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Chapter 45
Perfect measures and disintegrations

One of the most remarkable features of countably additive measures is that they provide us with a
framework for probability theory, as described in Chapter 27. The extraordinary achievements of probability
theory since Kolmogorov are to a large extent possible because of the rich variety of probability measures
which can be constructed. We have already seen image measures (234C') and product measures (§254).
The former are elementary, but a glance at the index will confirm that they have many surprises to offer; the
latter are obviously fundamental to any idea of what probability theory means. In this chapter I will look
at some further constructions. The most important are those associated with ‘disintegrations’ or ‘regular
conditional probabilities’ (§§452-453) and methods for confirming the existence of measures on product
spaces with given images on subproducts (§454, 455A). We find that these constructions have to be based
on measure spaces of special types; the measures involved in the principal results are the Radon measures
of Chapter 41 (of course), the compact and perfect measures of Chapter 34, and an intermediate class, the
‘countably compact’ measures of MARCZEWSKI 53 (451B). So the first section of this chapter is a systematic
discussion of compact, countably compact and perfect measures.

A ‘disintegration’, when present, is likely to provide us with a particularly effective instrument for studying
a measure, analogous to Fubini’s theorem for product measures (see 452F). §§452-453 therefore concentrate
on theorems guaranteeing the existence of disintegrations compatible with some pre-existing structure,
typically an inverse-measure-preserving function (4521, 4520, 453K) or a product structure (452M). Both
depend on the existence of suitable liftings, and for the topological version in §453 we need a ‘strong’ lifting,
so much of that section is devoted to the study of such liftings.

One of the central concerns of probability theory is to understand ‘stochastic processes’, that is, models
of systems evolving randomly over time. If we think of our state space as consisting of functions, so that
a whole possible history is described by a random function of time, it is natural to think of our functions
as members of some set [, .y Zn (if we think of observations as being taken at discrete time intervals)
or Hte[o,oo[ Zy (if we regard our system as evolving continuously), where Z; represents the set of possible
states of the system at time ¢. We are therefore led to consider measures on such product spaces, and
the new idea is that we may have some definite intuition concerning the joint distribution of finite strings
(f(to),.-., f(tn)) of values of our random function, that is to say, we may think we know something about
the image measures on finite products [[,.,, Z,. So we come immediately to a fundamental question: given
a (probability) measure py on [[;c; Z; for each finite J C T, when will there be a measure on [Licr Zi
compatible with every p;7 In §454 I give the most important generally applicable existence theorems for
such measures, and in 455A-455E I show how they can be applied to a general construction for models of
Markov processes. These models enable us to discuss the Markov property either in terms of disintegrations
or in terms of conditional expectations (455C, 4550), and for Lévy processes, in terms of inverse-measure-
preserving functions (455U).

The abstract theory of §454 yields measures on product spaces which, from the point of view of a
probabilist, are unnaturally large, often much larger than intuition suggests. Some of the most powerful
results in the theory of Markov processes, such as the strong Markov property (4550), depend on moving
to much smaller spaces; most notably the space of cadlag functions (455G), but the larger space of callal
functions is also of interest. The most important example, Brownian motion, will have to wait for Chapter
47, but I give the basic general theory of Lévy processes in complete metric groups.

One of the defining characteristics of Brownian motion is the fact that all its finite-dimensional marginals
are Gaussian distributions. Stochastic processes with this property form a particularly interesting class,
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2 Perfect measures, disintegrations and processes Chap. 45 intro.

which I examine in §456. From the point of view of this volume, one of their most striking properties is
Talagrand’s theorem that, regarded as measures on powers R, they are 7-additive (4560).

The next two sections look again at some of the ideas of the previous sections when interpreted as answers
to questions of the form ‘can all the measures in such-and-such a family be simultaneously extended to a single
measure?’ If we seek only a finitely additive common extension, there is a reasonably convincing general
result (457A); but countably additive measures remain puzzling even in apparently simple circumstances
(457Z). In §458 T introduce ‘relatively independent’ families of o-algebras, with the associated concept of
‘relative product’ of measures, and the corresponding concepts for probability algebras. Finally, in §459,
I give some basic results on symmetric measures and exchangeable random variables, with De Finetti’s
theorem (459C) and corresponding theorems on representing permutation-invariant measures on products
as mixtures of product measures (459E, 459H).

Version of 8.11.07

451 Perfect, compact and countably compact measures

In §8342-343 I introduced ‘compact’ and ‘perfect’ measures as part of a study of the representation
of homomorphisms of measure algebras by functions between measure spaces. An intermediate class of
‘countably compact’ measures (the ‘compact’ measures of MARCZEWSKI 53) has appeared in the exercises.
It is now time to collect these ideas together in a more systematic way. In this section I run through
the standard properties of compact, countably compact and perfect measures (451A-451J), with a couple
of simple examples of their interaction with topologies (451M-451P). An example of a perfect measure
space which is not countably compact is in 451U. Some new ideas, involving non-trivial set theory, show
that measurable functions from compact totally finite measure spaces to metrizable spaces have ‘essentially
separable ranges’ (451R); consequently, any measurable function from a Radon measure space to a metrizable
space is almost continuous (451T).

451 A Let me begin by recapitulating the principal facts already covered.

(a) A family K of sets is a compact class if (\K' # 0 whenever K’ C K has the finite intersection
property. If L C PX, then K is a compact class iff there is a compact topology on X for which every
member of K is closed (342D). A subfamily of a compact class is compact (342Ab).

(b) A measure on a set X is compact if it is inner regular with respect to some compact class of sets;
equivalently, if it is inner regular with respect to the closed sets for some compact topology on X (342F).
All Radon measures are compact measures (416Wa). If (X,X, u) is a semi-finite compact measure space
with measure algebra 2, (Y, T,v) is a complete strictly localizable measure space with measure algebra B,
and 7 : ) — B is an order-continuous Boolean homomorphism, there is a function g : ¥ — X such that
g [E] € T and g 1[E]* = m(E*) for every E € X (343B).

(c) A family K of sets is a countably compact class if [, .\ K # §) whenever (K, )nen is a sequence
in K such that (,.,, K; # 0 for every n € N. Any subfamily of a countably compact class is countably
compact. If K is a countably compact class, then there is a countably compact class * O K which is closed
under finite unions and countable intersections (413T).

(d) A measure space (X,X, ) is perfect if whenever f : X — R is measurable, £ € ¥ and uFE > 0,
there is a compact set K C f[E] such that uf~![K] > 0. A countably separated semi-finite measure space is
compact iff it is perfect (343K). A measure space (X, X, ) is isomorphic to the unit interval with Lebesgue
measure iff it is an atomless complete countably separated perfect probability space (344Ka).

451B Now for the new class of measures.

Definition Let (X, X, 1) be a measure space. Then (X, X, ), or u, is countably compact if y is inner
regular with respect to some countably compact class of sets.
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451D Perfect, compact and countably compact measures 3

Evidently compact measures are also countably compact. A simple example of a countably compact
measure which is not compact is the countable-cocountable measure on an uncountable set (342M). For an
example of a perfect measure which is not countably compact, see 451U.

Note that if p is inner regular with respect to a countably compact class KC, then it is also inner regular
with respect to K N'Y (411B), and £ N'X is still countably compact.

451C Proposition (RYLL-NARDZEWSKI 53) Any semi-finite countably compact measure is perfect.
proof The central idea is the same as in 342L, but we need to refine the second half of the argument.

(a) Let (X, 3, 1) be a countably compact measure space, f : X — R a measurable function, and £ € ¥
a set of positive measure. Let K be a countably compact class such that p is inner regular with respect to
K; by 451Ac, we may suppose that I is closed under finite unions and countable intersections.

Because p is semi-finite, there is a measurable set F' C E such that 0 < pF' < oo; replacing F' by a set of
the form F N f~1[[—n,n]] if necessary, we may suppose that f[F] is bounded; finally, we may suppose that
F € K. Let (€g)qeq be a family of strictly positive real numbers such that »_ o €q < $uF. For each q € Q,
set By ={z:x €F, f(r) <q}, B, ={v:z€F, f(x) > q}, and choose K,, K, € KNX such that K, C E,,
K, C By and p(Ey \ Ky) < €q, p(Eq \ K) < €. Then K = (KUK € KNE, K C F and

PN\ K) <30 0cq m(Eq \ Kq) + p(Eq \ Kg) < pF,
so uK > 0.

(b) Take any ¢ € f[K]. Enumerate Q as (¢n)nen and define (L, )pen in K by the rule

L, =K, ift < qp,
=K, ift>qy,,
=Fift=gq,.

Now (<, Li # 0 for every n € N. P Because t € f[K], there must be some s € f[K] such that s < ¢;
whenever ¢ < n and ¢ < g;, while s > ¢; whenever i <n and ¢t > ¢;. Let € K be such that f(z) = s. Then,
for any i < n,
eithert < q;, f(z) < gisox ¢ K, and v € K, = L;
ort>q;, f(z) >qsox ¢ Ky andx € K = L;,
ort=q; and x € FF = L,.
Sox €<, Li- Q
As K is a countably compact class, there must be some z € Mnen Ln- But this means that, for any n € N,
if £ > g, then x € K and f(z) > gy,
if t < g, then z € K, and f(x) < ¢y.
So in fact f(z) =t. Accordingly t € f[K].

(c) What this shows is that f[K] C f[K] and f[K] is closed. Because (by the choice of F) it is also
bounded, it is compact (2A2F). Of course we now have f[K] C f[E], while uf '[f[K]] > nK > 0. As f
and F are arbitrary, u is perfect.

451D Proposition Let (X, ¥, 1) be a measure space, and F € ¥; let ug be the subspace measure on E.
(a) If p is compact, so is ug.

(b) If u is countably compact, so is pg.

(c) If p is perfect, so is pg.

proof (a)-(b) Let K be a (countably) compact class such that p is inner regular with respect to K. Then
wg is inner regular with respect to I (4120a), so is (countably) compact.

(c) Suppose that f : E — R is Y g-measurable, where ¥y = ¥ N PE is the subspace o-algebra, and
F C F is such that uF > 0. Set
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4 Perfect measures, disintegrations and processes 451D

g(x) = arctan f(x) if x € E,
=2ifze X\ E.

Then g is Y-measurable, so there is a compact set K C g[F] such that pg~[K] > 0. Set L = {tant : ¢t € K};
then L C f[F] is compact and f~![L] = ¢~![K] has non-zero measure. As f and F are arbitrary, ug is
perfect.

451E Proposition Let (X, X, u) be a perfect measure space.

(a) If (Y, T,v) is another measure space and f : X — Y is an inverse-measure-preserving function, then
v is perfect.

(b) In particular, u| T is perfect for any o-subalgebra T of X.

proof (a) Suppose that g : Y — R is T-measurable and F' € T is such that vF > 0. Then gf : X - R
is Y-measurable and pf~![F] > 0. So there is a compact set K C (gf)[f~L[F]] such that u(gf)~[K] > 0.
But now K C g[F] and vg~![K] > 0. As g and F are arbitrary, v is perfect.

(b) Apply (a) to Y = X, v = u[T and f the identity function.

Remark We shall see in 452R that there is a similar result for countably compact measures; but for compact
measures, there is not (342Xf, 451Xh).

451F Lemma (SAZONOV 66) Let (X,X, ) be a semi-finite measure space. Then the following are
equiveridical:

(i) p is perfect;

(ii) u]T is compact for every countably generated o-subalgebra T of X;

(iii) u|T is perfect for every countably generated o-subalgebra T of X;

(iv) for every countable set £ C ¥ there is a o-algebra T D & such that u[T is perfect.

proof (a)(i)=-(ii) Suppose that p is perfect, and that T is a countably generated o-subalgebra of ¥. Let
(Ep)nen be a sequence in T which o-generates it, and define f : X — R by setting f(z) = > o0 ;3 "xEy, ()
for every € X. Then f is measurable. Set K = {f~![L] : L C f[X] is compact}. Then K is a compact
class. P If K' C K is non-empty and has the finite intersection property, then £ = {L : L C f[X] is
compact, f~1[L] € K'} is also a non-empty family with the finite intersection property. So there is an
a € (L'; since a € f[X], there is an x such that f(z) = «, and now = € ((K'. As K’ is arbitrary, K is a
compact class. Q
Observe next that, for any n € N,

By={r: 31Cn, Tiy37 +37 < f(@) < Tye 37 4374},

So T' = {f~1[F] : F C R} contains every F,; as it is a o-algebra of subsets of X, it includes T.

Now p[T is inner regular with respect to . B If £ € T and pFE > 0, there is a set FF C R such
that E = f~![F]. Because f is ¥-measurable and p is perfect, there is a compact set L C f[E] such that
wf~YL] > 0. But now f~[L] € KN'T, and f~1[L] C E because L C F. Because K is closed under finite
unions, this is enough to show that u[T is inner regular with respect to K. Q

Thus I witnesses that u[ T is a compact measure.

(b)(ii)=(i) Now suppose that u|T is compact for every countably generated o-algebra T C X, that
f X — R is a measurable function, and that uE > 0. Let ' C E be a measurable set of non-zero finite
measure, and T the o-algebra generated by {F}U{f![]—o00,q[] : ¢ € Q}, so that T is countably generated
and f is T-measurable. Because p|T is compact, so is the subspace measure (u[T)r (451Da); but this is
now perfect (342L or 451C), while F € T and pF > 0, so there is a compact set L C f[F] C f[E] such that
uf~YL] > 0. As f and E are arbitrary, u is perfect.

(c)(i)=(iv) is trivial.

(d)(iv)=(iii) If (iv) is true, and T is a countably generated o-subalgebra of X, let £ be a countable set
generating it. Then there is a o-algebra T1 D & such that p[T; is perfect. By 451Eb, u| T = (u|T1)] T is
compact, therefore perfect.
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451H Perfect, compact and countably compact measures 5

(e)(iii)=(ii) If (iii) is true, and T is a countably generated o-subalgebra of X, then u| T is perfect; but
as (i)=(ii), and T is a countably generated o-subalgebra of itself, u[ T is compact.

451G Proposition Let (X, 3, ;1) be a measure space. Let (X, 3, fi) be its completion and (X, 3, i) its
c.l.d. version. Then
(a)(i) if p is compact, so are fi and [;
(ii) if p is semi-finite and either fi or & is compact, then p is compact.
(b)(i) If p is countably compact, so are [i and fi;
(ii) if p is semi-finite and either fi or i is countably compact, then p is countably compact.
(¢)(i) If u is perfect, so are i and [i;
(ii) if fu is perfect, then p is perfect;
(iii) if p is semi-finite and [ is perfect, then p is perfect.

proof (a)-(b) The arguments for /i and ji run very closely together. Write ji for either of them, and 3 for
its domain.

(1) If p is inner regular with respect to K, so is i (412Ha). So if p is (countably) compact, so is fi.

(i) Now suppose that p is semi-finite. The point is that if K is closed under countable intersections and
[t is inner regular with respect to IC, so is u. I Suppose that E € ¥ and that uFE > . Choose sequences
(Endnen in X and KC,, in K inductively, as follows. FEj is to be such that Fy C F and v < pEy < oo.
Given that v < pFE, < oo, let K, € KN ¥ be such that K, C E, and K, > v; now take F,11 € X
such that E,y; C K, and pE,+; = K, (212C or 213Fc), and continue. At the end of the induction,
Mnen Kn = Npen En is a member of ¥ N K included in £ and of measure at least . As E and v are
arbitrary, u is inner regular with respect to K. Q
It follows that if i is compact or countably compact, so is u. I Let K be a (countably) compact class
such that f is inner regular with respect to KC; by 451Aa or 451Ac, there is a (countably) compact class K*,
including K, which is closed under countable intersections, so that p is inner regular with respect to ¥,
and is itself (countably) compact. Q

(c)(i)(a) Let f : X — R be S-measurable, and E € 3 such that iE > 0. Then there are a j-conegligible
set Fy € X such that f[Fp is X-measurable (212Fa), and an F} € ¥ such that F; C E and g(E \ Fy) = 0.
Set ' = Fy N Fy. By 451Dc, the subspace measure pup is perfect, while f[F' is ¥ p-measurable; so there is
a compact set K C f[F] such that u(F N f~[K]) > 0. But now K C f[E] and af '[K] > 0. As f and E
are arbitrary, [ is perfect.

(B) Let f: X — R be X-measurable, and E € ¥ such that 4E > 0. Then there is a set F € ¥ such
that puF < oo and fi(F N E) is defined and greater than 0 (213D). In this case, £ and fi induce the same

subspace measure fir on F. Accordingly f[F is $-measurable. Because fi is perfect (by («) just above), so
is fir (451Dc), and there is a compact set K C f[F N E] such that fiz(f]F)~![K] > 0. But now, of course,
K C f[E] and if '[K] > 0. As f and E are arbitrary, fi is perfect.

(ii) Suppose that [ is perfect. Since p = %, p is perfect, by 451Eb.
(iii) Similarly, if fi is perfect and p is semi-finite, then p = X, by 213He, so p is perfect.

451H Lemma Let (X;);c; be a family of sets with product X. Suppose that KC; C PX; for each i € I,
and set K = {m; '[K]:i € I, K € K;}, where 7; : X — X is the coordinate map for each i € I. Then

(a) if every K; is a compact class, so is K;

(b) if every K; is a countably compact class, so is K.

proof (a) For each i € I, let T; be a compact topology on X; such that every member of K; is closed. Then
the product topology ¥ on X is compact (3A3J), and every member of K is T-closed, so K is a compact
class.

(b) If (K, )nen is a sequence in K such that ﬂkgn K, # 0 for every n € N, then we must be able to express
each K, as w;f [Ly], where j,, € I and L,, € K;,, for every n. Now, fori € I, £L; = {Kj, :n €N, j, =i} is
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6 Perfect measures, disintegrations and processes 451H

a countable subset of K;, and any finite subfamily of £; has non-empty intersection. Since Kq # 0, X; # J;
so, whether £; is empty or not, X; N[ £; is non-empty. Accordingly

Nien Ki = [Lie,(Xs NN L)
is not empty. As (K, )nen is arbitrary, K is countably compact.

4511 Theorem Let (X, %, 1) and (Y, T, v) be measure spaces, with c.l.d. product (X x Y, A, )\).
(a) If 1 and v are compact, so is A.

(b) If 4 and v are countably compact, so is A.

(¢c) If p and v are perfect, so is .

proof (a)-(b) Let £ C PX, L C PY be (countably) compact classes such that p is inner regular with
respect to K and v is inner regular with respect to £. Set Mo ={K xY : K € K}U{X xL:L € L}. Then
My is (countably) compact, by 451H. By 451Aa/451Ac, there is a (countably) compact class M D My
which is closed under finite unions and countable intersections. By 412R, A is inner regular with respect to
M, so is (countably) compact.

(c)() Let f: X xY — R be A-measurable, and V' € A a set of positive measure. Then there are G € £,
H € T such that G, vH are both finite and A(V N (G x H)) > 0. Recall that the subspace measure A\gx g
on G x H is just the product of the subspace measures ug and py (251P(ii-«)), and is the completion of its
restriction # to the g-algebra $®Ty generated by {E x F : E € Bg, F € Ty}, where ¢ and Ty are the
subspace o-algebras on G, H respectively, the domains of ug and pgy (251K). Next, for any W € Ye®Ty,
there are countable families £ C X, F C Ty such that W belongs to the o-algebra of subsets of G x H
generated by {E X F: E€ &, F € F} (331Gd).

(ii) The point is that 6 is perfect. * Let A’ be any countably generated o-subalgebra of Ye®Th; let
(Wi )nen be a sequence in A’ generating it. Then there are countable families £ C X, F C Ty such that
every W,, belongs to the o-algebra generated by {E x F': E € £, F € F}. Let &', T" be the o-algebras of
subsets of G and H generated by £ and F respectively; then every W, belongs to ¥'®&T’, so A’ C X'@T".
Let )’ be the product of the measures u[Y’ = pug ¥’ and v[T’. Then ) is the completion of its restriction
to X'QT".

Now trace through the results above. ug and vy are perfect (451Dc), so ug Y and vg T are compact
(451F), so X is compact ((a) of this theorem), so A’ is perfect (342L or 451C again). But 6 must agree with
X on A’, by Fubini’s theorem (252D), or otherwise, so 8] A’ is a restriction of X', and is perfect (451ED).

Thus 0] A’ is perfect for every countably generated o-subalgebra A’ of dom 6. By 451F, 6 is perfect. Q

(iii) By 451G(c-i), Agxm is perfect. Now f]|G x H is measurable, and Agxg(V N (G x H)) > 0, so
there is a compact set K C f[V N (G x H)| such that Agxn ((Gx H)N f~1[K]) > 0; in which case K C f[V]
and A\f~1[K] > 0.

As f and V are arbitary, A is perfect.

451J Theorem Let ((X;,%;, 1;)):cs be a family of probability spaces, with product (X, X, u).
(a) If every p; is compact, so is p.
(b) (MARCZEWSKI 53) If every p; is countably compact, so is p.
(c) If every u; is perfect, so is p.
proof The same strategy as in 4511 is again effective.

(a)-(b) For each i € I, let K; C PX; be a (countably) compact class such that p; is inner regular with
respect to K;. Set Mo = {m; '[K]:i € I, K € K;}, so that My is (countably) compact. Let M O M be
a (countably) compact class which is closed under finite unions and countable intersections. By 412T, u is
inner regular with respect to M, so is (countably) compact.

(c) Let A’ be a countably generated o-subalgebra of ®i€ 124, the o-algebra of subsets of X generated by

the sets {x : z(i) € E} for i € I and F € ¥;. Then A[A’ is perfect. P For every W € ®ielzi’ we must be
able to find countable subsets &; of ¥; such that W is in the o-algebra generated by {m; '[E] :i € I, E € %;};
so there are in fact countable sets & C %; such that the o-algebra generated by {m; '[E] :i € I, E € %;}
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451K Perfect, compact and countably compact measures 7

includes A’. Let T; be the o-subalgebra of ¥; generated by &;, so that u;|T; is compact. Let X be the
product of {u;[T;);cr; then X is compact, by (a) above, therefore perfect. Now X is an extension of X', by
254G or otherwise, so A’ is an extension of A[A’, and A[A’ is perfect. Q As A’ is arbitrary, A[@),;.,;%; is
perfect, and its completion A (254Ff) also is perfect.

Remark This theorem is generalized in 454Ab.

451K The following result is interesting because it can be reached from an unexpectedly weak hypothesis;
it will be useful in §455.

Proposition Let (X;);c; be a family of sets with product X, and ¥; a o-algebra of subsets of X; for each
i. Let A be a perfect totally finite measure with domain ), ;%;. Set 7;(z) = z[J for x € X and J C I.
(a) Let IC be the set {V : V C X, 7;[V] € &, ;% for every J C I'}. Then X is inner regular with respect
to IC.
(b) Let A be the completion of A.
(i

) For any J C I, the completion of the image measure )m}l on [[,c; X; is the image measure 5\7T;1.

i€
(ii) If W is measured by X and W is determined by coordinates in J C I, then there is a V € RicrZi

such that V' C W, V is determined by coordinates in J and W \ V' is A-negligible.

proof (a)(i) Take W € @iel&. Then we can find a family (T;);er such that T; is a countably generated
o-subalgebra of ¥; for each ¢ and W € ®i€IT¢. For each i € I and E € T; set \E = Mz : z € X,
x(i) € E}; then \; is perfect (451Ea). Because T; is countably generated, \; is compact (451F); let /C; be
a compact class such that A; is inner regular with respect to IC;. By 342D, we may suppose that IC; is the
family of closed sets for a compact topology ¥; on X;.

(ii) Let V be the family of all sets V' C X expressible in the form

V= mnEN UieJn{x HEARS Xv x(z) € Km}

where (J,)nen is a sequence of finite subsets of I and K,; € K; N'T; whenever n € N and i € J,,. Given V
expressed in this form, set Vi, = (<, U;c; {7 : 2(i) € Kyi} for each n. Then m;[V] = (), oy ms[Va] for
every J C I. P The product topology T on X is compact, and all the V,, are T-closed. If z € Mnen T [Vals
then for each n € N there is an x,, € V,, such that 7;(z) = z. Let x be a cluster point of (z,)nen. The
topologies are not Hausdorff, so we do not know at once that 7;(z) = z; but if we define 2’ by saying that

2/ (i) = 2(i) if i € J,
=x(i)ifiel\J,
then any neighbourhood U of 2’ must include a neighbourhood of the form {y : y(i) € U; for i € K} where

K C I is finite and Uj; is a neighbourhood of 2/(4) for each ¢ € K. In this case, {y : y € U; for i € K \ J} is
a neighbourhood of z, so

{n:z, €U} D2{n:2,(0) eU; forie K\ J}

is infinite. Thus 2’ also is a cluster point of (z,)nen, while m;(z') = 2. Since ' € {z,, : m >n} CV, for
every n, x € V, and z € ms[V]. Thus [,y 7ms[Va] € 7s[V]. Since surely m;[V] C (), cn77[Va], we have
equality. Q

It follows that V € K. P If J C I and n € N, then V,, belongs to the algebra of subsets of X generated by
sets of the form {z : 2(i) € H} wherei € I and H € ¥;, which we can identify with the free product @),.; £
(315Ma?). This means that V;, can be expressed as a finite union of cylinder sets of the form C' = [],.; H;
where H; € %; for every i and {i : H; # X;} is finite (315Kb?). But in this case 7;[C] is either empty or
[I.c; Hi, and in either case belongs to @

neN

Y. So ms[V,], being a finite union of such sets, also belongs
3;. As J is arbitrary,

icJ
to @, ;2 As this is true for every n € N, 7;[V] = (1, cyy 77[Va] belongs to &
Vek. Q

ic€J

2Formerly 315L.
3Formerly 315J.
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8 Perfect measures, disintegrations and processes 451K

(iii) Observe next that V is closed under finite unions. B If V', V" € V| express them as
V' =Nnen Uiy {z: 2(i) € K,;}

V" = MyenUie sz - x(i) € K73}
where, for each n, J/, J! C I are finite, K], € K,,, N Y; for i € J and K/, € K,,; N %; for i € J/!. For m,
n €N, set Jy, = J,, UJ and
Kpni = K, UK/, ifie J, nJ/!
— K ifieJ, \J"
=K ifie I\ J"
Then
Vinv"” = ﬂm,nEN UiEJmn{x : I(Z) S Kmni} ev. Q

We see also, immediately from its definition, that ) is closed under countable intersections.

(iv) Now consider the family A of sets of the form {z : z(i) € E} wherei € [ and E € T;. If A€ Ais
expressed in this form, then
sup{A\V:V eV, VCA} >sup{\K:KeK,NT;, K CE} =\FE =M)A.

By 412C, A[@ T; is inner regular with respect to V. In particular, returning to our original set W,

W =sup{A\V: VeV, VCW}=sup{A\K: K ek, KCW}.

el

As W is arbitrary, A is inner regular with respect to .

(b)(i) Write A; = A" and Ay for its completion. Since 7y : X — [Lics
preserving for A and Ay, it is inverse-measure-preserving for A and Ay (234Ba%), that is, 5\71';1 extends \j.

X s is inverse-measure-

Now suppose that V is measured by 5\7r;1. Since A is inner regular with respect to K, so is A (412Ha again),
SO

5\71';1[‘/] =sup{\K : K € K, K C n;'[V]}
< sup{/\ﬂ'jl[ﬂj[K]] K ek, KC ﬂ'jl[V]}

< sup{\;![F]: F e ®m2i’ FCV}.

As V is arbitrary, A7 ' is inner regular with respect to @ie ;% By 412Mb (or otherwise), A7, = A.
(i) Because 75 [w;[W]] = W, m,[W] is measured by Aw;' = A;. So there is a V' C m;[W], measured
by Aj, such that

0= As(m W\ V') = AW \ 7' [V')),

and we can take V = 7' [V'].

*451L The next result is sometimes useful, as a fractionally weaker sufficient condition for compactness
or countable compactness of a measure.

Proposition (BORODULIN-NADZIEJA & PLEBANEK 05) Let (X,X,p) be a strictly localizable measure
space. Let us say that a family & C ¥ is u-centered if u([ &) > 0 for every non-empty finite & C €.

(i) Suppose that p is inner regular with respect to some K C X such that every p-centered subset of K
has non-empty intersection. Then p is compact.

(ii) Suppose that p is inner regular with respect to some K C ¥ such that every countable u-centered
subset of K has non-empty intersection. Then p is countably compact.

4Formerly 235Hc.
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451P Perfect, compact and countably compact measures 9

proof I take the two arguments together, as follows. The case pX = 0 is trivial; suppose henceforth that
uX > 0. Let i1 be the completion of p. Then fi is still strictly localizable (212Gb) so has a lifting ¢ : ¥ — ¥
(341K). Let K1 be the set of all those K € ¥ for which there is some sequence (K, )nen in K such that

K = Npen Kn € Npen 0Kn-

Then p is inner regular with respect to ;. I Suppose that £ € ¥ and 0 < v < pFE. Because p is semi-finite,
there is an F' € ¥ such that /' C F and v < puF < oo. Choose (K, )nen in K inductively, as follows. Ky
is to be such that Ko C F and uKy > 7. Given that pK, > v, then (K, N ¢K,) = pK, > v; also [i is
inner regular with respect to K (412Ha once more), so there is a K, 41 € K such that K,,11 C K, N ¢K,
and puK,41 = (1K1 > . Continue. At the end of the induction,

K= mnGN K’ﬂ < ﬂnGN ¢Kn

belongs to Ky, is included in E and has measure at least v. Q

Now K is (countably) compact. I Let K’ C K; be a [countable] set with the finite intersection property.
For each K € K', let £k C K be a countable set such that K = (&g C ({oE : E € Ex}iset £ = Ugex Ek-
If & C & is finite and not empty, then ¢((\ &) = geg, L includes the intersection of a finite subfamily
of K’, so is not empty, and u(( &) = (o) is non-zero. Thus £ C K is a [countable] p-centered set and
must have non-empty intersection. But now (K’ = (€ is non-empty. As K’ is arbitrary, K; is (countably)
compact. Q

So K; witnesses that u is (countably) compact, as claimed.

451M The following is one of the basic ways in which we can find ourselves with a compact measure.

Proposition Let (X,X) be a standard Borel space. Then any semi-finite measure p with domain ¥ is
compact, therefore perfect.

proof If ¥ is a Polish topology on X with respect to which X is the Borel o-algebra, then p is inner regular
with respect to the family K of -compact sets (433Ca), which is a compact class.

451N Proposition Let (X, X, u) be a perfect measure space and T a Ty topology on X with a countable
network consisting of measurable sets. (For instance, p might be a topological measure on a regular space
with a countable network (4A2Ng), or a second-countable space. In particular, X might be a separable
metrizable space.) Then p is inner regular with respect to the compact sets.

proof This is a refinement of 343K. Let (F,)nen be a sequence in ¥ running over a network for €. Define
g:X — R by setting g = Y- ;3 "xH, (cf. 343E). Then g is measurable, because every xE, is. Writing
ap = ,c;3 " for I CN, and

H, = Ulgn]&] + %37n,(11 + 3+l [,

we see that E, = g~ ![H,] for each n € N. This shows that g is injective, because if =, y are distinct points
in X there is an open set containing one but not the other, and now there is an n € N such that F,, contains
that one and not the other, so that just one of g(x), g(y) belongs to H,,. Also g=': g[X] — X is continuous,
since (¢~ 1) [E,] = g[E.] = H, N g[X] is relatively open in g[X] for every n € N (4A2B(a-ii)).

Now suppose that F € ¥ and uFE > 0. Then there is a compact set K C g[E] such that ug=1[K] > 0.
But as g is injective, g7![K] C E, and as g~ is continuous, g~ ![K] is compact. By 412B, this is enough to
show that p is inner regular with respect to the compact sets.

4510 Corollary Let (X, 3, 1) be a complete perfect measure space, Y a Hausdorff space with a countable
network consisting of Borel sets and f : X — Y a measurable function. If the image measure puf ! is locally
finite, it is a Radon measure.

proof Because f is measurable, 1f ! is a topological measure; by 451Ea, it is perfect; by 451N, it is tight;
and it is complete because u is. Because Y has a countable network, it is Lindelof (4A2Nb), and puf~! is
o-finite (411Ge), therefore locally determined. So it is a Radon measure.

451P Corollary Let (X, X, ) be a perfect measure space, Y a separable metrizable space, and f : X — Y
a measurable function.
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10 Perfect measures, disintegrations and processes 451P

(a) If E € ¥ and v < uF, there is a compact set K C f[E] such that u(E N f71[K]) > 7.
(b) If v = puf~! is the image measure, then y,f~![B] = v.B for every BC Y.
(c) If moreover p is o-finite, then u*f~1[B] = v*B for every B C Y.

proof (a) Consider the subspace measure g, the measurable function f|E from E to the separable metriz-
able space f[E], and the image measure v’ = ug(f|E)~! on f[E]. By 451Dc, 451Ea and 451N, this is tight,
while v/ f[E] = pE; so there is a compact set K C f[E] such that 'K >+, and this serves.

(b)() If F € domv and F C B, then
vEF = pf HF] < p f7HBY;

as F' is arbitrary, p. f~1[B] > v.B. (ii) If E € ¥ and £ C f~![B] and v < uFE, then (a) tells us that there
is a compact set K C f[E] such that u(E N f~[K]) > ~, in which case

v B> vK > 7.
As E and v are arbitrary, v, B > . f1[B].
(c)() If F € domv and F D B, then
vE = pf U F] > f1[B];

as F is arbitrary, p*f~}[B] < v*B. (ii) If u*f~![B] = oo, then of course pu*f~1[B] = v*B. Otherwise,
because p is o-finite, we can find a disjoint sequence (E,, ) en of subsets of X of finite measure, covering X,
such that Ey O f~![B] and uEo = p* f~}[B]. Let € > 0. For each n > 1, (a) tells us that there is a compact
set K,, C f[E,] such that uf~'[E, \ K,] <2 ". Set H=Y \,~, K,; then vH < uE +¢€, and B C H.
So

vV'B<vH < pE+e=p*f1[B] +e.
As € is arbitrary, v*B < p* f~1[B].

451Q I turn now to a remarkable extension of the idea above to general metric spaces Y.

Lemma Let (X, 1) be a semi-finite compact measure space, and (E;);c; a disjoint family of subsets of
X such that | ;o ; Es € ¥ for every J C I. Then pu(U,;c; Ei) = D cr nEi.

proof (a) To begin with (down to the end of part (d) of the proof) assume that p is complete and totally
finite and that every Fj; is negligible. Set Xy = UZ-e ;1 E;, and let pg be the subspace measure on Xj.
Define f : Xo — I by setting f(x) =i if i € I, x € E;, and let v be the image measure uof~!, so that
vJ = p(U,es Es) for J C I; then (I,P1,v) is a totally finite measure space.

(b) v is purely atomic. P? Suppose, if possible, otherwise; that there is a K C I such that vK > 0
and the subspace measure v|PK is atomless. In this case there is an inverse-measure-preserving function
g: K — [0,7], where v = vK and [0,~] is given Lebesgue measure (343Cc); write A for Lebesgue measure
on [0,7]. Set X1 = f7'[K] = U,cx Es and let p; be the subspace measure on X;. Now gf : X1 — [0,7]
is inverse-measure-preserving for p; and A. Because p is compact, so is g1 (451Da), so p; is perfect (342L
or 451C once more). By 4510, the image measure \; = u;(gf)~! is a Radon measure. But A\; must be an
extension of Lebesgue measure A, because gf is inverse-measure-preserving for p; and A, and Ay and A must
agree on all compact sets. By 416E(b-ii), A; and A are identical, and, in particular, have the same domains.
Now for any set A C [0,7], (¢9f) '[A] = U, Bi € B, where J = g '[A] C I; so A € dom A\; = dom A. But
we know from 134D or 4191 that not every subset of [0,7] can be Lebesgue measurable. XQ

(c) But v is also atomless. P? Suppose, if possible, that M C I is an atom for v. Set vy = vM =
N(UiEM Ei)’
F={F:FCM,v(M\F)=0}
Because vF is defined for every FF C M, and M is an atom, F is an ultrafilter on M; and because v is
countably additive, the intersection of any sequence in F belongs to F, that is, F is wi-complete (definition:
4A1Ib). Also F must be non-principal, because we are supposing that v{i} = 0 for every i € M. By 4A1K,

there are a regular uncountable cardinal x and a function h : M —  such that the image filter H = h[[F]]
is normal.
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451R Perfect, compact and countably compact measures 11

For each £ < k, K\ & € H, so
Ge=(h) ' r\E]=U{Ei :h(i) 2§} €5, pGe=vh~l[x\ ¢ =7>0.
At this point I apply the full strength of the hypothesis that p is a compact measure. Let K C ¥ be a
compact class such that p is inner regular with respect to K, and for each { < x choose K¢ € K such that
K¢ C Ge and pKe > %’y. Let S C [5]<% be the family of those finite sets L C x such that ﬂfeL K¢ = 0.
Because H is a normal ultrafilter, there is an H € H such that, for every n € N, [H]™ is either a subset of
S or disjoint from S (4A1L).

If we look at {G¢ : £ € H}, we see that it has empty intersection, because h(f(z)) > & for every x € G,
and sup H = k. So ﬂgeH K¢ = 0. Because all the K¢ belong to the compact class K, there must be a finite
set Lo C H such that (.., K¢ =0, that is, Lo € S. But this means that [H]" NS # 0, where n = #(Lo),
so that [H]™ C S, by the choice of H. However, H is surely infinite, so we can find distinct &,... , &2, in
H. If we now look at Kg,...,Kg,,, we see that #({i: i < 2n, x € K¢, }) < n for every z € X, so

n n 1
Z?:O xKe, < (n —1)xGo, Z?:O fXK& 2 57(271 +1),
which is impossible, because uGoy = v. XQ

(d) Thus v is simultaneously atomless and purely atomic, which means that vI = 0, that is, that
M(Uie] Ej)=0= Zie] BE;.

(e) Now let us return to the general case. Of course

Zie[ pE; = SUD yCT is finite ZieJ pE; < N(Uiel E;).

7 Suppose, if possible, that >, ; uFE; < u(U,c; £i). Because p is semi-finite, there is a set F' C J,o; Es
such that ), ., uF; < uF < oo. Set L = {i:i € I, uF; > 0}; then L must be countable, so u(J;c; Es) =
Yicg B < pF, and puG > 0, where G = F \ U,c, Bi. Set Ej = G N E; for every i € I, and let fig
be the completion of the subspace measure pg on G. Then jig is compact (451Da, 451G(a-1)) and totally
finite, agE; = 0 for every i € I, |J,c; Ef = G N J,c; Es is measured by fig for every J C I, every Ej is
fig-negligible, but fiq(U;c; £i) = pG is not zero; which contradicts the result of (a)-(d) above. X

So Y icr B = (U, Ei), as required.

451R Lemma Let (X,X, ) be a totally finite compact measure space, ¥ a metrizable space, and
f: X — Y ameasurable function. Then there is a closed separable subspace Yy of Y such that f=1[Y \ Y]
is negligible.

proof (a) (Cf. 438D.) By 4A2L(g-ii), there is a o-disjoint base U for the topology of Y. Express U as
Unen Un where U, is disjoint for each n. Then (f ' [U])vey, is disjoint, so 3¢, pf U] < pX is finite,
and V,, = {V : V € Uy, puf~1[V] > 0} is countable for each n.
If W C U, \ V,, then
M(UUeW f_l[U]) = f_l[U W]
is measurable. By 451Q,
Mf_l[U(un \ V)] = P‘(UUeun\vn f_l[U]) = ZUGL{TL\V" Mf_l[U} =0.
Set
V=UpenVn, Yo=Y \UU\V).
Then Yj is closed, and
FHYNY) € Uper /7 H U@ \ Vi)

is negligible, so f~1[Yy] is conegligible. On the other hand, Yj is separable. P Because U is a base for the
topology of X, {Y NU : U € U} is a base for the topology of Y (4A2B(a-vi)). But this is included in the
countable family {Y NV : V € V} U {0}, so Y is second-countable, therefore separable (4A20c¢). Q

So we have found an appropriate Y.
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451S Proposition Let (X, X, ) be a semi-finite compact measure space, Y a metrizable space and
f: X — Y a measurable function.

(a) The image measure v = puf~! is tight.

(b) If v is locally finite and p is complete and locally determined, v is a Radon measure.

proof (a) Take F C Y such that vF > 0. Then puf~[F] > 0. Because u is semi-finite, there is an £ € %
such that E C f~![F] and 0 < uFE < oo.

Consider the subspace measure pug and the restriction f[E. pg is a totally finite compact measure
and f[FE is measurable, so 451R tells us that there is a closed separable subspace Yy C Y such that
w(E\ f7HYs]) = 0. Set By = EN f~1[Yp], so that uF; > 0. Again, the subspace measure g, is a totally
finite compact measure, therefore perfect, while f[E;] C Yy. So the image measure ug, (f[E1)~! on Y is
perfect (451Ea), therefore tight (451N), and there is a compact set K C YoNF such that vK = puf~1[K] > 0.
By 412B, this is enough to show that v is tight.

(b) v is complete because p is. Now suppose that H C Y is such that H N F belongs to the domain T
of v whenever uF < oo. In this case y is inner regular with respect to £ = {E: E € ¥, EN f~[H] € ©}.
P Suppose that £ € ¥ and that uE > 0. Applying (a) to ug and f[FE, there is a compact set K C f[FE]
such that pf~1[K] > 0. Now vK < oo, because v is locally finite, so KN H € T and f~}[K]N f~1[H] € X.
Thus f~![K] is a non-negligible member of £ included in E. Since £ is closed under finite unions, this is
enough to show that u is inner regular with respect to £. Q

Accordingly f~1[H] € 3, by 412Ja. As H is arbitrary, v is locally determined, therefore a Radon measure.

451T Theorem (FREMLIN 81, KOUMOULLIS & PRIKRY 83) Let (X, %, X, 1) be a Radon measure space
and Y a metrizable space. Then a function f : X — Y is measurable iff it is almost continuous.

proof If f is almost continuous it is surely measurable, by 418E. Now suppose that f is measurable and
that £ € ¥ and v < uFE. Let Fy C F be such that Ey € ¥ and v < uFy < oco. Applying 451R to the
subspace measure pp, and the restricted function f[Ep, we see that there is a closed separable subspace
Yy of Y such that u(Ep \ f~[Yo]) = 0. Set By = Eg N f~1[Yo]; then pEy > v. Applying 418] to pug, and
fIFEy: E1 — Yy, we can find a measurable set F' C Fy such that f[F is continuous and pF > . As E and
~ are arbitrary, f is almost continuous.

451U Example (VINOKUROV & MAKHKAMOV 73, MUSIAL 76) There is a perfect completion regular
quasi-Radon probability space which is not countably compact.

proof (a) Let Q2 be the set of non-zero countable limit ordinals. For each £ € §, let (0¢(n))nen be a strictly
increasing sequence in £ with supremum &, and set

Qe ={z: 2 € {0,1}*1, 2(0s(n)) = 0 for every n € N}.
Write
X ={0, 11" \ Ugeq Q-

Let v, be the usual measure on {0,1}**, and Ty, its domain; let & be the subspace measure on X, and
¥ = dom p.

(b) It is convenient to note immediately the following fact: for every countable set J C wy, the set 7;[X]
is conegligible in {0,1}”, where 7;(z) = x| J for z € {0,1}*1. P Set

A={£:£€Q,0:(n) € J for every n € N}
Then A is countable, because & < sup J for every £ € A. So
D =Ueealy:y € {0, 1}, y(0¢(n)) = 0 for every n € N}

is negligible in {0,1}”, being a countable union of negligible sets. If y € {0,1}’ \ D, define = € {0,1}** by
setting x(n) = y(n) for n € J, x(n) = 1 for n € wy \ J. Then = ¢ Q¢ for any £ € A, because z[J = y[J,
while z ¢ Q¢ for any £ € Q\ A by the definition of A. So x € X. As y is arbitrary, 7;[X] 2 {0,1}/ \ D is
conegligible. Q
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(c) p is a completion regular quasi-Radon measure because v, is (415E, 415B, 412Pd). Also uX =1. P
Let F € T, be a measurable envelope for X. Then there is a countable J C w; such that v m;[F] is defined
and equal to v, F' (2540d), where v; is the usual measure on {0,1}”. But we know that v;m;[X] = 1, so

pX =i X =v, F=vm;FF=1 Q

(d) p is perfect. P Take E € ¥ such that uE > 0, and a measurable function f : F — R. Set

fi(z) = 1-{|§‘I()a:)| for x € E, 1 for x € X \ E; then f; : X — R is measurable. Let g : {0,1}** — R

be a measurable function extending f;. By 254Pb, there are a countable set J C wi, a conegligible set
W C {0,1}7, and a measurable h : W — R such that g extends hm;. By (b), W' = W N m;[X] is
conegligible, while W” = {z : z € W', hi(z) < 1} is measurable and not negligible. Because W" is a
non-negligible measurable subset of the perfect measure space {0,1}”, there is a compact set K; C h[W"|

such that v;h~[K;] > 0. Set K = 1%|t| 1t € K1}; then K is compact, and we have

Ky Ch[W"] = h[W N[ X]]N]=00,1[ C g[X] N]—o00,1[ = fi[X] N]—o0,1[ = fi[E],

K C f[E],
while f1, g and hr; all agree on the p-conegligible set X N W}l[W], SO

pf THE] = pfrE] = (X0 () THEGD)
= v, (X 0 (hy) THEL]) = vy (b)) ™[]
(because v X =1 and (hm;)~![K;] is measurable)
= vyh K] > 0.

As f is arbitrary, p is perfect. Q

(e) ? Suppose, if possible, that p is countably compact. Let K be a countably compact class of sets such
that p is inner regular with respect to K; we may suppose that  C 3.

(i) For I C w; set
UlI)={z:z€ X, x(n) =0 for every n € I}.

It will be helpful to know that if £ € ¥ and uE > 0, there is a v < wy such that u(ENU(I)) > 0 for
every finite I C wy \ 7. P Express E as X N F where F € T,,. Let J C w; be a countable set such that
Ve, (F'\ F) = 0, where F' = 7, [r;[F]] (2540d again), and v < w; such that J C ~. If I C w; \ v is finite,
then I NJ = (), while U(I) is determined by coordinates in I and F” is determined by coordinates in J; so

WENUI)) = v, (X N FAU)) = v, (FAU(D))
=vy,(F'NU)) = v F' v, UI) = puE v, U(I) > 0.
Thus this v serves. Q

(ii) Let M be the family of countable subsets M of w; U K such that
(o) if I € M Nwy is finite there is a K € M N K such that K C U(I) and pK > 0;
(BYf Ke MNK, IC MNuw, is finite and p(K NU(I)) > 0, then there is a K’ € M N K such
that K/ C KNU(I) and pK' > 0;
(v) if vy € M Nwy then v C M;
(0) it K € MNK and pK > 0 then there is a v € M Nw;y such that (K NU(I)) > 0 whenever
I Cwi \ 7 is finite.
Then every countable M C w; U K is included in some member M’ of M.
P Choose (Np)nen as follows. Ny = M. Given that N, is a countable subset of wy U K then let
Ny,+1 Cwi UK be a countable set such that
(a) if I C N, Nwy is finite there is a K € N, 11 N K such that K C U(J) and pK > 0;
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(8)if K e N,NK, IC N,Nuws is finite and p(K NU(I)) > 0, then thereis a K' € Ny1 NK
such that K’ C K NU(I) and pK' > 0;

(v) if vy € N, Nwy then v C Ny

(6) if K € N,NK and pK > 0 then there is a v € N,11 Nwy such that u(K NU(I)) > 0
whenever I C wy \ 7 is finite;

(6) Nn g Nn+1~
On completing the induction, set M’ =
of some N,,). Q

(iii) Choose a sequence (M, )nen in M such that, for each n, M, U {sup(M,, Nwy) + 1} C M, 1. Set
Yn = sup(M,, Nwy) for each n. Note that -, C M,, because if 1 < 7,, then there is some £ € M,, such that
n < & now & C M, because M,, € M, son € M. Also v, +1 € M, for each n, so (y,)nen is strictly
increasing, and § = sup,,cy Yn belongs to Q.

Set J = {0¢(n) : n € N}. Then J Nn is finite for every n < &, and in particular J N+, is finite for every
n. Set Ip = J N~y and I,, = J Ny, \ Y1 for n > 1. Then (), U(In) = Q¢ is disjoint from X.

Choose a sequence (K, )pen in K as follows. Because I is a finite subset of MyNws, thereis a Ky € MyNK
such that Ko C U(lp) and pKy > 0. Given that K,, € M,,NK and pK,, > 0, then there is a § € M,,Nw; such
that u(K, NU(I)) > 0 for every finite I C wy \ B; now 8 <, and I,11 Ny, =0, so (K, NU(Ly41)) > 0.
But K,, € M, +1 NK and I,,4; is a finite subset of M, 1 Nwi, so there is a K,,+1 € M,+1 N K such that
Kpi1 CK,NU(Ip41) and pK, 1 > 0. Continue.

In this way we find a non-increasing sequence (K, )nen in K such that K,, C U(I,) for every n and no
K, is empty. But in this case ,., K; = K, is non-empty for every n, while (), .y Kn € X N,y U(1n)
is empty. So K is not a countably compact class. X

nen Nnj this serves (because every finite subset of M’ is a subset

(f) Thus p is not countably compact, and has all the properties claimed.

*451V Weakly o-favourable spaces There is an interesting variation on the concept of ‘countably
compact’ measure space, as follows. For any measure space (X, %, u) we can imagine an infinite game for
two players, whom I will call ‘Empty’ and ‘Nonemepty’. Empty chooses a non-negligible measurable set Fy;
Nonempty chooses a non-negligible measurable set Fy C Ey; Empty chooses a non-negligible measurable set
E; C Fy; Nonempty chooses a non-negligible measurable set F; C Fy, and so on. At the end of the game,
Empty wins if (), ey En = (,en Fr is empty; otherwise Nonempty wins. (If uX = 0, so that Empty has no
legal initial move, I declare Nonempty the winner by default.) If you have seen ‘Banach-Mazur’ games, you
will recognise this as a similar construction, in which open sets are replaced by non-negligible measurable
sets.

A strategy for Nonempty is a rule to determine his moves in terms of the preceding moves for Empty;
that is, a function o : [J,on(2 \ NV)"*t — X\ N, where N is the ideal of negligible sets, such that
o(Fo, FE1,...,E,) C E,, at least whenever Fy,... ,FE, € X\ N are such that Exy1 C o(Fo,...,Fy) for
every k < n; since it never matters what Nonempty does if Empty has already broken the rules, we usually
just demand that o(Ey, ... , E,) C E, for all Ey, ... ,E, € ¥\N. 0 is a winning strategy if (", En #
whenever (E,)nen is a sequence in X \ N such that F, 1 C o(Fo,...,FE,) for every n € N. In terms of
the game, we interpret this as saying that Nonempty will win if he plays F,, = o(Ey,... ,F,) whenever
faced with the position (Ey, Fy, F1, F1,...,F,_1,Ey,). (Since it is supposed that Nonempty will use the
same strategy throughout the game, the moves Fy,... , F,_1 are determined by Ey,... , F,_1 and there is
no advantage in taking them separately into account when choosing Fi,.)

Now we say that the measure space (X, 3, u) is weakly a-favourable if there is such a winning strategy
for Nonempty.

It turns out that the class of weakly a-favourable spaces behaves in much the same way as the class of
countably compact spaces. For the moment, however, I leave the details to the exercises (451Yh-451Yr).
See FREMLIN 00.

451X Basic exercises (a) (i) Show that any purely atomic measure space is perfect. (ii) Show that any
strictly localizable purely atomic measure space is countably compact. (iii) Show that the space of 342N is
not countably compact.
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>(b) Show that a compact measure space in which singleton sets are negligible is atomless.

>(c) Let (X, %, 1) be a measure space, and v an indefinite-integral measure over p (234J5). Show that v
is compact, or countably compact, or perfect if y is.

(d) In 413Xn, show that u is a countably compact measure. (Hint: show that the algebra 3 there is a
countably compact class.)

(e) Let ((X;, X4, 1i))ier be a family of measure spaces, with direct sum (X, ¥, ). Show that p is compact,
or countably compact, or perfect iff every p; is.

(f) Let (X,X, ) be a measure space and K a family of subsets of X such that whenever E € ¥ and
wE > 0 there is a K € K such that K C E and pu.K > 0. (i) Show that if K is a compact class then u is a
compact measure. (ii) Show that if I is a countably compact class then u is a countably compact measure.

(g) Let (X, X, ) be a measure space. For A C X, write puy for the subspace measure on A. Suppose
that whenever £ € ¥ and uFE > 0 there is a set A C X such that pu4 is perfect and p*(AN E) > 0. Show
that p is perfect.

(h)(i) Give an example of a compact probability space (X,Y, ) and a o-subalgebra T of ¥ such that
[T is not compact. (ii) Give an example of a compact probability space (X, 3, ), a set Y and a function
f: X — Y such that the image measure pf ! is not compact. (Hint: 342M, 342Xf, 439Xa.)

(1) Let (X;);er be a family of sets, with product X. Suppose that K; C PX; for each i, and set
K = {Il;c; Ki : K; € K; for each i}. (i) Show that if K; is a compact class for each i, so is K. (ii) Show
that if IC; is a countably compact class for each 4, so is K.

(j) Let A C [0, 1] be a set with outer Lebesgue measure 1 and inner measure 0. Show that there is a Borel
measure A on A x [0,1] such that A is not inner regular with respect to sets which have Borel measurable
projections on the factor spaces.

(k) Let X be a Polish space and E a subset of X. Show that the following are equiveridical: (i) F
is universally measurable; (ii) every Borel probability measure on F is perfect; (iii) every o-finite Borel
measure on E is compact.

(1) In 451N, show that u is a compact measure.

(m) Find a Radon measure space (X, %, 3, i), a continuous function f: X — [0,1] and a set B C [0, 1]
such that p*(f~1[B]) < (nf~1)*B.

(n) Let (X, X, 1) be a o-finite measure space. Show that it is perfect iff whenever f : X — R is measurable
there is a K, set H C f[X] such that f~![H] is conegligible.

(o) Let X be a metrizable space, and p a semi-finite topological measure on X which (regarded as a
measure) is compact. Show that p is 7-additive.

(p) Let (X,X,u) be a compact strictly localizable measure space (e.g., any Radon measure space),
(Y, T,v) a o-finite measure space, and f : X — L%(v) a function. Show that the following are equiveridical:
(i) f is measurable, when L%(v) is given its topology of convergence in measure; (ii) there is a function
h € L£L°(X\), where ) is the c.l.d. product measure on X x Y, such that f(z) = h% for almost every = € X,
where h,(y) = h(z,y). (Hint: 418R.)

>(q) Let (X,%,%,u) be a Radon measure space. Show that ¥ = PX iff y is purely atomic. (Hint: if
¥ =PX, apply 451T with Y = X, the discrete topology on Y and the identity function from X to Y.)

5Formerly 234B.
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16 Perfect measures, disintegrations and processes 451Xr

(r) Let (X,%,%, 1) be a Radon measure space and U a normed space. Show that if f, g : X — U are
measurable functions, then f + g is measurable. (Cf. 418Xk.)

(s) Show that in all three of the constructions of 439A, the measure v is countably compact. (Hint: for
the ‘third construction’, consider {f~1[F]: F C {0,1}° is a zero set}.)

451Y Further exercises (a) Show that for any probability space (X, X, i), there is a compact proba-
bility space (Y, T, v) with a subspace isomorphic to (X, ¥, ).

(b) Let (X;)ier be a family of sets, and ¥; a o-algebra of subsets of X; for each i. Suppose that for
each finite J C I we are given a finitely additive functional v; on X; = [[;c; Xi, with domain the algebra
T; = @,cs Zi generated by sets of the form {z : x € X, x(i) € E} fori € J, £ € %;, and that («)
vi{r i v € Xk, x[J € W} = v;W whenever J C K € [[]<¥ and W € T (8) i = vy is a countably
compact probability measure for every ¢ € I. Show that there is a countably compact measure y on X = X
such that p{z : z € X, z|J € W} = v;W whenever J € [I]<% and W € T;. (Hint: 454D.) (Compare
418M.)

(¢) Describe p in the case of 451Yb in which T = [0,1], X; = [0,1] \ {¢}, X; is the algebra of Lebesgue
measurable subsets of X;, and vy E = pup{t: zy € E} for every E € ), ; X;, where z5(i) =t for i € J,
t € [0,1]. Contrast this with the difficulty encountered in 418Xx.

icJ

(d) Let (X, X, ) be a semi-finite compact measure space, and (F;);cr a point-finite family of measurable
subsets of X such that (J,c; F:i € ¥ for every J C I. Show that pu(U;c; Ei) = sup ey is finite #(U;c s Ei)-
(Hint: 438Ya.)

(e) Let X be a hereditarily metacompact space, and p a semi-finite topological measure on X which
(regarded as a measure) is compact. Show that u is T-additive.

(f) Let (X, X%, 1) be a compact measure space, V' a Banach space and f : X — V a measurable function
such that ||f|| : X — [0, 00[ is integrable. Show that f is Bochner integrable (253YT).

(g) Let (X, %, %, 1) be a Radon measure space. Suppose that Y is a separable metrizable space and Z is a
metrizable space, and that f: X XY — Z is a function such that x — f(x,y) is measurable for every y € Y’

and y — f(x,y) is continuous for every x € X. Show that u is inner regular with respect to {F : FF C X,
fIF xY is continuous}. (Hint: 418Yk.)

(h) Show that any purely atomic measure space is weakly a-favourable, so that the space of 342N is
weakly a-favourable but not countably compact.

(i) Show that the direct sum of a family of weakly a-favourable measure spaces is weakly a-favourable.
(j) Show that an indefinite-integral measure over a weakly a-favourable measure is weakly a-favourable.

(k) (i) Show that a countably compact measure space is weakly a-favourable. (ii) Show that a semi-finite
weakly a-favourable measure space is perfect.

(1) Show that any measurable subspace of a weakly a-favourable measure space is weakly a-favourable.

(m) Let (X,X%,u) be a weakly a-favourable measure space, (Y, T,v) a semi-finite measure space, and
f: X =Y a (3, T)-measurable function such that f~![F] is negligible whenever F' C Y is negligible. Show
that (Y, T,v) is weakly a-favourable.

(n)(i) Show that a measure space is weakly a-favourable iff its completion is weakly a-favourable. (ii)
Show that a semi-finite measure space is weakly a-favourable iff its c.l.d. version is weakly a-favourable.

(o) Show that the c.l.d. product of two weakly a-favourable measure spaces is weakly a-favourable.
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(p) Show that the product of any family of weakly a-favourable probability measures is weakly a-
favourable.

(q) Show that the space of 451U is not weakly a-favourable.

(r) Let (X, X, 1) be a complete locally determined measure space and ¢ a lower density for 4 such that

¢X = X; let T be the corresponding density topology (414P). Show that (X, X, i) is weakly a-favourable
iff (X, %) is weakly a-favourable (definition: 4A2A).

(s) Let X be a set, and (i;)ies a family of weakly a-favourable measures on X with sum p (234G°).
Show that if p is semi-finite, it is weakly a-favourable.

(t) Let X and Y be locally compact Hausdorff groups and ¢ : X — Y a group homomorphism which
is Haar measurable in the sense of 411L, that is, ¢~ ![H] is Haar measurable for every open H C Y. Show
that ¢ is continuous.

(u) Let p be a quasi-Radon measure on the Sorgenfrey line (415Xc). Show that p is weakly a-favourable.

451 Notes and comments For a useful survey of results on countably compact and perfect measures, with
historical notes, see RAMACHANDRAN 02.

The concepts of ‘compact’, ‘countably compact’ and ‘perfect’ measure space can all be regarded as at-
tempts to understand and classify the special properties of Lebesgue measure on [0, 1], regarded as a measure
space. Because a countably separated perfect probability space is very nearly isomorphic to Lebesgue mea-
sure (451Ad), we can think of a perfect measure space as one in which the countably-generated o-subalgebras
look like Lebesgue measure (451F). The arguments of 4511c and 451Jc already hint at the kind of results we
can hope for. When we form a product measure, each measurable set in the product will depend, in effect,
on sequences of measurable sets in the factors, and therefore can be studied in terms of countably generated
subalgebras; so that many results about products of perfect measures will be derivable, if we wish to take
that route, from results about products of copies of Lebesgue measure. Of course my normal approach in
this treatise is to go straight for the general result; but like anyone else I often start from a picture based on
the familiar special case. In the next section we shall have some theorems for which countable compactness,
rather than perfectness, seems to be the relevant property.

The first half of the section (down to 451P) is essentially a matter of tidying up the theory of compact and
perfect measures, and showing that the same ideas will cover the new class of countably compact measures.
(You may like to go back to 342G, in which I worked through the basic properties of compact measures,
and contrast the arguments used there with the slightly more sophisticated ones above.) In 451Q-451T
I enter new territory, showing that for compact measures (and therefore for Radon measures) the theory
of measurable functions into metric spaces is particularly simple, without making any assumptions about
measure-free cardinals.

Version of 6.11.08

452 Integration and disintegration of measures

A standard method of defining measures is through a formula
pE = f:“yEV(dy)

where (Y, T,v) is a measure space and (i1,)ycy is a family of measures on another set X. In practice these
constructions commonly involve technical problems concerning the domain of i (as in 452Xi), which is why
I have hardly used them so far in this treatise. There are not-quite-trivial examples in 417Yb, 434R and
436F, and the indefinite-integral measures of §234 can also be expressed in this way (452Xf); for a case in
which this approach is worked out fully, see 453N. But when a formula of this kind is valid, as in Fubini’s
theorem, it is likely to be so useful that it dominates further investigation of the topic. In this section I
give one of the two most important theorems guaranteeing the existence of appropriate families (fy)ycy

SFormerly 112Ya.
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18 Perfect measures, disintegrations and processes 8452 intro.

when p and v are given (4521); the other will follow in the next section (453K). They both suppose that we
are provided with a suitable function f : X — Y, and rely heavily on the Lifting Theorem (§341) and on
considerations of inner regularity from Chapter 41.

The formal definition of a ‘disintegration’ (which is nearly the same thing as a ‘regular conditional
probability’) is in 452E. The main theorem depends, for its full generality, on the concept of ‘countably
compact measure’ (451B). It can be strengthened when f is actually a Radon measure (4520).

The greater part of the section is concerned with general disintegrations, in which the measures p, are
supposed to be measures on X and are not necessarily related to any particular structure on X. However
a natural, and obviously important, class of applications has X =Y x Z and each p, based on the section
{y} x Z, so that it can be regarded as a measure on Z. Mostly there is very little more to be said in this
case (see 452B-452D); but in 452M we find that there is an interesting variation in the way that countable
compactness can be used.

452A Lemma Let (Y, T,v) be a measure space, X a set, and (i,)ycy a family of measures on X. Let
A be the family of subsets A of X such that F = [ u, Ev(dy) is defined in R. Suppose that X € A.

(a) A is a Dynkin class.

(b) If ¥ is any o-subalgebra of A then p = #X is a measure on X.

(c) Suppose now that every p, is complete. If, in (b), fi is the completion of y and ¥ its domain, then
SCAand 4 =013

proof For (a) and (b), we have only to look at the definitions of ‘Dynkin class’ and ‘measure’ and apply the
elementary properties of the integral. For (c), if E € ¥, then there are E/, E” € ¥ such that B/ C E C E”
and 0E' = OE". So pyE" = p,E" for v-almost every y; since all the 1, are supposed to be complete, j, E
is defined and equal to p,E’ for almost every y, and §F is defined and equal to 0E' = pE' = jE.

452B Theorem (a) Let X be a set, (Y, T,v) a measure space, and (i,)yecy a family of measures on

X such that [ p, X v(dy) is defined and finite. Let € be a family of subsets of X, closed under finite
intersections, such that [ p, E v(dy) is defined in R for every E € £.

(i) If ¥ is the o-algebra of subsets of X generated by £, we have a totally finite measure p on X, with
domain ¥, given by the formula uE = [ p,Ev(dy) for every E € X.

(ii) If i is the completion of p and % its domain, then [ fiyE v(dy) is defined and equal to 4 E for every

E € %, where fly is the completion of u, for each y € Y.
(b) Let Z be a set, (Y,T,v) a measure space, and (uy)ycy a family of measures on Z such that

J 1y Z v(dy) is defined and finite. Let H be a family of subsets of Z, closed under finite intersections,
such that [y, H v(dy) is defined in R for every H € H.

(i) If T is the o-algebra of subsets of Z generated by H, we have a totally finite measure y on' Y x Z,
with domain T&T, defined by setting ,uE [ 1y E[{y}]v(dy) for every E € T®Y.

(ii) If /i fiis the completion of z and 3 its domain, then [ iy E[{y}|v(dy) is defined and equal to iE for
every E € 3, where fly is the completion of p, for each y € Y.

proof (a) Define A C PX as in 452A. Then £ C A, so by the Monotone Class Theorem (136B) ¥ C A and
we have (i). Applying 452Ac to (fiy)ycy we have (ii).

(b) Set X =Y x Z. For y € Y, let y;, be the measure on X defined by setting u; E' = pu, E[{y}] whenever
this is defined; that is, s, is the image of 1, under the function z — (y,2) : Z — X. Set € = {FxH : F € T,
H € H}. Then £ is a family of subsets of X closed under finite intersections, and

f,LLyFXH fo Yy H v(dy)

is defined whenever F' € T and H € H. By (a)7 we have a measure p on X, with domain the o-algebra X
generated by &£, defined by writing

ul = fuyEV dy) = f.“y {y}v(dy)

for every E € ¥. Of course ¥ includes T®Y (the set {H : Y x H € X} is a o-algebra of subsets of Z
including H, so includes T') and is therefore equal to TRY.
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This proves (i). If now E € 3, (a-ii) tells us that
LE = [y Ev(dy) = [ f,E[{y}v(dy).

452C Theorem (a) Let Y be a topological space, v a 7-additive topological measure on Y, (X,%) a
topological space, and (piy)yey a family of 7-additive topological measures on X such that [ p, X v(dy) is
defined and finite. Suppose that there is a base ¢ for T, closed under finite unions, such that y — p,U is
lower semi-continuous for every U € U.

(i) We can define a T-additive Borel measure p on X by writing pE = [ p1, E v(dy) for every Borel set
ECX.

(ii) If i is the completion of y and 3 its domain, then [ fi, E v/(dy) is defined and equal to iE for every
Ee f], where fi,, is the completion of j, for each y € Y.

(b) Let Y be a topological space, v a T-additive topological measure on Y, (Z,4l) a topological space,
and (f1y)yey a family of 7-additive topological measures on Z such that [ p,Z v(dy) is defined and finite.
Suppose that there is a base V for i, closed under finite unions, such that y +— u,V is lower semi-continuous
for every V € V.

(i) We can define a 7-additive Borel measure p on Y x Z by writing pE = [ p, E[{y}]v(dy) for every
Borel set ECY x Z.
(ii) If /i fiis the completion of y and 3 its domain, then [ iy E[{y}v(dy) is defined and equal to AE for

every E € 33, where /i fly is the completion of u, for each y € Y.

proof (a) For A C X, set fa(y) = pyA when this is defined. We may suppose that ) € &Y. If W C U
is a non-empty upwards-directed set with union G, {fw)wew is an upwards-directed family of lower semi-
continuous functions with supremum fg, because every pu, is T-additive. So fg is lower semi-continuous,
and also [ fadv = supycyy [ fwdy, by 414Ba. Taking € to be the family of open subsets of X in 452Ba,
we see that we have a 7-additive Borel measure p on X such that uE = [ pu,Ev(dy) for every Borel set
E C X. Moreover, if G is a non-empty upwards-directed family of open subsets of X with union G*, then
W={W:W elU, W CG for some G € G} is an upwards-directed family with union G*, so

G* = ffG*dV = SUPy ey fdeV < SUpgeg pG < pG*.
As G is arbitrary, p is 7-additive. This proves (i); (ii) follows immediately, as in 452Ba.

(b) Let U be the family of sets expressible as J,.,, H; x V; where H; C Y is open and V; € V for every
i < n. Because V is a base for , U is a base for the topology of X =Y x Z. Fory € Y let ,u; be the measure
on X defined by saying that pu, &2 = p, E[{y}] whenever this is defined. Then p, is a 7-additive topological
probability measure on X, by 418Ha or otherwise. If U € U, y — u;U is lower semi-continuous. I Express
U as |J,<,, Hi x V; where H; C Y is open and V; € V for each i. Suppose that y € Y and v < p,U. Set
I={i:i<n,ye Hi}, H=Y N(\;e; Hi and V = ;c; Vi. Then U[{y}] =V C U[{y'}] for every y’ € H.
Also H' = {y' : ju,y V' > 7} is a neighbourhood of y. So H N H' is a neighbourhood of y, and i, U > v for
every y € HN H'. As y and ~y are arbitrary, we have the result. Q

Now applying (a) to (i,)ycy we see that (b) is true.

452D Theorem (a) Let (Y, S, T, v) be a Radon measure space, (X, %) a topological space, and (uy)yey
a uniformly tight (definition: 4370) family of Radon measures on X such that [, X v(dy) is defined and
finite. Suppose that there is a base U for ¥, closed under finite unions, such that y — p,U is lower semi-
continuous for every U € U. Then we have a totally finite Radon measure ji on X defined by saying that
that pE = [ p, E v(dy) whenever ji measures E.

(b) Let (Y, 6, T,v) be a Radon measure space, (Z, ) a topological space, and (i, )ycy a uniformly tight
family of Radon measures on Z such that f tyZ v(dy) is defined and finite. Suppose that there is a base V
for Y, closed under finite unions, such that y — p,V is lower semi-continuous for every V' € V. Then we
have a totally finite Radon measure ji on Y x Z such that iF = [ u,E[{y}|v(dy) whenever ji measures E.

proof I take the two parts together. In (b), write X for Y x Z. By 452C we have a 7-additive Borel
measure p satisfying the appropriate formula. Now for any € > 0 there is a compact set K C X such that
pK > pX —2e. P In (a), take n > 0 such that [ min(n, u, X)v(dy) < 2¢, and K such that p, (X \ K) <7
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for every y € Y. In (b), take n > 0 such that [ min(n, uyZ)v(dy) < e. Now let K3 CY and Ko C Z be
compact sets such that

le pyZ v(dy) > fY tyZv(dy) —e, py(Z\ Ky) <nforeveryye.
Then K = K7 x K5 is compact and

W x 2\ K < |

mZvtd) + [ (Z\ Ka)vld)
Y\ K1

K

<e+ min(n, p, Z)v(dy) < 2¢. Q
K
Since p is totally finite it is surely locally finite and effectively locally finite, so the conditions of 416F(iv)
are satisfied and the c.l.d. version fi of u is a Radon measure on X. But of course ji is just the completion
of p, so 452C(a-ii) or 452C(b-ii) tells us that the declared formula also applies to fi.

452E All the constructions above can be thought of as special cases of the following.

Definition Let (X, X, 1) and (Y, T, v) be measure spaces. A disintegration of ;1 over v is a family (u,)yey
of measures on X such that [ u, E v(dy) is defined in [0, 00| and equal to pE for every E€ X. If f: X —» Y
is an inverse-measure-preserving function, a disintegration (i,)yecy of u over v is consistent with f if, for
each F € T, p, f~'[F] =1 for v-almost every y € F. (u,),cy is strongly consistent with f if, for almost
every y € Y, pi, is a probability measure for which f~![{y}] is conegligible.

A trivial example of a disintegration is when v is a probability measure and u, = p for every y. Of course
this is of little interest. The archetypal disintegration is 452Bb when all the j, are the same, in which case
Fubini’s theorem tells us that we are looking at a product measure on X =Y x Z. If pu is a probability
measure then this disintegration is strongly consistent.

The phrase regular conditional probability is used for special types of disintegration; typically, when
p and v and every pu, are probabilities, and sometimes supposing that every p, has the same domain as p.
I have seen the word decomposition used for what I call a disintegration.

452F Proposition Let (X, %, 1) and (Y, T, v) be measure spaces and (u,),cy a disintegration of p over
v. Then [[ f(z)p,(dzx)v(dy) is defined and equal to [ fdu for every [—oo, col-valued function f such that
J fdp is defined in [—oo, 00

proof (a) Suppose first that f is non-negative. Let H € ¥ be a conegligible set such that f[H is %-
measurable. For n € N set

B = {x HES Hv 27"k < f(x)} for k > 1, fn = 27“2{;1 XEnk.

Then (f,)nen is a non-decreasing sequence of functions with lim,, . fn(z) = f(x) for every x € H. Now
J 1y (X \ H)v(dy) =0, so X \ H is p,-negligible for almost every y. Set

V={y:py(X\H)=0, Ep; € domp, for every n € N, k > 1};
then V is v-conegligible. For y € V,
f fd,uy = limy, 00 f fndﬂy = limy, 00 2_7122:1 ty Bk,

while each function y — pu, Ey ), is v-virtually measurable, so y — [ fdpu, is v-virtually measurable and

4
. i
/ / fdpyv(dy) = Tim / / fndpyv(dy) = lim 2 ; / tiy By v(dy)
4
:nlggo2 ;uEnk :nh_{r;o/f”dll:/fd”'

(b) For general f we now have
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[ @@y = [[ 1 @nydeptan - [[ 1 @y dopiay)
:/f+du—/f‘du=/fdu,

where fT, f~ are the positive and negative parts of f.

Remark When X =Y x Z and our disintegration is a family (u;),ey of measures on X defined from a
family <uy>y€y of probability measures on Z, as in 452Bb, we can more naturally write [ f(y, z)u,(dz) in
place of [ f(x)u, (dx), and we get

fff Y, 2) iy (dz)v(dy) = ffdp whenever the latter is defined in [—o0, 0]
as in 252B.

452G The most useful theorems about disintegrations of course involve some restrictions on their form,
most commonly involving consistency with some kind of projection. I clear the path with statements of
some elementary facts.

Proposition Let (X,%, ) and (Y, T,v) be measure spaces, f : X — Y an inverse-measure-preserving
function, and (u,),cy a disintegration of p over v.

(a) If {py)yey is consistent with f, and F' € T, then u,f~'[F] = xF(y) for v-almost every y € Y; in
particular, almost every u, is a probability measure.

(b) If (uy)yey is strongly consistent with f it is consistent with f.

(c) If v is countably separated (definition: 343D) and (g, )yey is consistent with f, then it is strongly
consistent with f.

proof (a) We have p, f~![F] =1 for almost every y € F. Since also
py(XN U = py fHYNF] =1, py X =y fH[Y] =1
for almost every y € Y \ F, p, f~'[F] = 0 for almost every y € X \ F.

(b) If F € T, then f~'[F] 2 f~[{y}] is py-conegligible for almost every y € F; since we are also told
that 1, X = 1 for almost every y, p, f~1[F] =1 for almost every y € F.

(c) There is a countable 7 C T separating the points of Y; we may suppose that Y € F and that
Y\ F € F for every F € F. Now

Hp = F\{y: pyf~'[F] is defined and equal to 1}
is negligible for every F' € F, so that

Z =Y \UperHr
is conegligible. For y € Z, set F, = {F : y € F' € F}; then

{w}=NF, TR =N{1F:FeF),

while p, f~}[F] = 1 for every F' € F,. Because F, is countable, yu, f~*[{y}] = 1. This is true for almost
every y, so iy )yey is strongly consistent with f.

452H Lemma Let (X, X, u) and (Y, T,v) be probability spaces, and T : L>(u) — L*°(v) a positive
linear operator such that T(xX*) = xY* and [Tu = [u whenever u € L>(u)*. Let K be a countably
compact class of subsets of X, closed under finite unions and countable intersections, such that p is inner
regular with respect to IC. Then there is a disintegration (u,)ycy of p over v such that

(1) py is a complete probability measure on X, inner regular with respect to K and measuring every
member of I, for every y € Y

(ii) setting hy(y) = [ gdu, whenever g € £°(u) and y € Y are such that the integral is defined,
hy € £°(v) and T'(g*) = h;, for every g € L>°(u).

proof (a) Completing v does not change £°(v) or L*°(v), nor does it change the families which are
disintegrations over v; so we may assume throughout that v is complete. It therefore has a lifting 6 : 6 — T,
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where 9B is the measure algebra of v, which gives rise to a Riesz homomorphism S from L*(v) = L>°(B)
to the space L>°(T) of bounded T-measurable real-valued functions on Y such that (Sv)* = v for every
v € L=(v) (3631, 363F, 363H).
(b)Fory € Y and E € X, set v, E = (ST(xE"))(y). Because 0 < T'(xE*) < xY*in L*(v),0 < ¢,E < 1.
The maps
Ew— xE— xE*— T(xE*) — ST(xE")
are all additive, so ¢, : ¥ — [0,1] is additive for each y € Y. For fixed E € %,

pE = [xEdp= [(xE*) = [T(xE*) = [ ST(xE*) = [ ¢y Ev(dy).

(¢) Recall that u is supposed to be inner regular with respect to the countably compact class K. By
413Ua, there is for every y € Y a complete measure j;, on X such that p; X <1, X <1, K C dom p;, and
py K > 9y K for every K € KN 2.

(d) Now, for any fixed E' € X, uy I is defined and equal to 1, I for almost every y € Y. P Let (K,)nen,
(K] )nen be sequences in K N Y such that K,, C E and K|, C X \ E for every n, while uE = sup,,cy £Kp
and (X \ E) = sup, ey uK},. Set L =, ey Kny L' = (N,,en(X \ K},). Then both L and L’ belong to the
domain of every y; , and

sup 1, K, < sup uyK < uyL < uyL'

neN neN
< inf pu (X \ K},) = p, X —sup u, K, <1—supt, K,
neN" Y Y neN Y neN
for every y. On the other hand,
/(l—bup¢y T v(dy) <1/Y—bup/¢y ,uX—bup,uK ukE
neN neN

=sup uK, = sup/wyKnu(dy) < /sup Yy Kpv(dy).
neN neN neN

So
SUp, ey Yy Kn = u;L = ,u;L’ =1—sup, ey ¥y K.
for almost every y. Because L C E C L’ and ,u; is complete, E € dom u; and
M;E =1—sup,cy Yy K, > 1=y (X \ E) >y, F
for almost every y € Y. Similarly, p (X \ E) > ¢, (X \ E) for almost every y. But as
B+ (X \ E) = i, X <, X <1

whenever the left-hand side is defined, we must have ,u;E = 9, I for almost every y, as claimed. Q
It follows at once that

[, Ev(dy) = [¢yEv(dy) = pE
for every E € %, and () ey is a disintegration of y over v.
(e) At this point observe that
fu;X v(dy) = pX = fo' = fT(XX') =Y,
so Fo = {y : u, X < 1} is negligible. Taking any yo € Y\ Fy and setting
ty = fiy,, for y € Fy
= py, fory € Y\ Fy,

we find ourselves with a disintegration (s,),ey of p over v with the same properties as (1 ),ey, but now
consisting entirely of probability measures.
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(f) For g € £>(u), set hy(y) = [ gdu, whenever y € Y is such that the integral is defined. Consider the
set V' of those g € £%°(u1) such that h, € £L>°(v) and T'g* = hj in L>(v). If E € X, then hyp(y) = ¢, F for
almost every y, so

hyp = (ST(xE*))* = T(xE");

accordingly xE € V. It is easy to check that V is closed under addition and scalar multiplication, so it
contains all simple functions. Next, if (g, )nen is a non-decreasing sequence of simple functions with limit
g € L°(v), then hy = sup,cy hg, wherever the right-hand side is defined. Also T is order-continuous,
because it preserves integrals, so

Tg* = sup,en L9y, = SUP,en h;n = h;

and g € V. Finally, if g € £°(u) is zero almost everywhere, there is a negligible E' € ¥ such that g(z) =0
for every € X \ E; puyE = 0 for almost every y, so hy(y) = [ gdu, = 0 for almost every y and again g € V.
Putting these together, we see that V' = £°°(v), as required by (ii) as stated above.

4521 Theorem (PACHL 78) Let (X, X, 1) be a non-empty countably compact measure space, (Y, T,v) a
o-finite measure space, and f : X — Y an inverse-measure-preserving function. Then there is a disintegration
(ly)yey of pover v, consistent with f, such that p, is a complete probability measure on X for every y € Y.
Moreover,

(i) if K is a countably compact class of subsets of X such that u is inner regular with respect to K, then
we can arrange that K C dom p,, for every y € Y;

(i) if, in (i), K is closed under finite unions and countable intersections, then we can arrange that
K € dom p,, and p,, is inner regular with respect to K for every y € Y.

proof (a) Consider first the case in which v and p are probability measures and we are provided with a
class K as in (ii). In this case, for each u € L (u), F — ff,l[F] u is countably additive. So we have an
operator T' : L*(p) — L°°(v) defined by saying that [, Tu = ff—l[F] u whenever u € L>®(u) and F € T.
Of course T is linear and positive and [ Tw = [ u whenever u € L (p).
By 452H, there is a disintegration (u,)ycy of p over v such that
(o) for every y € Y, p, X =1, K C dom 1, and g, is inner regular with respect to KC;
(8) T(g*) = hy whenever g € £>(u) and hy(y) = [ g du, when the integral is defined.

If now F € T, set g = xf![F] in (8); then Tg* is defined by saying that
JuTo = [, o =nf " FOH = v(FNH)

for every H € T, so that Tg* = xF'** and we must have p, f~'[F] = 1 for almost every y € F. Thus {p,)yey
is a consistent distribution.

(b) The theorem is formulated in a way to make it quotable in parts without committing oneself to a
particular class K. But if we are given a class satisfying (i), we can extend it to one satisfying (ii), by 413T;
and if we are told only that p is countably compact, we know from the definition that we shall be able to
choose a countably compact class satisfying (i).

(c) This proves the theorem on the assumption that 4 and v are probability measures. If uX =vY =0
then the result is trivial, as we can take every p, to be the zero measure. Otherwise, because v is o-finite,
there is a partition (Y, )nen of Y into measurable sets of finite measure. Let (7, )nen be a sequence of strictly
positive real numbers such that ZZOZO oY, = 1, and write

VEF =% jyr(FNY,) for FET,

WE =3 mpENX,) for EcX.

It is easy to check («) that v’ and p’ are probability measures () that f is inverse-measure-preserving for p’
and v’ () that if x is inner regular with respect to K so is p/. Note that v’ and v have the same negligible
sets. By (a)-(b), i’ has a disintegration (u,)ycy over v’ which is consistent with f, and (if appropriate) has
the properties demanded in (i) or (ii). Now, if F € &,
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nE =3 (EnX,) =3t /uy(E A X)) (dy)
n=0 n=0
= Z%Zl/ py BV (dy)
n=0 Yn

(because py, X =1, py X, = (xY,,)(y) for v'-almost every y, every n)

= nz_%/y py B v(dy) :T;)/Uy(Ean)V(dy) = /uyEV(dy).

So (uy)yey is a disintegration of y over v. If F € T, then p, f~'[F] = 1 for v/-almost every y, that is, for
v-almost every y, so (uy)yey is still consistent with f with respect to the measure v.

452J Remarks (a) In the theorem above, I have carefully avoided making any promises about the
domains of the p, beyond that in (i). If ¥y is the o-algebra generated by K N X, then whenever £ € ¥
there are E’, E” € ¥y such that B/ C E C E” and u(E” \ E’) = 0. (For u, like v, must be o-finite, so
we can choose E’ to be a countable union of members of K N'Y, and E” to be the complement of such a
union.) Thus we shall have a og-algebra on which every p,, is defined and which will be adequate to describe
nearly everything about p. The example of Lebesgue measure on the square (452E) shows that we cannot
ordinarily expect the p, to be defined on the whole of 3 itself. In many important cases, of course, we can
say more (452X1).

(b) Necessarily (as remarked in the course of the proof) p, X = 1 for almost every y. In some applications
it seems right to change p, for a negligible set of y’s so that every u, is a probability measure. Of course
this cannot be done if X = () # Y, but this case is trivial (we should have to have vY = 0). In other cases,
we can make sure that any new p, is equal to some old one, so that a property required by (i) or (ii) remains
true of the new disintegration. If we want to have ‘u, f~'[{y}] = py, X =1 for every y € Y, strengthening
‘strongly consistent’, we shall of course have to begin by checking that f is surjective.

(¢) The question of whether ‘o-finite’ can be weakened to ‘strictly localizable’ in the hypotheses of 4521
is related to the Banach-Ulam problem (452YDb). See also 4520.

452K Example The hypothesis ‘countably compact’ in 4521 is in fact essential (452Ye). To see at least
that it cannot be omitted, we have the following elementary example. Set Y = [0, 1], and let v be Lebesgue
measure on Y, with domain T. Let X C [0, 1] have outer measure 1 and inner measure 0 (134D, 4191I); let
i be the subspace measure on X. Set f(z) = « for x € X. Then there is no disintegration (u,)yecy of p
over v which is consistent with f.

P? Suppose, if possible, that (p,),e[o,1] is such a disintegration. Then, in particular, the sets

Hy =1[0,¢] \{y: X N0,q] € dom p,, p1,(X N[0, ¢q]) = 1},

are negligible for every ¢ € [0,1]. Set G = [0, 1]\U,eqno,1)(HqUH,), so that G is v-conegligible. Then there

must be some y € G\ X. Now 1, (XNI[0,¢']) = pty(XN[g,1]) = 1 whenever ¢, ¢ € Qand 0 < g<y<q <1,
so that uy (X N{y}) =1. But X N{y} = 0. XQ

452L The same ideas as in 452I can be used to prove a result on the disintegration of measures on
product spaces. It will help to have a definition.

Definition Let (X;);cr be a family of sets, and A a measure on X = [[,.; X;. For eachi € I set m;(x) = x(i)

for z € X. Then the image measure Am; !is the marginal measure of A on X;.
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452M 1 return to the context of 452B-452D.

Theorem Let Y and Z be sets and T C PY, T C PZ o-algebras. Let  be a non-zero totally finite measure
with domain T®Y, and v the marginal measure of 1 on Y. Suppose that the marginal measure A of y on
Z is inner regular with respect to a countably compact class L C PZ which is closed under finite unions
and countable intersections. Then there is a family (u,),ecy of complete probability measures on Z, all
measuring every member of  and inner regular with respect to K, such that

pE = [ nyE[{y}v(dy)
for every F € T®Y, and
[ faun= [ £y, 2)py(dz)v(dy)
whenever f is a [—o0, 0o]-valued function such that [ fdu is defined in [—o0, co].

proof (a) To begin with, assume that p is a probability measure and that v is complete. Let 9 be the
measure algebra of v and 6 : B — T a lifting. For H € T and F' € T set vgF = p(F x H); then
vy : T — [0,1] is countably additive and vy F < vF for every F € T, so there is a vy € L'(v) such
that fF vy = vgF for every FF € T and 0 < vy < x1. We can therefore think of vy as a member of
L>®(v) = L>(B). Let T : L*°(B) — L°>°(T) be the Riesz homomorphism associated with 8, and set
Yy H = (Tvy)(y) for every y € Y.

Each ¢, : T — [0,00[ is finitely additive. So we have a complete measure p, on Z such that p,Z <
Yy Z =1, K C dom iy, py is inner regular with respect to KC and p, K > 1, K for every K € K (413Ua, as
before).

For H € T, F € T we have

sz/JyHV(dy) = fFTvH = fFvH =vyF = u(F x H).
So
Sy K - xF(y)v(dy) > [ ¢y K v(dy) = p(F x K)
for every K € K. Now note that, for any H € T and F € T,

FxH)— FxK)= inf Fx(H\K
u(F x H) Ke;scl,lzggH“( x K) Ke;éergH“( x (H\ K))

< inf AH\K)=0
KeK,KCH

because A is inner regular with respect to K (and, like p, is a probability measure). So

/(uy)*H-xF(y)V(dy)Z sup /uyK-xF(y)V(dy)
J KekK,KCH

> sup wu(F xK)=p(F xH).
KeK,KCH

In particular,
J(y)«Hv(dy) > p(Y x H) = \H,

and similarly [(u,)«(Z \ H)v(dy) > N(Z \ H).
Taking v-integrable functions g1, g such that g1 (y) < (py)«H and g2(y) < (uy)«(Z\ H) for almost every
y, [ qrdv = [(py)H v(dy) and [ g2dv = [(p).(Z \ H)v(dy) (133Ja), we must have

91(y) + 92(y) < (py)oH + (py)«(Z\ H) < py Z < 1
for almost every y, while [ g1 + g2 dv > 1; so that, for almost all y,

91(y) + 92(y) = (ny) o H + (1)« (Z\ H) = py 2 = 1,
and (because p, is complete) p, H is defined and equal to ¢1(y) (413Ec, 413Ef). It now follows that

Syt v(dy) = [ g1()v(dy) = [ () H - xF(y)v(dy) > p(F x H)
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for every F' € T. But since also

[ty (Z\ H)v(dy) > p(F x (Z\ H)),

[ty H + 1y (Z \ H)v(dy) < vF = p(F x H) + u(F x (Z \ H)),

we must actually have [, u, H v(dy) = p(F x H).
All this is true whenever F' € T and H € T. But now, setting

E={E:EecT&Y, uE = [ p,E[{y}lv(dy)},

we see that £ is a Dynkin class and includes Z = {F x H : F' € T, H € YT}, which is closed under finite
intersections; so that the Monotone Class Theorem tells us that £ includes the o-algebra generated by Z,
and is the whole of T®T.

(b) The rest is just tidying up. (i) The construction in (a) allows p,Z to be less than 1 for a v-negligible
set of y; but of course all we have to do, if that happens, is to amend p, arbitrarily on that set to any of
the ‘ordinary’ values of p,. (ii) If the original measure v is not complete, let i and © be the completions
of p and v, and T the domain of 7. The projection onto Y is inverse-measure-preserving for p and v, so is
inverse-measure-preserving for i and © (234Ba”), and /i measures every member of TRY; set u = ﬂ[TQA@T.
Next, the marginal measure of ¢’ on Z is still A (since both must have domain T). So we can apply (a) to
1’ to get the result. (iii) If the original measure p is not a probability measure, apply the arguments so far
to suitable scalar multiples of p and v.

(¢) Thus we have the formula
pE = [y El{y}v(dy)

for every E € T®Y. The second formula announced follows as in the remark following 452F.

452N Corollary Let Y and Z be sets and T C PY, T C PZ o-algebras. Let u be a probability measure
with domain T®Y, and v the marginal measure of z on Y. Suppose that
either Y is the Baire o-algebra with respect to a compact Hausdorff topology on Z
or Y is the Borel g-algebra with respect to an analytic Hausdorff topology on Z
or (Z,7T) is a standard Borel space.
Then there is a family (u,)yey of probability measures on Z, all with domain Y, such that

pE = [, El{y}v(dy)
for every F € T®Y, and
[ fdu= [[ f(y.2)ny(dz)v(dy)

whenever f is a [—o0, 0o]-valued function such that [ fdu is defined in [—o0, co].

proof In each case, the marginal measure of u on Z is tight (that is, inner regular with respect to the
closed compact sets) for a Hausdorff topology on Z. (Use 412D when T is the Baire o-algebra on a compact
Hausdorff space and 433Ca when it is the Borel o-algebra on an analytic Hausdorff space; when (Z,7T) is a
standard Borel space, take any appropriate Polish topology on Z and use 423Ba.) So 452M tells us that we
can achieve the formulae sought with Radon probability measures p,. Since (in all three cases) dom p,, will
include T for every y, we can get the result as stated by replacing each p, by 1, [7T.

4520 Proposition Let (X, %, 3, 1) be a Radon measure space, (Y, T,v) a strictly localizable measure
space, and f : X — Y an inverse-measure-preserving function. Then there is a disintegration (i,)yey of u
over v, consistent with f, such that every p, is a Radon measure on X.

proof (a) Let (Y;);er be a decomposition of Y. For each i € I, let v; be the subspace measure on Y; and \;
the subspace measure on X; = f~![Y;]. Then f; = f|X; is inverse-measure-preserving for \; and v;. Let K;
be the family of compact subsets of X;; of course K; is a (countably) compact class and )\; is inner regular

"Formerly 235Hc.
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with respect to IC; (4120a). By 4521, we can choose, for each i € I, a disintegration (fi,)ycy, of A; over v;,
consistent with f[X;, such that fi, measures every compact subset of X; and is inner regular with respect
to IC; for every y € Y;. Adjusting any which are not probability measures, and completing them if necessary,
we can suppose that every fi, is a complete probability measure. By 412Ja, fi, measures every relatively
closed subset of X; for every y € Y;.

Fori eI and y €Y}, set

py B = fiy (BN X;)
whenever ¥ C X and F N X; is measured by fi,. Then 1, is a complete totally finite measure on X; it is

inner regular with respect to K; and measures every closed subset of X. It follows at once that it is tight
and measures every Borel set, that is, is a Radon measure on X.

(b) Now puE = [ pyEv(dy) for every E€ X. P ;. ENX; = EN f~1U,c, Yi] belongs to ¥ for every
J C1I. By 451Q, pEl = ;. ; w(E N X;). For i € I, we have in fy(E N X;)vi(dy) = p(ENX;). So

pE =Y uENX;) = Z/ fiy(E N X;)vi(dy)
iel iel VYi
= ;/Y py B v(dy) = /uyEV(dy)
by 214N. Q

Thus (iy)yey is a disintegration of p over v.

(c) Finally, if F € T and i € I, then

Y; N F\{y : py f 1 [F] is defined and equal to 1}
=FNY)\{y:yeY, g f [FNY]=1}

is negligible for every 4, so , f~'[F] =1 for almost every y. Thus (u,),cy is consistent with f.

452P Corollary (cf. BLACKWELL 56) Let (X, ¥, X, 1) be a Radon measure space, (Y, &, T, v) an analytic
Radon measure space and f : X — Y an inverse-measure-preserving function. Then there is a disintegration
(ty)yey of p over v, strongly consistent with f, such that every p, is a Radon measure on X.

proof By 433B, v is countably separated; now put 4520 and 452Gc together.

452Q Disintegrations and conditional expectations Fubini’s theorem provides a relatively concrete
description of the conditional expectation of a function on a product of probability spaces with respect to
the o-algebra defined by one of the factors, by means of the formula g(z,y) = [ f(z,2)dz (253H). This
generalizes straightforwardly to measures with disintegrations, as follows.

Proposition Let (X, ¥, u) and (Y, T, v) be probability spaces and f : X — Y an inverse-measure-preserving
function. Suppose that (iy)ycy is a disintegration of p over v which is consistent with f, and that g is a
p-integrable real-valued function.

(a) Setting ho(y) = [ gdu, whenever y € Y and the integral is defined in R, hg is a Radon-Nikodym
derivative of the functional F' — ff,l[F] gdu: T —R.

(b) Now suppose that v is complete. Setting hi(z) = [ gdug) whenever 2 € X and the integral is
defined in R, then hy is a conditional expectation of g on the o-algebra o = {f~![F]: F € T}.

proof (a) If F € T, then f~'[F] is p,-conegligible for almost every y € F, and ju,-negligible for almost
every y € Y \ F, so [ g x xf ' [F]du, = ho(y) x xF(y) for almost every y, and

Jphodv = [[ g xf 7 Fldpyv(dy) = [, 9
(452F). As F is arbitrary, we have the result.

(b) Of course X is a o-algebra (111Xd), and it is included in ¥ because f is inverse-measure-preserving.
By 452F, Yy = {y : g is p,-integrable} is conegligible, so dom hy = f~![Yp] is conegligible. If o € R, then
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F={y:yeY, [gdu, >a}
belongs to T because y — [ gdu, is v-virtually measurable and v is complete. So
{z:2z €domhy, hi(z) > a} = f7LF]
belongs to g, and h; is Yp-measurable. If F' € T, then

/ hy du=/ /gdumw(dx) =/ /gduyV(dy)
fE FoHE F
:/ hodz/:/ gdp
F FUF]

as in (a). As F is arbitrary, h; is a conditional expectation of g on g, as claimed.

(235G8)

*452R 1 take the opportunity to interpolate an interesting result about countably compact measures.
It demonstrates the power of 4521 to work in unexpected ways.

Theorem (PACHL 79) Let (X, X, 1) be a countably compact measure space, (Y, T, v) a strictly localizable
measure space, and f : X — Y an inverse-measure-preserving function. Then v is countably compact.

proof (a) For most of the proof (down to the end of (b) below) I suppose that p and v are totally finite.
Let Z be the Stone space of the Boolean algebra T. (I am not using the measure algebra here!) For
F €T, let F* be the corresponding open-and-closed subset of Z. For each y € Y, the map F — xF(y) is a
Boolean homomorphism from T to {0, 1}, so belongs to Z; define g : Y — Z by saying that g(y)(F) = xF(y)
fory € Y, F € T, that is, g~ }[F*] = F for every F € T. Let Z be the family of zero sets in Z, and A the
Baire o-algebra of Z.
The set

(W:WCZ g [W]eT}

is a o-algebra of subsets of Z containing all the open-and-closed sets, so contains every zero set (4A30d)
and includes A. Set AW = vg~[W] for W € A. Then ) is a Baire measure on Z, so is inner regular with
respect to Z (412D).

Set h = gf : X — Z. Then h is a composition of inverse-measure-preserving functions, so is inverse-
measure-preserving. By 4521, there is a disintegration (u.),cz of pu over A which is consistent with h.

(b) Let £ C PY be the family of sets
{g7HV]:V € Z, uh V] = u, X =1 for every z € V}.
(i) K is a countably compact class of sets. B Let (K, )nen be a sequence in K such that ;. Ki # 0

for each n € N. For each n € N, let V,, € Z be such that K,, = ¢g~![V,,] and p,h~'V,, = ., X = 1 for every
z € V,. Then

97 Nicn Vil = Mz Ki # 0

for every n € N, so {V,, : n € N} has the finite intersection property and (because Z is compact) there is a
2 € \pen Vo Now

,Uzhil[vn] =p X =1
for every n € N, so

0 # Nuew D VAl = f 7 Nen Knl-

Thus (), . Kr is non-empty. As (K, )nen is arbitrary, K is a countably compact class. Q

neN

8Formerly 2351.
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(ii) v is inner regular with respect to K. I Suppose that F' € T and v < vF. Choose a sequence
(Vi)nen in Z as follows. Start with Vy = F*, so that

AVo =vg Vo] = vF > 7.

Given that V,, € Z and AV, > =, then we know that p.h~'[V,] = p.X = 1 for M-almost every z € V;
because A is inner regular with respect to Z, there is a V41 € Z such that V41 C V,, AV,41 > v and
ph V] = p. X =1 for every z € V,,41. Continue.

At the end of the induction, set V.= .y Vn. Then V € Z. If z € V, then

neN "1
/J‘Zh_l[v] = limy, 0 Nzh_l[vn] =1=uX,
so g7'[V] € K. Because V C Vy = F*, g~ '[V] C F, and
vg V] = AV =limy, 00 AV, > 7.

As F and ~ are arbitrary, v is inner regular with respect to . Q
Thus I witnesses that v is countably compact.

(c) For the general case, let (Y;);cr be a decomposition of Y. For each i € I, set X; = fL[V;]; let u;
be the subspace measure on X; and v; the subspace measure on Y;. Then p; is countably compact (451Db)
and f1X; : X; — Y; is inverse-measure-preserving for p; and v;, so v; is countably compact, by (a)-(b)
above. Let IC; C PY; be a countably compact class such that v; is inner regular with respect to ;. Then
K = U,¢; K is a countably compact class (because any sequence in K with the finite intersection property
must lie within a single ;). By 413T, there is a countably compact class K* D K which is closed under
finite unions; by 412Aa, v is inner regular with respect to K*, so is countably compact. This completes the
proof.

*452S Corollary (PACHL 78) If (X, X, u) is a countably compact totally finite measure space, and T is
any o-subalgebra of ¥, then u[T is countably compact.

452T In 452E, I remarked in passing that Fubini’s theorem on a product space X = Y x Z can be
thought of as giving us a disintegration of the product measure on X over the factor measure on Y. There
are other contexts in which we find that a canonical disintegration is provided for a structure (X, p,Y,v)
without calling on the Lifting Theorem. Here I will describe an important case arising naturally in the
theory of group actions.

Theorem Let X be a locally compact Hausdorff space, G a compact Hausdorff topological group and » a
continuous action of G on X. Suppose that u is a G-invariant Radon probability measure on X. For x € X,
write f(z) for the corresponding orbit {asz : @ € G} of the action. Let Y = f[X] be the set of orbits, with
the topology {W : W C Y, f~1[W] is open in X}. Write v for the image measure uf ! on Y.

(a) Y is locally compact and Hausdorff, and v is a Radon probability measure.

(b) For each y € Y, there is a unique G-invariant Radon probability p, on X such that py,(y) = 1.

(¢) (uy)yey is a disintegration of p over v, strongly consistent with f.

proof (a) By 4A5Ja, Y is locally compact and Hausdorff, and f is an open map. By 4181, v is a Radon
measure.

(b) Let A be the unique Haar probability measure on G (4421d). By 443Ub-443Ud, applied to the action
|G xy of G on y, we have a unique G-invariant Radon probability measure u; on ¢ defined by saying that
pyE = Mg : gox € E} for every x € y and Borel set 2 C y. Now p, must be the unique extension of y,, to
X. Of course we still have puyE = Mg : gox € E} for every = € y and Borel set E C X.

(c)(i) Let V C X be an open set, and set hy (y) = pyV for y € Y. Then hy is lower semi-continuous.
P Suppose that y € Y and a € R are such that hy (y) > «. Then there is a compact set K C V such that
Uy > a. Fix x €y, and set L = {g : gox € K}, so that L is a compact subset of G and AL > «. The set
{(g,2"): g€ L,z € X, gea’ ¢ V}isclosed in L x X, so its projection {a' :3 g € L, gex’ ¢ V} is closed
(4A2Gm) and U = {2’ : gex’ € V for every g € L} is open in X. Now f[U] is open in Y, because f is an
open map. Of course x € U and y € f[U]. But if y’ € f[U], there is an ' € U such that f(2’) = y’, and
now

D.H.FREMLIN



30 Perfect measures, disintegrations and processes 452T

hy (YY) = pyV =Mg:gex' €V} > AL > o
As y and « are arbitrary, hy is lower semi-continuous. Q

(ii) In particular, hy is Borel measurable; because f is inverse-measure-preserving for x4 and v,

[ v v = [ ho(s@nto)
(235G again)

- / Mg : gz € Vpu(de) = / wlz : o € VIA(dg)

(by 417G, because p and A are totally finite Radon measures and {(g,z) : gex € V'} is an open set in G x X)

— [t Vi) = [ wvaig)
(because p is G-invariant)
= puV.

By the Monotone Class Theorem, as usual, it follows that [y, E v(dy) = pE for every Borel set E C X
(apply 136C to pand E +— [ pyE v(dy)), and therefore (because every pi, is complete and f is the completion
of a Borel measure) for every E € dom . So (jy)ycy is a disintegration of p over v. Since

Myf_l[{y}] = py(y) =1

for every y € Y, the disintegration is strongly consistent with f.

452X Basic exercises (a) Let Y be a first-countable topological space, v a topological probability
measure on Y, Z a topological space, and (i, )ycy a family of topological probability measures on Z such
that y — p,V is lower semi-continuous for every open set V' C Z. Show that there is a Borel probability
measure p on Y X Z such that uE = [ p, E[{y}v(dy) for every Borel set E CY x Z. (Hint: 434R.)

(b) Let (Y, T,v) be a probability space, Z a topological space and P the set of topological probability
measures on Z with its narrow topology (437Jd). Let y — u, : Y — P be a function which is measurable
in the sense of 411L. Show that, writing B(Z) for the Borel o-algebra of Z, we have a probability measure
p defined on T®B(Z) such that puE = [ p, E[{y}]v(dy) for every E € TRB(Z).

(c) Let (Y, T,v) be a probability space, Z a topological space and Pg, the set of Baire probability
measures on Z with its vague topology (437Jc). Let y — p, : Y — Pgq be a measurable function. Show
that, writing Ba(Z) for the Baire o-algebra of Z, we have a probability measure p defined on T&Ba(Z)
such that uE = [ pu, E[{y}|v(dy) for every E € T®Ba(Z).

(d) Let (Y,6,T,v) be a Radon probability space, (X, %) a topological space, and (iy)ycy a family of
Radon probability measures on X. Suppose that (i) there is a base U for T, closed under finite unions, such
that y — p,U is lower semi-continuous for every U € U (ii) v is inner regular with respect to the family
{K:KCY, {py : y € K} is uniformly tight}. Show that we have a Radon probability measure ji on X
such that oE = [ p,Ev(dy) whenever fi measures E.

(e) Let (Y, 6, T,v) be a Radon probability space, (Z, 1) a Prokhorov Hausdorff space (437U), and P the
space of Radon probability measures on Z with its narrow topology. Suppose that y — 1, : Y — P is almost
continuous. Show that we have a Radon probability measure ji on Y x Z such that gF = [ u, E[{y}|v(dy)
whenever i measures E.

(f) Let (X, T,v) be a measure space, and u an indefinite-integral measure over v (234J%). Show that
there is a disintegration {(u,).cx of u over v such that p,{z} = p, X for every z € X.

9Formerly 234B.
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>(g) Let (X, %, 1) and (Y, T, v) be measure spaces and (i, )ycy a disintegration of p over v. Show that
(fiy)yey is a disintegration of [i over v, where fi,, and i are the completions of ;1,, and p respectively.

>(h) Let (X, 3, 1) and (Y, T,v) be measure spaces, and v’ an indefinite-integral measure over v, defined
from a v-virtually measurable function g : ¥ — [0, 00[. Suppose that (uy),cy is a disintegration of p over
v'. Show that (g(y)py)yey is a disintegration of p over v.

(i) Let (Y, T, v) be a probability space, X a set and (u,)ycy a family of probability measures on X. Set
0A = T;LZ(A) v(dy) for every A C X. (i) Show that 6 is an outer measure on X. (ii) Let x4 be the measure
on X defined from 6 by Carathéodory’s construction. Show that (u,)yecy is a disintegration of p over v.
(iii) Suppose that X = [0,1]?, v is Lebesgue measure on [0,1] =Y and u,E = v{z : (z,y) € E} whenever
this is defined. Show that, for any £ measured by p, py,E € {0,1} for v-almost every y.

(j) Explore connexions between 452F and the formula [ fdu = [[ fdv.\(dz) of 443Qe.

(k) Let (X, 3, ) be a countably compact o-finite measure space, (Y, T, v) a o-finite measure space, and
f:X =Y a (X, T)-measurable function such that f~1[F] is u-negligible whenever F' C Y is v-negligible.
Show that there is a disintegration (u,),ecy of p over v such that, for each F € T, u, (X \ f~1[F]) =0
for almost every y € F. (Hint: Reduce to the case in which u is totally finite, and disintegrate u over

V= (ufHIT.)

>(1) Let (X, X, 1) be a non-empty countably compact measure space such that ¥ is countably generated
(as o-algebra), (Y, T, v) a o-finite measure space, and f : X — Y an inverse-measure-preserving function. (i)
Show that there is a disintegration (u,)ycy of p over v, consistent with f, such that every p, is a probability
measure with domain %. (ii) Show that if (u;),ey is any other disintegration of ;1 over v which is consistent
with f, then p, = /‘;/ [Y for almost every y.

(m) Let (X,¥) be a non-empty standard Borel space, p a measure with domain ¥, (Y, T,v) a o-finite
measure space, and f : X — Y an inverse-measure-preserving function. (i) Show that there is a disintegration
(ty)yey of p over v, consistent with f, such that every p, is a probability measure with domain X. (ii)
Show that if (u;)yey is any other disintegration of y over v which is consistent with f, then j, = p [3 for
almost every y.

(n) Let (X, X, 1) be a totally finite countably compact measure space and T C ¥ a countably-generated
o-algebra; set v = p['T. Show that there is a disintegration (u,).ecx of p over v such that pu, H, = p, X =1
for every x € X, where H, = (\{F : 2 € F € T} for every . (Hint: apply 4521 with Y = {H, : x € X}.)

(o) Show that 4521 can be deduced from 452M. (Hint: start with the case vY = 1; set AW = ufx :
(z, f(x)) e W} for W € B®T.)

(p) Show that, in 452M, we shall have E = [ u, E[{y}]v(dy) whenever the completion fi of ;1 measures
E.

>(q) Let T be the Borel o-algebra of [0, 1], v the restriction of Lebesgue measure to T, Z C [0,1] a set
with inner measure 0 and outer measure 1, and T the Borel o-algebra of Z. Show that there is a probability
measure g on [0,1] x Z defined by setting uE = v*{y : (y,y) € E} for E € T®Y. Show that there is no
disintegration of p over v which is consistent with the projection (y, z) — y.

>(r) Let (X,X, ) be a complete totally finite countably compact measure space and T a o-subalgebra
of ¥ containing all negligible sets. Show that there is a family (u.).cx of probability measures on X such
that (i) z — p,E is T-measurable and [y, FE p(dx) = pE for every E € ¥ (ii) if F € T, then p,F =1
for almost every x € F'. Show that if g is any p-integrable real-valued function, then g is u,-integrable for
almost every z, and z — [ gdu, is a conditional expectation of g on T.

(s) Let (Xo, X0, o) and (X1, %1, u1) be o-finite measure spaces. For each 4, let (Y;, T;,v;) be a measure
space and <M§Jl)>y€yi a disintegration of p; over v;. Show that <,u§,?)) X /’L?(Jll)>(yo,y1)€Y0><Y1 is a disintegration of

Lo X p1 over vy X v1, where each product here is a c.l.d. product measure.
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(t) In 452M, suppose that Z is a metrizable space and K is the family of compact subsets of Z, and let
(Y, T,) be the completion of (Y, T,v). Show that y — u, is a T-measurable function from Y to the set of
Radon probability measures on Z with its narrow topology. (Hint: 437Rh.)

(u) SU(r), for r > 2, is the set of r X r matrices T with complex coefficients such that detT = 1 and
TT* = I, where T* is the complex conjugate of the transpose of T. (i) Show that under the natural action
(T,u) — Tu: SU(r) x C" — C” the orbits are the spheres {u : u.a = ~}, for v > 0, together with {0}. (ii)
Show that if a Borel set C' C C" is such that yC' C C for every v > 0, and po, p1 are two SU(r)-invariant
Radon probability measures on C" such that {0} = p1{0}, than poC = p,C.1°

(v) Let (X;)ier be a family of compact Hausdorff spaces with product X, and p a completion regular
topological measure on X. Show that all the marginal measures of p are completion regular. (Hint: 434U.)

452Y Further exercises (a) Let Z be a set, (Y, T, v) a measure space, and (i, )ycy a family of measures
on Z. Let T be a o-algebra of subsets of Z such that, for every H € Y, y — p,H : Y — [0, 00] is defined
v-a.e. and is v-virtually measurable. For F € T, set Hp = {H : H € T, pyH is defined for every y € F' and
sup,c pty H < oo}. Show that there is a measure p on Y x Z, with domain T®Y, defined by setting

ukE = sup{Z/ wy(E{y} N H;)v(dy) : Fo, ..., F, € T are disjoint,
i=0 7 Fi
vF; < oo and H; € Hp, for every i < n}

for E € T®Y.

(b) Let (X, X, 1) be a semi-finite countably compact measure space, (Y, T, v) a strictly localizable measure
space, and f : X — Y an inverse-measure-preserving function. Suppose that the magnitude of v (definition:
332Ga) is finite or a measure-free cardinal (definition: 438A). Show that there is a disintegration (i, )yey
of 1 over v which is consistent with f.

(c) Give an example to show that the phrase ‘strictly localizable’ in the statements of 4520 and 452Yb
cannot be dispensed with.

(d) Give an example to show that, in 452M, we cannot always arrange that T C dom p,, for v-almost
every y € Y.

(e) Let (X, %, i) be a probability space such that whenever (Y, T, v) is a probability space and f: X — Y
is an inverse-measure-preserving function, there is a disintegration (u,),ecy of p over v which is consistent
with f. Show that p is countably compact. (Hint: 452R, or PACHL 78.)

(f) Let X be a K-analytic Hausdorff space and p a totally finite measure on X which is inner regular
with respect to the closed sets. Show that p is countably compact. (Hint: 432D.)

(g) Let X be a set, and (u;);e; a family of countably compact measures on X with sum p (234G!1).
Show that if p is semi-finite, it is countably compact.

(h) Let X be a locally compact Hausdorff space, G a compact Hausdorff group, and « a continuous action
of G on X. Let H be another group and o a continuous action of H on X which commutes with « in the sense
that ge(hox) = ho(gex) for all g € G, h € H and = € X. (i) Show that ((g,h),x) — ge(hez) : (GXH)x X —
X is a continuous action of the product group G x H on X. (ii) Suppose that the action in (i) is transitive.
Show that if p, ¢’ are G-invariant Radon probability measures on X and £ C X is a Borel set such that
hoE = FE for every h € H, then pFE = 'E.

10T am grateful to G.Vitillaro for bringing this to my attention.
HFormerly 112Ya.
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452 Notes and comments 452B and 452C correspond respectively to the ordinary and T-additive product
measures of §§251 and 417. T have not attempted to find a suitable general formulation for the constructions
when the measures involved are not totally finite. In 452Ya I set out a possible version which at least agrees
with the c.l.d. product measure when all the y, are the same. Any product measure which has an associated
Fubini theorem can be expected to be generalizable in the same way; for instance, 434R becomes 452Xa.

The hypotheses in 452B are closely matched with the conclusion, and clearly cannot be relaxed substan-
tially if the theorem is to remain true. 452C and 452D are a rather different matter. While the condition
‘y = pyV is lower semi-continuous’ is a natural one, and plainly necessary for the argument given, the
integrated measure p can be 7-additive or Radon for other reasons. In particular, the most interesting
specific example in this book of a Radon measure constructed through these formulae (453N below) does
not satisfy the lower semi-continuity condition for the section measures.

Early theorems on disintegrations concentrated on cases in which all the measure spaces involved were
‘standard’ in that the measures were defined on standard Borel algebras, or were the completions of such
measures. Theorem 4521 here is the end (so far) of a long search for ways to escape from topological
considerations. As usual, of course, the most important applications (in probability theory) are still rooted
in the standard case. Being countably separated, such spaces automatically yield disintegrations which are
concentrated on fibers, in the sense that s, f~'[{y}] = uy,X = 1 for almost every y (452P). The general
question of when we can expect to find disintegrations of this type is an important one to which I will return
in the next section.

4521 and 4520, as stated, assume that the functions f : X — Y controlling the disintegrations are
inverse-measure-preserving. In fact it is easy to weaken this assumption (452Xk). Note the constructions
for conditional expectations in 452Q and 452Xr.

Obviously 4521 and 452M are nearly the same theorem; but I write out formally independent proofs
because the constructions needed to move between them are not quite trivial. In fact I think it is easier to
deduce 4521 from 452M than the other way about (452Xo0). The point of 452N is that the spaces (X,3)
there have the ‘countably compact measure property’, that is, any totally finite measure with domain X is
countably compact. I will return to this in the exercises to §454 (454X{ et seq.).

The method of 452R, due to J.Pachl, may have inspired the proof of (vi)=(i) in 343B. In the general
introduction to this work I wrote ‘I have very little confidence in anything I have ever read concerning
the history of ideas’. We have here a case indicating the difficulties a historian faces. I proved 343B in
the winter of 1996-97, while a guest of the University of Wisconsin at Madison. Around that time I was
renewing my acquaintance with PACHL 78. I know I ran my eye over the proof of 452R, without, I may
say, understanding it, as became plain when I came to write the first draft of the present section in the
summer of 1997; whether I had understood it twenty years earlier I do not know. It is entirely possible that
a subterranean percolation of Pachl’s idea was what dislodged an obstacle to my attempts to prove 343B,
but I was not at the time conscious of any connexion.

Version of 22.3.10/23.3.10
453 Strong liftings

The next step involves the concept of ‘strong’ lifting on a topological measure space (453A); I devote a
few pages to describing the principal cases in which strong liftings are known to exist (453B-453J). When
we have Radon measures p and v, with an almost continuous inverse-measure-preserving function between
them, and a strong lifting for v, we can hope for a disintegration (u,),cy such that (almost) every p,
lives on the appropriate fiber. This is the content of 453K. I end the section with a note on the relation
between strong liftings and Stone spaces (453M) and with V.Losert’s example of a space with no strong
lifting (453N).

Much of the work here is based on ideas in IONESCU TULCEA & IONESCU TULCEA 69.

453 A The proof of the first disintegration theorem I presented, 452H, depended on two essential steps:
the use of a lifting for (Y, T,v) to define the finitely additive functionals 1, and the use of a countably
compact class to convert these into countably additive functionals. In 4520 I observed that if our countably

(© 1998 D. H. Fremlin
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compact class is the family of compact sets in a Hausdorff space, we can get Radon measures in our
disintegration. Similarly, if we have a lifting of a special type, we can hope for special properties of the
disintegration. A particularly important kind of lifting, in this context, is the following.

Definition Let (X, T, %, 1) be a topological measure space. A lifting ¢ : ¥ — ¥ is strong or of local type
if G O G for every open set G C X, that is, if ¢F C F for every closed set F' C X. I will say that ¢ is
almost strong if | J,c G\ ¢G is negligible.

Similarly, if 2 is the measure algebra of u, a lifting 6 : A — ¥ is strong if 6G* O G for every open set
G C X, and almost strong if J; . G \ 0G* is negligible.

Obviously a strong lifting is almost strong.

453B We already have the machinery to describe a particularly striking class of strong liftings.

Theorem Let X be a topological group with a Haar measure u, and ¥ its algebra of Haar measurable sets.
(a) If ¢ : ¥ — X is a left-translation-invariant lifting, in the sense of 447A, then ¢ is strong.
(b) u has a strong lifting.

proof (a) Apply 447B with Y = {e} and ¢ = ¢.
(b) For there is a left-translation-invariant lifting (4477).

Remark In particular, translation-invariant liftings on R” or {0,1} (§345) are strong.

453C Proposition Let (X, T, %, i) be a topological measure space and ¢ : ¥ — X a lifting. Write £
for the space of bounded ¥-measurable real-valued functions on X, so that £°° can be identified with L>°(X)
(363H) and the Boolean homomorphism ¢ : ¥ — 3 gives rise to a Riesz homomorphism T' : £ — £
(363F).

(a) If ¢ is a strong lifting, then T'f = f for every bounded continuous function f: X — R.

(b) If (X, %) is completely regular and T'f = f for every f € Cp(X), then ¢ is strong.

proof (a) Suppose first that f > 0. For @ € R, set G, = {z : € X, f(z) > a}; then G, is open, so
¢Gy 2 Go. We have f > axG,, so
Tf>aT(xGa) = ax(¢Ga) > axGa,
that is, (Tf)(z) > o whenever f(x) > a. As a is arbitrary, Tf > f. At the same time, setting v = || f|| o0,
we have
TyxX =) 2w X = f, TxX) = 7x(¢X) = 7xX,

soTf< fand Tf = f.

For general f € Cp(X),

Tf=T( = f)=Tf"-Tf =f"—-f" =/,

where fT and f~ are the positive and negative parts of f.

(b) Let G C X be open and « any point of G. Then there is an f € Cy(X) such that f < xG and
f(z) = 1. In this case

f=Tf <T(XG) = x(¢G),

so ¢ € ¢G. As x is arbitrary, G C ¢G; as G is arbitrary, ¢ is strong.

453D Proposition Let (X, T, %, i) be a topological measure space.

(a) If u has a strong lifting it is strictly positive (definition: 411Nf).

(b) If w is strictly positive and complete, and has an almost strong lifting, it has a strong lifting.

(c) If 1 has an almost strong lifting it is 7-additive, so has a support.

(d) If u is complete and pX > 0 and the subspace measure pg has an almost strong lifting for some
conegligible set £ C X, then p has an almost strong lifting.

proof (a) If ¢ : ¥ — ¥ is a strong lifting, then G C ¢G = ) whenever G is a negligible open set, so u is
strictly positive.
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(b) If p is strictly positive and complete and ¢ : ¥ — ¥ is an almost strong lifting, set A = Jscq G\ ¢G.
For each x € A, let Z, be the ideal of subsets of X generated by

{F:FCXisclosed, x ¢ F} U{B: B C X is negligible}.

Then X ¢ 7, because u is strictly positive, so a closed set not containing x cannot be conegligible. There
is therefore a Boolean homomorphism ¢, : PX — {0, 1} such that ¢, F = 0 for every F € T, (311D). Set

OE = (pE\ A)U{z:z € A, p,E=1}
for E € X. Tt is easy to check that ¢ : & — PX is a Boolean homomorphism. (Compare the proof of 3417.)
If E € X, then
ENGE C (EAQE)U A
is negligiblg, so (because p is co~mplete) qNSE € X. If FE is negligible, then F € 7, and ¢, FE = 0 for every
xz € A, s0 pF = ¢F = (). Thus ¢ is a lifting. Now suppose that z € G € T. If x € A, then X \ G € Z,, so

Y (X\G)=0,¢,G=1andz € $G. If & ¢ A, then = € ¢G and again = € ¢G. As x and G are arbitrary,
¢ is a strong lifting.

(c) Suppose that ¢ : ¥ — ¥ is an almost strong lifting. Let G be a non-empty upwards-directed family of
open sets with union H. If supgcg #G = oo, this is surely equal to uH. Otherwise, there is a non-decreasing
sequence (G )nen in G such that G\ G* is negligible for every G € G, where G* = |J, .y G» (215Ab). Then
oG C ¢G* for every G € G. This means that

H\ ¢G" CUgeg G\ ¢G

is negligible, because ¢ is almost strong, and

neN

pH < p(¢G*) = pG* = limy, oo pGp = supgeg pG.
As G is arbitrary, p is 7-additive. By 411Nd, it has a support.

(d) Now suppose that u is complete, that X > 0 and that there is a conegligible F C X such that pg
has an almost strong lifting ¢. Let ¢ : PX — {0, X} be any Boolean homomorphism such that ¥ A =
whenever A is negligible. (This is where I use the hypothesis that X is not negligible.) Define ¢ : ¥ — PX
by setting

OF = o(ENF)U (bF \ E).
Then (5 is a Boolean homomorphism because ¢ and 1) are;
FAGF C ((ENF)A¢(ENF))U (X \ E)
is negligible, so OF € 3, for every F' € 3, because u is complete; and if F is negligible, then ¢(E N F) =
WF =0 so ¢F = (. Thus ¢ is a lifting. Finally,

Uges G\ 9G S (X \ E) UUges((GNE)\ ¢(GN E))

is negligible because ¢ is almost strong and F is conegligible.

453E Proposition Let (X, %, 3, u) be a complete strictly localizable topological measure space with an
almost strong lifting, and A C X a non-negligible set. Then the subspace measure p 4 has an almost strong
lifting.

proof Let ¢ : ¥ — X be an almost strong lifting. Because p is strictly localizable, A has a measurable
envelope W say (put 213J and 213L together). Write ¥4 for the subspace o-algebra on A. Let ¢ : ¥4 —
{0, A} be any Boolean homomorphism such that ¥ H = () for every negligible set H C A.

IfE, FeXand ENA=FNA,then oEN oW =¢pF NoW. P

H(EAF)NW) = p*((EAF) N A) =0,

(6E N SW)A(GF N ¢W) = $(EAF)NW) = 0. Q
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We can therefore define a function ¢ : ¥4 — PA by setting
OH = ($ENGW N A) U (H \ W)
whenever £ € 3 and H = EN A. It is easy to check that é is a Boolean homomorphism. If F € ¥ then
(ENA)AG(EN A) C(EAGE)U(A\ ¢W) C (BEAGE) U (W \ W)
is negligible, so ¢(E N A) € £ 4 (because p and p4 are complete). If H € $4 is negligible, then
¢H C ¢H UYH =0,

so ¢ is a lifting for LA-
Now set B = (A\ ¢W)UUger G\ ¢G. Because ¢ is almost strong, B is negligible. If H C A is relatively

open, then H \ ¢H CB. P Takez € H \ ®H. Express H as G N A where G C X is open. If z € W, then
x ¢ ¢G so x € B; if © ¢ ¢W, then of course z € B. Q Thus

U{H \ ¢H : H C A is relatively open} C B

is negligible and qB is almost strong.

453F Proposition Let (X, T, X, u) be a complete strictly localizable topological measure space.
(a) If T has a countable network, any lifting for p is almost strong.
(b) Suppose that 4 X > 0 and p is inner regular with respect to

K={K:K €%, ug has an almost strong lifting},
where px is the subspace measure on K. Then p has an almost strong lifting.

proof (a) Let £ be a countable network for T, and ¢ : ¥ — ¥ a lifting. For each E € &, let E be a
measurable envelope of E (213J/213L again). Then

U G\ oG = U E\ ¢G C U E\ ¢E

qes GeT,EcE,ECG GeT,EcE,ECC
(because if E C G € T, then G € ¥, so u(E\ G) =0 and ¢F C ¢Q)
c |JE\¢E
Ecé&

is negligible, so ¢ is almost strong.

(b) Let £ C K be a disjoint family such that y*A =%, . u*(ANL) for every A C X (412Ib). For each
L € L, let ¥ be the corresponding subspace o-algebra and ¢ : ¥ — ¥ an almost strong lifting. Set
E =JL; then

p(XN\E) =3 e L\ E) =0,
so I is conegligible. For F' € ¥ set ¢F = J,c, ¢r(F N L); then ¢ is a Boolean homomorphism from ¥g
to PE. If F € X, then

W (FAGF) = ¥ pep i (L0 (FAGE)) = e i (FNLAGL(F N L)) =0,
while if uF = 0 then ¢r(F N L) = for every L, so ¢F = (. Thus ¢ is a lifting. Now set
A=J{H\ ¢H : H C E is relatively open}.
If L € L, then
ANL={(HNL)\ ¢(HNL): HCE is relatively open}

is negligible, because ¢y, is almost strong; thus ¢ is an almost strong lifting for pg. By 453Dd, p also has
an almost strong lifting.

453G Corollary (a) A non-zero quasi-Radon measure on a separable metrizable space has an almost
strong lifting.
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(b) A non-zero Radon measure p on an analytic Hausdorff space X has an almost strong lifting.

proof (a) A quasi-Radon measure is complete and strictly localizable (415A), so, if non-zero, has a lifting
(341K). A separable metrizable space has a countable network (4A2P(a-iii)), so this lifting must be almost
strong.

(b) If K C X is compact and non-negligible, it is metrizable (423Dc), so that the subspace measure pg
has an almost strong lifting, by (a); as w is tight (that is, inner regular with respect to the closed compact
sets), it has an almost strong lifting, by 453Fb.

Remark In particular, Lebesgue measure on R” has an almost strong lifting and therefore, by 453Db, a
strong lifting, as already noted in 453B.

453H Lemma Let (X, 3, 1) be a complete locally determined measure space and ¥ a topology on X
generated by a family ¢ C 3. Suppose that ¢ : ¥ — X is a lifting such that ¢U D U for every U € U. Then
u is a T-additive topological measure, and ¢ is a strong lifting.

proof Of course ¢ is a lower density, and ¢X = X, so by 414P we have a density topology
Ta={E:E€X EC¢F}

with respect to which p is a 7-additive topological measure. But our hypothesis is that & C T4, so T C Ty
and p is a 7-additive topological measure with respect to . Also, of course, ¢G D G for every G € T, so ¢
is a strong lifting.

4531 Proposition Let ((X;,%;,%;, u;))icr be a family of topological probability spaces such that every
%; has a countable network and every p; is strictly positive. Let A be the (ordinary) complete product
measure on X = [[,.; X;. Then ) is a 7-additive topological measure and has a strong lifting.
proof (a) The strategy of the proof is as follows. We may suppose that I = & is a cardinal. Write A for
the domain of A, and for each £ < & let A¢ be the o-algebra of members of A determined by coordinates less
than &; write m¢ : X — X for the canonical map. I seek to define a lifting ¢ : A — A such that W O W for
every open set W € A. This will be the last in a family (¢¢)e<, of partial liftings, constructed inductively
as in the proof of 341H, with dom ¢¢ = A¢ for each £. The inductive hypothesis will be that ¢¢ extends ¢,
whenever n < &, and qbgr;l[G] D w;l[G] for every n < ¢ and every open G C X;,.

The induction starts with Ag = {0, X'}, ¢l = 0, ¢poX = X. For £ < k, set Be = {W*: W € A¢}.

(b) Inductive step to a successor ordinal & + 1 Suppose that ¢¢ has been defined, where £ < k.

(i) By 34INb, there is a lifting ¢; : A — A extending ¢¢. Let & be a countable network for T¢. For

each I € & let I be a measurable envelope of I. Set
Q = Ul [\ 64 (m [E)) + E € &l

then @ is negligible.

(ii) For z € Q, let Z, C A be the ideal generated by

{W.W el x peWHU {ng[F] : F C X¢ is closed, me(x) ¢ FYU{W : AW = 0}.
Then X ¢ Z,. P? Otherwise, there are a W € A¢, a closed F' C X, and a negligible W’ € A such that
wuw’ U7TE_1[F] = X while z ¢ ¢5WU71'£_1[F]. But in this case
0= AW’ > (X \ W) (X \ 7 [F]))
= MX\W) - MX N\ 7 [F]) = MX A W) - pe(Xe \ F) >0

because ¢ is strictly positive and ¢ W # X. XQ
There is therefore a Boolean homomorphism v, : A — {0, 1} which is zero on Z,.

(iii) Set
Ger W = (GWN\Q)U{z: 7 € Q, W =1}
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for every W € Agyi1. Then ¢¢4q is a Boolean homomorphism from A¢;q to PX. Because ¢§+1WA¢’£W cQ
is negligible, ¢¢1W € A and WA@e1 W is negligible for every W € Agiq. If AW = 0 then ¢z W = () and
W = 0 for every x € Q, s0 ¢pep1W = 0; thus ¢ei1 : Aey1 — A is a partial lifting. If W € A, then, for
T E€Q,

v EGW = 2 ¢ (X \W) = X\WeT,
= P, (X\W)=0= 9y, W =1 <= z€ ¢pe 11 W
=W ¢I, =z € W,
S0 pe1W = ¢e¢W. Thus ¢¢11 extends .
(iv) Suppose that n < & and G C X, is open. If < £ then
Pe1 () HG]) = e (m M [G]) 2 ) H[G]

by the inductive hypothesis. If n = &, take any = € ﬂ'gl[G]. Ifz € @, then X\ﬂgl[G] € Ty, 80 Uy (wgl[G]) =1
and z € ¢§+1(71'§_1[G]). If x ¢ Q, there is an F € & such that z(¢) € E C G. In this case, (¢) € E, so
v €m [E]\ Q C ¢(mg '[EN)\ Q C ¢era (m ' [E]) S pesa(mg '[G])
because £\ G and ng [E)] \wgl[G] are negligible. As x is arbitary, m, ! [G] C ¢¢11(m, '[G]) in this case also.
Thus the induction continues.

(¢) Inductive step to a non-zero limit ordinal & of countable cofinality Suppose that 0 < £ < k, that
cf¢ = w and that ¢, has been defined for every n < & Let ((n)nen be a non-decreasing sequence in
¢ with limit £& Then B¢ is the closed subalgebra of 2l generated by J, oy B¢, (using 254N and 254Fe,
or otherwise). By 341G, there is a partial lower density ¢ : A¢ — A extending every ¢¢,, and therefore

extending ¢,, for every n < £. By 341Jb (applied to A[Kg, where Kg is the o-subalgebra of A generated by
Ae U{W : A\W = 0}), there is a partial lifting ¢¢ : A¢ — A such that ¢W C ¢ W for every W € Ae.
Ifn<&and W € A, then

oW =W C oW, X\ oW = (X \W) C ¢e(X\ W) = X\ ¢ W,
so ¢¢ extends ¢,,. If n < ¢ and G C X, is open,
be(myHG]) = by (M [G]) 2 7 (G-
So again the induction continues.

(d) Inductive step to a limit ordinal & of uncountable cofinality In this case, B¢ = Un<£ B,,, as in the
proof of 341H; so there will be a unique partial lifting ¢¢ : Az — A extending ¢, for every n < & (set
¢eW = ¢,W' whenever W € A¢, n < & W' € A, and WAW' is negligible). As in (c), we again have

¢¢(m, HG]) = Gy (M [G]) 2 7, (G
whenever n < ¢ and G C X, is open.

(e) At the end of the induction, we have a lifting ¢ = ¢,, of A such that ¢U D U for every U € U, where
Uu= {ng[G] 1€ <k, G €T} By 453H, X is a T-additive topological measure and ¢ is a strong lifting.

453J Corollary Let ((X;,%;,%;, 1i))icr be a family of quasi-Radon probability spaces such that every
¥; has a countable network consisting of measurable sets and every p; is strictly positive. Then the ordinary
product measure A on X = [[,.; X; is quasi-Radon and has a strong lifting. If every X; is compact and
Hausdorff, then X is a Radon measure.

proof We have just seen that A is a 7-additive topological measure with a strong lifting; but also it is inner
regular with respect to the closed sets, by 412Ua, so it is a quasi-Radon measure. If all the X; are compact
and Hausdorff, so is X, so A is a Radon measure (416G).

453K We come now to the construction of disintegrations from strong liftings.
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Theorem Let (X, T, %, 1) and (Y, S, T, v) be Radon measure spaces and f : X — Y an almost continuous
inverse-measure-preserving function. Suppose that v has an almost strong lifting. Then there is a disinte-
gration (i, )yey of p over v such that every y, is a Radon measure and j, X = p, f~![{y}] = 1 for almost
every y € Y.

proof (a)(i) Suppose first that X is compact, p is a probability measure and that f is continuous.

Turn back to the proofs of 452H-4521. In part (a) of the proof of 452H, suppose that the lifting 6 : 8 — T
corresponds to an almost strong lifting ¢ : T — T (see 341Ba). Set B = (Jycs H \ ¢H, so that B is
negligible. In part (c¢) of the proof of 452H, take I to be the family of compact subsets of X. Then all the
fy, as constructed in 452H, will be Radon probability measures. For every y, f~![{y}] is a closed set, so is
necessarily measured by u,. But also it is u,-conegligible for every y € Y \ B. P Let K C X \ f~![{y}] be
a compact set. Then f[K] is a compact set not containing y. Because Y is Hausdorff, there is an open set
H containing y such that H N f[K] = () (4A2F(h-i)). Now

y€ H\BC¢H C ¢H.
Let E be the compact set f~[H|. Taking 7' : L°(u) — L*°(v) as in part (a) of the proof of 452I,
T(xE*) = xH', so
Uy B = (ST(xE*)(y) = (SOH))(y) = (x(¢H))(y) = 1.
Because E € K, p,E > ¢, E; since we always have p, X = 1, E is p,-conegligible. But K N E = ), so
pyK = 0. As K is arbitrary, u,(X \ f7'[{y}]) =0. Q
Thus p, f~[{y}] = 1 for almost every y € Y, while p, X <1 for every y.

(i) The result for totally finite u and v and continuous f follows at once.
(b) Now suppose that p and v are totally finite, and that f is almost continuous.

(i) Let K be the family of subsets K C X such that

K is compact and f[K is continuous,

whenever F' € T and v(F N f[K]) > 0 then u(K N f~[F]) > 0,

either K = ) or pK > 0.
Take any E € ¥ such that uF > 0. Then there is a K € K such that K C F and uK > 0. P Let Ko C FE
be a compact set such that f[ Ky is continuous and puKy > 0. Let 6 > 0 be such that uKy — dvY > 0. For
compact sets K C Ky set ¢(K) = pK — évf[K]. Choose {(an)nen, (Kn)n>1 as follows. Given that K, is a
compact subset of K, where n € N, set

ay, =sup{q(K) : K C K,, is compact},
and choose a compact subset K1 of K,, such that q(K, 1) > max(q(K,),a, —2~"). Continue.
Set K = (1, cn Kn. We have
q(K) = pK — v f[K]
> lim ,U'Kn -6 ian Vf[Kn] = lim Q(Kn) = sup q(Kn)
n—oo ne

n—oo neN

because (q(K;,))nen is non-decreasing. Of course K C E,
nK > q(K) > q(Ko) > 0,

and f[K is continuous because K C Kj.
? If there is an F € T such that v(F N f[K]) > 0 but u(K N f~1[F]) = 0, take a compact set K’ C
K\ f7'[F] such that pK’ > pK — §v(F N f[K]). Then f[K'] C f[K]\ F, so

Q") = K’ — S0 f[K') > pK' — 5w f{K] — v(F 01 fIK])) > uK — o f[K] = q(K).
Let n € N be such that ¢(K’) > q(K) + 2™"; then K’ is a compact subset of K, so

an > q(K') > q(K) +27" > q(Kpy1) + 27" > ap,
which is impossible. X Thus K belongs to K and will serve. Q
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(ii) By 342B, there is a countable disjoint set o C K such that u(X \ |JKo) = 0. Enumerate Ko
as (K)n<s(k,); for convenience of notation, if Ky is finite, set K,, = 0 for n > #(Ky), so that every K,
belongs to K and pE =" u(E N K,,) for every E € X.

(iii) For each n € N, define A\, : T — R by setting A\, F' = u(K,, N f~L[F]) for every F € T. Then \,
is a measure dominated by v, so there is a T-measurable g, : Y — [0,1] such that X\, F' = [}. g, for every
F € T, by the Radon-Nikodym theorem. Because A, (Y \ f[K,]) = 0, we may suppose that g,(y) = 0 for
y & fIK,]. We have

fFE:ozogn:E?:OIan:ZZO:ON(Knmf_l[F]) :,Uf_l[F] =vF

for every F' € T, so ZZOZO gn(y) = 1 for v-almost every y. Reducing the g,, further on a set of measure zero,
if need be, we may suppose that > > g, (y) < 1 for every y.

(iv) For each n € N, let A be the subspace measure on f [K,] induced by A,, and fi,, the subspace
measure on K, induced by u. Then f[K,, is inverse-measure-preserving for [, and An. Also, A, has an
almost strong lifting. P If K,, = (), this is trivial. Otherwise, vf[K,] > pK, > 0, so the subspace measure
U, induced by v on f[K,] has an almost strong lifting, by 453E. But 7, and A, have the same domain
TNP(f[K,]) and the same null ideal, because K,, € K; so an almost strong lifting for 7, is an almost strong
lifting for \,. Q

By (a) above, we can find a disintegration (iiny)ye i, of fin Over A such that every lny 1s a Radon
measure on K, finy K, <1 for every y and

Mny{l'Zl’GKn,f(l'):y}:l

for Ap-almost every y € f[K,], that is, for v-almost every y € f[K,]. For y € Y \ f[K,], let ny be the zero
measure on K,,.

(v) Now, for y € Y, set

py B = ZZO:O gn(y)ﬂny(E NK,)

for all those £ C X such that the sum is defined. Then p, is a Radon measure and p, X < 1. I Because
every [iny is a complete measure, so is u,. We have

py X = Zzo:o gn(y)#nyKn < 220:0 gn(y) <1

by the choice of the g,. If G C X is open then pu,, measures G N K,, for every n, so u, measures G;
accordingly p, measures every compact set. If y,E > 0, there is some n € N such that g,(y) > 0 and
Hny(ENK,) > 0; now there is a compact set K C EN K, such that p,,K > 0, in which case p, K > 0. By
412B, p, is tight, and is a Radon measure. Q

(vi) (py)yey is a disintegration of p over v. I If E € ¥ then

o0
pE =Y u(ENK,)
n=0

(by the choice of the K, in (ii) above)

= Zﬂn(EﬂK Z/ ,U'ny (ENK, );\n(dy)

n=0

(because (finy)yefk,) is a disintegration of fi,, over A )

= Z/ Hny (ENKp)n(dy) = Z/ﬂny (BN Ky)An(dy)

(because A\, (Y '\ f[K,]) =

= Z /gn(y)uny(E N Ky)v(dy)
n=0

(235A)
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~ [ S anns B0 Kowidy) = [ 1, Evidy). @

n=0
(vii) It follows that s, f~'[{y}] =1 for almost every y. P

{:m T Y # 1 Sy i X # ULy g (X F {y3]) > 0}
C{y:puy X #1} U U {y:y € fIKp]s piny (K \ f_l[{y}]) >0}
neN
is negligible. Q
(c) Now let us turn to the general case. This proceeds just as in 4520. Let (Y;);cr be a decomposition
of Y. For each i € I, take X;, A\; and v; as in the proof of 4520. Note that \; and v; are Radon measures,

so that we can apply (b) above to find a disintegration (fi,)ycy; of A; over v; such that every fi, is a Radon
measure and fi, X; = fi, f ' [{y}] = 1 for v;-almost every y € Y;. Just as in 4520, we can set

iy E = iy (BN X;)

whenever y € Y; and p, measures E'N X;, to obtain a disintegration (fy),cy of p over v in which every p,
is a Radon measure and p, X =1 for almost every y; and this time

yryeY, puf'H{y #1}y =Uiely v €Y, oy f {y} # 1}

is negligible. So we have a disintegration of the required type.

453L Remark If f is surjective, we can arrange that every p, is a Radon probability measure for which
X, = f~{y}] is py-conegligible, just by changing some of the y, to Dirac measures. If f is not surjective,
then we can still (if X itself is not empty) arrange that every p, is a Radon probability measure; but it
might be more appropriate to make some of the p, the zero measure, so that X, is always u,-conegligible.

I have continued to express this theorem in terms of measures p, on the whole space X. Of course, if we
take it that X, is to be p,-conegligible for every y, it will sometimes be easier to think of i, as a measure
on Xy; this is very much what we do in the case of Fubini’s theorem, where all the X, are, in effect, the
same.

453M Strong liftings and Stone spaces Let (X,%,X,u) be a quasi-Radon measure space, and
(Z,6,T,v) the Stone space of the measure algebra (2, i) of u. For E € ¥ let E* C Z be the open-
and-closed set corresponding to the equivalence class E* € 2. Let R be the relation

ﬂFgXisclosed{(z,x) cz€Z\Frorx e F} CZxX
(415Q). For every lifting ¢ : ¥ — ¥ we have a unique function g4 : X — Z such that ¢F = g;l[E*] for
every E € ¥ (see 341P). Now we have the following easy facts.
(a) ¢ is strong iff (g4(z),z) € R for every z € X. P
(go(z), ) € R for every z € X

<= x € F whenever F is closed and g4(z) € F*

= g;l[F*} C F for every closed set FF C X

< ¢F C F for every closed set FF C X

<= ¢ is strong. Q

(b) If ¥ is Hausdorff, so that R is the graph of a function f (415Ra), then ¢ is strong iff fg,(z) = x for
every © € X. (For (g4(x),z) € Riff fgy(x) =x.)

453N Losert’s example (LOSERT 79) There is a compact Hausdorfl space with a strictly positive
completion regular Radon probability measure which has no strong lifting.
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proof (a) Let v be the usual measure on {0,1} =Y. Let M C Y be a closed nowhere dense set such that
vM > 0 (cf. 419B), and v; a Radon probability measure on Y such that 4 M =1 (e.g., a Dirac measure
concentrated at some point of M).

Let I be any set with cardinal at least wy such that I N (I x I) = (). Let A be the product measure on Y/,
giving each factor the measure v; of course A can be identified with the usual measure on {0, 1}"*7 (254N).
Note that A and v are both strictly positive. For i € I write M; = {2 : 2z € Y1, 2(i) € M}; then M; is closed
in Y7

Set A={(i,j):i,j€1l,i+#j}. Forze€ Yl and (i,j) € A let z/i(;) be the Radon probability measure on
Y given by setting

llz(jz) = if z € M; N M,
= v otherwise.

Now, for z € Y, let A\, be the Radon product measure of <Vi(;)>(i,j)€,4 on YA,

(b) Let U be the family of sets U C Y4 of the form {u : u(i,j) € U;; for (i,5) € B}, where B C A is
finite and U;; C Y is open-and-closed for every (i,5) € B. Then the function z — A\, U : Y1 — [0,1] is Borel
measurable for every U € U. PP Express U in the given form. For C' C B set

Ec={z:2zeYl, C={(i,j): (i,j) € B, 2 € M; N M;}},
so that (Ec)ccp is a partition of Y/ into Borel sets. For any C C B,

)\zU: H ysz)(UZj) = H VlUij . H VUij

(i,5)€B (i,9)eC (i,7)€B\C
is constant for z € Fc. Q

(c) There is a Radon measure j on X = Y x Y4 specified by the formula

jE = [ \E[{2}A(d2)

for every Baire set E C X. P Let £ be the class of those sets E C X such that [ A\, E[{z}]\(dz) is defined.
Then £ is closed under monotone limits of sequences, and E\ E’ € £ whenever E, E' € £ and E' C E; also
£ contains all the basic open-and-closed sets in X of the form V x U, where V C Y7 is open-and-closed and
U € U. By the Monotone Class Theorem (136B), £ includes the o-algebra generated by such sets, which is
the Baire o-algebra Ba of X (4A30f). Of course E — [ A\, E[{z}]\(dz) is countably additive on Ba, so is a
Baire measure on X, and has a unique extension to a Radon measure, by 432F. Q

w is strictly positive. I Let W C X be any non-empty open set. Then it includes an open set of the
form V x U where V = {z: 2 € Y, 2(i) € V; for every i € J}, U = {u : u € Y4, u(j, k) € Ujy for every
(4, k) € B}, J C I and B C A are finite sets, and V;, Ujp C Y are non-empty open sets for every ¢ € J and
(J, k) € B. Now v is strictly positive, so AV’ > 0, where

V' ={z:2€V, z¢ M; whenever (j,k) € B}.

(This is where we need to know that the M; are nowhere dense.) But if z € V' then l/j(-;)
(4, k) € B, so

= v for every

AU = H(j’k)eB vUj, > 0.
Accordingly
pW > [, A UNdz) > 0.

As W is arbitrary, p is strictly positive. Q
Write 3 for the domain of u.

(d) Fix on a self-supporting compact set K C X. I seek to show that, regarded as a subset of Y/Y4, K
is determined by coordinates in some countable set.

(i) There is a zero set L O K such that uL = pK. P Let (K, )nen be a sequence of compact subsets
of X \ K such that lim,,_, . K, = u(X \ K). For each n € N there is a continuous function f, : X — [0, 1]
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which is zero on K and 1 on K,,; now L = {z: f,(x) = 0 for every n € N} is a zero set including K and of
the same measure as K. Q

(ii) By 4A3Nc, L is determined by coordinates in a countable subset of TUA, that is, there are countable
sets Jo C I, By C A such that whenever (z,u) € L, (2/,u’) € X, z[Jy = 2'[Jy and u] By = v'| By we shall
have (/,u) € L. Set

J:JOU{Z(ZvJ)EBO}U{j(Zvj)EBO}a B:AQ(JXJ)a
then J O Jy and B D By are still countable, and L is determined by coordinates in J U B.

(iii) Take any (zo,up) € X \ K. Because K is closed, we can find finite sets J; C I and B; C A,
open-and-closed sets V; C Y for ¢ € Jq, and open-and-closed sets U;; C Y for (4, ) € By, such that

W ={(z,u) : (i) € V; for every i € Ji, u(i,j) € Uy; for every (i,7) € By}

contains (zp,ug) and is disjoint from K. Set

Wi ={(z,u) : (z,u) € X,2(i) € V; for every i € J; N J,
u(t,j) € Uy; for every (i,j) € By N B},

Q={z:ze YL N (LnW)[{z}]) > 0},

so that Wy is an open-and-closed set in X and @ is a Borel set in Y/ ((b) above). Now @ is determined by
coordinates in .JJ. P Suppose that z € Q, 2/ € Y and z|J = 2'|J. Because both L and W, are determined
by coordinates in JU B, (LNW1)[{z}] = (LNW1)[{z'}] = H say, and H is determined by coordinates in B.
At the same time, for any (4, j) € B, M; N M; is determined by coordinates in J, so contains z iff it contains

2, and 1/1»(;) = I/z»(jz,). This means that, writing A}, and A/, for the products of <V1-(;)>(i,j)eB and <Vi(?/)>(i,j)eB

on YB M, =),. So
A (LOW)H2Y) = Ao H = A, H = N H' = A H = A (LN Wh)[{z}]) > 0,

where H' = {u[B :u € H} (2540b), and 2’ € Q. Q

(iv) Set

Jr=({i:(i,j) € BL\B}U{j: (i,j) € Bi\ B})\ J.
Then J; is a finite subset of I\ J, and By C (JU J2) X (J U J3). Set
G={z:2€Y! 2(i) ¢ M for every i € Jo},
so that G is a dense open subset of Y. Set
Gi={z:2€Y! 2(i) €V, for every i € J; \ J}.

Then G is a non-empty open set, so GN Gy # @ and A(GNGy) > 0.

(v) Set

U={u:ueYA u(i,j) € U for every (i,j) € By \ B}.

If z € G, then z ¢ M, N M; whenever (,j) € By \ B, so 1/-(;) = v for every (4,j) € By \ B, and

1,

AU = H(i,j)eBl\B Z/Uij > 0.

(vi) 7 Suppose, if possible, that AQ > 0. Because @ is determined by coordinates in J and G NG is
determined by coordinates in Jy U (J1 \ J),
MRQNGNGy) =AQ-AMGNGy) > 0.
Ifze@NGNGEy,

A (L NW)[{z}]) = A (U N (LN W) [{=}])
(because W =W, N (Y x U)N(Gy x Y4), and 2z € Gy)
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=AU - A (LW [{z}])
(because (L NW7)[{z}] is determined by coordinates in B, while U is determined by coordinates in B \ B,
and A, is a product measure)

>0

because z € G N Q. But this means that
0< [ A((LNW)H)A(2) = p(LOW) = u(K N W) = b
which is absurd. X
Thus AQ must be zero.
(vii) Consequently
p(KNWi) = (LN W) = [ A((LnW)[{z}])A(dz) = 0;

because K is self-supporting, K N W; = (. And W) contains (29, ug) and is determined by coordinates in
JU B.

(viii) What this means is that there can be no (z,u) € K such that z[J = 29| J and u[B = uo[B. At
this point, recall that (2o, up) was an arbitrary point of X \ K. So what must be happening is that K is
determined by coordinates in the countable set J U B. By 4A3Nc again, in the other direction, K is a zero
set.

(e) Part (d) shows that every self-supporting compact subset of X is a zero set. Since u is certainly inner
regular with respect to the self-supporting compact sets, it is inner regular with respect to the zero sets,
that is, is completion regular.

It follows that whenever E € X there is an E' C F, determined by coordinates in a countable subset of
TU A, such that F \ E’ is negligible. (Take E’ to be a countable union of self-supporting compact sets.)

(f) ? Now suppose, if possible, that we could find a strong lifting ¢ for u. For each i € I, take a set
E; C ¢(M; x YA) such that uFE; = p¢(M; x Y4) and E; is determined by coordinates in J; U B;, where
J; C I and B; C A are countable. Set

Ji =A{i: (k) € Bi} U{k: (j,k) € Bi},

so that J; also is countable. Because #(I) > wy, there are distinct i, j € I such that i ¢ J and j ¢ J;
Set

F={u:ueY? u(i,j)e M}
Then pu((M; N M;) x (YA\ F)) =0. P If z € M; N M;, then

A(YA\F) =3 (Y \ M) =0.
But (M; N M;) x (YA \ F) is a Baire set, so

p((M; N M;) x (YA\F)) = /M(Mi N M;) x (YA F)[{z}]A(d2)
= / A (YA\ F)Adz) =0. Q
M;NM,;
Accordingly
E;NE; Co(My x YY) Np(M; x YA = ¢(M; N M) x YA) C p(YT x F)

(because ((M; N M;) x YA)\ (YT x F) is negligible)
CY'xF
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because Y! x F is closed and ¢ is supposed to be strong. However, F; N E; is determined by coordinates in
J; UJ; UB; UBj, while Y/ x F is determined by coordinates in {(i, )}, which does not meet B; U B;. So
either F; N E; is empty or F = Y4, But F # Y4 because M # Y, while

p(B; N Ey) = p(¢(Mi x YA) N o(M; x YA)) = p((M; N My) x V)
= \M; N M;) = (vM)* > 0,
so BE;NE; #0. X
(g) Thus p has no strong lifting, as claimed.

453X Basic exercises >(a) Let (2, i) be a measure algebra and (Z,%, 3, i) its Stone space. Show that
the canonical lifting for p (3410) is strong.

(b) Show that there is a strong lifting for Lebesgue measure on the Sorgenfrey line (415Xc). (Hint: set
OFE = {x : lims o %,u(E N[z, z + 6]) = 1}, and use 341Jb.)

>(c) Let p be the usual measure on the split interval (343J, 419L). Show that u has a strong lifting.

(d) Let (X,%,%, 1) be a complete locally determined topological measure space such that g is inner
regular with respect to the closed sets, and ¢ : % — ¥ a strong lifting. Show that p is a quasi-Radon
measure with respect to the lifting topology ¥; (414Q). Show that if T is regular then T; O ¥.

(e) Let (X,%,%,u) be a topological measure space which has an almost strong lifting. Show that any
non-zero indefinite-integral measure over p (234J'?) has an almost strong lifting.

(f) Let (X,%,3, 1) be a Radon measure space such that (X, X, i) is countably separated and uX > 0;
for example, (X,%T) could be an analytic space (433B). Show that pu is inner regular with respect to the
compact metrizable subsets of X, so has an almost strong lifting. (Hint: there is an injective measurable
f: X — R, which must be almost continuous.)

(g) Let (X,%,%, 1) be a complete locally determined topological measure space such that p is effectively
locally finite and inner regular with respect to the closed sets, and ¢ : ¥ — ¥ a lower density such that
#G D G for every open G C X. Show that p is a quasi-Radon measure with respect to both T and the
density topology associated with ¢.

(h) Let (X,%,%, ) be a quasi-Radon measure space and ¢ : ¥ — ¥ a lower density such that ¢G' O G
for every open G C X. Let (G,).ecx be a family of open sets in X such that z ¢ ¢(X \ G,) for every z € X.
(i) Show that A\ U, 4(Gx NU,) is negligible whenever A C X and U, is a neighbourhood of  for every
x € A. (ii) Let & be the topology on X generated by TU {{z} UG, : x € X}. Show that u is quasi-Radon
with respect to &.

(i) Let X and Y be Hausdorff spaces, and u a Radon probability measure on X x Y'; set 7(z,y) = y for
z € X,y €Y, and let v be the image measure ur~!. Suppose that v has an almost strong lifting. Show
that there is a family (p,)yey of Radon probability measures on X such that uE = [ p, (E~[{y}])v(dy)
for every E € dom p.

(j) Use 453Xe to simplify part (b) of the proof of 453K.
(k) In 453N, show that [ A,E[{z}]\(dz) is defined and equal to uF whenever p measures E.

453Y Further exercises (a) Let (Y, &, T, v) be a Radon measure space such that vY > 0 and whenever
(X,%,%, 1) is a Radon measure space and f : X — Y is an almost continuous inverse-measure-preserving
function, then there is a disintegration (u,)yey of p over v such that pu,f~'[{y}] = 1 for almost every y.
Show that v has an almost strong lifting. (Hint: Start with the case in which Y is compact. Take f : X — Y
to be the function described in 415R, 416V and 453Mb. Set ¢F = {y : p, B* = pu, X =1}.)

2Formerly 234B.
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453Z Problems (a) If (X, T, %, u) and (Y,6,T,v) are compact Radon measure spaces with strong
liftings, does their product necessarily have a strong lifting? What if they are both Stone spaces?

(b) If (X,%,%, ) is a Radon probability space with countable Maharam type, must it have an almost
strong lifting?

453 Notes and comments As I noted in §452, early theorems on disintegrations concentrated on cases in
which all the measure spaces involved were ‘standard’ in that the measures were defined on standard Borel
spaces (§424), or were the completions of such measures. Under these conditions the distinction between 4521
and 453K becomes blurred; measures (when completed) have to be Radon measures (433Cb), liftings have
to be almost strong (453F) and disintegrations have to be concentrated on fibers (452Gc). Theorem 453K
provides disintegrations concentrated on fibers without any limitation on the size of the spaces involved,
though making strong topological assumptions.

The strength of 453K derives from the remarkable variety of the (Radon) measure spaces which have
strong liftings, as in 453F, 453G, 4531 and 453J. For some ten years there were hopes that every strictly
positive Radon measure had a strong lifting, which were finally dashed by LOSERT 79; I give a version
of the example in 453N. This is a special construction, and it remains unclear whether some much more
direct approach might yield another example (453Za). I should perhaps remark straight away that if the
continuum hypothesis is true, then any strictly positive Radon measure with Maharam type at most w; has
a strong lifting (see 5351 in Volume 5). In particular, subject to the continuum hypothesis, Z x Z has a
strong lifting, where Z is the Stone space of the Lebesgue measure algebra, and we have a positive answer
to 4537Zb.

Version of 19.5.16/5.8.22

454 Measures on product spaces

A central concern of probability theory is the study of ‘processes’, that is, families (X;);er of random
variables thought of as representing the evolution of a system in time. Kolmogorov’s successful representation
of such processes as measurable functions on an abstract probability space was one of the foundations on
which the modern concept of ‘random variable’ was built. In this section I give a version of Kolmogorov’s
theorem on the extension of consistent families of measures on subproducts to a measure on the whole
product (454D). It turns out that some restriction on the marginal measures is necessary, and ‘perfectness’
seems to be an appropriate hypothesis, necessarily satisfied if the factor spaces are standard Borel spaces
or the marginal measures are Radon measures. If we have marginal measures with stronger properties then
we shall be able to infer corresponding properties of the measure on the product space (454A, generalizing
4517).

The apparatus here makes it easy to describe joint distributions of arbitrary families of real-valued random
variables (454J-454P), extending the ideas of §271. For the sake of the theorem that almost all Brownian
paths are continuous (477B) I briefly investigate measures on C(T'), where T' is a Polish space (454Q-4548S).

454A Theorem Let ((X;,X;, ;))icr be a non-empty family of totally finite measure spaces. Set X =
[I;c; Xi and let ;1 be a measure on X which is inner regular with respect to the o-algebra @), ;Y; generated
by {m;'[E] :i €I, E € %;}, where 7; : X — X, is the coordinate map for each i € I. Suppose that every
m; is inverse-measure-preserving.

(a) If £ C PX is a family of sets which is closed under finite unions and countable intersections, and p;
is inner regular with respect to K; = {K : K C X;, n; '[K] € K} for every i € I, then  is inner regular
with respect to .

(b)(i) If every u; is a compact measure, so is y;

(ii) if every p; is a countably compact measure, so is y;
(iii) if every p; is a perfect measure, so is p.

proof If X is empty this is all trivial, so we may suppose that X # ().

(©) 2001 D. H. Fremlin
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(@) Set A= {m;'[El:icl,Fe%}. fAc A VeXand u(ANV) > 0, there is a K € K N A such
that K C A and u(K NV) > 0. P Express A as 7, '[E], where E € ¥;; take L € K; such that L C E and
wil > B —pu(ANV), and set K =7, '[L]. Q

By 412C, u[@ieIZi is inner regular with respect to KC; by 412Ab, so is p.

(b)(i)-(ii) Suppose that every u; is (countably) compact. Then for each ¢ € I we can find a (countably)
compact class K; C PX; such that y; is inner regular with respect to ;. Set £ = {m; '[K]:i € I, K € K;}.
Then £ is (countably) compact (451H). So there is a (countably) compact I O £ which is closed under
finite unions and countable intersections (342Da, 413T). Now g is inner regular with respect to C, by (a),
and therefore (countably) compact.

(iii) Let Ty be a countably generated o-subalgebra of @ie ;2i. Then there must be some countable
subfamily &£ of {r;'[E] : i € I, E € ¥;} such that Ty is included in the o-algebra generated by £ (use
331Gd). Set & = {E: E € %;, 7, '[E] € £} for each i, so that & is countable, and let X} be the o-algebra

generated by &;. Then ;[ X} is compact (451F(ii)). Applying (i), we see that u[@iel
perfect; while To C @), ;X;. As Ty is arbitrary, u[@),;. ;% is perfect (451F(i)). But as the completion of
is exactly the completion of @)

¥ is compact, therefore

ieris i also is perfect, by 451Ge.
454B Corollary Let (X;);cr be a family of Polish spaces with product X. Then any totally finite Baire
measure on X is a compact measure.

proof If ;4 is a Baire measure on X, then its domain Ba(X) is @iGIB(Xi), where B(X;) is the Borel
o-algebra of X; for each i € I (4A3Na). So each image measure y; on X; is a Borel measure, therefore tight
(that is, inner regular with respect to the closed compact sets, 433Ca), and by 454A (b-1) p is compact.

454C Theorem (MARCZEWSKI & RYLL-NARDZEWSKI 53) Let (X,X, ) be a perfect totally finite
measure space and (Y, T,v) any totally finite measure space. Let ¥ ® T be the algebra of subsets of X x Y
generated by {Ex F: E€ X, Fe T} If \p: X ®T — [0,00[ is a non-negative finitely additive functional
such that A\g(E xY) = pFE and A\o(X x F) = vF whenever E € ¥ and F € T, then A¢ has a unique extension
to a measure defined on the o-algebra Y®T generated by ¥ ® T.

proof (a) By 413Lb, it will be enough to show that lim,,_, ., A\gW,, = 0 for every non-increasing sequence
(Widnen in ¥ ® T with empty intersection. Take such a sequence. Each W, must belong to the algebra
generated by some finite subset of {E x F': E € X, F € T}, so there must be a countable set £ C ¥ such
that every W,, belongs to the algebra generated by {E x F: E € £, F € T}; let ¥ be the o-subalgebra of
¥ generated by &, so that every W, belongs to Yo&T.

(b) By 451F, u[%y is a compact measure; let X C PX be a compact class such that [ % is inner regular
with respect to K. We may suppose that K is the family of closed sets for a compact topology on X (342Da).
Let W be the family of those elements W of g @ T such that every horizontal section W ~1[{y}] belongs to
K. Then W is closed under finite unions and intersections.

(c) W € 3y ®T and € > 0, then there is a W/ € W such that W C W and \(W \W’') <e. P
Express W as Uign E; x F;, where E; € ¥y and F; € T for each i < n. (Cf. 315Kb.) For each i < n, take
K; € KNXy such that u(E; \ K;) < %He, and set W' = Uign K; x F;. Then W/ e W, W/ C W and

n

Mo((Bi x Fi)\ (Ki x F;)) <> Ao((Ei \ K;) x Y)
1=0

Ao(WAW) <

-

Il
<)

K3

po(Ei \ Ki) <e. Q

|

I
=)

K2

(d) Take any € > 0. Then for each n € N we can find W, € W such that W) C W,, and Ag(W,, \ W})) <
27 "e. Set V,, = ﬂign W/, so that V;, € W and

/\O(Wn \ Vn) < Z?:o )\O(Wi \ Wll) < 2
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for each n, and (V,,)nen is non-increasing, with empty intersection.

Because V,, € ¥y ® T, its projection H, = V,[X] belongs to T, for each n. Of course (H,)necn is non-
increasing; also (),cyHn = 0. P If y € Y, then (V7 '[{y}])nen is a non-increasing sequence in K with
empty intersection, because (), cy Vi € ey Wa is empty. But K is a compact class, so there must be some
n such that V" '[{y}] is empty, that is, y ¢ H,,. Q Accordingly lim, . vH, = 0. But as V,, C X x H,,
lim,, 00 AoV, = 0.

This means that lim,, . AgW,, < 2¢e. But as € is arbitrary, lim,, ., A\oW,, = 0, as required.

454D Theorem (KoLmMoGOROV 1933, §II1.4) Let ((X;,X;, pt;))ier be a family of totally finite perfect
measure spaces. Set X = [[,.; X;, and write ®,; &; for the algebra of subsets of X generated by {r; '[E] :
i€, EcX;}, where m; : X — X; is the coordinate map for each i € I. Suppose that A : &), i — [0, 00[
is a non-negative finitely additive functional such that Ag7; 1[E] = p;E whenever ¢ € I and F € ¥;. Then

Ao has a unique extension to a measure A with domain @),.;3;, and X is perfect.

proof (a) The argument follows the same pattern as that of 454C. This time, take a non-increasing sequence
(Wh)nen in @, Xi with empty intersection. Each W,, belongs to the algebra generated by some finite
subset of {r; '[F] :i € I, E € ¥;}, so we can find countable sets & C ¥; such that every W,, belongs to
the subalgebra generated by {ﬂi_l[E] c1 €1, E €&} Let T; be the o-subalgebra of ¥; generated by &;, so

that every W), belongs to &,; T;.

(b) For each i € I, ;[ T; is compact (451F); let T; be a compact topology on X; such that u;[T; is inner
regular with respect to the closed sets (342F). Let T be the product topology on X, so that ¥ is compact
(3A3J). Let W be the family of closed sets in X belonging to @),.; Ti.

(c) fW € @,c; Ti and € > 0, there is a W’ € W such that W/ C W and Ag(W \ W') < e. PP We can
express W as ngn ﬂie]k w[l[Eki] where each Jj is a finite subset of I and Ey; € X; for k < n, i € J,

(again as in 315Kb). Let (egi)k<n.ics, be a family of strictly positive numbers with sum at most e. For
each k < n, i € Jy take a closed set Kj; € T; such that Ky, C Fy; and p;(Ek; \ Kii) < €gi, and set

W' = Up<n Nics 7 Kk Q

(d) Take any € > 0. Then for each n € N we can find W/ € W such that W/ C W,, and A\g(W,, \ W) <
27 "e. Set V,, = ﬂign W/. Then (V,)nen is a non-increasing sequence of closed sets in the compact space
X, and has empty intersection, so there is some n such that V,, is empty, and

AoWn < 3000 Ao(Wi \ W) < 2e.
As € is arbitrary, lim, ., AgW, = 0.

(e) As (Wy)nen is arbitrary, Ao has a unique countably additive extension to @
before. Of course the extension is perfect, by 454A (b-iii).

jer>i, by 413Lb, as

454E Corollary Let ((X;,X;, 1i))ier be a family of perfect measure spaces. Let C be the family of
subsets of X = [],.; Xi expressible in the form X N, wfl[Ei] where J C [ is finite and E; € X; for
every i € I, writing m;(x) = z(¢) for z € X, i € I. Suppose that Ao : C — R is a functional such that (i)
TME] = i E whenever i € I and E € ; (ii) AoC = X\o(C Ny H[E]) + Ao(C \ 7; '[E]) whenever C € C,

i1 €I and E € ;. Then )¢ has a unique extension to a measure on ). _,>;, which is necessarily perfect.

i€l

proof By 326E, A\ has an extension to an additive functional on )., X;, so we can apply 454D.

iel

454F Corollary Let ((X;,Y;))ies be a family of standard Borel spaces. Set X = [],.; X;, and let
®;cr Xi be the algebra of subsets of X generated by {r;'[E]:i €I, E €%}, where 7; : X — X is the
coordinate map for each i. Let Ao : @,.; X: — [0,00[ be a non-negative finitely additive functional such
that all the marginal functionals E + \o7r; '[E] : ¥; — [0, oo[ are countably additive. Then Ay has a unique

extension to a measure defined on ), ;¥;, which is a compact measure.

iel
proof This follows immediately from 454D and 454A if we note that all the measures Ao, ! are necessarily
compact, therefore perfect (451M).
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454G Corollary Let (X;);c; be a family of sets, and ¥; a o-algebra of subsets of X; for each i € I.
Suppose that for each finite set .J C I we are given a totally finite measure puy on Z; =[], ; X; with domain
&), % such that (i) whenever J, K are finite subsets of I and J C K, then the canonical projection from
Z to Z; is inverse-measure-preserving (ii) every marginal measure jiy;y on Zg; = X; is perfect. Then
X, = Zjis

¥; such that the canonical projection 7y : [,

there is a unique measure y defined on @),; el

inverse-measure-preserving for every finite J C 1.

proof All we need to observe is that
®icr Zi = {77 V] J €[5,V € Qe Bil-

Because all the canonical projections from Xg onto Xj are inverse-measure-preserving, we have puj;V =
i V' whenever J, K are finite subsets of I, V € ®,c;%i, V' € ;e Si and 77 [V] = 7' [V']. So
we have a functional Ao : &®,c; % — [0,00[ such that Ao, '[V] = p;V whenever J C I is finite and
V € Qe Zi- It is easy to check that )\0 is finitely additive and satisfies the conditions of 454D. So A can
be extended to a measure p defined on ®ze I

If J C I is finite, then py and /nrJ agree on ®i€J Y7 and therefore (by the Monotone Class Theorem,
136C) on ®z’e ;%i; that is, 7 is inverse-measure-preserving. To see that u itself is unique, observe that
3); and therefore on @

the conditions define its values on ), 3;, by the Monotone Class Theorem once

iel i€l
more.

454H Corollary Let ((X,,Y,))nen be a sequence of standard Borel spaces. For each n € N set Z,, =
[lic, Xi and T, = ®,., 2. (For n = 0, we have Zy = {0}, To = {0,Z0}.) Forn € N, W € T, x
and z € Z, write W[{z}] = {§ : § € X, (2,§) € W}; set X =[],y Xn and write 7, for the canonical
projection of X onto Z,,. Suppose that for each n € N and z € Z,, we are given a probability measure v, on
X, with domain %,, such that z — v,(F) is T,-measurable for every E € X,,.

(a) We have a sequence (i,)nen of probability measures such that, for each n € N, p, has domain T,
and

1 (W f’/z {2} pn(dz)
for every W € T,, 41, and

[t = [[ oo ][ 1o gmen e tden)

V(o en—2) (dEn—1) - - . Vg, (d€1)vp(d€o)

for every n € N and p,,+1-integrable real-valued function f.
(b) There is a unique probability measure p on X = [], .y Xy, with domain @), cy¥n, such that p, is

the image measure uf, ! on Z, for every n € N

neN

proof (a) Of course this is an induction on n.

(i) po must be the unique probability measure on the singleton set Zy. Given that dom p,, = T,,, the
class W of sets W C Z,,11 for which [, W[{2}]pn(dz2) is defined will contain all sets of the form [[,,, E;
where F; € X; for every ¢ < n, just because the function z — v, FE, is T,-measurable. Since W is closed
under increasing sequential unions and differences of comparable sets, the Monotone Class Theorem (136B)
tells us that it includes the o-algebra generated by the cylinder sets, which is Tj,41.

(ii) As for the integrals, we start with the elementary case Z; = Xy, pu1 = vy and
J fdpn = [ f(€)vo(déo)

for f: Xg — R. For the inductive step to n > 1, (v)).cz, is a disintegration of p,41 over pu,, where v, is
the measure with domain T, defined by writing v,(W) = v, W[{z}] for W € T, 11, z € Z,. By 452F,
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/zm Jdpns1 = /Z /Z+ fw)v,(dw)pun (dz)
[ [ s eoma)

for every i, 1-integrable function f. (The second equality can be regarded as an application of the change-of-
variable formula 235Gb applied to the (v,, v.)-inverse-measure-preserving function £ — (2,€) : X, = Zp41.)

(b)(i) The canonical maps from Z, 11 to Z, are all inverse-measure-preserving, just because every v,
is a probability measure. We therefore have a well-defined functional Ao : @, .y En — [0,1] defined by
setting A\o7,, '[W] = pn, W whenever n € N and W € @), _,, X, and this g is finitely additive; moreover,
each marginal measure \gm;, !, where 7, : X — X,, is the coordinate map, is countably additive, because it
is expressible as an image measure of ji, 11 on X,,.

(ii) Everything so far has been valid for any sequence ((X,,, ¥, ))nen of sets with attached o-algebras.
But at this point we note that every marginal measure A\o7r,, ! must be perfect, because (X, 2,) is a standard
Borel space. So Theorem 454D gives the result.

4541 Remarks In 454F and 454H the hypotheses call for ‘standard Borel spaces’ (X;,%;). As the
proofs make clear, what is needed in each case is that ‘every totally finite measure with domain ¥; must
be perfect’. We have already seen other ways in which this can be true: for instance, if X is any Radon
Hausdorff space (434C), and X its Borel o-algebra. Further examples are in 454Xd, 454Xh-454Xi and
454Yb-454Yc. Indeed, even weaker hypotheses can be fully adequate. In 454H, for instance, it will be quite
enough if all the marginal measures on the factors X, are perfect; in view of 454A and 451E, this will be so
iff all the measures [i,, on the partial products Z,, are perfect. It may be difficult to be sure of this unless
either we have some argument from the nature of the factor spaces (X,,, X, ), as suggested above, or a clear
understanding of the marginal measures. In applications such as 455A below, however, there may be other
approaches available.

454J Distributions of random processes For the next few paragraphs I shift to probabilists’ notation.

Proposition Let (2,3, 1) be a probability space and (X;);c; a family of real-valued random variables on
Q (see §271).

(i) There is a unique complete probability measure v on R!, measuring every Baire set and inner regular
with respect to the zero sets, such that

v{z:z eR!, 2(i,) < a, for every r < n} = Pr(X;, < a, for every r <n)

whenever ig,... ,i, € I and ag,...,a, € R.

(ii) If 4, ... ,i, € I and 7(x) = (z(ig),... ,2(in)) for # € R, then the image measure v7~! on R"*! is
the joint distribution of Xj,,... ,X;, as defined in 271C.

(iii) v is a compact measure. If I is countable then v is a Radon measure.

(iv) If every X; is defined everywhere on ), then the function w + (X;(w))ier : © — R is inverse-
measure-preserving for i and v, where [ is the completion of u.

proof (a) Completing p, and adjusting the X; on negligible sets, does not change any of the joint distri-
butions of families X;,,..., X, (271Ad), so we may suppose henceforth that p is complete and that every
X; is defined on the whole of Q. Set ¢(w) = (X;(w))ies for w € Q. Then {F : F C R, ¢71[F] € ¥} is
a o-algebra of subsets of R? containing {z : z(i) < a} whenever i € I and o € R, so includes the Baire
o-algebra Ba(R') of R? (4A3Na again). If we define voF = u¢~![F] for F € Ba(R!), vy is a Baire measure
on R’ for which ¢ is inverse-measure-preserving. We are supposing that y is complete, so ¢ is still inverse-
measure-preserving for p and the completion v of 1y (234Ba). Since vy is inner regular with respect to the
zero sets (412D), so is v (412Ha), and of course v measures every Baire set. By 454B, 14 is compact, so v
also is (451Ga).

(b) If ig,... ,in € I and ag, ... ,a, € R, then
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Pr(X;, < a, forevery r <n) = p{w: X;, (w) < a, for r < n}
= p{w : p(w)(ir) < o for r < n}

=v{z:z(i) < a, for r <n}.

(c) If dg,... ,in, € I and we set 7(x) = (x(ig),... ,2(in)) for x € RY, then v7~! is a Radon measure
(4510). Since it agrees with the distribution of X;,,... , X;, on all sets of the form {z : z2(r) < «, for r <n},
it must be exactly the distribution of X;,,... , X, (271Ba).

(d) If I is countable, then R’ is Polish, so v is a Radon measure (433Cb).

(e) The only point I have not covered is the uniqueness of v. But suppose that v’ is another measure
on R? with the properties described in (i). If i, ... 4, € I and 7(x) = (z(ip),... ,z(in)) for z € R, then
the image measures v7~! and v'7~1 on R™*! are both the distribution of X;,,..., X, , by the argument
of (c) above. This means that v and v’ agree on the algebra of subsets of R’ generated by sets of the form
{z :2(i) € E} where i € [ and E C R is Borel. By 4A3Na and 454D, they agree on all zero sets, and must
be equal (412M).

454K Definition In the context of 454J, T will call v the (joint) distribution of the process (X;);cr.
Note that if I =n € N\ {0}, then v is a Radon measure on R", so is the distribution of (X;);<, in the
sense of 271C.

4541 Independence With this extension of the notion of ‘distribution’ we have a straightforward
reformulation of the characterization of independence in 272G.

Theorem Let (2, X, 1) be a probability space and (X;);cr a family of real-valued random variables on €2,
with distribution v on Rf. Then (X;);c;s is independent iff v is the c.l.d. product of the marginal measures
on R.

proof (a) For i € I, write v; for the marginal measure pum; * on R, taking 7;(z) = (i) as usual. If J C I is
finite, and 7 ;(z) = 2[.J, then v7 ;"' is the distribution (in the sense of Chapter 27) of (X;);cs, by 454J(iii).
In particular, v; is the distribution of X; for each i.

(b) If v is the product measure [],.; v;, and J C I is finite, then v#; "' is the product measure [, ; v;
(2540a), so (X;)ics is independent (272G). As J is arbitrary, (X;);cs is independent (272Bb).

(c) Conversely, if (X;)ics is independent, then v agrees with A = J[,.;v; on all sets of the form {z :
2(i) < a; for i € J} where J C I is finite and (a;);c; € R7. By the uniqueness assertion in 454J(i), v = .

454M The fundamental existence theorem 454G takes a more direct form in this context.

Proposition Let I be a set, and suppose that for each finite J C I we are given a Radon probability
measure v; on R” such that whenever K is a finite subset of I and J C K, then the canonical projection
from R¥ to R is inverse-measure-preserving. Then there is a unique complete probability measure v on R,
measuring every Baire set and inner regular with respect to the zero sets, such that the canonical projection
from R’ to R is inverse-measure-preserving for every finite J C I.

proof For finite J C I, let j; be the restriction of v; to the Borel o-algebra B(R”). Then the canonical
projection from RX to R is inverse-measure-preserving for px and py whenever J C K are finite subsets
of I. Moreover, py;y is a Borel measure on R, therefore perfect, for every i € I. By 454G, we have a
unique Baire probability measure p on R’ such that the projections R? — R” are (u, j17)-inverse-measure-
preserving for all finite J C I. Let v be the completion of u; then the projections are (v, vs)-inverse-measure-
preserving because v is always the completion of x;. Finally, v is unique because v[Ba(R?) must have the
defining property for p.

454N  We know that Radon measures are often determined by the integrals they give to continuous
functions (4151). If we look at distributions we get a stronger result for probability measures.
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Proposition Let Q be a Hausdorff space, u and v two Radon probability measures on 2, and (X;)ics a
family of continuous functions separating the points of Q. If p and v give (X;);c; the same distribution,
they are equal.

proof (a) If K and L are disjoint compact subsets of €2, there is an open set G such that K CG C X \ L
and uG = vG. P W; = {(w,w') : Xj(w) # X;(w')} is an open subset of Q x Q, and | J,.; W; includes the
compact set K x L. So there is a finite set J C I such that K x L C J;c; W;. Define f : Q — R’ by
setting f(w)(i) = X;(w) for w € Q and 7 € J; then f is continuous, and f[K] N f[L] = 0. Also the image
measures pf ! and vf~! must be the same, because they are both the common distribution of (X;);cs. Set
G = Q\ f71[L]; this works. Q

(b) Now if E C Q is a Borel set, and € > 0, there are compact sets K C E, L C Q\ E such that
uK > uE —eand vL > v(Q\ E) —e. Let G be an open set such that uG = vG and K C G C Q\ L. Then

pE <e+pK <e+uG=€e+vG <e+v(2\ L)
=e+1—-vL<2+1—-v(Q\FE)=2+vE.

As € is arbitrary, pF < vE; similarly, vE < pF. As FE is arbitrary, 4 and v agree on the Borel sets and
must coincide.

4540 What distributions determine Suppose that we have two families (X;);er, (X/)ier on possibly
different probability spaces, and we are told that they have the same distribution. Then f((X;);cs) and
f((X!)ier) will have the same distribution for any Baire measurable function f : Rl — R. More generally,
we have the following.

Proposition Let (2, %, u), (Q,%, 1) probability spaces, (X;);e; a family of random variables on Q and
(X!)ier a family of random variables on €', both with the same distribution v on R!. Suppose that (I;);e
is a family of countable subsets of I, and that for each j € I we have a Borel measurable function f; : R%i
to R. For j € J define Y}, Y/ by saying that

Yj(w) = fi({Xi(w))ier,) for w € QN[;c; dom X;,
Yi(w') = fi((X{(W))ier,) for " € Q'N ﬂielj dom X7.
Then (Yj)jes and (Y]);es have the same distribution.

proof For each j € J the domain 2N ﬂielj
(418Bd), so Y; is a real-valued random variable on €2; similarly, every Yj’ is a real-valued random variable
on ', and we can speak of the distributions of (Y;);es and (Y});es. Let v be the common distribution of

dom X is a conegligible subset of {} and Y} is Y-measurable

(Xi)ier and (X[);cr. For each ¢ € I let X; be any extension of X; to a function from Q to R, and write [
for the completion of p. If jo,...,j, € J and ag,... ,a, € R,

Pr(Y;, < a, forevery r <n) = pf{w:w e Qn ﬂ ﬂ dom X,
r<ni€l;,
fi. (Xi(w))ier;) < a, for every r <n}
=jfw:we Q,fjr(<f(i(w)>i€1j) < a, for every r < n}
=v{z:z e R f; (211;,) < o, for every r < n}
(454J(iv))
=Pr(Y] <a, for every r < n).
By 454J(i), the distributions of (Y;);es and (Y}); e coincide.
454P Theorem Let I be a set.
(a) Let v and v/ be Baire probability measures on R such that [ €@y (dz) = [ef@)v/(dz) for every

continuous linear functional f: R/ — R. Then v = v/
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(b) Let (X;);er and (Y});ecr be two families of random variables such that
E(exp(i)2,— ar Xj,)) = E(exp(i3_;_y arYj,))
whenever jo,...,j, € I and a,..., e, € R. Then (X;),er and (Y;), e have the same distribution.

proof (a) For each finite set J C I, write 7;(z) = «[J for x € X. Then we have Radon probability
measures £ and p'; on RY defined by saying that p;F = l/ﬁ';l[F], WiF = y’ﬁjl[F] for Borel sets ' C R”.
If <aj>jej S RJ, then

/exp Z% Nps(dz) /exp Zozj

jeJ JjEJ
= /exp(iZajx(j))V' /exp Zaj Ny (dz),
jeJ jeJ

so py and p/; have the same characteristic function, therefore are equal (285M). This is true for every J, so
v and v/ are equal, by 454D.

(b) Taking v and v’ to be the two distributions, (a) (with 4540) tells us that their restrictions to the
Baire o-algebra of R’ are the same, so they must be identical.

454Q Continuous processes The original, and still by far the most important, context for 454D is
when every (X;,¥;) is R with its Borel o-algebra, so that X = [],.; X; can be identified with R’. In the
discussion so far, the set I has been an abstract set, except in the very special case of 454H. But some of
the most important applications (to which I shall come in §455) involve index sets carrying a topological
structure; for instance, I could be the unit interval [0,1] or the half-line [0, 00[. In such a case, we have a
wide variety of subspaces of R? (for instance, the space of continuous functions) marked out as special, and
it is important to know when, and in what sense, our measures on the product space R’ can be regarded
as, or replaced by, measures on the subspace of interest. In the next few paragraphs I look briefly at spaces
of continuous functions on Polish spaces.

Lemma Let T be a separable metrizable space and (X, X, u) a semi-finite measure space. Let ¥ be a
topology on X such that p is inner regular with respect to the closed sets.

(a) Let ¢ : X x T — R be a function such that (i) for each x € X, t — ¢(z,t) is continuous (ii) for each
teT, x— ¢(z,t) is E-measurable. Then p is inner regular with respect to K = {K : K C X, ¢| K x T is
continuous}.

(b) Let 8 : X — C(T) be a function such that z — 6(x)(t) is X-measurable for every t € T. Give C(T)
the topology ¥, of uniform convergence on compact subsets of 7. Then 6 is almost continuous.

proof The result is trivial if T is empty, so we may suppose that T # ().

(a) Take E € ¥ and v < pF; take F € ¥ such that F' C F and v < uF < co. Let U be a countable base
for the topology of T consisting of non-empty sets, D a countable dense subset of T" and V a countable base
for the topology of R. For U e U, V € V set

Eyy ={x: ¢(x,t) € V for every t € U N D};

then Eyy € X. Let (euv)ueu,vey be a family of strictly positive numbers with sum at most pF — . For
each U e U, V €V take a closed set Fyy C F'\ Eyy such that pFyy > pw(F \ Eyy) — egy. Consider

K= mUeu,Vev Fyyv U(FNEyy).

Then K C E and puK > v.

If v € K,t €T and ¢(x,t) € Vo € V, let V € V be such that ¢(z,t) € V and V C Vj. Then
{t' : ¢(x,t") € V'} is an open set containing ¢, so there is some U € U such that ¢ € U and ¢(z,t') € V for
every t' € U. This means that € Eyy, so that (K \ Fyy) x U contains (z,t), and is a relatively open
set in K xT. If (2/,t') € (K \ Fyv) x U, then 2’ € Eyy, so ¢(a',t") € V whenever t/ € UND; as D is
dense, ¢(z',t") € V whenever ¢’ € U; in particular, ¢(z’,¢') € V C Vp. This shows that (K x T) N ¢~ 1[Vp)
is relatively open in K x T'; as Vj is arbitrary, ¢[ K x T is continuous.

So K € K. As E and <y are arbitrary, u is inner regular with respect to K.
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(b) Set ¢(z,t) = 6(z)(t) for x € X, t € T. Because 0(x) € C(T) for every z, ¢ is continuous in the
second variable; and the hypothesis on 6 is just that ¢ is measurable in the first variable. So p is inner
regular with respect to K as described in (a). But 8] K is continuous for every K € K, by 4A2G(g-ii). So 6
is almost continuous.

454R Proposition Let T be an analytic metrizable space (e.g., a Polish space, or any Souslin-F subset
of a Polish space), and p a probability measure on C(T') with domain the o-algebra ¥ generated by the
evaluation functionals f — f(t) : C(T) — R for t € T. Give C(T') the topology ¥, of uniform convergence
on compact subsets of T. Then the completion of u is a ¥.-Radon measure.

proof If T is empty this is trivial, so let us suppose henceforth that 7' # ().

(a) Let D be a countable dense subset of T. Let 7 : C(T) — RP be the restriction map. Set X =
7[C(T)] € RP; then X, with the topology it inherits from R”, is a separable metrizable space. Note that,
because D is dense, 7 is injective.

We need to know that 7 is an isomorphism between (C(T'), X) and (X, B), where B is the Borel o-algebra of
X. P Since the Borel o-algebra of R? is just the o-algebra generated by the functionals g — g(t) : R? — R
as t runs over D (4A3Dc/4A3E), B is the o-algebra of subsets of X generated by the functionals g — g(¢) :
X —» Rfort e D. So is surely (X, B)-measurable. On the other hand, if ¢ € X, there is a sequence (t,,)nen
in D converging to t, so that 771(g)(t) = lim, o g(t,) for every g € X, and g — 7 1(g)(¢) : X — R is
B-measurable. Accordingly 7! is (B, X)-measurable. Q

(b) Let (U,)nen be a sequence running over a base for the topology of T', with no U,, empty. For each
neN, geRP set

wn(g) = Supt,uEUnﬂD mln(lvg(t) - g(u))v

so that w,, : RP — [0, 1] is T-measurable, where T is the Borel (or Baire) algebra of RP. For g € RP g€ X
iff g has an extension to a continuous function on 7', that is,

for every t € T, k € N there is an n € N such that t € U,, and w,(g) < 27*.
Turning this round, R? \ X is the projection onto the first coordinate of the set
Q = Uien Nnen{(g.t): either t ¢ U, or wy(g) > 2%} CRP x T

But (because every U, is an open set and every w, is Borel measurable) @) is a Borel set in the analytic
space RP x T. So @ and R” \ X are analytic (423Eb, 423Bb). Since R?, being Polish (4A2Qc), is a Radon
space (434Kb), X is a Radon space (434Fd).

(c) The image measure v = ur~! on X is a Borel probability measure. Because X is a Radon space, v

is tight, and its completion 7 is a Radon measure.

By 454Qb, 7= : X — C(T) is almost continuous if we give C(T') the topology T.. So the image measure
A =p(r71)~! is a Radon measure for T. (418I). But of course \ is the completion of g, just because 7 is a
bijection and 7 is the completion of v.

454S Corollary Let T be an analytic metrizable space.

(a) C(T), with either the topology ¥, of uniform convergence on finite subsets of T" or the topology ¥.
of uniform convergence on compact subsets of T, is a measure-compact Radon space.

(b) Let u be a Baire probability measure on R” such that p*C(T) = 1. Then the subspace measure
fic on C(T) induced by the completion of p is a Radon measure on C(T') if C(T) is given either T, or ¥..
 itself is 7-additive and has a unique extension /i which is a Radon measure on R”; jic is the subspace
measure on C(T') induced by fi.

proof (a) Let p be a probability measure on C(T') which is either a Baire measure or a Borel measure with
respect to either T, or .. Let [i be the completion of ul¥, where ¥ is the o-algebra generated by the
functionals f — f(t); because these are T,-continuous, ¥ is certainly included in the Baire o-algebra for
%), so that ¥ C dom p. 454R tells us that ji is a Radon measure for €.. Because T, is a coarser Hausdorff
topology, fi is also a Radon measure for ,. Also fi must extend p, because its domain includes that of
and the completion of p must extend fi (in fact, of course, this means that [ is actually the completion of
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u). Now fi is 7-additive (for either topology), so u also is; as p is arbitrary, C(T') is measure-compact (for
either topology). On the other hand, if u is a Borel measure (for either topology), it must be tight for that
topology; so that C(T') is a Radon space.

(b) Write uc for the subspace measure on C(T'). Recall that the domain ¥ of u is just the o-algebra
generated by the functionals f — f(t) : RT — R, as t runs over T (4A3Na once more), so that the domain
Y¢ of pe is the o-algebra of subsets of C(T) generated by the functionals f — f(t) : C(T) — R. By
454R again, the completion of ¢ is a Radon measure on C(T') if we give C(T') the topology ¥, of uniform
convergence on compact subsets of T', and therefore also for the coarser Hausdorff topology ¥,,. Because the
uo-negligible sets for uc are just the intersections of C'(T") with p-negligible sets (214Cb), the completion
of pe is the subspace measure [ic induced by the completion of p (214Ib).

The embedding C(T') S R7 is of course continuous for T, and the product topology on R”, so we have a
Radon image measure i on R” defined by saying that iF = fic(ENC(T)) whenever ENC(T) is measured
by fic. If E € ¥, then

AE = ic(E 0 C(T)) = po (BN C(T)) = i (EN C(T)) = uE

because p*C(T') = 1, so fi extends p. Of course GC(T) =1 and the subspace measure on C(T") induced by
[ is just fic.

Finally, because p has an extension to a Radon measure, it must itself be 7-additive. Because ¥ includes
a base for the topology of RT, 11 can have only one extension to a Radon measure on R” (415H(iv)).

*454T Convergence of distributions (a) Let I be a set. Write M for the set of distributions on
R, that is, the set of completions of probability measures with domain Ba(R?). For any v € M, the
integral f f dv is defined for every bounded continuous function f : RT — R, just because such functions are
Baire measurable. I will say that the vague topology on M is the topology generated by the functionals
v [ fdv as f runs over the space Cy(R”) of bounded continuous real-valued functions on R’. (Compare
437Jc.)

(b) The vague topology on M is Hausdorff. P If v, v/ € M are different, then v[Ba(X) # /| Ba(RT).
Ba(RY) is the o-algebra generated by the family Z of zero subsets of R (4A3Kb); by the Monotone Class
Theorem (136C), there is an F € Z such that vF # v'F. Suppose that vF < /F. Let f : Rl — R be a
continuous function such that F = {z : z € R, f(z) = 0}. Then there is a § > 0 such that v{z : z € R,
|f(z)] < 6} < V'F. Set g(z) = min(6,|f(z)|) for z € R, so that g is a bounded continuous function. Now

[gdv <8v/{z:|f(x) >0} < dv{z:|f(x)] =6} < [gdv
and v, v/ are separated by the vague topology. Q

*454U Theorem Let (€, X, i) be a probability space, and I a set. Let M be the set of distributions on
RY; for a family X = (X;);cr of real-valued random variables on 2, let vx be its distribution (454K). Then
the function X ~ vx : £%(u)! — M is continuous for the product topology on £°(u)! corresponding to the
topology of convergence in measure on £°(p) (245A) and the vague topology on M (454Ta).

proof By the definition of ‘vague topology’ we need to prove that X — [ fdvx : £L%(u)! — R is continuous
for every bounded continuous function f : RT — R.

(a) Consider first the case in which I is countable and we are given Y = (Y;);cs and a sequence (X ,,)nen =
((Xni)ier)nen in £9(u)! such that (X,;)nen converges a.e. to Y; for every i € I. Then vy = lim,, o vx,,
P As I is countable, the set

F={w:we ﬂneN’ieI dom X,,; NdomY;, Y;(w) = lim, 00 Xni(w)}

is p-conegligible.
Now if J C I is finite, E; C R is a Borel set for eachi € Jand W = {2 : z € R’ 2(i) € E; for every i € J},

W = i(QN Mg, {w: Yi(w) € Ei}) = pY 1 [W]
where Y(w) = (Yi(w))ier for w € F and fi is the completion of p. By the Monotone Class Theorem,
vy W = pY W] for every W € @ielB(R) = Ba(RY). So if f: RY — R is a bounded continuous function,
[ fdvy = [ fYdp.
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Similarly, if we set X,,(w) = (Xpni(w))ier for w € Q, [ fdvx, = [ fX,du for every n. But now observe
that Y (w) = lim,,_,» X, (w) in R for every w € F, so fY (w) = limy, 00 f Xy (w) for every w € F, and

f fdvy = f fYdp =lim, o fXndyu = lim, o f deXn,

by Lebesgue’s Dominated Convergence Theorem. As f is arbitrary, vy = lim, o vx,. Q

(b) Next suppose that I is countable and we are given Y = (Y;);c; and a sequence (X, )nen =
({(Xni)ier)nen in £9(u)! such that (X,;)nen converges in measure to Y; for every i € I. Then vy =
lim,, oo vx, . BT Otherwise, I is surely not empty and there are a continuous bounded f : R/ - R and
an € > 0 such that J = {n:neN, | [ fdvx, — [ fdvy| > €} is infinite. Let (ix)ren be a sequence running
over I, and (m(n))nen a strictly increasing sequence in J such that

/l{w : |X"n(n)7ik (W) - }/;k (w)| > 2—n} <27n

whenever k < n € N. Now Y; =, limy, 00 Xpy(n),; for every i € I, so vy = lim, 00 vx by (a); but

| [ fdvx,,.., — | fdvy| > ¢ for every n. XQ

(c) This shows that if I is countable, X +— vx is sequentially continuous. But as the topology of
convergence in measure on £°(u) is pseudometrizable (see 245Eb), the product topology on £°(u)! is also
pseudometrizable (4A2Lh), and sequentially continuous functions on £°(u)? are continuous (4A2Ld). So in
this case X — vx is continuous.

m(n)?

(d) This deals with the case of countable I. For the general case, given I and a continuous bounded
f : RT = R, there are a countable set J C I and a continuous ¢g : R/ — R such that f = gn; where
7y(x) = x| J for every x € R! (put 4A2E(a-iii) and 4A2F(b-ii) together). For any X = (X;)ic; € LO(Z)!
with distribution vx, write X’ for (X;);cs and vx/ for its distribution. Then 7; : RT — R7 is inverse-
measure-preserving for vx and vx,. P If K C J is finite and F; € B(R) for i € K,

wajl{y:yeRJ, y(i) € B forie K} =vx{z:2z € Rl (i) € E; fori € K}
=p{w:we, X;(w) € B foriec K}
=vx{y:yeR!, y(i) € E; fori € K}.

By the Monotone Class Theorem (136C), vx ;' [H] = vx/H for every H € Ba(R”); as vx is complete and
vx: is the completion of its restriction to Ba(R”), 7; is inverse-measure-preserving. Q
It follows that

ffdllx = fngdVX/ = fgdyxf

(235G), and this is true for every X € £%(u)?.

Now observe that X — X’ = X |J : L%(u)" — L°(n)” is continuous, while X’ — [ gdvx: is continuous
by (a)-(c) above; so X +— [ fdvx is continuous. As f is arbitrary. X — vx is continuous, and the result is
true in this case also.

*454V 1In this volume I am deliberately leaving some of the central concerns of Volume 3 to one side.
But the concept of ‘joint distribution’ has a natural, and in some contexts important, alternative expression
in the language of §364, as follows.

(a)(i) If 2 is a Dedekind o-complete Boolean algebra, I is a set, and u € LO(A)!, we have a sequentially
order-continuous Boolean homomorphism E + [u € E] : Ba(R?) — 2l defined by saying that

[ue{z:zeRl 2(i) <a}] = [u(i) <a]

whenever i € I and o € R. P It is enough to consider the case in which 2 = X/Z, where ¥ is a o-algebra
of subsets of a set X and 7 is a o-ideal of . In this case each u(i) can be identified with the equivalence
class of a ¥-measurable function f; : X — R (364C); setting f(z) = (fi(x))ies for z € X, f is (, Ba(RT))-
measurable (4A3Ne) and we have a corresponding function E — f~![E]* : Ba(R!) — 2 which has the
required properties. Since Ba(R?) is the o-algebra generated by & = {{z : (i) < a} :i € I, a € R}, there
is only one sequentially order-continuous homomorphism with the right values on £. Q
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(ii) If  : R" — R is a Baire measurable function, there is a function h: LO(2A)T — L°(2A) defined by
saying that [h(u) € E] = [u € h=![E]] for every Borel set E C R. P E s [u € h~![E]] is a sequentially
order-continuous Boolean homomorphism so we can use 364F. Q

(b) Suppose that (2, 1) is a probability algebra, I is a set and u € L°(2)!. Then there is a unique
complete probability measure v on R, measuring every Baire set and inner regular with respect to the zero
sets, such that

v{z:z e Rl 2(i) € E; for every i € J} = ju(infec [u(i) € E;])
whenever J C T is finite and E; C R is a Borel set for every i € J. P Express (2, /i) as the measure
algebra of a probability space (€, %, 1) (321J), and for each ¢ € I choose a measurable function X; : Q@ — R
such that u(i) can be identified with X7 € L°(u) (3641c); now the distribution v of (X;);cs, as defined in
454J-454K, has the required properties. The argument of part (e) of the proof of 454J still applies, so v is
unique. Q

(c) In this context, I will call v the (joint) distribution of u. (Compare 364Gb'3.)

(d) Translating 4540 into this language, we get the following. Let (2(, ) and (U, 7’) be probability
algebras, and u € L°()!, v € LO(A)! families with the same distribution. Suppose that (h;);e, is

a family of Baire measurable functions from R to R. Then (h;(u));e; and (h;(u'));es have the same
distribution. P If J C I is non-empty and finite and Ej; is a Borel subset of R for j € J,

A(ing [hy(u) € E5]) = Al € Myes by (B = () by E))
jeJ
(where v is the common distribution of u and )
= p'(inf [h;(u') € E5]). Q
jeJ

(e) Similarly, if (2, /1) is a probability algebra, I a set, and we write v, for the distribution of u € L°()7,
u + v, is continuous for the product topology on L°()! corresponding to the topology of convergence in
measure on L°(2A) (367L) and the vague topology on the space M of distributions on R?. P It is enough
to consider the case in which (2, i) is the measure algebra of a probability space (2,3, i), so that LO(2()
can be identified with L°(u). Let ¢ : L°(2A) — L£%(u) be any function such that ¢(w)* = w for every
w € L9A). Then ¢ is continuous for the topologies of convergence in measure on L°(2) = L°%(u) and
LO(p) (see 245B) and the corresponding map u — ¢u = {(d(u(i)))er : LO(RA)! — LO(u)! is continuous.
As [we E] = {w : ¢(w)(w) € E}* for any w € L°(A) and E € B(R), the distributions v, vgy, of u
and ¢u are the same for every u € LY()!. Since X — vx : LO(u)! — M is continuous (454U), so is
urs vy, L) — M. Q

454X Basic exercises >(a) Let u be Lebesgue measure on [0, 1], and ¥ its domain. Let Xy, X; C [0, 1]
be disjoint sets of full outer measure. For each i, let X; be the relative o-algebra on X;. Show that we have
a finitely additive functional A defined on ¥y ® 31 by the formula

A(ENXo) x (FNX,)) =pu(ENF) for all E, F € 3,

and that A has no extension to a measure on Xg x Xj.

(b) Adapt the example of 419K to provide a counter-example for 454G if we omit the hypothesis that
the marginal measures 1y, must be perfect.

(c) Adapt the example of 419K /454XDb to provide a counter-example for 454H if we omit the hypothesis
that the (X,,,%,) must be standard Borel spaces. (Hint: if z € [][,.,, X;, try v.(E) = 1if z2(n) € E, 0
otherwise.)

L3Formerly 364Xd.
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>(d) Let X be a set and ¥ a o-algebra of subsets of X. Let us say that (X,X) has the perfect
measure property if every totally finite measure with domain ¥ is perfect. Show that (i) if (X,X¥) has
the perfect measure property, so does (E,Xg) for any E € X, where X is the subspace c-algebra on F
(ii) if (X3, ¥i))ier is a family of spaces with the perfect measure property, then ([];.; Xi, @,;2:) has the
perfect measure property.

(e) Let (X, ) be a space with the perfect measure property, and T the smallest o-algebra including ¥
and closed under Souslin’s operation. Show that (X, T) has the perfect measure property.

(f) Let X be a set and X a o-algebra of subsets of X. Let us say that (X, X)) has the countably compact
measure property if every totally finite measure with domain ¥ is countably compact. Show that (i) if
(X, X) has the countably compact measure property it has the perfect measure property (ii) if (X,X) has
the countably compact measure property so does (E,Xg) for every E € ¥, where ¥ is the subspace o-
algebra on E (iil) if {(X;,%;))ser is a family of spaces with the countably compact measure property, then

X, . >;) has the countably compact measure property.
i€l el

(g) Suppose that (X,Y) has the countably compact measure property. (i) Let p be a totally finite
measure with domain ¥, (Y, T,v) a measure space, and f : X — Y an inverse-measure-preserving function.
Show that ;1 has a disintegration (u,)ycy over v which is consistent with f. (ii) Let Y be any set, T a
o-algebra of subsets of Y, and A a probability measure with domain ©®T. Show that there is a family
(11} yey of probability measures on X such that AW = [ u, W [{y}]v(dy) for every W € S&T, where v is
the marginal measure of A on Y. (Hint: 452M.)

(h)(i) Let X be any set, and ¥ the countable-cocountable algebra on X. Show that (X,X) has the
countably compact measure property. (ii) Show that any standard Borel space has the countably compact
measure property.

(i) Let X be a Radon Hausdorff space, and ., the algebra of universally measurable sets in X (434D).
Show that (X, X,m,) has the countably compact measure property.

>(j) Let (X;)iesr be an independent family of normal random variables. Show that its distribution is a
quasi-Radon measure on RY. (Hint: 415E.)

(k) Give an example of a metrizable space Q with a continuous injective function X : Q — [0, 1] and two
different quasi-Radon probability measures p, v on €2 giving the same distribution to the random variable
X.

(1) Let I be a set and v, v/ two quasi-Radon measures on R’ such that [ e/ @y (dz) = [ /(@' (dx) for
every continuous linear functional f : R — R. Show that v = v'.

>(m) Let ¥ be the o-algebra of subsets of C([0,c0[) generated by the functionals f — f(¢) for ¢t > 0.
Give C(]0,00[) the topology T, of uniform convergence on compact sets. (i) Show that T, is Polish, and
that ¥ N T, is a base for T, which generates ¥ as o-algebra. (ii) Use this to give a quick proof of 454R in
this case.

(n) Let T be a Polish space, and T, the topology on C(T') of uniform convergence on compact sets. Show
that if T is any Hausdorff topology on C(T'), coarser than T, such that all the functionals f — f(t), for
t € T, are Baire measurable for T, then (C(T),¥) is a measure-compact Radon space.

454Y Further exercises (a) In 454Ab, show that p is weakly a-favourable (definition: 451V) if every
i is.

(b) Let X be the algebra of Lebesgue measurable subsets of R. Show that (R, ) has the perfect measure
property (454Xd) iff ¢ is measure-free.
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(c) Let B be the Borel o-algebra of wy with its order topology. Show that (wy, B) has the perfect measure
property. (Hint: 439Xn.)

(d) Let (X,%,pn) be a semi-finite measure space with a topology such that p is inner regular with
respect to the closed sets, T a second-countable space and Y a separable metrizable space. Suppose that
¢: X xT — Y is continuous in the second variable and measurable in the first, as in 454Q. Show that w is
inner regular with respect to K = {K : K C X, ¢| K x T is continuous}.

454 Notes and comments 454A generalizes Theorem 451J, which gave the same result (with essentially
the same proof) for product measures. One of the themes of this section is the idea that we can deduce
properties of measures on product spaces from properties of their marginal measures, that is, the image
measures on the factors. The essence of ‘compactness’, ‘countable compactness’ and ‘perfectness’ is that we
can find enough points in the measure space to do what we want. (See, for instance, the characterization
of local compactness in 343B, or Pachl’s characterization of countable compactness in 452Ye.) Since the
canonical feature of a product space is that we put in every point the Axiom of Choice provides us with,
it’s perhaps not surprising that such properties can be inherited by measures on product spaces.

Theorems 454C and 454D can be regarded as further variations on the same theme. A finitely additive
non-negative functional on an algebra of sets will have an extension to a measure if, and only if, it is
sequentially smooth in the sense that the measures of a decreasing sequence of sets with empty intersection
converge to zero (413L). If we have a decreasing sequence of sets, with measures bounded away from zero,
but with empty intersection, one interpretation of the phenomenon is that some points which ought to have
been present got left out of the sets. What 454D tells us is that perfectness (and countable additivity) of the
marginal measures is enough to ensure that there are enough points in the product to stop this happening.
In effect, 454C tells us that it will be enough if every marginal but one is perfect.

These results are of course associated with the projective limit constructions in 418M-418Q. In the
theorems there we had Radon measures, so that they were actually compact rather than perfect; in return
for the stronger hypothesis on the measures, we could handle projective limits corresponding to rather small
subsets of the product spaces (see the formulae in 4180-418Q). Just as in §418, the patterns change when
we have countable rather than uncountable families to deal with (418P-418Q, 454H).

In 454J-454P, 1 insist rather arbitrarily that ‘the’ joint distribution of a family (X;);c; of real-valued
random variables is the completion of a Baire measure on R?. Of course all the ideas can also be expressed
in terms of the Baire measure itself, but I have sought a formulation which is consistent with the rules
set out in §271. When I is countable, we get a Radon measure (454J(iii)), as in the finite-dimensional
case. There are other cases in which the distribution is a quasi-Radon measure (454Xj). As always, we can
ask whether the distribution is 7-additive; in this case it will have a canonical extension to a quasi-Radon
measure (415N). Important examples of this phenomenon are described in 454Xj, 455H and 4560. Because
R’ has a linear topological space structure, we have a notion of ‘characteristic function’ for any probability
measure on R’ measuring the zero sets, and the characteristic function of a Baire measure determines that
measure (454P, 454X1).

In 454R, C(T), with ., has a countable network (4A20e), so the subspace measure pc induced by p
on C(T) must be a 7-additive topological measure with respect to ¥, (4140) and has a unique extension
to a quasi-Radon measure on C(T") (415M). The hard bit is the next step, showing that C'(T), under ¥, is
a Radon space; this is the real point of 454Q-454R. For the most important case, in which T' = [0, o[, we
have a useful simplification, because T, is actually Polish (454Xm). Even in this case, however, we need to
observe that the measure we are seeking is a little more complicated than a simple completion of a measure
on RT. We must complete the subspace measure on C(T), and C(T) is far from being a measurable set.
The measure fi of 454S will not as a rule be completion regular, for instance. Spaces of continuous functions
are so important that it is worth noticing that the results here will be valid for various topologies on C(T')
(454Xn).

I suppose that pretty well every result on distributions in Chapter 27 corresponds to some significant
development expressible in the language of this section. 454T-454U take up the idea of Exercise 274Yf.
Looking at the facts here from the point of view of Volume 3 we get the alternative versions in 454V.
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Version of 18.1.09/12.10.18

455 Markov and Lévy processes

For a ‘Markov’ process, in which the evolution of the system after a time ¢ depends only on the state at
time ¢, the general theory of §454 leads to a straightforward existence theorem (at least for random variables
taking values in standard Borel spaces) dependent only on a natural consistency condition on the transitional
probabilities (455A, 455E). The formulation leads naturally to descriptions of the ‘Markov property’ (for
stopping times taking only countably many values) in terms of disintegrations and conditional expectations
(455C, 455Ec). With appropriate continuity conditions, we find that the process can be represented either
by a Radon measure (455H) or by a measure on the set of cadlag paths (455Ge) for which we have a
formulation of the strong Markov property (for general stopping times) in terms of disintegrations (4550).
These conditions are satisfied by Lévy processes (455P-455R). For these, we have an alternative expression
of the strong Markov property in terms of inverse-measure-preserving functions (455U). By far the most
important example of a continuous-time Markov process is Brownian motion, but I defer discussion of this
to §477.

455A Theorem Let T be a totally ordered set with least element ¢*, and for each t € T let € be a
non-empty set and T; a o-algebra of subsets of ; containing all singleton subsets of €;. Set Q = [[,., Q
and fort € T, w € Q set X;(w) = w(t). Fix z* € Qu«. Suppose that we are given, for each pair s < tin T, a
family (Vg(f’t)>$egs of perfect probability measures on {;, all with domain Ty, and suppose that

(1) whenever s < t < win T and z € Q,, then (11"}, cq, is a disintegration of v{™") over
Vg(gs’t).
For J C T write m; for the canonical map from Q onto Z; = [],.; . Then there is a unique probability

measure x on , with domain ), T, such that, writing A; for the image measure ,tm;l,

/ fdry = / F@ ) w(t), - w(ta))udw)

:/...//f(x*,xl,... 7xn)V§Zf11’t”)(d:En)

fo”*’t“*)(d:rn,l) . I/(t*’tl)(dxl)

n—2 z*

whenever t* < t] < ... < t,, J = {t*,t1,... ,t,} and f is A\;-integrable. p is perfect, and the marginal
measure p; = pX; * is equal to v i ¢ > ) while e {z*} = 1.

T*

proof (a) For I C T, write Ty = @teITt. If T = {¢to,t1,...,t,} is a finite subset of T with t* =tg < t; <
... < ty,, then we have a probability measure A\; on Z; with domain T} such that

/fd/\l :/...//f(x*,xl,... R Lk (<

V(tn—z,tnfﬂ(dxnil) N l/it:’tl)<daj1)

Tn—2

for every Ar-integrable function f. P Use 454Ha on the finite sequence (4,...,%, ). The measures v,
required by 454H must be constructed by the rule

v, = Vit(’t"j)’"“)
for m < n, z € [],-,, Q,, while of course vy{z*} = 1. Having a finite sequence rather than an infinite one
clearly makes things easier.) Q

When I = {t*}, so that Z; can be identified with £+, I mean to interpret these formulae in such a way

that A\f{z*} = 1. When J = {¢*,t}, with t* < ¢, and E € Ty, then we can apply the formula above to the
function z — xE(2(t)) to get Aj{z: 2(t) € E} = Vg(f ’t)(E).

(©) 2007 D. H. Fremlin
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(b) Of course the point of this is that these measures A; form a consistent family; if t* € I C J € [T|<¥
then the canonical projection n;y : Z; — Zj is inverse-measure-preserving. I It is enough to consider the
case in which J has just one more point than I, since then we can induce on #(J \ I). In this case, express
J as {to,... ,tn} where t* =ty < ... < t,, and suppose that I = J\ {¢,,,}. If W € Ty, then

)\JT(I_Jl[W] :/...//.../XW(x*,xl,... s L1 Tt Ly - - - ,xn)ugg: - t")(dx )

(tmvtm+1)(dx +1) (tm 17tm)(d:L. ) ) (t tl)(dCL')

—1

/ // v szm) (Tm1) £t7,777tm+1)(dxm+l) ()

pltmitn) (dz ) 8 (day)

Tm—1

where

g(zl,...,xm_l)($m+1) = //XW(!IJ*,JIl oo s Tm—1yTm+1s--- 7xn)

V(tn 1,t )(dSU ) (t"”+1’ m+2)(dx +2)

Tn—1 Tm41

. . bt . .. . b1,

Here, of course, we use the hypothesis (1); since (p{tmtm+1) q. is a disintegration of 1/@(@,"1 vtmt1) ouer
) ) ) Y yelly,, m—1

(tm—1:tm) (tm—1,tm+1)

Ve ;and g(a, ... z,._,) is bounded and vy, -integrable (by 454H),

/g(zl,--- 2m1)(Tmt1)Vy (tm l’t"‘“)(dfﬂ +1)

= //g(xl,---,xm_l)(merl)Va(cf;mth)(dmerl)V;E:t,;n:lhtm)(dxm)

(452F). Substituting this into (*) above,

AJTrI_Jl[VV] = /"'\//g(wl,.“,xm,l)(xm—&-l)

p ) (g V=20 (dy ) v (da)

an m—1

/ / v o) T )20 (A ) S5 (day)

:/.../.../XW(x*,xl,... s L1, Ttk ly -« - 5 L)

ptn—1tn )(dos ).. pltm—1, tm+1)(dxm+1) e l/g(ct:’tl)(dxﬂ

3fn 1 ﬂfm 1

=AW,

applying the formula in (a) again. Q
(Some of the formulae here are inappropriate if m = n > 1. In this case, of course,

)\Jﬂ';} W] = / ) ./XW(.T*, T1,... ,xnfl)ug(ci”:;’t”)(dxn) .. Vg(ct:’tl)(dml)
= /.../XW(ﬂc*,xl,... ,xn,l)uéi“:;’t””)(da:n,l) . Vg(f 251)(dgc ) =AW
If m =1 < n, there is a collapse of a different kind; we must look at
AW = [ AW ol ) ) i )
= /...//XW(x*,xg, ... ,xn)yitj;—ll’t")(da:n) L t2)(da:2) =\ W.
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If m=n =1 then
A W] = [ xW (@)l (day) = xW (2%) = A W)

(c) Part (b) tells us that we have a consistent family of measures on the finite products Z;, and therefore
have a functional A on &), T defined by setting )\ﬂ';l[W] = AjW for every finite J C T containing t*
and W e @,c; T J A is finitely additive, and its images p; = AX; ~1 are all countably additive and perfect
because p; = V ) for ¢ > t*, while ;- is concentrated at {x*}.

By 454D, we have a perfect measure i extending A. We have to check that each A; is the image measure
/ur;l; but this is true because they agree on ), ; T+ (using the Monotone Class Theorem in the form 136C,
as always). So the integral formula sought for A; is just that obtained in part (a). By the last remark in
(a), we have the declared formulae for the marginal measures p.

455B Lemma Suppose that T, t*, ((Q, Tt))ter, 2, 2* and <V¢£;S’t)>5<t7wegs are as in 455A.

(a) Suppose that p is constructed from z* and <u§s t)>s<t zeq. asin 455A. If F € ®t€TTt is determined
by coordinates in [t*,%p] and H* = {w : w(t;) € E; for 1 < i < n} where tp < t;... < t, and E; € Ty, for
1 <i<n, then

p 0Py = [ [ [ 3t ) ) ) (+)

where H =[], ., Ei.
(b) Suppose that w € Q and a € T'U {00}, where oo is taken to be greater than every element of T. For
s<tinT and z € Q) set

v =y if g < s,

—Vc(;zt))lfs<a<t

—5(5)% if t <a,

here writing 65 for the probability measure with domain T; such that J(t)({x}) =1.

(1) I/Q(Ja? is always a perfect probability measure with domain T, and <l/way)>y€g2t is a disintegration of

uLi;;‘) over l/u(udz) whenever s <t <wuin T and x € €.

(ii) Takmg uwa to be the measure on € defined from w(t*) and <I/waz)>g<t,z€Qt by the method of 455A,
then {w' 1w’ € Q, W'D =w[D} is uwa—coneghglble for every countable D C T N [t*, al.
(iii) If w, ' € Q and w[[t*, a] = W' [[t*, a] then pye = twra-

proof (a)(i) Suppose first that F is of the form {w : w(s;) € F; for i < m} where t* = s9 < ... < 8, = to.
For z € , set

F@) = [ [ XHr, oy (dyn) - o (dyy).

Writing G = [],,,, Fi, we have

i<m

M(H*QF) :////XG<‘7;*’$17 7$m)XH(yla 7yn)yggf:17117tn)<dyn)

.. 1/3(5‘::““)(dyl)uéf::l’%)(dxm) e V;t:’sl)(dxl)

- / / NG s ) F @ )P0 (dy) . 2" (i)

:/gd)\J

(where J = {t*,s1,... ,8m}, 9(2) = XG(2(t*), ... , 2(5m)) f(2(5m)) for z € [],c; Qs, and A is defined as in
455A)
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_ / g rdp = / F(w(to))n(dw)

(because gmj(w) = f(w ) if w € F, 0 otherwise)

/ / / NH Wt )V (dy) ) (dy (o).

(ii) Let Z be the family of sets F' of the type dealt with in (a). Since the intersection of two members
of Z belongs to Z, the Monotone Class Theorem tells us that (*) is true for all sets in the o-algebra T

generated by Z. But any member of @tETTt determined by coordinates in [t*,to] belongs to T. P Fix
0 € [Tser (v 49) $2s- For w € Q define f(w) € Q by setting

fw)(s) = w(s) if s < to,
=w(s) if s > tg.
Then T = {F : F C Q, f~}[F ] € T} is a o- algebra of subsets of ) containing {w : w(t) € E} whenever
t €T and E € T4, so includes ®teTTt If Fe ®teTTt and F' is determined by coordinates in [t*, ¢o], then
F=[7FleT. Q -
So (*) is true of every F' € @, Ty, as claimed.
(b) (i) Of course every u5Y is a perfect probability measure with domain T;. If s <t < uw and E € T,
then

/Q o (B)G) (dy) = / P (B (dy) = v () = vl (E)

ifa<s,
= [ e = v ) = v
if s<a<t,
= [ L ) = () = v )
ifa=t,
= Vw(a) ( )5S(t)(dy) = Vw(a)) (B) = v (B)
Q4
ift<a<u,
= [ 080 (B)OL (dy) = 050, (B) = v (B)
Qy
ifu<a.

(ii) Consider first the case D = {t}, where t* < ¢ < a. Then

poa{w’ /() =w(t)} = v {w(t)} = 00 {w®)} = 1.
As for D = {t*}, uyq starts at w(t*), so (as noted in the last clause of the statement of 455A) pye{w’ :
W (") =w(t*)} =1
For general D, we have an intersection of countably many sets of these types, which will be pq-
conegligible.

(iii) Looking at the definition, we see that uo(j}atg)c = v5Y for all s, t and z, and of course W’ (t*) = w(t*),

SO fw'a = Hwa-

455C Theorem Suppose that T, t*, ((Q, T¢))ter, Q, %, (ug(cs’t)>5<t,megs and p are as in 455A. Adjoin
a point oo to T above any point of T, and let 7: Q@ — T'U {oco} be a function taking countably many values

and such that {w : 7(w) < s} belongs to @teTTt and is determined by coordinates in [t*, s] for every s € T.
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(a) For w € Q define v (s for s <t and z € s, as in 455Bb, and let p,, - () be the corresponding

w,T(w),z’
measure on Q. Then (u, -())wea is a disintegration of p over itself.

(b) Let X, be the set of those E € @teTTt such that EN{w : 7(w) < t} is determined by coordinates in

[t*,t] for every t € T. Then X, is a o-subalgebra of @tETTt If f is any p-integrable real-valued function,
and we set g5 (w f fdp, r(wy when this is defined in R, then gy is a conditional expectation of f on X..

proof (a)(i) Set F; = {w:w € Q, 7(w) =t} for t € TU{oo}; note that F; € @teTTt for every t € TU{o0},
and that F, is determined by coordinates in [t*,¢] for t € T

(ii) Consider first the case in which 7 takes only finitely many values. Suppose that J C T is a
finite set including {t*} U (T'N 7[€?]). Enumerate J as (t;)i<n. Suppose that E; € Ty, for i < n and set
H* = {w: w(t;) € E; for every i < n}. We need to calculate [q, fio, () (H*)p(dw).

Set H=1]

z<n

Hj:Hj<i§nEj7 Hf ={w:weQ uwt) e E; for j <i<n},

Gi ={w:w(t;) € E; for i < j}

for j <n.Ifi<n,j<n,weF, and z €y, then

V(ti,ti+l) — V(tiati+1) lf'L > j7

w,T(w),z
= vyt =
= (5w(’t“+1 ifi < j.
Soif j <nandw € Fy,
tn—1,tn t*,t
Moo, (w) (H / /XH )1, =$n)’/§;,r($),zi,1(d$n) e UL,T(;;,w(t*)(dml)

_ / / . / NH (@, V) (dag) ) (de)o) (dao)

St o

tig1,t ti,t ti_1,t;
VST (de J+2>v£:<552 (da )y (day)

008 (dr1)80 ) (do)

w(t*

//// /XH””07~--, VA=) (day, )

A (g oG g )6 () - 6 (do)

/ /XH (), Tyt s T 1) (A

= /.../XHj(xj_H, cee D) a(f: -t (day,) . ugéf)j“)(dxjﬂ)
if we Gy,

= 0 otherwise.

As noted in 455B(b-ii), fty - () (H*) = xH*(w) if 7(w) = oc.
Now
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Auw,r(w) Z/ Moo, w) *),u(dw) +L ,uwn'(w)(H*)p“(dw)
O oo

:Z/F G/.../XHj(xj+1,...,x)Va(:tnnllt)(dx)
7=0 tjﬂ;f

VS (da oy )u(dew) + (oo 0 H)

n

p(Fy, NG N HY) 4+ p(H* N Fo)

<.
Il
o

(by 455Ba)

3

p(Fy, N H*) + p(Foo N H*) = pH*.

<
[}

Thus we have the formula we need when E is of the special form {w : w(t) € F; for every t € J}, JC T
being a finite set and E; being a member of T, for every ¢ € J. By the Monotone Class Theorem (136B),

we shall have [ i, () (E)p(dw) = pE for every E € @teTTt? so that (fi, r(w))wen is a disintegration of u
over itself.

(iii) If 7 takes infinitely many values, enumerate them as (¢,,)nen, and for n € N define 7, : T'— TU{o0}
by setting
Tn(w) =t; if i <nand 7(w) = t,,
=00 if T(w) ¢ {t; : i < n}.

Then 7, takes only finitely many values, and {w : 7,(w) < t} € ®teTTt is determined by coordinates in
[0,t] for every t € T. So we shall have

f/f‘w,‘rn(w)(E)/.t(dw) = ME

for every E € ®teTTt' Now observe that ji, - (w) = Hw,r(w) Whenever 7(w) = 7,(w). So, for each w,

Heor (w) = Heo,r(w) for all but finitely many n. This means that, for every £ € &), Tt,
.uw,T(w)(E) = hmn—>oo P,y (w) (E)
for every w € 2, and
fﬂw 7(w) dw) - hmnﬁoo fﬂw Tn(w)(E)M(dw) = :U/Ev
as required.

(b)(i) Since {w : 7(w) < t} is determined by coordinates in [t*,¢] for every t € T, € X,, and it is now
elementary to confirm that ¥, is a o-algebra.

(ii) I had better note that gy is defined almost everywhere; this is because, by (a) above and 452F,
Jgrdn = [[ fdpe ryp(dw) = [ fdpu.

(iii) If w, W’ € Q and W'[[t*, 7(w)] = W[ [t*, T(w)], then gf(w) = gy(w’) if either is defined. I Since F (.,
is determined by coordinates in [t* T(w)], ( ") = 7(w). By 455B(b-ii), e r(wr) = Mo, r(w)> 50 gp(w) = gp(w’)
if either is defined. Q

(iv) If F € ¥; and w € Q, then pu,, () F =1 if w € F, 0 otherwise. B Setting b = 7(w), FF'N Fy, and
F, \ F are determined by coordinates in a countable subset of 7'N [t*, b], so by 455B(b-ii) we have p ,F' =1
fwe FNFand pup(Fp\F)=1ifwe F,\F. Q
It follows that if f is p-integrable and F' € ¥;, then gy« r = g5 X xF'. P If w € F, then pu, ) F =1
and
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gfxxF(W) = fF fdﬂw,r(w) = f fdﬂw,f(w);
if w ¢ F then p, ) F =0 and

gfoF(W) = fF fd.u“w,r(w) = 0. Q

(v) Now let f be any p-integrable real-valued function. Then there is a X, -measurable function
g7+ Q — |—o00,00] such that ¢} =ac gy, g7(w) < gy(w) for every w € dom gy, and g (w) = —oo for every
we Q\domgs. P ForqeQ,set Wy ={w:w e domgy, g¢(w) > ¢}. For ¢ € Q and b € 7[Q], consider
Wiy = Wy N Fy. Wy, is measured by the completion /i of y, and is determined by coordinates in 7' N [¢*, ],
by (iii). By 451K (b-ii) there is a Wy, € @, T: such that Wy C Wiy, Wi, \ Wy, is negligible and Wy, is
determined by coordinates in T N [t*, b].

Having defined the family <Wéq>b€T[Q],q€Q’ set Wy = UbET[Q] Wéq for ¢ € Q. Then W, € @, T: and
Wy N Fy = Wy, is determined by coordinates in 7' N [t*,b] for every b € T[], so W, € X.. Also Wy C W,
and W, \ W is negligible.

Set

gp(w) =sup{g: g € Q we W}
for w € Q, counting sup ) as —oco. Then g} is X -measurable, ¢ (w) = —oo for w ¢ dom gy, g (w) < gr(w)
for w € dom gy, and g} = gy on domgy \ U,cq Wo \ Wy, 50 g} =ac. 97 Q

(vi) Continuing from (v), we find that g’ is a conditional expectation of f on ;.14 P I have already

shown that g} is ¥;-measurable. If F' € ¥, then

/Fg}du=/g}><deu=/gf><deu

= /gfoqu

= //f X XF dpiy 7 () p(dw) = /f x xF dp

(because gy =a.e. 9})

(by (iv))

(452F once again)

Z/Ffdu-Q

(vii) Similarly, or applying the arguments of (v)-(vi) to —f, we see that for any u-integrable function f
there is a conditional expectation g}' of f on ¥, such that g}'(w) > gf(w) when w € dom gy and g}’(w) =00
when g¢(w) is undefined. Now g} =0 g}’ and both are ¥ -measurable. It follows that g; is defined, and
equal to both g} and g7, (uX;)-a.e.; so that gy itself is also a conditional expectation of f on ..

455D Remarks (a) The idea of the construction in 455A is that (X;):er is a family of random variables,
and that we start from the assurance that ‘history is irrelevant’; if, at time b, we wish to make guesses about
the behaviour of Xy, the state of the system at a future time ¢, then we expect that it will be useful to
look at the current state X3, but once we know the value of X} then any further information about X for
s < b will tell us nothing more about X;. We are given the transitional probabilities Vés’t)7 which can
be thought of as the conditional distributions of X; given that X, = z. The condition (}) of 455A is plainly
necessary if the system is going to make sense at all; the content of the theorem is that it is also sufficient,
at least when all the conditional expectations are perfect measures, to ensure that the system as a whole
can indeed be represented as a family of random variables, in Kolmogorov’s sense, on a suitable probability
space.

4 The definition of ‘conditional expectation’ in 233D was directed towards real-valued functions, and g} is permitted to
take the values too. So what I really mean here is that the restriction of g} to the set on which it is finite is a conditional
expectation of f.
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(b) The statement ‘(i r(.))wen is a disintegration of p over itself” in 455Ca is not obviously a target
worth working very hard for. But the point of this particular family is that not only does pu, (., follow w up
to and including time 7(w) (455B(b-ii)), but also iy, r(w) = fr r(w) Whenever W'[[t*, 7(w)] = w([t*, T(w)],
as noted in (b-iii) of the proof of 455B.

If we take 7 in 455C to be constant, with value b € T', then we get a precise description of what it means
for ‘history to be irrelevant’. In this case, we can take the measures fi.p, and project them onto [],~, ; let

)\Eb [ be the image measure. Then it is easy to check that )\[b [ is the measure defined from the point w(b)

and the family (15"”)y<.tzcq. by the method of 4554; so that Af*) = /\fb | whenever w(b) = w'(b).

(c) T have called 455C a ‘theorem’, and there are certainly enough ideas in it to warrant the title. But
the restriction to stopping times taking only countably many values means that we are a large step away
from a result which is really useful in continuous time. The calculations with sets {w : 7(w) = b} in the
proofs of 455C and 455E are a clear sign that we are not yet ready for continuous stopping times, in which
{w : 7(w) = b} will usually be negligible for every b, except perhaps b = oco. Of course we can use 455C
with T"= N; but it must be obvious that there are better and cleaner expressions of the result in this case.
In the work below, 455C is going to function as a lemma, the first stage in much stronger results (starting
with 4550) which depend on special properties of the measures v, ( b

(d) In the context of 455A, it seemed to involve fewer explanations to take a fixed o-algebra T; for each
t and to define pu on @teTTt' As you know, I ordinarily have a strong prejudice in favour of completing
measures. In the situations most important to us, this is perfectly straightforward, if a touch laborious; I
present a version in the next theorem.

455E Theorem Let T be a totally ordered set with least element ¢*. Let (€4 )er be a family of Hausdorff

spaces; suppose that we are given an z* € Q;+ and, for each pair s <t in T, a family (v (s )>3¢eQS of Radon
probability measures on {2; such that

(ug(,t u)>y€QS is a disintegration of VQ(ES’“) over 3" " whenever s < t < uin T and z € Qs.
Write Q = HteT Qy; for t € T let B(€;) be the Borel g-algebra of ;, and X; : Q — € the canonical map;

for J C T write 7y for the canonical map from € onto HteJ Q. Fort e T and x € Q; let (59 be the Dirac
measure on §); concentrated at x. .

(a) There is a unique complete probability measure fi on €2, inner regular with respect to @, B(€%),
such that, writing A 7 for the image measure [m;l,

/ Jdiy = / F@(t?),w(tr), .. . w(tn))idw)

:///f(x 2 )yt (d,,)

pltn—2,tn_ 1)(d3;‘ ) (t 1) (da: )

wn 2

whenever t* < t; < ... < t, inT, J = {t*t1,... tn} and f is \y- integrable. In particular, the image
measure X, ! is equal to 1/(* D if g > t*, and to 6 )if t =
(b)(i) For w € Q and a € T U {oo} define <V£,a;)>s<t7zegs by setting

Viﬁit) = V(S’t) if a < s,

T

—Vw()1f3<a<t

(t)
= 5w(t) if t <a.
The family <I/£;2?>S<t7zegs, together with the point w(t*) € Q+, satisfy the conditions of (a), so can be used
to define a complete measure i, on €.
(ii) If w € Q and D C T N [t*,a] is countable, then fiy{w' : W' [D =w[D} = 1.
(iii) If w, w’ € Q and W'[[t*, a] = w|[t*, al, then [iyq = fiwa-
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(c) Let ¥ be the domain of i. Suppose that 7: Q — T'U{oo} is a function taking countably many values
and such that {w : 7(w) < ¢} belongs to ¥ and is determined by coordinates in [t*,t] for every ¢ € T.
(1) (fleo,r(w))wea 1s a disintegration of fi over itself.
(ii) Let X, be the set

{E:Ee€¥, ENn{w: 7(w) <t} is determined by coordinates in [t*, ]
for every ¢t € T'}.

Then X, is a o-subalgebra of . If f is any ji-integrable real-valued function, and we set g¢(w) = [ fdji, ()
when this is defined in R, then g is a conditional expectation of f on X-.

proof My aim is to apply 455A-455C to the Borel measures 2. pet) = 50 [B(€;), and take i to be the
completion of the Baire measure u produced by the method of 455A. The essential discipline is to check
carefully that almost every measure ( is the completion of an appropriate measure (.

(a) At the start, every Radon probability measure is the completion of the corresponding Borel measure,

so that the st’t) are indeed the completions of the Dg(gs’t) defined from them. Since completing a measure

does not affect the associated integration (212FDb), the condition
whenever s < t < uin T, z € Q, and E C Q, is a Borel set, then /* u) =/ l/(t u) )Dgs’t)(dy)
follows at once from

whenever s <t <wuin T and x € (), then <I/?E,t’ )>y€Q is a disintegration of u( ) over V(s 2

Also the D;E;s’t), being tight Borel measures, are all perfect (342L/451C). So we can indeed form a measure

1 oon  with domain @tETB(Qt) by the process in 455A, and complete it.

The next step has a little more content in it: I need to show that for any J C T, the image measure
[m;l on [[,c;Q is the completion of the image measure ,mr;l. But here we just have to recall that u is
perfect (454D), so that we can use 451Kb. For finite J C T we can therefore write A indifferently for the
completion of \; = wrjl and for [mrjl, and the formula for [ fdj\ 7 can be read off from 455A, since it deals
only with integrals, which are unaffected by completions.

(b) This follows 455Bb. This time we must start by noting that every I/U(fdi«) is a Radon probability

measure.

(i) The formulae of part (i) of the proof of 455Bb can still be applied to show that
(tyu s,t S,u
fQ Vway) V( ar) (dy) Vc(uar)(E)
(s,u)

whenever s < t < u, x € Qs and E € B({,). Since any set measured by 1,4, can be approximated

internally and externally by Borel sets, we see that <u£fay))yegt is a disintegration of Vf,a;f) over uwax . (Ct.

452Xg.)

(ii) Similarly, the argument of part (ii) of the proof of 455Bb can still be used to show that whenever
w € Qand D CTNJ[t* a] is countable, then w'|D = w|D for [ie-almost every w’ € .

(iii) Once again, we can use the argument from 455B; if w'[[t*,a] = w[[t*, a], then V‘Ej’(fi = &Y for
all x, s and t, and [i,q = flwa-

(c)(i)(e) The key step here is to observe that there is a function 7 : @ — T'U {oco} which satisfies the
properties required in 455C and is equal fi-almost everywhere to 7. I For each a € TN7[Q], F, = 77 1[{a}]

belongs to ¥ and is determined by coordinates in [t*,a]. By 451K (b-ii) again, there is an F,, € @, B(£%)
such that F, C F,, F, is determined by coordinates in [t*,a] and ii(F, \ F,) = 0. Define 7 by setting
tw)=aifaeTN7[Q] and w € F.,

=0 ifweQ)\ U F!.
aceTNT[Q)

It is easy to check that this 7 will serve. Q
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(B) For w € Q and a € T, define <1‘/U(fd§;)>s<t,m€gt and (ya)wen from <1‘/g(f’t)>s<t,z€gt and 7 as in
455Bb. If 7(w) = 7(w) then D:)ngw) . = V(E)Sf()w),er(Qt) for all s, t and =, so that fi, ;. is the completion
of fie +(w)- This is true for almost all w. Now we know from 455Ca that (Moo, (w))wea is a disintegration of p
over itself, and therefore also over fi. It follows that (/i ;(.))weq is a disintegration of i over ji, by 452B(ii).

But fig +(w) = flw,r(w) for fi-almost every w, so {fiy r(w))weq also is a disintegration of fi over itself.
(ii) (@) Just as in part (b-i) of the proof of 455C, X, is a o-algebra because it contains 2.

(B) Recall the F,, F! in (i-a) above. Set F, = 7 ![{oo}], and take F/, € @teTB(Qt) such that
F!, C Fy and Fy \ F., is negligible. Then F* = UaET[Q] F! is conegligible in Q. Write 3; for the set
of those F € @teTB(Qt) such that F'N F. is determined by coordinates in [t*,a] for every a € T N #[Q].
Then F* € 3; N X, because F* N F, = Fr*nF, = F! for every a € 7[Q]. In fact we have more. First,
TIF* = 7[F*. Next, if F C F* and F € X5, then F € ¥,. P Foranya € TN7[Q], FNF, = FNF,
belongs to @teTB(Qt) C ¥ and is determined by coordinates in [t*,a]. Q And thirdly, if F' € ., there
is a G € ¥+ such that G C F and F \ G is negligible. P As in (iv-at), we can find for each a € 7[}] a set

Ga € Q,crB(:), determined by coordinates in 7' N [t*, a], such that G, € F N F, and (FFNF,) \ G, is
negligible. Set G = UGET[Q] G,. Q

(v) Now take a fi-integrable function f. Then it is p-integrable. By 455Cb, gs is a conditional
expectation of f on 35, where

grw) = [ fdpe sy = [ Fditw @)

whenever the integral is defined in R. We know that there is a 3;-measurable function ¢’ :  — R equal to
gy except perhaps on a negligible set H belonging to DN Replacing ¢’ by ¢’ x xF* and H by HU (Q\ F*) if
necessary, we can suppose that ¢’ is zero outside F* and that Q\ H C F*. In this case, ¢’ is X,-measurable.
P For any o € R,

{w:g(w)>al={w:we F*, ¢w)>a}lU(Q\F")ifa<0,
={w:weF* ¢w)>a}lifa>0,
and in either case belongs to 3, by (8). Q At the same time, we note that H € X
IfweQ\ H, thenwe F*, 7(w) = T(W), flu,r(w) = fuw,i(w) and
95() = [ fdiwrw) = [ fdiwrw) = [ fdporw) = drw) = g'(w).

So gy is defined and equal to g’ and gy except perhaps on the negligible set H belonging to 3.; consequently
gy is defined (i1]X;)-a.e. and is (1] X;)-virtually measurable.
If F € ¥,, there is a G € ¥+ such that G C F and F \ G is negligible, by the last remark in (8). So

/Ffdﬂ:/Gfdu=/G§/fdu

(because gy is a conditional expectation of f on ZT)

— [ ot = [ gdn= [ graiiis.).
F F F

As F is arbitrary, g¢ is a conditional expectation of f on ¥, and the proof is complete.

455F Of course the leading example for the work above is the case in which T' = [0,00[ and ; = R
for every t > 0. Moving towards this, a natural intermediate stage is when T = [0, 00[ and all the €,
are the same, so that we can regard an element of [[,., € as the path of a moving point. In this case
we can begin to think about paths which are more or less continuous. The next theorem gives a widely
applicable condition for existence of many paths which are one-sidedly continuous. It depends on a fairly
strong continuity property for the transitional probabilities.
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Definitions (a) Let U be a Hausdorff space and (V;S’t)>0§5<tﬁz€(] a family of Radon probability measures

on U. I will say that (Vg(gs’t)>0§s<t7x6U is narrowly continuous if it is continuous, as a function from
{(s,t) : 0 < s <t} x U to the set of Radon probability measures on U, when the latter is given its narrow
topology (437Jd).

Remark I speak of the ‘narrow’ topology here partly because, in the present treatise, this has become
the standard topology on spaces of Radon measures, and partly because the phrase ‘vaguely continuous’
seems inappropriate. But, as will appear, all the results below will rely on the fact that the vague topology
(437Jc) is coarser than the narrow topology. In the present context, in which we have Radon measures on
a completely regular Hausdorff space, the two topologies actually coincide (437L). So <1/g(cs’t)>ogs<t7m€(] is

narrowly continuous iff (s, ¢,z) — [ fdyms’t) is continuous for every bounded continuous f : 2 — R.
(b) Let (U, p) be a metric space, and (Vg(gs’t)>0§3<t7er a family of Radon probability measures on U. I
will say that <u§s’t)>0§8<t,ajey is uniformly time-continuous on the right if for every € > 0 there is a

6 > 0 such that Vés’t)B(x,e) >1—ewhenever r € U and 0 < s <t <s+9.

455G Theorem Let (U, p) be a complete metric space and (V,Es’t)>0§5<t,m€U a family of Radon probability

measures on U, uniformly time-continuous on the right, such that (uét’u)>yeU is a disintegration of v{*"

over Vg(cs’t) whenever 0 < s < ¢t < u and z € U. Take a point @ in Q = Ul and a € [0,00]. Let figq be

the completed probability measure on €2 defined from (Vg(gs’t)>ogs<t,meU, @ and a as in 455EDb.
(a) For figq-almost every w € Q, limgeq, gyt w(g) and limgeq, gt w(q) are defined in U for every ¢ > a.
(b)(i) If a <t < o0, then w(t) = limyeq g1t w(q) for fige-almost every w € €.
(ii) If a < t < o0, then w(t) = limgeg, g1t w(gq) for fizq-almost every w € Q.

(¢)(i) Let C'" be the set of callal functions from [0, 0o to U (438S). If & € C'¥, €'V has full outer measure
for ,LALQ,(L.
(ii) Let Cqig be the set of cadlag functions from [0,00[ to U. If @ € Cqig, Caig has full outer measure
for figq.

Remark In this result and the ones to follow, I have not spelt out separately what it means if a = 0; but
of course this is the case in which we are starting the process at time ¢* = 0 and value z* = ©(0), just as in
the original construction 455A.

proof (a) Of course we can assume in this part of the proof that « is finite.

(i) Suppose that n € ]0,1[ and €, & > 0 are such that Vg(cs’t)B(a:,e) > 1 —n whenever x € U and
0<s<t<s+46. Then

figa{w : w € Q, diamw[D] < 4e} > —

whenever D C [a, 00| is a countable set of diameter at most 4.

P (a) For finite D, I seek to induce on #(D). If #(D) < 1 then of course diamw[D] < 4e for every w
and we can stop. So suppose that D = {tg,... ,t,} where n > 1 and a <ty < ... < t,. To begin with, I go
through the formulae when tq > 0.

For k < n set

E = {w: p(w(tr),w(to)) > 2¢, pw(t;),w(to)) < 2€ for i < k},
Frp ={w:w € Eg, p(w(ty),w(tr)) < €},
Gr = {(zo, ... ,xx) : p(zr, 1) > 2€, p(2s,70) < 2€ for i < k} C UFHL.

If 1 <k <n then

ﬂ&)aFk = A{O,to,...,tk,tn}{(xa$07 s 7.’17]€,In) : p(xhx()) <2efori< ka
p(ﬂ?o,l}k) > 267 p(Ik,In) < 6}
(defining \; as the image measure of fiz, on U7, as in 455E)
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:/.../XGk(xo,... L)X Bk, €) (wn )y (dan) .. 1S5t (dao)
(were v s defined as in 455EDb)

/ /XGk: (o, ... ,mk)xB(a:k,6)(xn)ug(ﬂi’“t")(dxn). Vé%f)(dxo)

(because a < tg < ...

- / oo [ XGulans et (Bl ot ) ) (5 (o)

> / . /(1 —n)xGr(zo, ... ,xk)ug(ﬂi’“:ll’tk)(dxk) L0 t“)(dx )

(because ty, < t, <t + 9, so V(t’“’t“)B(;z:, €) > 1 — n for every z)
= (1 =n)Xoo,... ts3 1@ T0,s - - 2, ) 2 p(w4,20) < 26 for i <k,
p(xo, ) > 2€}
= (1 = n)iga Ly

If k = n, then of course Fy, = Ey, so again [igq Fr > (1 — 1) fige Ex. Accordingly

n

(L= foaBr <Y fzaFi < flaafw : pw(tn), w(to)) > €}
k=1 1

>
Il

)\{0 to,tn}{(x To, Tn) : p(To, Tn) > €}

V{0t (U Bxo, €))voy (do) <1

\

because ¢, —typ < 6 so Vg(cto’t”)(U \ B(z,€)) <n for every z.
But now we have

/:Lrba{w twe Qv dlamw[D] < 46} > /:Lrba{W : p(w(tk)aw(tO)) < 2¢ for 1 < k < TL}

1-2
5\ | Ex) >1—f —1_:
1<k<n

as required.

(B) If to = a = 0 the formulae simplify slightly, but the ideas are the same. We have w(0) = @(0)
for figp-almost every w, so

ﬂ@oFk = /\o,th,_7tk7tn{(u~)(0),$1, A ,Z‘k,.rn) : ( (,:J( )) 2¢ for 1 < k
),

p(@(0), 2x) > 2¢, p(r, xn) < €}
:/.../XGk(LD(O),xl,... OXB(@r, ) @Vt (da) ... v (day)
> (1 —n)/.../ka(&z(O),ml,... L)V ) (day) ygo(g)l)(dxl)
= (1 —n)jco By
for 1 <k < n,
(=1 haoEr < AMoa {(@(0),20) : p(@(0), 2,) > €}

k=1
= [\ B@),9) <,
and the final calculation is unchanged.
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() For countably infinite D, let (I,,),en be a non-decreasing sequence of finite sets with union
D; then ({w : w € Q, diamw[l,,] < 4e})nen is a non-increasing sequence with intersection {w : w €

Q, diamw[D] < 4e}, so the measure of the limit is the limit of the measures, and is at most % Q
(ii) For m € N, e > 0 and A C [0, 00[ let G(A, e, m) be

{w:weQ, there are s < s, <51 <8 <...<s, <s, inA
such that p(w(s}),w(s;)) > 4e for every i < m}.

Let § > 0 be such that I/f(vs’t)B(a:,e) > 2 whenever z € U and 5 < t < 5+ 6. Then fi5,G(D,e,m) < 27™
whenever m € N and D C [a, 00[ is a countable set of diameter at most 4.

P (a) Asin (i), first consider finite D. For these, we can induce on m. If m = 0 then G(D,¢€,0) = {w:
diamw([D] > 4e} so (i), with n = £, tells us that 25,G(D,€,0) < 12—77771 = % For the inductive step to m + 1,
define 7 : 2 — [0, 00] by setting

T(w)=min{t:t € D, w € G(DN|a,t],e,m)} if w € G(D, e,m),
= 00 otherwise.

Then 7 takes only finitely many values, all strictly greater than a, and {w : 7(w) = t} belongs to
R0,00[BU) = Qcio,00B(U) and is determined by coordinates in [0,¢] for every ¢ > 0. We can there-
fore apply 455E(b)-(c).

(s,t)

For each w € €, define (v () o) s<tzer from ( i ' )>S<t zeu as in 455Eb; let ( U(JST()UJ) J,>S<t zcu be the
(

family defined in the same Way from <V@2’?>S<t zeU- Let fi, - be defined from w(0) and (v, T()w) o) s<t,zel s

and fi], (o) from w(0) and (7, T()w) ) s<tweU, again as in 455Eb. Then 455E(c-i) tells us that (4, , )wea

is a disintegration of fig, over itself. But now observe that, for any w € 2 and =z € U,

Liért()w) z = = vt = Vé;? = N(E)S:()w) LA T(w) <s <t
(because a < 7(w))
= V‘(UT((TUEL;)) = VLT(SMJ(?(M)) = 1:()0.}),9: if s <7(w) <t,
- 5v(dt()t - ~u()s:()wm if s <t <7(w),

SO fley,r(w) = ﬂw (@) Accordingly (i, T(w)>weg is a disintegration of fig, over itself.
Now, for w € 2, consider
H,={w:w €GD,e,m+1), ' [DN0,7(w)] =wlDNI[0,7(w)]}

If w ¢ G(D,e,m) then 7(w) = oo and H, = ), because G(D,e,m + 1) C G(D,e,m) are determined by
coordinates in D. If w € G(D,e,m) and 7(w) = b, then

H,={w:&'IDNJ[0,b] =w[DNJ0,b] and diam(w’'[D N [b,00[]) > 4€},

[
so that fi, rw)He < % by (i), again with n = 1.

So

fiaaG(D, e;m +1) = / e () C(D, e+ Dfiza(dw) = / fies (o) Hoofia (o)
(using 455E(b-ii))
[ o Hofiaalds) < JizaG(D ) <27
G(D,e,m)
by the inductive hypothesis. Thus the induction proceeds.
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(B) Now, for countably infinite D, again express D as the union of a non-decreasing sequence (I,)nen
of finite sets, and observe that (G(I,, €,m))nen is a non-decreasing sequence with union G(D, €, m); so

fioaG(D,e,m) = limy, o0 fioaG(In, €,m) < 27™
for every m € N. Q
(iii) For n € N, let 6, > 0 be such that v{"" B(z,27") > 2 whenever z € U and s < t < s+ 0.
Consider the set
E=U,ren Nmen GQN [a 4 kdp, a + (k4 1)8,],27"2,m).

Then fizo £ = 0. Suppose that w € Q\ E and t > a. ? If limgeq, ¢+ w(g) is undefined, then (because U is
complete under p) there must be an n € N and a strictly increasing sequence (g;);en in Q, with supremum
t, such that p(w(gi+1),w(q;)) > 27"*2 for every i € N. Let k € N be such that t € Ja + kd,,a + (k + 1)6,];
let I € N be such that ¢; > a+ kd,,. Then, for every m € N, (¢1, qi+1, @11, @i+2, - - + s Gm—1,Gm) Witnesses that
w € GQnla+kd,,a+ (k+1)d,],27""2 m); which is impossible. X So lim,eq 41t w(g) is defined; similarly,
limgeq,qpt w(g) is defined.

As E is fige-negligible, this proves (a).

(b)(i) This is actually easier. Consider part (a-i) of the proof above. Given n € N, we see that there is a
dn, > 0 such that jige{w : diamw[D] < 27"} > 1 — 27" whenever D C [a,00[ is a countable set of diameter
at most d,,. Set

D, ={t}u@n[t,t+d,]), E,={w:diamw[D,]<27"}
for each n € N, and E = |J, oy ﬂmzn FEp. Then jigo ' = 1, and for w € F we have an n € N such that
p(w(t),w(q)) <27™ whenever m > n and ¢ € QN [t,t + J,,], so that w(t) = limgeq ¢t w(gq).

(ii) If t > a, the same argument applies on the other side of ¢, taking D,, = {¢t}U(QN[max(a,t—0d,),1]),
to see that w(t) = limgeqg, g1t w(g) for figq-almost every w.

(c)(a) Suppose that E C Q and fizqE > 0. Then there is an w* € E such that
w*(t) = @(t) for every t < a,

w*(t) = limgy, w*(s) for every ¢ > a,

limgys w*(t) is defined for every t > a.

P Let F' € ®[0 o(B(U) be such that £’ C E and fige " > 0. Let D C [0, 00[ be a countable set such that
E’ is determined by coordinates in D; we can suppose that a € D if a is finite. Let F' be the set of those
w €  such that

limgeq, g1 w(q) and limgeg,qte w(q) are defined in U for every t > a,
w(t) = limgeq,qut w(t) for every t € D N [a, o0,

w(t) = w(t) for every t € DN [0, al.

Then (a) and (b), with 455E(b-ii), tell us that F' is fig.-conegligible. So there is an w € E N F. Define
w* € Q by setting

w*(t) =w(t) if t <a,
= lim w()ift>a;
q€Q,qlt

note that the definitions of w*(a) are consistent if a is finite, and that w*[D = w[D, so that w* € E' C E.

If t < a, then of course w*(t) = @(t). If t > a and € > 0, there is a § > 0 such that p(w(q),w*(t)) < €
whenever ¢ € QNJt, t + 0]; in which case p(w*(s),w*(t)) < e whenever s € [t,t + J[; as € is arbitrary, w*(t) =
limg); w*(s). If ¢ > a and € > 0, there is a § > 0 such that p(w(q),w(q’)) < € whenever ¢ € QN [t — 4, ¢[; in
which case p(w*(s),w*(s")) < € whenever s € [t — §,t[; as € is arbitrary and U is complete, limgy; w*(s) is
defined in U. So we have an appropriate w*. Q
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(B) Suppose, in («), that @ € ¢V, Then w* e Ct. P

limgy, w*(s) = limgyy @(s) is defined whenever 0 < ¢ < q,
limg ¢ w*(s) = limg; @(s) is defined whenever 0 <t < a,

if @ > 0, lim, o w*(s) = limg o @w(s) = @(0) = w*(0),
if 0 < t < a, then w*(t) = @(t) is equal to at least one of limg; w*(s) = limgyy @(s), limg s w*(s) =
limg @(s).
Since we already know that

w*(t) = limg 4 w*(s) for every t > a,

limgy, w*(t) is defined for every ¢ > a,
w* is callal. Q
As F is arbitrary, it follows that if @ € "V then ¢V meets every non-negligible /izq,-measurable set, so
that [LEQCR =1, as required by (i).
(7) Similarly, if @ € Cgjg, then any w* with the properties described in (o) also belongs to Cqi.
This time, we have
if 0 <t < a, then w*(t) = @(t) = limyy, w*(s) = lim,y ©(s),

which with the other properties listed is enough to ensure that w* € Cqiz. Q Since E is arbitrary, fi5,Cag =
1.
This completes the proof of part (c).

455H Corollary Let (U, p) be a complete metric space and <V§;S’t)>0§s<t,er a family of Radon probability

measures on U, uniformly time-continuous on the right, such that (ul(,t’u)>yey is a disintegration of Vg(gs’u)

over 15" whenever 0 < s < t < uw and z € U. Let C’1L(U) be the set of callal functions from [0, oo to
U. Suppose that @ € C’1L(U), and a € [0, 00]; let fizq be the completed probability measure on Q = ULl

defined from @, a and (V;S’t)>0§s<t,z€U as in 455Eb. Then fi5, has a unique extension to a Radon measure

[ise on £, and /la,aCu(U) =1.

proof (a) In the language of 455E(b-1), Vg;’i) is a Radon measure whenever ¢ > 0 and « € U, so the image

measure defined from fiz, and the map w — w(t) is always a Radon measure on U, and there there is a
o-compact set Hy C U such that w(t) € Hy for fize-almost every w. Set Uy = qu@m[o,oo[Hq§ then Uy is
separable and fig, E = 1, where E = {w : w(q) € Uy for every ¢ € QN [0, 00[}. By 455G(c-i), EﬂCu(U) has
full outer measure; and if w € EN C1L(U), then w(t) € Uy for every ¢t > 0.

(b) Thus EN C“(U) is included in C1L(Uo), the set of callal functions from [0, co[ to the Polish space Uy.
So /:LEGCH(U()) = 1. Let fic be the subspace probability measure on C’1L(U0).

Since figq is inner regular with respect to ®[ B(U), [ic is inner regular with respect to the o-algebra

0,00]

Y ={En C’“(Ug) NS @mm[B(U)} (4120b). But X is just the o-algebra generated by the maps

w = w(t): C’1L(U0) — Up for ¢t > 0, which is the Baire o-algebra of C’1L(U0) (4A3Na, 4A3Nd). Accordingly
fic]Y is a Baire measure and is inner regular with respect to the closed sets (412D); it follows that its
completion [i¢ is inner regular with respect to the closed sets (412Ha).

At this point, recall that C1L(U0) is K-analytic (438Sc). So jic has an extension to a Radon measure
flc on C’1L(U0) (432D). Now f[ic has an extension to a Radon probability measure figz, on £ such that
ﬁ@aC1L(U) = ﬂ@aC’u(Uo) = 1. And if ji;, measures F, then

fizaE = fic(E0 CHUY)) = fic(E0 CHUY) = fi5,(E 0 CH0)) = fan .

SO flge extends [igpq-
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(c) As for uniqueness, observe that dom /i, includes a base for the topology of €2, so by 415H there can
be at most one Radon measure extending fizq.

4551 In fact we can go farther; the Radon measure fi is much more closely related to the completed
Baire measure it extends than one might expect.

Lemma Let (U, p) be a complete separable metric space and <1/f(vs’t)>0<s<t zcu a family of Radon probability

measures on U, uniformly time-continuous on the right, such that (v (e )> cu is a disintegration of V;(,S’u)

over 1/5(5 ") whenever 0 <s<t<u and x € U. Suppose that @ € Q, and a € [0, 00]; let fig, be the completed

probability measure on Q = U%>®[ defined from (v; (. )>0§s<t,meU7 @ and a as in 455Eb.
(a) Suppose that 0 < qo < ¢1 and € > 0. For w € Q, I will say that ]qo, q1[ is an e-shift interval of w
with (go, q1, €)-shift point ¢ if p(w(qo),w(q1)) > 2¢ and
t =sup{q:q€QnN]go,q1[, p(w(q),w(qo)) < €}
=inf{g:q € QN]go, q1[, p(w(q),w(q1)) < €}

Let E be the set of such w.
(i) B € Ba(®) = @, (BU).
(ii) The function f : E — ]qo,q1| which takes each w € E to its (qo, ¢1,€)-shift point is Ba(Q)-
measurable.
(iii) If go > a, the set {w: w € E, f(w) =t} is [igqe-negligible for every ¢ € ]qo, q1].
(iv) If go, 1 €Q,w e E,w € Qand w'[Q =w[Q, then w’ € F and f(w') = f(w).
(b) Suppose that (g;)i<n, (¢})i<n, (Si)i<n, € >0, E € Ba(Q2) and (f;)i<, are such that, for every i < n,

g, ¢ €Q, ¢ <dq, <;iseither <or >,

lgi, 4] is an e-shift interval of w with (g;, ¢, €)-shift point f;(w), for every w € E,
and also

a<qo, ¢ <gi+ foreveryi<n,

whenever w, w’ € E there is an ¢ < n such that f;(w') <; fi(w).

Then FE is figq-negligible.
(c) Suppose that (¢;)i<n, (@})i<n, (<i)i<n, € >0, E € Ba(Q) and (f;)i<n are such that, for every i < n,

g, ¢, €Q, ¢ <gq, <, iseither <or >,

lai, ¢;] is an e-shift interval of w with (g;, ¢}, €)-shift point f;(w), for every w € E,
and also
a<qo, ¢ <q1 foreveryi<n.
Then for jigq-almost every w € E there is an w’ € F such that f;(w’) <; f;(w) for every i < n.
proof (a)(i) Note that by 4A3Na we can identify ®[0,00[B(U) with the Baire o-algebra Ba(f) of Q. If
s, t > 0, then w — (w(s),w(t)) : @ — U? is Ba(Q))-measurable, by 418Bb; so w ~ p(w(s),w(t)) is
Ba()-measurable. For w € Q, w € E iff (o) p(w(qo),w(q1)) > 2¢ (B) whenever ¢, ¢ € Q N]qgo,aq1],

p(w(q),w(qo)) < e and p(w(q), ( )) < e then ¢ < ¢’ (v) for every n € N there are ¢, ¢ € Q N]qo, ¢1[ such
that p(w(q),w(qo)) <€, p(w(d),w(q))) <eand ¢ < g+27". So E € Ba(Q).

(ii) Now, for any t,
wiwe B, f0) >t} = Uyegring i @ € B p((@) w(@)) < e}
belongs to Ba(2), so f is Ba(Q)-measurable.
(iii) Consider the set E’ of those w € € such that

limgeggrt w(q) = w(t) = limgeq,q1t w(q)-
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Ifwe ENE’, at least one of p(w(t),w(qo)), p(w(t),w(q1)) must be greater than e; in the first case, ¢ cannot

be sup{q : ¢ € QN]qgo,q1[, p(w(q),w(q0)) < €}; in the second case, ¢t cannot be inf{q : ¢ € Q N]qgo,q],
p(w(q),w(q1)) < €}; so in either case f(w) cannot be equal to . Now figeF’ = 1, by 455Gb, so {w : w € E,
f(w) =t} CQ\ E' is [ige-negligible.

(iv) Immediate from the definitions.
(b) Induce on n. Of course we need consider only the case E # (.
(i) If n = 0, fo must be constant on E, so E must be negligible, by (a-iii).

(ii) For the inductive step to n > 1, set F; = {w : w € F, fo(w) = t} for ¢ € |qo,q}[; by (a-ii),
Et S BG(Q)

go[ such that whenever ¢ € [go,¢(] \ J and w, w’ € E; then
<; fi(w'). P Let W be a countable base for the topology of
1<i<n; note that g : B — [, .,.,, 1ai, ¢i[ is Ba(Q2)-measurable.

(a) There is a countable set J C ]qo,
there is an ¢ such that 1 <4 < n and f;(w

)
[li<icnlai gi[- For w € E set g(w) = (fi(w))1
For W e W, set

Aw = {t : t € ]qo, q)[ and there is an w € E; such that g(w) € W}.
Set
J=A{t:t€]q,q, tis either inf Ay or sup Ay for some W € W}.

Then J is a countable subset of ]qo,qj[. T Suppose that ¢ € ]go, ¢\ J and w, W’ € E; are such that
filw") < fi(w) for 1 <4 <mn. Let W € W be such that g(w') € W and z(i) <; fl( ) whenever 1 < i <n
and z € W. Then w’ witnesses that ¢ € Ay ; since t is neither the greatest nor the least element of Ay,
there is a t' € Ay, such that ¢/ < ¢; take w” € Eyp such that g(w”) € W. Then

fo(wW") =t <ot = fo(w),

filw") = g(w")(i) <i fi(w) for 1 <i <n,
which is impossible. X Thus J has the required property. Q

(B) Now consider the family (fi.q, )wen. Because g1 > a, this is a disintegration of fig, over itself. I®

As in part (a-ii-ar) of the proof of 455G, we can think of each fi,,, as defined either from <V§S’t))ogs<t’ze(]

or from <Véa;)>a§s<t,zeU; and in the latter form we can apply 455E(c-i). Q

Consider fiq, (E) for w € Q. This time, note that {w’ : w'[[0,¢1]NQ = w0, ¢1]NQ} iS fieq, -conegligible.
In particular, pu,q, (E) = 0 unless ]qo, ¢[ is an e-shift interval of w. Next,

{w : ]qo, ¢}] is an e-shift interval of w with (qo, g(, €)-shift point in J}
is fige-negligible, by (a-iii) again. Finally, suppose that w € €2 is such that ]go, ¢j[ is an e-shift interval of w
with (qo, g§), €)-shift point ¢ € |go, g4\ J. Then
twg B = plog {w' 1w € E, W' TQN[0,q1] =w[QN[0,q1]}
= pwg {0 1 W' € Ei}.

But the choice of J in («) ensured that E; would be a set of the same type as E, one level down, determined
by intervals starting from ¢, so that fi,q, Fx = 0, by the inductive hypothesis applied to w and ¢; in place
of W and a.

(7v) So we see that fi,g, F = 0 for figq-almost every w, and fig, £ = 0. Thus the induction proceeds.

(c) Let F be the set of those w € E for which there is no w’ € E such that f;(w’) <; fi(w) for every
i <n. Then F € Ba(Q2). P For each w € E set f(w) = (fi(w))i<n and

Wo ={2z:z €[], lai. gl fi(w) <; 2(i) for every i < n},
so that W, is open in [[,,, ¢i, ¢i[- Set W = cp We. Then W is open and F' = {w:w € E, f(w) € W}

belongs to Ba(). Q
If w, w' € F then there is surely some ¢ < n such that f;(w') <; fi(w). By (b), figeF = 0.
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455J Theorem Let (U, p) be a complete separable metric space and <V§S’t)>0<s<t zcu a family of Radon

probability measures on U, uniformly time-continuous on the right, such that (vy (t, u)>

yeu is a disintegration
of VQLS ) over ug(g 2 whenever 0 < s <t <wuand x € U. Write C 1 for the set of callal functions from [0, o]
to U. Suppose that @ € C1L, and a € [0,00]; let jiz, be the completed probability measure on Q = U0l
defined from (Vg(cs’t)>ogs<t,xe(], w and a as in 455Eb, and [ig, its extension to a Radon measure on €2, as in

455H. Then fig, is inner regular with respect to sets of the form F' N C1L where F' C  is a zero set.

proof (a) As in 4551, @wm[B(U) is the Baire o-algebra of Q. Let D be (({a} UQ)N[0,c0)U{t:t >0
is not continuous at t}; then D is countable (438S(a-1)). Let E* be {w:w € Q, w[DN[0,a] = @[ DNJ0,
then E* is figq-conegligible, by 455E(b-ii) once again.

al):

(b) Let G be a countable base for the topology of U. Let W be the family of open subsets of Q of the
form {w : w(q) € G, for every q € J} where J C D is finite and G, € G for every g € J. Let © be the set of
all strings

0= (qO,Q(/)v"' 7qnaq;m§()a"' 7§n;kaw)
such that

90,4, €Q, a<qp<eg<a<qg <...<qn<q,,

for each i < n, <; is either < or >,

keN, WeW,
then © is countable.

(c) Let K C E*N ¥ pe compact. Set L = 7' [rp[K]], where mp(w) = w|D for w € Q; then L is a
Baire subset of 2, because 7mp[K] is a compact subset of the metrizable space U”.

(i) For
02(Q07q6>"' aq'nmq;L»SOw" 7§n7k W) 69

let Ey be the set of those w € LN W such that, for each i < n, ]g;, ¢}[ is a 2~ *-shift interval of w (definition:
4551a). For w € Ep and i < n let f;(0,w) be the (¢;, ¢, 27 ")-shift point of w. By 455la, Ep is a Baire subset
of Q and w — f;(0,w) is Baire measurable. Let Fy be the set of those w € Fy such that there is no w’ € Ey
with fi(0,w’) <; fi(0,w) for every i < n; by 455lc, Fp is fiza-negligible. So F* = Jyco Fp is fize-negligible.

(ii) Suppose that w € K \ F*. Let A be the set of points in |a, oo at which w is discontinuous. If
J C A is finite and ¢ € {—1,1} for each ¢ € J, there is an w’ € K such that w'|D = w|D and w’ is
continuous on the right at every point ¢ of J such that ¢, = 1, while w’ is continuous on the left at every
point ¢ of J such that ¢, = —1. I This is trivial if J is empty. Otherwise, enumerate J in ascending order
asto <ty <...<ty. Setx; = limyqy, w(t), y; = limy 4, w(t); because w € "V these are defined, and because
w is not continuous at ¢ they are different.
Let k € N be such that p(z;,y;) > 275! for each i < n. For i < n, let let ¢;, ¢ € Q be such that
g < ti < ¢, plw(t),r;) < 27% for t € [g;,t;], and p(w(t),y;) < 2%~ for t € t;,q}]. Of course we can
suppose that a < ¢o and that ¢} < g;41 for ¢ < n. Observe that this will ensure that every ]g;, ¢}[ is a
~*_shift interval of w with (g;, ¢, 27%)-shift point .
Let <; be <if ¢, =1, > if ¢, = —1. For each W € W containing w, let Oy € O be (qo, ... ,q,, <o
,<n,k,W). Then w € Ey,,, and f;(0w,w) = t; for each i < n. Because w ¢ Fy,,, there is an wy € Ey,,
such that f;(6w,ww) <; fi(Ow,w) =t; for every i < n. Let wy;, € K be such that wy, [D = ww | D; then
wyy € Ey,, and

Ji(Ow,wyy) = fi(Ow,ww) <i t;

for every i < n (455I(a-iv)).
Ifi <nande, =1,
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for every rational ¢ € | f; (6w, wiy ), ¢;]; because wyy, € cVandt; € 1£i(Ow, i), @] p(wiy (8), Wiy (g))) < 27°F.
Similarly, if €, = —1, p(wiy (t:), Wi (i) < 27F.

Let F be an ultrafilter on W containing all sets of the form {W : w € W C Wy} where w € Wy € W, and
set w' = limy_,rwy, € K. Then w'|D = w[D, because wy and wy;, belong to W whenever w € W € W.
If i <n and ¢, =1, then

p(w'(t:),w' (7)) = limw 7 plwiy (t:), wip (a))) < 27,

p(w'(q:),w'(q7) = plw(@i),w(q))) > 27,
so p(w'(g;),w'(t;)) > 27%. On the other hand,

p(W'(4:),w'(q)) = plw(qi),w(q)) <27F

for every rational g € [g;,t;[. So w’ cannot be continuous on the left at ¢;; because w’ € C1L, it must be
continuous on the right at ¢;. Similarly, if i < n and €;, = —1, w’ cannot be continuous on the right at t;
and must be continuous on the left at ¢;. But this is what we need to know. Q

(iii) Suppose that w € K \ F*, o' € ¢V and w|D = W'|D. Then o' € K. P Let A be the set of
points in Ja, oo[ where w is not continuous, and for ¢ € A let € be 1 if w’ is continuous on the right at ¢, —1
if w’ is continuous on the left at t. For each finite J C A, (ii) tells us that there is an w; € K such that
wyID =w|D =w'D and, for t € J, w; is continuous on the right at ¢ if ¢, = 1, and continuous on the left
at t if ¢ = —1. As both wy and w’ are callal, this means that w;(t) = w'(¢) for ¢t € J. Taking a cluster point
w* € K of wy as J increases through the finite subsets of A, we see that w*[(AU D) = w'[(AU D).

Now recall that w € E*, so that
Ww'DN[0,a] =wlDN[0,a] =&[DNI0,al.

Since both w’ and @ are callal, @ is discontinuous at any point of [0, a[ at which w’ is discontinuous. Since I
arranged that a (if finite) would be in D, D U A contains every point at which w’ is discontinuous. But this
means that w* = w’ (4385(a-ii)). Sow’ € K. Q

(iv) Suppose that fizo K > v > 0. Then there is a zero set F C Q such that F N C’1L C K and
foa(F N C’1L) > . P Because [ig F* = 15 F* = 0, there is a compact K/ C K \ F* such that fig, K’ > 7.
Set F' = 7' [rp[K']]; F is a zero set in Q because mp[K’] is a zero set in UP. By (iii), F' N clc K; and

fioa(FNCY) > fizaK' > 7. Q

(¢) Since E* and C b are aa-conegligible, the Radon measure fig, is certainly inner regular with respect

to the compact subsets of £* N C’1L; by (b-iv), fige is inner regular with respect to the intersections of C 1
with zero sets.

455K Corollary Suppose, in 455J, that @ € Cqyg, the space of cadlag functions from [0, oo[ to U. Then
the subspace measure jig, on Cqig induced by fiz, is a completion regular quasi-Radon measure.

proof The point is that the outer measures 7, and ji%, agree on subsets of Cqi,. PP Since fig, extends
floa, (5, A < (5, A for every A C Q. On the other hand, if A C Cqi and i, A < v, there is an £ O A such

that fig.F < . By 455J, there is a zero set F' C €2 such that ENF N ol = 0 and jige(F N C’1L) >1—7.
Now

fi50A < figa(Caig \ F) = fiza(Q\ F)
(because 1%,Cag = 1, by 455G(c-ii))

= [ioa(2\ F) :ﬂwa(cﬂ' \F)<~.

As ~ is arbitrary, g5, A < i, A Q
Write fiz, for the subspace measure on Cqi; induced by fize. By 214Cd, the outer measures i}, =
15, PCalg and ji%,, are the same. Because fig, and jig, are both complete probability measures, they must
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be identical (213C). Because fizq is a Radon measure, fis, = fize is quasi-Radon (415B). Because jig, is
the completion of a Baire measure, therefore inner regular with respect to the zero sets in §2 (412D, 412Ha),
jloq is inner regular with respect to the zero sets in Caqye, by 412Pd, and is completion regular.

455L Stopping times We need the continuous-time version of the concept of ‘stopping time’ introduced
in §275. Let Q be a set, ¥ a o-algebra of subsets of Q and (X;);>¢ a non-decreasing family of o-subalgebras
of ¥. (Such a family is called a filtration.) For t > 0, set £ = (,., Zs, so that (5] )¢ also is a

non-decreasing family of g-algebras. Of course X;7 = ., =¥ for every t > 0.

s>t

(a) A function 7: Q — [0, 0] is a stopping time adapted to (3;);>¢ if {w:w € Q, 7(w) < ¢} belongs
to X; for every ¢t > 0.
Note that in this case 7 will be ¥-measurable.

(b) A function 7 : Q — [0,00] is a stopping time adapted to (X} );>¢ iff {w : T(w) < t} € %, for every
t>0. P (i) If 7 is adapted to (3] );>¢ and ¢ > 0, then {w : 7(w) < ¢} € ¥ € X whenever 0 < g <t, so
i 7() <t} = Uyeqmoule : 7(@) < ¢} € T,
Thus 7 satisfies the condition. (ii) If 7 satisfies the condition and ¢ > 0, set ¢,, =t 4 27" for each n. Then
{w:t(w) <t,} €%y, €3y,
whenever m < n, so
{w:itw) <th =Nspiw:r(w) <tp} €%y,
for every m, and
{w:T(w) <t} € Npen St = Sf -
As t is arbitrary, 7 is adapted to (X; );>0. Q

(c)(i) Constant functions on € are of course stopping times.
(ii) If 7 and 7’ are stopping times adapted to (£;);>0, sois 7+ 7. P
{wir(w)+7'(w) <t} = Nyegrpglw: 7w) G U{w:T(w) <t —q} €5y
for every t > 0. Q
(iii) (Compare 455Cb and 455E(c-ii)). If 7 is a stopping time adapted to (X;);>0, then
Y,={E:FeX En{w:r(w) <t} €X; for every t > 0}
is a o-subalgebra of ¥. (The check is elementary.)

(iv) If (73)ier is a countable family of stopping times adapted to (X¢)¢>0, then 7 = sup;c; 7; is adapted
to (E¢)¢>0. PP For any ¢t > 0,

{wiT(w) <t} =Neiw:mi(w) <t} e X Q

(v) If (7;);es is a countable family of stopping times adapted to (X} );>0, then 7 = inf;cr 7; is adapted
to (3] )10, because

{w:t(w) <t} =Ujefw:mi(w) <t} e

for every 7 > 0.

(d) Now suppose that Y is a topological space and we have a family (X;);>o of functions from 2 to
Y, and that 7 : Q — [0,00] is any ¥-measurable function. Set X;(w) = X;(,)(w) when 7(w) < co. If
(t,w) = Xi(w) : [0,00[ x @ — Y is B([0, oo[)@E-measurable, where B([0,00[) is the Borel o-algebra of
[0,00[, then X, : {w : T(w) < oo} — Y is Y-measurable. B Setting Qy = {w : 7(w) < oo}, the map
w e (T(w),w) : Qo — [0,00[ x Qis (T, B([0, 00[)®X)-measurable (4A3Bc), so X, is the composition of
a (%, B([0, 0o[)®X)-measurable function with a B([0, co[)®X-measurable function and is ¥-measurable, by
4A3Bb. Q
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*(e) Again take a topological space Y, a family (X;);>¢ of functions from 2 to Y, and a stopping time
7 : Q — [0, 00] adapted to (X;)¢>0. This time, suppose that (X;);>¢ is progressively measurable, that
is, that (s,w) — X4(w) : [0,¢] x Q — Y is B(]0,])®@%;-measurable for every ¢ > 0, and moreover that ¥; is
closed under Souslin’s operation (421B) for every t. Then X, as defined in (d), will be X -measurable. P
Suppose that H C Y is open, and set £ = {w : w € dom X, X, (w) € H}. Of course (X;);>o satisfies the
condition of (d), so E € 3. Take any ¢t > 0. Then

{(s;w):0<s<t, 7(w)=s}=[) [ J{s:27"(i — 1) < s < min(t,27")}

neNieN
x{w:27"(—1) < 7(w) < min(¢,27")}
e B([0, )&%,

{(s,w):s<t, X,(w) € H} € B(0,]) D%,
so
W ={(s,w):s<t 7(w) =s, Xs(w) € H}
also belongs to B([0,1])®%;. Consequently the projection of W onto Q belongs to S(;) = ¥; (4230). But
this is just
{witw) <t, Xy e HY = EN{w: 7(w) < t}.
As t is arbitrary, E € X,; as H is arbitrary, X, is ¥ .-measurable. Q

*(f) There are some technical points concerning stopping times which are perhaps worth noting here.

(i) Suppose that u is a probability measure with domain ¥ and null ideal A'(x). Then we can form
the completion i with domain 3. If we now set ¥, = {EAA: E €%, A€ N(1)}, (Xt)i>0 and (2] )50 are

filtrations, where i}j =Nest 3, for t > 0.

(ii) We find that 3} = {EAA: E e X}, A€ N(u)} for every t > 0. B Of course
{EAA:EeXf, Ac N(u)} C Ny {EAA:E€ S, Ac N(p)} = EF.
IfFe ZA]?, then for every ¢ € Q such that ¢ > ¢ there is an E, € ¥, such that FAFE, is negligible. Set
E=Ucqq>t Nycoicq<qgBas A=FAE;
then £ € ©F, A€ N(u) and F = EAA. Q

(iii) Of course every stopping time adapted to (X} );>¢ is adapted to (3;);>o. Conversely, if 7: Q —
[0, 0] is a stopping time adapted to <f]zr>t20, there is a stopping time 7/, adapted to (3] );>0, such that
T =ae. 7. P For each ¢ € QN [0,00[, set F, = {w : 7(w) < ¢}; by (b), F, € 3, and there is an E, € %,
such that F;AE, is negligible. For w € Q, set 7/(w) = inf{qg : ¢ € QN [0,00[, w € Ey}, counting inf ()
as co. Then {w : 7'(w) <t} = U eqno, Lq belongs to Xy for every ¢, so 7’ is adapted to (3 )i>0. And
{w: (W) # 7(W)} € Uyeon(o,co EaLFy s negligible. Q

(iv) Continuing from (iii) just above, we find that, defining 3+ from (3}),50 and 7 and 7 from
()10 and 7/ by the formula in (c-iii), then 3 = {FAA : F € ©F,, A € N(u)}. P Let Ay be the

negligible set {w : 7(w) # 7/(w). (@) If E € X7, then for every ¢t > 0 we have

En{w:r'(w) <t} e,

(ENn{w: 7(w) <tHA(EN{w : 7' (w) < t}) C Ag € N(p),

so (using (ii)) EN{w : 7(w) < t} € ©F; as t is arbitrary, E € Sf. (8) If F e %}, then for every
q € QN [0,00[ the sets FN{w: 7(w) < ¢} and F N {w: 7'(w) < q} belong to X, so there is an E, € ¥F
such that E,A(F N{w : 7'(w) < q}) is negligible. Set £y = U, cqnjo,q Er for ¢ € QN [0, 00[; then Ef € xf
and EjA(F N{w: 7'(w) < q}) is negligible for each ¢, while E; C E] if ¢ <7 in QN [0,00]. Tt follows that
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Nyconitool Ba = Naconpes) Bg € 24

whenever ¢ < s in [0, 0o, so that t00 Eq € ¥ for every t. Set

q€QN[
E = ﬂqum[Om[E; U{w: 7 (w) > q}.
Then
En{w:7(w) <t}
={w:7(w) <t}n ﬂ (E; U{w: 7 (w) > q})

g€QN(0,00]
={fw: 7w <tin () EUV{w:Tw>q)n () E,
q€QN[0,¢[ q€QN([t,00]

e

for any t > 0, so E € ©1,. If we look at (EAF) N {w : 7/(w) < oo}, we see that this is included in the
negligible set

Useanons EVAEF 0w 7/(w) < a})
because {w : 7'(w) < 00} N F is just
{w:7'(w) < oo} N ﬂqum[Om[(F N{w:7(w) <¢})U{w: 7 (w) > q}.

As for the set H = {w : 7/(w) = oo}, this belongs to X, and every subset of H belonging to X also belongs
to ©F,. Let H' € ¥ be such that H' C H and H'A(F N H) is negligible; then E' = H' U (E \ H) belongs to
1, and differs from F by a negligible set. Q

:
455M Hitting times I mention a class of stopping times which is particularly important in applications,
and also very helpful in giving an idea of the concept.

Proposition Let U be a Polish space and Cqig the set of cadlag functions from [0, 00[ to U. Let A C U be
an analytic set, and define 7 : Cqiy — [0, 00] by setting

T(w) =inf{t:w(t) € A}

for w € Cqig, counting inf @) as co.

(a) Let ¥ be a o-algebra of subsets of Cqig closed under Souslin’s operation and including the algebra
generated by the functionals w + w(t) for ¢ > 0. Then 7 is ¥-measurable.

(b) For t > 0 let X; be

{F:F €%, € F whenever w, w € Cqig, w € F and w[|[0,t] = w'[[0,]},

and X =(,., 5. Then 7 is a stopping time adapted to (3] );>o.
(c) If A is closed, then 7 is adapted to (2;);>o-

proof (a)(i) It will help to recall from 4A3Q that there is a Polish topology & on Cgyg such that the
corresponding Borel o-algebra B(Caig) is just the o-algebra generated by the coordinate functions w +— w(t),
so is included in ¥. In this case, every G-analytic set, being &-Souslin-F (423Eb), belongs to 3.

(ii) The set
W ={(w,t,z) weCqg t>0,zeU,w(l) =z}

is a Borel subset of Cqig x [0,00[ x U. P If p is a metric on U inducing its topology and D is a countable
dense subset of U,

w= U Ulwta)telg—27"4,

neN qgeQ,q>0yeD
pw(q),y) <277, pz,y) <27"}. Q

(iii) Since Caig, [0,00[ and U are all Polish, W is an analytic set. Now, for any ¢ > 0,
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W' ={(w,s,2): s €[0,t, z € A, (w,s,z) € W}
is analytic and its projection
{w:7(w) <t} = {w : there are s, z such that (w,s,z) € W'}
is analytic and belongs to X. As t is arbitrary, 7 is X-measurable.
(b) Now, given t > 0, F = {w : 7(w) < t} belongs to ¥, and if w € F, v € Cqy are such that

W'I0,¢] = wl]0, t], there is an s < ¢ such that w'(s) = w(s) € A, so 7(w’') <t and w’ € F. Thus F € ;. As
t is arbitrary, T is a stopping time adapted to (X} );>0, by 455Lb.

(c) As A is closed and every member of Cyqyg is continuous on the right, w(7(w)) € A whenever T(w) < 00.

So if w, w' € Cag, T(w) <t and W'[[0,t] = w0, ], then w'(7(w)) € A and 7(w') < t. Thus {w: 7(w) <t} €
¥, for every t, and 7 is adapted to (X;)¢>o0.

455N We need an elementary fact about narrow (more properly, vague) convergence.

Lemma Let (U, p) be a metric space, n € N and f : U1 — R a bounded uniformly continuous function.

Let (Vg(ck)> k<n,zcu be a family of topological probability measures on U such that z — Va(jk) is continuous for

the narrow topology for every k < n. Then
g [ [ fn, ) D () vl (das)vy? (das )

is defined everywhere on U and continuous.

proof Induce on n. If n = 0 the formula is just y — f(y), so the result is trivial. For the inductive step to
n > 1, set

9. 0) = [ [ Flyar o wn)vii ) (den) o (das)
for y, 1 € U; by the inductive hypothesis thls is well-defined and x; — g¢(y, 1) is continuous. Note that

g is bounded because f is. It follows that h(y) = [ g(y, zl)yg(, (dzq) is defined for every y. I need to show
that h is continuous. Take any y € U and € > 0. Then there is a &g > 0 such that |f(y/,z1,... ,2,) —

fly,z1,...,2,)| < € whenever p(y',y) < dp and z1,... ,2z, € U; so that |g(y/, 1) — g(y, 1)| < € whenever
p(y',y) < do and 27 € U. Next, because z % is narrowly continuous, z — fg(y,xl)uéo)(dxl) is
continuous (437J{/437Kb), and there is a § € |0, dg] such that |fg(y,ac1)1/?§9) (dzy) — fg(y,xl)l/g(,o) (dz1)] <€

whenever p(y',y) < 4. So if p(y',y) <9,

() = )| < | [ ot/ o) (dn) - /g<y,z1>u<, (dz1)|
T / o) o)~ [ gl o)

< [lote/,ar) - g(y,xlnu;)(dml) Te<e

As y and € are arbitrary, h is continuous and the induction proceeds.

4550 If both the continuity conditions in 455F are satisfied, we have a version of 455C/455Eb which is
much more to the point.

Theorem Suppose that (U, p) is a complete metric space, x* is a point of U, <I/§S’t)>0<s<t7xe(] is a family
of Radon probability measures on U which is both narrowly continuous and uniformly_time—continuous on
the right, and that (v (t u)>y€U is a disintegration of Va(;s’u) over Vés’t) whenever x € U and s <t < u. Let i
be the corresponding completed measure on Q = U%>[ as in 455E. Let Caig be the set of cadlag functions

from [0, co[ to U, ji the subspace measure on Cqjg, and 3 its domain. For ¢ > 0, let ¥, be
{F:Fe%, o € F whenever w € F, w' € Cyyg and o' [[0,1] = w][0,1]},
and 3 = Nt 3.
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For w € Q and a > 0 let fi,, be the completed measure on Q built from w(0) and (V&Z?)OSSQ@GU as

in 455Eb; let ji,, be the subspace measure on Cqie. Let 7 : Cqig — [0, 00] be a stopping time adapted to
(2 )ez0.
() {fiw,r(w))weCay, 18 a disintegration of i over itself.
(b) Set
St={F:Fe3 Fniw:r(w) <t} € for every t > 0}.
Then Ei is a o-algebra of subsets of Cqjz. For a ji-integrable function f on Cqg, write §f(w) = del fdfig r(w)
g

when this is defined in R. Then g is a conditional expectation of f on Zj
(c) If 7 is adapted to (X;);>0, set

YS,={F:Fe¥ Fn{w:tw) <t} e, for every t > 0}.
Then 3, is a o-algebra of subsets of Caig, and gy is a conditional expectation of f on 3., for every f € LY(ji).

proof (a)(i) I had better begin by checking that the ground is clear. By 455G, i*Caig = f1},Caig = 1 for
every w € Cqig and a > 0, so that ji and fi,q (for w € Cqg) are all probability measures.

Of course (3)>0 is a non-decreasing family of o-subalgebras of ¥, so that (3] );>¢ is another such family,
and we are in the territory explored in 455L.

(ii) Write X for the domain of fi, and for ¢ > 0 set
Y ={FE: E €%, FE is determined by coordinates in [0,]}.

Then 3 = {ENCyy: E €%} PIf E €%y, then ENCyyg € 3 and clearly EN Cqyg € X4 If F € 3, let
E € ¥ be such that £ N Cqz = F. Applying 455Ec to the stopping time with constant value ¢, we have

PE = [ it (E)fi(dw).
Set
E* ={w:weQ, fi,t(F) is defined},

Ey={w:weE* j4(E)=0}, Ei={w:weE* j.F)=1}
Then E*, Ey and E; are measured by fi and are determined by coordinates in [0,¢] (by 455E(b-iii)), and
AE* =1.
If w e E* N Cqyg, then i}, Cqe = 1, so
fiwt(F) = fizy (BN Carg) = fiwr(E).

If w € Cag, let D be a countable dense subset of [0,¢] containing ¢; then

1= ji{w 0 €Q WD =wD}=ji,{w :w € Caq, W'D =wlD}
= fiwt{w' : w" € Cayg, W'10,t] = w|[0,]}.
So if w € E* N Cayg,
fruwt (B) = fiwt(F) = fi{w' : 0" € F, w'1[0,¢] = wl[0,1]} = xF(w) € {0,1}
because F' is determined (relative to Cgiz) by coordinates in [0,t]. This means that E; N Cag € F and
EyN F =, while Eg U E; is fi-conegligible. So if we take
E' = Fy U{w:wQ\ E; and there is an w’ € F such that w'[[0,¢] = w[[0, ¢]},
E'Nn leg = F, F’ is determined by coordinates in [0,¢], E; C E' C Q\ Ey, /i measures E’ and E’ € 3.
Thus £y = {ENCqyg: F € ¥}, as claimed. Q

(iii) Take n € N, and set D,, = {274 : ¢ € N}. Suppose that 7 : Cqg — D,, U {00} is a stopping time
adapted to (X;)¢>0. Then (i, r(w))wecy, 18 a disintegration of /i over ji. B For each i € N, F; = 77 1[{27"}]
belongs to Xo-n;, s0 there is an E; € X, determined by coordinates in [0,27"4], such that F; = E; N Cag-

For w € €, set
T(w)=inf{27"i:i € N, w € E;},
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counting inf () as co. Then #|Cqy = 7. Also #[Q2] C D,, U {oc} is countable, and +~![{b}] € ¥ is determined
by coordinates in [0, b] for every b € D,,. By 455Ec, (fi, 3(w))wea is a disintegration of i over itself.
Now take any F € ¥. Then

i = [ oo (E)is) = | o (B)i(d)
(214F)

- /C sy (B)ji(d). Q

It follows that {ji,, ;(u))weCy, is a disintegration of ji over itself. I If F € 3, there is an E € ¥ such that
F=FEnN Cdlg- Now

pF = pE = ﬂw,T(w)(E)N(dw)
Cdlg

- / i) (E O Cuarg)ji(dw) = / s () (F)ji(d). Q
Cag Caig

(iv) Now let 7 : Cq; — [0,00] be any stopping time adapted to (3} );>o. For each n € N, define

Tn ¢ Caig = Dy, U {o0} by setting
Th(w)=2""(+1)ifieNand 27" < 7(w) < 27"(i + 1),
= o0 if 7(w) = c0.

By 455Lb, {w : 7, (w) = t} € 34 for every t € D,,. So (iii) tells us that (feo,r (w))weCa, 18 @ disintegration of
[i over itself.

(v) Suppose that k € N, 0 = tg < t; < ... < tg, h : U¥"! — R is bounded and uniformly continuous,
and w € Cqig. Then

fQ h(wl(tO)v .. (tk)),u/w T(w)(dw ) = lim,, 0 fQ tO) I(tk))ﬂw,rn(w) (dw/)~

P Recall from 455E that

/ B (E0), 0 (80)) i oy ()
Q
= [ O () ),

and similarly for each 7,,. If 7(w) > i, then
l/(ti—l, i) _ 6w 0= l/(ti71,ti)

w, T (w),x w,T(w),z

for 1 <i<k,neNandz €U, so the result is trivial. If j < k is such that t;_; < 7(w) < t;, then

(tl l’t)
Ve ,7(w),z

=ty if i < 4,
=L =
=yt if j < i < k.

So

[ B o) (1)) (@)

:/U/U.../Uh(w(O),...,w(j—l),m]‘,-u,xk)

- l’t")(dxk) g(ct]_j’t7+1)(d$j+1) (r(wh )(dxj)

Tp—1 w(T(w))
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Moreover, there is some ng such that 7,(w) < t; for every n > ng, so that we can use this formula for all
such n. Setting

= Jo [y h(@(0), . w( = D)y, ) (dag) ) (da)

for x € U, we see from 455N that g is continuous, while of course it is also bounded, because h is bounded.
At this point, recall that w is supposed to be continuous on the right, while the system of transitional
probabilities is jointly continuous, so that

(r(w)st5) (Tn(w)st;)

w(r(w)) = Moo Yy ()

for the narrow topology, and

lim h(w'(to), .., w' (tk)) flo,r,s (w)(dw’)

n—oo Q
:nlggo// / sw(i — 1), 25, zp)

VB (A 5 (A )y ) ()

= lm [ g(x >ffg;<“gif) (dz;)

n—oo U

/9(73]) ff(:{w)) (dx])
/h tO /(tk))ﬂw,r(w)(dw/)7

as claimed. Q

(vi) Again suppose that 0 =ty < t; < ... < tg. If b : U¥*! — R is bounded and uniformly continuous,
then

delg fQ h(w,(tO)v cee 7w,(tk))ﬂw,7'(w) (dw,):u“(dw) = fQ h(w(tﬂ)a s 7w(tk))la(dw)

P The point here is that

[ [ o). ) e o (@ ild) = [ Bl .. ottt
Carg Q

is defined for every n € N by (iii) and 452F, as usual. Now the integrands
w = fQ h(w/(to), s 7w/(tk))ﬂw,-rn(w) (dw/)

converge at every point of Cqie, by (v), and are uniformly bounded, because h is, so that

/ / h(w/(to), oo awl(tk))ﬂw,‘r(w) (dwl)ﬂ(dw)
Cdlg Q
~ lim /C /Q B (t0), -+ (£0)) s (e ()

n—oo

h(w(to), ... ,w(ty))(dw). Q

Q

If G C U**! is open, there is a non-decreasing sequence (h,,)men of uniformly continuous functions from
U*t to [0, 1] such that G = sup,,cy hm, in which case
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/ for () {6 (@ (f0)s . 1o (8) € CYjildw)

g

i [ [ @t (1)) (i)
m—o0 Caig /02

= lim | h(w(to),. .. w(ts))i(dw)

By the Monotone Class Theorem, we get

/C et (63 (o), (0) € Eid)

= idw: (wto),... ,w(ty)) € E}

for every Borel set E C U**!. Now recall that tg,. .. ,t; were any strictly increasing sequence starting at 0,
so we can use the Monotone Class Theorem yet again to see that

delg ﬂw,r(w) (E)ji(dw) = i(E)
for every E € @[O,OO[B(U) and therefore for every E € 3.

(vii) Finally, if F' € 3, there is an E € ¥ such that F = EN Cudig, so that
) = FE) = [, o (Bi(c) = [l i (Fi(d):
which is what we set out to prove.
(b) (i) By 455L(c-iii), 31 is a o-algebra. If f is a ji-integrable real-valued function, then fcdlg Grit =
‘[Cdlg fii, by (a) and 452F. For a € R set
E(f,a) ={w:w € Cayg, jf(w) is defined in R and §f(w) < a},
so that E(f,a) € . For t > 0, set
Hy={w:weCqg, 7(w) <t}, H={w:we CCag, 7(w) < t},
so that H, € ¥ and H] € 3, (455Lb).

(ii) If w, w’" € Cag and s > 7(w) are such that w'[[0,s] = w[[0,s], then 7(w') = 7(w). B H (),
HJ , and their difference belong to 3, so are determined (relative to Cqg) by coordinates in [0, s]; since
Hrwy \ Hy(,) contains w, it also contains w’, and 7(w') = 7(w). Q

(iii) If f is ji-integrable, & € R and s > 0, then E(f,a) N H! € ¥,. P Certainly E(f,a) N H. € . If
w, w' € Cqig and w[[0, s] = w'[[0, s], then

we E(f,a)NH, = 7(w) < s and fdfi ) < o
Caig

= 7(w') = 7(w) < s and fdji rwy < @
Caig

(by (ii))

= w' € E(f,a) N H..

So E(f,a) N H! is determined (relative to Cqaig) by coordinates in [0, s] and belongs to ¥,. Q
Consequently E(f,a) N Hy € 3 for every t > 0. P H, = (1, o H; where t,, =t + 27" for each n, so

E(fva)mHt :nanE(f7a)mHt/n
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belongs to ¥, for every m € N, and E(f,a) N H, € ¥. Q
Thus E(f,a) € ¥} for every a. As a is arbitrary, dom gy € ¥ and §; is 3} -measurable.

(iv) Define (m,)nen as in (a-iv) above, so that each 7, is a stopping time adapted to (it)tzo and
(Tn(w))nen is a non-increasing sequence with limit 7(w) for every w. For a ji-integrable real-valued function
fon Cygyg, w € Cqig and n € N, set

w(n), N .
9y (w) - fcdlg fd,uwn'"(w)

whenever the right-hand side is defined in R. By (a), del y}”)d,;z = del fdji. We have seen also, in (a-iii),
g g

that each 7, has an extension 7, which is a stopping time on (2 of the type considered in 455Ec. So if we

take a fi-integrable function f extending f, and set

g}n)(w) = fQ fdﬂw,%n(w)
whenever w € () is such that the integral is defined in R, g(~n) will be a conditional expectation of f on X, ,

the algebra of sets E' € ¥ such that EN{w : 7, (w) <t} is determined by coordinates in [0, ¢] for every ¢ > 0.
If w € Cqyg, then Cqig has full outer measure for fig, 7, (w) = flw,, (w)> SO

M, N [ Fan _ . _.(n)
gf" (w) = fQ fdfiy 3, () = delg Fdiig 7, () = 5" (W)
whenever either is defined.
(v) Set
S, ={F:Fe Fn{w: n,(w) <t} €3 for every t > 0}.

Then every F € f]Tn is of the form F‘ﬂCdlg where F € 3;, . P Recall that 7,, and 7, take values in D,,U{oc0},
where D, = {27™i : i € N}. For each i € N, set F; = {w:w € F, 7,(w) = 27"i}; then F; € ¥y-n;, so there
is an F; € Yg-n; such that F; = E; N Cqig (a-ii). Let Eo, € X be such that Eo, N Caig = {w : 7, (w) = 00},
and try

F = Uien(Bi N3 [{27743) U (Boo N1 [{o0}]).
Then FNCyg = F (because 7, extends 7,) and F € X5, (because
Fnr {27} = Bin it [{27"4)] € S,
for every i). Q
(vi) If f is ji-integrable, then g';”) is a conditional expectation of f on ifn for every n. I? Take F' € f]Tn.
Then there are an F' € X5, such that I' = F' N Cqye, and a ji-integrable f such that f = f[Cqy. So

/F fdji = /F fdp = /F o dj

— [ [ it = [ [ Fdjor i)
FJao FJo
(because 1*Cqig = 1, F' = Fn Caig and 7, = 7, [ Caig)

[ [ i it = [ 370 @
F Cdlg F

(455 (c-ii))

(vii) Let ® be the set of those ji-integrable real-valued functions f such that lim, del lgr —
g

g;")\dﬁ = 0. For J C [0,00[ let 7; : Q@ — U’ be the restriction map. By (a-v), f = hm;]Cayz belongs to ®
whenever J C [0, oo is finite and h : U7 — R is bounded and uniformly continuous, since in this case
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gf(w) = / hﬁjdﬂwﬂ-(w) = / h?TJdﬂw,T(w) = lim h'ﬂ']dﬂw",—"(w)
Cdlg Q n—o0 Q

= lim Wy dfies 1, () = lim G (w)
n—00 Cdlg ( ) n—00 f

for every w € Cqig. Next, ot =ae. aff, G+ =ae §f + gy and
delg |gf N ‘Ejf,|dﬂ - fcdlg |§f—f’|d‘u < fcdlg §|f—f/|dﬂ - delg |f = Fldii

for all f, f' € £1(ji) and a € R; and we have similar expressions for every g‘}”). Sof+fedand af €®
whenever f, f’ € ®, and moreover f € ® whenever f € £!(ji) and there is a sequence (fx)fen in ® such
that hmk_,oo delg ‘f - fk|du =0.

If J C [0,00] is finite and G C U7, then (xG)7;[Cag € ®. P There is a non-decreasing sequence (hx)xen
of bounded uniformly continuous functions on U’ with limit xG; now hym;[Cag € ® and (YG)7y|Cag =
limy o0 My [ Caie. Q By the Monotone Class Theorem, (xE)m;[Caz € ® whenever J C [0, 00] is finite
and E € B(U”). By the Monotone Class Theorem again, y(ENCqy) € ® whenever E € ®[0,00[B(U)' Since
we surely have f’ € ® whenever f € ® and f' = f ji-a.e., x(ENCqyg) € ® whenever E € ¥, that is, YE € ®
for every E € 3. Tt follows at once that ® = £'(ji).

(viii) We are nearly home. Suppose that f € £'(ji) and F € . If n € N, then F € ¥, . P For any
t >0,

F{w:m(w) <t} =U,eqqe F N {w:7(w) <q} € 3.
So, for any i € N,
Fn{w:mw) <2} =FN{w:7(w) <27} €3y n;. Q
So [, 3" dji = [, fdji. But f € ®, so
[ bpdii =Nimn oo [, 35" dji = [, fdji.

Since we already know, from (iii) above, that domg§; € Ej and gy is ij—measurable, gr is a conditional
expectation of f on X7, as claimed.

(c)(i) By 455L(c-iii) again, 3, is a o-algebra.

(ii) If w, ' € Caig and W'[[0, 7(w)] = w[[0, 7(w)] then fi, +(w) = fiw,r(w)- P Set t = 7(w). This time,
H; and H], defined as in (b-i), belong to ¥, so their difference belongs to ¥, and is determined (relative

to Caig) by coordinates in [0,t]; so w’ € Hy \ H; and 7(w') = t. Now, reading off the definition in 455Eb,

s (s

ot =V, for all s, w and x, S0 fi,t = jiue- Q

wtx

(iii) It follows that if f € £!(ji) and o € R then F = {w : w € Cayg, §r(w) is defined and at most
a} belongs to ¥,. P We know from (b-iii) that F € ¥. Ift > 0, w € F, o' € Cay, 7(w) < t and
W'T0,t] = w[[0,] then fiy ;) = flwr(w)s 50 Gr(w') = gr(w) and ' € F. Thus FN{w : 7(w) < t} is
determined (relative to Cyg) by coordinates in [0,¢] and belongs to ;. Q

(iv) Thus dom gy € 3, and § 3t ¥ .-measurable. As we already know that it is a conditional expectation
of fon X D3, it is a conditional expectation of f on 3.

455P The eventual objective of this section is to provide a foundation for study of the original, and still
by far the most important, example of a continuous-time Markov process, Brownian motion. In the language
developed above, we shall have U = R (or, when we come to the applications in §§477-479, U = R"), and
all the transitional probabilities Z/:S;Sﬂf) will be Gaussian. But the techniques so far developed can tell us a

great deal about much more general processes with some of the same features.

Theorem Let U be a metrizable topological group which is complete under a right-translation-invariant
metric p inducing its topology. Let (A\;)t>o be a family of Radon probability measures on U such that the
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convolution A * Ay (444A) is equal to Agyy for all s, ¢ > 0. Suppose that lim;jo \yG = 1 for every open
neighbourhood G of the identity in U. For x € U and 0 < s < ¢, let v be the Radon probability measure

on U defined by saying that l/g(cs’t)(E) = \i_s(Ex~!) whenever \;_, measures Ex~ 1.

(a <1/1(,t’"))y€U is a disintegration of 55 over i) whenever z € U and 0 < s < ¢ < u.
(b <V§S’t)>0§s<t7xe[] is narrowly continuous and uniformly time-continuous on the right.
(¢)(i) We can define a complete measure i on U%l by the method of 455E applied to z* = e and

<Vﬂ(637t)>0§s<t,er~

(ii) If Cqig is the space of cadlag functions from [0, co[ to U, then i*Cqy = 1, and the subspace measure
ji on Cqig will have the properties described in 4550, with w(0) = e for ji-almost every w € Cgig.

(iii) £ has a unique extension to a Radon measure i on U [0,00],

proof (a) Note first that y — yx is inverse-measure-preserving for A\;_s and yis’t), so that [ f (y)z/g(f’t)(dy) =
| f(yz)A\i—s(dy) for any real-valued function on U for which either is defined (235Gb). If E C U is measured

by l/g(gs’u), then

VE(E) = A_o(Bx ™) = Aues ¥ M_g)(Bz™1) = /)\u_t(E:tflyfl))\t_s(dy)
(444A)
= [ @) = [ o ey

as E is arbitrary, <V§t’u)>yeU is a disintegration of v over v,

(b)(i)(e) Suppose that x € U and 0 < s < t; set u =1t —s. Let f: U — R be a bounded continuous
function and set M = || f|«. Take e € |0, 2 [. Let K C U be a compact set such that A, K > 1—¢. Then there
is a symmetric open neighbourhood V of the identity e of U such that |f(wyx=!) — f(wz~!)| < 2¢ whenever
w € K and y € V2. P For each w € K there is a neighbourhood Wy, of e such that | f(wyz =) — f(wz™1)| < €
whenever y € W2. Because K is compact, there are wq,...,w, € K such that K C U< WiWa,; set

w*

W = ﬂign W, fw € K and y € W, there is an ¢ < n such that w € w;W,,,, in which case

|f(wyz™") — flwaz™)| < |f(wi(w]  wy)z™") — flwz™"))|
+ [f(wiz™") = f(w;(w;  w)z™ )]
< 2e

because both wi_lwy and wi_lw belong to Wi So if we take a symmetric open neighbourhood V of e such
that V2 C W, this will serve. Q

(B) Let 6 > 0 be such that A,V > 1—¢ whenever 0 < v < 2. It will be worth noting that A, (KV) >
1 —2¢ whenever 0 < v < u and u—v < 2§. P In this case, Ay, = Ay * Ay_,. Now U\ K D (U\ KV)V~L. So

e>MUNK) 2 MUKV AoV H > (1 —e)X\ U\ KV)
and

)\U(KV) Z 1-

C >1-2. Q
1—e

() Suppose that 0 < s’ <t and y € U are such that y 'z € W, |s' — s| < § and [t —¢| <. Then
| [ ) _ ffdl/a(cs’t)| < (6M +4)e. P Set v/ =1t — &, so that |u — u'| < 25. We have

[ favl™ = [ pavS ) = | [ flwy™ A (dw) = [ flwz= A, (dw)].

case 1 Suppose that u' < u. Then A, = Ay * Ay—yr, SO
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| / Fav ) - / fdved) = | / F(wy™ A (dw) — / S s # Ay ()]

= / Fwy™ A (dw) — / F (w2 A (d2) M ()|
(444C)

< / Flwy™) / Fwz M (d2) o (d)

<4Me+ sup |f(wy™h) /f (wzz™ ) Ay—w (dz)]
(because A, (U \ KV) < 2¢, by (8), and |f(wy™1) ff wzax”H Ay (d2)] < 2M for every w)
<ates swp [ \f(wy‘l)— [ s ()

weKV

<oMet s [fluy )~ [ flww)
weKV,zeV

(because Ay V >1—¢)

<6Me+ sup |f (woy ezt — flwvzz™t)|
weK,veV,zeV

<6Me+ sup (|f(woy tzz™) — flwz™")|
weK,veV,zeV

+ | flwoze™h) = fwa™t)])
< 6Me+ 4e

by the choice of V', because y~ 'z € V.

case 2 Suppose that ' = u. Then

| / Fv ) - / faved) < / Flwy™) — flwz) Au(dw)

< 2Me+ sup |f(wy ™ wz™t) — f(wa™?)|
weK

<2Me+e.

case 3 Suppose that v’ > u. Then Ay = Ay * A\y/—y, SO

[ g = [ it =1 [[ swaramsdanan) - [ fws i)

< / | / Fwzy™ ) —(dz) — flwa) A (dw)

<2Me+ sSup | f(wzyil))‘u/—u(dz) - f(wz71)|

weK
<2Me+2Me+ sup |f(wzy™t) — f(wz™h)]
weK,zeV
< 4Me + 2e.

So we have the result in all cases. Q

(8) As s, t, z, € and f are arbitrary, (Vg(cs’t)>055<tymeU is narrowly (= vaguely) continuous.

(ii) Given € > 0, there is a 6 > 0 such that A {z : p(z,e) < ¢} > 1 — ¢ whenever 0 < ¢ < §. Now
suppose that x € U and 0 < s <t < s+ . Then
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vV B(x,€) = M_o(B(x, €)™Y = M_sBle, €)
(because p is right-translation-invariant)
>1—e.

As € is arbitrary, (Vg(cs"t)>ogs<t’zeU is uniformly time-continuous on the right.

(c) This is now just a matter of putting 4550 and 455H together, and recalling from 455E that w(0) = e
for ji-almost every w € €.

455Q Lévy processes If we approach as probabilists, without prejudices in favour of any particular

realization, the processes in 455P manifest themselves as follows. Let U be a separable metrizable topological
group with identity e, and consider the following list of properties of a family (X;);>o of U-valued random
variables:

Xo = e almost everywhere,

Pr(X;X;' € F) =Pr(X;_s € F) whenever 0 < s <t and F C U is Borel
(the process is stationary),

whenever 0 <tp <ty <...<ty, then Xy X, ,XtZthl, . 7thXt_nl,
in the sense of 418U (the process has independent increments),

X; — ein measure as t | 0
(that is, lim o Pr(X,; € G) = 1 for every neighbourhood G of the identity). I say here that U should be
separable and metrizable in order to ensure that all the functions X; X ;! should be measurable (of course
it will be enough if U is metrizable and of measure-free weight, as in 438E). Such a family I will call a Lévy
process.

, are independent

455R Theorem Let U be a Polish group with identity e which is complete under a right-translation-
invariant metric inducing its topology. A family (X;):>o of U-valued random variables is a Lévy process iff
there is a family (\;)¢>0 of Radon probability measures on U, satisfying the conditions of 455P, such that if
we start from 2* = e and build the measure /i on U%>®[ as in 455P¢, then

Pr(X,, € F; for every i <n) = ji{w : w(t;) € F; for every i <n}
whenever tg, ... ,t, € [0,00] and F; C U is a Borel set for every i < n.

proof (a) Suppose we have a family (A;)¢~o of Radon probability measures on U such that As * A\y = Agq¢
for all s, ¢ > 0 and lim;)o A¢G = 1 for every open neighbourhood G of e in U. Define (v, (s, )>0§s<t,$6U as in
455P, and let /i be the corresponding completed measure on Q = Ul as in 455Pc. Set X;(w) = w(t) for
t>0and w e Q. Then X( = e a.e. (455Ea) and

Pr(X, € F) = aX; '[F] = "V F = \ F
for t > 0 and F € B(U) (455Ea again). In particular,
limno PI‘(Xt € G) = limwo NG =1

for every neighbourhood G of the identity. If 0 < s < t and F € B(U), set H = {(e,x,y) : yx~! € F} C U3.
Then

Pr(X, X1 € F) = {w  (w(0),w(s),w(t)) € H}
//XH e, 2, y)ro (dy)vO) (dr)
(455E)

B // xH (e, x,yx)\i—s (dy) As (d)
N // XF(y))\t—s(dy))‘s(dx) = )‘t—S(F) = Pr(Xt_s < F)
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If0=s<tthen X; X; ' =, X; = Xy g, ofcourse. [f 0=ty <t; <...<t,and Fy,...,F,_; € B(U), set
Ey={w:weQ wtiwt;) teF foreveryz<k‘}

Hy = {(z0,... ,21) : xip1x; " € F; for every i < k} C UF+?
for £ <n. Then
B = ji{w : w(t)w(0) ™' € Fo} = i{w : w(th) € Fo} = VO Ey = i, Fo,
and for £k > 2

Pr(X,,,, X; ' € F; for every i < k)

= 1By :/'n/XHk(e»xlan- s )yt (day) v (day)

(455E)
= / .. // XHk(e,.’L‘l, . ,xk_l,$kxk_1)Atk_tk71(d$k)
=2t (day ) o v (dy)
/ //XHk (e, z, oo @eo1) X Pt (@r) Ay —tp, (dok)
P2 ) (day ) O (da)
= )\tkftkfl(kaﬁ / .. ./XHk,1(€7.’171, e ,St',‘kfl)
Vg(ci’“_;“’“*l)(dxk,l) ... Véo’tl)(dml)
= )‘tk*tk—l(kal) : [J’Ekfl'
So
n—1
Pr(XtHlX,;1 € F; for every i <n) = pE, = H Ayt Fy
n—1 n—1
= [[ Pr(Xi—s,, € Fi) = ] Pr(Xe. X}, € Fy).
i=0 i=0
As Fy, ..., F,_1 are arbitrary, thX;Ol, X, X{l yeee s X, X;il are independent. Thus all the conditions of

455Q are satisfied.

(b)(i) In the other direction, given a family (X;);>¢ with the properties listed in 455Q, then for each
t > 0 there is a Radon measure A\; on U such that \;F' = Pr(X; € F) for every F' € B(U), for each ¢t > 0.
P U is Polish, therefore analytic, and we can apply 433Cb to the Borel measure F — Pr(X; € F). Q If s,
t > 0, then the distribution of Xs+tX;1 is the same as the distribution of Xj, so is A;.

If s, t > 0 then A\gpy = As x Ap. P If Fy, Fy € B(U) then

Pr((Xe, XoptX; ') € Fi x F2) =Pr(X; € i, Xo 1 X; ' € Fy)
=Pr(X; € F1)Pr(X. X, ' € Fy)
(because X; and X,,, X, are independent)
= MF1 - AsFa = (A X A)(Fy x Fh).

By the Monotone Class Theorem, or otherwise,

Pr((Xs, Xop e X7 H) € H) = (N x A\)H
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for every H € B(U)®@B(U) = B(U?). So if F € B(U) we shall have

Qs *x X)) (F) = Qs x M) {(z,y) :zy € F} = (A x A){(y,2) : 2y € F}
= Pr(X, X; ' X, € F) = \y (1 F,
and \g * Ay = A\s1¢. (Cf. 272T%5)) Q
Next, for any neighbourhood G of e,
limy o \G = limy o Pr(X,; € G) = 1.
So (A)¢so satisfies the conditions of 455P. Let fi be the corresponding completed measure on U%l as in

455Pc.

(ii) Pr(Xy, € F; for every ¢ < k) = i{w : w(t;) € F; for every ¢ < k} whenever tg,...,t, € [0,00]
and F; € B(U) for every i < k. P It is enough to consider the case 0 = tg < t1 < ... < t,,. In this case,
whenever Ey, ..., E, € B(U),

Pr((Xe, Xe, Xpo 'y X, X; V) € EBo % ... X Ey,)

= Pr(Xy, € Eo)Pr(Xy, X;,' € E1)...Pr(X,, X, ') € Ey)

= 0c(Eo)Aty—to (B1) .- Aty —t,, 1 (En)
(where J, is the Dirac measure concentrated at e)

= {w: w(ty) € Bo}i{w : w(t)w(te) ™t € E1}...

fi{w : w(ty)w(tn_1)"* € B,}

= i{w : w(ty) € Eo, w(t))w(te) € By, ... ,w(ty)w(tn_1)"' € E,}
(by (a) above)

= {w : (w(to),w(t)w(to) ™, ... ,wtn)w(tn_1)"") € By x ... x B, }.

So in fact

Pr((Xyy, Xo, Xo) 'y, Xe, X, 1) € H)

= p{w : (wW(to), w(t)w(te) ™, ... ,w(ty)w(t,_1)"") € H}

for every Borel set H C U™t

Set
d(xo, ... ,xn) = (To, T1T0, T2T1T0, - -+, TnTp—1 - - - T1TQ)
for zg, ... ,z, € U, so that ¢ : Ut — U™ is continuous. If H € B(U™"!), then
Pr(Xyy,..., Xy, € H) =Pr(¢p(Xey, Xe, Xi. ', X, X L) € H)
= Pr((Xeo, Xe, Xp, oo X, X 1) € 07 [H])

= i{w : (wlto), w(tr)w(to) ™. .. wltn)w(tn—1)"") € o7 [H]}
= ﬂ{w : (w(t0)7 s aw(tn)) € H}
Taking H = Fy X ... X F,, we have the result. Q

4558 Lemma Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let (A;)¢~o be a family of Radon probability measures on U such
that As * Ay = As4¢ for all s, ¢ > 0 and lim¢ g A;G = 1 for every open neighbourhood G of the identity e

inU. Forx € U and 0 < s < t, let V:,(f’t) be the Radon probability measure on U defined by saying that
l/g(cs’t)(E) = \_s(Ex~1) whenever \;_, measures Ez~'.

15 Formerly 272S.
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94 Perfect measures, disintegrations and processes 4558

(@) If0<ty<t; <...<ty 2€Uand f: R/ = R is a bounded Borel measurable function, where
J = {t(], N 7tn}, then

//.../f(z,xl,... )Vt (dy ) v (dg )yl ) (day )

://.../f(z,sclz,... T 2) Vvt (d, )

..Vfrtll’tz)(dxg) (to,t1) (dxzy).

(b) Take w € Ul and @ > 0. Let /i and [y be the measures on U0l defined from (Vés’t)>s<t7er by
the method of 455E, starting from z* = e. Define ¢, : U%>®l — U0l by setting

Gwa(W)(t) =w(t) if t < a,
=uw'(t —a)w(a) if t > a.
Then fi,,, is the image measure fi¢_}
(c) In (b), suppose that w belongs to the set Cqyg of cadlag functions from [0, co[ to U. Then ¢y,q(w') € Cag

for every w’ € Cqig, and @uq : Caig — Caig Is inverse-measure-preserving for the subspace measures ji and
flwa o0 Cyig.

proof (a)(i) If z € U and 0 < s < ¢, then ug(gs’t)(E) = ugs’t)(Ex_l) for any £ C U such that either is

defined; so [ f(y Z/;cs t) (dy) = [ f(yz)v. (S t)(dy) for any function f : U — R for which either is defined. More
generally,

[ 1@ (dy) = [ Flyz2)pl (dy) = [ Fly2)pl>" (dy)
whenever f is such that any of the three 1ntegrals is defined.

(ii) Now induce on n. For the case n = 0, the natural interpretation of both sides of the formula
presented is f(z). For the inductive step to n + 1, we have

/ e /f(z, X1, Ta,... 733n+1)1/g(ci"’t"+1)(d$n+1) ot (dy )
= / . /f(z, T1Zy e T2y L1 )V (t”Z’t"“)(dxn+1) it (day )

(by the inductive hypothesis applied to (2o, 21, ... ,2n) = [ f(@o,... ,Tn, an)Vét,f“t"“)(dan))
= / . /f(z, 12y e, X2y Ty 12)V (t"’t"“)(dxnﬂ) vt (day)

by (i) applied to the functions y — f(z,212,... ,2,2,y) for each z1,... ,x,.

(b) (i) Suppose that J C [0, 00][ is a finite set containing both 0 and a, enumerated in increasing order as
(to,... ,t,) with a = t;. Set 2 = w(a). Let f : R — R be a function. Then fm;d,, = gk where K =
{0,tj41 —a,... ,t, —a} and g(zj,... ,2n) = f(W(0),w(t1),... ,w(tj—1),22,... ,2n2) for z;,... ,z, € U.
P For o' € U0l

fr1bwa(w’) = (f(bwa(w')(t0)), - - 5 f(Pua(w)(tn))
w(0)), - s flw(tj=1)), f(W'(0)2), ... f(w(tn — a)2))

)z
= 9(w'(0),...,w'(tn — a)) = g7k (). Q
(ii) Again suppose that J C [0, o0] is a finite set containing both 0 and a, enumerated in increasing order
as (to,... ,t,) with a = t;, and set z = w(a). This time, let f : R’ — R be a bounded Borel measurable

function. Then
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455T Markov and Lévy processes 95

/fﬁJdﬂw = /.../f(e,xl, . 733”)1/03(;%3 tl")(dx ).. ((L’él)(dxl)

:////f(e,xl, s Lj—1,Ljy Lj41y--- ,a:n)

Véi“:ll’t")(d:rn) . Vé“’tf+1)(dxj+1)§z(dxj) oo Oty (d1)

(reading from the formulae in 455E; here each d, is a Dirac measure on U)

:/.../f(e,w(tl),... S Tj1s. e Tn)

l/(t”*ht“)(dxn) o Vga,tj+1)(d$j+1)

Tn—1

= [ ... | fle,w(t), .. ,2,%j41%, ... ,ZnZ2)
/]

e (d) ) ()

Tn—1
(applying (a) to the function (yo,... ,yn—j) = fle, ... ,w(ti=1),Y0s--- s Yn—j))
/ / €, Tjqly--e s Tn) ;tn” b ”)(dﬂf ). éa’tj+1)(d93j+1)
(where g(zj,... ,zn) = f(w Jw(tj—1),xjz, ... ,xn2) for z;,... ,x, €U)

/ / (€ jq1,... ,wn)yg(ﬂ'zl;l_“’t"_“)(dxn) V0= ()

(because pemetap = Ai_s(Bx~1l) = VY E whenever E C R is Borel, z € U and a < s < t)

- / grxcdi

(where K = {0,tj41 —a,... ,t, —a})
= / I rbuadfi = / frsd(pdu,)

As f and J are arbitrary, fi., and fi¢_ . agree on the algebra ®[07OO[B(U ) generated by sets of the form
{w:w(t) € E} for t > 0 and Borel sets E C U. By the Monotone Class Theorem, the measures agree on
the o-algebra @)y B(U) generated by @, [ B(U); because they are both defined as complete measures
inner regular with respect to this o-algebra, they are identical.

(c) The defining formula for ¢, makes it plain that ¢,q(w’) is cadlag whenever w, w’ are cadlag. If W
is measured by jiyq, there is a W’ € dom fi,, such that W = W’ N Cqy. In this case, ¢ L [W] N Cag =
ol [W'] N Caig while ¢ [W'] € dom fi; so jig,[W] is defined and equal to

IAWJ);; [W/] = ﬂwaW/ = jlwoW.

455T Corollary Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let (\;)t>o be a family of Radon probability measures on U such
that As * Ay = As4¢ for all s, ¢ > 0 and lim¢ g AyG = 1 for every open neighbourhood G of the identity e
in U; let i be the measure on Ul defined from (\;)¢>o by the method of 455Pc. Let Caig be the set of

cadlag functions from [0, co[ to U, ji the subspace measure on Cqjz and ¥ its domain. For ¢ > 0, let 3 be
{F:Fec%, o€ F whenever w € F, w' € Cyg and ' [[0,1] = w][0, 1]}
and 3, = {FAA: F €5, id = 0}. Then 3 = (.., . includes 5 = .., 5.

s>t

proof (a) I show first that 3,7 C f]t P Take £ € 3. Let T : Cqig — [0, 00] be the constant stopping time
with value ¢, and f the characteristic function xE. Set g(w fc f dji: when this is defined in R, where

it is defined as in 4550; then ¢ is a conditional expectatlon of f on 3, (4550D). Since
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96 Perfect measures, disintegrations and processes 455T

ST={H:He¥ Hn{w:7(w) <s} e} for every s > 0}
—{H:He%, He% forevery s >t} = 5
contains F, g =, xFE. Setting F = {w : w € dom g, g(w) = 1}, F € 3 (remember that ji is complete), and

EAF is negligible.
Now 455Sc, with 235Gb, tells us that

9w) = [o,. Tt = [o, Fourdii

whenever either integral is defined in R, where

(s) if s < t,
"(s —t)w(t) if s > t.

If wo, w1 € Cqig and wol[0,t] = wi[[0,¢], then ¢yt = ¢yt 50 g(wo) = g(w1) if either is defined. It follows
that wyg € F iff wy € F. As wy and w; are arbitrary, F' € ¥, and E € 3. Q

(b) Of course it C XA]g whenever s > t. Putting (a) and 455L(f-ii) together,
Mooy S = {BAA:E €5} jiA=0} C{EAA:E €%, iA=0} =3,

and we have equality.

455U Theorem Let U be a metrizable topological group which is complete under a right-translation-
invariant metric inducing its topology. Let (A;)¢~¢ be a family of Radon probability measures on U such
that As * Ay = As4¢ for all s, ¢ > 0 and lim¢ g A;G = 1 for every open neighbourhood G of the identity e
in U; let i be the measure on U0l defined from (At)t>0 by the method of 455Pc. Let Cqiz be the set of
cadlag functions from [0, 00[ to U, ji the subspace measure on Cqje and ¥ its domain. For t > 0, let ¥, be

{F:Fe%, o € F whenever w € F, w' € Cyyg and o' [[0,1] = w[0,1]},

and it = {FAA:F €%, jiA =0}; let 7: Cag — [0,00] be a stopping time adapted to (¥;);50. Define
(]57- : Cdlg X Odlg — Cdlg by Setting

br(w,w)(t) = (t — 7(w))w(T(w)) if t > 7(w),
= w(t) otherwise.
Then ¢, is inverse-measure-preserving for the product measure ji X ji on Cqig X Caig and ji on Cqig.

proof (a) To begin with (down to the end of (c) below), suppose that 7 is adapted to (3} )¢, where
Zj‘ =Nt 3, for t > 0. In this case we know from 455P that the conditions of 4550 are satisfied. I aim to
apply 4550a, using 455S to give a description of the measures fi, r(.). Now if f is ji-integrable, we have, in
the notation of 4550 and 455S,

fji = / Flft i)
Caig Caig J Caig
(45504a)
- /C F oy ()i (o)

1g Y Caig

(455Sc¢)
- / Foor (w0 ii(d)ji(dew)
Cq

1g Y Caig
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455U Markov and Lévy processes 97

(b) To convert the repeated integral into the product measure, we have still to check for measurability.
The point is that, writing A for the domain of the product measure ji X ji, ¢r is (A, @)y B(U))-measurable.

P (i) Consider first the case in which U is separable. Take ¢t > 0. Then E; = {w : w € Cay, 7(w) < t}
belongs to . The function
wt—7(w): By — [0,00]
is (3, B([0, 0o[))-measurable; the function
(W', 8) = W'(s): Caig X [0,00[ = U
is (X®B([0, 00[), B(U))-measurable, by 4A3Qc, because U is Polish; so the function
(w,w") = W (t—T(w)): By x Cqg = U
is (L&, B(U))-measurable. Next, similarly,
ww(r(w): By —»U
is (£, B(U))-measurable, while
(y,2) »yz:UxU—=U
is (B(U)®B(U), B(U))-measurable, because U is a second-countable topological group. But this means that
(w,w) = W (t = T(w))w(T(w)) : Bt x Caig = U
is (2®%, B(U))-measurable. On the other hand, of course,
(w,w") = w(t): (Caig \ Et) X Caig = U
is (L&, B(U))-measurable. Putting these together,
(w,w") = ¢r(w,w')(t) : Caig X Catg = U
is (®32, B(U))-measurable. This is true for every t > 0, 50 ¢, [ Caig X Cag is (503, @mm[B(U))-measurable.
(ii) For the general case, we can use the trick in 455H. There is a separable subgroup U’ of U such
that v"VU" =1 for every rational ¢ > 0. We can suppose that U’ is a closed subgroup of U. Because U’
is closed,
Cig = {w : w € Caig, w(t) € U’ for every t > 0}
={w:w € Caig, w(q) € U’ for every ¢ € QN [0, 00}
is ji-conegligible in Cqig, and because U’ is a subgroup, ¢,(w,w’) € Cy, for all w, w" € C},. Now the
argument of (i) shows that ¢, [Cfy, x C, is (0%, @wm[B(U’))—measurable, therefore (L&, ®[0,00[B(U))'
measurable. Since Célg X Célg is (ji x ji)-conegligible, ¢ is (A, ®[0700[B(U))—measurable. Q

(c) It follows that if E € @[o,oo[B(U) then, setting f = x(E N Cay) in (a),

(fi x )¢5 [E N Cag] = [ f(r(w,w"))jildw)ji(dw) = [ fdji = ji(E N Cag)
k/)Z Fubini’s theorem. But ji is the subspace measure generated by the completion of a measure with domain

®0,00(B(U), so is inner regular with respect to sets of the form EN Cqyg with E € Qg ,(B(U); by 412K,
¢, is inverse-measure-preserving.

(d) Now suppose only that 7 is adapted to (¥;);>0. By 455L(f-iii), there is a stopping time 7/ : Cyqjg —
[0, 00], adapted to (3] )i>0, such that 7/ =,. 7. Now we see from (a)-(c) that ¢,/ is inverse-measure-
preserving, while

{(w,0) 2 pr(w, ") # Or(w, )} C{(w,0) : 7'(w) # T(w)}

is (ji x ji)-negligible, so ¢, also is inverse-measure-preserving.
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98 Perfect measures, disintegrations and processes 455X

455X Basic exercises (a) Let (A4,),>1 be a non-increasing sequence of subsets of [0, 1], all with Lebesgue
outer measure 1, and with empty intersection. Set T'= {0} U {1 : n > 1}, Qo = {0}, Qy/, = A4, for n > 1;
for t € T let Ty be the Borel o-algebra of ;. For s < tin T and x € 25 define a Borel measure z/g(gs’t) on €
by saying that
if n > 1, then Véo’l/n)(E N A,,) is the Lebesgue measure of E for every Borel set E C [0, 1],
if 0 < s < t, then i {2} = 1.
(s:u) (sit

Show that <1/15t7“)>yegt is a disintegration of vz " over vy ) whenever s < t < uin T and z € Q,. Taking
x* = 0, show that there is no measure p on [[,., € with the properties listed in 455A.

(b) Let T, t*, (%, Tt))ter, ¥, (ug(gs’t)>s<t’wegs and p be as in 455A. Suppose that we are given a
family ((€}, T}, m))ier such that (a) €} is a set, T} is a o-algebra of subsets of €} and m; : Q; — €} is
a surjective (Ty, T};)-measurable function for every ¢t € T (8) whenever s < t in T and z, 2’ € Q; are
such that 7s(z) = ms(a’), then i and VS’t) agree on {m; '[F] : F € T,}. (i) Show that if we set
o5 (F) = v F) whenever s < tin T, o € Q,, w = my(z) and F € T}, then every v5" is a perfect
probability measure, and (ﬁgt’u)ﬁegg is a disintegration of 5™ over ri"") whenever s < t < u in T and
w € Q. (i) Let u’ be the measure on Q' = [[,.,Q} defined by the method of 455A from 7« (z*) and

<’75f’t)>s<t7wegg. Show that 7 : Q@ — € is inverse-measure-preserving for p and g, where m(w)(t) = m¢(w(t))

forweQandteT.

(c) In 455E, set T = {—=1} U[0,00][, let each ©; be R, and for x € R, 0 < s < ¢ let v be the Dirac
measure on R concentrated at ¥(x,t — s) on R, where

P(x,t) = 1fxt ifxt #1 and x # 0,
=0ifzt =1,
= ifr=0.
Let v be any atomless Radon probability measure on R, and complete the definition by setting Vé_l’t) (E) =

v{y : ¥(y,t) € E} whenever t > 0 and this is defined; set * = 0. Show that the conditions of 455E are
satisfied, that the measure /i constructed in 455E is a distribution on R7, and that f is not 7-additive.
(Hint: setting ¢(y)(—=1) = 0, ¢(y)(t) = ¢(y,t) for t > 0 and y € R, show that ¢ : R — R7T is inverse-
measure-preserving for v and fi, and that every point of R? has a neighbourhood of zero measure.)

(d) Let T, t*, (Q)ter, x*, <V§S’t)>s<tﬂ;egs and /i be as in 455E. Suppose that we are given a family
(9}, 7¢))ter such that (a) €2} is a Hausdorff space and m; : 2y — Q) is a continuous surjective function for
every t € T (f) whenever s < ¢t in T and z, 2’ € s are such that 74(x) = 7s(2’), then the image measures

(s,t) _—1 (s,t)
vy 'y, - and v

x!

7, b on Q) are the same. (i) Show that if we set ot = l/g(f’t)wt_l whenever s < tin T,

x € Qs and w = 74(x), then every V’q(,,s’t) is a Radon probability measure, and (V’?’u)>z€m is a disintegration

) (s,t

of 05 over 5" whenever s < t < uin T and w € Q. (ii) Let 4’ be the measure on Q' = [[,.Q}

defined by the method of 455E from -« (z*) and (Iﬁl(us’t))s<t7w€9/s. Show that m : Q — € is inverse-measure-
preserving for (i and i/, where w(w)(t) = m(w(t)) for w € Qand t € T

(e) Let U be a locally compact metrizable group and v any Radon probability measure on U. For ¢ > 0
let Ay be the Radon probability measure

2 3
e_t(cSe+tu+%u*v+%v*y*u+...),

where d, is the Dirac measure on U concentrated at the identity e of U, and the sum is defined as in 234G1'6.
Show that (\:):>o satisfies the conditions of 455P (with respect to an appropriate metric on U). (Hint:
4A5Mb, 4A5Q(iv).)

6 Formerly 112Ya.
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(f) Let U, (M\t)¢>0 and i be as in 455Pc. Let V' be a Hausdorff space, z* a point of V and « a continuous

action of U on V; set w(x) = zez* for x € U. Define <1/3(05’t)>0§5<t’mey from (A¢)¢>0 as in 455P. (i) Show that
if 7, 2/ € U and 7(z) = 7(z’), then the image measures v{*" 71, Vﬁt)r‘l on V are equal whenever s < t.
(ii) Let /i’ be the measure on VIl defined as in 455Xd. Show that if we define 7 : U0l — V0.0l 1y
setting 7 (w)(t) = w(t)ez* for every w € U%>®l and t > 0, 7 is inverse-measure-preserving for fi and /i’ and
also for the Radon measures extending them; moreover, that the restriction of 7 to Cqie(U), the space of
cadlag functions from [0, 0o[ to U, is inverse-measure-preserving for the subspace measures on Cqiz(U) and

Cd1g(V).

>(g) For t > 0, let A\; be the normal distribution on R with expectation 0 and variance ¢. Show that
(At)e>0 satisfies the conditions of 455Q.

>(h) For ¢t > 0, let \; be the Poisson distribution with expectation ¢, that is, \¢(E) = ™" Y poy t"/m!
for E C R (cf. 285Q, 285Xr). (i) Show that (A:);~¢ satisfies the conditions of 455Q). (ii) Show that if ji is the
Radon measure defined from (\;);~o as in 455Pc¢, then w is non-decreasing and w| [0, 00[] = N for ji-almost
every w € R0,

>(i) For t > 0, let A; be the Cauchy distribution with centre 0 and scale parameter ¢, that is, the

7T(3621:“2) (285Xp). (i) Show that (A\;);>o satisfies the

conditions of 455Q. (ii) Show that if i is the corresponding distribution on R[>l then C([0,00|) is ji-
negligible. (Hint: estimate Pr(|X 11y, — Xi/n| < € for every @ < n).) (iii) Suppose that a > 0. Define

T, : ROl 5 ROl by setting (Tow)(t) = iw(at) for t > 0 and w € RIO=[ Show that T}, is inverse-

distribution with probability density function x

measure-preserving for f.

>(j)(i) The standard gamma distribution with parameter ¢ is the probability distribution A\; on
R with probability density function z +— ﬁx“leﬂu for x > 0. Show that its expectation is ¢t. (Hint:
225Xh(iv).) Show that its variance is t. (ii) Show that (\;);>o satisfies the conditions of 455Q. (Hint:
272017, 252Yf.) (iii) Show that lim o tI'(t) = 1, so that limyyo 1A [1,00[ = [ Lte="dz > 0. (iv) Show
that if /i is the Radon measure on RI%>[ defined from (At)t>0 as in 455Pc, then {w : w is strictly increasing
and not continuous} is fi-conegligible.

(k) Let U be an abelian Hausdorff topological group. Let (Ai)iso0, (A/)t>0 be two families of Radon
probability measures on U and set A\; = A; * A for ¢ > 0. (i) Show that if A, = A, * A\j and A, = A x A/
for all s, t > 0, then Agy, = Ag * A for all s, ¢ > 0. (ii) Show that if lim; o \;G = lim; o A/ G = 1 for every
open set containing the identity e of U, then lim;o AyG = 1 for every open set G containing e. (iii) Now
suppose that U is metrizable and complete under a right-translation-invariant metric inducing its topology.
Let 4/, 4" and fi be the measures on Ul defined from (\});~0, (A/)¢s0 and (A;)¢>o as in 455Pc. Set
O(w,w)(t) = w(t)w'(t) for w, ' € UP>®land t > 0. Show that § : U%®l x Ul0eel — 0=l is inverse-
measure-preserving for i’ X 4" and fi. (iv) Repeat (iii) for the subspace measures on the space of cadlag
functions from [0, o[ to U.

455Y Further exercises (a) Let (X,,) ez be a double-ended sequence of real-valued random variables
such that (i) for each n € Z, Y,, = X,,41 — X,, is independent of {X; : i < n} (ii) (Y )nez is identically
distributed. Show that the Y,, are essentially constant. (Hint: 285Yc.)

(b) For 0 < s <t and = € R define a Radon probability measure z/;(cs’t) on R by saying that

7Formerly 272T.
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I/:(ESJ) — 750 [s 1] ifz=0andt < ]-

2—t—s
1T(so—i-

:501f0<x<1and27:17§t,

)\[52 gifz=0and 1 <t <2-—s,

= ), otherwise,

writing d,, for the Dirac measure on R concentrated at x, and A, 4 for the uniform distribution based on the

interval [s,t]. (i) Show that (v (o:t )>g<t erR satisfies the conditions of 455E. (ii) Starting from z* = 0, let j
be the corresponding measure on RI%>[. Show that 1*Cqig = 1, where Cyjq is the space of cadlag functions
from [0, o[ to R. (iii) Show that /i has a unique extension to a Radon measure fi on Rl (iv) Show that
fiCaig = 0. (v) Show that the subspace measure on Cqig induced by /i is not T-additive.

(¢) A probability distribution A on R is infinitely divisible if for every n > 1 it is expressible as a
convolution v x ... x v of n copies of a probability distribution. Let ¢ be the characteristic function (§285)
of an infinitely divisible distribution A. (i) Show that for each n > 1 there is a characteristic function ¢,
such that ¢ = ¢. (ii) Show that if § > 0 is such that ¢(y) # 0 for |y| < ¢, then lim, o0 ¢n(y) = 1
for |y| < 4. (iii) Show that lim, o ¢n(y) = 1 for every y € R. (Hint: for any characteristic function 1,
4Re(y) < 3+ Retp(2y) for every y.) (iv) Show that ¢ is never zero, and that there is a unique family
(A\t)t>0 of distributions satisfying the conditions in 455P and such that A; = A. (v) Show that if A has finite
expectation, then E();) is defined and equal to tE(X) for every ¢ > 0. (vi) Show that if A has finite variance,
then Var()\;) is defined and equal to ¢ Var(\) for every ¢ > 0.

(d) Let U be a Hausdorff topological group and (At)¢>o a family of Radon probability measures on U

such that A1y = A\s* Ay whenever s, ¢ > 0. (i) Show that we can define a family <Vg(cs’t)>ogs<t,$eU as in 455P,

and that (ug(,t’u)>yeU is a disintegration of ug(gs’u) over chs’t) whenever x € U and s < t < u, so that, starting

from x* = e the identity of U, we can apply 455E to obtain a measure [ on U000l (ii) Now suppose that
U=R"wherer > 1. Fort >0, E CU set XtE = M\ (—FE) whenever \; measures —E; now set )\fﬁ = A\ % Xt.
Show that )\it =\ % )\fé for all s, ¢t > 0, and that lim, | )\?G = 1 for every open neighbourhood G of 0.
Show that i has an extension to a Radon measure on (Rr)[o’oo[.

(e) Let Y be a metrizable space and Cygig the set of cadlag functions from [0, oo] to Y. For w € Cqiz and
t >0 set X¢(w) = w(t). Let ¥ be a o-algebra of subsets of Cgiz such that X; : Cqiz — Y is measurable for
every t > 0. For t > 0 let ¥; be

{F:F €X,w € F whenever w, w € Cqig, w € F and w[[0,t] = w'[[0,]}.

Show that (X;);>¢ is progressively measurable with respect to (X;);>0.

455 Notes and comments This section has grown into the longest in this treatise. There are some big
theorems here. I am trying to do two rather different things: sketch the fundamental properties of Markov
processes, and work through the details of particular realizations of them. I remarked in the introduction to
Chapter 27 that probability theory is not really about measure spaces and measurable functions. It is much
more about distributions, and by ‘distribution’ here I do not really mean a Radon probability measure on
R", let alone a completed Baire measure on R’, as in 454K. I mean rather the family of probabilities of
the type Pr(X; < a; Vi < n); everything else is formal structure, offering proofs and (I hope) some kinds

of deeper understanding, but essentially secondary. The appalling formulae above (1/5J JT’(LTQC (dzjiq), 2BY
and so on) arise from my attempts to distinguish clearly among the host of probability spaces which present
themselves to us as relevant.

However one of the messages of this section is that for many stochastic processes it is possible to identify
semi-canonical realizations. We already have a crude one in 454J; starting from any family (X;);c; of real-
valued random variables on any probability space, we can move to a measure on R which is in some sense

unique and carries the probabilistic content of the original family. I noted in §454 that when this measure is
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T-additive we have a canonical extension to a quasi-Radon measure, just as good regarded as a realization
of the abstract process, and possibly with useful further properties. In 455H we find that many of the most
important processes can be represented by Radon measures; I do not think these Radon measures have been
much studied, except, of course, in the case of Brownian motion. But 4550 and 455U show that for some
purposes we are better off with quasi-Radon measures on the set of cadlag functions. The most important
stopping times are the hitting times of 455M, which are adapted to families of the form (¥, )i>0; and for
such a stopping time to be approximated by discrete stopping times, as in parts (a-vi) and (b-vii) of the
proof of 4550, we need to know that our paths are continuous on the right.

It is of course true that when the complete metric space U, in 4550 or later, is separable, then we have a
standard Borel structure on the space Cqiz of cadlag functions (4A3Qb), so that the measures ji are Radon
measures for appropriate Polish topologies on Caig.

Returning to the detailed exposition, 455A is an attempt at a continuous-time version of 454H. I use the
letters t, T' to suggest the probabilistic intuitions behind these results; we think of the spaces §2; in 455A as
being the sets of possible states of a system at ‘time’ ¢, so that the measures Vg(cs’t) are descriptions of how
we believe the system is likely to evolve between times s and ¢, having observed that it is in state x at time
s. In the case of ‘discrete time’, when we observe the system only at clearly separated moments, it is easy to
handle non-Markov processes, in which evolution between times n—1 and n can depend on the whole history

(n—1,n)

up to time n — 1; thus in 454H the measures v, = v; are defined for every z € [[._. X;, but we make

i<n
no attempt to describe measures Vz"_l’m) for any m > n. In ‘continuous time’ we need to say something
about arbitrary time steps, and it is hard to formulate a consistency condition to fill the place of (1) in 455A
without limiting the kind of process being examined. At the cost of an appalling increase in complexity, of

course, the formulae of 455A can sometimes be adapted to general processes, if we replace tlle\‘current’ state
space €, by the ‘historical” state space [],.. .., Qs. (For we can hope that ([[;.«,«; Qs, @y c gy Ts) will
have the ‘perfect measure property’ of 454Xa.)_ We should finish up with a measure on HteT(ﬂt:<s<t Q).
But the important applications, even when not Markov, are open to more economical and more enlightening
approaches. We really do need a least element t* of T'; see 455Ya.

I have not yet come to the reason why this section is such hard work. This is in its attempt to analyze the
‘Markov property’ of the distributions being examined here. The point about the families <V§;s’t)>s<t7169.§
of transitional probabilities is that they not only give us stochastic processes, as in 455A, but also recipes
for conditional expectations, derived from the truncated families (Vg(ﬁs’t))agsd,gjegﬁ. These lead to measures
Moo o0 [, & which can be thought of as distributions of future paths given that we have reached the
point z at time a. It is no surprise that these should provide straightforward descriptions of conditional
expectations on algebras of the form

{F : F is determined by coordinates in [t*,t]}.

Without much more trouble, we can extend this to suitable algebras defined from simple ‘stopping times’, as
in 455C. The arguments there have some technical features which you may find annoying (and I invite you
to find your own way past the complications), but are essentially elementary, as they have to be in such a
general context. It is interesting that we can move to stopping times taking countably many values without
further difficulty.

However, we are still only seven pages into the section, and not everything to come is as straightforward
as the completion processes described in 455E. An essential aspect of continuous-time Markov processes is
the possibility of stopping times which take a continuum of values, as is typically the case in the examples
provided by 455M. These are much harder to deal with, and we have to restrict sharply the class of processes
we examine. The particular restriction I have chosen is described by the definitions in 455F. I should of
course say that these, particularly 455Fb (‘uniformly time-continuous on the right’) are more limiting than is
strictly necessary; in ‘Feller processes’ (ROGERS & WILLIAMS 94, I11.6) we have a slightly different approach
to the same intuitive target. The aim is to find sufficient conditions for the ‘strong Markov property’, in
which we can find disintegrations and conditional expectations associated with general stopping times, as in
4550. To do this, we have to abandon the set Q = U%>°[ and move to the correct set of full outer measure,
the set Cqig of ‘cadlag’ functions, which dominates the central part of this section. The first thing the
definition 455Fb must do is to ensure that Cgjz has full outer measure not only for the distribution on € but
also for the conditional distributions we shall be using (455G). If U is a Polish space, Cqjz has a standard
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Borel structure (4A3Qb), which is comforting.

I hope that you are becoming resigned to the view that the notational complexities of this section are not
solely due to an inconsiderate disregard for the reader’s eyesight. The original probability measures V;S’t) of
455A really do form a three-parameter family, the conversion of these into finite-dimensional distributions
Ay really is a multiple repeated integral, the derived probabilities Vo(j{fv) in 4558 are a five-parameter system.
Without wishing to insist on my use of grave accents in the proof of 455E, it is surely safer to have a way
of distinguishing between completed and uncompleted measures, and while the result may be ‘obvious’, I
think there are some twists on the way which not everyone would foresee. Again, if you wish to dispense
with the double-dotted symbols from 4550 on, you will have to find some other way of reminding yourself
that we are looking at a new representation of the process on a new probability space.

This treatise as a whole is theory-heavy and example-light. I assure you that all the theory here is in fact
example-driven. You should start with the four examples of Lévy processes in 455Xg-455Xj. Of these, 455Xg
is Brownian motion, the starting point of the whole theory; I will return to this in §477. A problem with
the formalization in 455A is that we have to start with an exact description of the transitional probabilities
u;ff’t). It does not help at all in establishing the existence of such families matching some probabilistic
intuition. Only in rather special cases do we have elegant formulae for these systems. In 455Xb, 455Xd and
455Xt I try to show how the general theory gives us methods of using one system to build others.

I suppose that 4550 is the summit; from here on the going is easier. In 455P I introduce ‘Lévy processes’,
a particularly interesting class intermediate in generality between the continuous processes of 4550 and
Brownian motion. These have of course mostly been considered in the case U = R, but the extension to
Banach spaces U is an obvious one, and we can even manage non-abelian groups if we are careful. (For an
elementary example of a process which can really exploit a non-abelian group, see 455Xe.) The ‘Poisson
process’ in 455Xh is by some way the most important example after Brownian motion itself. Lévy processes
on R are well understood; the family (\;);>o is determined by A;, any ‘infinitely divisible’ distribution can
be taken for \; (455Y¢), and a complete description of infinitely divisible distributions is provided by the
Lévy-Khintchine representation theorem (FRISTEDT & GRAY 97, 16.3). As a final result in the general
theory, I give an alternative version of the strong Markov property in 455U. For Lévy processes, we can
re-start, following any of the usual stopping times, with an exact copy of the process, and this corresponds
to a true inverse-measure-preserving function from C’glg to Caig.

A comment on 455T. The idea behind the o-algebras ¥, 3, of 455M, 4550 and later is that they consist
of events ‘observable at time t’, that is, determined by the path taken up to and including time ¢. We
quickly find ourselves forced to consider augmented algebras ¥;” = Ns>: Xs, where somehow we are allowed
infinitesimal intuitions into the immediate future. (A typical situation is that of 455Mb when the set A
is open, so that if w(t) € A we can expect that there will be paths which continue immediately into A,
and others which do not, and it may not be obvious which, if either, should be regarded as typical.) The
question is, whether ¥; is really different from X;". The claim of 455T is that Ej’ is included in a kind of

completion 3; of ;. Of course the completion is in terms of the measure ji on the whole space Cqj of
cadlag paths; we need advance knowledge of which subsets of Cgqj; are negligible. But if we are interested
in the measure algebra 2 of ji and its closed subalgebras 2; = {E* : E € it}, 455T tells us that (in the
context of Lévy processes) we can expect to have ; = [, ;. Turning to the definition of ji in 4550 as a
subspace measure, we see that 2 can be regarded as the measure algebra of the measure /i on U%>°l defined
by the formulae of 455E; and even that 2l; can be identified with

{E*: E € dom fi, F is determined by coordinates in [0, ]}

(see part (a-ii) of the proof of 4550). But I think that this last step will not usually be helpful, because (as
noted above) ji will commonly be a Radon measure for an appropriate topology, while fi is likely at best to
be the completion of a Baire measure.

I have cast the second half of the section in terms of measures on Cqig, because it is reasonably well
adapted to Lévy processes in general. When we come to look at particular processes, we often find that
there is a smaller class of functions (e.g., continuous functions in the case of Brownian motion, or non-
decreasing N-valued functions in the case of the Poisson process) which is fully adequate and easier to focus
on. For the detailed study of such processes, as in §477 below, I think it will usually be helpful to make the
shift. But there may be rival conegligible subsets of Cq), with different virtues, as in 477Ef.
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Version of 19.5.10

456 Gaussian distributions

Uncountable powers of R are not as a rule measure-compact (439P, 455Xc; see also 533J in Volume
5). Accordingly distributions, in the sense of 454K, need not be 7-additive. But some, at least, of the
distributions most important to us are indeed 7-additive, and therefore have interesting canonical extensions.
This section is devoted to a remarkable result, taken from TALAGRAND 81, concerning a class of distributions
which are of great importance in probability theory. It demands a combination of techniques from classical
probability theory and from the topological measure theory of this volume. I begin with the definition
and fundamental properties of what I call ‘centered Gaussian distributions’ (456A-4561). These are fairly
straightforward adaptations of the classical finite-dimensional theory, and will be useful in §477 when we
come to study Brownian motion. Another relatively easy idea is that of ‘universal’ Gaussian distribution
(456J-456L). In 456M we come to a much deeper result, a step towards classifying the ways in which
a Gaussian family of n-dimensional random variables can accumulate at 0. The ideas are combined in
456N-4560 to complete the proof of Talagrand’s theorem that Gaussian distributions on powers of R are
T-additive.

456 A Definitions (a) Write p¢ for the Radon probability measure on R which is the distribution of a

standard normal random variable, that is, the probability distribution with density function x — L a2

Nors
(274A). For any set I, write ug) for the measure on R’ which is the product of copies of jg; this is always
quasi-Radon (415E/453J); if I is countable, it is Radon (417Q); if I = n € N\ {0}, it is the probability
distribution with density function  — (27)~"/2e=%-#/2 (2721); if I = (), it is the unique probability measure
on the singleton set R?.

(b) I will use the phrase centered Gaussian distribution to mean a measure y on a power R? of R
such that u is the completion of a Baire measure (that is, is a distribution in the sense of 454K) and every
continuous linear functional f : R’ — R is either zero almost everywhere or is a normal random variable
with zero expectation. (Note that I call the distribution concentrated at the point 0 in R! a ‘Gaussian
distribution’.)

(c) If I is a set and p is a centered Gaussian distribution on R, its covariance matrix is the family
(0ij)ijer where o;; = [a(i)z(j)pu(dz) for i, j € I. (The integral is always defined and finite because
each function x — (i) is either essentially constant or normally distributed, and in either case is square-
integrable.)

456B 1 start with some fundamental facts about Gaussian distributions.

Proposition (a) Suppose that I and J are sets, y is a centered Gaussian distribution on R?, and 7' : RT —
R” is a continuous linear operator. Then there is a unique centered Gaussian distribution on R” for which
T is inverse-measure-preserving; if J is countable, this is the image measure uZ ~*.

(b) Let I be a set, and u, v two centered Gaussian distributions on R. If they have the same covariance
matrices they are equal.

(c) For any set I, ,ug) is the centered Gaussian distribution on R! with the identity matrix for its
covariance matrix.

(d) Suppose that I is a countable set. Then a measure ; on R is a centered Gaussian distribution iff it
is of the form u(g)T’l where T : RN — R’ is a continuous linear operator.

(e) Suppose (I;);ecs is a disjoint family of sets with union I, and that for each j € J we have a centered
Gaussian distribution v; on R%. Then the product v of the measures v;, regarded as a measure on R, is a
centered Gaussian distribution.

(f) Let I be any set, p a centered Gaussian distribution on R and £ C R’ a set such that p measures
E. Writing —F ={-z:2 € E}, u(—F) = uE.

(©) 2010 D. H. Fremlin
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proof (a)(i) For Baire sets F' C R”, set vF = pT~![F]; this is always defined because T is continuous
(4A3Kc). This makes v a Baire probability measure on R for which T is inverse-measure-preserving.
Because p is complete, T is still inverse-measure-preserving for the completion o of v (234Ba'®). If g :
R’ — R is a continuous linear functional, so is g7 : R — R; now v{y : g(y) < a} = p{z : gT(x) < a} for
every «, so g and g7 have the same distribution, and are both either zero a.e. or normal random variables.
As g is arbitrary, v is a centered Gaussian distribution as defined in 456Ab. Of course it is the only such
distribution on R for which T is inverse-measure-preserving.

(ii) Now suppose that J is countable. Then R” is Polish (4A2Qc), so v is a Borel measure and 7 is
a Radon measure (433Cbh). R” has a countable network consisting of Borel sets, y is perfect (454A(b-iii))
and totally finite, and T is measurable (418Bd), so pT~! is a Radon measure (4510). Thus 7 and T~ are
Radon measures agreeing on the Borel sets and must be equal.

(b) The point is that uf~' = vf~! for every continuous linear functional f : R — R. P By (a),
wf~t and vf~! are Radon measures on R, and by the definition of ‘Gaussian distribution’ each is either a
normal distribution with expectation zero, or is concentrated at 0. By 4A4Be, we can express f in the form
f(x) =>,c; Biz(i) for every x € RY, where {i : §; # 0} is finite. In this case

[ a0 = [ @Putn)
(235G19)

= ¥ 6 [ alatin(d)

i€l

= Y 565 [a@atividn) = [ £

i,5€1

because p and v have the same covariance matrices. But this means that uf~! and vf~! have the same
variance; if this is zero, they both give measure 1 to {0}; otherwise, they are normal distributions with the
same expectation and the same variance, so again are equal. Q

By 454P, p =v.

(c) Being a completion regular quasi-Radon probability measure (415E), ,u(GI) is the completion of a Baire

probability measure on RY. If f : R’ — R is a continuous linear functional, then it is expressible in the
form f(z) = >7,c; Biz(i), where J = {i : §; # 0} is finite. I need to show that f is either zero a.e. or a
normal random variable with expectation 0. If J = () then f = 0 everywhere and we can stop. Otherwise,
f =, Bimi, where m;(x) = (i) for i € I and x € R!. Now, with respect to the measure ug), (Ti)ics is an
independent family of normal random variables with zero expectation (272G). So (8;7;)ic s is independent
(272E), and B;7; is normal for i € J (274Ae). By 274B, f = >, ; Bim; is normal, and of course it has zero

expectation. As f is arbitrary, ug ) is a centered Gaussian distribution.

‘We have

N (I
[ 2()a(i)uG (dr) = [ Ppe(dt) =1
for i € I, and
N
[ 2@)a(i)pe (de) = [ tuc(dt) - [ tuc(dt) =0
if ¢, j € I are distinct. So the covariance matrix of ug ) is the identity matrix. By (b), it is the only centered
Gaussian distribution with this covariance matrix.

(d) (i) It follows from (c) and (a) that if u = ug)T_l, where T : RN — R is a continuous linear operator,
then p is a centered Gaussian distribution.

8Formerly 235Hc.
YFormerly 2351.
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(ii) Now suppose that p is a centered Gaussian distribution on Rf. Set m;(x) = x(i) for i € I and
z € RY; for i € I, set u; = m} in L? = L?(pu). By 4A4Jh, there is a countable orthonormal family (v;);es
in L? such that every v; is a linear combination of the u;, and every w; is a linear combination of the v;.
We may suppose that J C N. For ¢ € I, express u; as Eje] a;;vj, where {j : ; # 0} is finite. Define
T : RN — RI by setting (T2)(i) = > jeg @ijz(j) for every 2 € RN and i € I. Then T is a continuous linear
functional. Set v = ug)T_l, so that v is a centered Gaussian distribution on R, by (a). Because R’ is
Polish, both p and v must be Radon measures.

(iii) Now p and v have the same covariance matrices. P If i, i’ € I then

/ﬂﬁ(i)x(i/)ﬂ(dfc) = (ujluy) = Z i (vilvg)

J.y'ed
—Zazjaz’j - Z awaz’J’ Z(J)Z(J) G ( Z)
jedJ J.j'ed

- / (T2) () (T2) ()l (dz) = / w(i)e (i) (dr). Q

By (b), u = v is of the required form.

(e) We must first confirm that v is the completion of a Baire measure. P If we write Ba(R’7) for the Baire
o-algebra of R%i, then each v; is the completion of its restriction v;[Ba(R% ), so v is also the product of the

measures v; [ Ba(R’7) (2541), and is therefore the completion of its restriction to ®jeJBa(RIJ‘) (254Ff). But
as Ba(R%) = ®ielj8a(R) for every j (4A3Na), ®jEJBa(RIJ') can be identified with @), ;Ba(R) = Ba(R'),
so that v is indeed the completion of v[Ba(R’). Q

Now suppose that f : RY — R is a continuous linear functional. Then we can express f in the form
f(@) =g iz(i) for every x € RY, where K C I is finite. Set L ={j: KNI; # 0} and K; = K N I; for
j € L, so that L and every K are finite; for j € L and z € RY set f;(z) = ZieKj a;z(i). Now f =31 fi.

If we set g;(y) = Zz‘er a;y(i) for y € RY7, then g; is either zero a.e. or a normal random variable with
respect to the probability measure v;. Since

Hz: fi(x) < af =v{z: g;(zll;) < of =vi{y: g;(y) < o}

for every o € R, f; (regarded as a random variable on (R, 7)) has the same distribution as g; (regarded as
a random variable on (R%7,v;)). This is true for every j € L. Moreover, the different f;, as j runs over L,
are independent. So f =" jeL f; is the sum of independent random variables which are all either normal

or essentially constant. By 274B again, f also is either normal or essentially constant. And of course its
expectation is zero. As f is arbitrary, this shows that v is a centered Gaussian distribution.

(f) Set Tx = —x for x € R, so that T is a continuous linear operator and we have a unique centered
Gaussian distribution v on R? such that T is inverse-measure-preserving for  and v, by (a). For any 4,
Jel,

Ja@a(vde) = [(T)(@)(T2)(G)ulde) = [ @(i)e(j)u(dz),
so p and v have the same covariance matrices and are equal, by (b). Accordingly
W(—E) = uT~[E] = vE = pE

whenever ; measures F.

456C Since a Gaussian distribution is determined by its covariance matrix (456Bb), we naturally seek
descriptions of which matrices can arise.

Theorem Let I be a set and (0;;); jer a family of real numbers. Then the following are equiveridical:
(i) (04j)i,jer is the covariance matrix of a centered Gaussian distribution on RZ;
(ii) there are a (real) Hilbert space U and a family (u;)icr in U such that (u;|u;) = o5 for all ¢, j € I;
(iii) for every finite J C I, (0;); jes is the covariance matrix of a centered Gaussian distribution on RY:
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(iv) (oij)ijer is symmetric and positive semi-definite in the sense that o;; = oj; for all 4, j € I and
Zi,jeJ a;jo;; > 0 whenever J C I is finite and (;)ics € R7.

proof (i)=-(ii) If u is a centered Gaussian distribution on R with covariance matrix (o;;); jer, then L?(u)
is a Hilbert space. Setting X;(z) = z(i) for x € RY, u; = X? belongs to the Hilbert space L?(u) for every
i €I, and

(wilug) = [ Xi x Xjdp = [ a(i)e(j)u(dr) = oy

forall ¢, j € I.

(ii)=-(iv) In this context,
oij = (wilu;) = (ujlui) = oji,

Zi,jeJ Q005 = Zi,jeJ oo (uilug) = [22¢ aui[* > 0.

(iv)=-(iii) Here we have to know something about symmetric matrices. Given a family (o;;); jer satisfying
the conditions of (iv), and a finite set J C I, we have a linear operator T': R7 — R’ defined by saying
that (T'2)(i) = > ;c50:52(j) for z € R7 and i € J. Give R/ = ¢2(J) its usual inner product, so that
w.z =73 ;w(j)z(j) for w, z € R7; then R” is a Hilbert space and

Tw.z =3 ;> ey 0ijw(i)2(0) = X ie5 iy ogiz(Hw(j) = w. Tz
for all w, z € R7, so that T is self-adjoint. Moreover, if z € R,
Tz.z =3 jes0i2(0)2(j) 2 0

by the other condition on (0;;)i jer.

By 4A4M?°, R” has an orthonormal basis consisting of eigenvectors for T'; if #(.J) = n, we have a basis
(ug)k<n and a family (yx)k<p of real numbers such that Tup = vyruk for each k < n. We need to know that
> en Wk(B)ur(j) = 1if i = j, 0 otherwise. B Let (v;);cs be the standard basis of R”, so that v;(j) = 1 if
i=7j,0ifi+# j. Then

Vi = Y penWieup)up = Y 5 o ur(i)ug

for i € J, so

> u(iur() = D wr(i)w(f)ugu = viv; = 1if i = j,

k<n k,l<n
= 0 otherwise. Q

Now 7y, = Tuy .ui, > 0, so /7 is defined for each k, and we have a linear operator S : R® — R” defined
by setting Ser = /Yrur for each k, where (e;)r<, is the standard basis of R"™, defined by saying that
ex(l) =1 1if k =1, 0 otherwise.

Taking ,ugl ) to be the standard Gaussian distribution on R™ p= ,ugl )S—1 is a centered Gaussian distri-
bution on R”, by 456Ba. For i, j € J,

200r, rather, its finite-dimensional special case, which is easier; you may know it under the slogan ‘symmetric matrices are
diagonalisable’.
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[wtiwutae) = [(:)00)82)6u (=)
— [ ¥ v Y vasOuiag @)

k<n I<n
= Z Z \/’Yk’YIUk(i)ul(j)/z(k)z(l)u(c?)(dz)
k<nl<n
= > wun(Dur(G) = Y Tup(i)ux(j)
k<n k<n
= > oauOur() =Y ou > wk(uk(f) = 0ij.
k<n,leJ leJ k<n

So p is the distribution we are looking for.

(iii)=(i) I seek to apply 454M. For each finite J C I, let s be a centered Gaussian distribution on R
with covariance matrix (o;;); jes; by 456Bb, it is unique. If K C I is finite and J C K, set Tk 2z = z[J for
z € RX; then MKT[;}] is a centered Gaussian distribution on R”, by 456Ba, and its covariance matrix is that
of py, so puy = /JKTI;},. By 454M, we have a distribution ; on R, the completion of a Baire probability
measure, such that ujy = ,uTJ_1 for every finite J C I, setting Tyx = x|J for x € R'.

Applying this with J = {4, j}, we see that [ z(i)z(j)u(dz) = oy for all i, j € I. To see that p is a centered
Gaussian distribution in the sense of 456Ab, take a continuous linear functional f : R? — R. Then there is
a finite family (8;)ics in R such that f(z) = >, ; Bz (i) for each x € R, Setting g(z) = >, ; Biz(i) for
z € R7, we have f = ¢gTy, so that the image distribution puf~! on R is just puyg~!, and (because p s is a
centered Gaussian distribution) is either normal or concentrated at 0. As f is arbitrary, u itself is a centered
Gaussian distribution.

456D Gaussian processes I take a page to spell out the connexion between centered Gaussian distri-
butions, and the processes considered in 454J-454K.

Definition A family (X;);c; of real-valued random variables on a probability space is a centered Gaussian
process if its distribution (454J) is a centered Gaussian distribution.

456E Independence and correlation We have an important characterization of independence of
families forming a Gaussian process. The essential idea is in (a) below. I give the more elaborate version
(b) for the sake of an application in §477.

Proposition (a) Let (X;);cr be a centered Gaussian process. Then (X;);cs is independent iff E(X; x X;) =0
for all distinct i, j € I.

(b) Let (X;)icr be a centered Gaussian process on a complete probability space (€, %, 1), and J a disjoint
family of subsets of I; for J € J let £, be the o-algebra of subsets of Q generated by {X; '[F] :i € J,
F C Ris Borel}. Suppose that E(X; x X;) = 0 whenever J, J' are distinct members of 7, i € J and j € J'.
Then (X ;) je7 is independent.
proof (a)(i) If (X;);cs is independent, and ¢, j € I are distinct, then E(X; x X;) = E(X;)E(X;) = 0, by
272R21.

(ii) If E(X; x X;) = 0 for all distinct ¢, j € I, let 1 be the distribution of (X;)icr and (0;); jer its
covariance matrix. Then o;; = 0 whenever ¢ # j. So if we take v; to be the normal distribution on R with
expectation 0 and variance o;; (or the distribution concentrated at 0 if o;; = 0), the product v = Hie Vi
will be a centered Gaussian distribution on RY (456Be) also with covariance matrix (o;;)i jer, and is equal
to p, by 456Bb. Thus  is a product measure and (X;);cs is independent (454L).

(b) Set K =(JJ. For each J € J, let v; be the distribution of (X;);cs, and let v = [[ ;¢ ; vs be the
product measure on ] ;. 7 R, which we can identify with R¥. Then v is a centered Gaussian distribution,
and its covariance matrix (0;;)i jex is such that

21Formerly 272Q.
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oi; = E(X; x X;) if ¢, j belong to the same member of 7,
= E(X;)E(X;) = 0 otherwise;

that is, it is the covariance matrix of the process (X;)icx. Let f : Q@ — R¥ be a function such that
f(w)(i) = X;(w) whenever i € K and w € dom X;; because y is complete, f is (X, Ba(RX))-measurable.
For J € J and w € Q set fy(w) = f(w)]J.

Now suppose that Jy C J is non-empty and finite and that E; € X; for each J € Jy. Then for
each J € J, there is a Baire set F; C RY such that EJAf;l[FJ] is p-negligible, and puE; = v Fj.
Next, the distribution of (X;);cx is a centered Gaussian distribution on R¥, and has covariance matrix
(E(X; x X;))ijerx = (0i;)ijek, so it must be v. But this means that, setting F = {z: 2 € RX, 2| J € F;
for every J € Jo} € Ba(R¥),

( ﬂ Ey) = u( ﬂ FrFS)) = pf~HF)

JeJg JeJ

=vF = HVJFJ: H,uEJ.

JeJg JeJ

As (Ej)jeq, is arbitrary, (X ) je7 is independent.

456F Proposition Let (X;);cs be a family of random variables on a probability space (2,3, p). Then
the following are equiveridical:
(i) the distribution of (X;);cr, in the sense of 454K, is a centered Gaussian distribution;

(ii) whenever i, ... ,i, € I and ag,... ,a, € R then Y a,X; is either zero a.e. or a normal random
variable with zero expectation;
(iii) whenever g, ... ,i, € I then the joint distribution of X;,,... , X, , in the sense of 271C, is a centered

Gaussian distribution;
(iv) whenever J C I is finite then there is an independent family (Y%)rex of standard normal random
variables on () such that each X, for ¢ € J, is almost everywhere equal to a linear combination of the Y.

proof (ii)<(i) is immediate from the definition in 456Ab and Proposition 4540.
(1)< (iii) is also direct from 456Ab and the identification of the two concepts of ‘distribution’ (454K).
(iv)=-(ii) is direct from 274A-274B.

(i)=(iv) For i € J set u; = X? in L?*(u). By 4A4Jh again there is an orthonormal family (vi)rex in
L?(u) such that each vy is a linear combination of the u; and each u; is a linear combination of the wvy.
Take Y}, such that Y;? = v;, for each k; then each X; is equal almost everywhere to a linear combination of
the Y, while each Y} is equal almost everywhere to a linear combination of the X;. As #(K) must be the
dimension of the linear span of {u; : i € J}, K is finite. Any linear combination of the Y} is equal almost
everywhere to a linear combination of the X}, so is either zero a.e. or a normal random variable with zero
expectation. Because (ii)=-(iii), (Yx)rex has a centered Gaussian distribution v say. Each Y} has variance
(vk|vg) = 1, so is a standard normal random variable.

The covariance matrix of v is given by

/ Yy (k)r(dy) = E(Y) x Yi) = (ojlon) = 1if =k,

= 0 otherwise.

By 456E, (Yi)rek is independent, so we have found a suitable family.

456G Now I start work on material for the main theorem of this section.

Lemma Let I be a finite set and p a centered Gaussian distribution on R?. Suppose that v > 0 and
o = p{x : sup;; |2(i)| = 7} Then pfx : sup;e; |z(i)| > 37} = 2a(1 — a)?.
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proof (a) The case v =0, o = 1 is trivial; suppose that v > 0. We may suppose that I has a total order <.
Give R1** 2 (RT)? the product A of four copies of u; then A is a centered Gaussian distribution (456Be).
Define T : RI*4 — R! by setting (T'y)(i) = %Zi:o y(i,r) for i € I, y € RT*4; then AT ! is a centered
Gaussian distribution on RY (456Ba). Now A7T~! has the same covariance matrix as p. P If 4, j € I then

/¢mﬂﬂ@T*xmr=/@woaw 232;/1r y(j. $)Mdy)

r=0 s=0

55 oot =15 f o

(because the map y ~ (y(i,7))ier : RT** — R is inverse-measure-preserving for each r)
~ [ sz, @

So AT~ = pu, by 456Bb.
(b) Define
By ={y:y e R Jy(i,r)] > 7}
for r <4 and i € I, and
Er = UiGI Eir
for 7 < 4, so that
AE; = My supes [y(i,r)| > 7} = p{z s supies [2(i)] = 7} = o

Set E!. = E,. \ US# E,, so that

AE, =My sup ly(i, )] >, sup ly(i, )] < for s #7)

= My suply(i )| =7} [ My: sup [y(i, 5)| < 7}

SF#T
(because these are independent events)
=a(l —a)®.
(c) Next, for i € I and r < 4, set Ej, = Ei; \ (U;; Ejr UU,x, Es), so that E] = J;c; Ej,. Observe that

(B Yicrr<a is disjoint. Set
Fir ={y:y € B, y(i,r)> . y(i,s) = 0}.

Then vF;, > fvE]. P We can think of R’”** as a product R’ x R¥, where J = I x {r} and K =
I x (4\{r}). In this case, A becomes identified with a product A; x Ak, where A\; and Ax are centered
Gaussian distributions on R7 and R¥ respectively, and EY,. is of the form V x W, where

V={v:veR’ |jw(i,r)|>7, v(jr)| <y forj<il,
W ={w:weRE |w(j,s)| <~ forevery j €1, s#r}.
In the same representation, Fj, becomes (V*t x W)U (V™ x W™), where
Vt={v:veV,v(i,r)>v}, V- ={v:iveV,v(i,r) <—},
Wr={w:weW,> , wlis) >0}, W ={w:weW,} , w(,s) <0}
By 456Bf, A\;VT = X;V™ and Ak WT = AgW™; since V™ =V \ VT, while WT UW ™ = W, we have

—_

)\JV+ ANV = *)\JV, /\KW+ AgW— EAKW
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But this means that

AFy = AV x WH + AV~ x W)

— AV AW T AV A W™ > 20,V AW = %/\E’-

)

N | =

as claimed. Q
(d) At this point, observe that if y € Fj,. then |Z§:o y(i,8)| > |y(i,r)| > 7. So
. 1 _ . 1
pfa s sup |2 (i)| > 59}) = XTI [{@ : sup |2 (i)] > S93)]

i€l i€l

3
— My sup |k ; 1
=My sl Z%y(m)l > 37}

3
=My :sup| > y(i,r)| > )

i€l r=0
> A( U Fi.) = Z AFj
i€l r<4 iel,r<4
> %ZZAEQT > %Z/\E; =2a(1 — ),
r<d iel r<4

which is what we set out to prove.

456H The support of a Gaussian distribution: Proposition Let I be a set and u a centered
Gaussian distribution on RY. Write Z for the set of those z € R! such that f(z) = 0 whenever f : Rl — R
is a continuous linear functional and f = 0 a.e. Then Z is a self-supporting closed linear subspace of RY
with full outer measure. If I is countable Z is the support of u.

proof (a) Being the intersection of a family of closed linear subspaces, of course Z is a closed linear subspace.

(b) Z has full outer measure. I Let F C R! be a non-negligible zero set. Let J C I be a countable
set such that F is determined by coordinates in J. For i € I and z € R set m;(x) = z(i); then each m; is
either normally distributed or zero almost everywhere, so is square-integrable; set u; = 77 in L? = L?(u).
Let (vi)rex be a countable orthonormal family in L? such that every vy is a linear combination of the u;,
for i € J, and every u;, for i € J, is a linear combination of the vy (4A4Jh once more). Extend (vg)rex to
a Hamel basis (v;);er of L2. For every i € I, we can express u; as > e @avr, where {1 : oy # 0} is finite;
and the construction ensures that oy =0ifi € Jandl € L\ K.

Consider the linear operator Tp : R — R defined by setting (Tp2)(i) = Y, c i ainz(k) for z € R¥ and

i € J. If we give RX the product measure M(C;K), then the image measure ,u(GK)T 071 is a Gaussian distribution

(456Ba), with covariance matrix

T4’

/ () (@) (pe O Ty Y de = / (To2) (i) (Toz) (i )b (dz)
Z aikai’k/z(k)z(k/)u(GK)(dz) = Z QG

kk'€K kEK
= Y anavi(onln) = (i) = [ a@a()n(da),
k.k'e K

But this means that /L(GK)T(;l has the same covariance matrix as ,uﬁ;l, where 7z = x[J for x € R!. Since

this also is a centered Gaussian distribution, the two measures must be equal (456Bb). We know that 7 ;[ F]
has non-zero measure, so there is a zg € R¥ such that Tyzo € 7 [F]. Extend zg arbitrarily to z; € RL.
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Set x1(i) = >,y auz1(l) for i € I. Then 71 = Thzo € T5[F], so x1 € F, because F' is determined by

coordinates in J. If a continuous linear functional f : RY — R is zero a.e., it can be expressed in the form
f(x) =>"c; Bix(i) where {i: B; # 0} is finite (4A4Be again). In this case,

0= f’ = Ziel Biu; = ZleL Ziel Biayvg
in L2. Since (v;)er, is linearly independent, > icr Biaq = 0 for every [ € L. But this means that

flxr) =3 ierer Bicaza (1) = 0.

As f is arbitrary, z1 € Z and Z N F # (). As F is arbitrary, and p is inner regular with respect to the zero
sets, Z has full outer measure. Q

(c) Z is self-supporting. P If W C R’ is an open set meeting Z, there is an open set V, depending on
coordinates in a finite set J C I, such that V. C W and V. N Z # (. Write 7;(z) = z[J for x € R, and
vy for the image measure /ﬁr;l on R”; by 456Ba, this is a centered Gaussian distribution. By 456Bd, there
is a continuous linear operator T : RN — R” such that v; = u(g)T’l. Since the support of ug is R, the
support of u(g) is RN (417E(b-iii), or otherwise), and the support of v is Z; = T[RN] (411Ne).

Write @ for the set of linear functionals g : R/ — R (necessarily continuous, because .J is finite) which
are zero on Zy. If g € Q, then ¢T =0, so g = 0 v -a.e. and g7y = 0 p-a.e. This means that g7 s(x) =0 for
every x € Z, that is, g(y) = 0 for every y € 7;[Z]. Because Z; is a linear subspace of R/, this is enough to
show that 7;[Z] C Z;.

Now recall that VN Z # 0 so Z; N7 ;[V] # 0, while V = 7 [#;[V]]. Since 7 is an open map (4A2B(f-i)),
77[V] is open and

pWnNZ)=puW >uV =v;z;[V] >0,
because Z; is the support of v;. Q

(d) If I is countable, 4 is a topological measure so measures Z, and Z is the support of p.

4561 Remarks (a) In the context of 456H, I will call Z the support of the centered Gaussian distribution
1, even though p need not be a topological measure, so the definition 411Nb is not immediately applicable.
In 456P we shall see that Z really is the support of a canonical extension of u.

(b) It is worth making one elementary point at once. If I and J are sets, u and v are centered Gaussian
distributions on R’ and R” respectively with supports Z and Z’, and T : R’ — R” is an inverse-measure-
preserving continuous linear operator, then Tz € Z’ for every z € Z. P If g : R/ — R is a continuous linear
functional which is zero v-a.e., then g7 : R? — R is a continuous linear functional which is zero ju-a.e., so

9(Tz) = (4T)(2) = 0. Q

456J Universal Gaussian distributions: Definition A centered Gaussian distribution on R’ is
universal if its covariance matrix (0;;); jer is the inner product for a Hilbert space structure on I. (See
456Xe.)

456K Proposition Let I be any set, and p a centered Gaussian distribution on I. Then there are a set
J, a universal centered Gaussian distribution v on R”, and a continuous inverse-measure-preserving linear
operator T : R — R”.

proof (a) Set J = L?(u). Then for any finite K C J there is a centered Gaussian distribution pjx on R¥
such that [z(u)z(v)u(dz) = (ulv) for all u, v € K. P If K = () or K = {0} this is trivial, as we take
1 to be the trivial distribution concentrated at 0. Otherwise, let (w;);<, be an orthonormal basis for the
linear subspace of J generated by K. For each u € K, express it as Z?;(} ayiw;. Define T : R™ — RE by
setting (T'z)(u) = Z?;()l ay;2(i) for z € R™ and u € K. Set pux = ugL)T_l. Then p is a centered Gaussian
distribution, by 456Ba, and its covariance matrix is given by
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n—1ln—1

/ w(w)a(v)us (dr) = / (Ty) @) T (dy) = 33 ity / Yy ()l (dy)
i=0 j=0
— Y awawile;) = ()
i=0 j=0

for all u, v € K. So pg is the distribution we seek. Q

(b) If K C J is finite and L C K, then uy, = /j,K’N;(lL, where 7x 1 (z) = x| L for v € RX. P Since ,U/Kﬂ';(lL
is a centered Gaussian distribution, all we have to do is to check its covariance matrix. But if w, v € L then

[ vt i)y = [ () w)mae) pscldo)
— [ stwato)uc(dz) = (ule) = [ yla)ye)ns @),

By 456Bb, ur = uxngy. Q

(c) By 454G, there is a Baire measure v’ on R” such that /7 [F] = ux E for every finite K C J and
every Borel set E C R¥. Take v to be the completion of »/. Then 7k is inverse-measure-preserving for v
and pg, for every finite K C J. If f : R — R is a continuous linear functional, there are a finite K C J
and a linear functional g : R — R such that f = 7;xg, so that

Vo f(z) < a} = pxcla - g(z) < a}
for every a, and f and g have the same distribution; as g is either normal with zero expectation or zero a.e.,
so is f. As f is arbitrary, v is a centered Gaussian distribution.

(d) v is universal. P If u, v € J set K = {u,v}. Then
/ #(u)e(v)v(dr) = / (1) () (g 2) (0) ()
- / y(0)y(0) i (dy) = (ulo).

Thus the covariance matrix of v is just the inner product of the standard Hilbert space structure of J. Q

(e) For i € I, let u; € J be the equivalence class of the square-integrable function = — z(i) : R — R.
Define T : R7 — RI! by setting (T)(i) = y(u;) for every i € I and y € R’. Then there is a centered
Gaussian distribution z' on R? such that 7T is inverse-measure-preserving for v and p/. Now the covariance
matrix of p' is defined by

[atanan) = [ Enumvay = [yt
~ (wluy) = [ #(@e(iulde)

for all i, j € I. So p and ' are equal and T is inverse-measure-preserving for v and pu.

456L Lemma Let i be a universal centered Gaussian distribution on R; give I a corresponding Hilbert
space structure such that [ z(i)xz(j)u(dz) = (i|j) for all 4, j € I. Let F € dom u be a set determined by
coordinates in J, where J C I is a closed linear subspace for the Hilbert space structure of I. Let W be the
union of all the open subsets of R which meet F in a negligible set, and W’ the union of the open subsets
of R? which meet F in a negligible set and are determined by coordinates in .J. If F C W then F C W'.

proof (a) Let Z be the support of & in the sense of 456H. We need to know that Z is just the set of all
linear functionals from I to R. P If K C I is finite and (a;)iex € R¥ and f(z) = >, ; a;a(i) for & € RY,
then
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113 = 325 jex ic(ilf) = 12 ;e cuiill®.
So, for z € R/,

x €7 < f(z) =0 whenever f € (RT)* and || f||2 =0

<— Z a;x(i) = 0 whenever K C I is finite and Z a;t=01in I
ieK ieK
<= x:I — Ris linear. Q

(b) Let J* be the orthogonal complement of J in I, so that I = J @ J* (4A4Jf). Give R7 and R the
centered Gaussian distributions gy, gy induced by g and the projections x + z[J, x +— x[J*. Then the
product measure A on RY x RY" is also a centered Gaussian distribution (456Be). Define T : R’ xR = RI
by setting T(u,v)(j + k) = u(j) + v(k) whenever j € J, k € J*, u € R’ and v € R7". Then T is inverse-
measure-preserving for A and p. P T is a continuous linear operator so we have a centered Gaussian
distribution z/ on R such that T is inverse-measure-preserving for A and /. If j, ' € J and k, k¥’ € J*,

/ 2+ )z(i’ + K ) (de) = / T, 0)(j + )T (u,0) (7 + K)A(d(w, v)
= [ (w) + oD ) + o)A@, )
- / (gl e (du) + / o(k)o (K)o (dv)

— [ el ntdn) + [ a(ta)n(d

= (13") + (k[K) = (G + Elj" + &)

= [ o+ Bl + Kntdo).
Thus p and p' have the same covariance matrix and are equal, and T is inverse-measure-preserving for A
and p. Q

(c) Take any z € W N Z. Then there is an open set V', determined by coordinates in a finite set Ky C I,
such that z € V and u(V N F) = 0. Let ¢ > 0 be such that y € V whenever x € R and |z(i) — 2(i)| < 2¢
for every i € Ky. Express each k € K as k' + k" where k' € J and k" € J*. Set

Vi={z:zeRl |z(k) - 2(K)| < € for every k € Ko}.

Then V' is an open set, determined by coordinates in J, and contains z. Also u(V' N F) = 0. P Set
V" ={x:xz e R |z(k") — 2(k")| < € for every k € Ko}. Then V2 V' NV"” N Z. Since Z has full outer
measure (456H),

pV'NV'NF)=pV'NV"NFNZ)<uw(VNF)=0.

Now

0=pu(V'NV'NEF)=XT 'V nFNV"|
=Mz Jz|JH) :z eV NFNV"}
(because V' N F N V" is determined by coordinates in J U J=+)
=pixl Tz e V' NFYy-pyf{elJt iz eV}

because V' N F is determined by coordinates in .J, while V" is determined by coordinates in J+. However,
z € V", and z[J* belongs to the support Z’ of y;., by 456Ib; since Z’ is self-supporting, and {z[J* : 2 €
V"} is open, pyi{x|J+ 2z € V"} > 0. We conclude that

O=psf{xlJ:ze V' NF}=uwV' NF). Q

D.H.FREMLIN



114 Perfect measures, disintegrations and processes 456L

(d) This shows that z € W’. As z is arbitrary, WNZ C W'.
? Suppose, if possible, that there is a point zg € F\ W’. If 4, j € J and « € R, then

{z:a(i+)) #20) +20)},  {z:x(ad) # ax(i)}
are negligible open sets determined by coordinates in J, so are included in W’ and do not contain zy. Thus
zolJ : J = R is linear. Let z : I — R be a linear functional extending zg[J. Then z € Z and z[J = 2y J;
as both F and W' are determined by coordinates in J, z € F'\ W’. But this means that z € ZNW \ W’

which is impossible. X
So ' C W', as claimed.

456M Cluster sets: Lemma Let I be a countable set, n > 1 an integer and p a centered Gaussian
distribution on RY*". For € > 0 set

I.={i:iel, f |z(i,r)|?u(dz) < €2 for every r < n};

suppose that no I, is empty.
(a) There is a closed set F' C R™ such that

F=Neso U@, 7)) ren si € I}

for almost every z € RT*",
(b)If z€ Fand —1 <a <1, then az € F.
(c) If F is bounded, then there is some € > 0 such that sup;c;_,.,, |2(i, )| < oo for almost every z € R/*",

proof (a)(i) For z € RI*"™ and i € I set S;(x) = (z(i,7))r<n € R™. For z € RT*" set
Fp = Neso 1S i € I},
so that F}, is a closed subset of R". For A C R" set E4 = {z:x € RI*" AN F, # 0}.

(ii) By 456Bd, there is a continuous linear operator 7' : RN — RI*™ such that p = /A(CI?)T_l. Set
T; = S;T for i € I; then T; : RY — R™ is a continuous linear operator. For y € RY, set

Fy=Fryy =Neo{Li(y) i € I}
For A C R™ set
Ex=T 'EA ={y:ycRY, ANE, #0}.

(iii) If K C R™ is compact, then Ex is a Borel subset of RY. P Let V be a countable base for the
topology of R™, and for k > 1 let Vi, be the set of members of V with diameter at most 1/k which meet K.
Then T, *[V] is a Borel set for every V € V and i € I, so

B = ﬂk21 Uvgvk Uie[l/k Tfl[V]
is a Borel set. 3
If y € Ek, take k > 1. Thereisa z € F,, N K. Let V € V be such that z € V and diam V < 1/k; in this
case V € Vy. Because z € {T;(y) : i € I i}, there is an ¢ € I/, such that T;(y) € V. As k is arbitrary, this

shows that y € E’; thus Ex C F'. 3
If y ¢ Ex, then K is a compact set disjoint from the closed set F),. There is therefore some e > 0 such

that K N {T;(y) : i € I.} = 0 (since these form a downwards-directed family of compact sets with empty
intersection). Next, there is a § > 0 such that B(z,8) N {T;(y) : i € I.} = 0 for every z € K (2A2Ed). Let
k > 1 be such that 1/k < min(e,d). If V'€ Vy, and i € I, there is some z € KNV so V C B(z,0) and
Ti(y) ¢ V. This shows that y ¢ E’. As y is arbitrary, ' C Ex.

So Ex = E' is a Borel set. Q

It follows at once that Ep is a Borel set for every K, set H, in particular, for any open or closed set H.

(iv) We need a simple estimate on the coefficients of the linear operators T;. Let a;,; be such that
Ti(y) = <Z;‘;0 Qirjy(§))r<n for i € I, r < n and y € RY. (Of course {j : a;; # 0} is finite for each i and
r.) Then
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. N o)
[ a(i,r = [Tiy) ()2l (dy) = Y2 a3,

SO |0<Z-Tj| < e whenever ¢ € I, r <n and j € N.

(v) Now suppose that H C R"™ is open, that K C H is compact, and that M(N)EK > 0. Then
,u(g)EH =1. P Let € > 0. Let (¢)jen be a sequence of strictly positive real numbers such that 77 e; <
1

5 min(e,ug\])EK), and for each j € N let 7; > 0 be such that pg[—7v;,7;] > 1 —¢;. Then

E={y:y€ Eg, |y(j)| <~; for every j € N}

has measure at least u(g)EK - 2030 €; > 0. By 254Sb, there are an m € N and a set E', of measure at
least 1-— e such that for every v/ € E’ there is a y € F such that y(j) = ¥'(j) whenever j > m. Set

={y:ye E', ly(5)] < 'yJ for every j € N}, so that u( ) Er >1-
Let 0 > 0 be such that 2’ € H whenever z € K and ||z—2'|| < 24. Let 1 > 0 be such that 277\f2 07 <

5. Ify € E” and i € I,,, there is a y € E such that y(j) = y/(j) for j > m. Also |y(j) — v/ (j)| < 2v; for
7 <m, so

Tiw)(r) = Tu(w) ()] < 52 lonslly) = o' ()] < S0 2 < =
for every r <mn, and ||T;(y) — Ti(y')|| < 0.

Now F, N K # 0); take 2 € F, N K. For every ¢ > 0, there is an i € Liin(n,¢) such that ||z —Ti(y)|| <6, so
that |z — T;(y)[| < 26. This means that B(z,20) N {T;(y') : i € I¢} is not empty As B(z,20) is compact,
it must meet F . But this means that H N F #£ (), by the choice of §. As 4/ is arbitrary, E” C Ey, while

W 51—
This works for every € > 0. So Ey is conegligible, as claimed. Q

(vi) If H C R™ is open and u(g)EH > 0, then (because H is o-compact) there is a compact set K C H

such that u(g)E’K > 0, and (e) tells us that ,u(N)EH =1.
Set

Vo={V:VeV,ulE, =0y ={vV:vVev B <1}.
Then we see that
Vo={V:VeV F,nV=0
for almost every y € RN, that is,
Vo={V:VeV F,nV=0}

for almost every x € RY*"™. But as every F} is closed, we have F, = R™ \ |J)V, for almost every z. So we
can set F=R"\ J V.

(b)(i) Give R7*2" = (R1*")2 the measure ) corresponding to the product measure u x p; by 456Be, this
is a centered Gaussian distribution. For (z,73) € (R7X")2, set

Falcwcz = ne>0 {(SixlvsixQ) RS IE}.
By (a), we have a closed set F/ C R?" such that F' = F/ _ for almost all z1, xs. (Of course I, = {i :

12

[ z;(i,7)[2PA(dz) < € for every j € {1,2}, 7 < n} whenever € > 0.)

(ii) Now (z,0) € F'. P Take z; € R’*" such that F = F,, and E = {x : F/ = F]_,_} is conegligible.
(Almost every point of R7*" has these properties.) For k € N, z € {S;x : i € Iy« }; let i, € I, be such
that >, _, |2(r) — @1 (i, )] <277, Next,

> heo Z:;(}f (i, ) [P u(dex) <>reo 27%kn < oo,

SO Y rep Zf;ol |z(ig,)|? is finite for almost every » € R!, and there must be an z5 € E such that

>orco Zf;ol |22 (ix, 7)|? is finite. But in this case limy_o0 22(ix, ) = 0 for every r, while limy,_, o0 21 (ix,7) =
z(r). Accordingly (2,0) € F, ., = F'. Q
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(iii) Set f = V1 —a? and define T : (R'*")2 — RIX" by setting T'(z1,22) = ax; 4+ Sy for zy,
2o € RIX" Then T is a continuous linear operator, so the image measure AT ! is a centered Gaussian
distribution on R7*" (456Ba). Moreover, it has the same covariance matrix as u. B If 4, j € I then

[ a0 ) = [ T, w2 DT w1, 22) (A1, 22))
= [(@w1(i) + Boali) @1 () + Bl 22)
—a* [ a1eaN e 22) + 8 [ aliaa()Nd(en,22)
— (@ +8) [alijei)u(ds) = [ a()a(i)n(do). Q@

So XT—1 = i (456Bb).
(iv) If 21, 22 € R are such that (z,0) € F!

1T

then az € Ff(th). P For every € > 0 there is an

i1 € I. such that |z(r) — z1(i,7)] < € and |z2(i,7)| < € for every r < n. But now |az(r) — T(x1,z2)(r)| < 2¢
for every r < n. Q So

T '{z:az e F,}]={(z1,22) : az € oy onyt 2 {(21,22) 1 (2,0) € Fy 5, }
is A-conegligible, and az € F, for p-almost every z, that is, az € F', as claimed.
(c) Suppose now that F' is bounded.
(i) For LC I, a >0 set
Q(L,Oé) = UieL7r<n{‘T : |£ZZ(Z,T)| > a}'
By 456G, applied to the image of x4 under the map = + x[L x n : RT*" — REX7,
,LLQ(La %0‘) Z 2/LQ(L3 a)(l - H’Q(IMO‘))S
for every finite L C I and every o > 0.
Let 8 > 0 be such that § = 23(1—(n+1)8)> - > 0, and let ag > 0 be such that o238 > 1 and ||z| < éao
for every z € F, so that p{x : |x(i,7)] > ap} < 8 whenever ¢ € I} and r < n, and pQ({i},ap) < np for

every i € I1. Set K ={z: 2 € R", Jap < max, <, |2(r)| < ag}, so that K is a compact set disjoint from F.
For almost every z,

D=KNF=KNF, =\ KN{Siz:iclyl,
so there is a k > 1 such that S;z ¢ K for every i € I, /. Since the sets
{x: Si(z) € K for some i € I}
form a non-increasing sequence of measurable sets with negligible intersection, there is a k > 1 such that

pix : Si(z) € K for some i € I/} < 4.

(ii) ? Suppose, if possible, that

pQ Ik, o) > B.

Let L C I, be a finite set of minimal size such that v = pQ(L,ap) > 3. Since uQ({i}, o) < nf for any
i € L, and L is minimal, we must have

B<vy<(n+1)5.

Now this means that

HQ(L, 500) = 2y(1 = 7)?

(see (i) above)
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>29(1 = (n+1)B)* =7(1+3) = 7+34,

so that u(Q(L, 300) \ Q(L,ag)) > 6. But if z € Q(L, ) \ Q(L, ) there is some i € L such that
max,<n |(i,7)| > Lao while max, <, [z(i,7)| < ap, in which case S;(z) € K. So we get

5 < QL 300) \ Q(L, 9)) < pfa : S;(w) € K for some i € L}
< p{x: Si(x) € K for some i € I/} <9
which is absurd. X

(iii) Thus uQ(Iy/x, ) < B. For a > 0, set f(a) = puQ(Iy/k, ); then f is non-increasing. Also
f(3a) = 2f(a)(1 = f(a))? for every . PT Otherwise, because

fla) =sup{uQ(L, ) : L C Iy, is finite},
there is a finite L C I, such that f(a) < 2v(1 —v)3, where v = pQ(L, «). But in this case pQ(L, ja) <

f(3) < 2y(1 — )3, which is impossible, as remarked in (i). XQ
Set ¢ = limy—y00 f(@). Then

C = 1ima~>oo f(%a) > 2<(1 - C)S

But we also know, from (ii), that ¢ < f(ap) < 8. So (1 —¢)*> (1 —5)* > 1 and ¢ must be 0.
What this means is that if we set € = % then

limg oo {2 2 SUPse;. poy [2(3,7)| > a} =0,

that is, sup;e; ., [£(é,r)| is finite for almost every 2 € R'*", as claimed.

456N Lemma Let J be a set and u a centered Gaussian distribution on R/. Let M be the linear
subspace of L?(u) generated by {n? : j € J}, where 7;(2) = 2(j) for z € R’ and j € J. If M is separable
(for the norm topology) then p is T-additive.

proof Suppose, if possible, otherwise.

(a) There is an upwards-directed family G of open Baire sets in R” such that W = |J G is a Baire set and
uWo > supgeg pG. Let G € G be a countable upwards-directed set such that supgeg, G = supgeg HG,
and set Wy = Wy \ JGo; then pW; > 0 and pu(W1 N G) = 0 for every G € G. Let W be a non-negligible
zero set included in Wj.

For each n € N, let V,, be a countable base for the topology of R™ consisting of open balls. Let G be the
family of open sets of R” of the form T![V], where T : R/ — R" is a continuous linear operator, V C R"
is open and pu(W NT—1[V]) = 0. Of course G = 0.

(b) For n > 1 and V € V,, let T,y be the family of continuous linear operators T': R7 — R"™ such that
W NT~V] is negligible, but not included in (JG;;_;. Index Tnv as (T})icr(n,v); it will be convenient to
do this in such a way that all the I(n,V) are disjoint. Define f;,., for i € I(n,V) and r < n, by saying
that T;(z) = (fir(2))r<n for x € R7. Define ¢, : Uvey, I(n,V) — M" by setting ¢n(i) = (f})r<n for
each i € UVevn I(n,V). Because M is separable (in its norm topology), M™ is separable in its product
topology (4A2P(a-v)). Fix a countable set I'(n,V) C I(n,V) such that {¢, (i) : i € I'(n,V)} is dense in
{n(i) i € I(n,V)}. Set pn((Ur)r<n; (Vr)r<n) = MaX, <y Uy — vpll2 for (ur)r<n, (Ur)r<n € M™, so that p,
is a metric defining the product topology of M™.

(c) If j € I(n,V), then there is a § > 0 such that

is bounded for almost every = € R”7. P Define S : R7 — R ("V)x" by setting (Sz)(i,7) = Ti(z, ) —Tj(x,7)
for x € R7, i € I'(n,V) and r < n. By 456Ba, the image measure A = vS~! is a centered Gaussian
distribution on R (mV)*xn For § > 0, set
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If={i:iel'(nV), /|y(i,7“)|2/\(dy) < 62 for every r < n}
={i:iel'(nV), /|Sm(i,r)|2y(dx) < 62 for every r < n}
={i:iel'(nV), /|Tz(x)(r) — Tj(2)(r)|*v(dz) < §? for every r < n}
={i:ieI'(n,V), pn(en(i), dn(4)) <}
By 456Ma, there is a closed set F' C R™ such that F' = ﬂ§>om for A-almost every y €

RT'(mV)xn g that F = Ns=o {Sz(i,7) : i € I} for v-almost every z € R”.
By 456Mb, az € F whenever z € F and |a] < 1. ? If F is not bounded, then it must include a line

L through 0. (The sets {%z :z € F, |z|| = n}, for n > 1, form a non-increasing sequence of non-empty
compact sets, so there is a point zg belonging to them all; take L to be the set of multiples of zp.) Let
D C L be a countable dense set. For z € D and k € N we know that

for every i € I(n,V), T;(z) ¢ V for almost every x € W,

for almost every x € R there is an i € I'(n, V) such that ||T;(z) — Tj(z) — 2| < 27%
and therefore

for almost every z € W, T;(x) ¢ V for every i € I'(n,V), but there is an ¢ € I'(n,V) such

that | T3(x) — Tj(a) — ] < 2

so that

for almost every z € W, the distance from Tj(x) + z to the closed set R™ \ V is at most 2.
This is true for every k € N, so we get

T;(z)+ z ¢ V for almost every x € W.
And this is true for every z € D, so we get

for almost every x € W, T;(z) + 2z ¢ V for every z € D, so T;(z) ¢ V + L.

Let Sp : R™ — R"~! be a linear operator with kernel L, and set V' = Sy[V]. Then V' C R"~! is open,
and W N (ST;) V'] =Wn T;l[V + L] is negligible. But this means that T;l[V] C (SoTy)" 'V egr_,
and T{l[V] is included in |G} _;; which contradicts the definition of 7,y . X

So [ is bounded. By 456Mc, there is some § > 0 such that sup;c; <y, [y(é,7)] < 0o for A-almost every
y € RI'(mV)Xn in which case SUP;e s ran |ST(1,1)| < 0o for v-almost every x € RY, that is, {T;(z) — T;(z) :
i € Ig} is bounded for v-almost every x. Of course this means that {T;(z) : i € I(n, V), pn(pn(i), dn(j)) <}
is bounded for almost every z € R”7. Q

(d) Accordingly ¢,[I(n,V)] is covered by the family U,y of open sets U C M™ such that {T;(x) :
i€ I'(n,V), ¢pp(i) € U} is bounded for almost every xz. Because M™ is separable and metrizable, it is
hereditarily Lindelof (4A2P(a-iii)), so there is a sequence (U, vk )ken in Uny covering ¢, [I(n,V)]. For each
k, set Lyvi = I'(n,V) N ¢, {Unvi]. Then {Ti(x) : i € L,vi} is bounded for almost every z. Because
dn[I'(n, V)] is dense in ¢, [I(n, V)], ¢n[lnvi] = dn[l'(n, V)] N Upyi is dense in ¢, [I(n, V)] N Upyk. So for
every i € I(n,V) there is a k € N such that ¢, (i) € ¢n[lnvi].

(e) Recall that W C R is a non-negligible zero set included in

* —1
UnZl U gn = Unz1 Uvevn Uie[(n,V) T’i [V]
Let Jy C J be a countable set such that W is determined by coordinates in Jg.
Let (€5) je s, and (€],y4)n>1,vev, ken be families of strictly positive real numbers such that 3% 1 370y, 302 €hpi
and ). ; €; are both at most uW. Let (v;)jes, and (Y, p)n>1,vev, ken be such that

pl{z:xz e R, |z(4)] > 5} < ¢; for every j € Jy,
p{z:x e RY, sup;jc; | Ti(@)|| = vhyit < €y forevery n > 1,V €V, k€N,
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Set W ={z: 2 € W, |a(j)| < ~; for every j € Jo}; then pW’ > 2uW and W is of the form C x R\ o,
where C' C R7 is compact. Set
W"={x:xeW, |Ti(x)|| <4,y whenever n > 1, Ve V,, ke Nand i € I,vi};
then pW" > W,
(f) Set I =U,>1 vey, {(n,V) xn. If K CIis finite, then

Wi ={x:xe W' | fir(2)|]| <v,yr Whenever n > 1,V €V, k € N,
(i,7) € K and ¢y, (i) € ¢n[Invi]}

has measure at least %,uW. P For each quintuple (¢,7,n,V,k) withn > 1,V € V,, k € N, (i,r) € K and
On(i) € dn[lnvi], there is a sequence (i )men in Inyg such that p, (0, (3), dn (i) < 27™ for every m; so
that ||fir — fi,,rll2 < 27™ for every m. But this means that fi.(z) = lim,,— 00 fi,,»(x) for almost every
z € RY. Accordingly | fir(z)] < 7/, for almost every € W”. Since there are only countably many such
quintuples (i,r,n, V, k), we see that W' \ W} is negligible, so uWj, > pW” > 1uW. Q

(g) For x € R’ define Tx € R by setting (Tz)(i,r) = fir(x) for i € I(n,V) and » < n. Then
T :R7 — R! is a continuous linear operator. By 4A4H, T[W'] is closed.

For finite K C I, let Hx be the family of open subsets H of R such that u{z : x € W, Tz|K € H} = 0.
Then Hg is closed under countable unions so has a largest member Hg. Now there is a K € [I]<“ such
that Tz|K € Hg for every x € Wj. P? Otherwise, choose for each K € [I|<¥ an xxg € W such
that Tex [ K ¢ Hg. Let F be an ultrafilter on [I]<“ containing {K : L C K € [I]<¥} for every finite
L C I If (i,r) € I, there are n > 1, V € V, and k € N such that » < n and ¢,(i) € én[lnvil, in
which case |fir (k)| < 7)1, Whenever K € [I|<“ contains (i,7). This means that limx_, 7 fir (k) must be
defined in [—/y 4, Vavs); consequently y* = limg 7 T is defined in RY. Since zx € W’ for every K,
y* e TW' =T[W'].

Let z* € W’ be such that Tz* = y*. Since 2* € W, there are n > 1, V € V,, and i € I(n,V) such that
Ty(z*) € V. Set L = {(i,r) :r <n}, H={z:2 € RY, (2(4,7))rcn € V}; then {x: Tx[L € H} =T, '[V].
Since y*[ L = Tx*[L belongs to H, and H is open, there must be a K O L such that Tzx[L € H. But in
this case H' = {z: 2 € R 2| L € H} is an open subset of R¥ and

{z :Tz!KeH}={z:Te|Le H} ={x:T;(z) e V}
meets W in a negligible set, and H' C Hy. But this means that Tzx | K € Hg, contrary to the choice of
TK- XQ

(h) Putting (f) and (g) together, we find ourselves trying to believe simultaneously that pWj > 0 and
that Tx| K € Hg for every © € Wi, and that Wi C W and that {z : x € W, Ta|K € Hg} is negligible.
Faced with this we have to abandon the original supposition that p is not 7-additive.

]
1

4560 We now have all the ideas needed for the main theorem of this section.
Theorem (TALAGRAND 81) Every centered Gaussian distribution is 7-additive.
proof 7 Suppose, if possible, that y is a centered Gaussian distribution on a set R? which is not T-additive.

(a) By 456K, there are a set J and a universal centered Gaussian distribution v on R” and a continuous
linear operator T : R/ — R’ which is inverse-measure-preserving for v and p. By 418Ha, v is not T-additive.

(b) As in part (a) of the proof of 456N, there are a non-negligible zero set W C R” and a family G of
open sets, covering W, such that ¥(W N G) = 0 for every G € G. Give J a Hilbert space structure such
that [z(i)z(j)v(dz) = (i|j) for all i, j € J. Let Ky C J be a countable set such that W is determined by
coordinates in Ky, and let K be the closed linear subspace of J generated by K. Let G’ be the family of
open sets determined by coordinates in K which meet W in negligible sets. Then W C |JG’, by 456L.

Let A be the centered Gaussian distribution on R¥ for which the map 7x = = +— 2[K : R/ — RE is
inverse-measure-preserving. Then 7x[W] is a zero set in RE, A\ [W] = vW > 0, {7g[G] : G € G'} is
a family of open sets in R¥ covering 7x[W], and A\(7x[W] N 7x[G]) = v(W N G) = 0 for every G € G';
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so A is not 7-additive. However, K, regarded as a normed space, is separable (see 4A4Bg); and if we set
mi(y) = y(j) for y € R¥ and j € K, then ||z} —n3||2 = [|i — j|| for all i, j € K. So {r} : j € K} is separable
in L?()\). And this is impossible, by 456N. X

Thus every centered Gaussian distribution must be T-additive.

456P Corollary If 1 is a centered Gaussian distribution on R’, there is a unique quasi-Radon measure
fi on RY extending p. The support of i as defined in 456H is the support of ji as defined in 411N,

proof By 4151, i has a unique extension to a quasi-Radon measure fi. Now the support Z of p is a closed
set, so jiZ = p*Z (415L(1)). Also Z is self-supporting for . If G C R is an open set meeting Z, then there
is a cozero set H C G which also meets Z, and p*(Z N H) > 0. It follows that p*(Z \ H) < 1; as i extends
w, i(Z\ H) < 1 and i(ZNG) > 0. This shows that Z is self-supporting for fi, so must be the support of f
in the standard sense.

456Q Proposition Let I be a set and R the set of functions ¢ : I x I — R which are symmetric and
positive semi-definite in the sense of 456C; give R the subspace topology induced by the usual topology
of R™I. Let PqR(RI ) be the space of quasi-Radon probability measures on R? with its narrow topology
(437Jd). For o € R, let u, be the centered Gaussian distribution on R! with covariance matrix o (456C),
and fi, the quasi-Radon measure extending p, (456P). Then R is a closed subset of R’*! and the function
o~ fio 1 R — Pyr(RY) is continuous.

proof (a) From 456C(iv) we see at once that R is closed. So the rest of this proof will be devoted to showing
that ¢ — [i, is continuous.

(b) T had better begin with the one-dimensional case. If I = {j} is a singleton, and we identify R’ with
R, then i, is the ordinary normal distribution with mean 0 and variance o(j, j), counting the Dirac measure
centered at 0 as a normal distribution with zero variance. If H C R is open and v € R, set

_ . 1 —t%/a .
G—{a.a>0,\/mee dt > ~};

then G is open. If 0 ¢ H, then
{o:p.H>~}={o:0(i,1i) € G}
isopen. If 0 € H and v > 1, then {0 : i, H >~} is empty; if 0 € H and v < 1, then
{o:0.H>~}={o:0(i,1) € G} U{0}
is open because there is an i > 0 such that [—n,7n] C H and o € G whenever o > 0 and

Lfn/\/a
V2rd—n/va

As H is arbitrary, o +— [i, is continuous.

e /2dt > .

(c) Now suppose that I is finite. Let (0y,)nen be a sequence in R with limit o € R. Let ¢,, ¢ be the
characteristic functions of fi,, , fi, respectively (§285). If y € R, set f(z) = x.y for x € R!; then

Sa(y) = feif(m)/]cf(d$) - feit(ﬂa'fil)(dt)v

writing fi, f~! for the image Radon measure on R. Now i, f ~! is the one-dimensional Gaussian distribution
with variance >, 0(5,k)y(j)y(k) (see part (b) of the proof of 456B). But since

Zj,ke[ a (g, k)y()y(k) = lim, o Zj,kej on(d, k)y(3)y(k,

(a) tells us that fi, f~ = lim, e fis, [~ ' for the narrow topology on Pyr(R), therefore also for the vague
topology (437L), and ¢(y) = limy, 00 @n(y). By 285L, fi, = lim, 0 fis, for the vague topology, therefore
also for the narrow topology.

Thus o — ji, is sequentially continuous. As I is countable, R is metrizable, and o — ji, is continuous.

(d) For the general case, suppose that H C R is an open set and that v € R. Set Guy ={0:0 €R,
ficH >~}
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(i) If H is determined by coordinates in a finite set J C I then Gy~ is open in R. I Let R; be the set
of symmetric positive semi-definite functions on R”*7; write h(c) = o|J x J for 0 € R, and 7;(x) = x[J
for x € R, Of course h(c) € Ry for 0 € R, and h: R — R is continuous. For o € R, we know that there
is a centered Gaussian distribution v on R” such that 7; is inverse-measure-preserving for i, and v, by
456Ba; the covariance matrix of v is of course h(c), so we can call it p(,). Next, there is a quasi-Radon
measure 7 on R such that 7; is inverse-measure-preserving for fi, and 7 (418Hb); as 7 must extend the
Baire measure v, it is the unique quasi-Radon measure extending v, and we can call it fiy(s)-
Because H is determined by coordinates in J, H = 7, '[H'] where H' = 7 ;[H] is open in R’ (4A2B(f-i)
again). So G' ={7:7 € Ry, irH' >~} is open in R;, by (b), and

Gy = {0 : (o7 VH) > 7} = {0 finioy H' > 7} = i [C]
is open in R. Q

(ii) In fact G-, is open in R for any open set H C R and v € R. P Take any o € Gp.. Because fi,
is T-additive, and the family

V= {V:V CR! is open and determined by coordinates in a finite set}

is a base for the topology of R’ closed under finite unions, there is a V € V such that V C H and fi,V > 7.
Now o € Gy C Guy; by (i), Gy~ is open, so o € int Gy4; as o is arbitrary, G, is open. Q But this is
just what we need to know to see that o — i, is continuous for the narrow topology on Pygr(R?), and the
proof is complete.

456X Basic exercises (a) Let I be any set. (i) Show that if y € £1(I) then [, ; |y(z)a:(z)\,ug)(dx) =
\/% llyll1. (Hint: start by evaluating E(]Z|) where Z is a standard normal random variable.) (ii) Show that

if y € () then [, ly(D)z(@)|>ul (dx) = |lyll3.

(b) Let » > 1 be an integer. (i) Show that ugl)T_l = ,u(c?) for any orthogonal linear operator T : R"™ —
R™. (i) Set p(z) = ||7le for x € R™\ {0}; take p(0) to be any point of S"~!. Show that ,ugf)p’l is a
multiple of (n — 1)-dimensional Hausdorff measure on S"~1. (Hint: 443U.)

(c) Let G be a group, and h : G — R a real positive definite function (definition: 445L). (i) Show that
we have a centered Gaussian distribution z on R with covariance matrix (h(a=10))spec. (ii) Show that u
is invariant under the left shift action «; of G on R¢ (4A5Cc).

(d) Let I be a countable set, u a centered Gaussian distribution on RY, and v > 0. Set a = pf{x :
sup;e; |z(i)| = v}, Show that p{x : sup,e; [2(i)| > 379} = 20(1 — a)3.

(e) Let I be a set and (0y;)i jer a family of real numbers. Show that there is at most one inner product
space structure on I for which o;; = (i|j) for all ¢, j € I.

(f) Let (X,)nen be an independent sequence of standard normal random variables, and (o )nen a
square-summable real sequence. (i) Show that for any permutation 7 : N — N, X = > «,X,, and
Y om0 Or(n)Xr(n) are finite and equal a.e. (Hint: 273B.) (ii) Show that X is normal, with mean 0 and
variance Y -, a2,

>(g) For any set I, I will say that a centered Gaussian quasi-Radon measure on R/ is a quasi-Radon
measure 4 on R such that every continuous linear functional f : RY — R is either zero a.e. or is normally
distributed with zero expectation. Show that

(i) there is a one-to-one correspondence between centered Gaussian quasi-Radon measures z on R and
centered Gaussian distributions v on R’ obtained by matching u with v iff they agree on the zero sets of
RY:

(i) if u, v are centered Gaussian quasi-Radon measures on R’ and [ z(i)z(j)u(dz) = [ z(i)z(j)v(dz)
for all i, j € I, then u =v;
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122 Perfect measures, disintegrations and processes 456Xg

(iii) the support of a centered Gaussian quasi-Radon measure on R is a linear subspace of R’;

(iv) if (I;);es is a disjoint family of sets with union I, and p; is a centered Gaussian quasi-Radon
measure on R% for each j € J, then the quasi-Radon product of (1) jet, regarded as a measure on RY, is
a centered Gaussian quasi-Radon measure.

(h) Let I be a set, and let H be a Hilbert space with orthonormal basis (e;);cr. For i € I, x € R! set
fi(z) = x(i). Show that there is a bounded linear operator T : H — L! (ug)) such that Te; = f? for every

i €I, and that ||Tul|; = %HUHQ for every u € H.
™

456Y Further exercises (a) Let (Q,%,u) be a probability space with measure algebra (2, i), and
(u;)ier a family in L?(u) = L*(2A, i) which is a centered Gaussian process in the sense that whenever
X; € £2(u) is such that X7 = u; for every 4, then (X;);c; is a centered Gaussian process. Suppose that
v > 0 and that o = fi(sup;e; [Jui| > 7]). Show that f(sup;e; [lui| > 27]) > 2a(1 — o).

(b) Let U be a Hilbert space with an orthonormal basis (u;);e.s, and g the universal centered Gaussian
distribution on RY with covariance matrix defined by the inner product of U. Show that there is a function
T :R7 — RY, inverse-measure-preserving for ,u(é]) and p, such that whenever (j,,)nen is a sequence of distinct
elements of J and (a,)nen is a square-summable sequence in R, then (Tz)(3 .7 ) ant;,) = Doneo @nz(jn)

for almost every x € R”7.

(c) Let U be an infinite-dimensional Hilbert space and p the universal centered Gaussian distribution on
RY with covariance matrix defined by the inner product of U. Show that uC = 0 for every compact set
C CRY.

(d) Let I be a set and u be a centered Gaussian distribution on RY. Show that the following are
equiveridical: (i) p has countable Maharam type; (ii) L?(u) is separable; (iii) I is separable under the

pseudometric (i,j) — \/f(ac(z) —x(7))%p(dx).

456 Notes and comments This section has aimed for a direct route to Talagrand’s theorem 4560,
leaving most of the real reasons for studying Gaussian processes (see FERNIQUE 97) to one side. It should
nevertheless be clear from such fragments as 252Xi, 456Bb, 456G and the exercises here that they are one
of the many concepts of probability theory which are both significant and delightful. Very much the most
important Gaussian processes are those associated with Brownian motion, which will be treated in §477 et
seq.

You will of course have observed that the methods used here are entirely different from those in §455,
even though one of the concerns of that section was a check for m-additive distributions and corresponding
quasi-Radon versions, as in 455K. However the results of §455 were based on the fact that in the most
important cases the distributions there have extensions to Radon measures (455H). Gaussian distributions
need not be like this at all, even when they have countable Maharam type; see 456Yc.

Version of 18.1.13

457 Simultaneous extension of measures

The questions addressed in §§451, 454 and 455 can all be regarded as special cases of a general class of
problems: given a set X and a family (v;);c; of (probability) measures on X, when can we expect to find a
measure on X extending every v;?7 An alternative formulation, superficially more general, is to ask: given a
set X, a family ((Y;, T;, v;))ier of probability spaces, and functions ¢; : X — Y; for each i, when can we find
a measure on X for which every ¢; is inverse-measure-preserving? Even the simplest non-trivial case, when
X =[l;c; Y and every ¢; is the coordinate map, demands a significant construction (the product measures
of Chapter 25). In this section I bring together a handful of important further cases which are accessible
by the methods of this chapter. I begin with a discussion of extensions of finitely additive measures (457A-
457D), which are much easier, before considering the problems associated with countably additive measures
(457E-457G), with examples (457H-4577J). In 457K-457M I look at a pair of optimisation problems.
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457A Tt is helpful to start with a widely applicable result on common extensions of finitely additive
measures.

Lemma Let 2 be a Boolean algebra and (8;);c; a non-empty family of subalgebras of 2. For each ¢ € I,
we may identify L*°(%B;) with the closed linear subspace of L>(2) generated by {xb : b € B;} (363Ga).
Suppose that for each i € I we are given a finitely additive functional v; : B; — [0, 1] such that v;1 = 1;
write ... dy; for the corresponding positive linear functional on L°°(%B;) (363L). Then the following are
equiveridical:

(i) there is an additive functional p : 2 — [0, 1] extending every v;;

. (ii) whenever ig,... i, € I, a € B;, for k < n, and >, _, xar > mx1 in S(A), where m € N, then
> me
Z:_%ili/il)kaxffh_en?x’zer Q05w sin € I, a € By, for k < n, and Y70 xar < mxl, where m € N, then
o < mye
Z:_%i%;iifehgnger Qo, ... ,in € I are distinct, uy, € L>(B;,) for every k < n, and 37, up > x1, then
' dv;, > 1;
Zl:o({;lkwﬁ&;ver’ io,--. yin € I are distinct, up € L(B;,) for every k < n, and 3¢ jux < x1, then

S o furdy, < 1.
proof (a) It is elementary to check that if (i) is true then (ii)-(v) are all true, simply because we have a
positive linear functional f dp extending all the functionals f dy;.

(b)(ii)=-(iii) Given that aj, € B;, and Y ;_, xar < mx1, then

ko X(I\ag) = (n+ 1)x1 = 370 xar > (n+ 1 —m)xl,
SO
YoreoVisak =n+1=30_vi,(I\ar) <n+1—(n+1—m)=m,
as required by (iii).

(c)(iii)=(i) Assume (iii). Set Ya = sup{rv;a:i € I, a € B;} for a € A (interpreting sup () as 0, as usual
in such contexts). Then ¢ satisfies the condition (ii) of 391F. ? Otherwise, there is a finite indexed family
(ar)rer in A such that infreyar = 0 whenever J C K and #(J) > >, ¥a;. The general hypothesis
of the lemma implies that 2 # {0}, so inf@) = 1 # 0 and K is non-empty. Taking K to be of minimal
size, we get an example in which 1ay > 0 for every k € K. Set m = || >, cx X0k|loo; then m € N and
m < ZkeK 1ay, so we can find for each k € K an iy € I such that a; € B;, and m < ZkeK v, ar. But
this contradicts our hypothesis (iii). XQ

By 391F, there is a non-negative finitely additive functional p such that pl = 1 and pa > a for every

a € 2, that is, ub > ;b whenever ¢+ € I and b € ‘B;. But observe now that, because ul = ;1 and
w(1\b) > v;(1\b), we actually have ub = v;b for every b € B,, so that u extends v;, for every i € I.

(d)(iv)=-(ii) Suppose that (iv) is true, and that ig, ... ,i, € I, ar, € B;, for k < n,and > ;_, xar > mx1
in S(A), where m € N. If m = 0 then of course >, _,vi,ar > m. Otherwise, set J = {i; : k < n} and
enumerate J as (j;);<,. For I <r set u; = % Zkgn,ik:ﬁ xai. Then u; € S(%Bj,) for each [, and

1 1
Z;:O Uy = Eerzo Zkgn,ik=jl Xk = ;Zzzo xar > x1.

As jo, ..., are distinct,
1
Y=o f“ldl/jz = EZZ:O Vigag = 1.
So (ii) is true.
(e)(v)=-(iii) Use the same argument as in (d) above.
457B Corollary Let X be a set and (Y;);c; a family of sets. Suppose that for each i € I we have
an algebra &; of subsets of Y;, an additive functional v; : & — [0,1] such that v;¥; = 1, and a function

fi : X = Y;. Then the following are equiveridical:
(i) there is an additive functional y : PX — [0,1] such that uf; *[E] = »;E whenever i € I and E € &;

D.H.FREMLIN



124 Perfect measures, disintegrations and processes 457B

(ii) whenever ig, ... ,i, € I and Ej, € &, for k < n, then there is an « € X such that ZZ:O v By <

proof (i)=-(ii) is elementary; if m = [Y.}_ v, Ex] — 1, then > ;_, ufi_kl[Ek] >mupX, s0 Y g XfizlEk £
mxX, that is, there is an x € X such that

#({k: fi(2) € Bi}) = Xi_o O [BR) (@) > m 4+ 1> 300 viy B

(ii)=(i) Now suppose that (ii) is true. For i € I set B; = {f; '[E] : E € &}. Note that if E € & and
v;E > 0, then (applying (ii) with n = 0, 49 = i and Ey = E) f; '[E] cannot be empty; accordingly we have
an additive functional v} : B; — [0, 1] defined by setting v/ f~[E] = i, E for every F € &;, and v/X = 1. If
i, ... in € I, Hy € Byy,... ,H, € B;, and m € N are such that >, _, xHr < mxX, express each Hj as

fi_kl[Ek], where Ej, € &, ; then there is an € X such that

Sohmo Vi He = Yo Vi B < #({k : fir(x) € Ep}) = Y201 xHi(x) < m.

But this means that the condition of 457A(iii) is satisfied, with 2l = PX, so 457A(i) and (i) here are also
true.

457C Corollary (a) Let 2 be a Boolean algebra and 9B, B, two subalgebras of 2 with finitely additive
functionals v; : B; — [0,1] such that 111 = 51 = 1. Then the following are equiveridical:
(i) there is an additive functional p : 2 — [0, 1] extending both the v;;
(ii) whenever by € B1, bs € By and by Uby = 1, then v1by + by > 1;
(iii) whenever by € B4, by € By and by nby = 0, then v1b; + vobe < 1.
(b) Let X, Y1, Y3 be sets, and for ¢ € {1,2} let & be an algebra of subsets of V;, v; : & — [0,1] an
additive functional such that v;Y; =1, and f; : X — Y; a function. Then the following are equiveridical:
(i) there is an additive functional y : PX — [0, 1] such that uf; '[F] = v;E whenever i € {1,2} and
FE e 51‘;
(11) fl_l[Eﬂ N f;l[EQ] 75 () whenever E; € &1, By € & and 1 By + 1o Es > 1,
(iii) 1 B < v9Fy whenever Fy € &1, E5 € £ and ffl[El] C f{l[Eg].
proof (a)(i)=-(iii) is elementary (and is a special case of 457A(1)=457A(iii)).
(iii)=-(ii) If (iii) is true, and by € By, by € By are such that by Uby = 1, then (1\b1)n(1\bz) =0, so
v1b1 + v9by =2 — 1/1(1 \bl) — 1/2(1 \bg) > 1.
(ii)=-(i) The point is that (ii) here implies (ii) of 457A. I Suppose that ig, ... ,in € {1,2}, ar € B,
for k¥ < n and > _jxar > myxl in S(A), where m € N. Set K; = {k : k < n, i = j} for each j,
U= ek, Xar € S(B1), v =34k, xar € S(Bz). Then we can express u as > xc; where ¢; € B for
each j <my and coDc1 D ... Dy, (see the proof of 361Ec). Taking ¢; = 0 for my < j < m if necessary,
we may suppose that m; > m. Similarly, v = Z;’fo xd; where mo > m, d; € By for each j < my and
dOQ Qdmz-
For j < m, set b; =1\ (¢; Udy—;—1). Then, because bj nc; =0,
u X xb; = Z;nzlo x(cr N bj) = i;(l) x(cr N bj) < Jxbj,
and similarly v x xb; < (m — j — 1)xb;, so
myxb; < (u+v) x xb; =u x xb; +v x xb; < (m —1)xb;,
and b; must be 0.

Thus c;udy,—j—1 = 1 for every j < m. But this means that vic; + vad,,—j—1 > 1 for every j < m, so
that

ZVikak = Z viay + Z VoQy, :][udul —|—][vd1/2
k=0

keK, keKo
m1 mao m—1

= Z vic; + Z Z/de > Z vic; + VQdm—l—j >m,
Jj=0 j=0 j=0
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as required. Q
Because 457A(ii) implies 457A(i), we have the result.

(b) We can convert (i) and (ii) here into (a-i) and (a-iii) just above by the same translation as in 457B.
So (i) and (ii) are equiveridical. As for (iii), this corresponds exactly to replacing E2 by Y3 \ Es in (ii).

*457D The proof of 457A is based, at some remove, on the Hahn-Banach theorem, as applied in the
proof of 391E-391F. An alternative proof uses the max-flow min-cut theorem of graph theory. To show the
power of this method I apply it to an elaboration of 457C, as follows.

Proposition (STRASSEN 65) Let 2 be a Boolean algebra and 91, B, two subalgebras of 2. Suppose that
v; + B; — [0,1] are finitely additive functionals such that 111 = 151 =1, and 6 : 20 — [0, oo[ another additive
functional. Then the following are equiveridical:

(i) there is an additive functional p : 2 — [0, oo[ extending both the v;, and such that pa < fa for every
a €2,

(11) v1b1 +1voby <1+ 9([)1 n bg) whenever by € 81 and by € Bs.

proof (a) As usual in this context, (i)=-(ii) is elementary; if y < 6 extends both v;, and b; € B; for both
7, then

v1by + by = Mbl + /,LbQ = M(bl U bg) + M(bl N bg) <1+ 9(b1 al bg)
(b) For the reverse implication, suppose to begin with (down to the end of (d) below) that 2 is finite.

Let I, J and K be the sets of atoms of 951, Bs and A respectively. Consider the transportation network
(V, E,~) where

V={0,00U{(b,1):bel}U{(d2):de K}U{(e,3):ceJ}Ul(1,4)},

E={e):beltu{e,:de K}U{e?:de K}U{el:ce J},
where
for b € I, €Y runs from (0,0) to (b, 1),
for d € K, el runs from (b,1) to (d,2), where b is the member of I including d,
for d € K, €2 runs from (d,2) to (c,3), where ¢ is the member of J including d,
for ¢ € J, €2 runs from (c, 3) to (1,4).
Define the capacity v(e) of each link by setting

y(e)) =vib for b e I,
y(eh) =~(e%) =6d for d € K,

v(€2) = voc for c € J.

By the max-flow min-cut theorem (4A4N), there are a flow ¢ and a cut X of the same value; that is, we
have a function ¢ : E — [0, 00[ and a set X C E such that

Ze starts from v ¢(€) = Ee ends at v ¢(€)
for every v € V'\ {(0,0), (1,4)},
¢(e) <(e)
for every e € E,
Ze starts from (0,0) ¢€ = Ze ends at (1,4) ¢€ = ZeEX ’7(6)7

and there is no path from (0,0) to (1,4) using only links in E'\ X.
Now, for any d € K, there is exactly one link e} ending at d and exactly one link €2 starting from d. So
p(el) = p(e?), and we may define an additive functional p on 2 by setting

ha = ZdeK,dga ¢(631) = ZdeK,dga ¢(63)
for every a € 2.
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(c)(i) pb < w1b for every b € B;. PP Because I is the set of atoms of the finite Boolean algebra 981, it is
enough to show that ub < 11b for every b € I. Now, for such b,

ph=Y oleh) = Y. o)

deK,dcb e starts from (b,1)

= Y 8(e) = d(ed) < () = mb,

e ends at (b,1)
because the only link ending at (b,1) is ¢). Q

(ii) Similarly, because the only link starting at (¢, 3) has capacity vac, pe < voc for every ¢ € J. But
this means that pc < voc for every ¢ € Bs.

(iii) In third place, because
pd = Pleg) < v(eg) = 0d
for every d € K, pa < fa for every a € 2.
(d) (The key.) p1 > 1. » We have

pl=>Y pd=> ¢e})

deK deK
3% weh= Y el
bel deK,dcb bel e starts from (b,1)
Y Y so= Y e0=Y 0.
bel e ends at (b,1) e starts from (0,0) eeX
Set
b* =sup{b:becl, e) € X} By,
af =sup{d:de€ K, e} € X},
ay =sup{d:d € K, e3 € X},

¢ =sup{c:ce€ J el e X} €B,.

For any d € K, we have a four-link path e, e}, 2 e? from (0,0) to (1,4), where b € I, ¢ € J are the atoms
of %1, By including d. At least one of the links in this path must belong to X, so that d is included in
b*uajualuct. Thus, writing a = (1\b*)n (1\¢*), a C af ua} and a < faj + Oa3. But this means that

pl=>"~(e)
ecX

= > e+ D Aled+ D A+ D ed)
bel e)eX deK,eleX deK,e2eX ceJedeX

S Y e Y owe Y s Y e
bel,e)eX deK,eleX deK,e2eX cedeleX

= v1b* + 0al + 0aj + voc”
(remember that 6 is additive)

> b +0((L\D )N (1\ ")) + vac™ > b + v (1\D") + va(1\ ¢*) — 1 + voc*
(applying the hypothesis (ii))

=1,

as claimed. Q
Since we already know that 111 = 1 and that pub < 110 for every b € 81, we must have ul = 1 and
ub = 11b for every b € B, so that u extends ;. Similarly, u extends vs.
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(e) Thus the proposition is proved in the case in which 2 is finite. In the general case, for each finite
subset K of 2 write A for the subalgebra of 2 generated by K. Then (b)-(d) tell us that there is a non-
negative additive functional px on g, dominated by 6 on A, agreeing with v on Ax NB; and agreeing
with v on A NBa. Let p be any cluster point of the px in [0, 1]* as K increases through the finite subsets
of A; then p will be a non-negative additive functional on 2, dominated by 8, and extending v, and vs.

This proves the result.

457E Proposition Let X be a non-empty set and (v;);e; a family of probability measures on X satisfying
the conditions of Lemma 457A, taking 2l = PX and 28; = dom v; for each i. Suppose that there is a countably
compact class L C PX such that every v; is inner regular with respect to K. Then there is a probability
measure p on X extending every v;.

proof If I = () this is trivial. Otherwise, by 457A, there is a finitely additive functional v on PX extending
every v;. Now 413Ua tells us that there is a complete measure g on X such that uX < vX and pK > vK
for every K € IC. In this case, for any i € [ and E € T; = domv;, we must have

x> sup  pK > sup pK
KeK,KCE KeKndomv;,KCE
> sup vK = sup v, K =1y E.
Kekndomv; KCE KeKndomv;,KCE

In particular, pX > v, X = 1. Also pX <vX =1, so
WE=1—p(X\E) < 1- (X \ E) =

for any E € T,; as p is complete, pFE is defined and equal to v; E for every E € T;, and p extends v;, as
required.

457F Proposition (a) Let (X, X, i) be a perfect probability space and (Y, T, v) any probability space.
Write ¥ ® T for the algebra of subsets of X x Y generated by {E x F : E € ¥, F € T}. Suppose that
Z C X xY is such that
(i) Z is expressible as the intersection of a sequence in ¥ ® T,
(ii) ZN (E x F) # () whenever E € ¥, F € T are such that uE + vF > 1.
Then there is a probability measure A on Z such that the maps (z,y) — z: Z — X and (z,y) —y: Z =Y
are both inverse-measure-preserving.
(b) Let (X, i, 1i))icr be a family of perfect probability spaces. Write ), ¥; for the algebra of subsets
of X = [],c; Xi generated by {{z:z € X, 2(i) € E} :i € I, E € ¥;}. Suppose that Z C X is such that
(i) Z is expressible as the intersection of a sequence in ), ; ¥,
(ii) whenever ig,...,i, € I and Ey € %;, for k < n, there is a z € Z such that #({k : k <
n,z(ix) € Ex}) = 3j_o Hirn B
Then there is a perfect probability measure A on Z such that z — z(i) : Z — X, is inverse-measure-
preserving for every i € I.

proof (a) Apply 457Cb to the coordinate maps f1 : Z — X and fo : Z — Y. The condition (ii) here shows
that 457C(b-ii) is satisfied, so there is an additive functional 6 : PZ — [0,1] such that 6 f; '[F] = uE for
every E € ¥ and 0f, '[F] = vF for every F € T.

Define 0" : ¥ @ T — [0, 1] by setting ¢'W = 0(Z NW) for every W € ¥ @ T. Then 6'(E x Y) = pFE for
every E € ¥ and 0/(X x F) = vF for every F € T. Because p is perfect, 8’ has an extension to a measure
A defined on X&T (454C). Now Z is supposed to be expressible as (1, .y W, where W,, € ¥ @ T for every
n; since

AV, =0W, =0(ZNW,)=0Z =1

for every n, AZ = 1. So if we take A to be the subspace measure on Z induced by A, A will be a probability
measure on Z. If £ € X, then

MZN(EXY)=AMZN(ExY))=AExY)
(

=0 (ExY)=0(ZN(ExY))=puE.
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So f1 : Z — X is inverse-measure-preserving for A and p. Similarly, fo : Z — Y is inverse-measure-
preserving for A\ and v.

(b) We use the same ideas, but appealing to 457B and 454D instead of 457Cb and 454C. Taking f; :
X — X, to be the coordinate map for each i € I, (ii) here, with 457B, tells us that there is an additive
functional @ : PZ — [0,1] such that 0f; ' [E] = y; E whenever i € [ and E € %;.

Define 0" : @,; Xi — [0,1] by setting 0'W = 6(Z N W) for every W € &),.; X;. Then

O{r:ze X z(i) e E}=0{z:2€ Z, z2(i) € E} = ,E
whenever 7 € I and E € X;. Because every p; is perfect, #’ has an extension to a perfect measure X defined
on ),c;X: (454D). Now Z is supposed to be expressible as [,,cy Wn where W, € @,.; X; for every n;
since
MV, =0W, =0(ZNW,)=0Z=1

for every n, AZ = 1. So if we take A to be the subspace measure on Z induced by A, A will be a probability
measure on Z; by 451Dc, ) is perfect. If i € I and E € ¥;, then

Mz:zeZ z()eEy=Ma:ze X, z(i) e B} =0{z:z€ X, z(i) € E}
=0{z:2€ Z, 2(i) € E} = i, E.

So z — z(1) : Z — X, is inverse-measure-preserving for A and u; for every i € I, as required.

457G Theorem Let X be a set and (u;);cr a family of probability measures on X which is upwards-
directed in the sense that for any i, j € I there is a k € I such that p; extends both p; and p;. Suppose
that for any countable J C I there is a measure on X extending u; for every ¢ € J. Then there is a measure
on X extending u; for every i € I.

proof Set ¥; = dom y; for each i € I. Because (j;)ics is upwards-directed, T = J;; ¥; is an algebra of
subsets of X, and we have a finitely additive functional v : T — [0, 1] defined by saying that vE = u; E
whenever ¢ € I and F € ;. Now if (F,,),en is any non-increasing sequence in T with empty intersection,
there is a countable set J C I such that F,, € Uie ;2 for every n € N. We are told that there is a measure
A on X extending u; for every ¢ € J; now vE, = AE, for every n € N, so lim,,_, vF, = 0. By 413Lb, v
has an extension to a measure on X, which of course extends every p;.

457H Example Set X = {(z,y) : 0 <z <y < 1} C [0,1]2. Write 71, 72 : X — R for the coordinate
maps, and py, for Lebesgue measure on [0, 1], with ¥}, its domain.

(a) There is a finitely additive functional v : PX — [0,1] such that vr; ' [E] = uy, E whenever i € {1,2}
and F € Y. PIf Fy, Es € ¥ and pup F1 + ppEs > 1, then neither is empty and inf 7 < sup FEs, so there
are € E1, y € By such that = < y, and (z,y) € 7, '[E1] N7y ' [E2]. So the result follows by 457Ch. Q

(b) However, there is no measure 1 on X for which both 7; and 7y are inverse-measure-preserving. P?
If there were,

[ i@ yud,y) = [ap(de) = [ypr(dy) = [ mo(,y)p(d(z,y))
by 235G; but m (z,y) < me(x,y) for every (z,y) € X, so this is impossible. XQ

(c) If we write T; = {m; '[E] : E C [0, 1] is Borel} for each i, then we have a measure v; with domain T;
defined by setting v;7; *[E] = uz E for each Borel set E C [0,1]. Now v; and v, have no common extension
to a Borel measure on X, even though X is a Polish space and each v; is a compact measure, being inner
regular with respect to the compact class K; = {m; '[K] : K C ]0,1] is compact}. (The trouble is that
K1 UKy is not compact, so we cannot apply 457E.)

4571 Example Let p;, be Lebesgue measure on [0, 1] and ¥y, its domain. Set

X ={(€1,6,6) : 0< & <1foreach i, 0, & <2, 50 &2 <1},

For 1 <i <3 set mi(x) =& for x = (£1,&,&3) € X.
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(a) If E; € ¥ for i+ < 3, then there is an « € X such that #({i : m(x) € E;}) > Zle prE;. I Set
a; = inf(E; U{1}) for each i, and set

m = I_Zle prEi] < [Z?:l l—a;] =3~ LZ?:l @il

so that Zle a; <4 —m. Take & € E; U {1} such that Z?:1 & < 4 —m. It will be enough to consider the
case in which & < & < &s.

(i) If m =1, then Z?:l & <3s0& <land ¢ € By, Set = (£1,0,0); then z € X and
#({imi(z) € Bi}) > 1> 32 piEs.

(ii) If m = 2, then 37 & < 250 & < 1and & € Ey, & € Ey. Set © = (£1,6,0). We have
Li+&<5<3 Also

1 1
& < 5(52 +&)<1- 5517
SO
G+g<g+-36)7°=1-a+2¢<1
because & < % < %. So z € X and
#({i:mi(x) € Bi}) >2>50  uLE;.

(iii) If m = 3 then Zle & < 1s0¢&; € E; for every i; set © = (£1,&2,&3). Since Z?:l &< Z§:1 & <1,
r € X and

#({imi(z) € Bi})=3> Y0 pE;.
Putting these together, we have the result. Q

(b) There is no finitely additive functional v on X such that vr; '[E] = urF for each i and every E € Y.
P? Suppose there were. Set T; = {wi_l[E] : E € X} and v; = v|T; for each ¢. Then v; is a probability
measure on X; moreover, because X is compact, m; '[K] is compact for every compact K C [0,1], so v; is
inner regular with respect to the compact subsets of X. By 457E, the v; have a common extension to a
countably additive measure . Now

1 3
Jy&+ &+ Guldn) =3[ tdt =2,
so we must have {1 + & + &3 = g for p-almost every x; similarly,

1
[ G+ G+ G ude) =3[ 2dt =1,

so we must have &7 + €2 + €2 = 1 for p-almost every x. Since
3
(5 —8)7 = (&1 +&)* <2 +&) <21 - &)

for almost every x, £3 — €3 > % for almost every x, which is impossible, since u{x : & < 1 i} > 0. XQ

=3 \/6

457J Example There are a set X and a family (u;);c; of probability measures on X such that (i) for
every countable set J C I there is a measure on X extending p; for every ¢ € J (ii) there is no measure on
X extending p; for every i € I.

proof By 439Fc, there is an uncountable universally negligible subset of [0,1]. Because [0,1] and PN
are uncountable Polish spaces, they have isomorphic Borel structures (424Cb), so there is an uncountable
universally negligible set Xy C PN. The map a — N\ a is an autohomeomorphism of PN, so X; = {N\ a:
a € Xo} is universally negligible, and X = Xy U X is universally negligible (439Cb).
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ForneN,set E, ={a:n€ac X} and &, = {0, E,, X \ E,, X}; note that, because X is closed under
complementation, neither E,, nor X \ F,, is empty, and we have a probability measure p,, with domain 3,
defined by setting p, E, = pn(X \ Ep) = % Next, for a € X, set X/, = {0,{a}, X \ {a}, X), and let pu}, be
the probability measure with domain ¥/, defined by setting u/, {a} = 0.

If J C X is countable, then there is a probability measure on X extending pu,, for every n € N and p/, for
every a € J. PP Because X is uncountable, there is a b € X such that neither b nor ¥’ = PN\ b belongs to
J. Let pu be the probability measure with domain PX defined by setting p{b} = p{b'} = 3; this extends all
the pu, and all the p/ fora € J. Q

? Suppose, if possible, that p is a measure on X extending every p, and every p/,. In this case, because
1 extends every p,, its domain includes the Borel o-algebra B of X, and u[B5 is a Borel probability measure
on X. Since X is universally negligible, there is a point a € X such that pu{a} > 0; in which case p cannot
extend p,. X

Thus the pi,, p!, constitute a family of the kind required.

457K In addition to existence, we can ask for solutions to simultaneous-extension problems which are
optimal in some sense; some transportation problems can be interpreted as questions of this kind. In this
direction I give just one result, which is also connected to the ideas of §437.%2

Definition (BoGACHEV 07, §8.10(viii)) Let (X, p) be a metric space. For quasi-Radon probability measures
w, von X, set

pw(p,v) = sup{|f udp — fudu\ :u: X — R is bounded and 1-Lipschitz}.

(Compare the metric pxr of 437Qb. pw is sometimes called the ‘Wasserstein metric’.)

457L Theorem Let (X, p) be a metric space and Pyr the set of quasi-Radon probability measures on
X; define pw as in 457K.
(a) For all p1, v and A in Pyg,

pW(M)”) = pW(Vv :U’)’ pW(/’L’)‘) < pw(k, V) + pW(V7)‘)>

pw(p,v) =0iff p=wv.

(b) (cf. VASERSHTEIN 69) If yi, v € Pygr, then pw(u,v) = infrcq(u. [ p(2, y)A(d(x, y)), where Q(,v) is
the set of quasi-Radon probability measures on X x X with marginal measures p and v.

(¢) In (b), if 4 and v are Radon measures, Q(u, v) is included in Pg (X x X), the space of Radon probability
measures on X x X, and is compact for the narrow topology on Pgr(X x X); and there is a A € Q(u,v) such

that pw(u,v) = [ p(z, y)A(d(z,y)).
(d) If p is bounded, then pw is a metric on Pyg inducing the narrow topology (definition: 437Jd).

proof (a) The first two clauses are immediate from the definition. For the third, observe that if u # v then
pw(p,v) > pkr(u,v) > 0 by 437R.

(b) Write ¢ € [0, 00] for pw(p,v), £, ,, for the space of bounded dom p-measurable functions from X

to R and £3°_ , for the space of bounded dom v-measurable functions from X to R.

(i) We have

¢= sup{/ud,u—i—/vdu tu € Lgom V€ Ldom s
u(z) +v(y) < p(z,y) for all z, y € X}.
P () Suppose that u € L35, v € L35, , and u(x) +v(y) < p(z,y) for all z, y € X. Set
w(x) = infyex p(z,y) —v(y)
for x € X. Then u(z) < w(z) and w(z) + v(z) <0 for every z, so u < w < —v and w is bounded; also w is
1-Lipschitz, because if x, 2’ € X then

22] am indebted to J.Pachl for leading me to this material.
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w(z) = p(z,2') = infyex p(z,y) —v(y) — p(x,2’) < infyex p(2’,y) — v(y) = w(z’).
Accordingly
fudu—l—fvdugfwdu—fdeSC.

(B) In the other direction, given v < (, there is a bounded 1-Lipschitz function u : X — R such that
| [wdp — [wdv| > ~. Replacing u by —u if necessary, we can arrange that [udy — [udv > ~. Now set
v = —u; then u(z) + v(y) < p(z,y) for all z, y, and [udp+ [vdv >~. Q

It follows that if u € L3, ,, v € L&, and u(z) +v(y) < Bp(z,y) for all z, y € X, where 8 > 0, then

fuduntfvdz/:ﬂ(f%udquf%vdz/) < B¢

(ii) [pd\ > ¢ for every A € Q(p,v). P Ifu € Liompur U € Lo, and u(z) +v(y) < p(z,y) for all z,

y € X, then
Judns [viv= [u@rte.n) + [ o)

< [oax
o (i) gives us the result. Q
If ( = 00, we can stop; so henceforth suppose that ( is finite.
(iii) Define p : £>°(X x X) — [0, o0 by setting
p(w) =inf{a+ B¢ :a, >0, w(z,y) < a+ Bp(x,y) for all z, y € X}.
Then p(w + w') < p(w) + p(w’) and p(aw) = ap(w) whenever w, w’ € £*°(X x X) and « € [0, 00[. For u,
v € RX define u ® v € R¥*X by setting (u ® v)(x,y) = u(x)v(y) for all z, y € X (cf. 253B); set
V= {(U®XX) + (XX ®’U) u € Ldom;ﬁ v e Ldomu}

Let ux v be the quasi-Radon product measure on X X X (417R). Then we have a linear functional hg : V' — R
defined by saying that ho(w) = [wd(p x v) for w € V. The point is that ho(w) < p(w) for every w € V.
P We have u € L3, ,, v € LdomV such that w(z,y) = u(x) +v(y) for all z, y € X. If o, B > 0 are such
that w(z,y) < a+ Bp(x,y) for all z, y € X, set ug(z) = u(x) — a for every x; then ug(z) + v(y) < Bp(x,y)
for all x and y, so

(235G)

ho(w):/u®de(uxV)+/XX®vd(uxu):/udu+/vdz/
:a+/UOdu+/vdV§a+ﬁC

by the last remark in (i). As « and 8 are arbitrary, ho(w) < p(w). Q

(iv) By the Hahn-Banach theorem (3A5Aa), there is a linear functional i : £*°(X x X)) — R, extending
ho, such that h(w) < p(w) for every w € ¢>°(X x X). In this case, h must be a positive linear functional,
because if w > 0 then p(—w) = 0, so h(—w) < 0. Since also

h(x(X x X)) = ho(x(X x X)) = (px v)(X x X) =
|2l =1 in £°(X x X)*. If u, v € Cp(X) then
h(u@xX):ho(u@)XX):fudu, hxX ®@v) =ho(xX ®@v) = fvdy

Let 6 : P(X x X) — [0,1] be the additive functional defined by setting W = h(xW) for W C X x X.
Observe that §(FE x X) = pFE for every E € dom p and (X x E) = vE for every E € domwv.

(v) Because both p and v are inner regular with respect to the totally bounded sets (434L), there is
a separable subset Y of X such that uY = vY = 1, and we can take Y to be a Borel set. Now let € > 0.
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Then we have a countable partition (FE;);c; of Y into non-empty Borel sets of diameter at most e. For i,
7 €1, set

G(E,LXE])

i =
w pE; vE;

if pb; - vE; >0,
= 0 otherwise.

Since 0(E; x E;) < min(uE;,vE;), 0(E; x E;) = a;uE,vE;. If i € I is such that pF; > 0, then

> jer ijvEj = 1. P For any 1 > 0 there is a finite Ko C [ such that (X \ Ujeg, £5) <n. Now

1= aivE;|uE; = |pE; = Y 0(E; x Ej)| = [0(E; x X) = 0(E; x | Ej)

jeK jeEK jeEK
=0(E: x (X\ |J E)) <ox x(x\ | E))
JEK JjEK
=v(X\ |JE)<n
jeK

whenever K is a finite subset of I including Ky; as ) is arbitrary, uE;->
1. Q Similarly, ;. ; a;juE; = 1 whenever vE; > 0.

jel O[ijVEj = ,U/EZ and Zje] O[ijVEj =

(vi) Define a Borel measurable function wg : X x X — [0, co[ by setting

wo(x,y) =au; if i, j €I, x € E; and y € Ej,
0if (z,y) e (X x X)\ (Y xY).

Let A be the indefinite-integral measure over p x v defined by wy; then A is a quasi-Radon probability
measure with marginals p, v. PP If £ € dom p, then

AME x X) :/ wod(p X V) = Z / wod(p X V)
ExX ijel (ENE;)xE;

t,j€l i€l
(because ) . ; a;jvE; = 1 whenever pE; > 0)

=uk.

Jjel

In particular, A\(X x X) = 1, so A is a probability measure, and is quasi-Radon by 4150b; and the coordinate

projection (x,y) + z is inverse-measure-preserving for A and p. To see that u is exactly the image measure,

observe that if £ C X is such that A\(E x X) is defined, then (E N E;) x E; must be measured by p x v

whenever a;; > 0. For any ¢ € I such that uE; > 0, there is surely some j such that ao;; > 0, in which case

ENE; € dom y; since | J;¢; F; is p-conegligible (and p is complete and I is countable), ' € dom p. Thus p

is the marginal of A on the first coordinate. Similarly, v is the marginal of A on the second coordinate. Q
For i, j € I we have

)\(El X EJ) = aijpEi . VEj = H(EZ X Ej)
(vii) [pd\ < (+2e. P Fori,j€l, set
Bij = infa:EEi,yEEj p($> y)7
set
w(z,y) =i ifi,j€l, x € E; and y € Ej,
=0if (z,y) e (X xX)\ (Y xY).
Then
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w<px x(YxY) <w+2ex(X x X),

/pd>\=/ pd)\§2e+/wd/\
Y XY

=2+ > BiAE; x Ej) =2+ Y B;0(E; x Ej).

i,5€1 i,j€l

SO

Now, for any finite K C I,
2ijer Biib(Ei x Ej) = h(w x x(U; jerx Ei x Ej)) < h(p) < plp) <¢
by the definition of p. So [ pdX < 2¢ + ¢, as claimed. Q
(viii) As e is arbitrary,

inf/\EQ(u,u) fpd)‘ <.
With (ii), this completes the proof of (b).

(¢) For every € > 0, there is a compact set K C X such that (X \ K) + v(X \ K) < e. In this case
A(X x X)\ (K x K)) < € for every A € Q(p,v). In the first place, this shows that if A € Q(u,v), then A is a
Radon measure, by 416C(iv). Thus Q(u,v) C Pr(X x X). Next, we see also that Q(u,v) is uniformly tight
(4370), therefore relatively compact in the space My (X x X) of totally finite Radon measures on X x X
(437P).

Writing 7, 7o for the coordinate projections from X x X to X, we see that

Q(u,y):{/\:/\eMl;f(XxX), Aﬂflzuand)\ﬂ'glzu}.

Since the functions A + Ayt and A = Amy ! from Mg (X x X) to My (X) are continuous (437N), and
M (X) is Hausdorff in its narrow topology (437R/(a-ii)), Q(u, v) is closed in My (X x X), therefore compact.

Finally, the function A — [ pdX from Mg (X x X) to [0,00] is lower semi-continuous (437Jg), and must
attain its infimum on the compact set Q(u,v) (4A2B(d-viii)). But (b) tells us that this infimum is just
pw (1, v).

(d) (i) Suppose first that p(x,y) < 2 for all z, y € X. Then pw = pkr|Pyr X Pqr. P As already noted
in (a), pw(p,v) > prr(p,v) for all p, v € Pyr. In the other direction, if 4, v € Pjg and u : X — R is
1-Lipschitz, then |u(z) — u(y)| < 2 for all z, y € X, so there is an « € R such that |u(z) — o] < 1 for all
x € X. Set v(z) = u(x) — « for every x; then v: X — [—1,1] is 1-Lipschitz, so

|/udu—/udu|:|/vd,u—/vdu\

< pxr(p,v).

(because pX = vX)

As u is arbitrary, pw (i, v) < pkr(u, ) and the two metrics are equal. Q

(ii) In general, take v > 0 such that p(z,y) < 2y forallz,y € X. Set 0 = %p, so that o is a metric on X

equivalent to p. Now okr defines the narrow topology on Pyr, by 437R(g-1), so pw = yow = Yokr | Pqr X Pqr
also does.

457M If we relax our demands, and look for measures dominated by each measure in a family rather
than extending them, similar methods give further results.

Theorem (see KELLERER 84) Let X be a Hausdorff space and (v;);c; a non-empty finite family of locally
finite measures on X all inner regular with respect to the closed sets.
(a) For A C X x [0, 0], set
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c(A) = inf{z / hidv; : h; : X — [0,00] is dom v;-measurable for each i € I,
i€l
a< th(x) whenever (z,a) € A}.
icl

(i) ¢ is a Choquet capacity (definition: 432J).
(ii) For every A C X x [0, 00[, the infimum in the definition of ¢(A) is attained.
(b) Let f: X — [0,00[ be a function such that {z : f(x) > «a} is K-analytic for every o > 0. Then

inf{z / hidv; : h; : X — [0,00] is dom v;-measurable for each i € I, f < Z hi}
il il

= Sup{/ fdp: pis a Radon measure on X and p < v; for every i € I},

where ‘u < v;” here is to be interpreted in the sense of 234P.
proof (a)(i)(a) For f: X — [0, 00] set
Qp ={(z,a):z€ X, a< f(z)}, Q)={(z,0):zeX, a<f(z)}

as in 252N.

It will be convenient to amalgamate the v; into a single measure, as follows. Let (Y, T,v) be the direct
sum of the family ((X;,v;))ics in the sense of 214L, so that Y = X x I and vE =), vi{x : (z,4) € E} for
those E C Y for which the sum is defined. Give Y its disjoint-union topology, that is, the product topology
if T is given the discrete topology; then it is easy to check that v is locally finite (see 411Xh) and inner
regular with respect to the closed sets (see 412Xp). For h € [0,00]" and x € X set (Th)(x) = > ,; h(,i);
observe that T'(h + h') = Th+ Th' and T(ah) = oTh for all h, b’ : Y — [0,00] and « > 0. Now, for any
A C X x [0, 00[, we have

c(A) = inf{/ hdv:h:Y — [0,00] is T-measurable,

a < Th(z) whenever (z,a) € A}
(because [hdv =73, ; [ h(x,i)v;(dz) for non-negative h, by 214M)

= inf{/ hdv:h:Y — [0,00] is T-measurable, A C Qg }.

(B) Of course ¢ : P(X x [0,00[) — [0,00] is non-decreasing. To see that it is sequentially order-
continuous on the left, I show in fact that if (A, ),en is a non-decreasing sequence of subsets of X x [0, o0
with union A, and v = sup,cyc(Ay) is finite, then there is a T-measurable h : Y — [0,00] such that
a < Th(z) whenever (z,a) € A and [hdv = . P Surely ¢(A) > ~. For each n € N we have
a T-measurable h,, : Y — [0,00] such that [h,dv < v+ 27" and A, C Qr,. By Komlés's the-

orem (276H), there is a strictly increasing sequence (n(k))ren in N such that 1immﬁoomi_~_1 > o hry
is defined v-a.e.; set h = limsupm%mmiﬂz;::o hyry- Then h : Y — [0,00] is T-measurable, and
o 1 m ’
h =a. liminf,, . — 1 > ko (k- By Fatou’s Lemma,
. 1 m
f hdv < liminf,,_eo m—HZkZO f hoydv < 7,
while if j € N and (2, ) € 4. a < Thyg)(z) for every k > j, so
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m

.. 1 . 1 - .
a < lirrlrl)lglofm—+1 kz Thyy(x) < hrinj:)lop 2; —1 kzo P ey (2, 4)
ic =

. 1 i .
< Z lim sup —1 Z o ey (2, 4)
(because I is finite)

= h(x,i) = Th(x).
iel
Thus A C Qpyp, so
c(A) < [hdv <7 < c(A)

and we have equality. Q

() Now suppose that K C X x [0, oo[ is compact, and € > 0. Set L = m1[K], where 71 : X X [0, c0[ —
X is the canonical map; then L C X and L x I C Y are compact. Because v is locally finite, there is an
open set H CY such that L x I C H € T and vH is finite (see 411Ga). Let vy be the subspace measure
induced by v on H, and Ty its domain; then vy is totally finite and inner regular with respect to the
closed sets (412Pc), therefore outer regular with respect to the open sets (411D). Let h : Y — [0,00] be

a T-measurable function such that A C Qpp, and [hdv < ¢(K) +e. Set hi(y) = h(y) + j for y € H;
then fH hidvyg < ¢(K) 4 2e. By 412Wa, there is a lower semi-continuous T g-measurable ¢g; : H — [0, 00]
such that hy < g1 and [;; g1dvy < ¢(K) + 3e. Extend g1 to a function g : ¥ — [0, 00] by setting g(y) = 0

for y € Y \ H; then g is T-measurable and lower semi-continuous and [gdv < ¢(K) + 3e. Moreover, if
(z,a) € K, then

Tg(x) > T(h x xH)(x) = Th(zx)
(because {z} x I C H)
>«

)

so K C Q.

The point is that Q7 is open in X x [0,00[. P If z € X and 0 < a < Tg(x) = 3, 9(, 1), let (i)ier
be such that 0 < a; < g(x,i) for eachi € I and ), ;05 =o' > . Set G =, {z: 2 € X, g(2,i) > as};
then G is an open subset of X, and (z,a) € G x [0,a'[ C Q7,. Thus (z,a) € int Q; as (z, ) is arbitrary,
Q&«g is open. Q

Since ¢(§27,) is surely less than or equal to [ gdv, and € is arbitrary, we have

¢(K) =inf{c(U): U C X x [0,00[ is open and K C U}.
Thus all the conditions of 432Ja are satisfied, and ¢ is a Choquet capacity.

(ii) We need consider only the case ¢(A) < oo, which is dealt with in (i-3) above, if we take 4, = A
for every n.

(b)(i) For g : X — [—00, 0], set

p(g) = inf{z / hidv; : h; € [0,00]% is dom v;-measurable for each i € T,

iel
gl <> hi}

iel

= inf{/hdu th:Y — [0,00] is T-measurable, Q5 € Q7 } = c(Q)y)).
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Then p(ag) = |alp(g) whenever g € [~oo,00]* and a € R, p(g1) < p(g2) whenever [gi| < |ga|, and
p(g1 + g2) < plg1) +p(g2) for all g1, g2 : X — [—00,00]; s0 if we set V = {g: g € R¥, p(g) < o0}, Visa
solid linear subspace of RX and p[V is a seminorm.

Suppose that 4 is a Radon measure on X and p < v; for every ¢ € I. Then [ fdu < p(f). P Because
p measures every K-analytic set (432A), [ fdu is defined. If p(f) = oo then of course [ fdu < p(f).
Otherwise, for any v > p(f), we have dom v-measurable functions h; : X — [0, 00 such that f <>, h;
and >, [ hidv; < ~. But now [ hydp is defined and less than or equal to [ h;dy; for each i (234Qc), so

Jfdp <35 [ hidp <. As vy is arbitrary, [ fdu < p(f). Q
(ii) (o) In the other direction, suppose that v < p(f), and set A = {(z, @) : 0 < a < f(z)}; then
A=U,eoll@,a): f(z) > ¢>a >0}
is K-analytic (422Ge, 422Hc, 423Bb, 423C). On the other hand, for any h : ¥ — [0,00], A C Qpy, iff
Qf Q QTh. SO
c(A) = c(Qy) = p(f) > 7.
By Choquet’s theorem 432K, there is a compact set K C A such that ¢(K) > v. Set

fi(z) = sup({0} U K[{=}])
for z € X. As in (a-i-y) above, we have for any ¢ € I an open set G including Ly = m1[K] such that v;G
is defined and finite, so xLo and f; belong to V. By the Hahn-Banach theorem (4A4Da), there is a linear
functional 6 : V' — R such that |0(g)| < p(g) for every g € V and 6(f1) = p(f1). Since |0(g)| < p(go)
whenever |g| < go, 0 is order-bounded, and if 67 is its positive part (355Eb), we shall still have 67 (g) < p(g)
for every g € V and 07 (f1) = p(f1).

(B) Set upC = 07 (x(C N Ly)) for C C X. Then po : PX — [0,00[ is additive. By 416K, there is
a Radon measure p on X such that uL > poL for every compact L C X and uG < uoG for every open
G C X. Now domy; C dom pu for every ¢ € I. B Suppose that F € domv;. Let L C X be compact. Then
there is an open set Gg 2 L such that v;Gq is defined and finite. Take any 6 > 0. Because the subspace
measure induced by v; on Gy is totally finite and inner regular with respect to the closed sets, there are a
closed set F' and an open set GG, both measured by v;, such that F C ENGy C G and 1;(G\ F) < 6. In
this case

PG\ F) < po(G\F) =07 (x(LoN G\ F)) < p(x(G\ F)) < [ x(G\ F)dv; <.
So
p(ENGo) < pG < pF 46 < i (ENGo) + 6;

as 0 is arbitrary, u*(E N Goy) = u«(E N Go) and p measures F N Gy (Ef), and therefore also measures
ENL=ENGyNL. As L is arbitrary, ;1 measures E (412Ja). Q

In fact, p < v;. PP If 1; measures E and L C X is compact, the arguments just above show that for any
0 > 0 there is an open set G 2O E N L such that v;G < v;E 4§, so that

w(ENL)<uG < G =0"(x(GNLy)) <p(x(GNLy)) <v;G <y E+4.
As L and ¢ are arbitrary, uF# < v, E. Q

(7) To estimate [ fdu, recall that 67 (f1) > v, while 87 (xLo) is finite. There is therefore an n > 0
such that n0* (xLo) < 07(f1) —~ and 67 (f2) > v, where fo = (fi —nxLo)t = (f1 —nxX)*. For k € N
set Ff, = m [K N [(k+ 1)n, 00[], so that each F}, is a compact subset of Ly and fo < >°7"  nxFi < f, where
m € N is such that K C X x [0, mn]. Now

m

v <OT(f2) <OF O nxFr) =0 0T (xFr)

k=0 k=0
—n > moFe <ny_ubi < [ i
k=0 k=0
(6) As v is arbitrary,
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sup{f fdu : pis a Radon measure on X, u < y; for every i € I} > p(f)

and we must have equality. This completes the proof.

457N Remarks It may not be quite obvious how close the domination requirement ‘u < v; for every
1 € I’ is to the marginal requirement ‘v; = um;” ! for every i € I’, so I spell out the correspondence. Let
(X4, %4, i) Yier be a family of probability spaces, X = [[..; Xi, and m; : X — X, the canonical map for
each 1.

icl

(a) For each i € T we have a (unique) pull-back probability measure v; on X with domain {r; '[E]: E €
¥, } such that the image measure v;7; * is p; (see 234F). Now it is elementary to check that, for a measure
pon X, u <y iff /mi_l < py; and if p is required to be a probability measure, then p < v; iff p extends v;
iff /uri_l extends ;.

(b) We find also that if p < w; for every 4, then there is a probability measure p' on X such that pu < p/
and p' extends v; for every i. P Set v = uX. If v = 1, set p/ = u. Otherwise, for each i € I, set

NE = i(qu — /MT;I[E]) for £ € ¥;. Then ); is a probability measure on Xj; let X = [[,.; Ai be the
product measure, and set p’ = 4+ (1 — v)A. Then

-1

pat =t (L= y)am = (L =) =

and p’ extends v; for each i. Q

(c) In the simplest intended applications, therefore, in which we have two Radon probability spaces
(X1, %1, p1) and (Xo, X2, pi2) and a profit function f : X — [0, co[, and we are looking for a Radon probability
measure g on X = X7 X X, with marginals p; and po, maximising f fdu, then we can seek to apply 457Mb
with the pull-back measures v; and v5 of (a) here to see that the optimum is

1nf{f hld,ul + fhgdug : f(l'l,l'g) < hl(:zcl) + hg(xg) Va, € X1, 29 € XQ}

If the process of part (b-ii) of the proof of 457M leads to a more or less optimal measure p which is not itself
a probability measure, we can increase it to p’ with p/m; ! extending p; for each i; and in this case we shall
have p/m; ' = p; for each i, by 4181 and 416E, as usual. Of course we shall need to confirm that [ fdu’ is
defined, but in the context of 457Mb, this will automatically be so.

(d) There is an obvious parallel between the formulae of 457M and that in part (b-i) of the proof of 457L.
Allowing for the change of direction, where an infimum in 457L corresponds to a supremum in 457M, the
pattern of the duality is the same in both cases, and there is some overlap (457Xq). But the arguments of
the two theorems — in particular, the proofs that we can get countably additive measures from the finitely
additive measures provided by the Hahn-Banach theorem — are rather different.

457X Basic exercises (a) Let X be a non-empty set and (v;);er a family of probability measures on X
satisfying the conditions of Lemma 457A, taking 2 = PX and B; = domy; for each i. Suppose that there
is a totally finite measure 6 on X such that 0F is defined and greater than or equal to v; E whenever ¢ €
and v; measures E. Show that there is a measure on X extending every v;. (Hint: 391E.)

(b) Find a set X and non-negative additive functionals p1, s defined on subalgebras of PX which agree
on dom p; N dom po but have no common extension to a non-negative additive functional. (Hint: take

#(X) = 3.)

(c) Let A be a Boolean algebra and (v;);cr a family of non-negative finitely additive functionals, each v;
being defined on a subalgebra B; of 2[. Show that if any finite number of the v; have a common extension to
an additive functional on a subalgebra of 2, then the whole family has a common extension to an additive
functional on the whole algebra 2.

(d) Set X = {0,1,2} and in the algebra PX let B; be the subalgebra {0, {i}, X \ {i}, X} for each i.
Let v; : B; — [0,1] be the additive functional such that v;{i} = %, ;X = 1. Show that any pair of vy,
V1, Vo have a common extension to an additive functional on PX, but that the three together have no such
extension.
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(e) Let 2 be a Boolean algebra, B a subalgebra of 2, and v : B — [0,00[, 0 : A — [0, 00[ additive
functionals such that vb < 0b for every b € 9. Show directly, without using either 457D or 391F, that there
is an additive functional p : 20 — [0, 00[, extending v, such that pa < fa for every a € 2. (Hint: first
consider the case in which 2 is the algebra generated by B U {c}.)

>(f) Let (Y7,61,T1,11) and (Ya, 8o, To, v9) be Radon probability spaces and X C Y7 x Y5 a closed set.
Show that the following are equiveridical: (i) there is a measure on X such that the coordinate map from X
to Y; is inverse-measure-preserving for both ¢; (ii) there is a Radon measure on X such that the coordinate
map from X to Y; is inverse-measure-preserving for both ¢; (iii) for every compact K C Y7, 1 K < v3(X[K]).
(Hint: for (iii)=-(ii), use 457C to show that there is a finitely additive functional v on PX of the required
type; now observe that v must give large mass to compact subsets of X, and apply 413U.)

>(g) Suppose that 2 is a Boolean algebra, B is a subalgebra of 2 and I C 2 a finite set; let € be the
subalgebra of 2 generated by I U8 and v : € — [0, 00[ a finitely additive functional. (i) Show that if v[B
is completely additive then v is completely additive. (ii) Show that if 2 is Dedekind o-complete, B is a
o-subalgebra and v[*B is countably additive then v is countably additive.

(h) Let (X,3, 1) be a probability space, A a finite family of subsets of X and T the subalgebra of PX
generated by ¥ U A. Show that if v : T — [0,1] is a finitely additive functional extending w, then v is
countably additive.

(i) Let (X, X, ) be a probability space, (A;);cs a partition of X and {(«;);er a family in [0, 1] summing to
1. Show that the following are equiveridical: (i) there is a measure v on X, extending u, such that vA; = «;
for every i € I; (ii) there is a finitely additive functional v : PX — [0, 1], extending u, such that vA; = o
for every i € I; (iii) pa(U;ey Ai) < D sey i for every J C I; (iv) p*(U,cy Ai) > > ;e au for every finite
J C 1. (Hint: for (ii)=(i) use 457Xh.)

(j) Let X C [0,1]? be a Lebesgue measurable set such that X N (E x F) is not negligible for any non-
negligible sets E, F' C [0,1]. (For the construction of such sets, see the notes to §325.) Show that there
is a Radon measure on X such that both the coordinate projections from X to [0,1] are inverse-measure-
preserving, where [0, 1] is given Lebesgue measure. (Hint: show that there is a measure-preserving bijection
¢ between conegligible subsets of [0, 1] which is covered by X; ¢ can be taken to be of the form ¢(x) = 2 —a,
for x € E,,.)

(k) Set X ={(t,2t): 0 <t < i}uU{(t,2t —1): 3 <t < 1}. Show that there is a Radon measure on X
for which both the coordinate maps onto [0, 1] are inverse-measure-preserving, but that X does not include
the graph of any measure-preserving bijection between conegligible subsets of [0, 1].

(1) Let X be the eighth-sphere {z : x € [0,1]3, ||| = 1}. Show that there is a measure on X such that
all three coordinate maps from X onto [0, 1] are inverse-measure-preserving. (Hint: 265Xe.)

(m) Set X = {z:z € [0,1]%, & + & + & = 3}, Show that there is a measure on X such that all the
coordinate maps from X onto [0, 1] are inverse-measure-preserving. (Hint: note that X is a regular hexagon;
try one-dimensional Hausdorff measure on its boundary.)

(n) Explain how to adapt the example in 457J to provide a family (u;);es of probability measures on a
set X such that (i) (u;)ier is upwards-directed, in the sense of 457G (iii) there is no measure on X extending
w; for every i € I.

(o) Let X be a topological space and Pyr the set of quasi-Radon probability measures on X. For p,
v € Pyr, write Q(u,v) for the set of quasi-Radon probability measures on X x X which have marginal
measures 4 on the first copy of X, v on the second. (i) For a bounded continuous pseudometric p on X,
set pw(p, v) = inf{ [ p(x,y)A\(d(z,y)) : X € Q(u,v)}. Show that pw is a pseudometric on Pyr. (ii) Show
that if X is completely regular and P is a family of bounded pseudometrics defining the topology of X, then
{pw : p € P} defines the narrow topology of Pyg.
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(p) Suppose that X, (v;)icr and ¢ @ P(X X [0,00[) — [0,00] are as in 457M. (i) Show that ¢ is a
submeasure. (ii) Show that if every v; is outer regular with respect to the open sets, then ¢ is an outer
regular Choquet capacity.

(q) Show that if the metric p is bounded, then 457Lc can be deduced from 457Mb and part (b-i) of the
proof of 457L.

(r) Let (X, %5, 2, i45))i<n be a finite family of Radon probability spaces, X =[]
a bounded Baire measurable function. Show that

ier Xiyand f: X 5 R

inf{ / fdu : pis a Radon measure on X with marginal measure p; on each X}

n
= sup{z / hidp; = hy € £2°(X;) is X;-measurable for each i,
i=0

Zhi(fi) < f(z) whenever z = (&, ... ,&,) € X}.
=0
(Hint: reduce to the case in which every X; is K,.)

457Y Further exercises (a) Show that for any n > 2 there are a finite set X and a family (u;);<p of
measures on X such that {y; : ¢ < n, i # j} have a common extension to a measure on X for every j < n,
but the whole family {u; : ¢« < n} has no such extension.

(b) Show that the example in 457H has the property: if f; is a v;-integrable real-valued function for each
i, and [ fidy + [ fadvp < 1, then there is an (z,y) € dom f; Ndom f, such that fi(z,y) + fo(z,y) < 1.

(c) Suppose we replace the set X in 457H with X' = X U {(z,2) : z € [0, 3]}, and write v] for the
measures on X' defined by the coordinate projections. Show that (i) if f; is a v/-integrable real-valued
function on X’ for each 4, and [ fidv{ + [ fodvs <1, then there is an (x,y) € dom f; N dom f> such that
fi(z,y) + fa(z,y) <1 (ii) there is no measure on X’ extending both v//.

(d) In 457Xm, show that there are many Radon measures on X such that all the coordinate maps from
X onto [0,1] are inverse-measure-preserving.

(e) Give an example of a compact Hausdorff space X, a sequence (v,,)nen of tight probability measures
on X, and a K, set E C X such that

inf{30% o [ hpdvrn s XE <307 (ha} =1,

sup{uE : p is a Radon measure on X and p < v, for every n € N} <

N | =

4577 Problems Give [0, 1] Lebesgue measure.

(a) Characterize the sets X C [0,1]? for which there is a measure on X such that both the projections
from X to [0, 1] are inverse-measure-preserving.

(b) Set X = {z : 2 € [0,1]3, ||z|| = 1}. Is there more than one Radon measure on X for which all three
coordinate maps from X onto [0, 1] are inverse-measure-preserving? (See 457X1, 457Yd.)

457 Notes and comments In the context of this section, as elsewhere (compare 391E-391G and 391J),
finitely additive extensions, as in 457A-457D, generally present easier problems than countably additive
extensions. So techniques for turning additive functionals into measures (391D, 413L, 413U, 416K, 454C,
454D, 457E, 457G, 457Lb, 457Mb, 457Xi) are very valuable. Note that 457D offers possibilities in this
direction: if 6 there is countably additive, u also will be (457Xa).
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457H and 457J demonstrate obstacles which can arise when seeking countably additive extensions even
when finitely additive extensions give no difficulty. For finitely additive extensions a problem can arise at
any finite number of measures (see 457Ya), but there is no further obstruction with infinite families (457Xc).
For countably additive measures we have a positive result (457G) only under very restricted circumstances;
relaxing any of the hypotheses can lead to failure (457J, 457Xn). Even in the apparently concrete case
in which we have an open or closed set X C [0,1]? and we are seeking a measure on X with prescribed
image measures on each coordinate, there can be surprises (457H, 457Xj, 457Xk), and I know of no useful
description of the sets for which such a measure can be found (457Za).

The two-dimensional case has a special feature: when verifying the conditions (ii) or (iii) in 457A, or the
condition (ii) of 457B, it is enough to consider only one set associated with each coordinate (457C). Put
another way, in conditions (iv) and (v) of 457A it is enough to examine indicator functions. This is not the
case as soon as we have three coordinates (4571). Compare 457A (ii)-(iii) with the definition of ‘intersection
number’ of an indexed family in a Boolean algebra (391H), where we had to allow repetitions for essentially
the same reason.

In 457K-457L, we can of course work with 7-additive Borel measures in place of quasi-Radon measures,
as in 437M. The essential content of 457L is already displayed in the case of separable X, in which case all
Borel measures are 7-additive, and we can fractionally simplify our hypotheses; indeed this is true whenever
X has measure-free weight (4387J).

The functional pw of 457K-457L is a kind of [0, co]-valued metric; see 4A2T for another occasion on which
it would have saved explanation if the definition of ‘metric’ allowed infinite distances. In 457Lb we think of
the metric p as representing a cost to be minimised, and in 457Mb we think of f as a profit to be maximised;
since both arguments rely on the functions being non-negative, they cannot be simply inverted unless p or
f is bounded above (as in 457Xq), and there is a further complication from the asymmetric nature of the
condition ‘{z : f(z) > a} is K-analytic’ in 457M. However, for the primary applications, as in 457Xr, this
is not a problem. Observe that the same pattern has already appeared in 457A(iv)-(v).

Version of 20.11.17

458 Relative independence and relative products

Stochastic independence is one of the central concepts of probability theory, and pervades measure theory.
I come now to a generalization of great importance. If X;, X5 and Y are random variables, we may find
that X; and X5 are ‘relatively independent over Y, or ‘independent when conditioned on Y’ in the sense
that if we know the value of Y, then we learn nothing further about one of the X; if we are told the value
of the other. For any stochastic process, where information comes to us piecemeal, this idea is likely to be
fundamental. In this section I set out a general framework for discussion of relative independence (458A),
introducing relative distributions (458I) and relative independence in measure algebras (458L-458M). In
the last third of the section I look at ‘relative product measures’ (458N, 458Q), giving the basic existence
theorems (4580, 458S, 458T).

458 A Relative independence Let (X, X, 1) be a probability space and T a o-subalgebra of 3.

(a) I say that a family (E;);c; in ¥ is relatively (stochastically) independent over T if whenever
J C I is finite and not empty, and ¢; is a conditional expectation of yFE; on T for each ¢ € J, then
wW(F NNy Ei) = [ 11;c; 9idp for every F' € T; that is, [],.; g; is a conditional expectation of x (., Ei)
on T. (Note that this does not depend on which conditional expectations g; we take, since any two conditional
expectations of xE; must be equal almost everywhere.) A family (%;);e; of subalgebras of ¥ is relatively
independent over T if (F;);cs is relatively independent over T whenever E; € ¥; for every i € I.

(b) I say that a family (f;)ier in £°%(u) (the space of almost-everywhere-defined virtually measurable
real-valued functions, or ‘random variables’) is relatively independent over T if (X;);cr is relatively
independent over T with respect to the completion of u, where ¥; is the o-algebra defined by f; in the sense
of 272C, that is, the o-algebra generated by {f; '[F]: F C R is a Borel set}.

(©) 2007 D. H. Fremlin
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(c) I remark at once that a family of subalgebras or random variables is relatively independent iff every
finite subfamily is (cf. 272Bb).

(d) It will be convenient to have a shorthand referring to lattices of o-algebras of sets. If X2, T are algebras
of subsets of a set X, I will write ¥ V T for the o-algebra of subsets of X generated by X U T; similarly,
if (¥;)ier is a family of algebras of subsets of X, then \/,.; ¥; will be the o-algebra generated by |J,;c; X
Note that the functions V, \/ here are always supposed to yield o-algebras, even if we start with algebras
which are not closed under countable unions, so that ¥ V X could in principle be strictly larger than 3. As
will become evident in 458D and 458G, the difference between a o-algebra and a simple algebra of sets is
relatively unimportant just here.

458B There are some surprising results at the very beginning of the theory of relative independence;
see 458Xa, for instance. On the positive side, we have the following facts.

Lemma Let (X, 3, u) be a probability space, T a o-subalgebra of ¥, and (3;);c; a family of subalgebras
of ¥ such that T C (J,c; ;. Suppose that whenever J C I is finite and not empty, E; € ¥; and g; is
a conditional expectation of xE; on T for each i € J, then pu((;c; Ei) = [[l;c; 9idp. Then (X;)ies is
relatively independent over T.

proof Take F' € T, a finite non-empty J C I and E; € 3; for i € J. Let j € I be such that F € ;. Set
K=JuU{j}ifj ¢ J,set E; = X. Now set B} = E; N F and E] = E; for i € K \ {j}.

For i € K, let g; be a conditional expectation of xE; on T. Set g} = g; x xF' and g; = g; for i € K\ {j};
then g, is a conditional expectation of xE/ for each i € K. So we have

WE NNy Bi) = w(Miex £7) = f [lick gidp = fF [Tics gidn.
As F and (E;);c; are arbitrary, (X;);c; is relatively independent over T.

458C Proposition Let (X,X, ) be a probability space, T a non-empty upwards-directed family of
subalgebras of ¥, and (X;);c; a family of o-subalgebras of ¥ which is relatively independent over T for every
T € T. Then (3;);cr is relatively independent over \/ T.

proof (a) Suppose first that T is countable; because it is upwards-directed, there is a non-decreasing
sequence (T,,)nen in T such that (JT = {J,cy Tn and \/ T =/, .y Tr. Take a non-empty finite set J C I
and F; € ¥; fori € J;set £ = ﬂieJ FE;. Fori € J, let g,; be a conditional expectation of y F; on T,, for each
n; then g; = lim,,_, o gn; is a conditional expectation of xF; on \/ T (275I). Similarly, if A, is a conditional
expectation of yE on T,, for each n, h = lim,,_, h, is a conditional expectation of xyE on \/T. Since
(E;Yicy is relatively independent over T, hy,, =a.c. Hingni for each n; accordingly h =, . HieJ h;, and
[1I;c; hi is a conditional expectation of £ on \/ T. As (E;)c s is arbitrary, (¥;)cs is relatively independent
over \/ T.

(b) For the general case, take a non-empty finite J C I and E; € 3; for i € J; set E = (,.; E;. For each
i€ J, let g; : X = [0,1] be a \/ T-measurable conditional expectation of xE; on \/T, and g : X — [0, 1]
a \/ T-measurable conditional expectation of yE on \/T. Then for every ¢ € J and ¢ € Q there is a
countable set T;, C T such that {z : g;(z) > ¢} € \/ T4y; similarly, there is for each ¢ € Q a countable set
T;, € T such that {z : g(z) > ¢} € VT,. Let T be a countable upwards-directed subset of T including
Uiesqeq Tig U U eq Tq- Then every g; is \/ T-measurable, so is a conditional expectation of YF; on \/ T;

similarly, ¢ is a conditional expectation of YE on \/T. By (i), g =a.. [I,cs9i» so [1;cy 9i is a conditional
expectation of yE on \/T. As (E;);c is arbitrary, (X;),cr is relatively independent over \/ T, as claimed.

458D Proposition Let (X, X, 1) be a probability space, T a o-subalgebra of ¥ and (X;);cr a family of
subalgebras of ¥ which is relatively independent over T.

(a) If J C I and %} is a subalgebra of X; for i € J, then (X});c is relatively independent over T.

(b) Set ¥ =3; VT for i € I. Then ()¢ is relatively independent over T.

(¢) If € CU,; i, then (3;)icr is relatively independent over the o-algebra generated by T U E.

proof (a) Immediate from the definition in 458Aa.

i€l
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(b)(i) Suppose that Fy € T and that X} is the algebra generated by ¥; U {Fp} for each ¢ € I. Then
(X0)ier is relatively independent over T. I Suppose that J C I is finite and not empty, and that E; € X
for each i € J. For i € I, we can express E; as (G; N Fy) U (H; \ Fy), where G;, H; € X;. Let g;, h; be
conditional expectations of xG;, xH; on T; then f; = g; x xFo + h; x x(X \ Fp) is a conditional expectation
of YE on T. Now, for any F' € T, we have

/FHfi:/FHQi><XF0+Hhixx(X\F0)

ieJ = ied
— [ Tlo+ [ TIh=s@n()6:nEa)+u(F 0 () Hi\ Fo
FNFo je g F\Fo je g ieJ ieJ
(because the families (G;);cs and (H;);c; are both relatively independent over T)

= u(F () E).

ied
As (E;);es is arbitrary, (X});er is relatively independent over T. Q

(i) Suppose that & C T is finite, and that ¥} is the algebra generated by ¥; U £ for each i. Then
(XY ier is relatively independent over T. P Induce on #(€), using (i) for the inductive step. Q

(iii) Suppose that ¥ is the algebra generated by X; U T for each ¢ € I. Then (X});cs is relatively
independent over T. P If J C T is finite and not empty, and F; € X/ for each ¢ € J, then there is a finite
set &€ C T such that E; belongs to the algebra X7 generated by E; U € for every i € J. By (ii), (X/)ier is
relatively independent over T, so (E;);cs is relatively independent over T; as (E;);cs is arbitrary, (X]);cr is
relatively independent over T. Q

(iv) Finally, suppose that J C I is finite and not empty, that E; € ¥¥ for each i € J, that FF € T
and that € > 0. For i € J, let X} be the algebra generated by ¥; U T; then there is an E] € X! such that
w(EIAE;) < e (136H). Let g;, g; be conditional expectations of xE;, xE; on T; we can arrange that they
are all defined on the whole of X and take values in [0, 1]. Then

P (VB - [ TLol < X utEsg)+lurn (Y£) - [ Tl

ieJ ieJ ieJ ieJ ied
+ [ 1TLs - o
Foies icJ
Se#(J)+0+/ > gt — ail
Flier
((iii) above and 2850)
<)+ [ loi o

icJ
<)+ Y [ I - i
iceJ
(233J or 242Je)
= #(J) + ) n(BIAE:) < 264(J),
i€J
As ¢ is arbitrary,
WE N ey Bi) = fF [Lics 9i-
As (E;)ies and F are arbitrary, (X¥);c; is relatively independent.

(c) For any € C |J,.; X, write Tg for the o-algebra generated by T U E.

iel
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(i) Suppose that 4, j € I are distinct, E € ¥;, g is a conditional expectation of xE on T, and H € X;.
Then g is a conditional expectation of x£ on Tyg),. I Let h be a conditional expectation of xH on T. If
F €T, then

u(FﬂHﬂEi):/gxh
F

(because ¥; and ¥; are relatively independent over T')

:/gxxH
r

(because g X h is a conditional expectation of g x YH on T, see 233Eg)

:/ g.
FNH

Similarly, u(F N E; \ H) = fF\H g. Now any G € Ty} is expressible as (Fy N H) U (Fy \ H) where F1,
F, €T, so that

p(GNE) = p(FNENH) + p(F,NENH) = [0+ [ 9= [0

as required. Q
ii)If je I and H € X;, (3;);¢cr is relatively independent over Ty .
J {H}

P (a) Let J C I be a non-empty finite set containing j, and (E;);cs a family such that E; € ¥, for
i€J. Set K=J\{j}. Forie K, let g; : X — [0, 1] be a T-measurable conditional expectation of xF; on
T. Then g; is a conditional expectation of xE; on T}, by (i). Let g; be a conditional expectation of x E;
on Ty, and g; a conditional expectation of x(E; N H) on T. Then, for any F' € T,

WFAHN()E)=uFn(ENH N () E) /g]ngz

ic€J €K €K
(because (X;);c s is relatively independent over T)

F ieK
(233Eg again, because [[,.x i is bounded and T-measurable)

:/FOHXEJXH%:/FO 9 < [ 9

€K ieK

because | [, g; is bounded and Ty jy-measurable). Similarly,
€K {H}

M(Fﬂ ﬂiEJ El \H) = fF\H g] X HzGKgl = fF\H H'LEJgi
for every F' € T; putting these together, as in (i),
(G N(Nes Ei) = fG [Lics9i
for every G € Typy, and [];c; g: is a conditional expectation of x([;c; £i) on Tyz;.

(B) This is not exactly the formula demanded by the definition in 458Aa, because I supposed that
J € J; but if we have a non-empty finite J C I'\ {j} and (Ej)ics € [[;c; %, set J' = JU{j} and E; = X
to see that there is a family (g;);cs such that g; is a conditional expectation of x/; on Tz for every 4,
and

(G NNies Bi) = (G NNy Bi) = fa [Licy9i= fa [Lics9i
for every G € Tygy. So (X;)ies really is relatively independent over Trqy. Q

(iii) Inducing on #(&), we see that (X;);c; is relatively independent over Tg whenever £ C J;c; ¥ is

finite. By 458C, (¥;)ie; is relatively independent over T¢ for every £ C | J,;o; X
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Remark Putting (a) and (b) above together, we see that if (3;);cs is a family of subalgebras of X, and
3, is the o-algebra generated by 3; for each ¢, then (¥;);cs is relatively independent over T iff <fli>i€[ is
relatively independent over T.

458E Example The simplest examples of relatively independent o-algebras arise as follows. Let (X, X, p1)
be a probability space, (T;);c; an independent family of o-subalgebras of X, as in 272Ab, and T a o-
subalgebra of ¥ which is independent of \/,_; T;. For each i € I, let ¥; be TV T;. Then (¥;);cs is relatively
independent over T.

proof In view of 458Db, it is enough to show that (T;);cs is relatively independent over T. But if we have
a non-empty finite J C I and E; € T; for i € I, then u(E; N F) = uE; - uF for F € T, so f; = pE; - xX is
a conditional expectation of xE; on T, for each 7. Similarly, setting ' = ;. ; £, uE - xX is a conditional
expectation of xE on T. Since uE = [[,c; uEj, [];c; fi is a conditional expectation of xE on T, which is
what we need to know.

458F The following facts are elementary but occasionally useful.

Proposition Let (X, X, u) be a probability space and T a o-subalgebra of X.
(a) Let (f;)icr be a family of non-negative u-integrable functions on X which is relatively independent
over T. For each i € I let g; be a conditional expectation of f; on T. Then for any F' € T and ig,... ,i, € I,

fF H?:o 9i; < fF H?:o fi
with equality if all the ¢; are distinct.
(b) Suppose that ¥;, 3o are o-subalgebras of ¥ which are relatively independent over T, and that
f € LY(ulBy). If g is a conditional expectation of f on T, then it is a conditional expectation of f on
TV X,.

proof (a) Let ; be the g-algebra generated by f; for each 7, so that (X;);er is relatively independent (with
respect to the completion of ) over T.

(i) To begin with, suppose that ig,... ,i, are all different.

(@) If f; = xF; for each i € I, where E; € 3;, the result is just the definition of ‘relative independence’
in 458Aa.

(B) Because both sides of the desired equality are multilinear expressions of the inputs, and condi-
tional expectation is an essentially linear operation, the same is true if all the f; are simple functions.

() For general non-negative integrable random variables f;, let {f;x)ken be a non-decreasing sequence
of non-negative ¥;-simple functions converging almost everywhere to f; for each i, and g;. a conditional
expectation of f;; for all ¢ and k. Then (g;x)ren is non-decreasing almost everywhere and converges a.e. to
the given conditional expectation g; of f;. So

as required.

(ii)(a) Now suppose that the idg,... ,i, are not all distinct, but that all the f;; are bounded. Let
lo, ...l enumerate {ig,...,i,} and for j < m set k; = #({r : i, = l;}). For each j < m, let h; be a
conditional expectation of fl’jj = |fi,|". Because ¢ [t|*7 is convex, gl]zj <ae hj (2337). So

/Fjl_‘[)g. /Fjl_[oglj Fg'l:[o j FE) 1

(by part (i), because each fl]:j is X;,-measurable)
n
= / H fija
Filo
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as required.

(B) Finally, for the general case, take simple functions f;; and conditional expectations g;; as in
(a-iii) above. Then

fF H;l:o Gi; = limy 00 fF H?:o Gijk < limy o0 H;—lzo fF Jisk = fF H?:O fiss

and the proof is complete.

(b) Adjusting f on a negligible set if necessary, we may suppose that f is ¥;-measurable. Take any
F €%V T, and let h > 0 be a conditional expectation of xF on T. By 458Db and 458Da, ¥; and 3o VT
are relatively independent over T, so f and xF are relatively independent over T. Accordingly

/f:/fxxF:/gxh
F
(applying (a) to the positive and negative parts of f)

:/gxxF
:/g'
F

g€ LY (uT) C LY (uS2 v ),

(233K)

As F is arbitrary and

g is a conditional expectation of f on ¥y VvV T.

Remark In (a), I have avoided speaking of conditional expectations of products H?:o fi; because these
need not be integrable functions. But when H;'l:o fi; is integrable and has a conditional expectation g, then
we must have H;L:O 9i; Zae. g, with equality almost everywhere when the i; are distinct.

*458G It is sometimes useful to know that ‘relative independence’ can be defined without using the
apparatus of conditional expectations; indeed, we have a formulation which can be used with finitely additive
functionals rather than measures.

Lemma Let (X, X, i) be a probability space, T a o-subalgebra of X, and (¥;);c; a family of subalgebras of
3. Let T be the family of finite subalgebras of T. For A € T write A, for the set of non-negligible atoms in
A. For non-empty finite J C I, (E;)ics € [[;c;Xi and F € T, set
E,NH
OA(F (Ei)ies) = Xpea, MHNE) - Tlie, %
Then (X;);c; is relatively independent over T iff limpaer at ¢a (F, (Ei)ics) = u(FN();c; Ei) whenever J C I
is finite and not empty, E; € X; for every ¢ € J and F € T.

proof (a) The point is just that if J C I is finite and not empty, E; € ¥; for ¢ € J, g; is a conditional
expectation of xYFE; on T for each i, and F' € T, then fF [Licy 9idp = limay oA (F, (Ei)ics). P Adjusting
each g; on a negligible set if necessary, we may suppose that it is T-measurable, defined everywhere on X
and takes values between 0 and 1.

Fix n € N for the moment. Let A,, be the finite subalgebra of T generated by sets of the form {z : g;(x) <
27"k} for i € J and k < 2", and A any finite subalgebra of ¥¢ including A,,. If H € A, then there are
integers k;p, for i € J, such that 27"k;g < g;(z) < 27"(kig + 1) for every ¢ € J and = € H. So

_ (ENH)
QN < pi(
sz = WH

<27"(kigp + 1)
for each i. Accordingly
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S wHNF)-[[27 " kin < oa(F, (E)icy)

HeAp ieJ

< Z (HNF)- Hmm 27 (ki + 1)),

that is,
fF HieJ g;nd:u < OA(F, (Ei)ics) < fF HieJ g;;’zd:u7
where g, (z) = 27"k, g/ () = min(1,27"(k + 1)) when 27"k < g;(xz) < 27"(k + 1). But this means that

|6a(F, (Ei)ier) /ngdu|</Hg ngdu</zg — gidp

i€J ic€J ic€J i€J
(because all the ¢.,., i take values in [0, 1])

< 27"#(J).
Since this is true for every A D A,, and every n € N, limaq ¢a(F, (E;)ic) fF icg 9idp. Q
(b) Accordingly the condition given exactly matches the definition in 458A.

458H All the fundamental theorems concerning stochastic independence have relativized forms. A
simple one is the following.

Proposition (Compare 272K.) Let (X, X, u) be a probability space and T a o-subalgebra of ¥. Let (X;);c;
be a family of o- subalgebras of ¥ which is relatively independent over T. Let (I;);cs be a partition of I,
and for each j € J let ¥ be VzEIj .

(a) If (%;)ics is relatively independent over T, then (3;) ;¢ is relatively independent over T.

(b) Suppose that (3;) je s is relatively independent over T and that (X;);e 1; is relatively independent over
T for every j € J. Then (X;);c; is relatively independent over T.

proof For each F € ¥ let fg be a conditional expectation of xyE on T.

(a) Take any ﬁmte K C J, and let W be the set of families (W) cx such that W; € % for each j € K
and p(FNex W. = .11 jex fw;dp for every F' € T. For each j € K, let C; be the famlly of measurable
cylinders expresmble as W = X N(,cp Ei where L C I; is finite and E; € X; for i € L. Note that in this
case

i€l

u(FOW) = pu(F 0 Nep £i) :fp [Licr fe.dn

for every F' € T, so fw =a.. [[;c1, [E:, taking the product to be x X if L is empty.
If W; € C; for each j € K, then (W,);cx € W. I Express W; as X N[ E; where L; C I; is finite

and F,; € 3; whenever j € K and ¢ € L;. Then, setting L = J

i€L;
JGK

p(F0 ()W) =u(Fn()E) /HfEdp

JjEK i€l i€L
(because (X;);er is relatively independent)
~ [ TLII fou= [ I s
jeEK i€L; JjEK

for every F € T. Q y

Observe next that if we fix £ € K, and a family (W});ex\(x}, then the set of those W}, € ¥ such that
<W Yiex € W is a Dynkin class, so if it includes Cj it must include the o-algebra generated by Cy, viz.,
Y. Now an easy induction on n shows that if (W,);ex € HjeKE and #({j : W; ¢ C;}) = n, then
(Wj)jex € W. Taking n = #(K) we see that [[,cx Y, CW.
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As this is true for every finite K C J, <flj> jeg is relatively independent over T, as claimed.

(b) This time, let K C I be a non-empty finite set, and E; € ¥, for i € K. Set L = {j : j € J,
KNI; # 0}, and for j € Lset Gj = ﬂieKij Ej;set E= (e, Ei = ﬂjeL G;. Because (¥;)icy; is relatively

independent over T, fg, =a.c. Hieij fE,. Because <ij>jej is relatively independent over T,

fE a.e. HjeL ij —a.e. HiEK fEL

As (E;);ek is arbitrary, we have the result.

4581 For the next result, we need a concept of ‘relative probability distribution’, as follows.

Definition Let (X, Y, u) be a probability space, T a o-subalgebra of ¥, and f € £%(u). Then a relative
distribution of f over T will be a family (v,),cx of Radon probability measures on R such that z — v, H
is a conditional expectation of xf ~[H] on T for every Borel set H C R.

458J Theorem Let (X, ¥, 1) be a probability space, T a o-subalgebra of 3, and f € £%(u). Then there
is a relative distribution of f over T, which is essentially unique in the sense that if (v;).cx and (V))zex
are two such relative distributions, then v, = v/, for u| T-almost every x.

proof (a) Write pg for the restriction of p to T, i for the completion of pu, 3 for the domain of it, and B
for the Borel o-algebra of R. Then the function z — (z, f(x)) : dom f — X x R is (3, T®B)-measurable,
just because F'N f~1[H] € S for every F € T and H € B. So we have a probability measure v on X x R
defined by setting vW = ji{z : (x, f(z)) € W} for every W € T®B. The marginal measure on R is tight just
because it is a Borel probability measure (433Ca). By 452M, we have a family (v, ).cx of Radon probability
measures on R such that vW = [ v, W[{x}|uo(dz) for every W € T&B. In particular, if H € B,

S xS HYdp = p(F 0 f7HH]) = v(F x H) = [, v, H p(dx)

for every F € T, and z + v, H is a conditional expectation of xf~![H] on T, that is, (v,)zcx is a relative
distribution of f over T.

(b) Now suppose that (V))zex is another relative distribution of f over T. Then for each H € B we have
JpveHp(dx) = [ v,Hpu(dz) for every F € T, so that v, H = v, H for jp-almost every x. But this means
that for pg-almost every z, we have v, H = v, H for every interval H with rational endpoints; and for such
x we must have v, = v, (415H(v)).

458K Now we can state and prove a result corresponding to 272G.

Theorem Let (X, Y, 1) be a probability space, T a o-subalgebra of X, and (f;)ies a family in £°(u). For
each i € I, let (v;;)zex be a relative distribution of f; over T, and ﬁ : X — R an arbitrary extension of f;
to the whole of X. Then the following are equiveridical:

(i) (fi)ier is relatively independent over T;

(ii) for any Baire set W C RY and any F € T,

A(F 0 W) = [ AW a(da),

where /i is the completion of p, f(x) = (fi(x))ies for € X, and ), is the product of (v;,)ie; for each ;
(iii) for any non-negative Baire measurable function h : R — R and any F € T,

Jpbfdp= [, [ hdr,pu(dz).

proof (a) Note first that if i € I and H C R is a Borel set, then z — v, H is a conditional expectation of
xf; '[H] on T, so that [}, v, Hu(dz) = p(F N f7'[H]) for every F € T.

Suppose that (f;);er is relatively independent, and F € T. Let C be the family of Baire measurable
cylinders of R! expressible in the form C = {2 : z € R, 2(i) € H, for every i € J} where J C I is finite and
H; C R is a Borel set for each i € J. For such a set C,
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AE N FC) = aF 0 () F D) = a0 (V57 1) = [ ] vieHin(d)
ieJ ieJ Fies
(interpreting an empty product as xX)

= /F A Cu(dz).

So
W={W:W CR! A(FNf W) = [ AWp(de)}

includes C; since it is a Dynkin class, it contains every Baire subset of R? (by the Monotone Class Theorem,
136B), and (ii) is true.

(b) Now suppose that (ii) is true. Let X; be the o-algebra defined by f; for each i. If J C [ is finite
and F; € ¥; for each i € J, then there are Borel sets H; C R such that EiAfi_l[Hi] is negligible for each i,
so that = — v, H; is a conditional expectation of yE; on T. Now by the same equations as before, in the
opposite direction,

LHMEWMZLMWWQ

i€J
(where C = {z: 2(i) € H; for i € J})
= AFNfC) = p(F () £ H) = MF N () E)

icJ e
for every F € T. As (F;);cs is arbitrary, (X;);cr and (f;)ier are relatively independent.

(c) Thus (i)<(ii). For (ii)=-(iii), observe that (ii) covers the case in which h is an indicator function
xW; for the general case, express h as the supremum of a non-decreasing sequence of linear combinations
of indicator functions, as usual. And (iii)=-(ii) is trivial.

Remarks Of course the ungainly shift to f; is unnecessary if I is countable; but for uncountable I the
intersection [, ; dom f;, which is the only suitable domain for f, may not be conegligible.

I said that A, should be ‘the product of (v;;);er’. Since the v;, are Radon probability measures, we
have two possible interpretations of this: either the ‘ordinary’ product measure of §254 or the ‘quasi-Radon’
product measure of §417. But as we are interested only in the values of A\, W for Baire sets W, it makes no
difference which we use.

458L Measure algebras We can look at the same ideas in the context of measure algebras. Let (2, 1)
be a probability algebra and € a closed subalgebra of 2.

(a) If a € A, then we can say that v € L>(€) is the conditional expectation of xa on € if [ u = fi(cna)
for every ¢ € € (365Q%). Now we can say that a family (b;);c; in 2 is relatively (stochastically)
independent over € if fi(cn inf;c 5 b;) = fc [I;c; wi whenever J C I is a non-empty finite set and wu; is the
conditional expectation of xb; on € for every i € J; while a family (%B;);cs of subalgebras of 2 is relatively
(stochastically) independent over € if (b;);c; is relatively independent over € whenever b; € B, for
every i € 1.

Corresponding to 458Ab, we can say that a family (w;);e; in L°(2A) is relatively (stochastically)
independent over € if (B8;),c; is relatively stochastically independent, where 9B; is the closed subalgebra
of A generated by {[w; > ] : « € R} for each i.

Returning to the original form of these ideas, we say that a family (b;);c; in 2 is (stochastically)
independent if it is relatively independent over {0, 1}, that is, if a(infsc s b)) = ], ; fib; whenever J C I is
finite. Similarly, a family (B;);cr of subalgebras of 2 is (stochastically) independent, in the sense of 325L,
iff it is relatively independent over {0, 1} in the sense here.

23Formerly 365R.
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(b) Let (X, %, u) be a probability space and (2, i) its measure algebra. Let (E;)icr, (2i)icr and (fi)icr
be, respectively, a family in X, a family of subalgebras of 3, and a family of u-virtually measurable real-
valued functions defined almost everywhere on X; let T be a o-subalgebra of 3. For i € I, set a;, = E} € U,
B, ={E*: F e}, and w; = ff € L°(A), identified with L°(u) (3641c). Set ¢ = {F*: F € T}. Then

(a;)ier is relatively independent over € iff (E;);c; is relatively independent over T,

(B;)icr is relatively independent over € iff (X;);c; is relatively independent over T,

(w;)ier is relatively independent over € iff (f;);c; is relatively independent over T.
P The point is that if f € £1(u) (in particular, if f = yF for some E € XJ), and g € L*(u[T) C £1(u) is a
conditional expectation of f on T, then ¢g* is a conditional expectation of f* on €; see 242J and 365Q. Q

(c) Corresponding to 458B, we see that if (;);c; is a family of subalgebras of 2 such that € C | J,; i,
and ineJuidﬂ = f(inf;c s a;) whenever J C [ is finite and not empty and a; € 2; and u; € L>®(€) is a
conditional expectation of xa; on € for each i € J, then (2;);c; is relatively independent over €.

(d) Corresponding to 458Db, we see that if (%B;);cr is a family of subalgebras of 2 which is relatively
independent over €, and B} is the closed subalgebra of 2 generated by B; U € for each i, then (B);cr is
relatively independent over €. The most natural proof, from where we are now standing, is to express (2, i)
as the measure algebra of a probability space (X,2,u), set T={F: F* € €} and X; = {F : E* € B;} for
each 7 € I, and use 458D.

Corresponding to 458Dc, we see that if (3B;);cr is a family of subalgebras of 2 which is relatively inde-
pendent over €, D; € B; for every i € I, and D is the closed subalgebra of 2 generated by €U J,c; Ds,
then (B;);c is relatively independent over ©.

(e) Following 458H, we have the result that if (%B;);cs is relatively independent over €, and (I;) e is a
partition of I, and B, is the closed subalgebra of 2 generated by | J,;.;. B; for every j € J, then (B,),cs is
relatively independent over €.

i€l

(f) Note that if @ € 2 and u is the conditional expectation of xa on €, then [u > 0] = upr(a, €), by
365Qc. So if (%B;);er is a family of subalgebras of 2 which is relatively independent over €, and J C I
is finite, and b; € B; for each i € J, then inf;c;b; = 0 iff inf;c;upr(b;, &) = 0. (If u; is a conditional
expectation of xb; on € for each i, then

infie j upr(b;, €) = infic s [u; > 0] = [[I,c; wi > 0]
is zero iff fi(infie s b;) = [[;c; ui =0.)

(g) We have a straightforward version of 458E, as follows. If (€;);c; is a stochastically independent
family of closed subalgebras of 2, € is independent of the algebra generated by (J;.; €;, and 9B; is the closed
subalgebra of 2 generated by €U €; for each i, then (B;);cs is relatively independent over €. (Either repeat
the proof of 458E, looking at B,9 = €; and B;; = € for each 7, or move to a measure space representing 2
and quote 458E.)

(h) Similarly, we can translate 458F into this language. Let P : L*(, 1) — LY(€, il €) € LY(A, i) be
the conditional expectation operator associated with € (365Q again). Suppose that (3B;);cs is a family of
closed subalgebras of 21 which is relatively independent over €. Then

fc H;’L:O Pu; < fc H;L:O u;j

whenever ¢ € €, dg,... .4, € I and u; € Ll(%ij,m%ij)* for each j < n, with equality if g, ... ,i, are
distinct.

458M Proposition Let (2, i) be a probability algebra and 9, € closed subalgebras of 2. Write Py, P
and Pyne for the conditional expectation operators associated with 98, € and BN €. Then the following are
equiveridical:

(i) B and € are relatively independent over B N €;

(i) Pyne(v X w) = Ppnev X Pynew whenever v € L®(B) and w € L (€);

(ifi) Py Pe = Panc;
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(iv) Py Pe = PePu;
(v) Pyu € L°(€) for every u € LY(€, ii] €).

proof Write P for Pyne.

(i)=(ii) If (i) is true, v € L>®(B) and w € L>°(€), then Pv x Pw certainly belongs to L>°(B N €), and
ifde BNE, [,Pvx Pw= [,vxw by 458Lh. So Pv x Pw = P(v X w).

(ii)=(i) If (ii) is true, b€ B, c € € and d € B N €&, then
p(ldnbne) = fdxb X xc = fdP(Xb X xc) = fdP(Xb) x P(xc)
as required by the definition in 458La.

(ii)=(iii) Suppose that (ii) is true. First note that if w € L*°(€) then Pw = Pyw. P Of course
Pw e L®(BNE) C L=(B). If b € B, then

b
:/Pw,
b

so that Pw possesses the defining properties of Pyw. Q

But this means that if u € L (), Py Peu = PPeu, which in turn is equal to Pu just because BNE C €
(see 233Eh). As u is arbitrary, PgPy agrees with P on L°(2(); but L (%) is || ||1-dense in L*(2A, 1), and
Py Py and P are both || ||1-continuous, so they agree everywhere on L!(2, 1) and are equal, as required by
(ii).

(iii)=-(ii) Suppose that (iii) is true, and that v € L (B), w € L*°(€) and d € B N C. Then

(365Qa)

/Pvwa:/devaPw:/devwa
d
(because xd x Pw € L*°(B N ¢))

:/devxPst

:/devxw
— [vxw.
d

As d is arbitrary and Pv x Pw € L*(BN¢C), Pv x Pw = P(v X w).

(because Psw = w)

(because xd x v € L*(8))

(i)=(iv) follows immediately from (i)=-(iii) and the symmetry of the relation “B and € are relatively
independent over 8 N ¢ .

(iv)=(v) If (iv) is true and u € L(€, i €), then
Pyu = PgPsu = PgPgu € LO(Q:),
so (v) is true.

v)=(111 v) is true, and v € L;, then Pru € , [ , so Py FPsu belongs to N =
iii) If d L}L hen P, LY(¢, gl ¢ Py Psu bel LO(¢) N LB
LO(B N ¢€), and of course

fdP%Pgu = fdPQ‘u = fdu
for every d € BN €. So Py Peu = Pu. As u is arbitrary, (iii) is true.
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458N Relative free products of probability algebras: Definition Let ((2;, fi;))icsr be a family of

probability algebras and (€, 7) a probability algebra, and suppose that we are given a measure-preserving
Boolean homomomorphism 7; : € — 2; for each i € I. A relative free product of ((;, [i;, 7;))ics over
(¢, D) is a probability algebra (2, i), together with a measure-preserving Boolean homomorphism ¢; : 2; — 2
for each ¢ € I, such that

2 is the closed subalgebra of itself generated by (J,; ¢:[2i],

GiT; Z(bjﬂ'j : € — A for all 4, j€el,

writing © for the common value of the ¢;[m;[€]], (¢;[2;])ier is relatively independent over D.

Remark The homomorphisms m; and ¢; are essential for the formal content of this definition, and will
necessarily appear in the basic result 4580. But conceptually they are a nuisance; we should much prefer
to think of every %; as a subalgebra of 2, and of € as actually equal to (),c; 2; = D. It may help if I spell
out the key condition ‘(¢;[2;])ier is relatively independent over D’ in terms of € and the ;.

The common value 7 of the ¢;m; is a measure-preserving isomorphism between € and ®, so gives rise to
an f-algebra isomorphism S : LY(€) — L%(®) such that S(xc) = x(mc) for every ¢ € € (364P); note that
S[L>(€)] = L>*(D) and [ Sudji = [udv for every u € L*(€) (365N?1). If u € L>°(€) and d € D, then

/Sudﬁz/Su X deﬁz/Sux S(x(m~d))dp
d

- /S(u « x(rLd))dfi = /u X x(r—Ld) d = /ﬂildudz?.

Next, for ¢ € T and a € 2;, we have a completely additive functional ¢ — f;(anmc) : € — [0,1]; let
Uiq € L°(€) be a corresponding Radon-Nikodym derivative, so that fc Uiedl = fi;(anm;c) for every ¢ € €
(365E). (Thus u;, € L>®(€) corresponds to the conditional expectation of ya on the algebra m;[€] C 2;.)
The image Su;, in L (D) is defined by the property

[, Suwiadip = [ _, wiadv = pi(anmi(¢im)td) = pi(ang;'d) = p(¢iand)

for every d € ©; that is, Su,, is the conditional expectation of x(¢;a) on D.
Note also that ® C ¢;[2;] for every i € I. So we can use the criterion of 458B/458Lc to see that

(¢:[i])icr is relatively independent over ©
iff ﬂ(llgf} bia;) = /H St q,;dfi
i€J
whenever J C I is finite and not empty and a; € A, for i € J
iff A(inf dia;) = /H Ui, a, AV
ieJ
whenever J C I is finite and not empty and a; € 2; for i € J

because S is multiplicative, so we always have

J ey Suiadi = [ S(Tie s wiai)di = [ Tlies tia,dv.

4580 Theorem Let ((2;, fi;))icr be a family of probability algebras, (€, ) a probability algebra and
m; + € — 2; a measure-preserving Boolean homomomorphism for each i € I. Then ((2;, fi;, 7;))icr has an
essentially unique relative free product over (€, ).

proof (a)(i) Let B be the free product of (U;);cr (315I); write ¢; : A; — B for the canonical embedding of
2A; in B. For each i € I, a € A; let u;, € L°(€) be such that fc wiqdv = f;(anm;c) for every ¢ € € (365E
again).

Because the map a — u;q : d; — L(€) is additive for each ¢, 326E tells us that there is a unique additive
functional A : B — [0, 1] such that

24Formerly 3650.
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)\(infieJ 57;ai) = f HiEJ uiyaidﬁ
whenever J C T is a non-empty finite set and a; € 2; for every i € J. Of course u;; = x1 in L°°(€) for
every i € I, interpreting the ‘1’ in w;; in the Boolean algebra 2(;, and the ‘1’ in x1 in the Boolean algebra
¢; so (this time interpreting ‘1’ in B) A1 = 1 (the final ‘1’ being a real number).
We see also that w; r,c = xc whenever i €  and cc €. P
fd Ui cdV = fi(mienmd) = v(end) = fd xcdp
for every d € ©. Q
(ii) By 3921, there are a probability algebra (2, i) and a Boolean homomorphism ¢ : 8 — 2 such that
A = fip. We can of course suppose that 2 is the order-closed subalgebra of itself generated by ¢[%B] (which
is in fact automatically the case if we use the construction in the proof of 3921I).
For each ¢ € I, set ¢; = ¢e; : A; — 2. This is a Boolean homomorphism because ¢ and ¢; are. If a € ;,
then
noia = ﬂ((baia) = Xg;a = fuiadﬂ = ﬂl(a ﬂﬂ'il) = l;a,
SO ¢; is measure-preserving.
Ifi, j € I and c € € then

ﬂ(¢iﬂic A (ﬁjﬂ'jc) e )\(Eﬂ(’ic A 6j7TjC)

= Neimic) + Aegjmjc) — 2\ (eimicne;mic)

= /uimicdﬂ—k/Uj7ﬂjcd9—2/ui7mc X u]‘,ﬂ—jcdﬂ
z/xcdD—F/XCdz?—Q/xcxxcdD:O.

So ¢im; = ¢;mj. Let © be the common value of ¢;[m;[€]]. (In the trivial case I = 0, take ® = A = {0,1}.)
(iii) Suppose that J C I is finite and not empty and that a; € 2; for each i € J. Then

p(inf ¢ia;) = a(inf deia;) = po(int eiai) = A(inf eia;) = /il;[]’ufi,aidy-
But this is precisely the condition described in 458N, so (¢;[i])icr is relatively independent over ®, and
(A, i, (Pi)ier) is a relative free product of (U, i, m;))icr over (€, D).

(b) Now suppose that (2, @', (¢});cr) is another relative free product of ((;, fi;, 7;))ier over (&€, 7). Then
we have a Boolean homomorphism 9 : B — A’ such that ¢, = ye; for every ¢ € I (315J). In this case,
@'Y =X P Let ' be the common value of @jm; for i € I and set ©' = 7'[¢] If J C [ is finite and not
empty, and a; € %; for ¢ € J, then

(Y (infic s £5a:)) = [ (infie s $jai) = [ [Ty tia,dv = Minfie, €ia;).

Because ) is the only additive functional on B taking the right values on elements of this form, i’y = \. Q

In particular, )b = 0 whenever b € B and A\b = 0. It follows that b = ¥b" whenever b, b’ € B and
¢b = @b, since in this case A(bAY) = (b A ¢b') is zero. So we have a function 6 : ¢[B] — A’ defined by
setting 0(¢b) = b for every b € B, and of course 6 is a Boolean homomorphism; moreover,

['0(db) = i'1hb = Ab = b

for every b, so 6 is measure-preserving and an isometry for the measure metrics of 2 and 2. If 4 € I and
a € 2, then

0pia = Oge;a = Ye;a = ¢ja,
s0 0¢; = ¢] for every i. Because 2 and 21" are the closed subalgebras generated by |J;; ¢:[24:] and U, ¢5[2]
respectively, ¢[B] and ¢[B] are dense (323J). The isometry 6 therefore extends uniquely to a measure
algebra isomorphism 6 : 20 — 2’ which must be the unique isomorphism such that 8¢, = ¢} for every i.
Thus (A, i, (pi)icr) and (A, @', (¢l);cr) are isomorphic, and the relative free product is essentially unique.
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458P Developing the argument of the last part of the proof of 4580, we have the following.

Theorem Let (A, fi;))ier, (AL, ;) icr be two families of probability algebras, and ; : A, — 2, a
measure-preserving Boolean homomorphism for each i. Let (€,7), (€/,7’) be probability algebras and
w2 €= Ay, w0 € — AL measure-preserving Boolean homomomorphisms for each ¢ € I; suppose that
we have a measure-preserving isomorphism ¢ : € — @ such that wjtp = ¢;m; : € — A, for each i. Let
(A, i, (Pi)ier) and (A, @', (@)icr) be relative free products of (s, fi;, m:))ier, (A, s, 7))ier over (€, 1),

(¢, ') respectively. Then there is a unique measure-preserving Boolean homomorphism ) : 20 — 21" such
that ¢¥¢; = ¢im; : A; — A’ for every i € 1.

proof By the uniqueness assertion of 4580, we may suppose that (2, fi, (¢;)icr) has been constructed by
the method of part (a) of the proof of 4580.

(a) Fori € A, a € A and o' € A let u;, € L>®(€), u},, € L>(¢') be defined as in (a-i) of the proof of
4580, so that

J wiadv = fi(anmc), [, ulydv’ = fa’ nmic)

whenever ¢ € € and ¢/ € ¢'. Let T : L°(¢) — L°(¢€’) be the f-algebra isomorphism such that T'(xc) = x(¢c)
for every ¢ € €. Now u;,wia = Tu;, whenever i € I and a € ;. P If ¢ € €, then

/ Tujedv’ = /umdﬂ = ,Eti(cm mc)
C (&
= fipi(anme) = p(vianmipe) = / Uy g 00
Pe

Because v is surjective, it follows that Tu;, = ug,wia. Q

(b) Let % be the free product of (A;);cr and g; : A; — B the canonical embedding for each i; let A
be the functional on B defined by the process of (a-i) in the proof of 4580. By 315J, there is a Boolean
homomorphism 6 : B — A’ such that 0e; = ¢l : A; — A for every i. Now g'6 = A. P If J C I is finite
and a; € A; for every i € J, then

00(inf £.a,) = @' (inf &bra;) = ' o
p0(inf eja;) = f'(inf ¢y3)iai) /Huz,wiaidv

ieJ
- /HTui,aidp’ = /T(H Ui q,)dD
iceJ ieJ
= /H Ujq,d7 = A(inf €;a;).
icJ

=
As X, 0 and U are all additive, A = ’6 (using 315Kb). Q

(c) Let ¢ : B — A be the map described in (a-ii) of the proof of 4580. Then fi(¢b) = Ab = i'(6b) for
every b € *B; in particular,

¢b=0 => [i(¢h) =0 => @(0b) =0 = 6b=0.

There is therefore a Boolean homomorphism 0 : o[B] — %l/ such that §¢ =0, and 0 is measure-preserving on
@[B]. Since ¢[B] is topologically dense in 2 (use 323J), 6 has an extension to a measure-preserving Boolean
homomorphism v : 2 — A’ (3240). Now, for i € I and a € 2;,

Via = Poeia = Ogeia = feia = ¢ja,
as required.
(d) To see that 1 is unique, we need observe only that the given formula defines it on the subalgebra

@[] and that this is topologically dense in 2, while ﬁ, being measure-preserving, must be continuous.
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458Q Relative product measures: Definitions (a) Let (X;);c; be a family of sets, ¥ a set, and
m; : X; = Y a function for each i € I. The fiber product of ((X;,m;))icr is the set A ={z: 2z € [[,.; Xi,
mix(i) = mx(y) for all 4, j € I}.

i€l

(b) Let ((X;,%;, 1i))ier be a family of probability spaces and (Y, T, v) a probability space, and suppose
that we are given an inverse-measure-preserving function m; : X; — Y for each i € I; let A be the fiber
product of ((X;,7;))icr. A relative product measure on A is a probability measure p on A such that

() whenever J C T is finite and not empty and E; € ¥; for i € J, and g; is a Radon-Nikodym
derivative with respect to v of the functional F s p;(E N7, '[F]) : T — [0,1] for each i € J,
then p{z : z € A, z(i) € E; for every i € J} is defined and equal to [[],.; gidv;

(1) for every W € ¥ there is a W' in the o-algebra generated by {{z : x € A, 2(i) € E} : i € I,
E € %;} such that u(WAW') = 0.

Remark If y is a relative product measure of {(u;, 7;))icr over v, then all the functions x — z(i) : A — X;
are inverse-measure-preserving. I The condition (}) tells us that if F € ¥; and g is any Radon-Nikodym
derivative of F + p;(E N, '[F]), then

uw{x:x2(i) € E} = fgdy =uwE. Q
It follows that if I is not empty then we have an inverse-measure-preserving function = : A — Y defined by
setting mx = m;x(¢) whenever © € A and ¢ € I.
Note that when verifying () we need check the equality p{z : x € A, z(:) € E; for every i € J} =
JTI ;e.7 9idv for only one representative family (g;):cs of Radon-Nikodym derivatives for any given (E;);c ;.

458R Proposition Suppose that ((X;, X;, p;))ier is a family of probability spaces, (Y, T, v) a probability
space, m; : X; — Y an inverse-measure-preserving function for each ¢ € I, A the fiber product of ((X;, m;)Yicr
and p a relative product measure of ((u;, m;))icr. Let (2, f;), (€,7) and (2, i) be the measure algebras
of p;, v and p respectively, and for i € I define 7; : € — 2; and ¢; : A; — A by setting 7, F* = W;l[F]',
¢ E* ={x:x € A, x(i) € E}* whenever F € T and F € %;. Then (2, fi, (¢;)ic1) is a relative free product
of <(Q[i, i ﬁi)>ie[ over (C, ﬂ).
proof The case I = () is trivial (if you care to follow through the definitions to the letter, A = [[,., X; = {0}

and 2 is the two-point algebra). So I will take it that I is not empty. For ¢ € I define ¢; : A — X; by
setting ¢;(x) = x(i) for z € A.

(a) Of course we have to check that all the 7; and ¢; are measure-preserving Boolean homomorphisms
between the appropriate algebras, but in view of the remark following the definition 458Q, this is elementary.
The condition that 2 should be the closed subalgebra generated by (J;c; ¢:[2;] is just a translation of the
condition ().

(b) As I is not empty, we have a well-defined inverse-measure-preserving map 7 : A — Y given by the
formula 7(z) = m;x(i) whenever © € A and i € I. Let @ : € — 2 be the corresponding measure-preserving
homomorphism, so that 7 = ¢;7; for every i. Set ® = 7[€] C 2, and let T : L=(¢) — L>(D) be the
f-algebra isomorphism corresponding to 7 (363F). For i € I and E € X;, let g;g be a Radon-Nikodym
derivative with respect to v of the functional F + pu;(EN7; [F]), and set ;g = Tg}p € L=(D). Then u;p
is the conditional expectation of x{z : z(i) € E}* on ®. P If d € D, it is of the form 7F* = ¢;7; F* where
F €T, so that xd = T(xF)* and

Jwrdn= [ wie x xddp = [ Tt x xF*)dn
d

= /gi.E X xF*dv = / gipdv
F
= (BN F]) = p(e; [B) 07w  [FT) = A(dn gy ' [E)°).
As d is arbitrary, we have the result. Q

(c) It follows that if J C I is finite and not empty, and a; € ¢;[2;] and v; is the conditional expectation
of xa; on ® for each i € J, then f(inf,cya;) = ineJ v;dji. I Express a; as qS;l[Ei]', where E; € X;, so
that v; = u; g, for each i. Then
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[ wda= [ 7:pdn= [ 7] si5)in = [ T]stndv

ieJ ieJ ieJ ieJ
/ngEdV— ()¢5 ' [Bi]) = alinf a:). Q
ieJ icJ

But this is exactly what we need to know to see that (6i[2:]):e1 is relatively independent over D, completing
the proof that (A, i, (¢;:)icr) is a relative free product of (U, fis, Ti))ier over (€, D).

458S There is no general result on relative product measures to match 4580 (see 458Xj-458Xm). The
general question of when we can expect relative product measures to exist seems interesting (458Yf, 458Yg).
Here I give a couple of sample results dealing with important special cases.

Proposition Let ((X;,¥;, u;))icr be a family of probability spaces, (Y, T,v) a probability space, and 7; :
X; =Y an inverse-measure—preserving function for each 7. Suppose that for each ¢ we have a disintegration
(Hiy)yey of p; such that uj, ;- "y} = piyXi = 1 forevery y € Y. Let A C [I;c; Xi be the fiber product of

((Xi,mi))ier, and T the subspace o- algebra on A induced by ®Z€IZ For y € Y, let A, be the product of
(Hiy)ier, (Ay)a the subspace measure on A and ) its restriction to Y. Then W = [ X Wu(dy) is defined
for every W € T, and p is a relative product measure of ((ps,mi))icr over v.

proof If y € Y, then
XA =N A = N[ m Hyd) =1
(254Lb). For i € I and E € X; set glE(y) = iyl when this is defined; then g¢;r is a Radon-Nikodym

derivative of F + p;(ENn; '[F]) : T — [0,1] (452Qa). Write X for [[,.; Xi; for i € I and 2 € X set
¢i(x) = x(i). If J C I is finite and E; 62 for each i € J, then

i€l

/ (AN () 67 B (dy) = / (Ay)a(dn () 67 L EDw(dy)

i€J icJ
= [aeen o iEDua)
icJ
(because \;A =1 and A\, measures every ¢, YE;] for almost every y)
/HulyEl/dy /ngEdV
ieJ i€J

In particular, [ A, (AN;c; ¢; '[Ei])v(dy) is defined.

The set {W : W C X, [ A (W N A)v(dy) is defined} is a Dynkin class of subsets of X containing
Nics b5 '[E;] whenever J C I is finite and not empty and F; € ¥; for each i € J; by the Monotone Class
Theorem, it includes ®ze 124 So uW = f Ay Wl/ (dy) is defined for every W € Y. Moreover, the formula

displayed above tells us that (AN(,c; ¢; "ED = [ [lics 9i,.dv whenever J C [ is finite and E; € ¥; for
each i € I. Thus (f) of 458Q) is satisfied. And (i) is true by the choice of Y.

458T The latitude I have permitted in the definition of ‘relative product’ makes it possible to look for
relative product measures with further properties, as in the following.

Proposition Let ((X;,T;,3;, ui))ier be a family of compact Radon probability spaces, (Y, &, T, v) a Radon
probability space, and 7; : X; — Y a continuous inverse-measure-preserving function for each i¢. Then
(i, 7;))ier has a relative product measure p over v which is a Radon measure for the topology on the fiber

product of ((Xj,m;))ier induced by the product topology on [[;c; X

proof (a) Fori € I and E € %, let g;g be a Radon-Nikodym derivative of F' + p;(EN7; '[F]) : T — [0,1].

Let C be the family of measurable cylinders in X = [[,.; X;; write ¢;(z) = z(¢) for z € X and i € I. We
have a functional Ag : C — [0, 1] defined by setting

i€l
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(mzeJ ¢> f HleJ 9, g, dv

whenever J C [ is finite and not empty and E; € Ei for every i € I. It is easy to check that A\ is additive
in the sense required by 454E so (because every p; is perfect, by 416Wa) it has an extension to a measure A
on X with domain ®16I2i' By 454Aa, with IC the family of compact subsets of X, A is inner regular with
respect to the compact sets. By 416N, there is a Radon measure A on X extending .

(b) Let A be the fiber product of ((X;,m;))ic;. Now the point is that A is A-conegligible. I Because
every m; is continuous, A is closed. ? If it is not conegligible, then, because A is 7-additive, there must be
a basic open set of non-zero measure disjoint from A; express such a set as W = [[,; qSi_l[Gz-] where J C T

is finite and G; C X; is open for each ¢ € J. Because A is inner regular with respect to the compact sets,
there is a compact set K C W such that A\K > 0; setting K; = ¢;[K], K; C G; is compact for each ¢ and
W' =Nics ¢; ' [K;] is non-negligible. Now we have

0 < MILics ¢ 'K = Mo([Lies 67 1K) = [ [icy 9i.x.dv,

so F={y:yeY, gk (y) >0 for every i € J} is non—neghg1ble. On the other hand, for each i € J we
have

— . ) -1 1) —
fY\m[Ki] gi.x,dv = (K nm [V Ki]) = 0

so that F'\ m;[K;] is negligible. Accordingly ﬂze ; T [K;] is non-negligible, and must meet the support Y of
Y; let y be any point of the intersection. For i € J, choose x(i) € K; such that mx(i) = y. Forie I\ J,
m[Xi] is a compact subset of Y, and vm;[X;] = pim; '[m[Xi]] = 1, so Yy C m[X;] and we can therefore
choose z(i) € X; with m;z(¢) = y. This defines = € A But as z(i) € K; for i € J, we also have

zeﬁie]¢;[ i]gmingbi_[ ] S X\ A,

which is impossible. X
Thus A is A-conegligible, as claimed. Q

(c) Let p be the subspace measure on A induced by ), and ¥ its domain, so that 1 is a Radon probability
measure on A with its subspace topology (416Rb). Concerning (t) of 458Q, if J C I is finite and not empty
and F; € ¥; for ¢ € J, then

(AN ey ¢71[E1D = X(ﬂie} dfl[EZ]) Ao(Nies ‘i) f [Lics 95,8 dv,
as required. Finally, for (1), the o-algebra T of subsets of A generated by {AN¢;'[E]:i € I, E € %}
ser2i- Let 2 be the measure algebra of A and B C A the
set {We: W ¢ ®1612 }. Then B is a closed subalgebra of . If W C X is open, then for every ¢ > 0
there is a Wy € ®1612 such that Wy € W and A(W \ Wp) < ¢, so W* € B; accordingly {W : W* € B}

contains every open set and every Borel set and must be the whole of dom A. Returning to the measure

i, we see that if W € ¥ there must be a Wy € ®Z€IZ such that A(WAW,) = 0; now Wo N A € T and
w(WA(WoNA)) =0. So (1) also is true, and we have a relative product measure of the declared type.

is just the subspace o-algebra induced by ®

458U We can of course make a general search through theorems about product measures, looking for
ways of re-presenting them as theorems about relative product measures. There is an associative law, for
instance (458Xr). To give an idea of what is to be expected, I offer a result corresponding to 253D.

Proposition Let (X1, 31, u1), (X2, 32, u2) and (Y, T, v) be probability spaces, and 71 : X3 = Y, mo 1 Xo —
Y inverse-measure-preserving functions. Let A be the fiber product of (X7, 7) and (X3, ), and suppose
that p is a relative product measure of (p1,m1) and (ug,m2) over v; set mx = mx(l) = mz(2) for x € A.

Take f1 € £L1(p1) and fo € £2(p2), and set (f1 @ f2)(x) = f1(z(1))f2(2(2)) when z € AN (dom f; x dom f5).
For i = 1, 2 let g; € L£'(v) be a Radon-Nikodym derivative of H +~ fﬂ__—l[H] fidy; : T — R. Then

S 91 X gadv = frl[F] f1 ® fadu for every F € T.

proof (a) Suppose first that f1 = xE; and fo = xE2 where F; € ¥, and Fy € X,. For each i, set
i = x(B;nw; ' [F]) and g} = g; x xF}; then
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fH gidv = meF gidv = fﬂfl[HmF] fidpi = fwgl[H] fidps

for every H € T. Now

/ a1 xggdu:/gi x gydv = p{x :x € A, z(i) € Ej for both i}
F
((t) of the definition 458Qb)

= p{x:x € 7 [F], 2(i) € E; for both i} = /

T

fl X fgd,u
1[F)

So we have the result in this case. (Cf. 458B.)

the functional F' + u;(E N7, '[F]) : T — [0,1] (b) Generally, the formula for g; corresponds to a
linear operator from L!(y;) to L'(v), so the result is true for simple functions f; and fo. If f; and f, are
almost everywhere limits of non-decreasing sequences (f1,)nen, {fon)nen of non-negative simple functions,
then the corresponding sequences (gin)neN, (gon)nen Will also be non-decreasing and non-negative and
convergent to gj, g v-a.e.; moreover, because x — x(1) and x — x(2) are inverse-measure-preserving,
f1® fo=1lim, o fin ® fon p-a.e. So in this case we shall have

/ f1® fadp = lim/ fin ® fondp
1 [F) n=%0 Jopy

= lim gin X gondv = / g1 X godv
F F

for every F' € T. Finally, considering positive and negative parts, we can extend the result to general
integrable f; and fs.

458X Basic exercises >(a) Find an example of a probability space (X, 3, i) with o-subalgebras X1,
Y5 and T of X such that ¥; and 35 are independent but are not relatively independent over T.

(b) Let (X, X, 1) be a probability space and T, X1 and 39 o-subalgebras of ¥. Show that if ¥; C T then
Y1 and X, are relatively independent over T.

>(c) Let (X, X, ) be a probability space and T a subalgebra of 3. Let (£;);c; be a family of subsets
of 3 such that (i) each &; is closed under finite intersections (ii) (E;);es is relatively independent over T
whenever F; € &; for every i. For each ¢ € I, let 3; be the o-subalgebra of ¥ generated by &;. Show that
(3i)ier is relatively independent over T.

>(d) Let (X,X, u) be a probability space and T a o-subalgebra of 3. Let f1, fo be p-integrable real-
valued functions which are relatively independent over T, and suppose that f; x fs is integrable. Let g1, g2
be conditional expectations of fi, fo on T. Show that g; X g is a conditional expectation of f; X fo on T.

(e) In 4581, show that (writing /i for the completion of p) 4(FN f~1[H]) = [, voHp(dzx) for every F € T
and every universally measurable H C R.

(f) Let (X, X, u) be a probability space and 31, Yo and T o-subalgebras of 3. Show that the following
are equiveridical: (i) ¥; and X are relatively independent over T; (ii) whenever f € £1(u[X1) and g is a
conditional expectation of f on T, then g is a conditional expectation of f on 35 vV T.

(g) Prove 458Ld directly from 313G, without appealing to 458D.
(h) Let ((;, fi;))ier be a family of probability algebras. Show that their probability algebra free product
(325K) can be identified with their relative free product over (€, 7) if € is the two-element Boolean algebra,

U its unique probability measure, and 7; : € — 2; the trivial Boolean homomorphism for every 1.
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>(i) Let Y be a set, (Z;);cs a family of sets, and 7; : Y x Z; — Y the canonical map for each i. Show
that the fiber product of (Y x Z;, 7;))icr can be identified with Y x [],.; Z.

(j) Let v be Lebesgue measure on [0, 1], and X7, X5 C [0,1] disjoint sets with outer measure 1. For each
i € {1,2} let p; be the subspace measure on X; and 7; : X; — [0,1] the identity map. Show that (pq, 1)
and (p2,m2) have no relative product measure over v.

(k) Let v be the usual measure on the split interval Il (343J), and p Lebesgue measure on [0,1]. Set
m(t) =tT, ma(t) =t~ for t € [0,1]. Show that (u, 1) and (u,m2) have no relative product measure over v.

(1) Let v be Lebesgue measure on [0,1]. For each t € [0, 1], set X; = [0,1] \ {t}; let us be the subspace
measure on X; and 7y : X; — [0,1] the identity map. Show that ((u¢,7¢))ief0,1) has no relative product
measure over v.

(m)(i) Show that there is a set X C [0,1]? with outer planar Lebesgue measure 1 and just one point
in each vertical section. (Hint: 419H-4191L.) (ii) Set X; = Xo = X and p; = po the subspace measure on
X; let (Y, T,v) be [0,1] with Lebesgue measure, and 71 = 7o the first-coordinate projection from X to Y.
Show that (p1,m1) and (u2,m2) have no relative product measure over v.

(n) Let (X, 3, i) be a probability space, T a o-subalgebra of ¥, and (%;);cr a family of o-subalgebras of
3, all including T. Set m;(x) = x for every z € X. Show that (X;);cr is relatively independent over T iff
pl¥* is a relative product measure of ((u[%;, 7;))icr over u[ T, where X* =/, X;.

(0)(i) Let ((X;, X4, ii))ier be a family of probability spaces and (X, X, ) their ordinary probability space
product. Show that p is a relative product measure of {(u;,7;))icr over v where Y is a singleton set, v its
unique probability measure, and 7; : X; — Y the unique function for each . (ii) Let ((X;, %s, Xi, ti))ier
be a family of quasi-Radon probability spaces and (X, ¥, 3, i) their quasi-Radon probability space product
(417R). Show that u is a relative product measure of {u;);cr in the same sense as in (i).

(p) Suppose that ((X;, 3, 1i))ier is a family of probability spaces and (Y, T,v) is a probability space,
and that for each ¢ € I we are given an inverse-measure-preserving function m; : X; — Y. Write fi; and ©
for the completions of u;, v respectively. Show that ((u;, 7;)):cs has a relative product measure over v iff
((fu;,7;))ier has a relative product measure over .

(a) Let ((X;, X, p;)Yier be a family of probability spaces, (Y, T, v) a probability space, and m; : X; = Y
an inverse-measure-preserving function for each ¢ € I. Show that if ((u;,7;))icr has a relative product
measure over v, so does ((f;,m;))ies for any J C I.

(r) Let ((X;, %4, pi)Yicr be a family of probability spaces, (Y, T,v) a probability space, and 7; : X; = Y
an inverse-measure-preserving function for each ¢ € I. Let (Jx)rex be a partition of I into non-empty sets.
For each k € K, let A, be the fiber product of ((X;, m;))icJ,; suppose that fiy is a relative product measure
of ((phi,mi))ies,. Define T : Ay — Y by setting 7 (x) = mz(i) whenever x € Ay and @ € Ji, so that 7
is inverse-measure-preserving. Suppose that u is a relative product measure of ((fix, 7x))kex over v. Show
that p can be regarded as a relative product measure of ((u;,7;))ier over v.

(s) Let ((Xi, 24, 1i))ier and (X[, 3%, ui))ier be two families of probability spaces, (Y, T, v) a probability
spaces, and f; : X; — X/, m; : X! — Y inverse-measure-preserving functions for each . Show that if there is
a relative product measure of ((u;, m; f;))icr over v, then there is a relative product measure of ((u}, m;))ier
over v.

(t) Let ((X;, X, pt:))ier be a countable family of probability spaces, (Y, T, v) a probability space, and =; :
X; — Y an inverse-measure-preserving function for each ¢. Suppose that for each ¢ we have a disintegration
of p; over v which is strongly consistent with 7;. Show that ((u;,7;))ics has a relative product measure
over v.

(u) Let (X, %, u), (X', 1) and (Y, T, ) be probability spaces. Suppose that 7: X — Y and n’ : X' —
Y are inverse-measure-preserving functions, and that y’ has a disintegration (i ),ey over (Y, T,r) which
is strongly consistent with 7/. Show that (u,7) and (u’, 7') have a relative product measure over v. (Hint:
set AW = [ s W{z}p(dz) for every W € rRY)
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>(v) Let Y be a Hausdorfl space, (Z;);cs a family of Hausdorff spaces, p; a Radon probability measure
on Z; XY and 7; : Y X Z; — Y the canonical map for each ¢. Suppose that all the image measures ,unri_l
on Y are the same, and that all but countably many of the Z; are compact. Show that there is a Radon
probability measure p on Y x [[,.; Z; such that pu; = u¢; ' for each 4, where ¢;(y, 2) = (y, 2(i)) for y € Y,

A Hje[ ZJ

(w) Let ((X;,%;,%i, 1i))ics be a countable family of Radon probability spaces, (Y,&,T,r) a Radon
probability space, and 7; : X; — Y an almost continuous inverse-measure-preserving function for each i.
Show that ((u;,7;))ier has a relative product measure over v which is a Radon measure for the topology on
the fiber product of ((X;,;))icr induced by the product topology on [],.; X;. Discuss the relation of this
result to 418Q).

icl

iel

458Y Further exercises (a)(i) Let (X, X, 1) be a probability space, (T,,)nen & non-increasing sequence
of o-subalgebras of ¥ with intersection T, and (¥;);c; a family of subalgebras of ¥. Suppose that (3;);cr
is relatively independent over T,, for every n. Show that it is relatively independent over T. (Hint: 275K.)
(ii) Give an example of a probability space (X, X, 1), a downwards-directed family T of o-subalgebras of X,
and a family (FE;);cr in ¥ which is relatively independent over T for every T € T, but not over (| T.

(b) Let (X,X, ) be a probability space and T a o-subalgebra of X. Let (&;);c; be a family of subsets
of ¥ such that (i) ENF € & whenever i € I and E, F € & (il) (E;);crs is relatively independent over T
whenever F; € &; for every ¢ € I. For each i € I, let 3; be the o-algebra generated by &;. Show that (X;);c;
is relatively independent over T.

(c) Let (X, X, 1) be a probability space, T a o-subalgebra of ¥, and (X,,)nen & sequence of o-subalgebras
of ¥ which is relatively independent over T. Show that for every £ € M,y V Y, thereisan FF € T
such that EAF is negligible. (Compare 2720.)

m>n

(d) Let (X, 3, i) be a probability space, T a o-subalgebra of ¥, and f, g € £%(u) relatively independent
over T; suppose that (1, )zex and (V)) e x are relative distributions of f and g over T. Show that (v, *V))zex
is a relative distribution of f + g over T. (Compare 272T.)

(e) Let (X, X, u) be a probability space, T a o-subalgebra of ¥, and (f,)nen a sequence in £2(u) such
that (fn)nen is relatively independent over T and [} fndp = 0 for every n € N and every F € T. (i) Suppose
o 1

n=0 g2 || fnll3 < co. Show

that (5,)nen is a non-decreasing sequence in |0, oo[, diverging to oo, such that >

that lim,,_ e Bi S o fi =0 ace. (ii) Suppose that sup, ey || fullz < 00. Show that limy, e i 327 f; =0

n

a.e. (Compare 273D.)

(f) Let ((X;, %4, 1t:))icr be a family of probability spaces, (Y, T,v) a probability space, and 7; : X; =Y
an inverse-measure-preserving function for each i € I. For i € [ and F € ¥; let g;5 be a Radon-Nikodym
derivative of the functional F' + y;(EN7; [F]). Let C be the family of measurable cylinders in X = [Lic: X
IfC={z:2€X, z(i) € E; for every i € J} where J C [ is finite and not empty and E; € ¥, for i € J,
set A\oC = [[l;cs 9i,5,dv. Let A C X be the fiber product of ((Xj,7;))ic;. Show that the following are
equiveridical: (i) {(ui,;))icr has a relative product measure over v (ii) whenever (Cy,)nen is a sequence in
C covering A, >°° 1 ACyp, > 1.

(g) Let ((X;, %4, 1t:))icr be a family of probability spaces, (Y, T, v) a probability space, and m; : X; =Y
a surjective inverse-measure-preserving function for each ¢ € I. Suppose that ((u;,7;))ics has a relative
product measure over v for every countable J C I. Show that ((u;,m;))ier has a relative product measure
over v.

(h) Let ((X;, X, tti))ier be a countable family of perfect probability spaces, (Y, T, v) a countably separated
probability space, and 7; : X; — Y an inverse-measure-preserving function for each i € I. Show that

((ps,mi))ier has a relative product measure over v.
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(i) Let (2, ) be a probability algebra and € a closed subalgebra of 2. Let €y C € be the core subalgebra
of countable Maharam type described in the canonical form of such structures given in 333N. Show that
there is a closed subalgebra % of 2, including €, such that 9% and € are relatively independent over &,
and 2 is the closed subalgebra of itself generated by 9 U €.

458 Notes and comments The elementary theory of relative independence has two aspects. First, there
is the matter of systematically formulating and verifying appropriate variations on standard results on
stochastic independence; 458F, 458H, 458J, 458K, 458Xd, 458Yc-458Ye come under this heading. More
interestingly, we study the new phenomena associated with changes in the core o-algebras, as in 458C, 458D
and 458Xa.

At a couple of points in Volume 3 (Dye’s theorem, in §388, and Kawada’s theorem, in §395) I took the
trouble to generalize standard theorems to ‘non-ergodic’ forms. In both 388L and 395P the results are com-
plicated by potentially non-trivial closed subalgebras of the probability algebra we are studying. I remarked
on both occasions that the generalization is only a matter of technique, but I do not suppose that it was
obvious just why this must be so. It is however a fundamental theorem of the topic of ‘random reals’ in
the theory of forcing that any theorem about probability algebras must have a relativized form as a theo-
rem about probability algebras with arbitrary closed subalgebras. The concept of ‘relative Maharam type’
from §333, for instance, is what matches ‘Maharam type’ for simple algebras; the concept of ‘exchangeable’
sequence (definition: 459C) is what matches ‘independent identically distributed’ sequence. (In probability
theory, the keyword is ‘mixture’.) In this section I present another example in the idea of ‘relatively inde-
pendent’ closed subalgebras (458L-458M). I should emphasize that the forcing method, when we eventually
come to it in §556 in Volume 5, will not as a rule apply directly to measure spaces; it deals with measure
algebras. But of course the ideas generated by this theory can often be profitably applied to constructions
in measure spaces, and this is what I am seeking to do with relatively independent o-algebras and relative
product measures.

Just as independent o-algebras are associated with product spaces (272J), relatively independent algebras
are associated with relative products (458Xn). The archetype of a relative product measure is 458S; it is a
kind of disintegrated product. It is frequently profitable to express the ‘relative’ concepts of measure theory
in terms of disintegrations.

I introduce ‘relative free products’ of probability algebras before proceeding to measure spaces because
the uniqueness property proved in 4580 shows that we have an unambiguous definition. For measure spaces
it seems for the moment better to leave ourselves a bit of freedom, not (for instance) favouring one product
construction over another (458Xo0). The requirement that a relative product measure be carried by the fiber
product is seriously limiting (458Xj-458X1, 458YT), and forces us to seek strongly consistent disintegrations
(458S), at least for uncountable products (see 458Xt). However, as we might hope, the special case of
compact spaces with Radon measures and continuous functions is amenable to a different approach (458T);
and we have a one-sided method for the product of two spaces (458Xu) which is reminiscent of 454C and
457F.

There are corresponding complications when we come to look at maps between different relative products.
For measure algebras, we have a natural theorem (458P), based on the same algebraic considerations as the
corresponding theorems in §§315 and 325; the only possibly surprising feature is the need to assume that
¥ : € — ¢’ is actually an isomorphism. For measure spaces there is a similar result (458Xs).

Version of 7.12.10

459 Symmetric measures and exchangeable random variables

Among the relatively independent families of random variables discussed in 458K, it is natural to give extra
attention to those which are ‘relatively identically distributed’. It turns out that these have a particularly
appealing characterization as the ‘exchangeable’ families (459C). In the same way, among the measures on
a product space X! there is a special place for those which are invariant under permutations of coordinates
(459E, 459H). A more abstract kind of permutation-invariance is examined in 495L-495M.

(©) 2003 D. H. Fremlin
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459A The following elementary fact seems to have gone unmentioned so far.

Lemma Let (X,%, u) and (Y, T,v) be probability spaces and ¢ : X — Y an inverse-measure-preserving
function; set o = {¢~'[F] : F € T}. Let Ty be a o-subalgebra of T and ¥y = {f~[F] : F € T,}. If
g € £L1(v) and h is a conditional expectation of g on Ty, then h¢ is a conditional expectation of g¢ on 3.

proof his v[T;-integrable and ¢ is inverse-measure-preserving for u[¥; and v [Ty, so he¢ is pu[X1-integrable
(235G). If E € X then there is an F € Ty such that E = ¢~ ![F], and now

Jpotdn= [, p9odu=[Lgdv= [ hdv= [ hodp.

As F is arbitrary, h¢ is a conditional expectation of g¢ on X;.

459B Theorem Let (X, 3, 1) be a probability space, Z a set, T a o-algebra of subsets of Z and (f;)icrs
an infinite family of (X, Y)-measurable functions from X to Z. For each i € I, set %; = {f; '[H]: H € T}.
Then the following are equiveridical:
(i) whenever g, ... ,i, € I are distinct, jo,... ,j, € I are distinct, and Hy € T for each k <r,
then (e, fi [HE]) = 1Ny, £ [HRD:;
(ii) there is a o-subalgebra T of ¥ such that
(o) (Z;)ier is relatively independent over T,
(8) whenever i, j € I, H € Y and F € T, then u(F N f;'[H]) = u(F N f; ' [H]).
Moreover, if I is totally ordered by <, we can add
(iii) whenever ig < ... < i, € I, jo < ... < j, € I and H, € Y for each k < r, then
(i< fz';l[HkD = 1(<r fjll[Hk])

proof (a) Since there is always some total order on I, we may assume that we have one from the start. Of
course (i)=-(iii). Also (ii)=(i). I Suppose that (ii) is true. Then (ii-3) tells us that for each H € T there
is a T-measurable function gg : X — [0, 1] which is a conditional expectation of x(f; '[H]) on T for every
i € I. Now suppose that ig,... ,4,. € I are distinct, jo,...,j, € I are distinct, and Hy € T for each k < r.
Then

(Voo fi THRD = [ (imo 9 )dpe = (M, £, [HD)

because (X;);er is relatively independent over T. So (i) is true. Q
So henceforth I will suppose that (iii) is true and seek to prove (ii).

(b) Suppose first that I = N with its usual ordering.

(a) For each n, r € N, let %, be the o-subalgebra of ¥ generated by Un<i<n+r 35 let T\, be the
o-algebra generated by |J,cyXnr, and T = (), cyTn. Forn € Nand H € T, let g,z : X — R be a
T-measurable function which is a conditional expectation of x f, [H] on T.

(B) (The key.) For any n € N and Borel set H C R, g, is a conditional expectation of y f,, *[H] on
T,t1.- P Form, r € N, let hy, : X — [0,1] be a Xy,,-measurable function which is a conditional expectation
of ngl[H} on Y,,,; for m € N, set h,,, = lim,_,~ A where this is defined. By Lévy’s martingale theorem
(2751) hy, is defined almost everywhere and is a conditional expectation of x f,, }[H] on Ty,.

For m, r € N, define Fy,, : X — Z"+2 by setting Fy...(2) = (fu(2), fm (@), frns1(2)s -, frnar()) for
x € X. At this point, examine the hypothesis (iii). This implies that if m > n and r € N then

p(Fot[H' % Ho x ... x Hy]) = p(f [HTO () fons[HR))
k<r

= (O () ol HD)
k<r
— M(F%L’T,[H’ x Hy x ... x H,)])

for all H', Hy,...,H, € Y. By the Monotone Class Theorem (136C), the image measures puF, 1 and

,uF,;_lH’T agree on the o-algebra ), ,T of subsets of Z7*2 generated by measurable cylinders; set
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A= pFo @, 0T = 1F 1), 5T

Let A be the o-subalgebra of ®r+2T generated by sets of the form Z x Hy X ...x H, where Hy,... ,H, € T,
and let h be a conditional expectation of x(H x Z"*!) on A with respect to A. Then 459A tells us that
hFE,,, is a conditional expectation of x(f, }[H]) on %,,,, and is therefore equal almost everywhere to Ay,
Similarly, hFy41,r =ae. Pm+1,r, and this is true for every r € N. But as F},,, and Fj,41,, are both inverse-
measure-preserving for p and A, this means that hy,., h and hp,41, all have the same distribution. In
particular, fh?mdu = fh,%H_Mdu. Now (hmr)ren and (Rpm41,r)ren converge almost everywhere to h,, and
hm41 respectively, so

[ B2 dp =lim, oo [ B2, dp =lim,_o [ B2 dp= [hZ  dp.

On the other hand, T,,+1 C Ty, s0 hy41 is a conditional expectation of h,, on T,,4+1 (233EhL). This means
that

]‘hm X}Mn+1dﬂ::.fihn+lx hm+1dﬂ

(233Eg). A direct calculation tells us that [(hy, — hpy1)*dp = 0, so that hy, =ae. hypy1. Inducing on r, we
see that h,, =..e h, whenever n < m <r.

Now the reverse martingale theorem (275K) tells us that lim,,—, oo hyp is defined almost everywhere and
is a conditional expectation of x f,, 1[H] on T, that is, is equal almost everywhere to g,z. Since the h,,, for
m > n, are equal almost everywhere, they are all equal to g,m a.e. In particular, g, x is equal a.e. to hy,41,
and is a conditional expectation of xf, }[H] on T, 1. Q

(v) If n € N and Hy,... ,H, € Y, then [[,_, gnti,m, is a conditional expectation of X(Ni<r fn__&l[Hz])
on T. I Induce on r. For r = 0 this is just the definition of g,,z,. For the inductive step to r > 1, observe
that gnm, X [Ti_; Xfni:[Hi] is a conditional expectation of ['_, xf,:[Hi] on Tpi1, by 233Eg or 233K,
because gnp, is a conditional expectation of x f,, *[Ho] on T,41 and [[;_, X /. J}Z [H;] is Tp41-measurable.
But as (by the inductive hypothesis) [T}_; gnt,1, is a conditional expectation of []\_, x f,.;[H;] on T, while
gnt, is T-measurable, [[_; gni,u, is a conditional expectation of [;_, anj:i [H;] on T, by 233Eg/233K
again. Q

(6) In particular, []}_, gim, is a conditional expectation of (<, f; ' [H:]) on T for every r € N and
Hy, ... ,H, € Y. This shows that (X, ),ecy is relatively independent over T.

(€) Now consider part (3) of the condition (ii). For this, observe that if m > 0, H € T and H; € Y for
i < r, then

plfo IO iz Sria () = 1 T O Mgy Fvia [
By the Monotone Class Theorem,
p(F 0 fo [H]) = p(F 0 £ H])
for any F' € T,,+1 and in particular for any F' € T. Thus (ii) is true.

(c) Now suppose that there is a strictly increasing sequence (ji)ren in I. For each n, let T,, be the o-
algebra generated by (J,~,, ¥j,, and set T = (1, .y T\n. Then (b), applied to (f;, )xen, tells us that (¥, )ren
is relatively independent over T and that for each H € Y there is a function gy which is a conditional
expectation of X(szl[H]) on T for every k € N.

(@) Ifig,... ,ir € I are distinct and Ho, ..., H, € T, then pu(),, flzl[Hk]) = 1(Ne<r fjll[Hk]). P

Let p be the permutation of {0, ... ,r} such that i,y <ija1) <... <ip(y. Then
w() £ D) = () £ o)) = () 55, Hy)
k<r k<r k<r
— [T e = [ (L omdn = () 55 1H)- @
k=0 k=0 k<r

(8) Now suppose that ig,...,i. € I are distinct. Then there is some m € N such that ji # i; for
any | < r and k > m. In this case, consider the sequence fi, ..., fi,, fi,.> fimsrs---- By («) here, this
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sequence satisfies the condition (iii). We can therefore apply the construction of (b). But observe that the
tail o-algebra obtained from fi,,..., fi., fj,..-.. is precisely T, as defined from (f;, )ren just above. So
(%4, ) k<r is relatively independent over T. As ig,... ,i, are arbitrary, (3;);cr is relatively independent over
T. At the same time we see that if H € T then all the X(fzzl[H]) have the same conditional expectations
over T as X(f;nl [H]). So (ii-5) is satisfied.

(d) Finally, if there is no strictly increasing sequence in I, then (I, >) is well-ordered; since I is infinite,
the well-ordering starts with an initial segment of order type w, that is, a sequence (ji)ren such that jo >
Jj1>.... But note now that (iii) tells us that u((,<, f;l[Hk}) = (Ne<r fj_kl[Hk]) whenever ig > ... > i,
and jo > ... > j, and Hy € T for every k. So we can apply (c) to (I,>) to get the result in this case also.

459C Exchangeable random variables I spell out the leading special case of this theorem.

De Finetti’s theorem Let (X, Y, 1) be a probability space, and (f;);cr an infinite family in £°(u). Then
the following are equiveridical:
(i) the joint distribution of (fi,, fi,, .. , fi.) is the same as the joint distribution of (fj,, fj,,- .- , f;,)
whenever i, ... ,i, € I are distinct and jg, ... ,j, € I are distinct;
(ii) there is a o-subalgebra T of ¥ such that (f;);c; is relatively independent over T and all
the f; have the same relative distribution over T.
Moreover, if I is totally ordered by <, we can add
(iii) the joint distribution of (fi,, fi,,- - . , fi.) is the same as the joint distribution of (fj,, fj,,- .-, fj.)
whenever ig < ... <14, and jg < ... < j, in [I.

Remark Families of random variables satisfying the condition in (i) are called exchangeable. The equiva-
lence of (i) and (ii) can be expressed by saying that ‘an exchangeable family of random variables is a mixture
of independent identically distributed families’.

proof Changing each f; on a negligible set will not change either their joint distributions (271De) or
their relative distributions over T or their relative independence; so we may suppose that every f; is a
Y-measurable function from X to R. Now look at 459B, taking (Z, T) to be R with its Borel o-algebra. The
condition 459B(i) reads
whenever i, ... ,i, € I are distinct, jo,...,j, € I are distinct, and Hy € T for each k < r, then
(< fi;1 [Hi]) = 1(Ny<r fjgl[Hk])a
matching (i) here, by 271B; similarly, (iii) of 459B matches (iii) here. Equally, condition (ii) here is just a
re-phrasing of 459B(ii) in the language of 458 A and 4581-458J. So 459B gives the result.

459D Specializing 459B in another direction, we have the case in which X is actually the product Z!. In
this case, the condition 459B(i) corresponds to a strong kind of symmetry in the measure p. It now makes
sense to look for subsets of X = Z! which are essentially invariant under permutations, and we have the
following result.

Proposition Let Z bej set, T a o-algebra of subsets of Z, I an infinite set and x a measure on Z! with
domain the o-algebra @, T generated by {m; '[H] : i € I, H € T}, taking m;(z) = z(i) for € Z! and
i € I. For each permutation p of I, define p : Z! — Z! by setting p(z) = zp for + € Z!. Suppose that
= pup~! for every p. Let € be the family of those sets E € @IT such that u(EAp~L[E]) = 0 for every
permutation p of I, and V the family of those sets V € @ ;T such that V is determined by coordinates in
I\ {i} for every i € I.
(a) € is a o-subalgebra of ®1T~
(b) V is a o-subalgebra of €.
(¢) If E € £ and J C I is infinite, then there is a V' € V, determined by coordinates in J, such that
w(EAV) =0.
(d) Setting ¥; = {m; '[H]: H € Y} for each i € I,
(@) (Z;)ier is relatively independent over &,
(B) for every H € T there is an £-measurable function gz : Z! — [0,1] which is a conditional
expectation of y(m; '[H]) on & for every i € I.
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proof (a) is elementary.

(b) Let V € V. Suppose that p : I — I is a permutation, J C I is finite and H; € T for every j € J.
Then there is a permutation ¢ : I — I such that o(j) = p(j) for every j € J and J' = {i : o(i) # i} is finite.
By 254Ta, V is determined by coordinates in I\ J’, so 6 [V] = V. Now

p(p= ' VIn () 7y Hy]) = w(V o () by ) = p(V 0 () 7 )
jedJ jedJ jeJ
= p(e VIn ()7 Hy)) = p(V 0 () 7y H)).
jeJ jeJ

By the Monotone Class Theorem, as usual, u(E N p~t[V]) = u(ENV) for every E € @IT. In particular,
taking E =V and E = Z \ V, we see that VAp~1[V] is negligible. As p is arbitrary, V € &.

This slﬁws that YV C €. Of course V is a og-algebra, since it is just the intersection of the o-algebras
{V:V e®,%, V is determined by coordinates in I\ {i}}.

(c) For each n € N, there is a set E,, € @ 12, determined by a finite set J,, of coordinates, such that
w(EAE,) < 27" Choose permutations p,, of I such that {p,[J,])nen is a disjoint sequence of subsets of J.
Set F,, = p,,'[Ey]; then F), is determined by coordinates in p,[J,] for each n € N, so V =1, Unsn Fm
belongs to V and is determined by coordinates in J. Also

WEAF,) = n(plE]AE,) = n(EAE,) < 27"
for each n, so u(EAV) = 0, as required.

(d) Let (jn)nen be any sequence of distinct points of I. Set J = {j, : n € N}. For n € N let T,, be
the o-algebra generated by (J,~,, ¥j,, and set T = .y Tn, so that T = {V : V € V, V is determined by
coordinates in J}. P Of course T C V and every member of T is determined by coordinates in .J, because
every member of T is. On the other hand, if V' € V is determined by coordinates in J, then fix some
w € Z'\. In this case, identifying Z7 with Z7 x Z'\/ the set Vi = {z: 2z € Z7, (z,w) € V} must belong
to @fr, so V =V; x Z'\7 belongs to Ty. Applying the same idea to J \ {ji : k < n}, we see that V € T,
for every n, so that V € T. Q

Part (c) of the proof of 459B tells us that (3;);cs is relatively independent over T and that for every
H € T there is a T-measurable gy which is a conditional expectation of x/(m; '[H]) on T for every i € I.
Now (c) here tells us that g is a conditional expectation of x(7; '[H]) on £; and examining the definition
in 458Aa, we see that (X;);cs is relatively independent over £, as claimed.

459E If p is countably compact, we have a strong disintegration theorem, as follows.

Theorem Let Z be a set, T a o-algebra of subsets o/f\ Z, I an infinite set, and p a countably compact
probability measure on Z! with domain the o-algebra @, Y generated by {m; '[H]:i € I, H € T}, taking
mi(x) = x(i) for x € Z! and i € I. Then the following are equiveridical:
(i) for every permutation p of I, x + xp: Z! — Z! is inverse-measure-preserving for y;
(i) for every transposition p of two elements of I, x + xp : ZI — ZT is inverse-measure-
preserving for pu;
(iii) for each n € N and any two injective functions p, ¢ : n — I the maps x + xp: Z1 — 2"
x> xq: Z' — Z" induce the same measure on Z™;
(iv) there are a probability space (Y, T, v) and a family (\,),ecy of probability measures on Z
such that </\£>yey is a disintegration of p over v, writing /\zl/ for the product of copies of A,.
Moreover, if I is totally ordered, we can add
(v) for each n € N and any two strictly increasing functions p, ¢ : n — I the maps z +— xp :
ZT - 2", x— x2q: Z' — Z™ induce the same measure on Z”.
If the conditions (i)-(v) are satisfied, then there is a countably compact measure A, with domain Y, which
is the common marginal measure of p on every coordinate; and if K is a countably compact class of subsets
of Z, closed under finite unions and countable intersections, such that A is inner regular with respect to /C,
then
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(iv)" there are a probability space (Y,T,v) and a family (\,)yey of complete probability
measures on Z, all with domains including K and inner regular with respect to I, such that
(Al)yey is a disintegration of y over v.

proof (a) Since any set I can be totally ordered, we may suppose from the outset that we have been given
a total ordering < of I. I start with the easy bits.

(iv)’=(iv) is trivial, at least if there is a common countably compact marginal measure on Z.

(iv)=(i) If (iv) is true and p : I — I is a permutation, take any E € @12 and set B/ = {z: 2z € ZI,
xp € E}. For any y € Y, x + xp is an isomorphism of the measure space (27, \]), so

f)\IE’ (dy) = f)\IEV dy) = uE.
As E is arbitrary, (i) is true.
(i)=-(ii) is trivial.
(ii)=-(iii) There is a permutation p of I such that ¢ = pp and p moves only finitely many points of I,
that is, p is a product of transpositions. By (ii), x + xp and z +— zp~! are inverse-measure-preserving for

u, that is, are isomorphisms of (Z7, ). But this means that z +— ap and 2 — xpp = zq must induce the
same measure on Z".

(iii)=(v) is trivial.

(b) So for the rest of the proof I assume that (v) is true. Taking n = 1 in the statement of (v), we see
that there is a common image measure A = pm; ! for every i € I. By 452R, X is countably compact. Let
K C PZ be a countably compact class, closed under finite unions and countable intersections, such that A
is inner regular with respect to IC./\

In 459B, set X = Z! and ¥ = @, Y and f; = m; : X — Z for i € I. Then (v) here corresponds to (iii) of

459B, so (translating (ii) of 459B) we have a o-subalgebra T of ®1T and a family (gp) gey of T-measurable
functions from Z7 to [0, 1] such that

1(Mics ”fl[HiD = f(HieJ gu,)dp

whenever J C [ is finite and not empty and H; € Y for ¢ € J. In particular, gy is a conditional expectation
of x(m; '[H]) on T whenever H € Y and i € I.

Fix i* € I for the moment. Set v = p|T. The inverse-measure-preserving function m;» from (X, p)
o (Z,\) gives us an integral-preserving Riesz homomorphism Ty : L™ (\) — L (u) defined by setting
Toh* = (hm;x)* for every h € £L°(\). Let P : L'(u) — L'(v) be the conditional expectation operator; then
T = PTy : L*°(\) — L°°(v) is an integral-preserving positive linear operator, and T'(xZ*) = xX*.

By 452H, we have a family (\;)zex of complete probability measures on Z, all with domains including
K and inner regular with respect to K, such that [, hmydp = [} [, hd\,v(dx) for every h € £>()) and
F € T. In particular, setting g% (z) = A\;H whenever H € T and x € X are such that H € dom \,, then
g4y will be a conditional expectation of Xﬂi_*l[H ] on T, and will be equal v-almost everywhere to gp.

This means that if J C I is finite and not empty and H; € T for 7 € J,

/Alﬂﬂ v(dz) /H)\Hudm /Hngu

ieJ i€J ieJ
/Hngu—/Hngu ,unw H;))
i€J i€J ieJ

Thus the family W of sets E C X such that [ MEy( da:) and pFE are defined and equal contains all

measurable cylinders. As W is a Dynkin class it includes ® ;Y. But this says exactly that (A),cx is a
disintegration of u over v, as required by (iv)’.
Thus (v)=-(iv)" and the proof is complete.

459F Lemma Let X be a Hausdorff space and Pg(X) the space of Radon probability measures on X
with its narrow topology (definition: 437Jd). If (K, )nen is a disjoint sequence of compact subsets of X,
then A= {pu: p € Pr(X), u(U,en Kn) = 1} is a K-analytic subset of Pr(X).
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proof (Recall that Pg(X) is Hausdorff, by 437R(a-ii).) For each n € N, let C), be the set of Radon measures
on K, with magnitude at most 1; by 437R(f-ii), C,, is compact in its narrow topology. Let C' be the compact
space [, cy Cn; for the rest of this proof, I will use the formula g = (un)nen to describe the coordinates
of members of C. Define 1 : C — [0,1]N by setting 1 (u)(n) = pn,K, forn € N and p € C. Then v is
continuous. Since B = {{a,)nen 1 D pep @n = 1} is a Borel subset of [0, 1]V, therefore a Baire set (4A3Kb),
D = ~![B] is a Baire subset of C' (4A3Kc), therefore Souslin-F (421L) and K-analytic (422Hb).

For p € D, define a function ¢(u) by saying that

d(p)(E) =3, g un(ENK,) if EC X and p, measures N K, for every n

and is undefined otherwise. It is easy to check that ¢(p) € Pr(X). Also ¢ : D — Pr(X) is continuous. I
If G C X is open, then v — v(GN K,) : C,, = [0,1] and therefore g — p,(G N K,) : D — [0,1] are lower
semi-continuous for each n (4A2B(d-ii)), so g — ¢(u)(G) is lower semi-continuous (4A2B(d-iii), 4A2B(d-v)),
and {u : ¢(u)(G) > a} is open for every a; by 4A2B(a-iii), ¢ is continuous. Q

Consequently A = ¢[D] is K-analytic (422Gd).

459G Lemma Let X be a topological space, (Y,&,T,v) a totally finite quasi-Radon measure space,
Yy — [y a continuous function from Y to the space M, JR(X ) of totally finite quasi-Radon measures on X with
its narrow topology, and U a base for the topology of X, containing X and closed under finite intersections.
If p e M;R(X) is such that pU = [ p,U v(dy) for every U € U, then (u,)yey is a disintegration of y over
v.

proof (a) Let & be the family of subsets E of X such that uF and [ p,Ev(dy) are defined and equal.
Because X € &, £ is a Dynkin class; as U is included in £ and is closed under finite intersections, the
o-algebra of sets generated by U is included in £, and in particular any finite union of members of U belongs
to £.

(b) In fact every open subset of X belongs to &. P If G C X is open, set H = {H : H C G is a
finite union of members of U}. Then H is upwards-directed and has union G. Set fy(y) = p,H fory € Y
and H € H. Since A\ — A\H : M;R(X ) — R is lower semi-continuous (by the definition of the narrow
topology) and y — pu, is continuous, fg : ¥ — R is lower semi-continuous (4A2B(d-ii) again). Moreover,
{fu : H € H} is an upwards-directed family of functions with supremum fq, where fo(y) = p,G for each
Yy, because every pi,, is T-additive. Now

uG = sup pH = sup /fHdl/: /f(;dl/
HEH HeH

(414Ba)
= / pyG v (dy)

and G €. Q

(c) It follows that every Borel subset of X belongs to &, that is, that (u,)ycy is a disintegration of the
restriction pp to the Borel o-algebra of X. Since every i, is complete, (1, )yey is also a disintegration over
v of the completion of up (452B(a-ii)), which is pu.

459H Theorem Let Z be a Hausdorff space, I an infinite set, and i a quasi-Radon probability measure
on Z! such that the marginal measures on each copy of Z are Radon measures. Write Pr(Z) for the set of
Radon probability measures on Z with its narrow topology. Then the following are equiveridical:
(i) for every permutation p of I, w+ wp : Z1 — Z! is inverse-measure-preserving for ji;
(ii) for every transposition p of two elements of I, w — wp : ZI — Z! is inverse-measure-
preserving for fi;
(iii) for each n € N and any two injective functions p, ¢ : n — I the maps w — wp : Z1 — Z"
and w — wq : ZT — Z™ induce the same measure on Z";

MEASURE THEORY



459H Symmetric measures and exchangeable random variables 167

(iv) there are a probability space (Y, T, v) and a family (u,),cy of T-additive Borel probability
measures on Z such that <ﬂ£>y€y is a disintegration of [ over v, writing [Lé for the T-additive
product of copies of fiy;

(v) there is a Rad~0n probability measure 7 on Pg(Z) such that (67)gcp, (z) is disintegration
of fi over ¥, writing ! for the quasi-Radon product of copies of 6.

Moreover, if I is totally ordered, we can add

(vi) for each n € N and any two strictly increasing functions p, ¢ : n — I the maps w +— wp :

Z!' - Z™ and w — wq : Z' — Z" induce the same measure on Z".

proof (a) As in 459E, we need consider only the case in which I is totally ordered, and the implications
(v)=(iv)=(1)=(ii)=(iii)=(vi)
are elementary. So henceforth I will suppose that (vi) is true and seek to prove (v).

(b) We are going to need a second topology on the set Z, so I will call the original topology ¥, and for
the rest of this /Rroof I will declare the topology on which each topological concept or construction is based.
Write p for 1@, B(Z, %), where B(Z,¥) is the Borel o-algebra of Z for the topology €. Then (vi) is also
true of p. (Strictly speaking, we ought to check that the different images of u all have the same domain.
]/Bllt this is true, because the image of u corresponding to a strictly increasing function p : » — I has domain
®,B(Z,%).) The (unique) marginal measure X of y is the restriction to B(Z, %) of the T-Radon measure A
which is the marginal of fi, so is a T-tight T-Borel measure, therefore countably compact. By 454A (b-ii),
1 is countably compact. So 459E, with IC the family of T-compact subsets of Z, tells us that there are a
probability space (Yo, To, 1) and a family (u,)yey, in Pr(Z,T) such that (u))ycy, is a disintegration of 1
over vy, writing M;I, for the ordinary product of copies of 11,. We can of course suppose that vy is complete.
Note also that (uy)yey, is a disintegration of A; this is clearly achieved by the proof of 459E, and it is
necessarily true if <Mé>y€y0 is to be a disintegration of p. Because every p, is complete, (1) ey, is also a

disintegration of the completion A of .

(¢) Let (K,)nen be a disjoint sequence of T-compact subsets of Z such that 300 MK, = 1 (412Aa).
Let & be

{H:HCZ, Z\(HNK,) € ¥ for every n € N}.

Then & is a locally compact topology on Z finer than T. (If you like, & is the disjoint union topology
corresponding to the partition {K,, : n € NyU{{z} : 2 € Z\ U,y Kn}.) Note that the subspace topologies
on any K, induced by & and ¥ are the same, so that a T-compact subset of K, is G-compact. Because
G is finer than T, Pr(Z,6) C Pr(Z,%) (use 4181). If 0 € Pr(Z,%) and 0(|J,,cy Kn) = 1, then, from the
standpoint of the topology &, 8 is a complete topological probability measure inner regular with respect to
the compact sets, so belongs to Pg(Z, &). In particular, e Pr(Z,6).

We shall need to know that the family V of T-Borel &-cozero subsets of Z is abase for 6. P If z € H € &,
then if 2z ¢ (J, cy K the singleton {z} belongs to V. If n € N and z € K,,, then HN K, € &; as & is
locally compact, there is an &-cozero set G such that z € G C H N K,,, and now G is T-relatively open in
the T-compact set K,,, so G is T-Borel. Q

(d) We know that

fﬂy(UneN Kn)vo(dy) = 5‘(UneN K,) =1,

since p, Z = 1 for every y, the set Y = {y : y € Yy, p1y (U, ey Kn) = 1} must be vg-conegligible. Let v be
the subspace measure induced by vy on Y. Then (j,) ey is a disintegration of A over v, and u, € Pr(Z, &)
for every y €Y, by (c).

(e) By 459F, the set
A={0:0¢€ Pr(Z,6), 0(U,en Kn = 1}

is K-analytic in its narrow topology, while p, € A for every y € Y. If G € Vand a > 0, {y : y € Y,
puyG > a} € To,so{y:y €Y, pu,G > a} is measured by v. By 4321, applied to the map y + g, : Y — A,
there is a Radon probability measure 74 on A such that
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[ hdia= [ h(u,)v(dy)
for every bounded continuous h: A — R.

(f) Now suppose that f: Z — R is bounded and G-continuous. Then 6 — [ fdf : Pr(Z,6) — R is
continuous (437K), so that
[ fd0oa(d0) = [[ fdp,v(dy).

If G € V, there is a non-decreasing sequence ( f,,)nen of non-negative G-continuous functions with supremum
xG, so

/HGDA(dG) sup/ fnd0D4(d0) —sup/ frdpyv(dy)
neN

neN
- /,uyGy(dy) — G = G.

So we can apply 459G to the identity map from A to itself and the family (B)pca to see that (f)geca is a
disintegration of A over v4.

It follows that if E C Z is A-negligible, then F = 0 for 4-almost every 6. Moreover, since (t,) ey is a
disintegration of A over v, p, £ = 0 for v-almost every y.

(g) If J C I is finite, G; € T for j € J, and W = {w : w € Z!, w(j) € G; for j € J}, then

AW = [ 6TWi4(df).

P Because V is a base for & closed under countable unions, and \is G-Radon, there is for each j € J a

G’ € V, included in Gy, such that AG’; = AG;. Set W' = {w : w € Z', w(j) € G for j € J}. We have
WAW’ € Uje{w:w(j) € G\ G},
while
i (i) € G\ G} = X(G,\ 6) =0

for each j, so i’ is defined and equal to iWW = uW. Note that the same calculation shows that 6/W = /W’
whenever 6 € A is such that 9G;- = 0G for every j, that is, for 74-almost every 6. Now, for each j € J, we
have a non-decreasing sequence (fj,)nen of non-negative G-continuous real-valued functions with supremum
XGj. Set gn(w) = [[;cy fin(w(4)) for w € Z" and n € N. (I suppose you should take g,(w) = 1 if J is
empty.) Then each g, is &’-continuous, so if we set h,,(0) = [ g,,df' for § € A, h,, is continuous (put 437Mb
and 437Kb together). Also (gn)nen is a non-decreasing sequence with supremum xW’, so

W' = supneNfgndHI = sup,,cn hn (0)

for 6 € A. Accordingly

,&W:ﬁW’:/un' dy—sup/h oy )v(dy)

= Sup/hndﬁA = sup // Gnd0" 74(d0)
neN neN
:/GIW’ v4(d0) :/GIWﬂA(dﬁ),
as required. Q

(h) We are nearly ready to dispense with the topology &. Since the embeddings A S Pr(Z, &) § Pr(Z,%)
are continuous (437Jh), we have an image Radon probability measure © on Pr(Z, %), and

pr<z,s> hdp = fA hdia

for every h : Pr(Z,%) — R such that [, hdp, is defined.
In particular, if we take JV to be the family of T/-open cylinder sets expressible as {w : w € Z!, w(j) € G;
for j € J} where J C I is finite and G; € ¥ for each j, (g) tells us that
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(W = [0TW ira(d0) = [ 0"W ix(d) = [ 6TW 5(do)

for every W € W, where I now write T/ for the product topology on Z! corresponding to the topology T on
Z, and 67 for the T!-quasi-Radon product measure on Z! corresponding to the T-Radon measure 6 (417R).
Now turn again to 437Mb and 459G; # — 6 is a continuous function from Pg(Z, %) to the space Pyr(Z!,%7)
of T'-quasi-Radon probability measures on Z, and W is a base for the topology T!, so (51 )oePr(z,3) 18 @
disintegration of fi over 7, which is what I set out to prove.

4591 I come now to a lemma based on ideas in TAO 07. It is in a form more elaborate than is required
for the elementary application here (459J), but which will be needed in §497.

Lemma Let (X, 3, 1) be a probability space and I a set. For a family T of subalgebras of PX, write \/ T
for the o-algebra generated by (JT, as in 458Ad. Let G be the group of permutations ¢ of I such that
{i : ¢(i) # i} is finite. Suppose that « is an action of G on X such that x +— ¢z is inverse-measure-
preserving for each ¢ € G; set ¢peA = {¢ex : x € A} for ¢ € G and A C X, as in 441Aa and 4A5Bc. Let
(X7)scr be a family of o-subalgebras of ¥ such that

(i) for every J C I, ¥ is the o-algebra generated by |y c; is finite 2K

(i) if JC I, E€ X, and ¢ € G, then ¢«E € Sy y; N

(iii) if J C I, E € ¥ and ¢ € G is such that ¢(i) =i for every i € J, then ¢«E = E.
Suppose that J* is a filter on I not containing any infinite set, and that K C I, X C Pl and J C J* are
such that for every K’ € K there is a J € J such that KN K’ C J. Then X and \/K,E,C Y.+ are relatively
independent over \/ ;. ; ;.

proof (a)(i) Let us note straight away that condition (i) above implies that X C ¥; whenever K C J C I.

(ii) For any o-subalgebra T of X, I will (slightly abusing notation, as in 242Jh) write L?(u|T) for the
|| [|2-closed linear subspace of L?(u1) consisting of equivalence classes of u-square-integrable T-measurable
real-valued functions defined on X, and Pr : L?(u) — L?(u[T) for the corresponding conditional-expectation
operator (244M). Note that Pr is an orthogonal projection (244Nb).

(iii) We have an action of G on L?(p), defined by saying that
(pof)(z) = f(ptex) for € G, 2 € X and f € R¥
(4A5C(c-1)),
pof* = (¢of)* for ¢ € G and f € L2(u) NRX
(441Kc).
(iv) If T is the family of o-algebras of subsets of X, we have an action of G on T defined by setting
¢oT = {¢p-E : E € T}

for T € T and ¢ € G. If (Ty)yer is a family in T, then ¢o\/ Ty =\ p ¢+T, for every ¢ € G, just
because E +— ¢+F is an automorphism of the Boolean algebra PX.

(v) If $ € G and L C I, then ¢«X = Y4z PP Condition (ii) of this lemma says just that ¢«Xp =
{¢+E : E € ¥} is included in ¥4[z}; and now of course

Sor) = ¢2d XL C ¢ Sg-1p(r)) = ¢EL- Q
(vi) If € G and T is a o-subalgebra of ¥, then ¢e(Pru) = Py,r(¢eu) for every u € L?(u). I I should
of course note that ¢«X = ¥ because x — ¢ex is an automorphism of (X, X, ), so ¢+T C ¥ and we can

speak of Py,1. Let f : X — R be a ¥-measurable function such that f* = u, and g : X — R a T-measurable
function which is a conditional expectation of f on T. In this case, for any a € R,

{z:(¢og)(x) > a} = {2 : g(¢7"ex) > a} = {poz: g(x) > o}
= ¢e{z: g(x) > a} € ¢oT,
S0 ¢og is (¢eT)-measurable. Next, for any F € ¢-T,
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| oadn= [ a6 omtan = [ glomtio)

¢710F
(applying 235G to the inverse-measure-preserving function = — ¢ez : X — X and the integrable function

x> g(¢~ex))
=/ fdu
¢71.F

- /F o fd.

As F is arbitrary, ¢eg is a conditional expectation of ¢ef on ¢+T, and
¢+(Pru) = ¢og* = (¢29)* = Pour(¢+f)* = Pour(dou). Q

(because ¢~ 1eF € T)

(b)(i) Let (J)yer be a non-empty finite family of subsets of I with infinite intersection, and set A =
\/veF ¥, . Suppose that K, (K,),er are such that

Ke[Is¥, K,e[I]<¥ and KNK, C J, for every vy €I

Take £ € ¥k and F, € Xk for every v € I', and set F' = p F,. Let g, h : X — [0,1] be A-measurable
functions which are conditional expectations of xE, xF respectively on A. Let ¢ > 0.

(i) For L C I set Ay =\ cp2y,nr € A For any u € L?(p) there is a finite L C I such that
|| Pru — Ppull2 < € whenever T is a o-subalgebra of A including Az. P By condition (i) of this lemma, A is
the o-algebra generated by

ULQI is finite U’yGF ZJ‘VQL’

so{Ap : L € [I]=*} is an upwards-directed family of o-algebras whose union o-generates A, and Uy ¢/ i ginite L?(ulAr)
is norm-dense in L?(u[A). There are therefore a finite L C I and a v € L?(u[AL) such that ||v — Pyul2 <e.
If now Ay CT C A, v € L?(u|T), while Pr is the orthogonal projection onto L?(u]T), so

||PT’LL — PAU||2 = ||PTPAU — PAUHQ < ||U — PAUHQ <e. Q
(iii Set u = xE* and v = xF*, so that g* = Pyu and h* = Pyv. By (b), there is an Ly € [I]<% such
that
|Pru— Paull2 <€, [|[Prv— Pav|a <€, ||[Pr(uxv)— Py(uxv)la <e

whenever T is a o-subalgebra of A including Ar,. We can suppose that Lo O K U Uwel“ K. Write Ty for
Ar,. We have

|Paw X Pav — Pryu X Pr,v|2
< |IPau % (Pav — Pryv)ll2 + ||(Pauw — Prou) X Pryv||2
< [Pav — Pryvll2 + [[Pav — Proull2
(because ||Prul|cc and || Pr,v||eo are both at most 1)
< 2e.

(iv) Let L1 €, cp Jy \ Lo be a set of size # (Lo \ K); let ¢ € G be such that ¢[Lo \ K] = L, ®? is the
identity and ¢(i) =i fori € I'\ (L1U (Lo \ K)). In this case, ¢(i) =i for i € K, so ¢[L] C (LNK)U(, cr J4
for every L C Lg. Setting M, = (Lo N Jy) U ¢[Lo N J,], we have

LonJy, € M, = ¢’[Mw] c Jy, (i’[Kv] cJy
for each 4 € T'. (This is where we need to know that K N K, C J,.)
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Now
pou = po(XE®) = X(¢+E)* = XE* = u
by condition (iii) of this lemma; also
[¢+(Prou) — Paull2 < 3e.
P By (a-iv) and (a-v),

poTo = ¢ \/ Yreng, = \/ P XL,

~ver ~eT
=V Zotrons €V o, €V Sa, = A
el ~er ~er

Set T =Ty V ¢oTp; then Tg C T = ¢[T] C A. But now
¢+(Pru) = Pyar(¢ou) = Pru

(see (a-vi)), so

[¢e(Prou) — Paull2 < [[¢e(Pryu) — ¢o(Pru)llz + [[Pru — Paull2
= ||Pru — Prul|2 + [[Pru — Ppul|2
< [[Pau — Pryull2 + 2||Pru — Prullz < 3e. Q

(v) Set
T = v’yEl" EK'YUM'Y'

Because Lo N J, € M, for every , T* and
T =V er Bk, um,

include Ar, = To, while ¢«T* C A because ¢[K.,]UM, C J, for every 7. Also F' € T", because F, € Y

T* for every . Now
and

| Pty (w X v) — Pryu X Ppyvl|la = || Pr, Pr+(u X v) — Pp,u X Pryvl|2

(because Tp C T™)

= ||Pr,(v x Pr=u) — Pp,(v X Pr,u)||2
(because v € L?(u|T*) and Pr,u € L*(u]To), see 242L)

<|lv X Pr=u— v X Pryull2 < ||[Pru — Pryul|2
(because ||v]|oc < 1)

= ||go(Pr-u) — ¢+(Pryu)ll2

= [|[Pper+(¢ou) — @o(Pr,ou)ll2

< [[Pgor-u — Prull2 + [[Pauw — ¢o(Pr,u)|l2

< e+ 3e = 4e.

(vi) Putting these together,

| Pa(u x v) — Pau X Ppvlla < ||Pa(u X v) — Ppy(u X v)||2
+ || Pr, (u x v) — Pryu X Pryv||2
+ ||Pau x Ppav — Ppyu X Pp,v|2
< €4 4de 4+ 2e = Te.
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(vii) As € is arbitrary, Pa(u X v) = Ppau X Ppv, that is, g X h is a conditional expectation of x(E N F)
on A, and F and F are relatively independent over A.

(c) It follows that Xk and \/
consider the set

~Jer Yk, are relatively independent over A. B Suppose that £ € Yy, and

E={F :FeX P\xX(ENF)* = Px(xE"*) x PA(xF"*)}.
Then £ is a Dynkin class, and by (b) above it contains
& ={N,er Iy : Fy € Bk, for every v € I'},
which is closed under N. Accordingly £ includes the o-algebra generated by &y, which is \/7eF Yk,. Thus
PAX(ENF)* = PA(XE*) x PA(XF"*)
for every E € ¥ and F € \/,yEr Yk, and Y and \/ﬂ{er Yk, are relatively independent over A. Q

(d) Now suppose that (J,)yer is a non-empty finite family of subsets of I with infinite intersection.
As before, write A for v«/el“ Y7,. Suppose that K C I and that (K,),er is a family of subsets of I such
that K N K, C J, for every v € I'. Then Y and Vvel“ Yk, are relatively independent over A. P Set
T =X :Le[K]<¥}and for v € I set T, =|J{XL : L € [K,]<“}. Then (b)-(c) tell us that T and the
algebra T’ o-generated by U’yGF T, are relatively independent over A. Since Yk is the o-algebra generated
by T, while \/_ .. ¥ is the o-algebra generated by T', 458Da-458Db tell us that Y and \/
relatively independent over A. Q

yer ZK7 are

(e) At last we are ready to approach the sets K, K and J of the statement of this lemma. The case
J = 0 is trivial (as then K must also be empty), so suppose that J is non-empty.

(i) To begin with, suppose that J and K are finite. In this case, we can find finite families (Jy)~er
and (K, )~er running over J, K U {0} respectively such that K N K, C J, for every . So (d) tells us that
Yk and /g o Li V Xy are relatively independent over \/Jej 3.

(ii) If K is finite but J is infinite, then let Jp € J be a finite set such that for every K’ € K there
isa J € Jp including K N K’'. Then for any finite 7' C J including Jp, Xk and V krex X are relatively
independent over \/ ;. 7, 3. Since

Voer B0 T €T’ € [T}

is an upwards-directed family of o-algebras whose union o-generates \/ ;¢ ; X7, 458C tells us that ¥y and
Vkrex Lk are relatively independent over \/ ;. , X ;.

(iii) Finally, for the general case, (ii) tells us that X and \/ o, Xk are relatively independent over
V jes By for every finite K' C K, so ¥k and \/ ., X are relatively independent over \/ ;. , X7, by 458D
again.

459J Corollary Let (X, %, i) be a probability space and I a set. Let G be the group of permutations

¢ of I such that {i : ¢(i) # i} is finite. Suppose that « is an action of G on X such that z — ¢ex is inverse-
measure-preserving for each ¢ € G. Let (X;)scr be a family of o-subalgebras of ¥ such that

(i) for every J C I, ¥ is the o-algebra generated by |y c; is finite 2K

(i) if JC I, E€ X, and ¢ € G, then ¢+F € Sy y; -

(iii) if J C I, E € ¥ and ¢ € G is such that ¢(i) =i for every i € J, then ¢«E = E.
Then if J C I is infinite and (K )er is a family of subsets of I such that K, N Ks C J for all distinct ~,
d €T, (XK, )yer is relatively independent over X ;.

proof By 4591, Yk and \/(SGA Yk, are relatively independent over ¥.; whenever A C T and v € T'\ A.
Now 458Hb tells us that we can induce on #(A) to see that (¥x_ ) ea is relatively independent over ¥ ; for
every finite A C T, and it follows at once that (Xk. ),er is relatively independent over X, as remarked in
458Ac.

proof Note first that if G is the group of permutations ¢ of I such that {i : ¢(¢) # ¢} is finite, then any
¢ € G is expressible as the product of finitely many transpositions, so w — w¢ is an automorphism of
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(X, u). Let « be the action of G on X! defined by saying that gew = we~! for x € X! and ¢ € G. Then
w — ¢ew is inverse-measure-preserving for every ¢.

If L C I then X, is the o-algebra of subsets of X! generated by sets of the form {z : 2(i) € E} where
i€ Land E € X. So Xy, is the o-algebra generated by | J{Xk : K € [L]<“}.

Ifiel, Fe€¥and ¢ € G, then

pe{z:2(i) € E}Y = {pox : 2(i) € E} = {x: (¢~ tex)(i) € B} = {x : 2(¢(i)) € E}.

Soif L C I and ¢ € G, {W : ¢psW € Sy} is a o-algebra of subsets of X! containing {z : x(i) € E}
whenever i € L and F € ¥, therefore including ¥1; that is, ¢peW € ¥y whenever W € Y.

If L C T and ¢ € G is such that ¢(i) = i for every i € L, then {W : ¢p¢W = W} is a g-algebra of subsets
of X! containing {z : z(i) € E} whenever i € L and E € X, so ¢W = W for every W € 1.

Thus the conditions of 4591 are satisfied, and the result follows at once.

459K Following the results of §452 (especially 452Ye), we do not generally expect to find disintegrations
of measures which are not countably compact. It may however illuminate the constructions here if I give a
specific example related to the contexts of 459E and 459H.

Example (DUBINS & FREEDMAN 79) There are a separable metrizable space Z and a quasi-Radon measure
on ZN, invariant under permutations of coordinates, which cannot be disintegrated into powers of measures
on Z.

proof (a) Let A be Lebesgue measure on [0,1]. @ = [0,1] x [0, 1]Y, with its usual topology, is a compact
metrizable space, so has just ¢ Borel sets (4A3F). Let (We)e<, enumerate the Borel subsets of @ with non-
zero measure for the product measure A x AN. (Remember that A x AN is a Radon measure, by 416U.) For
each &, we have 0 < (A x AN)(We) = [ AN(We[{t}])A(dt), so Ag = {t : W[{t}] # 0} has cardinal ¢ (419H);
we can therefore choose (t¢)e<. in [0,1] such that t¢ € A¢ \ {t, : n < &} for every € < ¢. Now choose tg,,, for
¢ <cand n € N, such that (¢, (ten)nen) € We. Set Z = {(te, ten) : € < ¢, n € N} C [0,1]%.

(b) Set X = ([0,1)%)N and define ¢ : Q@ — X by setting ¢(¢, (tn)nen) = ((t,tn))nen for t, t, € [0,1].
Then ¢ is a homeomorphism between @ and ¢[Q], so there is a unique Radon measure # on X such that
¢ is inverse-measure-preserving for A x AN and p#. Now p# is invariant under permutations of coordinates,
because if p : N — N is a permutation and p(x) = xp for x € X, then pop = ¢p, where p(t, (tn)nen) =
(t, (tp(n))nen); and as p: Q — Q is inverse-measure-preserving, so is p: X — X.

Also Z" has full outer measure for p#. B If u#W > 0, then (A x A\N)¢~[IW] > 0, so there is some & < ¢
such that We C ¢~ H[W]. Now ((t¢, ten))nen € Z¥NNW. Q Accordingly the subspace measure ji on Z is a
probability measure. Because p# is invariant under permutations of coordinates, so is ji; because u# is a
Radon measure, i is a quasi-Radon measure (416Ra).

(c) ? Suppose, if possible, that there are a probability space (Y, T, v) and a family (u,)ycy of probability
measures on Z such that iE = [ u) Ev(dy) for every Borel set £ C Z". (The argument to follow will not
depend on which product measure is used in forming the p}.) Looking at sets of the form (Z N H) x Z x
Z % ..., where H C [0,1]% is a Borel set, we see that yu,(Z N H) must be defined for almost every y; as
Z is second-countable, 1, must be a topological measure for almost every y. Looking at sets of the form
(ZN(Gy x[0,1])) x (ZN (G x [0,1])) X Z x ..., where Gy and G are disjoint Borel subsets of [0,1], we
see that pu,(Z N (Go x [0,1])) - py(Z N (G x [0,1])) = 0 for almost every y; as [0, 1] is second-countable and
Hausdorff, there must be, for almost every y € Y, an s, € [0, 1] such that p,(Z N ({s,} x [0,1])) = 1.

Next, if G C [0,1] is a Borel set, then 1, (Z N ([0,1] x G)) = AG for almost every y. I
hy) = (2001 x G)) x Z % ...) = my(Z 1 (10,1] x G))
is defined for almost every y, and h is v-integrable, with
Jhdv=pR((Z0([0,1] x G)) x Z x...) = p#(([0,1] x G) x [0,1]* x ...) = AG.

At the same time,
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/h(y)(l — h(y))v(dy) = p((Z N ([0,1] x G)) x (Z N ([0,1] x ([0, 1]\ G))) x Z x ...)

= 1 ((0,1] x @) x (10,1] x ((0,1]\ @) x [0,1] x ....)
= AG(1 - \G).

Rearranging, we see that [ h%dv = ([ h)?. But this means that [(h(y) — [ h)*v(dy) =0 and h(y) = AG for
almost every y. Q

It follows that, for at least some y, py(Z N ({sy} x G)) = AG for every interval G C [0, 1] with rational
endpoints. But this is impossible, because all the vertical sections of Z are countable. X

Thus there is no such disintegration, as claimed.

459X Basic exercises >(a) Let (X, X, u) be a probability space and (f,)nen an exchangeable se-
quence of real-valued random variables on X all with finite expectation. Use 459C and 2731 to show that

<L

o St fi)nen converges a.e. (Compare 276Xg?.)

(b) Let (X,3, ) be a probability space and (f,)nen an exchangeable sequence of real-valued random

—1i-1 St o fi =0 ae. Show that (Pr(}." , fi >

av/n + 1))pen is convergent for every o € R. (Hint: 2741.)

variables on X all with finite variance, such that lim,_,

(¢) Let X be a completely regular topological space, (Y,S,T,v) a totally finite quasi-Radon measure
space, and y — [, a continuous function from Y to the space M, + 1 (X) of totally finite quasi-Radon measures
on X with its narrow topology. Show that if u € M;R(X) is such that [ fdp = [[ fdu, v(dy) for every
f € Cy(X), then (py)yecy is a disintegration of p over v.

>(d) (D1aconis & FREEDMAN 80) Let Z be a non-empty compact Hausdorff space and I an infinite set
including N. Let /i be a Radon probability measure on Z7 invariant under permutations of I. For k < n let
D, € n* be the set of injective functions from k to n and Q,,; the set Z! x n* x D,,,, endowed with the
product A, of fi and the uniform probability measures on the finite sets n* and D,,,. Define ¢pp : Qpp — Z*
and Y : Qe — Z* by setting

¢nk(w D, (Z) = wp,
qunk( w,p,q ) = wp 1fp € an’a
= wq otherwise.

(i) Show that there is a disintegration (u%,),cz: of the image measure \,;¢,} over fi where each fin,, is a
suitable point-supported measure on Z*. (ii) Show that the image measure )\nkl/);kl is the image measure
fix = i, ', where 7x(w) = wlk for w € Z1. (iii) Show that if n > 0 then | W — [ uk W fi(dw)| < k(knl)
for every Baire set W C Z*. (iv) Show that there is a Radon probability measure 7, on Pr(Z) for which
W > finy 1S inverse-measure-preserving. (v) Show that if 7 is any cluster point of (7,)nen in Pr(Z) then
<0 )oePr(z) is a disintegration of i over 7, writing 6! for the Radon product of copies of any 0 € Pr(2).

>(e) (HEWITT & SAVAGE 55) Let X be a non-empty compact Hausdorff space and I an infinite set. Let
Q be the set of Radon probability measures on X! which are invariant under permutations of I. Show that
(i) Q is a closed convex subset of the set Pr(X) of all Radon probability measures on X! with its narrow
topology; (ii) @ is isomorphic, as topological convex structure, to Pr(Pr(X)); (iil) the extreme points of Q
are just the powers of Radon probability measures on X.

(f) Let X, I be sets, ¥ a o-algebra of subsets of X and p a probability measure with domain @12 which
is transposition-invariant in the sense that for every transposition 7 : I — I the function z — z7 : X! — X/
is inverse-measure-preserving. For J C I, let ¥ ; be the o-algebra

25Formerly 276Xe.
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W W e @IE, W is determined by coordinates in J}.

Show that if J C I is infinite and <Kv>wel“ is a family of subsets of I such that K, N Ks C J for all distinct
v, 0 €T, (XK. )yer is relatively independent over ¥ (i) using 459D (ii) using 459.J.

459Y Further exercises (a) Let X be a topological space and I an infinite set. Write P, (X), P.(X7)
and P, (P, (X)) for the spaces of T-additive Borel probability measures in X, X' and P, (X) respectively, with
their narrow topologies. (i) For 6 € P,(X) write 6" for the T-additive Borel measure on X! corresponding
to @, that is, the restriction to the Borel o-algebra of X! of the r-additive product measure described in
417F. Show that 6 — 07 : P.(X) — P,(X7) is continuous. (ii) Show that if v € P,(P,(X)) there is a
unique g, € P-(X7T) such that <§I>9€pT(X) is a disintegration of p, over v, where 07 is the T-additive Borel
product measure on X’ corresponding to § € P.(X). (iii) Show that v+ u, is a homeomorphism between
P,(P.(X)) and its image in P.(X7).

(b) Discuss the problems which arise in 459B, 459C, 459E and 459H if the index set I is finite.

459 Notes and comments As I have presented this material, the centre of the argument of 459A-459H
lies in the martingales in part (b-3) of the proof of 459B. We are trying to resolve the functions f; into
‘common’ and ‘independent’ parts. The ‘common’ part is given by the conditional expectations of the f; over
an appropriate o-algebra T, and we approach these by looking at the conditional expectations of each f; on
o-algebras T, generated by ‘distant’ f;. All the most important ideas are already exhibited when the index
set I is equal to N. Note in particular that in the basic hypothesis that all finite strings (fi,,. .. , fi,) have
the same joint distribution, it is enough to look at increasing strings. But there is a striking phenomenon
which appears in sharper relief with uncountable sets I: any sequence (ji)ren of distinct elements of I can
be used to generate an adequate o-algebra, because while the tail o-algebra of sets depends on the choice
of the ji, they all lead to the same closed subalgebra of the measure algebra (459D).

Perhaps I should emphasize at this point that I really does have to be infinite, though for large finite I
there are approximations to the results here.

The proof of 459B is one of the standard proofs of De Finetti’s theorem, with trifling modifications. In
the case of real-valued random variables we have a notion of relative distribution (458I) which gives a quick
way of saying that all the f; have the same conditional expectations over T, as in 459C(ii). For variables
taking values in other spaces the situation may be different (459K), unless (as in §452) we have a countably
compact measure (459E).

Specializing to the case X = Z! in 459B, we find ourselves examining symmetric measures on infinite
product spaces, which are of great interest in themselves. Note that while in the hypothesis of 459E I have
asked for the measure g on the product space Z! to be countably compact, what is actually necessary is
that the marginal measure on Z should be countably compact. By 454Ab, this comes to the same thing.

As in 4520, we can look for a disintegration consisting of Radon measures, provided of course that the
marginal measure is a Radon measure. What we have to work harder for is a direct expression in terms
of an integral [ 6! v(df) where v is itself a Radon probability measure on the space of Radon probability
measures 6 (459H). But most of the extra work consists of finding the correct reduction to the case of locally
compact spaces. For compact spaces we can approach by a completely different route (459Xd). I will not go
farther with this idea here, but I note that the method can be used in a wide variety of problems involving
symmetric structures.

Lemma 4591 is entirely different. I include it here because it gives another approach to relative indepen-
dence and looks at permutation-invariant measures, though in a more abstract setting which does not bind
us to the product spaces which are their most natural expressions. Its power lies precisely in the fact that
in its hypotheses we do not suppose that ¥, = X,V Xk for J, K C I, so the o-algebras \/K,e,C Yk and
\/Jej Y.7 have to be handled with special care.
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Version of 27.2.04

Concordance for Volume 4

I list here the section and paragraph numbers which have (to my knowledge) appeared in print in references
to this volume, and which have since been changed.

4521 In FrREMLIN 00 I quote Pachl’s result that if (X,X, ) is countably compact, (Y, T,v) is strictly
localizable and f : X — Y is inverse-measure-preserving, then v is countably compact; this is now in 452R.

455D The material on Brownian motion in §455, mentioned in KONIG 04 and KONIG 06, has been
moved to §477.

458Yd This exercise (on the strong law of large numbers for relatively independent sequences), referred
to in the 2008 and 2015 printings of Volume 5, is now 458Ye.
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