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Chapter 46

Pointwise compact sets of measurable functions

This chapter collects results inspired by problems in functional analysis. §§461 and 466 look directly at
measures on linear topological spaces. The primary applications are of course to Banach spaces, but as
usual we quickly find ourselves considering weak topologies. In §461 I look at ‘barycenters’, or centres of
mass, of probability measures, with the basic theorems on existence and location of barycenters of given
measures and the construction of measures with given barycenters. In §466 I examine topological measures
on linear spaces in terms of the classification developed in Chapter 41. A special class of normed spaces,
those with ‘Kadec norms’, is particularly important, and in §467 I sketch the theory of the most interesting
Kadec norms, the ‘locally uniformly rotund’ norms.

In the middle sections of the chapter, I give an account of the theory of pointwise compact sets of
measurable functions, as developed by A.Bellow, M.Talagrand and myself. The first step is to examine
pointwise compact sets of continuous functions (§462); these have been extensively studied because they
represent an effective tool for investigating weakly compact sets in Banach spaces, but here I give only results
which are important in measure theory, with a little background material. In §463 I present results on the
relationship between the two most important topologies on spaces of measurable functions, not identifying
functions which are equal almost everywhere: the pointwise topology and the topology of convergence
in measure. These topologies have very different natures but nevertheless interact in striking ways. In
particular, we have important theorems giving conditions under which a pointwise compact set of measurable
functions will be compact for the topology of convergence in measure (463G, 463L).

The remaining two sections are devoted to some remarkable ideas due to Talagrand. The first, ‘Talagrand’s
measure’ (§464), is a special measure on PI (or ℓ∞(I)), extending the usual measure of PI in a canonical
way. In §465 I turn to the theory of ‘stable’ sets of measurable functions, showing how a concept arising
naturally in the theory of pointwise compact sets led to a characterization of Glivenko-Cantelli classes in
the theory of empirical measures.

Version of 9.7.08

461 Barycenters and Choquet’s theorem

One of the themes of this chapter will be the theory of measures on linear spaces, and the first funda-
mental concept is that of ‘barycenter’ of a measure, its centre of mass (461Aa). The elementary theory
(461B-461E) uses non-trivial results from the theory of locally convex spaces, but is otherwise natural and
straightforward. It is not always easy to be sure whether a measure has a barycenter in a given space, and
I give a representative pair of results in this direction (461F, 461H). Deeper questions concern the existence
and nature of measures on a given compact set with a given barycenter. The Riesz representation theorem
is enough to tell us just which points can be barycenters of measures on compact sets (461I). A new idea
(461K-461L) shows that the measures can be moved out towards the boundary of the compact set. We need
a precise definition of ‘boundary’; the set of extreme points seems to be the appropriate concept (461M).
In some important cases, such representing measures on boundaries are unique (461P). I append a result
identifying the extreme points of a particular class of compact convex sets of measures (461Q-461R).

461A Definitions (a) Let X be a Hausdorff locally convex linear topological space, and µ a probability
measure on a subset A of X. Then x∗ ∈ X is a barycenter of µ if

∫
A
g dµ is defined and equal to g(x∗) for

every g ∈ X∗. µ can have at most one barycenter.
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2 Pointwise compact sets of measurable functions 461Ab

(b) Let X be any linear space over R, and C ⊆ X a convex set. Then a function f : C → R is convex if
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ C and t ∈ [0, 1].

(c) Let X be a linear space over R, C ⊆ X a convex set, and f : C → R a function. Then f is convex iff
the set {(x, α) : x ∈ C, α ≥ f(x)} is convex in X × R.

461B Proposition Let X and Y be Hausdorff locally convex linear topological spaces, and T : X → Y a
continuous linear operator. Suppose that A ⊆ X, B ⊆ Y are such that T [A] ⊆ B, and let µ be a probability
measure on A which has a barycenter x∗ in X. Then Tx∗ is the barycenter of the image measure µT−1 on
B.

461C Lemma Let X be a Hausdorff locally convex linear topological space, C a convex subset of X,
and f : C → R a lower semi-continuous convex function. If x ∈ C and γ < f(x), there is a g ∈ X∗ such
that g(y) + γ − g(x) ≤ f(y) for every y ∈ C.

461D Theorem Let X be a Hausdorff locally convex linear topological space, C ⊆ X a convex set and
µ a probability measure on a subset A of C. Suppose that µ has a barycenter x∗ in X which belongs to C.
Then f(x∗) ≤

∫
A
f dµ for every lower semi-continuous convex function f : C → R.

461E Theorem LetX be a Hausdorff locally convex linear topological space, and µ a probability measure
on X such that (i) the domain of µ includes the cylindrical σ-algebra of X (ii) there is a compact convex
set K ⊆ X such that µ∗K = 1. Then µ has a barycenter in X, which belongs to K.

461F Theorem Let X be a complete locally convex linear topological space, and A ⊆ X a bounded set.
Let µ be a τ -additive topological probability measure on A. Then µ has a barycenter in X.

461G Lemma Let X be a normed space, and µ a probability measure on X such that every member of
the dual X∗ of X is integrable. Then g 7→

∫
g dµ : X∗ → R is a bounded linear functional on X∗.

461H Proposition Let X be a reflexive Banach space, and µ a probability measure on X such that
every member of X∗ is µ-integrable. Then µ has a barycenter in X.

461I Theorem Let X be a Hausdorff locally convex linear topological space, and K ⊆ X a compact set.
Then the closed convex hull of K in X is just the set of barycenters of Radon probability measures on K.

461J Corollary: Krěın’s theorem Let X be a complete Hausdorff locally convex linear topological
space, and K ⊆ X a weakly compact set. Then the closed convex hull Γ(K) of K is weakly compact.

461K Lemma Let X be a Hausdorff locally convex linear topological space, K a compact convex subset
of X, and P the set of Radon probability measures on K. Define a relation 4 on P by saying that µ 4 ν if∫
fdµ ≤

∫
fdν for every continuous convex function f : K → R.

(a) 4 is a partial order on P .
(b) If µ 4 ν then

∫
fdµ ≤

∫
fdν for every lower semi-continuous convex function f : K → R.

(c) If µ 4 ν then µ and ν have the same barycenter.
(d) If we give P its narrow topology, then 4 is closed in P × P .
(e) For every µ ∈ P there is a 4-maximal ν ∈ P such that µ 4 ν.

461L Lemma Let X be a Hausdorff locally convex linear topological space, K a compact convex subset
of X, and P the set of Radon probability measures on K. Suppose that µ ∈ P is maximal for the partial
order 4 of 461K.

(a) µ( 12 (M1 +M2)) = 0 whenever M1, M2 are disjoint closed convex subsets of K.
(b) µF = 0 whenever F ⊆ K is a Baire set (for the subspace topology of K) not containing any extreme

point of K.
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§462 intro. Pointwise compact sets of continuous functions 3

461M Theorem Let X be a Hausdorff locally convex linear topological space, K a compact convex
subset of X and E the set of extreme points of K. Let x ∈ X. Then there is a probability measure µ on E
with barycenter x. If K is metrizable we can take µ to be a Radon measure.

461N Lemma Let X be a Hausdorff locally convex linear topological space, K a compact convex subset
of X, and P the set of Radon probability measures on K. Let E be the set of extreme points of K and
suppose that µ ∈ P and µ∗E = 1. Then µ is maximal in P for the partial order 4 of 461K.

461O Lemma Suppose that X is a Riesz space with a Hausdorff locally convex linear space topology,
and K ⊆ X a compact convex set such that every non-zero member of the positive cone X+ is uniquely
expressible as αx for some x ∈ K and α ≥ 0. Let P be the set of Radon probability measures on K and 4

the partial order described in 461K. If µ, ν ∈ P have the same barycenter then they have a common upper
bound in P .

461P Theorem Suppose that X is a Riesz space with a Hausdorff locally convex linear space topology,
and K ⊆ X a metrizable compact convex set such that every non-zero member of the positive cone X+ is
uniquely expressible as αx for some x ∈ K and α ≥ 0. Let E be the set of extreme points of K, and x any
point of K. Then there is a unique Radon probability measure µ on E such that x is the barycenter of µ.

461Q Proposition (a) Let A be a Dedekind σ-complete Boolean algebra and π : A → A a sequen-
tially order-continuous Boolean homomorphism. Let Mσ be the L-space of countably additive real-valued
functionals on A, and Q the set

{ν : ν ∈ Mσ, ν ≥ 0, ν1 = 1, νπ = ν}.

If ν ∈ Q, then the following are equiveridical: (i) ν is an extreme point of Q; (ii) νa ∈ {0, 1} whenever
πa = a; (iii) νa ∈ {0, 1} whenever a ∈ A is such that ν(a△ πa) = 0.

(b) Let X be a set, Σ a σ-algebra of subsets of X, and φ : X → X a (Σ,Σ)-measurable function. Let
Mσ be the L-space of countably additive real-valued functionals on Σ, and Q ⊆ Mσ the set of probability
measures with domain Σ for which φ is inverse-measure-preserving. If µ ∈ Q, then µ is an extreme point of
Q iff φ is ergodic with respect to µ.

461R Corollary Let X be a compact Hausdorff space and φ : X → X a continuous function. Let Q be
the non-empty compact convex set of Radon probability measures µ on X such that φ is inverse-measure-
preserving for µ, with its narrow topology and the convex structure defined by 234G and 234Xf. Then the
extreme points of Q are those for which φ is ergodic.

Version of 30.6.07

462 Pointwise compact sets of continuous functions

In preparation for the main work of this chapter, beginning in the next section, I offer a few pages on
spaces of continuous functions under their ‘pointwise’ topologies (462Ab). There is an extensive general
theory of such spaces, described in Arkhangel’skii 92; here I present only those fragments which seem
directly relevant to the theory of measures on normed spaces and spaces of functions. In particular, I star
the paragraphs 462C-462D, which are topology and functional analysis rather than measure theory. They
are here because although this material is well known, and may be found in many places, I think that the
ideas, as well as the results, are essential for any understanding of measures on linear topological spaces.

Measure theory enters the section in the proof of 462E, in the form of an application of the Riesz
representation theorem, though 462E itself remains visibly part of functional analysis. In the rest of the
section, however, we come to results which are pure measure theory. For (countably) compact spaces X, the
Radon measures on C(X) are the same for the pointwise and norm topologies (462I). This fact has extensive
implications for the theory of separately continuous functions (462K) and for the theory of convex hulls in
linear topological spaces (462L).

c© 2007 D. H. Fremlin
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4 Pointwise compact sets of measurable functions 462A

462A Definitions (a) A regular Hausdorff space X is angelic if whenever A is a subset of X which is
relatively countably compact in X, then (i) its closure A is compact (ii) every point of A is the limit of a
sequence in A.

(b) If X is any set and A a subset of RX , then the topology of pointwise convergence on A is that
inherited from the usual product topology of RX . I shall commonly use the symbol Tp for such a topology.
In this context, I will say that a sequence or filter is pointwise convergent if it is convergent for the
topology of pointwise convergence. Note that if A is a linear subspace of RX then Tp is a linear space
topology on A.

*462B Proposition Let (X,T) be an angelic regular Hausdorff space.
(a) Any subspace of X is angelic.
(b) If S is a regular topology on X finer than T, then S is angelic.
(c) Any countably compact subset of X is compact and sequentially compact.

*462C Theorem Let X be a topological space such that there is a sequence 〈Xn〉n∈N of relatively
countably compact subsets of X, covering X, with the property that a function f : X → R is continuous
whenever f↾Xn is continuous for every n ∈ N. Then the space C(X) of continuous real-valued functions on
X is angelic in its topology of pointwise convergence.

*462D Theorem Let U be any normed space. Then it is angelic in its weak topology.

462E Theorem Let X be a locally compact Hausdorff space, and C0(X) the Banach lattice of continuous
real-valued functions on X which vanish at infinity. Write Tp for the topology of pointwise convergence on
C0(X).

(i) C0(X) is Tp-angelic.
(ii) A sequence 〈un〉n∈N in C0(X) is weakly convergent to u ∈ C0(X) iff it is Tp-convergent to u and

norm-bounded.
(iii) A subset K of C0(X) is weakly compact iff it is norm-bounded and Tp-countably compact.

462F Lemma Let X be a topological space, and Q a relatively countably compact subset of X. Suppose
that K ⊆ Cb(X) is ‖ ‖∞-bounded and Tp-countably compact, where Tp is the topology of pointwise conver-
gence on Cb(X). Then the map u 7→ u↾Q : K → Cb(Q) is continuous for Tp on K and the weak topology
of the Banach space Cb(Q).

462G Proposition Let X be a countably compact topological space. Then a subset of Cb(X) is weakly
compact iff it is norm-bounded and compact for the topology of pointwise convergence.

462H Lemma Let X be a topological space, Q a relatively countably compact subset of X, and µ a
totally finite measure on Cb(X) which is Radon for the topology Tp of pointwise convergence on Cb(X). Let
T : Cb(X) → Cb(Q) be the restriction map. Then the image measure ν = µT−1 on Cb(Q) is Radon for the
norm topology of Cb(Q).

462I Theorem Let X be a countably compact topological space. Then the totally finite Radon measures
on C(X) are the same for the topology of pointwise convergence and the norm topology.

462J Corollary Let X be a countably compact Hausdorff space, and give C(X) its topology of pointwise
convergence. If µ is any Radon measure on C(X), it is inner regular with respect to the family of compact
metrizable subsets of C(X).

462K Proposition Let X be a topological space, Y a Hausdorff space, f : X × Y → R a bounded
separately continuous function, and ν a totally finite Radon measure on Y . Set φ(x) =

∫
f(x, y)ν(dy) for

every x ∈ X. Then φ↾Q is continuous for every relatively countably compact set Q ⊆ X.

Measure Theory (abridged version)



463C Tp and Tm 5

462L Corollary Let X be a topological space such that

whenever h ∈ R
X is such that h↾Q is continuous for every relatively countably compact Q ⊆ X,

then h is continuous.

Write Tp for the topology of pointwise convergence on C(X). Let K ⊆ C(X) be a Tp-compact set such that
{h(x) : h ∈ K, x ∈ Q} is bounded for any relatively countably compact set Q ⊆ X. Then the Tp-closed
convex hull of K, taken in C(X), is Tp-compact.

462Z Problem Let K be a compact Hausdorff space. Is C(K), with the topology of pointwise conver-
gence, necessarily a pre-Radon space?

Version of 1.2.13

463 Tp and Tm

We are now ready to start on the central ideas of this chapter with an investigation of sets of measurable
functions which are compact for the topology of pointwise convergence. Because ‘measurability’ is, from the
point of view of this topology on R

X , a rather arbitrary condition, we are looking at compact subsets of a
topologically irregular subspace of RX ; there are consequently relatively few of them, and (under a variety
of special circumstances, to be examined later in the chapter and also in Volume 5) they have some striking
special properties.

The presentation here is focused on the relationship between the two natural topologies on any space of
measurable functions, the ‘pointwise’ topology Tp and the topology Tm of convergence in measure (463A).
In this section I begin with results which apply to any σ-finite measure space (463B-463H) before turning to
some which apply to perfect measure spaces (463I-463L) – in particular, to Lebesgue measure. These lead
to some interesting properties of separately continuous functions (463M-463N).

463A Preliminaries Let (X,Σ, µ) be a measure space, and L
0 the space of all Σ-measurable functions

from X to R. On L
0 we shall be concerned with two topologies. The first is the topology Tp of pointwise

convergence; the second is the topology Tm of convergence in measure. Both are linear space topologies.
Tp is Hausdorff and locally convex.

Associated with the topology of pointwise convergence on R
X is the usual topology of PX; the map

χ : PX → R
X is a homeomorphism between PX and its image {0, 1}X ⊆ R

X .
A subset of L0 is open for Tm iff it is of the form {f : f• ∈ G} for some open set G ⊆ L0; a subset K of

L
0 is compact, or separable, for Tm iff {f• : f ∈ K} is compact or separable for the topology of convergence

in measure on L0.

463B Lemma Let (X,Σ, µ) be a measure space, and L
0 the space of Σ-measurable real-valued functions

on X. Then every pointwise convergent sequence in L
0 is convergent in measure to the same limit.

463C Proposition Let (X,Σ, µ) be a measure space, and L
0 the space of Σ-measurable real-valued

functions on X. Write Tp, Tm for the topologies of pointwise convergence and convergence in measure on

L
0; for A ⊆ L

0, write T
(A)
p , T

(A)
m for the corresponding subspace topologies.

(a) If A ⊆ L
0 and T

(A)
p is metrizable, then the identity map from A to itself is (T

(A)
p ,T

(A)
m )-continuous.

(b) Suppose that µ is semi-finite. Then, for any A ⊆ L
0, T

(A)
m is Hausdorff iff whenever f , g are distinct

members of A the set {x : f(x) 6= g(x)} is non-negligible.

(c) Suppose that K ⊆ L
0 is such that T

(K)
p is compact and metrizable. Then T

(K)
p = T

(K)
m iff T

(K)
m is

Hausdorff.
(d) Suppose that µ is σ-finite, and that K ⊆ L

0 is Tp-sequentially compact. Then T
(K)
p = T

(K)
m iff T

(K)
m

is Hausdorff, and in this case T
(K)
p is compact and metrizable.

(e) Suppose that K ⊆ L
0 is such that T

(K)
p is compact and metrizable. Then whenever ǫ > 0 and E ∈ Σ

is a non-negligible measurable set, there is a non-negligible measurable set F ⊆ E such that |f(x)−f(y)| ≤ ǫ
whenever f ∈ K and x, y ∈ F .

c© 2001 D. H. Fremlin
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6 Pointwise compact sets of measurable functions 463D

463D Lemma Let (X,Σ, µ) be a measure space, and L
0 the space of Σ-measurable real-valued functions

on X. Write Tp for the topology of pointwise convergence on L
0. Suppose that K ⊆ L

0 is Tp-compact and
that there is no Tp-continuous surjection from any closed subset of K onto {0, 1}ω1 . If E ∈ Σ has finite
measure, then every sequence in K has a subsequence which is convergent almost everywhere in E.

463E Proposition Let (X,Σ, µ) be a measure space, and L
0 the space of Σ-measurable real-valued

functions on X. Write Tp, Tm for the topologies of pointwise convergence and convergence in measure on
L

0. Suppose that K ⊆ L
0 is Tp-compact and that there is no Tp-continuous surjection from any closed

subset ofK onto ω1+1 with its order topology. Then the identity map from (K,Tp) to (K,Tm) is continuous.

463F Corollary Let (X,Σ, µ) be a measure space, and L
0 the space of Σ-measurable real-valued functions

on X. Write Tp, Tm for the topologies of pointwise convergence and convergence in measure on L
0. Suppose

that K ⊆ L
0 is compact and countably tight for Tp. Then the identity map from (K,Tp) to (K,Tm) is

continuous. If Tm is Hausdorff on K, the two topologies coincide on K.

463G Theorem Let (X,Σ, µ) be a σ-finite measure space, and K a convex set of measurable functions
from X to R such that (i) K is compact for the topology Tp of pointwise convergence (ii) {x : f(x) 6= g(x)}
is not negligible for any distinct f , g ∈ K. Then K is metrizable for Tp, which agrees with the topology of
convergence in measure on K.

463H Corollary Let (X,T,Σ, µ) be a σ-finite topological measure space in which µ is strictly positive.
Suppose that

whenever h ∈ R
X is such that h↾Q is continuous for every relatively countably compact Q ⊆ X,

then h is continuous.

If K ⊆ Cb(X) is a norm-bounded Tp-compact set, then it is Tp-metrizable.

463I Lemma Let (X,Σ, µ) be a perfect probability space, and 〈En〉n∈N a sequence in Σ. Suppose that
there is an ǫ > 0 such that

ǫµF ≤ lim infn→∞ µ(F ∩ En) ≤ lim supn→∞ µ(F ∩ En) ≤ (1− ǫ)µF

for every F ∈ Σ. Then 〈En〉n∈N has a subsequence 〈Enk
〉k∈N such that µ∗A = 0 and µ∗A = 1 for any cluster

point A of 〈Enk
〉k∈N in PX; in particular, 〈Enk

〉k∈N has no measurable cluster point.

463J Lemma Let (X,Σ, µ) be a perfect probability space, and 〈En〉n∈N a sequence in Σ. Then

either 〈χEn〉n∈N has a subsequence which is convergent almost everywhere

or 〈En〉n∈N has a subsequence with no measurable cluster point in PX.

463K Fremlin’s Alternative Let (X,Σ, µ) be a perfect σ-finite measure space, and 〈fn〉n∈N a sequence
of real-valued measurable functions on X. Then

either 〈fn〉n∈N has a subsequence which is convergent almost everywhere

or 〈fn〉n∈N has a subsequence with no measurable cluster point in R
X .

463L Corollary Let (X,Σ, µ) be a perfect σ-finite measure space. Write L
0 ⊆ R

X for the space of
real-valued Σ-measurable functions on X.

(a) If K ⊆ L
0 is relatively countably compact for the topology Tp of pointwise convergence on L

0, then
every sequence in K has a subsequence which is convergent almost everywhere. Consequently K is relatively
compact in L

0 for the topology Tm of convergence in measure.
(b) If K ⊆ L

0 is countably compact for Tp, then it is compact for Tm.
(c) Suppose that K ⊆ L

0 is countably compact for Tp and that µ{x : f(x) 6= g(x)} > 0 for any distinct
f , g ∈ K. Then the topologies Tm and Tp agree on K, so both are compact and metrizable.

463M Proposition Let X0, . . . , Xn be countably compact topological spaces, each carrying a σ-finite
perfect strictly positive measure which measures every Baire set. Let X be their product and Ba(Xi) the
Baire σ-algebra of Xi for each i. Then any separately continuous function f : X → R is measurable with

respect to the σ-algebra
⊗̂

i≤nBa(Xi) generated by {
∏

i≤n Ei : Ei ∈ Ba(Xi) for i ≤ n}.

Measure Theory (abridged version)



464C Talagrand’s measure 7

463N Corollary Let X0, . . . , Xn be Hausdorff spaces with product X. Then every separately continuous
function f : X → R is universally Radon-measurable.

463Z Problems (a) A.Bellow’s problem Let (X,Σ, µ) be a probability space, and K ⊆ L
0 a Tp-

compact set such that {x : f(x) 6= g(x)} is non-negligible for any distinct functions f , g ∈ K, as in 463G
and 463Lc. Does it follow that K is metrizable for Tp?

(b) Let X ⊆ [0, 1] be a set of outer Lebesgue measure 1, and µ the subspace measure on X, with Σ its
domain. Let K be a Tp-compact subset of L0. Must K be Tm-compact?

(c) Let X0, . . . , Xn be compact Hausdorff spaces and f : X0 × . . . × Xn → R a separately continuous
function. Must f be universally measurable?

Version of 25.5.13

464 Talagrand’s measure

An obvious question arising from 463I and its corollaries is, do we really need the hypothesis that the
measure involved is perfect? A very remarkable construction by M.Talagrand (464D) shows that these
results are certainly not true of all probability spaces (464E). Investigating the properties of this measure
we are led to some surprising facts about additive functionals on algebras PI and the duals of ℓ∞ spaces
(464M, 464R).

464A The usual measure on PI Recall that for any set I we have a standard measure ν, a Radon
measure for the usual topology on PI.

(a) If 〈Ij〉j∈J is any partition of I, then ν can be identified with the product of the family 〈νj〉j∈J , where
νj is the usual measure on PIj . It follows that if we have any family 〈Aj〉j∈J of subsets of PI, and if for
each j the set Aj is ‘determined by coordinates in Ij ’ in the sense that, for a ⊆ I, a ∈ Aj iff a ∩ Ij ∈ Aj ,
then ν∗(

⋂
j∈J Aj) =

∏
j∈J ν∗Aj .

(b) Similarly, if f1, f2 are non-negative real-valued functions on PI, and if there are disjoint sets I1,

I2 ⊆ I such that fj(a) = fj(a ∩ Ij) for every a ⊆ I and both j, then the upper integral
∫
f1 + f2 dν is∫

f1dν +
∫
f2dν.

(c) If A ⊆ PI is such that b ∈ A whenever a ∈ A, b ⊆ I and a△b is finite, then ν∗A must be either 0 or
1.

464B Lemma Let I be any set, and ν the usual measure on PI.
(a)(i) There is a sequence 〈m(n)〉n∈N in N such that

∏∞
n=0 1− 2−m(n) = 1

2 .

(ii) Given such a sequence, write X for
∏

n∈N
(PI)m(n), and let λ be the product measure on X. We

have a function φ : X → PI defined by setting

φ(〈〈ani〉i<m(n)〉n∈N) =
⋃

n∈N

⋂
i<m(n) ani

whenever 〈〈ani〉i<m(n)〉n∈N ∈ X. Now φ is inverse-measure-preserving for λ and ν.
(b) The map

(a, b, c) 7→ (a ∩ b) ∪ (a ∩ c) ∪ (b ∩ c) : (PI)3 → PI

is inverse-measure-preserving for the product measure on (PI)3.

464C Lemma Let I be any set, and let ν be the usual measure on PI.
(a) If F ⊆ PI is any filter containing every cofinite set, then ν∗F = 0 and ν∗F is either 0 or 1. If F is a

non-principal ultrafilter then ν∗F = 1.
(b) If 〈Fn〉n∈N is a sequence of filters on I, all of outer measure 1, then

⋂
n∈N

Fn also has outer measure
1.

c© 1999 D. H. Fremlin
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8 Pointwise compact sets of measurable functions 464D

464D Construction Let I be any set, and ν the usual Radon measure on PI, with T its domain. Let
Σ be the set

{E : E ⊆ PI, there are a set F ∈ T and a filter F on I

such that ν∗F = 1 and E ∩ F = F ∩ F}.

Then there is a unique extension of ν to a complete probability measure µ, with domain Σ, defined by saying
that µE = νF whenever E ∈ Σ, F ∈ T and there is a filter F on I such that ν∗F = 1 and E ∩ F = F ∩ F .

Definition This measure µ is Talagrand’s measure on PI.

464E Example If µ is Talagrand’s measure on X = PN, and Σ its domain, then there is a set K ⊆
R

X , consisting of Σ-measurable functions and separable and compact for the topology Tp of pointwise
convergence, such that K is not compact for the topology of convergence in measure.

464F The L-space ℓ∞(I)∗ Let I be any set.

(a) ℓ∞(I) is an M -space, so ℓ∞(I)∼ = ℓ∞(I)∗ is an L-space. We can identify ℓ∞(I)∗ with the L-
space M of bounded finitely additive functionals on PI, matching any f ∈ ℓ∞(I)∗ with the functional
a 7→ f(χa) : PI → R in M .

(b) Write Mτ for the band of completely additive functionals on PI. Mτ is just the set of those θ ∈ M
such that θa =

∑
t∈a θ{t} for every a ⊆ I, while M⊥

τ is the set of those θ ∈ M such that θ{t} = 0 for every
t ∈ I.

Observe that if θ ∈ M⊥
τ and a, b ⊆ I are such that a△b is finite, then θa = θb.

(c) If θ ∈ M+ \ {0}, then {a : a ⊆ I, θa = θI} is a filter.

464G Lemma Let A be any Boolean algebra. Write M for the L-space of bounded additive functionals
on A, and M+ for its positive cone. Suppose that ∆ : M+ → [0,∞[ is a functional such that

(α) ∆ is non-decreasing,

(β) ∆(αθ) = α∆(θ) whenever θ ∈ M+, α ≥ 0,

(γ) ∆(θ1 + θ2) = ∆(θ1) + ∆(θ2) whenever θ1, θ2 ∈ M+ are such that, for some e ⊆ I,
θ1(1 \ e) = θ2e = 0,

(δ) |∆(θ1)−∆(θ2)| ≤ ‖θ1 − θ2‖ for all θ1, θ2 ∈ M+.

Then there is a non-negative h ∈ M∗ extending ∆.

464H Lemma Let I be any set, and M the L-space of bounded additive functionals on PI; let ν be the
usual measure on PI. For θ ∈ M+, set

∆(θ) =
∫
θ dν.

(a) For every θ ∈ M+, 1
2θI ≤ ∆(θ) ≤ θI.

(b) There is a non-negative h ∈ M∗ such that h(θ) = ∆(θ) for every θ ∈ M+.
(c) If θ ∈ (M⊥

τ )+, where Mτ ⊆ M is the band of completely additive functionals, then θ ≤ ∆(θ) ν-a.e.,
and ν∗{a : α ≤ θa ≤ ∆(θ)} = 1 for every α < ∆(θ).

(d) Suppose that θ ∈ (M⊥
τ )+ and β, γ ∈ [0, 1] are such that θI = 1 and βθ′I ≤ ∆(θ′) ≤ γθ′I whenever

θ′ ≤ θ in M+. Then, for any α < β,
(i) for any finite set K ⊆ PI, the set

{a : a ⊆ I, αθb ≤ θ(a ∩ b) ≤ γθb for every b ∈ K}

has outer measure 1 in PI;
(ii) if α ≥ 1

2 , the set

R = {(a, b, c) : a, b, c ⊆ I, θ((a ∩ b) ∪ (a ∩ c) ∪ (b ∩ c)) ≥ 2α2 + (1− 2α)γ2}

has outer measure 1 in (PI)3;

Measure Theory (abridged version)



464P Talagrand’s measure 9

(iii) if α ≥ 1
2 , then 2α2 + (1− 2α)γ2 ≤ γ.

(e) Any θ ∈ M+ can be expressed as θ1 + θ2 where ∆(θ1) =
1
2θ1I and ∆(θ2) = θ2I.

(f) Suppose that 0 ≤ θ′ ≤ θ in M .
(i) If ∆(θ) = 1

2θI, then ∆(θ′) = 1
2θ

′I.
(ii) If ∆(θ) = θI, then ∆(θ′) = θ′I.

464I Measurable and purely non-measurable functionals As before, let I be any set, ν the usual
measure on PI, T its domain, and M the L-space of bounded additive functionals on PI. I say that
θ ∈ M is measurable if it is T-measurable when regarded as a real-valued function on PI, and purely
non-measurable if {a : a ⊆ I, |θ|(a) = |θ|(I)} has outer measure 1.

464J Examples Let I, ν and M be as in 464I.

(a) Any θ ∈ Mτ is measurable.

(b) Let 〈tn〉n∈N be any sequence of distinct points in I. Then if we take any non-principal ultrafilter F

on N, and set θa = limn→F
1

n
#({i : i < n, ti ∈ a}) for a ⊆ I, θ will be constant ν-almost everywhere, and

measurable. θ ∈ M⊥
τ .

(c) If F is any non-principal ultrafilter on I, and we set θa = 1 for a ∈ F , 0 otherwise, then θ is an
additive functional which is purely non-measurable.

464K The space Mm: Lemma Let I be any set, ν the usual measure on PI, and M the L-space
of bounded additive functionals on PI. Write Mm for the set of measurable θ ∈ M , Mτ for the space of

completely additive functionals on PI and ∆(θ) =
∫
θ dν for θ ∈ M+.

(a) If θ ∈ Mm ∩M⊥
τ and b ⊆ I, then θ(a ∩ b) = 1

2θb for ν-almost every a ⊆ I.
(b) |θ| ∈ Mm for every θ ∈ Mm.
(c) A functional θ ∈ M+ is measurable iff ∆(θ) = 1

2θI.
(d) Mm is a solid linear subspace of M .

464L The space Mpnm: Lemma Let I be any set, ν the usual measure on PI, and M the L-space of
bounded additive functionals on PI. This time, write Mpnm for the set of those members of M which are
purely non-measurable.

(a) If θ ∈ M+, then θ is purely non-measurable iff ∆(θ) = θI.
(b) Mpnm is a solid linear subspace of M .

464M Theorem Let I be any set. Write M for the L-space of bounded finitely additive functionals on
PI, and Mm, Mpnm for the spaces of measurable and purely non-measurable functionals. Then Mm and
Mpnm are complementary bands in M .

464N Corollary Let I be any set, and let µ be Talagrand’s measure on PI; write Σ for its domain.
Then every bounded additive functional on PI is Σ-measurable.

464O Remark SinceMτ ⊆ Mm, we have a three-part band decompositionM = Mτ⊕(Mm∩M⊥
τ )⊕Mpnm.

(i) Functionals in Mτ are T-measurable, where T is the domain of ν, therefore Σ-measurable.
(ii) A functional θ in Mm ∩M⊥

τ is constant, with value 1
2θI, ν-almost everywhere.

(iii) Finally, a functional θ ∈ Mpnm is equal to θI µ-almost everywhere.
(iv) Thus any θ ∈ M⊥

τ = (Mm ∩M⊥
τ )⊕Mpnm is constant µ-a.e.

∫
θ dµ = ∆(θ) for every θ ≥ 0 , so that

if h ∈ M∗ is the linear functional of 464Hb, then
∫
θ dµ = h(θ) for every θ ∈ M .

464P More on purely non-measurable functionals (a) We can discuss non-negative additive func-
tionals on PI in terms of the Stone-Čech compactification βI of I. For any set A ⊆ βI set HA = {a : a ⊆
I, A ⊆ â}, where â ⊆ βI is the open-and-closed set corresponding to a ⊆ I. If A 6= ∅, HA is a filter on I.

D.H.Fremlin



10 Pointwise compact sets of measurable functions 464P

Write A for the family of those sets A ⊆ βI such that ν∗HA = 1, where ν is the usual measure on PI. Then
A is a σ-ideal. Note that if A ∈ A then A ∈ A. {z} ∈ A for every z ∈ βI \ I, while {t} /∈ A for any t ∈ I.

We have a one-to-one correspondence between non-negative additive functionals θ on PI and Radon
measures µθ on βI, defined by writing µθ(â) = θa whenever a ⊆ I and θ ∈ M+. Now suppose that θ is
a non-negative additive functional on PI. Then Fθ = {a : θa = θI} is either PI or a filter on I. If we set
Fθ =

⋂
{â : a ∈ Fθ}, then Fθ = HFθ

.
θ ∈ M+ is purely non-measurable iff the support of the measure µθ belongs to A.

(b) Since M is a set of real-valued functions on PI, it has the corresponding topology Tp of pointwise

convergence as a subspace of RPI . Now if C ⊆ Mpnm is countable, its Tp-closure C is included in Mpnm.

(c) If θ ∈ M is such that θa = 0 for every countable set a ⊆ I, then θ ∈ Mpnm.

In particular, if θ ∈ Mσ ∩ M⊥
τ , where Mσ is the space of countably additive functionals on PI, then

θ ∈ Mpnm.
In the language of (a) above, we have a closed set in βI, being F = βI \

⋃
{â : a ∈ [I]≤ω}; and if θ is

such that the support of µθ is included in F , then θ is purely non-measurable.

464Q More on measurable functionals (a) We know that Mm is a band in M , and that it includes
the band Mτ . So it is natural to look at the band Mm ∩M⊥

τ .

(b) If θ is any non-zero non-negative functional in Mm ∩M⊥
τ , we can find a family 〈aξ〉ξ<ω1

in PI which

is independent in the sense that θ(
⋂

ξ∈K aξ) = 2−#(K)θI for every non-empty finite K ⊆ I.
In terms of the associated measure µθ on βI, this means that µθ has Maharam type at least ω1. If θI = 1,

then 〈(âξ)
•〉ξ<ω1

is an uncountable stochastically independent family in the measure algebra of µθ,
Turning this round, we see that if λ is a Radon measure on βI, of countable Maharam type, and λI = 0,

then the corresponding functional on PI is purely non-measurable.

(c) If θ ∈ Mm∩M⊥
τ , and n ∈ N, then θ(a0∩a1∩. . .∩an) = 2−n−1θI for νn+1-almost every a0, . . . , an ⊆ I,

where νn+1 is the product measure on (PI)n+1.

464R A note on ℓ∞(I) If we write µ̃ for the image measure µχ−1 on ℓ∞(I), where µ is Talagrand’s

measure on PI, and Σ̃ for the domain of µ̃, then Σ̃ includes the cylindrical σ-algebra of ℓ∞(I).
Mτ corresponds to ℓ∞(I)×. Any functional in (ℓ∞(I)×)⊥ will be µ̃-almost constant.

464Z Problem Let I be an infinite set, and µ̃ the image on ℓ∞(I) of Talagrand’s measure. Is µ̃ a
topological measure for the weak topology of ℓ∞(I)?

Version of 22.3.16

465 Stable sets

The structure of general pointwise compact sets of measurable functions is complex and elusive. One
particular class of such sets, however, is relatively easy to describe, and has a variety of remarkable properties,
some of them relevant to important questions arising in the theory of empirical measures. In this section I
outline the theory of ‘stable’ sets of measurable functions from Talagrand 84 and Talagrand 87.

The first steps are straightforward enough. The definition of stable set (465B) is not obvious, but given
this the basic properties of stable sets listed in 465C are natural and easy to check, and we come quickly to
the fact that (for complete locally determined spaces) pointwise bounded stable sets are relatively pointwise
compact sets of measurable functions (465D). A less transparent, but still fairly elementary, argument leads
to the next reason for looking at stable sets: the topology of pointwise convergence on a stable set is finer
than the topology of convergence in measure (465G).

At this point we come to a remarkable fact: a uniformly bounded set A of functions on a complete
probability space is stable if and only if certain laws of large numbers apply ‘nearly uniformly’ on A. These
laws are expressed in conditions (ii), (iv) and (v) of 465M. For singleton sets A, they can be thought of as

Measure Theory (abridged version)



465C Stable sets 11

versions of the strong law of large numbers described in §273. To get the full strength of 465M a further
idea in this direction needs to be added, described in 465H here.

The theory of stable sets applies in the first place to sets of true functions. There is however a corre-
sponding notion applicable in function spaces, which I explore briefly in 465O-465R. Finally, I mention the
idea of ‘R-stable’ set (465S-465U), obtained by using τ -additive product measures instead of c.l.d. product
measures in the definition.

465A Notation (a) If X is a set and Σ a σ-algebra of subsets of X, I will write L
0(Σ) for the space of

Σ-measurable functions from X to R; L∞(Σ) will be the space of bounded functions in L
0(Σ).

(b) I will identify N with the set of finite ordinals, so that a power Xn becomes identified with the set of
functions from {0, . . . , n− 1} to X.

(c) If (X,Σ, µ) is any measure space, then for finite sets I I write µI for the product measure on XI . If
(X,Σ, µ) is a probability space, then for any set I µI is to be the product probability measure on XI .

(d) If X is a set and Σ is an algebra of subsets of X, then for any set I write
⊗

I Σ for the algebra of

subsets of XI generated by sets of the form {w : w(i) ∈ E} where i ∈ I and E ∈ Σ, and
⊗̂

IΣ for the
σ-algebra generated by

⊗
I Σ.

(e) If X is a set, A ⊆ R
X , E ⊆ X, α < β in R and k ≥ 1, write

Dk(A,E, α, β) =
⋃

f∈A

{w : w ∈ E2k, f(w(2i)) ≤ α,

f(w(2i+ 1)) ≥ β for i < k}.

(f) If X is a set, k ≥ 1, u ∈ Xk and v ∈ Xk, then I will write u#v = (u(0), v(0), u(1), v(1), . . . , u(k −
1), v(k− 1)) ∈ X2k. Note that if (X,Σ, µ) is a measure space then (u, v) 7→ u#v is an isomorphism between
the c.l.d. product (Xk, µk)× (Xk, µk) and (X2k, µ2k).

465B Definition Let (X,Σ, µ) be a semi-finite measure space. I say that a set A ⊆ R
X is stable if

whenever E ∈ Σ, 0 < µE < ∞ and α < β in R, there is some k ≥ 1 such that (µ2k)∗Dk(A,E, α, β) < (µE)2k.

465C Proposition Let (X,Σ, µ) be a semi-finite measure space.
(a) Let A ⊆ R

X be a stable set.
(i) Any subset of A is stable.
(ii) A, the closure of A in R

X for the topology of pointwise convergence, is stable.
(iii) γA = {γf : f ∈ A} is stable, for any γ ∈ R.
(iv) If g ∈ L

0 = L
0(Σ), then A+ g = {f + g : f ∈ A} is stable.

(v) If g ∈ L
0, then A× g = {f × g : f ∈ A} is stable.

(vi) Let h : R → R be a continuous non-decreasing function. Then {hf : f ∈ A} is stable.
(b)(i) Suppose thatA ⊆ R

X ,E ∈ Σ, n ≥ 1 andα < β are such that 0 < µE < ∞ and (µ2n)∗Dn(A,E, α, β) <
(µE)2n. Then

limk→∞
1

(µE)2k
(µ2k)∗Dk(A,E, α, β) = 0.

(ii) If A, B ⊆ R
X are stable, then A ∪B is stable.

(iii) If A ⊆ L
0 is finite it is stable.

(iv) If A ⊆ R
X is stable, so is {f+ : f ∈ A} ∪ {f− : f ∈ A}.

(c) Let A be a subset of RX .
(i) If µ̂, µ̃ are the completion and c.l.d. version of µ, then A is stable with respect to one of the measures

µ, µ̂, µ̃ iff it is stable with respect to the others.
(ii) Let ν be an indefinite-integral measure over µ. If A is stable with respect to µ, it is stable with

respect to ν and with respect to ν↾Σ.
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12 Pointwise compact sets of measurable functions 465C

(iii) If A is stable, and Y ⊆ X is such that the subspace measure µY is semi-finite, then AY = {f↾Y :
f ∈ A} is stable in R

Y with respect to the measure µY .
(iv) A is stable iff AE = {f↾E : f ∈ A} is stable in R

E with respect to the subspace measure µE

whenever E ∈ Σ has finite measure.
(v) A is stable iff An = {med(−nχX, f, nχX) : f ∈ A} is stable for every n ∈ N.

(d) Suppose that µ is σ-finite, (Y,T, ν) is another measure space and φ : Y → X is inverse-measure-
preserving. If A ⊆ R

X is stable with respect to µ, then B = {fφ : f ∈ A} is stable with respect to ν.

465D Proposition Let (X,Σ, µ) be a complete locally determined measure space, and A ⊆ R
X a stable

set.
(a) A ⊆ L

0.
(b) If {f(x) : f ∈ A} is bounded for each x ∈ X, then A is relatively compact in L

0 for the topology of
pointwise convergence.

465E The topology Ts(L
2,L2) Let (X,Σ, µ) be any measure space. Then L2 = L2(µ) is a Hilbert

space with a corresponding weak topology Ts(L
2, L2). In the present section it will be more convenient to

regard this as a topology Ts(L
2,L2) on the space L

2 = L
2(µ) of square-integrable real-valued functions.

The essential fact we need is that norm-bounded sets are relatively weakly compact.

465F Lemma Let (X,Σ, µ) be a measure space, and B ⊆ L
2 = L

2(µ) a ‖ ‖2-bounded set. Suppose that
h ∈ L

2 belongs to the closure of B for Ts(L
2,L2). Then for any δ > 0 and k ≥ 1 the set

W =
⋃

f∈B

{w : w ∈ Xk, w(i) ∈ dom f ∩ domh

and f(w(i)) ≥ h(w(i))− δ for every i < k}

is µk-conegligible in Xk.

465G Theorem Let (X,Σ, µ) be a semi-finite measure space, and A ⊆ L
0 a stable set of measurable

functions. Let Tp and Tm be the topologies of pointwise convergence and convergence in measure. Then
the identity map from A to itself is (Tp,Tm)-continuous.

465H Theorem Let (X,Σ, µ) be any probability space. For n ∈ N, write Λn for the domain of the
product measure µn. For w ∈ XN, k ≥ 1, n ≥ 1 write νwk for the probability measure with domain PX
defined by writing

νwk(E) =
1

k
#({i : i < k, w(i) ∈ E})

for E ⊆ X, and νnwk for the corresponding product measure on Xn.
Then whenever n ≥ 1 and f : Xn → R is bounded and Λn-measurable, limk→∞

∫
fdνnwk exists, and is

equal to
∫
fdµn, for µN-almost every w ∈ XN.

465I Lemma Let X be a set, and Σ a σ-algebra of subsets of X. For w ∈ XN and k ≥ 1, write νwk for
the probability measure with domain PX defined by writing

νwk(E) =
1

k
#({i : i < k, w(i) ∈ E})

for E ⊆ X. Then for any k ∈ N and any set I, w 7→ νIwk(W ) is
⊗̂

N
Σ-measurable for every W ∈

⊗̂
IΣ.

465J Lemma Let (X,Σ, µ) be a probability space. For any n ∈ N and W ⊆ Xn I say that W is
symmetric if wπ ∈ W whenever w ∈ W and π : n → n is a permutation. For each n, write Λn for the
domain of the product measure µn.

(a) Suppose that for each n ≥ 1 we are given Wn ∈ Λn, and that Wm+n ⊆ Wm ×Wn for all m, n ≥ 1,
identifying Xm+n with Xm ×Xn. Then limn→∞(µnWn)

1/n is defined and equal to δ = infn≥1(µ
nWn)

1/n.
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465N Stable sets 13

(b) Now suppose that each Wn is symmetric. Then there is an E ∈ Σ such that µE = δ and En \Wn is
negligible for every n ∈ N.

(c) Next, let 〈Dn〉n≥1 be a sequence of sets such that

Dn ⊆ Xn is symmetric for every n ≥ 1,

whenever 1 ≤ m ≤ n and v ∈ Dn then v↾m ∈ Dm.

Then δ = limn→∞((µn)∗Dn)
1/n is defined and there is an E ∈ Σ such that µE = δ and (µn)∗(Dn ∩ En) =

(µE)n for every n ∈ N.

465K Lemma Let (X,Σ, µ) be a complete probability space, and A ⊆ [0, 1]X a stable set. Suppose that

ǫ > 0 is such that
∫
fdµ ≤ ǫ2 for every f ∈ A. Then there are an n ≥ 1 and a W ∈

⊗̂
nΣ and a γ > µnW

such that
∫
fdν ≤ 3ǫ whenever f ∈ A and ν is a probability measure on X with domain including Σ such

that νnW ≤ γ.

465L Lemma (Talagrand 87) Let (X,Σ, µ) be a complete probability space, and A ⊆ [0, 1]X a set
which is not stable. Then there are measurable functions h0, h1 : X → [0, 1] such that

∫
h0 dµ <

∫
h1 dµ

and (µ2k)∗D̃k = 1 for every k ≥ 1, where

D̃k =
⋃

f∈A

{w : w ∈ X2k, f(w(2i)) ≤ h0(w(2i)),

f(w(2i+ 1)) ≥ h1(w(2i+ 1)) for every i < k}.

465M Theorem Let (X,Σ, µ) be a complete probability space, and A a non-empty uniformly bounded
set of real-valued functions defined on X. Then the following are equiveridical.

(i) A is stable.

(ii) Every function in A is measurable, and limk→∞ supf∈A |
1

k

∑k−1
i=0 f(w(i)) −

∫
f | = 0 for almost every

w ∈ XN.
(iii) Every function in A is measurable, and for every ǫ > 0 there are a finite subalgebra T of Σ in which

every atom is non-negligible and a sequence 〈hk〉k≥1 of measurable functions on XN such that

hk(w) ≥ supf∈A
1

k

∑k−1
i=0

∣∣f(w(i))− E(f |T)(w(i))
∣∣

for every w ∈ XN and k ≥ 1, and

lim supk→∞ hk(w) ≤ ǫ

for almost every w ∈ XN. (Here E(f |T) is the conditional expectation of f on T.)

(iv) limk,l→∞ supf∈A |
1

k

∑k−1
i=0 f(w(i))−

1

l

∑l−1
i=0 f(w(i))| = 0 for almost every w ∈ XN.

(v) limk,l→∞

∫
supf∈A |

1

k

∑k−1
i=0 f(w(i))−

1

l

∑l−1
i=0 f(w(i))|µ

N(dw) = 0.

465N Theorem Let (X,Σ, µ) be a semi-finite measure space.
(a) Let A ⊆ R

X be a stable set. Suppose that there is a measurable function g : X → [0,∞[ such that
|f(x)| ≤ g(x) whenever x ∈ X and f ∈ A. Then the convex hull Γ(A) of A in R

X is stable.
(b) If A ⊆ R

X is stable, then |A| = {|f | : f ∈ A} is stable.
(c) Let A, B ⊆ R

X be two stable sets such that {f(x) : f ∈ A ∪ B} is bounded for every x ∈ X. Then
A+B = {f1 + f2 : f1 ∈ A, f2 ∈ B} is stable.

(d) Suppose that µ is complete and locally determined. Let A ⊆ R
X be a stable set such that {f(x) :

f ∈ A} is bounded for every x ∈ X. Then Γ(A) is relatively compact in L
0(Σ) for the topology of pointwise

convergence.
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14 Pointwise compact sets of measurable functions 465O

465O Stable sets in L0 If (A, µ̄) is a semi-finite measure algebra, and k ≥ 1, I write (
⊗̂

kA, µ̄
k) for the

localizable measure algebra free product of k copies of (A, µ̄). If Q ⊆ L0(A), k ≥ 1, a ∈ A has finite measure
and α < β in R, set

dk(Q, a, α, β) = sup
v∈Q

(
(a ∩ [[v ≤ α]])⊗ (a ∩ [[v ≥ β]])⊗ . . .

⊗ (a ∩ [[v ≤ α]])⊗ (a ∩ [[v ≥ β]])
)

in
⊗̂

2kA, taking k repetitions of the formula (a ∩ [[v ≤ α]]) ⊗ (a ∩ [[v ≥ β]]). Q is stable if whenever 0 <
µ̄a < ∞ and α < β there is a k ≥ 1 such that µ̄2kdk(Q, a, α, β) < (µ̄a)2k.

465P Theorem Let (X,Σ, µ) be a semi-finite measure space, with measure algebra (A, µ̄).
(a) Suppose that A ⊆ L

0(Σ) and that Q = {f• : f ∈ A} ⊆ L0(µ), identified with L0 = L0(A). Then Q is
stable iff every countable subset of A is stable.

(b) Suppose that µ is complete and strictly localizable and Q is a stable subset of L∞(µ), identified with
L∞(A) (363I). Then there is a stable set B ⊆ L

∞(Σ) such that Q = {f• : f ∈ B}.

465R Theorem Let (A, µ̄) and (B, ν̄) be measure algebras, and T : L1(A, µ̄) → L1(B, ν̄) a bounded
linear operator. If Q is stable and order-bounded in L1(A, µ̄), then T [Q] ⊆ L1(B, ν̄) is stable.

*465S R-stable sets If (X,T,Σ, µ) is a semi-finite τ -additive topological measure space such that µ is
inner regular with respect to the Borel sets, write µ̃I for the τ -additive product measure on XI . A ⊆ R

X

is R-stable if whenever 0 < µE < ∞ and α < β there is a k ≥ 1 such that (µ̃2k)∗Dk(A,E, α, β) < (µE)2k.
Because the τ -additive product measure extends the c.l.d. product measure, stable sets are always R-

stable.

*465T Proposition Let (X,T,Σ, µ) be a semi-finite τ -additive topological measure space such that µ
is inner regular with respect to the Borel sets. If A ⊆ C(X) is such that every countable subset of A is
R-stable, then A is R-stable.

*465U Example There is a Radon probability space with an R-stable set of continuous functions which
is not stable.

Version of 2.8.13

466 Measures on linear topological spaces

In this section I collect a number of results on the special properties of topological measures on linear
topological spaces. The most important is surely Phillips’ theorem (466A-466B): on any Banach space,
the weak and norm topologies give rise to the same totally finite Radon measures. This is not because
the weak and norm topologies have the same Borel σ-algebras, though this does happen in interesting cases
(466C-466E, §467). When the Borel σ-algebras are different, we can still ask whether the Borel measures are
‘essentially’ the same, that is, whether every (totally finite) Borel measure for the weak topology extends to
a Borel measure for the norm topology. A construction due to M.Talagrand (466H, 466Ia) gives a negative
answer to the general question.

Just as in R
r, a totally finite quasi-Radon measure on a locally convex linear topological space is de-

termined by its characteristic function (466K). I end the section with a note on measurability conditions
sufficient to ensure that a linear operator between Banach spaces is continuous (466L-466M), and with brief
remarks on Gaussian measures (466N-466O).

466A Theorem Let (X,T) be a metrizable locally convex linear topological space and µ a σ-finite
measure on X which is quasi-Radon for the weak topology Ts(X,X∗). Then the support of µ is separable,
so µ is quasi-Radon for the original topology T. If X is complete and µ is locally finite with respect to T,
then µ is Radon for T.

c© 2000 D. H. Fremlin
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466B Corollary If X is a Banach space and µ is a totally finite measure on X which is quasi-Radon for
the weak topology of X, it is a Radon measure for both the norm topology and the weak topology.

466C Definition A normed space X has a Kadec norm (also called Kadec-Klee norm) if the norm
and weak topologies coincide on the sphere {x : ‖x‖ = 1}. Of course they will then also coincide on any
sphere {x : ‖x− y‖ = α}.

466D Proposition Let X be a normed space with a Kadec norm. Then there is a network for the norm
topology on X expressible in the form

⋃
n∈N

Vn, where for each n ∈ N Vn is an isolated family for the weak
topology and

⋃
Vn is the difference of two closed sets for the weak topology.

466E Corollary Let X be a normed space with a Kadec norm.
(a) The norm and weak topologies give rise to the same Borel σ-algebras.
(b) The weak topology has a σ-isolated network, so is hereditarily weakly θ-refinable.

466F Proposition Let X be a Banach space with a Kadec norm. Then the following are equiveridical:
(i) X is a Radon space in its norm topology;
(ii) X is a Radon space in its weak topology;
(iii) the weight of X (for the norm topology) is measure-free.

466G Definition A partially ordered set X has the σ-interpolation property if whenever A, B are
non-empty countable subsets of X and x ≤ y for every x ∈ A, y ∈ B, then there is a z ∈ X such that
x ≤ z ≤ y for every x ∈ A and y ∈ B.

466H Proposition Let X be a Riesz space with a Riesz norm, given its weak topology Ts = Ts(X,X∗).
Suppose that (α) X has the σ-interpolation property (β) there is a strictly increasing family 〈pξ〉ξ<ω1

in X.
Then there is a Ts-Borel probability measure µ on X such that

(i) µ is not inner regular with respect to the Ts-closed sets;
(ii) µ is not τ -additive for the topology Ts;
(iii) µ has no extension to a norm-Borel measure on X.

Accordingly (X,Ts) is not a Radon space (indeed, is not Borel-measure-complete).

466I Examples The following spaces satisfy the hypotheses of 466H.

(a) X = ℓ∞(I) or {x : x ∈ ℓ∞(I), {i : x(i) 6= 0} is countable}, where I is uncountable.

(b) X = ℓ∞/ccc0.

466J Theorem Let X be a linear topological space and Σ its cylindrical σ-algebra. If µ and ν are
probability measures with domain Σ such that

∫
eif(x)µ(dx) =

∫
eif(x)ν(dx) for every f ∈ X∗, then µ = ν.

466K Proposition If X is a locally convex linear topological space and µ, ν are quasi-Radon probability
measures on X such that

∫
eif(x)µ(dx) =

∫
eif(x)ν(dx) for every f ∈ X∗, then µ = ν.

466L Proposition Suppose that X and Y are Banach spaces and that T : X → Y is a linear operator
such that gT : X → R is universally Radon-measurable for every g ∈ Y ∗. Then T is continuous.

466M Corollary If X is a Banach space, Y is a separable Banach space, and T : X → Y is a linear
operator such that the graph of T is a Souslin-F set in X × Y , then T is continuous.

466N Gaussian measures: Definition If X is a linear topological space, a probability measure µ
on X is a centered Gaussian measure if its domain includes the cylindrical σ-algebra of X and every
continuous linear functional on X is either zero almost everywhere or a normal random variable with zero
expectation.

D.H.Fremlin
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466O Proposition Let X be a separable Banach space, and µ a probability measure on X. Suppose
that there is a linear subspace W of X∗, separating the points of X, such that every element of W is domµ-
measurable and either zero a.e. or a normal random variable with zero expectation. Then µ is a centered
Gaussian measure with respect to the norm topology of X.

466Z Problems (a)Does every probability measure defined on the Ts(ℓ
∞, (ℓ∞)∗)-Borel sets of ℓ∞ extend

to a measure defined on the ‖ ‖∞-Borel sets?

(b) Assume that c is measure-free. Does it follow that ℓ∞, with its weak topology, is a Radon space?

Version of 13.1.10

*467 Locally uniformly rotund norms

In the last section I mentioned Kadec norms. These are interesting in themselves, but the reason for
including them in this book is that in a normed space with a Kadec norm the weak topology has the same
Borel sets as the norm topology. The same will evidently be true of any space which has an equivalent
Kadec norm. Now Kadec norms themselves are not uncommon, but equivalent Kadec norms appear in a
striking variety of cases. Here I describe the principal class of spaces (the ‘weakly K-countably determined’
Banach spaces, 467H) which have equivalent Kadec norms. In fact they have ‘locally uniformly rotund’
norms, which are much easier to do calculations with.

Almost everything here is pure functional analysis, mostly taken from Deville Godefroy & Zizler

93, which is why I have starred the section. The word ‘measure’ does not appear until 467P. At that point,
however, we find ourselves with a striking result (Schachermayer’s theorem) which appears to need the
structure theory of weakly compactly generated Banach spaces developed in 467C-467M.

467A Definition Let X be a linear space with a norm ‖ ‖. ‖ ‖ is locally uniformly rotund or locally
uniformly convex if whenever ‖x‖ = 1 and ǫ > 0, there is a δ > 0 such that ‖x− y‖ ≤ ǫ whenever ‖y‖ = 1
and ‖x+ y‖ ≥ 2− δ.

If X has a locally uniformly rotund norm, then every subspace of X has a locally uniformly rotund norm.

467B Proposition A locally uniformly rotund norm is a Kadec norm.

467C A technical device (a) I will use the following notation for the rest of the section. Let X be a
linear space and p : X → [0,∞[ a seminorm. Define qp : X ×X → [0,∞[ by setting

qp(x, y) = 2p(x)2 + 2p(y)2 − p(x+ y)2 = (p(x)− p(y))2 + (p(x) + p(y))2 − p(x+ y)2

for x ∈ X.

(b) A norm ‖ ‖ on X is locally uniformly rotund iff whenever x ∈ X and ǫ > 0 there is a δ > 0 such that
‖x− y‖ ≤ ǫ whenever q‖ ‖(x, y) ≤ δ.

(c) Let X be a linear space.

(i) For any seminorm p on X, qp(x, y) ≥ (p(x)− p(y))2 ≥ 0 for all x, y ∈ X.

(ii) Suppose that 〈pi〉i∈I is a family of seminorms on X such that
∑

i∈I pi(x)
2 is finite for every x ∈ X.

Set p(x) =
√∑

i∈I pi(x)
2 for x ∈ X; then p is a seminorm on X and qp =

∑
i∈I qpi

. qp ≥ qpi
for every

i ∈ I.

(iii) If ‖ ‖ is an inner product norm on X, then q‖ ‖(x, y) = ‖x− y‖2 for all x, y ∈ X.

467D Lemma Let (X, ‖ ‖) be a normed space. Suppose that there are a space Y with a locally uniformly
rotund norm ‖ ‖

Y
and a bounded linear operator T : Y → X such that T [Y ] is dense in X and, for every

x ∈ X and γ > 0, there is a z ∈ Y such that ‖x− Tz‖2 + γ‖z‖2
Y
= infy∈Y ‖x− Ty‖2 + γ‖y‖2

Y
. Then X has

an equivalent locally uniformly rotund norm.

Measure Theory (abridged version)
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467E Theorem Let X be a separable normed space. Then it has an equivalent locally uniformly rotund
norm.

467F Lemma Let (X, ‖ ‖) be a Banach space, and 〈Ti〉i∈I a family of bounded linear operators from X
to itself such that

(i) for each i ∈ I, the subspace Ti[X] has an equivalent locally uniformly rotund norm,
(ii) for each x ∈ X, ǫ > 0 there is a finite set J ⊆ I such that ‖x−

∑
i∈J Tix‖ ≤ ǫ,

(iii) for each x ∈ X, ǫ > 0 the set {i : i ∈ I, ‖Tix‖ ≥ ǫ} is finite.

Then X has an equivalent locally uniformly rotund norm.

467G Theorem Let X be a Banach space. Suppose that there are an ordinal ζ and a family 〈Pξ〉ξ≤ζ of
bounded linear operators from X to itself such that

(i) if ξ ≤ η ≤ ζ then PξPη = PηPξ = Pξ;
(ii) P0(x) = 0 and Pζ(x) = x for every x ∈ X;
(iii) if ξ ≤ ζ is a non-zero limit ordinal, then limη↑ξ Pη(x) = Pξ(x) for every x ∈ X;
(iv) if ξ < ζ then Xξ = {(Pξ+1 − Pξ)(x) : x ∈ X} has an equivalent locally uniformly rotund

norm.

Then X has an equivalent locally uniformly rotund norm.

Remark A family 〈Pξ〉ξ≤ζ satisfying (i), (ii) and (iii) here is called a projectional resolution of the
identity.

467H Definitions (a) A topological space X is K-countably determined or a Lindelöf-ΣΣΣ space if
there are a subset A of NN and an usco-compact relation R ⊆ A×X such that R[A] = X.

(b) A normed space X is weakly K-countably determined if it is K-countably determined in its weak
topology.

(c) Let X be a normed space and Y , W closed linear subspaces of X, X∗ respectively. I will say that
(Y,W ) is a projection pair if X = Y ⊕W ◦ and ‖y + z‖ ≥ ‖y‖ for every y ∈ Y , z ∈ W ◦.

467I Lemma (a) If X is a weakly K-countably determined normed space, then any closed linear subspace
of X is weakly K-countably determined.

(b) If X is a weakly K-countably determined normed space, Y is a normed space, and T : X → Y is a
continuous linear surjection, then Y is weakly K-countably determined.

(c) If X is a Banach space and Y ⊆ X is a dense linear subspace which is weakly K-countably determined,
then X is weakly K-countably determined.

467J Lemma Let X be a weakly K-countably determined Banach space. Then there is a family M of
subsets of X ∪X∗ such that

(i) whenever B ⊆ X ∪X∗ there is an M ∈ M such that B ⊆ M and #(M) ≤ max(ω,#(B));
(ii) whenever M′ ⊆ M is upwards-directed, then

⋃
M′ ∈ M;

(iii) whenever M ∈ M then (M ∩X,M ∩X∗) is a projection pair of subspaces of X and X∗.

467K Theorem Let X be a weakly K-countably determined Banach space. Then it has an equivalent
locally uniformly rotund norm.

467L Weakly compactly generated Banach spaces A normed space X is weakly compactly
generated if there is a sequence 〈Kn〉n∈N of weakly compact subsets of X such that

⋃
n∈N

Kn is dense in
X.

467M Proposition A weakly compactly generated Banach space is weakly K-countably determined.
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467N Theorem Let X be a Banach lattice with an order-continuous norm. Then it has an equivalent
locally uniformly rotund norm.

467O Eberlein compacta: Definition A topological space K is an Eberlein compactum if it is
homeomorphic to a weakly compact subset of a Banach space.

467P Proposition Let K be a compact Hausdorff space.
(a) The following are equiveridical:
(i) K is an Eberlein compactum;
(ii) there is a set L ⊆ C(K), separating the points of K, which is compact for the topology of pointwise

convergence.
(b) Suppose that K is an Eberlein compactum.
(i) K has a σ-isolated network, so is hereditarily weakly θ-refinable.
(ii) If w(K) is measure-free, K is a Radon space.

Measure Theory (abridged version)


