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Chapter 45

Perfect measures and disintegrations

One of the most remarkable features of countably additive measures is that they provide us with a
framework for probability theory, as described in Chapter 27. The extraordinary achievements of probability
theory since Kolmogorov are to a large extent possible because of the rich variety of probability measures
which can be constructed. We have already seen image measures (234C1) and product measures (§254).
The former are elementary, but a glance at the index will confirm that they have many surprises to offer; the
latter are obviously fundamental to any idea of what probability theory means. In this chapter I will look
at some further constructions. The most important are those associated with ‘disintegrations’ or ‘regular
conditional probabilities’ (§§452-453) and methods for confirming the existence of measures on product
spaces with given images on subproducts (§454, 455A). We find that these constructions have to be based
on measure spaces of special types; the measures involved in the principal results are the Radon measures
of Chapter 41 (of course), the compact and perfect measures of Chapter 34, and an intermediate class, the
‘countably compact’ measures of Marczewski 53 (451B). So the first section of this chapter is a systematic
discussion of compact, countably compact and perfect measures.

A ‘disintegration’, when present, is likely to provide us with a particularly effective instrument for studying
a measure, analogous to Fubini’s theorem for product measures (see 452F). §§452-453 therefore concentrate
on theorems guaranteeing the existence of disintegrations compatible with some pre-existing structure,
typically an inverse-measure-preserving function (452I, 452O, 453K) or a product structure (452M). Both
depend on the existence of suitable liftings, and for the topological version in §453 we need a ‘strong’ lifting,
so much of that section is devoted to the study of such liftings.

One of the central concerns of probability theory is to understand ‘stochastic processes’, that is, models
of systems evolving randomly over time. If we think of our state space as consisting of functions, so that
a whole possible history is described by a random function of time, it is natural to think of our functions
as members of some set

∏
n∈N Zn (if we think of observations as being taken at discrete time intervals)

or
∏
t∈[0,∞[ Zt (if we regard our system as evolving continuously), where Zt represents the set of possible

states of the system at time t. We are therefore led to consider measures on such product spaces, and
the new idea is that we may have some definite intuition concerning the joint distribution of finite strings
(f(t0), . . . , f(tn)) of values of our random function, that is to say, we may think we know something about
the image measures on finite products

∏
i≤n Zti . So we come immediately to a fundamental question: given

a (probability) measure µJ on
∏
i∈J Zi for each finite J ⊆ T , when will there be a measure on

∏
i∈T Zi

compatible with every µJ? In §454 I give the most important generally applicable existence theorems for
such measures, and in 455A-455E I show how they can be applied to a general construction for models of
Markov processes. These models enable us to discuss the Markov property either in terms of disintegrations
or in terms of conditional expectations (455C, 455O), and for Lévy processes, in terms of inverse-measure-
preserving functions (455U).

The abstract theory of §454 yields measures on product spaces which, from the point of view of a
probabilist, are unnaturally large, often much larger than intuition suggests. Some of the most powerful
results in the theory of Markov processes, such as the strong Markov property (455O), depend on moving
to much smaller spaces; most notably the space of càdlàg functions (455G), but the larger space of càllàl
functions is also of interest. The most important example, Brownian motion, will have to wait for Chapter
47, but I give the basic general theory of Lévy processes in complete metric groups.

One of the defining characteristics of Brownian motion is the fact that all its finite-dimensional marginals
are Gaussian distributions. Stochastic processes with this property form a particularly interesting class,
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2 Perfect measures, disintegrations and processes Chap. 45 intro.

which I examine in §456. From the point of view of this volume, one of their most striking properties is
Talagrand’s theorem that, regarded as measures on powers RI , they are τ -additive (456O).

The next two sections look again at some of the ideas of the previous sections when interpreted as answers
to questions of the form ‘can all the measures in such-and-such a family be simultaneously extended to a single
measure?’ If we seek only a finitely additive common extension, there is a reasonably convincing general
result (457A); but countably additive measures remain puzzling even in apparently simple circumstances
(457Z). In §458 I introduce ‘relatively independent’ families of σ-algebras, with the associated concept of
‘relative product’ of measures, and the corresponding concepts for probability algebras. Finally, in §459,
I give some basic results on symmetric measures and exchangeable random variables, with De Finetti’s
theorem (459C) and corresponding theorems on representing permutation-invariant measures on products
as mixtures of product measures (459E, 459H).

Version of 8.11.07

451 Perfect, compact and countably compact measures

In §§342-343 I introduced ‘compact’ and ‘perfect’ measures as part of a study of the representation
of homomorphisms of measure algebras by functions between measure spaces. An intermediate class of
‘countably compact’ measures (the ‘compact’ measures of Marczewski 53) has appeared in the exercises.
It is now time to collect these ideas together in a more systematic way. In this section I run through
the standard properties of compact, countably compact and perfect measures (451A-451J), with a couple
of simple examples of their interaction with topologies (451M-451P). An example of a perfect measure
space which is not countably compact is in 451U. Some new ideas, involving non-trivial set theory, show
that measurable functions from compact totally finite measure spaces to metrizable spaces have ‘essentially
separable ranges’ (451R); consequently, any measurable function from a Radon measure space to a metrizable
space is almost continuous (451T).

451A Let me begin by recapitulating the principal facts already covered.

(a) A family K of sets is a compact class if
⋂K′ 6= ∅ whenever K′ ⊆ K has the finite intersection

property. If K ⊆ PX, then K is a compact class iff there is a compact topology on X for which every
member of K is closed (342D). A subfamily of a compact class is compact (342Ab).

(b) A measure on a set X is compact if it is inner regular with respect to some compact class of sets;
equivalently, if it is inner regular with respect to the closed sets for some compact topology on X (342F).
All Radon measures are compact measures (416Wa). If (X,Σ, µ) is a semi-finite compact measure space
with measure algebra A, (Y,T, ν) is a complete strictly localizable measure space with measure algebra B,
and π : A → B is an order-continuous Boolean homomorphism, there is a function g : Y → X such that
g−1[E] ∈ T and g−1[E]• = π(E•) for every E ∈ Σ (343B).

(c) A family K of sets is a countably compact class if
⋂
n∈NKn 6= ∅ whenever 〈Kn〉n∈N is a sequence

in K such that
⋂
i≤nKi 6= ∅ for every n ∈ N. Any subfamily of a countably compact class is countably

compact. If K is a countably compact class, then there is a countably compact class K∗ ⊇ K which is closed
under finite unions and countable intersections (413T).

(d) A measure space (X,Σ, µ) is perfect if whenever f : X → R is measurable, E ∈ Σ and µE > 0,
there is a compact set K ⊆ f [E] such that µf−1[K] > 0. A countably separated semi-finite measure space is
compact iff it is perfect (343K). A measure space (X,Σ, µ) is isomorphic to the unit interval with Lebesgue
measure iff it is an atomless complete countably separated perfect probability space (344Ka).

451B Now for the new class of measures.

Definition Let (X,Σ, µ) be a measure space. Then (X,Σ, µ), or µ, is countably compact if µ is inner
regular with respect to some countably compact class of sets.

c© 2002 D. H. Fremlin
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451D Perfect, compact and countably compact measures 3

Evidently compact measures are also countably compact. A simple example of a countably compact
measure which is not compact is the countable-cocountable measure on an uncountable set (342M). For an
example of a perfect measure which is not countably compact, see 451U.

Note that if µ is inner regular with respect to a countably compact class K, then it is also inner regular
with respect to K ∩ Σ (411B), and K ∩ Σ is still countably compact.

451C Proposition (Ryll-Nardzewski 53) Any semi-finite countably compact measure is perfect.

proof The central idea is the same as in 342L, but we need to refine the second half of the argument.

(a) Let (X,Σ, µ) be a countably compact measure space, f : X → R a measurable function, and E ∈ Σ
a set of positive measure. Let K be a countably compact class such that µ is inner regular with respect to
K; by 451Ac, we may suppose that K is closed under finite unions and countable intersections.

Because µ is semi-finite, there is a measurable set F ⊆ E such that 0 < µF <∞; replacing F by a set of
the form F ∩ f−1[[−n, n]] if necessary, we may suppose that f [F ] is bounded; finally, we may suppose that
F ∈ K. Let 〈ǫq〉q∈Q be a family of strictly positive real numbers such that

∑
q∈Q ǫq <

1
2µF . For each q ∈ Q,

set Eq = {x : x ∈ F, f(x) ≤ q}, E′
q = {x : x ∈ F, f(x) > q}, and choose Kq, K

′
q ∈ K∩Σ such that Kq ⊆ Eq,

K ′
q ⊆ E′

q and µ(Eq \Kq) ≤ ǫq, µ(E′
q \K ′

q) ≤ ǫq. Then K =
⋂
q∈Q(Kq ∪K ′

q) ∈ K ∩ Σ, K ⊆ F and

µ(F \K) ≤ ∑
q∈Q µ(Eq \Kq) + µ(E′

q \K ′
q) < µF ,

so µK > 0.

(b) Take any t ∈ f [K]. Enumerate Q as 〈qn〉n∈N and define 〈Ln〉n∈N in K by the rule

Ln = Kqn if t < qn,

= K ′
qn if t > qn,

= F if t = qn.

Now
⋂
i≤n Li 6= ∅ for every n ∈ N. PPP Because t ∈ f [K], there must be some s ∈ f [K] such that s < qi

whenever i ≤ n and t < qi, while s > qi whenever i ≤ n and t > qi. Let x ∈ K be such that f(x) = s. Then,
for any i ≤ n,

either t < qi, f(x) < qi so x /∈ K ′
qi and x ∈ Kqi = Li

or t > qi, f(x) > qi so x /∈ Kqi and x ∈ K ′
qi = Li,

or t = qi and x ∈ F = Li.

So x ∈ ⋂
i≤n Li. QQQ

As K is a countably compact class, there must be some x ∈ ⋂
n∈N Ln. But this means that, for any n ∈ N,

if t > qn then x ∈ K ′
qn and f(x) > qn,

if t < qn then x ∈ Kqn and f(x) < qn.

So in fact f(x) = t. Accordingly t ∈ f [K].

(c) What this shows is that f [K] ⊆ f [K] and f [K] is closed. Because (by the choice of F ) it is also
bounded, it is compact (2A2F). Of course we now have f [K] ⊆ f [E], while µf−1[f [K]] ≥ µK > 0. As f
and E are arbitrary, µ is perfect.

451D Proposition Let (X,Σ, µ) be a measure space, and E ∈ Σ; let µE be the subspace measure on E.
(a) If µ is compact, so is µE .
(b) If µ is countably compact, so is µE .
(c) If µ is perfect, so is µE .

proof (a)-(b) Let K be a (countably) compact class such that µ is inner regular with respect to K. Then
µE is inner regular with respect to K (412Oa), so is (countably) compact.

(c) Suppose that f : E → R is ΣE-measurable, where ΣE = Σ ∩ PE is the subspace σ-algebra, and
F ⊆ E is such that µF > 0. Set

D.H.Fremlin



4 Perfect measures, disintegrations and processes 451D

g(x) = arctan f(x) if x ∈ E,

= 2 if x ∈ X \ E.

Then g is Σ-measurable, so there is a compact set K ⊆ g[F ] such that µg−1[K] > 0. Set L = {tan t : t ∈ K};
then L ⊆ f [F ] is compact and f−1[L] = g−1[K] has non-zero measure. As f and F are arbitrary, µE is
perfect.

451E Proposition Let (X,Σ, µ) be a perfect measure space.
(a) If (Y,T, ν) is another measure space and f : X → Y is an inverse-measure-preserving function, then

ν is perfect.
(b) In particular, µ↾T is perfect for any σ-subalgebra T of Σ.

proof (a) Suppose that g : Y → R is T-measurable and F ∈ T is such that νF > 0. Then gf : X → R

is Σ-measurable and µf−1[F ] > 0. So there is a compact set K ⊆ (gf)[f−1[F ]] such that µ(gf)−1[K] > 0.
But now K ⊆ g[F ] and νg−1[K] > 0. As g and F are arbitrary, ν is perfect.

(b) Apply (a) to Y = X, ν = µ↾T and f the identity function.

Remark We shall see in 452R that there is a similar result for countably compact measures; but for compact
measures, there is not (342Xf, 451Xh).

451F Lemma (Sazonov 66) Let (X,Σ, µ) be a semi-finite measure space. Then the following are
equiveridical:

(i) µ is perfect;
(ii) µ↾T is compact for every countably generated σ-subalgebra T of Σ;
(iii) µ↾T is perfect for every countably generated σ-subalgebra T of Σ;
(iv) for every countable set E ⊆ Σ there is a σ-algebra T ⊇ E such that µ↾T is perfect.

proof (a)(i)⇒(ii) Suppose that µ is perfect, and that T is a countably generated σ-subalgebra of Σ. Let
〈En〉n∈N be a sequence in T which σ-generates it, and define f : X → R by setting f(x) =

∑∞
n=0 3−nχEn(x)

for every x ∈ X. Then f is measurable. Set K = {f−1[L] : L ⊆ f [X] is compact}. Then K is a compact
class. PPP If K′ ⊆ K is non-empty and has the finite intersection property, then L′ = {L : L ⊆ f [X] is
compact, f−1[L] ∈ K′} is also a non-empty family with the finite intersection property. So there is an
α ∈ ⋂L′; since α ∈ f [X], there is an x such that f(x) = α, and now x ∈ ⋂K′. As K′ is arbitrary, K is a
compact class. QQQ

Observe next that, for any n ∈ N,

En = {x : ∃ I ⊆ n,
∑
i∈I 3−i + 3−n ≤ f(x) <

∑
i∈I 3−i + 3−n+1}.

So T′ = {f−1[F ] : F ⊆ R} contains every En; as it is a σ-algebra of subsets of X, it includes T.
Now µ↾T is inner regular with respect to K. PPP If E ∈ T and µE > 0, there is a set F ⊆ R such

that E = f−1[F ]. Because f is Σ-measurable and µ is perfect, there is a compact set L ⊆ f [E] such that
µf−1[L] > 0. But now f−1[L] ∈ K ∩ T, and f−1[L] ⊆ E because L ⊆ F . Because K is closed under finite
unions, this is enough to show that µ↾T is inner regular with respect to K. QQQ

Thus K witnesses that µ↾T is a compact measure.

(b)(ii)⇒(i) Now suppose that µ↾T is compact for every countably generated σ-algebra T ⊆ Σ, that
f : X → R is a measurable function, and that µE > 0. Let F ⊆ E be a measurable set of non-zero finite
measure, and T the σ-algebra generated by {F}∪ {f−1[ ]−∞, q[ ] : q ∈ Q}, so that T is countably generated
and f is T-measurable. Because µ↾T is compact, so is the subspace measure (µ↾T)F (451Da); but this is
now perfect (342L or 451C), while F ∈ T and µF > 0, so there is a compact set L ⊆ f [F ] ⊆ f [E] such that
µf−1[L] > 0. As f and E are arbitrary, µ is perfect.

(c)(i)⇒(iv) is trivial.

(d)(iv)⇒(iii) If (iv) is true, and T is a countably generated σ-subalgebra of Σ, let E be a countable set
generating it. Then there is a σ-algebra T1 ⊇ E such that µ↾T1 is perfect. By 451Eb, µ↾T = (µ↾T1)↾T is
compact, therefore perfect.

Measure Theory



451H Perfect, compact and countably compact measures 5

(e)(iii)⇒(ii) If (iii) is true, and T is a countably generated σ-subalgebra of Σ, then µ↾T is perfect; but
as (i)⇒(ii), and T is a countably generated σ-subalgebra of itself, µ↾T is compact.

451G Proposition Let (X,Σ, µ) be a measure space. Let (X, Σ̂, µ̂) be its completion and (X, Σ̃, µ̃) its
c.l.d. version. Then

(a)(i) if µ is compact, so are µ̂ and µ̃;
(ii) if µ is semi-finite and either µ̂ or µ̃ is compact, then µ is compact.

(b)(i) If µ is countably compact, so are µ̂ and µ̃;
(ii) if µ is semi-finite and either µ̂ or µ̃ is countably compact, then µ is countably compact.

(c)(i) If µ is perfect, so are µ̂ and µ̃;
(ii) if µ̂ is perfect, then µ is perfect;
(iii) if µ is semi-finite and µ̃ is perfect, then µ is perfect.

proof (a)-(b) The arguments for µ̂ and µ̃ run very closely together. Write µ̌ for either of them, and Σ̌ for
its domain.

(i) If µ is inner regular with respect to K, so is µ̌ (412Ha). So if µ is (countably) compact, so is µ̌.

(ii) Now suppose that µ is semi-finite. The point is that if K is closed under countable intersections and
µ̌ is inner regular with respect to K, so is µ. PPP Suppose that E ∈ Σ and that µE > γ. Choose sequences
〈En〉n∈N in Σ and Kn in K inductively, as follows. E0 is to be such that E0 ⊆ E and γ < µE0 < ∞.
Given that γ < µEn < ∞, let Kn ∈ K ∩ Σ̌ be such that Kn ⊆ En and µ̌Kn > γ; now take En+1 ∈ Σ
such that En+1 ⊆ Kn and µEn+1 = µ̌Kn (212C or 213Fc), and continue. At the end of the induction,⋂
n∈NKn =

⋂
n∈NEn is a member of Σ ∩ K included in E and of measure at least γ. As E and γ are

arbitrary, µ is inner regular with respect to K. QQQ
It follows that if µ̌ is compact or countably compact, so is µ. PPP Let K be a (countably) compact class

such that µ̌ is inner regular with respect to K; by 451Aa or 451Ac, there is a (countably) compact class K∗,
including K, which is closed under countable intersections, so that µ is inner regular with respect to K∗,
and is itself (countably) compact. QQQ

(c)(i)(ααα) Let f : X → R be Σ̂-measurable, and E ∈ Σ̂ such that µ̂E > 0. Then there are a µ-conegligible
set F0 ∈ Σ such that f↾F0 is Σ-measurable (212Fa), and an F1 ∈ Σ such that F1 ⊆ E and µ̂(E \ F1) = 0.
Set F = F0 ∩ F1. By 451Dc, the subspace measure µF is perfect, while f↾F is ΣF -measurable; so there is
a compact set K ⊆ f [F ] such that µ(F ∩ f−1[K]) > 0. But now K ⊆ f [E] and µ̂f−1[K] > 0. As f and E
are arbitrary, µ̂ is perfect.

(βββ) Let f : X → R be Σ̃-measurable, and E ∈ Σ̃ such that µ̃E > 0. Then there is a set F ∈ Σ such
that µF < ∞ and µ̂(F ∩ E) is defined and greater than 0 (213D). In this case, µ̂ and µ̃ induce the same

subspace measure µ̂F on F . Accordingly f↾F is Σ̂-measurable. Because µ̂ is perfect (by (α) just above), so
is µ̂F (451Dc), and there is a compact set K ⊆ f [F ∩E] such that µ̂F (f↾F )−1[K] > 0. But now, of course,
K ⊆ f [E] and µ̃f−1[K] > 0. As f and E are arbitrary, µ̃ is perfect.

(ii) Suppose that µ̂ is perfect. Since µ = µ̂↾Σ, µ is perfect, by 451Eb.

(iii) Similarly, if µ̃ is perfect and µ is semi-finite, then µ = µ̃↾Σ, by 213Hc, so µ is perfect.

451H Lemma Let 〈Xi〉i∈I be a family of sets with product X. Suppose that Ki ⊆ PXi for each i ∈ I,
and set K = {π−1

i [K] : i ∈ I, K ∈ Ki}, where πi : X → Xi is the coordinate map for each i ∈ I. Then
(a) if every Ki is a compact class, so is K;
(b) if every Ki is a countably compact class, so is K.

proof (a) For each i ∈ I, let Ti be a compact topology on Xi such that every member of Ki is closed. Then
the product topology T on X is compact (3A3J), and every member of K is T-closed, so K is a compact
class.

(b) If 〈Kn〉n∈N is a sequence in K such that
⋂
k≤nKk 6= ∅ for every n ∈ N, then we must be able to express

each Kn as π−1
jn

[Ln], where jn ∈ I and Ln ∈ Kjn for every n. Now, for i ∈ I, Li = {Kjn : n ∈ N, jn = i} is

D.H.Fremlin



6 Perfect measures, disintegrations and processes 451H

a countable subset of Ki, and any finite subfamily of Li has non-empty intersection. Since K0 6= ∅, Xi 6= ∅;
so, whether Li is empty or not, Xi ∩

⋂Li is non-empty. Accordingly
⋂
k∈NKk =

∏
i∈I(Xi ∩

⋂Li)
is not empty. As 〈Kn〉n∈N is arbitrary, K is countably compact.

451I Theorem Let (X,Σ, µ) and (Y,T, ν) be measure spaces, with c.l.d. product (X × Y,Λ, λ).
(a) If µ and ν are compact, so is λ.
(b) If µ and ν are countably compact, so is λ.
(c) If µ and ν are perfect, so is λ.

proof (a)-(b) Let K ⊆ PX, L ⊆ PY be (countably) compact classes such that µ is inner regular with
respect to K and ν is inner regular with respect to L. Set M0 = {K×Y : K ∈ K}∪{X ×L : L ∈ L}. Then
M0 is (countably) compact, by 451H. By 451Aa/451Ac, there is a (countably) compact class M ⊇ M0

which is closed under finite unions and countable intersections. By 412R, λ is inner regular with respect to
M, so is (countably) compact.

(c)(i) Let f : X × Y → R be Λ-measurable, and V ∈ Λ a set of positive measure. Then there are G ∈ Σ,
H ∈ T such that µG, νH are both finite and λ(V ∩ (G×H)) > 0. Recall that the subspace measure λG×H
on G×H is just the product of the subspace measures µG and µH (251P(ii-α)), and is the completion of its
restriction θ to the σ-algebra ΣG⊗̂TH generated by {E ×F : E ∈ ΣG, F ∈ TH}, where ΣG and TH are the
subspace σ-algebras on G, H respectively, the domains of µG and µH (251K). Next, for any W ∈ ΣG⊗̂TH ,
there are countable families E ⊆ ΣG, F ⊆ TH such that W belongs to the σ-algebra of subsets of G × H
generated by {E × F : E ∈ E , F ∈ F} (331Gd).

(ii) The point is that θ is perfect. PPP Let Λ′ be any countably generated σ-subalgebra of ΣG⊗̂TH ; let
〈Wn〉n∈N be a sequence in Λ′ generating it. Then there are countable families E ⊆ ΣG, F ⊆ TH such that
every Wn belongs to the σ-algebra generated by {E × F : E ∈ E , F ∈ F}. Let Σ′, T′ be the σ-algebras of
subsets of G and H generated by E and F respectively; then every Wn belongs to Σ′⊗̂T′, so Λ′ ⊆ Σ′⊗̂T′.
Let λ′ be the product of the measures µ↾Σ′ = µG↾Σ′ and ν↾T′. Then λ′ is the completion of its restriction
to Σ′⊗̂T′.

Now trace through the results above. µG and νH are perfect (451Dc), so µG↾Σ′ and νH↾T′ are compact
(451F), so λ′ is compact ((a) of this theorem), so λ′ is perfect (342L or 451C again). But θ must agree with
λ′ on Λ′, by Fubini’s theorem (252D), or otherwise, so θ↾Λ′ is a restriction of λ′, and is perfect (451Eb).

Thus θ↾Λ′ is perfect for every countably generated σ-subalgebra Λ′ of dom θ. By 451F, θ is perfect. QQQ

(iii) By 451G(c-i), λG×H is perfect. Now f↾G × H is measurable, and λG×H(V ∩ (G × H)) > 0, so
there is a compact set K ⊆ f [V ∩ (G×H)] such that λG×H((G×H)∩f−1[K]) > 0; in which case K ⊆ f [V ]
and λf−1[K] > 0.

As f and V are arbitary, λ is perfect.

451J Theorem Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, with product (X,Σ, µ).
(a) If every µi is compact, so is µ.
(b) (Marczewski 53) If every µi is countably compact, so is µ.
(c) If every µi is perfect, so is µ.

proof The same strategy as in 451I is again effective.

(a)-(b) For each i ∈ I, let Ki ⊆ PXi be a (countably) compact class such that µi is inner regular with
respect to Ki. Set M0 = {π−1

i [K] : i ∈ I, K ∈ Ki}, so that M0 is (countably) compact. Let M ⊇ M0 be
a (countably) compact class which is closed under finite unions and countable intersections. By 412T, µ is
inner regular with respect to M, so is (countably) compact.

(c) Let Λ′ be a countably generated σ-subalgebra of
⊗̂

i∈IΣi, the σ-algebra of subsets of X generated by

the sets {x : x(i) ∈ E} for i ∈ I and E ∈ Σi. Then λ↾Λ′ is perfect. PPP For every W ∈ ⊗̂
i∈IΣi, we must be

able to find countable subsets Ei of Σi such that W is in the σ-algebra generated by {π−1
i [E] : i ∈ I, E ∈ Σi};

so there are in fact countable sets Ei ⊆ Σi such that the σ-algebra generated by {π−1
i [E] : i ∈ I, E ∈ Σi}

Measure Theory



451K Perfect, compact and countably compact measures 7

includes Λ′. Let Ti be the σ-subalgebra of Σi generated by Ei, so that µi↾Ti is compact. Let λ′ be the
product of 〈µi↾Ti〉i∈I ; then λ′ is compact, by (a) above, therefore perfect. Now λ is an extension of λ′, by

254G or otherwise, so λ′ is an extension of λ↾Λ′, and λ↾Λ′ is perfect. QQQ As Λ′ is arbitrary, λ↾
⊗̂

i∈IΣi is
perfect, and its completion λ (254Ff) also is perfect.

Remark This theorem is generalized in 454Ab.

451K The following result is interesting because it can be reached from an unexpectedly weak hypothesis;
it will be useful in §455.

Proposition Let 〈Xi〉i∈I be a family of sets with product X, and Σi a σ-algebra of subsets of Xi for each

i. Let λ be a perfect totally finite measure with domain
⊗̂

i∈IΣi. Set πJ(x) = x↾J for x ∈ X and J ⊆ I.

(a) Let K be the set {V : V ⊆ X, πJ [V ] ∈ ⊗̂
i∈JΣi for every J ⊆ I}. Then λ is inner regular with respect

to K.
(b) Let λ̂ be the completion of λ.

(i) For any J ⊆ I, the completion of the image measure λπ−1
J on

∏
i∈J Xi is the image measure λ̂π−1

J .

(ii) If W is measured by λ̂ and W is determined by coordinates in J ⊆ I, then there is a V ∈ ⊗̂
i∈IΣi

such that V ⊆W , V is determined by coordinates in J and W \ V is λ-negligible.

proof (a)(i) Take W ∈ ⊗̂
i∈IΣi. Then we can find a family 〈Ti〉i∈I such that Ti is a countably generated

σ-subalgebra of Σi for each i and W ∈ ⊗̂
i∈ITi. For each i ∈ I and E ∈ Ti set λiE = λ{x : x ∈ X,

x(i) ∈ E}; then λi is perfect (451Ea). Because Ti is countably generated, λi is compact (451F); let Ki be
a compact class such that λi is inner regular with respect to Ki. By 342D, we may suppose that Ki is the
family of closed sets for a compact topology Ti on Xi.

(ii) Let V be the family of all sets V ⊆ X expressible in the form

V =
⋂
n∈N

⋃
i∈Jn{x : x ∈ X, x(i) ∈ Kni}

where 〈Jn〉n∈N is a sequence of finite subsets of I and Kni ∈ Ki ∩ Ti whenever n ∈ N and i ∈ Jn. Given V
expressed in this form, set Vn =

⋂
m≤n

⋃
i∈Jm{x : x(i) ∈ Kmi} for each n. Then πJ [V ] =

⋂
n∈N πJ [Vn] for

every J ⊆ I. PPP The product topology T on X is compact, and all the Vn are T-closed. If z ∈ ⋂
n∈N πJ [Vn],

then for each n ∈ N there is an xn ∈ Vn such that πJ(x) = z. Let x be a cluster point of 〈xn〉n∈N. The
topologies are not Hausdorff, so we do not know at once that πJ(x) = z; but if we define x′ by saying that

x′(i) = z(i) if i ∈ J,

= x(i) if i ∈ I \ J,
then any neighbourhood U of x′ must include a neighbourhood of the form {y : y(i) ∈ Ui for i ∈ K} where
K ⊆ I is finite and Ui is a neighbourhood of x′(i) for each i ∈ K. In this case, {y : y ∈ Ui for i ∈ K \ J} is
a neighbourhood of x, so

{n : xn ∈ U} ⊇ {n : xn(i) ∈ Ui for i ∈ K \ J}
is infinite. Thus x′ also is a cluster point of 〈xn〉n∈N, while πJ (x′) = z. Since x′ ∈ {xm : m ≥ n} ⊆ Vn for
every n, x ∈ V , and z ∈ πJ [V ]. Thus

⋂
n∈N πJ [Vn] ⊆ πJ [V ]. Since surely πJ [V ] ⊆ ⋂

n∈N πJ [Vn], we have
equality. QQQ

It follows that V ∈ K. PPP If J ⊆ I and n ∈ N, then Vn belongs to the algebra of subsets of X generated by
sets of the form {x : x(i) ∈ H} where i ∈ I and H ∈ Σi, which we can identify with the free product

⊗
i∈I Σi

(315Ma2). This means that Vn can be expressed as a finite union of cylinder sets of the form C =
∏
i∈I Hi

where Hi ∈ Σi for every i and {i : Hi 6= Xi} is finite (315Kb3). But in this case πJ [C] is either empty or∏
i∈J Hi, and in either case belongs to

⊗̂
i∈JΣi. So πJ [Vn], being a finite union of such sets, also belongs

to
⊗̂

i∈JΣi. As this is true for every n ∈ N, πJ [V ] =
⋂
n∈N πJ [Vn] belongs to

⊗̂
i∈JΣi. As J is arbitrary,

V ∈ K. QQQ

2Formerly 315L.
3Formerly 315J.
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8 Perfect measures, disintegrations and processes 451K

(iii) Observe next that V is closed under finite unions. PPP If V ′, V ′′ ∈ V, express them as

V ′ =
⋂
n∈N

⋃
i∈J ′

n
{x : x(i) ∈ K ′

ni}

V ′′ =
⋂
n∈N

⋃
i∈J ′′

n
{x : x(i) ∈ K ′′

ni}
where, for each n, J ′

n, J ′′
n ⊆ I are finite, K ′

ni ∈ Kni ∩ Σi for i ∈ J ′
n and K ′′

ni ∈ Kni ∩ Σi for i ∈ J ′′
n . For m,

n ∈ N, set Jmn = J ′
m ∪ J ′′

n and

Kmni = K ′
mi ∪K ′′

ni if i ∈ J ′
m ∩ J ′′

n ,

= K ′
mi if i ∈ J ′

m \ J ′′
n ,

= K ′′
ni if i ∈ J ′′

n \ J ′′
m.

Then

V ′ ∩ V ′′ =
⋂
m,n∈N

⋃
i∈Jmn

{x : x(i) ∈ Kmni} ∈ V. QQQ

We see also, immediately from its definition, that V is closed under countable intersections.

(iv) Now consider the family A of sets of the form {x : x(i) ∈ E} where i ∈ I and E ∈ Ti. If A ∈ A is
expressed in this form, then

sup{λV : V ∈ V, V ⊆ A} ≥ sup{λiK : K ∈ Ki ∩ Ti, K ⊆ E} = λiE = λA.

By 412C, λ↾
⊗̂

i∈ITi is inner regular with respect to V. In particular, returning to our original set W ,

µW = sup{λV : V ∈ V, V ⊆W} = sup{λK : K ∈ K, K ⊆W}.

As W is arbitrary, λ is inner regular with respect to K.

(b)(i) Write λJ = λπ−1
J and λ̂J for its completion. Since πJ : X → ∏

i∈J XJ is inverse-measure-

preserving for λ and λJ , it is inverse-measure-preserving for λ̂ and λ̂J (234Ba4), that is, λ̂π−1
J extends λ̂J .

Now suppose that V is measured by λ̂π−1
J . Since λ is inner regular with respect to K, so is λ̂ (412Ha again),

so

λ̂π−1
J [V ] = sup{λK : K ∈ K, K ⊆ π−1

J [V ]}
≤ sup{λπ−1

J [πJ [K]] : K ∈ K, K ⊆ π−1
J [V ]}

≤ sup{λπ−1
J [F ] : F ∈

⊗̂
i∈J

Σi, F ⊆ V }.

As V is arbitrary, λ̂π−1
J is inner regular with respect to

⊗̂
i∈JΣi. By 412Mb (or otherwise), λ̂π−1

J = λ̂J .

(ii) Because π−1
J [πJ [W ]] = W , πJ [W ] is measured by λ̂π−1

J = λ̂J . So there is a V ′ ⊆ πJ [W ], measured
by λJ , such that

0 = λ̂J(πJ [W ] \ V ′) = λ̂(W \ π−1
J [V ′]),

and we can take V = π−1
J [V ′].

*451L The next result is sometimes useful, as a fractionally weaker sufficient condition for compactness
or countable compactness of a measure.

Proposition (Borodulin-Nadzieja & Plebanek 05) Let (X,Σ, µ) be a strictly localizable measure
space. Let us say that a family E ⊆ Σ is µ-centered if µ(

⋂ E0) > 0 for every non-empty finite E0 ⊆ E .
(i) Suppose that µ is inner regular with respect to some K ⊆ Σ such that every µ-centered subset of K

has non-empty intersection. Then µ is compact.
(ii) Suppose that µ is inner regular with respect to some K ⊆ Σ such that every countable µ-centered

subset of K has non-empty intersection. Then µ is countably compact.

4Formerly 235Hc.
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451P Perfect, compact and countably compact measures 9

proof I take the two arguments together, as follows. The case µX = 0 is trivial; suppose henceforth that
µX > 0. Let µ̂ be the completion of µ. Then µ̂ is still strictly localizable (212Gb) so has a lifting φ : Σ → Σ
(341K). Let K1 be the set of all those K ∈ Σ for which there is some sequence 〈Kn〉n∈N in K such that

K =
⋂
n∈NKn ⊆ ⋂

n∈N φKn.

Then µ is inner regular with respect to K1. PPP Suppose that E ∈ Σ and 0 ≤ γ < µE. Because µ is semi-finite,
there is an F ∈ Σ such that F ⊆ E and γ < µF < ∞. Choose 〈Kn〉n∈N in K inductively, as follows. K0

is to be such that K0 ⊆ F and µK0 > γ. Given that µKn > γ, then µ̂(Kn ∩ φKn) = µ̂Kn > γ; also µ̂ is
inner regular with respect to K (412Ha once more), so there is a Kn+1 ∈ K such that Kn+1 ⊆ Kn ∩ φKn

and µKn+1 = µ̂Kn+1 > γ. Continue. At the end of the induction,

K =
⋂
n∈NKn ⊆ ⋂

n∈N φKn

belongs to K1, is included in E and has measure at least γ. QQQ
Now K1 is (countably) compact. PPP Let K′ ⊆ K1 be a [countable] set with the finite intersection property.

For each K ∈ K′, let EK ⊆ K be a countable set such that K =
⋂ EK ⊆ ⋂{φE : E ∈ EK}; set E =

⋃
K∈K′ EK .

If E0 ⊆ E is finite and not empty, then φ(
⋂ E0) =

⋂
E∈E0

φE includes the intersection of a finite subfamily

of K′, so is not empty, and µ(
⋂ E0) = µ̂(

⋂ E0) is non-zero. Thus E ⊆ K is a [countable] µ-centered set and
must have non-empty intersection. But now

⋂K′ =
⋂ E is non-empty. As K′ is arbitrary, K1 is (countably)

compact. QQQ
So K1 witnesses that µ is (countably) compact, as claimed.

451M The following is one of the basic ways in which we can find ourselves with a compact measure.

Proposition Let (X,Σ) be a standard Borel space. Then any semi-finite measure µ with domain Σ is
compact, therefore perfect.

proof If T is a Polish topology on X with respect to which Σ is the Borel σ-algebra, then µ is inner regular
with respect to the family K of T-compact sets (433Ca), which is a compact class.

451N Proposition Let (X,Σ, µ) be a perfect measure space and T a T0 topology on X with a countable
network consisting of measurable sets. (For instance, µ might be a topological measure on a regular space
with a countable network (4A2Ng), or a second-countable space. In particular, X might be a separable
metrizable space.) Then µ is inner regular with respect to the compact sets.

proof This is a refinement of 343K. Let 〈En〉n∈N be a sequence in Σ running over a network for T. Define
g : X → R by setting g =

∑∞
n=0 3−nχHn (cf. 343E). Then g is measurable, because every χEn is. Writing

αI =
∑
i∈I 3−i for I ⊆ N, and

Hn =
⋃
I⊆n

]
αI + 1

23−n, αI + 3−n+1
[
,

we see that En = g−1[Hn] for each n ∈ N. This shows that g is injective, because if x, y are distinct points
in X there is an open set containing one but not the other, and now there is an n ∈ N such that En contains
that one and not the other, so that just one of g(x), g(y) belongs to Hn. Also g−1 : g[X] → X is continuous,
since (g−1)−1[En] = g[En] = Hn ∩ g[X] is relatively open in g[X] for every n ∈ N (4A2B(a-ii)).

Now suppose that E ∈ Σ and µE > 0. Then there is a compact set K ⊆ g[E] such that µg−1[K] > 0.
But as g is injective, g−1[K] ⊆ E, and as g−1 is continuous, g−1[K] is compact. By 412B, this is enough to
show that µ is inner regular with respect to the compact sets.

451O Corollary Let (X,Σ, µ) be a complete perfect measure space, Y a Hausdorff space with a countable
network consisting of Borel sets and f : X → Y a measurable function. If the image measure µf−1 is locally
finite, it is a Radon measure.

proof Because f is measurable, µf−1 is a topological measure; by 451Ea, it is perfect; by 451N, it is tight;
and it is complete because µ is. Because Y has a countable network, it is Lindelöf (4A2Nb), and µf−1 is
σ-finite (411Ge), therefore locally determined. So it is a Radon measure.

451P Corollary Let (X,Σ, µ) be a perfect measure space, Y a separable metrizable space, and f : X → Y
a measurable function.

D.H.Fremlin



10 Perfect measures, disintegrations and processes 451P

(a) If E ∈ Σ and γ < µE, there is a compact set K ⊆ f [E] such that µ(E ∩ f−1[K]) ≥ γ.
(b) If ν = µf−1 is the image measure, then µ∗f−1[B] = ν∗B for every B ⊆ Y .
(c) If moreover µ is σ-finite, then µ∗f−1[B] = ν∗B for every B ⊆ Y .

proof (a) Consider the subspace measure µE , the measurable function f↾E from E to the separable metriz-
able space f [E], and the image measure ν ′ = µE(f↾E)−1 on f [E]. By 451Dc, 451Ea and 451N, this is tight,
while ν ′f [E] = µE; so there is a compact set K ⊆ f [E] such that ν ′K ≥ γ, and this serves.

(b)(i) If F ∈ dom ν and F ⊆ B, then

νF = µf−1[F ] ≤ µ∗f−1[B];

as F is arbitrary, µ∗f−1[B] ≥ ν∗B. (ii) If E ∈ Σ and E ⊆ f−1[B] and γ < µE, then (a) tells us that there
is a compact set K ⊆ f [E] such that µ(E ∩ f−1[K]) ≥ γ, in which case

ν∗B ≥ νK ≥ γ.

As E and γ are arbitrary, ν∗B ≥ µ∗f−1[B].

(c)(i) If F ∈ dom ν and F ⊇ B, then

νF = µf−1[F ] ≥ µ∗f−1[B];

as F is arbitrary, µ∗f−1[B] ≤ ν∗B. (ii) If µ∗f−1[B] = ∞, then of course µ∗f−1[B] = ν∗B. Otherwise,
because µ is σ-finite, we can find a disjoint sequence 〈En〉n∈N of subsets of X of finite measure, covering X,
such that E0 ⊇ f−1[B] and µE0 = µ∗f−1[B]. Let ǫ > 0. For each n ≥ 1, (a) tells us that there is a compact
set Kn ⊆ f [En] such that µf−1[En \Kn] ≤ 2−nǫ. Set H = Y \⋃n≥1Kn; then νH ≤ µE + ǫ, and B ⊆ H.
So

ν∗B ≤ νH ≤ µE + ǫ = µ∗f−1[B] + ǫ.

As ǫ is arbitrary, ν∗B ≤ µ∗f−1[B].

451Q I turn now to a remarkable extension of the idea above to general metric spaces Y .

Lemma Let (X,Σ, µ) be a semi-finite compact measure space, and 〈Ei〉i∈I a disjoint family of subsets of
X such that

⋃
i∈J Ei ∈ Σ for every J ⊆ I. Then µ(

⋃
i∈I Ei) =

∑
i∈I µEi.

proof (a) To begin with (down to the end of part (d) of the proof) assume that µ is complete and totally
finite and that every Ei is negligible. Set X0 =

⋃
i∈I Ei, and let µ0 be the subspace measure on X0.

Define f : X0 → I by setting f(x) = i if i ∈ I, x ∈ Ei, and let ν be the image measure µ0f
−1, so that

νJ = µ(
⋃
i∈J Ei) for J ⊆ I; then (I,PI, ν) is a totally finite measure space.

(b) ν is purely atomic. PPP??? Suppose, if possible, otherwise; that there is a K ⊆ I such that νK > 0
and the subspace measure ν↾PK is atomless. In this case there is an inverse-measure-preserving function
g : K → [0, γ], where γ = νK and [0, γ] is given Lebesgue measure (343Cc); write λ for Lebesgue measure
on [0, γ]. Set X1 = f−1[K] =

⋃
i∈K Ei and let µ1 be the subspace measure on X1. Now gf : X1 → [0, γ]

is inverse-measure-preserving for µ1 and λ. Because µ is compact, so is µ1 (451Da), so µ1 is perfect (342L
or 451C once more). By 451O, the image measure λ1 = µ1(gf)−1 is a Radon measure. But λ1 must be an
extension of Lebesgue measure λ, because gf is inverse-measure-preserving for µ1 and λ, and λ1 and λ must
agree on all compact sets. By 416E(b-ii), λ1 and λ are identical, and, in particular, have the same domains.
Now for any set A ⊆ [0, γ], (gf)−1[A] =

⋃
i∈J Ei ∈ Σ, where J = g−1[A] ⊆ I; so A ∈ domλ1 = domλ. But

we know from 134D or 419I that not every subset of [0, γ] can be Lebesgue measurable. XXXQQQ

(c) But ν is also atomless. PPP??? Suppose, if possible, that M ⊆ I is an atom for ν. Set γ = νM =
µ(
⋃
i∈M Ei),

F = {F : F ⊆M, ν(M \ F ) = 0}.

Because νF is defined for every F ⊆ M , and M is an atom, F is an ultrafilter on M ; and because ν is
countably additive, the intersection of any sequence in F belongs to F , that is, F is ω1-complete (definition:
4A1Ib). Also F must be non-principal, because we are supposing that ν{i} = 0 for every i ∈M . By 4A1K,
there are a regular uncountable cardinal κ and a function h : M → κ such that the image filter H = h[[F ]]
is normal.

Measure Theory
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For each ξ < κ, κ \ ξ ∈ H, so

Gξ = (hf)−1[κ \ ξ] =
⋃{Ei : h(i) ≥ ξ} ∈ Σ, µGξ = νh−1[κ \ ξ] = γ > 0.

At this point I apply the full strength of the hypothesis that µ is a compact measure. Let K ⊆ Σ be a
compact class such that µ is inner regular with respect to K, and for each ξ < κ choose Kξ ∈ K such that
Kξ ⊆ Gξ and µKξ ≥ 1

2γ. Let S ⊆ [κ]<ω be the family of those finite sets L ⊆ κ such that
⋂
ξ∈LKξ = ∅.

Because H is a normal ultrafilter, there is an H ∈ H such that, for every n ∈ N, [H]n is either a subset of
S or disjoint from S (4A1L).

If we look at {Gξ : ξ ∈ H}, we see that it has empty intersection, because h(f(x)) ≥ ξ for every x ∈ Gξ,
and supH = κ. So

⋂
ξ∈H Kξ = ∅. Because all the Kξ belong to the compact class K, there must be a finite

set L0 ⊆ H such that
⋂
ξ∈L0

Kξ = ∅, that is, L0 ∈ S. But this means that [H]n ∩ S 6= ∅, where n = #(L0),

so that [H]n ⊆ S, by the choice of H. However, H is surely infinite, so we can find distinct ξ0, . . . , ξ2n in
H. If we now look at Kξ0 , . . . ,Kξ2n , we see that #({i : i ≤ 2n, x ∈ Kξi}) < n for every x ∈ X, so

∑2n
i=0 χKξi ≤ (n− 1)χG0,

∑2n
i=0

∫
χKξi ≥

1

2
γ(2n+ 1),

which is impossible, because µG0 = γ. XXXQQQ

(d) Thus ν is simultaneously atomless and purely atomic, which means that νI = 0, that is, that
µ(
⋃
i∈I Ei) = 0 =

∑
i∈I µEi.

(e) Now let us return to the general case. Of course
∑
i∈I µEi = supJ⊆I is finite

∑
i∈J µEi ≤ µ(

⋃
i∈I Ei).

??? Suppose, if possible, that
∑
i∈I µEi < µ(

⋃
i∈I Ei). Because µ is semi-finite, there is a set F ⊆ ⋃

i∈I Ei
such that

∑
i∈I µEi < µF < ∞. Set L = {i : i ∈ I, µEi > 0}; then L must be countable, so µ(

⋃
i∈J Ei) =∑

i∈J µEi < µF , and µG > 0, where G = F \ ⋃
i∈LEi. Set E′

i = G ∩ Ei for every i ∈ I, and let µ̂G
be the completion of the subspace measure µG on G. Then µ̂G is compact (451Da, 451G(a-i)) and totally
finite, µ̂GE

′
i = 0 for every i ∈ I,

⋃
i∈J E

′
i = G ∩ ⋃

i∈J Ei is measured by µ̂G for every J ⊆ I, every E′
i is

µ̂G-negligible, but µ̂G(
⋃
i∈I E

′
i) = µG is not zero; which contradicts the result of (a)-(d) above. XXX

So
∑
i∈I µEi = µ(

⋃
i∈I Ei), as required.

451R Lemma Let (X,Σ, µ) be a totally finite compact measure space, Y a metrizable space, and
f : X → Y a measurable function. Then there is a closed separable subspace Y0 of Y such that f−1[Y \ Y0]
is negligible.

proof (a) (Cf. 438D.) By 4A2L(g-ii), there is a σ-disjoint base U for the topology of Y . Express U as⋃
n∈N Un where Un is disjoint for each n. Then 〈f−1[U ]〉U∈Un

is disjoint, so
∑
U∈Un

µf−1[U ] ≤ µX is finite,

and Vn = {V : V ∈ Un, µf−1[V ] > 0} is countable for each n.

If W ⊆ Un \ Vn, then

µ(
⋃
U∈W f−1[U ]) = f−1[

⋃W]

is measurable. By 451Q,

µf−1[
⋃

(Un \ Vn)] = µ(
⋃
U∈Un\Vn

f−1[U ]) =
∑
U∈Un\Vn

µf−1[U ] = 0.

Set

V =
⋃
n∈N Vn, Y0 = Y \⋃(U \ V).

Then Y0 is closed, and

f−1[Y \ Y0] ⊆ ⋃
n∈N f

−1[
⋃

(Un \ Vn)]

is negligible, so f−1[Y0] is conegligible. On the other hand, Y0 is separable. PPP Because U is a base for the
topology of X, {Y ∩ U : U ∈ U} is a base for the topology of Y (4A2B(a-vi)). But this is included in the
countable family {Y ∩ V : V ∈ V} ∪ {∅}, so Y is second-countable, therefore separable (4A2Oc). QQQ

So we have found an appropriate Y0.
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451S Proposition Let (X,Σ, µ) be a semi-finite compact measure space, Y a metrizable space and
f : X → Y a measurable function.

(a) The image measure ν = µf−1 is tight.
(b) If ν is locally finite and µ is complete and locally determined, ν is a Radon measure.

proof (a) Take F ⊆ Y such that νF > 0. Then µf−1[F ] > 0. Because µ is semi-finite, there is an E ∈ Σ
such that E ⊆ f−1[F ] and 0 < µE <∞.

Consider the subspace measure µE and the restriction f↾E. µE is a totally finite compact measure
and f↾E is measurable, so 451R tells us that there is a closed separable subspace Y0 ⊆ Y such that
µ(E \ f−1[Y0]) = 0. Set E1 = E ∩ f−1[Y0], so that µE1 > 0. Again, the subspace measure µE1

is a totally
finite compact measure, therefore perfect, while f [E1] ⊆ Y0. So the image measure µE1

(f↾E1)−1 on Y0 is
perfect (451Ea), therefore tight (451N), and there is a compact set K ⊆ Y0∩F such that νK = µf−1[K] > 0.
By 412B, this is enough to show that ν is tight.

(b) ν is complete because µ is. Now suppose that H ⊆ Y is such that H ∩ F belongs to the domain T
of ν whenever µF < ∞. In this case µ is inner regular with respect to E = {E : E ∈ Σ, E ∩ f−1[H] ∈ Σ}.
PPP Suppose that E ∈ Σ and that µE > 0. Applying (a) to µE and f↾E, there is a compact set K ⊆ f [E]
such that µf−1[K] > 0. Now νK <∞, because ν is locally finite, so K ∩H ∈ T and f−1[K] ∩ f−1[H] ∈ Σ.
Thus f−1[K] is a non-negligible member of E included in E. Since E is closed under finite unions, this is
enough to show that µ is inner regular with respect to E . QQQ

Accordingly f−1[H] ∈ Σ, by 412Ja. As H is arbitrary, ν is locally determined, therefore a Radon measure.

451T Theorem (Fremlin 81, Koumoullis & Prikry 83) Let (X,T,Σ, µ) be a Radon measure space
and Y a metrizable space. Then a function f : X → Y is measurable iff it is almost continuous.

proof If f is almost continuous it is surely measurable, by 418E. Now suppose that f is measurable and
that E ∈ Σ and γ < µE. Let E0 ⊆ E be such that E0 ∈ Σ and γ < µE0 < ∞. Applying 451R to the
subspace measure µE0

and the restricted function f↾E0, we see that there is a closed separable subspace
Y0 of Y such that µ(E0 \ f−1[Y0]) = 0. Set E1 = E0 ∩ f−1[Y0]; then µE1 > γ. Applying 418J to µE1

and
f↾E1 : E1 → Y0, we can find a measurable set F ⊆ E1 such that f↾F is continuous and µF ≥ γ. As E and
γ are arbitrary, f is almost continuous.

451U Example (Vinokurov & Makhkamov 73, Musia l 76) There is a perfect completion regular
quasi-Radon probability space which is not countably compact.

proof (a) Let Ω be the set of non-zero countable limit ordinals. For each ξ ∈ Ω, let 〈θξ(n)〉n∈N be a strictly
increasing sequence in ξ with supremum ξ, and set

Qξ = {x : x ∈ {0, 1}ω1 , x(θξ(n)) = 0 for every n ∈ N}.

Write

X = {0, 1}ω1 \⋃ξ∈ΩQξ.

Let νω1
be the usual measure on {0, 1}ω1 , and Tω1

its domain; let µ be the subspace measure on X, and
Σ = domµ.

(b) It is convenient to note immediately the following fact: for every countable set J ⊆ ω1, the set πJ [X]
is conegligible in {0, 1}J , where πJ (x) = x↾J for x ∈ {0, 1}ω1 . PPP Set

A = {ξ : ξ ∈ Ω, θξ(n) ∈ J for every n ∈ N}.

Then A is countable, because ξ ≤ sup J for every ξ ∈ A. So

D =
⋃
ξ∈A{y : y ∈ {0, 1}J , y(θξ(n)) = 0 for every n ∈ N}

is negligible in {0, 1}J , being a countable union of negligible sets. If y ∈ {0, 1}J \D, define x ∈ {0, 1}ω1 by
setting x(η) = y(η) for η ∈ J , x(η) = 1 for η ∈ ω1 \ J . Then x /∈ Qξ for any ξ ∈ A, because x↾J = y↾J ,
while x /∈ Qξ for any ξ ∈ Ω \ A by the definition of A. So x ∈ X. As y is arbitrary, πJ [X] ⊇ {0, 1}J \D is
conegligible. QQQ
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451U Perfect, compact and countably compact measures 13

(c) µ is a completion regular quasi-Radon measure because νω1
is (415E, 415B, 412Pd). Also µX = 1. PPP

Let F ∈ Tω1
be a measurable envelope for X. Then there is a countable J ⊆ ω1 such that νJπJ [F ] is defined

and equal to νω1
F (254Od), where νJ is the usual measure on {0, 1}J . But we know that νJπJ [X] = 1, so

µX = ν∗ω1
X = νω1

F = νJπJF = 1. QQQ

(d) µ is perfect. PPP Take E ∈ Σ such that µE > 0, and a measurable function f : E → R. Set

f1(x) =
f(x)

1+|f(x)| for x ∈ E, 1 for x ∈ X \ E; then f1 : X → R is measurable. Let g : {0, 1}ω1 → R

be a measurable function extending f1. By 254Pb, there are a countable set J ⊆ ω1, a conegligible set
W ⊆ {0, 1}J , and a measurable h : W → R such that g extends hπJ . By (b), W ′ = W ∩ πJ [X] is
conegligible, while W ′′ = {z : z ∈ W ′, h1(z) < 1} is measurable and not negligible. Because W ′′ is a
non-negligible measurable subset of the perfect measure space {0, 1}J , there is a compact set K1 ⊆ h[W ′′]

such that νJh
−1[K1] > 0. Set K = { t

1−|t| : t ∈ K1}; then K is compact, and we have

K1 ⊆ h[W ′′] = h[W ∩ πJ [X]] ∩ ]−∞, 1[ ⊆ g[X] ∩ ]−∞, 1[ = f1[X] ∩ ]−∞, 1[ = f1[E],

K ⊆ f [E],

while f1, g and hπJ all agree on the µ-conegligible set X ∩ π−1
J [W ], so

µf−1[K] = µf−1
1 [K1] = µ(X ∩ (hπJ )−1[K1])

= ν∗ω1
(X ∩ (hπJ )−1[K1]) = νω1

(hπJ)−1[K1]

(because ν∗ω1
X = 1 and (hπJ)−1[K1] is measurable)

= νJh
−1[K1] > 0.

As f is arbitrary, µ is perfect. QQQ

(e) ??? Suppose, if possible, that µ is countably compact. Let K be a countably compact class of sets such
that µ is inner regular with respect to K; we may suppose that K ⊆ Σ.

(i) For I ⊆ ω1 set

U(I) = {x : x ∈ X, x(η) = 0 for every η ∈ I}.

It will be helpful to know that if E ∈ Σ and µE > 0, there is a γ < ω1 such that µ(E ∩ U(I)) > 0 for
every finite I ⊆ ω1 \ γ. PPP Express E as X ∩ F where F ∈ Tω1

. Let J ⊆ ω1 be a countable set such that
νω1

(F ′ \ F ) = 0, where F ′ = π−1
J [πJ [F ]] (254Od again), and γ < ω1 such that J ⊆ γ. If I ⊆ ω1 \ γ is finite,

then I ∩ J = ∅, while U(I) is determined by coordinates in I and F ′ is determined by coordinates in J ; so

µ(E ∩ U(I)) = ν∗ω1
(X ∩ F ∩ U(I)) = νω1

(F ∩ U(I))

= νω1
(F ′ ∩ U(I)) = νω1

F ′ · νω1
U(I) = µE · νω1

U(I) > 0.

Thus this γ serves. QQQ

(ii) Let M be the family of countable subsets M of ω1 ∪ K such that

(α) if I ⊆M ∩ ω1 is finite there is a K ∈M ∩ K such that K ⊆ U(I) and µK > 0;

(β) if K ∈M ∩K, I ⊆M ∩ω1 is finite and µ(K ∩U(I)) > 0, then there is a K ′ ∈M ∩K such
that K ′ ⊆ K ∩ U(I) and µK ′ > 0;

(γ) if γ ∈M ∩ ω1 then γ ⊆M ;

(δ) if K ∈M ∩K and µK > 0 then there is a γ ∈M ∩ω1 such that µ(K ∩U(I)) > 0 whenever
I ⊆ ω1 \ γ is finite.

Then every countable M ⊆ ω1 ∪ K is included in some member M ′ of M.
PPP Choose 〈Nn〉n∈N as follows. N0 = M . Given that Nn is a countable subset of ω1 ∪ K then let

Nn+1 ⊆ ω1 ∪ K be a countable set such that

(α) if I ⊆ Nn ∩ ω1 is finite there is a K ∈ Nn+1 ∩ K such that K ⊆ U(I) and µK > 0;
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14 Perfect measures, disintegrations and processes 451U

(β) if K ∈ Nn ∩K, I ⊆ Nn ∩ ω1 is finite and µ(K ∩U(I)) > 0, then there is a K ′ ∈ Nn+1 ∩K
such that K ′ ⊆ K ∩ U(I) and µK ′ > 0;

(γ) if γ ∈ Nn ∩ ω1 then γ ⊆ Nn+1;

(δ) if K ∈ Nn ∩ K and µK > 0 then there is a γ ∈ Nn+1 ∩ ω1 such that µ(K ∩ U(I)) > 0
whenever I ⊆ ω1 \ γ is finite;

(ǫ) Nn ⊆ Nn+1.

On completing the induction, set M ′ =
⋃
n∈NNn; this serves (because every finite subset of M ′ is a subset

of some Nn). QQQ

(iii) Choose a sequence 〈Mn〉n∈N in M such that, for each n, Mn ∪ {sup(Mn ∩ ω1) + 1} ⊆Mn+1. Set
γn = sup(Mn ∩ ω1) for each n. Note that γn ⊆Mn, because if η < γn then there is some ξ ∈Mn such that
η < ξ; now ξ ⊆ Mn because Mn ∈ M, so η ∈ Mn. Also γn + 1 ∈ Mn+1 for each n, so 〈γn〉n∈N is strictly
increasing, and ξ = supn∈N γn belongs to Ω.

Set J = {θξ(n) : n ∈ N}. Then J ∩ η is finite for every η < ξ, and in particular J ∩ γn is finite for every
n. Set I0 = J ∩ γ0 and In = J ∩ γn \ γn−1 for n ≥ 1. Then

⋂
n∈N U(In) = Qξ is disjoint from X.

Choose a sequence 〈Kn〉n∈N in K as follows. Because I0 is a finite subset of M0∩ω1, there is a K0 ∈M0∩K
such that K0 ⊆ U(I0) and µK0 > 0. Given that Kn ∈Mn∩K and µKn > 0, then there is a β ∈Mn∩ω1 such
that µ(Kn ∩ U(I)) > 0 for every finite I ⊆ ω1 \ β; now β ≤ γn and In+1 ∩ γn = ∅, so µ(Kn ∩ U(In+1)) > 0.
But Kn ∈ Mn+1 ∩ K and In+1 is a finite subset of Mn+1 ∩ ω1, so there is a Kn+1 ∈ Mn+1 ∩ K such that
Kn+1 ⊆ Kn ∩ U(In+1) and µKn+1 > 0. Continue.

In this way we find a non-increasing sequence 〈Kn〉n∈N in K such that Kn ⊆ U(In) for every n and no
Kn is empty. But in this case

⋂
i≤nKi = Kn is non-empty for every n, while

⋂
n∈NKn ⊆ X ∩⋂

n∈N U(In)
is empty. So K is not a countably compact class. XXX

(f) Thus µ is not countably compact, and has all the properties claimed.

*451V Weakly α-favourable spaces There is an interesting variation on the concept of ‘countably
compact’ measure space, as follows. For any measure space (X,Σ, µ) we can imagine an infinite game for
two players, whom I will call ‘Empty’ and ‘Nonemepty’. Empty chooses a non-negligible measurable set E0;
Nonempty chooses a non-negligible measurable set F0 ⊆ E0; Empty chooses a non-negligible measurable set
E1 ⊆ F0; Nonempty chooses a non-negligible measurable set F1 ⊆ E1, and so on. At the end of the game,
Empty wins if

⋂
n∈NEn =

⋂
n∈N Fn is empty; otherwise Nonempty wins. (If µX = 0, so that Empty has no

legal initial move, I declare Nonempty the winner by default.) If you have seen ‘Banach-Mazur’ games, you
will recognise this as a similar construction, in which open sets are replaced by non-negligible measurable
sets.

A strategy for Nonempty is a rule to determine his moves in terms of the preceding moves for Empty;
that is, a function σ :

⋃
n∈N(Σ \ N )n+1 → Σ \ N , where N is the ideal of negligible sets, such that

σ(E0, E1, . . . , En) ⊆ En, at least whenever E0, . . . , En ∈ Σ \ N are such that Ek+1 ⊆ σ(E0, . . . , Ek) for
every k < n; since it never matters what Nonempty does if Empty has already broken the rules, we usually
just demand that σ(E0, . . . , En) ⊆ En for all E0, . . . , En ∈ Σ\N . σ is a winning strategy if

⋂
n∈NEn 6= ∅

whenever 〈En〉n∈N is a sequence in Σ \ N such that En+1 ⊆ σ(E0, . . . , En) for every n ∈ N. In terms of
the game, we interpret this as saying that Nonempty will win if he plays Fn = σ(E0, . . . , En) whenever
faced with the position (E0, F0, E1, F1, . . . , Fn−1, En). (Since it is supposed that Nonempty will use the
same strategy throughout the game, the moves F0, . . . , Fn−1 are determined by E0, . . . , En−1 and there is
no advantage in taking them separately into account when choosing Fn.)

Now we say that the measure space (X,Σ, µ) is weakly α-favourable if there is such a winning strategy
for Nonempty.

It turns out that the class of weakly α-favourable spaces behaves in much the same way as the class of
countably compact spaces. For the moment, however, I leave the details to the exercises (451Yh-451Yr).
See Fremlin 00.

451X Basic exercises (a) (i) Show that any purely atomic measure space is perfect. (ii) Show that any
strictly localizable purely atomic measure space is countably compact. (iii) Show that the space of 342N is
not countably compact.
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>>>(b) Show that a compact measure space in which singleton sets are negligible is atomless.

>>>(c) Let (X,Σ, µ) be a measure space, and ν an indefinite-integral measure over µ (234J5). Show that ν
is compact, or countably compact, or perfect if µ is.

(d) In 413Xn, show that µ is a countably compact measure. (Hint : show that the algebra Σ there is a
countably compact class.)

(e) Let 〈(Xi,Σi, µi)〉i∈I be a family of measure spaces, with direct sum (X,Σ, µ). Show that µ is compact,
or countably compact, or perfect iff every µi is.

(f) Let (X,Σ, µ) be a measure space and K a family of subsets of X such that whenever E ∈ Σ and
µE > 0 there is a K ∈ K such that K ⊆ E and µ∗K > 0. (i) Show that if K is a compact class then µ is a
compact measure. (ii) Show that if K is a countably compact class then µ is a countably compact measure.

(g) Let (X,Σ, µ) be a measure space. For A ⊆ X, write µA for the subspace measure on A. Suppose
that whenever E ∈ Σ and µE > 0 there is a set A ⊆ X such that µA is perfect and µ∗(A ∩ E) > 0. Show
that µ is perfect.

(h)(i) Give an example of a compact probability space (X,Σ, µ) and a σ-subalgebra T of Σ such that
µ↾T is not compact. (ii) Give an example of a compact probability space (X,Σ, µ), a set Y and a function
f : X → Y such that the image measure µf−1 is not compact. (Hint : 342M, 342Xf, 439Xa.)

(i) Let 〈Xi〉i∈I be a family of sets, with product X. Suppose that Ki ⊆ PXi for each i, and set
K = {∏i∈I Ki : Ki ∈ Ki for each i}. (i) Show that if Ki is a compact class for each i, so is K. (ii) Show
that if Ki is a countably compact class for each i, so is K.

(j) Let A ⊆ [0, 1] be a set with outer Lebesgue measure 1 and inner measure 0. Show that there is a Borel
measure λ on A × [0, 1] such that λ is not inner regular with respect to sets which have Borel measurable
projections on the factor spaces.

(k) Let X be a Polish space and E a subset of X. Show that the following are equiveridical: (i) E
is universally measurable; (ii) every Borel probability measure on E is perfect; (iii) every σ-finite Borel
measure on E is compact.

(l) In 451N, show that µ is a compact measure.

(m) Find a Radon measure space (X,T,Σ, µ), a continuous function f : X → [0, 1] and a set B ⊆ [0, 1]
such that µ∗(f−1[B]) < (µf−1)∗B.

(n) Let (X,Σ, µ) be a σ-finite measure space. Show that it is perfect iff whenever f : X → R is measurable
there is a Kσ set H ⊆ f [X] such that f−1[H] is conegligible.

(o) Let X be a metrizable space, and µ a semi-finite topological measure on X which (regarded as a
measure) is compact. Show that µ is τ -additive.

(p) Let (X,Σ, µ) be a compact strictly localizable measure space (e.g., any Radon measure space),
(Y,T, ν) a σ-finite measure space, and f : X → L0(ν) a function. Show that the following are equiveridical:
(i) f is measurable, when L0(ν) is given its topology of convergence in measure; (ii) there is a function
h ∈ L

0(λ), where λ is the c.l.d. product measure on X × Y , such that f(x) = h•

x for almost every x ∈ X,
where hx(y) = h(x, y). (Hint : 418R.)

>>>(q) Let (X,T,Σ, µ) be a Radon measure space. Show that Σ = PX iff µ is purely atomic. (Hint : if
Σ = PX, apply 451T with Y = X, the discrete topology on Y and the identity function from X to Y .)

5Formerly 234B.
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16 Perfect measures, disintegrations and processes 451Xr

(r) Let (X,T,Σ, µ) be a Radon measure space and U a normed space. Show that if f , g : X → U are
measurable functions, then f + g is measurable. (Cf. 418Xk.)

(s) Show that in all three of the constructions of 439A, the measure ν is countably compact. (Hint : for
the ‘third construction’, consider {f−1[F ] : F ⊆ {0, 1}c is a zero set}.)

451Y Further exercises (a) Show that for any probability space (X,Σ, µ), there is a compact proba-
bility space (Y,T, ν) with a subspace isomorphic to (X,Σ, µ).

(b) Let 〈Xi〉i∈I be a family of sets, and Σi a σ-algebra of subsets of Xi for each i. Suppose that for
each finite J ⊆ I we are given a finitely additive functional νJ on XJ =

∏
i∈J Xi, with domain the algebra

TJ =
⊗

i∈J Σi generated by sets of the form {x : x ∈ XJ , x(i) ∈ E} for i ∈ J , E ∈ Σi, and that (α)
νK{x : x ∈ XK , x↾J ∈ W} = νJW whenever J ⊆ K ∈ [I]<ω and W ∈ TJ (β) µi = ν{i} is a countably
compact probability measure for every i ∈ I. Show that there is a countably compact measure µ on X = XI

such that µ{x : x ∈ X, x↾J ∈ W} = νJW whenever J ∈ [I]<ω and W ∈ TJ . (Hint : 454D.) (Compare
418M.)

(c) Describe µ in the case of 451Yb in which I = [0, 1], Xi = [0, 1] \ {i}, Σi is the algebra of Lebesgue
measurable subsets of Xi, and νJE = µL{t : zJt ∈ E} for every E ∈ ⊗

i∈J Σi, where zJt(i) = t for i ∈ J ,
t ∈ [0, 1]. Contrast this with the difficulty encountered in 418Xx.

(d) Let (X,Σ, µ) be a semi-finite compact measure space, and 〈Ei〉i∈I a point-finite family of measurable
subsets of X such that

⋃
i∈J Ei ∈ Σ for every J ⊆ I. Show that µ(

⋃
i∈I Ei) = supJ⊆I is finite µ(

⋃
i∈J Ei).

(Hint : 438Ya.)

(e) Let X be a hereditarily metacompact space, and µ a semi-finite topological measure on X which
(regarded as a measure) is compact. Show that µ is τ -additive.

(f) Let (X,Σ, µ) be a compact measure space, V a Banach space and f : X → V a measurable function
such that ‖f‖ : X → [0,∞[ is integrable. Show that f is Bochner integrable (253Yf).

(g) Let (X,T,Σ, µ) be a Radon measure space. Suppose that Y is a separable metrizable space and Z is a
metrizable space, and that f : X×Y → Z is a function such that x 7→ f(x, y) is measurable for every y ∈ Y
and y 7→ f(x, y) is continuous for every x ∈ X. Show that µ is inner regular with respect to {F : F ⊆ X,
f↾F × Y is continuous}. (Hint : 418Yk.)

(h) Show that any purely atomic measure space is weakly α-favourable, so that the space of 342N is
weakly α-favourable but not countably compact.

(i) Show that the direct sum of a family of weakly α-favourable measure spaces is weakly α-favourable.

(j) Show that an indefinite-integral measure over a weakly α-favourable measure is weakly α-favourable.

(k)(i) Show that a countably compact measure space is weakly α-favourable. (ii) Show that a semi-finite
weakly α-favourable measure space is perfect.

(l) Show that any measurable subspace of a weakly α-favourable measure space is weakly α-favourable.

(m) Let (X,Σ, µ) be a weakly α-favourable measure space, (Y,T, ν) a semi-finite measure space, and
f : X → Y a (Σ,T)-measurable function such that f−1[F ] is negligible whenever F ⊆ Y is negligible. Show
that (Y,T, ν) is weakly α-favourable.

(n)(i) Show that a measure space is weakly α-favourable iff its completion is weakly α-favourable. (ii)
Show that a semi-finite measure space is weakly α-favourable iff its c.l.d. version is weakly α-favourable.

(o) Show that the c.l.d. product of two weakly α-favourable measure spaces is weakly α-favourable.
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(p) Show that the product of any family of weakly α-favourable probability measures is weakly α-
favourable.

(q) Show that the space of 451U is not weakly α-favourable.

(r) Let (X,Σ, µ) be a complete locally determined measure space and φ a lower density for µ such that
φX = X; let T be the corresponding density topology (414P). Show that (X,Σ, µ) is weakly α-favourable
iff (X,T) is weakly α-favourable (definition: 4A2A).

(s) Let X be a set, and 〈µi〉i∈I a family of weakly α-favourable measures on X with sum µ (234G6).
Show that if µ is semi-finite, it is weakly α-favourable.

(t) Let X and Y be locally compact Hausdorff groups and φ : X → Y a group homomorphism which
is Haar measurable in the sense of 411L, that is, φ−1[H] is Haar measurable for every open H ⊆ Y . Show
that φ is continuous.

(u) Let µ be a quasi-Radon measure on the Sorgenfrey line (415Xc). Show that µ is weakly α-favourable.

451 Notes and comments For a useful survey of results on countably compact and perfect measures, with
historical notes, see Ramachandran 02.

The concepts of ‘compact’, ‘countably compact’ and ‘perfect’ measure space can all be regarded as at-
tempts to understand and classify the special properties of Lebesgue measure on [0, 1], regarded as a measure
space. Because a countably separated perfect probability space is very nearly isomorphic to Lebesgue mea-
sure (451Ad), we can think of a perfect measure space as one in which the countably-generated σ-subalgebras
look like Lebesgue measure (451F). The arguments of 451Ic and 451Jc already hint at the kind of results we
can hope for. When we form a product measure, each measurable set in the product will depend, in effect,
on sequences of measurable sets in the factors, and therefore can be studied in terms of countably generated
subalgebras; so that many results about products of perfect measures will be derivable, if we wish to take
that route, from results about products of copies of Lebesgue measure. Of course my normal approach in
this treatise is to go straight for the general result; but like anyone else I often start from a picture based on
the familiar special case. In the next section we shall have some theorems for which countable compactness,
rather than perfectness, seems to be the relevant property.

The first half of the section (down to 451P) is essentially a matter of tidying up the theory of compact and
perfect measures, and showing that the same ideas will cover the new class of countably compact measures.
(You may like to go back to 342G, in which I worked through the basic properties of compact measures,
and contrast the arguments used there with the slightly more sophisticated ones above.) In 451Q-451T
I enter new territory, showing that for compact measures (and therefore for Radon measures) the theory
of measurable functions into metric spaces is particularly simple, without making any assumptions about
measure-free cardinals.

Version of 6.11.08

452 Integration and disintegration of measures

A standard method of defining measures is through a formula

µE =
∫
µyE ν(dy)

where (Y,T, ν) is a measure space and 〈µy〉y∈Y is a family of measures on another set X. In practice these
constructions commonly involve technical problems concerning the domain of µ (as in 452Xi), which is why
I have hardly used them so far in this treatise. There are not-quite-trivial examples in 417Yb, 434R and
436F, and the indefinite-integral measures of §234 can also be expressed in this way (452Xf); for a case in
which this approach is worked out fully, see 453N. But when a formula of this kind is valid, as in Fubini’s
theorem, it is likely to be so useful that it dominates further investigation of the topic. In this section I
give one of the two most important theorems guaranteeing the existence of appropriate families 〈µy〉y∈Y

6Formerly 112Ya.
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when µ and ν are given (452I); the other will follow in the next section (453K). They both suppose that we
are provided with a suitable function f : X → Y , and rely heavily on the Lifting Theorem (§341) and on
considerations of inner regularity from Chapter 41.

The formal definition of a ‘disintegration’ (which is nearly the same thing as a ‘regular conditional
probability’) is in 452E. The main theorem depends, for its full generality, on the concept of ‘countably
compact measure’ (451B). It can be strengthened when µ is actually a Radon measure (452O).

The greater part of the section is concerned with general disintegrations, in which the measures µy are
supposed to be measures on X and are not necessarily related to any particular structure on X. However
a natural, and obviously important, class of applications has X = Y × Z and each µy based on the section
{y} × Z, so that it can be regarded as a measure on Z. Mostly there is very little more to be said in this
case (see 452B-452D); but in 452M we find that there is an interesting variation in the way that countable
compactness can be used.

452A Lemma Let (Y,T, ν) be a measure space, X a set, and 〈µy〉y∈Y a family of measures on X. Let
A be the family of subsets A of X such that θE =

∫
µyE ν(dy) is defined in R. Suppose that X ∈ A.

(a) A is a Dynkin class.
(b) If Σ is any σ-subalgebra of A then µ = θ↾Σ is a measure on X.

(c) Suppose now that every µy is complete. If, in (b), µ̂ is the completion of µ and Σ̂ its domain, then

Σ̂ ⊆ A and µ̂ = θ↾Σ̂.

proof For (a) and (b), we have only to look at the definitions of ‘Dynkin class’ and ‘measure’ and apply the

elementary properties of the integral. For (c), if E ∈ Σ̂, then there are E′, E′′ ∈ Σ such that E′ ⊆ E ⊆ E′′

and θE′ = θE′′. So µyE
′ = µyE

′′ for ν-almost every y; since all the µy are supposed to be complete, µyE
is defined and equal to µyE

′ for almost every y, and θE is defined and equal to θE′ = µE′ = µ̂E.

452B Theorem (a) Let X be a set, (Y,T, ν) a measure space, and 〈µy〉y∈Y a family of measures on
X such that

∫
µyX ν(dy) is defined and finite. Let E be a family of subsets of X, closed under finite

intersections, such that
∫
µyE ν(dy) is defined in R for every E ∈ E .

(i) If Σ is the σ-algebra of subsets of X generated by E , we have a totally finite measure µ on X, with
domain Σ, given by the formula µE =

∫
µyE ν(dy) for every E ∈ Σ.

(ii) If µ̂ is the completion of µ and Σ̂ its domain, then
∫
µ̂yE ν(dy) is defined and equal to µ̂E for every

E ∈ Σ̂, where µ̂y is the completion of µy for each y ∈ Y .
(b) Let Z be a set, (Y,T, ν) a measure space, and 〈µy〉y∈Y a family of measures on Z such that∫
µyZ ν(dy) is defined and finite. Let H be a family of subsets of Z, closed under finite intersections,

such that
∫
µyH ν(dy) is defined in R for every H ∈ H.

(i) If Υ is the σ-algebra of subsets of Z generated by H, we have a totally finite measure µ on Y × Z,
with domain T⊗̂Υ, defined by setting µE =

∫
µyE[{y}]ν(dy) for every E ∈ T⊗̂Υ.

(ii) If µ̂ is the completion of µ and Σ̂ its domain, then
∫
µ̂yE[{y}]ν(dy) is defined and equal to µ̂E for

every E ∈ Σ̂, where µ̂y is the completion of µy for each y ∈ Y .

proof (a) Define A ⊆ PX as in 452A. Then E ⊆ A, so by the Monotone Class Theorem (136B) Σ ⊆ A and
we have (i). Applying 452Ac to 〈µ̂y〉y∈Y we have (ii).

(b) Set X = Y ×Z. For y ∈ Y , let µ′
y be the measure on X defined by setting µ′

yE = µyE[{y}] whenever
this is defined; that is, µ′

y is the image of µy under the function z 7→ (y, z) : Z → X. Set E = {F×H : F ∈ T,
H ∈ H}. Then E is a family of subsets of X closed under finite intersections, and∫

µ′
y(F ×H)ν(dy) =

∫
χF (y)µyH ν(dy)

is defined whenever F ∈ T and H ∈ H. By (a), we have a measure µ on X, with domain the σ-algebra Σ
generated by E , defined by writing

µE =
∫
µ′
yE ν(dy) =

∫
µyE[{y}]ν(dy)

for every E ∈ Σ. Of course Σ includes T⊗̂Υ (the set {H : Y × H ∈ Σ} is a σ-algebra of subsets of Z
including H, so includes Υ) and is therefore equal to T⊗̂Υ.
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This proves (i). If now E ∈ Σ̂, (a-ii) tells us that

µ̂E =
∫
µ̂′
yE ν(dy) =

∫
µ̂yE[{y}]ν(dy).

452C Theorem (a) Let Y be a topological space, ν a τ -additive topological measure on Y , (X,T) a
topological space, and 〈µy〉y∈Y a family of τ -additive topological measures on X such that

∫
µyX ν(dy) is

defined and finite. Suppose that there is a base U for T, closed under finite unions, such that y 7→ µyU is
lower semi-continuous for every U ∈ U .

(i) We can define a τ -additive Borel measure µ on X by writing µE =
∫
µyE ν(dy) for every Borel set

E ⊆ X.
(ii) If µ̂ is the completion of µ and Σ̂ its domain, then

∫
µ̂yE ν(dy) is defined and equal to µ̂E for every

E ∈ Σ̂, where µ̂y is the completion of µy for each y ∈ Y .
(b) Let Y be a topological space, ν a τ -additive topological measure on Y , (Z,U) a topological space,

and 〈µy〉y∈Y a family of τ -additive topological measures on Z such that
∫
µyZ ν(dy) is defined and finite.

Suppose that there is a base V for U, closed under finite unions, such that y 7→ µyV is lower semi-continuous
for every V ∈ V.

(i) We can define a τ -additive Borel measure µ on Y × Z by writing µE =
∫
µyE[{y}]ν(dy) for every

Borel set E ⊆ Y × Z.
(ii) If µ̂ is the completion of µ and Σ̂ its domain, then

∫
µ̂yE[{y}]ν(dy) is defined and equal to µ̂E for

every E ∈ Σ̂, where µ̂y is the completion of µy for each y ∈ Y .

proof (a) For A ⊆ X, set fA(y) = µyA when this is defined. We may suppose that ∅ ∈ U . If W ⊆ U
is a non-empty upwards-directed set with union G, 〈fW 〉W∈W is an upwards-directed family of lower semi-
continuous functions with supremum fG, because every µy is τ -additive. So fG is lower semi-continuous,
and also

∫
fGdν = supW∈W

∫
fW dν, by 414Ba. Taking E to be the family of open subsets of X in 452Ba,

we see that we have a τ -additive Borel measure µ on X such that µE =
∫
µyE ν(dy) for every Borel set

E ⊆ X. Moreover, if G is a non-empty upwards-directed family of open subsets of X with union G∗, then
W = {W : W ∈ U , W ⊆ G for some G ∈ G} is an upwards-directed family with union G∗, so

µG∗ =
∫
fG∗dν = supW∈W

∫
fW dν ≤ supG∈G µG ≤ µG∗.

As G is arbitrary, µ is τ -additive. This proves (i); (ii) follows immediately, as in 452Ba.

(b) Let U be the family of sets expressible as
⋃
i≤nHi × Vi where Hi ⊆ Y is open and Vi ∈ V for every

i ≤ n. Because V is a base for U, U is a base for the topology of X = Y ×Z. For y ∈ Y let µ′
y be the measure

on X defined by saying that µ′
yE = µyE[{y}] whenever this is defined. Then µ′

y is a τ -additive topological
probability measure on X, by 418Ha or otherwise. If U ∈ U , y 7→ µ′

yU is lower semi-continuous. PPP Express
U as

⋃
i≤nHi × Vi where Hi ⊆ Y is open and Vi ∈ V for each i. Suppose that y ∈ Y and γ < µyU . Set

I = {i : i ≤ n, y ∈ Hi}, H = Y ∩⋂
i∈I Hi and V =

⋃
i∈I Vi. Then U [{y}] = V ⊆ U [{y′}] for every y′ ∈ H.

Also H ′ = {y′ : µy′V > γ} is a neighbourhood of y. So H ∩H ′ is a neighbourhood of y, and µ′
y′U > γ for

every y′ ∈ H ∩H ′. As y and γ are arbitrary, we have the result. QQQ
Now applying (a) to 〈µ′

y〉y∈Y we see that (b) is true.

452D Theorem (a) Let (Y,S,T, ν) be a Radon measure space, (X,T) a topological space, and 〈µy〉y∈Y
a uniformly tight (definition: 437O) family of Radon measures on X such that

∫
µyX ν(dy) is defined and

finite. Suppose that there is a base U for T, closed under finite unions, such that y 7→ µyU is lower semi-
continuous for every U ∈ U . Then we have a totally finite Radon measure µ̃ on X defined by saying that
that µ̃E =

∫
µyE ν(dy) whenever µ̃ measures E.

(b) Let (Y,S,T, ν) be a Radon measure space, (Z,U) a topological space, and 〈µy〉y∈Y a uniformly tight
family of Radon measures on Z such that

∫
µyZ ν(dy) is defined and finite. Suppose that there is a base V

for U, closed under finite unions, such that y 7→ µyV is lower semi-continuous for every V ∈ V. Then we
have a totally finite Radon measure µ̃ on Y × Z such that µ̃E =

∫
µyE[{y}]ν(dy) whenever µ̃ measures E.

proof I take the two parts together. In (b), write X for Y × Z. By 452C we have a τ -additive Borel
measure µ satisfying the appropriate formula. Now for any ǫ > 0 there is a compact set K ⊆ X such that
µK ≥ µX − 2ǫ. PPP In (a), take η > 0 such that

∫
min(η, µyX)ν(dy) ≤ 2ǫ, and K such that µy(X \K) ≤ η
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for every y ∈ Y . In (b), take η > 0 such that
∫

min(η, µyZ)ν(dy) ≤ ǫ. Now let K1 ⊆ Y and K2 ⊆ Z be
compact sets such that∫

K1
µyZ ν(dy) ≥

∫
Y
µyZ ν(dy) − ǫ, µy(Z \K2) ≤ η for every y ∈ Y .

Then K = K1 ×K2 is compact and

µ((Y × Z) \K) ≤
∫

Y \K1

µyZ ν(dy) +

∫

K1

µy(Z \K2)ν(dy)

≤ ǫ+

∫

K1

min(η, µyZ)ν(dy) ≤ 2ǫ. QQQ

Since µ is totally finite it is surely locally finite and effectively locally finite, so the conditions of 416F(iv)
are satisfied and the c.l.d. version µ̃ of µ is a Radon measure on X. But of course µ̃ is just the completion
of µ, so 452C(a-ii) or 452C(b-ii) tells us that the declared formula also applies to µ̃.

452E All the constructions above can be thought of as special cases of the following.

Definition Let (X,Σ, µ) and (Y,T, ν) be measure spaces. A disintegration of µ over ν is a family 〈µy〉y∈Y
of measures on X such that

∫
µyE ν(dy) is defined in [0,∞] and equal to µE for every E ∈ Σ. If f : X → Y

is an inverse-measure-preserving function, a disintegration 〈µy〉y∈Y of µ over ν is consistent with f if, for
each F ∈ T, µyf

−1[F ] = 1 for ν-almost every y ∈ F . 〈µy〉y∈Y is strongly consistent with f if, for almost
every y ∈ Y , µy is a probability measure for which f−1[{y}] is conegligible.

A trivial example of a disintegration is when ν is a probability measure and µy = µ for every y. Of course
this is of little interest. The archetypal disintegration is 452Bb when all the µy are the same, in which case
Fubini’s theorem tells us that we are looking at a product measure on X = Y × Z. If µ is a probability
measure then this disintegration is strongly consistent.

The phrase regular conditional probability is used for special types of disintegration; typically, when
µ and ν and every µy are probabilities, and sometimes supposing that every µy has the same domain as µ.
I have seen the word decomposition used for what I call a disintegration.

452F Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces and 〈µy〉y∈Y a disintegration of µ over
ν. Then

∫∫
f(x)µy(dx)ν(dy) is defined and equal to

∫
fdµ for every [−∞,∞]-valued function f such that∫

fdµ is defined in [−∞,∞].

proof (a) Suppose first that f is non-negative. Let H ∈ Σ be a conegligible set such that f↾H is Σ-
measurable. For n ∈ N set

Enk = {x : x ∈ H, 2−nk ≤ f(x)} for k ≥ 1, fn = 2−n
∑4n

k=1 χEnk.

Then 〈fn〉n∈N is a non-decreasing sequence of functions with limn→∞ fn(x) = f(x) for every x ∈ H. Now∫
µy(X \H)ν(dy) = 0, so X \H is µy-negligible for almost every y. Set

V = {y : µy(X \H) = 0, Enk ∈ domµy for every n ∈ N, k ≥ 1};

then V is ν-conegligible. For y ∈ V ,∫
fdµy = limn→∞

∫
fndµy = limn→∞ 2−n

∑4n

k=1 µyEnk,

while each function y 7→ µyEnk is ν-virtually measurable, so y 7→
∫
fdµy is ν-virtually measurable and

∫∫
fdµyν(dy) = lim

n→∞

∫∫
fndµyν(dy) = lim

n→∞
2−n

4n∑

k=1

∫
µyEnk ν(dy)

= lim
n→∞

2−n
4n∑

k=1

µEnk = lim
n→∞

∫
fndµ =

∫
fdµ.

(b) For general f we now have
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∫∫
f(x)µy(dx)ν(dy) =

∫∫
f+(x)µy(dx)ν(dy) −

∫∫
f−(x)µy(dx)ν(dy)

=

∫
f+dµ−

∫
f−dµ =

∫
fdµ,

where f+, f− are the positive and negative parts of f .

Remark When X = Y × Z and our disintegration is a family 〈µ′
y〉y∈Y of measures on X defined from a

family 〈µy〉y∈Y of probability measures on Z, as in 452Bb, we can more naturally write
∫
f(y, z)µy(dz) in

place of
∫
f(x)µ′

y(dx), and we get
∫∫

f(y, z)µy(dz)ν(dy) =
∫
fdµ whenever the latter is defined in [−∞,∞]

as in 252B.

452G The most useful theorems about disintegrations of course involve some restrictions on their form,
most commonly involving consistency with some kind of projection. I clear the path with statements of
some elementary facts.

Proposition Let (X,Σ, µ) and (Y,T, ν) be measure spaces, f : X → Y an inverse-measure-preserving
function, and 〈µy〉y∈Y a disintegration of µ over ν.

(a) If 〈µy〉y∈Y is consistent with f , and F ∈ T, then µyf
−1[F ] = χF (y) for ν-almost every y ∈ Y ; in

particular, almost every µy is a probability measure.
(b) If 〈µy〉y∈Y is strongly consistent with f it is consistent with f .
(c) If ν is countably separated (definition: 343D) and 〈µy〉y∈Y is consistent with f , then it is strongly

consistent with f .

proof (a) We have µyf
−1[F ] = 1 for almost every y ∈ F . Since also

µy(X \ f−1[F ]) = µyf
−1[Y \ F ] = 1, µyX = µyf

−1[Y ] = 1

for almost every y ∈ Y \ F , µyf
−1[F ] = 0 for almost every y ∈ X \ F .

(b) If F ∈ T, then f−1[F ] ⊇ f−1[{y}] is µy-conegligible for almost every y ∈ F ; since we are also told
that µyX = 1 for almost every y, µyf

−1[F ] = 1 for almost every y ∈ F .

(c) There is a countable F ⊆ T separating the points of Y ; we may suppose that Y ∈ F and that
Y \ F ∈ F for every F ∈ F . Now

HF = F \ {y : µyf
−1[F ] is defined and equal to 1}

is negligible for every F ∈ F , so that

Z = Y \⋃F∈F HF

is conegligible. For y ∈ Z, set Fy = {F : y ∈ F ∈ F}; then

{y} =
⋂Fy, f−1[{y}] =

⋂{f−1[F ] : F ∈ Fy},

while µyf
−1[F ] = 1 for every F ∈ Fy. Because Fy is countable, µyf

−1[{y}] = 1. This is true for almost
every y, so 〈µy〉y∈Y is strongly consistent with f .

452H Lemma Let (X,Σ, µ) and (Y,T, ν) be probability spaces, and T : L∞(µ) → L∞(ν) a positive
linear operator such that T (χX•) = χY • and

∫
Tu =

∫
u whenever u ∈ L∞(µ)+. Let K be a countably

compact class of subsets of X, closed under finite unions and countable intersections, such that µ is inner
regular with respect to K. Then there is a disintegration 〈µy〉y∈Y of µ over ν such that

(i) µy is a complete probability measure on X, inner regular with respect to K and measuring every
member of K, for every y ∈ Y ;

(ii) setting hg(y) =
∫
g dµy whenever g ∈ L

∞(µ) and y ∈ Y are such that the integral is defined,
hg ∈ L

∞(ν) and T (g•) = h•

g for every g ∈ L
∞(µ).

proof (a) Completing ν does not change L
∞(ν) or L∞(ν), nor does it change the families which are

disintegrations over ν; so we may assume throughout that ν is complete. It therefore has a lifting θ : B → T,
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where B is the measure algebra of ν, which gives rise to a Riesz homomorphism S from L∞(ν) ∼= L∞(B)
to the space L∞(T) of bounded T-measurable real-valued functions on Y such that (Sv)• = v for every
v ∈ L∞(ν) (363I, 363F, 363H).

(b) For y ∈ Y and E ∈ Σ, set ψyE = (ST (χE•))(y). Because 0 ≤ T (χE•) ≤ χY • in L∞(ν), 0 ≤ ψyE ≤ 1.
The maps

E 7→ χE 7→ χE• 7→ T (χE•) 7→ ST (χE•)

are all additive, so ψy : Σ → [0, 1] is additive for each y ∈ Y . For fixed E ∈ Σ,

µE =
∫
χE dµ =

∫
(χE•) =

∫
T (χE•) =

∫
ST (χE•) =

∫
ψyE ν(dy).

(c) Recall that µ is supposed to be inner regular with respect to the countably compact class K. By
413Ua, there is for every y ∈ Y a complete measure µ′

y on X such that µ′
yX ≤ ψyX ≤ 1, K ⊆ domµ′

y, and
µ′
yK ≥ ψyK for every K ∈ K ∩ Σ.

(d) Now, for any fixed E ∈ Σ, µ′
yE is defined and equal to ψyE for almost every y ∈ Y . PPP Let 〈Kn〉n∈N,

〈K ′
n〉n∈N be sequences in K ∩ Σ such that Kn ⊆ E and K ′

n ⊆ X \ E for every n, while µE = supn∈N µKn

and µ(X \ E) = supn∈N µK
′
n. Set L =

⋃
n∈NKn, L′ =

⋂
n∈N(X \K ′

n). Then both L and L′ belong to the
domain of every µ′

y, and

sup
n∈N

ψyKn ≤ sup
n∈N

µ′
yKn ≤ µ′

yL ≤ µ′
yL

′

≤ inf
n∈N

µ′
y(X \K ′

n) = µ′
yX − sup

n∈N

µ′
yK

′
n ≤ 1 − sup

n∈N

ψyK
′
n

for every y. On the other hand,

∫
(1 − sup

n∈N

ψyK
′
n)ν(dy) ≤ νY − sup

n∈N

∫
ψy(K ′

n)ν(dy) = µX − sup
n∈N

µK ′
n = µE

= sup
n∈N

µKn = sup
n∈N

∫
ψyKnν(dy) ≤

∫
sup
n∈N

ψyKnν(dy).

So

supn∈N ψyKn = µ′
yL = µ′

yL
′ = 1 − supn∈N ψyK

′
n

for almost every y. Because L ⊆ E ⊆ L′ and µ′
y is complete, E ∈ domµ′

y and

µ′
yE = 1 − supn∈N ψyK

′
n ≥ 1 − ψy(X \ E) ≥ ψyE

for almost every y ∈ Y . Similarly, µ′
y(X \ E) ≥ ψy(X \ E) for almost every y. But as

µ′
yE + µ′

y(X \ E) = µ′
yX ≤ ψyX ≤ 1

whenever the left-hand side is defined, we must have µ′
yE = ψyE for almost every y, as claimed. QQQ

It follows at once that ∫
µ′
yE ν(dy) =

∫
ψyE ν(dy) = µE

for every E ∈ Σ, and 〈µ′
y〉y∈Y is a disintegration of µ over ν.

(e) At this point observe that∫
µ′
yX ν(dy) = µX =

∫
χX• =

∫
T (χX•) = νY ,

so F0 = {y : µ′
yX < 1} is negligible. Taking any y0 ∈ Y \ F0 and setting

µy = µ′
y0 for y ∈ F0

= µ′
y for y ∈ Y \ F0,

we find ourselves with a disintegration 〈µy〉y∈Y of µ over ν with the same properties as 〈µ′
y〉y∈Y , but now

consisting entirely of probability measures.
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(f) For g ∈ L
∞(µ), set hg(y) =

∫
g dµy whenever y ∈ Y is such that the integral is defined. Consider the

set V of those g ∈ L
∞(µ) such that hg ∈ L

∞(ν) and Tg• = h•

g in L∞(ν). If E ∈ Σ, then hχE(y) = ψyE for
almost every y, so

h•

χE = (ST (χE•))• = T (χE•);

accordingly χE ∈ V . It is easy to check that V is closed under addition and scalar multiplication, so it
contains all simple functions. Next, if 〈gn〉n∈N is a non-decreasing sequence of simple functions with limit
g ∈ L

∞(ν), then hg = supn∈N hgn wherever the right-hand side is defined. Also T is order-continuous,
because it preserves integrals, so

Tg• = supn∈N Tg
•

n = supn∈N h
•

gn = h•

g

and g ∈ V . Finally, if g ∈ L
∞(µ) is zero almost everywhere, there is a negligible E ∈ Σ such that g(x) = 0

for every x ∈ X \E; µyE = 0 for almost every y, so hg(y) =
∫
g dµy = 0 for almost every y and again g ∈ V .

Putting these together, we see that V = L
∞(ν), as required by (ii) as stated above.

452I Theorem (Pachl 78) Let (X,Σ, µ) be a non-empty countably compact measure space, (Y,T, ν) a
σ-finite measure space, and f : X → Y an inverse-measure-preserving function. Then there is a disintegration
〈µy〉y∈Y of µ over ν, consistent with f , such that µy is a complete probability measure on X for every y ∈ Y .
Moreover,

(i) if K is a countably compact class of subsets of X such that µ is inner regular with respect to K, then
we can arrange that K ⊆ domµy for every y ∈ Y ;

(ii) if, in (i), K is closed under finite unions and countable intersections, then we can arrange that
K ⊆ domµy and µy is inner regular with respect to K for every y ∈ Y .

proof (a) Consider first the case in which ν and µ are probability measures and we are provided with a
class K as in (ii). In this case, for each u ∈ L∞(µ), F 7→

∫
f−1[F ]

u is countably additive. So we have an

operator T : L∞(µ) → L∞(ν) defined by saying that
∫
F
Tu =

∫
f−1[F ]

u whenever u ∈ L∞(µ) and F ∈ T.

Of course T is linear and positive and
∫
Tu =

∫
u whenever u ∈ L∞(µ).

By 452H, there is a disintegration 〈µy〉y∈Y of µ over ν such that

(α) for every y ∈ Y , µyX = 1, K ⊆ domµy and µy is inner regular with respect to K;

(β) T (g•) = h•

g whenever g ∈ L
∞(µ) and hg(y) =

∫
g dµy when the integral is defined.

If now F ∈ T, set g = χf−1[F ] in (β); then Tg• is defined by saying that∫
H
Tg• =

∫
f−1[H]

g = µf−1[F ∩H] = ν(F ∩H)

for every H ∈ T, so that Tg• = χF • and we must have µyf
−1[F ] = 1 for almost every y ∈ F . Thus 〈µy〉y∈Y

is a consistent distribution.

(b) The theorem is formulated in a way to make it quotable in parts without committing oneself to a
particular class K. But if we are given a class satisfying (i), we can extend it to one satisfying (ii), by 413T;
and if we are told only that µ is countably compact, we know from the definition that we shall be able to
choose a countably compact class satisfying (i).

(c) This proves the theorem on the assumption that µ and ν are probability measures. If µX = νY = 0
then the result is trivial, as we can take every µy to be the zero measure. Otherwise, because ν is σ-finite,
there is a partition 〈Yn〉n∈N of Y into measurable sets of finite measure. Let 〈γn〉n∈N be a sequence of strictly
positive real numbers such that

∑∞
n=0 γnνYn = 1, and write

ν ′F =
∑∞
n=0 γnν(F ∩ Yn) for F ∈ T,

µ′E =
∑∞
n=0 γnµ(E ∩Xn) for E ∈ Σ.

It is easy to check (α) that ν ′ and µ′ are probability measures (β) that f is inverse-measure-preserving for µ′

and ν ′ (γ) that if µ is inner regular with respect to K so is µ′. Note that ν ′ and ν have the same negligible
sets. By (a)-(b), µ′ has a disintegration 〈µy〉y∈Y over ν ′ which is consistent with f , and (if appropriate) has
the properties demanded in (i) or (ii). Now, if E ∈ Σ,
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µE =

∞∑

n=0

γ−1
n µ′(E ∩Xn) =

∞∑

n=0

γ−1
n

∫
µy(E ∩Xn)ν ′(dy)

=

∞∑

n=0

γ−1
n

∫

Yn

µyE ν
′(dy)

(because µyX = 1, µyXn = (χYn)(y) for ν ′-almost every y, every n)

=

∞∑

n=0

∫

Yn

µyE ν(dy) =

∞∑

n=0

∫
µy(E ∩Xn)ν(dy) =

∫
µyE ν(dy).

So 〈µy〉y∈Y is a disintegration of µ over ν. If F ∈ T, then µyf
−1[F ] = 1 for ν ′-almost every y, that is, for

ν-almost every y, so 〈µy〉y∈Y is still consistent with f with respect to the measure ν.

452J Remarks (a) In the theorem above, I have carefully avoided making any promises about the
domains of the µy beyond that in (i). If Σ0 is the σ-algebra generated by K ∩ Σ, then whenever E ∈ Σ
there are E′, E′′ ∈ Σ0 such that E′ ⊆ E ⊆ E′′ and µ(E′′ \ E′) = 0. (For µ, like ν, must be σ-finite, so
we can choose E′ to be a countable union of members of K ∩ Σ, and E′′ to be the complement of such a
union.) Thus we shall have a σ-algebra on which every µy is defined and which will be adequate to describe
nearly everything about µ. The example of Lebesgue measure on the square (452E) shows that we cannot
ordinarily expect the µy to be defined on the whole of Σ itself. In many important cases, of course, we can
say more (452Xl).

(b) Necessarily (as remarked in the course of the proof) µyX = 1 for almost every y. In some applications
it seems right to change µy for a negligible set of y’s so that every µy is a probability measure. Of course
this cannot be done if X = ∅ 6= Y , but this case is trivial (we should have to have νY = 0). In other cases,
we can make sure that any new µy is equal to some old one, so that a property required by (i) or (ii) remains
true of the new disintegration. If we want to have ‘µyf

−1[{y}] = µyX = 1 for every y ∈ Y ’, strengthening
‘strongly consistent’, we shall of course have to begin by checking that f is surjective.

(c) The question of whether ‘σ-finite’ can be weakened to ‘strictly localizable’ in the hypotheses of 452I
is related to the Banach-Ulam problem (452Yb). See also 452O.

452K Example The hypothesis ‘countably compact’ in 452I is in fact essential (452Ye). To see at least
that it cannot be omitted, we have the following elementary example. Set Y = [0, 1], and let ν be Lebesgue
measure on Y , with domain T. Let X ⊆ [0, 1] have outer measure 1 and inner measure 0 (134D, 419I); let
µ be the subspace measure on X. Set f(x) = x for x ∈ X. Then there is no disintegration 〈µy〉y∈Y of µ
over ν which is consistent with f .

PPP??? Suppose, if possible, that 〈µy〉y∈[0,1] is such a disintegration. Then, in particular, the sets

Hq = [0, q] \ {y : X ∩ [0, q] ∈ domµy, µy(X ∩ [0, q]) = 1},

H ′
q = [q, 1] \ {y : X ∩ [q, 1] ∈ domµy, µy(X ∩ [q, 1]) = 1}

are negligible for every q ∈ [0, 1]. Set G = [0, 1]\⋃q∈Q∩[0,1](Hq∪H ′
q), so that G is ν-conegligible. Then there

must be some y ∈ G\X. Now µy(X∩ [0, q′]) = µy(X∩ [q, 1]) = 1 whenever q, q′ ∈ Q and 0 ≤ q < y < q′ ≤ 1,
so that µy(X ∩ {y}) = 1. But X ∩ {y} = ∅. XXXQQQ

452L The same ideas as in 452I can be used to prove a result on the disintegration of measures on
product spaces. It will help to have a definition.

Definition Let 〈Xi〉i∈I be a family of sets, and λ a measure on X =
∏
i∈I Xi. For each i ∈ I set πi(x) = x(i)

for x ∈ X. Then the image measure λπ−1
i is the marginal measure of λ on Xi.
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452M I return to the context of 452B-452D.

Theorem Let Y and Z be sets and T ⊆ PY , Υ ⊆ PZ σ-algebras. Let µ be a non-zero totally finite measure
with domain T⊗̂Υ, and ν the marginal measure of µ on Y . Suppose that the marginal measure λ of µ on
Z is inner regular with respect to a countably compact class K ⊆ PZ which is closed under finite unions
and countable intersections. Then there is a family 〈µy〉y∈Y of complete probability measures on Z, all
measuring every member of K and inner regular with respect to K, such that

µE =
∫
µyE[{y}]ν(dy)

for every E ∈ T⊗̂Υ, and ∫
fdµ =

∫∫
f(y, z)µy(dz)ν(dy)

whenever f is a [−∞,∞]-valued function such that
∫
fdµ is defined in [−∞,∞].

proof (a) To begin with, assume that µ is a probability measure and that ν is complete. Let B be the
measure algebra of ν and θ : B → T a lifting. For H ∈ Υ and F ∈ T set νHF = µ(F × H); then
νH : T → [0, 1] is countably additive and νHF ≤ νF for every F ∈ T, so there is a vH ∈ L1(ν) such
that

∫
F
vH = νHF for every F ∈ T and 0 ≤ vH ≤ χ1. We can therefore think of vH as a member of

L∞(ν) ∼= L∞(B). Let T : L∞(B) → L∞(T) be the Riesz homomorphism associated with θ, and set
ψyH = (TvH)(y) for every y ∈ Y .

Each ψy : Υ → [0,∞[ is finitely additive. So we have a complete measure µy on Z such that µyZ ≤
ψyZ = 1, K ⊆ domµy, µy is inner regular with respect to K and µyK ≥ ψyK for every K ∈ K (413Ua, as
before).

For H ∈ Υ, F ∈ T we have∫
F
ψyH ν(dy) =

∫
F
TvH =

∫
F
vH = νHF = µ(F ×H).

So
∫
µyK · χF (y)ν(dy) ≥

∫
F
ψyK ν(dy) = µ(F ×K)

for every K ∈ K. Now note that, for any H ∈ Υ and F ∈ T,

µ(F ×H) − sup
K∈K,K⊆H

µ(F ×K) = inf
K∈K,K⊆H

µ(F × (H \K))

≤ inf
K∈K,K⊆H

λ(H \K) = 0

because λ is inner regular with respect to K (and, like µ, is a probability measure). So

∫
(µy)∗H · χF (y)ν(dy) ≥ sup

K∈K,K⊆H

∫
µyK · χF (y)ν(dy)

≥ sup
K∈K,K⊆H

µ(F ×K) = µ(F ×H).

In particular,
∫

(µy)∗H ν(dy) ≥ µ(Y ×H) = λH,

and similarly
∫

(µy)∗(Z \H)ν(dy) ≥ λ(Z \H).

Taking ν-integrable functions g1, g2 such that g1(y) ≤ (µy)∗H and g2(y) ≤ (µy)∗(Z \H) for almost every
y,

∫
g1dν =

∫
(µy)∗H ν(dy) and

∫
g2dν =

∫
(µy)∗(Z \H)ν(dy) (133Ja), we must have

g1(y) + g2(y) ≤ (µy)∗H + (µy)∗(Z \H) ≤ µyZ ≤ 1

for almost every y, while
∫
g1 + g2 dν ≥ 1; so that, for almost all y,

g1(y) + g2(y) = (µy)∗H + (µy)∗(Z \H) = µyZ = 1,

and (because µy is complete) µyH is defined and equal to g1(y) (413Ec, 413Ef). It now follows that∫
F
µyH ν(dy) =

∫
F
g1(y)ν(dy) =

∫
(µy)∗H · χF (y)ν(dy) ≥ µ(F ×H)
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for every F ∈ T. But since also ∫
F
µy(Z \H)ν(dy) ≥ µ(F × (Z \H)),

∫
F
µyH + µy(Z \H) ν(dy) ≤ νF = µ(F ×H) + µ(F × (Z \H)),

we must actually have
∫
F
µyH ν(dy) = µ(F ×H).

All this is true whenever F ∈ T and H ∈ Υ. But now, setting

E = {E : E ∈ T⊗̂Υ, µE =
∫
µyE[{y}]ν(dy)},

we see that E is a Dynkin class and includes I = {F × H : F ∈ T, H ∈ Υ}, which is closed under finite
intersections; so that the Monotone Class Theorem tells us that E includes the σ-algebra generated by I,
and is the whole of T⊗̂Υ.

(b) The rest is just tidying up. (i) The construction in (a) allows µyZ to be less than 1 for a ν-negligible
set of y; but of course all we have to do, if that happens, is to amend µy arbitrarily on that set to any of
the ‘ordinary’ values of µy. (ii) If the original measure ν is not complete, let µ̂ and ν̂ be the completions

of µ and ν, and T̂ the domain of ν̂. The projection onto Y is inverse-measure-preserving for µ and ν, so is
inverse-measure-preserving for µ̂ and ν̂ (234Ba7), and µ̂ measures every member of T̂⊗̂Υ; set µ′ = µ̂↾T̂⊗̂Υ.
Next, the marginal measure of µ′ on Z is still λ (since both must have domain Υ). So we can apply (a) to
µ′ to get the result. (iii) If the original measure µ is not a probability measure, apply the arguments so far
to suitable scalar multiples of µ and ν.

(c) Thus we have the formula

µE =
∫
µyE[{y}]ν(dy)

for every E ∈ T⊗̂Υ. The second formula announced follows as in the remark following 452F.

452N Corollary Let Y and Z be sets and T ⊆ PY , Υ ⊆ PZ σ-algebras. Let µ be a probability measure
with domain T⊗̂Υ, and ν the marginal measure of µ on Y . Suppose that

either Υ is the Baire σ-algebra with respect to a compact Hausdorff topology on Z
or Υ is the Borel σ-algebra with respect to an analytic Hausdorff topology on Z
or (Z,Υ) is a standard Borel space.

Then there is a family 〈µy〉y∈Y of probability measures on Z, all with domain Υ, such that

µE =
∫
µyE[{y}]ν(dy)

for every E ∈ T⊗̂Υ, and ∫
fdµ =

∫∫
f(y, z)µy(dz)ν(dy)

whenever f is a [−∞,∞]-valued function such that
∫
fdµ is defined in [−∞,∞].

proof In each case, the marginal measure of µ on Z is tight (that is, inner regular with respect to the
closed compact sets) for a Hausdorff topology on Z. (Use 412D when Υ is the Baire σ-algebra on a compact
Hausdorff space and 433Ca when it is the Borel σ-algebra on an analytic Hausdorff space; when (Z,Υ) is a
standard Borel space, take any appropriate Polish topology on Z and use 423Ba.) So 452M tells us that we
can achieve the formulae sought with Radon probability measures µy. Since (in all three cases) domµy will
include Υ for every y, we can get the result as stated by replacing each µy by µy↾Υ.

452O Proposition Let (X,T,Σ, µ) be a Radon measure space, (Y,T, ν) a strictly localizable measure
space, and f : X → Y an inverse-measure-preserving function. Then there is a disintegration 〈µy〉y∈Y of µ
over ν, consistent with f , such that every µy is a Radon measure on X.

proof (a) Let 〈Yi〉i∈I be a decomposition of Y . For each i ∈ I, let νi be the subspace measure on Yi and λi
the subspace measure on Xi = f−1[Yi]. Then fi = f↾Xi is inverse-measure-preserving for λi and νi. Let Ki
be the family of compact subsets of Xi; of course Ki is a (countably) compact class and λi is inner regular

7Formerly 235Hc.
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with respect to Ki (412Oa). By 452I, we can choose, for each i ∈ I, a disintegration 〈µ̃y〉y∈Yi
of λi over νi,

consistent with f↾Xi, such that µ̃y measures every compact subset of Xi and is inner regular with respect
to Ki for every y ∈ Yi. Adjusting any which are not probability measures, and completing them if necessary,
we can suppose that every µ̃y is a complete probability measure. By 412Ja, µ̃y measures every relatively
closed subset of Xi for every y ∈ Yi.

For i ∈ I and y ∈ Yi, set

µyE = µ̃y(E ∩Xi)

whenever E ⊆ X and E ∩Xi is measured by µ̃y. Then µy is a complete totally finite measure on X; it is
inner regular with respect to Ki and measures every closed subset of X. It follows at once that it is tight
and measures every Borel set, that is, is a Radon measure on X.

(b) Now µE =
∫
µyE ν(dy) for every E ∈ Σ. PPP

⋃
i∈J E ∩Xi = E ∩ f−1[

⋃
i∈J Yi] belongs to Σ for every

J ⊆ I. By 451Q, µE =
∑
i∈I µ(E ∩Xi). For i ∈ I, we have

∫
Yi
µ̃y(E ∩Xi)νi(dy) = µ(E ∩Xi). So

µE =
∑

i∈I
µ(E ∩Xi) =

∑

i∈I

∫

Yi

µ̃y(E ∩Xi)νi(dy)

=
∑

i∈I

∫

Yi

µyE ν(dy) =

∫
µyE ν(dy)

by 214N. QQQ
Thus 〈µy〉y∈Y is a disintegration of µ over ν.

(c) Finally, if F ∈ T and i ∈ I, then

Yi ∩ F\{y : µyf
−1[F ] is defined and equal to 1}

= (F ∩ Yi) \ {y : y ∈ Yi, µ̃yf
−1[F ∩ Yi] = 1}

is negligible for every i, so µyf
−1[F ] = 1 for almost every y. Thus 〈µy〉y∈Y is consistent with f .

452P Corollary (cf. Blackwell 56) Let (X,T,Σ, µ) be a Radon measure space, (Y,S,T, ν) an analytic
Radon measure space and f : X → Y an inverse-measure-preserving function. Then there is a disintegration
〈µy〉y∈Y of µ over ν, strongly consistent with f , such that every µy is a Radon measure on X.

proof By 433B, ν is countably separated; now put 452O and 452Gc together.

452Q Disintegrations and conditional expectations Fubini’s theorem provides a relatively concrete
description of the conditional expectation of a function on a product of probability spaces with respect to
the σ-algebra defined by one of the factors, by means of the formula g(x, y) =

∫
f(x, z)dz (253H). This

generalizes straightforwardly to measures with disintegrations, as follows.

Proposition Let (X,Σ, µ) and (Y,T, ν) be probability spaces and f : X → Y an inverse-measure-preserving
function. Suppose that 〈µy〉y∈Y is a disintegration of µ over ν which is consistent with f , and that g is a
µ-integrable real-valued function.

(a) Setting h0(y) =
∫
g dµy whenever y ∈ Y and the integral is defined in R, h0 is a Radon-Nikodým

derivative of the functional F 7→
∫
f−1[F ]

g dµ : T → R.

(b) Now suppose that ν is complete. Setting h1(x) =
∫
g dµf(x) whenever x ∈ X and the integral is

defined in R, then h1 is a conditional expectation of g on the σ-algebra Σ0 = {f−1[F ] : F ∈ T}.

proof (a) If F ∈ T, then f−1[F ] is µy-conegligible for almost every y ∈ F , and µy-negligible for almost
every y ∈ Y \ F , so

∫
g × χf−1[F ]dµy = h0(y) × χF (y) for almost every y, and∫

F
h0dν =

∫∫
g × χf−1[F ]dµyν(dy) =

∫
f−1[F ]

g dµ

(452F). As F is arbitrary, we have the result.

(b) Of course Σ0 is a σ-algebra (111Xd), and it is included in Σ because f is inverse-measure-preserving.
By 452F, Y0 = {y : g is µy-integrable} is conegligible, so domh1 = f−1[Y0] is conegligible. If α ∈ R, then
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F = {y : y ∈ Y0,
∫
g dµy ≥ α}

belongs to T because y 7→
∫
g dµy is ν-virtually measurable and ν is complete. So

{x : x ∈ domh1, h1(x) ≥ α} = f−1[F ]

belongs to Σ0, and h1 is Σ0-measurable. If F ∈ T, then

∫

f−1[F ]

h1 dµ =

∫

f−1[F ]

∫
g dµf(x)µ(dx) =

∫

F

∫
g dµyν(dy)

(235G8)

=

∫

F

h0dν =

∫

f−1[F ]

g dµ

as in (a). As F is arbitrary, h1 is a conditional expectation of g on Σ0, as claimed.

*452R I take the opportunity to interpolate an interesting result about countably compact measures.
It demonstrates the power of 452I to work in unexpected ways.

Theorem (Pachl 79) Let (X,Σ, µ) be a countably compact measure space, (Y,T, ν) a strictly localizable
measure space, and f : X → Y an inverse-measure-preserving function. Then ν is countably compact.

proof (a) For most of the proof (down to the end of (b) below) I suppose that µ and ν are totally finite.
Let Z be the Stone space of the Boolean algebra T. (I am not using the measure algebra here!) For

F ∈ T, let F ∗ be the corresponding open-and-closed subset of Z. For each y ∈ Y , the map F 7→ χF (y) is a
Boolean homomorphism from T to {0, 1}, so belongs to Z; define g : Y → Z by saying that g(y)(F ) = χF (y)
for y ∈ Y , F ∈ T, that is, g−1[F ∗] = F for every F ∈ T. Let Z be the family of zero sets in Z, and Λ the
Baire σ-algebra of Z.

The set

{W : W ⊆ Z, g−1[W ] ∈ T}
is a σ-algebra of subsets of Z containing all the open-and-closed sets, so contains every zero set (4A3Od)
and includes Λ. Set λW = νg−1[W ] for W ∈ Λ. Then λ is a Baire measure on Z, so is inner regular with
respect to Z (412D).

Set h = gf : X → Z. Then h is a composition of inverse-measure-preserving functions, so is inverse-
measure-preserving. By 452I, there is a disintegration 〈µz〉z∈Z of µ over λ which is consistent with h.

(b) Let K ⊆ PY be the family of sets

{g−1[V ] : V ∈ Z, µzh−1[V ] = µzX = 1 for every z ∈ V }.

(i) K is a countably compact class of sets. PPP Let 〈Kn〉n∈N be a sequence in K such that
⋂
i≤nKi 6= ∅

for each n ∈ N. For each n ∈ N, let Vn ∈ Z be such that Kn = g−1[Vn] and µzh
−1Vn = µzX = 1 for every

z ∈ Vn. Then

g−1[
⋂
i≤n Vi] =

⋂
i≤nKi 6= ∅

for every n ∈ N, so {Vn : n ∈ N} has the finite intersection property and (because Z is compact) there is a
z ∈ ⋂

n∈N Vn. Now

µzh
−1[Vn] = µzX = 1

for every n ∈ N, so

∅ 6= ⋂
n∈N h

−1[Vn] = f−1[
⋂
n∈NKn].

Thus
⋂
n∈NKn is non-empty. As 〈Kn〉n∈N is arbitrary, K is a countably compact class. QQQ

8Formerly 235I.
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(ii) ν is inner regular with respect to K. PPP Suppose that F ∈ T and γ < νF . Choose a sequence
〈Vn〉n∈N in Z as follows. Start with V0 = F ∗, so that

λV0 = νg−1[V0] = νF > γ.

Given that Vn ∈ Z and λVn > γ, then we know that µzh
−1[Vn] = µzX = 1 for λ-almost every z ∈ Vn;

because λ is inner regular with respect to Z, there is a Vn+1 ∈ Z such that Vn+1 ⊆ Vn, λVn+1 > γ and
µzh

−1[Vn] = µzX = 1 for every z ∈ Vn+1. Continue.
At the end of the induction, set V =

⋂
n∈N Vn. Then V ∈ Z. If z ∈ V , then

µzh
−1[V ] = limn→∞ µzh

−1[Vn] = 1 = µzX,

so g−1[V ] ∈ K. Because V ⊆ V0 = F ∗, g−1[V ] ⊆ F , and

νg−1[V ] = λV = limn→∞ λVn ≥ γ.

As F and γ are arbitrary, ν is inner regular with respect to K. QQQ
Thus K witnesses that ν is countably compact.

(c) For the general case, let 〈Yi〉i∈I be a decomposition of Y . For each i ∈ I, set Xi = f−1[Yi]; let µi
be the subspace measure on Xi and νi the subspace measure on Yi. Then µi is countably compact (451Db)
and f↾Xi : Xi → Yi is inverse-measure-preserving for µi and νi, so νi is countably compact, by (a)-(b)
above. Let Ki ⊆ PYi be a countably compact class such that νi is inner regular with respect to Ki. Then
K =

⋃
i∈I Ki is a countably compact class (because any sequence in K with the finite intersection property

must lie within a single Ki). By 413T, there is a countably compact class K∗ ⊇ K which is closed under
finite unions; by 412Aa, ν is inner regular with respect to K∗, so is countably compact. This completes the
proof.

*452S Corollary (Pachl 78) If (X,Σ, µ) is a countably compact totally finite measure space, and T is
any σ-subalgebra of Σ, then µ↾T is countably compact.

452T In 452E, I remarked in passing that Fubini’s theorem on a product space X = Y × Z can be
thought of as giving us a disintegration of the product measure on X over the factor measure on Y . There
are other contexts in which we find that a canonical disintegration is provided for a structure (X,µ, Y, ν)
without calling on the Lifting Theorem. Here I will describe an important case arising naturally in the
theory of group actions.

Theorem Let X be a locally compact Hausdorff space, G a compact Hausdorff topological group and • a
continuous action of G on X. Suppose that µ is a G-invariant Radon probability measure on X. For x ∈ X,
write f(x) for the corresponding orbit {a•x : a ∈ G} of the action. Let Y = f [X] be the set of orbits, with
the topology {W : W ⊆ Y , f−1[W ] is open in X}. Write ν for the image measure µf−1 on Y .

(a) Y is locally compact and Hausdorff, and ν is a Radon probability measure.
(b) For each yyy ∈ Y , there is a unique G-invariant Radon probability µyyy on X such that µyyy(yyy) = 1.
(c) 〈µyyy〉yyy∈Y is a disintegration of µ over ν, strongly consistent with f .

proof (a) By 4A5Ja, Y is locally compact and Hausdorff, and f is an open map. By 418I, ν is a Radon
measure.

(b) Let λ be the unique Haar probability measure on G (442Id). By 443Ub-443Ud, applied to the action
•↾G×yyy of G on yyy, we have a unique G-invariant Radon probability measure µ′

yyy on yyy defined by saying that
µ′
yyyE = λ{g : g•x ∈ E} for every x ∈ yyy and Borel set E ⊆ yyy. Now µyyy must be the unique extension of µ′

yyy to
X. Of course we still have µyyyE = λ{g : g•x ∈ E} for every x ∈ yyy and Borel set E ⊆ X.

(c)(i) Let V ⊆ X be an open set, and set hV (yyy) = µyyyV for yyy ∈ Y . Then hV is lower semi-continuous.
PPP Suppose that yyy ∈ Y and α ∈ R are such that hV (yyy) > α. Then there is a compact set K ⊆ V such that
µyyyK > α. Fix x ∈ yyy, and set L = {g : g•x ∈ K}, so that L is a compact subset of G and λL > α. The set
{(g, x′) : g ∈ L, x′ ∈ X, g•x′ /∈ V } is closed in L × X, so its projection {x′ : ∃ g ∈ L, g•x′ /∈ V } is closed
(4A2Gm) and U = {x′ : g•x′ ∈ V for every g ∈ L} is open in X. Now f [U ] is open in Y , because f is an
open map. Of course x ∈ U and yyy ∈ f [U ]. But if yyy′ ∈ f [U ], there is an x′ ∈ U such that f(x′) = yyy′, and
now

D.H.Fremlin



30 Perfect measures, disintegrations and processes 452T

hV (yyy′) = µyyy′V = λ{g : g•x′ ∈ V } ≥ λL > α.

As yyy and α are arbitrary, hV is lower semi-continuous. QQQ

(ii) In particular, hV is Borel measurable; because f is inverse-measure-preserving for µ and ν,

∫
hV dν =

∫
hV (f(x))µ(dx)

(235G again)

=

∫
λ{g : g•x ∈ V }µ(dx) =

∫
µ{x : g•x ∈ V }λ(dg)

(by 417G, because µ and λ are totally finite Radon measures and {(g, x) : g•x ∈ V } is an open set in G×X)

=

∫
µ(g−1

•V )λ(dg) =

∫
µV λ(dg)

(because µ is G-invariant)

= µV.

By the Monotone Class Theorem, as usual, it follows that
∫
µyyyE ν(dyyy) = µE for every Borel set E ⊆ X

(apply 136C to µ and E 7→
∫
µyyyE ν(dyyy)), and therefore (because every µyyy is complete and µ is the completion

of a Borel measure) for every E ∈ domµ. So 〈µyyy〉yyy∈Y is a disintegration of µ over ν. Since

µyyyf
−1[{yyy}] = µyyy(yyy) = 1

for every yyy ∈ Y , the disintegration is strongly consistent with f .

452X Basic exercises (a) Let Y be a first-countable topological space, ν a topological probability
measure on Y , Z a topological space, and 〈µy〉y∈Y a family of topological probability measures on Z such
that y 7→ µyV is lower semi-continuous for every open set V ⊆ Z. Show that there is a Borel probability
measure µ on Y × Z such that µE =

∫
µyE[{y}]ν(dy) for every Borel set E ⊆ Y × Z. (Hint : 434R.)

(b) Let (Y,T, ν) be a probability space, Z a topological space and P the set of topological probability
measures on Z with its narrow topology (437Jd). Let y 7→ µy : Y → P be a function which is measurable
in the sense of 411L. Show that, writing B(Z) for the Borel σ-algebra of Z, we have a probability measure
µ defined on T⊗̂B(Z) such that µE =

∫
µyE[{y}]ν(dy) for every E ∈ T⊗̂B(Z).

(c) Let (Y,T, ν) be a probability space, Z a topological space and PBa the set of Baire probability
measures on Z with its vague topology (437Jc). Let y 7→ µy : Y → PBa be a measurable function. Show

that, writing Ba(Z) for the Baire σ-algebra of Z, we have a probability measure µ defined on T⊗̂Ba(Z)
such that µE =

∫
µyE[{y}]ν(dy) for every E ∈ T⊗̂Ba(Z).

(d) Let (Y,S,T, ν) be a Radon probability space, (X,T) a topological space, and 〈µy〉y∈Y a family of
Radon probability measures on X. Suppose that (i) there is a base U for T, closed under finite unions, such
that y 7→ µyU is lower semi-continuous for every U ∈ U (ii) ν is inner regular with respect to the family
{K : K ⊆ Y , {µy : y ∈ K} is uniformly tight}. Show that we have a Radon probability measure µ̃ on X
such that µ̃E =

∫
µyEν(dy) whenever µ̃ measures E.

(e) Let (Y,S,T, ν) be a Radon probability space, (Z,U) a Prokhorov Hausdorff space (437U), and P the
space of Radon probability measures on Z with its narrow topology. Suppose that y 7→ µy : Y → P is almost
continuous. Show that we have a Radon probability measure µ̃ on Y × Z such that µ̃E =

∫
µyE[{y}]ν(dy)

whenever µ̃ measures E.

(f) Let (X,T, ν) be a measure space, and µ an indefinite-integral measure over ν (234J9). Show that
there is a disintegration 〈µx〉x∈X of µ over ν such that µx{x} = µxX for every x ∈ X.

9Formerly 234B.
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>>>(g) Let (X,Σ, µ) and (Y,T, ν) be measure spaces and 〈µy〉y∈Y a disintegration of µ over ν. Show that
〈µ̂y〉y∈Y is a disintegration of µ̂ over ν, where µ̂y and µ̂ are the completions of µy and µ respectively.

>>>(h) Let (X,Σ, µ) and (Y,T, ν) be measure spaces, and ν ′ an indefinite-integral measure over ν, defined
from a ν-virtually measurable function g : Y → [0,∞[. Suppose that 〈µy〉y∈Y is a disintegration of µ over
ν ′. Show that 〈g(y)µy〉y∈Y is a disintegration of µ over ν.

(i) Let (Y,T, ν) be a probability space, X a set and 〈µy〉y∈Y a family of probability measures on X. Set

θA =
∫
µ∗
y(A) ν(dy) for every A ⊆ X. (i) Show that θ is an outer measure on X. (ii) Let µ be the measure

on X defined from θ by Carathéodory’s construction. Show that 〈µy〉y∈Y is a disintegration of µ over ν.
(iii) Suppose that X = [0, 1]2, ν is Lebesgue measure on [0, 1] = Y and µyE = ν{x : (x, y) ∈ E} whenever
this is defined. Show that, for any E measured by µ, µyE ∈ {0, 1} for ν-almost every y.

(j) Explore connexions between 452F and the formula
∫
fdµ =

∫∫
fdνzλ(dz) of 443Qe.

(k) Let (X,Σ, µ) be a countably compact σ-finite measure space, (Y,T, ν) a σ-finite measure space, and
f : X → Y a (Σ,T)-measurable function such that f−1[F ] is µ-negligible whenever F ⊆ Y is ν-negligible.
Show that there is a disintegration 〈µy〉y∈Y of µ over ν such that, for each F ∈ T, µy(X \ f−1[F ]) = 0
for almost every y ∈ F . (Hint : Reduce to the case in which µ is totally finite, and disintegrate µ over
ν ′ = (µf−1)↾T.)

>>>(l) Let (X,Σ, µ) be a non-empty countably compact measure space such that Σ is countably generated
(as σ-algebra), (Y,T, ν) a σ-finite measure space, and f : X → Y an inverse-measure-preserving function. (i)
Show that there is a disintegration 〈µy〉y∈Y of µ over ν, consistent with f , such that every µy is a probability
measure with domain Σ. (ii) Show that if 〈µ′

y〉y∈Y is any other disintegration of µ over ν which is consistent
with f , then µy = µ′

y↾Σ for almost every y.

(m) Let (X,Σ) be a non-empty standard Borel space, µ a measure with domain Σ, (Y,T, ν) a σ-finite
measure space, and f : X → Y an inverse-measure-preserving function. (i) Show that there is a disintegration
〈µy〉y∈Y of µ over ν, consistent with f , such that every µy is a probability measure with domain Σ. (ii)
Show that if 〈µ′

y〉y∈Y is any other disintegration of µ over ν which is consistent with f , then µy = µ′
y↾Σ for

almost every y.

(n) Let (X,Σ, µ) be a totally finite countably compact measure space and T ⊆ Σ a countably-generated
σ-algebra; set ν = µ↾T. Show that there is a disintegration 〈µx〉x∈X of µ over ν such that µxHx = µxX = 1
for every x ∈ X, where Hx =

⋂{F : x ∈ F ∈ T} for every x. (Hint : apply 452I with Y = {Hx : x ∈ X}.)

(o) Show that 452I can be deduced from 452M. (Hint : start with the case νY = 1; set λW = µ{x :
(x, f(x)) ∈W} for W ∈ Σ⊗̂T.)

(p) Show that, in 452M, we shall have µ̂E =
∫
µyE[{y}]ν(dy) whenever the completion µ̂ of µ measures

E.

>>>(q) Let T be the Borel σ-algebra of [0, 1], ν the restriction of Lebesgue measure to T, Z ⊆ [0, 1] a set
with inner measure 0 and outer measure 1, and Υ the Borel σ-algebra of Z. Show that there is a probability
measure µ on [0, 1] × Z defined by setting µE = ν∗{y : (y, y) ∈ E} for E ∈ T⊗̂Υ. Show that there is no
disintegration of µ over ν which is consistent with the projection (y, z) 7→ y.

>>>(r) Let (X,Σ, µ) be a complete totally finite countably compact measure space and T a σ-subalgebra
of Σ containing all negligible sets. Show that there is a family 〈µx〉x∈X of probability measures on X such
that (i) x 7→ µxE is T-measurable and

∫
µxE µ(dx) = µE for every E ∈ Σ (ii) if F ∈ T, then µxF = 1

for almost every x ∈ F . Show that if g is any µ-integrable real-valued function, then g is µx-integrable for
almost every x, and x 7→

∫
g dµx is a conditional expectation of g on T.

(s) Let (X0,Σ0, µ0) and (X1,Σ1, µ1) be σ-finite measure spaces. For each i, let (Yi,Ti, νi) be a measure

space and 〈µ(i)
y 〉y∈Yi

a disintegration of µi over νi. Show that 〈µ(0)
y0 × µ

(1)
y1 〉(y0,y1)∈Y0×Y1

is a disintegration of
µ0 × µ1 over ν0 × ν1, where each product here is a c.l.d. product measure.
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(t) In 452M, suppose that Z is a metrizable space and K is the family of compact subsets of Z, and let

(Y, T̂, ν̂) be the completion of (Y,T, ν). Show that y 7→ µy is a T̂-measurable function from Y to the set of
Radon probability measures on Z with its narrow topology. (Hint : 437Rh.)

(u) SU(r), for r ≥ 2, is the set of r × r matrices T with complex coefficients such that detT = 1 and
TT ∗ = I, where T ∗ is the complex conjugate of the transpose of T . (i) Show that under the natural action
(T, u) 7→ Tu : SU(r) × Cr → Cr the orbits are the spheres {u : u . ū = γ}, for γ > 0, together with {0}. (ii)
Show that if a Borel set C ⊆ Cr is such that γC ⊆ C for every γ > 0, and µ0, µ1 are two SU(r)-invariant
Radon probability measures on Cr such that µ0{0} = µ1{0}, than µ0C = µ1C.10

(v) Let 〈Xi〉i∈I be a family of compact Hausdorff spaces with product X, and µ a completion regular
topological measure on X. Show that all the marginal measures of µ are completion regular. (Hint : 434U.)

452Y Further exercises (a) Let Z be a set, (Y,T, ν) a measure space, and 〈µy〉y∈Y a family of measures
on Z. Let Υ be a σ-algebra of subsets of Z such that, for every H ∈ Υ, y 7→ µyH : Y → [0,∞] is defined
ν-a.e. and is ν-virtually measurable. For F ∈ T, set HF = {H : H ∈ Υ, µyH is defined for every y ∈ F and

supy∈F µyH <∞}. Show that there is a measure µ on Y × Z, with domain T⊗̂Υ, defined by setting

µE = sup{
n∑

i=0

∫

Fi

µy(E[{y}] ∩Hi)ν(dy) : F0, . . . , Fn ∈ T are disjoint,

νFi <∞ and Hi ∈ HFi
for every i ≤ n}

for E ∈ T⊗̂Υ.

(b) Let (X,Σ, µ) be a semi-finite countably compact measure space, (Y,T, ν) a strictly localizable measure
space, and f : X → Y an inverse-measure-preserving function. Suppose that the magnitude of ν (definition:
332Ga) is finite or a measure-free cardinal (definition: 438A). Show that there is a disintegration 〈µy〉y∈Y
of µ over ν which is consistent with f .

(c) Give an example to show that the phrase ‘strictly localizable’ in the statements of 452O and 452Yb
cannot be dispensed with.

(d) Give an example to show that, in 452M, we cannot always arrange that Υ ⊆ domµy for ν-almost
every y ∈ Y .

(e) Let (X,Σ, µ) be a probability space such that whenever (Y,T, ν) is a probability space and f : X → Y
is an inverse-measure-preserving function, there is a disintegration 〈µy〉y∈Y of µ over ν which is consistent
with f . Show that µ is countably compact. (Hint : 452R, or Pachl 78.)

(f) Let X be a K-analytic Hausdorff space and µ a totally finite measure on X which is inner regular
with respect to the closed sets. Show that µ is countably compact. (Hint : 432D.)

(g) Let X be a set, and 〈µi〉i∈I a family of countably compact measures on X with sum µ (234G11).
Show that if µ is semi-finite, it is countably compact.

(h) Let X be a locally compact Hausdorff space, G a compact Hausdorff group, and • a continuous action
of G on X. Let H be another group and ◦ a continuous action of H on X which commutes with • in the sense
that g•(h◦x) = h◦(g•x) for all g ∈ G, h ∈ H and x ∈ X. (i) Show that ((g, h), x) → g•(h◦x) : (G×H)×X →
X is a continuous action of the product group G×H on X. (ii) Suppose that the action in (i) is transitive.
Show that if µ, µ′ are G-invariant Radon probability measures on X and E ⊆ X is a Borel set such that
h◦E = E for every h ∈ H, then µE = µ′E.

10I am grateful to G.Vitillaro for bringing this to my attention.
11Formerly 112Ya.
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452 Notes and comments 452B and 452C correspond respectively to the ordinary and τ -additive product
measures of §§251 and 417. I have not attempted to find a suitable general formulation for the constructions
when the measures involved are not totally finite. In 452Ya I set out a possible version which at least agrees
with the c.l.d. product measure when all the µy are the same. Any product measure which has an associated
Fubini theorem can be expected to be generalizable in the same way; for instance, 434R becomes 452Xa.

The hypotheses in 452B are closely matched with the conclusion, and clearly cannot be relaxed substan-
tially if the theorem is to remain true. 452C and 452D are a rather different matter. While the condition
‘y 7→ µyV is lower semi-continuous’ is a natural one, and plainly necessary for the argument given, the
integrated measure µ can be τ -additive or Radon for other reasons. In particular, the most interesting
specific example in this book of a Radon measure constructed through these formulae (453N below) does
not satisfy the lower semi-continuity condition for the section measures.

Early theorems on disintegrations concentrated on cases in which all the measure spaces involved were
‘standard’ in that the measures were defined on standard Borel algebras, or were the completions of such
measures. Theorem 452I here is the end (so far) of a long search for ways to escape from topological
considerations. As usual, of course, the most important applications (in probability theory) are still rooted
in the standard case. Being countably separated, such spaces automatically yield disintegrations which are
concentrated on fibers, in the sense that µyf

−1[{y}] = µyX = 1 for almost every y (452P). The general
question of when we can expect to find disintegrations of this type is an important one to which I will return
in the next section.

452I and 452O, as stated, assume that the functions f : X → Y controlling the disintegrations are
inverse-measure-preserving. In fact it is easy to weaken this assumption (452Xk). Note the constructions
for conditional expectations in 452Q and 452Xr.

Obviously 452I and 452M are nearly the same theorem; but I write out formally independent proofs
because the constructions needed to move between them are not quite trivial. In fact I think it is easier to
deduce 452I from 452M than the other way about (452Xo). The point of 452N is that the spaces (X,Σ)
there have the ‘countably compact measure property’, that is, any totally finite measure with domain Σ is
countably compact. I will return to this in the exercises to §454 (454Xf et seq.).

The method of 452R, due to J.Pachl, may have inspired the proof of (vi)⇒(i) in 343B. In the general
introduction to this work I wrote ‘I have very little confidence in anything I have ever read concerning
the history of ideas’. We have here a case indicating the difficulties a historian faces. I proved 343B in
the winter of 1996-97, while a guest of the University of Wisconsin at Madison. Around that time I was
renewing my acquaintance with Pachl 78. I know I ran my eye over the proof of 452R, without, I may
say, understanding it, as became plain when I came to write the first draft of the present section in the
summer of 1997; whether I had understood it twenty years earlier I do not know. It is entirely possible that
a subterranean percolation of Pachl’s idea was what dislodged an obstacle to my attempts to prove 343B,
but I was not at the time conscious of any connexion.

Version of 22.3.10/23.3.10

453 Strong liftings

The next step involves the concept of ‘strong’ lifting on a topological measure space (453A); I devote a
few pages to describing the principal cases in which strong liftings are known to exist (453B-453J). When
we have Radon measures µ and ν, with an almost continuous inverse-measure-preserving function between
them, and a strong lifting for ν, we can hope for a disintegration 〈µy〉y∈Y such that (almost) every µy
lives on the appropriate fiber. This is the content of 453K. I end the section with a note on the relation
between strong liftings and Stone spaces (453M) and with V.Losert’s example of a space with no strong
lifting (453N).

Much of the work here is based on ideas in Ionescu Tulcea & Ionescu Tulcea 69.

453A The proof of the first disintegration theorem I presented, 452H, depended on two essential steps:
the use of a lifting for (Y,T, ν) to define the finitely additive functionals ψy, and the use of a countably
compact class to convert these into countably additive functionals. In 452O I observed that if our countably

c© 1998 D. H. Fremlin
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compact class is the family of compact sets in a Hausdorff space, we can get Radon measures in our
disintegration. Similarly, if we have a lifting of a special type, we can hope for special properties of the
disintegration. A particularly important kind of lifting, in this context, is the following.

Definition Let (X,T,Σ, µ) be a topological measure space. A lifting φ : Σ → Σ is strong or of local type
if φG ⊇ G for every open set G ⊆ X, that is, if φF ⊆ F for every closed set F ⊆ X. I will say that φ is
almost strong if

⋃
G∈T

G \ φG is negligible.
Similarly, if A is the measure algebra of µ, a lifting θ : A → Σ is strong if θG• ⊇ G for every open set

G ⊆ X, and almost strong if
⋃
G∈T

G \ θG• is negligible.
Obviously a strong lifting is almost strong.

453B We already have the machinery to describe a particularly striking class of strong liftings.

Theorem Let X be a topological group with a Haar measure µ, and Σ its algebra of Haar measurable sets.
(a) If φ : Σ → Σ is a left-translation-invariant lifting, in the sense of 447A, then φ is strong.
(b) µ has a strong lifting.

proof (a) Apply 447B with Y = {e} and φ = φ.

(b) For there is a left-translation-invariant lifting (447J).

Remark In particular, translation-invariant liftings on Rr or {0, 1}I (§345) are strong.

453C Proposition Let (X,T,Σ, µ) be a topological measure space and φ : Σ → Σ a lifting. Write L
∞

for the space of bounded Σ-measurable real-valued functions on X, so that L∞ can be identified with L∞(Σ)
(363H) and the Boolean homomorphism φ : Σ → Σ gives rise to a Riesz homomorphism T : L∞ → L

∞

(363F).
(a) If φ is a strong lifting, then Tf = f for every bounded continuous function f : X → R.
(b) If (X,T) is completely regular and Tf = f for every f ∈ Cb(X), then φ is strong.

proof (a) Suppose first that f ≥ 0. For α ∈ R, set Gα = {x : x ∈ X, f(x) > α}; then Gα is open, so
φGα ⊇ Gα. We have f ≥ αχGα, so

Tf ≥ αT (χGα) = αχ(φGα) ≥ αχGα,

that is, (Tf)(x) ≥ α whenever f(x) > α. As α is arbitrary, Tf ≥ f . At the same time, setting γ = ‖f‖∞,
we have

T (γχX − f) ≥ γχX − f , T (γχX) = γχ(φX) = γχX,

so Tf ≤ f and Tf = f .
For general f ∈ Cb(X),

Tf = T (f+ − f−) = Tf+ − Tf− = f+ − f− = f ,

where f+ and f− are the positive and negative parts of f .

(b) Let G ⊆ X be open and x any point of G. Then there is an f ∈ Cb(X) such that f ≤ χG and
f(x) = 1. In this case

f = Tf ≤ T (χG) = χ(φG),

so x ∈ φG. As x is arbitrary, G ⊆ φG; as G is arbitrary, φ is strong.

453D Proposition Let (X,T,Σ, µ) be a topological measure space.
(a) If µ has a strong lifting it is strictly positive (definition: 411Nf).
(b) If µ is strictly positive and complete, and has an almost strong lifting, it has a strong lifting.
(c) If µ has an almost strong lifting it is τ -additive, so has a support.
(d) If µ is complete and µX > 0 and the subspace measure µE has an almost strong lifting for some

conegligible set E ⊆ X, then µ has an almost strong lifting.

proof (a) If φ : Σ → Σ is a strong lifting, then G ⊆ φG = ∅ whenever G is a negligible open set, so µ is
strictly positive.
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(b) If µ is strictly positive and complete and φ : Σ → Σ is an almost strong lifting, set A =
⋃
G∈T

G\φG.
For each x ∈ A, let Ix be the ideal of subsets of X generated by

{F : F ⊆ X is closed, x /∈ F} ∪ {B : B ⊆ X is negligible}.

Then X /∈ Ix, because µ is strictly positive, so a closed set not containing x cannot be conegligible. There
is therefore a Boolean homomorphism ψx : PX → {0, 1} such that ψxF = 0 for every F ∈ Ix (311D). Set

φ̃E = (φE \A) ∪ {x : x ∈ A, ψxE = 1}
for E ∈ Σ. It is easy to check that φ̃ : Σ → PX is a Boolean homomorphism. (Compare the proof of 341J.)
If E ∈ Σ, then

E△φ̃E ⊆ (E△φE) ∪A
is negligible, so (because µ is complete) φ̃E ∈ Σ. If E is negligible, then E ∈ Ix and ψxE = 0 for every

x ∈ A, so φ̃E = φE = ∅. Thus φ̃ is a lifting. Now suppose that x ∈ G ∈ T. If x ∈ A, then X \G ∈ Ix, so

ψx(X \G) = 0, ψxG = 1 and x ∈ φ̃G. If x /∈ A, then x ∈ φG and again x ∈ φ̃G. As x and G are arbitrary,

φ̃ is a strong lifting.

(c) Suppose that φ : Σ → Σ is an almost strong lifting. Let G be a non-empty upwards-directed family of
open sets with union H. If supG∈G µG = ∞, this is surely equal to µH. Otherwise, there is a non-decreasing
sequence 〈Gn〉n∈N in G such that G \G∗ is negligible for every G ∈ G, where G∗ =

⋃
n∈NGn (215Ab). Then

φG ⊆ φG∗ for every G ∈ G. This means that

H \ φG∗ ⊆ ⋃
G∈G G \ φG

is negligible, because φ is almost strong, and

µH ≤ µ(φG∗) = µG∗ = limn→∞ µGn = supG∈G µG.

As G is arbitrary, µ is τ -additive. By 411Nd, it has a support.

(d) Now suppose that µ is complete, that µX > 0 and that there is a conegligible E ⊆ X such that µE
has an almost strong lifting φ. Let ψ : PX → {∅, X} be any Boolean homomorphism such that ψA = ∅
whenever A is negligible. (This is where I use the hypothesis that X is not negligible.) Define φ̃ : Σ → PX
by setting

φ̃F = φ(E ∩ F ) ∪ (ψF \ E).

Then φ̃ is a Boolean homomorphism because φ and ψ are;

F△φ̃F ⊆ ((E ∩ F )△φ(E ∩ F )) ∪ (X \ E)

is negligible, so φ̃F ∈ Σ, for every F ∈ Σ, because µ is complete; and if F is negligible, then φ(E ∩ F ) =

ψF = ∅ so φ̃F = ∅. Thus φ̃ is a lifting. Finally,
⋃
G∈T

G \ φ̃G ⊆ (X \ E) ∪⋃
G∈T

((G ∩ E) \ φ(G ∩ E))

is negligible because φ is almost strong and E is conegligible.

453E Proposition Let (X,T,Σ, µ) be a complete strictly localizable topological measure space with an
almost strong lifting, and A ⊆ X a non-negligible set. Then the subspace measure µA has an almost strong
lifting.

proof Let φ : Σ → Σ be an almost strong lifting. Because µ is strictly localizable, A has a measurable
envelope W say (put 213J and 213L together). Write ΣA for the subspace σ-algebra on A. Let ψ : ΣA →
{∅, A} be any Boolean homomorphism such that ψH = ∅ for every negligible set H ⊆ A.

If E, F ∈ Σ and E ∩A = F ∩A, then φE ∩ φW = φF ∩ φW . PPP

µ((E△F ) ∩W ) = µ∗((E△F ) ∩A) = 0,

so

(φE ∩ φW )△(φF ∩ φW ) = φ((E△F ) ∩W ) = ∅. QQQ
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We can therefore define a function φ̃ : ΣA → PA by setting

φ̃H = (φE ∩ φW ∩A) ∪ (ψH \ φW )

whenever E ∈ Σ and H = E ∩A. It is easy to check that φ̃ is a Boolean homomorphism. If E ∈ Σ then

(E ∩A)△φ̃(E ∩A) ⊆ (E△φE) ∪ (A \ φW ) ⊆ (E△φE) ∪ (W \ φW )

is negligible, so φ̃(E ∩A) ∈ ΣA (because µ and µA are complete). If H ∈ ΣA is negligible, then

φ̃H ⊆ φH ∪ ψH = ∅,

so φ̃ is a lifting for µA.
Now set B = (A \φW )∪⋃

G∈T
G \φG. Because φ is almost strong, B is negligible. If H ⊆ A is relatively

open, then H \ φ̃H ⊆ B. PPP Take x ∈ H \ φ̃H. Express H as G ∩A where G ⊆ X is open. If x ∈ φW , then
x /∈ φG so x ∈ B; if x /∈ φW , then of course x ∈ B. QQQ Thus

⋃{H \ φ̃H : H ⊆ A is relatively open} ⊆ B

is negligible and φ̃ is almost strong.

453F Proposition Let (X,T,Σ, µ) be a complete strictly localizable topological measure space.
(a) If T has a countable network, any lifting for µ is almost strong.
(b) Suppose that µX > 0 and µ is inner regular with respect to

K = {K : K ∈ Σ, µK has an almost strong lifting},

where µK is the subspace measure on K. Then µ has an almost strong lifting.

proof (a) Let E be a countable network for T, and φ : Σ → Σ a lifting. For each E ∈ E , let Ê be a
measurable envelope of E (213J/213L again). Then

⋃

G∈T

G \ φG =
⋃

G∈T,E∈E,E⊆G
E \ φG ⊆

⋃

G∈T,E∈E,E⊆G
Ê \ φÊ

(because if E ⊆ G ∈ T, then G ∈ Σ, so µ(Ê \G) = 0 and φÊ ⊆ φG)

⊆
⋃

E∈E
Ê \ φÊ

is negligible, so φ is almost strong.

(b) Let L ⊆ K be a disjoint family such that µ∗A =
∑
L∈L µ

∗(A∩L) for every A ⊆ X (412Ib). For each
L ∈ L, let ΣL be the corresponding subspace σ-algebra and φL : ΣL → ΣL an almost strong lifting. Set
E =

⋃L; then

µ∗(X \ E) =
∑
L∈L µ(L \ E) = 0,

so E is conegligible. For F ∈ ΣE set φF =
⋃
L∈L φL(F ∩ L); then φ is a Boolean homomorphism from ΣE

to PE. If F ∈ ΣE , then

µ∗(F△φF ) =
∑
L∈L µ

∗(L ∩ (F△φF )) =
∑
L∈L µ

∗((F ∩ L)△φL(F ∩ L)) = 0,

while if µF = 0 then φL(F ∩ L) = ∅ for every L, so φF = ∅. Thus φ is a lifting. Now set

A =
⋃{H \ φH : H ⊆ E is relatively open}.

If L ∈ L, then

A ∩ L =
⋃{(H ∩ L) \ φL(H ∩ L) : H ⊆ E is relatively open}

is negligible, because φL is almost strong; thus φ is an almost strong lifting for µE . By 453Dd, µ also has
an almost strong lifting.

453G Corollary (a) A non-zero quasi-Radon measure on a separable metrizable space has an almost
strong lifting.

Measure Theory



453I Strong liftings 37

(b) A non-zero Radon measure µ on an analytic Hausdorff space X has an almost strong lifting.

proof (a) A quasi-Radon measure is complete and strictly localizable (415A), so, if non-zero, has a lifting
(341K). A separable metrizable space has a countable network (4A2P(a-iii)), so this lifting must be almost
strong.

(b) If K ⊆ X is compact and non-negligible, it is metrizable (423Dc), so that the subspace measure µK
has an almost strong lifting, by (a); as µ is tight (that is, inner regular with respect to the closed compact
sets), it has an almost strong lifting, by 453Fb.

Remark In particular, Lebesgue measure on Rr has an almost strong lifting and therefore, by 453Db, a
strong lifting, as already noted in 453B.

453H Lemma Let (X,Σ, µ) be a complete locally determined measure space and T a topology on X
generated by a family U ⊆ Σ. Suppose that φ : Σ → Σ is a lifting such that φU ⊇ U for every U ∈ U . Then
µ is a τ -additive topological measure, and φ is a strong lifting.

proof Of course φ is a lower density, and φX = X, so by 414P we have a density topology

Td = {E : E ∈ Σ, E ⊆ φE}
with respect to which µ is a τ -additive topological measure. But our hypothesis is that U ⊆ Td, so T ⊆ Td

and µ is a τ -additive topological measure with respect to T. Also, of course, φG ⊇ G for every G ∈ T, so φ
is a strong lifting.

453I Proposition Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of topological probability spaces such that every
Ti has a countable network and every µi is strictly positive. Let λ be the (ordinary) complete product
measure on X =

∏
i∈I Xi. Then λ is a τ -additive topological measure and has a strong lifting.

proof (a) The strategy of the proof is as follows. We may suppose that I = κ is a cardinal. Write Λ for
the domain of λ, and for each ξ ≤ κ let Λξ be the σ-algebra of members of Λ determined by coordinates less
than ξ; write πξ : X → Xξ for the canonical map. I seek to define a lifting φ : Λ → Λ such that φW ⊇W for
every open set W ∈ Λ. This will be the last in a family 〈φξ〉ξ≤κ of partial liftings, constructed inductively
as in the proof of 341H, with domφξ = Λξ for each ξ. The inductive hypothesis will be that φξ extends φη
whenever η ≤ ξ, and φξπ

−1
η [G] ⊇ π−1

η [G] for every η < ξ and every open G ⊆ Xη.
The induction starts with Λ0 = {∅, X}, φ0∅ = ∅, φ0X = X. For ξ ≤ κ, set Bξ = {W • : W ∈ Λξ}.

(b) Inductive step to a successor ordinal ξ + 1 Suppose that φξ has been defined, where ξ < κ.

(i) By 341Nb, there is a lifting φ′ξ : Λ → Λ extending φξ. Let Eξ be a countable network for Tξ. For

each E ∈ Eξ let Ê be a measurable envelope of E. Set

Q =
⋃{π−1

ξ [Ê] \ φ′ξ(π−1
ξ [Ê]) : E ∈ Eξ};

then Q is negligible.

(ii) For x ∈ Q, let Ix ⊆ Λ be the ideal generated by

{W : W ∈ Λξ, x /∈ φξW} ∪ {π−1
ξ [F ] : F ⊆ Xξ is closed, πξ(x) /∈ F} ∪ {W : λW = 0}.

Then X /∈ Ix. PPP??? Otherwise, there are a W ∈ Λξ, a closed F ⊆ Xξ and a negligible W ′ ∈ Λ such that

W ∪W ′ ∪ π−1
ξ [F ] = X while x /∈ φξW ∪ π−1

ξ [F ]. But in this case

0 = λW ′ ≥ λ((X \W ) ∩ (X \ π−1
ξ [F ]))

= λ(X \W ) · λ(X \ π−1
ξ [F ]) = λ(X \W ) · µξ(Xξ \ F ) > 0

because µξ is strictly positive and φξW 6= X. XXXQQQ
There is therefore a Boolean homomorphism ψx : Λ → {0, 1} which is zero on Ix.

(iii) Set

φξ+1W = (φ′ξW \Q) ∪ {x : x ∈ Q, ψxW = 1}
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for every W ∈ Λξ+1. Then φξ+1 is a Boolean homomorphism from Λξ+1 to PX. Because φξ+1W△φ′ξW ⊆ Q

is negligible, φξ+1W ∈ Λ and W△φξ+1W is negligible for every W ∈ Λξ+1. If λW = 0 then φ′ξW = ∅ and

ψxW = 0 for every x ∈ Q, so φξ+1W = ∅; thus φξ+1 : Λξ+1 → Λ is a partial lifting. If W ∈ Λξ, then, for
x ∈ Q,

x ∈ φξW =⇒ x /∈ φξ(X \W ) =⇒ X \W ∈ Ix
=⇒ ψx(X \W ) = 0 =⇒ ψxW = 1 ⇐⇒ x ∈ φξ+1W

=⇒W /∈ Ix =⇒ x ∈ φξW,

so φξ+1W = φξW . Thus φξ+1 extends φξ.

(iv) Suppose that η ≤ ξ and G ⊆ Xη is open. If η < ξ then

φξ+1(π−1
η [G]) = φξ(π

−1
η [G]) ⊇ π−1

η [G]

by the inductive hypothesis. If η = ξ, take any x ∈ π−1
ξ [G]. If x ∈ Q, thenX\π−1

ξ [G] ∈ Ix, so ψx(π−1
ξ [G]) = 1

and x ∈ φξ+1(π−1
ξ [G]). If x /∈ Q, there is an E ∈ Eξ such that x(ξ) ∈ E ⊆ G. In this case, x(ξ) ∈ Ê, so

x ∈ π−1
ξ [Ê] \Q ⊆ φ′ξ(π

−1
ξ [Ê]) \Q ⊆ φξ+1(π−1

ξ [Ê]) ⊆ φξ+1(π−1
ξ [G])

because Ê \G and π−1
ξ [Ê] \π−1

ξ [G] are negligible. As x is arbitary, π−1
η [G] ⊆ φξ+1(π−1

η [G]) in this case also.

Thus the induction continues.

(c) Inductive step to a non-zero limit ordinal ξ of countable cofinality Suppose that 0 < ξ ≤ κ, that
cf ξ = ω and that φη has been defined for every η < ξ. Let 〈ζn〉n∈N be a non-decreasing sequence in
ξ with limit ξ. Then Bξ is the closed subalgebra of A generated by

⋃
n∈N Bζn (using 254N and 254Fe,

or otherwise). By 341G, there is a partial lower density φ : Λξ → Λ extending every φζn , and therefore

extending φη for every η < ξ. By 341Jb (applied to λ↾ Λ̂ξ, where Λ̂ξ is the σ-subalgebra of Λ generated by
Λξ ∪ {W : λW = 0}), there is a partial lifting φξ : Λξ → Λ such that φW ⊆ φξW for every W ∈ Λξ.

If η < ξ and W ∈ Λη, then

φηW = φW ⊆ φξW , X \ φηW = φη(X \W ) ⊆ φξ(X \W ) = X \ φξW ,

so φξ extends φη. If η < ξ and G ⊆ Xη is open,

φξ(π
−1
η [G]) = φη+1(π−1

η [G]) ⊇ π−1
η [G].

So again the induction continues.

(d) Inductive step to a limit ordinal ξ of uncountable cofinality In this case, Bξ =
⋃
η<ξBη, as in the

proof of 341H; so there will be a unique partial lifting φξ : Λξ → Λ extending φη for every η < ξ (set
φξW = φηW

′ whenever W ∈ Λξ, η < ξ, W ′ ∈ Λη and W△W ′ is negligible). As in (c), we again have

φξ(π
−1
η [G]) = φη+1(π−1

η [G]) ⊇ π−1
η [G]

whenever η < ξ and G ⊆ Xη is open.

(e) At the end of the induction, we have a lifting φ = φκ of Λ such that φU ⊇ U for every U ∈ U , where
U = {π−1

ξ [G] : ξ < κ, G ∈ Tξ}. By 453H, λ is a τ -additive topological measure and φ is a strong lifting.

453J Corollary Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of quasi-Radon probability spaces such that every
Ti has a countable network consisting of measurable sets and every µi is strictly positive. Then the ordinary
product measure λ on X =

∏
i∈I Xi is quasi-Radon and has a strong lifting. If every Xi is compact and

Hausdorff, then λ is a Radon measure.

proof We have just seen that λ is a τ -additive topological measure with a strong lifting; but also it is inner
regular with respect to the closed sets, by 412Ua, so it is a quasi-Radon measure. If all the Xi are compact
and Hausdorff, so is X, so λ is a Radon measure (416G).

453K We come now to the construction of disintegrations from strong liftings.
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Theorem Let (X,T,Σ, µ) and (Y,S,T, ν) be Radon measure spaces and f : X → Y an almost continuous
inverse-measure-preserving function. Suppose that ν has an almost strong lifting. Then there is a disinte-
gration 〈µy〉y∈Y of µ over ν such that every µy is a Radon measure and µyX = µyf

−1[{y}] = 1 for almost
every y ∈ Y .

proof (a)(i) Suppose first that X is compact, µ is a probability measure and that f is continuous.
Turn back to the proofs of 452H-452I. In part (a) of the proof of 452H, suppose that the lifting θ : B → T

corresponds to an almost strong lifting φ : T → T (see 341Ba). Set B =
⋃
H∈S

H \ φH, so that B is
negligible. In part (c) of the proof of 452H, take K to be the family of compact subsets of X. Then all the
µy, as constructed in 452H, will be Radon probability measures. For every y, f−1[{y}] is a closed set, so is
necessarily measured by µy. But also it is µy-conegligible for every y ∈ Y \B. PPP Let K ⊆ X \ f−1[{y}] be
a compact set. Then f [K] is a compact set not containing y. Because Y is Hausdorff, there is an open set
H containing y such that H ∩ f [K] = ∅ (4A2F(h-i)). Now

y ∈ H \B ⊆ φH ⊆ φH.

Let E be the compact set f−1[H]. Taking T : L∞(µ) → L∞(ν) as in part (a) of the proof of 452I,
T (χE•) = χH

•

, so

ψyE = (ST (χE•))(y) = (S(χH
•

))(y) = (χ(φH))(y) = 1.

Because E ∈ K, µyE ≥ ψyE; since we always have µyX = 1, E is µy-conegligible. But K ∩ E = ∅, so
µyK = 0. As K is arbitrary, µy(X \ f−1[{y}]) = 0. QQQ

Thus µyf
−1[{y}] = 1 for almost every y ∈ Y , while µyX ≤ 1 for every y.

(ii) The result for totally finite µ and ν and continuous f follows at once.

(b) Now suppose that µ and ν are totally finite, and that f is almost continuous.

(i) Let K be the family of subsets K ⊆ X such that

K is compact and f↾K is continuous,

whenever F ∈ T and ν(F ∩ f [K]) > 0 then µ(K ∩ f−1[F ]) > 0,

either K = ∅ or µK > 0.

Take any E ∈ Σ such that µE > 0. Then there is a K ∈ K such that K ⊆ E and µK > 0. PPP Let K0 ⊆ E
be a compact set such that f↾K0 is continuous and µK0 > 0. Let δ > 0 be such that µK0 − δνY > 0. For
compact sets K ⊆ K0 set q(K) = µK − δνf [K]. Choose 〈αn〉n∈N, 〈Kn〉n≥1 as follows. Given that Kn is a
compact subset of K0, where n ∈ N, set

αn = sup{q(K) : K ⊆ Kn is compact},

and choose a compact subset Kn+1 of Kn such that q(Kn+1) ≥ max(q(Kn), αn − 2−n). Continue.
Set K =

⋂
n∈NKn. We have

q(K) = µK − δνf [K]

≥ lim
n→∞

µKn − δ inf
n∈N

νf [Kn] = lim
n→∞

q(Kn) = sup
n∈N

q(Kn)

because 〈q(Kn)〉n∈N is non-decreasing. Of course K ⊆ E,

µK ≥ q(K) ≥ q(K0) > 0,

and f↾K is continuous because K ⊆ K0.
??? If there is an F ∈ T such that ν(F ∩ f [K]) > 0 but µ(K ∩ f−1[F ]) = 0, take a compact set K ′ ⊆

K \ f−1[F ] such that µK ′ > µK − δν(F ∩ f [K]). Then f [K ′] ⊆ f [K] \ F , so

q(K ′) = µK ′ − δνf [K ′] ≥ µK ′ − δ(νf [K] − ν(F ∩ f [K])) > µK − δνf [K] = q(K).

Let n ∈ N be such that q(K ′) > q(K) + 2−n; then K ′ is a compact subset of Kn, so

αn ≥ q(K ′) > q(K) + 2−n ≥ q(Kn+1) + 2−n ≥ αn,

which is impossible. XXX Thus K belongs to K and will serve. QQQ
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(ii) By 342B, there is a countable disjoint set K0 ⊆ K such that µ(X \ ⋃K0) = 0. Enumerate K0

as 〈Kn〉n<#(K0); for convenience of notation, if K0 is finite, set Kn = ∅ for n ≥ #(K0), so that every Kn

belongs to K and µE =
∑∞
n=0 µ(E ∩Kn) for every E ∈ Σ.

(iii) For each n ∈ N, define λn : T → R by setting λnF = µ(Kn ∩ f−1[F ]) for every F ∈ T. Then λn
is a measure dominated by ν, so there is a T-measurable gn : Y → [0, 1] such that λnF =

∫
F
gn for every

F ∈ T, by the Radon-Nikodým theorem. Because λn(Y \ f [Kn]) = 0, we may suppose that gn(y) = 0 for
y /∈ f [Kn]. We have∫

F

∑∞
n=0 gn =

∑∞
n=0

∫
F
gn =

∑∞
n=0 µ(Kn ∩ f−1[F ]) = µf−1[F ] = νF

for every F ∈ T, so
∑∞
n=0 gn(y) = 1 for ν-almost every y. Reducing the gn further on a set of measure zero,

if need be, we may suppose that
∑∞
n=0 gn(y) ≤ 1 for every y.

(iv) For each n ∈ N, let λ̃n be the subspace measure on f [Kn] induced by λn, and µ̃n the subspace

measure on Kn induced by µ. Then f↾Kn is inverse-measure-preserving for µ̃n and λ̃n. Also, λ̃n has an
almost strong lifting. PPP If Kn = ∅, this is trivial. Otherwise, νf [Kn] ≥ µKn > 0, so the subspace measure

ν̃n induced by ν on f [Kn] has an almost strong lifting, by 453E. But ν̃n and λ̃n have the same domain
T∩P(f [Kn]) and the same null ideal, because Kn ∈ K; so an almost strong lifting for ν̃n is an almost strong

lifting for λ̃n. QQQ
By (a) above, we can find a disintegration 〈µny〉y∈f [Kn] of µ̃n over λ̃n such that every µny is a Radon

measure on Kn, µnyKn ≤ 1 for every y and

µny{x : x ∈ Kn, f(x) = y} = 1

for λ̃n-almost every y ∈ f [Kn], that is, for ν-almost every y ∈ f [Kn]. For y ∈ Y \ f [Kn], let µny be the zero
measure on Kn.

(v) Now, for y ∈ Y , set

µyE =
∑∞
n=0 gn(y)µny(E ∩Kn)

for all those E ⊆ X such that the sum is defined. Then µy is a Radon measure and µyX ≤ 1. PPP Because
every µny is a complete measure, so is µy. We have

µyX =
∑∞
n=0 gn(y)µnyKn ≤ ∑∞

n=0 gn(y) ≤ 1

by the choice of the gn. If G ⊆ X is open then µny measures G ∩ Kn for every n, so µy measures G;
accordingly µy measures every compact set. If µyE > 0, there is some n ∈ N such that gn(y) > 0 and
µny(E ∩Kn) > 0; now there is a compact set K ⊆ E ∩Kn such that µnyK > 0, in which case µyK > 0. By
412B, µy is tight, and is a Radon measure. QQQ

(vi) 〈µy〉y∈Y is a disintegration of µ over ν. PPP If E ∈ Σ then

µE =

∞∑

n=0

µ(E ∩Kn)

(by the choice of the Kn in (ii) above)

=
∞∑

n=0

µ̃n(E ∩Kn) =
∞∑

n=0

∫

f [Kn]

µny(E ∩Kn)λ̃n(dy)

(because 〈µny〉y∈f [Kn] is a disintegration of µ̃n over λ̃n)

=
∞∑

n=0

∫

f [Kn]

µny(E ∩Kn)λn(dy) =
∞∑

n=0

∫
µny(E ∩Kn)λn(dy)

(because λn(Y \ f [Kn]) = 0)

=
∞∑

n=0

∫
gn(y)µny(E ∩Kn)ν(dy)

(235A)
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=

∫ ∞∑

n=0

gn(y)µny(E ∩Kn)ν(dy) =

∫
µyE ν(dy). QQQ

(vii) It follows that µyf
−1[{y}] = 1 for almost every y. PPP

{y : µyf
−1[{y}] 6= 1} ⊆ {y : µyX 6= 1} ∪ {y : µ∗

y(X \ f−1[{y}]) > 0}
⊆ {y : µyX 6= 1} ∪

⋃

n∈N

{y : y ∈ f [Kn], µny(Kn \ f−1[{y}]) > 0}

is negligible. QQQ

(c) Now let us turn to the general case. This proceeds just as in 452O. Let 〈Yi〉i∈I be a decomposition
of Y . For each i ∈ I, take Xi, λi and νi as in the proof of 452O. Note that λi and νi are Radon measures,
so that we can apply (b) above to find a disintegration 〈µ̃y〉y∈Yi

of λi over νi such that every µ̃y is a Radon
measure and µ̃yXi = µ̃yf

−1[{y}] = 1 for νi-almost every y ∈ Yi. Just as in 452O, we can set

µyE = µ̃y(E ∩Xi)

whenever y ∈ Yi and µy measures E ∩Xi, to obtain a disintegration 〈µy〉y∈Y of µ over ν in which every µy
is a Radon measure and µyX = 1 for almost every y; and this time

{y : y ∈ Y, µyf
−1[{y}] 6= 1} =

⋃
i∈I{y : y ∈ Yi, µ̃yf

−1[{y}] 6= 1}
is negligible. So we have a disintegration of the required type.

453L Remark If f is surjective, we can arrange that every µy is a Radon probability measure for which
Xy = f−1[{y}] is µy-conegligible, just by changing some of the µy to Dirac measures. If f is not surjective,
then we can still (if X itself is not empty) arrange that every µy is a Radon probability measure; but it
might be more appropriate to make some of the µy the zero measure, so that Xy is always µy-conegligible.

I have continued to express this theorem in terms of measures µy on the whole space X. Of course, if we
take it that Xy is to be µy-conegligible for every y, it will sometimes be easier to think of µy as a measure
on Xy; this is very much what we do in the case of Fubini’s theorem, where all the Xy are, in effect, the
same.

453M Strong liftings and Stone spaces Let (X,T,Σ, µ) be a quasi-Radon measure space, and
(Z,S,T, ν) the Stone space of the measure algebra (A, µ̄) of µ. For E ∈ Σ let E∗ ⊆ Z be the open-
and-closed set corresponding to the equivalence class E• ∈ A. Let R be the relation

⋂
F⊆X is closed{(z, x) : z ∈ Z \ F ∗ or x ∈ F} ⊆ Z ×X

(415Q). For every lifting φ : Σ → Σ we have a unique function gφ : X → Z such that φE = g−1
φ [E∗] for

every E ∈ Σ (see 341P). Now we have the following easy facts.

(a) φ is strong iff (gφ(x), x) ∈ R for every x ∈ X. PPP

(gφ(x), x) ∈ R for every x ∈ X

⇐⇒ x ∈ F whenever F is closed and gφ(x) ∈ F ∗

⇐⇒ g−1
φ [F ∗] ⊆ F for every closed set F ⊆ X

⇐⇒ φF ⊆ F for every closed set F ⊆ X

⇐⇒ φ is strong. QQQ

(b) If T is Hausdorff, so that R is the graph of a function f (415Ra), then φ is strong iff fgφ(x) = x for
every x ∈ X. (For (gφ(x), x) ∈ R iff fgφ(x) = x.)

453N Losert’s example (Losert 79) There is a compact Hausdorff space with a strictly positive
completion regular Radon probability measure which has no strong lifting.
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proof (a) Let ν be the usual measure on {0, 1}N = Y . Let M ⊆ Y be a closed nowhere dense set such that
νM > 0 (cf. 419B), and ν1 a Radon probability measure on Y such that ν1M = 1 (e.g., a Dirac measure
concentrated at some point of M).

Let I be any set with cardinal at least ω2 such that I ∩ (I × I) = ∅. Let λ be the product measure on Y I ,
giving each factor the measure ν; of course λ can be identified with the usual measure on {0, 1}N×I (254N).
Note that λ and ν are both strictly positive. For i ∈ I write Mi = {z : z ∈ Y I , z(i) ∈M}; then Mi is closed
in Y I .

Set A = {(i, j) : i, j ∈ I, i 6= j}. For z ∈ Y I and (i, j) ∈ A let ν
(z)
ij be the Radon probability measure on

Y given by setting

ν
(z)
ij = ν1 if z ∈Mi ∩Mj ,

= ν otherwise.

Now, for z ∈ Y I , let λz be the Radon product measure of 〈ν(z)ij 〉(i,j)∈A on Y A.

(b) Let U be the family of sets U ⊆ Y A of the form {u : u(i, j) ∈ Uij for (i, j) ∈ B}, where B ⊆ A is
finite and Uij ⊆ Y is open-and-closed for every (i, j) ∈ B. Then the function z 7→ λzU : Y I → [0, 1] is Borel
measurable for every U ∈ U . PPP Express U in the given form. For C ⊆ B set

EC = {z : z ∈ Y I , C = {(i, j) : (i, j) ∈ B, z ∈Mi ∩Mj}},

so that 〈EC〉C⊆B is a partition of Y I into Borel sets. For any C ⊆ B,

λzU =
∏

(i,j)∈B
ν
(z)
ij (Uij) =

∏

(i,j)∈C
ν1Uij ·

∏

(i,j)∈B\C
νUij

is constant for z ∈ EC . QQQ

(c) There is a Radon measure µ on X = Y I × Y A specified by the formula

µE =
∫
λzE[{z}]λ(dz)

for every Baire set E ⊆ X. PPP Let E be the class of those sets E ⊆ X such that
∫
λzE[{z}]λ(dz) is defined.

Then E is closed under monotone limits of sequences, and E \E′ ∈ E whenever E, E′ ∈ E and E′ ⊆ E; also
E contains all the basic open-and-closed sets in X of the form V ×U , where V ⊆ Y I is open-and-closed and
U ∈ U . By the Monotone Class Theorem (136B), E includes the σ-algebra generated by such sets, which is
the Baire σ-algebra Ba of X (4A3Of). Of course E 7→

∫
λzE[{z}]λ(dz) is countably additive on Ba, so is a

Baire measure on X, and has a unique extension to a Radon measure, by 432F. QQQ
µ is strictly positive. PPP Let W ⊆ X be any non-empty open set. Then it includes an open set of the

form V × U where V = {z : z ∈ Y I , z(i) ∈ Vi for every i ∈ J}, U = {u : u ∈ Y A, u(j, k) ∈ Ujk for every
(j, k) ∈ B}, J ⊆ I and B ⊆ A are finite sets, and Vi, Ujk ⊆ Y are non-empty open sets for every i ∈ J and
(j, k) ∈ B. Now ν is strictly positive, so λV ′ > 0, where

V ′ = {z : z ∈ V, z /∈Mj whenever (j, k) ∈ B}.

(This is where we need to know that the Mj are nowhere dense.) But if z ∈ V ′ then ν
(z)
jk = ν for every

(j, k) ∈ B, so

λzU =
∏

(j,k)∈B νUjk > 0.

Accordingly

µW ≥
∫
V ′
λzUλ(dz) > 0.

As W is arbitrary, µ is strictly positive. QQQ
Write Σ for the domain of µ.

(d) Fix on a self-supporting compact set K ⊆ X. I seek to show that, regarded as a subset of Y I∪A, K
is determined by coordinates in some countable set.

(i) There is a zero set L ⊇ K such that µL = µK. PPP Let 〈Kn〉n∈N be a sequence of compact subsets
of X \K such that limn→∞ µKn = µ(X \K). For each n ∈ N there is a continuous function fn : X → [0, 1]
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which is zero on K and 1 on Kn; now L = {x : fn(x) = 0 for every n ∈ N} is a zero set including K and of
the same measure as K. QQQ

(ii) By 4A3Nc, L is determined by coordinates in a countable subset of I∪A, that is, there are countable
sets J0 ⊆ I, B0 ⊆ A such that whenever (z, u) ∈ L, (z′, u′) ∈ X, z↾J0 = z′↾J0 and u↾B0 = u′↾B0 we shall
have (z′, u′) ∈ L. Set

J = J0 ∪ {i : (i, j) ∈ B0} ∪ {j : (i, j) ∈ B0}, B = A ∩ (J × J);

then J ⊇ J0 and B ⊇ B0 are still countable, and L is determined by coordinates in J ∪B.

(iii) Take any (z0, u0) ∈ X \ K. Because K is closed, we can find finite sets J1 ⊆ I and B1 ⊆ A,
open-and-closed sets Vi ⊆ Y for i ∈ J1, and open-and-closed sets Uij ⊆ Y for (i, j) ∈ B1, such that

W = {(z, u) : z(i) ∈ Vi for every i ∈ J1, u(i, j) ∈ Uij for every (i, j) ∈ B1}
contains (z0, u0) and is disjoint from K. Set

W1 = {(z, u) : (z, u) ∈ X, z(i) ∈ Vi for every i ∈ J1 ∩ J,
u(i, j) ∈ Uij for every (i, j) ∈ B1 ∩B},

Q = {z : z ∈ Y I , λz((L ∩W1)[{z}]) > 0},

so that W1 is an open-and-closed set in X and Q is a Borel set in Y I ((b) above). Now Q is determined by
coordinates in J . PPP Suppose that z ∈ Q, z′ ∈ Y I and z↾J = z′↾J . Because both L and W1 are determined
by coordinates in J ∪B, (L∩W1)[{z}] = (L∩W1)[{z′}] = H say, and H is determined by coordinates in B.
At the same time, for any (i, j) ∈ B, Mi ∩Mj is determined by coordinates in J , so contains z iff it contains

z′, and ν
(z)
ij = ν

(z′)
ij . This means that, writing λ′z and λ′z′ for the products of 〈ν(z)ij 〉(i,j)∈B and 〈ν(z

′)
ij 〉(i,j)∈B

on Y B , λ′z = λ′z′ . So

λz′((L ∩W1)[{z′}]) = λz′H = λ′z′H
′ = λ′zH

′ = λzH = λz((L ∩W1)[{z}]) > 0,

where H ′ = {u↾B : u ∈ H} (254Ob), and z′ ∈ Q. QQQ

(iv) Set

J2 = ({i : (i, j) ∈ B1 \B} ∪ {j : (i, j) ∈ B1 \B}) \ J .

Then J2 is a finite subset of I \ J , and B1 ⊆ (J ∪ J2) × (J ∪ J2). Set

G = {z : z ∈ Y I , z(i) /∈M for every i ∈ J2},

so that G is a dense open subset of Y I . Set

G1 = {z : z ∈ Y I , z(i) ∈ Vi for every i ∈ J1 \ J}.

Then G1 is a non-empty open set, so G ∩G1 6= ∅ and λ(G ∩G1) > 0.

(v) Set

U = {u : u ∈ Y A, u(i, j) ∈ Uij for every (i, j) ∈ B1 \B}.

If z ∈ G, then z /∈Mi ∩Mj whenever (i, j) ∈ B1 \B, so ν
(z)
ij = ν for every (i, j) ∈ B1 \B, and

λzU =
∏

(i,j)∈B1\B νUij > 0.

(vi) ??? Suppose, if possible, that λQ > 0. Because Q is determined by coordinates in J and G ∩G1 is
determined by coordinates in J2 ∪ (J1 \ J),

λ(Q ∩G ∩G1) = λQ · λ(G ∩G1) > 0.

If z ∈ Q ∩G ∩G1,

λz((L ∩W )[{z}]) = λz(U ∩ (L ∩W1)[{z}])

(because W = W1 ∩ (Y I × U) ∩ (G1 × Y A), and z ∈ G1)
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= λzU · λz((L ∩W1)[{z}])

(because (L ∩W1)[{z}] is determined by coordinates in B, while U is determined by coordinates in B1 \B,

and λz is a product measure)

> 0

because z ∈ G ∩Q. But this means that

0 <
∫
λz((L ∩W )[{z}])λ(dz) = µ(L ∩W ) = µ(K ∩W ) = µ∅,

which is absurd. XXX

Thus λQ must be zero.

(vii) Consequently

µ(K ∩W1) = µ(L ∩W1) =
∫
λz((L ∩W1)[{z}])λ(dz) = 0;

because K is self-supporting, K ∩W1 = ∅. And W1 contains (z0, u0) and is determined by coordinates in
J ∪B.

(viii) What this means is that there can be no (z, u) ∈ K such that z↾J = z0↾J and u↾B = u0↾B. At
this point, recall that (z0, u0) was an arbitrary point of X \ K. So what must be happening is that K is
determined by coordinates in the countable set J ∪B. By 4A3Nc again, in the other direction, K is a zero
set.

(e) Part (d) shows that every self-supporting compact subset of X is a zero set. Since µ is certainly inner
regular with respect to the self-supporting compact sets, it is inner regular with respect to the zero sets,
that is, is completion regular.

It follows that whenever E ∈ Σ there is an E′ ⊆ E, determined by coordinates in a countable subset of
I ∪A, such that E \ E′ is negligible. (Take E′ to be a countable union of self-supporting compact sets.)

(f) ??? Now suppose, if possible, that we could find a strong lifting φ for µ. For each i ∈ I, take a set
Ei ⊆ φ(Mi × Y A) such that µEi = µφ(Mi × Y A) and Ei is determined by coordinates in Ji ∪ Bi, where
Ji ⊆ I and Bi ⊆ A are countable. Set

J∗
i = {j : (j, k) ∈ Bi} ∪ {k : (j, k) ∈ Bi},

so that J∗
i also is countable. Because #(I) ≥ ω2, there are distinct i, j ∈ I such that i /∈ J∗

j and j /∈ J∗
i

(4A1Ea). So (i, j) /∈ Bi ∪Bj .
Set

F = {u : u ∈ Y A, u(i, j) ∈M}.

Then µ((Mi ∩Mj) × (Y A \ F )) = 0. PPP If z ∈Mi ∩Mj , then

λz(Y
A \ F ) = ν

(z)
ij (Y \M) = 0.

But (Mi ∩Mj) × (Y A \ F ) is a Baire set, so

µ((Mi ∩Mj) × (Y A \ F )) =

∫
λz((Mi ∩Mj) × (Y A \ F ))[{z}]λ(dz)

=

∫

Mi∩Mj

λz(Y
A \ F )λ(dz) = 0. QQQ

Accordingly

Ei ∩ Ej ⊆ φ(Mi × Y A) ∩ φ(Mj × Y A) = φ((Mi ∩Mj) × Y A) ⊆ φ(Y I × F )

(because ((Mi ∩Mj) × Y A) \ (Y I × F ) is negligible)

⊆ Y I × F
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because Y I ×F is closed and φ is supposed to be strong. However, Ei ∩Ej is determined by coordinates in
Ji ∪ Jj ∪ Bi ∪ Bj , while Y I × F is determined by coordinates in {(i, j)}, which does not meet Bi ∪ Bj . So
either Ei ∩ Ej is empty or F = Y A. But F 6= Y A because M 6= Y , while

µ(Ei ∩ Ej) = µ(φ(Mi × Y A) ∩ φ(Mj × Y A)) = µ((Mi ∩Mj) × Y A)

= λ(Mi ∩Mj) = (νM)2 > 0,

so Ei ∩ Ej 6= ∅. XXX

(g) Thus µ has no strong lifting, as claimed.

453X Basic exercises >>>(a) Let (A, µ̄) be a measure algebra and (Z,T,Σ, µ) its Stone space. Show that
the canonical lifting for µ (341O) is strong.

(b) Show that there is a strong lifting for Lebesgue measure on the Sorgenfrey line (415Xc). (Hint : set

φE = {x : limδ↓0
1

δ
µ(E ∩ [x, x+ δ]) = 1}, and use 341Jb.)

>>>(c) Let µ be the usual measure on the split interval (343J, 419L). Show that µ has a strong lifting.

(d) Let (X,T,Σ, µ) be a complete locally determined topological measure space such that µ is inner
regular with respect to the closed sets, and φ : Σ → Σ a strong lifting. Show that µ is a quasi-Radon
measure with respect to the lifting topology Tl (414Q). Show that if T is regular then Tl ⊇ T.

(e) Let (X,T,Σ, µ) be a topological measure space which has an almost strong lifting. Show that any
non-zero indefinite-integral measure over µ (234J12) has an almost strong lifting.

(f) Let (X,T,Σ, µ) be a Radon measure space such that (X,Σ, µ) is countably separated and µX > 0;
for example, (X,T) could be an analytic space (433B). Show that µ is inner regular with respect to the
compact metrizable subsets of X, so has an almost strong lifting. (Hint : there is an injective measurable
f : X → R, which must be almost continuous.)

(g) Let (X,T,Σ, µ) be a complete locally determined topological measure space such that µ is effectively
locally finite and inner regular with respect to the closed sets, and φ : Σ → Σ a lower density such that
φG ⊇ G for every open G ⊆ X. Show that µ is a quasi-Radon measure with respect to both T and the
density topology associated with φ.

(h) Let (X,T,Σ, µ) be a quasi-Radon measure space and φ : Σ → Σ a lower density such that φG ⊇ G
for every open G ⊆ X. Let 〈Gx〉x∈X be a family of open sets in X such that x /∈ φ(X \Gx) for every x ∈ X.
(i) Show that A \⋃x∈A(Gx ∩ Ux) is negligible whenever A ⊆ X and Ux is a neighbourhood of x for every
x ∈ A. (ii) Let S be the topology on X generated by T ∪ {{x} ∪Gx : x ∈ X}. Show that µ is quasi-Radon
with respect to S.

(i) Let X and Y be Hausdorff spaces, and µ a Radon probability measure on X × Y ; set π(x, y) = y for
x ∈ X, y ∈ Y , and let ν be the image measure µπ−1. Suppose that ν has an almost strong lifting. Show
that there is a family 〈µy〉y∈Y of Radon probability measures on X such that µE =

∫
µy(E−1[{y}])ν(dy)

for every E ∈ domµ.

(j) Use 453Xe to simplify part (b) of the proof of 453K.

(k) In 453N, show that
∫
λzE[{z}]λ(dz) is defined and equal to µE whenever µ measures E.

453Y Further exercises (a) Let (Y,S,T, ν) be a Radon measure space such that νY > 0 and whenever
(X,T,Σ, µ) is a Radon measure space and f : X → Y is an almost continuous inverse-measure-preserving
function, then there is a disintegration 〈µy〉y∈Y of µ over ν such that µyf

−1[{y}] = 1 for almost every y.
Show that ν has an almost strong lifting. (Hint : Start with the case in which Y is compact. Take f : X → Y
to be the function described in 415R, 416V and 453Mb. Set φE = {y : µyE

∗ = µyX = 1}.)

12Formerly 234B.
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453Z Problems (a) If (X,T,Σ, µ) and (Y,S,T, ν) are compact Radon measure spaces with strong
liftings, does their product necessarily have a strong lifting? What if they are both Stone spaces?

(b) If (X,T,Σ, µ) is a Radon probability space with countable Maharam type, must it have an almost
strong lifting?

453 Notes and comments As I noted in §452, early theorems on disintegrations concentrated on cases in
which all the measure spaces involved were ‘standard’ in that the measures were defined on standard Borel
spaces (§424), or were the completions of such measures. Under these conditions the distinction between 452I
and 453K becomes blurred; measures (when completed) have to be Radon measures (433Cb), liftings have
to be almost strong (453F) and disintegrations have to be concentrated on fibers (452Gc). Theorem 453K
provides disintegrations concentrated on fibers without any limitation on the size of the spaces involved,
though making strong topological assumptions.

The strength of 453K derives from the remarkable variety of the (Radon) measure spaces which have
strong liftings, as in 453F, 453G, 453I and 453J. For some ten years there were hopes that every strictly
positive Radon measure had a strong lifting, which were finally dashed by Losert 79; I give a version
of the example in 453N. This is a special construction, and it remains unclear whether some much more
direct approach might yield another example (453Za). I should perhaps remark straight away that if the
continuum hypothesis is true, then any strictly positive Radon measure with Maharam type at most ω1 has
a strong lifting (see 535I in Volume 5). In particular, subject to the continuum hypothesis, Z × Z has a
strong lifting, where Z is the Stone space of the Lebesgue measure algebra, and we have a positive answer
to 453Zb.

Version of 19.5.16/5.8.22

454 Measures on product spaces

A central concern of probability theory is the study of ‘processes’, that is, families 〈Xt〉t∈T of random
variables thought of as representing the evolution of a system in time. Kolmogorov’s successful representation
of such processes as measurable functions on an abstract probability space was one of the foundations on
which the modern concept of ‘random variable’ was built. In this section I give a version of Kolmogorov’s
theorem on the extension of consistent families of measures on subproducts to a measure on the whole
product (454D). It turns out that some restriction on the marginal measures is necessary, and ‘perfectness’
seems to be an appropriate hypothesis, necessarily satisfied if the factor spaces are standard Borel spaces
or the marginal measures are Radon measures. If we have marginal measures with stronger properties then
we shall be able to infer corresponding properties of the measure on the product space (454A, generalizing
451J).

The apparatus here makes it easy to describe joint distributions of arbitrary families of real-valued random
variables (454J-454P), extending the ideas of §271. For the sake of the theorem that almost all Brownian
paths are continuous (477B) I briefly investigate measures on C(T ), where T is a Polish space (454Q-454S).

454A Theorem Let 〈(Xi,Σi, µi)〉i∈I be a non-empty family of totally finite measure spaces. Set X =∏
i∈I Xi and let µ be a measure on X which is inner regular with respect to the σ-algebra

⊗̂
i∈IΣi generated

by {π−1
i [E] : i ∈ I, E ∈ Σi}, where πi : X → Xi is the coordinate map for each i ∈ I. Suppose that every

πi is inverse-measure-preserving.
(a) If K ⊆ PX is a family of sets which is closed under finite unions and countable intersections, and µi

is inner regular with respect to Ki = {K : K ⊆ Xi, π
−1
i [K] ∈ K} for every i ∈ I, then µ is inner regular

with respect to K.
(b)(i) If every µi is a compact measure, so is µ;

(ii) if every µi is a countably compact measure, so is µ;
(iii) if every µi is a perfect measure, so is µ.

proof If X is empty this is all trivial, so we may suppose that X 6= ∅.

c© 2001 D. H. Fremlin
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(a) Set A = {π−1
i [E] : i ∈ I, E ∈ Σi}. If A ∈ A, V ∈ Σ and µ(A ∩ V ) > 0, there is a K ∈ K ∩ A such

that K ⊆ A and µ(K ∩ V ) > 0. PPP Express A as π−1
i [E], where E ∈ Σi; take L ∈ Ki such that L ⊆ E and

µiL > µiE − µ(A ∩ V ), and set K = π−1
i [L]. QQQ

By 412C, µ↾
⊗̂

i∈IΣi is inner regular with respect to K; by 412Ab, so is µ.

(b)(i)-(ii) Suppose that every µi is (countably) compact. Then for each i ∈ I we can find a (countably)
compact class Ki ⊆ PXi such that µi is inner regular with respect to Ki. Set L = {π−1

i [K] : i ∈ I, K ∈ Ki}.
Then L is (countably) compact (451H). So there is a (countably) compact K ⊇ L which is closed under
finite unions and countable intersections (342Da, 413T). Now µ is inner regular with respect to K, by (a),
and therefore (countably) compact.

(iii) Let T0 be a countably generated σ-subalgebra of
⊗̂

i∈IΣi. Then there must be some countable

subfamily E of {π−1
i [E] : i ∈ I, E ∈ Σi} such that T0 is included in the σ-algebra generated by E (use

331Gd). Set Ei = {E : E ∈ Σi, π
−1
i [E] ∈ E} for each i, so that Ei is countable, and let Σ′

i be the σ-algebra

generated by Ei. Then µi↾Σ′
i is compact (451F(ii)). Applying (i), we see that µ↾

⊗̂
i∈IΣ

′
i is compact, therefore

perfect; while T0 ⊆ ⊗̂
i∈IΣ

′
i. As T0 is arbitrary, µ↾

⊗̂
i∈IΣi is perfect (451F(i)). But as the completion of µ

is exactly the completion of µ↾
⊗̂

i∈IΣi, µ also is perfect, by 451Gc.

454B Corollary Let 〈Xi〉i∈I be a family of Polish spaces with product X. Then any totally finite Baire
measure on X is a compact measure.

proof If µ is a Baire measure on X, then its domain Ba(X) is
⊗̂

i∈IB(Xi), where B(Xi) is the Borel
σ-algebra of Xi for each i ∈ I (4A3Na). So each image measure µi on Xi is a Borel measure, therefore tight
(that is, inner regular with respect to the closed compact sets, 433Ca), and by 454A(b-i) µ is compact.

454C Theorem (Marczewski & Ryll-Nardzewski 53) Let (X,Σ, µ) be a perfect totally finite
measure space and (Y,T, ν) any totally finite measure space. Let Σ ⊗ T be the algebra of subsets of X × Y
generated by {E × F : E ∈ Σ, F ∈ T}. If λ0 : Σ ⊗ T → [0,∞[ is a non-negative finitely additive functional
such that λ0(E×Y ) = µE and λ0(X×F ) = νF whenever E ∈ Σ and F ∈ T, then λ0 has a unique extension
to a measure defined on the σ-algebra Σ⊗̂T generated by Σ ⊗ T.

proof (a) By 413Lb, it will be enough to show that limn→∞ λ0Wn = 0 for every non-increasing sequence
〈Wn〉n∈N in Σ ⊗ T with empty intersection. Take such a sequence. Each Wn must belong to the algebra
generated by some finite subset of {E × F : E ∈ Σ, F ∈ T}, so there must be a countable set E ⊆ Σ such
that every Wn belongs to the algebra generated by {E × F : E ∈ E , F ∈ T}; let Σ0 be the σ-subalgebra of
Σ generated by E , so that every Wn belongs to Σ0⊗̂T.

(b) By 451F, µ↾Σ0 is a compact measure; let K ⊆ PX be a compact class such that µ↾Σ0 is inner regular
with respect to K. We may suppose that K is the family of closed sets for a compact topology on X (342Da).
Let W be the family of those elements W of Σ0 ⊗T such that every horizontal section W−1[{y}] belongs to
K. Then W is closed under finite unions and intersections.

(c) If W ∈ Σ0 ⊗ T and ǫ > 0, then there is a W ′ ∈ W such that W ′ ⊆ W and λ0(W \W ′) ≤ ǫ. PPP
Express W as

⋃
i≤nEi × Fi, where Ei ∈ Σ0 and Fi ∈ T for each i ≤ n. (Cf. 315Kb.) For each i ≤ n, take

Ki ∈ K ∩ Σ0 such that µ(Ei \Ki) ≤ 1
n+1ǫ, and set W ′ =

⋃
i≤nKi × Fi. Then W ′ ∈ W, W ′ ⊆W and

λ0(W \W ′) ≤
n∑

i=0

λ0((Ei × Fi) \ (Ki × Fi)) ≤
n∑

i=0

λ0((Ei \Ki) × Y )

=
n∑

i=0

µ0(Ei \Ki) ≤ ǫ. QQQ

(d) Take any ǫ > 0. Then for each n ∈ N we can find W ′
n ∈ W such that W ′

n ⊆Wn and λ0(Wn \W ′
n) ≤

2−nǫ. Set Vn =
⋂
i≤nW

′
i , so that Vn ∈ W and

λ0(Wn \ Vn) ≤ ∑n
i=0 λ0(Wi \W ′

i ) ≤ 2ǫ
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for each n, and 〈Vn〉n∈N is non-increasing, with empty intersection.
Because Vn ∈ Σ0 ⊗ T, its projection Hn = Vn[X] belongs to T, for each n. Of course 〈Hn〉n∈N is non-

increasing; also
⋂
n∈NHn = ∅. PPP If y ∈ Y , then 〈V −1

n [{y}]〉n∈N is a non-increasing sequence in K with
empty intersection, because

⋂
n∈N Vn ⊆ ⋂

n∈NWn is empty. But K is a compact class, so there must be some

n such that V −1
n [{y}] is empty, that is, y /∈ Hn. QQQ Accordingly limn→∞ νHn = 0. But as Vn ⊆ X ×Hn,

limn→∞ λ0Vn = 0.
This means that limn→∞ λ0Wn ≤ 2ǫ. But as ǫ is arbitrary, limn→∞ λ0Wn = 0, as required.

454D Theorem (Kolmogorov 1933, §III.4) Let 〈(Xi,Σi, µi)〉i∈I be a family of totally finite perfect
measure spaces. Set X =

∏
i∈I Xi, and write

⊗
i∈I Σi for the algebra of subsets of X generated by {π−1

i [E] :
i ∈ I, E ∈ Σi}, where πi : X → Xi is the coordinate map for each i ∈ I. Suppose that λ0 :

⊗
i∈I Σi → [0,∞[

is a non-negative finitely additive functional such that λ0π
−1
i [E] = µiE whenever i ∈ I and E ∈ Σi. Then

λ0 has a unique extension to a measure λ with domain
⊗̂

i∈IΣi, and λ is perfect.

proof (a) The argument follows the same pattern as that of 454C. This time, take a non-increasing sequence
〈Wn〉n∈N in

⊗
i∈I Σi with empty intersection. Each Wn belongs to the algebra generated by some finite

subset of {π−1
i [E] : i ∈ I, E ∈ Σi}, so we can find countable sets Ei ⊆ Σi such that every Wn belongs to

the subalgebra generated by {π−1
i [E] : i ∈ I, E ∈ Ei}. Let Ti be the σ-subalgebra of Σi generated by Ei, so

that every Wn belongs to
⊗

i∈I Ti.

(b) For each i ∈ I, µi↾Ti is compact (451F); let Ti be a compact topology on Xi such that µi↾Ti is inner
regular with respect to the closed sets (342F). Let T be the product topology on X, so that T is compact
(3A3J). Let W be the family of closed sets in X belonging to

⊗
i∈I Ti.

(c) If W ∈ ⊗
i∈I Ti and ǫ > 0, there is a W ′ ∈ W such that W ′ ⊆ W and λ0(W \W ′) ≤ ǫ. PPP We can

express W as
⋃
k≤n

⋂
i∈Jk π

−1
i [Eki] where each Jk is a finite subset of I and Eki ∈ Σi for k ≤ n, i ∈ Jk

(again as in 315Kb). Let 〈ǫki〉k≤n,i∈Jk be a family of strictly positive numbers with sum at most ǫ. For
each k ≤ n, i ∈ Jk take a closed set Kki ∈ Ti such that Kki ⊆ Eki and µi(Eki \ Kki) ≤ ǫki, and set
W ′ =

⋃
k≤n

⋂
i∈Jk π

−1
i [Kki]. QQQ

(d) Take any ǫ > 0. Then for each n ∈ N we can find W ′
n ∈ W such that W ′

n ⊆Wn and λ0(Wn \W ′
n) ≤

2−nǫ. Set Vn =
⋂
i≤nW

′
i . Then 〈Vn〉n∈N is a non-increasing sequence of closed sets in the compact space

X, and has empty intersection, so there is some n such that Vn is empty, and

λ0Wn ≤ ∑n
i=0 λ0(Wi \W ′

i ) ≤ 2ǫ.

As ǫ is arbitrary, limn→∞ λ0Wn = 0.

(e) As 〈Wn〉n∈N is arbitrary, λ0 has a unique countably additive extension to
⊗̂

i∈IΣi, by 413Lb, as
before. Of course the extension is perfect, by 454A(b-iii).

454E Corollary Let 〈(Xi,Σi, µi)〉i∈I be a family of perfect measure spaces. Let C be the family of
subsets of X =

∏
i∈I Xi expressible in the form X ∩ ⋂

i∈J π
−1
i [Ei] where J ⊆ I is finite and Ei ∈ Σi for

every i ∈ I, writing πi(x) = x(i) for x ∈ X, i ∈ I. Suppose that λ0 : C → R is a functional such that (i)
λ0π

−1
i [E] = µiE whenever i ∈ I and E ∈ Σi (ii) λ0C = λ0(C ∩ π−1

i [E]) + λ0(C \ π−1
i [E]) whenever C ∈ C,

i ∈ I and E ∈ Σi. Then λ0 has a unique extension to a measure on
⊗̂

i∈IΣi, which is necessarily perfect.

proof By 326E, λ0 has an extension to an additive functional on
⊗

i∈I Σi, so we can apply 454D.

454F Corollary Let 〈(Xi,Σi)〉i∈I be a family of standard Borel spaces. Set X =
∏
i∈I Xi, and let⊗

i∈I Σi be the algebra of subsets of X generated by {π−1
i [E] : i ∈ I, E ∈ Σi}, where πi : X → Xi is the

coordinate map for each i. Let λ0 :
⊗

i∈I Σi → [0,∞[ be a non-negative finitely additive functional such

that all the marginal functionals E 7→ λ0π
−1
i [E] : Σi → [0,∞[ are countably additive. Then λ0 has a unique

extension to a measure defined on
⊗̂

i∈IΣi, which is a compact measure.

proof This follows immediately from 454D and 454A if we note that all the measures λ0π
−1
i are necessarily

compact, therefore perfect (451M).
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454G Corollary Let 〈Xi〉i∈I be a family of sets, and Σi a σ-algebra of subsets of Xi for each i ∈ I.
Suppose that for each finite set J ⊆ I we are given a totally finite measure µJ on ZJ =

∏
i∈J Xi with domain

⊗̂
i∈JΣi such that (i) whenever J , K are finite subsets of I and J ⊆ K, then the canonical projection from

ZK to ZJ is inverse-measure-preserving (ii) every marginal measure µ{i} on Z{i} ∼= Xi is perfect. Then

there is a unique measure µ defined on
⊗̂

i∈IΣi such that the canonical projection π̃J :
∏
i∈I Xi → ZJ is

inverse-measure-preserving for every finite J ⊆ I.

proof All we need to observe is that
⊗

i∈I Σi = {π̃−1
J [V ] : J ∈ [I]<ω, V ∈ ⊗

i∈J Σi}.

Because all the canonical projections from XK onto XJ are inverse-measure-preserving, we have µJV =
µKV

′ whenever J , K are finite subsets of I, V ∈ ⊗
i∈J Σi, V

′ ∈ ⊗
i∈K Σi and π̃−1

J [V ] = π̃−1
K [V ′]. So

we have a functional λ0 :
⊗

i∈I Σi → [0,∞[ such that λ0π̃
−1
J [V ] = µJV whenever J ⊆ I is finite and

V ∈ ⊗
i∈J Σi. It is easy to check that λ0 is finitely additive and satisfies the conditions of 454D. So λ0 can

be extended to a measure µ defined on
⊗̂

i∈IΣi.

If J ⊆ I is finite, then µJ and µπ̃−1
J agree on

⊗
i∈J ΣJ and therefore (by the Monotone Class Theorem,

136C) on
⊗̂

i∈JΣi; that is, π̃J is inverse-measure-preserving. To see that µ itself is unique, observe that

the conditions define its values on
⊗

i∈I Σi and therefore on
⊗̂

i∈IΣi, by the Monotone Class Theorem once
more.

454H Corollary Let 〈(Xn,Σn)〉n∈N be a sequence of standard Borel spaces. For each n ∈ N set Zn =∏
i<nXi and Tn =

⊗̂
i<nΣi. (For n = 0, we have Z0 = {∅}, T0 = {∅, Z0}.) For n ∈ N, W ∈ Tn+1

and z ∈ Zn write W [{z}] = {ξ : ξ ∈ Xn, (z, ξ) ∈ W}; set X =
∏
n∈NXn and write π̃n for the canonical

projection of X onto Zn. Suppose that for each n ∈ N and z ∈ Zn we are given a probability measure νz on
Xn with domain Σn such that z 7→ νz(E) is Tn-measurable for every E ∈ Σn.

(a) We have a sequence 〈µn〉n∈N of probability measures such that, for each n ∈ N, µn has domain Tn
and

µn+1(W ) =
∫
νzW [{z}]µn(dz)

for every W ∈ Tn+1, and

∫
fdµn+1 =

∫∫
. . .

∫∫
f(ξ0, . . . , ξn)ν(ξ0,... ,ξn−1)(dξn)

ν(ξ0,... ,ξn−2)(dξn−1) . . . νξ0(dξ1)ν∅(dξ0)

for every n ∈ N and µn+1-integrable real-valued function f .

(b) There is a unique probability measure µ on X =
∏
n∈NXn, with domain

⊗̂
n∈NΣn, such that µn is

the image measure µπ̃−1
n on Zn for every n ∈ N

proof (a) Of course this is an induction on n.

(i) µ0 must be the unique probability measure on the singleton set Z0. Given that domµn = Tn, the
class W of sets W ⊆ Zn+1 for which

∫
νzW [{z}]µn(dz) is defined will contain all sets of the form

∏
i≤nEi

where Ei ∈ Σi for every i ≤ n, just because the function z 7→ νzEn is Tn-measurable. Since W is closed
under increasing sequential unions and differences of comparable sets, the Monotone Class Theorem (136B)
tells us that it includes the σ-algebra generated by the cylinder sets, which is Tn+1.

(ii) As for the integrals, we start with the elementary case Z1 = X0, µ1 = ν∅ and∫
fdµ1 =

∫
f(ξ0)ν∅(dξ0)

for f : X0 → R. For the inductive step to n ≥ 1, 〈ν ′z〉z∈Zn
is a disintegration of µn+1 over µn, where ν ′z is

the measure with domain Tn+1 defined by writing ν ′z(W ) = νzW [{z}] for W ∈ Tn+1, z ∈ Zn. By 452F,
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∫

Zn+1

fdµn+1 =

∫

Zn

∫

Zn+1

f(w)ν ′z(dw)µn(dz)

=

∫

Zn

∫

Xn

f(z, ξn)νz(dξn)µn(dz)

for every µn+1-integrable function f . (The second equality can be regarded as an application of the change-of-
variable formula 235Gb applied to the (νz, ν

′
z)-inverse-measure-preserving function ξ 7→ (z, ξ) : Xn → Zn+1.)

(b)(i) The canonical maps from Zn+1 to Zn are all inverse-measure-preserving, just because every νz
is a probability measure. We therefore have a well-defined functional λ0 :

⊗
n∈N Σn → [0, 1] defined by

setting λ0π̃
−1
n [W ] = µnW whenever n ∈ N and W ∈ ⊗

i<n Σi, and this λ0 is finitely additive; moreover,

each marginal measure λ0π
−1
n , where πn : X → Xn is the coordinate map, is countably additive, because it

is expressible as an image measure of µn+1 on Xn.

(ii) Everything so far has been valid for any sequence 〈(Xn,Σn)〉n∈N of sets with attached σ-algebras.
But at this point we note that every marginal measure λ0π

−1
n must be perfect, because (Xn,Σn) is a standard

Borel space. So Theorem 454D gives the result.

454I Remarks In 454F and 454H the hypotheses call for ‘standard Borel spaces’ (Xi,Σi). As the
proofs make clear, what is needed in each case is that ‘every totally finite measure with domain Σi must
be perfect’. We have already seen other ways in which this can be true: for instance, if X is any Radon
Hausdorff space (434C), and Σ its Borel σ-algebra. Further examples are in 454Xd, 454Xh-454Xi and
454Yb-454Yc. Indeed, even weaker hypotheses can be fully adequate. In 454H, for instance, it will be quite
enough if all the marginal measures on the factors Xn are perfect; in view of 454A and 451E, this will be so
iff all the measures µ̃n on the partial products Zn are perfect. It may be difficult to be sure of this unless
either we have some argument from the nature of the factor spaces (Xn,Σn), as suggested above, or a clear
understanding of the marginal measures. In applications such as 455A below, however, there may be other
approaches available.

454J Distributions of random processes For the next few paragraphs I shift to probabilists’ notation.

Proposition Let (Ω,Σ, µ) be a probability space and 〈Xi〉i∈I a family of real-valued random variables on
Ω (see §271).

(i) There is a unique complete probability measure ν on RI , measuring every Baire set and inner regular
with respect to the zero sets, such that

ν{x : x ∈ RI , x(ir) ≤ αr for every r ≤ n} = Pr(Xir ≤ αr for every r ≤ n)

whenever i0, . . . , in ∈ I and α0, . . . , αn ∈ R.
(ii) If i0, . . . , in ∈ I and π̃(x) = (x(i0), . . . , x(in)) for x ∈ RI , then the image measure νπ̃−1 on Rn+1 is

the joint distribution of Xi0 , . . . , Xin as defined in 271C.
(iii) ν is a compact measure. If I is countable then ν is a Radon measure.
(iv) If every Xi is defined everywhere on Ω, then the function ω 7→ 〈Xi(ω)〉i∈I : Ω → RI is inverse-

measure-preserving for µ̂ and ν, where µ̂ is the completion of µ.

proof (a) Completing µ, and adjusting the Xi on negligible sets, does not change any of the joint distri-
butions of families Xi0 , . . . , Xin (271Ad), so we may suppose henceforth that µ is complete and that every
Xi is defined on the whole of Ω. Set φ(ω) = 〈Xi(ω)〉i∈I for ω ∈ Ω. Then {F : F ⊆ RI , φ−1[F ] ∈ Σ} is
a σ-algebra of subsets of RI containing {x : x(i) ≤ α} whenever i ∈ I and α ∈ R, so includes the Baire
σ-algebra Ba(RI) of RI (4A3Na again). If we define ν0F = µφ−1[F ] for F ∈ Ba(RI), ν0 is a Baire measure
on RI for which φ is inverse-measure-preserving. We are supposing that µ is complete, so φ is still inverse-
measure-preserving for µ and the completion ν of ν0 (234Ba). Since ν0 is inner regular with respect to the
zero sets (412D), so is ν (412Ha), and of course ν measures every Baire set. By 454B, ν0 is compact, so ν
also is (451Ga).

(b) If i0, . . . , in ∈ I and α0, . . . , αn ∈ R, then
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Pr(Xir ≤ αr for every r ≤ n) = µ{ω : Xir (ω) ≤ αr for r ≤ n}
= µ{ω : φ(ω)(ir) ≤ αr for r ≤ n}
= ν{x : x(ir) ≤ αr for r ≤ n}.

(c) If i0, . . . , in ∈ I and we set π̃(x) = (x(i0), . . . , x(in)) for x ∈ RI , then νπ̃−1 is a Radon measure
(451O). Since it agrees with the distribution of Xi0 , . . . , Xin on all sets of the form {z : z(r) ≤ αr for r ≤ n},
it must be exactly the distribution of Xi0 , . . . , Xin (271Ba).

(d) If I is countable, then RI is Polish, so ν is a Radon measure (433Cb).

(e) The only point I have not covered is the uniqueness of ν. But suppose that ν ′ is another measure
on RI with the properties described in (i). If i0, . . . , in ∈ I and π̃(x) = (x(i0), . . . , x(in)) for x ∈ RI , then
the image measures νπ̃−1 and ν ′π̃−1 on Rn+1 are both the distribution of Xi0 , . . . , Xin , by the argument
of (c) above. This means that ν and ν ′ agree on the algebra of subsets of RI generated by sets of the form
{x : x(i) ∈ E} where i ∈ I and E ⊆ R is Borel. By 4A3Na and 454D, they agree on all zero sets, and must
be equal (412M).

454K Definition In the context of 454J, I will call ν the (joint) distribution of the process 〈Xi〉i∈I .
Note that if I = n ∈ N \ {0}, then ν is a Radon measure on Rn, so is the distribution of 〈Xi〉i<n in the

sense of 271C.

454L Independence With this extension of the notion of ‘distribution’ we have a straightforward
reformulation of the characterization of independence in 272G.

Theorem Let (Ω,Σ, µ) be a probability space and 〈Xi〉i∈I a family of real-valued random variables on Ω,
with distribution ν on RI . Then 〈Xi〉i∈I is independent iff ν is the c.l.d. product of the marginal measures
on R.

proof (a) For i ∈ I, write νi for the marginal measure µπ−1
i on R, taking πi(x) = x(i) as usual. If J ⊆ I is

finite, and π̃J(x) = x↾J , then νπ̃−1
J is the distribution (in the sense of Chapter 27) of 〈Xi〉i∈J , by 454J(iii).

In particular, νi is the distribution of Xi for each i.

(b) If ν is the product measure
∏
i∈I νi, and J ⊆ I is finite, then νπ̃−1

J is the product measure
∏
i∈J νi

(254Oa), so 〈Xi〉i∈J is independent (272G). As J is arbitrary, 〈Xi〉i∈I is independent (272Bb).

(c) Conversely, if 〈Xi〉i∈I is independent, then ν agrees with λ =
∏
i∈I νi on all sets of the form {x :

x(i) ≤ αi for i ∈ J} where J ⊆ I is finite and 〈αi〉i∈J ∈ RJ . By the uniqueness assertion in 454J(i), ν = λ.

454M The fundamental existence theorem 454G takes a more direct form in this context.

Proposition Let I be a set, and suppose that for each finite J ⊆ I we are given a Radon probability
measure νJ on RJ such that whenever K is a finite subset of I and J ⊆ K, then the canonical projection
from RK to RJ is inverse-measure-preserving. Then there is a unique complete probability measure ν on RI ,
measuring every Baire set and inner regular with respect to the zero sets, such that the canonical projection
from RI to RJ is inverse-measure-preserving for every finite J ⊆ I.

proof For finite J ⊆ I, let µJ be the restriction of νJ to the Borel σ-algebra B(RJ ). Then the canonical
projection from RK to RJ is inverse-measure-preserving for µK and µJ whenever J ⊆ K are finite subsets
of I. Moreover, µ{i} is a Borel measure on R, therefore perfect, for every i ∈ I. By 454G, we have a

unique Baire probability measure µ on RI such that the projections RI → RJ are (µ, µJ )-inverse-measure-
preserving for all finite J ⊆ I. Let ν be the completion of µ; then the projections are (ν, νJ )-inverse-measure-
preserving because νJ is always the completion of µJ . Finally, ν is unique because ν↾Ba(RI) must have the
defining property for µ.

454N We know that Radon measures are often determined by the integrals they give to continuous
functions (415I). If we look at distributions we get a stronger result for probability measures.
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Proposition Let Ω be a Hausdorff space, µ and ν two Radon probability measures on Ω, and 〈Xi〉i∈I a
family of continuous functions separating the points of Ω. If µ and ν give 〈Xi〉i∈I the same distribution,
they are equal.

proof (a) If K and L are disjoint compact subsets of Ω, there is an open set G such that K ⊆ G ⊆ X \ L
and µG = νG. PPP Wi = {(ω, ω′) : Xi(ω) 6= Xi(ω

′)} is an open subset of Ω × Ω, and
⋃
i∈IWi includes the

compact set K × L. So there is a finite set J ⊆ I such that K × L ⊆ ⋃
i∈JWi. Define f : Ω → RJ by

setting f(ω)(i) = Xi(ω) for ω ∈ Ω and i ∈ J ; then f is continuous, and f [K] ∩ f [L] = ∅. Also the image
measures µf−1 and νf−1 must be the same, because they are both the common distribution of 〈Xi〉i∈J . Set
G = Ω \ f−1[L]; this works. QQQ

(b) Now if E ⊆ Ω is a Borel set, and ǫ > 0, there are compact sets K ⊆ E, L ⊆ Ω \ E such that
µK ≥ µE − ǫ and νL ≥ ν(Ω \E) − ǫ. Let G be an open set such that µG = νG and K ⊆ G ⊆ Ω \ L. Then

µE ≤ ǫ+ µK ≤ ǫ+ µG = ǫ+ νG ≤ ǫ+ ν(Ω \ L)

= ǫ+ 1 − νL ≤ 2ǫ+ 1 − ν(Ω \ E) = 2ǫ+ νE.

As ǫ is arbitrary, µE ≤ νE; similarly, νE ≤ µE. As E is arbitrary, µ and ν agree on the Borel sets and
must coincide.

454O What distributions determine Suppose that we have two families 〈Xi〉i∈I , 〈X ′
i〉i∈I on possibly

different probability spaces, and we are told that they have the same distribution. Then f(〈Xi〉i∈I) and
f(〈X ′

i〉i∈I) will have the same distribution for any Baire measurable function f : RI → R. More generally,
we have the following.

Proposition Let (Ω,Σ, µ), (Ω′,Σ′, µ′) probability spaces, 〈Xi〉i∈I a family of random variables on Ω and
〈X ′

i〉i∈I a family of random variables on Ω′, both with the same distribution ν on RI . Suppose that 〈Ij〉j∈J
is a family of countable subsets of I, and that for each j ∈ I we have a Borel measurable function fj : RIj

to R. For j ∈ J define Yj , Y
′
j by saying that

Yj(ω) = fj(〈Xi(ω)〉i∈Ij ) for ω ∈ Ω ∩⋂
i∈Ij domXi,

Y ′
j (ω′) = fj(〈X ′

i(ω
′)〉i∈Ij ) for ω′ ∈ Ω′ ∩⋂

i∈Ij domX ′
i.

Then 〈Yj〉j∈J and 〈Y ′
j 〉j∈J have the same distribution.

proof For each j ∈ J the domain Ω ∩⋂
i∈Ij domXi is a conegligible subset of Ω and Yj is Σ-measurable

(418Bd), so Yj is a real-valued random variable on Ω; similarly, every Y ′
j is a real-valued random variable

on Ω′, and we can speak of the distributions of 〈Yj〉j∈J and 〈Y ′
j 〉j∈J . Let ν be the common distribution of

〈Xi〉i∈I and 〈X ′
i〉i∈I . For each i ∈ I let X̂i be any extension of Xi to a function from Ω to R, and write µ̂

for the completion of µ. If j0, . . . , jn ∈ J and α0, . . . , αn ∈ R,

Pr(Yjr ≤ αr for every r ≤ n) = µ{ω : ω ∈ Ω ∩
⋂

r≤n

⋂

i∈Ijr

domXi,

fjr (〈Xi(ω)〉i∈Ij ) ≤ αr for every r ≤ n}
= µ̂{ω : ω ∈ Ω, fjr (〈X̂i(ω)〉i∈Ij ) ≤ αr for every r ≤ n}
= ν{x : x ∈ RI , fjr (x↾Ijr ) ≤ αr for every r ≤ n}

(454J(iv))

= Pr(Y ′
jr ≤ αr for every r ≤ n).

By 454J(i), the distributions of 〈Yj〉j∈J and 〈Y ′
j 〉j∈J coincide.

454P Theorem Let I be a set.
(a) Let ν and ν ′ be Baire probability measures on RI such that

∫
eif(x)ν(dx) =

∫
eif(x)ν ′(dx) for every

continuous linear functional f : RI → R. Then ν = ν ′.
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(b) Let 〈Xj〉j∈I and 〈Yj〉j∈I be two families of random variables such that

E(exp(i
∑n
r=0 αrXjr )) = E(exp(i

∑n
r=0 αrYjr ))

whenever j0, . . . , jn ∈ I and α0, . . . , αn ∈ R. Then 〈Xj〉j∈I and 〈Yj〉j∈I have the same distribution.

proof (a) For each finite set J ⊆ I, write π̃J(x) = x↾J for x ∈ X. Then we have Radon probability
measures µJ and µ′

J on RJ defined by saying that µJF = νπ̃−1
J [F ], µ′

JF = ν ′π̃−1
J [F ] for Borel sets F ⊆ RJ .

If 〈αj〉j∈J ∈ RJ , then

∫
exp(i

∑

j∈J
αjz(j))µJ (dz) =

∫
exp(i

∑

j∈J
αjx(j))ν(dx)

=

∫
exp(i

∑

j∈J
αjx(j))ν ′(dx) =

∫
exp(i

∑

j∈J
αjz(j))µ′

J (dz),

so µJ and µ′
J have the same characteristic function, therefore are equal (285M). This is true for every J , so

ν and ν ′ are equal, by 454D.

(b) Taking ν and ν ′ to be the two distributions, (a) (with 454O) tells us that their restrictions to the
Baire σ-algebra of RI are the same, so they must be identical.

454Q Continuous processes The original, and still by far the most important, context for 454D is
when every (Xi,Σi) is R with its Borel σ-algebra, so that X =

∏
i∈I Xi can be identified with RI . In the

discussion so far, the set I has been an abstract set, except in the very special case of 454H. But some of
the most important applications (to which I shall come in §455) involve index sets carrying a topological
structure; for instance, I could be the unit interval [0, 1] or the half-line [0,∞[. In such a case, we have a
wide variety of subspaces of RI (for instance, the space of continuous functions) marked out as special, and
it is important to know when, and in what sense, our measures on the product space RI can be regarded
as, or replaced by, measures on the subspace of interest. In the next few paragraphs I look briefly at spaces
of continuous functions on Polish spaces.

Lemma Let T be a separable metrizable space and (X,Σ, µ) a semi-finite measure space. Let T be a
topology on X such that µ is inner regular with respect to the closed sets.

(a) Let φ : X × T → R be a function such that (i) for each x ∈ X, t 7→ φ(x, t) is continuous (ii) for each
t ∈ T , x 7→ φ(x, t) is Σ-measurable. Then µ is inner regular with respect to K = {K : K ⊆ X, φ↾K × T is
continuous}.

(b) Let θ : X → C(T ) be a function such that x 7→ θ(x)(t) is Σ-measurable for every t ∈ T . Give C(T )
the topology Tc of uniform convergence on compact subsets of T . Then θ is almost continuous.

proof The result is trivial if T is empty, so we may suppose that T 6= ∅.

(a) Take E ∈ Σ and γ < µE; take F ∈ Σ such that F ⊆ E and γ < µF <∞. Let U be a countable base
for the topology of T consisting of non-empty sets, D a countable dense subset of T and V a countable base
for the topology of R. For U ∈ U , V ∈ V set

EUV = {x : φ(x, t) ∈ V for every t ∈ U ∩D};

then EUV ∈ Σ. Let 〈ǫUV 〉U∈U,V ∈V be a family of strictly positive numbers with sum at most µF − γ. For
each U ∈ U , V ∈ V take a closed set FUV ⊆ F \ EUV such that µFUV ≥ µ(F \ EUV ) − ǫUV . Consider

K =
⋂
U∈U,V ∈V FUV ∪ (F ∩ EUV ).

Then K ⊆ E and µK ≥ γ.
If x ∈ K, t ∈ T and φ(x, t) ∈ V0 ∈ V, let V ∈ V be such that φ(x, t) ∈ V and V ⊆ V0. Then

{t′ : φ(x, t′) ∈ V } is an open set containing t, so there is some U ∈ U such that t ∈ U and φ(x, t′) ∈ V for
every t′ ∈ U . This means that x ∈ EUV , so that (K \ FUV ) × U contains (x, t), and is a relatively open
set in K × T . If (x′, t′) ∈ (K \ FUV ) × U , then x′ ∈ EUV , so φ(x′, t′′) ∈ V whenever t′′ ∈ U ∩D; as D is
dense, φ(x′, t′′) ∈ V whenever t′′ ∈ U ; in particular, φ(x′, t′) ∈ V ⊆ V0. This shows that (K × T ) ∩ φ−1[V0]
is relatively open in K × T ; as V0 is arbitrary, φ↾K × T is continuous.

So K ∈ K. As E and γ are arbitrary, µ is inner regular with respect to K.
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(b) Set φ(x, t) = θ(x)(t) for x ∈ X, t ∈ T . Because θ(x) ∈ C(T ) for every x, φ is continuous in the
second variable; and the hypothesis on θ is just that φ is measurable in the first variable. So µ is inner
regular with respect to K as described in (a). But θ↾K is continuous for every K ∈ K, by 4A2G(g-ii). So θ
is almost continuous.

454R Proposition Let T be an analytic metrizable space (e.g., a Polish space, or any Souslin-F subset
of a Polish space), and µ a probability measure on C(T ) with domain the σ-algebra Σ generated by the
evaluation functionals f 7→ f(t) : C(T ) → R for t ∈ T . Give C(T ) the topology Tc of uniform convergence
on compact subsets of T . Then the completion of µ is a Tc-Radon measure.

proof If T is empty this is trivial, so let us suppose henceforth that T 6= ∅.

(a) Let D be a countable dense subset of T . Let π : C(T ) → RD be the restriction map. Set X =
π[C(T )] ⊆ RD; then X, with the topology it inherits from RD, is a separable metrizable space. Note that,
because D is dense, π is injective.

We need to know that π is an isomorphism between (C(T ),Σ) and (X,B), where B is the Borel σ-algebra of
X. PPP Since the Borel σ-algebra of RD is just the σ-algebra generated by the functionals g 7→ g(t) : RD → R

as t runs over D (4A3Dc/4A3E), B is the σ-algebra of subsets of X generated by the functionals g 7→ g(t) :
X → R for t ∈ D. So π is surely (Σ,B)-measurable. On the other hand, if t ∈ X, there is a sequence 〈tn〉n∈N

in D converging to t, so that π−1(g)(t) = limn→∞ g(tn) for every g ∈ X, and g 7→ π−1(g)(t) : X → R is
B-measurable. Accordingly π−1 is (B,Σ)-measurable. QQQ

(b) Let 〈Un〉n∈N be a sequence running over a base for the topology of T , with no Un empty. For each
n ∈ N, g ∈ RD set

ωn(g) = supt,u∈Un∩D min(1, g(t) − g(u)),

so that ωn : RD → [0, 1] is T-measurable, where T is the Borel (or Baire) algebra of RD. For g ∈ RD, g ∈ X
iff g has an extension to a continuous function on T , that is,

for every t ∈ T , k ∈ N there is an n ∈ N such that t ∈ Un and ωn(g) ≤ 2−k.

Turning this round, RD \X is the projection onto the first coordinate of the set

Q =
⋃
k∈N

⋂
n∈N{(g, t): either t /∈ Un or ωn(g) > 2−k} ⊆ RD × T .

But (because every Un is an open set and every ωn is Borel measurable) Q is a Borel set in the analytic
space RD×T . So Q and RD \X are analytic (423Eb, 423Bb). Since RD, being Polish (4A2Qc), is a Radon
space (434Kb), X is a Radon space (434Fd).

(c) The image measure ν = µπ−1 on X is a Borel probability measure. Because X is a Radon space, ν
is tight, and its completion ν̂ is a Radon measure.

By 454Qb, π−1 : X → C(T ) is almost continuous if we give C(T ) the topology Tc. So the image measure
λ = ν̂(π−1)−1 is a Radon measure for Tc (418I). But of course λ is the completion of µ, just because π is a
bijection and ν̂ is the completion of ν.

454S Corollary Let T be an analytic metrizable space.
(a) C(T ), with either the topology Tp of uniform convergence on finite subsets of T or the topology Tc

of uniform convergence on compact subsets of T , is a measure-compact Radon space.
(b) Let µ be a Baire probability measure on RT such that µ∗C(T ) = 1. Then the subspace measure

µ̂C on C(T ) induced by the completion of µ is a Radon measure on C(T ) if C(T ) is given either Tp or Tc.
µ itself is τ -additive and has a unique extension µ̃ which is a Radon measure on RT ; µ̂C is the subspace
measure on C(T ) induced by µ̃.

proof (a) Let µ be a probability measure on C(T ) which is either a Baire measure or a Borel measure with
respect to either Tp or Tc. Let µ̃ be the completion of µ↾Σ, where Σ is the σ-algebra generated by the
functionals f 7→ f(t); because these are Tp-continuous, Σ is certainly included in the Baire σ-algebra for
Tp, so that Σ ⊆ domµ. 454R tells us that µ̃ is a Radon measure for Tc. Because Tp is a coarser Hausdorff
topology, µ̃ is also a Radon measure for Tp. Also µ̃ must extend µ, because its domain includes that of µ
and the completion of µ must extend µ̃ (in fact, of course, this means that µ̃ is actually the completion of
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µ). Now µ̃ is τ -additive (for either topology), so µ also is; as µ is arbitrary, C(T ) is measure-compact (for
either topology). On the other hand, if µ is a Borel measure (for either topology), it must be tight for that
topology; so that C(T ) is a Radon space.

(b) Write µC for the subspace measure on C(T ). Recall that the domain Σ of µ is just the σ-algebra
generated by the functionals f 7→ f(t) : RT → R, as t runs over T (4A3Na once more), so that the domain
ΣC of µC is the σ-algebra of subsets of C(T ) generated by the functionals f 7→ f(t) : C(T ) → R. By
454R again, the completion of µC is a Radon measure on C(T ) if we give C(T ) the topology Tc of uniform
convergence on compact subsets of T , and therefore also for the coarser Hausdorff topology Tp. Because the
µC-negligible sets for µC are just the intersections of C(T ) with µ-negligible sets (214Cb), the completion
of µC is the subspace measure µ̂C induced by the completion of µ (214Ib).

The embedding C(T ) ⊂→ RT is of course continuous for Tc and the product topology on RT , so we have a

Radon image measure µ̃ on RT defined by saying that µ̃E = µ̂C(E ∩C(T )) whenever E ∩C(T ) is measured
by µ̂C . If E ∈ Σ, then

µ̃E = µ̂C(E ∩ C(T )) = µC(E ∩ C(T )) = µ∗(E ∩ C(T )) = µE

because µ∗C(T ) = 1, so µ̃ extends µ. Of course µ̃C(T ) = 1 and the subspace measure on C(T ) induced by
µ̃ is just µ̂C .

Finally, because µ has an extension to a Radon measure, it must itself be τ -additive. Because Σ includes
a base for the topology of RT , µ can have only one extension to a Radon measure on RT (415H(iv)).

*454T Convergence of distributions (a) Let I be a set. Write M for the set of distributions on
RI , that is, the set of completions of probability measures with domain Ba(RI). For any ν ∈ M , the
integral

∫
f dν is defined for every bounded continuous function f : RI → R, just because such functions are

Baire measurable. I will say that the vague topology on M is the topology generated by the functionals
ν 7→

∫
fdν as f runs over the space Cb(R

I) of bounded continuous real-valued functions on RI . (Compare
437Jc.)

(b) The vague topology on M is Hausdorff. PPP If ν, ν′ ∈ M are different, then ν↾Ba(X) 6= ν′↾Ba(RI).
Ba(RI) is the σ-algebra generated by the family Z of zero subsets of RI (4A3Kb); by the Monotone Class
Theorem (136C), there is an F ∈ Z such that νF 6= ν′F . Suppose that νF < ν′F . Let f : RI → R be a
continuous function such that F = {x : x ∈ RI , f(x) = 0}. Then there is a δ > 0 such that ν{x : x ∈ RI ,
|f(x)| < δ} < ν′F . Set g(x) = min(δ, |f(x)|) for x ∈ RI , so that g is a bounded continuous function. Now∫

g dν′ ≤ δν′{x : |f(x)| > 0} < δν{x : |f(x)| ≥ δ} ≤
∫
g dν

and ν, ν′ are separated by the vague topology. QQQ

*454U Theorem Let (Ω,Σ, µ) be a probability space, and I a set. Let M be the set of distributions on
RI ; for a family XXX = 〈Xi〉i∈I of real-valued random variables on Ω, let νXXX be its distribution (454K). Then
the function XXX 7→ νXXX : L0(µ)I →M is continuous for the product topology on L

0(µ)I corresponding to the
topology of convergence in measure on L

0(µ) (245A) and the vague topology on M (454Ta).

proof By the definition of ‘vague topology’ we need to prove that XXX 7→
∫
fdνXXX : L0(µ)I → R is continuous

for every bounded continuous function f : RI → R.

(a) Consider first the case in which I is countable and we are given YYY = 〈Yi〉i∈I and a sequence 〈XXXn〉n∈N =
〈〈Xni〉i∈I〉n∈N in L

0(µ)I such that 〈Xni〉n∈N converges a.e. to Yi for every i ∈ I. Then νYYY = limn→∞ νXXXn
.

PPP As I is countable, the set

F = {ω : ω ∈ ⋂
n∈N,i∈I domXni ∩ domYi, Yi(ω) = limn→∞Xni(ω)}

is µ-conegligible.
Now if J ⊆ I is finite, Ei ⊆ R is a Borel set for each i ∈ J and W = {z : z ∈ RI , z(i) ∈ Ei for every i ∈ J},

νYYYW = µ̂(Ω ∩⋂
i∈J{ω : Yi(ω) ∈ Ei}) = µ̂Y −1[W ]

where Y (ω) = 〈Yi(ω)〉i∈I for ω ∈ F and µ̂ is the completion of µ. By the Monotone Class Theorem,

νYYYW = µ̂Y −1[W ] for every W ∈ ⊗̂
i∈IB(R) = Ba(RI). So if f : RI → R is a bounded continuous function,∫

fdνYYY =
∫
fY dµ.
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Similarly, if we set Xn(ω) = 〈Xni(ω)〉i∈I for ω ∈ Ω,
∫
fdνXXXn

=
∫
fXndµ for every n. But now observe

that Y (ω) = limn→∞Xn(ω) in RI for every ω ∈ F , so fY (ω) = limn→∞ fXn(ω) for every ω ∈ F , and∫
fdνYYY =

∫
fY dµ = limn→∞ fXndµ = limn→∞

∫
fdνXXXn

by Lebesgue’s Dominated Convergence Theorem. As f is arbitrary, νYYY = limn→∞ νXXXn
. QQQ

(b) Next suppose that I is countable and we are given YYY = 〈Yi〉i∈I and a sequence 〈XXXn〉n∈N =
〈〈Xni〉i∈I〉n∈N in L

0(µ)I such that 〈Xni〉n∈N converges in measure to Yi for every i ∈ I. Then νYYY =
limn→∞ νXXXn

. PPP??? Otherwise, I is surely not empty and there are a continuous bounded f : RI → R and
an ǫ > 0 such that J = {n : n ∈ N, |

∫
fdνXXXn

−
∫
fdνYYY | ≥ ǫ} is infinite. Let 〈ik〉k∈N be a sequence running

over I, and 〈m(n)〉n∈N a strictly increasing sequence in J such that

µ̂{ω : |Xm(n),ik(ω) − Yik(ω)| ≥ 2−n} ≤ 2−n

whenever k ≤ n ∈ N. Now Yi =a.e. limn→∞Xm(n),i for every i ∈ I, so νYYY = limn→∞ νXXXm(n)
, by (a); but

|
∫
fdνXXXm(n)

−
∫
fdνYYY | ≥ ǫ for every n. XXXQQQ

(c) This shows that if I is countable, XXX 7→ νXXX is sequentially continuous. But as the topology of
convergence in measure on L

0(µ) is pseudometrizable (see 245Eb), the product topology on L
0(µ)I is also

pseudometrizable (4A2Lh), and sequentially continuous functions on L
0(µ)I are continuous (4A2Ld). So in

this case XXX 7→ νXXX is continuous.

(d) This deals with the case of countable I. For the general case, given I and a continuous bounded
f : RI → R, there are a countable set J ⊆ I and a continuous g : RJ → R such that f = gπJ where
πJ(x) = x↾J for every x ∈ RI (put 4A2E(a-iii) and 4A2F(b-ii) together). For any XXX = 〈Xi〉i∈I ∈ L

0(Σ)I

with distribution νXXX , write XXX ′ for 〈Xi〉i∈J and νXXX′ for its distribution. Then πJ : RI → RJ is inverse-
measure-preserving for νXXX and νXXX′ . PPP If K ⊆ J is finite and Ei ∈ B(R) for i ∈ K,

νXXXπ
−1
J {y : y ∈ RJ , y(i) ∈ Ei for i ∈ K} = νXXX{x : x ∈ RI , x(i) ∈ Ei for i ∈ K}

= µ{ω : ω ∈ Ω, Xi(ω) ∈ Ei for i ∈ K}
= νXXX′{y : y ∈ RJ , y(i) ∈ Ei for i ∈ K}.

By the Monotone Class Theorem (136C), νXXXπ
−1
J [H] = νXXX′H for every H ∈ Ba(RJ ); as νXXX is complete and

νXXX′ is the completion of its restriction to Ba(RJ ), πJ is inverse-measure-preserving. QQQ
It follows that ∫

fdνXXX =
∫
gπJdνXXX′ =

∫
g dνXXX′

(235G), and this is true for every XXX ∈ L
0(µ)I .

Now observe that XXX 7→ XXX ′ = XXX↾J : L0(µ)I → L0(µ)J is continuous, while XXX ′ →
∫
g dνXXX′ is continuous

by (a)-(c) above; so XXX 7→
∫
fdνXXX is continuous. As f is arbitrary. XXX 7→ νXXX is continuous, and the result is

true in this case also.

*454V In this volume I am deliberately leaving some of the central concerns of Volume 3 to one side.
But the concept of ‘joint distribution’ has a natural, and in some contexts important, alternative expression
in the language of §364, as follows.

(a)(i) If A is a Dedekind σ-complete Boolean algebra, I is a set, and u ∈ L0(A)I , we have a sequentially
order-continuous Boolean homomorphism E 7→ [[u ∈ E]] : Ba(RI) → A defined by saying that

[[u ∈ {x : x ∈ RI , x(i) ≤ α}]] = [[u(i) ≤ α]]

whenever i ∈ I and α ∈ R. PPP It is enough to consider the case in which A = Σ/I, where Σ is a σ-algebra
of subsets of a set X and I is a σ-ideal of Σ. In this case each u(i) can be identified with the equivalence
class of a Σ-measurable function fi : X → R (364C); setting f(x) = 〈fi(x)〉i∈I for x ∈ X, f is (Σ,Ba(RI))-
measurable (4A3Ne) and we have a corresponding function E 7→ f−1[E]• : Ba(RI) → A which has the
required properties. Since Ba(RI) is the σ-algebra generated by E = {{x : x(i) ≤ α} : i ∈ I, α ∈ R}, there
is only one sequentially order-continuous homomorphism with the right values on E . QQQ
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(ii) If h : RI → R is a Baire measurable function, there is a function h̄ : L0(A)I → L0(A) defined by
saying that [[h̄(u) ∈ E]] = [[u ∈ h−1[E]]] for every Borel set E ⊆ R. PPP E 7→ [[u ∈ h−1[E]]] is a sequentially
order-continuous Boolean homomorphism so we can use 364F. QQQ

(b) Suppose that (A, µ̄) is a probability algebra, I is a set and u ∈ L0(A)I . Then there is a unique
complete probability measure ν on RI , measuring every Baire set and inner regular with respect to the zero
sets, such that

ν{x : x ∈ RI , x(i) ∈ Ei for every i ∈ J} = µ̄(infi∈J [[u(i) ∈ Ei]])

whenever J ⊆ I is finite and Ei ⊆ R is a Borel set for every i ∈ J . PPP Express (A, µ̄) as the measure
algebra of a probability space (Ω,Σ, µ) (321J), and for each i ∈ I choose a measurable function Xi : Ω → R

such that u(i) can be identified with X•

i ∈ L0(µ) (364Ic); now the distribution ν of 〈Xi〉i∈I , as defined in
454J-454K, has the required properties. The argument of part (e) of the proof of 454J still applies, so ν is
unique. QQQ

(c) In this context, I will call ν the (joint) distribution of u. (Compare 364Gb13.)

(d) Translating 454O into this language, we get the following. Let (A, µ̄) and (A′, µ̄′) be probability
algebras, and u ∈ L0(A)I , u′ ∈ L0(A′)I families with the same distribution. Suppose that 〈hj〉j∈J is
a family of Baire measurable functions from RI to R. Then 〈h̄j(u)〉j∈J and 〈h̄j(u′)〉j∈J have the same
distribution. PPP If J ⊆ I is non-empty and finite and Ej is a Borel subset of R for j ∈ J ,

µ̄( inf
j∈J

[[hj(u) ∈ Ej ]]) = µ̄([[u ∈ ⋂
j∈J h

−1
j [Ej ]]]) = ν(

⋂

j∈J
h−1
j [Ej ])

(where ν is the common distribution of u and u′)

= µ̄′( inf
j∈J

[[hj(u
′) ∈ Ej ]]). QQQ

(e) Similarly, if (A, µ̄) is a probability algebra, I a set, and we write νu for the distribution of u ∈ L0(A)I ,
u 7→ νu is continuous for the product topology on L0(A)I corresponding to the topology of convergence in
measure on L0(A) (367L) and the vague topology on the space M of distributions on RI . PPP It is enough
to consider the case in which (A, µ̄) is the measure algebra of a probability space (Ω,Σ, µ), so that L0(A)
can be identified with L0(µ). Let φ : L0(A) → L

0(µ) be any function such that φ(w)• = w for every
w ∈ L0(A). Then φ is continuous for the topologies of convergence in measure on L0(A) ∼= L0(µ) and
L

0(µ) (see 245B) and the corresponding map u 7→ φu = 〈φ(u(i))〉i∈I : L0(A)I → L
0(µ)I is continuous.

As [[w ∈ E]] = {ω : φ(w)(ω) ∈ E}• for any w ∈ L0(A) and E ∈ B(R), the distributions νu, νφu of u
and φu are the same for every u ∈ L0(A)I . Since XXX 7→ νXXX : L

0(µ)I → M is continuous (454U), so is
u 7→ νu : L0(A)I →M . QQQ

454X Basic exercises >>>(a) Let µ be Lebesgue measure on [0, 1], and Σ its domain. Let X0, X1 ⊆ [0, 1]
be disjoint sets of full outer measure. For each i, let Σi be the relative σ-algebra on Xi. Show that we have
a finitely additive functional λ defined on Σ0 ⊗ Σ1 by the formula

λ((E ∩X0) × (F ∩X1)) = µ(E ∩ F ) for all E, F ∈ Σ,

and that λ has no extension to a measure on X0 ×X1.

(b) Adapt the example of 419K to provide a counter-example for 454G if we omit the hypothesis that
the marginal measures µ{i} must be perfect.

(c) Adapt the example of 419K/454Xb to provide a counter-example for 454H if we omit the hypothesis
that the (Xn,Σn) must be standard Borel spaces. (Hint : if z ∈ ∏

i≤nXi, try νz(E) = 1 if z(n) ∈ E, 0

otherwise.)

13Formerly 364Xd.
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>>>(d) Let X be a set and Σ a σ-algebra of subsets of X. Let us say that (X,Σ) has the perfect
measure property if every totally finite measure with domain Σ is perfect. Show that (i) if (X,Σ) has
the perfect measure property, so does (E,ΣE) for any E ∈ Σ, where ΣE is the subspace σ-algebra on E

(ii) if 〈(Xi,Σi)〉i∈I is a family of spaces with the perfect measure property, then (
∏
i∈I Xi,

⊗̂
i∈IΣi) has the

perfect measure property.

(e) Let (X,Σ) be a space with the perfect measure property, and T the smallest σ-algebra including Σ
and closed under Souslin’s operation. Show that (X,T) has the perfect measure property.

(f) Let X be a set and Σ a σ-algebra of subsets of X. Let us say that (X,Σ) has the countably compact
measure property if every totally finite measure with domain Σ is countably compact. Show that (i) if
(X,Σ) has the countably compact measure property it has the perfect measure property (ii) if (X,Σ) has
the countably compact measure property so does (E,ΣE) for every E ∈ Σ, where ΣE is the subspace σ-
algebra on E (iii) if 〈(Xi,Σi)〉i∈I is a family of spaces with the countably compact measure property, then

(
∏
i∈I Xi,

⊗̂
i∈IΣi) has the countably compact measure property.

(g) Suppose that (X,Σ) has the countably compact measure property. (i) Let µ be a totally finite
measure with domain Σ, (Y,T, ν) a measure space, and f : X → Y an inverse-measure-preserving function.
Show that µ has a disintegration 〈µy〉y∈Y over ν which is consistent with f . (ii) Let Y be any set, T a

σ-algebra of subsets of Y , and λ a probability measure with domain Σ⊗̂T. Show that there is a family
〈µy〉y∈Y of probability measures on X such that λW =

∫
µyW

−1[{y}]ν(dy) for every W ∈ Σ⊗̂T, where ν is
the marginal measure of λ on Y . (Hint : 452M.)

(h)(i) Let X be any set, and Σ the countable-cocountable algebra on X. Show that (X,Σ) has the
countably compact measure property. (ii) Show that any standard Borel space has the countably compact
measure property.

(i) Let X be a Radon Hausdorff space, and Σum the algebra of universally measurable sets in X (434D).
Show that (X,Σum) has the countably compact measure property.

>>>(j) Let 〈Xi〉i∈I be an independent family of normal random variables. Show that its distribution is a
quasi-Radon measure on RI . (Hint : 415E.)

(k) Give an example of a metrizable space Ω with a continuous injective function X : Ω → [0, 1] and two
different quasi-Radon probability measures µ, ν on Ω giving the same distribution to the random variable
X.

(l) Let I be a set and ν, ν ′ two quasi-Radon measures on RI such that
∫
eif(x)ν(dx) =

∫
eif(x)ν ′(dx) for

every continuous linear functional f : RI → R. Show that ν = ν ′.

>>>(m) Let Σ be the σ-algebra of subsets of C([0,∞[) generated by the functionals f 7→ f(t) for t ≥ 0.
Give C([0,∞[) the topology Tc of uniform convergence on compact sets. (i) Show that Tc is Polish, and
that Σ ∩ Tc is a base for Tc which generates Σ as σ-algebra. (ii) Use this to give a quick proof of 454R in
this case.

(n) Let T be a Polish space, and Tc the topology on C(T ) of uniform convergence on compact sets. Show
that if T is any Hausdorff topology on C(T ), coarser than Tc, such that all the functionals f 7→ f(t), for
t ∈ T , are Baire measurable for T, then (C(T ),T) is a measure-compact Radon space.

454Y Further exercises (a) In 454Ab, show that µ is weakly α-favourable (definition: 451V) if every
µi is.

(b) Let Σ be the algebra of Lebesgue measurable subsets of R. Show that (R,Σ) has the perfect measure
property (454Xd) iff c is measure-free.
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(c) Let B be the Borel σ-algebra of ω1 with its order topology. Show that (ω1,B) has the perfect measure
property. (Hint : 439Xn.)

(d) Let (X,Σ, µ) be a semi-finite measure space with a topology such that µ is inner regular with
respect to the closed sets, T a second-countable space and Y a separable metrizable space. Suppose that
φ : X × T → Y is continuous in the second variable and measurable in the first, as in 454Q. Show that µ is
inner regular with respect to K = {K : K ⊆ X, φ↾K × T is continuous}.

454 Notes and comments 454A generalizes Theorem 451J, which gave the same result (with essentially
the same proof) for product measures. One of the themes of this section is the idea that we can deduce
properties of measures on product spaces from properties of their marginal measures, that is, the image
measures on the factors. The essence of ‘compactness’, ‘countable compactness’ and ‘perfectness’ is that we
can find enough points in the measure space to do what we want. (See, for instance, the characterization
of local compactness in 343B, or Pachl’s characterization of countable compactness in 452Ye.) Since the
canonical feature of a product space is that we put in every point the Axiom of Choice provides us with,
it’s perhaps not surprising that such properties can be inherited by measures on product spaces.

Theorems 454C and 454D can be regarded as further variations on the same theme. A finitely additive
non-negative functional on an algebra of sets will have an extension to a measure if, and only if, it is
sequentially smooth in the sense that the measures of a decreasing sequence of sets with empty intersection
converge to zero (413L). If we have a decreasing sequence of sets, with measures bounded away from zero,
but with empty intersection, one interpretation of the phenomenon is that some points which ought to have
been present got left out of the sets. What 454D tells us is that perfectness (and countable additivity) of the
marginal measures is enough to ensure that there are enough points in the product to stop this happening.
In effect, 454C tells us that it will be enough if every marginal but one is perfect.

These results are of course associated with the projective limit constructions in 418M-418Q. In the
theorems there we had Radon measures, so that they were actually compact rather than perfect; in return
for the stronger hypothesis on the measures, we could handle projective limits corresponding to rather small
subsets of the product spaces (see the formulae in 418O-418Q). Just as in §418, the patterns change when
we have countable rather than uncountable families to deal with (418P-418Q, 454H).

In 454J-454P, I insist rather arbitrarily that ‘the’ joint distribution of a family 〈Xi〉i∈I of real-valued
random variables is the completion of a Baire measure on RI . Of course all the ideas can also be expressed
in terms of the Baire measure itself, but I have sought a formulation which is consistent with the rules
set out in §271. When I is countable, we get a Radon measure (454J(iii)), as in the finite-dimensional
case. There are other cases in which the distribution is a quasi-Radon measure (454Xj). As always, we can
ask whether the distribution is τ -additive; in this case it will have a canonical extension to a quasi-Radon
measure (415N). Important examples of this phenomenon are described in 454Xj, 455H and 456O. Because
RI has a linear topological space structure, we have a notion of ‘characteristic function’ for any probability
measure on RI measuring the zero sets, and the characteristic function of a Baire measure determines that
measure (454P, 454Xl).

In 454R, C(T ), with Tc, has a countable network (4A2Oe), so the subspace measure µC induced by µ
on C(T ) must be a τ -additive topological measure with respect to Tc (414O) and has a unique extension
to a quasi-Radon measure on C(T ) (415M). The hard bit is the next step, showing that C(T ), under Tc, is
a Radon space; this is the real point of 454Q-454R. For the most important case, in which T = [0,∞[, we
have a useful simplification, because Tc is actually Polish (454Xm). Even in this case, however, we need to
observe that the measure we are seeking is a little more complicated than a simple completion of a measure
on RT . We must complete the subspace measure on C(T ), and C(T ) is far from being a measurable set.
The measure µ̃ of 454S will not as a rule be completion regular, for instance. Spaces of continuous functions
are so important that it is worth noticing that the results here will be valid for various topologies on C(T )
(454Xn).

I suppose that pretty well every result on distributions in Chapter 27 corresponds to some significant
development expressible in the language of this section. 454T-454U take up the idea of Exercise 274Yf.
Looking at the facts here from the point of view of Volume 3 we get the alternative versions in 454V.
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455 Markov and Lévy processes

For a ‘Markov’ process, in which the evolution of the system after a time t depends only on the state at
time t, the general theory of §454 leads to a straightforward existence theorem (at least for random variables
taking values in standard Borel spaces) dependent only on a natural consistency condition on the transitional
probabilities (455A, 455E). The formulation leads naturally to descriptions of the ‘Markov property’ (for
stopping times taking only countably many values) in terms of disintegrations and conditional expectations
(455C, 455Ec). With appropriate continuity conditions, we find that the process can be represented either
by a Radon measure (455H) or by a measure on the set of càdlàg paths (455Gc) for which we have a
formulation of the strong Markov property (for general stopping times) in terms of disintegrations (455O).
These conditions are satisfied by Lévy processes (455P-455R). For these, we have an alternative expression
of the strong Markov property in terms of inverse-measure-preserving functions (455U). By far the most
important example of a continuous-time Markov process is Brownian motion, but I defer discussion of this
to §477.

455A Theorem Let T be a totally ordered set with least element t∗, and for each t ∈ T let Ωt be a
non-empty set and Tt a σ-algebra of subsets of Ωt containing all singleton subsets of Ωt. Set Ω =

∏
t∈T Ωt

and for t ∈ T , ω ∈ Ω set Xt(ω) = ω(t). Fix x∗ ∈ Ωt∗ . Suppose that we are given, for each pair s < t in T , a

family 〈ν(s,t)x 〉x∈Ωs
of perfect probability measures on Ωt, all with domain Tt, and suppose that

(†) whenever s < t < u in T and x ∈ Ωs, then 〈ν(t,u)y 〉y∈Ωt
is a disintegration of ν

(s,u)
x over

ν
(s,t)
x .

For J ⊆ T write πJ for the canonical map from Ω onto ZJ =
∏
t∈J Ωt. Then there is a unique probability

measure µ on Ω, with domain
⊗̂

t∈TTt, such that, writing λJ for the image measure µπ−1
J ,

∫
fdλJ =

∫
f(ω(t∗), ω(t1), . . . , ω(tn))µ(dω)

=

∫
. . .

∫∫
f(x∗, x1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

ν(tn−2,tn−1)
xn−2

(dxn−1) . . . ν
(t∗,t1)
x∗ (dx1)

whenever t∗ < t1 < . . . < tn, J = {t∗, t1, . . . , tn} and f is λJ -integrable. µ is perfect, and the marginal

measure µt = µX−1
t is equal to ν

(t∗,t)
x∗ , if t > t∗, while µt∗{x∗} = 1.

proof (a) For I ⊆ T , write TI =
⊗̂

t∈ITt. If I = {t0, t1, . . . , tn} is a finite subset of T with t∗ = t0 < t1 <
. . . < tn, then we have a probability measure λI on ZI with domain TI such that

∫
fdλI =

∫
. . .

∫∫
f(x∗, x1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

ν(tn−2,tn−1)
xn−2

(dxn−1) . . . ν
(t∗,t1)
x∗ (dx1)

for every λI -integrable function f . PPP Use 454Ha on the finite sequence (Ωt0 , . . . ,Ωtn). The measures νz
required by 454H must be constructed by the rule

νz = ν
(tm,tm+1)
z(tm)

for m < n, z ∈ ∏
i≤m Ωti , while of course ν∅{x∗} = 1. Having a finite sequence rather than an infinite one

clearly makes things easier.) QQQ
When I = {t∗}, so that ZI can be identified with Ωt∗ , I mean to interpret these formulae in such a way

that λI{x∗} = 1. When J = {t∗, t}, with t∗ < t, and E ∈ Tt, then we can apply the formula above to the

function z 7→ χE(z(t)) to get λJ{z : z(t) ∈ E} = ν
(t∗,t)
x∗ (E).

c© 2007 D. H. Fremlin
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(b) Of course the point of this is that these measures λI form a consistent family; if t∗ ∈ I ⊆ J ∈ [T ]<ω,
then the canonical projection πIJ : ZJ → ZI is inverse-measure-preserving. PPP It is enough to consider the
case in which J has just one more point than I, since then we can induce on #(J \ I). In this case, express
J as {t0, . . . , tn} where t∗ = t0 < . . . < tn, and suppose that I = J \ {tm}. If W ∈ TI , then

λJπ
−1
IJ [W ] =

∫
. . .

∫∫
. . .

∫
χW (x∗, x1, . . . , xm−1, xm+1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

. . . ν(tm,tm+1)
xm

(dxm+1)ν(tm−1,tm)
xm−1

(dxm) . . . ν
(t∗,t1)
x∗ (dx1)

=

∫
. . .

∫∫
g(x1,... ,xm−1)(xm+1)ν(tm,tm+1)

xm
(dxm+1) (∗)

ν(tm−1,tm)
xm−1

(dxm) . . . ν
(t∗,t1)
x∗ (dx1)

where

g(x1,... ,xm−1)(xm+1) =

∫
. . .

∫
χW (x∗, x1 . . . , xm−1, xm+1, . . . , xn)

ν(tn−1,tn)
xn−1

(dxn) . . . ν(tm+1,tm+2)
xm+1

(dxm+2).

Here, of course, we use the hypothesis (†); since 〈ν(tm,tm+1)
y 〉y∈Ωtm

is a disintegration of ν
(tm−1,tm+1)
xm−1 over

ν
(tm−1,tm)
xm−1 , and g(x1,... ,xm−1) is bounded and ν

(tm−1,tm+1)
xm−1 -integrable (by 454H),

∫
g(x1,... ,xm−1)(xm+1)ν(tm−1,tm+1)

xm−1
(dxm+1)

=

∫∫
g(x1,... ,xm−1)(xm+1)ν(tm,tm+1)

xm
(dxm+1)ν(tm−1,tm)

xm−1
(dxm)

(452F). Substituting this into (*) above,

λJπ
−1
IJ [W ] =

∫
. . .

∫∫
g(x1,... ,xm−1)(xm+1)

ν(tm,tm+1)
xm

(dxm+1)ν(tm−1,tm)
xm−1

(dxm) . . . ν
(t∗,t1)
x∗ (dx1)

=

∫
. . .

∫
g(x1,... ,xm−1)(xm+1)ν(tm−1,tm+1)

xm−1
(dxm+1) . . . ν

(t∗,t1)
x∗ (dx1)

=

∫
. . .

∫
. . .

∫
χW (x∗, x1, . . . , xm−1, xm+1, . . . , xn)

ν(tn−1,tn)
xn−1

(dxn) . . . ν(tm−1,tm+1)
xm−1

(dxm+1) . . . ν
(t∗,t1)
x∗ (dx1)

= λIW,

applying the formula in (a) again. QQQ
(Some of the formulae here are inappropriate if m = n > 1. In this case, of course,

λJπ
−1
IJ [W ] =

∫
. . .

∫
χW (x∗, x1, . . . , xn−1)ν(tn−1,tn)

xn−1
(dxn) . . . ν

(t∗,t1)
x∗ (dx1)

=

∫
. . .

∫
χW (x∗, x1, . . . , xn−1)ν(tn−2,tn−1)

xn−2
(dxn−1) . . . ν

(t∗,t1)
x∗ (dx1) = λIW.

If m = 1 < n, there is a collapse of a different kind; we must look at

λJπ
−1
IJ [W ] =

∫
. . .

∫∫
χW (x∗, x2, . . . , xn)ν(tn−1,tn)

xn−1
(dxn) . . . ν(t1,t2)x1

(dx2)ν
(t∗,t1)
x∗ (dx1)

=

∫
. . .

∫∫
χW (x∗, x2, . . . , xn)ν(tn−1,tn)

xn−1
(dxn) . . . ν

(t∗,t2)
x∗ (dx2) = λIW.
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If m = n = 1 then

λJπ
−1
IJ [W ] =

∫
χW (x∗)ν

(t∗,t1)
x∗ (dx1) = χW (x∗) = λIW .)

(c) Part (b) tells us that we have a consistent family of measures on the finite products ZJ , and therefore
have a functional λ on

⊗
t∈T Tt defined by setting λπ−1

J [W ] = λJW for every finite J ⊆ T containing t∗

and W ∈ ⊗
t∈J Tt. λ is finitely additive, and its images µt = λX−1

t are all countably additive and perfect

because µt = ν
(t∗,t)
x∗ for t > t∗, while µt∗ is concentrated at {x∗}.

By 454D, we have a perfect measure µ extending λ. We have to check that each λJ is the image measure
µπ−1

J ; but this is true because they agree on
⊗

t∈J Tt (using the Monotone Class Theorem in the form 136C,
as always). So the integral formula sought for λJ is just that obtained in part (a). By the last remark in
(a), we have the declared formulae for the marginal measures µt.

455B Lemma Suppose that T , t∗, 〈(Ωt,Tt)〉t∈T , Ω, x∗ and 〈ν(s,t)x 〉s<t,x∈Ωs
are as in 455A.

(a) Suppose that µ is constructed from x∗ and 〈ν(s,t)x 〉s<t,x∈Ωs
as in 455A. If F ∈ ⊗̂

t∈TTt is determined
by coordinates in [t∗, t0] and H∗ = {ω : ω(ti) ∈ Ei for 1 ≤ i ≤ n} where t0 < t1 . . . < tn and Ei ∈ Tti for
1 ≤ i ≤ n, then

µ(H∗ ∩ F ) =

∫

F

∫
. . .

∫
χH(y1, . . . , yn)ν(tn−1,tn)

yn−1
(dyn) . . . ν

(t0,t1)
ω(t0)

(dy1)µ(dω) (∗)

where H =
∏

1≤i≤nEi.
(b) Suppose that ω ∈ Ω and a ∈ T ∪ {∞}, where ∞ is taken to be greater than every element of T . For

s < t in T and x ∈ Ωs set

ν(s,t)ωax = ν(s,t)x if a < s,

= ν
(a,t)
ω(a) if s ≤ a < t,

= δ
(t)
ω(t) if t ≤ a,

here writing δ
(t)
x for the probability measure with domain Tt such that δ

(t)
x ({x}) = 1.

(i) ν
(s,t)
ωax is always a perfect probability measure with domain Tt, and 〈ν(t,u)ωay 〉y∈Ωt

is a disintegration of

ν
(s,u)
ωax over ν

(s,t)
ωax whenever s < t < u in T and x ∈ Ωs.

(ii) Taking µωa to be the measure on Ω defined from ω(t∗) and 〈ν(s,t)ωax 〉s<t,x∈Ωt
by the method of 455A,

then {ω′ : ω′ ∈ Ω, ω′↾D = ω↾D} is µωa-conegligible for every countable D ⊆ T ∩ [t∗, a].
(iii) If ω, ω′ ∈ Ω and ω↾[t∗, a] = ω′↾[t∗, a] then µωa = µω′a.

proof (a)(i) Suppose first that F is of the form {ω : ω(si) ∈ Fi for i ≤ m} where t∗ = s0 < . . . < sm = t0.
For x ∈ Ωt0 set

f(x) =
∫
. . .

∫
χH(y1, . . . , yn)ν

(tn−1,tn)
yn−1 (dyn) . . . ν

(t0,t1)
x (dy1).

Writing G =
∏
i≤m Fi, we have

µ(H∗ ∩ F ) =

∫
. . .

∫∫
. . .

∫
χG(x∗, x1, . . . , xm)χH(y1, . . . , yn)ν(tn−1,tn)

yn−1
(dyn)

. . . ν(sm,t1)xm
(dy1)ν(sm−1,sm)

xm−1
(dxm) . . . ν

(t∗,s1)
x∗ (dx1)

=

∫
. . .

∫
χG(x∗, x1, . . . , xm)f(xm)ν(sm−1,sm)

xm−1
(dxm) . . . ν

(t∗,s1)
x∗ (dx1)

=

∫
g dλJ

(where J = {t∗, s1, . . . , sm}, g(z) = χG(z(t∗), . . . , z(sm))f(z(sm)) for z ∈ ∏
s∈J Ωs, and λJ is defined as in

455A)
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=

∫
gπJdµ =

∫

F

f(ω(t0))µ(dω)

(because gπJ(ω) = f(ω(sm)) = f(ω(t0)) if ω ∈ F , 0 otherwise)

=

∫

F

∫
. . .

∫
χH(y1, . . . , yn)ν(tn−1,tn)

yn−1
(dyn) . . . ν

(t0,t1)
ω(t0)

(dy1)µ(dω).

(ii) Let I be the family of sets F of the type dealt with in (a). Since the intersection of two members
of I belongs to I, the Monotone Class Theorem tells us that (*) is true for all sets in the σ-algebra T

generated by I. But any member of
⊗̂

t∈TTt determined by coordinates in [t∗, t0] belongs to T. PPP Fix
v ∈ ∏

s∈T\[t∗,t0] Ωs. For ω ∈ Ω define f(ω) ∈ Ω by setting

f(ω)(s) = ω(s) if s ≤ t0,

= v(s) if s > t0.

Then T′ = {F : F ⊆ Ω, f−1[F ] ∈ T} is a σ-algebra of subsets of Ω containing {ω : ω(t) ∈ E} whenever

t ∈ T and E ∈ Tt, so includes
⊗̂

t∈TTt. If F ∈ ⊗̂
t∈TTt and F is determined by coordinates in [t∗, t0], then

F = f−1[F ] ∈ T. QQQ

So (*) is true of every F ∈ ⊗̂
t∈TTt, as claimed.

(b)(i) Of course every ν
(s,t)
ωax is a perfect probability measure with domain Tt. If s < t < u and E ∈ Tu,

then

∫

Ωt

ν(t,u)ωay (E)ν(s,t)ωax (dy) =

∫

Ωt

ν(t,u)y (E)ν(s,t)x (dy) = ν(s,u)x (E) = ν(s,u)ωax (E)

if a < s,

=

∫

Ωt

ν(t,u)y (E)ν
(a,t)
ω(a) (dy) = ν

(a,u)
ω(a) (E) = ν(s,u)ωax (E)

if s ≤ a < t,

=

∫

Ωt

ν
(t,u)
ω(t) (E)δ

(t)
ω(t)(dy) = ν

(t,u)
ω(t) (E) = ν(s,u)ωax (E)

if a = t,

=

∫

Ωt

ν
(a,u)
ω(a) (E)δ

(t)
ω(t)(dy) = ν

(a,u)
ω(a) (E) = ν(s,u)ωax (E)

if t < a < u,

=

∫

Ωt

δ
(u)
ω(u)(E)δ

(t)
ω(t)(dy) = δ

(u)
ω(u)(E) = ν(s,u)ωax (E)

if u ≤ a.

(ii) Consider first the case D = {t}, where t∗ < t ≤ a. Then

µωa{ω′ : ω′(t) = ω(t)} = ν
(t∗,t)
ω,a,ω(t∗){ω(t)} = δ

(t)
ω(t){ω(t)} = 1.

As for D = {t∗}, µωa starts at ω(t∗), so (as noted in the last clause of the statement of 455A) µωa{ω′ :
ω′(t∗) = ω(t∗)} = 1.

For general D, we have an intersection of countably many sets of these types, which will be µωa-
conegligible.

(iii) Looking at the definition, we see that ν
(s,t)
ω′ax = ν

(s,t)
ωax for all s, t and x, and of course ω′(t∗) = ω(t∗),

so µω′a = µωa.

455C Theorem Suppose that T , t∗, 〈(Ωt,Tt)〉t∈T , Ω, x∗, 〈ν(s,t)x 〉s<t,x∈Ωs
and µ are as in 455A. Adjoin

a point ∞ to T above any point of T , and let τ : Ω → T ∪ {∞} be a function taking countably many values

and such that {ω : τ(ω) ≤ s} belongs to
⊗̂

t∈TTt and is determined by coordinates in [t∗, s] for every s ∈ T .
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(a) For ω ∈ Ω define ν
(s,t)
ω,τ(ω),x, for s < t and x ∈ Ωs, as in 455Bb, and let µω,τ(ω) be the corresponding

measure on Ω. Then 〈µω,τ(ω)〉ω∈Ω is a disintegration of µ over itself.

(b) Let Στ be the set of those E ∈ ⊗̂
t∈TTt such that E ∩ {ω : τ(ω) ≤ t} is determined by coordinates in

[t∗, t] for every t ∈ T . Then Στ is a σ-subalgebra of
⊗̂

t∈TTt. If f is any µ-integrable real-valued function,

and we set gf (ω) =
∫
fdµω,τ(ω) when this is defined in R, then gf is a conditional expectation of f on Στ .

proof (a)(i) Set Ft = {ω : ω ∈ Ω, τ(ω) = t} for t ∈ T ∪{∞}; note that Ft ∈
⊗̂

t∈TTt for every t ∈ T ∪{∞},
and that Ft is determined by coordinates in [t∗, t] for t ∈ T .

(ii) Consider first the case in which τ takes only finitely many values. Suppose that J ⊆ T is a
finite set including {t∗} ∪ (T ∩ τ [Ω]). Enumerate J as 〈ti〉i≤n. Suppose that Ei ∈ Tti for i ≤ n and set
H∗ = {ω : ω(ti) ∈ Ei for every i ≤ n}. We need to calculate

∫
Ω
µω,τ(ω)(H

∗)µ(dω).

Set H =
∏
i≤nEi,

Hj =
∏
j<i≤nEj , H∗

j = {ω : ω ∈ Ω, ω(ti) ∈ Ei for j < i ≤ n},

G∗
j = {ω : ω(ti) ∈ Ei for i ≤ j}

for j ≤ n. If i < n, j ≤ n, ω ∈ Ftj and x ∈ Ωti , then

ν
(ti,ti+1)
ω,τ(ω),x = ν(ti,ti+1)

x if i > j,

= ν
(tj ,tj+1)

ω(tj)
if i = j,

= δ
(ti+1)
ω(tj+1)

if i < j.

So if j ≤ n and ω ∈ Ftj ,

µω,τ(ω)(H
∗) =

∫
. . .

∫
χH(ω(t∗), x1, . . . , xn)ν

(tn−1,tn)
ω,τ(ω),xn−1

(dxn) . . . ν
(t∗,t1)
ω,τ(ω),ω(t∗)(dx1)

=

∫∫
. . .

∫
χH(x0, . . . , xn)ν

(tn−1,tn)
ω,τ(ω),xn−1

(dxn) . . . ν
(t∗,t1)
ω,τ(ω),x0

(dx1)δ
(t∗)
ω(t∗)(dx0)

=

∫∫
. . .

∫∫∫
. . .

∫
χH(x0, . . . , xn)ν

(tn−1,tn)
ω,τ(ω),xn−1

(dxn)

. . . ν
(tj+1,tj+2)

ω,τ(ω),xj+1
(dxj+2)ν

(tj ,tj+1)

ω,τ(ω),xj
(dxj+1)ν

(tj−1,tj)

ω,τ(ω),xj−1
(dxj)

. . . δ
(t1)
ω(t1)

(dx1)δ
(t∗)
ω(t∗)(dx0)

=

∫
. . .

∫∫∫
. . .

∫
χH(x0, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

. . . ν(tj ,tj+1)
xj

(dxj+1)ν
(tj ,tj+1)

ω(tj)
(dxj+1)δ

(tj)

ω(tj)
(dxj) . . . δ

(t∗)
ω(t∗)(dx0)

=

∫
. . .

∫
χH(ω(t∗), . . . , ω(tj), xj+1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

. . . ν
(tj ,tj+1)

ω(tj)
(dxj+1)

=

∫
. . .

∫
χHj(xj+1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn) . . . ν

(tj ,tj+1)

ω(tj)
(dxj+1)

if ω ∈ G∗
j ,

= 0 otherwise.

As noted in 455B(b-ii), µω,τ(ω)(H
∗) = χH∗(ω) if τ(ω) = ∞.

Now
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∫

Ω

µω,τ(ω)(H
∗)µ(dω) =

n∑

j=0

∫

Ftj

µω,τ(ω)(H
∗)µ(dω) +

∫

F∞

µω,τ(ω)(H
∗)µ(dω)

=
n∑

j=0

∫

Ftj
∩G∗

j

∫
. . .

∫
χHj(xj+1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

. . . ν
(tj ,tj+1)

ω(tj)
(dxj+1)µ(dω) + µ(F∞ ∩H∗)

=
n∑

j=0

µ(Ftj ∩G∗
j ∩H∗

j ) + µ(H∗ ∩ F∞)

(by 455Ba)

=
n∑

j=0

µ(Ftj ∩H∗) + µ(F∞ ∩H∗) = µH∗.

Thus we have the formula we need when E is of the special form {ω : ω(t) ∈ Et for every t ∈ J}, J ⊆ T
being a finite set and Et being a member of Tt for every t ∈ J . By the Monotone Class Theorem (136B),

we shall have
∫
µω,τ(ω)(E)µ(dω) = µE for every E ∈ ⊗̂

t∈TTt, so that 〈µω,τ(ω)〉ω∈Ω is a disintegration of µ
over itself.

(iii) If τ takes infinitely many values, enumerate them as 〈tn〉n∈N, and for n ∈ N define τn : T → T∪{∞}
by setting

τn(ω) = ti if i ≤ n and τ(ω) = ti,

= ∞ if τ(ω) /∈ {ti : i ≤ n}.

Then τn takes only finitely many values, and {ω : τn(ω) ≤ t} ∈ ⊗̂
t∈TTt is determined by coordinates in

[0, t] for every t ∈ T . So we shall have ∫
µω,τn(ω)(E)µ(dω) = µE

for every E ∈ ⊗̂
t∈TTt. Now observe that µω,τn(ω) = µω,τ(ω) whenever τ(ω) = τn(ω). So, for each ω,

µω,τn(ω) = µω,τ(ω) for all but finitely many n. This means that, for every E ∈ ⊗̂
t∈TTt,

µω,τ(ω)(E) = limn→∞ µω,τn(ω)(E)

for every ω ∈ Ω, and ∫
µω,τ(ω)(E)µ(dω) = limn→∞

∫
µω,τn(ω)(E)µ(dω) = µE,

as required.

(b)(i) Since {ω : τ(ω) ≤ t} is determined by coordinates in [t∗, t] for every t ∈ T , Ω ∈ Στ , and it is now
elementary to confirm that Στ is a σ-algebra.

(ii) I had better note that gf is defined almost everywhere; this is because, by (a) above and 452F,∫
gfdµ =

∫∫
fdµω,τ(ω)µ(dω) =

∫
fdµ.

(iii) If ω, ω′ ∈ Ω and ω′↾[t∗, τ(ω)] = ω↾[t∗, τ(ω)], then gf (ω) = gf (ω′) if either is defined. PPP Since Fτ(ω)
is determined by coordinates in [t∗, τ(ω)], τ(ω′) = τ(ω). By 455B(b-ii), µω′,τ(ω′) = µω,τ(ω), so gf (ω) = gf (ω′)
if either is defined. QQQ

(iv) If F ∈ Στ and ω ∈ Ω, then µω,τ(ω)F = 1 if ω ∈ F , 0 otherwise. PPP Setting b = τ(ω), F ∩ Fb and
Fb \F are determined by coordinates in a countable subset of T ∩ [t∗, b], so by 455B(b-ii) we have µωbF = 1
if ω ∈ Fb ∩ F and µωb(Fb \ F ) = 1 if ω ∈ Fb \ F . QQQ

It follows that if f is µ-integrable and F ∈ Στ , then gf×χF = gf × χF . PPP If ω ∈ F , then µω,τ(ω)F = 1
and
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gf×χF (ω) =
∫
F
fdµω,τ(ω) =

∫
fdµω,τ(ω);

if ω /∈ F then µω,τ(ω)F = 0 and

gf×χF (ω) =
∫
F
fdµω,τ(ω) = 0. QQQ

(v) Now let f be any µ-integrable real-valued function. Then there is a Στ -measurable function
g′f : Ω → ]−∞,∞] such that g′f =a.e. gf , g′f (ω) ≤ gf (ω) for every ω ∈ dom gf , and g′f (ω) = −∞ for every

ω ∈ Ω \ dom gf . PPP For q ∈ Q, set Wq = {ω : ω ∈ dom gf , gf (ω) ≥ q}. For q ∈ Q and b ∈ τ [Ω], consider
Wbq = Wq ∩ Fb. Wbq is measured by the completion µ̂ of µ, and is determined by coordinates in T ∩ [t∗, b],

by (iii). By 451K(b-ii) there is a W ′
bq ∈ ⊗̂

t∈TTt such that W ′
bq ⊆ Wbq, Wbq \W ′

bq is negligible and W ′
bq is

determined by coordinates in T ∩ [t∗, b].

Having defined the family 〈W ′
bq〉b∈τ [Ω],q∈Q, set W ′

q =
⋃
b∈τ [Ω]W

′
bq for q ∈ Q. Then W ′

q ∈ ⊗̂
t∈TTt and

W ′
q ∩ Fb = W ′

bq is determined by coordinates in T ∩ [t∗, b] for every b ∈ τ [Ω], so W ′
q ∈ Στ . Also W ′

q ⊆ Wq

and Wq \W ′
q is negligible.

Set

g′f (ω) = sup{q : q ∈ Q, ω ∈W ′
q}

for ω ∈ Ω, counting sup ∅ as −∞. Then g′f is Στ -measurable, g′f (ω) = −∞ for ω /∈ dom gf , g′f (ω) ≤ gf (ω)

for ω ∈ dom gf , and g′f = gf on dom gf \
⋃
q∈QWq \W ′

q, so g′f =a.e. gf . QQQ

(vi) Continuing from (v), we find that g′f is a conditional expectation of f on Στ .14 PPP I have already

shown that g′f is Στ -measurable. If F ∈ Στ then

∫

F

g′fdµ =

∫
g′f × χF dµ =

∫
gf × χF dµ

(because gf =a.e. g
′
f )

=

∫
gf×χF dµ

(by (iv))

=

∫∫
f × χF dµω,τ(ω)µ(dω) =

∫
f × χF dµ

(452F once again)

=

∫

F

fdµ. QQQ

(vii) Similarly, or applying the arguments of (v)-(vi) to −f , we see that for any µ-integrable function f
there is a conditional expectation g′′f of f on Στ such that g′′f (ω) ≥ gf (ω) when ω ∈ dom gf and g′′f (ω) = ∞
when gf (ω) is undefined. Now g′f =a.e. g

′′
f and both are Στ -measurable. It follows that gf is defined, and

equal to both g′f and g′′f , (µ↾Στ )-a.e.; so that gf itself is also a conditional expectation of f on Στ .

455D Remarks (a) The idea of the construction in 455A is that 〈Xt〉t∈T is a family of random variables,
and that we start from the assurance that ‘history is irrelevant’; if, at time b, we wish to make guesses about
the behaviour of Xt, the state of the system at a future time t, then we expect that it will be useful to
look at the current state Xb, but once we know the value of Xb then any further information about Xs for

s < b will tell us nothing more about Xt. We are given the transitional probabilities ν
(s,t)
x , which can

be thought of as the conditional distributions of Xt given that Xs = x. The condition (†) of 455A is plainly
necessary if the system is going to make sense at all; the content of the theorem is that it is also sufficient,
at least when all the conditional expectations are perfect measures, to ensure that the system as a whole
can indeed be represented as a family of random variables, in Kolmogorov’s sense, on a suitable probability
space.

14The definition of ‘conditional expectation’ in 233D was directed towards real-valued functions, and g′f is permitted to

take the values ±∞. So what I really mean here is that the restriction of g′f to the set on which it is finite is a conditional

expectation of f .
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(b) The statement ‘〈µω,τ(ω)〉ω∈Ω is a disintegration of µ over itself’ in 455Ca is not obviously a target
worth working very hard for. But the point of this particular family is that not only does µω,τ(ω) follow ω up
to and including time τ(ω) (455B(b-ii)), but also µω,τ(ω) = µω′,τ(ω′) whenever ω′↾[t∗, τ(ω)] = ω↾[t∗, τ(ω)],
as noted in (b-iii) of the proof of 455B.

If we take τ in 455C to be constant, with value b ∈ T , then we get a precise description of what it means
for ‘history to be irrelevant’. In this case, we can take the measures µωb, and project them onto

∏
t≥b Ωt; let

λ
(ω)
[b,∞[ be the image measure. Then it is easy to check that λ

(ω)
[b,∞[ is the measure defined from the point ω(b)

and the family 〈ν(s,t)x 〉b≤s<t,x∈Ωs
by the method of 455A; so that λ

(ω)
[b,∞[ = λ

(ω′)
[b,∞[ whenever ω(b) = ω′(b).

(c) I have called 455C a ‘theorem’, and there are certainly enough ideas in it to warrant the title. But
the restriction to stopping times taking only countably many values means that we are a large step away
from a result which is really useful in continuous time. The calculations with sets {ω : τ(ω) = b} in the
proofs of 455C and 455E are a clear sign that we are not yet ready for continuous stopping times, in which
{ω : τ(ω) = b} will usually be negligible for every b, except perhaps b = ∞. Of course we can use 455C
with T = N; but it must be obvious that there are better and cleaner expressions of the result in this case.
In the work below, 455C is going to function as a lemma, the first stage in much stronger results (starting

with 455O) which depend on special properties of the measures ν
(s,t)
x .

(d) In the context of 455A, it seemed to involve fewer explanations to take a fixed σ-algebra Tt for each

t and to define µ on
⊗̂

t∈TTt. As you know, I ordinarily have a strong prejudice in favour of completing
measures. In the situations most important to us, this is perfectly straightforward, if a touch laborious; I
present a version in the next theorem.

455E Theorem Let T be a totally ordered set with least element t∗. Let 〈Ωt〉t∈T be a family of Hausdorff

spaces; suppose that we are given an x∗ ∈ Ωt∗ and, for each pair s < t in T , a family 〈ν(s,t)x 〉x∈Ωs
of Radon

probability measures on Ωt such that

〈ν(t,u)y 〉y∈Ωs
is a disintegration of ν

(s,u)
x over ν

(s,t)
x whenever s < t < u in T and x ∈ Ωs.

Write Ω =
∏
t∈T Ωt; for t ∈ T let B(Ωt) be the Borel σ-algebra of Ωt, and Xt : Ω → Ωt the canonical map;

for J ⊆ T write πJ for the canonical map from Ω onto
∏
t∈J Ωt. For t ∈ T and x ∈ Ωt let δ

(t)
x be the Dirac

measure on Ωt concentrated at x.

(a) There is a unique complete probability measure µ̂ on Ω, inner regular with respect to
⊗̂

t∈TB(Ωt),

such that, writing λ̂J for the image measure µ̂π−1
J ,

∫
fdλ̂J =

∫
f(ω(t∗), ω(t1), . . . , ω(tn))µ̂(dω)

=

∫
. . .

∫∫
f(x∗, x1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn)

ν(tn−2,tn−1)
xn−2

(dxn−1) . . . ν
(t∗,t1)
x∗ (dx1)

whenever t∗ < t1 < . . . < tn in T , J = {t∗, t1, . . . , tn} and f is λ̂J -integrable. In particular, the image

measure µ̂X−1
t is equal to ν

(t∗,t)
x∗ if t > t∗, and to δ

(t∗)
x∗ if t = t∗.

(b)(i) For ω ∈ Ω and a ∈ T ∪ {∞} define 〈ν(s,t)ωax 〉s<t,x∈Ωs
by setting

ν(s,t)ωax = ν(s,t)x if a < s,

= ν
(a,t)
ω(a) if s ≤ a < t,

= δ
(t)
ω(t) if t ≤ a.

The family 〈ν(s,t)ωax 〉s<t,x∈Ωs
, together with the point ω(t∗) ∈ Ωt∗ , satisfy the conditions of (a), so can be used

to define a complete measure µ̂ωa on Ω.
(ii) If ω ∈ Ω and D ⊆ T ∩ [t∗, a] is countable, then µ̂ωa{ω′ : ω′↾D = ω↾D} = 1.
(iii) If ω, ω′ ∈ Ω and ω′↾[t∗, a] = ω↾[t∗, a], then µ̂ω′a = µ̂ωa.
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(c) Let Σ be the domain of µ̂. Suppose that τ : Ω → T ∪{∞} is a function taking countably many values
and such that {ω : τ(ω) ≤ t} belongs to Σ and is determined by coordinates in [t∗, t] for every t ∈ T .

(i) 〈µ̂ω,τ(ω)〉ω∈Ω is a disintegration of µ̂ over itself.
(ii) Let Στ be the set

{E : E ∈ Σ, E ∩ {ω : τ(ω) ≤ t} is determined by coordinates in [t∗, t]

for every t ∈ T}.

Then Στ is a σ-subalgebra of Σ. If f is any µ̂-integrable real-valued function, and we set gf (ω) =
∫
fdµ̂ω,τ(ω)

when this is defined in R, then gf is a conditional expectation of f on Στ .

proof My aim is to apply 455A-455C to the Borel measures ν̀
(s,t)
x = ν

(s,t)
x ↾B(Ωt), and take µ̂ to be the

completion of the Baire measure µ produced by the method of 455A. The essential discipline is to check

carefully that almost every measure ζ is the completion of an appropriate measure ζ̀.

(a) At the start, every Radon probability measure is the completion of the corresponding Borel measure,

so that the ν
(s,t)
x are indeed the completions of the ν̀

(s,t)
x defined from them. Since completing a measure

does not affect the associated integration (212Fb), the condition

whenever s < t < u in T , x ∈ Ωs and E ⊆ Ωu is a Borel set, then ν̀
(s,u)
s (E) =

∫
ν̀
(t,u)
y (E)ν̀

(s,t)
x (dy)

follows at once from

whenever s < t < u in T and x ∈ Ωs, then 〈ν(t,u)y 〉y∈Ωs
is a disintegration of ν

(s,u)
x over ν

(s,t)
x .

Also the ν̀
(s,t)
x , being tight Borel measures, are all perfect (342L/451C). So we can indeed form a measure

µ on Ω with domain
⊗̂

t∈TB(Ωt) by the process in 455A, and complete it.
The next step has a little more content in it: I need to show that for any J ⊆ T , the image measure

µ̂π−1
J on

∏
t∈J Ωt is the completion of the image measure µπ−1

J . But here we just have to recall that µ is

perfect (454D), so that we can use 451Kb. For finite J ⊆ T we can therefore write λ̂J indifferently for the

completion of λJ = µπ−1
J and for µ̂π−1

J , and the formula for
∫
fdλ̂J can be read off from 455A, since it deals

only with integrals, which are unaffected by completions.

(b) This follows 455Bb. This time we must start by noting that every ν
(s,t)
ωax is a Radon probability

measure.

(i) The formulae of part (i) of the proof of 455Bb can still be applied to show that
∫
Ωt
ν
(t,u)
ωay (E)ν

(s,t)
ωax (dy) = ν

(s,u)
ωax (E)

whenever s < t < u, x ∈ Ωs and E ∈ B(Ωu). Since any set measured by ν
(s,u)
ωax can be approximated

internally and externally by Borel sets, we see that 〈ν(t,u)ωay 〉y∈Ωt
is a disintegration of ν

(s,u)
ωax over ν

(s,t)
ωax . (Cf.

452Xg.)

(ii) Similarly, the argument of part (ii) of the proof of 455Bb can still be used to show that whenever
ω ∈ Ω and D ⊆ T ∩ [t∗, a] is countable, then ω′↾D = ω↾D for µ̂ωa-almost every ω′ ∈ Ω.

(iii) Once again, we can use the argument from 455B; if ω′↾[t∗, a] = ω↾[t∗, a], then ν
(s,t)
ω′ax = ν

(s,t)
ωax for

all x, s and t, and µ̂ω′a = µ̂ωa.

(c)(i)(ααα) The key step here is to observe that there is a function τ̀ : Ω → T ∪ {∞} which satisfies the
properties required in 455C and is equal µ̂-almost everywhere to τ . PPP For each a ∈ T ∩ τ [Ω], Fa = τ−1[{a}]

belongs to Σ and is determined by coordinates in [t∗, a]. By 451K(b-ii) again, there is an F ′
a ∈ ⊗̂

t∈TB(Ωt)
such that F ′

a ⊆ Fa, F ′
a is determined by coordinates in [t∗, a] and µ̂(Fa \ F ′

a) = 0. Define τ̀ by setting

τ̀(ω) = a if a ∈ T ∩ τ [Ω] and ω ∈ F ′
a,

= ∞ if ω ∈ Ω \
⋃

a∈T∩τ [Ω]

F ′
a.

It is easy to check that this τ̀ will serve. QQQ
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(βββ) For ω ∈ Ω and a ∈ T , define 〈ν̀(s,t)ωax 〉s<t,x∈Ωt
and 〈µωa〉ω∈Ω from 〈ν̀(s,t)x 〉s<t,x∈Ωt

and τ̀ as in

455Bb. If τ(ω) = τ̀(ω) then ν̀
(s,t)
ω,τ̀(ω),x = ν

(s,t)
ω,τ(ω),x↾B(Ωt) for all s, t and x, so that µ̂ω,τ(ω) is the completion

of µω,τ̀(ω). This is true for almost all ω. Now we know from 455Ca that 〈µω,τ̀(ω)〉ω∈Ω is a disintegration of µ
over itself, and therefore also over µ̂. It follows that 〈µ̂ω,τ̀(ω)〉ω∈Ω is a disintegration of µ̂ over µ̂, by 452B(ii).
But µ̂ω,τ̀(ω) = µ̂ω,τ(ω) for µ̂-almost every ω, so 〈µ̂ω,τ(ω)〉ω∈Ω also is a disintegration of µ̂ over itself.

(ii)(ααα) Just as in part (b-i) of the proof of 455C, Στ is a σ-algebra because it contains Ω.

(βββ) Recall the Fa, F ′
a in (i-α) above. Set F∞ = τ−1[{∞}], and take F ′

∞ ∈ ⊗̂
t∈TB(Ωt) such that

F ′
∞ ⊆ F∞ and F∞ \ F ′

∞ is negligible. Then F ∗ =
⋃
a∈τ [Ω] F

′
a is conegligible in Ω. Write Σ̀τ̀ for the set

of those F ∈ ⊗̂
t∈TB(Ωt) such that F ∩ F ′

a is determined by coordinates in [t∗, a] for every a ∈ T ∩ τ̀ [Ω].

Then F ∗ ∈ Σ̀τ̀ ∩ Στ because F ∗ ∩ F ′
a = F ∗ ∩ Fa = F ′

a for every a ∈ τ [Ω]. In fact we have more. First,

τ↾F ∗ = τ̀↾F ∗. Next, if F ⊆ F ∗ and F ∈ Σ̀τ̀ , then F ∈ Στ . PPP For any a ∈ T ∩ τ [Ω], F ∩ Fa = F ∩ F ′
a

belongs to
⊗̂

t∈TB(Ωt) ⊆ Σ and is determined by coordinates in [t∗, a]. QQQ And thirdly, if F ∈ Στ , there

is a G ∈ Σ̀τ̀ such that G ⊆ F and F \ G is negligible. PPP As in (iv-α), we can find for each a ∈ τ [Ω] a set

Ga ∈ ⊗̂
t∈TB(Ωt), determined by coordinates in T ∩ [t∗, a], such that Ga ⊆ F ∩ Fa and (F ∩ Fa) \ Ga is

negligible. Set G =
⋃
a∈τ [Ω]Ga. QQQ

(γγγ) Now take a µ̂-integrable function f . Then it is µ-integrable. By 455Cb, g̀f is a conditional

expectation of f on Σ̀τ̀ , where

g̀f (ω) =
∫
fdµω,τ̀(ω) =

∫
fdµ̂ω,τ̀(ω)

whenever the integral is defined in R. We know that there is a Σ̀τ̀ -measurable function g′ : Ω → R equal to
g̀f except perhaps on a negligible set H belonging to Σ̀τ̀ . Replacing g′ by g′×χF ∗ and H by H ∪ (Ω\F ∗) if
necessary, we can suppose that g′ is zero outside F ∗ and that Ω\H ⊆ F ∗. In this case, g′ is Στ -measurable.
PPP For any α ∈ R,

{ω : g′(ω) ≥ α} = {ω : ω ∈ F ∗, g′(ω) ≥ α} ∪ (Ω \ F ∗) if α ≤ 0,

= {ω : ω ∈ F ∗, g′(ω) ≥ α} if α > 0,

and in either case belongs to Στ , by (β). QQQ At the same time, we note that H ∈ Στ .
If ω ∈ Ω \H, then ω ∈ F ∗, τ(ω) = τ̀(ω), µ̂ω,τ(ω) = µ̂ω,τ̀(ω) and

gf (ω) =
∫
fdµ̂ω,τ(ω) =

∫
fdµ̂ω,τ̀(ω) =

∫
fdµω,τ̀(ω) = g̀f (ω) = g′(ω).

So gf is defined and equal to g′ and g̀f except perhaps on the negligible set H belonging to Στ ; consequently
gf is defined (µ̂↾Στ )-a.e. and is (µ̂↾Στ )-virtually measurable.

If F ∈ Στ , there is a G ∈ Σ̀τ̀ such that G ⊆ F and F \G is negligible, by the last remark in (β). So

∫

F

fdµ̂ =

∫

G

fdµ =

∫

G

g̀fdµ

(because g̀f is a conditional expectation of f on Σ̀τ̀ )

=

∫

F

g̀fdµ̂ =

∫

F

gfdµ̂ =

∫

F

gfd(µ̂↾Στ ).

As F is arbitrary, gf is a conditional expectation of f on Στ , and the proof is complete.

455F Of course the leading example for the work above is the case in which T = [0,∞[ and Ωt = R

for every t ≥ 0. Moving towards this, a natural intermediate stage is when T = [0,∞[ and all the Ωt
are the same, so that we can regard an element of

∏
t∈T Ωt as the path of a moving point. In this case

we can begin to think about paths which are more or less continuous. The next theorem gives a widely
applicable condition for existence of many paths which are one-sidedly continuous. It depends on a fairly
strong continuity property for the transitional probabilities.
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Definitions (a) Let U be a Hausdorff space and 〈ν(s,t)x 〉0≤s<t,x∈U a family of Radon probability measures

on U . I will say that 〈ν(s,t)x 〉0≤s<t,x∈U is narrowly continuous if it is continuous, as a function from
{(s, t) : 0 ≤ s < t} × U to the set of Radon probability measures on U , when the latter is given its narrow
topology (437Jd).

Remark I speak of the ‘narrow’ topology here partly because, in the present treatise, this has become
the standard topology on spaces of Radon measures, and partly because the phrase ‘vaguely continuous’
seems inappropriate. But, as will appear, all the results below will rely on the fact that the vague topology
(437Jc) is coarser than the narrow topology. In the present context, in which we have Radon measures on

a completely regular Hausdorff space, the two topologies actually coincide (437L). So 〈ν(s,t)x 〉0≤s<t,x∈U is

narrowly continuous iff (s, t, x) 7→
∫
fdν

(s,t)
x is continuous for every bounded continuous f : Ω → R.

(b) Let (U, ρ) be a metric space, and 〈ν(s,t)x 〉0≤s<t,x∈U a family of Radon probability measures on U . I

will say that 〈ν(s,t)x 〉0≤s<t,x∈U is uniformly time-continuous on the right if for every ǫ > 0 there is a

δ > 0 such that ν
(s,t)
x B(x, ǫ) ≥ 1 − ǫ whenever x ∈ U and 0 ≤ s < t ≤ s+ δ.

455G Theorem Let (U, ρ) be a complete metric space and 〈ν(s,t)x 〉0≤s<t,x∈U a family of Radon probability

measures on U , uniformly time-continuous on the right, such that 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x

over ν
(s,t)
x whenever 0 ≤ s < t < u and x ∈ U . Take a point ω̃ in Ω = U [0,∞[, and a ∈ [0,∞]. Let µ̂ω̃a be

the completed probability measure on Ω defined from 〈ν(s,t)x 〉0≤s<t,x∈U , ω̃ and a as in 455Eb.
(a) For µ̂ω̃a-almost every ω ∈ Ω, limq∈Q,q↓t ω(q) and limq∈Q,q↑t ω(q) are defined in U for every t > a.
(b)(i) If a ≤ t <∞, then ω(t) = limq∈Q,q↓t ω(q) for µ̂ω̃a-almost every ω ∈ Ω.

(ii) If a < t <∞, then ω(t) = limq∈Q,q↑t ω(q) for µ̂ω̃a-almost every ω ∈ Ω.

(c)(i) Let C´
´ be the set of càllàl functions from [0,∞[ to U (438S). If ω̃ ∈ C´

´, C´
´ has full outer measure

for µ̂ω̃a.
(ii) Let Cdlg be the set of càdlàg functions from [0,∞[ to U . If ω̃ ∈ Cdlg, Cdlg has full outer measure

for µ̂ω̃a.

Remark In this result and the ones to follow, I have not spelt out separately what it means if a = 0; but
of course this is the case in which we are starting the process at time t∗ = 0 and value x∗ = ω̃(0), just as in
the original construction 455A.

proof (a) Of course we can assume in this part of the proof that a is finite.

(i) Suppose that η ∈ ]0, 1[ and ǫ, δ > 0 are such that ν
(s,t)
x B(x, ǫ) ≥ 1 − η whenever x ∈ U and

0 ≤ s < t ≤ s+ δ. Then

µ̂ω̃a{ω : ω ∈ Ω, diamω[D] ≤ 4ǫ} ≥ 1−2η

1−η

whenever D ⊆ [a,∞[ is a countable set of diameter at most δ.

PPP (ααα) For finite D, I seek to induce on #(D). If #(D) ≤ 1 then of course diamω[D] ≤ 4ǫ for every ω
and we can stop. So suppose that D = {t0, . . . , tn} where n ≥ 1 and a ≤ t0 < . . . < tn. To begin with, I go
through the formulae when t0 > 0.

For k ≤ n set

Ek = {ω : ρ(ω(tk), ω(t0)) > 2ǫ, ρ(ω(ti), ω(t0)) ≤ 2ǫ for i < k},

Fk = {ω : ω ∈ Ek, ρ(ω(tn), ω(tk)) ≤ ǫ},

Gk = {(x0, . . . , xk) : ρ(xk, x0) > 2ǫ, ρ(xi, x0) ≤ 2ǫ for i < k} ⊆ Uk+1.

If 1 ≤ k < n then

µ̂ω̃aFk = λ{0,t0,... ,tk,tn}{(x, x0, . . . , xk, xn) : ρ(xi, x0) ≤ 2ǫ for i < k,

ρ(x0, xk) > 2ǫ, ρ(xk, xn) ≤ ǫ}
(defining λJ as the image measure of µ̂ω̃a on UJ , as in 455E)
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=

∫
. . .

∫
χGk(x0, . . . , xk)χB(xk, ǫ)(xn)ν

(tk,tn)
ω̃axk

(dxn) . . . ν
(0,t0)
ω̃(0) (dx0)

(were ν
(s,t)
ω̃ax is defined as in 455Eb)

=

∫
. . .

∫
χGk(x0, . . . , xk)χB(xk, ǫ)(xn)ν(tk,tn)xk

(dxn) . . . ν
(0,t0)
ω̃(0) (dx0)

(because a ≤ t0 < . . . < tn)

=

∫
. . .

∫
χGk(x0, . . . , xk)ν(tk,tn)xk

(B(xk, ǫ))ν
(tk−1,tk)
xk−1

(dxk) . . . ν
(0,t0)
ω̃(0) (dx0)

≥
∫
. . .

∫
(1 − η)χGk(x0, . . . , xk)ν(tk−1,tk)

xk−1
(dxk) . . . ν

(0,t0)
ω̃(0) (dx0)

(because tk < tn ≤ tk + δ, so ν
(tk,tn)
x B(x, ǫ) ≥ 1 − η for every x)

= (1 − η)λ{0,t0,... ,tk}{(x, x0, . . . , xk, xn) : ρ(xi, x0) ≤ 2ǫ for i < k,

ρ(x0, xk) > 2ǫ}
= (1 − η)µ̂ω̃aEk.

If k = n, then of course Fk = Ek, so again µ̂ω̃aFk ≥ (1 − η)µ̂ω̃aEk. Accordingly

(1 − η)

n∑

k=1

µ̂ω̃aEk ≤
n∑

k=1

µ̂ω̃aFk ≤ µ̂ω̃a{ω : ρ(ω(tn), ω(t0)) > ǫ}

= λ{0,t0,tn}{(x, x0, xn) : ρ(x0, xn) > ǫ}

=

∫
ν(t0,tn)x0

(U \B(x0, ǫ))ν
(0,t0)
ω̃(0) (dx0) ≤ η

because tn − t0 ≤ δ so ν
(t0,tn)
x (U \B(x, ǫ)) ≤ η for every x.

But now we have

µ̂ω̃a{ω : ω ∈ Ω, diamω[D] ≤ 4ǫ} ≥ µ̂ω̃a{ω : ρ(ω(tk), ω(t0)) ≤ 2ǫ for 1 ≤ k ≤ n}

= µ̂ω̃a(Ω \
⋃

1≤k≤n
Ek) ≥ 1 − η

1−η
=

1−2η

1−η

as required.

(βββ) If t0 = a = 0 the formulae simplify slightly, but the ideas are the same. We have ω(0) = ω̃(0)
for µ̂ω̃0-almost every ω, so

µ̂ω̃0Fk = λ0,t1,... ,tk,tn{(ω̃(0), x1, . . . , xk, xn) : ρ(xi, ω̃(0)) ≤ 2ǫ for i < k,

ρ(ω̃(0), xk) > 2ǫ, ρ(xk, xn) ≤ ǫ}

=

∫
. . .

∫
χGk(ω̃(0), x1, . . . , xk)χB(xk, ǫ)(xn)ν

(tk,tn)
ω̃axk

(dxn) . . . ν
(0,t1)
ω̃(0) (dx1)

≥ (1 − η)

∫
. . .

∫
χGk(ω̃(0), x1, . . . , xk)ν

(tk−1,tk)
ω̃axk−1

(dxk) . . . ν
(0,t1)
ω̃(0) (dx1)

= (1 − η)µ̂ω̃0Ek

for 1 ≤ k < n,

(1 − η)
n∑

k=1

µ̂ω̃0Ek ≤ λ{0,tn}{(ω̃(0), xn) : ρ(ω̃(0), xn) > ǫ}

=

∫
ν
(t0,tn)
ω̃(0) (U \B(ω̃(0), ǫ)) ≤ η,

and the final calculation is unchanged.
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(γγγ) For countably infinite D, let 〈In〉n∈N be a non-decreasing sequence of finite sets with union
D; then 〈{ω : ω ∈ Ω, diamω[In] ≤ 4ǫ}〉n∈N is a non-increasing sequence with intersection {ω : ω ∈
Ω, diamω[D] ≤ 4ǫ}, so the measure of the limit is the limit of the measures, and is at most

1−2η

1−η
. QQQ

(ii) For m ∈ N, ǫ > 0 and A ⊆ [0,∞[ let G(A, ǫ,m) be

{ω : ω ∈ Ω, there are s0 < s′0 ≤ s1 < s′1 ≤ . . . ≤ sm ≤ s′m in A

such that ρ(ω(s′i), ω(si)) > 4ǫ for every i ≤ m}.

Let δ > 0 be such that ν
(s,t)
x B(x, ǫ) ≥ 4

5 whenever x ∈ U and s < t ≤ s + δ. Then µ̂ω̃aG(D, ǫ,m) ≤ 2−m

whenever m ∈ N and D ⊆ [a,∞[ is a countable set of diameter at most δ.

PPP (ααα) As in (i), first consider finite D. For these, we can induce on m. If m = 0 then G(D, ǫ, 0) = {ω :

diamω[D] > 4ǫ} so (i), with η = 1
5 , tells us that µ̂ω̃aG(D, ǫ, 0) ≤ 2η

1−η
=

1

2
. For the inductive step to m+ 1,

define τ : Ω → [0,∞] by setting

τ(ω) = min{t : t ∈ D, ω ∈ G(D ∩ [a, t], ǫ,m)} if ω ∈ G(D, ǫ,m),

= ∞ otherwise.

Then τ takes only finitely many values, all strictly greater than a, and {ω : τ(ω) = t} belongs to⊗̂
[0,∞[B(U) =

⊗̂
t∈[0,∞[B(U) and is determined by coordinates in [0, t] for every t ≥ 0. We can there-

fore apply 455E(b)-(c).

For each ω ∈ Ω, define 〈ν(s,t)ω,τ(ω),x〉s<t,x∈U from 〈ν(s,t)x 〉s<t,x∈U as in 455Eb; let 〈ν̃(s,t)ω,τ(ω),x〉s<t,x∈U be the

family defined in the same way from 〈ν(s,t)ω̃ax 〉s<t,x∈U . Let µ̂ω,τ(ω) be defined from ω(0) and 〈ν(s,t)ω,τ(ω),x〉s<t,x∈U ,

and µ̂′
ω,τ(ω) from ω(0) and 〈ν̃(s,t)ω,τ(ω),x〉s<t,x∈U , again as in 455Eb. Then 455E(c-i) tells us that 〈µ̂′

ω,τ(ω)〉ω∈Ω

is a disintegration of µ̂ω̃a over itself. But now observe that, for any ω ∈ Ω and x ∈ U ,

ν
(s,t)
ω,τ(ω),x = ν(s,t)x = ν

(s,t)
ω̃ax = ν̃

(s,t)
ω,τ(ω),x if τ(ω) < s < t,

(because a < τ(ω))

= ν
(τ(ω),t)
ω(τ(ω)) = ν

(τ(ω),t)
ω̃,a,ω(τ(ω)) = ν̃

(s,t)
ω,τ(ω),x if s ≤ τ(ω) < t,

= δ
(t)
ω(t) = ν̃

(s,t)
ω,τ(ω),x if s < t ≤ τ(ω),

so µ̂ω,τ(ω) = µ̂′
ω,τ(ω). Accordingly 〈µ̂ω,τ(ω)〉ω∈Ω is a disintegration of µ̂ω̃a over itself.

Now, for ω ∈ Ω, consider

Hω = {ω′ : ω′ ∈ G(D, ǫ,m+ 1), ω′↾D ∩ [0, τ(ω)] = ω↾D ∩ [0, τ(ω)]}.

If ω /∈ G(D, ǫ,m) then τ(ω) = ∞ and Hω = ∅, because G(D, ǫ,m + 1) ⊆ G(D, ǫ,m) are determined by
coordinates in D. If ω ∈ G(D, ǫ,m) and τ(ω) = b, then

Hω = {ω′ : ω′↾D ∩ [0, b] = ω↾D ∩ [0, b] and diam(ω′[D ∩ [b,∞[ ]) > 4ǫ},

so that µ̂ω,τ(ω)Hω ≤ 1
2 by (i), again with η = 1

5 .
So

µ̂ω̃aG(D, ǫ,m+ 1) =

∫
µ̂ω,τ(ω)G(D, ǫ,m+ 1)µ̂ω̃a(dω) =

∫
µ̂ω,τ(ω)Hωµ̂ω̃a(dω)

(using 455E(b-ii))

=

∫

G(D,ǫ,m)

µ̂ω,τ(ω)Hωµ̂ω̃a(dω) ≤ 1

2
µ̂ω̃aG(D, ǫ,m) ≤ 2−m−1

by the inductive hypothesis. Thus the induction proceeds.
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(βββ) Now, for countably infinite D, again express D as the union of a non-decreasing sequence 〈In〉n∈N

of finite sets, and observe that 〈G(In, ǫ,m)〉n∈N is a non-decreasing sequence with union G(D, ǫ,m); so

µ̂ω̃aG(D, ǫ,m) = limn→∞ µ̂ω̃aG(In, ǫ,m) ≤ 2−m

for every m ∈ N. QQQ

(iii) For n ∈ N, let δn > 0 be such that ν
(s,t)
x B(x, 2−n) ≥ 4

5 whenever x ∈ U and s < t ≤ s + δn.
Consider the set

E =
⋃
n,k∈N

⋂
m∈NG(Q ∩ [a+ kδn, a+ (k + 1)δn], 2−n+2,m).

Then µ̂ω̃aE = 0. Suppose that ω ∈ Ω \ E and t > a. ??? If limq∈Q,q↑t ω(q) is undefined, then (because U is
complete under ρ) there must be an n ∈ N and a strictly increasing sequence 〈qi〉i∈N in Q, with supremum
t, such that ρ(ω(qi+1), ω(qi)) ≥ 2−n+2 for every i ∈ N. Let k ∈ N be such that t ∈ ]a+ kδn, a+ (k + 1)δn];
let l ∈ N be such that ql ≥ a+kδn. Then, for every m ∈ N, (ql, ql+1, ql+1, ql+2, . . . , qm−1, qm) witnesses that
ω ∈ G(Q∩ [a+kδn, a+ (k+ 1)δn], 2−n+2,m); which is impossible. XXX So limq∈Q,q↑t ω(q) is defined; similarly,
limq∈Q,q↓t ω(q) is defined.

As E is µ̂ω̃a-negligible, this proves (a).

(b)(i) This is actually easier. Consider part (a-i) of the proof above. Given n ∈ N, we see that there is a
δn > 0 such that µ̂ω̃a{ω : diamω[D] ≤ 2−n} ≥ 1 − 2−n whenever D ⊆ [a,∞[ is a countable set of diameter
at most δn. Set

Dn = {t} ∪ (Q ∩ [t, t+ δn]), En = {ω : diamω[Dn] ≤ 2−n}
for each n ∈ N, and E =

⋃
n∈N

⋂
m≥nEm. Then µ̂ω̃aE = 1, and for ω ∈ E we have an n ∈ N such that

ρ(ω(t), ω(q)) ≤ 2−m whenever m ≥ n and q ∈ Q ∩ [t, t+ δm], so that ω(t) = limq∈Q,q↓t ω(q).

(ii) If t > a, the same argument applies on the other side of t, taking Dn = {t}∪(Q∩ [max(a, t−δn), t]),
to see that ω(t) = limq∈Q,q↑t ω(q) for µ̂ω̃a-almost every ω.

(c)(ααα) Suppose that E ⊆ Ω and µ̂ω̃aE > 0. Then there is an ω∗ ∈ E such that

ω∗(t) = ω̃(t) for every t ≤ a,

ω∗(t) = lims↓t ω∗(s) for every t ≥ a,

lims↑t ω∗(t) is defined for every t > a.

PPP Let E′ ∈ ⊗̂
[0,∞[B(U) be such that E′ ⊆ E and µ̂ω̃aE

′ > 0. Let D ⊆ [0,∞[ be a countable set such that

E′ is determined by coordinates in D; we can suppose that a ∈ D if a is finite. Let F be the set of those
ω ∈ Ω such that

limq∈Q,q↓t ω(q) and limq∈Q,q↑t ω(q) are defined in U for every t > a,

ω(t) = limq∈Q,q↓t ω(t) for every t ∈ D ∩ [a,∞[,

ω(t) = ω̃(t) for every t ∈ D ∩ [0, a].

Then (a) and (b), with 455E(b-ii), tell us that F is µ̂ω̃a-conegligible. So there is an ω ∈ E ∩ F . Define
ω∗ ∈ Ω by setting

ω∗(t) = ω̃(t) if t ≤ a,

= lim
q∈Q,q↓t

ω(t) if t ≥ a;

note that the definitions of ω∗(a) are consistent if a is finite, and that ω∗↾D = ω↾D, so that ω∗ ∈ E′ ⊆ E.
If t ≤ a, then of course ω∗(t) = ω̃(t). If t ≥ a and ǫ > 0, there is a δ > 0 such that ρ(ω(q), ω∗(t)) ≤ ǫ

whenever q ∈ Q∩ ]t, t+ δ]; in which case ρ(ω∗(s), ω∗(t)) ≤ ǫ whenever s ∈ [t, t+ δ[; as ǫ is arbitrary, ω∗(t) =
lims↓t ω∗(s). If t > a and ǫ > 0, there is a δ > 0 such that ρ(ω(q), ω(q′)) ≤ ǫ whenever q ∈ Q ∩ [t− δ, t[; in
which case ρ(ω∗(s), ω∗(s′)) ≤ ǫ whenever s ∈ [t− δ, t[; as ǫ is arbitrary and U is complete, lims↑t ω∗(s) is
defined in U . So we have an appropriate ω∗. QQQ
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(βββ) Suppose, in (α), that ω̃ ∈ C´
´. Then ω∗ ∈ C´

´. PPP

lims↑t ω∗(s) = lims↑t ω̃(s) is defined whenever 0 < t ≤ a,

lims↓t ω∗(s) = lims↓t ω̃(s) is defined whenever 0 ≤ t < a,

if a > 0, lims↓0 ω∗(s) = lims↓0 ω̃(s) = ω̃(0) = ω∗(0),

if 0 < t < a, then ω∗(t) = ω̃(t) is equal to at least one of lims↑t ω∗(s) = lims↑t ω̃(s), lims↓t ω∗(s) =
lims↓t ω̃(s).

Since we already know that

ω∗(t) = lims↓t ω∗(s) for every t ≥ a,

lims↑t ω∗(t) is defined for every t > a,

ω∗ is càllàl. QQQ

As E is arbitrary, it follows that if ω̃ ∈ C´
´ then C´

´ meets every non-negligible µ̂ω̃a-measurable set, so

that µ̂∗
ω̃aC

´
´ = 1, as required by (i).

(γγγ) Similarly, if ω̃ ∈ Cdlg, then any ω∗ with the properties described in (α) also belongs to Cdlg. PPP
This time, we have

if 0 ≤ t < a, then ω∗(t) = ω̃(t) = lims↓t ω∗(s) = lims↓t ω̃(s),

which with the other properties listed is enough to ensure that ω∗ ∈ Cdlg. QQQ Since E is arbitrary, µ̂∗
ω̃aCdlg =

1.
This completes the proof of part (c).

455H Corollary Let (U, ρ) be a complete metric space and 〈ν(s,t)x 〉0≤s<t,x∈U a family of Radon probability

measures on U , uniformly time-continuous on the right, such that 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x

over ν
(s,t)
x whenever 0 ≤ s < t < u and x ∈ U . Let C´

´(U) be the set of càllàl functions from [0,∞[ to

U . Suppose that ω̃ ∈ C´
´(U), and a ∈ [0,∞]; let µ̂ω̃a be the completed probability measure on Ω = U [0,∞[

defined from ω̃, a and 〈ν(s,t)x 〉0≤s<t,x∈U as in 455Eb. Then µ̂ω̃a has a unique extension to a Radon measure

µ̃ω̃a on Ω, and µ̃ω̃aC
´
´(U) = 1.

proof (a) In the language of 455E(b-i), ν
(0,t)
ω̃ax is a Radon measure whenever t > 0 and x ∈ U , so the image

measure defined from µ̂ω̃a and the map ω 7→ ω(t) is always a Radon measure on U , and there there is a

σ-compact set Ht ⊆ U such that ω(t) ∈ Ht for µ̂ω̃a-almost every ω. Set U0 =
⋃
q∈Q∩[0,∞[Hq; then U0 is

separable and µ̂ω̃aE = 1, where E = {ω : ω(q) ∈ U0 for every q ∈ Q∩ [0,∞[}. By 455G(c-i), E ∩C´
´(U) has

full outer measure; and if ω ∈ E ∩ C´
´(U), then ω(t) ∈ U0 for every t ≥ 0.

(b) Thus E ∩C´
´(U) is included in C´

´(U0), the set of càllàl functions from [0,∞[ to the Polish space U0.

So µ̂∗
ω̃aC

´
´(U0) = 1. Let µ̂C be the subspace probability measure on C´

´(U0).

Since µ̂ω̃a is inner regular with respect to
⊗̂

[0,∞[B(U), µ̂C is inner regular with respect to the σ-algebra

Σ = {E ∩ C´
´(U0) : E ∈ ⊗̂

[0,∞[B(U)} (412Ob). But Σ is just the σ-algebra generated by the maps

ω 7→ ω(t) : C´
´(U0) → U0 for t ≥ 0, which is the Baire σ-algebra of C´

´(U0) (4A3Na, 4A3Nd). Accordingly
µ̂C↾Σ is a Baire measure and is inner regular with respect to the closed sets (412D); it follows that its
completion µ̂C is inner regular with respect to the closed sets (412Ha).

At this point, recall that C´
´(U0) is K-analytic (438Sc). So µ̂C has an extension to a Radon measure

µ̃C on C´
´(U0) (432D). Now µ̃C has an extension to a Radon probability measure µ̃ω̃a on Ω such that

µ̃ω̃aC
´
´(U) = µ̃ω̃aC

´
´(U0) = 1. And if µ̂ω̃a measures E, then

µ̃ω̃aE = µ̃C(E ∩ C´
´(U0)) = µ̂C(E ∩ C´

´(U0)) = µ̂∗
ω̃a(E ∩ C´

´(U0)) = µ̂ω̃aE,

so µ̃ω̃a extends µ̂ω̃a.
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(c) As for uniqueness, observe that dom µ̂ω̃a includes a base for the topology of Ω, so by 415H there can
be at most one Radon measure extending µ̂ω̃a.

455I In fact we can go farther; the Radon measure µ̃ is much more closely related to the completed
Baire measure it extends than one might expect.

Lemma Let (U, ρ) be a complete separable metric space and 〈ν(s,t)x 〉0≤s<t,x∈U a family of Radon probability

measures on U , uniformly time-continuous on the right, such that 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x

over ν
(s,t)
x whenever 0 ≤ s < t < u and x ∈ U . Suppose that ω̃ ∈ Ω, and a ∈ [0,∞]; let µ̂ω̃a be the completed

probability measure on Ω = U [0,∞[ defined from 〈ν(s,t)x 〉0≤s<t,x∈U , ω̃ and a as in 455Eb.
(a) Suppose that 0 ≤ q0 < q1 and ǫ > 0. For ω ∈ Ω, I will say that ]q0, q1[ is an ǫ-shift interval of ω

with (q0, q1, ǫ)-shift point t if ρ(ω(q0), ω(q1)) > 2ǫ and

t = sup{q : q ∈ Q ∩ ]q0, q1[ , ρ(ω(q), ω(q0)) ≤ ǫ}
= inf{q : q ∈ Q ∩ ]q0, q1[ , ρ(ω(q), ω(q1)) ≤ ǫ}.

Let E be the set of such ω.
(i) E ∈ Ba(Ω) =

⊗̂
[0,∞[B(U).

(ii) The function f : E → ]q0, q1[ which takes each ω ∈ E to its (q0, q1, ǫ)-shift point is Ba(Ω)-
measurable.

(iii) If q0 ≥ a, the set {ω : ω ∈ E, f(ω) = t} is µ̂ω̃a-negligible for every t ∈ ]q0, q1[.
(iv) If q0, q1 ∈ Q, ω ∈ E, ω′ ∈ Ω and ω′↾Q = ω↾Q, then ω′ ∈ E and f(ω′) = f(ω).

(b) Suppose that 〈qi〉i≤n, 〈q′i〉i≤n, 〈≤i〉i≤n, ǫ > 0, E ∈ Ba(Ω) and 〈fi〉i≤n are such that, for every i ≤ n,

qi, q
′
i ∈ Q, qi < q′i, ≤i is either ≤ or ≥,

]qi, q
′
i[ is an ǫ-shift interval of ω with (qi, q

′
i, ǫ)-shift point fi(ω), for every ω ∈ E,

and also

a ≤ q0, q′i ≤ qi+1 for every i < n,

whenever ω, ω′ ∈ E there is an i ≤ n such that fi(ω
′) ≤i fi(ω).

Then E is µ̂ω̃a-negligible.
(c) Suppose that 〈qi〉i≤n, 〈q′i〉i≤n, 〈≤i〉i≤n, ǫ > 0, E ∈ Ba(Ω) and 〈fi〉i≤n are such that, for every i ≤ n,

qi, q
′
i ∈ Q, qi < q′i, ≤i is either ≤ or ≥,

]qi, q
′
i[ is an ǫ-shift interval of ω with (qi, q

′
i, ǫ)-shift point fi(ω), for every ω ∈ E,

and also

a ≤ q0, q′i ≤ qi+1 for every i < n.

Then for µ̂ω̃a-almost every ω ∈ E there is an ω′ ∈ E such that fi(ω
′) <i fi(ω) for every i ≤ n.

proof (a)(i) Note that by 4A3Na we can identify
⊗̂

[0,∞[B(U) with the Baire σ-algebra Ba(Ω) of Ω. If

s, t ≥ 0, then ω 7→ (ω(s), ω(t)) : Ω → U2 is Ba(Ω)-measurable, by 418Bb; so ω 7→ ρ(ω(s), ω(t)) is
Ba(Ω)-measurable. For ω ∈ Ω, ω ∈ E iff (α) ρ(ω(q0), ω(q1)) > 2ǫ (β) whenever q, q′ ∈ Q ∩ ]q0, q1[,
ρ(ω(q), ω(q0)) ≤ ǫ and ρ(ω(q′), ω(q1)) ≤ ǫ then q ≤ q′ (γ) for every n ∈ N there are q, q′ ∈ Q ∩ ]q0, q1[ such
that ρ(ω(q), ω(q0)) ≤ ǫ, ρ(ω(q′), ω(q′0)) ≤ ǫ and q′ ≤ q + 2−n. So E ∈ Ba(Ω).

(ii) Now, for any t,

{ω : ω ∈ E, f(ω) > t} =
⋃
q∈Q∩]t,q1[

{ω : ω ∈ E, ρ(ω(q), ω(q0)) ≤ ǫ}
belongs to Ba(Ω), so f is Ba(Ω)-measurable.

(iii) Consider the set E′ of those ω ∈ Ω such that

limq∈Q,q↑t ω(q) = ω(t) = limq∈Q,q↓t ω(q).

D.H.Fremlin



76 Perfect measures, disintegrations and processes 455I

If ω ∈ E ∩E′, at least one of ρ(ω(t), ω(q0)), ρ(ω(t), ω(q1)) must be greater than ǫ; in the first case, t cannot
be sup{q : q ∈ Q ∩ ]q0, q1[, ρ(ω(q), ω(q0)) ≤ ǫ}; in the second case, t cannot be inf{q : q ∈ Q ∩ ]q0, q1[,
ρ(ω(q), ω(q1)) ≤ ǫ}; so in either case f(ω) cannot be equal to t. Now µ̂ω̃aE

′ = 1, by 455Gb, so {ω : ω ∈ E,
f(ω) = t} ⊆ Ω \ E′ is µ̂ω̃a-negligible.

(iv) Immediate from the definitions.

(b) Induce on n. Of course we need consider only the case E 6= ∅.

(i) If n = 0, f0 must be constant on E, so E must be negligible, by (a-iii).

(ii) For the inductive step to n ≥ 1, set Et = {ω : ω ∈ E, f0(ω) = t} for t ∈ ]q0, q
′
0[; by (a-ii),

Et ∈ Ba(Ω).

(ααα) There is a countable set J ⊆ ]q0, q
′
0[ such that whenever t ∈ [q0, q

′
0] \ J and ω, ω′ ∈ Et then

there is an i such that 1 ≤ i ≤ n and fi(ω) ≤i fi(ω′). PPP Let W be a countable base for the topology of∏
1≤i≤n ]qi, q

′
i[. For ω ∈ E set g(ω) = 〈fi(ω)〉1≤i≤n; note that g : E → ∏

1≤i≤n ]qi, q
′
i[ is Ba(Ω)-measurable.

For W ∈ W, set

AW = {t : t ∈ ]q0, q
′
0[ and there is an ω ∈ Et such that g(ω) ∈W}.

Set

J = {t : t ∈ ]q0, q
′
0[, t is either inf AW or supAW for some W ∈ W}.

Then J is a countable subset of ]q0, q
′
0[. ??? Suppose that t ∈ ]q0, q

′
0[ \ J and ω, ω′ ∈ Et are such that

fi(ω
′) <i fi(ω) for 1 ≤ i ≤ n. Let W ∈ W be such that g(ω′) ∈ W and z(i) <i fi(ω) whenever 1 ≤ i ≤ n

and z ∈ W . Then ω′ witnesses that t ∈ AW ; since t is neither the greatest nor the least element of AW ,
there is a t′ ∈ AW such that t′ <0 t; take ω′′ ∈ Et′ such that g(ω′′) ∈W . Then

f0(ω′′) = t′ <0 t = f0(ω),

fi(ω
′′) = g(ω′′)(i) <i fi(ω) for 1 ≤ i ≤ n,

which is impossible. XXX Thus J has the required property. QQQ

(βββ) Now consider the family 〈µ̂ωq1〉ω∈Ω. Because q1 > a, this is a disintegration of µ̂ω̃a over itself. PPP

As in part (a-ii-α) of the proof of 455G, we can think of each µ̂ωq1 as defined either from 〈ν(s,t)x 〉0≤s<t,x∈U
or from 〈ν(s,t)ω̃ax 〉a≤s<t,x∈U ; and in the latter form we can apply 455E(c-i). QQQ

Consider µωq1(E) for ω ∈ Ω. This time, note that {ω′ : ω′↾[0, q1]∩Q = ω↾[0, q1]∩Q} is µωq1 -conegligible.
In particular, µωq1(E) = 0 unless ]q0, q

′
0[ is an ǫ-shift interval of ω. Next,

{ω : ]q0, q
′
0[ is an ǫ-shift interval of ω with (q0, q

′
0, ǫ)-shift point in J}

is µ̂ω̃a-negligible, by (a-iii) again. Finally, suppose that ω ∈ Ω is such that ]q0, q
′
0[ is an ǫ-shift interval of ω

with (q0, q
′
0, ǫ)-shift point t ∈ ]q0, q

′
0[ \ J . Then

µωq1E = µωq1{ω′ : ω′ ∈ E, ω′↾Q ∩ [0, q1] = ω↾Q ∩ [0, q1]}
= µωq1{ω′ : ω′ ∈ Et}.

But the choice of J in (α) ensured that Et would be a set of the same type as E, one level down, determined
by intervals starting from q1, so that µ̂ωq1Et = 0, by the inductive hypothesis applied to ω and q1 in place
of ω̃ and a.

(γγγ) So we see that µ̂ωq1E = 0 for µ̂ω̃a-almost every ω, and µ̂ω̃aE = 0. Thus the induction proceeds.

(c) Let F be the set of those ω ∈ E for which there is no ω′ ∈ E such that fi(ω
′) <i fi(ω) for every

i ≤ n. Then F ∈ Ba(Ω). PPP For each ω ∈ E set f(ω) = 〈fi(ω)〉i≤n and

Wω = {z : z ∈ ∏
i≤n ]qi, q

′
i[, fi(ω) <i z(i) for every i ≤ n},

so that Wω is open in
∏
i≤n ]qi, q

′
i[. Set W =

⋃
ω∈EWω. Then W is open and F = {ω : ω ∈ E, f(ω) /∈ W}

belongs to Ba(Ω). QQQ
If ω, ω′ ∈ F then there is surely some i ≤ n such that fi(ω

′) ≤i fi(ω). By (b), µ̂ω̃aF = 0.
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455J Theorem Let (U, ρ) be a complete separable metric space and 〈ν(s,t)x 〉0≤s<t,x∈U a family of Radon

probability measures on U , uniformly time-continuous on the right, such that 〈ν(t,u)y 〉y∈U is a disintegration

of ν
(s,u)
x over ν

(s,t)
x whenever 0 ≤ s < t < u and x ∈ U . Write C´

´ for the set of càllàl functions from [0,∞[

to U . Suppose that ω̃ ∈ C´
´, and a ∈ [0,∞]; let µ̂ω̃a be the completed probability measure on Ω = U [0,∞[

defined from 〈ν(s,t)x 〉0≤s<t,x∈U , ω̃ and a as in 455Eb, and µ̃ω̃a its extension to a Radon measure on Ω, as in

455H. Then µ̃ω̃a is inner regular with respect to sets of the form F ∩ C´
´ where F ⊆ Ω is a zero set.

proof (a) As in 455I,
⊗̂

[0,∞[B(U) is the Baire σ-algebra of Ω. Let D be (({a} ∪Q) ∩ [0,∞[) ∪ {t : t ≥ 0, ω̃

is not continuous at t}; then D is countable (438S(a-i)). Let E∗ be {ω : ω ∈ Ω, ω↾D ∩ [0, a] = ω̃↾D ∩ [0, a]};
then E∗ is µ̂ω̃a-conegligible, by 455E(b-ii) once again.

(b) Let G be a countable base for the topology of U . Let W be the family of open subsets of Ω of the
form {ω : ω(q) ∈ Gq for every q ∈ J} where J ⊆ D is finite and Gq ∈ G for every q ∈ J . Let Θ be the set of
all strings

θ = (q0, q
′
0, . . . , qn, q

′
n,≤0, . . . ,≤n, k,W )

such that

q0, . . . , q
′
n ∈ Q, a ≤ q0 < q′0 ≤ q1 < q′1 ≤ . . . ≤ qn < q′n,

for each i ≤ n, ≤i is either ≤ or ≥,

k ∈ N, W ∈ W;

then Θ is countable.

(c) Let K ⊆ E∗ ∩ C´
´ be compact. Set L = π−1

D [πD[K]], where πD(ω) = ω↾D for ω ∈ Ω; then L is a
Baire subset of Ω, because πD[K] is a compact subset of the metrizable space UD.

(i) For

θ = (q0, q
′
0, . . . , qn, q

′
n,≤0, . . . ,≤n, k,W ) ∈ Θ

let Eθ be the set of those ω ∈ L∩W such that, for each i ≤ n, ]qi, q
′
i[ is a 2−k-shift interval of ω (definition:

455Ia). For ω ∈ Eθ and i ≤ n let fi(θ, ω) be the (qi, q
′
i, 2

−k)-shift point of ω. By 455Ia, Eθ is a Baire subset
of Ω and ω 7→ fi(θ, ω) is Baire measurable. Let Fθ be the set of those ω ∈ Eθ such that there is no ω′ ∈ Eθ
with fi(θ, ω

′) <i fi(θ, ω) for every i ≤ n; by 455Ic, Fθ is µ̂ω̃a-negligible. So F ∗ =
⋃
θ∈Θ Fθ is µ̂ω̃a-negligible.

(ii) Suppose that ω ∈ K \ F ∗. Let A be the set of points in ]a,∞[ at which ω is discontinuous. If
J ⊆ A is finite and ǫt ∈ {−1, 1} for each t ∈ J , there is an ω′ ∈ K such that ω′↾D = ω↾D and ω′ is
continuous on the right at every point t of J such that ǫt = 1, while ω′ is continuous on the left at every
point t of J such that ǫt = −1. PPP This is trivial if J is empty. Otherwise, enumerate J in ascending order

as t0 < t1 < . . . < tn. Set xi = limt↑ti ω(t), yi = limt↓ti ω(t); because ω ∈ C´
´ these are defined, and because

ω is not continuous at t they are different.

Let k ∈ N be such that ρ(xi, yi) > 2−k+1 for each i ≤ n. For i ≤ n, let let qi, q
′
i ∈ Q be such that

qi < ti < q′i, ρ(ω(t), xi) ≤ 2−k−1 for t ∈ [qi, ti[, and ρ(ω(t), yi) ≤ 2−k−1 for t ∈ ]ti, q
′
i]. Of course we can

suppose that a ≤ q0 and that q′i ≤ qi+1 for i < n. Observe that this will ensure that every ]qi, q
′
i[ is a

2−k-shift interval of ω with (qi, q
′
i, 2

−k)-shift point ti.

Let ≤i be ≤ if ǫti = 1, ≥ if ǫti = −1. For each W ∈ W containing ω, let θW ∈ Θ be (q0, . . . , q
′
n,≤0

, . . . ,≤n, k,W ). Then ω ∈ EθW , and fi(θW , ω) = ti for each i ≤ n. Because ω /∈ FθW , there is an ωW ∈ EθW
such that fi(θW , ωW ) <i fi(θW , ω) = ti for every i ≤ n. Let ω′

W ∈ K be such that ω′
W ↾D = ωW ↾D; then

ω′
W ∈ EθW and

fi(θW , ω
′
W ) = fi(θW , ωW ) <i ti

for every i ≤ n (455I(a-iv)).

If i ≤ n and ǫti = 1,

ρ(ω′
W (q), ω′

W (q′i)) ≤ 2−k
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for every rational q ∈ ]fi(θW , ω
′
W ), q′i]; because ω′

W ∈ C´
´ and ti ∈ ]fi(θW , ω

′
W ), q′i] ρ(ω′

W (ti), ω
′
W (q′i)) ≤ 2−k.

Similarly, if ǫti = −1, ρ(ω′
W (ti), ω

′
W (qi)) ≤ 2−k.

Let F be an ultrafilter on W containing all sets of the form {W : ω ∈W ⊆W0} where ω ∈W0 ∈ W, and
set ω′ = limW→F ω′

W ∈ K. Then ω′↾D = ω↾D, because ωW and ω′
W belong to W whenever ω ∈ W ∈ W.

If i ≤ n and ǫti = 1, then

ρ(ω′(ti), ω′(q′i)) = limW→F ρ(ω′
W (ti), ω

′
W (q′i)) ≤ 2−k,

ρ(ω′(qi), ω′(q′i)) = ρ(ω(qi), ω(q′i)) > 2−k+1,

so ρ(ω′(qi), ω′(ti)) > 2−k. On the other hand,

ρ(ω′(qi), ω′(q)) = ρ(ω(qi), ω(q)) ≤ 2−k

for every rational q ∈ [qi, ti[. So ω′ cannot be continuous on the left at ti; because ω′ ∈ C´
´, it must be

continuous on the right at ti. Similarly, if i ≤ n and ǫti = −1, ω′ cannot be continuous on the right at ti
and must be continuous on the left at ti. But this is what we need to know. QQQ

(iii) Suppose that ω ∈ K \ F ∗, ω′ ∈ C´
´ and ω↾D = ω′↾D. Then ω′ ∈ K. PPP Let A be the set of

points in ]a,∞[ where ω is not continuous, and for t ∈ A let ǫt be 1 if ω′ is continuous on the right at t, −1
if ω′ is continuous on the left at t. For each finite J ⊆ A, (ii) tells us that there is an ωJ ∈ K such that
ωJ↾D = ω↾D = ω′↾D and, for t ∈ J , ωJ is continuous on the right at t if ǫt = 1, and continuous on the left
at t if ǫt = −1. As both ωJ and ω′ are càllàl, this means that ωJ(t) = ω′(t) for t ∈ J . Taking a cluster point
ω∗ ∈ K of ωJ as J increases through the finite subsets of A, we see that ω∗↾(A ∪D) = ω′↾(A ∪D).

Now recall that ω ∈ E∗, so that

ω′↾D ∩ [0, a] = ω↾D ∩ [0, a] = ω̃↾D ∩ [0, a].

Since both ω′ and ω̃ are càllàl, ω̃ is discontinuous at any point of [0, a[ at which ω′ is discontinuous. Since I
arranged that a (if finite) would be in D, D ∪A contains every point at which ω′ is discontinuous. But this
means that ω∗ = ω′ (438S(a-ii)). So ω′ ∈ K. QQQ

(iv) Suppose that µ̃ω̃aK > γ ≥ 0. Then there is a zero set F ⊆ Ω such that F ∩ C´
´ ⊆ K and

µ̃ω̃a(F ∩ C´
´) ≥ γ. PPP Because µ̃ω̃aF

∗ = µ̂ω̃aF
∗ = 0, there is a compact K ′ ⊆ K \ F ∗ such that µ̃ω̃aK

′ ≥ γ.

Set F = π−1
D [πD[K ′]]; F is a zero set in Ω because πD[K ′] is a zero set in UD. By (iii), F ∩ C´

´ ⊆ K; and

µ̃ω̃a(F ∩ C´
´) ≥ µ̃ω̃aK

′ ≥ γ. QQQ

(c) Since E∗ and C´
´ are µ̃ω̃a-conegligible, the Radon measure µ̃ω̃a is certainly inner regular with respect

to the compact subsets of E∗ ∩ C´
´; by (b-iv), µ̃ω̃a is inner regular with respect to the intersections of C´

´
with zero sets.

455K Corollary Suppose, in 455J, that ω̃ ∈ Cdlg, the space of càdlàg functions from [0,∞[ to U . Then
the subspace measure µ̈ω̃a on Cdlg induced by µ̂ω̃a is a completion regular quasi-Radon measure.

proof The point is that the outer measures µ̃∗
ω̃a and µ̂∗

ω̃a agree on subsets of Cdlg. PPP Since µ̃ω̃a extends
µ̂ω̃a, µ̃∗

ω̃aA ≤ µ̂∗
ω̃aA for every A ⊆ Ω. On the other hand, if A ⊆ Cdlg and µ̃∗

ω̃aA < γ, there is an E ⊇ A such

that µ̃ω̃aE < γ. By 455J, there is a zero set F ⊆ Ω such that E ∩ F ∩ C´
´ = ∅ and µ̃ω̃a(F ∩ C´

´) ≥ 1 − γ.
Now

µ̂∗
ω̃aA ≤ µ̂∗

ω̃a(Cdlg \ F ) = µ̂ω̃a(Ω \ F )

(because µ̂∗
ω̃aCdlg = 1, by 455G(c-ii))

= µ̃ω̃a(Ω \ F ) = µ̃ω̃a(C´
´ \ F ) ≤ γ.

As γ is arbitrary, µ̂∗
ω̃aA ≤ µ̃∗

ω̃aA. QQQ

Write ¨̃µω̃a for the subspace measure on Cdlg induced by µ̃ω̃a. By 214Cd, the outer measures ¨̃µ∗
ω̃a =

µ̃∗
ω̃a↾PCdlg and µ̈∗

ω̃a are the same. Because ¨̃µω̃a and µ̈ω̃a are both complete probability measures, they must
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be identical (213C). Because µ̃ω̃a is a Radon measure, ¨̃µω̃a = µ̈ω̃a is quasi-Radon (415B). Because µ̂ω̃a is
the completion of a Baire measure, therefore inner regular with respect to the zero sets in Ω (412D, 412Ha),
µ̈ω̃a is inner regular with respect to the zero sets in Cdlg, by 412Pd, and is completion regular.

455L Stopping times We need the continuous-time version of the concept of ‘stopping time’ introduced
in §275. Let Ω be a set, Σ a σ-algebra of subsets of Ω and 〈Σt〉t≥0 a non-decreasing family of σ-subalgebras
of Σ. (Such a family is called a filtration.) For t ≥ 0, set Σ+

t =
⋂
s>t Σs, so that 〈Σ+

t 〉t≥0 also is a

non-decreasing family of σ-algebras. Of course Σ+
t =

⋂
s>t Σ+

s for every t ≥ 0.

(a) A function τ : Ω → [0,∞] is a stopping time adapted to 〈Σt〉t≥0 if {ω : ω ∈ Ω, τ(ω) ≤ t} belongs
to Σt for every t ≥ 0.

Note that in this case τ will be Σ-measurable.

(b) A function τ : Ω → [0,∞] is a stopping time adapted to 〈Σ+
t 〉t≥0 iff {ω : τ(ω) < t} ∈ Σt for every

t ≥ 0. PPP (i) If τ is adapted to 〈Σ+
t 〉t≥0 and t ≥ 0, then {ω : τ(ω) ≤ q} ∈ Σ+

q ⊆ Σt whenever 0 ≤ q < t, so

{ω : τ(ω) < t} =
⋃
q∈Q∩[0,t[{ω : τ(ω) ≤ q} ∈ Σt.

Thus τ satisfies the condition. (ii) If τ satisfies the condition and t ≥ 0, set tn = t+ 2−n for each n. Then

{ω : τ(ω) < tn} ∈ Σtn ⊆ Σtm

whenever m ≤ n, so

{ω : τ(ω) ≤ t} =
⋂
n≥m{ω : τ(ω) < tn} ∈ Σtm

for every m, and

{ω : τ(ω) ≤ t} ∈ ⋂
m∈N Σtm = Σ+

t .

As t is arbitrary, τ is adapted to 〈Σ+
t 〉t≥0. QQQ

(c)(i) Constant functions on Ω are of course stopping times.

(ii) If τ and τ ′ are stopping times adapted to 〈Σt〉t≥0, so is τ + τ ′. PPP

{ω : τ(ω) + τ ′(ω) ≤ t} =
⋂
q∈Q∩[0,t]{ω : τ(ω) ≤ q} ∪ {ω : τ ′(ω) ≤ t− q} ∈ Σt

for every t ≥ 0. QQQ

(iii) (Compare 455Cb and 455E(c-ii)). If τ is a stopping time adapted to 〈Σt〉t≥0, then

Στ = {E : E ∈ Σ, E ∩ {ω : τ(ω) ≤ t} ∈ Σt for every t ≥ 0}
is a σ-subalgebra of Σ. (The check is elementary.)

(iv) If 〈τi〉i∈I is a countable family of stopping times adapted to 〈Σt〉t≥0, then τ = supi∈I τi is adapted
to 〈Σt〉t≥0. PPP For any t ≥ 0,

{ω : τ(ω) ≤ t} =
⋂
i∈I{ω : τi(ω) ≤ t} ∈ Σt. QQQ

(v) If 〈τi〉i∈I is a countable family of stopping times adapted to 〈Σ+
t 〉t≥0, then τ = infi∈I τi is adapted

to 〈Σ+
t 〉t≥0, because

{ω : τ(ω) < t} =
⋃
i∈I{ω : τi(ω) < t} ∈ Σt

for every τ ≥ 0.

(d) Now suppose that Y is a topological space and we have a family 〈Xt〉t≥0 of functions from Ω to
Y , and that τ : Ω → [0,∞] is any Σ-measurable function. Set Xτ (ω) = Xτ(ω)(ω) when τ(ω) < ∞. If

(t, ω) 7→ Xt(ω) : [0,∞[ × Ω → Y is B([0,∞[)⊗̂Σ-measurable, where B([0,∞[) is the Borel σ-algebra of
[0,∞[, then Xτ : {ω : τ(ω) < ∞} → Y is Σ-measurable. PPP Setting Ω0 = {ω : τ(ω) < ∞}, the map
ω 7→ (τ(ω), ω) : Ω0 → [0,∞[ × Ω is (Σ,B([0,∞[)⊗̂Σ)-measurable (4A3Bc), so Xτ is the composition of
a (Σ,B([0,∞[)⊗̂Σ)-measurable function with a B([0,∞[)⊗̂Σ-measurable function and is Σ-measurable, by
4A3Bb. QQQ
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*(e) Again take a topological space Y , a family 〈Xt〉t≥0 of functions from Ω to Y , and a stopping time
τ : Ω → [0,∞] adapted to 〈Σt〉t≥0. This time, suppose that 〈Xt〉t≥0 is progressively measurable, that

is, that (s, ω) 7→ Xs(ω) : [0, t] × Ω → Y is B([0, t])⊗̂Σt-measurable for every t ≥ 0, and moreover that Σt is
closed under Souslin’s operation (421B) for every t. Then Xτ , as defined in (d), will be Στ -measurable. PPP
Suppose that H ⊆ Y is open, and set E = {ω : ω ∈ domXτ , Xτ (ω) ∈ H}. Of course 〈Xt〉t≥0 satisfies the
condition of (d), so E ∈ Σ. Take any t ≥ 0. Then

{(s, ω) : 0 ≤ s ≤ t, τ(ω) = s} =
⋂

n∈N

⋃

i∈N

{s : 2−n(i− 1) < s ≤ min(t, 2−ni)}

× {ω : 2−n(i− 1) < τ(ω) ≤ min(t, 2−ni)}
∈ B([0, t])⊗̂Σt,

{(s, ω) : s ≤ t, Xs(ω) ∈ H} ∈ B([0, t])⊗̂Σt,

so

W = {(s, ω) : s ≤ t, τ(ω) = s, Xs(ω) ∈ H}
also belongs to B([0, t])⊗̂Σt. Consequently the projection of W onto Ω belongs to S(Σt) = Σt (423O). But
this is just

{ω : τ(ω) ≤ t, Xτ(ω) ∈ H} = E ∩ {ω : τ(ω) ≤ t}.

As t is arbitrary, E ∈ Στ ; as H is arbitrary, Xτ is Στ -measurable. QQQ

*(f) There are some technical points concerning stopping times which are perhaps worth noting here.

(i) Suppose that µ is a probability measure with domain Σ and null ideal N (µ). Then we can form

the completion µ̂ with domain Σ̂. If we now set Σ̂t = {E△A : E ∈ Σt, A ∈ N (µ)}, 〈Σ̂t〉t≥0 and 〈Σ̂+
t 〉t≥0 are

filtrations, where Σ̂+
t =

⋂
s>t Σ̂s for t ≥ 0.

(ii) We find that Σ̂+
t = {E△A : E ∈ Σ+

t , A ∈ N (µ)} for every t ≥ 0. PPP Of course

{E△A : E ∈ Σ+
t , A ∈ N (µ)} ⊆ ⋂

s>t{E△A : E ∈ Σs, A ∈ N (µ)} = Σ̂+
t .

If F ∈ Σ̂+
t , then for every q ∈ Q such that q > t there is an Eq ∈ Σq such that F△Eq is negligible. Set

E =
⋃
q∈Q,q>t

⋂
q′∈Q,t<q′≤q Eq′ , A = F△E;

then E ∈ Σ+
t , A ∈ N (µ) and F = E△A. QQQ

(iii) Of course every stopping time adapted to 〈Σ+
t 〉t≥0 is adapted to 〈Σ̂+

t 〉t≥0. Conversely, if τ : Ω →
[0,∞] is a stopping time adapted to 〈Σ̂+

t 〉t≥0, there is a stopping time τ ′, adapted to 〈Σ+
t 〉t≥0, such that

τ =a.e. τ
′. PPP For each q ∈ Q ∩ [0,∞[, set Fq = {ω : τ(ω) < q}; by (b), Fq ∈ Σ̂q and there is an Eq ∈ Σq

such that Fq△Eq is negligible. For ω ∈ Ω, set τ ′(ω) = inf{q : q ∈ Q ∩ [0,∞[, ω ∈ Eq}, counting inf ∅
as ∞. Then {ω : τ ′(ω) < t} =

⋃
q∈Q∩[0,t[Eq belongs to Σt for every t, so τ ′ is adapted to 〈Σ+

t 〉t≥0. And

{ω : τ ′(ω) 6= τ(ω)} ⊆ ⋃
q∈Q∩[0,∞[Eq△Fq is negligible. QQQ

(iv) Continuing from (iii) just above, we find that, defining Σ̂+
τ from 〈Σ̂+

t 〉t≥0 and τ and Σ+
τ ′ from

〈Σ+
t 〉t≥0 and τ ′ by the formula in (c-iii), then Σ̂+

τ = {F△A : F ∈ Σ+
τ ′ , A ∈ N (µ)}. PPP Let A0 be the

negligible set {ω : τ(ω) 6= τ ′(ω). (α) If E ∈ Σ+
τ ′ , then for every t ≥ 0 we have

E ∩ {ω : τ ′(ω) ≤ t} ∈ Σ+
t ,

(E ∩ {ω : τ(ω) ≤ t})△(E ∩ {ω : τ ′(ω) ≤ t}) ⊆ A0 ∈ N (µ),

so (using (ii)) E ∩ {ω : τ(ω) ≤ t} ∈ Σ̂+
t ; as t is arbitrary, E ∈ Σ̂+

τ . (β) If F ∈ Σ̂+
τ , then for every

q ∈ Q ∩ [0,∞[ the sets F ∩ {ω : τ(ω) ≤ q} and F ∩ {ω : τ ′(ω) ≤ q} belong to Σ̂+
q , so there is an Eq ∈ Σ+

q

such that Eq△(F ∩ {ω : τ ′(ω) ≤ q}) is negligible. Set E′
q =

⋃
r∈Q∩[0,q]Er for q ∈ Q ∩ [0,∞[; then E′

q ∈ Σ+
q

and E′
q△(F ∩ {ω : τ ′(ω) ≤ q}) is negligible for each q, while E′

q ⊆ E′
r if q ≤ r in Q ∩ [0,∞[. It follows that
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⋂
q∈Q∩[t,∞[E

′
q =

⋂
q∈Q∩[t,s]E

′
q ∈ Σ+

s

whenever t < s in [0,∞[, so that
⋂
q∈Q∩[t,∞[E

′
q ∈ Σ+

t for every t. Set

E =
⋂
q∈Q∩[0,∞[E

′
q ∪ {ω : τ ′(ω) > q}.

Then

E ∩ {ω : τ ′(ω) ≤ t}
= {ω : τ ′(ω) ≤ t} ∩

⋂

q∈Q∩[0,∞[

(E′
q ∪ {ω : τ ′(ω) > q})

= {ω : τ ′(ω) ≤ t} ∩
⋂

q∈Q∩[0,t[

(E′
q ∪ {ω : τ ′(ω) > q}) ∩

⋂

q∈Q∩[t,∞[

E′
q

∈ Σ+
t

for any t ≥ 0, so E ∈ Σ+
τ ′ . If we look at (E△F ) ∩ {ω : τ ′(ω) < ∞}, we see that this is included in the

negligible set
⋃
q∈Q∩[0,∞[E

′
q△(F ∩ {ω : τ ′(ω) ≤ q})

because {ω : τ ′(ω) <∞} ∩ F is just

{ω : τ ′(ω) <∞} ∩⋂
q∈Q∩[0,∞[(F ∩ {ω : τ ′(ω) ≤ q}) ∪ {ω : τ ′(ω) > q}.

As for the set H = {ω : τ ′(ω) = ∞}, this belongs to Σ, and every subset of H belonging to Σ also belongs
to Σ+

τ ′ . Let H ′ ∈ Σ be such that H ′ ⊆ H and H ′△(F ∩H) is negligible; then E′ = H ′ ∪ (E \H) belongs to

Σ+
τ ′ and differs from F by a negligible set. QQQ

455M Hitting times I mention a class of stopping times which is particularly important in applications,
and also very helpful in giving an idea of the concept.

Proposition Let U be a Polish space and Cdlg the set of càdlàg functions from [0,∞[ to U . Let A ⊆ U be
an analytic set, and define τ : Cdlg → [0,∞] by setting

τ(ω) = inf{t : ω(t) ∈ A}
for ω ∈ Cdlg, counting inf ∅ as ∞.

(a) Let Σ be a σ-algebra of subsets of Cdlg closed under Souslin’s operation and including the algebra
generated by the functionals ω 7→ ω(t) for t ≥ 0. Then τ is Σ-measurable.

(b) For t ≥ 0 let Σt be

{F : F ∈ Σ, ω′ ∈ F whenever ω, ω′ ∈ Cdlg, ω ∈ F and ω↾[0, t] = ω′↾[0, t]},

and Σ+
t =

⋂
s>t Σt. Then τ is a stopping time adapted to 〈Σ+

t 〉t≥0.
(c) If A is closed, then τ is adapted to 〈Σt〉t≥0.

proof (a)(i) It will help to recall from 4A3Q that there is a Polish topology S on Cdlg such that the
corresponding Borel σ-algebra B(Cdlg) is just the σ-algebra generated by the coordinate functions ω 7→ ω(t),
so is included in Σ. In this case, every S-analytic set, being S-Souslin-F (423Eb), belongs to Σ.

(ii) The set

W = {(ω, t, x) : ω ∈ Cdlg, t ≥ 0, x ∈ U , ω(t) = x}
is a Borel subset of Cdlg × [0,∞[ × U . PPP If ρ is a metric on U inducing its topology and D is a countable
dense subset of U ,

W =
⋂

n∈N

⋃

q∈Q,q≥0

⋃

y∈D
{(ω, t, x) : t ∈ [q − 2−n, q],

ρ(ω(q), y) ≤ 2−n, ρ(x, y) ≤ 2−n}. QQQ

(iii) Since Cdlg, [0,∞[ and U are all Polish, W is an analytic set. Now, for any t ≥ 0,
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W ′ = {(ω, s, x) : s ∈ [0, t[, x ∈ A, (ω, s, x) ∈W}
is analytic and its projection

{ω : τ(ω) < t} = {ω : there are s, x such that (ω, s, x) ∈W ′}
is analytic and belongs to Σ. As t is arbitrary, τ is Σ-measurable.

(b) Now, given t ≥ 0, F = {ω : τ(ω) < t} belongs to Σ, and if ω ∈ F , ω′ ∈ Cdlg are such that
ω′↾[0, t] = ω↾[0, t], there is an s < t such that ω′(s) = ω(s) ∈ A, so τ(ω′) < t and ω′ ∈ F . Thus F ∈ Σt. As
t is arbitrary, τ is a stopping time adapted to 〈Σ+

t 〉t≥0, by 455Lb.

(c) As A is closed and every member of Cdlg is continuous on the right, ω(τ(ω)) ∈ A whenever τ(ω) <∞.
So if ω, ω′ ∈ Cdlg, τ(ω) ≤ t and ω′↾[0, t] = ω↾[0, t], then ω′(τ(ω)) ∈ A and τ(ω′) ≤ t. Thus {ω : τ(ω) ≤ t} ∈
Σt for every t, and τ is adapted to 〈Σt〉t≥0.

455N We need an elementary fact about narrow (more properly, vague) convergence.

Lemma Let (U, ρ) be a metric space, n ∈ N and f : Un+1 → R a bounded uniformly continuous function.

Let 〈ν(k)x 〉k<n,x∈U be a family of topological probability measures on U such that x 7→ ν
(k)
x is continuous for

the narrow topology for every k < n. Then

y 7→
∫∫

. . .
∫
f(y, x1, . . . , xn)ν

(n−1)
xn−1 (dxn) . . . ν

(1)
x1 (dx2)ν

(0)
y (dx1)

is defined everywhere on U and continuous.

proof Induce on n. If n = 0 the formula is just y 7→ f(y), so the result is trivial. For the inductive step to
n ≥ 1, set

g(y, x1) =
∫
. . .

∫
f(y, x1, . . . , xn)ν

(n−1)
xn−1 (dxn) . . . ν

(1)
x1 (dx2)

for y, x1 ∈ U ; by the inductive hypothesis this is well-defined and x1 7→ g(y, x1) is continuous. Note that

g is bounded because f is. It follows that h(y) =
∫
g(y, x1)ν

(0)
y (dx1) is defined for every y. I need to show

that h is continuous. Take any y ∈ U and ǫ > 0. Then there is a δ0 > 0 such that |f(y′, x1, . . . , xn) −
f(y, x1, . . . , xn)| ≤ ǫ whenever ρ(y′, y) ≤ δ0 and x1, . . . , xn ∈ U ; so that |g(y′, x1) − g(y, x1)| ≤ ǫ whenever

ρ(y′, y) ≤ δ0 and x1 ∈ U . Next, because x 7→ ν
(0)
x is narrowly continuous, x 7→

∫
g(y, x1)ν

(0)
x (dx1) is

continuous (437Jf/437Kb), and there is a δ ∈ ]0, δ0] such that |
∫
g(y, x1)ν

(0)
y′ (dx1)−

∫
g(y, x1)ν

(0)
y (dx1)| ≤ ǫ

whenever ρ(y′, y) ≤ δ. So if ρ(y′, y) ≤ δ,

|h(y′) − h(y)| ≤ |
∫
g(y′, x1)ν

(0)
y′ (dx1) −

∫
g(y, x1)ν

(0)
y′ (dx1)|

+ |
∫
g(y, x1)ν

(0)
y′ (dx1) −

∫
g(y, x1)ν(0)y (dx1)|

≤
∫

|g(y′, x1) − g(y, x1)|ν(0)y′ (dx1) + ǫ ≤ 2ǫ.

As y and ǫ are arbitrary, h is continuous and the induction proceeds.

455O If both the continuity conditions in 455F are satisfied, we have a version of 455C/455Eb which is
much more to the point.

Theorem Suppose that (U, ρ) is a complete metric space, x∗ is a point of U , 〈ν(s,t)x 〉0≤s<t,x∈U is a family
of Radon probability measures on U which is both narrowly continuous and uniformly time-continuous on

the right, and that 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x over ν

(s,t)
x whenever x ∈ U and s < t < u. Let µ̂

be the corresponding completed measure on Ω = U [0,∞[, as in 455E. Let Cdlg be the set of càdlàg functions

from [0,∞[ to U , µ̈ the subspace measure on Cdlg, and Σ̈ its domain. For t ≥ 0, let Σ̈t be

{F : F ∈ Σ̈, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Cdlg and ω′↾[0, t] = ω↾[0, t]},

and Σ̈+
t =

⋂
s>t Σ̈t.
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For ω ∈ Ω and a ≥ 0 let µ̂ωa be the completed measure on Ω built from ω(0) and 〈ν(s,t)ωax 〉0≤s<t,x∈U as
in 455Eb; let µ̈ωa be the subspace measure on Cdlg. Let τ : Cdlg → [0,∞] be a stopping time adapted to

〈Σ̈+
t 〉t≥0.
(a) 〈µ̈ω,τ(ω)〉ω∈Cdlg

is a disintegration of µ̈ over itself.
(b) Set

Σ̈+
τ = {F : F ∈ Σ̈, F ∩ {ω : τ(ω) ≤ t} ∈ Σ̈+

t for every t ≥ 0}.

Then Σ̈+
τ is a σ-algebra of subsets of Cdlg. For a µ̈-integrable function f on Cdlg, write g̈f (ω) =

∫
Cdlg

fdµ̈ω,τ(ω)

when this is defined in R. Then g̈f is a conditional expectation of f on Σ̈+
τ .

(c) If τ is adapted to 〈Σ̈t〉t≥0, set

Σ̈τ = {F : F ∈ Σ̈, F ∩ {ω : τ(ω) ≤ t} ∈ Σ̈t for every t ≥ 0}.

Then Σ̈τ is a σ-algebra of subsets of Cdlg, and g̈f is a conditional expectation of f on Σ̈τ , for every f ∈ L
1(µ̈).

proof (a)(i) I had better begin by checking that the ground is clear. By 455G, µ̂∗Cdlg = µ̂∗
ωaCdlg = 1 for

every ω ∈ Cdlg and a ≥ 0, so that µ̈ and µ̈ωa (for ω ∈ Cdlg) are all probability measures.

Of course 〈Σ̈t〉t≥0 is a non-decreasing family of σ-subalgebras of Σ̈, so that 〈Σ̈+
t 〉t≥0 is another such family,

and we are in the territory explored in 455L.

(ii) Write Σ for the domain of µ̂, and for t ≥ 0 set

Σt = {E : E ∈ Σ, E is determined by coordinates in [0, t]}.

Then Σ̈t = {E ∩ Cdlg : E ∈ Σt}. PPP If E ∈ Σt, then E ∩ Cdlg ∈ Σ̈ and clearly E ∩ Cdlg ∈ Σ̈t. If F ∈ Σ̈t, let
E ∈ Σ be such that E ∩ Cdlg = F . Applying 455Ec to the stopping time with constant value t, we have

µ̂E =
∫
Ω
µ̂ωt(E)µ̂(dω).

Set

E∗ = {ω : ω ∈ Ω, µ̂ωt(E) is defined},

E0 = {ω : ω ∈ E∗, µ̂ωt(E) = 0}, E1 = {ω : ω ∈ E∗, µ̂ωt(E) = 1}.

Then E∗, E0 and E1 are measured by µ̂ and are determined by coordinates in [0, t] (by 455E(b-iii)), and
µ̂E∗ = 1.

If ω ∈ E∗ ∩ Cdlg, then µ̂∗
ωtCdlg = 1, so

µ̈ωt(F ) = µ̂∗
ωt(E ∩ Cdlg) = µ̂ωt(E).

If ω ∈ Cdlg, let D be a countable dense subset of [0, t] containing t; then

1 = µ̂ωt{ω′ : ω′ ∈ Ω, ω′↾D = ω↾D} = µ̈ωt{ω′ : ω′ ∈ Cdlg, ω
′↾D = ω↾D}

= µ̈ωt{ω′ : ω′ ∈ Cdlg, ω
′↾[0, t] = ω↾[0, t]}.

So if ω ∈ E∗ ∩ Cdlg,

µ̂ωt(E) = µ̈ωt(F ) = µ̈ωt{ω′ : ω′ ∈ F, ω′↾[0, t] = ω↾[0, t]} = χF (ω) ∈ {0, 1}
because F is determined (relative to Cdlg) by coordinates in [0, t]. This means that E1 ∩ Cdlg ⊆ F and
E0 ∩ F = ∅, while E0 ∪ E1 is µ̂-conegligible. So if we take

E′ = E1 ∪ {ω : ωΩ \ E1 and there is an ω′ ∈ F such that ω′↾[0, t] = ω↾[0, t]},

E′ ∩ Cdlg = F , E′ is determined by coordinates in [0, t], E1 ⊆ E′ ⊆ Ω \ E0, µ̂ measures E′ and E′ ∈ Σt.

Thus Σ̈t = {E ∩ Cdlg : E ∈ Σt}, as claimed. QQQ

(iii) Take n ∈ N, and set Dn = {2−ni : i ∈ N}. Suppose that τ : Cdlg → Dn ∪ {∞} is a stopping time

adapted to 〈Σ̈t〉t≥0. Then 〈µ̂ω,τ(ω)〉ω∈Cdlg
is a disintegration of µ̂ over µ̈. PPP For each i ∈ N, Fi = τ−1[{2−ni}]

belongs to Σ̈2−ni, so there is an Ei ∈ Σ, determined by coordinates in [0, 2−ni], such that Fi = Ei ∩ Cdlg.
For ω ∈ Ω, set

τ̀(ω) = inf{2−ni : i ∈ N, ω ∈ Ei},
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counting inf ∅ as ∞. Then τ̀↾Cdlg = τ . Also τ̀ [Ω] ⊆ Dn ∪ {∞} is countable, and τ̀−1[{b}] ∈ Σ is determined
by coordinates in [0, b] for every b ∈ Dn. By 455Ec, 〈µ̂ω,τ̀(ω)〉ω∈Ω is a disintegration of µ̂ over itself.

Now take any E ∈ Σ. Then

µ̂E =

∫

Ω

µ̂ω,τ̀(ω)(E)µ̂(dω) =

∫

Cdlg

µ̂ω,τ̀(ω)(E)µ̈(dω)

(214F)

=

∫

Cdlg

µ̂ω,τ(ω)(E)µ̈(dω). QQQ

It follows that 〈µ̈ω,τ(ω)〉ω∈Cdlg
is a disintegration of µ̈ over itself. PPP If F ∈ Σ̈, there is an E ∈ Σ such that

F = E ∩ Cdlg. Now

µ̈F = µ̂E =

∫

Cdlg

µ̂ω,τ(ω)(E)µ̈(dω)

=

∫

Cdlg

µ̈ω,τ(ω)(E ∩ Cdlg)µ̈(dω) =

∫

Cdlg

µ̈ω,τ(ω)(F )µ̈(dω). QQQ

(iv) Now let τ : Cdlg → [0,∞] be any stopping time adapted to 〈Σ̈+
t 〉t≥0. For each n ∈ N, define

τn : Cdlg → Dn ∪ {∞} by setting

τn(ω) = 2−n(i+ 1) if i ∈ N and 2−ni ≤ τ(ω) < 2−n(i+ 1),

= ∞ if τ(ω) = ∞.

By 455Lb, {ω : τn(ω) = t} ∈ Σ̈t for every t ∈ Dn. So (iii) tells us that 〈µ̈ω,τn(ω)〉ω∈Cdlg
is a disintegration of

µ̈ over itself.

(v) Suppose that k ∈ N, 0 = t0 < t1 < . . . < tk, h : Uk+1 → R is bounded and uniformly continuous,
and ω ∈ Cdlg. Then∫

Ω
h(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω

′) = limn→∞
∫
Ω
h(ω′(t0), . . . , ω′(tk))µ̂ω,τn(ω)(dω

′).

PPP Recall from 455E that

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω
′)

=

∫

U

. . .

∫

U

h(ω(0), x1, . . . , xk)ν
(tk−1,tk)
ω,τ(ω),xk−1

(dxk) . . . ν
(0,t1)
ω(0) (dx1),

and similarly for each τn. If τ(ω) ≥ tk, then

ν
(ti−1,ti)
ω,τn(ω),x

= δω(ti) = ν
(ti−1,ti)
ω,τ(ω),x

for 1 ≤ i ≤ k, n ∈ N and x ∈ U , so the result is trivial. If j ≤ k is such that tj−1 ≤ τ(ω) < tj , then

ν
(ti−1,ti)
ω,τ(ω),x = δω(ti) if i < j,

= ν
(τ(ω),tj)

ω(τ(ω)) if i = j,

= ν(ti−1,ti)
x if j < i < k.

So

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω
′)

=

∫

U

∫

U

. . .

∫

U

h(ω(0), . . . , ω(j − 1), xj , . . . , xk)

ν(tk−1,tk)
xk−1

(dxk) . . . ν(tj ,tj+1)
xj

(dxj+1)ν
(τ(ω),tj)

ω(τ(ω)) (dxj).
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Moreover, there is some n0 such that τn(ω) < tj for every n ≥ n0, so that we can use this formula for all
such n. Setting

g(x) =
∫
U
. . .

∫
U
h(ω(0), . . . , ω(j − 1), x, xj+1, . . . , xk)ν

(tk−1,tk)
xk−1

(dxk) . . . ν
(tj ,tj+1)
x (dxj+1)

for x ∈ U , we see from 455N that g is continuous, while of course it is also bounded, because h is bounded.
At this point, recall that ω is supposed to be continuous on the right, while the system of transitional
probabilities is jointly continuous, so that

ν
(τ(ω),tj)

ω(τ(ω)) = limn→∞ ν
(τn(ω),tj)

ω(τn(ω))

for the narrow topology, and

lim
n→∞

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τn(ω)(dω
′)

= lim
n→∞

∫

U

∫

U

. . .

∫

U

h(ω(0), . . . , ω(j − 1), xj , . . . , xk)

ν(tk−1,tk)
xk−1

(dxk) . . . ν(tj ,tj+1)
xj

(dxj+1)ν
(τn(ω),tj)

ω(τn(ω))
(dxj)

= lim
n→∞

∫

U

g(xj)ν
(τn(ω),tj)

ω(τn(ω))
(dxj)

=

∫

U

g(xj)ν
(τ(ω),tj)

ω(τ(ω)) (dxj)

=

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω
′),

as claimed. QQQ

(vi) Again suppose that 0 = t0 < t1 < . . . < tk. If h : Uk+1 → R is bounded and uniformly continuous,
then ∫

Cdlg

∫
Ω
h(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω

′)µ̈(dω) =
∫
Ω
h(ω(t0), . . . , ω(tk))µ̂(dω).

PPP The point here is that

∫

Cdlg

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τn(ω)(dω
′)µ̈(dω) =

∫

Ω

h(ω(t0), . . . , ω(tk))µ̂(dω)

is defined for every n ∈ N, by (iii) and 452F, as usual. Now the integrands

ω 7→
∫
Ω
h(ω′(t0), . . . , ω′(tk))µ̂ω,τn(ω)(dω

′)

converge at every point of Cdlg, by (v), and are uniformly bounded, because h is, so that

∫

Cdlg

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω
′)µ̈(dω)

= lim
n→∞

∫

Cdlg

∫

Ω

h(ω′(t0), . . . , ω′(tk))µ̂ω,τn(ω)(dω
′)µ̈(dω)

=

∫

Ω

h(ω(t0), . . . , ω(tk))(dω). QQQ

If G ⊆ Uk+1 is open, there is a non-decreasing sequence 〈hm〉m∈N of uniformly continuous functions from
Uk+1 to [0, 1] such that χG = supm∈N hm, in which case
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∫

Cdlg

µ̂ω,τ(ω){ω′ : (ω′(t0), . . . , ω′(tk)) ∈ G}µ̈(dω)

= lim
m→∞

∫

Cdlg

∫

Ω

hm(ω′(t0), . . . , ω′(tk))µ̂ω,τ(ω)(dω
′)µ̈(dω)

= lim
m→∞

∫

Ω

hm(ω(t0), . . . , ω(tk))µ̂(dω)

= µ̂{ω : (ω(t0), . . . , ω(tk)) ∈ G}.
By the Monotone Class Theorem, we get

∫

Cdlg

µ̂ω,τ(ω){ω′ : (ω′(t0), . . . , ω′(tk)) ∈ E}µ̈(dω)

= µ̂{ω : (ω(t0), . . . , ω(tk)) ∈ E}

for every Borel set E ⊆ Uk+1. Now recall that t0, . . . , tk were any strictly increasing sequence starting at 0,
so we can use the Monotone Class Theorem yet again to see that∫

Cdlg
µ̂ω,τ(ω)(E)µ̈(dω) = µ̂(E)

for every E ∈ ⊗̂
[0,∞[B(U) and therefore for every E ∈ Σ.

(vii) Finally, if F ∈ Σ̈, there is an E ∈ Σ such that F = E ∩ Cdlg, so that

µ̈(F ) = µ̂(E) =
∫
Cdlg

µ̂ω,τ(ω)(E)µ̈(dω) =
∫
Cdlg

µ̈ω,τ(ω)(F )µ̈(dω);

which is what we set out to prove.

(b)(i) By 455L(c-iii), Σ̈+
τ is a σ-algebra. If f is a µ̈-integrable real-valued function, then

∫
Cdlg

g̈f µ̈ =∫
Cdlg

fµ̈, by (a) and 452F. For α ∈ R set

E(f, α) = {ω : ω ∈ Cdlg, g̈f (ω) is defined in R and g̈f (ω) ≤ α},

so that E(f, α) ∈ Σ̈. For t ≥ 0, set

Ht = {ω : ω ∈ Cdlg, τ(ω) ≤ t}, H ′
t = {ω : ω ∈ Cdlg, τ(ω) < t},

so that Ht ∈ Σ̈+
t and H ′

t ∈ Σ̈t (455Lb).

(ii) If ω, ω′ ∈ Cdlg and s > τ(ω) are such that ω′↾[0, s] = ω↾[0, s], then τ(ω′) = τ(ω). PPP Hτ(ω),

H ′
τ(ω) and their difference belong to Σ̈s, so are determined (relative to Cdlg) by coordinates in [0, s]; since

Hτ(ω) \H ′
τ(ω) contains ω, it also contains ω′, and τ(ω′) = τ(ω). QQQ

(iii) If f is µ̈-integrable, α ∈ R and s > 0, then E(f, α) ∩H ′
s ∈ Σ̈s. PPP Certainly E(f, α) ∩H ′

s ∈ Σ̈. If
ω, ω′ ∈ Cdlg and ω↾[0, s] = ω′↾[0, s], then

ω ∈ E(f, α) ∩H ′
s =⇒ τ(ω) < s and

∫

Cdlg

fdµ̈ω,τ(ω) ≤ α

=⇒ τ(ω′) = τ(ω) < s and

∫

Cdlg

fdµ̈ω,τ(ω′) ≤ α

(by (ii))

=⇒ ω′ ∈ E(f, α) ∩H ′
s.

So E(f, α) ∩H ′
s is determined (relative to Cdlg) by coordinates in [0, s] and belongs to Σ̈s. QQQ

Consequently E(f, α) ∩Ht ∈ Σ̈+
t for every t ≥ 0. PPP Ht =

⋂
n∈NH

′
tn where tn = t+ 2−n for each n, so

E(f, α) ∩Ht =
⋂
n≥mE(f, α) ∩H ′

tn
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belongs to Σ̈tm for every m ∈ N, and E(f, α) ∩Ht ∈ Σ̈+
t . QQQ

Thus E(f, α) ∈ Σ̈+
τ for every α. As α is arbitrary, dom g̈f ∈ Σ̈+

τ and g̈f is Σ̈+
τ -measurable.

(iv) Define 〈τn〉n∈N as in (a-iv) above, so that each τn is a stopping time adapted to 〈Σ̈t〉t≥0 and
〈τn(ω)〉n∈N is a non-increasing sequence with limit τ(ω) for every ω. For a µ̈-integrable real-valued function
f on Cdlg, ω ∈ Cdlg and n ∈ N, set

g̈
(n)
f (ω) =

∫
Cdlg

fdµ̈ω,τn(ω)

whenever the right-hand side is defined in R. By (a),
∫
Cdlg

g̈
(n)
f dµ̈ =

∫
Cdlg

fdµ̈. We have seen also, in (a-iii),

that each τn has an extension τ̀n which is a stopping time on Ω of the type considered in 455Ec. So if we
take a µ̂-integrable function f̃ extending f , and set

g
(n)

f̃
(ω) =

∫
Ω
f̃dµ̂ω,τ̀n(ω)

whenever ω ∈ Ω is such that the integral is defined in R, g
(n)

f̃
will be a conditional expectation of f̃ on Στ̀n ,

the algebra of sets E ∈ Σ such that E∩{ω : τ̀n(ω) ≤ t} is determined by coordinates in [0, t] for every t ≥ 0.

If ω ∈ Cdlg, then Cdlg has full outer measure for µ̂ω,τn(ω) = µ̂ω,τ̀n(ω), so

g
(n)

f̃
(ω) =

∫
Ω
f̃dµ̂ω,τ̀n(ω) =

∫
Cdlg

fdµ̈ω,τn(ω) = g̈
(n)
f (ω)

whenever either is defined.

(v) Set

Σ̈τn = {F : F ∈ Σ̈, F ∩ {ω : τn(ω) ≤ t} ∈ Σ̈t for every t ≥ 0}.

Then every F ∈ Σ̈τn is of the form F̃ ∩Cdlg where F̃ ∈ Στ̀n . PPP Recall that τn and τ̀n take values in Dn∪{∞},

where Dn = {2−ni : i ∈ N}. For each i ∈ N, set Fi = {ω : ω ∈ F , τn(ω) = 2−ni}; then Fi ∈ Σ̈2−ni, so there
is an Ei ∈ Σ2−ni such that Fi = Ei ∩ Cdlg (a-ii). Let E∞ ∈ Σ be such that E∞ ∩ Cdlg = {ω : τn(ω) = ∞},
and try

F̃ =
⋃
i∈N(Ei ∩ τ̀−1

n [{2−ni}]) ∪ (E∞ ∩ τ̀−1
n [{∞}]).

Then F̃ ∩ Cdlg = F (because τ̀n extends τn) and F̃ ∈ Στ̀n (because

F̃ ∩ τ̀−1
n [{2−ni}] = Ei ∩ τ̀−1

n [{2−ni}] ∈ Σ2−ni

for every i). QQQ

(vi) If f is µ̈-integrable, then g̈
(n)
f is a conditional expectation of f on Σ̈τn for every n. PPP Take F ∈ Σ̈τn .

Then there are an F̃ ∈ Στ̀n such that F = F̃ ∩ Cdlg, and a µ̂-integrable f̃ such that f = f̃↾Cdlg. So

∫

F

fdµ̈ =

∫

F̃

f̃dµ̂ =

∫

F̃

g
(n)

f̃
dµ̂

(455E(c-ii))

=

∫

F̃

∫

Ω

f̃dµ̂ω,τ̀n(ω)µ̂(dω) =

∫

F

∫

Ω

f̃dµ̂ω,τn(ω)µ̈(dω)

(because µ̂∗Cdlg = 1, F = F̃ ∩ Cdlg and τn = τ̀n↾Cdlg)

=

∫

F

∫

Cdlg

fdµ̈ω,τn(ω)µ̈(dω) =

∫

F

g̈
(n)
f dµ̈. QQQ

(vii) Let Φ be the set of those µ̈-integrable real-valued functions f such that limn→∞
∫
Cdlg

|g̈f −
g̈
(n)
f |dµ̈ = 0. For J ⊆ [0,∞[ let πJ : Ω → UJ be the restriction map. By (a-v), f = hπJ↾Cdlg belongs to Φ

whenever J ⊆ [0,∞[ is finite and h : UJ → R is bounded and uniformly continuous, since in this case
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g̈f (ω) =

∫

Cdlg

hπJdµ̈ω,τ(ω) =

∫

Ω

hπJdµ̂ω,τ(ω) = lim
n→∞

∫

Ω

hπJdµ̂ω,τn(ω)

= lim
n→∞

∫

Cdlg

hπJdµ̈ω,τn(ω) = lim
n→∞

g̈
(n)
f (ω)

for every ω ∈ Cdlg. Next, g̈αf =a.e. αg̈f , g̈f+f ′ =a.e. g̈f + g̈f ′ and∫
Cdlg

|g̈f − g̈f ′ |dµ̈ =
∫
Cdlg

|g̈f−f ′ |dµ̈ ≤
∫
Cdlg

g̈|f−f ′|dµ̈ =
∫
Cdlg

|f − f ′|dµ̈

for all f , f ′ ∈ L
1(µ̈) and α ∈ R; and we have similar expressions for every g̈

(n)
f . So f + f ′ ∈ Φ and αf ∈ Φ

whenever f , f ′ ∈ Φ, and moreover f ∈ Φ whenever f ∈ L
1(µ̈) and there is a sequence 〈fk〉f∈N in Φ such

that limk→∞
∫
Cdlg

|f − fk|dµ̈ = 0.

If J ⊆ [0,∞[ is finite and G ⊆ UJ , then (χG)πJ↾Cdlg ∈ Φ. PPP There is a non-decreasing sequence 〈hk〉k∈N

of bounded uniformly continuous functions on UJ with limit χG; now hkπJ↾Cdlg ∈ Φ and (χG)πJ↾Cdlg =
limk→∞ hkπJ↾Cdlg. QQQ By the Monotone Class Theorem, (χE)πJ↾Cdlg ∈ Φ whenever J ⊆ [0,∞[ is finite

and E ∈ B(UJ). By the Monotone Class Theorem again, χ(E∩Cdlg) ∈ Φ whenever E ∈ ⊗̂
[0,∞[B(U). Since

we surely have f ′ ∈ Φ whenever f ∈ Φ and f ′ = f µ̈-a.e., χ(E ∩Cdlg) ∈ Φ whenever E ∈ Σ, that is, χE ∈ Φ

for every E ∈ Σ̈. It follows at once that Φ = L
1(µ̈).

(viii) We are nearly home. Suppose that f ∈ L
1(µ̈) and F ∈ Σ̈+

τ . If n ∈ N, then F ∈ Σ̈τn . PPP For any
t > 0,

F ∩ {ω : τ(ω) < t} =
⋃
q∈Q,q<t F ∩ {ω : τ(ω) ≤ q} ∈ Σ̈t.

So, for any i ∈ N,

F ∩ {ω : τn(ω) ≤ 2−ni} = F ∩ {ω : τ(ω) < 2−ni} ∈ Σ̈2−ni. QQQ

So
∫
F
g̈
(n)
f dµ̈ =

∫
F
fdµ̈. But f ∈ Φ, so

∫
F
g̈fdµ̈ = limn→∞

∫
F
g̈
(n)
f dµ̈ =

∫
F
fdµ̈.

Since we already know, from (iii) above, that dom g̈f ∈ Σ̈+
τ and g̈f is Σ̈+

τ -measurable, g̈f is a conditional

expectation of f on Σ̈+
τ , as claimed.

(c)(i) By 455L(c-iii) again, Σ̈τ is a σ-algebra.

(ii) If ω, ω′ ∈ Cdlg and ω′↾[0, τ(ω)] = ω↾[0, τ(ω)] then µ̈ω′,τ(ω′) = µ̈ω,τ(ω). PPP Set t = τ(ω). This time,

Ht and H ′
t, defined as in (b-i), belong to Σ̈t, so their difference belongs to Σ̈t and is determined (relative

to Cdlg) by coordinates in [0, t]; so ω′ ∈ Ht \ H ′
t and τ(ω′) = t. Now, reading off the definition in 455Eb,

ν
(s,u)
ω′tx = ν

(s,u)
ωtx for all s, u and x, so µ̈ω′t = µ̈ωt. QQQ

(iii) It follows that if f ∈ L
1(µ̈) and α ∈ R then F = {ω : ω ∈ Cdlg, g̈f (ω) is defined and at most

α} belongs to Σ̈τ . PPP We know from (b-iii) that F ∈ Σ̈. If t ≥ 0, ω ∈ F , ω′ ∈ Cdlg, τ(ω) ≤ t and
ω′↾[0, t] = ω↾[0, t] then µ̈ω′,τ(ω′) = µ̈ω,τ(ω), so g̈f (ω′) = g̈f (ω) and ω′ ∈ F . Thus F ∩ {ω : τ(ω) ≤ t} is

determined (relative to Cdlg) by coordinates in [0, t] and belongs to Σ̈t. QQQ

(iv) Thus dom g̈f ∈ Σ̈τ and g̈f is Σ̈τ -measurable. As we already know that it is a conditional expectation

of f on Σ̈+
τ ⊇ Σ̈τ , it is a conditional expectation of f on Σ̈τ .

455P The eventual objective of this section is to provide a foundation for study of the original, and still
by far the most important, example of a continuous-time Markov process, Brownian motion. In the language
developed above, we shall have U = R (or, when we come to the applications in §§477-479, U = Rr), and

all the transitional probabilities ν
(s,t)
x will be Gaussian. But the techniques so far developed can tell us a

great deal about much more general processes with some of the same features.

Theorem Let U be a metrizable topological group which is complete under a right-translation-invariant
metric ρ inducing its topology. Let 〈λt〉t>0 be a family of Radon probability measures on U such that the
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convolution λs ∗ λt (444A) is equal to λs+t for all s, t > 0. Suppose that limt↓0 λtG = 1 for every open

neighbourhood G of the identity in U . For x ∈ U and 0 ≤ s < t, let ν
(s,t)
x be the Radon probability measure

on U defined by saying that ν
(s,t)
x (E) = λt−s(Ex−1) whenever λt−s measures Ex−1.

(a) 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x over ν

(s,t)
x whenever x ∈ U and 0 ≤ s < t < u.

(b) 〈ν(s,t)x 〉0≤s<t,x∈U is narrowly continuous and uniformly time-continuous on the right.

(c)(i) We can define a complete measure µ̂ on U [0,∞[ by the method of 455E applied to x∗ = e and

〈ν(s,t)x 〉0≤s<t,x∈U .

(ii) If Cdlg is the space of càdlàg functions from [0,∞[ to U , then µ̂∗Cdlg = 1, and the subspace measure
µ̈ on Cdlg will have the properties described in 455O, with ω(0) = e for µ̈-almost every ω ∈ Cdlg.

(iii) µ̂ has a unique extension to a Radon measure µ̃ on U [0,∞[.

proof (a) Note first that y 7→ yx is inverse-measure-preserving for λt−s and ν
(s,t)
x , so that

∫
f(y)ν

(s,t)
x (dy) =∫

f(yx)λt−s(dy) for any real-valued function on U for which either is defined (235Gb). If E ⊆ U is measured

by ν
(s,u)
x , then

ν(s,u)x (E) = λu−s(Ex
−1) = (λu−t ∗ λt−s)(Ex−1) =

∫
λu−t(Ex

−1y−1)λt−s(dy)

(444A)

=

∫
ν(t,u)yx (E)λt−s(dy) =

∫
ν(t,u)y (E)ν(s,t)x (dy);

as E is arbitrary, 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x over ν

(s,t)
x .

(b)(i)(ααα) Suppose that x ∈ U and 0 ≤ s < t; set u = t − s. Let f : U → R be a bounded continuous
function and set M = ‖f‖∞. Take ǫ ∈

]
0, 12

[
. Let K ⊆ U be a compact set such that λuK ≥ 1−ǫ. Then there

is a symmetric open neighbourhood V of the identity e of U such that |f(wyx−1)−f(wx−1)| ≤ 2ǫ whenever
w ∈ K and y ∈ V 2. PPP For each w ∈ K there is a neighbourhood Ww of e such that |f(wyx−1)−f(wx−1)| ≤ ǫ
whenever y ∈ W 2

w. Because K is compact, there are w0, . . . , wn ∈ K such that K ⊆ ⋃
i≤n wiWwi

; set

W =
⋂
i≤nWwi

. If w ∈ K and y ∈W , there is an i ≤ n such that w ∈ wiWwi
, in which case

|f(wyx−1) − f(wx−1)| ≤ |f(wi(w
−1
i wy)x−1) − f(wix

−1)|
+ |f(wix

−1) − f(wi(w
−1
i w)x−1)|

≤ 2ǫ

because both w−1
i wy and w−1

i w belong to W 2
wi

. So if we take a symmetric open neighbourhood V of e such

that V 2 ⊆W , this will serve. QQQ

(βββ) Let δ > 0 be such that λvV ≥ 1−ǫ whenever 0 < v ≤ 2δ. It will be worth noting that λv(KV ) ≥
1− 2ǫ whenever 0 < v < u and u− v ≤ 2δ. PPP In this case, λu = λv ∗λu−v. Now U \K ⊇ (U \KV )V −1. So

ǫ ≥ λu(U \K) ≥ λv(U \KV )λu−v(V −1) ≥ (1 − ǫ)λv(U \KV )

and

λv(KV ) ≥ 1 − ǫ

1−ǫ
≥ 1 − 2ǫ. QQQ

(γγγ) Suppose that 0 ≤ s′ < t′ and y ∈ U are such that y−1x ∈ W , |s′ − s| ≤ δ and |t′ − t| ≤ δ. Then

|
∫
fdν

(s′,t′)
y −

∫
fdν

(s,t)
x | ≤ (6M + 4)ǫ. PPP Set u′ = t′ − s′, so that |u− u′| ≤ 2δ. We have

|
∫
fdν

(s′,t′)
y −

∫
fdν

(s,t)
x | = |

∫
f(wy−1)λu′(dw) −

∫
f(wx−1)λu(dw)|.

case 1 Suppose that u′ < u. Then λu = λu′ ∗ λu−u′ , so
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|
∫
fdν(s

′,t′)
y −

∫
fdν(s,t)x | = |

∫
f(wy−1)λu′(dw) −

∫
f(wx−1)(λu′ ∗ λu−u′)(dw)|

= |
∫
f(wy−1)λu′(dw) −

∫∫
f(wzx−1)λu−u′(dz)λu′(dw)|

(444C)

≤
∫

|f(wy−1) −
∫
f(wzx−1)λu−u′(dz)|λu′(dw)

≤ 4Mǫ+ sup
w∈KV

|f(wy−1) −
∫
f(wzx−1)λu−u′(dz)|

(because λu′(U \KV ) ≤ 2ǫ, by (β), and |f(wy−1) −
∫
f(wzx−1)λu−u′(dz)| ≤ 2M for every w)

≤ 4Mǫ+ sup
w∈KV

∫
|f(wy−1) −

∫
f(wzx−1)|λu−u′(dz)

≤ 6Mǫ+ sup
w∈KV,z∈V

|f(wy−1) −
∫
f(wzx−1)|

(because λu−u′V ≥ 1 − ǫ)

≤ 6Mǫ+ sup
w∈K,v∈V,z∈V

|f(wvy−1xx−1) − f(wvzx−1)|

≤ 6Mǫ+ sup
w∈K,v∈V,z∈V

(
|f(wvy−1xx−1) − f(wx−1)|

+ |f(wvzx−1) − f(wx−1)|
)

≤ 6Mǫ+ 4ǫ

by the choice of V , because y−1x ∈ V .

case 2 Suppose that u′ = u. Then

|
∫
fdν(s

′,t′)
y −

∫
fdν(s,t)x | ≤

∫
|f(wy−1) − f(wx−1)|λu(dw)

≤ 2Mǫ+ sup
w∈K

|f(wy−1xx−1) − f(wx−1)|

≤ 2Mǫ+ ǫ.

case 3 Suppose that u′ > u. Then λu′ = λu ∗ λu′−u, so

|
∫
fdν(s

′,t′)
y −

∫
fdν(s,t)x | = |

∫∫
f(wzy−1)λu′−u(dz)λu(dw) −

∫
f(wx−1)λu(dw)|

≤
∫

|
∫
f(wzy−1)λu′−u(dz) − f(wx−1)|λu(dw)

≤ 2Mǫ+ sup
w∈K

|
∫
f(wzy−1)λu′−u(dz) − f(wx−1)|

≤ 2Mǫ+ 2Mǫ+ sup
w∈K,z∈V

|f(wzy−1) − f(wx−1)|

≤ 4Mǫ+ 2ǫ.

So we have the result in all cases. QQQ

(δδδ) As s, t, x, ǫ and f are arbitrary, 〈ν(s,t)x 〉0≤s<t,x∈U is narrowly (= vaguely) continuous.

(ii) Given ǫ > 0, there is a δ > 0 such that λt{x : ρ(x, e) < ǫ} ≥ 1 − ǫ whenever 0 < t ≤ δ. Now
suppose that x ∈ U and 0 ≤ s < t ≤ s+ δ. Then
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ν(s,t)x B(x, ǫ) = λt−s(B(x, ǫ)x−1) = λt−sB(e, ǫ)

(because ρ is right-translation-invariant)

≥ 1 − ǫ.

As ǫ is arbitrary, 〈ν(s,t)x 〉0≤s<t,x∈U is uniformly time-continuous on the right.

(c) This is now just a matter of putting 455O and 455H together, and recalling from 455E that ω(0) = e
for µ̂-almost every ω ∈ Ω.

455Q Lévy processes If we approach as probabilists, without prejudices in favour of any particular
realization, the processes in 455P manifest themselves as follows. Let U be a separable metrizable topological
group with identity e, and consider the following list of properties of a family 〈Xt〉t≥0 of U -valued random
variables:

X0 = e almost everywhere,

Pr(XtX
−1
s ∈ F ) = Pr(Xt−s ∈ F ) whenever 0 ≤ s < t and F ⊆ U is Borel

(the process is stationary),

whenever 0 ≤ t0 < t1 < . . . < tn, then Xt1X
−1
t0 , Xt2X

−1
t1 , . . . , XtnX

−1
tn−1

are independent

in the sense of 418U (the process has independent increments),

Xt → e in measure as t ↓ 0

(that is, limt↓0 Pr(Xt ∈ G) = 1 for every neighbourhood G of the identity). I say here that U should be
separable and metrizable in order to ensure that all the functions XtX

−1
s should be measurable (of course

it will be enough if U is metrizable and of measure-free weight, as in 438E). Such a family I will call a Lévy
process.

455R Theorem Let U be a Polish group with identity e which is complete under a right-translation-
invariant metric inducing its topology. A family 〈Xt〉t≥0 of U -valued random variables is a Lévy process iff
there is a family 〈λt〉t>0 of Radon probability measures on U , satisfying the conditions of 455P, such that if
we start from x∗ = e and build the measure µ̂ on U [0,∞[ as in 455Pc, then

Pr(Xti ∈ Fi for every i ≤ n) = µ̂{ω : ω(ti) ∈ Fi for every i ≤ n}
whenever t0, . . . , tn ∈ [0,∞[ and Fi ⊆ U is a Borel set for every i ≤ n.

proof (a) Suppose we have a family 〈λt〉t>0 of Radon probability measures on U such that λs ∗ λt = λs+t
for all s, t > 0 and limt↓0 λtG = 1 for every open neighbourhood G of e in U . Define 〈ν(s,t)x 〉0≤s<t,x∈U as in

455P, and let µ̂ be the corresponding completed measure on Ω = U [0,∞[ as in 455Pc. Set Xt(ω) = ω(t) for
t ≥ 0 and ω ∈ Ω. Then X0 = e a.e. (455Ea) and

Pr(Xt ∈ F ) = µ̂X−1
t [F ] = ν

(0,t)
0 F = λtF

for t > 0 and F ∈ B(U) (455Ea again). In particular,

limt↓0 Pr(Xt ∈ G) = limt↓0 λtG = 1

for every neighbourhood G of the identity. If 0 < s < t and F ∈ B(U), set H = {(e, x, y) : yx−1 ∈ F} ⊆ U3.
Then

Pr(XtX
−1
s ∈ F ) = µ̂{ω : (ω(0), ω(s), ω(t)) ∈ H}

=

∫∫
χH(e, x, y)ν(s,t)x (dy)ν(0,s)e (dx)

(455E)

=

∫∫
χH(e, x, yx)λt−s(dy)λs(dx)

=

∫∫
χF (y)λt−s(dy)λs(dx) = λt−s(F ) = Pr(Xt−s ∈ F ).
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If 0 = s < t then XtX
−1
s =a.e. Xt = Xt−s, of course. If 0 = t0 < t1 < . . . < tn and F0, . . . , Fn−1 ∈ B(U), set

Ek = {ω : ω ∈ Ω, ω(ti+1)ω(ti)
−1 ∈ Fi for every i < k},

Hk = {(x0, . . . , xk) : xi+1x
−1
i ∈ Fi for every i < k} ⊆ Uk+1

for k ≤ n. Then

µ̂E1 = µ̂{ω : ω(t1)ω(0)−1 ∈ F0} = µ̂{ω : ω(t1) ∈ F0} = ν
(0,t1)
e F0 = λt1F0,

and for k ≥ 2

Pr(Xti+1
X−1
ti ∈ Fi for every i < k)

= µ̂Ek =

∫
. . .

∫
χHk(e, x1, . . . , xk)ν(tk−1,tk)

xk−1
(dxk) . . . ν(0,t1)e (dx1)

(455E)

=

∫
. . .

∫∫
χHk(e, x1, . . . , xk−1, xkxk−1)λtk−tk−1

(dxk)

ν(tk−2,tk−1)
xk−2

(dxk−1) . . . ν(0,t1)e (dx1)

=

∫
. . .

∫∫
χHk−1(e, x1, . . . , xk−1)χFk−1(xk)λtk−tk−1

(dxk)

ν(tk−2,tk−1)
xk−2

(dxk−1) . . . ν(0,t1)e (dx1)

= λtk−tk−1
(Fk−1)

∫
. . .

∫
χHk−1(e, x1, . . . , xk−1)

ν(tk−2,tk−1)
xk−2

(dxk−1) . . . ν(0,t1)e (dx1)

= λtk−tk−1
(Fk−1) · µ̂Ek−1.

So

Pr(Xti+1
X−1
ti ∈ Fi for every i < n) = µ̂En =

n−1∏

i=0

λti−ti−1
Fi

=

n−1∏

i=0

Pr(Xti−ti−1
∈ Fi) =

n−1∏

i=0

Pr(XtiX
−1
ti−1

∈ Fi).

As F0, . . . , Fn−1 are arbitrary, Xt1X
−1
t0 , Xt2X

−1
t1 , . . . , XtnX

−1
tn−1

are independent. Thus all the conditions of
455Q are satisfied.

(b)(i) In the other direction, given a family 〈Xt〉t≥0 with the properties listed in 455Q, then for each
t > 0 there is a Radon measure λt on U such that λtF = Pr(Xt ∈ F ) for every F ∈ B(U), for each t > 0.
PPP U is Polish, therefore analytic, and we can apply 433Cb to the Borel measure F 7→ Pr(Xt ∈ F ). QQQ If s,
t > 0, then the distribution of Xs+tX

−1
s is the same as the distribution of Xt, so is λt.

If s, t > 0 then λs+t = λs ∗ λt. PPP If F1, F2 ∈ B(U) then

Pr((Xt, Xs+tX
−1
t ) ∈ F1 × F2) = Pr(Xt ∈ F1, Xs+tX

−1
t ∈ F2)

= Pr(Xt ∈ F1) Pr(Xs+tX
−1
t ∈ F2)

(because Xt and Xs+tX
−1
t are independent)

= λtF1 · λsF2 = (λt × λs)(F1 × F2).

By the Monotone Class Theorem, or otherwise,

Pr((Xt, Xs+tX
−1
t ) ∈ H) = (λt × λs)H
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for every H ∈ B(U)⊗̂B(U) = B(U2). So if F ∈ B(U) we shall have

(λs ∗ λt)(F ) = (λs × λt){(x, y) : xy ∈ F} = (λt × λs){(y, x) : xy ∈ F}
= Pr(Xs+tX

−1
t Xt ∈ F ) = λs+tF,

and λs ∗ λt = λs+t. (Cf. 272T15.) QQQ
Next, for any neighbourhood G of e,

limt↓0 λtG = limt↓0 Pr(Xt ∈ G) = 1.

So 〈λt〉t>0 satisfies the conditions of 455P. Let µ̂ be the corresponding completed measure on U [0,∞[ as in
455Pc.

(ii) Pr(Xti ∈ Fi for every i ≤ k) = µ̂{ω : ω(ti) ∈ Fi for every i ≤ k} whenever t0, . . . , tn ∈ [0,∞[
and Fi ∈ B(U) for every i ≤ k. PPP It is enough to consider the case 0 = t0 < t1 < . . . < tn. In this case,
whenever E0, . . . , En ∈ B(U),

Pr((Xt0 ,Xt1X
−1
t0 , . . . , XtnX

−1
tn−1

) ∈ E0 × . . .× En)

= Pr(Xt0 ∈ E0) Pr(Xt1X
−1
t0 ∈ E1) . . .Pr(XtnX

−1
tn−1

) ∈ En)

= δe(E0)λt1−t0(E1) . . . λtn−tn−1
(En)

(where δe is the Dirac measure concentrated at e)

= µ̂{ω : ω(t0) ∈ E0}µ̂{ω : ω(t1)ω(t0)−1 ∈ E1} . . .
µ̂{ω : ω(tn)ω(tn−1)−1 ∈ En}

= µ̂{ω : ω(t0) ∈ E0, ω(t1)ω(t0)−1 ∈ E1, . . . , ω(tn)ω(tn−1)−1 ∈ En}
(by (a) above)

= µ̂{ω : (ω(t0), ω(t1)ω(t0)−1, . . . , ω(tn)ω(tn−1)−1) ∈ E0 × . . .× En}.

So in fact

Pr((Xt0 , Xt1X
−1
t0 , . . . , XtnX

−1
tn−1

) ∈ H)

= µ̂{ω : (ω(t0), ω(t1)ω(t0)−1, . . . , ω(tn)ω(tn−1)−1) ∈ H}

for every Borel set H ⊆ Un+1.
Set

φ(x0, . . . , xn) = (x0, x1x0, x2x1x0, . . . , xnxn−1 . . . x1x0)

for x0, . . . , xn ∈ U , so that φ : Un+1 → Un+1 is continuous. If H ∈ B(Un+1), then

Pr(Xt0 , . . . , Xtn ∈ H) = Pr(φ(Xt0 , Xt1X
−1
t0 , . . . , XtnX

−1
tn−1

) ∈ H)

= Pr((Xt0 , Xt1X
−1
t0 , . . . , XtnX

−1
tn−1

) ∈ φ−1[H])

= µ̂{ω : ((ω(t0), ω(t1)ω(t0)−1, . . . , ω(tn)ω(tn−1)−1) ∈ φ−1[H]}
= µ̂{ω : (ω(t0), . . . , ω(tn)) ∈ H}.

Taking H = F0 × . . .× Fn we have the result. QQQ

455S Lemma Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let 〈λt〉t>0 be a family of Radon probability measures on U such
that λs ∗ λt = λs+t for all s, t > 0 and limt↓0 λtG = 1 for every open neighbourhood G of the identity e

in U . For x ∈ U and 0 ≤ s < t, let ν
(s,t)
x be the Radon probability measure on U defined by saying that

ν
(s,t)
x (E) = λt−s(Ex−1) whenever λt−s measures Ex−1.

15Formerly 272S.
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(a) If 0 ≤ t0 < t1 < . . . < tn, z ∈ U and f : RJ → R is a bounded Borel measurable function, where
J = {t0, . . . , tn}, then

∫∫
. . .

∫
f(z, x1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn) . . . ν(t1,t2)x1

(dx2)ν(t0,t1)z (dx1)

=

∫∫
. . .

∫
f(z, x1z, . . . , xnz)ν(tn−1,tn)

xn−1
(dxn)

. . . ν(t1,t2)x1
(dx2)ν(t0,t1)e (dx1).

(b) Take ω ∈ U [0,∞[ and a ≥ 0. Let µ̂ and µ̂ωa be the measures on U [0,∞[ defined from 〈ν(s,t)x 〉s<t,x∈U by

the method of 455E, starting from x∗ = e. Define φωa : U [0,∞[ → U [0,∞[ by setting

φωa(ω′)(t) = ω(t) if t < a,

= ω′(t− a)ω(a) if t ≥ a.

Then µ̂ωa is the image measure µ̂φ−1
ωa .

(c) In (b), suppose that ω belongs to the set Cdlg of càdlàg functions from [0,∞[ to U . Then φωa(ω′) ∈ Cdlg

for every ω′ ∈ Cdlg, and φωa : Cdlg → Cdlg is inverse-measure-preserving for the subspace measures µ̈ and
µ̈ωa on Cdlg.

proof (a)(i) If x ∈ U and 0 ≤ s < t, then ν
(s,t)
x (E) = ν

(s,t)
e (Ex−1) for any E ⊆ U such that either is

defined; so
∫
f(y)ν

(s,t)
x (dy) =

∫
f(yx)ν

(s,t)
e (dy) for any function f : U → R for which either is defined. More

generally, ∫
f(y)ν

(s,t)
xz (dy) =

∫
f(yxz)ν

(s,t)
e (dy) =

∫
f(yz)ν

(s,t)
x (dy)

whenever f is such that any of the three integrals is defined.

(ii) Now induce on n. For the case n = 0, the natural interpretation of both sides of the formula
presented is f(z). For the inductive step to n+ 1, we have

∫
. . .

∫
f(z, x1, x2, . . . , xn+1)ν(tn,tn+1)

xn
(dxn+1) . . . ν(t0,t1)z (dx1)

=

∫
. . .

∫
f(z, x1z, . . . , xnz, xn+1)ν(tn,tn+1)

xnz (dxn+1) . . . ν(t0,t1)e (dx1)

(by the inductive hypothesis applied to (x0, x1, . . . , xn) 7→
∫
f(x0, . . . , xn, xn+1)ν

(tn,tn+1)
xn (dxn+1))

=

∫
. . .

∫
f(z, x1z, . . . , xnz, xn+1z)ν(tn,tn+1)

xn
(dxn+1) . . . ν(t0,t1)e (dx1)

by (i) applied to the functions y 7→ f(z, x1z, . . . , xnz, y) for each x1, . . . , xn.

(b)(i) Suppose that J ⊆ [0,∞[ is a finite set containing both 0 and a, enumerated in increasing order as
(t0, . . . , tn) with a = tj . Set z = ω(a). Let f : RJ → R be a function. Then fπJφωa = gπK where K =
{0, tj+1 − a, . . . , tn − a} and g(xj , . . . , xn) = f(ω(0), ω(t1), . . . , ω(tj−1), xjz, . . . , xnz) for xj , . . . , xn ∈ U .

PPP For ω′ ∈ U [0,∞[,

fπJφωa(ω′) = (f(φωa(ω′)(t0)), . . . , f(φωa(ω′)(tn))

= (f(ω(0)), . . . , f(ω(tj−1)), f(ω′(0)z), . . . f(ω′(tn − a)z))

= g(ω′(0), . . . , ω′(tn − a)) = gπK(ω′).QQQ

(ii) Again suppose that J ⊆ [0,∞[ is a finite set containing both 0 and a, enumerated in increasing order
as (t0, . . . , tn) with a = tj , and set z = ω(a). This time, let f : RJ → R be a bounded Borel measurable
function. Then
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∫
fπJdµ̂ωa =

∫
. . .

∫
f(e, x1, . . . , xn)ν(tn−1,tn)

ωaxn−1
(dxn) . . . ν

(0,t1)
ωa0 (dx1)

=

∫
. . .

∫∫
. . .

∫
f(e, x1, . . . , xj−1, xj , xj+1, . . . , xn)

ν(tn−1,tn)
xn−1

(dxn) . . . ν(a,tj+1)
z (dxj+1)δz(dxj) . . . δω(t1)(dx1)

(reading from the formulae in 455E; here each δx is a Dirac measure on U)

=

∫
. . .

∫
f(e, ω(t1), . . . , z, xj+1, . . . , xn)

ν(tn−1,tn)
xn−1

(dxn) . . . ν(a,tj+1)
z (dxj+1)

=

∫
. . .

∫
f(e, ω(t1), . . . , z, xj+1z, . . . , xnz)

ν(tn−1,tn)
xn−1

(dxn) . . . ν(a,tj+1)
e (dxj+1)

(applying (a) to the function (y0, . . . , yn−j) 7→ f(e, . . . , ω(tj−1), y0, . . . , yn−j))

=

∫
. . .

∫
g(e, xj+1, . . . , xn)ν(tn−1,tn)

xn−1
(dxn) . . . ν(a,tj+1)

e (dxj+1)

(where g(xj , . . . , xn) = f(ω(0), ω(t1), . . . , ω(tj−1), xjz, . . . , xnz) for xj , . . . , xn ∈ U)

=

∫
. . .

∫
g(e, xj+1, . . . , xn)ν(tn−1−a,tn−a)

xn−1
(dxn) . . . ν(0,tj+1−a)

e (dxj+1)

(because ν
(s−a,t−a)
x E = λt−s(Ex−1) = ν

(s,t)
x E whenever E ⊆ RK is Borel, x ∈ U and a ≤ s < t)

=

∫
gπKdµ̂

(where K = {0, tj+1 − a, . . . , tn − a})

=

∫
fπJφωadµ̂ =

∫
fπJd(µ̂φ−1

ωa).

As f and J are arbitrary, µ̂ωa and µ̂φ−1
ωa agree on the algebra

⊗
[0,∞[ B(U) generated by sets of the form

{ω : ω(t) ∈ E} for t ≥ 0 and Borel sets E ⊆ U . By the Monotone Class Theorem, the measures agree on

the σ-algebra
⊗̂

[0,∞[B(U) generated by
⊗

[0,∞[ B(U); because they are both defined as complete measures

inner regular with respect to this σ-algebra, they are identical.

(c) The defining formula for φωa makes it plain that φωa(ω′) is càdlàg whenever ω, ω′ are càdlàg. If W
is measured by µ̈ωa, there is a W ′ ∈ dom µ̂ωa such that W = W ′ ∩ Cdlg. In this case, φ−1

ωa [W ] ∩ Cdlg =
φ−1
ωa [W ′] ∩ Cdlg while φ−1

ωa [W ′] ∈ dom µ̂; so µ̈φ−1
ωa [W ] is defined and equal to

µ̂φ−1
ωa [W ′] = µ̂ωaW

′ = µ̈ωaW .

455T Corollary Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let 〈λt〉t>0 be a family of Radon probability measures on U such
that λs ∗ λt = λs+t for all s, t > 0 and limt↓0 λtG = 1 for every open neighbourhood G of the identity e

in U ; let µ̂ be the measure on U [0,∞[ defined from 〈λt〉t>0 by the method of 455Pc. Let Cdlg be the set of

càdlàg functions from [0,∞[ to U , µ̈ the subspace measure on Cdlg and Σ̈ its domain. For t ≥ 0, let Σ̈t be

{F : F ∈ Σ̈, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Cdlg and ω′↾[0, t] = ω↾[0, t]}

and ˆ̈Σt = {F△A : F ∈ Σ̈t, µ̈A = 0}. Then ˆ̈Σt =
⋂
s>t

ˆ̈Σs includes Σ̈+
t =

⋂
s>t Σ̈s.

proof (a) I show first that Σ̈+
t ⊆ ˆ̈Σt. PPP Take E ∈ Σ̈+

t . Let τ : Cdlg → [0,∞] be the constant stopping time
with value t, and f the characteristic function χE. Set g(ω) =

∫
Cdlg

fdµ̈ωt when this is defined in R, where

µ̈ωt is defined as in 455O; then g is a conditional expectation of f on Σ̈τ (455Ob). Since

D.H.Fremlin



96 Perfect measures, disintegrations and processes 455T

Σ̈+
τ = {H : H ∈ Σ̈, H ∩ {ω : τ(ω) ≤ s} ∈ Σ̈+

s for every s ≥ 0}
= {H : H ∈ Σ̈, H ∈ Σ̈+

s for every s ≥ t} = Σ̈+
t

contains E, g =a.e. χE. Setting F = {ω : ω ∈ dom g, g(ω) = 1}, F ∈ Σ̈ (remember that µ̈ is complete), and
E△F is negligible.

Now 455Sc, with 235Gb, tells us that

g(ω) =
∫
Cdlg

fdµ̈ωt =
∫
Cdlg

fφωtdµ̈

whenever either integral is defined in R, where

φωt(ω
′)(s) = ω(s) if s < t,

= ω′(s− t)ω(t) if s ≥ t.

If ω0, ω1 ∈ Cdlg and ω0↾[0, t] = ω1↾[0, t], then φω0t = φω1t so g(ω0) = g(ω1) if either is defined. It follows

that ω0 ∈ F iff ω1 ∈ F . As ω0 and ω1 are arbitrary, F ∈ Σ̈t and E ∈ ˆ̈Σt. QQQ

(b) Of course ˆ̈Σt ⊆ ˆ̈Σs whenever s > t. Putting (a) and 455L(f-ii) together,

⋂
s>t

ˆ̈Σs = {E△A : E ∈ Σ̈+
t , µ̈A = 0} ⊆ {E△A : E ∈ ˆ̈Σt, µ̈A = 0} = ˆ̈Σt

and we have equality.

455U Theorem Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let 〈λt〉t>0 be a family of Radon probability measures on U such
that λs ∗ λt = λs+t for all s, t > 0 and limt↓0 λtG = 1 for every open neighbourhood G of the identity e

in U ; let µ̂ be the measure on U [0,∞[ defined from 〈λt〉t>0 by the method of 455Pc. Let Cdlg be the set of

càdlàg functions from [0,∞[ to U , µ̈ the subspace measure on Cdlg and Σ̈ its domain. For t ≥ 0, let Σ̈t be

{F : F ∈ Σ̈, ω′ ∈ F whenever ω ∈ F , ω′ ∈ Cdlg and ω′↾[0, t] = ω↾[0, t]},

and ˆ̈Σt = {F△A : F ∈ Σ̈t, µ̈A = 0}; let τ : Cdlg → [0,∞] be a stopping time adapted to 〈 ˆ̈Σt〉t≥0. Define
φτ : Cdlg × Cdlg → Cdlg by setting

φτ (ω, ω′)(t) = ω′(t− τ(ω))ω(τ(ω)) if t ≥ τ(ω),

= ω(t) otherwise.

Then φτ is inverse-measure-preserving for the product measure µ̈× µ̈ on Cdlg × Cdlg and µ̈ on Cdlg.

proof (a) To begin with (down to the end of (c) below), suppose that τ is adapted to 〈Σ̈+
t 〉t≥0, where

Σ̈+
t =

⋂
s>t Σ̈s for t ≥ 0. In this case we know from 455P that the conditions of 455O are satisfied. I aim to

apply 455Oa, using 455S to give a description of the measures µ̈ω,τ(ω). Now if f is µ̈-integrable, we have, in
the notation of 455O and 455S,

∫

Cdlg

fdµ̈ =

∫

Cdlg

∫

Cdlg

fdµ̈ω,τ(ω)µ̈(dω)

(455Oa)

=

∫

Cdlg

∫

Cdlg

fφω,τ(ω)(ω
′)µ̈(dω′)µ̈(dω)

(455Sc)

=

∫

Cdlg

∫

Cdlg

fφτ (ω, ω′)µ̈(dω′)µ̈(dω)

.
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(b) To convert the repeated integral into the product measure, we have still to check for measurability.

The point is that, writing Λ for the domain of the product measure µ̈×µ̈, φτ is (Λ,
⊗̂

[0,∞[B(U))-measurable.

PPP(i) Consider first the case in which U is separable. Take t ≥ 0. Then Et = {ω : ω ∈ Cdlg, τ(ω) ≤ t}
belongs to Σ̈. The function

ω 7→ t− τ(ω) : Et → [0,∞[

is (Σ̈,B([0,∞[))-measurable; the function

(ω′, s) 7→ ω′(s) : Cdlg × [0,∞[ → U

is (Σ̈⊗̂B([0,∞[),B(U))-measurable, by 4A3Qc, because U is Polish; so the function

(ω, ω′) 7→ ω′(t− τ(ω)) : Et × Cdlg → U

is (Σ̈⊗̂Σ̈,B(U))-measurable. Next, similarly,

ω 7→ ω(τ(ω)) : Et → U

is (Σ̈,B(U))-measurable, while

(y, z) 7→ yz : U × U → U

is (B(U)⊗̂B(U),B(U))-measurable, because U is a second-countable topological group. But this means that

(ω, ω′) 7→ ω′(t− τ(ω))ω(τ(ω)) : Et × Cdlg → U

is (Σ̈⊗̂Σ̈,B(U))-measurable. On the other hand, of course,

(ω, ω′) 7→ ω(t) : (Cdlg \ Et) × Cdlg → U

is (Σ̈⊗̂Σ̈,B(U))-measurable. Putting these together,

(ω, ω′) 7→ φτ (ω, ω′)(t) : Cdlg × Cdlg → U

is (Σ̈⊗̂Σ̈,B(U))-measurable. This is true for every t ≥ 0, so φτ ↾Cdlg×Cdlg is (Σ̈⊗̂Σ̈,
⊗̂

[0,∞[B(U))-measurable.

(ii) For the general case, we can use the trick in 455H. There is a separable subgroup U ′ of U such

that ν
(0,q)
e U ′ = 1 for every rational q ≥ 0. We can suppose that U ′ is a closed subgroup of U . Because U ′

is closed,

C ′
dlg = {ω : ω ∈ Cdlg, ω(t) ∈ U ′ for every t ≥ 0}

= {ω : ω ∈ Cdlg, ω(q) ∈ U ′ for every q ∈ Q ∩ [0,∞[}

is µ̈-conegligible in Cdlg, and because U ′ is a subgroup, φτ (ω, ω′) ∈ C ′
dlg for all ω, ω′ ∈ C ′

dlg. Now the

argument of (i) shows that φτ ↾C
′
dlg×C ′

dlg is (Σ̈⊗̂Σ̈,
⊗̂

[0,∞[B(U ′))-measurable, therefore (Σ̈⊗̂Σ̈,
⊗̂

[0,∞[B(U))-

measurable. Since C ′
dlg × C ′

dlg is (µ̈× µ̈)-conegligible, φτ is (Λ,
⊗̂

[0,∞[B(U))-measurable. QQQ

(c) It follows that if E ∈ ⊗̂
[0,∞[B(U) then, setting f = χ(E ∩ Cdlg) in (a),

(µ̈× µ̈)φ−1
τ [E ∩ Cdlg] =

∫
f(φτ (ω, ω′))µ̈(dω′)µ̈(dω) =

∫
fdµ̈ = µ̈(E ∩ Cdlg)

by Fubini’s theorem. But µ̈ is the subspace measure generated by the completion of a measure with domain⊗̂
[0,∞[B(U), so is inner regular with respect to sets of the form E ∩ Cdlg with E ∈ ⊗̂

[0,∞[B(U); by 412K,

φτ is inverse-measure-preserving.

(d) Now suppose only that τ is adapted to 〈 ˆ̈Σt〉t≥0. By 455L(f-iii), there is a stopping time τ ′ : Cdlg →
[0,∞], adapted to 〈Σ̈+

t 〉t≥0, such that τ ′ =a.e. τ . Now we see from (a)-(c) that φτ ′ is inverse-measure-
preserving, while

{(ω, ω′) : φτ ′(ω, ω′) 6= φτ (ω, ω′)} ⊆ {(ω, ω′) : τ ′(ω) 6= τ(ω)}
is (µ̈× µ̈)-negligible, so φτ also is inverse-measure-preserving.
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455X Basic exercises (a) Let 〈An〉n≥1 be a non-increasing sequence of subsets of [0, 1], all with Lebesgue
outer measure 1, and with empty intersection. Set T = {0} ∪ { 1

n : n ≥ 1}, Ω0 = {0}, Ω1/n = An for n ≥ 1;

for t ∈ T let Tt be the Borel σ-algebra of Ωt. For s < t in T and x ∈ Ωs define a Borel measure ν
(s,t)
x on Ωt

by saying that

if n ≥ 1, then ν
(0,1/n)
0 (E ∩An) is the Lebesgue measure of E for every Borel set E ⊆ [0, 1],

if 0 < s < t, then ν
(s,t)
x {x} = 1.

Show that 〈ν(t,u)y 〉y∈Ωt
is a disintegration of ν

(s,u)
x over ν

(s,t)
x whenever s < t < u in T and x ∈ Ωs. Taking

x∗ = 0, show that there is no measure µ on
∏
t∈T Ωt with the properties listed in 455A.

(b) Let T , t∗, 〈(Ωt,Tt)〉t∈T , x∗, 〈ν(s,t)x 〉s<t,x∈Ωs
and µ be as in 455A. Suppose that we are given a

family 〈(Ω′
t,T

′
t, πt)〉t∈T such that (α) Ω′

t is a set, T′
t is a σ-algebra of subsets of Ω′

t and πt : Ωt → Ω′
t is

a surjective (Tt,T
′
t)-measurable function for every t ∈ T (β) whenever s < t in T and x, x′ ∈ Ωs are

such that πs(x) = πs(x
′), then ν

(s,t)
x and ν

(s,t)
x′ agree on {π−1

t [F ] : F ∈ T′
t}. (i) Show that if we set

ν́
(s,t)
w (F ) = ν

(s,t)
x π−1

t [F ] whenever s < t in T , x ∈ Ωs, w = πs(x) and F ∈ T′
t, then every ν́

(s,t)
w is a perfect

probability measure, and 〈ν́(t,u)z 〉z∈Ω′
t

is a disintegration of ν́
(s,u)
w over ν́

(s,t)
w whenever s < t < u in T and

w ∈ Ω′
s. (ii) Let µ′ be the measure on Ω′ =

∏
t∈T Ω′

t defined by the method of 455A from πt∗(x∗) and

〈ν́(s,t)w 〉s<t,w∈Ω′
s
. Show that π : Ω → Ω is inverse-measure-preserving for µ and µ′, where π(ω)(t) = πt(ω(t))

for ω ∈ Ω and t ∈ T .

(c) In 455E, set T = {−1} ∪ [0,∞[, let each Ωt be R, and for x ∈ R, 0 ≤ s < t let ν
(s,t)
x be the Dirac

measure on R concentrated at ψ(x, t− s) on R, where

ψ(x, t) =
x

1−xt
if xt 6= 1 and x 6= 0,

= 0 if xt = 1,

= −1

t
if x = 0.

Let ν be any atomless Radon probability measure on R, and complete the definition by setting ν
(−1,t)
x (E) =

ν{y : ψ(y, t) ∈ E} whenever t ≥ 0 and this is defined; set x∗ = 0. Show that the conditions of 455E are
satisfied, that the measure µ̂ constructed in 455E is a distribution on RT , and that µ̂ is not τ -additive.
(Hint : setting φ(y)(−1) = 0, φ(y)(t) = ψ(y, t) for t ≥ 0 and y ∈ R, show that φ : R → RT is inverse-
measure-preserving for ν0 and µ̂, and that every point of RT has a neighbourhood of zero measure.)

(d) Let T , t∗, 〈Ωt〉t∈T , x∗, 〈ν(s,t)x 〉s<t,x∈Ωs
and µ̂ be as in 455E. Suppose that we are given a family

〈(Ω′
t, πt)〉t∈T such that (α) Ω′

t is a Hausdorff space and πt : Ωt → Ω′
t is a continuous surjective function for

every t ∈ T (β) whenever s < t in T and x, x′ ∈ Ωs are such that πs(x) = πs(x
′), then the image measures

ν
(s,t)
x π−1

t and ν
(s,t)
x′ π−1

t on Ω′
t are the same. (i) Show that if we set ν́

(s,t)
w = ν

(s,t)
x π−1

t whenever s < t in T ,

x ∈ Ωs and w = πs(x), then every ν́
(s,t)
w is a Radon probability measure, and 〈ν́(t,u)z 〉z∈Ω′

t
is a disintegration

of ν́
(s,u)
w over ν́

(s,t)
w whenever s < t < u in T and w ∈ Ω′

s. (ii) Let µ̂′ be the measure on Ω′ =
∏
t∈T Ω′

t

defined by the method of 455E from πt∗(x∗) and 〈ν́(s,t)w 〉s<t,w∈Ω′
s
. Show that π : Ω → Ω is inverse-measure-

preserving for µ̂ and µ̂′, where π(ω)(t) = πt(ω(t)) for ω ∈ Ω and t ∈ T .

(e) Let U be a locally compact metrizable group and ν any Radon probability measure on U . For t > 0
let λt be the Radon probability measure

e−t(δe + tν +
t2

2!
ν ∗ ν +

t3

3!
ν ∗ ν ∗ ν + . . . ),

where δe is the Dirac measure on U concentrated at the identity e of U , and the sum is defined as in 234G16.
Show that 〈λt〉t>0 satisfies the conditions of 455P (with respect to an appropriate metric on U). (Hint :
4A5Mb, 4A5Q(iv).)

16Formerly 112Ya.
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(f) Let U , 〈λt〉t>0 and µ̂ be as in 455Pc. Let V be a Hausdorff space, z∗ a point of V and • a continuous

action of U on V ; set π(x) = x•z∗ for x ∈ U . Define 〈ν(s,t)x 〉0≤s<t,x∈U from 〈λt〉t>0 as in 455P. (i) Show that

if x, x′ ∈ U and π(x) = π(x′), then the image measures ν
(s,t)
x π−1, ν

(s,t)
x′ π−1 on V are equal whenever s < t.

(ii) Let µ̂′ be the measure on V [0,∞[ defined as in 455Xd. Show that if we define π̃ : U [0,∞[ → V [0,∞[ by
setting π̃(ω)(t) = ω(t)•z∗ for every ω ∈ U [0,∞[ and t ≥ 0, π̃ is inverse-measure-preserving for µ̂ and µ̂′ and
also for the Radon measures extending them; moreover, that the restriction of π̃ to Cdlg(U), the space of
càdlàg functions from [0,∞[ to U , is inverse-measure-preserving for the subspace measures on Cdlg(U) and
Cdlg(V ).

>>>(g) For t > 0, let λt be the normal distribution on R with expectation 0 and variance t. Show that
〈λt〉t>0 satisfies the conditions of 455Q.

>>>(h) For t > 0, let λt be the Poisson distribution with expectation t, that is, λt(E) = e−t
∑
m∈E∩N t

m/m!
for E ⊆ R (cf. 285Q, 285Xr). (i) Show that 〈λt〉t>0 satisfies the conditions of 455Q. (ii) Show that if µ̃ is the
Radon measure defined from 〈λt〉t>0 as in 455Pc, then ω is non-decreasing and ω[ [0,∞[ ] = N for µ̃-almost
every ω ∈ R[0,∞[.

>>>(i) For t > 0, let λt be the Cauchy distribution with centre 0 and scale parameter t, that is, the

distribution with probability density function x 7→ t

π(x2+t2)
(285Xp). (i) Show that 〈λt〉t>0 satisfies the

conditions of 455Q. (ii) Show that if µ̂ is the corresponding distribution on R[0,∞[, then C([0,∞[) is µ̂-
negligible. (Hint : estimate Pr(|X(i+1)/n − Xi/n| ≤ ǫ for every i < n).) (iii) Suppose that α > 0. Define

Tα : R[0,∞[ → R[0,∞[ by setting (Tαω)(t) =
1

α
ω(αt) for t ≥ 0 and ω ∈ R[0,∞[. Show that Tα is inverse-

measure-preserving for µ̂.

>>>(j)(i) The standard gamma distribution with parameter t is the probability distribution λt on

R with probability density function x 7→ 1

Γ(t)
xt−1e−x for x > 0. Show that its expectation is t. (Hint :

225Xh(iv).) Show that its variance is t. (ii) Show that 〈λt〉t>0 satisfies the conditions of 455Q. (Hint :
272U17, 252Yf.) (iii) Show that limt↓0 tΓ(t) = 1, so that limt↓0

1
tλt [1,∞[ =

∫∞
1

1
x te

−xdx > 0. (iv) Show

that if µ̃ is the Radon measure on R[0,∞[ defined from 〈λt〉t>0 as in 455Pc, then {ω : ω is strictly increasing
and not continuous} is µ̃-conegligible.

(k) Let U be an abelian Hausdorff topological group. Let 〈λ′t〉t>0, 〈λ′′t 〉t>0 be two families of Radon
probability measures on U and set λt = λ′t ∗ λ′′t for t > 0. (i) Show that if λ′s+t = λ′s ∗ λ′t and λ′′s+t = λ′′s ∗ λ′′t
for all s, t > 0, then λs+t = λs ∗ λt for all s, t > 0. (ii) Show that if limt↓0 λ′tG = limt↓0 λ′′tG = 1 for every
open set containing the identity e of U , then limt↓0 λtG = 1 for every open set G containing e. (iii) Now
suppose that U is metrizable and complete under a right-translation-invariant metric inducing its topology.
Let µ̂′, µ̂′′ and µ̂ be the measures on U [0,∞[ defined from 〈λ′t〉t>0, 〈λ′′t 〉t>0 and 〈λt〉t>0 as in 455Pc. Set
θ(ω, ω′)(t) = ω(t)ω′(t) for ω, ω′ ∈ U [0,∞[ and t ≥ 0. Show that θ : U [0,∞[ × U [0,∞[ → U [0,∞[ is inverse-
measure-preserving for µ̂′ × µ̂′′ and µ̂. (iv) Repeat (iii) for the subspace measures on the space of càdlàg
functions from [0,∞[ to U .

455Y Further exercises (a) Let 〈Xn〉n∈Z be a double-ended sequence of real-valued random variables
such that (i) for each n ∈ Z, Yn = Xn+1 − Xn is independent of {Xi : i ≤ n} (ii) 〈Yn〉n∈Z is identically
distributed. Show that the Yn are essentially constant. (Hint : 285Yc.)

(b) For 0 ≤ s < t and x ∈ R define a Radon probability measure ν
(s,t)
x on R by saying that

17Formerly 272T.
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ν(s,t)x =
1−t

1−s
δ0 +

t−s

1−s
λ[s,t] if x = 0 and t ≤ 1,

=
t−1

1−s
δ0 +

2−t−s

1−s
λ[s,2−t] if x = 0 and 1 ≤ t < 2 − s,

= δ0 if 0 < x < 1 and 2 − x ≤ t,

= δx otherwise,

writing δx for the Dirac measure on R concentrated at x, and λ[s,t] for the uniform distribution based on the

interval [s, t]. (i) Show that 〈ν(s,t)x 〉s<t,x∈R satisfies the conditions of 455E. (ii) Starting from x∗ = 0, let µ̂

be the corresponding measure on R[0,∞[. Show that µ̂∗Cdlg = 1, where Cdlg is the space of càdlàg functions

from [0,∞[ to R. (iii) Show that µ̂ has a unique extension to a Radon measure µ̃ on R[0,∞[. (iv) Show that
µ̃Cdlg = 0. (v) Show that the subspace measure on Cdlg induced by µ̂ is not τ -additive.

(c) A probability distribution λ on R is infinitely divisible if for every n ≥ 1 it is expressible as a
convolution ν ∗ . . . ∗ ν of n copies of a probability distribution. Let φ be the characteristic function (§285)
of an infinitely divisible distribution λ. (i) Show that for each n ≥ 1 there is a characteristic function φn
such that φnn = φ. (ii) Show that if δ > 0 is such that φ(y) 6= 0 for |y| ≤ δ, then limn→∞ φn(y) = 1
for |y| ≤ δ. (iii) Show that limn→∞ φn(y) = 1 for every y ∈ R. (Hint : for any characteristic function ψ,
4Reψ(y) ≤ 3 + Reψ(2y) for every y.) (iv) Show that φ is never zero, and that there is a unique family
〈λt〉t>0 of distributions satisfying the conditions in 455P and such that λ1 = λ. (v) Show that if λ has finite
expectation, then E(λt) is defined and equal to tE(λ) for every t > 0. (vi) Show that if λ has finite variance,
then Var(λt) is defined and equal to tVar(λ) for every t > 0.

(d) Let U be a Hausdorff topological group and 〈λt〉t>0 a family of Radon probability measures on U

such that λs+t = λs ∗λt whenever s, t > 0. (i) Show that we can define a family 〈ν(s,t)x 〉0≤s<t,x∈U as in 455P,

and that 〈ν(t,u)y 〉y∈U is a disintegration of ν
(s,u)
x over ν

(s,t)
x whenever x ∈ U and s < t < u, so that, starting

from x∗ = e the identity of U , we can apply 455E to obtain a measure µ̂ on U [0,∞[. (ii) Now suppose that

U = Rr where r ≥ 1. For t > 0, E ⊆ U set
↔

λtE = λt(−E) whenever λt measures −E; now set λ#t = λt ∗
↔

λt.

Show that λ#s+t = λ#s ∗ λ#t for all s, t > 0, and that limt↓0 λ
#
t G = 1 for every open neighbourhood G of 0.

Show that µ̂ has an extension to a Radon measure on (Rr)[0,∞[.

(e) Let Y be a metrizable space and Cdlg the set of càdlàg functions from [0,∞[ to Y . For ω ∈ Cdlg and
t ≥ 0 set Xt(ω) = ω(t). Let Σ be a σ-algebra of subsets of Cdlg such that Xt : Cdlg → Y is measurable for
every t ≥ 0. For t ≥ 0 let Σt be

{F : F ∈ Σ, ω′ ∈ F whenever ω, ω′ ∈ Cdlg, ω ∈ F and ω↾[0, t] = ω′↾[0, t]}.

Show that 〈Xt〉t≥0 is progressively measurable with respect to 〈Σt〉t≥0.

455 Notes and comments This section has grown into the longest in this treatise. There are some big
theorems here. I am trying to do two rather different things: sketch the fundamental properties of Markov
processes, and work through the details of particular realizations of them. I remarked in the introduction to
Chapter 27 that probability theory is not really about measure spaces and measurable functions. It is much
more about distributions, and by ‘distribution’ here I do not really mean a Radon probability measure on
Rr, let alone a completed Baire measure on RI , as in 454K. I mean rather the family of probabilities of
the type Pr(Xi ≤ αi ∀ i ≤ n); everything else is formal structure, offering proofs and (I hope) some kinds

of deeper understanding, but essentially secondary. The appalling formulae above (ν
(tj ,tj+1)

ω,τ(ω),xj
(dxj+1), Σ̈⊗̂Σ̈

and so on) arise from my attempts to distinguish clearly among the host of probability spaces which present
themselves to us as relevant.

However one of the messages of this section is that for many stochastic processes it is possible to identify
semi-canonical realizations. We already have a crude one in 454J; starting from any family 〈Xi〉i∈I of real-
valued random variables on any probability space, we can move to a measure on RI which is in some sense
unique and carries the probabilistic content of the original family. I noted in §454 that when this measure is
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τ -additive we have a canonical extension to a quasi-Radon measure, just as good regarded as a realization
of the abstract process, and possibly with useful further properties. In 455H we find that many of the most
important processes can be represented by Radon measures; I do not think these Radon measures have been
much studied, except, of course, in the case of Brownian motion. But 455O and 455U show that for some
purposes we are better off with quasi-Radon measures on the set of càdlàg functions. The most important
stopping times are the hitting times of 455M, which are adapted to families of the form 〈Σ+

t 〉t≥0; and for
such a stopping time to be approximated by discrete stopping times, as in parts (a-vi) and (b-vii) of the
proof of 455O, we need to know that our paths are continuous on the right.

It is of course true that when the complete metric space U , in 455O or later, is separable, then we have a
standard Borel structure on the space Cdlg of càdlàg functions (4A3Qb), so that the measures µ̈ are Radon
measures for appropriate Polish topologies on Cdlg.

Returning to the detailed exposition, 455A is an attempt at a continuous-time version of 454H. I use the
letters t, T to suggest the probabilistic intuitions behind these results; we think of the spaces Ωt in 455A as

being the sets of possible states of a system at ‘time’ t, so that the measures ν
(s,t)
x are descriptions of how

we believe the system is likely to evolve between times s and t, having observed that it is in state x at time
s. In the case of ‘discrete time’, when we observe the system only at clearly separated moments, it is easy to
handle non-Markov processes, in which evolution between times n−1 and n can depend on the whole history

up to time n− 1; thus in 454H the measures νz = ν
(n−1,n)
z are defined for every z ∈ ∏

i<nXi, but we make

no attempt to describe measures ν
(n−1,m)
z for any m > n. In ‘continuous time’ we need to say something

about arbitrary time steps, and it is hard to formulate a consistency condition to fill the place of (†) in 455A
without limiting the kind of process being examined. At the cost of an appalling increase in complexity, of
course, the formulae of 455A can sometimes be adapted to general processes, if we replace the ‘current’ state

space Ωt by the ‘historical’ state space
∏
t∗≤s≤t Ωs. (For we can hope that (

∏
t∗≤s≤t Ωs,

⊗̂
t∗≤s≤tTs) will

have the ‘perfect measure property’ of 454Xd.) We should finish up with a measure on
∏
t∈T (

∏
t∗≤s≤t Ωs).

But the important applications, even when not Markov, are open to more economical and more enlightening
approaches. We really do need a least element t∗ of T ; see 455Ya.

I have not yet come to the reason why this section is such hard work. This is in its attempt to analyze the

‘Markov property’ of the distributions being examined here. The point about the families 〈ν(s,t)x 〉s<t,x∈Ωs

of transitional probabilities is that they not only give us stochastic processes, as in 455A, but also recipes

for conditional expectations, derived from the truncated families 〈ν(s,t)x 〉a≤s<t,x∈Ωs
. These lead to measures

µ′
ax on

∏
t≥a Ωt which can be thought of as distributions of future paths given that we have reached the

point x at time a. It is no surprise that these should provide straightforward descriptions of conditional
expectations on algebras of the form

{F : F is determined by coordinates in [t∗, t]}.

Without much more trouble, we can extend this to suitable algebras defined from simple ‘stopping times’, as
in 455C. The arguments there have some technical features which you may find annoying (and I invite you
to find your own way past the complications), but are essentially elementary, as they have to be in such a
general context. It is interesting that we can move to stopping times taking countably many values without
further difficulty.

However, we are still only seven pages into the section, and not everything to come is as straightforward
as the completion processes described in 455E. An essential aspect of continuous-time Markov processes is
the possibility of stopping times which take a continuum of values, as is typically the case in the examples
provided by 455M. These are much harder to deal with, and we have to restrict sharply the class of processes
we examine. The particular restriction I have chosen is described by the definitions in 455F. I should of
course say that these, particularly 455Fb (‘uniformly time-continuous on the right’) are more limiting than is
strictly necessary; in ‘Feller processes’ (Rogers & Williams 94, III.6) we have a slightly different approach
to the same intuitive target. The aim is to find sufficient conditions for the ‘strong Markov property’, in
which we can find disintegrations and conditional expectations associated with general stopping times, as in
455O. To do this, we have to abandon the set Ω = U [0,∞[ and move to the correct set of full outer measure,
the set Cdlg of ‘càdlàg’ functions, which dominates the central part of this section. The first thing the
definition 455Fb must do is to ensure that Cdlg has full outer measure not only for the distribution on Ω but
also for the conditional distributions we shall be using (455G). If U is a Polish space, Cdlg has a standard
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Borel structure (4A3Qb), which is comforting.

I hope that you are becoming resigned to the view that the notational complexities of this section are not

solely due to an inconsiderate disregard for the reader’s eyesight. The original probability measures ν
(s,t)
x of

455A really do form a three-parameter family, the conversion of these into finite-dimensional distributions

λJ really is a multiple repeated integral, the derived probabilities ν
(s,t)
ωax in 455B are a five-parameter system.

Without wishing to insist on my use of grave accents in the proof of 455E, it is surely safer to have a way
of distinguishing between completed and uncompleted measures, and while the result may be ‘obvious’, I
think there are some twists on the way which not everyone would foresee. Again, if you wish to dispense
with the double-dotted symbols from 455O on, you will have to find some other way of reminding yourself
that we are looking at a new representation of the process on a new probability space.

This treatise as a whole is theory-heavy and example-light. I assure you that all the theory here is in fact
example-driven. You should start with the four examples of Lévy processes in 455Xg-455Xj. Of these, 455Xg
is Brownian motion, the starting point of the whole theory; I will return to this in §477. A problem with
the formalization in 455A is that we have to start with an exact description of the transitional probabilities

ν
(s,t)
x . It does not help at all in establishing the existence of such families matching some probabilistic

intuition. Only in rather special cases do we have elegant formulae for these systems. In 455Xb, 455Xd and
455Xf I try to show how the general theory gives us methods of using one system to build others.

I suppose that 455O is the summit; from here on the going is easier. In 455P I introduce ‘Lévy processes’,
a particularly interesting class intermediate in generality between the continuous processes of 455O and
Brownian motion. These have of course mostly been considered in the case U = R, but the extension to
Banach spaces U is an obvious one, and we can even manage non-abelian groups if we are careful. (For an
elementary example of a process which can really exploit a non-abelian group, see 455Xe.) The ‘Poisson
process’ in 455Xh is by some way the most important example after Brownian motion itself. Lévy processes
on R are well understood; the family 〈λt〉t>0 is determined by λ1, any ‘infinitely divisible’ distribution can
be taken for λ1 (455Yc), and a complete description of infinitely divisible distributions is provided by the
Lévy-Khintchine representation theorem (Fristedt & Gray 97, 16.3). As a final result in the general
theory, I give an alternative version of the strong Markov property in 455U. For Lévy processes, we can
re-start, following any of the usual stopping times, with an exact copy of the process, and this corresponds
to a true inverse-measure-preserving function from C2

dlg to Cdlg.

A comment on 455T. The idea behind the σ-algebras Σt, Σ̈t of 455M, 455O and later is that they consist
of events ‘observable at time t’, that is, determined by the path taken up to and including time t. We
quickly find ourselves forced to consider augmented algebras Σ+

t =
⋂
s>t Σs, where somehow we are allowed

infinitesimal intuitions into the immediate future. (A typical situation is that of 455Mb when the set A
is open, so that if ω(t) ∈ A we can expect that there will be paths which continue immediately into A,
and others which do not, and it may not be obvious which, if either, should be regarded as typical.) The

question is, whether Σt is really different from Σ+
t . The claim of 455T is that Σ̈+

t is included in a kind of

completion ˆ̈Σt of Σ̈t. Of course the completion is in terms of the measure µ̈ on the whole space Cdlg of
càdlàg paths; we need advance knowledge of which subsets of Cdlg are negligible. But if we are interested

in the measure algebra A of µ̈ and its closed subalgebras At = {E• : E ∈ Σ̈t}, 455T tells us that (in the
context of Lévy processes) we can expect to have At =

⋂
s>t As. Turning to the definition of µ̈ in 455O as a

subspace measure, we see that A can be regarded as the measure algebra of the measure µ̂ on U [0,∞[ defined
by the formulae of 455E; and even that At can be identified with

{E• : E ∈ dom µ̂, E is determined by coordinates in [0, t]}
(see part (a-ii) of the proof of 455O). But I think that this last step will not usually be helpful, because (as
noted above) µ̈ will commonly be a Radon measure for an appropriate topology, while µ̂ is likely at best to
be the completion of a Baire measure.

I have cast the second half of the section in terms of measures on Cdlg, because it is reasonably well
adapted to Lévy processes in general. When we come to look at particular processes, we often find that
there is a smaller class of functions (e.g., continuous functions in the case of Brownian motion, or non-
decreasing N-valued functions in the case of the Poisson process) which is fully adequate and easier to focus
on. For the detailed study of such processes, as in §477 below, I think it will usually be helpful to make the
shift. But there may be rival conegligible subsets of Cdlg with different virtues, as in 477Ef.
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Version of 19.5.10

456 Gaussian distributions

Uncountable powers of R are not as a rule measure-compact (439P, 455Xc; see also 533J in Volume
5). Accordingly distributions, in the sense of 454K, need not be τ -additive. But some, at least, of the
distributions most important to us are indeed τ -additive, and therefore have interesting canonical extensions.
This section is devoted to a remarkable result, taken from Talagrand 81, concerning a class of distributions
which are of great importance in probability theory. It demands a combination of techniques from classical
probability theory and from the topological measure theory of this volume. I begin with the definition
and fundamental properties of what I call ‘centered Gaussian distributions’ (456A-456I). These are fairly
straightforward adaptations of the classical finite-dimensional theory, and will be useful in §477 when we
come to study Brownian motion. Another relatively easy idea is that of ‘universal’ Gaussian distribution
(456J-456L). In 456M we come to a much deeper result, a step towards classifying the ways in which
a Gaussian family of n-dimensional random variables can accumulate at 0. The ideas are combined in
456N-456O to complete the proof of Talagrand’s theorem that Gaussian distributions on powers of R are
τ -additive.

456A Definitions (a) Write µG for the Radon probability measure on R which is the distribution of a

standard normal random variable, that is, the probability distribution with density function x 7→ 1√
2π
e−x

2/2

(274A). For any set I, write µ
(I)
G for the measure on RI which is the product of copies of µG; this is always

quasi-Radon (415E/453J); if I is countable, it is Radon (417Q); if I = n ∈ N \ {0}, it is the probability
distribution with density function x 7→ (2π)−n/2e−x .x/2 (272I); if I = ∅, it is the unique probability measure
on the singleton set R∅.

(b) I will use the phrase centered Gaussian distribution to mean a measure µ on a power RI of R
such that µ is the completion of a Baire measure (that is, is a distribution in the sense of 454K) and every
continuous linear functional f : RI → R is either zero almost everywhere or is a normal random variable
with zero expectation. (Note that I call the distribution concentrated at the point 0 in RI a ‘Gaussian
distribution’.)

(c) If I is a set and µ is a centered Gaussian distribution on RI , its covariance matrix is the family
〈σij〉i,j∈I where σij =

∫
x(i)x(j)µ(dx) for i, j ∈ I. (The integral is always defined and finite because

each function x 7→ x(i) is either essentially constant or normally distributed, and in either case is square-
integrable.)

456B I start with some fundamental facts about Gaussian distributions.

Proposition (a) Suppose that I and J are sets, µ is a centered Gaussian distribution on RI , and T : RI →
RJ is a continuous linear operator. Then there is a unique centered Gaussian distribution on RJ for which
T is inverse-measure-preserving; if J is countable, this is the image measure µT−1.

(b) Let I be a set, and µ, ν two centered Gaussian distributions on RI . If they have the same covariance
matrices they are equal.

(c) For any set I, µ
(I)
G is the centered Gaussian distribution on RI with the identity matrix for its

covariance matrix.
(d) Suppose that I is a countable set. Then a measure µ on RI is a centered Gaussian distribution iff it

is of the form µ
(N)
G T−1 where T : RN → RI is a continuous linear operator.

(e) Suppose 〈Ij〉j∈J is a disjoint family of sets with union I, and that for each j ∈ J we have a centered
Gaussian distribution νj on RIj . Then the product ν of the measures νj , regarded as a measure on RI , is a
centered Gaussian distribution.

(f) Let I be any set, µ a centered Gaussian distribution on RI and E ⊆ RI a set such that µ measures
E. Writing −E = {−x : x ∈ E}, µ(−E) = µE.

c© 2010 D. H. Fremlin
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104 Perfect measures, disintegrations and processes 456B

proof (a)(i) For Baire sets F ⊆ RJ , set νF = µT−1[F ]; this is always defined because T is continuous
(4A3Kc). This makes ν a Baire probability measure on RJ for which T is inverse-measure-preserving.
Because µ is complete, T is still inverse-measure-preserving for the completion ν̂ of ν (234Ba18). If g :
RJ → R is a continuous linear functional, so is gT : RI → R; now ν{y : g(y) ≤ α} = µ{x : gT (x) ≤ α} for
every α, so g and gT have the same distribution, and are both either zero a.e. or normal random variables.
As g is arbitrary, ν̂ is a centered Gaussian distribution as defined in 456Ab. Of course it is the only such
distribution on RJ for which T is inverse-measure-preserving.

(ii) Now suppose that J is countable. Then RJ is Polish (4A2Qc), so ν is a Borel measure and ν̂ is
a Radon measure (433Cb). RJ has a countable network consisting of Borel sets, µ is perfect (454A(b-iii))
and totally finite, and T is measurable (418Bd), so µT−1 is a Radon measure (451O). Thus ν̂ and µT−1 are
Radon measures agreeing on the Borel sets and must be equal.

(b) The point is that µf−1 = νf−1 for every continuous linear functional f : RI → R. PPP By (a),
µf−1 and νf−1 are Radon measures on R, and by the definition of ‘Gaussian distribution’ each is either a
normal distribution with expectation zero, or is concentrated at 0. By 4A4Be, we can express f in the form
f(x) =

∑
i∈I βix(i) for every x ∈ RI , where {i : βi 6= 0} is finite. In this case

∫
t2(µf−1)(dt) =

∫
f(x)2µ(dx)

(235G19)

=
∑

i,j∈I
βiβj

∫
x(i)x(j)µ(dx)

=
∑

i,j∈I
βiβj

∫
x(i)x(j)ν(dx) =

∫
t2(νf−1)(dt)

because µ and ν have the same covariance matrices. But this means that µf−1 and νf−1 have the same
variance; if this is zero, they both give measure 1 to {0}; otherwise, they are normal distributions with the
same expectation and the same variance, so again are equal. QQQ

By 454P, µ = ν.

(c) Being a completion regular quasi-Radon probability measure (415E), µ
(I)
G is the completion of a Baire

probability measure on RI . If f : RI → R is a continuous linear functional, then it is expressible in the
form f(z) =

∑
i∈I βiz(i), where J = {i : βi 6= 0} is finite. I need to show that f is either zero a.e. or a

normal random variable with expectation 0. If J = ∅ then f = 0 everywhere and we can stop. Otherwise,

f =
∑
i∈J βiπi, where πi(x) = x(i) for i ∈ I and x ∈ RI . Now, with respect to the measure µ

(I)
G , 〈πi〉i∈J is an

independent family of normal random variables with zero expectation (272G). So 〈βiπi〉i∈J is independent
(272E), and βiπi is normal for i ∈ J (274Ae). By 274B, f =

∑
i∈J βiπi is normal, and of course it has zero

expectation. As f is arbitrary, µ
(I)
G is a centered Gaussian distribution.

We have ∫
x(i)x(i)µ

(I)
G (dx) =

∫
t2µG(dt) = 1

for i ∈ I, and ∫
x(i)x(j)µ

(I)
G (dx) =

∫
tµG(dt) ·

∫
tµG(dt) = 0

if i, j ∈ I are distinct. So the covariance matrix of µ
(J)
G is the identity matrix. By (b), it is the only centered

Gaussian distribution with this covariance matrix.

(d)(i) It follows from (c) and (a) that if µ = µ
(N)
G T−1, where T : RN → RI is a continuous linear operator,

then µ is a centered Gaussian distribution.

18Formerly 235Hc.
19Formerly 235I.
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(ii) Now suppose that µ is a centered Gaussian distribution on RI . Set πi(x) = x(i) for i ∈ I and
x ∈ RI ; for i ∈ I, set ui = π•

i in L2 = L2(µ). By 4A4Jh, there is a countable orthonormal family 〈vj〉j∈J
in L2 such that every vj is a linear combination of the ui, and every ui is a linear combination of the vj .
We may suppose that J ⊆ N. For i ∈ I, express ui as

∑
j∈J αijvj , where {j : αij 6= 0} is finite. Define

T : RN → RI by setting (Tz)(i) =
∑
j∈J αijz(j) for every z ∈ RN and i ∈ I. Then T is a continuous linear

functional. Set ν = µ
(N)
G T−1, so that ν is a centered Gaussian distribution on RI , by (a). Because RI is

Polish, both µ and ν must be Radon measures.

(iii) Now µ and ν have the same covariance matrices. PPP If i, i′ ∈ I then

∫
x(i)x(i′)µ(dx) = (ui|ui′) =

∑

j,j′∈J
αijαi′j′(vj |vj′)

=
∑

j∈J
αijαi′j =

∑

j,j′∈J
αijαi′j′

∫
z(j)z(j′)µ(N)

G (dz)

=

∫
(Tz)(i)(Tz)(i′)µ(N)

G (dz) =

∫
x(i)x(i′)ν(dx). QQQ

By (b), µ = ν is of the required form.

(e) We must first confirm that ν is the completion of a Baire measure. PPP If we write Ba(RIj ) for the Baire
σ-algebra of RIj , then each νj is the completion of its restriction νj↾Ba(RIj ), so ν is also the product of the

measures νj↾Ba(RIj ) (254I), and is therefore the completion of its restriction to
⊗̂

j∈JBa(RIj ) (254Ff). But

as Ba(RIj ) =
⊗̂

i∈IjBa(R) for every j (4A3Na),
⊗̂

j∈JBa(RIj ) can be identified with
⊗̂

i∈IBa(R) = Ba(RI),

so that ν is indeed the completion of ν↾Ba(RI). QQQ
Now suppose that f : RI → R is a continuous linear functional. Then we can express f in the form

f(x) =
∑
i∈K αix(i) for every x ∈ RI , where K ⊆ I is finite. Set L = {j : K ∩ Ij 6= ∅} and Kj = K ∩ Ij for

j ∈ L, so that L and every Kj are finite; for j ∈ L and x ∈ RI set fj(x) =
∑
i∈Kj

αix(i). Now f =
∑
j∈L fj .

If we set gj(y) =
∑
i∈Kj

αiy(i) for y ∈ RIj , then gj is either zero a.e. or a normal random variable with

respect to the probability measure νj . Since

ν{x : fj(x) ≤ α} = ν{x : gj(x↾Ij) ≤ α} = νj{y : gj(y) ≤ α}
for every α ∈ R, fj (regarded as a random variable on (RI , ν)) has the same distribution as gj (regarded as
a random variable on (RIj , νj)). This is true for every j ∈ L. Moreover, the different fj , as j runs over L,
are independent. So f =

∑
j∈L fj is the sum of independent random variables which are all either normal

or essentially constant. By 274B again, f also is either normal or essentially constant. And of course its
expectation is zero. As f is arbitrary, this shows that ν is a centered Gaussian distribution.

(f) Set Tx = −x for x ∈ RI , so that T is a continuous linear operator and we have a unique centered
Gaussian distribution ν on RI such that T is inverse-measure-preserving for µ and ν, by (a). For any i,
j ∈ I, ∫

x(i)x(j)ν(dx) =
∫

(Tx)(i)(Tx)(j)µ(dx) =
∫
x(i)x(j)µ(dx),

so µ and ν have the same covariance matrices and are equal, by (b). Accordingly

µ(−E) = µT−1[E] = νE = µE

whenever µ measures E.

456C Since a Gaussian distribution is determined by its covariance matrix (456Bb), we naturally seek
descriptions of which matrices can arise.

Theorem Let I be a set and 〈σij〉i,j∈I a family of real numbers. Then the following are equiveridical:
(i) 〈σij〉i,j∈I is the covariance matrix of a centered Gaussian distribution on RI ;
(ii) there are a (real) Hilbert space U and a family 〈ui〉i∈I in U such that (ui|uj) = σij for all i, j ∈ I;
(iii) for every finite J ⊆ I, 〈σij〉i,j∈J is the covariance matrix of a centered Gaussian distribution on RJ ;
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(iv) 〈σij〉i,j∈I is symmetric and positive semi-definite in the sense that σij = σji for all i, j ∈ I and∑
i,j∈J αiαjσij ≥ 0 whenever J ⊆ I is finite and 〈αi〉i∈J ∈ RJ .

proof (i)⇒(ii) If µ is a centered Gaussian distribution on RI with covariance matrix 〈σij〉i,j∈I , then L2(µ)
is a Hilbert space. Setting Xi(x) = x(i) for x ∈ RI , ui = X•

i belongs to the Hilbert space L2(µ) for every
i ∈ I, and

(ui|uj) =
∫
Xi ×Xjdµ =

∫
x(i)x(j)µ(dx) = σij

for all i, j ∈ I.

(ii)⇒(iv) In this context,

σij = (ui|uj) = (uj |ui) = σji,

∑
i,j∈J αiαjσij =

∑
i,j∈J αiαj(ui|uj) = ‖∑i∈J αiui‖2 ≥ 0.

(iv)⇒(iii) Here we have to know something about symmetric matrices. Given a family 〈σij〉i,j∈I satisfying
the conditions of (iv), and a finite set J ⊆ I, we have a linear operator T : RJ → RJ defined by saying
that (Tz)(i) =

∑
j∈J σijz(j) for z ∈ RJ and i ∈ J . Give RJ = ℓ2(J) its usual inner product, so that

w .z =
∑
j∈J w(j)z(j) for w, z ∈ RJ ; then RJ is a Hilbert space and

Tw .z =
∑
i∈J

∑
j∈J σijw(j)z(i) =

∑
j∈J

∑
i∈J σjiz(i)w(j) = w .Tz

for all w, z ∈ RJ , so that T is self-adjoint. Moreover, if z ∈ RJ ,

Tz .z =
∑
i,j∈J σijz(i)z(j) ≥ 0

by the other condition on 〈σij〉i,j∈I .
By 4A4M20, RJ has an orthonormal basis consisting of eigenvectors for T ; if #(J) = n, we have a basis

〈uk〉k<n and a family 〈γk〉k<n of real numbers such that Tuk = γkuk for each k < n. We need to know that∑
k<n uk(i)uk(j) = 1 if i = j, 0 otherwise. PPP Let 〈vi〉i∈J be the standard basis of RJ , so that vi(j) = 1 if

i = j, 0 if i 6= j. Then

vi =
∑
k<n(vi .uk)uk =

∑
k<n uk(i)uk

for i ∈ J , so

∑

k<n

uk(i)uk(j) =
∑

k,l<n

uk(i)ul(j)uk .ul = vi .vj = 1 if i = j,

= 0 otherwise. QQQ

Now γk = Tuk .uk ≥ 0, so
√
γk is defined for each k, and we have a linear operator S : Rn → RJ defined

by setting Sek =
√
γkuk for each k, where 〈ek〉k<n is the standard basis of Rn, defined by saying that

ek(l) = 1 if k = l, 0 otherwise.

Taking µ
(n)
G to be the standard Gaussian distribution on Rn, µ = µ

(n)
G S−1 is a centered Gaussian distri-

bution on RJ , by 456Ba. For i, j ∈ J ,

20Or, rather, its finite-dimensional special case, which is easier; you may know it under the slogan ‘symmetric matrices are
diagonalisable’.
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∫
w(i)w(j)µ(dw) =

∫
(Sz)(i)(Sz)(j)µ

(n)
G (dz)

=

∫ ∑

k<n

√
γkz(k)uk(i) ·

∑

l<n

√
γlz(l)ul(j)µ

(n)
G (dz)

=
∑

k<n

∑

l<n

√
γkγluk(i)ul(j)

∫
z(k)z(l)µ

(n)
G (dz)

=
∑

k<n

γkuk(i)uk(j) =
∑

k<n

Tuk(i)uk(j)

=
∑

k<n,l∈J
σiluk(l)uk(j) =

∑

l∈J
σil

∑

k<n

uk(l)uk(j) = σij .

So µ is the distribution we are looking for.

(iii)⇒(i) I seek to apply 454M. For each finite J ⊆ I, let µJ be a centered Gaussian distribution on RJ

with covariance matrix 〈σij〉i,j∈J ; by 456Bb, it is unique. If K ⊆ I is finite and J ⊆ K, set TKJz = z↾J for

z ∈ RK ; then µKT
−1
KJ is a centered Gaussian distribution on RJ , by 456Ba, and its covariance matrix is that

of µJ , so µJ = µKT
−1
KJ . By 454M, we have a distribution µ on RI , the completion of a Baire probability

measure, such that µJ = µT−1
J for every finite J ⊆ I, setting TJx = x↾J for x ∈ RI .

Applying this with J = {i, j}, we see that
∫
x(i)x(j)µ(dx) = σij for all i, j ∈ I. To see that µ is a centered

Gaussian distribution in the sense of 456Ab, take a continuous linear functional f : RI → R. Then there is
a finite family 〈βi〉i∈J in R such that f(x) =

∑
i∈J βix(i) for each x ∈ RI . Setting g(z) =

∑
i∈J βiz(i) for

z ∈ RJ , we have f = gTJ , so that the image distribution µf−1 on R is just µJg
−1, and (because µJ is a

centered Gaussian distribution) is either normal or concentrated at 0. As f is arbitrary, µ itself is a centered
Gaussian distribution.

456D Gaussian processes I take a page to spell out the connexion between centered Gaussian distri-
butions, and the processes considered in 454J-454K.

Definition A family 〈Xi〉i∈I of real-valued random variables on a probability space is a centered Gaussian
process if its distribution (454J) is a centered Gaussian distribution.

456E Independence and correlation We have an important characterization of independence of
families forming a Gaussian process. The essential idea is in (a) below. I give the more elaborate version
(b) for the sake of an application in §477.

Proposition (a) Let 〈Xi〉i∈I be a centered Gaussian process. Then 〈Xi〉i∈I is independent iff E(Xi×Xj) = 0
for all distinct i, j ∈ I.

(b) Let 〈Xi〉i∈I be a centered Gaussian process on a complete probability space (Ω,Σ, µ), and J a disjoint
family of subsets of I; for J ∈ J let ΣJ be the σ-algebra of subsets of Ω generated by {X−1

i [F ] : i ∈ J ,
F ⊆ R is Borel}. Suppose that E(Xi×Xj) = 0 whenever J , J ′ are distinct members of J , i ∈ J and j ∈ J ′.
Then 〈ΣJ 〉J∈J is independent.

proof (a)(i) If 〈Xi〉i∈I is independent, and i, j ∈ I are distinct, then E(Xi ×Xj) = E(Xi)E(Xj) = 0, by
272R21.

(ii) If E(Xi × Xj) = 0 for all distinct i, j ∈ I, let µ be the distribution of 〈Xi〉i∈I and 〈σij〉i,j∈I its
covariance matrix. Then σij = 0 whenever i 6= j. So if we take νi to be the normal distribution on R with
expectation 0 and variance σii (or the distribution concentrated at 0 if σii = 0), the product ν =

∏
i∈I νi

will be a centered Gaussian distribution on RI (456Be) also with covariance matrix 〈σij〉i,j∈I , and is equal
to µ, by 456Bb. Thus µ is a product measure and 〈Xi〉i∈I is independent (454L).

(b) Set K =
⋃J . For each J ∈ J , let νJ be the distribution of 〈Xi〉i∈J , and let ν =

∏
J∈J νJ be the

product measure on
∏
J∈J RJ , which we can identify with RK . Then ν is a centered Gaussian distribution,

and its covariance matrix 〈σij〉i,j∈K is such that

21Formerly 272Q.
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σij = E(Xi ×Xj) if i, j belong to the same member of J ,
= E(Xi)E(Xj) = 0 otherwise;

that is, it is the covariance matrix of the process 〈Xi〉i∈K . Let f : Ω → RK be a function such that
f(ω)(i) = Xi(ω) whenever i ∈ K and ω ∈ domXi; because µ is complete, f is (Σ,Ba(RK))-measurable.
For J ∈ J and ω ∈ Ω set fJ(ω) = f(ω)↾J .

Now suppose that J0 ⊆ J is non-empty and finite and that EJ ∈ ΣJ for each J ∈ J0. Then for
each J ∈ J0 there is a Baire set FJ ⊆ RJ such that EJ△f−1

J [FJ ] is µ-negligible, and µEJ = νJFJ .
Next, the distribution of 〈Xi〉i∈K is a centered Gaussian distribution on RK , and has covariance matrix
〈E(Xi ×Xj)〉i,j∈K = 〈σij〉i,j∈K , so it must be ν. But this means that, setting F = {x : x ∈ RK , x↾J ∈ FJ
for every J ∈ J0} ∈ Ba(RK),

µ(
⋂

J∈J
EJ) = µ(

⋂

J∈J
f−1
J [FJ ]) = µf−1[F ]

= νF =
∏

J∈J
νJFJ =

∏

J∈J
µEJ .

As 〈EJ 〉J∈J0
is arbitrary, 〈ΣJ 〉J∈J is independent.

456F Proposition Let 〈Xi〉i∈I be a family of random variables on a probability space (Ω,Σ, µ). Then
the following are equiveridical:

(i) the distribution of 〈Xi〉i∈I , in the sense of 454K, is a centered Gaussian distribution;
(ii) whenever i0, . . . , in ∈ I and α0, . . . , αn ∈ R then

∑n
r=0 αrXir is either zero a.e. or a normal random

variable with zero expectation;
(iii) whenever i0, . . . , in ∈ I then the joint distribution of Xi0 , . . . , Xin , in the sense of 271C, is a centered

Gaussian distribution;
(iv) whenever J ⊆ I is finite then there is an independent family 〈Yk〉k∈K of standard normal random

variables on Ω such that each Xi, for i ∈ J , is almost everywhere equal to a linear combination of the Yk.

proof (ii)⇔(i) is immediate from the definition in 456Ab and Proposition 454O.

(i)⇔(iii) is also direct from 456Ab and the identification of the two concepts of ‘distribution’ (454K).

(iv)⇒(ii) is direct from 274A-274B.

(i)⇒(iv) For i ∈ J set ui = X•

i in L2(µ). By 4A4Jh again there is an orthonormal family 〈vk〉k∈K in
L2(µ) such that each vk is a linear combination of the ui and each ui is a linear combination of the vk.
Take Yk such that Y •

k = vk for each k; then each Xi is equal almost everywhere to a linear combination of
the Yk, while each Yk is equal almost everywhere to a linear combination of the Xi. As #(K) must be the
dimension of the linear span of {ui : i ∈ J}, K is finite. Any linear combination of the Yk is equal almost
everywhere to a linear combination of the Xk, so is either zero a.e. or a normal random variable with zero
expectation. Because (ii)⇒(iii), 〈Yk〉k∈K has a centered Gaussian distribution ν say. Each Yk has variance
(vk|vk) = 1, so is a standard normal random variable.

The covariance matrix of ν is given by

∫
y(j)y(k)ν(dy) = E(Yj × Yk) = (vj |vk) = 1 if j = k,

= 0 otherwise.

By 456E, 〈Yk〉k∈K is independent, so we have found a suitable family.

456G Now I start work on material for the main theorem of this section.

Lemma Let I be a finite set and µ a centered Gaussian distribution on RI . Suppose that γ ≥ 0 and
α = µ{x : supi∈I |x(i)| ≥ γ}. Then µ{x : supi∈I |x(i)| ≥ 1

2γ} ≥ 2α(1 − α)3.
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proof (a) The case γ = 0, α = 1 is trivial; suppose that γ > 0. We may suppose that I has a total order ≤.
Give RI×4 ∼= (RI)4 the product λ of four copies of µ; then λ is a centered Gaussian distribution (456Be).

Define T : RI×4 → RI by setting (Ty)(i) = 1
2

∑3
r=0 y(i, r) for i ∈ I, y ∈ RI×4; then λT−1 is a centered

Gaussian distribution on RI (456Ba). Now λT−1 has the same covariance matrix as µ. PPP If i, j ∈ I then

∫
x(i)x(j)(λT−1)(dx) =

∫
(Ty)(i)(Ty)(j)λ(dy) =

1

4

3∑

r=0

3∑

s=0

∫
y(i, r)y(j, s)λ(dy)

=
1

4

3∑

r=0

∫
y(i, r)y(j, r)λ(dy) =

1

4

3∑

r=0

∫
x(i)x(j)µ(dx)

(because the map y 7→ 〈y(i, r)〉i∈I : RI×4 → RI is inverse-measure-preserving for each r)

=

∫
x(i)x(j)µ(dx). QQQ

So λT−1 = µ, by 456Bb.

(b) Define

Eir = {y : y ∈ RI×4, |y(i, r)| ≥ γ}
for r < 4 and i ∈ I, and

Er =
⋃
i∈I Eir

for r < 4, so that

λEr = λ{y : supi∈I |y(i, r)| ≥ γ} = µ{x : supi∈I |x(i)| ≥ γ} = α.

Set E′
r = Er \

⋃
s 6=r Es, so that

λE′
r = λ{y : sup

i∈I
|y(i, r)| ≥ γ, sup

i∈I
|y(i, s)| < γ for s 6= r)

= λ{y : sup
i∈I

|y(i, r)| ≥ γ} ·
∏

s 6=r
λ{y : sup

i∈I
|y(i, s)| < γ}

(because these are independent events)

= α(1 − α)3.

(c) Next, for i ∈ I and r < 4, set E′
ir = Eir \ (

⋃
j<iEjr ∪

⋃
s 6=r Es), so that E′

r =
⋃
i∈I E

′
ir. Observe that

〈E′
ir〉i∈I,r<4 is disjoint. Set

Fir = {y : y ∈ E′
ir, y(i, r)

∑
s 6=r y(i, s) ≥ 0}.

Then νFir ≥ 1
2νE

′
ir. PPP We can think of RI×4 as a product RJ × RK , where J = I × {r} and K =

I × (4 \ {r}). In this case, λ becomes identified with a product λJ × λK , where λJ and λK are centered
Gaussian distributions on RJ and RK respectively, and E′

ir is of the form V ×W , where

V = {v : v ∈ RJ , |v(i, r)| ≥ γ, |v(j, r)| < γ for j < i},

W = {w : w ∈ RK , |w(j, s)| < γ for every j ∈ I, s 6= r}.

In the same representation, Fir becomes (V + ×W+) ∪ (V − ×W−), where

V + = {v : v ∈ V , v(i, r) ≥ γ}, V − = {v : v ∈ V , v(i, r) ≤ −γ},

W+ = {w : w ∈W ,
∑
r 6=s w(i, s) ≥ 0}, W− = {w : w ∈W ,

∑
r 6=s w(i, s) ≤ 0}.

By 456Bf, λJV
+ = λJV

− and λKW
+ = λKW

−; since V − = V \ V +, while W+ ∪W− = W , we have

λJV
+ = λJV

− =
1

2
λJV , λKW

+ = λKW
− ≥ 1

2
λKW .

D.H.Fremlin



110 Perfect measures, disintegrations and processes 456G

But this means that

λFir = λ(V + ×W+) + λ(V − ×W−)

= λJV
+ · λKW+ + λJV

− · λKW− ≥ 1

2
λJV · λKW =

1

2
λE′

ir,

as claimed. QQQ

(d) At this point, observe that if y ∈ Fir then |∑3
s=0 y(i, s)| ≥ |y(i, r)| ≥ γ. So

µ{x : sup
i∈I

|x(i)| ≥ 1

2
γ}) = λT−1[{x : sup

i∈I
|x(i)| ≥ 1

2
γ})]

= λ{y : sup
i∈I

|1
2

3∑

r=0

y(i, r)| ≥ 1

2
γ})

= λ{y : sup
i∈I

|
3∑

r=0

y(i, r)| ≥ γ)

≥ λ(
⋃

i∈I,r<4

Fir) =
∑

i∈I,r<4

λFir

≥ 1

2

∑

r<4

∑

i∈I
λE′

ir ≥
1

2

∑

r<4

λE′
r = 2α(1 − α)3,

which is what we set out to prove.

456H The support of a Gaussian distribution: Proposition Let I be a set and µ a centered
Gaussian distribution on RI . Write Z for the set of those x ∈ RI such that f(x) = 0 whenever f : RI → R

is a continuous linear functional and f = 0 a.e. Then Z is a self-supporting closed linear subspace of RI

with full outer measure. If I is countable Z is the support of µ.

proof (a) Being the intersection of a family of closed linear subspaces, of course Z is a closed linear subspace.

(b) Z has full outer measure. PPP Let F ⊆ RI be a non-negligible zero set. Let J ⊆ I be a countable
set such that F is determined by coordinates in J . For i ∈ I and x ∈ RI set πi(x) = x(i); then each πi is
either normally distributed or zero almost everywhere, so is square-integrable; set ui = π•

i in L2 = L2(µ).
Let 〈vk〉k∈K be a countable orthonormal family in L2 such that every vk is a linear combination of the ui,
for i ∈ J , and every ui, for i ∈ J , is a linear combination of the vk (4A4Jh once more). Extend 〈vk〉k∈K to
a Hamel basis 〈vl〉l∈L of L2. For every i ∈ I, we can express ui as

∑
l∈L αilvl, where {l : αil 6= 0} is finite;

and the construction ensures that αil = 0 if i ∈ J and l ∈ L \K.
Consider the linear operator T0 : RK → RJ defined by setting (T0z)(i) =

∑
k∈K αikz(k) for z ∈ RK and

i ∈ J . If we give RK the product measure µ
(K)
G , then the image measure µ

(K)
G T−1

0 is a Gaussian distribution
(456Ba), with covariance matrix

σii′ =

∫
x(i)x(i′)(µ(K)

G T−1
0 )dx =

∫
(T0z)(i)(T0z)(i′)µ(K)

G (dz)

=
∑

k,k′∈K
αikαi′k′z(k)z(k′)µ(K)

G (dz) =
∑

k∈K
αikαi′k

=
∑

k,k′∈K
αikαi′k(vk|vk′) = (ui|ui′) =

∫
x(i)x(i′)µ(dx).

But this means that µ
(K)
G T−1

0 has the same covariance matrix as µπ̃−1
J , where π̃Jx = x↾J for x ∈ RI . Since

this also is a centered Gaussian distribution, the two measures must be equal (456Bb). We know that π̃J [F ]
has non-zero measure, so there is a z0 ∈ RK such that T0z0 ∈ π̃J [F ]. Extend z0 arbitrarily to z1 ∈ RL.
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Set x1(i) =
∑
l∈L αilz1(l) for i ∈ I. Then π̃Jx1 = T0z0 ∈ π̃J [F ], so x1 ∈ F , because F is determined by

coordinates in J . If a continuous linear functional f : RI → R is zero a.e., it can be expressed in the form
f(x) =

∑
i∈I βix(i) where {i : βi 6= 0} is finite (4A4Be again). In this case,

0 = f• =
∑
i∈I βiui =

∑
l∈L

∑
i∈I βiαilvl

in L2. Since 〈vl〉l∈L is linearly independent,
∑
i∈I βiαil = 0 for every l ∈ L. But this means that

f(x1) =
∑
i∈I,l∈L βiαilz1(l) = 0.

As f is arbitrary, x1 ∈ Z and Z ∩ F 6= ∅. As F is arbitrary, and µ is inner regular with respect to the zero
sets, Z has full outer measure. QQQ

(c) Z is self-supporting. PPP If W ⊆ RI is an open set meeting Z, there is an open set V , depending on
coordinates in a finite set J ⊆ I, such that V ⊆ W and V ∩ Z 6= ∅. Write π̃J (x) = x↾J for x ∈ RI , and
νJ for the image measure µπ̃−1

J on RJ ; by 456Ba, this is a centered Gaussian distribution. By 456Bd, there

is a continuous linear operator T : RN → RJ such that νJ = µ
(N)
G T−1. Since the support of µG is R, the

support of µ
(N)
G is RN (417E(b-iii), or otherwise), and the support of νJ is Z1 = T [RN] (411Ne).

Write Q for the set of linear functionals g : RJ → R (necessarily continuous, because J is finite) which
are zero on Z1. If g ∈ Q, then gT = 0, so g = 0 νJ -a.e. and gπ̃J = 0 µ-a.e. This means that gπ̃J(x) = 0 for
every x ∈ Z, that is, g(y) = 0 for every y ∈ π̃J [Z]. Because Z1 is a linear subspace of RJ , this is enough to
show that π̃J [Z] ⊆ Z1.

Now recall that V ∩Z 6= ∅ so Z1∩ π̃J [V ] 6= ∅, while V = π̃−1
J [π̃J [V ]]. Since π̃J is an open map (4A2B(f-i)),

π̃J [V ] is open and

µ∗(W ∩ Z) = µW ≥ µV = νJ π̃J [V ] > 0,

because Z1 is the support of νJ . QQQ

(d) If I is countable, µ is a topological measure so measures Z, and Z is the support of µ.

456I Remarks (a) In the context of 456H, I will call Z the support of the centered Gaussian distribution
µ, even though µ need not be a topological measure, so the definition 411Nb is not immediately applicable.
In 456P we shall see that Z really is the support of a canonical extension of µ.

(b) It is worth making one elementary point at once. If I and J are sets, µ and ν are centered Gaussian
distributions on RI and RJ respectively with supports Z and Z ′, and T : RI → RJ is an inverse-measure-
preserving continuous linear operator, then Tz ∈ Z ′ for every z ∈ Z. PPP If g : RJ → R is a continuous linear
functional which is zero ν-a.e., then gT : RI → R is a continuous linear functional which is zero µ-a.e., so
g(Tz) = (gT )(z) = 0. QQQ

456J Universal Gaussian distributions: Definition A centered Gaussian distribution on RI is
universal if its covariance matrix 〈σij〉i,j∈I is the inner product for a Hilbert space structure on I. (See
456Xe.)

456K Proposition Let I be any set, and µ a centered Gaussian distribution on I. Then there are a set
J , a universal centered Gaussian distribution ν on RJ , and a continuous inverse-measure-preserving linear
operator T : RJ → RI .

proof (a) Set J = L2(µ). Then for any finite K ⊆ J there is a centered Gaussian distribution µK on RK

such that
∫
x(u)x(v)µ(dx) = (u|v) for all u, v ∈ K. PPP If K = ∅ or K = {0} this is trivial, as we take

µ to be the trivial distribution concentrated at 0. Otherwise, let 〈wi〉i<n be an orthonormal basis for the

linear subspace of J generated by K. For each u ∈ K, express it as
∑n−1
i=0 αuiwi. Define T : Rn → RK by

setting (Tz)(u) =
∑n−1
i=0 αuiz(i) for z ∈ Rn and u ∈ K. Set µK = µ

(n)
G T−1. Then µK is a centered Gaussian

distribution, by 456Ba, and its covariance matrix is given by
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∫
x(u)x(v)µK(dx) =

∫
(Ty)(u)(Ty)(v)µ

(n)
G (dy) =

n−1∑

i=0

n−1∑

j=0

αuiαvj

∫
y(i)y(j)µ

(n)
G (dy)

=

n−1∑

i=0

n−1∑

j=0

αuiαvj(wi|wj) = (u|v)

for all u, v ∈ K. So µK is the distribution we seek. QQQ

(b) If K ⊆ J is finite and L ⊆ K, then µL = µKπ
−1
KL, where πKL(x) = x↾L for x ∈ RK . PPP Since µKπ

−1
KL

is a centered Gaussian distribution, all we have to do is to check its covariance matrix. But if u, v ∈ L then

∫
y(u)y(v)(µKπ

−1
KL)(dy) =

∫
(πKLx)(u)(πKLx)(v)µK(dx)

=

∫
x(u)x(v)µK(dx) = (u|v) =

∫
y(u)y(v)µL(dy).

By 456Bb, µL = µKπ
−1
KL. QQQ

(c) By 454G, there is a Baire measure ν ′ on RJ such that ν ′π−1
JK [E] = µKE for every finite K ⊆ J and

every Borel set E ⊆ RK . Take ν to be the completion of ν ′. Then πJK is inverse-measure-preserving for ν
and µK , for every finite K ⊆ J . If f : RJ → R is a continuous linear functional, there are a finite K ⊆ J
and a linear functional g : RK → R such that f = πJKg, so that

ν{x : f(x) ≤ α} = µK{x : g(x) ≤ α}
for every α, and f and g have the same distribution; as g is either normal with zero expectation or zero a.e.,
so is f . As f is arbitrary, ν is a centered Gaussian distribution.

(d) ν is universal. PPP If u, v ∈ J set K = {u, v}. Then

∫
x(u)x(v)ν(dx) =

∫
(πJKx)(u)(πJKx)(v)ν(dx)

=

∫
y(u)y(v)µK(dy) = (u|v).

Thus the covariance matrix of ν is just the inner product of the standard Hilbert space structure of J . QQQ

(e) For i ∈ I, let ui ∈ J be the equivalence class of the square-integrable function x 7→ x(i) : RI → R.
Define T : RJ → RI by setting (Ty)(i) = y(ui) for every i ∈ I and y ∈ RJ . Then there is a centered
Gaussian distribution µ′ on RI such that T is inverse-measure-preserving for ν and µ′. Now the covariance
matrix of µ′ is defined by

∫
x(i)x(j)µ′(dx) =

∫
(Ty)(i)(Ty)(j)ν(dy) =

∫
y(ui)y(uj)ν(dy)

= (ui|uj) =

∫
x(i)x(j)µ(dx)

for all i, j ∈ I. So µ and µ′ are equal and T is inverse-measure-preserving for ν and µ.

456L Lemma Let µ be a universal centered Gaussian distribution on RI ; give I a corresponding Hilbert
space structure such that

∫
x(i)x(j)µ(dx) = (i|j) for all i, j ∈ I. Let F ∈ domµ be a set determined by

coordinates in J , where J ⊆ I is a closed linear subspace for the Hilbert space structure of I. Let W be the
union of all the open subsets of RI which meet F in a negligible set, and W ′ the union of the open subsets
of RI which meet F in a negligible set and are determined by coordinates in J . If F ⊆W then F ⊆W ′.

proof (a) Let Z be the support of µ in the sense of 456H. We need to know that Z is just the set of all
linear functionals from I to R. PPP If K ⊆ I is finite and 〈αi〉i∈K ∈ RK and f(x) =

∑
i∈I αix(i) for x ∈ RI ,

then
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‖f‖22 =
∑
i,j∈K αiαj(i|j) = ‖∑i∈K αii‖2.

So, for x ∈ RI ,

x ∈ Z ⇐⇒ f(x) = 0 whenever f ∈ (RI)∗ and ‖f‖2 = 0

⇐⇒
∑

i∈K
αix(i) = 0 whenever K ⊆ I is finite and

∑

i∈K
αii = 0 in I

⇐⇒ x : I → R is linear. QQQ

(b) Let J⊥ be the orthogonal complement of J in I, so that I = J ⊕ J⊥ (4A4Jf). Give RJ and RJ
⊥

the
centered Gaussian distributions µJ , µJ⊥ induced by µ and the projections x 7→ x↾J , x 7→ x↾J⊥. Then the

product measure λ on RJ×RJ
⊥

is also a centered Gaussian distribution (456Be). Define T : RJ×RJ
⊥ → RI

by setting T (u, v)(j + k) = u(j) + v(k) whenever j ∈ J , k ∈ J⊥, u ∈ RJ and v ∈ RJ
⊥

. Then T is inverse-
measure-preserving for λ and µ. PPP T is a continuous linear operator so we have a centered Gaussian
distribution µ′ on RI such that T is inverse-measure-preserving for λ and µ′. If j, j′ ∈ J and k, k′ ∈ J⊥,

∫
x(j + k)x(j′ + k′)µ′(dx) =

∫
T (u, v)(j + k)T (u, v)(j′ + k′)λ(d(u, v))

=

∫
(u(j) + v(k))(u(j′) + v(k′))λ(d(u, v))

=

∫
u(j)u(j′)µJ (du) +

∫
v(k)v(k′)µJ⊥(dv)

=

∫
x(j)x(j′)µ(dx) +

∫
x(k)x(k′)µ(dx)

= (j|j′) + (k|k′) = (j + k|j′ + k′)

=

∫
x(j + k)x(j′ + k′)µ(dx).

Thus µ and µ′ have the same covariance matrix and are equal, and T is inverse-measure-preserving for λ
and µ. QQQ

(c) Take any z ∈W ∩Z. Then there is an open set V , determined by coordinates in a finite set K0 ⊆ I,
such that z ∈ V and µ(V ∩ F ) = 0. Let ǫ > 0 be such that y ∈ V whenever x ∈ RI and |x(i) − z(i)| < 2ǫ
for every i ∈ K0. Express each k ∈ K0 as k′ + k′′ where k′ ∈ J and k′′ ∈ J⊥. Set

V ′ = {x : x ∈ RI , |x(k′) − z(k′)| < ǫ for every k ∈ K0}.

Then V ′ is an open set, determined by coordinates in J , and contains z. Also µ(V ′ ∩ F ) = 0. PPP Set
V ′′ = {x : x ∈ RI , |x(k′′) − z(k′′)| < ǫ for every k ∈ K0}. Then V ⊇ V ′ ∩ V ′′ ∩ Z. Since Z has full outer
measure (456H),

µ(V ′ ∩ V ′′ ∩ F ) = µ∗(V ′ ∩ V ′′ ∩ F ∩ Z) ≤ µ(V ∩ F ) = 0.

Now

0 = µ(V ′ ∩ V ′′ ∩ F ) = λT−1[V ′ ∩ F ∩ V ′′]

= λ{(x↾J, x↾J⊥) : x ∈ V ′ ∩ F ∩ V ′′}
(because V ′ ∩ F ∩ V ′′ is determined by coordinates in J ∪ J⊥)

= µJ{x↾J : x ∈ V ′ ∩ F} · µJ⊥{x↾J⊥ : x ∈ V ′′}

because V ′ ∩ F is determined by coordinates in J , while V ′′ is determined by coordinates in J⊥. However,
z ∈ V ′′, and z↾J⊥ belongs to the support Z ′ of µJ⊥ , by 456Ib; since Z ′ is self-supporting, and {x↾J⊥ : x ∈
V ′′} is open, µJ⊥{x↾J⊥ : x ∈ V ′′} > 0. We conclude that

0 = µJ{x↾J : x ∈ V ′ ∩ F} = µ(V ′ ∩ F ). QQQ
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(d) This shows that z ∈W ′. As z is arbitrary, W ∩ Z ⊆W ′.
??? Suppose, if possible, that there is a point z0 ∈ F \W ′. If i, j ∈ J and α ∈ R, then

{x : x(i+ j) 6= x(i) + x(j)}, {x : x(αi) 6= αx(i)}
are negligible open sets determined by coordinates in J , so are included in W ′ and do not contain z0. Thus
z0↾J : J → R is linear. Let z : I → R be a linear functional extending z0↾J . Then z ∈ Z and z↾J = z0↾J ;
as both F and W ′ are determined by coordinates in J , z ∈ F \W ′. But this means that z ∈ Z ∩W \W ′,
which is impossible. XXX

So F ⊆W ′, as claimed.

456M Cluster sets: Lemma Let I be a countable set, n ≥ 1 an integer and µ a centered Gaussian
distribution on RI×n. For ǫ > 0 set

Iǫ = {i : i ∈ I,
∫
|x(i, r)|2µ(dx) ≤ ǫ2 for every r < n};

suppose that no Iǫ is empty.
(a) There is a closed set F ⊆ Rn such that

F =
⋂
ǫ>0 {〈x(i, r)〉r<n : i ∈ Iǫ}

for almost every x ∈ RI×n.
(b) If z ∈ F and −1 ≤ α ≤ 1, then αz ∈ F .
(c) If F is bounded, then there is some ǫ > 0 such that supi∈Iǫ,r<n |x(i, r)| <∞ for almost every x ∈ RI×n.

proof (a)(i) For x ∈ RI×n and i ∈ I set Si(x) = 〈x(i, r)〉r<n ∈ Rn. For x ∈ RI×n set

Fx =
⋂
ǫ>0 {Six : i ∈ Iǫ},

so that Fx is a closed subset of Rn. For A ⊆ Rn set EA = {x : x ∈ RI×n, A ∩ Fx 6= ∅}.

(ii) By 456Bd, there is a continuous linear operator T : RN → RI×n such that µ = µ
(N)
G T−1. Set

Ti = SiT for i ∈ I; then Ti : RN → Rn is a continuous linear operator. For y ∈ RN, set

F̃y = FT (y) =
⋂
ǫ>0 {Ti(y) : i ∈ Iǫ}.

For A ⊆ Rn set

ẼA = T−1[EA] = {y : y ∈ RN, A ∩ F̃y 6= ∅}.

(iii) If K ⊆ Rn is compact, then ẼK is a Borel subset of RN. PPP Let V be a countable base for the
topology of Rn, and for k ≥ 1 let Vk be the set of members of V with diameter at most 1/k which meet K.
Then T−1

i [V ] is a Borel set for every V ∈ V and i ∈ I, so

E′ =
⋂
k≥1

⋃
V ∈Vk

⋃
i∈I1/k T

−1
i [V ]

is a Borel set.
If y ∈ ẼK , take k ≥ 1. There is a z ∈ F̃y ∩K. Let V ∈ V be such that z ∈ V and diamV ≤ 1/k; in this

case V ∈ Vk. Because z ∈ {Ti(y) : i ∈ I1/k}, there is an i ∈ I1/k such that Ti(y) ∈ V . As k is arbitrary, this

shows that y ∈ E′; thus ẼK ⊆ E′.
If y /∈ ẼK , then K is a compact set disjoint from the closed set F̃y. There is therefore some ǫ > 0 such

that K ∩ {Ti(y) : i ∈ Iǫ} = ∅ (since these form a downwards-directed family of compact sets with empty

intersection). Next, there is a δ > 0 such that B(z, δ) ∩ {Ti(y) : i ∈ Iǫ} = ∅ for every z ∈ K (2A2Ed). Let
k ≥ 1 be such that 1/k ≤ min(ǫ, δ). If V ∈ Vk and i ∈ I1/k, there is some z ∈ K ∩ V so V ⊆ B(z, δ) and

Ti(y) /∈ V . This shows that y /∈ E′. As y is arbitrary, E′ ⊆ ẼK .

So ẼK = E′ is a Borel set. QQQ
It follows at once that ẼH is a Borel set for every Kσ set H, in particular, for any open or closed set H.

(iv) We need a simple estimate on the coefficients of the linear operators Ti. Let αirj be such that
Ti(y) = 〈∑∞

j=0 αirjy(j)〉r<n for i ∈ I, r < n and y ∈ RN. (Of course {j : αirj 6= 0} is finite for each i and

r.) Then
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∫
x(i, r)2µ(dx) =

∫
Ti(y)(r)2µ

(N)
G (dy) =

∑∞
j=0 α

2
irj ,

so |αirj | ≤ ǫ whenever i ∈ Iǫ, r < n and j ∈ N.

(v) Now suppose that H ⊆ Rn is open, that K ⊆ H is compact, and that µ
(N)
G ẼK > 0. Then

µ
(N)
G ẼH = 1. PPP Let ǫ > 0. Let 〈ǫj〉j∈N be a sequence of strictly positive real numbers such that

∑∞
j=0 ǫj ≤

1
2 min(ǫ, µ

(N)
G ẼK), and for each j ∈ N let γj ≥ 0 be such that µG[−γj , γj ] ≥ 1 − ǫj . Then

Ẽ = {y : y ∈ ẼK , |y(j)| ≤ γj for every j ∈ N}

has measure at least µ
(N)
G ẼK − ∑∞

j=0 ǫj > 0. By 254Sb, there are an m ∈ N and a set Ẽ′, of measure at

least 1 − 1
2ǫ, such that for every y′ ∈ Ẽ′ there is a y ∈ Ẽ such that y(j) = y′(j) whenever j > m. Set

Ẽ′′ = {y : y ∈ Ẽ′, |y(j)| ≤ γj for every j ∈ N}, so that µ
(N)
G Ẽ′′ ≥ 1 − ǫ.

Let δ > 0 be such that z′ ∈ H whenever z ∈ K and ‖z−z′‖ ≤ 2δ. Let η > 0 be such that 2η
√
n
∑m
j=0 γj ≤

δ. If y′ ∈ Ẽ′′ and i ∈ Iη, there is a y ∈ Ẽ such that y(j) = y′(j) for j > m. Also |y(j) − y′(j)| ≤ 2γj for
j ≤ m, so

|Ti(y)(r) − Ti(y
′)(r)| ≤ ∑∞

j=0 |αirj ||y(j) − y′(j)| ≤ ∑m
j=0 2ηγj ≤ δ√

n

for every r < n, and ‖Ti(y) − Ti(y
′)‖ ≤ δ.

Now F̃y ∩K 6= ∅; take z ∈ F̃y ∩K. For every ζ > 0, there is an i ∈ Imin(η,ζ) such that ‖z− Ti(y)‖ ≤ δ, so
that ‖z − Ti(y

′)‖ ≤ 2δ. This means that B(z, 2δ) ∩ {Ti(y′) : i ∈ Iζ} is not empty. As B(z, 2δ) is compact,

it must meet F̃y′ . But this means that H ∩ F̃y′ 6= ∅, by the choice of δ. As y′ is arbitrary, Ẽ′′ ⊆ ẼH , while

µ
(N)
G Ẽ′′ ≥ 1 − ǫ.

This works for every ǫ > 0. So ẼH is conegligible, as claimed. QQQ

(vi) If H ⊆ Rn is open and µ
(N)
G ẼH > 0, then (because H is σ-compact) there is a compact set K ⊆ H

such that µ
(N)
G ẼK > 0, and (e) tells us that µ

(N)
G ẼH = 1.

Set

V0 = {V : V ∈ V, µ
(N)
G ẼV = 0} = {V : V ∈ V, µ

(N)
G ẼV < 1}.

Then we see that

V0 = {V : V ∈ V, F̃y ∩ V = ∅}
for almost every y ∈ RN, that is,

V0 = {V : V ∈ V, Fx ∩ V = ∅}
for almost every x ∈ RI×n. But as every Fx is closed, we have Fx = Rn \⋃V0 for almost every x. So we
can set F = Rn \⋃V0.

(b)(i) Give RI×2n ∼= (RI×n)2 the measure λ corresponding to the product measure µ×µ; by 456Be, this
is a centered Gaussian distribution. For (x1, x2) ∈ (RI×n)2, set

F ′
x1x2

=
⋂
ǫ>0 {(Six1, Six2) : i ∈ Iǫ}.

By (a), we have a closed set F ′ ⊆ R2n such that F ′ = F ′
x1x2

for almost all x1, x2. (Of course Iǫ = {i :∫
|xj(i, r)|2λ(dx) ≤ ǫ2 for every j ∈ {1, 2}, r < n} whenever ǫ > 0.)

(ii) Now (z, 0) ∈ F ′. PPP Take x1 ∈ RI×n such that F = Fx1
and E = {x2 : F ′ = F ′

x1x2
} is conegligible.

(Almost every point of RI×n has these properties.) For k ∈ N, z ∈ {Six1 : i ∈ I2−k}; let ik ∈ I2−k be such
that

∑
r<n |z(r) − x1(ik, r)| ≤ 2−k. Next,

∑∞
k=0

∑n−1
r=0

∫
|x(ik, r)|2µ(dx) ≤∑∞

k=0 2−2kn <∞,

so
∑∞
k=0

∑n−1
r=0 |x(ik, r)|2 is finite for almost every x ∈ RI , and there must be an x2 ∈ E such that∑∞

k=0

∑n−1
r=0 |x2(ik, r)|2 is finite. But in this case limk→∞ x2(ik, r) = 0 for every r, while limk→∞ x1(ik, r) =

z(r). Accordingly (z, 0) ∈ F ′
x1x2

= F ′. QQQ
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(iii) Set β =
√

1 − α2 and define T̃ : (RI×n)2 → RI×n by setting T̃ (x1, x2) = αx1 + βx2 for x1,

x2 ∈ RI×n. Then T̃ is a continuous linear operator, so the image measure λT̃−1 is a centered Gaussian
distribution on RI×n (456Ba). Moreover, it has the same covariance matrix as µ. PPP If i, j ∈ I then

∫
x(i)x(j)(λT̃−1)(dx) =

∫
T̃ (x1, x2)(i)T̃ (x1, x2)(j)λ(d(x1, x2))

=

∫
(αx1(i) + βx2(i))(αx1(j) + βx2(j))λ(d(x1, x2))

= α2

∫
x1(i)x1(j)λ(d(x1, x2)) + β2

∫
x2(i)x2(j)λ(d(x1, x2))

= (α2 + β2)

∫
x(i)x(j)µ(dx) =

∫
x(i)x(j)µ(dx). QQQ

So λT̃−1 = µ (456Bb).

(iv) If x1, x2 ∈ RI are such that (z, 0) ∈ F ′
x1x2

, then αz ∈ FT̃ (x1,x2)
. PPP For every ǫ > 0 there is an

i ∈ Iǫ such that |z(r) − x1(i, r)| ≤ ǫ and |x2(i, r)| ≤ ǫ for every r < n. But now |αz(r) − T̃ (x1, x2)(r)| ≤ 2ǫ
for every r < n. QQQ So

T̃−1[{x : αz ∈ Fx}] = {(x1, x2) : αz ∈ FT̃ (x1,x2)
} ⊇ {(x1, x2) : (z, 0) ∈ F ′

x1x2
}

is λ-conegligible, and αz ∈ Fx for µ-almost every x, that is, αz ∈ F , as claimed.

(c) Suppose now that F is bounded.

(i) For L ⊆ I, α ≥ 0 set

Q(L,α) =
⋃
i∈L,r<n{x : |x(i, r)| ≥ α}.

By 456G, applied to the image of µ under the map x 7→ x↾L× n : RI×n → RL×n,

µQ(L, 12α) ≥ 2µQ(L,α)(1 − µQ(L,α))3

for every finite L ⊆ I and every α ≥ 0.
Let β > 0 be such that δ = 2β(1−(n+1)β)3−β > 0, and let α0 > 0 be such that α2

0β ≥ 1 and ‖z‖ < 1
2α0

for every z ∈ F , so that µ{x : |x(i, r)| ≥ α0} ≤ β whenever i ∈ I1 and r < n, and µQ({i}, α0) ≤ nβ for
every i ∈ I1. Set K = {z : z ∈ Rn, 1

2α0 ≤ maxr<n |z(r)| ≤ α0}, so that K is a compact set disjoint from F .
For almost every x,

∅ = K ∩ F = K ∩ Fx =
⋂
k≥1K ∩ {Six : i ∈ I1/k},

so there is a k ≥ 1 such that Six /∈ K for every i ∈ I1/k. Since the sets

{x : Si(x) ∈ K for some i ∈ I1/k}
form a non-increasing sequence of measurable sets with negligible intersection, there is a k ≥ 1 such that

µ{x : Si(x) ∈ K for some i ∈ I1/k} < δ.

(ii) ??? Suppose, if possible, that

µQ(I1/k, α0) > β.

Let L ⊆ I1/k be a finite set of minimal size such that γ = µQ(L,α0) ≥ β. Since µQ({i}, α0) ≤ nβ for any
i ∈ L, and L is minimal, we must have

β ≤ γ ≤ (n+ 1)β.

Now this means that

µQ(L,
1

2
α0) ≥ 2γ(1 − γ)3

(see (i) above)
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≥ 2γ(1 − (n+ 1)β)3 = γ(1 +
δ

β
) ≥ γ + δ,

so that µ(Q(L, 12α0) \ Q(L,α0)) ≥ δ. But if x ∈ Q(L, 12α0) \ Q(L,α0) there is some i ∈ L such that

maxr<n |x(i, r)| ≥ 1
2α0 while maxr<n |x(i, r)| < α0, in which case Si(x) ∈ K. So we get

δ ≤ µ(Q(L,
1

2
α0) \Q(L,α0)) ≤ µ{x : Si(x) ∈ K for some i ∈ L}

≤ µ{x : Si(x) ∈ K for some i ∈ I1/k} < δ

which is absurd. XXX

(iii) Thus µQ(I1/k, α0) ≤ β. For α ≥ 0, set f(α) = µQ(I1/k, α); then f is non-increasing. Also

f( 1
2α) ≥ 2f(α)(1 − f(α))3 for every α. PPP??? Otherwise, because

f(α) = sup{µQ(L,α) : L ⊆ I1/k is finite},

there is a finite L ⊆ I1/k such that f( 1
2α) < 2γ(1 − γ)3, where γ = µQ(L,α). But in this case µQ(L, 12α) ≤

f( 1
2α) < 2γ(1 − γ)3, which is impossible, as remarked in (i). XXXQQQ
Set ζ = limα→∞ f(α). Then

ζ = limα→∞ f( 1
2α) ≥ 2ζ(1 − ζ)3.

But we also know, from (ii), that ζ ≤ f(α0) ≤ β. So (1 − ζ)3 ≥ (1 − β)3 > 1
2 and ζ must be 0.

What this means is that if we set ǫ = 1
k then

limα→∞ µ{x : supi∈Iǫ,r<n |x(i, r)| > α} = 0,

that is, supi∈Iǫ,r<n |x(i, r)| is finite for almost every x ∈ RI×n, as claimed.

456N Lemma Let J be a set and µ a centered Gaussian distribution on RJ . Let M be the linear
subspace of L2(µ) generated by {π•

j : j ∈ J}, where πj(x) = x(j) for x ∈ RJ and j ∈ J . If M is separable
(for the norm topology) then µ is τ -additive.

proof Suppose, if possible, otherwise.

(a) There is an upwards-directed family G of open Baire sets in RJ such that W0 =
⋃G is a Baire set and

µW0 > supG∈G µG. Let G0 ⊆ G be a countable upwards-directed set such that supG∈G0
µG = supG∈G µG,

and set W1 = W0 \
⋃G0; then µW1 > 0 and µ(W1 ∩ G) = 0 for every G ∈ G. Let W be a non-negligible

zero set included in W1.
For each n ∈ N, let Vn be a countable base for the topology of Rn consisting of open balls. Let G∗

n be the
family of open sets of RJ of the form T−1[V ], where T : RJ → Rn is a continuous linear operator, V ⊆ Rn

is open and µ(W ∩ T−1[V ]) = 0. Of course G∗
0 = ∅.

(b) For n ≥ 1 and V ∈ Vn, let TnV be the family of continuous linear operators T : RJ → Rn such that
W ∩ T−1[V ] is negligible, but not included in

⋃G∗
n−1. Index TnV as 〈Ti〉i∈I(n,V ); it will be convenient to

do this in such a way that all the I(n, V ) are disjoint. Define fir, for i ∈ I(n, V ) and r < n, by saying
that Ti(x) = 〈fir(x)〉r<n for x ∈ RJ . Define φn :

⋃
V ∈Vn

I(n, V ) → Mn by setting φn(i) = 〈f•

ir〉r<n for

each i ∈ ⋃
V ∈Vn

I(n, V ). Because M is separable (in its norm topology), Mn is separable in its product

topology (4A2P(a-v)). Fix a countable set I ′(n, V ) ⊆ I(n, V ) such that {φn(i) : i ∈ I ′(n, V )} is dense in
{φn(i) : i ∈ I(n, V )}. Set ρn(〈ur〉r<n, 〈vr〉r<n) = maxr<n ‖ur − vr‖2 for 〈ur〉r<n, 〈vr〉r<n ∈Mn, so that ρn
is a metric defining the product topology of Mn.

(c) If j ∈ I(n, V ), then there is a δ > 0 such that

{Ti(x) : i ∈ I ′(n, V ), ρn(φn(i), φn(j)) ≤ δ}
is bounded for almost every x ∈ RJ . PPP Define S : RJ → RI

′(n,V )×n by setting (Sx)(i, r) = Ti(x, r)−Tj(x, r)
for x ∈ RJ , i ∈ I ′(n, V ) and r < n. By 456Ba, the image measure λ = νS−1 is a centered Gaussian

distribution on RI
′(n,V )×n. For δ > 0, set
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I ′δ = {i : i ∈ I ′(n, V ),

∫
|y(i, r)|2λ(dy) ≤ δ2 for every r < n}

= {i : i ∈ I ′(n, V ),

∫
|Sx(i, r)|2ν(dx) ≤ δ2 for every r < n}

= {i : i ∈ I ′(n, V ),

∫
|Ti(x)(r) − Tj(x)(r)|2ν(dx) ≤ δ2 for every r < n}

= {i : i ∈ I ′(n, V ), ρn(φn(i), φn(j)) ≤ δ}.

By 456Ma, there is a closed set F ⊆ Rn such that F =
⋂
δ>0 {y(i, r) : i ∈ I ′δ} for λ-almost every y ∈

RI
′(n,V )×n, so that F =

⋂
δ>0 {Sx(i, r) : i ∈ I ′δ} for ν-almost every x ∈ RJ .

By 456Mb, αz ∈ F whenever z ∈ F and |α| ≤ 1. ??? If F is not bounded, then it must include a line

L through 0. (The sets {1
n
z : z ∈ F , ‖z‖ = n}, for n ≥ 1, form a non-increasing sequence of non-empty

compact sets, so there is a point z0 belonging to them all; take L to be the set of multiples of z0.) Let
D ⊆ L be a countable dense set. For z ∈ D and k ∈ N we know that

for every i ∈ I(n, V ), Ti(x) /∈ V for almost every x ∈W ,

for almost every x ∈ RJ there is an i ∈ I ′(n, V ) such that ‖Ti(x) − Tj(x) − z‖ ≤ 2−k

and therefore

for almost every x ∈ W , Ti(x) /∈ V for every i ∈ I ′(n, V ), but there is an i ∈ I ′(n, V ) such
that ‖Ti(x) − Tj(x) − z‖ ≤ 2−k

so that

for almost every x ∈W , the distance from Tj(x) + z to the closed set Rn \ V is at most 2−k.

This is true for every k ∈ N, so we get

Tj(x) + z /∈ V for almost every x ∈W .

And this is true for every z ∈ D, so we get

for almost every x ∈W , Tj(x) + z /∈ V for every z ∈ D, so Tj(x) /∈ V + L.

Let S0 : Rn → Rn−1 be a linear operator with kernel L, and set V ′ = S0[V ]. Then V ′ ⊆ Rn−1 is open,
and W ∩ (S0Tj)

−1[V ′] = W ∩ T−1
j [V +L] is negligible. But this means that T−1

j [V ] ⊆ (S0Tj)
−1[V ′] ∈ G∗

n−1

and T−1
j [V ] is included in

⋃G∗
n−1; which contradicts the definition of TnV . XXX

So F is bounded. By 456Mc, there is some δ > 0 such that supi∈I′δ,r<n |y(i, r)| < ∞ for λ-almost every

y ∈ RI
′(n,V )×n, in which case supi∈I′δ,r<n |Sx(i, r)| <∞ for ν-almost every x ∈ RJ , that is, {Ti(x)− Tj(x) :

i ∈ I ′δ} is bounded for ν-almost every x. Of course this means that {Ti(x) : i ∈ I(n, V ), ρn(φn(i), φn(j)) ≤ δ}
is bounded for almost every x ∈ RJ . QQQ

(d) Accordingly φn[I(n, V )] is covered by the family UnV of open sets U ⊆ Mn such that {Ti(x) :
i ∈ I ′(n, V ), φn(i) ∈ U} is bounded for almost every x. Because Mn is separable and metrizable, it is
hereditarily Lindelöf (4A2P(a-iii)), so there is a sequence 〈UnV k〉k∈N in UnV covering φn[I(n, V )]. For each
k, set InV k = I ′(n, V ) ∩ φ−1

n [UnV k]. Then {Ti(x) : i ∈ InV k} is bounded for almost every x. Because
φn[I ′(n, V )] is dense in φn[I(n, V )], φn[InV k] = φn[I ′(n, V )] ∩ UnV k is dense in φn[I(n, V )] ∩ UnV k. So for

every i ∈ I(n, V ) there is a k ∈ N such that φn(i) ∈ φn[InV k].

(e) Recall that W ⊆ RJ is a non-negligible zero set included in
⋃
n≥1

⋃G∗
n =

⋃
n≥1

⋃
V ∈Vn

⋃
i∈I(n,V ) T

−1
i [V ].

Let J0 ⊆ J be a countable set such that W is determined by coordinates in J0.
Let 〈ǫj〉j∈J0 and 〈ǫ′nV k〉n≥1,V ∈Vn,k∈N be families of strictly positive real numbers such that

∑∞
n=1

∑
V ∈Vn

∑∞
k=0 ǫ

′
nV k

and
∑
j∈J0 ǫj are both at most 1

3µW . Let 〈γj〉j∈J0 and 〈γ′nV k〉n≥1,V ∈Vn,k∈N be such that

µ{x : x ∈ RJ , |x(j)| ≥ γj} ≤ ǫj for every j ∈ J0,

µ{x : x ∈ RJ , supi∈InV k
‖Ti(x)‖ ≥ γ′nV k} ≤ ǫ′nV k for every n ≥ 1, V ∈ Vn, k ∈ N.
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Set W ′ = {x : x ∈ W , |x(j)| ≤ γj for every j ∈ J0}; then µW ′ ≥ 2
3µW and W ′ is of the form C × RJ\J0 ,

where C ⊆ RJ0 is compact. Set

W ′′ = {x : x ∈W ′, ‖Ti(x)‖ ≤ γ′nV k whenever n ≥ 1, V ∈ Vn, k ∈ N and i ∈ InV k};

then µW ′′ ≥ 1
3µW .

(f) Set I =
⋃
n≥1,V ∈Vn

I(n, V ) × n. If K ⊆ I is finite, then

W ′
K = {x : x ∈W ′, ‖fir(x)‖ ≤ γ′nV k whenever n ≥ 1, V ∈ Vn, k ∈ N,

(i, r) ∈ K and φn(i) ∈ φn[InV k]}

has measure at least 1
3µW . PPP For each quintuple (i, r, n, V, k) with n ≥ 1, V ∈ Vn, k ∈ N, (i, r) ∈ K and

φn(i) ∈ φn[InV k], there is a sequence 〈im〉m∈N in InV k such that ρn(φn(i), φn(im)) ≤ 2−m for every m; so
that ‖fir − fimr‖2 ≤ 2−m for every m. But this means that fir(x) = limm→∞ fimr(x) for almost every
x ∈ RJ . Accordingly |fir(x)| ≤ γ′nV k for almost every x ∈ W ′′. Since there are only countably many such
quintuples (i, r, n, V, k), we see that W ′′ \W ′

K is negligible, so µW ′
K ≥ µW ′′ ≥ 1

3µW . QQQ

(g) For x ∈ RJ , define Tx ∈ RI by setting (Tx)(i, r) = fir(x) for i ∈ I(n, V ) and r < n. Then
T : RJ → RI is a continuous linear operator. By 4A4H, T [W ′] is closed.

For finite K ⊆ I, let HK be the family of open subsets H of RK such that µ{x : x ∈W , Tx↾K ∈ H} = 0.
Then HK is closed under countable unions so has a largest member HK . Now there is a K ∈ [I]<ω such
that Tx↾K ∈ HK for every x ∈ W ′

K . PPP??? Otherwise, choose for each K ∈ [I]<ω an xK ∈ W ′
K such

that TxK↾K /∈ HK . Let F be an ultrafilter on [I]<ω containing {K : L ⊆ K ∈ [I]<ω} for every finite

L ⊆ I. If (i, r) ∈ I, there are n ≥ 1, V ∈ Vn and k ∈ N such that r < n and φn(i) ∈ φn[InV k], in
which case |fir(xK)| ≤ γ′nV k whenever K ∈ [I]<ω contains (i, r). This means that limK→F fir(xK) must be
defined in [−γ′nV k, γ′nV k]; consequently y∗ = limK→F TxK is defined in RI . Since xK ∈ W ′ for every K,

y∗ ∈ T [W ′] = T [W ′].
Let x∗ ∈ W ′ be such that Tx∗ = y∗. Since x∗ ∈ W , there are n ≥ 1, V ∈ Vn and i ∈ I(n, V ) such that

Ti(x
∗) ∈ V . Set L = {(i, r) : r < n}, H = {z : z ∈ RL, 〈z(i, r)〉r<n ∈ V }; then {x : Tx↾L ∈ H} = T−1

i [V ].
Since y∗↾L = Tx∗↾L belongs to H, and H is open, there must be a K ⊇ L such that TxK↾L ∈ H. But in
this case H ′ = {z : z ∈ RK , z↾L ∈ H} is an open subset of RK and

{x : Tx↾K ∈ H ′} = {x : Tx↾L ∈ H} = {x : Ti(x) ∈ V }
meets W in a negligible set, and H ′ ⊆ HK . But this means that TxK↾K ∈ HK , contrary to the choice of
xK . XXXQQQ

(h) Putting (f) and (g) together, we find ourselves trying to believe simultaneously that µW ′
K > 0 and

that Tx↾K ∈ HK for every x ∈ W ′
K and that W ′

K ⊆ W and that {x : x ∈ W , Tx↾K ∈ HK} is negligible.
Faced with this we have to abandon the original supposition that µ is not τ -additive.

456O We now have all the ideas needed for the main theorem of this section.

Theorem (Talagrand 81) Every centered Gaussian distribution is τ -additive.

proof ??? Suppose, if possible, that µ is a centered Gaussian distribution on a set RI which is not τ -additive.

(a) By 456K, there are a set J and a universal centered Gaussian distribution ν on RJ and a continuous
linear operator T : RJ → RI which is inverse-measure-preserving for ν and µ. By 418Ha, ν is not τ -additive.

(b) As in part (a) of the proof of 456N, there are a non-negligible zero set W ⊆ RJ and a family G of
open sets, covering W , such that ν(W ∩ G) = 0 for every G ∈ G. Give J a Hilbert space structure such
that

∫
x(i)x(j)ν(dx) = (i|j) for all i, j ∈ J . Let K0 ⊆ J be a countable set such that W is determined by

coordinates in K0, and let K be the closed linear subspace of J generated by K0. Let G′ be the family of
open sets determined by coordinates in K which meet W in negligible sets. Then W ⊆ ⋃G′, by 456L.

Let λ be the centered Gaussian distribution on RK for which the map π̃K = x 7→ x↾K : RJ → RK is
inverse-measure-preserving. Then π̃K [W ] is a zero set in RK , λπ̃K [W ] = νW > 0, {π̃K [G] : G ∈ G′} is
a family of open sets in RK covering π̃K [W ], and λ(π̃K [W ] ∩ π̃K [G]) = ν(W ∩ G) = 0 for every G ∈ G′;
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so λ is not τ -additive. However, K, regarded as a normed space, is separable (see 4A4Bg); and if we set
πj(y) = y(j) for y ∈ RK and j ∈ K, then ‖π•

i − π•

j‖2 = ‖i− j‖ for all i, j ∈ K. So {π•

j : j ∈ K} is separable

in L2(λ). And this is impossible, by 456N. XXX
Thus every centered Gaussian distribution must be τ -additive.

456P Corollary If µ is a centered Gaussian distribution on RI , there is a unique quasi-Radon measure
µ̃ on RI extending µ. The support of µ as defined in 456H is the support of µ̃ as defined in 411N.

proof By 415L, µ has a unique extension to a quasi-Radon measure µ̃. Now the support Z of µ is a closed
set, so µ̃Z = µ∗Z (415L(i)). Also Z is self-supporting for µ. If G ⊆ RI is an open set meeting Z, then there
is a cozero set H ⊆ G which also meets Z, and µ∗(Z ∩H) > 0. It follows that µ∗(Z \H) < 1; as µ̃ extends
µ, µ̃(Z \H) < 1 and µ̃(Z ∩G) > 0. This shows that Z is self-supporting for µ̃, so must be the support of µ̃
in the standard sense.

456Q Proposition Let I be a set and R the set of functions σ : I × I → R which are symmetric and
positive semi-definite in the sense of 456C; give R the subspace topology induced by the usual topology
of RI×I . Let PqR(RI) be the space of quasi-Radon probability measures on RI with its narrow topology
(437Jd). For σ ∈ R, let µσ be the centered Gaussian distribution on RI with covariance matrix σ (456C),
and µ̃σ the quasi-Radon measure extending µσ (456P). Then R is a closed subset of RI×I and the function
σ 7→ µ̃σ : R→ PqR(RI) is continuous.

proof (a) From 456C(iv) we see at once that R is closed. So the rest of this proof will be devoted to showing
that σ 7→ µ̃σ is continuous.

(b) I had better begin with the one-dimensional case. If I = {j} is a singleton, and we identify RI with
R, then µ̃σ is the ordinary normal distribution with mean 0 and variance σ(j, j), counting the Dirac measure
centered at 0 as a normal distribution with zero variance. If H ⊆ R is open and γ ∈ R, set

G = {α : α > 0,
1√
2πα

∫
H
e−t

2/αdt > γ};

then G is open. If 0 /∈ H, then

{σ : µ̃σH > γ} = {σ : σ(i, i) ∈ G}
is open. If 0 ∈ H and γ ≥ 1, then {σ : µ̃σH > γ} is empty; if 0 ∈ H and γ < 1, then

{σ : µ̃σH > γ} = {σ : σ(i, i) ∈ G} ∪ {0}
is open because there is an η > 0 such that [−η, η] ⊆ H and α ∈ G whenever α > 0 and

1√
2π

∫ η/√α
−η/√α e

−t2/2dt > γ.

As H is arbitrary, σ 7→ µ̃σ is continuous.

(c) Now suppose that I is finite. Let 〈σn〉n∈N be a sequence in R with limit σ ∈ R. Let ϕn, ϕ be the
characteristic functions of µ̃σn

, µ̃σ respectively (§285). If y ∈ RI , set f(x) = x .y for x ∈ RI ; then

ϕ(y) =
∫
eif(x)µ̃σ(dx) =

∫
eit(µ̃σf

−1)(dt),

writing µ̃σf
−1 for the image Radon measure on R. Now µ̃σf

−1 is the one-dimensional Gaussian distribution
with variance

∑
j,k∈I σ(j, k)y(j)y(k) (see part (b) of the proof of 456B). But since

∑
j,k∈I σ(j, k)y(j)y(k) = limn→∞

∑
j,k∈I σn(j, k)y(j)y(k,

(a) tells us that µ̃σf
−1 = limn→∞ µ̃σn

f−1 for the narrow topology on PqR(R), therefore also for the vague
topology (437L), and ϕ(y) = limn→∞ ϕn(y). By 285L, µ̃σ = limn→∞ µ̃σn

for the vague topology, therefore
also for the narrow topology.

Thus σ 7→ µ̃σ is sequentially continuous. As I is countable, R is metrizable, and σ 7→ µ̃σ is continuous.

(d) For the general case, suppose that H ⊆ RI is an open set and that γ ∈ R. Set GHγ = {σ : σ ∈ R,
µ̃σH > γ}.
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(i) If H is determined by coordinates in a finite set J ⊆ I then GHγ is open in R. PPP Let RJ be the set
of symmetric positive semi-definite functions on RJ×J ; write h(σ) = σ↾J × J for σ ∈ R, and π̃J(x) = x↾J
for x ∈ RI . Of course h(σ) ∈ RJ for σ ∈ R, and h : R → RJ is continuous. For σ ∈ R, we know that there
is a centered Gaussian distribution ν on RJ such that π̃J is inverse-measure-preserving for µσ and ν, by
456Ba; the covariance matrix of ν is of course h(σ), so we can call it µh(σ). Next, there is a quasi-Radon

measure ν̃ on RJ such that π̃J is inverse-measure-preserving for µ̃σ and ν̃ (418Hb); as ν̃ must extend the
Baire measure ν, it is the unique quasi-Radon measure extending ν, and we can call it µ̃h(σ).

Because H is determined by coordinates in J , H = π̃−1
J [H ′] where H ′ = π̃J [H] is open in RJ (4A2B(f-i)

again). So G′ = {τ : τ ∈ RJ , µ̃τH
′ > γ} is open in RJ , by (b), and

GHγ = {σ : (µ̃σπ̃
−1
J )(H ′) > γ} = {σ : µ̃h(σ)H

′ > γ} = h−1[G′]

is open in R. QQQ

(ii) In fact GHγ is open in R for any open set H ⊆ RI and γ ∈ R. PPP Take any σ ∈ GHγ . Because µ̃σ
is τ -additive, and the family

V = {V : V ⊆ RI is open and determined by coordinates in a finite set}
is a base for the topology of RI closed under finite unions, there is a V ∈ V such that V ⊆ H and µ̃σV > γ.
Now σ ∈ GV γ ⊆ GHγ ; by (i), GV γ is open, so σ ∈ intGHγ ; as σ is arbitrary, GHγ is open. QQQ But this is
just what we need to know to see that σ 7→ µ̃σ is continuous for the narrow topology on PqR(RI), and the
proof is complete.

456X Basic exercises (a) Let I be any set. (i) Show that if y ∈ ℓ1(I) then
∫ ∑

i∈I |y(i)x(i)|µ(I)
G (dx) =

2√
2π

‖y‖1. (Hint : start by evaluating E(|Z|) where Z is a standard normal random variable.) (ii) Show that

if y ∈ ℓ2(I) then
∫ ∑

i∈I |y(i)x(i)|2µ(I)
G (dx) = ‖y‖22.

(b) Let n ≥ 1 be an integer. (i) Show that µ
(n)
G T−1 = µ

(n)
G for any orthogonal linear operator T : Rn →

Rn. (ii) Set p(x) =
1

‖x‖x for x ∈ Rn \ {0}; take p(0) to be any point of Sn−1. Show that µ
(n)
G p−1 is a

multiple of (n− 1)-dimensional Hausdorff measure on Sn−1. (Hint : 443U.)

(c) Let G be a group, and h : G → R a real positive definite function (definition: 445L). (i) Show that
we have a centered Gaussian distribution µ on RG with covariance matrix 〈h(a−1b)〉a,b∈G. (ii) Show that µ
is invariant under the left shift action •l of G on RG (4A5Cc).

(d) Let I be a countable set, µ a centered Gaussian distribution on RI , and γ ≥ 0. Set α = µ{x :
supi∈I |x(i)| ≥ γ}. Show that µ{x : supi∈I |x(i)| ≥ 1

2γ} ≥ 2α(1 − α)3.

(e) Let I be a set and 〈σij〉i,j∈I a family of real numbers. Show that there is at most one inner product
space structure on I for which σij = (i|j) for all i, j ∈ I.

(f) Let 〈Xn〉n∈N be an independent sequence of standard normal random variables, and 〈αn〉n∈N a
square-summable real sequence. (i) Show that for any permutation π : N → N, X =

∑∞
n=0 αnXn and∑∞

n=0 απ(n)Xπ(n) are finite and equal a.e. (Hint : 273B.) (ii) Show that X is normal, with mean 0 and

variance
∑∞
n=0 α

2
n.

>>>(g) For any set I, I will say that a centered Gaussian quasi-Radon measure on RI is a quasi-Radon
measure µ on RI such that every continuous linear functional f : RI → R is either zero a.e. or is normally
distributed with zero expectation. Show that

(i) there is a one-to-one correspondence between centered Gaussian quasi-Radon measures µ on RI and
centered Gaussian distributions ν on RI obtained by matching µ with ν iff they agree on the zero sets of
RI ;

(ii) if µ, ν are centered Gaussian quasi-Radon measures on RI and
∫
x(i)x(j)µ(dx) =

∫
x(i)x(j)ν(dx)

for all i, j ∈ I, then µ = ν;

D.H.Fremlin



122 Perfect measures, disintegrations and processes 456Xg

(iii) the support of a centered Gaussian quasi-Radon measure on RI is a linear subspace of RI ;
(iv) if 〈Ij〉j∈J is a disjoint family of sets with union I, and µj is a centered Gaussian quasi-Radon

measure on RIj for each j ∈ J , then the quasi-Radon product of 〈µj〉j∈J , regarded as a measure on RI , is
a centered Gaussian quasi-Radon measure.

(h) Let I be a set, and let H be a Hilbert space with orthonormal basis 〈ei〉i∈I . For i ∈ I, x ∈ RI set

fi(x) = x(i). Show that there is a bounded linear operator T : H → L1(µ
(I)
G ) such that Tei = f•

i for every

i ∈ I, and that ‖Tu‖1 =
2√
2π

‖u‖2 for every u ∈ H.

456Y Further exercises (a) Let (Ω,Σ, µ) be a probability space with measure algebra (A, µ̄), and
〈ui〉i∈I a family in L2(µ) ∼= L2(A, µ̄) which is a centered Gaussian process in the sense that whenever
Xi ∈ L

2(µ) is such that X•

i = ui for every i, then 〈Xi〉i∈I is a centered Gaussian process. Suppose that
γ ≥ 0 and that α = µ̄(supi∈I [[|ui| ≥ γ]]). Show that µ̄(supi∈I [[|ui| ≥ 1

2γ]]) ≥ 2α(1 − α)3.

(b) Let U be a Hilbert space with an orthonormal basis 〈uj〉j∈J , and µ the universal centered Gaussian
distribution on RU with covariance matrix defined by the inner product of U . Show that there is a function

T : RJ → RU , inverse-measure-preserving for µ
(J)
G and µ, such that whenever 〈jn〉n∈N is a sequence of distinct

elements of J and 〈αn〉n∈N is a square-summable sequence in R, then (Tx)(
∑∞
n=0 αnujn) =

∑∞
n=0 αnx(jn)

for almost every x ∈ RJ .

(c) Let U be an infinite-dimensional Hilbert space and µ the universal centered Gaussian distribution on
RU with covariance matrix defined by the inner product of U . Show that µC = 0 for every compact set
C ⊆ RU .

(d) Let I be a set and µ be a centered Gaussian distribution on RI . Show that the following are
equiveridical: (i) µ has countable Maharam type; (ii) L2(µ) is separable; (iii) I is separable under the

pseudometric (i, j) 7→
√∫

(x(i) − x(j))2µ(dx).

456 Notes and comments This section has aimed for a direct route to Talagrand’s theorem 456O,
leaving most of the real reasons for studying Gaussian processes (see Fernique 97) to one side. It should
nevertheless be clear from such fragments as 252Xi, 456Bb, 456G and the exercises here that they are one
of the many concepts of probability theory which are both significant and delightful. Very much the most
important Gaussian processes are those associated with Brownian motion, which will be treated in §477 et

seq.

You will of course have observed that the methods used here are entirely different from those in §455,
even though one of the concerns of that section was a check for τ -additive distributions and corresponding
quasi-Radon versions, as in 455K. However the results of §455 were based on the fact that in the most
important cases the distributions there have extensions to Radon measures (455H). Gaussian distributions
need not be like this at all, even when they have countable Maharam type; see 456Yc.

Version of 18.1.13

457 Simultaneous extension of measures

The questions addressed in §§451, 454 and 455 can all be regarded as special cases of a general class of
problems: given a set X and a family 〈νi〉i∈I of (probability) measures on X, when can we expect to find a
measure on X extending every νi? An alternative formulation, superficially more general, is to ask: given a
set X, a family 〈(Yi,Ti, νi)〉i∈I of probability spaces, and functions φi : X → Yi for each i, when can we find
a measure on X for which every φi is inverse-measure-preserving? Even the simplest non-trivial case, when
X =

∏
i∈I Yi and every φi is the coordinate map, demands a significant construction (the product measures

of Chapter 25). In this section I bring together a handful of important further cases which are accessible
by the methods of this chapter. I begin with a discussion of extensions of finitely additive measures (457A-
457D), which are much easier, before considering the problems associated with countably additive measures
(457E-457G), with examples (457H-457J). In 457K-457M I look at a pair of optimisation problems.
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457A It is helpful to start with a widely applicable result on common extensions of finitely additive
measures.

Lemma Let A be a Boolean algebra and 〈Bi〉i∈I a non-empty family of subalgebras of A. For each i ∈ I,
we may identify L∞(Bi) with the closed linear subspace of L∞(A) generated by {χb : b ∈ Bi} (363Ga).
Suppose that for each i ∈ I we are given a finitely additive functional νi : Bi → [0, 1] such that νi1 = 1;
write

∫
. . . dνi for the corresponding positive linear functional on L∞(Bi) (363L). Then the following are

equiveridical:
(i) there is an additive functional µ : A → [0, 1] extending every νi;
(ii) whenever i0, . . . , in ∈ I, ak ∈ Bik for k ≤ n, and

∑n
k=0 χak ≥ mχ1 in S(A), where m ∈ N, then∑n

k=0 νikak ≥ m;
(iii) whenever i0, . . . , in ∈ I, ak ∈ Bik for k ≤ n, and

∑n
k=0 χak ≤ mχ1, where m ∈ N, then∑n

k=0 νikak ≤ m;
(iv) whenever i0, . . . , in ∈ I are distinct, uk ∈ L∞(Bik) for every k ≤ n, and

∑n
k=0 uk ≥ χ1, then∑n

i=0

∫
ukdνik ≥ 1;

(v) whenever i0, . . . , in ∈ I are distinct, uk ∈ L∞(Bik) for every k ≤ n, and
∑n
k=0 uk ≤ χ1, then∑n

i=0

∫
ukdνik ≤ 1.

proof (a) It is elementary to check that if (i) is true then (ii)-(v) are all true, simply because we have a
positive linear functional

∫
dµ extending all the functionals

∫
dνi.

(b)(ii)⇒(iii) Given that ak ∈ Bik and
∑n
k=0 χak ≤ mχ1, then

∑n
k=0 χ(1 \ ak) = (n+ 1)χ1 −∑n

k=0 χak ≥ (n+ 1 −m)χ1,

so
∑n
k=0 νikak = n+ 1 −∑n

k=0 νik(1 \ ak) ≤ n+ 1 − (n+ 1 −m) = m,

as required by (iii).

(c)(iii)⇒(i) Assume (iii). Set ψa = sup{νia : i ∈ I, a ∈ Bi} for a ∈ A (interpreting sup ∅ as 0, as usual
in such contexts). Then ψ satisfies the condition (ii) of 391F. PPP??? Otherwise, there is a finite indexed family
〈ak〉k∈K in A such that infk∈J ak = 0 whenever J ⊆ K and #(J) ≥ ∑

k∈K ψai. The general hypothesis
of the lemma implies that A 6= {0}, so inf ∅ = 1 6= 0 and K is non-empty. Taking K to be of minimal
size, we get an example in which ψak > 0 for every k ∈ K. Set m = ‖∑k∈K χak‖∞; then m ∈ N and
m <

∑
k∈K ψak, so we can find for each k ∈ K an ik ∈ I such that ak ∈ Bik and m <

∑
k∈K νikak. But

this contradicts our hypothesis (iii). XXXQQQ
By 391F, there is a non-negative finitely additive functional µ such that µ1 = 1 and µa ≥ ψa for every

a ∈ A, that is, µb ≥ νib whenever i ∈ I and b ∈ Bi. But observe now that, because µ1 = νi1 and
µ(1 \ b) ≥ νi(1 \ b), we actually have µb = νib for every b ∈ Bi, so that µ extends νi, for every i ∈ I.

(d)(iv)⇒(ii) Suppose that (iv) is true, and that i0, . . . , in ∈ I, ak ∈ Bik for k ≤ n, and
∑n
k=0 χak ≥ mχ1

in S(A), where m ∈ N. If m = 0 then of course
∑n
k=0 νikak ≥ m. Otherwise, set J = {ik : k ≤ n} and

enumerate J as 〈jl〉l≤r. For l ≤ r set ul = 1
m

∑
k≤n,ik=jl χak. Then ul ∈ S(Bjl) for each l, and

∑r
l=0 ul =

1

m

∑r
l=0

∑
k≤n,ik=jl χak =

1

m

∑n
k=0 χak ≥ χ1.

As j0, . . . , jl are distinct,

∑r
l=0

∫
uldνjl =

1

m

∑n
k=0 νikak ≥ 1.

So (ii) is true.

(e)(v)⇒(iii) Use the same argument as in (d) above.

457B Corollary Let X be a set and 〈Yi〉i∈I a family of sets. Suppose that for each i ∈ I we have
an algebra Ei of subsets of Yi, an additive functional νi : Ei → [0, 1] such that νiYi = 1, and a function
fi : X → Yi. Then the following are equiveridical:

(i) there is an additive functional µ : PX → [0, 1] such that µf−1
i [E] = νiE whenever i ∈ I and E ∈ Ei;
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(ii) whenever i0, . . . , in ∈ I and Ek ∈ Eik for k ≤ n, then there is an x ∈ X such that
∑n
k=0 νikEk ≤

#({k : k ≤ n, fik(x) ∈ Ek}).

proof (i)⇒(ii) is elementary; if m = ⌈∑n
k=0 νikEk⌉ − 1, then

∑n
k=0 µf

−1
ik

[Ek] > mµX, so
∑n
k=0 χf

−1
ik
Ek 6≤

mχX, that is, there is an x ∈ X such that

#({k : fik(x) ∈ Ek}) =
∑n
k=0(χf−1

ik
[Ek])(x) ≥ m+ 1 ≥ ∑n

k=0 νikEk.

(ii)⇒(i) Now suppose that (ii) is true. For i ∈ I set Bi = {f−1
i [E] : E ∈ Ei}. Note that if E ∈ Ei and

νiE > 0, then (applying (ii) with n = 0, i0 = i and E0 = E) f−1
i [E] cannot be empty; accordingly we have

an additive functional ν ′i : Bi → [0, 1] defined by setting ν ′if
−1[E] = νiE for every E ∈ Ei, and ν ′iX = 1. If

i0, . . . , in ∈ I, H0 ∈ Bi0 , . . . , Hn ∈ Bin and m ∈ N are such that
∑n
k=0 χHk ≤ mχX, express each Hk as

f−1
ik

[Ek], where Ek ∈ Eik ; then there is an x ∈ X such that
∑n
k=0 ν

′
ik
Hk =

∑n
k=0 νikEk ≤ #({k : fk(x) ∈ Ek}) =

∑m
k=0 χHk(x) ≤ m.

But this means that the condition of 457A(iii) is satisfied, with A = PX, so 457A(i) and (i) here are also
true.

457C Corollary (a) Let A be a Boolean algebra and B1, B2 two subalgebras of A with finitely additive
functionals νi : Bi → [0, 1] such that ν11 = ν21 = 1. Then the following are equiveridical:

(i) there is an additive functional µ : A → [0, 1] extending both the νi;
(ii) whenever b1 ∈ B1, b2 ∈ B2 and b1 ∪ b2 = 1, then ν1b1 + ν2b2 ≥ 1;
(iii) whenever b1 ∈ B1, b2 ∈ B2 and b1 ∩ b2 = 0, then ν1b1 + ν2b2 ≤ 1.

(b) Let X, Y1, Y2 be sets, and for i ∈ {1, 2} let Ei be an algebra of subsets of Yi, νi : Ei → [0, 1] an
additive functional such that νiYi = 1, and fi : X → Yi a function. Then the following are equiveridical:

(i) there is an additive functional µ : PX → [0, 1] such that µf−1
i [E] = νiE whenever i ∈ {1, 2} and

E ∈ Ei;
(ii) f−1

1 [E1] ∩ f−1
2 [E2] 6= ∅ whenever E1 ∈ E1, E2 ∈ E2 and ν1E1 + ν2E2 > 1;

(iii) ν1E1 ≤ ν2E2 whenever E1 ∈ E1, E2 ∈ E2 and f−1
1 [E1] ⊆ f−1

2 [E2].

proof (a)(i)⇒(iii) is elementary (and is a special case of 457A(i)⇒457A(iii)).

(iii)⇒(ii) If (iii) is true, and b1 ∈ B1, b2 ∈ B2 are such that b1 ∪ b2 = 1, then (1 \ b1) ∩ (1 \ b2) = 0, so

ν1b1 + ν2b2 = 2 − ν1(1 \ b1) − ν2(1 \ b2) ≥ 1.

(ii)⇒(i) The point is that (ii) here implies (ii) of 457A. PPP Suppose that i0, . . . , in ∈ {1, 2}, ak ∈ Bik

for k ≤ n and
∑n
k=0 χak ≥ mχ1 in S(A), where m ∈ N. Set Kj = {k : k ≤ n, ik = j} for each j,

u =
∑
k∈K1

χak ∈ S(B1), v =
∑
k∈K2

χak ∈ S(B2). Then we can express u as
∑m1

j=0 χcj where cj ∈ B1 for

each j ≤ m1 and c0 ⊇ c1 ⊇ . . . ⊇ cm1
(see the proof of 361Ec). Taking cj = 0 for m1 < j ≤ m if necessary,

we may suppose that m1 ≥ m. Similarly, v =
∑m2

j=0 χdj where m2 ≥ m, dj ∈ B2 for each j ≤ m2 and
d0 ⊇ . . . ⊇ dm2

.
For j < m, set bj = 1 \ (cj ∪ dm−j−1). Then, because bj ∩ cj = 0,

u× χbj =
∑m1

r=0 χ(cr ∩ bj) =
∑j−1
r=0 χ(cr ∩ bj) ≤ jχbj ,

and similarly v × χbj ≤ (m− j − 1)χbj , so

mχbj ≤ (u+ v) × χbj = u× χbj + v × χbj ≤ (m− 1)χbj ,

and bj must be 0.
Thus cj ∪ dm−j−1 = 1 for every j < m. But this means that ν1cj + ν2dm−j−1 ≥ 1 for every j < m, so

that

n∑

k=0

νikak =
∑

k∈K1

ν1ak +
∑

k∈K2

ν2ak = −
∫
u dν1 + −

∫
v dν2

=

m1∑

j=0

ν1cj +

m2∑

j=0

ν2dj ≥
m−1∑

j=0

ν1cj + ν2dm−1−j ≥ m,
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as required. QQQ
Because 457A(ii) implies 457A(i), we have the result.

(b) We can convert (i) and (ii) here into (a-i) and (a-iii) just above by the same translation as in 457B.
So (i) and (ii) are equiveridical. As for (iii), this corresponds exactly to replacing E2 by Y2 \ E2 in (ii).

*457D The proof of 457A is based, at some remove, on the Hahn-Banach theorem, as applied in the
proof of 391E-391F. An alternative proof uses the max-flow min-cut theorem of graph theory. To show the
power of this method I apply it to an elaboration of 457C, as follows.

Proposition (Strassen 65) Let A be a Boolean algebra and B1, B2 two subalgebras of A. Suppose that
νi : Bi → [0, 1] are finitely additive functionals such that ν11 = ν21 = 1, and θ : A → [0,∞[ another additive
functional. Then the following are equiveridical:

(i) there is an additive functional µ : A → [0,∞[ extending both the νi, and such that µa ≤ θa for every
a ∈ A;

(ii) ν1b1 + ν2b2 ≤ 1 + θ(b1 ∩ b2) whenever b1 ∈ B1 and b2 ∈ B2.

proof (a) As usual in this context, (i)⇒(ii) is elementary; if µ ≤ θ extends both νj , and bj ∈ Bj for both
j, then

ν1b1 + ν2b2 = µb1 + µb2 = µ(b1 ∪ b2) + µ(b1 ∩ b2) ≤ 1 + θ(b1 ∩ b2).

(b) For the reverse implication, suppose to begin with (down to the end of (d) below) that A is finite.
Let I, J and K be the sets of atoms of B1, B2 and A respectively. Consider the transportation network
(V,E, γ) where

V = {(0, 0)} ∪ {(b, 1) : b ∈ I} ∪ {(d, 2) : d ∈ K} ∪ {(c, 3) : c ∈ J} ∪ {(1, 4)},

E = {e0b : b ∈ I} ∪ {e1d : d ∈ K} ∪ {e2d : d ∈ K} ∪ {e3c : c ∈ J},

where

for b ∈ I, e0b runs from (0, 0) to (b, 1),
for d ∈ K, e1d runs from (b, 1) to (d, 2), where b is the member of I including d,
for d ∈ K, e2d runs from (d, 2) to (c, 3), where c is the member of J including d,
for c ∈ J , e3c runs from (c, 3) to (1, 4).

Define the capacity γ(e) of each link by setting

γ(e0b) = ν1b for b ∈ I,

γ(e1d) = γ(e2d) = θd for d ∈ K,

γ(e3c) = ν2c for c ∈ J .

By the max-flow min-cut theorem (4A4N), there are a flow φ and a cut X of the same value; that is, we
have a function φ : E → [0,∞[ and a set X ⊆ E such that

∑
e starts from v φ(e) =

∑
e ends at v φ(e)

for every v ∈ V \ {(0, 0), (1, 4)},

φ(e) ≤ γ(e)

for every e ∈ E,
∑
e starts from (0,0) φe =

∑
e ends at (1,4) φe =

∑
e∈X γ(e),

and there is no path from (0, 0) to (1, 4) using only links in E \X.
Now, for any d ∈ K, there is exactly one link e1d ending at d and exactly one link e2d starting from d. So

φ(e1d) = φ(e2d), and we may define an additive functional µ on A by setting

µa =
∑
d∈K,d⊆a φ(e1d) =

∑
d∈K,d⊆a φ(e2d)

for every a ∈ A.
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(c)(i) µb ≤ ν1b for every b ∈ B1. PPP Because I is the set of atoms of the finite Boolean algebra B1, it is
enough to show that µb ≤ ν1b for every b ∈ I. Now, for such b,

µb =
∑

d∈K,d⊆b

φ(e1d) =
∑

e starts from (b,1)

φ(e)

=
∑

e ends at (b,1)

φ(e) = φ(e0b) ≤ γ(e0b) = ν1b,

because the only link ending at (b, 1) is e0b . QQQ

(ii) Similarly, because the only link starting at (c, 3) has capacity ν2c, µc ≤ ν2c for every c ∈ J . But
this means that µc ≤ ν2c for every c ∈ B2.

(iii) In third place, because

µd = φ(e1d) ≤ γ(e1d) = θd

for every d ∈ K, µa ≤ θa for every a ∈ A.

(d) (The key.) µ1 ≥ 1. PPP We have

µ1 =
∑

d∈K
µd =

∑

d∈K
φ(e1d)

=
∑

b∈I

∑

d∈K,d⊆b

φ(e1d) =
∑

b∈I

∑

e starts from (b,1)

φ(e)

=
∑

b∈I

∑

e ends at (b,1)

φ(e) =
∑

e starts from (0,0)

φ(e) =
∑

e∈X
γ(e).

Set

b∗ = sup{b : b ∈ I, e0b ∈ X} ∈ B1,

a∗1 = sup{d : d ∈ K, e1d ∈ X},
a∗2 = sup{d : d ∈ K, e2d ∈ X},
c∗ = sup{c : c ∈ J, e3c ∈ X} ∈ B2.

For any d ∈ K, we have a four-link path e0b , e
1
d, e

2
d, e

3
c from (0, 0) to (1, 4), where b ∈ I, c ∈ J are the atoms

of B1, B2 including d. At least one of the links in this path must belong to X, so that d is included in
b∗ ∪ a∗1 ∪ a∗2 ∪ c∗. Thus, writing a = (1 \ b∗) ∩ (1 \ c∗), a ⊆ a∗1 ∪ a∗2 and θa ≤ θa∗1 + θa∗2. But this means that

µ1 =
∑

e∈X
γ(e)

=
∑

b∈I,e0b∈X
γ(e0b) +

∑

d∈K,e1d∈X
γ(e1d) +

∑

d∈K,e2d∈X
γ(e2d) +

∑

c∈J,e3c∈X
γ(e3c)

=
∑

b∈I,e0b∈X
ν1b+

∑

d∈K,e1d∈X
θd+

∑

d∈K,e2d∈X
θd+

∑

c∈J,e3c∈X
ν2c

= ν1b
∗ + θa∗1 + θa∗2 + ν2c

∗

(remember that θ is additive)

≥ ν1b
∗ + θ((1 \ b∗) ∩ (1 \ c∗)) + ν2c

∗ ≥ ν1b
∗ + ν1(1 \ b∗) + ν2(1 \ c∗) − 1 + ν2c

∗

(applying the hypothesis (ii))

= 1,

as claimed. QQQ
Since we already know that ν11 = 1 and that µb ≤ ν1b for every b ∈ B1, we must have µ1 = 1 and

µb = ν1b for every b ∈ B, so that µ extends ν1. Similarly, µ extends ν2.
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(e) Thus the proposition is proved in the case in which A is finite. In the general case, for each finite
subset K of A write AK for the subalgebra of A generated by K. Then (b)-(d) tell us that there is a non-
negative additive functional µK on AK , dominated by θ on AK , agreeing with ν1 on AK ∩B1 and agreeing
with ν2 on AK ∩B2. Let µ be any cluster point of the µK in [0, 1]A as K increases through the finite subsets
of A; then µ will be a non-negative additive functional on A, dominated by θ, and extending ν1 and ν2.

This proves the result.

457E Proposition Let X be a non-empty set and 〈νi〉i∈I a family of probability measures on X satisfying
the conditions of Lemma 457A, taking A = PX and Bi = dom νi for each i. Suppose that there is a countably
compact class K ⊆ PX such that every νi is inner regular with respect to K. Then there is a probability
measure µ on X extending every νi.

proof If I = ∅ this is trivial. Otherwise, by 457A, there is a finitely additive functional ν on PX extending
every νi. Now 413Ua tells us that there is a complete measure µ on X such that µX ≤ νX and µK ≥ νK
for every K ∈ K. In this case, for any i ∈ I and E ∈ Ti = dom νi, we must have

µ∗E ≥ sup
K∈K,K⊆E

µK ≥ sup
K∈K∩dom νi,K⊆E

µK

≥ sup
K∈K∩dom νi,K⊆E

νK = sup
K∈K∩dom νi,K⊆E

νiK = νiE.

In particular, µX ≥ νiX = 1. Also µX ≤ νX = 1, so

µ∗E = 1 − µ∗(X \ E) ≤ 1 − νi(X \ E) = νiE

for any E ∈ Ti; as µ is complete, µE is defined and equal to νiE for every E ∈ Ti, and µ extends νi, as
required.

457F Proposition (a) Let (X,Σ, µ) be a perfect probability space and (Y,T, ν) any probability space.
Write Σ ⊗ T for the algebra of subsets of X × Y generated by {E × F : E ∈ Σ, F ∈ T}. Suppose that
Z ⊆ X × Y is such that

(i) Z is expressible as the intersection of a sequence in Σ ⊗ T,
(ii) Z ∩ (E × F ) 6= ∅ whenever E ∈ Σ, F ∈ T are such that µE + νF > 1.

Then there is a probability measure λ on Z such that the maps (x, y) 7→ x : Z → X and (x, y) 7→ y : Z → Y
are both inverse-measure-preserving.

(b) Let 〈(Xi,Σi, µi)〉i∈I be a family of perfect probability spaces. Write
⊗

i∈I Σi for the algebra of subsets
of X =

∏
i∈I Xi generated by {{x : x ∈ X, x(i) ∈ E} : i ∈ I, E ∈ Σi}. Suppose that Z ⊆ X is such that

(i) Z is expressible as the intersection of a sequence in
⊗

i∈I Σi,
(ii) whenever i0, . . . , in ∈ I and Ek ∈ Σik for k ≤ n, there is a z ∈ Z such that #({k : k ≤

n, z(ik) ∈ Ek}) ≥ ∑n
k=0 µikEk.

Then there is a perfect probability measure λ on Z such that z 7→ z(i) : Z → Xi is inverse-measure-
preserving for every i ∈ I.

proof (a) Apply 457Cb to the coordinate maps f1 : Z → X and f2 : Z → Y . The condition (ii) here shows
that 457C(b-ii) is satisfied, so there is an additive functional θ : PZ → [0, 1] such that θf−1

1 [E] = µE for
every E ∈ Σ and θf−1

2 [F ] = νF for every F ∈ T.
Define θ′ : Σ ⊗ T → [0, 1] by setting θ′W = θ(Z ∩W ) for every W ∈ Σ ⊗ T. Then θ′(E × Y ) = µE for

every E ∈ Σ and θ′(X × F ) = νF for every F ∈ T. Because µ is perfect, θ′ has an extension to a measure

λ̃ defined on Σ⊗̂T (454C). Now Z is supposed to be expressible as
⋂
n∈NWn where Wn ∈ Σ ⊗ T for every

n; since

λ̃Wn = θ′Wn = θ(Z ∩Wn) = θZ = 1

for every n, λ̃Z = 1. So if we take λ to be the subspace measure on Z induced by λ̃, λ will be a probability
measure on Z. If E ∈ Σ, then

λ(Z ∩ (E × Y )) = λ̃(Z ∩ (E × Y )) = λ̃(E × Y )

= θ′(E × Y ) = θ(Z ∩ (E × Y )) = µE.
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So f1 : Z → X is inverse-measure-preserving for λ and µ. Similarly, f2 : Z → Y is inverse-measure-
preserving for λ and ν.

(b) We use the same ideas, but appealing to 457B and 454D instead of 457Cb and 454C. Taking fi :
X → Xi to be the coordinate map for each i ∈ I, (ii) here, with 457B, tells us that there is an additive
functional θ : PZ → [0, 1] such that θf−1

i [E] = µiE whenever i ∈ I and E ∈ Σi.
Define θ′ :

⊗
i∈I Σi → [0, 1] by setting θ′W = θ(Z ∩W ) for every W ∈ ⊗

i∈I Σi. Then

θ′{x : x ∈ X, x(i) ∈ E} = θ{z : z ∈ Z, z(i) ∈ E} = µiE

whenever i ∈ I and E ∈ Σi. Because every µi is perfect, θ′ has an extension to a perfect measure λ̃ defined

on
⊗̂

i∈IΣi (454D). Now Z is supposed to be expressible as
⋂
n∈NWn where Wn ∈ ⊗

i∈I Σi for every n;
since

λ̃Wn = θ′Wn = θ(Z ∩Wn) = θZ = 1

for every n, λ̃Z = 1. So if we take λ to be the subspace measure on Z induced by λ̃, λ will be a probability
measure on Z; by 451Dc, λ is perfect. If i ∈ I and E ∈ Σi, then

λ{z : z ∈ Z, z(i) ∈ E} = λ̃{x : x ∈ X, x(i) ∈ E} = θ′{x : x ∈ X, x(i) ∈ E}
= θ{z : z ∈ Z, z(i) ∈ E} = µiE.

So z 7→ z(i) : Z → Xi is inverse-measure-preserving for λ and µi for every i ∈ I, as required.

457G Theorem Let X be a set and 〈µi〉i∈I a family of probability measures on X which is upwards-
directed in the sense that for any i, j ∈ I there is a k ∈ I such that µk extends both µi and µj . Suppose
that for any countable J ⊆ I there is a measure on X extending µi for every i ∈ J . Then there is a measure
on X extending µi for every i ∈ I.

proof Set Σi = domµi for each i ∈ I. Because 〈µi〉i∈I is upwards-directed, T =
⋃
i∈I Σi is an algebra of

subsets of X, and we have a finitely additive functional ν : T → [0, 1] defined by saying that νE = µiE
whenever i ∈ I and E ∈ Σi. Now if 〈En〉n∈N is any non-increasing sequence in T with empty intersection,
there is a countable set J ⊆ I such that En ∈ ⋃

i∈J Σi for every n ∈ N. We are told that there is a measure
λ on X extending µi for every i ∈ J ; now νEn = λEn for every n ∈ N, so limn→∞ νEn = 0. By 413Lb, ν
has an extension to a measure on X, which of course extends every µi.

457H Example Set X = {(x, y) : 0 ≤ x < y ≤ 1} ⊆ [0, 1]2. Write π1, π2 : X → R for the coordinate
maps, and µL for Lebesgue measure on [0, 1], with ΣL its domain.

(a) There is a finitely additive functional ν : PX → [0, 1] such that νπ−1
i [E] = µLE whenever i ∈ {1, 2}

and E ∈ ΣL. PPP If E1, E2 ∈ ΣL and µLE1 + µLE2 > 1, then neither is empty and inf E1 < supE2, so there
are x ∈ E1, y ∈ E2 such that x < y, and (x, y) ∈ π−1

1 [E1] ∩ π−1
2 [E2]. So the result follows by 457Cb. QQQ

(b) However, there is no measure µ on X for which both π1 and π2 are inverse-measure-preserving. PPP???
If there were, ∫

π1(x, y)µ(d(x, y)) =
∫
xµL(dx) =

∫
yµL(dy) =

∫
π2(x, y)µ(d(x, y))

by 235G; but π1(x, y) < π2(x, y) for every (x, y) ∈ X, so this is impossible. XXXQQQ

(c) If we write Ti = {π−1
i [E] : E ⊆ [0, 1] is Borel} for each i, then we have a measure νi with domain Ti

defined by setting νiπ
−1
i [E] = µLE for each Borel set E ⊆ [0, 1]. Now ν1 and ν2 have no common extension

to a Borel measure on X, even though X is a Polish space and each νi is a compact measure, being inner
regular with respect to the compact class Ki = {π−1

i [K] : K ⊆ ]0, 1[ is compact}. (The trouble is that
K1 ∪ K2 is not compact, so we cannot apply 457E.)

457I Example Let µL be Lebesgue measure on [0, 1] and ΣL its domain. Set

X = {(ξ1, ξ2, ξ3) : 0 ≤ ξi ≤ 1 for each i,
∑3
i=1 ξi ≤

3

2
,
∑3
i=1 ξ

2
i ≤ 1}.

For 1 ≤ i ≤ 3 set πi(x) = ξi for x = (ξ1, ξ2, ξ3) ∈ X.
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(a) If Ei ∈ ΣL for i ≤ 3, then there is an x ∈ X such that #({i : πi(x) ∈ Ei}) ≥ ∑3
i=1 µLEi. PPP Set

αi = inf(Ei ∪ {1}) for each i, and set

m = ⌈∑3
i=1 µLEi⌉ ≤ ⌈∑3

i=1 1 − αi⌉ = 3 − ⌊∑3
i=1 αi⌋,

so that
∑3
i=1 αi < 4 −m. Take ξi ∈ Ei ∪ {1} such that

∑3
i=1 ξi < 4 −m. It will be enough to consider the

case in which ξ1 ≤ ξ2 ≤ ξ3.

(i) If m = 1, then
∑3
i=1 ξi < 3 so ξ1 < 1 and ξ1 ∈ E1. Set x = (ξ1, 0, 0); then x ∈ X and

#({i : πi(x) ∈ Ei}) ≥ 1 ≥ ∑3
i=1 µLEi.

(ii) If m = 2, then
∑3
i=1 ξi < 2 so ξ2 < 1 and ξ1 ∈ E1, ξ2 ∈ E2. Set x = (ξ1, ξ2, 0). We have

ξ1 + ξ2 ≤ 4
3 ≤ 3

2 . Also

ξ2 ≤ 1

2
(ξ2 + ξ3) ≤ 1 − 1

2
ξ1,

so

ξ21 + ξ22 ≤ ξ21 + (1 − 1

2
ξ1)2 = 1 − ξ1 +

5

4
ξ21 ≤ 1

because ξ1 ≤ 2
3 ≤ 4

5 . So x ∈ X and

#({i : πi(x) ∈ Ei}) ≥ 2 ≥ ∑3
i=1 µLEi.

(iii) If m = 3 then
∑3
i=1 ξi < 1 so ξi ∈ Ei for every i; set x = (ξ1, ξ2, ξ3). Since

∑3
i=1 ξ

2
i ≤ ∑3

i=1 ξi ≤ 1,
x ∈ X and

#({i : πi(x) ∈ Ei}) = 3 ≥ ∑3
i=1 µLEi.

Putting these together, we have the result. QQQ

(b) There is no finitely additive functional ν on X such that νπ−1
i [E] = µLE for each i and every E ∈ ΣL.

PPP??? Suppose there were. Set Ti = {π−1
i [E] : E ∈ ΣL} and νi = ν↾Ti for each i. Then νi is a probability

measure on X; moreover, because X is compact, π−1
i [K] is compact for every compact K ⊆ [0, 1], so νi is

inner regular with respect to the compact subsets of X. By 457E, the νi have a common extension to a
countably additive measure µ. Now

∫
X
ξ1 + ξ2 + ξ3 µ(dx) = 3

∫ 1

0
t dt =

3

2
,

so we must have ξ1 + ξ2 + ξ3 =
3

2
for µ-almost every x; similarly,

∫
X
ξ21 + ξ22 + ξ23 µ(dx) = 3

∫ 1

0
t2 dt = 1,

so we must have ξ21 + ξ22 + ξ23 = 1 for µ-almost every x. Since

(
3

2
− ξ3)2 = (ξ1 + ξ2)2 ≤ 2(ξ21 + ξ22) ≤ 2(1 − ξ23)

for almost every x, ξ3 − ξ23 ≥ 1
12 for almost every x, which is impossible, since µ{x : ξ3 ≤ 1

2
− 1√

6
} > 0. XXXQQQ

457J Example There are a set X and a family 〈µi〉i∈I of probability measures on X such that (i) for
every countable set J ⊆ I there is a measure on X extending µi for every i ∈ J (ii) there is no measure on
X extending µi for every i ∈ I.

proof By 439Fc, there is an uncountable universally negligible subset of [0, 1]. Because [0, 1] and PN

are uncountable Polish spaces, they have isomorphic Borel structures (424Cb), so there is an uncountable
universally negligible set X0 ⊆ PN. The map a 7→ N \ a is an autohomeomorphism of PN, so X1 = {N \ a :
a ∈ X0} is universally negligible, and X = X0 ∪X1 is universally negligible (439Cb).
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For n ∈ N, set En = {a : n ∈ a ∈ X} and Σn = {∅, En, X \En, X}; note that, because X is closed under
complementation, neither En nor X \ En is empty, and we have a probability measure µn with domain Σn
defined by setting µnEn = µn(X \ En) = 1

2 . Next, for a ∈ X, set Σ′
a = {∅, {a}, X \ {a}, X), and let µ′

a be
the probability measure with domain Σ′

a defined by setting µ′
a{a} = 0.

If J ⊆ X is countable, then there is a probability measure on X extending µn for every n ∈ N and µ′
a for

every a ∈ J . PPP Because X0 is uncountable, there is a b ∈ X0 such that neither b nor b′ = PN \ b belongs to
J . Let µ be the probability measure with domain PX defined by setting µ{b} = µ{b′} = 1

2 ; this extends all
the µn and all the µ′

a for a ∈ J . QQQ
??? Suppose, if possible, that µ is a measure on X extending every µn and every µ′

a. In this case, because
µ extends every µn, its domain includes the Borel σ-algebra B of X, and µ↾B is a Borel probability measure
on X. Since X is universally negligible, there is a point a ∈ X such that µ{a} > 0; in which case µ cannot
extend µ′

a. XXX
Thus the µn, µ′

a constitute a family of the kind required.

457K In addition to existence, we can ask for solutions to simultaneous-extension problems which are
optimal in some sense; some transportation problems can be interpreted as questions of this kind. In this
direction I give just one result, which is also connected to the ideas of §437.22

Definition (Bogachev 07, §8.10(viii)) Let (X, ρ) be a metric space. For quasi-Radon probability measures
µ, ν on X, set

ρW(µ, ν) = sup{|
∫
u dµ−

∫
u dν| : u : X → R is bounded and 1-Lipschitz}.

(Compare the metric ρKR of 437Qb. ρW is sometimes called the ‘Wasserstein metric’.)

457L Theorem Let (X, ρ) be a metric space and PqR the set of quasi-Radon probability measures on
X; define ρW as in 457K.

(a) For all µ, ν and λ in PqR,

ρW(µ, ν) = ρW(ν, µ), ρW(µ, λ) ≤ ρW(µ, ν) + ρW(ν, λ),

ρW(µ, ν) = 0 iff µ = ν.

(b) (cf. Vasershtein 69) If µ, ν ∈ PqR, then ρW(µ, ν) = infλ∈Q(µ,ν)

∫
ρ(x, y)λ(d(x, y)), where Q(µ, ν) is

the set of quasi-Radon probability measures on X ×X with marginal measures µ and ν.
(c) In (b), if µ and ν are Radon measures, Q(µ, ν) is included in PR(X×X), the space of Radon probability

measures on X×X, and is compact for the narrow topology on PR(X×X); and there is a λ ∈ Q(µ, ν) such
that ρW(µ, ν) =

∫
ρ(x, y)λ(d(x, y)).

(d) If ρ is bounded, then ρW is a metric on PqR inducing the narrow topology (definition: 437Jd).

proof (a) The first two clauses are immediate from the definition. For the third, observe that if µ 6= ν then
ρW(µ, ν) ≥ ρKR(µ, ν) > 0 by 437R.

(b) Write ζ ∈ [0,∞] for ρW(µ, ν), L∞
domµ for the space of bounded domµ-measurable functions from X

to R and L
∞
dom ν for the space of bounded dom ν-measurable functions from X to R.

(i) We have

ζ = sup{
∫
u dµ+

∫
v dν : u ∈ L

∞
domµ, v ∈ L

∞
dom ν ,

u(x) + v(y) ≤ ρ(x, y) for all x, y ∈ X}.
PPP(ααα) Suppose that u ∈ L

∞
domµ, v ∈ L

∞
dom ν and u(x) + v(y) ≤ ρ(x, y) for all x, y ∈ X. Set

w(x) = infy∈X ρ(x, y) − v(y)

for x ∈ X. Then u(x) ≤ w(x) and w(x) + v(x) ≤ 0 for every x, so u ≤ w ≤ −v and w is bounded; also w is
1-Lipschitz, because if x, x′ ∈ X then

22I am indebted to J.Pachl for leading me to this material.

Measure Theory



457L Simultaneous extension of measures 131

w(x) − ρ(x, x′) = infy∈X ρ(x, y) − v(y) − ρ(x, x′) ≤ infy∈X ρ(x′, y) − v(y) = w(x′).

Accordingly ∫
u dµ+

∫
v dν ≤

∫
w dµ−

∫
w dν ≤ ζ.

(βββ) In the other direction, given γ < ζ, there is a bounded 1-Lipschitz function u : X → R such that
|
∫
u dµ −

∫
u dν| ≥ γ. Replacing u by −u if necessary, we can arrange that

∫
u dµ −

∫
u dν ≥ γ. Now set

v = −u; then u(x) + v(y) ≤ ρ(x, y) for all x, y, and
∫
u dµ+

∫
v dν ≥ γ. QQQ

It follows that if u ∈ L
∞
domµ, v ∈ L

∞
dom ν and u(x) + v(y) ≤ βρ(x, y) for all x, y ∈ X, where β > 0, then

∫
u dµ+

∫
v dν = β(

∫ 1

β
u dµ+

∫ 1

β
v dν) ≤ βζ.

(ii)
∫
ρ dλ ≥ ζ for every λ ∈ Q(µ, ν). PPP If u ∈ L

∞
domµ, v ∈ L

∞
dom ν and u(x) + v(y) ≤ ρ(x, y) for all x,

y ∈ X, then

∫
u dµ+

∫
v dν =

∫
u(x)λ(d(x, y)) +

∫
v(y)λ(d(x, y))

(235G)

≤
∫
ρ dλ

so (i) gives us the result. QQQ
If ζ = ∞, we can stop; so henceforth suppose that ζ is finite.

(iii) Define p : ℓ∞(X ×X) → [0,∞[ by setting

p(w) = inf{α+ βζ : α, β > 0, w(x, y) ≤ α+ βρ(x, y) for all x, y ∈ X}.

Then p(w + w′) ≤ p(w) + p(w′) and p(αw) = αp(w) whenever w, w′ ∈ ℓ∞(X ×X) and α ∈ [0,∞[. For u,
v ∈ RX define u⊗ v ∈ RX×X by setting (u⊗ v)(x, y) = u(x)v(y) for all x, y ∈ X (cf. 253B); set

V = {(u⊗ χX) + (χX ⊗ v) : u ∈ L
∞
domµ, v ∈ L

∞
dom ν}.

Let µ×ν be the quasi-Radon product measure on X×X (417R). Then we have a linear functional h0 : V → R

defined by saying that h0(w) =
∫
w d(µ × ν) for w ∈ V . The point is that h0(w) ≤ p(w) for every w ∈ V .

PPP We have u ∈ L
∞
domµ, v ∈ L

∞
dom ν such that w(x, y) = u(x) + v(y) for all x, y ∈ X. If α, β > 0 are such

that w(x, y) ≤ α+ βρ(x, y) for all x, y ∈ X, set u0(x) = u(x) − α for every x; then u0(x) + v(y) ≤ βρ(x, y)
for all x and y, so

h0(w) =

∫
u⊗ χX d(µ× ν) +

∫
χX ⊗ v d(µ× ν) =

∫
u dµ+

∫
v dν

= α+

∫
u0 dµ+

∫
v dν ≤ α+ βζ

by the last remark in (i). As α and β are arbitrary, h0(w) ≤ p(w). QQQ

(iv) By the Hahn-Banach theorem (3A5Aa), there is a linear functional h : ℓ∞(X×X) → R, extending
h0, such that h(w) ≤ p(w) for every w ∈ ℓ∞(X ×X). In this case, h must be a positive linear functional,
because if w ≥ 0 then p(−w) = 0, so h(−w) ≤ 0. Since also

h(χ(X ×X)) = h0(χ(X ×X)) = (µ× ν)(X ×X) = 1,

‖h‖ = 1 in ℓ∞(X ×X)∗. If u, v ∈ Cb(X) then

h(u⊗ χX) = h0(u⊗ χX) =
∫
u dµ, h(χX ⊗ v) = h0(χX ⊗ v) =

∫
v dν.

Let θ : P(X × X) → [0, 1] be the additive functional defined by setting θW = h(χW ) for W ⊆ X × X.
Observe that θ(E ×X) = µE for every E ∈ domµ and θ(X × E) = νE for every E ∈ dom ν.

(v) Because both µ and ν are inner regular with respect to the totally bounded sets (434L), there is
a separable subset Y of X such that µY = νY = 1, and we can take Y to be a Borel set. Now let ǫ > 0.
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Then we have a countable partition 〈Ei〉i∈I of Y into non-empty Borel sets of diameter at most ǫ. For i,
j ∈ I, set

αij =
θ(Ei×Ej)

µEi νEj

if µEi · νEj > 0,

= 0 otherwise.

Since θ(Ei × Ej) ≤ min(µEi, νEj), θ(Ei × Ej) = αijµEiνEj . If i ∈ I is such that µEi > 0, then∑
j∈I αijνEj = 1. PPP For any η > 0 there is a finite K0 ⊆ I such that ν(X \⋃j∈K0

Ej) ≤ η. Now

|1 −
∑

j∈K
αijνEj |µEi = |µEi −

∑

j∈K
θ(Ei × Ej)| = |θ(Ei ×X) − θ(Ei ×

⋃

j∈K
Ej)|

= θ(Ei × (X \
⋃

j∈K
Ej)) ≤ θ(X × (X \

⋃

j∈K
Ej))

= ν(X \
⋃

j∈K
Ej) ≤ η

wheneverK is a finite subset of I includingK0; as η is arbitrary, µEi·
∑
j∈I αijνEj = µEi and

∑
j∈I αijνEj =

1. QQQ Similarly,
∑
i∈I αijµEi = 1 whenever νEj > 0.

(vi) Define a Borel measurable function w0 : X ×X → [0,∞[ by setting

w0(x, y) = αij if i, j ∈ I, x ∈ Ei and y ∈ Ej ,

= 0 if (x, y) ∈ (X ×X) \ (Y × Y ).

Let λ be the indefinite-integral measure over µ × ν defined by w0; then λ is a quasi-Radon probability
measure with marginals µ, ν. PPP If E ∈ domµ, then

λ(E ×X) =

∫

E×X
w0d(µ× ν) =

∑

i,j∈I

∫

(E∩Ei)×Ej

w0d(µ× ν)

=
∑

i,j∈I
αijµ(E ∩ Ei) · νEj =

∑

i∈I
µ(E ∩ Ei)

(because
∑
j∈I αijνEj = 1 whenever µEi > 0)

= µE.

In particular, λ(X×X) = 1, so λ is a probability measure, and is quasi-Radon by 415Ob; and the coordinate
projection (x, y) 7→ x is inverse-measure-preserving for λ and µ. To see that µ is exactly the image measure,
observe that if E ⊆ X is such that λ(E × X) is defined, then (E ∩ Ei) × Ej must be measured by µ × ν
whenever αij > 0. For any i ∈ I such that µEi > 0, there is surely some j such that αij > 0, in which case
E ∩Ei ∈ domµ; since

⋃
i∈I Ei is µ-conegligible (and µ is complete and I is countable), E ∈ domµ. Thus µ

is the marginal of λ on the first coordinate. Similarly, ν is the marginal of λ on the second coordinate. QQQ
For i, j ∈ I we have

λ(Ei × Ej) = αijµEi · νEj = θ(Ei × Ej).

(vii)
∫
ρ dλ ≤ ζ + 2ǫ. PPP For i, j ∈ I, set

βij = infx∈Ei,y∈Ej
ρ(x, y);

set

w(x, y) = βij if i, j ∈ I, x ∈ Ei and y ∈ Ej ,

= 0 if (x, y) ∈ (X ×X) \ (Y × Y ).

Then
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w ≤ ρ× χ(Y × Y ) ≤ w + 2ǫχ(X ×X),

so

∫
ρ dλ =

∫

Y×Y
ρ dλ ≤ 2ǫ+

∫
w dλ

= 2ǫ+
∑

i,j∈I
βijλ(Ei × Ej) = 2ǫ+

∑

i,j∈I
βijθ(Ei × Ej).

Now, for any finite K ⊆ I,
∑
i,j∈K βijθ(Ei × Ej) = h(w × χ(

⋃
i,j∈K Ei × Ej)) ≤ h(ρ) ≤ p(ρ) ≤ ζ

by the definition of p. So
∫
ρ dλ ≤ 2ǫ+ ζ, as claimed. QQQ

(viii) As ǫ is arbitrary,

infλ∈Q(µ,ν)

∫
ρ dλ ≤ ζ.

With (ii), this completes the proof of (b).

(c) For every ǫ > 0, there is a compact set K ⊆ X such that µ(X \ K) + ν(X \ K) ≤ ǫ. In this case
λ((X×X)\ (K×K)) ≤ ǫ for every λ ∈ Q(µ, ν). In the first place, this shows that if λ ∈ Q(µ, ν), then λ is a
Radon measure, by 416C(iv). Thus Q(µ, ν) ⊆ PR(X ×X). Next, we see also that Q(µ, ν) is uniformly tight
(437O), therefore relatively compact in the space M+

R (X ×X) of totally finite Radon measures on X ×X
(437P).

Writing π1, π2 for the coordinate projections from X ×X to X, we see that

Q(µ, ν) = {λ : λ ∈M+
R (X ×X), λπ−1

1 = µ and λπ−1
2 = ν}.

Since the functions λ 7→ λπ−1
1 and λ 7→ λπ−1

2 from M+
R (X × X) to M+

R (X) are continuous (437N), and

M+
R (X) is Hausdorff in its narrow topology (437R(a-ii)), Q(µ, ν) is closed in M+

R (X×X), therefore compact.

Finally, the function λ 7→
∫
ρ dλ from M+

R (X ×X) to [0,∞] is lower semi-continuous (437Jg), and must
attain its infimum on the compact set Q(µ, ν) (4A2B(d-viii)). But (b) tells us that this infimum is just
ρW(µ, ν).

(d)(i) Suppose first that ρ(x, y) ≤ 2 for all x, y ∈ X. Then ρW = ρKR↾PqR × PqR. PPP As already noted
in (a), ρW(µ, ν) ≥ ρKR(µ, ν) for all µ, ν ∈ PqR. In the other direction, if µ, ν ∈ PqR and u : X → R is
1-Lipschitz, then |u(x) − u(y)| ≤ 2 for all x, y ∈ X, so there is an α ∈ R such that |u(x) − α| ≤ 1 for all
x ∈ X. Set v(x) = u(x) − α for every x; then v : X → [−1, 1] is 1-Lipschitz, so

|
∫
u dµ−

∫
u dν| = |

∫
v dµ−

∫
v dν|

(because µX = νX)

≤ ρKR(µ, ν).

As u is arbitrary, ρW(µ, ν) ≤ ρKR(µ, ν) and the two metrics are equal. QQQ

(ii) In general, take γ > 0 such that ρ(x, y) ≤ 2γ for all x, y ∈ X. Set σ =
1

γ
ρ, so that σ is a metric on X

equivalent to ρ. Now σKR defines the narrow topology on PqR, by 437R(g-i), so ρW = γσW = γσKR↾PqR×PqR

also does.

457M If we relax our demands, and look for measures dominated by each measure in a family rather
than extending them, similar methods give further results.

Theorem (see Kellerer 84) Let X be a Hausdorff space and 〈νi〉i∈I a non-empty finite family of locally
finite measures on X all inner regular with respect to the closed sets.

(a) For A ⊆ X × [0,∞[, set
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c(A) = inf{
∑

i∈I

∫
hidνi : hi : X → [0,∞] is dom νi-measurable for each i ∈ I,

α ≤
∑

i∈I
hi(x) whenever (x, α) ∈ A}.

(i) c is a Choquet capacity (definition: 432J).

(ii) For every A ⊆ X × [0,∞[, the infimum in the definition of c(A) is attained.

(b) Let f : X → [0,∞[ be a function such that {x : f(x) ≥ α} is K-analytic for every α > 0. Then

inf{
∑

i∈I

∫
hidνi : hi : X → [0,∞] is dom νi-measurable for each i ∈ I, f ≤

∑

i∈I
hi}

= sup{
∫
f dµ : µ is a Radon measure on X and µ ≤ νi for every i ∈ I},

where ‘µ ≤ νi’ here is to be interpreted in the sense of 234P.

proof (a)(i)(ααα) For f : X → [0,∞] set

Ωf = {(x, α) : x ∈ X, α ≤ f(x)}, Ω′
f = {(x, α) : x ∈ X, α < f(x)}

as in 252N.

It will be convenient to amalgamate the νi into a single measure, as follows. Let (Y,T, ν) be the direct
sum of the family 〈(Xi, νi)〉i∈I in the sense of 214L, so that Y = X× I and νE =

∑
i∈I νi{x : (x, i) ∈ E} for

those E ⊆ Y for which the sum is defined. Give Y its disjoint-union topology, that is, the product topology
if I is given the discrete topology; then it is easy to check that ν is locally finite (see 411Xh) and inner
regular with respect to the closed sets (see 412Xp). For h ∈ [0,∞]Y and x ∈ X set (Th)(x) =

∑
i∈I h(x, i);

observe that T (h + h′) = Th + Th′ and T (αh) = αTh for all h, h′ : Y → [0,∞] and α ≥ 0. Now, for any
A ⊆ X × [0,∞[, we have

c(A) = inf{
∫
h dν : h : Y → [0,∞] is T-measurable,

α ≤ Th(x) whenever (x, α) ∈ A}
(because

∫
h dν =

∑
i∈I

∫
h(x, i)νi(dx) for non-negative h, by 214M)

= inf{
∫
h dν : h : Y → [0,∞] is T-measurable, A ⊆ ΩTh}.

(βββ) Of course c : P(X × [0,∞[) → [0,∞] is non-decreasing. To see that it is sequentially order-
continuous on the left, I show in fact that if 〈An〉n∈N is a non-decreasing sequence of subsets of X × [0,∞]
with union A, and γ = supn∈N c(An) is finite, then there is a T-measurable h : Y → [0,∞] such that
α ≤ Th(x) whenever (x, α) ∈ A and

∫
h dν = γ. PPP Surely c(A) ≥ γ. For each n ∈ N we have

a T-measurable hn : Y → [0,∞] such that
∫
hndν ≤ γ + 2−n and An ⊆ ΩThn

. By Komlós’s the-

orem (276H), there is a strictly increasing sequence 〈n(k)〉k∈N in N such that limm→∞
1

m+1

∑m
k=0 hn(k)

is defined ν-a.e.; set h = lim supm→∞
1

m+1

∑m
k=0 hn(k). Then h : Y → [0,∞] is T-measurable, and

h =a.e. lim infm→∞
1

m+1

∑m
k=0 hn(k). By Fatou’s Lemma,

∫
h dν ≤ lim infm→∞

1

m+1

∑m
k=0

∫
hn(k)dν ≤ γ,

while if j ∈ N and (x, α) ∈ Aj . α ≤ Thn(k)(x) for every k ≥ j, so
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α ≤ lim inf
m→∞

1

m+1

m∑

k=0

Thn(k)(x) ≤ lim sup
m→∞

∑

i∈I

1

m+1

m∑

k=0

hn(k)(x, i)

≤
∑

i∈I
lim sup
m→∞

1

m+1

m∑

k=0

hn(k)(x, i)

(because I is finite)

=
∑

i∈I
h(x, i) = Th(x).

Thus A ⊆ ΩTh, so

c(A) ≤
∫
h dν ≤ γ ≤ c(A)

and we have equality. QQQ

(γγγ) Now suppose that K ⊆ X× [0,∞[ is compact, and ǫ > 0. Set L = π1[K], where π1 : X× [0,∞[ →
X is the canonical map; then L ⊆ X and L × I ⊆ Y are compact. Because ν is locally finite, there is an
open set H ⊆ Y such that L × I ⊆ H ∈ T and νH is finite (see 411Ga). Let νH be the subspace measure
induced by ν on H, and TH its domain; then νH is totally finite and inner regular with respect to the
closed sets (412Pc), therefore outer regular with respect to the open sets (411D). Let h : Y → [0,∞] be

a T-measurable function such that A ⊆ ΩTh and
∫
h dν ≤ c(K) + ǫ. Set h1(y) = h(y) +

ǫ

νH
for y ∈ H;

then
∫
H
h1dνH ≤ c(K) + 2ǫ. By 412Wa, there is a lower semi-continuous TH -measurable g1 : H → [0,∞]

such that h1 ≤ g1 and
∫
H
g1dνH ≤ c(K) + 3ǫ. Extend g1 to a function g : Y → [0,∞] by setting g(y) = 0

for y ∈ Y \ H; then g is T-measurable and lower semi-continuous and
∫
g dν ≤ c(K) + 3ǫ. Moreover, if

(x, α) ∈ K, then

Tg(x) > T (h× χH)(x) = Th(x)

(because {x} × I ⊆ H)

≥ α,

so K ⊆ Ω′
Tg.

The point is that Ω′
Tg is open in X × [0,∞[. PPP If x ∈ X and 0 ≤ α < Tg(x) =

∑
i∈I g(x, i), let 〈αi〉i∈I

be such that 0 ≤ αi < g(x, i) for each i ∈ I and
∑
i∈I αi = α′ > α. Set G =

⋂
i∈I{z : z ∈ X, g(z, i) > αi};

then G is an open subset of X, and (x, α) ∈ G × [0, α′[ ⊆ Ω′
Tg. Thus (x, α) ∈ int Ω′

g; as (x, α) is arbitrary,

Ω′
Tg is open. QQQ

Since c(Ω′
Tg) is surely less than or equal to

∫
g dν, and ǫ is arbitrary, we have

c(K) = inf{c(U) : U ⊆ X × [0,∞[ is open and K ⊆ U}.

Thus all the conditions of 432Ja are satisfied, and c is a Choquet capacity.

(ii) We need consider only the case c(A) < ∞, which is dealt with in (i-β) above, if we take An = A
for every n.

(b)(i) For g : X → [−∞,∞], set

p(g) = inf{
∑

i∈I

∫
hidνi : hi ∈ [0,∞]X is dom νi-measurable for each i ∈ I,

|g| ≤
∑

i∈I
hi}

= inf{
∫
h dν : h : Y → [0,∞] is T-measurable, Ω|g| ⊆ ΩTh} = c(Ω|g|).
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Then p(αg) = |α|p(g) whenever g ∈ [−∞,∞]X and α ∈ R, p(g1) ≤ p(g2) whenever |g1| ≤ |g2|, and
p(g1 + g2) ≤ p(g1) + p(g2) for all g1, g2 : X → [−∞,∞]; so if we set V = {g : g ∈ RX , p(g) < ∞}, V is a
solid linear subspace of RX and p↾V is a seminorm.

Suppose that µ is a Radon measure on X and µ ≤ νi for every i ∈ I. Then
∫
fdµ ≤ p(f). PPP Because

µ measures every K-analytic set (432A),
∫
fdµ is defined. If p(f) = ∞ then of course

∫
fdµ ≤ p(f).

Otherwise, for any γ > p(f), we have dom νi-measurable functions hi : X → [0,∞] such that f ≤ ∑
i∈I hi

and
∑
i∈I

∫
hidνi ≤ γ. But now

∫
hidµ is defined and less than or equal to

∫
hidνi for each i (234Qc), so∫

fdµ ≤ ∑
i∈I

∫
hidµ ≤ γ. As γ is arbitrary,

∫
fdµ ≤ p(f). QQQ

(ii)(ααα) In the other direction, suppose that γ < p(f), and set A = {(x, α) : 0 < α < f(x)}; then

A =
⋃
q∈Q{(x, α) : f(x) ≥ q > α > 0}

is K-analytic (422Ge, 422Hc, 423Bb, 423C). On the other hand, for any h : Y → [0,∞], A ⊆ ΩTh iff
Ωf ⊆ ΩTh. So

c(A) = c(Ωf ) = p(f) > γ.

By Choquet’s theorem 432K, there is a compact set K ⊆ A such that c(K) > γ. Set

f1(x) = sup({0} ∪K[{x}])

for x ∈ X. As in (a-i-γ) above, we have for any i ∈ I an open set G including L0 = π1[K] such that νiG
is defined and finite, so χL0 and f1 belong to V . By the Hahn-Banach theorem (4A4Da), there is a linear
functional θ : V → R such that |θ(g)| ≤ p(g) for every g ∈ V and θ(f1) = p(f1). Since |θ(g)| ≤ p(g0)
whenever |g| ≤ g0, θ is order-bounded, and if θ+ is its positive part (355Eb), we shall still have θ+(g) ≤ p(g)
for every g ∈ V and θ+(f1) = p(f1).

(βββ) Set µ0C = θ+(χ(C ∩ L0)) for C ⊆ X. Then µ0 : PX → [0,∞[ is additive. By 416K, there is
a Radon measure µ on X such that µL ≥ µ0L for every compact L ⊆ X and µG ≤ µ0G for every open
G ⊆ X. Now dom νi ⊆ domµ for every i ∈ I. PPP Suppose that E ∈ dom νi. Let L ⊆ X be compact. Then
there is an open set G0 ⊇ L such that νiG0 is defined and finite. Take any δ > 0. Because the subspace
measure induced by νi on G0 is totally finite and inner regular with respect to the closed sets, there are a
closed set F and an open set G, both measured by νi, such that F ⊆ E ∩ G0 ⊆ G and νi(G \ F ) ≤ δ. In
this case

µ(G \ F ) ≤ µ0(G \ F ) = θ+(χ(L0 ∩G \ F )) ≤ p(χ(G \ F )) ≤
∫
χ(G \ F )dνi ≤ δ.

So

µ∗(E ∩G0) ≤ µG ≤ µF + δ ≤ µ∗(E ∩G0) + δ;

as δ is arbitrary, µ∗(E ∩ G0) = µ∗(E ∩ G0) and µ measures E ∩ G0 (Ef), and therefore also measures
E ∩ L = E ∩G0 ∩ L. As L is arbitrary, µ measures E (412Ja). QQQ

In fact, µ ≤ νi. PPP If νi measures E and L ⊆ X is compact, the arguments just above show that for any
δ > 0 there is an open set G ⊇ E ∩ L such that νiG ≤ νiE + δ, so that

µ(E ∩ L) ≤ µG ≤ µ0G = θ+(χ(G ∩ L0)) ≤ p(χ(G ∩ L0)) ≤ νiG ≤ νiE + δ.

As L and δ are arbitrary, µE ≤ νiE. QQQ

(γγγ) To estimate
∫
fdµ, recall that θ+(f1) > γ, while θ+(χL0) is finite. There is therefore an η > 0

such that ηθ+(χL0) ≤ θ+(f1) − γ and θ+(f2) ≥ γ, where f2 = (f1 − ηχL0)+ = (f1 − ηχX)+. For k ∈ N

set Fk = π1[K ∩ [(k + 1)η,∞[ ], so that each Fk is a compact subset of L0 and f2 ≤ ∑m
k=0 ηχFk ≤ f , where

m ∈ N is such that K ⊆ X × [0,mη]. Now

γ ≤ θ+(f2) ≤ θ+(
m∑

k=0

ηχFk) = η
m∑

k=0

θ+(χFk)

= η

m∑

k=0

µ0Fk ≤ η

m∑

k=0

µFk ≤
∫
fdµ.

(δδδ) As γ is arbitrary,
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sup{
∫
fdµ : µ is a Radon measure on X, µ ≤ νi for every i ∈ I} ≥ p(f)

and we must have equality. This completes the proof.

457N Remarks It may not be quite obvious how close the domination requirement ‘µ ≤ νi for every
i ∈ I’ is to the marginal requirement ‘νi = µπ−1

i for every i ∈ I’, so I spell out the correspondence. Let
〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, X =

∏
i∈I Xi, and πi : X → Xi the canonical map for

each i.

(a) For each i ∈ I we have a (unique) pull-back probability measure νi on X with domain {π−1
i [E] : E ∈

Σi} such that the image measure νiπ
−1
i is µi (see 234F). Now it is elementary to check that, for a measure

µ on X, µ ≤ νi iff µπ−1
i ≤ µi; and if µ is required to be a probability measure, then µ ≤ νi iff µ extends νi

iff µπ−1
i extends µi.

(b) We find also that if µ ≤ νi for every i, then there is a probability measure µ′ on X such that µ ≤ µ′

and µ′ extends νi for every i. PPP Set γ = µX. If γ = 1, set µ′ = µ. Otherwise, for each i ∈ I, set

λiE =
1

1−γ
(µiE − µπ−1

i [E]) for E ∈ Σi. Then λi is a probability measure on Xi; let λ =
∏
i∈I λi be the

product measure, and set µ′ = µ+ (1 − γ)λ. Then

µ′π−1
i = µπ−1

i + (1 − γ)λπ−1
i = µπ−1

i + (1 − γ)λi = µi

and µ′ extends νi for each i. QQQ

(c) In the simplest intended applications, therefore, in which we have two Radon probability spaces
(X1,Σ1, µ1) and (X2,Σ2, µ2) and a profit function f : X → [0,∞[, and we are looking for a Radon probability
measure µ on X = X1×X2, with marginals µ1 and µ2, maximising

∫
fdµ, then we can seek to apply 457Mb

with the pull-back measures ν1 and ν2 of (a) here to see that the optimum is

inf{
∫
h1dµ1 +

∫
h2dµ2 : f(x1, x2) ≤ h1(x1) + h2(x2) ∀ x1 ∈ X1, x2 ∈ X2}.

If the process of part (b-ii) of the proof of 457M leads to a more or less optimal measure µ which is not itself
a probability measure, we can increase it to µ′ with µ′π−1

i extending µi for each i; and in this case we shall

have µ′π−1
i = µi for each i, by 418I and 416E, as usual. Of course we shall need to confirm that

∫
fdµ′ is

defined, but in the context of 457Mb, this will automatically be so.

(d) There is an obvious parallel between the formulae of 457M and that in part (b-i) of the proof of 457L.
Allowing for the change of direction, where an infimum in 457L corresponds to a supremum in 457M, the
pattern of the duality is the same in both cases, and there is some overlap (457Xq). But the arguments of
the two theorems – in particular, the proofs that we can get countably additive measures from the finitely
additive measures provided by the Hahn-Banach theorem – are rather different.

457X Basic exercises (a) Let X be a non-empty set and 〈νi〉i∈I a family of probability measures on X
satisfying the conditions of Lemma 457A, taking A = PX and Bi = dom νi for each i. Suppose that there
is a totally finite measure θ on X such that θE is defined and greater than or equal to νiE whenever i ∈ I
and νi measures E. Show that there is a measure on X extending every νi. (Hint : 391E.)

(b) Find a set X and non-negative additive functionals µ1, µ2 defined on subalgebras of PX which agree
on domµ1 ∩ domµ2 but have no common extension to a non-negative additive functional. (Hint : take
#(X) = 3.)

(c) Let A be a Boolean algebra and 〈νi〉i∈I a family of non-negative finitely additive functionals, each νi
being defined on a subalgebra Bi of A. Show that if any finite number of the νi have a common extension to
an additive functional on a subalgebra of A, then the whole family has a common extension to an additive
functional on the whole algebra A.

(d) Set X = {0, 1, 2} and in the algebra PX let Bi be the subalgebra {∅, {i}, X \ {i}, X} for each i.
Let νi : Bi → [0, 1] be the additive functional such that νi{i} = 1

2 , νiX = 1. Show that any pair of ν0,
ν1, ν2 have a common extension to an additive functional on PX, but that the three together have no such
extension.
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(e) Let A be a Boolean algebra, B a subalgebra of A, and ν : B → [0,∞[, θ : A → [0,∞[ additive
functionals such that νb ≤ θb for every b ∈ B. Show directly, without using either 457D or 391F, that there
is an additive functional µ : A → [0,∞[, extending ν, such that µa ≤ θa for every a ∈ A. (Hint : first
consider the case in which A is the algebra generated by B ∪ {c}.)

>>>(f) Let (Y1,S1,T1, ν1) and (Y2,S2,T2, ν2) be Radon probability spaces and X ⊆ Y1 × Y2 a closed set.
Show that the following are equiveridical: (i) there is a measure on X such that the coordinate map from X
to Yi is inverse-measure-preserving for both i; (ii) there is a Radon measure on X such that the coordinate
map from X to Yi is inverse-measure-preserving for both i; (iii) for every compact K ⊆ Y1, ν1K ≤ ν∗2 (X[K]).
(Hint : for (iii)⇒(ii), use 457C to show that there is a finitely additive functional ν on PX of the required
type; now observe that ν must give large mass to compact subsets of X, and apply 413U.)

>>>(g) Suppose that A is a Boolean algebra, B is a subalgebra of A and I ⊆ A a finite set; let C be the
subalgebra of A generated by I ∪B and ν : C → [0,∞[ a finitely additive functional. (i) Show that if ν↾B
is completely additive then ν is completely additive. (ii) Show that if A is Dedekind σ-complete, B is a
σ-subalgebra and ν↾B is countably additive then ν is countably additive.

(h) Let (X,Σ, µ) be a probability space, A a finite family of subsets of X and T the subalgebra of PX
generated by Σ ∪ A. Show that if ν : T → [0, 1] is a finitely additive functional extending µ, then ν is
countably additive.

(i) Let (X,Σ, µ) be a probability space, 〈Ai〉i∈I a partition of X and 〈αi〉i∈I a family in [0, 1] summing to
1. Show that the following are equiveridical: (i) there is a measure ν on X, extending µ, such that νAi = αi
for every i ∈ I; (ii) there is a finitely additive functional ν : PX → [0, 1], extending µ, such that νAi = αi
for every i ∈ I; (iii) µ∗(

⋃
i∈J Ai) ≤ ∑

i∈J αi for every J ⊆ I; (iv) µ∗(
⋃
i∈J Ai) ≥ ∑

i∈J αi for every finite
J ⊆ I. (Hint : for (ii)⇒(i) use 457Xh.)

(j) Let X ⊆ [0, 1]2 be a Lebesgue measurable set such that X ∩ (E × F ) is not negligible for any non-
negligible sets E, F ⊆ [0, 1]. (For the construction of such sets, see the notes to §325.) Show that there
is a Radon measure on X such that both the coordinate projections from X to [0, 1] are inverse-measure-
preserving, where [0, 1] is given Lebesgue measure. (Hint : show that there is a measure-preserving bijection
φ between conegligible subsets of [0, 1] which is covered by X; φ can be taken to be of the form φ(x) = x−αn
for x ∈ En.)

(k) Set X = {(t, 2t) : 0 ≤ t ≤ 1
2} ∪ {(t, 2t − 1) : 1

2 ≤ t ≤ 1}. Show that there is a Radon measure on X
for which both the coordinate maps onto [0, 1] are inverse-measure-preserving, but that X does not include
the graph of any measure-preserving bijection between conegligible subsets of [0, 1].

(l) Let X be the eighth-sphere {x : x ∈ [0, 1]3, ‖x‖ = 1}. Show that there is a measure on X such that
all three coordinate maps from X onto [0, 1] are inverse-measure-preserving. (Hint : 265Xe.)

(m) Set X = {x : x ∈ [0, 1]3, ξ1 + ξ2 + ξ3 = 3
2}. Show that there is a measure on X such that all the

coordinate maps from X onto [0, 1] are inverse-measure-preserving. (Hint : note that X is a regular hexagon;
try one-dimensional Hausdorff measure on its boundary.)

(n) Explain how to adapt the example in 457J to provide a family 〈µi〉i∈I of probability measures on a
set X such that (i) 〈µi〉i∈I is upwards-directed, in the sense of 457G (iii) there is no measure on X extending
µi for every i ∈ I.

(o) Let X be a topological space and PqR the set of quasi-Radon probability measures on X. For µ,
ν ∈ PqR, write Q(µ, ν) for the set of quasi-Radon probability measures on X × X which have marginal
measures µ on the first copy of X, ν on the second. (i) For a bounded continuous pseudometric ρ on X,
set ρW(µ, ν) = inf{

∫
ρ(x, y)λ(d(x, y)) : λ ∈ Q(µ, ν)}. Show that ρW is a pseudometric on PqR. (ii) Show

that if X is completely regular and P is a family of bounded pseudometrics defining the topology of X, then
{ρW : ρ ∈ P} defines the narrow topology of PqR.

Measure Theory



457 Notes Simultaneous extension of measures 139

(p) Suppose that X, 〈νi〉i∈I and c : P(X × [0,∞[) → [0,∞] are as in 457M. (i) Show that c is a
submeasure. (ii) Show that if every νi is outer regular with respect to the open sets, then c is an outer
regular Choquet capacity.

(q) Show that if the metric ρ is bounded, then 457Lc can be deduced from 457Mb and part (b-i) of the
proof of 457L.

(r) Let 〈(Xi,Ti,Σi, µi)〉i≤n be a finite family of Radon probability spaces, X =
∏
i∈I Xi, and f : X → R

a bounded Baire measurable function. Show that

inf{
∫
fdµ : µ is a Radon measure on X with marginal measure µi on each Xi}

= sup{
n∑

i=0

∫
hidµi : hi ∈ ℓ∞(Xi) is Σi-measurable for each i,

n∑

i=0

hi(ξi) ≤ f(x) whenever x = (ξ0, . . . , ξn) ∈ X}.

(Hint : reduce to the case in which every Xi is Kσ.)

457Y Further exercises (a) Show that for any n ≥ 2 there are a finite set X and a family 〈µi〉i≤n of
measures on X such that {µi : i ≤ n, i 6= j} have a common extension to a measure on X for every j ≤ n,
but the whole family {µi : i ≤ n} has no such extension.

(b) Show that the example in 457H has the property: if fi is a νi-integrable real-valued function for each
i, and

∫
f1dν1 +

∫
f2dν2 < 1, then there is an (x, y) ∈ dom f1 ∩ dom f2 such that f1(x, y) + f2(x, y) < 1.

(c) Suppose we replace the set X in 457H with X ′ = X ∪ {(x, x) : x ∈ [0, 12 ]}, and write ν ′i for the
measures on X ′ defined by the coordinate projections. Show that (i) if fi is a ν ′i-integrable real-valued
function on X ′ for each i, and

∫
f1dν

′
1 +

∫
f2dν

′
2 ≤ 1, then there is an (x, y) ∈ dom f1 ∩ dom f2 such that

f1(x, y) + f2(x, y) ≤ 1 (ii) there is no measure on X ′ extending both ν ′i .

(d) In 457Xm, show that there are many Radon measures on X such that all the coordinate maps from
X onto [0, 1] are inverse-measure-preserving.

(e) Give an example of a compact Hausdorff space X, a sequence 〈νn〉n∈N of tight probability measures
on X, and a Kσ set E ⊆ X such that

inf{∑∞
n=0

∫
hndνn : χE ≤ ∑∞

n=0 hn} = 1,

sup{µE : µ is a Radon measure on X and µ ≤ νn for every n ∈ N} ≤ 1

2
.

457Z Problems Give [0, 1] Lebesgue measure.

(a) Characterize the sets X ⊆ [0, 1]2 for which there is a measure on X such that both the projections
from X to [0, 1] are inverse-measure-preserving.

(b) Set X = {x : x ∈ [0, 1]3, ‖x‖ = 1}. Is there more than one Radon measure on X for which all three
coordinate maps from X onto [0, 1] are inverse-measure-preserving? (See 457Xl, 457Yd.)

457 Notes and comments In the context of this section, as elsewhere (compare 391E-391G and 391J),
finitely additive extensions, as in 457A-457D, generally present easier problems than countably additive
extensions. So techniques for turning additive functionals into measures (391D, 413L, 413U, 416K, 454C,
454D, 457E, 457G, 457Lb, 457Mb, 457Xi) are very valuable. Note that 457D offers possibilities in this
direction: if θ there is countably additive, µ also will be (457Xa).

D.H.Fremlin



140 Perfect measures, disintegrations and processes 457 Notes

457H and 457J demonstrate obstacles which can arise when seeking countably additive extensions even
when finitely additive extensions give no difficulty. For finitely additive extensions a problem can arise at
any finite number of measures (see 457Ya), but there is no further obstruction with infinite families (457Xc).
For countably additive measures we have a positive result (457G) only under very restricted circumstances;
relaxing any of the hypotheses can lead to failure (457J, 457Xn). Even in the apparently concrete case
in which we have an open or closed set X ⊆ [0, 1]2 and we are seeking a measure on X with prescribed
image measures on each coordinate, there can be surprises (457H, 457Xj, 457Xk), and I know of no useful
description of the sets for which such a measure can be found (457Za).

The two-dimensional case has a special feature: when verifying the conditions (ii) or (iii) in 457A, or the
condition (ii) of 457B, it is enough to consider only one set associated with each coordinate (457C). Put
another way, in conditions (iv) and (v) of 457A it is enough to examine indicator functions. This is not the
case as soon as we have three coordinates (457I). Compare 457A(ii)-(iii) with the definition of ‘intersection
number’ of an indexed family in a Boolean algebra (391H), where we had to allow repetitions for essentially
the same reason.

In 457K-457L, we can of course work with τ -additive Borel measures in place of quasi-Radon measures,
as in 437M. The essential content of 457L is already displayed in the case of separable X, in which case all
Borel measures are τ -additive, and we can fractionally simplify our hypotheses; indeed this is true whenever
X has measure-free weight (438J).

The functional ρW of 457K-457L is a kind of [0,∞]-valued metric; see 4A2T for another occasion on which
it would have saved explanation if the definition of ‘metric’ allowed infinite distances. In 457Lb we think of
the metric ρ as representing a cost to be minimised, and in 457Mb we think of f as a profit to be maximised;
since both arguments rely on the functions being non-negative, they cannot be simply inverted unless ρ or
f is bounded above (as in 457Xq), and there is a further complication from the asymmetric nature of the
condition ‘{x : f(x) ≥ α} is K-analytic’ in 457M. However, for the primary applications, as in 457Xr, this
is not a problem. Observe that the same pattern has already appeared in 457A(iv)-(v).

Version of 20.11.17

458 Relative independence and relative products

Stochastic independence is one of the central concepts of probability theory, and pervades measure theory.
I come now to a generalization of great importance. If X1, X2 and Y are random variables, we may find
that X1 and X2 are ‘relatively independent over Y ’, or ‘independent when conditioned on Y ’, in the sense
that if we know the value of Y , then we learn nothing further about one of the Xi if we are told the value
of the other. For any stochastic process, where information comes to us piecemeal, this idea is likely to be
fundamental. In this section I set out a general framework for discussion of relative independence (458A),
introducing relative distributions (458I) and relative independence in measure algebras (458L-458M). In
the last third of the section I look at ‘relative product measures’ (458N, 458Q), giving the basic existence
theorems (458O, 458S, 458T).

458A Relative independence Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ.

(a) I say that a family 〈Ei〉i∈I in Σ is relatively (stochastically) independent over T if whenever
J ⊆ I is finite and not empty, and gi is a conditional expectation of χEi on T for each i ∈ J , then
µ(F ∩⋂

i∈J Ei) =
∫
F

∏
i∈J gidµ for every F ∈ T; that is,

∏
i∈J gi is a conditional expectation of χ(

⋂
i∈J Ei)

on T. (Note that this does not depend on which conditional expectations gi we take, since any two conditional
expectations of χEi must be equal almost everywhere.) A family 〈Σi〉i∈I of subalgebras of Σ is relatively
independent over T if 〈Ei〉i∈I is relatively independent over T whenever Ei ∈ Σi for every i ∈ I.

(b) I say that a family 〈fi〉i∈I in L
0(µ) (the space of almost-everywhere-defined virtually measurable

real-valued functions, or ‘random variables’) is relatively independent over T if 〈Σi〉i∈I is relatively
independent over T with respect to the completion of µ, where Σi is the σ-algebra defined by fi in the sense
of 272C, that is, the σ-algebra generated by {f−1

i [F ] : F ⊆ R is a Borel set}.

c© 2007 D. H. Fremlin
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(c) I remark at once that a family of subalgebras or random variables is relatively independent iff every
finite subfamily is (cf. 272Bb).

(d) It will be convenient to have a shorthand referring to lattices of σ-algebras of sets. If Σ, T are algebras
of subsets of a set X, I will write Σ ∨ T for the σ-algebra of subsets of X generated by Σ ∪ T; similarly,
if 〈Σi〉i∈I is a family of algebras of subsets of X, then

∨
i∈I Σi will be the σ-algebra generated by

⋃
i∈I Σi.

Note that the functions ∨,
∨

here are always supposed to yield σ-algebras, even if we start with algebras
which are not closed under countable unions, so that Σ ∨ Σ could in principle be strictly larger than Σ. As
will become evident in 458D and 458G, the difference between a σ-algebra and a simple algebra of sets is
relatively unimportant just here.

458B There are some surprising results at the very beginning of the theory of relative independence;
see 458Xa, for instance. On the positive side, we have the following facts.

Lemma Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈Σi〉i∈I a family of subalgebras
of Σ such that T ⊆ ⋃

i∈I Σi. Suppose that whenever J ⊆ I is finite and not empty, Ei ∈ Σi and gi is

a conditional expectation of χEi on T for each i ∈ J , then µ(
⋂
i∈J Ei) =

∫ ∏
i∈J gidµ. Then 〈Σi〉i∈I is

relatively independent over T.

proof Take F ∈ T, a finite non-empty J ⊆ I and Ei ∈ Σi for i ∈ J . Let j ∈ I be such that F ∈ Σj . Set
K = J ∪ {j}; if j /∈ J , set Ej = X. Now set E′

j = Ej ∩ F and E′
i = Ei for i ∈ K \ {j}.

For i ∈ K, let gi be a conditional expectation of χEi on T. Set g′j = gj × χF and g′i = gi for i ∈ K \ {j};
then g′i is a conditional expectation of χE′

i for each i ∈ K. So we have

µ(F ∩⋂
i∈J Ei) = µ(

⋂
i∈K E

′
i) =

∫ ∏
i∈K g

′
idµ =

∫
F

∏
i∈J gidµ.

As F and 〈Ei〉i∈J are arbitrary, 〈Σi〉i∈I is relatively independent over T.

458C Proposition Let (X,Σ, µ) be a probability space, T a non-empty upwards-directed family of
subalgebras of Σ, and 〈Σi〉i∈I a family of σ-subalgebras of Σ which is relatively independent over T for every
T ∈ T. Then 〈Σi〉i∈I is relatively independent over

∨
T.

proof (a) Suppose first that T is countable; because it is upwards-directed, there is a non-decreasing
sequence 〈Tn〉n∈N in T such that

⋃
T =

⋃
n∈N Tn and

∨
T =

∨
n∈N Tn. Take a non-empty finite set J ⊆ I

and Ei ∈ Σi for i ∈ J ; set E =
⋂
i∈J Ei. For i ∈ J , let gni be a conditional expectation of χEi on Tn for each

n; then gi = limn→∞ gni is a conditional expectation of χEi on
∨

T (275I). Similarly, if hn is a conditional
expectation of χE on Tn for each n, h = limn→∞ hn is a conditional expectation of χE on

∨
T. Since

〈Ei〉i∈J is relatively independent over Tn, hn =a.e.

∏
i∈J gni for each n; accordingly h =a.e.

∏
i∈J hi, and∏

i∈J hi is a conditional expectation of χE on
∨
T. As 〈Ei〉i∈J is arbitrary, 〈Σi〉i∈I is relatively independent

over
∨
T.

(b) For the general case, take a non-empty finite J ⊆ I and Ei ∈ Σi for i ∈ J ; set E =
⋂
i∈I Ei. For each

i ∈ J , let gi : X → [0, 1] be a
∨

T-measurable conditional expectation of χEi on
∨
T, and g : X → [0, 1]

a
∨
T-measurable conditional expectation of χE on

∨
T. Then for every i ∈ J and q ∈ Q there is a

countable set Tiq ⊆ T such that {x : gi(x) ≥ q} ∈ ∨
Tiq; similarly, there is for each q ∈ Q a countable set

T′
q ⊆ T such that {x : g(x) ≥ q} ∈ ∨

T′
q. Let T̃ be a countable upwards-directed subset of T including⋃

i∈J,q∈Q Tiq ∪
⋃
q∈Q T′

q. Then every gi is
∨
T̃-measurable, so is a conditional expectation of χEi on

∨
T̃;

similarly, g is a conditional expectation of χE on
∨
T̃. By (i), g =a.e.

∏
i∈J gi, so

∏
i∈J gi is a conditional

expectation of χE on
∨

T. As 〈Ei〉i∈J is arbitrary, 〈Σi〉i∈I is relatively independent over
∨
T, as claimed.

458D Proposition Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ and 〈Σi〉i∈I a family of
subalgebras of Σ which is relatively independent over T.

(a) If J ⊆ I and Σ′
i is a subalgebra of Σi for i ∈ J , then 〈Σ′

j〉i∈J is relatively independent over T.
(b) Set Σ∗

i = Σi ∨ T for i ∈ I. Then 〈Σ∗
i 〉i∈I is relatively independent over T.

(c) If E ⊆ ⋃
i∈I Σi, then 〈Σi〉i∈I is relatively independent over the σ-algebra generated by T ∪ E .

proof (a) Immediate from the definition in 458Aa.
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(b)(i) Suppose that F0 ∈ T and that Σ′
i is the algebra generated by Σi ∪ {F0} for each i ∈ I. Then

〈Σ′
i〉i∈I is relatively independent over T. PPP Suppose that J ⊆ I is finite and not empty, and that Ei ∈ Σ′

i

for each i ∈ J . For i ∈ I, we can express Ei as (Gi ∩ F0) ∪ (Hi \ F0), where Gi, Hi ∈ Σi. Let gi, hi be
conditional expectations of χGi, χHi on T; then fi = gi×χF0 +hi×χ(X \F0) is a conditional expectation
of χE on T. Now, for any F ∈ T, we have

∫

F

∏

i∈J
fi =

∫

F

∏

i∈J
gi × χF0 +

∏

i∈J
hi × χ(X \ F0)

=

∫

F∩F0

∏

i∈J
gi +

∫

F\F0

∏

i∈J
hi = µ(F ∩

⋂

i∈J
Gi ∩ F0) + µ(F ∩

⋂

i∈J
Hi \ F0)

(because the families 〈Gi〉i∈J and 〈Hi〉i∈J are both relatively independent over T)

= µ(F ∩
⋂

i∈J
Ei).

As 〈Ei〉i∈J is arbitrary, 〈Σ′
i〉i∈I is relatively independent over T. QQQ

(ii) Suppose that E ⊆ T is finite, and that Σ′
i is the algebra generated by Σi ∪ E for each i. Then

〈Σ′
i〉i∈I is relatively independent over T. PPP Induce on #(E), using (i) for the inductive step. QQQ

(iii) Suppose that Σ′
i is the algebra generated by Σi ∪ T for each i ∈ I. Then 〈Σ′

i〉i∈I is relatively
independent over T. PPP If J ⊆ I is finite and not empty, and Ei ∈ Σ′

i for each i ∈ J , then there is a finite
set E ⊆ T such that Ei belongs to the algebra Σ′′

i generated by Ei ∪ E for every i ∈ J . By (ii), 〈Σ′′
i 〉i∈I is

relatively independent over T, so 〈Ei〉i∈J is relatively independent over T; as 〈Ei〉i∈J is arbitrary, 〈Σ′
i〉i∈I is

relatively independent over T. QQQ

(iv) Finally, suppose that J ⊆ I is finite and not empty, that Ei ∈ Σ∗
i for each i ∈ J , that F ∈ T

and that ǫ > 0. For i ∈ J , let Σ′
i be the algebra generated by Σi ∪ T; then there is an E′

i ∈ Σ′
i such that

µ(E′
i△Ei) ≤ ǫ (136H). Let gi, g

′
i be conditional expectations of χEi, χE

′
i on T; we can arrange that they

are all defined on the whole of X and take values in [0, 1]. Then

|µ(F ∩
⋂

i∈J
Ei) −

∫

F

∏

i∈J
gi| ≤

∑

i∈J
µ(Ei△E′

i) + |µ(F ∩
⋂

i∈J
E′
i) −

∫

F

∏

i∈J
g′i|

+

∫

F

|
∏

i∈J
g′i −

∏

i∈J
gi|

≤ ǫ#(J) + 0 +

∫

F

∑

i∈J
|g′i − gi|

((iii) above and 285O)

≤ ǫ#(J) +
∑

i∈J

∫
|g′i − gi|

≤ ǫ#(J) +
∑

i∈J

∫
|χE′

i − χEi|

(233J or 242Je)

= ǫ#(J) +
∑

i∈J
µ(E′

i△Ei) ≤ 2ǫ#(J).

As ǫ is arbitrary,

µ(F ∩⋂
i∈J Ei) =

∫
F

∏
i∈J gi.

As 〈Ei〉i∈J and F are arbitrary, 〈Σ∗
i 〉i∈I is relatively independent.

(c) For any E ⊆ ⋃
i∈I Σi, write TE for the σ-algebra generated by T ∪ E .
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(i) Suppose that i, j ∈ I are distinct, E ∈ Σi, g is a conditional expectation of χE on T, and H ∈ Σj .
Then g is a conditional expectation of χE on T{H}. PPP Let h be a conditional expectation of χH on T. If
F ∈ T, then

µ(F ∩H ∩ Ei) =

∫

F

g × h

(because Σj and Σi are relatively independent over T)

=

∫

F

g × χH

(because g × h is a conditional expectation of g × χH on T, see 233Eg)

=

∫

F∩H
g.

Similarly, µ(F ∩ Ei \ H) =
∫
F\H g. Now any G ∈ T{H} is expressible as (F1 ∩ H) ∪ (F2 \ H) where F1,

F2 ∈ T, so that

µ(G ∩ E) = µ(F1 ∩ E ∩H) + µ(F2 ∩ E \H) =
∫
F1∩H

g +
∫
F2\H

g =
∫
G
g,

as required. QQQ

(ii) If j ∈ I and H ∈ Σj , 〈Σi〉i∈I is relatively independent over T{H}.

PPP (ααα) Let J ⊆ I be a non-empty finite set containing j, and 〈Ei〉i∈J a family such that Ei ∈ Σi for
i ∈ J . Set K = J \ {j}. For i ∈ K, let gi : X → [0, 1] be a T-measurable conditional expectation of χEi on
T. Then gi is a conditional expectation of χEi on T{H}, by (i). Let gj be a conditional expectation of χEj
on T{H}, and g′j a conditional expectation of χ(Ej ∩H) on T. Then, for any F ∈ T,

µ(F ∩H ∩
⋂

i∈J
Ei) = µ(F ∩ (Ej ∩H) ∩

⋂

i∈K
Ei) =

∫

F

g′j ×
∏

i∈K
gi

(because 〈Σi〉i∈J is relatively independent over T)

=

∫

F

χ(Ej ∩H) ×
∏

i∈K
gi

(233Eg again, because
∏
i∈K gi is bounded and T-measurable)

=

∫

F∩H
χEj ×

∏

i∈K
gi =

∫

F∩H
gj ×

∏

i∈K
gi

(because
∏
i∈K gi is bounded and T{H}-measurable). Similarly,

µ(F ∩⋂
i∈J Ei \H) =

∫
F\H gj ×

∏
i∈K gi =

∫
F\H

∏
i∈J gi

for every F ∈ T; putting these together, as in (i),

µ(G ∩⋂
i∈J Ei) =

∫
G

∏
i∈J gi

for every G ∈ T{H}, and
∏
i∈J gi is a conditional expectation of χ(

⋂
i∈J Ei) on T{H}.

(βββ) This is not exactly the formula demanded by the definition in 458Aa, because I supposed that
j ∈ J ; but if we have a non-empty finite J ⊆ I \ {j} and 〈Ej〉i∈J ∈ ∏

i∈J Σj , set J ′ = J ∪ {j} and Ej = X
to see that there is a family 〈gi〉i∈J ′ such that gi is a conditional expectation of χEi on T{H} for every i,
and

µ(G ∩⋂
i∈J Ei) = µ(G ∩⋂

i∈J ′ Ei) =
∫
G

∏
i∈J ′ gi =

∫
G

∏
i∈J gi

for every G ∈ T{H}. So 〈Σi〉i∈I really is relatively independent over T{H}. QQQ

(iii) Inducing on #(E), we see that 〈Σi〉i∈I is relatively independent over TE whenever E ⊆ ⋃
i∈I Σi is

finite. By 458C, 〈Σi〉i∈I is relatively independent over TE for every E ⊆ ⋃
i∈I Σi.
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Remark Putting (a) and (b) above together, we see that if 〈Σi〉i∈I is a family of subalgebras of Σ, and

Σ̂i is the σ-algebra generated by Σi for each i, then 〈Σi〉i∈I is relatively independent over T iff 〈Σ̂i〉i∈I is
relatively independent over T.

458E Example The simplest examples of relatively independent σ-algebras arise as follows. Let (X,Σ, µ)
be a probability space, 〈Ti〉i∈I an independent family of σ-subalgebras of Σ, as in 272Ab, and T a σ-
subalgebra of Σ which is independent of

∨
i∈I Ti. For each i ∈ I, let Σi be T∨Ti. Then 〈Σi〉i∈I is relatively

independent over T.

proof In view of 458Db, it is enough to show that 〈Ti〉i∈I is relatively independent over T. But if we have
a non-empty finite J ⊆ I and Ei ∈ Ti for i ∈ I, then µ(Ei ∩ F ) = µEi · µF for F ∈ T, so fi = µEi · χX is
a conditional expectation of χEi on T, for each i. Similarly, setting E =

⋂
i∈J Ei, µE · χX is a conditional

expectation of χE on T. Since µE =
∏
i∈J µEj ,

∏
i∈J fi is a conditional expectation of χE on T, which is

what we need to know.

458F The following facts are elementary but occasionally useful.

Proposition Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ.
(a) Let 〈fi〉i∈I be a family of non-negative µ-integrable functions on X which is relatively independent

over T. For each i ∈ I let gi be a conditional expectation of fi on T. Then for any F ∈ T and i0, . . . , in ∈ I,∫
F

∏n
j=0 gij ≤

∫
F

∏n
j=0 fij

with equality if all the ij are distinct.
(b) Suppose that Σ1, Σ2 are σ-subalgebras of Σ which are relatively independent over T, and that

f ∈ L
1(µ↾Σ1). If g is a conditional expectation of f on T, then it is a conditional expectation of f on

T ∨ Σ2.

proof (a) Let Σi be the σ-algebra generated by fi for each i, so that 〈Σi〉i∈I is relatively independent (with
respect to the completion of µ) over T.

(i) To begin with, suppose that i0, . . . , in are all different.

(ααα) If fi = χEi for each i ∈ I, where Ei ∈ Σi, the result is just the definition of ‘relative independence’
in 458Aa.

(βββ) Because both sides of the desired equality are multilinear expressions of the inputs, and condi-
tional expectation is an essentially linear operation, the same is true if all the fi are simple functions.

(γγγ) For general non-negative integrable random variables fi, let 〈fik〉k∈N be a non-decreasing sequence
of non-negative Σi-simple functions converging almost everywhere to fi for each i, and gik a conditional
expectation of fik for all i and k. Then 〈gik〉k∈N is non-decreasing almost everywhere and converges a.e. to
the given conditional expectation gi of fi. So∫

F

∏n
j=0 gij = limk→∞

∫
F

∏n
j=0 gijk = limk→∞

∫
F

∏n
j=0 fijk =

∫
F

∏n
j=0 fij ,

as required.

(ii)(ααα) Now suppose that the i0, . . . , in are not all distinct, but that all the fij are bounded. Let
l0, . . . , lm enumerate {i0, . . . , in} and for j ≤ m set kj = #({r : ir = lj}). For each j ≤ m, let hj be a

conditional expectation of f
kj
lj

= |flj |kj . Because t 7→ |t|kj is convex, g
kj
lj

≤a.e. hj (233J). So

∫

F

n∏

j=0

gij =

∫

F

m∏

j=0

g
kj
lj

≤
∫

F

m∏

j=0

hj =

∫

F

m∏

j=0

f
kj
lj

(by part (i), because each f
kj
lj

is Σlj -measurable)

=

∫

F

n∏

j=0

fij ,
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as required.

(βββ) Finally, for the general case, take simple functions fik and conditional expectations gik as in
(a-iii) above. Then∫

F

∏n
j=0 gij = limk→∞

∫
F

∏n
j=0 gijk ≤ limk→∞

∏n
j=0

∫
F
fijk =

∫
F

∏n
j=0 fij ,

and the proof is complete.

(b) Adjusting f on a negligible set if necessary, we may suppose that f is Σ1-measurable. Take any
F ∈ Σ2 ∨ T, and let h ≥ 0 be a conditional expectation of χF on T. By 458Db and 458Da, Σ1 and Σ2 ∨ T
are relatively independent over T, so f and χF are relatively independent over T. Accordingly

∫

F

f =

∫
f × χF =

∫
g × h

(applying (a) to the positive and negative parts of f)

=

∫
g × χF

(233K)

=

∫

F

g.

As F is arbitrary and

g ∈ L
1(µ↾T) ⊆ L

1(µ↾Σ2 ∨ T),

g is a conditional expectation of f on Σ2 ∨ T.

Remark In (a), I have avoided speaking of conditional expectations of products
∏n
j=0 fij because these

need not be integrable functions. But when
∏n
j=0 fij is integrable and has a conditional expectation g, then

we must have
∏n
j=0 gij ≤a.e. g, with equality almost everywhere when the ij are distinct.

*458G It is sometimes useful to know that ‘relative independence’ can be defined without using the
apparatus of conditional expectations; indeed, we have a formulation which can be used with finitely additive
functionals rather than measures.

Lemma Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈Σi〉i∈I a family of subalgebras of
Σ. Let T be the family of finite subalgebras of T. For Λ ∈ T write AΛ for the set of non-negligible atoms in
Λ. For non-empty finite J ⊆ I, 〈Ei〉i∈J ∈ ∏

i∈J Σi and F ∈ T, set

φΛ(F, 〈Ei〉i∈J ) =
∑
H∈AΛ

µ(H ∩ F ) ·∏i∈J
µ(Ei∩H)

µH
.

Then 〈Σi〉i∈I is relatively independent over T iff limΛ∈T,Λ↑ φΛ(F, 〈Ei〉i∈J) = µ(F ∩⋂
i∈J Ei) whenever J ⊆ I

is finite and not empty, Ei ∈ Σi for every i ∈ J and F ∈ T.

proof (a) The point is just that if J ⊆ I is finite and not empty, Ei ∈ Σi for i ∈ J , gi is a conditional
expectation of χEi on T for each i, and F ∈ T, then

∫
F

∏
i∈J gidµ = limΛ↑ φΛ(F, 〈Ei〉i∈J ). PPP Adjusting

each gi on a negligible set if necessary, we may suppose that it is T-measurable, defined everywhere on X
and takes values between 0 and 1.

Fix n ∈ N for the moment. Let Λn be the finite subalgebra of T generated by sets of the form {x : gi(x) ≤
2−nk} for i ∈ J and k ≤ 2n, and Λ any finite subalgebra of Σ0 including Λn. If H ∈ AΛ then there are
integers kiH , for i ∈ J , such that 2−nkiH ≤ gi(x) < 2−n(kiH + 1) for every i ∈ J and x ∈ H. So

2−nkiH ≤ µi(E∩H)

µH
< 2−n(kiH + 1)

for each i. Accordingly
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∑

H∈AΛ

µ(H ∩ F ) ·
∏

i∈J
2−nkiH ≤ φΛ(F, 〈Ei〉i∈J)

≤
∑

H∈AΛ

µ(H ∩ F ) ·
∏

i∈J
min(1, 2−n(kiH + 1)),

that is, ∫
F

∏
i∈J g

′
indµ ≤ φΛ(F, 〈Ei〉i∈J) ≤

∫
F

∏
i∈J g

′′
indµ,

where g′in(x) = 2−nk, g′′in(x) = min(1, 2−n(k + 1)) when 2−nk ≤ gi(x) < 2−n(k + 1). But this means that

|φΛ(F, 〈Ei〉i∈J ) −
∫

F

∏

i∈J
gidµ| ≤

∫ ∏

i∈J
g′′in −

∏

i∈J
g′idµ ≤

∫ ∑

i∈J
g′′in − g′idµ

(because all the g′in, g′′in take values in [0, 1])

≤ 2−n#(J).

Since this is true for every Λ ⊇ Λn and every n ∈ N, limΛ↑ φΛ(F, 〈Ei〉i∈J) =
∫
F

∏
i∈J gidµ. QQQ

(b) Accordingly the condition given exactly matches the definition in 458A.

458H All the fundamental theorems concerning stochastic independence have relativized forms. A
simple one is the following.

Proposition (Compare 272K.) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let 〈Σi〉i∈I
be a family of σ-subalgebras of Σ which is relatively independent over T. Let 〈Ij〉j∈J be a partition of I,

and for each j ∈ J let Σ̃j be
∨
i∈Ij Σi.

(a) If 〈Σi〉i∈I is relatively independent over T, then 〈Σ̃j〉j∈J is relatively independent over T.

(b) Suppose that 〈Σ̃j〉j∈J is relatively independent over T and that 〈Σi〉i∈Ij is relatively independent over
T for every j ∈ J . Then 〈Σi〉i∈I is relatively independent over T.

proof For each E ∈ Σ let fE be a conditional expectation of χE on T.

(a) Take any finite K ⊆ J , and let WWW be the set of families 〈Wj〉j∈K such that Wj ∈ Σ̃j for each j ∈ K
and µ(F ∩⋂

j∈KWj) =
∫
F

∏
j∈K fWj

dµ for every F ∈ T. For each j ∈ K, let Cj be the family of measurable

cylinders expressible as W = X ∩⋂
i∈LEi where L ⊆ Ij is finite and Ei ∈ Σi for i ∈ L. Note that in this

case

µ(F ∩W ) = µ(F ∩⋂
i∈LEi) =

∫
F

∏
i∈L fEi

dµ

for every F ∈ T, so fW =a.e.

∏
i∈L fEi

, taking the product to be χX if L is empty.
If Wj ∈ Cj for each j ∈ K, then 〈Wj〉j∈K ∈WWW . PPP Express Wj as X ∩⋂

i∈Lj
Ei where Lj ⊆ Ij is finite

and Ei ∈ Σi whenever j ∈ K and i ∈ Lj . Then, setting L =
⋃
j∈K Lj ,

µ(F ∩
⋂

j∈K
Wj) = µ(F ∩

⋂

i∈L
Ei) =

∫

F

∏

i∈L
fEi

dµ

(because 〈Σi〉i∈I is relatively independent)

=

∫

F

∏

j∈K

∏

i∈Lj

fEi
dµ =

∫

F

∏

j∈K
fWi

dµ

for every F ∈ T. QQQ
Observe next that if we fix k ∈ K, and a family 〈Wj〉j∈K\{k}, then the set of those Wk ∈ Σ̃k such that

〈Wj〉j∈K ∈ WWW is a Dynkin class, so if it includes Ck it must include the σ-algebra generated by Ck, viz.,

Σ̃k. Now an easy induction on n shows that if 〈Wj〉j∈K ∈ ∏
j∈K Σ̃j and #({j : Wj /∈ Cj}) = n, then

〈Wj〉j∈K ∈WWW . Taking n = #(K) we see that
∏
j∈K Σ̃j ⊆WWW .
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As this is true for every finite K ⊆ J , 〈Σ̃j〉j∈J is relatively independent over T, as claimed.

(b) This time, let K ⊆ I be a non-empty finite set, and Ei ∈ Σi for i ∈ K. Set L = {j : j ∈ J ,
K ∩ Ij 6= ∅}, and for j ∈ L set Gj =

⋂
i∈K∩Ij Ei; set E =

⋂
i∈J Ei =

⋂
j∈LGj . Because 〈Σi〉i∈Ij is relatively

independent over T, fGj
=a.e.

∏
i∈K∩Ij fEi

. Because 〈Σ̃j〉j∈J is relatively independent over T,

fE =a.e.

∏
j∈L fGj

=a.e.

∏
i∈K fEi

.

As 〈Ei〉i∈K is arbitrary, we have the result.

458I For the next result, we need a concept of ‘relative probability distribution’, as follows.

Definition Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and f ∈ L
0(µ). Then a relative

distribution of f over T will be a family 〈νx〉x∈X of Radon probability measures on R such that x 7→ νxH
is a conditional expectation of χf−1[H] on T for every Borel set H ⊆ R.

458J Theorem Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and f ∈ L
0(µ). Then there

is a relative distribution of f over T, which is essentially unique in the sense that if 〈νx〉x∈X and 〈ν ′x〉x∈X
are two such relative distributions, then νx = ν ′x for µ↾T-almost every x.

proof (a) Write µ0 for the restriction of µ to T, µ̂ for the completion of µ, Σ̂ for the domain of µ̂, and B
for the Borel σ-algebra of R. Then the function x 7→ (x, f(x)) : dom f → X × R is (Σ̂,T⊗̂B)-measurable,

just because F ∩ f−1[H] ∈ Σ̂ for every F ∈ T and H ∈ B. So we have a probability measure ν on X × R

defined by setting νW = µ̂{x : (x, f(x)) ∈W} for every W ∈ T⊗̂B. The marginal measure on R is tight just
because it is a Borel probability measure (433Ca). By 452M, we have a family 〈νx〉x∈X of Radon probability
measures on R such that νW =

∫
νxW [{x}]µ0(dx) for every W ∈ T⊗̂B. In particular, if H ∈ B,∫

F
χf−1[H]dµ = µ̂(F ∩ f−1[H]) = ν(F ×H) =

∫
F
νxH µ(dx)

for every F ∈ T, and x 7→ νxH is a conditional expectation of χf−1[H] on T, that is, 〈νx〉x∈X is a relative
distribution of f over T.

(b) Now suppose that 〈ν ′x〉x∈X is another relative distribution of f over T. Then for each H ∈ B we have∫
F
νxHµ(dx) =

∫
F
ν ′xHµ(dx) for every F ∈ T, so that νxH = ν ′xH for µ0-almost every x. But this means

that for µ0-almost every x, we have νxH = ν ′xH for every interval H with rational endpoints; and for such
x we must have νx = ν ′x (415H(v)).

458K Now we can state and prove a result corresponding to 272G.

Theorem Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈fi〉i∈I a family in L
0(µ). For

each i ∈ I, let 〈νix〉x∈X be a relative distribution of fi over T, and f̃i : X → R an arbitrary extension of fi
to the whole of X. Then the following are equiveridical:

(i) 〈fi〉i∈I is relatively independent over T;
(ii) for any Baire set W ⊆ RI and any F ∈ T,

µ̂(F ∩ fff−1[W ]) =
∫
F
λxWµ(dx),

where µ̂ is the completion of µ, fff(x) = 〈f̃i(x)〉i∈I for x ∈ X, and λx is the product of 〈νix〉i∈I for each x;
(iii) for any non-negative Baire measurable function h : RI → R and any F ∈ T,∫

F
hfffdµ =

∫
F

∫
h dλxµ(dx).

proof (a) Note first that if i ∈ I and H ⊆ R is a Borel set, then x 7→ νixH is a conditional expectation of
χf−1

i [H] on T, so that
∫
F
νixHµ(dx) = µ̂(F ∩ f−1

i [H]) for every F ∈ T.

Suppose that 〈fi〉i∈I is relatively independent, and F ∈ T. Let C be the family of Baire measurable
cylinders of RI expressible in the form C = {z : z ∈ RI , z(i) ∈ Hi for every i ∈ J} where J ⊆ I is finite and
Hi ⊆ R is a Borel set for each i ∈ J . For such a set C,
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µ̂(F ∩ fff−1[C]) = µ̂(F ∩
⋂

i∈J
f̃−1
i [Hi]) = µ̂(F ∩

⋂

i∈J
f−1
i [Hi]) =

∫

F

∏

i∈J
νixHiµ(dx)

(interpreting an empty product as χX)

=

∫

F

λxCµ(dx).

So

W = {W : W ⊆ RI , µ̂(F ∩ fff−1[W ]) =
∫
λxWµ(dx)}

includes C; since it is a Dynkin class, it contains every Baire subset of RI (by the Monotone Class Theorem,
136B), and (ii) is true.

(b) Now suppose that (ii) is true. Let Σi be the σ-algebra defined by fi for each i. If J ⊆ I is finite
and Ei ∈ Σi for each i ∈ J , then there are Borel sets Hi ⊆ R such that Ei△f−1

i [Hi] is negligible for each i,
so that x 7→ νixHi is a conditional expectation of χEi on T. Now by the same equations as before, in the
opposite direction,

∫

F

∏

i∈J
νixHiµ(dx) =

∫

F

λxCµ(dx)

(where C = {z : z(i) ∈ Hi for i ∈ J})

= µ̂(F ∩ fff−1[C]) = µ̂(F ∩
⋂

i∈J
f−1
i [Hi]) = µ̂(F ∩

⋂

i∈J
Ei)

for every F ∈ T. As 〈Ei〉i∈J is arbitrary, 〈Σi〉i∈I and 〈fi〉i∈I are relatively independent.

(c) Thus (i)⇔(ii). For (ii)⇒(iii), observe that (ii) covers the case in which h is an indicator function
χW ; for the general case, express h as the supremum of a non-decreasing sequence of linear combinations
of indicator functions, as usual. And (iii)⇒(ii) is trivial.

Remarks Of course the ungainly shift to f̃i is unnecessary if I is countable; but for uncountable I the
intersection

⋂
i∈I dom fi, which is the only suitable domain for fff , may not be conegligible.

I said that λx should be ‘the product of 〈νix〉i∈I ’. Since the νix are Radon probability measures, we
have two possible interpretations of this: either the ‘ordinary’ product measure of §254 or the ‘quasi-Radon’
product measure of §417. But as we are interested only in the values of λxW for Baire sets W , it makes no
difference which we use.

458L Measure algebras We can look at the same ideas in the context of measure algebras. Let (A, µ̄)
be a probability algebra and C a closed subalgebra of A.

(a) If a ∈ A, then we can say that u ∈ L∞(C) is the conditional expectation of χa on C if
∫
c
u = µ̄(c ∩ a)

for every c ∈ C (365Q23). Now we can say that a family 〈bi〉i∈I in A is relatively (stochastically)
independent over C if µ̄(c ∩ infi∈J bi) =

∫
c

∏
i∈J ui whenever J ⊆ I is a non-empty finite set and ui is the

conditional expectation of χbi on C for every i ∈ J ; while a family 〈Bi〉i∈I of subalgebras of A is relatively
(stochastically) independent over C if 〈bi〉i∈I is relatively independent over C whenever bi ∈ Bi for
every i ∈ I.

Corresponding to 458Ab, we can say that a family 〈wi〉i∈I in L0(A) is relatively (stochastically)
independent over C if 〈Bi〉i∈I is relatively stochastically independent, where Bi is the closed subalgebra
of A generated by {[[wi > α]] : α ∈ R} for each i.

Returning to the original form of these ideas, we say that a family 〈bi〉i∈I in A is (stochastically)
independent if it is relatively independent over {0, 1}, that is, if µ̄(infi∈J bi) =

∏
i∈J µ̄bi whenever J ⊆ I is

finite. Similarly, a family 〈Bi〉i∈I of subalgebras of A is (stochastically) independent, in the sense of 325L,
iff it is relatively independent over {0, 1} in the sense here.

23Formerly 365R.
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(b) Let (X,Σ, µ) be a probability space and (A, µ̄) its measure algebra. Let 〈Ei〉i∈I , 〈Σi〉i∈I and 〈fi〉i∈I
be, respectively, a family in Σ, a family of subalgebras of Σ, and a family of µ-virtually measurable real-
valued functions defined almost everywhere on X; let T be a σ-subalgebra of Σ. For i ∈ I, set ai = E•

i ∈ A,
Bi = {E• : E ∈ Σi}, and wi = f•

i ∈ L0(A), identified with L0(µ) (364Ic). Set C = {F • : F ∈ T}. Then

〈ai〉i∈I is relatively independent over C iff 〈Ei〉i∈I is relatively independent over T,
〈Bi〉i∈I is relatively independent over C iff 〈Σi〉i∈I is relatively independent over T,
〈wi〉i∈I is relatively independent over C iff 〈fi〉i∈I is relatively independent over T.

PPP The point is that if f ∈ L
1(µ) (in particular, if f = χE for some E ∈ Σ), and g ∈ L

1(µ↾T) ⊆ L
1(µ) is a

conditional expectation of f on T, then g• is a conditional expectation of f• on C; see 242J and 365Q. QQQ

(c) Corresponding to 458B, we see that if 〈Ai〉i∈I is a family of subalgebras of A such that C ⊆ ⋃
i∈I Ai,

and
∫ ∏

i∈J uidµ̄ = µ̄(infi∈J ai) whenever J ⊆ I is finite and not empty and ai ∈ Ai and ui ∈ L∞(C) is a
conditional expectation of χai on C for each i ∈ J , then 〈Ai〉i∈I is relatively independent over C.

(d) Corresponding to 458Db, we see that if 〈Bi〉i∈I is a family of subalgebras of A which is relatively
independent over C, and B∗

i is the closed subalgebra of A generated by Bi ∪ C for each i, then 〈B∗
i 〉i∈I is

relatively independent over C. The most natural proof, from where we are now standing, is to express (A, µ̄)
as the measure algebra of a probability space (X,Σ, µ), set T = {F : F • ∈ C} and Σi = {E : E• ∈ Bi} for
each i ∈ I, and use 458D.

Corresponding to 458Dc, we see that if 〈Bi〉i∈I is a family of subalgebras of A which is relatively inde-
pendent over C, Di ⊆ Bi for every i ∈ I, and D is the closed subalgebra of A generated by C ∪ ⋃

i∈I Di,
then 〈Bi〉i∈I is relatively independent over D.

(e) Following 458H, we have the result that if 〈Bi〉i∈I is relatively independent over C, and 〈Ij〉j∈J is a

partition of I, and B̃j is the closed subalgebra of A generated by
⋃
i∈Ij Bi for every j ∈ J , then 〈B̃j〉j∈J is

relatively independent over C.

(f) Note that if a ∈ A and u is the conditional expectation of χa on C, then [[u > 0]] = upr(a,C), by
365Qc. So if 〈Bi〉i∈I is a family of subalgebras of A which is relatively independent over C, and J ⊆ I
is finite, and bi ∈ Bi for each i ∈ J , then infi∈J bi = 0 iff infi∈J upr(bi,C) = 0. (If ui is a conditional
expectation of χbi on C for each i, then

infi∈J upr(bi,C) = infi∈J [[ui > 0]] = [[
∏
i∈J ui > 0]]

is zero iff µ̄(infi∈J bi) =
∫ ∏

i∈J ui = 0.)

(g) We have a straightforward version of 458E, as follows. If 〈Ci〉i∈I is a stochastically independent
family of closed subalgebras of A, C is independent of the algebra generated by

⋃
i∈I Ci, and Bi is the closed

subalgebra of A generated by C∪Ci for each i, then 〈Bi〉i∈I is relatively independent over C. (Either repeat
the proof of 458E, looking at Bi0 = Ci and Bi1 = C for each i, or move to a measure space representing A

and quote 458E.)

(h) Similarly, we can translate 458F into this language. Let P : L1(A, µ̄) → L1(C, µ̄↾C) ⊆ L1(A, µ̄) be
the conditional expectation operator associated with C (365Q again). Suppose that 〈Bi〉i∈I is a family of
closed subalgebras of A which is relatively independent over C. Then∫

c

∏n
j=0 Puj ≤

∫
c

∏n
j=0 uj

whenever c ∈ C, i0, . . . , in ∈ I and uj ∈ L1(Bij , µ̄↾Bij )+ for each j ≤ n, with equality if i0, . . . , in are
distinct.

458M Proposition Let (A, µ̄) be a probability algebra and B, C closed subalgebras of A. Write PB, PC

and PB∩C for the conditional expectation operators associated with B, C and B∩C. Then the following are
equiveridical:

(i) B and C are relatively independent over B ∩ C;
(ii) PB∩C(v × w) = PB∩Cv × PB∩Cw whenever v ∈ L∞(B) and w ∈ L∞(C);
(iii) PBPC = PB∩C;
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(iv) PBPC = PCPB;
(v) PBu ∈ L0(C) for every u ∈ L1(C, µ̄↾C).

proof Write P for PB∩C.

(i)⇒(ii) If (i) is true, v ∈ L∞(B) and w ∈ L∞(C), then Pv × Pw certainly belongs to L∞(B ∩ C), and
if d ∈ B ∩ C,

∫
d
Pv × Pw =

∫
d
v × w by 458Lh. So Pv × Pw = P (v × w).

(ii)⇒(i) If (ii) is true, b ∈ B, c ∈ C and d ∈ B ∩ C, then

µ̄(d ∩ b ∩ c) =
∫
d
χb× χc =

∫
d
P (χb× χc) =

∫
d
P (χb) × P (χc)

as required by the definition in 458La.

(ii)⇒(iii) Suppose that (ii) is true. First note that if w ∈ L∞(C) then Pw = PBw. PPP Of course
Pw ∈ L∞(B ∩ C) ⊆ L∞(B). If b ∈ B, then

∫

b

w =

∫
χb× w =

∫
P (χb× w) =

∫
Pχb× Pw =

∫
χb× Pw

(365Qa)

=

∫

b

Pw,

so that Pw possesses the defining properties of PBw. QQQ
But this means that if u ∈ L∞(A), PBPCu = PPCu, which in turn is equal to Pu just because B∩ C ⊆ C

(see 233Eh). As u is arbitrary, PBPC agrees with P on L∞(A); but L∞(A) is ‖ ‖1-dense in L1(A, µ̄), and
PBPC and P are both ‖ ‖1-continuous, so they agree everywhere on L1(A, µ̄) and are equal, as required by
(iii).

(iii)⇒(ii) Suppose that (iii) is true, and that v ∈ L∞(B), w ∈ L∞(C) and d ∈ B ∩ C. Then

∫

d

Pv × Pw =

∫
χd× Pv × Pw =

∫
χd× v × Pw

(because χd× Pw ∈ L∞(B ∩ C))

=

∫
χd× v × PBw

(because PCw = w)

=

∫
χd× v × w

(because χd× v ∈ L∞(B))

=

∫

d

v × w.

As d is arbitrary and Pv × Pw ∈ L∞(B ∩ C), Pv × Pw = P (v × w).

(i)⇒(iv) follows immediately from (i)⇒(iii) and the symmetry of the relation ‘B and C are relatively
independent over B ∩ C’.

(iv)⇒(v) If (iv) is true and u ∈ L1(C, µ̄↾C), then

PBu = PBPCu = PCPBu ∈ L0(C),

so (v) is true.

(v)⇒(iii) If (v) is true, and u ∈ L1
µ̄, then PCu ∈ L1(C, µ̄↾C), so PBPCu belongs to L0(C) ∩ L0(B) =

L0(B ∩ C), and of course ∫
d
PBPCu =

∫
d
PCu =

∫
d
u

for every d ∈ B ∩ C. So PBPCu = Pu. As u is arbitrary, (iii) is true.
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458N Relative free products of probability algebras: Definition Let 〈(Ai, µ̄i)〉i∈I be a family of
probability algebras and (C, ν̄) a probability algebra, and suppose that we are given a measure-preserving
Boolean homomomorphism πi : C → Ai for each i ∈ I. A relative free product of 〈(Ai, µ̄i, πi)〉i∈I over
(C, ν̄) is a probability algebra (A, µ̄), together with a measure-preserving Boolean homomorphism φi : Ai → A

for each i ∈ I, such that

A is the closed subalgebra of itself generated by
⋃
i∈I φi[Ai],

φiπi = φjπj : C → A for all i, j ∈ I,
writing D for the common value of the φi[πi[C]], 〈φi[Ai]〉i∈I is relatively independent over D.

Remark The homomorphisms πi and φi are essential for the formal content of this definition, and will
necessarily appear in the basic result 458O. But conceptually they are a nuisance; we should much prefer
to think of every Ai as a subalgebra of A, and of C as actually equal to

⋂
i∈I Ai = D. It may help if I spell

out the key condition ‘〈φi[Ai]〉i∈I is relatively independent over D’ in terms of C and the πi.
The common value π of the φiπi is a measure-preserving isomorphism between C and D, so gives rise to

an f -algebra isomorphism S : L0(C) → L0(D) such that S(χc) = χ(πc) for every c ∈ C (364P); note that
S[L∞(C)] = L∞(D) and

∫
Su dµ̄ =

∫
u dν̄ for every u ∈ L1(C) (365N24). If u ∈ L∞(C) and d ∈ D, then

∫

d

Su dµ̄ =

∫
Su× χd dµ̄ =

∫
Su× S(χ(π−1d))dµ̄

=

∫
S(u× χ(π−1d))dµ̄ =

∫
u× χ(π−1d) dν̄ =

∫

π−1d

u dν̄.

Next, for i ∈ I and a ∈ Ai, we have a completely additive functional c 7→ µ̄i(a ∩ πic) : C → [0, 1]; let
uia ∈ L∞(C) be a corresponding Radon-Nikodým derivative, so that

∫
c
uiadν̄ = µ̄i(a ∩ πic) for every c ∈ C

(365E). (Thus uia ∈ L∞(C) corresponds to the conditional expectation of χa on the algebra πi[C] ⊆ Ai.)
The image Suia in L∞(D) is defined by the property∫

d
Suiadµ̄ =

∫
π−1d

uiadν̄ = µ̄i(a ∩ πi(φiπi)−1d) = µ̄i(a ∩ φ−1
i d) = µ̄(φia ∩ d)

for every d ∈ D; that is, Suia is the conditional expectation of χ(φia) on D.
Note also that D ⊆ φi[Ai] for every i ∈ I. So we can use the criterion of 458B/458Lc to see that

〈φi[Ai]〉i∈I is relatively independent over D

iff µ̄(inf
i∈J

φiai) =

∫ ∏

i∈J
Sui,aidµ̄

whenever J ⊆ I is finite and not empty and ai ∈ Ai for i ∈ J

iff µ̄(inf
i∈J

φiai) =

∫ ∏

i∈J
ui,aidν̄

whenever J ⊆ I is finite and not empty and ai ∈ Ai for i ∈ J

because S is multiplicative, so we always have∫ ∏
i∈J Sui,aidµ̄ =

∫
S(

∏
i∈J ui,ai)dµ̄ =

∫ ∏
i∈J ui,aidν̄.

458O Theorem Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras, (C, ν̄) a probability algebra and
πi : C → Ai a measure-preserving Boolean homomomorphism for each i ∈ I. Then 〈(Ai, µ̄i, πi)〉i∈I has an
essentially unique relative free product over (C, ν̄).

proof (a)(i) Let B be the free product of 〈Ai〉i∈I (315I); write εi : Ai → B for the canonical embedding of
Ai in B. For each i ∈ I, a ∈ Ai let uia ∈ L∞(C) be such that

∫
c
uiadν̄ = µ̄i(a ∩ πic) for every c ∈ C (365E

again).
Because the map a 7→ uia : Ai → L∞(C) is additive for each i, 326E tells us that there is a unique additive

functional λ : B → [0, 1] such that

24Formerly 365O.
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λ(infi∈J εiai) =
∫ ∏

i∈J ui,aidν̄

whenever J ⊆ I is a non-empty finite set and ai ∈ Ai for every i ∈ J . Of course ui1 = χ1 in L∞(C) for
every i ∈ I, interpreting the ‘1’ in ui1 in the Boolean algebra Ai, and the ‘1’ in χ1 in the Boolean algebra
C; so (this time interpreting ‘1’ in B) λ1 = 1 (the final ‘1’ being a real number).

We see also that ui,πic = χc whenever i ∈ I and c ∈ C. PPP∫
d
ui,πicdν̄ = µ̄i(πic ∩ πid) = ν̄(c ∩ d) =

∫
d
χc dν̄

for every d ∈ D. QQQ

(ii) By 392I, there are a probability algebra (A, µ̄) and a Boolean homomorphism φ : B → A such that
λ = µ̄φ. We can of course suppose that A is the order-closed subalgebra of itself generated by φ[B] (which
is in fact automatically the case if we use the construction in the proof of 392I).

For each i ∈ I, set φi = φεi : Ai → A. This is a Boolean homomorphism because φ and εi are. If a ∈ Ai,
then

µ̄φia = µ̄(φεia) = λεia =
∫
uiadν̄ = µ̄i(a ∩ πi1) = µ̄ia,

so φi is measure-preserving.
If i, j ∈ I and c ∈ C then

µ̄(φiπic△ φjπjc) = λ(εiπic△ εjπjc)

= λ(εiπic) + λ(εjπjc) − 2λ(εiπic ∩ εjπjc)

=

∫
ui,πicdν̄ +

∫
uj,πjcdν̄ − 2

∫
ui,πic × uj,πjcdν̄

=

∫
χc dν̄ +

∫
χc dν̄ − 2

∫
χc× χc dν̄ = 0.

So φiπi = φjπj . Let D be the common value of φi[πi[C]]. (In the trivial case I = ∅, take D = A = {0, 1}.)

(iii) Suppose that J ⊆ I is finite and not empty and that ai ∈ Ai for each i ∈ J . Then

µ̄(inf
i∈J

φiai) = µ̄(inf
i∈J

φεiai) = µ̄φ(inf
i∈J

εiai) = λ(inf
i∈J

εiai) =

∫ ∏

i∈J
ui,aidν̄.

But this is precisely the condition described in 458N, so 〈φi[Ai]〉i∈I is relatively independent over D, and
(A, µ̄, 〈φi〉i∈I) is a relative free product of 〈(Ai, µ̄i, πi)〉i∈I over (C, ν̄).

(b) Now suppose that (A′, µ̄′, 〈φ′i〉i∈I) is another relative free product of 〈(Ai, µ̄i, πi)〉i∈I over (C, ν̄). Then
we have a Boolean homomorphism ψ : B → A′ such that φ′i = ψεi for every i ∈ I (315J). In this case,
µ̄′ψ = λ. PPP Let π′ be the common value of φ′iπi for i ∈ I and set D′ = π′[C] If J ⊆ I is finite and not
empty, and ai ∈ Ai for i ∈ J , then

µ̄′(ψ(infi∈J εiai)) = µ̄′(infi∈J φ′iai) =
∫ ∏

i∈J ui,aidν̄ = λ(infi∈J εiai).

Because λ is the only additive functional on B taking the right values on elements of this form, µ̄′ψ = λ. QQQ
In particular, ψb = 0 whenever b ∈ B and λb = 0. It follows that ψb = ψb′ whenever b, b′ ∈ B and

φb = φb′, since in this case λ(b△ b′) = µ̄(φb△ φb′) is zero. So we have a function θ : φ[B] → A′ defined by
setting θ(φb) = ψb for every b ∈ B, and of course θ is a Boolean homomorphism; moreover,

µ̄′θ(φb) = µ̄′ψb = λb = µ̄φb

for every b, so θ is measure-preserving and an isometry for the measure metrics of A and A′. If i ∈ I and
a ∈ A, then

θφia = θφεia = ψεia = φ′ia,

so θφi = φ′i for every i. Because A and A′ are the closed subalgebras generated by
⋃
i∈I φi[Ai] and

⋃
i∈I φ

′
i[Ai]

respectively, φ[B] and ψ[B] are dense (323J). The isometry θ therefore extends uniquely to a measure

algebra isomorphism θ̂ : A → A′ which must be the unique isomorphism such that θ̂φi = φ′i for every i.
Thus (A, µ̄, 〈φi〉i∈I) and (A′, µ̄′, 〈φ′i〉i∈I) are isomorphic, and the relative free product is essentially unique.
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458P Developing the argument of the last part of the proof of 458O, we have the following.

Theorem Let 〈(Ai, µ̄i)〉i∈I , 〈(A′
i, µ̄

′
i)〉i∈I be two families of probability algebras, and ψi : Ai → A′

i a
measure-preserving Boolean homomorphism for each i. Let (C, ν̄), (C′, ν̄′) be probability algebras and
πi : C → Ai, π

′
i : C′ → A′

i measure-preserving Boolean homomomorphisms for each i ∈ I; suppose that
we have a measure-preserving isomorphism ψ : C → C′ such that π′

iψ = ψiπi : C → A′
i for each i. Let

(A, µ̄, 〈φi〉i∈I) and (A′, µ̄′, 〈φ′i〉i∈I) be relative free products of 〈(Ai, µ̄i, πi)〉i∈I , 〈(A′
i, µ̄

′
i, π

′
i)〉i∈I over (C, ν̄),

(C′, ν̄′) respectively. Then there is a unique measure-preserving Boolean homomorphism ψ̂ : A → A′ such

that ψ̂φi = φ′iπi : Ai → A′ for every i ∈ I.

proof By the uniqueness assertion of 458O, we may suppose that (A, µ̄, 〈φi〉i∈I) has been constructed by
the method of part (a) of the proof of 458O.

(a) For i ∈ A, a ∈ A and a′ ∈ A′ let uia ∈ L∞(C), u′ia′ ∈ L∞(C′) be defined as in (a-i) of the proof of
458O, so that ∫

c
uiadν̄ = µ̄i(a ∩ πic),

∫
c′
u′ia′dν̄

′ = µ̄′
i(a

′ ∩ π′
ic

′)

whenever c ∈ C and c′ ∈ C′. Let T : L0(C) → L0(C′) be the f -algebra isomorphism such that T (χc) = χ(ψc)
for every c ∈ C. Now u′i,ψia

= Tuia whenever i ∈ I and a ∈ Ai. PPP If c ∈ C, then

∫

ψc

Tuiadν̄
′ =

∫

c

uiadν̄ = µ̄i(a ∩ πic)

= µ̄′
iψi(a ∩ πic) = µ̄′

i(ψia ∩ π′
iψc) =

∫

ψc

u′i,ψiadν̄
′.

Because ψ is surjective, it follows that Tuia = u′i,ψia
. QQQ

(b) Let B be the free product of 〈Ai〉i∈I and εi : Ai → B the canonical embedding for each i; let λ
be the functional on B defined by the process of (a-i) in the proof of 458O. By 315J, there is a Boolean
homomorphism θ : B → A′ such that θεi = φ′iψi : Ai → A′ for every i. Now µ̄′θ = λ. PPP If J ⊆ I is finite
and ai ∈ Ai for every i ∈ J , then

µ̄′θ(inf
i∈J

εiai) = µ̄′(inf
i∈J

φ′iψiai) =

∫ ∏

i∈J
u′i,ψiaidν̄

′

=

∫ ∏

i∈J
Tui,aidν̄

′ =

∫
T (

∏

i∈J
ui,ai)dν̄

′

=

∫ ∏

i∈J
ui,aidν̄ = λ(inf

i∈J
εiai).

As λ, θ and ν̄ are all additive, λ = µ̄′θ (using 315Kb). QQQ

(c) Let φ : B → A be the map described in (a-ii) of the proof of 458O. Then µ̄(φb) = λb = µ̄′(θb) for
every b ∈ B; in particular,

φb = 0 =⇒ µ̄(φb) = 0 =⇒ µ̄′(θb) = 0 =⇒ θb = 0.

There is therefore a Boolean homomorphism θ̃ : φ[B] → A′ such that θ̃φ = θ, and θ̃ is measure-preserving on

φ[B]. Since φ[B] is topologically dense in A (use 323J), θ̃ has an extension to a measure-preserving Boolean

homomorphism ψ̂ : A → A′ (324O). Now, for i ∈ I and a ∈ Ai,

ψ̂φia = ψ̂φεia = θ̃φεia = θεia = φ′iψia,

as required.

(d) To see that ψ̂ is unique, we need observe only that the given formula defines it on the subalgebra

φ[B] and that this is topologically dense in A, while ψ̂, being measure-preserving, must be continuous.
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458Q Relative product measures: Definitions (a) Let 〈Xi〉i∈I be a family of sets, Y a set, and
πi : Xi → Y a function for each i ∈ I. The fiber product of 〈(Xi, πi)〉i∈I is the set ∆ = {x : x ∈ ∏

i∈I Xi,
πix(i) = πjx(j) for all i, j ∈ I}.

(b) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces and (Y,T, ν) a probability space, and suppose
that we are given an inverse-measure-preserving function πi : Xi → Y for each i ∈ I; let ∆ be the fiber
product of 〈(Xi, πi)〉i∈I . A relative product measure on ∆ is a probability measure µ on ∆ such that

(†) whenever J ⊆ I is finite and not empty and Ei ∈ Σi for i ∈ J , and gi is a Radon-Nikodým
derivative with respect to ν of the functional F 7→ µi(E ∩ π−1

i [F ]) : T → [0, 1] for each i ∈ J ,
then µ{x : x ∈ ∆, x(i) ∈ Ei for every i ∈ J} is defined and equal to

∫ ∏
i∈J gidν;

(‡) for every W ∈ Σ there is a W ′ in the σ-algebra generated by {{x : x ∈ ∆, x(i) ∈ E} : i ∈ I,
E ∈ Σi} such that µ(W△W ′) = 0.

Remark If µ is a relative product measure of 〈(µi, πi)〉i∈I over ν, then all the functions x 7→ x(i) : ∆ → Xi

are inverse-measure-preserving. PPP The condition (†) tells us that if E ∈ Σi and g is any Radon-Nikodým
derivative of F 7→ µi(E ∩ π−1

i [F ]), then

µ{x : x(i) ∈ E} =
∫
g dν = µiE. QQQ

It follows that if I is not empty then we have an inverse-measure-preserving function π : ∆ → Y defined by
setting πx = πix(i) whenever x ∈ ∆ and i ∈ I.

Note that when verifying (†) we need check the equality µ{x : x ∈ ∆, x(i) ∈ Ei for every i ∈ J} =∫ ∏
i∈J gidν for only one representative family 〈gi〉i∈J of Radon-Nikodým derivatives for any given 〈Ei〉i∈J .

458R Proposition Suppose that 〈(Xi,Σi, µi)〉i∈I is a family of probability spaces, (Y,T, ν) a probability
space, πi : Xi → Y an inverse-measure-preserving function for each i ∈ I, ∆ the fiber product of 〈(Xi, πi)〉i∈I
and µ a relative product measure of 〈(µi, πi)〉i∈I . Let (Ai, µ̄i), (C, ν̄) and (A, µ̄) be the measure algebras
of µi, ν and µ respectively, and for i ∈ I define π̄i : C → Ai and φ̄i : Ai → A by setting π̄iF

• = π−1
i [F ]•,

φ̄iE
• = {x : x ∈ ∆, x(i) ∈ E}• whenever F ∈ T and E ∈ Σi. Then (A, µ̄, 〈φ̄i〉i∈I) is a relative free product

of 〈(Ai, µ̄i, π̄i)〉i∈I over (C, ν̄).

proof The case I = ∅ is trivial (if you care to follow through the definitions to the letter, ∆ =
∏
i∈I Xi = {∅}

and A is the two-point algebra). So I will take it that I is not empty. For i ∈ I define φi : ∆ → Xi by
setting φi(x) = x(i) for x ∈ ∆.

(a) Of course we have to check that all the π̄i and φ̄i are measure-preserving Boolean homomorphisms
between the appropriate algebras, but in view of the remark following the definition 458Q, this is elementary.
The condition that A should be the closed subalgebra generated by

⋃
i∈I φ̄i[Ai] is just a translation of the

condition (‡).
(b) As I is not empty, we have a well-defined inverse-measure-preserving map π : ∆ → Y given by the

formula π(x) = πix(i) whenever x ∈ ∆ and i ∈ I. Let π̄ : C → A be the corresponding measure-preserving
homomorphism, so that π̄ = φ̄iπ̄i for every i. Set D = π̄[C] ⊆ A, and let T : L∞(C) → L∞(D) be the
f -algebra isomorphism corresponding to π̄ (363F). For i ∈ I and E ∈ Σi, let giE be a Radon-Nikodým
derivative with respect to ν of the functional F 7→ µi(E ∩π−1

i [F ]), and set uiE = Tg•

iE ∈ L∞(D). Then uiE
is the conditional expectation of χ{x : x(i) ∈ E}• on D. PPP If d ∈ D, it is of the form π̄F • = φ̄iπ̄iF

• where
F ∈ T, so that χd = T (χF )• and

∫

d

uiEdµ̄ =

∫
uiE × χd dµ̄ =

∫
T (g•

iE × χF •)dµ̄

=

∫
g•

iE × χF •dν̄ =

∫

F

giEdν

= µi(E ∩ π−1
i [F ]) = µ(φ−1

i [E] ∩ φ−1
i [π−1

i [F ]]) = µ̄(d ∩ φ−1
i [E]•).

As d is arbitrary, we have the result. QQQ

(c) It follows that if J ⊆ I is finite and not empty, and ai ∈ φ̄i[Ai] and vi is the conditional expectation
of χai on D for each i ∈ J , then µ̄(infi∈J ai) =

∫ ∏
i∈J vidµ̄. PPP Express ai as φ−1

i [Ei]
•, where Ei ∈ Σi, so

that vi = ui,Ei
for each i. Then
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∫ ∏

i∈J
vidµ̄ =

∫ ∏

i∈J
Tg•

i,Ei
dµ̄ =

∫
T (

∏

i∈J
g•

i,Ei
)dµ̄ =

∫ ∏

i∈J
g•

i,Ei
dν̄

=

∫ ∏

i∈J
gi,Ei

dν = µ(
⋂

i∈J
φ−1
i [Ei]) = µ̄(inf

i∈J
ai). QQQ

But this is exactly what we need to know to see that 〈φ̄i[Ai]〉i∈I is relatively independent over D, completing
the proof that (A, µ̄, 〈φ̄i〉i∈I) is a relative free product of 〈(Ai, µ̄i, π̄i)〉i∈I over (C, ν̄).

458S There is no general result on relative product measures to match 458O (see 458Xj-458Xm). The
general question of when we can expect relative product measures to exist seems interesting (458Yf, 458Yg).
Here I give a couple of sample results dealing with important special cases.

Proposition Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, (Y,T, ν) a probability space, and πi :
Xi → Y an inverse-measure-preserving function for each i. Suppose that for each i we have a disintegration
〈µiy〉y∈Y of µi such that µ∗

iyπ
−1
i [{y}] = µiyXi = 1 for every y ∈ Y . Let ∆ ⊆ ∏

i∈I Xi be the fiber product of

〈(Xi, πi)〉i∈I , and Υ the subspace σ-algebra on ∆ induced by
⊗̂

i∈IΣi. For y ∈ Y , let λy be the product of

〈µiy〉i∈I , (λy)∆ the subspace measure on ∆ and λ′y its restriction to Υ. Then µW =
∫
λ′yWν(dy) is defined

for every W ∈ Υ, and µ is a relative product measure of 〈(µi, πi)〉i∈I over ν.

proof If y ∈ Y , then

λ′y∆ = λ∗y∆ = λ∗y(
∏
i∈I π

−1
i [{y}]) = 1

(254Lb). For i ∈ I and E ∈ Σi set giE(y) = µiyE when this is defined; then giE is a Radon-Nikodým

derivative of F 7→ µi(E ∩ π−1
i [F ]) : T → [0, 1] (452Qa). Write X for

∏
i∈I Xi; for i ∈ I and x ∈ X set

φi(x) = x(i). If J ⊆ I is finite and Ei ∈ Σi for each i ∈ J , then

∫
λ′y(∆ ∩

⋂

i∈J
φ−1
i [Ei])ν(dy) =

∫
(λy)∆(∆ ∩

⋂

i∈J
φ−1
i [Ei])ν(dy)

=

∫
λy(X ∩

⋂

i∈J
φ−1
i [Ei])ν(dy)

(because λ∗y∆ = 1 and λy measures every φ−1
i [Ei] for almost every y)

=

∫ ∏

i∈J
µiyEiν(dy) =

∫ ∏

i∈J
gi,Ei

dν.

In particular,
∫
λ′y(∆ ∩⋂

i∈J φ
−1
i [Ei])ν(dy) is defined.

The set {W : W ⊆ X,
∫
λ′y(W ∩ ∆)ν(dy) is defined} is a Dynkin class of subsets of X containing⋂

i∈J φ
−1
i [Ei] whenever J ⊆ I is finite and not empty and Ei ∈ Σi for each i ∈ J ; by the Monotone Class

Theorem, it includes
⊗̂

i∈IΣi. So µW =
∫
λ′yWν(dy) is defined for every W ∈ Υ. Moreover, the formula

displayed above tells us that µ(∆∩⋂
i∈I φ

−1
i [Ei]) =

∫ ∏
i∈J gi,Ei

dν whenever J ⊆ I is finite and Ei ∈ Σi for
each i ∈ I. Thus (†) of 458Q is satisfied. And (‡) is true by the choice of Υ.

458T The latitude I have permitted in the definition of ‘relative product’ makes it possible to look for
relative product measures with further properties, as in the following.

Proposition Let 〈(Xi,Ti,Σi, µi)〉i∈I be a family of compact Radon probability spaces, (Y,S,T, ν) a Radon
probability space, and πi : Xi → Y a continuous inverse-measure-preserving function for each i. Then
〈(µi, πi)〉i∈I has a relative product measure µ over ν which is a Radon measure for the topology on the fiber
product of 〈(Xi, πi)〉i∈I induced by the product topology on

∏
i∈I Xi.

proof (a) For i ∈ I and E ∈ Σi let giE be a Radon-Nikodým derivative of F 7→ µi(E ∩π−1
i [F ]) : T → [0, 1].

Let C be the family of measurable cylinders in X =
∏
i∈I Xi; write φi(x) = x(i) for x ∈ X and i ∈ I. We

have a functional λ0 : C → [0, 1] defined by setting
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λ0(
⋂
i∈J φ

−1
i [Ei]) =

∫ ∏
i∈J gi,Ei

dν

whenever J ⊆ I is finite and not empty and Ei ∈ Σi for every i ∈ I. It is easy to check that λ0 is additive
in the sense required by 454E so (because every µi is perfect, by 416Wa) it has an extension to a measure λ

on X with domain
⊗̂

i∈IΣi. By 454Aa, with K the family of compact subsets of X, λ is inner regular with

respect to the compact sets. By 416N, there is a Radon measure λ̃ on X extending λ.

(b) Let ∆ be the fiber product of 〈(Xi, πi)〉i∈I . Now the point is that ∆ is λ̃-conegligible. PPP Because

every πi is continuous, ∆ is closed. ??? If it is not conegligible, then, because λ̃ is τ -additive, there must be
a basic open set of non-zero measure disjoint from ∆; express such a set as W =

∏
i∈J φ

−1
i [Gi] where J ⊆ I

is finite and Gi ⊆ Xi is open for each i ∈ J . Because λ̃ is inner regular with respect to the compact sets,
there is a compact set K ⊆ W such that λ̃K > 0; setting Ki = φi[K], Ki ⊆ Gi is compact for each i and
W ′ =

⋂
i∈J φ

−1
i [Ki] is non-negligible. Now we have

0 < λ̃(
∏
i∈J φ

−1
i [Ki]) = λ0(

∏
i∈J φ

−1
i [Ki]) =

∫ ∏
i∈J gi,Ki

dν,

so F = {y : y ∈ Y , gi,Ki
(y) > 0 for every i ∈ J} is non-negligible. On the other hand, for each i ∈ J we

have ∫
Y \πi[Ki]

gi,Ki
dν = µi(Ki ∩ π−1

i [Y \Ki]) = 0

so that F \ πi[Ki] is negligible. Accordingly
⋂
i∈J πi[Ki] is non-negligible, and must meet the support Y0 of

Y ; let y be any point of the intersection. For i ∈ J , choose x(i) ∈ Ki such that πix(i) = y. For i ∈ I \ J ,
πi[Xi] is a compact subset of Y , and νπi[Xi] = µiπ

−1
i [πi[Xi]] = 1, so Y0 ⊆ πi[Xi] and we can therefore

choose x(i) ∈ Xi with πix(i) = y. This defines x ∈ ∆. But as x(i) ∈ Ki for i ∈ J , we also have

x ∈ ⋂
i∈J φ

−1
i [Ki] ⊆

⋂
i∈J φ

−1
i [Gi] ⊆ X \ ∆,

which is impossible. XXX

Thus ∆ is λ̃-conegligible, as claimed. QQQ

(c) Let µ be the subspace measure on ∆ induced by λ̃, and Σ its domain, so that µ is a Radon probability
measure on ∆ with its subspace topology (416Rb). Concerning (†) of 458Q, if J ⊆ I is finite and not empty
and Ei ∈ Σi for i ∈ J , then

µ(∆ ∩⋂
i∈J φ

−1
i [Ei]) = λ̃(

⋂
i∈J φ

−1
i [Ei]) = λ0(

⋂
i∈J φ

−1
i [Ei]) =

∫ ∏
i∈J gi,Ei

dν,

as required. Finally, for (‡), the σ-algebra Υ of subsets of ∆ generated by {∆ ∩ φ−1
i [E] : i ∈ I, E ∈ Σi}

is just the subspace σ-algebra induced by
⊗̂

i∈IΣi. Let A be the measure algebra of λ̃ and B ⊆ A the

set {W • : W ∈ ⊗̂
i∈IΣi}. Then B is a closed subalgebra of A. If W ⊆ X is open, then for every ǫ > 0

there is a W0 ∈ ⊗̂
i∈IΣi such that W0 ⊆ W and λ̃(W \W0) ≤ ǫ, so W • ∈ B; accordingly {W : W • ∈ B}

contains every open set and every Borel set and must be the whole of dom λ̃. Returning to the measure

µ, we see that if W ∈ Σ there must be a W0 ∈ ⊗̂
i∈IΣi such that λ̃(W△W0) = 0; now W0 ∩ ∆ ∈ Υ and

µ(W△(W0 ∩ ∆)) = 0. So (‡) also is true, and we have a relative product measure of the declared type.

458U We can of course make a general search through theorems about product measures, looking for
ways of re-presenting them as theorems about relative product measures. There is an associative law, for
instance (458Xr). To give an idea of what is to be expected, I offer a result corresponding to 253D.

Proposition Let (X1,Σ1, µ1), (X2,Σ2, µ2) and (Y,T, ν) be probability spaces, and π1 : X1 → Y , π2 : X2 →
Y inverse-measure-preserving functions. Let ∆ be the fiber product of (X1, π1) and (X2, π2), and suppose
that µ is a relative product measure of (µ1, π1) and (µ2, π2) over ν; set πx = π1x(1) = π2x(2) for x ∈ ∆.
Take f1 ∈ L

1(µ1) and f2 ∈ L
2(µ2), and set (f1⊗f2)(x) = f1(x(1))f2(x(2)) when x ∈ ∆∩ (dom f1×dom f2).

For i = 1, 2 let gi ∈ L
1(ν) be a Radon-Nikodým derivative of H 7→

∫
π−1
i [H]

fidµi : T → R. Then∫
F
g1 × g2dν =

∫
π−1[F ]

f1 ⊗ f2dµ for every F ∈ T.

proof (a) Suppose first that f1 = χE1 and f2 = χE2 where E1 ∈ Σ1 and E2 ∈ Σ2. For each i, set
f ′i = χ(Ei ∩ π−1

i [F ]) and g′i = gi × χF ; then
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∫
H
g′idν =

∫
H∩F gidν =

∫
π−1
i [H∩F ]

fidµi =
∫
π−1
i [H]

f ′idµi

for every H ∈ T. Now

∫

F

g1 × g2 dν =

∫
g′1 × g′2 dν = µ{x : x ∈ ∆, x(i) ∈ E′

i for both i}

((†) of the definition 458Qb)

= µ{x : x ∈ π−1[F ], x(i) ∈ Ei for both i} =

∫

π−1[F ]

f1 × f2dµ.

So we have the result in this case. (Cf. 458B.)

the functional F 7→ µi(E ∩ π−1
i [F ]) : T → [0, 1] (b) Generally, the formula for gi corresponds to a

linear operator from L1(µi) to L1(ν), so the result is true for simple functions f1 and f2. If f1 and f2 are
almost everywhere limits of non-decreasing sequences 〈f1n〉n∈N, 〈f2n〉n∈N of non-negative simple functions,
then the corresponding sequences 〈g1n〉n∈N, 〈g2n〉n∈N will also be non-decreasing and non-negative and
convergent to g1, g2 ν-a.e.; moreover, because x 7→ x(1) and x 7→ x(2) are inverse-measure-preserving,
f1 ⊗ f2 = limn→∞ f1n ⊗ f2n µ-a.e. So in this case we shall have

∫

π−1[F ]

f1 ⊗ f2dµ = lim
n→∞

∫

π−1[F ]

f1n ⊗ f2ndµ

= lim
n→∞

∫

F

g1n × g2ndν =

∫

F

g1 × g2dν

for every F ∈ T. Finally, considering positive and negative parts, we can extend the result to general
integrable f1 and f2.

458X Basic exercises >>>(a) Find an example of a probability space (X,Σ, µ) with σ-subalgebras Σ1,
Σ2 and T of Σ such that Σ1 and Σ2 are independent but are not relatively independent over T.

(b) Let (X,Σ, µ) be a probability space and T, Σ1 and Σ2 σ-subalgebras of Σ. Show that if Σ1 ⊆ T then
Σ1 and Σ2 are relatively independent over T.

>>>(c) Let (X,Σ, µ) be a probability space and T a subalgebra of Σ. Let 〈Ei〉i∈I be a family of subsets
of Σ such that (i) each Ei is closed under finite intersections (ii) 〈Ei〉i∈I is relatively independent over T
whenever Ei ∈ Ei for every i. For each i ∈ I, let Σi be the σ-subalgebra of Σ generated by Ei. Show that
〈Σi〉i∈I is relatively independent over T.

>>>(d) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let f1, f2 be µ-integrable real-
valued functions which are relatively independent over T, and suppose that f1 × f2 is integrable. Let g1, g2
be conditional expectations of f1, f2 on T. Show that g1 × g2 is a conditional expectation of f1 × f2 on T.

(e) In 458I, show that (writing µ̂ for the completion of µ) µ̂(F ∩f−1[H]) =
∫
F
νxHµ(dx) for every F ∈ T

and every universally measurable H ⊆ R.

(f) Let (X,Σ, µ) be a probability space and Σ1, Σ2 and T σ-subalgebras of Σ. Show that the following
are equiveridical: (i) Σ1 and Σ2 are relatively independent over T; (ii) whenever f ∈ L

1(µ↾Σ1) and g is a
conditional expectation of f on T, then g is a conditional expectation of f on Σ2 ∨ T.

(g) Prove 458Ld directly from 313G, without appealing to 458D.

(h) Let 〈(Ai, µ̄i)〉i∈I be a family of probability algebras. Show that their probability algebra free product
(325K) can be identified with their relative free product over (C, ν̄) if C is the two-element Boolean algebra,
ν̄ its unique probability measure, and πi : C → Ai the trivial Boolean homomorphism for every i.
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>>>(i) Let Y be a set, 〈Zi〉i∈I a family of sets, and πi : Y × Zi → Y the canonical map for each i. Show
that the fiber product of 〈(Y × Zi, πi)〉i∈I can be identified with Y ×∏

i∈I Zi.

(j) Let ν be Lebesgue measure on [0, 1], and X1, X2 ⊆ [0, 1] disjoint sets with outer measure 1. For each
i ∈ {1, 2} let µi be the subspace measure on Xi and πi : Xi → [0, 1] the identity map. Show that (µ1, π1)
and (µ2, π2) have no relative product measure over ν.

(k) Let ν be the usual measure on the split interval I‖ (343J), and µ Lebesgue measure on [0, 1]. Set
π1(t) = t+, π2(t) = t− for t ∈ [0, 1]. Show that (µ, π1) and (µ, π2) have no relative product measure over ν.

(l) Let ν be Lebesgue measure on [0, 1]. For each t ∈ [0, 1], set Xt = [0, 1] \ {t}; let µt be the subspace
measure on Xt and πt : Xt → [0, 1] the identity map. Show that 〈(µt, πt)〉t∈[0,1] has no relative product
measure over ν.

(m)(i) Show that there is a set X ⊆ [0, 1]2 with outer planar Lebesgue measure 1 and just one point
in each vertical section. (Hint : 419H-419I.) (ii) Set X1 = X2 = X and µ1 = µ2 the subspace measure on
X; let (Y,T, ν) be [0, 1] with Lebesgue measure, and π1 = π2 the first-coordinate projection from X to Y .
Show that (µ1, π1) and (µ2, π2) have no relative product measure over ν.

(n) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈Σi〉i∈I a family of σ-subalgebras of
Σ, all including T. Set πi(x) = x for every x ∈ X. Show that 〈Σi〉i∈I is relatively independent over T iff
µ↾Σ∗ is a relative product measure of 〈(µ↾Σi, πi)〉i∈I over µ↾T, where Σ∗ =

∨
i∈I Σi.

(o)(i) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces and (X,Σ, µ) their ordinary probability space
product. Show that µ is a relative product measure of 〈(µi, πi)〉i∈I over ν where Y is a singleton set, ν its
unique probability measure, and πi : Xi → Y the unique function for each i. (ii) Let 〈(Xi,Ti,Σi, µi)〉i∈I
be a family of quasi-Radon probability spaces and (X,T,Σ, µ) their quasi-Radon probability space product
(417R). Show that µ is a relative product measure of 〈µi〉i∈I in the same sense as in (i).

(p) Suppose that 〈(Xi,Σi, µi)〉i∈I is a family of probability spaces and (Y,T, ν) is a probability space,
and that for each i ∈ I we are given an inverse-measure-preserving function πi : Xi → Y . Write µ̂i and ν̂
for the completions of µi, ν respectively. Show that 〈(µi, πi)〉i∈I has a relative product measure over ν iff
〈(µ̂i, πi)〉i∈I has a relative product measure over ν̂.

(q) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, (Y,T, ν) a probability space, and πi : Xi → Y
an inverse-measure-preserving function for each i ∈ I. Show that if 〈(µi, πi)〉i∈I has a relative product
measure over ν, so does 〈(µi, πi)〉i∈J for any J ⊆ I.

(r) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, (Y,T, ν) a probability space, and πi : Xi → Y
an inverse-measure-preserving function for each i ∈ I. Let 〈Jk〉k∈K be a partition of I into non-empty sets.
For each k ∈ K, let ∆k be the fiber product of 〈(Xi, πi)〉i∈Jk ; suppose that µ̃k is a relative product measure
of 〈(µi, πi)〉i∈Jk . Define π̃k : ∆k → Y by setting π̃k(x) = πix(i) whenever x ∈ ∆k and i ∈ Jk, so that π̃k
is inverse-measure-preserving. Suppose that µ is a relative product measure of 〈(µ̃k, π̃k)〉k∈K over ν. Show
that µ can be regarded as a relative product measure of 〈(µi, πi)〉i∈I over ν.

(s) Let 〈(Xi,Σi, µi)〉i∈I and 〈(X ′
i,Σ

′
i, µ

′
i)〉i∈I be two families of probability spaces, (Y,T, ν) a probability

spaces, and fi : Xi → X ′
i, πi : X ′

i → Y ′ inverse-measure-preserving functions for each i. Show that if there is
a relative product measure of 〈(µi, πifi)〉i∈I over ν, then there is a relative product measure of 〈(µ′

i, πi)〉i∈I
over ν.

(t) Let 〈(Xi,Σi, µi)〉i∈I be a countable family of probability spaces, (Y,T, ν) a probability space, and πi :
Xi → Y an inverse-measure-preserving function for each i. Suppose that for each i we have a disintegration
of µi over ν which is strongly consistent with πi. Show that 〈(µi, πi)〉i∈I has a relative product measure
over ν.

(u) Let (X,Σ, µ), (X ′,Σ′, µ′) and (Y,T, ν) be probability spaces. Suppose that π : X → Y and π′ : X ′ →
Y are inverse-measure-preserving functions, and that µ′ has a disintegration 〈µ′

y〉y∈Y over (Y,T, ν) which
is strongly consistent with π′. Show that (µ, π) and (µ′, π′) have a relative product measure over ν. (Hint :
set λW =

∫
µ′
π(x)W [{x}]µ(dx) for every W ∈ Σ⊗̂Σ′.)
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>>>(v) Let Y be a Hausdorff space, 〈Zi〉i∈I a family of Hausdorff spaces, µi a Radon probability measure
on Zi × Y and πi : Y × Zi → Y the canonical map for each i. Suppose that all the image measures µiπ

−1
i

on Y are the same, and that all but countably many of the Zi are compact. Show that there is a Radon
probability measure µ on Y ×∏

i∈I Zi such that µi = µφ−1
i for each i, where φi(y, z) = (y, z(i)) for y ∈ Y ,

z ∈ ∏
j∈I Zj .

(w) Let 〈(Xi,Ti,Σi, µi)〉i∈I be a countable family of Radon probability spaces, (Y,S,T, ν) a Radon
probability space, and πi : Xi → Y an almost continuous inverse-measure-preserving function for each i.
Show that 〈(µi, πi)〉i∈I has a relative product measure over ν which is a Radon measure for the topology on
the fiber product of 〈(Xi, πi)〉i∈I induced by the product topology on

∏
i∈I Xi. Discuss the relation of this

result to 418Q.

458Y Further exercises (a)(i) Let (X,Σ, µ) be a probability space, 〈Tn〉n∈N a non-increasing sequence
of σ-subalgebras of Σ with intersection T, and 〈Σi〉i∈I a family of subalgebras of Σ. Suppose that 〈Σi〉i∈I
is relatively independent over Tn for every n. Show that it is relatively independent over T. (Hint : 275K.)
(ii) Give an example of a probability space (X,Σ, µ), a downwards-directed family T of σ-subalgebras of Σ,
and a family 〈Ei〉i∈I in Σ which is relatively independent over T for every T ∈ T, but not over

⋂
T.

(b) Let (X,Σ, µ) be a probability space and T a σ-subalgebra of Σ. Let 〈Ei〉i∈I be a family of subsets
of Σ such that (i) E ∩ F ∈ Ei whenever i ∈ I and E, F ∈ Ei (ii) 〈Ei〉i∈I is relatively independent over T
whenever Ei ∈ Ei for every i ∈ I. For each i ∈ I, let Σi be the σ-algebra generated by Ei. Show that 〈Σi〉i∈I
is relatively independent over T.

(c) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈Σn〉n∈N a sequence of σ-subalgebras
of Σ which is relatively independent over T. Show that for every E ∈ ⋂

n∈N

∨
m≥n Σn there is an F ∈ T

such that E△F is negligible. (Compare 272O.)

(d) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and f , g ∈ L
0(µ) relatively independent

over T; suppose that 〈νx〉x∈X and 〈ν ′x〉x∈X are relative distributions of f and g over T. Show that 〈νx∗ν ′x〉x∈X
is a relative distribution of f + g over T. (Compare 272T.)

(e) Let (X,Σ, µ) be a probability space, T a σ-subalgebra of Σ, and 〈fn〉n∈N a sequence in L
2(µ) such

that 〈fn〉n∈N is relatively independent over T and
∫
F
fndµ = 0 for every n ∈ N and every F ∈ T. (i) Suppose

that 〈βn〉n∈N is a non-decreasing sequence in ]0,∞[, diverging to ∞, such that
∑∞
n=0

1

β2
n

‖fn‖22 < ∞. Show

that limn→∞
1

βn

∑n
i=0 fi = 0 a.e. (ii) Suppose that supn∈N ‖fn‖2 <∞. Show that limn→∞

1
n+1

∑n
i=0 fi = 0

a.e. (Compare 273D.)

(f) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, (Y,T, ν) a probability space, and πi : Xi → Y
an inverse-measure-preserving function for each i ∈ I. For i ∈ I and E ∈ Σi let giE be a Radon-Nikodým
derivative of the functional F 7→ µi(E∩π−1

i [F ]). Let C be the family of measurable cylinders in X =
∏
i∈I Xi.

If C = {x : x ∈ X, x(i) ∈ Ei for every i ∈ J} where J ⊆ I is finite and not empty and Ei ∈ Σi for i ∈ J ,
set λ0C =

∫ ∏
i∈J gi,Ei

dν. Let ∆ ⊆ X be the fiber product of 〈(Xi, πi)〉i∈I . Show that the following are
equiveridical: (i) 〈(µi, πi)〉i∈I has a relative product measure over ν (ii) whenever 〈Cn〉n∈N is a sequence in
C covering ∆,

∑∞
n=0 λ0Cn ≥ 1.

(g) Let 〈(Xi,Σi, µi)〉i∈I be a family of probability spaces, (Y,T, ν) a probability space, and πi : Xi → Y
a surjective inverse-measure-preserving function for each i ∈ I. Suppose that 〈(µi, πi)〉i∈J has a relative
product measure over ν for every countable J ⊆ I. Show that 〈(µi, πi)〉i∈I has a relative product measure
over ν.

(h) Let 〈(Xi,Σi, µi)〉i∈I be a countable family of perfect probability spaces, (Y,T, ν) a countably separated
probability space, and πi : Xi → Y an inverse-measure-preserving function for each i ∈ I. Show that
〈(µi, πi)〉i∈I has a relative product measure over ν.

D.H.Fremlin



160 Perfect measures, disintegrations and processes 458Yi

(i) Let (A, µ̄) be a probability algebra and C a closed subalgebra of A. Let C0 ⊆ C be the core subalgebra
of countable Maharam type described in the canonical form of such structures given in 333N. Show that
there is a closed subalgebra B of A, including C0, such that B and C are relatively independent over C0,
and A is the closed subalgebra of itself generated by B ∪ C.

458 Notes and comments The elementary theory of relative independence has two aspects. First, there
is the matter of systematically formulating and verifying appropriate variations on standard results on
stochastic independence; 458F, 458H, 458J, 458K, 458Xd, 458Yc-458Ye come under this heading. More
interestingly, we study the new phenomena associated with changes in the core σ-algebras, as in 458C, 458D
and 458Xa.

At a couple of points in Volume 3 (Dye’s theorem, in §388, and Kawada’s theorem, in §395) I took the
trouble to generalize standard theorems to ‘non-ergodic’ forms. In both 388L and 395P the results are com-
plicated by potentially non-trivial closed subalgebras of the probability algebra we are studying. I remarked
on both occasions that the generalization is only a matter of technique, but I do not suppose that it was
obvious just why this must be so. It is however a fundamental theorem of the topic of ‘random reals’ in
the theory of forcing that any theorem about probability algebras must have a relativized form as a theo-
rem about probability algebras with arbitrary closed subalgebras. The concept of ‘relative Maharam type’
from §333, for instance, is what matches ‘Maharam type’ for simple algebras; the concept of ‘exchangeable’
sequence (definition: 459C) is what matches ‘independent identically distributed’ sequence. (In probability
theory, the keyword is ‘mixture’.) In this section I present another example in the idea of ‘relatively inde-
pendent’ closed subalgebras (458L-458M). I should emphasize that the forcing method, when we eventually
come to it in §556 in Volume 5, will not as a rule apply directly to measure spaces; it deals with measure
algebras. But of course the ideas generated by this theory can often be profitably applied to constructions
in measure spaces, and this is what I am seeking to do with relatively independent σ-algebras and relative
product measures.

Just as independent σ-algebras are associated with product spaces (272J), relatively independent algebras
are associated with relative products (458Xn). The archetype of a relative product measure is 458S; it is a
kind of disintegrated product. It is frequently profitable to express the ‘relative’ concepts of measure theory
in terms of disintegrations.

I introduce ‘relative free products’ of probability algebras before proceeding to measure spaces because
the uniqueness property proved in 458O shows that we have an unambiguous definition. For measure spaces
it seems for the moment better to leave ourselves a bit of freedom, not (for instance) favouring one product
construction over another (458Xo). The requirement that a relative product measure be carried by the fiber
product is seriously limiting (458Xj-458Xl, 458Yf), and forces us to seek strongly consistent disintegrations
(458S), at least for uncountable products (see 458Xt). However, as we might hope, the special case of
compact spaces with Radon measures and continuous functions is amenable to a different approach (458T);
and we have a one-sided method for the product of two spaces (458Xu) which is reminiscent of 454C and
457F.

There are corresponding complications when we come to look at maps between different relative products.
For measure algebras, we have a natural theorem (458P), based on the same algebraic considerations as the
corresponding theorems in §§315 and 325; the only possibly surprising feature is the need to assume that
ψ : C → C′ is actually an isomorphism. For measure spaces there is a similar result (458Xs).

Version of 7.12.10

459 Symmetric measures and exchangeable random variables

Among the relatively independent families of random variables discussed in 458K, it is natural to give extra
attention to those which are ‘relatively identically distributed’. It turns out that these have a particularly
appealing characterization as the ‘exchangeable’ families (459C). In the same way, among the measures on
a product space XI there is a special place for those which are invariant under permutations of coordinates
(459E, 459H). A more abstract kind of permutation-invariance is examined in 495L-495M.

c© 2003 D. H. Fremlin
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459A The following elementary fact seems to have gone unmentioned so far.

Lemma Let (X,Σ, µ) and (Y,T, ν) be probability spaces and φ : X → Y an inverse-measure-preserving
function; set Σ0 = {φ−1[F ] : F ∈ T}. Let T1 be a σ-subalgebra of T and Σ1 = {f−1[F ] : F ∈ T1}. If
g ∈ L

1(ν) and h is a conditional expectation of g on T1, then hφ is a conditional expectation of gφ on Σ1.

proof h is ν↾T1-integrable and φ is inverse-measure-preserving for µ↾Σ1 and ν↾T1, so hφ is µ↾Σ1-integrable
(235G). If E ∈ Σ1 then there is an F ∈ T1 such that E = φ−1[F ], and now∫

E
gφ dµ =

∫
f−1[F ]

gφ dµ =
∫
F
g dν =

∫
F
h dν =

∫
E
hφ dµ.

As E is arbitrary, hφ is a conditional expectation of gφ on Σ1.

459B Theorem Let (X,Σ, µ) be a probability space, Z a set, Υ a σ-algebra of subsets of Z and 〈fi〉i∈I
an infinite family of (Σ,Υ)-measurable functions from X to Z. For each i ∈ I, set Σi = {f−1

i [H] : H ∈ Υ}.
Then the following are equiveridical:

(i) whenever i0, . . . , ir ∈ I are distinct, j0, . . . , jr ∈ I are distinct, and Hk ∈ Υ for each k ≤ r,
then µ(

⋂
k≤r f

−1
ik

[Hk]) = µ(
⋂
k≤r f

−1
jk

[Hk]);

(ii) there is a σ-subalgebra T of Σ such that
(α) 〈Σi〉i∈I is relatively independent over T,

(β) whenever i, j ∈ I, H ∈ Υ and F ∈ T, then µ(F ∩ f−1
i [H]) = µ(F ∩ f−1

j [H]).

Moreover, if I is totally ordered by ≤, we can add

(iii) whenever i0 < . . . < ir ∈ I, j0 < . . . < jr ∈ I and Hk ∈ Υ for each k ≤ r, then
µ(
⋂
k≤r f

−1
ik

[Hk]) = µ(
⋂
k≤r f

−1
jk

[Hk]).

proof (a) Since there is always some total order on I, we may assume that we have one from the start. Of
course (i)⇒(iii). Also (ii)⇒(i). PPP Suppose that (ii) is true. Then (ii-β) tells us that for each H ∈ Υ there
is a T-measurable function gH : X → [0, 1] which is a conditional expectation of χ(f−1

i [H]) on T for every
i ∈ I. Now suppose that i0, . . . , ir ∈ I are distinct, j0, . . . , jr ∈ I are distinct, and Hk ∈ Υ for each k ≤ r.
Then

µ(
⋂
k≤r f

−1
ik

[Hk]) =
∫

(
∏r
k=0 gHk

)dµ = µ(
⋂
k≤r f

−1
jk

[Hk])

because 〈Σi〉i∈I is relatively independent over T. So (i) is true. QQQ
So henceforth I will suppose that (iii) is true and seek to prove (ii).

(b) Suppose first that I = N with its usual ordering.

(ααα) For each n, r ∈ N, let Σnr be the σ-subalgebra of Σ generated by
⋃
n≤i≤n+r Σi; let Tn be the

σ-algebra generated by
⋃
r∈N Σnr, and T =

⋂
n∈N Tn. For n ∈ N and H ∈ Υ, let gnH : X → R be a

T-measurable function which is a conditional expectation of χf−1
n [H] on T.

(βββ) (The key.) For any n ∈ N and Borel set H ⊆ R, gnH is a conditional expectation of χf−1
n [H] on

Tn+1. PPP For m, r ∈ N, let hmr : X → [0, 1] be a Σmr-measurable function which is a conditional expectation
of χf−1

n [H] on Σmr; for m ∈ N, set hm = limr→∞ hmr where this is defined. By Lévy’s martingale theorem
(275I) hm is defined almost everywhere and is a conditional expectation of χf−1

n [H] on Tm.
For m, r ∈ N, define Fmr : X → Zr+2 by setting Fmr(x) = (fn(x), fm(x), fm+1(x), . . . , fm+r(x)) for

x ∈ X. At this point, examine the hypothesis (iii). This implies that if m > n and r ∈ N then

µ(F−1
mr [H ′ ×H0 × . . .×Hr]) = µ(f−1

n [H ′] ∩
⋂

k≤r
f−1
m+k[Hk])

= µ(f−1
n [H ′] ∩

⋂

k≤r
f−1
m+1+k[Hk])

= µ(F−1
m+1,r[H

′ ×H0 × . . .×Hr])

for all H ′, H0, . . . , Hr ∈ Υ. By the Monotone Class Theorem (136C), the image measures µF−1
mr and

µF−1
m+1,r agree on the σ-algebra

⊗̂
r+2Υ of subsets of Zr+2 generated by measurable cylinders; set
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λ = µF−1
mr ↾

⊗̂
r+2Υ = µF−1

m+1,r↾
⊗̂

r+2Υ.

Let Λ be the σ-subalgebra of
⊗̂

r+2Υ generated by sets of the form Z×H0× . . .×Hr where H0, . . . , Hr ∈ Υ,

and let h be a conditional expectation of χ(H × Zr+1) on Λ with respect to λ. Then 459A tells us that
hFmr is a conditional expectation of χ(f−1

n [H]) on Σmr, and is therefore equal almost everywhere to hmr.
Similarly, hFm+1,r =a.e. hm+1,r, and this is true for every r ∈ N. But as Fmr and Fm+1,r are both inverse-
measure-preserving for µ and λ, this means that hmr, h and hm+1,r all have the same distribution. In
particular,

∫
h2mrdµ =

∫
h2m+1,rdµ. Now 〈hmr〉r∈N and 〈hm+1,r〉r∈N converge almost everywhere to hm and

hm+1 respectively, so∫
h2mdµ = limr→∞

∫
h2mrdµ = limr→∞

∫
h2m+1,rdµ =

∫
h2m+1dµ.

On the other hand, Tm+1 ⊆ Tm, so hm+1 is a conditional expectation of hm on Tm+1 (233Eh). This means
that ∫

hm × hm+1dµ =
∫
hm+1 × hm+1dµ

(233Eg). A direct calculation tells us that
∫

(hm−hm+1)2dµ = 0, so that hm =a.e. hm+1. Inducing on r, we
see that hm =a.e. hr whenever n < m ≤ r.

Now the reverse martingale theorem (275K) tells us that limm→∞ hm is defined almost everywhere and
is a conditional expectation of χf−1

n [H] on T, that is, is equal almost everywhere to gnH . Since the hm, for
m > n, are equal almost everywhere, they are all equal to gnH a.e. In particular, gnH is equal a.e. to hn+1,
and is a conditional expectation of χf−1

n [H] on Tn+1. QQQ

(γγγ) If n ∈ N and H0, . . . , Hr ∈ Υ, then
∏r
i=0 gn+i,Hi

is a conditional expectation of χ(
⋂
i≤r f

−1
n+i[Hi])

on T. PPP Induce on r. For r = 0 this is just the definition of gnH0
. For the inductive step to r ≥ 1, observe

that gnH0
× ∏r

i=1 χf
−1
n+i[Hi] is a conditional expectation of

∏r
i=0 χf

−1
n+i[Hi] on Tn+1, by 233Eg or 233K,

because gnH0
is a conditional expectation of χf−1

n [H0] on Tn+1 and
∏r
i=1 χf

−1
n+i[Hi] is Tn+1-measurable.

But as (by the inductive hypothesis)
∏r
i=1 gn+i,Hi

is a conditional expectation of
∏r
i=1 χf

−1
n+i[Hi] on T, while

gnH0
is T-measurable,

∏r
i=0 gn+i,Hi

is a conditional expectation of
∏r
i=0 χf

−1
n+i[Hi] on T, by 233Eg/233K

again. QQQ

(δδδ) In particular,
∏r
i=0 giHi

is a conditional expectation of χ(
⋂
i≤r f

−1
i [Hi]) on T for every r ∈ N and

H0, . . . , Hr ∈ Υ. This shows that 〈Σn〉n∈N is relatively independent over T.

(ǫǫǫ) Now consider part (β) of the condition (ii). For this, observe that if m > 0, H ∈ Υ and Hi ∈ Υ for
i ≤ r, then

µ(f−1
0 [H] ∩⋂

i≤r f
−1
m+i+1[Hi]) = µ(f−1

m [H] ∩⋂
i≤r f

−1
m+i+1[Hi]).

By the Monotone Class Theorem,

µ(F ∩ f−1
0 [H]) = µ(F ∩ f−1

m [H])

for any F ∈ Tm+1 and in particular for any F ∈ T. Thus (ii) is true.

(c) Now suppose that there is a strictly increasing sequence 〈jk〉k∈N in I. For each n, let Tn be the σ-
algebra generated by

⋃
k≥n Σjk , and set T =

⋂
n∈N Tn. Then (b), applied to 〈fjk〉k∈N, tells us that 〈Σjk〉k∈N

is relatively independent over T and that for each H ∈ Υ there is a function gH which is a conditional
expectation of χ(f−1

jk
[H]) on T for every k ∈ N.

(ααα) If i0, . . . , ir ∈ I are distinct and H0, . . . , Hr ∈ Υ, then µ(
⋂
k≤r f

−1
ik

[Hk]) = µ(
⋂
k≤r f

−1
jk

[Hk]). PPP

Let ρ be the permutation of {0, . . . , r} such that iρ(0) < iρ(1) < . . . < iρ(r). Then

µ(
⋂

k≤r
f−1
ik

[Hk]) = µ(
⋂

k≤r
f−1
iρ(k)

[Hρ(k)]) = µ(
⋂

k≤r
f−1
jk

[Hρ(k)])

=

∫
(

r∏

k=0

gHρ(k)
)dµ =

∫
(

r∏

k=0

gHk
)dµ = µ(

⋂

k≤r
f−1
jk

[Hk]). QQQ

(βββ) Now suppose that i0, . . . , ir ∈ I are distinct. Then there is some m ∈ N such that jk 6= il for
any l ≤ r and k ≥ m. In this case, consider the sequence fi0 , . . . , fir , fjm , fjm+1

, . . . . By (α) here, this
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sequence satisfies the condition (iii). We can therefore apply the construction of (b). But observe that the
tail σ-algebra obtained from fi0 , . . . , fir , fjm , . . . is precisely T, as defined from 〈fjk〉k∈N just above. So
〈Σik〉k≤r is relatively independent over T. As i0, . . . , ir are arbitrary, 〈Σi〉i∈I is relatively independent over

T. At the same time we see that if H ∈ Υ then all the χ(f−1
ik

[H]) have the same conditional expectations

over T as χ(f−1
jm

[H]). So (ii-β) is satisfied.

(d) Finally, if there is no strictly increasing sequence in I, then (I,≥) is well-ordered; since I is infinite,
the well-ordering starts with an initial segment of order type ω, that is, a sequence 〈jk〉k∈N such that j0 >
j1 > . . . . But note now that (iii) tells us that µ(

⋂
k≤r f

−1
ik

[Hk]) = µ(
⋂
k≤r f

−1
jk

[Hk]) whenever i0 > . . . > ir
and j0 > . . . > jr and Hk ∈ Υ for every k. So we can apply (c) to (I,≥) to get the result in this case also.

459C Exchangeable random variables I spell out the leading special case of this theorem.

De Finetti’s theorem Let (X,Σ, µ) be a probability space, and 〈fi〉i∈I an infinite family in L
0(µ). Then

the following are equiveridical:

(i) the joint distribution of (fi0 , fi1 , . . . , fir ) is the same as the joint distribution of (fj0 , fj1 , . . . , fjr )
whenever i0, . . . , ir ∈ I are distinct and j0, . . . , jr ∈ I are distinct;

(ii) there is a σ-subalgebra T of Σ such that 〈fi〉i∈I is relatively independent over T and all
the fi have the same relative distribution over T.

Moreover, if I is totally ordered by ≤, we can add

(iii) the joint distribution of (fi0 , fi1 , . . . , fir ) is the same as the joint distribution of (fj0 , fj1 , . . . , fjr )
whenever i0 < . . . < ir and j0 < . . . < jr in I.

Remark Families of random variables satisfying the condition in (i) are called exchangeable. The equiva-
lence of (i) and (ii) can be expressed by saying that ‘an exchangeable family of random variables is a mixture
of independent identically distributed families’.

proof Changing each fi on a negligible set will not change either their joint distributions (271De) or
their relative distributions over T or their relative independence; so we may suppose that every fi is a
Σ-measurable function from X to R. Now look at 459B, taking (Z,Υ) to be R with its Borel σ-algebra. The
condition 459B(i) reads

whenever i0, . . . , ir ∈ I are distinct, j0, . . . , jr ∈ I are distinct, and Hk ∈ Υ for each k ≤ r, then
µ(
⋂
k≤r f

−1
ik

[Hk]) = µ(
⋂
k≤r f

−1
jk

[Hk]),

matching (i) here, by 271B; similarly, (iii) of 459B matches (iii) here. Equally, condition (ii) here is just a
re-phrasing of 459B(ii) in the language of 458A and 458I-458J. So 459B gives the result.

459D Specializing 459B in another direction, we have the case in which X is actually the product ZI . In
this case, the condition 459B(i) corresponds to a strong kind of symmetry in the measure µ. It now makes
sense to look for subsets of X = ZI which are essentially invariant under permutations, and we have the
following result.

Proposition Let Z be a set, Υ a σ-algebra of subsets of Z, I an infinite set and µ a measure on ZI with

domain the σ-algebra
⊗̂

IΥ generated by {π−1
i [H] : i ∈ I, H ∈ Υ}, taking πi(x) = x(i) for x ∈ ZI and

i ∈ I. For each permutation ρ of I, define ρ̂ : ZI → ZI by setting ρ̂(x) = xρ for x ∈ ZI . Suppose that

µ = µρ̂−1 for every ρ. Let E be the family of those sets E ∈ ⊗̂
IΥ such that µ(E△ρ̂−1[E]) = 0 for every

permutation ρ of I, and V the family of those sets V ∈ ⊗̂
IΥ such that V is determined by coordinates in

I \ {i} for every i ∈ I.

(a) E is a σ-subalgebra of
⊗̂

IΥ.
(b) V is a σ-subalgebra of E .
(c) If E ∈ E and J ⊆ I is infinite, then there is a V ∈ V, determined by coordinates in J , such that

µ(E△V ) = 0.
(d) Setting Σi = {π−1

i [H] : H ∈ Υ} for each i ∈ I,

(α) 〈Σi〉i∈I is relatively independent over E ,
(β) for every H ∈ Υ there is an E-measurable function gH : ZI → [0, 1] which is a conditional

expectation of χ(π−1
i [H]) on E for every i ∈ I.

D.H.Fremlin



164 Perfect measures, disintegrations and processes 459D

proof (a) is elementary.

(b) Let V ∈ V. Suppose that ρ : I → I is a permutation, J ⊆ I is finite and Hj ∈ Υ for every j ∈ J .
Then there is a permutation σ : I → I such that σ(j) = ρ(j) for every j ∈ J and J ′ = {i : σ(i) 6= i} is finite.
By 254Ta, V is determined by coordinates in I \ J ′, so σ̂−1[V ] = V . Now

µ(ρ̂−1[V ] ∩
⋂

j∈J
π−1
j [Hj ]) = µ(V ∩

⋂

j∈J
π−1
ρ(j)[Hj ]) = µ(V ∩

⋂

j∈J
π−1
σ(j)[Hj ])

= µ(σ̂−1[V ] ∩
⋂

j∈J
π−1
j [Hj ]) = µ(V ∩

⋂

j∈J
π−1
j [Hj ]).

By the Monotone Class Theorem, as usual, µ(E ∩ ρ̂−1[V ]) = µ(E ∩ V ) for every E ∈ ⊗̂
IΥ. In particular,

taking E = V and E = ZI \ V , we see that V△ρ̂−1[V ] is negligible. As ρ is arbitrary, V ∈ E .
This shows that V ⊆ E . Of course V is a σ-algebra, since it is just the intersection of the σ-algebras

{V : V ∈ ⊗̂
IΣ, V is determined by coordinates in I \ {i}}.

(c) For each n ∈ N, there is a set En ∈ ⊗̂
IΣ, determined by a finite set Jn of coordinates, such that

µ(E△En) ≤ 2−n. Choose permutations ρn of I such that 〈ρn[Jn]〉n∈N is a disjoint sequence of subsets of J .
Set Fn = ρ̂−1

n [En]; then Fn is determined by coordinates in ρn[Jn] for each n ∈ N, so V =
⋂
n∈N

⋃
m≥n Fm

belongs to V and is determined by coordinates in J . Also

µ(E△Fn) = µ(ρ̂[E]△En) = µ(E△En) ≤ 2−n

for each n, so µ(E△V ) = 0, as required.

(d) Let 〈jn〉n∈N be any sequence of distinct points of I. Set J = {jn : n ∈ N}. For n ∈ N let Tn be
the σ-algebra generated by

⋃
k≥n Σjk , and set T =

⋂
n∈N Tn, so that T = {V : V ∈ V, V is determined by

coordinates in J}. PPP Of course T ⊆ V and every member of T is determined by coordinates in J , because
every member of T0 is. On the other hand, if V ∈ V is determined by coordinates in J , then fix some
w ∈ ZI\J . In this case, identifying ZI with ZJ × ZI\J , the set V1 = {z : z ∈ ZJ , (z, w) ∈ V } must belong

to
⊗̂

JΥ, so V = V1 × ZI\J belongs to T0. Applying the same idea to J \ {jk : k < n}, we see that V ∈ Tn
for every n, so that V ∈ T. QQQ

Part (c) of the proof of 459B tells us that 〈Σi〉i∈I is relatively independent over T and that for every
H ∈ Υ there is a T-measurable gH which is a conditional expectation of χ(π−1

i [H]) on T for every i ∈ I.

Now (c) here tells us that gH is a conditional expectation of χ(π−1
i [H]) on E ; and examining the definition

in 458Aa, we see that 〈Σi〉i∈I is relatively independent over E , as claimed.

459E If µ is countably compact, we have a strong disintegration theorem, as follows.

Theorem Let Z be a set, Υ a σ-algebra of subsets of Z, I an infinite set, and µ a countably compact

probability measure on ZI with domain the σ-algebra
⊗̂

IΥ generated by {π−1
i [H] : i ∈ I, H ∈ Υ}, taking

πi(x) = x(i) for x ∈ ZI and i ∈ I. Then the following are equiveridical:

(i) for every permutation ρ of I, x 7→ xρ : ZI → ZI is inverse-measure-preserving for µ;
(ii) for every transposition ρ of two elements of I, x 7→ xρ : ZI → ZI is inverse-measure-

preserving for µ;
(iii) for each n ∈ N and any two injective functions p, q : n→ I the maps x 7→ xp : ZI → Zn,

x 7→ xq : ZI → Zn induce the same measure on Zn;
(iv) there are a probability space (Y,T, ν) and a family 〈λy〉y∈Y of probability measures on Z

such that 〈λIy〉y∈Y is a disintegration of µ over ν, writing λIy for the product of copies of λy.

Moreover, if I is totally ordered, we can add

(v) for each n ∈ N and any two strictly increasing functions p, q : n → I the maps x 7→ xp :
ZI → Zn, x 7→ xq : ZI → Zn induce the same measure on Zn.

If the conditions (i)-(v) are satisfied, then there is a countably compact measure λ, with domain Υ, which
is the common marginal measure of µ on every coordinate; and if K is a countably compact class of subsets
of Z, closed under finite unions and countable intersections, such that λ is inner regular with respect to K,
then
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(iv)′ there are a probability space (Y,T, ν) and a family 〈λy〉y∈Y of complete probability
measures on Z, all with domains including K and inner regular with respect to K, such that
〈λIy〉y∈Y is a disintegration of µ over ν.

proof (a) Since any set I can be totally ordered, we may suppose from the outset that we have been given
a total ordering ≤ of I. I start with the easy bits.

(iv)′⇒(iv) is trivial, at least if there is a common countably compact marginal measure on Z.

(iv)⇒(i) If (iv) is true and ρ : I → I is a permutation, take any E ∈ ⊗̂
IΣ and set E′ = {x : x ∈ ZI ,

xρ ∈ E}. For any y ∈ Y , x 7→ xρ is an isomorphism of the measure space (ZI , λIy), so

µE′ =
∫
λIyE

′ ν(dy) =
∫
λIyE ν(dy) = µE.

As E is arbitrary, (i) is true.

(i)⇒(ii) is trivial.

(ii)⇒(iii) There is a permutation ρ of I such that q = ρp and ρ moves only finitely many points of I,
that is, ρ is a product of transpositions. By (ii), x 7→ xρ and x 7→ xρ−1 are inverse-measure-preserving for
µ, that is, are isomorphisms of (ZI , µ). But this means that x 7→ xp and x 7→ xρp = xq must induce the
same measure on Zn.

(iii)⇒(v) is trivial.

(b) So for the rest of the proof I assume that (v) is true. Taking n = 1 in the statement of (v), we see
that there is a common image measure λ = µπ−1

i for every i ∈ I. By 452R, λ is countably compact. Let
K ⊆ PZ be a countably compact class, closed under finite unions and countable intersections, such that λ
is inner regular with respect to K.

In 459B, set X = ZI and Σ =
⊗̂

IΥ and fi = πi : X → Z for i ∈ I. Then (v) here corresponds to (iii) of

459B, so (translating (ii) of 459B) we have a σ-subalgebra T of
⊗̂

IΥ and a family 〈gH〉H∈Υ of T-measurable
functions from ZI to [0, 1] such that

µ(
⋂
i∈J π

−1
i [Hi]) =

∫
(
∏
i∈J gHi

)dµ

whenever J ⊆ I is finite and not empty and Hi ∈ Υ for i ∈ J . In particular, gH is a conditional expectation
of χ(π−1

i [H]) on T whenever H ∈ Υ and i ∈ I.
Fix i∗ ∈ I for the moment. Set ν = µ↾T. The inverse-measure-preserving function πi∗ from (X,µ)

to (Z, λ) gives us an integral-preserving Riesz homomorphism T0 : L∞(λ) → L∞(µ) defined by setting
T0h

• = (hπi∗)• for every h ∈ L
∞(λ). Let P : L1(µ) → L1(ν) be the conditional expectation operator; then

T = PT0 : L∞(λ) → L∞(ν) is an integral-preserving positive linear operator, and T (χZ•) = χX•.
By 452H, we have a family 〈λx〉x∈X of complete probability measures on Z, all with domains including

K and inner regular with respect to K, such that
∫
F
hπi∗dµ =

∫
F

∫
Z
h dλxν(dx) for every h ∈ L

∞(λ) and
F ∈ T. In particular, setting g′H(x) = λxH whenever H ∈ Υ and x ∈ X are such that H ∈ domλx, then

g′H will be a conditional expectation of χπ−1
i∗ [H] on T, and will be equal ν-almost everywhere to gH .

This means that if J ⊆ I is finite and not empty and Hi ∈ Υ for i ∈ J ,

∫

X

λIx(
⋂

i∈J
π−1
i [Hi])ν(dx) =

∫

X

∏

i∈J
λxHi ν(dx) =

∫

X

∏

i∈J
g′Hi

dν

=

∫

X

∏

i∈J
gHi

dν =

∫

X

∏

i∈J
gHi

dµ = µ(
⋂

i∈J
π−1
i [Hi]).

Thus the family W of sets E ⊆ X such that
∫
λIxE ν(dx) and µE are defined and equal contains all

measurable cylinders. As W is a Dynkin class it includes
⊗̂

IΥ. But this says exactly that 〈λIx〉x∈X is a
disintegration of µ over ν, as required by (iv)′.

Thus (v)⇒(iv)′ and the proof is complete.

459F Lemma Let X be a Hausdorff space and PR(X) the space of Radon probability measures on X
with its narrow topology (definition: 437Jd). If 〈Kn〉n∈N is a disjoint sequence of compact subsets of X,
then A = {µ : µ ∈ PR(X), µ(

⋃
n∈NKn) = 1} is a K-analytic subset of PR(X).
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proof (Recall that PR(X) is Hausdorff, by 437R(a-ii).) For each n ∈ N, let Cn be the set of Radon measures
on Kn with magnitude at most 1; by 437R(f-ii), Cn is compact in its narrow topology. Let C be the compact
space

∏
n∈N Cn; for the rest of this proof, I will use the formula µµµ = 〈µn〉n∈N to describe the coordinates

of members of C. Define ψ : C → [0, 1]N by setting ψ(µµµ)(n) = µnKn for n ∈ N and µµµ ∈ C. Then ψ is
continuous. Since B = {〈αn〉n∈N :

∑∞
n=0 αn = 1} is a Borel subset of [0, 1]N, therefore a Baire set (4A3Kb),

D = ψ−1[B] is a Baire subset of C (4A3Kc), therefore Souslin-F (421L) and K-analytic (422Hb).
For µµµ ∈ D, define a function φ(µµµ) by saying that

φ(µµµ)(E) =
∑∞
n=0 µn(E ∩Kn) if E ⊆ X and µn measures E ∩Kn for every n

and is undefined otherwise. It is easy to check that φ(µµµ) ∈ PR(X). Also φ : D → PR(X) is continuous. PPP
If G ⊆ X is open, then ν 7→ ν(G ∩Kn) : Cn → [0, 1] and therefore µµµ 7→ µn(G ∩Kn) : D → [0, 1] are lower
semi-continuous for each n (4A2B(d-ii)), so µµµ 7→ φ(µµµ)(G) is lower semi-continuous (4A2B(d-iii), 4A2B(d-v)),
and {µµµ : φ(µµµ)(G) > α} is open for every α; by 4A2B(a-iii), φ is continuous. QQQ

Consequently A = φ[D] is K-analytic (422Gd).

459G Lemma Let X be a topological space, (Y,S,T, ν) a totally finite quasi-Radon measure space,
y 7→ µy a continuous function from Y to the space M+

qR(X) of totally finite quasi-Radon measures on X with
its narrow topology, and U a base for the topology of X, containing X and closed under finite intersections.
If µ ∈ M+

qR(X) is such that µU =
∫
µyU ν(dy) for every U ∈ U , then 〈µy〉y∈Y is a disintegration of µ over

ν.

proof (a) Let E be the family of subsets E of X such that µE and
∫
µyE ν(dy) are defined and equal.

Because X ∈ E , E is a Dynkin class; as U is included in E and is closed under finite intersections, the
σ-algebra of sets generated by U is included in E , and in particular any finite union of members of U belongs
to E .

(b) In fact every open subset of X belongs to E . PPP If G ⊆ X is open, set H = {H : H ⊆ G is a
finite union of members of U}. Then H is upwards-directed and has union G. Set fH(y) = µyH for y ∈ Y
and H ∈ H. Since λ 7→ λH : M+

qR(X) → R is lower semi-continuous (by the definition of the narrow

topology) and y 7→ µy is continuous, fH : Y → R is lower semi-continuous (4A2B(d-ii) again). Moreover,
{fH : H ∈ H} is an upwards-directed family of functions with supremum fG, where fG(y) = µyG for each
y, because every µy is τ -additive. Now

µG = sup
H∈H

µH = sup
H∈H

∫
fHdν =

∫
fGdν

(414Ba)

=

∫
µyGν(dy)

and G ∈ E . QQQ

(c) It follows that every Borel subset of X belongs to E , that is, that 〈µy〉y∈Y is a disintegration of the
restriction µB to the Borel σ-algebra of X. Since every µy is complete, 〈µy〉y∈Y is also a disintegration over
ν of the completion of µB (452B(a-ii)), which is µ.

459H Theorem Let Z be a Hausdorff space, I an infinite set, and µ̃ a quasi-Radon probability measure
on ZI such that the marginal measures on each copy of Z are Radon measures. Write PR(Z) for the set of
Radon probability measures on Z with its narrow topology. Then the following are equiveridical:

(i) for every permutation ρ of I, w 7→ wρ : ZI → ZI is inverse-measure-preserving for µ̃;
(ii) for every transposition ρ of two elements of I, w 7→ wρ : ZI → ZI is inverse-measure-

preserving for µ̃;
(iii) for each n ∈ N and any two injective functions p, q : n→ I the maps w 7→ wp : ZI → Zn

and w 7→ wq : ZI → Zn induce the same measure on Zn;
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(iv) there are a probability space (Y,T, ν) and a family 〈µy〉y∈Y of τ -additive Borel probability
measures on Z such that 〈µ̃Iy〉y∈Y is a disintegration of µ̃ over ν, writing µ̃Iy for the τ -additive
product of copies of µy;

(v) there is a Radon probability measure ν̃ on PR(Z) such that 〈θ̃I〉θ∈PR(Z) is disintegration

of µ̃ over ν̃, writing θ̃I for the quasi-Radon product of copies of θ.

Moreover, if I is totally ordered, we can add

(vi) for each n ∈ N and any two strictly increasing functions p, q : n → I the maps w 7→ wp :
ZI → Zn and w 7→ wq : ZI → Zn induce the same measure on Zn.

proof (a) As in 459E, we need consider only the case in which I is totally ordered, and the implications

(v)⇒(iv)⇒(i)⇒(ii)⇒(iii)⇒(vi)

are elementary. So henceforth I will suppose that (vi) is true and seek to prove (v).

(b) We are going to need a second topology on the set Z, so I will call the original topology T, and for
the rest of this proof I will declare the topology on which each topological concept or construction is based.

Write µ for µ̃↾
⊗̂

IB(Z,T), where B(Z,T) is the Borel σ-algebra of Z for the topology T. Then (vi) is also
true of µ. (Strictly speaking, we ought to check that the different images of µ all have the same domain.
But this is true, because the image of µ corresponding to a strictly increasing function p : r → I has domain⊗̂

rB(Z,T).) The (unique) marginal measure λ of µ is the restriction to B(Z,T) of the T-Radon measure λ̃
which is the marginal of µ̃, so is a T-tight T-Borel measure, therefore countably compact. By 454A(b-ii),
µ is countably compact. So 459E, with K the family of T-compact subsets of Z, tells us that there are a
probability space (Y0,T0, ν0) and a family 〈µy〉y∈Y0

in PR(Z,T) such that 〈µIy〉y∈Y0
is a disintegration of µ

over ν0, writing µIy for the ordinary product of copies of µy. We can of course suppose that ν0 is complete.
Note also that 〈µy〉y∈Y0

is a disintegration of λ; this is clearly achieved by the proof of 459E, and it is
necessarily true if 〈µIy〉y∈Y0

is to be a disintegration of µ. Because every µy is complete, 〈µy〉y∈Y0
is also a

disintegration of the completion λ̃ of λ.

(c) Let 〈Kn〉n∈N be a disjoint sequence of T-compact subsets of Z such that
∑∞
n=0 λ̃Kn = 1 (412Aa).

Let S be

{H : H ⊆ Z, Z \ (H ∩Kn) ∈ T for every n ∈ N}.

Then S is a locally compact topology on Z finer than T. (If you like, S is the disjoint union topology
corresponding to the partition {Kn : n ∈ N} ∪ {{z} : z ∈ Z \⋃n∈NKn}.) Note that the subspace topologies
on any Kn induced by S and T are the same, so that a T-compact subset of Kn is S-compact. Because
S is finer than T, PR(Z,S) ⊆ PR(Z,T) (use 418I). If θ ∈ PR(Z,T) and θ(

⋃
n∈NKn) = 1, then, from the

standpoint of the topology S, θ is a complete topological probability measure inner regular with respect to
the compact sets, so belongs to PR(Z,S). In particular, λ̃ ∈ PR(Z,S).

We shall need to know that the family V of T-Borel S-cozero subsets of Z is a base for S. PPP If z ∈ H ∈ S,
then if z /∈ ⋃

n∈NKn the singleton {z} belongs to V. If n ∈ N and z ∈ Kn, then H ∩ Kn ∈ S; as S is
locally compact, there is an S-cozero set G such that z ∈ G ⊆ H ∩Kn, and now G is T-relatively open in
the T-compact set Kn, so G is T-Borel. QQQ

(d) We know that ∫
µy(

⋃
n∈NKn)ν0(dy) = λ̃(

⋃
n∈NKn) = 1;

since µyZ = 1 for every y, the set Y = {y : y ∈ Y0, µy(
⋃
n∈NKn) = 1} must be ν0-conegligible. Let ν be

the subspace measure induced by ν0 on Y . Then 〈µy〉y∈Y is a disintegration of λ̃ over ν, and µy ∈ PR(Z,S)
for every y ∈ Y , by (c).

(e) By 459F, the set

A = {θ : θ ∈ PR(Z,S), θ(
⋃
n∈NKn = 1}

is K-analytic in its narrow topology, while µy ∈ A for every y ∈ Y . If G ∈ V and α > 0, {y : y ∈ Y0,
µyG > α} ∈ T0, so {y : y ∈ Y , µyG > α} is measured by ν. By 432I, applied to the map y 7→ µy : Y → A,
there is a Radon probability measure ν̃A on A such that
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∫
h dν̃A =

∫
h(µy)ν(dy)

for every bounded continuous h : A→ R.

(f) Now suppose that f : Z → R is bounded and S-continuous. Then θ 7→
∫
fdθ : PR(Z,S) → R is

continuous (437K), so that ∫∫
fdθ ν̃A(dθ) =

∫∫
fdµyν(dy).

If G ∈ V, there is a non-decreasing sequence 〈fn〉n∈N of non-negative S-continuous functions with supremum
χG, so

∫
θG ν̃A(dθ) = sup

n∈N

∫∫
fndθ ν̃A(dθ) = sup

n∈N

∫∫
fndµyν(dy)

=

∫
µyGν(dy) = λG = λ̃G.

So we can apply 459G to the identity map from A to itself and the family 〈θ〉θ∈A to see that 〈θ〉θ∈A is a

disintegration of λ̃ over ν̃A.
It follows that if E ⊆ Z is λ̃-negligible, then θE = 0 for ν̃A-almost every θ. Moreover, since 〈µy〉y∈Y is a

disintegration of λ̃ over ν, µyE = 0 for ν-almost every y.

(g) If J ⊆ I is finite, Gj ∈ T for j ∈ J , and W = {w : w ∈ ZI , w(j) ∈ Gj for j ∈ J}, then

µ̃W =
∫
θIWν̃A(dθ).

PPP Because V is a base for S closed under countable unions, and λ̃ is S-Radon, there is for each j ∈ J a
G′
j ∈ V, included in Gj , such that λ̃G′

J = λ̃Gj . Set W ′ = {w : w ∈ ZI , w(j) ∈ G′
j for j ∈ J}. We have

W \W ′ ⊆ ⋃
j∈J{w : w(j) ∈ Gj \G′

j},

while

µ̃{w : w(j) ∈ Gj \G′
j} = λ̃(Gj \G′

j) = 0

for each j, so µ̃W ′ is defined and equal to µ̃W = µW . Note that the same calculation shows that θIW = θIW ′

whenever θ ∈ A is such that θG′
j = θGj for every j, that is, for ν̃A-almost every θ. Now, for each j ∈ J , we

have a non-decreasing sequence 〈fjn〉n∈N of non-negative S-continuous real-valued functions with supremum
χG′

j . Set gn(w) =
∏
j∈J fjn(w(j)) for w ∈ ZI and n ∈ N. (I suppose you should take gn(w) = 1 if J is

empty.) Then each gn is SI -continuous, so if we set hn(θ) =
∫
gndθ

I for θ ∈ A, hn is continuous (put 437Mb
and 437Kb together). Also 〈gn〉n∈N is a non-decreasing sequence with supremum χW ′, so

θIW ′ = supn∈N

∫
gndθ

I = supn∈N hn(θ)

for θ ∈ A. Accordingly

µ̃W = µ̃W ′ =

∫
µIyW

′ν(dy) = sup
n∈N

∫
hn(µy)ν(dy)

= sup
n∈N

∫
hndν̃A = sup

n∈N

∫∫
gndθ

I ν̃A(dθ)

=

∫
θIW ′ ν̃A(dθ) =

∫
θIW ν̃A(dθ),

as required. QQQ

(h) We are nearly ready to dispense with the topology S. Since the embeddingsA ⊂→ PR(Z,S) ⊂→ PR(Z,T)
are continuous (437Jh), we have an image Radon probability measure ν̃ on PR(Z,T), and∫

PR(Z,T)
h dν̃ =

∫
A
h dν̃A

for every h : PR(Z,T) → R such that
∫
A
h dν̃A is defined.

In particular, if we take W to be the family of TI -open cylinder sets expressible as {w : w ∈ ZI , w(j) ∈ Gj
for j ∈ J} where J ⊆ I is finite and Gj ∈ T for each j, (g) tells us that
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µ̃W =
∫
θIW ν̃A(dθ) =

∫
θIW ν̃(dθ) =

∫
θ̃IW ν̃(dθ)

for every W ∈ W, where I now write TI for the product topology on ZI corresponding to the topology T on
Z, and θ̃I for the TI -quasi-Radon product measure on ZI corresponding to the T-Radon measure θ (417R).

Now turn again to 437Mb and 459G; θ 7→ θ̃I is a continuous function from PR(Z,T) to the space PqR(ZI ,TI)

of TI -quasi-Radon probability measures on ZI , and W is a base for the topology TI , so 〈θ̃I〉θ∈PR(Z,T) is a
disintegration of µ̃ over ν̃, which is what I set out to prove.

459I I come now to a lemma based on ideas in Tao 07. It is in a form more elaborate than is required
for the elementary application here (459J), but which will be needed in §497.

Lemma Let (X,Σ, µ) be a probability space and I a set. For a family T of subalgebras of PX, write
∨

T

for the σ-algebra generated by
⋃
T, as in 458Ad. Let G be the group of permutations φ of I such that

{i : φ(i) 6= i} is finite. Suppose that • is an action of G on X such that x 7→ φ•x is inverse-measure-
preserving for each φ ∈ G; set φ•A = {φ•x : x ∈ A} for φ ∈ G and A ⊆ X, as in 441Aa and 4A5Bc. Let
〈ΣJ 〉J⊆I be a family of σ-subalgebras of Σ such that

(i) for every J ⊆ I, ΣJ is the σ-algebra generated by
⋃
K⊆J is finite ΣK ;

(ii) if J ⊆ I, E ∈ ΣJ and φ ∈ G, then φ•E ∈ Σφ[J];
(iii) if J ⊆ I, E ∈ ΣJ and φ ∈ G is such that φ(i) = i for every i ∈ J , then φ•E = E.

Suppose that J ∗ is a filter on I not containing any infinite set, and that K ⊆ I, K ⊆ PI and J ⊆ J ∗ are
such that for every K ′ ∈ K there is a J ∈ J such that K ∩K ′ ⊆ J . Then ΣK and

∨
K′∈K ΣK′ are relatively

independent over
∨
J∈J ΣJ .

proof (a)(i) Let us note straight away that condition (i) above implies that ΣK ⊆ ΣJ whenever K ⊆ J ⊆ I.

(ii) For any σ-subalgebra T of Σ, I will (slightly abusing notation, as in 242Jh) write L2(µ↾T) for the
‖ ‖2-closed linear subspace of L2(µ) consisting of equivalence classes of µ-square-integrable T-measurable
real-valued functions defined on X, and PT : L2(µ) → L2(µ↾T) for the corresponding conditional-expectation
operator (244M). Note that PT is an orthogonal projection (244Nb).

(iii) We have an action of G on L2(µ), defined by saying that

(φ•f)(x) = f(φ−1•x) for φ ∈ G, x ∈ X and f ∈ RX

(4A5C(c-i)),

φ•f• = (φ•f)• for φ ∈ G and f ∈ L
2(µ) ∩ RX

(441Kc).

(iv) If T is the family of σ-algebras of subsets of X, we have an action of G on T defined by setting

φ•T = {φ•E : E ∈ T}
for T ∈ T and φ ∈ G. If 〈Tγ〉γ∈Γ is a family in T, then φ•

∨
γ∈Γ Tγ =

∨
γ∈Γ φ•Tγ for every φ ∈ G, just

because E 7→ φ•E is an automorphism of the Boolean algebra PX.

(v) If φ ∈ G and L ⊆ I, then φ•ΣL = Σφ[L]. PPP Condition (ii) of this lemma says just that φ•ΣL =
{φ•E : E ∈ ΣL} is included in Σφ[L]; and now of course

Σφ[L] = φ•φ−1•ΣL ⊆ φ•Σφ−1[φ[L]] = φ•ΣL. QQQ

(vi) If φ ∈ G and T is a σ-subalgebra of Σ, then φ•(PTu) = Pφ•T(φ•u) for every u ∈ L2(µ). PPP I should
of course note that φ•Σ = Σ because x 7→ φ•x is an automorphism of (X,Σ, µ), so φ•T ⊆ Σ and we can
speak of Pφ•T. Let f : X → R be a Σ-measurable function such that f• = u, and g : X → R a T-measurable
function which is a conditional expectation of f on T. In this case, for any α ∈ R,

{x : (φ•g)(x) > α} = {x : g(φ−1
•x) > α} = {φ•x : g(x) > α}

= φ•{x : g(x) > α} ∈ φ•T,

so φ•g is (φ•T)-measurable. Next, for any F ∈ φ•T,
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∫

F

φ•g dµ =

∫

F

g(φ−1
•x)µ(dx) =

∫

φ−1•F

g(x)µ(dx)

(applying 235G to the inverse-measure-preserving function x 7→ φ•x : X → X and the integrable function

x 7→ g(φ−1•x))

=

∫

φ−1•F

f dµ

(because φ−1•F ∈ T)

=

∫

F

φ•fdµ.

As F is arbitrary, φ•g is a conditional expectation of φ•f on φ•T, and

φ•(PTu) = φ•g• = (φ•g)• = Pφ•T(φ•f)• = Pφ•T(φ•u). QQQ

(b)(i) Let 〈Jγ〉γ∈Γ be a non-empty finite family of subsets of I with infinite intersection, and set Λ =∨
γ∈Γ ΣJγ . Suppose that K, 〈Kγ〉γ∈Γ are such that

K ∈ [I]<ω, Kγ ∈ [I]<ω and K ∩Kγ ⊆ Jγ for every γ ∈ Γ.

Take E ∈ ΣK and Fγ ∈ ΣKγ
for every γ ∈ Γ, and set F =

⋂
γ∈Γ Fγ . Let g, h : X → [0, 1] be Λ-measurable

functions which are conditional expectations of χE, χF respectively on Λ. Let ǫ > 0.

(ii) For L ⊆ I set ΛL =
∨
γ∈Γ ΣJγ∩L ⊆ Λ. For any u ∈ L2(µ) there is a finite L ⊆ I such that

‖PTu− PΛu‖2 ≤ ǫ whenever T is a σ-subalgebra of Λ including ΛL. PPP By condition (i) of this lemma, Λ is
the σ-algebra generated by

⋃
L⊆I is finite

⋃
γ∈Γ ΣJγ∩L,

so {ΛL : L ∈ [I]<ω} is an upwards-directed family of σ-algebras whose union σ-generates Λ, and
⋃
L⊆I is finite L

2(µ↾ΛL)

is norm-dense in L2(µ↾Λ). There are therefore a finite L ⊆ I and a v ∈ L2(µ↾ΛL) such that ‖v−PΛu‖2 ≤ ǫ.
If now ΛL ⊆ T ⊆ Λ, v ∈ L2(µ↾T), while PT is the orthogonal projection onto L2(µ↾T), so

‖PTu− PΛu‖2 = ‖PTPΛu− PΛu‖2 ≤ ‖v − PΛu‖2 ≤ ǫ. QQQ

(iii Set u = χE• and v = χF •, so that g• = PΛu and h• = PΛv. By (b), there is an L0 ∈ [I]<ω such
that

‖PTu− PΛu‖2 ≤ ǫ, ‖PTv − PΛv‖2 ≤ ǫ, ‖PT(u× v) − PΛ(u× v)‖2 ≤ ǫ

whenever T is a σ-subalgebra of Λ including ΛL0
. We can suppose that L0 ⊇ K ∪⋃

γ∈ΓKγ . Write T0 for
ΛL0

. We have

‖PΛu× PΛv − PT0u× PT0v‖2
≤ ‖PΛu× (PΛv − PT0

v)‖2 + ‖(PΛu− PT0
u) × PT0

v‖2
≤ ‖PΛv − PT0

v‖2 + ‖PΛu− PT0
u‖2

(because ‖PΛu‖∞ and ‖PT0
v‖∞ are both at most 1)

≤ 2ǫ.

(iv) Let L1 ⊆ ⋂
γ∈Γ Jγ \L0 be a set of size #(L0 \K); let φ ∈ G be such that φ[L0 \K] = L1, φ2 is the

identity and φ(i) = i for i ∈ I \ (L1∪ (L0 \K)). In this case, φ(i) = i for i ∈ K, so φ[L] ⊆ (L∩K)∪⋂
γ∈Γ Jγ

for every L ⊆ L0. Setting Mγ = (L0 ∩ Jγ) ∪ φ[L0 ∩ Jγ ], we have

L0 ∩ Jγ ⊆Mγ = φ[Mγ ] ⊆ Jγ , φ[Kγ ] ⊆ Jγ

for each γ ∈ Γ. (This is where we need to know that K ∩Kγ ⊆ Jγ .)
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Now

φ•u = φ•(χE•) = χ(φ•E)• = χE• = u

by condition (iii) of this lemma; also

‖φ•(PT0u) − PΛu‖2 ≤ 3ǫ.

PPP By (a-iv) and (a-v),

φ•T0 = φ•

∨

γ∈Γ

ΣL0∩Jγ =
∨

γ∈Γ

φ•ΣL0∩Jγ

=
∨

γ∈Γ

Σφ[L0∩Jγ ] ⊆
∨

γ∈Γ

ΣMγ
⊆

∨

γ∈Γ

ΣJγ = Λ.

Set T = T0 ∨ φ•T0; then T0 ⊆ T = φ[T] ⊆ Λ. But now

φ•(PTu) = Pφ•T(φ•u) = PTu

(see (a-vi)), so

‖φ•(PT0
u) − PΛu‖2 ≤ ‖φ•(PT0

u) − φ•(PTu)‖2 + ‖PTu− PΛu‖2
= ‖PTu− PT0

u‖2 + ‖PTu− PΛu‖2
≤ ‖PΛu− PT0

u‖2 + 2‖PTu− PΛu‖2 ≤ 3ǫ. QQQ

(v) Set

T∗ =
∨
γ∈Γ ΣKγ∪Mγ

.

Because L0 ∩ Jγ ⊆Mγ for every γ, T∗ and

φ•T∗ =
∨
γ∈Γ Σφ[Kγ ]∪Mγ

include ΛL0
= T0, while φ•T∗ ⊆ Λ because φ[Kγ ]∪Mγ ⊆ Jγ for every γ. Also F ∈ T∗, because Fγ ∈ ΣKγ

⊆
T∗ for every γ. Now
and

‖PT0
(u× v) − PT0

u× PT0
v‖2 = ‖PT0

PT∗(u× v) − PT0
u× PT0

v‖2
(because T0 ⊆ T ∗)

= ‖PT0(v × PT∗u) − PT0(v × PT0u)‖2
(because v ∈ L2(µ↾T∗) and PT0u ∈ L2(µ↾T0), see 242L)

≤ ‖v × PT∗u− v × PT0u‖2 ≤ ‖PT∗u− PT0u‖2
(because ‖v‖∞ ≤ 1)

= ‖φ•(PT∗u) − φ•(PT0
u)‖2

= ‖Pφ•T∗(φ•u) − φ•(PT0
u)‖2

≤ ‖Pφ•T∗u− PΛu‖2 + ‖PΛu− φ•(PT0
u)‖2

≤ ǫ+ 3ǫ = 4ǫ.

(vi) Putting these together,

‖PΛ(u× v) − PΛu× PΛv‖2 ≤ ‖PΛ(u× v) − PT0(u× v)‖2
+ ‖PT0

(u× v) − PT0
u× PT0

v‖2
+ ‖PΛu× PΛv − PT0

u× PT0
v‖2

≤ ǫ+ 4ǫ+ 2ǫ = 7ǫ.
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(vii) As ǫ is arbitrary, PΛ(u× v) = PΛu× PΛv, that is, g × h is a conditional expectation of χ(E ∩ F )
on Λ, and E and F are relatively independent over Λ.

(c) It follows that ΣK and
∨
γ∈Γ ΣKγ

are relatively independent over Λ. PPP Suppose that E ∈ ΣK , and
consider the set

E = {F : F ∈ Σ, PΛχ(E ∩ F )• = PΛ(χE•) × PΛ(χF •)}.

Then E is a Dynkin class, and by (b) above it contains

E0 = {⋂γ∈Γ Fγ : Fγ ∈ ΣKγ
for every γ ∈ Γ},

which is closed under ∩. Accordingly E includes the σ-algebra generated by E0, which is
∨
γ∈Γ ΣKγ

. Thus

PΛχ(E ∩ F )• = PΛ(χE•) × PΛ(χF •)

for every E ∈ ΣK and F ∈ ∨
γ∈Γ ΣKγ

, and ΣK and
∨
γ∈Γ ΣKγ

are relatively independent over Λ. QQQ

(d) Now suppose that 〈Jγ〉γ∈Γ is a non-empty finite family of subsets of I with infinite intersection.
As before, write Λ for

∨
γ∈Γ ΣJγ . Suppose that K ⊆ I and that 〈Kγ〉γ∈Γ is a family of subsets of I such

that K ∩ Kγ ⊆ Jγ for every γ ∈ Γ. Then ΣK and
∨
γ∈Γ ΣKγ

are relatively independent over Λ. PPP Set

T =
⋃{ΣL : L ∈ [K]<ω} and for γ ∈ Γ set Tγ =

⋃{ΣL : L ∈ [Kγ ]<ω}. Then (b)-(c) tell us that T and the
algebra T′ σ-generated by

⋃
γ∈Γ Tγ are relatively independent over Λ. Since ΣK is the σ-algebra generated

by T, while
∨
γ∈Γ ΣKγ

is the σ-algebra generated by T′, 458Da-458Db tell us that ΣK and
∨
γ∈Γ ΣKγ

are
relatively independent over Λ. QQQ

(e) At last we are ready to approach the sets K, K and J of the statement of this lemma. The case
J = ∅ is trivial (as then K must also be empty), so suppose that J is non-empty.

(i) To begin with, suppose that J and K are finite. In this case, we can find finite families 〈Jγ〉γ∈Γ

and 〈Kγ〉γ∈Γ running over J , K ∪ {∅} respectively such that K ∩Kγ ⊆ Jγ for every γ. So (d) tells us that
ΣK and

∨
K′∈K ΣK′ ∨ Σ∅ are relatively independent over

∨
J∈J ΣJ .

(ii) If K is finite but J is infinite, then let J0 ⊆ J be a finite set such that for every K ′ ∈ K there
is a J ∈ J0 including K ∩K ′. Then for any finite J ′ ⊆ J including J0, ΣK and

∨
K′∈K ΣK′ are relatively

independent over
∨
J∈J ′ ΣJ . Since

{∨J∈J ′ ΣJ : J0 ⊆ J ′ ∈ [J ]<ω}
is an upwards-directed family of σ-algebras whose union σ-generates

∨
J∈J ΣJ , 458C tells us that ΣK and∨

K′∈K ΣK′ are relatively independent over
∨
J∈J ΣJ .

(iii) Finally, for the general case, (ii) tells us that ΣK and
∨
K′∈K′ ΣK′ are relatively independent over∨

J∈J ΣJ for every finite K′ ⊆ K, so ΣK and
∨
K′∈K ΣK′ are relatively independent over

∨
J∈J ΣJ , by 458D

again.

459J Corollary Let (X,Σ, µ) be a probability space and I a set. Let G be the group of permutations
φ of I such that {i : φ(i) 6= i} is finite. Suppose that • is an action of G on X such that x 7→ φ•x is inverse-
measure-preserving for each φ ∈ G. Let 〈ΣJ 〉J⊆I be a family of σ-subalgebras of Σ such that

(i) for every J ⊆ I, ΣJ is the σ-algebra generated by
⋃
K⊆J is finite ΣK ;

(ii) if J ⊆ I, E ∈ ΣJ and φ ∈ G, then φ•E ∈ Σφ[J];
(iii) if J ⊆ I, E ∈ ΣJ and φ ∈ G is such that φ(i) = i for every i ∈ J , then φ•E = E.

Then if J ⊆ I is infinite and 〈Kγ〉γ∈Γ is a family of subsets of I such that Kγ ∩Kδ ⊆ J for all distinct γ,
δ ∈ Γ, 〈ΣKγ

〉γ∈Γ is relatively independent over ΣJ .

proof By 459I, ΣKγ
and

∨
δ∈∆ ΣKδ

are relatively independent over ΣJ whenever ∆ ⊆ Γ and γ ∈ Γ \ ∆.
Now 458Hb tells us that we can induce on #(∆) to see that 〈ΣKγ

〉γ∈∆ is relatively independent over ΣJ for
every finite ∆ ⊆ Γ, and it follows at once that 〈ΣKγ

〉γ∈Γ is relatively independent over ΣJ , as remarked in
458Ac.

proof Note first that if G is the group of permutations φ of I such that {i : φ(i) 6= i} is finite, then any
φ ∈ G is expressible as the product of finitely many transpositions, so w 7→ wφ is an automorphism of
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(XI , µ). Let • be the action of G on XI defined by saying that φ•w = wφ−1 for x ∈ XI and φ ∈ G. Then
w 7→ φ•w is inverse-measure-preserving for every φ.

If L ⊆ I then ΣL is the σ-algebra of subsets of XI generated by sets of the form {x : x(i) ∈ E} where
i ∈ L and E ∈ Σ. So ΣL is the σ-algebra generated by

⋃{ΣK : K ∈ [L]<ω}.

If i ∈ I, E ∈ Σ and φ ∈ G, then

φ•{x : x(i) ∈ E} = {φ•x : x(i) ∈ E} = {x : (φ−1•x)(i) ∈ E} = {x : x(φ(i)) ∈ E}.

So if L ⊆ I and φ ∈ G, {W : φ•W ∈ Σφ[L]} is a σ-algebra of subsets of XI containing {x : x(i) ∈ E}
whenever i ∈ L and E ∈ Σ, therefore including ΣL; that is, φ•W ∈ Σφ[L] whenever W ∈ ΣL.

If L ⊆ I and φ ∈ G is such that φ(i) = i for every i ∈ L, then {W : φ•W = W} is a σ-algebra of subsets
of XI containing {x : x(i) ∈ E} whenever i ∈ L and E ∈ Σ, so φ•W = W for every W ∈ ΣL.

Thus the conditions of 459I are satisfied, and the result follows at once.

459K Following the results of §452 (especially 452Ye), we do not generally expect to find disintegrations
of measures which are not countably compact. It may however illuminate the constructions here if I give a
specific example related to the contexts of 459E and 459H.

Example (Dubins & Freedman 79) There are a separable metrizable space Z and a quasi-Radon measure
on ZN, invariant under permutations of coordinates, which cannot be disintegrated into powers of measures
on Z.

proof (a) Let λ be Lebesgue measure on [0, 1]. Q = [0, 1] × [0, 1]N, with its usual topology, is a compact
metrizable space, so has just c Borel sets (4A3F). Let 〈Wξ〉ξ<c enumerate the Borel subsets of Q with non-
zero measure for the product measure λ× λN. (Remember that λ× λN is a Radon measure, by 416U.) For
each ξ, we have 0 < (λ × λN)(Wξ) =

∫
λN(Wξ[{t}])λ(dt), so Aξ = {t : Wξ[{t}] 6= ∅} has cardinal c (419H);

we can therefore choose 〈tξ〉ξ<c in [0, 1] such that tξ ∈ Aξ \ {tη : η < ξ} for every ξ < c. Now choose tξn, for
ξ < c and n ∈ N, such that (tξ, 〈tξn〉n∈N) ∈Wξ. Set Z = {(tξ, tξn) : ξ < c, n ∈ N} ⊆ [0, 1]2.

(b) Set X = ([0, 1]2)N and define φ : Q → X by setting φ(t, 〈tn〉n∈N) = 〈(t, tn)〉n∈N for t, tn ∈ [0, 1].
Then φ is a homeomorphism between Q and φ[Q], so there is a unique Radon measure µ# on X such that
φ is inverse-measure-preserving for λ×λN and µ#. Now µ# is invariant under permutations of coordinates,
because if ρ : N → N is a permutation and ρ̂(x) = xρ for x ∈ X, then ρ̂φ = φρ̄, where ρ̄(t, 〈tn〉n∈N) =
(t, 〈tρ(n)〉n∈N); and as ρ̄ : Q→ Q is inverse-measure-preserving, so is ρ̂ : X → X.

Also ZN has full outer measure for µ#. PPP If µ#W > 0, then (λ× λN)φ−1[W ] > 0, so there is some ξ < c

such that Wξ ⊆ φ−1[W ]. Now 〈(tξ, tξn)〉n∈N ∈ ZN ∩W . QQQ Accordingly the subspace measure µ̃ on Z is a
probability measure. Because µ# is invariant under permutations of coordinates, so is µ̃; because µ# is a
Radon measure, µ̃ is a quasi-Radon measure (416Ra).

(c) ??? Suppose, if possible, that there are a probability space (Y,T, ν) and a family 〈µy〉y∈Y of probability
measures on Z such that µ̃E =

∫
µN
yE ν(dy) for every Borel set E ⊆ ZN. (The argument to follow will not

depend on which product measure is used in forming the µN
y .) Looking at sets of the form (Z ∩H) × Z ×

Z × . . . , where H ⊆ [0, 1]2 is a Borel set, we see that µy(Z ∩ H) must be defined for almost every y; as
Z is second-countable, µy must be a topological measure for almost every y. Looking at sets of the form
(Z ∩ (G0 × [0, 1])) × (Z ∩ (G1 × [0, 1])) × Z × . . . , where G0 and G1 are disjoint Borel subsets of [0, 1], we
see that µy(Z ∩ (G0 × [0, 1])) · µy(Z ∩ (G1 × [0, 1])) = 0 for almost every y; as [0, 1] is second-countable and
Hausdorff, there must be, for almost every y ∈ Y , an sy ∈ [0, 1] such that µy(Z ∩ ({sy} × [0, 1])) = 1.

Next, if G ⊆ [0, 1] is a Borel set, then µy(Z ∩ ([0, 1] ×G)) = λG for almost every y. PPP

h(y) = µN
y ((Z ∩ ([0, 1] ×G)) × Z × . . . ) = µy(Z ∩ ([0, 1] ×G))

is defined for almost every y, and h is ν-integrable, with∫
h dν = µ̃((Z ∩ ([0, 1] ×G)) × Z × . . . ) = µ#(([0, 1] ×G) × [0, 1]2 × . . . ) = λG.

At the same time,
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∫
h(y)(1 − h(y))ν(dy) = µ̃((Z ∩ ([0, 1] ×G)) × (Z ∩ ([0, 1] × ([0, 1] \G))) × Z × . . . )

= µ#(([0, 1] ×G) × ([0, 1] × ([0, 1] \G)) × [0, 1]2 × . . . )

= λG(1 − λG).

Rearranging, we see that
∫
h2dν = (

∫
h)2. But this means that

∫
(h(y)−

∫
h)2ν(dy) = 0 and h(y) = λG for

almost every y. QQQ
It follows that, for at least some y, µy(Z ∩ ({sy} × G)) = λG for every interval G ⊆ [0, 1] with rational

endpoints. But this is impossible, because all the vertical sections of Z are countable. XXX
Thus there is no such disintegration, as claimed.

459X Basic exercises >>>(a) Let (X,Σ, µ) be a probability space and 〈fn〉n∈N an exchangeable se-
quence of real-valued random variables on X all with finite expectation. Use 459C and 273I to show that

〈 1

n+1

∑n
i=0 fi〉n∈N converges a.e. (Compare 276Xg25.)

(b) Let (X,Σ, µ) be a probability space and 〈fn〉n∈N an exchangeable sequence of real-valued random

variables on X all with finite variance, such that limn→∞
1

n+1

∑n
i=0 fi = 0 a.e. Show that 〈Pr(

∑n
i=0 fi ≥

α
√
n+ 1)〉n∈N is convergent for every α ∈ R. (Hint : 274I.)

(c) Let X be a completely regular topological space, (Y,S,T, ν) a totally finite quasi-Radon measure
space, and y 7→ µy a continuous function from Y to the space M+

qR(X) of totally finite quasi-Radon measures

on X with its narrow topology. Show that if µ ∈ M+
qR(X) is such that

∫
fdµ =

∫∫
fdµy ν(dy) for every

f ∈ Cb(X), then 〈µy〉y∈Y is a disintegration of µ over ν.

>>>(d) (Diaconis & Freedman 80) Let Z be a non-empty compact Hausdorff space and I an infinite set
including N. Let µ̃ be a Radon probability measure on ZI invariant under permutations of I. For k ≤ n let
Dnk ⊆ nk be the set of injective functions from k to n and Ωnk the set ZI × nk ×Dnk, endowed with the
product λnk of µ̃ and the uniform probability measures on the finite sets nk and Dnk. Define φnk : Ωnk → Zk

and ψnk : Ωnk → Zk by setting

φnk(w, p, q) = wp,

ψnk(w, p, q) = wp if p ∈ Dnk,

= wq otherwise.

(i) Show that there is a disintegration 〈µknw〉w∈ZI of the image measure λnkφ
−1
nk over µ̃ where each µnw is a

suitable point-supported measure on Zk. (ii) Show that the image measure λnkψ
−1
nk is the image measure

µ̃k = µ̃π̃−1
k , where π̃k(w) = w↾k for w ∈ ZI . (iii) Show that if n > 0 then |µ̃kW −

∫
µknwW µ̃(dw)| ≤ k(k−1)

2n

for every Baire set W ⊆ Zk. (iv) Show that there is a Radon probability measure ν̃n on PR(Z) for which
w 7→ µnw is inverse-measure-preserving. (v) Show that if ν̃ is any cluster point of 〈ν̃n〉n∈N in PR(Z) then

〈θ̃I〉θ∈PR(Z) is a disintegration of µ̃ over ν̃, writing θ̃I for the Radon product of copies of any θ ∈ PR(Z).

>>>(e) (Hewitt & Savage 55) Let X be a non-empty compact Hausdorff space and I an infinite set. Let
Q be the set of Radon probability measures on XI which are invariant under permutations of I. Show that
(i) Q is a closed convex subset of the set PR(XI) of all Radon probability measures on XI with its narrow
topology; (ii) Q is isomorphic, as topological convex structure, to PR(PR(X)); (iii) the extreme points of Q
are just the powers of Radon probability measures on X.

(f) Let X, I be sets, Σ a σ-algebra of subsets of X and µ a probability measure with domain
⊗̂

IΣ which
is transposition-invariant in the sense that for every transposition τ : I → I the function x 7→ xτ : XI → XI

is inverse-measure-preserving. For J ⊆ I, let ΣJ be the σ-algebra

25Formerly 276Xe.
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W : W ∈ ⊗̂
IΣ, W is determined by coordinates in J}.

Show that if J ⊆ I is infinite and 〈Kγ〉γ∈Γ is a family of subsets of I such that Kγ ∩Kδ ⊆ J for all distinct
γ, δ ∈ Γ, 〈ΣKγ

〉γ∈Γ is relatively independent over ΣJ (i) using 459D (ii) using 459J.

459Y Further exercises (a) Let X be a topological space and I an infinite set. Write Pτ (X), Pτ (XI)
and Pτ (Pτ (X)) for the spaces of τ -additive Borel probability measures in X, XI and Pτ (X) respectively, with

their narrow topologies. (i) For θ ∈ Pτ (X) write θ̃I for the τ -additive Borel measure on XI corresponding
to θ, that is, the restriction to the Borel σ-algebra of XI of the τ -additive product measure described in
417F. Show that θ 7→ θ̃I : Pτ (X) 7→ Pτ (XI) is continuous. (ii) Show that if ν ∈ Pτ (Pτ (X)) there is a

unique µν ∈ Pτ (XI) such that 〈θ̃I〉θ∈Pτ (X) is a disintegration of µν over ν, where θ̃I is the τ -additive Borel

product measure on XI corresponding to θ ∈ Pτ (X). (iii) Show that ν 7→ µν is a homeomorphism between
Pτ (Pτ (X)) and its image in Pτ (XI).

(b) Discuss the problems which arise in 459B, 459C, 459E and 459H if the index set I is finite.

459 Notes and comments As I have presented this material, the centre of the argument of 459A-459H
lies in the martingales in part (b-β) of the proof of 459B. We are trying to resolve the functions fi into
‘common’ and ‘independent’ parts. The ‘common’ part is given by the conditional expectations of the fi over
an appropriate σ-algebra T, and we approach these by looking at the conditional expectations of each fi on
σ-algebras Tn generated by ‘distant’ fj . All the most important ideas are already exhibited when the index
set I is equal to N. Note in particular that in the basic hypothesis that all finite strings (fi0 , . . . , fir ) have
the same joint distribution, it is enough to look at increasing strings. But there is a striking phenomenon
which appears in sharper relief with uncountable sets I: any sequence 〈jk〉k∈N of distinct elements of I can
be used to generate an adequate σ-algebra, because while the tail σ-algebra of sets depends on the choice
of the jk, they all lead to the same closed subalgebra of the measure algebra (459D).

Perhaps I should emphasize at this point that I really does have to be infinite, though for large finite I
there are approximations to the results here.

The proof of 459B is one of the standard proofs of De Finetti’s theorem, with trifling modifications. In
the case of real-valued random variables we have a notion of relative distribution (458I) which gives a quick
way of saying that all the fi have the same conditional expectations over T, as in 459C(ii). For variables
taking values in other spaces the situation may be different (459K), unless (as in §452) we have a countably
compact measure (459E).

Specializing to the case X = ZI in 459B, we find ourselves examining symmetric measures on infinite
product spaces, which are of great interest in themselves. Note that while in the hypothesis of 459E I have
asked for the measure µ on the product space ZI to be countably compact, what is actually necessary is
that the marginal measure on Z should be countably compact. By 454Ab, this comes to the same thing.

As in 452O, we can look for a disintegration consisting of Radon measures, provided of course that the
marginal measure is a Radon measure. What we have to work harder for is a direct expression in terms
of an integral

∫
θ̃I ν̃(dθ) where ν̃ is itself a Radon probability measure on the space of Radon probability

measures θ (459H). But most of the extra work consists of finding the correct reduction to the case of locally
compact spaces. For compact spaces we can approach by a completely different route (459Xd). I will not go
farther with this idea here, but I note that the method can be used in a wide variety of problems involving
symmetric structures.

Lemma 459I is entirely different. I include it here because it gives another approach to relative indepen-
dence and looks at permutation-invariant measures, though in a more abstract setting which does not bind
us to the product spaces which are their most natural expressions. Its power lies precisely in the fact that
in its hypotheses we do not suppose that ΣJ∪K = ΣJ ∨ΣK for J , K ⊆ I, so the σ-algebras

∨
K′∈K ΣK′ and∨

J∈J ΣJ have to be handled with special care.

D.H.Fremlin
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Version of 27.2.04

Concordance for Volume 4

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this volume, and which have since been changed.

452I In Fremlin 00 I quote Pachl’s result that if (X,Σ, µ) is countably compact, (Y,T, ν) is strictly
localizable and f : X → Y is inverse-measure-preserving, then ν is countably compact; this is now in 452R.

455D The material on Brownian motion in §455, mentioned in König 04 and König 06, has been
moved to §477.

458Yd This exercise (on the strong law of large numbers for relatively independent sequences), referred
to in the 2008 and 2015 printings of Volume 5, is now 458Ye.
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Čech E. [66] Topological Spaces. Wiley, 1966. [§4A2, 4A3S.]
Chacon R.V. [69] ‘Weakly mixing transformations which are not strongly mixing’, Proc. Amer. Math.

Soc. 22 (1969) 559-562. [494F.]
Choquet G. [55] ‘Theory of capacities’, Ann. Inst. Fourier (Grenoble) 5 (1955) 131-295. [432K.]
Chung K.L. [95] Green, Brown and Probability. World Scientific, 1995.
Ciesielski K. & Pawlikowski J. [03] ‘Covering Property Axiom CPAcube and its consequences’, Fundamenta

Math. 176 (2003) 63-75. [498C.]
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