

η
(x− y) ν(dx)|

(using (a) above)
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≤ ζλ∂EB(y, η)

+ |
∫

H∩∂B(y,η)

v .
1

η
(x− y) ν(dx) −

∫

E∩∂B(y,η)

v .
1

η
(x− y) ν(dx)|

≤ 5πβr−2ζη
r−1 + ν((E△H) ∩ ∂B(y, η)).

Integrating with respect to η, we have

∫ δ(1+ǫ)

0

|λ∂EB(y, η) − βr−1η
r−1|dη ≤ 5π

r
βr−2ζδ

r(1 + ǫ)r + µ((E△H) ∩B(y, δ(1 + ǫ)))

(using 265G, as usual)

≤ 5π

r
βr−2ζδ

r(1 + ǫ)r + ζδr(1 + ǫ)r ≤ ǫ2δr

by the choice of ζ. But this means that there must be some η ∈ [δ, δ(1 + ǫ)] such that

|λ∂EB(y, η) − βr−1η
r−1| ≤ ǫδr−1 ≤ ǫηr−1. QQQ

(c) Now we see that

λ∂EB(y, δ) ≤ λ∂EB(y, η) ≤ (βr−1 + ǫ)ηr−1 ≤ (βr−1 + ǫ)(1 + ǫ)r−1δr−1.

But by the same argument we have an η̂ ∈ [
δ

1+ǫ
, δ] such that |λ∂EB(y, η̂) − βr−1η̂

r−1| ≤ ǫη̂r−1, so that

λ∂EB(y, δ) ≥ λ∂EB(y, η̂) ≥ (βr−1 − ǫ)η̂r−1 ≥ (βr−1 − ǫ)(1 + ǫ)1−rδr−1.

Thus, for every δ ∈ ]0, δ0],

(βr−1 − ǫ)(1 + ǫ)1−rδr−1 ≤ λ∂EB(y, δ) ≤ (βr−1 + ǫ)(1 + ǫ)r−1δr−1.

As ǫ is arbitrary,

limδ↓0
λ∂
EB(y,δ)

δr−1
= βr−1,

as claimed.

474T The Compactness Theorem Let Σ be the algebra of Lebesgue measurable subsets of Rr, and
give it the topology Tm of convergence in measure defined by the pseudometrics ρH(E,F ) = µ((E△F )∩H)
for measurable sets H of finite measure (cf. §§245 and 323). Then

(a) per : Σ → [0,∞] is lower semi-continuous;
(b) for any γ <∞, {E : E ∈ Σ, perE ≤ γ} is compact.

proof (a) Let 〈En〉n∈N be any Tm-convergent sequence in Σ with limit E ∈ Σ. If φ : Rr → B(0, 1) is a
Lipschitz function with compact support, then divφ is integrable, so F 7→

∫
F

divφ dµ is truly continuous
(225A), and

|
∫
E

divφ dµ| = limn→∞ |
∫
En

divφ dµ| ≤ supn∈N perEn.

As φ is arbitrary, perE ≤ supn∈N perEn. This means that {E : perE ≤ γ} is sequentially closed, therefore
closed (4A2Ld), for any γ, and per is lower semi-continuous.

(b) Let us say that a ‘dyadic cube’ is a set expressible in the form
∏

1≤i≤r [2−nki, 2−n(ki + 1)[ where n,

k1, . . . , kr ∈ Z. Set A = {E : perE ≤ γ}.

(i) For E ∈ A, n ∈ N and ǫ ∈ ]0, 1] let G(E, n, ǫ) be the union of all the dyadic cubes D with side length

2−n such that ǫµD ≤ µ(E∩D) ≤ (1−ǫ)µD. Then µG(E, n, ǫ) ≤ c1

2nǫ
γ, where c1 = 2r+5(1+2r+1)(1+

√
r)r+1.

PPP Express G(E, n, ǫ) as a disjoint union
⋃
i∈I Di where each Di is a dyadic cube of side length 2−n and

min(µ(Di ∩ E), µ(Di \ E)) ≥ ǫµDi. Let xi be the centre of Di and Bi the ball B(xi, 2
−n−1

√
r), so that

Di ⊆ Bi and µBi = βr(
1
2

√
r)rµDi. For any x ∈ Rr, the ball B(x, 2−n−1

√
r) is included in a closed cube
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with side length 2−n
√
r, so can contain at the very most (1 +

√
r)r different xi, because different xi differ

by at least 2−n in some coordinate. Turning this round,
∑
i∈I χBi ≤ (1 +

√
r)rχ(Rr).

Set c = 2r+4
√
r(1 + 2r+1). Then, for each i ∈ I,

2cλ∂EBi ≥ min(µ(Bi ∩ E), µ(Bi \ E))(r−1)/r

(474Lb)

≥ min(µ(Di ∩ E), µ(Di \ E))(r−1)/r ≥ (ǫµDi)
(r−1)/r ≥ 2−n(r−1)ǫ.

So

µG(E, n, ǫ) = 2−nr#(I) ≤ 2c

2nǫ

∑

i∈I
λ∂EBi

≤ 2c(1+
√
r)r

2nǫ
λ∂E(Rr) ≤ c1

2nǫ
γ. QQQ

(ii) Now let 〈En〉n∈N be any sequence in A. Then we can find a subsequence 〈E′
n〉n∈N such that whenever

n ∈ N, D is a dyadic cube of side length 2−n meeting B(0, n), and i, j ≥ n, then |µ(D ∩E′
i)−µ(D ∩E′

j)| ≤
1

(n+1)r+2
µD. Now

µ((E′
n△E′

n+1) ∩B(0, n)) ≤ 3βr(n+
√
r)r

(n+1)r+2
+ 2−n(n+ 1)r+1c1γ

whenever n ≥ 1. PPP Let E be the set of dyadic cubes of side length 2−n meeting B(0, n); then every member
of E is included in B(0, n + 2−n

√
r), so µ(

⋃ E) ≤ βr(n +
√
r)r. Let E1 be the collection of those dyadic

cubes of side length 2−n included in G(E′
n, n,

1

(n+1)r+2
). If D ∈ E \ E1, either µ(E′

n ∩ D) ≤ 1

(n+1)r+2
µD

and µ(E′
n+1 ∩D) ≤ 2

(n+1)r+2
µD and µ((E′

n△E′
n+1) ∩D) ≤ 3

(n+1)r+2
µD, or µ(D \ E′

n) ≤ 1

(n+1)r+2
µD and

µ(D \ E′
n+1) ≤ 2

(n+1)r+2
µD and µ((E′

n△E′
n+1) ∩D) ≤ 3

(n+1)r+2
µD. So

µ((E′
n△E′

n+1) ∩B(0, n)) ≤
∑

D∈E
µ((E′

n△E′
n+1) ∩D)

≤
∑

D∈E\E1

µ((E′
n△E′

n+1) ∩D) + µ(
⋃

E1)

≤ 3

(n+1)r+2
µ(
⋃

E) + µG(E′
n, n,

1

(n+1)r+2
)

≤ 3βr(n+
√
r)r

(n+1)r+2
+ 2−n(n+ 1)r+2c1γ,

as claimed. QQQ

(iii) This means that
∑∞
i=0 µ((E′

i△E′
i+1) ∩ B(0, n)) is finite for each n ∈ N, so that if we set E =⋃

i∈N

⋂
j≥iE

′
j , then

µ((E△E′
i) ∩B(0, n)) ≤ ∑∞

j=i µ((E′
j△E′

j+1) ∩B(0, n)) → 0

as i→ ∞ for every n ∈ N. It follows that limi→∞ ρH(E,E′
i) = 0 whenever µH <∞ (see the proofs of 245Eb

and 323Gb). Thus we have a subsequence 〈E′
i〉i∈N of the original sequence 〈Ei〉i∈N which is convergent for

the topology Tm of convergence in measure. By (a), its limit belongs to A. But since Tm is pseudometrizable
(245Eb/323Gb), this is enough to show that A is compact for Tm (4A2Lf).

474X Basic exercises (a) Show that for any E ⊆ Rr with locally finite perimeter, its reduced boundary
is a Borel set and its canonical outward-normal function is Borel measurable.
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>>>(b) Show that if E ⊆ Rr has finite perimeter then either E or its complement has finite measure.

(c)(i) Show that if E ⊆ Rr has locally finite perimeter, then ∂$E ⊆ ∂E. (Hint : 474N(i)-(ii).) (ii) Show
that if H ⊆ Rr is a half-space, as in 474I, then ∂$E = ∂E.

(d) Let E ⊆ Rr be a set with locally finite perimeter, and y ∈ ∂$E. Show that limδ↓0
µ(E∩B(y,δ))

µB(y,δ)
=

1

2
.

(e) In the proof of 474S, use 265E to show that

∫
H∩∂B(y,δ)

v .
1

δ
(x− y)ν(dx) = −βr−1δ

r−1

for every δ > 0.

474Y Further exercises (a) In 474E, explain how to interpret the pair (ψ, λ∂E) as a vector measure
(definition: 394O1) θE : B → Rr, where B is the Borel σ-algebra of Rr, in such a way that we have∫
E

divφ dµ =
∫
φ .dθE for Lipschitz functions φ with compact support.

474 Notes and comments When we come to the Divergence Theorem itself in the next section, it will
be nothing but a repetition of Theorem 474E with the perimeter measure and the outward-normal function
properly identified. The idea of the indirect approach here is to start by defining the pair (ψE , λ

∂
E) as a kind

of ‘distributional derivative’ of the set E. I take the space to match the details with the language of the
rest of this treatise, but really 474E amounts to nothing more than the Riesz representation theorem; since
the functional φ 7→

∫
E

divφ dµ is linear, and we restrict attention to sets E for which it is continuous in an
appropriate sense (and can therefore be extended to arbitrary continuous functions φ with compact support),
it must be representable by a (vector) measure, as in 474Ya. For the process to be interesting, we have
to be able to identify at least some of the appropriate sets E with their perimeter measures and outward-
normal functions. Half-spaces are straightforward enough (474I), and 474R tells us what the outward-normal
functions have to be; but for a proper description of the family of sets with locally finite perimeter we must
wait until the next section. I see no quick way to show from the results here that (for instance) the union
of two sets with finite perimeter again has finite perimeter. And I notice that I have not even shown that
balls have finite perimeters. After 475M things should be much clearer.

I have tried to find the shortest path to the Divergence Theorem itself, and have not attempted to give
‘best’ results in the intermediate material. In particular, in the isoperimetric inequality 474La, I show
only that the measure of a set E is controlled by the magnitude of its perimeter measure. Simple scaling
arguments show that if there is any such control, then it must be of the form γ(µE)(r−1)/r ≤ perE; the

identification of the best constant γ as rβ
1/r
r , giving equality for balls, is the real prize, to which I shall

come in 476H. Similarly, there is a dramatic jump from the crude estimates in 474N to the exact limits
in 474Xd and 474S. When we say that a set E has a Federer exterior normal at a point y, we are clearly
saying that there is an ‘approximate’ tangent plane at that point, as measured by ordinary volume µ. 474S
strengthens this by saying that, when measured by the perimeter measure, the boundary of E looks like
a hyperplane through y with normalised (r − 1)-dimensional measure. In 475G below we shall come to a
partial explanation of this.

The laborious arguments of 474C and 474H are doing no more than establish the geometric invariance of
the concepts here, which ought, one would think, to be obvious. The trouble is that I have given definitions
of inner product and divergence and Lebesgue measure in terms of the standard coordinate system of Rr.
If these were not invariant under isometries they would be far less interesting. But even if we are confident
that there must be a result corresponding to 474H, I think a little thought is required to identify the exact
formulae involved in the transformation.

I leave the Compactness Theorem (474T) to the end of the section because it is off the line I have chosen
to the Divergence Theorem (though it can be used to make the proof of 474R more transparent; see Evans

& Gariepy 92, 5.7.2). I have expressed 474T in terms of the topology of convergence in measure on the
algebra of Lebesgue measurable sets. But since the perimeter of a measurable set E is not altered if we

1Formerly 393O.
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change E by a negligible set (474F), ‘perimeter’ can equally well be regarded as a function defined on the
measure algebra, in which case 474T becomes a theorem about the usual topology of the measure algebra
of Lebesgue measure, as described in §323.

Version of 24.1.13

475 The essential boundary

The principal aim of this section is to translate Theorem 474E into geometric terms. We have already
identified the Federer exterior normal as an outward-normal function (474R), so we need to find a description
of perimeter measures. Most remarkably, these turn out, in every case considered in 474E, to be just
normalized Hausdorff measures (475G). This description needs the concept of ‘essential boundary’ (475B). In
order to complete the programme, we need to be able to determine which sets have ‘locally finite perimeter’;
there is a natural criterion in the same language (475L). We now have all the machinery for a direct
statement of the Divergence Theorem (for Lipschitz functions) which depends on nothing more advanced
than the definition of Hausdorff measure (475N). (The definitions, at least, of ‘Federer exterior normal’ and
‘essential boundary’ are elementary.)

This concludes the main work of the first part of this chapter. But since we are now within reach of
a reasonably direct proof of a fundamental fact about the (r − 1)-dimensional Hausdorff measure of the
boundaries of subsets of Rr (475Q), I continue up to Cauchy’s Perimeter Theorem and the Isoperimetric
Theorem for convex sets (475S, 475T).

475A Notation As in the last two sections, r will be an integer (greater than or equal to 2, unless
explicitly permitted to take the value 1). µ will be Lebesgue measure on Rr; I will sometimes write µr−1 for
Lebesgue measure on Rr−1 and µ1 for Lebesgue measure on R. βr = µB(0, 1) will be the measure of the unit
ball in Rr, and Sr−1 = ∂B(0, 1) will be the unit sphere. ν will be normalized (r− 1)-dimensional Hausdorff
measure on Rr (265A), that is, ν = 2−r+1βr−1µH,r−1, where µH,r−1 is (r−1)-dimensional Hausdorff measure
on Rr. Recall that νSr−1 = rβr (265H). I will take it for granted that x ∈ Rr has coordinates (ξ1, . . . , ξr).

If E ⊆ Rr has locally finite perimeter (474D), λ∂E will be its perimeter measure (474F), ∂$E its reduced
boundary (474G) and ψE its canonical outward-normal function (474G).

475B The essential boundary (In this paragraph I allow r = 1.) Let A ⊆ Rr be any set. The
essential closure of A is the set

cl*A = {x : lim supδ↓0
µ∗(B(x,δ)∩A)

µB(x,δ)
> 0}

(see 266B). Similarly, the essential interior of A is the set

int*A = {x : lim infδ↓0
µ∗(B(x,δ)∩A)

µB(x,δ)
= 1}.

(If A is Lebesgue measurable, this is the lower Lebesgue density of A, as defined in 341E; see also 223Yf.)
Finally, the essential boundary ∂*A of A is the difference cl*A \ int*A.

Note that if E ⊆ Rr is Lebesgue measurable then Rr \ ∂*E is the Lebesgue set of the function χE, as
defined in 261E.

475C Lemma (In this lemma I allow r = 1.) Let A, A′ ⊆ Rr.
(a)

intA ⊆ int*A ⊆ cl*A ⊆ A, ∂*A ⊆ ∂A,

cl*A = Rr \ int*(Rr \A), ∂*(Rr \A) = ∂*A.

(b) If A \ A′ is negligible, then cl*A ⊆ cl*A′ and int*A ⊆ int*A′; in particular, if A itself is negligible,
cl*A, int*A and ∂*A are all empty.

(c) int*A, cl*A and ∂*A are Borel sets.

c© 2000 D. H. Fremlin
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(d) cl*(A∪A′) = cl*A∪cl*A′ and int*(A∩A′) = int*A∩ int*A′, so ∂*(A∪A′), ∂*(A∩A′) and ∂*(A△A′)
are all included in ∂*A ∪ ∂*A′.

(e) cl*A ∩ int*A′ ⊆ cl*(A ∩A′), ∂*A ∩ int*A′ ⊆ ∂*(A ∩A′) and ∂*A \ cl*A′ ⊆ ∂*(A ∪A′).
(f) ∂*(A ∩A′) ⊆ (cl*A′ ∩ ∂A) ∪ (∂*A′ ∩ intA).
(g) If E ⊆ Rr is Lebesgue measurable, then E△int*E, E△cl*E and ∂*E are Lebesgue negligible.
(h) A is Lebesgue measurable iff ∂*A is Lebesgue negligible.

proof (a) It is obvious that

intA ⊆ int*A ⊆ cl*A ⊆ A,

so that ∂*A ⊆ ∂A. Since

µ∗(B(x,δ)∩A)

µB(x,δ)
+

µ∗(B(x,δ)\A)

µB(x,δ)
= 1

for every x ∈ Rr and every δ > 0 (413Ec), Rr \ int*A = cl*(Rr \A). It follows that

∂*(Rr \A) = cl*(Rr \A)△int*(Rr \A)

= (Rr \ int*A)△(Rr \ cl*A) = int*A△cl*A = ∂*A.

(b) If A \A′ is negligible, then

µ∗(B(x, δ) ∩A) ≤ µ∗(B(x, δ) ∩A′), µ∗(B(x, δ) ∩A) ≤ µ∗(B(x, δ) ∩A′)

for all x and δ, so int*A ⊆ int*A′ and cl*A ⊆ cl*A′.

(c) The point is just that (x, δ) 7→ µ∗(A ∩ B(x, δ)) is continuous. PPP For any x, y ∈ Rr and δ, η > 0 we
have

|µ∗(A ∩B(y, η)) − µ∗(A ∩B(x, δ))| ≤ µ(B(y, η)△B(x, δ))

= 2µ(B(x, δ) ∪B(y, η)) − µB(x, δ) − µB(y, η)

≤ βr
(
2(max(δ, η) + ‖x− y‖)r − δr − ηr

)
→ 0

as (y, η) → (x, δ). QQQ So

x 7→ lim supδ↓0
µ∗(A∩B(x,δ))

µB(x,δ)
= infα∈Q,α>0 supγ∈Q,0<γ≤α

1

βrγr
µ∗(A ∩B(x, γ))

is Borel measurable, and

cl*A = {x : lim supδ↓0
µ∗(A∩B(x,δ))

µB(x,δ)
> 0}

is a Borel set.
Accordingly int*A = Rr \ cl*(Rr \A) and ∂*A are also Borel sets.

(d) For any x ∈ Rr,

lim sup
δ↓0

µ∗((A∪A′)∩B(x,δ))

µB(x,δ)
≤ lim sup

δ↓0

µ∗(A∩B(x,δ))

µB(x,δ)
+

µ∗(A′∩B(x,δ))

µB(x,δ)

≤ lim sup
δ↓0

µ(A∩B(x,δ))

µB(x,δ)
+ lim sup

δ↓0

µ(A′∩B(x,δ))

µB(x,δ)
,

so cl*(A ∪A′) ⊆ cl*A ∪ cl*A′. By (b), cl*A ∪ cl*A′ ⊆ cl*(A ∪A′), so we have equality. Accordingly

int*(A ∩A′) = Rr \ cl*((Rr \A) ∪ (Rr \A′)) = int*A ∩ int*A′.

Since int*(A ∪A′) ⊇ int*A ∪ int*A′, ∂*(A ∪A′) ⊆ ∂*A ∪ ∂*A′. Now

∂*(A ∩A′) = ∂*(Rr \ (A ∩A′)) ⊆ ∂*(Rr \A) ∪ ∂*(Rr \A′)) = ∂*A ∪ ∂*A′

and

∂*(A△A′) ⊆ ∂*(A ∩ (Rr \A′)) ∪ ∂*(A′ ∩ (Rr \A)) ⊆ ∂*A ∪ ∂*A′.
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(e) If x ∈ cl*A ∩ int*A′, then x /∈ cl*(Rr \ A′) so x /∈ cl*(A \ A′). But from (d) we know that
x ∈ cl*(A ∩A′) ∪ cl*(A \A′), so x ∈ cl*(A ∩A′).

Now

∂*A ∩ int*A′ = (cl*A ∩ int*A′) \ int*A

⊆ cl*(A ∩A′) \ int*(A ∩A′) = ∂*(A ∩A′),

∂*A \ cl*A′ = ∂*(Rr \A) ∩ int*(Rr \A′)

⊆ ∂*((Rr \A) ∩ (Rr \A′))

= ∂*(Rr \ (A ∪A′)) = ∂*(A ∪A′).

(f) If x ∈ ∂*(A∩A′)∩∂A, then of course x ∈ cl*(A∩A′) ⊆ cl*A, so x ∈ cl*A∩∂A. If x ∈ ∂*(A∩A′)\∂A,
then surely x ∈ A, so x ∈ intA. But this means that

µ∗(B(x, δ) ∩A′) = µ∗(B(x, δ) ∩A ∩A′), µ∗(B(x, δ) ∩A′) = µ∗(B(x, δ) ∩A ∩A′)

for all δ small enough, so x ∈ ∂*A′ and x ∈ ∂*A′ ∩ intA.

(g) Applying 472Da to µ and χE, we see that

∂*E ⊆ (E△cl*E) ∪ (E△int*E)

⊆ {x : χE(x) 6= lim
δ↓0

µ(E∩B(x,δ))

µB(x,δ)
}

are all µ-negligible.

(h) If A is Lebesgue measurable then (g) tells us that ∂*A is negligible. If ∂*A is negligible, let E be a
measurable envelope of A. Then µ(E ∩B(x, δ)) = µ∗(A∩B(x, δ)) for all x and δ, so cl*E = cl*A. Similarly,
if F is a measurable envelope of Rr \A, then cl*F = cl*(Rr \A) = Rr \ int*A (using (a)). Now (g) tells us
that

µ(E ∩ F ) = µ(cl*E ∩ cl*F ) = µ(cl*A \ int*A) = 0.

But now A \E and E \A ⊆ (E ∩ F ) ∪ ((Rr \A) \ F ) are Lebesgue negligible, so A is Lebesgue measurable.

475D Lemma Let E ⊆ Rr be a set with locally finite perimeter, and ∂$E its reduced boundary. Then
∂$E ⊆ ∂*E and ν(∂*E \ ∂$E) = 0.

proof (a) By 474N(i), ∂$E ⊆ cl*E; by 474N(ii), ∂$E ∩ int*E = ∅; so ∂$E ⊆ ∂*E.

(b) For any y ∈ ∂*E,

lim supδ↓0
1

δr−1
λ∂EB(y, δ) > 0.

PPP We have an ǫ ∈
]
0, 12

]
such that

lim infδ↓0
µ(E∩B(y,δ))

µB(y,δ)
< 1 − ǫ, lim supδ↓0

µ(E∩B(y,δ))

µB(y,δ)
> ǫ.

Since the function δ 7→ µ(E∩B(y,δ))

µB(y,δ)
is continuous, there is a sequence 〈δn〉n∈N in ]0,∞[ such that limn→∞ δn = 0

and

ǫµB(y, δn) ≤ µ(E ∩B(y, δn)) ≤ (1 − ǫ)µB(y, δn)

for every n. Now from 474Lb we have

(ǫβr)
(r−1)/rδr−1

n = (ǫµB(y, δn))(r−1)/r

≤ min(µ(B(y, δn) ∩ E), µ(B(y, δn) \ E))(r−1)/r ≤ 2cλ∂EB(y, δn)

for every n, where c > 0 is the constant there. But this means that
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lim supδ↓0
1

δr−1
λ∂EB(y, δ) ≥ lim supn→∞

1

δr−1
n

λ∂EB(y, δn) ≥ 1

2c
(ǫβr)

(r−1)/r > 0. QQQ

(c) Let ǫ > 0. Set

Fǫ = {y : y ∈ Rr \ ∂$E, lim supδ↓0
1

δr−1
λ∂EB(y, δ) > ǫ}.

Because ∂$E is λ∂E-conegligible (474G), λ∂EFǫ = 0. So there is an open set G ⊇ Fǫ such that λ∂EG ≤ ǫ2

(256Bb/412Wb). Let δ > 0. Let I be the family of all those non-singleton closed balls B ⊆ G such that
diamB ≤ δ and λ∂EB ≥ 2−r+1ǫ(diamB)r−1. Then every point of Fǫ is the centre of arbitrarily small
members of I. By Besicovitch’s Covering Lemma (472B), there is a family 〈Ik〉k<5r of disjoint countable
subsets of I such that I∗ =

⋃
k<5r

⋃ Ik covers Fǫ. Now

∑
B∈I∗(diamB)r−1 ≤ ∑

k<5r
∑
B∈Ik

2r−1

ǫ
λ∂EB ≤ 5r2r−1

ǫ
λ∂EG ≤ 5r2r−1ǫ.

As δ is arbitrary, µ∗
H,r−1Fǫ is at most 5r2r−1ǫ (264Fb/471Dc) and ν∗Fǫ ≤ 5rβr−1ǫ. As ǫ is arbitrary,

∂*E \ ∂$E ⊆ {y : y ∈ Rr \ ∂$E, lim supδ↓0
1

δr−1
λ∂EB(y, δ) > 0}

is ν-negligible, as claimed.

475E Lemma Let E ⊆ Rr be a set with locally finite perimeter.
(a) If A ⊆ ∂$E, then ν∗A ≤ (λ∂E)∗A.

(b) If A ⊆ Rr and νA = 0, then λ∂EA = 0.

proof (a) Given ǫ, δ > 0 let I be the family of non-trivial closed balls B ⊆ Rr of diameter at most δ such

that βr−1(
1

2
diamB)r−1 ≤ (1 + ǫ)λ∂EB. By 474S, every point of A is the centre of arbitrarily small members

of I. By 472Cb, there is a countable family I1 ⊆ I such that A ⊆ ⋃ I1 and
∑
B∈I1

λ∂EB ≤ (λ∂E)∗A+ ǫ. But
this means that

∑
B∈I1

(diamB)r−1 ≤ (1 + ǫ)
2r−1

βr−1

((λ∂E)∗A+ ǫ).

As δ is arbitrary,

ν∗A =
βr−1

2r−1
µ∗
H,r−1A ≤ (1 + ǫ)((λ∂E)∗A+ ǫ).

As ǫ is arbitrary, we have the result.

(b) For n ∈ N, set

An = {x : x ∈ A, λ∂EB(x, δ) ≤ 2βr−1δ
r−1 whenever 0 < δ ≤ 2−n}.

Now, given ǫ > 0, there is a sequence 〈Di〉i∈N of sets covering An such that diamDi ≤ 2−n for every i and∑∞
i=0(diamDi)

r−1 ≤ ǫ. Passing over the trivial case An = ∅, we may suppose that for each i ∈ N there is
an xi ∈ An ∩Di, so that Di ⊆ B(xi, diamDi) and

(λ∂E)∗An ≤
∞∑

i=0

(λ∂E)∗Di ≤
∞∑

i=0

λ∂EB(xi, diamDi)

≤
∞∑

i=0

2βr−1(diamDi)
r−1 ≤ 2βr−1ǫ.

As ǫ is arbitrary, λ∂EAn = 0. And this is true for every n. As
⋃
n∈NAn ⊇ A∩∂$E (474S again), A\⋃n∈NAn

is λ∂E-negligible (474G), and so is A.

475F Lemma Let E ⊆ Rr be a set with locally finite perimeter, and ǫ > 0. Then λ∂E is inner regular
with respect to the family E = {F : F ⊆ Rr is Borel, λ∂EF ≤ (1 + ǫ)νF}.
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proof (a) We need some elementary bits of geometry.

(i) If x ∈ Rr, δ > 0, α ≥ 0 and v ∈ Sr−1, then

µ{z : z ∈ B(x, δ), |(z − x) .v| ≤ α} ≤ 2αβr−1δ
r−1.

PPP Translating and rotating, if necessary, we can reduce to the case x = 0, v = (0, . . . , 1). In this case we
are looking at

{z : ‖z‖ ≤ δ, |ζr| ≤ α} ⊆ {u : u ∈ Rr−1, ‖u‖ ≤ δ} × [−α, α]

which has measure 2αβr−1δ
r−1. QQQ

(ii) If x ∈ Rr, δ > 0, 0 < η ≤ 1
2 , v ∈ Sr−1, H = {z : z .v ≤ α} and

|µ(H ∩B(x, δ)) − 1

2
µB(x, δ)| < 2−r+1βr−1ηδ

r,

then |x .v − α| ≤ ηδ. PPP Again translating and rotating if necessary, we may suppose that x = 0 and
v = (0, . . . , 1). Set H0 = {z : ζr ≤ 0}. ??? If α > ηδ, then H ∩B(0, δ) includes

(H0 ∩B(0, δ)) ∪ ({u : u ∈ Rr−1, ‖u‖ ≤ 1

2
δ} × [0, α′])

where α′ = min(|α|,
√
3

2
δ) > ηδ), so

µ(H ∩B(0, δ)) − 1

2
µB(0, δ) = µ(H ∩B(0, δ)) − µ(H0 ∩B(0, δ))

≥ 2−r+1βr−1δ
r−1α′ > 2−r+1βr−1δ

rη,

contrary to hypothesis. XXX Similarly, ??? if α < −ηδ, then H ∩B(0, δ) is included in

H0 ∩B(0, δ) \ ({u : u ∈ Rr−1, ‖u‖ ≤ 1

2
δ} × ]α, 0]),

so

1

2
µB(0, δ) − µ(H ∩B(0, δ)) = µ(H0 ∩B(0, δ)) − µ(H ∩B(0, δ))

≥ 2−r+1βr−1δ
r−1α′ > 2−r+1βr−1δ

rη,

which is equally impossible. XXX So |α| ≤ ηδ. QQQ

(b) Let F be such that λ∂EF > 0. Let η, ζ > 0 be such that

η < 1,
(1+η)2

(1−η)r−1
≤ 1 + ǫ, 2(1 + 2r)βrζ < 2−rβr−1η.

Because ∂$E is λ∂E-conegligible (474G again), λ∂E(F ∩∂$E) > 0. Because λ∂E is a Radon measure (474E) and

ψE : ∂$E → Sr−1 is dom(λ∂E)-measurable (474E(i), 474G), there is a compact set K1 ⊆ F ∩ ∂$E such that

λ∂EK1 > 0 and ψE↾K1 is continuous, by Lusin’s theorem (418J). For x ∈ ∂$E, set Hx = {z : (z−x) .ψE(x) ≤
0}. The function

(x, δ) 7→ µ((E△Hx) ∩B(x, δ)) : K1 × ]0,∞[ → R

is Borel measurable. PPP Take a Borel set E′ such that µ(E△E′) = 0. Then

{(x, δ, z) : x ∈ K1, z ∈ (E′△Hx) ∩B(x, δ)}
is a Borel set in Rr × ]0,∞[ × Rr, so its sectional measure is a Borel measurable function, by 252P. QQQ

For each x ∈ K1,

limn→∞
µ((E△Hx)∩B(x,2−n))

µB(x,2−n)
= 0

(474R). So there is an n0 ∈ N such that λ∂EF1 > 0, where F1 is the Borel set

{x : x ∈ K1, µ((E△Hx) ∩B(x, 2−n)) ≤ ζµB(x, 2−n) for every n ≥ n0}.
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Let K2 ⊆ F1 be a compact set such that λ∂EK2 > 0.
For each n ∈ N, the function

x 7→ λ∂EB(x, 2−n)) = λ∂E(x+B(0, 2−n))

is Borel measurable (444Fe). Let y ∈ K2 be such that λ∂E(K2 ∩ B(y, δ)) > 0 for every δ > 0 (cf. 411Nd).
Set v = ψE(y). Let n > n0 be so large that 2βr−1‖ψE(x) − v‖ ≤ βrζ whenever x ∈ K1 and ‖x− y‖ ≤ 2−n.
Set K3 = K2 ∩B(y, 2−n−1), so that λ∂EK3 > 0.

(c) We have |(x− z) .v| ≤ η‖x− z‖ whenever x, z ∈ K3. PPP If x = z this is trivial. Otherwise, let k ≥ n
be such that 2−k−1 ≤ ‖x− z‖ ≤ 2−k, and set δ = 2−k. Set

H ′
x = {w : (w − x) .v ≤ 0}, H ′

z = {w : (w − z) .v ≤ 0}.

Since |(w − x) .v − (w − x) .ψE(x)| ≤ 2δ‖ψE(x) − v‖ whenever w ∈ B(x, 2δ),

(Hx△H ′
x) ∩B(x, 2δ) ⊆ {w : w ∈ B(x, 2δ), |(w − x) .v| ≤ 2δ‖ψE(x) − v‖}

has measure at most

4δ‖ψE(x) − v‖βr−1(2δ)r−1 ≤ 2δβrζ(2δ)r−1 = ζµB(x, 2δ),

using (a-i) for the first inequality. So

µ((E△H ′
x) ∩B(x, 2δ)) ≤ µ((E△Hx) ∩B(x, 2δ)) + µ((Hx△H ′

x) ∩B(x, 2δ))

≤ 2ζµB(x, 2δ)

because k > n0 and x ∈ F1. Similarly, µ((E△H ′
z) ∩ B(z, δ)) ≤ 2ζµB(z, δ). Now observe that because

‖x− z‖ ≤ δ, B(z, δ) ⊆ B(x, 2δ),

µ((E△H ′
x) ∩B(z, δ)) ≤ 2ζµB(x, 2δ) = 2r+1ζµB(z, δ),

and

µ((H ′
x△H ′

z) ∩B(z, δ)) ≤ µ((E△H ′
x) ∩B(z, δ)) + µ((E△H ′

z) ∩B(z, δ))

≤ (2 + 2r+1)ζµB(z, δ).

Since µ(H ′
z ∩B(z, δ)) =

1

2
µB(z, δ),

|µ(H ′
x ∩B(z, δ)) − 1

2
µB(z, δ)| ≤ 2(1 + 2r)ζµB(z, δ) < 2−rβr−1ηδ

r,

and (using (a-ii) above)

|(x− z) .v| ≤ 1

2
ηδ ≤ η‖x− v‖. QQQ

(d) Let V be the hyperplane {w : w .v = 0}, and let T : K3 → V be the orthogonal projection, that is,
Tx = x− (x .v)v for every x ∈ K3. Then (c) tells us that if x, z ∈ K3,

‖Tx− Tz‖ ≥ ‖x− z‖ − |(x− z) .v| ≥ (1 − η)‖x− z‖.

Because η < 1, T is injective. Consider the compact set T [K3]. The inverse T−1 of T is
1

1−η
-Lipschitz, and

νK3 > 0 (by 475Eb), so ν(T [K3]) ≥ (1 − η)r−1νK3 > 0 (264G/471J). Let G ⊇ T [K3] be an open set such
that ν(G ∩ V ) ≤ (1 + η)ν(T [K3]). (I am using the fact that the subspace measure νV induced by ν on V
is a copy of Lebesgue measure on Rr−1, so is a Radon measure.) Let I be the family of non-trivial closed
balls B ⊆ G such that (1 − η)r−1λ∂ET

−1[B] ≤ (1 + η)ν(B ∩ V ). Then every point of T [K3] is the centre of
arbitrarily small members of I. PPP If x ∈ K3 and δ0 > 0, there is a δ ∈ ]0, δ0] such that B(Tx, δ) ⊆ G and
λ∂EB(x, δ) ≤ (1+η)βr−1δ

r−1 (474S once more). Now consider B = B(Tx, (1−η)δ). Then T−1[B] ⊆ B(x, δ),
so

λ∂ET
−1[B] ≤ λ∂EB(x, δ) ≤ (1 + η)βr−1δ

r−1 =
1+η

(1−η)r−1
ν(B ∩ V ). QQQ
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By 261B/472Ca, applied in V ∼= Rr−1, there is a countable disjoint family I0 ⊆ I such that ν(T [K3]\⋃ I0) =
0.

Now ν(K3 \
⋃
B∈I0

T−1[B]) = 0, because T−1 is Lipschitz, so λ∂E(K3 \
⋃
B∈I0

T−1[B]) = 0 (475Eb again),
and

λ∂EK3 ≤
∑

B∈I0

λ∂ET
−1[B] ≤ 1+η

(1−η)r−1

∑

B∈I0

ν(B ∩ V )

≤ 1+η

(1−η)r−1
ν(G ∩ V ) ≤ (1+η)2

(1−η)r−1
ν(T [K3]) ≤ (1+η)2

(1−η)r−1
νK3

(because T is 1-Lipschitz)

≤ (1 + ǫ)νK3

by the choice of η. Thus K3 ∈ E .

(e) This shows that every λ∂E-non-negligible set measured by λ∂E includes a λ∂E-non-negligible member of
E . As E is closed under disjoint unions, λ∂E is inner regular with respect to E (412Aa).

475G Theorem Let E ⊆ Rr be a set with locally finite perimeter. Then λ∂E = ν ∂*E, that is, for
F ⊆ Rr, λ∂EF = ν(F ∩ ∂*E) whenever either is defined.

proof (a) Suppose first that F is a Borel set included in the reduced boundary ∂$E of E. Then νF ≤ λ∂EF ,
by 475Ea. On the other hand, for any ǫ > 0 and γ < λ∂EF , there is an F1 ⊆ F such that

γ ≤ λ∂EF1 ≤ (1 + ǫ)νF1 ≤ (1 + ǫ)νF ,

by 475F; so we must have λ∂EF = νF .

(b) Now suppose that F is measured by λ∂E . Because ∂$E is λ∂E-conegligible, and λ∂E is a σ-finite Radon

measure, there is a Borel set F ′ ⊆ F ∩ ∂$E such that λ∂E(F \ F ′) = 0. Now νF ′ = λ∂EF
′, by (a), and

ν(F ∩ ∂$E \ F ′) = 0, by 475Ea, and ν(∂*E \ ∂$E) = 0, by 475D; so ν(F ∩ ∂*E) is defined and equal to
λ∂EF

′ = λ∂EF .

(c) Let 〈Kn〉n∈N be a non-decreasing sequence of compact subsets of ∂$E such that
⋃
n∈NKn is λ∂E-

conegligible. By (b), ν(∂*E \ ⋃
n∈NKn) = 0, while νKn = λ∂EKn is finite for each n. For each n, the

subspace measure νKn
on Kn is a multiple of Hausdorff (r − 1)-dimensional measure on Kn (471E), so is a

Radon measure (471Dh, 471F), as is (λ∂E)Kn
; since, by (b), νKn

and (λ∂E)Kn
agree on the Borel subsets of

Kn, they are actually identical. So if F ⊆ Rr is such that ν measures F ∩ ∂*E, λ∂E will measure F ∩Kn for
every n, and therefore will measure F ; so that in this case also λ∂EF = ν(F ∩ ∂*E).

475H Proposition Let V ⊆ Rr be a hyperplane, and T : Rr → V the orthogonal projection. Suppose
that A ⊆ Rr is such that νA is defined and finite, and for u ∈ V set

f(u) = #(A ∩ T−1[{u}]) if this is finite,

= ∞ otherwise.

Then
∫
V
f(u)ν(du) is defined and at most νA.

proof (a) Because ν is invariant under isometries, we can suppose that V = {x : ξr = 0}, so that Tx =
(ξ1, . . . , ξr−1, 0) for x = (ξ1, . . . , ξr). For m, n ∈ N and u ∈ V set

fmn(u) = #({k : k ∈ Z, |k| ≤ 4m, A ∩ ({u} × [2−mk, 2−m(k + 1 − 2−n)[) 6= ∅});

so that f(u) = limm→∞ limn→∞ fmn(u) for every u ∈ V .

(b) Suppose for the moment that A is actually a Borel set. Then T [A ∩ (Rr × [α, β[)] is always analytic
(423Eb, 423Bb), therefore measured by ν (432A), and every fmn is measurable. Next, given ǫ > 0 and
m, n ∈ N, there is a sequence 〈Fi〉i∈N of closed sets of diameter at most 2−m−n, covering A, such that∑∞
i=0 2−r+1βr−1(diamFi)

r−1 ≤ νA + ǫ. Now each T [Fi] is a compact set of diameter at most diamFi, so
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ν(T [Fi]) ≤ 2−r+1βr−1(diamFi)
r−1 (264H); and if we set g =

∑∞
i=0 χT [Fi], fmn ≤ g everywhere on V , so∫

fmndν ≤
∫
g dν ≤ νA+ ǫ. As ǫ is arbitary,

∫
fmndν ≤ νA. Accordingly

∫
fdν = lim

m→∞
lim
n→∞

∫
fmndν

(because the limits are monotonic)

≤ νA+ ǫ.

As ǫ is arbitrary,
∫
fdν ≤ νA.

(c) In general, there are Borel sets E, F such that E \ F ⊆ A ⊆ E and νF = 0, by 264Fc/471Db. By
(b), ∫

#(E ∩ T−1[{u}])ν(du) ≤ νE,
∫

#(F ∩ T−1[{u}])ν(du) ≤ νF = 0,

so
∫

#(A ∩ T−1[{u}])ν(du) is defined and equal to
∫

#(E ∩ T−1[{u}])ν(du) ≤ νA.

475I Lemma (In this lemma I allow r = 1.) Let K be the family of compact sets K ⊆ Rr such that
K = cl*K. Then µ is inner regular with respect to K.

proof (a) Write D for the set of dyadic (half-open) cubes in Rr, that is, sets expressible in the form∏
i<r[2

−mki,2−m(ki + 1)[ where m, k0, . . . , kr−1 ∈ Z. For m ∈ N and x ∈ Rr write C(x,m) for the dyadic
cube with side of length 2−m which contains x. Then, for any A ⊆ Rr,

limm→∞ 2mrµ∗(A ∩ C(x,m)) = 1

for every x ∈ int*A. PPP C(x,m) ⊆ B(x, 2−m
√
r) for each m, so

2mrµ∗(C(x,m) \A) ≤ βrr
r/2µ

∗(B(x,2−m
√
r)\A)

µB(x,2−m
√
r)

→ 0

as m→ ∞. QQQ

(b) Now, given a Lebesgue measurable set E ⊆ Rr and γ < µE, choose 〈En〉n∈N, 〈γn〉n∈N, 〈mn〉n∈N and
〈Kn〉n∈N inductively, as follows. Start with E0 = E and γ0 = γ. Given that γn < µEn, let Kn ⊆ En be a
compact set of measure greater than γn. Now, by (a), there is an mn ≥ n such that µ∗En+1 > γn, where

En+1 = {x : x ∈ Kn, µ(Kn ∩ C(x,mn)) ≥ 2

3
µC(x,mn)};

note that En+1 is of the form Kn ∩⋃D0 for some set D0 of half-open cubes of side 2−mn , so that En+1 is
measurable and

µ(En+1 ∩ C(x,mn)) = µ(Kn ∩ C(x,mn)) ≥ 2

3
µC(x,mn)

for every x ∈ En+1. Now set

γn+1 = max(γn, µEn+1 − 1

3
· 2−mnr),

and continue.
At the end of the induction, set K =

⋂
n∈NKn =

⋂
n∈NEn. Then K is compact, K ⊆ E and

µK = limn→∞ µKn = limn→∞ γn ≥ γ.

If x ∈ K and n ∈ N, then

µ(K ∩B(x, 2−mn
√
r)) ≥ µ(K ∩ C(x,mn)) ≥ µ(En+1 ∩ C(x,mn)) − µEn+1 + µK

≥ 2

3
µC(x,mn) − µEn+1 + γn+1

≥ 1

3
· 2−mnr =

1

3βrrr/2
µB(x, 2−mn

√
r),
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so

lim supδ↓0
µ(K∩B(x,δ))

µB(x,δ)
≥ 1

3βrrr/2
> 0

and x ∈ cl*K.

(c) Thus K ⊆ cl*K. Since certainly cl*K ⊆ K = K, we have K = cl*K.

475J Lemma Let E be a Lebesgue measurable subset of Rr, identified with Rr−1 × R. For u ∈ Rr−1,
set Gu = {t : (u, t) ∈ int*E}, Hu = {t : (u, t) ∈ int*(Rr \ E)} and Du = {t : (u, t) ∈ ∂*E}, so that Gu, Hu

and Du are disjoint and cover R.
(a) There is a µr−1-conegligible set Z ⊆ Rr−1 such that whenever u ∈ Z, t < t′ in R, t ∈ Gu and t′ ∈ Hu,

there is an s ∈ Du ∩ ]t, t′[.
(b) There is a µr−1-conegligible set Z1 ⊆ Rr−1 such that whenever u ∈ Z1, t, t′ ∈ R, t ∈ Gu and t′ ∈ Hu,

there is a member of Du between t and t′.
(c) If E has locally finite perimeter, there is a conegligible set Z2 ⊆ Z1 such that, for every u ∈ Z2,

Du ∩ [−n, n] is finite for every n ∈ N, Gu and Hu are open, and Du = ∂Gu = ∂Hu, so that the constituent
intervals of R \Du lie alternately in Gu and Hu.

proof (a)(i) For q ∈ Q, set fq(u) = sup(Gu ∩ ]−∞, q[), taking −∞ for sup ∅. Then fq : Rr−1 → [−∞, q] is
Lebesgue measurable. PPP For α < q,

{u : fq(u) > α} = {u : there is some t ∈ ]α, q[ such that (u, t) ∈ int*E}.

Because int*E is a Borel set (475Cc), {u : fq(u) > α} is analytic (423Eb, 423Bc), therefore measurable
(432A again). QQQ

(ii) For any q ∈ Q, Wq = {u : fq(u) < q, fq(u) ∈ Gu} is negligible. PPP??? Suppose, if possible, otherwise.
Let n ∈ N be such that {u : u ∈ Wq, fq(u) > −n} is not negligible. If we think of [−∞, q] as a compact
metrizable space, 418J again tells us that there is a Borel set F ⊆ Rr−1 such that fq↾F is continuous and
F1 = {u : u ∈ F ∩Wq, fq(u) > −n} is not negligible. Note that F1 is measurable, being the projection of
the Borel set {(u, fq(u)) : u ∈ F, −n < fq(u) < q} ∩ int*E. By 475I, there is a non-negligible compact set
K ⊆ F1 such that K ⊆ cl*K, interpreting cl*K in Rr−1. Because g↾K is continuous, it attains its maximum
at u ∈ K say.

Set x = (u, fq(u)). Then, whenever 0 < δ ≤ min(n+ fq(u), q − fq(u)),

B(x, 2δ) \ int*E ⊇ {(w, t) : w ∈ K ∩ V (u, δ), |t− fq(u)| ≤ δ, fq(w) < t < q}
(writing V (u, δ) for {w : w ∈ Rr−1, ‖w − u‖ ≤ δ})

⊇ {(w, t) : w ∈ K ∩ V (u, δ), fq(u) < t < fq(u) + δ}

because fq(w) ≤ fq(u) for every w ∈ K. So, for such δ,

µ(B(x, 2δ) \ int*E) ≥ δµr−1(K ∩ V (u, δ))

=
βr−1

2rβr

· µr−1(K∩V (u,δ))

µr−1V (u,δ)
· µB(x, 2δ),

and

lim sup
δ↓0

µ(B(x,δ)\E)

µB(x,δ)
= lim sup

δ↓0

µ(B(x,2δ)\int*E)

µB(x,2δ)

≥ βr−1

2rβr

lim sup
δ↓0

µr−1(K∩V (u,δ))

µr−1V (u,δ)
> 0

because u ∈ cl*K; but x = (u, fq(u)) is supposed to belong to int*E. XXXQQQ

(iii) Similarly, setting

f ′q(u) = inf(Hu ∩ ]u,∞[), W ′
q = {u : q < f ′q(u) <∞, f ′q(u) ∈ Hu},
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every W ′
q is negligible. So Z = Rr−1 \⋃q∈Q(Wq ∪W ′

q) is µr−1-conegligible.

Now if u ∈ Z, t ∈ Gu and t′ ∈ Hu, where t < t′, there is some s ∈ ]t, t′[ ∩Du. PPP??? Suppose, if possible,
otherwise. Since, by hypothesis, neither t nor t′ belongs to Du, Du ∩ [t, t′] = ∅. Note that, because u ∈ Z,

s = inf(Gu ∩ ]s,∞[) for every s ∈ Gu, s = sup(Hu ∩ ]−∞, s[) for every s ∈ Hu.

Choose 〈sn〉n∈N, 〈s′n〉n∈N and 〈δn〉n∈N inductively, as follows. Set s0 = t, s′0 = t′. Given that t ≤ sn < s′n ≤ t′

and sn ∈ Gu and s′n ∈ Hu, where n is even, set s′n+1 = sup(Gu ∩ [sn, s
′
n]). Then either s′n+1 = s′n, so

s′n+1 ∈ Hu, or s′n+1 < s′n and
]
s′n+1, s

′
n

]
∩ Gu = ∅, so s′n+1 /∈ Gu and again s′n+1 ∈ Hu. Let δn > 0 be

such that δn ≤ 2−n and µ(E ∩ B((u, s′n+1), δn)) < 1
2βrδ

r
n. Because the function s 7→ µ(E ∩ B((u, s), δn)) is

continuous (443C, or otherwise), there is an sn+1 ∈ Gu ∩
[
sn, s

′
n+1

[
such that µ(E ∩B((u, s), δn)) ≤ 1

2βrδ
r
n

whenever s ∈ [sn+1, s
′
n+1].

This is the inductive step from even n. If n is odd and sn ∈ Gu, s′n ∈ Hu and sn < s′n, set sn+1 =
inf(Hu ∩ [sn, s

′
n]). This time we find that sn+1 must belong to Gu. Let δn ∈ ]0, 2−n] be such that µ(E ∩

B((u, sn+1), δn)) > 1
2βrδ

r
n, and let s′n+1 ∈ Hu∩]sn+1, s

′
n] be such that µ(E∩B((u, s), δn)) ≥ 1

2βrδ
r
n whenever

s ∈ [sn+1, s
′
n+1].

The construction provides us with a non-increasing sequence 〈[sn, s′n]〉n∈N of closed intervals, so there
must be some s in their intersection. In this case

µ(E ∩B((u, s), δn) ≤ 1
2βrδ

r
n if n is even,

µ(E ∩B((u, s), δn) ≥ 1
2βrδ

r
n if n is odd.

Since limn→∞ δn = 0,

lim infδ↓0
µ(E∩B((u,s),δ))

µB((u,s),δ)
≤ 1

2
, lim supδ↓0

µ(E∩B((u,s),δ))

µB((u,s),δ)
≥ 1

2
,

and s ∈ Du, while of course t ≤ s ≤ t′. XXXQQQ

(iv) Thus the conegligible set Z has the property required by (a).

(b) Applying (a) to Rr \ E, there is a conegligible set Z ′ ⊆ Rr−1 such that if u ∈ Z ′, t ∈ Hu, t′ ∈ Gu
and t < t′, then Du meets ]t, t′[. So we can use Z ∩ Z ′.

(c) Now suppose that E has locally finite perimeter. We know that ν(∂*E ∩ B(0, n)) = λ∂EB(0,n) is
finite for every n ∈ N (475G). By 475H,∫

‖u‖≤n #(Du ∩ [−n, n])µr−1(du) ≤ ν(∂*E ∩B(0, 2n)) <∞

for every n ∈ N; but this means that Du ∩ [−n, n] must be finite for almost every u such that ‖u‖ ≤ n, for
every n, and therefore that

Z ′
1 = {u : u ∈ Z1, Du ∩ [−n, n] is finite for every n}

is conegligible. For u ∈ Z ′
1, R \ Du is an open set, so is made up of a disjoint sequence of intervals with

endpoints in Du ∪{−∞,∞} (see 2A2I); and because u ∈ Z1, each of these intervals is included in either Gu
or Hu. Now

A = {u : there are successive constituent intervals of R \Du both included in Gu}
is negligible. PPP??? Otherwise, there are rationals q < q′ such that

F = {u : ]q, q′[ \Gu contains exactly one point}
is not negligible. Note that, writing T : Rr → Rr−1 for the orthogonal projection,

F = T [(Rr−1 × ]q, q′[) \ int*E]

\
⋃

q′′∈Q,q<q′′<q′

T [(Rr−1 × ]q, q′′[) \ int*E] ∩ T [(Rr−1 × ]q′′, q′[) \ int*E]

is measurable. Take any u ∈ F ∩ int*F , and let t be the unique point in ]q, q′[ \ Gu. Then whenever
0 < δ ≤ min(t− q, q′ − t) we shall have
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µ(B((u, t), δ) \ E) = µ(B((u, t), δ) \ int*E) ≤ 2δµr−1(V (u, δ) \ F ),

because if w ∈ F then (w, s) ∈ int*E for almost every s ∈ [t− δ, t+ δ]. So

lim supδ↓0
µ(B((u,t),δ)\E)

µB((u,t),δ)
≤ 2βr−1

βr

lim supδ↓0
µr−1(V (u,δ)\F )

µr−1V (u,δ)
= 0,

and (u, t) ∈ int*E. XXXQQQ
Similarly,

A′ = {u : there are successive constituent intervals of R \Du both included in Hu}
is negligible. So Z2 = Z ′

1 \ (A ∪A′) is a conegligible set of the kind we need.

475K Lemma Suppose that h : Rr → [−1, 1] is a Lipschitz function with compact support; let n ∈ N

be such that h(x) = 0 for ‖x‖ ≥ n. Suppose that E ⊆ Rr is a Lebesgue measurable set. Then

|
∫
E

∂h

∂ξr
dµ| ≤ 2

(
βr−1n

r−1 + ν(∂*E ∩B(0, n))
)
.

proof By Rademacher’s theorem (262Q),
∂h

∂ξr
is defined almost everywhere; as it is measurable and bounded,

and is zero outside B(0, n), the integral is well-defined. If ν(∂*E ∩ B(0, n)) is infinite, the result is trivial;
so henceforth let us suppose that ν(∂*E ∩B(0, n)) <∞. Identify Rr with Rr−1 × R. For u ∈ Rr−1, set

f(u) = #({t : (u, t) ∈ ∂*E ∩B(0, n)}) if this is finite,

= ∞ otherwise.

By 475H,
∫
fdµr−1 ≤ ν(∂*E ∩ B(0, n)). By 475Jb, there is a µr−1-conegligible set Z ⊆ Rr−1 such that

f(u) is finite for every u ∈ Z and

whenever u ∈ Z and (u, t) ∈ int*E and (u, t′) ∈ Rr \ cl*E, there is an s lying between t and t′

such that (u, s) ∈ ∂*E.

For u ∈ Z, set D′
u = {t : (u, t) ∈ B(0, n) \ ∂*E}, and define gu : D′

u → {0, 1} by setting

gu(t) = 1 if (u, t) ∈ B(0, n) ∩ int*E,

= 0 if (u, t) ∈ B(0, n) \ cl*E.

Now if t, t′ ∈ D′
u and g(t) 6= g(t′), there is a point s between t and t′ such that (u, s) ∈ ∂*E; so the variation

VarD′
u
gu of gu (224A) is at most f(u). Setting hu(t) = h(u, t) for u ∈ Rr−1 and t ∈ R, we now have

∫ ∞

−∞

∂h

∂ξr
(u, t)χ(B(0, n) ∩ int*E)(u, t)dt =

∫

D′
u

h′u(t)gu(t)dt

(because h′u(t) = 0 if (u, t) /∈ B(0, n))

≤ (1 + VarD′
u
gu) sup

a≤b
|
∫ b

a

h′u(t)|dt

(by 224J, recalling that D′
u is either empty or a bounded interval with finitely many points deleted)

≤ (1 + f(u)) sup
a≤b

|hu(b) − hu(a)|

(because hu is Lipschitz, therefore absolutely continuous on any bounded interval)

≤ 2(1 + f(u)).

Integrating over u, we now have

|
∫

E

∂h

∂ξr
dµ| = |

∫

B(0,n)∩int*E

∂h

∂ξr
dµ|

(475Cg)
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=

∫

V (0,n)

∫ ∞

−∞

∂h

∂ξr
(u, t)χ(B(0, n) ∩ int*E)(u, t)dt µr−1(du)

(where V (0, n) = {u : u ∈ Rr−1, ‖u‖ ≤ n})

≤
∫

V (0,n)

2(1 + f(u))µr−1(du)

≤ 2
(
βr−1n

r−1 + ν(∂*E ∩B(0, n))
)
.

475L Theorem Suppose that E ⊆ Rr. Then E has locally finite perimeter iff ν(∂*E ∩B(0, n)) is finite
for every n ∈ N.

proof If E has locally finite perimeter, then ν(∂*E ∩ B(0, n)) = λ∂EB(0, n) is finite for every n, by 475G.
So let us suppose that ν(∂*E ∩ B(0, n)) is finite for every n ∈ N. Then µ(∂*E ∩ B(0, n)) = 0 for every n
(471L), µ(∂*E) = 0 and E is Lebesgue measurable (475Ch).

If n ∈ N, then

sup{|
∫

E

divφ dµ| : φ : Rr → Rr is Lipschitz, ‖φ‖ ≤ χB(0, n)}

≤ 2r
(
βr−1n

r−1 + ν(∂*E ∩B(0, n))
)

is finite. PPP If φ = (φ1, . . . , φr) : Rr → Rr is a Lipschitz function and ‖φ‖ ≤ χB(0, n), then 475K tells us
that

|
∫
E

∂φr

∂ξr
dµ| ≤ 2

(
βr−1n

r−1 + ν(∂*E ∩B(0, n))
)
.

But of course it is equally true that

|
∫
E

∂φj

∂ξj
dµ| ≤ 2

(
βr−1n

r−1 + ν(∂*E ∩B(0, n))
)

for every other j ≤ r; adding, we have the result. QQQ
Since n is arbitrary, E has locally finite perimeter.

475M Corollary (a) The family of sets with locally finite perimeter is a subalgebra of the algebra of
Lebesgue measurable subsets of Rr.

(b) A set E ⊆ Rr is Lebesgue measurable and has finite perimeter iff ν(∂*E) < ∞, and in this case
ν(∂*E) is the perimeter of E.

(c) If E ⊆ Rr has finite measure, then perE = lim infα→∞ per(E ∩B(0, α)).

proof (a) Recall that the definition in 474D insists that sets with locally finite perimeter should be Lebesgue
measurable. If E ⊆ Rr has locally finite perimeter, then so has Rr \ E, by 474J. If E, F ⊆ Rr have locally
finite perimeter, then

ν(∂*(E ∪ F ) ∩B(0, n)) ≤ ν(∂*E ∩B(0, n)) + ν(∂*F ∩B(0, n))

is finite for every n ∈ N, by 475L and 475Cd; by 475L in the other direction, E ∪ F has locally finite
perimeter.

(b) If E is Lebesgue measurable and has finite perimeter (on the definition in 474D), then ν(∂*E) = λ∂ER
r

is the perimeter of E, by 475G. If ν(∂*E) < ∞, then µ(∂*E) = 0 and E is measurable (471L and 475Ch);
now E has locally finite perimeter, by 475L, and 475G again tells us that ν(∂*E) = λ∂ER

r is the perimeter
of E.

(c) Now suppose that µE <∞. For any α ≥ 0,

∂*(E ∩B(0, α)) ⊆ (∂*E ∩B(0, α)) ∪ (cl*E ∩ ∂B(0, α)) ⊆ ∂*E ∪ (cl*E ∩ ∂B(0, α))

by 475Cf. Now we know also that∫∞
0
ν(cl*E ∩ ∂B(0, α))dα = µ(cl*E) = µE <∞
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(265G), so lim infα→∞ ν(cl*E ∩ ∂B(0, α)) = 0. This means that

lim inf
α→∞

per(E ∩B(0, α)) = lim inf
α→∞

ν(∂*(E ∩B(0, α)))

≤ lim inf
α→∞

ν(∂*E) + ν(cl*E ∩ ∂B(0, α)) = ν(∂*E).

In the other direction,

∂*E ∩ intB(0, α) = ∂*E ∩ int*B(0, α) ⊆ ∂*(E ∩B(0, α))

for every α, by 475Ce, so

perE = ν(∂*E) = lim
α→∞

ν(∂*E ∩ intB(0, α))

≤ lim inf
α→∞

ν(∂*(E ∩B(0, α))) = lim inf
α→∞

per(E ∩B(0, α))

and we must have equality.

Remark See 475Xk.

475N The Divergence Theorem Let E ⊆ Rr be such that ν(∂*E ∩B(0, n)) is finite for every n ∈ N.
(a) E is Lebesgue measurable.
(b) For ν-almost every x ∈ ∂*E, there is a Federer exterior normal vx of E at x.
(c) For every Lipschitz function φ : Rr → Rr with compact support,∫

E
divφ dµ =

∫
∂*E

φ(x) .vx ν(dx).

proof By 475L, E has locally finite perimeter, and in particular is Lebesgue measurable. By 474R, there
is a Federer exterior normal vx = ψE(x) of E at x for every x ∈ ∂$E; by 475D, ν-almost every point in ∂*E
is of this kind. By 474E-474F, ∫

E
divφ dµ =

∫
φ .ψE dλ

∂
E =

∫
∂$E

φ .ψE dλ
∂
E ,

and this is also equal to
∫
∂*E

φ .ψE dλ
∂
E , because ∂$E ⊆ ∂*E and ∂$E is λ∂E-conegligible. But λ∂E and ν

induce the same subspace measures on ∂*E, by 475G, so∫
E

divφ dµ =
∫
∂*E

φ .ψE dν =
∫
∂*E

φ(x) .vx ν(dx),

as claimed.

475O At the price of some technicalities which are themselves instructive, we can now proceed to some
basic properties of the essential boundary.

Lemma Let E ⊆ Rr be a set with locally finite perimeter, and ψE its canonical outward-normal function.
Let v be the unit vector (0, . . . , 0, 1). Identify Rr with Rr−1×R. Then we have sequences 〈Fn〉n∈N, 〈gn〉n∈N

and 〈g′n〉n∈N such that
(i) for each n ∈ N, Fn is a Lebesgue measurable subset of Rr−1, and gn, g′n : Fn → [−∞,∞] are Lebesgue

measurable functions such that gn(u) < g′n(u) for every u ∈ Fn;
(ii) if m, n ∈ N are distinct and u ∈ Fm ∩ Fn, then [gm(u), g′m(u)] ∩ [gn(u), g′n(u)] = ∅;
(iii)

∑∞
n=0

∫
Fn
g′n − gndµr−1 = µE;

(iv) for any continuous function h : Rr → R with compact support,∫
∂*E

h(x)v .ψE(x) ν(dx) =
∑∞
n=0

∫
Fn
h(u, g′n(u)) − h(u, gn(u))µr−1(du),

where we interpret h(u,∞) and h(u,−∞) as 0 if necessary;
(v) for µr−1-almost every u ∈ Rr−1,

{t : (u, t) ∈ ∂*E} = {gn(u) : n ∈ N, u ∈ Fn, gn(u) 6= −∞}
∪ {g′n(u) : n ∈ N, u ∈ Fn, g

′
n(u) 6= ∞}.

proof (a) Take a conegligible set Z2 ⊆ Rr−1 as in 475Jc. Let Z ⊆ Z2 be a conegligible Borel set. For u ∈ Z
set Du = {t : (u, t) ∈ ∂*E}.
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(b) For each q ∈ Q, set F ′
q = {u : u ∈ Z, (u, q) ∈ int*E}, so that F ′

q is a Borel set, and for u ∈ F ′
q set

fq(u) = sup(Du ∩ ]−∞, q[), f ′q(u) = inf(Du ∩ ]−∞, q[),

allowing −∞ as sup ∅ and ∞ as inf ∅. Observe that (because Du ∩ [q − 1, q + 1] is finite) fq(u) < q < f ′q(u).
Now fq and f ′q are measurable, by the argument of part (a-i) of the proof of 475J. Enumerate Q as 〈qn〉n∈N,
and set

Fn = F ′
qn \⋃m<n{u : u ∈ F ′

qm , fqm(u) < qn < f ′qm(u)}
for n ∈ N. Set gn(u) = fqn(u), g′n(u) = f ′qn(u) for u ∈ Fn.

The effect of this construction is to ensure that, for any u ∈ Z, u ∈ Fn iff qn is the first rational lying in
one of those constituent intervals I of R \Du such that {u}× I ⊆ int*E, and that now gn(u) and g′n(u) are
the endpoints of that interval, allowing ±∞ as endpoints.

(c) Now let us look at the items (i)-(v) of the statement of this lemma. We have already achieved (i).
If u ∈ Fm ∩ Fn, then, in the language of 475J, ]gm(u), g′m(u)[ is one of the constituent intervals of Gu,
and ]gn(u), g′n(u)[ is another; since these must be separated by one of the constituent intervals of Hu, their
closures are disjoint. Thus (ii) is true. For any u ∈ Z,

∑
n∈N,u∈Fn

g′n(u) − gn(u) = µ1{t : (u, t) ∈ int*E},

so
∑∞
n=0

∫
Fn
g′n − gndµr−1 =

∫
Z
µ1{t : (u, t) ∈ int*E}µr−1(du) = µ(int*E) = µE.

So (iii) is true. Also, for u ∈ Z,

{t : (u, t) ∈ ∂*E} = Du

= {gn(u) : n ∈ N, u ∈ Fn, gn(u) 6= −∞}
∪ {g′n(u) : n ∈ N, u ∈ Fn, g

′
n(u) 6= ∞},

so (v) is true.

(d) As for (iv), suppose first that h : Rr → R is a Lipschitz function with compact support. Set
φ(x) = (0, . . . , h(x)) for x ∈ Rr. Then

∫

∂*E

h(x)v .ψE(x) ν(dx) =

∫
h(x)v .ψE(x)λ∂E(dx)

(475G)

=

∫
φ .ψE dλ

∂
E =

∫

E

divφ dµ

(474E)

=

∫

E

∂h

∂ξr
dµ =

∫

int*E

∂h

∂ξr
dµ

=

∫ ∑

n∈N,u∈Fn

∫ g′n(u)

gn(u)

∂h

∂ξr
(u, t)dt µr−1(du)

=

∫ ∑

n∈N,u∈Fn

h(u, g′n(u)) − h(u, gn(u))µr−1(du)

(with the convention that h(u,±∞) = limt→±∞ h(u, t) = 0)

=
∞∑

n=0

∫

Fn

h(u, g′n(u)) − h(u, gn(u))µr−1(du)

because if |h| ≤ mχB(0,m) then
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∫ ∑

n∈N,u∈Fn

|h(u, g′n(u)) − h(u, gn(u))|µr−1(du)

≤ 2m

∫
#({t : (u, t) ∈ B(0,m) ∩ ∂*E})µr−1(du)

≤ 2mν(B(0,m) ∩ ∂*E)

(475H) is finite.

For a general continuous function h of compact support, consider the convolutions hk = h ∗ h̃k for large
k, where h̃k is defined in 473E. If |h| ≤ mχB(0,m) then |hk| ≤ mχB(0,m+ 1) for every k, so that

∑
n∈N,u∈Fn

|hk(g′n(u)) − hk(gn(u))| ≤ 2m#({t : (u, t) ∈ B(0,m+ 1) ∩ ∂*E})

for every u ∈ Rr, k ∈ N. Since hk → h uniformly (473Ed),

∫

∂*E

h(x)v .ψE(x) ν(dx) = lim
k→∞

∫

∂*E

hk(x)v .ψE(x) ν(dx)

= lim
k→∞

∫ ∑

n∈N,u∈Fn

hk(u, g′n(u)) − hk(u, gn(u))µr−1(du)

=

∫ ∑

n∈N,u∈Fn

h(u, g′n(u)) − h(u, gn(u))µr−1(du)

=

∞∑

n=0

∫

Fn

h(u, g′n(u)) − h(u, gn(u))µr−1(du),

as required.

475P Lemma Let v ∈ Sr−1 be any unit vector, and V ⊆ Rr the hyperplane {x : x .v = 0}. Let
T : Rr → V be the orthogonal projection. If E ⊆ Rr is any set with locally finite perimeter and canonical
outward-normal function ψE , then∫

∂*E
|v .ψE |dν =

∫
V

#(∂*E ∩ T−1[{u}])ν(du),

interpreting #(∂*E ∩ T−1[{u}]) as ∞ if ∂*E ∩ T−1[{u}] is infinite.

proof As usual, we may suppose that the structure (E, v) is rotated until v = (0, . . . , 1), so that we can iden-
tify T (ξ1, . . . , ξr) with (ξ1, . . . , ξr−1) ∈ Rr−1, and

∫
V

#(∂*E ∩ T−1[{u}])ν(du) with
∫
Rr−1 #(Du)µr−1(du),

where Du = {t : (u, t) ∈ ∂*E}. For each m ∈ N and u ∈ Rr−1, set D
(m)
u = {t : (u, t) ∈ ∂*E, ‖(u, t)‖ < m};

note that
∫

#(D
(m)
u )µr−1(du) ≤ ν(∂*E ∩ B(0,m)) is defined and finite (475H). It follows that the integral∫

V
#(∂*E ∩ T−1[{u}])ν(du) is defined in [0,∞].

(a) Write Φ for the set of continuous functions h : Rr → [−1, 1] with compact support. Then∫
∂*E

|v .ψE |dν = suph∈Φ

∫
∂*E

h(x)v .ψE(x) ν(dx).

PPP Of course ∫
∂*E

|v .ψE |dν ≥
∫
∂*E

h(x)v .ψE(x) ν(dx)

for any h ∈ Φ. On the other hand, if

γ <
∫
∂*E

|v .ψE |dν =
∫
|v .ψE |dλ∂E

(475G), then, because λ∂E is a Radon measure, there is an n ∈ N such that

γ <
∫
B(0,n)

|v .ψE |dλ∂E =
∫
h0(x)v .ψE(x)λ∂E(dx)

where
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h0(x) =
v .ψE(x)

|v .ψE(x)| if x ∈ B(0, n) and v .ψE(x) 6= 0,

= 0 otherwise.

Again because λ∂E is a Radon measure, there is a continuous function h1 : Rr → R with compact support
such that ∫

|h1 − h0|dλ∂E ≤
∫
B(0,n)

|v .ψE |dλ∂E − γ

(416I); of course we may suppose that h1, like h, takes values in [−1, 1], so that h1 ∈ Φ. Now∫
∂*E

h1(x)v .ψE(x)ν(dx) =
∫
h1(x)v .ψE(x)λ∂E(dx) ≥ γ.

As γ is arbitrary,

suph∈Φ

∫
h(x)v .ψE(x) ν(dx) =

∫
|v .ψE |dν

as required. QQQ

(b) Now take 〈Fn〉n∈N, 〈gn〉n∈N and 〈g′n〉n∈N as in 475O. Then∫
#(Du)µr−1(du) = suph∈Φ

∑∞
n=0

∫
Fn
h(u, g′n(u)) − h(u, gn(u))µr−1(du).

(As in 475O(iv), interpret h(u,±∞) as 0 if necessary.) PPP By 475O(ii), g′m(u) 6= gn(u) whenever m, n ∈ N

and u ∈ Fm ∩ Fn, while for almost all u ∈ Rr−1

Du = ({gn(u) : n ∈ N, u ∈ Fn} \ {−∞}) ∪ ({g′n(u) : n ∈ N, u ∈ Fn} \ {∞}).

So if h ∈ Φ,

∑

n∈N,u∈Fn

h(u, g′n(u)) − h(u, gn(u)) ≤ #({gn(u) : u ∈ Fn, gn(u) 6= −∞})

+ #({g′n(u) : u ∈ Fn, g
′
n(u) 6= ∞})

= #(Du)

for almost every u ∈ Rr−1, and
∑∞
n=0

∫
Fn
h(u, g′n(u)) − h(u, gn(u))µr−1(du) ≤

∫
#(Du)µr−1(du).

In the other direction, given γ <
∫

#(Du)µr−1(du), there is an m ∈ N such that γ <
∫

#(D
(m)
u )µr−1(du).

Setting

Hn = {u : u ∈ Fn, gn(u) ∈ D
(m)
u }, H ′

n = {u : u ∈ Fn, g
′
n(u) ∈ D

(m)
u }

for n ∈ N, we have

γ <
∑∞
n=0 µr−1Hn +

∑∞
n=0 µr−1H

′
n ≤

∫
#(D

(m)
u µr−1(du) <∞.

By 418J once more, we can find n ∈ N and compact sets Ki ⊆ Hi, K
′
i ⊆ H ′

i such that gi↾Ki and g′i↾K
′
i are

continuous for every i and

γ ≤
n∑

i=0

(µr−1Ki + µr−1K
′
i) −

∞∑

i=n+1

(µr−1Hi + µr−1H
′
i)

−
n∑

i=0

(µr−1(Hi \Ki) + µr−1(H ′
i \K ′

i)).

Set

K =
⋃
i≤n{(u, gi(u)) : u ∈ Ki}, K ′ =

⋃
i≤n{(u, g′i(u)) : u ∈ K ′

i},

so that K and K ′ are disjoint compact subsets of intB(0,m). Let h : Rr → R be a continuous function
such that
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h(x) = 1 for x ∈ K ′,

= −1 for x ∈ K,

= 0 for x ∈ Rr \ intB(0,m)

(4A2F(d-ix)); we can suppose that −1 ≤ h(x) ≤ 1 for every x. Then h ∈ Φ, and

∞∑

i=0

∫

Fi

h(u, g′i(u)) − h(u, gi(u))µr−1(du)

=

∞∑

i=0

∫

H′
i

h(u, g′i(u))µr−1(du) −
∞∑

i=0

∫

Hi

h(u, gi(u))µr−1(du)

(because h is zero outside intB(0,m))

≥
n∑

i=0

∫

K′
i

h(u, g′i(u))µr−1(du) −
n∑

i=0

∫

Ki

h(u, gi(u))µr−1(du)

−
n∑

i=0

(µ(H ′
i \K ′

i) + µ(Hi \Ki)) −
∞∑

i=n+1

(µH ′
i + µHi)

≥ γ.

This shows that ∫
#(Du)µr−1(du) ≤ suph∈Φ

∑∞
n=0

∫
Fn
h(u, g′n(u)) − h(u, gn(u))µr−1(du),

and we have equality. QQQ

(c) Putting (a) and (b) together with 475O(iv), we have the result.

475Q Theorem (a) Let E ⊆ Rr be a set with finite perimeter. For v ∈ Sr−1 write Vv for {x : x .v = 0},
and let Tv : Rr → Vv be the orthogonal projection. Then

perE = ν(∂*E) =
1

2βr−1

∫

Sr−1

∫

Vv

#(∂*E ∩ T−1
v [{u}])ν(du)ν(dv)

= lim
δ↓0

1

2βr−1δ

∫

Sr−1

µ(E△(E + δv))ν(dv).

(b) Suppose that E ⊆ Rr is Lebesgue measurable. Set

γ = supx∈Rr\{0}
1

‖x‖µ(E△(E + x)).

Then γ ≤ perE ≤ rβrγ

2βr−1

.

proof (a)(i) I start with an elementary fact: there is a constant c such that
∫
|w .v|λ∂Sr−1

(dv) = c for every

w ∈ Sr−1; this is because whenever w, w′ ∈ Sr−1 there is an orthogonal linear transformation taking w to
w′, and this transformation is an automorphism of the structure (Rr, ν, Sr−1, λ

∂
Sr−1

) (474H). (In (iii) below

I will come to the calculation of c.)

(ii) Now, writing ψE for the canonical outward-normal function of E, we have

∫

Sr−1

∫

Vv

#(∂*E ∩ T−1
v [{u}])ν(du)ν(dv) =

∫

Sr−1

∫

∂*E

|ψE(x) .v|ν(dx)ν(dv)

(475P)
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=

∫∫
|ψE(x) .v|λ∂E(dx)λ∂Sr−1

(dv)

(by 235K, recalling that λ∂Sr−1
and λ∂E are just indefinite-integral measures over ν, while Sr−1 and ∂*E are

Borel sets)

=

∫∫
|ψE(x) .v|λ∂Sr−1

(dv)λ∂E(dx)

(because . is continuous, so (x, v) 7→ ψE(x) .v is measurable, while λ∂Sr−1
and λ∂E are totally finite, so we

can use Fubini’s theorem)

= c perE

(by (i) above)

= cν(∂*E).

(iii) We have still to identify the constant c. But observe that the argument above applies whenever
ν(∂*E) is finite, and in particular applies to E = B(0, 1). In this case, ∂*B(0, 1) = Sr−1, and for any
v ∈ Sr−1, u ∈ Vv we have

#(∂*B(0, 1) ∩ T−1[{u}]) = 2 if ‖u‖ < 1,

= 1 if ‖u‖ = 1,

= 0 if ‖u‖ > 1.

Since we can identify ν on Vv as a copy of Lebesgue measure µr−1,∫
Vv

#(∂*B(0, 1) ∩ T−1[{u}])ν(du) = 2ν{u : u ∈ Vv, ‖u‖ < 1} = 2βr−1.

This is true for every v ∈ Vu, so from (ii) we get

2βr−1νSr−1 =
∫
Sr−1

∫
Vv

#(∂*E ∩ T−1
v [{u}])ν(du)ν(dv) = cνSr−1,

and c = 2βr−1. Substituting this into the result of (ii), we get

perE = ν(∂*E) =
1

2βr−1

∫
Sr−1

∫
Vv

#(∂*E ∩ T−1
v [{u}])ν(du)ν(dv).

(iv) Before continuing with the main argument, it will help to set out another elementary fact, this
time about translates of certain simple subsets of R. Suppose that (G,H,D) is a partition of R such that
G and H are open, D = ∂G = ∂H is the common boundary of G and H, and D is locally finite, that is,
D ∩ [−n, n] is finite for every n ∈ N. Then

supδ>0
1

δ
µ1(G△(G+ δ)) = limδ↓0

1

δ
µ1(G△(G+ δ)) = #(D)

if you will allow me to identify ‘∞’ with the cardinal ω. PPP If we look at the components of G, these are
intervals with endpoints in D; and because ∂G = ∂H, distinct components of G have disjoint closures. Set
f(δ) = µ1(G△(G+ δ)) for δ > 0. If D is infinite, then for any n ∈ N we have disjoint bounded components
I0, . . . , In of G; for any δ small enough, G ∩ (Ij + δ) ⊆ Ij for every j ≤ n (because D is locally finite); so
that

f(δ) ≥ ∑n
j=0 µ(Ij△(Ij + δ)) = 2(n+ 1)δ,

and lim infδ↓0
1

δ
f(δ) ≥ 2(n+ 1). As n is arbitrary,

supδ>0
1

δ
f(δ) = limδ↓0

1

δ
f(δ) = ∞.

If D is empty, then G is either empty or R, and

supδ>0
1

δ
f(δ) = limδ↓0

1

δ
f(δ) = 0.
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If D is finite and not empty, let I0, . . . , In be the components of G. Then, for all small δ > 0, we have

f(δ) =
∑n
j=0 µ(Ij△(Ij + δ)) = 2(n+ 1)δ = δ#(D),

so again

supδ>0
1

δ
f(δ) = limδ↓0

1

δ
f(δ) = #(D). QQQ

(v) Returning to the proof in hand, we find that if v ∈ Sr−1 is such that
∫
Vv

#(∂*E ∩ T−1
v [{u}])ν(du)

is finite, then the integral is equal to

limδ↓0
1

δ
µ(E△(E + δv)) = supδ>0

1

δ
µ(E△(E + δv)).

PPP It is enough to consider the case in which v is the unit vector (0, . . . , 0, 1), so that we can identify Vv
with Rr−1 and Rr with Rr−1 ×R, as in 475J; in this case, E ∩ T−1

v [{u}] turns into E[{u}]. Let Z2 ⊆ Rr−1

and Gu, Hu and Du, for u ∈ Rr−1, be as in 475Jc. In this case, for any δ > 0,

µ(E△(E + δv)) = µ(int*E△(int*E + δv))

=

∫

Rr−1

µ1((int*E△(int*E + δv))[{u}])µr−1(du)

=

∫

Rr−1

µ1(Gu△(Gu + δ))µr−1(du)

=

∫

Z2

µ1(Gu△(Gu + δ))µr−1(du)

because Z2 is conegligible. By (iv),

limδ↓0
1

δ
µ1(Gu△(Gu + δ)) = supδ>0

1

δ
µ1(Gu△(Gu + δ)) = #(Du)

for any u ∈ Z2. Applying Lebesgue’s Dominated Convergence Theorem to arbitrary sequences 〈δn〉n∈N ↓ 0,
we see that

limδ↓0
1

δ
µ(E△(E + δv)) =

∫
Z2

#(Du)ν(du) =
∫
Rr−1

#(∂*E ∩ T−1
v [{u}])ν(du),

as required. To see that

limδ↓0
1

δ
µ(E△(E + δv)) = supδ>0

1

δ
µ(E△(E + δv)),

set g(δ) = µ(E△(E + δv)) for δ > 0. Then for δ, δ′ > 0 we have

g(δ + δ′) = µ(E△(E + (δ + δ′)v)) ≤ µ(E△(E + δv)) + µ((E + δv)△(E + (δ + δ′v)))

= g(δ) + µ(δv + (E△(E + δ′v))) = g(δ) + g(δ′).

Consequently g(δ) ≤ ng( 1
nδ) whenever δ > 0 and n ≥ 1, so

1

δ
g(δ) ≤ lim infn→∞

n

δ
g( 1
nδ) = limδ′↓0

1

δ′
g(δ′)

for every δ > 0. QQQ

(vi) Putting (v) together with (i)-(iii) above,

perE =
1

2βr−1

∫
Sr−1

limδ↓0
1

δ
µ(E△(E + δv))ν(dv).

To see that we can exchange the limit and the integral, observe that we can again use the dominated
convergence theorem, because

∫
Sr−1

supδ>0
1

δ
µ(E△(E + δv)) = 2βr−1 perE

is finite. So
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perE = limδ↓0
1

2βr−1δ

∫
Sr−1

µ(E△(E + δv))ν(dv).

(b)(i) γ ≤ perE. PPP We can suppose that E has finite perimeter.

(ααα) To begin with, suppose that x = (0, . . . , 0, δ) where δ > 0. As in part (a-v) of this proof, set
v = (0, . . . , 0, 1), identify Rr with Rr−1 × R, and define Gu, Du ⊆ R, for u ∈ Rr−1, and Z2 ⊆ Rr−1 as
in 475Jc. Suppose that u ∈ Z2. Then Gu = (int*E)[{u}] is an open set and its constituent intervals have
endpoints in Du = (∂*E)[{u}]. It follows that for any t in

Gu△(Gu + δ) = (int*E△(int*E + δv))[{u}],

there must be an s ∈ Du ∩ [t− δ, δ], and t ∈ Du + [0, δ]. Accordingly

(int*E△(int*E + δv)) ∩ (Z2 × R) ⊆ ∂*E + [0, δv],

writing [0, δv] for {tv : t ∈ [0, δ]}. So

µ(E△(E + δv)) = µ(int*E△(int*E + δv)) ≤ µ∗(∂*E + [0, δv]).

Take any ǫ > 0. We have a sequence 〈An〉n∈N of sets, all of diameter at most ǫ, covering ∂*E, and
such that 2−r+1βr−1

∑∞
n=0(diamAn)r−1 ≤ ǫ + ν(∂*E); we can suppose that every An is closed. Taking

T : Rr → Rr−1 to be the natural projection, T [An] is compact and has diameter at most diamAn, so that
µr−1T [An] ≤ 2−r+1βr−1(diamAn)r−1 (264H again). For each n ∈ N, the vertical sections of An + [0, δv]
have diameter at most ǫ+ δ. So

µ(An + [0, δv]) ≤ 2−r+1βr−1(diamAn)r−1(ǫ+ δ).

Consequently,

µ(E△(E + δv)) ≤ µ∗(∂*E + [0, δv]) ≤
∞∑

n=0

µ(An + [0, δv])

≤
∞∑

n=0

2−r+1βr−1(diamAn)r−1(ǫ+ δ) ≤ (ǫ+ δ)(ǫ+ ν(∂*E)).

As ǫ is arbitrary,

µ(E△(E + x)) = µ(E△(E + δv)) ≤ δν(∂*E) = ‖x‖ν(∂*E).

(βββ) Of course the same must be true for all other non-zero x ∈ Rr, so γ ≤ ν(∂*E) = perE. QQQ

(ii) For the other inequality, we need look only at the case in which γ is finite.

(ααα) In this case, E has finite perimeter. PPP Let φ : Rr → B(0, 1) be a Lipschitz function with
compact support. Take i such that 1 ≤ i ≤ r, and consider

∣∣
∫

E

∂φi

∂ξi
dµ

∣∣ =
∣∣
∫

E

lim
n→∞

2n(φi(x+ 2−nei) − φi(x))µ(dx)
∣∣

(where φ = (φ1, . . . , φr))

=
∣∣ lim
n→∞

∫

E

2n(φi(x+ 2−nei) − φi(x))µ(dx)
∣∣

(by Lebesgue’s Dominated Convergence Theorem, because φi is Lipschitz and has bounded support)

= lim
n→∞

2n
∣∣
∫

E

(φi(x+ 2−nei) − φi(x))µ(dx)
∣∣

= lim
n→∞

2n
∣∣
∫

E+2−nei

φidµ−
∫

E

φidµ
∣∣

≤ lim sup
n→∞

2nµ((E + 2−nei)△E)

(because ‖φi‖∞ ≤ 1)
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≤ γ.

Summing over i, |
∫
E

divφ dµ| ≤ rγ. As φ is arbitrary, perE ≤ rγ is finite. QQQ

(βββ) By (a), we have

perE = lim
δ↓0

1

2βr−1δ

∫

Sr−1

µ(E△(E + δv))ν(dv)

≤ 1

2βr−1

γνSr−1 =
rβrγ

2βr−1

,

as required.

475R Convex sets in Rr For the next result it will help to have some elementary facts about convex
sets in finite-dimensional spaces out in the open.

Lemma (In this lemma I allow r = 1.) Let C ⊆ Rr be a convex set.
(a) If x ∈ C and y ∈ intC, then ty + (1 − t)x ∈ intC for every t ∈ ]0, 1].

(b) C and intC are convex.

(c) If intC 6= ∅ then C = intC.
(d) If intC = ∅ then C lies within some hyperplane.

(e) intC = intC.

proof (a) Setting φ(z) = x+ t(z − x) for z ∈ Rr, φ : Rr → Rr is a homeomorphism and φ[C] ⊆ C, so

φ(y) ∈ φ[intC] = intφ[C] ⊆ intC.

(b) It follows at once from (a) that intC is convex; C is convex because (x, y) 7→ tx+(1−t)y is continuous
for every t ∈ [0, 1].

(c) From (a) we see also that if intC 6= ∅ then C ⊆ intC, so that C ⊆ intC and C = intC.

(d) It is enough to consider the case in which 0 ∈ C, since if C = ∅ the result is trivial. ??? If x1, . . . , xr
are linearly independent elements of C, set x = 1

r+1

∑r
i=1 xi; then

x+
∑r
i=1 αixi =

∑r
i=1(αi +

1

r+1
)xi ∈ C

whenever
∑r
i=1 |αi| ≤

1

r+1
. Also, writing e1, . . . , er for the standard orthonormal basis of Rr, we can express

ei as
∑r
j=1 αijxj for each j; setting M = (r + 1) maxi≤r

∑r
j=1 |αij |, we have x ± 1

M
ei ∈ C for every i ≤ r,

so that x+ y ∈ C whenever ‖y‖ ≤ 1

M
√
r
, and x ∈ intC. XXX

So the linear subspace of Rr spanned by C has dimension at most r − 1.

(e) If intC = Rr the result is trivial. If intC is empty, then (d) shows that C is included in a hyperplane,
so that intC is empty. Otherwise, if x ∈ Rr \ intC, there is a non-zero e ∈ Rr such that e .y ≤ e .x for every
y ∈ intC (4A4Db, or otherwise). Now, by (c), e .y ≤ e .x for every y ∈ C, so x /∈ intC. This shows that
intC ⊆ intC, so that the two are equal.

475S Corollary: Cauchy’s Perimeter Theorem Let C ⊆ Rr be a bounded convex set with non-
empty interior. For v ∈ Sr−1 write Vv for {x : x .v = 0}, and let Tv : Rr → Vv be the orthogonal projection.
Then

ν(∂C) =
1

βr−1

∫
Sr−1

ν(Tv[C])ν(dv).

proof (a) The first thing to note is that ∂*C = ∂C. PPP Of course ∂*C ⊆ ∂C (475Ca). If x ∈ ∂C, there is
a half-space V containing x and disjoint from intC (4A4Db again, because intC is convex), so that
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lim supδ↓0
µ(B(x,δ)\C)

µB(x,δ)
≥ lim supδ↓0

µ(B(x,δ)\intV )

µB(x,δ)
=

1

2
,

and x /∈ int*C. On the other hand, if x0 ∈ intC and η > 0 are such that B(x0, η) ⊆ intC, then for any

δ ∈ ]0, 1] we can set t =
δ

η+‖x0−x‖ , and then

B(x+ t(x0 − x), tη) ⊆ B(x, δ) ∩ ((1 − t)x+ tB(x0, η)) ⊆ B(x, δ) ∩ C,

so that

µ(B(x, δ) ∩ C) ≥ βrt
rηr =

( η

‖x0−x‖+η

)r
µB(x, δ);

as δ is arbitrary, x ∈ cl*C. This shows that ∂C ⊆ ∂*C so that ∂*C = ∂C. QQQ

(b) We have a function φ : Rr → C defined by taking φ(x) to be the unique point of C closest to x, for
every x ∈ Rr (3A5Md). This function is 1-Lipschitz. PPP Take any x, y ∈ Rr and set e = φ(x) − φ(y). We
know that φ(x)−ǫe ∈ C, so that ‖x−φ(x)−ǫe‖ ≥ ‖x+φ(x)‖, for 0 ≤ ǫ ≤ 1; it follows that (x−φ(x)) .e ≥ 0.
Similarly, (y − φ(y)) .(−e) ≥ 0. Accordingly (x− y) .e ≥ e .e and ‖x− y‖ ≥ ‖e‖. As x and y are arbitrary,
φ is 1-Lipschitz. QQQ

Now suppose that C ′ ⊇ C is a closed bounded convex set. Then ν(∂C ′) ≥ ν(∂C). PPP Let φ be the function
defined just above. By 264G/471J again, ν∗(φ[∂C ′]) ≤ ν(∂C ′). But if x ∈ ∂C, there is an e ∈ Rr \ {0} such
that x .e ≥ y .e for every y ∈ C. Then φ(x + αe) = x for every α ≥ 0. Because C ′ is closed and bounded,
and x ∈ C ⊆ C ′, there is a greatest α ≥ 0 such that x + αe ∈ C ′, and in this case x + αe ∈ ∂C ′; since
φ(x+ αe) = x, x ∈ φ[∂C ′]. As x is arbitrary, ∂C ⊆ φ[∂C ′], and

ν(∂C) ≤ ν∗(φ[∂C ′]) ≤ ν(∂C ′). QQQ

Since we can certainly find a closed convex set C ′ ⊇ C such that ν(∂C ′) is finite (e.g., any sufficiently
large ball or cube), ν(∂C) <∞. It follows at once that µ(∂C) = 0 (471L once more).

(c) The argument so far applies, of course, to every r ≥ 1 and every bounded convex set with non-empty
interior in Rr. Moving to the intended case r ≥ 2, and fixing v ∈ Sr−1 for the moment, we see that, because
Tv is an open map (if we give Vv its subspace topology), Tv[C] is again a bounded convex set with non-empty
(relative) interior. Since the subspace measure induced by ν on Vv is just a copy of Lebesgue measure, (b)
tells us that νTv[C] = ν(intVv

Tv[C]), where here I write intVv
Tv[C] for the interior of Tv[C] in the subspace

topology of Vv. Now the point is that intVv
Tv[C] ⊆ Tv[intC]. PPP intC (taken in Rr) is dense in C (475Rc),

so W = Tv[intC] is a relatively open convex set which is dense in Tv[C]; now W = intVv
W (475Re, applied

in Vv ∼= Rr−1), so W ⊇ intVv
Tv[C]. QQQ

It follows that #(∂C ∩ T−1
v [{u}]) = 2 for every u ∈ intVv

Tv[C]. PPP T−1
v [{u}] is a straight line meeting

intC in y0 say. Because C is a bounded convex set, it meets T−1
v [{u}] in a bounded convex set, which must

be a non-trivial closed line segment with endpoints y1, y2 say. Now certainly neither y1 nor y2 can be in the
interior of C. Moreover, the open line segments between y1 and y0, and between y2 and y0, are covered by
intC, by 475Ra; so T−1

v [{u}] ∩ ∂C = {y1, y2} has just two members. QQQ

(d) This is true for every v ∈ Sr−1. But this means that we can apply 475Q to see that

ν(∂C) = ν(∂*C) =
1

2βr−1

∫

Sr−1

∫

Vv

#(∂*C ∩ T−1
v [{u}])ν(du)ν(dv)

=
1

2βr−1

∫

Sr−1

∫

Tv [C]

#(∂*C ∩ T−1
v [{u}])ν(du)ν(dv)

=
1

2βr−1

∫

Sr−1

∫

intVvTv [C]

#(∂*C ∩ T−1
v [{u}])ν(du)ν(dv)

=
1

βr−1

∫

Sr−1

ν(int
Vv

Tv[C])ν(dv) =
1

βr−1

∫

Sr−1

ν(Tv[C])ν(dv),

as required.

475T Corollary: the Convex Isoperimetric Theorem If C ⊆ Rr is a bounded convex set, then
ν(∂C) ≤ rβr(

1
2 diamC)r−1.
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proof (a) If C is included in some (r − 1)-dimensional affine subspace, then

ν(∂C) = νC ≤ βr−1(
1

2
diamC)r−1

by 264H once more. For completeness, I should check that βr−1 ≤ rβr. PPP Comparing 265F with 265H, or
working from the formulae in 252Q, we have rβr = 2πβr−2. On the other hand, by the argument of 252Q,

βr−1 = βr−2

∫ π/2
−π/2 cosr−1 t dt ≤ πβr−2,

so (not coincidentally) we have a factor of two to spare. QQQ

(b) Otherwise, C has non-empty interior (475Rd), and for any orthogonal projection T of Rr onto an

(r − 1)-dimensional linear subspace, diamT [C] ≤ diamC, so ν(T [C]) ≤ βr−1(
1

2
diamC)r−1. Now 475S tells

us that

ν(∂C) ≤ (
1

2
diamC)r−1νSr−1 = rβr(

1

2
diamC)r−1.

Remark Compare 476H below.

475X Basic exercises (a) Show that if C ⊆ Rr is convex, then either µC = 0 and ∂*C = ∅, or
∂*C = ∂C.

(b) Let A, A′ ⊆ Rr be any sets. Show that

(∂*A ∩ int*A′) ∪ (∂*A′ ∩ int*A) ⊆ ∂*(A ∩A′) ⊆ (∂*A ∩ cl*A′) ∪ (∂*A′ ∩ cl*A).

(c) Let A ⊆ Rr be any set, and B a non-trivial closed ball. Show that

∂*(A ∩B)△((B ∩ ∂*A) ∪ (A ∩ ∂B)) ⊆ A ∩ ∂B \ ∂*A.

>>>(d) Let E, F ⊆ Rr be measurable sets, and v the Federer exterior normal to E at x ∈ int*F . Show
that v is the Federer exterior normal to E ∩ F at x.

(e) Let T be the density topology on Rr (414P) defined from lower Lebesgue density (341E). Show that,
for any A ⊆ Rr, A ∪ cl*A is the T-closure of A and int*A is the T-interior of the T-closure of A.

(f) Let A ⊆ Rr be any set. Show that A \ cl*A and int*A \A are Lebesgue negligible.

>>>(g) Let E ⊆ Rr be such that ν(∂*E) and µE are both finite. Show that, taking vx to be the Federer
exterior normal to E at any point x where this is defined,∫

E
divφ dµ =

∫
∂*E

φ(x) .vx ν(dx)

for every bounded Lipschitz function φ : Rr → Rr.

>>>(h) Let 〈En〉n∈N be a sequence of measurable subsets of Rr such that (i) there is a measurable set E
such that limn→∞ µ((En△E) ∩ B(0,m)) = 0 for every m ∈ N (ii) supn∈N ν(∂*En ∩ B(0,m)) is finite for
every m ∈ N. Show that E has locally finite perimeter. (Hint :

∫
E

divφ dµ = limn→∞
∫
En

divφ dµ for every

Lipschitz function φ with compact support.)

(i) Give an example of bounded convex sets E and F such that ∂$(E ∪ F ) 6⊆ ∂$E ∪ ∂$F .

(j)(i) Show that if A, B ⊆ Rr then ∂*(A∩B)∩ ∂*(A∪B) ⊆ ∂*A∩ ∂*B. (ii) Show that if E, F ⊆ R are
Lebesgue measurable, then per(E ∩ F ) + per(E ∪ F ) ≤ perE + perF .

>>>(k) Let E ⊆ Rr be a set with finite Lebesgue measure and finite perimeter. (i) Show that if H ⊆ Rr

is a half-space, then per(E ∩ H) ≤ perE. (Hint : 475Ja.) (ii) Show that if C ⊆ Rr is convex, then
per(E ∩C) ≤ perE. (Hint : by the Hahn-Banach theorem, C is a limit of polytopes; use 474Ta.) (iii) Show
that in 475Mc we have perE = limα→∞ per(E ∩B(0, α)).
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(l) Let E ⊆ Rr be a set with finite measure and finite perimeter, and f : Rr → R a Lipschitz function.
Show that for any unit vector v ∈ Rr, |

∫
E
v . grad f dµ| ≤ ‖f‖∞ perE.

(m) For measurable E ⊆ Rr set p(E) = supx∈Rr\{0}
1

‖x‖µ(E△(E+x)). (i) Show that for any measurable

E, p(E) = lim supx→0

1

‖x‖µ(E△(E + x)). (ii) Show that for every ǫ > 0 there is an E ⊆ Rr such that

perE = 1 and p(E) ≥ 1 − ǫ. (iii) Show that if E ⊆ Rr is a non-trivial ball then perE =
rβr

2βr−1

p(E). (iv)

Show that if E ⊆ Rr is a cube then perE =
√
rp(E). (Hint : 475Yf.)

(n) Suppose that E ⊆ Rr is a bounded set with finite perimeter, and φ, ψ : Rr → R two differentiable
functions such that gradφ and gradψ are Lipschitz. Show that∫

E
φ×∇2ψ − ψ ×∇2φ dµ =

∫
∂*E

(φ× gradψ − ψ × gradφ) .vx ν(dx)

where vx is the Federer exterior normal to E at x when this is defined. (This is Green’s second identity.)

475Y Further exercises (a) Show that if A ⊆ Rr is Lebesgue negligible, then there is a Borel set
E ⊆ Rr such that A ⊆ ∂*E.

(b) Let (X, ρ) be a metric space and µ a strictly positive locally finite topological measure on X. Show
that we can define operations cl*, int* and ∂* on PX for which parts (a)-(f) of 475C will be true.

(c) Let B be a ball in Rr with centre y, and v, v′ two unit vectors in Rr. Set

H = {x : x ∈ Rr, (x− y) .v ≤ 0}, H ′ = {x : x ∈ Rr, (x− y) .v′ ≤ 0}.

Show that µ((H△H ′) ∩B) =
1

π
arccos(v .v′)µB.

(d) Show that µ is inner regular with respect to the family of compact sets K ⊆ Rr such that

lim supδ↓0
µ(B(x,δ)∩K)

µB(x,δ)
≥ 1

2
for every x ∈ K.

(e) Let 〈fn〉n∈N be a sequence of functions from Rr to R which is uniformly bounded and uniformly
Lipschitz in the sense that there is some γ ≥ 0 such that every fn is γ-Lipschitz. Suppose that f =
limn→∞ fn is defined everywhere in Rr. (i) Show that if E ⊆ Rr has finite measure, then

∫
E
z . grad fdµ =

limn→∞
∫
E
z . grad fndµ for every z ∈ Rr. (Hint : look at E of finite perimeter first.) (ii) Show that for any

convex function φ : Rr → [0,∞[,
∫
φ(grad f)dµ ≤ lim infn→∞

∫
φ(grad fn)dµ.

(f) Let E ⊆ Rr be a set with locally finite perimeter. Show that

supx∈Rr\{0}
1

‖x‖µ(E△(E + x)) = sup‖v‖=1

∫
∂*E

|v .vx|ν(dx),

where vx is the Federer exterior normal of E at x when this is defined.

(g) Let E ⊆ Rr be Lebesgue measurable. (i) Show that int*E is an Fσδ (= ΠΠΠ0
3) set, that is, is expressible

as the intersection of a sequence of Fσ sets. (ii)(cf. Andretta & Camerlo 13) Show that if E is not
negligible and cl*E has empty interior, then int*E is not Gδσ (= ΣΣΣ0

3), that is, cannot be expressed as the
union of sequence of Gδ sets.

475 Notes and comments The successful identification of the distributionally-defined notion of ‘perime-
ter’, as described in §474, with the geometrically accessible concept of Hausdorff measure of an appropriate
boundary, is of course the key to any proper understanding of the results of the last section as well as this
one. The very word ‘perimeter’ would be unfair if the perimeter of E ∪ F were unrelated to the perimeters
of E and F ; and from this point of view the reduced boundary is less suitable than the essential bound-
ary (475Cd, 475Xi). If we re-examine 474M, we see that it is saying, in effect, that for many balls B the
boundary ∂*(E ∩ B) is nearly (B ∩ ∂*E) ∪ (E ∩ ∂B), and that an outward-normal function for E ∩ B can
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be assembled from outward-normal functions for E and B. But looking at 475Xc-475Xd we see that this is
entirely natural; we need only ensure that ν(F ∩ ∂B) = 0 for a µ-negligible set F defined from E; and the
‘almost every δ’ in the statement of 474M is fully enough to arrange this. On the other hand, 475Xg seems
to be very hard to prove without using the identification between ν(∂*E) and perE.

Concerning 475Q, I ought to emphasize that it is not generally true that

νF =
1

2βr−1

∫
Sr−1

∫
Vv

#(F ∩ T−1
v [{u}])ν(du)ν(dv)

even for r = 2 and compact sets F with νF < ∞. We are here approaching one of the many fundamental
concepts of geometric measure theory which I am ignoring. The key word is ‘rectifiability’; for ‘rectifiable’
sets a wide variety of concepts of k-dimensional measure coincide, including the integral-geometric form
above, and ∂*E is rectifiable whenever E has locally finite perimeter (Evans & Gariepy 92, 5.7.3). For
the general theory of rectifiable sets, see the last quarter of Mattila 95, or Chapter 3 of Federer 69.

I have already noted that the largest volumes for sets of given diameter or perimeter are provided by
balls (see 264H and the notes to §474). The isoperimetric theorem for convex sets (475T) is of the same
form: once again, the best constant (here, the largest perimeter for a convex set of given diameter, or the
smallest diameter for a convex set of given perimeter) is provided by balls.

475Qb gives an alternative characterization of ‘set of finite perimeter’, with bounds on the perimeter
which are sometimes useful.

Version of 29.7.21

476 Concentration of measure

Among the myriad special properties of Lebesgue measure, a particularly interesting one is ‘concentration
of measure’. For a set of given measure in the plane, it is natural to feel that it is most ‘concentrated’ if it is
a disk. There are many ways of defining ‘concentration’, and I examine three of them in this section (476F,
476G and 476H); all lead us to Euclidean balls as the ‘most concentrated’ shapes. On the sphere the same
criteria lead us to caps (476K, 476Xe).

All the main theorems of this section will be based on the fact that semi-continuous functions on compact
spaces attain their bounds. The compact spaces in question will be spaces of subsets, and I begin with
some general facts concerning the topologies introduced in 4A2T (476A-476B). The particular geometric
properties of Euclidean space which make all these results possible are described in 476D-476E, where I
describe concentrating operators based on reflections. The actual theorems 476F-476H and 476K can now
almost be mass-produced.

476A Proposition Let X be a topological space, C the family of closed subsets of X, K ⊆ C the family
of closed compact sets and µ a topological measure on X.

(a)(i) If µ is outer regular with respect to the open sets then µ↾C : C → [0,∞[ is upper semi-continuous
with respect to the Vietoris topology on C.

(ii) If µ is locally finite and inner regular with respect to the closed sets then µ↾K is upper semi-
continuous with respect to the Vietoris topology.

(iii) If µ is inner regular with respect to the closed sets and f is a non-negative µ-integrable real-valued
function then F 7→

∫
F
fdµ : C → R is upper semi-continuous with respect to the Vietoris topology.

(b) Suppose that µ is tight.
(i) If µ is totally finite then µ↾C is upper semi-continuous with respect to the Fell topology on C.
(ii) If f is a non-negative µ-integrable real-valued function then F 7→

∫
F
fdµ : C → R is upper semi-

continuous with respect to the Fell topology.
(c) Suppose that X is metrizable, and that ρ is a metric on X defining its topology; let ρ̃ be the Hausdorff

metric on C \ {∅}.
(i) If µ is totally finite, then µ↾C \ {∅} is upper semi-continuous with respect to ρ̃.
(ii) If µ is locally finite, then µ↾K \ {∅} is upper semi-continuous with respect to ρ̃.

c© 2001 D. H. Fremlin
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(iii) If f is a non-negative µ-integrable real-valued function, then F 7→
∫
F
fdµ : C \ {∅} → R is upper

semi-continuous with respect to ρ̃.

proof (a)(i) Suppose that F ∈ C and that µF < α. Because µ is outer regular with respect to the open
sets, there is an open set G ⊇ F such that µG < α. Now V = {E : E ∈ C, E ⊆ G} is an open set for
the Vietoris topology containing F , and µE < α for every E ∈ V. As F and α are arbitrary, µ↾C is upper
semi-continuous for the Vietoris topology.

(ii) Given that K ∈ K and µK < α, then, because µ is locally finite, there is an open set G of finite
measure including K (cf. 411Ga). Now there is a closed set F ⊆ G \K such that µF > µG − α, so that
V = {L : L ∈ K, L ⊆ G \ F} is a relatively open subset of K for the Vietoris topology containing K, and
µL < α for every L ∈ V.

(iii) Apply (i) to the indefinite-integral measure over µ defined by f ; by 412Q this is still inner regular
with respect to the closed sets.

(b) If F ∈ C and µF < α, let K ⊆ X \F be a compact set such that µK > µX−α. Then V = {E : E ∈ C,
E ∩K = ∅} is a neighbourhood of F and µE < α for every E ∈ V. This proves (i). Now (ii) follows as in
(a-iii) above.

(c)(i) If F ∈ C \ {∅} and µF < α, then for each n ∈ N set Fn = {x : ρ(x, F ) ≤ 2−n}. Since 〈Fn〉n∈N is
a non-increasing sequence of closed sets with intersection F , and µ is totally finite, there is an n such that
µFn < α. If now we take E ∈ C \ {∅} such that ρ̃(E,F ) ≤ 2−n, then E ⊆ Fn so µE < α. As F and α are
arbitrary, µ↾C \ {∅} is upper semi-continuous.

(ii) If K ∈ K \ {∅} and µK < α, let G ⊇ K be an open set of finite measure, as in (a-ii) above. The
function x 7→ ρ(x,X \ G) is continuous and strictly positive on K, so has a non-zero lower bound on K,
and there is some m ∈ N such that ρ(x,X \ G) > 2−m for every x ∈ K. If, as in (i) just above, we set
Fn = {x : ρ(x,K) ≤ 2−n} for each n, Fm ⊆ G has finite measure. So, as in (i), we have an n ≥ m such that
µFn < α, and we can continue as before.

(iii) Once again this follows at once from (i).

476B Lemma Let (X, ρ) be a metric space, and C the family of closed subsets of X, with its Fell
topology. For ǫ > 0, set U(A, ǫ) = {x : x ∈ X, ρ(x,A) < ǫ} if A ⊆ X is not empty; set U(∅, ǫ) = ∅. Then
for any τ -additive topological measure µ on X, the function

(F, ǫ) 7→ µU(F, ǫ) : C × ]0,∞[ → [0,∞]

is lower semi-continuous.

proof Set Q = {(F, ǫ) : F ∈ C, ǫ > 0, µU(F, ǫ) > γ}, where γ ∈ R. Take any (F0, ǫ0) ∈ Q. Note
first that µU(F0, ǫ0) = supǫ<ǫ0 µU(F, ǫ), so there is a δ ∈

]
0, 12ǫ0

[
such that µU(F0, ǫ0 − 2δ) > γ. Next,

{U(x, ǫ0 − 2δ) : x ∈ F0} is an open cover of U(F0, ǫ0 − 2δ); because µ is τ -additive, there is a finite set
I ⊆ F0 such that µ(

⋃
x∈I U(x, ǫ0 − 2δ)) > γ. Consider

V = {F : F ∈ C, F ∩ U(x, δ) 6= ∅ for every x ∈ I}.

By the definition of the Fell topology, V is open. So V × ]ǫ0 − δ,∞[ is an open neighbourhood of (F0, ǫ) in
C × R. If F ∈ V and ǫ > ǫ0 − δ, then

U(F, ǫ) ⊇ ⋃
x∈I U(x, ǫ− δ) ⊇ ⋃

x∈I U(x, ǫ0 − 2δ)

has measure greater than γ and (F, ǫ) ∈ Q. As (F0, ǫ0) is arbitrary, Q is open; as γ is arbitrary, (F, ǫ) 7→
µU(F, ǫ) is lower semi-continuous.

Remark Recall that all ‘ordinary’ topological measures on metric spaces are τ -additive; see 438J.

476C Proposition Let (X, ρ) be a non-empty compact metric space, and suppose that its isometry
group G acts transitively on X. Then X has a unique G-invariant Radon probability measure µ, which is
strictly positive.

proof By 441G, G, with its topology of pointwise convergence, is a compact topological group, and the
action of G on X is continuous. So 443Ud gives the result.
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476D Concentration by partial reflection The following construction will be used repeatedly in the
rest of the section.

(a) Let X be an inner product space. (In this section, X will be usually be Rr, but in 493G below it
will be helpful to be able to speak of abstract Hilbert spaces.) For any unit vector e ∈ X and any α ∈ R,
write R = Reα : X → X for the reflection in the hyperplane V = Veα = {x : x ∈ X, (x|e) = α}, so that
R(x) = x + 2(α − (x|e))e for every x ∈ X. Next, for any A ⊆ X, we can define a set ψ(A) = ψeα(A) by
setting

ψ(A) = {x : x ∈ A, (x|e) ≥ α} ∪ {x : x ∈ A, (x|e) < α, R(x) ∈ A}
∪ {x : x ∈ Rr \A, (x|e) ≥ α, R(x) ∈ A}

= (W ∩ (A ∪R[A])) ∪ (A ∩R[A]),

where W = Weα is the half-space {x : (x|e) ≥ α}. Geometrically, we construct ψ(A) by moving those points
of A on the ‘wrong’ side of the hyperplane V to their reflections, provided those points are not already
occupied. We have the following facts.

(b)(i) If A ⊆ B ⊆ X, ψ(A) ⊆ ψ(B). (ii) For any A ⊆ X, ψ(R[A]) = ψ(A). (iii) If F ⊆ X is closed, then
ψ(F ) is closed. PPP Use the second formula in (a) for ψ(F ). QQQ

(c) We need a fragment of elementary geometry. If x ∈ X \W and y ∈ W then ‖x − R(y)‖ ≤ ‖x − y‖.
PPP Write Y for the linear subspace of X generated by e, Y ⊥ for its orthogonal complement and P for the
orthogonal projection of X onto Y ⊥. Then P (e) = 0, PR(y) = P (y),

(x|e) < α ≤ (y|e), (R(y)|e) = (y|e) + 2(α− (y|e)) = 2α− (y|e),

|(x− y|e)| = |(x|e) − α| + |(y|e) − α| ≥ |(x|e) − 2α+ (y|e)| = |(x−R(y)|e)|,
and

‖x− y‖2 = (x− y|e)2 + ‖P (x− y)‖2
(4A4Jf)

≥ (x−R(y)|e)2 + ‖P (x−R(y))‖2 = ‖x−R(y)‖2. QQQ

(d) For non-empty A ⊆ X and ǫ > 0, set U(A, ǫ) = {x : ρ(x,A) < ǫ}, where ρ is the standard metric on
X. Now U(ψ(A), ǫ) ⊆ ψ(U(A, ǫ)). PPP

(i) If x ∈ U(W ∩ A, ǫ) \W , there is a y ∈ W ∩ A such that ‖x − y‖ < ǫ; by (c), ‖x − R(y)‖ < ǫ so
x ∈ U(R[A], ǫ) = R[U(A, ǫ)] (because R : X → X is an isometry) and

x ∈ U(A, ǫ) ∩R[U(A, ǫ)] ⊆ ψ(U(A, ǫ));

thus U(W ∩A, ǫ) \W ⊆ ψ(U(A, ǫ)); as also

U(W ∩A, ǫ) ∩W ⊆ U(A, ǫ) ∩W ⊆ ψ(U(A, ǫ)),

we have U(W ∩A, ǫ) ⊆ ψ(U(A, ǫ)).

(ii) Now

U(ψ(A), ǫ) = U(A ∩R[A], ǫ) ∪ U(A ∩W, ǫ) ∪ U(R[A] ∩W, ǫ)
⊆ (U(A, ǫ) ∩ U(R[A], ǫ)) ∪ ψ(U(A, ǫ)) ∪ ψ(U(R[A], ǫ))

= (U(A, ǫ) ∩R[U(A, ǫ)]) ∪ ψ(U(A, ǫ)) ∪ ψ(R[U(A, ǫ)])

= (U(A, ǫ) ∩R[U(A, ǫ)]) ∪ ψ(U(A, ǫ))

(using (b-i))

= ψ(U(A, ǫ)). QQQ
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476E Lemma Let X be an inner product space, e ∈ X a unit vector and α ∈ R. Let R = Reα : X → X
be the reflection operator, and ψ = ψeα : PX → PX the associated transformation, as described in 476D.
For x ∈ A ⊆ X, define

φA(x) = x if (x|e) ≥ α,

= x if (x|e) < α and R(x) ∈ A,

= R(x) if (x|e) < α and R(x) /∈ A.

Let ν be a topological measure on X which is R-invariant, that is, ν coincides with the image measure νR−1.
(a) For any A ⊆ X, φA : A → ψ(A) is a bijection. If α < 0, then ‖φA(x)‖ ≤ ‖x‖ for every x ∈ A, with

‖φA(x)‖ < ‖x‖ iff (x|e) < α and R(x) /∈ A.
(b)(i) If E ⊆ X is measured by ν, then ψ(E) is measured by ν, νψ(E) = νE and φE is a measure space

isomorphism for the subspace measures on E and ψ(E) induced by ν.
(ii) For any A ⊆ X, ν∗ψ(A) ≤ ν∗A ≤ 2ν∗ψ(A).

(c) If α < 0 and E ⊆ X is measured by ν, then
∫
E
‖x‖ν(dx) ≥

∫
ψ(E)

‖x‖ν(dx), with equality iff

{x : x ∈ E, (x|e) < α, R(x) /∈ E} is negligible.
(d) Suppose that X is separable. Let λ be the c.l.d. product measure of ν with itself on X×X. If E ⊆ X

is measured by ν, then ∫
E×E ‖x− y‖λ(d(x, y)) ≥

∫
ψ(E)×ψ(E)

‖x− y‖λ(d(x, y)).

(e) Now suppose that X = Rr. Then ν(∂*ψ(A)) ≤ ν(∂*A) for every A ⊆ Rr, where ∂*A is the essential
boundary of A (definition: 475B).

proof (a) That φA : A→ ψ(A) is a bijection is immediate from the definitions of ψ and φA. If α < 0, then
for any x ∈ A either φA(x) = x or (x|e) < α and R(x) /∈ A. In the latter case

‖φA(x)‖2 = ‖R(x)‖2 = ‖x+ 2γe‖2
(where γ = α− (x|e) > 0)

= ‖x‖2 + 4γ(x|e) + 4γ2 = ‖x‖2 + 4γα < ‖x‖2,

so ‖φA(x)‖ < ‖x‖.

(b)(i) If we set

E1 = {x : x ∈ E, (x|e) ≥ α},

E2 = {x : x ∈ E, (x|e) < α, R(x) ∈ E},

E3 = {x : x ∈ E, (x|e) < α, R(x) /∈ E},

E4 = {x : x ∈ Rr \ E, (x|e) > α, R(x) ∈ E},

then E1, E2, E3 and E4 are disjoint and measured by ν, E = E1 ∪ E2 ∪ E3, ψ(E) = E1 ∪ E2 ∪ E4 and
φE↾E3 = R↾E3 is a measure space isomorphism for the subspace measures on E3 and E4.

(ii) There is an E ⊇ A such that ν measures E and ν∗A = νE. Now ψ(A) ⊆ ψ(E), so

ν∗ψ(A) ≤ νψ(E) = νE = ν∗A.

On the other hand, if x ∈ A then at least one of x, R(x) belongs to ψ(A), so A ⊆ ψ(A) ∪R[ψ(A)] and

ν∗A ≤ ν∗ψ(A) + ν∗R[ψ(A)] = 2ν∗ψ(A).

(c) By (a), ∫
E
‖x‖ν(dx) ≥

∫
E
‖φE(x)‖ν(dx) =

∫
ψ(E)

‖x‖ν(dx)

by 235Gc, because φE : E → ψ(E) is inverse-measure-preserving, with equality only when
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{x : ‖x‖ > ‖φE(x)‖} = {x : x ∈ E, (x|e) < α, R(x) /∈ E}
is negligible.

(d) Note first that if Λ is the domain of λ then Λ includes the Borel algebra of X × X (because X
is second-countable, so this is just the σ-algebra generated by products of Borel sets, by 4A3Ga); so that
(x, y) 7→ ‖x− y‖ is Λ-measurable, and the integrals are defined in [0,∞]. Now consider the sets

W1 = {(x, y) : x ∈ E, y ∈ E, R(x) /∈ E, R(y) ∈ E, (x|e) < α, (y|e) < α},

W ′
1 = {(x, y) : x ∈ E, y ∈ E, R(x) /∈ E, R(y) ∈ E, (x|e) < α, (y|e) > α},

W2 = {(x, y) : x ∈ E, y ∈ E, R(x) ∈ E, R(y) /∈ E, (x|e) < α, (y|e) < α},

W ′
2 = {(x, y) : x ∈ E, y ∈ E, R(x) ∈ E, R(y) /∈ E, (x|e) > α, (y|e) < α}.

Then (x, y) 7→ (x,R(y)) : W ′
1 → W1 is a measure space isomorphism for the subspace measures induced on

W1 and W ′
1 by λ, so

∫

W1

‖φE(x) − φE(y)‖λ(d(x, y)) =

∫

W1

‖R(x) − y‖λ(d(x, y))

=

∫

W ′
1

‖R(x) −R(y)‖λ(d(x, y))

=

∫

W ′
1

‖x− y‖λ(d(x, y)).

Similarly,

∫

W ′
1

‖φE(x) − φE(y)‖λ(d(x, y)) =

∫

W ′
1

‖R(x) − y‖λ(d(x, y))

=

∫

W1

‖R(x) −R(y)‖λ(d(x, y))

=

∫

W1

‖x− y‖λ(d(x, y)).

So we get ∫
W1∪W ′

1

‖φE(x) − φE(y)‖λ(d(x, y)) =
∫
W1∪W ′

1

‖x− y‖λ(d(x, y)).

In the same way, (x, y) 7→ (R(x), y) is an isomorphism of the subspace measures on W2 and W ′
2, and we

have ∫
W2∪W ′

2

‖φE(x) − φE(y)‖λ(d(x, y)) =
∫
W2∪W ′

2

‖x− y‖λ(d(x, y)).

On the other hand, for all (x, y) ∈ (E × E) \ (W1 ∪W ′
1 ∪W2 ∪W ′

2), we have ‖φE(x) − φE(y)‖ ≤ ‖x − y‖.
(Either x and y are both left fixed by φE , or both are moved, or one is on the reflecting hyperplane, or one
is moved to the same side of the reflecting hyperplane as the other.) So we get

∫

E×E
‖x− y‖λ(d(x, y)) ≥

∫

E×E
‖φE(x) − φE(y)‖λ(d(x, y))

=

∫

ψ(E)×ψ(E)

‖x− y‖λ(d(x, y))

because (x, y) 7→ (φE(x), φE(y)) is an inverse-measure-preserving transformation for the subspace measures
on E × E and ψ(E) × ψ(E).

(e)(i) Because R is both an isometry and a measure space automorphism for Lebesgue measure µ on
Rr, cl*R[A] = R[cl*A] and int*R[A] = R[int*A], where cl*A and int*A are the essential closure and the
essential interior of A, as in 475B. Recall that cl*A, int*A and ∂*A are all Borel sets (475Cc), so that ∂*A
and ∂*ψ(A) are measured by ν.
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(ii) Suppose that x .e = α. Then x ∈ ∂*ψ(A) iff x ∈ ∂*A. PPP For any δ > 0, it is easy to check that
B(x, δ)∩ψ(A) = ψ(B(x, δ)∩A), while µ∗(B(x, δ)∩A) lies between µ∗ψ(B(x, δ)∩A) and 2µ∗ψ(B(x, δ)∩A)
by (b-ii) above; so

µ∗(B(x, δ) ∩ ψ(A)) ≤ µ∗(B(x, δ) ∩A) ≤ 2µ∗(B(x, δ) ∩ ψ(A))

for every δ > 0 and x ∈ cl*A iff x ∈ cl*ψ(A). If x = R(x) ∈ int*A, then x ∈ int*R[A] so x ∈ int*(A ∩R[A])
(475Cd) and x ∈ int*ψ(A). If x ∈ int*ψ(A) then x ∈ int*(R[ψ(A)] ∩ ψ(A)) ⊆ int*A. QQQ

(iii) If x ∈ ∂*ψ(A) \ ∂*A then R(x) ∈ ∂*A \ ∂*ψ(A). PPP By (ii), x .e 6= α.
case 1 Suppose that x .e > α. Setting δ = x .e−α, we see that U(x, δ)∩ψ(A) = U(x, δ)∩(A∪R[A]),

while U(R(x), δ) ∩ ψ(A) = U(R(x), δ) ∩ A ∩ R[A]. Since x /∈ int*ψ(A), x /∈ int*(A ∪ R[A]) and x /∈ int*A;
since x also does not belong to ∂*A, x /∈ cl*A. However, x ∈ cl*(A ∪ R[A]) = cl*A ∪ cl*R[A] (475Cd), so
x ∈ cl*R[A] and R(x) ∈ cl*A. Next, x /∈ int*R[A], so R(x) /∈ int*A and R(x) ∈ ∂*A. Since x /∈ cl*A,
R(x) /∈ cl*R[A], while R(x) .e < α; so R(x) /∈ cl*ψ(A) and R(x) ∈ ∂*A \ ∂*ψ(A).

case 2 Suppose that x .e < α. This time, set δ = α−x .e, so that U(x, δ)∩ψ(A) = U(x, δ)∩A∩R[A]
and U(R(x), δ)∩ψ(A) = U(R(x), δ)∩ (A∪R[A]). As x ∈ cl*ψ(A), x ∈ cl*(A∩R[A]) and R(x) ∈ cl*A. Also
x ∈ cl*A; as x /∈ ∂*A, x ∈ int*A, R(x) ∈ int*R[A] and R(x) ∈ int*ψ(A), so that R(x) /∈ ∂*ψ(A). Finally,
we know that x ∈ int*A but x /∈ int*(A ∩ R[A]) (because x /∈ int*ψ(A)); it follows that x /∈ int*R[A] so
R(x) /∈ int*A and R(x) ∈ ∂*A \ ∂*ψ(A).

Thus all possibilities are covered and we have the result. QQQ

(iv) What this means is that if we set E = ∂*ψ(A) \ ∂*A then R[E] ⊆ ∂*A \ ∂*ψ(A). So

ν∂*ψ(A) = νE + ν(∂*ψ(A) ∩ ∂*A) = νR[E] + ν(∂*ψ(A) ∩ ∂*A) ≤ ν∂*A,

as required.

476F Theorem Let r ≥ 1 be an integer, and let µ be Lebesgue measure on Rr. For non-empty A ⊆ Rr

and ǫ > 0, write U(A, ǫ) for {x : ρ(x,A) < ǫ}, where ρ is the Euclidean metric on Rr. If µ∗A is finite, then
µU(A, ǫ) ≥ µU(BA, ǫ), where BA is the closed ball with centre 0 and measure µ∗A.

proof (a) To begin with, suppose that A is bounded. Set γ = µ∗A and β = µU(A, ǫ). If γ = 0 then
(because A 6= ∅)

µU(A, ǫ) ≥ µU({0}, ǫ) = µU(BA, ǫ),

and we can stop. So let us suppose henceforth that γ > 0. Let M ≥ 0 be such that A ⊆ B(0,M), and
consider the family

F = {F : F ∈ C, F ⊆ B(0,M), µF ≥ γ, µU(F, ǫ) ≤ β},

where C is the family of closed subsets of Rr with its Fell topology. Because U(A, ǫ) = U(A, ǫ), A ∈ F and
F is non-empty. By the definition of the Fell topology, {F : F ⊆ B(0,M)} is closed; by 476A(b-ii) (applied
to the functional F 7→

∫
F
χB(0,M)dµ) and 476B, F is closed in C, therefore compact, by 4A2T(b-iii). Next,

the function

F 7→
∫
F

max(0,M − ‖x‖)µ(dx) : C → [0,∞[

is upper semi-continuous, by 476A(b-ii) again. It therefore attains its supremum on F at some F0 ∈ F
(4A2Gl). Let F1 ⊆ F0 be a closed self-supporting set of the same measure as F0; then U(F1, ǫ) ⊆ U(F0, ǫ)
and µF1 = µF0, so F1 ∈ F ; also∫

F1
M − ‖x‖µ(dx) =

∫
F0
M − ‖x‖µ(dx) ≥

∫
F
M − ‖x‖µ(dx)

for every F ∈ F .

(b) Now F1 is a ball with centre 0. PPP??? Suppose, if possible, otherwise. Then there are x1 ∈ F1 and

x0 ∈ Rr\F1 such that ‖x0‖ < ‖x1‖. Set e =
1

‖x0−x1‖
(x0−x1), so that e is a unit vector, and α =

1

2
e .(x0+x1);

then

α =
1

2‖x0−x1‖
(x0 − x1) .(x0 + x1) =

1

2‖x0−x1‖
(‖x0‖2 − ‖x1‖2) < 0,
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e .(x0 − x1) > 0, e .x0 > e .x1, e .x0 > α > e .x1.

Define R = Reα : Rr → Rr and ψ = ψeα as in 476D; note that R(x1) = x0. Set F = ψ(F1). Then F is
closed (476Db) and µF = µF1 ≥ µ∗A (476Eb). Also U(F, ǫ) ⊆ ψ(U(F1, ǫ)) (476Dd), so

µU(F, ǫ) ≤ µ(ψ(U(F1, ǫ)) = µU(F1, ǫ) ≤ β

and F ∈ F . It follows that
∫
F
M−‖x‖µ(dx) ≤

∫
F1
M−‖x‖µ(dx); as µF = µF1,

∫
F
‖x‖µ(dx) ≥

∫
F1

‖x‖µ(dx).

By 476Ec, G = {x : x ∈ F1, x .e < α, R(x) /∈ F1} is negligible. But G contains x1 and is relatively open in
F1, and F1 is supposed to be self-supporting; so this is impossible. XXXQQQ

(c) Since µF1 ≥ γ, F1 ⊇ BA, and

µU(BA, ǫ) ≤ µU(F1, ǫ) ≤ β = µU(A, ǫ).

So we have the required result for bounded A. In general, given an unbounded set A of finite measure, let
δ be the radius of BA; then

µU(BA, ǫ) = µB(0, δ + ǫ) = sup
α<δ

µB(0, α+ ǫ)

≤ sup
A′⊆A is bounded

µU(BA′ , ǫ) ≤ sup
A′⊆A is bounded

µU(A′, ǫ) = µU(A, ǫ)

because {U(A′, ǫ) : A′ ⊆ A is bounded} is an upwards-directed family of open sets with union U(A, ǫ), and
µ is τ -additive. So the theorem is true for unbounded A as well.

476G Theorem Let r ≥ 1 be an integer, and let µ be Lebesgue measure on Rr; write λ for the product
measure on Rr × Rr. For any measurable set E ⊆ Rr of finite measure, write BE for the closed ball with
centre 0 and the same measure as E. Then∫

E×E ‖x− y‖λ(d(x, y)) ≥
∫
BE×BE

‖x− y‖λ(d(x, y)).

proof (a) Suppose for the time being (down to the end of (c) below) that E is compact and not empty,
and that ǫ > 0. Let M ≥ 0 be such that ‖x‖ ≤ M for every x ∈ E. For a non-empty set A ⊆ Rr set
U(A, ǫ) = {x : ρ(x,A) < ǫ}, where ρ is Euclidean distance on Rr. Set β =

∫
U(E,ǫ)×U(E,ǫ)

‖x− y‖λ(d(x, y)).

Let F be the family of non-empty closed subsets F of the ball B(0,M) = {x : ‖x‖ ≤ M} such that
µF ≥ µE and

∫
U(F,ǫ)×U(F,ǫ)

‖x− y‖λ(d(x, y)) ≤ β. Then F is compact for the Fell topology on the family

C of closed subsets of Rr. PPP We know from 4A2T(b-iii) that C is compact, and from 476A(b-ii) that
{F :

∫
F
χB(0,M)dµ ≥ µE} is closed; also {F : F ⊆ B(0,M)} is closed. Let σ be the metric on Rr × Rr

defined by setting σ((x, y), (x′, y′)) = max(‖x− x′‖, ‖y − y′‖), and ν the indefinite-integral measure over λ
defined by the function (x, y) 7→ ‖x− y‖. Then

U(F, ǫ) × U(F, ǫ) = {(x, y) : σ((x, y), F × F ) < ǫ} = U(F × F, ǫ;σ)

for F ∈ C and ǫ > 0. Now, writing C2 for the family of closed sets in Rr × Rr with its Fell topology, we
know that

F 7→ F × F : C → C2 is continuous, by 4A2Td,
E 7→ νU(E, ǫ;σ) : C2 → R is lower semi-continuous, by 476B;

so F 7→ ν(U(F, ǫ) × U(F, ǫ)) is lower semi-continuous, and {F :
∫
U(F,ǫ)×U(F,ǫ)

‖x − y‖λ(d(x, y)) ≤ β} is

closed. Putting these together, F is a closed subset of C and is compact. QQQ

(b) Since E ∈ F , F is not empty. By 476A(b-ii), there is an F0 ∈ F such that
∫
F0
M − ‖x‖µ(dx) ≥∫

F
M − ‖x‖µ(dx) for every F ∈ F . Let F1 ⊆ F0 be a closed self-supporting set of the same measure; then

U(F1, ǫ) ⊆ U(F0, ǫ), so
∫
U(F1,ǫ)×U(F1,ǫ)

‖x− y‖λ(d(x, y)) ≤ β and F1 ∈ F ; also
∫
F1
M − ‖x‖µ(dx) =

∫
F0
M − ‖x‖µ(dx) ≥

∫
F
M − ‖x‖µ(dx)

for every F ∈ F .
Now F1 is a ball with centre 0. PPP??? Suppose, if possible, otherwise. Then (just as in the proof of 476F)

there are x1 ∈ F1 and x0 ∈ Rr \ F1 such that ‖x1‖ > ‖x0‖. Once again, set e =
1

‖x0−x1‖
(x0 − x1) and
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α =
1

2
e .(x0 + x1) < 0. Define R = Reα : Rr → Rr and ψ = ψeα as in 476D. Set F = ψ(F1). Then F is

closed and µF = µF1 ≥ µE and U(F, ǫ) ⊆ ψ(U(F1, ǫ)). So

∫

U(F,ǫ)×U(F,ǫ)

‖x− y‖λ(d(x, y)) ≤
∫

ψ(U(F1,ǫ))×ψ(U(F1,ǫ))

‖x− y‖λ(d(x, y))

≤
∫

U(F1,ǫ)×U(F1,ǫ)

‖x− y‖λ(d(x, y))

(476Ed)

≤ β.

This means that F ∈ F . Accordingly
∫
F1
M−‖x‖µ(dx) ≥

∫
F
M−‖x‖µ(dx); since µF = µF1,

∫
F1

‖x‖µ(dx) ≤∫
F
‖x‖µ(dx). By 476Ec, G = {x : x ∈ F1, x .e < α, R(x) /∈ F1} must be negligible. But G contains x1 and

is relatively open in F1, and F1 is supposed to be self-supporting; so this is impossible. XXXQQQ

(c) Since µF1 ≥ µE, F1 ⊇ BE , and

∫

BE×BE

‖x− y‖λ(d(x, y)) ≤
∫

U(F1,ǫ)×U(F1,ǫ)

‖x− y‖λ(d(x, y))

≤ β =

∫

U(E,ǫ)×U(E,ǫ)

‖x− y‖λ(d(x, y)).

At this point, recall that ǫ was arbitrary. Since E is compact,

∫

E×E
‖x− y‖λ(d(x, y)) = inf

ǫ>0

∫

U(E,ǫ)×U(E,ǫ)

‖x− y‖λ(d(x, y))

≥
∫

BE×BE

‖x− y‖λ(d(x, y)).

(d) Thus the result is proved for non-empty compact sets E. In general, given a measurable set E of
finite measure, then if E is negligible the result is trivial; and otherwise, writing δ for the radius of BE ,

∫

BE×BE

‖x− y‖λ(d(x, y)) = sup
α<δ

∫

B(0,α)×B(0,α)

‖x− y‖λ(d(x, y))

≤ sup
K⊆E is compact

∫

BK×BK

‖x− y‖λ(d(x, y))

≤ sup
K⊆E is compact

∫

K×K
‖x− y‖λ(d(x, y))

=

∫

E×E
‖x− y‖λ(d(x, y)),

so the proof is complete.

476H The Isoperimetric Theorem Let r ≥ 1 be an integer, and let µ be Lebesgue measure on Rr. If
E ⊆ Rr is a measurable set of finite measure, then perE ≥ perBE , where BE is the closed ball with centre
0 and the same measure as E, while perE is the perimeter of E as defined in 474D.

proof (a) Suppose to begin with that E ⊆ B(0,M), where M ≥ 0, and that perE < ∞. Let F be the
family of measurable sets F ⊆ Rr such that F \ B(0,M) is negligible, µF ≥ µE and perF ≤ perE, with
the topology of convergence in measure (474T). Then

F = {F : perF ≤ perE, µ(F ∩B(0,M)) ≥ µE,

µ(F ∩B(0, α)) ≤ µ(F ∩B(0,M)) for every α ≥ 0}
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is a closed subset of {F : perF ≤ perE}, which is compact (474Tb), so F is compact. For F ∈ F set
h(F ) =

∫
F
‖x‖µ(dx); then |h(F ) − h(F ′)| ≤ Mµ((F△F ′) ∩ B(0,M)) for all F , F ′ ∈ F , so h is continuous.

There is therefore an F0 ∈ F such that h(F0) ≤ h(F ) for every F ∈ F . Set F1 = cl*F0, so that F1△F0 is
negligible (475Cg), perF1 = perF0 (474F), F1 ∈ F , F1 ⊆ B(0,M) and h(F1) = h(F0).

(b) Writing δ = supx∈F1
‖x‖, we have U(0, δ) ⊆ F1. PPP??? Otherwise, there are x0 ∈ Rr \ F1 and x1 ∈ F1

such that ‖x0‖ < ‖x1‖. Set e =
1

‖x0−x1‖
(x0 − x1), α =

1

2
e .(x0 + x1) < 0, R = Reα : Rr → Rr and ψ = ψeα.

As before, e .x1 < α < e .x0, and R(x0) = x1 so R[B(x0, η)] = B(x1, η) for every η > 0. Set F = ψ(F1) and
let φ = φF1

: F1 → F be the function described in 476E. Then ‖φ(x)‖ ≤ ‖x‖ for every x ∈ F1 (476Ea). In
particular, F = φ[F1] ⊆ B(0,M). Now F is measurable and µF = µF1 ≥ µE, by 476Eb. Also, writing ν
for normalized (r − 1)-dimensional Hausdorff measure on Rr,

perF = ν(∂*F ) ≤ ν(∂*F1) = perF1 ≤ perE,

by 475Mb and 476Ee. So F ∈ F , and∫
F
‖x‖µ(dx) ≥

∫
F0

‖x‖µ(dx) =
∫
F1

‖x‖µ(dx).

By 476Ec, G = {x : x ∈ F1, x .e < α, R(x) /∈ F1} is negligible. But now consider G ∩ U(x1, η) for small
η > 0. Since x1 belongs to F1 = cl*F0 = cl*F1, but x0 does not,

lim supη↓0
µ(F1∩B(x1,η))

µB(x1,η)
> 0 = lim supη↓0

µ(F1∩B(x0,η))

µB(x0,η)
.

There must therefore be some η > 0 such that η < 1
2‖x1−x0‖ and µ(F1∩B(x0, η)) < µ(F1∩B(x1, η)). In this

case, however, G ⊇ F1∩B(x1, η)\R[F1∩B(x0, η)] has measure at least µ(F1∩B(x1, η))−µ(F1∩B(x0, η)) > 0,
which is impossible. XXXQQQ

(c) Thus U(0, δ) ⊆ F1 ⊆ B(0, δ) and perF1 = perB(0, δ). Since µF1 ≥ µE, the radius of BE is at most
δ and

perBE ≤ perB(0, δ) = perF1 ≤ perE.

(d) Thus the result is proved when E is bounded and has finite perimeter. Of course it is trivial
when E has infinite perimeter. Now suppose that E is any measurable set with finite measure and finite
perimeter. Set Eα = E ∩ B(0, α) for α ≥ 0; then perE = lim infα→∞ perEα (475Mc, 475Xk). By (a)-(c),
perEα ≥ perBEα

for every α ≥ 0; since perBEα
→ perBE as α→ ∞, perE ≥ perBE in this case also.

476I Spheres in inner product spaces For the rest of the section I will use the following notation.
Let X be a (real) inner product space. Then SX will be the unit sphere {x : x ∈ X, ‖x‖ = 1}. Let HX be
the isometry group of SX with its topology of pointwise convergence (441G).

A cap in SX will be a set of the form {x : x ∈ SX , (x|e) ≥ α} where e ∈ SX and −1 ≤ α ≤ 1.
When X is finite-dimensional, it is isomorphic, as inner product space, to Rr, where r = dimX (4A4Je).

If r ≥ 1, SX is non-empty and compact, so has a unique HX -invariant Radon probability measure νX , which
is strictly positive (476C). If r ≥ 1 is an integer, we know that the (r − 1)-dimensional Hausdorff measure
of the sphere SRr is finite and non-zero (265F). Since Hausdorff measures are invariant under isometries
(471J), and are quasi-Radon measures when totally finite (471Dh), (r − 1)-dimensional Hausdorff measure
on SRr is a multiple of the normalized invariant measure νRr , by 476C. The same is therefore true in any
r-dimensional inner product space.

476J Lemma Let X be a real inner product space and f ∈ HX . Then (f(x)|f(y)) = (x|y) for all x,
y ∈ SX . Consequently f(αx + βy) = αf(x) + βf(y) whenever x, y ∈ SX and α, β ∈ R are such that
αx+ βy ∈ SX .

proof (a) We have

ρ(x, y)2 = (x− y|x− y) = (x|x) − 2(x|y) + (y|y) = 2 − 2(x|y),

so
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(x|y) = 1 − 1

2
ρ(x, y)2 = 1 − 1

2
ρ(f(x), f(y))2 = (f(x)|f(y)).

(b)

‖f(αx+ βy) − αf(x) − βf(y)‖2

= (f(αx+ βy) − αf(x) − βf(y)|f(αx+ βy) − αf(x) − βf(y))

= 1 + α2 + β2 − 2α(f(αx+ βy)|f(x))

− 2β(f(αx+ βy)|f(y)) + 2αβ(f(x)|f(y))

= 1 + α2 + β2 − 2α(αx+ βy|x) − 2β(αx+ βy|y) + 2αβ(x|y)

= ‖(αx+ βy) − αx− βy‖2 = 0.

476K I give a theorem on concentration of measure on the sphere corresponding to 476F.

Theorem Let X be a finite-dimensional inner product space of dimension at least 2, SX its unit sphere
and νX the invariant Radon probability measure on SX . For a non-empty set A ⊆ SX and ǫ > 0, write
U(A, ǫ) = {x : ρ(x,A) < ǫ}, where ρ is the usual metric of X. Then there is a cap C ⊆ SX such that
νXC = ν∗XA, and νX(SX ∩ U(A, ǫ)) ≥ νX(SX ∩ U(C, ǫ)) for any such C and every ǫ > 0.

proof In order to apply the results of 476D-476E directly, and simplify some of the formulae slightly, it
will be helpful to write ν for the Radon measure on X defined by setting νE = νX(E ∩ SX) whenever this
is defined. By 214Cd, ν∗ agrees with ν∗X on PSX .

(a) The first step is to check that there is a cap C of SX such that νC = ν∗A. PPP Take any e0 ∈ SX ,
and set Cα = {x : x ∈ SX , (x|e0) ≥ α} for α ∈ [−1, 1]. νCα is defined for every α ∈ R because every Cα
is closed and ν is a topological measure. Now examine the formulae of 265F. We can identify X with Rr+1

where r + 1 = dimX; do this in such a way that e0 corresponds to the unit vector (0, . . . , 0, 1). We have

a parametrization φr : Dr → SX , where Dr is a Borel subset of Rr with interior ]−π, π[ × ]0, π[
r−1

and φr
is differentiable with continuous derivative. Moreover, if x = (ξ1, . . . , ξr) ∈ Dr, then φr(x) .e0 = cos ξr, and
the Jacobian Jr of φr is bounded by 1 and never zero on intDr. Finally, the boundary ∂Dr is negligible.
What this means is that νrCα =

∫
Eα

Jrdµr, where µr is Lebesgue measure on Rr, νr is normalized Hausdorff

r-dimensional measure on Rr+1, and Eα = {x : x ∈ Dr, cos ξr ≥ α}. So if −1 ≤ α ≤ β ≤ 1 then

νrCα − νrCβ ≤ µr(Eα \ Eβ) ≤ 2πr−1(arccosα− arccosβ);

because arccos is continuous, so is α 7→ νrCα. Also, if α < β, then Eα \ Eβ is non-negligible, so∫
Eα\Eβ

Jrdµr 6= 0 and νrCα > νrCβ .

This shows that α 7→ νrCα is continuous and strictly decreasing; since νr is just a multiple of ν on SX ,
the same is true of α 7→ νCα.

Since νC−1 = νSX = 1 and νC1 = ν{e0} = 0, the Intermediate Value Theorem tells us that there is a
unique α such that νCα = ν∗A, and we can set C = Cα. QQQ

(b) Now take any non-empty set A ⊆ SX and any ǫ > 0, and set γ = ν∗A, β = νU(A, ǫ). Let C be a cap
such that ν∗A = νC; let e0 be the centre of C. Consider the family

F = {F : F ∈ C, F ⊆ SX , νF ≥ γ, νU(F, ǫ) ≤ β},

where C is the family of closed subsets of X with its Fell topology. Because U(A, ǫ) = U(A, ǫ), A ∈ F and
F is non-empty. By 476A(b-i) and 476B, F is closed in C, therefore compact, by 4A2T(b-iii) once more.
Next, the function

F 7→
∫
F

max(0, 1 + (x|e0))ν(dx) : C → [0,∞[

is upper semi-continuous, by 476A(b-ii). It therefore attains its supremum on F at some F0 ∈ F . Let
F1 ⊆ F0 be a self-supporting closed set with the same measure as F0; then F1 ∈ F and

∫
F

(1+(x|e0))ν(dx) ≤∫
F1

(1 + (x|e0))ν(dx) for every F ∈ F .
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(c) F1 is a cap with centre e0. PPP??? Otherwise, there are x0 ∈ SX \ F1 and x1 ∈ F1 such that (x0|e0) >

(x1|e0). Set e =
1

‖x0−x1‖
(x0 − x1). Then e ∈ SX and (e|e0) > 0. Set R = Re0 and ψ = ψe0 as defined

in 476D; write F for ψ(F1). Note that (x0 + x1|x0 − x1) = ‖x0‖2 − ‖x1‖2 = 0, so (x0 + x1|e) = 0 and
R(x1) = x0. Also R[SX ] = SX , so ν is R-invariant, because ν is a multiple of Hausdorff (r− 1)-dimensional
measure on SX and must be invariant under isometries of SX .

We have νF = νF1 ≥ γ, by 476Eb, and

νU(F, ǫ) ≤ νψ(U(F1, ǫ)) = νU(F1, ǫ) ≤ νU(F0, ǫ) ≤ β

by 476Dd. So F ∈ F . But consider the standard bijection φ = φF1
: F1 → F as defined in 476E. We have∫

F1
(1 + (φ(x)|e0))ν(dx) =

∫
F

(1 + (x|e0))ν(dx) ≤
∫
F1

(1 + (x|e0))ν(dx).

If we examine the definition of φ, we see that φ(x) 6= x only when (x|e) < 0 and φ(x) = R(x), so that in this
case φ(x) − x is a positive multiple of e and (φ(x)|e0) > (x|e0). So G = {x : x ∈ F1, (x|e) < 0, R(x) /∈ F1}
must be ν-negligible. But G includes a relative neighbourhood of x1 in F1 and F1 is supposed to be
self-supporting for ν, so this is impossible. XXXQQQ

(d) Now ν∗A = γ ≤ νF1, so C ⊆ F1 and

νU(A, ǫ) = β ≥ νU(F1, ǫ) ≥ νU(C, ǫ),

as claimed.

476L Corollary For any ǫ > 0, there is an r0 ≥ 1 such that whenever X is a finite-dimensional inner
product space of dimension at least r0, A1, A2 ⊆ SX and min(ν∗XA1, ν

∗
XA2) ≥ ǫ, then there are x ∈ A1,

y ∈ A2 such that ‖x− y‖ ≤ ǫ.

proof Take r0 ≥ 2 such that r0ǫ
3 > 2. Suppose that dimX = r ≥ r0. Fix e0 ∈ SX . We need an estimate

of νXCǫ/2, where Cǫ/2 = {x : x ∈ SX , (x|e0) ≥ ǫ/2} as in 476K. To get this, let e1, . . . , er−1 be such that
e0, . . . , er−1 is an orthonormal basis of X (4A4Kc). For each i < r, there is an f ∈ HX such that f(ei) = e0,
so that (x|ei) = (f(x)|e0) for every x (476J), and∫

(x|ei)2νX(dx) =
∫

(f(x)|e0)2νX(dx) =
∫

(x|e0)2νX(dx),

because f : SX → SX is inverse-measure-preserving for νX .
Accordingly

νXCǫ/2 =
1

2
νX{x : x ∈ SX , |(x|e0)| ≥ ǫ/2} ≤ 2

ǫ2

∫

SX

(x|e0)2νX(dx)

< rǫ

∫

SX

(x|e0)2νX(dx) = ǫ

r−1∑

i=0

∫

SX

(x|ei)2νX(dx)

= ǫ

∫

SX

r−1∑

i=0

(x|ei)2νX(dx) = ǫ ≤ ν∗XA1.

So, taking C to be the cap of SX with centre e0 and measure ν∗XA1, C = Cα where α < 1
2ǫ, and

νX(SX ∩ U(A1,
1
2ǫ)) ≥ νX(SX ∩ U(Cα,

1
2ǫ)) ≥ νXCα−ǫ/2 >

1

2

by 476K. Similarly, νX(SX ∩U(A2,
1
2ǫ)) >

1
2 and there must be some z ∈ SX ∩U(A1,

1
2ǫ)∩U(A2,

1
2ǫ). Take

x ∈ A1 and y ∈ A2 such that ‖x− z‖ < 1
2ǫ and ‖y − z‖ < 1

2ǫ; then ‖x− y‖ ≤ ǫ, as required.

476X Basic exercises (a) Let X be a topological space, C the set of closed subsets of X, µ a topological
measure on X and f a µ-integrable real-valued function; set φ(F ) =

∫
F
fdµ for F ∈ C. (i) Show that if

either µ is inner regular with respect to the closed sets and C is given its Vietoris topology or µ is tight and
C is given its Fell topology, then φ is Borel measurable. (ii) Show that if X is metrizable and C \{∅} is given
an appropriate Hausdorff metric, then φ↾C \ {∅} is Borel measurable.
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(b) In the context of 476D, show that diamψeα(A) ≤ diamA for all A, e and α.

>>>(c) Find an argument along the lines of those in 476F and 476G to prove 264H. (Hint : 476Xb.)

>>>(d) Let X be an inner product space and SX its unit sphere. Show that every isometry f : SX → SX
extends uniquely to an isometry Tf : X → X which is a linear operator. (Hint : first check the cases in
which dimX ≤ 2.) Show that f is surjective iff Tf is, so that we have a natural isomorphism between the
isometry group of SX and the group of invertible isometric linear operators. Show that this isomorphism is
a homeomorphism for the topologies of pointwise convergence.

(e) Let X be a finite-dimensional inner product space, νX the invariant Radon probability measure on
the sphere SX , and E ∈ dom νX ; let C ⊆ SX be a cap with the same measure as E, and let λ be the product
measure of νX with itself on SX × SX . Show that

∫
C×C ‖x− y‖λ(d(x, y)) ≤

∫
E×E ‖x− y‖λ(d(x, y)).

(f) Let X be a finite-dimensional inner product space and νX the invariant Radon probability measure
on the sphere SX . (i) Without appealing to the formulae in §265, show that νX(SX ∩ H) = 0 whenever
H ⊆ X is a proper affine subspace. (Hint : induce on dimH.) (ii) Use this to prove that if e ∈ SX then
α 7→ νX{x : (x|e) ≥ α} is continuous.

476Y Further exercises (a) Let X be a compact metric space and G its isometry group. Suppose that
H ⊆ G is a subgroup such that the action of H on X is transitive. Show that X has a unique H-invariant
Radon probability measure which is also G-invariant.

(b) Let r ≥ 1 be an integer, and g ∈ C0(Rr) a non-negative γ-Lipschitz function, where γ ≥ 0. Let F be
the set of non-negative γ-Lipschitz functions f ∈ C(Rr) such that f has the same decreasing rearrangement
as g with respect to Lebesgue measure µ on Rr (§373) and

∫
φ(grad f)dµ ≤

∫
φ(grad g)dµ for every convex

function φ : Rr → [0,∞[. (i) Show that F is compact for the topology of pointwise convergence. (ii) Show
that there is an f ∈ F such that f(x) ≥ f(y) whenever ‖x‖ ≤ ‖y‖. (Hint : parts (a) and (b-i) of the proof
of 479V.)

476 Notes and comments The main theorems here (476F-476H, 476K), like 264H, are all ‘classical’; they
go back to the roots of geometric measure theory, and the contribution of the twentieth century was to
extend the classes of sets for which balls or caps provide the bounding examples. It is very striking that
they can all be proved with the same tools (see 476Xc). Of course I should remark that the Compactness
Theorem (474T) lies at a much deeper level than the rest of the ideas here. (The proof of 474T relies on
the distributional definition of ‘perimeter’ in 474D, while the arguments of 476Ee and 476H work with the
Hausdorff measures of essential boundaries; so that we can join these ideas together only after proving all the
principal theorems of §§472-475.) So while ‘Steiner symmetrization’ (264H) and ‘concentration by partial
reflection’ (476D) are natural companions, 476H is essentially harder than the other results.

In all the theorems here, as in 264H, I have been content to show that a ball or a cap is an optimum for
whatever inequality is being considered. I have not examined the question of whether, and in what sense,
the optimum is unique. It seems that this requires deeper analysis.

Version of 4.1.08/2.1.10

477 Brownian motion

I presented §455 with an extraordinary omission: the leading example of a Lévy process, and the inspi-
ration for the whole project, was relegated to an anonymous example (455Xg). In this section I will take
the subject up again. The theorem that the sum of independent normally distributed random variables is
again normally distributed (274B), when translated into the language of this volume, tells us that we have
a family 〈λt〉t>0 of centered normal distributions such that λs+t = λs ∗ λt for all s, t > 0. Consequently
we have a corresponding example of a Lévy process on R, and this is the process which we call ‘Brownian

c© 2008 D. H. Fremlin
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motion’ (477A). This is special in innumerable ways, but one of them is central: we can represent it in such
a way that sample paths are continuous (477B), that is, as a Radon measure on the space of continuous
paths starting at 0. In this form, it also appears as a limit, for the narrow topology, of interpolations of
random walks (477C).

For the geometric ideas of §479, we need Brownian motion in three dimensions; the r-dimensional theory
of 477D-477G gives no new difficulties. The simplest expression of Brownian motion in Rr is just to take a
product measure (477Da), but in order to apply the results of §455, and match the construction with the
ideas of §456, a fair bit of explanation is necessary. The geometric properties of Brownian motion begin
with the invariant transformations of 477E. As for all Lévy processes, we have a strong Markov property,
and Theorem 455U translates easily into the new formulation (477G), as does the theory of hitting times
(477I). I conclude with a classic result on maximal values which will be useful later (477J), and with proofs
that almost all Brownian paths are nowhere differentiable (477K) and have zero two-dimensional Hausdorff
measure (477L).

477A Brownian motion: Theorem There are a probability space (Ω,Σ, µ) and a family 〈Xt〉t≥0 of
real-valued random variables on Ω such that

(i) X0 = 0 almost everywhere;
(ii) whenever 0 ≤ s < t then Xt −Xs is normally distributed with expectation 0 and variance t− s;
(iii) 〈Xt〉t≥0 has independent increments.

First proof In 455P, take U = R and λt, for t > 0, to be the distribution of a normal random variable with

expectation 0 and variance t; that is, the distribution with probability density function x 7→ 1√
2πt

e−x
2/2t.

By 272T2, λs+t = λs ∗ λt for all s, t > 0. If ǫ > 0, then

limt↓0 λt ]−ǫ, ǫ[ = limt↓0 λ1
]
− ǫ√

t
,

ǫ√
t

[
= 1,

so 〈λt〉t>0 satisfies the conditions of 455P. Accordingly we have a probability measure µ̂ on Ω = R[0,∞[ for
which, setting Xt(ω) = ω(t), 〈Xt〉t≥0 has the required properties, as noted in 455Q-455R.

Second proof Let µL be Lebesgue measure on R, and for t ≥ 0 set ut = χ[0, t]• in L2(µL), so that
(us|ut) = min(s, t) for s, t ≥ 0. By 456C, there is a centered Gaussian distribution µ on R[0,∞[ with
covariance matrix 〈min(s, t)〉s,t≥0. Set Xt(x) = x(t) for x ∈ R[0,∞[. Then X0 has expectation and variance
both 0, that is, X0 = 0 a.e. If 0 ≤ s < t, then Xt −Xs is a linear combination of Xs and Xt, so is normally
distributed with expectation 0, and its variance is

E(Xt −Xs)
2 = E(Xt)

2 − 2E(Xt ×Xs) + E(Xs)
2 = t− 2s+ s = t− s.

If 0 ≤ t0 < . . . < tn and Yi = Xti+1
−Xti for i < n, then 〈Yi〉i<n has a centered Gaussian distribution, by

456Ba. Also, if i < j < n, then

E(Yi × Yj) = E(Xti+1
×Xtj+1

) − E(Xti+1
×Xtj ) − E(Xti ×Xtj+1

) + E(Xti ×Xtj )

= ti+1 − ti+1 − ti + ti = 0.

So 456E assures us that 〈Yi〉i<n is independent.
Thus 〈Xt〉t≥0 satisfies the conditions required.

477B These constructions of Brownian motion are sufficient to show that there is a process, satisfying
the defining conditions (i)-(iii), which can be studied with the tools of measure theory. From 455H we see
that we have a Radon measure on the space of càllàl functions representing the process, and from 455P
that we have the option of moving to the càdlàg functions, with a corresponding description of the strong
Markov property in terms of inverse-measure-preserving functions, as in 455U. But there is no hint yet of
the most important property of Brownian motion, that ‘sample paths are continuous’. With some simple
inequalities from Chapter 27 and the ideas of 454Q-454S, we can find a proof of this, as follows.

2Formerly 272S.
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Theorem Let 〈Xt〉t≥0 be as in 477A, and µ̂ the distribution of the process 〈Xt〉t≥0. Let C([0,∞[)0 be the
set of continuous functions ω : [0,∞[ → R such that ω(0) = 0. Then C([0,∞[)0 has full outer measure for
µ̂, and the subspace measure µW on C([0,∞[)0 induced by µ̂ is a Radon measure when C([0,∞[)0 is given
the topology Tc of uniform convergence on compact sets.

proof (a) The main part of the argument here (down to the end of (e)) is devoted to showing that
µ̂∗C([0,∞[) = 1; the result will then follow easily from 454Sb.

(b) ??? Suppose, if possible, that µ̂∗C([0,∞[) < 1. Then there is a non-negligible Baire set H ⊆ R[0,∞[ \
C([0,∞[). There is a countable set D ⊆ [0,∞[ such that H is determined by coordinates in D (4A3Nb); we
may suppose that D includes Q ∩ [0,∞[.

(c) (The key.) Let q, q′ be rational numbers such that 0 ≤ q < q′, and ǫ > 0. Then

Pr(supt∈D∩[q,q′] |Xt −Xq| > ǫ) ≤ 18
√
q′−q

ǫ
√
2π

e−ǫ
2/18(q′−q).

PPP If q = t0 < t1 < . . . < tn = q′, set Yi = Xti − Xti−1
for 1 ≤ i ≤ n, so that Xtm − Xq =

∑m
i=1 Yi for

1 ≤ m ≤ n, and Y1, . . . , Yn are independent. By Etemadi’s lemma (272V3),

Pr(sup
i≤n

|Xti −Xq| > ǫ) ≤ 3 max
i≤n

Pr(|Xti −Xq| > 1

3
ǫ)

= 3 max
1≤i≤n

Pr(
1√
ti−q

|Xti −Xq| > ǫ

3
√
ti−q

)

= 6 max
1≤i≤n

1√
2π

∫ ∞

ǫ/3
√
ti−q

e−x
2/2dx

(because
1√
ti−q

(Xti −Xq) is standard normal)

=
6√
2π

∫ ∞

ǫ/3
√
q′−q

e−x
2/2dx

≤ 18
√
q′−q

ǫ
√
2π

e−ǫ
2/18(q′−q)

by 274Ma. Thus if I ⊆ [q, q′] is any finite set containing q and q′,

Pr(supt∈I |Xt −Xq| > ǫ) ≤ 18
√
q′−q

ǫ
√
2π

e−ǫ
2/18(q′−q).

Taking 〈In〉n∈N to be a non-decreasing sequence of finite sets with union D∩[q, q′], starting from I0 = {q, q′},
we get

Pr( sup
t∈D∩[q,q′]

|Xt −Xq| > ǫ) = lim
n→∞

Pr(sup
t∈In

|Xt −Xq| > ǫ)

≤ 18
√
q′−q

ǫ
√
2π

e−ǫ
2/18(q′−q),

as required. QQQ

(d) If ǫ > 0 and n ≥ 1, then

Pr(there are t, u ∈ D ∩ [0, n] such that |t− u| ≤ 1

n2
and |Xt −Xu| > 3ǫ)

≤ 18n2

ǫ
√
2π
e−n

2ǫ2/18.

PPP Divide [0, n] into n3 intervals [qi, qi+1] of length 1/n2. For each of these,

3Formerly 272U.
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Pr(supt∈D∩[qi,qi+1] |Xt −Xqi | > ǫ) ≤ 18

nǫ
√
2π
e−n

2ǫ2/18.

So

Pr(there are i < n3, t ∈ D ∩ [qi, qi+1] such that |Xt −Xqi | > ǫ)

is at most
18n2

ǫ
√
2π
e−n

2ǫ2/18.

But if t, u ∈ [0, n] and |t − u| ≤ 1/n2 and |Xt − Xu| > 3ǫ, there must be an i < n3 such that both t
and u belong to [qi, qi+2], so that either there is a t′ ∈ D ∩ [qi, qi+1] such that |Xt′ −Xqi | > ǫ or there is a
t′ ∈ D ∩ [qi+1, qi+2] such that |Xt′ −Xqi+1

| > ǫ. So

Pr(there are t, u ∈ D ∩ [0, n] such that |t− u| ≤ 1

n2
and |Xt −Xu| > 3ǫ)

≤ Pr(there are i < n3, t ∈ D ∩ [qi, qi+1] such that and |Xt −Xqi | > ǫ)

≤ 18n2

ǫ
√
2π
e−n

2ǫ2/18,

as required. QQQ

(e) So if we take Gǫn to be the Baire set

{ω : ω ∈ R[0,∞[, there are t, u ∈ D ∩ [0, n] such that |t− u| ≤ 1

n2

and |ω(t) − ω(u)| > 3ǫ},

we have

µ̂Gǫn ≤ 18n2

ǫ
√
2π
e−n

2ǫ2/18,

and limn→∞ µ̂Gǫn = 0. We can therefore find a strictly increasing sequence 〈nk〉k∈N in N such that∑∞
k=1 µ̂(G1/k,nk

) < µ̂H, so that there is an ω ∈ H \⋃k≥1G1/k,nk
.

What this means is that if k ≥ 1 and t, u ∈ D ∩ [0, nk] are such that |t− u| ≤ 1

n2
k

, then |ω(t)−ω(u)| ≤ 3

k
.

Since nk → ∞ as k → ∞, there is a continuous function ω′ : [0,∞[ → R such that ω′↾D = ω↾D. But H is
determined by coordinates in D, so ω′ belongs to H ∩ C([0,∞[), which is supposed to be empty. XXX

(f) Thus µ̂∗C([0,∞[) = 1. Since µ̂{ω : ω(0) = 0} = 1, C([0,∞[)\C([0,∞[)0 is µ̂-negligible and C([0,∞[)0
has full outer measure for µ̂. By 454Sb, the subspace measure µ̂C on C([0,∞[) induced by µ̂ is a Radon
measure for Tc; now C([0,∞[)0 is µ̂C-conegligible. The subspace measure µW on C([0,∞[)0 induced by µ̂
is also the subspace measure induced by µ̂C , so is a Radon measure for the topology on C([0,∞[)0 induced
by Tc.

Remark We can put this together with the ideas of 455H. Following the First Proof of 477A, and using
455Pc, we see that there is a unique Radon measure µ̃ on R[0,∞[ (for the topology Tp of pointwise conver-

gence) extending µ̂. The identity map ι : C([0,∞[)0 → R[0,∞[ is continuous for Tc and Tp, so the image

measure µW ι
−1 is a Radon measure on R[0,∞[ (418I). If E ⊆ R[0,∞[ is a Baire set, then

µW ι
−1[E] = µW (E ∩ C([0,∞[)0) = µ̂E,

so µW ι
−1 agrees with µ̃ on Baire sets, and the two must be equal. Now C([0,∞[)0 is µ̃-conegligible, just

because its complement has empty inverse image under ι. So µW is also the subspace measure on C([0,∞[)0
induced by µ̃.

Equally, since of course C([0,∞[)0 is a subspace of the set Cdlg of càdlàg functions from [0,∞[ to R, µW
is the subspace measure induced by the measure µ̈ of Theorem 455O.

*477C I star the next theorem because it is very hard work and will not be relied on later. Nevertheless
I think the statement, at least, should be part of your general picture of Brownian motion.
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Theorem For α > 0, define fα : RN → Ω = C([0,∞[)0 by setting fα(z)(t) =
√
α(

∑
i<n z(i)+

1

α
(t−nα)z(n))

when z ∈ RN, n ∈ N and nα ≤ t ≤ (n + 1)α. Give Ω its topology Tc of uniform convergence on compact
sets, and RN its product topology; then fα is continuous. For a Radon probability measure ν on R, let µνα
be the image Radon measure νNf−1

α on Ω, where νN is the product measure on RN. Let µW be the Radon
measure of 477B, and U a neighbourhood of µW in the space PR(Ω) of Radon probability measures on Ω
for the narrow topology (437Jd). Then there is a δ > 0 such that µνα ∈ U whenever α ∈ ]0, δ] and ν is a
Radon probability measure on R with mean 0 =

∫
x ν(dx) and variance 1 =

∫
x2ν(dx) and∫

{x:|x|≥δ/√α} x
2ν(dx) ≤ δ. (†)

Remark The idea is that, for a given α and ν, we consider a random walk with independent identically
distributed steps, with expectation 0 and variance α, at time intervals of α, and then interpolate to get a
continuous function on [0,∞[; and that if the step-lengths are small the result should look like Brownian
motion. Moreover, this ought not to depend on the distribution ν; but in order to apply the Central Limit
Theorem in a sufficiently uniform way, we need the extra regularity condition (†). On first reading you may
well prefer to fix on a particular distribution ν with mean 0 and expectation 1 (e.g., the distribution which
gives measure 1

2 to each of {1} and {−1}), so that (†) is satisfied whenever α is small enough compared with
δ.

proof For δ > 0 I will write Q(δ) for the set of pairs (ν, α) such that ν is a Radon probability measure
on R with mean 0 and variance 1, 0 < α ≤ δ and

∫
{x:|x|≥δ/√α} x

2ν(dx) ≤ δ. Note that Q(δ′) ⊆ Q(δ) when

δ′ ≤ δ.

(a)(i) If γ, ǫ > 0 there is a δ > 0 such that whenever (ν, α) ∈ Q(δ), s, t ≥ 0 are multiples of α such that
t− s ≥ γ, and I ⊆ R is an interval (open, closed or half-open), then

|µνα{ω : ω ∈ Ω, ω(t) − ω(s) ∈ I} − 1√
2π(t−s)

∫
I
e−x

2/2(t−s)dx| ≤ ǫ.

PPP For δ > 0, x ∈ R set ψδ(x) = x2 if |x| > δ, 0 if |x| ≤ δ. Let η > 0 be such that whenever

Y1, . . . , Yk are independent random variables with finite variance and zero expectation,
∑k
i=1 Var(Yi) = 1

and
∑k
i=1 E(ψη(Yi)) ≤ η, then

|Pr(
∑k
i=1 Yi ≤ β) − 1√

2π

∫ β
−∞ e−x

2/2dx| ≤ ǫ

2

for every β ∈ R (274F); observe that in this case

|Pr(
k∑

i=1

Yi < β) − 1√
2π

∫ β

−∞
e−x

2/2dx|

= lim
β′↑β

|Pr(

k∑

i=1

Yi ≤ β′) − 1√
2π

∫ β′

−∞
e−x

2/2dx| ≤ ǫ

2

for every β ∈ R, so that

|Pr(
∑k
i=1 Yi ∈ J) − 1√

2π

∫
J
e−x

2/2dx| ≤ ǫ

for every interval J ⊆ R.
Set δ = min(η, η

√
γ). If I ⊆ R is an interval, (ν, α) ∈ Q(δ) and s, t are multiples of α such that t− s ≥ γ,

set j =
s

α
, k =

t−s

α
and J =

√
t− sI =

√
k
αI. Then

µνα{ω : ω(t) − ω(s) ∈ I} = νN{z : fα(z)(t) − fα(z)(s) ∈ I}

= νN{z :
√
α

j+k−1∑

i=j

z(i) ∈ I} = Pr(

k−1∑

i=0

Yi ∈ J)
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where Yi(z) =
1√
k
z(j + i). For each i, the mean and variance of Yi are 0 and 1

k , because the mean and

expectation of ν are 0 and 1. Next,

k−1∑

i=0

E(ψη(Yi)) = k

∫

{x:|x|>η
√
k}

1

k
x2ν(dx) ≤

∫

{x:|x|>η
√
γ/α}

x2ν(dx)

≤
∫

{x:|x|>δ/√α}
x2ν(dx) ≤ δ ≤ η,

so by the choice of η,

|µνα{ω : ω ∈ Ω, ω(t) − ω(s) ∈ I} − 1√
2π(t−s)

∫

I

e−x
2/2(t−s)dx|

= |Pr(
k−1∑

i=0

Yi ∈ J) − 1√
2π

∫

J

e−x
2/2dx| ≤ ǫ. QQQ

(ii) If γ, ǫ > 0, there is a δ > 0 such that

µνα{ω : diam(ω[ [β, β + γ] ]) > 12ǫ} ≤ 3
√
γ

ǫ
e−ǫ

2/2γ

whenever (ν, α) ∈ Q(δ) and β ≥ 0. PPP Let η > 0 be such that

6(η +
√
γ+η

ǫ
√
2π
e−ǫ

2/2(γ+η)) ≤ 3
√
γ

ǫ
e−ǫ

2/2γ ,

and let δ0 > 0 be such that

|µνα{ω : ω ∈ Ω, ω(t) − ω(s) ∈ I} − 1√
2π(t−s)

∫
I
e−x

2/2(t−s)dx| ≤ η

whenever I ⊆ R is an interval, (ν, α) ∈ Q(δ0) and s and t are multiples of α such that t − s ≥ 1
4γ. Set

δ = min( 1
4γ,

1
2η, δ0).

Fix (ν, α) ∈ Q(δ). Applying the last formula with I = [−ǫ, ǫ] and then taking complements,

µνα{ω : |ω(t) − ω(s)| > ǫ} ≤ η +
2√

2π(t−s)

∫ ∞

ǫ

e−x
2/2(t−s)dx

= η +
2√
2π

∫ ∞

ǫ/
√
t−s

e−x
2/2dx

≤ η +
2√
2π

∫ ∞

ǫ/
√
γ+η

e−x
2/2dx ≤ η +

√
γ+η

ǫ
e−ǫ

2/2(γ+η)

whenever s, t are multiples of α such that 1
4γ ≤ t− s ≤ γ + η, using 274Ma for the last step, as in part (c)

of the proof of 477B. Now if s, t are multiples of α such that s ≤ t ≤ γ + η, either t− s ≥ 1
4γ and

µνα{ω : |ω(t) − ω(s)| > 2ǫ} ≤ η +
√
γ+η

ǫ
e−ǫ

2/2(γ+η),

or t ≤ s+ 1
4γ and there is a multiple u of α such that t+ 1

4γ ≤ u ≤ t+ 1
2γ, in which case

µνα{ω : |ω(t) − ω(s)| > 2ǫ} ≤ µνα{ω : |ω(u) − ω(s)| > ǫ} + µνα{ω : |ω(u) − ω(t)| > ǫ}

≤ 2(η +
√
γ+η

ǫ
e−ǫ

2/2(γ+η)).

Let j, k be such that β − 1
2η < jα ≤ β and β + γ ≤ kα < β + γ + 1

2η. We have
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µνα{ω : diam(ω[ [β, β + γ] ]) > 12ǫ}
= νN{z : diam(fα(z)[ [β, β + γ] ]) > 12ǫ}
≤ νN{z : sup

t∈[β,β+γ]

|fα(z)(t) − fα(z)(jα)| > 6ǫ}

≤ νN{z : there is an l such that j < l ≤ k and |fα(z)(lα) − fα(z)(jα)| > 6ǫ}
(because fα(z) is linear between its determining values at multiples of α)

= νN{z : there is an l such that j < l ≤ k and |
l−1∑

i=j

z(i)| > 6ǫ√
α
}

≤ 3 sup
j<l≤k

νN{z : |
l−1∑

i=j

z(i)| > 2ǫ√
α
}

(Etemadi’s lemma, 272V)

= 3 sup
j<l≤k

µνα{ω : |ω(lα) − ω(jα)| > 2ǫ}

≤ 6(η +
√
γ+η

ǫ
e−ǫ

2/2(γ+η)) ≤ 3
√
γ

ǫ
e−ǫ

2/2γ ,

as required. QQQ

(iii) If γ, ǫ > 0 there is a δ > 0 such that

µνα{ω : there are s, t ∈ [0, γ] such that |t− s| ≤ δ and |ω(t) − ω(s)| > ǫ} ≤ ǫ

whenever (ν, α) ∈ Q(δ). PPP Set η = ǫ/12, and let k ≥ 1 be such that
6γk

η
e−k

2η2/2 ≤ ǫ; set m = ⌊2k2γ⌋. By

(ii), there is a δ ∈
]
0, 1

2k2

]
such that

µνα{ω : diam(ω[ [β, β +
1

k2
] ]) > 12η} ≤ 3

kη
e−k

2η2/2

whenever (ν, α) ∈ Q(δ) and β ≥ 0. Now, for such ν and α,

µνα{ω : there are s, t ∈ [0, γ] such that |t− s| ≤ δ and |ω(t) − ω(s)| > ǫ}

≤ µνα(
⋃

i<m

{ω : diam(ω[ [
i

2k2
,
i+2

2k2
] ] > 12η})

≤ 3m

kη
e−k

2η2/2 ≤ 6γk

η
e−k

2η2/2 ≤ ǫ,

as required. QQQ

(b) Suppose that 0 = t0 < t1 < . . . < tn and that E0, . . . , En−1 are intervals in R; set E = {ω : ω ∈ Ω,
ω(ti+1)−ω(ti) ∈ Ei for i < n}. Then for every ǫ > 0 there is a δ > 0 such that µWE ≤ 3ǫ+µναE whenever
(ν, α) ∈ Q(δ). PPP Of course

µWE =
∏
i<n

1√
2π(ti+1−ti)

∫
Ei
e−x

2/2(ti+1−ti)dx.

For η > 0 and i < n, let Fiη be the interval {x : [x − 2η, x + 2η] ⊆ Ei}. Set γ = 1
2 mini<n(ti+1 − ti); let

η ∈ ]0, γ] be such that

∏
i<n

1√
2πγi

∫
Fiη

e−x
2/2γidx ≥ µWE − ǫ

whenever |γi − (ti+1 − ti)| ≤ η for every i < n. Next, by (a-i) and (a-iii), there is a δ ∈
]
0, 12η

]
such that
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∏

i<n

1√
2π(si+1−si)

∫

Fiη

e−x
2/2(si+1−si)dx

≤ ǫ+
∏

i<n

µνα{ω : ω(si+1) − ω(si) ∈ Fiη},

µνα{ω : there are s, t ∈ [0, tn + η]

such that |s− t| ≤ δ and |ω(s) − ω(t)| > η} ≤ ǫ

whenever (ν, α) ∈ Q(δ) and s0, . . . , sn are multiples of α such that si+1 − si ≥ γ for every i ≤ n. Take any
(ν, α) ∈ Q(δ), and for each i ≤ n let si be a multiple of α such that ti ≤ si ≤ ti + α. Then

{ω : ω(si+1) − ω(si) ∈ Fiη for every i < n} \ E
=

⋃

i<n

{ω : ω(si+1) − ω(si) ∈ Fiη, ω(ti+1) − ω(ti) /∈ Ei}

⊆
⋃

i<n

{ω : |(ω(si+1) − ω(si)) − (ω(ti+1 − ω(ti))| > 2η}

⊆
⋃

i≤n
{ω : |ω(si) − ω(ti)| > η}

⊆ {ω : there are s, t ∈ [0, tn + η]

such that |s− t| ≤ δ and |ω(si) − ω(ti)| > η},
so

µνα{ω : ω(si+1) − ω(si) ∈ Fiη for every i < n} ≤ ǫ+ µναE.

Next, if si = kiα for each i,

µνα{ω : ω(si+1) − ω(si) ∈ Fiη for every i < n}
= νN{z : fα(z)(si+1) − fα(z)(si) ∈ Fiη for every i < n}

= νN{z :
√
α

ki+1−1∑

j=ki

z(j) ∈ Fiη for every i < n}

=
∏

i<n

νN{z :
√
α

ki−1∑

j=ki

z(j) ∈ Fiη}

=
∏

i<n

µνα{ω : ω(si+1) − ω(si) ∈ Fiη}.

So

µWE ≤ ǫ+
∏

i<n

1√
2π(si+1−si)

∫

Fiη

e−x
2/2(si+1−si)dx

(because |(si+1 − si) − (ti+1 − ti)| ≤ α ≤ η for i < n)

≤ 2ǫ+
∏

i<n

µνα{ω : ω(si+1) − ω(si) ∈ Fiη}

(because si+1 − si ≥ γ for every i < n)

= 2ǫ+ µνα{ω : ω(si+1) − ω(si) ∈ Fiη for every i < n}
≤ 3ǫ+ µναE,

as required. QQQ
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(c)(i) For k ∈ N let δk > 0 be such that µναGk ≤ 2−k whenever (ν, α) ∈ Q(δk), where

Gk = {ω : there are s, t ∈ [0, k] such that |t− s| ≤ δk and |ω(t) − ω(s)| > 2−k};

such exists by (a-iii) above. For k, n ∈ N set Hkn =
⋃
i≤nGk+i. If k ∈ N and 〈ω′

n〉n∈N is a sequence such

that ω′
n ∈ Ω \Hkn for every n ∈ N, {ω′

n : n ∈ N} is relatively compact in Ω. PPP If γ ≥ 0 and ǫ > 0, there is
an n ∈ N such that 2−k−n ≤ ǫ and k + n ≥ γ; now for m ≥ n, ω′

m /∈ Gk+n so |ω′
m(t) − ω′

m(s)| ≤ ǫ whenever
s, t ∈ [0, γ] and |s − t| ≤ δk+n. Of course there is a δ ∈ ]0, δk+n] such that |ω′

m(s) − ω′
m(t)| ≤ ǫ whenever

m < k+n and s, t ∈ [0, γ] are such that |s− t| ≤ δ. Since ω′
n(0) = 0 for every n, the conditions of 4A2U(e-ii)

are satisfied, and {ω′
n : n ∈ N} is relatively compact in C([0,∞[), therefore in its closed subset Ω. QQQ

Now if we have a compact set K ⊆ Ω, an open set G ⊆ Ω including K, and k ∈ N, there are an n ∈ N

and a finite set I ⊆ [0,∞[ such that ω′ ∈ G ∪ Hkn whenever ω ∈ K, ω′ ∈ Ω and |ω′(s) − ω(s)| ≤ 2−n

for every s ∈ I. PPP??? Otherwise, let 〈qi〉i∈N enumerate Q ∩ [0,∞[. For each n ∈ N we have ωn ∈ K and
ω′
n ∈ Ω \ (G ∪ Hkn) such that |ω′

n(qi) − ωn(qi)| ≤ 2−n for every i ≤ n. Since the topology Tc on Ω is
metrizable (4A2U(e-i)), and both {ωn : n ∈ N} and {ω′

n : n ∈ N} are relatively compact, there is a strictly
increasing sequence 〈ni〉i∈N such that ω = limi→∞ ωni

and ω′ = limi→∞ ω′
ni

are both defined (use 4A2Lf
twice). Since |ω′(q) − ω(q)| = limi→∞ |ω′

ni
(q) − ωni

(q)| is zero for every q ∈ Q ∩ [0,∞[, ω = ω′; but ω ∈ K
and ω′ /∈ G, so this is impossible. XXXQQQ

(ii) Suppose that G ⊆ Ω is open and γ < µWE. Then there is a δ > 0 such that µναG > γ whenever
(ν, α) ∈ Qδ. PPP Let K ⊆ G be a compact set such that µWK > γ. Let k ∈ N, ǫ > 0 be such that
µWK ≥ γ + ǫ + 2−k+1. By (i), there are an n ∈ N and a finite set I ⊆ [0,∞[ such that ω′ ∈ G ∪ Hkn

whenever ω′ ∈ Ω, ω ∈ K and |ω′(t) − ω(t)| ≤ 2−n for every t ∈ I; of course we can suppose that 0 ∈ I and
that #(I) ≥ 2. Enumerate I in increasing order as 〈ti〉i≤m. For z ∈ Zm, set

Ez = {ω : ω ∈ Ω, ⌊2nm(ω(ti+1 − ω(ti))⌋ = z(i) for every i < m};

set D = {z : z ∈ Zm, Ez ∩K 6= ∅} and F =
⋃
z∈D Ez. If z ∈ D and ω′ ∈ Ez, there is an ω ∈ K ∩ Ez, in

which case

|(ω′(ti+1) − ω′(ti)) − (ω(ti+1 − ω(ti))| ≤ 2−n

m
for every i < m,

|ω′(ti) − ω(ti)| ≤ 2−n for every i ≤ m

and ω′ ∈ G ∪Hkn. Thus F ⊆ G ∪Hkn. As K is compact, {ω(ti) : ω ∈ K} is bounded for every i and D is
finite. By (b) there is a δ > 0 such that δ ≤ δk+i for every i ≤ n and

µWEz ≤ ǫ

1+#(D)
+ µναEz

whenever z ∈ D and (ν, α) ∈ Q(δ). Now, for such ν and α,

ǫ+ 2−k+1 + γ ≤ µWK ≤ µWF =
∑

z∈D
µWEz ≤ ǫ+

∑

z∈D
µναEz

= ǫ+ µναF ≤ ǫ+ µναG+

n∑

i=0

µναGk+i

≤ ǫ+ µναG+

n∑

i=0

2−k−i < ǫ+ 2−k+1 + µναG

and µναG > γ, as required. QQQ

(iii) So if U is a neighbourhood of µW for the narrow topology on PR(Ω), there is a δ > 0 such that
µνα ∈ U whenever (ν, α) ∈ Q(δ). PPP There are open sets G0, . . . , Gn and γ0, . . . , γn such that γi < µWGi
for each i < n and U includes {µ : µ ∈ PR(Ω), µGi > γi for every i < n}. But from (ii) we see that for
each i ≤ n there will be a δ′i > 0 such that µναGi > γi for every i whenever (ν, α) ∈ Q(δ′i); so setting
δ = mini≤n δ′i we get the result. QQQ

And this is just the conclusion declared in the statement of the theorem, rephrased in the language
developed in the course of the proof.
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477D Multidimensional Brownian motion In §§478-479 we shall need the theory of Brownian motion
in r-dimensional space. I sketch the relevant details. Fix an integer r ≥ 1.

(a) Let µW1 be the Radon probability measure on Ω1 = C([0,∞[)0 described in 477B; I will call it
one-dimensional Wiener measure. We can identify the power Ωr1 with Ω = C([0,∞[ ;Rr)0, the space
of continuous functions ω : [0,∞[ → Rr such that ω(0) = 0, with the topology of uniform convergence on
compact sets; note that Ω1 is Polish (4A2U(e-i)), so Ωr1 also is. Because Ω1 is separable and metrizable, the
c.l.d. product measure µrW1 measures every Borel set (4A3Dc, 4A3E), while it is inner regular with respect
to the compact sets (412Sb), so it is a Radon measure. I will say that µW = µrW1, interpreted as a measure
on C([0,∞[ ;Rr)0, is r-dimensional Wiener measure.

As observed in 477B, µW1 is the subspace measure on Ω1 induced by the distribution µ̂ of the process
〈Xt〉t≥0 in 477A. So µW here, regarded as a measure on C([0,∞[)r0, is the subspace measure induced by the

measure µ̂r on (R[0,∞[)r ∼= R[0,∞[×r (254La).

(b) For ω ∈ Ω, t ≥ 0 and i < r, set X
(i)
t (ω) = ω(t)(i). Then 〈X(i)

t 〉t≥0,i<r is a centered Gaussian process,
with covariance matrix

E(X(i)
s ×X

(j)
t ) = 0 if i 6= j,

= min(s, t) if i = j.

PPP Taking µ, µ̂ and µ̂r as in (a), µ̂r, like µ̂, is a centered Gaussian distribution (456Be); but it is easy to

check from the formula in 454J(i) that µ̂r can be identified with the distribution of the family 〈X(i)
t 〉t≥0,i<r.

So 〈X(i)
t 〉t≥0,i<r is a centered Gaussian process. As for the covariance matrix, if i 6= j then X

(i)
s and X

(j)
t

are determined by different factors in the product Ω = Ωr1, so must be independent; while if i = j then

(X
(i)
s , X

(i)
t ) have the same joint distribution as (Xs, Xt) in 477A. QQQ

(c) We shall need a variety of characterizations of the Radon measure µW .

(i) µW is the only Radon probability measure on Ω such that the process 〈X(i)
t 〉t≥0,i<r described in

(b) is a Gaussian process with the covariance matrix there. PPP Suppose ν is another measure with these

properties. The distribution of 〈X(i)
t 〉t≥0,i<r (with respect to ν) must be a centered Gaussian process on

Rr×[0,∞[ ∼= (R[0,∞[)r, and because it has the same covariance matrix it must be equal to µ̂r, by 456Bb.

But this says just that 〈X(i)
t 〉t≥0,i<r has the same joint distribution with respect to µW and ν. By 454N,

ν = µW . QQQ

(ii) Another way of looking at the family 〈X(i)
t 〉i<r,t≥0 is to write Xt(ω) = ω(t) for t ≥ 0, so that

〈Xt〉t≥0 is now a family of Rr-valued random variables defined on Ω. We can describe its distribution in
terms matching those of 455Q and 477A, which become

(i) X0 = 0 everywhere (on Ω, that is);

(ii) whenever 0 ≤ s < t then
1√
t−s

(Xt −Xs) has the standard Gaussian distribution µrG (that

is, ω 7→ 1√
t−s

(ω(t) − ω(s)) is inverse-measure-preserving for µW and µrG);

(iii) whenever 0 ≤ t1 < . . . < tn, then Xt2 −Xt1 , . . . , Xtn − Xtn−1
are independent (that is,

taking Ti to be the σ-algebra {{ω : ω(ti+1) − ω(ti) ∈ E} : E ⊆ Rr is a Borel set}, T1, . . . ,Tn−1

are independent).

Note that these properties also determine the Radon measure µW . PPP Once again, suppose ν is a Radon
probability measure on Ω for which (ii) and (iii) are true. We wish to show that µW and ν give the same

distribution to 〈X(i)
t 〉i<r,t≥0. If 0 = t0 < t1 < . . . < tn, we know that µW and ν give the same distribution

to each of the differences Yj = Xtj+1
− Xtj (or, if you prefer, to each of the families 〈Y (i)

j 〉i<r, where

Y
(i)
j = X

(i)
tj+1

−X
(i)
tj ); moreover, if Σj is the σ-algebra generated by {Y (i)

j : i < r} for each j, then µW and

ν agree that 〈Σj〉j<n is independent. So µWE = νE whenever E is of the form
⋂
j<nEj where Ej ∈ Σj for

each j < n. By the Monotone Class Theorem, µW and ν agree on the σ-algebra Σ generated by sets of this

type, which is the σ-algebra generated by {Y (i)
j : i < r, j < n}. But as Xtj =

∑
i<j Yi for every j ≤ n, every
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X
(i)
tj is Σ-measurable, and µW and ν give the same distribution to 〈X(i)

tj 〉i<r,j≤n. As this is true whenever

0 = t0 < . . . < tn, µW and ν give the same distribution to the whole family 〈X(i)
t 〉i<r,t≥0, and must be

equal. QQQ

(d) In order to apply Theorem 455U, we need to go a little deeper, in order to relate the product-measure
definition of µW to the construction in 455P. I will use the ideas of part (b) of the proof of 455R. Consider the

process 〈X(i)
t 〉t≥0,i<r and the associated distribution µ̂r on (R[0,∞[)r ∼= (Rr)[0,∞[. Setting Xt = 〈X(i)

t 〉i<r,
〈Xt〉t≥0 is an Rr-valued process satisfying the conditions of 455Q with U = Rr. PPP X0 = 0 a.e. because

every X
(i)
0 is zero a.e. If 0 ≤ s < t then Xt − Xs = 〈X(i)

t − X
(i)
s 〉i<r has the same distribution as Xt−s

because X
(i)
t −X

(i)
s has the same distribution as X

(i)
t−s for each i and 〈X(i)

t −X
(i)
s 〉i<r, 〈X(i)

t−s〉i<r are both

independent. If 0 ≤ t0 < t1 < . . . < tn then 〈X(i)
tj+1

− X
(i)
tj 〉i<r,j<n is independent so 〈Xtj+1

− Xtj 〉j<n
is independent (using 272K, or otherwise). Finally, when t ↓ 0, Xt → 0 in measure because X

(i)
t → 0 in

measure for each i. QQQ
For t > 0, let λt be the distribution of Xt. Then λt is the centered Gaussian distribution on Rr

with covariance matrix 〈σij〉i,j<r where σij = t if i = j and 0 if i 6= j (456Ba, with T (ω) = ω(t) for

ω ∈ R[0,∞[×r ∼= (Rr)[0,∞[). By 455R, the process of 455P can be applied to 〈λt〉t>0 to give us a measure ν̂
on (Rr)[0,∞[, the completion of a Baire measure, such that

ν̂{ω : ω(ti) ∈ Fi for every i ≤ n} = Pr(Xti ∈ Fi for every i ≤ n)

= µ̂r{ω : ω(ti) ∈ Fi for every i ≤ n}

whenever F0, . . . , Fn ⊆ Rr are Borel sets and t0, . . . , tn ∈ [0,∞[. Since sets of this kind generate the Baire
σ-algebra of (Rr)[0,∞[, ν̂ must be equal to µ̂r, that is, µ̂r is the result of applying 455P to 〈λt〉t>0.

By 455H, ν̂ has a unique extension to a measure ν̃ on (Rr)[0,∞[ which is a Radon measure for the product
topology. But if we write ι : C([0,∞[ ;Rr)0 → (Rr)[0,∞[ for the identity map, the image measure µW ι

−1

is a Radon measure on (Rr)[0,∞[ for the product topology and extends µ̂r, so must be equal to ν̃. Thus
ν̃C([0,∞[ ;Rr)0 = 1. Of course C([0,∞[ ;Rr)0 is included in the space of càllàl functions from [0,∞[ to
Rr, so that we have a strengthening of the results in §455. Similarly, writing ν̈ for the subspace measure
induced by ν̂ or µ̂r on the space Cdlg of càdlàg functions from [0,∞[ to Rr, µW is the subspace measure on
C([0,∞[ ;Rr)0 induced by ν̈.

By 4A3Qa, every Baire subset of Cdlg is the intersection of Cdlg with a Baire subset of (Rr)[0,∞[, and is
therefore measured by ν̈. In particular, C([0,∞[ ;Rr) and C([0,∞[ ;Rr)0 are measured by ν̈ (4A3Qd).

477E Invariant transformations of Wiener measure: Proposition Let r ≥ 1 be an integer, and
µW Wiener measure on Ω = C([0,∞[ ;Rr)0. Let µ̂r be the product measure on (R[0,∞[)r as described in
477D.

(a) Suppose that f : (R[0,∞[)r → (R[0,∞[)r is inverse-measure-preserving for µ̂r, and that Ω0 ⊆ Ω is
a µW -conegligible set such that f [Ω0] ⊆ Ω0. Then f↾Ω0 is inverse-measure-preserving for the subspace
measure induced by µW on Ω0.

(b) Suppose that T̂ : Rr×[0,∞[ → Rr×[0,∞[ is a linear operator such that, for i, j < r and s, t ≥ 0,

∫
(T̂ ω)(i, s)(T̂ ω)(j, t)µ̂r(dω) = min(s, t) if i = j,

= 0 if i 6= j.

Then, identifying Rr×[0,∞[ with (R[0,∞[)r, T̂ is inverse-measure-preserving for µ̂r.
(c) Suppose that t ≥ 0. Define St : Ω → Ω by setting (Stω)(s) = ω(s + t) − ω(s) for s ≥ 0 and ω ∈ Ω.

Then St is inverse-measure-preserving for µW .
(d) Let T : Rr → Rr be an orthogonal transformation. Define T̃ : Ω → Ω by setting (T̃ ω)(t) = T (ω(t))

for t ≥ 0 and ω ∈ Ω. Then T̃ is an automorphism of (Ω, µW ).

(e) Suppose that α > 0. Define Uα : Ω → Ω by setting Uα(ω)(t) =
1√
α
ω(αt) for t ≥ 0 and ω ∈ Ω. Then

Uα is an automorphism of (Ω, µW ).
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(f) Set

Ω0 = {ω : ω ∈ Ω, limt→∞
1

t
ω(t) = 0},

and define R : Ω0 → Ω0 by setting

(Rω)(t) = tω(
1

t
) if t > 0,

= 0 if t = 0.

Then Ω0 is µW -conegligible and R is an automorphism of Ω0 with its subspace measure.

(g) Suppose that 1 ≤ r′ ≤ r, and that µ
(r′)
W is Wiener measure on C([0,∞[ ;Rr

′

)0. Define P : Ω →
C([0,∞[ ;Rr

′

)0 by setting (Pω)(t)(i) = ω(t)(i) for t ≥ 0, i < r′ and ω ∈ Ω. Then µ
(r′)
W is the image measure

µWP
−1.

proof The following arguments will unscrupulously identify C([0,∞[ ;Rr)0 with C([0,∞[)r0, and Rr×[0,∞[

with (Rr)[0,∞[ and (R[0,∞[)r.

(a) Because µW is the subspace measure on Ω induced by µ̂r (477Da), the subspace measure ν on Ω0

induced by µW is also the subspace measure on Ω0 induced by µ̂r (214Ce). If E ⊆ Ω0 is measured by ν,
there is an F ∈ dom µ̂r such that E = F ∩ Ω0, and now

νE = µ̂rF = µ̂rf−1[F ] = ν(Ω0 ∩ f−1[F ]) = ν(f↾Ω0)−1[E].

As E is arbitrary, f↾Ω0 is inverse-measure-preserving for ν.

(b) By 456Ba, µ̂rT̂−1 is a centered Gaussian distribution on Rr×[0,∞[. The hypothesis asserts that its

covariance matrix is the same as that of µ̂r (477Db), so that µ̂r = µ̂rT̂−1 (456Bb), that is, T̂ is inverse-
measure-preserving for µ̂r.

(c) Define Ŝt : Rr×[0,∞[ → Rr×[0,∞[ by setting (Ŝtω)(i, s) = ω(i, s+t)−ω(i, s), this time for ω ∈ Rr×[0,∞[,

i < r and s ≥ 0. Then Ŝt is linear, and for s, u ∈ [0,∞[, i, j < r

∫
(Ŝtω)(i, s)(Ŝtω)(j, u)µr(dω)

=

∫
(ω(i, s+ t) − ω(t))(ω(j, u+ t) − ω(j, t))µ̂r(dω)

= 0 if i 6= j,

= min(s+ t, u+ t) − min(s+ t, t)

− min(t, u+ t) + min(t, t) = min(s, u) if i = j.

By (b), Ŝt is inverse-measure-preserving for µ̂r. Now Ŝt[Ω] ⊆ Ω, so St = Ŝt↾Ω is inverse-measure-preserving
for µW , by (a).

(d) If we define T̂ : (Rr)[0,∞[ → (Rr)[0,∞[ by setting (T̂ )(ω)(t) = T (ω(t)) for x ∈ (Rr)[0,∞[ and t ≥ 0,

then T̂ is linear. Suppose that T is defined by the matrix 〈αij〉i,j<r. For ω ∈ Rr×[0,∞[, t ∈ [0,∞[ and i < r,

(T̂ ω)(i, t) =
∑r−1
k=0 αikω(k, t).

So, for i, j < r and s, t ≥ 0,

∫
(T̂ ω)(i, s)(T̂ ω)(j, t)µ̂r(dω) =

r−1∑

k=0

r−1∑

l=0

αikαjl

∫
ω(k, s)ω(l, t)µ̂r(dω)

=

r−1∑

k=0

αikαjk min(s, t)

= min(s, t) if i = j,

= 0 if i 6= j.
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So T̂ is µ̂r-inverse-measure-preserving. If we think of T̂ as operating on (Rr)[0,∞[, then T̂ (ω) = Tω is

continuous for every ω ∈ C([0,∞[ ;Rr), so T̂ [Ω] ⊆ Ω and T̃ = T̂ ↾Ω is µW -inverse-measure-preserving.

Now the same argument applies to T−1, so T̃−1 = (T−1)∼ also is inverse-measure-preserving, and T̃ is
an automorphism of (Ω, µW ).

(e) This time, we have Ûα : Rr×[0,∞[ → Rr×[0,∞[ defined by the formula (Ûαω)(i, t) =
1√
α
ω(i, αt) for

i < r, t ≥ 0 and ω ∈ Rr×[0,∞[. Once again, Ûα is linear. This time,

∫
(Ûαω)(i, s)(Ûαω)(j, t)µ̂r(dω) =

1

α

∫
ω(i, αs)ω(j, αt)µ̂r(dω)

= 0 if i 6= j,

=
1

α
min(αs, αt) = min(s, t) if i = j.

As before, it follows that Ûα is µ̂r-inverse-measure-preserving, so that Uα = Ûα↾Ω is µW -inverse-measure-
preserving. In the same way as in (d), U−1

α = U1/α is µW -inverse-measure-preserving, so Uα is an automor-
phism of (Ω, µW ).

(f) Define R̂ : Rr×[0,∞[ → Rr×[0,∞[ by setting

R̂(ω)(i, t) = tω(i,
1

t
) if i < r and t > 0,

= ω(i, 0) if i < r and t = 0.

Then, if i, j < r and s, t > 0,

∫
(R̂ω)(i, s)(R̂ω)(j, t)µ̂r(dω) = st

∫
ω(i,

1

s
)ω(j,

1

t
)µ̂r(dω)

= 0 if i 6= j,

= stmin(
1

s
,
1

t
) = min(s, t) if i = j.

If s = 0, then (R̂ω)(i, s) = ω(i, s) = 0 for almost every ω, so that
∫

(R̂ω)(i, s)(R̂ω)(j, t)µ̂r(dω) = 0; and

similarly if t = 0. So R̂ is µ̂r-inverse-measure-preserving.
At this point I think we need a new argument. Consider the set

E = {ω : ω ∈ (Rr)[0,∞[, limq∈Q,q↓0 ω(q) = 0}.

Then E is a Baire set in (Rr)[0,∞[ ∼= Rr×[0,∞[. Since E ⊇ Ω, µ̂rE = 1. Consequently µ̂rR̂−1[E] = 1. But,
for ω ∈ (Rr)[0,∞[,

ω ∈ R̂−1[E] ⇐⇒ 0 = limq∈Q,q↓0(R̂ω)(q) = limq∈Q,q↓0 qω(
1

q
) = limq∈Q,q→∞

1

q
ω(q).

So

Ω0 = {ω : ω ∈ Ω, lim
t→∞

1

t
ω(t) = 0} = {ω : ω ∈ Ω, lim

q∈Q,q→∞
1

q
ω(q) = 0}

(because every member of Ω is continuous)

= Ω ∩ R̂−1[E]

is µW -conegligible. Next, for ω ∈ Ω0, R̂ω is continuous on ]0,∞[ and

0 = ω(0) = lim
t→∞

1

t
ω(t) = lim

t↓0
ω(t)

= (R̂ω)(0) = lim
t→∞

(R̂ω)(
1

t
) = lim

t↓0
t(R̂ω)(

1

t
)

= lim
t↓0

(R̂ω)(t) = lim
t→∞

1

t
(R̂ω)(t),
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so R̂ω ∈ Ω0. By (a), R = R̂↾Ω0 is inverse-measure-preserving for the subspace measure ν = (µW )Ω0
; being

an involution, it is an automorphism of (Ω0, ν).

(g) If we identify µW and µ
(r′)
W with µrW1 and µr

′

W1, as in 477Da, this is elementary.

477F Proposition Let r ≥ 1 be an integer. Then Wiener measure on Ω = C([0,∞[ ;Rr)0 is strictly
positive for the topology Tc of uniform convergence on compact sets.

proof (a) Let I be a partition of [0,∞[ into bounded intervals (open, closed or half-open). As usual, set
Xt(ω) = ω(t) for t ∈ [0,∞[ and ω ∈ (Rr)[0,∞[. Define 〈Yt〉t≥0, 〈Zt〉t≥0 as follows. If t ∈ I ∈ I, a = inf I and
b = sup I, then

Yt = Xa +
t−a

b−a
(Xb −Xa) if a < b,

= Xa = Xt = Xb if a = b,

Zt = Xt − Yt.

(i) With respect to the centered Gaussian distribution µ̂r on (R[0,∞[)r ∼= (Rr)[0,∞[, (〈Yt〉t≥0, 〈Zt〉t≥0)
is a centered Gaussian process. PPP The map ω 7→ (〈Yt(ω)〉t≥0, 〈Zt(ω)〉t≥0) is linear and continuous, so we

can apply 456Ba (strictly speaking, we apply this to the family (〈Y (i)
t (ω)〉i<r,t≥0, 〈Z(i)

t (ω)〉i<r,t≥0) regarded

as linear operators from Rr×[0,∞[ to its square). QQQ

(ii) If s, t ∈ [0,∞[ then E(Ys × Yt) = E(Xs × Yt). PPP Let I, J be the members of I containing s, t
respectively; set a = min I, b = max I, c = min J and d = max J .

case 1 If a = b then Ys = Xs and we can stop.

case 2 If a < b ≤ c, then

E(Xa ×Xc) = E(Xa ×Xd) = a, E(Xa × Yt) = a,

E(Xb ×Xc) = E(Xb ×Xd) = b, E(Xb × Yt) = b,

E(Xs ×Xc) = E(Xs ×Xd) = s, E(Xs × Yt) = s,

E(Ys × Yt) = a+
s−a

b−a
(b− a) = s = E(Xs × Yt).

case 3 If d ≤ a < b, then

c = E(Xs ×Xc) = E(Xa ×Xc) = E(Xb ×Xc) = E(Ys ×Xc),

d = E(Xs ×Xd) = E(Xa ×Xd) = E(Xb ×Xd) = E(Ys ×Xd);

since Yt is a convex combination of Xc and Xd, E(Ys × Yt) = E(Xs × Yt).

case 4 If a = c < b = d, then

E(Xa × Yt) = E(Xa ×Xa) +
t−a

b−a
E(Xa × (Xb −Xa)) = a,

E(Xb × Yt) = E(Xb ×Xa) +
t−a

b−a
E(Xb × (Xb −Xa)) = a+

t−a

b−a
(b− a) = t,

E(Xs × Yt) = E(Xs ×Xa) +
t−a

b−a
E(Xs × (Xb −Xa)) = a+

t−a

b−a
(s− a),

E(Ys × Yt) = E(Xa × Yt) +
s−a

b−a
E((Xb −Xa) × Yt)

= a+
s−a

b−a
(t− a) = E(Xs × Yt). QQQ
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(iii) Accordingly E(Zs × Yt) = 0 for all s, t ≥ 0. It follows that if Σ1, Σ2 are the σ-algebras of subsets
of (Rr)[0,∞[ defined by {Yt : t ≥ 0} and {Zt : t ≥ 0} respectively, Σ1 and Σ2 are µ̂r-independent (456Eb).

(b) Observe next that if x1, . . . , xn ∈ Rr, 0 < t1 ≤ . . . ≤ tn and δ > 0, then µ̂r{ω : ‖ω(ti) − xi‖ ≤ δ
for 1 ≤ i ≤ n} is greater than 0. PPP Set x0 = 0 in Rr and t0 = 0. For each i < n, the distribution of

1√
ti+1−ti

(Xti+1
−Xti) is the standard Gaussian distribution µrG on Rr, which has strictly positive probability

density function with respect to Lebesgue measure. So

Pr(‖(Xti+1
−Xti) − (xi+1 − xi)‖ ≤ 1

n
δ) = µrG{x : ‖

√
ti+1 − tix− xi+1 + xi‖ ≤ 1

n
δ}

> 0.

Next, Xt1 −Xt0 , . . . , Xtn −Xtn−1
are independent, so

0 <
∏

i<n

Pr(‖(Xti+1
−Xti) − (xi+1 − xi)‖ ≤ 1

n
δ)

= Pr(‖(Xti+1
−Xti) − (xi+1 − xi)‖ ≤ 1

n
δ for every i < n)

≤ Pr(‖Xti − xi‖ ≤ δ for every i ≤ n). QQQ

(c) Let G ⊆ Ω be a non-empty Tc-open set. Then there are ω0 ∈ Ω, m ∈ N and δ > 0 such that G
includes

V = {ω : ω ∈ Ω, ‖ω(t) − ω0(t)‖ ≤ 6δ for every t ∈ [0,m]}.

For n ∈ N, let Fn be

{ω : ω ∈ (Rr)[0,∞[, ‖ω(q) − ω(q′)‖ ≤ δ

whenever q, q′ ∈ Q ∩ [0,m] and |q − q′| ≤ 2−n}.
Then Ω ⊆ ⋃

n∈N Fn so there is an n ≥ 0 such that ω0 ∈ Fn and µ̂rFn > 0. Let I be {[2−nk, 2−n(k + 1)[ :
k ∈ N}, and let 〈Yt〉t≥0, 〈Zt〉t≥0 be the families of random variables defined from I by the method of
(a) above, with corresponding independent σ-algebras Σ1, Σ2. If ω ∈ Fn, then ‖Zt(ω)‖ ≤ δ for every
t ∈ Q ∩ [0,m]. PPP If t ∈ [a, b[ ∈ I, then b − a = 2−n so ‖Xt(ω) −Xa(ω)‖, ‖Xt(ω) −Xb(ω)‖ and therefore
‖Zt(ω)‖ = ‖Xt(ω) − Yt(ω)‖ are all at most δ. QQQ Set

F = {ω : ω ∈ (Rr)[0,∞[, ‖Zt(ω)‖ ≤ δ for every t ∈ Q ∩ [0,m]};

then F ∈ Σ2 and µ̂rF > 0.
Next, set

E = {ω : ω ∈ (Rr)[0,∞[, ‖ω(2−nk) − ω0(2−nk)‖ ≤ δ for 1 ≤ k ≤ 2nm}.

By (b), µ̂rE > 0. But since Y2−nk(ω) = X2−nk(ω) = ω(2−nk) whenever k ≤ 2nm, E ∈ Σ1. Accordingly
µ̂r(E ∩ F ) = µ̂rE · µ̂rF > 0. But E ∩ F ∩ Ω ⊆ V . PPP If ω ∈ E ∩ F ∩ Ω, then t 7→ Xt(ω), t 7→ Yt(ω) and
t 7→ Zt(ω) are all continuous, so ‖Zt(ω)‖ ≤ δ for every t ∈ [0,m]. If t ∈ [0,m], let k < 2nm be such that
2−nk ≤ t ≤ 2−n(k + 1). Then

‖ω(t) − ω0(t)‖ ≤ ‖ω(t) − ω(2−nk)‖ + ‖ω(2−nk) − ω0(2−nk)‖ + ‖ω0(2−nk) − ω0(t)‖
≤ ‖Zt(ω)‖ + ‖Yt(ω) − Y2−nk(ω)‖ + 2δ

≤ δ + ‖ω(2−n(k + 1)) − ω(2−nk)‖ + 2δ

≤ ‖ω(2−n(k + 1)) − ω0(2−n(k + 1))‖ + ‖ω0(2−n(k + 1)) − ω0(2−nk)‖
+ ‖ω0(2−nk) − ω(2−nk)‖ + 3δ

≤ 6δ.

As t is arbitrary, ω ∈ V . QQQ
Accordingly
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µWG ≥ µW (E ∩ F ∩ Ω) = µ̂r(E ∩ F ) > 0.

As G is arbitrary, µW is strictly positive.

477G The strong Markov property With the identification in 477Dd, we are ready for one of the
most important properties of Brownian motion.

Theorem Suppose that r ≥ 1, µW is Wiener measure on Ω = C([0,∞[ ;Rr)0 and Σ is its domain. For t ≥ 0
let Σt be

{F : F ∈ Σ, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and ω′↾[0, t] = ω↾[0, t]},

Σ+
t =

⋂
s>t Σs,

and let τ : Ω → [0,∞] be a stopping time adapted to the family 〈Σ+
t 〉t≥0. Define φτ : Ω × Ω → Ω by saying

that

φτ (ω, ω′)(t) = ω(t) if t ≤ τ(ω),

= ω(τ(ω)) + ω′(t− τ(ω)) if t ≥ τ(ω).

Then φτ is inverse-measure-preserving for µW × µW and µW .

proof (a) At this point I apply the general theory of §455 in something like its full strength. As in 477Dd,
let 〈λt〉t>0 be the standard family of Gaussian distributions on Rr, ν̈ the corresponding measure on the

space Cdlg of càdlàg functions from [0,∞[ to Rr, and Σ̈ its domain; then ν̈Ω = 1 and µW is the subspace

measure on Ω induced by ν̈. As in 455U, let Σ̈t be

{F : F ∈ Σ̈, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Cdlg and ω′↾[0, t] = ω↾[0, t]},

and Σ̈+
t =

⋂
s>t Σ̈s, for t > 0.

(b) For ω ∈ Cdlg set

τ̈(ω) = inf{t : there is an ω′ ∈ Ω such that ω′↾[0, t] = ω↾[0, t] and τ(ω′) ≤ t},

counting inf ∅ as ∞. Then τ̈ is a stopping time adapted to 〈Σ̈+
t 〉t≥0. PPP For t ≥ 0, set

Ft = {ω : ω ∈ Ω, τ(ω) < t} ∈ Σt

(455Lb), and

F ′
t = {ω : ω ∈ Cdlg, there is an ω′ ∈ Ft such that ω↾[0, t] = ω′↾[0, t]}.

Since Ft ∈ Σt, F
′
t ∩ Ω = Ft; as Ω is ν̈-conegligible and ν̈ is complete, F ′

t ∈ Σ̈; now of course F ′
t ∈ Σ̈t. If

ω ∈ F ′
t , let ω′ ∈ Ft be such that ω↾[0, t] = ω′↾[0, t]; then ω′ witnesses that τ̈(ω) ≤ τ(ω′) < t. If ω ∈ Cdlg and

τ̈(ω) < t, let q < t and ω′ ∈ Ω be such that q is rational, ω↾[0, q] = ω′↾[0, q] and τ(ω′) < q; then

ω ∈ F ′
q ∈ Σ̈q ⊆ Σ̈t.

This shows that

{ω : ω ∈ Cdlg, τ̈(ω) < t} =
⋃
q∈[0,t]∩Q F

′
q ∈ Σ̈t.

By 455Lb in the other direction, τ̈ is a stopping time adapted to 〈Σ̈+
t 〉t≥0. QQQ

(c) By 455U, φ̈ : Cdlg × Cdlg → Cdlg is inverse-measure-preserving for ν̈ × ν̈ and ν̈, where

φ̈(ω, ω′)(t) = ω(t) if t < τ̈(ω),

= ω(τ̈(ω)) + ω′(t− τ̈(ω)) if t ≥ τ̈(ω).

Now φτ = φ̈↾Ω×Ω and µW × µW is the subspace measure on Ω×Ω induced by ν̈ × ν̈ (251Q), so φτ also is
inverse-measure-preserving.

477H Some families of σ-algebras The σ-algebras considered in Theorem 477G can be looked at in
other ways which are sometimes useful.
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Proposition Let r ≥ 1 be an integer, µW r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0 and Σ its

domain. Set X
(i)
t (ω) = ω(t)(i) for t ≥ 0 and i < r. For I ⊆ [0,∞[, let TI be the σ-algebra of subsets of Ω

generated by {X(i)
s −X

(i)
t : s, t ∈ I, i < r}, and T̂I the σ-algebra {E△F : E ∈ TI , µWF = 0}.

(a) T[0,∞[ is the Borel σ-algebra of Ω either for the topology of pointwise convergence inherited from

(Rr)[0,∞[ or Rr×[0,∞[, or for the topology of uniform convergence on compact sets.

(b) If I is a family of subsets of [0,∞[ such that for all distinct I, J ∈ I either sup I ≤ inf J or sup J ≤ inf I

(counting inf ∅ as ∞ and sup ∅ as 0), then 〈T̂I〉I∈I is an independent family of σ-algebras.

(c) For t ≥ 0, let Σt be the σ-algebra of sets F ∈ Σ such that ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and

ω′↾[0, t] = ω↾[0, t], and Σ+
t =

⋂
s>t Σs. Write T̂

+

[0,t] for
⋂
s>t T̂[0,s]. Then, for any t ≥ 0,

T[0,t] ⊆ Σt ⊆ Σ+
t ⊆ T̂

+

[0,t] = T̂[0,t] = T̂[0,t[.

(d) On the tail σ-algebra
⋂
t≥0 T̂[t,∞[, µW takes only the values 0 and 1.

proof (a) Write B(Ω,Tp), B(Ω,Tc) for the Borel algebras under the topologies Tp, Tc of pointwise conver-

gence and uniform convergence on compact sets. Then T[0,∞[ ⊆ B(Ω,Tp) because the functionals X
(i)
t are

all Tp-continuous, and B(Ω,Tp) ⊆ B(Ω,Tc) because Tp ⊆ Tc.

Now T[0,∞[ includes a base for Tc. PPP Suppose that ω ∈ Ω, n ∈ N and V = {ω′ : ω′ ∈ Ω, supt∈[0,n] ‖ω′(t)−
ω(t)‖ < 2−n}. Then (because every member of Ω is continuous)

V =
⋃
m∈N

⋂
q∈Q∩[0,n]{ω′ :

∑r−1
i=0 |X(i)

q (ω′) −X
(i)
q (ω)|2 ≤ 2−2n − 2−m}

belongs to T[0,∞[; but such sets form a base for Tc. QQQ

Since Tc is separable and metrizable, B(Ω,Tc) ⊆ T[0,∞[ (4A3Da).

(b)(i) Suppose to begin with that I is finite and every member of I is finite. If we enumerate {0}∪⋃ I in

ascending order as 〈tj〉j≤n, 〈X(i)
tj+1

−X
(i)
tj 〉j<n,i<r is an independent family of real-valued random variables.

Taking JI = {tj : j < n, tj ∈ I, tj+1 ∈ I} for I ∈ I, {X(i)
tj+1

− X
(i)
tj : j ∈ JI} generates TI for each

I ∈ I, because of the separation property of the members of I, and 〈JI〉I∈I is disjoint. By 272K, 〈TI〉I∈I
is independent.

(ii) Now suppose only that I is finite and not empty. For I ∈ I, set T′
I =

⋃
J⊆I is finite TJ for I ∈ I;

then T′
I is an algebra of sets, and TI is the σ-algebra generated by T′

I . If EI ∈ T′
I for I ∈ I, there are

JI ∈ [I]<ω such that EI ∈ TJI for I ∈ I, so µW (
⋂
I∈I EI) =

∏
I∈I µW (EI), by (α). Inducing on n,

and using the Monotone Class Theorem for the inductive step, we see that µW (
⋂
I∈I EI) =

∏
I∈I µW (EI)

whenever EI ∈ TI for every I ∈ I and #({I : EI /∈ T′
I}) ≤ n. At the end of the induction, with n = #(I),

we have µW (
⋂
I∈I EI) =

∏
I∈I µW (EI) whenever EI ∈ TI for every I ∈ I; that is, 〈TI〉I∈I is independent.

(iii) Thus 〈TI〉I∈J is independent for every non-empty finite J ⊆ I, and 〈TI〉I∈I is independent
(272Bb).

(c)(i) If s, s′ ≤ t and i < r then X
(i)
s , X

(i)
s′ and X

(i)
s −X

(i)
s′ are Σt-measurable, so T[0,t] ⊆ Σt. Of course

Σt ⊆ Σ+
t .

(ii) Σt ⊆ T̂[0,t]. PPP Suppose that F ∈ Σt. Set D = [0, t] ∩ (Q ∪ {t}), and set g(ω) = ω↾D for ω ∈ Ω;

then g : Ω → (Rr)D is continuous (when Ω is given the topology of pointwise convergence inherited from
(Rr)[0,∞[, for definiteness), and F = g−1[g[F ]]. Now the Borel σ-algebra of (Rr)D ∼= Rr×D is the σ-algebra
generated by the functionals ω 7→ ω(t)(i) : (Rr)D → R for t ∈ D and i < r (4A3D(c-i)), and for such t and

i, ω 7→ g(ω)(t)(i) = X
(i)
t (ω) is T[0,t]-measurable; so g is T[0,t]-measurable. Now there is a sequence 〈Kn〉n∈N

of compact subsets of F such that supn∈N µWKn = µWF . In this case, g[Kn] ⊆ (Rr)D is compact and
K ′
n = g−1[g[Kn]] belongs to T[0,t], for each n. So F ′ =

⋃
n∈NK

′
n belongs to T[0,t], and µW (F \ F ′) = 0.

Similarly, applying the same argument to Ω \ F , we have an F ′′ ∈ T[0,t] such that F ′′ ⊇ F and µW (F ′′ \
F ) = 0. So F ∈ T̂[0,t]. QQQ

Consequently Σ+
t ⊆ T̂

+

[0,t].
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(iii)(ααα) Let A be the family of those sets G ∈ Σ such that χG has a conditional expectation on T̂
+

[0,t]

which is T[0,t]-measurable. Then A is a Dynkin class (definition: 136A). If E ∈ T[0,t] and F ∈ T[s,∞[ where

s > t, then (µWF )χΩ is a conditional expectation of χF on T̂
+

[0,t], because T̂
+

[0,t] ⊆ T̂[0,s] and T[s,∞[ are

independent. As E ∈ T̂
+

[0,t], (µWF )χE is a conditional expectation of χ(E ∩ F ) on T̂
+

[0,t] (233Eg), and

E ∩ F ∈ A. Since E = {E ∩ F : E ∈ Σt, F ∈ ⋃
s>t T[s,∞[} is closed under finite intersections, the Monotone

Class Theorem, in the form 136B, shows that A includes the σ-algebra T generated by E ; note that T

includes T[0,t] ∪ T[s,∞[ whenever s > t. Now X
(i)
u −X

(i)
s is T-measurable whenever 0 ≤ s ≤ u. PPP If u ≤ t,

X
(i)
u −X(i)

s is T[0,t]-measurable, therefore T-measurable; if t < s, X
(i)
u −X(i)

s is T[s,∞[-measurable, therefore
T-measurable. If s ≤ t < u, let 〈tn〉n∈N be a sequence in ]t, u] with limit t. Then

X
(i)
u −X

(i)
s = limn→∞(X

(i)
u −X

(i)
tn ) + (X

(i)
t −X

(i)
s )

is T-measurable. QQQ

(βββ) This means that T includes T[0,∞[. It follows that A = Σ, because for any G ∈ Σ there is a
G′ ∈ T[0,∞[ such that G△G′ is negligible, and now χG and χG′ have the same conditional expectations. So

T̂
+

[0,t] = T̂[0,t]. PPP Of course T̂
+

[0,t] ⊇ T̂[0,t]. If H ∈ T̂
+

[0,t] there is a T[0,t]-measurable function g which is a

conditional expectation of χH on T̂
+

[0,t]. But in this case g =a.e. χH, so, setting E = {ω : g(ω) = 1} ∈ T[0,t],

E△H is negligible and H ∈ T̂[0,t]. Thus T̂
+

[0,t] ⊆ T̂[0,t]. QQQ

(γγγ) Observe next that X
(i)
t is T[0,t[-measurable for i < r. PPP If t = 0 then X

(i)
t is the constant

function with value 0. Otherwise, there is a strictly increasing sequence 〈sn〉n∈N in [0, t[ with limit t, so that

X
(i)
t = limn→∞X

(i)
sn is the limit of a sequence of T[0,t[-measurable functions and is itself T[0,t[-measurable. QQQ

But this means that T[0,t] = T[0,t[, so T̂
+

[0,t] ⊆ T̂[0,t] = T̂[0,t[. In the other direction, of course T[0,t[ ⊆ T+
[0,t]

and T̂[0,t[ ⊆ T̂
+

[0,t], so we have equality.

(d) Set T′ =
⋃
t≥0 T[0,t]. If E ∈ ⋂

t≥0 T̂[t,∞[, then µW (E ∩ F ) = µWE · µWF for every F ∈ T′. By the

Monotone Class Theorem again, µW (E ∩ F ) = µWE · µWF for every F in the σ-algebra generated by T′,
which is B(Ω), by (a). Now µW E (definition: 234M4) and (µWE)µW are Radon measures on Ω (416Sa)
which agree on B(Ω), so must be identical. In particular,

µWE = (µW E)(E) = (µWE)2

and µWE must be either 0 or 1.

477I Hitting times In 455M I introduced ‘hitting times’. I give a paragraph now to these in the special
case of Brownian motion; such stopping times will dominate the applications of the theory in §§478-479.
Take r ≥ 1, and let µW be Wiener measure on Ω = C([0,∞[ ;Rr)0 and Σ its domain; for t ≥ 0 define Σ+

t

and T[0,t] as in 477G and 477H. Give Ω its topology of uniform convergence on compact sets.

(a) Suppose that A ⊆ Rr. For ω ∈ Ω set τ(ω) = inf{t : t ∈ [0,∞[, ω(t) ∈ A}, counting inf ∅ as
∞. I will call τ the Brownian hitting time to A, or the Brownian exit time from Rr \ A. I will
say that the Brownian hitting probability of A, or the Brownian exit probability of Rr \ A, is
hp(A) = µW {ω : τ(ω) <∞} if this is defined. More generally, I will write

hp∗(A) = µ∗
W {ω : τ(ω) <∞} = µ∗

W {ω : ω−1[A] 6= ∅},

the outer Brownian hitting probability, for any A ⊆ Rr.

(b) If A ⊆ Rr is analytic, the Brownian hitting time to A is a stopping time adapted to the family

〈Σ+
t 〉t≥0. PPP Let Cdlg be the space of càdlàg functions from [0,∞[ to Rr, and define Σ̈ as in the proof

of 477G; let τ̈ be the hitting time on Cdlg defined by A. By 455Ma, τ̈ is Σ̈-measurable, so τ = τ̈↾Ω is
Σ-measurable. Now (as in 455Mb) {ω : τ(ω) < t} ∈ Σt for every t, so τ is adapted to 〈Σ+

t 〉t≥0. QQQ
In particular, there is a well-defined Brownian hitting probability of A.

4Formerly 234E.
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(c) Let F ⊆ Rr be a closed set, and τ the Brownian hitting time to F .

(i) If τ(ω) <∞, then

τ(ω) = inf ω−1[F ] = minω−1[F ]

because ω is continuous. If 0 /∈ F and τ(ω) <∞, then ω(τ(ω)) ∈ ∂F .

(ii) τ is lower semi-continuous. PPP For any t ∈ [0,∞[,

{ω : τ(ω) > t} = {ω : ω(s) /∈ F for every s ≤ t}
is open in Ω. QQQ

(iii) τ is adapted to 〈T[0,t]〉t≥0. PPP Let 〈Gn〉n∈N be a non-increasing sequence of open sets including F

such that F =
⋂
n∈NGn. Then, for ω ∈ Ω and t > 0,

τ(ω) ≤ t ⇐⇒ ω[ [0, t] ] ∩ F 6= ∅
(because ω is continuous)

⇐⇒ ω[ [0, t] ] ∩Gn 6= ∅ for every n ∈ N

(because ω[ [0, t] ] is compact)

⇐⇒ for every n ∈ N there is a rational q ≤ t such that ω(q) ∈ Gn.

So

{ω : τ(ω) ≤ t} =
⋂
n∈N

⋃
q∈Q∩[0,t]{ω : ω(q) ∈ Gn} ∈ T[0,t].

Of course {ω : τ(ω) = 0} is either Ω (if 0 ∈ F ) or ∅ (if 0 /∈ F ), so belongs to T[0,0]. QQQ
In the language of 477G, we have T[0,t] ⊆ Σt for every t ≥ 0 (477Hc), so τ must also be adapted to

〈Σt〉t≥0.

(d) If A ⊆ Rr is any set, then

hp∗(A) = min{hp(B) : B ⊇ A is an analytic set} = min{hp(E) : E ⊇ A is a Gδ set}.

PPP Of course

hp∗(A) ≤ inf{hp(B) : B ⊇ A is an analytic set}
= min{hp(B) : B ⊇ A is an analytic set}
≤ inf{hp(E) : E ⊇ A is a Gδ set} = min{hp(E) : E ⊇ A is a Gδ set}

just because hp∗ is an order-preserving function. If γ > hp∗(A), there is a compact K ⊆ Ω such that
ω−1[A] = ∅ for every ω ∈ K and µWK ≥ 1− γ. Now F = {ω(t) : ω ∈ K, t ∈ [0,∞[} is a Kσ set not meeting
A, so E = Rr \F is a Gδ set including A. Since ω−1[E] is empty for every ω ∈ K, hp(E) ≤ µW (Ω \K) ≤ γ.
As γ is arbitrary,

inf{hp(E) : E ⊇ A is a Gδ set} ≤ hp∗(A)

and we have equality throughout. QQQ

(e) If A ⊆ Rr is analytic, then hp(A) = sup{hp(K) : K ⊆ A is compact}. PPP Suppose that γ < hp(A).
Set E = {(ω, t) : ω ∈ Ω, t ≥ 0, ω(t) ∈ A}. Then E is analytic and hp(A) = µWπ1[E], where π1(ω, t) = ω
for (ω, t) ∈ E. Let λ be the subspace measure (µW )π1[E]. By 433D, there is a Radon measure λ′ on E

such that λ = λ′π−1
1 . Then λ′E = hp(A) > γ, so there is a compact set L ⊆ E such that λ′L ≥ γ. Set

K = {ω(t) : (ω, t) ∈ L}; then K ⊆ Rr is compact, and

hp(K) = µW {ω : ω(t) ∈ K for some t ≥ 0} ≥ µWπ1[L] ≥ λ′L ≥ γ.

As γ is arbitrary, hp(A) ≤ sup{hp(K) : K ⊆ A is compact}; the reverse inequality is trivial. QQQ

Remark 477Id-477Ie are characteristic of Choquet capacities (432J-432L); see 478Xe below.
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477J As an example of the use of 477G, I give a classical result on one-dimensional Brownian motion.

Proposition Let µW be Wiener measure on Ω = C([0,∞[)0. Set Xt(ω) = ω(t) for ω ∈ Ω. Then

Pr(maxs≤tXs ≥ α) = 2 Pr(Xt ≥ α) =
2√
2π

∫∞
α/

√
t
e−u

2/2du

whenever t > 0 and α ≥ 0.

proof Let τ be the Brownian hitting time to F = {x : x ∈ R, x ≥ α}; because F is closed, τ is a stopping
time adapted to 〈Σt〉t≥0, as in 477Ic. Let φτ : Ω × Ω → Ω be the corresponding inverse-measure-preserving
function as in 477G, and set E = {ω : τ(ω) < t}. Note that as ω(τ(ω)) = α whenever τ(ω) is finite,
Pr(τ = t) ≤ Pr(Xt = α) = 0, and

µWE = Pr(τ ≤ t) = Pr(maxs≤tXs ≥ α).

Now

Pr(Xt ≥ α) = µW {ω : ω(t) ≥ α} = µ2
W {(ω, ω′) : φτ (ω, ω′)(t) ≥ α}

= µ2
W {(ω, ω′) : τ(ω) ≤ t, φτ (ω, ω′)(t) ≥ α}

(because if τ(ω) > t then φτ (ω, ω′)(t) = ω(t) < α)

= µ2
W {(ω, ω′) : τ(ω) < t, φτ (ω, ω′)(t) ≥ α}

(because {ω : τ(ω) = t} is negligible)

= µ2
W {(ω, ω′) : τ(ω) < t, ω(τ(ω)) + ω′(t− τ(ω)) ≥ α}

= µ2
W {(ω, ω′) : τ(ω) < t, ω′(t− τ(ω)) ≥ 0}

=

∫

E

µW {ω′ : ω′(t− τ(ω)) ≥ 0}µW (dω)

=
1

2
µWE =

1

2
Pr(max

s≤t
Xs ≥ α).

To compute the value, observe that Xt has the same distribution as
√
tZ where Z is a standard normal

random variable, so that

Pr(Xt ≥ α) = Pr(Z ≥ α√
t
) =

1√
2π

∫∞
α/

√
t
e−u

2/2du.

477K Typical Brownian paths A vast amount is known concerning the nature of ‘typical’ members
of Ω; that is to say, a great many interesting µW -conegligible sets have been found. Here I will give only a
couple of basic results; the first because it is essential to any picture of Brownian motion, and the second
because it is relevant to a question in §479. Others are in 478M, 478Yi and 479R.

Proposition Let µW be one-dimensional Wiener measure on Ω = C([0,∞[)0. Then µW -almost every
element of Ω is nowhere differentiable.

proof Note first that if η > 0 and Z is a standard normal random variable, then Pr(|Z| ≤ η) ≤ η, because

the maximum value of the probability density function of Z is
1√
2π

≤ 1

2
. For m, n, k ∈ N, set

Fm = {ω : ω ∈ Ω and there is a t ∈ [0,m[ such that lim sups↓0
|ω(s)−ω(t)|

s−t
< m},

Emnk = {ω : ω ∈ Ω, |ω(2−n(k + 2)) − ω(2−n(k + 1))| ≤ 3 · 2−nm,

|ω(2−n(k + 3)) − ω(2−n(k + 2))| ≤ 5 · 2−nm,

|ω(2−n(k + 4)) − ω(2−n(k + 3))| ≤ 7 · 2−nm},

Emn =
⋃
k<2nmEmnk.
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Now we can estimate the measure of Emnk, because for any α, t ≥ 0, 2n/2(Xt+2−n − Xt) has a standard
normal distribution (taking Xt(ω) = ω(t), as usual), so

Pr(|Xt+2−n −Xt| ≤ α) ≤ 2n/2α;

since Emnk is the intersection of three independent sets of this type,

µWEmnk ≤ 2n/2 · 3 · 2−nm · 2n/2 · 5 · 2−nm · 2n/2 · 7 · 2−nm = 105m32−3n/2.

Accordingly

µWEmn ≤ ∑
k<2nm µWEmnk ≤ 105m42−n/2.

Next, observe that Fm ⊆ ⋃
l∈N

⋂
n≥lEmn. PPP If ω ∈ Fm, let t ∈ [0,m[ be such that lim sups↓0

|ω(s)−ω(t)|
s−t

<

m, and l ∈ N such that |ω(s)− ω(t)| ≤ m(s− t) whenever t < s ≤ t+ 4 · 2−l. Take any n ≥ l. Then there is
a k < 2nm such that 2−nk ≤ t < 2−n(k + 1). In this case,

|ω(2−n(k + j)) − ω(t)| ≤ 2−njm

for 1 ≤ j ≤ 4,

|ω(2−n(k + j + 1)) − ω(2−n(k + j))| ≤ (2j + 1)2−nm

for 1 ≤ j ≤ 3, and ω ∈ Emnk ⊆ Emn. QQQ

Since

µW (
⋃
l∈N

⋂
n≥lEmn) ≤ lim infn→∞ µWEmn = 0,

Fm is negligible. So F =
⋃
m∈N Fm is negligible. But F includes any member of ω which is differentiable at

any point of ]0,∞[, and more. So almost every path is nowhere differentiable.

477L Theorem Let r ≥ 1 be an integer, and µW Wiener measure on Ω = C([0,∞[ ;Rr)0; for s > 0 let
µHs be s-dimensional Hausdorff measure on Rr.

(a) (Taylor 53) {ω(t) : t ∈ [0,∞[} is µH2-negligible for µW -almost every ω.

(b) Now suppose that r ≥ 2. For ω ∈ Ω, let Fω be the compact set {ω(t) : t ∈ [0, 1]}. Then for µW -almost
every ω ∈ Ω, µHsFω = ∞ for every s ∈ ]0, 2[.

proof (a)(i) For 0 ≤ s ≤ t and ω ∈ Ω set Kst(ω) = {ω(u) : s ≤ u ≤ t} and dst(ω) = diamKst(ω). Note
that dst : Ω → [0,∞[ is continuous (for the topology of uniform convergence on compact sets, of course).

(ααα) If 0 ≤ s ≤ t then E(d2st) ≤ 8r(t − s). PPP As 〈Xu+s − Xs〉u≥0 and 〈Xu〉u≥0 have the same
distribution, dst has the same distribution as d0,t−s, and we may suppose that s = 0. [If you prefer: if
Ss : Ω → Ω is the shift operator of 477Ec, Kst(ω) = ω(s) +K0,t−s(Ssω), so dst(ω) = d0,t−s(Ssω), while Ss
is inverse-measure-preserving.] In this case,

d0t(ω)2 ≤ 4 maxs∈[0,t] ‖ω(s)‖2 ≤ 4
∑r−1
j=0 maxs∈[0,t] ω(s)(j)2.

For each j < r,

∫
max
s∈[0,t]

ω(s)(j)2µW (dω) =

∫ ∞

0

µW {ω : max
s∈[0,t]

ω(s)(j)2 ≥ β}dβ

≤
∫ ∞

0

µW {ω : max
s∈[0,t]

ω(s)(j) ≥
√
β}

+ µW {ω : min
s∈[0,t]

ω(s)(j) ≤ −
√
β}dβ

= 2

∫ ∞

0

µW {ω : max
s∈[0,t]

ω(s)(j) ≥
√
β}dβ

(because µW is invariant under reflections in Rr, see 477Ed)
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= 4

∫ ∞

0

µW {ω : ω(t)(j) ≥
√
β}dβ

(by 477J, applied to the jth coordinate projection of Ω onto C([0,∞[)0, which is inverse-measure-preserving,

by 477Da or 477Ed and 477Eg)

= 2

∫ ∞

0

µW {ω : ω(t)(j)2 ≥ β}dβ

(again because µW is symmetric)

= 2

∫

Ω

ω(t)(j)2µW (dω) = 2E(tZ2)

(where Z is a standard normal random variable)

= 2t.

Summing,

E(d20t) ≤ 4
∑r−1
j=0

∫
Ω

maxs∈[0,t] ω(s)(j)2µW (dω) ≤ 8rt. QQQ

(βββ) For any ǫ > 0, Pr(d01 ≤ ǫ) > 0. PPP {ω : d01(ω) ≤ ǫ} is a neighbourhood of 0 for the topology of
uniform convergence on compact sets, so has non-zero measure, by 477F. QQQ

(ii) For a non-empty finite set I ⊆ [0,∞[ and ω ∈ Ω set

gI(ω) =
∑n−1
j=0 dtj−1,tj (ω)2

where 〈tj〉j≤n enumerates I in increasing order. For 0 ≤ s ≤ t and ω ∈ Ω set

hst(ω) = inf{s,t}⊆I⊆[s,t] is finite gI(ω);

then hst is T[s,t]-measurable, in the language of 477H. PPP The point is that I 7→ gI(ω) is a continuous function
of the members of I, at least if we restrict attention to sets I of a fixed size. So if D is any countable dense
subset of [s, t] containing s and t,

hst = inf{s,t}⊆I⊆D is finite gI .

On the other hand, if I ⊆ D is enumerated as 〈ti〉i≤n,

gI(ω) =
∑n−1
i=0 maxu,u′∈D∩[ti,ti+1] ‖ω(u) − ω(u′)‖2,

so gI is T[s,t]-measurable. QQQ

(iii) We need the following facts about the hst.

(ααα) If 0 ≤ s ≤ t, then the distribution of hst is the same as the distribution of h0,t−s, again because
〈Xs+u −Xs〉u≥0 has the same distribution as 〈Xu〉u≥0. [In the language suggested in the proof of (i-α), we
have gs+I(ω) = gI(Ss(ω)) for any ω ∈ Ω and non-empty finite I ⊆ [0,∞[, so hst(ω) = h0,t−s(Ssω).]

(βββ) h0t has finite expectation. PPP h0t ≤ g{0,t} = d20t, so we can use (i). QQQ

(γγγ) hsu ≤ hst + htu if s ≤ t ≤ u. PPP If {s, t} ⊆ I ⊆ [s, t] and {t, u} ⊆ J ⊆ [t, u] then {s, u} ⊆ I ∪ J ⊆
[s, u] and gI∪J = gI + gJ . QQQ

(δδδ) If s ≤ t ≤ u then hst and htu are independent, because T[s,t] and T[t,u] are independent (477H(b-
i)).

(ǫǫǫ) The distribution of h0t is the same as the distribution of th01 whenever t ≥ 0. PPP The case t = 0

is trivial. For t > 0, define Ut : Ω → Ω by saying that Ut(ω)(s) =
1√
t
ω(ts), as in 477Ee. Then

Ksu(Ut(ω)) =
1√
t
Kts,tu(ω), dsu(Ut(ω)) =

1√
t
dts,tu(ω),

gI(Ut(ω)) =
1

t
gtI(ω), hsu(Ut(ω)) =

1

t
hts,tu(ω),
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whenever s ≤ u, {s, u} ⊆ I ⊆ [s, u] and ω ∈ Ω, and

µW {ω : th01(ω) ≥ α} = µW {ω : th01(Ut(ω)) ≥ α}
(because Ut is an automorphism of (Ω, µW ))

= µW {ω : h0t(ω) ≥ α}

for every α ∈ R. QQQ

(ζζζ) Consequently

E(hst) = E(h0,t−s) = (t− s)E(h01)

whenever s ≤ t, and

E(hst) + E(htu) = E(hsu)

whenever s ≤ t ≤ u. Since hst + htu ≥ hsu, by (iii), we must have hst + htu =a.e. hsu.

(ηηη) For any η > 0, Pr(h01 ≤ 4η2) > 0. PPP By (i-β), Pr(d01 ≤ 2η) > 0, and h01 ≤ g{0,1} = d201. QQQ

(iv) For t ≥ 0 let ϕt be the characteristic function of h0t, that is, ϕt(α) = E(exp(iαh0t)) for α ∈ R

(285Ab). Working through the facts listed above, we see that

ϕt(1) = E(exp(ih0t)) = E(exp(ith01))

(by (iii-ǫ))

= ϕ1(t),

ϕ1(s)ϕ1(t) = ϕs(1)ϕt(1) = E(exp(ih0s))E(exp(ih0t))

= E(exp(ih0s))E(exp(ihs,s+t))

(by (iii-α))

= E(exp(ih0s) exp(ihs,s+t))

(because h0s and hs,s+t are independent, by (c-iv))

= E(exp(i(h0s + hs,s+t))) = E(ih0,s+t)

(by (iii-ζ))

= ϕ1(s+ t),

for all s, t ≥ 0; while ϕ1 is differentiable, because h01 has finite expectation ((iii-α) above and 285Fd). It

follows that there is a γ ∈ R such that ϕ1(t) = eiγt for every t ∈ R. PPP Set γ =
1

i
ϕ′
1(0) = E(h01) (285Fd)

and ψ(t) = e−iγtϕ1(t) for t ∈ R. If t > 0, then

ϕ′
1(t) = lims↓0

1

s
(ϕ1(t+ s) − ϕ1(t)) = ϕ1(t) lims↓0

1

s
(ϕ1(s) − 1) = iϕ1(t)γ

and ψ′(t) = 0. Since ψ is continuous on [0,∞[ (285Fb), it must be constant, and ϕ1(t) = eiγtψ(0) = eiγt for
every t ≥ 0. As for negative t, we have

ϕ1(t) = ϕ1(−t) = e−iγt = eiγt

for t ≤ 0, by 285Fc. QQQ

(v) Thus we see that h01 has the same characteristic function as the Dirac measure concentrated at
γ, and this must therefore be the distribution of h01 (285M); that is, h01 =a.e. γ. Now (iii-η) tells us that
γ = 0.

Since h0t has the same distribution as th01, h0t =a.e. 0 for every t ≥ 0. But now observe that if t ≥ 0,
ω ∈ Ω and h0t(ω) = 0, then for any η > 0 there is a finite I ⊆ [0, t], containing 0 and t, such that gI(ω) ≤ η2.

This means that K0t(ω) can be covered by finitely many sets Ktj ,tj+1
(ω) with

∑n−1
j=0 diamKtj ,tj+1

(ω)2 ≤ η2.

All the diameters here must of course be less than or equal to η. As η is arbitrary, µH2K0t(ω) = 0.
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For each t ≥ 0, this is true for almost every ω. But this means that, for almost every ω, µH2K0n(ω) = 0
for every n, and µH2{ω(t) : t ≥ 0} = 0, as claimed.

(b)(i) To begin with, take a fixed s ∈ ]0, 2[. Let µL1 be Lebesgue measure on [0, 1]. For each ω ∈ Ω, let
ζω be the image measure µL1(ω↾[0, 1])−1 on Fω. Then

∫

Ω

∫

Fω

∫

Fω

1

‖x−y‖s
ζω(dx)ζω(dy)µW (dω)

=

∫

Ω

∫ 1

0

∫ 1

0

1

‖ω(t)−ω(u)‖s
dt duµW (dω)

=

∫ 1

0

∫ 1

0

∫

Ω

1

‖ω(t)−ω(u)‖s
µW (dω) dt du

(of course (ω, t, u) 7→ 1

‖ω(t)−ω(u)‖s
is continuous and non-negative, so there is no difficulty with the change

in order of integration)

= 2

∫ 1

0

∫ 1

u

∫

Ω

1

‖ω(t)−ω(u)‖s
µW (dω) dt du

= 2

∫ 1

0

∫ 1

u

∫

Ω

1

‖ω(t−u)‖s
µW (dω) dt du

(because Xt −Xu has the same distribution as Xt−u, as in (a-i-α))

= 2

∫ 1

0

∫ 1−u

0

∫

Ω

1

‖ω(t)‖s
µW (dω) dt du ≤ 2

∫ 1

0

∫

Ω

1

‖ω(t)‖s
µW (dω) dt

= 2

∫ 1

0

∫

Rr

1

(
√
2πt)r

1

‖x‖s
e−‖x‖2/2tµ(dx) dt

(here µ is Lebesgue measure on Rr)

=
2

(
√
2π)r

∫ 1

0

1

tr/2

∫ ∞

0

1

αs
· rβrαr−1e−α

2/2tdα dt

=
2rβr

(
√
2π)r

∫ 1

0

1

tr/2

∫ ∞

0

(β
√
t)r−1

(β
√
t)s

e−β
2/2

√
tdβ dt

=
2rβr

(
√
2π)r

∫ 1

0

1

ts/2
dt

∫ ∞

0

βr−s−1e−β
2/2dβ <∞

because
s

2
< 1 and r− s > 0. So

∫
Fω

∫
Fω

1

‖x−y‖s
ζω(dx)ζω(dy) is finite for almost every ω. Since ζω is always

a probability measure with support included in Fω, µHsFω = ∞ for all such ω (471Tb).

(ii) Setting sn = 2 − 2−n for each n, we see that, for almost every ω ∈ Ω, µHsnFω = ∞ for every n.
But for any such ω, µHsFω = ∞ for every s ∈ ]0, 2[, by 471L.

477X Basic exercises (a) Use 272Yc5 to simplify the formulae in the proof of 477B.

(b) Let µW be Wiener measure on Ω = C([0,∞[)0, and set Xt(ω) = ω(t) for t ≥ 0 and ω ∈ Ω. Let f be a

real-valued tempered function on R (definition: 284D). For x ∈ R and 0 < t < b, let ν
(t,b)
x be the distribution

of a normally distributed random variable with mean x and variance b− t, so that g(x, t) =
∫
f(y)ν

(t,b)
x (dy)

can be regarded as the expectation of f(Xb) given that Xt = x. (i) Show that g satisfies the backwards

heat equation 2
∂g

∂t
+

∂2g

∂x2
= 0. (ii) Interpret this in terms of the disintegration ν

(t,b)
x =

∫
ν
(u,b)
z ν

(t,u)
x (dz) as

u ↓ t.
5Formerly 272Ye.
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(c)(i) Show that the measure µ̂r of 477Da can be constructed directly by applying 455A with (Xt,Bt) =

(Rr,B(Rr)) for every t ≥ 0 and suitable Gaussian distributions ν
(s,t)
x on Rr. (ii) Show that the measure µ̂r

can be constructed by applying 455A to T = r× [0,∞[ with its lexicographic ordering and suitable Gaussian

distributions ν
(s,t)
x on R.

(d) Let r ≥ 1 be an integer. (i) Show that there is a centered Gaussian process 〈Yt〉t∈[0,1] = 〈Y (i)
t 〉t∈[0,1],i<r

such that E(Y
(i)
s × Y

(j)
t ) = 0 if i 6= j, min(s, t) − st otherwise. (ii) Show that if 〈Xt〉t≥0 is ordinary r-

dimensional Brownian motion, then 〈Yt〉t∈[0,1] has the same distribution as 〈Xt− tX1〉t∈[0,1]. (iii) Show that
the process 〈Yt〉t∈[0,1] (the Brownian bridge) can be represented by a Radon probability measure µbridge

on the space C([0, 1];Rr)00 of continuous functions from [0, 1] to Rr taking the value 0 at both ends of the
interval. (iv) For ω ∈ C([0, 1];Rr)00 define

↔

ω ∈ C([0, 1];Rr)00 by setting
↔

ω(t) = ω(1− t) for t ∈ [0, 1]. Show
that ω 7→ ↔

ω is an automorphism of (C([0, 1];Rr)00, µbridge).

(e) Let (Ω,Σ, µ) be a complete probability space and 〈Xt〉t≥0 a family of real-valued random variables
on Ω with independent increments. For I ⊆ [0,∞[ let TI be the σ-algebra generated by {Xs−Xt : s, t ∈ I}.
Let I be a family of subsets of [0,∞[ such that for all distinct I, J ∈ I either sup I ≤ inf J or sup J ≤ inf I.
Show that 〈TI〉I∈I is an independent family of σ-algebras.

(f) Suppose that H ⊆ Rr is an Fσ set and that τ : Ω → [0,∞] is the Brownian hitting time to H, as
defined in 477I. Show that τ is Borel measurable.

(g) Let µW be one-dimensional Wiener measure, and τ the hitting time to {1}. Show that the distribution

of τ has probability density function x 7→ 1

x
√
2πx

e−1/2x for x > 0.

(h) Let µW be one-dimensional Wiener measure on Ω = C([0,∞[)0. Show that, for µW -almost every
ω ∈ Ω, the total variation Var[s,t](ω) is infinite whenever 0 ≤ s < t.

477Y Further exercises (a) Write Dn for {2−ni : i ∈ N} and D =
⋃
n∈NDn, the set of dyadic rationals

in [0,∞[. For d ∈ D define fd ∈ C([0,∞[) as follows. If n ∈ N, fn(t) = 0 if t ≤ n, t− n if n ≤ t ≤ n+ 1, 1 if

t ≥ n+ 1. If d = 2−nk where n ≥ 1 and k ∈ N is odd, fd(t) = max(0,
1√
2n+1

(1 − 2n|t− d|)) for t ≥ 0. Now

let 〈Zd〉d∈D be an independent family of standard normal distributions, and set ωn(t) =
∑
d∈Dn

fd(t)Zd for

t ≥ 0, so that each ωn is a random continuous function on [0,∞[. Show that for any n ∈ N and ǫ > 0,

Pr(supt∈[0,n] |ωn+1(t) − ωn(t)| ≥ ǫ) ≤ 2nn · 2√
2π

∫∞
2ǫ

√
2n
e−x

2/2dx,

and hence that 〈ωn〉n∈N converges almost surely to a continuous function. Explain how to interpret this
as a construction of Wiener measure on Ω = C([0,∞[)0, as the image measure µDGg

−1 where g : RD → Ω
is almost continuous (for the topology Tc on Ω) and µDG is the product of copies of the standard normal
distribution µG.

(b) Fix p ∈ ]0, 1[ \ { 1
2}. (i) For α ∈ R set hα(t) = |t − α|p− 1

2 − |t|p− 1
2 when this is defined. Show that

hα ∈ L
2(µL), where µL is Lebesgue measure, and that ‖hα‖22 = |α|2p‖h1‖22 and ‖hα − hβ‖2 = ‖hα−β‖2

for all α, β ∈ R. (ii) Show that there is a centered Gaussian process 〈Xα〉α∈R such that E(Xα × Xβ) =
|α|2p + |β|2p − |α − β|2p for all α, β ∈ R. (iii) Show that such a process can be represented by a Radon
measure on C(R). (Hint : 477Ya.) (This is fractional Brownian motion.)

(c) Let µW be Wiener measure on Ω = C([0,∞[ ;Rr)0, where r ≥ 1, and set Xt(ω) = ω(t) for t ≥ 0 and
ω ∈ Ω. Let f be a real-valued tempered function on Rr (definition: 284Wa). For x ∈ Rr and 0 < t < b, let

ν
(t,b)
x be the distribution of x + Xb−t, so that g(x, t) =

∫
f(y)ν

(t,b)
x (dy) can be regarded as the expectation

of f(Xb) given that Xt = x. Show that g satisfies the backwards heat equation 2
∂g

∂t
+
∑r−1
i=0

∂2g

∂ξ2i
= 0.

(d) Let r ≥ 1 be an integer, and ν a Radon probability measure on Rr such that x 7→ a .x has expectation
0 and variance ‖a‖2 for every a ∈ Rr. Let Ω be C([0,∞[ ;Rr)0, and for α > 0 define fα : (Rr)N → Ω by
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setting fα(x)(t) =
√
α(

∑
i<n z(i) +

1

α
(t − nα)z(n)) when z ∈ (Rr)N, n ∈ N and nα ≤ t ≤ (n + 1)α; let µα

be the image Radon measure νNf−1
α on Ω. Show that Wiener measure µW is the limit limα↓0 µα for the

narrow topology.

(e) Let µW be Wiener measure on C([0,∞[)0, and γ > 1
2 . Show that limt→∞

1

tγ
ω(t) = limt↓0

1

t1−γ
ω(t) = 0

for µW -almost every ω.

(f) Write out a proof of 477G which works directly from the Gaussian-distribution characterization of
Wiener measure, without appealing to results from §455 other than 455L. (I think you will need to start with
stopping times taking finitely and countably many values, as in 455C; but you will find great simplifications.)

(g) Let µ̂ be the Gaussian distribution on R[0,∞[ corresponding to Brownian motion, as in 477A. For
t ≥ 0 let Σt be the family of Baire subsets of R[0,∞[ determined by coordinates in [0, t], and Σ+

t =
⋂
s>t Σs.

For ω ∈ R[0,∞[ set τ(ω) = inf{q : q ∈ Q, ω(q) ≥ 1}, counting inf ∅ as ∞. Show that τ is a stopping time
adapted to 〈Σ+

t 〉t≥0. For ω, ω′ ∈ R[0,∞[ define φτ (ω, ω′) ∈ R[0,∞[ by setting φτ (ω, ω′)(t) = ω(t) if t ≤ τ(ω),
ω(τ(ω)) +ω′(t− τ(ω)) if t > τ(ω). Show that φτ is not inverse-measure-preserving for the product measure
µ̂2 and µ̂. (Hint : show that {ω : τ(ω) ∈ D} is negligible for every countable set D.)

(h) Let µW be one-dimensional Wiener measure on Ω = C([0,∞[)0. (i) Show by induction on k that
Pr(there are t0 < t1 < . . . < tk ≤ t such that Xtj = (−1)j for every j ≤ k) = Pr(there is an s ≤ t
such that Xs = 2k + 1) for any t ≥ 0. (Hint : 477J.) (ii) For ω ∈ Ω, k ∈ N define τk(ω) by saying that
τ0(ω) = inf{t : |ω(t)| = 1}, τk+1(ω) = inf{t : t > τk(ω), ω(t) = −ω(τk(ω))}. Show that τk is a stopping
time adapted to the family 〈Σt〉t≥0 of 477H, and is finite µW -a.e. (iii) Set Ek = {ω : τk(ω) ≤ 1 < τk+1(ω)},
pk = µWEk, Fk = {ω : there is an s ≤ 1 such that ω(s) = 2k + 1}, qk = µWFk. Show that

qk =
1

2
pk +

∑∞
j=k+1 pj =

2√
2π

∫∞
2k+1

e−x
2/2dx.

(iv) Show that Pr(τ0 ≤ 1) =
∑∞
k=0 pk = 2

∑∞
k=0(−1)kqk.

(i) Let µW be Wiener measure on Ω = C([0,∞[ ;Rr)0, where r ≥ 1. Show that, for µW -almost every

ω ∈ Ω, { ω(t)

‖ω(t)‖ : t ≥ t0, ω(t) 6= 0} is dense in ∂B(0, 1) for every t0 ≥ 0.

(j)(i) Show that, for any r ≥ 1, the topology Tc of uniform convergence on compact sets is a complete
linear space topology on Ω = C([0,∞[ ;Rr)0. (ii) Show that Wiener measure on Ω is a centered Gaussian
measure in the sense of 466N. (Hint : 466Ye.)

477 Notes and comments The ‘first proof’ of 477A calls on a result which is twenty-five pages into §455,
and you will probably be glad to be assured that all it really needs is 455A, fragments from the proof of
455P, and part (a) of the proof of 455R. So it is not enormously harder than the ‘second proof’, based on
the elementary theory of Gaussian processes.

With this theorem, we have two routes to the first target: setting up a measure space with a family of
random variables representing Brownian motion. I repeat that this is a secondary issue. Brownian motion
begins with the family of joint distributions of finite indexed sets (Xt0 , . . . , Xtn) satisfying the properties
listed in 477A. It is one of the triumphs of Kolmogorov’s theory of probability that these distributions can
be represented by a family of real-valued functions on a set with a countably additive measure; but they
would still be of the highest importance if they could not. In order to show that it can be done, we can
use either the time-dependent approach based on conditional expectations, as in 455A, 455P and the ‘first
proof’ of 477A, or the timeless Gaussian-distribution approach through 456C, as in the ‘second proof’ of
477A. Both, of course, depend on Kolmogorov’s theorem 454D. They have different advantages, and it will
be very useful to be able to call on the intuitions of both. The ‘first proof’ leads us naturally into the theory
of Lévy processes, in which other families of distributions replace normal distributions.

To get to the continuity of sample paths, we need to do quite a bit more, and the proof of 477B is one
way of filling the gap. At this point it becomes tempting to abandon both proofs of 477A and start again
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with the method of 477Ya, the ‘Lévy-Ciesielski’ construction, not using Kolmogorov’s theorem. But if we
do this, we shall have to devise a new argument to prove the strong Markov property 477G, rather than
quoting 455U. Of course the special properties of Gaussian processes mean that a direct proof of 477G is
still quite a bit easier than the general results of §455 (477Yf). I make no claim that one approach is ‘better’
than another; they all throw light on the result.

What I here call ‘Wiener measure’ (477B) is a particular realization of Brownian motion. It is so con-
vincing that it is tempting to regard it as ‘the’ real basis of Brownian motion. I do not mean to assert this
in any way which will bind me in future. But (as a measure theorist, rather than a probabilist) I think that
the specific measures of 477B and 477D are worth as much attention as any. One reason for not insisting
that the space C([0,∞[)0 is the only right place to start is that we may at any moment wish to move to
something smaller, as in 477Ef. The approach here gives a very direct language in which to express theorems
of the form ‘almost every Brownian path is . . . ’ (477K, 477L), and every such theorem carries an implicit
suggestion that we could move to a conegligible set and a subspace measure.

In 477C I sketch an alternative characterization of one-dimensional Wiener measure. Five pages seem
to be rather a lot for a proof of something which surely has to be true, if we can get the hypotheses right;
but I do not see a genuinely shorter route, and I think in fact that the indigestibility of the argument as
presented is due to compression more than to pedantry. At least I have tried to put the key step into part
(a-i) of the proof. We have to use the Central Limit Theorem; we have to use a finite-approximation version
of it, rather than a limit version; the ideas of this proof do not demand Lindeberg’s formulation, but this is
what we have to hand in Volume 2; and if we are going to consider interpolations for general random walks,
we need something to force a sufficient degree of equicontinuity, and (†) is what comes naturally from the
result in 274F. It is surely obvious that I have been half-hearted in the generality of the theorem as given.
There can be no reason for insisting on steps being at uniform time intervals, or on stationary processes, or
even on variances being exactly correct, provided that everything averages out nicely in the limit. The idea
does require that steps be independent, but after that we just need hypotheses adequate for the application
of the Central Limit Theorem.

Clearly we can also look for r-dimensional versions of the theorem. I have not done so because they
would inevitably demand vector-valued versions of the Central Limit Theorem, and while a combination of
the ideas of §§274 and 456 would take us a long way, it would not belong to this section. However I give
477Yd as an example which can be dealt with without much general theory.

Already in the elementary results 477Eb-477Eg we see that Wiener measure is a remarkable construction.
It is a general principle that the more symmetries an object has, the more important it is; this one has a
surprising symmetry (477Ef), which is even better. I take it as confirmation that we have a good represen-
tation, that all these symmetries can be represented by actual inverse-measure-preserving functions, rather
than leaving them as manipulations of distributions.

477F is a natural result, and a further confirmation that in C([0,∞[ ;Rr)0 we have got hold of an
appropriate space of functions. The proof I give depends on an aspect of the structure developed in 477Ya.

The next really important result is the ‘strong Markov property’ (477G). This is clearly a central property
of Brownian motion. It may not be quite so clear what the formulation here is trying to say. As in 477E, I
am expressing the result in terms of an inverse-measure-preserving function. This makes no sense unless we
have a probability space Ω in which we can put two elements ω, ω′ together to form a third; so we are more
or less forced to look at a space of paths. But not all spaces of paths will do. For an indication of what can
happen if we work with the wrong realization, see 477Yg.

In 477H we have two kinds of zero-one law. One, 477Hd, is explicit; the tail σ-algebra
⋂
t≥0 T̂[t,∞[ behaves

like the tail of an independent sequence of σ-algebras (272O). But the formula ‘
⋂
s>t Σs ⊆ T̂[0,t]’ in 477Hc

can be thought of as a relative zero-one law. There are many events (e.g., {ω : lim infs↓t
1
s−tω(s) ≥ 0})

which belong to
⋂
s>t Σs and not to T[0,t] or Σt, but all collapse to events in T[0,t] if we rearrange them on

appropriate negligible sets. This is really a special case of 455T.

The formulae in the first application of the strong Markov property (477J) demand a bit of concentrated
attention, but I think that the key step at the end of the proof (moving from µ2

W to
∫
. . . dµW ) faithfully

represents the intuition: once we have reached the level α, we have an even chance of rising farther. For the
discrete case, 272Yc is a version of the same idea. From the distribution of the hitting time to {α} we can
deduce the distribution of the hitting time to {−1, 1} (477Yh); but I do not know of a corresponding exact
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result for the hitting time to the unit circle for two-dimensional Brownian motion.
I expect you have been shown a continuous function which is nowhere differentiable. In 477K we see

that ‘almost every’ function is of this type. What a hundred and fifty years ago seemed to be an exotic
counter-example now presents itself as a representative of the typical case. The very crude estimates in the
proof of 477K are supposed to furnish a straightforward proof of the result, without asking for anything
which might lead to refinements. Of course there is much more to be said, starting with 477Xh. In 477L we
have an interesting result which will be useful in §479, when I return to geometric properties of Brownian
paths.

Version of 4.6.09/7.8.20

478 Harmonic functions

In this section and the next I will attempt an introduction to potential theory. This is an enormous subject
and my choice of results is necessarily somewhat arbitrary. My principal aim is to give the most elementary
properties of Newtonian capacity, which will appear in §479. It seems that this necessarily involves a basic
understanding of harmonic and superharmonic functions. I approach these by the ‘probabilistic’ route, using
Brownian motion as described in §477.

The first few paragraphs, down to 478J, do not in fact involve Brownian motion; they rely on multidi-
mensional advanced calculus and on the Divergence Theorem. (The latter is applied only to continuously
differentiable functions and domains of very simple types, so we need far less than the quoted result in
475N.) Defining ‘harmonic function’ in terms of average values over concentric spherical shells (478B), the
first step is to identify this with the definition in terms of the Laplacian differential operator (478E). An
essential result is a formula for a harmonic function inside a sphere in terms of its values on the boundary
and the ‘Poisson kernel’ (478Ib), and we also need to understand the effects of smoothing by convolution
with appropriate functions (478J, following 473D-473E). I turn to Brownian motion with Dynkin’s formula
(478K), relating the expected value of f(Xτ ) for a stopped Brownian process Xτ to an integral in terms of
∇2f . This is already enough to deal with the asymptotic behaviour of Brownian paths, which depends in a
striking way on the dimension of the space (478M).

We can now approach Dirichlet’s problem. If we have a bounded open set G ⊆ Rr, there is a family
〈µx〉x∈G of probability measures such that whenever f : G → R is continuous and f↾G is harmonic, then
f(x) =

∫
fdµx for every x ∈ G (478Pc). So this family of ‘harmonic measures’ gives a formula continuously

extending a function on ∂G to a harmonic function on G, whenever such an extension exists (478S). The
method used expresses µx in terms of the distribution of points at which Brownian paths starting at x
strike ∂G, and relies on Dynkin’s formula through Theorem 478O. The strong Markov property of Brownian
motion now enables us to relate harmonic measures associated with different sets (478R).

478A Notation r ≥ 1 will be an integer; if you find it easier to focus on one dimensionality at a time,
you should start with r = 3, because r = 1 is too easy and r = 2 is exceptional. µ will be Lebesgue measure
on Rr, and ‖ ‖ the Euclidean norm on Rr; ν will be normalized (r − 1)-dimensional Hausdorff measure on
Rr. In the elementary case r = 1, ν will be counting measure on R.
βr will be the volume of the unit ball in Rr, that is,

βr =
1

k!
πk if r = 2k is even,

=
22k+1k!

(2k+1)!
πk if r = 2k + 1 is odd.

Recall that

ν(∂B(0, 1)) = rβr =
2

(k−1)!
πk if r = 2k is even,

=
22k+1k!

(2k)!
πk if r = 2k + 1 is odd

(265F/265H).
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In the formulae below, there are repeated expressions of the form
1

‖x−y‖r−1
,

1

‖x−y‖r−2
; in these, it will

often be convenient to interpret 1
0 as ∞, so that we have [0,∞]-valued functions defined everywhere.

It will be convenient to do some calculations in the one-point compactification Rr ∪ {∞} of Rr (3A3O).

For a set A ⊆ Rr, write A
∞

and ∂∞A for its closure and boundary taken in Rr ∪ {∞}; that is,

A
∞

= A, ∂∞A = ∂A

if A is bounded, and

A
∞

= A ∪ {∞}, ∂∞A = ∂A ∪ {∞}
if A is unbounded. Note that A

∞
and ∂∞A are always compact. In this context I will take x+ ∞ = ∞ for

every x ∈ Rr.
µW will be r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0, the space of continuous functions ω

from [0,∞[ to Rr such that ω(0) = 0 (477D), endowed with the topology of uniform convergence on compact
sets; Σ will be the domain of µW . The probabilistic notations E and Pr will always be with respect to µW
or some directly associated probability. µ2

W will be the product measure on Ω×Ω. I will write Xt(ω) = ω(t)
for t ∈ [0,∞[ and ω ∈ Ω, and if τ : Ω → [0,∞] is a function, I will write Xτ (ω) = ω(τ(ω)) whenever ω ∈ Ω
and τ(ω) is finite.

As in 477Hc, I will write Σt for the σ-algebra of sets F ∈ Σ such that ω′ ∈ F whenever ω ∈ F , ω′ ∈ Ω and
ω′↾[0, t] = ω↾[0, t], and Σ+

t =
⋂
s>t Σs. T[0,t] will be the σ-algebra of subsets of Ω generated by {Xs : s ≤ t}.

478B Harmonic and superharmonic functions Let G ⊆ Rr be an open set and f : G→ [−∞,∞] a
function.

(a) f is superharmonic if
1

ν(∂B(x,δ))

∫
∂B(x,δ)

fdν is defined in [−∞,∞] and less than or equal to f(x)

whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G.

(b) f is subharmonic if −f is superharmonic, that is,
1

ν(∂B(x,δ))

∫
∂B(x,δ)

fdν is defined in [−∞,∞] and

greater than or equal to f(x) whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G.

(c) f is harmonic if it is both superharmonic and subharmonic, that is,
1

ν(∂B(x,δ))

∫
∂B(x,δ)

fdν is defined

and equal to f(x) whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G.

478C Elementary facts Let G ⊆ Rr be an open set.

(a) If f : G→ [−∞,∞] is a function, then f is superharmonic iff −f is subharmonic.

(b) If f , g : G→ [−∞,∞[ are superharmonic functions, then f + g is superharmonic. PPP If x ∈ G, δ > 0
and B(x, δ) ⊆ G, then

∫
∂B(x,δ)

fdν and
∫
∂B(x,δ)

g dν are defined in [−∞,∞[, so
∫
∂B(x,δ)

f + g dν is defined

and is ∫
∂B(x,δ)

fdν +
∫
∂B(x,δ)

g dν ≤ ν(∂B(x, δ)) (f(x) + g(x)). QQQ

(c) If f , g : G→ [−∞,∞] are superharmonic functions, then f ∧ g is superharmonic. PPP If x ∈ G, δ > 0
and B(x, δ) ⊆ G, then

∫
∂B(x,δ)

fdν and
∫
∂B(x,δ)

g dν are defined in [−∞,∞], so
∫
∂B(x,δ)

f ∧ g dν is defined

and is at most

min
(∫
∂B(x,δ)

fdν,
∫
∂B(x,δ)

g dν
)
≤ ν(∂B(x, δ)) min(f(x), g(x)). QQQ

(d) Let f : G→ R be a harmonic function which is locally integrable with respect to Lebesgue measure
on G (that is, every point of G has a neighbourhood V such that

∫
V
fdµ is defined and finite). Then

f(x) =
1

µB(x,δ)

∫
B(x,δ)

fdµ
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whenever x ∈ G, δ > 0 and B(x, δ) ⊆ G. PPP By 265G,
∫
B(x,δ)

fdµ =
∫ t
0

∫
∂B(x,t)

fdν dt =
∫ t
0
ν(∂B(x, δ))f(x)dt = βrδ

rf(x). QQQ

So f is continuous. PPP If x ∈ G, take δ > 0 such that B(x, 2δ) ⊆ G, and set f1(y) = f(y) for y ∈ B(x, 2δ), 0

for y ∈ Rr \B(x, 2δ). Set g =
1

µB(0,δ)
χB(0, δ). Then f1 is integrable, so the convolution f1 ∗ g is continuous

(444Rc). Also, for any y ∈ B(x, δ),

(f1 ∗ g)(y) =

∫
f1(z)g(y − z)µ(dz) =

∫

B(y,δ)

f1(z)

µB(y,δ)
µ(dz)

=
1

µB(y,δ)

∫

B(y,δ)

f(z)µ(dz) = f(y),

so f is continuous at x. QQQ

478D Maximal principle One of the fundamental properties of harmonic functions will hardly be used
in the exposition here, but I had better give it a suitably prominent place.

Proposition Let G ⊆ Rr be a non-empty open set. Suppose that g : G
∞ → ]−∞,∞] is lower semi-

continuous, g(y) ≥ 0 for every y ∈ ∂∞G, and g↾G is superharmonic. Then g(x) ≥ 0 for every x ∈ G.

proof ??? Otherwise, set γ = infx∈G g(x) = inf{g(y) : y ∈ G
∞}. Because G

∞
is compact and g is lower

semi-continuous, K = {x : x ∈ G, g(x) = γ} is non-empty and compact (4A2B(d-viii)). Let x ∈ K be

such that ‖x‖ is maximal, and δ > 0 such that B(x, δ) ⊆ G. Then
1

ν(∂B(x,δ))

∫
∂B(x,δ)

g dν ≤ g(x). But

g(y) ≥ g(x) for every y ∈ ∂B(x, δ) and

{y : y ∈ ∂B(x, δ), g(y) > g(x)} ⊇ {y : y ∈ ∂B(x, δ), (y − x) .x ≥ 0}
is not ν-negligible, so this is impossible. XXX

478E Theorem Let G ⊆ Rr be an open set and f : G→ R a function with continuous second derivative.

Write ∇2f for its Laplacian div grad f =
∑r
i=1

∂2f

∂ξ2i
.

(a) f is superharmonic iff ∇2f ≤ 0 everywhere in G.
(b) f is subharmonic iff ∇2f ≥ 0 everywhere in G.
(c) f is harmonic iff ∇2f = 0 everywhere in G.

proof (a)(i) For x ∈ G set

Rx = ρ(x,Rr \G) = infy∈Rr\G ‖x− y‖,

counting inf ∅ as ∞; for 0 < γ < Rx set

gx(γ) =
1

γr−1

∫
∂B(x,γ)

f(y)ν(dy) =
∫
∂B(0,1)

f(x+ γz)ν(dz).

Because f is continuously differentiable, g′x(γ) is defined and equal to
∫
∂B(0,1)

∂

∂γ
f(x + γz)ν(dz) for γ ∈

]0, Rx[.
Set φ = grad f , so that ∇2f = divφ. Each ball B(x, γ) has finite perimeter; its essential boundary is its

ordinary boundary; the Federer exterior normal vy at y is
1

γ
(y − x); and if y = x+ γz, where ‖z‖ = 1, then

φ(y) .vy is
∂

∂γ
f(x+ γz). So the Divergence Theorem (475N) tells us that

∫

B(x,γ)

∇2fdµ =

∫

∂B(x,γ)

φ(y) .vyν(dy)

= γr−1

∫

∂B(0,1)

∂

∂γ
f(x+ γz)ν(dz) = γr−1g′x(γ).
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(ii) If ∇2f ≤ 0 everywhere in G, and B(x, γ) ⊆ G, then g′x(t) ≤ 0 for 0 < t ≤ γ, so

gx(γ) ≤ limt↓0 gx(t) = rβrf(x);

as x and γ are arbitrary, f is superharmonic.

(iii) If f is superharmonic, and x ∈ G, then

gx(γ) ≤ rβrf(x) = limt↓0 gx(t)

for every γ ∈ ]0, Rx[. So there must be arbitrarily small γ > 0 such that g′x(γ) ≤ 0 and
∫
B(x,γ)

∇2fdµ ≤ 0;

as ∇2f is continuous, (∇2f)(x) ≤ 0.

(b)-(c) are now immediate.

478F Basic examples (a) For any y, z ∈ Rr,

x 7→ 1

‖x−z‖r−2
, x 7→ (x−z) .y

‖x−z‖r
,

x 7→ ‖y−z‖2−‖x−y‖2

‖x−z‖r
= 2

(x−z) . (y−z)

‖x−z‖r
− 1

‖x−z‖r−2

are harmonic on Rr \ {z}.

(b) For any z ∈ R2,

x 7→ ln ‖x− z‖
is harmonic on R2 \ {z}.

proof The Laplacians are easiest to calculate when z = 0, of course, but in any case you only have to get
the algebra right to apply 478Ec.

Remark The function x 7→ ‖y−z‖2−‖x−y‖2

‖x−z‖r
is the Poisson kernel; see 478I below.

478G We shall need a pair of exact integrals involving the functions here, with an easy corollary.

Lemma (a)
1

ν(∂B(0,δ))

∫
∂B(0,δ)

1

‖x−z‖r−2
ν(dz) =

1

max(δ,‖x‖)r−2
whenever x ∈ Rr and δ > 0.

(b)
1

ν(∂B(0,δ))

∫
∂B(0,δ)

|δ2−‖x‖2|
‖x−z‖r

ν(dz) =
1

max(δ,‖x‖)r−2
whenever x ∈ Rr, δ > 0 and ‖x‖ 6= δ.

(c)
∫
B(0,δ)

1

‖x−z‖r−2
µ(dz) ≤ 1

2
rβrδ

2 whenever x ∈ Rr and δ > 0.

proof (a)(i) The first thing to note is that there is a function g : [0,∞[ \ {δ} → [0,∞[ such that

g(‖x‖) =
1

ν(∂B(0,δ))

∫
∂B(0,δ)

1

‖x−z‖r−2
ν(dz) whenever ‖x‖ 6= δ. PPP If ‖x‖ = ‖y‖, then there is an orthogonal

transformation T : Rr → Rr such that Tx = y, so that

∫

∂B(0,δ)

1

‖y−z‖r−2
ν(dz) =

∫

∂B(0,δ)

1

‖y−Tz‖r−2
ν(dz)

(because T is an automorphism of (Rr, B(0, δ), ν))

=

∫

∂B(0,δ)

1

‖Tx−Tz‖r−2
ν(dz) =

∫

∂B(0,δ)

1

‖x−z‖r−2
ν(dz). QQQ

(ii) Now suppose that 0 < γ < δ. Then
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g(γ) =
1

ν(∂B(0,γ))

∫

∂B(0,γ)

g(γ)ν(dx)

=
1

ν(∂B(0,γ))

∫

∂B(0,γ)

1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

‖x−z‖r−2
ν(dz)ν(dx)

=
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

ν(∂B(0,γ))

∫

∂B(0,γ)

1

‖x−z‖r−2
ν(dx)ν(dz)

=
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

‖z‖r−2
ν(dz)

(because the function x 7→ 1

‖x−z‖2
is harmonic in Rr \ {z}, by 478Fa)

=
1

δr−2
.

(iii) Next, if γ > δ,

g(γ) =
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

ν(∂B(0,γ))

∫

∂B(0,γ)

1

‖x−z‖r−2
ν(dx)ν(dz)

(as in (ii))

=
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

γr−2
ν(dz)

(by (ii), with γ and δ interchanged)

=
1

γr−2
.

(iv) So we have the result if ‖x‖ 6= δ. If ‖x‖ = δ and r ≥ 2, set xn = (1 + 2−n)x for each n ∈ N. If

z ∈ ∂B(0, δ), 〈‖xn−z‖〉n∈N is a decreasing sequence with limit ‖x−z‖, so 〈 1

‖xn−z‖r−2
〉n∈N is a non-decreasing

sequence with limit
1

‖x−z‖r−2
. By B.Levi’s theorem,

1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

‖x−z‖r−2
ν(dz) = lim

n→∞
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

‖xn−z‖r−2
ν(dz)

= lim
n→∞

1

‖xn‖r−2
=

1

‖x‖r−2
=

1

δr−2
.

Finally, if r = 1 and ‖x‖ = |x| = δ, we are just trying to take the average of |x − δ| and |x − (−δ)|, which

will be δ =
1

δr−2
.

(b) We can follow the same general line.

(i) Define f : Rr \ ∂B(0, δ) → R by setting f(x) =
1

ν(∂B(0,δ))

∫
∂B(0,δ)

‖x‖2−δ2

‖x−z‖r
ν(dz) when ‖x‖ 6= δ.

Then f is harmonic. PPP If x and γ > 0 are such that B(x, γ) ⊆ Rr \ ∂B(0, δ), then
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1

ν(∂B(x,γ))

∫

∂B(x,γ)

f(y)ν(dy)

=
1

ν(∂B(x,γ))

∫

∂B(x,γ)

1

ν(∂B(0,δ))

∫

∂B(0,δ)

‖y‖2−δ2

‖y−z‖r
ν(dz)ν(dy)

=
1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

ν(∂B(x,γ))

∫

∂B(x,γ)

‖y‖2−δ2

‖y−z‖r
ν(dy)ν(dz)

=
1

ν(∂B(0,δ))

∫

∂B(0,δ)

‖x‖2−δ2

‖x−z‖r
ν(dz)

(because the functions y 7→ ‖y‖2−δ2

‖y−z‖r
are harmonic when ‖z‖ = δ, by 478Fa)

= f(x).QQQ

Since f is smooth, ∇2f = 0 everywhere off ∂B(0, δ), by 478Ec.

(ii) As before, we have a function h : [0,∞[ \ {δ} → [0,∞[ such that f(x) = h(‖x‖) whenever ‖x‖ 6= δ.
If 0 < γ < δ then

h(γ) =
1

ν(∂B(0,γ))

∫

∂B(0,γ)

h(γ)ν(dy) =
1

ν(∂B(0,γ))

∫

∂B(0,γ)

f(y)ν(dy)

= f(0) =
1

ν(∂B(0,δ))

∫

∂B(0,δ)

−δ2

‖z‖r
ν(dz) = − 1

δr−2
,

and

1

ν(∂B(0,δ))

∫
∂B(0,δ)

|δ2−‖x‖2|
‖x−z‖r

ν(dz) = −h(γ) =
1

δr−2

if ‖x‖ = γ < δ.

(iii) For γ > δ I start with an elementary estimate. If ‖x‖ = γ > δ then
‖x‖2−δ2

‖x−z‖r
lies between

γ2−δ2

(γ+δ)r
and

γ2−δ2

(γ−δ)r
for every z ∈ ∂B(x, δ), so that γr−2f(x) lies between

1−(δ/γ)2

(1+(δ/γ))r
and

1−(δ/γ)2

(1−(δ/γ))r
, and is approximately

1 if γ is large.

(iv) Now we can use the Divergence Theorem again, as follows. If δ < γ < β consider the region
E = B(0, β) \ B(0, γ) and the function φ = grad f . As f is smooth, φ is defined everywhere off ∂B(0, δ),

and φ(x) =
h′(‖x‖)
‖x‖ x at every x ∈ Rr \ ∂B(0, δ). The essential boundary of E is ∂E = ∂B(0, γ) ∪ ∂B(0, β);

the Federer exterior normal at x ∈ ∂B(0, γ) is vx = −1

γ
x and at x ∈ ∂B(0, β) it is vx =

1

β
x; and divφ = ∇2f

is zero everywhere on E. So 475N tells us that

0 =

∫

∂B(0,β)

φ(x) .vxν(dx) +

∫

∂B(0,γ)

φ(x) .vxν(dx)

=

∫

∂B(0,β)

h′(β)ν(dx) −
∫

∂B(0,γ)

h′(γ)ν(dx)

= rβrβ
r−1h′(β) − rβrγ

r−1h′(γ).

This shows that h′(γ) is inversely proportional to γr−1.

(v) If r ≥ 3, there are α, β ∈ R such that h(γ) = α +
β

γr−2
for every γ > δ. But since (iii) shows us

that limγ→∞ γr−2h(γ) = 1, we must have h(γ) =
1

γr−2
for γ > δ, as declared. If r = 2, then we can express

h in the form h(γ) = α+ β ln γ; this time, limγ→∞ h(γ) = 1, so once more h(γ) = 1 =
1

γr−2
for every γ.
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(vi) Finally, if r = 1 and |x| > δ, then, as in (a-iv) above,
1

ν(∂B(0,δ))

∫
∂B(0,δ)

|δ2−‖x‖2|
‖x−z‖r

ν(dz) is the

average of
x2−δ2

|x−δ| = |x+ δ| and
x2−δ2

|x+δ| = |x− δ|, so is |x| =
1

|x|r−2
.

(c) This follows easily from (a);

∫

B(0,δ)

1

‖x−z‖r−2
µ(dz) =

∫ δ

0

∫

∂B(0,t)

1

‖x−z‖r−2
ν(dz)dt

=

∫ δ

0

rβrtr−1

max(t,‖x‖)r−2
dt ≤

∫ δ

0

rβrt dt =
1

2
rβrδ

2.

478H Corollary If r ≥ 2, then x 7→ 1

‖x−z‖r−2
: Rr → [0,∞] is superharmonic for any z ∈ Rr.

proof If δ > 0 and x ∈ Rr,

1

ν∂B(x,δ)

∫

∂B(x,δ)

1

‖y−z‖r−2
ν(dy) =

1

ν∂B(0,δ)

∫

∂B(0,δ)

1

‖y+x−z‖r−2
ν(dy)

=
1

max(δ,‖x−z‖)r−2
≤ 1

‖x−z‖r−2
.

478I The Poisson kernel gives a basic method of building and describing harmonic functions.

Theorem Suppose that y ∈ Rr and δ > 0; let S = ∂B(y, δ) be the sphere with centre y and radius δ.

(a) Let ζ be a totally finite Radon measure on S, and define f on Rr \ S by setting

f(x) =
1

rβrδ

∫
S

|δ2−‖x−y‖2|
‖x−z‖r

ζ(dz)

for x ∈ Rr \ S. Then f is continuous and harmonic.

(b) Let g : S → R be a νS-integrable function, where νS is the subspace measure on S induced by ν, and
define f : Rr → R by setting

f(x) =
1

rβrδ

∫

S

g(z)
|δ2−‖x−y‖2|

‖x−z‖r
ν(dz) if x ∈ Rr \ S,

= g(x) if x ∈ S.

(i) f is continuous and harmonic in Rr \ S.

(ii) If r ≥ 2, then

lim infz∈S,z→z0 g(x) = lim infx→z0 f(x), lim supx→z0 f(x) = lim supz∈S,z→z0 g(x)

for every z0 ∈ S.

(iii) f is continuous at any point of S where g is continuous, and if g is lower semi-continuous then f
also is.

(iv) supx∈Rr f(x) = supz∈S g(z) and infx∈Rr f(x) = infz∈S g(z).

proof (a) f is continuous just because x 7→ δ2−‖x−y‖2

‖x−z‖r
is continuous for each z ∈ S and uniformly bounded

for z ∈ S and x running over any compact set not meeting S.

Suppose that ‖x− y‖ < δ and η > 0 is such that B(x, η) ∩ S = ∅. Then
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1

ν(∂B(x,η))

∫

∂B(x,η)

fdν =
1

ν(∂B(x,η))

∫

∂B(x,η)

1

rβrδ

∫

S

δ2−‖w−y‖2

‖w−z‖r
ζ(dz)ν(dw)

=
1

rβrδ

∫

S

1

ν(∂B(x,η))

∫

∂B(x,η)

δ2−‖w−y‖2

‖w−z‖r
ν(dw)ζ(dz)

=
1

rβrδ

∫

S

δ2−‖x−y‖2

‖x−z‖r
ζ(dz)

(because w 7→ δ2−‖w−y‖2

‖w−z‖r
is harmonic on Rr \ {z} whenever z ∈ S, by 478Fa)

= f(x).

As x and η are arbitrary, f is harmonic on intB(y, δ). Similarly, it is harmonic on Rr \B(y, δ).

(b)(i) Applying (a) to the indefinite-integral measures over the subspace measure νS defined by the
positive and negative parts of g, we see that f is continuous and harmonic in Rr \ S.

(ii)(ααα) If x /∈ S,

∫

S

|δ2−‖x−y‖2|
‖x−z‖r

ν(dz) =

∫

∂B(0,δ)

|δ2−‖x−y‖2|
‖x−y−z‖r

ν(dz)

=
ν(∂B(0,δ))

max(δ,‖x−y‖)r−2

by 478Gb. In particular, if x is close to, but not on, the sphere S,
∫
S

|δ2−‖x−y‖2|
‖x−z‖r

ν(dz) is approximately

ν(∂B(0,δ)

δr−2
= rβrδ.

(βββ) Set M =
∫
S
|g|dν, and take z0 ∈ S; set γ = lim supx∈S,x→z0 g(x). If γ = ∞ then certainly

lim supx→z0 f(x) ≤ γ. Otherwise, take η > 0. Let α0 ∈ ]0, δ[ be such that

| 1

rβrδ

∫
S

|δ2−‖x−y‖2|
‖x−z‖r

ν(dz) − 1| ≤ η

whenever 0 < |δ − ‖x− y‖| ≤ α0, and g(z) ≤ γ + η whenever z ∈ S and 0 < ‖z − z0‖ ≤ 2α0. Let α ∈ ]0, α0]
be such that (2δ + α0)(M + |γ|)ανS ≤ 2rrβrδα

r
0η.

If ‖x−z0‖ ≤ α and ‖x−y‖ 6= δ, then |δ−‖x−y‖| ≤ ‖x−z0‖ ≤ α0 and |δ2−‖x−y‖2| ≤ ‖x−z0‖(2δ+α0),
so

f(x) − γ ≤ η|γ| +
1

rβrδ

∫

S

(g(z) − γ)
|δ2−‖x−y‖2|

‖x−z‖r
ν(dz)

≤ η|γ| +
1

rβrδ

∫

S∩B(z0,2α0)

(g(z) − γ)
|δ2−‖x−y‖2|

‖x−z‖r
ν(dz)

+
1

rβrδ

∫

S\B(z0,2α0)

(|g(z)| + |γ|)|δ
2−‖x−y‖2|
‖x−z‖r

ν(dz)

≤ η|γ| +
η

rβrδ

∫

S

|δ2−‖x−y‖2|
‖x−z‖r

ν(dz)

+
1

rβrδ

∫

S\B(z0,2α0)

(|g(z)| + |γ|)‖x−z0‖(2δ+α0)

2rαr
0

ν(dz)

(because r ≥ 2, so ν{z0} = 0)

≤ η|γ| + η(1 + η) + (M + |γ|)α(2δ+α0)

2rrβrδαr
0

νS

≤ (|γ| + 1 + η + 1)η.
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Also, of course, f(x) − γ = g(x) − γ ≤ η if 0 < ‖x − z0‖ ≤ α and ‖x − y‖ = δ. As η is arbitrary,
lim supx→z0 f(x) ≤ γ. In the other direction, lim supx→z0 f(x) ≥ γ just because f extends g.

(γγγ) Similarly, or applying (β) to −g, lim infx→z0 f(x) = lim infx∈S,x→z0 g(x).

(iii)(ααα) If r ≥ 2, it follows at once from (ii) that if g is continuous at z0 ∈ S, so is f , and that
if g is lower semi-continuous (so that g(z0) ≤ lim infx∈S,x→z0 g(x) for every z0 ∈ S) then f also is lower
semi-continuous.

(βββ) If r = 1, then S = {y − δ, y + δ} and ν{y − δ} = ν{y + δ} = 1, so

f(x) =
1

2δ

(|δ2−(x−y)2|
|x−(y−δ)| g(y − δ) +

|δ2−(x−y)2|
|x−(y+δ)| g(y + δ)

)

=
1

2δ

(
|x− (y + δ)|g(y − δ) + |x− (y − δ)|g(y + δ)

)

for x ∈ R \ S, and limx 7→y±δ f(x) = g(y ± δ), so f is continuous.

(iv) If g(z) ≤ α <∞ for every z ∈ S, then

f(x) =
1

rβrδ

∫

S

g(z)
|δ2−‖x−y‖2|

‖x−z‖r
ν(dz) ≤ α

rβrδ

∫

∂B(0,δ)

|δ2−‖x−y‖2|
‖x−y−z‖r

ν(dz)

=
α

rβrδ
· ν(∂B(0,δ))

max(δ,‖x−y‖)r−2
=

αδr−2

max(δ,‖x−y‖)r−2
≤ α

for every x ∈ Rr \ S. So supx∈Rr f(x) = supz∈S g(z); similarly, infx∈Rr f(x) = infz∈S g(z).

478J Convolutions and smoothing: Proposition (a) Suppose that f : Rr → [0,∞] is Lebesgue
measurable, and G ⊆ Rr an open set such that f↾G is superharmonic. Let h : Rr → [0,∞] be a Lebesgue
integrable function, and f ∗h the convolution of f and h. If H ⊆ G is an open set such that H −{z : h(z) 6=
0} ⊆ G, then (f ∗ h)↾H is superharmonic.

(b) Suppose, in (a), that h(y) = h(z) whenever ‖y‖ = ‖z‖ and that
∫
Rr h dµ ≤ 1. If x ∈ G and γ > 0 are

such that B(x, γ) ⊆ G and h(y) = 0 whenever ‖y‖ ≥ γ, then (f ∗ h)(x) ≤ f(x).

(c) Let f : Rr → [0,∞] be a lower semi-continuous function, and 〈h̃n〉n∈N the sequence of 473E. If G ⊆ Rr

is an open set such that f↾G is superharmonic, then f(x) = limn→∞(f ∗ h̃n)(x) for every x ∈ G.
(d) Let G ⊆ Rr be an open set, K ⊆ G a compact set and g : G→ R a smooth function. Then there is a

smooth function f : G → R with compact support included in G such that f agrees with g on an open set
including K.

proof (a) If x ∈ H and δ > 0 are such that B(x, δ) ⊆ H, then

∫

∂B(x,δ)

(f ∗ h)(y)ν(dy) =

∫

∂B(x,δ)

∫

Rr

f(y − z)h(z)µ(dz)ν(dy)

=

∫

Rr

h(z)

∫

∂B(x,δ)

f(y − z)ν(dy)µ(dz)

=

∫

Rr

h(z)

∫

∂B(x−z,δ)
f(y)ν(dy)µ(dz)

≤ rβrδ
r−1

∫

Rr

h(z)f(x− z)µ(dz)

(because if h(z) 6= 0 then B(x− z, δ) = B(x, δ) − z is included in G)

= ν(∂B(x, δ)) · (f ∗ h)(x).

(b) Let g : [0,∞[ → [0,∞] be such that h(y) = g(‖y‖) for every y. Then
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(f ∗ h)(x) =

∫

Rr

f(y)h(x− y)µ(dy) =

∫ γ

0

∫

∂B(x,t)

f(y)g(t)ν(dy)dt

≤
∫ γ

0

rβrt
r−1f(x)g(t)dt = f(x)

∫

Rr

h dµ ≤ f(x).

(c) By (b), (f ∗ h̃n)(x) ≤ f(x) for every sufficiently large n, so lim supn→∞(f ∗ h̃n)(x) ≤ f(x). In the
other direction, if x ∈ G and α < f(x), there is a δ > 0 such that B(x, δ) ⊆ G and f(y) ≥ α for every

y ∈ B(x, δ). Now there is an m ∈ N such that h̃n(y) = 0 whenever n ≥ m and ‖y‖ ≥ δ; so that

(f ∗ h̃n)(x) =

∫
f(y)h̃n(x− y)µ(dy) =

∫

B(x,δ)

f(y)h̃n(x− y)µ(dy)

≥ α

∫

B(x,δ)

h̃n(x− y)µ(dy) = α

whenever n ≥ m. As α is arbitrary, f(x) = limn→∞(f ∗ h̃n)(x).

(d) If K is empty we can take f to be the constant function with value 0, so suppose otherwise. Let
δ > 0 be such that B(x, 4δ) ⊆ G for every x ∈ K, and set Hk = {x : ρ(x,K) < kδ} for k ∈ N. Let n be such

that 1
n+1 ≤ δ, and set f = g× (χH2 ∗ h̃n). By 473De, χH2 ∗ h̃n and therefore f are smooth. If x ∈ H1 then

(χH2 ∗ h̃n)(x) = 1 so f(x) = g(x), while if x ∈ G \H3 then f(x) = (χH2 ∗ h̃n)(x) = 0 so the support of f is
included in the compact set H3 ⊆ G.

478K Dynkin’s formula: Lemma Let µW be r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0;
set Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0. Let f : Rr → R be a three-times-differentiable function such that f
and its first three derivatives are continuous and bounded.

(a) E(f(Xt)) = f(0) +
1

2
E(

∫ t
0
(∇2f)(Xs)ds) for every t ≥ 0.

(b) If τ : Ω → [0,∞[ is a stopping time adapted to 〈Σ+
t 〉t≥0 and E(τ) is finite, then

E(f(Xτ )) = f(0) +
1

2
E(
∫ τ
0

(∇2f)(Xs)ds).

proof (a)(i) We need a special case of the multidimensional Taylor’s theorem. If f : Rr → R is three times
differentiable and x = (ξ1, . . . , ξr), y = (η1, . . . , ηr) ∈ Rr, then there is a z in the line segment [x, y] such
that

f(y) = f(x) +

r∑

i=1

(ηi − ξi)
∂f

∂ξi
(x) +

1

2

r∑

i=1

r∑

j=1

(ηi − ξi)(ηj − ξj)
∂2f

∂ξi∂ξj
(x)

+
1

6

r∑

i=1

r∑

j=1

r∑

k=1

(ηi − ξi)(ηj − ξj)(ηk − ξk)
∂3f

∂ξi∂ξj∂ξk
(z).

PPP Set g(β) = f(βy + (1 − β)x) for β ∈ R. Then g is three times differentiable, with

g′(β) =

r∑

k=1

(ηk − ξk)
∂f

∂ξk
(βy + (1 − β)x),

g′′(β) =

r∑

j=1

r∑

k=1

(ηj − ξj)(ηk − ξk)
∂2f

∂ξj∂ξk
(βy + (1 − β)x),

g′′′(β) =

r∑

i=1

r∑

j=1

r∑

k=1

(ηi − ξi)(ηj − ξj)(ηk − ξk)
∂3f

∂ξi∂ξj∂ξk
(βy + (1 − β)x).

Now by Taylor’s theorem with remainder, in one dimension, there is a β ∈ ]0, 1[ such that
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g(1) = g(0) + g′(0) +
1

2
g′′(0) +

1

6
g′′′(β)

and all we have to do is to set z = βy + (1 − β)x and substitute in the values for g(1), . . . , g′′′(β). QQQ

(ii) Let M ≥ 0 be such that ‖ ∂3f

∂ξi∂ξj∂ξk
‖∞ ≤ M whenever 1 ≤ i, j, k ≤ r. Let K be E((

∑r
i=1 |Zi|)3)

when Z1, . . . , Zr are independent real-valued random variables with standard normal distribution. (To see
that this is finite, observe that

E((
r∑

i=1

|Zi|)3) ≤ E(r3 max
i≤r

|Zi|3) ≤ r3 E(
r∑

i=1

|Zi|3) = r4 E(|Z|3)

(where Z is a random variable with standard normal distribution)

=
2r4√
2π

∫ ∞

0

t3e−t
2/2dt <∞.)

For any x, y ∈ Rr we have

∣∣f(y) − f(x) −
r∑

i=1

(ηi − ξi)
∂f

∂ξi
(x) +

1

2

r∑

i=1

r∑

j=1

(ηi − ξi)(ηj − ξj)
∂2f

∂ξi∂ξj
(x)

∣∣

≤ M

6
(

r∑

i=1

|ηi − ξi|)3.

If 0 ≤ s ≤ t and ω ∈ Ω, then

∣∣f(ω(t)) − f(ω(s)) −
r∑

i=1

∂f

∂ξi
(ω(s))(ωi(t) − ωi(s))

− 1

2

r∑

i=1

r∑

j=1

∂2f

∂ξi∂ξj
(ω(s))(ωi(t) − ωi(s))(ωj(t) − ωj(s))

∣∣

≤ M

6
(

r∑

i=1

|ωi(t) − ωi(s)|)3,

writing ω1, . . . , ωr ∈ C([0,∞[)0 for the coordinates of ω ∈ Ω. Integrating with respect to ω, we have

|E(f(Xt)−f(Xs) − 1

2
(t− s)(∇2f)(Xs))|

=
∣∣E(f(Xt) − f(Xs)) −

r∑

i=1

E(
∂f

∂ξi
(Xs))E(X

(i)
t −X(i)

s )

− 1

2

r∑

i=1

E(
∂2f

∂ξ2i
(Xs))E(X

(i)
t −X(i)

s )2

− 1

2

r∑

i=1

∑

j 6=i
E(

∂2f

∂ξi∂ξj
)(Xs)E(X

(i)
t −X(i)

s )E(X
(j)
t −X(j)

s )
∣∣

(writing X
(i)
t (ω) = ωi(t) for 1 ≤ i ≤ r, and recalling that E(X

(i)
t − X

(i)
s ) = 0 for every i, while E(X

(i)
t −

X
(i)
s )2 = t− s)
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=
∣∣E(f(Xt) − f(Xs)) −

r∑

i=1

E((X
(i)
t −X(i)

s )
∂f

∂ξi
(Xs))

− 1

2

r∑

i=1

E((X
(i)
t −X(i)

s )2
∂2f

∂ξ2i
(Xs))

− 1

2

r∑

i=1

∑

j 6=i
E((X

(i)
t −X(i)

s )(X
(j)
t −X(j)

s )
∂2f

∂ξi∂ξj
(Xs))

∣∣

(because for any i ≤ r the random variables
∂f

∂ξi
(Xs) and X

(i)
t −X(i)

s are independent, while for any distinct

i, j ≤ r the random variables
∂2f

∂ξi∂ξj
(Xs), X

(i)
t −X

(i)
s and X

(j)
t −X

(j)
s are independent)

=
∣∣E
(
f(Xt) − f(Xs) −

r∑

i=1

(X
(i)
t −X(i)

s )
∂f

∂ξi
(Xs)

− 1

2

r∑

i=1

r∑

j=1

(X
(i)
t −X(i)

s )(X
(j)
t −X(j)

s )
∂2f

∂ξi∂ξj
(Xs)

)∣∣

≤ M

6
E((

r∑

i=1

|X(i)
t −X(i)

s |)3) ≤ MK

6
(t− s)3/2

because the X
(i)
t −X

(i)
s are independent random variables all with the same distribution as

√
t− sZ where

Z is standard normal.

(iii) Now fix t ≥ 0 and n ≥ 1; set sk =
k

n
t for k ≤ n. Set

gn(ω) =
∑n−1
k=0(sk+1 − sk)(∇2f)(ω(sk))

for ω ∈ Ω. Then

∣∣
∫ (

f(ω(t))−f(0) − 1

2
gn(ω)

)
µW (dω)

∣∣

=
∣∣
n−1∑

k=0

E(f(Xsk+1
) − f(Xsk) − 1

2
(sk+1 − sk)(∇2f)(Xsk))

∣∣

≤
n−1∑

k=0

MK

6
(
t

n
)3/2 =

MKt
√
t

6
√
n

.

On the other hand,

limn→∞ gn(ω) =
∫ t
0

(∇2f)(ω(s))ds

for every ω (the Riemann integral
∫ t
0
(∇2f)(ω(s))ds is defined because s 7→ (∇2f)(ω(s)) is continuous), and

|gn(ω)| ≤ t‖∇2f‖∞ <∞ for every ω, so by Lebesgue’s Dominated Convergence Theorem

E(f(Xt) − f(0)) =
1

2
lim
n→∞

∫
gn(ω)µW (dω) =

1

2

∫
lim
n→∞

gn(ω)µW (dω)

=
1

2

∫ ∫ t

0

(∇2f)(ω(s))ds µW (dω) =
1

2
E
(∫ t

0

(∇2f)(Xs)ds
)

as claimed.

(b)(i) Consider first the case in which τ takes values in a finite set I ⊆ [0,∞[. In this case we can induce
on #(I). If I = {t0} then

E(f(Xτ )) = E(f(Xt0)) = f(0) +
1

2
E(
∫ t0
0

(∇2f)(Xs)ds) = f(0) +
1

2
E(
∫ τ
0

(∇2f)(Xs)ds)

Measure Theory



478K Harmonic functions 137

by (a). For the inductive step to #(I) > 1, set t0 = min I, E = {ω : τ(ω) = t0} and

φ(ω, ω′)(t) = ω(t) if t ≤ t0,

= ω(t0) + ω′(t− t0) if t ≥ t0,

for ω, ω′ ∈ Ω, so that φ is inverse-measure-preserving (477G). Set

σω(ω′) = τ(φ(ω, ω′)) − t0

for ω, ω′ ∈ Ω. If ω ∈ Ω \ E, σω is a stopping time adapted to 〈Σ+
t 〉t≥0, taking fewer than #(I) values.

PPP Suppose that t > 0 and F = {ω′ : σω(ω′) < t}. If ω′ ∈ F , ω̃′ ∈ Ω and ω̃′↾[0, t] = ω′↾[0, t], then
τ(φ(ω, ω′)) < t+ t0, while φ(ω, ω̃′)(s) = φ(ω, ω′)(s) whenever s ≤ t+ t0; so that

σω(ω̃′) + t0 = τ(φ(ω, ω̃′)) < t+ t0

and ω̃′ ∈ F . Thus F ∈ Σt; as t is arbitrary, σω is adapted to 〈Σ+
t 〉t≥0 (455Lb). Also every value of σω

belongs to {t− t0 : t ∈ I, t > t0} which is smaller than I. QQQ

Writing
∫
. . . dω and

∫
. . . dω′ for integration with respect to µW ,

E
(∫ τ

0

(∇2f)(Xs)ds
)

=

∫

Ω

∫ τ(ω)

0

(∇2f)(ω(s))ds dω

=

∫

Ω

∫

Ω

∫ τ(φ(ω,ω′))

0

(∇2f)(φ(ω, ω′)(s))ds dω′dω

=

∫

E

∫

Ω

∫ t0

0

(∇2f)(ω(s))ds dω′dω

+

∫

Ω\E

∫

Ω

∫ t0+σω(ω′)

0

(∇2f)(φ(ω, ω′)(s))ds dω′dω

=

∫

E

∫ t0

0

(∇2f)(ω(s))ds dω +

∫

Ω\E

∫

Ω

∫ t0

0

(∇2f)(φ(ω, ω′)(s))ds dω′dω

+

∫

Ω\E

∫

Ω

∫ t0+σω(ω′)

t0

(∇2f)(φ(ω, ω′)(s))ds dω′dω

=

∫

Ω

∫ t0

0

(∇2f)(ω(s))ds dω

+

∫

Ω\E

∫

Ω

∫ t0+σω(ω′)

t0

(∇2f)(ω(t0) + ω′(s− t0))ds dω′dω

=

∫

Ω

∫ t0

0

(∇2f)(ω(s))ds dω +

∫

Ω\E

∫

Ω

∫ σω(ω′)

0

(∇2f)(ω(t0) + ω′(s))ds dω′dω

= 2

∫

Ω

f(ω(t0)) − f(0)dω

+ 2

∫

Ω\E

∫

Ω

f(ω(t0) + ω′(σω(ω′))) − f(ω(t0))dω′dω

(applying the inductive hypothesis to the function x 7→ f(ω(t0) + x) and the stopping time σω)

= 2

∫

E

f(ω(t0)) − f(0)dω + 2

∫

Ω\E

∫

Ω

f(ω(t0) + ω′(σω(ω′))) − f(0)dω′dω
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= 2

∫

E

∫

Ω

f
(
φ(ω, ω′)(τ(φ(ω, ω′)))

)
− f(0)dω′dω

+ 2

∫

Ω\E

∫

Ω

f
(
φ(ω, ω′)(τ(φ(ω, ω′)))

)
− f(0)dω′dω

= 2

∫

Ω

∫

Ω

f
(
φ(ω, ω′)(τ(φ(ω, ω′)))

)
− f(0)dω′dω

= 2

∫

Ω

f(ω(τ(ω))) − f(0)dω = 2
(
E(f(Xτ )) − f(0)

)
.

Turning this around, we have the formula we want, so the induction proceeds.

(ii) Now suppose that every value of τ belongs to an infinite set of the form {tn : n ∈ N} ∪ {∞} where
〈tn〉n∈N is a strictly increasing sequence in [0,∞[. In this case, for n ∈ N, define

τn(ω) = min(τ(ω), tn)

for ω ∈ Ω, so that τn takes values in the finite set {t0, . . . , tn}, and

{ω : τn(ω) < t} = {ω : τ(ω) < t} ∈ Σt if t ≤ tn,

= Ω ∈ Σt if t > tn.

Now τ is finite a.e., so τ =a.e. limn→∞ τn; it follows that

f(Xτ (ω)) = f(ω(τ(ω))) = limn→∞ f(ω(τn(ω))) = limn→∞ f(Xτn(ω))

for almost every ω; because f is bounded,

E(f(Xτ )) = limn→∞ E(f(Xτn)).

On the other side,
∫ τ(ω)
0

(∇2f)(ω(s))ds = limn→∞
∫ τn(ω)
0

(∇2f)(ω(s))ds

for almost every ω. At this point, recall that we are supposing that τ has finite expectation and that ∇2f
is bounded. So

|
∫ τn(ω)
0

(∇2f)(ω(s))ds| ≤
∫ τ(ω)
0

|(∇2f)(ω(s))ds| ≤ ‖∇2f‖∞τ(ω)

for every ω, and the dominated convergence theorem assures us that

E
(∫ τ

0

(∇2f)(Xs)ds
)

=

∫

Ω

∫ τ(ω)

0

(∇2f)(ω(s))ds dω

= lim
n→∞

∫

Ω

∫ τn(ω)

0

(∇2f)(ω(s))ds dω

= lim
n→∞

E
(∫ τn

0

(∇2f)(Xs)ds
)
.

Accordingly

E(f(Xτ )) = lim
n→∞

E(f(Xτn)) = lim
n→∞

f(0) +
1

2
E
(∫ τn

0

(∇2f)(Xs)ds
)

(by (i))

= f(0) +
1

2
E
(∫ τ

0

(∇2f)(Xs)ds
)
,

as required.

(iii) Suppose just that τ has finite expectation. This time, for n ∈ N, define a stopping time τn by
saying that
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τn(ω) = 2−nk if k ≥ 1 and 2−n(k − 1) ≤ τ(ω) < 2−nk,

= ∞ if τ(ω) = ∞.

If t > 0, set t′ = 2−nk where 2−nk < t ≤ 2−n(k + 1); then

{ω : τn(ω) < t} = {ω : τ(ω) < t′} ∈ Σt′ ⊆ Σt.

So τn is a stopping time adapted to 〈Σ+
t 〉t≥0; as τn ≤ 2−n + τ , E(τn) < ∞. Again we have τ(ω) =

limn→∞ τn(ω) for every ω. The arguments of (ii) now tell us that, as before,

f(Xτ (ω)) = limn→∞ f(Xτn(ω))

(because f is continuous),
∫ τ(ω)
0

(∇2f)(ω(s))ds = limn→∞
∫ τn(ω)
0

(∇2f)(ω(s))ds

for almost every ω, so that

E(f(Xτ )) = limn→∞ E(f(Xτn)),

E(
∫ τ
0

(∇2f)(Xs)ds) = limn→∞ E(
∫ τn
0

(∇2f)(Xs)ds).

(This time, of course, we need to check that

|
∫ τn(ω)
0

(∇2f)(ω(s))ds| ≤ ‖∇2f‖∞τ0(ω)

for almost every ω, to confirm that we have dominated convergence.) So once again the desired formula can
be got by taking the limit of a sequence of equalities we already know.

478L Theorem Let µW be r-dimensional Wiener measure on Ω = C([0,∞[ ;Rr)0, f : Rr → [0,∞] a
lower semi-continuous superharmonic function, and τ : Ω → [0,∞] a stopping time adapted to 〈Σ+

t 〉t≥0. Set
H = {ω : ω ∈ Ω, τ(ω) <∞}. Then

f(x) ≥
∫
H
f(x+ ω(τ(ω)))µW (dω)

for every x ∈ Rr.

proof (a) To begin with, suppose that f is real-valued and bounded. Let 〈h̃m〉m∈N be the sequence of

473E/478J, and for m ∈ N set fm = f ∗ h̃m. Then each fm is non-negative, smooth with bounded derivatives
of all orders (473De) and superharmonic (478Ja), so ∇2fm ≤ 0 (478Ea). Set τn(ω) = min(n, τ(ω)) for n ∈ N

and ω ∈ Ω; then each τn is a stopping time, adapted to 〈Σ+
t 〉t≥0, with finite expectation. In the language of

478K,

E(fm(x+Xτn)) = fm(x) +
1

2
E
(∫ τn

0
(∇2fm)(x+Xs)ds

)
≤ fm(x)

whenever m, n ∈ N. Letting n→ ∞,

∫

H

fm(x+ ω(τ(ω)))µW (dω) = lim
n→∞

∫

H

fm(x+ ω(τn(ω)))µW (ω)

(because fm, and every ω ∈ Ω, are continuous, and τ(ω) = limn→∞ τn(ω) for every ω)

≤ lim inf
n→∞

∫

Rr

fm(x+ ω(τn(ω)))µW (dω)

(because fm is non-negative)

≤ fm(x)

by Fatou’s Lemma. Now f = limm→∞ fm (478Jc), so

∫

H

f(x+ ω(τ(ω)))µW (ω) ≤ lim inf
m→∞

∫

H

fm(x+ ω(τ(ω)))µW (ω)

≤ lim inf
m→∞

fm(x) = f(x),
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which is what we need to know.

(b) For the general case, set gk = f∧kχRr for each k ∈ N. Then gk is non-negative, lower semi-continuous,
superharmonic (478Cc) and bounded. So

∫

H

f(x+ ω(τ(ω)))µW (dω) = lim
k→∞

∫

H

gk(x+ ω(τ(ω)))µW (dω)

≤ lim
k→∞

gk(x) = f(x).

478M Proposition (a) If r = 1, then {ω(t) : t ≥ 0} = R for almost every ω ∈ Ω.
(b) If r ≤ 2, then {ω(t) : t ≥ 0} is dense in R2 for almost every ω ∈ Ω.
(c) If r ≥ 2, then for every z ∈ R2, z /∈ {ω(t) : t > 0} for almost every ω ∈ Ω.
(d) If r ≥ 3, then limt→∞ ‖ω(t)‖ = ∞ for almost every ω ∈ Ω.

proof (a) Suppose that α, β > 0 and that τ is the Brownian exit time from ]−α, β[; then τ is a stopping

time adapted to 〈Σt〉t≥0 (477Ic). Now τ is almost everywhere finite and Pr(Xτ = β) =
α

α+β
. PPP Since

Pr(|Xt| ≤ max(α, β)) → 0 as t → ∞, τ is finite a.e., and Pr(Xτ = β) + Pr(Xτ = −α) = 1. Set τn(ω) =
min(n, τ(ω)) for each n, and let f : R → R be a smooth function with compact support such that f(x) = x
for x ∈ [−α− 1, β + 1] (478Jd). Now 478K tells us that

E(Xτn) = E(f(Xτn)) = f(0) +
1

2
E(
∫ τn
0

(∇2f)(Xs)ds) = f(0) = 0.

Since 〈Xτn〉n∈N is a uniformly bounded sequence converging almost everywhere to Xτ ,

β Pr(Xτ = β) − αPr(Xτ = −α) = E(Xτ ) = limn→∞ E(Xτn) = 0,

and Pr(Xτ = β) =
α

α+β
. QQQ

Letting α→ ∞, we see that Pr(∃ t ≥ 0, Xt = β) = 1. Similarly, −α lies on almost every sample path.
Thus almost every sample path must pass through every point of Z; since sample paths are continuous,

they almost all cover R.

(b) For r = 1 this is covered by (a); take r = 2. Suppose that z ∈ R2 and that δ > 0. Then almost
every sample path meets B(z, δ). PPP If δ ≥ ‖z‖ this is trivial. Otherwise, take R > ‖z‖ and let τ be the
Brownian exit time from G = intB(z,R) \ B(z, δ). We have Pr(‖Xt‖ ≤ R + ‖z‖) → 0 as t → ∞ (because

Pr(‖Xt‖ ≤ α) ≤ Pr(|Z| ≤ α√
t
) where Z is a standard normal random variable), so τ is finite a.e. Once

again, set τn(ω) = min(n, τ(ω)) for n ∈ N and ω ∈ Ω; this time, take a smooth function f : R2 → R with
compact support such that f(x) = ln ‖x− z‖ for x ∈ B(z, 2R) \B(z, 12δ). Then

E(f(Xτn)) = f(0) = ln ‖z‖
(use 478Fb), so

lnR · Pr(Xτ ∈ ∂B(z,R)) + ln δ · Pr(Xτ ∈ ∂B(z, δ))

= E(f(Xτ )) = lim
n→∞

E(f(Xτn)) = ln ‖z‖

and

Pr(Xτ ∈ ∂B(z, δ)) =
lnR−ln ‖z‖
lnR−ln δ

.

Letting R → ∞, we see that Pr(∃ t ≥ 0, ω(t) ∈ B(z, δ)) = 1; that is, almost every sample path meets
B(z, δ). QQQ

Letting B(z, δ) run over a sequence of balls constituting a network for the topology of R2, we see that
almost every path meets every non-empty open set and is dense in R2.

(c)(i) Consider first the case r = 2.
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(ααα) Suppose that z 6= 0. In this case, take δ, R such that 0 < δ < ‖z‖ < R and let τ be the Brownian
exit time from G = intB(z,R) \B(z, δ), as in the proof of (b). As before, we have

Pr(Xτ ∈ ∂B(z, δ)) =
lnR−ln ‖z‖
lnR−ln δ

.

This time, looking at the limit as δ ↓ 0, we see that

{ω : there is a t ≥ 0 such that ω(t) = z but ‖ω(s) − z‖ < R for every s ≤ t}
is negligible. Taking the union of these sets over large integer R, we see that

{ω : there is a t ≥ 0 such that ω(t) = z}
is negligible, as required.

(βββ) As for z = 0, take any ǫ > 0. Then

µW {ω : there is some t ≥ ǫ such that ω(t) = 0}
= µ2

W {(ω, ω′) : there is some t ≥ 0 such that ω′(t) = −ω(ǫ)}
= µ2

W {(ω, ω′) : ω(ǫ) 6= 0 and there is some t ≥ 0 such that ω′(t) = −ω(ǫ)}
(because the distribution of Xǫ is atomless, so {ω : ω(ǫ) = 0} is negligible)

= 0

by (α). Taking the union over rational ǫ > 0, {ω : there is some t > 0 such that ω(t) = 0} is negligible.

(ii) If r > 2, set Tx = (ξ1, ξ2) for x = (ξ1, . . . , ξr) ∈ Rr. Then ω 7→ Tω : C([0,∞[ ;Rr)0 →
C([0,∞[ ;R2)0 is inverse-measure-preserving for r-dimensional Wiener measure µWr on C([0,∞[ ;Rr)0 and
two-dimensional Wiener measure µW2 on C([0,∞[ ;R2)0, by 477D(c-i) or otherwise. So

{ω : z ∈ ω[ ]0,∞[ ]} ⊆ {ω : Tz ∈ (Tω)[ ]0,∞[ ]}
is negligible.

(d)(i) Fix γ ∈ [0,∞[ and ǫ > 0 for the moment. Set g(x) =
∫ 1

‖y‖r−2
h̃0(x− y)µ(dy) for x ∈ Rr, where h̃0

is the function of 473E; then g is smooth (473De), strictly positive and superharmonic (478Ja). In addition,
we have the following.

(ααα) All the derivatives of g are bounded. PPP As shown in the proof of 473De,
∂g

∂ξi
(x) =

∫ 1

‖y‖r−2

∂

∂ξi
h̃0(x−

y)µ(dy) for 1 ≤ i ≤ r and x ∈ Rr. Inducing on the order of D, and using 478Gc at the last step, we see that

(Dg)(x) =

∫
1

‖y‖r−2
(Dh̃0)(x− y)µ(dy) =

∫
1

‖x−y‖r−2
(Dh̃0)(y)µ(dy)

=

∫

B(0,1)

1

‖x−y‖r−2
(Dh̃0)(y)µ(dy)

≤ ‖Dh̃0‖∞
∫

B(0,1)

1

‖x−y‖r−2
µ(dy) ≤ 1

2
rβr‖Dh̃0‖∞

for any partial differential operator D and any x ∈ Rr. QQQ

(βββ) lim‖x‖→∞ g(x) = 0, because

g(x) ≤ ‖h̃0‖∞
∫
B(0,1)

1

‖x−y‖r−2
µ(dy) ≤ ‖h̃0‖∞ βr

(‖x‖−1)r−2

whenever ‖x‖ > 1.

(γγγ) g(x) = g(y) whenever ‖x‖ = ‖y‖. PPP Let T : Rr → Rr be an orthogonal transformation such
that Tx = y. Then
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g(x) =

∫
1

‖x−z‖r−2
h̃0(z)µ(dz) =

∫
1

‖T (x−z)‖r−2
h̃0(Tz)µ(dz)

(because h̃0T = h̃0)

=

∫
1

‖y−Tz‖r−2
h̃0(Tz)µ(dz) =

∫
1

‖y−z‖r−2
h̃0(z)µ(dz)

(because T is an automorphism of (Rr, µ))

= g(y). QQQ

(ii) Let β > 0 be the common value of g(y) for ‖y‖ = γ. Take x ∈ Rr such that ‖x‖ > γ, and n ∈ N.
Define

τ(ω) = min({n} ∪ {t : ‖x+ ω(t)‖ ≤ γ})

for ω ∈ Ω. Then τ is a bounded stopping time adapted to 〈Σt〉t≥0, so

β Pr(τ < n) ≤ E(g(x+Xτ ))

= g(x) +
1

2
E(

∫ τ

0

(∇2g)(x+Xs)ds) ≤ g(x).

Letting n→ ∞, we see that

µW {ω : ‖x+ ω(t)‖ ≤ γ for some t ≥ 0} ≤ 1

β
g(x).

(iii) Now let n > γ be an integer such that
1

β
g(x) ≤ ǫ whenever ‖x‖ ≥ n. As in (a) and (b-i) above,

limt→∞ Pr(‖Xt‖ ≤ n) = 0; take m ∈ N such that Pr(‖Xm‖ ≤ n) ≤ ǫ. Let σ be the stopping time with
constant value m, with φσ : Ω × Ω → Ω the corresponding inverse-measure-preserving function (477G). Set
F = {ω : ‖ω(m)‖ > n}. Now

Pr(‖Xt‖ ≤ γ for some t ≥ m)

= µ2
W {(ω, ω′) : ‖φσ(ω, ω′)(t)‖ ≤ γ for some t ≥ m}

(where µ2
W is the product measure on Ω × Ω)

= µ2
W {(ω, ω′) : ‖ω(m) + ω′(t−m)‖ ≤ γ for some t ≥ m}

≤ µ2
W {(ω, ω′) : ‖ω(m)‖ ≤ n or ‖ω(m)‖ ≥ n

and ‖ω(m) + ω′(t)‖ ≤ γ for some t ≥ 0}
≤ µ{ω : ‖ω(m)‖ ≤ n}

+

∫

F

µW {ω′ : ‖ω(m) + ω′(t)‖ ≤ γ for some t ≥ 0}µW (dω)

≤ ǫ+

∫

F

1

β
g(ω(m))µW (dω) ≤ ǫ+ ǫµWF ≤ 2ǫ.

As ǫ is arbitrary, Pr(lim inft→∞ ‖Xt‖ < γ) = 0; as γ is arbitrary, Pr(limt→∞ ‖Xt‖ = ∞) = 1.

Remark In 479R I will show that there is a surprising difference between the cases r = 3 and r ≥ 4.

478N Wandering paths Let G ⊆ Rr be an open set, and for x ∈ G set

Fx(G) = {ω : either τx(ω) <∞ or limt→∞ ‖ω(t)‖ = ∞}
where τx is the Brownian exit time from G − x. I will say that G has few wandering paths if Fx(G) is
conegligible for every x ∈ G. In this case we can be sure that, if x ∈ G, then for almost every ω either

limt→∞ ‖ω(t)‖ = ∞ or ω(t) /∈ G − x for some t. So we can speak of Xτx(ω) = ω(τx(ω)), taking this to be
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∞ if ω ∈ Fx(G) and τx(ω) = ∞; and ω will be continuous on [0, τx(ω)] for every ω ∈ Fx(G). We find that
Xτx : Ω → ∂∞(G−x) is Borel measurable. PPP τx is the Brownian hitting time to the closed set Rr \ (G−x),
so is a stopping time adapted to 〈T[0,t]〉t≥0 (477Ic). Let B(Ω) be the Borel σ-algebra of Ω for the topology
of uniform convergence on compact sets; then T[0,t] ⊆ B(Ω) for every t ≥ 0. The function

(t, ω) 7→ Xt(ω) : [0,∞[ × Ω → Rr

is continuous, therefore B([0,∞[)⊗̂B(Ω)-measurable (4A3D(c-i)); so Xτx is B(Ω)-measurable (455Ld). QQQ
From 478M, we see that if r ≥ 3 then any open set in Rr will have few wandering paths, while if r ≤ 2

then G will have few wandering paths whenever it is not dense in Rr. Note that if G ⊆ Rr is open, H is a
component of G, and x ∈ H, then the exit times from H − x and G− x are the same, just because sample
paths are continuous, and Fx(G) = Fx(H). It follows at once that if G has more than one component then
it has few wandering paths.

478O Theorem Let G ⊆ Rr be an open set with few wandering paths and f : G
∞ → R a bounded

lower semi-continuous function such that f↾G is superharmonic. Take x ∈ G and let τ : Ω → [0,∞] be the
Brownian exit time from G− x (477Ia). Then f(x) ≥ E(f(x+Xτ )).

proof It will be enough to deal with the case f ≥ 0.

(a) Extend f to a function f̃ : Rr ∪ {∞} → R by setting f̃(x) = 0 for x /∈ G
∞

. Since f is bounded, so is

f̃ . Let 〈h̃n〉n∈N be the sequence of 473E/478Jc, and for n ∈ N set fn = (f̃↾Rr) ∗ h̃n. Also, for n ∈ N, set

Gn = {y : y ∈ G, ‖y‖ < n, ρ(y,Rr \G) >
1

n+1
}

(interpreting ρ(y, ∅) as ∞ if G = Rr), and let τn be the Brownian exit time from Gn − x.

(b) For y ∈ G, fn(y) ≤ f(y) for all sufficiently large n and f(y) = limn→∞ fn(y) (478Jb). Also
fn↾Gn is superharmonic (478Ja). Each fn is smooth with bounded derivatives of all orders (473De), and
(∇2fn)(y) ≤ 0 for y ∈ Gn (478Ea).

If m ≥ n,

E(fm(x+Xτn)) = fm(x) +
1

2
E(
∫ τn
0

(∇2fm)(x+Xs)ds) ≤ fm(x)

(478K). Consequently

E(f(x+Xτn)) ≤ lim inf
m→∞

E(fm(x+Xτn))

≤ lim inf
m→∞

fm(x) = f(x).

(c) For every ω ∈ Ω, 〈τn(ω)〉n∈N is a non-decreasing sequence with limit τ(ω). PPP Since τn(ω) ≤ τn+1(ω) ≤
τ(ω) for every n, t = limn∈N τn(ω) is defined in [0,∞]. If t = ∞ then surely t = τ(ω). Otherwise,
ω(t) = limn→∞ ω(τn(ω)) /∈ G− x, so again t = τ(ω). QQQ

Consequently

f(x+ ω(τ(ω))) ≤ lim infn→∞ f(x+ ω(τn(ω)))

for almost every ω. PPP In the language of 478N, we can suppose that ω ∈ Fx(G), so that ω(τ(ω)) =
limn→∞ ω(τn(ω)) in Rr ∪ {∞}, and we can use the fact that f is lower semi-continuous. QQQ So

E(f(x+Xτ )) ≤ lim infn→∞ E(f(x+Xτn)) ≤ f(x)

as required.

478P Harmonic measures (a) Let A ⊆ Rr be an analytic set and x ∈ Rr. Let τ : Ω → [0,∞] be the
Brownian hitting time to A − x (477I). Then τ is Σ-measurable, where Σ is the domain of µW (455Ma).
Setting H = {ω : τ(ω) < ∞}, Xτ : H → Rr is Σ-measurable. PPP By 4A3Qc, (ω, t) 7→ ω(t) is Σ⊗̂B([0,∞[)-
measurable, while ω 7→ (ω, τ(ω)) is (Σ,Σ⊗̂B([0,∞[))-measurable. So ω 7→ ω(τ(ω)) is Σ-measurable on H.
QQQ

Consider the function ω 7→ x+ω(τ(ω)) : H → Rr. This induces a Radon image measure µx on Rr defined
by saying that
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µxF = µW {ω : ω ∈ H, x+ ω(τ(ω)) ∈ F} = Pr(x+Xτ ∈ F )

whenever this is defined. Because every ω ∈ Ω is continuous, Xτ (ω) ∈ ∂(A− x) for every ω ∈ H, and ∂A
is conegligible for µx. I will call µx the harmonic measure for arrivals in A from x. Of course µxR

r is
the Brownian hitting probability of A.

Note that if F ⊆ Rr is closed and x ∈ Rr \ F , then the Brownian hitting time to F − x is the same as
the Brownian hitting time to ∂F − x, because all paths are continuous, so that the harmonic measure for
arrivals in F from x coincides with the harmonic measure for arrivals in ∂F from x.

(b) We now have an easy corollary of 478L. Let A ⊆ Rr be an analytic set, x ∈ Rr, and µx the harmonic
measure for arrivals in A from x. If f : Rr → [0,∞] is a lower semi-continuous superharmonic function,
f(x) ≥

∫
fdµx. PPP Let τ be the Brownian hitting time to A− x, and H = {ω : τ(ω) <∞}. Then

∫
fdµx =

∫

H

f(x+ ω(τ(ω)))dµW

(because µx is the image measure of the subspace measure (µW )H under ω 7→ x+ ω(τ(ω)))

≤ f(x)

by 478L. QQQ

(c) We can re-interpret 478O in this language. Let G ⊆ Rr be an open set with few wandering paths,
and x ∈ G. Let µx be the harmonic measure for arrivals in Rr \G from x. In this case, taking τ to be the
Brownian exit time from G − x and H = {ω : τ(ω) < ∞}, we know that limt→∞ ‖ω(t)‖ = ∞ for almost
every ω ∈ Ω \H. If f : ∂∞G→ [−∞,∞] is a function, then

E(f(x+Xτ )) =

∫

H

f(x+Xτ (ω))µW (dω) + f(∞)µW (Ω \H)

(counting f(∞) as zero if G is bounded)

=

∫
fdµx + f(∞)(1 − µxR

r)

if either integral is defined in [−∞,∞] (235J6). In particular, if f : G
∞ → R is a bounded lower semi-

continuous function and f↾G is superharmonic, then f(x) ≥
∫
fdµx + f(∞)(1− µxR

r), by 478O. Similarly,

if f : G
∞ → R is continuous and f↾G is harmonic, then f(x) =

∫
fdµx + f(∞)(1 − µxR

r) for every x ∈ G.

(d) Suppose that 〈An〉n∈N is a non-decreasing sequence of analytic subsets of Rr, with union A. For

x ∈ Rr, let µ
(n)
x , µx be the harmonic measures for arrivals in An, A respectively from x. Then µx is the

limit limn→∞ µ
(n)
x for the narrow topology on the space of totally finite Radon measures on Rr (437Jd). PPP

Let τn, τ be the Brownian hitting times for An − x, A − x respectively. Then 〈τn〉n∈N is a non-increasing
sequence with limit τ . Since every ω ∈ Ω is continuous, Xτ (ω) = limn→∞Xτn(ω) whenever τ(ω) <∞. Set

Hn = {ω : τn(ω) <∞} for each n, H = {ω : τ(ω) <∞} =
⋃
n∈NHn.

If f ∈ Cb(R
r), then f(x+Xτ (ω)) = limn→∞ f(x+Xτn(ω)) for every ω ∈ H, so
∫
fdµx =

∫
H
f(x+Xτ )dµW = limn→∞

∫
Hn

f(x+Xτn)dµW = limn→∞
∫
fdµ

(n)
x .

As f is arbitrary, µx = limn→∞ µ
(n)
x (437Kc). QQQ

478Q It is generally difficult to find formulae describing harmonic measures. Theorem 478I, however,
gives us a technique for an important special case.

6Formerly 235L.
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Proposition Let S be the sphere ∂B(y, δ), where y ∈ Rr and δ > 0. For x ∈ Rr \ S, let ζx be the
indefinite-integral measure over ν defined by the function

z 7→ |δ2−‖x−y‖2|
rβrδ‖x−z‖r

if z ∈ S,

7→ 0 if z ∈ Rr \ S.
(a) If x ∈ intB(y, δ), then the harmonic measure µx for arrivals in S from x is ζx.

(b) In particular, the harmonic measure µy for arrivals in S from y is
1

νS
ν S.

(c) Suppose that r ≥ 2. If x ∈ Rr \B(y, δ), then the harmonic measure µx for arrivals in S from x is ζx.

In particular, µxR
r =

δr−2

‖x−y‖r−2
.

proof (a) If g ∈ Cb(R
r), then 478Ib tells us that we have a continuous function fg which extends g, is

harmonic on Rr \ S and is such that fg(x) =
∫
g dζx. Now G = intB(y, δ) is bounded, so it has few

wandering paths (478N) and the harmonic measure µx is defined, with fg(x) =
∫
fg dµx, by 478Pc. But

this means that ∫
g dµx =

∫
fgdµx = fg(x) =

∫
g dζx.

As g is arbitrary, µx = ζx (415I), as claimed.

(b) If x = y then

δ2−‖x−y‖2

rβrδ‖x−z‖r
=

δ2

rβrδr+1
=

1

νS

if z ∈ S. Since ν S is the indefinite-integral measure over ν defined by χS (234M7), we have the result.

(c)(i) To see that ζx is the harmonic measure, we can use the same argument as in (a), with decorations.
If g ∈ Cb(R

r), then 478Ib gives us a bounded continuous function fg, harmonic on H = Rr \ B(y, δ), such
that fg agrees with g on S, and fg(x) =

∫
g dζx. S is conegligible for both µx and ζx.

(ααα) If r ≥ 3, then

lim sup‖x‖→∞ |fg(x)| ≤ νS

rβrδ
lim sup‖x‖→∞

‖x−y‖2−δ2

(‖x‖−δ−‖y‖)r = 0.

So setting fg(∞) = 0, fg : H
∞ → R is continuous and bounded, and harmonic on H; so that∫

g dζx = fg(x) =
∫
fgdµx + fg(∞)(1 − µxR

r) =
∫
g dµx.

As in (a), we conclude that ζx = µx.

(βββ) If r = 2, then by 478Mb we see that almost every ω ∈ Ω takes values in B(y, δ)−x; so µxR
r = 1.

Set fg(x) = fg(x) for x ∈ R2, fg(∞) = lim inf‖x‖→∞ fg(x). Then fg is lower semi-continuous on H
∞

and
harmonic on H, so ∫

g dζx = fg(x) = fg(x) ≥
∫
fgdµx + fg(∞)(1 − µxR

r) =
∫
g dµx.

Applying the same argument to −g, we see that
∫
g dζx ≤

∫
g dµx, so in fact the integrals are equal, and we

have the result in this case also.

(ii) Now

µxR
r = ζxS =

∫

S

‖x−y‖2−δ2

rβrδ‖x−z‖r
ν(dz)

=

∫

∂B(0,δ)

‖x−y‖2−δ2

rβrδ‖x−y−z‖r
ν(dz) =

ν(∂B(0,δ))

rβrδ‖x−y‖r−2

(478Gb)

7Formerly 234E.
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=
δr−2

‖x−y‖r−2
.

478R Theorem Let A, B ⊆ Rr be analytic sets with A ⊆ B. For x ∈ Rr, let µ
(A)
x , µ

(B)
x be the harmonic

measures for arrivals in A, B respectively from x. Then, for any x ∈ Rr, 〈µ(A)
y 〉y∈Rr is a disintegration of

µ
(A)
x over µ

(B)
x .

proof (a) Let τ be the Brownian hitting time to B−x, and τ ′ the hitting time to A−x; then τ(ω) ≤ τ ′(ω)

for every ω. If τ(ω) < ∞, set f(ω) = x + ω(τ(ω)), so that µ
(A)
x is the image measure (µW )Hf

−1, where
H = {ω : τ(ω) <∞}. Define φτ : Ω × Ω → Ω as in 477G, so that

φτ (ω, ω′)(t) = ω(t) if t ≤ τ(ω),

= ω(τ(ω)) + ω′(t− τ(ω)) if t ≥ τ(ω).

Then we have x + φτ (ω, ω′)(t) ∈ A iff t ≥ τ(ω) and f(ω) + ω′(t − τ(ω)) ∈ A; so if we write σω for the
Brownian hitting time to A− f(ω) when ω ∈ H, τ ′(φτ (ω, ω′)) = τ(ω) + σω(ω′).

(b) Now suppose that E ⊆ Rr is a Borel set. Then

µ(A)
x (E) = µW {ω : τ ′(ω) <∞, x+ ω(τ ′(ω)) ∈ E}

= µ2
W {(ω, ω′) : τ ′(φτ (ω, ω′)) <∞, x+ φτ (ω, ω′)(τ ′(φτ (ω, ω′))) ∈ E}

= µ2
W {(ω, ω′) : τ(ω) <∞, σω(ω′) <∞, f(ω) + ω′(σω(ω′)) ∈ E}

=

∫

H

µW {ω′ : σω(ω′) <∞, f(ω) + ω′(σω(ω′)) ∈ E}µW (dω)

=

∫

H

µ
(A)
f(ω)(E)µW (dω) =

∫
µ(A)
y (E)µ(B)

x (dy).

The definition in 452E demands that this formula should be valid whenever E is measured by µ
(A)
x ; but in

general there will be Borel sets E′, E′′ such that E′ ⊆ E ⊆ E′′ and µ
(A)
x (E′) = µ

(A)
x (E) = µ

(A)
x (E′′), in

which case we must have µ
(A)
y (E′) = µ

(A)
y (E) = µ

(A)
y (E′′) for µ

(B)
x -almost every y, and again µ

(A)
x (E) =∫

µ
(A)
y (E)µ

(B)
x (dy).

478S Corollary Let A ⊆ Rr be an analytic set, and f : ∂A → R a bounded universally measurable
function. For x ∈ Rr \ A set g(x) =

∫
fdµx, where µx is the harmonic measure for arrivals in A from x.

Then g is harmonic.

proof Suppose that δ > 0 is such that B(x, δ) ∩ A = ∅, and set S = ∂B(x, δ) = ∂(Rr \ intB(x, δ)). Then

the harmonic measure for arrivals in Rr \ intB(x, δ) from x is
1

νS
ν S (478Qb). So

g(x) =

∫
fdµx =

∫

S

1

νS

∫
fdµyν(dy)

(478R, 452F)

=
1

νS

∫

S

g(y)ν(dy).

As x and δ are arbitrary, g is harmonic.

478T Corollary Let A ⊆ Rr be an analytic set, and for x ∈ Rr let µx be the harmonic measure for
arrivals in A from x. Then x 7→ µx is continuous on Rr \A for the total variation metric on the set of totally
finite Radon measures on Rr (definition: 437Qa).
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proof Take any y ∈ Rr\A. Let δ > 0 be such that B(y, δ)∩A = ∅, and set S = ∂B(y, δ). For x ∈ intB(y, δ),
let ζx be the harmonic measure for arrivals in Rr\B(y, δ) from x, so that ζx is the indefinite-integral measure
over ν defined by the function

z 7→ δ2−‖x−y‖2

rβrδ‖x−z‖r
if z ∈ S,

7→ 0 if z ∈ Rr \ S

(478Qa). Then, for any x ∈ intB(y, δ), 〈µz〉z∈Rr is a disintegration of µx over ζx. So if E ⊆ Rr is a Borel
set,

µxE =
∫
µz(E) ζx(dz) =

1

rβrδ

∫
S
µz(E)

δ2−‖x−y‖2

‖x−z‖r
ν(dz).

But this means that

|µx(E) − µy(E)| ≤ νS

rβrδ
supz∈S

∣∣δ2−‖x−y‖2

‖x−z‖r
− δ2

‖y−z‖r

∣∣;

as E is arbitrary, the distance from µx to µy is at most

δr−2 supz∈S
∣∣δ2−‖x−y‖2

‖x−z‖r
− δ2

‖y−z‖r

∣∣,

which is small if x is close to y.

478U A variation on the technique of 478R enables us to say something about Brownian paths starting
from a point in the essential closure of a set.

Proposition Suppose that A ⊆ Rr and that 0 belongs to the essential closure cl*A of A as defined in 475B.
Then the outer Brownian hitting probability hp∗(A) of A (477Ia) is 1.

proof (a) Take that α ∈ ]0, 1[ such that
1−α2

(1+α)r
=

1

2
. Suppose that E ⊆ Rr is analytic, and that 0 < δ0 <

. . . < δn are such that δi ≤ αδi+1 for i < n. For i ≤ n, let τi be the Brownian hitting time to Si = ∂B(0, δi).
Then

µW {ω : ω(τi(ω)) /∈ E for every i ≤ n} ≤ ∏n
i=0(1 − ν(E∩Si)

2νSi

).

PPP Induce on n. If n = 0, then

µW {ω : ω(τ0(ω)) /∈ E} = 1 − µ
(Si)
0 (E)

(where µ
(Si)
0 is the harmonic measure for arrivals in Si from 0)

= 1 − ν(E∩Si)

νSi

≤ 1 − ν(E∩Si)

2νSi

(478Qb). For the inductive step to n+ 1 ≥ 1, let φ : Ω×Ω → Ω be the inverse-measure-preserving function
corresponding to the stopping time τn as in 477G; when τn(ω) is finite, set y(ω) = ω(τn(ω)) ∈ Sn. Since
τi(ω) < τi+1(ω) whenever i ≤ n and τi(ω) is finite,

τi(φ(ω, ω′)) = τi(ω)

for i ≤ n and ω, ω′ ∈ Ω. As for τn+1(φ(ω, ω′)), this is infinite if τn(ω) = ∞, and otherwise is σy(ω)(ω
′),

where σy is the Brownian hitting time of Sn+1 − y. Now if y ∈ Sn, then

µ(Sn+1)
y (E) =

∫

E∩Sn+1

δ2n+1−δ2n
rβrδn+1‖x−y‖r

ν(dx)

(478Qa)
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≥ δ2n+1−δ2n
rβrδn+1(δn+1+δn)r

ν(E ∩ Sn+1)

≥ 1−α2

rβrδ
r−1
n+1(1+α)r

ν(E ∩ Sn+1) =
ν(E∩Sn+1)

2νSn+1

.

Consequently

µW {ω : ω(τi(ω)) /∈ E for every i ≤ n+ 1}
= (µW × µW ){(ω, ω′) : φ(ω, ω′)(τi(φ(ω, ω′))) /∈ E for every i ≤ n+ 1}
= (µW × µW ){(ω, ω′) : ω(τi(ω)) /∈ E for every i ≤ n, ω′(σy(ω)(ω

′)) /∈ E}

=

∫

V

µW {ω′ : ω′(σy(ω)(ω
′)) /∈ E}µW (dω)

(setting V = {ω : ω(τi(ω)) /∈ E for every i ≤ n})

≤ µWV · sup
y∈Sn

(1 − µ(Sn+1)
y E)

≤ µWV · (1 − ν(E∩Sn+1)

2νSn+1

) ≤
n+1∏

i=0

(1 − ν(E∩Si)

2νSi

)

by the inductive hypothesis. So the induction continues. QQQ

(b) In particular, under the conditions of (a), hp(E) ≥ 1−∏n
i=0(1− ν(E∩Si)

2νSi

). Now suppose that A ⊆ Rr

and that 0 ∈ cl*A. Let E ⊇ A be an analytic set such that hp(E) = hp∗(A) (477Id). Then 0 ∈ cl*E; set

γ =
1

3
lim supδ↓0

µ(E∩B(0,δ))

µB(0,δ)
> 0. For any δ > 0, there is a δ′ ∈ ]0, δ] such that

ν(E∩∂B(0,δ′))

ν∂B(0,δ′)
≥ 2γ. PPP Let

β ∈ ]0, δ] be such that µ(E ∩B(0, β)) ≥ 2γµB(0, β). Then
∫ β
0
ν(E ∩ ∂B(0, t))dt ≥ 2γ

∫ β
0
ν∂B(0, t)dt,

so there must be a δ′ ∈ ]0, β] such that ν(E ∩ ∂B(0, δ′)) ≥ 2γν∂B(0, δ′). QQQ
We can therefore find, for any n ∈ N, 0 < δ0 < . . . < δn such that δi ≤ αδi+1 for every i < n (where α is

chosen as in (a) above) and ν(E ∩ ∂B(0, δi)) ≥ 2γν∂B(0, δi) for every i. As noted at the beginning of this
part of the proof, it follows that hp(E) ≥ 1 − (1 − γ)n+1. As this is true for every n ∈ N, hp(E) = 1, so
hp∗(A) = 1, as claimed.

*478V Theorem (a) Let G ⊆ Rr be an open set with few wandering paths and f : G
∞ → R a continuous

function such that f↾G is harmonic. For x ∈ Rr let τx : Ω → [0,∞] be the Brownian exit time from G− x.
Set

gτx(ω) = f(x+ ω(τx(ω))) if τx(ω) <∞,

= f(∞) if lim
t→∞

‖ω(t)‖ = ∞ and τx(ω) = ∞.

Then f(x) = E(gτx).
(b) Now suppose that σ is a stopping time adapted to 〈Σt〉t≥0 such that σ(ω) ≤ τx(ω) for every ω. Set

gσ(ω) = gτx(ω) if σ(ω) = τx(ω) = ∞,

= f(x+ ω(σ(ω))) otherwise.

As in 455Lc, set Σσ = {E : E ∈ domµW , E ∩{ω : σ(ω) ≤ t} ∈ Σt for every t ≥ 0}. Then gσ is a conditional
expectation of gτx on Σσ.

proof (a)(i) Of course if x /∈ G then τx(ω) = 0 and gτx(ω) = f(x) for every ω and the result is trivial. So
we can suppose that x ∈ G. Note next that if there is any ω such that limt→∞ ‖ω(t)‖ = ∞ and τx(ω) = ∞,
then G must be unbounded, so f(∞) will be defined. Because G has few wandering paths, gτx is defined
almost everywhere.
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(ii) Let m ∈ N be such that ρ(x,Rr \ G) > 1
m+1 and ‖x‖ < m; for n ≥ m, set Gn = {y : ‖y‖ < n,

ρ(y,Rr \ G) > 1
n+1}, let τ ′xn be the Brownian exit time from Gn − x and set τxn(ω) = min(n, τ ′xn(ω)) for

every ω. Note that by 477I(c-i), x+ ω(τxn(ω)) ∈ Gn for every ω.

By 477I(c-iii) and 455L(c-v), τxn is a stopping time adapted to 〈Σt〉t≥0. Let 〈h̃n〉n∈N be the sequence of

473E, and for n ≥ m set fn = f̃ ∗ h̃n, where f̃ is the extension of f↾G to Rr which takes the value 0 on
Rr \G. Then fn and all its derivatives are smooth and bounded. By 478Jb (applied in turn to the functions

f̃ +MχRr and −f̃ +MχRr where M = supy∈G |f(y)|, which of course are both superharmonic on G), fn
agrees with f on Gn, so that fn↾Gn is harmonic and ∇2fn is zero on Gn (478Ec). Also, because both fn
and f are continuous, they agree on Gn and f(x+ ω(τxn(ω))) = fn(x+ ω(τxn(ω))) for every ω.

If n ≥ m, ω ∈ Ω and 0 ≤ s < τxn(ω), then x + ω(s) ∈ Gn so (∇2fn)(x + ω(s)) = 0. Dynkin’s
formula (478K), applied to the function y 7→ fn(x + y), therefore tells us that f(x) = fn(x) =

∫
fn(x +

ω(τxn(ω)))µW (dω).

(iii) If ω ∈ Ω and t < τx(ω), then the compact set x+ω[ [0, t] ] is included in the open set G and there
is an n ≥ max(m, t) such that it is included in Gn. So limn→∞ τxn(ω) = τx(ω) and, because f is continuous

on G
∞

,

gτx(ω) = limn→∞ f(x+ ω(τxn(ω))) = limn→∞ fn(x+ ω(τxn(ω)))

for almost every ω. Since ‖fn‖∞ ≤ ‖f‖∞ < ∞ for every n, Lebesgue’s Dominated Convergence Theorem
tells us that

E(gτx) = limn→∞
∫
fn(x+ ω(τxn(ω)))µW (dω) = f(x),

as required.

(b)(i) If ω0, ω1 ∈ Ω, σ(ω0) = t and ω1↾[0, t] = ω0↾[0, t], then σ(ω1) = t. PPP The set {ω : σ(ω) ≤ t}
belongs to Σt; as it contains ω0, it contains ω1, and σ(ω1) ≤ t. But now ω0 agrees with ω1 on [0, σ(ω1)], so
σ(ω1) ≥ σ(ω) = t. QQQ

If H ∈ Σσ then ω0 ∈ H iff ω1 ∈ H. PPP For every t ≥ 0, H ∩ {ω : σ(ω) ≤ t} belongs to Σt, so contains ω0

iff it contains ω1. QQQ

(ii) Of course E∞ = {ω : σ(ω) = ∞} belongs to Σσ, because it has empty intersection with every set
{ω : σ(ω) ≤ t}.

(iii) gσ is Σσ-measurable. PPP For n ∈ N, ω ∈ Ω and t ≥ 0, set

hn(t, ω) = f(ω(2−n⌊2nt⌋)) if ω(2−n⌊2nt⌋) ∈ G,

= 0 otherwise.

Then hn is (B([0,∞[) × Σ)-measurable, so if we set h(t, ω) = limn→∞ hn(t, ω) when this is defined, h
also will be (B([0,∞[) × Σ)-measurable, and ω 7→ h(σ(ω), ω) is Σ-measurable. Now, because σ ≤ τ ,
gσ(ω) = h(σ(ω), ω) for almost every ω ∈ Ω \ E∞; because µW is complete, gσ is Σ-measurable. But now
observe that if t ≥ 0 and α ∈ R, {ω : σ(ω) ≤ t, gσ(ω) ≥ α} belongs to Σ and is determined by coordinates
less than or equal to t, so belongs to Σt. As t is arbitrary, {ω : gσ(ω) ≥ α} ∈ Σσ; as α is arbitrary, gσ is
Σσ-measurable. QQQ

(iv) As in 477G, define φσ : Ω × Ω → Ω by saying that

φσ(ω, ω′)(t) = ω(t) if t ≤ σ(ω),

= ω(σ(ω)) + ω′(t− σ(ω)) if t ≥ σ(ω).

Then 477G tells us that φσ is inverse-measure-preserving.

(v) τx(φσ(ω, ω′)) = σ(ω) + τx+ω(σ(ω))(ω
′) for all ω, ω′ ∈ Ω. PPP If σ(ω) = ∞ then φσ(ω, ω′) = ω and

τx(φσ(ω, ω′)) = τx(ω) = σ(ω).

If σ(ω) = τx(ω) is finite then ω(σ(ω)) /∈ G− x and φσ(ω, ω′)↾[0, τx(ω)] = ω↾[0, τx(ω)], so

τx(φσ(ω, ω′)) = τx(ω) = σ(ω) = σ(ω) + τx+ω(σ(ω))(ω
′).
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If σ(ω) < τx(ω) then ω(t) = φσ(ω, ω′)(t) belongs to G− x for every t ≤ σ(ω)) and

τx(φσ(ω, ω′)) = inf{t : t ≥ σ(ω), ω(σ(ω)) + ω′(t− σ(ω)) /∈ G− x}
= σ(ω) + inf{t : ω′(t) /∈ G− x− ω(σ(ω))} = σ(ω) + τx+ω(σ(ω))(ω

′). QQQ

Consequently, if ω ∈ Ω, σ(ω) <∞ and y = ω(σ(ω)),

φσ(ω, ω′)(τx(φσ(ω, ω′))) = φσ(ω, ω′)(σ(ω) + τx+y(ω′)) = y + ω′(τx+y(ω′))

whenever either τx(φσ(ω, ω′)) or τx+y(ω′) is finite,

gτx(φσ(ω, ω′)) = f(x+ φσ(ω, ω′)(τx(φσ(ω, ω′)))) = f(x+ y + ω′(τx+y(ω′)))

for almost every ω′.

(vi) If H ∈ Σσ then φ−1
σ [H] = H × Ω. PPP If ω, ω′ ∈ Ω then φσ(ω, ω′)↾[0, σ(ω)] = ω↾[0, σ(ω)], so by (i)

above φσ(ω, ω′) ∈ H iff ω ∈ H. QQQ
If H ∩ E∞ = ∅, we now have

∫

H

gτx =

∫

φ−1
σ [H]

gτx(φσ(ω, ω′))d(ω, ω′)

=

∫

H

∫
f(x+ ω(σ(ω)) + ω′(τx+ω(σ(ω))(ω)))dω′dω

=

∫

H

f(x+ ω(σ(ω)))dω

(by (a) above)

=

∫

H

gσ.

Of course we also have
∫
H
gτx =

∫
H
gσ if H ⊆ E∞. So

∫
H
gσ =

∫
H
gτx for every H ∈ Σσ, and gσ is a

conditional expectation of gτx on Σσ.

478X Basic exercises (a) Let G ⊆ Rr be an open set, and 〈fn〉n∈N a sequence of superharmonic
functions from G to [0,∞]. Show that lim infn→∞ fn is superharmonic.

(b) Let G ⊆ Rr be an open set, and f : G→ R a continuous harmonic function. Show that f is smooth.
(Hint : put 478I and 478D together.)

(c) Let G ⊆ Rr be an open set, and f : G → [0,∞] a lower semi-continuous superharmonic function.
Show that there is are sequences 〈Gn〉n∈N, 〈fn〉n∈N such that (i) 〈Gn〉n∈N is a non-decreasing sequence of
open sets with union G (ii) for each n ∈ N, fn : Gn → [0,∞[ is a bounded smooth superharmonic function
and fn ≤ f↾Gn (iii) f(x) = limn→∞ fn(x) for every x ∈ G.

>>>(d) Let 〈Xt〉t≥0 be Brownian motion in Rr, and δ > 0. Let τ be the Brownian hitting time to

{x : ‖x‖ ≥ δ}. Show that E(τ) =
δ2

r
. (Hint : in 478K, take f extending x 7→ ‖x‖2 : B(0, δ) → R.)

(e) Show that hp∗ : PRr → [0, 1] is an outer regular Choquet capacity (definition: 432J) iff r ≥ 3. (Hint :
if r ≥ 3, µW is inner regular with respect to {K : K ⊆ Ω, limt→∞ infω∈K ‖ω(t)‖ = ∞}.)

(f) Show that an open subset of R has few wandering paths iff it is not R itself.

(g) Suppose r = 2. (i) Show that if x ∈ R2 \ {0}, then the Brownian exit time from R2 \ {x} is infinite
a.e. (Hint : use the method of part (b-ii) of the proof of 478M to show that if R > ‖x‖ and δ > 0 is small
enough then most sample paths meet ∂B(x,R) before they meet B(x, δ).) (ii) Show that if G ⊆ R2 is an
open set with countable complement then G does not have few wandering paths.
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(h) Suppose that r ≥ 3. Let 〈An〉n∈N be a non-increasing sequence of analytic sets in Rr such that A0 is

bounded and
⋂
n∈N Ān =

⋂
n∈NAn, and x ∈ Rr. Let µ

(n)
x , µx be the harmonic measures for arrivals in An,

⋂
m∈NAm from x. Show that µx = limn→∞ µ

(n)
x for the narrow topology on the set of totally finite Radon

measures on Rr. (Hint : 478Xe, 478Pd.)

(i) Let A ⊆ R be an analytic set, x ∈ R and µx the harmonic measure for arrivals in A from x. For y ∈ R

let δy be the Dirac measure on R concentrated at y. Show that (i) if A is empty, then µx is the zero measure;
(ii) if A 6= ∅ but A ∩ [x,∞[ = ∅ then µx = δsupA; (iii) if A 6= ∅ but A ∩ ]−∞, x] = ∅ then µx = δinf A; (iv) if
A meets both ]−∞, x] and [x,∞[, and y = sup(A∩ ]−∞, x]), z = inf(A∩ [x,∞[), then µx = δx if y = z = x,

and otherwise µx =
z−x

z−y
δy +

x−y

z−y
δz.

(j) Prove 478Qb by a symmetry argument not involving the calculations of 478I.

>>>(k) Let G ⊆ Rr be an open set, and for x ∈ G let µx be the harmonic measure for arrivals in
Rr \ G from x. Show that for any bounded universally measurable function f : ∂G → R, the function
x 7→

∫
fdµx : G→ R is continuous and harmonic.

(l) (i) Suppose that r = 2, and that x, y, z ∈ Rr are such that ‖x‖ < 1 = ‖z‖ and y = 0. Identify R2

with C, and express x, z as γeiθ and eit respectively. Show that, in the language of 272Yg,
‖y−z‖2−‖x−y‖2

‖x−z‖r
=

Aγ(θ − t). (ii) Compare 478I(b-iii) with 272Yg(iii).

478Y Further exercises (a)(i) Show that there is a function f : R → Q which is ‘harmonic’ in the sense
of 478B, but is not continuous. (Hint : take f to be a linear operator when R is regarded as a linear space
over Q.) (ii) Show that if the continuum hypothesis is true, there is a surjective function f : R2 → {0, 1}
which is ‘harmonic’ in the sense of 478B.

(b) Let G ⊆ Rr be a connected open set, and f : G → [0,∞] a superharmonic Lebesgue measurable
function which is not everywhere infinite. Show that f is locally integrable.

(c) Let G ⊆ R2 be an open set, and f : G→ C a function which is analytic when regarded as a function
of a complex variable. Show that Re f is harmonic. (Hint : The non-trivial part is the theorem that f has
continuous second partial derivatives.)

(d) Define ψ : Rr \ {0} → Rr by setting ψ(x) =
x

‖x‖2
. For a [−∞,∞]-valued function f defined on a

subset of Rr, set f∗(x) =
1

‖x‖r−2
f(ψ(x)) for x ∈ ψ−1[dom f ] \ {0}. (This is the Kelvin transform of f

relative to the sphere ∂B(0, 1).) (i) Show that if f is real-valued and twice continuously differentiable, then

(∇2f∗)(x) =
1

‖x‖r+2
(∇2f)(ψ(x)) for x ∈ dom f∗. (ii) Show that if dom f is open and f is non-negative,

lower semi-continuous and superharmonic, then f∗ is superharmonic.

(e) Let G ⊆ R2 be an open set. Show that G has few wandering paths iff there is an x ∈ R2 such that
hp((R2 \ (G ∪ {x})) − x) > 0.

(f) Show that 478K remains true if we replace ‘three-times-differentiable function such that f and its
first three derivatives are continuous and bounded’ with ‘twice-differentiable function such that f and its
first two derivatives are continuous and bounded’.

(g) Let f : Rr → R be a twice-differentiable function such that f and its first two derivatives are
continuous and bounded. Show that

limδ↓0
1

δ2

(
f(x) − 1

µB(x,δ)

∫
B(x,δ)

fdµ
)

= −(∇2f)(x)

2(r+2)

for every x ∈ Rr.
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(h) Let G ⊆ Rr be an open set and f : G→ R a continuous function such that

limδ↓0
1

δ2

(
f(x) − 1

µB(x,δ)

∫
B(x,δ)

fdµ
)

= 0

for every x ∈ G. Show that f is harmonic.

(i) Let f : Rr → [0,∞] be a lower semi-continuous superharmonic function. Show that fω is continuous
for µW -almost every ω ∈ Ω.

(j) Suppose that A ⊆ Rr. Show that x 7→ hp∗(A− x) is lower semi-continuous at every point of Rr \A,
and continuous at every point of Rr \A.

(k) Suppose that A ⊆ Rr is such that infδ>0 hp∗(A ∩B(0, δ)) > 0. Show that hp∗(A) = 1.

(l) Let µW be three-dimensional Wiener measure on Ω = C([0,∞[ ;R3)0, and e a unit vector in R3. Set

Yt(ω) =
1

‖ω(t)−e‖ for ω ∈ Ω and t ∈ [0,∞[ such that ω(t) 6= e. (i) Show that if R > 1 then

E(Yt) =
1

(
√
2πt)3

∫
exp(−‖x‖2/2t)

‖x−e‖ µ(dx)

≤ 1

(
√
2πt)3

∫

B(0,1)

1

‖x‖µ(dx) +
1

(
√
2πt)3

∫

B(e,R)\B(e,1)

e−‖x‖2/2tµ(dx) +
1

R
→ 1

R

as t → ∞, so that limt→∞ E(Yt) = 0 and 〈Yt〉t≥0 is not a martingale. (ii) Show that if n ≥ 1 and τn is
the Brownian hitting time to B(e, 2−n), then 〈Yt∧τn〉t≥0 is a martingale, where t ∧ τn is the stopping time
ω 7→ min(t, τn(ω)). (iii) Show that 〈τn(ω)〉n∈N is a strictly increasing sequence with limit ∞ for almost every
ω. (〈Yt〉t≥0 is a ‘local martingale’.)

(m) Taking r = 2, set S = {(ξ, 1) : ξ ∈ R} and let ζ be the indefinite-integral measure over ν defined by
the function

(ξ, η) 7→ 1

π(1+ξ2)
if η = 1,

7→ 0 otherwise.

Show that ζ is the harmonic measure for arrivals in S from (0, 0).

478 Notes and comments I find that books are still being published on the subject of potential theory
which ignore Brownian motion. To my eye, Newtonian potential, at least (and this is generally acknowledged
to be the core of the subject), is an essentially geometric concept, and random walks are an indispensable
tool for understanding it. So I am giving these priority, at the cost of myself ignoring Green’s functions.

The definitions in 478B are already unconventional; most authors take it for granted that harmonic
functions should be finite-valued and continuous (see 478Cd). All the work of this section refers to measurable
functions. But there are things which can be said about non-measurable functions satisfying the definitions

here (478Ya). Let me draw your attention to 478Fa and 478H. If we want to say that x 7→ 1

‖x‖r−2
is harmonic,

we have to be careful not to define it at 0. If (for r ≥ 3) we allow
1

0r−2
= ∞, we get a superharmonic function.

If (for r = 1) we allow
1

0−1
= 0, we get a subharmonic function. The slightly paradoxical phenomenon of

478Yl is another manifestation of this.
I hope that using the operations ∞ and ∂∞ does not make things more difficult. The point is that

by compactifying Rr we get an efficient way of talking about lim‖x‖→∞ f(x) when we need to. This is
particularly effective for Brownian paths, since in three and more dimensions almost all paths go off to
infinity (478Md). In two dimensions the situation is more complex (478Mb-478Mc), and we have to consider
the possibility that a path ω in an open set may be ‘wandering’, in the sense that it neither strikes the
boundary nor goes to infinity, and limt→∞ f(ω(t)) may fail to exist even for the best-behaved functions
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f . Of course this already happens in one dimension, but only when G = R, and classical potential theory
(though not, I think, Brownian potential theory) is nearly trivial in the one-dimensional case.

Many readers will also find that setting r = 3 and rβr = 4π will make the formulae easier to digest. I
allow for variations in r partly in order to cover the case r = 2 (in this section, though not in the next, many
of the ideas translate directly into the one- and two-dimensional cases), and partly because it is not always
easy to guess at a formula for r ≥ 4 from the formula for r = 3. There is little extra work to be done, given
that §§472-475 cover the general case.

I call 478K a ‘lemma’ because I have made no attempt to look for weakest adequate hypotheses; of course
we don’t really need third derivatives (478Yf). The ‘theorems’ are 478L and 478O, where the hypotheses
seem to mark natural boundaries of the arguments given. In 478O I use a language which is both unusual
and slightly contorted, in order to do as much as possible without splitting the cases r ≤ 2 from the rest. Of
course any result involving the notion of ‘few wandering paths’ really has two forms; one when r ≥ 3, so that
there is no restriction on the open set and we are genuinely making use of the one-point compactification of
Rr, and one when r ≤ 2, in which essentially all our paths are bounded.

Theorem 478O leads directly to a solution of Dirichlet’s problem, in the sense that, for an open set G
with few wandering paths, we have a family of measures enabling us to calculate the values within G of a
continuous function on G

∞
which satisfies Laplace’s equation inside G (478Pc). We do not get a satisfactory

existence theorem; we can use harmonic measures to generate many harmonic functions on G (478S), but we
do not get good information on their behaviour near ∂G, and are left guessing at which continuous functions
on ∂∞G will be extended continuously. The method does, however, make it clear that what matters is the
geometry of the boundary; we need to know whether, starting from a point near the boundary, a random
walk will hit the boundary soon. So at least we can see from 478M that (if r ≥ 2) an isolated point of ∂G
will be at worst an irrelevant distraction. For r ≥ 3 the next section will give some useful information (479P
et seq.), though I shall not have space for a proper analysis.

The idea of 478Vb is that we have a particularly dramatic kind of martingale. Writing S for the set of
stopping times σ ≤ τ , it is easy to see that the family 〈gσ〉σ∈S is a martingale in the sense that Σσ ⊆ Σσ′

and gσ is a conditional expectation of gσ′ on Σσ whenever σ ≤ σ′ in S.

Version of 15.2.10/28.4.10

479 Newtonian capacity

I end the chapter with a sketch of fragments of the theory of Newtonian capacity. I introduce equilibrium
measures as integrals of harmonic measures (479B); this gives a quick definition of capacity (479C), with
a substantial number of basic properties (479D, 479E), including its extendability to a Choquet capacity
(479Ed). I give sufficient fragments of the theory of Newtonian potentials (479F, 479J) and harmonic
analysis (479G, 479I) to support the classical definitions of capacity and equilibrium measures in terms of
potential and energy (479K, 479N). The method demands some Fourier analysis extending that of Chapter
28 (479H). 479P is a portmanteau theorem on generalized equilibrium measures and potentials with an exact
description of the latter in terms of outer Brownian hitting probabilities. I continue with notes on capacity
and Hausdorff measure (479Q), self-intersecting Brownian paths (479R) and an example of a discontinuous
equilibrium potential (479S). Yet another definition of capacity, for compact sets, can be formulated in terms
of gradients of potential functions (479U); this leads to a simple inequality relating capacity to Lebesgue
measure (479V). The section ends with an alternative description of capacity in terms of a measure on the
family of closed subsets of Rr (479W).

479A Notation In this section, unless otherwise stated, r will be a fixed integer greater than or equal
to 3. As in §478, µ will be Lebesgue measure on Rr, and βr the measure of the unit ball B(0, 1); ν will be
normalized (r − 1)-dimensional Hausdorff measure on Rr, so that ν(∂B(0, 1)) = rβr.

Recall that if ζ is a measure on a spaceX, and E ∈ dom ζ, then ζ E is defined by saying that (ζ E)(F ) =
ζ(E ∩ F ) whenever F ⊆ X and ζ measures E ∩ F (234M8). If ζ is a Radon measure, so is ζ E (416Sa).

As in §478, Ω will be C([0,∞[ ;Rr)0, with the topology of uniform convergence on compact sets; µW
will be Wiener measure on Ω. Recall that the Brownian hitting probability hp(D) of a set D ⊆ Rr is

8Formerly 234E.
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µW {ω : ω−1[D] 6= ∅} if this is defined, and that for any D ⊆ Rr the outer Brownian hitting probability is
hp∗(D) = µ∗

W {ω : ω−1[D] 6= ∅} (477Ia).

If x ∈ Rr and A ⊆ Rr is an analytic set, µ
(A)
x will be the harmonic measure for arrivals in A from x

(478P); note that µ
(A)
x (Rr) = µ

(A)
x (∂A) = hp(A− x).

I will write ρtv for the total variation metric on the space M+
R (Rr) of totally finite Radon measures on

Rr, so that

ρtv(λ, ζ) = supE,F⊆Rr are Borel λE − ζE − λF + ζF

for λ, ζ ∈M+
R (Rr) (437Qa).

479B Theorem Let A ⊆ Rr be a bounded analytic set.
(i) There is a Radon measure λA on Rr, with support included in ∂A, defined by saying that

〈 1

rβrγ
µ
(A)
x 〉x∈∂B(0,γ) is a disintegration of λA over the subspace measure ν∂B(0,γ) whenever γ > 0 and

A ⊆ intB(0, γ).

(ii) λA is the limit lim‖x‖→∞ ‖x‖r−2µ
(A)
x for the total variation metric on M+

R (Rr).

proof (a) Suppose that γ > 0 is such that A ⊆ intB(0, γ). By 478T, x 7→ µ
(A)
x (E) : ∂B(0, γ) → [0,∞[

is continuous for every Borel set E ⊆ Rr, and µ
(A)
x (Rr \ A) = 0 for every x, so {µ(A)

x : x ∈ ∂B(0, γ)} is

uniformly tight. By 452Da, we have a unique totally finite Radon measure ζγ such that 〈 1

rβrγ
µ
(A)
x 〉x∈∂B(0,γ)

is a disintegration of ζγ over the subspace measure ν∂B(0,γ). Since Rr \ ∂A is µ
(A)
x -negligible for every

x ∈ ∂B(0, γ) (478Pa), it is also ζγ-negligible.

(b) Now suppose that A ⊆ intB(0, γ) and that ‖x‖ = Mγ, where M > 1. Then 478R tells us that

〈µ(A)
y 〉y∈Rr is a disintegration of µ

(A)
x over µ

(B(0,γ))
x . So, for any Borel set E ⊆ Rr,

|ζγE − ‖x‖r−2µ(A)
x E| =

1

rβrγ

∣∣
∫

S

µ(A)
y E ν(dy) − ‖x‖r−2

∫

Rr

µ(A)
y E µ(B(0,γ))

x (dy)
∣∣

(where S = ∂B(0, γ))

=
1

rβrγ

∣∣
∫

S

µ(A)
y E ν(dy) − ‖x‖r−2

∫

S

µ(A)
y E µ(S)

x (dy)
∣∣

(478Pa)

=
1

rβrγ

∣∣
∫

S

µ(A)
y E ν(dy) − ‖x‖r−2

∫

S

‖x‖2−γ2

rβrγ‖x−y‖r
µ(A)
y E ν(dy)

∣∣

(478Q)

≤ 1

rβrγ

∫

S

|1 − ‖x‖r−2 ‖x‖2−γ2

‖x−y‖r
|µ(A)
y Eν(dy)

≤ νS

rβrγ
sup
y∈S

|1 − ‖x‖r−2 ‖x‖2−γ2

‖x−y‖r
|

≤ γr−2 sup
y∈S

(|1 − ‖x‖r

‖x−y‖r
| +

γ2‖x‖r−2

‖x−y‖r
)

= γr−2
(
| Mrγr

(Mγ−γ)r
− 1| +

γrMr−2

γr(M−1)r

)

= γr−2
(
| Mr−2

(M−1)r
− 1| +

Mr

(M−1)r

)
.

(c) Accordingly

ρtv(ζγ , ‖x‖r−2µ
(A)
x ) ≤ 2γr−2

(
| Mr

(M−1)r
− 1| +

Mr−2

(M−1)r

)

whenever γ > 0, A ⊆ intB(0, γ) and ‖x‖ = Mγ > γ; so that
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ζγ = lim‖x‖→∞ ‖x‖r−2µ
(A)
x

for the total variation metric whenever γ > 0 and A ⊆ intB(0, γ). We can therefore write λA for the limit,
and both (i) and (ii) will be true, since I have already checked that supp(ζγ) ⊆ ∂A for all large γ.

479C Definitions (a)(i) In the context of 479B, I will call λA the equilibrium measure of the bounded
analytic set A, and λAR

r = λA(∂A) the Newtonian capacity capA of A.

(ii) For any D ⊆ Rr, its Choquet-Newton capacity will be

c(D) = infG⊇D is open supK⊆G is compact capK.

(I will confirm in 479Ed below that c is in fact a capacity as defined in §432.) Sets with zero Choquet-Newton
capacity are called polar.

(b) If ζ is a Radon measure on Rr, the Newtonian potential associated with ζ is the function Wζ :
Rr → [0,∞] defined by the formula

Wζ(x) =
∫
Rr

1

‖y−x‖r−2
ζ(dy)

for x ∈ Rr. The energy of ζ is now

energy(ζ) =
∫
Wζdζ =

∫
Rr

∫
Rr

1

‖x−y‖r−2
ζ(dy)ζ(dx).

If A is a bounded analytic subset of Rr, the potential W̃A = WλA
is the equilibrium potential of A.

(In 479P below I will describe constructions of equilibrium measures and potentials for arbitrary subsets
D of Rr such that c(D) is finite.)

(c) If ζ is a Radon measure on Rr, I will write Uζ for the (r− 1)-potential of ζ, defined by saying that

Uζ(x) =
∫
Rr

1

‖x−y‖r−1
ζ(dy) ∈ [0,∞] for x ∈ Rr.

479D The machinery in Theorem 479B gives an efficient method of approaching several fundamental
properties of equilibrium measures. I start with some elementary calculations.

Proposition (a) For any γ > 0 and z ∈ Rr, the Newtonian capacity of B(z, γ) is γr−2, the equilibrium

measure of B(z, γ) is
1

rβrγ
ν ∂B(z, γ), and the equilibrium potential of B(z, γ) is given by

W̃B(z,γ)(x) = min(1,
γr−2

‖x−z‖r−2
)

for every x ∈ Rr.

(b) Let A ⊆ Rr be a bounded analytic set with equilibrium measure λA and equilibrium potential W̃A.

(i) W̃A(x) ≤ 1 for every x ∈ Rr.

(ii) If B ⊆ A is another analytic set, W̃B ≤ W̃A.

(iii) W̃A(x) = 1 for every x ∈ intA.
(c) Let A, B ⊆ Rr be bounded analytic sets.

(i) Defining + and ≤ as in 234G9 and 234P, λA∪B ≤ λA + λB .
(ii) λAB ≤ capB.

proof (a) For x ∈ Rr \B(z, γ), µ
(B(z,γ))
x is the indefinite-integral measure over ν ∂B(z, γ) defined by the

function y 7→ ‖x−z‖2−γ2

rβrγ‖x−y‖r
(478Qc). So ‖x‖r−2µ

(B(z,γ))
x is the indefinite-integral measure defined by

y 7→ fx(y) =
‖x‖r−2(‖x−z‖2−γ2)

rβrγ‖x−y‖r
.

9Formerly 112Xe.
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As ‖x‖ → ∞, fx(y) → 1

rβrγ
uniformly for y ∈ ∂B(z, γ), so λB(0,γ) = lim‖x‖→∞ ‖x‖r−2µ

(B(z,γ))
x is

1

rβrγ
ν ∂B(z, γ). Consequently the capacity of B(z, γ) is

1

rβrγ
ν(∂B(z, γ)) = γr−2, and the equilibrium

potential is

W̃B(z,γ)(x) =
1

rβrγ

∫

∂B(z,γ)

1

‖y−x‖r−2
ν(dy)

=
1

rβrγ

∫

∂B(0,γ)

1

‖y+z−x‖r−2
ν(dy) =

1

rβrγ
· ν(∂B(0,γ))

max(γ,‖x−z‖)r−2

(478Ga)

= min(1,
γr−2

‖x−z‖r−2
).

(b)(i) Let γ > 0 be such that A ⊆ intB(0, γ). Then

W̃A(x) =

∫

Rr

1

‖x−y‖r−2
λA(dy) =

1

rβrγ

∫

∂B(0,γ)

∫

Rr

1

‖x−y‖r−2
µ(A)
z (dy)ν(dz)

(452F)

≤ 1

rβrγ

∫

∂B(0,γ)

1

‖x−z‖r−2
ν(dz)

(478Pb, 478H)

=
ν(∂B(0,γ))

rβrγ

1

max(γ,‖x‖)r−2

(478Ga)

≤ 1.

(ii) Let γ > 0 be such that A ⊆ intB(0, γ). Then

W̃B(x) =

∫

Rr

1

‖x−y‖r−2
λB(dy)

=
1

rβrγ

∫

∂B(0,γ)

∫

Rr

1

‖x−y‖r−2
µ(B)
z (dy)ν(dz)

=
1

rβrγ

∫

∂B(0,γ)

∫

Rr

∫

Rr

1

‖x−y‖r−2
µ(B)
w (dy)µ(A)

z (dw)ν(dz)

(because 〈µ(B)
w 〉w∈Rr is a disintegration of µ

(B)
z over µ

(A)
z for every z, by 478R)

≤ 1

rβrγ

∫

∂B(0,γ)

∫

Rr

1

‖x−w‖r−2
µ(A)
z (dw)ν(dz)

(by 478Pb, because y 7→ 1

‖x−y‖r−2
is continuous and superharmonic)

= W̃A(x).

(iii) If x ∈ intA, there is a γ > 0 such that B(x, γ) ⊆ A; now, putting (a) and (ii) above together,

W̃A(x) ≥ W̃B(x,γ)(x) = 1.

Since we know from (i) that W̃A(x) ≤ 1, we have equality.

(c)(i) Suppose that K ⊆ Rr is compact and that x ∈ Rr. Let τA, τB and τA∪B be the Brownian hitting
times to A− x, B − x and (A ∪B) − x respectively. Then τA∪B = τA ∧ τB . Now
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µ(A∪B)
x (K) = µW {ω : τA∪B(ω) <∞, x+ ω(τA∪B(ω)) ∈ K}

≤ µW {ω : τA∪B(ω) = τA(ω) <∞, x+ ω(τA(ω)) ∈ K}
+ µW {ω : τA∪B(ω) = τB(ω) <∞, x+ ω(τB(ω)) ∈ K}

≤ µ(A)
x (K) + µ(B)

x (K).

Multiplying by ‖x‖r−2 and letting ‖x‖ → ∞,

λA∪B(K) ≤ λAK + λBK = (λA + λB)(K)

for every K, which is the criterion of 416E(a-ii).

(ii) For any x ∈ Rr,

µ(A)
x (B) = µW {ω : τA(ω) <∞, x+ ω(τA(ω)) ∈ B}

(where τA(ω) is the Brownian hitting time to A− x)

≤ µW {ω : ω−1[B − x] 6= ∅} = µ(B)
x (Rr).

Multiplying by ‖x‖r−2 and taking the limit as ‖x‖ → ∞, λAB ≤ capB.

479E Theorem (a) Newtonian capacity cap is submodular (definition: 413Qb).

(b) Suppose that 〈An〉n∈N is a non-decreasing sequence of analytic subsets of Rr with bounded union A.

(i) The equilibrium measure λA is the limit limn→∞ λAn
for the narrow topology on the space M+

R (Rr)
of totally finite Radon measures on Rr.

(ii) capA = limn→∞ capAn.

(iii) The equilibrium potential W̃A is limn→∞ W̃An
= supn∈N W̃An

.

(c) Suppose that 〈An〉n∈N is a non-increasing sequence of bounded analytic subsets of Rr such that⋂
n∈NAn =

⋂
n∈NAn = A say.

(i) λA is the limit limn→∞ λAn
for the narrow topology on M+

R (Rr).

(ii) capA = limn→∞ capAn.

(d)(i) Choquet-Newton capacity c : PRr → [0,∞] is the unique outer regular Choquet capacity on Rr

extending cap.

(ii) c is submodular.

(iii) c(A) = sup{capK : K ⊆ A is compact} for every analytic set A ⊆ Rr.

proof (a) Let A, B ⊆ Rr be bounded analytic sets. If x ∈ Rr, then

hp((A ∪B) − x) + hp((A ∩B) − x) ≤ hp(A− x) + hp(B − x).

PPP For C ⊆ Rr set

HC = {ω : ω ∈ Ω, there is some t ≥ 0 such that x+ ω(t) ∈ C},

so that if C is an analytic set, hp(C − x) = µWHC . Then

HA∪B = HA ∪HB , HA∩B ⊆ HA ∩HB ,

so

hp((A ∪B) − x) + hp((A ∩B) − x) = µWHA∪B + µWHA∩B

≤ µW (HA ∪HB) + µW (HA ∩HB)

= µWHA + µWHB

= hp(A− x) + hp(B − x). QQQ

Consequently
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cap(A ∪B) + cap(A ∩B) = λA∪B(Rr) + λA∩B(Rr)

= lim
‖x‖→∞

‖x‖r−2(hp((A ∪B) − x) + hp((A ∩B) − x)

≤ lim
‖x‖→∞

‖x‖r−2(hp(A− x) + hp(B − x))

= capA+ capB.

As A and B are arbitrary, cap is submodular.

(b)(i) Let f : Rr → R be any bounded continuous function. For any x ∈ Rr,
∫
fdµ

(A)
x = limn→∞

∫
fdµ

(An)
x .

PPP Let τ , τn be the Brownian hitting times to A− x, An − x respectively. Observe that 〈τn(ω)〉n∈N is non-
increasing and

τ(ω) = inf{t : x+ ω(t) ∈ ⋃
n∈NAn} = limn→∞ τn(ω)

for every ω ∈ Ω. Set H = {ω : τ(ω) < ∞}, Hn = {ω : τn(ω) < ∞}. Then 〈Hn〉n∈N is a non-decreasing
sequence with union H, and for ω ∈ H

f(x+ τ(ω)) = limn→∞ f(x+ τn(ω))

because f and ω are continuous. Accordingly

∫
fdµ(A)

x =

∫

H

f(x+ ω(τ(ω)))

= lim
n→∞

∫

Hn

f(x+ ω(τn(ω))) = lim
n→∞

∫
fdµ(An)

x . QQQ

Taking γ > 0 such that A ⊆ intB(0, γ),

∫
fdλA =

1

rβrγ

∫

∂B(0,γ)

∫
fdµ(A)

x ν(dx)

(452F)

=
1

rβrγ

∫

∂B(0,γ)

lim
n→∞

∫
fdµ(An)

x ν(dx)

= lim
n→∞

1

rβrγ

∫

∂B(0,γ)

∫
fdµ(An)

x ν(dx) = lim
n→∞

∫
fdλAn

.

As f is arbitrary, λA = limn→∞ λAn
for the narrow topology (437Kc).

(ii) Taking f = χRr in (i), we see that capA = limn→∞ capAn.

(iii) For any x ∈ Rr,

W̃A(x) =
∫ 1

‖y−x‖r−2
λA(dy) ≤ lim infn→∞

∫ 1

‖y−x‖r−2
λAn

(dy)

because y 7→ 1

‖y−x‖r−2
is non-negative and continuous (437Jg). As W̃An

(x) ≤ W̃A(x) for every n (479D(b-

ii)), W̃A(x) = limn→∞ W̃An
(x) = supn∈N W̃An

(x).

(c) Most of the ideas of (b) still work. Again take f ∈ Cb(R
r). Then

∫
fdµ

(A)
x = limn→∞

∫
fdµ

(An)
x for

any x ∈ Rr. PPP As before, let τ , τn be the Brownian hitting times to A− x, An − x respectively. This time,
〈τn〉n∈N is non-decreasing. Let Ω′ be the conegligible subset of Ω consisting of those functions ω such that
limt→∞ ‖ω(t)‖ = ∞. If ω ∈ Ω′ and t = limn→∞ τn(ω) is finite, then for every n ∈ N there is a tn ≤ t+ 2−n

such that x + ω(tn) ∈ An. Let s ∈ [0, t] be a cluster point of 〈tn〉n∈N; then x + ω(s) is a cluster point of
〈x + ω(tn)〉n∈N, so belongs to

⋂
n∈NAn = A, and τ(ω) ≤ s ≤ t. Since τ(ω) ≥ τ(ωn) for every n, we have

τ(ω) = limn→∞ τ(ωn).
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Setting H = {ω : τ(ω) < ∞} and Hn = {ω : τn(ω) < ∞}, 〈Hn〉n∈N is a non-increasing sequence with
intersection H, and for ω ∈ H

f(x+ τ(ω)) = limn→∞ f(x+ τn(ω)).

So once again

∫
fdµ(A)

x =

∫

H

f(x+ ω(τ(ω)))µW (dω)

= lim
n→∞

∫

Hn

f(x+ ω(τn(ω)))µW (dω) = lim
n→∞

∫
fdµ(An)

x . QQQ

The rest of the argument follows (b-i) and (b-ii) unchanged.

(d)(i) I seek to apply 432Lb.

(ααα) Let K be the family of compact subsets of Rr and set c1 = cap ↾K. By (a), c1 is submodular. If
G ⊆ Rr is a bounded open set, then it is expressible as the union of a non-decreasing sequence of compact sets,
so by (b-ii) we have capG = sup{c1(L) : L ∈ K, L ⊆ G}; and if K ∈ K, there is a non-increasing sequence
〈Gn〉n∈N of bounded open sets such that K =

⋂
n∈NGn =

⋂
n∈NGn, and now c1(K) = limn→∞ capGn, by

(c-ii). But this means that

c1(K) ≤ infG⊇K is open supL⊆G is compact c1(L) ≤ infn∈N capGn = c1(K).

So all the conditions of 432Lb are satisfied, and c, as defined in 479C(a-ii), is the unique extension of c1 to
an outer regular Choquet capacity on Rr.

(βββ) Now c(A) = capA for every bounded analytic set A ⊆ Rr. PPP

c(A) = sup
K⊆A is compact

c(K)

(432K)

= sup
K⊆A is compact

capK ≤ capA ≤ inf
G⊇A is bounded and open

capG

= inf
G⊇A is open

sup
L⊆G is compact

c(L) = c(A). QQQ

So c extends cap, as claimed, and must be the unique outer regular Choquet capacity doing so.

(ii)-(iii) By 432Lb, c is submodular; and (iii) is covered by the argument in (i-β).

479F I now wish to describe an entirely different characterization of the capacity and equilibrium
measure of a compact set, which demands a substantial investment in harmonic analysis (down to 479I) and
an excursion into Fourier analysis (479H). I begin with general remarks about Newtonian potentials.

Theorem Let ζ be a totally finite Radon measure on Rr, and set G = Rr \ supp ζ, where supp ζ is the
support of ζ (411Nd). Let Wζ be the Newtonian potential associated with ζ.

(a) Wζ : Rr → [0,∞] is lower semi-continuous, and Wζ↾G : G→ [0,∞[ is continuous.

(b) Wζ is superharmonic, and Wζ↾G is harmonic.

(c) Wζ is locally µ-integrable; in particular, it is finite µ-a.e.

(d) If ζ has compact support, then ζRr = lim‖x‖→∞ ‖x‖r−2Wζ(x).

(e) If Wζ↾ supp ζ is continuous then Wζ is continuous.

(f) If K is a compact set such that Wζ↾K is continuous and finite-valued then Wζ K is continuous.

(g) If Wζ is finite ζ-a.e. and f : Rr → [0,∞] is a lower semi-continuous superharmonic function such that
f ≥Wζ ζ-a.e., then f ≥Wζ .

(h) If ζ ′ is another Radon measure on Rr and ζ ′ ≤ ζ, then Wζ′ ≤Wζ and energy(ζ ′) ≤ energy(ζ).
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proof (a) If 〈xn〉n∈N is a convergent sequence in Rr with limit x, then
1

‖y−x‖r−2
= limn→∞

1

‖y−xn‖r−2
for

every y (counting
1

0
as ∞, as usual), so that Wζ(x) ≤ lim infn→∞Wζ(xn), by Fatou’s Lemma. As x and

〈xn〉n∈N are arbitrary, Wζ is lower semi-continuous.

If x ∈ G, then
1

‖y−xn‖r−2
≤ 2

ρ(x,supp ζ)r−2
for all n large enough and all y ∈ supp ζ, so Lebesgue’s

Dominated Convergence Theorem tells us that Wζ(x) = limn→∞Wζ(xn) and that Wζ is continuous at x,
as well as finite-valued there.

(b) If x ∈ Rr and δ > 0, then

1

ν(∂B(x,δ))

∫

∂B(x,δ)

Wζdν =
1

ν(∂B(x,δ))

∫

∂B(x,δ)

∫

Rr

1

‖z−y‖r−2
ζ(dz)ν(dy)

=

∫

Rr

1

ν(∂B(x,δ))

∫

∂B(x,δ)

1

‖z−y‖r−2
ν(dy)ζ(dz)

=

∫

Rr

1

ν(∂B(0,δ))

∫

∂B(0,δ)

1

‖z−x−y‖r−2
ν(dy)ζ(dz)

≥
∫

Rr

1

‖z−x‖r−2
ζ(dz) = Wζ(x)

(478Ga) with equality if B(x, δ) does not meet supp ζ, since then z − x /∈ B(0, δ) and

1

ν(∂B(x,δ))

∫
∂B(x,δ)

1

‖z−x−y‖r−2
ν(dy) =

1

‖z−x‖r−2

for ζ-almost every z.

(c) For any γ > 0 and y ∈ Rr,
∫
B(0,γ)

1

‖y−x‖r−2
µ(dx) ≤ 1

2
rβrγ

2 (478Gc), so

∫

B(0,γ)

Wζdµ =

∫

B(0,γ)

∫

Rr

1

‖y−x‖r−2
ζ(dy)µ(dx)

=

∫

Rr

∫

B(0,γ)

1

‖y−x‖r−2
µ(dx)ζ(dy) ≤ 1

2
rβrγ

2ζRr

is finite.

(d) If ζ has compact support, there is an γ > 0 such that supp ζ ⊆ B(0, γ). In this case, for ‖x‖ > γ, we
have

‖x‖r−2

(‖x‖+γ)r−2
ζRr ≤

∫
Rr

‖x‖r−2

‖x−y‖r−2
ζ(dy) = Wζ(x)‖x‖r−2 ≤ ‖x‖r−2

(‖x‖−γ)r−2
ζRr

so all the terms converge to ζRr as ‖x‖ → ∞.

(e) Since Wζ is lower semi-continuous, it will be enough to show that H = {x : Wζ(x) < γ} is open for
every γ ∈ R. Take x0 ∈ H. If x0 /∈ supp ζ then Wζ is continuous at x0, by 479Fa, and H is certainly a
neighbourhood of x0. If x0 ∈ supp ζ take η ∈ ]0, 2−r(γ −Wζ(x0))[. Because Wζ(x0) is finite, ζ{x0} = 0;

because Wζ↾ supp ζ is continuous, there is a δ > 0 such that
∫
B(x0,δ)

1

‖x0−y‖r−2
ζ(dy) ≤ η and |Wζ(x) −

Wζ(x0)| ≤ η whenever x ∈ B(x0, δ) ∩ supp ζ. Let δ′ ∈ ]0, δ[ be such that

∣∣ 1

‖x−y‖r−2
− 1

‖x0−y‖r−2

∣∣ ≤ η

ζRr

whenever ‖x− x0‖ ≤ δ′ and ‖y − x0‖ ≥ δ; then

|
∫
Rr\B(x0,δ)

1

‖x−y‖r−2
ζ(dy) −

∫
Rr\B(x0,δ)

1

‖x0−y‖r−2
ζ(dy)| ≤ η

whenever x ∈ B(x0, δ
′).
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Take x ∈ B(x0,
1
2δ

′), and let z ∈ B(x0, δ)∩ supp ζ be such that ‖x−z‖ = ρ(x,B(x0, δ)∩ supp ζ). We have
‖x−z‖ ≤ ‖x−x0‖ so ‖z−x0‖ ≤ 2‖x−x0‖ ≤ δ′. If y ∈ B(x0, δ)∩ supp ζ, then ‖y−z‖ ≤ ‖x−y‖+‖x−z‖ ≤
2‖x− y‖; so

∫

B(x0,δ)

1

‖x−y‖r−2
ζ(dy) ≤ 2r−2

∫

B(x0,δ)

1

‖z−y‖r−2
ζ(dy)

= 2r−2(Wζ(z) −
∫

Rr\B(x0,δ)

1

‖z−y‖r−2
ζ(dy))

≤ 2r−2(2η +Wζ(x0) −
∫

Rr\B(x0,δ)

1

‖x0−y‖r−2
ζ(dy))

= 2r−1η + 2

∫

B(x0,δ)

1

‖x0−y‖r−2
ζ(dy)

≤ 2r−1η + 2η ≤ (2r − 1)η,

Wζ(x) ≤ (2r − 1)η +

∫

Rr\B(x0,δ)

1

‖x−y‖r−2
ζ(dy)

≤ 2rη +

∫

Rr\B(x0,δ)

1

‖x0−y‖r−2
ζ(dy) ≤ 2rη +Wζ(x0) < γ.

Thus B(x0,
1
2δ

′) ⊆ H and again H is a neighbourhood of x0. As x0 is arbitrary, H is open; as γ is arbitrary,
Wζ is continuous.

(f) Setting H = Rr \K, ζ = ζ K + ζ H, so Wζ = Wζ K +Wζ H (234Hc10). Now Wζ K and Wζ H

are both lower semi-continuous and non-negative, so if Wζ↾K is continuous and finite-valued then Wζ K↾K
is continuous (4A2B(d-ix)). Since supp(ζ K) ⊆ K, (e) tells us that Wζ K is continuous.

(g) ??? Suppose that f(x0) < Wζ(x0). Since {x : f(x) ≥ Wζ(x), Wζ(x) < ∞} is ζ-conegligible, and Wζ

is measurable therefore ζ-almost continuous (418J), there is a compact set K such that Wζ(x) < ∞ and

Wζ(x) ≤ f(x) for every x ∈ K, Wζ↾K is continuous and
∫
K

1

‖x0−y‖r−2
ζ(dy) > f(x0). Set ζ ′ = ζ K. By

(f), Wζ′ is continuous; Wζ′(x0) > f(x0); and f(x) ≥Wζ(x) ≥Wζ′(x) for every x ∈ K ⊇ supp ζ ′.
Set g = f − Wζ′ and α = infx∈Rr g(x) < 0. Because f is lower semi-continuous and Wζ′ is continu-

ous, g is lower semi-continuous; because ζ ′ has compact support, lim‖x‖→∞Wζ′(x) = 0 ((d) above) and
lim inf‖x‖→∞ g(x) ≥ 0; so L = {x : g(x) = α} is non-empty and compact. Note that L is disjoint from K.
Let x1 ∈ L be a point of maximum norm. Then x1 /∈ K, while Wζ′↾R

r \K is harmonic ((b) above). Let
δ > 0 be such that B(x1, δ) ∩K = ∅. Then we have

1

ν(∂B(x1,δ))

∫
∂B(x1,δ)

g dν > α

because g(x) ≥ α for every x and g(x) > α whenever x 6= x1 and (x− x1) .x1 ≥ 0. But we also have

1

ν(∂B(x1,δ))

∫

∂B(x1,δ)

g dν =
1

ν(∂B(x1,δ))

∫

∂B(x1,δ)

f dν − 1

ν(∂B(x1,δ))

∫

∂B(x1,δ)

Wζ′ dν

≤ f(x1) −Wζ′(x1) = α,

which is impossible. XXX

(h) By 234Qc, Wζ′ ≤Wζ ; so

energy(ζ ′) =
∫
Wζ′dζ

′ ≤
∫
Wζdζ

′ ≤
∫
Wζdζ = energy(ζ).

479G At this point I embark on an extended parenthesis, down to 479I, covering some essential material
from harmonic analysis and Fourier analysis. The methods here apply equally to the cases r = 1 and r = 2.

10Formerly 212Xh.
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Lemma (In this result, r may be any integer greater than or equal to 1.) For α ∈ R, set kα(x) =
1

‖x‖α
for

x ∈ Rr \ {0}. If α < r, β < r and α+ β > r, then kα+β−r is a constant multiple of the convolution kα ∗ kβ
(definition: 255E, 444O).

proof (a) First note that

∫
B(0,1)

kα(x)µ(dx) = rβr
∫ 1

0

tr−1

tα
dt =

rβr

r−α

is finite. Consequently kα is expressible as the sum of an integrable function and a bounded function, and
in particular is locally integrable.

(b) For x ∈ Rr, set f(x) =
∫
Rr kα(x − y)kβ(x − y)µ(dy) ∈ [0,∞]. If e ∈ Rr is a unit vector, then

f(e) is finite. PPP For any y ∈ Rr, at least one of ‖e − y‖, ‖e + y‖ is greater than or equal to 1, so
kα(e− y)kβ(e+ y) ≤ kα(e− y) + kβ(e+ y). Consequently∫

B(0,2)
kα(e− y)kα(e+ y)µ(dy) ≤

∫
B(0,2)

kα(e− y) + kα(e+ y)µ(dy)

is finite. On the other hand, if ‖y‖ ≥ 2, ‖e− y‖ and ‖e− y‖ are both at least 1
2‖y‖, so

∫

Rr\B(0,2)

kα(e− y)kβ(e+ y)µ(dy) ≤
∫

Rr\B(0,2)

2α

‖y‖α
· 2β

‖y‖β
µ(dy)

= 2α+βrβr

∫ ∞

2

tr−1

tα+β
dt =

2rrβr

α+β−r

is finite. Putting these together, f(e) =
∫
Rr kα(e− y)kβ(e− y)µ(dy) is finite. QQQ

(c) If e, e′ ∈ Rr are unit vectors, then f(e) = f(e′). PPP Let T : Rr → Rr be an orthogonal transformation
such that Te = e′. Then

f(e′) =

∫

Rr

kα(Te− y)kβ(Te− y)µ(dy) =

∫

Rr

kα(Te− Ty)kβ(Te− Ty)µ(dy)

(because T is an automorphism of (Rr, µ))

=

∫

Rr

kα(e− y)kβ(e− y)µ(dy)

(because kα(x), kβ(x) are functions of ‖x‖)

= f(e). QQQ

Let c be the constant value of f(e) for ‖e‖ = 1.

(d) If x ∈ Rr \ {0}, f(x) =
c

‖x‖α+β−r
. PPP Set t = ‖x‖, e = 1

tx. Then

f(x) =

∫

Rr

kα(te− y)kβ(te− y)µ(dy) =

∫

Rr

trkα(te− tz)kβ(te− tz)µ(dz)

(substituting y = tz)

= tr−α−β
∫

Rr

kα(e− z)kβ(e− z)µ(dz) =
c

‖x‖α+β−r
. QQQ

(e) If x ∈ Rr \ {0}, (kα ∗ kβ)(x) = 2α+β−rckα+β−r(x). PPP Set z = 1
2x. Then

(kα ∗ kβ)(x) =

∫

Rr

1

‖x−y‖α‖y‖β
µ(dy) =

∫

Rr

1

‖x−y−z‖α‖y+z‖β
µ(dy)

=

∫

Rr

1

‖z−y‖α‖z+y‖β
µ(dy) =

c

‖z‖α+β−r
= 2α+β−rckα+β−r(x). QQQ
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(f) Of course it is of no importance what happens at 0, but for completeness: kα+β−r is declared to be

undefined there, and
∫
Rr

1

‖y‖α‖y‖β
µ(dy) is infinite for any α and β, so kα ∗ kβ also is undefined at 0 on the

convention of 255E or 444O. Thus we have kα ∗ kβ = 2α+β−rckα+β−r in the strict sense.

Remark The functions kα are called Riesz kernels. It will be helpful later to have a name for the constant
arising here in a special case. If r ≥ 3, I will take cr > 0 to be the constant such that crkr−2 = kr−1 ∗ kr−1.

479H Now for some Fourier analysis which wasn’t quite reached in Chapter 28. In the following, I

will define the Fourier transform
∧

f and the inverse Fourier transform
∨

f , for µ-measurable complex-valued

functions f defined µ-almost everywhere in Rr, as in 283W and 284W, and
∧

ζ, for a totally finite Radon
measure ζ on Rr, by the formula offered in 285Ya for probability measures. The convolution ζ ∗ f of a
measure and a function will be defined as in 444H. Thus the basic formulae are

∧

f(y) =
1

(
√
2π)r

∫
Rr
e−iy .xf(x)µ(dx),

∨

f(y) =
1

(
√
2π)r

∫
Rr
eiy .xf(x)µ(dx)

for µ-integrable f ,

∧

ζ(y) =
1

(
√
2π)r

∫
Rr
e−iy .xζ(dx), (ζ ∗ f)(x) =

∫
Rr
f(x− y)ζ(dy).

Theorem (In this result, r may be any integer greater than or equal to 1.) Let ζ be a totally finite Radon
measure on Rr.

(a) If f ∈ L
1
C(µ), then ζ ∗ f is µ-integrable and (ζ ∗ f)∧ = (

√
2π)r

∧

ζ ×
∧

f .
(b) If ζ has compact support and h : Rr → C is a rapidly decreasing test function (284Wa), then ζ ∗ h

and h×
∧

ζ are rapidly decreasing test functions.
(c) Suppose that f is a tempered function on Rr (284Wa). If either ζ has compact support or f is

expressible as the sum of a µ-integrable function and a bounded function, then ζ ∗ f is defined µ-almost
everywhere and is a tempered function.

(d) Suppose that f , g are tempered functions on Rr such that g represents the Fourier transform of
f (284Wd). If either ζ has compact support or f is expressible as the sum of a bounded function and a

µ-integrable function, then (
√

2π)r
∧

ζ × g represents the Fourier transform of ζ ∗ f .

proof (a)(i) To begin with, suppose that f is real-valued and non-negative. As in §444, I will write fµ for
the indefinite-integral measure defined by f over µ. By 444K, ζ ∗ f is µ-integrable and (ζ ∗ f)µ = ζ ∗ fµ.

As the formula used here for
∧

ζ does not quite match that of 445C, whatever parametrization we use for
the characters of the topological group Rr, I had better not try to quote Chapter 44 when discussing Fourier
transforms. Going back to first principles,

(ζ ∗ f)∧(y) =
1

(
√
2π)r

∫
e−iy .x(ζ ∗ f)(x)µ(dx) =

1

(
√
2π)r

∫
e−iy .x(ζ ∗ f)µ(dx)

=
1

(
√
2π)r

∫
e−iy .x(ζ ∗ fµ)(dx) =

1

(
√
2π)r

∫∫
e−iy . (x+z)ζ(dz)(fµ)(dx)

(444C)

=
1

(
√
2π)r

∫
e−iy .zζ(dz)

∫
e−iy .x(fµ)(dx)

=
∧

ζ(y)

∫
e−iy .xf(x)µ(dx) = (

√
2π)r

∧

ζ(y)
∧

f(y)

for every y ∈ Rr.

(ii) For general integrable complex-valued functions f , apply (i) to the positive and negative parts of
the real and imaginary parts of f .

(b)(i) Because h is continuous, so is ζ ∗ h (444Ib). If j < r, then, as in 123D,
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(
∂

∂ξj
(ζ ∗ h))(x) =

∂

∂ξj

∫
h(x− y)ζ(dy) =

∫ ∂

∂ξj
h(x− y)ζ(dy) = (ζ ∗ ∂h

∂ξj
)(x)

because
∂h

∂ξj
is bounded. Since

∂h

∂ξj
is again a rapidly decreasing test function, we can repeat this process to

see that ζ ∗ h is smooth. Next, let γ > 0 be such that the support of ζ is included in B(0, γ). If k ∈ N, then
M = supx∈Rr (γk + ‖x‖k)|h(x)| is finite, and

‖x‖k|h(y)| ≤ (‖y‖ + γ)k|h(y)| ≤ 2kM

whenever ‖x− y‖ ≤ γ. So

‖x‖k|(ζ ∗ h)(x)| ≤ ζRr · ‖x‖k sup‖y−x‖≤γ |h(y)| ≤ 2kMζRr

for every x ∈ Rr. Applying this to all the partial derivatives of h, we see that ζ ∗ h is a rapidly decreasing
test function.

(ii) Again suppose that j < r. Because ζ has compact support,
∫
‖x‖ζ(dx) is finite, so

∂

∂ηj

∧

ζ(y) is defined

and equal to −i
∫
ξje

−iy .xζ(dx) for every y ∈ Rr (cf. 285Fd). More generally, whenever j1, . . . , jm < r,

∂m

∂ηj1
...∂ηjm

∧

ζ(y) = (−i)m
∫
ξj1 . . . ξjme

−iy .xζ(dx),

so all the partial derivatives of
∧

ζ are defined everywhere and bounded. It follows that
∧

ζ is smooth and h×
∧

ζ
is a rapidly decreasing test function.

(c)(i) To begin with, suppose that f is real and non-negative, and that ζ has compact support. Set
fn = f × χB(0, n) for each n ∈ N. Then fn is integrable, so ζ ∗ fn is defined µ-a.e.; also 〈ζ ∗ fn〉n∈N is
non-decreasing, and (ζ ∗ f)(x) = supn∈N(ζ ∗ fn)(x) whenever the latter is defined and finite.

Let γ ≥ 1 be such that the support of ζ is included inB(0, γ), and let k ∈ N be such that
∫
Rr

1

1+‖x‖k
f(x)µ(dx)

is finite. If y ∈ B(0, γ) and x ∈ Rr, then ‖x‖ ≤ 2 max(γ, ‖x + y‖), so
1

1+‖x+y‖k
≤ M

1+‖x‖k
, where

M = 1 + 2kγk. It follows that

∫

Rr

1

1+‖x‖k
(ζ ∗ fn)(x)µ(dx) =

∫

Rr

∫

B(0,γ)

1

1+‖x‖k
fn(x− y)ζ(dy)µ(dx)

=

∫

B(0,γ)

∫

Rr

1

1+‖x‖k
fn(x− y)µ(dx)ζ(dy)

=

∫

B(0,γ)

∫

Rr

1

1+‖x+y‖k
fn(x)µ(dx)ζ(dy)

≤M

∫

B(0,γ)

∫

Rr

1

1+‖x‖k
f(x)µ(dx)ζ(dy)

for every n ∈ N. Consequently
∫
Rr

1

1+‖x‖k
(ζ ∗ f)(x)µ(dx) is defined and finite.

(ii) Now suppose that f is expressible as f1 + f∞, where f1 is µ-integrable, f∞ is bounded and both
are real-valued and non-negative. Adjusting f1 and f2 on a µ-negligible set if necessary, we can suppose
that f∞ is Borel measurable and defined everywhere on Rr. By (a), ζ ∗f1 is defined and µ-integrable. Next,
ζ ∗ f∞ is defined everywhere, is bounded, and is Borel measurable (444Ia). So ζ ∗ f =a.e. ζ ∗ f1 + ζ ∗ f∞ is
the sum of a µ-integrable function and a bounded Borel measurable function, and is tempered.

(iii) These arguments deal with the case in which f ≥ 0. For the general case, apply (i) or (ii) to the
four parts of f , as in (a-ii).

(d)(i) Suppose to begin with that ζ has compact support. Let h be a rapidly decreasing test function.

Set
↔

h(x) = h(−x) for every x ∈ Rr. Then
↔

h is a rapidly decreasing test function, and

(ζ ∗
↔

h)(−x) =
∫ ↔

h(−x− y)ζ(dy) =
∫
h(x+ y)ζ(dy)
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for every x ∈ Rr. Accordingly

∫
(ζ ∗ f) × h dµ =

∫∫
h(x)f(x− y)ζ(dy)µ(dx)

=

∫∫
h(x)f(x− y)µ(dx)ζ(dy)

(because ζ ∗ |f | is tempered, so
∫∫

|h(x)f(x− y)|ζ(dy)µ(dx) =
∫
|h| × (ζ ∗ |f |)dµ is finite)

=

∫∫
h(x+ y)f(x)µ(dx)ζ(dy)

=

∫∫
h(x+ y)f(x)ζ(dy)µ(dx)

(because
∫∫

|h(x+ y)f(x)|µ(dx)ζ(dy) =
∫∫

|h(x)f(x− y)|µ(dx)ζ(dy) is finite)

=

∫
f × (ζ ∗

↔

h)↔dµ =

∫
g × ((ζ ∗

↔

h)↔)∨dµ

(because ζ ∗
↔

h and (ζ ∗
↔

h)↔ are rapidly decreasing test functions, by (b))

=

∫
g × (ζ ∗

↔

h)∧dµ = (
√

2π)r
∫
g ×

∧

ζ × (
↔

h)∧dµ

(by (a))

= (
√

2π)r
∫
g ×

∧

ζ ×
∨

h dµ.

As h is arbitrary, (
√

2π)rg ×
∧

ζ represents the Fourier transform of ζ ∗ f .

(ii) Now suppose that f is expressible as f1 + f∞ where f1 is µ-integrable and f∞ is bounded. By
(c), ζ ∗ |f | is defined almost everywhere and is a tempered function. Set ζn = ζ B(0, n) for each n. Then

(
√

2π)rg ×
∧

ζn represents the Fourier transform of ζn ∗ f , for each n. Now 〈
∧

ζn〉n∈N converges uniformly to
∧

ζ, and 〈ζn ∗ f〉n∈N converges to ζ ∗ f at every point at which ζ ∗ |f | is defined and finite, which is µ-almost
everywhere. So if h is a rapidly decreasing test function,

∫
h× (

√
2π)rg ×

∧

ζ = lim
n→∞

∫
h× (

√
2π)rg ×

∧

ζn

(the convergence is dominated by the integrable function (
√

2π)rζRr · |h× g|)

= lim
n→∞

∫
∧

h× (ζn ∗ f) =

∫
∧

h× (ζ ∗ f)

(this convergence being dominated by the integrable function |
∧

h| × (ζ ∗ |f |)). As h is arbitrary, (
√

2π)rg×
∧

ζ
represents the Fourier transform of ζ ∗ f .

479I Proposition (In this result, r may be any integer greater than or equal to 1.)
(a) Suppose that 0 < α < r.

(i) There is a tempered function representing the Fourier transform of kα.
(ii) There is a measurable function g0, defined almost everywhere on [0,∞[, such that y 7→ g0(‖y‖)

represents the Fourier transform of kα.
(iii) In (ii),

2α/2Γ(α2 )
∫∞
0
tr−1g0(t)e−ǫt

2

dt = 2(r−α)/2Γ( r−α2 )
∫∞
0
tα−1e−ǫt

2

dt

for every ǫ > 0.
(iv) 2α/2Γ(α2 )g0(t) = 2(r−α)/2Γ( r−α2 )tα−r for almost every t > 0.

(v) 2(r−α)/2Γ( r−α2 )kr−α represents the Fourier transform of 2α/2Γ(α2 )kα.
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(b) Suppose that ζ1, ζ2 are totally finite Radon measures on Rr, and 0 < α < r. If ζ1 ∗kα = ζ2 ∗kα µ-a.e.,
then ζ1 = ζ2.

proof (a)(i) Set β = 1
2 (α + r). Then kβ is expressible as f1 + f2 where f1 is integrable and f2 is square-

integrable. PPP
∫
B(0,1)

kβdµ = rβr
∫ 1

0

tr−1

tβ
dt

is finite because β < r;
∫
Rr\B(0,1)

k2βdµ = rβr
∫∞
1

tr−1

t2β
dt

is finite because 2β > r. So we can take f1 = kα × χB(0, 1) and f2 = kα − f1. QQQ
479G tells us that there is a constant c such that

kα = ckβ ∗ kβ = c(f1 ∗ f1 + 2f1 ∗ f2 + f2 ∗ f2).

Now f1∗f1 is integrable and f1∗f2 is square-integrable (444Ra), so both have Fourier transforms represented
by tempered functions; while the continuous function f2 ∗ f2 also has a Fourier transform represented by
an integrable function (284Wi). Assembling these, kα has a Fourier transform represented by a tempered
function.

(ii) We can therefore represent the Fourier transform of kα by the function g, where

g(y) = limn→∞
1

(
√
2π)r

∫
e−iy .xe−‖x‖2/nkα(x)µ(dx)

is defined µ-almost everywhere (284M/284Wg). Now suppose that T : Rr → Rr is any orthogonal transfor-
mation, and that y ∈ dom g. Then

g(y) = lim
n→∞

1

(
√
2π)r

∫
e−iy .xe−‖x‖2/nkα(x)µ(dx)

= lim
n→∞

1

(
√
2π)r

∫
e−iy .T

⊤xe−‖T⊤x‖2/nkα(T⊤x)µ(dx)

(because the transpose T⊤ of T acts as an automorphism of (Rr, µ))

= lim
n→∞

1

(
√
2π)r

∫
e−iTy .xe−‖x‖2/nkα(x)µ(dx),

and g(Ty) is defined and equal to g(y). So we can set g0(t) = g(y) whenever y ∈ dom g and ‖y‖ = t, and
we shall have y 7→ g0(‖y‖) representing the Fourier transform of kα.

(iii) If ǫ > 0, then x 7→ e−ǫ‖x‖
2

is a rapidly decreasing test function, and its Fourier transform is the

function x 7→ 1

(
√
2ǫ)r

e−‖x‖2/4ǫ (283N/283Wi11). We therefore have

∫
g0(‖y‖)e−ǫ‖y‖

2

µ(dy) =
1

(
√
2ǫ)r

∫
kα(x)e−‖x‖2/4ǫµ(dx),

that is,

rβr
∫∞
0
tr−1g0(t)e−ǫt

2

dt =
rβr

(
√
2ǫ)r

∫∞
0

tr−1

tα
e−t

2/4ǫdt;

simplifying,

∫ ∞

0

tr−1g0(t)e−ǫt
2

dt =
1

(
√
2ǫ)r

∫ ∞

0

tr−1−αe−t
2/4ǫdt

=
2r−α

2·2r/2ǫα/2

∫ ∞

0

u(r−α−2)/2e−udu

(substituting u = t2/4ǫ)

11Formerly 283We.
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=
2r−α

2·2r/2ǫα/2
Γ(

r−α

2
).

On the other hand,
∫∞
0
tα−1e−ǫt

2

dt =
∫∞
0

(
√
u)α−2

2ǫα/2
e−udu =

1

2ǫα/2
Γ(

α

2
).

Putting these together,

2α/2Γ(α2 )
∫∞
0
tr−1g0(t)e−ǫt

2

dt = 2(r−α)/2Γ( r−α2 )
∫∞
0
t(r−1)−(r−α)e−ǫt

2

dt

for every ǫ > 0.

(iv) Set

g1(t) = tr−1e−t
2(

2α/2Γ(α2 )g0(t) − 2(r−α)/2Γ( r−α2 )tα−r
)

for t > 0. Then g1 is integrable and
∫∞
0
g1(t)e−ǫt

2

dt = 0 for every ǫ ≥ 0. It follows that g1 = 0 a.e. PPP

Consider the linear span A of the functions t 7→ e−ǫt
2

for ǫ ≥ 0. This is a subalgebra of Cb([0,∞[) containing
the constant functions and separating the points of [0,∞[. It follows that for every γ ≥ 0, δ > 0 and
h ∈ Cb([0,∞[), there is an f ∈ A such that |f(t) − h(t)| ≤ δ for t ∈ [0, γ] and ‖f‖∞ ≤ ‖h‖∞ (281E). Since∫∞
0
g1 × f = 0, we must have

|
∫∞
0
g1 × h| ≤ δ‖g1‖1 + 2‖h‖∞

∫∞
γ

|g1(t)|dt.

As δ and γ are arbitrary,
∫∞
0
g1 × h = 0; as h is arbitrary,

∫ a
0
g1 = 0 for every a ≥ 0, and g1 must be zero

almost everywhere (222D). QQQ

Accordingly 2α/2Γ(α2 )g0(t) = 2(r−α)/2Γ( r−α2 )tα−r for almost every t ≥ 0.

(v) Now

y 7→ 2(r−α)/2Γ( r−α2 )kr−α(y) =a.e. 2α/2Γ(α2 )g0(‖y‖)

represents the Fourier transform of 2α/2Γ(α2 )kα.

(b) By (a), the Fourier transform of kα is represented by a tempered function g which is non-zero µ-a.e.
As kα is the sum of an integrable function and a bounded function, 479Hd tells us that the Fourier transform

of ζ1∗kα is represented by (
√

2π)r
∧

ζ1×g; and similarly for ζ2. As ζ1∗kα =a.e. ζ2∗kα,
∧

ζ1×g =a.e.

∧

ζ2×g (284Ib)

and
∧

ζ1 =a.e.

∧

ζ2. Since
∧

ζ1 and
∧

ζ2 are both continuous (285Fb), they are equal everywhere; in particular,

ζ1R
r =

∧

ζ1(0) =
∧

ζ2(0) = ζ2R
r.

If ζ1 = ζ2 is the zero measure, we can stop. Otherwise, they can be expressed as γζ ′1 and γζ ′2 where ζ ′1 and
ζ ′2 are probability measures and γ > 0. In this case, ζ ′1 and ζ ′2 have the same characteristic function (285D)
and must be equal (285M); so ζ1 = ζ2, as claimed.

Remark The functions ζ ∗ kα are called Riesz potentials.

479J Now I return to the study of Newtonian potential when r ≥ 3.

Lemma (a) Let ζ be a totally finite Radon measure on Rr. Let Uζ be the (r− 1)-potential of ζ and Wζ the
Newtonian potential of ζ; let kr−1 and kr−2 be the Riesz kernels. Then Uζ =a.e. ζ∗kr−1 and Wζ =a.e. ζ∗kr−2.

(b) Let ζ, ζ1 and ζ2 be totally finite Radon measures on Rr.

(i)
∫
Rr Wζ1dζ2 =

∫
Rr Wζ2dζ1 =

1

cr

∫
Rr Uζ1 × Uζ2dµ, where cr is the constant of 479G.

(ii) The energy energy(ζ) of ζ is
1

cr
‖Uζ‖22, counting ‖Uζ‖2 as ∞ if Uζ /∈ L

2(µ).

(iii) If ζ = ζ1 + ζ2 then Uζ = Uζ1 + Uζ2 and Wζ = Wζ1 + Wζ2 ; similarly, Uαζ = αUζ and Wαζ = αWζ

for α ≥ 0.
(iv) If Uζ1 = Uζ2 µ-a.e., then ζ1 = ζ2.
(v) If Wζ1 = Wζ2 µ-a.e., then ζ1 = ζ2.

D.H.Fremlin



168 Geometric measure theory 479J

(vi) ζRr = limγ→∞
1

rβrγ

∫
∂B(0,γ)

Wζdν.

(c) Let M+
R (Rr) be the set of totally finite Radon measures on Rr, with its narrow topology. Then

energy : M+
R (Rr) → [0,∞] is lower semi-continuous.

proof (a) As kr−1 and kr−2 are both expressible as sums of integrable functions and bounded functions,
ζ ∗ kr−1 and ζ ∗ kr−2 are both defined a.e. (479Hc); and now we have only to read the definitions to see that
Uζ and Wζ are these convolutions with the technical adjustment that they are permitted to take the value
∞.

(b)(i) For any x, y ∈ Rr,

1

‖x−y‖r−2
= kr−2(x− y) =

1

cr
(kr−1 ∗ kr−1)(x− y)

=
1

cr

∫

Rr

1

‖x−y−z‖r−1‖z‖r−1
µ(dz)

=
1

cr

∫

Rr

1

‖x−z‖r−1‖z−y‖r−1
µ(dz) =

1

cr

∫

Rr

1

‖x−z‖r−1‖y−z‖r−1
µ(dz).

So

∫

Rr

Wζ1dζ2 =

∫

Rr

∫

Rr

1

‖x−y‖r−2
ζ1(dx)ζ2(dy)

=
1

cr

∫

Rr

∫

Rr

∫

Rr

1

‖x−z‖r−1‖y−z‖r−1
µ(dz)ζ1(dx)ζ2(dy)

=
1

cr

∫

Rr

∫

Rr

∫

Rr

1

‖x−z‖r−1‖y−z‖r−1
ζ1(dx)ζ2(dy)µ(dz)

=
1

cr

∫

Rr

Uζ1(z)Uζ2(z)µ(dz) =

∫

Rr

Uζ1 × Uζ2dµ.

Hence (or otherwise)

∫
Rr
Wζ2dζ1 =

1

cr

∫
Rr
Uζ2 × Uζ1dµ =

∫
Rr
Wζ1dζ2.

(ii) Take ζ1 = ζ2 = ζ in (i).

(iii) This is immediate from 234Hc.

(iv)-(v) Put (a) and 479Ib together.

(vi) For any γ > 0,

1

rβrγ

∫

∂B(0,γ)

Wζdν =

∫
WζdλB(0,γ)

(479Da)

=

∫
W̃B(0,γ)dζ

((i) above)

=

∫
min(1,

γr−2

‖x−z‖r−2
)ζ(dx)

(479Da again)

→ ζRr

as γ → ∞.
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(c) The map ζ 7→ ζ × ζ : M+
R (Rr) → M+

R (Rr × Rr) is continuous, by 437Ma. Next, the function

λ 7→
∫
Rr

1

‖x−y‖r−2
λ(d(x, y)) : M+

R (Rr ×Rr) → [0,∞] is lower semi-continuous, by 437Jg again. So energy is

the composition of a lower semi-continuous function with a continuous function, and is lower semi-continuous
(4A2B(d-ii)).

479K Lemma Let K ⊆ Rr be a compact set, with equilibrium measure λK . Then λKK = capK =
energy(λK), and if ζ is any Radon measure on Rr such that ζK ≥ capK ≥ energy(ζ), ζ = λK .

proof (a) We know that λKK = λKRr = capK (479C(a-i)). So if K has zero capacity then λK is the zero
measure and energy(λK) = 0; also the only Radon measure on Rr with zero energy is λK , and we can stop.
So henceforth let us suppose that capK > 0.

Set

e = inf{energy(ζ) : ζ is a Radon probability measure on Rr such that ζK ≥ capK}.

Because W̃K(x) ≤ 1 for every x ∈ Rr (479D(b-i)),

e ≤ energy(λK) =
∫
W̃KdλK ≤ λKRr = capK

is finite.

(b) Consider the set Q of Radon measures ζ on Rr such that ζK = ζRr = capK. With its narrow
topology, Q is homeomorphic to the set of Radon measures on K of magnitude capK, which is compact
(437R(f-ii)). Since energy : Q → [0,∞] is lower semi-continuous (479Jc), there is a λ ∈ Q with energy e
(4A2B(d-viii)).

In fact there is exactly one such member of Q. PPP Suppose that ζ is any other member of Q with energy
e. Write uζ for the equivalence class of Uζ in L2. Then 1

2 (ζ + λ) belongs to Q and U 1
2 (ζ+λ)

= 1
2 (Uζ + Uλ)

(479J(b-iii)). So, defining cr as in 479G,

e+
1

cr
‖uζ − uλ‖22 ≤ energy(

1

2
(ζ + λ)) +

1

4cr
(uζ − uλ|uζ − uλ)

=
1

4cr
(uζ + uλ|uζ + uλ) +

1

4cr
(uζ − uλ|uζ − uλ)

(479J(b-ii))

=
1

2cr
(‖uζ‖22 + ‖uλ‖22) = e.

It follows that ‖uζ − uλ‖2 = 0 and Uζ =a.e. Uλ. Consequently ζ = λ (479J(b-iv)). QQQ

(c)(i) If ζ is any Radon measure on Rr with finite energy, then
∫
Wζdλ ≥ e ζK

capK
. PPP If ζK = 0 this is

trivial. Otherwise, set ζ ′ =
capK

ζK
ζ K. Then ζ ′ has finite energy (479Fh) and belongs to Q, so for any

α ∈ [0, 1] we have αζ ′ + (1 − α)λ ∈ Q, and

cre ≤ cr energy(αζ ′ + (1 − α)λ) = ‖αuζ′ + (1 − α)uλ‖22
= α2‖uζ′‖22 + 2α(1 − α)(uζ′ |uλ) + (1 − α)2‖uλ‖22
= α2‖uζ′‖22 + 2α(1 − α)(uζ′ |uλ) + (1 − α)2cre

= cre+ 2α((uζ′ |uλ) − cre) + α2(‖uζ′‖22 − 2(uζ′ |uλ) + cre).

It follows that (uζ′ |uλ) − cre ≥ 0 and

∫
Wζdλ ≥

∫
Wζ Kdλ

(479Fh)
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=
ζK

capK

∫
Wζ′dλ =

ζK

cr capK

∫
Uζ′ × Uλdµ

(479J(b-i))

=
ζK

cr capK
(uζ′ |uζ) ≥ ζK

cr capK
cre =

e ζK

capK
,

as claimed. QQQ

(ii) If ζ is any Radon measure on Rr with finite energy, then Wλ(x) ≥ e

capK
for ζ-almost every x ∈ K.

PPP??? Otherwise, set E = {x : x ∈ K, Wλ(x) <
e

capK
}, and consider ζ ′ = ζ E. Then

∫
Wζ′dλ =

∫
Wλdζ

′

(479J(b-i))

<
e

capK
ζ ′E ≤ eζ′K

capK
,

contradicting (i). XXXQQQ

(iii) Wλ(x) =
e

capK
for λ-almost every x ∈ K. PPP Since λ has finite energy, (ii) tells us that Wλ(x) ≥

e

capK
for λ-almost every x ∈ K. Since

∫
K
Wλdλ ≤

∫
Wλdλ = e =

e

capK
λK,

we must have Wλ(x) =
e

capK
for λ-almost every x ∈ K. QQQ

(iv) Since λK = λRr, 479Fg, with f the constant function with value
e

capK
, tells us that Wλ(x) ≤

e

capK
for every x ∈ Rr.

(d) For x ∈ Rr \K, Wλ(x) ≤ e

capK
hp(K − x). PPP Set G = Rr \K, and let τ be the Brownian exit time

from G− x. Define f : G
∞ → [0, 1] by setting

f(y) = 0 if y ∈ ∂G = ∂K,

=
e

capK
−Wλ(y) if y ∈ G,

=
e

capK
if y = ∞.

BecauseWλ↾G is continuous and harmonic (479Fa), so is f↾G. Because λ has compact support, limy→∞Wλ(y) =

0 (479Fd), so f is continuous at ∞; because Wλ(y) ≤ e

capK
for every y, f is lower semi-continuous. So

e

capK
−Wλ(x) = f(x) ≥ E(f(x+Xτ ))

(478O, because r ≥ 3 and Rr has few wandering paths)

=
e

capK
Pr(τ = ∞) =

e

capK
(1 − Pr(τ <∞)).

Thus Wλ(x) is at most
e

capK
Pr(τ <∞). But Pr(τ <∞) is just the Brownian hitting probability hp(K−x).

QQQ
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(e) e = energy(λK). PPP

e ≤ energy(λK) ≤ capK

((a) above)

= λK = λRr = lim
‖x‖→∞

‖x‖r−2Wλ(x)

(479Fd)

≤ e

capK
lim inf
‖x‖→∞

‖x‖r−2 hp(K − x)

(by (d) of this proof)

=
e

capK
· capK

(479B(ii))

= e. QQQ

(f) From this we see at once that λ = λK and capK = energy(λK). Now suppose that ζ is a Radon

measure on Rr such that ζK ≥ capK ≥ energy(ζ). Set ζ ′ =
capK

ζK
ζ K; then ζ ′ ∈ Q, while ζ ′ ≤ ζ, so

e = capK ≥ energy(ζ) ≥ energy(ζ ′)

by 479Fh. It follows that ζ ′ = λ and λ ≤ ζ. Accordingly Wλ ≤Wζ (479Fh again),

energy(ζ) =

∫
Wζdζ ≥

∫
Wλdζ ≥

∫

K

Wλdζ ≥ ζK

((c-ii) above)

≥ capK ≥ energy(ζ),

and we have equality throughout. Since λ is non-zero and the kernel (x, y) 7→ 1

‖x−y‖r−2
is strictly positive,

Wλ is strictly positive. It follows that ζ(Rr \K) = 0 and ζ ∈ Q; consequently ζ = λ = λK , as required.

479L I shall wish later to quote a couple of the facts which appeared in the course of the proof above,
and I think it will be safer to list them now.

Corollary Let K ⊆ Rr be a compact set with equilibrium potential W̃K .
(a) If ζ is any Radon measure on Rr with finite energy, then W̃K(x) = 1 for ζ-almost every x ∈ K.
(b) If ζ is a Radon measure on Rr such that Wζ ≤ 1 everywhere on K, ζK ≤ capK.

(c) W̃K(x) ≤ hp(K − x) for every x ∈ Rr \K.

proof (a)(i) Suppose first that capK > 0. Working through the proof of 479K, we discover, in parts (e)-(f)
of the proof, that e = capK and λ = λK , so we just have to put (c-ii) of the proof together with 479D(b-i).

(ii) If capK = 0, let B be a non-trivial closed ball disjoint from A, and consider L = K ∪ B. Then
capB = capL (479Ea) and λLK = 0, by 479D(c-ii), so

λLB = λLL = capL = energy(λL) = capB

and λL = λB (479K). Now W̃L = 1 ζ-a.e. on L, while

W̃L(x) = W̃B(x) < 1

for every x ∈ Rr \B (479Da), and in particular for every x ∈ K; so K must be ζ-negligible.

(b) Set ζ ′ = ζ K; then Wζ′ ≤ Wζ , so energy(ζ ′) =
∫
K
Wζ′dζ

′ ≤ ζ ′K is finite. By (a), W̃K ≥ 1 ζ ′-a.e.,
so
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ζK = ζ ′K ≤
∫
W̃Kdζ

′ =

∫
Wζ′dλK

(479J(b-i))

≤ λKRr = capK.

(c) If capK = 0 then λK is the zero measure and the result is trivial. Otherwise, again look at the proof

of 479K; in part (d), we saw that Wλ(x) ≤ e

capK
hp(K − x); but we now know that e = capK and λ = λK ,

so we get W̃K(x) ≤ hp(K − x), as claimed.

479M In 479Ed we saw that there is a natural extension of Newtonian capacity to a Choquet capacity
defined on every subset of Rr. However the importance of Newtonian capacity lies as much in the equilibrium
measures and potentials as in the simple quantity of capacity itself, and the methods of 479B-479E do not
seem to yield these by any direct method. With the new ideas of 479K-479L, we can now approach the
problem of defining equilibrium measures for unbounded analytic sets of finite capacity.

Lemma Let A ⊆ Rr be an analytic set with finite Choquet-Newton capacity c(A).
(a) limγ→∞ c(A \B(0, γ)) = 0.

(b) λA = limγ→∞ λA∩B(0,γ) is defined for the total variation metric on the space M+
R (Rr) of totally finite

Radon measures on Rr.
(c)(i) λAR

r = c(A).
(ii) supp(λA) ⊆ ∂A.
(iii) If B ⊆ Rr is another analytic set such that c(B) <∞, then λA∪B ≤ λA + λB .

(d)(i) W̃A = WλA
is the limit limγ→∞ W̃A∩B(0,γ) = supγ≥0 W̃A∩B(0,γ).

(ii) W̃A(x) ≤ 1 for every x ∈ Rr.

(iii) If ζ is any Radon measure on Rr with finite energy, W̃A(x) = 1 for ζ-almost every x ∈ A.
(iv) energy(λA) = c(A).

proof (a) ??? Otherwise, set

α = limγ→∞ c(A \B(0, γ)) = infγ>0 c(A \B(0, γ)) > 0.

Set ǫ = 1
8α and δ = 3

2

√
α. Let γ be such that c(A \B(0, γ)) ≤ α+ ǫ, and let K ⊆ A \B(0, γ) be a compact

set such that capK ≥ α − ǫ (479E(d-iii)). Let γ′ be such that K ⊆ B(0, γ′), and let L ⊆ A \ B(0, γ′ + δ)
be a compact set such that capL ≥ α− ǫ.

Set ζ = 2
3 (λK + λL). Then Wζ = 2

3 (W̃K + W̃L). If x ∈ K, then ‖x− y‖ ≥ δ for every y ∈ L, so

W̃L(x) ≤ 1

δ2
λLL ≤ α+ǫ

δ2
=

1

2
;

similarly, W̃K(x) ≤ 1

2
for every x ∈ L. So Wζ(x) ≤ 1 for every x ∈ K ∪ L, and therefore for every x ∈ Rr,

by 479Fg. But this means that

c(A \B(0, γ)) ≥ cap(K ∪ L) ≥ ζ(K ∪ L)

(479Lb)

=
2

3
(capK + capL) ≥ 4

3
(α− ǫ) > α+ ǫ,

which is impossible. XXX

(b) For γ ≥ 0 set αγ = c(A \ B(0, γ)) and ζγ = λA∩B(0,γ). If 0 ≤ γ ≤ γ′ and E ⊆ Rr is Borel, then
|ζγE − ζγ′E| ≤ αγ . PPP
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ζγ′E ≤ ζγE + λE∩B(0,γ′)\B(0,γ)(K)

(479D(c-i))

≤ ζγE + c(A ∩B(0, γ′) \B(0, γ)) ≤ ζγE + c(A \B(0, γ)) = ζγE + αγ .

On the other side we now have

ζγE = c(A ∩B(0, γ)) − ζγ(Rr \ E)

≤ c(A ∩B(0, γ′)) − ζγ′(Rr \ E) + αγ = ζγ′E + αγ .

So |ζγE − ζγ′E| ≤ αγ . QQQ It follows at once that ρtv(ζγ , ζγ′) ≤ 2αγ .
Since limγ→∞ αγ = 0, by (a), 〈ζn〉n∈N is a Cauchy sequence for ρtv. As noted in 437Q(a-iii), M+

R (Rr) is
complete, so limγ→∞ λA∩B(0,γ) = limn→∞ ζn is defined, and we have our measure λA.

(c)(i) Now

λAR
r = limn→∞ λA∩B(0,n)(R

r) = limn→∞ c(A ∩B(0, n)) = c(A).

(ii) For any γ ≥ 0,

λA∩B(0,γ)(R
r \ ∂A) ≤ λA∩B(0,γ)(∂B(0, γ))

(because the support of λA∩B(0,γ) is included in ∂(A ∩B(0, γ)) ⊆ ∂A ∪ ∂B(0, γ))

≤ |λA(∂B(0, γ)) − λA∩B(0,γ)(∂B(0, γ))| + λA(∂B(0, γ))

≤ ρtv(λA, λA∩B(0,γ)) + λA(∂B(0, γ)).

So

λA(Rr \ ∂A) = lim
γ→∞

λA∩B(0,γ)(R
r \ ∂A)

≤ lim
γ→∞

ρtv(λA, λA∩B(0,γ)) + lim
γ→∞

λA(∂B(0, γ)) = 0.

(iii) For any compact set K ⊆ Rr,

λA∪B(K) = lim
γ→∞

λ(A∪B)∩B(0,γ)(K) ≤ lim
γ→∞

λA∩B(0,γ)(K) + λB∩B(0,γ)(K)

(479D(c-i))

= λA(K) + λB(K) = (λA + λB)(K).

By 416Ea, λA∪B ≤ λA + λB .

(d)(i) By 479D(b-ii), the supremum and the limit are the same. Suppose that x ∈ Rr and ǫ > 0. Start

with γ > ‖x‖. Since W̃A∩B(0,γ)(x) is finite, there is a δ ∈ ]0, γ − ‖x‖[ such that
∫
B(0,δ)

1

‖x−y‖r−2
λA∩B(0,γ)(dy) ≤

ǫ. If γ′ ≥ γ ≥ 0, then

λA∩B(0,γ′) ≤ λA∩B(0,γ) + λA∩B(0,γ′)\B(0,γ),

so

∫

B(0,δ)

1

‖x−y‖r−2
λA∩B(0,γ′)(dy) ≤

∫

B(0,δ)

1

‖x−y‖r−2
λA∩B(0,γ)(dy)

+

∫

B(0,δ)

1

‖x−y‖r−2
λA∩B(0,γ′)\B(0,γ)(dy)

(234Hc, 234Qc)
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=

∫

B(0,δ)

1

‖x−y‖r−2
λA∩B(0,γ)(dy)

(because intB(0, γ) is λA∩B(0,γ′)\B(0,γ)-negligible)

≤ ǫ.

So, setting M =
1

δr−2
,

|W̃A∩B(0,γ′)(x) −
∫

min(M,
1

‖x−y‖r−2
)λA∩B(0,γ′)(dy)| ≤ ǫ.

Using (c-ii) and (c-iii) to apply the same argument with A in place of A ∩B(0, γ′), we get

|W̃A(x) −
∫

min(M,
1

‖x−y‖r−2
)λA(dy)| ≤ ǫ.

On the other hand,
∫

min(M,
1

‖x−y‖r−2
)λA(dy) = limγ′→∞

∫
min(M,

1

‖x−y‖r−2
)λA∩B(0,γ′)(dy)

(437Q(a-ii)), so

lim supγ′→∞ |W̃A∩B(0,γ′)(x) − W̃A(x)| ≤ 2ǫ.

As ǫ is arbitrary, WA(x) = limγ′→∞WA∩B(0,γ′)(x), as claimed.

(ii) It follows at once that W̃A ≤ 1 everywhere.

(iii) Write E = {x : x ∈ A, W̃A(x) < 1}, and let ζ be a Radon measure on Rr of finite energy. ??? If
ζE > 0, there is a compact set K ⊆ E such that ζK > 0. Now there is a γ > 0 such that K ⊆ B(0, γ), in
which case

W̃K(x) ≤ W̃A∩B(0,γ)(x) < 1

for every x ∈ K, and ζK = 0, by 479La. XXX So ζE = 0, as required.

(iv) By (ii) and (c-i),

energy(λA) =
∫
W̃AdλA ≤ λAR

r = c(A).

In the other direction, for any γ ≥ 0,

energy(λA) =

∫
W̃AdλA ≥

∫
W̃A∩B(0,γ)dλA =

∫
W̃AdλA∩B(0,γ)

(479J(b-i))

≥
∫
W̃A∩B(0,γ)dλA∩B(0,γ) = c(A ∩B(0, γ));

taking the limit as γ → ∞, energy(λA) ≥ c(A) and we have equality.

479N We are ready to match the definitions in 479C to some alternative definitions of capacity.

Theorem Let A ⊆ Rr be an analytic set with finite Choquet-Newton capacity c(A).
(a) Writing Wζ for the Newtonian potential of a Radon measure ζ on Rr,

c(A) = sup{ζA : ζ is a Radon measure on Rr, Wζ(x) ≤ 1 for every x ∈ Rr};

if A is closed, the supremum is attained.
(b) c(A) = inf{energy(ζ) : ζ is a Radon measure on Rr, ζA ≥ c(A)}; if A is closed, the infimum is

attained.

(c) If A 6= ∅, c(A) = sup{ 1

energy(ζ)
: ζ is a Radon measure on Rr such that ζA = 1}, counting

1

∞ as zero;

if A is closed, the supremum is attained.
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proof Note first that if there is a Radon measure ζ on Rr, with finite energy, such that ζA > 0, then
c(A) > 0. PPP By 479M(d-iii), W̃A = 1 ζ-a.e. on A. So W̃A cannot be identically 0, and 0 < λAR

r = c(A),
by 479M(c-i). QQQ

(a)(i) We know from 479E(d-i) and 479D(b-i) that

c(A) = sup{capK : K ⊆ A is compact} = sup{λKK : K ⊆ A is compact}
= sup{λKA : K ⊆ A is compact} ≤ sup{ζA : Wζ ≤ χRr}.

(ii) If ζ is a Radon measure on Rr and Wζ ≤ χRr, then

ζA = sup
K⊆A is compact

ζK ≤ sup
K⊆A is compact

capK

(479Lb)

= c(A).

Thus sup{ζA : Wζ ≤ χRr} ≤ c(A) and we have equality.

(iii) If A is closed, then by 479M(c-ii)

λAA = λA(∂A) = λAR
r = c(A)

so λA witnesses that the supremum is attained.

(b)(i) ??? Suppose, if possible, that there is a Radon measure ζ on Rr such that ζA ≥ c(A) > energy(ζ).
Let α ∈ ]0, 1[ be such that α4c(A) ≥ energy(ζ). Since

ζA = sup{ζK : K ⊆ A is compact}, c(A) = sup{capK : K ⊆ A is compact},

there is a compact K ⊆ A such that ζK ≥ αζA and capK > α2c(A). Set ζ ′ =
capK

ζK
ζ. Then

energy(ζ ′) =
( capK

ζK

)2
energy(ζ) ≤

(c(A)

αζA

)2
α4c(A)

≤ α2c(A) < capK = ζ ′K;

which is impossible, by 479K. XXX
So c(A) ≤ inf{energy(ζ) : ζA ≥ c(A)}.

(ii) Take any ǫ > 0. Then there is a compact set K ⊆ A such that (1 + ǫ) capK ≥ c(A). Set
ζ = (1 + ǫ)λK ; then

ζA ≥ c(A), energy(ζ) = (1 + ǫ)2 energy(λK) = (1 + ǫ)2 capK ≤ (1 + ǫ)2c(A).

As ǫ is arbitrary, c(A) ≥ inf{energy(ζ) : ζA ≥ c(A)} and we have equality.

(iii) If A is closed, then

λAA = λA(∂A) = λAR
r = c(A)

by 479M(c-i) and (c-ii), while energy(λA) = c(A) by 479M(d-iv). So λA witnesses that c(A) = min{energy(ζ) :
ζA ≥ c(A)}.

(c)(i) Suppose that ζ is a Radon measure on Rr such that ζA = 1. If energy(ζ) = ∞ then of course
1

energy(ζ)
≤ c(A). Otherwise, c(A) > 0, as remarked at the beginning of this part of the proof. Set

ζ ′ = c(A)ζ. By (b),

c(A) ≤ energy(ζ ′) = c(A)2 energy(ζ),

so
1

energy(ζ)
≤ c(A).

Thus sup{ 1

energy(ζ)
: ζA = ζRr = 1} ≤ c(A).
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(ii) If c(A) = 0 then the supremum is attained by any Radon measure ζ such that ζA = 1, so we can
stop. If c(A) > 0, then for any α ∈ ]0, 1[ there is a compact set K ⊆ A such that capK ≥ αc(A). Set

ζ =
1

capK
λK ; then

ζK = ζRr = ζA = 1

and

1

energy(ζ)
=

(capK)2

energy(λK)
= capK ≥ αc(A).

As α is arbitrary, c(A) ≤ sup{ 1

energy(ζ)
: ζA = ζRr = 1} and we have equality.

(iii) If A is closed and c(A) > 0, then ζ =
1

c(A)
λA witnesses that the supremum is attained, as in (b)

above.

479O Polar sets To make the final step, to arbitrary sets with finite Choquet-Newton capacity, we seem
to need an alternative description of polar sets.

Proposition For a set D ⊆ Rr, the following are equiveridical:
(i) D is polar, that is, c(D) = 0;
(ii) there is a totally finite Radon measure ζ on Rr such that its Newtonian potential Wζ is infinite at

every point of D;
(iii) there is an analytic set E ⊇ D such that ζE = 0 whenever ζ is a Radon measure on Rr with finite

energy.

proof (i)⇒(ii) If (i) is true, then for each n ∈ N there is a bounded open set Gn ⊇ D ∩ B(0, n) such
that c(Gn) ≤ 2−n. Try ζ =

∑∞
n=0 λGn

, defining the sum as in 234G. Then ζRr =
∑∞
n=0 c(Gn) is finite,

and Wζ =
∑∞
n=0 W̃Gn

(234Hc). If x ∈ D ∩ B(0, n), then W̃Gm
(x) = 1 for every m ≥ n (479D(b-iii)), so

Wζ(x) = ∞. Thus ζ witnesses that (ii) is true.

(ii)⇒(iii) Suppose that λ is a totally finite Radon measure such that Wλ(x) = ∞ for every x ∈ D. Set
E = {x : Wλ(x) = ∞}; then E is a Gδ set, because Wλ is lower semi-continuous (479Fa). ??? If there is
a Radon measure ζ on Rr, with finite energy, such that ζE > 0, let K ⊆ E be a compact set such that

ζK > 0. Set ζ1 =
1

ζK
ζ K; then ζ1 has finite energy and ζ1K = 1, so capK ≥ 1

energy(ζ1)
> 0, by 479Nc.

Let G ⊇ K be a bounded open set; set λ1 = λ G and λ2 = λ (Rr \ G), so that λ = λ1 + λ2 and
Wλ = Wλ1

+ Wλ2
(234Hc). Since Wλ2

(x) is finite for x ∈ G (479Fa), Wλ1
(x) = ∞ for every x ∈ K. Let

ǫ > 0 be such that ǫλ1R
r < capK. Then ǫWλ1

is a lower semi-continuous superharmonic function greater

than or equal to W̃K on K ⊇ supp(λK), so ǫWλ1
≥ W̃K everywhere (479Fg). But this means that

ǫλ1R
r = ǫ lim

‖x‖→∞
‖x‖r−2Wλ1

(x)

(479Fd)

≥ lim
‖x‖→∞

‖x‖r−2W̃K(x) = λKRr = capK > ǫλ1R
r,

which is absurd. XXX
So E witnesses that (iii) is true.

(iii)⇒(i) Suppose that E ⊇ D is analytic and that ζE = 0 whenever energy(ζ) is finite. If K ⊆ E is
compact and ζ is a Radon probability measure on Rr such that ζK = 1, then energy(ζ) must be infinite;
by 479Nc, capK = 0. As K is arbitrary, c(E) = 0 and c(D) = 0.

479P At last I come to my final extension of the notions of equilibrium measure and potential, together
with a direct expression of the latter in terms of Brownian hitting probabilities.
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Theorem Let D ⊆ Rr be a set with finite Choquet-Newton capacity c(D).
(a) There is a totally finite Radon measure λD on Rr such that λD = λA, as defined in 479Mb, whenever

A ⊇ D is analytic and c(A) = c(D).

(b) Write W̃D = WλD
for the equilibrium potential corresponding to the equilibrium measure λD. Then

W̃D(x) = hp∗((D \ {x}) − x) for every x ∈ Rr.
(c)(i)(α) λDR

r = c(D);

(β) if ζ is any Radon measure on Rr with finite energy, W̃D(x) = 1 for ζ-almost every x ∈ D;
(γ) energy(λD) = c(D);
(δ) if D′ ⊆ D and c(D′) = c(D), then λD′ = λD.

(ii) supp(λD) ⊆ ∂D.
(iii) For any D′ ⊆ Rr such that c(D′) <∞,

(α) λ∗D(D′) ≤ c(D′);
(β) λD∪D′ ≤ λD + λD′ ;

(γ) W̃D∩D′ + W̃D∪D′ ≤ W̃D + W̃D′ ;
(δ) ρtv(λD, λD′) ≤ 2c(D△D′).

(iv) If 〈Dn〉n∈N is a non-decreasing sequence of sets with union D, then

(α) W̃D = limn→∞ W̃Dn
= supn∈N W̃Dn

;

(β) 〈λDn
〉n∈N → λD for the narrow topology on M+

R (Rr).
(v) c(D) = inf{ζRr : ζ is a Radon measure on Rr, Wζ ≥ χD}

= inf{energy(ζ) : ζ is a Radon measure on Rr, Wζ ≥ χD}.

(vi) Writing cl*D for the essential closure of D, c(cl*D) ≤ c(D) and W̃cl*D ≤ W̃D.
(vii) Suppose that f : D → Rr is γ-Lipschitz, where γ ≥ 0. Then c(f [D]) ≤ γr−2c(D).

proof (a)(i) If A, B ⊆ Rr are analytic sets, c(B) <∞ and A ⊆ B, then

W̃A = sup
n∈N

W̃A∩B(0,n)

(479M(d-i))

≤ sup
n∈N

W̃B∩B(0,n)

(479D(b-ii))

= W̃B .

If c(A) = c(B), then λA = λB . PPP

c(A) = energy(λA)

(479M(d-iv))

=

∫
W̃AdλA ≤

∫
W̃BdλA =

∫
W̃AdλB

(479J(b-i))

≤
∫
W̃BdλA = energy(λB) = c(B) = λBR

r

(479M(c-i)). So we must have equality throughout, and W̃A = W̃B λB-a.e. By 479Fg, W̃A ≥ W̃B everywhere
and

WλB
= W̃B = W̃A = WλA

.

By 479J(b-v), λB = λA. QQQ
(ii) Now consider the given set D. By 479E(d-i), there is an analytic set A ⊇ D such that c(A) = c(D).

If B is another such set, then c(A ∩ B) = c(A) = c(B), so λA∩B = λA = λB . We therefore have a common
measure which we can take to be λD. Of course this agrees with 479Mb if D itself is analytic, and with
479B if D is bounded and analytic.
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(b) Write hD(x) for hp∗((D \ {x}) − x).

(i) To begin with, suppose that D = K is compact and that x /∈ K, so that hD(x) = hK(x) = hp(K−x).

(ααα) hK(x) ≥ W̃K(x). PPP 479Lc. QQQ

(βββ) In fact hK(x) = W̃K(x). PPP Let ǫ > 0. Set E = {y : y ∈ K, W̃K(y) < 1}. Because W̃K is
lower semi-continuous, E is an Fσ set, therefore analytic; by 479M(d-iii), E satisfies condition (iii) of 479O,
and is polar. By 479O(ii), there is a totally finite Radon measure ζ on Rr such that Wζ(y) = ∞ for every

y ∈ E. Let H be a bounded open set, including K, such that x /∈ H; set ζ1 = ζ H and ζ2 = ζ (Rr \H).
Then ζ = ζ1 + ζ2, so Wζ = Wζ1 + Wζ2 (479J(b-iii)). Since H is open and ζ2-negligible, Wζ2(y) is finite for
every y ∈ K (479Fa), and Wζ1(y) = ∞ for every y ∈ E; while Wζ1(x) is finite because the support of ζ1 is

included in H.
There is therefore an η > 0 such that ηWζ1(x) ≤ ǫ. Consider λ = λK + ηζ1. We have Wλ(y) ≥ 1 for

every y ∈ K, while Wλ is superharmonic and lower semi-continuous (479Fa, 479Fb); as the support of λ is
included in the compact set H, lim‖y‖→∞Wλ(y) = 0 (479Fd). Consequently

hK(x) = µ(K)
x (K) ≤

∫
Wλdµ

(K)
x ≤Wλ(x)

(478Pc, with G = Rr \K)

≤ W̃K(x) + ǫ.

As ǫ is arbitrary, hK(x) ≤ W̃K(x) and we have equality. QQQ

(ii) If D = A is analytic, note that cap{x} = 0 (479Da, or otherwise), so c(A \ {x}) = c(A), because c
is monotonic and submodular, therefore subadditive (479E(d-ii)). Now we know that

hA(x) = sup{hp(K − x) : K ⊆ A \ {x} is compact}
(477Ie) and

c(A \ {x}) = sup{capK : K ⊆ A \ {x} is compact}
(479E(d-iii)). So there is a non-decreasing sequence 〈Kn〉n∈N of compact subsets of A \ {x} such that

hA(x) = supn∈N hp(Kn − x), c(A \ {x}) = supn∈N capKn.

Set E =
⋃
n∈NKn; then E ⊆ A and c(E) = c(A), so λE = λA ((a-i) above) and W̃E = W̃A. Accordingly

hA(x) = sup
n∈N

hp(Kn − x) = sup
n∈N

W̃Kn
(x)

((a-i) above)

= sup
m,n∈N

W̃Kn∩B(0,m)(x) = sup
m∈N

W̃E∩B(0,m)(x)

(apply 479E(b-iii) twice)

= W̃E(x) = W̃A(x).

(iii) For the general case, note first that hD ≤ W̃D. PPP There is a Gδ set E ⊇ D such that c(E) = c(D),
so λE = λD. Now, for any x ∈ Rr,

hD(x) ≤ hE(x) = W̃E(x) = W̃D(x),

using (ii) for the central equality. QQQ

Equally, hD ≥ W̃D. PPP If x ∈ Rr, there is a Gδ set H ⊇ (D \ {x}) − x such that

hD(x) = hp∗((D \ {x}) − x) = hpH

(477Id). Set A = (H + x) ∪ {x}; then A ⊇ D and

hD(x) = hA(x) = W̃A(x) ≥ W̃A∩E(x) = W̃D(x),
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using (a-i) again for the inequality. QQQ

So hD = W̃D, as claimed.

(c) Fix an analytic set A ⊇ D such that c(A) = c(D); replacing A by A∩D if necessary, we may suppose

that A ⊆ D. We have λD = λA and W̃D = W̃A.

(i)(ααα)

λDR
r = λAR

r = c(A) = c(D)

by 479M(c-i).

(βββ)-(γγγ) 479M(d-iii) tells us that W̃D(x) = W̃A(x) = 1 for ζ-almost every x ∈ A, and therefore for
ζ-almost every x ∈ D. At the same time,

energy(λD) = energy(λA) = c(A) = c(D)

by 479M(d-iv).

(δδδ) Of course A ⊇ D′ and c(A) = c(D′), so λD′ = λA = λD.

(ii) A = D and intA ⊇ intD, so ∂A ⊆ ∂D and

λD(Rr \ ∂D) = λA(Rr \ ∂D) ≤ λA(Rr \ ∂A) = 0

by 479M(c-ii). As ∂D is closed, it includes supp(λD).

(iii) Let A′ ⊇ D′ be an analytic set such that c(A′) = c(D′).
(ααα)

λ∗D(D′) ≤ λD(A′) = λA(A′) ≤ sup
m∈N

λA∩B(0,m)(A
′)

(479Mb)

= sup
m,n∈N

λA∩B(0,m)(A
′ ∩B(0, n)) ≤ sup

n∈N

c(A′ ∩B(0, n))

(479D(c-ii))

= c(A′)

(because c is a capacity)

= c(D′).

(βββ) Because c is subadditive, we know that c(D ∪D′) is finite. Let B ⊇ D ∪D′ be an analytic set
such that c(B) = c(D ∪D′). Then

λD∪D′ = λB∩(A∪A′) ≤ λB∩A + λB∩A′

(479M(c-iii))

= λD + λD′ .

(γγγ) This is immediate from (b) and the general fact that ζ∗(U ∩ V ) + ζ∗(U ∪ V ) ≤ ζ∗U + ζ∗V for
any measure ζ and any sets U and V (132Xk).

(δδδ) As usual, it will be enough to show that |λDE − λD′E| ≤ c(D△D′) for every Borel set E ⊆ Rr;
by symmetry, all we need to check is that λD′E ≤ λDE + c(D△D′) for every Borel set E. PPP

case 1 Suppose that D and D′ are both bounded Borel sets. Take x ∈ Rr, and let τ , τ ′ : Ω → [0,∞]
be the Brownian arrival times to D − x, D′ − x respectively. Then
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µ(D′)
x E = µW {ω : τ ′(ω) <∞, x+ ω(τ ′(ω)) ∈ E}

≤ µW {ω : τ(ω) <∞, x+ ω(τ(ω)) ∈ E} + µW {ω : τ(ω) 6= τ ′(ω)}
≤ µ(D)

x E + µW {ω : there is some t ≥ 0 such that x+ ω(t) ∈ D△D′}
= µ(D)

x E + µ(D△D′)
x Rr.

So

λD′E = lim
‖x‖→∞

‖x‖r−2µ(D′)
x E

≤ lim
‖x‖→∞

‖x‖r−2µ(D)
x E + lim

‖x‖→∞
‖x‖r−2µ(D△D′)

x Rr = λDE + c(D△D′).

case 2 Suppose that D, D′ are Borel sets, not necessarity bounded. Set Dn = D ∩ B(0, n),
D′
n = D′ ∩B(0, n). Then

λD′E = lim
n→∞

λD′
n
E

(479Mb)

≤ lim
n→∞

λDn
E + lim

n→∞
c(Dn△D′

n)

(by case 1)

= λDE + lim
n→∞

c((D△D′) ∩B(0, n)) = λDE + c(D△D′)

because c is a capacity.

case 3 In general, let G ⊇ D, G′ ⊇ D′ and H ⊇ D△D′ be Gδ sets such that c(G) = c(D),
c(G′) = c(D′) and c(H) = c(D△D′). Set

G1 = G ∩ (G′ ∪H), G′
1 = G′ ∩ (G ∪H);

these are Borel sets, while D ⊆ G1 ⊆ G, D′ ⊆ G′
1 ⊆ G′ and G1△G2 ⊆ H. So

λD′E = λG′
1
E ≤ λG1

E + c(G△G1)

(by case 2)

≤ λDE + c(H) = λDE + c(D△D′)

and we have the result in this case also. So we’re done. QQQ

(iv)(ααα) This follows immediately from (b) above.

(βββ) Consider first the case in which every Dn is analytic. Returning to the proof of 479M, or putting
479Ma together with (iii-δ) here, we see that for any m, n ∈ N we shall have

ρtv(λDn
, λDn∩B(0,m)) ≤ 2c(Dn \B(0,m)) ≤ 2c(D \B(0,m)) = 2αm

say, and that limm→∞ αm = 0. So if G ⊆ Rr is any open set,

λDG = lim
m→∞

λD∩B(0,m)G ≤ lim
m→∞

lim inf
n→∞

λDn∩B(0,m)G

(479E(c-i))

≤ lim
m→∞

lim inf
n→∞

λDn
G+ 2αm = lim inf

n→∞
λDn

G.

Since we know also that

λDR
r = c(D) = limn→∞ c(Dn) = limn→∞ λDn

Rr,
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〈λDn
〉n∈N → λD for the narrow topology.

For the general case, take analytic sets An ⊇ Dn, A ⊇ D such that c(An) = c(Dn) for every n and
c(A) = c(D). Set A′

n = A ∩⋂
m≥nAm for each n, A′ =

⋃
n∈NAn; then

〈λDn
〉n∈N = 〈λA′

n
〉n∈N → λA′ = λD

for the narrow topology.

(v) Let Q be the set of Radon measures ζ on Rr such that Wζ ≥ χD.

(ααα) I show first that infζ∈Q ζRr and infζ∈Q energy(ζ)} are both less than or equal to c(D). PPP Let
ǫ > 0. Because c is outer regular (479E(d-i)), there is an open set G ⊇ D such that c(G) ≤ c(D) + ǫ. Set
ζ = λG. Then

Wζ = W̃G ≥ χG ≥ χD

(479D(b-iii)), so ζ ∈ Q, while

ζRr = energy(ζ) = c(G) ≤ c(D) + ǫ. QQQ

(βββ) Now suppose that ζ ∈ Q. Then c(D) ≤ min(ζRr, energy(ζ)). PPP Take any γ < c(D) and ǫ > 0.
Let A ⊇ D be an analytic set such that c(A) = c(D); replacing A by {x : x ∈ A, Wζ(x) ≥ 1} if necessary,
we can suppose that Wζ ≥ χA. For each n ∈ N, let ζn be the totally finite measure (1 + ǫ)ζ B(0, n).
Then 〈Wζn〉n∈N is non-decreasing and has supremum (1 + ǫ)Wζ (479M(d-i)), so A =

⋃
n∈NAn, where

An = {x : x ∈ A, Wζn(x) ≥ 1}. There are an n ∈ N such that c(An) > γ and a compact K ⊆ An such that

capK ≥ γ (432K). Now Wζn ≥ W̃K λK -a.e., so Wζn ≥ W̃K everywhere (479Fg) and

γ ≤ capK =

∫
W̃KdλK ≤

∫
WζndλK =

∫
W̃Kdζn

(479J(b-i))

≤
∫
Wζndζn ≤ (1 + ǫ)

∫
Wζdζn ≤ (1 + ǫ)2

∫
Wζdζ = (1 + ǫ)2 energy(ζ).

Moreover, 479J(c-vi), applied to ζn and λK , tells us that

ζRr ≥ ζnR
r ≥ λKRr = capK ≥ γ.

As γ and ǫ are arbitrary, c(D) ≤ min(energy(ζ), ζRr), as claimed. QQQ

(γγγ) Putting these together, we see that c(D) = infζ∈Q ζRr = infζ∈Q energy(ζ).

(vi) If x ∈ cl*A, then 0 ∈ cl*((A \ {x}) − x) and W̃A(x) = hp∗((A \ {x}) − x) = 1 for every x ∈ cl*E,
by 478U and (b) above. Now

c(cl*D) ≤ c(cl*A) ≤ energy(λA)

((v) above)

= c(A)

(479M(d-iv))

= c(D).

(vii)(ααα) Consider first the case D = A, so that f [D] = f [A] is analytic. We can suppose that
c(f [A]) > 0, in which case A 6= ∅ and γ > 0. Take any ǫ > 0. By 479Nc there is a Radon measure ζ on

Rr such that ζf [A] = 1 and c(f [A]) ≤ 1+ǫ

energy(ζ)
. Applying 433D to the subspace measure ζf [A], we see that

there is a Radon probability measure ζ ′ on A such that ζf [A] is the image measure ζ ′f−1; let λ be the Radon
probability measure on Rr extending ζ ′. Then
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energy(ζ) =

∫

Rr

∫

Rr

1

‖x−y‖r−2
ζ(dx)ζ(dy) ≥

∫

f [A]

∫

f [A]

1

‖x−y‖r−2
ζ(dx)ζ(dy)

=

∫

A

∫

f [A]

1

‖x−f(v)‖r−2
ζ(dx)ζ ′(dv) =

∫

A

∫

A

1

‖f(u)−f(v)‖r−2
ζ ′(du)ζ ′(dv)

(applying 235J12 twice)

≥
∫

A

∫

A

1

γr−2‖u−v‖r−2
ζ ′(du)ζ ′(dv)

=
1

γr−2

∫

Rr

∫

Rr

1

‖u−v‖r−2
λ(du)λ(dv) =

1

γr−2
energy(λ).

By 479Nc in the other direction,

c(A) ≥ 1

energy(λ)
≥ 1

γr−2 energy(ζ)
≥ 1

(1+ǫ)γr−2
c(f [A]).

As ǫ is arbitrary, c(f [A]) ≤ γr−2c(A).

(βββ) In general, since f : D → Rr is certainly uniformly continuous, it has a continuous extension
g : D → Rr (3A4G), which is still γ-Lipschitz. Now (α) tells us that

c(f [D]) ≤ c(g[A]) ≤ γr−2c(A) = γr−2c(D),

as required.

479Q Hausdorff measure: Theorem For s ∈ ]0,∞[ let µHs be Hausdorff s-dimensional measure on
Rr. Let D be any subset of Rr.

(a) If the Choquet-Newton capacity c(D) is non-zero, then µ∗
H,r−2D = ∞.

(b) If s > r − 2 and µ∗
HsD > 0, then c(D) > 0.

proof (a) Let E ⊇ D be a Gδ set such that µH,r−2E = µ∗
H,r−2D (471Db). Then c(E) > 0. Let K ⊆ E be

a compact set such that capK > 0. Then

capK =
∫
K

∫
K

1

‖x−y‖r−2
λK(dx)λK(dy)

is finite and not 0; applying 471Tb to the subspace measure on K,

∞ = µH,r−2K = µH,r−2E = µ∗
H,r−2D.

(b) Let E ⊇ D be a Gδ set such that c(E) = c(D) (479E(d-i)). Then µHsE > 0. By 471Ta, there is a

non-zero Radon measure ζ0 on E such that
∫
E

∫
E

1

‖x−y‖r−2
ζ0(dx)ζ0(dy) is finite. Let K ⊆ E be a compact

set such that ζ0K > 0, and let ζ be the Radon measure on Rr such that ζH = ζ0(K ∩H) for every Borel
set H ⊆ Rr; then

energy(ζ) =
∫
K

∫
K

1

‖x−y‖r−2
ζ0(dx)ζ0(dy)

is finite, while K is ζ-conegligible. By 479Nc (or, more directly, by the first remark in the proof of 479N),
capK > 0, so that c(D) = c(E) ≥ capK > 0.

479R I come to the promised difference between Brownian motion in R3 and in higher dimensions,
following 478M.

Proposition (a) Suppose that r = 3. Then almost every ω ∈ Ω is not injective.
(b) If r ≥ 4, then almost every ω ∈ Ω is injective.

proof In this proof, I will take Xt(ω) = ω(t) for ω ∈ Ω and t ≥ 0.

12Formerly 235L.
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(a)(i) For ω ∈ Ω set Fω = {ω(t) : t ∈ [0, 1]}. Then capFω > 0 for µW -almost every ω. PPP By 477Lb,
µH,3/2Fω = ∞ for almost every ω. For any such ω, there is a non-zero Radon measure ζ0 on Fω such that
∫
Fω

∫
Fω

1

‖x−y‖ζ0(dx)ζ0(dy) is finite (471Ta). Let ζ be the Radon measure on Rr, extending ζ0, for which

Fω is conegligible. Then ζ(Fω) > 0 and energy(ζ) < ∞. (This is where we need to know that r = 3.) So
capFω > 0 (479Nc). QQQ

(ii) Consider E0 = {ω : there are s ≤ 1 and t ≥ 2 such that ω(s) = ω(t)}. (This is an Fσ set, so is
measurable.) Take τ to be the stopping time with constant value 2 and φτ : Ω × Ω → Ω the corresponding
inverse-measure-preserving function as in 477G; set H = {ω : ω ∈ Ω, ω(2) /∈ Fω}. Then

µWE0 =

∫

Ω

µW {ω′ : φτ (ω, ω′) ∈ E0}µW (dω)

=

∫

Ω

µW {ω′ : there is some t ≥ 0 such that ω(2) + ω′(t) ∈ Fω}µW (dω)

= µW (Ω \H) +

∫

H

W̃Fω
(ω(2))µW (dω)

(479Pb)

> 0

because W̃Fω
(ω(2)) > 0 whenever ω ∈ H and capFω > 0, which is so for almost every ω ∈ H.

(iii) Now, setting

En = {ω : there are s ∈ [n, n+ 1] and t ≥ n+ 2 such that ω(s) = ω(t)},

we have µWEn = µWE0 for every n, because 〈Xs+n −Xn〉s≥0 has the same distribution as 〈Xs〉s≥0. So if
E =

⋂
n∈N

⋃
m≥nEm, µWE > 0. But E belongs to the tail σ-algebra

⋂
t≥0 T[t,∞[, so has measure either

0 or 1 (477Hd), and must be conegligible. Since every ω ∈ E is self-intersecting, we see that almost every
Brownian path is self-intersecting.

(b)(i) Suppose that q, q′ ∈ Q are such that 0 ≤ q < q′. This time, set Fω = {ω(t) : t ∈ [0, q]}. For almost
every ω, Fω has zero two-dimensional Hausdorff measure (477La), so has zero (r−2)-dimensional Hausdorff
measure (because r ≥ 4), and therefore has zero capacity (479Qa). Also

µW {ω : ω(q′) ∈ Fω} = (µW × µW ){(ω, ω′) : ω′(q′ − q) ∈ Fω − ω(q)} = 0

because the distribution of Xq′−q is absolutely continuous with respect to Lebesgue measure and µFω = 0
for µW -almost every ω. But this means that

µW {ω : there is a t ≥ q′ such that ω(t) ∈ Fω}
= (µW × µW ){(ω, ω′) : there is a t ≥ 0 such that ω′(t) ∈ Fω − ω(q′)}

=

∫

Ω

W̃Fω
(ω(q′))µ(dω) = 0,

that is,

{ω : there are s ≤ q, t ≥ q′ such that ω(s) = ω(t)}
is negligible. As q and q′ are arbitrary, almost every sample path is injective.

479S A famous classical problem concerned, in effect, the continuity of potential functions, in particular
the continuity of functions of the form W̃K . I think that even with the modern theory as sketched above,
this is not quite trivial, so I spell out an example.

Example Suppose that e ∈ Rr is a unit vector. Then there is a sequence 〈δn〉n∈N of strictly positive real

numbers such that the equilibrium potential W̃K is discontinuous at e whenever K ⊆ B(0, 1) is compact,
e ∈ intK and ‖x− te‖ ≤ δn whenever n ∈ N, t ∈ [1 − 2−n, 1], x ∈ K and ‖x‖ = t.
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proof For n ∈ N, let Kn be the line segment {te : 1 − 2−n ≤ t ≤ 1 − 2−n−1}. Then the one-dimensional
Hausdorff measure of Kn is finite, so capKn = 0 (479Qa). By 479E(c-ii), limδ↓0 cap(Kn +B(0, δ)) = 0; let
δn ∈

]
0, 2−n−2

[
be such that cap(Kn +B(0, δn)) ≤ 2−3n−6. Setting Ln = Kn +B(0, δn), the distance from

e to Ln is at least 2−n−2. By 479Pb,

hp(Ln − e) = W̃Ln
(e) ≤ 4n+2λLn

(Rr) = 4n+2 capLn ≤ 2−n−2.

Suppose that K ⊆ B(0, 1) is compact, e ∈ intK and ‖x − te‖ ≤ δn whenever n ∈ N, t ∈ [1 − 2−n, 1],
x ∈ K and ‖x‖ = t. Then K ⊆ ⋃

n∈N Ln ∪ {e}. Using the full strength of 479Pb,

W̃K(e) = hp((K \ {e}) − e) ≤ hp(
⋃
n∈N Ln − e) ≤ ∑∞

n=0 hp(Ln − e) ≤ 1

2
.

On the other hand, W̃K(x) = 1 for every x ∈ intK (479D(b-iii)), so W̃K is not continuous at e.

*479T This concludes the main argument of the section, which you may feel is quite enough. However,
there is an important alternative method of calculating the capacity of a compact set, based on gradients
of potential functions (479U), and a couple of further results are reasonably accessible (479V-479W) which
reflect other concerns of this volume.

Lemma (a) If g : Rr → R is a smooth function with compact support,

∫
Rr

1

‖x−y‖r−2
∇2g dµ = −r(r − 2)βrg(x)

for every x ∈ Rr.
(b) Let g, h : Rr → R be smooth functions with compact support. Then∫

Rr
h×∇2g dµ =

∫
Rr
g ×∇2h = −

∫
Rr

gradh . grad g dµ.

(c) Let ζ be a totally finite Radon measure on Rr, and Wζ : Rr → [0,∞] the associated Newtonian
potential. Then

∫
Rr Wζ × ∇2g dµ = −r(r − 2)βr

∫
Rr g dζ for every smooth function g : Rr → R with

compact support.
(d) Let ζ be a totally finite Radon measure on Rr such that Wζ is finite-valued everywhere and Lipschitz.

Then
∫
Rr grad f . gradWζdµ = r(r − 2)βr

∫
Rr f dζ for every Lipschitz function f : Rr → R with compact

support.
(e) Let K ⊆ Rr be a compact set, and ǫ > 0. Then there is a Radon measure ζ on Rr, with support

included in K+B(0, ǫ), such that Wζ is a smooth function with compact support, Wζ ≥ χK, ζRr ≤ capK+ǫ
and ∫

Rr
‖ gradWζ‖2dµ = r(r − 2)βr energy(ζ) ≤ r(r − 2)βrζR

r.

proof (a)(i) Consider first the case x = 0. Setting f(y) =
1

‖y‖r−2
for y 6= 0, we have grad f(y) = − r−2

‖y‖r
y

and (∇2f)(y) = 0 for y 6= 0 (478Fa); also f is locally integrable, by 478Ga. So
∫
Rr f×∇2g dµ is well-defined.

Let R > 0 be such that g is zero outside B(0, R), and set M = ‖ grad g‖∞; take ǫ ∈ ]0, R[. Then

∫

Rr\B(0,ǫ)

f ×∇2g dµ =

∫

B(0,R)\B(0,ǫ)

f ×∇2g − g ×∇2f dµ

=

∫

B(0,R)\B(0,ǫ)

div(f × grad g − g × grad f)dµ

(use 474Bb)

=

∫

∂B(0,R)

(
1

‖y‖r−2
grad g(y) +

(r−2)g(y)

‖y‖r
y) .

y

‖y‖ν(dy)

−
∫

∂B(0,ǫ)

(
1

‖y‖r−2
grad g(y) +

(r−2)g(y)

‖y‖r
y) .

y

‖y‖ν(dy)

(475Nc)
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= −
∫

∂B(0,ǫ)

(
1

‖y‖r−1
y . grad g(y) +

(r−2)g(y)

‖y‖r−1
)ν(dy)

= − 1

ǫr−1

∫

∂B(0,ǫ)

(y . grad g(y) + (r − 2)g(y))ν(dy).

Now we have

|
∫
∂B(0,ǫ)

y . grad g(y)ν(dy)| ≤ ǫMν(∂B(0, ǫ)) ≤ rβrǫ
rM ,

so

|
∫

Rr\B(0,ǫ)

f×∇2g dµ+ r(r − 2)βrg(0)|

≤ rβrǫM +
1

ǫr−1
|rβrǫr−1(r − 2)g(0) −

∫

∂B(0,ǫ)

(r − 2)g(y)ν(dy)|

≤ rβrǫM +
r−2

ǫr−1

∫

∂B(0,ǫ)

|g(0) − g(y)|ν(dy)

≤ rβrǫM + r(r − 2)βr sup
y∈∂B(0,ǫ)

|g(0) − g(y)| → 0

as ǫ ↓ 0; that is, ∫
Rr
f ×∇2g dµ = −r(r − 2)βrg(0).

(ii) For the general case, apply (i) to the function y 7→ g(x+ y).

(b) Take R > 0 so large that both g and h are zero outside B(0, R), and M ≥ max(‖∇2g‖∞, ‖∇2h‖∞).

(i) We have

∫

Rr

∫

Rr

1

‖x−y‖r−2
|(∇2g)(x)(∇2h)(y)|µ(dx)µ(dy)

≤M2

∫

B(0,R)

∫

B(0,R)

1

‖x−y‖r−2
µ(dx)µ(dy) ≤M2

∫

B(0,R)

1

2
rβrR

2µ(dy)

(478Gc)

<∞.

So

−r(r − 2)βr

∫

Rr

h×∇2g dµ =

∫

Rr

∫

Rr

1

‖x−y‖r−2
(∇2h)(x)(∇2g)(y)µ(dx)µ(dy)

(by (a))

=

∫

Rr

∫

Rr

1

‖x−y‖r−2
(∇2g)(y)(∇2h)(x)µ(dy)µ(dx)

= −r(r − 2)βr

∫

Rr

g ×∇2h dµ.

Thus
∫
Rr g ×∇2h dµ =

∫
Rr h×∇2g dµ.

(ii) By 473Bd, grad(g×h) = g×gradh+h×grad g, so 474Bb tells us that ∇2(g×h) = 2 grad g . gradh+
g ×∇2h+ h×∇2g, and

∫

Rr

∇2(g × h)dµ =

∫

B(0,R)

∇2(g × h)dµ

=

∫

∂B(0,R)

grad(g × h) .
x

‖x‖ν(dx) = 0,
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so
∫
Rr

grad g . gradh dµ = −1

2

∫
Rr
g ×∇2h+ h×∇2g dµ = −

∫
Rr
g ×∇2h dµ.

(c) If g(x) = 0 for ‖x‖ ≥ R and |(∇2g)(x)| ≤M for every x, then

∫
Rr

1

‖x−y‖r−2
|(∇2g)(x)|µ(dx) ≤M

∫
B(0,R)

1

‖x−y‖r−2
µ(dx) ≤ 1

2
MrβrR

2

for every y (478Gc again). We can therefore apply (a) and integrate with respect to ζ to see that

−r(r − 2)βr

∫

Rr

g dζ =

∫

Rr

∫

Rr

1

‖x−y‖r−2
(∇2g)(x)µ(dx)ζ(dy)

=

∫

Rr

∫

Rr

1

‖x−y‖r−2
(∇2g)(x)ζ(dy)µ(dx)

=

∫

Rr

Wζ(x)(∇2g)(x)µ(dx),

as required.

(d) Let 〈h̃n〉n∈N be the smoothing sequence of 473E.

(i) Suppose to begin with that f is smooth. For n ∈ N set gn = h̃n ∗ Wζ . As Wζ is continuous,
limn→∞ gn = Wζ (473Ec); as ‖Wζ‖∞ ≤ 1, ‖gn‖∞ ≤ 1 for every n (473Da). Because f has compact support,

limn→∞
∫
Rr
gn ×∇2f dµ =

∫
Rr
Wζ ×∇2f dµ

by the dominated convergence theorem. Next, grad gn = h̃n ∗ gradWζ for each n (473Dd). As gradWζ

is essentially bounded (473Cc), all its coordinates are locally integrable, so gradWζ =a.e. limn→∞ grad gn
(473Ee). We therefore have

∫

Rr

grad f . gradWζdµ = lim
n→∞

∫

Rr

grad f . grad gndµ

= − lim
n→∞

∫

Rr

gn ×∇2f dµ

((b) above)

= −
∫

Rr

Wζ ×∇2f dµ = r(r − 2)βr

∫

Rr

f dζ

by (c).

(ii) For the general case, smooth on the other side, setting fn = h̃n ∗ f for every n. This time,
fn → f uniformly (473Ed), so

∫
Rr fdζ = limn→∞

∫
Rr fndζ. On the other hand, if f is M -Lipschitz,

grad fn = h̃n ∗ grad f converges µ-a.e. to grad f , and ‖ grad fn‖∞ is at most M for every n; also there is a
bounded set outside which all the fn and grad fn are zero, and ‖ gradWζ‖ is bounded. So∫

Rr
grad f . gradWζdµ = limn→∞

∫
Rr

grad fn . gradWζdµ.

Applying (i) to each fn and taking the limit, we get the equality we seek.

(e)(i) There is a compact set L ⊆ K +B(0, ǫ2 ) such that K ⊆ intL and capL ≤ capK + ǫ (479Ed). Let

n ∈ N be such that
1

n+1
≤ ǫ

2
and K + B(0, 1

n+1 ) ⊆ L. Set h = λL ∗ h̃n, where h̃n is the function of 473E,

as before; let ζ = hµ be the corresponding indefinite-integral measure over µ. Because h̃n is zero outside
B(0, 1

n+1 ) and the support of λL is included in L, the support of ζ is included in L+B(0, 1
n+1 ) ⊆ K+B(0, ǫ).

(ii) By 444Pa, we have

Wζ = ζ ∗ kr−2 = (hµ) ∗ kr−2 = h ∗ kr−2
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where kr−2 is the Riesz kernel (479G). Now Wζ = W̃L ∗ h̃n. PPP For m ∈ N, set fm = kr−2 × χB(0,m), so
that fm is µ-integrable. Observe that

W̃L(x) =

∫

Rr

kr−2(x− y)λL(dy) =

∫

Rr

lim
m→∞

fm(x− y)λL(dy)

= lim
m→∞

∫

Rr

fm(x− y)λL(dy) = lim
m→∞

(λL ∗ fm)(x)

for each x; moreover, because 〈fm〉m∈N is non-decreasing, so is 〈λL ∗ fm〉m∈N. For each m,

h ∗ fm = (hµ) ∗ fm = (λL ∗ h̃n)µ ∗ fm = (λL ∗ h̃nµ) ∗ fm
(444K)

= λL ∗ (h̃nµ ∗ fm)

(444Ic)

= λL ∗ (h̃n ∗ fm) = λL ∗ (fm ∗ h̃n) = λL ∗ (fmµ ∗ h̃n)

= (λL ∗ fmµ) ∗ h̃n = (λL ∗ fm)µ ∗ h̃n = (λL ∗ fm) ∗ h̃n.

Now, for each x,

Wζ(x) =

∫

Rr

h(x− y)kr−2(y)µ(dy) = lim
m→∞

∫

Rr

h(x− y)fm(y)µ(dy)

= lim
m→∞

(h ∗ fm)(x) = lim
m→∞

((λL ∗ fm) ∗ h̃n)(x)

= lim
m→∞

∫

Rr

(λL ∗ fm)(y)h̃n(x− y)µ(dy)

=

∫

Rr

lim
m→∞

(λL ∗ fm)(y)h̃n(x− y)µ(dy)

=

∫

Rr

W̃L(y)h̃n(x− y)µ(dy) = (W̃L ∗ h̃n)(x). QQQ

(iii) Since W̃L(x) = 1 whenever x ∈ intL (479D(b-iii)), and x + y ∈ intL whenever x ∈ K and

h̃n(y) 6= 0, Wζ(x) = 1 for every x ∈ K. Because both W̃L and h̃n have compact support, so does Wζ ;

because h̃n is smooth, so is Wζ (473De).

(iv) Now

∫

Rr

‖ gradWζ‖2dµ = −
∫

Rr

Wζ ×∇2Wζ dµ

((b) above)

= r(r − 2)βr

∫

Rr

Wζ dζ

((c) above)

= r(r − 2)βr energy(ζ) ≤ r(r − 2)βrζR
r

because ‖Wζ‖∞ ≤ ‖W̃L‖∞‖h̃n‖1 ≤ 1.

(v) Finally,

ζRr = (hµ)Rr = (λL ∗ h̃nµ)Rr = λLR
r · (h̃nµ)Rr

= λLR
r = capL ≤ ǫ+ capK.
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*479U Theorem Let K ⊆ Rr be compact, and let Φ be the set of Lipschitz functions g : Rr → R such
that g(x) ≥ 1 for every x ∈ K and lim‖x‖→∞ g(x) = 0. Then

r(r − 2)βr capK = inf{
∫

Rr

‖ grad g‖2dµ : g ∈ Φ is smooth and has compact support}

= inf{
∫

Rr

‖ grad g‖2dµ : g ∈ Φ}.

proof (a) By 479Te,

inf{
∫
Rr

‖ grad g‖2dµ : g ∈ Φ is smooth and has compact support} ≤ r(r − 2)βr capK.

(b) Now suppose that g ∈ Φ is a smooth function with compact support. Then r(r − 2)βr capK ≤∫
Rr ‖ grad g‖2dµ. PPP Take any ǫ ∈ ]0, 1[. Then there is a δ > 0 such that g(x) ≥ 1−ǫ for every x ∈ K+B(0, δ).

By 479Te, there is a Radon measure ζ on Rr, with support included in K+B(0, δ), such that Wζ is smooth
and has compact support, Wζ ≥ χK, ζRr ≤ capK + ǫ and∫

Rr
‖ gradWζ‖2dµ = r(r − 2)βr energy(ζ) ≤ r(r − 2)βrζR

r.

In this case,

∫

Rr

grad g . gradWζdµ = r(r − 2)βr

∫

Rr

g dζ

(479Td)

≥ (1 − ǫ)r(r − 2)βrζR
r ≥ (1 − ǫ)

∫

Rr

‖ gradWζ‖2.

Setting v = (1 − ǫ) gradWζ , we have ∫
Rr
v . grad gdµ ≥

∫
Rr

‖v‖2dµ.

But this means that

∫

Rr

‖ grad g‖2dµ = 2

∫

Rr

v . grad gdµ−
∫

Rr

‖v‖2dµ+

∫

Rr

‖v − grad g‖2dµ

≥
∫

Rr

‖v‖2dµ ≥ (1 − ǫ)2
∫

Rr

‖ gradWζ‖2dµ

= (1 − ǫ)2r(r − 2)βr

∫

Rr

Wζdζ ≥ (1 − ǫ)2r(r − 2)βr

∫

Rr

W̃Kdζ

(because Wζ ≥ W̃K on K, so Wζ ≥ W̃K everywhere, by 479Fg)

= (1 − ǫ)2r(r − 2)βr

∫

Rr

WζdλK

(479J(b-i))

≥ (1 − ǫ)2r(r − 2)βr

∫

Rr

W̃KdλK = (1 − ǫ)2r(r − 2)βr capK.

As ǫ is arbitrary, r(r − 2)βr capK ≤
∫
Rr ‖ grad g‖2dµ. QQQ

(c) If g ∈ Φ has compact support, then
∫
Rr ‖ grad g‖2dµ ≥ r(r − 2)βr capK. PPP Let R > 0 be such

that g is zero outside B(0, R). Let M ≥ 0 be such that g is M -Lipschitz; then ‖ grad g(x)‖ ≤ M for every

x ∈ dom grad g (473Cc). Take any ǫ > 0. As in 479T, let 〈h̃n〉n∈N be the smoothing sequence of 473E. For

n ∈ N, set gn = (1 + ǫ)h̃n ∗ g. Then grad gn = (1 + ǫ)h̃n ∗ grad g (473Dd) and ‖ grad gn‖∞ ≤ M(1 + ǫ)
(473Da). In the limit, (1 + ǫ) grad g =a.e. limn→∞ grad gn (473Ee).

There is an m ∈ N such that (1 + ǫ)g(x) ≥ 1 for every x ∈ K +B(0, 1
m+1 ); now if n ≥ m,
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gn(x) ≥ (1 + ǫ) inf‖y‖≤1/(n+1) g(x− y) ≥ 1

for every x ∈ K. So

(1 + ǫ)2
∫

Rr

‖ grad g‖2dµ = (1 + ǫ)2
∫

B(0,R+1)

‖ grad g‖2dµ

= lim
n→∞

∫

B(0,R+1)

‖ grad gn‖2dµ

(by the dominated convergence theorem)

= lim
n→∞

∫

Rr

‖ grad gn‖2dµ

(because every gn is zero outside B(0, R+ 1))

≥ r(r − 2)βr capK

(applying (b) to gn for n ≥ m). As ǫ is arbitrary, r(r − 2)βr capK ≤
∫
Rr ‖ grad g‖2dµ. QQQ

(d) If g ∈ Φ, then
∫
Rr ‖ grad g‖2dµ ≥ r(r− 2)βr capK. PPP Let ǫ > 0. Set g1(x) = max(0, (1 + ǫ)g(x) − ǫ)

for x ∈ Rr. Then g1 ∈ Φ has compact support, and ‖g1(x)− g1(y)‖ ≤ (1 + ǫ)‖g(x)− g(y)‖ for all x, y ∈ Rr,
so ‖ grad g1(x)‖ ≤ (1 + ǫ)‖ grad g(x)‖ whenever both gradients are defined. Accordingly

(1 + ǫ)2
∫
Rr

‖ grad g‖2dµ ≥
∫
Rr

‖ grad g1‖2dµ ≥ r(r − 2)βr capK

by (c). As ǫ is arbitrary, we have the result. QQQ

(e) Putting (a) and (d) together, the theorem is proved.

*479V We are ready for another theorem along the lines of 476H, this time relating capacity and
Lebesgue measure.

Theorem Let D ⊆ Rr be a set of finite outer Lebesgue measure, and BD the closed ball with centre 0 and
the same outer measure as D. Then the Choquet-Newton capacity c(D) of D is at least capBD.

proof (a) We need an elementary fact about gradients. Suppose that f , g : Rr → R and x ∈ Rr are such
that grad f , grad g, grad(f ∨g) and grad(f ∧g) are all defined at x. Then {grad(f ∨g)(x), grad(f ∧g)(x)} =
{grad f(x), grad g(x)}. PPP (i) If f(x) > g(x) then (because f and g are both continuous at x) we have
grad(f ∨ g)(x) = grad f(x), grad(f ∧ g)(x) = grad g(x) and the result is immediate. (ii) The same argument
applies if f(x) < g(x). (iii) If f(x) = g(x), consider h = |f−g| = (f ∨g)−(f ∧g). Then gradh(x) is defined,
and h(x) = 0 ≤ h(y) for every y. So all the partial derivatives of h have to be zero at x, and gradh(x) = 0,

that is, limy→x
1

‖y−x‖h(y) = 0. It follows at once that grad f(x) = grad g(x), and therefore both are equal

to grad(f ∨ g)(x) and grad(f ∧ g)(x). So again we have the result. QQQ

(b) Now for a further clause to add to Lemma 476E. Suppose that e ∈ Sr−1 = ∂B(0, 1) and α ∈ R; let
R = Reα be the reflection in the plane {x : x .e = α}, and ψ = ψeα : PRr → PRr the partial-reflection
operator of 476D-476E, that is,

ψ(D) = (W ∩ (D ∪R[D])) ∪ (W ′ ∩D ∩R[D])

for D ⊆ Rr, where W = {x : x .e ≥ α} and W ′ = {x : x .e ≤ α}. Then c(ψ(D)) ≤ c(D) for every D ⊆ Rr.

PPP(i) Suppose first that D = K is compact. Take any γ > r(r−2)βr capK. By 479U, there is a Lipschitz
function f : Rr → R such that f(x) ≥ 1 for every x ∈ K, lim‖x‖→∞ f(x) = 0 and

∫
Rr ‖ grad f‖2dµ ≤ γ. Set

g = fR. Of course g is Lipschitz and
∫
Rr ‖ grad g‖2dµ =

∫
Rr ‖ grad f‖2dµ. Now f ∨ g and f ∧ g are also

Lipschitz, so for almost every x ∈ Rr all the gradients grad f(x), grad g(x), grad(f ∨g)(x) and grad(f ∧g)(x)
are defined; by (a), ‖ grad f‖2 + ‖ grad g‖2 =a.e. ‖ grad(f ∨ g)‖2 + ‖ grad(f ∧ g)‖2.

Now consider the function h defined by saying that

h(x) = (f ∨ g)(x) if x ∈W,

= (f ∧ g)(x) if x ∈W ′.
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h is Lipschitz and lim‖x‖→∞ h(x) = 0; also h(x) ≥ 1 for every x ∈ ψ(K). For x ∈W \W ′, h(x) = (f ∨ g)(x)
and h(Rx) = (f ∧ g)(x), so {gradh(x), grad(hR)(x)} = {grad(f ∨ g)(x), grad(f ∧ g)(x)} if the gradients
are defined; for x ∈ W ′ \W , h(x) = (f ∧ g)(x) and h(Rx) = (f ∨ g)(x), so {gradh(x), grad(hR)(x)} =
{grad(f ∨ g)(x), grad(f ∧ g)(x)} if the gradients are defined. Accordingly

‖ gradh‖2 + ‖ grad(hR)‖2 =a.e. ‖ grad(f ∨ g)‖2 + ‖ grad(f ∧ g)‖2

=a.e. ‖ grad f‖2 + ‖ grad g‖2.
By 479U again,

r(r − 2)βr cap(ψ(K)) ≤
∫

Rr

‖ gradh‖2dµ =
1

2

∫

Rr

(‖ gradh‖2 + ‖ grad(hR)‖2)dµ

=
1

2

∫

Rr

(‖ grad f‖2 + ‖ grad g‖2)dµ ≤ γ.

As γ is arbitrary, cap(ψ(K)) ≤ capK.

(ii) Now suppose that D = G is open. Then there is a non-decreasing sequence 〈Kn〉n∈N of compact
sets with union G, and 〈ψ(Kn)〉n∈N is a non-decreasing sequence with union ψ(G). So

c(ψ(G)) = supn∈N cap(ψ(Kn)) ≤ supn∈N capKn = c(G).

(iii) Finally, for arbitrary D ⊆ Rr, take any γ > c(D). Then there is an open set G such that D ⊆ G
and c(G) ≤ γ (because c is outer regular, see 479E(d-i)). In this case, ψ(D) ⊆ ψ(G), so

c(ψ(D)) ≤ c(ψ(G)) ≤ c(G) ≤ γ.

As γ is arbitrary, c(ψ(D)) ≤ c(D) and we are done. QQQ

(c) Now suppose that E is a bounded Lebesgue measurable subset of Rr with finite perimeter.

(i) Let M ≥ 0 be such that E ⊆ B(0,M). Consider

E = {F : F ⊆ B(0,M) is Lebesgue measurable,

µF = µE, perF ≤ perE, c(F ) ≤ c(E)}.
Then E is compact for the topology Tm of convergence in measure as described in 474T. PPP By 474T,

E1 = {F : F is Lebesgue measurable, perF ≤ perE}
is compact. So if 〈Fn〉n∈N is any sequence in E , it has a subsequence 〈F ′

n〉n∈N which is Tm-convergent
to F ∈ E1 say (4A2Le; recall that, as noted in the proof of 474T, Tm is pseudometrizable). Taking a
further subsequence if necessary, we can suppose that µ((F△F ′

n) ∩ B(0,M)) ≤ 2−n for every n ∈ N.
Set F ′ =

⋃
m∈N

⋂
n≥m F

′
n. Because every F ′

n is included in B(0,M), F ′ is a Tm-limit of 〈F ′
n〉n∈N. So

µF ′ = limn→∞ µF ′
n = µE, and

c(F ′) = limm→∞ c(
⋂
n≥m F

′
n) ≤ c(E).

Finally, F ′△F is negligible, so ∂*F ′ = ∂*F and per(F ′) = perF ≤ perE. Thus F ′ ∈ E . As 〈Fn〉n∈N is
arbitrary, E is relatively compact, by 4A2Le in the opposite direction. QQQ

(ii) Because B(0,M) is bounded, the function F 7→
∫
F
‖x‖µ(dx) : E → [0,∞[ is continuous, and must

attain its infimum at H say. Let BE be the ball with centre 0 and the same measure as E. Then BE ⊆ cl*H.
PPP (Compare part (b) of the proof of 476H.) ??? Otherwise, take z ∈ BE \ cl*H. Then

limδ>0
µ(B(z,δ)\H)

µB(z,δ)
= 1, limδ>0

µ(B(z,δ)\BE)

µB(z,δ)
≤ 1

2
,

so there is a δ > 0 such that µ(B(z, δ) \BE) < µ(B(z, δ) \H) and µ(BE \H) > 0. Because

µ(cl*H) = µH = µE = µBE ,

cl*H \ BE is also non-negligible. Take x1 ∈ cl*H \ BE and x0 ∈ BE \ cl*H. Then δ0 = ‖x1‖ − ‖x0‖ is
greater than 0. Since
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lim supδ↓0
µ(H∩B(x1,δ))

µB(x1,δ)
> 0 = limδ↓0

µ(H∩B(x0,δ))

µB(x0,δ)
,

there is a δ ∈
]
0, 12δ0

[
such that µ(H∩B(x1, δ)) > µ(H∩B(x0, δ)). Now let e be the unit vector

1

‖x0−x1‖
(x0−

x1), and set α = e . 12 (x0 + x1). Consider the reflection R = Reα and the operator ψ = ψeα; set H1 = ψ(H)
and let φ = φH1

: H → H1 be the function of 476E. As α < 0, ‖φ(x)‖ ≤ ‖x‖ for every x ∈ H; moreover,
R[B(x1, δ)] = B(x0, δ), so

{x : ‖φ(x)‖ < ‖x‖} ⊇ {x : x ∈ B(x1, δ) ∩H, Rx /∈ H}
is not negligible. So

∫
H1

‖x‖µ(dx) <
∫
H
‖x‖µ(dx). On the other hand, we surely have H1 ⊆ B(0,M),

µH1 = µH = µE and perH1 ≤ perH ≤ perE (476Ee); and, finally, c(H1) ≤ c(H) ≤ c(E), by (b) of this
proof. Thus H1 ∈ E and the functional F 7→

∫
F
‖x‖µ(dx) is not minimized at H. XXXQQQ

(iii) Accordingly

capBE ≤ c(cl*H) ≤ c(H)

(479P(c-vi))

≤ c(E).

(d) Thus capBE ≤ c(E) whenever E ⊆ Rr is Lebesgue measurable, bounded and has finite perimeter.
Consequently capBK ≤ capK for every compact set K ⊆ Rr. PPP If ǫ > 0, there is an open set G ⊇ K such
that c(G) ≤ capK + ǫ. Now there is a set E, a finite union of balls, such that K ⊆ E ⊆ G. In this case, E
has finite perimeter and is bounded, while of course BE ⊇ BK . So

capBK ≤ capBE ≤ c(E) ≤ c(G) ≤ capK + ǫ.

As ǫ is arbitrary, capBK ≤ capK. QQQ
It follows that capBE ≤ c(E) for every measurable set E ⊆ Rr of finite measure. PPP If K ⊆ E is compact,

then capBK ≤ capK ≤ c(E). But as µE = sup{µK : K ⊆ E is compact}, diamBE = sup{diamBK : K ⊆
E is compact}; because capacity is a continuous function of radius (479Da),

capBE) = sup{capBK : K ⊆ E is compact}
≤ sup{capK : K ⊆ E is compact } ≤ c(E). QQQ

Finally, if D is any set of finite outer measure, there is a Gδ set E ⊇ D such that c(E) = c(D) and
µE = µ∗D, so that

capBD = capBE ≤ c(E) = c(D),

and we have the general result claimed.

*479W I conclude with an alternative representation of Choquet-Newton capacity c in terms of a
measure on the space of closed subsets of Rr.

Theorem Let C+ be the family of non-empty closed subsets of Rr, with its Fell topology (4A2T). Then
there is a unique Radon measure θ on C+ such that θ∗{C : C ∈ C+, D ∩ C 6= ∅} is the Choquet-Newton
capacity c(D) of D for every D ⊆ Rr.

proof (a) Recall that the Fell topology on C = C+ ∪ {∅} is compact (4A2T(b-iii)) and metrizable (4A2Tf),
so C+ is locally compact and Polish. For D ⊆ Rr, set ΨD = {C : C ∈ C+, C ∩ D 6= ∅}. Of course
Ψ(

⋃A) =
⋃
D∈A ΨD for every family A of subsets of Rr.

(b) Let Ω′ be the set of those ω ∈ Ω such that limt→∞ ‖ω(t)‖ = ∞; because r ≥ 3, Ω′ is conegligible in
Ω (478Md). If ω ∈ Ω′, then ω[ [0,∞[ ] is closed. For x ∈ Rr and ω ∈ Ω′, set hx(ω) = x + ω[ [0,∞[ ] ∈ C+.
Then hx : Ω′ → C+ is Borel measurable. PPP (α) If G ⊆ Rr is open, then

{ω : ω ∈ Ω′, hx(ω) ∩G 6= ∅} =
⋃
t≥0{ω : x+ ω(t) ∈ G}
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is relatively open in Ω′. (β) If K ⊆ Rr is compact,

{(ω, t) : x+ ω(t) ∈ K}
is closed in Ω× [0,∞[, so its projection {ω : x+ω[ [0,∞[ ]∩K 6= ∅} is Fσ, and {ω : ω ∈ Ω′, hx(ω)∩K = ∅} is
a Gδ set in Ω′. (γ) Because C+ is hereditarily Lindelöf, this is enough to prove that hx is Borel measurable
(4A3Db). QQQ

(c) Let T be the ring of subsets of C+ generated by sets of the form ΨE where E ⊆ Rr is bounded and
is either compact or open. Then we have an additive functional φ : T → [0,∞[ such that φ(ΨK) = capK
for every compact set K ⊆ Rr. PPP For x ∈ Rr let hx : Ω′ → C+ be as in (b). Then we have a corresponding
scaled Radon image measure φx = ‖x‖r−2(µW )Ω′h−1

x on C+ (418I), defined by setting φxH = ‖x‖r−2µW {ω :
x+ ω[ [0,∞[ ] ∈ H} whenever this is defined. If E ⊆ Rr is either compact or open, then

{ω : x+ ω[ [0,∞[ ] ∩ E 6= ∅}
is Fσ or open, respectively, so φx(ΨE) is defined; accordingly φxH is defined for every H ∈ T. If γ > 0,
E ⊆ B(0, γ) and ‖x‖ > γ, then

φ∗x(ΨE) ≤ φx(Ψ(B(0, γ))) = ‖x‖r−2 hp(B(0, γ) − x) = γr−2

(478Qc). So lim sup‖x‖→∞ φxH is finite for every H ∈ T. Take an ultrafilter F on Rr containing Rr \B(0, γ)

for every γ > 0; then φH = limx→F φxH is defined in [0,∞[ for every H ∈ T, and φ is additive. If E ⊆ Rr

is bounded and either compact or open, then

φ(ΨE) = limx→F ‖x‖r−2 hp(E − x) = c(E)

by 479B(ii). QQQ

(d) φ is inner regular with respect to the compact sets, in the sense that φH = sup{φL : L ∈ T is
compact, L ⊆ H} for every H ∈ T. PPP Note first that the set

H = {H : H ∈ T, φH = sup{φL : L ∈ T is compact, L ⊆ H}}
is a sublattice of T. Suppose that E, H ⊆ Rr are bounded sets which are either compact or open, and
ǫ > 0. Then there are a compact K ⊆ E and a bounded open G ⊇ H such that c(E) ≤ ǫ + capK and
c(G) ≤ ǫ+ c(H) (479E). Now ΨK is a closed subset of C included in C+, so is a compact subset of C+, while
ΨG is open; thus L = ΨK \ ΨG is a compact subset of ΨE \ ΨH, and of course L ∈ T. Now

φ(ΨE \ ΨH) ≤ φL+ φ(ΨE \ ΨK) + φ(ΨG \ ΨH)

= φL+ φ(ΨE) − φ(ΨK) + φ(ΨG) − φ(ΨH)

= φL+ c(E) − capK + c(G) − c(H) ≤ φL+ 2ǫ.

As ǫ is arbitrary, ΨE \ ΨH belongs to H.
Since any member of T is expressible as a finite union of finite intersections of sets of this kind, T ⊆ H,

as required. QQQ

(e) Let L be the family of compact subsets of C+. If L ∈ L, it is a closed subset of C not containing ∅, so
there must be a compact set K ⊆ Rr such that L ⊆ ΨK. Thus every member of L is covered by a member
of T, and we have a functional φ1 : L → [0,∞[ defined by setting φ1L = inf{φE : E ∈ T, L ⊆ E} for L ∈ L.

I seek to apply 413J. Of course ∅ ∈ L and L is closed under finite disjoint unions and countable intersec-
tions; moreover, if 〈Ln〉n∈N is a non-increasing sequence in L with empty intersection, one of the Ln must
be empty, so infn∈N φ1Ln = 0. Now turn to condition (α) of the theorem:

φ1L1 = φ1L0 + sup{φ1L : L ∈ L, L ⊆ L1 \ L0} whenever L0, L1 ∈ L and L0 ⊆ L1.

(i) If L0, L ∈ L are disjoint, then φ1(L0 ∪L) ≥ φ1L0 + φ1L. PPP The topology S of C+ is generated by
sets of the form ΨG, where G ⊆ Rr is open, and by sets of the form C+ \ ΨK, where K ⊆ Rr is compact.
It is therefore generated by

{ΨG \ ΨK : G ⊆ Rr is bounded and open, K ⊆ Rr is compact} ⊆ T.

So S ∩ T is a base for S and disjoint compact sets in C+ can be separated by members of T (4A2F(h-i));
let E0 ∈ T be such that L0 ⊆ E0 ⊆ C+ \ L. Now if E ∈ T and E ⊇ L0 ∪ L,
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φE = φ(E ∩ E0) + φ(E \ E0) ≥ φ1L0 + φ1L;

as E is arbitrary, φ1(L0 ∪ L) ≥ φ1L0 + φ1L. QQQ

(ii) If L0, L1 ∈ L, L0 ⊆ L1 and ǫ > 0, there is an L ∈ L such that L ⊆ L1 ∪ L0 and φ1L1 ≤
φ1L0 + φ1L + 3ǫ. PPP Let E0, E1 ∈ T be such that L0 ⊆ E0, L1 ⊆ E1 and φE0 ≤ φ1L0 + ǫ. By (d), there
is an L′ ∈ L ∩ T such that L′ ⊆ E1 \ E0 and φL′ ≥ φ(E1 \ E0) − ǫ. Set L = L′ ∩ L1. Then L ∈ L and
L ⊆ L1 \ L0. Let E ∈ T be such that L ⊆ E and φE ≤ φ1L+ ǫ. Then L1 ⊆ E0 ∪ E ∪ ((E1 \ E0) \ L′), so

φ1L1 ≤ φE0 + φE + φ(E1 \ E0) − φL′ ≤ φ1L1 + φL+ 3ǫ,

as required. QQQ
Putting this together with (i), the final condition of 413J is satisfied.

(f) We therefore have a complete locally determined measure θ on C+ extending φ1 and inner regular
with respect to L. For E ⊆ C+, θ measures E iff θ measures E∩L for every L ∈ L (412Ja); so θ measures all
closed subsets of C+, and is a topological measure. Of course θ is inner regular with respect to the compact
sets. If C ∈ C+, there is a bounded open set G ⊆ Rr meeting C, and now ΨG is an open set containing C
and included in the compact set ΨG; accordingly

θ(ΨG) ≤ θ(ΨG) = φ1(ΨG) = φ(ΨG) = capG

is finite. Thus θ is locally finite and is a Radon measure.

(g) As in (f), we have

θ(ΨK) = φ1(ΨK) = φ(ΨK) = capK

for every compact K ⊆ Rr. Next, θ(ΨG) = c(G) for every open G ⊆ Rr. PPP If G is bounded,

θ(ΨG) = sup{θL : L ⊆ ΨG is compact}
= sup{φ1L : L ⊆ ΨG is compact} ≤ φ(ΨG) = c(G)

= sup{capK : K ⊆ G is compact}
= sup{θ(ΨK) : K ⊆ G is compact} ≤ θ(ΨG).

If G is unbounded, then there is a non-decreasing sequence 〈Gn〉n∈N of bounded open sets with union G, so

θ(ΨG) = θ(
⋃
n∈N ΨGn) = supn∈N θ(ΨGn) = supn∈N c(Gn) = c(G). QQQ

(h) Now suppose that D ⊆ Rr is any bounded set. We have

θ∗(ΨD) ≤ inf{θ(ΨG) : G ⊇ D is open} = inf{c(G) : G ⊇ D is open} = c(D).

??? Suppose, if possible, that θ∗(ΨD) < c(D). Let G ⊇ D be a bounded open set. Then there is a compact
L ⊆ ΨG \ ΨD such that θL > θ(ΨG) − c(D). Set F =

⋃
C∈L C; then F is closed (4A2T(e-iii)) and disjoint

from D, so G \ F is open, D ⊆ G \ F and Ψ(G \ F ) is disjoint from L. But this means that

c(D) ≤ c(G \ F ) = θ(Ψ(G \ F )) ≤ θ(ΨG) − θL < c(D),

which is absurd. XXX So θ∗(ΨD) = c(D).
If D ⊆ Rr is any set, then it is expressible as the union of a non-decreasing sequence 〈Dn〉n∈N of bounded

sets, so

c(D) = limn→∞ c(Dn) = limn→∞ θ∗(ΨDn) = θ∗(
⋃
n∈N ΨDn) = θ∗(ΨD).

Thus θ has all the properties declared.

(i) To see that θ is unique, consider the base V for the topology of C+ consisting of sets of the form⋂
i∈I ΨGi \ ΨK where 〈Gi〉i∈I is a non-empty finite family of bounded open sets in Rr and K ⊆ Rr is

compact. The conditions that θ must satisfy determine its value on any set of the form Ψ(G∪K) = ΨG∪ΨK
where G ⊆ Rr is open and K ⊆ Rr is compact, and therefore determine its values on V. By 415H(iv), θ is
fixed by these.

479X Basic exercises (a) Let ζ be a Radon measure on Rr. Show that
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ζRr = limγ→∞
2

rβrγ2

∫
B(0,γ)

Wζdµ.

>>>(b)(i) Show directly from 479B-479C that Choquet-Newton capacity c is invariant under isometries of
Rr. (ii) Show that c(αD) = αr−2c(D) whenever α ≥ 0 and D ⊆ Rr.

(c) Suppose that ζ1 and ζ2 are totally finite Radon measures on Rr. Show that Wζ1∗ζ2 = ζ1 ∗Wζ2 =
ζ2 ∗Wζ1 .

(d) Show that there is a closed set F ⊆ Rr such that hp(F ) < 1 but c(F ) = ∞. (Hint : look at the proof
of 479Ma.)

(e) Let K ⊆ Rr be compact. Show that int{x : W̃K(x) < 1} is the unbounded component of Rr\suppλK .

(Hint : setting L = suppλK , show that cap(suppλK) = capK so that W̃K = W̃L.)

(f) Let A ⊆ Rr be an analytic set such that c(A) <∞. Show that W̃A = sup{Wζ : ζ is a Radon measure
on Rr, A is ζ-conegligible, Wζ ≤ 1}.

>>>(g) Show that there is a universally negligible set D ⊆ B(0, 1) such that c(D) = 1. (Hint : use the ideas
of 439F to find D such that {‖x‖ : x ∈ D} is universally negligible and x 7→ ‖x‖ : D → [0, 1] is injective, but

ν∗{ x

‖x‖ : x ∈ D, ‖x‖ ≥ 1 − δ} = rβr for every δ ∈ ]0, 1[; compute c(D) with the aid of 479D, 479P(c-iii-α)

and 479P(c-vii).)

(h) Suppose that D ⊆ D′ ⊆ Rr and c(D′) < ∞. Show that
∫
fdλD ≤

∫
fdλD′ for every lower semi-

continuous superharmonic f : Rr → [0,∞].

(i) Let D ⊆ Rr be a bounded set. Show that c(D) = lim‖x‖→∞ ‖x‖r−2 hp∗(D − x). (Hint : 477Id.)

(j) Let T : Rr → Rr be an isometry, and D ⊆ Rr a set such that c(D) < ∞. Show that W̃T [D]Tx) =

W̃D(x) for every x ∈ Rr and that λT [D] is the image measure λDT
−1.

(k) Let D ⊆ Rr be a set such that c(D) < ∞, and α > 0. Show that W̃αD(x) = W̃D( 1
αx) for every

x ∈ Rr, and that λαD = αr−2λDT
−1, where T (x) = αx for x ∈ Rr.

(l) Show that c(D) = inf{ζRr : ζ is a Radon measure on Rr, Wζ ≥ χD} = inf{energy(ζ) : ζ is a Radon
measure on Rr, Wζ ≥ χD} for any D ⊆ Rr.

(m) Let K ⊆ Rr be a compact set, with complement G, and Φ the set of continuous harmonic functions

f : G → [0, 1] such that lim‖x‖→∞ f(x) = 0. Show that W̃K↾G is the greatest element of Φ. (Hint : 479Pb,
478Pc.)

(n)(i) Show that if G is a convex open set then hp(G− x) = 1 for every x ∈ G. (ii) Show that if D ⊆ Rr

is a convex bounded set with non-empty interior, then W̃D is continuous.

(o) Show that if D, D′ ⊆ Rr and c(D ∪D′) <∞, then W̃D∩D′ + W̃D∪D′ ≤ W̃D + W̃D′ .

(p) Let D ⊆ Rr be a set such that c(D) <∞, and set D̃ = {x : W̃D(x) = 1}. Show that (i) D\D̃ is polar

(ii) λD̃ = λD. (Hint : reduce to the case in which D = A is analytic; use 479Fg to show that W̃Ã ≤ W̃A; use
479J(b-v).)

(q) Let A be the set of subsets of Rr with finite Choquet-Newton capacity, and ρ the pseudometric
(D,D′) 7→ 2c(D ∪D′) − c(D) − c(D′) (432Xj). (i) Show that ‖UλD

− UλD′ ‖22 ≤ 2crρ(D,D′) for D, D′ ∈ A.
(ii) Show that ρ(D,D′) = 0 iff λD = λD′ .

(r) Suppose that D ⊆ Rr. Show that the following are equiveridical: (i) D is polar; (ii) there is some
x ∈ Rr such that hp(D − x) = 0; (iii) hp((D \ {x}) − x) = 0 for every x ∈ Rr.
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(s) Suppose that 〈Dn〉n∈N is a non-increasing sequence of subsets of Rr such that infn∈N c(Dn) is finite and⋂
n∈NDn =

⋂
n∈NDn = F say. Show that 〈λDn

〉n∈N → λD for the narrow topology, and that 〈c(Dn)〉n∈N →
c(F ). (Compare 479Ye.)

(t) For ω ∈ Ω set τ(ω) = sup{t : ‖ω(t)‖ ≤ 1}. (i) Show that τ : Ω → [0,∞] is measurable. (ii) Show that
if r ≤ 2 then τ = ∞ a.e. (iii) Show that if r ≥ 3 then τ is not a stopping time. (iv) Show that if 3 ≤ r ≤ 4
then τ is finite a.e., but has infinite expectation. (v) Show that if r ≥ 5 then τ has finite expectation. (Hint :
show that if r ≥ 2 then

Pr(τ ≥ t) =
1

(
√
2π)r

∫
e−‖x‖2/2 1

max(1,(
√
t)r−2‖x‖r−2)

dx.)

479Y Further exercises (a)(i) Show that there is an open set G ⊆ B(0, 1), dense in B(0, 1), such that
c(G) < 1. (ii) Show that cap(suppλG) = 1.

(b) In 479G, suppose that 0 < α < r, 0 < β < r and α+ β > r. Show that

kα+β−r =
Γ(r − α+β

2 )Γ(α2 )Γ(β2 )

(
√
π)rΓ(α+β−r2 )Γ( r−α2 )Γ( r−β2 )

kα ∗ kβ .

(c) Let A ⊆ Rr be an analytic set with c(A) < ∞. (i) Show that for every γ > 0 there is a Radon

measure ζγ on Rr such that 〈 1

rβrγ
µ
(A)
x 〉x∈∂B(0,γ) is a disintegration of ζγ over the subspace measure ν∂B(0,γ).

(ii) Show that limγ→∞ ζγ = λA for the total variation metric on M+
R (Rr).

(d) Set c′(D) = sup{ζ∗D : ζ is a Radon measure on Rr such that Wζ ≤ 1 everywhere} for D ⊆ Rr. Show
that c′ is a Choquet capacity on Rr, extending Newtonian capacity for compact sets, which is different from
Choquet-Newton capacity.

(e) Let 〈Dn〉n∈N be a non-increasing sequence of subsets of Rr with finite Choquet-Newton capacity. For

each n ∈ N, set D̃n = {x : W̃Dn
(x) = 1}, and set A =

⋂
n∈N D̃n. Show that c(A) = infn∈N c(Dn) and that

λA is the limit of 〈λDn
〉n∈N for the narrow topology on M+

R (Rr).

(f) Let A, ρ be as in 479Xq, and let (Ā, ρ̄) be the corresponding metric space, identifying members of A
which are zero distance apart. Show that Ā is complete.

(g) Let E ⊆ Rr be a set of finite Lebesgue measure, and BE the ball with centre 0 and the same measure
as E. Show that energy(µ E) ≤ energy(µ BE).

(h) Prove 479V from 479U and 476Yb.

(i)(i) Show that c is alternating of all orders, that is,
∑
J⊆I,#(J) is even c(D ∪⋃

i∈J Di) ≤
∑
J⊆I,#(J) is odd c(D ∪⋃

i∈J Di)

whenever I is a non-empty finite set, 〈Di〉i∈I is a family of subsets of Rr and D is another subset of Rr.
(Cf. 132Yf.) (ii) Show that if c(D ∪⋃

i∈I Di) <∞, then
∑
J⊆I,#(J) is even W̃D∪⋃

i∈J Di
≤ ∑

J⊆I,#(J) is odd W̃D∪⋃
i∈J Di

.

(j) Let us say that if X is a Polish space, a set A ⊆ X is projectively universally measurable if
W [A] is universally measurable whenever Y is a Polish space and W ⊆ X × Y is analytic. Show that we
can replace the word ‘analytic’ by the phrase ‘projectively universally measurable’ in all the theorems of
this section.

(k) Suppose that A ⊆ Rr is analytic and non-empty, and x ∈ Rr is such that ρ(x,A) = δ > 0. Show that

energy(µ
(A)
x ) ≤ 1

δr−2
.
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(l) Show that if D ⊆ Rr and c(D) <∞, then c({x : W̃D(x) ≥ γ}) ≤ 1

γ
c(D) for every γ > 0.

(m) For a set D ⊆ Rr with c(D) < ∞, set clcapD = {x : W̃D(x) = 1}. Show that c(D) = c(clcapD) =
c(D ∪ clcapD).

479 Notes and comments Newtonian potential is another of the great concepts of mathematics, and is
one of the points at which physical problems and intuitions have stimulated and illuminated the development
of analysis. As with all the best ideas of mathematics, there is more than one route to it, and any proper
understanding of it must include a matching of the different approaches. In the exposition here I start with
a description of equilibrium measures in terms of harmonic measures (479B), themselves defined in 478P in
terms of Brownian motion. We are led quickly to definitions of capacity and equilibrium potential (479C),
with some elementary properties (479D). Moreover, some very striking further results (479E, 479W) are
already accessible.

However we are still rather far from the original physical concept of ‘capacity’ of a conductor. If you have

ever studied electrostatics, the ideas here may recall some basic physical principles. The kernel x 7→ 1

‖x‖r−2

represents the potential energy field of a point mass or charge; the potential Wζ represents the field due to
a mass or charge with distribution ζ. The capacity of a set K is the largest charge that can be put on K
without raising the potential of any point above 1 (479Na), and the infimum of the charges which raise the
potential of every point of K to 1 (479P(c-v)). The result that λK is supported by ∂K (479B(i)) corresponds
to the principle that the charge on a conductor always collects on the surface of the conductor; 479D(b-iii)
corresponds to the principle that there is no electric field inside a conductor.

At the same time, the equilibrium measure is supposed to be the (unique) distribution of the charge,
which on physical grounds ought to be the distribution with least energy, as in 479K. To reach these ideas,
it seems that we need to know various non-trivial facts from classical analysis, which I set out in 479G-479I.
The deepest of these is in 479Ib: for the Riesz kernels kα, the convolution ζ ∗kα determines the totally finite
Radon measure ζ. I do not know of any way of establishing this except through the Fourier analysis of 479H
and the detailed calculations of 479G and 479Ia.

The ideas here are connected in so many ways that there is no clear flow to the logic, and we are more
than usually in danger of using circular arguments. In my style of exposition, this complexity manifests
itself in an exceptional density of detailed back-references; I hope that these will enable you to check the
proofs effectively. On a larger scale, the laborious zigzag progression from the original notion of capacity of
compact sets, as in 479K and 479U, through bounded analytic sets (479B, 479E) and general analytic sets
(479M, 479N) to arbitrary sets (479P), displays a choice of path to which there are surely many alternatives.

Of course we cannot expect all the properties of Newtonian capacity to have recognizable forms in such
a general context as that of 479P (see 479Xg, which shows that we cannot hope to replicate the ideas of
479Na-479Nc), but the elementary results if 479D mostly extend (479Pc). More importantly, we have a
quite new characterization of equilibrium potentials (479Pb). With these techniques available, we can learn
a good deal more about Brownian motion. 479R is a curious and striking fact to go with 477K, 477L and
478M. It is not a surprise that capacity and Hausdorff dimension should be linked, but it is notable that the
phase change is at dimension r− 2 (479Q); this goes naturally with 479P(c-vii). I know of no such dramatic
difference between four and five dimensions, but for some purposes 479Xt marks a significant change.

My treatment is an unconventional one, so perhaps I should indicate points where you should expect other
authors to diverge from it. While the notions of Newtonian capacity, equilibrium measure and equilibrium
potential are solidly established for compact sets in Rr (at least up to scalar factors, and for r ≥ 3), the
extension to general bounded analytic sets is not I think standard. (I try to signal this by writing c(A)
in place of capA, after 479E, for sets which are not guaranteed to be compact, even when the definition
in 479C(a-i) is applicable. The fact that this step gives very little extra trouble is a demonstration of the
power of the Brownian-motion approach.) The further extension of Newtonian capacity, defined on compact
sets, to a Choquet capacity, defined on every subset of Rr (479Ed), is surely not standard, which is why
I give the extension a different name. (While Choquet certainly considered the capacity which I here call
‘Choquet-Newton capacity’, I fear that the phrase has no real historical justification; but I hope it will
convey some of the right ideas.) You may have noticed that I give essentially nothing concerning differential
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equations, which have traditionally been one of the central concerns of potential theory; there are hints in
479Xm and 479T.

A weakness in the formulae of 479B is that they are not self-evidently translation-invariant. Of course it
is easy to show that in fact we have an isometry-invariant construction (479Xb), and this can also be seen
from the descriptions of capacity and equilibrium potentials in 479N and 479Pb. Because the capacity c is
countably subadditive, it is easy to build a dense open subset G of Rr such that c(G) is finite (see 479Ya),

and for such a set we cannot ask that λG should be describable as a limit of ‖x‖r−2µ
(G)
x as ‖x‖ → ∞. But

if we start from 479B(i) rather than 479B(ii), we do have an averaged form, with

λA = limγ→∞
1

rβrγ

∫
∂B(0,γ)

µ
(A)
x ν(dx)

whenever A is an analytic set and c(A) <∞ (479Yc; see also 479J(b-vi) and 479Xa).

The factor (
√

2π)r in 479H repeats that of 283Wg13. The appearance of
√

2π in 283M, but not 445G, is
proof that the conventions of Chapter 28 are not reconcilable with those of §445.

In 479O I describe one of the important notions of ‘small’ set in Euclidean space, to go with ‘negligible’
and ‘meager’. I have no space to deal with it properly here, but the applications in the proofs of 479P, 479R
and 479S will give an idea of its uses; another is in 479Xm. As another example of the logical complexity of
the patterns here, consider the problem of either proving 479Pb without 479O, or extending 479O to cover
479Xr without passing through a version of 479P.

Quite a lot of the work here is caused by the need to accommodate discontinuous equilibrium potentials
(479S). This has been an important theme in general potential theory. 479Pb shows that the problem is
essentially geometric: if a compact set K has a sufficiently narrow spike at e, then a Brownian path starting
at e can easily fail to enter K again.

As I have written the theory out, 479T-479U are rather separate from the rest, being closer in spirit
to the work of §§473-475. They explore some more of the basic principles of potential theory. Note, in
particular, the formula of 479Ta, which amounts to saying that (under the right conditions) a function g is
a multiple of kr−2 ∗∇2g; of course this can be thought of as a method of finding a particular solution of the
equation ∇2g = f ; equally, it gives an approach to the problem of expressing a given g as a potential Wζ .
From 479Tb and 479Tc we see that in the sense of distributional derivatives we can think of r(r − 2)βrζ
as representing the Laplacian −∇2Wζ ; recall that as Wζ is superharmonic (479Fb), we expect ∇2Wζ to be
negative (478E).

I give a bit of space to 479V because it links the material here to that of §476, and this book is about such
linkages, and because it supports my thesis that capacity is a geometrical concept. 479W is characteristic
of Choquet capacities which are alternating of all orders (479Yi). I spell it out here because it calls on the
Fell topology, which is important elsewhere in this volume.

It is natural to ask which of the ideas here applying to analytic sets can be extended to wider classes.
If you look back to where analytic sets first entered the discussion, in the theory of hitting times (455M),
you will see that we needed a class of universally measurable sets which would be invariant under various
operations, notably projections (479Yj). In Volume 5 we shall meet axiom systems in which there are various
interesting possibilities.

This section is firmly directed at Euclidean space of three or more dimensions. The harmonic and Fourier
analysis of 479G-479I applies unchanged to dimensions 1 and 2; so does 479Tb. On the line, Brownian hitting
probabilities are trivial; in the plane, they are very different from hitting probabilities in higher dimensions,
but still of considerable interest. Theorems 479B, 479E and 479W still work, but ‘capacity’, if defined by
the formulation of 479Ca, is bounded by 1. The geometric nature of the results changes dramatically, and
479I cannot be applied in the same way, since we no longer have 0 < r − 2.

Version of 16.2.10

Concordance

13Formerly 283Wj.
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I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this chapter, and which have since been changed.

479Xe Exercise 479Xe on Choquet-Newton capacity, referred to in the 2008 edition of Volume 5, is now
479Xi.
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